
Learning OWL Class Expressions

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

DISSERTATION

zur Erlangung des akademischen Grades

Doctor Rerum Naturalium
(Dr. rer. nat.)

im Fachgebiet
Informatik

vorgelegt

von Dipl.-Inf. Jens Lehmann

geboren am 29. März 1982 in Meißen, Deutschland

Die Annahme der Dissertation wurde empfohlen von:

1. Professor Dr. Klaus-Peter Fähnrich (Universität Leipzig)

2. Professor Dr. Nicola Fanizzi (Universität Bari)

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 9. Juni 2010 mit dem Gesamtprädikat

summa cum laude.

Acknowledgement

The thesis was written within the Agile Knowledge Engineering and Semantic
Web (AKSW) group hosted by the Chair of Business Information Systems (BIS)
at the University of Leipzig. I thank my supervisor Prof. Klaus-Peter Fähnrich for
granting me the freedom to develop and pursue my research ideas that have lead
to this work. I also want to thank Dr. Sören Auer, head of the AKSW group, with
whom I had many interesting discussions and who has inspired me with new ideas
and suggestions for directions of future work during the past three years. Within
our research group I had and have high responsibility with regard to managing
projects as well as supervising researchers and students. I also appreciate the
great opportunity to work on Semantic Web research with significant impact on
practical applications. I want to thank all my colleagues in the AKSW and BIS
groups and am glad to be part of these groups. In particular, I thank Sebastian
Hellmann for collaborating with me on a broad range of PhD-relevant topics.

Apart from the people already mentioned, draft versions of the thesis were read
by Prof. Pascal Hitzler, Prof. Gerhard Brewka, and Prof. Nicola Fanizzi. I thank
them for their valuable feedback and support, which helped to improve the quality
of the thesis. I am also grateful for previous discussions and work with them as it
helped me to acquire and improve important academic skills.

Most of the research ideas described here were implemented and evaluated in the
open source DL-Learner and DBpedia projects. I thank everyone working on or
using those projects. Specifically, Christoph Haase, Lorenz Bühmann, Christian
Kötteritzsch, Steffen Becker, and Sebastian Knappe provided implementations or
algorithms directly relevant for this thesis.

Another source of inspiration for the thesis were the Semantic Web and Machine
Learning research communities as a whole. During the last years, I met a number
of excellent researchers and practitioners in those fields – too many to list them
here individually. I am grateful for discussions and research work with them.

Financially, I was mainly supported by the research programmes of the German
Ministry for Education and Research and the European Union. Further funding
for travel expenses was granted by the German Research Foundation and the
German Academic Exchange Service.

Finally, I would like to thank my family and friends for enriching my life beyond
my scientific endeavours. In particular, I thank Stephanie for supporting me in
hard and stressful times.

3

4

Bibliographic Data

Title: Learning OWL Class Expressions
Author: Jens Lehmann
Institution: Universität Leipzig, Fakultät für Mathematik und Informatik
Statistical Information: 223 pages, 35 figures, 23 tables, 3 appendices, 149
literature references, 6 algorithms, 22 examples, 27 definitions, 3 theorems, 17
propositions, 1 corollary, 6 remarks, 11 lemmata, 31 proofs

Abstract

With the advent of the Semantic Web and Semantic Technologies, ontologies
have become one of the most prominent paradigms for knowledge representation
and reasoning. The popular ontology language OWL, based on description logics,
became a W3C recommendation in 2004 and a standard for modelling ontologies
on the Web. In the meantime, many studies and applications using OWL have
been reported in research and industrial environments, many of which go beyond
Internet usage and employ the power of ontological modelling in other fields such
as biology, medicine, software engineering, knowledge management, and cognitive
systems.

However, recent progress in the field faces a lack of well-structured ontologies
with large amounts of instance data due to the fact that engineering such on-
tologies requires a considerable investment of resources. Nowadays, knowledge
bases often provide large volumes of data without sophisticated schemata. Hence,
methods for automated schema acquisition and maintenance are sought. Schema
acquisition is closely related to solving typical classification problems in machine
learning, e.g. the detection of chemical compounds causing cancer. In this work,
we investigate both, the underlying machine learning techniques and their appli-
cation to knowledge acquisition in the Semantic Web.

In order to leverage machine-learning approaches for solving these tasks, it is
required to develop methods and tools for learning concepts in description logics
or, equivalently, class expressions in OWL. In this thesis, it is shown that methods
from Inductive Logic Programming (ILP) are applicable to learning in description
logic knowledge bases. The results provide foundations for the semi-automatic cre-
ation and maintenance of OWL ontologies, in particular in cases when extensional
information (i.e. facts, instance data) is abundantly available, while correspond-
ing intensional information (schema) is missing or not expressive enough to allow
powerful reasoning over the ontology in a useful way. Such situations often occur

5

when extracting knowledge from different sources, e.g. databases, or in collabora-
tive knowledge engineering scenarios, e.g. using semantic wikis. It can be argued
that being able to learn OWL class expressions is a step towards enriching OWL
knowledge bases in order to enable powerful reasoning, consistency checking, and
improved querying possibilities. In particular, plugins for OWL ontology editors
based on learning methods are developed and evaluated in this work.

The developed algorithms are not restricted to ontology engineering and can
handle other learning problems. Indeed, they lend themselves to generic use in
machine learning in the same way as ILP systems do. The main difference, how-
ever, is the employed knowledge representation paradigm: ILP traditionally uses
logic programs for knowledge representation, whereas this work rests on descrip-
tion logics and OWL. This difference is crucial when considering Semantic Web
applications as target use cases, as such applications hinge centrally on the chosen
knowledge representation format for knowledge interchange and integration. The
work in this thesis can be understood as a broadening of the scope of research and
applications of ILP methods. This goal is particularly important since the number
of OWL-based systems is already increasing rapidly and can be expected to grow
further in the future.

The thesis starts by establishing the necessary theoretical basis and continues
with the specification of algorithms. It also contains their evaluation and, finally,
presents a number of application scenarios. The research contributions of this
work are threefold:

The first contribution is a complete analysis of desirable properties of refine-
ment operators in description logics. Refinement operators are used to traverse
the target search space and are, therefore, a crucial element in many learning
algorithms. Their properties (completeness, weak completeness, properness, re-
dundancy, infinity, minimality) indicate whether a refinement operator is suitable
for being employed in a learning algorithm. The key research question is which of
those properties can be combined. It is shown that there is no ideal, i.e. complete,
proper, and finite, refinement operator for expressive description logics, which in-
dicates that learning in description logics is a challenging machine learning task. A
number of other new results for different property combinations are also proven.
The need for these investigations has already been expressed in several articles
prior to this PhD work. The theoretical limitations, which were shown as a result
of these investigations, provide clear criteria for the design of refinement opera-
tors. In the analysis, as few assumptions as possible were made regarding the used
description language.

The second contribution is the development of two refinement operators. The
first operator supports a wide range of concept constructors and it is shown that
it is complete and can be extended to a proper operator. It is the most expressive
operator designed for a description language so far. The second operator uses the
light-weight language EL and is weakly complete, proper, and finite. It is straight-
forward to extend it to an ideal operator, if required. It is the first published ideal
refinement operator in description logics. While the two operators differ a lot in

6

their technical details, they both use background knowledge efficiently.
The third contribution is the actual learning algorithms using the introduced

operators. New redundancy elimination and infinity-handling techniques are in-
troduced in these algorithms. According to the evaluation, the algorithms produce
very readable solutions, while their accuracy is competitive with the state-of-the-
art in machine learning. Several optimisations for achieving scalability of the in-
troduced algorithms are described, including a knowledge base fragment selection
approach, a dedicated reasoning procedure, and a stochastic coverage computation
approach.

The research contributions are evaluated on benchmark problems and in use
cases. Standard statistical measurements such as cross validation and significance
tests show that the approaches are very competitive. Furthermore, the ontology
engineering case study provides evidence that the described algorithms can solve
the target problems in practice. A major outcome of the doctoral work is the DL-
Learner framework. It provides the source code for all algorithms and examples
as open-source and has been incorporated in other projects.

7

8

Contents

1 Introduction 12
1.1 Motivation . 12
1.2 Contributions . 14
1.3 Chapter Overview . 16

2 Preliminaries and State of the Art 19
2.1 Semantic Web . 19

2.1.1 History and Vision . 19
2.1.2 RDF and SPARQL . 21
2.1.3 Description Logics . 23
2.1.4 OWL . 31

2.2 Concept Learning and Inductive Reasoning 33
2.2.1 History, Tools, and Applications 35
2.2.2 Learning Problems in OWL/DLs 39
2.2.3 Refinement Operators in OWL/DLs 41

3 Theoretical Foundations of Refinement Operators 45
3.1 The Role of Minimality . 45
3.2 Combinations of Completeness, Properness, Finiteness, Redundancy 49
3.3 Weak Completeness . 56

4 Designing Refinement Operators 60
4.1 A Complete OWL Refinement Operator 60

4.1.1 Definition of the Operator 61
4.1.2 Completeness of the Operator 65
4.1.3 Achieving Properness . 70
4.1.4 Cardinality Restrictions and Concrete Role Support 72
4.1.5 Optimisations . 75

4.2 An Ideal EL Refinement Operator 75
4.2.1 EL Trees and Simulation Relations 77
4.2.2 Formal Description of the EL Refinement Operator 82
4.2.3 Operator Performance . 88

5 Refinement Operator Based OWL Learning Algorithms 90
5.1 OCEL (OWL Class Expression Learner) 90

5.1.1 Redundancy Elimination 90
5.1.2 Creating a Full Learning Algorithm 92

9

Contents

5.2 ELTL (EL Tree Learner) . 95
5.3 CELOE (Class Expression Learner for Ontology Engineering) . . 98

6 Improving Scalability of OWL Learning Algorithms 103
6.1 The DBpedia Project . 103

6.1.1 The DBpedia Knowledge Extraction Framework 104
6.1.2 The DBpedia Knowledge Base 108
6.1.3 Interlinked Web Content 112
6.1.4 Applications . 115

6.2 Knowledge Fragment Selection . 119
6.2.1 What Properties Should the Fragment Have? 121
6.2.2 Extending Concise Bound Descriptions (CBDs) 122
6.2.3 Extraction Methods . 124
6.2.4 OWL DL Conversion of the Fragment 128
6.2.5 SPARQL Implementation of Tuple Acquisition 128
6.2.6 Usage Scenarios . 129

6.3 Optimising Coverage Tests . 133
6.3.1 Approximate and Partial Closed World Reasoning 133
6.3.2 Stochastic Coverage Computation 135

7 Implementation, Evaluation, and Use Cases 138
7.1 The DL-Learner Project . 138
7.2 ILP Learning Problems . 141

7.2.1 Comparison with other Algorithms based on Description
Logics . 141

7.2.2 Comparison with other ILP approaches 146
7.3 Ontology Engineering . 151

7.3.1 The Protégé Plugin . 152
7.3.2 The OntoWiki Plugin . 154
7.3.3 Evaluation of CELOE . 156

7.4 Fragment Extraction Evaluation 159
7.5 Further Applications . 163

7.5.1 Predictions of the Effect of Mutations on the Protein Function163
7.5.2 NLP2RDF . 164
7.5.3 ORE - Ontology Repair and Enrichment 164
7.5.4 moosique.net - Music Recommendations 165

7.6 Strengths and Limitations of the Described Approaches 166

8 Related Work 169
8.1 Inductive Learning in Description Logics 169
8.2 Refinement Operators . 171
8.3 (Semi-)Automatic Ontology Engineering 172
8.4 Knowledge Fragment Selection . 173

10

Contents

9 Conclusions and Future Work 174
9.1 Refinement Operators . 174
9.2 Learning Algorithms and Scalability 175
9.3 Implementation, Evaluation and Use Cases 176
9.4 Future Work . 177

A Software Release History 179

B DL-Learner Manual 180
B.1 What is DL-Learner? . 180
B.2 Getting Started . 181
B.3 DL-Learner Architecture . 182
B.4 DL-Learner Components . 184

B.4.1 Knowledge Sources . 184
B.4.2 Reasoner Components . 185
B.4.3 Learning Problems . 186
B.4.4 Learning Algorithms . 187

B.5 DL-Learner Interfaces . 189
B.6 Extending DL-Learner . 190
B.7 General Information . 192

C Curriculum Vitae 193
C.1 Related Peer Reviewed Publications 194
C.2 Other Publications . 196
C.3 Talks . 197
C.4 Research Projects and Groups . 197
C.5 Programm Committee, Reviewing 198
C.6 Seminars and Teaching . 199
C.7 Supervision . 199

List of Tables 201

List of Figures 202

List of Algorithms 204

List of Definitions 205

List of Theorems 206

List of Examples and Remarks 207

Bibliography 208

Selbständigkeitserklärung 223

11

1 Introduction

With the advent of the Semantic Web and Semantic Technologies, ontologies have
become one of the most prominent paradigms for knowledge representation and
reasoning. However, recent progress in the field faces a lack of well-structured on-
tologies with large amounts of instance data due to the fact that engineering such
ontologies requires a considerable investment of resources. Nowadays, knowledge
bases often provide large volumes of data without sophisticated schemata. Hence,
methods for automated schema acquisition and maintenance are sought (see e.g.
[Buitelaar et al., 2007]). Schema acquisition is closely related to solving typical
classification problems in machine learning, e.g. the detection of chemical com-
pounds causing cancer. In this work, we investigate both, the underlying machine
learning techniques and their application to knowledge acquisition in the Semantic
Web.

1.1 Motivation

In 2004, the World Wide Web Consortium (W3C) recommended the Web On-
tology Language OWL1 as a standard for modelling ontologies on the Web. In
the meantime, many studies and applications using OWL have been reported in
research and industrial environments, many of which go beyond Internet usage
and employ the power of ontological modelling in other fields such as biology,
medicine, software engineering, knowledge management, and cognitive systems
[Staab and Studer, 2004, Davies et al., 2006, Hitzler et al., 2009].

In essence, OWL coincides with the description logic SHOIN (D) and was
extended to support SROIQ(D) [Horrocks et al., 2006] in OWL 2. Description
logics (DLs) in general are fragments of first order logic. In order to leverage
machine-learning approaches for the creation and extension of OWL ontologies, it
is required to develop methods and tools for learning concepts in description logics
or, equivalently, class expressions2 in OWL. Until recently, only few investigations
have been carried out on this topic, which can be attributed to the fact that
DLs have only become a widely used paradigm in knowledge representation and
reasoning applications since a standard web ontology language was established.

In this thesis, it is shown that methods from Inductive Logic Programming

1http://www.w3.org/2004/OWL/. See also http://www.w3.org/2007/OWL/ for the currently
ongoing revision of the standard.

2http://www.w3.org/TR/owl2-syntax/#Class_Expressions

12

http://www.w3.org/TR/owl2-syntax/#Class_Expressions

1.1 Motivation

(ILP) are applicable to learning in description logic knowledge bases3. The results
provide foundations for the acquisition of OWL ontologies, in particular in cases
when extensional information (facts, instance data) is easily available, while cor-
responding intensional information (schema) is missing or not expressive enough
to allow powerful reasoning over the ontology in a useful way. Such situations of-
ten occur when extracting knowledge from different sources, e.g. databases4 and
wikis [Lehmann et al., 2009], or in collaborative knowledge engineering scenarios,
e.g. semantic wikis [Auer et al., 2006a]. The author argues that being able to learn
OWL class expressions is a step towards enriching OWL knowledge bases in order
to enable powerful reasoning, consistency checking, and improved querying possi-
bilities. In particular, plugins for OWL ontology editors based on the introduced
learning methods are developed and evaluated. An example is given below:

Example 1.1 (Simple Ontology Engineering Use Case)
As an example, consider a knowledge base containing a class Capital and in-
stances of this class, e.g. London, Paris, Washington, Canberra etc. A machine
learning algorithm could suggest that the class Capital may be equivalent to one
of the following OWL class expressions in Manchester OWL syntax5:

City and isCapitalOf min 1 GeopoliticalRegion

City and isCapitalOf min 1 Country

Both suggestions could be plausible: The first one is more general and includes
cities that are capitals of states, whereas the latter one is stricter and limits the
notion of a capital to countries. A knowledge engineer can decide which one is
more appropriate (semi-automatic approach) and the machine learning algorithm
should guide her by pointing out which one fits the existing instances better. As-
suming the knowledge engineer decides for the second suggestion, an algorithm
can show her whether there are instances of the class Capital which are not in-
stances of City or not related via the property isCapitalOf to an instance of
Country. The knowledge engineer can then continue to look at those instances
and assign them to a different class as well as provide more complete information;
thus improving the quality of the knowledge base. After adding the definition of
Capital, an OWL reasoner can compute further instances of the class which have
not been explicitly assigned before.

The developed algorithms are, of course, not restricted to ontology engineer-
ing and can handle other learning problems. Indeed, they lend themselves to
generic use in machine learning in the same way as ILP systems do. The main
difference, however, is the employed knowledge representation paradigm: ILP tra-
ditionally uses logic programs for knowledge representation, whereas this work
rests on DLs/OWL. This difference is crucial when considering Semantic Web ap-
plications as target use cases for the presented approaches, as such applications

3Throughout the thesis, the terms knowledge base and ontology are used synonymously.
4see e.g. http://triplify.org, http://linkedgeodata.org
5For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see Section 2.1.3

and [Horridge and Patel-Schneider, 2008].

13

http://triplify.org
http://linkedgeodata.org

1 Introduction

hinge centrally on the chosen knowledge representation format for knowledge in-
terchange and integration. In this respect, the PhD work can be understood as
a broadening of the scope of research and applications of ILP methods. This
goal is particularly important since the number of OWL-based systems is already
increasing rapidly and can be expected to grow further in the future.6

A central part in many ILP approaches are so-called refinement operators which
are used to traverse the search space, and such an ILP-based approach often rests
on the definition of a suitable operator. Theoretical investigations on ILP refine-
ment operators have identified desirable properties for them to have, which impact
on their performance. These properties, thus, provide general guidelines for the
definition of suitable operators, which are not restricted to a logic programming
setting, but can be carried over to DLs. It turns out, however, that for expres-
sive DLs there are strong theoretical limitations on the properties a refinement
operator can have. A corresponding general analysis, therefore, provides a clear
understanding of the difficulties inherent in a learning setting and also allows to
derive directions for researching suitable operators.

The author provides both this theoretical analysis and the derivation – including
experimental validation – of refinement operators suitable for concept learning in
description logics. Concrete refinement operators are given for an expressive frag-
ment of OWL as well as for a light-weight description logic. We show properties
of these operators and employ them in three different learning algorithms. While
sharing similarities, each of these algorithms is optimised for a specific scenario
or refinement operator. Since some knowledge bases in the Semantic Web are
very large, particular attention is devoted to scalability. DBpedia, as a specific
example of a large collaboratively created knowledge base, is presented. Moreover,
two approaches to improve scalability of learning algorithms on large knowledge
bases are introduced. An extensive evaluation of the novel learning algorithms is
performed by comparing them with other tools for concept learning in description
logics and with state-of-the-art machine learning algorithms.

1.2 Contributions

The work in this thesis is cross disciplinary involving Machine Learning and Se-
mantic Web. The Machine Learning part is mainly related to Inductive Logic
Programming. It is restricted along three dimensions; thus making it feasible to
give the subject a thorough treatment within the bounds of the doctoral thesis:

• supervised (as opposed to unsupervised and reinforcement learning)

• symbolic (as opposed to subsymbolic and non-symbolic)

6As a case in point, see the W3C LinkingOpenData Project, http://esw.w3.org/topic/
SweoIG/TaskForces/CommunityProjects/LinkingOpenData, http://linkeddata.org, or
the TONES and Protégé ontology repositories.

14

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://linkeddata.org

1.2 Contributions

• use of DLs/OWL as knowledge representation formalism (as opposed to logic
programming, first order logic, datalog etc.)

A detailed explanation of the notion of supervised symbolic learning is given in
Section 2.2. In essence, this kind of learning means that a classification problem is
solved from given examples by providing logical, human understandable solutions.

The Semantic Web part of the thesis involves knowledge representation (OWL,
description logics) as well as application scenarios. In particular, the use of concept
learning for ontology engineering is investigated.

The main aim of the thesis is to cover the full spectrum of learning in descrip-
tions logics: It starts by establishing the necessary theoretical basis and continues
with the construction of algorithms. It contains an evaluation of them, and, fi-
nally, presents application scenarios. The research contributions of this work are
threefold:

The first contribution is a full analysis of desirable properties of refinement op-
erators in description logics. These properties (completeness, weak completeness,
properness, redundancy, infinity, minimality) indicate whether a refinement op-
erator is suitable for being employed in a learning algorithm. The key research
question the author wanted to answer is which of these properties can be combined.
When answering this question, a further goal was to make as few assumptions as
possible regarding the used description logic. It was found that there is no ideal,
i.e. complete, proper, and finite, refinement operator for expressive description
logics, which indicates that learning in description logics is a challenging machine
learning task. Several other new results for refinement operator property combi-
nations are shown. The need for these investigations has already been expressed
in several articles [Fanizzi et al., 2004, Esposito et al., 2004]. The theoretical lim-
itations, which have been found as a result of this work, provide clear criteria for
the design of refinement operators.

The second contribution is the development of two refinement operators. The
first operator supports a wide range of concept constructors and it is shown that
it is complete and can be extended to a proper operator. It is the most expressive
operator designed for a description language so far. The second operator uses the
light-weight language EL and is weakly complete, proper, and finite. It is straight-
forward to extend it to an ideal operator, if required. It is the first ideal refinement
operator in description logics to the best of the author’s knowledge. While the
two operators differ a lot, they both use background knowledge efficiently. The
techniques for achieving this are novel.

The third contribution is the actual learning algorithms using the introduced
operators. New redundancy elimination and infinity handling techniques in these
algorithms are introduced. According to their evaluation, the algorithms pro-
duce very readable solutions, while their accuracy is competitive with the state
of the art in machine learning. Furthermore, several optimisations for achiev-
ing scalability of the introduced algorithms are proposed, including a knowledge
base fragment selection approach, dedicated reasoning procedure, and a stochastic

15

1 Introduction

coverage computation approach.
The research contributions are evaluated on benchmark problems and in use

cases. Standard statistical measurements such as cross-validation and significance
tests show that the approaches are competitive. Furthermore, the ontology engi-
neering use case study provides evidence that the described algorithms can solve
the target problems in practice. A major outcome of the doctoral work is the DL-
Learner framework. It provides the source code for all algorithms and examples
as open-source and has been incorporated in other projects.

The contributions and advancements achieved are listed in more detail in Ta-
ble 1.1 grouped by their type and including pointers to the relevant part of the
document.

1.3 Chapter Overview

Chapter 2 covers the prerequisites necessary to understand the thesis. It offers a
brief history of the Semantic Web and highlights key formalisms and technologies
with emphasis on description logics and OWL. Similarly, concept learning is de-
scribed along with typical tools and application examples. Refinement operators
and their properties, which play a central role in the definition of the learning
algorithms in this thesis, are defined.

Theoretical foundations are laid in Chapter 3. A series of new results on proper-
ties of refinement operators in description logics is shown; culminating in Theorem
3.16 which is the central result of this part. Together, the results provide a clear
picture of theoretical limitations of properties of refinement operators. To the
best of the author’s knowledge, such a complete analysis has not been done be-
fore. The results provide a foundation for further investigations into practical
refinement operators, independent from the rest of this thesis.

Based on these investigations, specific operators are developed in Chapter 4.
Apart from proving theoretical properties of these operators, their practical use
is discussed as well. In particular, the incorporation of background knowledge in
computing refinements plays a central role. While the first operator is designed
to cover many features of OWL, the second operator is especially developed for
the tractable EL description logic and has desirable theoretical properties.

The refinement operators are employed in three different learning algorithms
(OCEL, ELTL, and CELOE) in Chapter 5. While sharing similarities, each of
those algorithms is optimised for a specific scenario or refinement operator.

Since some knowledge bases in the Semantic Web are very large, a dedicated
Chapter is devoted to this topic. DBpedia is presented as a specific example of
large collaboratively created knowledge base in Section 6.1. It is then shown how
the scalability of learning algorithms on large knowledge bases can be improved.
The first approach describes the extraction of a relevant fragment from a large
knowledge base (Section 6.2) and the second approach shows the efficient execution
of coverage tests, in particular in the presence of many objects in a knowledge base.

16

1.3 Chapter Overview

type contribution reference
T

h
eo

ry
thorough investigation of properties of refinement opera-
tors for many description languages, including 1.) a non-
ideality result for expressive description logics and 2.) an
ideality result for EL

Chapter 3
and

Section 4.2

development of a suitable heuristic for learning class ex-
pressions in ontology engineering

Section 5.3

development of a stochastic method for performing the
coverage test of a class expression more efficiently

Section 6.3

A
lg

or
it

h
m

s
an

d
Im

p
le

m
en

ta
ti

on

development and implementation of a refinement opera-
tor covering many features of the OWL ontology language

Section 4.1

development and implementation of a refinement opera-
tor for the EL description logic

Section 4.2

development of a flexible method for extracting relevant
parts of very large and possibly interlinked knowledge
bases for a given learning task and its implementation
in the DL-Learner framework

Section 6.2

three learning algorithms (OCEL, ELTL, CELOE) for su-
pervised learning in description logics

Chapter 5

E
va

lu
at

io
n

comparison of algorithms on standard ILP Problems with
other DL learning approaches and state-of-the-art ILP
algorithms

Section 7.2

evaluation of the CELOE ontology engineering algorithm
on several knowledge bases

Section 7.3

showing computational feasibility of EL refinement oper-
ator on several knowledge bases

Section 4.2.3

P
ro

je
ct

s,
A

p
p
li
ca

ti
on

s,
an

d
P

ra
ct

ic
e

DL-Learner open source project – a framework for super-
vised learning in OWL and description logics

Section 7.1

DBpedia open source project – a multi-domain, multi-
language knowledge base extraction from Wikipedia

Section 6.1

Protégé DL-Learner Plugin – a plugin for suggesting class
expressions in the popular Protégé ontology editor

Section 7.3.1

OntoWiki DL-Learner Plugin – a plugin for suggesting
class expressions in the web-based OntoWiki platform

Section 7.3.2

provision of accurate and understandable hypothesis for
the carcinogenesis problem

Section 7.2.2

presentation of application scenarios and examples em-
ploying large knowledge bases

Chapter 7

Table 1.1: Contributions and advancements over the state of the art.

17

1 Introduction

Chapter 7 starts with a description of the DL-Learner project. This open source
project contains the implementation of all algorithms described as well as a number
of examples. It is designed as a framework for learning OWL class expressions and
provides several interfaces for developers. The chapter continues with comparing
the described learning algorithms and other ILP approaches on challenging prob-
lems (Section 7.2). An analysis of the ontology engineering use case (Section 7.3)
is made. Two plugins based on DL-Learner for the popular Protégé and OntoWiki
ontology editors are presented and evaluated. The scalability improvements pre-
sented in Chapter 6 are evaluated and a brief description of further applications is
given. Finally, strengths and limitations of the approaches in general are described
(Section 7.6).

A summary of related work is presented in Chapter 8. Conclusions and ideas
for future work are outlined in Chapter 9.

18

2 Preliminaries and State of the Art

In this chapter, the basic formalisms and technologies underlying the work in this
thesis are introduced. Apart from giving basic notions and concepts, it will also
touch on the state of the art in those areas. Expert readers can skip (parts of) this
section and continue directly with some novel results obtained during the doctoral
work in Chapter 3.

2.1 Semantic Web

2.1.1 History and Vision

Nowadays, the World Wide Web (WWW) is part of everyday life of many of us
and one may have the opinion that the world would be a different place without
it. The foundations of the WWW were invented by Tim Berners-Lee in the early
90s. The web has grown rapidly since then. In 1994, only a few years after its
invention, Tim Berners-Lee talked about semantics on the web during the first
world wide web conference. In this talk1, he mentions:

“To a computer, then, the web is a flat, boring world devoid of
meaning. This is a pity, as in fact documents on the web describe real
objects and imaginary concepts, and give particular relationships be-
tween them. [...] Adding semantics to the web involves two things: al-
lowing documents which have information in machine-readable forms,
and allowing links to be created with relationship values. Only when
we have this extra level of semantics will we be able to use computer
power to help us exploit the information to a greater extent than our
own reading.”

It is interesting to see that this vision of a Semantic Web is almost as old as the
web itself. However, it took a few more years until work started towards realising
this vision. In 1997, an RDF (Resource Description Framework) working group
was initiated within the World Wide Web Consortium (W3C) which led to an
official recommendation in 1999. RDF allows to make statements about (web)
resources in simple subject-predicate-object triples based on XML and URIs. In
2001, the vision of Tim Berners-Lee and others was described in more detail in the
article “The Semantic Web” [Berners-Lee et al., 2001], which is sometimes seen
as the launch of broader work on the Semantic Web.

1http://www.w3.org/Talks/WWW94Tim/Overview.html

19

http://www.w3.org/Talks/WWW94Tim/Overview.html

2 Preliminaries and State of the Art

[Source: http://www.w3.org/2007/03/layerCake.png]

Figure 2.1: Semantic Web Layer Cake.

In the following years, a set of of W3C standards emerged, which are often
summarised in a layer cake (see Figure 2.1). Most notably, the Web Ontology
Language (OWL) became a W3C recommendation in 2004. OWL is an expressive
knowledge representation language based on description logics and allows power-
ful reasoning technologies to be applied. In the same year, the RDF specification
was revised and RDF Schema (RDFS) became a standard for structuring RDF
resources. In 2008, SPARQL was officially announced as W3C standard for query-
ing RDF knowledge bases. One year later, OWL 2, which improves several aspects
of OWL, became a W3C recommendation. The set of standards is likely to be
extended by the rule interchange format (RIF) in the future.

During this time, the Semantic Web was steadily growing2 and contains knowl-
edge from diverse areas such as science, music, people, books, reviews, places,
politics, products, software, social networks, as well as upper and general on-
tologies. The underlying technologies are currently starting to create substantial
industrial impact in application scenarios on and off the web, including knowledge
management, expert systems, web services, e-commerce, e-collaboration, etc. De-
spite this partial success, the vision of the Semantic Web as an extension of the
World Wide Web has not become a reality yet.

This thesis draws on semantic technologies and describes them in detail in the
following sections. As one step towards achieving the Semantic Web vision, it is

2As a rough size estimate, the semantic index Sindice (http://sindice.com/) lists more than 10
billion entities from more than 100 million web pages.

20

http://www.w3.org/2007/03/layerCake.png

2.1 Semantic Web

[Source: RDF Primer (http://www.w3.org/TR/rdf-primer/)]

Figure 2.2: A graph describing Dr. Eric Miller.

shown that the presented learning techniques can simplify the creation of OWL
ontologies (detailed in Section 7.3).

2.1.2 RDF and SPARQL

The Resource Description Framework (RDF) is a W3C standard for expressing
statements about resources. It is used to (globally) identify resources and store
knowledge about them in a simple, flexible way, such that it cannot only be viewed
by humans, but also processed by applications.

Statements in RDF are stored as subject-predicate-object triples, which together
form a labeled directed graph. In Figure 2.2, a resource Eric Miller is described
as a person with the specified name, email address, and title. Resources are
represented by URIs, which has the advantage that they are globally identifiable.
Resources, which need no global identifier can also be assigned a document local
blank node. In each triple, the subject is a resource (represented by an ellipse in
the graph visualisation), the object is either a resource or a literal (represented
by a rectangle), and the predicate/property is an arc from subject to object.

Apart from the graph representation, RDF can be stored in different formats
including an XML syntax:

Example 2.1 (RDF/XML Syntax)
<?xml version="1.0"?>

21

http://www.w3.org/TR/rdf-primer/

2 Preliminaries and State of the Art

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">

<contact:fullName>Eric Miller</contact:fullName>

<contact:mailbox rdf:resource="mailto:em@w3.org"/>

<contact:personalTitle>Dr.</contact:personalTitle>

</contact:Person>

</rdf:RDF>

A common non-XML format for RDF is N33 and its subsets Turtle4 and N-
Triples5.The following represents the above mentioned graph in Turtle syntax:

Example 2.2 (RDF Turtle Syntax)
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix contact: <http://www.w3.org/2000/10/swap/pim/contact#>.

<http://www.w3.org/People/EM/contact#me>

rdf:type contact:Person;

contact:fullName "Eric Miller";

contact:mailbox <mailto:em@w3.org>;

contact:personalTitle "Dr.".

RDF Schema6 (RDFS) is a language designed to create RDF vocabularies. Since
it is in essence a subset of the OWL ontology language, we refer to Section 2.1.4
for an overview. RDF and RDFS use graph based semantics.

RDF knowledge bases can be made persistent in triple stores. SPARQL7 (SPARQL
Query Language for RDF) is the official W3C standard for querying such knowl-
edge bases. It is similar to the SQL language for querying relational databases.

SPARQL is based on the idea of triple patterns. A triple pattern is similar to
a triple, but each of its parts can also be a variable. A set of triple patterns is
a basic graph pattern, which itself can also be viewed as a graph. A basic graph
pattern matches a subgraph of the RDF knowledge base when RDF terms8 in this
subgraph can be replaced by variables such that the result is equivalent to the
graph of the basic graph pattern.

The following SPARQL query selects all persons with full name “Eric Miller”.
The select clause identifies the variables to occur in the results. In this case,
?person can by replaced by http://www.w3.org/People/EM/contact#me to ob-
tain a match.

3http://www.w3.org/DesignIssues/Notation3.html
4http://www.w3.org/TeamSubmission/turtle/
5http://www.w3.org/TR/rdf-testcases/#ntriples
6http://www.w3.org/TR/rdf-schema/
7http://www.w3.org/TR/rdf-sparql-query/
8An RDF term is either an IRI (Internationalized Resource Identifier), a literal, or a blank

node.

22

http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-sparql-query/

2.1 Semantic Web

Example 2.3 (SPARQL Query)
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX contact: <http://www.w3.org/2000/10/swap/pim/contact#>

SELECT ?person

WHERE

{

?person rdf:type contact:Person .

?person contact:fullName "Eric Miller" .

}

FILTERs can be used in SPARQL to restrict solutions to those, which addi-
tionally match given expressions. The following query selects persons whose name
starts with “Eric”:

Example 2.4 (Filters in SPARQL Queries)
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX contact: <http://www.w3.org/2000/10/swap/pim/contact#>

SELECT ?person

WHERE

{

?person rdf:type contact:Person .

?person contact:fullName ?name .

FILTER regex(?name, "^Eric")

}

We refrain from describing RDF and SPARQL in more detail than necessary for
understanding this thesis and point the interested reader to the mentioned W3C
recommendations9 and primers10 instead.

2.1.3 Description Logics

In this section, we introduce description logics including their syntax and seman-
tics.

Description logics is the name of a family of knowledge representation (KR)
formalisms. They emerged from earlier KR formalisms like semantic networks
and frames. Their origin lies in the work of Brachman on structured inheritance
networks [Brachman, 1978]. Since then, description logics have enjoyed increas-
ing popularity. They can essentially be understood as fragments of first-order
predicate logic. They have less expressive power, but usually decidable inference
problems and a user-friendly variable free syntax.

Description logics represent knowledge in terms of objects, concepts, and roles.
Concepts formally describe notions in an application domain, e.g. one could de-
fine the concept of being a father as “a man having a child” (Father ≡ Man u

9see http://www.w3.org/RDF/ and http://www.w3.org/TR/rdf-sparql-query/
10http://www.w3.org/TR/rdf-primer/

23

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-primer/

2 Preliminaries and State of the Art

∃hasChild.> in DL notation). Objects are members of concepts in the application
domain and roles are binary relations between objects. Objects correspond to con-
stants, concepts to unary predicates, and roles to binary predicates in first-order
logic.

In description logic systems information is stored in a knowledge base. It is
sometimes divided in two parts: TBox and ABox. The ABox contains assertions
about objects. It relates objects to concepts and other objects via roles. The TBox
describes the terminology by relating concepts and roles. For some expressive
description logics this clear separation does not exist. Furthermore, the notion of
an RBox, which contains knowledge about roles, is sometimes used in expressive
description logics. We will usually consider those axioms as part of the TBox in
this thesis.

As mentioned before, DLs are a family of KR formalisms. We use the terms de-
scription language and description logic synonymously for one particular element
of this family. First, we introduce the ALC description logic as an example lan-
guage. ALC is a proper fragment of OWL [Horrocks et al., 2003] and is generally
considered to be a prototypical description logic for research investigations. ALC
stands for attributive language with complement. It allows to construct complex
concepts from simpler ones using various language constructs. The next definition
shows how such concepts can be built.

Definition 2.5 (Syntax of ALC concepts)
Let NR be a set of role names and NC be a set of concept names (NR ∩NC = ∅).
The elements of NC are also called atomic concepts. The set of ALC concepts is
inductively defined as follows:

1. Each atomic concept is an ALC concept.

2. If C and D are ALC concepts and r ∈ NR a role, then the following are also
ALC concepts:

• > (top), ⊥ (bottom)

• C tD (disjunction), C uD (conjunction), ¬C (negation)

• ∀r.C (value/universal restriction), ∃r.C (existential restriction) �

Example 2.6 (ALC concepts)
Some examples of complex concepts in ALC are:

• Man u ∃hasChild.>

• Man u ∃hasChild.(Rich t Beautiful)

• Man u ∃hasChild.¬Adult

• Man u ∃hasChild.∀hasFriend.ComputerScientist �

24

2.1 Semantic Web

Other description languages are usually named according to the expressive fea-
tures they support. The choice of language is usually a tradeoff between expres-
sivity and complexity of reasoning. The description logic navigator11 provides
detailed information about the complexity of a particular language. The follow-
ing is a list of commonly used letters in the description logic naming scheme along
with their meaning (note that if one feature can be expressed using other ones the
letter is usually omitted in the language name).

S ALC + transitivity: For a transitive role r, we have that r(a, b) and r(b, c)
implies r(a, c).

H subroles: r v s says that r is a subrole of s, i.e. r(a, b) implies s(a, b).

I inverse roles: r− denotes the inverse role of r, i.e. r−1(a, b) iff r(b, a).

O nominals: Sets of objects can be used to construct concepts, e.g. {MONICA}
denotes the singleton set, which only contains MONICA. Nominals are useful
in cases where the instances of a concept should be enumerated, e.g. the
members of the European Union.

N number restrictions: Allows constructs of the form ≥ n r and ≤ n r to build
concepts. This is useful if one wants to define a concept like ”mother of at
least three children” (Woman u ≥ 3 hasChild).

Q qualified number restrictions: Concept constructors of the form ≥ n r.C and
≤ n r.C can be used. If C is the top concept, this is equivalent to unqualified
number restrictions. This is useful to define a concept like ”mother of at
least three male children” (Woman u ≥ 3 hasChild.Male).

F functional roles: Allows to express that a role r is functional, i.e. has at most
one filler, which is equivalent to the axiom > v ≤ 1 r.

R complex role inclusions: Axioms of the form r ◦ s v r (or r ◦ s v s) state
that when r(a, b) and s(b, c) holds, then r(a, c) (or s(a, c)) also holds. For
instance, we could use the axiom locatedIn◦partof v locatedIn to model
the part of relationship for locations. Now, if we know that Leipzig is located
in Saxony and Saxony is part of Germany, we can infer that Leipzig is located
in Germany.

D data types: Data types are used to incorporate different kinds of data,
e.g. numbers or strings. This allows, for instance, to define the concept
of an old person as a person of age 65 or higher.

11http://www.cs.manchester.ac.uk/~ezolin/dl/

25

http://www.cs.manchester.ac.uk/~ezolin/dl/

2 Preliminaries and State of the Art

construct syntax semantics

atomic concept A AI ⊆ ∆I

role r rI ⊆ ∆I ×∆I

nominals {o} {o}I ⊆ ∆I , |{o}|I = 1

top concept > ∆I

bottom concept ⊥ ∅
conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃r.C (∃r.C)I = {a | ∃b.(a, b) ∈ rI and b ∈ CI}
value restriction ∀r.C (∀r.C)I = {a | ∀b.(a, b) ∈ rI implies b ∈ CI}
atleast restriction ≥ n r.C (≥ n r)I = {a | |({b | (a, b) ∈ rI}| ≥ n}
atmost restriction ≤ n r.C (≤ n r)I = {a | |({b | (a, b) ∈ rI}| ≤ n}

Table 2.1: Syntax and semantics for concepts in SHOIN .

While ALC is seen as a prototypical language and foundation for more expres-
sive languages, there has also been a lot of research effort for simple languages with
often tractable inference problems. Two of those languages, which are referred to
within the thesis are AL and EL:
AL is inductively defined as follows: >, ⊥, ∃r.>, A, ¬A with A ∈ NC , r ∈ NR

are AL concepts. If C and D are AL concepts, then C uD is an AL concept. If
C is an AL concept and r a role, then ∀r.C is an AL concept.
EL is inductively defined as follows: >, A with A ∈ NC are EL concepts. If C

and D are EL concepts and r ∈ NR, then C uD and ∃r.C are EL concepts.
The semantics of concepts is defined by means of interpretations. See the fol-

lowing definition and Table 2.1 listing common concept constructors.

Definition 2.7 (Interpretation)
An interpretation I consists of a non-empty interpretation domain ∆I and an
interpretation function ·I , which assigns to each A ∈ NC a set AI ⊆ ∆I and to
each r ∈ NR a binary relation rI ⊆ ∆I ×∆I . �

Example 2.8 (Interpreting Concepts)
Let the interpretation I be given by:

∆I = {MONICA, JESSICA, STEPHEN}
WomanI = {MONICA, JESSICA}

hasChildI = {(MONICA, STEPHEN), (STEPHEN, JESSICA)}

We then have:
(Woman u ∃hasChild.>)I = {MONICA} �

26

2.1 Semantic Web

In the most general case, terminological axioms are of the form C v D or
C ≡ D, where C and D are (complex) concepts. The former axioms are called
inclusions and the latter equivalences. An equivalence whose left hand side is an
atomic concept is a concept definition. In some languages with low expressivity,
like AL, terminological axioms are restricted to definitions. We can define the
semantics of terminological axioms in a straightforward way. An interpretation I
satisfies an inclusion C v D if CI ⊆ DI and it satisfies the equivalence C ≡ D
if CI = DI . I satisfies a set of terminological axioms iff it satisfies all axioms
in the set. An interpretation, which satisfies a (set of) terminological axiom(s) is
called a model of this (set of) axiom(s). Two (sets of) axioms are equivalent if
they have the same models. A finite set T of terminological axioms is called a
(general) TBox. Let NI be the set of object names (disjoint with NR and NC). An
assertion has the form C(a) (concept assertion), r(a, b) (role assertion), where a,
b are object names, C is a concept, and r is a role. An ABox A is a finite set of
assertions.

Objects are also called individuals. To allow interpreting ABoxes we extend
the definition of an interpretation. In addition to mapping concepts to subsets of
our domain and roles to binary relations, an interpretation has to assign to each
individual name a ∈ NI an element aI ∈ ∆I . An interpretation I is a model of
an ABox A (written I |= A) iff aI ∈ CI for all C(a) ∈ A and (aI , bI) ∈ rI for
all r(a, b) ∈ A. An interpretation I is a model of a knowledge base K = (T ,A)
(written I |= K) iff it is a model of T and A.

Example 2.9 (Models of a Knowledge Base)
Let the knowledge base K = (T ,A) be given by:

TBox T :

Man ≡ ¬Woman u Person
Woman v Person

Mother ≡ Woman u ∃hasChild.>

ABox A:

Man(STEPHEN).

¬Man(MONICA).

Woman(JESSICA).

hasChild(STEPHEN, JESSICA).

We will now look at some interpretations and determine whether or not they
are a model of K. For all interpretations, the domain {MONICA, JESSICA, STEPHEN}
is used and all object names are interpreted in the obvious way (STEPHEN is inter-
preted as STEPHEN etc.).

27

2 Preliminaries and State of the Art

Let the interpretation I1 be given by:

ManI1 = {JESSICA, STEPHEN}
WomanI1 = {MONICA, JESSICA}

MotherI1 = ∅
PersonI1 = {JESSICA, MONICA, STEPHEN}

hasChildI1 = {(STEPHEN, JESSICA)}

Clearly this does not satisfy T , because the definition Man ≡ ¬Woman u Person is
not satisfied. We have ManI1 = {JESSICA, STEPHEN} and (¬Woman u Person)I1 =
{STEPHEN}, which are not equal. However, I1 satisfies A.

Let the interpretation I2 be given by:

ManI2 = {STEPHEN}
WomanI2 = {JESSICA, MONICA}

MotherI2 = ∅
PersonI2 = {JESSICA, MONICA, STEPHEN}

hasChildI2 = ∅

I2 satisfies T , but not A. We have hasChild(STEPHEN, JESSICA) ∈ A, but
(STEPHENI2 , JESSICAI2) 6∈ hasChildI2 .

Let the interpretation I3 be given by:

ManI3 = {STEPHEN}
WomanI3 = {JESSICA, MONICA}

MotherI3 = {MONICA}
PersonI3 = {JESSICA, MONICA, STEPHEN}

hasChildI3 = {(MONICA, STEPHEN), (STEPHEN, JESSICA)}

I3 is a model of T and A, so it is a model of K. One may argue that nothing in our
knowledge base justifies the fact that we interpret MONICA as mother. However,
in DLs we usually have the open world assumption. This means that the given
knowledge is viewed as incomplete. There is nothing, which tells us that MONICA

is not a mother. In databases one usually uses the closed world assumption, i.e. all
facts, which are not explicitly stored, are assumed to be false. �

As we have described, a knowledge base can be used to represent the information
we have about an application domain. Besides this explicit knowledge, we can
also deduce implicit knowledge from a knowledge base. It is the aim of inference
algorithms to extract such implicit knowledge. There are some standard reasoning
tasks in description logics, which we will briefly describe.

28

2.1 Semantic Web

In terminological reasoning we reason about concepts. The standard problems
are consistency, satisfiability and subsumption. Intuitively, consistency checks
detect whether a knowledge base contains contradictions. Satisfiability determines
whether a concept can be satisfied, i.e. it is free of contradictions. Subsumption of
two concepts detects whether one of the concepts is more general than the other.

Definition 2.10 (Consistency)
A knowledge base K is consistent iff it has a model. �

Example 2.11 (Consistency)
The knowledge base K = {A1 ≡ A2 u ¬A2, A1(a)} is not consistent, since A1 is
equivalent to ⊥ and has an asserted instance a. �

Definition 2.12 (Satisfiability)
Let C be a concept and T a TBox. C is satisfiable iff there is an interpretation
I such that CI 6= ∅. C is satisfiable with respect to T iff there is a model I of T
such that CI 6= ∅. �

Example 2.13 (Satisfiability)
Man u Woman is satisfiable. However, it is not satisfiable with respect to the TBox
in Example 2.9. �

Definition 2.14 (Subsumption, Equivalence)
Let C, D be concepts and T a TBox. C is subsumed by D, denoted by C v D,
iff for any model I we have CI ⊆ DI . C is subsumed by D with respect to T ,
denoted by C vT D, iff for any model I of T we have CI ⊆ DI .
C is equivalent to D (with respect to T), denoted by C ≡ D (C ≡T D), iff

C v D (C vT D) and D v C (D vT C).
C is strictly subsumed by D (with respect to T), denoted by C @ D (C @T D),

iff C v D (C vT D) and not C ≡ D (C ≡T D). �

Example 2.15 (Subsumption)
Mother is not subsumed by Woman. However, Mother is subsumed by Woman with
respect to the TBox in Example 2.9. �

Subsumption allows to build a hierarchy of atomic concepts, commonly called
the subsumption hierarchy. Analogously, for more expressive description logics
role hierarchies can be inferred.

In assertional reasoning one reasons about objects. As one relevant task for
learning in DLs, the instance check problem is to find out whether an object is an
instance of a concept, i.e. belongs to it. A retrieval operation finds all instances
of a given concept.

Definition 2.16 (Instance Check)
Let A be an ABox, T a TBox, K = (T ,A) a knowledge base, C a concept, and
a ∈ NI an object. a is an instance of C with respect to A, denoted by A |= C(a),

29

2 Preliminaries and State of the Art

iff in any model I of A we have aI ∈ CI . a is an instance of C with respect to K,
denoted by K |= C(a), iff in any model I of K we have aI ∈ CI .

To denote that a is not an instance of C with respect to A (K) we write A 6|=
C(a) (K 6|= C(a)). �

We use the same notation for sets S of assertions of the form C(a), e.g. K |= S
means that every element in S follows from K.

Definition 2.17 (Retrieval)
Let A be an ABox, T a TBox, K = (T ,A) a knowledge base, C a concept. The
retrieval RA(C) of a concept C with respect to A is the set of all instances of C:
RA(C) = {a | a ∈ NI and A |= C(a)}. Similarly the retrieval RA(C) of a concept
C with respect to K is RK(C) = {a | a ∈ NI and K |= C(a)}. �

Example 2.18 (Instance Check, Retrieval)
In Example 2.9 we have RK(Woman) = {JESSICA, MONICA}. JESSICA and MONICA

are instances of Woman, because in any model I of K we have JESSICAI ∈ WomanI

and MONICAI ∈ WomanI . �

We introduce some further notions, which are used in the thesis. A concept
is in negation normal form iff negation only occurs in front of concept names.
The length of a concept is defined in a straightforward way, namely as the sum
of the numbers of concept names, role names, quantifier, and connective symbols
occurring in the concept. In particular, for ALC we have:

Definition 2.19 (Length of an ALC Concept)
The length |C| of a concept C is defined inductively (A stands for an atomic
concept):

|A| = |>| = |⊥| = 1

|¬D| = |D|+ 1

|D u E| = |D t E| = 1 + |D|+ |E|
|∃r.D| = |∀r.D| = 2 + |D| �

The depth of a concept is the maximal number of nested concept constructors.
The role depth of a concept is the maximal number of nested roles. A subconcept
of a concept C is a concept syntactically contained in C. For brevity we sometimes
omit brackets. In this case, constructors involving quantifiers have higher priority,
e.g. ∃r.>uA means (∃r.>)uA. In several proofs in the thesis we use a convenient
abbreviated notation to denote ∀r chains and ∃r chains :

∀rn = ∀r.∀r︸ ︷︷ ︸
n−times

∃rn = ∃r.∃r︸ ︷︷ ︸
n−times

We refer the interested reader to [Horrocks et al., 2006, Baader et al., 2007a,
Hitzler et al., 2009] for more detailed information about description logics.

30

2.1 Semantic Web

2.1.4 OWL

After we have introduced description logics, we will now describe their relationship
to OWL (Web Ontology Language). In essence OWL is based on description logics
extended by several features to make it suitable as a web ontology language,
e.g. using URIs/IRIs as identifiers, imports of other ontologies etc. By basing
OWL-DL on description logics, it can make use of the theory developed for DLs,
in particular sophisticated reasoning algorithms.

In OWL, different naming conventions are used compared to description logics.
OWL classes correspond to concepts in description logics and properties corre-
spond to roles.

OWL comes in three flavors: OWL Lite, OWL DL, and OWL Full. OWL Lite
corresponds to SHIF(D) and OWL DL to SHOIN (D). OWL Full contains
features not expressible in description logics, but needed to be compatible with
RDFS, i.e. OWL Full can be seen as the union of RDFS and OWL DL.

The latest version OWL 2 is again split in two flavors OWL 2 DL and OWL 2
Full. OWL 2 DL corresponds to the logic SROIQ(D), whereas the full variant
is again introduced for RDFS compatibility. In addition, three profiles were in-
troduced: EL, QL, and RL. Each profile imposes, usually syntactical, restrictions
on OWL in order to allow more efficient reasoning. OWL 2 EL is aimed at ap-
plications which require expressive property modelling and is based on the logic
EL++, which guarantees polynomial reasoning time wrt. ontology size for all stan-
dard inference problems. QL is targeted at applications with massive volumes of
instance data. In QL, query answering can be implemented on top of conventional
relational database systems and sound and complete conjunctive query answering
methods can be implemented in LOGSPACE. As in the EL profile, the standard
inference problems run in polynomial time. RL is aimed at scalable applications,
which however, do not want to sacrifice too much expressive power. Reasoning
algorithms for it can be implemented in rule-based engines and run in polynomial
time. The EL and QL languages are subsets of OWL 2 DL, whereas RL provides
two variants where one is subset of OWL 2 Full and the other one is a subset of
OWL 2 DL.

In general, OWL offers more convenience constructs than the corresponding
description logics, but does not extend its expressivity. It should be noted that
OWL does not make the unique name assumption, so different individuals can be
mapped to the same domain element. It allows to express equality and inequality
between individuals (a = b, a 6= b) using owl:sameAs and owl:differentFrom.
Most algorithms for description logics already supported this before the OWL
specification was created. Not making the unique names assumption is crucial in
the Semantic Web, where it is often the case that many knowledge bases contain
information about the same entity. In this case, a common approach is that each
knowledge base uses their own URI and owl:sameAs is used to connect them (see
the information about DBpedia in Section 6.1).

Table 2.2 shows for some examples how constructs in OWL can be mapped

31

2 Preliminaries and State of the Art

OWL expression / axiom DL syntax Manchester syntax

Thing > Thing

Nothing ⊥ Nothing

intersectionOf C1 u · · · u Cn C1 and . . . and Cn
unionOf C1 t · · · t Cn C1 or . . . or Cn
complementOf ¬C not C

oneOf {x1} t · · · t {xn} {x1, . . . , xn}
allValuesFrom ∀r.C r only C

someValuesFrom ∃r.C r some C

maxCardinality ≤ n r r max n

minCardinality ≥ n r r min n

cardinality ≤ n r u ≥ n r r exact n

subClassOf C1 v C2 C1 SubClassOf: C2

equivalentClass C1 ≡ C2 C1 EquivalentTo: C2

disjointWith C1 ≡ ¬C2 C1 DisjointWith: C2

sameAs {x1} ≡ {x2} x1 SameAs: x2

differentFrom {x1} v ¬{x2} x1 DifferentFrom: x2

domain ∀r.> v C r Domain: C

range > v ∀r.C r Range: C

subPropertyOf r1 v r2 r1 SubPropertyOf: r2
equivalentProperty r1 ≡ r2 r1 EquivalentTo: r2
inverseOf r1 ≡ r−2 r1 InverseOf: r2
TransitiveProperty r+ v r r Characteristics: Transitive

FunctionalProperty > v ≤ 1 r r Characteristics: Functional

Table 2.2: OWL constructs in DL and Manchester OWL syntax (excerpt).

to description logics. We can see that some features can be mapped directly
to description logics, e.g. union, and others are syntactic sugar, e.g. functional
properties.

OWL also has different syntactic formats, in which a knowledge base can be
stored. Since it can be converted to RDF, formats like RDF/XML or Turtle can be
used. There is also a special XML syntax called OWL/XML and the Manchester
OWL Syntax. The latter one is popular in ontology editors. Examples are shown
on the right column in Table 2.2.

32

2.2 Concept Learning and Inductive Reasoning

2.2 Concept Learning and Inductive Reasoning

In the previous section, we have introduced Semantic Web technologies and the
underlying knowledge representation standards. The second major research area
relevant for this thesis is Machine Learning. Before we delve deeper into the
considered learning problems we define related notions. To make the notions easy
to understand, we will first give a broad overview and then move towards concept
learning in descriptions logics.

Machine Learning in general is a subfield of Artificial Intelligence. The main
goal is to develop algorithms that allow computers to improve their performance
on a given goal with more data. Often, the ability to learn is seen as a sign
or even prerequisite for intelligent behaviour. According to [Mitchell, 1997] “A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”. This is a very general description covering
diverse tasks. For instance, in speech recognition, a possible task T is to recognize
spoken words. The performance measure P could be the percentage of correctly
recognized words. Experience E could consist of existing mappings between spoken
and written words. According to the definition above, a learner improves its
performance with more experience. In this case, this means that it has a better
capability of recognizing spoken words when more mappings are provided.

Machine learning problems and algorithms can be divided in several groups: One
distinction is that between supervised, unsupervised, and reinforcement learning
methods.

In supervised learning, input-output training examples are supplied by a trainer
or oracle. Given this training data, the learner tries to find a function mapping
between input and output. The output can be a continuous value – a so called
regression problem – or a class label – a so called classification problem. For
instance, finding an underlying curve given a set of points is a regression problem
whereas detecting whether an email is spam or not is a classification problem.

Unsupervised learning problems are those where training data is not labelled
and the aim is to detect the underlying structure of the data. A typical example
is clustering. Considering a social network of several people, clustering algorithms
can be used to find relevant groups within the social network.

A third category of machine learning techniques is reinforcement learning. In
this case, an environment is considered which can be changed by actions of the
learner. Depending on the consequences of an action, the learner receives reward
or punishment as feedback. Using this feedback, the learner can improve its per-
formance by choosing appropriate actions given a certain state of the environment.
Reinforcement learning has been applied to robot control and game playing.

