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Chapter 1

Introduction

In this thesis, we use multitype Galton-Watson branching processes in random en-

vironments as individual-based models for the evolution of structured populations

with both demographic stochasticity and environmental stochasticity, and investi-

gate the phenotype allocation problem. We explore a variational characterization for

the stochastic evolution of a structured population modeled by a multitype Galton-

Watson branching process. When the population under consideration is large and

the time scale is fast, we deduce the continuous approximation for multitype Markov

branching processes in random environments.

1.1 Optimization and the allocation problem

Optimization, this beguilingly simple idea, allows biologists not only to understand

current adaptations, but also to predict new designs that may yet evolve. The essence

of optimization is to calculate the most efficient solution to a given problem, and then

to test the prediction. The concept has already revolutionized some aspects of biology,

but it has the potential for much wider application [Sut05].

Many problems in evolutionary biology involve the allocation of some limited re-

source among several investments [JP08]. It is often of interest to know whether, and

how, allocation strategies can be optimized for the evolution of a structured popu-

lation with randomness. In our work, the investments represent different types of
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offspring, or alternative strategies for allocations to offspring. As payoffs we consider

the long-term growth rate, the expected number of descendants with some future

discount factor, the extinction probability of the lineage, or the expected survival

time. Two different kinds of population randomness are considered: demographic

stochasticity and environmental stochasticity.

The reasons for this particular choice of payoffs are the following. Darwin’s theory

of natural selection tells us that the action of natural selection results in individuals

that are good at surviving and reproducing. So in a number of important biological

scenarios the optimization criterions are the maximization of the long-term growth

rate and the minimization of the extinction probability of the lineage. In financial

mathematics, optimization criterions like the maximization of the expected total re-

turns with some future discount factor and the maximization of expected stopping

times are investigated a lot. These criterions are also relevant in evolutionary biology.

Demographic stochasticity is caused by chance realizations of individual probabil-

ities of death and reproduction. We model the evolution of a structured population

with demographic stochasticity by a multitype Galton-Watson branching process.

The Galton-Watson process can be viewed as a real-time process, provided all the

individuals can be assumed to have the same life span of length one (year or season).

In such cases, we assume that individuals are born at the beginning of the season.

The phenotype of an individual is denoted as its type. We assume that the type space

has finitely many states and assume the number of offspring is finite. The theory of

branching processes provides characterizations of the payoffs which are the growth

rate conditioned on non-extinction, the extinction probability, the expected survival

time conditioned on extinction and the expected number of descendants conditioned

on extinction. Since it is very difficult to calculate explicitly the optimal offspring dis-

tributions in the general framework, we come up with a simple model I, see subsection

2.1.1, and solve the optimal allocation strategies w.r.t. the above payoff functions.

Another source of randomness is environmental stochasticity that affects the pop-

ulation as a whole. Models for the evolution of a population with environmental

stochasticity have been much explored in the literature. We note only a small se-
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lection that is directly relevant to the work in this thesis. Optimal strategies that

maximize the long-term growth rate in various models with environmental stochas-

ticity can be found in a survey paper of McNamara, Houston and Collins [MHC01]

and the references therein. In an attempt to explain the variability of the clutch size

among laying birds of the same species, Grey [Gre80] considered models in which

birds have to choose a randomized strategy for the clutch size in the face of random

environments in order to minimize the probability of extinction. Lande and Orzack

[LO88] studied an age-structured population in a fluctuating environment and derived

analytical formulae for the distribution of the time to extinction and the probability

of extinction based on a diffusion approximation for the logarithm of total population

size.

Analogous to the simple model I, we propose a simple model II, see subsection

2.2.1, which describes the evolution of a structured population with environmental

stochasticity. In the fluctuating model, the payoffs are the long-term growth rate,

the extinction probability, the expected survival time conditioned on extinction, and

the discounted expected number of descendants. We solve the optimal allocation

strategies w.r.t. the above payoff functions. In particular, the Bellman scheme in

control theory is applied to obtain the optimal strategy that maximizes the discounted

expected number of descendants.

Finally, we come to consider the evolution of a structured population with both

demographic stochasticity and environmental stochasticity. The population is mod-

eled as a multitype Galton-Watson branching process in a random environment. We

propose a simple model III, see subsection 2.3.1, which is a combination of the simple

models I and II. By the convergence theorem of branching processes in random envi-

ronments the long-term growth rate of the population is characterized by the largest

Lyapunov exponent. The random Perron-Frobenius theorem provides an alternative

expression for the largest Lyapunov exponent. We use it to deduce an explicit for-

mula for the largest Lyapunov exponent of the simple model III. We approximate the

extinction probability by using a similar method developed by Wilkinson. For the

simple model III, we obtain the optimal strategy that maximizes the largest Lyapunov

7



exponent and minimizes the approximate extinction probability respectively.

Recently, Dombry, Mazza and Bansaye [DMB09] also used multitype branching

processes in random environments to model population growth. They studied the

optimal type allocation strategy that maximizes the net growth rate of the population.

We did our work independently. The subtle differences between the characterizations

of their net growth rate and our long-term growth rate are analyzed in subsection

2.3.2.

1.2 Variational characterization

Evolution is often understood as an optimization problem, and there is a long tra-

dition to look at evolutionary models from a variational perspective. For exam-

ple, in deterministic population dynamics defined via the Leslie matrix, the equilib-

rium state of the dynamical system is characterized by using a variational principle

[Dem83][AGD94][Dem97]; a variational principle in mutation-selection models is de-

duced in [BG07]. The purpose of our work is to deduce a variational characteriza-

tion for the stochastic evolution of a structured population modeled by a multitype

Galton-Watson branching process.

By the Kesten-Stigum theorem ([KS66],[AN72]) and Theorem 2 of [KLP97], we

describe the asymptotic properties of the multitype Galton-Watson branching process

forward in time. The asymptotic properties are determined by the principle eigenvalue

ρ of the mean matrix M , the associated right eigenvector u and left eigenvector v.

That is, log ρ is equal to the growth rate of the population size, u is a measure of the

relative contribution made to the stationary population by each type, and v is the

stationary composition of the population.

Since the Leslie matrices of classic demography are nothing but the mean matrices

of special multitype branching processes, we deduce a similar variational characteriza-

tion for the asymptotic growth rate log ρ of the multitype Galton-Watson branching

process via suitably defined entropy and reproductive potential.

In particular, the so-called retrospective process plays an important role in the

description of the equilibrium state used in the variational characterization. In our
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work, we define the retrospective process associated with a multitype Galton-Watson

branching process and identify it with the mutation process describing the type evo-

lution along typical lineages of the multitype Galton-Watson branching process. In

the mathematical literature, the retrospective process was firstly introduced by Jagers

([Jag89], p.195) for a general branching process and a version for multitype Markov

branching process was defined in [GB03]. The identification result for the retrospec-

tive process associated with a multitype Markov branching process in continuous time

was proved by Georgii and Baake ([GB03], Theorem3.3).

1.3 Continuous approximation

Continuous approximation of branching processes is of both practical and theoreti-

cal interest. As was shown in ([HJV05], Chap. 4.1), approximations of stochastic

models can be useful for several reasons: The approximating model may be simpler

than the original model; The qualitative behavior of the approximating model may

be easier to understand; The number of unknown parameters (i.e., parameters that

need to be estimated from data) may be smaller for the approximating model; The

approximating model may be computationally more tractable. Operator semigroups,

martingale problems, and stochastic equations provide approaches to the character-

ization of branching processes, and to each of these approaches correspond methods

for proving convergence results.

A lot of research work has been done on approximation of one-dimensional branch-

ing processes. The diffusion approximation of Galton-Watson branching processes in

the near-critical case was first formulated by Feller [Fel50] and made rigorous by Jǐrina

[Jir69]. For branching processes in random environments, Keiding [Kei75] formulated

a diffusion approximation for a Galton-Watson process in a random environment that

was made rigorous by Helland [Hel81] in the case of independent environments for

each generation. Kurtz in [Kur78] used a semigroup approach to establish such an ap-

proximation under more general assumptions on the environments. Borovkov [Bor02]

extended the Kurtz result so that the range of the initial values of the processes can

be much wider, moment conditions are more general, and the approximant can be
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a discontinuous process. Diffusion approximation for multitype branching processes

was exploited by Joffe and Metivier [JM86]. However, there is no literature on ap-

proximation of multitype branching processes in random environments.

Inspired by the work in ([EK86], Chap. 9.3), which deduced a continuous ap-

proximation for a sequence of one-dimensional Markov branching processes in ran-

dom environments, we want to obtain a continuous approximation for a sequence of

multi-dimensional Markov branching processes in random environments. The former

convergence result is based on the technique of random time changes. However, it

does not generalize to vector-valued processes in random environments. In our work,

we firstly construct a multitype Markov branching processes in random environments

rigorously. Then for the parallel mutation-selection Markov branching processes in

random environments, we analyze the instability property. Finally, we make use of

weak convergence theorem of stochastic differential equations by Kurtz and Protter

[KP91] and give conditions under which continuous approximation for a sequence

of two-type parallel mutation-selection Markov branching processes in random en-

vironments can be obtained. In fact, continuous approximation for a sequence of

d-type (d ≥ 2) parallel mutation-selection Markov branching processes in random

environments can be deduced without essential difficulties. However, our result for

one-dimensional case is not as strong as that in ([EK86], Chap. 9.3).

1.4 Overview

In chapter 2, we solve the phenotype-allocation problem by means of three stochastic

population models depending on different kinds of population randomness. In section

2.1, we model the evolution of a structured population with demographic stochastic-

ity by a multitype Galton-Watson branching process and propose a simple model I

for the phenotype-allocation problem. The payoffs are characterized by the theory

of branching processes. We explore the optimal strategies w.r.t the payoffs in the

subsequent subsections. In section 2.2, we study a simple model II for the phenotype-

allocation problem for the evolution in the presence of environmental stochasticity.

In section 2.3, we model the evolution of a structured population with both demo-
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graphic stochasticity and environmental stochasticity by a multitype Galton-Watson

branching process in a random environment. In subsection 2.3.1, we come up with

the simple model III. We deduce an explicit formulae of the long-term growth rate

in the simple model III and obtain the optimal strategy that maximizes the growth

rate in subsection 2.3.2. We approximate the extinction probability in the simple

model III by a method similar to the one of Wilkinson and obtain the optimal strat-

egy that minimizes the approximate extinction probability for an concrete example

in subsection 2.3.3.

In Chapter 3 we develop a variational principle for the models that are described by

multitype Galton-Watson branching processes. We take the point of view of individual

lineages through time, their ancestry and genealogy. In section 3.1, we show that the

asymptotic properties of the branching process forward in time are, to a large extent,

determined by the principle eigenvalue ρ of the mean matrix M , the associated right

eigenvector u and left eigenvector v . In section 3.2, we define the retrospective process

and identify it with the mutation process describing the type evolution along typical

lineages of the branching process. In section 3.3, we deduce that the asymptotic

growth rate log ρ of the branching process satisfies a variational principle and show

that the distribution of the retrospective process is the unique equilibrium state for

the variational characterization.

In chapter 4, instead of discrete time branching processes, we study continuous

time multitype Markov branching processes in random environments. In section 4.1,

we give a rigorous construction of multitype Markov branching processes in random

environments by employing the technique used in ([EK86], Chap. 6.4). In section 4.2,

we deduce the Kolmogorov equations and the mean matrix for the branching process

conditioned on environment. In section 4.3, we analyze the instability property of a

parallel mutation-selection Markov branching process in a random environment. In

section 4.4, we deduce a weak convergence result for a sequence of parallel branching

processes in random environments. In section 4.5, we give examples for applications.
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Chapter 2

Stochastic population models

and the allocation problem

Many problems in evolutionary biology involve the allocation of some limited re-

source among several investments [JP08]. It is often of interest to know whether, and

how, allocation strategies can be optimized. Here, the investments represent different

types of offspring, or alternative strategies for allocations to offspring. As payoffs

we consider the long-term growth rate, the expected number of descendants with

some future discount factor, the extinction probability of the lineage, or the expected

survival time.

We solve the allocation problem in three stochastic population models depending

on different kinds of population randomness. Population randomness through indi-

vidual variability is called demographic stochasticity. Another source of randomness

is environmental stochasticity that affects the population as a whole. Before we study

the full model, in which both demographic stochasticity and environmental stochas-

ticity are included, we discuss the classical models used for studying evolution in the

presence of demographic and environmental stochasticity, respectively.
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2.1 Multitype Galton-Watson branching processes

Demographic stochasticity is caused by chance realizations of individual probabilities

of death and reproduction in a finite population. The classical model for studying the

evolution of a structured population with demographic stochasticity is the multitype

Galton-Watson branching process [HJV05].

Let the type space be given by S = {1, · · · , d}. The multitype Galton-Watson

branching process is described as follows [KA02]: a single ancestor individual of i-type

lives for exactly one unit of time, and at the moment of death it produces a random

number of offspring according to a prescribed probability distribution pi. Each of the

first-generation offspring behaves, independently of each other, as the initial particle

did, and so forth. Then {Zn = (Z1
n, · · · , Zdn)>} is a multitype branching process

defined on a probability space (Ω,F , P ) where Zin stands for the number of type i

individuals in generation n with i = 1, · · · , d. Here Ω is the space of trees (for the

construction see Chapter VI of [Har63]), F is generated by the cylinder sets of Ω,

and P is the probability measure on (Ω,F). In particular, P j denotes the probability

measure on (Ω,F) when the process is initiated with Z0 = ej , where ej is the column

vector with jth component equal to 1 and else 0. The expectation operator for P j

will be denoted by Ej .

In this section, we firstly come up with a simple model I of a structured popula-

tion of annual organisms with demographic stochasticity. Then we define the growth

rate conditioned on survival and give an analytical representation for it based on the

Kesten-Stigum theorem in subsection 2.1.2. In subsection 2.1.3, the extinction prob-

ability is characterized by the theory of branching processes. In subsection 2.1.4, we

show that a multitype supercritical Galton-Watson branching process conditioned on

extinction is a subcritical branching process and we characterize the expected sur-

vival time conditioned on extinction. We study the expected number of descendants

conditioned on extinction in subsection 2.1.5. Furthermore, we solve the allocation

problem w.r.t. the above mentioned payoff functions in the simple model I.
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2.1.1 Simple model I

Consider the following simple model of a structured population of annual organisms

with demographic stochasticity. There are 2 possible phenotypes for each organism.

The phenotype is chosen at the beginning of the development of the organism. An

organism develops into phenotype 1 with probability x and phenotype 2 with proba-

bility 1−x, where 0 < x < 1. An organism of phenotype i will die with probability di

leaving no offspring and survive with probability 1− di producing ci offspring, where

0 < di < 1 and ci are positive integers.

We model the evolution of the population by using a multitype Galton-Watson

branching process. Here the type space is given by S = {1, 2}. The offspring distri-

butions pi(n1, n2) with ni denoting the number of offspring of type i for i ∈ S are as

follows:

p1(n1, n2) =



d1, n1 = n2 = 0;

(1− d1)

 c1

n1

xn1(1− x)n2 , n1 + n2 = c1;

0, else.

(2.1.1)

and

p2(n1, n2) =



d2, n1 = n2 = 0;

(1− d2)

 c2

n1

xn1(1− x)n2 , n1 + n2 = c2;

0, else.

(2.1.2)

There are two one-dimensional extreme cases of the above model corresponding to

x = 0 and x = 1, respectively. The former models the evolution of a non-structured

population composed of organisms of phenotype 1 with offspring distribution

p1(n) =

 d1, n = 0;

1− d1, n = c1.
(2.1.3)

The latter models the evolution of a non-structured population composed of organisms
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of phenotype 2 with offspring distribution

p2(n) =

 d2, n = 0;

1− d2, n = c2.
(2.1.4)

Note that we use upper indices for offspring distributions pi of a multitype branching

process while we use lower indices for offspring distributions pi of the ith-type one

dimensional branching processes.

2.1.2 The growth rate

The growth rate is defined as

lim
n→∞

1

n
log ‖Zn‖1, a.s. conditioned on non-extinction, (2.1.5)

where ‖Zn‖1 =
∑

i∈S Z
i
n and non-extinction means we only consider those ω ∈ Ω such

that limn→∞ ‖Zn(ω)‖1 =∞. The theory of branching processes shows how to give an

analytical representation of the growth rate. Here are some definitions and notations.

The branching process {Zn}n≥0 is said to be a singular process if each individual

has exactly one offspring, otherwise it is nonsingular. Define M = (mij)i,j∈S to be

the matrix of expected numbers of offspring. Specially, mij = Ei[Zj1 ] is the expected

number of progeny of type j produced from an individual of type i. The branching

process {Zn}n≥0 is called positively regular if the mean matrix M is strictly positive,

i.e. there is an N such that m
(N)
ij > 0 for all i, j ∈ S. The branching process is

supercritical if ρ > 1, where ρ is the principle eigenvalue of M .

Theorem 2.1.1. Assume that {Zn}n≥0 is nonsingular, positively regular and super-

critical. Assume that

Ei[Zj1 logZj1] <∞ for all i, j ∈ S. (2.1.6)

Then

lim
n→∞

1

n
log ‖Zn‖1 = log ρ, a.s. conditioned on non-extinction. (2.1.7)
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Proof. Firstly, the Perron-Frobenius theory tells us that M has a principle eigenvalue

ρ and associated positive right and left eigenvectors u and v which will be normalized

so that 〈u, v〉 = 1 and 〈v,1〉 = 1.

Then the Kesten-Stigum theorem ([KS66],[AN72]) says that there is a scalar non-

negative random variable W such that

lim
n→∞

Zn
ρn

= Wv a.s. (2.1.8)

and

P i{W > 0} = P i
{

lim
n→∞

‖Zn‖1 =∞
}

(2.1.9)

iff (2.1.6) holds.

By the Kesten-Stigum theorem, conditioned on non-extinction,

lim
n→∞

1

n
log ‖Zn‖1

= lim
n→∞

1

n
log ρn〈v,1〉W

= log ρ+ lim
n→∞

1

n
logW

= log ρ.

Now we explore the solution to the allocation problem w.r.t. the growth rate in the

simple model I. Assume that (1− di)ci > 1 for i ∈ S. The mean matrix is given by

M =

 (1− d1)c1x (1− d1)c1(1− x)

(1− d2)c2x (1− d2)c2(1− x)

 .

It is obvious that M is positively regular for 0 < x < 1. By applying Theorem 2.1.1,

we obtain that the growth rate is given by

λ(x) := log ρ(x) = log((1− d1)c1x+ (1− d2)c2(1− x)), for 0 < x < 1. (2.1.10)

For the two extreme cases x = 0 and x = 1 of the simple model I, we can deduce that

the growth rates are log(1− d1)c1 and log(1− d2)c2 respectively.
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Firstly, suppose that (1−d1)c1 > (1−d2)c2 > 1. Then we get the obvious conclusion

that log(1 − d2)c2 < λ(x) < log(1 − d1)c1 for 0 < x < 1. Hence under the above

assumptions the optimal strategy for maximizing the growth rate is that all offspring

develop into type-1. All mixed strategies lead to a smaller growth rate.

Secondly, suppose that (1 − d1)c1 = (1 − d2)c2 > 1. Then any allocation strategy

results in the same growth rate. So any strategy leads to an optimal growth rate.

Finally, suppose that (1−d2)c2 > (1−d1)c1 > 1. Then under the above assumptions

the optimal strategy for maximizing the growth rate is that all offspring develop into

type-2.

2.1.3 The extinction probability

The extinction probabilities of a multitype branching process is represented as

qi = P i
{

lim
n→∞

‖Zn‖1 = 0
}
, for i ∈ S. (2.1.11)

The theory of branching processes characterizes the extinction probabilities via the

generating functions of the offspring distributions. We first introduce some notations.

