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Abstract

In practice, graphs often occur as perturbed product structures, so-calledapproximategraph products.

The practical application of the well-known prime factorization algorithms is therefore limited, since

most graphs are prime, although they can have a product-like structure.

This work is concerned with thestrong graph product. Since strong product graphsG contain

subgraphs that are itself products of subgraphs of the underlying factors ofG, we follow the idea to

develop local approaches that cover a graph by factorizable patchesand then use this information to

derive the global factors.

First, we investigate the local structure of strong product graphs and introduce thebackboneB(G)

of a graphG and the so-calledS1-condition. Both concepts play a central role for determining the

prime factors of a strong product graph in a unique way. Then, we discuss several graph classes,

in detail,NICE, CHIC and locally unrefinedgraphs. For each class we construct local, quasi-linear

time prime factorization algorithms. Combining these results, we then derive a newlocal prime

factorization algorithm for all graphs.

Finally, we discuss approximate graph products. We use the new local factorization algorithm to

derive a method for the recognition of approximate graph products. Furthermore, we evaluate the

performance of this algorithm on a sample of approximate graph products.





Contents

1 Introduction 1

2 The Basics 5

2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Product Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8

2.3 Prime Factor Decomposition (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 The Cartesian Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 The Strong Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Graph Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.4.1 Hamming Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Subproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 S-prime Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The Local Way to Go 33

3.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 The S1-condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 The BackboneB(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 The Color-Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 NICE and CHIC Graphs 49

4.1 Thin-N coverable Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 49

4.2 NICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 CHIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Solving the Color-Continuation Problem . . . . . . . . . . . . . . . . . . . 54

4.3.2 Recognition and PFD of CHIC Graphs . . . . . . . . . . . . . . . . . . . . 57

4.4 Relation between NICE and CHIC graphs . . . . . . . . . . . . . . . . . . . . .. . 63



5 Locally unrefined Graphs 65

5.1 Determining the Prime Factors ofG∈ ϒ . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Detection and product coloring of the Cartesian skeleton . . . . . . . . . .. . . . . 70

5.2.1 Identify Colors of allGx
i -fibers that satisfy theS1-condition . . . . . . . . . 70

5.2.2 Identification of Parallel Fibers . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Detection of unidentified Cartesian Edges . . . . . . . . . . . . . . . . . . . 78

5.2.4 Algorithm and Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Recognition of GraphsG∈ ϒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 A General Local Approach 83

6.1 Dispensability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Algorithm and Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Approximate Graph Products 93

7.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Recognition of Approximate Graph Products . . . . . . . . . . . . . . . . . . .. . 95

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.1 A Measure of Perturbation by Deleting Edges . . . . . . . . . . . . . . . . .99

7.3.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.3 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Summary and Outlook 115

Bibliography I

List of Figures V

Curriculum Vitae IX



1
Introduction

Graphs and in particular graph products arise in a variety of different contexts, from computer science

to theoretical biology, computational engineering or in studies on social networks.

In practical applications, we observe perturbed product structures,so-calledapproximategraph

products, since structures derived from real-life data are notoriouslyincomplete and/or plagued by

measurement errors. As a consequence, the structures need to be analyzed in a way that is robust

against inaccuracies, noise, and perturbations in the data.

The problem of computing approximate graph products was posed several years ago in a theoret-

ical biology context [56]. The authors provided a concept concerning the topological theory of the

relationships between genotypes and phenotypes. In this framework a so-called “character” (trait or

Merkmal) is identified with a factor of a generalized topological space that describes the variational

properties of a phenotype. The notion of a character can be understood as a property of an organism

that can vary independently of other traits from generation to generation.Characters thus are not

necessarily the same as observable properties such as arms, legs, fingers, a spinal chord, etc, although

such observables of course often are instantiations of characters. The important biological distinc-

tion is whethersuch measurable attributes (or combinations thereof) form a “coordinate axis” along

1



2 1. Introduction

which the character states (e.g. the lengths of arms or fingers) can vary independently of other traits,

or whether the underlying genetics dictates dependencies among the observables [41].

This question can be represented as a graph problem in the following way:Consider a setX of

“phenotypes”, that is, representations of distinct organisms, each of which is characterized by a list

of properties such as body shape, eye color, presence or absenceof certain bones, etc. If one knows

about the phylogenetic relationships between the members ofX, we can estimate which combinations

of properties are interconvertible over short evolutionary time-scales. This evolutionary “accessibility

relation” introduces a graph-structure onX [7, 17, 18, 52].

In particular, a phenotype space inherits its structure from an underlyingsequence space. Sequence

spaces are Hamming graphs, that is, Cartesian products of complete graphs, see [10, 11]. The struc-

ture of localized subsets turns out to be of particular interest. Gavrilets [19], Grüner [21], and Reidys

[48], for example, describe subgraphs in sequence spaces that correspond to the subset of viable

genomes or to those sequences that give rise to the same phenotype. The structure of these subgraphs

is intimately related to the dynamics of evolutionary processes [30, 54]. However, since characters

are only meaningfully defined on subsets of phenotypes it is necessary touse a local definition [56]:

A character corresponds to a factor in a factorizable induced subgraph with non-empty interior (where

x is an interior vertex ofH ⊂G if x and all its neighbors withinG are inH).

Other applications of graph products can be found in rather different areas as computer graphics and

theoretical computer science. In [1, 2], the authors provide a framework, calledTopoLayout, to draw

undirected graphs based on the topological features they contain. Topological features are detected

recursively, and their subgraphs are collapsed into single nodes, forming a graph hierarchy. The final

layout is drawn using an appropriate algorithm for each topological feature [1]. Graph products have

a well understood structure, that can be drawn in an effective way. Hence, for an extension of this

framework in particular approximate graph products are of interest.

Reasons and motivations to study graph products or graphs that have a product-like structure can

be found in many other areas, e.g. for the formation of finite element models or construction of

localized self-equilibrating systems in computational engineering [35–37]. Other motivations can be

found in discrete mathematics. A natural question is what can be said about agraph invariant of

an (approximate) product if one knows the corresponding invariants ofthe factors. There are many

contributions, treating this problem, e.g. [4, 6, 22, 23, 26, 42].

In all applications of practical interest, the graphs in question have to be either obtained from

computer simulations (e.g. within the RNA secondary structure model as in [7, 17, 18]) or they need

to be estimated from measured data. In both cases, they are known only approximately. In order to
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deal with such inaccuracies, a mathematical framework is needed that allowsus to deal with graphs

that are only approximate products.

Given a graphG that has a product-like structure, the task is to find a graphH that is a nontrivial

product and a good approximation ofG, in the sense thatH can be reached fromG by a small number

of additions or deletions of edges and vertices. In fact, a very small perturbation, such as the deletion

or insertion of a single edge, can destroy the product structure completely, modifying a product graph

to a prime graph [13, 58].

In this thesis, we are in particular interested in the so-calledstronggraph product, that is one of

the four standard products. The observation that strong product graphs contain subgraphs that are

themselves products of subgraphs of the underlying factors, so-calledsubproducts, leads to the idea

to factorize those subgraphs and to use the local factorizations for the construction of a global one.

First, we introduce the necessary basic definitions inChapter 2. Moreover, we deal with two graph

products, theCartesianand thestrongproduct and show how one computes the prime factors of a

graph with respect to both products. In the last part of this chapter, we introduce several other graph

classes that will become powerful tools in later considerations.

In order to cover a graphG by its subproducts and to use the information provided by the factoriza-

tion of those subgraphs to construct the factors ofG, we are concerned with several important tools

and techniques that will help us to realize this purpose inChapter 3. As it turns out, the so-called

S1-conditionand thebackboneB(G) of a graphG, that is a subset of the vertex set ofG, will play a

central role.

After this, we are concerned with a local approach that recognizes the prime factors of a graph by

covering it with induced neighborhoods that satisfy certain properties inChapter 4. In particular, the

term thinnessof graphs is essential. A graph isthin if any two of its vertices can be distinguished

by their respective neighborhoods. We introduce the class ofNICE and CHIC graphs and show

that the information provided by the local factorization of thin induced neighborhoods of backbone

vertices is sufficient to determine the prime factors of those graphs. Moreover, we derive quasi-linear

time algorithms that determine the prime factors of NICE and CHIC graphs using neighborhood

information only.

As it turns out, not all graphs have this property. InChapter 5, we therefore consider graphs that

cannot be covered by those thin neighborhoods only and extend the previous work to graphs that

have a local factorization that is not finer than the global one. We call this propertylocally unrefined.

We then show how one can cover such a graph by its neighborhoods, in order to determine its prime
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factors. As results we derive polynomial-time algorithms to check whether a graph is locally unrefined

and to compute its prime factor decomposition.

In Chapter 6, we use the previous findings and provide a general local approach for the prime factor

decomposition for all kinds of graphs. The algorithm makes use of several different subproducts. As

it turns out, in this approach we have to enlarge the subproducts, e.g. from neighborhoods to unions

of neighborhoods, for the general case. We explain how the generallocal approach works and show

that time complexity of this approach is quasi-linear in the number of vertices ofG.

Finally, we discuss approximate graph products inChapter 7. We use the new local factoriza-

tion algorithm to derive a method for the recognition of approximate graph products. At the end,

we perform experimental tests and we evaluate the performance of this algorithm on a sample of

approximate graph products.



2
The Basics

We begin this chapter with basic definitions that are quite similar to those ones in [8]. We proceed to

introduce two graph products, theCartesianand thestrongproduct. In particular we are interested in

the strong product, but as it turns out, the Cartesian product is closely related to the strong product

and plays a central role in the prime factor decomposition of strong productgraphs. We then explain

how one decomposes a given graph into its prime factors with respect to bothproducts and give

an overview of the well-known prime factorization algorithms. In the last partof this chapter we

introduce several graph classes, likeHamming graphs, Subproducts, andS-prime graphs, that will

become powerful tools in later considerations.

2.1 Graphs

The cardinality of a setX, i.e. the number of its elements, is denoted by|X|. The abbreviationgcd

stands for thegreatest common divisor. A setX = {X1, . . . ,Xn} of nonempty, disjoint subsets of a

setX is called apartition of X, if ∪n
i=1Xi = X. Logarithms are taken to the base 2, denoted by log.

A graphG = (V,E) is an ordered pair of sets consisting of a setV of vertices and a setE of edges,

5



6 2. The Basics

that are 2-element (unordered) subsets ofV. Such graphs are also calledundirectedgraphs.Note that

by definition graphs cannot have edgese with |e| = 1. A simplegraph is an undirected graph such

that there is at mostoneedge between any two different vertices.

To avoid ambiguity, we always assume thatV∩E = /0. If there is a risk of confusion we refer to the

vertex set ofG asV(G) and to its edge setE asE(G). A vertexv is incidentwith an edgee if v∈ e.

The two vertices incident witheare itsendpoints, ande joinsits endpoints. An edge{x,y} ∈ E(G) is

usually written as(x,y) and the verticesx andy are said to beadjacentor neighbors. Furthermore we

say two edges areincidentif they share a common endpoint.

A path is a graphP= (V,E) of the formV = {v1, . . . ,vn} andE = {(v1,v2),(v2,v3), . . .(vn−1,vn)},

where the verticesvi are all distinct. Acycle C= (V,E) is a closedpath, i.e, a graph of the form

V = {v1, . . . ,vn} andE = {(v1,v2),(v2,v3), . . .(vn−1,vn),(vn,v1)}. A pathP, respectively a cycleC,

with n vertices will be denoted byPn, respectively byCn. A cycleC4 is calledsquare. The length of a

path is defined as the number of its edges. Thedistance dG(x,y) in G between two verticesx,y∈V(G)

is defined as the shortest path, connecting them. If no such path exists we set dG(x,y) := ∞. If there

is no risk of confusion we writed(x,y) instead ofdG(x,y). The largest distance between any two

vertices inG is thediameterof G.

A graphG is connectedif for any two of its vertices there is a path connecting them.

Remark 2.1. From here on we always deal with connected, undirected and simple graphsG= (V,E)

with finite vertex setV.

0

1 2

34

Figure 2.1: Shown is a finite, connected, undirected and simple graph.

GivenG = (V,E), we will write G‡(u,v) for the graph with vertex setV and edge setE ‡(u,v) for

each of the set operations ‡∈ {\,∪,∩}.

If all vertices of a graphG = (V,E) are pairwise adjacent,G is completeand denoted byK|V|. The
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graphK2 is callededgeandK3 is calledtriangle. A graph isnontrivial if it has at least two vertices.

Hence, the complete graphK1 is trivial.

The openneighborhoodN(v) of a vertexv ∈ V is the set of all vertices that are adjacent tov.

We define thek-neighborhoodof vertexv as the setNk[v] = {x ∈ V(G) | dG(v,x) ≤ k}. We call a

1-neighborhoodN1[v] = N(v)∪{v} alsoclosedneighborhood or just neighborhood, denoted byN[v],

unless there is a risk of confusion. To avoid ambiguity, we sometimes writeNG[v] to indicate that

N[v] is taken with respect toG.

The degree deg(v) of a vertexv is the number of adjacent vertices, or, equivalently, the number of

incident edges. For a given graphG = (V,E) the average degreedeg(G) is defined as∑v∈V deg(v)
|V| . The

maximum degree is denoted by∆.

If for two graphsH andG holdsV(H) ⊆V(G) andE(H) ⊆ E(G) thenH is a called asubgraph

of G, denoted byH ⊆G. H is aspanningsubgraph ofG if V(H) = V(G). If H ⊆G and all pairs of

adjacent vertices inG are also adjacent inH thenH is called a(vertex) inducedsubgraph. Anedge

inducedgraphH of G is a subgraph with edge setE(H)⊆E(G) and vertex setV(H) =∪e∈E(H)e. The

subgraph of a graphG that is induced by a vertex setW ⊆V(G), respectively an edge setF ⊆ E(G)

is denoted by〈W〉, respectively〈F〉.

A subsetD of V(G) is adominating setfor G, if for all vertices inV(G) \D there is at least one

adjacent vertex fromD. We callD connected dominating set, if D is a dominating set and the subgraph

〈D〉 is connected.

A homomorphismφ : V(G)→V(H) is an adjacency preserving mapping, i.e., if(x,y)∈E(G) then

(φ(x),φ(y)) ∈ E(H). We call two graphsG andH isomorphic, and writeG≃ H, if there exists a

bijectionφ : V(G)→V(H) with (x,y) ∈ E(G) ⇐⇒ (φ(x),φ(y)) ∈ E(H) for all x,y∈V(G). Such a

mapφ is called anisomorphism; if G = H, it is called anautomorphism.

Throughout this contribution we often use an algorithm, calledbreadth-first search (BFS), that

traverses all vertices of a graphG = (V,E) in a particular order. We introduce the ordering of the

vertices ofV by means of breadth-first search as follows: Select an arbitrary vertex v∈V and create a

sorted listBFS(v) of vertices beginning withv; append all neighborsv1, . . . ,vdeg(v) of v; then append

all neighbors ofv1 that are not already in this list; continue recursively withv2,v3, . . . until all vertices

of V are processed. In this way, we build levels where eachv in level i is adjacent to some vertexw in

level i−1 and verticesu in level i +1. We then call the vertexw theparentof v, denoted byparent(v),

and vertexv achild of w.
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2.2 Product Graphs

Defining graph products can be done in various ways. Usually one wantsto define a product that

satisfies the three basic properties:

1. The vertex set of a product is the Cartesian product of the vertex sets of the factors.

2. The product of a simple graph is a simple graph.

3. Adjacency in the product depends on the adjacency properties of theprojections of pairs of

vertices into the factors.

As shown in [31], there are 256 possibilities to define such a graph product, but only six of them

are commutative, associative and have a unit, see [32]. If one wishes theproduct to depend on the

structure of both factors and if the homomorphism property of the projections into the factors, that

will be defined later on, plays a role, the number of products decreases to4. In this contribution we

are concerned with two of these 4 products, the Cartesian and the strong product. In particular, we are

interested in the strong product, but as it turns out the Cartesian productis closely related to the strong

product and plays a central role in the prime factorization of strong product graphs. Consequently,

we will also deal with the Cartesian product.

Definition 2.2. The vertex set of theCartesian product G1�G2 and thestrong product G1 ⊠ G2 of

two graphsG1 andG2 is the set

V(G)×V(H) = {(v1,v2) | v1 ∈V(G),v2 ∈V(H)},

that is, the Cartesian product of the vertex sets of the factors.

Two vertices(x1,x2), (y1,y2) are adjacent in the Cartesian productG1�G2 if one of the following

conditions is satisfied:

(i) (x1,y1) ∈ E(G1) andx2 = y2

(ii) (x2,y2) ∈ E(G2) andx1 = y1

Two vertices(x1,x2), (y1,y2) are adjacent in the strong productG1 ⊠ G2 if one of the following

conditions is satisfied:

(i) (x1,y1) ∈ E(G1) andx2 = y2

(ii) (x2,y2) ∈ E(G2) andx1 = y1

(iii) (x1,y1) ∈ E(G1) and(x2,y2) ∈ E(G2)
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The definition of the edge sets shows that the Cartesian product is closely related to the strong

product and indeed it plays a central role in the factorization of the strongproducts. Consequently,

the edges of a strong product that satisfy (i) or (ii) are calledCartesian, the othersnon-Cartesian.

0 1 2

a

b

a0 a1 a2

b0 b1 b2

2 0 1 2

a

b

a0 a1 a2

b0 b1 b2

⊠

Figure 2.2: Left: A Cartesian Product graph. Right: A strong product graph

The one-vertex complete graphK1 serves as a unit for both products, asK1�H = H andK1⊠H = H

for all graphsH. It is well-known that both products are associative and commutative, see[32].

Hence a vertexx of the Cartesian product�n
i=1Gi , respectively the strong product⊠

n
i=1Gi is properly

“coordinatized” by the vectorc(x) := (c1(x), . . . ,cn(x)) whose entries are the verticesci(x) of its factor

graphsGi . Two adjacent vertices in a Cartesian product graph, respectively endpoints of a Cartesian

edge in a strong product, therefore differ in exactly one coordinate. Often we will write (x1, . . . ,xn)

for the coordinates ofx unless there is a risk of confusion.

The mappingp j(x) = x j of a vertexx with coordinates(x1, . . . ,xn) is calledprojectionof x onto the

j− th factor. For a setW of vertices of�n
i=1Gi , resp.⊠n

i=1Gi , we definep j(W) = {p j(w) | w∈W}.

Sometimes we also writepA if we mean the projection onto factorA.

In both products�n
i=1Gi and⊠

n
i=1Gi , a G j -fiber or G j -layer through vertexx with coordinates

(x1, . . . ,xn) is the vertex induced subgraphGx
j in G with vertex set{(x1, . . .x j−1,v,x j+1, . . . ,xn) ∈

V(G) | v ∈ V(G j)}. Thus, Gx
j is isomorphic to the factorG j for every x ∈ V(G). For y ∈ V(Gx

j)

we haveGx
j = Gy

j , while V(Gx
j)∩V(Gz

j) = /0 if z /∈ V(Gx
j). With a horizontal fiber we mean the

subgraph ofG induced by vertices of one and the same fiber, i.e., we mean a particularGx
i -fiber

without mentioning this particularly, if there is no risk of confusion. Withparallel Gi-fibers we mean

all fibers with respect to a given factorGi . Edges of (not necessarily different)Gi-fibers are said to be

edgesof one and the samefactorGi .

Note, the coordinatization of a product is equivalent to a (partial) edge coloring of G in which

edges(x,y) share the same colorck if x andy differ only in the value of a single coordinatek, i.e.,

if xi = yi , i 6= k andxk 6= yk. This colors theCartesian edgesof G (with respect to thegivenproduct
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representation). It follows that for each colorc the setEc = {e∈ E(G) | c(e) = c} of edges with color

c spansG. The connected components of〈Ec〉 are isomorphic subgraphs ofG.

We state now some well-known lemmas concerning several properties of product graphs that will

be used throughout this contribution. The first lemma deals with the connectedness of graphs and

their product.

Lemma 2.3 ([32]). Let G be a Cartesian product�n
i=1Gi , respectively, a strong product⊠n

i=1Gi .

Then G is connected if and only if every factor Gi is connected.

For later reference we note that the distance of two vertices in a product graph is determined by

distances within the factors:

Lemma 2.4([32]). Let G= �
n
i=1Gi and u,v∈V(G). Then it holds:

dG(u,v) =
n

∑
i=1

dGi (ui ,vi).

Lemma 2.5([32]). Let G= ⊠
n
i=1Gi and u,v∈V(G). Then it holds:

dG(u,v) = max
1≤i≤n

dGi (ui ,vi).

2.3 Prime Factor Decomposition (PFD)

In this section, we are concerned with thePrime Factor Decomposition, for shortPFD, of graphs

with respect to the Cartesian and the strong product. For this purpose, wefirst state when a graph is

said to be prime.

Definition 2.6. A graphG is primewith respect to the Cartesian, respectively the strong product, if

it cannot be written as a Cartesian, respectively a strong product, of twonontrivial graphs, i.e., the

identityG = G1 ⋆G2 (⋆ = �,⊠) implies thatG1≃ K1 or G2≃ K1.

2.3.1 The Cartesian Product

As shown by Sabidussi [49] and independently by Vizing [55], all finite connected graphs have a

unique prime factor decomposition with respect to the Cartesian product.
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Theorem 2.7([49, 55]). Every connected graph has a unique representation as a Cartesian product

of prime graphs, up to isomorphisms and the order of the factors.

A well-known counterexample for the non-uniqueness of the PFD of disconnected graphs is based

on results of Nakayama and Hashimoto [47]. It is not hard to see that the identity

(K1 +K2 +K2
2)�(K1 +K3

2) = (K1 +K2
2 +K4

2)�(K1 +K2)

holds, where+ denotes the disjoint union and where powers are taken with respect to the Cartesian

product. Moreover, an easy proof that the factors on the left- and right-hand side are indeed prime

can be found in [32].

In 1985, Feigenbaum et al. [15] developed the first polynomial time algorithm that finds the prime

factorization of connected graphs with respect to the Cartesian productrunning inO(|V|4.5) time.

Later, Winkler [57] presented anO(|V|4) time algorithm which is based on a method of isometrically

embedding graphs into Cartesian products by Graham and Winkler [20]. Feder [12] continued with an

algorithm that requiresO(|V| · |E|) time. The latest and fastest approach is due to Imrich and Peterin

that runs inO(|E|) time, see [33].

However, the main idea for the PFD of a Cartesian productG is to compute an equivalence relation

Π, defined on the edge setE(G), also calledproduct relation. LetG= �
n
i=1Gi be a Cartesian product,

where the factors are not necessarily prime. With respect to this representation we define a product

relationΠ onE(G), as follows:

eΠ f if there is ani such that|pi(e)|= |pi( f )|= 2.

Expressed in words,eΠ f if the projection of the endpoints of both edgeseand f maps onto the same

factorGi .

The finest product relationΠ leads to the prime factorization of a connected graph, i.e., a prime

factor is isomorphic to one connected component ofG that is induced by the edges that are in the

same relation.

A well-known property of the Cartesian product is the following one.

Lemma 2.8(Square Property [34]). Let G be a Cartesian product. If e and f are incident edges of

different fibers, then there exists exactly one square without diagonals that contains e and f .

Furthermore any two opposite edges of a diagonal-free square are edges from copies of one and

the same factor.
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Every product relationΠ satisfies the square property [32]. A very important feature of equivalence

relations defined on the edge set of a given graphG is stated in the next lemma.

Lemma 2.9 ([34]). Let γ be an equivalence relation on the edge set E(G) of a connected graph.

Supposeγ has the equivalence classesγ1, . . . ,γk, . . . and satisfies the square property. Then every

vertex of G meets everyγi , i.e., every vertex is incident to an edge of each equivalence class.

2.3.2 The Strong Product

As shown by Dörfler and Imrich [9] and independently by McKenzie [43], all finite connected graphs

have a unique prime factor decomposition with respect to the strong product.

Theorem 2.10([9, 43]). Every connected graph has a unique representation as a strong product of

prime graphs, up to isomorphisms and the order of the factors.

As in the case of the Cartesian product there is a counterexample for the non-uniqueness of the PFD

of disconnected graphs based on results of Nakayama and Hashimoto [47]. The following identity

holds:

(K1 +K2 +K2
2)⊠ (K1 +K3

2) = (K1 +K2
2 +K4

2)⊠ (K1 +K2),

where+ denotes the disjoint union and where powers are taken with respect to the strong product. A

proof that the factors on the left- and right-hand side are prime can be found in [32].

The prime factor decomposition with respect to the strong product works basically as follows.

Given a strong productG with specific property, one computes a subgraphS(G) of G, the so-called

Cartesian skeleton. The skeletonS(G) is decomposed with respect to the Cartesian product and this

information is used to construct the prime factors of the original graphG with respect to the strong

product. However, before we proceed to explain this approach in more detail we have to deal with the

specific property a graphG has to have:thinness.

Thinness

It is important to notice that although the PFD of a strong product is unique, the coordinatizations

might not be. Figure 2.3 shows that the reason for the non-unique coordinatizations is the existence

of automorphisms that interchange the verticesb andd, but fix all the others. This is possible because

b andd have the same closed neighborhoods. Thus, an important issue in the context of strong graph

products is whether or not two vertices can be distinguished by their neighborhoods. This is captured
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a = x1y1 b = x1y2

c = x2y1 d = x2y2

a = x1y1 b = x2y2

c = x2y1 d = x1y2

Figure 2.3: The edge(a,b) is Cartesian in the left, and non-Cartesian in the right coordinatization

by the relationSdefined on the vertex set ofG, which was first introduced by Dörfler and Imrich [9].

This relation is essential in the studies of the strong product.

Definition 2.11. Let G be a given a graphG andx,y∈V(G) be arbitrary vertices. The verticesx and

y are in relationS if N[x] = N[y]. A graph isS-thin, or thin for short, if no two vertices are in relation

S.

In [16], vertices x and y with xSy are calledinterchangeable. Note thatxSyimplies thatx andy are

adjacent since, by definition,x∈ N[x] andy∈ N[y]. Clearly,S is an equivalence relation. The graph

G/S is the usual quotient graph, more precisely:

Definition 2.12. Thequotient graph G/Sof a given graphG has vertex set

V(G/S) = {Si | Si is an equivalence class ofS}

and(Si ,Sj) ∈ E(G/S) whenever(x,y) ∈ E(G) for somex∈ Si andy∈ Sj .

Note that the relationS on G/S is trivial, that is, its equivalence classes are single vertices [32].

ThusG/S is thin. The importance of thinness lies in the uniqueness of the coordinatizations, i.e., the

property of an edge being Cartesian or not does not depend on the choice of the coordinates. As a

consequence, the Cartesian edges are uniquely determined in an S-thin graph, see [9, 16].

Lemma 2.13. If a graph G is thin, then the set of Cartesian edges is uniquely determined and hence

the coordinatization is unique.

For later usage we also defineS-classes w.r.t. subgraphs of a given graphG.

Definition 2.14. Let H ⊆ G be an arbitrary subgraph of a given graphG. ThenSH(x) is defined as

the set

SH(x) =
{

v∈V(H) | NG[v]∩V(H) = NG[x]∩V(H)
}

.

If H = 〈NG[v]〉 for somev∈V(G) we setSv(x) := S〈NG[v]〉(x)
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0 1

2

3

0 1 22,3

G G/S

Figure 2.4: A graphG and its quotient graphG/S. The S-classes areSG(0) = {0}, SG(1) = {1}, andSG(2) =

SG(3) = {2,3}.

Important basic properties, first proved by Dörfler and Imrich [9], concerning the thinness of graphs

are given now. Alternative proofs can be found in [32].

Lemma 2.15. For any two graphs G1 and G2 holds(G1 ⊠G2)/S≃G1/S⊠G2/S. Furthermore, for

every x= (x1,x2) ∈V(G) holds SG(x) = SG1(x1)×SG2(x2).

This result directly implies the next corollaries, see [32].

Corollary 2.16. A graph is thin if and only if all of its factors with respect to the strong productare

thin.

Corollary 2.17. Let G be a strong product G= G1⊠G2. Consider a vertex x∈V(G) with coordinates

(x1,x2). Then for every z∈ SG(x) holds zi ∈ SGi (xi), i.e. the i-th coordinate of z is contained in the

S-class of the i-th coordinate of x.

The Cartesian Skeleton

As mentioned before, the key idea of finding the PFD of a graphG with respect to the strong product

is to find the PFD of a subgraphS(G) of G, the so-calledCartesian skeleton, with respect to the

Cartesian product and construct the prime factors ofG using the information of the PFD ofS(G).

Definition 2.18. A subgraphH of a graphG = G1 ⊠ G2 with V(H) = V(G) is calledCartesian

skeletonof G, if it has a representationH = H1�H2 such thatV(Hv
i ) = V(Gv

i ) for all v∈V(G) and

i ∈ {1,2}. The Cartesian skeletonH is denoted byS(G).

In other words, theHi-fibers of the Cartesian skeletonS(G) = H1�H2 of a graphG = G1 ⊠ G2

induce the same partition as theGi-fibers on the vertex setsV(S(G)) = V(G).

This concept was first introduced by Feigenbaum and Schäffer in [16]. In this approach, edges are

marked as Cartesian if the neighborhoods of their endpoints fulfill some (strictly) maximal conditions



2.3. Prime Factor Decomposition (PFD) 15

0 1

2 34

5

6

Figure 2.5: A prime graphG and its Cartesian SkeletonS(G) induced by thick-lined edges. Thin-lined edges

are marked as dispensable in the approach of Hammack and Imrich. On the other hand, the thick-lined edges

are marked as Cartesian in the approach of Feigenbaum and Schäffer. However, in both cases the resulting

Cartesian skeletonS(G) spansG. Hence, the vertex sets of theS(G)-fiber (w.r.t. Cartesian product) and the

G-fiber (w.r.t. strong product) induce the same partitionV(S(G)) = V(G) of the respective vertex sets.

in collections of neighborhoods or subsets of neighborhoods inG. This approach is technically tricky

and complex.