Another distinction is that between symbolic, sub-symbolic, and non-symbolic
approaches. Symbolic methods produce human-readable results, e.g. logical for-
mulas or decision trees, whereas non-symbolic methods like neural networks are
not considered to be human understandable, since they cannot provide a suc-

33

2 Preliminaries and State of the Art

cinct explanation of their behaviour. In between those extremes are sub-symbolic
methods, e.g. Bayesian approaches. As an example, a Bayesian spam filter can-
not give a reasonably short and complete explanation why it classifies emails as
spam. However, it can give a list of words which are important indicators for
spam emails.

In this thesis, we are concerned with Inductive Learning from Examples, which
is a subfield of symbolic, supervised Machine Learning. The word induction means
to infer general principles from specific facts or instances. Sometimes, inductive
learning is also called inductive reasoning as opposed to deductive reasoning. In
Inductive Learning, the general principles are expressed in some logical language,
for instance first order logic, logic programs, or description logics. Inductive Logic
Programming (ILP) has been an active area of research over more than 15 years.
Often, ILP is viewed as the intersection of induction and logic programming,
i.e. ILP = I ∩ LP [Lavrac and Dzeroski, 1994]. The content of this thesis is
closely related to ILP, but considers description logics as knowledge representation
formalism instead.

(Inductive) concept learning is a more specific problem setting than inductive
learning. The aim is to find a logical description of a concept from given members
(and non-members) of this concept. In this thesis, the notion of a concept can
be understood as (atomic) description logic concept exactly as defined in Section
2.1.3. Naturally, “concepts” exist in other knowledge representation languages as
well. A logical description of a concept, which arises during a learning process,
is called a hypothesis, since it is a tentative explanation of why the objects are
members (or non-members) of the concept. Members of a concept are called
positive examples and non-members are negative examples. If an example belongs
to a hypothesis, i.e. we can infer that it is an instance of the hypothesis, we say the
hypothesis covers the example. A hypothesis is complete if it covers all positive
examples. Otherwise, it is called too weak. A hypothesis is consistent if it does
not cover any negative example and is called too strong otherwise. A complete
and consistent hypothesis is correct. We say that a hypothesis is overly general
if it is complete but not consistent. It is overly specific if it consistent, but not
complete.

A characteristic feature of most inductive learning approaches is the use of
background knowledge. This allows more complex learning scenarios, since not
only the factual description of the given examples can be used by the learner,
but rich knowledge in an appropriate representation language can be taken into
account. For this reason, inductive learning is mostly used in applications with
structurally rich representations, e.g. in biology or medicine. A typical example
is the carcinogenesis problem (see Section 7.2.2), where examples are chemical
compounds. Each compound contains atoms, which are connected, have type
information associated with them as well as results of chemical tests. However,
for simpler learning problems, e.g. where examples are represented using a set of
boolean features with no further background knowledge, there are usually more
appropriate machine learning methods than inductive learning. Please note that,

34

2.2 Concept Learning and Inductive Reasoning

in principle, different languages could be used for background knowledge, examples
and hypothesis.

As a summary of the introduced notions, [Lavrac and Dzeroski, 1994] defines
concept learning as follows:

Definition 2.20 (Concept Learning with Background Knowledge)
Given a set of training examples E and background knowledge B, find a hypothesis
H, expressed in some concept description language L, such that H is complete
and consistent [i.e. correct] with respect to the background knowledge B and the
examples E. �

This concludes the general introduction of concept and inductive learning as well
as its broader context in machine learning. Shortly, in Section 2.2.2 we will give
specific formulations of the learning problems we are interested in within this
thesis.

2.2.1 History, Tools, and Applications

As outlined above, one of the most prominent feature of inductive reasoning sys-
tems is the use of background knowledge. One of the earliest systems having
this capability was INDUCE [Michalski, 1980], which used relational structures
as background knowledge. The term Inductive Logic Programming was coined in
the early 90s [Muggleton, 1991, Muggleton, 1992]. [Muggleton and Raedt, 1994]
was a milestone in ILP research. Inductive Logic Programming turned into one
of the most prominent machine learning research and application areas. Several
books have been published in this area in the mid 90s [Lavrac and Dzeroski, 1994,
Bergadano and Gunetti, 1995, Raedt, 1996, Nienhuys-Cheng and de Wolf, 1997].
While logic programs were the main formalism used in inductive reasoning, simi-
lar ideas were also used in relational databases [Blockeel and Raedt, 1996] as well
as description logics [Cohen and Hirsh, 1994, Badea and Nienhuys-Cheng, 2000,
Esposito et al., 2004], and combinations of DLs and rules [Lisi and Malerba, 2003,
Lisi, 2005]. Over the last five years, Probabilistic ILP [Raedt et al., 2008] and Sta-
tistical Relation Learning [Raedt, 2005, Kersting, 2006] attracted interest. Those
developments opened up several new application areas of inductive reasoning.12

After this brief overview, we give a list and short description of some existing
learning systems. For understanding the system descriptions, familiarity with
basic notions from logic programming and first order logics is required.

Progol 13 is an ILP system, which employs a covering approach like many other
ILP systems. This means that it generates several clauses stepwise. If exam-
ples are covered by the current set of clauses, they are removed. This process
continues until sufficiently many examples have been covered. For finding

12This thesis can be seen as a contribution to this trend, since ontology engineering is explored
as application area and, more generally, OWL ontologies as background knowledge.

13http://www.doc.ic.ac.uk/~shm/progol.html

35

http://www.doc.ic.ac.uk/~shm/progol.html

2 Preliminaries and State of the Art

an appropriate clause, Progol selects a seed example and builds a most spe-
cific clause, also called bottom clause, using so called inverse entailment.
This clause is generalised in the learning process. See [Muggleton, 1995,
Muggleton, 1996a] for a more detailed explanation. Two variants of Pro-
gol are available: C-Progol (written in the C programming language) and
P-Progol (written in Prolog).

Aleph 14 (A Learning Engine for Proposing Hypotheses) is one of the most popular
ILP systems and the successor of P-Progol. It is envisioned as a prototype
for several algorithms and ideas and can actually simulate the behaviour of
other learning systems.

Golem 15 is based on the idea of relative least general generalisations (rlggs) intro-
duced in Plotkin’s PhD thesis [Plotkin, 1971]. It uses a covering approach
(see the explanation of Progol above), where the idea of rlggs is employed
for learning single clauses. The rlggs is a least general hypothesis relative
to background knowledge with respect to given (positive) examples. Golem
first computes the rlggs of randomly selected pairs of examples. The best re-
sult, i.e. the hypothesis with the best coverage of those random pairs’ rlggs,
is picked. In the next loop, the system computes the rlggs of the currently
best hypothesis and randomly selected examples. Again, the best result is
picked and the system continues until a further loop does not increase cover-
age of the hypothesis. Details are described in [Muggleton and Feng, 1990].

FOIL is a well-known ILP system, which inspired a lot of further research. The
background knowledge is extensional, i.e. relational/ground tuples are used
and the target language are function free Horn clauses. As other systems
introduced before, it uses a coverage approach. The induction of a single
clause starts with an empty clause body. The clause body is iteratively
specialised by adding literals. The literals are chosen by placing variables
to their appropriate argument places, which need to be specified before.
Inequality between variables and the use of previously specified relevant
constants are also allowed as literals. Literals have to conform to type
restrictions declared by the user. Similar restrictions on literals are used
in the more recent Progol and Aleph systems (see above) for controlling
the language bias. To choose a literal amongst the possible candidates,
FOIL uses the information gain heuristic, which is based on how much
the literal helps in distinguishing between positive and negative examples.
See [Quinlan and Cameron-Jones, 1993] for details.

MERLIN 16 is a system, which supports positive only learning. It has the ability of
learning meaningful logic programs from a single example using refutations

14http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html
15http://www.doc.ic.ac.uk/~shm/Software/golem/
16http://people.dsv.su.se/~henke/ML/MERLIN.html

36

http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html
http://www.doc.ic.ac.uk/~shm/Software/golem/
http://people.dsv.su.se/~henke/ML/MERLIN.html

2.2 Concept Learning and Inductive Reasoning

of SLD resolutions and finite-state automata [Boström, 1996].

LIVE 17 (Learning in a three-Valued Environment) is a system, which learns two
definitions given a learning problem: One definition for the positive exam-
ples and another one for the negative examples [Lamma et al., 1999]. As
background knowledge, it uses Extended Logic Programs under the well-
founded semantics extended with explicit negation (WFSX). It is based on
Golem.

FOIDL 18 learns first order decision lists and has been used successfully to learn
the past tense of English verbs [Mooney and Califf, 1995].

The list is far from complete19, but highlights some of the principles of popular
and/or interesting ILP systems. They vary in knowledge representation, solution
search strategies, heuristics, and the types of learning problems to consider. Those
learning systems have been applied in several scenarios. Some of those are outlined
below:

Learning Drug structure activity rules is a major usage area of ILP systems.
The aim is to understand the relationship between chemical structure and ac-
tivity. Usually, the activity can only be determined using experiments. Con-
ducting those experiments is, however, very expensive and time-consuming.
ILP systems are used to learn rules relating the structure to an activity
and can be used to find promising chemical structures, i.e. increase the
success rate of pharmaceutical companies. Concrete problems include learn-
ing structure activity relationships for Alzheimer disease, inhibition of E.
Coli Dihydrofolate Reductase, and suramin analogues. Due to the rich
structure of background knowledge, ILP turned out to be very suitable
(see [King et al., 1995] for details). The learned rules provided new insights
and reductions in the number of chemical compounds to be tested.

Natural Language Processing provides several application areas for inductive
reasoning: One example is learning lexical and grammatical knowledge for
each language. This knowledge exists for the most common languages, but
needs to be transfered to other languages. In [Kazakov, 1999, Mooney, 1997]
natural language parsers have been learned inductively. Another application
area is part of speech tagging. Inductive reasoning has been applied for
several languages, including English [Cussens, 1996], in this area. ILP has
also be used to extract relations from text [Horvath et al., 2009], which is
useful for building knowledge bases from text corpora.

17http://lia.deis.unibo.it/Software/live/
18http://www.cs.utexas.edu/users/ml/foidl.html
19See http://www-ai.ijs.si/~ilpnet2/systems/ for a list of more than 50 ILP systems,

which have been created before 2003.

37

http://lia.deis.unibo.it/Software/live/
http://www.cs.utexas.edu/users/ml/foidl.html
http://www-ai.ijs.si/~ilpnet2/systems/

2 Preliminaries and State of the Art

Robot Discovery is a research area, which aims to find out to which extent robots
can learn about their environment by conducting experiments and collect-
ing data. [Leban et al., 2008] describes experiments with a simulated and
a real robot in a simple domain, where the robot learns the concepts of
“movability” and “obstacle”.

Detection of Traffic Problems as an ILP application area has been explored
in [Džeroski et al., 1998, Dzeroski et al., 1998] with the goal of identifying
problematic areas with respect to traffic jams and accidents. The AIMSUN
simulator generates examples for car traffic around the city Barcelona. Dif-
ferent sensors with relevant information were recorded and the background
knowledge contained the structure of the road network. The ILP tools Clau-
dien and Tilde were applied to the problem setting. Those tools could iden-
tify most critical sections correctly and learn plausible rules.

It can be concluded that inductive reasoning is a rich and diverse research area
with several applications, in particular those where rich structural knowledge is
available. The short list is by no means exhaustive20 and is only meant to give
some examples of potential application scenarios of the algorithms developed in
this thesis (see Chapter 7 for the applications of the DL-Learner framework).
Despite the relative success of inductive reasoning in some fields, there are also
some open issues.

One practical problem is to make results of ILP programs more readable and
understandable for their users. For instance, the Predictive Toxicology Challenge21

was a competition between different ILP programs announced at the International
Joint Conference on Artificial Intelligence in 1997. The challenge received several
submissions until 1999. Later analysis of the results by experts in biology and
chemistry [Benigni and Giuliani, 2003, Helma et al., 2001, Toivonen et al., 2003]
showed that results were promising and confirmed existing or led to new knowl-
edge. However, it was hard for domain experts to understand the obtained results,
i.e. there is a gap between ILP researchers and users. Therefore, the readability of
results is highly prioritized in the learning algorithms mentioned in this thesis. We
also argue, although this matter is subjective, that OWL class expressions might
be easier to understand than logic programs. See Section 7.6 for more discussion
on those issues.

Another problem is scalability. At the most recent Inductive Logic Program-
ming conference, it was argued that ILP programs do not scale well for large data
sets [Watanabe and Muggleton, 2009]. One challenge is the size of the hypothesis
space, in particular for expressive languages. However, there are (at least) two fur-
ther reasons for scalability problems: Checking coverage of a hypothesis requires
reasoning, which can be expensive depending on the used background language.

20http://www-ai.ijs.si/~ilpnet2/apps/index.html and http://www.doc.ic.ac.uk/

~shm/applications.html provide further pointers to applications.
21http://www.comlab.ox.ac.uk/activities/machinelearning/PTE/

38

http://www-ai.ijs.si/~ilpnet2/apps/index.html
http://www.doc.ic.ac.uk/~shm/applications.html
http://www.doc.ic.ac.uk/~shm/applications.html
http://www.comlab.ox.ac.uk/activities/machinelearning/PTE/

2.2 Concept Learning and Inductive Reasoning

Machine Learning
Problem

KR Language

First Order Language

Horn
Logics

Description Logics

RDFS

supervised

unsupervised

symbolic non-symbolic

Induction

Concept
Learning

DL Concept Learning
 (Topic of Thesis)

Inductive Logic Programming

OWL

Figure 2.3: Overview of knowledge representation languages and machine learning
problems to illustrate how this thesis integrates into existing research
areas.

The other reason is that the runtime of many systems grows approximately lin-
early with the number of examples. Therefore, many (> 1000) examples can be a
challenge. We devote Chapter 6 for the discussion of scalability issues and possible
solutions.

2.2.2 Learning Problems in OWL/DLs

For learning in description logics we can give a more specific description of the
setting previously introduced in Definition 2.20. The background knowledge is a
knowledge base K in some description language. Examples are objects contained
in this knowledge base and hypothesis are complex concepts. Figure 2.3 illus-
trates how this integrates into existing research areas. The ellipses on the left
represent machine learning problems and the ellipses on the right show knowledge
representation languages ordered by expressivity of the language.

We distinguish three different variations of learning problems. In the first set-
ting, we are given positive and negative examples explicitly and the goal is to find
a concept, which covers the positives without covering the negatives:

Definition 2.21 (Learning From Examples in OWL/DLs)
Let a DL knowledge base K and disjoint sets E+ and E− with E ⊆ NI where
E = E+ ∪ E− be given. Learning from examples means to find a (complex)
concept C such that K |= C(e) for all e ∈ E+ and K 6|= C(e) for all e ∈ E−. �

In the second problem, we are only provided with positive examples. This
occurs frequently in practice, since negative examples are not always available or

39

2 Preliminaries and State of the Art

it is more natural to provide only positives. For instance, it is straightforward to
provide the presidents of the United States, but less natural to provide typical
examples of non-presidents. As an interesting side note, [Muggleton, 1996b] cites
that studies have shown that children can learn in those settings. For instance,
they are rarely informed of grammatical errors or do not pay attention to this
information. Yet, they are still able to reduce the number of errors they are
making over time. In a positive only learning setting, the goal is still to cover all
positives. Additionally, a hypothesis should not cover additional individuals in
the knowledge base. Technically, this could be realised by using E− = NI \ E+,
but adapted techniques can be more promising.

Definition 2.22 (Positive Only Learning in OWL/DLs)
Let a DL knowledge base K and a set E+ with E+ ⊆ NI be given. The posi-
tive only learning problem is to find a (complex) concept C such that RK(C) =
RK(E+). �

In the third learning problem we consider, the goal is to learn a description
of a named concept A in a knowledge base. The main difference compared to
the previous problems is that existing knowledge about A in the background
knowledge can be used if available, e.g. its position in the subsumption hierarchy.

Definition 2.23 (Class/Concept Learning in OWL/DLs)
Let a concept name A ∈ NC and a knowledge base K be given. The class/concept
learning problem is to find a concept C such that RK(C) = RK(A). �

The learned concept C is a description of (the instances of) A. Such a concept
is a candidate for adding an axiom of the form A ≡ C or A v C to the knowledge
base K. We give a brief example of a simple class learning problem.

Example 2.24 (Concept Learning Example)
As background knowledge, consider the SWORE [Riechert et al., 2007b] knowl-
edge base, which is concerned with requirements engineering. The central goal
of requirements engineering is to collect requirements for software or hardware.
SWORE contains the concept CustomerRequirement. A machine learning algo-
rithm could suggest that this concept is equivalent to:

Requirementu ∃createdBy.Customer
AbstractRequirementu ∃createdBy.Customer

Both suggestions could be plausible and equally accurate in this case. It is the
task of the knowledge engineer to decide which one is more appropriate. �

Some remarks about the learning problems are in order. First of all, there are
slightly different formulations of those problems in the literature. A possible differ-
ent setting is that negative examples have to be instances of ¬C, i.e. K′ |= ¬C(e)
for all e ∈ E−. Due to the open world assumption in description logics there is a

40

2.2 Concept Learning and Inductive Reasoning

difference between facts logically following from a knowledge base and the nega-
tion of a fact following from the knowledge base – unlike in logic programming
with default negation. Both ways of formulating the learning problem are mean-
ingful. However, it should be noted that K |= ¬C(a) can only be inferred if there
is no model I, where aI ∈ CI , i.e. there is no possible world where a belongs to
C. Many knowledge bases do not contain sufficiently many restrictions to allow
such inferences to be drawn. For this reason, it is more common to require that
negative examples are not instance of the hypothesis, as we have done in the def-
initions above. It is, however, straightforward to apply the learning algorithms in
this thesis to both settings.

It should also be noted that in most cases, an algorithm will not find a correct
solution to the learning problem, but rather an approximation. This is natural,
since a knowledge base may contain false class assignments or some objects in
the knowledge base are described at different levels of detail. For instance, in
Example 2.24, certain requirements created by customers might not be typed as
such in the knowledge base. However, if most of the other requirements are related
to countries via a role createdBy to instances of Customer, then the learning
algorithm may still suggest the shown complex concepts, since they describe the
majority of customer requirements in the knowledge base well. If the knowledge
engineer agrees with such a definition, then a tool can assist him in completing
missing information about some customer requirements.

By Occam’s razor [Blumer et al., 1990, Domingos, 1998] simple solutions of the
learning problem are to be preferred over more complex ones, because they are
more readable. This is even more important in the ontology engineering context,
where it is essential to suggest simple concepts to the knowledge engineer. We
measure simplicity as the length of a concept as defined in Section 2.1.3.

Also note that the definitions of the learning problems itself do enforce coverage,
but not prediction, i.e. correct classification of objects which are added to the
knowledge base in the future. Concepts with high coverage and poor prediction
are said to overfit the data. Learning algorithms have to take care to avoid
overfitting, e.g. by biasing towards short concepts.

2.2.3 Refinement Operators in OWL/DLs

The goal of learning is to find a correct concept with respect to the examples.
This can be seen as a search process in the space of concepts, which is illustrated
in Figure 2.4. A concept generator provides new hypothesis to be tested, which
are evaluated using a heuristic measure. Apart from other criteria, this heuristic
usually uses the provided examples and a DL reasoner to perform a coverage test
of the hypothesis. Each evaluation assigns a score to the given hypothesis, which
can be taken into account by the concept generator. This is described in more
detail in Section 5. An intelligent way to suggest new hypothesis is a key problem
in defining a learning algorithm.

One idea to solve this problem is to refine promising generated hypothesis. A

41

2 Preliminaries and State of the Art

Figure 2.4: Generate and test approach used in DL-Learner.

natural way to structure the search space is to impose an ordering and use opera-
tors to traverse it. This approach is well-known in Inductive Logic Programming,
where refinement operators are widely used to find hypotheses. Intuitively, down-
ward (upward) refinement operators construct specialisations (generalisations) of
hypotheses.

Definition 2.25 (Refinement Operator)
A quasi-ordering is a reflexive and transitive relation. In a quasi-ordered space
(S,�) a downward (upward) refinement operator ρ is a mapping from S to 2S,
such that for any C ∈ S we have that C ′ ∈ ρ(C) implies C ′ � C (C � C ′). C ′ is
called a specialisation (generalisation) of C. �

This idea can be used for searching in the space of concepts. As ordering
we can use subsumption. (Note that the subsumption relation v is a quasi-
ordering.) If a concept C subsumes a concept D (D v C), then C will cover all
examples which are covered by D. This makes subsumption a suitable order for
searching in concepts. We analyse refinement operators for concepts with respect
to subsumption and a description language L, and in the sequel we will call such
operators L refinement operators. We also introduce the commonly used notions
of refinement chains as well as downward and upward covers.

Definition 2.26 (L Refinement Operator)
Let L be a description language. A refinement operator in the quasi-ordered space
(L,v) is called an L refinement operator. �

Definition 2.27 (Refinement Chain)
A refinement chain of an L refinement operator ρ of length n from a concept C to
a concept D is a finite sequence C0, C1, . . . , Cn of concepts, such that C = C0, C1 ∈

42

2.2 Concept Learning and Inductive Reasoning

ρ(C0), C2 ∈ ρ(C1), . . . , Cn ∈ ρ(Cn−1), D = Cn. This refinement chain goes through
E iff there is an i (1 ≤ i ≤ n) such that E = Ci. We say that D can be reached
from C by ρ if there exists a refinement chain from C to D. ρ∗(C) denotes the set
of all concepts, which can be reached from C by ρ. ρm(C) denotes the set of all
concepts, which can be reached from C by a refinement chain of ρ of length m. �

Definition 2.28 (Downward and Upward Cover)
A concept C is a downward cover of a concept D iff C @ D and there does not
exist a concept E with C @ E @ D. A concept C is an upward cover of a concept
D iff D @ C and there does not exist a concept E with D @ E @ C. �

Instead of D ∈ ρ(C), we will often write C ρ D. If the used operator is clear
from the context, it is usually omitted, i.e. we write C D.

We introduce the notion of weak equality of concepts, which is similar to syn-
tactic equality of concepts, but takes commutativity into account, i.e. the order
of elements in conjunctions and disjunctions is not important. We say that the
concepts C and D are weakly (syntactically) equal, denoted by C ' D iff they are
equal up to permutation of arguments of conjunction and disjunction. Two sets
S1 and S2 of concepts are weakly equal iff for any C1 ∈ S1 there is a C ′1 ∈ S2 such
that C1 ' C ′1 and vice versa. Weak equality of concepts is coarser than syntactic
equality and finer than equivalence (viewing the equivalence, equality, and weak
equality of concepts as equivalence classes).

Refinement operators can have certain properties, which can be used to evaluate
their usefulness for learning hypotheses.

Definition 2.29 (Properties of DL Refinement Operators)
An L refinement operator ρ is called

• (locally) finite iff ρ(C) is finite for any concept C.

• redundant iff there exists a refinement chain from a concept C to a concept
D, which does not go through some concept E and a refinement chain from
C to a concept weakly equal22 to D, which does go through E.

• proper iff for all concepts C and D, D ∈ ρ(C) implies C 6≡ D.

• ideal iff it is finite, complete (see below), and proper.

An L downward refinement operator ρ is called

• complete iff for all concepts C,D with C @ D we can reach a concept E
with E ≡ C from D by ρ.

22We use weak equality instead of syntactic equality, because only avoiding syntactic equality,
while still being able to reach many weakly equal concepts from a given concept, can still
waste significant computational resources. All results in Chapter 3 also hold if we consider
syntactic equality, see Remark 3.18.

43

2 Preliminaries and State of the Art

Figure 2.5: Illustration of some refinement operator properties (left to right): com-
pleteness, redundancy, properness, and finiteness (bottom).

• weakly complete iff for all concepts C @ > we can reach a concept E with
E ≡ C from > by ρ.

• minimal iff for all C, ρ(C) contains only downward covers and all its elements
are incomparable with respect to v.

The corresponding notions for upward refinement operators are defined dually. �

44

3 Theoretical Foundations of
Refinement Operators

In this chapter, we analyse the properties of refinement operators in description
logics. The need for such an analysis was already expressed in [Fanizzi et al., 2004,
Esposito et al., 2004]. In particular, we are interested in finding out which desired
properties can be combined in a refinement operator and which properties are
impossible to combine. This is interesting for two reasons: Firstly, this gives us
a good impression of how hard (or easy) it is to learn concepts. Secondly, this
can also serve as a practical guide for designing refinement operators. Knowing
the theoretical limits allows the designer of a refinement operator to focus on
achieving the best possible properties. We will indeed follow this approach in
Chapter 4, where we will define – and later evaluate – concrete operators based
on our theoretical investigations.

Refinement operators for description logics have been constructed for ALER
in [Badea and Nienhuys-Cheng, 2000], for ALN in [Fanizzi et al., 2004], and for
ALC in [Esposito et al., 2004, Iannone and Palmisano, 2005, Iannone et al., 2007].
In particular, [Badea and Nienhuys-Cheng, 2000] also showed some properties of
ALER refinement operators. However, a full theoretical treatment of their prop-
erties has not been done to the best of our knowledge (not even for a specific
language). Therefore, all propositions in this section are new unless explicitly
mentioned otherwise. The main result of the chapter is Theorem 3.16, which pro-
vides a full analysis of combinations of refinement operator properties. In this
chapter, we assume that each language we analyse contains or can express top
(>) and bottom (⊥). We also assume finite sets NC and NR of concept and role
names in this PhD thesis containing the concept and role names occurring in the
considered knowledge base.

3.1 The Role of Minimality

As a first property we will briefly analyse minimality of L refinement operators,
in particular the existence of upward and downward covers in ALC. It is not
immediately obvious that e.g. downward covers exist in ALC, because it could be
the case that for any concept C and D with C @ D one can always construct a
concept E with C @ E @ D. However, the next proposition shows that downward
covers do exist.

45

3 Theoretical Foundations of Refinement Operators

Proposition 3.1 (Existence of Covers in ALC)
Downward (upward) covers of > (⊥) exist in ALC.

Proof Let NR = {r} and NC = {A}.
Assume, we have an interpretation I and an object a such that aI 6∈ AI and

there is no b with (aI , bI) ∈ rI (*). We define a set S as follows:

• > ∈ S

• ¬A ∈ S

• for all concepts C, ∀r.C ∈ S

• if C1 ∈ S and C2 ∈ S, then C1 u C2 ∈ S

• if C1 ∈ S or C2 ∈ S, then C1 t C2 ∈ S

By structural induction onALC concept constructors (see Definition 2.5 and Table
2.1), it is not hard to show that C ∈ S iff aI ∈ CI for all C in negation normal
form.

Using this observation as prerequisite, we show that C = ∃r.>tA is a downward
cover of >. By contradiction, we assume that there is a concept D with C @ D @
> in negation normal form.

Since C @ D, there are I1 and a1 such that aI11 6∈ CI1 and aI11 ∈ DI1 . Analo-
gously, due to D @ >, there are I2 and a2 such that aI22 6∈ DI2 . By C @ D, this
implies aI22 6∈ CI2 . In summary (**):

I1: aI11 6∈ CI1 aI11 ∈ DI1
I2: aI22 6∈ CI2 aI22 6∈ DI2

We can deduce:

aI11 6∈ CI1

⇐⇒ aI11 6∈ (A t ∃r.>)I1

⇐⇒ aI11 6∈ AI1 and aI11 6∈ (∃r.>)I1

⇐⇒ aI11 6∈ AI1 and there is no b with (aI1 , bI1) ∈ rI1

The same can be done for a2 and I2. In both cases (*) is satisfied.
If D ∈ S, then aI11 ∈ DI1 and aI22 ∈ DI2 . Otherwise if D 6∈ S, then aI11 6∈ DI1

and aI22 6∈ DI2 . Both cases contradict (**).
Upward covers can be handled analogously, i.e. ∀r.⊥uA is an upward cover of
⊥. �

46

3.1 The Role of Minimality

In the proof we have shown that ∃r.> t A is a downward cover of > for the
case that there is only one role and one concept name. The idea can be extended
to situations with more than one role and concept name. In this case we obtain
the following concept as a downward cover of > (we do not prove this explicitly,
because we do not use this result later on):⊔

r∈NR

∃r.> t
⊔

A∈NC

A (3.1)

The result shows that non-trivial minimal operators, i.e. operators which do
not map every concept to the empty set, can be constructed. However, it is also
apparent that in practice Concept 3.1 is long for realistic knowledge bases.

It should be noted that minimality of refinement steps is not a directly desired
goal in general. Minimal operators are in some languages more likely to lead to
overfitting, because they may not produce sufficient generalisation/specialisation
leaps, e.g. the cover above provides almost no specialisation compared to >. This
problem is particularly significant in languages which are closed under boolean
operations, i.e. in ALC and more expressive languages.

Indeed, the following result suggests that – unlike for logic programs – minimal-
ity may not play a central role for DL refinement operators, as it is incompatible
with weak completeness. In [Badea and Nienhuys-Cheng, 2000], a weaker result
was already claimed to hold, but not proven. We formulate our result for the
description logic AL (see page 26 for its definition). A corresponding result for
other description logics than AL has not been shown yet, but the non-existence
of such operators even for weak description logics suggests that similar problems
arise for more expressive ones.

Proposition 3.2 (minimality and weak completeness)
There exists no minimal and weakly complete AL downward refinement oper-
ator.

Proof Let NR = {r} and NC = ∅. In the following, let rd(C) denote the role
depth of a concept C.

For a proof by contradiction, we assume a minimal and weakly complete AL
downward refinement operator ρ. This implies that there is a refinement step
C ρ D, such that C does not have a subconcept equivalent to ⊥ and D does not
have a subconcept equivalent to ⊥. Otherwise no concept equivalent to ⊥ would
be reachable from >. We prove the proposition by first simplifying C and D and
then defining a concept E with D @ E @ C.

We next cast C and D into a normal form. For this, we replace the subconcepts
in D equivalent to ⊥ by ⊥. Furthermore, we apply the following equivalence

47

3 Theoretical Foundations of Refinement Operators

preserving rewrite rules exhaustively to C and D:

C u ⊥ → ⊥ and ⊥ u C → ⊥
C u > → C and > u C → C

∀r.> → >
∀r.(C1 u C2)→ ∀r.C1 u ∀r.C2

We pick a normal form obtained this way (note that applying the rules to an arbi-
trary concept can lead to different results depending on the order of application)
and call the resulting concepts C ′(≡ C) and D′(≡ D).

Due to the syntax of AL, NC = ∅, and the rewriting rules, we have that C ′ is
either > or of the following form, where the si, for i ∈ {1, . . . , b}, are non-negative
integers:

C ′ =
bu
i=1

∀rsi .∃r.> (3.2)

We define a new concept E:

E = C ′ u ∀rn.∃r.> with n = max(rd(C), rd(D)) + 1

We complete the proof by showing that D′ @ E @ C ′, which contradicts the
minimality of ρ.

1. To show E @ C ′, first note that E = C ′ u ∀rn.∃r.> v C ′ is obvious, so it
remains to show that E and C ′ are not equivalent. To do this, we define I
and a such that aI ∈ C ′ and aI 6∈ E.

Let I be defined by rI = {(ai, ai+1) | a0 = a, 0 ≤ i < n}, which we can
depict as

a = a0
r−→ a1

r−→ . . .
r−→ an.

• Indeed aI ∈ C ′ holds: For C ′ = > this holds trivially. If C ′ 6= >, then
C ′ is a conjunction of concepts which are of the form ∀rm.∃r.> with
m < n, i.e. we have aI ∈ (∀rm.∃r.>)I for any m < n. Note that the
statement ∀rm.∃r.> informally means that objects reachable via a path
of length m along r need to have a successor. Hence aI ∈ C ′ holds due
to the form we have established in (3.2) for C ′.

• aI 6∈ E holds because an does not have an r-filler.

2. To show D′ @ E, first note that D′ contains a ⊥ symbol. This means that
D′ is of the form D′ = D′1 u · · · u D′p (p ≥ 1) where there exists some
j ∈ {1, . . . , p} s.t. D′j is of the form ∀rt.⊥, for some t ≥ 0. Now define
F = C ′ uD′j. Note that1 D′ ≡ C ′ uD′ v C ′ uD′j = F .

1We have D′ ≡ C ′ uD′, because D ≡ D′ is a downward refinement of C ≡ C ′, i.e. D′ v C ′.
C ′ uD′ v C ′ uD′

j holds because of D′ v D′
j .

48

3.2 Combinations of Completeness, Properness, Finiteness, Redundancy

We first verify D′ v E. Note that for all k, l ≥ 0 we have

∀rk.⊥ v ∀rk.∀rl.∃r.>,

and since t < n we obtain

D′ v F = C ′ u ∀rt.⊥ v C ′ u ∀rn.∃r.> = E

It remains to show that D′ 6≡ E. We do this by proving F 6≡ E using the
interpretation I with rI = {(a, a)}.
We have aI ∈ (∀rz.∃r.>)I for all z ≥ 0. Hence, we have aI ∈ C ′I and also
aI ∈ EI .
We have aI 6∈ F I , because aI 6∈ (∀rt.⊥)I – note that ∀rt.⊥ states that
objects reachable via a path of length t− 1 must not have a successor.

Hence, aI ∈ EI and aI 6∈ F I , which proves F 6≡ E.

We have shown that there is a refinement step C ρ D such that a concept E
exists, which is more special than C and more general than D, i.e. rho is not
minimal. �

Please note that although we looked at the special case of NR = {r} and NC = ∅
in the proof, similar arguments could be used for arbitrary NR and NC .

This negative result for a very simple description logic indicates that mini-
mality and (weak) completeness cannot be combined for many other expressive
description logics. However, (weak) completeness is an important property, since
a learning algorithm using an incomplete operator may miss potential solutions of
a learning problem. Therefore, we focus on combinations of other properties than
minimality in the remainder of the chapter.

3.2 Combinations of Completeness, Properness,
Finiteness, Redundancy

In the sequel, we analyse desired properties of L refinement operators: complete-
ness, properness, finiteness, and non-redundancy. As we have just shown that
minimality is unlikely to play a central role when investigating expressive DLs, we
omit it from further investigations. We show several positive and negative results,
which together yield a full analysis of these properties in Theorem 3.16.

Proposition 3.3 (Complete and Finite Refinement Operators)
Let L be a description language which allows conjunction. Then there exists a
complete and finite L refinement operator.

49

3 Theoretical Foundations of Refinement Operators

Proof Consider the downward refinement operator ρ defined by

ρ(C) = {C u >} ∪ {D | |D| ≤ (number of > occurrences in C) and D @ C},

where |D| stands for the number of symbols in D. The operator can do one of
two things:

• add a > symbol

• generate the set of all concepts up to a certain length, which are subsumed
by C

The operator is finite, because the set of all concepts up to a given length is
finite (and the singleton set {C u >} is finite).

The operator is complete, because given a concept C we can reach an arbitrary
concept D with D @ C. This is obvious, because we only need to add >-symbols
until there are |D| occurrences of >. Within the next step we can then be sure to
reach D.

For upward refinement operators we can use an analogous operator φ, which is
also complete and finite:

φ(C) = {C u >} ∪ {D | |D| ≤ (number of > occurrences in C) and C @ D}
�

Remark 3.4 (Complete and Finite Refinement Operators)
It has been claimed in [Badea and Nienhuys-Cheng, 2000] that complete and finite
ALER refinement operators do not exist. However, this is refuted by Proposition
3.3. �

Of course, it is obvious that the operator used to prove Proposition 3.3 is not
useful in practice, since it merely generates concepts without paying attention
to an efficient traversal of the search space. However, here we are interested in
theoretical limits of refinement operators. It is indeed difficult to design a good
complete and finite refinement operator. The reason is that finiteness can only be
achieved by using non-proper refinement steps (for our operator this was done by
adding > symbols). We will now prove this, i.e. show that it is impossible to define
a complete, finite, and proper refinement operator. Such operators are known
as ideal and their non-existence indicates that learning concepts in sufficiently
expressive description logics is hard.

Lemma 3.5 (Non-Ideality Helper Lemma 1)
Let C = ¬∃rn.>t ∃rn+1.>. There is no concept D with C v D @ > and role
depth smaller n in ALC or ALCQ.

50

3.2 Combinations of Completeness, Properness, Finiteness, Redundancy

Proof Note that C is not equivalent to >. For the interpretation I with rI =

{(ai, ai+1) | 0 ≤ i < n}, illustrated by a0
rI−→ a1

rI−→ . . .
rI−→ an, we have aI0 6∈ CI .

By contradiction, we assume that such a concept D exists.
We can view an interpretation I as a directed graph with respect to r in a

straightforward way: The set of nodes is {bI | b ∈ NI} and the edges are {(b, c) |
(b, c) ∈ rI}. We define lpI,a as the length of the longest paths in the graph of I
starting from aI (a ∈ NI). If such a path is infinite, we set lpI,a =∞.

Let I be an arbitrary interpretation and a an arbitrary object. If lpI,a > n,
we have aI ∈ CI because of aI ∈ (∃rn+1.>)I and ∃rn+1.> v C. If lpI,a < n, we
have aI ∈ CI , because of aI ∈ (¬∃rn.>)I and ¬∃rn.> v C. If lpI,a = n, we have
aI 6∈ CI because of aI 6∈ (∃rn+1.>)I and aI 6∈ (¬∃rn.>)I . So we have aI ∈ CI iff
lpI,a 6= n.

Due to D 6≡ >, we know that ¬D is satisfiable. ALC, ALCQ, and other
description logics have the tree model property, i.e. any satisfiable concept has
a model, where the graph we defined is tree shaped [Baader et al., 2007a]. In
particular, this means that if there is a path in the model graph between two
arbitrary objects, then this path is unique. So without loss of generality, we can
assume that the graphs of the considered models are tree shaped. Let I be a tree
shaped model of ¬D and a be an object such that aI ∈ (¬D)I . Note that because
of C v D, we know aI 6∈ CI .

We know that lpI,a = n in I, otherwise aI ∈ CI as we have shown above. Let

aI = a0
rI−→ a1

rI−→ . . .
rI−→ an be one of the longest paths in the graph of I starting

in a. We create a new interpretation I ′ from I by adding a new object am+1 and
changing rI to rI

′
= rI ∪ {(am, am+1)}.

The following concept constructors involving roles are included in the mentioned
languages: ∀r, ∃r, ≤ m r, ≥ m r. Semantically, all of those refer to role fillers
(see Table 2.1), i.e. to neighbours in the interpretation graph defined above. Since
the role depth of D is smaller than n and there is exactly one path in the graph
of I ′ from aI to am+1, we can deduce aI

′ ∈ (¬D)I
′

from aI ∈ (¬D)I (the addition
of am+1 does not influence whether aI

′ ∈ (¬D)I
′

or not). However, I ′ has lpI,a =
n+1, because we added am+1. Thus, aI ∈ CI as shown above and hence aI ∈ DI ,
which contradicts aI ∈ (¬D)I . �

Lemma 3.6 (Non-Ideality Helper Lemma 2)
Let

C = ¬∃rn.> t ∃rn+1.>
t ≥ 2 r.> t ∃r. ≥ 2 r.> t · · · t ∃rn−1. ≥ 2 r.>
t ∃r−1.> t ∃r. ≥ 2 r−1.> t ∃r2. ≥ 2 r−1.> t · · · t ∃rn. ≥ 2 r−1.>

There is no concept D with C v D @ > and role depth smaller n in SHOIN
or SROIQ.

51

3 Theoretical Foundations of Refinement Operators

Proof We use the same notions as in Lemma 3.5. C is not equivalent to > by
the same example as in the previous lemma. Again, we assume by contradiction
that such a concept D exists. As before, there are a and I with aI ∈ (¬D)I (and
thus aI 6∈ CI). The difference is that SROIQ and SHOIN do not have the tree
model property.

Since ¬∃rn.>t∃rn+1.> v C, we know that lpI,a = n by the observations made

in Lemma 3.5. Let aI = a0
rI−→ a1

rI−→ . . .
rI−→ an be the longest path in the graph

of I starting in a. Using aI 6∈ CI , we can make some observations concerning the
graph of I:

• a0 has no incoming edge (due to ∃r−1.>)

• a1 to an have exactly one incoming edge (due to ∃ri. ≥ 2 r−1.> for 1 ≤ i ≤ n)

• an does not have an outgoing edge (due to lpI,a = n)

• a0 to an−1 have exactly one outgoing edge (due to ∃ri. ≥ 2 r.> for 0 ≤ i ≤
n− 1)

This means that there is a unique longest path, which forms a connected com-
ponent of the interpretation graph. The concept constructors involving roles in
SHOIN and SROIQ are ∀r, ∀r−1, ∃r, ∃r−1, ≤ m r, ≤ m r−1, ≥ m r, ≥ m r−1,
∃r.Self, all of which refer to direct neighbours (via incoming and outgoing edges)
of an object in the graph.

Again, we can construct an interpretation I ′ by adding a new object am+1 to
the longest path. Since the role depth of D is smaller than n, we can deduce
aI

′ ∈ (¬D)I
′

from aI ∈ (¬D)I . However, I ′ has lpI,a = n+ 1, because we added
am+1. Thus, aI ∈ CI and aI ∈ DI , which contradicts aI ∈ (¬D)I . �

Proposition 3.7 (Ideal Refinement Operators)
There does not exist any ideal ALC, ALCQ, SHOIN , or SROIQ downward
refinement operator.

Proof By contradiction, we assume that there exists an ideal downward re-
finement operator ρ. We further assume that there is a role r ∈ NR. Let
ρ(>) = T = {C1, . . . , Cn} be the set of refinements of the > concept. Due to
finiteness of ρ, T has to be finite. Let n be a natural number larger than the max-
imum of the role depths of concepts in T . Due to Lemma 3.5 and 3.6, we know
that there does not exist a more general concept than C (where C is as defined in
the corresponding lemma depending on the language we consider), which is not
equal to >, with a role depth smaller than n. We have also shown that C 6≡ >.

52

3.2 Combinations of Completeness, Properness, Finiteness, Redundancy

Hence C1, . . . , Cn do not subsume C (the properness of ρ implies that C1, . . . , Cn
are not equivalent to >), so C cannot be reached from any of these concepts by
applying ρ. Thus, C cannot be reached from > and ρ is incomplete. �

We limited the proof to a set of interesting languages. However, it generalizes
to other languages with only minor adaptations.

Without the finiteness restriction, completeness and properness can be com-
bined:

Proposition 3.8 (Complete and Proper Refinement Operators)
Let L be a description language. Then there exists a complete and proper L
refinement operator.

Proof To prove this, we can use ρ(C) = {D | D @ C} as downward refinement
operator, which is obviously complete and proper. For upward refinement we can
analogously consider ρ(C) = {D | C @ D}. �

We have shown that the combination of completeness and properness is possible.
Propositions 3.3, 3.7, and 3.8 state that for complete refinement operators, which
are usually desirable, one has to sacrifice properness or finiteness. We will now look
at non-redundancy. We show two results: 1.) Completeness and non-redundancy
can be combined theoretically (Proposition 3.9) and 2.) it is very unlikely that
useful operators with this combination exist (Proposition 3.10). We argue that
for practical purposes, completeness and non-redundancy cannot be combined.

Proposition 3.9 (Complete, Non-redundant Refinement Operators)
Let L be a description language which contains AL. Then there exists a com-
plete and non-redundant L refinement operator.

Proof We prove the result by showing that complete operators can be trans-
formed to complete and non-redundant operators. Note that in the following,
we will use the role r to create concepts with a certain depth. If NR does not
contain any role, the desired effect can also be achieved by using conjunctions or
disjunctions of > and ⊥, but this would render the proof less readable.

We will use the fact that the set of concepts in L is countably infinite. The
countability already follows from the fact that there is just a finite number of
concepts with a given length. Hence, we can divide the set of all concepts in finite
subsets, where each subset contains all concepts of the same length. We can then
start enumerating concepts starting with the subset of concepts of length 1, then

53

3 Theoretical Foundations of Refinement Operators

length 2 etc. Thus, there is a bijective function f : L 7→ N, which assigns a
different number to each concept in L. We denote the inverse function mapping
numbers to concepts by f inv.

We modify a given complete operator ρ defined as ρ(C) = SC , where SC is
defined as a maximal subset of {D | D @ C} with D1, D2 ∈ SC =⇒ D1 6' D2.
ρ is complete, since given a concept C all more special concepts up to weak
equivalence can be reached in one refinement step.

We change ρ in the following way: For any concept C, ρ(C) is modified by
changing any element D ∈ ρ(C) to

D u ∀r.(> u · · · u >︸ ︷︷ ︸
f(C) times

)

We claim that the resulting operator, which we denote by ρ′ is complete and
non-redundant.

The completeness of ρ′ follows from the completeness of ρ, since the construct
we have added does not change the semantics (it is equivalent to >).

To prove non-redundancy, we will first define a refinement operator ρinv, which
maps conjunctions, where the last element is of the form ∀r.(> u · · · u >), to a
single concept:

ρinv =

{f inv(n)} if C is of the form C u ∀r. (> u · · · u >)︸ ︷︷ ︸

n times

∅ otherwise

We can see that D ∈ ρ′(C) implies ρinv(D) = {C}, so ρinv allows to invert a
refinement step of ρ′.

By contradiction, we assume ρ′ is redundant. Then, there needs to be a concept
C and concepts D1, D2 with D1 ' D2, such that there is a refinement chain from
C to D1 and a different refinement chain from C to D2. Since we know that D1

and D2 are refinements of ρ′, they have to be conjunctions, where the last element
is of the form ∀r.(>u · · · u >) and equal in D1 and D2. This means the previous
element in both refinement chains is ρinv(D1) = ρinv(D2) and therefore all elements
except the last ones (D1, D2) in both chains are uniquely determined. Since for
any C, ρ(C) does not contain weakly equal concepts, we get that D1 and D2 have
to be equal. Therefore, both refinement chains are equal, which is a contradiction.

We can establish the same result for upward refinement by using ρ with ρ(C) =
SC , where SC is defined as a maximal subset of {D | C @ D} with D1, D2 ∈
SC =⇒ D1 6' D2 as starting point. The construction of ρ′ can be done analo-
gously. �

54

3.2 Combinations of Completeness, Properness, Finiteness, Redundancy

Proposition 3.10 (Complete, Non-redundant Operators II)
Let L be a description language which contains AL. Let ρ be an arbitrary L
downward refinement operator, where for any concept C, ρ∗(C) contains only
finitely many different concepts equivalent to ⊥. Then ρ is not complete and
non-redundant.

The restriction mentioned in Proposition 3.10 is made in order to disallow purely
theoretical constructions, as in the proof of Proposition 3.9, which use syntac-
tic concept extensions that do not alter the semantics of a concept, to ensure
non-redundancy. We prove the proposition using a milder, but more technical,
restriction.

Proof Let ρ be a complete downward refinement operator, Cup, Cdown be con-
cepts with Cdown @ Cup, {C | C ∈ ρ∗(Cup), C ≡ Cdown} be finite, and S be an
infinite set of concepts, which are pairwise incomparable, strictly subsumed by Cup

and strictly subsuming Cdown. For instance, we could have Cup = >, Cdown = ⊥
and S = {∀r.A,∀r.∀r.A, . . . }.

Due to the completeness of ρ, there must be a refinement chain from each
concept in S to a concept, which is equivalent to Cdown. Since there are infinitely
many concepts in S, but only finitely many different syntactic representations of
Cdown are reached, there have to be concepts C ′down, C1, and C2 with C ′down ≡ Cdown

and C1, C2 ∈ S, such that C ′down ∈ ρ∗(C1) and C ′down ∈ ρ∗(C2).
Because of C1 6v C2 and C2 6v C1, we know C1 6∈ ρ∗(C2) and C2 6∈ ρ∗(C1). Hence,

there exists a refinement chain from Cup to Cdown through C1 and a refinement
chain from Cup to Cdown, which goes through C2 and not through C1. Thus, ρ is
redundant. �

Again, a dual result and proof for upward refinement operators can be obtained.
As a consequence of the result, completeness and non-redundancy cannot be

combined under reasonable assumptions. Usually, it is desirable to have (weakly)
complete operators, but in order to have a full analysis of L refinement operators
we will now also investigate incomplete operators.

Proposition 3.11 (Incomplete Refinement Operators)
Let L be a description language. Then there exists a finite, proper, and non-
redundant L refinement operator.

Proof The following operator has the desired properties:

ρ(C) =

{
{⊥} if C 6≡ ⊥
∅ otherwise

55

3 Theoretical Foundations of Refinement Operators

It is obviously finite, because it maps concepts to sets of cardinality at most 1. It
is non-redundant, because it only reaches the bottom concept and there exists no
refinement chain of length greater than 2. It is proper, because all concepts, which
are not equivalent to the bottom concept strictly subsume the bottom concept.

The corresponding upward operator is:

φ(C) =

{
{>} if C 6≡ >
∅ otherwise

The arguments for its finiteness, properness, and non-redundancy are analogous
to the downward case. �

We can now summarise the results we have obtained so far.

Theorem 3.12 (Properties of Refinement Operators (I))
Considering the properties completeness, properness, finiteness, and non-
redundancy, the following are maximal sets of properties (in the sense that
no other of the mentioned properties can be added) of L refinement operators
(L ∈ {ALC,ALCQ,SHOIN ,SROIQ}):

1. {complete, finite}

2. {complete, proper}

3. {non-redundant, finite, proper}

All results hold under the mild hypothesis stated in Proposition 3.10.

Proof The theorem is a consequence of the previous results. We have seen that
downward and upward operators allow the same combinations of properties, so it
is not necessary to distinguish between them. We make a case distinction:

1. The operator is complete. In this case we cannot add non-redundancy
(Proposition 3.10). Finiteness (Proposition 3.3) and properness (Proposi-
tion 3.8) can be added, but not both (Proposition 3.7).

2. The operator is not complete. In this case we can add all other properties
(Proposition 3.11). �

3.3 Weak Completeness

A property, which we have not yet considered in detail, is weak completeness. Of-
ten weak completeness is sufficient, because it allows to search for a good concept

56

3.3 Weak Completeness

starting from > downwards (top-down approach) or from ⊥ upwards (bottom-up
approach).

It will be shown that different results hold when considering weak completeness
instead of completeness. As a first observation, we see that the arguments in
the proof of Proposition 3.10, which have shown that an L refinement operator
cannot be complete and non-redundant, do no longer apply if we consider weak
completeness and non-redundancy.

Proposition 3.13 (Weakly Complete, Non-redundant, Proper Op.)
Let L be a description language. Then there exists a weakly complete, non-
redundant, and proper L refinement operator.

Proof The following operator is weakly complete, non-redundant, and proper:
Let S be a maximal subset of {C | C 6≡ >} with C1, C2 ∈ S =⇒ C1 6' C2.

ρ(C) =

{
S if C = >
∅ otherwise

Such a set S as used in the definition of the operator indeed exists. It contains
one representative of each equivalence class with respect to weak equality of the
set {C | C 6≡ >}. The operator is proper, since it contains only mappings of the
top concept to concepts, which are not equivalent to top. It is non-redundant,
because there is no refinement chain of length greater than 1 and all concepts
we reach are pairwise not weakly equal. It is weakly complete, because for every
concept, which is not equivalent to >, we can reach an equivalent concept from >
by ρ.

The corresponding upward refinement operator is as follows: Let S be a maximal
subset of {C | C 6≡ ⊥} with C1, C2 ∈ S =⇒ C1 6' C2.

ρ(C) =

{
S if C = ⊥
∅ otherwise

�

The operator just given is obviously not useful in practice, but it suffices for the
proof of the proposition.

Proposition 3.14 (Weakly Complete, Non-redundant, Finite Op.)
Let L be a description language which allows to express conjunction. Then
there exists a weakly complete, non-redundant, and finite L refinement opera-
tor.

57

3 Theoretical Foundations of Refinement Operators

Proof The following operator is weakly complete, non-redundant, and finite:
For an arbitrary concept C, let SC be a maximal subset of {D | D @ > and |D| =

number of > occurrences in C} with C1, C2 ∈ SC =⇒ C1 6' C2.

ρ(C) =

{> u · · · u >︸ ︷︷ ︸
n+1 times >

} ∪ SC if C = > u · · · u >︸ ︷︷ ︸
n times >

∅ otherwise

The operator is finite, because SC is finite for any concept C (the number
of concepts with a fixed length is finite). It is weakly complete, because every
concept C with C @ > can be reached from >. This is done by accumulating
> symbols until we have |C| such symbols and then generating C. The operator
is furthermore non-redundant, because obviously for any concept there is exactly
one path for reaching the concept via iterated applications of ρ to >.

The corresponding upward operator is constructed analogously. It works by
accumulating ⊥ symbols instead of > symbols, and generates concepts which are
strictly more general than ⊥. �

Corollary 3.15 (Weakly Complete, Proper, and Finite Operators)
Let L be any of the description languages ALC, ALCQ, SHOIN , or SROIQ.
Then there exists no weakly complete, finite, and proper L refinement operator.

Proof To show this we can use the proof of Proposition 3.7. There we have
shown that in a finite and proper L refinement operator there exists a concept,
which cannot be reached from the > concept. This means that such an operator
cannot be weakly complete. �

The result of the previous observations is that, when requiring only weak com-
pleteness instead of completeness, non-redundant operators are possible. The
following theorem is the result of the full analysis of the desired properties of L
refinement operators and the main result of this chapter.

Theorem 3.16 (Properties of Refinement Operators (II))
Considering the properties completeness, weak completeness, properness,
finiteness, and non-redundancy the following are maximal sets of properties
(in the sense that no other of the mentioned properties can be added) of L
refinement operators (L ∈ {ALC,ALCQ,SHOIN ,SROIQ}):

1. {weakly complete, complete, finite}

2. {weakly complete, complete, proper}

58

3.3 Weak Completeness

3. {weakly complete, non-redundant, finite}

4. {weakly complete, non-redundant, proper}

5. {non-redundant, finite, proper}

All results hold under the mild hypothesis stated in Proposition 3.10.

Proof We can do a similar case distinction as in Theorem 3.12. The first case
(complete operator) is analogous except that obviously a complete operator is also
weakly complete. For the second case (operator is not complete) we can make a
simple case distinction again:

1. The operator is weakly complete. Propositions 3.13 and 3.14 have shown
that weakly complete operators can be non-redundant and proper as well
as non-redundant and finite. Proposition 3.15 shows that finiteness and
properness cannot be combined, so these sets of properties are maximal.

2. The operator is not weakly complete. In this case we can add all remaining
properties (Proposition 3.11), i.e. non-redundancy, finiteness, and proper-
ness. �

Note that the restriction of Theorems 3.12 and 3.16 to the languages ALC,
ALCQ, SHOIN , and SROIQ is caused by Proposition 3.7. The result carries
over to other DLs, but might require adapting the proofs. We have provided
the formal proofs for these four languages, because they are considered to be
fundamental, including the DLs underlying OWL and OWL 2.

Remark 3.17 (Subsumption with Respect to a TBox)
Instead of using subsumption (v) as an ordering over concepts, we can also use
subsumption with respect to a TBox T (vT). Theorem 3.16 will also hold in
this case. In all negative results, i.e Propositions 3.7, 3.10, Corollary 3.15, we can
consider subsumption with respect to an empty TBox as example. In all positive
results, i.e. Propositions 3.3, 3.8, 3.11, 3.13, 3.14, we can rewrite the example
operators by replacing v with vT . �

Remark 3.18 (Weak Equality)
In the definition of redundancy, we used weak equality. Theorem 3.16 also holds if
we consider syntactic equality. Proposition 3.9 can be simplified. Proposition 3.10
does not need to be changed. In Propositions 3.13 and 3.14 it is straightforward
to modify the refinement operators used as positive examples. �

Remark 3.19 (EL Family of Description Logics)
The EL description logic is investigated in Section 4.2. The language EL is promis-
ing due to its tractable reasoning algorithms. Indeed, we will show that EL allows
for ideal refinement. �

59

4 Designing Refinement Operators

After the thorough theoretical investigations in Chapter 3, we continue with the
design of actual refinement operators. We present two different operators: The
first operator is very expressive and aims at supporting most OWL structures.
As a consequence, it cannot be ideal as we have proven previously. The second
operator supports the lightweight description logic EL. We will show that it is
indeed possible to define an ideal operator for this language. Both operators
incorporate background knowledge to traverse the search space efficiently.

4.1 A Complete OWL Refinement Operator

We will define the refinement operator ρ using Theorem 3.16 as starting point.
The theorem provides five possible maximal property combinations a refinement
operator for description logics can have. We need to decide which of these five
combinations appears to be the one which is most promising in practice. For
this, we have to bear in mind that the strongest theoretically possible property
combination is not necessarily the most suitable one for implementation, as the
absence of some theoretical properties is more severe than the absence of others.
Indeed, it appears reasonable that it is better not to enforce some properties which
would be computationally expensive, if at the same time we can algorithmically
limit the negative impact this absence may have. We look at each of the properties
in turn.