Let f i(s1, · · · , sd) := Ei
[
s
Z1
1

1 · · · s
Zd1
d

]
with 0 ≤ si < 1 denote the generating functions

of the offspring distributions pi. We write s = (s1, · · · , sd), f(s) = (f1(s), · · · , fd(s))

and q = (q1, · · · , qd). Write Cd = {s | 0 ≤ s < 1}, where 0 ≤ s < 1 means

0 ≤ si < 1, for 1 ≤ i ≤ d. The main result is given below (complete proof see section

II.7 of [Har63]).

Theorem 2.1.2. Assume that {Zn}n≥0 is nonsingular, positively regular and super-

critical. Then q < 1 and q is the only solution of

f(s) = s in Cd. (2.1.12)

For the reduced ith-type one dimensional branching processes, we use notations

with lower indices, i.e. qi and fi denote the extinction probability and the generating

function of pi, respectively. A similar result, as Theorem 2.1.2, holds for the extinction

probability in the one-dimensional case, see section I.6 of [Har63].
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Now we explore the solution to the allocation problem w.r.t. the extinction prob-

ability in the simple model I. Assume that (1 − di)ci > 1 for i ∈ S. Then for the

two-type Galton-Watson process, the generating functions are

f1(s1, s2) = d1 + (1− d1)[s1x+ s2(1− x)]c1 (2.1.13)

and

f2(s1, s2) = d2 + (1− d2)[s1x+ s2(1− x)]c2 . (2.1.14)

The extinction probabilities satisfy the equations:

q1 = f1(q1, q2), (2.1.15)

q2 = f2(q1, q2). (2.1.16)

For the reduced 1st-type one-dimensional Galton-Watson process, the generating

functions are

f1(s) = d1 + (1− d1)sc1 . (2.1.17)

The extinction probability satisfies the equation:

q1 = f1(q1). (2.1.18)

For the reduced 2nd-type one-dimensional Galton-Watson process, the generating

function is

f2(s) = d2 + (1− d2)sc2 . (2.1.19)

The extinction probability satisfies the equation:

q2 = f2(q2). (2.1.20)

First of all, assume that (1 − d1)c1 > (1 − d2)c2 > 1 and d1 < d2. Then q1, q2, q1

and q2 can be compared by the following lemma.

Lemma 2.1.1. Assume that d1 < d2 and c1(1− d1) > c2(1− d2) > 1. Then

d2 + (1− d2)sc2 > d1 + (1− d1)sc1 ,

for s ∈ (0, 1).
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Proof. Let

g(s) = d2 + (1− d2)sc2 − d1 − (1− d1)sc1 ,

then it is sufficient to prove g(s) > 0. In order to prove this we distinguish the

following two cases.

Case 1: c1 ≥ c2.

g(s) = d2 − d1 + (1− d2)sc2 − (1− d1)sc1

≥ d2 − d1 + (1− d2)sc1 − (1− d1)sc1

= (d2 − d1)(1− sc1)

> 0

Case 2: c1 < c2.

Since g(0) > 0, g(1) = 0, we only need to prove

g′(s) < 0, for s ∈ (0, 1).

Calculating the first and second derivative of g(s), we get

g′(s) = (1− d2)c2s
c2−1 − (1− d1)c1s

c1−1,

and

g′′(s) = (1− d2)c2(c2 − 1)sc2−2 − (1− d1)c1(c1 − 1)sc1−2.

Let g′′(s) = 0, we get

s =

[
(1− d1)c1(c1 − 1)

(1− d2)c2(c2 − 1)

] 1
c2−c1

.

• if (1 − d1)c1(c1 − 1) ≥ (1 − d2)c2(c2 − 1), then g′′(s) has no zero point in the

interval (0, 1);

• if (1− d1)c1(c1 − 1) < (1− d2)c2(c2 − 1), then g′′(s) has exactly one zero point

in the interval (0, 1) and g′′(1) > 0.

Together with g′(0) = 0, g′(1) < 0, we get g′(s) < 0 for 0 < s < 1. This implies that

g(s) > 0 and so the prove is complete.
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Now we continue to study model I, in particular equations (2.1.13)-(2.1.19). By the

lemma above, it is easy to deduce that q1 < q2 < 1 and q1 < q2 < 1. Furthermore,

q1 < q1. Indeed, by (2.1.13) and (2.1.15) we have

q1 = d1 + (1− d1)[q1x+ q2(1− x)]c1 > d1 + (1− d1)(q1)c1 (2.1.21)

and by (2.1.17) and (2.1.18) we get

q1 = d1 + (1− d1)(q1)c1 . (2.1.22)

Similarly, q2 < q2. Hence, q1 < q1 < q2 < q2. Under the above assumptions the

optimal strategy for minimizing the extinction probability is that all offspring develop

into type-1.

Secondly, assume that (1− d1)c1 > (1− d2)c2 > 1 and d1 = d2. Then

d2 + (1− d2)sc2 > d1 + (1− d1)sc1 ,

for s ∈ (0, 1). Hence, under the above assumptions the optimal strategy for minimiz-

ing the extinction probability is that all offspring develop into type-1.

Finally, assume that (1− d1)c1 > (1− d2)c2 > 1 and d1 > d2. Let q be the solution

of the equation

d1 + (1− d1)sc1 − (d2 + (1− d2)sc2) = 0,

for s ∈ (0, 1).

Case a: q = d1+(1−d1)qc1 . Then q1 = q1(x) = q2(x) = q2 for each x ∈ (0, 1). Then

any allocation strategy results in the same extinction probability. So any allocation

strategy is optimal.

Case b: q < d1 + (1 − d1)qc1 . Then q1 < q1(x) < q2(x) < q2 for each x ∈

(0, 1). Hence, under the above assumptions the optimal strategy for minimizing the

extinction probability is that all offspring develop into type-1.

Case c: q > d1 + (1 − d1)qc1 . Then q1 > q1(x) > q2(x) > q2 for each x ∈

(0, 1). Hence, under the above assumptions the optimal strategy for minimizing the

extinction probability is that all offspring develop into type-2.
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From the discussion above, we get the conclusion that there always exists a pure

strategy that has a lower or equal extinction probability than any mixed strategy. So

the mixed strategy can not decrease the extinction probability.

2.1.4 The expected survival time conditioned on extinction

It is well known that a simple, supercritical Galton-Watson process turns into a

subcritical one, if conditioned on extinction [AN72]. Jagers and Lager̊as proved that

general multitype supercritical branching processes conditioned on extinction are sub-

critical branching processes [JL08]. As a special case, we prove that the corresponding

holds for multitype Galton-Watson processes.

Let {Zn}n≥0 be a two-type supercritical Galton-Watson process defined on prob-

ability space (Ω,F , P ) with generating functions f1(s1, s2) and f2(s1, s2). Let B =

{ω ∈ Ω | ‖Zn(ω)‖1 = 0 for some n}. Let τ = inf{n ∈ N | ‖Zn‖1 = 0 for some n}.

Theorem 2.1.3. The process {Zn}n≥0 conditioned on extinction is equivalent to a

subcritical branching process with generating function f̃1(s1, s2) = f1(q1s1, q
2s2)/q1

and f̃2(s1, s2) = f2(q1s1, q
2s2)/q2, where q1 and q2 are the solutions of q1 = f1(q1, q2)

and q2 = f2(q1, q2), respectively.

Proof. It is obvious that the process {Zn}n≥0 conditioned on extinction is still a

Markov process. The transition mechanism of the conditioned process is deduced as
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follows. For i1, i2 6= 0, the generating function of the conditioned process is
∞∑

j1,j2=0

P{Zn+1 = (j1, j2) | Zn = (i1, i2), B}sj11 s
j2
2

=
∞∑

j1,j2=0

P{Zn+1 = (j1, j2),Zn = (i1, i2), B}
P{Zn = (i1, i2), n < τ <∞}

sj11 s
j2
2

=

∞∑
j1,j2=0

sj11 s
j2
2 ·

P{Zn = (i1, i2)}P{Zn+1 = (j1, j2) | Zn = (i1, i2)}P{B | Zn+1 = (j1, j2),Zn = (i1, i2)}
P{Zn = (i1, i2)}P{n < τ <∞ | Zn = (i1, i2)}

=
1

(q1)i1(q2)i2

∞∑
j1,j2=0

P{Zn+1 = (j1, j2) | Zn = (i1, i2)}(q1s1)j1(q2s2)j2

= [f̃1(s1, s2)]i1 [f̃2(s1, s2)]i2 ,

since P{Zn+1 = (j1, j2)|Zn = (i1, i2)} is the coefficient of sj11 s
j2
2 in [f1(s1, s2)]i1 [f2(s1, s2)]i2 .

Hence the conditioned process is a branching process with generating function f̃1(s1, s2)

and f̃2(s1, s2).

Now we prove that the conditioned process is subcritical. From the definition of

f̃1(s1, s2), we can deduce that the conditioned offspring distributions satisfy

p̃1(k1, k2) = (q1)k1−1(q2)k2p1(k1, k2) (2.1.23)

and

p̃2(k1, k2) = (q1)k1(q2)k2−1p2(k1, k2), (2.1.24)

where p1(k1, k2) and p2(k1, k2) are the offspring distributions of the supercritical pro-

cess. Furthermore,

P̃ 1{Zn = (k1, k2)} = (q1)k1−1(q2)k2P 1{Zn = (k1, k2)}.

Then

Ẽ1[‖Zn‖1] =
1

q1
E1
[
‖Zn‖1(q1)Z

1
n(q2)Z

2
n

]
=

1

q1
E1[‖Zn‖1 exp(Z1

n log q1 + Z2
n log q2)]

≤ 1

q1
E1
[
‖Zn‖1q‖Zn‖1

]
→ 0 as n→∞,
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since ‖Zn‖1 must either tend to zero or to infinity, where q = max{q1, q2} < 1.

Then the conditioned two-type branching process is a subcritical branching process

with probability generating functions

f̃1(s1, s2) =
f1(q1s1, q

2s2)

q1
; f̃2(s1, s2) =

f2(q1s1, q
2s2)

q2
. (2.1.25)

Define T1 and T2 as the extinction times of the conditioned branching processes start-

ing with (1, 0)> and (0, 1)> respectively.

Lemma 2.1.2. Assume that d1 < d2, c1 ≤ c2 (c1 and c2 are positive integers) and

(1− d1)c1 > (1− d2)c2 > 1. Then ET1 > ET2.

Proof. Let f̃ i(n)(s1, s2) = f̃ i(f̃1(n−1)(s1, s2), f̃2(n−1)(s1, s2)) for i = 1, 2. Since ETi =∑∞
n=0 P (Ti > n) =

∑∞
n=0(1−f̃ i(n)(0, 0)) for i = 1, 2, it is enough to show f̃1(n)(0, 0) <

f̃2(n)(0, 0) in order to show ET1 > ET2. Since f̃ i(n)(0, 0) = f i(f1(n−1)(0,0),f2(n−1)(0,0))
qi

and q1

q2
= f1(q1,q2)

f2(q1,q2)
, we need to show that

f1(f1(n−1)(0, 0), f2(n−1)(0, 0))

f2(f1(n−1)(0, 0), f2(n−1)(0, 0))
<
f1(q1, q2)

f2(q1, q2)
.

Let h(s1, s2) = f1(s1,s2)
f2(s1,s2)

. Since we assume that d1 < d2, c1 ≤ c2 (c1 and c2 are positive

integers) and (1− d1)c1 > (1− d2)c2 > 1, it is obvious that ∂h(s1,s2)
∂si

> 0 for i = 1, 2.

By induction, we get f i(n)(0, 0) ↑ qi as n→∞.

For i = 1, 2, the conditioned ith-type one-dimensional branching process is a sub-

critical branching process with probability generating function

f̃i(s) =
fi(qis)

qi
. (2.1.26)

Define τ1 and τ2 as the extinction times of the conditioned 1st-type and 2nd-type

branching processes respectively.

Lemma 2.1.3. Assume that 0 < d1 < d2 < 1/2 and c1 = c2 = 2. Then Eτ1 < Eτ2.

Proof. Since c1 = c2 = 2, we get qi = di
1−di for i = 1, 2. Then

f̃i(s) =
fi(qis)

qi
= (1− di) + dis

2.
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Let f̃
(n)
i (s) = f̃i(f̃

(n−1)
i (s)) for i = 1, 2. By induction, we get f̃

(n)
1 (0) > f̃

(n)
2 (0).

Hence

Eτ1 =

∞∑
n=0

P (τ1 > n) =

∞∑
n=0

(1− f̃ (n)
1 (0))

<
∞∑
n=0

(1− f̃ (n)
2 (0)) =

∞∑
n=0

P (τ1 > n) = Eτ2.

Remark 1: The relation between Eτi and ETi is not clear. Consider the following

simple example. Let d1 = 0.2, d2 = 0.4 and c1 = c2 = 2. Numerical calculations

yield: if x = 0.1, or 0.2, we get the relation ET1 > Eτ2 > ET2 > Eτ1; if x =

0.3, 0.4, 0.5, or 0.6, we get Eτ2 > ET1 > ET2 > Eτ1; if x = 0.7, 0.8, or 0.9, we get

Eτ2 > ET1 > Eτ1 > ET2.

Remark 2: For the above example, we mention some observations: firstly, ETi

decreases w.r.t. x; secondly, when x → 0, the relation of ET1 > Eτ2 = ET2 > Eτ1

holds. Hence, when the population starts with one individual of type-1, the optimal

strategy is that each individual develops into type-2 with probability as close as

possible to 1; when the population starts with one individual of type-2, the optimal

strategy is that all individuals develop into type-2 with probability 1.

2.1.5 The expected number of descendants conditioned on extinc-

tion

The expected number of descendants of the two-type branching process conditioned

on extinction is given by

E
[ ∞∑
n=0

‖Zn‖1
∣∣∣ lim
n→∞

‖Zn‖1 = 0
]
. (2.1.27)
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Assume that 0 < d1 < d2 < 1/2 and c1 = c2 = 2. By the monotone convergence

theorem, we get

E
[ ∞∑
n=0

‖Zn‖1
∣∣∣ lim
n→∞

‖Zn‖1 = 0
]

=

∞∑
n=0

E
[
‖Zn‖1

∣∣∣ lim
n→∞

‖Zn‖1 = 0
]

=
∞∑
n=0

Z>0 M̃
ne,

where Z0 = (z1, z2)> is the initial state of the process,

M̃ =

 2(q1x+ q2(1− x))(1− d1)x 2(q1x+ q2(1− x))(1− d1)(1− x)q2/q1

2(q1x+ q2(1− x))(1− d2)xq1/q2 2(q1x+ q2(1− x))(1− d2)(1− x)


and e is a column vector of all ones.

Lemma 2.1.4. Assume that 0 < d1 < d2 < 1/2 and c1 = c2 = 2. Then

E
[ ∞∑
n=0

‖Zn‖1
∣∣∣ lim
n→∞

‖Zn‖1 = 0
]

=
2

1− ρ̃

(
z1

(
1− d1

q1

)
+ z2

(
1− d2

q2

))
, (2.1.28)

where (z1, z2)> is the initial size, (q1, q2) are extinction probabilities, and ρ̃ is the

principle eigenvalue of M̃ .

Proof. Since M̃ is a rank-one matrix, it is obvious that the principle eigenvalue

ρ̃ = 2(q1x+ q2(1− x))((1− d1)x+ (1− d2)(1− x))

and
∞∑
n=0

Z>0 M̃
ne = z1 + z2 +

2(q1x+ q2(1− x))2
(
z1(1−d1)

q1
+ z2(1−d2)

q2

)
1− ρ̃

From the equations (2.1.13)− (2.1.16) we deduce that

[q1x+ q2(1− x)]2 =
q1 − d1

1− d1
=
q2 − d2

1− d2
;

q2 =
1− d2

1− d1
(q1 − d1) + d2;

q1 =
(1− d1)(d1x+ d2(1− x))− ((1− d1)x+ (1− d2)(1− x))(d2 − d1)(1− x)

((1− d1)x+ (1− d2)(1− x))2
.
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Then

E
[ ∞∑
n=0

‖Zn‖1
∣∣∣ lim
n→∞

‖Zn‖1 = 0
]

=
2

1− ρ̃

(
z1

(
1− d1

q1

)
+ z2

(
1− d2

q2

))
.

By basic calculations, we get that q1, q2 and ρ̃ all decrease w.r.t. x. Hence

E
[∑∞

n=0 ‖Zn‖1
∣∣∣ limn→∞ ‖Zn‖1 = 0

]
decreases w.r.t. x. Under the above assump-

tions the optimal strategy for maximizing the expected number of descendants con-

ditioned on extinction is that all offspring develop into type-2.

2.2 Population models in fluctuating environments

In contrast to the last section we will consider the evolution of a population with envi-

ronmental stochasticity. In this section we focus on models where some random events

may simultaneously affect all the individuals in a population. Typical examples are

large-scale fluctuations in the overall environmental conditions, where all population

members are subject to identical environmental conditions at a given time. We refer

to this form of stochasticity as environmental stochasticity.

The stochastic model for a non-structured population in a fluctuating environment

[HI95] can be described as follows. Let Yn be the population size just before period

n + 1. Let ξn denote the expected number of offspring per individual in period n.

Then Yn can be recursively expressed as

Yn = Yn−1ξn−1. (2.2.1)

In this section, we first give a simple biological model of a population in a fluctuating

environment. Then we characterize the growth rate, the extinction probability, the

expected survival time conditioned on extinction, and the discounted expected number

of descendants in the fluctuating model. Finally we solve the allocation problems

w.r.t. the above payoff functions.
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2.2.1 Simple model II

Consider a simple model of organisms living in a fluctuating environment [BL04]. The

environment sequence are independent and identically distributed. Each environment

has two possible states, state 1 and state 2, that occur with probability p and 1 −

p respectively. All individuals encounter exactly the same environment in a given

period. There are two kinds of phenotypes for organisms: one suited to environment

1, and the other suited to 2. An organism can only survive and reproduce if its

phenotype properly adapted to the current environment. The organism’s fitness is

given by the following matrix:

Phenotype 1 Phenotype 2

Environment 1 w1 0

Environment 2 0 w2

.

These organisms will be selected to hedge their bets, developing into phenotype 1

with frequency x and phenotype 2 otherwise.

Since for all generations the proportion of individuals of phenotype 1 and 2 is equal

to x/(1 − x), we can simply study the evolution of of the population size by using

(2.2.1). In this model, ξn are independent and identically distributed with the same

distribution as ξ where P{ξ = w1x} = p and P{ξ = w2(1− x)} = 1− p.

2.2.2 The growth rate

The long-term geometric growth rate γ is defined as

γ = lim
n→∞

1

n
log
(Yn
Y0

)
= lim

n→∞

1

n

n−1∑
i=0

log ξi

= E[log ξ]

= p log(w1x) + (1− p) log(w2(1− x)). (2.2.2)

By a simple calculation, we get that γ is maximized when x = p. Note that

the optimal strategy is independent of w1 and w2. Thus for almost all sequences
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of environments, the strategy that develops with frequency p into phenotype 1 will

maximize the long-term geometric growth rate. For this strategy, the growth rate is

given by γ(p) = p log(w1p) + (1− p) log(w2(1− p)).

2.2.3 The extinction probability

We consider three cases of the extinction probability depending on the initial popu-

lation size.

Initial size is one

We will consider what happens to this model if Y0 equals one and define the extinction

probability in this case as the chance that Yn becomes less than one. Since log(Yn) =

log(Y0) +
∑n

i=1 log(ξi), where {log(ξi)} are i.i.d. random variables, the sequence

{log(Yn)} can be viewed as a random walk. From the theory of random walks (see,

e.g., [Fel71], Section XII.7) we can infer that the extinction probability of the process

equals

q = P
{

inf
n

log(Yn) < 0
}

= 1− exp
[
−
∞∑
n=1

1

n
P{log(Yn) < 0}

]
, (2.2.3)

and that the following relations hold:

γ ≤ 0⇔ q = 1, γ > 0⇔ q < 1. (2.2.4)

We need calculate the probability P{log(Yn) < 0}. By the generating function, we

get

E
[
slog(Yn)

]
=

n∏
i=1

E
[
slog ξi

]
=

[
pslog(w1x) + (1− p)slog(w2(1−x))

]n
=

n∑
k=0

 n

k

 pk(1− p)n−ksk log(w1x)+(n−k) log(w2(1−x)), (2.2.5)

for 0 ≤ s < 1. Hence, the probability

P{log(Yn) < 0} =
∑
k∈K

 n

k

 pk(1− p)n−k, (2.2.6)
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where K denotes the set {0 ≤ k ≤ n | k log(w1x) + (n− k) log(w2(1− x)) < 0}.

