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Abstract

We are interested in a nonlinear filtering problem motivated by an information-based
approach for modelling the dynamic evolution of a portfolio of credit risky securities.
We solve this problem by ‘change of measure method’ and show the existence of the
density of the unnormalized conditional distribution which is a solution to the Zakai
equation. Zakai equation is a linear SPDE which, in general, cannot be solved analyt-
ically. We apply Galerkin method to solve it numerically and show the convergence of
Galerkin approximation in mean square. Lastly, we design an adaptive Galerkin filter
with a basis of Hermite polynomials and we present numerical examples to illustrate
the effectiveness of the proposed method. The work is closely related to the paper Frey
and Schmidt (2010).
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Chapter 1

Introduction

1.1 Preliminary work

Financial motivation: Credit risk model under incomplete information

The credit markets have developed at a tremendous speed in recent years and the demand
for credit derivatives, such as credit default swaps (CDSs) and collateralized debt obligations
(CDOs), are growing rapidly. Consequently, recent research has highlighted the study of the
credit risk model. A good model is one that captures the dynamic evolution of credit spreads
and the dependent structure of default in a realistic way. Also, from a computation point of
view, it should be tractable and parsimonious.

Existing credit risk models can be divided into two classes: structural models and reduced-
form models. In structural models, default occurs when an assets value falls below a threshold,
generally representing liabilities. Structural credit risk models are discussed in, for instance,
Black and Scholes (1973), Merton (1974), Black and Cox (1976). In reduced-form models, one
models directly the law of the default time where the precise mechanism leading to default is
not specified. In practice, reduced-form models are usually preferred for tractability reasons.
Reduced-form credit risk models are discussed in, for instance, Jarrow and Turnbull (1995),
Lando (1998), Duffie and Singleton (1999), Blanchet-Scalliet and Jeanblanc (2004).

In most of the credit risk models, the distribution of default times depends on a state variable
process X and in practice, X can not be fully observed by investors. This, in turn, leads to
a nonlinear filtering problem in a natural way. Structural credit risk model under incomplete
information are discussed in, for instance, Kusuoka (1999), Duffie and Lando (2001), Jarrow
and Protter (2004), Coculescu, Geman, and Jeanblanc (2008), and Frey and Schmidt (2009).
Reduced-form credit risk models under incomplete information are discussed in, for instance,
Frey and Schmidt (2010), Frey and Runggaldier (2010), Schönbucher (2004), Collin-dufresne,
Goldstein, and Helwege (2003), Giesecke (2004) and McNeil, Frey, and Embrechts (2005), page
448-462.

The general theories of nonlinear filtering are well-developed, see for instance Bain and Crisan
(2009), and are increasingly being used in financial mathematics, see for instance Frey (2000),
Frey and Runggaldier (2010), Frey and Schmidt (2009). Filtering techniques come into play when
the factors cannot be observed directly. A short introduction for nonlinear filtering is presented
in Section 2.1.
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2 CHAPTER 1. INTRODUCTION

Model and notation

Frey and Schmidt (2010) study reduce-form portfolio credit risk models under incomplete in-
formation. They consider models where the default intensities of the firms under consideration
depend on an unobservable stochastic processes X. The information for investors, the so-called
market information, contains only the default history of firms and noisy price observations of
traded credit derivatives.

Specifically, they work on some filtered probability space (Ω,F ,F,P) and on a finite time interval
[0, T ]. Here P is a risk-neutral measure. F = {Ft}0≤t≤T is the full-information filtration and all
processes will be F-adapted. In association with a generic process ξ, define for each t ≥ 0 a
sub-σ-field of Ft, denoted Fξ

t , by

Fξ
t = σ{ξs, s ∈ [0, t]}. (1.1.1)

Consider defaultable securities issued by a firm where the random time τ denotes the default
time of the firm. Yt = 1{τ≤t} is the corresponding default indicator. The default intensity is
assumed to depend on some state process X, which is modelled as a d-dimensional finite state
Markov chain.

Assume τ is a doubly stochastic random time with
(
P,F

)
-default intensity λt = λ(Xt), i.e.,

there is a function λ : R→ (0,∞), such that N∗
t := Yt −

∫ t∧τ
0 λ(Xs)ds is an F-martingale.

The informational advantage of informed market participants is modelled via observations of a
process Z. Formally, the market filtration is given by FZ,Y := {FZ,Y

t }0≤t≤T , where process Z,
which is l-dimensional, solves the SDE

dZt = h(Xt)dt + dBt, t ∈ [0, T ].

Here B is a l-dimensional standard Brownian motion independent of X and Y . And h(·) is a
function from Rd to Rl.

Consider a liquidly traded credit derivatives with maturity T and FY
T -measurable payoff P . In

order to simplify the computation, we assume the full-information value of the securities given
by E(P |Ft) =: P̃t(Xt, Yt). The market price of the security, which is determined by informed
market-participants with market information, is defined as, by iterated conditional expectations,

Pt := E(P |FZ,Y
t ) = E

[
E(P |Ft)

∣∣∣FZ,Y
t

]
= E

[
P̃t(Xt, Yt)

∣∣∣FZ,Y
t

]
.

The objective of financial mathematics is to derive the dynamics of the market price. In order
to computer the price Pt, one need to obtain the conditional measure of Xt given FZ,Y

t , given
by πt. This leads to a nonlinear filtering problem in a natural way.

1.2 Overview of the thesis

Motivated by the credit risk model studied by Frey and Schmidt (2010), we extend the model
with two viewpoints, realistic and mathematical. Realistically, the state process X is modelled
as a diffusion process with generator L, which is a second order differential operator with domain
D(L). Mathematically, the jump observation Y is modelled as a doubly stochastic Poisson
process with stochastic intensity λ(Xt), then τ can be viewed as the first jumping time of
Y .



1.2. OVERVIEW OF THE THESIS 3

Given the past observation of Z and Y , the objective of this thesis is to determine the conditional
measure of Xt. We solve this problem by ‘change of measure method’ and we show the existence
of the density of the unnormalized conditional distribution which is a solution of the so-called
Zakai equation. The Zakai equation is a linear stochastic partial differential equation which
cannot typically be solved analytically. We will apply Galerkin method to solve it numerically,
and will show the convergence of Galerkin approximation in mean square. To conclude, we design
an adaptive Galerkin filter with a basis of Hermite polynomials and present numerical examples
to illustrate the effectiveness of the proposed method. Following are specifics about the topics
of this thesis.

The unnormalized filtering equations

We deduce the evolution equation for π using the change of measure method: A new measure P0

is constructed under which Z becomes a Brownian motion, Y becomes a Poisson process with
intensity 1, and the process X, Z, Y are independent. Then, π has a representation in terms
of an associated unnormalized version ρ. This ρ is then shown to satisfy the so-called Zakai
equation, for any f ∈ D(L),

ρt(f) =E[f(X0)|FZ,Y
0 ] +

∫ t

0
ρs(Lf)ds+

∫ t

0
ρs(fh�)dZs

+
∫ t

0
ρs−

(
f(λ− 1)

)
d(Ys − s), P0 − a.s., ∀t ∈ [0, T ].

For detail, see Theorem 2.9. This leads to the evolution equation for π by an application of Itô’s
formula.

The unnormalized conditional density

The following question is interesting to answer: Does there exist a density of the conditional
distribution of Xt given accumulated observation? In Chapter 5, we prove, under fairly mild
conditions, the unnormalized conditional distribution ρt has a square integrable density qt with
respect to Lebesgue measure, which is a weak solution of a linear stochastic partial differential
equation, known as the Zakai Equation. For the detail, see Theorem 5.3.

Numerical approach

Our objective is to seek a numerical method that is implementable and provides accurate solu-
tions to the Zakai Equation.

One approach is to approximate the diffusion model of X by a finite-state Markov chain and to
write down the Zakai equation for it, which yields a stochastic ODE, see Frey and Runggaldier
(2010), Frey and Schmidt (2010). In this work, a different approach is proposed, namely the
Zakai equation is directly approximated by means of the classical Galerkin method for solving
deterministic PDEs, see Ahmed and Radaideh (1997). The solution of the Zakai equation is
first approximated by a finite combination of orthogonal series. Then, it is approximated by
the solution of a family of finite dimensional stochastic ordinary differential equations, which
can be solved numerically or analytically. This work consists of two main parts, theoretical and
numerical.



4 CHAPTER 1. INTRODUCTION

Theoretical part In Chapter 6, we prove the convergence of the Galerkin approximation of
the Zakai equation in mean square sense, with usual assumptions. This is done by using a general
continuity result for the solution of a mild stochastic linear differential equation on a Hilbert
space with respect to the semigroup. With bounded and square integrable function ϕ, we have

sup
t∈[0,T ]

E0
∣∣∣ ∫

Rd

ϕ(x)q(n)
t (x)dx −

∫
R

ϕ(x)qt(x)dx
∣∣∣2 → 0, as n→∞,

where E0 is the expectation w.r.t. P0, n is the number of basis functions used in the Galerkin
filter.

Numerical part Concerned with the Galerkin approximation convergence rate, in Chapter
7, we design an adaptive Galerkin filter with a basis of Hermite polynomials and present nu-
merical examples to illustrate the effectiveness of the proposed method. In simulation study, we
compare the proposed method with particle methods and show that the Galerkin approxima-
tion converges well. In Chapter 7, we present the Galerkin approximation strategy for solutions
of the Zakai equation (5.2.1) by solving a sequence of finite dimensional stochastic differential
equations. The solution of the Zakai equation can be constructed by the Galerkin method us-
ing any suitable set of basis functions from Hilbert space. It is possible to choose a complete
set of basis functions, like Gaussian series and Hermite functions. However, in most nonlinear
filtering problems, particularly when the observation noise is small, the conditional density is
well-localized in a small region of the state space and generally cannot be predicted in advance.
To overcome this difficulty, we design an adaptive Galerkin filter with Hermite polynomials.
Finally, we present examples and the corresponding simulation results.

Structure of the thesis Listed below is a brief summary of the remaining chapters.

In Chapter 2: We introduce the nonlinear filtering model which we study throughout this thesis
and deduce the corresponding filtering equation by ‘change of measure method’.

In Chapter 3: We present an overview of the main computational methods currently available
for solving the filtering problem. Three classes of numerical method are presented: the finite
dimensional filter based on approximating the conditional density by a linear combination of
Gaussian functions, finite state Markov chain, and the particle filter.

In Chapter 4: Since the Zakai equation is a linear SPDE, we survey some existing results on
linear SPDEs. Two approaches presented are the semigroup and the variational.

In Chapter 5: We show the existence of the unnormalized conditional density which is the
solution of a Zakai equation.

In Chapter 6: We solve the Zakai equation numerically by Galerkin approximation, and we show
the convergence of Galerkin approximation in mean square.

In Chapter 7: We design an adaptive Galerkin filter with Hermite polynomials and present
examples of the corresponding simulation results to illustrate the effectiveness of the proposed
method.



Chapter 2

Filtering model and the Zakai
equation

In this chapter, we mainly introduce the filtering model which will be studied throughout the
thesis. Furthermore we deduce the corresponding filtering equation by a ‘change of measure
method’.

Presented in Section 2.1 is a short review of a nonlinear filtering problem. In Section 2.2, we
introduce the nonlinear filtering model studied in this thesis and include the state process which
we are interested but, unable to observe directly. Also included are the observation processes
which are the partial observations of the state, and the objective of the nonlinear filtering prob-
lem. The objective is to obtain the conditional distribution of the partially observed processes
recursively. In Section 2.3, we introduce the innovation process and discuss their martingale
processes, which are useful for the numerical study introduced in Chapter 7. In Section 2.4, by
‘change of measure method’, we derive the Zakai equation, which describes the evolution of an
unnormalized version of the conditional distribution.

2.1 Stochastic filtering

This section is devoted to a short introduction on nonlinear filtering. For details, we refer to the
book Bain and Crisan (2009).

We begin Section 2.1.1 with a general nonlinear filtering problem. In Section 2.1.2, we pursue
the Markov case and present the filtering equation obtained by two approaches. Section 2.1.3 is
devoted to finite dimensional filters. Finally, in Section 2.1.4, we introduce the nonlinear filtering
problem for jump-diffusion case.

2.1.1 A general introduction

The objective, in this section, is to present a short introduction to a general nonlinear filtering
problem. It concerns the following: Denote by T ⊆ R+ a set of time points (usually T = R+).
We are interested in a signal or state process X = {Xt}t∈T which can not be observed directly.
Instead, the so called observation process Z = {Zt}t∈T , a noisy nonlinear observation of X is
obtained.

5
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The objective of a filtering problem is to determine the conditional distribution of the state Xt

given FZ
t = σ(Zs, 0 ≤ s ≤ t), which we denote by πt. Recall, by Equation (1.1.1), FZ

t denotes the
past observation of Z until time t. Bain and Crisan (2009), Corollary 2.26, page 31, show that
under some assumptions, the conditional distribution of the signal can be viewed as a stochastic
process with values in the space of probability measures.

Additionally, from a computational point of view, it is desired that π be obtained recursively.
This means that πt+s can be built up from πt and the new observation rather than the whole
observation history. This allows for quick updating of the filter and avoids serious data storage
issues.

Typically, πt is infinite dimensional. However, sometimes πt can be taken as a finite-dimensional
object. This will be introduced in Section 2.1.3.

2.1.2 The filtering equations

To derive detailed results we introduce some notations as follows. Let (Ω,F ,P) be a probability
space together with a filtration {Ft}t∈[0,T ] which satisfies the usual conditions.

Assume that X is a Rd-valued Markov process with state space S ⊂ Rd. For example, X can be
a diffusion process or a finite state Markov chain, for details, see Bain and Crisan (2009), page
49. Denote by L be the generator of the Markov process: for x ∈ S,

Lf(x) = lim
t↓0

E[f(Xt)|X0 = x]− f(x)
t

,

the limit being uniform in x ∈ S and D(L) denotes the set of all bounded, measurable, real-
valued functions f : S → R such that this limit exists. The generator gives the expected rate of
change of the process {f(Xt)}t∈[0,T ].

Z, is the noisy nonlinear observation of X,

Zt =
∫ t

0
h(Xs)ds +Bt, 0 ≤ t ≤ T, (2.1.1)

where B is a standard l-dimensional Brownian motion which is independent of X. h : Rd → Rl

is a measurable function such that,

P(
∫ T

0
‖h(Xs)‖ds <∞) = 1, (2.1.2)

where the Euclidean norm ‖ · ‖ is defined in the usual fashion for vectors. This ensures the
Riemann integral in Equation (2.1.1) is well defined.

As we introduced before, the objective is to recursively derive πt(f) = E[f(Xt)|FZ
t ], which

denotes the conditional of Xt given the past observation. The problem can be solved by two
approaches, one is the innovation approach, the other is the ‘change of measure method’.

In the innovation approach, if Equation (2.1.2) is satisfied, Bain and Crisan (2009), Theorem
3.30, page 68, show that, with additional assumption for h such that the stochastic integral in
the following equation is well defined, ∀f ∈ D(L), t ∈ [0, T ],

πt(f) = π0(f) +
∫ t

0
πs(Lf)ds+

∫ t

0

[
πs(hf)− πs(h)πs(f)

](
dZs − πs(h)ds

)
. (2.1.3)



2.1. STOCHASTIC FILTERING 7

This is called the Kushner-Stratonovich equation. The second term describes the evolution of
the distribution of Xt. The third describes the evolution of the conditional distribution of Xt

given accumulation of observations. Equation (2.1.3) is a nonlinear stochastic equation. It is not
only an infinite dimensional, but it has a complicated structure due to the presence of the term
πs(h). In general, it is not useful for computation.

By the change of measure approach and with the same assumptions as Equation (2.1.3), one
obtains an unnormalized version of π, denoted by ρ which satisfies the following linear equation.
See Theorem 3.24, Bain and Crisan (2009), page 62,

ρt(f) = ρ0(f) +
∫ t

0
ρs(Lf)ds+

∫ t

0
ρs(hf)dZs, t ∈ [0, T ],

which has a much simpler structure than Equation (2.1.3). This equation is called Zakai equation.
And π can be obtained from ρ after normalizing

πt(f) =
ρt(f)
ρt(1)

, t ∈ [0, T ].

2.1.3 Finite-dimensional filters

Recall that πt denotes the conditional distribution of Xt given the past observation. In general,
πt can not be determined by finite number of parameters. But, in some special cases, π will
be determined by a finite dimensional stochastic differential equations driven by observations.
The aim of this section is to introduce some special filters for which the corresponding π is
finite-dimensional.

The Kalman-Bucy filter

In this section, we introduce the very special filtering problem where the signal is Gaussian
and the observation function is linear. The corresponding theory is called Kalman-Bucy filter.
For this case, the conditional distribution of Xt given FZ

t is a normall distribution. Hence it is
determined by the conditional mean and the conditional variance. Therefore, in this case, the
filter is 2-dimensional. Finally, we give the evolution equations of the two parameters.

Here, to simplify, we assume that the coefficients are 1-dimensional. We consider the following
linear model, for t ∈ [0, T ], {

dXt = (b̃tXt + b̃0t )dt + σ̃tdVt,

dZt = (h̃tXt + h̃0
t )dt+ dBt,

(2.1.4)

where X0 is normal distributed with mean μ0 ∈ R and variance r20 ∈ R+, V and B are inde-
pendent 1-dimensional Brownian motions, {b̃t}, {b̃0t}, {h̃t} and {h̃0

t } are deterministic R-valued
processes, {σ̃t} is a deterministic R+-valued process, and Z0 = 0. For this model, the condi-
tional distribution of the state Xt given the past observation of Z is Gaussian, applying Lemma
6.12, Bain and Crisan (2009), page 149. A normal distribution is determined by its mean and
variance. Therefore, the conditional distribution is uniquely determined by its mean, defined by
X̂t := E[Xt|FZ

t ], and variance, defined by Pt := E

[
(Xt − X̂t)2

∣∣∣FZ
t

]
. By Proposition 6.14, Bain

and Crisan (2009), page 152, the process
{
(X̂t, Pt)

}
0≤t≤T

is the unique solution to the following
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equations, for t ∈ [0, T ],{
dX̂t = (b̃tX̂t + b̃0t )dt+ h̃tPt

[
dZt − (h̃tX̂t + h̃0

t )dt
]
,

d
dtPt = σ̃2

t + 2b̃tPt − h̃2
tP

2
t ,

(2.1.5)

with X̂0 = E(X0) = μ0 and P0 = E[(X0 − X̂0)2] = r20. The details can be found in Bain and
Crisan (2009), page 148-154.

Finite state Markov chain

Next we introduce a filter, for which the corresponding conditional distribution is a finite-
dimensional stochastic process, since the state space is finite dimensional. We will show that, in
this case, (2.1.3) gives rise to a finite-dimensional filter.

We consider Model (2.1.1) and, for simplicity, we assume that the coefficients are 1-dimensional.
Moreover, we specify to the case that X be a finite-state Markov-chain with state space S =
{1, . . . , n}, where n ∈ N. The generator associated to process X is a Matrix Q = (qij)1≤i,j≤n,
which denotes the transition intensities of X. Let

pt,i := P(Xt = i|FZ
t ) and pt := (pt,1, . . . , pt,n)� (2.1.6)

be the vector process representing the vector of conditional probabilities. Let vector h :=(
h(1), h(2), . . . , h(n)

)�
, and In be the identity matrix of size n. Davis and Marcus (1981), Ex-

ample 1, page 66, and Bain and Crisan (2009), Remark 3.26, page 65, show that the conditional
probabilities solve the following n-dimensional stochastic differential equation,

pt = p0 +
∫ t

0
Q�psds +

∫ t

0
(B − h�psIn)ps

(
dZs − h�psds

)
, t ∈ [0, T ], (2.1.7)

where B := diag
(
h(1), . . . , h(n)

)
is a diagonal matrix.

Equation (2.1.7) is a recursive equation for the computation of pt. Moreover Equation (2.1.7)
is an n-dimensional SDE system for the vector pt of conditional probabilities, and hence a
finite-dimensional filter.

2.1.4 Filtering from point processes observations

The nonlinear filtering problem for jump-diffusion is of great interest. The fundamental to point
process filtering was presented in Brémaud (1972) and Brémaud (1981). Frey and Runggaldier
(2010) deal with a general case and provide recursive updating rules for the filter. Shown below
is a simple example with 1-dimensional coefficients:

Let n ∈ N, and we assume that X can be a finite-state Markov-chain with state space S =
{1, . . . , n}. The generator associated to the process X is a Matrix Q = (qij)1≤i,j≤n. Here, ob-
servation Z is a doubly stochastic Poisson process with intensity λ(Xt), where λ : R → R+.
Let p, defined by Equation (2.1.6), be the vector process representing the vector of conditional

probabilities. Let vector λ̄ :=
(
λ(1), λ(2), . . . , λ(n)

)�
. Frey and Runggaldier (2010) show that

these conditional probabilities solve the following n-dimensional stochastic differential equation,
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for t ∈ [0, T ],

pt = p0 +
∫ t

0
Q�psds+

∫ t

0

1
λ�ps−

(Bλ − λ̄�ps−In)ps−
(
dZs − λ�psds

)
, (2.1.8)

where Bλ := diag
(
λ(1), . . . , λ(n)

)
is a diagonal matrix.

2.2 The filtering model

The objective of this section is to introduce the nonlinear filtering problem in which we are
interested. We have a state process X which can not be observed. The information of X is
obtained by the observation processes Z and Y , where Z is a nonlinear continuous observation,
with some noise, and Y is a doubly stochastic Poisson process with the stochastic intensity which
is a nonlinear function of X. We are interested in the conditional expectation of a function of
Xt given the past observation.

All stochastic processes will be defined on a probability space (Ω,F ,P) and on a finite time
interval [0, T ]. F = {Ft, t ∈ [0, T ]}, which satisfies the usual conditions, is the full-information
filtration. All processes considered are by assumption F-adapted. We consider the following
filtering problem throughout this thesis.

2.2.1 Unobserved state process

This section is devoted to an introduction of the state process which is a diffusion process in
our case. To be precise, let X = {Xt, 0 ≤ t ≤ T} be the unobserved d-dimensional state. The
state process is a stochastic process which can not be observed directly. We assume X is the
solution of a d-dimensional stochastic differential equation driven by a standard m-dimensional
Brownian motion V = {Vt, t ∈ [0, T ]},

Xt = X0 +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dVs, 0 ≤ t ≤ T. (2.2.1)

Here, X0 has finite second moment. Let p0 ∈ L2(Rd) be the density of the law of X0, then
p0(x) ≥ 0 a.e. and

∫
Rd p0(x)dx = 1. We assume that b : Rd → Rd and σ : Rd → Rd×m satisfy the

following conditions: there exist a positive constant K, such that for all x, y ∈ Rd, we have

‖b(x)− b(y)‖ ≤ K‖x− y‖, ‖σ(x) − σ(y)‖ ≤ K‖x− y‖. (2.2.2)
‖b(x)‖ ≤ K(1 + ‖x‖), ‖σ(x)‖ ≤ K(1 + ‖σ(x)‖). (2.2.3)

Here the Euclidean norm ‖ · ‖ is defined in the usual fashion for vectors, and extended to d×m
matrices by considering then as d ×m-dimensional vectors : ‖σ‖ =

√∑d
i=1

∑m
j=1(σij)2. Under

the globally Lipschitz condition, the SDE has a unique solution. For the existence and uniqueness
of the solution for Equation (2.2.1), see Øksendal (1980), Theorem 5.5, page 48, or Bain and
Crisan (2009), page 7.

Let L∞(Rd) be the space of bounded measurable real-valued functions on Rd. The generator
L : D(L)→ L∞(Rd) associated to the process X is the second order differential operator

L =
d∑

i=1

bi(x)
∂

∂xi
+

1
2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
, (2.2.4)
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where a(x) = [aij(x)] := σ(x)σ�(x), and bi and xi denote the ith component of b and x,
respectively. D(L) consists of all function f ∈ L∞(Rd), such that Lf ∈ L∞(Rd) and

Mf
t = f(Xt)− f(X0)−

∫ t

0
Lf(Xs)ds, t ∈ [0, T ], (2.2.5)

is an {Ft}-adapted martingale.

2.2.2 Observations

X is partially observed, that is, information concerning X is obtained from the observation
processes Z, which is continuous, and Y , which is a pure jump process. Z is a l-dimensional
noisy nonlinear observation of the state Xt,

Zt =
∫ t

0
h(Xs)ds +Bt, 0 ≤ t ≤ T. (2.2.6)

Here B = {Bt, t ∈ [0, T ]} is a l-dimensional standard Brownian motion independent of X and
Y . We have the following:

Assumption 2.1. We assume that h : Rd → Rl is a measurable function such that

P

(∫ T

0
‖h(Xs)‖ds <∞

)
= 1. (2.2.7)

The Equation (2.2.7) ensures that the Riemann integral in Equation (2.2.6) exists P− a.s.

Assumption 2.2. We assume that λ : Rd → [
1,
2] is a continuous function, where 0 < 
1 <

2 are constants.

We further assume that Y is a doubly stochastic Poisson process with the stochastic intensity
{λ(Xt)}t∈[0,T ] and Y0 = 0. Then the process

Yt −
∫ t

0
λ(Xs)ds, t ∈ [0, T ],

is a (P,F)-martingale. Denote the jumping times of Y by the sequence {τn}n≥1, then τn =
inf{t ≥ 0|Yt ≥ n}.

2.2.3 The objective

Recall that FZ,Y
t is the σ-algebra generated by {Zu, 0 ≤ u ≤ t}

⋃
{Yu, 0 ≤ u ≤ t}. Then the

observation filtration is given by FZ,Y := {FZ,Y
t }0≤t≤T . We are interested in, for all f ∈ L∞(Rd),

E

[
f(Xt)

∣∣∣FZ,Y
t

]
, t ∈ [0, T ]. (2.2.8)

The subject of the mathematical theory of filtering is finding suitable ways of computing this
conditional expectation recursively, either exactly or approximately. Equivalently, the principal
aim of solving a filtering problem is to determine the conditional distribution of the state Xt

given the observation history.



2.3. THE INNOVATIONS PROCESSES 11

To conclude, we study the following nonlinear model throughout the thesis, for t ∈ [0, T ],⎧⎨⎩
Xt = X0 +

∫ t
0 b(Xs)ds+

∫ t
0 σ(Xs)dVs,

Zt =
∫ t
0 h(Xs)ds+Bt,

Y is a doubly stochastic Poisson process with intensity λ(Xt),
(2.2.9)

where X is the state process, Z and Y are observations. The objective is to determine the
conditional distribution of the state Xt given the observation history.

2.3 The innovations processes

In this section, we introduce the innovations processes and discuss their martingale properties.
These theoretical properties will be used in our computation strategy, see Section 7.1.2. In
Chapter 7, we will use the Galerkin method to approximate the unnormalized conditional density.
When the numerical result is inconsistent with its theoretical properties, it is necessary to
increase the number of basis functions used in the approximation.

For a generic process η, denote η̂t := E[ηt|FZ,Y
t ]. Now we introduce the innovations processes as

follows: for t ∈ [0, T ],

Mt = Yt −
∫ t

0
λ̂sds, (2.3.1)

μt = Zt −
∫ t

0
ĥsds. (2.3.2)

In what follows, we show M and μ are martingales.

Lemma 2.1. Under Assumptions 2.2, {Mt}t∈[0,T ] is a (P,FZ,Y )-martingale.

Proof. It follows from Equation (2.3.1) that for t ∈ [0, T ],

E|Mt| =E

∣∣∣Yt −
∫ t

0
λ(Xs)ds +

∫ t

0
λ(Xs)ds−

∫ t

0
λ̂sds

∣∣∣
≤E

∣∣∣Yt −
∫ t

0
λ(Xs)ds

∣∣∣ + 2‖λ‖∞T <∞.

The last inequality follows as Yt −
∫ t
0 λ(Xs)ds is a martingale and λ is bounded by Assumption

2.2. For 0 ≤ s < t ≤ T ,

E[Mt|FZ,Y
s ] =E

[
Yt − Ys −

∫ t

s
λ̂udu

∣∣∣FZ,Y
s

]
+Ms

=E

[
Yt − Ys −

∫ t

s
λ(Xu)du

∣∣∣FZ,Y
s

]
+ E

[ ∫ t

s
(λ(Xu)− λ̂u)du

∣∣∣FZ,Y
s

]
+Ms.

On the one hand,

E

[
Yt − Ys −

∫ t

s
λ(Xu)du

∣∣∣FZ,Y
s

]
= E

[
E

(
Yt − Ys −

∫ t

s
λ(Xu)du

∣∣∣Fs

)∣∣∣FZ,Y
s

]
= 0.
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On the other hand,

E

[ ∫ t

s
(λ(Xu)− λ̂u)du

∣∣∣FZ,Y
s

]
=

∫ t

s
E

(
λ(Xu)− λ̂u

∣∣∣FZ,Y
s

)
du

=
∫ t

s
E

(
λ(Xu)− E(λ(Xu)|FZ,Y

u )
∣∣∣FZ,Y

s

)
du

=0,

where the first equality follows from Fubini’s Theorem. So

E[Mt|FZ,Y
s ] = Ms,

and M is a (P,FZ,Y )-martingale.

Lemma 2.2. Under Assumption 2.1, {μt}t∈[0,T ] is a (P,FZ,Y )-Brownian motion.

Proof. It follows from Equation (2.3.2) that, for 0 ≤ s < t ≤ T ,

E[μt|FZ,Y
s ] = E

[
Zt − Zs −

∫ t

s
ĥudu

∣∣∣FZ,Y
s

]
+ μs

= E

[
Bt −Bs +

∫ t

s

(
h(Xu)− ĥu

)
du

∣∣∣FZ,Y
s

]
+ μs

=
∫ t

s
E

[
h(Xu)− E

(
h(Xu)|FZ,Y

u

)∣∣∣FZ,Y
s

]
du+ μs

= μs,

where the fourth equality follows from the independent increments of the Brownian motion B,
Fubini’s Theorem and iterated conditional expectation. Therefore μ is a (P,FZ,Y )-martingale.

On the other hand, it follows from Equation (2.3.2) that

〈μ〉t = 〈Z〉t = t.

Since μ is an FZ,Y -martingale starting from zero at time zero with continuous paths and with
quadratic variation equal to t at each time t, μ is an FZ,Y -Brownian motion, by Shreve (2004),
Theorem 4.6.4, page 168.

2.4 The Zakai equations

In this section, we proceed to estimate the state X based on the available information. Generally,
the conditional distribution can be computed by two methods. The first method is to solve
Kushner-Stratonovich equation, which is a nonlinear stochastic partial differential equation.
The second method is to solve Zakai equation, which is a linear stochastic partial differential
equation describing the dynamics of the unnormalized distribution. The objective of this section
is to deduce the Zakai equation of the nonlinear filtering problem.

The section is organized as follows. In Section 2.4.1, a new measure is constructed under which
Z becomes a Brownian motion, Y becomes a standard Poisson process. In Section 2.4.2, we show
that the conditional expectation has a representation in terms of an associated unnormalized
version ρ and ρ satisfies a linear evolution equation, the so-called Zakai equation.
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2.4.1 A new measure

Before deriving the Zakai Equation, we introduce a new measure where Z becomes a standard
Brownian motion and Y becomes a Poisson process with intensity 1. Furthermore, under the
new measure, they are independent. Prior to that, we define stochastic process Λ̃. We show it is
a martingale and consequently, a new measure is constructed based on Λ̃.

Define stochastic process Λ̃ by1

Λ̃t :=
( ∏

τn≤t

1
λ(Xτn−)

)
exp

(
−

∫ t

0
[h(Xs)]�dBs

− 1
2

∫ t

0
‖h(Xs)‖2ds+

∫ t

0
(λ(Xs)− 1)ds

)
, t ∈ [0, T ]. (2.4.1)

In what follows, we will show that Λ̃ is a (P,F)-martingale under some assumptions. The neces-
sary and sufficient conditions for absolute continuity of measures have been studies for diffusion
type by Liptser and Shiryaev (1974a), page 257-291, for point processes, by Liptser and Shiryaev
(1974b), page 336-345, Brémaud (1981), Theorem T4, page 168, Theorem T11, page 242.

Now we introduce conditions under which Λ̃ is a martingale. For general case, the classical
condition is Novikov’s condition, see Protter (2005), Theorem 41, page 140. Notice, for this
special case, B is independent of X. We have an alternative condition provided as follows.

Assumption 2.3. We assume that h : Rd → Rl is a measurable function such that

E

[ ∫ T

0
‖h(Xs)‖2ds

]
<∞. (2.4.2)

Lemma 2.3. Suppose that Assumptions 2.3 and 2.2 are fulfilled, then

E(Λ̃t) = 1 for t ∈ [0, T ].

Proof. For sake of simplicity, define

Λ̃1,t := exp
[
−

∫ t

0
[h(Xs)]�dBs −

1
2

∫ t

0
‖h(Xs)‖2ds

]
,

Λ̃2,t :=
{ ∏

τn≤t

1
λ(Xτn−)

}
exp

[ ∫ t

0
(λ(Xs)− 1)ds

]
.

With Assumption 2.3, apply Liptser and Shiryaev (1974a), Example 4, page 234, or Note 3,
page 278, we get

E(Λ̃1,t|FX
t ) = 1. (2.4.3)

With Assumption 2.2, Brémaud (1981), Theorem T11, page 242, shows

E(Λ̃2,t|FX
t ) = 1. (2.4.4)

1The product
∏

τn≤t is taken to be 1 if τ1 > t.
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Combining Equation (2.4.3) and (2.4.4), we get

E(Λ̃t) =E

[
E(Λ̃t|FX

t )
]

=E

[
E(Λ̃1,tΛ̃2,t|FX

t )
]

=E

[
E(Λ̃1,t|FX

t )E(Λ̃2,t|FX
t )

]
= 1.

The desired result is obtained.

For reader’s convenience we present the proof of Equation (2.4.3) and (2.4.4) here. Note that
B is independent of X, by Assumption (2.4.2), applying Shreve (2004), Theorem 4.4.9, given
FX

t , −
∫ t
0 [h(Xs)]�dBs is normally distributed with mean zero and variance

∫ t
0 ‖h(Xs)‖2ds. So

we obtain Equation (2.4.3). Furthermore, notice

E

(
Λ̃2,t

∣∣∣FX
t

)
= exp

[ ∫ t

0
(λ(Xs)− 1)ds

]
E

( ∏
τn≤t

1
λ(Xτn−)

∣∣∣FX
t

)
.

Given FX
t and τj ≤ t < τj+1, the variables τ1 < τ2 . . . < τj are distributed like j order statistics

from a sample of independent random variable with density λ(Xs)/(
∫ t
0 λ(Xs)ds), s ∈ [0, t]. So

E

( ∏
τn≤t

1
λ(Xτn−)

∣∣∣FX
t

)
=E

(
1{τ1>t}|FX

t

)
+

∞∑
j=1

E

(
1τj≤t≤τj+1

j∏
n=1

1
λ(Xτn−)

∣∣∣FX
t

)
= exp

[
−

∫ t

0
λ(Xs)ds

] ∞∑
j=0

(
∫ t
0 λ(Xs)ds)j

j!
· tj

(
∫ t
0 λ(Xs)ds)j

= exp
[
−

∫ t

0
λ(Xs)ds

]
exp(t).

Equation (2.4.4) is obtained.

It is now time to show that Λ̃ is a martingale.

Proposition 2.4. Suppose that Assumptions 2.3 and 2.2 are fulfilled, then process {Λ̃t}0≤t≤T ,
defined by Equation (2.4.1), is a nonnegative (P,F)-martingale.

Proof. First we show {Λ̃t}0≤t≤T is a (P,F)-nonnegative-local martingale and a (P,F)-supermartingale.
By Itô’s formula, process Λ̃ satisfies the equation

Λ̃t = 1−
∫ t

0
Λ̃s−[h(Xs)]�dBs −

∫ t

0
Λ̃s−

λ(Xs−)− 1
λ(Xs−)

d
(
Ys −

∫ s

0
λ(Xu)du

)
.

Define

S̃n =

⎧⎪⎪⎨⎪⎪⎩
inf

{
t ≤ T |Λ̃t− ≥ n

or
∫ t
0 ‖h(Xs)‖2ds ≥ n or

∫ t
0 |λ(Xs)− 1|ds ≥ n

}
, if {...} = ∅,

T, otherwise.

Applying Brémaud (1981), (II, T8) and Shreve (2004), Theorem 11.4.5, we obtain Λ̃t∧S̃n
is a

(P,F)-martingale. Now λ is bounded, therefore, Y has only finitely many jumps in [0, T ]. Notice
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that Λ̃t− is a left-continuous process, we have supt∈[0,T ] |Λ̃t−| < ∞, a.s.. Moreover we have∫ T
0 ‖h(Xs)‖2ds <∞, P− a.s., λ is bounded, P− a.s.. Therefore Λ̃t is a (P,F)-nonnegative local

martingale. It is nonnegative, by Lemma 2.3

E(|Λ̃t|) = E(Λ̃t) = 1 <∞.

It is integrable and therefore, by Brémaud (1981), (I, E8), page 8, it is a (P,F)-supermartingale.

Furthermore, application of Lemma 2.3, Brémaud (1981) I, E6, page 7, shows that {Λ̃t}0≤t≤T is
a (P,F)-martingale.

Define the new measure P0 on the measureable space (Ω,F) by

P0(A) =
∫

A
Λ̃T (ω)P(dω),

for all A ∈ F . Denote by E0 the expectation w.r.t. P0.

Proposition 2.5. If Assumption 2.3 and 2.2 hold, then,

1 P0 is a probability measure.

2 The law of the process X under P0 is the same as its law under P.

2 Under P0, Z is a standard Brownian motion.

4 Under P0, Y is a standard Poisson process with intensity 1.

5 Under P0, the processes X, Z and Y are independent.

Proof. Results follow from Proposition 2.4 and Girsanov’s theorem for semimartingales, see for
instance, Jacod and Shiryaev (2003), Theorem 3.24, page 172.

Lemma 2.6. Suppose that Assumption 2.3 and 2.2 are fulfilled. Define

Λt := Λ̃−1
t , t ∈ [0, T ], (2.4.5)

where Λ̃ is defined by Equation (2.4.1). Then Λ is a (P,F)-martingale. E0(Λt) = 1 and Λt =
E0( dP

dP0 |Ft) for all t ≥ 0.

Proof. First we have

E0(Λt) = E(Λ̃tΛt) = 1. (2.4.6)

By Brémaud (1981), (I, E6), page 7, in order to show Λt is a martingale with respect to Ft and
P0, it is suffices to show it is a (P,F)-supermartingale. This can be obtained similarly as the
proof of Proposition 2.4. To be precisely, by the definition of Λ,

Λt :=
{ ∏

τn≤t

λ(Xτn−)
}

exp
( ∫ t

0
[h(Xs)]�dBs +

1
2

∫ t

0
‖h(Xs)‖2ds−

∫ t

0
(λ(Xs)− 1)ds

)
=
{ ∏

τn≤t

λ(Xτn−)
}

exp
(
−

∫ t

0
[h(Xs)]�dYs −

1
2

∫ t

0
‖h(Xs)‖2ds−

∫ t

0
(λ(Xs)− 1)ds

)
.
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Applying Itô’s formula

Λt = 1 +
∫ t

0
Λs−

{
[h(Xs)]�dZs + (λ(Xs−)− 1)d(Ys − s)

}
.

Define

Sn =

{
inf

{
t ≤ T |Λt− ≥ n or

∫ t
0 ‖h(Xs)‖2ds ≥ n or

∫ t
0 |λ(Xs)− 1|ds ≥ n

}
, if {...} = ∅,

T, otherwise.

Applying Brémaud (1981), (II, T8) and Shreve (2004), Theorem 11.4.5, we obtain Λ̃t∧Sn is a
(P,F)-martingale. Now, Y is a Poisson processes with intensity 1, therefore, Y has only finitely
many jumps in [0, T ]. Notice that Λt− is a left-continuous process, we have supt∈[0,T ] |Λt−| <∞,

a.s.. Moreover we have
∫ T
0 ‖h(Xs)‖2ds <∞, P− a.s., λ is bounded, P− a.s.. Therefore, Λt is a

(P,F)-nonnegative local martingale. It is nonnegative, by Equation (2.4.6),

E(|Λ̃t|) = E(Λ̃t) = 1 <∞.

It is integrable and therefore, By Brémaud (1981), (I, E8), page 8, a (P,F)-supermartingale.

2.4.2 The unnormalized filtering equations

Followed the idea from Bain and Crisan (2009), Proposition 3.15, page 56, we have the following
result.

Proposition 2.7. Let U be an integrable Ft-measurable random variable. Then

E0[U |FZ,Y
t ] = E0[U |FZ,Y

T ].

Proof. Let us denote by F̃Z,Y
t = σ(Zt+u − Zt, Yt+u − Yt; 0 ≤ u ≤ T − t), then FZ,Y

T =
σ(FZ,Y

t , F̃Z,Y
t ). Under P0, F̃Z,Y

t ⊂ FZ,Y
T is independent of Ft because Z is an Ft-adapted Brow-

nian motion and Y is Poisson process with intensity 1. Noting that U is Ft-adapted, using the
properties of the conditional expectation, we get

E0[U |FZ,Y
t ] = E0

[
U
∣∣∣σ(FZ,Y

t , F̃Z,Y
t )

]
= E0[U |FZ,Y

T ]. (2.4.7)

In the following proposition, known as Kallianpur-Striebel formula, see Kallianpur and Striebel
(1968), we show that the distribution of Xt given FZ,Y

t under the original measure P can be
calculated in terms of conditional expectations under the new measure P0. In other word, it is
suffice to compute the numerator on the right hand side of Equation (2.4.8).

Proposition 2.8 (Kallianpur-Striebel). Suppose that Assumptions 2.3 and 2.2 are fulfilled. For
any f ∈ L∞(Rd), t ∈ [0, T ],

E

(
f(Xt)

∣∣∣FZ,Y
t

)
=

E0(f(Xt)Λt|FZ,Y
T )

E0(Λt|FZ,Y
T )

=:
ρt(f)
ρt(1)

. (2.4.8)
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Proof. See the proof of Bain and Crisan (2009), Proposition 6.1.