A more transparent and also the fastest and latest approach is due to Hammack and Imrich, see

[24]. In distinction to the approach of Feigenbaum and Schäffer edgesare marked as dispensable. All

edges that are dispensable will be removed fromG. The resulting graphS(G) is the desired Cartesian

skeleton and will be decomposed with respect to the Cartesian product. Foran example see Figure

2.5.

Definition 2.19. An edge(x,y) of G is dispensableif there exists a vertexz∈V(G) for which both

of the following statements hold.

1. (a)N[x]∩N[y]⊂ N[x]∩N[z] or (b)N[x]⊂ N[z]⊂ N[y]

2. (a)N[x]∩N[y]⊂ N[y]∩N[z] or (b)N[y]⊂ N[z]⊂ N[x]

Some important results, concerning the Cartesian skeleton are summarized in the following theo-

rem.

Theorem 2.20([24]). Let G= G1 ⊠ G2 be a strong product graph. If G is connected, thenS(G) is

connected. Moreover, if G1 and G2 are thin graphs then

S(G1 ⊠G2) = S(G1)�S(G2).

Any isomorphismϕ : G→ H, as a map V(G)→V(H), is also an isomorphismϕ : S(G)→ S(H).
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Remark 2.21. Notice that the set of all Cartesian edges in a strong productG= ⊠
n
i=1Gi of connected,

thin prime graphs are uniquely determined and hence its Cartesian skeleton. Moreover, since by

Theorem 2.20 and Definition 2.18 of the Cartesian skeletonS(G) = �
n
i=1S(Gi) of G we know that

V(S(G)v
i ) = V(Gv

i ) for all v∈V(G). Thus, we can assume without loss of generality that the set of

all Cartesian edges in a strong productG = ⊠
n
i=1Gi of connected, thin graphs is the edge set of the

Cartesian skeletonS(G) of G w.r.t. this factorization, see [32].

Algorithm

Now, we are able to give a brief overview of the global approach that decomposes given graphs into

their prime factors with respect to the strong product, see also Figure 2.6 and 2.7.

a0 a1 a2

a3

b0 b1 b2

b3

c0 c1 c2

c3

a0 a1 S1

b0 b1 S2

c0 c1 S3

a0 a1 S1

b0 b1 S2

c0 c1 S3

G −→ G/S −→ S(G/S)

a b c

0 1 2

a b c

0 1 2

3

PFD of S(G/S) −→ PFD of G

Figure 2.6: Illustrated are the basic steps of the PFD of strong product graphs, see Algorithm 1.

Given an arbitrary graphG, one first extracts a possible complete factorKl of maximal size, result-

ing in a graphG′, i.e.,G≃G′⊠Kl , and computes the quotient graphH = G′/S. This graphH is thin

and therefore the Cartesian edges ofS(H) can be uniquely determined. Now, one computes the prime

factors ofS(H) with respect to the Cartesian product and utilizes this information to determine the

prime factors ofG′ by usage of an additional operation stated in the next lemma.

Lemma 2.22. [32] Suppose that it is known that a given graph G that does not admit any complete

graphs as a factor is a strong product graph G1 ⊠ G2, and suppose that the decomposition G/S=

G1/S⊠G2/S is known. Then G1 and G2 can be determined from G, G1/S and G2/S.
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a0 a1 a2

a3

b0 b1 b2

c0 c1 c2

x 0 1

y

2 3 4

5 6 7

a0 a1 S1

b0 b1 S2

c0 c1 S3

S 0 1

2 3 4

5 6 7

a0 a1 S1

b0 b1 S2

c0 c1 S3

S 1 2

3 4 5

5 6 7

G −→ G/S −→ S(G/S)

a b c

0 1 2

a0 a1 a2

a3

b0 b1 b2

c0 c1 c2

x 0 1

y

2 3 4

5 6 7

PFD of S(G/S) −→ PFD of G

Figure 2.7: Illustrated are the basic steps of the PFD of strong product graphs, see Algorithm 1.

In fact, if D(x1,x2) denotes the size of the S-equivalence class of G that is mapped into

(x1,x2) ∈G1/S⊠G2/S, then the size D(x1) of the equivalence class of G1 mapped into x1 ∈G1/S is

gcd{D(x1,y) | y∈V(G2)}. Analogously for D(x2).

By repeated application of Lemma 2.22 one can determine the prime factors ofG′, see [32].

Notice thatG≃ G′⊠ Kl . The prime factors ofG are then the prime factors ofG′ together with the

complete factorsKp1, . . . ,Kp j , wherep1 . . . p j are the prime factors of the integerl . This approach is

summarized in Algorithm 1 and 2.

Algorithm 1 PFD of graphs w.r.t.⊠

1: INPUT: a graphG
2: ComputeG = G′⊠Kl , whereG′ has no nontrivial factor isomorphic to a complete graphKr ;
3: Determine the prime factorization ofKl , that is, ofl ;
4: computeH = G′/S;
5: compute PFD and prime factorsH1, . . . ,Hn of H with Algorithm 2
6: By repeated application of Lemma 2.22 find all minimal subsetsJ of I = {1,2, . . . ,n} such that

there are graphsA andB with G = A⊠ B, A/S= ⊠i∈JHi andB = ⊠ j∈J\I H j . SaveA as prime
factor.

7: OUTPUT: The prime factors ofG;
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Algorithm 2 PFD ofthin graphs w.r.t.⊠

1: INPUT: a thin graphG
2: compute the Cartesian skeletonS(G);
3: factorS(G) = �i∈I Hi and assign coordinates to each vertex;
4: J← I ;
5: for k = 1, . . . , |I | do
6: for eachS⊂ J with |S|= k do
7: computeA = �i∈SV(Hi) andA′ = �i∈I\SV(Hi);
8: computeB1 = 〈pA(G)〉 andB2 = 〈pA′(G)〉;
9: if B1 ⊠B2≃G then

10: saveB1 as prime factor;
11: J← J\S;
12: end if
13: end for
14: end for

15: OUTPUT: The prime factors ofG;

However, Algorithm 1 and 2 just give an overview of the top level controlstructure to determine

the PFD of a given graph. Applying some smart ideas together with slight modifications on those

Algorithms one can bound the time complexity as stated in the next lemma.

Lemma 2.23([24]). The PFD of a given graph G= (V,E) with bounded maximum degree∆ can be

computed in O(|E|∆2) time.

2.4 Graph Classes

In this section, we will introduce some special kinds of graphs that will be important and useful in

the sequel. We start to defineHamming graphsand will proceed to describe particularsubproducts

of given graphs. At the end of this section so-calledS-primegraphs are introduced, that are a special

class of prime graphs and will become a powerful tool for later considerations.

2.4.1 Hamming Graphs

We state here the definition of so-calledHamming graphs, that have comprehensively been studied,

see e.g. [3, 44–46].
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Definition 2.24. A graphG is aHamming graphiff G can be written in the form

G = �
n
i=1Kki ,

whereki ≥ 2 for all i. If ki = 2 for all i thenG is called ahypercubeof dimensionn.

Note that the distance between two vertices in a Hamming graph coincides with the number of

positions, in which they differ, which is also known as Hamming distance [25].

2.4.2 Subproducts

As already mentioned, the aim of this contribution is to provide algorithms that cover and decompose

given graphs by usage of so-calledsubproducts, also known asboxes[53].

Definition 2.25. A subproductof a productG⊠H, resp.G�H, is defined as the strong product, resp.

the Cartesian product, of subgraphs ofG andH, respectively.

As shown in [28], it holds that 1-neighborhoods are subproducts:

Lemma 2.26([28]). For any two graphs G and H holds〈NG⊠H [(x,y)]〉= 〈NG[x]〉⊠ 〈NH [y]〉.

x

y xy

Figure 2.8: The 1-neighborhood〈N[(x,y)]〉= 〈N[x]〉⊠ 〈N[y]〉 is highlighted by thick lined edges

For applications to approximate products it would be desirable to use small subproducts. Unfor-

tunately, it will turn out that 1-neighborhoods, which would be small enough for our purpose, are

not sufficient to cover a given graph in general while providing enough information to recognize the

global factors. However, we want to avoid to use 2-neighborhoods, although they are subproducts as

well, they have diameter 4 and are thus quite large. Therefore, we will define further subgraphs, that

are smaller than 2-neighborhoods, and prove that these subgraphs are subproducts.
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Definition 2.27. Given a graphG and an arbitrary edge(v,w) ∈ E(G). Theedge-neighborhoodof

(v,w) is defined as

〈N[v]∪N[w]〉

and theN∗v,w-neighborhoodis defined as

N∗v,w = 〈
⋃

x∈N[v]∩N[w]

N[x]〉.

If there is no risk of confusion we will denoteN∗v,w-neighborhoods just byN∗-neighborhoods. We

will show in the following that in addition to 1-neighborhoods also edge-neighborhoods of Cartesian

edges andN∗-neighborhoods are subproducts and hence, natural candidates to cover a given graph

as well. We show first, given a subproductH of G, that the subgraph that is induced by vertices

contained in the union of 1-neighborhoodsN[v] with v∈V(H), is itself a subproduct ofG.

a b

y ay by

a b

y ay by

Figure 2.9: Shown is a strong product graph of two paths. Notice that the 2-neighborhood〈N2[(by)]〉 of vertex

(by) is isomorphic toG.

lhs.: The edge-neighborhood〈N[(a,y)]∪N[(b,y)]〉= 〈(N[a]∪N[b])〉⊠ 〈N[y]〉.

rhs.: TheN∗-neighborhoodN∗(ay),(by) = 〈∪z∈N[a]∩N[b]N[z]〉⊠ 〈∪z∈N[y]N[z]〉.

Lemma 2.28. Let G= G1 ⊠G2 be a strong product graph and H= H1 ⊠H2 be a subproduct of G.

Then

H∗ =
〈
∪v∈V(H)N

G[v]
〉

is a subproduct of G with H∗ = H∗1 ⊠H∗2 , where H∗i is the induced subgraph of factor Gi on the vertex

set V(H∗i ) =
⋃

vi∈V(Hi) NGi [vi ], i = 1,2.

Proof. It suffices to show thatV(H∗) = V(H∗1)×V(H∗2). For the sake of convenience, we denote

V(Hi) by Vi , for i = 1,2. We have:

V(H∗) =
⋃

v∈V(H)

NG[v] =
⋃

v∈V1×V2

NG[v].
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Since the induced neighborhood of each vertexv = (v1,v2) in G is the product of the corresponding

neighborhoodsNG1[v1]⊠NG2[v2] we can conclude:

V(H∗) =
⋃

{v1∈V1}×(v2∈V2}

(NG1[v1]×NG2[v2]) =
⋃

v1∈V1

NG1[v1]×
⋃

v2∈V2

NG2[v2]

= V(H∗1)×V(H∗2)

Lemma 2.29. Let G be a nontrivial strong product graph and(v,w) be an arbitrary edge of G. Then

〈NG[v]∩NG[w]〉 is a subproduct.

Proof. Let v andw have coordinates(v1,v2) and (w1,w2), respectively. SinceNG[v] = NG1[v1]×

NG2[v2] we can conclude that

NG[v]∩NG[w] = (NG1[v1]×NG2[v2])∩ (NG1[v1]×NG2[v2])

= (NG1[v1]∩NG1[w1])× (NG2[v2]∩NG2[w2]).

Lemmas 2.26, 2.28 and 2.29 directly imply the next corollary.

Corollary 2.30. Let G be a given graph. Then for all v∈V(G) and all edges(v,w) ∈ E(G) holds:

〈N2[v]〉 and N∗v,w

is a subproduct of G. Moreover, if the edge(v,w) is Cartesian than the edge-neighborhood

〈N[v]∪N[w]〉

is a subroduct of G.

Notice that〈N[v]∪N[w]〉 could be a product, i.e., not prime, even if(v,w) is non-Cartesian inG.

However, the edge-neighborhood of a single non-Cartesian edge is not a subproduct, in general.

2.4.3 S-prime Graphs

In this section so-calledS-primegraphs are considered. This graph class is a subset of prime graphs

with special properties and will be used later on for the designed coveringalgorithms. The results of

this subsection have been submitted toDiscrete Mathematics, [27].
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Definition 2.31. A graph S is S-prime(S stands for “subgraph”) if for all graphsG and H with

S⊆G⋆H holds:S⊆H or S⊆G, where⋆ denotes an arbitrary graph product. A graph isS-composite

if it is not S-prime.

The class of S-prime graphs was introduced and characterized for the direct product by Sabidussi

in 1975 [50]. He showed that the only S-prime graphs with respect to the direct product are complete

graphs or complete graphs minus an edge. Analogous notions of S-prime graphs with respect to other

products are due to Lamprey and Barnes [39, 40]. They showed that the only S-prime graphs w.r.t.

the strong product and the lexicographic product are the single vertex graphK1, the disjoint union

K1∪K1 and the complete graph on two verticesK2.

Remark 2.32. In this section we will consider the Cartesian product only. Therefore, the terms

S-prime and S-composite refer to this product from here on.

Not much is known about the structure of S-prime graphs, although Klavžar et al. [38] and Brešar

[5] proved several characterizations of S-prime graphs. For our purposes, the characterization of S-

composite graphs in terms of particular colorings [38] is of most direct interest. Before we proceed,

we introduce some notation, that is only needed in this section.

A k-coloringof G is a surjective mappingF : V(G)→{1, . . . ,k}. This coloring need not be proper,

i.e., adjacent vertices may receive the same color. A pathP in G is well-coloredby F if for any two

consecutive verticesu andv of P we haveF(u) 6= F(v). Following [38], we say thatF is apath-k-

coloringof G if F(u) 6= F(v) holds for the endpoints of every well-coloredu,v-pathP in G. Fork = 1

andk = |V| there are trivial path-k-colorings: Fork = 1 the coloring is constant and hence there are

no well-colored paths. On the other hand, if a different color is used forevery vertex, then every path,

of course, has distinctly colored endpoints. A path-k-coloring is nontrivial if 2≤ k≤ |V(G)|−1.

Theorem 2.33([38]). A connected graph G is S-composite if and only if there exists a nontrivial

path-k-coloring.

The next corollary, which follows directly from Theorem 2.33, will be useful in the subsequent

discussion.

Corollary 2.34. Consider an S-prime graph S and let F be a path-k-coloring of S. If there are two

distinct vertices u,v∈V(S) with F(u) = F(v) then F is constant, i.e., k= 1.

Now consider a product graph�iGi . We say that all verticeswithin theGi-layerGx
i have the same

color if F(a) = F(b) holds for all verticesa,b∈V(Gx
i ). Note that this does not imply that vertices of

differentGi-layer receive the same color.
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The main topic of this section arediagonalizedCartesian product graphs.

Definition 2.35. A graphG is called adiagonalizedCartesian product, whenever there is an edge

(u,v) ∈ E(G) such thatH = G\ (u,v) is a nontrivial Cartesian product andu andv have maximal

distance inH.

For an example of a diagonalized Cartesian product see Figure 2.10.

u

v

Figure 2.10: A diagonalized Cartesian Product of the graphK2�K2�K3.

We will show that diagonalized Cartesian products of S-prime Graphs are S-prime. Moreover, we

will give a necessary and sufficient condition for path-k-colorings of Cartesian products of S-prime

graphs.

Path-k-colorings of Cartesian Products of S-prime graphs

Let us start with a brief preview of this paragraph. We first establish thatevery nontrivial Cartesian

productG1�G2 has a nontrivial path-k-coloring. For instance, choosek= |V(G1)| and assign to every

vertexx with coordinates(x1,x2) the colorx1.

Given a Cartesian productG = �
n
i=1Si of S-prime graphs with a nontrivial path-k-coloringF , first

we will show that there is anSi-layer on whichF is constant. Next, we prove that is true for allSi-

layers. We then proceed to show thatF is constant even on anyH-layer withH = � j∈JSj , provided

that certain conditions are satsfied. This eventually leads us to necessaryand sufficient conditions

for path-k-colorings. This result, in turn, will be demonstrated to imply that diagonalized Cartesian

products of S-prime graphs are S-prime.

We start our exposition with a simple necessary condition:

Lemma 2.36. Let H⊆ G and suppose F is a path-k-coloring of G. Then the restriction F|V(H) of F

on V(H) is a path-k-coloring of H. Moreover, if V(H) = V(G) and F is a nontrivial path-k-coloring
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of G, then it is also a nontrivial path-k-coloring of H.

Proof. SupposeH is not path-k-colored. Then there is au,v-pathPu,v in H that is well-colored, butu

andv have the same color. This pathPu,v is also contained inG, contradicting the assumption thatF

is a path-k-coloring ofG. The second statement now follows directly from|V(G)|= |V(H)|.

Lemma 2.37.Let F be a nontrivial path-k-coloring of G. Then there are adjacent vertices u,v∈V(G)

with F(u) = F(v).

Proof. Sincek≤ |V(G)|−1 it follows that there are at least two vertices of the same color, sayx and

y. Assume now there is a pathPx,y from x to y, such that all consecutive vertices have different colors.

ThenPx,y would be well-colored. But the endpoints ofPxy satisfyF(x) = F(y) so thatF cannot be

a path-k-coloring, a contradiction. Thus there are consecutive, and hence adjacent, vertices with the

same color.

For later reference, we state the following observation that can be verified by explicitly enumerating

all colorings, see Figure 2.11 for a subset of cases.

Lemma 2.38. The hypercube Q2 = K2�K2 has no path-3-coloring. Every path-2-coloring has adja-

cent vertices with the same color.

12

34

11

22

11

11

12

31

Figure 2.11: Possible path-k-coloring of a squareQ2 for k = 1,2,4. A possible well coloring that is not a

path-3-coloring is shown on the right-hand side graph

We next show thatF is constant on eachSj -layer whenever there is oneSj -layer that contains two

distinct vertices with the same color. More precisely:

Lemma 2.39. Let G= �
n
i=1Si be a given Cartesian product of S-prime graphs and let F be a

nontrivial path-k-coloring of G. Furthermore let u,w ∈ V(Su
j ) be two distinct vertices satisfying

F(u) = F(w). Then F(x) = F(y) holds for all vertices x,y∈V(Sb
j ) in each Sj -layer Sb

j .

Proof. Corollary 2.34 and Lemma 2.36 imply that all vertices of the layerSu
j have the same color.

For b ∈ V(Su
j ) there is nothing to show. Thus, assumeb /∈ V(Su

j ), i.e., Su
j 6= Sb

j , and an arbitrary
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edgee= (u,v) ∈ E(Su
j ). Let ũ∈V(Sb

j ) be the vertex with coordinatesc j(ũ) = c j(u). Moreover, let

Pu,ũ := (u = u1,u2, ..,ul = ũ) be a path fromu to ũ such thatc j(uk) = c j(u) for all k = 1, . . . , l . None

of the edges(uk,uk+1) is contained in anSj -layer. By definition of the Cartesian product there is

a unique square(u,u2,v2,v) wherev2 has coordinatesci(v2) = ci(u2) for i 6= j andc j(v2) = c j(v).

Lemma 2.38 now implies that the onlyF on the square is either constant or a path-2-coloring, i.e., the

assumptionF(u) = F(v) impliesF(u2) = F(v2).

u

v

u2

v2

ul−1

vl−1

ũ

vl

b

Sb
jS

ul−1

jS
u2

jS
u
j

Pu,ũ

Figure 2.12: Idea of the proof of Lemma 2.39. The pathPu,ũ connects verticesu anduk (k = 2, . . . , l ) of distinct

Sj -layers. IfF(uk−1) = F(vk−1) then the squares(uk−1,uk,vk,vk−1) located in adjacentSj -layers must admit a

path-1-coloring or a path-2-coloring, enforcing thatuk andvk must have the same color. This, in turn, is used

to show thatF is constant on the entire layerSuk
j .

By induction on the length of the pathPu,ũ we see thatF(uk) = F(vk), wheneverci(vk) = ci(uk)

for all i 6= j andc j(vk) = c j(v). The assumption ˜u∈V(Sb
j ) and our choice of the coordinates implies

(ul ,vl ) = (ũ,vl ) ∈ E(Sb
j ). We apply Lemma 2.38 to the square(ul−1, ũ,vl ,vl−1) with F(ul−1) =

F(vl−1) to inferF(ũ) = F(vl ). Corollary 2.34 and Lemma 2.36 imply that for all verticesx,y∈V(Sb
j )

holdsF(x) = F(y).

It is imporant to notice that Lemma 2.39 only implies thatF is constant onSj -layers, but it does

not imply that allSj -layers receive the same color.

Corollary 2.40. Let G= �
n
i=1Si be a given product of S-prime graphs and let F be a nontrivial

path-k-coloring of G. Then there is a j∈ In such that, for every v∈V(G), F is constant on Svj .

Proof. The assertion follows directly from Lemma 2.37, Lemma 2.39, and the definition ofthe Carte-

sian product.

Lemma 2.41. Let F be a nontrivial path-k-coloring of the Cartesian product G= �
n
i=1Si of S-prime

graphs Si . Let H = � j∈JSj be the product of a subset of factors of G, where J⊆ In denotes an
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arbitrary subset of indices. Moreover, let Ha be an H-layer such that F is constant on V(Ha). Then

F is constant within each H-layer.

Proof. Let Ha be anH-layer defined as above and assumeHa 6= Hb. By assumption,F is constant on

V(Ha). ThusF is also constant on eachSj -layerSj ⊆ Ha, j ∈ J, and Lemma 2.39 then implies that

F is also constant within everySj -layer with j ∈ J. Now choose two arbitrary verticesx,y∈V(Hb).

By connectedness ofHb there is a pathPx,y from x to y consisting only of vertices of thisH-layer

Hb. Notice that any two consecutive verticesxk,xk+1 ∈ Px,y are contained in someSj -layer such that

j ∈ J and thereforeF(xk) = F(xk+1). Therefore, the coloringF must be constant alongP, hence

F(x) = F(y). ThusF is constant onV(Hb).

Next we consider two (not necessarily prime) factorsH1,H2 of a Cartesian product of S-prime

graphs and ask under which conditions a path-k-coloring on(H1�H2)-layers must be constant.

Lemma 2.42. Let F be a nontrivial path-k-coloring on the Cartesian product G= �
n
i=1Si of S-prime

graphs Si . Let H1 = � j∈JSj and H2 = �k∈KSk be two distinct Cartesian products of factors Si of G,

where J,K ⊆ In and J∩K = /0. Then F is constant on each(H1�H2)-layer whenever F is constant

on some H1-layer Ha
1 and on some H2-layer Hb

2 .

Proof. Let Ha
1 andHb

2 as constructed above. Lemma 2.41 implies that all vertices within eachH1

layer and within eachH2-layer, resp., have the same color. For all verticesz∈ V(Ha
1) there is an

H2-layer Hz
2, Thus for all verticesx,y ∈ V(Hz

2) holds F(x) = F(y) = F(z) = F(a). By definition

of the Cartesian product, this implies in particular that all vertices within the layer(H1�H2)
a have

the same colorF(a). Hence we can apply Lemma 2.41 and conclude that all vertices within each

(H1�H2)-layer have the same color.

Now we are in the position to characterize nontrivial path-k-colorings.

Lemma 2.43. Let F be a nontrivial path-k-coloring of the Cartesian product G= �
n
i=1Si of S-prime

graphs Si , and consider two distinct vertices u,v∈V(G) satisfying F(u) = F(v). Let J= { j | c j(u) 6=

c j(v)} ⊆ In denote the index set of the coordinates in which u and v differ, and let H= � j∈JSj be the

Cartesian product of the corresponding factors Sj of G. Then F is constant within each H-layer Hb.

Proof. First assume thatv∈V(Su
l ) for somel , which implies thatJ = {l} by definition of the Carte-

sian product. In this case, the statement follows directly from Lemma 2.39.

Now assume that there is nol such thatv∈V(Su
l ). Lemma 2.39 and Corollary 2.40 together imply
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that there is an indexi such that all vertices within eachSi-layer have the same color. In particular,

this is true forSu
i andSv

i . Together with Lemma 2.39, this observation implies that, sinceF(u) = F(v),

F is constant onV(Su
i )∪V(Sv

i ). Now let ũ∈V(Sv
i ) be the vertex with coordinatesci(u) = ci(ũ) and

denote byJ1 = { j | c j(u) 6= c j(ũ)} = J \ {i} the set of indices in which the coordinates ofu and ũ

differ. Notice thatJ\{i}= J, if v = ũ.

Let Pu,ũ := (u = u1,u2, ..,uk = ũ) be a path fromu to ũ such that for all verticesx ∈ Pu,ũ holds

cr(x) = cr(u) for all r ∈ In \ J1. In other words, no edge of anSr -layer, r /∈ J1, is contained in the

pathPu,ũ, and hence in particular no edge of anSi-layer. FromF(u) = F(ũ) and the fact thatG is

path-k-colored, we can conclude that there is an edge(ul ,ul+1) ∈ Pu,ũ of some layer different fromSi

such thatF(ul ) = F(ul+1).

u ũPu,ũ

v

S
v
iS

u
i

ul

ul+1

S
ul

i
S

ul

j1
Su

j1 Sũ
j1

H
u
1 H

ul

1 H
v
1

Figure 2.13: Idea of the proof of Lemma 2.43. The pathPu,ũ connects a pair of vertices with the same color

in Su
i to Sv

i . It therefore must contain two consecutive verticesul andul+1 with the same color. It follows that

all vertices within the layerSul
i andSul

j1
have the same colorF(ul ) and finally one shows that all vertices within

eachH1-layer withH1 = Si�Sj1 have the same color.

These consecutive verticesul andul+1 differ in exactly one coordinatec j1 for some j1 ∈ J1, hence

ul andul+1 are contained in someSj1-layer. Lemma 2.39 implies that all vertices of this layerSul
j1

and

therefore all vertices within eachSj1-layer have the same color. Lemma 2.42 now implies thatF is

constant on eachH1-layer withH1 = Si�Sj1, and in particular, all verticesx,y∈V(Hu
1)∪V(Hv

1) have

the same color, we have again two different layers that have the same color. Just as before we will

construct a path between these layers, which implies that the endpoints of thispath have the same

color. SinceG is path-k-colored, this path must contain an edge(ut ,ut+1) with F(ut) = F(ut+1).

More precisely, let ˜u be a vertex of this newH1-layerHv
1 such thatci(ũ) = ci(u) andc j1(ũ) = c j1(u).

Again we choose a PathPu,ũ constructed as above, whereJ1 is replaced byJ2 = J1 \ { j1}. In other
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words for all verticesx ∈ Pu,ũ holds cr(x) = cr(u) for all r ∈ In \ J2, i.e. in particular no edge of

Pu,ũ is contained in anyH1-layer. Notice that|J2| = |J1| −1. Again we can conclude that there are

consecutive verticesut ,ut+1 ∈ Pu,ũ such thatF(ut) = F(ut+1), sinceF(ũ) = F(u) andG is path-k-

colored. Let these consecutive verticesut andut+1 differ in coordinatec j2 for some j2 ∈ J2. Using

the same arguments as before we can infer that all vertices in between eachH2 = (Si�Sj1�Sj2)-layer

must have the same color.

Repeating this procedure generates, in each step, a new index setJs with |Js| = |Js−1| − 1 for

s= 2, . . . , |J1|, and all vertices within eachHs-layer withHs = Si�
(
� j∈J1\Js

Sj
)
�Sjs for somejs∈ Js

are shown to have the same color. Fors∗ = |J1| we have|Js∗ | = 1. Moreover the pathPu,ũ with

cr(ũ) = cr(u) for all r ∈ In \{ j∗} with j∗ ∈ Js∗ consists only of vertices that are included in thisSj∗-

layerSu
j∗ . SinceF(u) = F(ũ) andu, ũ∈ Su

j∗ we can conclude that all verticesx∈ Su
j∗ have the same

colorF(u). From Lemma 2.41 and Lemma 2.42 it follows thatF is constant on eachHs∗-layer, where

Hs∗ =
(
Si�(� j∈J1\Js∗

Sj)�Sj∗
)
. Since{i}∪ (J1\Js∗)∪{ j∗}= {i}∪ ((J\{i})\{ j∗})∪{ j∗}= J, we

conclude that all vertices within each(� j∈JSj)-layer have the same color, completing the proof of the

lemma.

Since two vertices with maximal distance contained in a Cartesian product of nontrivial factors

differ in all coordinates we can conclude the following corollary.

Corollary 2.44. Let F be a path-k-coloring of the Cartesian product G= �
n
i=1Si of S-prime graphs

Si and suppose u,v∈V(G) are two vertices with maximal G-distance that have the same color. Then

F is constant on G, i.e., k= 1.

Characterization

We are now in the position to give a complete characterization of path-k-colorings of Cartesian prod-

ucts of S-prime graphs.

Theorem 2.45(Path-k-coloring of Cartesian products of S-prime Graphs). Let G= �
n
j=1Sj be a

Cartesian product of S-prime graphs. Then F is a path-k-coloring of Gif and only if there exists an

index set I⊆ In such that the following two conditions hold for the graph H defined as H= �i∈I Si for

I 6= /0 and H= K1 for I = /0.

1. F(a) = F(b) for all a,b∈V(Hx) for all x ∈V(G) and

2. F(a) 6= F(b) for all a ∈V(Hx) and b∈V(Hy) with Hx 6= Hy.
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The coloring F consists of k= |V(G)|/|V(H)| distinct colors. F is nontrivial if and only if I6= In and

I 6= /0.

Proof. Let F be an arbitrary path-k-coloring of G. If F is trivial, then it follows thatk = 1 or k =

|V(G)| and thus we can conclude thatI = In or I = /0, respectively. In both cases, conditions (1) and

(2) are satisfied. IfF is nontrivial, thenk≤ |V(G)|−1 and there are two vertices with the same color.