Write b(x) = log(w1x) and c(x) = log(w2(1−x)). Let byc denote the largest integer

which is less than or equal to y for any y ∈ R. There are four cases:

1. if b(x) < 0 and c(x) > 0, then b cnc−bc ≤ k ≤ n;

2. if b(x) > 0 and c(x) < 0, then 1 ≤ k ≤ b cnc−bc;

3. if b(x) > 0 and c(x) ≥ 0 or b(x) ≥ 0 and c(x) > 0, then K = ∅ and q(x) = 0;

4. if b(x) ≤ 0 and c(x) ≤ 0, then 1 ≤ k ≤ n and q(x) = 1.

Recall that γ(x) = p log(w1x) + (1− p) log(w2(1− x)) and γ(x) ≤ γ(p). Let p0 be

the minimal solution in the interval (0,1) of the equation

γ(p) = 0. (2.2.7)

Let f(x) = b(x)/c(x). Then the derivative of f(x) is

f ′(x) =
1
x log(w2(1− x)) + 1

1−x log(w1x)

(log(w2(1− x)))2
.

Let x0 be the minimal solution in the interval (0,1) of the equation

f ′(x) = 0. (2.2.8)

It is clear that p0 = x0 if they exist.

Example 1: Assume that w1 = 1 and w2 = 10. Then p0 = x0 ≈ 0.7613. If

p0 ≤ p < 1, we get γ(p) ≤ 0. Hence γ(x) ≤ 0 and q(x) = 1 for all x ∈ (0, 1). If

0 < p < p0, we get γ(p) > 0. Furthermore, for a fixed p ∈ (0, p0), there exist two

solutions x− and x+ in (0,1) for the equation

γ(x) = 0. (2.2.9)

It is deduced that γ(x) ≤ 0 and q(x) = 1 when 0 < x < x− or x+ ≤ x < 1; γ(x) > 0,

q(x) < 1 and q(x) decreases w.r.t. x when x− < x ≤ x0; and γ(x) > 0, q(x) < 1 and

q(x) increases w.r.t. x when x0 ≤ x < x+.
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Example 2: Assume that w1 = 2 and w2 = 5. Then γ(p) > 0 for all p ∈ (0, 1).

Let xb be the solution of

b(x) = 0. (2.2.10)

Let xc be the solution of

c(x) = 0. (2.2.11)

Furthermore, for a fixed p ∈ (0, 1), there exist two solutions x− and x+ in (0,1) for

the equation

γ(x) = 0 (2.2.12)

since γ(0+) = −∞ and γ(1−) = −∞. It is obtained that γ(x) ≤ 0 and q(x) = 1 when

0 < x < x− or x+ ≤ x < 1; γ(x) > 0, q(x) < 1, and q(x) decreases w.r.t. x when

x− < x < xb; γ(x) > 0, q(x) < 1, and q(x) increases w.r.t. x when xc ≤ x < x+;

q(x) = 0 when xb ≤ x ≤ xc.

Initial size is sufficiently large

Assume that log(Y0) = a ≥ 0. Recall that log(Yn) = log(Y0) +
∑n

i=1 log(ξi), where

{log(ξi)} are i.i.d. random variables. We are interested in the probability that the

random walk {log(Yn)} will reach 0 [Gre80]. The following theorem can be found in

Chapter XII of [Fel71]. It is stated in terms of the Laplace transform F̂ (u) of log(ξi),

F̂ (u) = E
[
e−u log(ξi)

]
.

Theorem 2.2.1. Suppose that there exists κ > 0 such that F̂ (κ) = 1 and F̂
′
(κ) is

finite. For a ≥ 0, let P (a) be the probability that the random walk {log(Yn)} ever

crosses level 0, that is,

P (a) = P
{

inf
n
{log(Yn)} ≤ 0

}
= P

{
inf
n

{
n∑
i=1

log(ξi)

}
≤ −a

}
.

Then P (a) ∼ Ce−κa as a→∞, for some constant C > 0.

The above theorem tells us that for two strategies with different values of κ, the one

with the larger κ-value has a smaller probability of extinction, provided that the initial
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population size is sufficiently large. Among all strategies for which the parameter κ

exists, the strategy that maximizes κ minimizes the probability of extinction for a

large population.

Example 3: Assume that w1 = 1, w2 = 10 and p = 0.6. Then

F̂ (κ) = E
[
e−κ log(ξi)

]
= pe−κ log(w1x) + (1− p)e−κ log(w2(1−x))

= 0.6(x)−κ + 0.4(10(1− x))−κ.

By numerical computation we get that there exists κ > 0 such that F̂ (κ) = 1 and

F̂
′
(κ) is finite when x ∈ (0.25, 0.88) at intervals of 0.01 and κ is maximized when

x = 0.84.

Initial size is a constant

Recall that {log(ξi)} are i.i.d. random variables of two values log(w1x) and log(w2(1−

x)) with probability p and 1− p respectively. Then the expectation of log(ξi) is

γ = E[log(ξi)] = p log(w1x) + (1− p) log(w2(1− x)),

and the variance is

σ2 = V ar(log(ξi)) = p[log(w1x)− γ]2 + (1− p)[log(w2(1− x))− γ]2.

The central limit theorem implies that for each x ∈ (0, 1),

lim
n→∞

P

 log
(
Yn
Y0

)
− γn

(σ2n)1/2
≤ z

 =
1

(2π)1/2

∫ z

−∞
e−u

2/2du, (2.2.13)

if σ2 6= 0. Then for large n the quantity log
(
Yn
Y0

)
behaves approximately as a Wiener

process W with mean γ and variance σ2. For such a Wiener process it is well known

[KT81] that the probability of ever reaching zero starting from a positive w0 is equal

to 1 if γ ≤ 0, and is exp(−2γw0/σ
2) if γ > 0.

The convergence rate of the central limit theorem is of order n−1/2 [Hal82] for

0 < x < 1. The convergence rate is sufficiently fast that even on a short timescale
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the changes in the logarithmic population size can be accurately approximated as a

Wiener process W with constant infinitesimal mean γ and infinitesimal variance σ2.

Hence the extinction probability P (a) = P{infn{log(Yn)} ≤ 0} can be accurately

approximated by exp(−2γa/σ2) if γ > 0 and P (a) = 1 if γ ≤ 0.

Remark: Here we considered the one-dimensional model (2.2.1) of the popula-

tion size. Alternatively, we could consider the evolution of a two-type structured

population in fluctuating environment. For further detail, we refer to [TO80] and

[LO88].

Example 4: Assume that a = 2, w1 = 1, w2 = 10 and p = 0.6. By numerical

computation we get that P (2) is minimized when x = 0.84 at intervals of 0.01.

2.2.4 The mean survival time conditioned on extinction

According to the central limit theorem, the probability distribution of the natural

logarithm of the population size asymptotically approaches a normal distribution.

The rate of approach to normality will be sufficiently fast that even for short times the

changes in logarithmic population size can be accurately approximated as a Wiener

process W with constant infinitesimal mean γ and infinitesimal variance σ2.

As was shown in [LO88], when γ 6= 0, the mean survival time conditioned on

extinction is

E[T | T <∞] = a/|γ|, (2.2.14)

where T = inf{t ≥ 0 |W (t) ≤ 0} and W (0) = log(Y0) = a ≥ 0.

We want to find the optimal allocation strategy to obtain the supremum of the

mean survival time conditioned on extinction, i.e.,

sup
{x∈[0,1]|γ(x)6=0}

E[T | T <∞]. (2.2.15)

Example 5: Assume that w1 = 1, w2 = 2 and p = 0.5. Then the optimal strategy

is x∗ = p = 0.5.
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2.2.5 The discounted expected number of descendants

The discounted expected number of descendants is given by

E

[
τ−1∑
n=0

αnYn

]
, (2.2.16)

where τ = inf{n ≥ 0 | Yn ≤ 1} and α is a constant in the interval (0, 1] satisfying

αmax0≤x≤1(pw1x+ (1− p)w2(1− x)) < 1.

In order to use dynamical programming, we rewrite the population process as

Yn+1 = Yn

(
w1x1{ηn=1} + w2(1− x)1{ηn=2}

)
, (2.2.17)

where {ηn} are i.i.d. random variables of two values 1 and 2 with probability p and

1− p respectively and

1{ηn=1}(ω) =

 1, ηn(ω) = 1;

0, otherwise.

Furthermore, we generalize the original process by assuming that the allocation prob-

ability to two phenotypes can change from one generation to the next generation, i.e.,

we replace x with xn. Then the generalized process evolves according to the equation

Yn+1 = Yn

(
w1xn1{ηn=1} + w2(1− xn)1{ηn=2}

)
. (2.2.18)

Assume that Y0 = y0 ≥ 1.

The problem is to determine the optimal allocation strategy that maximizes the

discounted expected number of descendants. It may be cast within the total cost,

infinite horizon framework, where we consider maximization instead of minimization

[Ber05]. The state space is the set I = [0,∞)∪{∆}, where ∆ is the termination state

to which the system moves with certainty from states in [0, 1] with corresponding

reward equal to 0. When Yn ∈ (1,∞), the system evolves according to (2.2.18). The

reward per stage when Yn ∈ (1,∞) is Yn. The control constraint set is U(y) = [0, 1] =

C for all y ∈ I. Given an initial state y0, we want to find a strategy π = {µ0, µ1, · · · },

where µn : I → C, µn(yn) = xn ∈ U(yn), for all yn ∈ I, n = 0, 1, · · · , that maximizes

the return function

Jπ(y0) = E

[ ∞∑
n=0

αnYn1{Yn>1}

]
. (2.2.19)
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We denote by Π the set of all admissible policies π, i.e., the set of all sequences of

functions π = {µ0, µ1, · · · }, where µn : I → C, µn(yn) = xn ∈ U(yn), for all yn ∈ I,

n = 0, 1, · · · . The optimal return function J∗ is defined by

J∗(y) = max
π∈Π

Jπ(y), y ∈ I. (2.2.20)

An optimal strategy, for a given initial state y, is one that attains the optimal return

J∗(y). A strategy of the form π = {µ, µ, · · · } is referred to as a stationary strategy

µ, and Jπ={µ,µ,··· }(y) is denoted by Jµ(y). We say that µ is optimal if Jµ(y) = J∗(y)

for all states y.

The mapping T that defines the dynamic programming algorithm takes the form

(TJ)(y) =

 max0≤x≤1(y + α(pJ(yw1x) + (1− p)J(yw2(1− x)))), if y ∈ (1,∞),

0, if y ∈ [0, 1],

for any function J : (0,∞)→ [0,∞].

By applying Prop. 3.1.1 in [Ber05], the optimal return function J∗ satisfies Bell-

man’s equation.

Theorem 2.2.2. The optimal return function J∗ satisfies

J∗(y) =

 max0≤x≤1(y + α(pJ∗(yw1x) + (1− p)J∗(yw2(1− x)))), if y ∈ (1,∞),

0, if y ∈ [0, 1].

Or, equivalently,

J∗ = TJ∗.

We now give a characterization of an optimal stationary policy by Prop. 3.1.4 in

[Ber05]:

Theorem 2.2.3. A stationary policy µ is optimal if and only if

TJµ = TµJµ,

where

TµJµ(y) =

 y + α(pJµ(yw1µ(y)) + (1− p)Jµ(yw2(1− µ(y)))), if y ∈ (1,∞),

0, if y ∈ [0, 1].
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Example 6: Assume that w1 = 1, w2 = 10 and p = 0.6. Then for α < 0.25 the

optimal stationary policy µ∗ is given by

µ∗(y) = 0, for all y ∈ I. (2.2.21)

We will show that the strategy µ∗ is indeed an optimal policy. To this end it is

sufficient to show that

TJµ∗ = Tµ∗Jµ∗.

In fact,

Jµ∗(y) =

 c(α)y, if y ∈ (1,∞),

0, if y ∈ [0, 1],

where c(α) = 1
1−4α . Then

Tµ∗Jµ∗(y) =

 y + α(pJµ∗(yw1µ
∗(y)) + (1− p)Jµ∗(yw2(1− µ∗(y)))), if y ∈ (1,∞),

0, if y ∈ [0, 1],

=

 c(α)y, if y ∈ (1,∞),

0, if y ∈ [0, 1].

TJµ∗(y) =

 max0≤x≤1(y + α(pJµ∗(yw1x) + (1− p)Jµ∗(yw2(1− x)))), if y ∈ (1,∞),

0, if y ∈ [0, 1],

=

 c(α)y, if y ∈ (1,∞),

0, if y ∈ [0, 1].

Hence,

TJµ∗ = Tµ∗Jµ∗.

Consequently, the stationary policy µ∗ is optimal.
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2.3 Multitype Galton-Watson branching processes in ran-

dom environments

In this section, we consider the evolution of a structured population with demographic

and environmental stochasticity. The population is modeled as a multitype Galton-

Watson branching process in a random environment (MBPRE).

Assume that the type space is S = {1, 2, · · · , d} and that {Zn = (Z1
n, · · · , Zdn)>}

defined on the probability space (Ω,F , P ) is a multitype Galton-Watson branching

process in a random environment introduced by Athreya and Karlin [AK70] [AK72a]

[AK72b]. Assume that ζ = (ζ0, · · · , ζn, · · · ) is the environmental sequence of the

process defined on the same probability space (Ω,F , P ). Throughout this section we

will assume that ζ is stationary and ergodic. The left shift transformation is denoted

by θ. The expectation operator for P will be denoted by E.

We propose a simple model III which is a combination of the simple model I and

the simple model II. By the convergence theorem of branching processes in random

environments the long-term growth rate of the population is characterized by the

largest Lyapunov exponent. The Random Perron-Frobenius theorem provides an al-

ternative expression for the largest Lyapunov exponent, which is used to deduce an

explicit formula of the largest Lyapunov exponent in the simple model III. The extinc-

tion probability can be approximated using a similar method of Wilkinson. Optimal

strategies that maximize the largest Lyapunov exponent and minimize the approxi-

mate extinction probability are obtained for the simple model III. For simplicity, we

consider the two-dimensional case. However, all results can be easily generalized to

the multi-dimensional case.

2.3.1 Simple model III

Consider the following simple model of a structured population of annual organisms

living in a random environment. The state of the environment in each year is an

independent random variable with 2 states, that is, the environmental states {ζl} are
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i.i.d. and for each l, ζl has two states y1 and y2 that occur with probabilities p1 and p2

respectively. All individuals encounter exactly the same environment in a given year.

At the beginning of its development, each organism has to make a developmental

decision between two possible phenotypes, each of which is best adapted to one of the

two environments. The organisms fitness is given by the following matrix:

Phenotype 1 Phenotype 2

Environment 1 w11 w12

Environment 2 w21 w22

,

where wij > 0. These organisms will be selected to hedge their bets during their

development, developing into phenotypes 1, 2 with positive probabilities x1 and x2

respectively. An organism of phenotype i in environment k will die with probability

dki leaving no offspring and survive with probability 1− dki producing cki offspring,

where 0 < dki < 1 and cki are positive integers.

We model the evolution of the population by using a multitype Galton-Watson

branching process in a random environment. Here S = {1, 2} is the type space for

the phenotype and for the environment. For i, k ∈ S, the fitness of an organism of

phenotype i in environment k is wki = E[‖Z1‖1 | Z0 = ei, ζ0 = yk]. And for i, k ∈ S,

the offspring distribution p
(i)
k of an organism of type i in environment k is as follows:

p
(i)
k (n1, n2) =



dki, n1 = n2 = 0;

(1− dki)

 cki

n1

xn1
1 xn2

2 , n1 + n2 = cki;

0, else.

The corresponding multi-variant probability generating function of p
(i)
k is

φ
(i)
k (s1, s2) = dki + (1− dki)(s1x1 + s2(1− x2))cki .

2.3.2 The growth rate

The growth rate is defined as

lim
n→∞

1

n
log ‖Zn‖1, a.s. conditioned on non-extinction. (2.3.1)
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Tanny [Tan81] showed that the growth rate is equal to the largest Lyapunov exponent.

First of all, we give some notations. Define M(θnω) = [mij((θ
nω)0)]i,j∈S to be the

matrix of expected numbers of progeny conditioned on the environmental sequence

ω = (ω0, · · · , ωn, · · · ). Specially, mij((θ
nω)0) = mij(ωn) = E[Zjn+1 | Zn = ei, ζ = ω]

is the expected number of progeny of type j produced from an individual of type i in

generation n with the environment ωn. We will throughout assume that the random

variable M takes values inM+, whereM+ is the semigroup of positive d×d matrices

(a matrix M = [mij ] is positive, in symbols M > 0, if mij > 0 for all 1 ≤ i, j ≤ d).

It is well-known [AK70][AK72a][AK72b] that

E[Z>n | ζ = ω,Z0] = Z>0 M(ω) · · ·M(θn−1ω).

Then it is important to study the matrix cocycle as in [FK60],

Ψn(ω) := M(ω) · · ·M(θn−1ω), n ∈ N, (2.3.2)

over θ generated by the random variable M : Ω→M+.

As is shown in the following theorem by Tanny [Tan81], the largest Lyapunov

exponent λ := limn→∞
1
n log ‖Ψn‖ is the potential long-term growth rate of the total

population, where ‖ · ‖ denotes the norm of a matrix.

Theorem 2.3.1. Let Zn be an MBPRE with ζ stationary and ergodic and M taking

values in M+. Assume that E[log+ ‖M‖] < ∞, where log+ y denotes max{log y, 0}

for y > 0. Then the following holds:

(i) If λ < 0, the population will become extinct with probability 1.

(ii) If λ > 0, there exists a positive probability that the population never becomes

extinct. Furthermore, conditioned on survival, the growth rate is, with probability 1,

given by limn→∞
1
n log ‖Zn‖1 = λ.

Usually, it is difficult to calculate the largest Lyapunov exponent λ explicitly. How-

ever, the following random Perron-Frobenius theorem [AGD94] provides an alterna-

tive expression of λ. Put for M > 0,

a = min
1≤i,j≤d

mij , A = max
1≤i,j≤d

mij .
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Theorem 2.3.2 (Random Perron-Frobenius Theorem). Consider the product of pos-

itive random matrices (2.3.2) and assume that

log+ 1

a
∈ L1(P ) and log+A ∈ L1(P ),

where L1(P ) denotes the class of all measurable functions f : Ω→ R with
∫

Ω |f(ω)|P (dω) <

∞. Then there is a θ-invariant set Ω̃ ⊆ Ω of full P -measure on which the following

holds:

(i) There exist a unique positive random unit vector l and a positive random scalar ρ

with log ρ ∈ L1(P ) such that

l(ω)>M(ω) = ρ(ω)l(θω)>.

(ii) λ = E log ρ.

Now we explore the solution to the allocation problem w.r.t. the growth rate in

the simple model III. Recall that mij(k) = E[Zj1 | Z0 = ei, ζ0 = yk].

Lemma 2.3.1. mij(k) = wkixj .

Proof. The result follows from the definitions of wki and xj and the properties of the

binomial distribution.

Lemma 2.3.2. For each k, the conditional mean matrix M(k) = [mij(k)]i,j∈S is

a rank one matrix and its dominant eigenvalue is given by ρk =
∑

i∈S wkixi with

corresponding left eigenvector l = (x1, x2).

Proof. The result follows from properties of rank one matrix.