In the following, we further assume that

P0
[ ∫ T

0
[ρs(‖h‖)]2ds <∞

]
= 1, (2.4.9)

P0
[ ∫ T

0
[ρs(1)]2ds <∞

]
= 1. (2.4.10)

Under condition (2.4.9), the stochastic integral
∫ t
0 ρs(fh�)dZs is a (P0,F)-local martingale for

any bounded measurable function f . Moreover, the stochastic integral
∫ t
0 ρs−

(
f(λ−1)

)
d(Ys− s)

is a (P0,F)-martingale for any bounded measurable function f in view of bounded of λ, by
integration theorem. For details see Brémaud (1981), Theorem T8, page 27.

Now, we are ready to present the main result of this section. In the following, we show {ρt}t∈[0,T ]

satisfies the following linear SPDE.

Theorem 2.9. Suppose that Assumptions 2.3 and 2.2 are fulfilled. Further more, if conditions
(2.4.9) and (2.4.10) are satisfied then the processes ρ satisfies

ρt(f) =π0(f) +
∫ t

0
ρs(Lf)ds+

∫ t

0
ρs(fh�)dZs

+
∫ t

0
ρs−

(
f(λ− 1)

)
d(Ys − s), P0 − a.s., ∀t ∈ [0, T ], (2.4.11)

for any f ∈ D(L).

The approach leading to the dynamics evolution of for the unnormalized conditional measure has
been developed in doctoral Duncan (1967), Mortensen (1966) and the important paper of Zakai
(1969). The linear SPDE (2.4.11) is therefore known as the Duncan-Mortensen-Zakai equation,
or simply, Zakai equation.

Proof of Theorem 2.9. We first approximate Λt with Λε
t given by Λε

t = Λt
1+εΛt

, ε > 0. The
definition of Λt implies that

dΛt = Λt−
[
h(Xt)�dZt + (λ(Xt−)− 1)d(Yt − t)

]
. (2.4.12)

The Itô formula for jump process, see for instance Shreve (2004) Theorem 11.5.1, shows

Λε
t =Λε

0 +
∫ t

0

Λs

(1 + εΛs)2
h(Xs)�dZs +

∫ t

0
− εΛ2

s

(1 + εΛs)3
‖h(Xs)‖2ds

−
∫ t

0

Λs

(1 + εΛs)2
(λ(Xs)− 1)ds +

∑
τn≤t

� Λτn

1 + εΛτn

. (2.4.13)
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The product rule for semimartingales, together with Equation (2.4.13) and (2.2.5), implies that

Λε
tf(Xt) =Λε

0f(X0) +
∫ t

0
Λε

s−df(Xs) +
∫ t

0
f(Xs−)dΛε

s + [Λε, f(X)]t

=Λε
0f(X0) +

∫ t

0
Λε

s(Lf)(Xs)ds+
∫ t

0
Λε

sdM
f
s

+
∫ t

0
f(Xs)

Λs

(1 + εΛs)2
h(Xs)�dZs

+
∫ t

0
f(Xs)(−

εΛ2
s

(1 + εΛs)3
‖h(Xs)‖2)ds

−
∫ t

0
f(Xs)

Λs

(1 + εΛs)2
(λ(Xs)− 1)ds

+
∫ t

0

f(Xs−)Λs−(λ(Xs−)− 1)
(1 + εΛs−λ(Xs−))(1 + εΛs−)

dYs.

Taking conditional expectations on both sides, we get

E0
FZ,Y

T

[
Λε

tf(Xt)
]

=E0
FZ,Y

T

[
Λε

0f(X0)
]

+ E0
FZ,Y

T

[ ∫ t

0
Λε

s(Lf)(Xs)ds
]

+ E0
FZ,Y

T

[ ∫ t

0
Λε

sdM
f
s

]
+ E0

FZ,Y
T

[ ∫ t

0
f(Xs)

Λs

(1 + εΛs)2
h(Xs)�dZs

]
+ E0

FZ,Y
T

[ ∫ t

0
f(Xs)(−

εΛ2
s

(1 + εΛs)3
‖h(Xs)‖2)ds

]
− E0

FZ,Y
T

[ ∫ t

0
f(Xs)

Λs

(1 + εΛs)2
(λ(Xs)− 1)ds

]
+ E0

FZ,Y
T

[ ∫ t

0

f(Xs−)Λs−(λ(Xs−)− 1)
(1 + εΛs−λ(Xs−))(1 + εΛs−)

dYs

]
.

:=E1 + E2 + E3 + E4 + E5 + E6 + E7, (2.4.14)

correspondingly. Compare to the Equation (2.4.11), it remains to show that, P0−a.s., as ε→ 0,

E0
FZ,Y

T

[
Λε

tf(Xt)
]
→ ρt(f), E1 → π0(f), E2 →

∫ t

0
ρs(Lf)ds, E3 = 0,

E4 →
∫ t

0
ρs(fh�)dZs, E5 = 0, E6 →

∫ t

0
ρs(λ− 1)ds, E7 →

∫ t

0
ρs−

(
f(λ− 1)

)
dYs.

In the following, we show this step by step. First, by the pointwise convergence of Λε
t → Λt,

lim
ε→0

Λε
tf(Xt) = Λtf(Xt).

We have that

E0|Λε
tf(Xt)| ≤ ‖f‖∞E0(Λt) = ‖f‖∞E(Λ̃tΛt) = ‖f‖∞ <∞,

as Λ̃tΛt = 1. Then, the dominated convergence theorem gives that

lim
ε→0

E0
FZ,Y

T

[Λε
tf(Xt)] = E0

FZ,Y
T

[Λtf(Xt)] = ρt(f), P0 − a.s. (2.4.15)
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In a similar way,

lim
ε→0

E1 = E0
FZ,Y

T

[Λ0f(X0)] = π0(f), P0 − a.s. (2.4.16)

Now we consider E2. Note that,

E0
FZ,Y

T

∣∣∣ ∫ t

0
Λε

s(Lf)(Xs)ds
∣∣∣ = E0

FZ,Y
T

∣∣∣ ∫ t

0

εΛs

1 + εΛs

1
ε
(Lf)(Xs)ds

∣∣∣ ≤ 1
ε
‖Lf‖∞T <∞.

By Fubini’s theorem, we rewrite E2 as

E2 =
∫ t

0
E0
FZ,Y

T

[
Λε

s(Lf)(Xs)
]
ds. (2.4.17)

Moreover,

lim
ε→0

Λε
s(Lf)(Xs) = Λs(Lf)(Xs).

We have that

E0
( ∫ t

0
E0
FZ,Y

T

|Λε
s(Lf)(Xs)|ds

)
≤E0

(∫ t

0
E0
FZ,Y

T

(Λs‖Lf‖∞)ds
)

=‖Lf‖∞
∫ t

0
E0(Λs)ds

=‖Lf‖∞
∫ t

0
E(Λ̃sΛs)ds = ‖Lf‖∞t <∞,

such that the dominated convergence theorem implies the desired result for E2:

lim
ε→0

E2 =
∫ t

0
E0
FZ,Y

T

[
Λs(Lf)(Xs)

]
ds =

∫ t

0
ρs(Lf)ds, P0 − a.s. (2.4.18)

Since Λε
t is bounded, apply Protter (2005), Corollary 3, page 73 and Bain and Crisan (2009),

Lemma 3.21, page 59,

E3 = 0. (2.4.19)

Before considering E4, we first have the following square integrability,

E0
[ ∫ t

0
f2(Xs)

( Λs

(1 + εΛs)2
)2
‖h(Xs)‖2ds

]
=

1
ε
E0

[ ∫ t

0
f2(Xs)

εΛs

(1 + εΛs)4
Λs‖h(Xs)‖2ds

]
≤‖f‖

2
∞
ε

E0
[ ∫ t

0
Λs‖h(Xs)‖2ds

]
=
‖f‖2∞
ε

∫ t

0
E

[
Λ̃sΛs‖h(Xs)‖2

]
ds

=
‖f‖2∞
ε

∫ t

0
E
[
‖h(Xs)‖2

]
ds <∞.

The last inequality follows from Equation (2.4.2). According to Bain and Crisan (2009), Lemma
6.6, we change the order of conditional expectation and stochastic integral, and we rewrite E4

equivalently as

E4 =
∫ t

0
E0
FZ,Y

T

[
f(Xs)

Λs

(1 + εΛs)2
h(Xs)�

]
dZs.
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Now consider the following process

t �→
∫ t

0
E0
FZ,Y

T

[
f(Xs)

Λs

(1 + εΛs)2
h(Xs)�

]
dZs. (2.4.20)

We now show this is a martingale by using Jensen’s inequality, Fubini’s Theorem and Equation
(2.4.2),

E0
{∫ t

0

(
E0
FZ,Y

T

[
f(Xs)

Λs

(1 + εΛs)2
h(Xs)

])2
ds

}
≤E0

{∫ t

0
E0
FZ,Y

T

[(
f(Xs)

Λs

(1 + εΛs)2
h(Xs)

)2]
ds

}
≤E0

{∫ t

0
E0
FZ,Y

T

[
f2(Xs)

1
ε

εΛs

(1 + εΛs)4
Λs‖h(Xs)‖2

]
ds

}
≤‖f‖

2
∞
ε

E0
[ ∫ t

0
E0
FZ,Y

T

[Λs‖h(Xs)‖2]ds
]

=
‖f‖2∞
ε

∫ t

0
E0

[
Λs‖h(Xs)‖2

]
ds

=
‖f‖2∞
ε

∫ t

0
E

[
‖h(Xs)‖2

]
ds ≤ ∞.

As Z is a standard Brownian motion under measure P0, the stochastic integral defined in Equa-
tion (2.4.20) is a (P0,F)-martingale by Shreve (2004), Theorem 4.3.1, page 134. Moreover, from
the condition (2.4.9), the postulated limit process as ε→ 0,∫ t

0
ρs(fh�)dZs (2.4.21)

is a local martingale. Thus, the difference of (2.4.20) and (2.4.21) is a local martingale:∫ t

0
E0
FZ,Y

T

[εΛ2
s(2 + εΛs)

(1 + εΛs)2
f(Xs)h(Xs)�

]
dZs. (2.4.22)

Define

ξs :=
εΛ2

s(2 + εΛs)
(1 + εΛs)2

f(Xs)[h(Xs)]�.

Since the pointwise limit

lim
ε→0

ξs = 0

and, taking into account Equation (2.4.9), we get the following dominating,

E0
FZ,Y

T

‖ξs‖ ≤E0
FZ,Y

T

(2‖f‖∞Λs‖h(Xs)‖) = 2‖f‖∞ρs(‖h‖) <∞, P0 − a.s.,

for almost every s ∈ [0, T ], dominated convergence theorem shows that for almost every s ∈
[0, T ],

lim
ε→0

E0
FZ,Y

T

ξs = 0, P0 − a.s.
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Furthermore, by Equation (2.4.9)∫ t

0

[
E0
FZ,Y

T

(ξs)
]2
ds ≤4‖f‖2∞

∫ t

0
[ρs|h|]2ds <∞, P0 − a.s..

The value of the integral
∫ t
0 limε→0[E0

FZ,Y
T

(ξs)]2ds is not modified with the change of the function

limε→0[E0
FZ,Y

T

(ξs)]2 on the set of Lebesgue zero measure. The dominated convergence theorem

implies

lim
ε→0

∫ t

0

[
E0
FZ,Y

T

(ξs)
]2
ds = 0, P0 − a.s..

By central limit theorem for stochastic integrals, see Revuz and Yor (1999), page 152, the integral
in Equation (2.4.22) convergence to 0, P0 − a.s. Then, we get the desired result for E4,

lim
ε→0

E4 =
∫ t

0
ρs(fh�)dZs, P0 − a.s.. (2.4.23)

The desired result of E5

lim
ε→0

E5 = 0, P0 − a.s. (2.4.24)

is obtain as a consequence of dominated convergence theorem by the pointwise limit,

lim
ε→0

f(Xs)
(
− εΛ2

s

(1 + εΛs)3
‖h(Xs)‖2

)
= 0

and the dominating,

E0
[ ∫ t

0
|f(Xs)(−

εΛ2
s

(1 + εΛs)3
‖h(Xs)‖2)|ds

]
≤‖f‖∞E0

[ ∫ t

0
Λs‖h(Xs)‖2ds

]
=‖f‖∞

∫ t

0
E

[
‖h(Xs)‖2

]
ds <∞.

Now we consider E6. Since, λ is bounded, we get the following boundedness,

E0
[ ∫ t

0
|f(Xs)

Λs

(1 + εΛs)2
(λ(Xs)− 1)|ds

]
≤‖f‖∞E0

[ ∫ t

0
Λs|λ(Xs)− 1|ds

]
=‖f‖∞

∫ t

0
E

(
|λ− 1|

)
ds

<∞.

Guaranteed by Fubini’s theorem, we change the order of conditional expectation and integral,
and rewrite E6 equivalently as

E6 =
∫ t

0
E0
FZ,Y

T

[
f(Xs)

Λs

(1 + εΛs)2
(λ(Xs)− 1)

]
ds.

Since the pointwise limit

lim
ε→0

f(Xs)
Λs

(1 + εΛs)2
(λ(Xs)− 1) = f(Xs)Λs(λ(Xs)− 1),
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and, in view of bounded, the dominating

E0
[ ∫ t

0
E0
FZ,Y

T

|f(Xs)
Λs

(1 + εΛs)2
(λ(Xs)− 1)|ds

]
= ‖f‖∞

∫ t

0
E(|λ− 1|)ds <∞,

dominated convergence theorem shows the desired result for E6,

lim
ε→0

E6 =
∫ t

0
ρs(λ− 1)ds, P0 − a.s.. (2.4.25)

It remains to study E7. For sake of simplicity, define

Hε
t :=

f(Xs−)Λs−(λ(Xs−)− 1)
(1 + εΛs−λ(Xs−))(1 + εΛs−)

,

then E7 can be rewritten as,

E7 = E0
FZ,Y

T

( ∫ t

0
Hε

sdYs

)
.

Notice the boundedness

|Hε
t | ≤

‖f‖∞
ε2

<∞,

change the order of stochastic integral and conditional expectation, which is guaranteed by
stochastic Fubini’s theorem, see Protter (2005), Theorem 64, page 207, E7 can be rewritten as

E7 =
∫ t

0
E0
FZ,Y

T

(Hε
s )dYs.

Combining the pointwise limit

lim
ε→0

Hε
t = f(Xt−)Λt−

(
λ(Xt−)− 1

)
, P0 − a.s,

and the dominating

E0(E0
FZ,Y

T

|Hε
t |) < E0

(
‖f‖∞‖λ− 1‖∞E0

FZ,Y
T

(Λt−)
)

= ‖f‖∞‖λ− 1‖∞ <∞,

stochastic dominated convergence theorem, see Protter (2005), Theorem 32, page 174, implies
that for almost every s ∈ [0, T ],

lim
ε→0

E0
FZ,Y

T

(
Hε

t

)
= E0

FZ,Y
T

(
f(Xt−)Λt−(λ(Xt−)− 1)

)
.

On the other hand

ρt−
(
f(λ− 1)

)
= lim

s↑t
ρs

(
f(λ− 1)

)
= lim

s↑t
E0

(
f(Xs)(λ(Xs)− 1)Λs|FZ,Y

)
=E0

(
f(Xt−(λ(Xs−)− 1)Λt−)|FZ,Y

)
,
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where the last equality follows from Liptser and Shiryaev (1974a), Theorem 1.6, page 17. Hence
we get

lim
ε→0

E0
FZ,Y

T

(Hε
t ) = ρt−

(
f(λ− 1)

)
.

By Equation (2.4.10), together with boundedness of f and λ, dominated convergence theorem
shows that

lim
ε→0

E7 =
∫ t

0
ρs−

(
f(λ− 1)

)
dYs, P0 − a.s.. (2.4.26)

Summing up, the Zakai equation is obtained.
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Chapter 3

Numerical methods

We are interested in the conditional distribution of the state process X given the past observa-
tion. In general, this is an infinite dimensional problem, i.e. we cannot obtain the conditional
distribution by a finite set of parameters. Therefore, it is normal to look for a finite dimensional
approximation which can be used in practical applications. There are various numerical methods
for this, some of which we list below. For a more comprehensive listing of these methods , we
refer to Budhiraja, Chen, and Lee (2007), Bain and Crisan (2009), page 191-217.

To begin, we have the spectral approach for SPDEs which is based on the Cameron-Martin ver-
sion of the Wiener Chaos expansion. The main advantage of the spectral approach, as compared
to most other nonlinear filtering algorithms, is that the time consuming computations, including
solving partial differential equations and evaluation of integrals, are performed in advance. The
real-time part is relatively simple, even when the dimension of the state process is large. For
further details, see Lototsky (2006). Unfortunately, the spectral approach only works for SPDEs
driven by white noise and is not useful for Model (2.2.9) with jump.

Next, we have the extended Kalman filter which is a linearized approximation of the original
problem. The EKF does not always perform well and, in fact, performs poorly if the nonlinearities
are strong, see Bain and Crisan (2009), page 196. It will give a good estimate only when the
coefficients are ‘slightly’ nonlinear, see Bain and Crisan (2009), Theorem 8.5, page 195. The
accuracy of results obtained using EKF is neither verifiable, nor reliable. It only works for SPDEs
driven by white noise and is not useful for Model (2.2.9) with additional jump observations.

In Section 2.1.3, we show the filter for a finite-state Markov chain is finite dimensional. Therefore,
it is logical to consider approximations of the state process X by a sequence Xn which are finite-
state Markov chains, see for instance Frey and Runggaldier (2010).

Similar to the Markov chain approximation method, the particle methods are a finite dimen-
sional approximation of unnormalized measure ρ by discretisation of the state variable, see for
instance Carpenter, Clifford, and Fearnhead (1999), Crisan, Moral, and Lyons (1999). However,
particle methods are more flexible and easier to implement. The basic idea is to approximate
the conditional expectation by Monto Carlo methods.

In Chapter 5, we will introduce an additional numerical method. We will show that the unnormal-
ized conditional density is the solution of a partial differential equation, although a stochastic
one. Therefore, we can apply classical PDE methods, such as the Galerkin method (see for
instance Germani and Piccioni (1984)), to the stochastic PDEs and obtain a density approxi-
mation. A detailed introduction of Galerkin method follows in Chapters 6 and 7.
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Here, in Chapter 3, we summarize the existing results concerning the finite-dimensional approx-
imation of Model (2.2.9), as introduced in Section 2.2. Throughout this Chapter, we will assume
d, the dimension of the state process X, is 1. Generalization to the multi-dimensional case is
easily obtained. We present three classical filters beginning in Section 3.1 with an introduction
to a finite dimensional filter based on the conditional distributions are Gaussian functions. In
Section 3.2, we introduce the filter obtained by the finite-state Markov chain approximation and,
in Section 3.3, we introduce particle filter.

3.1 A finite dimensional filter

Since Model (2.2.9) has additional jump observations, we can not directly solve the corresponding
nonlinear filtering problem using the Kalman-Bucy filter or the extended Kalman filter(EKF).
In this section, we provide a finite dimensional approximation of the nonlinear filtering problem
w.r.t. Model (2.2.9), where λ is specified as a exponential function, see Fontana and Runggaldier
(2010). We will show, after approximation, the conditional distribution is a linear combination
of Gaussian functions and consequently, it can be determined by a set of finite parameters.

In Section 3.1.1, we introduce two special cases for which the conditional distribution is Gaussian
or a linear combination of Gaussian functions. In Section 3.1.2, we introduce a numerical method
for Model (2.2.9), motivated by these two special cases.

3.1.1 Two special cases

In Section 2.1.3, we gave an introduction of the classical Kalman-Bucy filter where the signal
is Gaussian and the observation is linear. The conditional distribution is also Gaussian and
consequently, the filter is determined by two parameters: the conditional mean and conditional
variance.

Now, we will study the nonlinear filtering problem w.r.t. Model (2.2.9) which is with additional
jumps observations. We introduce two special cases where for Case 1, the Gaussianity is preserved
between jumps, and for Case 2, the Gaussianity is preserved at times of jump.

Case1

In this case, we consider linear model and include additional jump observation. We show, for
this case, the Gaussianity is preserved until the time of the first jump.

Consider Model (2.1.4), with additional jump observation, the intensity is a quadratic function
of the state process X. The reason we assume quadratic instead of linearity is to preserve the
positivity of the intensity. More precisely, we consider the following model, for t ∈ [0, T ],

⎧⎪⎪⎨⎪⎪⎩
dXt = (b̃tXt + b̃0t )dt + σ̃tdVt,

dZt = (h̃tXt + h̃0
t )dt+ dBt,

Yt is a doubly stochastic Poisson process with intensity λ̃2
tX

2
t + λ̃1

tXt + λ̃0
t ,

and jumping times τ1, τ2, . . . .

(3.1.1)

Here, the assumptions of X and Z are as same as assumptions in Section 2.1.3. Moreover, we
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assume that the coefficients λ̃2
t , λ̃1

t and λ̃0
t are deterministic R-valued processes, and for t ∈ [0, T ],

λ̃2
t > 0, and λ̃0

t −
(λ̃1

t )
2

4λ̃2
t

≥ 0 (3.1.2)

to guarantee the positivity of the jump intensity.

We now study the conditional distribution of Xt given past observations of Z and Y before τ1,
the time of the first jump. We have the following conjecture: Before τ1, that is , for 0 ≤ t < τ1,
the conditional distribution of Xt given the past observations of Z and Y is Gaussian with mean
X̂t and variance Pt defined as follows:

X̂t := E[Xt|FZ,Y
t ], Pt := E

[
(Xt − X̂t)2

∣∣∣FZ,Y
t

]
. (3.1.3)

And the process
{
(X̂t, Pt)

}
t∈[0,τ1)

is the unique solution to the following equations, for 0 ≤ t < τ1,{
dX̂t = (b̃tX̂t + b̃0t )dt + h̃tPt

[
dZt − (h̃tX̂t + h̃0

t )dt
]
−

[
2λ̃2

tPtX̂t + λ̃1
tPt

]
dt,

d
dtPt = σ̃2

t + 2b̃tPt − h̃2
tP

2
t − 2λ̃2

tP
2
t ,

with X̂0 = E(X0) and P0 = E

[
(X0 − X̂0)2

]
.

Remark 3.1. The proof of the Gaussianity preserving becomes too involved to be covered here.
We only present the idea of the proof. To simplify, we consider the simple case of Model (3.1.1).
That is for t ∈ [0, T ],⎧⎪⎪⎨⎪⎪⎩

dXt = b̃Xtdt+ σ̃dVt,

dZt = h̃Xtdt+ dBt,

Yt is a doubly stochastic Poisson process with intensity λ̃2X2
t ,

and jumping times τ1, τ2, . . . .

(3.1.4)

where b̃, h̃ ∈ R, σ̃ ≥ 0, λ̃2 > 0 are constants. The other assumptions are as same as Model
(3.1.1). Now we assume

{
(X̂t, Pt)

}
t∈[0,τ1)

is the solution of the following SDEs

{
dX̂t = b̃X̂tdt+ h̃Pt

[
dZt − h̃X̂tdt

]
−

[
2λ̃2PtX̂t

]
dt, t ∈ [0, τ1)

d
dtPt = σ̃2 + 2b̃Pt − h̃2P 2

t − 2λ̃2P 2
t ,

with X̂0 = E(X0) and P0 = E[(X0 − X̂0)2]. We then show in the following that, before τ1, the
conditional distribution of Xt given FZ,Y

t is Gaussian with conditional mean X̂t and conditional
variance Pt. Let {qt}t∈[0,τ1) be the density of the unnormalized conditional distribution of X, it
can be shown it is the solution of the following SPDE{

dqt = L∗qtdt+ h̃xqtdZt − (λ̃2x2 − 1)qtdt, t ∈ [0, τ1)
q0 = p0,

(3.1.5)

where L is the generator of X, L∗ is the adjoint of L and

L∗f = − ∂

∂x
(b̃xf) +

1
2
(σ̃)2

∂2

∂x2
f, ∀f ∈ D(L∗).
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Recall, p0 is the density of the law of X0. Notice, X0 is a normal distributed random variable
with mean X̂0 and variance P0, then

p0(x) =
1√

2πP0
e
− (x−X̂0)2

2P0 , x ∈ R.

Define

ut(x) := Ct
1√

2πPt
e
− (x−X̂t)

2

2Pt , t ∈ [0, τ1),

with {Ct}t∈[0,τ1) is the solution of the following SDE{
dCt = Ct

[
h̃X̂tdZt − (λ̃2Pt + λ(X̂t)2 − 1)dt

]
, x ∈ R, t ∈ [0, τ1),

C0 = 1.

Notice, for t ∈ [0, τ1), ut are Gaussian functions, therefore, the desired result is obtained if we
can show u is the unique solution of Equation (3.1.5). In fact, on the one hand, notice, by Itô
formula,

dCt
1√

2πPt
=Ct

1√
2πPt

[
h̃X̂tdZt − (λ̃2Pt + λ̃2(X̂t)2 − 1)dt

]
+ Ct

1√
2πPt

[− 1
2Pt

]dPt

=Ct
1√

2πPt

[
h̃X̂tdZt − (λ̃2Pt + λ̃2(X̂t)2 − 1)dt + [− 1

2Pt
]dPt

]
,

d[−(x− X̂t)2

2Pt
] =

x− X̂t

Pt
dX̂t −

(h̃)2P 2
t

2Pt
dt+

(x− X̂t)2

2PtPt
dPt,

de
− (x−X̂t)

2

2Pt =e−
(x−X̂t)

2

2Pt d[−(x− X̂t)2

2Pt
] +

1
2
e
− (x−X̂t)

2

2Pt [
x− X̂t

Pt
h̃Pt]2dt

=e−
(x−X̂t)

2

2Pt

{x− X̂t

Pt
dX̂t −

(h̃)2P 2
t

2Pt
dt+

(x− X̂t)2

2PtPt
dPt +

1
2
[(x− X̂t)h̃]2dt

}
,

then

dut =d
[
Ct

1√
2πPt

· e−
(x−X̂t)

2

2Pt

]
=(dCt

1√
2πPt

)e−
(x−X̂t)

2

2Pt +Ct
1√

2πPt
de

− (x−X̂t)
2

2Pt + ut[h̃X̂t][−
x− X̂t

Pt
]b̃Ptdt

=ut

{
h̃X̂tdZt − (λ̃2Pt + λ̃2(X̂t)2 − 1)dt + [− 1

2Pt
]dPt}

+ ut

{x− X̂t

Pt
dX̂t −

(h̃)2P 2
t

2Pt
dt+

(x− X̂t)2

2PtPt
dPt +

1
2
[(x− X̂t)h̃]2dt

}
+ ut[h̃X̂t][

x− X̂t

Pt
]h̃Ptdt

=ut

{
h̃X̂tdZt − (λ̃2Pt + λ̃2(X̂t)2 − 1)dt + [− 1

2Pt
][σ̃2 + 2b̃Pt − h̃2P 2

t − 2λ̃2P 2
t ]dt}

+ ut

{x− X̂t

Pt

(
b̃X̂tdt+ h̃Pt

[
dZt − h̃X̂tdt

]
−

[
2λ̃2PtX̂t

]
dt

)
− (h̃)2P 2

t

2Pt
dt

+
(x− X̂t)2

2PtPt
[σ̃2 + 2b̃Pt − h̃2P 2

t − 2λ̃2P 2
t ]dt+

1
2
[(x− X̂t)h̃]2dt

}
+ ut[h̃X̂t(x− X̂t)h̃]dt.
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It can be rewritten as

dut = ut

{
− b̃+ b̃x

x− X̂t

Pt
+

1
2
(σ̃)2

[
− 1
Pt

+ [
x− X̂t

Pt
]2
]}
dt + ut

{
h̃xdZt − (λ̃2x2 − 1)dt

}
.

(3.1.6)

On the other hand, notice

L∗ut = − ∂

∂x
(b̃xut) +

1
2
(σ̃)2

∂2

∂x2
ut = −b̃ut − b̃x

∂ut

∂x
+

1
2
(σ̃)2

∂2

∂x2
ut,

with

∂ut

∂x
= −x− X̂t

Pt
ut,

∂2ut

∂x2
= − 1

Pt
ut + [

x− X̂t

Pt
]2ut.

Then

L∗ut =ut

{
− b̃+ b̃x

x− X̂t

Pt
+

1
2
(σ̃)2

[
− 1
Pt

+ [
x− X̂t

Pt
]2
]}
.

We get

L∗utdt+ h̃xutdZt − (λ̃2x2 − 1)utdt (3.1.7)

=ut

{
− b̃+ b̃x

x− X̂t

Pt
+

1
2
(σ̃)2

[
− 1
Pt

+ [
x− X̂t

Pt
]2
]}
dt+ ut

{
h̃xdZt − (λ̃2x2 − 1)dt

}
.

Combining Equation (3.1.6) and (3.1.7), u satisfies

dut = L∗utdt+ h̃xutdZt − (λ̃2x2 − 1)utdt.

That is {ut}t∈[0,τ1) is the solution Equation (3.1.5).

Now we generalize this result to the following model, for t ∈ [0, T ],⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dXt = [b̄(t, Z, Y )Xt + b̄0(t, Z, Y )]dt + σ̄(t, Z, Y )dVt,
dZt = [(h̄(t, Z, Y )Xt + h̄0(t, Z, Y )]dt + dBt,
Yt is a doubly stochastic Poisson process

with intensity λ̄2(t, Z, Y )X2
t + λ̄1(t, Z, Y )Xt + λ̄0(t, Z, Y ),

and jumping times τ1, τ2, . . . .

where b̄, b̄0, σ̄, h̄, h̄0, λ̄2, λ̄1 and λ̄0 are {FZ,Y
t }-adapted, and again, we assume

λ̄2
t > 0, and λ̄0

t −
(λ̄1

t )
2

4λ̄2
t

≥ 0 (3.1.8)

to guarantee the positivity of the intensity.

As above, before the time of first jump of Y , that is , for 0 ≤ t < τ1, the conditional distribution
of X given the past observation of Z and Y is Gaussian with mean X̂t and variance Pt. The
process

{
(X̂t, Pt)

}
t∈[0,τ1)

is the unique solution to the following equations, for 0 ≤ t < τ1,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dX̂t =
[
b̄(t, Z, Y )X̂t + b̄0(t, Z, Y )

]
dt

+h̄(t, Z, Y )Pt

[
dZt −

(
h̄(t, Z, Y )X̂t + h̄0(t, Z, Y )

)
dt

]
−2λ̄2(t, Z, Y )X̂tPtdt − λ̄1(t, Z, Y )Ptdt,

d
dtPt = σ̄2(t, Z, Y ) + 2b̄(t, Z, Y )Pt −

[
h̄(t, Z, Y )

]2
P 2

t − 2
[
λ̄2(t, Z, Y )

]2
P 2

t ,

(3.1.9)
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with X̂0 = E(X0) and P0 = E[(X0 − X̂0)2].

It can be shown that Equation (3.1.9) still holds between jumps, that is for τn ≤ t < τn+1, if
the conditional distribution of the state X at time τn given the past observation of Z and Y is
Gaussian.

Case2

Consider Model (2.2.9) with the jump intensity λ specified as follows

λ(x) = c0 + c1e
c2x, x ∈ R, (3.1.10)

where c2 ∈ R and c0, c1 ∈ R+. In what follows, we will show that, λ defined by Equation (3.1.10)
guarantees of preserving Gaussianity at times of jump.

By Frey and Runggaldier (2010), Theorem 6.4, the update of the conditional distribution at the
time of jump is as following, for t = τ1, τ2, . . .,

pt(x) =
λ(x)pt−(x)∫

R
λ(x)pt−(x)dx

, x ∈ R.

Then, motivated by Fontana and Runggaldier (2010), Proposition 8, we have the following
Gaussianity preserving result.

Theorem 3.1. If pt− ∼ N(μ, σ2), μ ∈ R and σ ∈ R+, then pt is a linear combination of 2
Gaussian distributions N(μ, σ2) and N(μ + σ2c2, σ

2) with corresponding weights w1 and w2,
where

w1 :=
c0

c0 + c1 exp( (μ+σ2c2)2−μ2

2σ2 )
, w2 :=

c1 exp( (μ+σ2c2)2−μ2

2σ2 )

c0 + c1 exp( (μ+σ2c2)2−μ2

2σ2 )
. (3.1.11)

3.1.2 A finite dimensional filter

The objective of this section is to introduce a finite dimensional approximation of the nonlinear
filtering problem, motivated by Case 1 and Case 2, w.r.t. Model (2.2.9) with default intensity λ
specified as some exponential functions.

Consider Model (2.2.9) with the jump intensity λ specified as (3.1.10). With this assumption
the Gaussianity is preserved at times of jump by Case 2, Theorem 3.1. Between jumps, notice
that Model (2.2.9) is a nonlinear model. In order to apply the result of Case 1, we linearize of
the state model and the continuous observation Z, and we take the quadratic approximation
of jump intensity. Consequently, the Gaussianity is preserved between jumps. To sum up, after
approximation, the conditional distribution is a linear combination of Gaussian functions and
consequently can be obtained by finite number of parameters. Finally, we give the algorithm of
the filter for Model (2.2.9).

Filtering between jumps

We have shown in Section 3.1.1, for Model (3.1.1) the conditional distribution is Gaussian before
the time of the first jump. We now applying this result to numerically solve the nonlinear filtering
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problem w.r.t. Model (2.2.9). One key point is to approximate Model (2.2.9) to obtain Model
(3.1.1), applying Taylor expansion. Assume the prior estimate of x is x̄ then we approximate σ,
the diffusion coefficient in the state equation, by the 0-th order Taylor expansion,

σ(x) ≈ σ(x̄).

Next, we linearize b, h using the 1-th order Taylor expansion,

b(x) ≈b(x̄) + b′(x̄)(x− x̄),
h(x) ≈h(x̄) + h′(x̄)(x− x̄).

Finally, we approximate λ by a quadratic function, using the 2-th order Taylor expansion,

λ(x) ≈λ(x̄) + λ′(x̄)(x− x̄) +
1
2
λ′′(x̄)(x− x̄)2 (3.1.12)

=(c0 + c1e
c2x̄) + c1c2e

c2x̄(x− x̄) +
1
2
c1(c2)2ec2x̄(x− x̄)2

>0,

where the equality follows from the Equation (3.1.10), the definition of λ, and the inequality
follows from c1(c2)2ec2x̄ > 0 and

(c0 + c1e
c2x̄)− [c1c2ec2x̄]2

4 · 1
2c1(c2)

2ec2x̄
= (c0 + c1e

c2x̄)− 1
2
c1e

c2x̄ = c0 +
1
2
c1e

c2x̄ > 0.

In order to apply this idea to Model (2.2.9), we should have an prior estimate x̄ of the state X
first. For example, the prior estimate x̄ can be the solution of the ordinary differential equation

dx̄t = b(x̄t)dt with x̄0 =
∫

R

xp0(x)dx.

Then, by approximation of the nonlinear coefficients with Taylor expansion near x̄, we have the
following approximation of Model (2.2.9), for 0 ≤ t < τ1,⎧⎪⎪⎨⎪⎪⎩

dXt ≈ [b′(x̄t)(Xt − x̄t) + b(x̄t)]dt + σ(x̄t)dVt,
dZt ≈ [h′(x̄t)(Xt − x̄t) + h(x̄t)]dt + dBt,
Y is approximated by a doubly stochastic Poisson process

with intensity 1
2λ

′′(x̄t)(Xt − x̄t)2 + λ′(x̄t)(Xt − x̄t) + λ(x̄t) > 0.

The positivity of intensity is guaranteed by Equation (3.1.12). The conditional distribution of
Xt is approximated by a normal distribution with mean X̂t and variance Pt which satisfy, by
Equation (3.1.9), for 0 ≤ t < τ1,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dX̂t =
[
b′(x̄t)X̂t + b(x̄t)− b′(x̄t)x̄

]
dt

+h′(x̄t)Pt

[
dZt − (h′(x̄t)X̂t + h(x̄t)− h′(x̄t)x̄t)dt

]
−λ′′(x̄t)X̂tPtdt− λ′(x̄t)Ptdt+ λ′′(x̄t)x̄tPtdt,

d
dtPt = σ2(x̄t) + 2b′(x̄t)Pt −

[
h′(x̄t)

]2
P 2

t − 2
[

1
2λ

′′(x̄t)
]2
P 2

t .

Similarly, we can take X̂ as the prior estimator. The filter between jumps is then the solution
of the following system, for 0 ≤ t < τ1,⎧⎨⎩ dX̂t = b(X̂t)dt + h′(X̂t)Pt

[
dZt − h(X̂t)dt

]
− λ′(X̂t)Ptdt,

d
dtPt = σ2(X̂t) + 2b′(X̂t)Pt −

[
h′(X̂t)

]2
P 2

t − 1
2

[
λ′′(X̂t)

]2
P 2

t .
(3.1.13)
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Filtering at a jump time

Apply Theorem 3.1, λ defined by Equation (3.1.10) guarantees of preserving Gaussianity at the
time of jump.

To sum up, after approximation, at time t, the conditional density is a linear combination
of Gaussian functions with conditional mean, conditional variance, defined by X̂

(k)
t , P (k)

t and
corresponding weights, defined by �(k)

t , which is the coefficient of the linear combination. Here,
k = 1, 2, . . .. Hence, the conditional density can be determined, if one can determined X̂

(k)
t ,

P
(k)
t and �

(k)
t . Suppose that X0 is normal distributed with mean μ0 and variance r20, then,

the algorithm of the finite dimensional filter for Model (2.2.9) with jump intensity specifies as
(3.1.10) is as follows.

Algorithm

i Set τ0 = 0, X̂(1)
0 = μ0, P

(1)
0 = r20 and �

(1)
0 = 1. For t = 0, the filtering distribution is a

Gaussian distribution N(X̂(1)
0 , P

(1)
0 ).

ii For n = 1, 2, . . .,

(a) For t ∈ [τn−1, τn), the filtering distribution is linear combinations of 2n−1 Gaussian
distributions N(X̂(k)

t , P
(k)
t ) with corresponding weights �(k)

t , k = 1, 2, . . . , 2n−1. Here
X̂

(k)
t , P

(k)
t are solutions of Equation (3.1.13) with starting points X̂(k)

τn−1 , P
(k)
τn−1 . And

�
(k)
t = �

(k)
τn−1 .

(b) For t = τn, the filtering distribution is linear combination of 2n Gaussian distributions
N(X̂(k)

t , P
(k)
t ) with corresponding weights �(k)

τn , k = 1, 2, . . . , 2n.
Here, recalling w1 and w2 are defined by Equation (3.1.11), for k = 1, 2, . . . , 2n−1,

X̂(k)
τn

= X̂
(k)
τn−, P

(k)
τn

= P
(k)
τn−, �

(k)
τn

= �
(k)
τn−w1.

For k = 2n−1 + 1, 2n−1 + 2, . . . , 2n,

X̂(k)
τn

= X̂
(k−2n−1)
τn− + c2P

(k−2n−1)
τn− , P (k)

τn
= P

(k−2n−1)
τn− , �(k)

τn
= �

(k−2n−1)
τn− w2.

3.2 The finite-state Markov chain approximation

This section is devoted to the study of the nonlinear filtering problem w.r.t. Model (2.2.9) by
finite-state Markov chain approximation.

The idea, in the finite-state Markov chain approximation, is to replace the state process X by
a simpler process which approximates X well and is such, that, the corresponding expectations
are easier to compute. As seen, in Section 2.1.3, the filter corresponding to a finite-state Markov
chain is finite dimensional. Consider a sequence of finite-state Markov chain Xn, with state
space Sn = {sn

1 , s
n
2 , . . . , s

n
n} and generator matrix Qn = (κn

ij)n×n, see for instance Frey and
Runggaldier (2010), Frey and Schmidt (2009). Here, we assume Sn is a fixed equidistance grid.
In practice, however, one uses the information from the filtering results to dynamically move the
grid in a suitable manner, see for instance, Cai, Gland, and Zhang (1995). We refer to Dupuis
and Kushner (2001) for details on how to construct the approximating Markov chain. Define
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the conditional probabilities of Xn by pn
t = (pn1

t , pn2
t , . . . , pnn

t )�, where pni
t is the conditional

probability of Xn
t in state sn

i provided past observations of Z and Y . Then, pn is the solution
of a n-dimensional stochastic ODE and can be actually be computed recursively.

In Section 3.2.1, we approximate the state process X by a finite state Markov chain Xn. Then, in
Section 3.2.2, we compute the corresponding filter, w.r.t. approximated state process Xn, which
is the solution of a finite dimensional ordinary equation. Finally, in Section 3.2.3, we introduce
the computation strategy for the corresponding ordinary equation.

3.2.1 Approximating Markov chain

The objective of this section, is to approximate the state process X, which is a diffusion process
given by Equation (2.2.1), by a finite state Markov chain Xn. The key point is the finite dimen-
sional approximation of L which is the generator of X. L is a second order differential operator
defined by Equation (2.2.4). Examples for its finite dimensional approximation can be seen in
Dupuis and Kushner (2001) and Frey and Schmidt (2009). Finally, we show that functioned by
L is approximated by multiplication, by a matrix.

We first fix an equidistant grid Sn = {sn
1 , s

n
2 , . . . , s

n
n} with distance hn := sn

i − sn
i−1. Then, we

construct a matrix Qn = (κn
ij)n×n ∈ Rn×n by approximation the derivatives in L. We will show

that

κn
ij ≥ 0, i = j, (3.2.1)

κn
ii ≤ 0, i = 1, 2, . . . , n, (3.2.2)
n∑

j=1

κn
ij = 0, i = 1, 2, . . . , n, (3.2.3)

which are the sufficient properties for the generator matrix of a Markov chain, see Bain and
Crisan (2009), Exercise 3.6, page 51. Therefore, Qn can be view as the generator matrix of a
finite-state Markov chain Xn with state space Sn. Finally, X is approximated by the finite-state
Markov chains Xn which has generator matrix Qn.