Conditions (1) and (2) now follow directly from Lemma 2.42 and Lemma 2.43.

We will prove the converse by contraposition. Thus assume thatF satisfied properties (1) and (2)

for someI ⊆ In andF is not a path-k-coloring of G. Thus, there must be a well colored pathPu,v

between two verticesu andv with F(u) = F(v). If there is an edge(a,b) ∈ Pu,v such that(a,b) is

contained in anH-layerHx for somex∈V(G) we would contradict Condition (1). Thus assume there

is no edge(a,b) ∈ Pu,v that lies in anyH-layer. Notice that this implies thatu andv are not contained

in the sameH-layer, otherwise some edge(a,b) ∈ Pu,v must be an edge of anH-layer, by definition

of the Cartesian product. SincePu,v is a well colored path betweenu andv with F(u) = F(v) and

Hu 6= Hv, we contradict Condition (2).

It remains to show thatF consists ofk = |V(G)|/|V(H)| different colors. ForI = In andI = /0 this

assertion is trivially true. Therefore assumeI 6= In andI 6= /0. Condition (2) implies that all pairwise

differentH-layers are colored differently and from Condition (1) we can concludethat all vertices in

between eachH-layer have the same color. Thus we have just as many colors asH-layers exists. In a

Cartesian productG = H�H ′ the number of differentH-layers is|V(H ′)|= |V(G)|/|V(H)| and thus

k = |V(G)|/|V(H)|.

Finally, we have to show thatF is nontrivial if and only if I 6= In and I 6= /0. If F is nontrivial

the assumption is already shown at the beginning of this proof. Thus assumenow thatI = In, i.e.,

H = �i∈I Si = G. Condition (1) implies that all verticesv ∈ V(G) have the same color and hence

k = 1, contradicting thatF is nontrivial. Now letI = /0, i.e. H = K1. As for all verticesv,x∈V(G)

holdsv∈V(Kx
1) if and only if v = x, we can conclude thatF(a) 6= F(b) for all a,b∈V(G). Hence

k = |V(G)|, again contradicting thatF is nontrivial.

In the following, letFI denote a path-k-coloringF of a Cartesian productG of S-prime graphsSi

that satisfies the conditions of Theorem 2.45 with index setI . We can now proceed proving the main

result of this subsection.

Theorem 2.46.The diagonalized Cartesian Product of S-prime graphs is S-prime.

Proof. Let G= H∪(u,v) be a diagonalized Cartesian product of graphsSi , i.e.,H = �
n
i=1Si is a Carte-
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u ũPu,ũ

v

Hu
I Hv

I

Figure 2.14: Sketch of the proof of Theorem 2.46. TheHI -layersHu
I andHv

I are connected by a well-colored

pathPu,ũ with distinct colors at the endpoints,FI (u) 6= FI (ũ). The pathP∗ = Pu,ũ∪ (u,v) is well colored, but

FI (u) = FI (v), i.e.,FI is not a path-k-coloring.

sian product of S-prime graphs and the verticesu andv have maximal distance inH. Lemma 2.36

shows that any nontrivial path-k-coloring ofG gives rise to a nontrivial path-k-coloring ofH, which

in turn implies that there is a nontrivial subsetI ⊂ In and an according nontrivial path-k-coloringFI

such that the conditions of Theorem 2.45 are satisfied forH. We can conclude thatFI (u) 6= FI (v),

since otherwise the coloring ofH is trivial with k = 1 according to Corollary 2.44 andFI would be

constant. LetHI denote the Cartesian product�i∈I Si of prime factors ofG and letHu
I andHv

I be the

HI − layer containingu andv, respectively. Clearly,Hu
I 6= Hv

I , sinceI 6= {1, . . . ,n}, by definition of

the Cartesian product and sinceu andv have maximal distance inH. Let ũ ∈ V(Sv
i ) be the vertex

with coordinatesci(ũ) = ci(u) for all i ∈ I . Note thatv 6= ũ, becauseci(ũ) = ci(u) 6= ci(v) for all i ∈ I ,

otherwiseu andv would not have maximal distance.

Let Pu,ũ be a path betweenu andũ such that for all verticesx∈ Pu,ũ holdsci(x) = ci(u) for all i ∈ I .

Thus no edge of anyHI -layer is contained in this pathPu,ũ. From Theorem 2.45 and the fact thatFI is

nontrivial, it follows thatFI (a) 6= FI (b) for all a∈V(Hx
I ) andb∈V(Hy

I ) with Hx
I 6= Hy

I . This is true

in particular also for any two distinct verticesa andb in the pathPu,ũ, sinceHa
I 6= Hb

I by choice of the

coordinates. ThusPu,ũ is well colored. Moreover it holdsFI (u) 6= FI (ũ).

Now consider the pathP∗ = Pu,ũ∪ (u,v) in G, which is by construction a well colored path fromv

to ũ. However,FI (v) = FI (ũ). ThusFI is not a path-k-coloring ofG for any nontrivialI ⊂ In. Theorem

2.33 and Lemma 2.36 imply thatG = H ∪ (u,v) is S-prime, from which the statement follows.

Corollary 2.47. Diagonalized Hamming graphs, and thus diagonalized Hypercubes, areS-prime.

We conclude this section with an example that shows that not every diagonalized Cartesian product
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is S-prime, see Figure 2.15.
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Figure 2.15: Shown are two diagonalized Cartesian products that have a nontrivial path-4-coloring. Therefore

these graphs are S-composite.





3
The Local Way to Go

One easily realizes that almost all graphs are prime, see [13]. Even a smallperturbation of a product

graph, such as the deletion or insertion of a single edge, often leads to a prime graph, although the

graph still has a product-like structure. Hence, naturally arising questions are: How can one recover

the structure of a disturbed product? Is it possible to recover the originalfactors of a disturbed

product? How can at least some parts of a disturbed product be recognized as a product?

As shown in Section 2.4.2, there are several subgraphs of a given product graphG that are itself

products of subgraphs of the factors ofG. This leads directly to the following idea: We try to cover

a given disturbed productG by subproducts that are itself undisturbed, see Figure 3.1. If the graph

G is not too much disturbed, we would expect to be able to cover most of it by 1-neighborhoods or

other small subproducts and to use these information for the construction ofa strong productH that

approximatesG. The graphG will be calledapproximategraph product.

In this chapter we introduce several important tools for the realization of thisidea. We first start

with the so-calledS1-condition, that is a property of an edge, that allows us to determine Cartesian

edges, even if the given graph is not thin. We then introduce the so-calledbackboneB(G) of a given

graphG that is defined on the cardinality of equivalence classes of a particular relation S. In the last

33
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Figure 3.1: One covers a given disturbed productG by undisturbed subproducts and try use the information

provided by the PFD of those subproducts for the construction of a global PFD.

part of this chapter we are concerned with the so-calledcolor-continuation, that is a condition that

has to be met in order to identify different local fibers as related to copies of coinciding or different

global factors.

3.1 Tools

3.1.1 The S1-condition

The main idea of our approach is to construct the Cartesian skeleton ofG by considering only PFDs

of suitable subproducts. The main obstacle is that even thoughG is thin, this is not necessarily true

for subgraphs, Fig. 3.2. Hence, although the Cartesian edges are uniquely determined inG, they need

not to be unique in those subgraphs. In order to investigate this issue in somemore detail, we also

definedS-classes w.r.t. subgraphsH of a given graphG, Definition 2.14. Remind:

SH(x) =
{

v∈V(H) | NG[v]∩V(H) = NG[x]∩V(H)
}

As mentioned, ifH = 〈NG[y]〉 we set

Sy(x) := S〈NG[y]〉(x) =
{

v∈ NG[y] | NG[v]∩NG[y] = NG[x]∩NG[y]
}

.

In other words,Sy(x) is theS-class that containsx in the subgraph〈N[y]〉. Notice thatN[x] ⊆ N[v]

holds for allv∈ Sx(x). If G is additionally thin, thenN[x] ( N[v].

Since the Cartesian edges are globally uniquely defined in a thin graph, the challenge is to find

a way to determine enough Cartesian edges from local information, even if〈N[v]〉 is not thin. The

following property will play a crucial role for this purpose:



3.1. Tools 35

1 2

3

z v x

y

Figure 3.2: A thin graph where〈N[v]〉 is not thin. The S-classes in〈N[v]〉 areSv(v) = {v}, Sv(z) = {z} and

Sv(x) = Sv(y) = {x,y}.

Definition 3.1. Given a graphG. An edge(x,y) ∈ E(G) satisfies theS1-conditionin an induced

subgraphH ⊆G if

1. x,y∈V(H) and

2. |SH(x)|= 1 or |SH(y)|= 1.

Note that|SH(x)|= 1 for all x∈V(H), if H is thin. From Lemma 2.15 we can directly infer that the

cardinality of anS-class in a product graphG is the product of the cardinalities of the corresponding

S-classes in the factors. Applying this fact together with Lemma 2.26 to the subgraph ofG induced

by a closed neighborhoodsN[v] immediately implies Corollary 3.2.

Corollary 3.2. Consider a strong product G= G1⊠G2 and two vertices v,x∈V(G) with coordinates

(v1,v2) and(x1,x2), s.t. vi ,xi ∈V(Gi) and vi ∈ N[xi ] for i = 1,2. Then Sv(x) = Sv1(x1)×Sv2(x2) and

therefore|Sv(x)|= |Sv1(x1)| · |Sv2(x2)|.

Lemma 3.3. Let G= ⊠
n
i=1Gi be a strong product graph containing two S-classes SG(x), SG(y) that

satisfy

(i) (SG(x),SG(y)) is a Cartesian edge in G/S and

(ii) |SG(x)|= 1 or |SG(y)|= 1.

Then all edges in G induced by vertices of SG(x) and SG(y) are Cartesian and copies of one and the

same factor.

Proof. For simplicity, we writeS( .) for SG( .). We may assume w.l.o.g. that|S(x)| = 1. Corollary

3.2 implies that for every factorGi of G, 1≤ i ≤ n, holds

|SGi (xi)|= 1

In the following,S(v)m denotes them-th coordinate of vertexS(v) in G/S. Being a Cartesian edge

means thatS(x) andS(y) coincide in every, but one, say thej-th coordinate w.r.t. the factorization of

G/S, i.e. ∀i 6= j holdsS(x)i = S(y)i . By Lemma 2.15 this isSGi (xi) = SGi (yi).
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Corollary 2.17 implies that thei-th coordinate (i 6= j) of every vertex inS(x)∪S(y) is in SGi (xi)∪

SGi (yi) = SGi (xi), which is a set of cardinality 1. Hence, all vertices inS(x)∪S(y) have the samei-th

coordinate. This is equivalent to the claim of the lemma.
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Figure 3.3: Determining Cartesian edges that satisfy theS1-condition. Given a graphG, one computes its

quotient graphG/S. SinceG/Sis thin the Cartesian edges ofG/Sare uniquely determined. Now one factorizes

G/Sand computes the prime factors ofG with Algorithm 1. Apply Lemma 3.3 to identify all Cartesian edges

with respective colors (thick and dashed lined) inG that satisfy theS1-condition.

Remark 3.4. Whenever we find a Cartesian edge(x,y) in a neighborhood〈N[z]〉 such that one end-

point of (x,y) is contained in aS-class of cardinality 1 in〈N[z]〉/S, i.e., such thatSz(x) = {x} or

Sz(y) = {y}, we can therefore conclude that all edges in〈N[z]〉 induced by vertices ofSz(x) andSz(y)

are also Cartesian and are copies of one and the same factor, see Figure3.3.

Note, even if〈N[z]〉/Shas more factors than〈N[z]〉 Algorithm 1 indicates which factors have to be

merged to one factor. Again we can conclude that all edges in〈N[z]〉 that satisfy theS1-conditionare

Cartesian and are copies of one and the same factor, see Figure 3.4.

Moreover, since〈N[z]〉 ⊆G is a subproduct of a strong product graphG, it follows that any Carte-

sian edge of〈N[z]〉 that satisfy theS1-conditionis a Cartesian edge inG.

3.1.2 The Backbone B(G)

We consider here a subset ofV(G) that is essential for our algorithms.

Definition 3.5. Thebackboneof a thin graphG is the vertex set

B(G) = {v∈V(G) | |Sv(v)|= 1} .

Elements ofB(G) are calledbackbone vertices.
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Figure 3.4: Determining Cartesian edges that satisfy theS1-condition. We factorizeG/S and compute the

prime factors ofG with Algorithm 1. Notice that it turns out that the factors induced by thick and dashed lined

edges have to be merged to one factor. Apply now Lemma 3.3 to identify all Cartesian edges inG that satisfy

theS1-condition. In this case it is clear that the edge(0,3) has to be Cartesian as well and belongs to the single

prime factorG.

Clearly, the backboneB(G) and theS1-conditionare closely related, since all edges(x,y) that

contain a backbone vertex, sayx, satisfy theS1-conditionin 〈N[x]〉. If the backboneB(G) of a given

graphG is nonempty then Corollary 3.2 implies that no factor ofG is isomorphic to a complete graph,

otherwise we would have|Sv(v)|> 1 for all v∈V(G). The last observations lead directly to the next

corollary.

Corollary 3.6. Given a graph G with nonempty backboneB(G) then for all v∈B(G) holds: all edges

(v,x) ∈ E(〈N[v]〉) satisfy theS1-conditionin N[v].

We start exploring properties of the backboneB(G) of thin graphs. Our immediate goal is to

establish that the backboneB(G) of thin graphsG is a connected dominating set. This allows us to

cover the entire graph by closed neighborhoods of the backbone vertices only. Moreover, we prove

that it suffices to exclusively use information about the neighborhood ofbackbone vertices, to find

all Cartesian edges that satisfy theS1-conditionin arbitrary closed neighborhoods, even those edges

(x,y) with x,y /∈ B(G)

Lemma 3.7. Let G be a thin, connected simple graph and v∈ V(G) with |Sv(v)| > 1. Then there

exists a vertex y∈ Sv(v) s.t. |Sy(y)|= 1.

Proof. Let |Sv(v)|> 1. SinceG is finite we can choose a vertexy∈ Sv(v) that has a maximal closed

neighborhood inG among all vertices inSv(v). MoreoverN[y] is maximal inG among all vertices of

V(G). Assume not. Then there is a vertexz s.t. N[y]⊂ N[z], but thenz∈ Sv(v), a contradiction to the

maximality ofN[y] among all vertices inSv(v). SinceG is thinN[y] is strictly maximal.
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Figure 3.5: Examples of backbones. The induced subgraph of the backbonevertices of each graph is high-

lighted by the dashed lines.

Furthermore|Sy(y)| = 1, otherwise there is az∈ Sy(y), z 6= y s.t. N[z]∩N[y] = N[y]. SinceG is

thin, there is ax∈ N[z] with x 6∈ N[y] and thusN[y] ( N[z], but this is a contradiction to the fact that

N[y] is strictly maximal.

Lemma 3.8. Let G be a thin graph and v an arbitrary vertex of G. Then v∈ B(G) if and only if N[v]

is a strictly maximal neighborhood in G.

Proof. If N[v] is a strictly maximal neighborhood inG then|Sv(v)|= 1 which is shown analogously

to the last part of the last proof.

Let nowv∈ B(G). AssumeN[v] is not strictly maximal. Then there is a vertexz∈V(G) different

from v such thatN[v] ⊆ N[z]. Thus,N[v]∩N[z] = N[v], z∈ Sv(v) and|Sv(v)| > 1, contradicting that

v∈ B(G).

Lemma 3.9. Let G be a thin connected simple graph. Then the backboneB(G) is a dominating set

for G.

Proof. We have to show that for allv∈V(G) there exists a vertexw∈N[v] s.t. |Sw(w)|= 1. If 〈N[v]〉

is thin or|Sv(v)|= 1, there is nothing to show. If|Sv(v)|> 1, then the statement follows from Lemma

3.7.

Lemma 3.10. Let G be a thin connected simple graph. Then the set of adjacent verticesv and w with

|Sw(w)|= 1 or |Sv(v)|= 1 inducesoneconnected subgraph H of G.

Proof. AssumeH consists of at least two components and letC denote the set of these components.

SinceG is connected we can choose componentsC,C′ ∈ C s.t. there are verticesx∈C, y∈C′ that

are adjacent inG. SinceG is finite andx,y∈ N[x] there is a maximal closed neighborhoodN[z] in G

containingx andy. The thinness ofG implies thatN[z] is strictly maximal. This implies, analogously
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Figure 3.6: A thin graphG with backboneB(G) = {v}. Thus there is no vertexw ∈ N(v) s.t. |Sw(w)| = 1.

Moreover notice that|Sz′(x)|= 1 butx,z′ /∈ B(G). Lemma 3.14 implies that there is a vertexz∈ B(G) such that

|Sz(x)|= 1. In this example holdsz= v.

as in the proof of Lemma 3.7, that|Sz(z)| = 1 contradicting thatx andy are in different components

of H.

Lemma 3.11. Let G be a thin connected graph. Then the set of adjacent vertices v andw with

|Sw(w)|= 1 and|Sv(v)|= 1 inducesoneconnected subgraph H of G, i.e. the backboneB(G) induces

a connected subgraph H of G.

Proof. AssumeH consists of at least two connected component. LetC be any such connected

component. From Lemma 3.10 we can conclude that the subgraphM of G induced by all ver-

tices of edges(v,w) with |Sw(w)| = 1 or |Sv(v)| = 1 is connected. Hence, inM there is path

P= {x= x0,x1,x2, ...,xn−1,xn = y} from x∈C to y∈C′, whereC′ is any other connected component.

W.l.o.g., we may assume thatP∩V(C) = {x}. (Otherwise we replaceP by {xm,xm+1, ...,xn = y},

wherem= max{i | xi ∈ P∩V(C)}.) This implies thatx1 is not in B(G). But thenx2 must be in a

componentC′′ 6= C from B(G), since every edge inM contains at least one vertex which is inB(G).

Notice that neitherx nor x2 are inSx1(x1), otherwise(x,x2) ∈ E(G) andC andC′′ would be con-

nected. By Lemma 3.7 we can choose az∈ Sx1(x1),z 6= x,x2 with |Sz(z)| = 1. ThusC andC′′ are

connected. Contradiction.

From Lemma 3.9 and Lemma 3.11 we can directly infer the next Theorem.

Theorem 3.12.Let G be a thin graph. Then the backboneB(G) is a connected dominating set for G.

Notice that if G is thin and|B(G)| > 1, theneveryvertex has an adjacent vertex that is in the

backbone. Clearly this is not true whenever|B(G)|= 1, as the example in Figure 3.6 shows.
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Lemma 3.13. Let G be a thin graph with a backbone consisting of a single vertexB(G) = {v}. Then

|Sv(w)|= 1 for all w ∈V(G).

Proof. Theorem 3.12 implies that〈N[v]〉 ≃ G and thusSv(w) = SG(w) for all w∈V(G). SinceG is

thin everySclass inG is trivial and therefore also in〈N[v]〉.

Lemma 3.14. Let G be a thin graph and(x,y) an arbitrary edge in E(G). If there exists a vertex

z′ ∈ N[x]∩N[y] with |Sz′(x)| = 1 then there exists even a vertex z∈ N[x]∩N[y] with the following

properties:

z∈ B(G) and|Sz(x)|= 1.

Proof. If z′ ∈ B(G) there is nothing to show.

Now suppose|Sz′(z′)|> 1. By Lemma 3.7 we can choose a vertexz∈ Sz′(z′) with |Sz(z)|= 1. Since

z∈ Sz′(z′), we can conclude thatN[z′]⊂ N[z] and thusx,y∈ N[z] and thereforez∈ N[x]∩N[y].

It remains to show that|Sz(x)| = 1. Assume|Sz(x)| > 1 then there is a vertexw ∈ Sz(x) different

from x. The definition ofSz(x) impliesN[w]∩N[z] = N[x]∩N[z], which implies thatw∈ N[z′], since

z′ ∈ N[x]∩N[z]. Moreover we can conclude

N[w]∩N[z]∩N[z′] = N[x]∩N[z]∩N[z′]. (3.1.1)

SinceN[z′]⊂ N[z], we can cancel the intersection withN[z] in equation 3.1.1 to obtain

N[w]∩N[z′] = N[x]∩N[z′].

But thenw∈ Sz′(x) and thus|Sz′(x)|> 1, contradicting|Sz′(x)|= 1. Hence|Sz(x)|= 1.

Lemma 3.15. Let (x,y) ∈ E(G) be an arbitrary edge in a thin graph G such that|Sx(x)| > 1. Then

there exists a vertex z∈ B(G) s.t. z∈ N[x]∩N[y].

Proof. Since|Sx(x)|> 1 and by applying Lemma 3.7 we can choose a vertexz∈Sx(x) with z∈B(G).

Sincez∈ Sx(x) it holdsN[x]⊂ N[z] and hencey∈ N[z], and the claim follows.

Corollary 3.16. Let G be a thin graph and(x,y) an arbitrary edge in E(G) that does not satisfy the

S1-conditionin any1-neighborhood. Then there exists a vertex z∈ B(G) s.t. z∈ N[x]∩N[y], i.e. the

edges(z,x) and(z,y) satisfy theS1-conditionin 〈N[z]〉.
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We prove now that if at least one edge of a fiberGx
i satisfies theS1-conditionin a 1-neighborhood,

then all vertices contained inGx
i have an endpoint in an edgee∈ E(Gx

i ) that satisfies theS1-condition

in a 1-neighborhood.

Lemma 3.17. Let G= ⊠
n
j=1G j be the strong product of thin graphs and(x,y) ∈ E(G) be a Carte-

sian edge, where x and y differ in coordinate i. Moreover let(x,y) satisfy theS1-conditionin a

1-neighborhood. Then for all edges(a,b) ∈ E(Gx
i ) at least one of the following statements is true:

1. (a,b) satisfies theS1-conditionin a 1-neighborhood.

2. There are edges(z̃,a),(z̃,b) ∈ E(Gx
i ) that satisfy theS1-conditiona 1-neighborhood.

In this case, knowing that(z̃,a),(z̃,b) belong to Gx
i implies that(a,b) is necessarily also an

edge of Gx
i .

Furthermore, the vertices incident with edges of Gx
i that satisfy theS1-conditionin 1-neighborhoods

induce a single connected subgraph H⊆Gx
i .

Proof. By associativity and commutativity of the strong product it suffices to show this for the product

G= G1⊠G2 of two thin (not necessarily prime) graphs. Notice thatGx
i = Gy

i , sincex andy differ only

in coordinatei. Furthermore let(x1,x2) denote the coordinates ofx. The notation of the coordinates

of a, b, andy is analogous. W.l.o.g. assumei = 2 and|Sz(x)| = 1 with z = (z1,z2) ∈ N[x]∩N[y].

Corollary 3.2 implies|Sz1(x1)| = 1 and|Sz2(x2)| = 1. The idea of the rest of the proof is to shift

properties of(a2,b2), the projection of(a,b) into the factorG2, to (a,b).

Case (a)(a2,b2) satisfies theS1-conditionin a 1-neighborhood w.r.t.G2. Then we may assume

w.l.o.g. that there is av2 ∈ G2 with |Sv2(a2)| = 1 anda2,b2 ∈ N[v2]. Sincex1 = a1, Corollary 3.2

implies |S(z1,v2)(a)| = 1. Lemma 2.5 shows thata,b ∈ N[(z1,v2)]. Hence(a,b) satisfies theS1-

conditionin N[(z1,v2)].

Case (b)(a2,b2) does not satisfy theS1-conditiona 1-neighborhood w.r.t.G2. Then Corollary 3.16

implies the existence of a vertexv2 ∈ G2 such that both(v2,a2) and(v2,b2) satisfy theS1-condition

in NG2[v2]. Case (a) shows that((a1,v2),a) and((a1,v2),b) satisfy theS1-conditionin the respective

1-neighborhood.

SinceB(G2) is a connected dominating set forG2, the subgraph ofG2 induced by all vertices of

edges that satisfy theS1-conditionin 1-neighborhoods w.r.t.G2 is connected. Since we can shift

every edge that satisfies theS1-conditionin a 1-neighborhood w.r.t.G2 to an edge that satisfies the

S1-conditionin a 1-neighborhood w.r.t.G in Gx
i , H is connected.

From Lemma 3.14 and 3.17 we can directly conclude the next Theorem. that highlights the impor-
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tance ofB(G) for the identification of Cartesian edges.

Theorem 3.18. All Cartesian edges that satisfy theS1-conditionin an arbitrary induced neighbor-

hood also satisfy theS1-conditionin the induced neighborhood of a vertex of the backboneB(G).

If at least one edge of Gxi in G = ⊠
n
j=1G j satisfies theS1-conditionin a 1-neighborhood, then all

vertices of Gx
i are contained in edges of Gxi that satisfy theS1-conditionin 1-neighborhoods.

This result implies that it makes sense to give the following definition:

Definition 3.19. An entireGx
i -fiber satisfies theS1-conditionin 1-neighborhoods, whenever one of

its edges does.

Taken together, the latter results allow us to identify all Cartesian edges ofGx
i -fiber that satisfy

theS1-conditionin 1-neighborhoods, using exclusively information about the 1-neighborhoods of the

backbone vertices.

Last, we will show that for a given subproductH of a thin graphG that entirely contains at least

one 1-neighborhood of a backbone vertexx∈ B(G), the set of Cartesian edges ofH that satisfy the

S1-conditionin H, induce a connected subgraph ofH. This holds even ifH is not thin. For this we

need the next two lemmas.

Lemma 3.20. Let G be a given thin graph, x∈ B(G) and H⊆G an arbitrary induced subgraph such

that N[x]⊆V(H). Then|SH(x)|= 1 and x∈ B(H).

Proof. First notice that Lemma 3.8 andx∈ B(G) implies that〈N[x]〉 is strictly maximal inG. Since

〈N[x]〉 ⊆ H ⊆ G we can conclude that〈N[x]〉 is strictly maximal inH. Hence, it holds|SH(x)| = 1

and in particularx∈ B(H), applying Lemma 3.8 again.

Lemma 3.21.Let G be a given thin graph and H⊆G be a subproduct of G such that there is a vertex

x∈ B(G) with N[x]⊆V(H). Then the set of all Cartesian edges of H that satisfy theS1-conditionin

H induce a connected subgraph of H.

Proof. Let ⊠
n
i=1Hi be any factorization ofH and(a,b) be an arbitrary Cartesian edge ofH (w.r.t. to

this factorization) that satisfies theS1-conditionin H. W.l.o.g we assume that|SH(a)|= 1. We denote

the coordinates ofa with (a1, . . . ,an) and the ones ofx with (x1, . . . ,xn). Clearly, the coordinatization

need not to be unique, sinceH is not supposed to be thin. However, we will construct a pathP from

a to x that consists of Cartesian edges(v,w) such that|SH(v)|= 1 and|SH(w)|= 1. Those Cartesian

edges are uniquely determined inH, independently from the coordinatization.
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Notice that Lemma 3.20 implies that|SH(x)| = 1, sinceN[x] ⊆ V(H). Moreover, from Corol-

lary 3.2 we can conclude that|SHi (xi)| = 1 for all i. Analogously,|SHi (ai)| = 1 for all i. The in-

dex setI denotes the set of position wherea andx differ. W.l.o.g we assume thatI = {1,2, . . . ,k}.

The pathP has edge set{(x,v1),(v2,v3), . . . ,(vk−1,a)} with verticesv j that have respective coordi-

nates(a1,a2, . . . ,a j ,x j+1, . . . ,xn), j = 1, . . . ,k− 1. Corollary 3.2 implies that for all those vertices

holds|SH(vk)|= 1 and hence in particular for all edges(u,w) ∈ {(x,v1),(v2,v3), . . . ,(vn−1,a)} holds

|SH(u)|= 1 and|SH(w)|= 1, i.e., those Cartesian edges are uniquely determined inH. Finally, since

all edges have endpoints differing in exactly one coordinate all edges are Cartesian and hence all

those Cartesian edges(a,b) are connected to vertexx by a path of Cartesian edges that satisfy the

S1-condition, from what the statement follows.

Corollary 3.22. Let G be a given thin graph, x∈ B(G) and let H⊆G denote one of the subproducts

〈N[x]〉, N∗x,y or 〈N[x]∪N[y]〉. In the latter case we assume that the edge(x,y) is Cartesian in H. Then

the set of all Cartesian edges of H that satisfy theS1-conditionin H induce a connected subgraph of

H.

3.1.3 The Color-Continuation

The concept of covering a graph by suitable subproducts and to determine the global factors needs

some additional improvements. Since we want to determine the global factors, we need to find their

fibers. This implies that we have to identify different locally determined fibers as belonging to differ-

ent or belonging to one and the same global fiber. For this purpose, we formalize the termproduct

coloring, color-continuationandcombined coloring.

Definition 3.23. A product coloringof a strong procuct graphG = ⊠
n
i=1Gi of n≥ 1 (not necessarily

prime) factors is a mappingPG from a subsetE′ ⊆ E(G), that is a set of Cartesian edges ofG, into a

setC = {1, . . . ,n} of colors, such that all such edges inGi-fibers receive the same colori.

Definition 3.24. A partial product coloringof a graphG = ⊠
n
i=1Gi is a product coloring that is only

defined on edges that additionally satisfy theS1-conditionin G.

Note, in a thin graphG a product coloring and a partial product coloring conincide, since all edges

statisfy theS1-conditionin G.

Definition 3.25. Let H1,H2 ⊆ G andPH1, resp. PH2, be partial product colorings ofH1, resp. H2.