Lemma 2.3.3. λ = E log ρ =
∑

k∈S pk log(
∑

i∈S wkixi).

Proof. The result follows from properties of the product measure on the product

space.

Remark 1: Dombry, Mazza and Bansaye [DMB09] used a multitype branching

process in a random environment to model the population growth and looked for the
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optimal type allocation strategy that maximizes the net growth rate. They character-

ized the net growth rate as limn→∞
1
n logE[‖Zn‖1 | ζ] a.s.. In our example, under the

assumption that wij > 0 for each i, j ∈ S, xk > 0 for k ∈ S and ζ is i.i.d, it is obvious

that limn→∞
1
n logE[‖Zn‖1 | ζ] = limn→∞

1
n log ‖Zn‖1 =

∑
k∈S pk log(

∑
i∈S wkixi)

a.s.. However, these two characterizations of the growth rate are not always the

same. For example, when w12 = w21 = 0 and w11 > 0, w22 > 0, Prop. 1 in [DMB09]

shows that limn→∞
1
n logE[‖Zn‖1 | ζ] = p1 logw11x1 + p2 logw22x2 a.s. while in our

work the largest Lyapunov exponent λ := limn→∞
1
n log ‖ Ψn ‖= −∞ and the relation

between λ and limn→∞
1
n log ‖Zn‖1 is unsolved.

Remark 2: Similarly as in the simple model I, there are also two extreme cases of

the simple model III corresponding to xi = 1 respectively. The extreme cases can be

modeled by ith-type one-dimensional branching process in a random environment. As-

sume that wij > 0 for i, j ∈ S, then the expression λ =
∑

k∈S pk log(
∑

i∈S wkixi) still

holds when xi = 1. So we want to find the strategy that maximizes
∑

k∈S pk log(
∑

i∈S wkixi)

subject to the constraints that the fractional investments in the various phenotypes

sum to one, i.e.
∑

i∈S xi = 1 with xi ≥ 0.

Example 7: Let the fitness matrix be given by

 a 1

1 b

, where 1 < b < a. Let

the probability of environment 1 be given by p. Then the growth rate is

λ(x) = p log[ax+ (1− x)] + (1− p) log[x+ b(1− x)], (2.3.3)

for 0 ≤ x ≤ 1. By a direct calculation, we get the choice of x∗(p) that maximizes the

growth rate given the probability p of environment 1 is :

x∗(p) =


p(ab−1)−(b−1)

(a−1)(b−1) , b−1
ab−1 < p < a(b−1)

ab−1 ;

0, 0 < p ≤ b−1
ab−1 ;

1, a(b−1)
ab−1 ≤ p < 1.

(2.3.4)

2.3.3 The extinction probability

Let Zn be a two-type branching process in an i.i.d. random environment with two

states. Let T denote the set of all two-dimensional vectors whose components are

non-negative integers.
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Definition 2.3.1. For C ≥ 1 and N a positive integer, let M(C,N) be a class of

2 × 2 non-negative, finite matrices such that if Mi ∈ M(C,N) for i = 1, · · · , N and

M = M1M2 · · ·MN , then

(a) M is positive and

(b) 1 ≤ [maxi,jM(i, j)]/[mini,jM(i, j)] ≤ C <∞.

Definition 2.3.2. For a ∈ T, let q(a) denote the extinction probability of the MBPRE

given that Z0 = a; that is,

q(a) = P{Zn = 0 for some n | Z0 = a}.

Definition 2.3.3. Consider the discrete parameter vector Markov process Xn taking

values in [0, 1]2 and defined as follows: for arbitrary, but fixed s ∈ [0, 1]2,

X0 = s,

Xn+1 = φ(ζn,Xn),

where φ = (φ(1), φ(2)) is the multivariate probability generating functions (mpgf) of

offspring distribution. The stochastic process Xn will be called the dual process asso-

ciated with the MBPRE.

Since the dual process takes only values in the unit square-cube, Xn converges in

distribution to some random vector X as n → ∞. Further, X takes only values in

[0, 1]2 and

q(a) = E

 2∏
j=1

X
aj
j

 =: E[Xa], a ∈ T.

We count the set T along the diagonal, i.e., T = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), · · · },

renumber them as {0, 1, 2, 3, 4, 5, · · · }. Denote q(a) as qi with i = 1+2+· · ·+‖a‖1+a2

and write P
(i)
k = P{Z1 = b | Z0 = a} with k = 1 + 2 + · · · + ‖b‖1 + b2 and

i = 1 + 2 + · · ·+ ‖a‖1 + a2.

It is easily seen that the sequence q1, q2, · · · of extinction probabilities satisfies the
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following system of equations [Wil69]

q1 = P
(1)
0 + P

(1)
1 q1 + P

(1)
2 q2 + · · ·+ P (1)

n qn + · · · ,

q2 = P
(2)
0 + P

(2)
1 q1 + P

(2)
2 q2 + · · ·+ P (2)

n qn + · · · ,

· · · ,

qn = P
(n)
0 + P

(n)
1 q1 + P

(n)
2 q2 + · · ·+ P (n)

n qn + · · · ,

· · · .

Suppose we write the first n equations from above as follows:

q1 = P
(1)
0 + P

(1)
1 q1 + P

(1)
2 q2 + · · ·+ P (1)

n qn + c(1)
n ,

q2 = P
(2)
0 + P

(2)
1 q1 + P

(2)
2 q2 + · · ·+ P (2)

n qn + c(2)
n ,

· · · ,

qn = P
(n)
0 + P

(n)
1 q1 + P

(n)
2 q2 + · · ·+ P (n)

n qn + c(n)
n .

We write

An =


P

(1)
1 P

(1)
2 · · · P

(1)
n

P
(2)
1 P

(2)
2 · · · P

(2)
n

· · · · · · · · · · · ·

P
(n)
1 P

(n)
2 · · · P

(n)
n

 .

Write qn = (q1, q2, · · · , qn)>, pn = (P
(1)
0 , P

(2)
0 , · · · , P (n)

0 )>, and cn = (c
(1)
n , c

(2)
n , · · · , c(n)

n )>.

Then the above equation can be written

(I−An)qn = pn + cn, (2.3.5)

where I is the identity matrix.

Theorem 2.3.3. Suppose the environmental random variable {ζn} takes only finitely

many states. Further, suppose that the conditional mean matrix {M(ζn)} takes only

values in some space M(C,N). Suppose that the largest Lyapunov exponent satisfies

λ > 0. Suppose that the mpgf of conditional offspring distribution satisfies φζn(s) > 0
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for some state of ζn. Let {γj}j∈N be a decreasing sequence of real numbers tending to

zero. Suppose that

q(a) ≤ γ‖a‖1 , for a ∈ T.

Then for each n = 2 + 3 + · · · + (‖a‖1 + 1), the vector qn of extinction probabilities

satisfies the inequality

(I−An)−1pn ≤ qn ≤ (I−An)−1pn + γ‖a‖1+11. (2.3.6)

Proof. We follow the proof of Theorem 2.1 in [Wil69]. Since φζn(s) > 0 for some state

of ζn, we have P
(k)
0 > 0 for all k = 1, 2, · · · , n, and it follows that An is a non-negative

matrix whose row sums are all less than 1. From the theory of non-negative matrices,

it follows that An has a real non-negative eigenvalue ρn such that no eigenvalue of An

has modulus exceeding ρn. Further, if sn and Sn denote respectively the minimum

and maximum row sums of An, then

sn ≤ ρn ≤ Sn,

and, since Sn < 1, we have ρn < 1.

Since ρn < 1, it follows that |I −An| 6= 0. Hence (I −An)−1 exists for all n, and

furthermore

(ρI−An)−1 ≥ 0, for ρ > ρn.

In particular, therefore, (I−An)−1 ≥ 0. We thus obtain

qn = (I−An)−1[pn + cn].

From

q(a) ≤ γ‖a‖1 ,

it follows that for n = 2 + · · ·+ ‖a‖1 and for i = 1, · · · , n,

c(i)
n ≤ γ‖a‖1+1

(
1−

n∑
r=0

P (i)
r

)
< γ‖a‖1+1

(
1−

n∑
r=1

P (i)
r

)
= γ‖a‖1+1r

(i)
n
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where r
(i)
n , is the ith row sum of (I−An).

Since (I−An)−1 is a non-negative matrix, and cn is a non-negative vector,

(I−An)−1pn ≤ qn ≤ (I−An)−1[pn + γ‖a‖1+1rn], (2.3.7)

where rn = (r
(1)
n , r

(2)
n , · · · , r(n)

n )>. But rn = (I−An)1, so we get

(I−An)−1pn ≤ qn ≤ (I−An)−1pn + γ‖a‖1+11. (2.3.8)

Corollary 2.3.1. Suppose the mpgf φ
(i)
r (s), i, r = 1, 2 are all such that for some

γ < 1,

φ(i)
r (s, s) ≤ s, for s ≥ γ. (2.3.9)

Then for n = 2 + 3 + · · ·+ (‖a‖1 + 1),

(I−An)−1pn ≤ qn ≤ (I−An)−1pn + γ‖a‖1+11. (2.3.10)

Proof.

q(a) = E[Xa]

= lim
n→∞

E[Xa
n | X0 = 0]

≤ lim
n→∞

E[Xa
n | X0 = (γ, γ)]

≤ γ‖a‖1 .

Remark: Bourgin and Cogburn deduced an error estimate of the approximate

extinction probability in the case that the branching chain is one-dimensional and the

environmental process is a two-state Markov chain, see (Theorem 7, [BC81]). A direct

generalization of their result to two-dimensional branching chain is the following. Let

q(r,a) be the extinction probability of the process started at (r,a) and q(n)(r,a) be

the approximation of q(r,a) for n ∈ {2 + 3 + · · · + (‖a‖1 + 1) | a ∈ T \ {0}}. Let

φ
(i)
r (s) denote the probability generating function for the offspring distribution of a

single particle of type i in environment r and γ
(i)
r denote the smallest solution of

φ
(i)
r (s, s) = s.
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Theorem 2.3.4. If γ = max
{
γ

(1)
1 , γ

(2)
1 , γ

(1)
2 , γ

(2)
2

}
< 1, then q(r,a) ≤ φr(γ, γ)a ≡

φ
(1)
r (γ, γ)a1φ

(2)
r (γ, γ)a2 and δn = ‖q− q(n)‖ ≤ γ‖a‖1+1, for n = 2+3+ · · ·+(‖a‖1 +1).

Example 8: Let the fitness matrix be given by

 1.8 1.5

1.5 1.6

 and the probability

of environment 1 be given by p = 0.28. The mpgf are

φ
(1)
1 (s) = 0.1 + 0.9(s1x+ s2(1− x))2

φ
(2)
1 (s) = 0.25 + 0.75(s1x+ s2(1− x))2

φ
(1)
2 (s) = 0.25 + 0.75(s1x+ s2(1− x))2

φ
(2)
2 (s) = 0.2 + 0.8(s1x+ s2(1− x))2.

We want to find the optimal x that minimizes (I −An)−1pn. By numerical com-

putation, we find that xoptq ≈ 0.45 (while xoptλ ≈ 0.88).
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Chapter 3

Variational characterization

In this chapter we develop a variational principle for models that are described by

multitype Galton-Watson branching processes. We take the point of view of individ-

ual lineages through time, their ancestry and genealogy. First of all, the asymptotic

properties of the branching process forward in time are, to a large extent, determined

by the principle eigenvalue ρ of the mean matrix M , the associated right eigenvector

u and left eigenvector v (Theorem 3.1.2). We introduce the retrospective process and

identify it with the mutation process describing the type evolution along typical lin-

eages of the branching process (Theorem 3.2.1). Furthermore, the asymptotic growth

rate log ρ of the branching process satisfies a variational principle and the distribu-

tion of the retrospective process is the unique equilibrium state for the variational

characterization (Theorem 3.3.1).

3.1 The asymptotic properties

In this section, we use the same notations for multitype Galton-Watson branching

processes as in section 2.1. Let the type space be given by S = {1, · · · , d}. Let

{Zn = (Z1
n, · · · , Zdn)>} denote a d-type Galton-Watson branching process where Zin

stands for the size of type i individuals in generation n with i = 1, · · · , d. Define

M = (mij)i,j∈S to be the matrix of expected numbers of progeny. We will assume

throughout that the mean matrix M of the branching process is positive (i.e. each
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component satisfies mij > 0). Note that we make a stronger assumption on M than

that in section 2.1. Perron-Frobenius theory then tells us that M has a principal

eigenvalue ρ and associated positive right and left eigenvectors u and v which will be

normalized so that 〈u, v〉 = 1 and 〈v,1〉 = 1. We will further assume that ρ > 1, i.e.,

the branching process is supercritical. Write λ = log ρ.

The Kesten-Stigum theorem ([KS66],[AN72]) says the following:

Theorem 3.1.1. There is a scalar random variable W such that

lim
n→∞

Zn
ρn

= Wv a.s. (3.1.1)

and P{W > 0} > 0 iff

Ei[Zj1 logZj1] <∞ for all 1 ≤ i, j ≤ d. (3.1.2)

When (3.1.2) holds,

Ei[W ] = ui, i = 1, · · · , d. (3.1.3)

Remark: The Kesten-Stigum theorem also holds for one-type Galton-Watson

branching processes in random environments. However, a generalization to multi-

type Galton-Watson branching processes in random environments is not known.

The asymptotic properties of the branching process forward in time are, to a large

extent, determined by ρ, u and v. As is shown in the following theorem, log ρ is equal

to the growth rate of the population size, u is a measure of the relative contribution

made to the stationary population by each type, and v is the stationary composition

of the population.

Theorem 3.1.2. Assume Ei[Zj1 logZj1] <∞, for all 1 ≤ i, j ≤ d. Then

lim
n→∞

1

n
log ‖Zn‖1 = log ρ = λ, a.s. conditioned on non-extinction, (3.1.4)

lim
n→∞

Ei[‖Zn‖1]

ρn
= ui, for all 1 ≤ i, j ≤ d, and (3.1.5)

lim
n→∞

Zn
‖Zn‖1

= v, a.s. conditioned on non-extinction. (3.1.6)
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Proof. By the Kesten-Stigum theorem, conditioned on non-extinction,

lim
n→∞

1

n
log ‖Zn‖1

= lim
n→∞

1

n
log(ρn〈v,1〉W )

= log ρ+ lim
n→∞

1

n
logW

= log ρ.

Similarly,

lim
n→∞

Ei[‖Zn‖1]

ρn

= 〈v,1〉Ei[W ]

= ui.

As is shown in Theorem 2 of [KLP97],

lim
n→∞

Zn
‖Zn‖1

= v.

3.2 The retrospective process

We consider the type process along a representative line of the multitype Galton-

Watson branching process with positive mean matrix M . Specially, the so-called

retrospective process ([Jag89],[Jag92],[GB03]), defined below, plays an important role

in the description of the equilibrium state for the variational characterization.

Definition 3.2.1. The retrospective process {ηn} is an S-valued Markov chain with

transition matrix G whose ijth component is given by gij =
ujmij
ρui

and corresponding

stationary distribution α whose ith component is equal to αi = uivi.

The retrospective process was introduced by Jagers ([Jag89], p.195) and may be

interpreted as the forward version of the backward Markov chain ([JN96], Proposition

1) that results from picking individuals randomly from the stationary type distribu-

tion v and following their lines of descent backward in time. As observed by Jagers
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([Jag92], Corollary 1), and Jagers and Nerman ([JN96], Proposition 1), the probabil-

ity vector α describes the distribution of ancestral types of an equilibrium population

with type frequencies given by v.

Let Σ = SZ+ be trajectory space of the stationary doubly infinite retrospective

process. And let σ be a shift map on Σ. Then {ηn} may be viewed as a stationary

ergodic process with σ-invariant measure µ whose finite dimensional distribution is

given by µ(ηj = i0, · · · , ηj+n = in) = αi0
∏n
k=1 gik−1ik . Our result below shed some

light on the significance of the distribution µ of the doubly infinite retrospective

process. To state this result we need some preparations.

We start with a description of the multitype Galton-Watson family tree according

to ([Har63], Chapter VI) and [GB03]. Let X =
⋃
n≥0 Xn, where Xn describes the

virtual nth generation. That is, X0 = S, and i0 ∈ X0 specifies the type of the

root, i.e. the founding ancestor. Next, X1 = S × N, and the element x = (i1; l1) ∈

X1 is the l1th child of type i1 of the root. Finally, for n > 1, Xn = Sn × Nn,

and x = (i1, · · · , in; l1, · · · , ln) ∈ Xn is the lnth child of type in of its parent x̃ =

(i1, · · · , in−1; l1, · · · , ln−1). We write t(x) = in for the type of x ∈ Xn. With each

x ∈ X we associate its random offspring Nx = [Nx,j ]j∈S ∈ Zd+ with distribution pt(x)

such that the family {Nx : x ∈ X} is independent. The random variables Nx indicate

which of the virtual individuals x ∈ X are actually realized, namely those in the

random set X =
⋃
n≥0Xn defined recursively by

X0 = i0, Xn = {x = (x̃; in, ln) ∈ Xn : x̃ ∈ Xn−1, ln ≤ Nx̃,in},

where i0 is the prescribed type of the root. The family tree is completely determined

by the process {Xn}n≥0. We write P i for the distribution of {Xn}n≥0 and Ei for the

associated expectation, when the type of the root is i0 = i. The branching process

refers to the counting measures

Zn =
∑
x∈Xn

δt(x),

on S, where δi is the Dirac measure at i.

We then introduce the time-averaged type evolution process of an individual in the
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population tree. For n > 0 and x ∈ Xn, let t(x)n, per ∈ Σ be defined by

t(x)n, per(m) = t(x(mn)), m ∈ Z,

where mn is the unique integer in {0, 1, · · · , n− 1} with m ≡ mn mod n, and x(mn)

is the unique ancestor of x living at time mn. The time-averaged type evolution of x

is then described by the empirical type evolution process

Rxn =
1

n

n−1∑
m=0

δσmt(x)n, per ∈ Pσ(Σ),

where Pσ(Σ) is the set of all probability measures on Σ which are invariant under the

shift σ.

We are interested in the typical behavior of Rxn when x is picked at random from

the population Xn at time n. This is captured in the empirical distribution of the

mapping x 7→ Rxn from Xn to Pσ(Σ), i.e. the population average

Γn :=
1

|Xn|
∑
x∈Xn

δRxn ,

where |Xn| denotes the total size of the population at time n and |Xn| = ‖Zn‖1. This

definition requires that Xn 6= ∅. The population average Γn is a random element of

the set P(Pσ(Σ)) of all probability measures on the space Pσ(Σ). Then the theorem

below identifies the process describing the type evolution along typical lineages.

Theorem 3.2.1. Let λ > 0 and i ∈ S. Then

lim
n→∞

Γn = δµ, P
i-almost surely conditioned on survival,

where µ ∈ Pσ(Σ) is the distribution of the stationary doubly infinite retrospective

process {ηn} .

Remark: Georgii and Baake [GB03] proved this result for multitype Markov

branching processes in continuous time. We show the discrete-time version here.

A crucial ingredient in the proof is a representation of the family tree in terms of a

size-biased tree with trunk (with the retrospective process running along the trunk).
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The size-biased tree {X̂n}n≥0 was introduced by Lyons et al. [LPP95] and Kurtz et

al. [KLP97], and it is constructed as follows: Set the size-biased offspring distribution

p̂ik :=
pik〈k, u〉
ρui

,

where 〈k, u〉 =
∑

j kjuj . Start with one individual ξ0 of type i. Generate offspring

according to the distribution p̂ik. Pick one of these offspring ξ1 as the successor on

the trunk, with children being picked with probability proportional to uj when their

type is j. The successor ξ1 gets an independent number of offspring according to the

probability p̂jk if its type is j, while the other children that do not belong to the trunk

get ordinary descendant trees. Again, pick one of the offspring of ξ1 as a further

successor of the trunk, call it ξ2, and give the others ordinary descendant trees, and

so on. Define the measure P̂ i∗ as the joint distribution of the random sized-biased tree

{X̂n}n≥0 and the random trunk (ξ0, ξ1, ξ2, · · · ), and P̂ i for its marginal on the space

of trees. Note that the type process along the trunk, ηn = t(ξn), is a copy of the

retrospective process. The lemma below establishes the relationship between P i, P̂ i∗,

and the retrospective process. We use the shorthand y[0, n] for a path (y0, y1, · · · , yn)

and for any x ∈ Xn, the path x[0, n] denotes the path starting from the root, not

backtracking, through x. Denote Bf (X) for the set of all finite subset of X.