Concerning (weak) completeness, we consider this a very important property,
since an incomplete operator may fail to converge at all and thus may not return
a solution even if one exists. The fifth property combination from Theorem 3.16
thus appears to be unfavorable.

Concerning finiteness, we will see later in Section 5.1, that having an infinite
operator is less critical from a practical perspective, in the sense that this issue
can be handled well algorithmically. So it is preferable not to impose finiteness,
which allows us to develop a proper operator. This leaves us with the second and
fourth property combinations from Theorem 3.16 to choose from.

As for non-redundancy, this appears to be very difficult to achieve for more
complex operators than the one in Proposition 3.13, which is not useful in practice
as it does not structure the search space at all. Consider, for example, the concept
A1 u A2 which can be reached from > via the chain > A1 A1 u A2, For
non-redundancy, the operator would need to make sure that this concept cannot
be reached via the chain > A2 A2 u A1. While there are methods to

60

4.1 A Complete OWL Refinement Operator

handle this in such simple cases via normal forms, it becomes more complex for
arbitrarily deeply nested structures, where even applying the same replacement
leads to redundancy. In the following example, A1 is replaced by A1 uA2 twice in
different order in each chain:

> ∀r1.A1 t ∀r2.A1 ∀r1.A1 t ∀r2.(A1 u A2) ∀r1.(A1 u A2) t ∀r2.(A1 u A2)

> ∀r1.A1 t ∀r2.A1 ∀r1.(A1 u A2) t ∀r2.A1 ∀r1.(A1 u A2) t ∀r2.(A1 u A2)

To avoid this, an operator would need to regulate when A1 can be replaced by
A1 u A2, which appears not to be achievable by syntactic replacement rules. At
the same time, we will see in Section 5.1.1 that we can use a computationally
inexpensive redundancy check which our experiments have shown to be sufficiently
useful in practice.

The arguments just given leave us with the second property combination from
Theorem 3.16. And indeed, reasonable weakly complete operators are often also
automatically complete. Consider, for example, the situation where a weakly
complete operator ρ allows to refine a concept C to C uD with some D ∈ ρ(>).
Then it turns out that this operator is already complete (see proof of Proposition
4.7). This observation points us again to the second property combination from
Theorem 3.16, which we have already found out to be the most feasible one for
developing a refinement operator in our setting.

Summarising, we choose to develop a weakly complete, complete, and proper
refinement operator, and will show that we can handle issues arising from infinity
and redundancy well algorithmically. This will be detailed in the description of
the OCEL learning algorithm in Section 5.1.

We proceed as follows: First, we define a refinement operator and prove its
completeness. We then extend it to a complete and proper operator.

4.1.1 Definition of the Operator

We now define the operator and prove that it is indeed a downward refinement
operator. For each A ∈ NC , we define (sh stands for subsumption hierarchy):

sh↓(A) = {A′ ∈ NC | A′ @ A, there is no A′′ ∈ NC with A′ @T A
′′ @T A}

sh↓(>) is defined analogously for > instead of A. sh↑(A) is defined analogously
for going upward in the subsumption hierarchy.

We do the same for roles, i.e. :

sh↓(r) = {r′ | r′ ∈ NR, r
′ @ r, there is no r′′ ∈ NR with r′ @T r

′′ @T r}

domain(r) denotes the domain of a role r and range(r) the range of a role r. To
recapitulate from Section 2.1.4, a range axiom links a role to a concept. It asserts
that the role fillers must be instances of a given concept. Analogously, domain
axioms restrict the first argument of role assertions to a concept.

61

4 Designing Refinement Operators

We define:

ad(r) = an A with A ∈ {>} ∪NC and domain(r) v A

and there does not exist an A′ with domain(r) v A′ @ A

ar(r) is defined analogously using range instead of domain. ad stands for atomic
domain and ar stands for atomic range. We assign exactly one atomic concept as
domain/range of a role. Since using atomic concepts as domain and range is very
common, domain and ad as well as range and ar will usually coincide.

The set appB of applicable properties with respect to an atomic concept B is
defined as:

appB = {r|r ∈ NR, ad(r) = A,A uB 6≡ ⊥}

To give an example, for the concept Person, we have that the role hasChild with
ad(hasChild) = Person is applicable, but the role hasAtom with ad(hasAtom) =
ChemicalCompound is not applicable (assuming Person and ChemicalCompound

are disjoint). We will use this to restrict the search space by ruling out unsat-
isfiable concepts. The index B describes the context in which the operator is
applied, e.g. > Person is a refinement step of ρ. However, ∃hasAtom.>
∃hasAtom.Person is not a refinement step of ρ assuming ar(hasAtom) and Person

are disjoint.
The set of most general applicable roles mgrB with respect to a concept B is

defined as:

mgrB = {r | r ∈ appB, there is no r′ with r @ r′, r′ ∈ appB}

MB with B ∈ {>} ∪NC is defined as the union of the following sets:

• {A | A ∈ NC , A uB 6≡ ⊥, A uB 6≡ B, there is no A′ ∈ NC with A @ A′}

• {¬A | A ∈ NC ,¬AuB 6≡ ⊥,¬AuB 6≡ B, there is no A′ ∈ NC with A′ @ A}

• {∃r.> | r ∈ mgrB}

• {∀r.> | r ∈ mgrB}

The operator ρ is defined in Figure 4.1. Note that ρ delegates to an operator ρB
with B = > initially. B is set to the atomic range of roles contained in the input
concept when the operator recursively traverses the structure of the concept. The
index B in the operator (and the set M above) is used to rule out concepts which
are disjoint with B.

We use the following notions for different kinds of refinement steps in ρ:

1.
u
 : add an element conjunctively (cases 3, 4, 5, 6, 8 in the definition of ρB
in Figure 4.1)

2.
>
 : refine the top concept (case 2 in the definition of ρB in Figure 4.1)

62

4.1 A Complete OWL Refinement Operator

ρ(C) =

{
{⊥} ∪ ρ>(C) if C = >
ρ>(C) otherwise

ρB(C) =

∅ if C = ⊥
{C1 t · · · t Cn | Ci ∈MB (1 ≤ i ≤ n)} if C = >
{A′ | A′ ∈ sh↓(A)} if C = A (A ∈ NC)

∪{A uD | D ∈ ρB(>)}
{¬A′ | A′ ∈ sh↑(A)} if C = ¬A (A ∈ NC)

∪{¬A uD | D ∈ ρB(>)}
{∃r.E | A = ar(r), E ∈ ρA(D)} if C = ∃r.D
∪ {∃r.D u E | E ∈ ρB(>)}
∪ {∃s.D | s ∈ sh↓(r)}

{∀r.E | A = ar(r), E ∈ ρA(D)} if C = ∀r.D
∪ {∀r.D u E | E ∈ ρB(>)}
∪ {∀r.⊥ |

D = A ∈ NC and sh↓(A) = ∅}
∪ {∀s.D | s ∈ sh↓(r)}

{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn | if C = C1 u · · · u Cn
D ∈ ρB(Ci), 1 ≤ i ≤ n} (n ≥ 2)

{C1 t · · · t Ci−1 tD t Ci+1 t · · · t Cn | if C = C1 t · · · t Cn
D ∈ ρB(Ci), 1 ≤ i ≤ n} (n ≥ 2)

∪ {(C1 t · · · t Cn) uD |
D ∈ ρB(>)}

Figure 4.1: Definition of the refinement operator ρ.

3.
A
 : refine an atomic concept (case 3 in the definition of ρB in Figure 4.1)

4.
¬A
 : refine a negated atomic concept (case 4 in the definition of ρB in Figure
4.1)

5.
r
 : refine a role (cases 5, 6 in the definition of ρB in Figure 4.1)

If a concept is refined to some other concept using ρ, exactly one of these five
steps is performed. We assume that conjunctions are never nested in conjunctions
and disjunctions are never nested in disjunctions, e.g. A1 u (A2 u ∃r.>) is written
as A1 u A2 u ∃r.> instead.

63

4 Designing Refinement Operators

Example 4.1 (ρ refinements)
Since the operator is not easy to understand at first glance, we provide some
examples. Let the following knowledge base be given:

K = {Man @ Person; Woman @ Person;

SUV @ Car; Limo @ Car; Person u Car ≡ ⊥;

domain(hasOwner) = Car; range(hasOwner) = Person}

Then the following refinements of > exist:

ρ(>) = {Car, Person,¬Limo,¬SUV,¬Woman,¬Man,
∃hasOwner.>,∀hasOwner.>, Car t Car, Car t Person, . . . }

This illustrates how the setM> is constructed. Note that refinements like CartCar
are incorporated in order to reach e.g. SUV t Limo later in a possible refinement
chain. The concept Car u ∃hasOwner.Person has the following refinements:

ρ(Car u ∃hasOwner.Person) = {Car u ∃hasOwner.Man,
Car u ∃hasOwner.Woman,
SUV u ∃hasOwner.Person,
Limo u ∃hasOwner.Person, . . . }

Note the traversal of the subsumption hierarchy, e.g. Car is replaced by SUV. �

Proposition 4.2 (Downward Refinement of ρ)
ρ is an ALC downward refinement operator.

Proof We have to show that D ∈ ρ(C) implies D vT C. We show D v C,
i.e. consider an empty TBox. Since D v C implies D vT C by the definition of
subsumption, the desired result follows.

We prove by structural induction of ALC concepts in negation normal form.
Obviously, in all cases where D = C u C ′, i.e. C is extended conjunctively by a
concept C ′ we have D v C, so these cases are ignored.

• C = ⊥: D ∈ ρ(C) is impossible, because ρ(⊥) = ∅.

• C = >: D v C is trivially true.

• C = A (A ∈ NC): D ∈ ρ(C) implies that D is also an atomic concept and
D @T C. Thus D v C.

• C = ¬A: D ∈ ρ(C) implies that D is of the form ¬A′ with A @T A′.
A @T A′ implies ¬A′ @T ¬A by the semantics of negation. Thus, D v C.

64

4.1 A Complete OWL Refinement Operator

• C = ∃r.C ′: D ∈ ρ(C) implies that D is of the form ∃r.D′ or ∃s.C ′. For
the former case, we have D′ v C ′ by induction. (For existential restrictions
∃r.E v ∃r.E ′ if E @ E ′ holds in general.)For the latter case, we obviously
have ∃s.C ′ v ∃r.C ′, because s @ r.

• C = ∀r.C ′: This case is analogous to the previous one. Here we use the
results ∀r.E v ∀r.E ′ (E @T E ′) and ∀s.C ′ v ∀r.C ′ (s @ r).

• C = C1 u · · · uCn: In this case one element of the conjunction is refined, so
D v C follows by induction.

• C = C1 t · · · t Cn: In this case one element of the disjunction is refined, so
D v C follows by induction.

Hence, a refinement of ρ is never more general than the input concept. �

A distinguishing feature of ρ compared to other DL refinement operators, for
instance those in [Badea and Nienhuys-Cheng, 2000, Esposito et al., 2004], is that
it makes use of the subsumption and role hierarchy, e.g. for concepts A2 @ A1, we
reach A2 via > A1 A2. This way, we can stop the search if A1 is already
too weak and, thus, make better use of TBox knowledge. The operator also
uses domain and range of roles to reduce the search space. This is similar to mode
declarations in Aleph, Progol, and other ILP programs. However, in DL knowledge
bases and OWL ontologies, domain and range are usually explicitly given, so there
is no need to define them manually. Overall, the operator supports more structures
than those in [Badea and Nienhuys-Cheng, 2000, Esposito et al., 2004] and tries
to intelligently incorporate background knowledge. Section 4.1.4 describes further
extensions of the operator, which increase its expressivity such that it can handle
most OWL class expressions.

Note that ρ is infinite. The reason is that the set MB is infinite and, further-
more, we put no bound on the number of elements in the disjunctions, which are
refinements of the top concept. Another point is that the operator requires rea-
soner requests for calculating MB. However, the number of requests is fixed, so
– assuming the results of those requests are cached – the reasoner is only needed
in an initial phase, i.e. during the first calls to the refinement operator. This
means that, apart from this initial phase, the refinement operator performs only
syntactic rewriting rules.

4.1.2 Completeness of the Operator

To investigate the completeness of the operator, we define a set S↓ ofALC concepts
in negation normal form as follows:

Definition 4.3 (S↓)
We define S↓ = S ′↓ ∪ {⊥}, where S ′↓ is defined as follows:

65

4 Designing Refinement Operators

1. If A ∈ NC then A ∈ S ′↓ and ¬A ∈ S ′↓.

2. If r ∈ NR then ∀r.⊥ ∈ S ′↓, ∀r.> ∈ S ′↓, ∃r.> ∈ S ′↓.

3. If C,C1, . . . , Cm are in S ′↓ then the following concepts are also in S ′↓:

• ∃r.C if C u ar(r) 6≡ ⊥
• ∀r.C if C u ar(r) 6≡ ⊥
• C1 u · · · u Cm
• C1t · · · tCm if for all i (1 ≤ i ≤ m) Ci is not of the form D1u · · · uDn

where all Dj (1 ≤ j ≤ n) are of the form E1 t · · · t Ep. �

In S ′↓, we do not use the > and ⊥ symbols directly and we make a restriction on
disjunctions, i.e. we do not allow that elements of a disjunction are conjunctions,
which in turn only consist of disjunctions. It can be shown that for any ALC
concept there exists an equivalent concept in S↓.

Lemma 4.4 (Adequacy of S↓)
For any ALC concept C there exists a concept D ∈ S↓ such that D ≡ C.

Proof We assume C is in negation normal form. The restriction C u ar(r) 6≡ ⊥
for concepts of the form ∃r.C and ∀r.C does not exclude any relevant concepts,
because we have ∃r.C ≡ ∃r.(C u ar(r)) and ∀r.C ≡ ∀r.(C u ar(r)) in general.
Replacing C u ar(r) by ⊥ yields ∃r.⊥ ≡ ⊥ and ∀r.⊥. Both, ⊥ and ∀r.⊥, are
already in S↓.

The proof consists of three steps: First, we will eliminate > symbols unless
they occur in existential restrictions (because in Definition 4.3 ∃r.> is used in the
induction base opposed to using > directly). After that, we do something similar
with the bottom symbol. In a third step we will eliminate disjunctions violating
the criterion in Definition 4.3. After these three steps, we obtain a concept, which
is in S↓.

We eliminate >-symbols by applying the following rewrite rules:

C1 u · · · u Ci−1 u > u Ci+1 u · · · u Cn → C1 u · · · u Ci−1 u Ci+1 u · · · u Cn
C1 t · · · t Ci−1 t > t Ci+1 t · · · t Cn → >

∀r.> → >

Obviously, these >-elimination steps preserve equivalence. We exhaustively apply
these steps (since every step reduces the length of the concept there can be only
finitely many such steps) to get a concept C ′. Note that C ′ 6= > (otherwise
C ′ ≡ C ≡ >) and in C ′ the top concept only appears in existential restrictions,
i.e. in the form ∃r.>.

66

4.1 A Complete OWL Refinement Operator

⊥ symbols are eliminated by the following rewrite rules:

C1 u · · · u Ci−1 u ⊥ u Ci+1 u · · · u Cn → ⊥
C1 t · · · t Ci−1 t ⊥ t Ci+1 t · · · t Cn → C1 t · · · t Ci−1 t Ci+1 t · · · t Cn

∃r.⊥ → ⊥

These steps also preserve equivalence. After exhaustively applying these steps we
either get the ⊥ symbol itself (which is in S↓) or the ⊥ symbol only appears in
universal restrictions, i.e. in the form ∀r.⊥.

Next we have to eliminate disjunctions, which do not satisfy Definition 4.3. Say
we have such a disjunction C1 t · · · t Cm. Then there is a Ci (1 ≤ i ≤ m), which
is a conjunction consisting only of disjunctions. Without loss of generality we
assume i = 1 (the order of elements in a disjunction is not important), i.e. we can
write C1 = D1 u · · · uDn and D1 = E1 t · · · t Ep. This means we can apply the
following equivalence preserving rewriting rule:

((E1 t · · · t Ep) uD2 u · · · uDn) t C2 t · · · t Cm →
(E1 uD2 u · · · uDn) t · · · t (Ep uD2 u · · · uDn) t C2 · · · t Cm

Note that Ei (1 ≤ i ≤ p) cannot be a disjunction. Let C ′1 be the replacement of
C1 after applying the rewriting rule. Obviously, C ′1 is no more a disjunction where
an element is a conjunction of disjunctions (because any Ei is not a disjunction).
If we apply this rule to all applicable Ci (1 ≤ i ≤ m), then we obtain a concept
C ′′ equivalent to C1 t · · · t Cm, which is in S↓.

Hence, we have shown that we can construct a concept C ′′ ≡ C ′ ≡ C with
C ′′ ∈ S↓, which completes the proof. �

In the next lemma, we can use the previous result to restrict the attention to
S ′↓.

Lemma 4.5 (Weak Completeness with Domain B)
For any concept B with B ∈ {>}∪NC, any ALC concept C ∈ S ′↓ with C @ B,
which satisfies the following restriction, can be reached from > by ρB:

• C is of the form C1 t · · · t Cm and for all i (1 ≤ i ≤ m) Ci uB 6≡ ⊥

• C is not of the form C1 t · · · t Cm and C uB 6≡ ⊥

Proof We prove by induction over the structure of concepts in S ′↓. Parts of the
rather involved proof are only sketched.

• Induction Base: An atomic concept A can be reached from > by a refinement
chain of the following form:

> >
 A1

A
 . . .

A
 An

A
 A′

67

4 Designing Refinement Operators

The operator descends the subsumption hierarchy. Since A′ is more special
than A, we can always reach it (unless A and A′ are disjoint, which is
excluded by the induction hypothesis). If B is an atomic concept, then the
definition of MB ensures that A1 is a concept, which is subsumed by B. Since
there are only finitely many atomic concepts, A will be reached in a finite
number of steps. Negated atomic concepts can be handled analogously.

∀r.⊥ can be reached by descending the subsumption and role hierarchy:

> >
 ∀s.> r

 . . .
r
 ∀r.> ∀r.A1 . . . ∀r.An ∀r.⊥

To reach ∃r.>, the following chain can be used:

> >
 ∃s.> r

 . . .
r
 ∃r.>

∀r.> can be handled analogously.

• Induction Step:

– ∃r.C: We have > >
 ∃s.> r

 . . .
r
 ∃r.> and by induction we can

reach C with C uB 6≡ ⊥ from > by ρA where A = ar(r).

– ∀r.C: Analogously to ∃r.C.

– C1u· · ·uCm: We know C1u· · ·uCmuA 6≡ ⊥, which implies CiuA 6≡ ⊥
for all i (1 ≤ i ≤ m). This means we know that C1 can be reached
from > using ρB by induction. Thus, we can first refine to C1 and then
add all other concepts to the conjunction stepwise:

> ∗ C1
∗ C1 u C2

∗ C1 u · · · u Cm

Note that ρ does not allow to extend a conjunction directly, but instead
in all other concept structures the operator allows to append an element
conjunctively, e.g. C1uC2 can be refined to C1u(C2uD) ≡ C1uC2uD
with D ∈ ρB(>).

– C1 t · · · t Cm: We have to show Ci ∈ ψ∗(m) for an m ∈ MB. We
do this by a case distinction on the structure of Ci for an arbitrary i
(1 ≤ i ≤ m).

If Ci is an atomic concept A: In this case, we pick an atomic concept
A1 (see point 1 in the definition of MB on page 62) and refine it:

A1
A
 . . .

A
 An

A
 A

This works exactly as in the case C = A above.

Similarly, if Ci is of the form ¬A, we pick a concept ¬A2 according to
point 2 in the definition of MB and refine to ¬A. The cases ∃r.>, ∀r.>,
∀r.⊥, ∃r.C, ∀r.C can be handled analogously.

68

4.1 A Complete OWL Refinement Operator

If Ci is of the form D1 u · · · uDn, then we know that according to the
definition of S ′↓ there is a Dj which is not a disjunction (and obviously
not a conjunction because Ci is a conjunction). This means that Dj

can be handled by any of the previous cases. Having refined to Dj, we
can then add all other Dk (1 ≤ k ≤ n, k 6= j) to the conjunction.

Summed up, we can refine to C by picking the right concept in MB for
each element of the disjunction and then refining further:

> E1 t · · · t Em (El ∈MB, 1 ≤ l ≤ m)

 ∗ C1 t E2 t · · · t Em
 C1 t C2 t E3 t · · · t Em
 . . . C1 t · · · t Cm �

This allows us to show weak completeness by proving that every element in S↓
can be reached from > by ρ.

Proposition 4.6 (Weak Completeness of ρ)
ρ is weakly complete.

Proof We have to show that for any concept C with C @T > a concept E with
E ≡ C can be reached from > by ρ. Due to Lemma 4.4, it is sufficient to show
that all concepts in S↓ can be reached from > by ρ.

Lemma 4.5 proves that we can reach all concepts in S ′↓ from > using ρ>, because
using B = > the restriction made in this lemma, is always satisfied:

• If C is not a disjunction: C u > 6≡ ⊥ is always true unless C ≡ ⊥, but ⊥
can be reached from > using ρ (see below).

• If C is a disjunction: Ci u > 6≡ ⊥ is always true unless Ci ≡ ⊥, but in this
case C is not in S↓ (⊥ cannot be an element of a disjunction in S↓).

The only element in S↓, which is not in S ′↓ is ⊥, which can be reached in one
refinement step from > using ρ. Therefore, all concepts in S↓ can be reached from
> using ρ. �

Using this, we can prove completeness.

Proposition 4.7 (Completeness of ρ)
ρ is complete.

69

4 Designing Refinement Operators

Proof Let C and D be arbitrary ALC concepts in S↓ with C @T D. To prove
completeness of ρ, we have to show that there exists a concept E with E ≡ C and
E ∈ ρ∗(D). E = DuC satisfies this property. We obviously have E = DuC ≡ C,
because of C @T D. We know that ρ allows to extend concepts conjunctively by
refinements of the top concept. Hence, we know that D u C can be reached from
D for any concept C by the weak completeness result for ρ. Thus, ρ is complete.�

4.1.3 Achieving Properness

The operator ρ is not proper, for instance it allows the following refinements:

> ∃r.> t ∀r.> ∃r.> t ∀r.A1 ∃r.A2 t ∀r.A1

In this chain, the first three concepts are equivalent. One could try to modify ρ,
such that it becomes proper by disallowing certain refinement steps of ρ. However,
the last refinement can be reached only via improper refinement steps, hence
this strategy does not work. Meaningful modifications of the operator are likely
to lead to incompleteness as e.g. ∃r.A2 t ∀r.A1 would need to be reached from
> (Proposition 3.8 shows that operators can be complete and proper, but such
operators do not structure the search space well). Indeed, there is no tractable
structural subsumption algorithm for ALC [Baader et al., 2007a], which indicates
that it is hard to define a proper operator just by syntactic rewriting rules.

So, instead of modifying ρ directly, we allow it to be improper, but consider the
closure ρcl of ρ [Badea and Nienhuys-Cheng, 2000].

Definition 4.8 (ρcl)
ρcl is defined as follows: D ∈ ρcl(C) iff there exists a refinement chain

C ρ C1 ρ . . . ρ Cn = D

such that C 6≡ D and Ci ≡ C for i ∈ {1, . . . , n− 1}. �

ρcl is proper by definition. It also inherits the completeness of ρ, since we do
not disallow any refinement steps, but only check whether they are improper.
We already know that ρ is infinite, so it is clear that we cannot consider all
refinements of a concept at a time. Therefore, in practice we will always compute
all refinements of a concept up to a given length. A flexible learning algorithm, like
the OCEL algorithm presented later, will allow this length limit to be increased if
necessary. Using this technique, an infinite operator can be handled. However, we
have to make sure that all refinements of ρcl up to a given length are computable
in finite time. To show this, we need the following lemma.

70

4.1 A Complete OWL Refinement Operator

Lemma 4.9 (ρ Does not Reduce Length)
D ∈ ρ(C) implies |D| ≥ |C|. Furthermore, there are no infinite refinement
chains of the form C1 ρ C2 ρ . . . with |C1| = |C2| = . . . , i.e. after a finite
number of steps we reach a strictly longer concept.

Proof To show the first statement we need to observe the steps, which are
performed by ρ. As mentioned before, ρ can do one of five things in each refinement
step:

1. add an element conjunctively (
u
)

2. refine the top concept (
>
) not including refinements of the form > A

3. refine an atomic concept (
A
) including refinements of the form > A

4. refine a negated atomic concept (
¬A
)

5. refine a role (
r
)

Steps 1 and 2 result in a concept with greater length (for this reason we excluded
> A from step 2). Step 3 to 5 result in a concept with the same length. This
proves the claim made in the first sentence.

The second claim follows from the fact that there is just a finite number of
atomic concepts and roles (NC , NR are finite) and there are only finitely many
occurrences of an atomic concept within any concept. Hence, there are no in-
finite refinement chains using only steps 3 to 5. Thus, after a finite number of
refinements, step 1 or 2 is used, which produces a longer concept. �

Proposition 4.10 (Computability up to Length n)
For any concept C in negation normal form and any natural number n, the
set {D | D ∈ ρcl(C), |D| ≤ n} can be computed in finite time.

Proof Due to Lemma 4.9, we know that for any concept D in the set, there
exists an m such that |D| > |C| with D ∈ ρm(C). Obviously, a concept has only
finitely many refinements up to a fixed length. If we consider all refinement chains
of a concept C by ρ up to length n as a tree, then this tree is finite (there are
only finitely many concepts of length ≤ n and any such concept can be reached
by a finite refinement chain). The set {D | D ∈ ρcl(C), |D| ≤ n} is a subset of the
nodes of this tree. Hence, it can be computed in finite time. �

71

4 Designing Refinement Operators

syntax construct

r abstract role

b boolean concrete role

d double concrete role

≤ n r.C max. cardinality restriction

≥ n r.C min. cardinality restriction

b = true exists boolean true value restriction

b = false exists boolean false value restriction

d ≤ v exists double max. restriction (v ∈ R)

d ≥ v exists double min. restriction (v ∈ R)

syntax semantics

r rI ⊆ ∆I ×∆I

b bI ⊆ ∆I × {false, true}
d dI ⊆ ∆I ×R
≤ n r.C (≤ n r.C)I = {a | card{b | (a, b) ∈ rI and b ∈

CI} ≤ n}
≥ n r.C (≥ n r.C)I = {a | card{b | (a, b) ∈ rI and b ∈

CI} ≥ n}
b = true (b = true)I = {a | (a, true) ∈ bI}
b = false (b = false)I = {a | (a, true) ∈ bI}
d ≤ v (d ≤ v)I = {a | ∃v′.(a, v′) ∈ dI and v′ ≤ v}
d ≥ v (d ≥ v)I = {a | ∃v′.(a, v′) ∈ dI and v′ ≥ v}

Table 4.1: Overview of syntax and semantics of ρ extensions. See Table 2.1 for
SHOIN syntax and semantics. card{. . . } denotes set cardinality.

Due to Proposition 4.10 we can use ρcl in a learning algorithm. For computing
ρcl up to length n, it is sufficient to apply the operator until a non-equivalent
concept is reached. By a straightforward analysis of the refinement steps, one can
show that in the worst case after O(|NC | · |NR| · |C|) steps a refinement of greater
length will be reached, which bounds the complexity of computing the closure.

4.1.4 Cardinality Restrictions and Concrete Role Support

This section describes an extension of the presented refinement operator with
cardinality restrictions and support for boolean and double concrete roles (called
data properties in OWL). Syntax and semantics of those constructs can be found in
Table 4.1. They can be used to construct concepts such as Personuheight≥1.85
(persons taller than 1.85), Student u ≥3 hasCar.> (students with more than 3
cars), Patient u pregnancyTest = true (patients with positive pregnancy test).

72

4.1 A Complete OWL Refinement Operator

They are described as extensions here, because we wanted to keep the presentation
of the refinement operator brief. Furthermore, the operator becomes incomplete
if those extensions are included. For instance, when enabling double concrete role
support, Person can be refined to Person u height≥x, where x is one of finitely
many values determined by analysing the knowledge base (described below). Since
the set of real numbers is infinite, this means we cannot – and of course do not
want to – reach all concepts of the form Person u height≥x. Thus, the operator
is not complete.

To support the constructs listed in Table 4.1, the refinement operator was ex-
tended as follows:

Analogously to the already introduced sets NC , NR, and NI in Section 2.1.3,
we introduce the following notions: The set NCR stands for the set of all concrete
roles, the set NBCR stands for the set of all boolean concrete roles, and the set
NDCR stands for the set of all double concrete roles.

The sets mgb for boolean concrete roles and mgd for double concrete roles are
defined analogously to mgr (see Section 4.1.1).

Let valuesd (d ∈ NDCR) be a list containing the following double numbers in
ascending order: {t | K |= d(a, t)}. valuesd[i] denotes the i-th element in this list.
#splitsd ∈ N is a user defined parameter of the operator for specifying how many
refinement steps should be used to traverse the values of double concrete roles.
The list splitsd contains the following double numbers in ascending order:

{tj | i =
#valuesd

#splitsd + 1
,

t =
1

2
(valuesd[bi · jc] + valuesd[bi · jc+ 1]) for 1 ≤ j ≤ #splitsd}

Again, we use splitsd[i] to refer to the i-th element in this list. Clearly, one can
employ different strategies for finding sensible splitting values.

mfr = maxa∈NI
|{b | K |= r(a, b)}| is the maximum number of role fillers of a

role r. We use this as upper limit for cardinality restrictions.
The set MB is extended by the following sets:

• {≤ mfr r.> | r ∈ mgrB}

• {b = true | b ∈ mgbB}

• {b = false | b ∈ mgbB}

• {d ≥ v | d ∈ mgdB, v = splitsd[#splitsd]}

• {d ≤ v | d ∈ mgdB, v = splitsd[1]}

Finally, the refinement operator is extended as follows for handling the novel
constructs:

73

4 Designing Refinement Operators

ρB(C) =

≥ 2 r.D if C = ∃r.D
{≥ n+ 1 r.D | n < mfr} if C = ≥ n r.D

∪{≥ n r.E | E ∈ ρB(D)}
{≤ n− 1 r.D | n > 1} if C = ≤ n r.D

∪{≤ n r.E | E ∈ ρB(D)}
∅ if C = (b = true)

∅ if C = (b = false)

{d ≥ w | v = splitsd[i], i > 1, if C = (d ≥ v)

w = splitsd[i− 1]}
{d ≤ w | v = splitsd[i], i < #splitsd, if C = (d ≤ v)

w = splitsd[i+ 1]}

Intuitively, the modifications have the following effects:

boolean concrete roles: Including boolean concrete roles is straightforward. Oc-
currences of > can be refined to e.g. pregnancyTest = true and those con-
cepts cannot be further refined.

double concrete roles: Incorporating double concrete roles is slightly more in-
volved. An example refinement chain is > height ≥ 1.97 height ≥
1.92. The operator starts with a very high value of a concrete role (height
in this case) when the operator ≥ is introduced and then allows this value
to be reduced in further refinement steps. The approach employed in the
operator is to collect all values of the role in an ordered list and then defin-
ing appropriate split values, where the number of splits is configurable. The
underlying idea is to avoid too small specialisation steps of the refinement op-
erator. For instance, in a knowledge base containing 10000 different heights
of buildings, it is usually not desirable to traverse the height values one by
one. Also note that only the order of values is important. This allows learn-
ing algorithms to work reasonably well even if the values differ by order of
magnitudes, e.g. in case heights of persons and buildings are included in the
background knowledge base. In general, the integration of numerical infor-
mation in inductive systems is challenging (see e.g. [Esposito et al., 2001]
which presents a more general framework for the inclusion of numerical data
and an approach for determining cut-off points in the context of ILP).

cardinality restrictions: An example of a refinement chain involving cardinality
restrictions is > ∃r.> ≥ 2 r.> ≥ 3 r.>. Minimum cardinality
restrictions are introduced as refinements of existential restrictions. The
operator allows to refine the cardinality up to the maximum number of role
fillers of an object, which was determined beforehand. To improve efficiency,
a manual cardinality limit can be set.

74

4.2 An Ideal EL Refinement Operator

The described extensions were used in the carcinogenesis benchmark (Sec-
tion 7.2.2). They extend the expressiveness of the target language close to those
of OWL class expressions.

4.1.5 Optimisations

In this section improvements of ρ and ρcl will be presented.

Using ∃r.(C tD) ≡ ∃r.C t ∃r.D and ∀r.(C uD) ≡ ∀r.C u ∀r.D:

The equivalences ∃r.(C t D) ≡ ∃r.C t ∃r.D and ∀r.(C u D) ≡ ∀r.C u ∀r.D can
be used to modify ρ without losing weak completeness.

Disjunctions in ρ are only introduced in refinements of the top concept. The
only existential value restrictions in these disjunctions are of the form ∃r.> for
r ∈ NR. The equivalence ∃r.(CtD) ≡ ∃r.Ct∃r.D says that it is not necessary to
allow several disjuncts of the form ∃r.> for a fixed role r, because we can always
reach an equivalent concept by only introducing it once. Therefore, we can restrict
ρ to produce ∃r.> only at most once per role as element of the disjunction in the
refinement of the top concept, without losing completeness.
ρ allows to refine a concept C by extending it conjunctively. If C is of the form
∀r.D or of the form C1 u · · · u ∀r.D u · · · u Cn, then we can restrict ρ to disallow
adding an element of the form ∀r.E (E is an arbitrary ALC concept). Again, the
resulting operator is still complete.

Similar checks can be done in the refinement steps which refine roles. By using
the equalities ∃r.(CtD) ≡ ∃r.Ct∃r.D and ∀r.(CuD) ≡ ∀r.Cu∀r.D as described,
we have reduced the number of possible refinements, but preserved completeness.

Configurable Target Language:

One of the factors determining whether a learning algorithm will be successful
for a given task is whether its target language is suitable. ρ can be configured to
some extent in this respect by adapting the used refinement operator. In partic-
ular, the DL-Learner implementation allows to ignore a specified set of concepts
and roles (or conversely use only a specified set of concepts and roles) when trying
to solve a problem. It can also be configured to use or ignore the ∃ and ∀ concept
constructors, negation, cardinality restrictions, double concrete roles, boolean con-
crete roles. These options can be used to incorporate additional knowledge about
a problem in the learning algorithm to narrow the search space. Note, that all
experiments reported in Section 7 were run without such restrictions.

4.2 An Ideal EL Refinement Operator

We developed a second operator to cover the successful EL family of description
languages and close a gap in the theoretical analysis in Chapter 3. EL is a light-

75

4 Designing Refinement Operators

Concept constructor Syntax Semantics

Top > ∆I

Concept name A AI

Conjunction C uD CI ∩DI

Existential restriction ∃r.C {x ∈ ∆I | there is y ∈ CI with (x, y) ∈ rI}

Table 4.2: EL syntax and semantics.

Name Syntax Restriction on I
Concept inclusion A v B AI ⊆ BI

Role inclusion r v s rI ⊆ sI

Disjointness A uB ≡ ⊥ AI ∩BI = ∅
Domain domain(r) = A x ∈ AI for all (x, y) ∈ rI

Range range(r) = A y ∈ AI for all (x, y) ∈ rI

Table 4.3: EL Knowledge base axioms.

weight DL, but despite its limited expressive power it has proven to be of practical
use in many real-world large-scale applications. For example, the Systematized
Nomenclature of Medicine Clinical Terms (Snomed CT) [Bodenreider et al., 2007]
and the Gene Ontology [The Gene Ontology Consortium, 2000] are based on
EL. Since standard reasoning in EL is polynomial, it is suitable for large ontolo-
gies. It should furthermore be mentioned that EL++, an extension of EL, is one
of three profiles in the new standard ontology language OWL 2.

The operator defined here is quite different, compared to the previously intro-
duced operator ρ as well as other DL operators, in that concepts are viewed as
tree structures. Its main advantage is its ideality, which allows to define simple
and efficient learning algorithms.

Table 4.2 summarizes syntax and semantics of EL. For the purpose of defin-
ing an EL refinement operator, we do consider inferred knowledge bases as de-
fined in Table 4.3. This is analogous to the OWL refinement operator, where
we also assumed that those structures (subsumption hierarchy, disjoint concepts,
domain/range of roles) are inferred from the background knowledge. We will later
show that the operator is ideal with respect to knowledge bases containing the
mentioned axioms. Please note that for showing ideality of a refinement operator,
it would be sufficient to consider an empty knowledge base, but we explicitly use
more background knowledge.

Given finite sets of concept names A,B ⊆ NC , we write A v B iff for every
B ∈ B there is some A ∈ A such that A v B. We sometimes abuse notation and

76

4.2 An Ideal EL Refinement Operator

write A v B instead of A v {B}. We call A ⊆ NC reduced if there does not exist
B ⊆ NC with |B| < |A| and A ≡ B.

4.2.1 EL Trees and Simulation Relations

An important observation is that EL concepts can be viewed as directed labeled
trees, see e.g. [Baader et al., 1999]. This allows for deciding subsumption be-
tween concepts in terms of the existence of a simulation relation between the
nodes of their corresponding trees. Moreover, the graph approach to EL con-
cepts allows for a canonical representation of EL concepts as minimal EL trees.
The latter generalises similar approaches found in the literature, namely “reduced
EL concept terms” [Küsters, 2001] and “minimal XPath tree pattern queries”
[Ramanan, 2002]. Some proofs are omitted in this section, since they are mostly
a straight-forward generalisation of the proofs found in [Küsters, 2001]. We refer
to [Lehmann and Haase, 2009a] for details.

An EL graph is a directed labeled graph G = (V,E, `), where V is the finite set
of nodes, E ⊆ V ×NR × V is the set of edges, and ` : V → P(NC) is the labeling
function. We define V (G) := V , E(G) := E, `(G) := ` and |G| := |V | + |E|. For
an edge (v, r, w) ∈ E, we call w an (r-)successor of v, and v an (r-)predecessor of
w. Given a node v ∈ V , a labelling function ` and L ⊆ NC , we define `[v 7→ L] as
`[v 7→ L](v) := L and `[v 7→ L](w) := `(w) for all w 6= v. Given G and v ∈ V (G),
we define G[v 7→ L] := (V (G), E(G), `(G)[v 7→ L]). We say v1

r1−→ · · · rn−→ vn+1 is a
path of length n from v1 to vn+1 in G iff (vi, ri, vi+1) ∈ E for 1 ≤ i ≤ n. A graph
G contains a cycle iff there is a path v

r1−→ · · · rn−→ v in G.

An EL concept is represented by an EL concept tree, which is a connected finite
EL graph t that does not contain any cycle, has a distinguished node called the
root of t that has no predecessor, and every other node has exactly one predecessor
along exactly one edge. The set of EL concept trees is denoted by T . In the follow-
ing, we call an EL concept tree just a tree. Figure 4.2 illustrates two examples of
such trees. Given a tree t, we denote by root(t) its root. The tree t corresponding
to a concept C is defined by induction on n = rdepth(C). For n = 0, t consists of
a single node that is labelled with all concepts names occurring in C. For n > 0,
the root of t is labelled with all concept names occurring on the top-level of C.
Furthermore, for each existential restriction ∃r.D on the top-level of C, it has
an r-labelled edge to the root of a subtree of t′ which corresponds to D. As an
example, the tree t corresponding to A1 u ∃r.A2 is t = ({v1, v2}, {(v1, r, v2)}, `)
where ` maps v1 to {A1} and v2 to {A2}. By t> we denote the tree corresponding
to >. Obviously, the transformation from a concept to a tree can be performed in
linear time w.r.t. the size of the concept. Similarly, any tree has a corresponding
concept1, and the transformation can be performed in linear time, too.

Let t, t′ be trees, v ∈ V (t) and assume w.l.o.g. that V (t) ∩ V (t′) = ∅. Denote

1Strictly speaking, t has a set of corresponding concepts, which are all equivalent up to com-
mutativity.

77

4 Designing Refinement Operators

by t[v ← (r, t′)] the tree obtained from plugging t′ via an r-edge into the node
v of t, i.e. the tree (V (t) ∪ V (t′), E(t) ∪ E(t′) ∪ {(v, r, root(t′))}, ` ∪ `′), where
` ∪ `′ is the obvious join of the labeling functions of t and t′. By t(v) we denote
the subtree at v. Let C be a concept and t the tree corresponding to C. We
define depth(t) := rdepth(C), and for v ∈ V (t), level(v) := depth(t)− depth(t(v)).
Moreover, onlevel(t, n) is the set of nodes {v | level(v) = n} that appear on level
n in tree t.

Definition 4.11 (EL Simulation)
Let t = (V,E, `), t′ = (V ′, E ′, `′) be trees. A simulation relation from t′ to t is a
binary relation S ⊆ V × V ′ such that if (v, v′) ∈ S then the following simulation
conditions are fulfilled:

(SC1) `(v) v `′(v′)

(SC2) for every (v′, r, w′) ∈ E ′ there is (v, r, w) ∈ E1 such that r v r′ and
(w,w′) ∈ S �

We write t � t′ if there exists a simulation relation S from t′ to t such that
(root(t), root(t′)) ∈ S. It is easily checked that (T,�) forms a quasi ordered
space, and we derive the relations ' and ≺ accordingly. A simulation S from t′

to t is maximal if for every simulation S ′ from t′ to t, S ′ ⊆ S. It is not hard to
check that S is unique. Using a dynamic programming approach, the maximal
simulation can be computed in O(|t| · |t′|). Figure 4.2 shows an example of a
simulation.

{A}

∅

∅

r

s

{A′}

∅ {B}

∅ ∅

r r′

t s

Figure 4.2: A (non-maximal) simulation relation w.r.t. the knowledge base K =
{A′ v A, r′ v r} from the tree corresponding to A u ∃r.∃s.> to the
tree corresponding to A′ u ∃r.∃t.> u ∃r′.(B u ∃s.>).

Definition 4.12 (EL Tree)
Let C be a concept. The tree t corresponding to C is defined by induction on
n = rdepth(C). For n = 0, we have that C = A1u. . .uAk and define t := ({v}, ∅, `)
with `(v) := {A1, . . . , Ak}. For n > 0, C = A1 u . . .uAk u ∃r1.D1 u . . .u ∃rm.Dm

with rdepth(Di) < n, 1 ≤ i ≤ m. By the induction hypothesis, for each Di

there exists a tree ti = (Vi, Ei, `i), 1 ≤ i ≤ m. Without loss of generality assume
Vi ∩ Vj = ∅, 1 ≤ i 6= j ≤ m. Define t := (V,E, `) where

78

4.2 An Ideal EL Refinement Operator

• V := {v} ∪
⋃

1≤i≤m Vi

• E := {(v, ri, root(ti)) | 1 ≤ i ≤ m} ∪
⋃

1≤i≤mEi

•

`(w) :=

{
{A1, . . . , Ak} if w = v

`i(w) if w ∈ Vi
�

Definition 4.13 (EL Graph of an Interpretation)
Let I be an interpretation. The EL graph GI = (VI , EI , `I) corresponding to I
is defined as follows:

• x ∈ VI iff x ∈ ∆I

• (x, r, y) ∈ EI iff (x, y) ∈ rI

• A ∈ `I(x) iff x ∈ AI �

This definition also allows us to view EL graphs and in particular EL trees as
interpretations.

Lemma 4.14 (Simulations and Interpretations)
Let C be an EL concept with the corresponding EL tree t = (V,E, `) with root
v, and let I be an interpretation with x ∈ ∆I and the corresponding EL graph
G = (VI , EI , `I). Then x ∈ CI iff there exists a simulation S from v to x.

Proof The proof is by induction on d = rdepth(C) in both directions.
(⇒) For the induction base case, let d = 0 and x ∈ (A1 u . . . u Ak)I . Define
S := {(x, v)}, which obviously is a simulation. Now for the induction step, let
x ∈ (A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm)I . There are (x, vi) ∈ rIi such that
vi ∈ CIi , (xC , ri, vi) ∈ EC and by the induction hypothesis there exist simulations
Si from vi to xi for 1 ≤ i ≤ m. Hence, S :=

⋃
1≤i≤m Si ∪ {(x, v)} is a simulation

from v to x.
(⇐) For the induction base case, let d = 0 and C = A1 u . . . u Ak. For every

A ∈ `(v) we have A′ ∈ `I(x) with A′ v A, so clearly x ∈ CI . For the induction
step, let C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm and S be a simulation from
v to x. There are (v, ri, vi) ∈ E and by the simulation conditions, there are also
(x, xi) ∈ rIi and (xi, vi) ∈ S for 1 ≤ i ≤ m. Now S is a simulation from each vi to
xi, and hence by the induction hypothesis xi ∈ CIi . Consequently, x ∈ CI . �

79

4 Designing Refinement Operators

Lemma 4.15 (Uniqueness of Maximal Simulations)
Given trees t1, t2, the maximal simulation from t2 to t1 is unique.

Proof Suppose there are maximal simulations S1, S2 from t2 to t1 with S1 6⊆ S2

and S2 6⊆ S1. Observe that S := S1 ∪ S2 is a simulation from t2 to t1, S1 ⊂ S and
S2 ⊂ S, which contradicts to the maximality of S1 and S2. �

The following lemma is proven by induction on rdepth(D). It allows us to decide
subsumption between concepts C,D in terms of the existence of a simulation
between their corresponding trees t, t′, and moreover to interchange concepts and
their corresponding trees. For that reason, the EL refinement operator presented
in the next section will work on trees rather than concepts.

Lemma 4.16 (Subsumption and Simulations)
Let C,D be concept with their corresponding trees t, t′. Then C v D iff t � t′.

Proof In the following let xC = root(t) and xD = root(t′).
(⇒) We show the contrapositive. Assume there does not exist a simulation from

xD to xC . Now the identity on the vertices of tC is a simulation from xC to xC and
hence xC ∈ CI , where I is the interpretation corresponding to tC . Since there
does not exist a simulation from xD to xC , the previous lemma gives xC /∈ DI .

(⇐) Let S be a simulation from xD to xC , and let I be an interpretation with
y ∈ CI . By the previous lemma, there exists a simulation S ′ and the composition
S ◦ S ′ yields a simulation from xD to y. Hence y ∈ DI . �

The proof of Lemma 4.16 gives rise to Algorithm 1. Given EL trees tC and
tD, starting from the leaves of tD, it computes bottom-up the maximal simulation
from tD to tC in O(|tC | · |tD|).

Lemma 4.17 (Computation of Maximal Simulation)
Given EL trees tC and tD with roots xC and xD, Algorithm 1 computes the
maximal simulation S from tD to tC.

Proof We prove the statement by induction on n = depth(tD). The induction
base case follows obviously. For the induction step, let Sn be the relation obtained
in the algorithm after iterating the outermost for-loop n times and let S be the

80

4.2 An Ideal EL Refinement Operator

Algorithm 1: Computing the maximal simulation

Input: EL trees tC , tD
S := ∅;1

for i = 0; i ≤ depth(tD); i := i+ 1 do2

forall w ∈ VD with depth(w) = i do3

forall v ∈ VC do4

if (SC1) and (SC2) hold for (v,w) then5

S := S ∪ {(v, w)}6

returnS7

relation obtained from the algorithm. It follows from the induction hypothesis
that Sn is the maximal simulation from the subtree of every successor node of xD
to t1. Hence for the maximal simulation S ′ from tD to tC , S ′\(V (tC)×{xD}) ⊆ Sn.
Now assume (xC , xD) ∈ S ′, but (xC , xD) /∈ S. Then for every r2-successor yD of
xD, there exist an r1-successor yC of xC with r1 v r2, and (yC , yD) ∈ S ′. However,
(yC , yD) ∈ Sn ⊆ S and consequently the pair (xC , xD) is also added in the last
run of the outermost for-loop to S. Hence, S is maximal. �

We can now introduce minimal EL trees which serve as a canonical representa-
tion of equivalent EL concepts.

Definition 4.18 (Minimal Trees)
Let t = (V,E, `) be a tree. We call t label reduced if for all v ∈ V , `(v) is
reduced, i.e. no concept name can be removed from the label without result-
ing in an inequivalent tree. Moreover, t contains redundant subtrees if there are
(v, r, w), (v, r′, w′) ∈ E with w 6= w′, r v r′ and t(w) � t(w′). We call t minimal
if t is label reduced and does not contain redundant subtrees. �

It follows that the minimality of a tree t can be checked inO(|t|2) by computing the
maximal simulation from t to itself and then checking for each v ∈ V (t) whether
v is label reduced and, using S, whether v is not the root of redundant subtrees.
The set of minimal EL trees is denoted by Tmin .

We close this section with two small lemmas that will be helpful in the next
section.

Lemma 4.19 (Finite Number of EL Trees up to some Depth)
Let Tn be the set of minimal EL trees up to depth n ≥ 0. Then |Tn| is finite.

Proof The proof is by induction on n = 0. We have T0 = 2|NC |. For the
induction step, assume Tn+1 is infinite. Hence, there is a tree t ∈ Tn+1 whose

81

4 Designing Refinement Operators

root v has more than |NR| · |Tn| outgoing edges. Consequently, there are dis-
tinct (v, r, w), (v, r, w′) ∈ E such that t(w) ' t(w′), which contradicts to t being
minimal. �

Lemma 4.20 (No Simulation Between Trees of Different Depth)
Let t, t′ be EL trees with depth(t) < depth(t′). Then t 6� t′.

Proof Let root(t) = v, depth(t) = n and v
r1−→ . . .

rn−→ vn+1 be a path of length
n in t. Since t′ is tree, i.e. an acyclic graph of depth m < n, there cannot be
w ∈ V (t′) and a relation S ⊆ V (t′)×V (t) from t to t′ such that (w, vm) and (SC2)
from Definition 4.11 holds. �

4.2.2 Formal Description of the EL Refinement Operator

In this section, we define an ideal refinement operator. In the first part, we are
more concerned with a description of the operator on an abstract level, which
allows us to prove its properties. The next part addresses optimisations of the
operator that improve its performance in practice.

Definition of the Operator

For simplicity, we subsequently assume the knowledge base to only contain concept
and role inclusion axioms. We will sketch in the next section how the remaining
restriction axioms can be incorporated in the refinement operator.

The refinement operator ψ, to be defined below, is a function that maps a tree
t ∈ Tmin to a subset of Tmin . It can be divided into the three base operations label
extension, label refinement and edge refinement. Building up on that, the complex
operation attach subtree is defined. Each such operation takes a tree t ∈ Tmin and
a node v ∈ V (t) as input and returns a set of trees that are refined at node v.
Figure 4.3 provides an example.

The base operations are as follows: the operation e`(t, v) returns the set of
those minimal trees that are derived from t by extending the label of v. Likewise,
r`(t, v) is the set of minimal trees obtained from t by refining the label of v. Last,
re(t, v) is obtained from t by refining one of the outgoing edges at v. Formally,

• e`(t, v): t′ ∈ e`(t, v) iff t′ ∈ Tmin and t′ = t[v 7→ (`(v) ∪ {A})], where
A ∈ max{B ∈ NC | `(v) 6v B}

• r`(t, v): t ∈ r`(t, v) iff t′ ∈ Tmin and t′ = t[v 7→ (`(v) ∪ {A}) \ {B})], where
B ∈ `(v), A ∈ max{A′ ∈ NC | A′ @ B} and there is no B′ ∈ `(v) with
B 6= B′ and A @ B

82

4.2 An Ideal EL Refinement Operator

{A}

∅

∅

r

s

{A}

{B}

∅

r

s

{A}

{B}

∅

r′

s

{A′}

{B}

∅

r′

s

{A′}

{B} ∅

∅ ∅

r′ r

s t

Figure 4.3: The tree on the left is refined stepwise to the tree on the right, where
we assume a knowledge base K = {A′ v A, r′ v r}. The operator
performs four different kinds of operations (from left to right): 1. label
extension (B added), 2. edge refinement (r replaced by r′), 3. label
refinement (A replaced by A′), 4. attaching a subtree (∃r.∃t.> added).

• re(t, v): t′ ∈ re(t, v) iff t′ ∈ Tmin and t′ = (V,E ′, `), where E ′ = E \
{(v, r, w)} ∪ {(v, r′, w)} for some (v, r, w) ∈ E and r′ ∈ sh↓(r)

Algorithm 2: Computation of the set as(t, v)

T := ∅; M := {(t>, NR)};1

whileM 6= ∅ do2

choose and remove (t′,R) ∈M;3

R′ := max(R); R′′ := ∅;4

while R′ 6= ∅ do5

choose and remove r ∈ R′;6

t′′ := t[v ← (r, t′)]; w := root(t′); ;7

if t′′ is minimal then8

T := T ∪ {t′′};9

else10

forall (v, r′, w′) ∈ E(t′′) with w 6= w′ and r v r′ do11

if t′′(w) � t′′(w′) then12

nextwhile;13

R′ := R′ ∪ (sh↓(r) ∩ R); R′′ := R′′ ∪ {r};14

M :=M∪ {(t∗,R′′) | t∗ ∈ ρ(t′),R′′ 6= ∅};15

return T ;16

The crucial part of the refinement operator is the attach subtree operation,
which is defined by Algorithm 2. The set as(t, v) consists of minimal trees obtained
from t that have an extra subtree attached to v. It recursively calls the refinement
operator ψ and we therefore give its definition before we explain as(t, v) in more
detail.

83

4 Designing Refinement Operators

Definition 4.21 (EL Refinement Operator ψ)
The refinement operator ψ : Tmin → P(Tmin) is defined as:

ψ(t) :=
⋃

v∈V (t)

(e`(t, v) ∪ r`(t, v) ∪ re(t, v) ∪ as(t, v))

�

For t ∈ Tmin and v ∈ V , Algorithm 2 keeps a set of output trees T and a
set M of candidates which are tuples consisting of a minimal EL tree and a set
of role names. Within the first while loop, an element (t′,R) is removed from
M. The set R′ is initialized to contain the greatest elements of R, and R′′ is
initially empty and will later contain role names that need further inspection. In
the second while loop, the algorithm iterates over all role names r in R′. First,
the tree t′′ is constructed from t by attaching the subtree (v, r, w) to v, where w is
the root of t′. It is then checked whether t′′ is minimal. If this is the case, t′′ is a
refinement of t and is added to T . Otherwise there are two reasons why t′′ is not
minimal: Either the newly attached subtree is subsumed by some other subtree of
t, or the newly attached subtree subsumes some other subtree of t. The latter case
is checked in Line 11, and if it applies the algorithm skips the loop. This prevents
the algorithm from running into an infinite loop, since we would not be able to
refine t′ until t′′ becomes a minimal tree. Otherwise in the former case, we proceed
in two directions. First, sh↓(r) is added to R′, so it can be checked in the next
round of the second while loop whether t′ attached via some r′ ∈ sh↓(r) ∩R to v
yields a refinement. Second, we add r to R′′, which can be seen as “remembering”
that r did not yield a refinement in connection with t′. Finally, once R′ is empty,
in Line 19 we add all tupels (t∗,R′′) to M, where t∗ is obtained by recursively
calling ψ on t′.

Example 4.22 (Application of ψ)
Let K be the following knowledge base:

NC = {Human, Animal, Bird, Cat}
NR = {has, has child, has pet}
K = {has pet v has, has child v has, Bird v Animal, Cat v Animal}

Figure 4.4 depicts the set of all trees in ψ(Human u ∃has.Animal) w.r.t. K′. �

Proposition 4.23 (Finiteness, Properness, Weak Completeness of ψ)
ψ is a is a finite, proper and weakly complete downward refinement operator
on (Tmin ,�).

84

4.2 An Ideal EL Refinement Operator

{Human,Animal} {Human} {Human} {Human} {Human}

{Animal} {Animal,Human} {Animal} ∅ {Animal} ∅ {Animal}

{Human} {Human} {Human} {Human} {Human} {Human}

{Animal} {Bird} {Cat} {Human}{Animal}
{Animal}

∅

∅

∅

{Animal}

has has has child has pet has has child has

has pet has has has has has

has

has

has

has

Figure 4.4: The set ψ(Humanu∃has.Animal) of minimal trees w.r.t. the knowledge
base K′ from Example 4.22.

Proof In the following, let t ∈ Tmin and v ∈ V (t).
First, it is easily seen that ψ is a downward refinement operator. Every opera-

tion of ψ adds a label or a subtree to a node v, or replaces a label or edge-label
by a refined label or edge respectively. Hence, t′ � t for all t′ ∈ ψ(t).

Regarding finiteness of ψ, Lemma 4.19 guarantees that there is only a finite
number of minimal EL trees up to a fixed depth. It then follows from Lemma
4.20 that for a given tree t, ψ(t) only consists of trees of depth at most depth(t)+1.
Hence, ψ(t) is finite.

In order to prove properness of ψ, it is sufficient to show t 6� t′ for t′ ∈ ψ(t).
To the contrary, assume t � t′ and that t has been refined at v. Let S be a
simulation from t′ to t. Since v has been refined, it follows that (v, v) 6∈ S. We
have that S is a simulation, so there must be some v′ ∈ V (t) with level(v′) =
level(v) such that (v′, v) ∈ S. This implies that there is a simulation S ′ on t′

with {(v′, v), (v, v)} ⊆ S ′. It follows that t′ contains a redundant subtree at the
predecessor of v, contradicting to the minimality of t′.