ThenPH2 is acolor-continuationof PH1 if for every colorc in the image ofPH2 there is an edge inH2

with colorc that is also in the domain ofPH1.
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Figure 3.7: Shown is a thin graphG that is a strong poduct of two pathes. If one computes the PFD of the

neighborhood〈N[x]〉 one receives a (partial) product coloring with colorsc1 and c3. The (partial) product

coloring of〈N[y]〉 has colorsc2 andc4. Since on edge(x,y), resp.(x,1), both colorsc1 andc2, resp.c3 andc4

are represented we can identify those colors and merge them to one color. Hence, the product coloringP〈N[x]〉

is a color-continuation ofP〈N[y]〉 and vice versa.

Thecombined coloringonH1∪H2 uses the colors ofPH1 onH1 and those ofPH2 onH2\H1.

In other words, for all newly colored edges with colorc in H2, which are Cartesian edges inH2

that satisfy theS1-conditionin H2, we have to find a representative edge that satisfy theS1-condition

in H1 and was already colored inH1. If H1 andH2 are thin we can ignore theS1-condition, since all

edges satisfy this condition inH1 andH2, see Figure 3.7.

In Chapter 5 we are concerned with so-calledlocally unrefinedgraphs. For this we introduce a

particular product coloring that is a restricted version of the previous definitions. Here we claim only

that all edges of a particularGi-fiberGx
i receive the same color. For an example see Figure 3.8.

Definition 3.26. Let Gx
j be a fiber of an arbitrary factorG j of G. An (x, j)- product coloring of a

graphG = ⊠
n
i=1Gi is a mappingFG from a subsetE′ of the set of Cartesian edges ofG into a setC of

colors, such that all edges in this particularGx
j -fiber receive the same color.

Definition 3.27. Let Gx
j be a fiber of an arbitrary factorG j of G. An (x, j)- partial product coloring

((x, j)-PPC) of a graphG = ⊠
n
i=1Gi is a (x, j)- product coloring that is only defined on edges that

additionally satisfy theS1-conditionin G.

Definition 3.28. Let H1,H2⊂G andFH1 be a(x, j)-PPC ofH1. ThenFH2 is a(x, j)-color-continuation

of FH1 if there is a colorc in the image ofFH2 that is also in the domain ofFH1. More formally:

∃ edgee∈ Dom(FH1)∩Dom(FH2)∩E(Gx
j)

that satisfies theS1-conditionin bothH1 andH2.

Thecombined(x, j)-PPC on H1∪H2 uses the color ofFH1 on H1 and colors all edgesf of H2 with

FH2( f ) = c with the colorFH1(e).
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Figure 3.8: Shown is a thin graphG that is a strong poduct of a path and a path containing a triangle. The

backboneB(G) consists of the verticesx andy. Both neighborhoods〈N[x]〉 and 〈N[y]〉 are not thin. After

computing the PFD of〈N[x]〉, resp. of〈N[y]〉 one receives a partial product coloring with colorsc1 andc3, resp.

with colorsc2 andc4. In this example the partial product coloring ofP〈N[y]〉 is not a color-continuation ofP〈N[x]〉

since no edge with colorc4 is colored in〈N[x]〉. If we denote the factor induced by one component of dashed-

line fibers byG1 we can observe that the(x,1)- partial product coloringF〈N[y]〉 is a(x,1)-color-continuation of

F〈N[x]〉 and vice versa.

We will now provide several properties of (partial) product colorings.The next Lemma, which was

stated for equivalence classes w.r.t. to a product relation in [34], is a restatement of Lemma 2.9.

Lemma 3.29([34]). Let G be a thin strong product graph and let PG be a product coloring of G.

Then every vertex of V(G) is incident to at least one edge with color c for all colors c in the image of

PG.

Lemma 3.30. Let G be a thin strong product graph, H⊆ G be a non-thin subproduct of G and

x ∈ V(H) be a vertex with|SH(x)| = 1. Moreover let PH be a partial product coloring of H. Then

vertex x is contained in at least one edge with color c for all colors c in the image of PG.

Proof. Notice that H does not contain complete factors, otherwise Corollary 3.2 implies that

|SH(x)|> 1. Now, the statement follows directly from Lemma 3.3, Corollary 3.6 and Lemma 3.29

We show in the following that in a given thin strong product graphG a partial product coloring
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PH of a subproductH ⊆ G is always a color-continuation of a partial product coloringP〈N[x]〉 of any

neighborhoodN[x] with N[x]⊆V(H) andx∈ B(G) and vice versa.

Lemma 3.31. Let G be a thin graph and x∈ B(G). Moreover let P1 and P2 be arbitrary partial

product colorings of the induced neighborhood〈N[x]〉.

Then P2 is a color-continuation of P1 and vice versa.

Proof. LetC1 andC2 denote the images ofP1 andP2, respectively. Note, that the PFD of〈N[x]〉 is the

finest possible decomposition, i.e. the number of used colors becomes maximal.Moreover every fiber

with respect to the PFD of〈N[x]〉 that satisfies theS1-condition, is contained in any decomposition of

〈N[x]〉. In other words any prime fiber that satisfies theS1-conditionis a subset of a fiber that satisfies

theS1-conditionwith respect to any decomposition of〈N[x]〉.

Moreover sincex∈ B(G) it holds that|Sx(x)|= 1 and thus every edge containing vertexx satisfies

the S1-conditionin 〈N[x]〉. Lemma 3.3 implies that all Cartesian edges(x,v) can be determined

as Cartesian in〈N[x]〉 Together with Lemma 3.30 we can infer that each color ofC1, resp. C2 is

represented at least on edges(x,v) contained in the prime fibers, which completes the proof.

Lemma 3.32. Let G= ⊠
n
i=1Gi be a thin strong product graph. Furthermore let H be a subproduct of

G with partial product coloring PH and〈N[x]〉 ⊆ H with x∈ B(G).

Then PH is a color-continuation of the partial product coloring PN of 〈N[x]〉 and vice versa.

Proof. First notice that Lemma 3.20 implies thatx∈ B(H) and in particular|SH(x)|= 1. Thus every

edge containing vertexx satisfies theS1-conditionin H as well as in〈N[x]〉. Moreover Lemma 3.30

implies that every color of the partial product coloringPH , resp.PN, is represented at least on edges

(x,v).

Since〈N[x]〉 is a subproduct of the subproductH of G we can conclude that the PFD ofH induces a

local (not neccessarily prime) decomposition of〈N[x]〉 and hence a partial product coloring of〈N[x]〉.

Lemma 3.31 implies that any partial product coloring of〈N[x]〉 and hence in particular the one induced

by PH is a color-continuation ofPN.

Conversely, any product coloringPN of 〈N[x]〉 is a color-continuation of the product coloring in-

duced by the PFD of〈N[x]〉. Since〈N[x]〉 is a subproduct ofH it follows that every prime fiber of

〈N[x]〉 that satisfies theS1-conditionis a subset of a prime fiber ofH that satisfies theS1-condition.

This holds in particular for the fibers through vertexx, since|Sx(x)| = 1 and|SH(x)| = 1. By the
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same arguments as in the proof of Lemma 3.31 one can infer that every product coloring ofH is a

color-continuation of the product coloring induced by the PFD ofH, which completes the proof.

We can infer now the following Corollaries.

Corollary 3.33. Let G= ⊠
n
i=1Gi be a thin strong product graph,(v,w) ∈ E(G) be a Cartesian edge

of G and H denote the edge-neighborhood〈N[v]∪N[w]〉. Then the partial product coloring PH of

H is a color-continuation of the partial product coloring PN[v] of 〈N[v]〉, resp. of the partial product

coloring PN[w] of 〈N[w]〉 and vice versa.

Corollary 3.34. Let G= ⊠
n
i=1Gi be a thin strong product graph and(v,w) ∈ E(G) be an arbitrary

edge of G. Then the partial product coloring P∗ of the N∗v,w-neighborhood is a color-continuation of

the partial product coloring PN[v] of 〈N[v]〉, resp. of the partial product coloring PN[w] of 〈N[w]〉 and

vice versa.





4
NICE and CHIC Graphs

Given a graphG we want to recognize its prime factors by coveringG by suitable subproductsH ⊆G.

If those subproductsH are thin and hence,|SH(v)|= 1 for all v∈V(H), thenall Cartesian edges inH

are uniquely determined. Thus, a first natural way to coverG would be covering it by thin subproducts

H only. Graphs that can be covered by thin 1-neighborhoods only will be calledthin-N coverable. As

it turns out not all graphs have this property, but we will introduce largeclasses of thin-N coverable

graphs, so-calledNICE andCHIC graphs and show that the information provided by the local PFDs

is sufficient to determine the prime factors of those graphs. Moreover, wewill derive quasi-linear

time algorithms that determine the prime factors of NICE and CHIC graphs using 1-neighborhood

information only.

4.1 Thin-N coverable Graphs

Definition 4.1. A graphG is thin-N coverableif there is a dominating setσ of G such that for all

v∈ σ holds〈N[v]〉 is thin. We callσ a thin dominating set. Ifσ is ordered, we denote it withσ≫ and

call it covering sequence.

49
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We give now a characterization of thin-N coverable graph.

Lemma 4.2([28]). Let G= ⊠
n
i=1Gi be a strong product. G is thin-N coverable if and only if all of its

factors are thin-N coverable.

Proof. By associativity and commutativity of the strong product it suffices to show this for the product

G = G1 ⊠G2 of two (not necessarily prime) graphs.

Suppose every factor is thin-N coverable. Hence there are thin dominatingsetsσi ⊆V(Gi), i = 1,2.

Then, the neighborhoods of vertices inσ1×σ2 coverG. To see this we choosev = (v1,v2) ∈V(G)

arbitrarily. By the choice ofσi there are thin neighborhoodsN[v′i ] that containvi and from Corollary

2.16 and Lemma 2.26 we can conclude thatN[(v′1,v
′
2)] is a thin neighborhood containingv.

For the converse letvi ∈ V(Gi) be arbitrarily chosen. Letv ∈ V(G) with i-th coordinatevi . By

assumption it is in the thin closed neighborhood of some vertexv′, thus by Lemma 2.26 vertexvi is

contained inN[v′i ], the neighborhood of thei-th coordinate ofv′ in Gi . Corollary 2.16 implies that

N[v′i ] is thin.

Clearly, if v∈ σ then|Sv(v)| = 1 and hencev∈ B(G). Therefore, it holdsσ ⊆ B(G). Notice that

thin-N coverable does not imply that all edges ofG are covered by thin induced neighborhoods, see

Figure 4.1.

1

2 3

4

x y

Figure 4.1: Shown is a thin-N coverable graphG with thin dominating setσ = {1,2,3,4}. Notice, that in this

example holdsσ = B(G). The thick edge(x,y) cannot be covered by thin neighborhoods, since neither〈N[x]〉

nor 〈N[y]〉 is thin.

The class of NICE, respectively CHIC graphs are defined as subclasses of thin-N coverable graphs

that satisfy some conditions. NICE graphs were first introduced in [28].For the recognition of

the prime factors of a given NICE graph, the introduced algorithm requires a covering sequence

σ≫ = {v1, . . . ,vk} that guarantees that the color-continuation from〈N[vi ]〉 to 〈N[vi+1]〉 never fails.
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However, recognizing whether such a covering sequence exists in general and if so determining it,

is not provided by this algorithm and indeed a disadvantage and the main obstacle for a fast and

constructive approach.

For CHIC graphs we do not need such an ordering ofσ , but we claim, in distinction from NICE

graphs, that the induced subgraph〈σ〉 is connected. However, we will show how to solve the problem

if the color-continuation fails.

As it turns out, the class of NICE and CHIC graphs has a non-empty intersection but nevertheless

they are not identical. For an example of a graph that is NICE and CHIC seeFigure 4.1.

4.2 NICE

In this section we briefly summarize the results of [28]. We start with the definition of NICE graphs.

Definition 4.3. A graphG is thin-N intersection coverable, in shortNICE, if it has a covering se-

quenceσ≫ = {v1, . . . ,vk} such that for alli = 1, . . . ,k− 1 the product coloring of〈N[vi+1]〉 is a

color-continuation of the combined coloring of
⋃i

j=1E(〈N[v j ]〉) defined by the product colorings of

each〈N[v j ]〉.

b c

a d

Figure 4.2: A prime graphG with σ = {a,c} andB(G) = {a,b,c,d} that can be covered by thin neighborhoods

only. Both thin neighborhoods〈N[a]〉 and〈N[c]〉 are prime and thus all edges receive the same color. Therefore

the single color used in each neighborhood can be continued on the edge (b,d). HenceG is NICE. Notice that

the induced subgraph〈σ〉 is not connected.

As shown in [28] the product of NICE graphs is a NICE graph.

Lemma 4.4. Let G= ⊠
n
i=1Gi be a strong product graph for which all factors are NICE. Then G is

NICE.

We give now a short overview of Algorithm 3 that decomposes NICE graphs with given covering

sequenceσ≫ into its prime factors.
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Algorithm 3 NICE graph decomposition

1: INPUT: a NICE graphG with a covering sequenceσ≫ = {v1, . . . ,vk}

2: compute PFD of〈N[v1]〉 and properly color its Cartesian edges;
3: for i=2,. . . ,kdo
4: Compute PFD of〈N[vi ]〉 and properly color its Cartesian edges;
5: compute the combined coloring of〈∪i−1

j=1N[v j ]〉 and〈N[vi ]〉;
6: end for
7: I ←{1, . . . ,num_comp};
8: J← I ;
9: for k = 1 tonum_compdo

10: for eachS⊂ J with |S|= k do
11: compute two connected componentsA, A′ of G induced by the colored edges ofG with

color i ∈ S, andi ∈ I\S, resp;
12: computeH1 = 〈pA(G)〉 andH2 = 〈pA′(G)〉;
13: if H1 ⊠H2 ⋍ G then
14: saveH1 as prime factor;
15: J← J\S;
16: end if
17: end for
18: end for

19: OUTPUT: The prime factors ofG;

In the first part (line 2 – 6) every induced neighborhood of vertices in the order of their appearance

in the covering sequenceσ≫ is decomposed with respect to the strong product, all the product color-

ings of the induced neighborhoods are combined in order to obtain a partialproduct coloring ofG. It

might happen that the coloring returned by the first part of the algorithm is finer than the coloring of

the global PFD ofG, for an example see Figure 4.3. Every induced neighborhood〈N[x]〉 is a strong

product of two factors, but the graph itself is prime. Another example can be seen in Figure 4.5. Thus,

colors may need to be combined to determine the factors of the global PFD whichis performed in the

second part of the algorithm (line 7 – 18). Finally, the algorithm returns the prime factors ofG.

As shown in [28], Algorithm 3 computes the PFD of NICE graphs in quasi-linear time.

Theorem 4.5. For a NICE graph G= (V,E) with bounded maximum degree∆ and given covering

sequence Algorithm 3 determines the prime factors of G w.r.t. the strong product in O(|V|∆4) time.
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x y z

Figure 4.3: A so-calledtwistedproduct with covering sequenceσ = {x,y,z}, with product coloring (induced

by tick and dashed edges) after running the first part of Algorithm 3. The components are combined in the

second part.

4.3 CHIC

As mentioned before, the main disadvantage of the approach for NICE graphs is that a covering se-

quence must be provided, which guarantees that the color-continuation always works. Unfortunately,

there is no algorithm known that determines if a graph is NICE and computes such a covering se-

quence. Clearly, one could exhaustively enumerate all possibilities for such a sequenceσ≫ and test

if the color-continuation works, but this is not efficient at all. To solve this problem we introduce the

class of CHIC graphs that is a subclass of thin-N coverable graphs. Indistinction from NICE graphs

we abandon that the vertices of the covering sequence can be orderedwith respect to Definition 4.3.

Thus, the color-continuation does not need to work as for NICE graphs. Instead, we suppose that the

thin dominating setσ is aconnecteddominating set.

Definition 4.6. A graphG is connected thin-N coverable, in shortCHIC, if it has aconnectedthin

dominating setσ , i.e., the subgraph induced byσ is connected.

Notice that we can order the vertices ofσ via a BFS-ordering applied in the induced subgraph〈σ〉,
since〈σ〉 is connected. In the sequel we assume thatσ≫ is ordered in this way. We show now that

the product of CHIC graphs is again a CHIC graph.

Lemma 4.7. Let G= ⊠
n
i=1Gi be a strong product graph for which all factors are CHIC. Then G is

CHIC.

Proof. Since the strong product is commutative and associative it suffices to showthis for the product
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G = G1 ⊠G2 of two CHIC (not necessarily prime) graphs. From Lemma 4.2 we can conclude thatG

is thin-N coverable. Letσ1 = {x1, . . . ,xk} andσ2 = {y1, . . . ,ym} be connected thin dominating sets

of G1, resp.G2. Corollary 2.16 and Lemma 2.26 imply that the induced neighborhood〈N[v]〉 with

coordinatesv = (xi ,y j) andxi ∈ σ1, y j ∈ σ2 is thin. Moreover, by definition of the strong product and

since each factor can be covered by respective neighborhoods of eachxi ∈ σ1 and eachy j ∈ σ2 we can

infer that the whole graphG is covered by the neighborhoods of those verticesv = (xi ,y j). Thus, the

setσ consisting of all verticesv= (xi ,y j) with xi ∈ σ1 and eachy j ∈ σ2 is a thin dominating set. Since

〈σ1〉 and〈σ2〉 induce connected subgraphs in each factorG1, respectivelyG2 we can apply Lemma

2.3 and conclude that the product of〈σ1〉 and〈σ2〉 is connected. Thusσ = {vi, j | vi, j = (xi ,y j), i =

1, . . . ,k, j = 1, . . . ,m} is a connected thin dominating set forG.

4.3.1 Solving the Color-Continuation Problem

As argued, we do not demand that the covering sequenceσ≫ guarantees that the color-continuation

always works. Indeed, there are examples where the color-continuation fails, see Figure 4.4. In the

following we discuss this problem and show how to solve it. First we prove a lemma for later usage.

Lemma 4.8. Let G= ⊠
n
l=1Gl be a thin strong product graph and(v,w) ∈ E(G) a non-Cartesian

edge. Let J denote the set of indices where v and w differ and U⊆V(G) be the set of vertices u with

coordinates ui = vi , if i /∈ J and ui ∈ {vi ,wi}, if i ∈ J. Then the induced subgraph〈U〉 ⊆ S(G) on U

consisting of Cartesian edges of G only is a hypercube of dimension|J|.

Proof. Notice that the coordinization ofG is unique, sinceG is thin. Moreover, since the strong

product is commutative and associative we can assume w.l.o.g. thatJ = {1, . . . ,k}. Note, thatk > 1,

otherwise the edge(v,w) would be Cartesian.

Assume thatk = 2. We denote the coordinates ofv, resp. ofw, by (v1,v2,X), resp. by(w1,w2,X).

By defintion of the strong product we can conclude that(vi ,wi) ∈ E(Gi) for i = 1,2. Thus the set of

vertices with coordinates(v1,v2,X) (v1,w2,X),(w1,v2,X), and(w1,w2,X) induce a complete graph

K4 in G. Clearly, the subgraph consisting of Cartesian edges only is aQ2.

Assume now the assumption is true fork = m. We have to show that the statement holds also for

k = m+ 1. Let J={1,. . . ,m+1} and letU1 andU2 be a partition ofU with U1 = {u ∈ U | um+1 =

vm+1} andU2 = {u ∈ U | um+1 = wm+1}. Thus eachUi consists of vertices that differ only in the

first m coordinates. Notice, by definition of the strong product and by construction of both setsU1

andU2 there are verticesa,b in eachUi that differ in all m coordinates that are adjacent inG and

hence non-Cartesian inG. Thus, by induction hypothesis the subgraphs〈Ui〉 induced by eachUi
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consisting of Cartesian edges only is aQm. Let 〈U〉 be the subgraph with vertex setU and edge set

E(〈U1〉)∪E(〈U2〉)∪{(a,b) ∈ E(G) | a = (X,vm+1,Y) andb = (X,wm+1,Y)}. By definition of the

strong product the edges(a,b) with a = (X,vm+1,Y) andb = (X,wm+1,Y) induce an isomorphism

between〈U1〉 and〈U2〉 which implies that〈U〉 ≃Qm�K2≃Qm+1.
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Figure 4.4: In the lower part a graphG is shown withσ = {3,4} and backboneB(G) = {1,3,4,7}. Since〈σ〉
is a thin connected dominating set we can conclude thatG is CHIC. Notice that neither〈N[1]〉 nor 〈N[7]〉 are

thin.

Consider the induced neighborhoods〈N[3]〉 and〈N[4]〉, depicted in the upper part. The colorings of the edges

w.r.t. the PFD of each neighborhood are shown as thick dashededges, thick-lined edges and double-lined edges,

respectively. If we cover the graph fromN[3] to N[4] the color-continuation fails, e.g. on edge(1,4), since

(1,4) is determined as non-Cartesian in〈N[3]〉. This holds for all edges in〈N[3]〉 that received the color "thick

dash" in〈N[3]〉. The same holds for the color "double-lined" if we cover the graph fromN[4] to N[3]. Hence

the color-continuation always fails and thereforeG is not NICE. If we force the edge(1,4) to be Cartesian

in 〈N[3]〉 Lemma 4.9 implies that the colors "thick-lined" and "double-lined" have to be merged to one color,

since the subgraph with edge set{(0,1),(0,4),(1,3),(3,4)}∪{(1,4)} is a diagonalized hypercubeQ2.

Consider now a strong product graphG and two given thin subproductsH1,H2 ⊆ G. Let the

Cartesian edges of each subgraph be colored with respect to a product coloring ofH1, respectivelyH2

that is at least as fine as the product coloring ofG w.r.t. to its PFD. As stated in Definition 3.25 we
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have a proper color-continuation fromH1 to H2 if for all colored edges with colorc in H2 there is a

representative edge that is colored inH1. Assume the color-continuation fails, i.e., there is a colorc

in H2 such that for all edgesec ∈ E(H2) with colorc holds thatec is not colored inH1, for an example

see Figure 4.4.

The open question is: "What can we do if the color-continuation fails?" In the sequel we assume

that such an edgeec with color c is contained inE(H1). The strategy will then be as follows. As

claimed, the product colorings ofH1 and H2 are at least as fine as the one ofG and H1, H2 are

subproducts ofG, which implies that colored Cartesian edges in eachHi are Cartesian edges inG.

Notice thatec is determined as non-Cartesian inH1, otherwise it would have been colored. But since

ec is determined inH2 as Cartesian, we can infer thatec must be Cartesian inG. Thus we can force

the edgeec, that is non-Cartesian inH1, to be Cartesian inH1. The now arising questions is: "What

happens with the factorization ofH1?" The answer is given in the next lemma.

Lemma 4.9. Let G= ⊠
n
l=1Gl be a thin strong product graph, where each Gl , l = 1, . . . ,n is prime. Let

H = ⊠
m
l=1Hl ⊆G be a thin subproduct of G such that there is a non-Cartesian edge(v,w)∈E(H) that

is Cartesian in G. Let J denote the set of indices where v and w differ w.r.t. to the coordinatization of

H. Then the factor⊠i∈JHi of H is a subgraph of a prime factor Gl of G.

Proof. In this proof factors w.r.t. the Cartesian product and the strong product,respectively, are called

Cartesian factors and strong factors, respectively. First notice that Cartesian edges inG as well as inH

are uniquely determined, since both graphs are thin. Therefore, a Cartesian edge ofG = ⊠
n
l=1Gl that

is a non-Cartesian edge in a subproductH = ⊠
m
l=1Hl of G implies thatm> n, i.e., the factorization of

H is a refinement of the factorization induced by the global PFD. SinceH is a thin subproduct ofG

with a refined factorization, it follows that Cartesian edges ofH are Cartesian edges ofG. Therefore

we can conclude that strong factors ofH are entirely contained in strong factors ofG.

We denote the subgraph ofH that consists of all Cartesian edges ofH only, i.e., its Cartesian

skeleton, byS(H), henceS(H) = �
m
l=1Hl . Let U ⊆ V(H) be the set of verticesu with coordinates

ui = vi , if i /∈ J andui ∈ {vi ,wi}, if i ∈ J. Notice that Lemma 4.8 implies that for the induced subgraph

w.r.t. the Cartesian skeleton〈U〉 ⊆ S(H) holds〈U〉 ≃Q|J|. Moreover, the distanced〈U〉(v,w) between

v andw in 〈U〉 is |J|, that is the maximal distance that two vertice can have in〈U〉. If we claim that

(v,w) has to be an edge in〈U〉 we receive a diagonalized hypercube〈U〉diag. Corollary 2.47 implies

that〈U〉diag is S-prime and hence〈U〉diag must be contained entirely in a Cartesian factorH̃ of a graph

H∗ = H̃�H ′ with S(H)∪ (v,w)⊂ H∗. This implies that〈U〉diag⊆ H̃u for all u∈V(H∗), i.e.,〈U〉diag

is entirely contained in all̃Hu-layer inH∗. Note that allH̃-layerHu contain at least one edge of every
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Hi-layerHu
i of the previously determined factorsHi , i ∈ J of H.

Now, all Cartesian factors ofS(H) = �
m
l=1Hl coincide with the strong factors ofH = ⊠

m
l=1Hl and

hence, in particular the factorsHi , i ∈ J. Moreover, sinceH is a subproduct ofG and the factorization

of H is a refinement ofG it holds that Cartesian factorsHi , i ∈ J of S(H) must be entirely contained

in strong prime factors ofG. This implies that for alli ∈ J theHi-layerHu
i must be entirely contained

in the layer of strong factors ofG. We denote the set of all already determined strong factorsHi , i ∈ J

of H with H .

Assume the graphH∗= �
s
j=1K j with S(H)∪(v,w)⊆H∗ andV(H∗) =V(S(H)) has a factorization

such that�i∈JHi∪(v,w) 6⊆K j for all Cartesian factorsK j . SinceS(H)∪(v,w)⊆H∗, we can conclude

that〈U〉diag⊆ H∗. Since〈U〉diag is S-prime it must be contained in a Cartesian factorKr of H∗. This

implies that〈U〉diag⊆ Ku
r for all u∈ V(H∗), i.e., for all Kr -layer of this particular factorKr . Since

�i∈JHi∪(v,w) 6⊆Kr , we can conclude that there is an already determined factorHi such thatHu
i 6⊆Ku

r

for all u∈V(H∗). Furthermore, allKr -layerKu
r contain at least one edge of eachHi-layerHu

i of the

previously determined factorsHi , i ∈ J of H. We denote withe the edge of theHi-layer Hu
i that is

contained in theKr -layerKu
r . This edgee cannot be contained in anyK j -layer, j 6= r. This implies

thatHu
i 6⊆ Ku

j for anyK j -layer, j = 1, . . . ,s.

Thus, there is an already determined factorHi ∈H with Hu
i 6⊆ Ku

j , u ∈ V(H∗) for all K j -layer,

j = 1, . . . ,s. Therefore, none of the layer of this particularHi are subgraphs of layer of any Cartesian

factor K j of H∗. This means thatH∗ is not a subproduct ofG or a refinement ofH, both cases

contradict thatHi ∈H .

Therefore, we can conclude that〈U〉diag⊆�i∈JHi ∪ (v,w)⊆ H̃ for a Cartesian factor̃H of H∗. As

argued, Cartesian factors are subgraphs of its strong factors and hence, we can infer that�i∈JHi and

hence⊠i∈JHi must be entirely contained in a strong factor ofH and hence in a strong factor ofG,

sinceH is a subproduct.

4.3.2 Recognition and PFD of CHIC Graphs

We give now a short overview of the approach that recognizes if a graph G is CHIC and that decom-

posesG into its prime factors ifG is CHIC, see Algorithm 4.

One first computes the backboneB(G) of the given graphG. The setσ consists then of all vertices

x ∈ B(G) that have a thin 1-neighborhood. To determine ifG is CHIC one has to check if〈σ〉 is

a connected dominating set. If this is the case the vertices ofσ are ordered via BFS applied in the

induced subgraph〈σ〉 ⊆G. This ordered set is denoted byσ≫.
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Algorithm 4 Recognition and Decomposition of CHIC graph

1: INPUT: a graphG
2: compute the backboneB(G);
3: σ ←{x∈ B(G) | 〈N[x]〉 is thin};
4: if σ is not a connected dominating setthen
5: STOP and return "G is not CHIC";
6: end if
7: computeσ≫ = {v1, . . . ,vk} via BFS along〈σ〉;
8: compute PFD of〈N[v1]〉 and properly color its Cartesian edges;
9: for i=2,. . . ,kdo

10: H← 〈∪i−1
j=1N[v j ]〉

11: compute PFD of〈N[vi ]〉 and properly color its Cartesian edges;
12: compute the combined coloring ofH and〈N[vi ]〉;
13: if color-continuation fromH to 〈N[vi ]〉 fails then
14: C←{colorc | color-continuation forc fails}
15: W←{v1, . . . ,vi−1}

16: Solve-Color-Continuation-Problem(H,〈N[vi ]〉, W, C);
17: end if
18: end for
19: I ←{1, . . . ,num_comp};
20: J← I ;
21: for k = 1 tonum_compdo
22: for eachS⊂ J with |S|= k do
23: compute two connected componentsA, A′ of G induced by the colored edges ofG with

color i ∈ S, andi ∈ I\S, resp;
24: computeH1 = 〈pA(G)〉 andH2 = 〈pA′(G)〉;
25: if H1 ⊠H2 ⋍ G then
26: saveH1 as prime factor;
27: J← J\S;
28: end if
29: end for
30: end for

31: OUTPUT: Prime factors ofG and product colored Cartesian Skeleton of G w.r.t. to this PFD;
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After that, one coversG by the neighborhoods of the verticesvi ∈ σ≫ according to their BFS-

ordering. Letvi be an arbitrary vertex ofσ≫. We compute the prime factorization of〈N[vi ]〉, properly

color its Cartesian edges and compute the combined coloring ofH = ∪i−1
j=1〈N[v j ]〉 and〈N[vi ]〉. If the

color-continuation fails we use Algorithm 5 to solve this problem by application of Lemma 4.9.