Lemma 3.2.1. Let n > 0 and i ∈ S, and let F : Bf (X)n+1 × Xn+1 → [0,∞) be any

measurable function. Then we have

Êi∗

[
F (X̂[0, n], ξ[0, n])

]
=

1

ρnui
Ei

[ ∑
x∈Xn

F (X[0, n], x[0, n])ut(x)

]
.

Proof. The result follows from the measure change in [KLP97].

Another ingredient is the Donsker-Varadhan large deviation principle for the ret-

rospective process [Var88][DS89]. For every ν ∈ Pσ(Σ), let

HG(ν) = sup
n≥1

h(ν[0,n]; ν[0,n−1] ⊗n G)

be the process-level large deviation rate function for the retrospective process with

transition matrix G. In the above, ν[0,n] is the restriction of ν to the sequence [0, n],
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ν[0,n−1] ⊗n G is the product of the measure ν[0,n−1] and the transition kernel G, and

h(ν[0,n]; ν[0,n−1] ⊗n G) is their relative entropy. See ([DS89], Equation 4.4.11).

Lemma 3.2.2. For the empirical type evolution process of the retrospective process

Rξn, we have for i ∈ S and closed F ⊂ Pσ(Σ),

lim sup
n→∞

1

n
log P̂ i∗

{
Rξn ∈ F

}
≤ − inf

ν∈F
HG(ν),

while, for open O ⊂ Pσ(Σ),

lim inf
n→∞

1

n
log P̂ i∗

{
Rξn ∈ O

}
≥ − inf

ν∈O
HG(ν).

Moreover, the function HG is lower semicontinuous with compact level sets and attains

its minimum 0 precisely at µ.

These two ingredients together imply a large deviation principle for the typical type

evolution along the surviving lineages in the tree as follows.

Lemma 3.2.3. For the empirical type evolution process Rxn, we have for i ∈ S and

closed F ⊂ Pσ(Σ),

lim sup
n→∞

1

n
logEi

[ ∑
x∈Xn

1{Rxn∈F}

]
≤ λ− inf

ν∈F
HG(ν),

while, for open O ⊂ Pσ(Σ),

lim inf
n→∞

1

n
logEi

[ ∑
x∈Xn

1{Rxn∈O}

]
≥ λ− inf

ν∈O
HG(ν).

Moreover, the function HG is lower semicontinuous with compact level sets and attains

its minimum 0 precisely at µ.

Proof. In view of Lemma 3.2.1, for every closed F ⊂ Pσ(Σ) we have

Ei

[ ∑
x∈Xn

1{Rxn∈F}

]
= uiρ

nÊi∗

[
1{Rξn∈F}

u−1
t(ξn)

]
≤ uiρ

n max
j∈S

u−1
j P̂ i∗

{
Rξn ∈ F

}
.
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Then applying Lemma 3.2.2, we get

lim sup
n→∞

1

n
logEi

[ ∑
x∈Xn

1{Rxn∈F}

]
≤ λ− inf

ν∈F
HG(ν).

Similarly, for every open O ⊂ Pσ(Σ)

lim inf
n→∞

1

n
logEi

[ ∑
x∈Xn

1{Rxn∈O}

]
≥ λ− inf

ν∈O
HG(ν).

We are now ready for the proof of Theorem 3.2.1.

Proof of Theorem 3.2.1. Let d be a metric on Pσ(Σ). For any fixed ε > 0, we consider

the set C = {ν ∈ Pσ(Σ) : d(ν, µ) ≥ ε}, which is the complement of the open ε-

neighborhood of µ. Since C is closed and HG has compact level sets and attains its

minimum 0 only at µ, the infimum c := infν∈C HG(ν) is strictly positive. We can

therefore choose a constant γ such that λ− c < log γ < λ. Then we write

1

|Xn|
∑
x∈Xn

1{Rxn∈C}

=

(
γn

|Xn|

)(
γ−n

∑
x∈Xn

1{Rxn∈C}

)

and show that each factor tends to 0 almost surely conditioned on survival.

On the one hand, by Lemma 3 and 4 in [KLP97],

lim
n→∞

1

Zjn

∑
x∈Xj

n

|X(x, n+ 1)| = Ej [|X1|] a.s.,

where |X(x, n+ 1)| denotes the size of descendants of x living at time n+ 1. Then,

|Xn+1|
|Xn|

=
∑
j∈S

Zjn
‖Zn‖1

1

Zjn

∑
x∈Xj

n

|X(x, n+ 1)|

→
∑
j∈S

vjE
j [|X1|]

= ρ = eλ,
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as n → ∞ a.s. conditioned on survival. Hence γn

|Xn| ∼ (γρ )n → 0 a.s. conditioned on

survival.

On the other hand, we obtain for any a > 0 that

lim sup
n→∞

1

n
logP i

{
γ−n

∑
x∈Xn

1{Rxn∈C} ≥ a

}

≤ lim sup
n→∞

1

n
logEi

[
γ−n

∑
x∈Xn

1{Rxn∈C}

]
≤ − log γ + λ− c < 0.

Then
∑

n P
i{γ−n

∑
x∈Xn 1{Rxn∈C} ≥ a} <∞ and Borel-Cantelli lemma [Kal01] shows

that γ−n
∑

x∈Xn 1{Rxn∈C} → 0 as n→∞ a.s.

Hence, P i-a.s. conditioned on survival, Γn(F )→ 0 for each closed F ⊂ Pσ(Σ) with

µ 6∈ F . According to the portmanteau theorem ([EK86], Theorem 3.1), limn→∞ Γn =

δµ, P i-a.s. conditioned on survival.

3.3 Variational characterization of the growth rate

Let hν(σ) denote the Kolmogorov-Sinai entropy for the shift σ with respect to ν ∈

Pσ(Σ). The entropy of the stationary retrospective process can be computed as follows

(cf. 4.27 in [Wal82] or example 5 on page 136 in [Jos05]).

Lemma 3.3.1. The Kolmogorov-Sinai entropy of the retrospective process {ηn} is

hµ(σ) = −
∑
i,j∈S

αigij log gij .

As is in [Dem83], the quantity hµ(σ) describes the rate of increase of the number

of typical genealogies. Roughly speaking hµ(σ) corresponds to the total number of

reproductives in the population. Let [ηn] denote the sequence {η0, η1, · · · , ηn}. Then

µ([ηn]) = αη0
∏n−1
k=0 gηkηk+1

, a.s.

Lemma 3.3.2.

lim
n→∞

− 1

n
logµ([ηn]) = hµ(σ), a.s.
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Proof. By the ergodic theorem [Kal01], we have

lim
n→∞

− 1

n
logµ([ηn])

= lim
n→∞

− 1

n

(
logαη0 +

n−1∑
k=0

log gηkηk+1

)
= −E[log gη0η1 ]

= −
∑
i,j∈S

αigij log gij

= hµ(σ), a.s.

If the population is sufficiently large and will survives forever, then the law of large

number theory tells us that the population can be approximated by the deterministic

dynamics E[Z>n+1] = E[Z>n ]M . Consequently, the shift on Σ, which is only concerned

with the genealogical history of living individuals in the population, corresponds to

the asymptotic dynamics defined by the matrix M . Motivated by this fact, we define

a potential function ϕM

(
~i
)

:= logmi0i1 , for any sequence ~i ∈ Σ. Furthermore, define

the reproductive potential with respect to ν ∈ Pσ(Σ) as Φν(M) =
∫

Σ logmi0i1dν
(
~i
)

.

Lemma 3.3.3. The reproductive potential of {ηn} is

Φµ(M) =
∑
i,j∈S

αigij logmij .

Proof. The result follows immediately from the finite dimensional distribution of µ.

Then the growth rate λ := log ρ of the branching process, the entropy hµ(σ) of the

retrospective process and reproductive potential Φµ(M) of the retrospective process

satisfies the following relation.

Lemma 3.3.4.

λ = hµ(σ) + Φµ(M).
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Proof. By Lemma 3.3.1 and Lemma 3.3.3, we have

hµ(σ) + Φµ(M)

= −
∑
i,j∈S

αigij log gij +
∑
i,j∈S

αigij logmij

= −
∑
i,j∈S

αigij log
ujmij

ρui
+
∑
i,j∈S

αigij logmij

= log ρ+
∑
i∈S

αi log ui

∑
j∈S

gij

−∑
j∈S

(∑
i∈S

αigij

)
log uj

= λ+
∑
i∈S

αi log ui −
∑
j∈S

αj log uj

= λ.

By invoking the thermodynamic formalism described in [Rue78] and following the

proof of Theorem 4.3 in [AGD94], we will show that the asymptotic growth rate of

the branching process satisfies a variational principle which is formally analogous to

the minimization of the free energy in statistical mechanics.

Theorem 3.3.1. The growth rate λ of the branching process satisfies an extremal

principle:

λ = sup
ν∈Pσ(Σ)

{hν(σ) + Φν(M)}

and the distribution µ of the retrospective process is the unique measure of Pσ(Σ) such

that

λ = hµ(σ) + Φµ(M).

For the proof we will need the following simple information theory result.

Lemma 3.3.5. If (p1, · · · , pd) and (q1, · · · , qd) are two probability vectors and pi > 0

for 1 ≤ i ≤ d, then

d∑
i=1

qi log pi −
d∑
i=1

qi log qi ≤ 0

with equality if and only if pi = qi for 1 ≤ i ≤ d.
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Proof of Theorem 3.3.1. For ν ∈ Pσ(Σ), choose

pj

(
~i
)

=
αjgj,i1
αi1

and

qj

(
~i
)

= Eν
[
χCj | σ−1(B(Σ))

] (
~i
)
,

where Eν
[
· | σ−1(B(Σ))

]
denotes the conditional expectation w.r.t. σ−1(B(Σ)), Cj :={

~i ∈ Σ | i0 = j
}

and χC denotes the characteristic function corresponding to a set C.

Then we deduce from the Lemma 3.3.5 by integration that∫
Σ

∑
j

qj

(
~i
)

log pj

(
~i
)
dν
(
~i
)
−
∫

Σ

∑
j

qj

(
~i
)

log qj

(
~i
)
dν
(
~i
)
≤ 0.

On the one hand, it follows that∫
Σ

∑
j

qj

(
~i
)

log pj

(
~i
)
dν
(
~i
)

=

∫
Σ

∑
j

Eν
[
χCj | σ−1(B(Σ))

] (
~i
)

log
αjgj,i1
αi1

dν
(
~i
)

=
∑
j

∫
Σ
χCj

(
~i
)

log
αjgj,i1
αi1

dν
(
~i
)

=
∑
j

∫
Cj

log gj,i1dν
(
~i
)

= Φν(M)− λ.

On the other hand, we have∫
Σ

∑
j

qj

(
~i
)

log qj

(
~i
)
dν
(
~i
)

=

∫
Σ

∑
j

Eν
[
χCj | σ−1(B(Σ))

] (
~i
)

logEν
[
χCj | σ−1(B(Σ))

]
dν
(
~i
)

=

∫
Σ

∑
j

χCj

(
~i
)

logEν
[
χCj | σ−1(B(Σ))

]
dν
(
~i
)

= −hν(σ).

Hence, we obtain that

λ ≥ hν(σ) + Φν(M). (3.3.1)
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The equality in (3.3.1) holds if and only if pj

(
~i
)

= qj

(
~i
)
ν−a.s. This condition is

equivalent to∫
Σ
f
(
~i
) αjgj,i1

αi1
dν
(
~i
)

=

∫
Σ
f
(
~i
)
Eν
[
χCj | σ−1(B(Σ))

] (
~i
)
dν
(
~i
)

for all B(Σ)− measurable functions f . If we choose in particular f = χCa1,··· ,an , where

Ca1,··· ,an :=
{
~i ∈ Σ | i1 = a1, · · · , in = an

}
, then we obtain the condition

ν(Cj,a1,··· ,an) =
αjgj,a1
αa1

ν(Ca1,··· ,an)

By iteration this yields that

ν(Cj,a1,··· ,an) = αjgj,a1 · · · gan−1an .

Hence the resulting measure is equal to µ.
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Chapter 4

Continuous approximation

In this chapter, we firstly construct a multitype Markov branching process in a random

environment (Proposition 4.1.1). When conditioned on the random environment, we

deduce the Kolmogorov equations and the mean matrix for the conditioned branch-

ing process (Proposition 4.2.1-4.2.3). Then we introduce a parallel mutation-selection

Markov branching process in a random environment and analyze its instability prop-

erty (Theorem 4.3.2). Finally, we deduce a weak convergence result for a sequence

of the parallel Markov branching processes in random environments (Theorem 4.4.1)

and give examples for applications.

4.1 Multitype Markov branching processes in random

environments

In the multitype Galton-Watson branching process the lifetime of each individual was

one unit of time. A natural generalization is to allow these lifetimes to be random

variables. Instead of the discrete time multitype Galton-Watson branching process

in a random environment, now we consider a continuous time multitype Markov

branching process in a random environment, denoted by {Z(t)}t≥0. We postulate that

when conditioned on the random environment, {Z(t)}t≥0 behaves as a continuous time

non-homogeneous vector-valued Markov branching process. Processes of this type are
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discussed in Chap. 5 of [Har63] and the references therein. However, a generalization

to multitype Markov branching processes in random environments is not known. We

will give a description and construction of such processes.

Firstly, we give some notations. Let (Ω,F , P, {Ft}t≥0) be a complete filtered proba-

bility space. Let E denote the expectation operator for P . Let the type space be given

by S = {1, · · · , d}. Let {Z(t) = (Z1(t), · · · , Zd(t))>}t≥0 denote a multitype Markov

branching process in a random environment defined on (Ω,F , P ), where Zi(t) stands

for the number of individuals of type i at time t for i ∈ S. Assume Z(0) is non-

random. Let {η(t)}t≥0 denote the environmental process of the Markov branching

process defined on (Ω,F , P ).

Due to the random environment, both the rate of splitting λ(i) and offspring distri-

bution {p(i)
γ }γ∈Zd+ of an individual of type i are measurable functions of the environ-

mental process {η(t)}t≥0, where Zd+ = {n = (n1, · · · , nd)> | ni nonnegative integer}.

Hence they are themselves stochastic processes on (Ω,F , P ). For each t ≥ 0 and

ω ∈ Ω, λ(i)(t, ω) denotes the rate of splitting of an individual of type i at time t under

a realization ω, i.e., an individual of type i has a probability λ(i)(t, ω)∆t + o(∆t) of

dying in the interval (t, t + ∆t) under a realization ω. For each t ≥ 0 and ω ∈ Ω,

{p(i)
γ (t, ω)}γ∈Zd+ denotes the offspring distribution of an individual of type i at time

t under a realization ω. Define the splitting intensities of the branching process as

Λ
(i)
γ (t, ω) = λ(i)(t, ω)p

(i)
γ (t, ω), for i ∈ S and γ ∈ Zd+. Note that Λ

(i)
γ for i ∈ S and

γ ∈ Zd+ are themselves nonnegative stochastic processes defined on (Ω,F , P ). It is

customary to only consider splitting intensities with Λ
(i)
ei = 0 for each i ∈ S, i.e., we

omit the possibility of a death of an individual followed by replacement by itself since

this represents no change in the situation because of the lack of dependence on age.

Write Z̃d+ =
⋃
i∈S{n−ei | n ∈ Zd+}, where ei is a column vector with ith component

equal to 1 and others 0. For each α ∈ Z̃d+, we write Λα = (Λ
(1)
α+e1 , · · · ,Λ

(d)
α+ed

)>, and

Λα · Z =
∑

j∈S Λ
(j)
α+ej

Zj . Write Λ = {Λα, α ∈ Z̃d+}. We want that the conditional

transition probability of the process Z(t) in an instant time interval (t, t+ ∆t) is

P{Z(t+ ∆t)− Z(t) = α | Ft} = E
[∫ t+∆t

t
Λα(s) · Z(s)ds

∣∣∣ Ft]+ o(∆t). (4.1.1)
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That is, when conditioned on the environment, we want Λ
(i)
α+ei

(t)∆t to be the proba-

bility that a given individual of type i dies and is replaced by α+ ei offsprings in an

instant time interval (t, t+ ∆t). This implies the branching property which says that

all individuals living at the same moment behave independently of one another when

conditioned on the environment.

By employing the technique used in ([EK86], Chap. 6.4), the Markov branching

process Z(t) is constructed as the solution of

Z(t) = Z(0) +
∑
α∈Z̃d+

αYα

(∫ t

0
Λα(s) · Z(s)ds

)
, (4.1.2)

where {Yα, α ∈ Z̃d+}, are independent standard Poisson processes defined on (Ω,F , P ),

independent of the Λ. It is shown in the following proposition that the solution of

(4.1.2) exists and is unique and satisfies the transition property (4.1.1).

Proposition 4.1.1. Assume∥∥∥ ∑
α∈Z̃d+

α

∫ t

0
Λ

(i)
α+ei

(s)ds
∥∥∥

1
<∞ a.s. for all t ≥ 0 and each i ∈ S. (4.1.3)

Then

(i) The solution of (4.1.2) exists for all the time and is unique a.s.

(ii) The solution of (4.1.2) satisfies (4.1.1).

We will show the uniqueness of the solution of (4.1.2) by Gronwall’s inequality. For

convenience, we state Gronwall’s inequality in the following lemma.

Lemma 4.1.1. Let I denote an interval of the real line of the form [a,∞) or [a, b]

or [a, b) with a < b. Let β and u be measurable functions defined on I and let µ be a

locally finite measure on the Borel σ-algebra of I (we need µ([a, t]) < ∞ for all t in

I). Assume that u is integrable with respect to µ in the sense that∫ t

a
|u(s)|µ(ds) <∞, t ∈ I,

and that u satisfies the integral inequality

u(t) ≤ β(t) +

∫
[a,t)

u(s)µ(ds), t ∈ I.

If, in addition,
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• the function β is non-negative

• or the function t → µ([a, t]) is continuous for t in I and the function β is

integrable with respect to µ in the sense that∫ t

a
|β(s)|µ(ds) <∞, t ∈ I,

then u satisfies Gronwall’s inequality

u(t) ≤ β(t) +

∫
[a,t)

β(s) exp(µ(Is,t))µ(ds)

for all t in I, where Is,t denotes to open interval (s, t).

Remark: If β is the zero function and u is non-negative, then Gronwall’s inequality

implies that u is the zero function.

Proof of Proposition 4.1.1. (i) Suppose there exist two solutions Z and Z̃ of the equa-

tion (4.1.2) with Z̃(0) = Z(0). Then conditioned on Λ,

E[‖Z(t)− Z̃(t)‖1 | Λ]

= E
[∥∥∥ ∑

α∈Z̃d+

α
(
Yα

(∫ t

0
Λα(s) · Z(s)ds

)
− Yα

(∫ t

0
Λα(s) · Z̃(s)ds

))∥∥∥
1

∣∣∣ Λ
]

≤
∫ t

0

( ∑
α∈Z̃d+

‖α‖1
∑
i

Λ
(i)
α+ei

(s)
)
E[‖Z(s)− Z̃(s)‖1 | Λ]ds.

Let I = [0,∞), u(t) = E[‖Z(t) − Z̃(t)‖1 | Λ], µ(ds) =
(∑

α∈Z̃d+
‖α‖1

∑
i Λ

(i)
α+ei

(s)
)
ds

and β ≡ 0. By the assumption (4.1.3), µ is a locally finite measure on the Borel

σ−algebra of I a.s. Since u is a step function a.s., u is measurable and integrable a.s.