Regarding weakly completeness, let depth(t) ≤ n. We show that t is reachable
from t> by nested induction on n and m := |{(root(t), r, w) ∈ E(t)}|. For the
induction base case n = 0,m = 0, t is just a single node labeled with some
concept names. It is easily seen that by repeatedly applying e`(t, v) and r`(t, v)
to this node we eventually reach t. For the induction step, let n > 0,m > 0.
Hence, the root of t is has m successor nodes w1, . . . , wm attached along edges
r1, . . . , rm to t. By the induction hypothesis, the tree tm−1, which is obtained
from t by removing the subtree t(w1) from t, is reachable from t>. Also, there is
a refinement chain θ from t> to t(w1) such that an intermediate tree t′w1

occurs in
θ and t′ = tm−1[root(t) ← (r′1, t

′
w1

)] ∈ as(tm−1, root(t)) for some r′1 with r1 v r′1.
Hence, we can first reach t′ from t> and then, by applying the remaining refinement
steps from θ to t′ and refining r′1 to r1, eventually reach t. �

Still, ψ is not ideal, since it is not complete. It is however easy to derive a

85

4 Designing Refinement Operators

complete operator ψ∗ from ψ:

ψ∗(t) := max{t′ | t> ∗ψ t′, t′ ≺ t and

depth(t′) ≤ depth(t) + 1}.

This construction is needed, because we would for example not be able to reach
∃r.(A1 u A2) starting from ∃r.A1 u ∃r.A2 with ψ.

Theorem 4.24 (Ideality of ψ∗)
The EL downward refinement operator ψ∗ is ideal.

Previously, we have shown that for languages other than EL complete and non-
redundant refinement operators do not exist (under a mild assumption). The same
result carries over to our setting:

Proposition 4.25 (No Redundant and Complete EL Operators)
Let ψ : Tmin → P(Tmin) be a complete refinement operator. Then ψ is redun-
dant.

Proof We assume K = ∅ and NC contains A1 and A2. Since ψ is complete and its
refinements are minimal, we have > ∗ A1. Similarly, > ∗ A1, A1 ∗ A1 uA2,
and A2 ∗ A1uA2. We have A1 6v A2 and A2 6v A1, which means that A1 6 ∗ A2

and A2 6 ∗ A1. Hence, A1 u A2 can be reached from > via a refinement chain
going through A1 and a different refinement chain not going through A1, i.e. ψ is
redundant. �

Optimisations

We used two different kinds of optimisations: The first is concerned with the per-
formance of minimality tests and the second reduces the number of trees returned
by ψ by incorporating more background knowledge.

Recall from Section 4.2.1 that checking for minimality of a tree t involves com-
puting a maximal simulation S on V (t) and is in O(|t|2). In order to avoid
expensive re-computations of S after each refinement step, the data-structure of t
is extended such that sets C←1 (v), C→1 (v), C←2 (v) and C→2 (v) are attached to every
node v ∈ V (t). Here, the set C←1 (v) contains those nodes w such that (SC1) holds
for (v, w) according to Definition 4.11. Likewise, C→2 (v) is the set of those nodes
w such that (SC2) holds for (w, v), and C←1 (v) and C→2 (w) are defined accord-
ingly. When checking for minimality, it is moreover sufficient that each such set

86

4.2 An Ideal EL Refinement Operator

is restricted to only consist of nodes from onlevel(v) excluding v itself. This frag-
mentation of S allows us to perform local updates instead of re-computation of S
after an operation is performed on v. For example, when the label of v is extended,
we only need to recompute C←1 (v), update C→1 (w) for every w ∈ C←1 (v), and then
repeatedly update C→2 (v′) and C←2 (v′) for every predecessor node v′ of an updated
node until we reach the root of t. For each of the operations (refining/extending
label, refining/adding edge) performed by ψ, we developed a local simulation up-
date algorithm. This method saves a considerable amount of computation, since
the number of nodes affected by an operation is empirically relatively small.

In order to keep the number of refinements |ψ(t)| small, we use role domains and
ranges as well as disjoint concepts inferred from K. This is similar to what we did
for ρ in Section 4.1. We therefore refrain from spelling out the formal details. The
domain restriction axioms can be used to reduce the set of role names considered
when adding a subtree or refining an edge: For instance, let w be a node, (v, r, w)
the edge pointing to w, and range(r) = A. When adding an edge (w, s, u), we
verify that range(r) u domain(s) is satisfiable. This ensures that only compatible
roles are combined. In ρ, we achieved this by restricting concepts of the form
∃r.> to those where r ∈ mgrB (see page 61ff). Similar optimisations can be
applied to edge refinement. In as(t, v), we furthermore use range restrictions to
automatically label a new node with the corresponding role range. For example,
if the edge has label r and range(r) = A, then the new node w is assigned label
`(w) = {A} (instead of `(w) = ∅).

We addressed the optimisation of extending node labels in the implementation
of the function e`. Let A be a concept name for which we want to know whether
or not we can add it to `(v). We first check A v `(v). If yes, we discard A since
we could reach an equivalent concept by refining a concept in `(v), i.e. we perform
redundancy reduction. Let (u, r, v) be the edge pointing to v and range(r) = B.
We verify that AuB is satisfiable and discard A otherwise. Additionally as before,
we test whether `(v) v A. If yes, then A is also discarded, because adding it would
not result in a proper refinement. Performing the last step in a top down manner,
i.e. start with the most general concepts A in the class hierarchy, ensures that
we compute the maximum of eligible concepts, which can be added to `(v). In
summary, we make sure that the tree we obtain is label reduced, and perform
an on-the-fly test for its satisfiability. Applying similar ideas to the case of label
refinement is straightforward.

In practice, the techniques briefly described in this section narrow the set of
trees returned in a refinement step significantly by ruling out concepts, which are
unsatisfiable w.r.t. K or which can also be reached via other refinement chains.
This is is illustrated by the following example.

Example 4.26 (Application of Extended Operator ψ)
Let K be as in Example 4.22 and define K′ := K ∪ {domain(has child) =
Human, range(has child) = Human, domain(has pet) = Human, range(has pet) =
Animal, HumanuAnimal ≡ ⊥}. By incorporating the additional axioms, ψ(Humanu

87

4 Designing Refinement Operators

∃has.Animal) contains less refinements. In Figure 4.22, the trees on the top left
are no refinements with respect to the more expressive knowledge base. For the
first two trees, this is due to the disjointness of Human and Animal. The third tree
is ruled out, since the range of hasChild is incompatible with Animal. The trees
on the top right are modified: ∅ is replaced by Animal and Human, respectively,
due to the ranges of has child and has pet. �

4.2.3 Operator Performance

In order to evaluate the operator, we computed random refinement chains of ψ.
A random refinement chain is obtained by applying ψ to >, choosing one of the
refinements uniformly at random, then applying ψ to this refinement, etc.

Name L
og

ic
al

ax
io

m
s

C
la

ss
es

R
ol

es

ψ
av

.
ti

m
e

(i
n

m
s)

ψ
p

er
re

f.
(i

n
m

s)

R
ea

so
n
in

g
ti

m
e

(%
)

R
efi

n
em

en
ts

(a
v
.

an
d

m
ax

.)

R
ef

.
si

ze
(a

v
.

an
d

m
ax

.)

Genes 42656 26225 4 167.2 0.14 68.4 1161.5 2317 5.0 8

CTON 33203 17033 43 76.2 0.08 5.1 220.2 28761 5.8 24

Galen 4940 2748 413 3.5 0.21 37.1 17.0 346 4.9 16

Process 2578 1537 102 193.6 0.16 27.2 986.5 23012 5.7 22

Transp. 1157 445 89 164.4 0.09 5.9 985.2 22651 5.7 24

Earthr. 931 559 81 407.4 0.17 23.2 1710.3 27163 5.7 19

Tambis 595 395 100 141.6 0.09 1.5 642.4 26685 5.8 23

Table 4.4: Benchmark results on ontologies from the TONES repository. The
results show that ψ works well even on large knowledge bases. The
time needed to compute a refinement is below one millisecond and does
not show large variations.

To asses the performance of the operator, we tested it on real ontologies chosen
from the TONES repository2, including some of the most complex OWL ontolo-
gies. We generated 100 random refinement chains of length 8 and measured the
results. We found experimentally that this allows us to evaluate the refinement
operator on a diverse set of concept trees. The tests were run on an Athlon XP
4200+ (dual core 2.2 GHz) with 4 GB RAM. As a reasoner we used Pellet 1.5.
The benchmarks do not include the time to load the ontology into the reasoner
and classify it.

The results are shown in Table 4.4. The first four columns contain the name and
relevant statistics of the ontology considered. The next column shows the average

2http://owl.cs.manchester.ac.uk/repository/

88

4.2 An Ideal EL Refinement Operator

time the operator needed on each input concept. In the following column this value
is divided by the number of refinements of the input concept. The subsequent
column shows how much time is spend on reasoning during the computation of
refinements. The two last columns contain the number of refinements obtained
and their size. Here, we measure size as the number of nodes in a concept tree
plus the sum of the cardinality of all node labels.

The most interesting insight from Table 4.4 is that despite the different size
and complexity of the ontologies, the time needed to compute a refinement is low
and does not show large variations (between 0.09 and 0.21 ms). This indicates
that the operator scales well to large knowledge bases. It can also be observed
that the number of refinements can be very high in certain cases, which is due to
the large number of classes and properties in many ontologies and the absence of
explicit or implicit disjointness between classes. We want to note that when the
operator is used to learn concepts from instances (standard learning task), one
can use the optimisations in Section 4.2.2 and consider classes without common
instances instead of class disjointness. In this case, the number of refinements of
a given concept will usually be much lower, since no explicit disjointness axioms
are required. In all experiments we also discovered that the time the reasoner
requires differs a lot (from 1.5% to 68.4%). However, since the number of reasoner
requests is finite and the results are cached, this ratio will decrease with more
calls to the refinement operator. Summing up, the results show that efficient ideal
refinement on large ontologies can be achieved in EL, which in turn is promising for
EL concept learning algorithms. In future work, we want to investigate whether
certain extensions of EL may be supported by the operator without losing ideality.

In summary, we have provided an efficient ideal EL refinement operator, thereby
closing a gap in refinement operator research. We have shown that the operator
can be applied to very large ontologies and makes profound use of background
knowledge. In Section 5.2, we will incorporate the ψ refinement operator in the
ELTL learning algorithm.

89

5 Refinement Operator Based OWL
Learning Algorithms

In this chapter, we describe how to construct a learning algorithm given a refine-
ment operator and a learning problem. We will introduce three algorithms with
different strengths: OCEL (OWL Class Expression Learner), ELTL (EL Tree
Learner), and CELOE (Class Expression Learning for Ontology Engineering).
OCEL is the standard learning algorithm using the presented OWL refinement
operator ρ. ELTL is an algorithm optimised for learning EL trees using the EL
refinement operator ψ and CELOE is a variant of OCEL, which contains adaptions
specific for the class learning problem.

A learning algorithm can be constructed as a combination of a refinement oper-
ator, which defines how the search tree can be built, and a search algorithm, which
controls how the tree is traversed. This is illustrated in Figure 5.1. Assuming a
top-down approach is used, an algorithm could start with the top concept, apply
the operator to obtain refinements, e.g. Person, Car, and Building. It can then
evaluate those concepts. Using a heuristic search, the best node is expanded in the
next step. Expanding the node involves applying the operator again, evaluating
all refinements etc. When a termination criterion is satisfied, i.e. a concept in the
search tree is sufficiently good with respect to the learning problem, the algorithm
stops and outputs a solution. All three algorithms in this chapter follow this basic
principle with some deviations, which will be described.

5.1 OCEL (OWL Class Expression Learner)

In Section 4.1, we have designed a complete and proper operator ρcl. Unfortu-
nately, such an operator has to be redundant and infinite by Theorem 3.12. We
will now describe how to deal with these problems and define a learning algorithm.

5.1.1 Redundancy Elimination

Whenever a learning algorithm encounters a node in the search tree, it could check
whether a weakly equal concept already exists in the tree. If yes, then this node
is ignored, i.e. it will not be expanded further and it will not be evaluated. This
removes all redundancies, since every concept exists at most once in the search

90

5.1 OCEL (OWL Class Expression Learner)

Figure 5.1: Illustration of a search tree in a top down refinement approach.

tree.1 We can still reach all concepts, because we have ρcl(C) ' ρcl(D) if C ' D,
i.e. ρcl handles weakly equal concepts in the same way. However, this redundancy
elimination approach is computationally expensive if performed naively. Hence,
we considered it worthwhile to investigate how it can be handled efficiently.

Note, that we consider weak equality instead of equality here, e.g. we have
A1uA2 6= A2uA1, but A1uA2 ' A2uA1. We do this, because having A1uA2 and
A2 uA1 – while not being syntactically equal – can still be considered redundant
and should be avoided. In conjunctions and disjunctions, this raises the problem
that we have to guess which pairs of elements are equal to determine whether
two concepts are weakly equal. One way to solve this problem is to define an
ordering over concepts and require the elements of disjunctions and conjunctions
to be ordered accordingly. This eliminates the guessing step and allows to check
weak equality in linear time. There are different ways to define a linear order �
over concepts. It is also possible to do it a way so that deciding � for two concepts
is polynomial and transforming a concept in negation normal form to � ordered
negation normal form, i.e. elements in conjunctions and disjunctions are ordered
with respect to �, can be done in polynomial time – we omit the straightforward
details. It is thus reasonable to assume that every concept occurring in the search
tree can be transformed to ordered negation normal form with respect to some
linear order over concepts. We can then maintain an ordered set of concepts
occurring in the search tree. Checking weak equality of a concept C with respect
to a search tree containing n concepts will then only require log n comparisons
(binary search), where each comparison needs only linear time. Compared to an
algorithm without redundancy check, this can avoid many concept tests. Each

1More precisely: For each concept there is at most one representative of the equivalence class
of weakly equal concepts in the search tree which has been evaluated.

91

5 Refinement Operator Based OWL Learning Algorithms

concept tests requires potentially expensive instance checks. The complexity of
instance checks is EXPTIME for ALC, NEXPTIME for SHOIN (D) and OWL-
DL, and 2NEXPTIME for SROIQ(D) and OWL 2 DL. Taking this into account,
redundancy elimination can be considered reasonable. Indeed, in our experimental
evaluation, redundancy checks typically require only one percent of the overall
algorithm runtime.

5.1.2 Creating a Full Learning Algorithm

Learning concepts in DLs is a search process. In the OCEL learning algorithm,
the refinement operator ρcl (see page 70) is used for building the search tree,
while the heuristic in Definition 5.1 decides which nodes to expand. As mentioned
in Section 4.1.3, we want to tackle the infinity of the operator by considering
only refinements up to some length n at a given time. We call n the horizontal
expansion of a node in the search tree. It is a node specific upper bound on the
length of child concepts, which can be increased dynamically by the algorithm
during the learning process.

To deal with this, we formally define a node in a search tree to be a triple
(C, n, b), where C is a concept, n ∈ N is the horizontal expansion, and b ∈
{true, false} is a boolean marker for the redundancy of a node.

To define a search heuristic for our learning algorithm, we need some notions
to be able to express what we consider a good node for expansion. Similarly to
existing ILP systems, we use the learning algorithm parameter noise, bounding
the minimum acceptable training set accuracy of the learned definition. (1−noise)
is the lowest accuracy a concept needs to have to be considered a solution of a
learning problem.

The search heuristic selects the node with the highest score in the search tree
at a given time, where the score of a node is defined as follows:

Definition 5.1 (OCEL Score)
Let N = (C, n, b) be a node. We introduce the following notions:

accuracy(C) = 1− up+ cn

|E|
acc gain(N) = accuracy(C)− accuracy(C ′)

where C ′ is the concept in the parent of N

up = |E+ \R(C)| (uncovered positives)

cn = |R(C) ∩ E−| (covered negatives)

If up > bnoise · |E|c, then the node is too weak in this noise setting, i.e. it is not a
solution candidate and will never by expanded. If the node is not too weak, then
its score is defined as follows:

score(N) = accuracy(C) + α · acc gain(N)− β · n (α ≥ 0, β > 0) �

92

5.1 OCEL (OWL Class Expression Learner)

By default, we choose α = 0.5 and β = 0.02. The heuristic uses predictive ac-
curacy as main criterion. Accuracy gain, controlled by α, is incorporated, because
those concepts having lead to an improvement in accuracy are more likely to be
significant refinements towards a solution. As a third criterion, controlled by β,
we bias the search towards shorter concepts and less explored areas of the search
space. Using horizontal expansion instead of concept length as factor makes the
algorithm more flexible in searching less explored areas of the search space and
avoids that it gets stuck on concepts with high accuracy and accuracy gain. The
score function can be defined independently of the core learning algorithm, i.e. we
can easily replace it with a different one. For instance, for some problems one
type of error is more severe than another type, e.g. not detecting cancer is worse
than erroneously detecting cancer. This can be modelled by assigning different
weights to up and cn in Definition 5.1.

We have now introduced all necessary notions to specify the complete learning
algorithm, given in Algorithm 3. checkRed is the redundancy check function and
transform the function to transform a concept to ordered negation normal form
as described in Section 5.1.1.

Algorithm 3: OCEL Learning Algorithm

Input: background knowledge, examples E, noise in [0,1]
ST (search tree) is set to the tree consisting only of the root node1

(>, 0, false)
while ST does not contain a node with q < bnoise · |E|c do2

choose a node N = (C, n, b) with highest score in ST3

expand N up to length n+ 1, i.e. :4

begin5

add all nodes (D,n, checkRed(ST,D)) with D ∈ transform(ρcl(C))6

and |D| = n+ 1 as children of N
evaluate created non-redundant nodes7

change N to (C, n+ 1, b)8

end9

Return found concepts in ST10

As we can see, the learning algorithm performs a top down refinement operator
driven heuristic search. The main difference to other learning algorithms of this
kind is the replacement of a full node expansion by a one step horizontal expansion
and the use of a redundancy check procedure.

Apart from knowledge representation, another difference to many ILP programs
is the search strategy: Often, ILP tools perform a clause by clause set covering
approach to construct a solution stepwise (see also Section 2.2.1). In OCEL, each
concept represents a full solution, which is related to single predicate theory learn-
ing [Bratko, 1999] in ILP. A benefit is that there is no risk in performing possibly
suboptimal choices and it is often possible to learn shorter solutions. However,

93

5 Refinement Operator Based OWL Learning Algorithms

Figure 5.2: The Michalski trains problem: positive examples are on the left, neg-
ative examples are on the right.

it also leads to a higher runtime and memory consumption. To counteract this,
a divide and conquer strategy as extension of Algorithm 3 can be activated in
the DL-Learner implementation of OCEL. It restricts the set of nodes which are
candidates for expansion to a set of fixed size in regular time intervals. By default,
the candidate set is restricted to the 20 most promising nodes each 300 seconds.
Those concepts are selected according to their accuracy with a bias towards short
concepts with high accuracy on positive examples, since those concepts are more
likely to improve in a downward refinement algorithm. We omit the details of this
process for brevity. It can be used as a tradeoff between performance and the risk
to make suboptimal decisions.

Correctness of the algorithm can be shown:

Proposition 5.2 (Correctness)
If a learning problem has a solution in ALC, then Algorithm 3 terminates and
computes a correct solution of the learning problem.

Proof Assume, there is a solution C (which is an ALC concept) of a learning
problem. By the weak completeness of ρcl, we know that there is a concept D with
D ≡ C and D ∈ ρ∗(>), i.e. ρcl allows a refinement chain > D1 D2 . . .
Dn = D. We have already shown in Lemma 4.9 that ρcl does not reduce length,
i.e. all concepts in this chain have at most the length of D. This means that the
score of each node is higher than −|D| where |D| is the length of D. Because β
in the score function is higher than 0, any node with sufficiently high horizontal
expansion has a score lower than −|D|. As a consequence, all nodes in our chain
will eventually be expanded sufficiently often to refine to its successor in the chain
above, i.e. eventually D will be reached unless the algorithm terminates with a
different solution beforehand. In both cases the proposition is satisfied. �

Example 5.3 (OCEL)
We illustrate the OCEL algorithm using Michalski’s trains [Michalski, 1980] as a
simple example. The data describes different features of trains, e.g. which cars

94

5.2 ELTL (EL Tree Learner)

are appended to a train, whether they are short or long, closed or open, jagged
or not, which shapes they contain and how many of them. The positive examples
are the trains on the left in Figure 5.2 and the negative examples are the trains
on the right. Thus, the task of the learner is to find characteristics of all the left
trains, which none of the right trains has. The learning algorithm first explores
the concepts > and then Train, which cover all examples. Other atomic concepts
are too weak to be considered for further exploration. The exploration of the
top concept up to a horizontal expansion of 3 leads to ∃hasCar.>, which is then
expanded to ∃hasCar.Closed. This covers all positives and two negatives. The
heuristic later picks this node and extends it up to a horizontal expansion of 5
to ∃hasCar.(Closed u Short), which is a possible (and shortest) solution for the
problem. �

5.2 ELTL (EL Tree Learner)

ELTL (EL Tree Learner) is a learning algorithm building on the introduced EL
refinement operator ψ (see Definition 4.21 on page 84). Since ψ is ideal, we can
omit some of the constructs in the introduced OCEL algorithm (Algorithm 3).

In particular, we do not need a stepwise horizontal expansion. This technique
was introduced to overcome the problem that ρ is not finite. It was implemented
by attaching an integer value to each node in the search tree. In ELTL, we omit
this value, i.e. a node in an ELTL search tree is defined as a tuple (C, b) where
C is a concept and b ∈ {true, false} is a boolean marker for the redundancy of
a node. In an ELTL search tree, each node is expanded at most once, i.e. the
candidates for expansion are the childless nodes in the search tree.

Algorithm 4 shows the basic ELTL algorithm, which is a simplified variant of
OCEL. To complete the algorithm, we need to introduce a heuristic. To do this,
we adapt the OCEL score in Definition 5.1 by replacing the horizontal expan-
sion penalty with a penalty for the length of a concept. Otherwise, the same
redundancy elimination strategy as in OCEL is used.

Algorithm 4: ELTL Base Learning Algorithm

Input: background knowledge, examples E, noise in [0,1]
ST (search tree) is set to the tree consisting only of the root node (>, false)1

while ST does not contain a node with q < bnoise · |E|c do2

choose a child-less node N = (C, b) with highest score in ST3

expand N , i.e. :4

begin5

add all nodes (D, checkRed(ST,D)) as children of N6

evaluate created non-redundant nodes7

end8

Return found concepts in ST9

95

5 Refinement Operator Based OWL Learning Algorithms

Depending on the application scenario, EL may not be expressive enough to
solve a learning problem. In particular, it does not support disjunction of concepts.
To be able to combine the benefit of the ideal operator ψ and the expressive power
of disjunction, we can employ a covering approach. We refer to Section 2.2.1 for
an overview over programs using such an approach. Multiple clauses in a logic
program can be viewed as disjunction of clause bodies ((r → t) ∧ (s → t) is
equivalent to (r ∨ s) → t in propositional logic). Therefore, the idea of the
(disjunctive) ELTL algorithm is to reuse ILP methodology by learning several EL
trees and connecting them by disjunction.

Algorithm 5 shows the corresponding learning algorithm. It only returns a
single concept C, whereas OCEL returns a set of most promising concepts. C
is initialised as the bottom concept, i.e. does not cover any examples. In the
inner while loop, an EL tree, corresponding to a concept C ′, is learned. This
tree is added to the current solution disjunctively, i.e. C is set to C t C ′. The
examples are updated accordingly, i.e. positive and negative examples covered by
C ′ are removed. The algorithm stops when the score of the last tree found in
the inner while loop is below a specified threshold, which is given as parameter
minTreeScore.

Algorithm 5: ELTL Learning Algorithm

Input: background knowledge base K, pos. and neg. examples E+ and E−,
noise in [0,1], secondsPerTree ∈ R, minTreeScore in [0,1]

initialise C = ⊥ and bestTreeScore = 11

while bestTreeScore ≥ minTreeScore do2

ST is set to the tree consisting only of the root node (>, false)3

while less than secondsPerTree seconds have elapsed and ST does not4

contain a correct solution w.r.t K,E+,E− do
choose a child-less node N = (C, b) with highest score in ST5

expand N , i.e. :6

begin7

add all nodes (D, checkRed(ST,D)) as children of N8

evaluate created non-redundant nodes9

end10

select C ′ from ST with the highest score bestTreeScore11

if bestTreeScore ≥ minTreeScore then12

C = C t C ′13

E+ = E+ \RK(C ′)14

E− = E− \RK(C ′)15

Return simplify(C)16

Naturally, we also need a termination criterion for the inner while loop. Different
criteria exist in the ILP community, for instance achieving a minimum accuracy,

96

5.2 ELTL (EL Tree Learner)

a minimum number of positive examples covered (in a top-down approach), a
minimum accuracy gain, etc. While it would be straightforward to integrate those
in the ELTL algorithm, we introduced runtime as another criterion. This means
that the algorithm can spend a specified amount of time in the inner loop and we
pick the best tree obtained during this time span. The reasoning behind this is
that we can never be certain to find a better tree unless the problem is already
correctly solved, in which case we also terminate the loop. Instead of deciding
for a potentially suboptimal tree, we can use as much computational power as
was assigned to the learning task. The overall algorithm runtime is, thus, more
predictable. Of course, a disadvantage is that the final result depends on the
used computer. It might potentially vary even on the same computer depending
on CPU usage of other tasks. Initial tests indicate that runtime is a suitable
criterion, but we defer a detailed analysis of different criteria to future work.

Finally, we need to specify the score function of the ELTL algorithm. We use the
score function of the ELTL base algorithm explained above with two modifications:

1. We introduce a weight, which stronger penalises covering negative examples,
i.e. a hypothesis covering two positive and two examples has a lower score
than a hypothesis covering one positive and one negative example. This is
done to avoid covering too many negative examples. While positive examples
may still be covered by the next EL tree generated in the inner loop of
Algorithm 5, the effect of covering a negative example cannot be undone.
This technique is also used in other ILP programs. In our case, we initially
set the weight to 1.2 by default and let it converge to 1.0 depending on the
number of trees learned.

2. We require that at least a specified fraction, by default 5%, of positive ex-
amples need to be covered by an EL tree. This biases the learning algorithm
towards short solutions and reduces overfitting.

Before the algorithm returns the solution C, we use a simplification mechanism
to remove redundant parts of the solution. The simplifier first performs straight-
forward concept rewrites (⊥ t C replaced by C, ∀r.> replaced by > etc.). After
that, it uses a reasoner to further simplify the concept. For instance, given a
concept D1u· · ·uDn, it checks whether D1 is a super class of any Di (2 ≤ i ≤ n).
If this is the case, then the corresponding Di can be removed. The algorithm
continues with D2, D3 etc. in the same manner. Disjunction can be handled
analogously. The concept is simplified by this method in the sense that we cannot
remove elements from conjunctions or disjunctions while maintaining equivalence.
It is particularly useful in the ELTL algorithm, since several of the learned EL
trees may share similarities, which are unified by the simplifier. The method is
powerful, since it can also detect non-obvious simplification through the use of
OWL reasoners. Efficiency is not a significant problem, since the method is called
only once before the algorithm terminates.

97

5 Refinement Operator Based OWL Learning Algorithms

5.3 CELOE (Class Expression Learner for Ontology
Engineering)

The last of the three algorithms, which we present, is particularly designed for
ontology engineering. More specifically, it solves the concept learning problem in
Definition 2.23. Given a class A in a knowledge base, the aim is to describe A
formally. In particular, we want to learn a concept C, such that we can suggest
adding axioms of the form A ≡ C or A v C to a knowledge engineer.

CELOE builds on the OCEL algorithm, i.e. uses the same approach as in Algo-
rithm 3. The main modification is a different heuristic. While we initially experi-
mented with OCEL for the ontology engineering scenario by using instances of A
as positive examples and non-instances of A as negative examples, we discovered
that some modifications of the algorithms improve its performance. At the same
time, many of the powerful configuration options of OCEL (not described in de-
tail here) are not necessary. We therefore designed the CELOE algorithm. In this
section, we will first briefly describe basic changes to OCEL in the algorithm core
and then discuss the heuristic we employed.

One particular feature of CELOE is an even stronger bias towards short con-
cepts. As we will describe in Section 7.3, we developed plugins using CELOE in
ontology editors. In the ontology creation and maintenance scenario, it is unlikely
that very long concepts are used. In contrast to this, OCEL is used for tasks like
detecting whether chemical compounds cause cancer (see Section 7.2), where de-
scribing such structures requires much more complex concepts. Consequently, we
introduced a strong bias in the CELOE heuristic towards short concepts, which
means that the algorithm is less likely to explore and find more complex concepts.
As a benefit, the algorithm is almost guaranteed to find any suitable short expres-
sion. In fact, the algorithm can be queried at runtime whether it has evaluated
or pruned concepts up to a certain length. This can be used as additional infor-
mation for the knowledge engineer to eliminate doubts on whether a shorter more
appropriate suggestion exists.

We also use the ELTL simplifier described above to increase the readability of
suggestions: For instance, ∃hasLeader.>uCapital is simplified to Capital if the
background knowledge allows to infer that a capital is a city and each city has a
leader. In addition to the standard mechanism, we use a reasoner cache, i.e. each
inference drawn during the simplification of expressions is cached. Experimentally,
it turned out that this allows an efficient minimisation of suggestions and has only
marginal influence on the performance of the algorithm after an initial warm-up
phase of the cache.

Furthermore, we also make sure that the suggestions are not “redundant”. If
one suggestion is longer and subsumed by another suggestion and both have the
same characteristics, i.e. classify the relevant individuals equally, the more specific
suggestions are filtered. This avoids expressions containing irrelevant subexpres-
sions and ensures that the suggestions are diverse.

98

5.3 CELOE (Class Expression Learner for Ontology Engineering)

In contrast to OCEL, where the noise parameter is used for deciding termina-
tion, we use a fixed runtime as parameter. This results in a more predictable
behaviour for the knowledge engineer. In user interfaces, it allows to display a
progress bar. Fixed runtime is also suitable, since the knowledge engineer in the
ontology engineering case cannot be assumed to know or find good parameter set-
tings. In fact, none of the options of CELOE are mandatory, which means that
the user can directly query for suggestions without having to know internals of
the algorithm or prepare anything.

We will describe the CELOE heuristic in the sequel. A heuristic measures how
well a given class expression fits a learning problem and is used to guide the search
in a learning process. To define a suitable heuristic, we first need to address the
question of how to measure the accuracy of a class expression. We first introduce
a straightforward way to achieve this and then describe the approach we take in
CELOE.

As mentioned previously, we cannot simply use supervised learning from ex-
amples, since we do not have positive and negative examples available. We can
straightforwardly tackle this problem by using the existing instances of the class
as positive examples and the remaining instances as negative examples. This is
illustrated in Figure 5.3, where K stands for the knowledge base and A for the
class to describe. We can then measure accuracy as the number of correctly clas-
sified examples divided by the number of all examples. This can be computed as
follows for a class expression C:

accs(C) = 1− |R(A) \R(C)|+ |R(C) \R(A)|
n

n = |NI |

R(A) \ R(C) are the false negatives whereas R(C) \ R(A) are false positives.
n is the number of all examples, which is equal to the number of individuals in
the knowledge base in this case. Apart from learning definitions, we also want to
be able to learn super class axioms (A v C). Naturally, in this scenario R(C)
should be a super set of R(A). However, we still do want R(C) to be as small as
possible, otherwise > would always be a solution. To reflect this in our accuracy
computation, we penalise false negatives harder than false positives by a factor of
t (where t should be greater than 1) and map the result in the interval [0, 1]:

accs(C, t) = 1− 2 · t · |R(A) \R(C)|+ |R(C) \R(A)|
(t+ 1) · n

n = |NI |

While being straightforward, the outlined approach of casting class learning into
a standard learning problem with positive and negative examples has the disad-
vantage that the number of negative examples will usually be much higher than
the number of positive examples. As shown in Table 5.1, this may lead to overly
optimistic estimates. More importantly, this accuracy measure has the drawback
of having a dependency on the number of instances in the knowledge base. In
order to overcome this problem, it is more appropriate to choose an approach

99

5 Refinement Operator Based OWL Learning Algorithms

Figure 5.3: Visualisation of different accuracy measurement approaches. K is the
knowledge base, A the class to describe and C a class expression to
be tested. Left side: Standard supervised approach based on using
positive (instances of A) and negative (remaining instances) examples.
Here, the accuracy of C depends on the number of individuals in the
knowledge base. Right side: Evaluation based on two criteria: recall
(Which fraction of A is covered by C?) and precision (Which fraction
of C is in A?).

that avoids explicit usage of negative examples. We can view the problem from
an information retrieval perspective, where R(A) is the set of relevant objects
and R(C) the set of retrieved objects. We then combine precision and recall2 as
illustrated in Figure 5.3.

accc(C) =
1

2
·

(
|R(A) ∩R(C)|
|R(A)|

+

√
|R(A) ∩R(C)|
|R(C)|

)

This is similar to F measure in information retrieval. The square root is used to
better distinguish between large values of |R(C)| (e.g. 1/100 differs only slightly
from 1/1000), but can also be omitted. Again, we can use a factor t, enabling us
to give the second criterion (precision) lower importance:

accc(C, t) =
1

t+ 1
·

(
t · |R(A) ∩R(C)|

|R(A)|
+

√
|R(A) ∩R(C)|
|R(C)|

)
(5.1)

Table 5.1 provides some example calculations and shows that this accuracy
estimate is closer to intuition for the ontology engineering use case.

Computing accuracy serves two purposes: The first one is to present it to the
knowledge engineer so that she can easily assess how good the expression fits
the existing data. This is shown in Sections 7.3.1 and 7.3.2, which describe the
ontology editor plugins based on the CELOE algorithm. The second purpose
is to guide the learning algorithm at runtime towards a solution of the learning

2Precision is defined as the number of relevant documents retrieved by a search divided by
the total number of documents retrieved by that search. Recall is defined as the number of
relevant documents retrieved by a search divided by the total number of existing relevant
documents.

100

5.3 CELOE (Class Expression Learner for Ontology Engineering)

illustration accs accc
equivalence super class equivalence super class

80% 80% 0% 0%

90% 95% 75% 88%

70% 85% 63% 82%

98% 98% 90% 90%

Table 5.1: Example accuracies for selected cases using t = 3 for the super class
columns. The images on the left represent an imaginary knowledge
base K with 1000 individuals, where we want to describe the class A
by using expression C. It is apparent that using predictive accuracy
leads to impractical accuracies, e.g. in the first row C cannot possibly
be a good description of A, but we still get 80% accuracy, since all the
negative examples outside of A and C are correctly classified.

problem. In order to do this, we define the following notion of a score based on
accuracy accc.

Definition 5.4 (CELOE Score)
Let A be the class to describe, C the expression to evaluate, and C ′ the parent of
C in the search tree (i.e. C is a refinement of C ′):

acc gain(C) = accc(C, t)− accc(C
′, t)

score(C) = accc(C, t) + α · acc gain(N)− β · |C| (α, β ≥ 0) �

The heuristic is composed of several criteria, the influence of which can be con-
trolled by using α and β:

• accuracy (accc(C, t)): The main criterion as outlined above.

• accuracy gain (α · acc gain(N)): If an expression has been refined to an
expression with higher accuracy, it is more likely to be closer to a solution.

• length penalty (β · |C|): Longer expressions are less readable for the knowl-
edge engineer, so we penalise long expressions.

101

5 Refinement Operator Based OWL Learning Algorithms

Typical values are α = 0.3 and β = 0.05. For class learning β is set to a high
value, which biases the search process towards short and, therefore, more readable
solutions. The score is similar to the ones for OCEL and ELTL apart from the
different accuracy estimate.

Now that we derived a heuristic, we should observe whether it is efficient to
compute the score value in Definition 5.4. Almost all the time required to compute
the score of a given expression is spent in calculating its accuracy. According to
the definition of accc, we need to perform a retrieval of C. Performing such a
retrieval can be very expensive for large knowledge bases. Depending on the
ontology schema, this may require instance checks for many or even all objects in
the knowledge base. An optimisation in order to compute the score efficiently, is
to reduce the number of objects we are looking at by using background knowledge.
Assuming that we want to learn an equivalence axiom for class A with super class
A′, we can start a top-down search in our learning algorithm with A′ instead of
>. Thus, we know that each expression we test is a subclass of A′, which allows
us to restrict the retrieval operation to instances of A′. This can be generalised
to several super classes and a similar observation applies to learning super class
axioms. Chapter 6 introduces several further optimisations, which allow the score
to be computed efficiently even if A′ has many instances.

In summary, we defined three learning algorithms: OCEL, ELTL, and CELOE.
OCEL is suitable for most standard machine learnings tasks. ELTL is designed to
be very efficient and can solve tasks requiring only constructs in the EL description
logics – optionally augmented with disjunction. CELOE is similar to OCEL with
several smaller algorithm adaptions and a different heuristic particularly designed
for ontology engineering.

102

6 Improving Scalability of OWL
Learning Algorithms

Performance and scalability are crucial factors in machine learning. This is partic-
ularly relevant for concept learning in description logics, which draws on complex
inference mechanisms. In this chapter, we present optimisations of the algorithms
introduced earlier to handle very large knowledge bases.

In the first part, we present DBpedia, which is a project maintaining a very
large knowledge base extracted from Wikipedia.1 DBpedia is a typical example
of a large knowledge base in the Linking Open Data (LOD) cloud. It also served
as test bed for the scalability evaluation of learning algorithms. Note that the
description of DBpedia is not strictly necessary for understanding other parts of
the thesis and can be skipped by the reader.

In the second part, we present an approach, which allows to extract fragments
of a knowledge base such that learning on the fragment yields similar results like
learning on the whole knowledge base, but is more efficient. This is a prerequisite
for the learning algorithms to work on very large knowledge bases, since some of
those knowledge bases including DBpedia cannot be handled efficiently by rea-
soners. Additionally, this allows the algorithms to be applied in scenarios where
only parts of a knowledge base are consistent.

The third part of the chapter is concerned with optimising the performance of
the coverage test, which is necessary to compute the heuristic function in learning
algorithms. Since most of the time of an algorithm run is required by coverage
tests, it is important to optimise them.

6.1 The DBpedia Project

As mentioned in Chapter 1, knowledge bases play an increasingly important role
in enhancing the intelligence of Web and enterprise search, as well as in supporting
information integration. Today, most knowledge bases cover only specific domains,
are created by relatively small groups of knowledge engineers, and are very cost
intensive to keep up-to-date as knowledge changes. At the same time, Wikipedia
has grown into one of the central knowledge sources of mankind, maintained by
thousands of contributors.

1The author is co-founder and actively contributing to the DBpedia project. The work pre-
sented in this section was done in co-operation with the Free University Berlin and the
company OpenLink.

103

6 Improving Scalability of OWL Learning Algorithms

The DBpedia project leverages this source of knowledge by extracting structured
information from Wikipedia and making this information accessible on the Web.
The resulting DBpedia knowledge base currently (as of release 3.4) describes more
than 2.9 million entities, including 282,000 persons, 339,000 places and 119,000
organisations. The knowledge base contains 3.8 million links to external web
pages; and 4.9 million RDF links into other Web data sources. The DBpedia
knowledge base has several advantages over existing knowledge bases: It covers
many domains, it represents real community agreement, it automatically evolves
as Wikipedia changes, it is truly multilingual, and it is accessible on the Web.

For each entity, DBpedia provides a globally unique identifier that can be deref-
erenced according to the Linked Data principles2. As DBpedia covers a wide range
of domains and has a high degree of conceptual overlap with various open-license
datasets that are already available on the Web, an increasing number of data pub-
lishers have started to set RDF links from their data sources to DBpedia, making
DBpedia one of the central interlinking hubs of the emerging Web of Data.

6.1.1 The DBpedia Knowledge Extraction Framework

Wikipedia articles consist mostly of free text, but also contain various types of
structured information in the form of wiki markup. Such information includes
infobox templates, categorisation information, images, geo-coordinates, links to
external Web pages, disambiguation pages, redirects between pages, and links
across different language editions of Wikipedia. The DBpedia project extracts
this structured information from Wikipedia and turns it into a rich knowledge
base. We give an overview of the DBpedia knowledge extraction framework, and
discuss DBpedia’s infobox extraction approach in more detail.

Architecture of the Extraction Framework

Figure 6.1 gives an overview of the DBpedia knowledge extraction framework. The
main components of the framework are: PageCollections which are an abstraction
of local or remote sources of Wikipedia articles, Destinations that store or serialize
extracted RDF triples, Extractors which turn a specific type of wiki markup into
triples, Parsers which support the extractors by determining datatypes, convert-
ing values between different units and splitting markup into lists. ExtractionJobs
group a page collection, extractors and a destination into a workflow. The core of
the framework is the Extraction Manager which manages the process of passing
Wikipedia articles to the extractors and delivers their output to the destination.
The Extraction Manager also handles URI management and resolves redirects
between articles.

The framework currently consists of extractors which process the following types
of Wikipedia content:

2http://www.w3.org/DesignIssues/LinkedData.html,http://sites.wiwiss.fu-berlin.
de/suhl/bizer/pub/LinkedDataTutorial/

104

http://www.w3.org/DesignIssues/LinkedData.html
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/

6.1 The DBpedia Project

Figure 6.1: Overview of DBpedia components.

• Infoboxes. Wikipedia articles often have infoboxes summarising the most
important information regarding the described subject. This information is
the core of DBpedia and its extraction is described in more detail below.

• Labels. All Wikipedia articles have a title, which is used as an rdfs:label

for the corresponding DBpedia resource.

• Abstracts. We extract a short abstract (first paragraph, represented using
rdfs:comment) and a long abstract (text before a table of contents, at most
500 words, using the property dbpedia:abstract) from each article.

• Interlanguage links. We extract links that connect articles about the same
topic in different language editions of Wikipedia and use them for assigning
labels and abstracts in different languages to DBpedia resources.

• Images. Links pointing at Wikimedia Commons images depicting a resource
are extracted and represented using the foaf:depiction property.

• Redirects. In order to identify synonymous terms, Wikipedia articles can
redirect to other articles. We extract these redirects and use them to resolve
references between DBpedia resources.

105

6 Improving Scalability of OWL Learning Algorithms

• Disambiguation. Wikipedia disambiguation pages explain the different mean-
ings of homonyms. We extract and represent disambiguation links using the
predicate dbpedia:disambiguates.

• External links. Articles contain references to external Web resources which
we represent using the DBpedia property dbpedia:reference.

• Pagelinks. We extract all links between Wikipedia articles and represent
them using the dbpedia:wikilink property.

• Homepages. This extractor obtains links to the homepages of entities such as
companies and organisations by looking for the terms homepage or website
within article links (represented using foaf:homepage).

• Categories. Wikipedia articles are arranged in categories, which we represent
using the SKOS vocabulary3. Categories become skos:concepts; category
relations are represented using skos:broader.

• Geo-coordinates. The geo-extractor expresses coordinates using the Basic
Geo (WGS84 lat/long) Vocabulary4 and the GeoRSS Simple encoding of
the W3C Geospatial Vocabulary5. The former expresses latitude and longi-
tude components as separate facts, which allows for simple areal filtering in
SPARQL queries.

The DBpedia extraction framework is currently set up to realize two workflows:
A regular, dump-based extraction and a live extraction.

Dump-based extraction. The Wikimedia Foundation publishes SQL dumps
of all Wikipedia editions on a monthly basis. We regularly update the DBpedia
knowledge base with the dumps of 30 Wikipedia editions. The dump-based work-
flow uses the DatabaseWikipedia page collection as the source of article texts and
the N-Triples serializer as the output destination. The resulting knowledge base is
made available as Linked Data, for download, and via DBpedia’s main SPARQL
endpoint.

Live Extraction. The Wikimedia Foundation has given the DBpedia project
access to the Wikipedia OAI-PMH live feed that instantly reports all Wikipedia
changes. The live extraction workflow uses this update stream to extract new RDF
whenever a Wikipedia article is changed. The text of these articles is accessed
via the LiveWikipedia page collection, which obtains the current article version
encoded according to the OAI-PMH protocol. The SPARQL-Update Destination
deletes existing and inserts new triples into a separate triple store. According to
our measurements, about 1.4 article pages are updated per second on the English
Wikipedia. The framework can handle up to 3.5 pages per second on a 2.4 GHz

3http://www.w3.org/2004/02/skos/
4http://www.w3.org/2003/01/geo/
5http://www.w3.org/2005/Incubator/geo/XGR-geo/

106

http://www.w3.org/2004/02/skos/
http://www.w3.org/2003/01/geo/
http://www.w3.org/2005/Incubator/geo/XGR-geo/

6.1 The DBpedia Project

{{ Infobox Actor

| birthname = Thomas Jeffrey Hanks

| birthdate = {{birth date and age|1956|7|9}}

| birthplace = [[Concord, California|Concord]], [[California]]

| yearsactive = 1979 - present

| occupation = Actor, producer, director, [[voice over artist]],

writer, speaker }}

Figure 6.2: Infobox Tom Hanks.

dual-core machine (this includes consumption from the stream, extraction, com-
puting the diff and loading the triples into a Virtuoso triple store). The time
lag for DBpedia to reflect Wikipedia changes is currently about 5 minutes. The
changes are not processed immediately, since empirically a second article edit fol-
lows the first edit within a few minutes. The live extraction allows wiki users
to modify the schema underlying DBpedia. More information about this can be
found at http://meta.wikimedia.org/wiki/DBpedia/ontology.

Generic versus Mapping-based Infobox Extraction

The type of wiki contents that is most valuable for the DBpedia extraction are
Wikipedia infoboxes. Infoboxes display an article’s most relevant facts as a table of
attribute-value pairs on the top right-hand side of the Wikipedia page. Figure 6.2
shows excerpts of the wiki markup behind the infobox describing Tom Hanks.
Wikipedia’s infobox template system has evolved over time without central coor-
dination. Different communities use different templates to describe closely related
things (e.g. infobox_city_japan, infobox_swiss_town and infobox_town_de).
Different templates use different names for the same attribute (e.g. birthplace

and placeofbirth). As many Wikipedia editors do not strictly follow the rec-
ommendations given on the page that describes a template, attribute values are
expressed using a wide range of different formats and units of measurement. The
DBpedia project has decided to deal with this situation by using two different ex-
traction approaches in parallel: A generic approach which aims at wide coverage
and a mapping-based approach which aims at high data quality.

Generic Infobox Extraction. The generic infobox extraction algorithm,
which is described in detail in [Auer and Lehmann, 2007], processes all infoboxes
within a Wikipedia article. It creates triples from the infobox data in the follow-
ing manner: The corresponding DBpedia URI of the Wikipedia article is used as
subject. The predicate URI is created by concatenating the namespace fragment
http://dbpedia.org/property/ and the name of the infobox attribute. Objects
are created from the attribute value. Property values are post-processed in order
to generate suitable URI references or literal values. This includes recognizing Me-
diaWiki links, detecting lists, and using units as datatypes. MediaWiki templates

107

http://meta.wikimedia.org/wiki/DBpedia/ontology

6 Improving Scalability of OWL Learning Algorithms

may be nested, which is handled through a blanknode creation algorithm. The
advantage of the generic extraction is its complete coverage of all infoboxes and
infobox attributes. The main disadvantage is that synonymous attribute names
are not resolved, which makes writing queries against generic infobox data rather
cumbersome. As Wikipedia attributes do not have explicitly defined datatypes, a
further problem is the relatively high error rate of the heuristics that are used to
determine the datatypes of attribute values.

Mapping-based Infobox Extraction. In order to overcome the problems of
synonymous attribute names and multiple templates being used for the same type
of things, we mapped Wikipedia templates to an ontology. This ontology was
created by manually arranging the 350 most commonly used infobox templates
within the English edition of Wikipedia into a subsumption hierarchy consisting
of 170 classes and then mapping 2350 attributes from within these templates to
720 ontology properties. The property mappings define fine-grained rules on how
to parse infobox values and define target datatypes, which help the parsers to
process attribute values. For instance, if a mapping defines the target datatype
to be a list of links, the parser will ignore additional text that might be present in
the attribute value. The ontology currently uses 55 different datatypes. Deviant
units of measurement are normalized to one of these datatypes. Instance data
within the infobox ontology is therefore cleaner and better structured than data
that is generated using the generic extraction algorithm. The disadvantage of the
mapping-based approach is that it currently covers only 350 Wikipedia templates;
therefore it only provides data about 843,000 entities compared to 1,462,000 en-
tities that are covered by the generic approach. While the ontology is currently
relatively simple, we plan to extend it further, e.g. with class disjointness axioms
and inverse properties. The main purpose of such extensions will be to allow con-
sistency checks in DBpedia and use inferences when answering SPARQL queries.
As noted previously, we are currently working on crowd-sourcing the mapping
creation task in the context of the DBpedia live extraction.

6.1.2 The DBpedia Knowledge Base

Table 6.1 gives an overview of common DBpedia classes, and shows the number
of instances and some example properties for each class. In the following, we
describe the structure of the DBpedia knowledge base, explain how identifiers are
built and compare the four classification schemata that are offered by DBpedia.

Identifying Entities

DBpedia uses English article names for creating identifiers. Information from
other language versions of Wikipedia is mapped to these identifiers by bidirection-
ally evaluating the interlanguage links between Wikipedia articles. Resources are
assigned a URI according to the pattern http://dbpedia.org/resource/Name ,
where Name is taken from the URL of the source Wikipedia article, which has

108

6.1 The DBpedia Project

Ontology Class Instances Example Properties

Person 198,056 name, birthdate, birthplace, employer,
spouse

Artist 54,262 activeyears, awards, occupation, genre

Actor 26,009 academyaward, goldenglobeaward, ac-
tiveyears

MusicalArtist 19,535 genre, instrument, label, voiceType

Athlete 74,832 currentTeam, currentPosition, current-
Number

Politician 12,874 predecessor, successor, party

Place 247,507 lat, long

Building 23,304 architect, location, openingdate, style

Airport 7,971 location, owner, IATA, lat, long

Bridge 1,420 crosses, mainspan, openingdate, length

Skyscraper 2,028 developer, engineer, height, architect, cost

PopulatedPlace 181,847 foundingdate, language, area, population

River 10,797 sourceMountain, length, mouth, maxDepth

Organisation 91,275 location, foundationdate, keyperson

Band 14,952 currentMembers, foundation, homeTown,
label

Company 20,173 industry, products, netincome, revenue

Educ.Institution 21,052 dean, director, graduates, staff, students

Work 189,620 author, genre, language

Book 15,677 isbn, publisher, pages, author, mediatype

Film 34,680 director, producer, starring, budget, re-
leased

MusicalWork 101,985 runtime, artist, label, producer

Album 74,055 artist, label, genre, runtime, producer,
cover

Single 24,597 album, format, releaseDate, band, runtime

Software 5,652 developer, language, platform, license

TelevisionShow 10,169 network, producer, episodenumber, theme

Table 6.1: Common DBpedia classes with the number of their instances and ex-
ample properties.

109

6 Improving Scalability of OWL Learning Algorithms

the form http://en.wikipedia.org/wiki/Name . This yields certain beneficial
properties:

• DBpedia URIs cover a wide range of encyclopaedic topics.

• They are defined by community consensus.

• There are clear policies in place for their management.

• An extensive textual definition of the entity is available at a well-known Web
location (the Wikipedia page).

Classifying Entities

DBpedia entities are classified within four classification schemata in order to fulfil
different application requirements. We compare these schemata below:

Wikipedia Categories. DBpedia contains a SKOS representation of the Wikipedia
category system. The category system consists of 415,000 categories. The
main advantage of the category system is that it is collaboratively extended
and kept up-to-date by thousands of Wikipedia editors. A disadvantage is
that categories do not form a proper topical hierarchy, as there are cycles
in the category system and as categories often only represent a rather loose
relatedness between articles.

YAGO. The YAGO classification schema consists of 286,000 classes which form a
deep subsumption hierarchy. The schema was created by mapping Wikipedia
leaf categories, i.e. those not having subcategories, to WordNet synsets.
Details of the mapping algorithm are described in [Suchanek et al., 2008].
Characteristics of the YAGO hierarchy are its deepness and the encoding of
much information in one class (e.g. the class “MultinationalCompaniesHead-
quarteredInTheNetherlands”). While YAGO achieves a high accuracy in
general, there are a few errors and omissions (e.g. the mentioned class is
not a subclass of “MultinationalCompanies”) due to its automatic genera-
tion. We jointly developed a script that assigns YAGO classes to DBpedia
entities. The script is available at the YAGO download page6.

UMBEL. The Upper Mapping and Binding Exchange Layer (UMBEL) is an on-
tology that has been created for interlinking Web content and data. UMBEL
was derived from OpenCyc and consists of 20,000 classes. OpenCyc classes in
turn are partially derived from Cyc collections, which are based on WordNet
synsets. Since YAGO also uses WordNet synsets and is based on Wikipedia,
a mapping from OpenCyc classes to DBpedia can be derived via UMBEL7.

6http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
7http://fgiasson.com/blog/index.php/2008/09/04/
exploding-dbpedias-domain-using-umbel/

110

http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html

6.1 The DBpedia Project

The classification is maintained by the UMBEL project itself and details
about its generation process can be found at the UMBEL website8.

DBpedia Ontology. The DBpedia ontology consists of 170 classes that form a
shallow subsumption hierarchy. It includes 720 properties with domain and
range definitions. The ontology was manually created from the most com-
monly used infobox templates within the English edition of Wikipedia. The
ontology is used as target schema by the mapping-based infobox extraction
described in Section 6.1.1. The left column in Table 6.1 displays a part of
the class hierarchy of the DBpedia ontology.

Graph Characteristics

Described Mio. Unique Triples/ Triples/

Entities Triples Properties Property Entity

Generic

Extract. 1,462,108 26.0 38,659 673.7 17.81

Mapping-

based 843,169 7.0 720 9722.2 8.34

Pagelinks 2,853,315 70.2 1 70.2mio 24.61

Table 6.2: Comparison of the generic infobox, mapping-based infobox and
pagelinks datasets.

Connected Mio. Unique Indegree Cluster
Entities Triples Properties Max Avg Coefficient

Generic
Extract. 1,029,712 5.6 9911 105,840 8.76 0.1336
Mapping-
based 627,941 2.9 340 65,387 11.03 0.1037
Pagelinks 2,796,401 46.2 1 190,995 19.15 0.1696

Table 6.3: Comparison of the graph structure of the generic infobox, mapping-
based infobox and pagelinks datasets.

Table 6.2 compares the datasets that result from generic infobox extraction,
the mapping-based infobox extraction and from the extraction of links between
Wikipedia pages (statistics are for the DBpedia release 3.2, English data sets). It
is evident that properties are, of course, reused very often in the mapping-based
approach. We then measured further characteristics of the DBpedia RDF graph.
For doing this, we removed all triples from the datasets that did not point at a

8http://www.umbel.org/

111

http://www.umbel.org/

6 Improving Scalability of OWL Learning Algorithms

Figure 6.3: Comparison of the generic infobox, mapping-based infobox and
pagelinks datasets in terms of node indegree versus rank.

DBpedia entity, including all literal triples, all external links and all dead links.
The size of and number of ’link’ properties within these reduced datasets is listed in
Table 6.3. Removing the triples showed, that the percentage of properties pointing
to other DBpedia entities is much higher in the mapping-based dataset (53%)
compared to generic dataset (25.6%). We calculated the average node indegree
as the sum of all inbound edges divided by the number of objects, which had
at least one inbound edge from the dataset. This allows to analyse the indegree
separately from the coverage or the size of the dataset. The entity with the
highest indegree within all three datasets is United States. As shown in Figure
6.3, the node indegrees follow a power-law distribution in all datasets which is
a typical characteristic of small world networks [Reka and Albert-Laszlo, 2002].
The clustering coefficient given in the last column of Table 6.3 was calculated
as the number of existing connections between neighbors of a node, divided by
possible connections in a directed graph (k∗(k−1), k = number of node neighbors)
and averaged over all nodes. The mapping-based approach has a slightly lower
clustering coefficient because of its lower coverage.

6.1.3 Interlinked Web Content

The DBpedia knowledge base is interlinked with various other data sources on
the Web according to the Linked Data principles. These links provide the basis
for browsing [T. Berners-Lee et al., 2006, Becker and Bizer, 2008], crawling and

112

6.1 The DBpedia Project

<http://dbpedia.org/resource/Spain> owl:sameAs

http://rdf.freebase.com/ns/guid.9202a8c04000641f8000000000034e30;

http://[...]fu-berlin.de/factbook/resource/Spain;

http://[...]fu-berlin.de/eurostat/resource/countries/Espa%C3%B1a;

http://sw.opencyc.org/2008/06/10/concept/Mx4rvVjowpwpEbGdrcN5Y29ycA.