Hence, all product colorings of the used induced neighborhoods arecombined in order to obtain a

product coloring ofG.

As in the case of NICE graphs, it might happen that the coloring returned by the first part of the

algorithm is finer than the coloring of the global PFD ofG and thus colors may need to be combined

to determine the factors of the global PFD. This is performed in the second part of the algorithm

Finally the algorithm returns the prime factors ofG.

Algorithm 5 Solve-Color-Continuation-Problem

1: INPUT: a product colored graphH, a product colored graph〈N[vi ]〉, a set of vertices
{v1, . . . ,vi−1}, a setC of colors;

2: takev∈ {v1, . . . ,vi−1} with (v,vi) ∈ E(H);
3: compute coordinates of〈N[v]〉 with respect to the combined product coloring ofH;
4: {differ in "i" if color "i"}
5: for all colorsc∈C {color-continuation fails}do
6: take on representantec = (v,w) ∈ E(〈N[vi ]〉);
7: merge all colors inH wherev andw differ to one color;
8: end for
9: compute the combined coloring ofH and〈N[vi ]〉;

10: OUTPUT: colored graph H, colored graph〈N[vi ]〉;

Lemma 4.10. Let G be a given graph. Then Algorithm 4 recognizes whether G is CHIC and if G is

CHIC it determines the prime factors of G w.r.t. the strong product.

Proof. Given an arbitrary graphG the algorithm recognizes whether the set of vertices with thin

induced neighborhoods is a connected dominating set and thus determines whetherG is CHIC or not.

If G is CHIC the ordered setσ≫ is computed via a breadth-first search in〈σ〉 which can be done

sinceσ is aconnecteddominating set.

Let 〈N[vi ]〉 be a neighborhood where the color-continuation fails fromH = ∪i−1
j=1〈N[v j ]〉 to 〈N[vi ]〉.

Notice that there is a vertexv ∈ {v1, . . . ,vi−1} with v ∈ N[vi ], sinceσ≫ implies a BFS-ordering of

the vertices ofσ . Thus it holds〈N[v]〉 ⊆ H. Let c denote the color in〈N[vi ]〉 such that for all edges

e∈ E(〈N[vi ]〉) with color c holds thate was not colored inH. Since the combined coloring inH
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implies a product coloring of〈N[v]〉 we can compute the coordinates of the vertices in〈N[v]〉 with

respect to this coloring. Notice that the coordinization in〈N[v]〉 is unique since〈N[v]〉 is thin. Now

Lemma 3.29 implies that there is at least one edgee∈ 〈N[vi ]〉 with color c that contains vertexv.

Let us denote this edge byec = (v,w). Clearly, it holds(v,w) ∈ E(〈N[v]〉). Hence, this edge is not

determined as Cartesian inH, and thus in particular not in〈N[v]〉 otherwiseec would have been

colored in〈N[v]〉. But sinceec is determined as Cartesian in〈N[vi ]〉 and moreover, since〈N[vi ]〉

is a subproduct ofG, we can infer thatec must be Cartesian inG. Therefore, we claim that the

non-Cartesian edge(v,w) in 〈N[v]〉 has to be Cartesian in〈N[v]〉. Notice that the product coloring

in 〈N[v]〉 induced by the combined colorings of all〈N[v j ]〉, j = 1, . . . , i−1 is as least as fine as the

product coloring ofG. Thus, we can apply Lemma 4.9 and together with the unique coordinization

of 〈N[v]〉 directly conclude that all colorsi ∈C, whereC denotes the set of coordinates wherev andw

differ, have to be merged to one color. This is done in Algorithm 5. This implies that we always get

a color-continuation for each colorc that is based on those additional edges(v,w) as defined above.

Hence, we always get a proper combined coloring, even if the color-continuation previously failed.

We end with a combined coloringFG onG=∪v∈σ 〈N[v]〉where the domain ofFG consists of all edges

that were determined as Cartesian edges in the previously used〈N[v]〉 with v∈ σ . By construction

of FG and the combined colorings used at each step from〈N[vi ]〉 to 〈N[vi+1〉, vi ,vi+1 ∈ σ≫ we know

that the number of colors in the image ofFG is at most as many colors that were used in the first

neighborhood〈N[v1]〉. This number is at most log2(∆), because every product ofk nontrivial factors

must have at least 2k vertices.

Notice that the Cartesian edges of every〈N[v]〉, v∈ σ , together with their endpoints, form a con-

nected spanning subgraph of〈N[v]〉, v∈ σ . Since any two vertices ofG are connected viaσ it follows

that the edges in the domain ofFG, together with their endpoints, form a connected spanning subgraph

of G.

Let now Gi be a prime factor of the input graphG. We have to show that it is returned by our

algorithm. It is trivial that for some subsetS⊂ J, Swill contain all colors that occur in a particular

Gi-fiber Ga
i which contains vertexa. Every vertexy ∈ N[x] is incident to an edge with every color

used in the PFD of〈N[x]〉, and hence also with every color ofFG on the same edge set. Thus the set

of S-colored edges inGa
i spansGa

i .

Since the global PFD induces a local decomposition, every layer in an induced closed neighborhood

with respect to a local prime factor is a subset of a layer with respect to a global prime factor. Thus

we never identify colors that occur in copies of different global prime factors. In other words, the

number of colors in the image ofFG might be larger than the number of prime factors ofG and hence
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the coloringFG is a refinement of the product coloring of the global PFD. This guarantees that a

connected component of the graph, induced by all edges with a color inS, induces a graph that is

isomorphic toGi . The same arguments show that the colors not inS lead to the appropriate cofactor.

ThusGi will be recognized.

Lemma 4.11. Given a graph G= (V,E) with bounded maximum degree then∆ Algorithm 4 recog-

nizes whether G is CHIC in O(|V| ·∆3) time.

Proof. For determining the backboneB(G) we have to check for a particular vertexv∈V(G) whether

there is a vertexw∈ N[v] with N[w]∩N[v] = N[v]. This can be done inO(∆2) time for a particular

vertexw in N[v]. Since this must be done for all vertices inN[v] we end in time-complexityO(∆3).

This step must be repeated for all|V| vertices ofG. Hence the time complexity for determiningB(G)

is O(|V| ·∆3).

Checking if〈B(G)〉 is connected can be done via a breadth-first search inO(|V|+ |E|) time. Since

the number of edges is bounded byO(|V| ·∆) we can conclude that this task needsO(|V| ·∆) time.

Checking ifB(G) is a dominating set can be inO(|V|) time.

Hence we end in an overall time complexity ofO(|V| ·∆3).

Lemma 4.12. Let G be CHIC graph andσ≫ = {v1, . . . ,vn} be its ordered covering sequence. Fur-

thermore, let H= 〈∪i−1
j=1N[v j ]〉 with vj ∈ σ≫ be a product colored subgraph of G and〈N[vi ]〉 be a

product colored neighborhood with vi as the next vertex inσ≫. Assume the color-continuation from

H to 〈N[vi ]〉 fails and let C denote the set of colors where it fails. Given the latter items as input in

Algorithm 5, then Algorithm 5 computes the combined coloring of H and〈N[vi ]〉 in O(∆2) time.

Proof. Taking a vertexv∈ {v1, . . . ,vi−1} with (v,vi) ∈ E(H) can be done in linear time in the number

of edges of〈N[vi ]〉 that is inO(∆2) time.

Computing the coordinates of the product colored neighborhood〈N[v]〉 can be done via a breadth-

first search in〈N[v]〉 in O(|N[v]|+ |E(〈N[v]〉)|) = O(∆+∆2) = O(∆2) time.

Notice that by the color-continuation propertyH can have at most as many colors as there are

colors for the first neighborhood〈N[v1]〉. This number is at most log(∆), because every product ofk

non-trivial factors must have at least 2k vertices. Thus the for-loop is repeated at most log(∆) times.

All tasks in between the for-loop can be done inO(∆) time and hence the for-loop takesO(log(∆) ·∆)

time.
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Computing the combined color can also be done linear in the number of edges of〈N[vi ]〉 and thus

in O(∆2) time.

Therefore, the total time complexity isO(∆2).

Lemma 4.13. Given a graph G= (V,E) with bounded maximum degree∆ then Algorithm 4 recog-

nizes whether G is CHIC and if G is CHIC then it determines the prime factors ofG w.r.t. the strong

product in O(|V| ·∆4) time.

Proof. Determining the backboneB(G) and checking whether〈B(G)〉 is a connected dominating set

can be doneO(|V| ·∆3) time, see Lemma 4.11.

Computingσ≫ = {v1, . . . ,vk} via the breadth-first search takesO(|V|+ |E|) time. Since the num-

ber of edges is bounded by|V| ·∆ we can conclude that this task needsO(|V| ·∆) time.

Each neighborhood has at most∆ +1 vertices and hence at most(∆ +1) ·∆ edges. Together with

Lemma 2.23 we can conclude that the PFD each neighborhood and therefore the computation in Line

8 needsO((∆+1) ·∆ ·∆2) = O(∆4) time.

The first for-loop will be repeated at most |V| times. ComputingH in Line 10, i.e., adding a

neighborhood toH, can be done in linear time in the number of edges of this neighborhood, that is

in O(∆2) time. The PFD of〈N[vi ]〉 in Line 11 takesO(∆4) time and the combined coloring ofH and

〈N[vi ]〉 in Line 12 can be done in constant time. For checking if the color-continuationis valid, one

has to check at most for all edges of〈N[vi ]〉 if a respective colored edge was also colored inH, which

can be done inO(∆2) time. As shown in Lemma 4.12, the complexity of Algorithm 5 isO(∆2). Thus,

the time complexity of the first for-loop isO(|V| ·∆4).

For the second part (Line 19 – 30) we observe that the size ofI is the number of used colors. By

the same arguments as in the proof of Lemma 4.12 we can conclude that this number is bounded by

log(∆). Hence we also have at most∆ setsS, i.e., color combinations, to consider. In Line 24 we have

to find connected components of graphs and in Line 25 we have to performan isomorphism test for a

fixed bijection. Both tasks take linear time in the number of edges of the graph and henceO(|V| ·∆)

time. Thus the total complexity of this part isO(|V| ·∆3) time.

The overall time complexity of Algorithm 4 is thereforeO(|V| ·∆4) time.
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4.4 Relation between NICE and CHIC graphs

In this section, we treat the relation between NICE and CHIC graphs. One can observe that the

classes of NICE and CHIC graphs have a non-empty intersection, although they are not identical. For

an example of a graph that is NICE and CHIC see Figure 4.1 and 4.5. A graph that is CHIC but not

NICE is shown in Figure 4.4. Conversely, a graph that is NICE but not CHIC is depicted in Figure

4.2.

y

x

Figure 4.5: A graph with covering sequenceσ = {x,y} that is NICE and CHIC. After running the first part of

both Algorithms the assigned coloring consists of two colors, although the graph is prime. The components are

combined in the last part of both Algorithms.

As shown in [28] we have:

Lemma 4.14. Let G= ⊠
n
i=1Gi be the strong product of n triangle-free nontrivial connected graphs

different from K2. Then G is thin.

Lemma 4.15. Every triangle-free nontrivial connected graph G different from K2 is NICE.

We show that the latter lemma holds for CHIC graphs, too.

Lemma 4.16. Every triangle-free nontrivial connected graph G different from K2 is CHIC.

Proof. First notice that sinceG 6≃ K2 and sinceG is connected that for every vertexv∈ V(G) with

deg(v) = 1 there is vertexw∈V(G) with deg(w) > 1.

Let w ∈ V(G) be a vertex with deg(w) > 1. Assume〈N[w]〉 is not thin. Then there are vertices

x,y ∈ N[w] with N[x]∩N[w] = N[y]∩N[w] and hence there are edges(x,y),(x,w),(y,w) ∈ E(G),

contradicting thatG is triangle-free. Hence for all verticesw with deg(w) > 1 holds〈N[w]〉 is thin.
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Notice that this implies thatσ = B(G). Lemma 4.14 implies thatG is thin. From Theorem 3.12

we can conclude thatσ is a connected dominating set.

Theorem 4.17.Let⊠n
i=1Gi be the PFD of the connected thin graph G. If G does not contain a clique

Km with m≥ 3·2n−1, then G is NICE and CHIC.

Proof. By the thinness ofG we know that no factor ofG is isomorphic toK2. If G is the strong

product ofn prime factors, where at least one of them contains a triangle, thenG contains a complete

graphKm with m≥ 3 ·2n−1. Hence every prime factor is triangle-free. The statement follows now

directly from Lemma 4.2, 4.4, 4.7, 4.15 and Lemma 4.16

We conclude this section with the observation that thin graphs need neither beNICE nor CHIC nor

thin-N coverable. For examples compare Figures 4.6 and 4.7.

x y

Figure 4.6: A graphG that can be covered by thin neighborhoods〈N[x]〉 and 〈N[y]〉. The graph is thin-N

coverable, but neither NICE nor CHIC, because there is no covering sequence.

Figure 4.7: A thin graph with the property that all induced neighborhoods are not thin, consequently no

covering sequenceσ exists. The fibers of the prime factors are marked with thick and dashed edges



5
Locally unrefined Graphs

In this chapter, we are concerned with graphs that cannot be coveredby thin 1-neighborhoods only

and extend the work of the last chapter to a new class of graphs, which are graphs whose local

factorization is not finer than the global one. Will call this propertylocally unrefined.

Definition 5.1. Let G be a given graph. We denote the number of prime factors ofG by |PF(G)|

The graph classϒ of locally unrefined graphsconsists of allS-thin graphs with the property that

|PF(G)|= |PF(〈N[v]〉)| for all v∈ B(G).

The graph classϒn is the set of all graphsG∈ ϒ with |PF(G)|= n.

Note, there are also NICE and CHIC graphs that are locally unrefined, e.g. the graph in Figure

3.7. See Figure 4.3 and 4.4 for examples of graphs, that are NICE and CHIC, but not locally un-

refined. However, in this chapter we are interested in an approach that can also deal with non-thin

neighborhoods, which is another step towards a local covering algorithmthat works forall graphs.

We show in the following, how the prime factors of a locally unrefined graphG can be deter-

mined, by coveringG by 1-neighborhoods of the backbone vertices only. Moreover, we willderive

polynomial-time local algorithms for computing the product coloring and the Cartesian skeleton of

G, and for recognizing whetherG is locally unrefined.

65
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Remark 5.2. We want to emphasize that in this chapter the termS1-condition refers to 1-

neighborhoods, if not stated explicitly differently. This means, in this chapter, an edge(x,y) satisfies

theS1-condition, if there is a vertexz∈V(G) with x,y∈ N[z] such that|Sz(x)|= 1 or |Sz(y)|= 1.

5.1 Determining the Prime Factors of G∈ ϒ

Note, we can identify at least one edge(x,y) of each prime factor that belongs to the backbone of

G, i.e. x∈ B(G) or y∈ B(G), even if the decomposition of subproducts is finer than the global one.

Applying Theorem 3.18 we can do much more in the case of locally unrefined graphsG∈ ϒ: Once

we have found an edge(x,y) of a Gx
i -fiber that satisfies theS1-conditionwe can identifyall edges of

thatGx
i -fiber as Cartesian.

Therefore it remains to show, how to color aGx
i -fiber of a given product graphG∈ ϒ with x∈B(G)

in a way that all edges of theGx
i -fiber receive the same color. For this we will need the restricted

version of a partial product coloring to individualGx
i -fibers, the(x, j)- partial product coloring ((x, j)-

PPC), see Definition 3.27.

We start with the definition of a(x, j)-covering sequence.

Definition 5.3. A finite sequenceσ(x, j) = (vi)
k
i=0 of vertices ofG is a(x, j)-covering sequenceif

1. for all v∈V(Gx
j) there exists a vertexw∈ σ(x, j) with v∈ N[w] and

2. if for all i > 0 every PPC of〈N[vi+1]〉 is a (x, j)-color-continuation of the combined(x, j)-

coloring of
⋃i

l=1E(〈N[vl ]〉) defined by the(x, j)-PPC of each〈N[vl ]〉.

In this chapter we call a(x, j)-covering sequencesimply covering sequenceif there is no risk of

confusion.

In our approach we will use the breadth-first search algorithm, explained in Section 2, in a slightly

modified way. Letv∈ B(G) be the start vertex. We then decompose the neighborhood ofv w.r.t. to

its strong prime factor decomposition. Then we fix one colorc of one fiber, sayGv
i , and append only

those neighborsv j of v to the current listBFS(v) if

1. they are not already in this list and

2. v j ∈ B(G) and

3. the edge(v,v j) has the colorc of the correspondingGv
i -fiber.

This will be done recursively for the remaining verticesw fixing the color in each neighborhood
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〈N[w]〉 of the underlyingGv
i -fiber. Therefore,BFS(v) is a sortedBFS-list on the vertex setB(G)∩

V(Gv
i ).

First we show that in a prime graphG∈ ϒ such aBFS(x) ordering on the vertices ofB(G) leads to

a (x,1)-covering sequence ofG.

Lemma 5.4. Let G∈ ϒ be prime and let x be an arbitrary vertex of the backboneB(G) =

{w1, . . . ,wm}. Then BFS(x) on the vertices ofB(G) is a (x,1)-covering sequence.

Proof. By Theorem 3.12 holds that for allv∈V(G) there is a vertexw∈ BFS(x) such thatv∈ N[w].

Thus item(1) of Definition 5.3 is fulfilled.

Notice that|PF(〈N[v]〉)| = 1 for all v ∈ BFS(x) sinceG ∈ ϒ. Thus all edges in such〈N[v]〉 are

Cartesian and get exactly one color.

Now, take two arbitrary consecutive verticesvi ,vi+1 from BFS(x). If vi andvi+1 are adjacent then

vi+1 is a child ofvi and the edge(vi ,vi+1) satisfies theS1-conditionin 〈N[vi ]〉 as well as in〈N[vi+1]〉,

sincevi ,vi+1 ∈ B(G). Therefore the edge(vi ,vi+1) is colored in the neighborhoods of both adjacent

vertices and we get a proper(x,1)-color-continuation from〈N[x]〉∪
⋃i

l=1〈N[vl ]〉 to 〈N[vi+1]〉.

If vi andvi+1 are not adjacent (thusvi 6= x) then there must be parentsu,w ∈ BFS(x) of vi and

vi+1, respectively and we can apply the latter argument. ThereforeBFS(x) is a proper(x,1)-covering

sequence.

We will now directly transfer that knowledge to (non prime) product graphs. For this we will

introduce in Algorithm 6 how to get a proper coloring on allGx
i -fiber withx∈B(G). The correctness is

proved in the following lemma. Remind thatϒn⊂ϒ denotes the set of graphsG∈ϒ with |PF(G)|= n.

Lemma 5.5. Let G∈ ϒn and x be an arbitrary vertex ofB(G). Then Algorithm 6 properly colors all

edges of each Gxi -fiber for i = 1, . . . ,n.

Proof. We show in the sequel that theBFScovering of vertices ofB(G)∩V(Gx
i ), i.e of vertices along

Cartesian edges(a,b) of Gx
i with a,b∈ B(G), leads to a proper(x, i)-covering sequence.

First notice that for eachx ∈ B(G) holds |PF(〈N[x]〉)| = |PF(G)| = n, sinceG ∈ ϒn. Moreover,

all Cartesian edges(v,w) with v,w ∈ B(G)∩V(Gx
i ) satisfy theS1-conditionand therefore can be

determined as Cartesian, by applying Lemma 2.26 and Lemma 3.3. Hence, any such edge(v,w) was

properly colored both in〈N[w]〉 and in〈N[v]〉. Applying Theorem 2.10 leads to the requested PPC.

We show next that for all verticesy ∈ Gx
i there is a vertexw ∈ N[y] with w ∈ BFS(x), implying

that item (1) of Definition 5.3 is fulfilled. SinceB(Gi) is a connected dominating set for factorGi
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Algorithm 6 ColorGx
i -fiber

1: INPUT: a graphG∈ ϒn and a vertexx∈ B(G)

2: compute PFD of〈N[x]〉 and properly color the Cartesian edges in〈N[x]〉 that satisfy theS1-
conditionwith colorsc1, . . . ,cn;

3: Li ← /0, i = 1, . . . ,n;
4: for i = 1, . . . ,n do
5: markx;
6: add all neighborsv∈ B(G) of x with colorci in list Li in the order of their covering;
7: while Li 6= /0 do
8: take first vertexv from the front ofLi ;
9: deletev from Li ;

10: if v is not markedthen
11: markv;
12: compute PFD of〈N[v]〉 and properly color the Cartesian edges in〈N[v]〉 that satisfy the

S1-condition;
13: combine the colors on edge(parent(v),v);
14: add all neighborsw ∈ B(G) of v with color ci to the end of listLi in the order of their

covering;
15: end if
16: end while
17: for all edges(v,w) that do not satisfy theS1-conditiondo
18: if there are edges(z,v) and(z,w) that have colorci then
19: mark(v,w) as Cartesian and assign colorci to (v,w);
20: {Notice that these edges(z,v) and(z,w) satisfy theS1-condition}
21: end if
22: end for
23: end for
24: OUTPUT: G with coloredGx

j -fiber, j = 1, . . . ,n;

25: {Notice that everyGx
j -fiber is isomorphic to one prime factor ofG}
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we can conclude that for all verticesyi ∈ V(Gi) there is a vertexwi ∈ N[yi ] such thatwi ∈ B(Gi).

Suppose that the coordinates for the chosen verticesx are(x1, . . . ,xn). Then,w ∈ N[y] has coordi-

nates(x1, . . . ,xi−1,wi ,xi+1, . . . ,xn). Corollary 3.2 implies|Sx j (x j)|= 1 for j = 1, . . . ,n. Furthermore,

we haveSw(w) = ∏i−1
j=1 |Sx j (x j)| · |Swi (wi)| ·∏n

j=i+1 |Sx j (x j)|= 1. Thusw∈V(Gx
i )∩B(G) and conse-

quentlyw∈ BFS(x).

Moreover, since all those edges(w,y) with y /∈ B(G) satisfy theS1-conditionand the fact that

G∈ ϒn we can conclude that these edges are properly colored in the neighborhood 〈N[w]〉. Therefore

BFS(x) along vertices ofB(G)∩V(Gx
i ) constitutes a proper(x, i)-covering sequenceσx,i .

Finally, consider Line 17 – 22 of the algorithm. Theorem 3.12 and Lemma 3.17 implythat the

remaining edges(y,y′) of Gx
i that do not satisfy theS1-conditionare induced by vertices of Cartesian

edges(z,y) and(z,y′) that do satisfy theS1-condition. As shown above, all those edges(z,y) and

(z,y′) are already colored with the same color in some〈N[w]〉 with w∈V(Gx
i )∩B(G). It follows that

we obtain a complete coloring inGx
i .

This procedure is repeated independently for all colorsci in 〈N[x]〉, i = 1, . . . ,n. This completes the

proof.

Lemma 5.6. Algorithm 6 determines the prime factors w.r.t. the strong product of a given graph

G = (V,E) ∈ ϒ with bounded maximum degree∆ in time complexity O(|V| · log2(∆) · (∆)5).

Proof. The time complexity of Algorithm 6 is determined by the complexity of the breadth-first

search and the decomposition of each neighborhood in each step.

Notice that the number of vertices of every neighborhoodN[v] is at most∆ +1. Thus the number of

edges of every neighborhood〈N[v]〉 is bounded by(∆+1)∆ and hence the PFD of each neighborhood

can be computed inO(∆4) , see Lemma 2.23. The number of colors is bounded by the number of

factors in each neighborhood, which is at most log2(∆ + 1). The breadth-first search takes at most

O(|V|+ |E|) time for each color. Since the number of edges inG is bounded by|V| · ∆ we can

conclude that the time complexity of the breadth-first search isO(|V|+ |V| ·∆) = O(|V| ·∆). Thus we

end in an overall time complexity ofO((|V| ·∆) · log2(∆) · (∆)4) which isO(|V| · log2(∆) · (∆)5).

Remark 5.7. If G∈ ϒ, it is sufficient to use Algorithm 6 to identify a singleGi-fiber through exactly

one vertexx∈ B(G) in order to determine the corresponding prime factor ofG. ForG∈ ϒ we would

therefore be ready at this point.

There is, however, no known sufficient condition to establish thatG ∈ ϒ, except of course by

computing the PFD ofG. Moreover, as discussed in [28], it will be very helpful to determine as many
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identificable fibers as possible for applications to approximate graph products. However, this task

will be treated in the next section.

5.2 Detection and product coloring of the Cartesian skeleton

As shown before, we can identify and even colorGx
i -fiber that satisfy theS1-conditionin a way that

all edges of this fiber receive the same color, wheneverx∈B(G). We will generalize this result for all

fibers that satisfy theS1-conditionin Lemma 5.8. This provides that we get a big part of the Cartesian

skeleton colored such that all edges of identifiedGy
i -fibers received the same color. Moreover we will

show how to identify colors of different coloredGi-fibers. Furthermore we introduce a method to

determine Cartesian edges of fibers that do not satisfy theS1-condition.

⊠

Figure 5.1: The Backbone of the factors is depicted as green dashed line.The backbone of the product graph

G is sketched as a green rectangle. Starting with some vertexx∈ B(G) we go along backbone vertices ofG

with fixed color, i.e. we apply the BFS algorithm only on vertices ofB(G)∩Gx
i for all i. Applying Lemma 5.5,

5.8 and 5.9 we can color allGi-fibers that satisfy theS1-conditionin this way.

5.2.1 Identify Colors of all Gx
i -fibers that satisfy the S1-condition

Lemma 5.8. Let G∈ ϒn and Gy
i with y /∈ B(G) be an arbitrary fiber that satisfies theS1-condition.

Let z∈ B(G) such that|Sz(a)|= 1 or |Sz(b)|= 1 for some edge(a,b) ∈Gy
i . Then the(z, i)-covering

sequenceσz,i is also a(y, i)-covering sequence.

Proof. The existence of such a vertexz follows directly from Lemma 3.14. W.l.o.g. let|Sz(a)| = 1,

otherwise switch the labels of verticesa andb. If Gy
i = Gz

i then the assertion follows directly from

Lemma 5.5. Thus we can assume thatGy
i 6= Gz

i .
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W.l.o.g. let vertex z have coordinates(z1, . . . ,zi , . . . ,zn) and vertex a have coordinates

(a1, . . . ,ai , . . . ,an). In the following ẑ will denote the vertex inGy
i with coordinates ˆzj = a j for j 6= i

andẑi = zi , in short with coordinates(a1, . . . ,zi , . . . ,an). Thus we can infer thatGẑ
i = Gy

i . For the sake

of convenience we will denote all vertices with coordinates(z1, . . . ,wi , . . . ,zn) and(a1, . . . ,wi , . . . ,an)

with w andŵ, respectively. Note, thatw andŵ are adjacent, by choice of their coordinates and by

definition of the strong product.

Moreover, sincea ∈ N[z] and because of the coordinates of the vertices ˆu, ŵ ∈ Gy
i we can infer

that û ∈ N[w] holds for all vertices ˆu ∈ N[ŵ] by definition of the strong product. More formally,

N[ŵ]∩V(Gy
i )⊆ N[w], see Figure 5.2.

a = (a1, . . . , ai, . . . , an)

z = (z1, . . . , zi, . . . , zn)

ŵ = (a1, . . . , wi, . . . , an) û = (a1, . . . , ui, . . . , an)

w = (z1, . . . , wi, . . . , zn)

G
y
i

Gz
i

Figure 5.2: N[ŵ]∩V(Gy
i )⊆ N[w]

Let σz,i = (z,v1, . . . ,vm) be a proper(z, i)-covering sequence, based on the BFS approach explained

above, consisting of all backbone vertices ofG contained inGz
i . Furthermore letw be any vertex of

σz,i . Notice that for all such verticesw holds|Sw(w)|= 1 and therefore in particular|Swi (wi)|= 1, by

applying Corollary 3.2. Thus for all such vertices ˆw holds

|Sw(ŵ)|=
i−1

∏
j=1
|Szi (ai)| · |Swi (wi)| ·

n

∏
j=i+1

|Szi (ai)|= 1,

by applying Corollary 3.2 again. Hence all edges(û, ŵ)∈E(〈N[ŵ]〉)∩E(Gy
i ) satisfy theS1-condition

in the closed induced neighborhood of the vertexw, sinceN[ŵ]∩V(Gy
i ) ⊆ N[w]. Moreover since

B(Gi) is a connected dominating set we can infer that item(1) of Definition 5.3 is fulfilled.

It remains to show that we also get a proper color-continuation. The main challenge now is to show

that for all vertices(parent(v),v) contained inBFS(z) there is an edge(a,b) ∈ Gy
i that satisfies the

S1-conditionin both 〈N[parent(v)]〉 and〈N[v]〉. This implies that we can continue the color of the

Gy
i -fiber on that edge(a,b).

Therefore, let ˆv andŵ be any two adjacent vertices ofGy
i with coordinates as mentioned above such

thatvi ,wi ∈B(Gi). Thus by choice of the coordinatesv andw are adjacent vertices such that|Sv(v)|=
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|Sw(w)| = 1 and hencev,w ∈ BFS(z). As shown above|Sv(v̂)| = 1 and |Sw(ŵ)| = 1. Therefore

the edge(v̂, ŵ) satisfies theS1-conditionin both 〈N[v]〉 and〈N[w]〉, sinceN[v̂]∩V(Gy
i ) ⊆ N[v] and

N[ŵ]∩V(Gy
i )⊆N[w]. The connectedness ofB(Gi) andG∈ ϒn implies that any such edge is properly

colored withc by means of the color-continuation. SinceB(Gi) is also a dominating set it holds that

all vertices ˆu with |Su(û)|> 1 have an adjacent vertex ˆw with |Sw(ŵ)|= 1. SinceN[ŵ]∩V(Gy
i )⊆N[w],

we can infer that ˆu∈ N[w] and therefore all these edges satisfy theS1-conditionand are colored with

c. Hence, property(2) of Definition 5.3 is satisfied.