Then by Gronwall’s inequality, P{E[‖Z(t) − Z̃(t)‖1 | Λ] = 0, for t ≥ 0} = 1. Hence

P{Z̃(t) = Z(t), for t ≥ 0} = 1, the uniqueness holds.

Next we show the existence of the solution. Construct the solution by iteration as

follows:

Z(0)(t) = Z(0),

Z(n)(t) = Z(0) +
∑
α∈Z̃d+

αYα

(∫ t

0
Λα(s) · Z(n−1)(s)ds

)
.
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Define a sequence of jump times as follows:

τ0 = 0;

τ1 = inf
{
t > 0

∣∣∣ there exists an α, s.t., Yα

(∫ t

0
Λα(s) · Z(0)(s)ds

)
= 1,

Yβ

(∫ t

0
Λβ(s) · Z(0)(s)ds

)
= 0, for β 6= α

}
;

τn = inf
{
t > τn−1

∣∣∣ there exists an α and a j ∈ {n− 2, n− 1}, s.t.,

Yα

(∫ t

0
Λα(s) · Z(j)(s)ds

)
− Yα

(∫ τn−1

0
Λα(s) · Z(j)(s)ds

)
= 1,

Yβ

(∫ t

0
Λβ(s) · Z(n−2)(s)ds

)
− Yβ

(∫ τn−1

0
Λβ(s) · Z(n−2)(s)ds

)
= 0,

Yβ

(∫ t

0
Λβ(s) · Z(n−1)(s)ds

)
− Yβ

(∫ τn−1

0
Λβ(s) · Z(n−1)(s)ds

)
= 0, for β 6= α

}
,

for n > 1. Then by induction we have

Z(n)(t) = Z(n−1)(t), for t < τn.

Indeed,

Z(1)(t) = Z(0) +
∑
α∈Z̃d+

αYα

(∫ t

0
Λα(s) · Z(0)(s)ds

)
= Z(0)(t), for t < τ1.

Suppose that

Z(n−1)(t) = Z(n−2)(t), for t < τn−1.

Then

Z(n)(t) = Z(0) +
∑
α∈Z̃d+

αYα

(∫ t

0
Λα(s) · Z(n−1)(s)ds

)

= Z(0) +
∑
α∈Z̃d+

αYα

(∫ t

0
Λα(s) · Z(n−2)(s)ds

)
= Z(n−1)(t), for t < τn−1;
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Z(n)(t) = Z(0) +
∑
α∈Z̃d+

αYα

(∫ t

0
Λα(s) · Z(n−1)(s)ds

)

= Z(0) +
∑
α∈Z̃d+

αYα

(∫ τn−1

0
Λα(s) · Z(n−2)(s)ds

)
+

∑
α∈Z̃d+

α

[
Yα

(∫ t

0
Λα(s) · Z(n−1)(s)ds

)
− Yα

(∫ τn−1

0
Λα(s) · Z(n−1)(s)ds

)]
= Z(n−1)(τn−1)

= Z(n−1)(t), for τn−1 ≤ t < τn.

Therefore,

Z(t) = lim
n→∞

Z(n)(t), t <∞,

exists and Z(t) satisfies (4.1.2) since

Z(t) = Z(n)(t), for t < τn.

The assumption (4.1.3) makes sure that limn→∞ τn =∞. Indeed,

E[‖Z(t)‖1 | Λ] ≤ ‖Z(0)‖1 +

∫ t

0

( ∑
α∈Z̃d+

‖α‖1
∑
i

Λiα+ei(s)
)
E[‖Z(t)‖1 | Λ]ds.

By Gronwall’s inequality, it can be deduced that E[‖Z(t)‖1 | Λ] < ∞ for 0 ≤ t < ∞

a.s. Hence the existence of the solution of the equation (4.1.2) holds for all the time.

(ii) Let A denote the event{
Yα

(∫ t+∆t

0
Λα(s) · Z(s)ds

)
− Yα

(∫ t

0
Λα(s) · Z(s)ds

)
= 1,

Yβ

(∫ t+∆t

0
Λβ(s) · Z(s)ds

)
− Yβ

(∫ t

0
Λβ(s) · Z(s)ds

)
= 0, for β 6= α

}
.

Then

P{Z(t+ ∆t)− Z(t) = α | Ft}

= P{A | Ft}

= E[E[1A | F(t+∆t)−] | Ft]

= E
[∫ t+∆t

t
Λα(s) · Z(s)ds

∣∣∣ Ft]+ o(∆t).
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4.2 Kolmogorov equations and the mean matrix

When conditioned on the environment, a multitype Markov branching process in

a random environment is a time non-homogeneous vector-valued Markov chain in

continuous time. The transition function of the non-homogeneous multitype Markov

branching process is

Pαβ(u, t) = P{Z(t) = β | Z(u) = α,Λ}, α, β ∈ Zd+, 0 ≤ u < t. (4.2.1)

The corresponding generating function is

F (α, s;u, t) =
∑
β∈Zd+

Pαβ(u, t)sβ, (4.2.2)

where sβ denotes
∏d
i=1 s

βi
i . Write

F (j, s;u, t) = F (ej , s;u, t)

and

F(s;u, t) = (F (1, s;u, t), · · · , F (d, s;u, t)).

For the offspring production probability and generating functions we write

pγ(t) = (p(1)
γ (t), · · · , p(d)

γ (t)),

and

f(s; t) = (f (1)(s; t), · · · , f (d)(s; t)),

where f (j)(s; t) =
∑

γ∈Zd+
p

(j)
γ (t)sγ . Let

u(j)(s; t) = λ(j)(t)[f (j)(s; t)− sj ].

The backward equations of Kolmogorov for the generating functions of the non-

homogeneous Markov branching process was formulated in [Har63][KM80] without a

proof. Here we state the result and give a proof.
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Proposition 4.2.1. Assume that (4.1.3) holds. Then the backward equations of Kol-

mogorov for the generating functions of the Markov branching process conditioned on

environment are

∂F (j, s;u, t)

∂u
= −u(j)(F(s;u, t);u), (4.2.3)

with terminal conditions

F (j, s; t, t) = sj , (4.2.4)

for j = 1, · · · , d.

Proof. By Proposition 4.1.1, the assumption (4.1.3) makes sure that there exists a

Markov branching process in a random environment and that the branching property

holds conditioned on the environment, i.e. F (α, s;u, t) = F(s;u, t)α.

The transition function of the Markov branching process conditioned on environ-

ment satisfies the backward equation

∂Pαβ(u, t)

∂u
= −

( d∑
i=1

∑
γ−α+ei≥0,γ∈Zd+

λ(i)(u)αip
(i)
γ−α+ei

(u)Pγβ(u, t)−
d∑
i=1

λ(i)(u)αiPαβ(u, t)
)
,

with the terminal condition

Pαβ(t, t) = δαβ.

Then for the corresponding generating function we have

∂F (α, s;u, t)

∂u
=

∑
β∈Zd+

∂Pαβ(u, t)

∂u
sβ

= −
d∑
i=1

λ(i)(u)
(∑
β∈Zd+

( ∑
γ−α+ei≥0,γ∈Zd+

αip
(i)
γ−α+ei

(u)Pγβ(u, t)− αiPαβ(u, t)
)
sβ
)
.
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Specially, when α = ej for j = 1, · · · , d, it follows that

∂F (j, s;u, t)

∂u
= −λ(j)(u)

(∑
β∈Zd+

(∑
γ∈Zd+

p(j)
γ (u)Pγβ(u, t)− Pejβ(u, t)

)
sβ
)

= −λ(j)(u)
(∑
γ∈Zd+

p(j)
γ (u)

(∑
β∈Zd+

Pγβ(u, t)sβ
)
−
(∑
β∈Zd+

Pejβ(u, t)sβ
))

= −λ(j)(u)
(∑
γ∈Zd+

p(j)
γ (u)F (γ, s;u, t)− F (j, s;u, t)

)
= −λ(j)(u)

(∑
γ∈Zd+

p(j)
γ (u)F(s;u, t)γ − F (j, s;u, t)

)
= −λ(j)(u)

(
f (j)(F(s;u, t);u)− F (j, s;u, t)

)
= −u(j)(F(s;u, t);u).

The terminal condition of the generating function follows easily from that of the

transition function.

The mean matrix of the non-homogeneous multitype Markov branching process is

the d× d matrix M(u, t) = (mij(u, t)), where mij(u, t) = E[Zj(t) | Z(u) = ei,Λ]. Let

Ai(t) =
∑

α∈Z̃d+
αΛ

(i)
α+ei

(t) and A(t) = (A1(t), · · · , Ad(t)).

Proposition 4.2.2. Assume that (4.1.3) holds. Assume that

(∫ t

u
A>(s)ds

)
A>(u) = A>(u)

(∫ t

u
A>(s)ds

)
, (4.2.5)

i.e. for any i, j ∈ S and 0 ≤ u < t,∫ t

u

∑
k∈S,α∈Z̃d+,β∈Z̃d+

αiβkΛ
(k)
α+ek

(s)Λ
(j)
β+ej

(u)ds =

∫ t

u

∑
k∈S,α∈Z̃d+,β∈Z̃d+

αiβkΛ
(k)
α+ek

(u)Λ
(j)
β+ej

(s)ds.

Then

M(u, t) = e
∫ t
u A
>(s)ds.

Proof. Note that for any j, k ∈ S, mjk(u, t) = ∂F (j,s;u,t)
∂sk

|s=1 and that the assumption

(4.1.3) makes sure F(1;u, t) = 1. Differentiating (4.2.3) w.r.t. sk and taking s = 1,
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we obtain

∂mjk(u, t)

∂u
= −λ(j)(u)

( d∑
l=1

∂f (j)(x;u)

∂xl
|x=F(1;u,t) ·

∂F (l, s;u, t)

∂sk
|s=1 −

∂F (j, s;u, t)

∂sk
|s=1

)
= −λ(j)(u)

( d∑
l=1

∂f (j)(x;u)

∂xl
|x=1 ·mlk(u, t)−mjk(u, t)

)
= −λ(j)(u)

( d∑
l=1

∑
γ∈Zd+

γlp
(j)
γ (u) ·mlk(u, t)−mjk(u, t)

)

= −
d∑
l=1

λ(j)(u)
(∑
γ∈Zd+

γlp
(j)
γ (u)− δjl

)
mlk(u, t)

= −
d∑
l=1

alj(u)mlk(u, t),

where alj(u) is the ljth element of the matrix A(u). The above equation can be

expressed in the following matrix form:

∂M(u, t)

∂u
= −A>(u)M(u, t), for 0 ≤ u < t, (4.2.6)

with the terminal condition

M(t, t) = I, (4.2.7)

where I is a d× d identity matrix.

With the assumption (4.2.5) we imply that the solution of the equations (4.2.6), (4.2.7)

is

M(u, t) = e
∫ t
u A
>(s)ds.

Similarly, we could deduce the forward equations of Kolmogorov [Har63][KM80]

and the mean matrix. Here we only state the result since the idea of proof is the

same as before.
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Proposition 4.2.3. Assume that (4.1.3) holds. Then the forward equations of Kol-

mogorov for the generating functions of the Markov branching process conditioned on

the environment are

∂F (j, s;u, t)

∂t
=
∑
i∈S

u(i)(s; t)
∂F (j, s;u, t)

∂si
, (4.2.8)

with initial conditions

F (j, s;u, u) = sj , (4.2.9)

for j ∈ S. Furthermore, assume that(∫ t

u
A>(s)ds

)
A>(t) = A>(t)

(∫ t

u
A>(s)ds

)
, (4.2.10)

i.e. for any i, j ∈ S and 0 ≤ u < t,∫ t

u

∑
k∈S,α∈Z̃d+,β∈Z̃d+

αiβkΛ
(k)
α+ek

(s)Λ
(j)
β+ej

(t)ds =

∫ t

u

∑
k∈S,α∈Z̃d+,β∈Z̃d+

αiβkΛ
(k)
α+ek

(t)Λ
(j)
β+ej

(s)ds.

Then

M(u, t) = e
∫ t
u A
>(s)ds.

4.3 The parallel mutation-selection model in a random

environment

Fig. 1: The parallel mutation-reproduction model

We generalize a parallel mutation-selection model [BG07] with a random environ-

ment, which is a special multitype Markov branching process in a random environ-

ment, denoted by {Z(t)}t≥0. As depicted in Fig. 1, an i-particle may, at each instant

in continuous time, do either of three things: It may produce a copy of itself (at rate

Λ
(i)
2ei

), it may die (at rate Λ
(i)
0 ), or it may mutate to type j (j 6= i) (at rate Λ

(i)
ej ). We

want to show the instability property of {Z(t)}t≥0 as in [CT81].
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For simplicity, we consider only two types, i.e. S = {1, 2}. However, a generaliza-

tion to the multitype case is not difficult. Write I = {e1,−e1, e2−e1, e2,−e2, e1−e2}.

Assume Λ
(i)
α+ei

are controlled by the same environment stochastic process η for i ∈ S

and α ∈ I, i.e. Λ
(i)
α+ei

(η(t, ω)). Assume ‖
∫ t

0

∑
i∈S
∑

α∈I αΛ
(i)
α+ei

(s)ds ‖1< ∞ a.s. for

all t ≥ 0.

Let {η(t)}t≥0 be an irreducible, recurrent Markov chain in continuous time on a

countable state space Y, jump times τn ↑ +∞, n ≥ 0, (set τ0 = 0) and infinitesimal

parameters {qxy}, x, y ∈ Y. Let qy = 1/Eyτ1. We formulate the evolution of the

process {Z(t)}t≥0 as follows: let η(0) = y0. In the time span wn = τn − τn−1,

n ≥ 1, {Z(t)}t≥0 evolves as a two-type parallel mutation-selection Markov branching

process, and associated jump times Tj(n), 1 ≤ j ≤ kn. Set T0(n) = τn−1, n ≥ 1. So,

the environmental process {η(t)}t≥0 jumps at times T0(n), and the process {Z(t)}t≥0

jumps at times Tj(n), 1 ≤ j ≤ kn. We thus have a sequence {Tj(n), 0 ≤ j ≤ kn, n ≥

1} of exponentially distributed random variables such that

0 = T0(1) < T1(1) < · · · < Tk1(1) < T0(2) < T1(2) < · · · < Tk2(2) < · · · .

(Appropriate modifications in the above sequencing would be made in the event that

kn = 0.) For j ≥ 1, let Tj denote the jth element of this increasing sequence so that

for a fixed j, and for a given realization of {(η(t),Z(t))}t≥0, there exist unique n and

i such that

Tj = Ti(n), with 0 ≤ i ≤ kn. (4.3.1)

Then {Z(t)}t≥0 is a two-type parallel mutation-selection Markov branching process

in a random environment {η(t)}t≥0.

Now we consider the embedded chain {(ηn,Zn)}n∈N0 of the bivariate Markov pro-

cess {(η(t),Z(t))}t≥0, defined by

{(ηn,Zn)}n∈N0 = {(η(τn),Z(τn))}n∈N0 . (4.3.2)

It is important to note that {(ηn,Zn)}n∈N0 satisfy the following relation:

P(y,z){Zn+1 ∈ B | η0, η1, · · · ; Z0,Z1, · · · ,Zn} (4.3.3)

= P(y,z){Zn+1 ∈ B | ηn,Zn} for every (y, z) ∈ Y × Z2
+ and B ⊆ Z2

+.
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Then (4.3.3) together with the fact that {ηn}n∈N0 is a Markov chain implies that

{(ηn,Zn)}n∈N0 is Markov.

Cogburn studied processes {(ηn,Zn)}n∈N0 satisfying the relation (4.3.3) and called

the marginal process {Zn}n∈N0 a Markov chain in a random environment {ηn}n∈N0

[Cog80]. An important and useful concept in the study of these processes is the

notion of a proper Markov chain in a random environment. {Zn}n∈N0 is called proper

if whenever

sup
y∈Y

P(y,z){Zn = z i.o.} > 0, for z ∈ Z2
+,

where {Zn = z i.o.} means that the event {Zn = z} happens infinitely often, then

(y, z) is recurrent for some y ∈ Y for the Markov chain {(ηn,Zn)}n∈N0 .

Note. If a Markov chain in a random environment, {Zn}n∈N0 , is proper, and states

of Y × (Z2
+\{0}) communicate (two states communicate means that the former is

accessible from the latter and the latter is also accessible from the former) and lead to

Y×{0}, which is closed, then necessarily (y, z) is transient and P(y,z){Zn = z
′

i.o.} = 0

for all (y, z) ∈ Y × Z2
+ and z

′ 6= 0 and hence

P(y,z){ lim
n→∞

‖Zn‖1 = 0 or ∞} = 1, for every (y, z) ∈ Y × Z2
+.

In this section, the main result (Theorem 4.3.2) follows from an application of a

result (Theorem 4.3.1) due to Cogburn [Cog80]. Theorem 4.3.1 will allow us to assert

that the Markov chain in a random environment, {Z(τn)}n∈N0 , is proper. For the

definition of uniform ϕ−recurrence, see e.g. [Tor78].

Theorem 4.3.1 (Cogburn). Let {Zn}n∈N0 be a Markov chain in a random environ-

ment {ηn}n∈N0. Let P (y){z, z′} denote the transition probability of {Zn}n∈N0 in the

yth environment. Suppose that

(a) for each z ∈ Z2
+ there exists a finite set Bz ⊆ Z2

+ such that

infy∈Y P
(y){z, Bz} > 0;

(b) the Markov chain {ηn}n∈N0 is uniformly ϕ−recurrent.

Then {Zn}n∈N0 is a proper Markov chain in a random environment.
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Theorem 4.3.2. Let {Z(t)}t≥0 be a two-type parallel mutation-selection Markov

branching process in a random environment {η(t)}t≥0. Suppose that

(a) for each z ∈ Z2
+ there exists a positive integer nz > ‖z‖1 such that infy∈Y m

(y)
z /qy >

0, where m
(y)
z =

∑nz

k=‖z‖1 σ
(y)
k with σ

(y)
k =

∑
{(z1,z2)>∈Z2

+:z1+z2=k}(z1Λ
(1)

(2,0)>
(y) +

z2Λ
(2)

(0,2)>
(y)) ;

(b) the embedded chain {η(τn)}n∈N0 is uniformly ϕ−recurrent;

(c) states of Y × (Z2
+\{0}) communicate and lead to Y × {0}.

Then P(y,z){limt→∞ ‖Z(t)‖1 = 0 or ∞} = 1, for every (y, z) ∈ Y × Z2
+.

Proof. The proof follows from Theorem 2.2 in [CT81] with a generalization to two-

dimensional state space. Consider the set Bz = {z ∈ Z2
+ : ‖z‖1 ≤ nz}. We will

show

inf
y∈Y

P (y){z, Bz} > 0. (4.3.4)

Verification of (4.3.4) is tantamount to showing that if T is the first-passage time to a

state whose norm is nz + 1, then infy∈Y P(y,z){T > τy} > 0 where τy is the first jump

time of {η(t)}t≥0 starting at y. Let N = nz + 1− ‖z‖1.

Now

P(y,z){T > τy} =

∫ ∞
0

P(y,z){T > t}qye−qytdt (4.3.5)

≥ qy

∫ ∞
0

exp{−(qy + (m
(y)
z /N))t}dt

= Nqy/(Nqy +m
(y)
z ).

The inequality in (4.3.5) follows by noting that T is stochastically larger than the sum

of the independent first-passage times of Z(t) to level k+ 1 starting at a state in level

k, ‖z‖1 ≤ k ≤ nz. By assumption (a), infy∈Y m
(y)
z /qy > 0 so that infy∈Y P(y,z){T >

τy} > 0 and (4.3.4) follows.