So, the key step is to obtain the generator matrix Qn. Here, Qn is determined by finite difference
method to approximate the partial differential operator L, see for instance Dupuis and Kushner
(2001) and Cai, Gland, and Zhang (1995). The finite difference method is a numerical method,
for differential equation, by approximation of derivatives with finite differences. To be precise,
Qn are obtained as follows.

Using the finite difference method, the first order derivatives are approximated as, ∀x ∈ R, for
a twice differential function f : R→ R,

d

dx
f(x) ≈

{
f(x+hn)−f(x)

hn , if b(x) ≥ 0,
f(x)−f(x−hn)

hn , else.
(3.2.4)

Here, difference approximations for f ′(x) are in order to to guarantee Equation (3.2.1), (3.2.2)
and (3.2.3). The second order derivatives are approximated as, ∀x ∈ R,

d2

dx2
f(x) ≈ f(x+ hn)− 2f(x) + f(x− hn)

(hn)2
. (3.2.5)
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With (3.2.4) and (3.2.5), we can give the approximation of L, which is defined by Equation by
(2.2.4), for i = 2, 3, . . . , n− 1,

Lf(si) =
σ2(si)

2
d2

dx2
f(si) + b(si)

d

dx
f(si)

≈σ
2(si)
2

f(si + hn)− 2f(si) + f(si − hn)
(hn)2

+ f(si)(−
|b(si)|
hn

) + f(si + h)
|b(si)|
hn

1b(si)>0 + f(si − h)
|b(si)|
hn

1b(si)<0

=
σ2(si)

2
f(si+1)− 2f(si) + f(si−1)

(hn)2

+ f(si)(−
|b(si)|
hn

) + f(si+1)
|b(si)|
hn

1b(si)>0 + f(si−1)
|b(si)|
hn

1b(si)<0

=f(si)
[
− σ2(si)

(hn)2
− |b(si)|

hn

]
+ f(si+1)

[ σ2(si)
2(hn)2

+
|b(si)|
hn

1b(si)>0

]
+ f(si−1)

[ σ2(si)
2(hn)2

+
|b(si)|
hn

1b(si)<0

]
.

Consequently, Qn is defined as below, denoting, for i = 2, 3, . . . , n− 1,

κn
ii := −σ

2(si)
(hn)2

− |b(si)|
hn

,

κn
i,i+1 :=

σ2(si)
2(hn)2

+
|b(si)|
hn

1b(si)>0,

κn
i,i−1 :=

σ2(si)
2(hn)2

+
|b(si)|
hn

1b(si)<0,

κn
ij := 0, j = i− 1, i, i + 1.

Secondly, κn
ij , i = 1, n, j = 1, 2, . . . , n, are defined according to Equation (3.2.1), (3.2.2), (3.2.3)

and other conditions. Finally, the other coefficients of Qn are defined as 0.

With the definition of Qn, we see it satisfies Equation (3.2.1), (3.2.2) and (3.2.3). Now, we have
the following approximation,

Lf(si) ≈ (Qnf)i,

with f :=
(
f(sn

1 ), f(sn
2 ), . . . , f(sn

n)
)�

. Using Jacod and Shiryaev (2003), Thoerem 4.21, page 558,
if can be shown that Xn obtained as above weakly convergence to X, as n→∞. The sufficient
conditions for weak convergence of Xn to X are also discussed by Frey and Runggaldier (2010).

3.2.2 Filter

The objective of this section is to derive the corresponding filter of Xn which is the finite
state Markov chain approximation for X. Define the corresponding stochastic process Λn by, for
t ∈ [0, T ],

Λn
t :=

{ ∏
τn≤t

λ(Xn
τn−)

}
exp

(∫ t

0
[h(Xn

s )]�dBs +
1
2

∫ t

0
‖h(Xn

s )‖2ds−
∫ t

0
(λ(Xn

s )− 1)ds
)
. (3.2.6)
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Define the new measure P0,n on the measureable space (Ω,F) by

P0,n(A) =
∫

A
(Λn

T )−1(ω)P(dω)

for all A ∈ F . Denote by E0,n the expectation w.r.t. P0,n.

Then, in this case the filter can be represented by the n-dimensional process qn
t = (qn1

t , qn2
t , . . . , qnn

t )�,
t ∈ [0, T ], with qni

t := E0,n(Λn
t 1{Xn

t =sn
i }|F

Z,Y
t ), for i = 1, 2, . . . , n. Consequently, the conditional

expectation can be approximated as follows

E0,n
[
f(Xt)Λt

∣∣∣FZ,Y
t

]
≈ E0,n

[
f(Xn

t )Λn
t

∣∣∣FZ,Y
t

]
=

n∑
i=1

f(sn
i )qni

t , t ∈ [0, T ],

recalling that Λ is defined by Equation (2.4.5). And by Kallianpur-Striebel formula (2.4.8),

E

[
f(Xt)

∣∣∣FZ,Y
t

]
≈ E

[
f(Xn

t )
∣∣∣FZ,Y

t

]
=

E0,n[f(Xn
t )Λn

t |F
Z,Y
t ]

E0,n[Λn
t |F

Z,Y
t ]

=
∑n

i=1 f(sn
i )qni

t∑n
j=1 q

nj
t

=
n∑

i=1

f(sn
i ) · qni

t∑n
j=1 q

nj
t

=
n∑

i=1

f(sn
i )pni

t ,

where, by normalizing,

pni
t =

qni
t∑n

j=1 q
nj
t

, i = 1, 2, . . . , n, t ∈ [0, T ].

Therefore the conditional probabilities are now given by{
(sn

1 , p
n1
t ), (sn

2 , p
n2
t ), . . . , (sn

n, p
nn
t )

}
, t ∈ [0, T ],

with position sn
i and corresponding conditional probabilities pni

t .

It can be shown that, similar to Equation (2.1.7) and (2.1.8), the recursive representation of qn

is as follows, for i = 1, 2, . . . , n, t ∈ [0, T ],

qni
t = qni

0 +
∫ t

0

( n∑
j=1

κn
jiq

nj
s

)
ds +

∫ t

0
h(sn

i )qni
s dZs +

∫ t

0

[
λ(sn

i )− 1
]
qni
s−d(Ys − s).

And the matrix representation is

qn
t = qn

0 +
∫ t

0
(Qn)�qn

s ds+
∫ t

0
Bhqn

s dZs +
∫ t

0
Bλqn

s−d(Ys − s), t ∈ [0, T ], (3.2.7)

where Bh := diag
(
h(sn

1 ), h(sn
2 ), . . . , h(sn

n)
)

and Bλ := diag
(
λ(sn

1 ) − 1, . . . , λ(sn
n) − 1

)
. Notice,

this filter is much faster than the Galerkin filter, since the coefficient matrices Bh and Bλ are
diagonal. The Galerkin filter is further introduced in Chapter 7.

The convergence was discussed by, for instance, Frey and Runggaldier (2010) and Frey and
Schmidt (2009). Frey and Runggaldier (2010) show, under suitable assumptions, the approxi-
mating filters convergence in probability. Frey and Schmidt (2009) show the weak convergence of
the filter, that is, for all bounded and continuous function, the conditional expectation of f(Xn

t )
given past observation converges to the conditional expectation of f(Xt) given past observation,
as n→∞.



36 CHAPTER 3. NUMERICAL METHODS

3.2.3 Numerical solution

This section introduces the numerical method for Equation (3.2.7).

Equation (3.2.7) can be solved numerically with splitting-up method which we will introduce in
Section 7.1.2 in detail. Let 0 = t0 < t1 < · · · < tk < · · · < tL = T be a uniform partition of
the interval [0, T ] with time step Δ = tk − tk−1 = T

L . Assume that {Ztk}, {Ytk}, k = 0, 1, . . . , L
is the sampled trajectories of the observation processes Z and Y at discrete times. q(n,Δ)

k =(
q
(n,Δ)
k,1 , q

(n,Δ)
k,2 , . . . , q

(n,Δ)
k,n

)�
, the approximation of the unnormalized conditional distribution qn

tk

at discrete times (tk, k = 0, 1, . . . , L) is obtained as follows, first q(n,Δ)
0 is obtained, by recalling

that p0 is the density of the law of X0,

q
(n,Δ)
0,i =

∫ sn
i +Δ

2

sn
i −

Δ
2

p0(x)dx, i = 1, 2, . . . , n.

For k = 1, 2, . . . , L,

1) q̄(n,Δ)
k =

(
q̄
(n,Δ)
k,1 , q̄

(n,Δ)
k,2 , . . . , q̄

(n,Δ)
k,n

)�
:= exp

[
(Qn −Bλ)Δ

]
q(n,Δ)

k−1 ,

2) q̃(n,Δ)
k =

(
q̃
(n,Δ)
k,1 , q̃

(n,Δ)
k,2 , . . . , q̃

(n,Δ)
k,n

)�
, where for i = 1, . . . , n,

q̃
(n,Δ)
k,i = exp

[
h(sn

i )(Ztk − Ztk−1
)− h(sn

i )2Δ
2

]
q̄
(n,Δ)
k,i ,

3) q(n,Δ)
k =

(
q
(n,Δ)
k,1 , q

(n,Δ)
k,2 , . . . , q

(n,Δ)
k,n

)�
, where for i = 1, . . . , n,

q
(n,Δ)
k,i = λ(sn

i )(Ytk
−Ytk−1

)q̃
(n,Δ)
k,i .

In the computation, the most complicated part is the matrix exponential in step 1). In general,
the computation of the matrix exponential is difficult if n is large. But notice, it does not depend
on the observations, it only depends on the model. Therefore exp

[
(Qn−Bλ)Δ

]
can be computed

before hand. This is a computational advantage of finite-state Markov chain approximation.

3.3 Particle methods

As same as the Markov chain approximation method and Euler-Maruyama, particles methods
are finite dimensional approximation of unnormalized measure ρ by discretisation of the state
variable. For n ∈ N, The approximation of the conditional measure, for 0 ≤ t ≤ T , is given
by the discrete probabilities

{
(x1

t , p
1
t ), (x

2
t , p

2
t ) . . . , (x

n
t , p

n
t )

}
with position xi

t and corresponding

conditional probabilities pi
t, i = 1, 2, . . . , n. Here n represents the number of particles that are

used to approximate of the measure. But particle methods need not to fix a grid of state and
are very flexible.

Again, this section is devoted to derive the particle filter for Model (2.2.9). The basic idea of
particle filters is to approximate conditional expectations E0

[
f(Xt)Λt

∣∣∣FZ,Y
t

]
by Monte Carlo
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methods, where Λ is defined by Equation (2.4.5). By Proposition 2.5, under the new measure P0,
the state process X, the continuous observation Z and the jump observation Y are independent
and X has the same law as its law under P. Now we can apply Monte Carlo methods. And the
basic steps of the algorithm are as follows: Assume that trajectories of observations Z and Y
are given.

Algorithm 3.1. i First, according to SDE (2.2.1), independently generate n paths of X
denoted by xi

t, i = 1 . . . , n, 0 ≤ t ≤ T .

ii Obtain corresponding paths of Λ, denoted by ai
t. a

i
t is generated by the following equation,

for i = 1, 2, . . . n,

ai
t = 1 +

∫ t

0
ai

sh(x
i
s)

�dZs +
∫ t

0
ai

s−

[
λ(xi

s)− 1
]
d(Ys − s), t ∈ [0, T ].

iii Then, the conditional expectation can be approximated as a weighted average

E0
[
f(Xt)Λt

∣∣∣FZ,Y
t

]
≈ 1
n

n∑
i=1

f(xi
t)a

i
t, t ∈ [0, T ]. (3.3.1)

And consequently, apply Kallianpur-Striebel formula (2.4.8),

E

[
f(Xt)

∣∣∣FZ,Y
t

]
=

E0[f(Xt)Λt|FZ,Y
t ]

E0[Λt|FZ,Y
t ]

≈
1
n

∑n
i=1 f(xi

t)ai
t

1
n

∑n
i=1 a

i
t

=
n∑

i=1

f(xi
t) ·

ai
t∑n

j=1 a
j
t

=
n∑

i=1

f(xi
t)p

i
t,

where after normalizing,

pi
t :=

ai
t∑n

j=1 a
j
t

, i = 1, 2, . . . , n.

Finally, the approximation of the conditional measure is now given as{
(x1

t , p
1
t ), (x

2
t , p

2
t ) . . . , (x

n
t , p

n
t )

}
, t ∈ [0, T ],

with position xi
t and corresponding conditional probabilities pi

t, i = 1, 2, . . . , n.

For the convergence and error of the approximation with only continuous observation see Bain
and Crisan (2009), page 209-290. Similarly, it can be shown, the convergence is true for the case
with additional point process observations.

Let {ρn
t }t∈[0,T ] be the sequences of measure-valued processes

ρn
t :=

1
n

n∑
j=1

aj
tδxj

t
, t ∈ [0, T ].

Here, δ is the Dirac measure. We then have the following convergence result of ρn.
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Lemma 3.2. For any f ∈ D(L), we get

E0
[(
ρn

t (f)− ρt(f)
)2∣∣∣FZ,Y

t

]
=
Cf (t)
n

,

where

Cf := E0
[(
f(Xt)Λt − ρt(f)

)2∣∣∣FZ,Y
t

]
.

Particle methods are very flexible and easy to implement. It is unlike the Markov chain approxi-
mation method for which one need to fix a grid to approximation the distribution. But it suffers
from severe degeneracy, especially in high dimensions. After a few steps , the majority of the
weights are close to zero and all the weights tend to concentrate on a very few particles. This
reduces the effective of Monte Carlo methods.

There are remedies for this. One example is the branching particle filter. At the precise time,
each existing particle will die or give birth to a random number of offspring proportional to the
weight. The number of particles in the system will remain constant at n. In this way, particles
that stay on the right trajectories (representing by heavy weights) are explored more thoroughly
while particles with unlikely trajectories/positions (representing by little weights) are not carried
forward uselessly. For details and corresponding convergence results, see Bain and Crisan (2009),
Budhiraja, Chen, and Lee (2007).



Chapter 4

Linear stochastic PDEs

We are interested in the solution of the Zakai equation, which is a linear parabolic PDE. There-
fore, we need some existence and uniqueness results for this class of SPDE. Some solutions are
available, including the variational approach, the semigroup approach, and ‘method of moving
frame’. Using these methods, similar results have been obtained on the same type of equations.
The ‘method of moving frame’ is an approach, based on a time dependent coordinate transform,
which reduces a wide class of SPDEs to a class of simpler SDE problems, see for instance Fil-
ipovic, Tappe, and Teichmann (2010). The main purpose of this chapter is to present a short
review of existence results of linear SPDEs by semigroup approach and variational approach.

To simplify notation, let B be a real Banach space, and H be a real separable Hilbert space with
norm ‖ · ‖H and scalar product (·, ·).
This chapter is based on Peszat and Zabczyk (2007), Prato and Zabczyk (1992), Hairer (2009)
and Pardoux (1979b). We refer also to Gawarecki and Mandrekar (2001), L. Gawarecki (1999),
Kallianpur and Xiong (1995), Knoche (2004), Knoche (2005) and reference therein, for other
interesting results of SPDEs.

In Section 4.1, we study linear SPDEs by the tool of semigroup theory. In Section 4.2, we
introduce the variational approach to linear parabolic SPDEs.

4.1 Semigroup approach

In this section, we give an introduction to semigroup theory of linear SPDEs. The details can be
found in the books Peszat and Zabczyk (2007), Prato and Zabczyk (1992), and Hairer (2009).

In Section 4.1.1, we mainly introduce semigroup theory and in Section 4.1.2, we introduce the
result of linear SPDEs by semigroup approach.

4.1.1 Semigroup

First, we define semigroups and generators. We then show, if a linear operator is the generator of
a semigroup with some regularly properties, then the corresponding linear PDEs have a so-called
weak solution obtained by the semigroup. Finally, we show the characterizations for generators
of semigroups.

39
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We are interested with the solution of following linear equation in a Banach space B,{
u′t = A0ut, t ∈ [0, T ],
u0 = w ∈ B. (4.1.1)

Here u′t := limδ→0
ut+δ−ut

δ , and the limit is taken in the norm of B. A0 is a linear operator, in

general unbounded, with domain D(A0) ⊂ B, that is A0 ∈ L
(
D(A0);B

)
.

A strong solution of Equation (4.1.1) is a function u ∈ C
(
[0, T ];B

)
∩ C1

(
(0, T );B

)
such that

u(t) ∈ D(A0) and fulfils Equation (4.1.1).

If a unique solution of Equation (4.1.1) exists, define operators S(t) : D(A0)→ B as follows

S(t)w = u(t, w), ∀w ∈ D(A0), t ∈ [0, T ].

Then, S(t) maps the starting point u0 = w onto the solution u(t) at time t. The uniqueness of the
solution implies {S(t), t ∈ [0, T ]} is family of linear operators, which means S(t) ∈ L

(
D(A0);B

)
.

In other word, for t ∈ [0, T ], w1, w2 ∈ D(A0)

S(t)(c1w1 + c2w2) = c1S(t)w1 + c2S(t)w2,

where c1 and c2 are constants. And we have the so-called semigroup properties of semigroup,
for s, t, s+ t ∈ [0, T ],

S(t+ s)w = S(t)S(s)w, w ∈ D(A0),

with S(0) = I.

According to the different regularity properties, one has the following definition of semigroup,
also see Hairer (2009), Definition 4.1, page 28.

Definition 4.1. A semigroup on B is a set {S(t), t ∈ [0, T ]} of linear bounded operators on B
which satisfy

S(t+ s) = S(t)S(s), S(0) = I, 0 ≤ s, t ≤ s+ t ≤ T.

A semigroup is furthermore called

• a C0-semigroup if S(·)u0 ∈ C([0, T ];B), ∀u0 ∈ B.

• an analytic semigroup if there exists θ0 > 0 such that {S(t), t ∈ [0, T ]} have an analytic
extension {S(t), t ∈ Sθ0 ∪ {0}}, where Sθ0 := {z ∈ C : | arg(z) < θ|} is a sector in C, and
the extension satisfies

– S(t+ s) = S(t)S(s), t, s, t+ s ∈ S(θ0).

– S(eiθ·)u0 ∈ C([0, T ];B), ∀u0 ∈ B, ∀|θ| < θ0.

The properties of a semigroup are determined by its generator, which is defined as follows, see
Hairer (2009), Definition 4.6, page 29, or Prato and Zabczyk (1992), page 380.

Definition 4.2. The generator A of a C0-semigroup S(·) is a linear operator defined as follows

Ax = lim
t→0+

S(t)x− x
t

, ∀x ∈ D(A),
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where

D(A) := {x ∈ B; lim
t→0+

S(t)x− x
t

exists},

and the limit is taken in the sense of strong convergence.

From the definition, we see that A is an extension of A0. We recall some definitions from
functional analysis, see for instance, Showalter (1977), page 19. Recall that the domain D(A∗)
of the adjoint A∗ of an unbounded operator A : D(A) → B is defined as the set of all elements
φ ∈ B′ such that there exists an elements A∗φ ∈ B′ with property that (A∗φ)(x) = φ(Ax) for
every x ∈ D(A). Here B′ is the dual space of B.

Let the bilinear form 〈·, ·〉 : B′ × B → R be defined as

〈φ, x〉 = φ(x), φ ∈ B′, x ∈ B,

forms a duality pairing. 〈φ, x〉 denotes the application of φ ∈ B′ to x ∈ B.

Then, we have the following result:

Theorem 4.1. Let A be the generator of a C0-semigroup. Then, ∀x ∈ D(A) and t ∈ (0, T ],

S(t)x ∈ D(A) and
d

dt
S(t)x = AS(t)x = S(t)Ax.

Furthermore, for t ∈ [0, T ], ut := S(t)x, x ∈ B, satisfies, ∀φ ∈ D(A∗), where A∗ is the adjoint
operator of A,

〈φ, ut〉 = 〈φ, x〉 +
∫ t

0
〈A∗φ, us〉ds, ∀x ∈ B. (4.1.2)

For the proof, we refer to Hairer (2009), Proposition 4.7, page 30. Theorem 4.1 shows that if A
is the generator of a C0-semigroup S(·), then the function t �→ S(t)x, x ∈ D(A), is a solution to
the equation

u′t = Aut, u0 = x.

Equation (4.1.2) means the function t �→ S(t)x, x ∈ B, is the solution of the above equation in
a weak sense.

Moreover, if A is the generator of an analytic semigroup S(·), then the semigroup map B into
the domain of any arbitrarily high power of A, see, Hairer (2009), Proposition 4.37, page 41.

Consequently, a question arises when A is the generator of a semigroup. For this, we have
characterisation of the generators of C0-semigroup, which is the so-called Hille-Yosida theorem,
see Hairer (2009), page 31, and characterisation of the generators analytic semigroup, see Hairer
(2009), Theorem 4.22, page 36. Furthermore, we are interested in an important subclass of
generators of analytic semigroups which are related to parabolic equations. Notice, the Zakai
equation is a parabolic one.

We first give the definition of coercivity assumption.

Definition 4.3. Let V and H be Hilbert spaces(with norms ‖ · ‖H and ‖ · ‖V) such that V
is densely embedded in H. A bilinear operator a : V × V → R is said to satisfy the coercivity
assumption, if there exist c > 0 and β ≥ 0 such that

−a(v, v) ≥ c‖v‖2V − β‖v‖2H, ∀v ∈ V.
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The corresponding characterisations are as follows

Theorem 4.2. Let V and H be Hilbert space(with norms ‖·‖H and ‖·‖V ) such that V is densely
embedded in H. Let a bilinear operator a : V × V → R satisfies the coercivity assumption with
the corresponding parameter c > 0 and β ≥ 0. Define

D(A) =
{
u ∈ V : |a(u, v)| ≤ Ku‖v‖H, v ∈ V

}
,

where Ku depends on u, and let A ∈ L(D(A);H) be given by

a(u, v) = (Au, v), u ∈ D(A), v ∈ V.

Then A generates an analytic semigroup S(·) on H such that ‖S(t)‖ ≤ eβt, t ∈ [0, T ].

For the proof, the reader is referred to Prato and Zabczyk (1992), Proposition A.10, page 389.

Remark 4.1. In Theorem 4.2, the definition of A ∈ L(D(A);H) makes sense. More precisely,
∀u ∈ D(A), define a mapping Fu : V → R, by

Fu(v) := a(u, v), ∀v ∈ V.

Since V is densely embedded in H, Fu can continuously extended to H. Then by the definition of
D(A), Fu is a bounded linear operator on H. Riesz representation theorem implies, there exists
an element w ∈ H, such that, for all v ∈ H,

Fu(v) = (w, v).

Now define A ∈ L(D(A);H) by, for all u ∈ D(A),

Au := w.

Then we get

a(u, v) = Fu(v) = (w, v) = (Au, v).

4.1.2 Linear SPEDs

In this section we introduce the result of linear SPDEs driven by Lévy noise by semigroup
approach. First, we give the definition of strong, weak, mild solutions of linear SPDEs. We then
show, with proper assumptions, weak solution and mild solutions coincide. Therefore, it is suffice
to study mild solutions which are easier to treat. At last, we show the uniqueness and existence
results of mild solutions.

Let (Ω,F , {Ft}0≤t≤T ,P, ) be a stochastic basis with the usual assumption. In this section,we
shall consider a linear stochastic PDE of the following form, let H be a real separable Hilbert
space,

ut = u0 +
∫ t

0
Ausds+

∫ t

0
BusdMs, with u0 = w ∈ H, (4.1.3)

where A, with domain D(A), is the generator of a C0-semigroup S(·) on a Hilbert space H.
For u ∈ H, Bu := (B1u,B2u, . . . , Bdu), where, for i = 1, 2, . . . , d, Bi : H → H are bounded
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linear operators. Since we are interested in the solution of the Zakai equation, we specify M as
M = (M1,M2, . . . ,Md)� is a Rd-valude square integrable martingale. It satisfies that each M i

is a one-dimensional Brownian motion or a one-dimensional compensated Poisson process with
intensity 1. And, if i = j, then the processes M i and M j are independent. For more general
assumption of M , see Peszat and Zabczyk (2007), page 122.

A logical question is what we mean by the solution to Equation (4.1.3). In the following, we
define the strong, weak and mild solutions w.r.t. Equation (4.1.3).

Definition 4.4. An H-valued {Ft}-predictable process u is said to be a strong solution to
Equation (4.1.3) if u takes values in D(A), sups∈[0,T ] E{‖us‖2H+‖Aus‖H} <∞ and for t ∈ [0, T ],

ut = u0 +
∫ t

0
Ausds+

∫ t

0
BusdMs, with u0 = w ∈ H

holds almost surely.

Here
∫ t
0 BusdMs is a stochastic integral, where the integrand Bus take values in Hilbert space

H. Since B is a bounded linear operator and sups∈[0,T ] E{‖us‖2H +‖Aus‖H} <∞, this stochastic
integral is well-defined.

In general, this solution concept is too restrictive. Solutions are usually defined in the mild or
weak sense.

Definition 4.5. An H-valued {Ft}-predictable process u is said to be a weak solution, if
sups∈[0,T ] E‖us‖2H <∞ and, for t ∈ [0, T ],

(
v, ut

)
=

(
v, u0

)
+

∫ t

0

(
A∗v, us

)
ds+

∫ t

0

(
B∗v, us

)
dMs, with u0 = w ∈ H

holds almost surely for every v ∈ D(A∗).

Definition 4.6. An H-valued {Ft}-predictable process u is said to be a mild solution if
sups∈[0,T ] E‖us‖2H <∞ and for t ∈ [0, T ],

ut = S(t)u0 +
∫ t

0
S(t− s)B(us)dMs, with u0 = w ∈ H.

Here S(t− s) operator on B(us) is obtained by applying S(t− s) componentwise.

Theorem 4.3. u is a mild solution if and only if u is a weak solution.

Proof. Since A is the generator a C0-semigroup and B is a bounded linear operator which
satisfies the so-called Lipschitz-type conditions, see Peszat and Zabczyk (2007), page 142, the
desired result is obtained by Theorem9.15, Peszat and Zabczyk (2007), page 151.

Theorem 4.3 shows that weak and mild solutions coincide. Therefore it is suffice to study the
existence property of mild solution which is easier to treat. And we have the following existence
result for mild solutions.

Theorem 4.4. Assume that w is an F0-measurable, H-valued, square integrable random vari-
able, then Equation (4.1.3) has a unique mild solution and the solution has a càdlàg modification.
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Proof. Theorem 9.29, Peszat and Zabczyk (2007), page 164, implies the desired result.

In the classical theory of stochastic differential equation, one look for càdlàg solution of form

dut = Autdt+But−dMt, u0 = w.

The following theorem shows that the càdlàg solution and the predictable solution are equivalent.
For more details, see Peszat and Zabczyk (2007), page 145-148.

Theorem 4.5. Let u be a càdlàg solution to the equation

dut = Autdt+But−dMt, u0 = w.

Then ūt := ut−, t ≥ 0, is equivalent to u and is a predictable solution to

dut = Autdt +ButdMt, u0 = w.

Proof. The desired result is obtained from Proposition 9.10, Peszat and Zabczyk (2007), page
148.

4.2 The variational approach to linear parabolic SPDEs

The variational approach was introduced by Lions (1961) to solve deterministic PDEs, and it
was developed by Pardoux for SPDEs.

In Section 4.2.1, we present the general setting in which we will give the main existence and
uniqueness result for linear parabolic SPDE’s using variational approach. In Section 4.2.2, we
present the main existence result and uniqueness result of SPDEs with Gaussian noise.

4.2.1 General setting

As we introduced before, A is the differential operator associated to the state process X. It is
a linear operator, possibly unbounded. For example, define the operator K : C1(R) → C(R)
which acts by taking the derivative. So, for f ∈ C1(R), Kf = f ′. Take f = xn, x ∈ [0, 1]. Then,
Kf = f ′ = nxn−1, and ‖f ′‖∞ = n→∞, as n→∞. So this operator is not bounded.

From now on, Ā will denote an extension of the unbounded operator A from the previous section.
That is, instead of considering

A : D(A) → L∞(Rd),

we shall consider

Ā : V → V ′,

where

D(A) ⊂ V ⊂ H ⊂ V ′ and Ā|D(A) = A.

More precisely, the framework is as follows. Before that, we have the following definition.
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• For any separable Hilbert space V, denote by ‖ · ‖V the norm in V and by (·, ·)V or simply
(·, ·) its scalar product.

• V together with its dual V ′ and the bilinear form 〈·, ·〉 : V ′ × V → R defined as

〈u, v〉 = u(v), u ∈ V ′, v ∈ V

forms a duality pairing. 〈u, v〉 denotes the application of u ∈ V ′ to v ∈ V.

• We denote by ‖ · ‖V ′ the norm in V ′, defined by

‖u‖V ′ = sup
v∈V ,‖v‖V≤1

〈u, v〉.

We consider a triple (V,H,V ′) of Hilbert space which satisfies the following assumption.

Assumption 4.1. V ⊂ H is a Hilbert space, which is dense in H, with continuous injection.
We identify H with its dual H′, and consider H′ as a subspace of the dual V ′ of V, again with
continuous injection. Moreover, we have

〈u, v〉 = (u, v), ∀v ∈ V, ∀u ∈ H ⊂ V ′,

‖u‖H ≤ ‖u‖V , ∀u ∈ V.

For a triple (V,H,V ′) which satisfies Assumption 4.1, we have

V ⊂ H � H′ ⊂ V ′,

and we have the following property:

Lemma 4.6. Given a triple (V,H,V ′) which satisfies Assumption 4.1, for u ∈ V ,

‖u‖V ′ ≤ ‖u‖H ≤ ‖u‖V .

Proof. By definition of ‖ · ‖ and Assumption 4.1,

‖u‖V ′ = sup
v∈V ,‖v‖V≤1

〈u, v〉 = sup
v∈V ,‖v‖V≤1

(u, v)

≤ sup
v∈V ,‖v‖V≤1

‖u‖H · ‖v‖H ≤ sup
v∈V ,‖v‖V≤1

‖u‖H · ‖v‖V ≤ ‖u‖H.

Example 4.1. The Sobolev spaces
(
H1(Rd), L2(Rd),H−1(Rd)

)
form a triple which satisfies

Assumption 4.1. And we have

H1(Rd) ⊂ L2(Rd) ⊂ H−1(Rd).

More generally, the Sobolev spaces
(
Hk+j(Rd),Hk(Rd),Hk−j(Rd)

)
, k, j ∈ N and j > 0 form a

such triple. For an introduction of Sobolev space, see Section A.1.1.
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4.2.2 Basic results for linear parabolic SPDEs with Gaussian noise

The objective of the section is to present the existence and uniqueness results for SPDEs with
Gaussian noise. In Chapter 5, we will show the existence and uniqueness results for SPDEs with
Gaussian and Poisson noise.

Existence and uniqueness can be established when the coercivity assumption is satisfied. The
coercivity assumption of Ā is crucial. This is explained by Pardoux (1979b), page 144 and page
164. Now we give the definition of the coercivity assumption of an operator based on Definition
4.3.

Definition 4.7. Given a triple (V,H,V ′) which satisfies Assumption 4.1, an operator R ∈
L(V,V ′), is said to satisfy the coercivity assumption, if the bilinear operator a : V × V → R

defined by

a(u, v) := 〈Ru, v〉

satisfies the coercivity assumption. That is there exists c > 0 and β ≥ 0 such that, ∀v ∈ V,

β‖v‖2H − 〈Rv, v〉 ≥ c‖v‖2V . (4.2.1)

Let M2(0, T ;V) denote the space of V-valued stochastic process with some regular properties.
And let C2(0, T ;H) denote the spaces of H-valued continuous stochastic processes with some
regular properties. For details of processes spacesM2(0, T ;V) and C2(0, T ;H), see Section A.1.2.
Let W be , for sake of simplicity, a one-dimensional standard Brownian motion. The following
theorem are proved in Pardoux (1979b).

Theorem 4.7. Given a triple (V,H,V ′) which satisfies Assumption 4.1, and linear bounded
operators Ā : V → V ′, B : H → H. If Ā is coercive, then there exists a unique solution of the
following equation, ∀v ∈ V,⎧⎨⎩

u ∈M2(0, T ;V),
(ut, v) = (u0, v) +

∫ t
0 〈Āus, v〉ds +

∫ t
0 (Bus, v)dWs,

u0 = w ∈ H,
(4.2.2)

Moreover, the solution is a process of the space C2(0, T ;H), and satisfies

‖ut‖2H = 2
∫ t

0
〈Āusus〉ds+ ‖w‖2H + 2

∫ t

0
(Bus, us)dWs +

∫ t

0
‖Bus‖2Hds, a.s..

For a proof, see Pardoux (1979b), Theorem 1.3, page 137.

Remark 4.2. Equivalently, one can rewrite Equation (4.2.2) as follows

ut = u0 +
∫ t

0
Āusds+

∫ t

0
BusdWs,

which can be consider as an equation in the space V ′.



Chapter 5

Unnormalized conditional density

The question we consider in this chapter is whether the conditional distribution of Xt, given the
observation history, has a density with respect to a reference measure. We prove that, under fairly
mild conditions, the unnormalized conditional distribution ρt has a square integrable density
with respect to Lebesgue measure, which is a weak solution of a stochastic partial differential
equation.

There are various approaches to answer this question, giving the similar results. Pardoux (1979b),
Pardoux (1979a) and Germani and Piccioni (1984), using adjoint equation, studied the nonlinear
filtering problem where the state process X is a Markov diffusion process. They proved results
in the case of an observation corrupted by a Wiener noise. Pardoux (1979a) proved a result
in the case that the observation is a marked point process (for instance a poisson process),
whose predictable projection (the stochastic intensity in the case of a point process) is a given
function of the signal X. Bain and Crisan (2009) studied the continuous version of nonlinear
filtering problem where the state process X is a Markov diffusion process and partially observed.
Bain and Crisan (2009) have shown there exists a square integrable density of the unnormalized
conditional distribution and studied the differentiability of the density.

The approach presented here is that adopted by Pardoux (1979b) and Pardoux (1979a). We
generalized their results to the nonlinear filtering associated with Model (2.2.9), where the
observation processes have both Wiener and Poisson noise.

This chapter is organized as follows.

The unnormalized conditional density is the solution of a SPED, the so called Zakai equation.
In Section 5.1, we assume some regularity for the coefficients of the nonlinear filtering problem
w.r.t. Model (2.2.9), which guarantee the existence and uniqueness of the solution of the Zakai
equation and its regularity. Its regularity helps us to show the solution is nothing more than the
unnormalized conditional density.

In Section 5.2, we give the main result of this chapter. That is, the Zakai equation has a unique
solution in some spaces and the solution is the unnormalized conditional density.

In Section 5.3, we show the ideas to obtain the main result. It is to generalize the classical
Feynman-Kac formula for second-order parabolic deterministic PDEs. The key tools are the
adjoint equations.

Finally, in Section 5.4, we give the proof of our main result.

47
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5.1 Assumptions

We study the nonlinear filtering problem w.r.t. Model (2.2.9). In Section 5.2, we will show the
existence of the unnormalized conditional density and it is the solution of a Zakai equation.
Therefore, we need some regularity of the coefficients such that assumptions similar to Theorem
4.7 are satisfied.

We are looking for solutions of the Zakai equation, which is a SPDE, in certain functional spaces
such as Sobolev spaces. To guarantee the existence of the solution, the spaces should satisfy
Assumption 4.1. Going forward, let H be L2(Rd), V be H1(Rd), and V ′ be H−1(Rd), then the
triple (V,H, V ′) satisfies Assumption 4.1, which is mentioned in Example 4.1.

In the following, we need more regularity of b, σ, h and λ. We keep the assumptions from Section
2.2, and we add the following assumptions throughout this chapter.

Assumption 5.1. i) b, σ, and h are bounded on Rd.

ii) b and σ are continuous with bounded derivatives. Moreover σ has bounded second order
derivative.

iii) Set a(x) = σ(x)σ(x)�. There exists α > 0, such that z�a(x)z ≥ αz�z, ∀x, z ∈ Rd.

iiii) Assumption 2.2 holds.

Such hypotheses guarantee that:

Proposition 5.1. If Assumption 5.1 holds, then,

1) The system (2.2.1) has a unique strong solution.

2) An operator A : V → V ′, defined by

〈Au, v〉 :=− 1
2

d∑
i,j=1

∫
Rd

aij(x)
∂u

∂xi

∂v

∂xj
dx+

d∑
i=1

∫
Rd

āi
∂u

∂xi
vdx, (5.1.1)

where

āi := bi −
1
2

d∑
j=1

∂aij(x)
∂xj

,

is a bounded linear operator.

3) A satisfies the coercivity assumption, defined by Definition 4.7.

4) The restriction of A to D(A) defined as

D(A) := {u ∈ V, |〈Au, v〉| ≤ Ku‖v‖H , v ∈ V }, (5.1.2)

where Ku depends on u, generates an analytic semigroup {Gt, t ∈ [0, T ]}, such that

‖Gt‖ ≤ eβt, (5.1.3)

where β is the coefficient in the coercivity assumption, see Lemma 5.2.
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5) Multiplication by h, λ defines a bounded self-adjoint operator on H.

Remark 5.1. A is an extension of L, which is defined by Equation (2.2.4). It is obtained by
converting L into its variational representation, or weak representation. To be precise, if the
partial derivatives of u and v, which are compact supported, exist in the conventional sense and
is continuous up to order 2, L can be rewritten in its divergence form from Equation (2.2.4), by
integration by parts, assuming d = 1 for simplicity,

(Lu, v) =
∫

R

[
b(x)

du

dx
+

1
2
a(x)

d2u

dx2

]
vdx

=
∫

R

b(x)u′vdx+
1
2

∫
R

[a(x)v]u′′dx

=
∫

R

b(x)u′vdx+
1
2

{
(av)u′

∣∣∣∞
−∞

−
∫

R

[a(x)v]′u′dx
}

=
∫

R

b(x)u′vdx− 1
2

{∫
R

[a′(x)v + av′]u′dx
}

=− 1
2

∫
R

au′v′dx+
∫

R

[
b(x)− 1

2
a′(x)

]
u′vdx

=〈Au, v〉.

Proposition 5.1 shows A is linear and continuous from V into V ′.

Proof of Proposition 5.1. In order to simplify the notations, we suppose that d = 1. The more
general case is handled in exactly the same way.

1) This property follows from Assumption ii) and the boundedness of b and σ. By Assumption
ii), there exist x ≤ θ ≤ y, x ≤ ξ ≤ y, such that

‖b(x)− b(y)‖ = ‖b′(θ)(x− y)‖ ≤ ‖b′‖∞‖x− y‖,
‖σ(x) − σ(y)‖ = ‖σ′(ξ)(x− y)‖ ≤ ‖σ′‖∞‖x− y‖.

Therefore Equation (2.2.2) holds. By Assumption i)

‖b(x)‖ ≤ ‖b‖∞ ≤ ‖b‖∞(1 + ‖x‖),
‖σ(x)‖ ≤ ‖σ‖∞ ≤ ‖σ‖∞(1 + ‖x‖).

Therefore Equation (2.2.3) holds.

2) This property follows from Assumption ii) and the boundedness of b and σ. ∀u, v ∈ V , by the
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definition of A,

∣∣∣〈Au, v〉∣∣∣ =
∣∣∣− 1

2

∫
R

a(x)u′(x)v′(x)dx +
∫

R

ā(x)u′(x)v(x)dx
∣∣∣

=
∣∣∣ ∫

R

u′(−1
2
av′ + āv)dx

∣∣∣
=
∣∣∣(u′,−1

2
av′ + āv)

∣∣∣
≤‖u′‖H · ‖ −

1
2
av′ + āv‖H

≤‖u′‖H
(
‖1
2
av′‖H + ‖āv‖H

)
≤‖u′‖H(‖av′‖H + ‖āv‖H) (5.1.4)
≤‖u‖V ‖v‖V (‖a‖∞ + ‖ā‖∞)
≤c‖u‖V ‖v‖V ,

where c is a constant only depends on a, b and a′. The last inequality follows from a, b and a′

are bounded. Therefore, by the definition of ‖ · ‖V ′

‖Au‖V ′ = sup
v∈V,‖v‖V ≤1

|〈Au, v〉| ≤ c‖u‖V ,

that is A is a bounded linear operator.

3) See Lemma 5.2.

4) This property is obtain by Theorem 4.2 or Prato and Zabczyk (1992), Proposition A.10, page
389.

5) This property follows from the boundedness of h and λ. Boundedness follows from

‖hu‖H ≤‖h‖∞‖u‖H ,
‖λu‖H ≤‖λ‖∞‖u‖H .

Self-adjoint follows from

(hu, v) =
∫

Rd

h(x)u(x) · v(x)dx =
∫

Rd

u(x) · h(x)v(x)dx = (u, hv),

(λu, v) =
∫

Rd

λ(x)u(x) · v(x)dx =
∫

Rd

u(x) · λ(x)v(x)dx = (u, λv).

Lemma 5.2. Assumption 5.1 implies that A satisfies the coercivity assumption, that is, there
exists c > 0 and β ≥ 0 such that, ∀v ∈ V ,

β‖v‖2H − 〈Av, v〉 ≥ c‖v‖2V . (5.1.5)
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Proof. It is suffice to consider v ∈ V with compact support. Definition of A implies,

−〈Av, v〉 =
1
2

d∑
i,j=1

∫
Rd

aij(x)
∂v

∂xi

∂v

∂xj
dx−

d∑
i=1

∫
Rd

āi
∂v

∂xi
vdx

≥1
2
α

∫
Rd

[ d∑
i=1

( ∂v
∂xi

)2]
dx− 1

2

d∑
i=1

∫
Rd

āi
∂

∂xi
(v2)dx

=
1
2
α

∫
Rd

[ d∑
i=1

( ∂v
∂xi

)2
+ v2

]
dx− 1

2
α

∫
Rd

v2dx

− 1
2

d∑
i=1

[
āiv

2
∣∣∣+∞

−∞
−

∫
Rd

∂āi

∂xi
v2dx

]

=
1
2
α‖v‖2V −

1
2
α‖v‖2H +

1
2

d∑
i=1

[ ∫
Rd

∂āi

∂xi
v2dx

]
≥1

2
α‖v‖2V −

1
2
α‖v‖2H −

d

2
‖∇ā‖∞

∫
Rd

v2dx

=
1
2
α‖v‖2V −

[1
2
α+

d

2
‖∇ā‖∞

]
‖v‖2H ,

where the second equality follows from iii) in Assumption 5.1. Taking

c :=
1
2
α, β :=

1
2
α+

d

2
‖∇ā‖∞, (5.1.6)

we obtain the desired result.