<http://data.semanticweb.org/conference/eswc/2008/paper/356>

swc:hasTopic <http://dbpedia.org/resource/Data_integration> .

Figure 6.4: Example RDF links connecting the DBpedia entity Spain with ad-
ditional information from other data sources, and showing how the
DBpedia identifier Data Integration is used to annotate the topic of a
conference paper.

searching [Cheng et al., 2008, Harth et al., 2008, Tummarello et al., 2007], build-
ing mashups [Naumann et al., 2006], usage for content annotation etc. Figure 6.4
shows RDF data links that illustrate these use cases. The first four links con-
nect the DBpedia entity Spain with complementary data about the country from
EuroStat, the CIA World Factbook, Freebase and OpenCyc. Agents can follow
these links to retrieve additional information about Spain, which again might con-
tain further deeper links into the data sources. The fifth link illustrates how the
DBpedia identifier Data Integration is used to annotate the topical subject of a
research paper from the European Semantic Web Conference. After this and sim-
ilar annotations from other sites have been crawled by a search engine, such links
enable the discovery of Web content that is related to a topic.

Figure 6.5 gives an overview of the data sources that are currently interlinked
with DBpedia. Altogether this Web of Data amounts to approximately 4.7 billion
RDF triples. Two billion of these triples are served by data sources participating
in the W3C Linking Open Data community project9, an effort to make open-license
datasets interoperable on the Web of Data by converting them into RDF and by
interlinking them. The success of the Linking Open Data initiative and the size
of the incorporated knowledge bases motivate the fragment extraction approach
in Section 6.2, which enables the use of learning algorithms on those knowledge
bases.

Table 6.4 lists the data sources that are reachable from DBpedia by outgoing
RDF links10. The second column shows the distribution of the 4.9 million outgoing
links over the data sources. Using these links, one can, for instance, navigate from
a computer scientist in DBpedia to her publications in the DBLP database, from

9http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
10For more information about the datasets please refer to http://wiki.dbpedia.org/

Interlinking

113

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://wiki.dbpedia.org/Interlinking
http://wiki.dbpedia.org/Interlinking

6 Improving Scalability of OWL Learning Algorithms

[Source: http://linkeddata.org - created by Richard Cyganiak]

Figure 6.5: Data sources that are interlinked with DBpedia.

a DBpedia book to reviews and sales offers for this book provided by the RDF
Book Mashup, or from a band in DBpedia to a list of their songs provided by
MusicBrainz. Outgoing links to ontologies like OpenCyc or UMBEL allow agents
to retrieve additional conceptual knowledge which can then be used for reasoning
over DBpedia and interlinked data.

Data Source No. of Links

Freebase 2,400,000

flickr wrappr 1,950,000

WordNet 330,000

GeoNames 85,000

OpenCyc 60,000

UMBEL 20,000

Bio2RDF 25,000

Data Source No. of Links

WikiCompany 25,000

MusicBrainz 23,000

Book Mashup 7,000

Project Gutenberg 2,500

DBLP Bibliography 200

CIA World Factbook 200

EuroStat 200

Table 6.4: Distribution of outgoing RDF links pointing from DBpedia to other
datasets.

In order to get an overview of the external data sources that currently publish
RDF links pointing at DBpedia entities, we analyzed 8 million RDF documents

114

http://linkeddata.org

6.1 The DBpedia Project

Data
Source

Classes

BBC Music musicians,
bands

Bio2RDF genes,
proteins,
molecules

CrunchBase companies

Diseasome diseases

Faviki various
classes

flickr wrappr various
classes

FOAF various
classes

GeoNames places

GeoSpecies species

John Peel musicians,
works

Data Source Classes

LIBRIS authors

LinkedCT intervention, condi-
tions

Linked Drug-
Bank

drugs, diseases

LinkedMDB films

Lingvoj languages

OpenCyc various classes

OpenCalais locations, people

Surge Radio musicians, bands

UMBEL various classes

RDFohloh programming lan-
guages

Revyu various classes

LODD SIDER drug side effects

Semantic Web
Corpus

various classes

Table 6.5: Data sources publishing RDF links pointing at DBpedia entities.

that have been crawled from the Web by the Sindice Semantic Web Search en-
gine [Tummarello et al., 2007]. The analysis revealed that there are currently 23
external data sources setting RDF links to DBpedia. Table 6.5 lists these data
sources together with the classes of DBpedia entities that are the targets of the
incoming links.

6.1.4 Applications

The DBpedia knowledge base and the Web of Data around DBpedia lay the foun-
dation for a broad range of applications. As DBpedia is interlinked with various
other data sources, DBpedia URIs are good starting points to explore or crawl
the Web of Data. Data browsers that can be used to explore the Web of Data
include Tabulator [T. Berners-Lee et al., 2006], Marbles11, Disco12, and the Open-
Link Data Explorer13.

DBpedia Mobile [Becker and Bizer, 2008] is a location-aware client for the Se-
mantic Web that uses DBpedia locations as navigation starting points. DBpedia

11http://beckr.org/marbles
12http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
13http://ode.openlinksw.com/example.html

115

http://beckr.org/marbles
http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
http://ode.openlinksw.com/example.html

6 Improving Scalability of OWL Learning Algorithms

Mobile14 allows users to discover, search and publish Linked Data pertaining to
their current physical environment using an iPhone and other mobile devices as
well as standard web browsers. Based on the current GPS position of a mobile
device, DBpedia Mobile renders an interactive map indicating nearby locations
from the DBpedia dataset. DBpedia Query Builder15 is a tool to demonstrate
the querying capabilities of DBpedia. It allows expert and non-expert users to
formulate and execute queries over DBpedia and save them for later use.

Muddy Boots16 is a project commissioned by the BBC that aims to enhance
the BBC news stories with external data. The Muddyboots APIs allow to identify
the main actors (people and companies) in a BBC news story in an unambiguous
way by means of DBpedia identifiers. In this way, the story is linked to DBpedia
data, which is then used by a BBC prototype to populate a sidebar with back-
ground information on identified actors [Kobilarov et al., 2009]. Open Calais17 is
a project by Thomson Reuters that provides a web service for named entity recog-
nition from freetext as well as related tools. With release 4 of the web service,
entity descriptors are published as Linked Data with outgoing owl:sameAs links
to DBpedia, Freebase and GeoNames. Faviki18 is a social bookmarking tool that
allows tagging of bookmarks with Wikipedia-based identifiers to prevent ambigu-
ities. Identifiers are automatically suggested using the Zemanta API (see below).
DBpedia is leveraged to view tags by topics and to provide tag descriptions in
different languages. Zemanta19 provides tools for the semi-automated enrichment
of blogs. The company offers its annotation engine to third parties via an API.
Zemanta recently extended its API to generate RDF links pointing at DBpedia,
Freebase, MusicBrainz and Semantic CrunchBase. LODr20 allows users to tag
content that they contributed to popular Web 2.0 services (Flickr, del.icio.us,
slideshare) using Linked Data identifiers, such as those provided by DBpedia.
Topbraid Composer21 is a Semantic Web modeling environment that includes a
built-in capability to resolve a label to a Wikipedia article, from which it derives
a DBpedia resource URI.

Two applications developed by the author in corporation with other researchers
(see [Lehmann et al., 2007, Heim et al., 2009, Lehmann and Knappe, 2008]) are
the DBpedia Relationship Finder and the DBpedia Navigator, which are briefly
described in the sequel.

14http://beckr.org/DBpediaMobile
15http://querybuilder.dbpedia.org/
16http://muddyboots.rattleresearch.com/
17http://opencalais.com/
18http://faviki.com
19http://zemanta.com
20http://lodr.info/
21http://www.topbraidcomposer.com/

116

http://beckr.org/DBpediaMobile
http://querybuilder.dbpedia.org/
http://muddyboots.rattleresearch.com/
http://opencalais.com/
http://faviki.com
http://zemanta.com
http://lodr.info/
http://www.topbraidcomposer.com/

6.1 The DBpedia Project

RelFinder A user interface that can be used to explore the DBpedia knowledge
base is the DBpedia Relationship Finder22. The Relationship Finder allows users
to find connections between two different entities in DBpedia. The Relationship
Finder user interface initially contains a simple form to enter two entities, as well
as a small number of options, and a list of previously saved queries. While typing,
the user is offered suggestions for the object he wants to enter. The first version of
the DBpedia Relationship Finder was published in [Lehmann et al., 2007] along
with statistical discoveries in DBpedia.

Figure 6.6: Revealing relationships between Kurt Gödel und Albert Einstein.

In [Heim et al., 2009] the tool was renamed to RelFinder and generalised to
arbitrary knowledge bases accessible via SPARQL, while DBpedia remained its
most popular use case. Figure 6.6 gives a quick overview of its functionality. The
search terms that are entered by the user in the two input fields in the upper left
corner (Fig. 6.6, A) get mapped to unique objects of the knowledge base. These
constitute the left and right starting nodes in the graph visualization (Fig. 6.6,
B) that get then connected by relations and objects found in between them by the
algorithm. If a certain node is selected, all graph elements that connect this node
with the starting nodes are highlighted forming one or more paths through the
graph (Fig. 6.6, C). In addition, further information about the selected object is
displayed in the sidebar (Fig. 6.6, D). Filters can be applied to increase or reduce

22http://relfinder.dbpedia.org/

117

http://relfinder.dbpedia.org/

6 Improving Scalability of OWL Learning Algorithms

Figure 6.7: Overview of the DBpedia Navigator GUI. DBpedia Navigator provides
an interface for searching and browsing within DBpedia.

the number of relationships that are shown in the graph and to focus on certain
aspects of interest (Fig. 6.6, E). We refer the interested reader to the article for a
description of how the RelFinder is realised technically.

DBpedia Navigator DBpedia Navigator23 is a user interface for browsing, search-
ing, and navigating within DBpedia. For searching entities, it uses the Virtuoso
triple store full text index. If there is no match, a list of resources containing the
string will be shown. The list is ordered by the number of DBpedia pagelinks to an
article, which is a simple but effective way to rate search results. The number of
pagelinks has been computed beforehand, such that search results can be ranked
very fast.

The entity view is tailored for DBpedia and consists of several parts, which are
separated by a dotted horizontal line. The first part shows a short description
of the object with an associated picture. Links to the corresponding Wikipedia
article, the DBpedia resource description and a Flickr photo collection are given.

23http://navigator.dbpedia.org

118

http://navigator.dbpedia.org

6.2 Knowledge Fragment Selection

The second part consists of links to interesting interlinked objects from other
knowledge bases. Below those, the classes of the object are depicted. The used
class hierarchy can be switched between YAGO and the DBpedia ontology in a
configuration file. Using the displayed links, you can search for instances of these
classes, which takes you to a search result view of the instances, or alternatively
you can view information about the class itself. The third part is a content-
specific section depending on the kind of viewed object. If the object is a location,
a Google Map is shown, if it is a person, some characteristics of that person are
displayed etc. Finally, the fourth part is a collection of interesting information,
which was not yet consumed by any of the parts above (interlinked data, class
hierarchy, short abstract etc.) and is not ignored by a configurable object filter
(e.g. we filtered out SKOS properties). They are displayed in a style similar to
typical Linked Data browsers. Properties with many values are grouped.

Shown articles are automatically added to the list of search relevant articles in
the upper box on the right sidebar. These instances are used to generate navigation
suggestions (see top of screenshot) via the presented OCEL machine learning
algorithm in combination with the fragment extraction approach presented in the
next section.

In [Auer and Lehmann, 2007, Auer et al., 2008, Lehmann et al., 2009] the in-
terested reader can study more technical details about DBpedia and a discussion
of related work.

6.2 Knowledge Fragment Selection

We currently experience that Semantic Web technologies are gaining momentum
and large knowledge bases such as the described DBpedia, OpenCyc [Lenat, 1995],
GovTrack24 and others are freely available (see Figure 6.5). These knowledge bases
are based on semantic web knowledge representation standards. They contain
hundred thousands of properties as well as classes and an even larger number of
facts and relationships. These knowledge bases and many more25 are available as
Linked Data or SPARQL endpoints [Clark et al., 2008].

The learning algorithms we introduced are appropriate for small and medium
size knowledge bases, while they cannot be directly applied to large knowledge
bases (such as the initially mentioned ones) due to their dependency on reasoning
methods. We present an approach for leveraging those algorithms. The scalabil-
ity of the algorithms is ensured by reasoning only over ”interesting parts” of a
knowledge base for a given task.

We present the following results (for details see [Hellmann et al., 2009a] as our
main reference for this section):

24http://www.govtrack.us
25http://esw.w3.org/topic/SparqlEndpoints

119

http://www.govtrack.us
http://esw.w3.org/topic/SparqlEndpoints

6 Improving Scalability of OWL Learning Algorithms

• development of a flexible method for extracting relevant parts of very large
and possibly interlinked knowledge bases for a given learning task,

• thorough implementation, integration, and evaluation of these methods in
the DL-Learner framework (see Section 7.1)

• presentation of several application scenarios and examples employing some
very large knowledge bases available on the Web.

Motivation The most commonly used reasoners such as Pellet and Fact++ do
not, although highly optimized and efficient, have the ability to scale up to large
knowledge bases. Thus, it becomes impossible to use the presented learning algo-
rithms as soon as the target knowledge base reaches a certain size and complexity,
with two major problems being initialization time (i.e. to load the data into the
reasoner) and the time to answer instance checks. However, in order to solve the
learning problem it is often not necessary to consider the complete knowledge
base, but only a fragment that holds enough information to produce good results,
while at the same time is small enough to allow efficient reasoning.

Desired Fragment We are looking for a sufficiently small fragment F of an
ontology O (F ⊆ O), which contains the examples E and further relevant infor-
mation to solve a given learning problem LP . If we can successfully apply the
learning algorithm on the fragment yielding the concept C, which is a solution of
the learning problem, then C should also be a solution of the learning problem in
the large knowledge base O.

The following example shall briefly illustrate, what can be achieved by our
fragment selection approach, before we will explain, in detail, how such a fragment
is selected and which parameters are used.

Example 6.1 (Manual Example From Semantic Bible)
Here and also in later experiments, we choose the Semantic Bible ontology26,
because it is a medium sized ontology, contains rich background knowledge and
is still manageable by a reasoner as a whole. This enables us to directly compare
the results of learning on the fragment to results obtained on the whole knowledge
base. We manually choose Archelaus and HerodAntipas, two brothers from the
New Testament as positive examples, while we choose God, Jesus, Michael and
Gabriel (the archangels) as negative examples. The learning algorithm was then
executed twice, once in normal mode, where the whole ontology was loaded into
the OWL reasoner (Pellet) and once where first a fragment was selected by our
extraction method27, which was then loaded into Pellet (see Figure 6.8 for an
overview). The 20 best learned expressions from both runs (like ∃siblingOf.Man
or ∃siblingOf.∃spouseOf.Human) are with some exceptions identical and, even

26http://www.semanticbible.com/ntn/ntn-overview.html
27The ontology was loaded into a local Joseki triple store and queried with SPARQL.

120

http://www.semanticbible.com/ntn/ntn-overview.html

6.2 Knowledge Fragment Selection

Figure 6.8: Process illustration: In a first step, a fragment is selected based on
objects from a knowledge source and in a second step the learning
process is started on this fragment and the given examples.

Semantic Bible Normal Fragment

No. of classes 49 27

No. of objects 724 60

No. of object properties 29 20

No. of data properties 9 0

No. of subclass axioms 51 25

Time needed for extraction - 4.2s

Reasoner instantiation time 3.6s 1.3s

No. of reasoner queries 1480 313

Avg. time per query 120ms 2ms

Reasoning time 178.0s 0.8s

Learning time without reasoning 0.4s 0.1s

Total time 182.0s 6.4s

Table 6.6: Manual example to give a first glance at the presented method. Note
that not only are reasoner queries faster on average, but also the number
of queries needed is significantly smaller (due to the smaller search
space.)

more important, all 20 classes learned from the fragment yield 100% accuracy on
the whole ontology. Table 6.6 provides details on the Semantic Bible ontology and
solving the learning problem on it as a whole or on a fragment.

6.2.1 What Properties Should the Fragment Have?

In the previous section, we stated what a desired fragment is. It allows fast
reasoning and the learned expressions achieve (approximately) the same accuracy
when validated versus the original knowledge base. We now take a closer look
at what should be included in the fragment for the learning algorithm to work
efficiently while still achieving good results. The first obvious inclusions are the

121

6 Improving Scalability of OWL Learning Algorithms

example objects themselves. Secondly, all classes of the examples and all related
objects (via an object property) are necessary. Note that the property between
objects will always be included implicitly, when we add related objects to the
fragment. Up to now, the fragment consists of the combined Concise Bound
Descriptions (CBD28) of the examples. The information contained is clearly not
yet sufficient to learn complex classes. Some class expressions derivable when
using only CBDs are of the form C t R or C u R, where C is any conjunction or
disjunction of named classes and R is a conjunction or intersection of unqualified
property restrictions of the form ∃ property.>. While this is of course often not
sufficient, it still represents the smallest sensible fragment, where it is possible to
learn expressions at all with the trade-off scale shifted away from high learning
accuracy towards efficient light-weight reasoning.

One of the major influences on the validity of learning results stands in direct
relation to the possible deductive inferences on the fragment. Since reasoning
in description logics is monotonic, the inferences obtained on a fragment of an
ontology are also valid for the ontology as a whole (soundness). However, not all
possible inferences might be obtainable on the fragment and reasoning thus can
be viewed as being “incomplete”, e.g. an instance check C(a) answered negatively
on the fragment (the reasoner cannot deduce that a is instance of C) might be
answered positively on the whole ontology.

As a consequence, a learning problem might be solved incorrectly, because the
learning algorithm implicitly assumes that the underlying reasoning methods are
complete. So, if for a class expression C the resulting answer set of a retrieval
will contain all positive examples and none of the negatives, it will present C
as a solution. Due to the issues explained above, however, the previously not
covered negative example individuals might now be an instance of C when the
whole ontology is considered. Thus a correctly learned class expression might
turn out to be inconsistent. We tackle this problem by trying to avoid such cases
through selection of an ontology fragment containing all relevant information as
described in detail below. Furthermore, in most application scenarios the learned
class expressions (and/or its implications) are reviewed by a human expert. Since
reasoning on very large knowledge bases is currently almost impossible, it is hard
to give exact measures of the extend to which the negative example coverage
problem occurs in those cases. However, we will later perform further benchmarks
on the medium sized Semantic Bible ontology and can draw conclusions from those
observations.

6.2.2 Extending Concise Bound Descriptions (CBDs)

In the following, we will give a list containing which information can be addition-
ally extracted to learn more complex classes compared to CBDs. We assume that
the CBDs of all example individuals are already included in the fragment. On

28http://www.w3.org/Submission/CBD/

122

http://www.w3.org/Submission/CBD/

6.2 Knowledge Fragment Selection

this basis, the following list shows additional information which can be extracted:

1. Direct Classes Retrieving direct classes for all objects a in the fragment,
that do not yet have any types, i.e. an assertion of the form C(a), will allow
to learn qualified property restrictions of the form ∃ property.C.

2. Increased Property Depth A further extension of the CDBs by objects, which
are related to an object, which is related to an example etc., enables to learn
expressions with nested property restrictions, e.g. ∃ propA.∃ propB.>. This
extension can be continued such that it is possible to learn nested prop-
erty restrictions up to some recursion depth as parameter of the extraction
algorithm.

3. Hierarchy Retrieving the class hierarchy relevant for the fragment improves
the efficiency of the learning algorithm, because it 1) optimizes the search
tree with the help of the subsumption hierarchy and 2) enables the usage of
those classes in learned descriptions. The algorithm performs this step by
querying for all super classes of existing classes in the fragment until no new
classes are obtained.

4. Class Definitions and Axioms Extracting information for all classes in the
fragment, e.g. definitions (owl:equivalentClass), disjointness, etc., will
permit the learning algorithm to make use of this valuable background
knowledge. For instance, knowing whether classes are disjoint speeds up the
reasoning and learning process. Definitions are, of course, necessary to draw
inferences relevant for instance checks. In general, extracting class related
axioms reduces the above mentioned negative example coverage problem.

5. Explicit Property Information Retrieving characteristics of object properties,
such as owl:SymmetricProperty, domain/range, and the property hierarchy
allows useful inferences by the OWL reasoner.

6. Inferred Property Information Because reasoning is normally deactivated in
SPARQL endpoints or Linked Data sources, reasoning on the fragment could
be improved by also including objects that are related to the examples via
a symmetric, inverse or transitive property. Nevertheless to include such
properties, which only become “visible” after inference, additional costly
queries need to be used. Empirically, the negative impact on performance
is considerable, so we accepted this trade-off in favor of a faster extraction
procedure.

7. Complete Class Definitions There also is the possibility that classes which
are contained in the fragment might occur somewhere in the ontology on
the right hand side of a class definition (e.g. SomeClass = AnotherClasst
ClassInFragment). As in the item above, the cost to find such information
can become quite significant. To completely extract all such information

123

6 Improving Scalability of OWL Learning Algorithms

all class axioms would need to be evaluated. As above, such information
requires an intensive search, which is why we refrained from including it,
although we might make it available as a parameter in the future.

Another requirement for the fragment is that it should be correct OWL-DL, so
that it can be processed by OWL Reasoners.

6.2.3 Extraction Methods

Although the extraction algorithm, we are about to present, was developed to
fit the needs of the class learning algorithm, it can basically be applied in any
context, where a set of individuals needs to be analyzed with respect to given
background knowledge (a circumstance often required in Machine Learning). The
size of the fragment can be controlled in a flexible way to regulate the trade-
off between complete reasoning and performance. Especially the Linked Data
paradigm gives rise to questions concerning reasoning and performance, which
cannot merely be answered by optimizing existing reasoning algorithms and using
more powerful hardware. Linked Data connects facts across knowledge bases.
Due to limited computational resources, we have to decide how far links into other
knowledge bases or within the knowledge base itself should be followed and how we
retrieve relevant data. In the course of this section, we will describe the extraction
algorithm independently from the actual knowledge source, because it is not bound
to a certain data publication formalism and works for several variations such as
Linked Data or SPARQL endpoints. The actual data provisioning is merely a
technical implementation question. After this section though, we will describe
our implementation for SPARQL endpoints, which contains optimizations of the
method.

The algorithm traverses the RDF graph of the original knowledge base recur-
sively starting from the examples. The parameters of the algorithm allow to
control the size of the fragment, such that each point in the above mentioned
list (information necessary to learn more complex classes) can be included or ex-
cluded. Additionally, filters are used to gain more flexibility during the extraction
of the fragment. The filters are applied to the lowest possible level in the data
acquisition and thus we will start with describing the acquisition interface.

Definition 6.2 (Tuple Acquisition Interface)
A tuple acquisition function acquireKB in the context of the described fragment
extraction procedure takes four arguments: resource (a URI), predicateFilter
(a list of strings), objectFilter (a list of strings), and literals (a boolean flag).
The function returns tuples consisting of predicate and object of all RDF triples
in K where resource is the subject of the triple, the predicate of the triple does
not start with a string contained in predicateFilter, the object of the triple
does not start with a string contained in objectFilter, and the object of the
triple is not a literal if literals is false. We will simply write acquire(resource)
when the context is clear. �

124

6.2 Knowledge Fragment Selection

The filters provide the possibility to create a fine-grained selection of the ex-
tracted information. They are especially useful for multi-domain knowledge bases
such as DBpedia, where retrieving information unfiltered will lead to an unnec-
essary large fragment. In our case, we avoid retrieving information, that is not
important to the learning process. In some cases, we do not want to use datatype
properties, so they can be omitted by the literal parameter shown above. The
predicate filter removes properties that are not important (e.g. when working with
DBpedia we can use this to filter properties pointing to web pages and pictures).
The same is true for the object filter, i.e. it filters uninteresting objects in triples.

The configuration of filter criteria is in most cases optional and is clearly content-
driven. While the parameters of the extraction algorithm steer the structural
selection of knowledge, filters work at a lower abstraction level. The configu-
ration depends on the particularities of the knowledge source and the intended
task and can be optimized for the application. The choice can, on the one
hand, add another edge to performance and, on the other hand, allow a content-
aware filtering. If the knowledge base makes use of different structural hier-
archies such as DBpedia, which uses YAGO classes [Suchanek et al., 2007] and
also the SKOS vocabulary29 combined with its own categories, one of the hier-
archies can be selected by excluding the other. Adding the SKOS namespace
(http://www.w3.org/2004/02/skos/core) to the predicate and object filter list
will guarantee that the fragment will be free of SKOS vocabulary. A Social Se-
mantic Web application, for example, might be especially interested in FOAF and
thus would filter other information.

After having defined the filters for the respective knowledge source, a recursive
algorithm (see Algorithm 6) extracts relevant knowledge for each of the objects
in the example set using acquire(instance). The objects of the retrieved tuples
(p,o) are evaluated, manipulated and used to further extract knowledge (using
acquire(o)) until a given recursion depth is reached. The process is illustrated in
Figure 6.9.

The algorithm remembers valuable information that is used to convert the frag-
ment to OWL DL, which we will describe later.

Parameters In the following, we will relate the influences of the algorithm pa-
rameters to the list in the previous section.

The parameter recursion depth has the greatest influence on the number of
triples extracted and included in the fragment. If set to 0 the fragment will only
consist of the examples. A recursion depth of 1 means that only the directly
related objects and classes are extracted, which results in the combined CBDs of
all examples. A recursion depth of 2 extracts all direct classes of the examples,
their direct super classes and all directly related objects and their direct classes and
directly related objects. This will enable the algorithm to learn nested property
restrictions (2. Increased Property Depth), includes some hierarchy information

29http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/

125

http://www.w3.org/2004/02/skos/core
http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/

6 Improving Scalability of OWL Learning Algorithms

Figure 6.9: Extraction starting with three examples. The circles represent differ-
ent recursion depths. The circles around the starting objects signify
recursion depth 0. The larger inner circle represents the fragment with
recursion depth 1 and the largest outer circle with recursion depth 2.

(3. Hierarchy), allows qualified property restrictions for unnested properties (1.
Direct Classes) and includes definitions of classes directly connected to the starting
individuals (4. Class Definitions and Axioms).

We avoid following cycles, which often occur when encountering inverse prop-
erties, owl:sameAs, owl:equivalentClass etc., by storing all resources already
visited. If the object is a blank node, we will not decrease the recursion counter
until no further blank nodes are retrieved. This ensures that extracted axioms,
e.g. A ≡ A1 u A2, are extracted completely, which might otherwise not be the
case, since their RDF serialisation consists of several triples.

If we use all existing objects of the original knowledge base as starting seeds with
a sufficient recursion depth, the algorithm will extract the whole knowledge base
with the exception of unconnected resources, which in most cases barely contain
useful information.

To cover other points on the list above, the algorithm retrieves additional infor-
mation in post-processing steps, which can be switched on and off independently.

Close after recursion For each object in the fragment that does not yet have
any classes assigned to it, classes are retrieved and added to the fragment (cf list
1. Direct Classes).

Get all super classes For all classes in the fragment, all super classes are retrieved
and the hierarchy is extracted (cf. list 3. Hierarchy). Additionally, all definitions
are included (cf. list 4. Class Definitions and Axioms).

Get all property information For all object properties, types, domain, range and
the property hierarchy will be retrieved (cf. list 5. Explicit Property Information).

Depending on the expected complexity of class expressions (in particular their

126

6.2 Knowledge Fragment Selection

property depth) and the density of the background knowledge, a recursion depth
of 1 or 2 (with all post-processing steps enabled, otherwise 2 or 3) represents a
good balance between the amount of useful information and the possibility to
reason efficiently in a large knowledge base.

The retrieved triples can be further manipulated by means of user defined rules.
For example, vocabularies that resemble class hierarchies but use different iden-
tifiers (such as SKOS) can be mapped to OWL class hierarchies. We also used
this technique to embed tags or other structurally important individuals in a class
hierarchy in order to enable learning class expressions. Additional information
can be easily inserted in this step of the extraction. The function manipulate

does not only allow for manipulation, but can also be used to retrieve and include
information from other knowledge bases. Even a new extraction can be started
based on the current resource.

Algorithm 6: Knowledge Extraction Algorithm

Function: extract1

Input: recursion counter, resource, predicateFilter, objectFilter, literals
Output: set S of triples

2

if recursion counter equals 0 then3

return ∅4

S = empty set of triples;5

// for acquire see Definition 6.26

resultSet = acquire(resource, predicateFilter, objectFilter, literals);7

newResultSet = ∅ ;8

foreach tuple (p,o) from resultSet do9

newResultSet = newResultSet ∪ manipulate(typeOfResource,p,o);10

// the function manipulate allows the alteration11

// based on the semantic information of the retrieved12

// URIs and evaluates the type of the newly13

// retrieved resources14

create triples of the form (resource,p,o) from the newResultSet ;15

add triples of the form (resource,p,o) to S;16

foreach tuple (p,o) from the newResultSet do17

if o is a blank node then18

S = S ∪ extract(recursion counter, o, predicateFilter, objectFilter,19

literals);

else20

S = S ∪ extract(recursion counter -1 ,o, predicateFilter,21

objectFilter, literals);

return S22

127

6 Improving Scalability of OWL Learning Algorithms

6.2.4 OWL DL Conversion of the Fragment

Extracted knowledge often has to be altered to adhere to OWL DL for further
processing, which means explicitly typing classes, properties and objects. Since
the knowledge base might not provide (correct) typing information for all indi-
viduals, we infer typing information for newly retrieved resources. We follow
[Bechhofer and Volz, 2004], who mention an approach, that is based on the idea
that if the type of a triple’s subject is known, we can infer the type of the ob-
ject by analyzing the predicate. Since we always start from objects, we possess
additional information and therefore are able to extend the rules mentioned in
[Bechhofer and Volz, 2004, pp. 673-674]. Given a triple (s, p, o) we can draw the
following conclusions:

• If s is an object and p is rdf:type then o is a class.

• If s is an object, p is not rdf:type, and o not a literal then o is an object.

• If s is a class then o is a class, unless the knowledge source is in OWL Full,
in which case we can configure DL-Learner to either ignore such statements
or map rdf:type (between classes) to rdfs:subClassOf. All properties
are then ignored except those in the OWL vocabulary having owl:Class as
range.

• p is an object property if o is a resource and p is a datatype property if o is
a literal.

With the help of these observations, we can type all collected resources iter-
atively, since we know that the starting resources are objects. Thus, we have a
consistent way to convert the knowledge fragment to OWL DL based on the infor-
mation collected during the extraction process. Due to the comparatively small
size, deductive reasoning can now be applied efficiently, allowing the application
of machine learning techniques.

6.2.5 SPARQL Implementation of Tuple Acquisition

In this section, we will briefly explain how the tuple acquisition interface is imple-
mented efficiently for SPARQL endpoints. The basic triple pattern, which is used,
is of the form {<resource> ?p ?o} according to the function acquire(resource). The
remaining parameters are appended using the FILTER keyword as in the exam-
ple below. To disburden the SPARQL endpoint, caching is used to remember
SPARQL query results which were already retrieved. The extraction algorithm’s
performance for non-local endpoints is mainly determined by the latency for re-
trieving SPARQL results via HTTP.

Example 6.3 (Example SPARQL Query on DBpedia)
In this example, we show how we filter out triples using SKOS and DBpedia
categories, but leave YAGO classes. Furthermore, links to websites and literals
are filtered out.

128

6.2 Knowledge Fragment Selection

SELECT ?p ?o WHERE {
<http://dbpedia.org/resource/Angela_Merkel> ?p ?o.
FILTER (

!regex(str(?p),
’http://dbpedia.org/property/website’)

&& !regex(str(?p),
’http://www.w3.org/2004/02/skos/core’)

&& !regex(str(?o),
’http://dbpedia.org/resource/Category’)

&& !isLiteral(?o)). }

More optimizations include nested queries according to recursion depth in such a
way that it is only necessary to execute one query per example. When retrieving
the class hierarchy (Get all superclasses) already extracted subclass and other
class axioms are remembered and not queried a second time. Because blank
nodes in SPARQL result sets do often not relate to the internal blank nodes of
knowledge bases (they are iteratively numbered for each result set according to
the specification), we use a backtracking technique and assign internal blank node
ids.

The implementation of other tuple acquisitors is far simpler. Especially Linked
Data can be extracted by just a HTTP request, while the filters are applied after
the request. The great advantage of the Linked Data tuple acquisitor is that
it allows for cross-boundary acquisition of tuples from different knowledge bases
without further configuration and thus enables cross knowledge base accumulation
of knowledge.

6.2.6 Usage Scenarios

Instance Data Analysis

We briefly describe two scenarios using GovTrack and MusicBrainz [Swartz, 2002].

Last.fm30 is the worlds largest social music platform. For a given username,
we can get information about the last songs a user listened to as RDF31. The
songs contain ZitGist32 owl:sameAs links, which again refer to MusicBrainz. Mu-
sicBrainz is a very large open source music metadata base with plenty of infor-
mations about musicians. To obtain a description of the last artists a user has
listened to, we pick the MusicBrainz URIs of those artists as positive examples
and randomly selected artists as negative ones. To improve the learning process,
we converted the MusicBrainz tag cloud into a class hierarchy on the fly by adding
a property mapping entry, executed in the manipulate function (see Algorithm 6).
With the positive examples ”Genesis”, ”Children on Stun”, ”Robbie Williams”,

30http://www.last.fm/
31via http://dbtune.org/last-fm/$username (description at http://dbtune.org/last-fm)
32http://www.zitgist.com/

129

http://www.last.fm/
http://dbtune.org/last-fm

6 Improving Scalability of OWL Learning Algorithms

and ”Dusty Springfield”, and as negative ones ”Madonna”, ”Cher”, and ”Dread-
zone” we learned the description UK-Artist t (Rock-Genre u ∃bioEvent.Death)
using OCEL. This gives the user feedback (when expressed in natural language)
and allows the system to suggest similar songs, e.g. UK-Rock in this case. As
there is a variety of existing media players with MusicBrainz support33, a learning
application could be integrated as plugin into those and employ the Semantic Web
to provide descriptions of a users favorite artists, songs, etc.

A similar example for instance analysis can be given for GovTrack, a data set
about the US congress containing more than 10 million facts. Amongst other
uses, we can apply the presented techniques to learn about the interests and
working areas of politicians. To do so, we chose a US senator and queried the
GovTrack SPARQL endpoint to return all bills, which were sponsored by him
or her. We used this as positive examples and applied DL-Learner. As before
with the MusicBrainz tags we performed an enrichment step by converting the
subject strings of the bills (financial matter, education) to concepts. We queried
the Cyc Foundation browser, which uses OpenCyc34 as background knowledge,
to find suitable concepts and integrated them in a hierarchy. As a result, we
could see which topics a senator is most interested in and who are cosponsors in
bills sponsored by a senator. In this case, the advantage of OCEL is to reduce the
often considerable amount of information about a senator to a concise approximate
description.

Improving Data Quality

For large knowledge bases, in particular those developed by an Internet commu-
nity, it is often difficult to maintain a proper classification scheme. A typical
example are the DBpedia classification schemata. There have been various at-
tempts to create a classification hierarchy for DBpedia using e.g. the Wikipedia
category system as input. Even with good extraction techniques, human errors
cannot be completely eliminated and thus articles are assigned to wrong cate-
gories or to superfluously many categories. Class learning can be useful in this
scenario to learn a complex class C as a possible definition of an existing class
A and then verifying whether the instances of C coincide with those of A. Also
class expressions can be used to spot data inconsistencies in instance data and
to make suggestions for missing instances. In Example 6.4 we show how we can
successfully apply the algorithm on DBpedia in different ways to either improve
the class schemata, spot inconsistencies in existing categories or make suggestions
to Wikipedia editors. Note that a detailed evaluation of the used methods can
be found in the next chapter. Here we just evaluated the possibilities for future
applications on large knowledge bases.

33see http://en.wikipedia.org/wiki/MusicBrainz
34http://opencyc.org/

130

http://en.wikipedia.org/wiki/MusicBrainz
http://opencyc.org/

6.2 Knowledge Fragment Selection

Wikipedia Prime Min. Best Actors Dyes Tonga

Categories

Total number 71 75 56 50

Correct 53(1) 66(0) 34(0) 50(0)

Incorrect 18(0) 9(3) 22(7) 0(0)

Accuracy 98% 96% 88% 100%

Table 6.7: The table shows a probe of the automatic re-learning method for classes.
Sets were evaluated manually, falsely classified individuals in brackets

Example 6.4 (Re-Learning Wikipedia Categories)
We choose 4 Wikipedia categories (Best Actor Academy Award winners, Prime
Ministers of the UK, Fluorescent Dyes, Islands of Tonga), which are included
in the DBpedia dataset. These categories, as well as the individuals belonging
to them, are currently manually maintained by the Wikipedia community, who
would benefit greatly from a list of suggestions for missing instances or missing
infobox properties. To provide such suggestions a fully automated process is
required, when re-learning these categories. While the choice of positive example
instances is trivial (all instances assigned to the categories via skos:subject),
the selection of negative examples is not. If the instances are from a completely
different domain or randomly chosen, the correct class expressions are likely to be
quite simple. The negative examples were thus obtained by retrieving instances
that share the same YAGO classes as the instances in the category. We then
randomly selected from this set, such that the number of positive and negative
examples were equal. The learning process was then started. The assignment of
articles to categories in Wikipedia is not consistent (some categories seem to be
confused with tags). The category of British Prime Ministers, for example, also
includes instances like Anthony Eden hat (a typical hat form worn by Anthony
Eden) or Supermac (a comic strip about Harold Macmillan). We therefore set
20% as parameter when learning on the fragment. The learned class expressions
were used to classify the positive examples in two groups: correctly assigned to the
category and incorrectly assigned. We then manually checked these two sets as a
Wikipedia editor would do and compared the classification with the information
contained in the Wikipedia article.

The results, which are shown in Table 6.7, give a first glance at how useful the
generated sets can be for Wikipedia authors. A retrieval of learned concepts (see
below for explanation) on DBpedia can further find missing instances.

Since the above described process is fully automated (automatic example choice
and concept selection), it can be used to conduct data mining automatically.
The retrieved lists could support Wikipedia users, when editing lists and make
suggestions about missing entries. The automatically discovered inconsistencies
in DBpedia could contribute to future releases of DBpedia itself. �

131

6 Improving Scalability of OWL Learning Algorithms

SPARQL based Retrieval To validate the results in the described scenario
above, we assume that we can retrieve all instances of a learned concept. Usu-
ally this is a typical reasoner task. However, as mentioned before, it would
be too time-consuming to load the complete knowledge base in a reasoner and
pose a retrieval query for the learned concept. A way to solve this problem
is to use one or more SPARQL queries to obtain an approximation of the re-
trieval. We can draw on other work in this area here. The open source project
SMART [Battista et al., 2007] implemented a mapping, called DL2SPARQL, to
query large knowledge bases. It can be easily tested via their online demonstra-
tor35. Other work in the area of efficient approximate inferences for description
logics is also applicable.

Usage for Navigation

Large knowledge bases are very difficult to navigate and explore for end users, in
particular in cases with large TBoxes (schema) and large ABoxes (instance data).
When users search for interesting knowledge with respect to a certain task, they
are often able to find interesting objects by searching, browsing or remembering
certain objects. However, users usually will not be able to use the full complexity of
a knowledge base for posing sophisticated queries corresponding to their enquiries.
In these situations class learning combined with fragment extraction can help to
suggest high level concepts, thereby allowing the user to gain new insights and
explore other relevant objects, which are otherwise hard to find. As an example
we choose the DBpedia SPARQL endpoint again, as it is a multi-domain ontology,
which could typically be used for research on a certain topic. A user may browse
the knowledge through a user interface, which implicitly or explicitly detects some
articles, which are relevant for the current enquiry and others which are not.
These can be fed into the DL-Learner system (possibly asynchronously called via
AJAX in a web application scenario) as positive and negative examples. This was
prototypically done in the DBpedia Navigator tool described on page 118. An
example is given below:

Example 6.5 (Navigation Use Case)
With the help of class navigation we try to relate certain ancient Greek mathe-
maticians to mathematicians throughout history, that have similarities. Interest-
ing articles are: Pythagoras, Philolaus, Archytas (positive examples)
Uninteresting articles: Socrates, Plato, Zeno of Elea (negative examples)
In this first run we deduce the class yago:Mathematician retrieving more than 2000
instances from DBpedia. Those retrieved instances can further be ranked accord-
ing to certain keywords or rules. We add one of those instances (Democritus) to the
negative example set and learn the class expression Theorist t (Mathematician
u Physicist) in the next run, with which we retrieve slightly above 1000 instances
from DBpedia. By adding Aristoxenus to the negative examples, the algorithm

35http://134.117.108.147:8181/smart/query.jsf

132

http://134.117.108.147:8181/smart/query.jsf

6.3 Optimising Coverage Tests

now presents the class expression (among other similar alternatives, which we
omitted here) Believer t (Mathematician u Physicist). The number of result-
ing instances from DBpedia shrank to the human manageable size of 159. This
list reveals a categorical similarity between the now 8 chosen examples and the
instances that belong to the same learned class, containing Archimedes, Aristotle,
Blaise Pascal, Carl Friedrich Gauss, Christian Doppler, Galileo Galilei, Gottfried
Leibniz, Isaac Newton, Leonhard Euler, Thales, just to mention a few famous per-
sons from this list (we might add, that the real value are the not so famous and
obvious instances on this list, which are generally harder to identify in a large set
of data.). �

The obtained class expressions mentioned in the example can be converted into
natural language and shown as navigation links to the user. Hence, a user interface
can present related objects to a user and also tell why they are related.

This concludes the description of the fragment extraction algorithm and we
refer to Section 7.4 for an evaluation of it.

6.3 Optimising Coverage Tests

Most of the runtime of a learning algorithm is usually spent for coverage tests,
i.e. checking which examples are instances of a hypothesis. There are several
reasons for this: The first one is that those tests require instance checks, which
can be computationally expensive in OWL. Another reason is that the number of
objects to test can be very large, in particular in positive only and class learning
problems. We will look closer at those reasons and propose two optimisations:
The first optimisation is to use an approximate reasoning procedure. The second
optimisation is to perform only as many instance checks as required to be confident
that the accuracy of a hypothesis lies within a reasonably small interval.

6.3.1 Approximate and Partial Closed World Reasoning

In the introduced learning problems, we can use a reasoner designed for performing
a very high number of instance checks against a knowledge base which can be
considered static, i.e. we assume it is not changed during the run of the algorithm.
This is reasonable, since the algorithm runtimes are usually in the range of seconds
or minutes and users will usually not expect a learning algorithm to react on
knowledge base changes during runtime. This allows to optimise the efficiency of
reasoning by employing a two step process combining a standard OWL reasoner
with a fast approximate instance check method.

We use an approximate incomplete reasoning procedure for instance checks
which partially follows a closed world assumption (CWA). First, we use a stan-
dard OWL reasoner like Pellet to compute the instances of named classes occurring

133

6 Improving Scalability of OWL Learning Algorithms

in the learning process as well as the property relationships. The obtained infer-
ences, which can be viewed as an ABox, are stored in memory. Afterwards, the
reasoning procedure can answer all instance checks (approximately) by using only
the inferred knowledge, which results in an order of magnitude speedup compared
to using a standard reasoner for instance checks as we will show in Section 7.3.3.
The second step, i.e. the instance checks from the inferred knowledge in memory,
follows a closed world assumption. This means that we assume the inferred knowl-
edge to be complete with respect to instance checking. Below, we explain why
this assumption is useful even though it contradicts the open world assumption
in OWL. The procedure is straightforward in that we view the inferred ABox in
memory as model I of the knowledge base and compute whether aI ∈ CI holds,
which can be done very efficiently. Clearly, considering a single model leads to
incomplete reasoning. For instance, it might be the case for a disjunction C1 tC2

that some models I of the knowledge base satisfy aI ∈ CI1 (but not aI ∈ CI2) and
all other models satisfy aI ∈ CI2 (but not aI ∈ CI1). In this case, we have aI ∈ CI ,
which cannot be inferred by the described approximate reasoner. See the Oedipus
example in [Baader et al., 2007a] for a more detailed description of the need of
case distinctions in sound and complete description logic reasoning. While we are
aware of this limitation, we accept it due to its rareness and to obtain order of
magnitude improvements in performance.

We briefly want to discuss why we are preferring the partial CWA over a
straightforward use of a standard OWL reasoner. Note that this has been ex-
plained in [Badea and Nienhuys-Cheng, 2000] already, but we repeat the argu-
ment here. Consider the following knowledge base containing a person a with two
male children a1 and a2:

K = {Male v Person,

OnlyMaleChildren(a),

Person(a), Male(a1), Male(a2),

hasChild(a, a1), hasChild(a, a2)}

Assume, we want to learn a description for the named class OnlyMaleChildren.
If we want to compute the score for a concept C = Personu∀hasChild.Male, de-
scribing persons with only male children, we need to check whether a is an instance
of C. It turns out that this is true under CWA and not true under OWA36. How-
ever, C is a good description of a and could be used to define OnlyMaleChildren.
For this reason, the CWA is usually preferred in this Machine Learning scenario.
Otherwise, universal quantifiers and number restrictions would hardly occur (un-
negated) in suggestions for the knowledge engineer – even if their use would be
perfectly reasonable. In a broader view, the task of the learning algorithm is to
inspect the data actually present, whereas the knowledge engineer can then decide
whether these observations hold in general.

36Under OWA, there could be further female children.

134

6.3 Optimising Coverage Tests

6.3.2 Stochastic Coverage Computation

Another optimisation is reducing the number of instance checks. The method
will be described for the case of the CELOE score, but similar techniques can be
applied to the OCEL and ELTL score computation.

Looking at the definition of accc (see Equation 5.1 on page 100) in more detail,
we observe that |R(A)| only needs to be computed once, while |R(A)∩R(C)| and
|R(C)| are expensive to compute. However, since accc is only a score providing
a rough guidance for the learning algorithm, it is usually sufficient to approxi-
mate it. Approximating the score value allows us to compute it more efficiently,
i.e. test more expressions within a certain time span. However, a too inaccurate
approximation can also increase the number of expressions we have to test, since
the algorithm is more likely to investigate less relevant areas of the search space.
So there is a clear tradeoff in this situation, but, as a rule of thumb, we observed
that it is reasonable to approximate accuracy up to ±β (see Definition 5.4 on page
101). In this case, the length penalty balances the inaccuracy of the estimation
so that in the worst case the most promising expression is visited later when all
promising expressions with short length have been analysed.

The approximation works by testing randomly drawn objects and terminating
when we are sufficiently confident that our estimation is within ±β. Replacing
|R(A)∩R(C)| with a and |R(C)\R(A)| with b in Equation 5.1, we have to estimate
the following expression:

accc(C, t) =
1

t+ 1
·
(
t · a

|R(A)|
+

√
a

a+ b

)
(6.1)

We first approximate a (or more exactly t · a
|R(A)|) by drawing instances of A and

testing whether they are also instances of C. To compute a confidence interval
efficiently, we use the improved Wald method defined in [Agresti and Coull, 1998].
Assume that we have performed m instance checks where s of them were successful
(true), then the 95% confidence interval is as follows:

max(0, p′ − 1.96 ·
√
p′ · (1− p′)
m+ 4

) to min(1, p′ + 1.96 ·
√
p′ · (1− p′)
m+ 4

)

with p′ =
s+ 2

m+ 4

This formula is computationally inexpensive and has been shown to be accurate
in [Agresti and Coull, 1998]. Let a1 and a2 be the lower and upper border of the
confidence interval. We draw instances of A until the interval is smaller than 2β:

a2

|R(A)|
− · a1

|R(A)|
= ·a2 − a1

|R(A)|
≤ 2β (6.2)

In a top-down learning approach as CELOE, we can discard all expressions
with insufficient coverage, since all refinements of those will also have insufficient

135

6 Improving Scalability of OWL Learning Algorithms

coverage (a
|R(A)|). What constitutes an insufficient coverage is controlled by the

noise parameter of the learning algorithm. Noise is a parameter, which specifies
the maximum percentage of allowed false negatives for an expression, i.e. the
percentage of instances of the given class, which are not instances of the expression
(see page 92). If a knowledge base is of very high quality and almost error free, then
the noise parameter can be set to a value close to zero. However, if a knowledge
base may contain many errors, e.g. knowledge automatically extracted from text,
the noise parameter should be set to a high value. The default is 5%, which works
well for manually created ontologies.

If the coverage is sufficiently high with respect to the noise parameter, we pro-
ceed by approximating b. This is done, similar to a, by subtracting the values at
the borders of the confidence interval of b (with respect to Equation 6.1):

1

t+ 1
·
(
t · a2 − a1

|R(A)|
+

√
a2

a2 + b1
−
√

a1

a1 + b2

)
≤ 2β (6.3)

This formula also takes the uncertainty in a into account. First note that the
overall value of accc increases monotonically with larger a and smaller b. So we
subtract the value for the lower confidence interval border of a and the upper bor-
der of b from the upper border of a and the lower border of b. This is a pessimistic
estimate, i.e. the computed interval is overestimated and the approximation is in
fact better than ±β. Intuitively, the reason is that it is unlikely that both real
values of a and b are outside of their computed confidence interval. Also note
that it is not hard to show that this approximation process always terminates by
analysing the limit b1 = b2.

Example 6.6 (Stochastic Coverage Test)
Assume we want to learn an equivalence axiom, i.e. t = 1, for a class A, where
A has 1000 instances and the super classes of A, excluding A itself, have 10000
instances. We choose β = 0.05. Let C be an expression to test.

First, we approximate a by drawing instances of A and testing whether they are
instances of C. After 95 tests of which e.g. 90 were successful, the 95% confidence
interval in Equation 6.2 has a width of 0.1006, i.e. is wider than 2β. With another
successful test, the confidence interval, which now reaches from 0.8809 to 0.9805,
is sufficiently narrow. Hence, we only needed to perform 96 instead of 1000 tests.

We assume that the approximated value is above the noise threshold and con-
tinue to compute the overall heuristic value. We do this by drawing instances of
super classes of A, excluding A itself, and by testing whether they are instances
of C. Equation 6.3 (with a1 = 880.9 and a2 = 980.5) can then be used to estimate
whether our approximation is sufficiently accurate. After 64 instance checks of
which 32 returned true, the confidence interval is smaller than 2β and we can ter-
minate. In this case, we saved 9936 instance checks. In general, the performance
gain is higher for larger knowledge bases. Overall, we get an accuracy value of
67,4%. The expression C covers A well, but is very general. �

136

6.3 Optimising Coverage Tests

In summary, we presented DBpedia as a typical example of a large knowledge
base and introduced a fragment extraction procedure as well as approximate rea-
soning and coverage tests.

137

7 Implementation, Evaluation, and
Use Cases

In this chapter, we evaluate the introduced methods and show how they can be
applied to various problems. The chapter is structured as follows: First, we give
an overview over the DL-Learner project, which contains the implementation of
the methods presented in this thesis, in Section 7.1. We then evaluate the pre-
sented learning algorithms using standard techniques and benchmarks in Section
7.2. The ontology engineering use case, which was one of the motivations of the
thesis, is presented in Section 7.3. Section 7.4 provides an evaluation of the frag-
ment extraction approach, which was discussed in Section 6.2. Section 7.5 briefly
presents use cases, which are work in progress. Finally, a summarising overview
of strengths and limitations of the algorithms according to the evaluation is given
in Section 7.6.

7.1 The DL-Learner Project

DL-Learner consists of core functionality, which provides Machine Learning al-
gorithms for solving learning problems in OWL, support for different knowledge
base formats, an OWL library, and reasoner interfaces. There are several inter-
faces for accessing this functionality, a couple of tools which use the DL-Learner
algorithms, and a set of convenience scripts.

Component Manager

build desired combination of
knowledge sources,
reasoners, learning problems,
learning algorithms

Utililities

automatic example
selection,
UI elements

Interfaces

GUI Web-Service

Command-Line

Scripts

Cross Validation

Train+Test

Tools
ORE Protégé plugin

DBpedia Navigator
OntoWiki plugin

Figure 7.1: Overall structure of the DL-Learner software.

138

7.1 The DL-Learner Project

Knowledge Source Component

OWL file
internal knowledge base
SPARQL endpoint
Linked Data

Learning Problem Component

learning definitions/
subclass axioms
positive+negative examples/
positive only learning

Reasoning Service Component

DIG interface
OWL API interface
approximate reasoning

Learning Algorithm Component

top-down refinement approaches:
 OCEL, ELTL Base, ELTL, CELOE
Genetic Programming:
 standard and hybrid algorithm

uses

su
p

p
o
rt

s

b
a
se

d
 o

n

configuration optionsoffer offer

Figure 7.2: The architecture of DL-Learner is based on four component types each
of which can have their own configuration options. A component man-
ager can be used to create, combine, and configure components.

The general structure is illustrated in Figure 7.1. To be flexible and easily
extensible, DL-Learner uses a component-based model. There are four types of
components: knowledge source, reasoning service, learning problem, and learning
algorithm. For each type, there are several implemented components and each
component can have its own configuration options as illustrated in Figure 7.2.
Configuration options can be used to change parameters/settings of a component.

Knowledge Sources integrate background knowledge. Almost all standard OWL
formats are supported through the OWL API1, e.g. RDF/XML, Manchester OWL
Syntax, or Turtle. DL-Learner supports the inclusion of several knowledge sources,
since knowledge can be widespread in the Semantic Web. In addition, DL-Learner
facilitates the extraction of knowledge fragments from SPARQL endpoints and
Linked Data. This feature allows DL-Learner to scale up to very large knowledge
bases containing millions of axioms as described in Section 6.2.

Reasoner Components provide connections to existing or own reasoners. Two
components are the DIG 1.12 and OWL API reasoner interfaces, which allow to
connect to all standard OWL reasoners via an HTTP and XML-based mechanism
or a Java interface, respectively. Furthermore, DL-Learner offers its own approxi-
mate reasoner, described in Section 6.3.1, which uses Pellet3 for bootstrapping and
loading the inferred model in memory. Afterwards, instance checks are performed

1http://owlapi.sourceforge.net
2http://dl.kr.org/dig/
3http://clarkparsia.com/pellet/

139

http://owlapi.sourceforge.net
http://dl.kr.org/dig/
http://clarkparsia.com/pellet/

7 Implementation, Evaluation, and Use Cases

very efficiently by using a partial closed world assumption.

Learning Problems specify the problem type, which is to be solved by an al-
gorithm. Currently, the learning problems in Definitions 2.21, 2.22, and 2.23 are
implemented. They provide efficient coverage checks as detailed in Section 6.3.

Learning Algorithm components provide methods to solve one or more speci-
fied learning problem types. Apart from simple algorithms involving brute force
or random guessing techniques, DL-Learner comprises a number of sophisticated
algorithms based on hybrid genetic programming with a novel genetic operator
[Lehmann, 2007], top-down approaches with refinement operators for the descrip-
tion logic ALC [Lehmann and Hitzler, 2007c], and the OCEL, ELTL, and CELOE
algorithms presented in this thesis.

The homepage of DL-Learner is http://dl-learner.org and contains up-to-date
information about documentation and development of the software. A manual4,
which complements the homepage and describes how to run DL-Learner, is in-
cluded in its release. For developers, the Javadoc of DL-Learner is available on-
line5.

The code base of DL-Learner consists of approximately 50,000 lines of code (ex-
cluding comments) with its core, i.e. the component framework itself, accounting
for roughly 1,500 lines. It is licensed under GPL 3. About 20 learning exam-
ples are included in the latest release (to be precise: 132 if smaller variations of
existing problems/configurations are counted). 27 unit tests based on the JUnit
framework are used to detect errors.

There are several interfaces available to access DL-Learner: To use components
programmatically, the core package, in particular the component manager, can be
of service. Similar methods are also available at the web service interface, which
is based on WSDL. DL-Learner starts a web service included in Java 6, i.e. no
further tools are necessary. For end users, a command line interface is available.
Settings are stored in conf files, which can then be executed in a similar fashion to
other ILP tools. A prototypical graphical user interface is equally available, which
can create, load, and save conf files. It provides widgets for modifying components
and configuration options. An advantage of the component-based architecture is
that all the interfaces mentioned need not to be changed, when new components
are added or existing ones modified. This makes DL-Learner easily extensible.
Another means to access DL-Learner, in particular for ontology engineering, is
through plugins for the ontology editors OntoWiki6 and Protégé7. The OntoWiki
plugin is under construction, but can be used in its latest repository version. The

4http://dl-learner.org/files/dl-learner-manual.pdf
5http://dl-learner.org/javadoc
6http://ontowiki.net
7http://protege.stanford.edu

140

http://dl-learner.org/files/dl-learner-manual.pdf
http://dl-learner.org/javadoc
http://ontowiki.net
http://protege.stanford.edu

7.2 ILP Learning Problems

Protégé 4 plugin is included in the official Protégé plugin repository, i.e. it is easy
to install within Protégé. More details on the two plugins follow in Section 7.3.