Lemma 5.9. Let G∈ ϒn and Gy
i with y /∈ B(G) be an arbitrary fiber that satisfies theS1-condition.

Furthermore let z∈ B(G) with |Sz(a)|= 1 or |Sz(b)|= 1 for some edge(a,b) ∈Gy
i . Then Algorithm

6 properly colors all edges of each such Gy
i -fiber with vertex z as an input vertex.

Proof. Lemma 3.14 implies that there is az∈ B(G) such that|Sz(a)| = 1 or |Sz(b)| = 1 for some

edge(a,b) ∈ Gy
i . As shown in Lemma 5.8 each suchGy

i -fiber that satisfies theS1-conditionwith

y /∈ B(G) can be covered and colored via the corresponding(z, i)-covering sequenceσz,i . By the way,

sinceG ∈ ϒn and Theorem 2.10 we can directly color all edges ofGy
i with the same colorc as the

Gz
i -fiber. Furthermore, by applying Lemma 3.17 all remaining edges of(a,b) ∈ E(Gy

i ) are induced

by vertices of Cartesian edges(a, z̃),(b, z̃) ∈ E(Gy
i ) which are satisfying theS1-conditionand thus

already colored with colorc. Thus all these edges(a,b) must be Cartesian edges ofGy
i (by definition

of the strong product) and thus also obtain colorc.

5.2.2 Identification of Parallel Fibers

As shown in the last subsection we are able to identify all edges of aGx
i -fiber that satisfies theS1-

conditionas Cartesian in such a way that all these edges inGx
i get the same color. An example of

the colored Cartesian edges of a product graph after coloring all horizontal fibers that satisfy the

S1-conditionis shown in Figure 5.3.

It remains to show how we can identify colors of different coloredGi-fibers. For this the Square

Property (Lemma 2.8) is crucial. In the following, we investigate how we can find the necessary

squares and under which conditions we can identify colors of differentlycolored fibers that belong to

one and the same factor.

Before stating the next lemma, we explain its practical relevance. LetG = ⊠
n
l=1Gl ∈ ϒ be a strong

product graph. In this case, different fibers of the same factor may becolored differently, see Figure

5.3 for an example. We will show that in this case there is a square of Cartesian edges containing one
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x y

Figure 5.3: Cartesian skeleton of a strong product graph. Its factors are induced by one thick and one dashed

colored component. Application of Algorithm 6 identifies Cartesian edges in three distinct color classes in-

dicated by thick lines and the two types of dashed lines. The edges drawn as thin lines are not identified as

Cartesian because they do not satisfy theS1-condition. The backbone ofG consists of the verticesx andy.

Cartesian edge of each of the fibersGa
i andGx

i , if these fibers are connected by an arbitrary Cartesian

edge of someG j -fiber. The other two Cartesian edges then belong to two distinctG j -fibersGA
j and

GB
j , both of which satisfy theS1-condition. The existence of such a square implies thatGa

i andGx
i

are copies of the same factor. Thus we can identify the fibers that belong tothe same factor after

computing a proper horizontal fiber coloring as explained in previous subsection. Moreover we will

show in Lemma 5.11 that all parallel fibers that satisfy theS1-conditionare connected by a path of

Cartesian edges. This provides that we can colorall Gi-fibers with the same color applying Lemma

2.8 and 5.10.

Lemma 5.10. Let G= ⊠
n
l=1Gl be the strong product of thin graphs. Let there be two different fiber

Ga
i and Gx

i that satisfy theS1-condition.

Furthermore let there exist an index j∈ {1, . . .n} s.t. (p j(a), p j(x)) ∈ E(G j) and pk(a) = pk(x) for

all k 6= i, j.

Then there is a square ÂAB̂B in G with

1. (A, Â) ∈ E(Gx
i ) and(B, B̂) ∈ E(Ga

i ) and

2. (A,B)∈E(GA
j ) and(Â, B̂)∈E(GÂ

j ), whereby GAj 6= GÂ
j and at least one edge of GA

j and at least

one edge of GÂj satisfies theS1-condition.

Proof. Since the strong product is commutative and associative it suffices to showthis for the product

G = G1 ⊠ G2 ⊠ G3 of thin (not necessarily prime) graphs. W.l.o.g. choosei = 1, j = 2 andk =

3. W.l.o.g., letx have coordinates(x1,x2,x3) anda have coordinates(a1,a2,x3). Now we have to
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distinguish the following cases for the three different graphs.

Before we proceed we fix a particular notation for the coordinates of certain vertices and edges,

which we will maintain throughout the rest of the proof.

• For G1:

1. |B(G1)|> 1, i.e. there is an edge(v1, v̂1) ∈ E(G1) with v1, v̂1 ∈ B(G) and

2. not (1):|B(G1)|= |{v1}|= 1.

• For G2:

A. the edge(a2,x2) satisfies theS1-conditionin G2

B. not (A).

Notice that in case (A) there is by definition a vertexz2 ∈ N[a2]∩N[x2] with |Sz2(a2)| = 1 or

|Sz2(x2)|= 1. In the following we will assume w.l.o.g. that in this case holds|Sz2(x2)|= 1.

Case (B) implies that|Sx2(x2)| > 1. By Theorem 3.12 we can conclude that there is a vertex

x̃2 ∈ N[x2] with |Sx̃2(x̃2)| = 1, which implies that the edge(x2, x̃2) satisfies theS1-conditionin

G2.

• For G3:

i. x3 ∈ B(G3)

ii. not (i): x3 /∈ B(G3).

For the sake of convenience define ˜p3 = x3 if we have case (i). In case (ii) let ˜p3 = z3 with z3 ∈

N[x3] s.t. |Sz3(x3)| = 1. Notice that such a vertexz3 has to exist inG3, otherwise|Sz3(x3)| > 1

for all z3 ∈ N[x3]. But then for allz,x∈V(G) with z∈ N[x] with coordinatesz= ( , ,z3) and

x = ( , ,x3), resp., holds|Sz(x)| = ∏3
i=1 |Szi (xi)| > 1. Hence none of the edges ofGa

1 andGx
1

satisfies theS1-condition, contradicting the assumption. However, notice that ˜p3 is chosen such

that|Sp̃3(x3)|= 1.

In all cases we will choose the coordinates of the vertices of the squareAÂB̂B as follows: A =

(v1,x2,x3), B = (v1,a2,x3) with v1 ∈ B(G1) andÂ = (v̂1,x2,x3), B̂ = (v̂1,a2,x3), v1 6= v̂1. By choice

holds(A, Â) ∈ Gx
1, (B, B̂) ∈ E(Ga

1), (A,B) ∈ GA
2 and(Â, B̂) ∈ E(GÂ

2) wherebyGA
2 6= GÂ

2 , see Figure

5.4.
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A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3) B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

Figure 5.4: General notation of the chosen squareAÂB̂B.

It remains to show that at least one edge of both fibersGA
2 andGÂ

2 satisfies theS1-condition. This

part of the proof will become very technical.

In Figure 5.5 and 5.6 the ideas of the proofs are depicted.

z = (v1, z2, p̃3)

z′ = (v̂1, z2, p̃3)

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3) B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

z = (v1, x̃2, p̃3)

C = (v1, x̃2, x3)

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3) B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

Figure 5.5: Left: Case 1.A.i. andii .. Right: Case 1.B.i. andii .

Cases 1.A.i and 1.A.ii :

Let v1, v̂1 ∈ B(G1) with (v1, v̂1) ∈ E(G1). Let z2 ∈ N[x2] with |Sz2(x2)| = 1 in G2. Choosez∈V(G)

with coordinates(v1,z2, p̃3).

By definition of the strong product the edges(z,A) and (z,B) do exist inG and thereforez∈

N[A]∩N[B]. Moreover Corollary 3.2 implies that|Sz(A)|= 1. Therefore the edge(A,B) is satisfying

theS1-conditionin G in both cases (i) and (ii).
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The same argument holds for the edge(Â, B̂) by choosingz∈V(G) with coordinates(v̂1,z2, p̃3).

Case 1.B.i and 1.B.ii :

Let v1, v̂1 ∈ B(G1) with (v1, v̂1) ∈ E(G1) and letx̃2 ∈N[x2] with |Sx̃2(x̃2)|= 1. Choosez∈V(G) with

coordinates(v1, x̃2, p̃3). By definition of the strong product holds that(z,A) ∈ E(G).

In case (i) we can conclude from Corollary 3.2 that|Sz(z)| = 1. Moreover, in case (i) holds by

definition of the strong product that(z,A) ∈GA
2 and we are ready.

Otherwise in case (ii) choose the vertexC with coordinates(v1, x̃2,x3). Thenz∈ N[A]∩N[C] and

|Sz(C)|= 1. Since(A,C) ∈GA
2 the assertion forGA

2 follows.

The same arguments hold forGÂ
2 by choosingz∈ V(G) with coordinates(v̂1, x̃2, p̃3) andC with

coordinates(v̂1, x̃2,x3).

Cases 2.A.i and 2.A.ii :

z = (v1, z2, p̃3)

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3)

B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

z = (v1, x̃2, p̃3)

C = (v1, x̃2, x3)

Ĉ = (v̂1, x̃2, x3)

A = (v1, x2, x3) B = (v1, a2, x3)

Â = (v̂1, x2, x3) B̂ = (v̂1, a2, x3)

Gx
1 Ga

1

GA
2

GÂ
2

Figure 5.6: Left: Case 2.A.i. andii .. Right: Case 2.B.i. andii .

Let v1 ∈ B(G1) andv̂1 ∈N[v1]. Let z2 ∈N[x2]∩N[a2] with |Sz2(x2)|= 1 in G2. Choosez∈V(G) with

coordinates(v1,z2, p̃3).

In order to show that the conditions are fulfilled forGA
2 we proceed as in cases in (1.A.i) and

(1.A.ii):

By definition of the strong product there are non-Cartesian edges(z, Â) and (z, B̂) and thusz∈

N[Â]∩N[B̂]. Now, Lemma 3.13 implies that|Sv1(v̂1)|= 1 and therefore by applying Corollary 3.2 we

can conclude that|Sz(Â)|= 1, and the assertion follows forGÂ
2 .

Case 2.B.i and 2.B.ii :

Let v1 ∈ B(G1) andv̂1 ∈ N[v1]. Let x̃2 ∈ N[x2] with |Sx̃2(x̃2)| = 1 Choosez∈V(G) with coordinates

(v1, x̃2, p̃3).
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That the conditions are fulfilled forGA
2 can be shown analogously, as in cases in (1.B.i) and (1.B.ii).

To show that the conditions are also fulfilled in case (2.B.i) and (2.B.ii) forGÂ
2 choosez∈ V(G)

with coordinates(v1, x̃2, p̃3) and a vertexC with coordinates(v̂1, x̃2,x3). Clearly (Â,Ĉ) ∈ E(GÂ
2).

Furthermore, by definition of the strong product:z∈N[Â] andz∈N[Ĉ], and thusz∈N[Â]∩N[Ĉ]. By

applying Corollary 3.2 we conclude that|Sz(Ĉ)| = 1, using that Lemma 3.13 implies|Sv1(v̂1)| = 1.

Thus the edge(Â,Ĉ) satisfies theS1-condition, and the assertion follows forGÂ
2 .

It is important to notice that the squareAÂB̂B in the construction of Lemma 2.8 is exclusively

composed of Cartesian edges. The lemma can therefore be applied to determine whether two fibers

Ga
i andGx

i , which have been colored differently in the initial steps, are copies of the same factor,

and hence, whether their colors need to be identified. As we shall see below, this approach is in fact

sufficient to identify all fibers belonging to a common factor.

Lemma 5.11. Let G= ⊠
n
j=1G j be the strong product of thin graphs. Furthermore let Gy1

i , . . . ,Gym
i be

all Gi-fibers in G satisfying theS1-condition. Then there is a connected pathP in G consisting only

of vertices ofX = {x1, . . . ,xm} with xj ∈V(G
y j
i ) s.t. each edge(xk,xl ) ∈P is Cartesian.

Proof. Since the strong product is commutative and associative it suffices to showthis for the product

G = G1 ⊠G2 of two thin (not necessarily prime) graphs. W.l.o.g. leti = 1. Moreover, we can choose

w.l.o.g. the verticesx1, . . . ,xm such thatp1(xk) = x for k = 1, . . . ,m. Moreover by applying Theorem

3.12 we can choosex such thatx∈ B(G1).

Consider first all verticesv with coordinates(x,v2) such thatv2 ∈ B(G2). From Theorem 3.12

follows thatB(G2) is connected. Thus there is a connected pathP2 consisting only of such vertices

v. Moreover, each edge(a,b) with a,b∈V(P2) and thus with coordinates(x,a2) and(x,b2), resp.,

is Cartesian. Furthermore, all correspondingGv
1-fibers are satisfying theS1-condition, since for each

edge(v,w) holds |Sv(v)| = 1 , by applying Corollary 3.2. Therefore all verticesv with coordinates

(x,v2) with v2 ∈ B(G2) are also contained inX . Hence all thoseGv
i -fibers are connected by such a

pathP2 with V(P2)⊂X .

Let now ṽ be any vertex inX \V(P2). Hencep2(ṽ) /∈ B(G2). Theorem 3.12 implies that for all

those verticesp2(ṽ) /∈ B(G2) there is an adjacent vertexp2(v) in G2 s.t. p2(v) ∈ B(G2). Thus we can

conclude that for all vertices ˜v ∈X \V(P2) with coordinates(x, p2(ṽ)) there is an adjacent vertex

v∈V(P2) with coordinates(x, p2(v)), what from the assertion follows.
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5.2.3 Detection of unidentified Cartesian Edges

One open question still remains: How can we identify a Cartesian(x,y) edge that does not satisfy

theS1-conditionin any 1-neighborhood, i.e., if for allz∈ N[x]∩N[y], we have both|Sz(x)| > 1 and

|Sz(y)| > 1? Figures 5.7 and 5.8 show examples of product graphs, in which not allfibers were

determined by the approach outline in the previous two sections.

x

0

2

1

3

Figure 5.7: Cartesian Skeleton of the strong productG of two prime factors induced by the dashed and bold

lined fibers. Application of Algorithm 6 to all fibers determines a part of the Cartesian SkeletonH that consists

only of the edges drawn as dashed or bold lines. While the bold and dashed fibers identify the true factors,

we miss the copies shown by thin lines. None of these edges satisfies theS1-conditionin an induced 1-

neighborhood. The backboneB(G) consists of the vertices 0,1,2 and 3.

Unfortunately, we do not see an efficient possibility to resolve the missing cases by utilizing only

the information contained in the fibers that already have been identified so far and the structure of

1-neighborhoods. We therefore introduce a method which relies on the identification of Cartesian

edges withinN∗-neighborhoods.

Of course, it would be desirable if smaller structure were sufficient. Natural candidates would be to

exploit theS1-conditionin edge-neighborhoods of the form〈N[x]∪N[x′]〉, where(x,x′) is a Cartesian

edge. However, the example in Figure 5.8 shows that the information contained in these subproducts

is still insufficient.

Note, that we refine the already known results of [29], where analogous results were stated for

2-neighborhoods. We will show that every Cartesian(x,y) edge that does not satisfy theS1-condition

can be determined as Cartesian in theN∗x,y-neighborhood.
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x

x’

Figure 5.8: Cartesian skeleton of a thin strong product graph whose factors are induced by one thick and

dashed component. The fiber whose edges are drawn as thin lines does not satisfy theS1-condition. Moreover,

even in the subgraph induced by the neighborhoods ofx andx′, which is the product of a path and aK3, the

S1-conditionis violated for the Cartesian edge.

Lemma 5.12. Let G be a thin graph and(v,w) be any edge of G. Let N∗ denote the N∗v,w-

neighborhood. Then it holds that|SN∗(v)| = 1 and |SN∗(w)| = 1 , i.e., the edge(v,w) satisfies the

S1-conditionin N∗.

Proof. Assume that|SN∗(v)|> 1. Thus there is a vertexx∈ SN∗(v) different fromv with N[x]∩N∗ =

N[v]∩N∗, which implies thatw∈ N[x] and hencex∈ N[v]∩N[w]. SinceN[v] ⊆ N∗ andN[x] ⊆ N∗

we can conclude thatN[v] = N[v]∩N∗ = N[x]∩N∗ = N[x], contradicting thatG is thin. Analogously,

one shows that the statement holds for vertexw.

Next, we prove that the PFD of an arbitraryN∗-neighborhood is not finer than the PFD of a given

graphG ∈ ϒn. This implies that each Cartesian edge inG that is contained inN∗ and satisfies the

S1-conditionin N∗ can be determined as Cartesian inN∗.

Lemma 5.13. Let G∈ ϒn and let(x,y) be an arbitrary edge in E(G). Then|PF(〈N∗x,y〉)|= n.

Proof. Notice that|PF(G)| = n and |PF(N[x])| = n, sinceG ∈ ϒn. SinceN∗x,y is a subproduct of

G (Corollary 2.30) we can conclude that the PFD ofN∗x,y has at least|PF(G)| factors. Futhermore,

since〈N[x]〉 is subproduct ofN∗x,y we can infer that〈N[x]〉 has at least as many prime factors asN∗x,y.

Therefore we have

n = |PF(G)| ≤ |PF(N∗x,y)| ≤ |PF(〈N[x]〉)|= n,

and thus|PF(N∗x,y)|= n.
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From Lemma 5.12 and 5.13 we can conclude that any Cartesian edge(x,y) of some fiber that does

not satisfy theS1-conditioncan be determined as Cartesian in itsN∗x,y-neighborhood. Thus, we can

identify all Cartesian edges ofG.

The last step, we have to consider is to identify such fibers as copy of the corresponding factor. This

can be done in a simple way. Consider that we have now identifiedall Cartesian edges ofG. Notice

that for all new identifiedGa
i -fibers holdsa /∈ B(G), otherwise each edge containing vertexa of this

fiber would satisfy theS1-conditionin 〈N[a]〉 and we would have identified this fiber. However, for

each such vertexa there is a vertexx ∈ N[a] with x ∈ B(G), sinceB(G) is a connected dominating

set. Thus, the correspondingGx
i -fiber satisfies theS1-conditionand is therefore already identified and

colored asGi-fiber. Hence, again we can apply the square property to determine sucha new identified

Ga
i -fiber belonging to a copy of the factorGi by identifying the colors of theGa

i -fiber with the color

of theGx
i -fiber.

5.2.4 Algorithm and Time Complexity

We will now summarize the algorithm for determining the colored Cartesian skeleton of a given graph

G∈ ϒ w.r.t. to its PFD and give the top level control structure, which are proved tobe correct in the

previous subsections. Furthermore , we will determine the time complexity, whichis stated in the

following lemma.

Algorithm 7 Cartesian skeleton and Product Coloring ofG

1: INPUT: GraphG∈ ϒ.
2: Compute the backboneB(G);
3: for all x in B(G) do
4: Color allGx

i -fibers (andGy
i -fibers that satisfy theS1-condition) with Algorithm 6;

5: end for
6: Determine unidentified Cartesian edges inN∗-neighborhoods;
7: Compute all squares in the induced Cartesian skeleton ofG and identify the colors of parallel

fibers applying Lemma 2.8;

8: OUTPUT: Product coloring ofG with respect to its PFD;

Lemma 5.14. Algorithm 7 determines the colored Cartesian skeleton with respect to its PFD of a

given graph G= (V,E) ∈ ϒ with bounded maximum degree∆ in O(|V|2 · log2(∆) ·∆5) time.

Proof. 1. Determining the backboneB(G): we have to check for a particular vertexv ∈ V(G)

whether there is a vertexw∈N[v] with N[w]∩N[v] = N[v]. This can be done inO(∆2) for a particular
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vertexw in N[v]. Since this must be done for all vertices inN[v] we end in time-complexityO(∆3).

This step must be repeated for all|V| vertices ofG. Hence the time complexity for determiningB(G)

is O(|V| ·∆3).

2. For-Loop. The time complexity of Algorithm 6 isO(|V| · log2(∆) · (∆)5). The for-loop is re-

peated for all backbone vertices. Hence we can conclude that the time complexity of the for-loop is

O(|V| · |V| · log2(∆) ·∆5).

3. Determine unidentified Cartesian edges inN∗-neighborhoods. Notice that eachN∗-

neighborhood has at most 1+ ∆ · (∆− 1) vertices. Therefore the number of edges in eachN∗-

neighborhood is bounded by(1+ ∆ · (∆− 1)) ·∆. By Lemma 2.23 the computation of the PFD of

eachN∗ and hence the assignment to an edge of being Cartesian is bounded byO(((1+ ∆ · (∆−
1)) ·∆) ·∆2) = O(∆5). Again, this will be repeated for all vertices and thus the time complexity is

O(|V| ·∆5).

4. Compute all squares. Take an edge(x,y) and check whether there is an edge(xi ,y j) for all

neighborsx1, . . . ,xl 6= y of x andy1, . . . ,yk 6= x of y. Notice thatl ,k≤ ∆−1. This leads to all squares

containing the edge(x,y) and requires at most(∆−1)2 comparisons. Since we need diagonal-free

squares we also have to check that there is no (Cartesian) edge(x,y j) and no edge(xi ,y). This will be

done for all|E| edges. Thus we end in time complexityO(|E| · (∆−1)3), which isO(|V| ·∆4), since

the number of edges inG is bounded by|V| ·∆.

Considering all steps we end in an overall time complexityO(|V|2 · log2(∆) ·∆5).

5.3 Recognition of Graphs G∈ ϒ

In this section we will provide an algorithm that tests whether a given graph iselement ofϒ in

polynomial time.

Lemma 5.15. Algorithm 8 recognizes if a given graph G is in classϒ.

Proof. Lemma 2.26 implies that the PFD of any neighborhood in a graphG has at least|PF(G)|

factors and henceMAX ≥ |PF(G)|. Thus if MAX = |PF(G)| then none of the decomposed neigh-

borhoods was locally finer. If in addition the isomorphism test is true we can conclude that we have

found the correct factors and thatG∈ ϒ.

Lemma 5.16. Algorithm 8 recognizes if a given a given graph G= (V,E) with bounded maximum

degree∆ is in classϒ in O(|V|2 · log2(∆) ·∆5) time.
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Algorithm 8 Recognition ifG∈ ϒ
1: INPUT: thin GraphG.
2: compute the colored Cartesian skeleton ofG with Algorithm 7 and remind the number of prime

factors in each decomposed neighborhood;
3: MAX←maximal number of prime factors of decomposed neighborhoods;
4: compute the possible prime factorsG1, . . . ,Gm of G by taking one connected component of the

Cartesian skeleton of each color 1, . . . ,m;
5: if ⊠

m
i=1Gi ⋍ G andMAX = m then

6: IS_IN_ϒ← true;
7: else
8: IS_IN_ϒ← false;
9: end if

10: OUTPUT: IS_IN_ϒ;

Proof. Algorithmus 7 takesO(|V|2 · log2(∆) ·∆5) time. Computing the maximumMAX of the number

of prime factors of each decomposed neighborhood can be done in lineartime in the number of

vertices. By the same arguments as in the proof of Lemma 4.13 we can concludethat extracting the

possible factors and the isomorphism test for a fixed bijection can be done inO(|V| ·∆) time. Thus

we end inO(|V|2 · log2(∆) ·∆5) time.



6
A General Local Approach

In this chapter, we use and summarize the previous results and provide a general local approach for

the PFD of thin graphsG. Notice that even if the given graphG is not thin, the provided Algorithm

works onG/S. The prime factors ofG can then be constructed by using the information of the prime

factors ofG/Sas shown in Section 2.3.2.

The new algorithm makes use of several different subproducts. As it turns out it will not be enough

to use 1-neighborhoods only. We also need edge-neighborhoods andN∗-neighborhoods. Notice that

edge-neighborhoods are not always proper subproducts of a given graph. Therefore, we treat this

problem first and show how the local information that is provided by an edge-neighborhood can be

used to determine if this edge-neighborhood is a proper subproduct or not. Then, we proceed to

explain how the general local approach works as well as to give a proof of the correctness of this

algorithm. In the last part of this chapter, we show that the time complexity of the new algorithm is

quasi-linear in the number of vertices ofG.

83
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6.1 Dispensability

As mentioned, the general local approach needs in addition to 1-neighborhoods also edge-

neighborhoods andN∗-neighborhoods. Notice that Corollary 2.30 implies that for each edge(x,y)

the respectiveN∗-neighborhoodN∗x,y is a subproduct, while this is not true for the edge-neighborhood

〈N[x]∪N[y]〉 if (x,y) is non-Cartesian inG. Notice that a non-Cartesian edge ofG might be Carte-

sian in its edge-neighborhood. Therefore, we cannot use the information provided by the PFD of

〈N[x]∪N[y]〉 to figure out if(x,y) is Cartesian inG. On the other hand, an edge that is Cartesian in

a subproductH of G must be Cartesian inG. To check if an edge(x,y) is Cartesian in〈N[x]∪N[y]〉

that is Cartesian inG as well we use thedispensable-property provided by Hammack and Imrich, see

[24] and Section 2.3.2.

We show that an edge(x,y) that is dispensable inG is also dispensable in〈N[x]∪N[y]〉. Con-

versely, we can conclude that every edge that is indispensable in〈N[x]∪N[y]〉 must be indispensable

and therefore Cartesian inG. This implies that every edge-neighborhood〈N[x]∪N[y]〉 is a proper

subproduct ofG if (x,y) is indispensable in〈N[x]∪N[y]〉.

Recall, an edge(x,y) of G is dispensableif there existsz∈V(G) for which both of the following

statements hold, Definition 2.19.

1. (a)N[x]∩N[y]⊂ N[x]∩N[z] or (b)N[x]⊂ N[z]⊂ N[y]

2. (a)N[x]∩N[y]⊂ N[y]∩N[z] or (b)N[y]⊂ N[z]⊂ N[x]

Remark 6.1. As mentioned in [24] we have:

• N[x]⊂ N[z]⊂ N[y] impliesN[x]∩N[y]⊂ N[y]∩N[z].

• N[y]⊂ N[z]⊂ N[x] impliesN[x]∩N[y]⊂ N[x]∩N[z].

• If (x,y) is indispensable thenN[x]∩N[y] ⊂ N[x]∩N[z] andN[x]∩N[y] ⊂ N[y]∩N[z] cannot

both be true.

Lemma 6.2. Let (x,y) be an arbitrary edge of a given graph G and H= 〈N[x]∪N[y]〉 Then it holds:

N[x]∩N[y]⊂ N[x]∩N[z]

if and only if

N[x]∩N[y]∩H ⊂ N[x]∩N[z]∩H.
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Proof. First notice thatN[x]∩N[y]∩H = N[x]∩N[y]. Furthermore, sinceN[x]∩N[z]⊆N[x]⊆V(H)

we can conclude that(N[x]∩N[z])∩H = N[x]∩N[z], from what the assertion follows.

Lemma 6.3. Let (x,y) be an arbitrary edge of a given graph G and H= 〈N[x]∪N[y]〉. If

N[x]⊂ N[z]⊂ N[y]

then

N[x]∩H ⊂ N[z]∩H ⊂ N[y]∩H

.

Proof. First notice thatN[x]∩H = N[x], N[y]∩H = N[y], andN[z]∩H = (N[z]∩N[x])∪(N[z]∩N[y]).

SinceN[x]⊂N[z]⊂N[y] we can conclude that(N[z]∩N[x])∪ (N[z]∩N[y]) = (N[x])∪ (N[z]) = N[z].

ThereforeN[x]∩H = N[x]⊂ N[z] = N[z]∩H andN[z]∩H = N[z]⊂ N[y] = N[y]∩H.

Notice that the converse does not hold in general, sinceN[z]∩H ⊂N[y]∩H = N[y] does not imply

that N[z] ⊂ N[y]. However, by symmetry, Remark 6.1, Corollary 2.30, Lemma 6.2 and 6.3 we can

conclude the next corollary.

Corollary 6.4. If an edge(x,y) of a thin strong product graph G isindispensablein 〈N[x]∪N[y]〉 and

therefore Cartesian in G then the edge-neighborhood〈N[x]∪N[y]〉 is a subproduct of G.

One aim of our new approach will be to detect all Cartesian edges of the Cartesian skeletonS[G]

of a given graphG. As already shown, only Cartesian edges that satisfy theS1-conditioncan be

identified locally as Cartesian. In some cases it might happen that even edge-neighborhoodsH =

〈N[x]∪N[y]〉 of globally Cartesian edges(x,y) do not provide enough information to identify those

edges as Cartesian edges inH, e.g., if |SH(x)|> 1 and|SH(y)|> 1, see Figure 6.1 and 6.2. However,

Lemma 5.12 implies thateveryedge(x,y) ∈ E(G) satisfies theS1-conditionin its N∗x,y-neighborhood

if G is thin.

6.2 Algorithm and Time Complexity

First, we give an overview of the algorithm. Then, we proceed to prove thecorrectness of the new

local approach and in the last part of this section, we treat its time complexity.
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Figure 6.1: Depicted is the colored Cartesian skeleton of the thin strong product graphG after running the first

while-loop of Algorithm 9 with different BFS-orderingsBBFS of the backbone vertices. The backboneB(G)

consists of the vertices 0,1,2 and 3.

lhs.: BBFS= 2,1,3,0. In this case the color-continuation fromN[2] to N[1] fails. hence we compute the PFD of

the edge-neighborhood〈N[2]∪N[1]〉. Notice that the Cartesian edges(x,y) and(y,z) satisfy theS1-condition

in 〈N[2]∪N[1]〉 and will be determined as Cartesian. In all other steps the color-continuation works.

rhs.: BBFS = 3,0,2,1. In all cases (N[3] to N[0], N[3] to N[2], N[0] to N[1]) the color-continuation works.