It is easy to see that β can be any real number which is greater or equal to 1
2α+ d

2‖∇ā‖∞.

5.2 Main result

Let M2(0, T ;V) denote the space of V-valued stochastic process with some regular properties.
And let S2(0, T ;H) denote the spaces of H-valued càdlàg stochastic processes with some regular
properties. For details of processes spaces M2(0, T ;V) and S2(0, T ;H), see Section A.1.2. Now,
the main result of the chapter.

Theorem 5.3. If Assumption 5.1 holds, then, ∀v ∈ V , Zakai equation⎧⎪⎨⎪⎩
q ∈M2(0, T ;V ),

(v, qt) = (v, q0) +
∫ t
0 〈Av, qs〉ds +

∫ t
0 (h�v, qs)dZs +

∫ t
0

(
(λ− 1)v, qs−

)
d(Ys − s),

q0 = p0 ∈ H,
(5.2.1)

has a unique solution which satisfies moreover q ∈ S2(0, T ;H) and

(v, qt) = ρt(v), v ∈ L∞(Rd). (5.2.2)

Here the solution q(ω) = {qt(ω)}t∈[0,T ] is a process with values in Hilbert space V with norm
‖ · ‖V . By Theorem 5.3, Zakai equation (5.2.1) has a unique solution q and, applying Equation
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(5.2.2) and recalling that ρ is the unnormalized conditional measure defined by Equation (2.4.8),
the solution is the conditional density. So q has the meaning of an ‘unnormalized conditional
density’.

Here, by Proposition 2.5, Z is a standard Brownian motion and Y is a Poisson process with
intensity 1 under measure P0. And, as argued before, A : V → V ′ is a bounded linear operator,
multiplication by h, λ− 1 defines a bounded linear self-adjoint operator of H, and the coerciv-
ity assumption, by Lemma 5.2, is satisfied. The equation is linear parabolic stochastic partial
equation. We are looking for solution q = {qt, t ∈ [0, T ]} of Equation (5.2.1) in certain functional
spaces such as Sobolev spaces.

Remark 5.2. We look for the solution of the Zakai equation in the stochastic processes space
M2(0, T ;V ). Together with the boundedness condition of the coefficients, the integrals appearing
in Equation (5.2.1) are well defined, for 0 ≤ t ≤ T . First we have∫ t

0
〈Av, qs〉ds, t ∈ [0, T ],

is well defined because the integrand is measurable and, noting that A is a bounded linear operator
from V to V ′,

E0

∫ t

0

∣∣∣〈Av, qs〉∣∣∣ds ≤E0
[
c

∫ t

0
‖v‖V ‖qs‖V ds

]
≤c‖v‖V E0

{∫ t

0
‖qs‖V ds

}
≤c‖v‖V E0

{∫ t

0

(
‖qs‖2V + 1

)
ds

}
<∞,

the last inequality follows from q ∈M2.

Then, we have ∫ t

0
(h�v, qs)dZs, t ∈ [0, T ],

is well defined because the integrand is FZ,Y -adapted and, by Cauchy-Schwarz inequality,

E0

∫ t

0

∥∥∥(h�v, qs)
∥∥∥2
ds ≤E0

[
‖h‖∞

∫ t

0
‖qs‖2H‖v‖2Hds

]
≤‖h‖∞‖v‖2V E0

∫ t

0
‖qs‖2V ds <∞.

Finally, we have ∫ t

0

(
(λ− 1)v, qs−

)
d(Ys − s), t ∈ [0, T ],

is well defined because the integrand is predictable and, by Brémaud (1981), Theorem T8, page
27,

E0

∫ t

0

∣∣∣(qs−, (λ− 1)v
)∣∣∣ds ≤E0

[
‖λ− 1‖∞ · ‖v‖H

∫ t

0
‖qs−‖Hds

]
≤‖λ− 1‖∞ · ‖v‖V E0

[ ∫ t

0
‖qs−‖V ds

]
≤‖λ− 1‖∞ · ‖v‖V E0

[ ∫ t

0

(
‖q(s−)‖2V + 1

)
ds

]
<∞.
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Remark 5.3. By Theorem 5.3, q ∈ M2(0, T ;V ) ∩ S2(0, T ;H). q ∈ M2(0, T ;V ) means that
q is V -valued stochastic process, which guarantees 〈Av, qs〉 makes sense, and the integrals in
Equation (5.2.1) are well defined. q ∈ S2(0, T ;H) means each trajectory of q is H-valued and
càdlàg.

Let A∗ ∈ L(V, V ′) be the adjoint operator of A, then 〈A∗v, u〉 = 〈Au, v〉, ∀u, v ∈ V . More
precisely, A∗ is defined as follows. First, define a continuous linear transformation J : V → V ′′

by
J(v)f = f(v), ∀v ∈ V, f ∈ V ′.

Then, define A∗ : V → V ′ by
A∗(v) = J(v) ◦ A, ∀v ∈ V.

Finally, we have, ∀u, v ∈ V ,

〈A∗v, u〉 = A∗v(u) = (J(v) ◦ A)(u) = J(v)(Au) = Au(v) = 〈Au, v〉,

where the first equality follows from the definition of duality pairing, the second equality follows
from the definition of A∗, the fourth equality follows from the definition of J , and the last equality
follows from the definition of duality pairing. Therefore, A∗ is a bounded linear operator from
V to V ′, that is A∗ ∈ L(V, V ′).

Now, Equation (5.2.1) can be rewritten as:⎧⎪⎨⎪⎩
q ∈M2(0, T ;V ),

(qt, v) = (q0, v) +
∫ t
0 〈A∗qs, v〉ds +

∫ t
0 (h�qs, v)dZs +

∫ t
0

(
(λ− 1)qs−, v

)
d(Ys − s),

q0 = p0 ∈ H.
(5.2.3)

Equivalent to Equation (5.2.1), we consider the following:⎧⎨⎩
q ∈M2(0, T ;V ),
dqt = A∗qtdt+ h�qtdZt + (λ− 1)qt−d(Yt − t), t ∈ [0, T ],
q0 = p0 ∈ H,

(5.2.4)

where p0 is the density of the law of X0. Equation (5.2.4) can be considered as an equation in
V ′.

5.3 Finding the unnormalized conditional density

The objective here is to show the idea of Theorem 5.3.

For the proof of Theorem 5.3, we follow the idea of Pardoux (1979b) and Pardoux (1979a). The
so-called adjoint equations play a key role in dealing with the problem. Adjoint equations are,
in general, backward equations with given terminal states.

We show how to find the density of the unnormalized conditional measure for the case that all
the coefficients are ‘sufficiently nice’.

The idea is to generalize the classical Feynman-Kac formula for second-order parabolic (deter-
ministic) PDE’s. Let {qt, t ∈ [0, T ]} be a V -valued stochastic process. For any 0 ≤ θ ≤ T ,
suppose that there exist a V -valued stochastic process {rθ

t , t ∈ [0, θ]} and, for f bounded and
square integrable,
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i) rθ
t (x) = E0

[
f(Xθ)Λθ/Λt

∣∣∣σ{Zs − Zt, Ys − Yt, t ≤ s ≤ θ}, Xt = x
]
, ∀t ∈ [0, θ], x ∈ Rd,

recalling that Λ is defined by Equation (2.4.5).

ii) q is adjoint to rθ, that is almost all trajectories of the process Rt := (qt, rθ
t ), t ∈ [0, θ] are

constant. And q0 = p0.

These two properties guarantee that q is the unnormalized conditional density. To be precise,
by property ii), q is adjoint to rθ, then we have R0 = Rθ, that is

(q0, rθ
0) = (qθ, rθ

θ). (5.3.1)

Notice that, by property i), ∀x ∈ Rd, we get the starting and terminal values of rθ,

rθ
θ(x) = f(x),

rθ
0(x) = E0[f(Xθ)Λθ|FZ,Y

θ , X0 = x].

Therefore (q0, rθ
0) and (qθ, rθ

θ) can be rewritten as

(q0, rθ
0) =

∫
Rd

p0(x)E0
[
f(Xθ)Λθ

∣∣∣FZ,Y
θ , X0 = x

]
dx = E0[f(Xθ)Λθ|FZ,Y

θ ], (5.3.2)

(qθ, rθ
θ) =

∫
Rd

qθ(x)f(x)dx. (5.3.3)

To sum up, Equation (5.3.1), (5.3.2) and (5.3.3), give us∫
Rd

qθ(x)f(x)dx = E0[f(Xθ)Λθ|FZ,Y
θ ].

Since θ is arbitrary, the fact that q is the unnormalized conditional density follows immediately.

Even so, this strategy is not the only one. For example, in Bain and Crisan (2009), page 165-179,
the authors derive the result when the observation is only corrupted by a Wiener noise, under
certain conditions. They show the following result step by step:

i Almost surely the unnormalised conditional distribution ρt has a density with respect to
Lebesgue measure and this density is square integrable, that is, it is in H.

ii There exists a unique solution q of Equation (5.2.1).

iii Let ρ̃ be the measure with respect to Lebesgue measure with density q. Show that ρ̃ satisfies
the Zakai equation (2.4.11). Although one cannot conclude that ρ̃ is equal to ρ, having not
proven the uniqueness of the Zakai equation (2.4.11), Bain and Crisan (2009), on page 96
and page 177 take the PDE approach to solve the uniqueness problem.

iv By the PDE approach, to show that, a.s., for any φ ∈ C∞
k (Rd),

ρ̃t(φ) = ρt(φ).

v Combining the obtained result q is the unique density of the unnormalised conditional
distribution.

However, these procedures require stronger regularity properties on the coefficients and we need
more work for the PDE approach with jump observation. Instead, we use the same approach
as that adopted in Pardoux (1979b), Pardoux (1979a) and Germani and Piccioni (1984) which
works more with mild solutions.
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5.4 Proof of Theorem 5.3

This section is devoted to proving Theorem 5.3. To find the unnormalized conditional density,
we have the following key steps.

• In Section 5.4.1, we show the Zakai equation (5.2.1), the forward one, has a unique solution
with starting state p0, see Theorem 5.4.

• In Section 5.4.2, we construct a backward stochastic PDE with terminal states f . We show
the backward one has a unique solution r from r0 to f , See Theorem 5.6. An interesting
fact is that r is the conditional statistics of the filtering problem, see Theorem 5.8.

• In Section 5.4.3, we show that the forward equation is the adjoint to the backward one,
see Theorem 5.12.

• Combining the obtained results, we deduce that Zakai equation (5.2.1) describes the evo-
lution of the unnormalized conditional density. See Theorem 5.13.

5.4.1 Some existence and uniqueness results on stochastic PDEs

In this section, we generalize Theorem 4.7 to the case of SPDEs driven by Lévy process. This
enables us to study the existence and uniqueness for the solution of Zakai equation (5.2.1).

Our main result of this section is that Equation (5.2.4) has a unique solution with càdlàg
trajectories in H. The existence of càdlàg solution helps us to obtain some boundedness of the
solution which is useful for Lemma 5.10.

Theorem 5.4. If Assumption 5.1 holds, Equation (5.2.4) has a unique solution q = {qt}t∈[0,T ] ∈
S2(0, T ;H) ∩M2(0, T ;V ). Consequently, it satisfies

E0
[

sup
0≤t≤T

‖qt‖2H +
∫ T

0
‖qt‖2V dt

]
<∞. (5.4.1)

Equation (5.2.4) is a linear parabolic SPDE. Various methods have been used to study linear
SPDEs. One method, the variational approach, was developed from contributions made by Lions
(1961) and others. Another is the semigroup approach. Both methods achieve similar results.
These are reviewed in Chapter 4.

For the semigroup approach, this result can be obtained by an application of Peszat and Zabczyk
(2007), Theorem 9.29, page 164, which gives the general result of the uniqueness and existence
of weak solution of stochastic partial differential equation with Lévy noise. The existence and
uniqueness can be obtained from the property, guaranteed by Proposition 5.1, that restriction
A is the generator of a C0-semigroup and multiplication by h, λ defines a bounded self-adjoint
operator on H. Further, analytic semigroup is an important class of C0 semigroup and variational
generator is an important subclass of the generator of analytic semigroups. Under Assumption
5.1, A is variational, and in sequence G is a generalized contraction. The solution then has a
càdlàg version.

In the following, we give the proof of Theorem 5.4 by generalizing the results of Pardoux (1979b),
which is the existence and uniqueness result of SPEDs driven by a Brownian motion and is
obtained by variational approach. In the proof, it will be convenient to model the processes
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X, Y and Z on a product space (Ω,F , (Ft)0≤t≤T ,P
0). We denote by (Ω2,F2, (F2

t )0≤t≤T ,P
0,2)

the Poisson space and by (Ω1,F1, (F1
t )0≤t≤T ,P

0,1) the Wiener space. By the independent of X,
Z, and Y , we have Ω = Ω1 ⊗ Ω2, F = F1 ⊗ F2, Ft = F1

t ⊗ F2
t , P0 = P0,1 ⊗ P0,2, and for

ω = (ω1, ω2) ∈ Ω,

Xt(ω) = Xt(ω1), Zt(ω) = Zt(ω1), Yt(ω) = Yt(ω2),

and τi(ω) = τi(ω2), for i = 1, 2, . . ., which are the jumping times of Y .

Proof of Theorem 5.4. We solve Equation (5.2.4) forward for each ω2. Suppose τ1(ω2) ≤ T , we
then solve Equation (5.4.25) from 0 to τ1(ω2),{

dqt = A∗qtdt + h�qtdZt − (λ− 1)qtdt,
q0 = p0.

(5.4.2)

By Theorem 4.7 or Pardoux (1979b), Theorem 1.3, Equation (5.4.2) has a unique solution which
is a V -valued stochastic process with continuous trajectories in H, and, for t < τ1(ω2),

‖qt‖2H − 2
∫ t

0
〈A∗qs, qs〉ds (5.4.3)

=‖p0‖2H + 2
∫ t

0
(h�qs, qs)dZs +

∫ t

0
‖hqs‖2Hds− 2

∫ t

0

(
(λ− 1)qs, qs

)
ds.

Notice that, by Equation (5.2.4),

qτ1 − qτ1− = (λ− 1)qτ1−.

That is

qτ1 = λqτ1−. (5.4.4)

Equation (5.4.4) defines qτ1 as an element of H for λ bounded and qτ− ∈ H. Moreover, we have

‖qτ1‖2H − ‖qτ1−‖2H =(qτ1 , qτ1)− (qτ1−, qτ1−) (5.4.5)
=(λqτ1−, λqτ1−)− (qτ1−, qτ1−)

=
(
(λ2 − 1)qτ1−, qτ1−

)
.

Repeating this procedure, we define for each ω2 a unique stochastic process q(ω2) which is V -
valued and with càdlàg trajectories in H. It now remains to show that Equation (5.4.1) holds.
We first show that

E0
{∫ T

0
‖qs‖2V

}
<∞. (5.4.6)

By Combining Equation (5.4.3) and (5.4.5), we get

‖qt‖2H − 2
∫ t

0
〈A∗qs, qs〉ds (5.4.7)

=‖p0‖2H + 2
∫ t

0
(h�qs, qs)dZs +

∫ t

0
‖hqs‖2Hds

+
∫ t

0

(
(λ2 − 1)qs−, qs−

)
d(Ys − s) +

∫ t

0

∥∥∥(λ− 1)qs
∥∥∥2

H
ds.
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Let tn = inf{0 ≤ t ≤ T, ‖qt‖H > n}. Using martingale properties with respect to {FZ,Y
t }, we get

E0‖qt∧tn‖2H − 2E0

∫ t∧tn

0
〈A∗qs, qs〉ds

=‖p0‖2H + E0

∫ t∧tn

0
‖hqs‖2Hds+ E0

∫ t∧tn

0

∥∥∥(λ− 1)qs
∥∥∥2

H
ds.

Notice that h and λ are bounded. For sake of simplicity, define

c̄ := max{‖h‖∞, ‖λ‖∞}. (5.4.8)

Then we get

E0‖qt∧tn‖2H ≤ ‖p0‖2H + 2E0

∫ t∧tn

0
〈A∗qs, qs〉ds+ [c̄2 + (c̄+ 1)2]E0

∫ t∧tn

0
‖qs‖2Hds.

Applying Lemma 5.2, there exists c > 0 and β ≥ 0 , such that

〈A∗qs, qs〉 ≤ β‖qs‖2H − c‖qs‖2V . (5.4.9)

Therefore

E0‖qt∧tn‖2H ≤ ‖p0‖2H − 2cE0

∫ t∧tn

0
‖qs‖2V ds+ c2E

0

∫ t∧tn

0
‖qs‖2Hds, (5.4.10)

where

c2 := c̄2 + (c̄+ 1)2 + 2β, (5.4.11)

is a constant. When n→∞

tn → T, t ∧ tn ↓ t.

Notice that q is right-continuous,

qt∧tn → qt, a.s.

Notice that q has left-limit, ∫ t∧tn

0
‖qs‖2V ds→

∫ t

0
‖qs‖2V ds, a.s.∫ t∧tn

0
‖qs‖2Hds→

∫ t

0
‖qs‖2Hds, a.s.

By Fatou’s Lemma, and the Monotone Convergence Theorem, see Folland (1999), page 52 and
page 50,

E0‖qt∧t‖2H
≤ lim

n→∞
E0‖qt∧tn‖2H

≤‖p0‖2H + lim
n→∞

[
− 2cE0

∫ t∧tn

0
‖qs‖2V ds+ c2E0

∫ t∧tn

0
‖qs‖2Hds

]
≤‖p0‖2H − 2cE0

∫ t

0
‖qs‖2V ds+ c2E0

∫ t

0
‖qs‖2Hds.



58 CHAPTER 5. UNNORMALIZED CONDITIONAL DENSITY

That is

E0‖qt‖2H + 2cE0

∫ t

0
‖qs‖2V ds ≤ ‖p0‖2H + c2E

0

∫ t

0
‖qs‖2Hds. (5.4.12)

Therefore we have, noting c > 0,

E0‖qt‖2H ≤ ‖p0‖2H + c2

∫ t

0
E0‖qs‖2Hds.

By Gronwall’s lemma, we have

E0‖qt‖2H ≤ ‖p0‖2H
∫ t

0
ec2sds.

That is

sup
0≤t≤T

E(‖qt‖2H) ≤ ‖p0‖2H
∫ T

0
ec2sds <∞. (5.4.13)

Combining Formula (5.4.12) and (5.4.13), we deduce that

E0
{∫ T

0
‖qs‖2V

}
<

1
2c

[
‖p0‖2H + c2E

0

∫ T

0
‖qs‖2Hds

]
(5.4.14)

=
1
2c

[
‖p0‖2H + c2

∫ T

0
E0‖qs‖2Hds

]
≤ 1

2c

[
‖p0‖2H + c2 · T · sup

0≤s≤T
E0‖qs‖2H

]
≤ 1

2c

[
‖p0‖2H + c2 · T · ‖p0‖2H

∫ T

0
ec2sds] (5.4.15)

<∞.

Equation (5.4.6) is obtained. Compare to Equation (5.4.1), it remains to show that

E0
{

sup
0≤t≤T

‖qt‖2H
}
≤ ∞. (5.4.16)

Equation (5.4.7) implies

sup
0≤t≤T

‖q(t)‖2H ≤‖p0‖2H + 2
∫ T

0

∣∣∣〈A∗qs, qs〉
∣∣∣ds (5.4.17)

+
∫ T

0
‖hqs‖2Hds+

∫ T

0
‖(λ− 1)qs‖2Hds

+ 2 sup
0≤t≤T

∣∣∣ ∫ t

0
(h�qs, qs)dZs

∣∣∣
+ sup

0≤t≤T

∣∣∣ ∫ t

0

∫
Rd

(
λ2(x)− 1

)
qs−(x)2dxd(Ys − s)

∣∣∣.
By Equation (5.4.9), ∫ T

0

∣∣∣〈A∗qs, qs〉
∣∣∣ds ≤ β

∫ T

0
‖qs‖2Hds+ c

∫ T

0
‖qs‖2V ds. (5.4.18)
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By bounded of h and λ, we have∫ T

0
‖hqs‖2Hds+

∫ T

0
‖(λ− 1)qs‖2Hds ≤ [c̄2 + (c̄+ 1)2]

∫ T

0
‖qs‖2Hds. (5.4.19)

Applying Davis-Burkholder-Gundy inequality, see for instance Protter (2005), Theorem 48, page
193, there exists a universal constant C which is not depending on T , h, q and Z, such that

E0
{
2 sup

0≤t≤T

∣∣∣ ∫ t

0
(h�qs, qs)dZs

∣∣∣} ≤2CE0

√∫ T

0
(hqs, qs)2ds (5.4.20)

≤2c̄CE0

√∫ T

0
‖qs‖2H‖qs‖2Hds

≤2c̄CE0
[

sup
0≤t≤T

‖qt‖H

√∫ T

0
‖qs‖2Hds

]
=E0

[sup0≤t≤T ‖qt‖H
2

· 4c̄C

√∫ T

0
‖qs‖2Hds

]
≤1

2

{
E0 1

4
sup

0≤t≤T
‖qt‖2H + 16(c̄C)2E0

∫ T

0
‖qs‖2Hds

}
≤1

8

{
E0 sup

0≤t≤T
‖qt‖2H

}
+ 8(c̄C)2

{
E0

∫ T

0
‖qs‖2Hds

}
.

Similarly,

E0
{

sup
0≤t≤T

∣∣∣ ∫ t

0

∫
Rd

(
λ2(x)− 1

)
qs−(x)2dxd(Ys − s)

∣∣∣} (5.4.21)

≤CE0
{∫ T

0

[ ∫
Rd

(
λ2(x)− 1

)
qs−(x)2dx

]2
ds

}1/2

≤C‖λ2 − 1‖∞E0

√∫ T

0
‖qs‖2H‖qs‖2H

≤C(c̄2 + 1)E0

√∫ T

0
‖qs‖2H‖qs‖2H

≤1
8

{
E0 sup

0≤t≤T
‖qt‖2H

}
+ 2[C(c̄2 + 1)]2

{
E0

∫ T

0
‖qs‖2Hds

}
.

To sum up, combining Formula (5.4.6), (5.4.17), (5.4.18), (5.4.19), (5.4.20), (5.4.21), we obtain

E0
[

sup
0≤t≤T

‖qt‖2H
]
≤‖p0‖2H + 2β

∫ T

0
‖qs‖2Hds+ 2c

∫ T

0
‖qs‖2V ds

+ [c̄2 + (c̄+ 1)2]
∫ T

0
‖qs‖2Hds

+
1
8

{
E0 sup

0≤t≤T
‖qt‖2H

}
+ 8(c̄C)2

{
E0

∫ T

0
‖qs‖2Hds

}
+

1
8

{
E0 sup

0≤t≤T
‖qt‖2H

}
+ 2[C(c̄2 + 1)]2

{
E0

∫ T

0
‖qs‖2Hds

}
.
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Together with Equation (5.4.14), it is equivalent to

3
4

E0
[

sup
0≤t≤T

‖qt‖2H
]

(5.4.22)

≤2‖p0‖2H +
{

2β + c2 + [c̄2 + (c̄+ 1)2] + 8(c̄C)2 + 2[C(c̄2 + 1)]2
}

E0

∫ T

0
‖qs‖2Hds

≤2‖p0‖2H +
{

2β + c2 + [c̄2 + (c̄+ 1)2] + 8(c̄C)2 + 2[C(c̄2 + 1)]2
}
T‖p0‖2H

∫ T

0
ec2sds

<∞.

We have Equation (5.4.16). Combining Formula (5.4.6) and (5.4.16), we obtain the desired
result.

Remark 5.4. From the proof of Theorem 5.4, by Equation (5.4.8), (5.4.11), (5.4.15), (5.4.22),
there exists a constant Cq which only depends on ‖h‖∞, ‖λ‖∞, ‖p0‖H , T , c, β, such that

E0
[

sup
0≤t≤T

‖qt‖2H +
∫ T

0
‖qt‖2V dt

]
< Cq.

Here c, β are coefficients w.r.t. the coercivity assumption of A, see Lemma 5.2. Moreover, by
Equation (5.1.6), β is depending on α and the upper bound of b, σ and their derivatives. To
sum up, Cq is a constant which only depends on ‖h‖∞, ‖λ‖∞, ‖b‖∞, ‖∇b‖∞, ‖σ‖∞, ‖∇σ‖∞,
‖∇(∇σ)‖∞, c, ‖p0‖H and T .

Theorem 5.5. Let n be any integer greater or equal to 1. Suppose, in addition to Assumption
5.1, that all coefficients a, b, h, and λ have bounded partial derivatives in x up to order n and
that moreover

p0 ∈ Hn(Rd).

Then, each trajectory of q, solution of Equation (5.2.4), belongs to D
(
[0, T ];Hn(Rd)

)
, a.s..

Proof. We solve Equation (5.2.4) forward for each ω2. Suppose for instance that τ1(ω2) ≤ T . We
then solve Equation (5.4.25) forward from 0 to τ1(ω2),{

dqt +A∗qtdt = hqtdZt − (λ− 1)qtdt,
q0 = p0 ∈ Hn(Rd).

(5.4.23)

By Pardoux (1979b), Theorem 2.1, page 142, Equation (5.4.23) defines a unique element which
is an Hn+1(Rd) valued stochastic process with continuous trajectories in Hn(Rd). By Equation
(5.4.25), the increment of u at the time of the first jump is as follows

qτ1 − qτ1− = (λ− 1)qτ1−.

Then, we have

qτ1 = λqτ1−. (5.4.24)

Equation (5.4.24) defines qτ as an element of Hn(Rd) for qτ− ∈ Hn(Rd) and boundedness of λ.

Repeating this procedure, we define for each ω2 a unique element q(ω2) with trajectories be-
longing to D

(
[0, T ];Hn(Rd)

)
.
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5.4.2 The backward SPDEs

Suppose f is Borel measurable, bounded and square integrable. For 0 ≤ θ ≤ T , we consider the
following backward stochastic PDE,{

drt +Artdt+ h�rtdZt + (λ− 1)rtd(Yt − t) = 0, t ∈ [0, θ],
rθ = f.

(5.4.25)

Notice, r depends on θ and rt = rθ
t . To simplify, we write rt. Equation (5.4.25) is equivalent to

a forward equation. Define

FZ,Y
s,t =σ{Zu − Zs, Yu − Ys, s ≤ u ≤ t}, (5.4.26)

then FZ,Y
t = FZ,Y

0,t .

Define processes {Z̃θ
t , t ∈ [0, θ]} and {Ỹ θ

t , t ∈ [0, θ]} by, for t ∈ [0, θ],

Z̃θ
t = Zθ − Zθ−t,

Ỹ θ
t = Yθ− − Y(θ−t)−, with Y0− := 0.

Define filtration {F Z̃,Ỹ ,θ
t , t ∈ [0, θ]}, by, for t ∈ [0, θ],

F Z̃,Ỹ ,θ
t := FZ,Y

(θ−t)−,θ−, with FZ,Y
0−,θ− := FZ,Y

0,θ−.

Here

FZ,Y
(θ−t)−,θ− := ∩u≥0FZ,Y

(θ−t)−u,θ−, where FZ,Y
(θ−t)−u,θ− := ∪s≥0FZ,Y

(θ−t)−u,θ−s.

Then Z̃θ is a {F Z̃,Ỹ ,θ
t }-standard Brownian motion, Ỹ θ is a {F Z̃,Ỹ ,θ

t }-Poisson process with inten-
sity 1, and Z̃θ, Ỹ θ are independent.

Define r̃θ
t := r(θ−t)−, we have Equation (5.4.25) is equivalent to the forward equation{

dr̃θ
t = Ar̃θ

t dt + [hr̃θ
t , dZ̃t] + (λ− 1)r̃θ

t−d(Ỹt − t), t ∈ [0, θ],
r̃θ
0 = f.

(5.4.27)

Theorem 5.4 guarantees Equation (5.4.27) has a unique solution, and so we have the following
existence and uniqueness results for the backward stochastic PDEs.

Theorem 5.6. If Assumption 5.1 holds and f ∈ H, then Equation (5.4.25) has a unique so-
lution r = {rt}t∈[0,θ] which is an {FZ,Y

t,θ }t∈[0,θ]-adapted, V -valued stochastic process with càdlàg
trajectories with respect to H-norm, which means that ∀ω ∈ Ω, r(ω) ∈ D([0, θ];H), and

E0
[

sup
0≤t≤θ

‖rt‖2H +
∫ θ

0
‖rt‖2V dt

]
<∞. (5.4.28)

Proof. Equation (5.4.25) is equivalent to forward equation (5.4.27) which coefficients satisfy
Assumption 5.1. Then, the desired result is obtained by Theorem 5.4.

Remark 5.5. Notice, the term ‘backward stochastic equation’ is different from the notion used
by Karoui, Peng, and Quenez (1997). One can rewrite it as a forward equation but, one cannot
rewrite the backward equation mentioned in Karoui, Peng, and Quenez (1997) as a forward one.
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The corresponding regularity result of Equation (5.4.25) is as follows.

Corollary 5.7. Let n ≥ 1 be any integer. Suppose, in addition to Assumption 5.1, that all
coefficients a, b, h, and λ have bounded partial derivatives in x up to order n and that moreover

p0 ∈ Hn(Rd).

Then, each trajectory of r, solution of Equation (5.4.25), belongs to D
(
[0, θ];Hn(Rd)

)
, a.s..

Proof. This follows immediately by applying Theorem 5.5 to Equation (5.4.27), which is equiv-
alent to Equation (5.4.25).

We want to show that r, the solution of Equation (5.4.25), is the conditional law of X. To begin,
we define

Λs,t =
{ ∏

s<τn≤t

λ(Xτn−)
}

exp
[ ∫ t

s
h(Xu)�dZu (5.4.29)

− 1
2

∫ t

s
‖h(Xu)‖2du−

∫ t

s

(
λ(Xu)− 1

)
du

]
, s ∈ [0, t],

then Λt = Λ0,t, where Λ is defined by Equation (2.4.5). For sake of simplicity, we define

E0
t,x(·) := E0(·|Xt = x).

The following theorem shows r, the solution of Equation (5.4.25), is the conditional law of X.

Theorem 5.8. If Assumption 5.1 holds and f is Borel measurable, bounded and square inte-
grable, then, the solution of Equation (5.4.25) satisfies, ∀t ∈ [0, θ], x ∈ Rd,

rt(x) = E0
t,x

[
f(Xθ)Λt,θ

∣∣∣FZ,Y
t,θ

]
, a.e.. (5.4.30)

Here FZ,Y
t,θ is defined by Equation (5.4.26), and Λt,θ is defined by Equation (5.4.29). The proof

of Theorem 5.8 is organized as follows:

• Prove Equation (5.4.30) in the case of regular (in x) coefficients a, b, h, λ and f . See
Lemma 5.9, which will be proved later.

• Take the limit of both sides of Equation (5.4.30) when an, bn, hn, λn and fn converge.

Lemma 5.9. Suppose Assumption 5.1 holds. Additionally, suppose that b, σ, h and λ − 1
are compact supported and have continuous partial derivations of any order, together with f ∈
∩∞

n=1H
n. Then Equality (5.4.30) holds ∀(t, x) a.s.

Remark 5.6. For the proof of Theorem 5.8, we follow the idea of Pardoux (1979b) which is only
for the case with continuous observation. The basic tool of Pardoux (1979b) is the convergence
result for diffusion process from Stroock (1975).

Proof of Theorem 5.8. Let us first suppose that f is continuous, with compact, support. Let bni ,
an

ij , h
n
k , λn − 1, fn be a sequence of smooth and compact supported functions, such that:
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i) bni , σn
ij , ∂a

n
ij/∂xj , hn

k , λn, fn are all uniformly bounded by a constant independent of n,
and An satisfies Assumption iii) with α independent of n.

ii) σn
ij → σij and fn → f uniformly on each compact set of Rd.

iii) ∂an
ij/∂xj → ∂aij/∂xj , bni → bi, hn

k → hk and λn → λ in measure on each compact set
of Rd. Note that we can not assume uniform convergence here, for h is only measurable
function.

Denote by rn
t (x) and Λn

t,θ the corresponding objects associated with bn, σn, hn, Λn and fn. And
P

0,n
tx is the probability measure corresponding to the law of Xn, Y n and Zn. We define by Pn

tx

by

Pn
tx(A) =

∫
A

Λn
0,θP

0,n
tx (dω). (5.4.31)

By Lemma 5.9, we have

rn
t (x) = E

0,n
tx

[
fn(Xθ)Λn

t,θ

∣∣∣FZ,Y
t,θ

]
. (5.4.32)

Then, it is suffice to show that there exists a subsequence such that1

(
x �→ E

0,nk
tx

[
fnk(Xθ)Λ

nk
t,θ

∣∣∣FZ,Y
t,θ

])
⇀

(
x �→ E0

tx

[
f(Xθ)Λt,θ

∣∣∣FZ,Y
t,θ

])
, (5.4.33)

rnk
t ⇀ rt, (5.4.34)

in Hilbert space L2
(
(Ω,FZ,Y

t,θ ,P0);H
)

weakly.

We show Equation (5.4.33) first. For sake of simplicity, define

ςn(t, x) :=E
0,n
tx

[
fn(Xθ)Λn

t,θ

∣∣∣FZ,Y
t,θ

]
, (5.4.35)

ς(t, x) :=E0
tx

[
f(Xθ)Λt,θ

∣∣∣FZ,Y
t,θ

]
. (5.4.36)

It is equivalent to show that,

E0
[(
w, ςn(t, ·)

)
· ϕ

]
→ E0

[(
w, ς(t, ·)

)
· ϕ

]
, (5.4.37)

where w ∈ H is nonnegative, compact supported, twice continuous differentiable,
∫

Rd w(x)dx =
1, and ϕ : Ω → R is continuous, bounded and FZ,Y

t,θ -measurable.

1Notation ⇀ is used to denote the weak convergence in a Hilbert space. Notice that the term ’weak’ refers to
the weak convergence of a sequence in a Hilbert space and not to the weak convergence of random variables of a
probability distribution.
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On the one hand, we have

E0
[(
w, ςn(t, ·)

)
· ϕ

]
=E0,n

[(
w, ςn(t, ·)

)
· ϕ

]
=E0,n

[
ϕ

∫
Rd

ςn(t, x)w(x)dx
]

=E0,n
[ ∫

Rd

ϕςn(t, x)w(x)dx
]

=E0,n
{∫

Rd

E
0,n
tx [ϕfn(Xθ)Λn

t,θ|F
Z,Y
t,θ ]w(x)dx

}
=

∫
Rd

E0,n
{

E
0,n
tx [ϕfn(Xθ)Λn

t,θ|F
Z,Y
t,θ ]

}
w(x)dx

=
∫

Rd

E
0,n
tx

{
E

0,n
tx [ϕfn(Xθ)Λn

t,θ|F
Z,Y
t,θ ]

}
w(x)dx

=
∫

Rd

E
0,n
tx

[
ϕfn(Xθ)Λn

t,θ

]
w(x)dx

=
∫

Rd

En
tx

[
ϕfn(Xθ)

]
w(x)dx. (5.4.38)

Here, the first equality follows from ϕ
(
w, ςn(t, x)

)
is FZ,Y

t,θ -measurable, and the restriction of P0,n

to FZ,Y
t,θ does not depend on n. The fourth equality follow from Equality (5.4.35) and the property

that ϕ is FZ,Y
t,θ -measurable. Applying Fubini’s theorem to exchange the order of expectation and

integral, we obtain the fifth equality. The sixth equality follows from E
0,n
tx [ϕfn(Xθ)Λn

t,θ|F
Z,Y
t,θ ] is

FZ,Y
t,θ -measurable and independent of X under P0. The seventh equality follows from iterated

conditional expectation. The last equality follows from Equation (5.4.31).

On the other hand, similarly, we obtain

E0
[
ϕ
(
w, ς(t, x)

)]
=E0

[
ϕ

∫
R

ς(t, x)w(x)dx
]

=E0
[ ∫

R

ϕς(t, x)w(x)dx
]

=E0
{∫

R

E0
tx[ϕf(Xθ)Λt,θ|FZ,Y

t,θ ]w(x)dx
}

=
∫

R

E0
{

E0
tx[ϕf(Xθ)Λt,θ|FZ,Y

t,θ ]w(x)
}
dx

=
∫

R

E0
tx

{
E0

tx[ϕf(Xθ)Λt,θ|FZ,Y
t,θ ]w(x)

}
dx

=
∫

R

E0
tx

[
ϕf(Xθ)Λt,θ

]
w(x)dx

=
∫

R

Etx

[
ϕf(Xθ)

]
w(x)dx. (5.4.39)

Combining Equation (5.4.38) and (5.4.39), in order to show Equation (5.4.37), it remains to
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show that ∣∣∣ ∫
R

En
tx[ϕfn(Xθ)]w(x)dx −

∫
R

Etx[ϕf(Xθ)]w(x)dx
∣∣∣

≤
∣∣∣ ∫

R

En
tx[ϕfn(Xθ)]w(x)dx −

∫
R

En
tx[ϕf(Xθ)]w(x)dx

∣∣∣
+

∣∣∣ ∫
R

En
tx[ϕf(Xθ)]w(x)dx −

∫
R

Etx[ϕf(Xθ)]w(x)dx
∣∣∣

converges to 0. It is true since

∣∣∣ ∫
R

En
tx[ϕfn(Xθ)]w(x)dx −

∫
R

En
tx[ϕf(Xθ)]w(x)dx

∣∣∣ =
∣∣∣ ∫

R

En
tx

{
ϕ[fn(Xθ)− f(Xθ)]

}
w(x)dx

∣∣∣
≤‖fn − f‖∞ · ‖ϕ‖∞

∫
R

w(x)dx

=‖fn − f‖∞ · ‖ϕ‖∞ · 1
→0,

and ∣∣∣ ∫
R

En
tx[ϕf(Xθ)]w(x)dx −

∫
R

Etx[ϕf(Xθ)]w(x)dx
∣∣∣ → 0,

where the first convergence follows from Assumption ii) and boundedness of ϕ while the second
convergence follows from Jacod and Shiryaev (2003), Theorem IX.4.8, page 556.

Now we have shown that Equation (5.4.34) holds. It follows from Assumption i) and Re-
mark 5.4 that (rn

t , n ≥ 1) is bounded in L2
(
(Ω,FZ,Y

t,θ ,P0);H
)

and rn, n ≥ 1 is bounded in

L2
(
(Ω,FZ,Y

t,θ ,P0, {FZ,Y
s,θ }t≤s≤θ) × [t, θ];V

)
. Notice that every bounded sequence in a Hilbert

space contains a weakly convergent subsequence. Then there exist a subsequence rnk , such that:

rnk
t ⇀ η in L2

(
(Ω,FZ,Y

t,θ ,P0);H
)
, weakly, (5.4.40)

rnk ⇀ ξ in L2
(
(Ω,FZ,Y

t,θ ,P0, {FZ,Y
s,θ }t≤s≤θ)× [t, θ];V

)
, weakly. (5.4.41)

It remains to show that ξ = r and η = rt. Let κ ∈ C1([t, θ]). Notice that κ(θ) = κ(t)+
∫ θ
t κ

′(s)ds,
together with Equation (5.4.25), we obtain, noting the boundary condition rnk

θ = fnk ,

κ(θ)(fnk , w) +
∫ θ

t
κ(s)〈Ankrnk

s , w〉ds +
∫ θ

t
κ(s)(hnkrnk

s , w)dZs (5.4.42)

+
∫ θ

t
κ(s)

(
(λnk − 1)rnk

s , w
)
d(Ys − s)−

∫ θ

t
κ′(s)(rnk

s , w)ds

=κ(t)(rnk
t , w).

First, we have the following convergence weakly in L2
(
(Ω,FZ,Y

t,θ ,P0); R
)
, which will be shown
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later, ∫ θ

t
κ(s)〈Ankrnk

s , w〉ds ⇀
∫ θ

t
κ(s)〈Aξs, w〉ds, (5.4.43)∫ θ

t
κ(s)(hnkrnk

s , w)dZs ⇀

∫ θ

t
κ(s)(hξs, w)dZs, (5.4.44)∫ θ

t
κ(s)

(
(λnk − 1)rnk

s , w
)
d(Ys − s) ⇀

∫ θ

t
κ(s)

(
(λ− 1

)
ξs, w)d(Ys − s), (5.4.45)∫ θ

t
κ′(s)(rnk

s , w)ds ⇀
∫ θ

t
κ′(s)(ξs, w)ds, (5.4.46)

κ(θ)(fnk , w) ⇀ κ(θ)(f,w), (5.4.47)
κ(t)(rnk

t , w) ⇀ κ(t)(η,w). (5.4.48)

Take the weak limit in L2
(
(Ω,FZ,Y

t,θ ,P0); R
)

from both sides of Equation (5.4.42), yielding:

κ(θ)(f,w) +
∫ θ

t
κ(s)〈Aξs, w〉ds +

∫ θ

t
κ(s)(hξs, w)dZs

+
∫ θ

t
κ(s)

(
(λ− 1)ξs, w

)
d(Ys − s) +

∫ θ

t
κ′(s)(ξs, w)ds

=κ(t)(η,w).

It is then easy to conclude, from the uniqueness of the solution of Equation (5.4.25), that ξ = r
and η = rt. It now remains to demonstrate the convergence in Equation (5.4.43), (5.4.44),
(5.4.45), (5.4.46), (5.4.47), and (5.4.48).