7.2 ILP Learning Problems

To assess the performance of the described learning algorithms on real problems
and benchmarks, they were compared to other machine learning tools. The evalu-
ation process was performed in two steps: First, a comparison with algorithms in
description logics was performed. Afterwards, a comparison with state-of-the-art
ILP tools on a challenging problem was made.

7.2.1 Comparison with other Algorithms based on Description
Logics

Doubtless, there is a lack of evaluation standards in ontology learning from exam-
ples. In order to overcome this problem, we converted the background knowledge
of several existing learning problems to OWL ontologies. Besides the train prob-
lem (described on page 94), we also investigated the problems of learning family
relationships from FORTE [Richards and Mooney, 1995], learning poker hands,
and understanding the moral reasoning of humans. The two latter examples were
taken from the UCI Machine Learning repository8. For the poker example, we
defined two goals: learning the definition of a pair and of a straight. Similarly, the
moral reasoner examples were divided into two learning tasks: the original one,
where the intended solution is quite short, and a problem where we removed an
important intermediate concept, such that the smallest possible solution became
more complex. For the FORTE family data set, we defined the problem of learn-
ing the definition of an uncle (originally defined in [Lehmann, 2007]), where one
possible solution is:

Male u (∃ sibling.∃ parent.> t ∃ married.∃ sibling.∃ parent.>)

The poker example has medium size, but is not very complex with respect to
its terminology. The moral reasoner, however, is an expressive ontology, which we
derived from a theory given as a logic program. We designed the FORTE problem
to be slightly more difficult for our algorithm, such that no simple and short
solutions exist. Overall, the solutions of the examples cover a range of different
concept constructors and are of varying length and complexity. Note that in
the next section, we will describe a current ILP benchmark, the carcinogenesis
problem, in order to compare the described algorithm with inductive learning
algorithms which are not based on description logics.

8http://www.ics.uci.edu/˜mlearn/MLRepository.html

141

7 Implementation, Evaluation, and Use Cases

As a reasoner we used Pellet9, which was connected to the learner via the DIG
reasoner interface10 for YinYang [Iannone et al., 2007] and the OWL API11 in-
terface for DL-Learner (because DIG does not support asking for domains and
ranges), on a 2.2 GHz Dual CPU machine with 2 GB RAM. We compared our re-
sults with those from YinYang and other algorithms we have implemented within
the DL-Learner framework. In particular, we compared with a hybrid algorithm
using so called genetic refinement operators [Lehmann, 2007], i.e. adapted refine-
ment operators within a Genetic Programming (GP) framework. For reference we
also compared with a standard GP learning algorithm, which has been applied
to the learning problem in description logics and is also included in DL-Learner.
For all algorithms, we used five fold cross validation. We are not aware of other
systems available for comparison. The system in [Cohen and Hirsh, 1994] is no
longer available and the approach in [Badea and Nienhuys-Cheng, 2000] was not
fully implemented. DL-FOIL [Fanizzi et al., 2008] is not publicly available yet.
We compare the algorithms against OCEL and ELTL.

For YinYang we used the same settings as in all examples included in its release
and for OCEL and ELTL we used the standard settings. For the GP algorithms,
we chose a fixed number of 50 generations with a population of 500 individuals.
A generational algorithm with rank selection and activated elitism was used. The
algorithms were initialised using the ramped-half-and-half method with maximum
depth 6. For the standard GP algorithm, a crossover probability of 80 percent and
2 percent mutation probability was set. The hybrid approach was configured to 65
percent genetic refinement, 20 percent crossover, and 2 percent mutation. In both
cases, the fitness measure parameter α was adjusted to a low value (0.002), such
that the correct solutions have a sufficiently high value in the GP fitness function.
The settings are similar to those found to be suitable in [Lehmann, 2007], where
population size is varied between 100 and 700. Naturally, a GP algorithm always
allows to increase the number of invested resources and varying the population
size is one of the ways to do this. We finally picked a population size of 500 for
our evaluation, since in example runs it seemed to deliver a good tradeoff between
runtime and cross validation accuracy. Overall, the runtime of the GP algorithms
is often much higher than those of DL-Learner and YinYang in this setting.

Tables 7.1 and 7.2 summarise the results we obtained. As a statistical signif-
icance test, we used a t-test with 95% confidence interval. In all cases, OCEL
was able to learn a correct definition on the training set, which in most cases also
was correct on the testing set. For ELTL, the target language was sometimes not
sufficiently expressive, i.e. did not allow to construct good solutions. YinYang
could not handle the second poker problem (it produces an error after trying to
compute most specific concepts). Similarly, the FORTE problem could only be
handled after removing certain examples (4 out of 86). Figure 7.3 visualises the

9http://pellet.owldl.com
10http://dl.kr.org/dig/
11http://owlapi.sf.net/

142

7.2 ILP Learning Problems

problem DL-Learner OCEL

time (s) time 2 (s) length correct (%)

trains 0.8 ± 0.3 0.1 ± 0.0 5.0 ± 0.0 100.0 ± 0.0

moral I 2.8 ± 0.3 0.1 ± 0.0 8.0 ± 0.0 97.8 ± 5.0

moral II 2.7 ± 0.4 0.1 ± 0.0 8.0 ± 0.0 97.8 ± 5.0

poker I 3.4 ± 0.1 0.0 ± 0.0 5.0 ± 0.0 100.0 ± 0.0

poker II 19.7 ± 10.6 1.5 ± 0.1 11.0 ± 0.0 100.0 ± 0.0

forte 13.4 ± 1.8 0.3 ± 0.1 13.4 ± 0.9 98.9 ± 2.5

problem DL-Learner ELTL Base

time (s) length correct (%)

trains 1.2 ± 0.2 9.8 ± 2.7 100.0 ± 0.0

moral I 0.7 ± 0.1 2.6 ± 0.9 74.2 ± 6.6

moral II 0.7 ± 0.0 2.6 ± 0.9 74.2 ± 6.6

poker I 0.8 ± 0.0 7.0 ± 0.0 100.0 ± 0.0

poker II 1.2 ± 0.6 11.5 ± 1.0 98.1 ± 3.8

forte 0.0 ± 0.0 1.0 ± 0.0 73.1 ± 10.7

problem DL-Learner ELTL

time (s) length correct (%)

trains 1.4 ± 0.6 5.8 ± 1.8 90.0 ± 22.4

moral I 2.2 ± 0.6 3.0 ± 0.0 88.6 ± 19.3

moral II 2.1 ± 0.6 7.0 ± 2.8 81.7 ± 17.1

poker I 1.2 ± 0.1 5.0 ± 0.0 100.0 ± 0.0

poker II 1.3 ± 0.1 12.0 ± 2.0 100.0 ± 0.0

forte 2.3 ± 0.8 13.8 ± 7.2 89.3 ± 8.3

Table 7.1: Evaluation results for the OCEL and ELTL algorithms.

143

7 Implementation, Evaluation, and Use Cases

problem YinYang

time (s) length correct (%)

trains 0.2 ± 0.1 8.1 ± 1.5 100.0 ± 0.0

moral I 28.8 ± 12.1 69.0 ± 16.1 50.0 ± 21.7

moral II 32.6 ± 9.5 70.7 ± 21.8 62.5 ± 28.0

poker I 7.2 ± 0.8 43.2 ± 12.1 100.0 ± 0.0

poker II - - -

forte 26.4 ± 9.4 22.1 ± 12.0 90.0 ± 5.6

problem DL-Learner GP

time (s) length correct (%)

trains 33.4 ± 3.1 3.4 ± 0.9 60.0 ± 41.8

moral I 28.9 ± 1.4 1.0 ± 0.0 86.1 ± 10.0

moral II 31.0 ± 5.9 1.6 ± 0.9 62.8 ± 9.1

poker I 465.9 ± 261.3 3.4 ± 2.2 84.0 ± 21.9

poker II 283.3 ± 12.7 1.0 ± 0.0 92.7 ± 0.3

forte 235.9 ± 74.6 3.0 ± 0.0 88.1 ± 8.0

problem DL-Learner hybrid GP

time (s) length correct (%)

trains 10.5 ± 1.1 4.6 ± 0.9 80.0 ± 44.7

moral I 139.9 ± 10.0 3.0 ± 0.0 100 ± 0.0

moral II 118.7 ± 26.8 2.8 ± 1.1 71.9 ± 13.1

poker I 709.1 ± 60.7 5.0 ± 0.0 100.0 ± 0.0

poker II 1054.1 ± 36.5 1.0 ± 0.0 92.7 ± 0.3

forte 285.0 ± 25.6 3.0 ± 0.0 88.1 ± 8.0

Table 7.2: Results for YinYang and Genetic Programming approaches.

144

7.2 ILP Learning Problems

50

60

70

80

90

100

T
ra

in
s

M
or

al
I

M
or

al
II

P
ok

er
I

P
ok

er
II

F
O

R
T

E

ac
cu

ra
cy

in
p

er
ce

n
t

OCEL
ELTL Base

ELTL
hybrid

GP
YinYang

Figure 7.3: Accuracy comparison: OCEL has a statistically significantly higher
accuracy than all others on the complex moral reasoner, poker II, and
forte problems, while none of the other algorithms performs statisti-
cally significantly better on any of the other learning problems.

obtained cross validation accuracies. OCEL has a statistically significantly higher
accuracy than the GP and YinYang approaches on the complex moral reasoner,
poker II, and forte problems, while none of the other algorithms performs statis-
tically significantly better on any of the other learning problems. The hybrid GP
approach generally performed at least as good as the standard GP approach and
often it was (statistically significantly) better.

As another interesting criterion, we recorded the length of learned concepts
(see Figure 7.4). A notable observation is that YinYang produces longer concepts
than OCEL and ELTL with high statistic significance. In most cases, this rendered
those concepts hard to read for humans, which is a disadvantage for symbolic clas-
sifiers. In contrast, the genetic programming approaches often produce short con-
cepts. The standard GP algorithm usually learned such short solutions, because
it is often unable to find more accurate longer definitions. The hybrid approach is
more likely to find complex definitions, e.g. it sometimes found one of the possible
solutions (Severity harm u ¬Benefit victim u (Responsible t Vicarious)) of
the second moral reasoner problem.

Figure 7.5 compares the runtime of the different algorithms (note the logarith-
mic scale). Overall, the GP algorithms have a higher runtime. As mentioned
before, they can be parametrised to have a shorter runtime if we are willing to
accept a decline in accuracy. In general, OCEL and ELTL are statistically signif-

145

7 Implementation, Evaluation, and Use Cases

0

10

20

30

40

50

60

70

T
ra

in
s

M
or

al
I

M
or

al
II

P
ok

er
I

P
ok

er
II

F
O

R
T

E

le
n
gt

h
of

le
ar

n
ed

co
n
ce

p
ts

OCEL
ELTL Base

ELTL
hybrid

GP
YinYang

Figure 7.4: Comparison of the length of the learned concepts: YinYang produces
longer concepts, which were in general more difficult to read for hu-
mans, than OCEL with high statistic significance. The genetic pro-
gramming approaches, in particular the standard variant, are often
unable to solve the more complex problems in reasonable time.

icantly faster than all other approaches for all problems except trains.

For OCEL, we included another column ”time 2” in Table 7.2. These are the
learning times when employing the built-in approximate OWL reasoner instead of
pure Pellet (see Section 6.3.1 for a description).

Although partially using closed world reasoning, as done in this approach, can
change the node score and therefore influences the learning process, it did not
impact on the cross validation accuracy in the presented examples except for
a single fold in the poker II learning problem, where it stopped after finding a
shorter concept covering all training set examples, and therefore had an overall
cross validation accuracy of 96.2% instead of the 100% shown in the table.

All learning problems are available at the DL-Learner subversion repository12

and a script is provided to reproduce the results presented here.

7.2.2 Comparison with other ILP approaches

To compare OCEL with other ILP approaches and to apply it in a realistic sce-
nario, we choose the problem of predicting carcinogenesis. The aim of this task

12Browsable e.g. via http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/.

146

7.2 ILP Learning Problems

0.01

0.1

1

10

100

1000

T
ra

in
s

M
or

al
I

M
or

al
II

P
ok

er
I

P
ok

er
II

F
O

R
T

E

ru
n
ti

m
e

in
se

co
n
d
s OCEL

ELTL Base
ELTL
hybrid

GP
YinYang

Figure 7.5: Runtime comparison: The GP algorithms generally have the highest
runtimes unless we trade accuracy for runtime. OCEL and ELTL
are statistically significantly faster than all other approaches for all
problems except trains.

is to predict whether a chemical compound causes cancer given its structure and
the results of bio-assays. This has been recognised as an important research area:
”Obtaining accurate structural alerts for the causes of chemical cancers is a prob-
lem of great scientific and humanitarian value” [Srinivasan et al., 1997]. Although
this is one of the most well-researched problems in Machine Learning, it is still
important and challenging.

One of the problems we have to face when benchmarking DL-Learner is, of
course, that many of the problems are available in a Prolog-like syntax. The
first step to apply DL-Learner to the carcinogenesis problem was again to convert
the original data13 into an OWL ontology. To do this, we extended DL-Learner
with a Prolog parser and wrote a mapping script to convert the carcinogenesis
files into OWL. OWL (description logics) and logic programs have incomparable
expressivity. It is sometimes impossible and often not trivial to convert between
both representations. For carcinogenesis such a mapping is possible, but required
at least a superficial understanding of the domain. The mapping script we used
and the resulting ontology are both freely available at the DL-Learner download
page.14 During the transformation process almost no knowledge was lost or added.
The resulting ontology contains 142 atomic concepts, 19 roles and datatypes, 22373

13http://web2.comlab.ox.ac.uk/oucl/research/areas/machlearn/cancer.html
14http://sourceforge.net/projects/dl-learner

147

7 Implementation, Evaluation, and Use Cases

objects, and more than 74000 facts.
We used the approximate reasoner introduced in Section 6.3.1. Standard OWL

reasoners turned out to be much too slow in answering reasoning requests for this
ontology. Furthermore, we also enabled all extensions presented in Section 4.1.4.
Again, all tests were run on a 2.2 Ghz Dual core machine with 4 GB RAM.

The most sensible parameter of OCEL in the case of carcinogenesis prediction
is noise (bounding the minimum acceptable training set accuracy of the learned
definition). To find an appropriate setting for the noise parameter, we divided the
available examples into two sets. In a first phase, 30% of the 337 examples were
used to find the noise parameter value. This was done by starting from a noise
value of 50% and descending in one percent steps. We measured the ten fold cross
validation accuracy for each of those values. It turned out that a noise value of
30% has the highest accuracy (71.8%). In a second phase, we used this parameter
to measure the ten fold cross validation accuracy on the second set containing 70%
of all examples. This lead to an accuracy of 67.7% as shown in Table 7.3 together
with results of other approaches using the same background knowledge (many of
those use Aleph, a state-of-the-art Inductive Logic Programming system, as their
basis).

approach/tool accuracy readability reference

OCEL 67.7% ± 11.3% +

Aleph Ensembles 59.0% to 64.5% − [Dutra et al., 2003]

Boosted Weak ILP 61.1% − [Jiang and Colton, 2006]

Weak ILP 58.7% − [Jiang and Colton, 2006]

Aleph DTD 0.7 57.9% ± 9.8% ◦ [Železný et al., 2003]

Aleph RRR 0.9 57.6% ± 6.4% ◦ [Železný et al., 2003]

Aleph DTD 0.9 56.2% ± 9.0% ◦ [Železný et al., 2003]

Aleph RRR 0.7 54.8% ± 9.0% ◦ [Železný et al., 2003]

Table 7.3: Overview of the accuracy of different ILP approaches applied to the
carcinogenesis prediction problem. Many of those are improvements
or different settings of Aleph. Accuracy and standard deviation refer
to values obtained through 10 fold cross validation. Legend: DTD =
Deterministic Top Down, RRR = Randomized Rapid Restarts, +, ◦,−
stand for good, moderate, and bad readability of learning results (see
text)

For all approaches, where the standard deviation was given in the articles, we
calculated whether the difference in accuracy is statistically significant using a
t-test. We obtained P values of 0.0508 vs. Aleph DTD 0.7, 0.0231 vs. Aleph RRR
0.9, 0.0206 vs. Aleph DTD 0.9, and 0.0107 vs. Aleph RRR 0.7. Values ≤ 0.05
(3 out of 4 in this case) are statistically significant with a standard confidence
interval of 95%.

148

7.2 ILP Learning Problems

The average runtime for a noise value of 30% was 950 seconds with a concept
length of 20 when measured on all examples. We will briefly compare this with
the other approaches in Table 7.3.

[Dutra et al., 2003] is a bagging approach combining 1 to 100 hypotheses gen-
erated by Aleph. The results vary from 59.0% to 64.5% accuracy depending on
the chosen ensemble size. We believe that a combination of a high number of hy-
potheses scores lower on human interpretability, in particular since the concepts
provided by OCEL are quite compact. The results themselves were computed on
Condor15, a high throughput computing system and consumed 53580 CPU hours
including 3 other experiments apart from carcinogenesis. Even taking the different
ensemble sizes and parameter optimisation phases in this experiment into account,
our approach seems to be competitive.

[Jiang and Colton, 2006] did not record the runtime of experiments. The system
uses a boosting approach with 50 to 100 base classifiers based on WeakILP. Using
a similar length measure than the one we defined for DL concepts, i.e. counting
all logical symbols, the summed length is approximately 1000 compared to 13.4 in
our case. Hence, we also consider this approach to produce less readable results.

[Železný et al., 2003] reports runtimes of 6 to 7 hours for the two DTD ap-
proaches on a 1.5 GHz machine with 512 MB RAM. The RRR approaches are
much faster and need only 26 minutes. Regarding readability, the length of learned
programs is about 100. Hence, they are much shorter than those of the two other
approaches, but can still be considered harder to interpret than the results of
DL-Learner.

To illustrate the influence of the noise parameter, we additionally measured ten
fold cross validation accuracy, runtime, and concept length on all examples with
different noise values. The results are shown in Table 7.4. Since the noise parame-
ter acts as a termination criterion, we observe, as expected, that lower noise values
lead to significant increases in runtime. It becomes increasingly computationally
expensive for the learning algorithm to find concepts satisfying the termination
criterion and those concepts are usually also more complex as evident from the
last column of the table. Therefore, setting the noise values too low can also lead
to learning unnecessary complex concepts as shown in Figure 7.6.

As an example of a learned concept, the following definition was one of the more
complex concepts learned with noise=28%:

(Compound u ¬∃hasAtom.(Nitrogen-35 t Phosphorus-60

t Phosphorus-61 t Titanium-134)

u (≥3hasStructure.(Halide u ¬Halide10)

t (amesTestPositive = true u ≥5hasBond.(¬Bond-7))))

This can be phrased in natural language as:

15http://www.cs.wisc.edu/condor/

149

7 Implementation, Evaluation, and Use Cases

noise(%) accuracy(%) runtime(s) length

40 62.9 ± 8.6 0.6 ± 0.6 4.9 ± 1.4

39 62.9 ± 8.6 0.6 ± 0.7 4.9 ± 1.4

38 65.9 ± 8.3 1.5 ± 0.2 7.0 ± 0.0

37 65.9 ± 8.3 5.2 ± 7.8 7.6 ± 1.3

36 65.9 ± 8.3 6.9 ± 8.5 7.9 ± 1.4

35 65.9 ± 8.3 12.7 ± 9.6 8.8 ± 1.6

34 64.4 ± 6.6 31.6 ± 25.7 9.7 ± 0.7

33 64.7 ± 6.5 73.6 ± 88.4 9.8 ± 0.9

32 67.4 ± 7.9 160.0 ± 197.2 10.7 ± 3.1

31 66.4 ± 7.5 426.9 ± 324.2 14.1 ± 3.7

30 65.9 ± 8.7 843.5 ± 538.1 17.9 ± 4.5

29 66.8 ± 8.1 1613.9 ± 922.3 23.2 ± 5.0

28 66.5 ± 9.0 3158.3 ± 1680.8 29.6 ± 5.8

Table 7.4: The influence of the noise parameter on ten fold cross validation accu-
racy, runtime, and length of learned concepts. We see that for lower
noise values it becomes increasingly hard to satisfy the termination
criterion (hence the increase in runtime) and the learned concepts are
longer and more complex. The maximum accuracy is reached for 32%
noise and stays on a similar level afterwards, which indicates that the
additional structures in those longer concepts do not greatly affect clas-
sification results. Note that the runtime does not include the time to
load the knowledge base into the reasoner and prepare it, which takes
additional 36 seconds on our test machine.

A chemical compound is carcinogenic iff . . .
. . . it does not contain a Nitrogen-35, Phosphorus-60, Phosphorus-61,

or Titanium-134 atom
. . . and it has at least three Halide – excluding Halide10 – structures

or the ames test of the compound is positive and there are
at least five atom bonds which are not of bond type 7.

Overall, OCEL is able to learn accurate and short concepts with a reasonably
low number of expensive reasoner requests. Note that it learns in an expressive
language with arbitrarily nested structures, as can be seen in the concept above.
Learning many levels of structure has recently been identified as a key issue for
structured Machine Learning [Dietterich et al., 2008], and our work provides a
clear advance on this front.

The evaluations show that our approach is competitive with state-of-the-art
ILP systems when the approximate reasoning technique is used.

150

7.3 Ontology Engineering

55

60

65

70

75

28303234363840

cr
os

s
va

li
d
at

io
n

ac
cu

ra
cy

in
%

noise in %

OCEL training
OCEL testing

Aleph Ensembles max.
Boosted Weak ILP

Aleph DTD 0.7
Aleph RRR 0.7

Figure 7.6: Illustration of ten fold cross validation accuracies of OCEL on the
carcinogenesis benchmark for different noise values. For lower noise
values the difference between training and testing accuracy (averaged
over all ten folds) becomes larger, which can be interpreted as a sign
of overfitting, i.e. the learned concepts are unnecessarily complex. As
a reference, we included the accuracies other tools in Table 7.3 as
horizontal lines.

7.3 Ontology Engineering

The Semantic Web has recently seen a rise in the availability and usage of know-
ledge bases, as can be observed within the Linking Open Data Initiative or the
TONES16 and Protégé17 ontology repositories as well as the Sindice Semantic Web
index and the Watson Semantic web search engine18. Despite this growth, there
is still a lack of knowledge bases that consist of sophisticated schema information
and instance data adhering to this schema. Several knowledge bases, e.g. in the life
sciences, only consist of schema information, while others are, to a large extent, a
collection of facts without a clear structure, e.g. information extracted from data
bases or texts. Combining both allows powerful reasoning, consistency checking,
and improved querying possibilities. Being able to learn OWL class expressions
could be a step towards achieving this goal (see Example 1.1).

We argue that the approach and plugins presented here are the first ones to
be practically usable by knowledge engineers for learning class expressions. Us-
ing machine learning for the generation of suggestions instead of entering them

16http://owl.cs.manchester.ac.uk/repository/
17http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
18http://watson.kmi.open.ac.uk

151

http://owl.cs.manchester.ac.uk/repository/
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
http://watson.kmi.open.ac.uk

7 Implementation, Evaluation, and Use Cases

manually has the advantage that 1.) the given suggestions fit the instance data,
i.e. schema and instances are developed in concordance, and 2.) the entrance bar-
rier for knowledge engineers is significantly lower, since understanding an OWL
class expression is easier than manually analysing the structure of the knowledge
base and creating a class expression manually. A disadvantage is that the method
only works when instance data (an ABox) is available. Hence, it is especially use-
ful in those cases, where an ontological schema is created from existing instance
data, i.e. a so called “schema last” or “grassroots” approach is used, or where an
existing knowledge base should be maintained.

The section is structured as follows: We present two plugins for knowledge en-
gineers for the popular Protégé and OntoWiki ontology editors based on CELOE.
Afterwards, we evaluate the CELOE algorithm on several knowledge bases and
draw conclusions.

7.3.1 The Protégé Plugin

After implementing and testing CELOE, we integrated it in Protégé and On-
toWiki. Together with the Protégé 4 developers, we extended their plugin mech-
anism to be able to seamlessly integrate the DL-Learner plugin as an additional
method to create class expressions. This means that the knowledge engineer can
use the algorithm exactly where it is needed without any additional configuration
steps. The plugin has also become part of the official Protégé 4 repository, i.e. it
can be directly installed from within Protégé.

A screenshot of the plugin is depicted in Figure 7.7. To use the plugin, the
knowledge engineer is only required to press a button, which then starts a new
thread in the background. This thread executes the learning algorithm. CELOE
is an anytime algorithm, i.e. at each point in time we can always see the currently
best suggestions. The GUI updates the suggestion list each second until the
maximum runtime – 10 seconds per default – is reached. This means that the
perceived runtime, i.e. the time after which only minor updates occur in the
suggestion list, is often only one or two seconds for small ontologies. For each
suggestion, the plugin displays its accuracy.

When clicking on a suggestion, it is visualized by displaying two circles: One
stands for the instances of the class to describe and another circle for the instances
of the suggested class expression. Ideally, both circles overlap completely, but in
practice this will often not be the case. Clicking on the plus symbol in each circle
shows its list of individuals. Those individuals are also presented as points in
the circles and moving the mouse over such a point shows information about the
individual. Red points show potential problems, where it is important to note
that we use a closed world assumption to detect those. For instance, in our initial
example in Chapter 1, a capital which is not related via the property isCapitalOf

to an instance of Country is displayed as red dot. If there is not only a potential
problem, but adding the expression would render the ontology inconsistent, the
suggestion itself is marked red and a warning message is displayed. Please note

152

7.3 Ontology Engineering

Figure 7.7: A screenshot of the DL-Learner Protégé plugin. The tabs at the
top present various possibilities to create class expressions offered by
Protégé. The plugin integrates seamlessly with them. The user is
only required to press the “suggest equivalent class expressions” but-
ton and within a few seconds they will be displayed as list with the
most promising ones on top. If desired, the knowledge engineer can
visualize the instances of the expression to detect potential problems.
At the bottom, optional expert settings can be made to configure the
learning algorithm.

153

7 Implementation, Evaluation, and Use Cases

Figure 7.8: The DL-Learner plugin can be invoked from the context menu of a
class in OntoWiki.

that accepting such a suggestion can still be a good choice, because the problem
often lies elsewhere in the knowledge base, but was not obvious before, since the
ontology was not sufficiently expressive for reasoners to detect it. The plugin
homepage19 shows a screencast, where the ontology becomes inconsistent after
adding the axiom, and the real source of the problem is fixed afterwards. Being
able to make such suggestions can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change expert settings, e.g. the
noise parameter introduced on page 92. For instance, a user may have erroneously
added that Sydney is a capital. CELOE is designed to handle noise and the
visualisation of the suggestions will reveal those false class assignments. If the
knowledge engineer deals with very noisy ontologies, she can choose to increase
the default value of 5%. Further options include the maximum suggestion search
time and the number of returned results. In future work, we may also allow to
fine-tune the target language, i.e. which OWL language constructs can be used in
class expressions. This is useful in cases where the ontology should remain within
an OWL 2 profile, i.e. OWL 2 EL.

7.3.2 The OntoWiki Plugin

Analogous to Protégé, we created a plugin for OntoWiki [Auer et al., 2006b]. On-
toWiki is a lightweight ontology editor, which allows distributed and collaborative
editing of knowledge bases. It focuses on wiki-like, simple and intuitive author-
ing of semantic content, e.g. through inline editing of RDF content, and provides
different views on instance data.

Recently, a fine-grained plugin mechanism and extension architecture was added
to OntoWiki. The DL-Learner plugin is technically realised by implementing an
OntoWiki component, which contains the core functionality, and a module, which
implements the embedding in the user interface. The DL-Learner plugin can be
invoked from several places in OntoWiki, for instance through the context menu
of classes as shown in Figure 7.8.

The plugin accesses DL-Learner functionality through its WSDL-based web
service interface. Jar files containing all necessary libraries are provided in the

19http://dl-learner.org/wiki/ProtegePlugin

154

http://dl-learner.org/wiki/ProtegePlugin

7.3 Ontology Engineering

plugin. If a user invokes the plugin, it scans whether the web service is online at
its default address. If not, it is started automatically.

A major technical difference compared to the Protégé plugin is that the knowl-
edge base is accessed via SPARQL, since OntoWiki is a SPARQL-based web ap-
plication. In Protégé, the current state of the knowledge base is stored in memory
in a Java object. As a result, we cannot easily apply a reasoner on an OntoWiki
knowledge base. To overcome this problem, we use the DL-Learner fragment
selection mechanism described in Section 6.2. The fragment selection is only per-
formed for medium to large-sized knowledge bases. Small knowledge bases are
retrieved completely and loaded into the reasoner. While the fragment selection
can cause a delay of several seconds before the learning algorithm starts, it also
offers flexibility and scalability. For instance, we can learn class expressions in
large knowledge bases such as DBpedia in OntoWiki20.

Figure 7.9: Screenshot of result table of the DL-Learner plugin in OntoWiki.

Figure 7.9 shows a screenshot of the OntoWiki plugin applied to the SWORE
ontology [Riechert et al., 2007b]. Suggestions for learning the class “customer
requirement” are shown in Manchester OWL Syntax. Similar to the Protégé plu-
gin, the user is presented a table of suggestions along with their accuracy value.
Additional details about the instances of “customer requirement”, covered by a
suggested class expressions and additional instances covered can be viewed via
a toggle button. The modular design of OntoWiki allows rich user interaction:
Each resource, e.g. a class, property, or individual, can be viewed and subsequently
modified directly from the result table as shown in the screenshot. For instance,

20OntoWiki is currently undergoing an extensive development, aiming to support handling such
large knowledge bases. A release supporting this is scheduled for mid 2010.

155

7 Implementation, Evaluation, and Use Cases

a knowledge engineer could decide to import additional information available as
Linked Data and run the CELOE algorithm again to see whether different sug-
gestions are provided with additional background knowledge.

7.3.3 Evaluation of CELOE

To evaluate the suggestions made by CELOE, we tested it on a variety of real
world ontologies of different sizes and domains. The goals of the evaluation are to

1. determine whether the described learning method and heuristic is useful in
practice, i.e. is able to make sensible suggestions,

2. determine to which extend additional information can be inferred when en-
riching ontologies with suggestions by the learning algorithm (described as
hidden inconsistencies and additional instances below),

3. evaluate whether the method is sufficiently efficient to work on large real
world ontologies,

4. assess the accuracy of the approximation method presented in Section 6.3.2
in practice.

We wrote an evaluation script, which takes an OWL file as input and works as
follows: First, all classes with at least 3 inferred instances are determined. For
each class A, the learning method generates at most ten suggestions with the
best ones on top of the list. This is done for learning super classes (A v C)
and equivalent classes (A ≡ C) separately. If the accuracy of the best suggestion
exceeds a threshold of 85%, we suggest them to the knowledge engineer. The
knowledge engineer then has three options to choose from: 1. pick one of the
suggestions by entering its number (accept), 2. declare that there is no sensible
suggestion for A in her opinion (reject), or 3. declare that there is a sensible
suggestion, but the algorithm failed to find it (fail). If the knowledge engineer
decides to pick a suggestion, we query whether adding it leads to an inconsistent
ontology. The consistency test is performed using a standard OWL reasoner –
Pellet in our case. We call this case the discovery of a hidden inconsistency, since
it was present before, but can now be formally detected and treated. We also
measure whether adding the suggestion increases the number of inferred instances
of A. For instance, picking one of the suggestions in Example 1.1 may allow
a reasoner to infer additional capital cities, e.g. those cities which are related
via isCapitalOf to a country, but have not been explicitly asserted to the class
Capital. Being able to infer additional instances of A therefore provides added
value (see also the notion of induction rate as defined in [Fanizzi et al., 2008] for
further reading).

We used the default settings of 5% noise and an execution time of 10 seconds for
the algorithm. The knowledge engineers were two researchers, who made them-
selves familiar with the domain of the test ontologies. We are aware that an ideal

156

7.3 Ontology Engineering

ontology #
lo

gi
ca

l
ax

io
m

s

#
su

gg
es

ti
on

li
st

s

ac
ce

p
t

(1
)

in
%

re
je

ct
(2

)
in

%

fa
il

(3
)

in
%

se
le

ct
ed

p
os

it
io

n
on

su
gg

es
ti

on
li
st

(i
n
cl

.
st

d
.

d
ev

ia
ti

on
)

av
g.

ac
cu

ra
cy

of
se

le
ct

ed
su

gg
es

ti
on

in
%

#
h
id

d
en

in
co

n
si

st
en

ci
es

#
ad

d
.

in
st

an
ce

s
(e

q
u
iv

al
en

ce
on

ly
)

#
ad

d
.

in
st

an
ce

s
to

ta
l

SC ontology 20081 12 79 21 0 2.2±2.1 96.8 0 506.0 1771

Finance 16057 50 52 48 0 3.6±2.6 96.7 0 211.4 1162

Biopax L. 2 12381 34 78 22 0 2.7±2.2 99.5 1 229.4 803

Intergeo 8803 180 56 44 0 1.6±1.2 96.9 1 14.4 295

Economy 1625 22 74 26 0 1.5±0.9 93.2 0 12.8 77

Br. Cancer 884 77 56 44 0 3.7±2.6 96.7 1 7.1 82

Eukariotic 38 8 91 9 0 2.5±1.2 92.1 0 2.4 7

Table 7.5: Evaluation results on several ontologies.

evaluation procedure would require OWL knowledge engineers from the respec-
tive domains, e.g. different areas within biology, medicine, finance, and geography.
Considering the budget limitations, however, we believe that our method is suf-
ficient to be able to meet the four evaluation objectives mentioned above. Each
researcher worked independently and had to make 383 decisions (between select,
reject, and fail) overall. The time required to make those decisions was 40 working
hours per researcher. Both researchers obtained similar results. The evaluation
machine was a notebook with a 2 GHz CPU and 3 GB RAM.

Table 7.5 shows the evaluation results. All ontologies were taken from the
Protégé OWL and TONES repositories. Evaluation candidates in these repos-
itories were those ontologies, which could be loaded and classified by Pellet in
reasonable time and contain several classes with at least three instances. Be-
tween the candidate ontologies, we selected seven ontologies, which vary in size
and complexity. For the sake of simplicity, we summed up values for generating
equivalence and super class axioms, e.g. the third column is the sum of suggestion
lists for equivalence axioms and super class axioms.

Objective 1: We can observe that the researchers picked option 1 (accept) most
of the time, i.e. in many cases the algorithm provided meaningful suggestions.
The researchers never declared that the algorithm failed on finding a potential
solution. This allows us to positively answer the first evaluation objective. The
7th column shows that many selected expressions are amongst the top 5 (out of
10) in the suggestion list, i.e. providing 10 suggestions appears to be a reasonable
choice.

157

7 Implementation, Evaluation, and Use Cases

Objective 2: In three cases a hidden inconsistency was detected. Both re-
searchers independently coincided on those decisions. A low number of inconsis-
tencies was expected due to the high quality of the knowledge bases. The last
column shows that in all ontologies additional instances could be inferred for the
classes to describe if the new axiom would be added to the ontology after the learn-
ing process. Overall, being able to infer additional instances was very common
and hidden inconsistencies could sometimes be detected.

In the second part of our evaluation, we measured the impact of optimisation
steps (see Section 6.3.2). To do this, we used a similar procedure as above, i.e. we
processed the same ontologies and measured for how many class expressions we
can measure a heuristic value within the execution time of 10 seconds. For each
ontology, we averaged this over all classes with at least three instances. We did this
for four different setups by enabling/disabling the stochastic heuristic measure and
enabling/disabling the reasoner optimisations. We used Pellet 2.0 as underlying
reasoner. The test machine had a 2.2 GHz dual core CPU and 4 GB RAM.

Objective 3: The results of our performance measurements are shown in Ta-
ble 7.6. If evaluating a single class expression would take longer than a minute
(the algorithm does not stop during such an evaluation), we did not add an entry
to the table. We can observe that the approximate reasoner and the stochastic
test procedure both lead to significant performance improvements. Since we prefer
closed world reasoning as previously explained, the approximate reasoner would be
a better choice even without improved performance. The performance gain of the
stochastic methods is higher for larger ontologies. Apart from better performance
on average, we also found that the time required to test a class expression shows
smaller variations compared to the non-stochastic variant. Overall, a performance
gain of several orders of magnitudes has been achieved. One can conclude that
without approximate reasoning and stochastic coverage tests, the learning method
would not work reasonably well on large ontologies.

Objective 4: To estimate the accuracy of the stochastic coverage tests, we eval-
uated each expression occurring in a suggestion list using the stochastic and non-
stochastic approach. The last column in Table 7.6 shows the average absolute
value of the difference between these two values. It shows that the approximation
differs by less than 1% on average from an exact computation of the score with low
standard deviations. This means that the results we obtain through the method
described in Section 6.3.2 are very accurate and there is hardly any influence on
the learning algorithm apart from improved performance.

Remark 7.1 (Extended Evaluation)
The first ontology engineering evaluation presented here will be extended in future
work. The following additions will be made: 1.) Five different heuristics will be
employed and tested. In addition to the one used here, F-measure, generalised
F-measure [d’Amato et al., 2008a], Jaccard distance, and predictive accuracy will
be evaluated in terms of user satisfaction. User satisfaction will be measured
using a standard five-star rating system. 2.) The use of the approximate reasoner

158

7.4 Fragment Extraction Evaluation

ontology #tests stochastic #tests non-stochastic stoch. diff.

appr. reas. stand. reas. appr. reas. stand. reas. (± std. dev.)

SC Ontology 20 800 — 630 — 0.6% ± 0.8%

Finance 71 400 72 29 000 — 0.1% ± 0.3%

Biopax L. 2 20 700 35 2 200 — 0.2% ± 0.6%

Intergeo 77 100 — 26 000 — 0.4% ± 0.8%

Economy 120 000 8 100 40 000 — 0.5% ± 0.5%

Br. Cancer 116 000 2 400 83 000 1 300 0.1% ± 0.4%

Eukariotic 123 000 8 900 116 000 5 800 0.0% ± 0.0%

Table 7.6: Performance assessment showing the number of class expressions, which
are evaluated heuristically within 10 seconds, with stochastic tests en-
abled/disabled and approximate reasoning enabled/disabled. The last
column shows how much heuristic values computed stochastically differ
from real values. Values are rounded.

(see Section 6.3.1) compared to a standard reasoner will be evaluated analogously
by user ratings. 3.) The evaluation will be performed by a higher number of
evaluators and cover more ontologies.

Currently, the five heuristics have been implemented in the DL-Learner frame-
work, a dedicated graphical user interface has been developed for the extended
evaluation, and five researchers have agreed on serving as evaluators. The eval-
uation is scheduled for the first months in 2010. In a later extension of the
evaluation, knowledge engineers may be invited to test the algorithm on a set of
domain-specific ontologies. �

7.4 Fragment Extraction Evaluation

In Section 6.2, we presented a technique for extracting a knowledge base fragment
with respect to a learning problem in order to solve it more efficiently. The
evaluation of this fragment extraction is split into two parts. In the first part, we
evaluated the performance of the SPARQL retrieval component and the OCEL
learning algorithm. The results are depicted in Figure 7.10. We randomly selected
ten YAGO classes in DBpedia and retrieved instances that belong to the class as
positive examples and then selected the same number of negative examples from
a super class. We performed an extraction with varying recursion depth, which
is the most important factor influencing performance, and recorded the following
values: number of triples extracted (left figure), time needed for extraction (right
figure, lower line of each color), and total time needed for extraction and learning
(right figure, upper line of each color). Please note that a recursion depth of,
e.g. two, includes all instances at distance smaller or equal two plus the complete
class hierarchy spawned by these instances. The optional parameters Get all

159

7 Implementation, Evaluation, and Use Cases

superclasses and Close after recursion were enabled during the post-processing.
Each point in the figure is an average over 10 runs and was obtained using a
Virtuoso DBpedia mirror on our local network running on a 2.4 GHz dual core
machine with 4 GB memory.

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3

n
u
m

b
er

of
tr

ip
le

s

recursion depth

10 examples
20 examples
30 examples

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 1 2 3

av
er

ag
e

ti
m

e
in

m
s

recursion depth

10 examples
20 examples
30 examples

Figure 7.10: Left: extracted triples depending on recursion depth and number of
examples. Right: extraction time needed depending on recursion
depth and number of examples - for each color the lower line is the
time needed for extraction while the upper line is the total time (in-
cluding learning).

We can see that the curves for the time of extraction and learning in the right
figure is equally or less steep than the increase in number of extracted triples in
the left figure. The time for the learning process increases with more examples
used, not only because of the increased time needed for reasoning but also due to
the fact that the learned class expressions tend to get more complex for a higher
number of examples. Overall, we achieved typical total learning times on a very
large and dense (more than 8 properties associated to an instance on average)
DBpedia knowledge base of a couple of seconds. Performance could be improved
further by merging several SPARQL queries into more complex ones such that the
triple store can make use of further internal optimization routines.

In the second part of our evaluation, we measured the validity of learned class
expressions on the fragment, when compared to the whole ontology. As mentioned
before, we choose the Semantic Bible ontology 21 as target, because it is a medium
sized ontology, contains complex background knowledge and is still manageable by
a reasoner as a whole. It consists of 49 classes, 724 instances, 29 object properties
and 9 data properties (4350 axioms total) and is in OWL-DL (but not OWL-Lite).
The ontology also contains a variety of property axioms (domain: 35, range: 35,
inverse: 17, symmetric: 6, subproperty: 12, functional: 4). To objectively compare
the fragment selection approach with the normal approach we randomly selected
100 different sets of learning problems with 10 instances each (5 positive example

21http://www.semanticbible.com/ntn/ntn-overview.html

160

http://www.semanticbible.com/ntn/ntn-overview.html

7.4 Fragment Extraction Evaluation

Semantic Bible S 10s N 10s S 100s N 100s

acc fragment(%) 67.8 (±15.5) 61.4 (±12.0) 73.7 (±13.7) 67.4 (±14.6)

acc whole (%) 67.6 (±15.4) 61.4 (±12.0) 73.5 (±13.7) 67.4 (±14.6)

acc pos (%) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0)

acc neg (%) 35.2 (±30.9) 22.8 (±24.0) 47.0 (±27.4) 34.8 (±29.2)

extraction time 1.2s (±.4s) .0s (±.0s) 1.3 (±.7) .0s (±.0s)

reasoner init time .1s (±.1s) .2s (±.0s) .0 (±.1) .3s (±.0s)

learning time 10.5s (±.7s) 27.1s (±7.1s) 102.3 (±4.7) 107.0s (±16.9s)

axiom number 726 (±221) 4350 726 (±221) 4350

desc. length 3.8 (±3.0) 2.2 (±1.6) 5.5 (±3.8) 3.6 (±2.7)

desc. depth 2.1 (±1.1) 1.6 (±.7) 2.8 (±1.5) 2.2 (±1.2)

Semantic Bible S 1000 N 1000 S 10000 N 10000

acc fragment(%) 65.3 (±14.7) 62.0 (±13.0) 67.9 (±15.5) 69.2 (±15.0)

acc whole (%) 65.1 (±14.6) 62.0 (±13.0) 67.7 (±15.4) 69.2 (±15.0)

acc pos (%) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0)

acc neg (%) 30.2 (±29.2) 24.0 (±26.1) 35.4 (±30.9) 38.4 (±30.0)

extraction time 1.1s (±.3s) .0s (±.0s) 1.2s (±.4s) .0s (±.0s)

reasoner init time .0s (±.0s) .3s (±.2s) .1s (±.0s) .3s (±.0s)

learning time 3.7s (±2.3s) 52.6s (±56.9s) 27.9s (±14.1s) 292.8s (±92.7s)

axiom number 726 (±221) 4350 726 (±221) 4350

desc. length 3.2 (±2.5) 2.4 (±1.8) 3.6 (±2.9) 4.1 (±2.8)

desc. depth 1.9 (±1.0) 1.6 (±.8) 2.2 (±1.2) 2.3 (±1.2)

Table 7.7: The table shows the statistics for the fragment selection (S) approach
compared to the “normal“(N) usage of the learning algorithm. We
tested fixed runtime (10 seconds and 100 seconds) and fixed number of
concept tests (1000 and 10000). All values are averaged over the same
100 example sets. Standard deviation is given in brackets. A 2.4 GHz
dual core machine with 4 GB memory was used and the fragment was
retrieved via SPARQL from a local Joseki endpoint.

instances and 5 negative example instances)22 and conducted the experiments
with the same learning algorithm configuration and the same underlying reasoner
(Pellet). In the first 4 experiments (S 10s, N 10s, S 100s, N 100s) the learning
algorithm was stopped after a fixed time period (10 seconds and 100 seconds)
and the best learned concept so far was validated versus the whole ontology. In
the remaining 4 experiments (S 1000, N 1000, S 10000, N 10000) the algorithm
was stopped after a fixed number of concept tests (cf. Figure 2.4, generate and

22Random selection is different from real life problems. However, it is sufficient to gain some
insights w.r.t. scalability.

161

7 Implementation, Evaluation, and Use Cases

50

55

60

65

70

75

0 50 100 150 200 250 300

ac
cu

ra
cy

in
p

er
ce

n
t

time in seconds

normal
SPARQL

Figure 7.11: Time vs. Accuracy for learning on the Semantic Bible ontology. The
two lines are for using only a fragment of the ontology or using the
complete ontology.

test approach) independently of time needed. The fragment was extracted with
the following parameters: recursion depth 2, close after recursion enabled, get all
superclasses enabled, get explicit property information, no filters, literals allowed.
The result can be viewed in Table 7.7.

The setup of the experiment is meant to answer two questions. First, we wanted
to know how large the actual error is, if the fragmentized approach returns a
learned class and analyze if we correctly predicted the type of error that can
occur and second, we wanted to compare performance (fragment vs. whole).

Because the learning algorithm uses top-down refinement and ignores all class
expressions that do not cover all positive examples if the noise parameter is set
to 0%, the accuracy on the positive examples only is always stable at 100%. This
is also true for the fragment because of monotonicity of description logics. The
small error of 0.2% occurred, as predicted, when previously not covered negatives
were covered in the whole ontology. We manually checked the data and found
that a part of the learned class expression (Objectt∃locationOf.>) contained an
inverse functional property with only an inbound edge to the example instance,
which is not covered on purpose by our extraction method (cf. point 6 ”Inferred
Property Information“ on page 123).

The low overall accuracy of the class expressions (only 60% to 75%) is due
to the schematic similarity between random sampled individuals, which made it
impossible to induce sensible class expressions. The benefit in runtime of the
fragmentized approach can be seen in Figure 7.11. We would like to note again
that we choose the medium-sized Semantic Bible ontology for evaluation. The real
target of the fragment selection approach are even larger knowledge bases, which
currently only support minimal reasoning mechanisms, if any. The experiments
showed an improvement in runtime by roughly the factor 10 without losing quality.

162

7.5 Further Applications

The highest accuracy (73.7%) by a small margin in the set time frame was achieved
by the reasoning over the fragment. The average description depth (2.8) and
length (5.5) also reveals that it is possible to construct complex class expressions
with the information contained in the fragment.

7.5 Further Applications

Apart from the described applications (ontology engineering and carcinogenesis),
there are further projects, which are work in progress at the time the thesis was
finished. All of them are in an advanced state and therefore briefly described here.

7.5.1 Predictions of the Effect of Mutations on the Protein
Function

Understanding how genetic alterations, also called mutations, affect genes at a
molecular level is a challenge in biology and medicine. The SM2PH-db23 (”from
Structural Mutation to Pathology Phenotypes in Human-database“) is a database
for investigating the structural and functional impact of missense variants with
respect to their phenotypic effects in the context of human monogenic diseases.
Similarly to the carcinogenesis task, we converted this knowledge to OWL, which
resulted in a knowledge base with 21 classes, 17 properties, 9 435 individuals, and
more than 200 000 axioms. The automatic conversion script allows to keep in sync
with the SM2PH database, which is updated bimonthly. The work was carried
out in cooperation with the University of Strasbourg.

Based on this ontology, a learning problem was posed, where the positive exam-
ples are those mutations leading to diseases and the negative examples are those
mutations not leading to diseases. The learned results provide insights as to what
properties are likely to lead to diseases.

A particular challenge in this case is that there are thousands of examples. The
approximate coverage test procedure described in Section 6.3 turned out to pro-
vide order of magnitude improvements for this problem. Specifically, the runtime
is about 1% compared to not approximating coverage. Most other ILP tools do
not work with such a high number of examples [Watanabe and Muggleton, 2009].
Similar as in the carcinogenesis case, DL-Learner usually derives shorter and more
readable hypothesis. The exact assessment of the performance of DL-Learner
methods compared to other machine learning tools and specific algorithms de-
veloped for solving this problem is the subject of currently ongoing work. Early
results indicate that the problem is very challenging, but OCEL is apparently
competitive with the state of the art in this area.

23http://decrypthon.igbmc.fr/sm2ph

163

http://decrypthon.igbmc.fr/sm2ph

7 Implementation, Evaluation, and Use Cases

7.5.2 NLP2RDF

NLP2RDF24 is a framework for integrating existing natural language process-
ing (NLP) approaches into a data-driven architecture. It implements an NLP
pipeline incorporating various methods ranging from low-level morphology anal-
ysis to high-level anaphora resolution. The output of each step is aggregated in
RDF and structured with existing linguistic ontologies. In addition, the generated
RDF is enriched with background knowledge from the Web of Data, thus mixing
syntactical explicit information with semantic information. As a prerequisite, sta-
tistical data from the Wortschatz project25 was converted to RDF and mapped to
DBpedia.

DL-Learner algorithms are used in this project to classify text, e.g. blog en-
tries, based on the generated background knowledge via the NLP pipeline briefly
described above. In linguistics, this can be used to identify typical properties
of language structures. As an example, OCEL was used to learn that passive
sentences often have the following structure (using the namespace nlp2rdf for
http://nlp2rdf.org/ontology/):

(nlp2rdf:Sentence u ∃ nlp2rdf:syntaxTreeHasPart.
(nlp2rdf:VVPP u ∃ nlp2rdf:previousToken.

(nlp2rdf:APPR t nlp2rdf:VAFIN)))

The classes VVPP, APPR and VAFIN were generated by a POS-tagger based on
sample sentences from the Negra corpus26 with the Stuttgart/Tübinger Tagset27.
According to definitions in a used linguistic ontology28 VVPP’s are ”past par-
ticiples”, APPR are ”temporal, causal, modal and local prepositions” and VAFIN
”finite auxiliary verbs”. Thus, the learned definition states that a passive sentence
is a sentence, which contains an APPR or VAFIN followed by a VVPP.

The project was initiated by Sebastian Hellmann. The thesis author is currently
a minor contributor in it. The (not yet proven) hypothesis of NLP2RDF is that
aggregating the output of different NLP tools in a structured format and enriching
it using the Web of Data allows to achieve better results than previous NLP
approaches for many tasks.

7.5.3 ORE - Ontology Repair and Enrichment

ORE (ontology repair and enrichment) is a DL-Learner based tool for repairing
and enriching OWL ontologies. It supports the detection of a range of ontology
modelling problems and guides the user through the process of resolving them.

24http://code.google.com/p/nlp2rdf/
25http://wortschatz.uni-leipzig.de
26http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.

html
27http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/stts.asc
28http://141.89.100.105/owl2/stts.owl

164

http://code.google.com/p/nlp2rdf/
http://wortschatz.uni-leipzig.de
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/stts.asc
http://141.89.100.105/owl2/stts.owl

7.5 Further Applications

In the first phase, consistency of an input ontology is checked. If the ontology
is not consistent, reasoner explanations [Horridge et al., 2008] are displayed. The
user can then remove or edit axioms, which amounts to the creation of a repair
plan. Similar methods are used for handling unsatisfiable classes in the second
phase, which are often modelling errors as well. Ranking methods allow to detect
problematic axioms and suggest actions to resolve them. In the third phase, the
enrichment process, the CELOE learning algorithm loops through classes in the
ontology. If promising suggestions, i.e. those exceeding a certain accuracy thresh-
old, can be made, they are presented to the user. If the user accepts a suggestion,
then the tool checks for consequences of adding the axiom. Since, according to
the study in Section 7.3, in many cases the selected expressions do not have 100%
accuracy, it is interesting to look at not covered instances of the class as well as
looking at covered entities not belong to the class. The ORE tool displays those
cases and suggests possible changes depending on the context. It can be useful
to delete an entity, ”move“ it ”up“ or ”down“ the class hierarchy, provide more
information about an entity etc. The result of applying ORE to an ontology is a
consistent and expressive knowledge base. It can work with very large knowledge
bases using the SPARQL fragment extraction method presented in Section 6.2 as
well. In this case, a relevant OWL class, which should be investigated, has to be
specified such that the corresponding knowledge base fragment can be extracted.
More information can be found at http://dl-learner.org/wiki/ORE.

7.5.4 moosique.net - Music Recommendations

The described learning algorithms can also be used for providing recommenda-
tions. Given a set of interesting entities, they return an OWL class expression
describing those entities (positive only learning). This idea was applied to the
music recommendation use case. The background knowledge is the RDF version
of the freely available Jamendo music database29. On top of this relatively flat
knowledge base, a schema covering various topics such as music style (rock, pop
etc.) including their specific variants, instruments, producers, and other informa-
tion was created. The tags assigned by Jamendo users to music albums were then
converted into this schema. This process happens on the fly using the extraction
technique presented in Section 6.2. It allows the application of learning algorithms
like ELTL and CELOE, which can suggest further songs or albums given the ones
someone previously listened to. This functionality was combined into a free inter-
net radio, which can be accessed as a prototype at http://moosique.net.

29http://www.jamendo.com

165

http://dl-learner.org/wiki/ORE
http://moosique.net
http://www.jamendo.com

7 Implementation, Evaluation, and Use Cases

7.6 Strengths and Limitations of the Described
Approaches

This section summarizes the advantages and disadvantages of the presented al-
gorithms. It is organised along the criteria of applicability, accuracy, readability,
scalability, and usability. Apart from analysing strengths and limitations of the
concrete approaches, we also want to draw a more general picture on why learning
in DLs is a promising line of research.

Applicability The Semantic Web is rapidly growing30 and contains knowledge
from diverse areas such as science, music, people, books, reviews, places, politics,
products, software, social networks, as well as upper and general ontologies. The
underlying technologies, sometimes called Semantic Technologies, are currently
starting to create substantial industrial impact in application scenarios on and
off the web, including knowledge management, expert systems, web services, e-
commerce, e-collaboration, etc. Data exchange and integration is central to these
technologies, which thus hinge on the use of suitable knowledge representation
formalisms. Consequently, it is important to adhere to established standards,
foremost those established by the World Wide Web Consortium (W3C). Since
2004 (2009), the Web Ontology Language OWL (OWL 2), has been the W3C-
recommended standard for Semantic Web knowledge representation and has been
a key to the growth of the Semantic Web. Being able to apply inductive learning
on this data and to use OWL/DLs themselves as results of a learning algorithm
widens the possibilities for ILP research and practice since it opens up the Seman-
tic Web as field of application.

It could be argued that ILP systems based on logic programs can be used to
achieve this task. However, OWL ontologies and logic programs are incomparable
with respect to their expressiveness, i.e. there are OWL ontologies not expressible
in Horn logic and vice versa. This means that the algorithms cannot be applied to
all scenarios where Horn logic ILP programs can be used, which is both a strength
and a limitation of the described approaches. One restriction are predicates with
arity greater two. Since concepts in description logics correspond to predicates of
arity one and roles correspond to predicates of arity two, it is not straightforward to
express predicates with higher arity. However, in many cases, e.g. the benchmarks
earlier in this chapter, this can still be done but usually requires a human expert.
Even in such cases, it often turned out that knowledge can be represented in a
human friendlier and more readable way in OWL/description logics.

It should be noted that in principle each learning problem in DLs can be solved
by ILP systems based on expressive formalisms like first order logic, since DLs are a
fragment of first order logic. However, it can, of course, be inefficient to do this due
to the larger search space and higher complexity of reasoning or undecidability.

30For instance, the semantic index Sindice (http://sindice.com/) grows steadily and now lists
more than 10 billion entities from more than 100 million web pages.

166

7.6 Strengths and Limitations of the Described Approaches

[Badea and Nienhuys-Cheng, 2000] has discussed why ILP systems may not be
appropriate to learn DL concepts even in those cases where they can be used in
principle. The paper analyses this for the case of using prenex conjunctive normal
form (PCNF) and states that the main problems are that 1.) a conversion to
PCNF can lead to an exponential blowup in knowledge base size and 2.) many
formulae in PCNF do not have a counterpart in description logics, i.e. they are
too fine grained. Similar arguments apply when using Horn logic or first order
logic. On the other hand, using systems for less expressive formalisms cannot
make use of all the carefully selected features of OWL.