However, after running the first while-loop there are missing Cartesian edges(x,y) and(y,z) that do not satisfy

the S1-conditionin any of the previously used subproductsN[3], N[0], N[2] andN[1]. Moreover, the edge-

neighborhoods〈N[x]∪N[y]〉 as well as〈N[z]∪N[y]〉 are the product of a path and aK3 and theS1-condition

is violated for the Cartesian edges in its edge-neighborhood. These edges will be determined in the second

while-loop of Algorithm 9 using the respectiveN∗-neighborhoods.

Given an arbitrary thin graphG, first the backbone vertices are ordered via thebreadth-first search

(BFS). After this, the neighborhood of the first vertexx from the ordered BFS-listBBFS is decom-

posed. Then the next vertexy∈ N[x]∩BBFS is taken and the edges of〈N[y]〉 are colored with respect

to the neighborhoods PFD. If the color-continuation does not fail, then theAlgorithm proceeds with

the next vertexy′ ∈ N[x]∩BBFS. If the color-continuation fails, the Algorithm proceeds with the

edge-neighborhood〈N[x]∪N[y]〉. If it turns out that(x,y) is indispensable in〈N[x]∪N[y]〉 and hence,

that 〈N[x]∪N[y]〉 is a proper subproduct (Corollary 6.4) the algorithm proceeds to decompose and

to color〈N[x]∪N[y]〉. If it turns out that(x,y) is dispensable in〈N[x]∪N[y]〉 theN∗-neighborhoods

N∗x,y is factorized and colored. In all previous steps edges are marked as "checked" if they satisfy the

S1-condition, independent from being Cartesian or not.

After this, theN∗-neighborhoods of all edges that do not satisfy theS1-conditionin any of the

previously used subproducts, i.e, 1-neighborhoods, edge-neighborhoods orN∗-neighborhoods, are

decomposed and again the edges are colored.
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Figure 6.2: The Cartesian skeleton of the thin product graphG of two prime factors induced by one connected

component of thick and dashed lined edges. The backboneB(G) consists of the verticesz1,z2 andz3. In none

of anyedge-neighborhoodH holds|SH(xi)| = 1, i = 1,2,3. Hence the fiber induced by verticesx1,x2 andx3

does not satisfy theS1-conditionin any edge-neighborhood. To identify this particular fiberit is necessary to

useN∗-neighborhoods. By Lemma 5.12N∗-neighborhoods are also sufficient.

Finally, the Algorithm checks which of the recognized factors have to be merged into the prime

factorsG1, . . . ,Gn of G.

Theorem 6.5. Given a thin graph G then Algorithm 9 determines the prime factors of G w.r.t. the

strong product.

Proof. We have to show that every prime factorGi of G is returned by our algorithm.

First, the algorithm scans all backbone vertices in their BFS-order storedin BBFS, which can be

done, sinceG is thin and hence〈B(G)〉 is connected (Theorem 3.12).

1. Starting with the first neighborhoodsN[x] with x as first vertex inBBFS, we proceed to cover the

graph with neigborhoodsN[y] with y∈ BBFS andy∈ N[x]. If the color-continuation does not

fail, we can apply Lemma 3.21 and Lemma 3.30 and conclude that the determined Cartesian

edges in〈N[x]〉, resp. in〈N[y]〉, i.e., the Cartesian edges that satisfy theS1-conditionin 〈N[x]〉,

resp. in〈N[y]〉, induce a connected subgraph of〈N[x]∪N[y]〉.

2. If the color-continuation fails, we check if〈N[x]〉 and〈N[y]〉 are thin. If both neighborhoods

are thin we can use Algorithm 5 to get a proper color-continuation from〈N[x]〉 to 〈N[y]〉, see
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Algorithm 9 General Approach

1: INPUT: a thin graphG
2: compute backbone-vertices ofG, order them in BFS and store them inBBFS;
3: x← first vertex ofBBFS;
4: W← x;
5: FactorSubgraph(〈N[x]〉);
6: while BBFS 6= /0 do
7: H← 〈∪w∈WN[w]〉;
8: for all y∈ N[x]∩BBFS do
9: FactorSubgraph(〈N[y]〉);

10: compute the combined coloring ofH and〈N[y]〉;
11: if color-continuation fails fromH to N[y] then
12: if 〈N[x]〉 and〈N[y]〉 are thinthen
13: C←{colorc | color-continuation forc fails};
14: CombineFactors(H,〈N[y]〉, W, C); (Algorithm 5)
15: mark all vertices and all edges of〈N[y]〉 as "checked";
16: else if(x,y) is indispensable in〈N[x]∪N[y]〉 then
17: FactorSubgraph(〈N[x]∪N[y]〉);
18: else
19: FactorSubgraph(N∗x,y);
20: end if
21: compute the combined coloring ofH and〈N[y]〉;
22: end if
23: end for
24: deletex from BBFS;
25: x← first vertex ofBBFS;
26: end while
27: while there exists a vertexx∈V(H) that is not marked as "checked"do
28: if there exists edges(x,y) that are not marked as "checked"then
29: FactorSubgraph(N∗x,y);
30: else
31: take an arbitrary edge(x,v) ∈ E(H);
32: FactorSubgraph(N∗x,v);
33: end if
34: end while
35: for each edgee∈ E(H) do
36: assign color ofe to edgee∈ E(G);
37: end for
38: check and merge factors with Algorithm 11;

39: OUTPUT: G with coloredG j -fiber, and Factors ofG;
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Algorithm 10 FactorSubgraph

1: INPUT: a graphH
2: compute the PFD ofH and color the Cartesian edges inH that satisfy theS1-condition;
3: mark all verticesx with |SH(x)|= 1 as "checked";
4: mark all edges that satisfy theS1-conditionas "checked";

5: Return partially coloredH;

Algorithm 11 Check Factors

1: INPUT: a thin colored graphG
2: take one connected componentG∗1, . . . ,G

∗
l of each color 1, . . . , l in G;

3: I ←{1, . . . , l};
4: J← I ;
5: for k = 1 to l do
6: for eachS⊂ J with |S|= k do
7: compute two connected componentsA, A′ of G induced by the colored edges ofG with

color i ∈ S, andi ∈ I\S, resp;
8: computeH1 = 〈pA(G)〉 andH2 = 〈pA′(G)〉;
9: if H1 ⊠H2 ⋍ G then

10: saveH1 as prime factor;
11: J← J\S;
12: end if
13: end for

14: end for
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Section 4.3.2. Since both neighborhoods are thin, for all verticesv in N[x], resp. N[y], holds

|Sx(v)|= 1, resp.|Sy(v)|= 1. Hence all edges in〈N[x]〉, resp.〈N[y]〉, satisfy theS1-condition.

Therefore, the Cartesian edges span〈N[x]〉 and〈N[y]〉 and thus, by the color-contiuation prop-

erty,〈N[x]∪N[y]〉 as well.

3. If one of the neighborhoods is not thin then we check whether the edge(x,y) is dispensable

or not w.r.t. 〈N[x]∪N[y]〉. If this edge is indispensable then Corollary 6.4 implies that〈N[x]∪

N[y]〉 is a proper subproduct. Moreover, Lemma 3.20 implies that|S〈N[x]∪N[y]〉(x)| = 1. and

|S〈N[x]∪N[y]〉(y)| = 1. From Lemma 3.21 we can conclude that the determined Cartesian edges

of 〈N[x]∪N[y]〉 induce a connected subgraph of〈N[x]∪N[y]〉.

4. Finally, if (x,y) is dispensable in〈N[x]∪N[y]〉 we can not be assured that〈N[x]∪N[y]〉 is a

proper subproduct. In this case we factorizeN∗x,y. Again, Lemma 3.20 implies that|SN∗x,y(x)|= 1

and|SN∗x,y(y)|= 1. Moreover, from Lemma 3.21 follows that all Cartesian edges that satisfythe

S1-conditiononN∗x,y induce a connected subgraph ofN∗x,y.

Assume now thatH = 〈∪w∈WN[w]〉. Clearly, the previous four steps are valid for all consecutive

backbone verticesx,y∈ BBFS. We have to show that we always get a proper color-continuation from

H to N[y] after these four steps (Line 21). This follows immediately from Lemma 3.32 and Corollaries

3.33 and 3.34 sinceN[x]⊆ H. Moreover, since we always get a proper color-continuation fromH to

N[y] using these four steps and the latter arguments concerning induced connected subgraphs we can

conclude that all determined Cartesian edges induce a connected subgraph of H = 〈∪w∈B(G)N[w]〉.

Notice thatH = 〈∪w∈B(G)N[w]〉= G, sinceB(G) is a dominating set. The first while-loop will termi-

nate sinceBBFS is finite.

Therefore, those edges have been identified as Cartesian or if they have not been identified as Carte-

sian they are at least connected to Cartesian edges that satisfy theS1-condition. To see this assume

that the edge(v,w) satisfies theS1-conditionbut is non-Cartesian. W.l.o.g. we assume|SH(v)| = 1.

Hence all Cartesian edges containing vertexv satisfy theS1-condition. Lemma 3.30 implies that each

color of each Factor is represented on edges containing vertexv. Thus, edges(v,w) that satisfy the

S1-conditionbut are not determined as Cartesian are connected to Cartesian edges that satisfy the

S1-condition.

In all previous steps verticesx are marked as "checked" if there is a used subproductK such that

|SK(x)|= 1. Edges are marked as "checked" if they satisfy theS1-condition. In the second while-loop

all vertices that are not marked as "checked", i.e.,|SK(x)|> 1 for all used subproductsK, are treated.

For all those vertices theN∗-neighborhoodsN∗x,y are decomposed and colored. Lemma 5.12 implies

that |SN∗x,y(x)| = 1 and|SN∗x,y(y)| = 1. Hence all Cartesian edges containing vertexx or y satisfy the
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S1-condition. Lemma 3.30 implies that each color of every Factor is represented on edgescontaining

vertexx, resp.,y. Lemma 3.21 implies that all Cartesian edges that satisfy theS1-conditionin N∗x,y
induce a connected subgraph of LemmaN∗x,y.

It remains to show that we get always a proper color-continuation. Since|SK(x)| > 1 for all used

subproductsK, we can conclude in particular that|Sx(x)|> 1. Therefore, we can apply Lemma 3.15

and conclude that there exists a vertexz∈ B(G) s.t. z∈ N[x]∩N[y] and hence〈N[z]〉 ⊆ N∗x,y. This

neighborhood〈N[z]〉 was alreay colored in one of the previous steps sincez∈ B(G). Lemma 3.20

implies that|SN∗x,y(z)|= 1 and thus each color of each factor ofN∗x,y is represented on edges containing

vertexz and all those edges can be determined as Cartesian via theS1-condition. We get a proper

color-continuation from the already colored subgraphH to N∗x,y sinceN[z]⊆H andN[z]⊆N∗x,y, which

follows from Lemma 3.32 and Corollary 3.34.

Finally, as argued before all edges that satisfy theS1-conditionare connected to Cartesian edges

that satisfy theS1-condition. Notice that this areall edges ofG after the while-loop has terminated.

Thus, the set of determined Cartesian edges induce a connectedspanningsubgraphG. By the color-

continuation property we can conclude that the final number of colors onG is at most the number

of colors that were used in the first neighborhood. This number is at mostlog∆, since every product

of k non-trivial factors must have at least 2k vertices. Let’s say we havel colors. As shown before,

all vertices are "checked" and thus we can conclude from Lemma 3.30 andthe color-continuation

property that each vertexx ∈ V(G) is incident to an edge with colorc for all c ∈ {1, . . . , l}. Thus,

we end with a combined coloringFG on G where the domain ofFG consists of all edges that were

determined as Cartesian in the previously used subproducts.

It remains to verify which of the possible factors are prime factors ofG. This task is done by using

Algorithm 11. Clearly, for some subsetS⊂ J, Swill contain all colors that occur in a particularGi-

fiber Ga
i which contains vertexa. Together with the latter arguments we can conclude that the set of

S-colored edges inGa
i spansGa

i . Since the global PFD induces a local decomposition, even if the used

subproducts are not thin, every layer that satisfies theS1-conditionin a used subproduct with respect

to a local prime factor is a subset of a layer with respect to a global prime factor. Thus, we never

identify colors that occur in copies of different global prime factors. Inother words, the coloringFG

is a refinement of the product coloring of the global PFD, i.e., it might happen that there are more

colors than prime factors ofG. This guarantees that a connected component of the graph induced by

all edges with a color inS induces a graph that is isomorphic toGi . The same arguments show that

the colors that are not inS lead to the appropriate cofactor. ThusGi will be recognized.
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Remark 6.6. Algorithm 9 is a generalization of the previous results and computes the PFD ofNICE,

CHIC and locally unrefined thin graphs. Moreover, even if we do not claim that the given graphG is

thin one can compute the PFD ofG as follows: We apply Algorithm 9 onG/S. The prime factors of

G can be constructed by using the information of the prime factors ofG/Sas shown in Section 2.3.2.

In the last part of this section, we show that the time complexity to decompose anyconnected thin

graphG into its prime factors with respect to the strong product isO(|V| ·∆6) time

Lemma 6.7. Given a thin graph G= (V,E) with bounded maximum degree∆, then Algorithm 9

determines the prime factors of G w.r.t. the strong product in O(|V| ·∆6) time.

Proof. For determining the backboneB(G) we have to check for a particular vertexv∈V(G) whether

there is a vertexw∈ N[v] with N[w]∩N[v] = N[v]. This can be done inO(∆2) time for a particular

vertexw in N[v]. Since this must be done for all vertices inN[v] we end in time-complexityO(∆3).

This step must be repeated for all|V| vertices ofG. Hence, the time complexity for determiningB(G)

is O(|V| ·∆3). ComputingBBFSvia the breadth-first search takesO(|V|+ |E|) time. Since the number

of edges is bounded by|V| ·∆ we can conclude that this task needsO(|V| ·∆) time.

We consider now the Line 6 – 26 of the algorithm. The while-loop runs at most|V| times. Com-

puting H in Line 7, i.e., adding a neighborhood toH, can be done in linear time in the number of

edges of this neighborhood, that is inO(∆2) time. The for-loop runs at most∆ times. The PFD of

〈N[y]〉 can be computed inO(∆4) time, see Lemma 2.23. The computation of the combined coloring

of H and〈N[y]〉 can be done in constant time. For checking if the color-continuation is valid one has

to check at most for all edges of〈N[vi ]〉 if a respective colored edge was also colored inH, which

can be done inO(∆2) time. Notice that all "if" and "else" conditions are bounded by the complexity

of the PFD of the largest subgraph that is used and therefore by the complexity of the PFD ofN∗x,y.

As shown in the proof of Lemma 5.14, the number of edges in eachN∗-neighborhood is bounded by

(1+ ∆ · (∆−1)) ·∆. Lemma 2.23 implies that the PFD of eachN∗-neighborhood takesO(∆5) time.

Considering all steps of Line 6 – 26 we end in an overall time complexityO(|V| ·∆ ·∆5) = O(|V| ·∆6).

Using the same arguments, one shows that the time complexity of the second while-loop is

O(|V| ·∆5). The last for-loop (Line 35–37) needsO(|E|) = O(V ·∆) time.

Finally, we have to consider Line 38. Using the same arguments as in the proofof Lemma 4.13

we can conclude that extracting the possible factors and the isomorphism test for a fixed bijection

(Algorithm 11) can be done inO(|V| ·∆) time. Considering all steps of Algorithm 9 we end in an

overall time complexityO(|V| ·∆6).



7
Approximate Graph Products

In this chapter we discuss approximate strong graph products. First, we analyze the complexity to

determine such products. We then explain how Algorithm 9 can be modified in order to recognize

approximate products. In the last part of this chapter, we evaluate the performance of this algorithm

on a sample of approximate graph products and try to answer the following questions:

1. How often do we find both original factors in the disturbed product depending on the percentage

of perturbation, respectively the ratio of backbone prime 1-neighborhoods?

2. Depending on the percentage of perturbation how fast does the number of backbone prime

1-neighborhoods grow?

3. How large is the maximal factorized subgraph of the disturbed product depending on the per-

centage of perturbation, respectively the ratio of backbone prime 1-neighborhoods?

7.1 Complexity

For a formal definition of approximate graph products we begin with the definition of the distance

between two graphs. We say thedistance d(G,H) between two graphsG andH is the smallest integer

93
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k such thatG andH have representationsG′, H ′ for which the sum of the symmetric differences

between the vertex sets of the two graphs and between their edge sets is at most k. That is, if

|V(G′)△V(H ′)|+ |E(G′)△E(H ′)| ≤ k.

A graphG is ak-approximate graph productif there is a productH such that

d(G,H)≤ k.

Now, we investigate the complexity of recognizingk-approximate graph products. We first show

thatk-approximate graph products can be recognized in polynomial time for constant values ofk. To

this end, we begin with a bound on the number of graphs of distancek from a given connected graph

G.

Lemma 7.1. Let G be a connected graph on n vertices. Then the number of connected graphs of

distance≤ k from G is O(n2k).

Proof. We bound the number of graphs (including also disconnected graphs)H of distance≤ k from

G. First let V(H) = V(G) and E(H) = E(G). We modify the edge setE(H). We have
(n

2

)
=

(n)(n−1)/2 = O(n2) ways to select a pair of vertices inV(G). If a selected pair is an edge ofE(G)

we delete it fromE(H), otherwise we add the corresponding edge. We do thisi-times and obtain

O(n2i) graphs. Summing over alli from 0 tok, this yieldsO(n2k) graphs, and in particular all graphs

will distance of at mostk from G that have the same vertex set asG.

Now we allow the vertex set to change. Suppose we only addj ≤ k isolated vertices. We proceed

with V(H) = V(G)∪{v1, . . . ,v j} andE(H) = E(G). Now we have(n+ j)(n+ j − 1)/2 = O(n2)

ways to select pairs inV(H). Hence we can re-use the argument above to see that this generates no

more thanO(n2k) distinct graphs.

Finally, suppose we addl1 and deletel2 vertices. Of course, we havel1 + l2 ≤ k. For a fixedl1,

we know from the previous paragraph that there a no more thanO(n2l1) distinct graphs. In each of

them, we have at most
(n

l2

)
∈ O(nl2) ways to delete vertices that were already there inV(G). (Note

that deleting a newly inserted vertex is equivalent to reducingl1 and hence need not be considered).

For fixedl1 andl2, we can proceed by adding or deleting edges. Now we have
(n+l1−l2

2

)
∈O(n2) ways

to select, and we can repeat this no more thani ≤ k− l1− l2 times, giving us access to no more than

O(n2k) graphs. There areO(k2) ways of choosingl1 andl2, hence we have no more thanO(k2 ·n2k).

The lemma follows by treatingk as a prescribed constant.
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Lemma 7.2. For fixed k all strong and Cartesian k-approximate graph products canbe recognized

in polynomial time.

Proof. For a given graphG the number of graphs of distance at mostk is O(n2k). The observation

that every one of these graphs can be factored in polynomial time completes the proof.

Without the restriction onk the problem of finding a product of closest distance to a given graph

G is NP-complete for the Cartesian product. This has been shown by Feigenbaum and Haddad [14].

They proved that the following problem is NP-complete:

Problem 1 (Smallest Factorable Extension). Input: A graphG and positive integersn andm.

Question: Is there a factorizable graphH such thatG⊆ H and|V(H)| ≤ n and|E(H)| ≤m.

Problem 2 (Largest Factorable Subgraph). Input: A graphG and positive integersn andm.

Question: Is there a factorizable graphH such thatH ⊆G and|V(H)| ≥ n and|E(H)| ≥m.

We conjecture that this also holds for the strong product.

7.2 Recognition of Approximate Graph Products

In this section, we will show how Algorithm 9 can be modified and be used to recognize approximate

products and how one can get a suggestion of the structure of the globalfactors. We do not claim that

the given Algorithm finds an optimal solution in general.

First, consider the graphG of Figure 7.1. It approximatesP5 ⊠ PT
7 , wherePT

7 denotes a path that

contains a triangle. Suppose we are unaware of this fact. Clearly, ifG is non-prime, then every sub-

product is also non-prime. We factor every suitable subproduct of backbone vertices (1-neighborhood,

edge-neighborhood,N∗-neighborhood) that is not prime and try to use the information to find a prod-

uct that is either identical toG or approximates it.

The graphG is thin and thus the backbone is a connected dominating set. The backboneB(G)

consists of the vertices 0,1, . . . ,5 and all vertices marked with "x". The induced neighborhood of

all "x" marked vertices is prime. We do not use those neighborhoods but the ones of the vertices

0,1, . . . ,5, factor their neighborhoods and consider the Cartesian edges that satisfy theS1-condition

in the factorizations. There are two factors for every such neighborhood and thus, two colors for the

Cartesian edges in every neighborhood. If two neighborhoods have aCartesian edge that satisfy the

S1-conditionin common, we identify their colors. Notice that the color-continuation fails if we go
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⊠

0 1

2 3

4

5

x x

x x x

x x x x

x x

Figure 7.1: An approximate productG of the product of a path and a path containing a triangle. The resulting

colored graph after application of the modified Algorithm 9 is highlighted with thick and dashed edges. We set

P = 1, i.e., we do not use prime subproducts and hence only the vertices 0,1, . . . ,5 are used. Taking out one

maximal component of each color would lead to appropriate approximate factors ofG.

from 〈N[2]〉 to 〈N[3]〉. Since〈N[2]∪N[3]〉 is not prime we factor the edge-neighborhood and get a

proper color-continuation. In this way we end up with two colors altogether,one for the horizontal

Cartesian edges and one for the vertical ones. IfG is a product, then the edges of the same color span

a subgraph with isomorphic components, that are either isomorphic to one andthe same factor or that

span isomorphic layers of one and the same factor.

Clearly, the components are not isomorphic in our example. But, under the assumption thatG is an

approximate graph product, we take one component for each color. In this example it would be useful

to take a component of maximal size, say the one consisting of the horizontal edges through vertex 2,

and the vertical ones through vertex 3. This components are isomorphic to the original factorsP5 and

PT
7 . It is now easily seen thatG can be obtained fromP5 ⊠PT

7 by the deletion of edges.

As mentioned, Algorithm 9 has to be modified for the recognition of approximate productsG. First

note that we might possibly find fibers of the original prime factors, even if we do not cover the whole

input graph by our algorithm.

Deleting or adding edges in a product graphH, resulting in a disturbed product graphG, usu-

ally makes the graph prime and also the neighborhoods〈NG[v]〉 that are different from〈NH [v]〉 and

hence the subproducts (edge-neighborhood,N∗-neighborhood) that contain〈NG[v]〉. We call such

subproductsdisturbed.
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0 1 2 3

Figure 7.2: Shown is a prime graphG, also known as twisted product, withB(G) = {0,1,2,3}. Each PFD of

1-neighborhoods leads to two factors. Notice thatG can be considered as an approximate product of a pathP3

and a cycleC4. After application of the modified Algorithm 9 withP= 1 we end with the given coloring (thick

and dashed lines). Taking one minimal component of each color would lead to appropriate approximate factors

of G.

In Algorithm 9 we therefore only use those subproducts of backbone vertices that are at least not

prime. Moreover, we can restrict the set of allowed backbone vertices much more and use only those

subproducts that have more thanP≥ 1 prime factors and limit therefore the number of allowed sub-

products. Hence, no prime regions or subproducts that have less or equal thanP prime factors are used

and therefore we don’t identify colors of different locally determined fibers to onlyP colors. After

coloring the graph one would take out one component of each color to determine the (approximate)

factors. For many kinds of approximate products the connected components of graphs induced by the

edges in one component of each color will not be isomorphic. In our case, where the approximate

product was obtained by deleting edges, it is easy to see that we should take the maximal connected

component of each color. Some examples for approximate products can beseen in Figure 7.1, 7.2,

and 7.3.

The isomorphism test (line 38) in Algorithm 9 will not be applied. Thus, in prime graphsG

we would not merge colors if the product of the corresponding approximate prime factors is not

isomorphic toG.

We summarize the modifications we apply to Algorithm 9:

1. We do not claim that the given (disturbed) product is thin.

2. Theorem 3.12 and item 1. implies that we can not assume that the backbone is connected.

Hence we only compute a BFS-ordering on connected components inducedby backbone ver-
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c1 =

c2 =

c3 =

c4 =

Figure 7.3: An approximate productG of the prime factors shown in Figure 7.1. In this exampleG is not thin.

Obviously, this graph seems to be less disturbed than the onein Figure 7.1. The thick vertices indicate the

backbone vertices with more thenP = 1 prime factors. Application of the modified Algorithm 9 onG (without

computingG/S), choosingP = 1 and using only thick vertices backbone vertices leads to a coloring with the

four colorsc1,c2,c3 andc4. This is due to the fact that the color-continuation fails, which would not be the case

if we would allow to use also prime regions.

tices.

3. We only use those subproducts (1-neighborhoods, edge-neighborhood,N∗-neighborhood) that

have more thanP≥ 1 prime factors, whereP is a fixed integer.

4. We do not apply the isomorphism test (line 38).

5. After coloring the graph, we take one minimal, maximal, or arbitrary connected component of

each color. The choice of this component depends on the problem one wants to be solved.

Remark 7.3. In the remaining part of this chapter Algorithm 9 together with the applied modifications

1. – 5. will be calledmodified Algorithm 9.

7.3 Experimental Results

To complete this chapter, we perform in this section experimental tests concerning the recognition of

approximate products. To disturb a product graphG one can apply several modifications onG like

deleting edges, deleting vertices, adding vertices and edges, shifting edges etc. Here, we focus on the

first kind of perturbation, i.e., deleting edges, and investigate how the modified Algorithm 9 behaves.

Moreover, we try to answer the following questions:

1. How often do we find both original factors in the disturbed product depending on the percentage
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of perturbation, respectively the ratio of backbone prime 1-neighborhoods?

2. Depending on the percentage of perturbation how fast does the number of backbone prime

1-neighborhoods grow?

3. How large is the maximal factorized subgraph of the disturbed product depending on the per-

centage of perturbation, respectively the ratio of backbone prime 1-neighborhoods?

7.3.1 A Measure of Perturbation by Deleting Edges

When deleting an edge(a,b) in a given product graph one disturbs more than only the 1-neigborhoods

〈N[a]〉 and〈N[b]〉 in general, see Figure 7.4. In fact, all neighborhoods〈N[z]〉 with z∈ 〈N[a]∩N[b]〉

are disturbed.

0 1

2 3

a b

Figure 7.4: Deleting the edge(a,b) in the given strong product graphG disturbs all neighborhoods〈NG[z]〉

with z∈ NG[a]∩NG[b] = {a,b,0,1,2,3}

Definition 7.4. Let G= (V,E) be a given graph anda,b∈V. We callUa,b = N[a]∩N[b] thecommon

environmentof a andb or environmentof a andb for short.UG denotes the average number of vertices

contained in environments of any two connected closed neighborhoods ofG, i.e.,

UG =
∑(a,b)∈E |Ua,b|

|E|

Clearly, if for some graphsG1 andG2 holdsUG1 > UG2 then the probability to disturb more neigh-

borhoods inG1 as inG2 by deleting an edge is higher. Notice thatUG becomes maximal among all

graphs withn vertices ifG≃ Kn.

We show in the following how for a given product graphG= G1⊠G2 the valueUG depends on the

valuesUG1 andUG2. For this, we first state a well-known lemma concerning the number of vertices

and edges in a strong product graph and treat afterwards the average degree of strong product graphs.
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Lemma 7.5([32]). Let G= G1 ⊠G2 be a strong product graph. Then it holds:

|V(G)|= |V(G1)| · |V(G2)|

and

|E(G)|= |V(G1)| · |E(G2)|+ |V(G2)| · |E(G1)|+2|E(G1)| · |E(G2)|.

By definition of the strong product we can directly infer the next lemma.

Lemma 7.6. Let G= G1 ⊠ G2 be a strong product graph and v= (v1,v2) ∈ V(G) be an arbitrary

vertex. Then it holds:

deg(v) = deg(v1)+deg(v2)+deg(v1)deg(v2)

We show now that the average degree of a given strong product graph depends on the average

degrees of its factors.

Lemma 7.7. Let G= (V,E) = G1 ⊠G2 be a strong product graph of two graphs G1 = (V1,E1) and

G2 = (V2,E2), then it holds:

deg(G) = deg(G1)+deg(G2)+deg(G1)deg(G2)

Proof.

deg(G) =
∑v∈V deg(v)
|V|

=
∑(v1,v2)∈V deg((v1,v2))

|V|

=
∑v1∈V1 ∑v2∈V2

(deg(v1)+deg(v2)+deg(v1)deg(v2))

|V1| · |V2|

=
∑v1∈V1 ∑v2∈V2

deg(v1)

|V1| · |V2|
+

∑v1∈V1 ∑v2∈V2
deg(v2)

|V1| · |V2|
+

∑v1∈V1 ∑v2∈V2
deg(v1)deg(v2)

|V1| · |V2|

=
|V2|∑v1∈V1

deg(v1)

|V1| · |V2|
+
|V1|∑v2∈V2

deg(v2)

|V1| · |V2|
+

∑v1∈V1
deg(v1)∑v2∈V2

deg(v2))

|V1| · |V2|

= deg(G1)+deg(G2)+deg(G1)deg(G2)
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Definition 7.8. Let G = (V,E) be a given graph. We denote withNG the average number of vertices

contained in closed neighborhoods ofG, i.e.,

NG =
∑v∈V |N[v]|
|V|

Lemma 7.9. Let G= (V,E) be a given graph andNG be the average number of vertices in each

closed neighborhood of G. Then it holds:

NG = deg(G)+1

Proof. Note that|N[v]|= deg(v)+1.