First, we present the following convergence holds in H strongly:

ānkw → āw, ank
∂w

∂xi
→ a

∂w

∂xi
, i = 1, . . . , N, (5.4.49)

hnkw → hw, (λnk − 1)w → (λ− 1)w.

Here, we only show hnkw → hw. The other convergences in Equation (5.4.49) can be obtained
similarly. By definition, w has a compact support, let it be A ∈ Rd. By iii), we have hn

j → hj in
measure on each compact set of Rd. That is, set An

ε = {x ∈ A : ‖hn(x)− h(x)‖ ≥ ε},
lim

n→∞
μ(An

ε ) = 0,

where μ is the Lebesgue measure on Rd. Then, for ε > 0, ∃K, such that, ∀k > K,

μ(Ank
ε ) < ε.

And

‖hnkw − hw‖2H

=
∫

A

∥∥∥(hnk(x)− h(x)
)
w(x)

∥∥∥2
dx

=
∫

A\Ank
ε

∥∥∥(hnk(x)− h(x)
)
w(x)

∥∥∥2
dx+

∫
A

nk
ε

∥∥∥(hnk(x)− h(x)
)
w(x)

∥∥∥2
dx

≤
∫

A\Ank
ε

‖hnk(x)− h(x)‖2‖w(x)‖2dx+
(
‖hnk‖∞ + ‖h‖∞

)2
‖w‖2∞

∫
A

nk
ε

dx

≤ε2‖w‖2∞μ(A) + ε
(
‖hnk‖∞ + ‖h‖∞

)2
‖w‖2∞,
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the last inequality follows from the uniform boundedness of hnk , boundedness of h and w.
Therefore, we have that

‖hnkw − hw‖H → 0, that is hnkw→ hw.

Now we show Equation (5.4.43). It is equivalent to show that, ∀ϕ ∈ L2
(
(Ω,FZ,Y

t,θ ,P0); R
)

and
bounded,

E0
[
ϕ

∫ θ

t
κ(s)〈Ankrnk

s , w〉ds
]
→ E0

[
ϕ

∫ θ

t
κ(s)〈Ars, w〉ds

]
.

We have

E0
[
ϕ

∫ θ

t
κ(s)〈Ankrnk

s , w〉ds
]

=E0
[
ϕ

∫ θ

t
κ(s)

〈
(Ank −A+A)rnk

s , w
〉
ds

]
=E0

[
ϕ

∫ θ

t
κ(s)

〈
(Ank −A)rnk

s , w
〉
ds

]
+ E0

[
ϕ

∫ θ

t
κ(s)〈Arnk

s , w〉ds
]

→E0
[
ϕ

∫ θ

t
κ(s)〈Aξs, w〉ds

]
.

The last convergence follows from, by Equation (5.4.41),

E0
[
ϕ

∫ θ

t
κ(s)〈Arnk

s , w〉ds
]
− E0

[
ϕ

∫ θ

t
κ(s)〈Aξs, w〉ds

]
=E0

[
ϕ

∫ θ

t
κ(s)〈Arnk

s −Aξs, w〉ds
]

=E0
[
ϕ

∫ θ

t
κ(s)〈A(rnk

s − ξs), w〉ds
]

=E0
[
ϕ

∫ θ

t
κ(s)〈rnk

s − ξs,A∗w〉ds
]

→0

and meanwhile, for sake of simplicity, consider for d = 1, by Equation (5.1.4),∣∣∣E0
[
ϕ

∫ θ

t
κ(s)

〈
(Ank −A)rnk

s , w
〉
ds

]∣∣∣
≤E0

[
|ϕ|

∫ θ

t
|κ(s)| · ‖rnk

s ‖V ·
(
‖(ank − a)w′‖H + ‖(ānk − ā)w‖H

)
ds

]
≤‖ϕ‖∞‖κ‖∞

(
‖(ank − a)w′‖H + ‖(ānk − ā)w‖H

)
E0

[ ∫ θ

t
‖rnk(s)‖V ds

]
≤‖ϕ‖∞‖κ‖∞

(
‖ank − a‖∞‖w′‖H + ‖ānk − ā‖∞‖w‖H

)
(θ − t)

(
|rnk |θ−t + 1

)
→0.

Here, the last convergence follows boundedness assumptions of ϕ, κ, and Equation (5.4.49).
The high dimensional case is handled exactly in the same way. Therefore, we obtain Equation
(5.4.43). Now we show the convergence (5.4.44). Define

ϕ̃s = E0(ϕ|FZ,Y
s,θ ), s ∈ [0, θ].
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Then ϕ̃ is a martingale. Due to the independence of Z and Y , we have a martingale representation
of the P0-martingale ϕ̃ using the martingale representation theory, see Jacod and Shiryaev
(2003), Theorem III.4.34, page 189,

ϕ̃s = E0(ϕ) +
∫ θ

s
ανdZν +

∫ θ

s
γνd(Yν − ν), s ∈ [0, θ]. (5.4.50)

Notice that ϕ is bounded, Protter (2005),Corollary 3, page 73, implies that coefficients {αν}ν∈[0,θ]

and {γν}ν∈[0,θ] are square integrable. That is

E0
(∫ θ

0
α2

νdν
)
<∞, E0

(∫ θ

0
γ2

νdν
)
<∞. (5.4.51)

Then, we get

E0
[
ϕ

∫ θ

t
κ(s)(hnkrnk

s , w)dZs

]
=E0

{
E0

[
ϕ

∫ θ

t
κ(s)(hnkrnk

s , w)dZs|FZ,Y
tθ

]}
=E0

[
ϕ̃t

∫ θ

t
κ(s)(hnkrnk

s , w)dZs

]
=E0

{[
E0(ϕ) +

∫ θ

t
ανdZν +

∫ θ

t
γνd(Yν − ν)

] ∫ θ

t
κ(s)(hnkrnk

s , w)dZs

}
=E0

{∫ θ

t
ανdZν

∫ θ

t
κ(s)(hnkrnk

s , w)dZs

}
=E0

{∫ θ

t
αsκ(s)(hnkrnk

s , w)ds
}

→E0[
∫ θ

t
αsκ(s)(hξs, w)ds].

The first equality follows from iterated conditional expectation. The third equality follows from
Equation (5.4.50). The fourth equality follows from independence of Z and Y . The last conver-
gence is obtained as follows

E0
[ ∫ θ

t
αsκ(s)(hnkrnk

s , w)ds
]

=E0
[ ∫ θ

t
αsκ(s)(rnk

s , hnkw)ds
]

=E0
[ ∫ θ

t
αsκ(s)

(
rnk
s , (hnk − h)w + hw

)
ds

]
=E0

[ ∫ θ

t
αsκ(s)

(
rnk
s , (hnk − h)w

)
ds] + E0[

∫ θ

t
αsκ(s)(rnk

s , hw)ds
]

→E0
[ ∫ θ

t
αsκ(s)(hξs, w)ds

]
,
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where the last convergence follows from Equation (5.4.41) and

E0
[ ∫ θ

t
αsκ(s)

(
rnk
s , (hnk − h)w

)
ds

]
≤E0

[ ∫ θ

t
|αs| · |κ(s)| ·

∣∣∣(rnk
s , (hnk − h)w

)∣∣∣ds]
≤E0

[ ∫ θ

t
|αs| · |κ(s)| · ‖rnk

s ‖H‖(hnk − h)w‖Hds
]

≤‖(hnk − h)w‖H‖κ‖∞E0

∫ θ

t
|αs|‖rnk

s ‖Hds

≤‖(hnk − h)w‖H‖κ‖∞
{

E0

∫ θ

t
α2

sds
}1/2

·
{

E0

∫ θ

t
‖rnk

s ‖2Hds
}1/2

≤‖(hnk − h)w‖H‖κ‖∞
{

E0

∫ θ

t
α2

sds
}1/2

(θ − t)|rnk |θ−t

→0.

Here, the convergence follows from Equation (5.4.49), bounded assumptions of κ, and that α is
square integrable, by Equation (5.4.51).

Meanwhile, we have

E0
[
ϕ

∫ θ

t
κ(s)(hrs, w)dZs

]
= E0

[ ∫ θ

t
αsκ(s)(hξs, w)ds

]
.

Equation (5.4.44) is obtained.

Similarly, we obtain Equation (5.4.45) by

E0
{
ϕ

∫ θ

t
κ(s)

(
(λnk − 1)rnk

s , w
)
d(Ys − s)

}
=E0

{
E0

[
ϕ

∫ θ

t
κ(s)

(
(λnk − 1)rnk

s , w
)
d(Ys − s)|FZ,Y

tθ

]}
=E0

{
ϕ̃t

∫ θ

t
κ(s)

(
(λnk − 1)rnk

s , w
)
d(Ys − s)

}
=E0

{[
E0(ϕ) +

∫ θ

t
ανdZν +

∫ θ

t
γνd(Yν − ν)

] ∫ θ

t
κ(s)

(
(λnk − 1)rnk

s , w
)
d(Ys − s)

}
=E0

{∫ θ

t
γνd(Yν − ν)

∫ θ

t
κ(s)

(
(λnk − 1)rnk

s , w
)
d(Ys − s)

}
=E0

{∫ θ

t
γsκ(s)

(
(λnk − 1)rnk

s , w
)
ds

}
→E0

[ ∫ θ

t
γsκ(s)

(
(λ− 1)ξs, w

)
ds

]
and

E0
{
ϕ

∫ θ

t
κ(s)

(
(λnk − 1)rnk

s , w
)
d(Ys − s)

}
= E0

[ ∫ θ

t
γsκ(s)

(
(λ− 1)ξs, w

)
ds

]
.

Likewise, we get Equation (5.4.46), (5.4.47) and (5.4.48).
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Now, we propose to prove Lemma 5.9. In order to simplify the notations, let t = 0. Define
φs = rs(Xs)Λs. Then, given X0 = x,

φ0 = r0(X0)Λ0 = rt(x),
φθ = rθ(Xθ)Λθ = f(Xθ)Λθ.

Notice that

E0(φ0|FZ,Y
θ ,X0 = x) = rt(x),

E0(φθ|FZ,Y
θ ,X0 = x) = rt(x),

the last equality follows from Lemma 5.9. Therefore, in order to prove Lemma 5.9, one approach
is to show that

E0
0,x

[
φθ − φ0

∣∣∣FZ,Y
θ

]
= E0

0,x

[ ∫ θ

0
dφs

∣∣∣FZ,Y
θ

]
= 0.

It is suffice to show that the conditional expectation of the increment of φ with respect to
FZ,Y

θ is zero, by Itô’s formula, Equation (5.4.25) and (5.4.29). However, one cannot differentiate
φs = rs(Xs)Λs by Itô’s formula. The reason being, Equation (5.4.25) is a backward SPDE while
Equation (5.4.29) is a forward one. φ’s differential could involve terms which do not make sense.
Instead, we use time discretisation approach as that adopted in Pardoux (1979b), page 154.

Proof of Lemma 5.9. In the proof, for convenience, we define r(t, x) := rt(x). In the following,
we will apply stochastic Fubini’s theorem and central limit theorem. To do so, we need the
following boundedness of r and Λ.

Lemma 5.10. Under the assumption of Lemma 5.9, for each compact set A of Rd, we have

P 0
{
∃c(ω) ∈ R+, s.t. sup

0≤t≤θ,x∈A
{|r(t, x, ω)|, |rx(t, x, ω)|, |rxx(t, x, ω)|} ≤ c(ω)

}
= 1.

Proof. It follows from the hypotheses and Lemma 5.7 that each trajectory of r belongs to
∩nD

(
0, T ;Hn(Rd)

)
. By the properties of sobolev space, see Folland (1999), 9.18 Corollary,

page 304, we have ∀t, r(t, ·) ∈ C∞(Rd). Therefore, ∀t, r(t, ·) is uniformly bounded on each
compact set of Rd. By Theorem 5.6, every trajectory of r is right-continuous having left limits,
applying Lemma 9.17, Peszat and Zabczyk (2007), page 154, we obtain the desired result.

Lemma 5.11. Under the assumption of Lemma 5.9, we have

sup
0≤t≤T

E0[Λ2
t |X0 = x] <∞, (5.4.52)

sup
0≤t≤T

E0[Λ4
t |X0 = x] <∞. (5.4.53)

Proof. By the definition of Λ, see Equation (2.4.5) and (2.4.1),

Λ2
t =

∏
τn≤t

[λ(Xτn−)]2 · exp
[
2
∫ t

0
h(Xu)�dZu −

∫ t

0
‖h(Xu)‖2du− 2

∫ t

0

(
λ(Xu)− 1

)
du

]
≤‖λ‖2Yt

∞ · exp
[
2
∫ t

0
h(Xu)�dZu

]
· e2t · exp

[
−

∫ t

0
‖h(Xu)‖2du− 2

∫ t

0
λ(Xu)du

]
≤e2t‖λ‖2Yt

∞ exp
[
2
∫ t

0
h(Xu)�dZu

]
.
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Notice, Y is a Poisson process with intensity 1 and is independent with X, we have

E0[Λ2
t |X0 = x] ≤e2tE0

[
‖λ‖2Yt

∞

]
E0

[
exp

(
2
∫ t

0
h(Xu)�dZu

)∣∣∣X0 = x
]
.

On one side,

E0
[
‖λ‖2Yt

∞

]
=

∞∑
i=0

‖λ‖2i
∞
ti

i!
e−t

=et(‖λ‖
2∞−1)

∞∑
i=0

(t‖λ‖2∞)i

i!
e−t‖λ‖2∞

=et(‖λ‖
2∞−1).

On the other side,

E0
[
exp

(
2
∫ t

0
h(Xu)�dZu

)∣∣∣X0 = x]

=E0
[
E0{exp(2

∫ t

0
h(Xu)�dZu)|FX

t ,X0 = x}
∣∣∣X0 = x

]
=E0

[
exp

(
2
∫ t

0
‖h(Xu)‖2du

)∣∣∣X0 = x
]

≤e2t‖h‖2∞ .

Combining the results, we obtain

sup
0≤t≤T

E0
[
Λ2

t

∣∣∣X0 = x
]
≤ e2t · et(‖λ‖2∞−1) · e2t‖h‖2∞ <∞.

Similarly, we obtain Equation (5.4.53).

In order to simplify the notations, let us prove Equation (5.4.30) for t=0, write E0
x(·) for

E0
0,x(·|F

Z,Y
θ ). We will suppose that d = 1. The more general case is handled in exactly the

same way.

For reasons previously mentioned, we cannot differentiate Λtr(t,Xt) with respect to t, instead,
we consider the following time discretisation. For each ω2, suppose that Yθ = N and then
0 < τ1(ω2) < . . . < τN (ω2) ≤ θ. For a integer m, let 0 = s0 < s1 < s2 < . . . sm = θ be a
mesh with si+1 − si = θ/m =: k. Now we have less than N + m + 1 time points. Assume we
have n + 1 time points and obviously, n < M + N . Re-index the positions for the time points
as 0 = t0 < t1 < t2 . . . < tn = θ. Finally, the interval [0, θ] is partitioned into subinterval of
length less than or equal to k with 0 = t0 < t1 < t2 . . . < tn = θ. Then, we have the following
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decomposition. Notice that f(·) = r(θ, ·) and Λ0 = 1,

E0
x

[
Λθf(Xθ)

]
− r(0, x) =E0

x

[
Λθr(θ,Xθ)

]
− E0

x

[
Λ(0)r(0, x)

]
=

n−1∑
i=1

E0
x

[
Λti+1r(ti+1,Xti+1)− Λtir(ti,Xti)

]
=

n−1∑
i=1

E0
x

[
Λti+1r(ti+1,Xti+1)− Λti+1−r(ti+1−,Xti+1−)

+ Λti+1−r(ti+1−,Xti+1−)− Λtir(ti,Xti)
]

=
n−1∑
i=1

{
E0

x

[
Λti+1r(ti+1,Xti+1)− Λti+1−r(ti+1−,Xti+1−)

]
+ E0

x

[
Λti+1−r(ti+1−,Xti+1−)− Λtir(ti,Xti)

]}
.

In the following, we will show that, for 0 < t ≤ θ,

Λtr(t,Xt)− Λt−r(t−,Xt−) = 0. (5.4.54)

Then consequently,

E0
x

[
f(Xθ)Λθ

]
− r(0, x) =

n−1∑
i=1

�i, (5.4.55)

where, for i = 1, 2, . . . , n− 1,

E0
x

[
Λti+1−r(ti+1−,Xti+1−)− Λtir(ti,Xti)

]
:= �i.

In fact, when t is not the time of jump, then Equation (5.4.54) is obtain by continuity. Otherwise,
by Equation (5.4.29),

Λt − Λt− = [λ(Xt−)− 1]Λt−.

That is

Λt = λ(Xt−)Λt−. (5.4.56)

Similarly, apply Equation (5.4.25),

r(t−,Xt−) = λ(Xt−)r(t,Xt−) = λ(Xt−)r(t,Xt), (5.4.57)

where the last equality follows from the continuity of X, that is Xt = Xt−. Combining Equation
(5.4.56) and (5.4.57) together,

Λtr(t,Xt)− Λt−r(t−,Xt−) = λ(Xt−)Λt−r(t,Xt)− Λt−λ(Xt−)r(t,Xt) = 0.

By Equation (5.4.55), in order to prove Equation (5.4.30), it suffices to show that, as m→∞,

n−1∑
i=1

�i → 0 a.s..
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As previously mentioned, we can not apply Itô formula to �i, by Equation (2.4.12) and (5.4.25).
Instead we have the following decomposition,

�i =E0
x

[
Λti+1−r(ti+1−,Xti+1−)− Λtir(ti+1−,Xti)

]
(5.4.58)

+ E0
x

[
Λtir(ti+1−,Xti)− Λtir(ti,Xti)

]
,

such that one part composes the increment cased by Λt and Xt, whose dynamics is described
by forward equation, while the other part composes the increment cased by r with respect to
t, whose dynamics is described by backward equation. On the one hand, we express the second
term of �i using Equation (5.4.25) at x = Xt, which make sense because of the regularity of
the solution. Notice that there is no jump between the time interval [ti, ti+1),

Λtir(ti+1−,Xti)− Λtir(ti,Xti) (5.4.59)

=
∫ ti+1

ti

Λti

[
−Ar(s,Xti)ds − h(Xti)r(s,Xti)dZs + (λ(Xti)− 1)r(s,Xti)ds

]
.

On the other hand, we express the first term in �i by means of Itô formula, by Equation (2.4.12)
(2.2.1), applied to Λsr(ti+1,Xs).

Λti+1−r(ti+1−,Xti+1−)− Λtir(ti+1−,Xti) (5.4.60)

=
∫ ti+1

ti

Λsr(ti+1−,Xs)h(Xs)dZs −
∫ ti+1

ti

Λsr(ti+1−,Xs)
(
λ(Xs−)− 1

)
ds

+
∫ ti+1

ti

ΛsAr(ti+1−,Xs)ds +
∫ ti+1

ti

Λsrx(ti+1−,Xs)σ(Xs)dVs.

Now we show that

E0
x

{∫ ti+1

ti

Λsrx(ti+1−,Xs)σ(Xs)dVs

}
= 0. (5.4.61)

By assumption σ is smooth with compact support. Together with the boundedness of r, by
Lemma 5.10, rxσ is bounded, then we have

E0
x

{∫ ti+1

ti

[
Λsrx(ti+1−,Xs)σ(Xs)

]2
ds

}
≤ ‖rxσ‖2∞E0

x

{∫ ti+1

ti

Λ2
sds

}
. (5.4.62)

Notice that, by Lemma 5.11,

E0
[ ∫ ti+1

ti

Λ2
sds|X0 = x

]
=

∫ ti+1

ti

E0[Λ2
s|X0 = x]ds

≤(ti+1 − ti) sup
0≤s≤T

E0[Λ2
s|X0 = x] <∞.

Therefore, the left hand side of Equation (5.4.62) is finite a.s.. Together with Vt, Yt, Zt are
P0-independent, we have Equation (5.4.61).
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Combining with Equation (5.4.58), (5.4.59), (5.4.60) and (5.4.61), we have

�i =E0
x

{∫ ti+1

ti

Λsr(ti+1−,Xs)h(Xs)dZs

}
− E0

x

{∫ ti+1

ti

Λsr(ti+1−,Xs)[λ(Xs−)− 1)]ds
}

+ E0
x

{∫ ti+1

ti

ΛsAr(ti+1−,Xs)ds
}

+E0
x

{∫ ti+1

ti

Λti

[
−Ar(s,Xti)ds − h(Xti)r(s,Xti)dZs + (λ(Xti)− 1)r(s,Xti)ds

]}
=E0

x

{∫ ti+1

ti

Λsr(ti+1−,Xs)h(Xs)dZs −
∫ ti+1

ti

Λtih(Xti)r(s,Xti)dZs

}
+ E0

x

{
−

∫ ti+1

ti

Λsr(ti+1−,Xs)[λ(Xs−)− 1)]ds +
∫ ti+1

ti

Λti [λ(Xti)− 1]r(s,Xti)ds
}

+ E0
x

{∫ ti+1

ti

ΛsAr(ti+1−,Xs)ds −
∫ ti+1

ti

ΛtiAr(s,Xti)ds
}
. (5.4.63)

Λ has right continuous path with finite discontinuous time points, it is bounded for each trajec-
tory. By assumption, b, σ, λ− 1 is smooth and compact supported. Together with boundedness
of r, by Lebesgue dominated convergence theorem, see Folland (1999), Theorem 2.24, page 54,
we have that

lim
m→∞

n−1∑
i=0

∫ ti+1

ti

Λsr(ti+1−,Xs)
[
λ(Xs−)− 1

]
ds

= lim
m→∞

n−1∑
i=0

∫ ti+1

ti

Λti

[
λ(Xti)− 1

]
r(s,Xti)ds

=
∫ θ

0
Λs

[
λ(Xs)− 1

]
r(s,Xs)ds (5.4.64)

and

lim
m→∞

n−1∑
i=0

∫ ti+1

ti

ΛsAr(ti+1,Xs)ds = lim
m→∞

n−1∑
i=0

∫ ti+1

ti

ΛtiAr(ts,Xti)ds

=
∫ θ

0
ΛsAr(s,Xs)ds. (5.4.65)

It is not possible to take the limit in the same way in the stochastic integrals, because the limit
should not make sense.∫ ti+1

ti

Λsr(ti+1−,Xs)h(Xs)dZs −
∫ ti+1

ti

Λtih(Xti)r(ts,Xti)dZs =: αi + βi, (5.4.66)

where

αi =
∫ ti+1

ti

[
Λsr(ti+1−,Xs)h(Xs)− Λtih(Xti)r(ti+1−,Xti)

]
dZs,

βi =
∫ ti+1

ti

Λti

[
h(Xti)r(ti+1−,Xti)− h(Xti)r(s,Xti)

]
dZs.
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Combining the obtained result, Equation (5.4.63), (5.4.64), (5.4.65) and (5.4.66), it remains to
show that E0

x

∑n−1
i=1 αi and E0

x

∑n−1
i=0 βi converge to 0. The main tool for obtaining the convergence

is the central limit theorem for stochastic integrals, see Revuz and Yor (1999), page 152. In order
to show that the sequence of stochastic integrals converges to 0, by the central limit theorem, it
is suffice to show that it converges in distribution to a normal random variable with variance 0.
Let us first consider E0

x

∑n−1
i=1 αi. It follows from Itô’s formula, by Equation (2.2.1) and (2.4.12),

Λsr(ti+1−,Xs)h(Xs)− Λtih(Xti)r(ti+1,Xti)

=
∫ s

ti

ΛuA[h(·)r(ti+1, ·)](Xu)du+
∫ s

ti

Λu
∂[h(x)r(ti+1, x)]

∂x

∣∣∣
x=Xu

σ(Xu)dVu

+
∫ s

ti

Λuh
2(Xu)r(ti+1,Xu)dZu −

∫ s

ti

Λu(λ(Xu)− 1)h(Xu)r(ti+1,Xu)du

=
∫ s

ti

Λu

[
A[h(·)r(ti+1, ·)](Xu)− (λ(Xu)− 1)h(Xu)r(ti+1,Xu)

]
du

+
∫ s

ti

Λuh
2(Xu)r(ti+1,Xu)dZu

+
∫ s

ti

Λu
∂[h(x)r(ti+1, x)]

∂x

∣∣∣
x=Xu

σ(Xu)dVu.

For sake of simplicity, define

ρα(t, x) :=A[h(·)r(t, ·)](x) − (λ(x)− 1)h(x)r(t, x),

ηα(t, x) :=h2(x)r(t, x),

γα(t, x) :=
∂[h(x)r(t, x)]

∂x
σ(x).

By assumption, coefficients in our model are smooth and compacted supported. Together, with
the boundedness of r, Lemma 5.10 implies

‖ρα‖∞, ‖ηα‖∞, ‖γα‖∞ <∞.

Then we have

E0
x

{ n∑
i=1

αi

}
=E0

x

{ n∑
i=1

∫ ti+1

ti

dZs

∫ s

ti

Λuρ
α(ti+1,Xu)du

}
+ E0

x

{ n∑
i=1

∫ ti+1

ti

dZs

∫ s

ti

Λuη
α(ti+1,Xu)dZu

}
+ E0

x

{ n∑
i=1

∫ ti+1

ti

dZs

∫ s

ti

Λuγ
α(ti+1,Xu)dVu

}
:=α(1) + α(2) + α(3). (5.4.67)

By stochastic Fubini’s theorem, Protter (2005), page 208, we have

α(3) =E0
x

{ n∑
i=1

∫ ti+1

ti

dZs

∫ s

ti

Λuγ
α(ti+1,Xu)σ(Xu)dVu

}
=

n∑
i=1

∫ ti+1

ti

dZsE
0
x

{∫ s

ti

Λuγ
α(ti+1,Xu)σ(Xu)dVu

}
.
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Notice that

E0
x

∫ s

ti

du{Λuγ
α(ti+1,Xu)σ(Xu)}2 ≤ ‖γα‖2∞‖σ‖2∞E0

x

∫ s

ti

Λ2
udu <∞.

And the last inequality follows from

E0
[ ∫ s

ti

Λ2
udu|x0 = x

]
≤ (s− ti) sup

0≤u≤T
E0(Λ2

u|x0 = x) <∞.

Together with Vt, Yt and Zt are independent, we have

E0
x

{∫ s

ti

Λuγ
α(ti+1,Xu)σ(Xu)dVu

}
= 0.

Therefore,

α(3) = 0. (5.4.68)

Now we consider α(1).

α(1) = E0
x

{∫ θ

0
dZs

n∑
i=1

{1{ti≤s<ti+1}

∫ s

ti

Λuρ
α(ti+1,Xu)du}

}
.

In order to show that α(1) → 0, by central limit theorem, it suffice to show that

E0
x

{∫ θ

0
ds

[ n∑
i=1

{1{ti≤s<ti+1}

∫ s

ti

Λuρ
α(ti+1,Xu)du}

]2}
→ 0.

That is

E0
x

{ n∑
i=1

∫ ti+1

ti

ds
[ ∫ s

ti

Λuρ
α(ti+1,Xu)du

]2}
→ 0.

By Jensen’s Inequality, the left hand side of the last formula is less then or equal to

E0
x

{ n∑
i=1

∫ ti+1

ti

ds(s− ti)
∫ s

ti

[Λuρ
α(ti+1,Xu)]2du

}
≤‖ρα‖2∞E0

x

{ n∑
i=1

∫ ti+1

ti

ds(s− ti)
∫ s

ti

Λ2
udu

}
.

Notice that

E0
[ n∑

i=1

∫ ti+1

ti

ds(s − ti)
∫ s

ti

Λ2
udu

∣∣X0 = x
]

=
n∑

i=1

∫ ti+1

ti

ds(s− ti)
∫ s

ti

E0[Λ2
u|X0 = x]du

≤ sup
0≤u≤T

E0[Λ2
u|X0 = x]

n∑
i=1

∫ ti+1

ti

ds(s − ti)2

= sup
0≤u≤T

E0[Λ2
u|X0 = x]

n∑
i=1

(ti+1 − ti)3
3

≤ sup
0≤u≤T

E0[Λ2
u|X0 = x] · θ · k

2

3
→ 0,
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as m→∞. Therefore

lim
m→0

α(1) → 0, a.s.. (5.4.69)

In fact, the other convergence can be derived in the same way. However, for the reader, we show
the proof in detail.

α(2) =E0
x

{ n∑
i=1

∫ ti+1

ti

dZs

∫ s

ti

Λuη
α(ti+1,Xu)dZu

}
=E0

x

{ n∑
i=1

∫ ti+1

ti

Λuη
α(ti+1,Xu)dZu

∫ ti+1

u
dZs

}
=E0

x

{ n∑
i=1

∫ ti+1

ti

Λuη
α(ti+1,Xu)(Zti+1 − Zu)dZu

}
=E0

x

{∫ θ

0
dZu

n∑
i=1

1{ti≤u<ti+1}Λuη
α(ti+1,Xu)(Zti+1 − Zu)

}
.

Again, by central limit theorem, it suffice to show that

E0
x

{∫ T

0
du{

n∑
i=1

1{ti≤u<ti+1}Λuη
α(ti+1,Xu)(Zti+1 − Zu)}2

}
→ 0.

That is

E0
x

{ n∑
i=1

∫ ti+1

ti

du[Λuη
α(ti+1,Xu)(Zti+1 − Zu)]2

}
→ 0.

The left hand side of the last formula is less than or equal to

‖ηα‖2∞E0
x

{ n∑
i=1

∫ ti+1

ti

du[Λu(Zti+1 − Zu)]2
}
.

Notice that, by Cauchy-Schwartz inequality,

E0
{ n∑

i=1

∫ ti+1

ti

du[Λu(Zti+1 − Zu)]2|X0 = x
}

=
n∑

i=1

∫ ti+1

ti

duE0{[Λu(Zti+1 − Zu)]2|X0 = x}

≤
n∑

i=1

∫ ti+1

ti

du[E0(Λ4
u|X0 = x)]

1
2 [E0((Zti+1 − Zu)4|X0 = x)]

1
2 ]

≤ sup
0≤u≤T

[E0(Λ4
u|X0 = x)]

1
2

n∑
i=1

∫ ti+1

ti

√
3(ti+1 − u)2du

≤ sup
0≤u≤T

[E0(Λ4
u|X0 = x)]

1
2

n∑
i=1

(ti+1 − ti)3√
3

≤ sup
0≤u≤T

[E0(Λ4
u|X0 = x)]

1
2 · θ · k

2

√
3
→ 0.
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Therefore,

lim
l→0

α(2) → 0, a.s.. (5.4.70)

Now we show that E0
x

∑n
i=1 βi → 0. By Equation (5.4.25), we have

r(ti+1−,Xti)− r(s,Xti)

=
∫ ti+1

s
−Ar(u,Xti)du− h(Xti)r(u,Xti)dZu + (λ(Xti)− 1)r(u,Xti)du

=
∫ ti+1

s
[−Ar(u,Xti) + (λ(Xti)− 1)r(u,Xti)]du+

∫ ti+1

s
−h(Xti)r(u,Xti)dZu.

For sake of simplicity, define

ρβ(t, x) :=h(x)[−Ar(t, x) + (λ(x)− 1)r(t, x)],

ηβ(t, x) :=− h(x)2r(t, x).

By assumption coefficients in our model are smooth and compacted supported. Together with
the bounded of r, by Lemma 5.10, we have

‖ρβ‖∞, ‖ηβ‖∞ <∞.

Then we have

E0
x

{ n∑
i=1

βi

}
=E0

x

{ n∑
i=1

∫ ti+1

ti

dZsΛti

∫ ti+1

s
ρβ(u,Xti)du

}
+ E0

x

{ n∑
i=1

∫ ti+1

ti

dZsΛti

∫ ti+1

s
ηβ(u,Xti)dZu

}
:=β(1) + β(2). (5.4.71)

Again, we rewrite β(1) as

β(1) = E0
x

∫ θ

0
dZs

n∑
i=1

1{ti≤s<ti+1}Λti

∫ ti+1

s
ρβ(u,Xti)du.

By the central limit theorem, it suffice to show that

E0
x

{∫ θ

0
ds{

n∑
i=1

1{ti≤s<ti+1}Λti

∫ ti+1

s
ρβ(u,Xti)du}2

}
→ 0.

That is

E0
x

{ n∑
i=1

∫ ti+1

ti

ds(Λti

∫ ti+1

s
ρβ(u,Xti)du)

2
}
→ 0.

In fact, the left hand side of the last formula is less than or equal to

‖ρβ‖2∞E0
x

{ n∑
i=1

∫ ti+1

ti

dsΛ2
ti(ti+1 − s)2

}
= ‖ρβ‖2∞E0

x

{ n∑
i=1

Λ2
ti

(ti+1 − ti)3
3

}
.
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Notice that

E0
[ n∑

i=1

Λ2
ti

(ti+1 − ti)3
3

|X0 = x] ≤ sup
0≤t≤T

E0[Λ2
t |X0 = x

] n∑
i=1

(ti+1 − t)3
3

≤ sup
0≤t≤T

E0[Λ2
t |X0 = x] · θ · k

2

3
→ 0.

Therefore,

β(1) → 0, a.s.. (5.4.72)

We rewrite β(2) as

β(2) =E0
x

{ n∑
i=1

∫ ti+1

ti

dZsΛti

∫ ti+1

s
ηβ(u,Xti)dZu

}
=E0

x

{ n∑
i=1

∫ ti+1

ti

dZuΛtiη
β(u,Xti)

∫ u

ti

dZs

}
=E0

x

{ n∑
i=1

∫ ti+1

ti

dZuΛtiη
β(u,Xti)(Zu − Zti)

}
=E0

x

{∫ T

0
dZu

n∑
i=1

1{ti≤u<ti+1}Λtiη
β(u,Xti)(Zu − Zti)

}
.

Again, by central limit theorem, it suffice to show that

E0
x

{∫ T

0
du{

n∑
i=1

1{ti≤u<ti+1}Λtiη
β(u,Xti)(Zu − Zti)}2

}
→ 0.

That is

E0
x

{ n∑
i=1

∫ ti+1

ti

du[Λtiη
β(u,Xti)(Zu − Zti)]

2
}
→ 0.

In fact, the left hand side of the last formula is less than or equal to

‖ηβ‖2∞E0
x

{ n∑
i=1

∫ ti+1

ti

du[Λti(Zu − Zti)]
2
}
.

Notice that, by Cauchy-Schwartz inequality,

E0
{ n∑

i=1

∫ ti+1

ti

du[Λti(Zu − Zti)]
2|X0 = x

}
≤

n∑
i=1

∫ ti+1

ti

du
(

E0[Λ4
ti |X0 = x]

) 1
2
(
E0[(Zu − Zti)

4|X0 = x]
) 1

2

≤ sup
0≤t≤T

(
E0[Λ4

t |X0 = x]
) 1

2
n∑

i=1

∫ ti+1

ti

du
√

3(u− ti)2

≤ sup
0≤t≤T

(
E0[Λ4

t |X0 = x]
) 1

2
n∑

i=1

(ti+1 − ti)√
3

≤ sup
0≤t≤T

(
E0[Λ4

t |X0 = x]
) 1

2 · θ · k
2

√
3
→ 0.
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Therefore,

β(2) → 0, a.s.. (5.4.73)

Combining Equation (5.4.67), (5.4.69), (5.4.70), (5.4.68), (5.4.71), (5.4.72) and (5.4.73), we ob-
tain the desired result.

Remark 5.7. For the proof of Lemma 5.9, the basic idea is borrowed from Pardoux (1979a)
and Pardoux (1979b). The reason we show the proof here is as follows.

• Because our model have both jump and continuous observations, we cannot directly cite
the result of Pardoux (1979b).

• There are some assertions in Pardoux (1979b) without proof.

– v ∈
⋂

nH
n(Rd) ⇒ v ∈ C∞

b (Rd), page 154.

– E0
{

sup0≤s≤T

[
h2(Xs)v(s,Xs)Λs

]2∣∣∣X0 = x
}
<∞, page 157.

5.4.3 The unnormalized conditional density

One objective of this section is to show that Equation (5.2.1) is adjoint of Equation (5.4.25) in
the sense specified by the following:

Theorem 5.12. Assume Assumption 5.1 holds. Let {qt}t∈[0,T ] be the solution of Equation (5.2.1)
and {rt}t∈[0,θ] be the solution of Equation (5.4.25). Then, the following holds a.s.

(qt, rt) = (qs, rs), ∀s, t ∈ [0, θ]. (5.4.74)

Proof. Set Rt = (qt, rt). Then it is suffice to show that

dRt = 0.

It holds between jump times, by Pardoux (1979b), Theorem 3.1. At the time of jump, by Equa-
tions (5.2.1) and (5.4.25), for any jump time 0 < τn ≤ θ,

qτn − qτn− = qτn−(λ− 1),
rτn − rτn− = −rτn(λ− 1).

That is

qτn = qτn−λ, rτn− = rτnλ.

Therefore,

�Rτn = Rτn −Rτn− = (qτn , rτn)− (qτn−, rτn−) = (qτn−λ, rτn)− (qτn−, rτnλ) = 0.

Remark 5.8. In the proof, we cannot differentiate (qt, rt), because its differential could involve
terms which do not make sense.
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Another objective of this section is to show that p, the solution of Equation (5.2.1), is the
unnormalized conditional density.

Theorem 5.13. Assume Assumption 5.1 holds. Let {qt}t∈[0,T ] be the solution of Equation
(5.2.1). Then, for f bounded and square integrable,

E0
[
f(Xθ)Λθ

∣∣∣FZ,Y
θ

]
= (qθ, f), θ ∈ [0, T ]. (5.4.75)

Proof. Let {rt}t∈[0,θ] be the solution of Equation (5.4.25). By Equation (5.4.30),

(q0, r0) = (qθ, rθ).

Applying Equation (5.4.74),∫
Rd

p0(x)E0
0,x(f(Xθ)Λθ|FZ,Y

θ )dx = (qθ, f).

θ is arbitrary, we have proved that Equation (5.2.4), which is as same as Equation (5.2.1)
describes the evolution of the unnormalized conditional density.

The following theorem identifies the density of the conditional distribution of the signal.

Theorem 5.14. Assume Assumption 5.1 holds. Let {qt}t∈[0,T ] be the solution of Equation
(5.2.1). Define pθ := qθ∫

Rd qθ(x)dx
, ∀θ ∈ [0, T ], then, for f bounded and square integrable,

E

[
f(Xθ)

∣∣∣FZ,Y
θ

]
= (pθ, f), θ ∈ [0, T ].

Proof. Immediate from Theorem 5.13 and Proposition 2.8.
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Chapter 6

Convergence results

The Galerkin method is one of the well-known methods in the theory of partial differential
equations used to prove existence properties and to obtain finite dimensional approximations
for the solutions of equations.

Since the Galerkin approximation is successful in solving deterministic partial differential equa-
tions, it seems natural to extend these methods to stochastic equations. In recent years, the
deterministic Galerkin method, adapted to the stochastic case, has been examined by many
authors.

Pardoux (1979b) proves the existence of the weak solution of the stochastic parabolic linear
PDE’s, approximating it by means of the Galerkin method.

Gyöngy (1988) studies the stability of stochastic partial differential equations with respect to
simultaneous perturbation of the driving processes and the differential operators. Gyöngy (1989)
applied the result in nonlinear filtering.

Grecksch and Kloeden (1996) study the convergence of the numerical methods for parabolic
stochastic partial differential equations with time and space discretisations using the Galerkin
method.

The Galerkin approximation for the Zakai equation, with continuous noisy observations, was
considered in the literature by Ahmed and Radaideh (1997) and Germani and Piccioni (1984).
Ahmed and Radaideh (1997) used the Galerkin method to approximate the unnormalized, con-
ditional density of the filtered diffusion process. They illustrated the method with numerical
examples. Their work mainly concentrated on the technique, and they didn’t show the con-
vergence of the Galerkin approximation theoretically. Germani and Piccioni (1984) show the
convergence of the Galerkin approximation in mean square norm under appropriate conditions
on the data. Twardowska, Marnik, and Paslawska-Poludniak (2003) apply the numerical method,
mentioned by Ahmed and Radaideh (1997), to approximate the solution of Zakai equation with
a delay.

These authors investigated stochastic partial differential equations with gaussian noise. However,
the Galerkin method can also be used for stochastic partial differential equations with Lévy noise.

In this chapter, we apply the Galerkin method to nonlinear filtering problem w.r.t. Model (2.2.9)
with Lévy noise. The solution of the Zakai equation is approximated by a finite combination
of orthogonal series. Then, the solution of the Zakai equation is approximated by the solution
of a family of finite dimensional stochastic ordinary differential equations. These can be solved

83
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numerically or analytically.

The objective of Chapter 6 is to show the convergence of the Galerkin approximation in mean
square. Analogous results have been proven in the case with continuous noisy observations by
Germani and Piccioni (1984). They have provided an idea to handle such a problem. We apply
their idea to our case where the observation processed with both diffusion and jump noise.

In Section 6.1, we present the Galerkin approximation for solutions of Zakai equation (5.2.1)
by solving a sequence of finite dimensional stochastic differential equations. A question then
concerns the convergence and so, we will proof the Galerkin approximation convergent in mean
square norm.

In the proof, the key tool is the mild solution of Zakai equation. In Section 6.2, we show the
equivalence of weak and mild solution of the Zakai equation.

In Section 6.3, we give a definition of stochastic integral in Hilbert space. With such a definition,
the Zakai equation can be rewritten as a mild equation. We then have a decomposition of the
mild one, which is important to obtain the main result.

In order to study Galerkin approximation for equations of Zakai type, the main tool is a conti-
nuity theorem. From it, we know that the convergence of Galerkin approximation is guaranteed
by the convergence of the linear deterministic equation. It is shown in Section 6.4.

Finally, in Section 6.5, we deal with the necessary and sufficient condition for the convergence of
the linear deterministic equation. Together, with the continuity theorem, we get the necessary
and sufficient condition for the mean square convergence of Galerkin approximation.