An application of Theorem 4.3.1 will enable us to conclude that the process {Z(τn)}n∈N0

is proper. By assumption (c) and the fact that 0 is an absorbing state in each envi-

ronment, we may conclude from the note that the following holds:

P(y,z){ lim
n→∞

‖Z(τn)‖1 = 0 or ∞} = 1, for every (y, z) ∈ Y × Z2
+. (4.3.6)
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We claim that the conclusion above holds for {Z(t)}t≥0. By assumption (a), we get

that

inf
y∈Y

P(y,z){‖Z(τ1)‖1 ≤ nz} = inf
y∈Y

P(y,z){T > τy} > 0.

Then there exists ε > 0 such that infy∈Y P(y,z){‖Z(τ1)‖1 ≤ nz} ≥ ε. By the strong

Markov property, given z
′ ∈ Z2

+\{0},

P(y,z){‖Z(τn)‖1 ≤ nz′ | η(Tj(n)) = y
′
,Z(Tj(n)) = z

′} ≥ ε, for y
′ ∈ Y.

Hence by the law of total probability and property of conditional probability,

P(y,z){‖Z(τn)‖1 ≤ nz′ | Z(Tj(n)) = z
′} ≥ ε.

Recall the relation of the Tj(n)
′
s and T

′
ns. Then it follows that

P(y,z){‖Z(τn)‖1 ≤ nz′ i.o.} ≥ εP(y,z){Z(Tn) = z
′

i.o.} (4.3.7)

Since the asymptotic behavior of {Z(t)}t≥0 is the same as {Z(Tn)}n∈N and noting

that

P(y,z){ lim
n→∞

‖Z(τn)‖1 = 0} = P(y,z){ lim
n→∞

‖Z(Tn)‖1 = 0}, for every (y, z) ∈ Y × Z2
+,

(4.3.6) and (4.3.7) give us the conclusion of the theorem.

We give an example. Let η(t) be a standard Poisson process. For a fixed n,

let Λ
(1)

(0,0)>
(t) ≡ 1, Λ

(1)

(2,0)>
(t) = 1 + n−1/2(−1)η(t), Λ

(1)

(0,1)>
(t) = n−1, Λ

(2)

(0,0)>
(t) ≡ 1,

Λ
(2)

(0,2)>
(t) = 1 +n−1/2(−1)η(t), Λ

(2)

(1,0)>
(t) = (2n)−1, and else 0. Note that the example

satisfies the assumptions of Theorem 4.3.2, therefore the instability holds.

4.4 Continuous approximation for the parallel processes

4.4.1 Main result

Consider a sequence of two-type parallel mutation-selection Markov branching pro-

cesses {Z(n)(t)}t≥0 in random environments {η(n)(t)}t≥0. Throughout this section, as-

sume that the corresponding intensity processes Λ(n) ≡ {Λ(n)i
α+ei

(η(n)), i ∈ S and α ∈
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I} satisfy the following conditions denoted by (C1):

(C1.1) For each n, ‖
∫ t

0

∑
i∈S
∑

α∈I αΛ
(n)i
α+ei

(s)ds ‖1<∞, a.s. for all t ≥ 0.

(C1.2) For each n and for any i, j ∈ S,
∫ t

0

∑
k∈S,α∈I,β∈I αiβkΛ

(n)k
α+ek

(ns)Λ
(n)j
β+ej

(nt)ds =∫ t
0

∑
k∈S,α∈I,β∈I αiβkΛ

(n)k
α+ek

(nt)Λ
(n)j
β+ej

(ns)ds, a.s. for all t ≥ 0.

(C1.3) Λ
(n)1

(0,1)>
(t) = O

(
1
n

)
, Λ

(n)2

(1,0)>
(t) = O

(
1
n

)
, limn→∞

(
Λ

(n)1

(2,0)>
−Λ

(n)1

(0,0)>

)
(t) = 0, and

limn→∞

(
Λ

(n)2

(0,2)>
− Λ

(n)2

(0,0)>

)
(t) = 0, a.s. for all t ≥ 0.

(C1.4) For each n, {η(n)(t)}t≥0 is an irreducible, recurrent Markov chain in continuous

time on a countable state space Y(n), jump times τ
(n)
m ↑ +∞, m ≥ 0, (set τ

(n)
0 = 0)

and infinitesimal parameters
{
q

(n)
xy , x, y ∈ Y(n)

}
. Let q

(n)
y = 1/Eyτ

(n)
1 .

(C1.5) For each n sufficiently large and for each z ∈ Z2
+ there exists a positive integer

l
(n)
z > ‖z‖1 such that infy∈Y(n) m

(y)(n)
z /q

(n)
y > 0, where m

(y)(n)
z =

∑l
(n)
z

k=‖z‖1 σ
(y)(n)
k with

σ
(y)(n)
k =

∑
{(z1,z2)>∈Z2

+:z1+z2=k}

(
z1Λ

(n)1

(2,0)>
(y) + z2Λ

(n)2

(0,2)>
(y)
)

.

(C1.6) For each n sufficiently large, the embedded chain
{
η(n)

(
τ

(n)
m

)}
m∈N0

is uni-

formly ϕ−recurrent.

(C1.7) For each n sufficiently large, states of Y(n) × (Z2
+\{0}) communicate and lead

to Y(n) × {0}.

Remark: 1. The condition (C1.1) makes sure that for each n, there exists a two-

type parallel mutation-selection Markov branching process in a random environment,

denoted by {(Z(n)(t), η(n)(t))}t≥0.

2. The condition (C1.2) will be used in deducing the commutative property of matrices

in (4.4.1).

3. The condition (C1.3) means that the limiting process of {(Z(n)(t), η(n)(t))}t≥0 is a

critical Markov branching process in a random environment.

4. Conditions (C1.4)-(C1.7) imply that for n sufficiently large, the instability property

holds for {Z(n)(t)}t≥0, i.e. P(y,z){limt→∞ ‖Z(n)(t)‖1 = 0 or ∞} = 1, for every (y, z) ∈

Y(n) × Z2
+.

Now we apply the rescaling to the Markov branching process {Z(n)(t)}t≥0. Define

Xn(t) = Z(n)(nt)/n. Assuming Z(n)(0) = nx and defining Ain(t) =
∑

α∈I αΛ
(n)i
α+ei

(t),
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we get

Xn(t) = x +
∑
α∈I

αn−1Yα

(
n2

∫ t

0

(∑
i

Λ
(n)i
α+ei

(ns)Xi
n(s)

)
ds
)

= x +
∑
α∈I

αn−1Ỹα

(
n2

∫ t

0

(∑
i

Λ
(n)i
α+ei

(ns)Xi
n(s)

)
ds
)

+

∫ t

0
n
(∑

i

Ain(ns)Xi
n(s)

)
ds

≡ Un(t) +

∫ t

0
n
(∑

i

Ain(ns)Xi
n(s)

)
ds,

where

Ỹα(t) = Yα(t)− t

and

Un(t) = x +
∑
α∈I

αn−1Ỹα

(
n2

∫ t

0

(∑
i

Λ
(n)i
α+ei

(ns)Xi
n(s)

)
ds
)
.

Set Bi
n(t) =

∫ t
0 nA

i
n(ns)ds and Bn(t) = (B1

n(t), B2
n(t)). The condition (C1.2) implies

that the following commutative property of matrices holds:

Bn(t)Ḃn(t) = Ḃn(t)Bn(t), (4.4.1)

where Ḃn(t) denote the derivative of the matrix Bn(t) w.r.t. t. Then we have

Xn(t) = eBn(t)
(
x +

∫ t

0
e−Bn(s)dUn(s)

)
. (4.4.2)

Set Dn(t) = (D1
n(t), D2

n(t)), where Di
n(t) is a 2 × 2 matrix whose jkth entry equals∑

α∈I α
jαkΛ

(n)i
α+ei

(nt). Let 〈Dn(t),Xn(t)〉 denote
∑

i X
i
n(t)Di

n(t), and
√
〈Dn(s),Xn(s)〉

denote the square root of the matrix 〈Dn(t),Xn(t)〉. Let (Bn, Dn) ⇒ (B,D) denote

that (Bn, Dn) converge in distribution to (B,D).

When the population is large and the time scale is fast, we can deduce a continuous-

state approximation for a sequence of discrete-state Markov branching processes in

random environments. Our main result is as follows:

Theorem 4.4.1. Assume that the conditions (C.1) hold and that (Bn, Dn)⇒ (B,D)

where D has continuous paths. Let W be a two-dimensional standard Brownian mo-
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tion independent of B and D. If there exists a global solution X of

X(t) = eB(t)
(
x +

∫ t

0
e−B(s)

√
〈D(s),X(s)〉dW (s)

)
, (4.4.3)

and if weak local uniqueness holds for (4.4.3), then Xn converges in distribution to

X.

Remark: 1. By Proposition 4.2.3, we obtain E[Z(n)(nt) | {Λ(n)(s)}s≥0] = eBn(t)Z(n)(0).

So Bn acts like the generator of the first moment of the branching process Z(n). For

each i ∈ S, Di
n equals to the production of the rate of splitting λ(n)i and the second

moment of increment of offspring distribution {p(n)i
α+ei
}α∈I . So the assumption that

(Bn, Dn) ⇒ (B,D) is classical for showing the relative compactness of the processes

Xn.

2. Theorem 4.4.1 also holds for the weak convergence of a sequence of one-

dimensional birth and death processes in random environments. Such case is also

included in Theorem 3.1 of Chap. 9 of [EK86].

3. Theorem 4.4.1 also holds for the weak convergence of a sequence of two-type

parallel mutation-selection Markov branching processes processes in constant envi-

ronment. Such case is also included in Theorem 4.4.2 of [JM86].

4.4.2 Proofs

Firstly, we begin by treating the case of nonrandom, but time dependent environ-

ments, i.e. Λ
(n)i
α+ei

(t), t ≥ 0, is a realization of the stochastic process Λ
(n)i
α+ei

satisfying

conditions (C1), for each i ∈ S and α ∈ I. Then Bn(t) and Dn(t) are nonrandom

functions of t.

Let Vn(t) ≡
∫ t

0 e
−Bn(s)dUn(s). The following lemma gives the properties of Vn.

Lemma 4.4.1. Vn(t) is a locally square integrable martingale and the predictable

quadratic variation of Vn(t) is

〈Vn〉(t) =

∫ t

0

(
e−Bn(s)

√
〈Dn(s),Xn(s)〉

)(
e−Bn(s)

√
〈Dn(s),Xn(s)〉

)>
ds. (4.4.4)

Proof. Since Bn is continuous and Un has bounded variation, the stochastic integral

Vn is well-defined. In order to show that Vn is a locally square integrable martingale,
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it is enough to show that Un is a locally square integrable martingale since {e−Bn(t)}

is a locally bounded, predictable process. Recall that

Un(t) = x +
∑
α∈I

αn−1Ỹα

(
n2

∫ t

0

(∑
i

Λ
(n)i
α+ei

(ns)Xi
n(s)

)
ds
)
.

Then for each T > 0 and t ≤ T we get

E
[
‖Un(t)‖2

]
≤ 2‖x‖2 + 2E

[∑
α∈I
‖α‖2n−2Ỹ 2

α

(
n2

∫ t

0

(∑
i

Λ
(n)i
α+ei

(ns)Xi
n(s)

)
ds
)]

= 2‖x‖2 + 2
∑
α∈I
‖α‖2n−2E

[
Ỹ 2
α

(
n2

∫ t

0
(
∑
i

Λ
(n)i
α+ei

(ns)Xi
n(s)

)
ds
)]

= 2‖x‖2 + 2

∫ t

0

∑
α∈I
‖α‖2

(∑
i

Λ
(n)i
α+ei

(ns)EXi
n(s)

)
ds

≤ 2‖x‖2 + 2
∑
i

[∫ t

0

(∑
α∈I
‖α‖2Λ

(n)i
α+ei

(ns)
)2
ds
]1/2[∫ t

0
(E[Xi

n(s)])2ds
]1/2

< ∞,

where ‖Un(t)‖ denotes
√∑

i∈S(U in(t))2. Hence Un is a locally square integrable mar-

tingale.

It is easy to calculate that the predictable quadratic variation of Vn(t) is

〈Vn〉(t) =

∫ t

0
e−Bn(s)〈Dn(s),Xn(s)〉

(
e−Bn(s)

)>
ds.

Since the matrix 〈Dn(s),Xn(s)〉 is positive semi-definite, its square root
√
〈Dn(s),Xn(s)〉

is well-defined. Then

〈Vn〉(t) =

∫ t

0

(
e−Bn(s)

√
〈Dn(s),Xn(s)〉

)(
e−Bn(s)

√
〈Dn(s),Xn(s)〉

)>
ds.

Following the proof of Doob integral theorem [Kal01], we deduce an alternative

form of Vn(t) in Lemma 4.4.2.

Lemma 4.4.2. Define

Wn(t) =

∫ t

0

(
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉

)−1
πRns−dVn(s) +

∫ t

0
πNn

s−
dξ(s), (4.4.5)
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where
(
e−Bn(s)

√
〈Dn(s),Xn(s)〉

)−1
denotes the inverse mapping from Rns to Nn

s
⊥

since e−Bn(s)
√
〈Dn(s),Xn(s)〉 is a bijection from Nn

s
⊥ to Rns , πNn

s
and πRns denote

the corresponding orthogonal projections of the 2× 2 matrix e−Bn(s)
√
〈Dn(s),Xn(s)〉

to its null and range spaces and ξ is a two-dimensional standard Brownian motion.

Then

Vn(t) =

∫ t

0
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉dWn(s). (4.4.6)

Proof. By the definition of Wn, we get∫ t

0
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉dWn(s)

=

∫ t

0

(
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉

)(
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉

)−1
πRns−dVn(s)

+

∫ t

0
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉πNn

s−
dξ(s)

=

∫ t

0
πRns−dVn(s)

=

∫ t

0

(
πRns− + πRns−

⊥

)
dVn(s)

= Vn(t).

Here the third equality holds since
∫ t

0 πRns−
⊥dVn(s) is a right-continuous locally square

integrable martingale and its predictable quadratic variation is 0 a.s.

Then, (4.4.2) can be written in the following form

Xn(t) = eBn(t)
(
x +

∫ t

0
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉dWn(s)

)
. (4.4.7)

That is, we characterize Xn, n ∈ N, as solutions of the above stochastic equations.

A convergence theory can be developed using this characterization. If the equations

”converge”, then one hopes the solutions converge.

The following lemma shows the weak convergence of Wn. Let ‖ · ‖ denote a norm

of a matrix or a vector.

Lemma 4.4.3. Assume that Λ
(n)i
α+ei

(t) is a realization of the stochastic process Λ
(n)i
α+ei

satisfying conditions (C1), for each i ∈ S and α ∈ I. Assume that for each T > 0,
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limn→∞ supt≤T ‖Bn(t) − B(t)‖ = 0, and limn→∞ supt≤T ‖Dn(t) − D(t)‖ = 0. Then

Wn converges in distribution to a two-dimensional Brownian motion W in Skorohod

topology, denoted by

Wn(s)⇒W (s). (4.4.8)

Proof. By the martingale central limit theorem (see [EK86]), it is enough to show the

following two conditions: For each T > 0,

(a) The predictable quadratic variation of Wn is

〈Wn〉(t) = tI, t ≤ T, (4.4.9)

where I is a 2× 2 identity matrix.

(b)

lim
n→∞

E
[
sup
t≤T
‖Wn(t)−Wn(t−)‖2

]
= 0. (4.4.10)

Proof of (a):

〈Wn〉(t) =

∫ t

0

((
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉

)−1
πRns−

)(
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉

)
(
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉

)>((
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉

)−1
πRns−

)>
ds

+

∫ t

0
πNn

s−

(
πNn

s−

)>
ds

=

∫ t

0
πNn

s−
⊥

(
πNn

s−
⊥

)>
ds+

∫ t

0
πNn

s−

(
πNn

s−

)>
ds

=

∫ t

0

(
πNn

s−
⊥ + πNn

s−

)
ds

= tI.

Proof of (b): Firstly, we want to show that

lim
n→∞

P
{

inf
t≤T
‖Xn(t)‖1 = 1/n

}
= 0.

It is equivalent to show that

lim
n→∞

P
{

inf
t≤T
‖Z(n)(nt)‖1 = 1

}
= 0.

For a fixed n, we define

αn =
{
ω ∈ Ω : lim

t→∞
‖Z(n)(t, ω)‖1 = 0

}
,

81



and

βn =
{
ω ∈ Ω : lim

t→∞
‖Z(n)(t, ω)‖1 =∞

}
.

Then by the instability property of Z(n) (see the remark for conditions (C1.4) −

(C1.7)), we obtain that

P{αn}+ P{βn} = 1.

Then

P
{

inf
t≤T
‖Z(n)(nt)‖1 = 1}

= P
{
αn
⋂{

inf
t≤T
‖Z(n)(nt)‖1 = 1

}}
+ P

{
βn
⋂{

inf
t≤T
‖Z(n)(nt)‖1 = 1

}}
≤ P

{
αn
⋂{

inf
t≤T
‖Z(n)(nt)‖1 = 1

}}
+ P

{
βn
⋂{
‖Z(n)(u)‖1 = 1, for some u ≤ nT

}}
= P{αn}P

{
inf
t≤T
‖Z(n)(nt)‖1 = 1

∣∣∣ αn}+

P
{
‖Z(n)(u)‖1 = 1, for some u ≤ nT

}
P
{
βn

∣∣∣ ‖Z(n)(u)‖1 = 1, for some u ≤ nT
}
.

By the condition (C1.3), the limiting process corresponding to Z(n), n ∈ N, is a criti-

cal two-type Markov branching process in a random environment. Then limn→∞ P{βn |

‖Z(n)(u)‖1 = 1, for some u ≤ nT} = 0. It is obvious that limn→∞ P{inft≤T ‖Z(n)(nt)‖1 =

1 | αn} = 0. Hence

lim
n→∞

P
{

inf
t≤T
‖Z(n)(nt)‖1 = 1

}
= 0.

Secondly, since for each T > 0, limn→∞ supt≤T ‖Bn(t)−B(t)‖ = 0, and limn→∞ supt≤T ‖Dn(t)−
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D(t)‖ = 0, we have

E
[
sup
t≤T
‖Wn(t)−Wn(t−)‖2

]
= E

[
sup
t≤T

∥∥∥(e−Bn(t−)
√
〈Dn(t−),Xn(t−)〉

)−1
πRnt−(Vn(t)− Vn(t−))

∥∥∥2]
= E

[
sup
t≤T

∥∥∥(e−Bn(t−)
√
〈Dn(t−),Xn(t−)〉

)−1
πRnt−(Vn(t)− Vn(t−))

∥∥∥2]
= E

[
sup
t≤T

∥∥∥(e−Bn(t−)
√
〈Dn(t−),Xn(t−)〉

)−1
πRnt−e

−Bn(t−)(Un(t)− Un(t−))
∥∥∥2]

≤
∞∑
k=1

C · sup
t≤T

n

k ·mini λin(t)
· P
{

inf
t≤T
‖Xn(t)‖1 = k/n

}
· 1

n2
· sup
α∈I
‖α‖2 ·

sup
t≤T

∑
α∈I

E
[
Yα

(
n2

∫ t

0

(∑
i

Λ
(n)i
α+ei

(ns)Xi
n(s)

)
ds
)
− Yα

((
n2

∫ t

0

(∑
i

Λ
(n)i
α+ei

(ns)Xi
n(s)

)
ds
)
−
)]

→ 0, as n→∞,

where λin(t) is the minimal nonzero eigenvalue of Di
n(t).

The conclusion of the following lemma is an important condition to show the weak

convergence of stochastic integrals, denoted by (C2).

Lemma 4.4.4. Assume that Wn(s) ⇒ W (s). Then for each a > 0, there exist

stopping times τan such that P{τan ≤ a} ≤ 1/a and supnE[[Wn]ij(t ∧ τan)] <∞.

Proof. For c > 0, define

τ cn = inf{t ≥ 0 | ‖Wn(t)‖ ∨ ‖Wn(t−)‖ ≥ c}.