OWL and description logics also enable new application tasks. One such task
is ontology engineering, in particular suggesting definitions and super class ax-
ioms in knowledge bases based on instance data. We pursued this line of research
by developing plugins for the popular Protégé and OntoWiki ontology editors.
There have been heated discussions in the past on the use of logic programming
versus description logics in ontology engineering, see e.g. [de Bruijn et al., 2005,
Patel-Schneider and Horrocks, 2007] for recent developments. Also relevant are ef-
forts for combining DLs and rules [Krötzsch et al., 2008a, Krötzsch et al., 2008b].
However, the growing popularity of the Web Ontology Language OWL seems
to indicate that some of their distinctive features make it a viable and per-
haps even superior alternative to logic programs in many application domains.
This can in part be attributed to the fact that DLs restrict the modeller more
severely in his use of the modelling language: Horn logic is Turing complete
[Šebeĺık and Štěpánek, 1982] (and can, e.g. in the form of Prolog, even be used
as a programming language), while DLs are usually decidable.

Accuracy We have shown to be more accurate than other DL learning systems
and we claim to be more accurate than other general ILP tools for some learning
problems. We have shown this for carcinogenesis, where DL-Learner was able
to achieve statistically significantly higher accuracy than some state-of-the-art
ILP systems. It is well-known that the choice of the target language is a critical
one with respect to the accuracy and efficiency of learning algorithms. Hence,
it is natural that DL concepts are more appropriate than other formalisms for
a subset of learning problems. This particularly applies to domains, where on-
tologies are already widely used, e.g. the life sciences [Rector and Brandt, 2008,
Belleau et al., 2008].

Readability As mentioned previously, the DL-Learner algorithms have a bias
towards learning compact, readable concepts. We have shown that there are often
orders of magnitude difference with respect to the size of the offered solutions in
the carcinogenesis problem. Hence, we do consider readability to be a strength of
our approach. Furthermore, DLs lend themselves easily to conversion between
(controlled) natural language and formal language, see [Schwitter et al., 2008,
Völker et al., 2007a] for references. This helps to close the gap between ontol-
ogy engineers and domain experts.

167

7 Implementation, Evaluation, and Use Cases

Scalability Our experiments indicate that the presented approach can work ef-
ficiently with knowledge bases containing around 100.000 axioms – of course de-
pending on the complexity of those axioms. This is sufficient for many realistic
application scenarios. Furthermore, we also extended DL-Learner by a compo-
nent, which allows to apply it to very large knowledge bases by selecting relevant
knowledge fragments in a pre-processing step. We applied the procedure to DB-
pedia (see Section 6.1), containing more than 400 million axioms, and other large
knowledge bases.

Usability DL-Learner requires only a minimal set of parameters to work well.
Those parameters are the used background knowledge bases (which can be more
than one), the positive and negative examples, and a termination criterion (e.g.
minimum accuracy through the noise parameter). As the approaches are, in the
case of OCEL, ELTL Base, and CELOE, anytime algorithms, bounding their max-
imum runtime can be convenient in systems which need to process several learning
problems reliably without the risk of using too many resources. Also note that
other tools like Aleph often require so called mode declarations in order to work
efficiently by restricting the search space. These restrictions are already present in
DL/OWL knowledge bases through domain and ranges of roles. They are used by
the refinement operator automatically, which makes it easier to apply DL-Learner
without the need to specify further restrictions (which require knowledge about
the domain at hand). In fact, the DL-Learner ontology editor plugins can be
invoked using a single mouse click and provide sensible suggestions.

Summary In summary, we argue that learning in DLs is limited in that not all
typical ILP problems can be solved. However, it is also apparent that it can widen
the scope of ILP to new application areas and tasks, in particular in the context
of Semantic Web applications, which hinge critically on the employed knowledge
representation formalisms. We have shown that DL-Learner is competitive with
respect to accuracy and scalability with state-of-the-art ILP systems. We also
claim that the provided solutions are more readable and that DL-Learner is easy
to use.

168

8 Related Work

While related work has been mentioned throughout the thesis, this chapter serves
as a central collection of material, which is related to and/or has influenced the
work. It is organised in several categories corresponding to the closest research
areas.

8.1 Inductive Learning in Description Logics

Research in this area started in the early 90s, but only recently gained momen-
tum due to the rise of the Semantic Web. As one of the closely related works,
in [Badea and Nienhuys-Cheng, 2000] a refinement operator for ALER has been
designed to obtain a top-down learning algorithm for this language. Properties
of refinement operators in this language were discussed and some claims were
made, but a full formal analysis was not performed. The article also investi-
gates some theoretical properties of refinement operators. As we have done with
the design of ρ, they favour the use of a downward (as opposed to upward) re-
finement operator to enable a top-down search. The authors use ALER normal
form, which is easier to handle than e.g. ALC negation normal form, because
ALER is not closed under boolean operations. As a consequence, they obtain
a simpler refinement operator for which it is not clear how it could be extended
to more expressive DLs. Our operator ρ, in contrast, lends itself much more
easily to such extensions. We also deal quite differently with infinity, we show
how the subsumption hierarchy of atomic concepts and roles can be used, use do-
main and range of roles to structure the search, and we describe how redundancy
can be avoided efficiently. Moreover, our theoretical results are more general,
i.e. covering more description languages and property combinations. In contrast
to [Badea and Nienhuys-Cheng, 2000], we provided proofs, which were not avail-
able on request by the authors, and refuted one of their results. As mentioned
before, the algorithm in [Badea and Nienhuys-Cheng, 2000] was not implemented,
which is why we could not assess its performance on learning examples in our eval-
uation.

In [Esposito et al., 2004, Iannone and Palmisano, 2005, Iannone et al., 2007], al-
gorithms for learning in description logics, in particular for the language ALC,
were created, which also make use of refinement operators – however, not as
centrally as in our approach. The core idea of those algorithms is blame as-
signment, i.e. to find and remove those parts of a concept responsible for clas-
sification errors. In particular, [Iannone et al., 2007] described how to apply the

169

8 Related Work

learning problem for classifying scientific papers. Instead of using the classical
approach of combining refinement operators with a search heuristic, a different
approach is taken therein for solving the learning problem by using approximated
MSCs (most specific concepts). The most specific concept of an individual is the
most specific class expression, such that the individual is instance of the expres-
sion. Empirically, a problem of these algorithms is that they tend to produce
unnecessarily long concepts. One reason is that MSCs for ALC and more expres-
sive languages do not exist and hence can only be approximated. Previous work
[Cohen et al., 1993, Cohen and Hirsh, 1994, Kietz and Morik, 1994] in learning in
DLs has mostly focused on approaches using least common subsumers, which face
this problem to an even larger extent according to their evaluation. The algo-
rithms implemented in DL-Learner overcome this problem and investigate the
learning problem and the use of top down refinement in detail. In our approaches,
we also cannot guarantee that we obtain the shortest possible solution of a learn-
ing problem. However, the learning algorithms were carefully designed to produce
short and readable solutions. For OCEL, the produced solutions will be close to
the shortest solution in negation normal form.

DL-FOIL [Fanizzi et al., 2008] is a similar approach, which is based on a mix-
ture of upward and downward refinement of class expressions. They use alternative
measures in their evaluation, which emphasize the difference between deductive
and inductive reasoning and take the open world semantics of description logics
into account. As a consequence, three cases can be distinguished for instance
checks: An individual is instance of a concept (response +1), an individual is
instance of the negation of a concept (response -1) or none of both can be inferred
(response 0). This leads to the use of alternative measures for description logics,
e.g. in [d’Amato et al., 2006, d’Amato et al., 2008b]. In instance checks, a match
stands for the case when deductive and inductive classifier coincide. An omis-
sion stands for the case when the inductive method cannot determine concept
membership (response 0), but the deductive classifier can infer membership (re-
sponse ± 1). Commission stands for the case when the deductive and inductive
classifier disagree (+1 vs. -1 or -1 vs +1). The induction rate stands for those
cases, where the inductive classifier determines membership (response ± 1), but
this is not deductively derivable from the knowledge base (response 0). The latter
is similar to the “additional instances” columns in Table 7.5. As mentioned in
Section 2.2.2, DL-Learner allows to switch between a three valued learning prob-
lem and the two valued problems we used throughout the thesis. One reason why
we used the two valued problem was that this allows to compare the results to
other ILP tools. However, it is worthwhile to use the proposed alternative mea-
sures and their investigation is an interesting area of future work. In particular,
[d’Amato et al., 2008a] recently introduced generalised F-measure, which can be
used as a score function in the learning algorithms. Those measures are currently
integrated in DL-Learner and will later be evaluated.

[Esposito et al., 2004] and [Fanizzi et al., 2004] stated that an investigation of
the properties of refinement operators in description logics, as we have done in this

170

8.2 Refinement Operators

thesis, is required for building a theoretical foundation of the research area. In
[Fanizzi et al., 2004] downward refinement for ALN was analysed using a clausal
representation of description logic concepts. Refinement operators have also been
dealt with within hybrid systems. In [Lisi and Malerba, 2003] ideal refinement
for learning AL-log, a language that merges DATALOG and ALC, was inves-
tigated. Based on the notion of B-subsumption, an ideal refinement operator
was created. This line of research was pursued further in [Lisi, 2008] and in
[Lisi and Esposito, 2008] applied in the context of ontology evaluation.

8.2 Refinement Operators

In this section, refinement operators outside of description logics are discussed. In
the area of Inductive Logic Programming considerable efforts have been made to
analyse the properties of refinement operators (for a comprehensive treatment, see
e.g. [Nienhuys-Cheng and de Wolf, 1997]). In general, applying refinement oper-
ators for clauses to solve the learning problem in DLs is usually not a good choice
(see [Badea and Nienhuys-Cheng, 2000] and Section 7.6). However, the theoret-
ical foundations of refinement operators in Horn logics also apply to description
logics, which is why we want to mention work in this area here.

A milestone in Machine Learning [Mitchell, 1997] in general was the Model In-
ference System in [Shapiro, 1991]. Shapiro describes how refinement operators can
be used to adapt a hypothesis to a sequence of examples. Afterwards, refinement
operators became widely used as a learning method. The properties in Defini-
tion 2.29 were defined as theoretical criteria for the quality of refinement opera-
tors. In [van der Laag and Nienhuys-Cheng, 1994] some general results regarding
refinement operators in quasi-ordered spaces were published. Nonexistence condi-
tions for ideal refinement operators relating to infinite ascending and descending
refinement chains and covers have been developed. This has been used to show
that ideal refinement operators for clauses ordered by θ-subsumption do not exist.
Unfortunately, we could not make use of these results directly, because proving
properties of covers in description logics without using a specific language is likely
to be harder than directly proving the results.

[Nienhuys-Cheng et al., 1993] discussed refinement for different versions of sub-
sumption, in particular weakenings of logical implication. A few years later, it
was shown in [Nienhuys-Cheng et al., 1999] how to extend refinement operators
to learn general prenex conjunctive normal form. Perfect operators, i.e. operators
which are weakly complete, locally finite, non-redundant, and minimal, were dis-
cussed in [Badea and Stanciu, 1999]. Since such operators do not exist for clauses
ordered by θ-subsumption [van der Laag and Nienhuys-Cheng, 1994], weaker ver-
sions of subsumption were considered. This was later extended to theories, i.e.
sets of clauses [Fanizzi et al., 2003]. A less widely used property of refinement
operators, called flexibility, was discussed in [Badea, 2000]. Flexibility essentially
means that previous refinements of an operator can influence the choice of the

171

8 Related Work

next refinement. The article discusses how flexibility interacts with other proper-
ties and how it influences the search process in a learning algorithm.

8.3 (Semi-)Automatic Ontology Engineering

Regarding (semi-)automatic ontology engineering, the line of work starting in
[Rudolph, 2004] and further pursued e.g. in [Baader et al., 2007b] investigates the
use of formal concept analysis for completing knowledge bases. It is promising, but
targeted towards less expressive description logics and may not be able to handle
noise as well as a machine learning technique. [Völker and Rudolph, 2008] pro-
poses to improve knowledge bases through relational exploration and implemented
it in the RELExO framework1. It is complementary to the work presented here,
since it is focused on simple relationships and the knowledge engineer is asked a
series of questions. The knowledge engineer either has to positively answer the
question or provide a counterexample. A different approach to learning the defi-
nition of a named class is to compute the MSCs for all instances of the class. One
can then compute the least common subsumer (lcs) [Baader et al., 2007c] of those
expressions to obtain a description of the named class. However, in expressive
description logics, an msc need not exist and the lcs is simply the disjunction of
all expressions. For light-weight logics, such as EL, the approach appears to be
promising. [Völker et al., 2007b] focuses on learning disjointness between classes
in an ontology to allow for more powerful reasoning and consistency checking. In
[d’Amato et al., 2008b], inductive methods have been used to answer queries and
populate ontologies using similarity measures and a k-nearest neighbour algorithm.
Along this line of research, [d’Amato et al., 2005] defines similarity measures be-
tween concepts and individuals in description logic knowledge bases.

Naturally, there is also a lot of research work on ontology learning from text.
The most closely related approach in this area is [Völker et al., 2007a], in which
OWL DL axioms are obtained by analysing sentences, which have definitorial
character.

Another interesting area of related research are natural language interfaces. In
[Cimiano et al., 2009], so called intensional answers are investigated. For instance,
a query “Which states have a capital?” can return the name of all states as inten-
sional answer or “All states (have a capital).” as extensional answer. Similarly,
the query “Which states does the Spree flow through?” could be answered by
“All the states which the Havel flows through.”. The intensional answers of such
queries can sometimes reveal interesting knowledge and they can also be used to
detect flaws in the knowledge base. The authors argue that this form of query
based ontology engineering can be useful. This line of research is closely related
to this PhD thesis. ILP techniques (specifically LGGs similar to the Golem sys-
tem briefly described in Section 2.2.1) are used to solve it algorithmically. The
target language is F-Logic and a bottom up approach is used in contrast to the

1http://relexo.ontoware.org/

172

http://relexo.ontoware.org/

8.4 Knowledge Fragment Selection

top-down refinement driven techniques presented in our work. An application of
DL-Learner algorithms to intensional query answering in the Semantic Web would
be straightforward and an interesting area of future work.

8.4 Knowledge Fragment Selection

Closely related to the presented fragment extraction are ABox contraction tech-
niques. [Fokoue et al., 2006], for example, present an approach how to compute a
possibly much smaller summary of an ABox obeying equivalent reasoning prop-
erties. Such approaches are suitable for clean and homogeneous ontologies with
small TBoxes and large ABoxes, while our approach is targeted at impure, hetero-
geneous multi-domain ontologies with both components, TBoxes and ABoxes, be-
ing large. Another application, that is concerned with reasoning on large ABoxes
is instanceStore [Horrocks et al., 2004], which as of now only works on role-free
knowledge bases. A project aiming to enable massive distributed incomplete rea-
soning is LarKC [Fensel et al., 2008], which is currently in progress.

A further related approach is described in [Seidenberg and Rector, 2006], where
fragments of the GALEN ontology are extracted to enable efficient reasoning.
The major difference compared to our approach is that we focused on providing
a fragment extraction algorithm suitable for learning class expressions. We start
from instances instead of classes and do not need to extract subclasses of obtained
classes. Our approach was implemented with support for SPARQL and Linked
Data for querying knowledge bases. Furthermore, we do not require the OWL
ontology to be normalized and can handle complex class expressions as fillers
of property restrictions. Similarities between both approaches are the idea of a
(recursion) depth limit and the extraction of class and property hierarchies.

173

9 Conclusions and Future Work

In this chapter, we summarize the research work and highlight the main results.
We organise the chapter according to the overall thesis structure. First, we discuss
refinement operators and, secondly, the learning algorithms incorporating those
operators with an emphasis on scalable extensions. Finally, we conclude on evalu-
ation and use cases. This is followed by an outlook on future work in the research
area.

9.1 Refinement Operators

We performed an extensive analysis of the properties of refinement operators in
description logics. While such an analysis is difficult to accomplish without con-
sidering a specific description logic, we took care that our results are as general
as possible, i.e. cover many description logics. We first argued why minimality,
which is an important refinement operator property in logic programs, is unlikely
to play a key role in description logics. We showed that it is incompatible with
weak completeness even for the very restricted description logic AL. We proved
several positive and negative results concerning completeness, properness, redun-
dancy, and finiteness of refinement operators leading to Theorem 3.16. We believe
this theorem to be a significant theoretical result that serves as a starting point for
practical considerations when using refinement operators in DLs. An important
insight is that there are no ideal operators for many expressive description logics,
which indicates that learning in expressive DLs is challenging.

In general, combining completeness of an operator with one of the other (posi-
tive) properties turned out to be an intricate problem in practice. A positive result
could, however, be obtained for the light-weight description logic EL. Its beneficial
reasoning properties, i.e. polynomial time inference, could be carried over to the
refinement task. In Section 4.2, we defined an ideal EL refinement operator. We
also showed that this operator is efficient even on large knowledge bases. Before
the investigation of EL refinement, we introduced a refinement operator with a
very expressive target language. The completeness of this operator was shown and
it was later extended with support for concrete roles and cardinality restrictions.
We also pointed out how this operator can be turned into a proper and complete
refinement operator.

174

9.2 Learning Algorithms and Scalability

9.2 Learning Algorithms and Scalability

A learning algorithm can essentially be designed by combining a refinement oper-
ator with an appropriate heuristic. When designing such algorithms, one of the
lessons learned is that while theoretically the refinement operator can be treated
as a black box, it is beneficial or sometimes even necessary to take its properties
into account. For instance, the OCEL algorithm (Algorithm 3 on page 93) is
designed to be able to handle infinite refinement operators by allowing a length-
limited, stepwise refinement of nodes in the search tree. It also uses a mechanism
to efficiently avoid redundancy by using a normal form and defining an ordering
over concepts. OCEL is highly configurable and targets most of the standard
learning problems.

Contrary, ELTL (Algorithms 4 and 5 on page 95ff) is much simpler in this
respect, because it uses an ideal refinement operator. Since EL does not contain
disjunction, which is required for solving some learning problems, we optionally
allow a covering approach to be used. Covering means to construct a disjunctive
concept stepwise, which is inspired by ILP approaches. We also introduced a
method which allows to simplify a solution by using a standard OWL reasoner in
order to increase readability. ELTL mainly aims at simple learning scenarios. In
particular, it is also targeted at the OWL 2 EL profile.

CELOE is an adapted version of OCEL and uses the same underlying refinement
operator, but a different heuristic, which is designed for the ontology engineering
use case. We motivate the heuristic by comparing it with a straightforward adap-
tion of learning from examples. Later, in Section 6.3.2, we showed how it can be
computed efficiently in the presence of many examples.

After describing the learning algorithms, we tackled the question of scalabil-
ity. We analysed that there are several reasons why learning algorithms may be
slow. The first one is the sheer size of the hypothesis space. We devoted a large
fraction of the thesis to refinement operators which can traverse this space in an
ordered way by making use of the subsumption hierarchy. It became clear that
employing as much background knowledge as possible is a key point for designing
an efficient learning algorithm, since the knowledge can be used for structuring
the search space and ruling out unsatisfiable hypothesis without needing to test
them explicitly.

Apart from the search space problem, the part of a learning algorithm, which
requires most processing time is the coverage test. There are two reasons for a
coverage test to be slow: The first one is that OWL/DL reasoning is expensive.
In particular, one hurdle is already to load a large knowledge base into a reasoner,
which turns out to be impossible for many large knowledge bases. Therefore,
we provided a fragment extraction algorithm, so that learning on the fragment
is similar to learning on the whole knowledge base. This algorithm also tackles
the problem that we cannot expect very large knowledge bases to be consistent.
We lowered this barrier to requiring only that the considered fragment is consis-
tent. These smaller fragments can be processed efficiently by an OWL reasoner.

175

9 Conclusions and Future Work

We continued by arguing that a closed world assumption can be beneficial when
performing coverage tests. We, therefore, designed an instance check procedure,
which builds on a standard OWL reasoner, but uses a very fast, partial closed
world evaluation procedure for instance checks in coverage tests. The second rea-
son why coverage tests can be slow, is the potential presence of a high number of
examples. We employed a stochastic approach for this case, which executes only
as many instance checks as required for a reasonably good approximation of the
score function. We showed that this approach can lead to an order of magnitude
improvement in performance, while still being sufficiently accurate (see Table 7.6).

9.3 Implementation, Evaluation and Use Cases

A major outcome of this thesis is the DL-Learner software framework. By pro-
viding a toolset for learning OWL class expressions, we did not only establish
the necessary basis for evaluating the presented algorithms. We also made the
implementation transparent and developed a number of user interfaces to ac-
cess their functionality. A number of students have worked on projects, which
use DL-Learner: the OntoWiki and Protégé plugins (Section 7.3), the ORE tool,
moosique.net, NLP2RDF (all in Section 7.5), and the DBpedia Navigator (Section
6.1.4).

After describing the implementation part in form of the DL-Learner project, we
presented an evaluation involving several learning problems. In a first phase, we
compared the algorithms against YinYang and genetic programming approaches,
where it turned out that OCEL is clearly superior. ELTL was promising in those
cases where its target language is sufficiently expressive. Afterwards we compared
OCEL against state-of-the-art algorithms on a challenging learning problem. Its
accuracy was the highest in this test and statistically significantly better than most
approaches. However, the main advantage appears to be a higher readability of
the learned hypothesis. We also evaluated the scalability improvements described
in Chapter 6 and showed that order of magnitude improvements in performance
are achieved. During our experiments, we experienced technical and engineering
hurdles such as non-standard behaviour, lack of interlinking and semantic richness
or simply inaccessibility. Hence, working with very large knowledge bases is still
challenging from both - engineering and research - perspective.

Apart from the ILP problems, a major use case is ontology engineering. We pre-
sented plugins for OntoWiki and Protégé, which are seamlessly integrated and easy
to use. The preliminary evaluation showed, with the mentioned limitations, that
learning expressions in ontologies is a relevant problem and CELOE gave appro-
priate suggestions, which sometimes lead to the detection of modelling problems.

We concluded the evaluation in Chapter 7 with an overview of the strengths and
limitations of the approaches with respect to the criteria applicability, accuracy,
readability, scalability, and usability. In essence, we argue that our methods open
up new application areas for Inductive Logic Programming theory and methods.

176

9.4 Future Work

We also provide evidence that usability and readability are strengths. Regarding
accuracy and scalability, we believe to be at least competitive with state-of-the-art
machine learning tools.

9.4 Future Work

In the short- and mid-term future, one of the goals is to test the learning al-
gorithms on a variety of scenarios in the spirit of the carcinogenesis problem in
Section 7.2.2. We have already shown that this concrete learning problem can
be solved at least equally well using the DL-Learner framework and description
logics as knowledge representation formalism compared to using the state of the
art in machine learning. An interesting research question is whether learning in
description logics and OWL is also a viable alternative to ILP approaches in other
cases. Predicting the effect of mutations (Section 7.5) is a specific problem, which
we currently work on by using DL-Learner as well as other ILP approaches.

While we have focused on top down approaches in this thesis, this focus does
not mean we consider bottom up approaches to be less interesting or relevant.
Bottom up approaches usually have the advantage that they can learn complex
hypotheses from few examples, since they directly employ the structure of exam-
ples as a starting point for the learning algorithm. In particular in the presence of
limited computation resources, which do not allow testing the coverage of several
thousand hypothesis, bottom up approaches can be a viable alternative. It might
be particularly interesting to view examples as graphs, where a graph represents
the neighbourhood of the example up to a certain depth. Using those graphs as
starting points in a bottom up approach and utilizing graph operators for upward
refinement could be a key to creating a different class of OWL/DL learning al-
gorithms. This line of research could be promising, especially for positive only
learning.

Another area for future extensions is the incorporation of fuzziness and proba-
bilities. Fuzzy description logics, see e.g. [Straccia, 2001], allow to express vague
concepts, whereas probabilistic description logics, see e.g. [Lukasiewicz, 2008] al-
low to specify the likelihood of an axiom being true. Both extensions are excit-
ing in the context of concept learning. The recent success of probabilistic ILP
[Raedt et al., 2008] is an additional motivation for pursuing further research in
this direction.

In the ontology engineering use case, we have already laid theoretical and prac-
tical foundations by developing CELOE and deploying it in two plugins. The
evaluation of CELOE revealed interesting and, in our opinion, promising results.
However, a larger study would still be interesting. Particularly, we plan a more de-
tailed evaluation of heuristics, e.g. generalised F-measure [d’Amato et al., 2008a],
and the incorporation of domain experts. In a wider context, the approaches
towards automatic and semi-automatic ontology engineering have been extended
significantly in the past. Whereas ontology learning was often seen as automatic

177

9 Conclusions and Future Work

learning from text, there are now several other methods available, which often
require an interaction with the knowledge engineer. An important goal should be
to turn those approaches into practice and disseminate them in the Semantic Web
community. For this reason, the author of the present thesis plans to (co-)edit a
book about (semi-)automatic ontology engineering with contributions from several
researchers in this field.

Another potential area of future work is the use of learning approaches in rec-
ommender systems. Those systems usually employ user or item similarity for
computing whether items preferred by one person are likely to be preferred by
another person. Some recommender systems already make use of item descrip-
tions, e.g. classification hierarchies in recommender systems [Ziegler et al., 2008].
However, the incorporation of learning algorithms would allow arbitrary OWL-
compliant background knowledge, while still allowing a user to see why an item
was suggested. To do this, recommender algorithms need to be combined with
efficient learning algorithms. In particular, EL as a light-weight description logic
could play an important role in this area.

The fragment extraction approach described in Section 6.2 can be considered in
a wider perspective. The creation of background knowledge is a tedious and time-
consuming process. Many applications might prefer to choose a more light-weight
approach of reusing larger ontologies, but only consider relevant fragments of
them. In this sense, it may be an interesting research challenge to employ fragment
extraction for Semantic Web applications and light-weight ontology engineering.

In correspondence with the interdisciplinary character of this thesis, which in-
volves the Machine Learning as well as the Semantic Web research areas, our
long-term vision is twofold: On the one hand, we hope to widen the scope of
Machine Learning research, in particular Inductive Logic Programming, by mak-
ing use of the large amount of knowledge in the Semantic Web. On the other
hand, we want to improve the Semantic Web itself by making it easier to create
and maintain expressive knowledge bases. We hope that this thesis constitutes a
valuable contribution towards achieving these goals.

178

A Software Release History

The following software releases were made during the thesis.

• DL-Learner Machine Learning Framework:

– Build 2009-05-06: Protégé plugin, DL-Learner manual, EL refinement
operator, stochastic coverage estimation, CELOE

– Build 2008-10-13: OCEL algorithm, GUI interface, approximate rea-
soner, carcinogenesis benchmark

– Build 2008-02-18: introduction of component based structure, SPARQL
support, OWL API reasoner support, Web Service interface

– Build 2007-08-31: initial open source release (a number of algorithms
already implemented)

• Protégé DL-Learner Plugin

– 0.5.2 - released 2009-05-29 - bug fix release

– 0.5.1 - released 2009-05-12 - bug fix release

– 0.5 - released 2009-04-25 - proper integration in extended Protégé plugin
mechanism, use of CELOE, result visualisation

– 0.1 - released 2008-12-22 - initial version

• OntoWiki DL-Learner Plugin

– contained in OntoWiki subversion and installable via plugin mechanism

• DBpedia Extraction

– DBpedia 3.3 - released 2009-07

– DBpedia 3.2 - released 2008-11

– DBpedia 3.1 - released 2008-08

– DBpedia 3.0 - released 2008-02

– DBpedia 2.0 - released 2007-09

– DBpedia 1.0 - released 2007-03

179

B DL-Learner Manual

DL-Learner is the open source machine learning framework, which contains the
implementation of the techniques presented in this thesis. This appendix contains
the relevant fractions of the DL-Learner manual as of September 2009. Note that
parts of the manual may overlap with existing material in the thesis. However, the
description is focused on software users and developers. The software DL-Learner
has been accepted at the Open Source Track of the Journal of Machine Learning
Research [Lehmann, 2009].

B.1 What is DL-Learner?

DL-Learner is an open source framework for (supervised) machine learning in
OWL and description logics (from instance data). We further detail what this
means:

OWL stands for “Web Ontology Language”. In 2004, it became the W3C1

standard ontology language2. As such it is one of the fundamental building blocks
in the Semantic Web and has been used in several scenarios on and off the web.
OWL is based on description logics (DLs), which are a family of knowledge rep-
resentation languages. We refer to [Baader et al., 2007a] for an introduction to
description logics. Since OWL formally builds on description logics, we can apply
DL-Learner to knowledge bases in OWL or a variety of description languages.

Machine Learning is a subfield of Artificial Intelligence, which focuses on de-
tecting patterns, rules, models etc. in data. Often, this involves a training process
on the input data. In Supervised learning, this data is labelled, i.e. we are given
a number of input-output mappings. Those mappings are also called examples.
If the output is binary, then we distinguish positive and negative examples. DL-
Learner as a framework is not restricted to supervised learning, but all algorithms
currently build into it, are supervised.

In the most common scenario we consider, we have a background knowledge
base in OWL/DLs and additionally, we are given positive and negative examples.
Each example is an individual in our knowledge base. The goal is to find an OWL
class expression3 such that all/many of the positive examples are instances of
this expression and none/few of the negative examples are instances of it. The
primary purpose of learning is to find a class expression, which can classify unseen

1http://www.w3.org
2http://www.w3.org/2004/OWL/
3http://www.w3.org/TR/owl2-syntax/#Class_Expressions

180

http://www.w3.org
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/owl2-syntax/#Class_Expressions

B.2 Getting Started

individuals (i.e. not belonging to the examples) correctly. It is also important that
the obtained class expression is easy to understand for a domain expert. We call
these criteria accuracy and readability.

As an example, consider the problem to find out whether a chemical compound
can cause cancer4. In this case, the background knowledge contains information
about chemical compounds in general and certain concrete compounds we are in-
terested in. The positive examples are those compounds causing cancer, whereas
the negative examples are those compounds not causing cancer. The prediction
for the examples has been obtained from experiments and long-term research trials
in this case. Of course, all examples have to be described in the considered back-
ground knowledge. A learning algorithm can now derive a class expression from
examples and background knowledge, e.g. such a class expression in natural lan-
guage could be “chemical compounds containing a phosphorus atom”. (Of course,
in practice the expression will be more complex to obtain a reasonable accuracy.)
Using this class expression, we can not classify unseen chemical compounds.

B.2 Getting Started

DL-Learner is written in Java, i.e. it can be used on almost all platforms. Cur-
rently, Java 6 or higher is required. To install the latest release, please visit the
download page5 and extract the file on your harddisk. In the top level directory,
you will notice several executables. Those files ending with bat are Windows
executables, whereas the corresponding files without file extension are the Non-
Windows (e.g. Linux, Mac) executables. To test whether DL-Learner works, please
run the following on the command line depending on your operating system:

dllearner examples/father.conf (Non-Windows Operating System)

dllearner.bat examples/father.conf (Windows Operating System)

Conf files, e.g. examples/father.conf in this case, describe the learning prob-
lem and specify which algorithm you want to use to solve it. In the simplest
case they just say where to find the background knowledge to use (in the OWL
file examples/father.owl in this case) and the positive and negative examples
(marked by “+” and “-”, respectively). When running the above command, you
should get something similar to the following:

DL-Learner 2009-05-06 command line interface

starting component manager ... OK (157ms)

initialising component "OWL file" ... OK (0ms)

initialising component "fast instance checker" ... OK (842ms)

initialising component "pos neg learning problem" ... OK (0ms)

4see http://dl-learner.org/wiki/Carcinogenesis for a more detailed description
5http://sourceforge.net/project/showfiles.php?group_id=203619

181

http://dl-learner.org/wiki/Carcinogenesis
http://sourceforge.net/project/showfiles.php?group_id=203619

B DL-Learner Manual

initialising component "refinement operator based

learning algorithm II" ... OK (14ms)

starting top down refinement with: Thing (50% accuracy)

more accurate (83,33%) class expression found: male

solutions (at most 20 are shown):

1: (male and hasChild some Thing) (accuracy 100%, length 5, depth 3)

Algorithm terminated successfully.

number of retrievals: 4

retrieval reasoning time: 0ms (0ms per retrieval)

number of instance checks: 93 (0 multiple)

instance check reasoning time: 1ms (0ms per instance check)

overall reasoning time: 1ms (11,016% of overall runtime)

overall algorithm runtime: 17ms

The first part of the output tells you which components are used (more on this
in Section B.4). In the second part you see output coming from the used learning
algorithm, i.e. it can print information while running (“more accurate (83,33%)
class description found”) and the final solutions, it computed. The results are
displayed in Manchester OWL Syntax6. There can be several solutions, in which
case they are ordered with the most promising one in the first position. In this case
the only solution is male and hasChild some Thing defining the class father.
The last part of the output contains some runtime statistics.

B.3 DL-Learner Architecture

DL-Learner consists of core functionality, which provides Machine Learning al-
gorithms for solving the learning problem, support for different knowledge base
formats, an OWL library, and reasoner interfaces. There are several interfaces
for accessing this functionality, a couple of tools which use the DL-Learner algo-
rithms, and a set of convenience scripts. The general structure is illustrated in
Figure B.1.

To be flexible in integrating new learning algorithms, new kinds of learning
problems, new knowledge bases, and new reasoner implementations, DL-Learner
uses a component based model. Adding a component can be done by subclassing
the appropriate class and adding the name of the new class to the “components.ini”
file (more on that in Section B.6).

There are four types of components (knowledge source, reasoning service, learn-
ing problem, learning algorithm). For each type, there are several implemented
components and each component can have its own configuration options as il-
lustrated in Figure B.2. Configuration options can be used to change param-

6http://www.co-ode.org/resources/reference/manchester_syntax/

182

http://www.co-ode.org/resources/reference/manchester_syntax/

B.3 DL-Learner Architecture

Component Manager

build desired combination of
knowledge sources,
reasoners, learning problems,
learning algorithms

Utililities

automatic example
selection,
UI elements

Interfaces

GUI Web-Service

Command-Line

Scripts

Cross Validation

Train+Test

Tools
ORE Protégé plugin

DBpedia Navigator
OntoWiki plugin

Figure B.1: Overall structure of the DL-Learner software.

Knowledge Source Component

OWL file
internal knowledge base
SPARQL endpoint
Linked Data

Learning Problem Component

learning definitions/
subclass axioms
positive+negative examples/
positive only learning

Reasoning Service Component

DIG interface
OWL API interface
approximate reasoning

Learning Algorithm Component

top-down refinement approaches:
 OCEL, ELTL Base, ELTL, CELOE
Genetic Programming:
 standard and hybrid algorithm

uses

su
p
p
o
rt

s

b
a
se

d
 o

n

configuration optionsoffer offer

Figure B.2: The architecture of DL-Learner is based on four component types,
which can each have their own configuration options. DL-Learner
uses a component manager to organise all components.

eters/settings of a component. In Section B.4, we describe the components in
DL-Learner and their configuration options.

183

B DL-Learner Manual

B.4 DL-Learner Components

In this part, we describe concrete components currently implemented in DL-
Learner. Each of the subsections contains a list of components according to the
type specified in the subsection heading. Note that this does not constitute a
full description, i.e. we omit some components and many configuration options.
The purpose of the manual is to obtain a general understanding of the imple-
mented components. A full list, which is generated automatically from the source
code, can be found in doc/configOptions.txt including the default values for
all options and their usage in conf files.

B.4.1 Knowledge Sources

Knowledge sources have a URI and can be included in configuration files using
import("$url");, e.g. import("ontology.owl"). Depending on the file end-
ing, DL-Learner will guess the correct type of knowledge source. If you want to
overwrite this, you can use a second parameter with value OWL, KB, or SPARQL,
e.g. import("ontology.owl","OWL").

OWL File DL-Learner supports OWL files in different formats, e.g. RDF/XML
or N-Triples. If there is a standard OWL format, you want to use, but is
not supported by DL-Learner please let us know. We use the OWL API for
parsing, so all formats supported by it can be used7.

KB File KB files are an internal non-standardised knowledge representation for-
mat, which corresponds to description logic syntax except that the special
symbols have been replaced by ASCII strings, e.g. AND instead of u. You can
find several KB files in the examples folder. The doc/kbFileSyntax.txt

contains an EBNF description of the language.

SPARQL Endpoint DL-Learner allows to use SPARQL endpoints as background
knowledge source, which enables the incorporation of very large knowledge
bases, e.g. DBpedia[Lehmann et al., 2009], in DL-Learner. This works by
using a set of start instances, which usually correspond to the examples in a
learning problem, and then retrieving knowledge about these instances via
SPARQL queries. The obtained knowledge base fragment can be converted
to OWL and consumed by a reasoner later since it is now sufficiently small
to be processed in reasonable time. Please see [Hellmann et al., 2009a] for
details about the knowledge fragment extraction algorithm. Some options
of the SPARQL component are:

• instances: Set of individuals to use for starting the knowledge fragment
extraction. Example use in conf file:

7 for a list see http://owlapi.sourceforge.net

184

http://owlapi.sourceforge.net

B.4 DL-Learner Components

sparql.instances={"http://dbpedia.org/resource/Matt_Stone",

"http://dbpedia.org/resource/Sarah_Silverman"};

• recursionDepth: Maximum distance of an extracted individual from a
start individual. This influences the size of the extracted fragment and
depends on the maximum property depth you want the learned class
expression to have. Example use in conf file:
sparql.recursionDepth = 2;.

• saveExtractedFragment: Specifies whether the extracted ontology is
written to a file or not. If set to true, then the OWL file is written to the
cache dir. Example usage: sparql.saveExtractedFragment = true;

Many further options allow to modify the extracted fragment on the fly or
fine-tune the extraction process. The extraction can be started separately
by running and modifying org.dllearner.test.SparqlExtractionTest.
The collected ontology will be saved in the DL-Learner directory.

B.4.2 Reasoner Components

Several reasoner components are implemented, which can be interfaces to concrete
reasoners or own reasoner implementations. To select a component in a conf file,
use reasoner=$value;, where $value is one of digReasoner, owlAPIReasoner,
or fastInstanceChecker, which are explained below.

OWL API The OWL API reasoner interface can be used in conjunction with the
Pellet and FaCT++ reasoners. The only option allows to switch between
both:

• reasonerType: Selects the desired reasoner. By default, Pellet is used.
Usage: owlAPIReasoner.reasonerType = fact;. Note that FaCT++
is written in C++ and we currently ship the 32 bit version of the JNI
layer. This may change to 64 bit in the future.

DIG DIG 1.18 is an interface to description logic reasoners and supported by a
large variety of reasoners including Pellet, FaCT++, KAON2, and Racer
Pro. The major drawback is that the current version DIG 1.1 is not aligned
with the OWL specification and therefore lacks several features, which are
crucial to the more recent learning algorithms in DL-Learner. If you still
want to use the DIG interface, you have to download a DIG capable reasoner
and start the DIG server there. DL-Learner communicates with the reasoner
using the XML based protocol over HTTP.

Fast Instance Checker Instance checks, i.e. testing whether an individual is in-
stance of a class, is the major reasoner task in many learning algorithms.

8http://dl.kr.org/dig/

185

http://dl.kr.org/dig/

B DL-Learner Manual

This reasoner is a self-development of the DL-Learner project. It reme-
dies some problems related to Machine Learning and the Open World As-
sumption in OWL and therefore is not correct w.r.t. OWL semantics. (See
[Badea and Nienhuys-Cheng, 2000] Section 4 for an explanation.) Further-
more, it provides an improved performance for instance checks by precom-
puting some inferences and keeping them in memory. The fast instance
checker is build on top of Pellet and the default reasoner component in
DL-Learner.

B.4.3 Learning Problems

In the introductory Sections B.1 and B.2, we described a specific learning problem
where positive and negative examples are given. In practice different variations
of similar problems occur. You can switch between the different problems us-
ing problem=$value;, where $value is one of posNegLPStandard, posOnlyLP,
classLearning. The default is posNegLPStandard.

Positive and Negative Examples Let the name of the background ontology be
O. The goal in this learning problem is to find an OWL class expression
C such that all/many positive examples are instances of C w.r.t. O and
none/few negative examples are instances of C w.r.t. O. As explained pre-
viously, C should be learned such that it generalises to unseen individu-
als and is readable. The important configuration options of this compo-
nent are obviously the positive and negative examples, which are often in-
dicated with + and - signs in conf files as an optional shortcut to using
e.g. posNegLPStandard.positiveExamples = {...}.

Positive Examples This learning problem is similar to the one before, but without
negative examples. In this case, it is desirable to find a class expression which
closely fits the positive examples while still generalising sufficiently well. For
instance, you usually do not want to have owl:Thing as a solution for this
problem, but neither do you want to have an enumeration of all examples.

Class Learning In class learning, you are given an existing class A within your
ontology O and want to describe it. It is similar to the previous problem in
that you can use the instances of the class as positive examples. However,
there are some differences, e.g. you do not want to have A itself as a proposed
solution of the problem, and since this is an ontology engineering task, the
focus on short and readable class expressions is stronger than for the two
problems mentioned before. The learner can also take advantage of existing
knowledge about the class to describe.

186

B.4 DL-Learner Components

B.4.4 Learning Algorithms

The implemented algorithms vary from very simple (and usually inappropriate)
algorithms to sophisticated ones. You can switch between the different algo-
rithms using algorithm=$value;, where $value is one of bruteForce, random,
gp, refinement, refinement2, and celoe. The default is refinement2.

Brute Force : This algorithm tests all class expressions up to a specified length,
which you can set using e.g. bruteForce.maxlength = 7.

Random Guesser : This algorithm randomly generates class expressions. To
do this, it creates trees, which can be mapped to class expressions. Its
main parameter is the number of created trees, which you can set using
e.g. random.numberOfTrees = 5.

Genetic Programming (GP) : GP is a well-known general problem solution
method, which can be adapted to class expression learning. The adaption is
straightforward. In DL-Learner, however, an additional genetic refinement
operator was implemented, which has shown to improve GP performance
in [Lehmann, 2007]. Some options are:

• number of individuals: The individual count is the size of each gen-
eration in a GP algorithm. It is one of the most crucial parameters.
Setting it to a higher value usually means investing more computational
resource for increasing the likelihood that a solution will be found. Us-
age: gp.numberOfIndividuals = 100.

• refinement probability: This is used to specify how likely the usage
of the genetic refinement operator should be, for instance a setting of
gp.refinementProbability = 0.6 means that it will be selected 60%
of the time.

The Genetic Programming algorithm has 15 more options, which are docu-
mented in doc/configOptions.txt.

Refinement This is a top down refinement operator approach, which is described
in [Lehmann and Hitzler, 2007c]. Some options include:

• target language: The standard target language of this algorithm is
ALCN (D). However, you can change the language, i.e. you can exclude
the ∀ constructor by using refinement.useAllConstructor = false;.
Similar options exist for ∃, ¬, cardinality restrictions, and boolean
datatypes.

• maximum execution time: If there is no perfect solution of a given prob-
lem, the algorithm can potentially run forever (in practice it will run out
of memory). It is therefore often interesting to limit the execution time.
You can use e.g. refinement.maxExecutionTimeInSeconds = 100 to
say that the algorithm should run for at most 100 seconds. Often, it

187

B DL-Learner Manual

will run slightly longer than the maximum execution time since it waits
for the next internal loop of the algorithm to stop gracefully.

The algorithm supports a range of further options. For instance, one can
specify which classes and properties must not occur in resulting class ex-
pressions.

Refinement II The previous algorithm has been extended to make more sophis-
ticated use of background knowledge and therefore run more efficiently on
many problems. It also supports double datatypes and hasValue restrictions
(which again can be turned on or off as desired). It also includes explicit
noise handling through the noisePercentage option. This is currently the
default and recommend algorithm for learning from positive and negative
examples. More than 30 options can be set to control its behaviour. How-
ever, apart from the target language the most important setting is noise,
which should be optimised for the given problem.

Class Expression Learning for Ontology Engineering (CELOE) Currently, the
CELOE algorithm is the most suitable learner for the class learning problem
within DL-Learner. It uses the same refinement operator as Refinement II,
but a completely different heuristics. Furthermore, it guarantees that the
returned class expressions are minimal in the sense that one cannot remove
parts of them without getting an inequivalent expression. Furthermore, it
makes use of existing background knowledge in coverage checks. Statistical
methods are used to improve the efficiency of the algorithm such that it
scales to large knowledge bases. While it was originally designed for ontology
engineering, it can also be used for other learning problems and might even
be superior to the other algorithms in many cases (not well-tested yet). Note
that many configuration options of Refinement II were dropped for the sake
of simplicity, but might be introduced if needed.

Remark B.1 (Additional Algorithms)
Refinement II will be renamed to OCEL in the next release and new algorithms
based on a refinement operator for the EL description language will be made
available. �

Please note that while components are interchangeable, it is not possible to
arbitrarily combine them. For instance, the newer learning algorithms do not
work with the DIG interface, since it does not provide the necessary inference
tasks. Furthermore, a learning algorithm can specify which learning problems it
can solve, i.e. we do not require it to be able to solve each learning problem. Table
B.1 provides a compatibility matrix. Note that this can change in future releases,
because algorithms may be extended to support new learning problems or drop
support for them.

188

B.5 DL-Learner Interfaces

learning problem BF RG GP Ref Ref II CELOE

pos only x x x

pos neg x x x x x x

class learning x x x

Table B.1: Learning problem - learning algorithm compatibility matrix in DL-
Learner. Legend: BF = brute force, RG = random guesser, Ref =
Refinement

Figure B.3: GUI screenshot showing the learning algorithm tab. The UI allows
you to set different options and then proceed to the next tab and
execute the algorithm.

B.5 DL-Learner Interfaces

One interface you have already used in Section B.2 is the command line. There are
two executables, which can be used for starting DL-Learner on the commandline:
dl-learner and quickstart. The first one takes a conf file as argument, whereas
the latter one lists all conf files in the examples folder and allows you to select one
of those.

Apart from the command line, there is also a prototypical graphical interface.
You can use gui (or gui.bat) to start it. Optionally, a conf file can be passed as
argument. The main GUI window has four tabs corresponding to the four different
types of components and a run tab to execute the learning algorithm. Using the
GUI, you can assemble the desired combination of components and options. The
File menu allows you to load a conf file or save the current configuration to

189

B DL-Learner Manual

a conf file. The GUI implementation is currently prototypical, so please report
any bugs or feature requests you have (see Section B.7). Since the GUI uses
the component manager, it will automatically evolve when new components and
options are added.

A third interface through which DL-Learner can be accessed programmatically
is a web service. You can execute ws (or ws.bat) to start the web service. It is
based on the Java API for XML Web Services (JAX-WS), which is included in
Java 6 or higher. Executing the command will start a web server on port 8181 of
your local machine. The WSDL can be accessed via http://localhost:8181/

services?wsdl. You can use a WSDL viewer to see the supported operations or
view the JavaDoc of the corresponding Java file9. Some examples for calling the
web service from PHP can be found in the DL-Learner subversion repository10.

Another means to access DL-Learner, in particular for ontology engineering, is
to use the OntoWiki and Protégé plugins. The OntoWiki plugin is not officially re-
leased yet, but can be used in the SVN version of OntoWiki. The Protégé 4 plugin
can be installed either by downloading it from the DL-Learner download page or
directly within Protégé 4 by clicking on “File”, “Preferences”, “Plugins”, “Check
for Downloads” now and selecting the DL-Learner plugin. For more information
and a screencast see the Protégé plugin wiki page 11.

B.6 Extending DL-Learner

DL-Learner is open source and component based. If you want to develop a specific
part or extension of a class expression learning algorithm for OWL, then you are
invited to use DL-Learner as a base. This allows you to focus on the part you
want to implement while being able to use DL-Learner as a library and access it
through one of the interfaces.

If you want to create a new component, then you first have to decide on the type
of your component. To implement a concrete component, you have to subclass
one of the following classes and implement their abstract methods:

• org.dllearner.core.KnowledgeSource

• org.dllearner.core.ReasonerComponent

• org.dllearner.core.LearningProblem

• org.dllearner.core.LearningAlgorithm

9viewable online at http://dl-learner.org/javadoc/org/dllearner/server/
DLLearnerWS.html

10in the directory src/php-examples/:
http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/src/
php-examples/

11http://dl-learner.org/wiki/ProtegePlugin

190

http://localhost:8181/services?wsdl
http://localhost:8181/services?wsdl
http://dl-learner.org/javadoc/org/dllearner/server/DLLearnerWS.html
http://dl-learner.org/javadoc/org/dllearner/server/DLLearnerWS.html
http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/src/php-examples/
http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/src/php-examples/
http://dl-learner.org/wiki/ProtegePlugin

B.6 Extending DL-Learner

You then have to add your component to lib/components.ini such that it is
registered in the component manager when DL-Learner starts up. If you want to
use configuration options in your component, you need to create a static method
as follows:

public static Collection<ConfigOption<?>> createConfigOptions() {

List<ConfigOption<?>> options = new LinkedList<ConfigOption<?>>();

options.add(new IntegerConfigOption("maxDepth",

"maximum depth of generated concepts/trees", 5));

return options;

}

This creates an option with name maxDepth, the given description, and a default
value of 5. To add further options, simply add more of them to the collection. If
desired, running org.dllearner.scripts.ConfigJavaGenerator generates a file
for you in package org.dllearner.configurators to access the options of your
component programmatically. These configurator classes are particularly useful
to build scripts or tools on top of DL-Learner components. An example for this
can be found in org.dllearner.scripts.NewSample.

Currently, the following configuration option types exist (new ones can be im-
plemented if necessary):

• boolean, e.g. useCache

• string (a set of allowed strings can be specified), e.g. cacheDir

• URL, e.g. reasonerURL

• int (min and max value can be specified), e.g. maxDepth

• double (min and max value can be specified), e.g. noisePercentage

• set of strings, e.g. positiveExamples

• list of string tuples, e.g. replaceObject

Restricting to these option types this gives us the possibility to build very flex-
ible user interfaces. Whenever, a new component or a new configuration option
for a component is added, the current user interfaces (GUI, web service, comman-
dline) will automatically support it without any or only minimal code changes.

This quick introduction only serves as an entry point to get you started. For
more detailed questions about how to extend DL-Learner, please drop us a message
in the DL-Learner mailing list.

191

B DL-Learner Manual

B.7 General Information

• Homepage: http://dl-learner.org

• Sourceforge.net project page:
http://sourceforge.net/projects/dl-learner/

• Tracker (bugs, features):
http://sourceforge.net/tracker/?group_id=203619

• Mailing Lists: http://sourceforge.net/mail/?group_id=203619

• Contact: lehmann@informatik.uni-leipzig.de (please use the mailing list if
possible)

• Latest Release:
http://sourceforge.net/project/showfiles.php?group_id=203619

192

http://dl-learner.org
http://sourceforge.net/projects/dl-learner/
http://sourceforge.net/tracker/?group_id=203619
http://sourceforge.net/mail/?group_id=203619
http://sourceforge.net/project/showfiles.php?group_id=203619

C Curriculum Vitae

Personal Data
Birthdate: March 29, 1982

Birthplace: Meissen, Saxony, Germany

Nationality: German

Family status: unmarried

School Education
1992–1998 St.-Afra-Gymnasium Meissen

1998–2000 Werner-Heisenberg-Gymnasium Riesa with extended
mathematical and scientific education

2000 Abitur, grade 1,2

Military Service, Study Preparations
2000–2001 Military Service at the General-Olbricht-Kaserne in

Leipzig

2001 5 month practical work at System Service Meissen,

(Web Applications, Scripting Languages, Databases)

Scientific Education
2001-2006 Study of Computer Science at TU Dresden

2005-2006 Erasmus exchange student at the University of Bristol
(England), 4 master courses (each with grade ”A”) with
focus on Machine Learning

2006 Diploma in Computer Science, grade 1,1

since 2006 PhD student at University of Leipzig

193

C Curriculum Vitae

Miscellaneous
1993–2000 successful participation at several Math Olympics:

1st (twice), 2nd (three times), 3rd (twice) price regional
level,

2nd (once), 3rd (three times) price state level (Saxony),

certificate of successful participation on country level
(Germany), 7th and 9th place in team competition of
special math schools

1998 fee language course (4 weeks á 20 hours) in Brighton,
England

language diploma: grade ”Advanced”, level ”Excellent”

1999 participation in German delegation at the ”International
Historical Forum of Youth”, a 9 day meeting to support
the understanding among nations in Krzyzowa and Opole
(Poland)

2001 2 weeks Computer Science course (given by ”Bil-
dungswerk der Sächsichen Wirtschaft”)

C.1 Related Peer Reviewed Publications

B Lehmann, J. and Hitzler, P. (2010). Concept learning in description logics
using refinement operators. Machine Learning journal, 78(1-2):203–250.

B Lehmann, J. (2009). DL-Learner: learning concepts in description logics.
Journal of Machine Learning Research (JMLR), 10:2639–2642.

B Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
and Hellmann, S. (2009). DBpedia - a crystallization point for the web of
data. Journal of Web Semantics, 7(3):154–165.

B Lehmann, J. and Haase, C. (2009). Ideal downward refinement in the
EL description logic. In Inductive Logic Programming, 19th International
Conference, ILP 2009, Leuven, Belgium.

B Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., and Stegemann, T.
(2009). RelFinder: Revealing relationships in RDF knowledge bases. In
Proceedings of the 3rd International Conference on Semantic and Media
Technologies (SAMT), volume 5887 of Lecture Notes in Computer Science,
pages 182–187. Springer.

B Hellmann, S., Lehmann, J., and Auer, S. (2009a). Learning of OWL class
descriptions on very large knowledge bases. Int. J. Semantic Web Inf.
Syst., 5(2):25–48.

194

C.1 Related Peer Reviewed Publications

B Hellmann, S., Stadler, C., Lehmann, J., and Auer, S. (2009b). DBpedia
Live Extraction. In Proc. of 8th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE), volume 5871 of Lec-
ture Notes in Computer Science, pages 1209–1223. Springer.

B Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives,
Z. (2008). DBpedia: A nucleus for a web of open data. In Proceedings
of the 6th International Semantic Web Conference (ISWC), volume 4825 of
Lecture Notes in Computer Science, pages 722–735. Springer.

B Hellmann, S., Lehmann, J., and Auer, S. (2008). Learning of OWL class
descriptions on very large knowledge bases. In Bizer, C. and Joshi, A.,
editors, Proceedings of the Poster and Demonstration Session at the 7th
International Semantic Web Conference (ISWC2008), Karlsruhe, Germany,
October 28, 2008, volume 401 of CEUR Workshop Proceedings. CEUR-
WS.org.

B Auer, S. and Lehmann, J. (2007). What have Innsbruck and Leipzig in
common? extracting semantics from wiki content. In Proceedings of the
ESWC (2007), LNCS (4519), pages 503–517. Springer.

B Lehmann, J. (2007). Hybrid learning of ontology classes. In Perner, P.,
editor, Machine Learning and Data Mining in Pattern Recognition, 5th In-
ternational Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007,
Proceedings, volume 4571 of Lecture Notes in Computer Science, pages 883–
898. Springer.

B Lehmann, J., Schüppel, J., and Auer, S. (2007). Discovering unknown
connections - the dbpedia relationship finder. In Proceedings of the 1st
SABRE Conference on Social Semantic Web.

B Lehmann, J. and Hitzler, P. (2007a). Foundations of refinement opera-
tors for description logics. In Blockeel, H., Ramon, J., Shavlik, J. W.,
and Tadepalli, P., editors, Inductive Logic Programming, 17th International
Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, volume 4894
of Lecture Notes in Computer Science, pages 161–174. Springer. Best
Student Paper Award.

B Lehmann, J. and Hitzler, P. (2007b). A refinement operator based learn-
ing algorithm for the alc description logic. In Blockeel, H., Ramon, J.,
Shavlik, J. W., and Tadepalli, P., editors, Inductive Logic Programming,
17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21,
2007, volume 4894 of Lecture Notes in Computer Science, pages 147–160.
Springer. Best Student Paper Award.

195

C Curriculum Vitae

C.2 Other Publications

B Auer, S., Lehmann, J., and Hellmann, S. (2009c). LinkedGeoData - adding
a spatial dimension to the web of data. In Proc. of 7th International Se-
mantic Web Conference (ISWC), volume 5823 of Lecture Notes in Computer
Science, pages 731–746. Springer.

B Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., and Aumueller, D. (2009).
Triplify: light-weight linked data publication from relational databases. In
Quemada, J., León, G., Maarek, Y. S., and Nejdl, W., editors, Proceedings
of the 18th International Conference on World Wide Web, WWW 2009,
Madrid, Spain, April 20-24, 2009, pages 621–630. ACM.

B Auer, S., Lehmann, J., and Bizer, C. (2009). Semantische mashups auf
basis vernetzter daten. In Blumauer, A. and Pellegrini, T., editors, Social
Semantic Web, X.media.press, pages 259–286. Springer.

B Lehmann, J. and Haase, C. (2009). Ideal downward refinement in the EL
description logic. Technical report, University of Leipzig. Downloadable
from http://www.jens-lehmann.org.

B Lehmann, J. and Knappe, S. (2008). DBpedia Navigator. Semantic Web
Challenge, International Semantic Web Conference 2008.