NG =
∑v∈V |N[v]|
|V|

=
∑v∈V(deg(v)+1)

|V|
=

∑v∈V deg(v)+ |V|
|V|

=
∑v∈V deg(v)
|V|

+1 = deg(G)+1

Lemma 7.10. Let G= (V,E) = G1 ⊠G2 be a strong product graph of two graphs G1 = (V1,E1) and

G2 = (V2,E2). LetNG be the average number of vertices in each closed neighborhood of G. Then it

holds:

NG = NG1 ·NG2

Proof. Lemmas 7.7 and 7.9 imply that

NG = deg(G1)+deg(G2)+deg(G1)deg(G2)+1.

Sincedeg(Gi) = NGi −1, i = 1,2 we can infer that

NG = NG1−1+NG2−1+(NG1−1)(NG2−1)+1.

Hence,NG = NG1 ·NG2.

Lemma 7.11. Let G= (V,E) = G1 ⊠G2 be a strong product graph of two graphs G1 = (V1,E1) and

G2 = (V2,E2). Then it holds:

UG =
|V1| · |E2| ·NG1 ·UG2 + |V2| · |E1| ·NG2 ·UG1 +2|E1| · |E2| ·UG1 ·UG2

|E|
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Proof. The coordinates of verticesv are denoted by(v1,v2) and 1-neighborhoods in a factorGi are

denoted byNi for i = 1,2. Applying Lemma 2.26 and basic set theory the following equations can be

inferred.

|E| ·UG = ∑(a,b)∈E
|Ua,b|= ∑(a,b)∈E

|N[a]∩N[b]|

= ∑((a1,a2),(b1,b2))∈E
|(N1[a1]×N2[a2])∩ (N1[b1]×N2[b2])|

= ∑((a1,a2),(b1,b2))∈E
|(N1[a1]∩N1[b1])× (N2[a2]∩N2[b2])|

= ∑((a1,a2),(b1,b2))∈E
|N1[a1]∩N1[b1]| · |N

2[a2]∩N2[b2]|

= ∑y∈V2
∑((a1,y),(b1,y))∈E

|N1[a1]∩N1[b1]| · |N
2[y]|

︸ ︷︷ ︸
A:=

+

∑x∈V1
∑((x,a2),(x,b2))∈E

|N1[x]| · |N2[a2]∩N2[b2]|
︸ ︷︷ ︸

B:=

+

∑((a1,a2),(b1,b2))∈E,a1 6=b1,b2 6=b2
|N1[a1]∩N1[b1]| · |N

2[a2]∩N2[b2]|
︸ ︷︷ ︸

C:=

First, we consider termA.

A = ∑y∈V2
∑((a1,y),(b1,y))∈E

|N1[a1]∩N1[b1]| · |N
[y]|

= ∑y∈V2
|N2[y]|∑((a1,y),(b1,y))∈E

|N1[a1]∩N1[b1]|

= ∑y∈V2
|N2[y]|∑(a1,b1)∈E1

|N1[a1]∩N1[b1]|

=
|V2| · |E1|∑y∈V2

|N2[y]|∑(a1,b1)∈E1
|N1[a1]∩N1[b1]|

|V2||E1|

= |V2| · |E1| ·NG2 ·UG1

Analogously it can be shown thatB = |V1| · |E2| ·NG1 ·UG2.

C = ∑((a1,a2),(b1,b2))∈E,a1 6=b1,a2 6=b2
|N1[a1]∩N1[b1]| · |N

2[a2]∩N2[b2]|

= 2∑(a1,b1)∈E1
∑(a2,b2)∈E2

|N1[a1]∩N1[b1]| · |N
2[a2]∩N2[b2]|

=
2|E1||E2|∑(a1,b1)∈E1

|N1[a1]∩N1[b1]|∑(a2,b2)∈E2
|N2[a2]∩N2[b2]|

|E1||E2|

= 2|E1| · |E2| ·UG1 ·UG2

Hence,

UG =
A+B+C
|E|

=
|V1| · |E2| ·NG1 ·UG2 + |V2| · |E1| ·NG2 ·UG1 +2|E1| · |E2| ·UG1 ·UG2

|E|
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As already mentioned, if for some graphsG1 andG2 holdsUG1 > UG2 the chance to disturb more

neighborhoods inG1 as inG2 by deleting an edge is higher. As shown the value ofUG of a product

graphG depends on the respective value|Vi |, |Ei |, NGi , andUGi of its factorsGi . We will use this fact

when examining the experimental results.

7.3.2 Data Set

We now give an overview of the data set and the resulting product graphs that are used in our experi-

ments.

Prime Graph Data Set For the experiment a small basic data set containing four different prime

graphsP, C, T, andI is chosen, see Figure 7.5.

P

C

T

I

Figure 7.5: Four prime graphsP, C, T and I that are used to compute different product graphs as test set.

Backbone vertices are highlighted as thick dots.

The graph denoted byP is a path and the graphC is a closed path. These graphs have the simplest

structure. Both graphs are NICE and CHIC and can therefore be covered by thin 1-neighborhoods

only. The backbone vertex set ofC contains all verticesV(C) while the backbone vertex set ofP

contains only the "interior" vertices as shown in Figure 7.5. The graphT is a path that contains 7

triangles. This graph cannot be covered by thin 1-neighborhoods. Hence, for a (non-trivial) product

graphG= H ⊠T the edge-neighborhoods andN∗–neighborhoods will become crucial when comput-

ing the PFD ofG with the modified Algorithm 9. The graphI has the densest structure, i.e.,I is the

graph where the most edges have to be removed such thatI becomes disconnected. Moreover, the



104 7. Approximate Graph Products

respective values|V(I)|, |E(I)|, U I , andNI are the largest ones among the values of the other graphs.

P C T I

|V(G)| 10 10 17 18

|E(G)| 9 10 23 35

|B(G)| 8 10 8 8

UG 2 2 2.91 3.37

NG 2.8 3 3.71 4.89

Table 7.1: Depicted are the values|V(G)|, |E(G)|, |B(G)|, UG, andNG of the respective prime graphs that are

used to compute the product graphs of out test data set.

In Table 7.1 the number of vertices and edges as well as the average number of vertices in

neighborhoodsNG and the average number of vertices in environments of adjacent verticesUG for

G ∈ {P,C,T, I} are represented. One can observe thatNP < NC < NT < NI and furthermore that

UP = UC < UT < U I . As an example consider graphP andI . Deleting one edge(a,b) in P would

disturb exactly the two neighborhoods〈N[a]〉 and 〈N[b]〉 only. On the other hand, in graphI one

averagely disturbs 3.37 neighborhoods when deleting an edge. Moreover, deleting an arbitrary edge

in graphI would averagely disturb more neighborhoods than in all other graphsG∈ {P,C,T}.

Product Graph Data Set Our test set of product graphs consists of all possible combinations of

products of two of the prime graphsP, C, T, andI . As shown in Lemma 7.10 and 7.11 the values

of NG andUG of a product graphG depend on the number of vertices, the number of edges, and the

respective valuesNGi andUGi of the factors. Hence, it is easy to see whyU I⊠I andNI⊠I becomes

maximal and whyUP⊠P andNP⊠P becomes minimal among all other products and why the values of

the other products range between them.

Procedure The (modified) Algorithm 9 was implemented inC++ . In addition, theBoost Graph

Library was used [51]. Given one of the computed strong product graphsG we randomly disturb the

product by removing edges from it. The number of edges that will be removed fromG in each step

depends on the number of edges |E(G)| ofG. To be more precise, in each step we deletei
100|E(G)| of

edges withi = 0.5,1,1.5, . . . ,20. After randomly deletingi% of edges we use the modified Algorithm

9 with P = 1, i.e., we do not allow to use subproducts that are prime, to compute a partial colored

subgraph ofG. Each step is repeated 200 times for each graph in the product graph dataset.
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P⊠P P⊠C C⊠C P⊠T C⊠T P⊠ I C ⊠ I T ⊠T T ⊠ I I ⊠ I

|V(G)| 100 100 100 170 170 180 180 289 306 324

|E(G)| 342 370 400 797 860 1142 1230 1840 2619 3710

|B(G)| 64 80 100 64 80 64 80 64 64 64

UG 4.84 4.92 5 6.80 6.92 8 8.15 9.47 11.13 13.1

NG 7.84 8.4 9 10.38 11.12 13.69 14.67 13.73 18.12 23.90

Table 7.2: The used products and their respective values|V(G)|, |E(G)|, |B(G)|, UG andNG.

7.3.3 Experiment and Results

Recovering both original factors

To investigate how often both factors of the original graph product can be recovered in dependence of

the ratio of perturbation we proceed as follows. After randomly deleting a fixed percentage of edges

of each graph, we apply the modified Algorithm 9 to color the disturbed product. Then, one maximal

connected component of each color is taken, to determine the approximate prime factors ofG. After

this, we check whether two of the determined factors are isomorphic to the original ones.

So as not to bias the results we must apply an additional step when checking the recognized ap-

proximate factors. Note, that it might happen that we get different but isomorphic factors although

the corresponding layers of the original graph are parallel fibers. Inthis case we do not allow to treat

those factors as different. As an example consider the colored graph in Figure 7.3. Here we would

check if the factor that corresponds to a fiber with zigzag lines and the onethat corresponds to a

fiber with dotted lines are in parallel fibers of the original graphs. As it turns out they do and hence,

they would not be treated as different and only one approximate factor that corresponds to the pathP5

would have been determined as an original factor. In particular, this approach is important for the four

strong product graphsP⊠P, C⊠C, T ⊠T, andI ⊠ I . Using this additional step, we can be assured

that we found two isomorphic factors that do not appear in parallel fibersand hence, we do not bias

the results.

Figure 7.6 shows the relative frequency of instances where both factors of the original graph product

were recovered in dependence of the ratio of perturbation.

One immediately observes that the ratio of disturbed product graphs whereboth underlying factors

were recovered decreases very fast and that there is a remarkable difference between the different
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Figure 7.6: The plot shows the relative frequency of instances where both factors of the original graph product

are recovered in dependence of the ratio of perturbation.

product graphs. The most "successful" candidate is the graphC⊠C, followed byP⊠C, andP⊠P.

The least "successful" ones are the instances of the graphsT ⊠ I , T ⊠T, andI ⊠ I . In the latter three

graphs even a perturbation of only 1% disturbs the product graphs so much that it was not possible

to recover the original factors. Likewise in the other graphs the chance todetermine the underlying

factors decreases also very fast, e.g., for the graphsC ⊠ T, C ⊠ I , P⊠ T, and P⊠ I only 2% of

perturbation is needed such that the percentage of instances with recovered underlying factors is less

than 20%. Even in the most "successful" candidatesC⊠C, P⊠C, andP⊠P, a disturbance of 5−7%

leads to approximate graph products where only in∼ 10% of the instances the original factors were

recognized.

Thus, there arise two questions:

1. Why do these graphs behave differently?

2. Why does the number of disturbed graphs with recovered original factors decreases so fast?

Why do these graphs behave differently? To explain this, we take the valuesUG into account.

Indeed, one can observe that the most "successful" candidates are the graphs with smallest valuesUG

that areC⊠C, P⊠C, andP⊠P. The least "successful" candidates are the graphsT ⊠T, T ⊠ I , and

I ⊠ I that have largest valuesUG. Clearly, if for some graphsG1 andG2 holdsUG1 > UG2 then the

probability to disturb more neighborhoods inG1 as inG2 by deleting an edge is higher. Moreover, the
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graphsT ⊠T, T ⊠ I , andI ⊠ I have also the largest number of edges. Thus, for a fixed percentage of

removed edges, the number of removed edges in the latter three graphs is much higher as in the other

ones. Taking together the latter arguments, we can conclude that for a fixed percentage of removed

edges inT ⊠T, T ⊠ I , andI ⊠ I more neighborhoods are disturbed as in the other graphs. Hence, even

for a small ratio of perturbation the product structure of these graphs is heavily disturbed and thus,

the underlying original factors cannot be recovered. The last arguments also explain why the plots of

the instances of the other graphs are arranged in such a way.

Furthermore, one can observe that there is a remarkable difference between the graphsC⊠C, P⊠C,

andP⊠P, although the valuesUC⊠C = 5,UP⊠C = 4.92, andUP⊠P = 4.84 and the number of removed

edges for a fixed ratio of perturbation are quite similar. For example, for a perturbation of 5% there

are 64.5% of instances inC⊠C, 29% of instances inP⊠C, and 7% of instances inP⊠P where both

underlying factors where recognized.

To understand this phenomena we also take the ratio of backbone vertices into account. Notice

that |V(C⊠C)| = |V(P⊠C)| = |V(P⊠ P)| = 100. Therefore, the ratio of backbone vertices are as

follows: |B(C⊠C)|/100= 1, |B(P⊠C)|/100= 0.8, and|B(P⊠ P)|/100= 0.64. Note, the main

obstacle for determining the prime factors is to obtain a proper color-continuation by usage of the

respective subproducts. Hence, if one want to recover the underlying factors, there must be connected

subgraphs in the perturbed product, that can be covered by non-primesubproducts and that contain at

least one entire fiber of each factor. Moreover, one must ensure thatat least one fiber of each factor

gets exactly one color. Now, the ratio of 1-neighborhoods that can be used inC⊠C is higher than in

P⊠C as well as it is higher inP⊠C than inP⊠ P. Hence, one can assume that the chance to find

some connected undisturbed regions that contain an entire fiber of the original factors and thus, to

determine at least one fiber of each factor, becomes higher for the approximate products ofC⊠C as

for P⊠C andP⊠P and higher forP⊠C as forP⊠P.

In general, all instances of graphs with nearly the same valuesUG are more "successful" if they

have a cycle as factor. One can see that the valuesUG are similar for all productsH ⊠C andH ⊠P,

for a fixed factorH ∈ {P,C,T, I}. As argued, the ratio of backbone vertices plays an important role.

But in addition, the structure of the factors and therefore the structure ofthe (disturbed) products has

to be taken into account. Consider the prime factorsP andC. Note, the deletion of a single edge in the

pathP would decompose it into two disconnected subgraphs. If one deletes an edge in the cycleC,

this graph remains connected. Now, after application of the modified Algorithm9 the disconnected

path would have been colored with two different colors, one color for each connected component,

while the disturbed cycle can entirely be covered by 1-neighborhoods and moreover, all of its edges
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receive the same color. This gives rise to the assumption, that for a fixed percentage of removed edges

in approximate products ofH ⊠C, there are usually more "ways" to get a proper color-continuation

than in approximate products ofH ⊠P with H ∈ {P,C,T, I}, see Figure 7.7.

C6 ⊠ P6

’

x

xx

x

x x

P6 ⊠ P6

x

xx

x

Figure 7.7: Shown are the colored graphs of disturbed products ofC6 ⊠P6 andP6 ⊠P6 after applying modified

Algorithm 9. In both graphs nearly the same percentage of edges are removed (left 31% and right 27%). The

set of backbone verticesB consists of all thick-dotted vertices. For all backbone vertices that are marked with

an "x" the induced neighborhood is prime and hence, they are not used to cover the graph. Although the number

of backbone vertices in the disturbed productC6 ⊠ P6 is larger as in in the disturbed productP6 ⊠ P6 the ratio

of prime 1-neighborhood is nearly the same, i.e., the numberof backbone prime 1-neighborhoods divided by

|B| is 0.42 in the left and 0.4 in the right graph. However, in the left graph there are morepossibilities to cover

it with undisturbed connected neighborhoods than in the right graph. Hence, by taking a maximal connected

component of each color in the disturbed productC6 ⊠P6 the underlying factors would be recovered but not in

the disturbed productP6 ⊠ P6. Note, one can regard the right graph as an approximate product of C6 ⊠ P6. In

this case, the right graph is much more disturbed than the left graph.

Why does the number of disturbed graphs with recovered origin al factors decreases

so fast? Figure 7.8 shows the ratio of prime 1-neighborhoods (number of prime backbone 1-

neighborhoods divided by the number of all backbone 1-neighborhoods of the disturbed product)

in dependence of the ratio of perturbation.

One can see that in all disturbed products the average number of prime neighborhoods increases

fast, e.g. in the graphsP⊠P,P⊠C, andC⊠C only 5% of perturbation results in about 65% of prime

1-neighborhoods. More prime 1-neighborhoods can be found in the other graphs where only 5% of

perturbation results in more than 90% prime 1-neighborhoods. Clearly, the more 1-neighborhoods are

prime the fewer 1-neighborhoods can be used to recover the underlyingfactors. Taking into account
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Figure 7.8: The plot shows the (relative) ratio of prime 1-neighborhoods, i.e., the number of backbone prime 1-

neighborhoods divided by the number of all backbone 1-neighborhoods of the disturbed product, in dependence

of the ratio of perturbation.

the respective valuesUG, one can easily see why the average number of prime 1-neighborhoods

increases very fast. For example, consider the graphG=C⊠C with UG = 5. If we delete 1% of edges,

i.e., four edges, we would have about 4·5 = 20 disturbed 1-neighborhoods. It holds|B(G)| = 100

for this particular graph. Hence, on average 20% of used 1-neighborhoods are disturbed, even if we

delete only four edges. As observable in Figure 7.8, the average ratio ofprime 1-neighborhoods with

a measured value of 0.186 is slightly less than 0.2, which might be explained with the circumstance

that in some cases edges are removed from already disturbed neighborhoods. Moreover, the plot in

Figure 7.8 shows that the ratio of prime 1-neighborhoods does not increase linearly. Again, we argue

that with an increasing percentage of deleted edges the probability to removean edge from an already

disturbed neighborhood increases. Note, in these test cases usually removing one edge from a 1-

neighborhood leads to a prime neighborhood and removing additional edges from this neighborhood

preserves the property of being prime.

In addition, as one can see the graphs are grouped corresponding to the similarity of their valuesUG

and the number of their edges. The graphsP⊠P, P⊠C, andC⊠C are in one cluster. Their respective

valuesUG ∈ {4.84,4.92,5} and the number of removed edges for a fixed percentage perturbation are

similar. The same holds forP⊠T,C⊠T with UG∈ {6.80,6.92} andP⊠ I ,C⊠ I with UG∈ {8,8.15}.

Clearly, if the valuesUG1 andUG2 for two graphs are similar and moreover, the number of removed

edges for a fixed percentage perturbation is alike, then almost the same number of neighborhoods in
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Figure 7.9: Shown is the relative frequency of instances where both factors of the original graph product are

recovered in dependence of the relative ratio of prime 1-neighborhoods.

both graphs will be disturbed, after deleting a fixed percentage of edges. The remaining graphsT ⊠T,

T ⊠ I , andI ⊠ I are all clustered within a single group.

Figure 7.9 shows the relative frequency of instances where both factors of the original graph product

were recovered in dependence of the ratio of prime 1-neighborhoods.

With an increasing number of prime 1-neighborhoods the number of graphs, where the underlying

factors can be recovered, decreases. As observable, if 30−40% of used 1-neighborhoods are prime

then in more than 68% of the respective instances the underlying factors were recovered. InP⊠C

andC⊠C there are even more; in∼ 99% of the instances the original factors were determined in the

disturbed product graphs. If more than 70% of used 1-neighborhoods are prime then the chance

to recover the original factors is less than 30% in all samples and if more than 90% of used 1-

neighborhoods are prime then in no case the underlying factors was recognized. Again, it can be

seen that in graphs, that have almost coinciding valuesUG, the chance to find the original factors in

those graphs that have a cycle as factor is slightly better.

Maximal Factorized Subgraphs

In the remaining part of this section we will discuss maximal factorized subgraphs. For this purpose,

we analyze the ratio of the maximal factorized subgraph in the disturbed product graph. Note that
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Figure 7.10: An approximate product graph of the product of two pathesP5 andP7 with a perturbation of

19%, i.e., 20 edges are removed. All backbone vertices with non-prime 1-neighborhoods are highlighted by

thick dots. The computed subgraph of the Cartesian skeletonafter application of modified Algorithm 9 is not

connected. Four different colors are used. The maximal factorized subgraphH is the one induced by the

vertices that are incident to the thick-lined and dashed-lined edges. In this particular example holds: RatioH =
1
2

(
|V(H)|
|V(G)| +

|E(H)|
|E(G)|

)
= 1

2

(
19
35 + 51

106

)
= 1

2 (0.54+0.48) = 0.51. Notice that|B(G)| = 15 if the graph would not

be disturbed. In the disturbed product only 6 of 15 backbone 1-neighborhoods are not prime. However, even if

only 40% of originally non-prime neighborhoods can be used one can factorize more than 51% of the original

graph in this example.

the recognized Cartesian skeleton of the disturbed product after application of modified Algorithm 9

need not be connected, see Figure 7.10.

Therefore, we take one maximal connected component of the computed Cartesian skeleton, i.e.,

a connected component with a maximal number of vertices and among all those subgraphs the ones

having a maximal number of edges. The edges of the maximal factorized subgraph in the disturbed

product are then the edges of the subgraph of the Cartesian skeleton and all non-Cartesian edges

between those edges. LetH be such a subgraph of a disturbed productG′ and letG be the original

undisturbed product. We calculate the ratio of a maximal factorized subgraph as follows:

RatioH =
1
2

(
|V(H)|

|V(G)|
+
|E(H)|

|E(G)|

)

Figure 7.11 and 7.12 show the relative ratio of maximal factorized subgraphs in dependence of the

ratio of perturbation, respectively in dependence of the relative ratio ofprime 1-neighborhoods.

In both plots, one can see that with an increasing ratio of perturbation and hence, with an increasing

number of prime 1-neighborhoods, the size of maximal factorized subgraphs decreases. For a fixed

percentage of removed edges in all graphs the size of maximal factorized subgraphs decreases in

accordance with the decrease of the respective valuesUG. As observable, for a disturbance of 2% in

the graphsT ⊠T, T ⊠ I , andI ⊠ I , the maximal factorized subgraphs averagely represent∼ 10% of
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Figure 7.11: The plot shows the relative ratio of maximal factorized subgraphs in dependence of the ratio of

perturbation.

the original product graph. If one removes 2% of the edges in the graphs C⊠ T, C⊠ I , P⊠ T, and

P⊠ I , the maximal factorized subgraphs averagely represent 46−66% of the original product. The

graphsC⊠C, C⊠ P, andP⊠ P can be disturbed much more. If 10% of their edges were deleted it

was possible to factorize at least 20−30% of their subgraphs, but only 0−4% in the other samples.

As already argued, the valuesUG and cardinalities of the edge sets, explain why the percentage of

maximal factorized subgraphs in the graphsT ⊠T, T ⊠ I , andI ⊠ I decreases faster than in the other

graphs and whyC⊠C, C⊠P, andP⊠P are more robust against perturbation. Again, it can be seen

that the algorithm performs on graphs with almost coinciding valuesUG that have a higher ratio of

backbone vertices or that have a cycle as factor slightly better.

In Figure 7.12 it is observable that for a fixed ratio of used prime 1-neighborhoods the algorithm

performs worst on the graphT ⊠T. Note, in order to receive a proper color-continuation in approx-

imate products of this graphT ⊠ T, it is crucial to use edge-neighborhoods andN∗-neighborhoods,

since none of its 1-neighborhoods are thin. Thus, due to the structure ofthe graphT ⊠T, the compu-

tation of a proper color-continuation is much harder compared to other graphs. Even if parts of the ap-

proximate product ofT ⊠T can be factorized with 1-neighborhoods, in each step edge-neighborhoods

andN∗-neighborhoods have to be factorized, to receive a proper color-continuation. Hence, in ad-

dition to the information provided by the PFD of 1-neighborhoods, we must use more "non-local"

information. Therefore, it might happen that in the disturbed product many1-neighborhoods can

be factorized, but not the respective edge-neighborhoods andN∗–neighborhoods. Hence, the color-
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Figure 7.12: The plot shows the relative ratio of maximal factorized subgraphs in dependence of the relative

ratio of prime 1-neighborhoods.

continuation fails and thus, the maximal factorized subgraphs become smaller.

A remarkable result that can be observed in Figure 7.12 is that for all graphs, except the graph

T ⊠ T, that have a measured ratio of prime 1-neighborhoods of∼ 80%, at least 30%−50% of the

original graphs was recovered. Even if∼ 95% of used 1-neighborhoods were prime it was possible to

recover 7%−16% of the underlying graph. The latter result is promising and shows that the algorithm

for the recognition of approximate products computes suitable results and factorizes large parts of the

disturbed products even if a large amount of 1-neighborhoods is prime. Moreover, we have only

countedmaximalfactorized subgraphs and there might be more factorized subgraphs. Therefore, one

would expect that the ratio is larger if we take all factorized subgraphs intoaccount.

Summary

Starting with the question: "How often do we find both original factors in the disturbed product

depending on the percentage of perturbation?" We found that the ratio ofdisturbed product graphs,

where both underlying were recovered, decreases very fast and that there is remarkable difference

between the different product graphs.

To understand the latter observation we took the valuesUG, the ratio of the backbone vertices

and also the structure of the graphs into account. For graphsG andH with UG > UH the chance to
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recover the underlying factors forH is higher than forG. Modified Algorithm 9 performs on graphs

with almost coinciding valuesUG that have a higher ratio of backbone vertices or that have a cycle as

factor slightly better.

However, even a small percentage of perturbation leads to disturbed product graphs, where only

few instances of the data set have a structure, for which it was possible todetermine the original

underlying factors. To understand why the ratio of disturbed product graphs, where both underlying

factors were recovered, decreases so fast the relation between perturbation and the ratio of prime

1-neighborhoods was investigated. In general it was observed that only slight perturbations lead

to a high ratio of prime 1-neighborhoods. A perturbation of 6% leads to more than 70% prime 1-

neighborhoods in all graphs of the data set. Clearly, the more 1-neighborhoods are prime the fewer

1-neighborhoods can be used to recover the underlying factors. Taking the latter observations into

account we can empirically conclude why only few instances of slightly disturbed products have a

structure where it was possible to determine the original underlying factors.

In the last part of this section we investigated maximal factorized subgraphsand tried to find how

large maximal factorized subgraph of disturbed product are in dependence on the ratio of disturbance,

and therefore, in dependence on the ratio of prime 1-neighborhoods.

We observed that with an increasing percentage of perturbation and hence, with an increasing

number of prime 1-neighborhoods, the size of maximal factorized subgraphs decreases. We found

that for almost all graphs with measured ratio of prime 1-neighborhoods of∼ 80%, at least 30−50%

of the original graphs was recovered. Even if∼ 95% of 1-neighborhoods were prime, it was possible

to recover 8− 16% of the original underlying product graph. Moreover, only maximal factorized

subgraphs were counted, it is expected that this ratio is larger if we take allfactorized subgraphs into

account. The latter result is promising and shows that the algorithm for the recognition of approximate

products computes good results.
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Summary and Outlook

Motivated by the fact that, in practical applications, graphs often occur as perturbed product struc-

tures, we investigated the local structure of strong product graphs anddeveloped various new algo-

rithms that work on a local level, i.e, by usage of suitable subgraphs, to decompose strong product

graphs into their prime factors.

We realized that the termthinnessplays a central role. The major task for the prime factor de-

composition of a strong product graph is to determine its Cartesian skeleton, which is only uniquely

determined in thin graphs. We observed that, although a graph can be thin, this holds not necessarily

for its subproducts. To treat this problem we introduced the conceptsS1-conditionand theback-

boneB(G) of a graphG. These tools turned out to be essential for uniquely determining parts of the

Cartesian skeleton, even if the used subproducts are not thin.

We then introduced the graph classes ofNICE, CHIC, andlocally unrefinedgraphs. Moreover, we

investigated various local structural properties and derived polynomial-time algorithms that work on

a local level for the PFD of those graphs. After all, we used these resultsto construct a new local,

quasi-linear time algorithm that computes the PFD of all graphs.

Finally, approximate graph products were discussed. To derive an algorithm for the recognition

115
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of approximate graph products the new local algorithm was modified. At the end, the performance

of this algorithm was evaluated on a sample of approximate products. We perturbed given strong

product graphs by deleting edges. We found that even a small percentage of perturbation leads to

disturbed product graphs, where only few instances of the data set have a structure, for which it

was possible to determine the original underlying factors. We explained this phenomena with the

observation that only slight perturbations lead to a high ratio of prime 1-neighborhoods. After this,

maximal factorized subgraphs were investigated. We observed that with anincreasing percentage of

perturbation and hence, with an increasing number of prime 1-neighborhoods the size of maximal

factorized subgraphs decreases. We found that for almost all graphs with a measured ratio of prime

1-neighborhoods of∼ 80%, at least 30−50% of the original graphs was recovered. Even if∼ 95%

of 1-neighborhoods were prime, it was possible to recover 8−16% of the original underlying product

graph. We concluded that the algorithm for the recognition of approximate products computes good

results.

The future research should be focused on providing and developing heuristics for approximately

factorizable graphs based on the new local decomposition algorithm. Moreover, how can the problems

be solved even if the used subproducts are approximate products?

Furthermore, one should generalize the current problem to the factorization of directed graphs,

weighted graphs or hypergraphs and ask under which conditions thoseproduct graphs have unique

prime factors and how they could be computed fast. Moreover, how can approximate graph products

of those graphs be recognized?

In addition, one should also treat other graph products, e.g. the Cartesian, the direct, and lexi-

cographic product, and ask under which conditions it is possible to recognize approximate products

using local working approaches of those products.

It is the current state of the art to decide whether a graph is prime or not bycomputation of its

prime factorization. Also the new developed algorithms need non-prime subgraphs. Therefore, one

should develop a graph preprocessing from which (at least) necessary conditions can be derived to

decide whether a prime graph is very similar to a product graph or not, usingstatistical approaches,

e.g. degree distributions or shortest paths distributions. Those approaches would be very important to

consent or invalidate several theories, that make explicit statements aboutthe product-like structure

of graphs, in different contexts, as e.g. in theoretical biology [56].
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