In this chapter, a large class of linear stochastic partial differential equations are studied. Al-
though the techniques we introduce here are used for the Zakai equation, they can also be applied
to those classes of linear stochastic PDEs that include the Zakai equation as a special example.

6.1 Introduction

In this section, we will show that by the Galerkin approximation, the solution of Zakai equa-
tion (5.2.1) is approximated by a finite combination of orthogonal series. The solution of the
Zakai equation is then approximated by the solution of a family of finite dimensional stochastic
ordinary differential equations, which can be solved numerically or analytically.

We make the following definition of the Galerkin approximation of Equation (5.2.3) which is
equivalent of Equation (5.2.1).

Definition 6.1. Let {ei, i = 0, 1, . . .} denote a Hilbert-basis of H, made of elements of D(A)
which is defined by Equation (5.1.2). Then {ei} is linearly independent and complete in H. For
each natural n we consider n-dimensional subspace of H defined by Vn = span{e0, e1, . . . , en−1}
equipped with the norm induced from H. Let Pn be the orthogonal projections from H to Vn,
that is PnH = Vn ⊂ H, and we have, ∀v ∈ H,

Pnv =
n−1∑
i=0

(v, ei)ei → v, as n→∞.

Let (A∗)(n) : H → Vn, B(n)
h : H → Vn, and B(n)

λ : H → Vn be defined respectively by

(A∗)(n) := PnA∗Pn, B(n)
h := Pnh

�(·)Pn, B(n)
λ := Pn[λ(·)− 1]Pn.
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The n-dimensional Galerkin approximation {q(n)
t }t∈[0,T ] to SPDE (5.2.3) is then, for any v ∈ Vn,⎧⎪⎨⎪⎩

(q(n)
t , v) = (q(n)

0 , v) +
∫ t
0 〈(A∗)(n)q

(n)
s , v〉ds +

∫ t
0 (B(n)

h q
(n)
s , v)dZs

+
∫ t
0 (B(n)

λ q
(n)
s− , v)d(Ys − s), t ∈ [0, T ],

q
(n)
0 = Pnp0.

(6.1.1)

We will write the approximating equation coordinatewise. First, we can approximate the solution
of the Zakai equation (5.2.1) in the form

q
(n)
t (x) =

n−1∑
i=0

ψ
(n)
i (t)ei(x), t ∈ [0, T ], (6.1.2)

where {ψ(n)
i } are Fourier coefficients to be chosen as follows. By projecting Equation (5.2.3) into

space Vn spanned by {ei, i = 0, 1, . . . , n − 1}, we obtain, for j = 0, 1, . . . , n− 1, t ∈ [0, T ],

n−1∑
i=0

(ei, ej)dψ
(n)
i (t) =

{ n−1∑
i=0

ψ
(n)
i (t)〈A∗ei, ej〉

}
dt+

l∑
k=1

{ n−1∑
i=0

ψ
(n)
i (t)(hkei, ej)

}
dZk

t

+
{ n−1∑

i=0

ψ
(n)
i (t−)

(
(λ− 1)ei, ej

)}
d(Yt − t).

This is an n-dimensional SDE for Υ(n) = (ψ(n)
0 , ψ

(n)
1 , . . . , ψ

(n)
n−1)

� given by for j = 0, 1, . . . , n− 1,⎧⎪⎪⎨⎪⎪⎩
∑n−1

i=0 ajidψ
(n)
i (t) =

{∑n−1
i=0 bjiψ

(n)
i (t)

}
dt +

∑l
k=1

{∑n−1
i=0 c

k
jiψ

(n)
i (t)

}
dZk

t

+
{∑n−1

i=0 gjiψ
(n)
i (t−)

}
d(Yt − t),∑n−1

i=0 ajiψ
(n)
i (0) = q0j,

where, for i, j = 0, 1, . . . , n− 1,

aji := (ei, ej), (6.1.3)
bji := 〈A∗ei, ej〉, (6.1.4)

ckji := (hkei, ej), (6.1.5)

gji :=
(
(λ− 1)ei, ej

)
, (6.1.6)

q0j := (p0, ej). (6.1.7)

This is a finite-dimensional approximation of the Zakai equation (5.2.1).

Remark 6.1. If {ei, i = 0, 1, . . .} ⊂ D(L), then, by the definition of bji,

bji = 〈A∗ei, ej〉 = 〈ei,Aej〉 = 〈ei,Lej〉 = (ei,Lej),

where L is the generator of the state process X defined by Equation (2.2.4). Since, the basis
functions used in the Galerkin approximation, for example Hermit polynomials and Gaussian
functions, are usually subsets of D(L), we compute bji by (ei,Lej) which is more convenient to
deal with.
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For sake of brevity, defineA(n) := (aij)n×n, B(n) := (bij)n×n, C(n),k := (ckij)n×n,G(n) := (gij)n×n,

q(n)
0 = (q00, . . . , q0(n−1))�. We have the matrix notation equation, see Ahmed and Radaideh

(1997), ⎧⎪⎨⎪⎩
A(n)dΥ(n)(t) = B(n)Υ(n)(t)dt +

∑l
k=1

{
C(n),kΥ(n)(t)

}
dZk

t

+G(n)Υ(n)(t−)d(Yt − t), t ∈ [0, T ],
A(n)Υ(n)(0) = q(n)

0 .

(6.1.8)

Notice, {ei} is a basis of H whose components are linearly independent. Therefore A(n) has full
rank, and is invertible. Thus, Equation (6.1.8) can be rewritten as⎧⎪⎨⎪⎩

dΥ(n)(t) = (A(n))−1[B(n)Υ(n)(t)dt +
∑l

k=1C
(n),kΥ(n)(t)dZk

t

+G(n)Υ(n)(t−)d(Yt − t)], t ∈ [0, T ],
Υ(n)(0) = (A(n))−1q(n)

0 ,

(6.1.9)

which can be solved numerically or analytically.

Now, there is a question which concerns the convergence of {q(n)} which is defined by Equation
(6.1.2). We will show that {q(n)} converges to q in mean square sense.

6.2 The mild form of the Zakai equation

By Equation (5.1.3), if Assumption 5.1 satisfies, the restriction of A to D(A) which is defined
by Equation (5.1.2), is the infinitesimal generator of a contraction semigroup G of bounded
operators on H, such that, for t ∈ [0, T ],

‖Gt‖ ≤ eβt. (6.2.1)

Notice, the generator of G and operator A, which is defined by Equation (5.1.1), is different.
And the generator of G is the restriction of A to D(A).

By the following theorem, we show the equivalence of weak and mild solutions.

Theorem 6.1. Assume Assumption 5.1 is fulfilled. Then, the process {qt, t ∈ [0, T ]} is the
unique solution of Equation (5.2.1), if and only if it is the solution of the following equation, for
t ∈ [0, T ],

(qt, v) =(G∗
t q0, v) +

∫ t

0

(
qτ , h

�Gt−τv
)
dZτ

+
∫ t

0

(
qτ−, (λ− 1)Gt−τ v

)
d(Yτ − τ), v ∈ H. (6.2.2)

Proof. Notice, the solution of the Zakai equation (5.2.1) satisfies that, for v ∈ D(A), t ∈ [0, T ],⎧⎪⎪⎨⎪⎪⎩
(v, qt) = (v, q0) +

∫ t
0 (Av, qs)ds +

∫ t
0

(
h�v, qs

)
dZs

+
∫ t
0

(
(λ− 1)v, qs−

)
d(Ys − s),

q0 = p0 ∈ H.
(6.2.3)

The desired result is then obtained from the existence and uniqueness result of the Zakai equa-
tion, see Theorem 5.4, the existence and uniqueness result of Equation (6.2.3), see Peszat and
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Zabczyk (2007), Theorem 9.29, page 164, and the equivalence of Equation (6.2.3) and Equation
(6.2.2), see Peszat and Zabczyk (2007), Theorem 9.15, page 151.

Zakai equation (5.2.1) can be expressed in a mild form as soon as a suitable definition of a
stochastic integral is given.

6.3 The stochastic integral

This section is devoted to construct a stochastic Itô integration of Hilbert-valued functions with
respect to a finite dimensional Lévy process.

We define

M1
t = (M1,1

t ,M1,2
t , . . . ,M1,l

t )� := Zt, M2
t := Yt − t, t ∈ [0, T ]. (6.3.1)

By Proposition 2.5, under measure P0, Z is an l-dimensional standard Brownian motion and Y
is a one-dimensional Poisson process with intensity 1. Then M1 and M2 are martingales.

Let N 2(0, T ;H) be a space of stochastic processes which are continuous in the mean square
norm. Lemma A.8 shows that N 2(0, T ;H) is a Banach space with norm | · |T . For details of its
definition, see Section A.1.2. We have the following definition of stochastic Itô integration:

Lemma 6.2. Let {φi, i ∈ N} be any complete orthonormal system(CONs) in H, then, for any ξ =(
(ξ1)�, ξ2

)�
= (ξ1,1, . . . , ξ1,l, ξ2)� with ξ1,1, . . . , ξ1,l, ξ2 ∈ N 2(0, T ;H), the sequence {I(n)} ⊂

N 2(0, T ;H) defined by

I
(n)
t :=

n∑
i=1

{ l∑
j=1

[ ∫ t

0
(ξ1,j

s , φi)dM1,j
s

]
+

∫ t

0
(ξ2s−, φi)dM2

s

}
φi, t ∈ [0, T ], (6.3.2)

converges to a limit in N 2(0, T ;H) which is independent of {φi, i ∈ N} denoted by

It =
∫ t

0
(ξ1s)

�dM1
s +

∫ t

0
ξ2s−dM

2
s , t ∈ [0, T ]. (6.3.3)

Proof. The convergence is obtained if one can show, for n > m

|I(n) − I(m)|T → 0, as m,n→∞. (6.3.4)

By the definition of | · |T , we get

|I(n) − I(m)|2T = sup
t∈[0,T ]

E0
∥∥∥ n∑

i=m+1

[ l∑
j=1

∫ t

0
(ξ1,j

s , φi)dM1,j
s +

∫ t

0
(ξ2s−, φi)dM2

s

]
φi

∥∥∥2

H

= sup
t∈[0,T ]

E0
{ n∑

i=m+1

[ l∑
j=1

∫ t

0
(ξ1,j

s , φi)dM1,j
s +

∫ t

0
(ξ2s−, φi)dM2

s

]2}

= sup
t∈[0,T ]

E0
{ n∑

i=m+1

[ l∑
j=1

∫ t

0
(ξ1,j

s , φi)2ds+
∫ t

0
(ξ2s , φi)2ds

]}

=E0
{ l∑

j=1

∫ T

0

[ n∑
i=m+1

(ξ1,j
s , φi)2

]
ds+

∫ T

0

[ n∑
i=m+1

(ξ2s , φi)2
]
ds

}
.
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The first equality follows from the definition of I(n) and | · |T . The second equality follows from
the orthonomal property of {φi}. The third equality follows from Itô Isometry.

On the one hand,

n∑
i=m+1

(ξ1,j
s , φi)2 ≤

∞∑
i=1

(ξ1,j
s , φi)2 = ‖ξ1,j

s ‖2H , for j = 1, . . . , l,

n∑
i=m+1

(ξ2s , φi)2 ≤
∞∑
i=1

(ξ2s , φi)2 = ‖ξ2s‖2H .

Therefore,

|I(n) − I(m)|2T ≤E0
{ l∑

j=1

∫ T

0
‖ξ1,j

s ‖2Hds+
∫ T

0
‖ξ2s‖2Hds

}
(6.3.5)

=E0
{∫ T

0

[ l∑
j=1

‖ξ1,j
s ‖2H + ‖ξ2s‖2H

]
ds

}
=E0

{∫ T

0
‖ξs‖2Hl+1ds

}
=

∫ T

0
E0‖ξs‖2Hl+1ds

≤T · sup
s∈[0,T ]

E0‖ξs‖2Hl+1

≤T ·
{ l∑

j=1

|ξ1,j|2T + |ξ2|2T
}
<∞.

On the other hand,

n∑
i=m+1

(ξ1,j
s , φi)2 → 0, for j = 1, . . . , l,

n∑
i=m+1

(ξ2s , φi)2 → 0,

a.s. and a.e.. Applying stochastic dominated convergence theorem, Equation (6.3.4) is obtained.

Now, we show the convergence is independent of the CONs {φi, i ∈ N}. Let {φ̃i, i ∈ N} be
another CONs basis in H. Define

Ĩ
(n)
t :=

n∑
i=1

{ l∑
j=1

[ ∫ t

0
(ξ1,j

s , φ̃i)dM1,j
s

]
+

∫ t

0
(ξ2s−, φ̃i)dM2

s

}
φ̃i, t ∈ [0, T ].

Then it is suffice to show that

|I(n) − Ĩ(n)|T → 0. (6.3.6)



6.3. THE STOCHASTIC INTEGRAL 89

In fact, by the definition of | · |T , we get

|I(n) − Ĩ(n)|T = sup
t∈[0,T ]

E0
∥∥∥ n∑

i=1

{ l∑
j=1

[ ∫ t

0
(ξ1,j

s , φi)dM1,j
s

]
+

∫ t

0
(ξ2s−, φi)dM2

s

}
φi

−
n∑

i=1

{ l∑
j=1

[ ∫ t

0
(ξ1,j

s , φ̃i)dM1,j
s

]
+

∫ t

0
(ξ2s−, φ̃i)dM2

s

}
φ̃i

∥∥∥2

H

= sup
t∈[0,T ]

E0
∥∥∥ ∫ t

0
{

n∑
i=1

l∑
j=1

(ξ1,j
s , φi)φi −

n∑
i=1

l∑
j=1

(ξ1,j
s , φ̃i)φ̃i}dM1,j

s

+
∫ t

0
{

n∑
i=1

(ξ2s−, φi)φi −
n∑

i=1

(ξ2s−, φ̃i)φ̃i}dM2
s

∥∥∥2

H

= sup
t∈[0,T ]

E0
{∫ t

0

∥∥∥ n∑
i=1

l∑
j=1

(ξ1,j
s , φi)φi −

n∑
i=1

l∑
j=1

(ξ1,j
s , φ̃i)φ̃i

∥∥∥2

H
ds

+
∫ t

0

∥∥∥ n∑
i=1

(ξ2s−, φi)φi −
n∑

i=1

(ξ2s−, φ̃i)φ̃i

∥∥∥2

H
ds

}

=E0
{∫ T

0

∥∥∥ n∑
i=1

l∑
j=1

(ξ1,j
s , φi)φi −

n∑
i=1

l∑
j=1

(ξ1,j
s , φ̃i)φ̃i

∥∥∥2

H
ds

+
∫ T

0

∥∥∥ n∑
i=1

(ξ2s−, φi)φi −
n∑

i=1

(ξ2s−, φ̃i)φ̃i

∥∥∥2

H
ds

}
.

The third equality follows from Lemma 6.3 which will be shown later. On the one hand, since
the orthonormal decompensation in Hilbert H does not depend on the basis, we have∥∥∥ n∑

i=1

l∑
j=1

(ξ1,j
s , φi)φi −

n∑
i=1

l∑
j=1

(ξ1,j
s , φ̃i)φ̃i

∥∥∥2

H
→ 0,

∥∥∥ n∑
i=1

(ξ2s−, φi)φi −
n∑

i=1

(ξ2s−, φ̃i)φ̃i

∥∥∥2

H
→ 0.

On the other hand, similarly as Equation (6.3.5), we have the following boundedness,

|I(n) − Ĩ(n)|T ≤ 2E0
{ l∑

j=1

∫ T

0
‖ξ1,j

s ‖2Hds+
∫ T

0
‖ξ2s‖2Hds

}
≤2T ·

{ l∑
j=1

|ξ1,j |2T + |ξ2|2T
}
<∞.

To sum up, dominated convergence implies Equation (6.3.6).

Lemma 6.3 (Itô Isometry). We have the following properties for stochastic integral I which is
defined by Equation (6.3.3),

E0
{
‖It‖2H

}
= E0

{∫ t

0
‖ξs‖2Hl+1ds

}
, t ∈ [0, T ]. (6.3.7)

Proof. On the one hand, we have the following convergence of I(n) which is defined by Equation
(6.3.2),

E0
{
‖I(n)

t ‖2H
}
→ E0

{
‖It‖2H

}
, as n→∞. (6.3.8)
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In fact, by Lemma 6.2,

|I(n) − I|T → 0.

By the definition of norm | · |T , it is equivalent to{
sup

t∈[0,T ]
E0‖I(n)

t − It‖2H
} 1

2 → 0.

Then, for t ∈ [0, T ], we get {
E0‖I(n)

t − It‖2H
}1/2

→ 0.

Notice that ∣∣∣E0
{
‖I(n)

t ‖2H
}1/2

− E0
{
‖It‖2H

}1/2∣∣∣ ≤ {
E0‖I(n)

t − It‖2H
}1/2

→ 0,

Equation (6.3.8) is obtained.

On the other hand, we have

E0
{
‖I(n)

t ‖2H
}

=E0
{ l∑

j=1

∫ t

0

[ n∑
i=1

(ξ1,j
s , φi)2

]
ds+

∫ t

0

[ n∑
i=1

(ξ2s , φi)2
]
ds

}
(6.3.9)

→E0
{∫ t

0
‖ξs‖2Hl+1ds

}
, (6.3.10)

where the equality follows from Itô Isometry and the convergence obtained with the same method
we used in Lemma 6.2. Combining Equation (6.3.8) and (6.3.9) together, we obtain the desired
result.

Lemma 6.4. Let I be the stochastic integral which is defined by Equation (6.3.3). Then,∥∥∥E0(It)
∥∥∥

H
= 0, t ∈ [0, T ]. (6.3.11)

Proof. Similarly, as with the proof of Lemma 6.3, we get∥∥∥E0(It)
∥∥∥

H
= lim

n→∞

∥∥∥E0(I(n)
t )

∥∥∥
H
, t ∈ [0, T ].

Notice that
∥∥∥E0(I(n)

t )
∥∥∥

H
= 0, by Shreve (2004), Theorem 4.3.1, page 134, the desired result is

obtained.

With such a definition, the Zakai equation (5.2.1) can be rewritten as a mild equation in
N 2(0, T ;H)

qt = G∗
t q0 +

∫ t

0
G∗

t−τ (h�qτ )dM1
τ +

∫ t

0
G∗

t−τ

[
(λ− 1)qτ−

]
dM2

τ , t ∈ [0, T ]. (6.3.12)

Equations of this kind have been largely studied in literature, in particular the uniqueness of
the solution in N 2(0, T ;H) is well known.
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6.4 Continuity theorem

The objective of this section, is to introduce a continuity theorem, which says the convergence
of Galerkin approximation is guaranteed by the convergence of the deterministic operators of
the corresponding SDEs.

This section is organized as follows: In Section 6.4.1, we first introduce a large class of linear
SPDEs, in mild form, which includes the Zakai equation as a special example. Then, we intro-
duce a decomposition of these linear SPDEs which are important for our main result. We also
introduce a mapping which associates the deterministic operators to the unique solution of the
mild equation. Finally, we show that the mapping is continuous. For lucidity, we postpone the
proofs of the related formulas to Section 6.4.2.

6.4.1 Continuity theorem

We now introduce some spaces of operators.

Definition 6.2. Let S be the space of all C0-semigroups of linear bounded operators from H
to H such that, ∀S ∈ S, there exists S̄ ∈ R+, which is not depending on the choice of S, such
that

sup
t∈[0,T ]

‖St‖ ≤ S̄. (6.4.1)

It is endowed with the topology of the uniform strong convergence on [0, T ]. That is, a sequence
{S(n)} in S converges to a C0-semigroup S ∈ S if, for any x ∈ H,

lim
n→∞

sup
t∈[0,T ]

∥∥∥(S(n)
t − St)x

∥∥∥
H

= 0.

Let U be the space of linear bounded operators from H to H, endowed with the strong topology.
That is a sequence {B(n)

2 } in U converges to a bounded linear operator B2 ∈ U if, for any x ∈ H,

lim
n→∞

∥∥∥(B(n)
2 −B2)x

∥∥∥
H

= 0.

Let U l be the space of linear bounded operators from H to H l. More precisely, it is the space of
all linear bounded operator B1 of the following form

B1x = (B1,1x, . . . , B1,lx), ∀x ∈ H,

where B1,i : H → H, i = 1, . . . , l, are some bounded linear operators in U . It is endowed with the
strong topology. Then, a sequence {B(n)

1 } in U l converges to a bounded linear operator B1 ∈ U l

if, for any x ∈ H,

lim
n→∞

∥∥∥(B(n)
1 −B1)x

∥∥∥
Hl

= 0.

A large class of linear stochastic partial differential equations

In this section, a large class of linear stochastic partial differential equations are studied. They
include the Zakai equation as a special example.
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Let {St, 0 ≤ t ≤ T} ∈ S be a C0-semigroup of bounded linear operators from H to H and denote
by the same symbol the semigroup of operators on H l obtained by applying St componentwise,
for each t ≥ 0. Let B1 ∈ U l, B2 ∈ U , we consider the following equation in N 2(0, T ;H) , for any
f in H,

χt = Stf +
∫ t

0
St−τB1(χτ )dM1

τ +
∫ t

0
St−τB2(χτ−)dM2

τ , t ∈ [0, T ]. (6.4.2)

Here, defined by Equation (6.3.1),M1 is an l-dimensional martingale andM2 is a one-dimensional
martingale. Notice that Zakai equation (6.3.12) is a special case of Equation (6.4.2).

An important decomposition

The following decomposition of Equation (6.4.2) is the starting point to obtain the main theorem.
First, we introduce a linear operator L on N 2(0, T ;H) defined by, ∀χ ∈ N 2(0, T ;H),

(Lχ)(t) :=
∫ t

0
St−τB1(χτ )dM1

τ +
∫ t

0
St−τB2(χτ−)dM2

τ , t ∈ [0, T ]. (6.4.3)

We then have the following properties of L.

Lemma 6.5. Let S ∈ S, B1 ∈ U l, B2 ∈ U . Then, L, defined by Equation (6.4.3), is a bounded
linear operator from N 2(0, T ;H) to N 2(0, T ;H). Moreover, there exists a constant

γ = γ
(
S̄, ‖B1‖, ‖B2‖, T

)
= S̄

(
‖B1‖2 + ‖B2‖2

) 1
2
√
T , (6.4.4)

such that, ∀n ∈ N,

‖Ln‖ 1
n ≤ γ

(n!)
1
2n

. (6.4.5)

Lemma 6.6. Let S ∈ S, f ∈ H. Denote by χ[0] the (nonrandom) element,

χ
[0]
t := Stf, t ∈ [0, T ].

Then, χ[0] ∈ N 2(0, T ;H).

For proofs, see Section 6.4.2. Together with Equation (6.4.3), Equation (6.4.2) can be rewritten
as the abstract equation in N 2(0, T ;H)

χ = χ[0] + Lχ. (6.4.6)

The estimate (6.4.5) shows that L is a quasinilpotent operator so that the following theorem is
stated.

Theorem 6.7. Let S ∈ S, B1 ∈ U l, B2 ∈ U , and f ∈ H. Then, Equation (6.4.6) has a unique
solution in N 2(0, T ;H),

χ = (I − L)−1χ[0] :=
∞∑
i=0

Liχ[0], (6.4.7)
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and we have (I − L)−1 : N 2(0, T ;H) → N 2(0, T ;H) is a bounded linear operator, that is there
exists a constant

κ = κ
(
S̄, ‖B1‖, ‖B2‖, T

)
=

2√
3
e2γ2

with γ = S̄
(
‖B1‖2 + ‖B2‖2

) 1
2
√
T , (6.4.8)

such that

‖(I − L)−1‖ < κ,

and |χ|T <∞.

For the proof, see Section 6.4.2.

A mapping

The solution of Equation (6.4.2) is unique. Therefore, there is mapping which assigns every
quad (f,B1, B2, S) the unique solution of Equation (6.4.2). More precisely, the definition of the
mapping is as follows.

Recalling that spaces S, U l and U are defined by Definition 6.2, ∀S ∈ S, B1 ∈ U l, B2 ∈ U , and
f ∈ H, Theorem 6.7 guarantees the uniqueness of the solution of Equation (6.4.2). So we get the
definition of the following map. The map F from H ×U l×U ×S into N 2(0, T ;H) is defined by
mapping (f,B1, B2, S) into the unique solution χ in N 2(0, T ;H) of Equation (6.4.2). In other
words,

χ = F (f,B1, B2, S). (6.4.9)

In the next section, we will show the map is continuous.

Continuity theorem

In order to study Galerkin approximation for equations of Zakai type, we use a continuity
theorem to show map F is continuous. It is as follows:

Theorem 6.8 (Mean Square Convergence). Map F , defined by Equation (6.4.9), is continuous.
More precisely, let {f (n)} be a sequence in H converging to f ∈ H, {B(n)

1 } be a sequence in U l

converging to B1 ∈ U l, {B(n)
2 } be a sequence in U converging to B2 ∈ U , {S(n)} be a sequence

in S converging to S ∈ S. Then,∣∣∣F (f (n), B
(n)
1 , B

(n)
2 , S(n))− F (f,B1, B2, S)

∣∣∣
T
→ 0, as n→∞.

Remark 6.2. In fact, with some more work, we can obtain the continuity theorem w.r.t. norm
‖ · ‖T . Notice that the stochastic convolution integral∫ t

0
St−τB1(χτ )dM1

τ +
∫ t

0
St−τB2(χτ )dM2

τ .

is not a martingale. And standard tools of the martingale theory, like the Burkholder-Davis-
Gundy inequality, are not available. Therefore, to obtain the continuity theorem w.r.t. norm
‖ · ‖T , we need the inequality for stochastic convolutions driven by a Gaussian process, see
Hausenblas and Seidler (2001), and by a Poisson process.

However, for practical point of view, uniform bounded obtained by ‖ · ‖T is not necessary. We
prefer norm | · |T .
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Remark 6.3. Our proof of Theorem 6.8 follows the idea of Germani and Piccioni (1984). And
we proof Equation (6.4.17) with another method.

6.4.2 Proofs

Proof of Lemma 6.5. The desired result is obtained, if we can show ∀χ ∈ N 2(0, T ;H), the mean
square continuous of Lχ and Equation (6.4.5). Since mean square continuous together with
Equation (6.4.5) means that L is a bounded linear operator from N 2(0, T ;H) to N 2(0, T ;H).

First of all, ∀χ ∈ N 2(0, T ;H), we show the mean square continuous of Lχ, that is ∀t,

E0‖(Lχ)(t+ Δ)− (Lχ)(t)‖2H → 0, as Δ → 0. (6.4.10)

We then show the above convergence is true as Δ→ 0+. Similarly, the convergence as Δ → 0−

can be obtained. By the definition of L, see Equation (6.4.3), we get

(Lχ)(t+ Δ) =
∫ t+Δ

0
St+Δ−τB1(χτ )dM1

τ +
∫ t+Δ

0
St+Δ−τB2(χτ−)dM2

τ

=
∫ Δ

0
St+Δ−τB1(χτ )dM1

τ +
∫ Δ

0
St+Δ−τB2(χτ−)dM2

τ

+
∫ t+Δ

Δ
St+Δ−τB1(χτ )dM1

τ +
∫ t+Δ

Δ
St+Δ−τB2(χτ−)dM2

τ

=
∫ Δ

0
St+Δ−τB1(χτ )dM1

τ +
∫ Δ

0
St+Δ−τB2(χτ−)dM2

τ

+
∫ t

0
St−τB1(χτ+Δ)dM1

τ +
∫ t

0
St−τB2(χ(τ+Δ)−)dM2

τ ,

then

(Lχ)(t+ Δ)− (Lχ)(t) =
{∫ Δ

0
St+Δ−τB1(χτ )dM1

τ +
∫ Δ

0
St+Δ−τB2(χτ−)dM2

τ

}
+

{∫ t

0
St−τB1(χτ+Δ − χτ )dM1

τ +
∫ t

0
St−τB2(χ(τ+Δ)− − χτ−)dM2

τ

}
:=I1 + I2,

correspondingly and consequently,

E0‖(Lχ)(t+ Δ)− (Lχ)(t)‖2H = E0‖I1 + I2‖2H ≤ 2E0‖I1‖2H + 2E0‖I2‖2H . (6.4.11)

On the one hand, Itô Isometry, see Lemma 6.3, implies that

E0‖I1‖2H =E0
{∫ Δ

0
‖St+Δ−τB1(χτ )‖2Hldτ +

∫ Δ

0
‖St+Δ−τB2(χτ )‖2Hdτ

}
≤S̄2(‖B1‖2 + ‖B2‖2)

∫ Δ

0
E0‖χτ‖2Hdτ

≤S̄2(‖B1‖2 + ‖B2‖2)
∫ Δ

0
sup

s∈[0,T ]
E0‖χs‖2Hdτ

=S̄2(‖B1‖2 + ‖B2‖2)|χ|2T Δ
→0, (6.4.12)
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as Δ → 0+. On the other hand, apply Itô Isometry again,

E0‖I2‖2H =E0
{∫ t

0
‖St−τB1(χτ+Δ − χτ )‖2Hldτ +

∫ t

0
‖St−τB2(χ(τ+Δ) − χτ )‖2Hdτ

}
≤S̄2(‖B1‖2 + ‖B2‖2)

∫ t

0
E0‖χτ+Δ − χτ‖2Hdτ

→0, (6.4.13)

applying dominated convergence theorem together with ∀τ ∈ [0, T ],

E0‖χτ+Δ − χτ‖2H → 0, as Δ → 0+,

and ∫ t

0
E0‖χτ+Δ − χτ‖2Hdτ ≤ 2

∫ T

0
E0 sup

s∈[0,T ]
‖χs‖2Hdτ ≤ 2T |χ|2T <∞.

Combining Equation (6.4.11), (6.4.12) and (6.4.13), the desired convergence (6.4.10) is obtained.

It remains to show Equation (6.4.5). Notice that

(Lnχ)(t)

=
∫ t

0
St−t1B1

{ ∑
j2,...,jn∈{1,2}

[ ∫ t1

0
St1−t2Bj2

(
. . .

∫ tn−1

0
Stn−1−tnBjn(χtn)dM jn

tn . . .
)
dM j2

t2

]}
dM1

t1

+
∫ t

0
St−t1B2

{ ∑
j2,...,jn∈{1,2}

[ ∫ t1

0
St1−t2Bj2

(
. . .

∫ tn−1

0
Stn−1−tnBjn(χtn)dM jn

tn . . .
)
dM j2

t2

]}
dM2

t1 .

By the definition of | · |T , we have

|Lnχ|T

= sup
t∈[0,T ]

{
E0

[
‖(Lnχ)(t)‖2H

]} 1
2

≤
{

E0

∫ T

0

∥∥∥ST−t1B1

[ ∑
j2,...,jn∈{1,2}

∫ t1

0
St1−t2Bj2

(
. . .

∫ tn−1

0
Stn−1−tnBjn(χtn)dM jn

tn . . .
)
dM j2

t2

]∥∥∥2

Hl
dt1

+ E0

∫ T

0

∥∥∥ST−t1B2

[ ∑
j2,...,jn∈{1,2}

∫ t1

0
St1−t2Bj2

(
. . .

∫ tn−1

0
Stn−1−tnBjn(χtn)dM jn

tn . . .
)
dM j2

t2

]∥∥∥2

H
dt1

} 1
2

≤
{
S̄2‖B1‖2

∫ T

0
E0

∥∥∥ ∑
j2,...,jn∈{1,2}

∫ t1

0
St1−t2Bj2

(
. . .

∫ tn−1

0
Stn−1−tnBjn(χtn)dM jn

tn . . .
)
dM j2

t2

∥∥∥2

H
dt1

+ S̄2‖B2‖2
∫ T

0
E0

∥∥∥ ∑
j2,...,jn∈{1,2}

∫ t1

0
St1−t2Bj2

(
. . .

∫ tn−1

0
Stn−1−tnBjn(χtn)dM jn

tn . . .
)
dM j2

t2

∥∥∥2

H
dt1

} 1
2

≤
{
S̄2n

(
‖B1‖2 + ‖B2‖2

) ∑
j2,...,jn∈{1,2}

(
‖Bj2‖2 . . . ‖Bjn‖2

)∫ T

0

∫ t1

0
. . .

∫ tn−1

0
E0‖χtn‖2Hdtn, . . . , dt1

} 1
2

≤
{
S̄2n

(
‖B1‖2 + ‖B2‖2

)n
· |χ|2T ·

∫ T

0

∫ t1

0
. . .

∫ tn−1

0
dtn, . . . , dt1

} 1
2

≤S̄n
(
‖B1‖2 + ‖B2‖2

)n
2

√
T n

n!
· |χ|T .
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Then we have

‖Ln‖ ≤ S̄n
(
‖B1‖2 + ‖B2‖2

)n
2

√
T

n

(n!)
1
2

.

Set γ = S̄
(
‖B1‖2 + ‖B2‖2

) 1
2
√
T , we obtain the desired result.

Proof of Lemma 6.6. By definition of χ[0] and norm | · |T ,

|χ[0]|2T = sup
t∈[0,T ]

E0‖χ[0]
t ‖2H = sup

t∈[0,T ]
‖Stf‖2H ≤ S̄2‖f‖2H <∞.

Notice that S is a C0-semigroup, the continuity follows from strongly continuous of C0-semigroup,
see Definition 4.1.

Proof of Theorem 6.7. Define ξn =
∑n

i=0 L
iχ[0], then, by Lemma 6.5 and 6.6, we have that

{ξn, n ≥ 0} is a Cauchy sequence in N 2(0, T ;H). In fact, for n > m ≥ 0,

|ξn − ξm|T =
∣∣∣ n∑

i=m

Liχ[0]
∣∣∣
T
≤

n∑
i=m

∣∣∣Liχ[0]
∣∣∣
T
≤

n∑
i=m

‖Li‖ · |χ[0]|T ≤ |χ[0]|T ·
n∑

i=m

‖Li‖.

Together with Formula (6.4.5),

|ξn − ξm|T ≤|χ[0]|T ·
n∑

i=m

γi

(i!)
1
2

≤|χ[0]|T ·
γm

(m!)
1
2

∞∑
i=0

γi

(i!)
1
2

≤|χ[0]|T ·
γm

(m!)
1
2

· 2√
3
e2γ2

,

the last inequality follows from Lemma A.3. Notice that γm

(m!)
1
2
→ 0, as m→∞, {ξn} is Cauchy.

N 2(0, T ;H) is complete, therefore, {ξn} has a limit. That is ∃ξ ∈ N 2(0, T ;H), such that ξ =∑∞
i=0 L

iχ[0]. Now, we show that ξ is the unique solution of Equation (6.4.6). We have∣∣∣Lξ − Lξn
∣∣∣
T

=
∣∣∣L(ξ − ξn)

∣∣∣
T
≤ ‖L‖ ·

∣∣∣ξ − ξn
∣∣∣
T
→ 0,

where the equality follow from the linearity of L. The inequality equality follows from bound-
edness of L by Equation (6.4.5). That is

Lξ = lim
n→∞

Lξn.

Therefore,

χ[0] + Lξ = lim
n→∞

χ[0] + Lξn = lim
n→∞

χ[0] + L

n∑
i=0

Liχ[0] = lim
n→∞

χ[0] +
n∑

i=0

Li+1χ[0]

= lim
n→∞

n+1∑
i=0

Liχ[0] = ξ.
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It remains to prove uniqueness. Let η be a solution of Equation (6.4.6). Set u := ξ − η. It is
suffice to show that |u|T = 0. By Equation (6.4.6),

ut = (Lu)(t) =
∫ t

0
St−τB1(uτ )dM1

τ +
∫ t

0
St−τB2(uτ )dM2

τ .

Then we have,

|u|2t = sup
s∈[0,t]

E0
∥∥∥(Lu)(s)

∥∥∥2

H

= sup
s∈[0,t]

{
E0

∫ s

0

∥∥∥Ss−τB1(uτ )
∥∥∥2

H
dτ + E0

∫ s

0

∥∥∥Ss−τB2(uτ )
∥∥∥2

H
dτ

}
≤‖S̄‖2

(
‖B1‖2 + ‖B2‖2

)∫ t

0
E0‖u(τ)‖2Hdτ

≤‖S̄‖2
(
‖B1‖2 + ‖B2‖2

)∫ t

0
|u|2τdτ.

It follows from Gronwall’s inequality that

|u|t = 0, t ∈ [0, T ].

The uniqueness is obtained. By Lemma 6.5 and Lemma A.3,∥∥∥(I − L)−1
∥∥∥ ≤ ∞∑

n=1

γn

(n!)
1
2

≤ 2√
3
e2γ2

<∞.

Therefore, by the definition of χ[0],

|χ|T ≤ ‖(I − L)−1‖ ·
∣∣∣χ[0]

∣∣∣
T
≤ ‖(I − L)−1‖ · S̄ · ‖f‖H .

Proof of Theorem 6.8. Since S(n) → S , B(n)
1 → B1 and B(n)

2 → B2, by the uniform boundedness
principle there exist N̄ and a constant γ̄ such that

sup
t∈[0,T ],n≥N̄

{
‖St‖ ∨ ‖S(n)

t ‖ ∨ ‖B1‖ ∨ ‖B(n)
1 ‖ ∨ ‖B2‖ ∨ ‖B(n)

2 ‖
}
≤ γ̄. (6.4.14)

In the following, we considered
{

(f (n), B
(n)
1 , B

(n)
2 , S(n))

}
restricted to n > N̄ . We define

χ := F (f,B1, B2, S), χ(n) := F (f (n), B
(n)
1 , B

(n)
2 , S(n)),

and

χ
[0,(n)]
t := S

(n)
t f (n),

(L(n)ξ)(t) :=
∫ t

0
S

(n)
t−τB

(n)
1 (ξτ )dM1

τ +
∫ t

0
S

(n)
t−τB

(n)
2 (ξτ−)dM2

τ , ∀ξ ∈ N 2(0, T ;H).

By the definition of F , we have

χ(n) = χ[0,(n)] + L(n)χ(n), χ = χ[0] + Lχ.
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So

χ(n) − χ = χ[0,(n)] − χ[0] + L(n)χ(n) − Lχ
= (χ[0,(n)] − χ[0]) + L(n)(χ(n) − χ) + (L(n) − L)χ

from which

χ(n) − χ = (I − L(n))−1
{

(χ[0,(n)] − χ[0]) + (L(n) − L)χ
}
. (6.4.15)

Notice, by Theorem 6.7, there exists a constant κ = κ(γ̄), such that

∥∥∥(I − L(n))−1
∥∥∥ ≤ κ. (6.4.16)

Moreover,

∣∣∣χ[0,(n)] − χ[0]
∣∣∣2
T

= sup
t∈[0,T ]

∥∥∥S(n)
t f (n) − Stf

∥∥∥2

H

= sup
t∈[0,T ]

∥∥∥S(n)
t f (n) − S(n)

t f + S
(n)
t f − Stf

∥∥∥2

H

=2 sup
t∈[0,T ]

∥∥∥S(n)
t (f (n) − f)

∥∥∥2

H
+ 2 sup

t∈[0,T ]

∥∥∥(S(n)
t − St)f

∥∥∥2

H

≤2γ̄2‖f (n) − f‖2H + 2 sup
t∈[0,T ]

∥∥∥(S(n)
t − St)f

∥∥∥2

H

→0,

where the convergence follows from (f (n), S(n)) convergence to (f, S). By Formula (6.4.15) the
theorem is proved once it is shown that (L(n) − L)χ goes to zero. That is

∣∣∣(L(n) − L)χ
∣∣∣
T
→ 0, as n→∞. (6.4.17)

By the definition of L, see Equation (6.4.3),

[
(L(n) − L)χ

]
(t) =

∫ t

0
(S(n)

t−τB
(n)
1 − St−τB1)χτdM

1
τ

+
∫ t

0
(S(n)

t−τB
(n)
2 − St−τB2)χτdM

2
τ .
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Then we have,∣∣∣(L(n) − L)χ
∣∣∣2
T

= sup
t∈[0,T ]

E0
{∥∥∥[(L(n) − L)χ

]
(t)

∥∥∥2

H

}
= sup

t∈[0,T ]
E0

{∫ t

0

∥∥∥(S(n)
t−τB

(n)
1 − St−τB1)χτ

∥∥∥2

Hl
dτ +

∫ t

0

∥∥∥(S(n)
t−τB

(n)
2 − St−τB2)χτ

∥∥∥2

H
dτ

}
= sup

t∈[0,T ]
E0

{∫ t

0

∥∥∥(S(n)
t−τB

(n)
1 − S(n)

t−τB1 + S
(n)
t−τB1 − St−τB1)χτ

∥∥∥2

Hl
dτ

+
∫ t

0

∥∥∥(S(n)
t−τB

(n)
2 − S(n)

t−τB2 + S
(n)
t−τB2 − St−τB2)χτ

∥∥∥2

H
dτ

}
≤2 sup

t∈[0,T ]
E0

{∫ t

0

∥∥∥(S(n)
t−τB

(n)
1 − S(n)

t−τB1)χτ

∥∥∥2

Hl
dτ

}
+ 2 sup

t∈[0,T ]
E0

{∫ t

0

∥∥∥(S(n)
t−τB1 − St−τB1)χτ

∥∥∥2

Hl
dτ

}
+ 2 sup

t∈[0,T ]
E0

{∫ t

0

∥∥∥(S(n)
t−τB

(n)
2 − S(n)

t−τB2)χτ

∥∥∥2

H
dτ

}
+ 2 sup

t∈[0,T ]
E0

{∫ t

0

∥∥∥(S(n)
t−τB2 − St−τB2)χτ

∥∥∥2

H
dτ

}
:=2E1 + 2E2 + 2E3 + 2E4,

correspondingly. Here, the first equality follows from the definition of | · |T , the second equality
follows from Itô Isometry. It remains to show that, as n→∞,

E1 → 0, E2 → 0, E3 → 0, E4 → 0.