B Lehmann, J., Bader, S., and Hitzler, P. (2008). Extracting reduced logic
programs from artificial neural networks. Applied Intelligence.

B Riechert, T., Lauenroth, K., Lehmann, J., and Auer, S. (2007). Towards
semantic based requirements engineering. In Proceedings of the 7th Inter-
national Conference on Knowledge Management (I-KNOW).

B Auer, S., Dietzold, S., Lehmann, J., and Riechert, T. (2007). Ontowiki: A
tool for social, semantic collaboration. In Noy, N. F., Alani, H., Stumme, G.,
Mika, P., Sure, Y., and Vrandecic, D., editors, Proceedings of the Workshop
on Social and Collaborative Construction of Structured Knowledge (CKC
2007) at the 16th International World Wide Web Conference (WWW2007)
Banff, Canada, May 8, 2007, volume 273 of CEUR Workshop Proceedings.
CEUR-WS.org.

B Riechert, T., Lauenroth, K., and Lehmann, J. (2007). Semantisch un-
terstütztes requirements engineering. In Proceedings of the SABRE-07 Soft-
Wiki Workshop.

B Lehmann, J. and Hitzler, P. (2007). A refinement operator based learning
algorithm for the ALC description logic. Technical report, University of
Leipzig. Downloadable from http://www.jens-lehmann.org.

196

C.3 Talks

B Lehmann, J. and Hitzler, P. (2007). Foundations of refinement operators for
description logics. Technical report, University of Leipzig. Downloadable
from http://www.jens-lehmann.org.

C.3 Talks

B Invited speaker KYOTO EU project workshop presentation on ”Semantic
Wikis and the Web of Data”

B Invitation to AIFB Karlsruhe for presenting the AKSW research group and
the DL-Learner project

B International Conference on Inductive Logic Programming (ILP) 2009 pre-
sentation on “Ideal Downward Refinement in the EL Description Logic”

B Two blocks (180 minutes) in the lecture “Semantic Web” 2009

B OntoWiki EU project kickoff meeting presentation on “OWL and Descrip-
tion Logics” 2008 and OntoWiki EU project midterm meeting presentation
on “Integration of OntoWiki and DL-Learner” 2009

B International Conference on Machine Learning and Data Mining 2007 pre-
sentation on “Hybrid Learning of Ontology Classes”

B International Conference on Inductive Logic Programming (ILP) 2007 pre-
sentation on “ALC Concept Learning with Refinement Operators”

C.4 Research Projects and Groups

B Leader of MOLE (“Machine Learning and Ontology Engineering”) research
group as sub group of AKSW [since 2009]

B Participation in BmBF funded project LE4SW (“Leipzig for Semantic Web”)
[since 2009]

B Member of LinkedGeoData project (adding a spatial dimension to the Se-
mantic Web) [since 2009]

B Participation in EU FP7 project “OntoWiki - Semantic Collaboration for
Enterprise Knowledge Management, E-Learning and E-Tourism” [since 2008]

B Member of AKSW (“Agile Knowledge Engineering and Semantic Web”)
research group [since 2006]

B Member and co-founder of DBpedia open source project (extraction of ma-
chine understandable content from Wikipedia) [since 2007]

197

C Curriculum Vitae

B Leader of DL-Learner open source project (framework for supervised Ma-
chine Learning in OWL and Description Logics) [since 2007]

B Member of OntoWiki open source project (agile, distributed knowledge en-
gineering) [since 2006]

B Participation in BmBF funded SoftWiki project (distributed, end-user cen-
tered requirements engineering for evolutionary software development) [2006
- 2009]

C.5 Programm Committee, Reviewing

B PC member Workshop on Scripting and Development for the Semantic Web
(SFSW) 2009

B PC member Workshop on Inductive Reasoning and Machine Learning on
the Semantic Web (IRMLeS) 2009

B PC member Workshop on Web Semantics 2009

B PC member European Semantic Web Conference 2009 (ESWC) 2009

B Reviewer European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD) 2009

B Reviewer Journal of Information Technology Research (JITR) 2009

B Reviewer Journal of Web Semantics 2007 - 2009

B Reviewer IEEE International Conference on Semantic Computing 2009

B Reviewer International Semantic Web Conference (ISWC) 2009

B Reviewer International Journal of Metadata, Semantics and Ontologies (IJMSO)
2008

B PC member I-Semantics 2008

B PC member Workshop on Scripting for the Semantic Web 2008

B Reviewer IEEE International Conference on Web Services (ICWS) 2008

B Reviewer Workshop on Linked Data on the Web 2008

B PC member SABRE Conference on Social Semantic Web (CSSW) 2007

B Reviewer European Semantic Web Conference (ESWC) 2007

B Reviewer International Joint Conference on Neural Networks (IJCNN) 2007

198

C.6 Seminars and Teaching

C.6 Seminars and Teaching

B Assistant lecturer for “Semantic Web”, 2009

B Practical course “Semantic Web”, 2009

B Seminar “Softwareproduktlinienentwicklung und Semantic Web”, 2008/09

B Seminar “Semantische Unterstützung von Software Entwicklungsprozessen”,
2008

B Seminar “Semantische Unterstützung von Software Entwicklungsprozessen”,
2007/08

B Seminar “Semantic Web Applications”, 2007

B Seminar “Semantic Web Services and Interfaces”, 2006/07

B Research seminar of the chair of Business Information Systems, since 2006

C.7 Supervision

B Steffen Becker, diploma thesis, “Musikempfehlungen im Semantic Web”,
2009

B Lorenz Bühmann, master thesis, “Ontology Repair and Enrichment”, 2009

B Vu Duc Minh, bachelor thesis, “DL-Learner Plugin für OntoWiki”, 2008

B Lorenz Bühmann, bachelor thesis, “Erweiterung und Reparatur von Ontolo-
gien”, 2008

B Christian Kötteritzsch, bachelor thesis, “Entwicklung eines DL-Learner Plu-
gins für Protégé”, 2008

B Maria Moritz, bachelor thesis, “DL-Learner PlugIn für OntoWiki”, 2008
(with Sebastian Dietzold)

B Sebastian Knappe, diploma thesis, “Navigation in DBpedia mit Hilfe maschinellen
Lernens”, 2007/2008

B Tilo Hielscher, bachelor thesis, “Entwicklung einer Java-basierten Oberfläche
für das DL-Learner-Tool”, 2007/2008

B Ruslan Masold, bachelor thesis, “Verwendung von Benutzeroberflächen mit
Web 2.0 Technologien in einer semantischen Webapplikation”, 2007/2008

B Tom Weiland, bachelor thesis, “Controller Design für semantische Webapp-
likationen”, 2007/2008

199

C Curriculum Vitae

B Rolland Brunec, bachelor thesis, “Extending OntoWiki with a Manchester
OWL Syntax Parser”, 2007/2008

B Sebastian Hellmann, diploma thesis, “Comparison of Concept Learning Al-
gorithms”, 2007/2008

B Fan Zhang, bachelor thesis, “Internationalisierung und Usability von Ontologie-
Editoren am Beispiel OntoWiki”, 2007

B Anke Gonschorreck, bachelor thesis, “Extraktion einer Klassenhierarchie
basierend auf den Wikipedia-Kategorien”, 2007

B Jörg Schüppel, diploma thesis, “Semantikextraktion aus Wikipedia”, 2006/2007
(with Sören Auer)

In addition, the work of many student assistants was supervised.

200

List of Tables

1.1 Contributions and advancements over the state of the art. 17

2.1 SHOIN Syntax and Semantics 26
2.2 Mapping between OWL and DL 32

4.1 Syntax and Semantics of Extensions Supported by ρ 72
4.2 EL Syntax and Semantics . 76
4.3 EL Knowledge Base Axioms . 76
4.4 EL Operator Benchmark Results 88

5.1 Ontology Engineering Heuristics 101

6.1 Common DBpedia Classes . 109
6.2 Comparison of Generic Infobox, Mapping-Based Infobox, and Pagelinks

Datasets . 111
6.3 Comparison of Graph Structures of Generic Infobox, Mapping-

Based Infobox, and Pagelinks Datasets 111
6.4 Distribution of Outgoing Links of DBpedia 114
6.5 Data Sources Publishing Links to DBpedia 115
6.6 Semantic Bible Fragment Extraction Statistics 121
6.7 The table shows a probe of the automatic re-learning method for

classes. Sets were evaluated manually, falsely classified individuals
in brackets . 131

7.1 OCEL and ELTL Results . 143
7.2 YinYang and GP Results . 144
7.3 Comparison with ILP Approaches on Carcinogenesis Problem . . 148
7.4 Influence of Noise Parameter . 150
7.5 Ontology Engineering Evaluation Results 157
7.6 Ontology Engineering Performance Assessment 159
7.7 Comparison of Fragment Extraction and Standard Learning . . . 161

B.1 Learning Problem - Learning Algorithm Compatibility Matrix . . 189

201

List of Figures

2.1 Semantic Web Layer Cake . 20
2.2 RDF Example Graph . 21
2.3 Integration of Thesis into the Research Areas Machine Learning

and Knowledge Representation 39
2.4 Generate and test approach used in DL-Learner 42
2.5 Illustration of some refinement operator properties (left to right):

completeness, redundancy, properness, and finiteness (bottom). . . 44

4.1 Definition of the refinement operator ρ 63
4.2 Simulation Relation Example . 78
4.3 EL Refinement Chain Example 83
4.4 Application of EL Refinement Operator 85

5.1 Illustration of a search tree in a top down refinement approach. . 91
5.2 Michalski Trains Problem . 94
5.3 Visualisation of Accuracy Measurement Approaches 100

6.1 Overview of DBpedia Components 105
6.2 Infobox Tom Hanks. 107
6.3 Comparison of Node Indegree versus Rank of Generic Infobox,

Mapping-Based Infobox, and Pagelinks Datasets 112
6.4 DBpedia Example RDF Links . 113
6.5 LOD Cloud . 114
6.6 Revealing relationships between Kurt Gödel und Albert Einstein. 117
6.7 Overview of the DBpedia Navigator GUI. DBpedia Navigator pro-

vides an interface for searching and browsing within DBpedia. . . 118
6.8 Fragment Extraction Process . 121
6.9 Fragment Extraction Visualisation 126

7.1 Overall Structure of the DL-Learner Software 138
7.2 DL-Learner Component Types . 139
7.3 Accuracy Comparison . 145
7.4 Length Comparison . 146
7.5 Runtime Comparison . 147
7.6 Visualisation of Training and Testing Accuracy 151
7.7 Screenshot of DL-Learner Protégé Plugin 153
7.8 OntoWiki DL-Learner Plugin Invocation 154

202

List of Figures

7.9 OntoWiki DL-Learner Plugin Result Table 155
7.10 Analysis of Extracted Triples and Extraction Time 160
7.11 Time versus Accuracy Comparison for Semantic Bible Example . 162

B.1 Overall Structure of DL-Learner Software 183
B.2 DL-Learner Component Architecture 183
B.3 DL-Learner GUI Screenshot . 189

203

List of Algorithms

1 Computing the Maximal Simulation 81
2 Computation of the Set as(t, v) . 83
3 OCEL Algorithm . 93
4 ELTL Base Algorithm . 95
5 ELTL Algorithm . 96
6 Knowledge Extraction Algorithm 127

204

List of Definitions

2.5 Syntax of ALC concepts . 24
2.7 Interpretation . 26
2.10 Consistency . 29
2.12 Satisfiability . 29
2.14 Subsumption, Equivalence . 29
2.16 Instance Check . 29
2.17 Retrieval . 30
2.19 Length of an ALC Concept . 30
2.20 Concept Learning with Background Knowledge 35
2.21 Learning From Examples in OWL/DLs 39
2.22 Positive Only Learning in OWL/DLs 40
2.23 Class/Concept Learning in OWL/DLs 40
2.25 Refinement Operator . 42
2.26 L Refinement Operator . 42
2.27 Refinement Chain . 42
2.28 Downward and Upward Cover . 43
2.29 Properties of DL Refinement Operators 43
4.3 S↓ . 65
4.8 ρcl . 70
4.11 EL Simulation . 78
4.12 EL Tree . 78
4.13 EL Graph of an Interpretation . 79
4.18 Minimal Trees . 81
4.21 EL Refinement Operator ψ . 84
5.1 OCEL Score . 92
5.4 CELOE Score . 101
6.2 Tuple Acquisition Interface . 124

205

List of Theorems

3.1 Existence of Covers in ALC . 46
3.2 minimality and weak completeness 47
3.3 Complete and Finite Refinement Operators 49
3.5 Non-Ideality Helper Lemma 1 . 50
3.6 Non-Ideality Helper Lemma 2 . 51
3.7 Ideal Refinement Operators . 52
3.8 Complete and Proper Refinement Operators 53
3.9 Complete, Non-redundant Refinement Operators 53
3.10 Complete, Non-redundant Operators II 55
3.11 Incomplete Refinement Operators . 55
3.12 Properties of Refinement Operators (I) 56
3.13 Weakly Complete, Non-redundant, Proper Op. 57
3.14 Weakly Complete, Non-redundant, Finite Op. 57
3.15 Weakly Complete, Proper, and Finite Operators 58
3.16 Properties of Refinement Operators (II) 58
4.2 Downward Refinement of ρ . 64
4.4 Adequacy of S↓ . 66
4.5 Weak Completeness with Domain B 67
4.6 Weak Completeness of ρ . 69
4.7 Completeness of ρ . 69
4.9 ρ Does not Reduce Length . 71
4.10 Computability up to Length n . 71
4.14 Simulations and Interpretations . 79
4.15 Uniqueness of Maximal Simulations 80
4.16 Subsumption and Simulations . 80
4.17 Computation of Maximal Simulation 80
4.19 Finite Number of EL Trees up to some Depth 81
4.20 No Simulation Between Trees of Different Depth 82
4.23 Finiteness, Properness, Weak Completeness of ψ 84
4.24 Ideality of ψ∗ . 86
4.25 No Redundant and Complete EL Operators 86
5.2 Correctness . 94

206

List of Examples and Remarks

1.1 Simple Ontology Engineering Use Case 13
2.1 RDF/XML Syntax . 21
2.2 RDF Turtle Syntax . 22
2.3 SPARQL Query . 23
2.4 Filters in SPARQL Queries . 23
2.6 ALC concepts . 24
2.8 Interpreting Concepts . 26
2.9 Models of a Knowledge Base . 27
2.11 Consistency . 29
2.13 Satisfiability . 29
2.15 Subsumption . 29
2.18 Instance Check, Retrieval . 30
2.24 Concept Learning Example . 40
3.4 Complete and Finite Refinement Operators 50
3.17 Subsumption with Respect to a TBox 59
3.18 Weak Equality . 59
3.19 EL Family of Description Logics . 59
4.1 ρ refinements . 64
4.22 Application of ψ . 84
4.26 Application of Extended Operator ψ 87
5.3 OCEL . 94
6.1 Manual Example From Semantic Bible 120
6.3 Example SPARQL Query on DBpedia 128
6.4 Re-Learning Wikipedia Categories 130
6.5 Navigation Use Case . 132
6.6 Stochastic Coverage Test . 136
7.1 Extended Evaluation . 158
B.1 Additional Algorithms . 188

207

Bibliography

[Agresti and Coull, 1998] Agresti, A. and Coull, B. A. (1998). Approximate is
better than “exact” for interval estimation of binomial proportions. The Amer-
ican Statistician, 52(2):119–126.

[Auer et al., 2008] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R.,
and Ives, Z. (2008). DBpedia: A nucleus for a web of open data. In Proceedings
of the 6th International Semantic Web Conference (ISWC), volume 4825 of
Lecture Notes in Computer Science, pages 722–735. Springer.

[Auer et al., 2009a] Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., and Au-
mueller, D. (2009a). Triplify: light-weight linked data publication from rela-
tional databases. In Quemada, J., León, G., Maarek, Y. S., and Nejdl, W.,
editors, Proceedings of the 18th International Conference on World Wide Web,
WWW 2009, Madrid, Spain, April 20-24, 2009, pages 621–630. ACM.

[Auer et al., 2007] Auer, S., Dietzold, S., Lehmann, J., and Riechert, T. (2007).
Ontowiki: A tool for social, semantic collaboration. In Noy, N. F., Alani,
H., Stumme, G., Mika, P., Sure, Y., and Vrandecic, D., editors, Proceed-
ings of the Workshop on Social and Collaborative Construction of Structured
Knowledge (CKC 2007) at the 16th International World Wide Web Conference
(WWW2007) Banff, Canada, May 8, 2007, volume 273 of CEUR Workshop
Proceedings. CEUR-WS.org.

[Auer et al., 2006a] Auer, S., Dietzold, S., and Riechert, T. (2006a). OntoWiki –
A tool for Social, Semantic Collaboration. In The Semantic Web – ISWC 2006,
5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA,
November 5-9, 2006, Proceedings, volume 4273 of Lecture Notes in Computer
Science, pages 736–749. Springer.

[Auer et al., 2006b] Auer, S., Dietzold, S., and Riechert, T. (2006b). Ontowiki -
a tool for social, semantic collaboration. In ISWC 2006, volume 4273 of LNCS,
pages 736–749. Springer.

[Auer and Lehmann, 2007] Auer, S. and Lehmann, J. (2007). What have Inns-
bruck and Leipzig in common? extracting semantics from wiki content. In
Proceedings of the ESWC (2007), LNCS (4519), pages 503–517. Springer.

[Auer et al., 2009b] Auer, S., Lehmann, J., and Bizer, C. (2009b). Semantische
mashups auf basis vernetzter daten. In Blumauer, A. and Pellegrini, T., editors,
Social Semantic Web, X.media.press, pages 259–286. Springer.

208

Bibliography

[Auer et al., 2009c] Auer, S., Lehmann, J., and Hellmann, S. (2009c). Linked-
GeoData - adding a spatial dimension to the web of data. In Proc. of 7th
International Semantic Web Conference (ISWC), volume 5823 of Lecture Notes
in Computer Science, pages 731–746. Springer.

[Baader et al., 2007a] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F., editors (2007a). The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press.

[Baader et al., 2007b] Baader, F., Ganter, B., Sattler, U., and Sertkaya, B.
(2007b). Completing description logic knowledge bases using formal concept
analysis. In IJCAI 2007. AAAI Press.

[Baader et al., 1999] Baader, F., Molitor, R., and Tobies, S. (1999). Tractable and
decidable fragments of conceptual graphs. In Seventh International Conference
on Conceptual Structures (ICCS’99), number 1640 in LNCS, pages 480–493.
Springer Verlag.

[Baader et al., 2007c] Baader, F., Sertkaya, B., and Turhan, A.-Y. (2007c). Com-
puting the least common subsumer w.r.t. a background terminology. J. Applied
Logic, 5(3):392–420.

[Badea, 2000] Badea, L. (2000). Perfect refinement operators can be flexible. In
Horn, W., editor, Proceedings of the 14th European Conference on Artificial
Intelligence, pages 266–270. IOS Press.

[Badea and Nienhuys-Cheng, 2000] Badea, L. and Nienhuys-Cheng, S.-H. (2000).
A refinement operator for description logics. In Cussens, J. and Frisch, A.,
editors, Proceedings of the 10th International Conference on Inductive Logic
Programming, volume 1866 of Lecture Notes in Artificial Intelligence, pages
40–59. Springer-Verlag.

[Badea and Stanciu, 1999] Badea, L. and Stanciu, M. (1999). Refinement opera-
tors can be (weakly) perfect. In Džeroski, S. and Flach, P., editors, Proceedings
of the 9th International Workshop on Inductive Logic Programming, volume
1634 of Lecture Notes in Artificial Intelligence, pages 21–32. Springer-Verlag.

[Battista et al., 2007] Battista, A. D. L., Villanueva-Rosales, N., Palenychka, M.,
and Dumontier, M. (2007). SMART: A web-based, ontology-driven, semantic
web query answering application. In Semantic Web Challenge at the ISWC
2007.

[Bechhofer and Volz, 2004] Bechhofer, S. and Volz, R. (2004). Patching syntax in
OWL ontologies. In McIlraith, S. A., Plexousakis, D., and van Harmelen, F.,
editors, International Semantic Web Conference, volume 3298 of Lecture Notes
in Computer Science, pages 668–682. Springer.

209

Bibliography

[Becker and Bizer, 2008] Becker, C. and Bizer, C. (2008). DBpedia Mobile - A
Location-Aware Semantic Web Client. In Proceedings of the Semantic Web
Challenge.

[Belleau et al., 2008] Belleau, F., Tourigny, N., Good, B., and Morissette, J.
(2008). Bio2RDF: A semantic web atlas of post genomic knowledge about
human and mouse. In Bairoch, A., Boulakia, S. C., and Froidevaux, C., edi-
tors, DILS, volume 5109 of Lecture Notes in Computer Science, pages 153–160.
Springer.

[Benigni and Giuliani, 2003] Benigni, R. and Giuliani, A. (2003). Putting the pre-
dictive toxicology challenge into perspective: Reflections on the results. Bioin-
formatics, 19(10):1194–1200.

[Bergadano and Gunetti, 1995] Bergadano, F. and Gunetti, D. (1995). Inductive
Logic Programming: From Machine Learning to Software Engineering. The
MIT Press.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001).
The semantic web. Scientific American, 284(5):34–43.

[Blockeel and Raedt, 1996] Blockeel, H. and Raedt, L. D. (1996). Relational
knowledge discovery in databases. In Muggleton, S., editor, Proceedings of
the 6th International Workshop on Inductive Logic Programming, pages 1–13.
Stockholm University, Royal Institute of Technology.

[Blumer et al., 1990] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,
M. K. (1990). Occam’s razor. In Shavlik, J. W. and Dietterich, T. G., editors,
Readings in Machine Learning, pages 201–204. Morgan Kaufmann.

[Bodenreider et al., 2007] Bodenreider, O., Smith, B., Kumar, A., and Burgun,
A. (2007). Investigating subsumption in SNOMED CT: An exploration into
large description logic-based biomedical terminologies. Artificial Intelligence in
Medicine, 39(3):183–195.

[Boström, 1996] Boström, H. (1996). Theory-guided induction of logic programs
by inference of regular languages. In Proc. of the 13th International Conference
on Machine Learning, pages 46–53. Morgan Kaufmann.

[Brachman, 1978] Brachman, R. J. (1978). A structural paradigm for representing
knowledge. Technical Report BBN Report 3605, Bolt, Beraneck and Newman,
Inc., Cambridge, MA.

[Bratko, 1999] Bratko, I. (1999). Refining complete hypotheses in ILP. In
Džeroski, S. and Flach, P., editors, Proceedings of the 9th International Work-
shop on Inductive Logic Programming, volume 1634 of Lecture Notes in Artificial
Intelligence, pages 44–55. Springer-Verlag.

210

Bibliography

[Buitelaar et al., 2007] Buitelaar, P., Cimiano, P., and Magnini, B., editors
(2007). Ontology Learning from Text: Methods, Evaluation and Applications,
volume 123 of Frontiers in Artificial Intelligence. IOS Press.

[Cheng et al., 2008] Cheng, G., Ge, W., Wu, H., and Qu, Y. (2008). Searching
Semantic Web Objects Based on Class Hierarchies. In Proceedings of the 1st
Linked Data on the Web Workshop.

[Cimiano et al., 2009] Cimiano, P., Rudolph, S., and Hartfiel, H. (2009). Comput-
ing intensional answers to questions - an inductive logic programming approach.
Journal of Data and Knowledge Engineering (DKE).

[Clark et al., 2008] Clark, K. G., Feigenbaum, L., and Torres, E. (2008). SPARQL
Protocol for RDF. W3c recommendation, W3C.

[Cohen et al., 1993] Cohen, W. W., Borgida, A., and Hirsh, H. (1993). Computing
least common subsumers in description logics. In Proceedings of the Tenth
National Conference on Artificial Intelligence, pages 754–760. AAAI Press.

[Cohen and Hirsh, 1994] Cohen, W. W. and Hirsh, H. (1994). Learning the CLAS-
SIC description logic: Theoretical and experimental results. In Doyle, J., Sande-
wall, E., and Torasso, P., editors, Proceedings of the 4th International Confer-
ence on Principles of Knowledge Representation and Reasoning, pages 121–133.
Morgan Kaufmann.

[Cussens, 1996] Cussens, J. (1996). Part-of-speech disambiguation using ILP.
Technical Report PRG-TR-25-96, Oxford University Computing Laboratory.

[d’Amato et al., 2005] d’Amato, C., Fanizzi, N., and Esposito, F. (2005). A se-
mantic similarity measure for expressive description logics. In Proceedings of
the Convegno Italiano di Logica Computazionale.

[d’Amato et al., 2006] d’Amato, C., Fanizzi, N., and Esposito, F. (2006). Rea-
soning by analogy in description logics through instance-based learning. In
Tummarello, G., Bouquet, P., and Signore, O., editors, SWAP 2006 - Seman-
tic Web Applications and Perspectives, Proceedings of the 3rd Italian Semantic
Web Workshop, Scuola Normale Superiore, Pisa, Italy, 18-20 December, 2006,
volume 201 of CEUR Workshop Proceedings. CEUR-WS.org.

[d’Amato et al., 2008a] d’Amato, C., Fanizzi, N., and Esposito, F. (2008a). A
note on the evaluation of inductive concept classification procedures. In
Gangemi, A., Keizer, J., Presutti, V., and Stoermer, H., editors, Proceed-
ings of the 5th Workshop on Semantic Web Applications and Perspectives
(SWAP2008), Rome, Italy, December 15-17, 2008, volume 426 of CEUR Work-
shop Proceedings. CEUR-WS.org.

211

Bibliography

[d’Amato et al., 2008b] d’Amato, C., Fanizzi, N., and Esposito, F. (2008b). Query
answering and ontology population: An inductive approach. In ESWC, pages
288–302.

[Davies et al., 2006] Davies, J., Studer, R., and Warren, P., editors (2006). Se-
mantic Web Technologies – trends and research in ontology-based systems. John
Wiley & Sons.

[de Bruijn et al., 2005] de Bruijn, J., Lara, R., Polleres, A., and Fensel, D. (2005).
OWL DL vs. OWL flight: conceptual modeling and reasoning for the semantic
web. In Ellis, A. and Hagino, T., editors, Proceedings of the 14th international
conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005,
pages 623–632. ACM.

[Dietterich et al., 2008] Dietterich, T., Domingos, P., Getoor, L., Muggleton, S.,
and Tadepalli, P. (2008). Structured machine learning: the next ten years.
Machine Learning, 73(1):3–23.

[Domingos, 1998] Domingos, P. (1998). Occam’s two razors: The sharp and the
blunt. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, pages 37–43.

[Dutra et al., 2003] Dutra, I., Page, D., Costa, V. S., and Shavlik, J. (2003). An
empirical evaluation of bagging in inductive logic programming. In Matwin,
S. and Sammut, C., editors, Proceedings of the 12th International Conference
on Inductive Logic Programming, volume 2583 of Lecture Notes in Artificial
Intelligence, pages 48–65. Springer-Verlag.

[Džeroski et al., 1998] Džeroski, S., Jacobs, N., Molina, M., Moure, C., Muggle-
ton, S., and Laer, W. V. (1998). Detecting traffic problems with ILP. In Page,
D., editor, Proceedings of the 8th International Conference on Inductive Logic
Programming, volume 1446 of Lecture Notes in Artificial Intelligence, pages
281–290. Springer-Verlag.

[Dzeroski et al., 1998] Dzeroski, S., Jacobs, N., Molina, M., and Moure, C. (1998).
ILP experiments in detecting traffic problems. In 10th European Conference
on Machine Learning, Lecture Notes in Artificial Intelligence, pages 61–66.
Springer-Verlag.

[Esposito et al., 2004] Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., and
Semeraro, G. (2004). Knowledge-intensive induction of terminologies from
metadata. In The Semantic Web – ISWC 2004: Third International Semantic
Web Conference, Hiroshima, Japan, November 7-11, 2004. Proceedings, pages
441–455. Springer.

212

Bibliography

[Esposito et al., 2001] Esposito, F., Malerba, D., and Marengo, V. (2001). In-
ductive learning from numerical and symbolic data: An integrated framework.
Intell. Data Anal, 5(6):445–461.

[Fanizzi et al., 2008] Fanizzi, N., d’Amato, C., and Esposito, F. (2008). DL-FOIL
concept learning in description logics. In Proceedings of the 18th International
Conference on Inductive Logic Programming, volume 5194 of LNCS, pages 107–
121. Springer.

[Fanizzi et al., 2004] Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., and Se-
meraro, G. (2004). Downward refinement in the ALN description logic. In HIS,
pages 68–73. IEEE Computer Society.

[Fanizzi et al., 2003] Fanizzi, N., Ferilli, S., Mauro, N. D., and Basile, T. M. A.
(2003). Spaces of theories with ideal refinement operators. In Gottlob, G. and
Walsh, T., editors, IJCAI-03, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003,
pages 527–532. Morgan Kaufmann.

[Fensel et al., 2008] Fensel, D., van Harmelen, F., Andersson, B., Brennan, P.,
Cunningham, H., Valle, E. D., Fischer, F., Huang, Z., Kiryakov, A., il Lee,
T. K., Schooler, L., Tresp, V., Wesner, S., Witbrock, M., and Zhong, N. (2008).
Towards larKC: A platform for web-scale reasoning. In ICSC, pages 524–529.
IEEE Computer Society.

[Fokoue et al., 2006] Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., and
Srinivas, K. (2006). The summary ABox: Cutting ontologies down to size. In
ISWC, pages 343–356.

[Harth et al., 2008] Harth, A., Hogan, A., Umbrich, J., and Decker, S. (2008).
Swse: Objects before documents! In Proceedings of the Semantic Web Chal-
lenge.

[Heim et al., 2009] Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., and Stege-
mann, T. (2009). RelFinder: Revealing relationships in RDF knowledge bases.
In Proceedings of the 3rd International Conference on Semantic and Media
Technologies (SAMT), volume 5887 of Lecture Notes in Computer Science,
pages 182–187. Springer.

[Hellmann et al., 2008] Hellmann, S., Lehmann, J., and Auer, S. (2008). Learning
of OWL class descriptions on very large knowledge bases. In Bizer, C. and Joshi,
A., editors, Proceedings of the Poster and Demonstration Session at the 7th In-
ternational Semantic Web Conference (ISWC2008), Karlsruhe, Germany, Oc-
tober 28, 2008, volume 401 of CEUR Workshop Proceedings. CEUR-WS.org.

213

Bibliography

[Hellmann et al., 2009a] Hellmann, S., Lehmann, J., and Auer, S. (2009a). Learn-
ing of OWL class descriptions on very large knowledge bases. Int. J. Semantic
Web Inf. Syst., 5(2):25–48.

[Hellmann et al., 2009b] Hellmann, S., Stadler, C., Lehmann, J., and Auer, S.
(2009b). DBpedia Live Extraction. In Proc. of 8th International Conference
on Ontologies, DataBases, and Applications of Semantics (ODBASE), volume
5871 of Lecture Notes in Computer Science, pages 1209–1223. Springer.

[Helma et al., 2001] Helma, C., King, R. D., Kramer, S., and Srinivasan, A.
(2001). The predictive toxicology challenge 2000-2001. Bioinformatics,
17(1):107–108.

[Hitzler et al., 2009] Hitzler, P., Krötzsch, M., and Rudolph, S. (2009). Founda-
tions of Semantic Web Technologies. CRC Press/Chapman & Hall.

[Horridge et al., 2008] Horridge, M., Parsia, B., and Sattler, U. (2008). Laconic
and precise justifications in owl. In ISWC 08 The International Semantic Web
Conference 2008, Karlsruhe, Germany.

[Horridge and Patel-Schneider, 2008] Horridge, M. and Patel-Schneider, P. F.
(2008). Manchester syntax for OWL 1.1. In OWLED 2008, 4th international
workshop OWL: Experiences and Directions.

[Horrocks et al., 2006] Horrocks, I., Kutz, O., and Sattler, U. (2006). The even
more irresistible SROIQ. In Doherty, P., Mylopoulos, J., and Welty, C. A., ed-
itors, Proceedings, Tenth International Conference on Principles of Knowledge
Representation and Reasoning, Lake District of the United Kingdom, June 2-5,
2006, pages 57–67. AAAI Press.

[Horrocks et al., 2004] Horrocks, I., Li, L., Turi, D., and Bechhofer, S. (2004). The
instance store: DL reasoning with large numbers of individuals. In Haarslev,
V. and Möller, R., editors, Description Logics, volume 104 of CEUR Workshop
Proceedings. CEUR-WS.org.

[Horrocks et al., 2003] Horrocks, I., Patel-Schneider, P. F., and van Harmelen,
F. (2003). From SHIQ and RDF to OWL: The making of a web ontology
language. Journal of Web Semantics, 1(1):7–26.

[Horvath et al., 2009] Horvath, T., Paass, G., Reichartz, F., and Wrobel, S.
(2009). A logic-based approach to relation extraction from texts. In Inductive
Logic Programming, 19th International Conference, ILP 2009, Leuven, Bel-
gium.

[Iannone and Palmisano, 2005] Iannone, L. and Palmisano, I. (2005). An algo-
rithm based on counterfactuals for concept learning in the semantic web. In
Proceedings of the 18th International Conference on Industrial and Engineering

214

Bibliography

Applications of Artificial Intelligence and Expert Systems, pages 370–379, Bari,
Italy.

[Iannone et al., 2007] Iannone, L., Palmisano, I., and Fanizzi, N. (2007). An al-
gorithm based on counterfactuals for concept learning in the semantic web.
Applied Intelligence, 26(2):139–159.

[Jiang and Colton, 2006] Jiang, N. and Colton, S. (2006). Boosting descriptive
ILP for predictive learning in bioinformatics. In Muggleton, S., Otero, R. P.,
and Tamaddoni-Nezhad, A., editors, Proceedings of the 15th International Con-
ference on Inductive Logic Programming, volume 4455 of Lecture Notes in Com-
puter Science, pages 275–289. Springer.

[Kazakov, 1999] Kazakov, D. (1999). Combining LAPIS and WordNet for the
learning of LR parsers with optimal semantic constraints. In Džeroski, S. and
Flach, P., editors, Proceedings of the 9th International Workshop on Inductive
Logic Programming, volume 1634 of Lecture Notes in Artificial Intelligence,
pages 140–151. Springer-Verlag.

[Kersting, 2006] Kersting, K. (2006). An inductive logic programming approach
to statistical relational learning. AI Commun, 19(4):389–390.

[Kietz and Morik, 1994] Kietz, J.-U. and Morik, K. (1994). A polynomial ap-
proach to the constructive induction of structural knowledge. Machine Learn-
ing, 14:193–217.

[King et al., 1995] King, R. D., Sternberg, M. J. E., and Srinivasan, A. (1995).
Relating chemical activity to structure: An examination of ILP successes. New
Generation Comput, 13(3&4):411–433.

[Kobilarov et al., 2009] Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Size-
more, C., Smethurst, M., Lee, R., and Bizer, C. (2009). Media meets semantic
web - how the bbc uses DBpedia and linked data to make connections. In
Proceedings of the 6th European Semantic Web Conference.

[Krötzsch et al., 2008a] Krötzsch, M., Rudolph, S., and Hitzler, P. (2008a). De-
scription logic rules. In Ghallab, M. et al., editors, Proceedings of the 18th
European Conf. on Artificial Intelligence (ECAI-08), pages 80–84. IOS Press.

[Krötzsch et al., 2008b] Krötzsch, M., Rudolph, S., and Hitzler, P. (2008b). ELP:
Tractable Rules for OWL 2. In Sheth, A. et al., editors, The Semantic Web
– ISWC 2008, 7th International Semantic Web Conference, volume 5318 of
Lecture Notes in Computer Science, pages 649–664. Springer.

[Küsters, 2001] Küsters, R. (2001). Non-standard inferences in description logics.
Springer-Verlag New York, Inc., New York, NY, USA.

215

Bibliography

[Lamma et al., 1999] Lamma, E., Riguzzi, F., and Pereira, L. M. (1999). Learning
three-valued logic programs. In Dzeroski, S. and Flach, P., editors, ILP-99 Late-
Breaking Papers, pages 30–35.

[Lavrac and Dzeroski, 1994] Lavrac, N. and Dzeroski, S. (1994). Inductive Logic
Programming: Techniques and Applications. Artificial Intelligence. Ellis Hor-
wood (Simon & Schuster).

[Leban et al., 2008] Leban, G., Zabkar, J., and Bratko, I. (2008). An experiment
in robot discovery with ILP. In Zelezný, F. and Lavrac, N., editors, Inductive
Logic Programming, 18th International Conference, ILP 2008, Prague, Czech
Republic, September 10-12, 2008, Proceedings, volume 5194 of Lecture Notes in
Computer Science, pages 77–90. Springer.

[Lehmann, 2007] Lehmann, J. (2007). Hybrid learning of ontology classes. In
Perner, P., editor, Machine Learning and Data Mining in Pattern Recogni-
tion, 5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20,
2007, Proceedings, volume 4571 of Lecture Notes in Computer Science, pages
883–898. Springer.

[Lehmann, 2009] Lehmann, J. (2009). DL-Learner: learning concepts in descrip-
tion logics. Journal of Machine Learning Research (JMLR), 10:2639–2642.

[Lehmann et al., 2008] Lehmann, J., Bader, S., and Hitzler, P. (2008). Extracting
reduced logic programs from artificial neural networks. Applied Intelligence.

[Lehmann et al., 2009] Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker,
C., Cyganiak, R., and Hellmann, S. (2009). DBpedia - a crystallization point
for the web of data. Journal of Web Semantics, 7(3):154–165.

[Lehmann and Haase, 2009a] Lehmann, J. and Haase, C. (2009a). Ideal down-
ward refinement in the EL description logic. In Inductive Logic Programming,
19th International Conference, ILP 2009, Leuven, Belgium.

[Lehmann and Haase, 2009b] Lehmann, J. and Haase, C. (2009b). Ideal down-
ward refinement in the EL description logic. Technical report, University of
Leipzig. Downloadable from http://www.jens-lehmann.org.

[Lehmann and Hitzler, 2007a] Lehmann, J. and Hitzler, P. (2007a). Foundations
of refinement operators for description logics. In Blockeel, H., Ramon, J., Shav-
lik, J. W., and Tadepalli, P., editors, Inductive Logic Programming, 17th Inter-
national Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, volume
4894 of Lecture Notes in Computer Science, pages 161–174. Springer. Best Stu-
dent Paper Award.

[Lehmann and Hitzler, 2007b] Lehmann, J. and Hitzler, P. (2007b). Foundations
of refinement operators for description logics. Technical report, University of
Leipzig. Downloadable from http://www.jens-lehmann.org.

216

Bibliography

[Lehmann and Hitzler, 2007c] Lehmann, J. and Hitzler, P. (2007c). A refinement
operator based learning algorithm for the ALC description logic. In Block-
eel, H., Ramon, J., Shavlik, J. W., and Tadepalli, P., editors, Inductive Logic
Programming, 17th International Conference, ILP 2007, Corvallis, OR, USA,
June 19-21, 2007, volume 4894 of Lecture Notes in Computer Science, pages
147–160. Springer. Best Student Paper Award.

[Lehmann and Hitzler, 2007d] Lehmann, J. and Hitzler, P. (2007d). A refinement
operator based learning algorithm for the ALC description logic. Technical re-
port, University of Leipzig. Downloadable from http://www.jens-lehmann.org.

[Lehmann and Hitzler, 2010] Lehmann, J. and Hitzler, P. (2010). Concept learn-
ing in description logics using refinement operators. Machine Learning journal,
78(1-2):203–250.

[Lehmann and Knappe, 2008] Lehmann, J. and Knappe, S. (2008). Dbpedia nav-
igator. Semantic Web Challenge, International Semantic Web Conference 2008.

[Lehmann et al., 2007] Lehmann, J., Schüppel, J., and Auer, S. (2007). Discov-
ering unknown connections - the dbpedia relationship finder. In Proceedings of
the 1st SABRE Conference on Social Semantic Web.

[Lenat, 1995] Lenat, D. (1995). CYC: A large-scale investment in knowledge in-
frastructure. Communications of the ACM, 38(11):33–38.

[Lisi, 2005] Lisi, F. A. (2005). Principles of inductive reasoning on the semantic
web: A framework for learning in AL-log. In Fages, F. and Soliman, S., edi-
tors, Principles and Practice of Semantic Web Reasoning, Third International
Workshop, PPSWR 2005, Dagstuhl Castle, Germany, September 11-16, 2005,
Proceedings, volume 3703 of Lecture Notes in Computer Science, pages 118–132.
Springer.

[Lisi, 2008] Lisi, F. A. (2008). Building rules on top of ontologies for the semantic
web with inductive logic programming. TPLP, 8(3):271–300.

[Lisi and Esposito, 2008] Lisi, F. A. and Esposito, F. (2008). Learning SHIQ+log
rules for ontology evolution. In Proceedings of the 5th Workshop on Semantic
Web Applications and Perspectives (SWAP), volume 426 of CEUR Workshop
Proceedings. CEUR-WS.org.

[Lisi and Malerba, 2003] Lisi, F. A. and Malerba, D. (2003). Ideal refinement
of descriptions in AL-log. In Horváth, T., editor, Inductive Logic Program-
ming: 13th International Conference, ILP 2003, Szeged, Hungary, September
29-October 1, 2003, Proceedings, volume 2835 of Lecture Notes in Computer
Science, pages 215–232. Springer.

217

Bibliography

[Lukasiewicz, 2008] Lukasiewicz, T. (2008). Expressive probabilistic description
logics. Artif. Intell, 172(6-7):852–883.

[Michalski, 1980] Michalski, R. S. (1980). Pattern recognition as rule-guided in-
ductive inference. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 2(4):349–361.

[Mitchell, 1997] Mitchell, T. (1997). Machine Learning. McGraw Hill, New York.

[Mooney, 1997] Mooney, R. J. (1997). Inductive logic programming for natural
language processing. Inductive Logic Programming, 1314:3–22. Times Cited: 1
Lecture Notes in Artificial Intelligence Article English Cited References Count:
63 Bn72g.

[Mooney and Califf, 1995] Mooney, R. J. and Califf, M. E. (1995). Induction of
first-order decision lists: Results on learning the past tense of english verbs. J.
Artif. Intell. Res. (JAIR), 3:1–24.

[Muggleton, 1991] Muggleton (1991). Inductive logic programming. NEWGEN:
New Generation Computing, 8.

[Muggleton, 1992] Muggleton, S. (1992). Inductive Logic Programming. Academic
Press, New York.

[Muggleton, 1995] Muggleton, S. (1995). Inverse entailment and progol. New
Generation Computing, 13(3&4):245–286.

[Muggleton, 1996a] Muggleton, S. (1996a). Learning from positive data. In Mug-
gleton, S., editor, Proceedings of the 6th International Workshop on Inductive
Logic Programming, volume 1314 of Lecture Notes in Artificial Intelligence,
pages 358–376. Springer-Verlag.

[Muggleton, 1996b] Muggleton, S. (1996b). Learning from positive data. In Mug-
gleton, S., editor, Proceedings of the 6th International Workshop on Inductive
Logic Programming, volume 1314 of Lecture Notes in Artificial Intelligence,
pages 358–376. Springer-Verlag.

[Muggleton and Feng, 1990] Muggleton, S. and Feng, C. (1990). Efficient induc-
tion of logic programs. In ALT, pages 368–381.

[Muggleton and Raedt, 1994] Muggleton, S. and Raedt, L. D. (1994). Induc-
tive logic programming: Theory and methods. Journal of Logic Programming,
19/20:629–679.

[Naumann et al., 2006] Naumann, F., Bilke, A., Bleiholder, J., and Weis, M.
(2006). Data fusion in three steps: Resolving schema, tuple, and value in-
consistencies. IEEE Data Engineering Bulletin, 29(2):21–31.

218

Bibliography

[Nienhuys-Cheng and de Wolf, 1997] Nienhuys-Cheng, S.-H. and de Wolf, R., ed-
itors (1997). Foundations of Inductive Logic Programming, volume 1228 of
Lecture Notes in Computer Science. Springer.

[Nienhuys-Cheng et al., 1999] Nienhuys-Cheng, S.-H., Laer, W. V., Ramon, J.,
and Raedt, L. D. (1999). Generalizing refinement operators to learn prenex
conjunctive normal forms. In Džeroski, S. and Flach, P., editors, Proceedings of
the 9th International Workshop on Inductive Logic Programming, volume 1634
of Lecture Notes in Artificial Intelligence, pages 245–256. Springer-Verlag.

[Nienhuys-Cheng et al., 1993] Nienhuys-Cheng, S.-H., van der Laag, P. R. J., and
van der Torre, L. W. N. (1993). Constructing refinement operators by de-
composing logical implication. In Torasso, P., editor, Advances in Artificial
Intelligence: Proceedings of the 3rd Congress of the Italian Association for Ar-
tificial Intelligence (AI∗IA ’93), volume 728 of LNAI, pages 178–189, Torino,
Italy. Springer.

[Patel-Schneider and Horrocks, 2007] Patel-Schneider, P. F. and Horrocks, I.
(2007). A comparison of two modelling paradigms in the Semantic Web. Journal
on Web Semantics, 5(4):240–250.

[Plotkin, 1971] Plotkin, G. D. (1971). Automatic Methods of Inductive Inference.
PhD thesis, Edinburgh University.

[Quinlan and Cameron-Jones, 1993] Quinlan, J. R. and Cameron-Jones, R. M.
(1993). FOIL: a midterm report. In Brazdil, P. B., editor, European Conference
on Machine Learning Proceedings (ECML-93), pages 3–20, Vienna. Springer-
Verlag.

[Raedt, 1996] Raedt, L. D., editor (1996). Advances in Inductive Logic Program-
ming. IOS Press.

[Raedt, 2005] Raedt, L. D. (2005). Statistical relational learning: An inductive
logic programming perspective. In Jorge, A., Torgo, L., Brazdil, P., Camacho,
R., and Gama, J., editors, Knowledge Discovery in Databases: PKDD 2005,
9th European Conference on Principles and Practice of Knowledge Discovery
in Databases, Porto, Portugal, October 3-7, 2005, Proceedings, volume 3721 of
Lecture Notes in Computer Science, pages 3–5. Springer.

[Raedt et al., 2008] Raedt, L. D., Frasconi, P., Kersting, K., and Muggleton, S.,
editors (2008). Probabilistic Inductive Logic Programming - Theory and Appli-
cations, volume 4911 of Lecture Notes in Computer Science. Springer.

[Ramanan, 2002] Ramanan, P. (2002). Efficient algorithms for minimizing tree
pattern queries. In SIGMOD ’02: Proc. of the 2002 ACM SIGMOD Int. Conf.
on Management of data, pages 299–309. ACM.

219

Bibliography

[Rector and Brandt, 2008] Rector, A. L. and Brandt, S. (2008). Why do it the
hard way? The case for an expressive description logic for SNOMED. J Am
Med Inform Assoc.

[Reka and Albert-Laszlo, 2002] Reka, A. and Albert-Laszlo, B. (2002). Statistical
mechanics of complex networks. Rev. Mod. Phys., 74:47–97.

[Richards and Mooney, 1995] Richards, B. L. and Mooney, R. J. (1995). Refine-
ment of first-order Horn-clause domain theories. Machine Learning, 19(2):95–
131.

[Riechert et al., 2007a] Riechert, T., Lauenroth, K., and Lehmann, J. (2007a). Se-
mantisch unterstütztes requirements engineering. In Proceedings of the SABRE-
07 SoftWiki Workshop.

[Riechert et al., 2007b] Riechert, T., Lauenroth, K., Lehmann, J., and Auer, S.
(2007b). Towards semantic based requirements engineering. In Proceedings of
the 7th International Conference on Knowledge Management (I-KNOW).

[Rudolph, 2004] Rudolph, S. (2004). Exploring relational structures via FLE. In
Wolff, K. E., Pfeiffer, H. D., and Delugach, H. S., editors, Conceptual Structures
at Work: 12th International Conference on Conceptual Structures, ICCS 2004,
Huntsville, AL, USA, July 19-23, 2004. Proceedings, volume 3127 of Lecture
Notes in Computer Science, pages 196–212. Springer.

[Schwitter et al., 2008] Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C.,
and Hart, G. (2008). A comparison of threee controlled natural languages
for OWL 1.1. In Clark, K. and Patel-Schneider, P. F., editors, Pro-
ceedings of the Fourth International Workshop OWL: Experiences and Di-
rections, OWLED2008DC, Washington, D.C., April 2008. Available from
http://www.webont.org/owled/2008dc.

[Seidenberg and Rector, 2006] Seidenberg, J. and Rector, A. L. (2006). Web on-
tology segmentation: analysis, classification and use. In Carr, L., Roure, D. D.,
Iyengar, A., Goble, C. A., and Dahlin, M., editors, Proceedings of the 15th in-
ternational conference on World Wide Web, WWW 2006, Edinburgh, Scotland,
UK, May 23-26, 2006, pages 13–22. ACM.

[Shapiro, 1991] Shapiro, E. Y. (1991). Inductive inference of theories from facts.
In Lassez, J. L. and Plotkin, G. D., editors, Computational Logic: Essays in
Honor of Alan Robinson, pages 199–255. The MIT Press.

[Srinivasan et al., 1997] Srinivasan, A., King, R. D., Muggleton, S., and Stern-
berg, M. J. E. (1997). Carcinogenesis predictions using ILP. In Džeroski, S. and
Lavrač, N., editors, Proceedings of the 7th International Workshop on Induc-
tive Logic Programming, volume 1297 of Lecture Notes in Artificial Intelligence,
pages 273–287. Springer-Verlag.

220

Bibliography

[Staab and Studer, 2004] Staab, S. and Studer, R., editors (2004). Handbook on
Ontologies. International Handbooks on Information Systems. Springer Verlag,
Heidelberg.

[Straccia, 2001] Straccia, U. (2001). Reasoning within fuzzy description logics. J.
Artif. Intell. Res. (JAIR), 14:137–166.

[Suchanek et al., 2007] Suchanek, F. M., Kasneci, G., and Weikum, G. (2007).
Yago: a core of semantic knowledge. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 697–706, New York, NY,
USA. ACM Press.

[Suchanek et al., 2008] Suchanek, F. M., Kasneci, G., and Weikum, G. (2008).
Yago: A large ontology from wikipedia and wordnet. Journal of Web Semantics,
6(3):203–217.

[Swartz, 2002] Swartz, A. (2002). Musicbrainz: A semantic web service. IEEE
Intelligent Systems, 17(1):76–77.

[T. Berners-Lee et al., 2006] T. Berners-Lee et al. (2006). Tabulator: Exploring
and analyzing linked data on the semantic web. In Proceedings of the 3rd
International Semantic Web User Interaction Workshop.

[The Gene Ontology Consortium, 2000] The Gene Ontology Consortium (2000).
Gene ontology: tool for the unification of biology. Nature Genetics, 25(1):25–29.

[Toivonen et al., 2003] Toivonen, H., Srinivasan, A., King, R. D., Kramer, S., and
Helma, C. (2003). Statistical evaluation of the predictive toxicology challenge
2000-2001. Bioinformatics, 19(10):1183–1193.

[Tummarello et al., 2007] Tummarello, G., Delbru, R., and Oren, E. (2007).
Sindice.com: Weaving the Open Linked Data. In Proceedings of the 6th In-
ternational Semantic Web Conference.

[van der Laag and Nienhuys-Cheng, 1994] van der Laag, P. R. J. and Nienhuys-
Cheng, S.-H. (1994). Existence and nonexistence of complete refinement op-
erators. In Bergadano, F. and Raedt, L. D., editors, Proceedings of the 7th
European Conference on Machine Learning, volume 784 of Lecture Notes in
Artificial Intelligence, pages 307–322. Springer-Verlag.

[Völker et al., 2007a] Völker, J., Hitzler, P., and Cimiano, P. (2007a). Acqui-
sition of OWL DL axioms from lexical resources. In Proceedings of the 4th
European Semantic Web Conference (ESWC), volume 4519 of LNCS, pages
670–685. Springer.

[Völker and Rudolph, 2008] Völker, J. and Rudolph, S. (2008). Fostering web
intelligence by semi-automatic OWL ontology refinement. In Web Intelligence,
pages 454–460. IEEE.

221

Bibliography

[Völker et al., 2007b] Völker, J., Vrandecic, D., Sure, Y., and Hotho, A. (2007b).
Learning disjointness. In Proceedings of the 4th European Semantic Web Con-
ference (ESWC), volume 4519 of LNCS, pages 175–189. Springer.

[Šebeĺık and Štěpánek, 1982] Šebeĺık, J. and Štěpánek, P. (1982). Horn clause
programs for recursive functions. In Clark, K. and Tärnlund, S.-Å., editors,
Logic programming, pages 324–340. Academic Press, New York.

[Železný et al., 2003] Železný, F., Srinivasan, A., and Page, D. (2003). Lattice-
search runtime distributions may be heavy-tailed. In Matwin, S. and Sammut,
C., editors, Proceedings of the 12th International Conference on Inductive Logic
Programming, volume 2583 of Lecture Notes in Artificial Intelligence, pages
333–345. Springer-Verlag.

[Watanabe and Muggleton, 2009] Watanabe, H. and Muggleton, S. (2009). Can
ILP be applied to large dataset? In Inductive Logic Programming, 19th Inter-
national Conference, ILP 2009, Leuven, Belgium.

[Ziegler et al., 2008] Ziegler, C.-N., Lausen, G., and Konstan, J. A. (2008). On
exploiting classification taxonomies in recommender systems. AI Commun,
21(2-3):97–125.

222

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten
Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinn-
gemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden,
und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien
oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den 10.6.2010

Jens Lehmann

223

	Acknowledgement
	Bibliographic Data
	Contents
	Introduction
	Motivation
	Contributions
	Chapter Overview

	Preliminaries and State of the Art
	Semantic Web
	History and Vision
	RDF and SPARQL
	Description Logics
	OWL

	Concept Learning and Inductive Reasoning
	History, Tools, and Applications
	Learning Problems in OWL/DLs
	Refinement Operators in OWL/DLs

	Theoretical Foundations of Refinement Operators
	The Role of Minimality
	Combinations of Completeness, Properness, Finiteness, Redundancy
	Weak Completeness

	Designing Refinement Operators
	A Complete OWL Refinement Operator
	Definition of the Operator
	Completeness of the Operator
	Achieving Properness
	Cardinality Restrictions and Concrete Role Support
	Optimisations

	An Ideal EL Refinement Operator
	EL Trees and Simulation Relations
	Formal Description of the EL Refinement Operator
	Operator Performance

	Refinement Operator Based OWL Learning Algorithms
	OCEL (OWL Class Expression Learner)
	Redundancy Elimination
	Creating a Full Learning Algorithm

	ELTL (EL Tree Learner)
	CELOE (Class Expression Learner for Ontology Engineering)

	Improving Scalability of OWL Learning Algorithms
	The DBpedia Project
	The DBpedia Knowledge Extraction Framework
	The DBpedia Knowledge Base
	Interlinked Web Content
	Applications

	Knowledge Fragment Selection
	What Properties Should the Fragment Have?
	Extending Concise Bound Descriptions (CBDs)
	Extraction Methods
	OWL DL Conversion of the Fragment
	SPARQL Implementation of Tuple Acquisition
	Usage Scenarios

	Optimising Coverage Tests
	Approximate and Partial Closed World Reasoning
	Stochastic Coverage Computation

	Implementation, Evaluation, and Use Cases
	The DL-Learner Project
	ILP Learning Problems
	Comparison with other Algorithms based on Description Logics
	Comparison with other ILP approaches

	Ontology Engineering
	The Protégé Plugin
	The OntoWiki Plugin
	Evaluation of CELOE

	Fragment Extraction Evaluation
	Further Applications
	Predictions of the Effect of Mutations on the Protein Function
	NLP2RDF
	ORE - Ontology Repair and Enrichment
	moosique.net - Music Recommendations

	Strengths and Limitations of the Described Approaches

	Related Work
	Inductive Learning in Description Logics
	Refinement Operators
	(Semi-)Automatic Ontology Engineering
	Knowledge Fragment Selection

	Conclusions and Future Work
	Refinement Operators
	Learning Algorithms and Scalability
	Implementation, Evaluation and Use Cases
	Future Work

	Software Release History
	DL-Learner Manual
	What is DL-Learner?
	Getting Started
	DL-Learner Architecture
	DL-Learner Components
	Knowledge Sources
	Reasoner Components
	Learning Problems
	Learning Algorithms

	DL-Learner Interfaces
	Extending DL-Learner
	General Information

	Curriculum Vitae
	Related Peer Reviewed Publications
	Other Publications
	Talks
	Research Projects and Groups
	Programm Committee, Reviewing
	Seminars and Teaching
	Supervision

	List of Tables
	List of Figures
	List of Algorithms
	List of Definitions
	List of Theorems
	List of Examples and Remarks
	Bibliography
	Selbständigkeitserklärung