Since convergence in distribution ofWn in the Skorohod topology implies supt≤a ‖Wn(t)‖

is stochastically bounded in n for each a and hence there exists ca so that

P{τ can ≤ a} ≤ 1/a.

With τan = τ can , we get

P{τan ≤ a} ≤ 1/a.

Since Wn is a locally square integrable martingale, we get

sup
n
E[[Wn]ij(t ∧ τan)] = sup

n
E[〈Wn〉ij(t ∧ τan)] = E[δij(t ∧ τan)] <∞.

83



For (y, t) ∈ DR2
+

[0,∞)× [0,∞), define

Fn(y, t) = Gn(y(t), t) = e−Bn(t)
√
〈Dn(t), y(t)〉,

and

F (y, t) = G(y(t), t) = e−B(t)
√
〈D(t), y(t)〉.

The next lemma gives the properties of Fn(y) and F (y) under transformations of the

time scale.

Lemma 4.4.5. Assume that for each T > 0, limn→∞ supt≤T ‖Bn(t)−B(t)‖ = 0, and

limn→∞ supt≤T ‖Dn(t)−D(t)‖ = 0 where D is a continuous function of t. Then Fn

and F satisfy the following conditions denoted by (C3):

(C3)(i) For each compact subset H ⊂ DR2
+

[0,∞)×A1[0,∞) and T > 0,

sup
(y,λ)∈H

sup
t≤T
‖Gn(y(λ(t)), λ(t))−G(y(λ(t)), λ(t))‖ → 0,

where A1 denotes the collection of nondecreasing mappings λ of [0,∞) onto [0,∞)

(in particular, λ(0) = 0) such that λ(t+ h)− λ(t) ≤ h for all t, h ≥ 0.

(C3)(ii) For {(yn, λn)} ∈ DR2
+

[0,∞)×A1[0,∞), supt≤T ‖yn(λn(t))− y(λ(t))‖ → 0

and supt≤T |λn(t)− λ(t)| → 0 for each T > 0 implies

sup
t≤T
‖G(yn(λn(t)), λn(t))−G(y(λ(t)), λ(t))‖ → 0.

Proof. (1) Let H1 be the sectional set of H.

sup
(y,λ)∈H

sup
t≤T
‖Gn(y(λ(t)), λ(t))−G(y(λ(t)), λ(t))‖

≤ sup
y∈H1

sup
t≤T
‖Gn(y(t), t)−G(y(t), t)‖

= sup
y∈H1

sup
t≤T

∥∥∥e−Bn(t)
√
〈Dn(t), y(t)〉 − e−B(t)

√
〈D(t), y(t)〉

∥∥∥
→ 0,

since limn→∞ supt≤T ‖Bn(t)−B(t)‖ = 0, limn→∞ supt≤T ‖Dn(t)−D(t)‖ = 0 for each

T > 0.
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(2) Since D has continuous paths, the function G is continuous. Therefore,

sup
t≤T
‖G(yn(λn(t)), λn(t))−G(y(λ(t)), λ(t))‖ → 0

when supt≤T ‖yn(λn(t)) − y(λ(t))‖ → 0 and supt≤T |λn(t) − λ(t)| → 0 for each T >

0.

Now we are ready to show the weak convergence of the sequence Xn in the case of

nonrandom environment.

Theorem 4.4.2. Assume that Λ
(n)i
α+ei

(t) is a realization of the stochastic process Λ
(n)i
α+ei

satisfying conditions (C1), for each i ∈ S and α ∈ I. Assume that for each T > 0,

limn→∞ supt≤T ‖Bn(t) − B(t)‖ = 0, and limn→∞ supt≤T ‖Dn(t) − D(t)‖ = 0, where

D is a continuous function of t. Let W be a two-dimensional standard Brownian

motion. If there exists a global solution X of

X(t) = eB(t)
(
x +

∫ t

0
e−B(s)

√
〈D(s),X(s)〉dW (s)

)
, (4.4.11)

and if weak local uniqueness holds for (4.4.11), then Xn converges in distribution to

X.

Proof. The proof follows from Theorem 5.4 in [KP91]. Firstly, by Lemma 4.4.1 and

4.4.2, we get

Xn(t) = eBn(t)
(
x +

∫ t

0
e−Bn(s−)

√
〈Dn(s−),Xn(s−)〉dWn(s)

)
= eBn(t)

(
x +

∫ t

0
Fn(Xn, s−)dWn(s)

)
.

By Lemma 4.4.3, we obtain

Wn ⇒W,

where W is a two-dimensional standard Brownian motion.

Secondly, for b > 0, define

ζbn = inf{t | ‖Fn(Xn, t)‖ ∨ ‖Fn(Xn, t−)‖ ≥ b}
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and let Xb
n denote the solution of

Xb
n(t) = eBn(t)

(
x +

∫ t

0
χ[0,ζbn)(s−)Fn(Xb

n, s−)dWn(s)
)

(4.4.12)

that agrees with Xn on [0, ζbn). We want to show that {(Xb
n,Wn)} is relatively compact

and any limit point (Xb,W ) gives a local solution (Xb, τ) of the equation (4.4.11) with

τ = ζc ≡ inf{t | ‖F (Xb, t)‖ ∨ ‖F (Xb, t−)‖ ≥ c} for any c < b.

Let Hn(t) = sups≤t ‖χ[0,ζbn)(s)Fn(Xb
n, s)‖. Then {Hn(t)} is stochastically bounded

for each t. Define

Yb
n(t) =

∫ t

0
χ[0,ζbn)(s−)Fn(Xb

n, s−)dWn(s).

By Lemma 4.4.4 we have that Wn satisfies the condition (C2). Then by Lemma

4.1 in [KP91], there exist nondecreasing, adapted processes γn, with γn(0) = 0 and

γn(t+ h)− γn(t) ≤ h for all t, h ≥ 0, such that, {(Wn ◦ γn,Yb
n ◦ γn, γn)} is relatively

compact in DR2×R2×R[0,∞). By the continuity and convergence of Bn, it is obvious

that {(Wn ◦ γn,Xb
n ◦ γn, γn)} is relatively compact in DR2×R2×R[0,∞). {χ[0,ζbn) ◦

γnFn(Xb
n) ◦ γn} = {χ[0,ζbn) ◦ γnGn(Xb

n ◦ γn, γn)} is relatively compact in DR2×2 [0,∞)

since {Fn} and F satisfy the conditions (C3) by Lemma 4.4.5. Applying Corollary

4.5 and Proposition 4.3 in [KP91], we get the relative compactness of {(Xb
n,Wn)} in

DR2×R2 [0,∞). The sequence {(Xb
n,Wn, ζ

b
n)} is relatively compact in DR2×R2 [0,∞)×

[0,∞). Let (Xb,W, ζb0) denote a weak limit point. To simplify notation, assume that

the original sequence converges and (with reference to the Skorohod representation

theorem) assume that the convergence is almost sure rather than in distribution. Note

that ζb ≡ inf{t | ‖F (Xb, t)‖ ∨ ‖F (Xb, t−)‖ ≥ b} ≤ ζb0. It follows that

eBn
(
x +

∫
Fn(Xb

n)dWn

)
→ eB

(
x +

∫
F (Xb)dW

)
.

Since

Xb
n(t) = eBn(t)

(
x +

∫ t

0
Fn(Xb

n, s−)dWn(s)
)

(4.4.13)

for t ≤ ζbn, we get

Xb(t) = eB(t)
(
x +

∫ t

0
F (Xb, s−)dW (s)

)
(4.4.14)
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for t < ζb0. Let c < b. If ζc < ζb, then (4.4.14) holds for t ≤ ζc. If ζc = ζb, then F (Xb)

has a discontinuity at ζc with ‖F (Xb, ζc−)‖ ≤ c and ‖F (Xb, ζc)‖ ≥ b. It follows that

for c < d < b, (Xb
n(ζdn),Wn(ζdn),Wn(ζdn−), Fn(Xb

n, ζ
d
n), Fn(Xb

n, ζ
d
n−), ζdn) converges to

(Xb(ζd),W (ζd),W (ζd−), F (Xb, ζd), F (Xb, ζd−), ζd) and

Xb(ζd) = eB(ζd)
(
x +

∫ ζd

0
F (Xb, s−)dW (s)

)
, (4.4.15)

so that (4.4.14) holds for t ≤ ζc(= ζd). Consequently, (Xb, ζc) is a local solution of

the equation (4.4.11).

Finally, we will show that {(Xn,Wn)} converge in distribution to (X,W ) if there

exists a global weak solution X for (4.4.11) and weak local uniqueness holds.

Note that ζc is a measurable function of Xb (say hc(X
b)). Consequently, if there

exists a global weak solution X for (4.4.11) and weak local uniqueness holds, then

(Xb, ζc) must have the same distribution as (X, hc(X)) for all c and b with c < b.

Since X is a global solution, hc(X) → ∞ as c → ∞. Convergence in distribution of

(Xn,Wn) follows.

Now we could easily deduce the corresponding conclusion in the case of random

environments by the Skorohod representation theorem and the technique of condi-

tioning on the intensity processes. Recall that the intensity processes Λ(n) satisfy the

assumptions (C1).

Proof of Theorem 4.4.1. Since (Bn, Dn) ⇒ (B,D) with (B,D) having continuous

paths, we may assume by the Skorohod representation theorem that

lim
n→∞

sup
s≤t
‖Bn(s)−B(s)‖ = 0 a.s., (4.4.16)

lim
n→∞

sup
s≤t
‖Dn(s)−D(s)‖ = 0 a.s., (4.4.17)

for all t > 0.

Let F
(n)
Λ = σ{Λ(n)i

α+ei
(s), s ≥ 0, i ∈ S, α ∈ I}. From Lemma 4.4.3, one can

conclude that for every bounded continuous functional f on DR2 [0,∞)

lim
n→∞

E
[
f(Wn)

∣∣∣ F (n)
Λ

]
= E[f(W )] a.s. (4.4.18)
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Consequently, it follows that

lim
n→∞

E[f(Wn)g(Bn, Dn)] = lim
n→∞

E
[
E
[
f(Wn)g(Bn, Dn)

∣∣∣ F (n)
Λ

]]
= lim

n→∞
E
[
g(Bn, Dn)E

[
f(Wn) | F (n)

Λ

]]
= E[g(B,D)E[f(W )]]

= E[f(W )]E[g(B,D)],

for all bounded continuous functionals f on DR2 [0,∞) and g on DR2×2×R2×4 [0,∞).

The weak convergence (Wn, Bn, Dn) ⇒ (W,B,D) follows. Meanwhile, we get the

independence of W and (B,D).

Let F
(∞)
Λ = σ{B(s), D(s), s ≥ 0}. By Theorem 4.4.2, for all bounded continuous

functional h on DR2
+

[0,∞), we get

lim
n→∞

E
[
h(Xn)

∣∣∣ F (n)
Λ

]
= E

[
h(X)

∣∣∣ F (∞)
Λ

]
a.s., (4.4.19)

where X is the solution of

X(t) = eB(t)
(
x +

∫ t

0
e−B(s)

√
〈D(s),X(s)〉dW (s)

)
. (4.4.20)

Therefore,

lim
n→∞

E[h(Xn)] = lim
n→∞

E
[
E
[
h(Xn)

∣∣∣ F (n)
Λ

]]
= E

[
E
[
h(X)

∣∣∣ F (∞)
Λ

]]
= E[h(X)].

Hence the conclusion of Theorem 4.4.1 holds.

4.5 Examples

Example 1. One-dimension and random environment

Let Z(n)(0) = nx0. Let η(t) be a standard Poisson process. Let Λ
(n)
0 (t) = 1, Λ

(n)
2 (t) =

1 + n−1/2(−1)η(t), and Λ
(n)
k (t) = 0 for k 6= 0, 2. This gives

Bn(t) =

∫ t

0
n1/2(−1)η(ns)ds (4.5.1)
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and

Dn(t) = 2 + n−1/2(−1)η(nt). (4.5.2)

Then (Bn, Dn) ⇒ (B,D) where B is a standard one-dimensional Brownian motion

and D(t) = 2. It is easy to verify the other conditions in Theorem 4.4.1 in one

dimensional case. Then Xn ⇒ X, where X is the solution of

X(t) = eB(t)
(
x0 +

∫ t

0
e−B(s)

√
2X(s)dW (s)

)
. (4.5.3)

Note that B and M(·) =
∫ ·

0 e
−B(s)

√
2X(s)dW (s) are martingales with 〈B〉t = t,

〈B,M〉t = 0, and 〈M〉t =
∫ t

0 2e−2B(s)X(s)ds. Then by Itô’s formula, we see that X

is a solution of the martingale problem for L with

Lf(x) =
1

2
xf
′
(x) +

(
x+

1

2
x2
)
f
′′
(x), (4.5.4)

for f ∈ C2
c (R+).

It is well known [KT81] that the extinction probability of the diffusion process

starting from state x0 is

q(x0) = P
{

lim
t→∞

X(t) = 0
∣∣∣ X(0) = x0

}
= (1 + x0/2)−1.

Example 2. Two-dimension and constant environment

Let Λ
(n)1

(0,0)>
= 1/2 − 1/4n, Λ

(n)1

(2,0)>
= 1/2, Λ

(n)1

(0,1)>
= 1/4n, Λ

(n)2

(0,0)>
= 1/2 − 1/2n,

Λ
(n)2

(0,2)>
= 1/2, Λ

(n)2

(1,0)>
= 1/2n, and else 0.

Then

Bn(t) =

 0 t/2

t/4 0

⇒ B(t) =

 0 t/2

t/4 0

 ,

D1
n(t) =

 1 −1/4n

−1/4n 1/4n

⇒ D1(t) =

 1 0

0 0

 ,

and

D2
n(t) =

 1/2n −1/2n

−1/2n 1

⇒ D2(t) =

 0 0

0 1

 .

89



The limit X then satisfies

X(t) = eB(t)

x +

∫ t

0
e−B(s)

√√√√√
 X1(s) 0

0 X2(s)

dW (s)

 . (4.5.5)

By Itô’s formula, we see that X is a solution of the martingale problem in R2
+ as-

sociated with the diffusion operator L =
∑

i ai
∂
∂xi

+
∑

i,j bij
∂2

∂xixj
and with initial

condition x, where a1 = x2/2, a2 = x1/4, b11 = x1/2, b12 = b21 = 0, b22 = x2/2.

The uniqueness of the solution of the martingale problem in R2
+ associated with the

diffusion operator L =
∑

i ai
∂
∂xi

+
∑

i,j bij
∂2

∂xixj
and with initial condition x is easily

seen in the following way [JM86]. It is a standard result in the study of martingale

problems that, if the solutions Φx of the martingale problem (L,C0,x) for all x ∈ R2
+

are such that for any t > 0 the law X−1
t ◦ P̃x is uniquely determined, then the

marginals (X−1
t1
◦ P̃x, · · · , X−1

tn ◦ P̃x) are uniquely determined for all x and any finite

family t0 < t1 < · · · < tn. Therefore P̃x is unique for any initial condition x. If

P̃ is any limit law of the laws P̃n of the processes Xn, we need only to check that

the moments of the Xt under P̃ are uniquely determined. But if ψ is a monomial of

degree k, the particular form of L gives

E[ψ(Xt)]− ψ(x)−
∫ t

0

∑
i

αkiE[ψk,i(Xu)]du−
∫ t

0

∑
i

βki E[ψk−1,i(Xu)]du = 0,

where {ψk,i}i is the family of all monomials of degree k, and αki and βki are constants

bounded by Kk(k−1). The moments of order k are therefore recursively determined.

Hence by Theorem 4.4.1, Xn ⇒ X, where X is the unique solution of the equation

(4.5.5).

It is interesting to study the extinction probability of the diffusion process X. From

the differential form of the stochastic equation of X, it is easy to know that 0 is an

absorbing state of the process X and that the process returns to the interior of the

domain R2
+ once it hits the boundary of the domain R2

+ except for 0. We will show the

difficulty to calculate extinction probability which also appears in the next example

in the next subsection. Let q(x) be the extinction probability of the diffusion process
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X, i.e.

q(x) = P
{

lim
t→∞

X(t) = 0
∣∣∣ X(0) = x

}
.

Let ua,b(x) = P{τa < τb | X(0) = x}, for 0 < a < b < ∞, where τa = inf{t ≥

0 | ‖X(t)‖ = a} and τb = inf{t ≥ 0 | ‖X(t)‖ = b}. Then q(x) = lima↓0,b↑∞ ua,b(x).

ua,b(x) satisfies the equation

Lua,b(x) = 0, for a < ‖x‖ < b, (4.5.6)

with ua,b(x) = 1 for ‖x‖ = a and ua,b(x) = 0 for ‖x‖ = b. So the difficulty lies in: on

the one hand, what kind of boundary conditions is reasonable?; on the other hand,

what about the existence and uniqueness of the solution with a degenerate elliptic

operator?

Example 3. Two-dimension and random environment

Let η(t) be a standard Poisson process. Let Λ
(n)1

(0,0)>
(t) ≡ 1, Λ

(n)1

(2,0)>
(t) = 1+n−1/2(−1)η(t),

Λ
(n)1

(0,1)>
(t) = n−1, Λ

(n)2

(0,0)>
(t) ≡ 1, Λ

(n)2

(0,2)>
(t) = 1 + n−1/2(−1)η(t), Λ

(n)2

(1,0)>
(t) = (2n)−1,

and else 0.

By the definition of Bn, we have

Bn(t) =

 ∫ t
0 n

1/2(−1)η(ns)ds− t t/2

t
∫ t

0 n
1/2(−1)η(ns)ds− t/2


Then the commutative property holds, i.e.

Bn(t)Ḃn(t) = Ḃn(t)Bn(t). (4.5.7)

Remark: Condition (4.5.7) helps to make sure that the two intensity stochastic

processes are driven by the same underlying environmental process. For example,

if there are two independent standard Poisson processes η1(t) and η2(t) such that

Λ
(n)1

(0,0)>
(t) ≡ 1, Λ

(n)1

(2,0)>
(t) = 1 + n−1/2(−1)η1(t), Λ

(n)1

(0,1)>
(t) = n−1, Λ

(n)2

(0,0)>
(t) ≡ 1,

Λ
(n)2

(0,2)>
(t) = 1 + n−1/2(−1)η2(t), Λ

(n)2

(1,0)>
(t) = (2n)−1 , and else 0, then Condition

(4.5.7) holds if and only if η1(t) = η2(t).

Similarly, we have

D1
n(t) =

 2 + n−1/2(−1)η(nt) + n−1 −n−1

−n−1 n−1

 ,
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and

D2
n(t) =

 (2n)−1 −(2n)−1

−(2n)−1 2 + n−1/2(−1)η(nt) + (2n)−1

 .

Let ξ denote a one-dimensional standard Brownian motion. Then we get the con-

vergence of (Bn, Dn) as follows:

Bn(t)⇒ B(t) =

 ξ(t)− t t/2

t ξ(t)− t/2

 ,

D1
n(t)⇒ D1(t) =

 2 0

0 0

 ,

and

D2
n(t)⇒ D2(t) =

 0 0

0 2

 .

Therefore the limit X satisfies

X(t) = eB(t)

x +

∫ t

0
e−B(s)

√√√√√
 2X1(s) 0

0 2X2(s)

dW (s)

 . (4.5.8)

By Itô’s formula, we see that X is a solution of the martingale problem in R2
+ asso-

ciated with the operator L =
∑

i ai
∂
∂xi

+
∑

i,j bij
∂2

∂xixj
and with initial condition x,

where a1 = x2/2, a2 = x1+x2/2, b11 = x1+x2
1/2, b12 = b21 = x1x2/2, b22 = x2+x2

2/2.

The uniqueness of the solution of the martingale problem follows the same argument

as in the last example. Then by Theorem 4.4.1, Xn ⇒ X, where X is the unique

solution of the equation (4.5.8).
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