Since the convergence of E3 and E4 can be obtained similarly, we only give the proof of the
convergence of E1 and E2 in the following. It is obtained by

E1 = sup
t∈[0,T ]

E0
{∫ t

0

∥∥∥S(n)
t−τ

(
B

(n)
1 −B1

)
(χτ )

∥∥∥2

Hl
dτ

}
≤γ̄2E0

{∫ T

0

∥∥∥(B(n)
1 −B1

)
(χτ )

∥∥∥2

Hl
dτ

}
→0, (6.4.18)

and

E2 ≤ sup
t∈[0,T ]

E0
{∫ t

0
sup

τ≤s≤T

∥∥∥(S(n)
s−τ − Ss−τ

)
B1(χτ )

∥∥∥2

Hl
dτ

}
≤ sup

t∈[0,T ]
E0

{∫ T

0
sup

τ≤s≤T

∥∥∥(S(n)
s−τ − Ss−τ

)
B1(χτ )

∥∥∥2

Hl
dτ

}
=E0

{∫ T

0

[
sup

τ≤s≤T

∥∥∥(S(n)
s−τ − Ss−τ

)
B1(χτ )

∥∥∥2

Hl

]
dτ

}
→0, (6.4.19)

where Equation (6.4.18) and (6.4.19) are obtained as follows. We have ∀τ ∈ [0, T ], ∀ω ∈ Ω, by
strong convergence of {B(n)

1 }, {B(n)
2 }, and uniform strong convergence of {S(n)},∥∥∥(B(n)

1 −B1

)
(χτ )

∥∥∥2

Hl
→ 0, sup

τ≤s≤T

∥∥∥(S(n)
s−τ − Ss−τ

)
B1(χτ )

∥∥∥2

Hl
→ 0.
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Moreover, we have the following boundedness,

E0
{∫ T

0

∥∥∥(B(n)
1 −B1

)
(χτ )

∥∥∥2

Hl
dτ ≤ 4γ̄2E0

∫ T

0
‖χτ‖2Hdτ ≤ 4γ̄2T · |χ|2T <∞,

and

E0
{∫ T

0

[
sup

τ≤s≤T

∥∥∥(S(n)
s−τ − Ss−τ

)
B1(χτ )

∥∥∥2

Hl

]
dτ

}
≤ 4γ̄4E0

∫ T

0
‖χτ‖2Hdτ ≤ 4γ̄4T · |χ|2T <∞.

The last inequality follows from |χ|T < ∞, by Theorem 6.7. Now, by dominated convergence
theorem, we obtain Equation (6.4.18) and (6.4.19). The proof of the theorem is obtained.

6.5 Galerkin approximation

We now study the convergence of the finite-dimensional Galerkin approximation for Equation
(5.2.1).

Recall that Pn is a sequence of finite-dimensional orthogonal projections on H defined by Defini-
tion 6.1. For each n, Equation (6.1.1) is equivalent to the flowing ordinary stochastic differential
equation{

dq
(n)
t = PnA∗Pnq

(n)
t dt+

∑l
i=1 Pnh

iPnq
(n)
t dM1,i

t + Pn(λ− 1)Pnq
(n)
t− dM

2
t , t ∈ [0, T ]

q
(n)
0 = Pnq0.

It is equivalent to the following mild stochastic differential equation on [0, T ],

q
(n)
t = exp(PnA∗Pnt)(Pnq0) +

∫ t

0
exp

(
PnA∗Pn(t− τ)

)
(Pnh

�Pn)q(n)
τ dM1

τ (6.5.1)

+
∫ t

0
exp

(
PnA∗Pn(t− τ)

)(
Pn(λ− 1)Pn

)
q
(n)
τ−dM

2
τ .

Notice that, if Assumption 5.1 is fulfilled and q0 ∈ H, then Theorem 6.7 implies that the above
equation has a unique solution in N 2(0, T ;H).

We are presented with an important question when the solution converges to the solution χt of
Equation (6.3.12), that is

lim
n→∞

F
(
Pnq0, PnhPn, Pn(λ− 1)Pn, exp(PnA∗Pn·)

)
= F (q0, h, (λ − 1), G∗)

in the norm defined by Equation (A.1.3). The answer is given by the following corollary. Similar
results can be found in Germani and Piccioni (1984).

Corollary 6.9. Assume Assumption 5.1 is fulfilled. Let {q(n)
t }t∈[0,T ] be the solution of Equation

(6.5.1). Then, the sequence of processes {q(n)} converges to the process {qt}t∈[0,T ], the solution
of Equation (6.3.12), for any choice of the initial state q0 ∈ H if and only if for any x ∈ H,

lim
n→∞

sup
t∈[0,T ]

∥∥∥( exp(PnA∗Pnt)−G∗
t

)
x
∥∥∥

H
= 0. (6.5.2)
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Proof. Notice that ∀x ∈ H, Pnx→ x, PnhPnx→ hx and Pn(λ− 1)Pnx→ (λ− 1)x. In fact,

PnhPnx− hx =(PnhPnx− Pnhx) + (Pnhx− hx)
=Pnh(Pnx− x) + (Pnhx− hx) → 0,

by ∥∥∥Pnh(Pnx− x)
∥∥∥

Hl
≤ ‖h‖∞‖Pnx− x‖H → 0.

Then, the sufficiency is obtained by Theorem 6.8.

For necessity, the convergence of q(n)
t to qt uniformly in mean square norm implies the uniform

convergence of their mean vectors. To be precise, first we have

lim
n→∞

sup
t∈[0,T ]

E0‖q(n)
t − qt‖H → 0.

Notice,

E0‖q(n)
t − qt‖H ≥

∥∥∥E0(q(n)
t − qt)

∥∥∥
H
,

we then get

lim
n→∞

sup
t∈[0,T ]

∥∥∥E0(q(n)
t − qt)

∥∥∥
H
→ 0.

By Equation (6.5.1) (6.3.12), and Lemma 6.4, we obtain

lim
n→∞

sup
t∈[0,T ]

E0
∥∥∥ exp(PnA∗Pnt)Pnx−G∗

tx
∥∥∥

H
= 0,

for each x ∈ H. Moreover,

‖ exp(PnA∗Pnt)−G∗
t )x‖H

=‖ exp(PnA∗Pnt)x− exp(PnA∗Pnt)Pnx+ exp(PnA∗Pnt)Pnx−G∗
tx‖H

=‖ exp(PnA∗Pnt)(x− Pnx) + exp(PnA∗Pnt)Pnx−G∗
tx‖H

≤‖ exp(PnA∗Pnt)(x− Pnx)‖H + ‖ exp(PnA∗Pnt)Pnx−G∗
tx‖H .

Notice, x− Pnx⊥Vn and exp(PnA∗Pnt)y = 0 for y⊥Vn, the necessity is obtained.

Remark 6.4. Applying Theorem 6.8 and Corollary 6.9 to the case h = 0 and λ−1 = 0, Equation
(6.5.2) guarantees that the convergence of the corresponding deterministic partial differential
equation {

dq
(n)
t = PnA∗Pnq

(n)
t dt, t ∈ [0, T ],

q
(n)
0 = Pnq0.

Therefore, Theorem 6.8 and Corollary 6.9 reduce the convergence problem for a stochastic partial
differential equation to the corresponding deterministic one.

The necessary and sufficient conditions for Equation (6.5.2) to hold are obtained by means of
the Trotter-Kato Theorem.
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Theorem 6.10. Suppose there exist M and γ such that for any n

‖ exp(PnA∗Pnt) ≤M exp(γt)‖. (6.5.3)

Then, each of the following conditions is equivalent to Equation (6.5.2):

(i) For some α > γ and any x ∈ H the (unique) solution yn of the following equation in Vn

αyn − PnA∗Pnyn = Pnx (6.5.4)

converges as n→∞ to the unique solution y of the equation in H

αy −A∗y = x. (6.5.5)

(ii) Let D be a core for A∗. For any x ∈ D, there exist xn ∈ Vn such that xn → x, PnA∗Pnxn →
A∗x, as n→∞.

The uniform growth condition (6.5.3) is satisfied if there exists β such that ‖Gt‖ ≤ exp(βt). In
this case M = 1 and γ = β. And this is true if Assumption 5.1 holds, see Equation (5.1.3).

Proof. The result that Condition (i) is equivalent to Equation (6.5.2) is obtained by Germani
and Piccioni (1987), Theorem 6.2, page 66. And the result that Condition (ii) is equivalent to
Equation (6.5.2) is obtained by Ethier and Kurtz (1986), Theorem 6.1, page 28.

Remark 6.5. The second condition of Germani and Piccioni (1987), Theorem 6.2, page 66, is
another equivalent condition for Equation (6.5.2) to hold. But condition (ii) of Theorem 6.10 is
convenient to deal with.

Assumption 6.1. Assume ∪nVn is dense in V , where Vn are defined by Definition 6.1.

In the next Chapter, by Corollary 7.3, we will present a example for which this assumption
holds. This is a sufficient condition for condition (i) of Theorem 6.10 to hold.

Theorem 6.11. Assume Assumption 5.1 and 6.1 are fulfilled. Let {q(n)
t }t∈[0,T ] be the solution of

Equation (6.5.1). Then, the sequence of processes {q(n)} converges to the process q, the solution
of Equation (6.3.12), for any choice of the initial state q0 ∈ H, as n→∞.

Proof. Apply Corollary 6.9 and Theorem 6.10, it is enough to prove the first condition or the
second condition in Theorem 6.10. And apply Assumption 6.1, the first one holds which is proved
in Theorem 4, Germani and Piccioni (1984), page 420.

Corollary 6.12. Assume Assumption 5.1 and 6.1 are fulfilled. Let {q(n)
t }t∈[0,T ] be the solution

of Equation (6.5.1) and {qt}t∈[0,T ] be the solution of Equation (6.3.12). Then, for q0 ∈ H and
for any ϕ bounded and square integrable, we have

sup
t∈[0,T ]

E0
∣∣∣(q(n)

t , ϕ) − (qt, ϕ)
∣∣∣2 → 0, as n→∞.
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Proof. By Cauchy-Schwartz inequality,∣∣∣(q(n)
t , ϕ) − (qt, ϕ)

∣∣∣2 =
{∫

Rd

ϕ(x)[q(n)
t (x)− qt(x)]dx

}2

≤
∫

Rd

ϕ(x)2dx
∫

Rd

[q(n)
t (x)− qt(x)]2dx

=‖ϕ‖2H · ‖q
(n)
t − qt‖2H .

Applying Theorem 6.11, we obtain the desired result.

Corollary 6.13. Assume Assumption 5.1 and 6.1 are fulfilled and q0 ∈ H. Let {q(n)
t }t∈[0,T ] be

the solution of Equation (6.5.1) and {qt}t∈[0,T ] be the solution of Equation (6.3.12). Moreover,
∀t ∈ [0, T ],

E0
[ 1
(qt,1)2

]
<∞, and E0

∣∣∣(q(n)
t ,1)− (qt,1)

∣∣∣2 → 0, as n→∞.

Then, for any ϕ bounded and square integrable, we have

E0
∣∣∣(p(n)

t , ϕ) − (pt, ϕ)
∣∣∣2 → 0, as n→∞.

Proof. To minimize, we define pt(ϕ) := (pt, ϕ) and similarly for p(n)
t (ϕ), q(n)

t (ϕ), qt(ϕ), q(n)
t (1)

qt(1). Notice that

∣∣∣p(n)
t (ϕ)− pt(ϕ)

∣∣∣ =
∣∣∣q(n)

t (ϕ)

q
(n)
t (1)

− qt(ϕ)
qt(1)

∣∣∣
=
∣∣∣ q

(n)
t (ϕ)

q
(n)
t (1)qt(1)

[qt(1)− q(n)
t (1)] +

1
qt(1)

[q(n)
t (ϕ)− qt(ϕ)]

∣∣∣
≤
∣∣∣ q

(n)
t (ϕ)

q
(n)
t (1)qt(1)

[qt(1)− q(n)
t (1)]

∣∣∣ +
∣∣∣ 1
qt(1)

[q(n)
t (ϕ) − qt(ϕ)]

∣∣∣
≤‖ϕ‖∞|

1
qt(1)

(qt(1)− q(n)
t (1))| + | 1

qt(1)
(q(n)

t (ϕ)− qt(ϕ))|.

Then Cauchy-Schwarz inequality implies

E0
∣∣∣p(n)

t (ϕ)− pt(ϕ)
∣∣∣2 ≤‖ϕ‖∞{

E0[qt(1)]−2E0|qt(1) − q(n)
t (1)|2

} 1
2

+
{

E0[qt(1)]−2E0|q(n)
t (ϕ)− qt(ϕ)|2

} 1
2
.

Applying Corollary 6.12, we obtain the desired result.



104 CHAPTER 6. CONVERGENCE RESULTS



Chapter 7

Galerkin approximation

In the previous chapter, we show the convergence of the Galerkin approximation in mean square
norm. Again, we have a reasonable question concerning the rate of convergence. In this chapter,
we design an adaptive Galerkin approximation with a basis of Hermite polynomials and present
numerical examples to illustrate the effectiveness of the proposed method. In simulation study,
we compare the proposed method with particle methods. We show the Galerkin approximation
converges well.

This chapter is organized as follows: Recall that, in Section 6.1, we show the Galerkin approx-
imation for Zakai equation (5.2.1) is the solution of a finite-dimensional SDE (6.1.9). Now, in
Section 7.1, we introduce the analytically and numerical solutions for SDE (6.1.9). The solution
of the Zakai equation can be constructed by the Galerkin method using any suitable set of ba-
sis functions from Hilbert space. It is possible to choose a complete set of basis functions, like
Gaussian series and Hermite functions. These are introduced in Section 7.2. In order to increase
the effectiveness of the Galerkin approximation, we design an adaptive Galerkin approximation
in Section 7.3. We introduce the motivation, the adaptive Galerkin approximation with normal
basis, the one with a basis of Hermite polynomials and discuss the advantage of using Hermite
functions. For sake of lucidity, we postpone proofs of the related results for Hermite polynomials
to Section 7.4. Examples and the corresponding simulation results are presented in Section 7.5.

7.1 SDEs

In Section 6.1, we have shown that by the Galerkin approximation, the solution of Zakai equation
(5.2.1) is approximated by a finite combination of orthogonal series. The solution of the Zakai
equation is then approximated by the solution of finite dimensional ordinary SDE (6.1.9).

For its solution, we have two possibilities: a numerical approach or an explicit analytical solution.
For the numerical approach, one may proceed with time discretisation, according to Euler-
Maruzama scheme, or splitting-up approximation which will be introduced in Section 7.1.2.
Following the idea of Frey and Runggaldier (2010), Proposition 5.4, we have the following result
for the analytical solution.

105
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7.1.1 Analytical solution

When we keep the assumptions and notations in Section 6.1, then, the following proposition
provides the analytical solution for Equation (6.1.9).

Proposition 7.1. For sake of simplicity, further assume that {ei} is an orthonormal basis, then1

A(n) = In. Consequently, the solution of Equation (6.1.9) is given by Υ(n)(t) := L
(n)
t L̃

(n)
t r(n)

t ,
where, for t ∈ [0, T ],

L
(n)
t := exp

{ l∑
k=1

(
C(n),kZk

t −
1
2
(C(n),k)2t

)}
,

L̃
(n)
t :=

{
In + (L(n)

τYt−)−1G(n)L
(n)
τYt−

}
. . .

{
In + (L(n)

τ2−)−1G(n)L
(n)
τ2−

}{
In + (L(n)

τ1−)−1G(n)L
(n)
τ1−

}
In,

and r(n) is the solution of the following ordinary linear differential equation{
dr

(n)
t
dt = (L̃(n)

t )−1(L(n)
t )−1[B(n) −G(n)]L(n)

t L̃
(n)
t r(n)

t , t ∈ [0, T ],
r(n)
0 = q(n)

0 .
(7.1.1)

Proof. For sake of simplicity, we consider the case of l = 1, and we write A, B, C, G, Υ, L, L̃,
r, q0 instead of A(n), B(n), C(n), G(n), Υ(n), L(n), L̃(n), r(n), q(n)

0 .

First of all, it is easy to see that L0 = In, L̃0 = In, and by the definition of Υ,

Υ(0) = L0L̃0r0 = InInq0 = q0.

Compared to Equation (6.1.9), it remains to show that Υ has the desired dynamics. The key
step is to derive the dynamics of Υ(t) = LtL̃trt by Itô’s formula. For this, we need the dynamic
of L, L̃ first, noting that the dynamic of r is given. From the definition of L̃, we have

dL̃t = (Lt−)−1GLt−L̃t−dYt. (7.1.2)

Now, we derive the dynamics of L. For any t ∈ R+, matrices CZt and −1
2C

2t commute (meaning
that (CZt)(−1

2C
2t) = (−1

2C
2t)(CZt)), so, by properties of exponential of sums,

Lt = eCZt− 1
2
C2t = eCZt · e− 1

2
C2t. (7.1.3)

One the one hand, the matrix-valued power series

eCZt =
∞∑

k=0

(CZt)k

k!
=

∞∑
k=0

CkZk
t

k!

has infinite radius of convergence. So, each component is differentiable with derivative given by
term by term differentiation:

deCZt =
∞∑

k=1

CkZk−1
t

(k − 1)!
dZt +

1
2

∞∑
k=2

CkZk−2
t

(k − 2)!
dt =

[
CdZt +

1
2
C2dt

]
eCZt . (7.1.4)

1In denotes the n-by-n identity matrix .
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On the other hand, by the expression for the derivative of matrix exponent,

de−
1
2
C2t = −1

2
C2e−

1
2
C2tdt. (7.1.5)

Combining Equation (7.1.3), (7.1.4) and (7.1.5), applying Itô formula, we have

dLt = (deCZt)e−
1
2
C2t + eCZt(de−

1
2
C2t) = CLtdZt. (7.1.6)

It remains to derive dynamics of Υ. First, by Equation (7.1.2) and (7.1.1), applying Itô formula,
we obtain

d(L̃trt) =(dL̃t)rt− + L̃tdrt

=(Lt−)−1GLt−L̃t−rt−dYt + (Lt)−1(B −G)LtL̃trtdt

=L−1
t BLtL̃trtdt+ L−1

t−GLt−L̃t−rt−d(Yt − t). (7.1.7)

Further, combining Equation (7.1.6) and (7.1.7) together, applying Itô formula again, we have

dΥ(t) = d
[
Lt · (L̃trt)

]
= dLt(L̃trt) + Ltd(L̃trt)

= CLtL̃trtdZt +BLtL̃trtdt +GLt−L̃t−rt−d(Yt − t)
= BΥ(t)dt+ CΥ(t)dZt +GΥ(t−)d(Yt − t).

The desired result is obtained.

7.1.2 Numerical methods for SDEs

By the Galerkin method, we obtain the discretisation of the Zakai equation with respect to the
space parameter. The solution of Zakai equation (5.2.1), which is a SPDE, is approximated by
the solution of SDE (6.1.9). In order to solve the SDE numerically, discretisation of time variable
is required. The objective of this section is to introduce some numerical methods discretising
the time variable.

Let 0 = t0 < t1 < · · · < tk < · · · < tL = T be a uniform partition of the interval [0, T ] with time
step Δ = tk− tk−1 = T

L . Assume that {Ztk}, {Ytk}, k = 0, 1, . . . , L, is the sampled trajectories of
Z and Y at discrete times. Recall that Z and Y are observation processes which are introduced
in Section 2.2 in detail.

q
(n,Δ)
tk

, the approximation of the unnormalized conditional density at discrete times (tk, k =
0, 1, . . . , L) is as follows,

q
(n,Δ)
tk

(x) :=
n−1∑
i=0

ψ
(n,Δ)
k,i ei(x),

where {ei} is the basis in the Galerkin approximation and Υ(n,Δ)
k := (ψ(n,Δ)

k,0 , ψ
(n,Δ)
k,1 , . . . , ψ

(n,Δ)
k,n−1)

�

are the Fourier coefficients and the numerical approximation to the true solution of Equation
(6.1.9) which is obtained by Euler-Maruyama approximation or splitting-up approximation. We
introduce as follows.
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Euler-Maruyama approximation

In this section, we apply the Euler-Maruyama method to obtain the numerical solution of the
SDE (6.1.9). It is a generalization of the Euler method, for ordinary differential equations to
stochastic differential equations. It is a numerical method by discretisation of the time variable.
For a general introduction and reference, see, for instance McLachlan and Krishnan (1997).

Algorithm 7.1. The Euler-Maruyama approximation to the true solution of Equation (6.1.9),
is obtained as follows.

i Compute the coefficients in the Galerkin approximation A(n) := (aij)n×n, B(n) := (bij)n×n,
C(n),k := (ckij)n×n, G(n) := (gij)n×n, q(n)

0 = [q00, . . . , q0(n−1)]T by Equation (6.1.3), (6.1.4),
(6.1.5), (6.1.6) and (6.1.7).

ii Get the starting point by Υ(n,Δ)
0 = (A(n))−1q(n)

0 .

iii Solve the ordinary SDE (6.1.9) numerically to obtain {Υ(n,Δ)
k , i = 1, 2, . . . , L}. For k =

0, 1, . . . , L− 1,

Υ(n,Δ)
k+1 =Υ(n,Δ)

k + (A(n))−1
{
B(n)Υ(n,Δ)

k Δ +
l∑

m=1

C(n),mΥ(n,Δ)
k (Zm

tk+1
− Zm

tk
)

+G(n)Υ(n,Δ)
k (Ytk+1

− Ytk −Δ)
}
.

Splitting-up approximation

The objective of this section is to apply splitting-up approximation to solve Equation (6.1.9)
numerically.

Applying the Runge-Kutta method to obtain Υ(n) with Proposition 7.1, one should inverse
L̃(n) and L(n) at each time point. Not only is it time consuming, it also leads to an additive
computation error. Instead, we consider the splitting-up algorithm.

Splitting-up approximations are a numerical method for both SDE and SPDE based on semi-
group theory introduced in Bensoussan, Glowinski, and Rascanu (1990) and further developed
in Le Gland (1992). Using this approach, one can decompose the original equation into both a
stochastic and deterministic one. This is much simpler than handling the original problem.

Now we generalize this method to Equation (6.1.9) which is with Lévy noise. For sake of simplic-
ity, we assume l = 1. Assume A(n) = In. We consider the following decomposition of Equation
(6.1.9),

dΥ(n)(t) = (B(n) −G(n))Υ(n)(t−)dt + C(n)Υ(n)(t−)dZt +G(n)Υ(n)(t−)dYt.

The splitting-up approximation Υ(n,Δ)
k , for k = 0, 1, . . . , L, is obtained by Υ(n,Δ)

0 = Υ(n)(0) and,
for k = 1, 2, . . . , L,

Υ(n,Δ)
k = Rtk−1,tkQtk−1,tkPΔΥ(n,Δ)

k−1 .
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Here {Pt : 0 ≤ t ≤ T}, {Qst : 0 ≤ s ≤ t ≤ T} and {Rst : 0 ≤ s ≤ t ≤ T} denote the solution
operators corresponding to the equations

dΥ1(t) =(B(n) −G(n))Υ1(t)dt,

dΥ2(t) =C(n)Υ2(t)dZt,

dΥ3(t) =G(n)Υ3(t−)dYt,

respectively.

We have the following algorithm of the splitting-up approximation.

Algorithm 7.2. Each interval [tk−1, tk] the transition from Υ(n,Δ)
k−1 to Υ(n,Δ)

k is divided into the
following three steps:

• The first step, called the prediction step, consists in solving the following Focker-Planck
equation, which is a deterministic differential equation, for the time interval [tk−1, tk],{

dΥ1(t) = (B(n) −G(n))Υ1(t)dt,
Υ1(tk−1) = Υ(n,Δ)

k−1 .
(7.1.8)

The Fokker-Planck equation can be solved analytically. Its solution at time tk is the prior
estimate defined as Ῡ(n,Δ)

k ,

Ῡ(n,Δ)
k := Υ1(tk) = exp

{
(B(n) −G(n))Δ

}
Υ(n,Δ)

k−1 .

• The second step, called the correction step 1, using the new observation Z, consists in
solving the following SDE, for the time interval [tk−1, tk],{

dΥ2(t) = C(n)Υ2(t)dZt,

Υ2(tk−1) = Ῡ(n,Δ)
k .

(7.1.9)

The SDE can be solved analytically. Its solution at time tk is the second prior estimate
defined as Υ̃(n,Δ)

k ,

Υ̃(n,Δ)
k := Υ2(tk) = exp

{
C(n)(Ztk − Ztk−1

)− 1
2
(C(n))2Δ

}
Ῡ(n,Δ)

k .

• The third step, called the correction step 2, use the new observation Y , consists in solving
the following SDE, for the time interval [tk−1, tk],{

dΥ3(t) = G(n)Υ3(t−)dYt,

Υ3(tk−1) = Υ̃(n,Δ)
k .

(7.1.10)

The SDE can be solved analytically. Its solution at time tk is the estimate Υ(n)
Δ,k,

Υ(n,Δ)
k := Υ3(tk) = (In +G(n))(Ytk

−Ytk−1
)Υ̃(n,Δ)

k . (7.1.11)

We have the following convergence results for continuous case. Recall that λ is the jump intensity
of observation Y . Assume that λ ≡ 1, then G(n) = 0. That is Equation (6.1.9) driven only by
continuous noise. Then it is shown by Le Gland (1992), Proposition 3.1, under suitable regularity
assumption on the coefficients, the approximating process {Υ(n,Δ)

k }k=0,1,...,L obtained as above ,
converges to {Υ(n)(t)}t∈[0,T ], the solution of the Equation (6.1.9) with error, for k = 0, 1, . . . , L,{

E0|Υ(n)(tk)−Υ(n,Δ)
k |2

} 1
2 ≤ c

√
Δ,

where c is a constant. The convergence can be obtained similarly for SDEs driven by Lévy noise.
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7.2 Basis functions

The basis functions control the quality of the Galerkin approximation and in order to compute
the Galerkin approximation of the unnormalized conditional density, we must first choose the
basis.

In Section 7.2.1, we introduce Gaussian series and discuss the advantages of using it. In Section
7.2.2, we introduce Hermite functions and discuss the advantages of using Hermite polynomials.

7.2.1 Gaussian series

Ahmed and Radaideh (1997) use Gaussian series in the Galerkin approximation. The definition
for the family of function, {ei(x), x ∈ Rd, i = 1, 2, . . .}, is as follows

ei(x) = e(x,mi, Bi) :=
1√

(2π)n det(Bi)
e−

1
2
(x−mi)

′B−1
i (x−mi), x ∈ Rd,

parameterized by mi, Bi where mi ∈ Rd, Bi ∈ Rd×d be any positive symmetric matrices,
mi = mj, for i = j, det(Bi) is the determinant of Bi, recalling that d is the dimension of the
state process X. The system of functions {ei(x), x ∈ R, i = 1, 2, . . .} is linearly independent and
complete in H, see Theorem 3, Ahmed and Radaideh (1997).

Using the Galerkin approximation with a basis of Gaussian series, the conditional mean πt(X)

and its associated error covariance matrix Pt = E

{(
Xt − πt(X)

)(
Xt − πt(X)

)′∣∣∣FZ,Y
t

}
can be

calculated as, for t ∈ [0, T ],

πt(X) = E[Xt|FZ,Y
t ] ∼=

∑n
i=1 ψ

(n)
i (t)mi∑n

i=1 ψ
(n)
i (t)

,

Pt
∼=

∑n
i=1 ψ

(n)
i (t)

[
Bi +

(
πt(X) −mi

)(
πt(X)−mi

)′]
∑n

i=1 ψ
(n)
i (t)

,

where {ψ(n)
i (t)}, i = 1, 2, . . . , n, are the Fourier coefficients obtained by solving Equation (6.1.9).

This is an advantage of using Gaussian series. In fact, the above equations are obtained as follows,
consider d = 1, notice that {ei} are Gaussian series and, for i = 1, 2, . . .,∫

R

ei(x)dx = 1,
∫

R

xei(x)dx = mi,

∫
R

(x−mi)2ei(x)dx = Bi.

Then, by Kallianpur-Striebel formula (2.4.8), recalling that by Galerkin approximation qt(x) ≈
q
(n)
t (x) =

∑n
i=1 ψ

(n)
i (t)ei(x), we get

E[Xt|FZ,Y
t ] ∼=

∫
R
xq

(n)
t (x)dx∫

R
q
(n)
t (x)dx

=

∫
R
x[

∑n
i=1 ψ

(n)
i (t)ei(x)]dx∫

R
[
∑n

i=1 ψ
(n)
i (t)ei(x)]dx

=
∑n

i=1 ψ
(n)
i (t)[

∫
R
xei(x)dx]∑n

i=1 ψ
(n)
i (t)[

∫
R
ei(x)dx]

=
∑n

i=1 ψ
(n)
i (t)mi∑n

i=1 ψ
(n)
i (t)

,
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and similarly,

E

[(
Xt − πt(X)

)2∣∣∣FZ,Y
t

]
∼=

∫
R
[x− πt(X)]2q(n)

t (x)dx∫
R
q
(n)
t (x)dx

=

∑n
i=1 ψ

(n)
i (t)

[
Bi +

(
πt(X) −mi

)2]
∑n

i=1 ψ
(n)
i (t)

,

where the last equality follows from∫
R

[x− πt(X)]2ei(x)dx =
∫

R

{
(x−mi)2 + 2xmi −m2

i − 2xπt(X) + πt(X)2
}
ei(x)dx

=Bi + [πt(X)−mi]2.

7.2.2 Hermite expansion

The Hermite polynomials are classical orthogonal polynomial sequences. Hermite polynomials
are used to derive expressions for the moments of univariate and multivariate normal distribu-
tions, see for example Willink (2005). Hermite expansions are used to compute the moments of
the approximated density, see for example Singer (2006). We take the Hermite polynomials as
the basis functions in the Galerkin approximation and show its efficiency.

This section is first organized with an introduction to the definition and properties of the Her-
mite polynomials. Then, we build a complete orthonormal basis of L2(R) from the Hermite
polynomials and show the advantages of using the basis in the Galerkin approximation.

Hermite polynomials

−5 0 5
−20

−15

−10

−5

0

5

10

15

20

x

y

 

 

y=H
0
(x)

y=H
1
(x)

y=H
2
(x)

y=H
3
(x)

y=H
4
(x)

y=H
5
(x)

−15 −10 −5 0 5 10 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

 

 y=e
0
(x)

y=e
1
(x)

y=e
2
(x)

y=e
20

(x)

Figure 7.1: Hermite polynomials {Hi} and orthonomal basis {ei}.

The definition and well-known properties of the Hermite polynomials, and the details can be
found in, for instance, Courant and Hilbert (1968). We show the definition first and then, we
introduce the orthogonality and completeness of the Hermite polynomials. These properties help
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us to built a complete orthonormal basis of L2(R). Finally, we introduce the recurrence relation
of the Hermite polynomials. This property helps us to compute the coefficients of the Galerkin
approximation quickly.

The Hermite polynomials are classical orthogonal polynomial sequence. The Hermite polynomi-
als Hi(x) are defined by, for i = 0, 1, 2, . . .,

Hi(x) = (−1)iex
2/2 d

i

dxi
e−x2/2, x ∈ R. (7.2.1)

Hi(x) is an ith-degree polynomial with leading coefficient 1 for i = 0, 1, 2, 3, . . .. The first few of
these polynomials are given by, for x ∈ R,

H0(x) = 1,
H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x,

H6(x) = x6 − 15x4 + 45x2 − 15,

H7(x) = x7 − 21x5 + 105x3 − 105x,

H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105,

H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x,

H10(x) = x10 − 45x8 + 630x6 − 3150x4 + 4725x2 − 945.

Inversely, it is easy to see any power of x can be represented by the Hermite polynomials, for
x ∈ R,

1 = H0(x),
x = H1(x),

x2 = H2(x) + 1,

x3 = H3(x) + 3H1(x),

x4 = H4(x) + 6H2(x) + 3,

x5 = H5(x) + 10H3(x) + 15H1(x),

x6 = H6(x) + 15H4(x) + 45H2(x) + 15,

x7 = H7(x) + 21H5(x) + 105H3(x) + 105H1(x),

x8 = H8(x) + 28H6(x) + 210H4(x) + 420H2(x) + 105,

x9 = H9(x) + 36H7(x) + 378H5(x) + 1260H3(x) + 945H1(x),

x10 = H10(x) + 45H8(x) + 630H6(x) + 3150H4(x) + 4725H2(x) + 945.

Now, let ϑi
k be the coefficient at xk of Hi(x) and ιik be the coefficient at Hk of xi, i = 0, 1, 2, . . .,
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k = 0, 1, . . . , i, we then have the following expression for x ∈ R, i = 0, 1, 2, . . .,

Hi(x) =
i∑

k=0

ϑi
kx

k, (7.2.2)

xi =
i∑

k=0

ιikHk(x). (7.2.3)

The Hermite polynomials form a complete orthogonal set on the interval −∞ < x < ∞ with
respect to the weighting function φ, see Courant and Hilbert (1968),∫ ∞

∞
Hi(x)Hj(x)φ(x)dx = i!δi,j , (7.2.4)

with weighting function

φ(x) := (2π)−
1
2 exp(−x

2

2
), x ∈ R, (7.2.5)

where i! stands for the factorial of i and

δi,j =
{

1, if i = j
0, if i = j

is the Kronecker delta.

In addition, the sequence of Hermite polynomials satisfies the following recurrence relations, for
x ∈ R, i = 1, 2, . . .,

Hi+1(x) = xHi(x)− iHi−1(x), (7.2.6)

H
′
i(x) = iHi−1(x). (7.2.7)

Expressions (7.2.2), (7.2.3), (7.2.6), and (7.2.7) are useful to derive the coefficients of the Galerkin
approximation.

Hermite expansion

In this part, we build a complete orthonormal basis of L2(R) from the Hermite polynomials first
and show the advantages of using the basis in the Galerkin approximation.

We define a family of function, {ei(x), x ∈ R, i = 0, 1, 2, . . .} from the Hermite polynomials, as
follows

ei(x) :=

√
φ(x)
i!

Hi(x), x ∈ R, (7.2.8)

with weighting function φ given by Equation (7.2.5) and Hi(x) are Hermite polynomials defined
by Equation (7.2.1). By the orthogonality and completeness of the Hermite polynomials, see
Equation (7.2.4), Hermite functions {ei(x), x ∈ R, i = 0, 1, 2, . . .} form a complete orthonormal
basis of L2(R).

Then, qt, the density function of the unnormalized conditional distribution of the state process
X given past observation of Z and Y of Model (2.2.9) with d = 1, can be expanded as

qt(x) =
∞∑
i=0

ψi(t) ei(x), t ∈ [0, T ], x ∈ R,
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and the Fourier coefficients are given by, for i = 0, 1, . . .,

ψi(t) :=
∫ ∞

−∞
ei(x) qt(x)dx, t ∈ [0, T ].

Based on the recurrence relations of Hermite polynomials, we have the following results for
Hermite functions.

Lemma 7.2. Sequence {ei(x), x ∈ R, i = 0, 1, 2, . . .}, defined by Equation (7.2.8), satisfies, for
x ∈ R, i = 1, 2, . . .,

xei(x) =
√
i+ 1 ei+1(x) +

√
i ei−1(x), (7.2.9)

e′i(x) = −
√
i+ 1
2

ei+1(x) +
√
i

2
ei−1(x), (7.2.10)

and

xe0(x) = e1(x), e′0(x) = −1
2
e1(x).

In what follows, we show the convergence of Galerkin approximation with a basis of Hermite
functions.

Corollary 7.3. Assume that Assumption 5.1 is fulfilled. Let {ei}, defined by Equation (7.2.8),
is the basis used in the Galerkin approximation defined by Definition 6.1. Let {q(n)

t }t∈[0,T ] be the
solution of Equation (6.5.1). Then, the sequence of processes {q(n)} converges to the process q,
the solution of Equation (6.3.12), for any choice of the initial state q0 ∈ H, as n→∞.

There are some advantages of using Hermite functions in the Galerkin approximation. One
advantage, as matter of fact, is the conditional mean and the conditional error can be expressed
directly by the Fourier coefficients.

As we introduced in Section 6.1, for a natural n, by the Galerkin approximation with {ei} as a
basis we have the following n-dimensional approximation of the conditional density

qt(x) ≈ q
(n)
t (x) =

n−1∑
i=0

ψ
(n)
i (t) ei(x), t ∈ [0, T ], x ∈ R, (7.2.11)

where {ψ(n)
i (t)} are the expansion coefficients obtained by solving Equation (6.1.9). Moreover,

by the approximation, the conditional mean and its associated error can be calculated as follows,
for the proof, see Section 7.4. For sake of short, define constants, for i = 0, 1, . . . , n− 1,

r
(n)
0i :=

1√
i!

i∑
k=0

ϑi
k2

k
2 ιk0 , r

(n)
1i :=

1√
i!

i∑
k=0

ϑi
k2

k
2 ιk+1

0 , r
(n)
2i :=

1√
i!

i∑
k=0

ϑi
k2

k
2 ιk+2

0 , (7.2.12)

recall that ϑi
k and ιk0 are the coefficients of linear combinations (7.2.2) and (7.2.3). And define

n-dimensional vectors r(n)
0 := (r(n)

00 , r
(n)
01 , . . . , r

(n)
0(n−1))

�, r(n)
1 := (r(n)

10 , r
(n)
11 , . . . , r

(n)
1(n−1))

�, r(n)
2 :=

(r(n)
20 , r

(n)
21 , . . . , r

(n)
2(n−1))

�. Then, for 0 ≤ t ≤ T ,

πt(X) := E[Xt|FZ,Y
t ] ∼=

√
2
(r(n)

1 )�Υ(n)(t)

(r(n)
0 )�Υ(n)(t)

, (7.2.13)

E

[(
Xt − πt(X)

)2
∣∣∣FZ,Y

t

]
∼= 2

(r(n)
2 )�Υ(n)(t)

(r(n)
0 )�Υ(n)(t)

− [πt(X)]2. (7.2.14)
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Notice, the components of r(n)
0 , r(n)

1 , r(n)
2 are constants, which are independent of X, Z and Y .

They can be computed before hand. Therefore, the conditional mean and its associated error
can be calculated directly by the expansion coefficients. This is one advantage of using Hermite
functions.

Another advantage is the coefficients in the Galerkin approximation can be computed explicitly
for some special cases. We can see this in the following examples for Model (2.2.9). For the proof
of related formulas, see Section 7.4.

Example 7.1. Suppose, for simplicity, the state process {Xt}t∈[0,T ], continuous observation
{Zt}t∈[0,T ] are given by the following scale linear Gaussian equations, for t ∈ [0, T ],

{
Xt = X0 +

∫ t
0 bXsds+

∫ t
0 σdVs,

Zt =
∫ t
0 hXsds+Bt,

where b, h ∈ R are constants, and σ ∈ R+ is a positive constant. X0 is normally distributed with
mean μ0 and variance σ2

0. V and B are independent standard one-dimensional Brownian mo-
tions. Another observation {Yt}t∈[0,T ] is a stochastic Poisson process with intensity λX2

t , where
λ ∈ R+ is a positive constant. Then the coefficients in the Galerkin approximation, which are
defined by Equation (6.1.3), (6.1.4), (6.1.5), (6.1.6), (6.1.7), are as follows, for i = 0, 1, . . . , n−1,
j = 0, 1, . . . , n− 1,

aji =δi,j, (7.2.15)

bji =(− b
2

+
σ2

8
)
√

(j + 2)(j + 1)δi,j+2 − (
b

2
+
σ2(2j + 1)

8
)δi,j (7.2.16)

+ (
b

2
+
σ2

8
)
√
j(j − 1)δi,j−2,

cji =h
√
jδi+1,j + h

√
j + 1δi−1,j , (7.2.17)

gji =λ
[√

j(j − 1)δi+2,j + (2j + 1)δi,j +
√

(j + 2)(j + 1)δi−2,j

]
− δi,j , (7.2.18)

q0j =
1√
j!

j∑
k=0

ϑj
k

k∑
i=0

Ci
kc

i
1c

(k−i)
2 ιi0, with c1 =

√
2σ2

0

2 + σ2
0

, c2 =
2μ0

2 + σ2
0

. (7.2.19)

Example 7.2. Suppose that state process X which is a geometric Brownian motion and con-
tinuous observation Z are given by the following linear equations, for t ∈ [0, T ],

{
Xt = X0 +

∫ t
0 bXsds+

∫ t
0 σXsdVs,

Zt =
∫ t
0 hXsds+Bt,

and jump observation {Yt}t∈[0,T ] is a stochastic Poisson process with intensity λXt. Here b, h ∈ R

are constants, and σ, λ ∈ R+ are positive constants. V and B are independent standard one-
dimensional Brownian motions. X0 ∼ lnN(μ0, σ

2
0) is distributed log-normally with parameters

μ0 and σ0. Then the coefficients in the Galerkin approximation which are defined by Equation
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(6.1.3), (6.1.4), (6.1.5), (6.1.6), (6.1.7), are as follows, for i = 0, 1, . . . , n− 1, j = 0, 1, . . . , n− 1,

aji =δi,j,

bji =
σ2

8

√
(j + 4)(j + 3)(j + 2)(j + 1)δi,j+4 + (− b

2
+
σ2

2
)
√

(j + 2)(j + 1)δi,j+2

− [
b

2
+
σ2

8
(2j2 + 2j − 1)]δi,j +

b

2

√
j(j − 1)δi,j−2 +

σ2

8

√
j(j − 1)(j − 2)(j − 3)δi,j−4,

cji =h
√
jδi+1,j + h

√
j + 1δi−1,j ,

gji =λ
√
jδi+1,j + λ

√
j + 1δi−1,j − δi,j .

Here q0j, j = 0, 1, . . . , n− 1 can not be obtained analytically, and they can be computed numeri-
cally.

Example 7.3 (Cox-Ingersoll-Ross model). The Cox-Ingersoll-Ross model for the state process
X is

dXt = (α− βXt)dt + σ
√
XtdVt, t ∈ [0, T ], (7.2.20)

where α, β, and σ are positive constants. X0 is normally distributed with mean μ0 and variance
σ2

0. The advantage of CIR model is that the state in the model does not become negative. If
Xt reaches zero, the term multiplying dVt vanishes and the positive drift term αdt in Equation
(7.2.20) drives the state back into positive territory.

Continuous observation Z is given by the following linear equation

Zt =
∫ t

0
hXsds+Bt, t ∈ [0, T ],

and jump observation Y is a stochastic Poisson process with intensity λXt. Here h ∈ R, λ ∈ R+

are constants. V and B are independent stand Brownian motions. Then the coefficients in the
Galerkin approximation which are defined by Equation (6.1.3), (6.1.4), (6.1.5), (6.1.6), (6.1.7),
are as follows, for i = 0, 1, . . . , n− 1, j = 0, 1, . . . , n− 1,

aji =δi,j ,

bji =
σ2

8

√
(j + 3)(j + 2)(j + 1)δi,j+3 +

β

2

√
(j + 2)(j + 1)δi,j+2 − [

α

2
+
σ2

8
(j − 1)]

√
j + 1δi,j+1

+
β

2
δi,j + [

α

2
− σ2

8
(j + 2)]

√
jδi,j−1 −

β

2

√
j(j − 1)δi,j−2 +

σ2

8

√
j(j − 1)(j − 2)δi,j−3,

cji =h
√
jδi+1,j + h

√
j + 1δi−1,j,

gji =λ
√
jδi+1,j + λ

√
j + 1δi−1,j − δi,j,

q0j =
1√
j!

j∑
k=0

ϑj
k

k∑
i=0

Ci
kc

i
1c

(k−i)
2 ιi0, with c1 =

√
2σ2

0

2 + σ2
0

, c2 =
2μ0

2 + σ2
0

.

Remark 7.1. As a conclusion, the advantages of the Galerkin approximation with a basis of
Hermite polynomials are:

i The conditional mean and its associated error can be calculated in terms of the expansion
coefficients, see Equation (7.2.13) and (7.2.14).
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ii The sequence of Hermite polynomials satisfies the recurrence relations, therefore A(n), B(n),
C(n), G(n) and q(n)

0 , which are the coefficients in Galerkin approximation, can be computed
explicitly, for the case of b, σ2, h and λ, which are the coefficients of Model (2.2.9), are
taking the following forms, for N = 0, 1, 2, · · · ,

N∑
i=0

cix
ie−aix2+bix, ci, bi ∈ R, ai ∈ R+, i = 0, 1, · · ·N. (7.2.21)

This is a large class of functions, including a lot of interesting models, see Example 7.1,
7.2 and 7.3.

7.3 The adaptive Galerkin approximation

There is difficulty for the Galerkin approximation similar to that of the particle filter. After
a few steps , the majority of the Fourier coefficients are close to zero, and all the weights
tend to concentrate on a very few coefficients. This reduces the effectiveness of the Galerkin
approximation. In this section, we design an adaptive Galerkin approximation to overcome this.
For the sake of lucidity, we postpone the proof of related results of this section in Section 7.4.

First, in Section 7.3.1, we introduce the motivation for this adaptive method. Then, in Section
7.3.2, we introduce the adaptive Galerkin approximation with normal basis. In general, this
method provides a better estimator then the normal Galerkin approximation, but it is really
time consuming. Finally, in Section 7.3.3, we introduce the adaptive Galerkin approximation for
a large class of models with a basis of Hermite polynomials which is more efficient.

7.3.1 Introduction

In most nonlinear filtering problems, and in particular when the observation noise is small, the
conditional density is well-localized in some small region of the state space and generally could
not be predicted in advance. In the following, we present an example to show that, in this case,
the effective of the approximation depends on the locations of the density.

Example 7.4. In this example, we take {ei} as the basis of Hermite polynomials defined by
Equation (7.2.8). We present the corresponding results in Figure 7.2 and 7.3.

For a fixed real number μ and a positive number σ, let ξ ∼ N(μ, σ2) be a normal random variable
with mean μ, variance σ2 and density p(μ, σ, x), x ∈ R. For n ∈ N, we use n basis functions
{ei, i = 0, . . . , n − 1} to approximate the density p(μ, σ, x). Then, we obtain p̂(μ, σ, x), which is
the approximated density, defined by

p̂(μ, σ, x) :=
n−1∑
i=0

(
p(μ, σ, ·), ei

)
ei.

And we obtain μ̂(μ, σ), which is the mean of the approximated density and σ̂(μ, σ), which is the
square root of the variance of the approximated density,

μ̂(μ, σ) =
∫

R

xp̂(μ, σ, x)dx,

σ̂(μ, σ) =
{∫

R

(
x− μ̂(μ, σ)

)2
p̂(μ, σ, x)dx

} 1
2
.
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To compare the difference between the estimated distribution and the true one, we compute the
following terms. For fixed σ, we compute

μ �→ dσ
1 (μ) := μ̂(μ, σ)− μ, (7.3.1)

μ �→ dσ
2 (μ) := σ̂(μ, σ)− σ, (7.3.2)

μ �→ dσ
3 (μ) :=

{∫
R

[
p̂(μ, σ, x) − p(μ, σ, x)

]2
dx

} 1
2
, (7.3.3)

and we show the figures of that μ maps to dσ
1 (μ), μ maps to dσ

2 (μ), and μ maps to dσ
3 (μ) in

Figure 7.2.

For fixed μ, we compute

σ �→ dμ
1 (σ) := μ̂(μ, σ)− μ, (7.3.4)

σ �→ dμ
2 (σ) := σ̂(μ, σ) − σ, (7.3.5)

σ �→ dμ
3 (σ) :=

{∫
R

[
p̂(μ, σ, x) − p(μ, σ, x)

]2
dx

} 1
2
, (7.3.6)

and we show the results of that σ maps to dμ
1 (σ), σ maps to dμ

2 (σ), and σ maps to dμ
3 (σ) in

Figure 7.3.

From the results, we see that the difference of the estimated result and the true one varies
significantly with respect to difference μ and σ. We obtain a good approximation when μ is
close to 0 and σ2 is close to 2. We obtain bad approximation otherwise. The reason is that, for
weighting function φ of the basis function {ei}, which is defined by Equation (7.2.5),∫

R
x
√
φ(x)dx∫

R

√
φ(x)dx

=

∫
R
xe−

x2

4 dx∫
R
e−

x2

4 dx
= 0,

∫
R
x2

√
φ(x)dx∫

R

√
φ(x)dx

=

∫
R
x2e−

x2

4 dx∫
R
e−

x2

4 dx
=

2
√

2
∫

R
x2e−

x2

2 dx
√

2
∫

R
e−

x2

2 dx
= 2.

In other words, the mean and the variance of the normalized weighting function is 0 and 2.

From this example, we see that the approximation depends on the location of the density which
generally could not to be predicted in advance. This is our motivation to change the center and
scale of the basis functions adaptively.

7.3.2 The adaptive Galerkin approximation

In the following, we introduce the basic computation steps of the adaptive Galerkin approxima-
tion for general case. Here, we assume that d = 1.

Let {ei} be a basis of Hilbert space H, made of elements of {v ∈ V |Av ∈ H}. Recall, in the
normal Galerkin approximation introduced in Section 6.1, we take {ei} as the basis which is
independent of time. Now, we introduce the adaptive Galerkin approximation. We take adap-
tive basis {ēti, t ∈ [0, T ], i = 0, 1 . . .} introduced below at each time t instead of {ei}. And
{ēti, t ∈ [0, T ], i = 0, 1 . . .} are obtained by adapted shift and scale of {ei} at some time points.

We start by choosing parameters n, N and M . We use n basis functions in the Galerkin ap-
proximation. Let 0 ≤ t0 < . . . < tk < . . . < tNM = T be a uniform partition of the interval
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Figure 7.2: Error of the approximation: We approximate the distribution of a normal random
variable ξ ∼ N(μ, σ2) by a linear combination of n = 20 basis functions {ei, i = 0, . . . , 19}.
To compare the difference between the estimated distribution and the true one, we present the
figures of that μ maps to dσ

1 (μ), μ maps to dσ
2 (μ), and μ maps to dσ

3 (μ) which are given by
Equation (7.3.1) (7.3.2) and (7.3.3). We present the results for different σ, σ = 1(top row),
σ = 21/2(middle row), σ = 2(bottom row).
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Figure 7.3: Error of the approximation: We approximate the distribution of a normal random
variable ξ ∼ N(μ, σ2) by a linear combination of n = 20 basis functions {ei, i = 0, . . . , 19}.
To compare the difference between the estimated distribution and the true one, we present the
figures of that σ maps to dμ

1 (σ), σ maps to dμ
2 (σ), and σ maps to dμ

3 (σ) which are given by
Equation (7.3.4) (7.3.5) and (7.3.6). We present the results for different μ, μ = 0(top row),
μ = 1(middle row), μ = 2(bottom row).
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[0, T ] with time step Δ = tk− tk−1 = T
NM . We apply the iteration procedure at each subinterval

[tk−1, tk]. And we apply the transition procedure to changing the center and scale of the basis
functions adaptively at times kMΔ, for k = 1, . . . , N . The choice of the parameters n, N and
M depends on the nonlinear filtering problems. In addition, we also change the center and scale
of the basis at times of jumps if the the density varies significantly.

The adaptive basis functions at time tk is

ētki (x) :=
1√
σb

tk

ei(
x− μb

tk

σb
tk

), x ∈ R, i = 0, 1, . . . , n− 1, (7.3.7)

where μb
tk
∈ R define the center and σb

tk
∈ R+ define the scale of the adaptive basis {ētki }. They

are chosen according to some algorithms introduced below.

Then, the approximation of the conditional density at discrete times (tk, k = 0, 1, . . . , NM) is

p
(n,Δ)
tk

(x) :=
q
(n,Δ)
tk

(x)∫
R
q
(n,Δ)
tk

(x)dx
, x ∈ R, (7.3.8)

with q(n,Δ)
tk

which is the approximated unnormalized conditional density defined as

q
(n,Δ)
tk

(x) :=
n−1∑
i=0

ψ
(n,Δ)
k,i (t)ētki (x) =

(
ētk0 (x), ētk1 (x), . . . , ētkn−1(x)

)
Υ(n,Δ)

k , x ∈ R.

Here, Υ(n,Δ)
k :=

(
ψ

(n,Δ)
k,0 , ψ

(n,Δ)
k,1 , . . . , ψ

(n,Δ)
k,n−1

)�
is the vector of Fourier coefficients of q(n,Δ)

tk
w.r.t.

adaptive basis {ētki }, obtained by algorithms, introduced below.

To sum up, in order to obtain the approximated conditional density at time tk, defined by
Equation (7.3.8), the key point it to get μb

tk
, σb

tk
, which determine the adaptive basis {ētki } at time

tk, and the corresponding Fourier coefficients Υ(n,Δ)
k . They are obtained by initialization step,

iteration step and transition step introduced below. Notice, for normal Galerkin approximation,
it is suffice to determine Υ(n,Δ)

k , since the basis is independent of time.

Compare to Equation (6.1.3), (6.1.4), (6.1.5) and (6.1.6), which are the coefficients of the normal
Galerkin approximation, the coefficients of the adaptive Galerkin approximation A(n) = (aij)n×n,
B(n) = (bij)n×n, C(n) = (cij)n×n and G(n) = (gij)n×n w.r.t. basis {ētki }i=0,1,...,n−1, are as follow-
ing, for i, j = 0, 1, . . . , n − 1,

aji = (ētki , ē
tk
j ), bji = 〈A∗ētki , ē

tk
j 〉, cji = (hētki , ē

tk
j ), gji =

(
(λ− 1)ētki , ē

tk
j

)
. (7.3.9)

Notice, in this case, the coefficients depend on tk. For example, A(n) = A
(n)
tk

and we write by
A(n) for short.

The following is the initialization step:

Algorithm 7.3 (Initialization). • Compute the mean and the variance of the distribution
of X0 and take the mean and the square root of the variance as the center and scale of the
adaptive basis functions at time t0 = 0,

μb
t0 :=

∫
R

xp0(x)dx, σb
t0 :=

{∫
R

(x− μb
t0)

2p0(x)dx
} 1

2
.
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Recall that p0 is the law of the state process X at time 0. Consequently, the adaptive basis
functions {ēt0i } at time t0 are, by Equation (7.3.7),

ēt0i (x) =
1√
σb

t0

ei(
x− μb

t0

σb
t0

), x ∈ R, i = 0, 1, . . . , n− 1.

• Compute the coefficients of the Galerkin approximation A(n), B(n), C(n) and G(n) w.r.t.
basis {ēt0i }i=0,1,...,n−1, as following, applying Equation (7.3.9),

aji = (ēt0i , ē
t0
j ), bji = 〈A∗ēt0i , ē

t0
j 〉, cji = (hēt0i , ē

t0
j ), gji =

(
(λ− 1)ēt0i , ē

t0
j

)
.

• Applying Equation (6.1.7), obtain the starting point of Υ(n,Δ), for i = 0, 1, . . . , n − 1,

ψ
(n,Δ)
0,i = (p0, ē

t0
i ).

Now, we present the iteration step. Assume, {Ztk}, {Ytk}, k = 0, 1, . . . , NM , are the sampled
trajectories of the observation processes Z and Y at discrete times. The aim of this step is to
obtain the the numerical solution of Equation (6.1.9) in subinterval [(k− 1)Δ, kΔ] based on the
splitting up approximation, see Algorithm 7.2. It can be replaced by other time-discretisation
method. Moreover, at times of jumps, the figure of the density may vary significantly. This is our
motivation to change the center and scale of the basis functions adaptively at times of jumps.
That is, if the density vary significantly, then we move the center and scale of the adaptive basis,
otherwise, they remain.

Algorithm 7.4 (Iteration (k − 1)Δ to kΔ). • Keep the center and scale of the adaptive ba-
sis as before, that is

μb
tk

:= μb
tk−1

, σb
tk

:= σb
tk−1

.

Consequently, the adaptive basis {ētki } at time tk is obtained by Equation (7.3.7). Then,
compute the corresponding Fourier coefficients Υ(n,Δ)

k as follows.

• The prediction step:

Ῡ(n,Δ)
k = exp

[
(B(n) −G(n))Δ

]
Υ(n,Δ)

k−1 .

• The correction step with Z:

Υ̃(n,Δ)
k = exp

{
C(n)(Ztk − Ztk−1

)− 1
2
(C(n))2Δ

}
Ῡ(n,Δ)

k . (7.3.10)

• The correction step with Y : notice, in this step, we may change the center and scale of the
adaptive basis.

i Compute the predicted Fourier coefficients as follows

˜̃Υ(n,Δ)
k := (In +G(n))(Ytk

−Ytk−1
)Υ̃(n,Δ)

k . (7.3.11)
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ii Compute the mean and variance of the predicted approximated conditional density
obtained by ˜̃Υ(n,Δ)

k ,

p̂
(n,Δ)
tk

:=
q̂
(n,Δ)
tk∫

R
q̂
(n,Δ)
tk

(x)dx
with q̂

(n,Δ)
tk

(x) :=
(
ētk0 (x), ētk1 (x), . . . , ētkn−1(x)

)
˜̃Υ(n,Δ)

k

and set the mean and the square root of the variance to be μ̃b and σ̃b,

μ̃b :=
∫

R

xp̂
(n,Δ)
tk

(x)dx, σ̃b :=
{∫

R

(x− μ̃b)2p̂(n,Δ)
tk

(x)dx
} 1

2
.

iii If μ̃b is close to μb
tk

and σ̃b is closed to σb
tk

, keep the current basis functions, and
set the Fourier coefficients as the predicted Fourier coefficients obtained by Equation
(7.3.11). That is

Υ(n,Δ)
k := ˜̃Υ(n,Δ)

k .

Otherwise, set Υ(n,Δ)
k as the Fourier coefficient of the approximated unnormalized

conditional density w.r.t. basis
{

1√
σ̃b
ei(x−μ̃b

σ̃b )
}

and move the center and scale of the
basis correspondingly. To be precise:

1) Compute qtk−, the approximated unnormalized conditional density before jump,
with Fourier coefficients Υ̃(n,Δ)

k , which are obtained by Equation (7.3.10), w.r.t.
basis {ētki },

qtk−(x) :=
(
ētk0 (x), ētk1 (x), . . . , ētkn−1(x)

)
Υ̃(n,Δ)

k , x ∈ R. (7.3.12)

2) Compute qtk , the approximated unnormalized conditional density after jump,

qtk(x) := λYtk
−Ytk−1 qtk−(x), x ∈ R. (7.3.13)

3) Compute Fourier coefficients of qtk w.r.t. basis
{

1√
σ̃b
ei(x−μ̃b

σ̃b )
}

i=0,1,...,n−1
. In

other words, project qtk to subspace span{ 1√
σ̃b
ei(x−μ̃b

σ̃b ), i = 0, 1, . . . , n − 1}. And

set the Fourier coefficients to be Υ(n,Δ)
k = (ψ(n,Δ)

k,0 , ψ
(n,Δ)
k,1 , . . . , ψ

(n,Δ)
k,n−1)

�. That is,

ψ
(n,Δ)
k,i :=

(
qtk ,

1√
σ̃b
ei(
x− μ̃b

σ̃b
)
)
, i = 0, 1, . . . , n − 1. (7.3.14)

4) Move the center and scale of the basis functions, that is,

reset μb
tk

as μ̃b,

reset σb
tk

as σ̃b,

and, consequently, the adaptive basis {ētki } at time tk is reset by Equation (7.3.7).
Reset A(n), B(n), C(n), G(n) by the coefficients of the Galerkin approximation
w.r.t. the current basis {ētki }, by Equation (7.3.9).



124 CHAPTER 7. GALERKIN APPROXIMATION

Remark 7.2. By Step 1), 2), and 3), we obtain Υ(n,Δ)
k , the Fourier coefficients after jumps

defined by Equation (7.3.14), from Υ̃(n,Δ)
k , the Fourier coefficients before jumps which are defined

by Equation (7.3.10). Notice, they are Fourier coefficients w.r.t. different basis functions. Step
1), 2), and 3) are equivalent as follows, set R := (rij)n×n, with

rji :=
(
λYtk

−Ytk−1
1√
σb

tk

ei(
x− μb

tk

σb
tk

),
1√
σ̃b
ej(

x− μ̃b

σ̃b
)
)
, i, j = 0, 1, . . . , n− 1.

Then we have

Υ(n,Δ)
k = RΥ̃(n,Δ)

k .

Proof. By Equation (7.3.14), (7.3.13) and (7.3.12), and the definition of R,

ψ
(n,Δ)
k,i =

(
qtk ,

1√
σ̃b
ei(
x− μ̃b

σ̃b
)
)

=
(
λYtk

−Ytk−1qtk−(x),
1√
σ̃b
ei(
x− μ̃b

σ̃b
)
)

=(ri0, ri1, . . . , ri,n−1)Υ̃
(n,Δ)
k .

As time passes by, the mean and variance of the approximated conditional density may vary
significantly. Perhaps they are far away from the center and scale of the basis and this reduces
the effective of the Galerkin approximation. This is the motivation to change the center and
scale of the basis functions adaptively after some times. The following is the transition step.
The aim of this step is to change the center and scale of the basis adaptively at times tk, for
k = M, 2M, 3M, . . . ,NM .

Algorithm 7.5 (Transition). • With the current Fourier coefficients Υ(n,Δ)
k , compute the

mean and variance of current conditional density p
(n,Δ)
tk

, which is obtained by Equation
(7.3.8), and set the mean and the square root of the variance to be μ̃b and σ̃b,

μ̃b :=
∫

R

xp
(n,Δ)
tk

(x)dx, σ̃b :=
{∫

R

(x− μ̃b)2p(n,Δ)
tk

(x)dx
} 1

2
.

• If they are close to μb
tk

and σb
tk

, keep the current basis functions, and keep the current
Fourier coefficients.

Otherwise, reset Υ(n,Δ)
k as the Fourier coefficients of the unnormalized conditional density

w.r.t. basis
{

1√
σ̃b
ei(x−μ̃b

σ̃b )
}

and move the center and scale of the basis correspondingly. To
be precise:

1) Compute q
(n,Δ)
tk

, the current unnormalized conditional density obtained by Fourier

coefficients Υ(n,Δ)
k w.r.t. basis {ētki },

q
(n,Δ)
tk

(x) :=
(
ētk0 (x), ētk1 (x), . . . , ētkn−1(x)

)
Υ(n,Δ)

k , x ∈ R. (7.3.15)
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2) Compute Fourier coefficients of q(n,Δ)
tk

w.r.t. basis
{

1√
σ̃b
ei(x−μ̃b

σ̃b )
}

i=0,1,...,n−1
. In other

words, project q(n,Δ)
tk

to subspace span{ 1√
σ̃b
ei(x−μ̃b

σ̃b ), i = 0, 1, . . . , n−1}. And reset the

corresponding Fourier coefficients to be Υ(n,Δ)
k = (ψ(n,Δ)

k,0 , ψ
(n,Δ)
k,1 , . . . , ψ

(n,Δ)
k,n−1)

�. That
is, for i = 0, 1, . . . , n − 1,

reset ψ
(n,Δ)
k,i as

(
q
(n,Δ)
tk

,
1√
σ̃b
ei(
x− μ̃b

σ̃b
)
)
. (7.3.16)

3) Move the center and scale of the basis functions, that is

reset μb
tk

as μ̃b,

reset σb
tk

as σ̃b,

and consequently the adaptive basis {ētki } at time tk is reset by Equation (7.3.7).
Reset A(n), B(n), C(n), G(n) by the coefficients of the Galerkin approximation w.r.t.
the current basis {ētki }, by Equation (7.3.9).

Similar to Remark 7.2, we have

Remark 7.3. Step 1) and 2) are equivalent as follows, set K := (kij)n×n, with

kji :=
( 1√

σb
tk

ei(
x− μb

tk

σb
tk

),
1√
σ̃b
ej(

x− μ̃b

σ̃b
)
)
, i, j = 0, 1, . . . , n− 1.

Then

reset Υ(n,Δ)
k as KΥ(n,Δ)

k .

Proof. By Equation (7.3.16) and (7.3.15), and the definition of K,

(
q
(n,Δ)
tk

,
1√
σ̃b
ei(
x− μ̃b

σ̃b
)
)

= (ki0, ki1, . . . , ki,n−1)Υ
(n,Δ)
k .

Remark 7.4. To conclude, in this section, we introduce the adaptive Galerkin approximation.
Based on the normal Galerkin approximation for which the basis is independent of time, this
method is obtained by adapted shift and sale of basis functions. The center and scale of basis are
changed adaptively,

• at times kMΔ, for k = 1, 2, . . . , N , if the mean and the square root of the variance for
the approximated conditional density is far away from the center and scale of the adaptive
basis.

• at times kΔ, for k = 1, 2, . . . , NM , if observation Y jumps and the variation of the con-
ditional density caused by the jump is significant.
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Therefore, compare to the normal Galerkin approximation, we should record not only the Fourier
coefficients but also the center and scale of the adaptive basis functions.

The adaptive Galerkin approximation provides better results compared to the normal one. But,
it is really time consuming since A(n), B(n), C(n) and G(n), which are the coefficients of the
Galerkin approximation, and the mean and variance of conditional density should be recomputed
many times. In next section, we will introduce the adaptive Galerkin approximation with Hermite
polynomials for which the corresponding terms can be obtained explicitly. And consequently, the
adaptive Galerkin approximation with this special basis is quite efficient.

7.3.3 The adaptive Galerkin approximation with Hermite polynomials

The objective of this section is to introduce, for some special cases, the adaptive Galerkin
approximation with a basis of Hermite polynomials.

The basis computation step is the same as the one introduced in the previous section. Moreover,
for reasons mentioned in Remark 7.1, using the basis functions obtained from Hermite polyno-
mials, the conditional mean and conditional variance can be computed directly by the Fourier
coefficients and the coefficients in Galerkin approximation can be computed explicitly for a large
class of functions. Therefore, for the case of coefficients b, σ2, h and λ are taking forms (7.2.21),
we have the following efficient adaptive Galerkin approximation with Hermite polynomials for
which the corresponding coefficients can be computed explicitly.

The general setting is the same as the setting in Section 7.3.2. Moreover, compare Section 7.3.2,
in this section, we assume b, σ2, h and λ− 1 are polynomials. Let non-negative integers bn, αn,
hn and λn be the corresponding degrees. Let bκ, ακ, hκ and λκ be the corresponding coefficients
at xκ. Then we have the following representations

b(x) =
bn∑

κ=0

bκx
κ, σ2(x) =

αn∑
κ=0

ακx
κ, h(x) =

hn∑
κ=0

hκx
κ, λ(x)− 1 =

λn∑
κ=0

λκx
κ, x ∈ R. (7.3.17)

And we take {ei} as the basis of Hermite functions, defined by Equation (7.2.8).

Let μb
tk

, σb
tk

be the center and scale of the adaptive basis {ētki } we choose at time tk. The
computational advantages of this case are as follows: First, applying Equation (6.1.3), (6.1.4),
(6.1.5) and (6.1.6), the coefficients of the Galerkin approximation A(n) = (aij)n×n, B(n) =
(bij)n×n, C(n) = (cij)n×n and G(n) = (gij)n×n w.r.t. basis {ētki }i=0,1,...,n−1 defined by Equation
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(7.3.7) can be computed explicitly as follows, for i, j = 0, 1, . . . , n − 1,

aji =(ētki , ē
tk
j ) = δi,j , (7.3.18)

bji =〈A∗ētki , ē
tk
j 〉 (7.3.19)

=

√
i!√
j!

{
− 1

2σb
tk

bn+j+1∑
m=i

m∧bn∑
κ=0∨(m−j−1)

bn∑
r=κ

brC
κ
r (μb

tk
)r−κ(σb

tk
)κϑj+1

m−κι
m
i

+
j

2σb
tk

bn+j−1∑
m=i

m∧bn∑
κ=0∨(m−j+1)

bn∑
r=κ

brC
κ
r (μb

tk
)r−κ(σb

tk
)κϑj−1

m−κι
m
i

+
1

8(σb
tk

)2

σn+j+2∑
m=i

m∧σn∑
κ=0∨(m−j−2)

σn∑
r=κ

σrC
κ
r (μb

tk
)r−κ(σb

tk
)κϑj+2

m−κι
m
i

− 2j + 1
8(σb

tk
)2

σn+j∑
m=i

m∧σn∑
κ=0∨(m−j)

σn∑
r=κ

σrC
κ
r (μb

tk
)r−κ(σb

tk
)κϑj

m−κι
m
i

+
j(j − 1)
8(σb

tk
)2

σn+j−2∑
m=i

m∧σn∑
κ=0∨(m−j+2)

σn∑
r=κ

σrC
κ
r (μb

tk
)r−κ(σb

tk
)κϑj−2

m−κι
m
i

}
,

cji =(hētki , ē
tk
j ) =

√
j!√
i!

hn+i∑
m=j

m∧hn∑
κ=0∨(m−i)

hn∑
r=κ

hrC
κ
r (μb

tk
)r−κ(σb

tk
)κϑi

m−κι
m
j , (7.3.20)

gji =
(
(λ− 1)ētki , ē

tk
j

)
=
√
j!√
i!

λn+i∑
m=j

m∧λn∑
κ=0∨(m−i)

λn∑
r=κ

λrC
κ
r (μb

tk
)r−κ(σb

tk
)κϑi

m−κι
m
j . (7.3.21)

Second, the conditional mean and variance can be computed explicitly by the Fourier coefficients
Υ(n,Δ)

k similarly as in Equation (7.2.13) and (7.2.14). To be precise, define c1 : Rn → R and
c2 : Rn → R by

c1(Υ
(n,Δ)
k ) :=

√
2
(r(n)

1 )�Υ(n,Δ)
k

(r(n)
0 )�Υ(n,Δ)

k

, c2(Υ
(n,Δ)
k ) := 2

(r(n)
2 )�Υ(n,Δ)

k

(r(n)
0 )�Υ(n,Δ)

k

, (7.3.22)

where r(n)
0 , r(n)

1 and r(n)
2 are n-dimensional vectors whose components are constants defined by

Equation (7.2.12), then we have

πtk(X) := E[Xtk |F
Z,Y
tk

] ∼= σb
tk
c1(Υ

(n,Δ)
k ) + μb

tk
, (7.3.23)

E

[(
Xtk − πtk(X)

)2
∣∣∣FZ,Y

tk

]
∼= (σb

tk
)2c2(Υ

(n,Δ)
k ) + 2σb

tk
μb

tk
c1(Υ

(n,Δ)
k ) + (μb

tk
)2 (7.3.24)

− (πtk(X))2.

Finally, matrix R, defined in Remark 7.2, and matrix K, defined in Remark 7.3, can be computed
explicitly. This will be shown in the following algorithms.

We now introduce the basis computation steps of the adaptive Galerkin approximation with a
basis of Hermite polynomials, where the corresponding results are proven in Section 7.4.

Algorithm 7.6 (Initialization). The initialization step is the same as the one introduced in
Section 7.3.2. Furthermore, in this case, the coefficients of the Galerkin approximation B(n),
C(n) and G(n) can be computed explicitly by Equation (7.3.18), (7.3.19), (7.3.20) and (7.3.21).
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Algorithm 7.7 ((k − 1)Δ to kΔ). • Keep the center and scale of the adaptive basis as be-
fore, that is

μb
tk

:= μb
tk−1

, σb
tk

:= σb
tk−1

.

And consequently, the adaptive basis {ētki } at time tk is obtained by Equation (7.3.7). Then,
compute the corresponding Fourier coefficients Υ(n,Δ)

k as follows.

• The prediction step:

Ῡ(n,Δ)
k = exp

[
(B(n) −G(n))Δ

]
Υ(n,Δ)

k−1 .

• The correction step with Z:

Υ̃(n,Δ)
k = exp

{
C(n)(Ztk − Ztk−1

)− 1
2
(C(n))2Δ

}
Ῡ(n,Δ)

k .

• The correction step with Y :

i Compute the predicted Fourier coefficients as follows

˜̃Υ(n,Δ)
k := (In +G(n))(Ytk

−Ytk−1
)Υ̃(n,Δ)

k . (7.3.25)

ii Compute the mean and variance of the predicted conditional density and set the mean
and the square root of the variance to be μ̃b and σ̃b, which can be obtained explicitly,
applying Equation (7.3.23) and (7.3.24),

μ̃b := σb
tk
c1(

˜̃Υ(n,Δ)
k ) + μb

tk
,

σ̃b :=
{

(σb
tk

)2c2(
˜̃Υ(n,Δ)

k ) + 2σb
tk
μb

tk
c1(

˜̃Υ(n,Δ)
k ) + (μb

tk
)2 − (μ̃b)2

} 1
2
,

where c1 and c2 defined by Equation (7.3.22).

iii If they are close to μb
tk

and σb
tk

, keep the basis functions, and set the Fourier coeffi-
cients as the predicted Fourier coefficients,

Υ(n,Δ)
k := ˜̃Υ(n,Δ)

k . (7.3.26)

Else , set R := (rij)n×n, with, for i, j = 0, 1, . . . , n − 1,

rji :=
(
λYtk

−Ytk−1
1√
σb

tk

ei(
x− μb

tk

σb
tk

),
1√
σ̃b
ej(

x− μ̃b

σ̃b
)
)
.

Notice that λ is a polynomial defined by Equation (7.3.17), λYtk
−Ytk−1 is a polynomial.

Then there exist λ̄n ∈ N and λ̄0, λ̄1, . . ., λ̄λ̄n, such that

λ̄ := λYtk
−Ytk−1 =

λ̄n∑
κ=0

λ̄κx
κ, x ∈ R.
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Then for i, j = 0, 1, . . . , n− 1,

rji =
1√
i!j!

1√
σb

tk
σ̃b
eγc

1
γa

i∑
r=0

j∑
ν=0

κi
rκ

j
νr!

λ̄n+ν∑
m=r

m∧λ̄n∑
κ=0∨(m−ν)

λ̄κϑ
ν
m−κ, (7.3.27)

where

γa :=
1√
2

√
(σb

tk
)2 + (σ̃b)2

(σb
tk

)2(σ̃b)2
, (7.3.28)

γb :=
1

√
2
√

(σb
tk

)2+(σ̃b)2

(σb
tk

)2(σ̃b)2

(
μb

tk

(σb
tk

)2
+

μ̃b

(σ̃b)2
),

γc :=− 1
4
[(

(μb
tk

)2

(σb
tk

)2
+

(μ̃b)2

(σ̃b)2
)− 2γ2

b ],

and for i = 0, 1, . . . , n− 1, r = 0, 1, . . . , i,

κi
r :=

m∑
m=i

{ i∑
κ=m

ϑi
κC

m
κ (

γb − γaμ
b
tk

γaσb
tk

)κ−m(
1

γaσb
tk

)m
}
ιmr .

And compute

Υ(n,Δ)
k := RΥ̃(n,Δ)

k .

Move the center and scale of the basis functions, that is

reset μb
tk

as μ̃b,

reset σb
tk

as σ̃b,

and consequently the adaptive basis {ētki } at time tk is reset by Equation (7.3.7) and
reset A(n), B(n), C(n), G(n) by the coefficients of the Galerkin approximation w.r.t.
the current basis {ētki }, by Equation (7.3.18), (7.3.19), (7.3.20), and (7.3.21).

The following is the transition step:

Algorithm 7.8 (Transition). • Compute the mean and variance of current conditional den-
sity p(n,Δ)

tk
and set the mean the the square root of the variance to be μ̃b and σ̃b, applying

Equation (7.3.23) and (7.3.24),

μ̃b := σb
tk
c1(Υ

(n,Δ)
k ) + μb

tk
,

σ̃b :=
{

(σb
tk

)2c2(Υ
(n,Δ)
k ) + 2σb

tk
μb

tk
c1(Υ

(n,Δ)
k ) + (μb

tk
)2 − (μ̃b)2

} 1
2
,

where c1, c2 are defined by Equation (7.3.22).

• If they are close to μb and σb, keep the basis functions, and keep the Fourier coefficients.
Otherwise, change the center and scale of the basis functions as follows. Set K := (kij)n×n,
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Equation (7.2.13) and (7.2.14) page 133
Equation (7.3.23) and (7.3.24) page 134
Corollary 7.3 page 135
Example 7.1 page 136
Example 7.2 page 137
Example 7.3 page 137
Equation (7.3.19) page 137
Equation (7.3.20) and (7.3.21) page 138
Equation (7.3.29) page 138
Equation (7.3.27) page 140

Table 7.1: Proofs and corresponding pages.

with, for i, j = 0, 1, . . . , n− 1,

kji :=
( 1√

σb
tk

ei(
x− μb

tk

σb
tk

),
1√
σ̃b
ej(

x− μ̃b

σ̃b
)
)

(7.3.29)

=
1√
i!j!

1√
σb

tk
σ̃b
eγc

1
γa

i∧j∑
r=0

{ i∑
m=r

[
i∑

κ=m

ϑi
κC

m
κ (
γb − γaμ

b
tk

γaσb
tk

)κ−m(
1

γaσb
tk

)m]ιmr
}

·
{ j∑

m=r

[
j∑

κ=m

ϑj
κC

m
κ (
γb − γaμ̃

b

γaσ̃b
)κ−m(

1
γaσ̃b

)m]ιmr
}
r!,

where γa, γb and γc are defined by Equation (7.3.28).

Then,

reset Υ(n,Δ)
k as KΥ(n,Δ)

k .

Move the center and scale of the basis functions, that is

reset μb
tk

as μ̃b,

reset σb
tk

as σ̃b,

and consequently the adaptive basis {ētki } at time tk is reset by Equation (7.3.7). Reset
A(n), B(n), C(n), G(n) by the coefficients of the Galerkin approximation w.r.t. the current
basis {ētki }, by Equation (7.3.18), (7.3.19), (7.3.20), and (7.3.21).

7.4 Proofs

In this section, we present the proofs related to Hermite polynomials, see Table 7.1.

For starters, we simplify the proof, define ∀x ∈ R, i = 0, 1, . . .,

Ei(x) := ϕ(x)Hi(x), with ϕ(x) := [φ(x)]
1
2 = (2π)−

1
4 e−

x2

4 . (7.4.1)

It is easy to see that, by the definition of Hermite functions, see Equation (7.2.8),

ei =
1√
i!
Ei.
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Lemma 7.4. We have the following recurrence relations of Ei, which is defined by Equation
(7.4.1),

xEi(x) = Ei+1(x) + iEi−1(x), i ≥ 1, (7.4.2)

(Ei)′ = −1
2
Ei+1 +

i

2
Ei−1, i ≥ 1, (7.4.3)

(Ei)′′ =
1
4
Ei+2 −

2i+ 1
4

Ei +
i(i − 1)

4
Ei−2, i ≥ 2. (7.4.4)

Proof. By the recurrent relation of hermite polynomials, see Equation (7.2.6) and (7.2.7), we
get

xEi(x) =ϕ(x)xHi(x) = ϕ[Hi+1(x) + iHi−1(x)] = Ei+1(x) + iEi−1(x),

(Ei)′ =(ϕHi)′ = −x
2
ϕHi + iϕHi−1 = −x

2
Ei + iEi−1

=− 1
2
(Ei+1 + iEi−1) + iEi−1 = −1

2
Ei+1 +

i

2
Ei−1,

(Ei)′′ =[(Ei)′]′ = (−1
2
Ei+1 +

i

2
Ei−1)′ =

1
4
Ei+2 −

2i+ 1
4

Ei +
i(i− 1)

4
Ei−2.

In the following proofs, we have written μb, σb, ēi instead of μb
tk

, σb
tk

, ētki . We have the following
results which are useful for our proofs.

Lemma 7.5. Let f(x) =
∑an

k=0 akx
k be a polynomial, where an, a non-negative integer, is the

degree of f and ak ∈ R is the coefficient at f of xk for k = 0, 1, . . . , an. Then, for any μ, σ ∈ R

and σ = 0, we have f(μ+ σx) is a polynomial and ∀x ∈ R,

f(μ+ σx) =
an∑

m=0

ãmx
m, with ãm :=

an∑
k=m

akC
m
k μ

k−mσm. (7.4.5)

Proof. By the definition of f ,

f(μ+ σx) =
an∑

k=0

ak(μ+ σx)k

=
an∑

k=0

ak

k∑
m=0

Cm
k μ

k−mσmxm

=
an∑

k=0

k∑
m=0

akC
m
k μ

k−mσmxm

=
an∑

m=0

{ an∑
k=m

akC
m
k μ

k−mσm
}
xm

=
an∑

m=0

ãmx
m.
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Lemma 7.6. For any μ, σ ∈ R and σ = 0, we have Hi(μ+σx) is linear combination of Hermite
polynomials as follows, ∀x ∈ R,

Hi(μ+ σx) =
i∑

r=0

{ i∑
m=r

[ i∑
k=m

ϑi
kC

m
k μ

k−mσm
]
ιmr

}
Hr(x). (7.4.6)

Proof. Apply Equation (7.2.2), (7.2.3) and Lemma 7.5,

Hi(μ+ σx) =
i∑

k=0

ϑi
k(μ+ σx)k

=
i∑

m=0

[ i∑
k=m

ϑi
kC

m
k μ

k−mσm
]
xm

=
i∑

m=0

[ i∑
k=m

ϑi
kC

m
k μ

k−mσm
]( m∑

r=0

ιmr Hr(x)
)

=
i∑

m=0

m∑
r=0

[ i∑
k=m

ϑi
kC

m
k μ

k−mσm
]
ιmr Hr(x)

=
i∑

r=0

{ m∑
m=r

[ i∑
k=m

ϑi
kC

m
k μ

k−mσm
]
ιmr

}
Hr(x).

Lemma 7.7. Let f(x) =
∑an

k=0 akx
k be a polynomial, where an, a non-negative integer, is the

degree of f and ak ∈ R is the coefficient at f of xk for k = 0, 1, . . . , an. Then we have2, for
i, j = 0, 1, . . .,

(f,EiEj) = j!
an+i∑
m=j

m∧an∑
k=0∨(m−i)

akϑ
i
m−kι

m
j . (7.4.7)

Proof. By definition of Ei, see Equation (7.4.1),

(f,EiEj) = (f, φHiHj) = (fHi, φHj).

Notice, the product of two polynomials is a polynomial, then fHi is a polynomial as follows, by
polynomial multiplication, ∀x ∈ R,

f(x)Hi(x) =
( an∑

m=0

amx
m
)( i∑

k=0

ϑi
kx

k
)

=
an+i∑
m=0

{ m∧an∑
k=0∨(m−i)

akϑ
i
m−k

}
xm =

an+i∑
m=0

ãmx
m,

with coefficients, for m = 0, 1, . . . , an + i,

ãm :=
m∧an∑

k=0∨(m−i)

akϑ
i
m−k.

2The summation
∑n

i=m is taken to be 0 if the lower bound of summation m greater than the upper bound of
summation n.
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Then, by Equation (7.2.3), f(x)Hi(x) is a linear combination of Hermite polynomials

f(x)Hi(x) =
an+i∑
m=0

ãmx
m =

an+i∑
m=0

ãm

{ m∑
k=0

ιmk Hk(x)
}
.

By the orthogonal property of Hermite polynomials

(fHi, φHj) =
( an+i∑

m=0

ãm

m∑
k=0

ιmk Hk, φHj

)
=

an+i∑
m=0

ãm

m∑
k=0

ιmk

(
Hk, φHj

)

=
an+i∑
m=0

ãm

m∑
k=0

ιmk δk,jj! = j!
an+i∑
m=j

ãmι
m
j .

Combining the obtained results, we obtain Equation (7.4.7).

Proof of Equation (7.2.13) and (7.2.14).

πt(X) = E[Xt|FZ,Y
t ] =

∫ ∞
−∞ xqt(x)dx∫ ∞
−∞ qt(x)dx

, (7.4.8)

E

[(
Xt − πt(X)

)2|FZ,Y
t

]
=

∫ ∞
−∞[x− πt(X)]2qt(x)dx∫ ∞

−∞ qt(x)dx
=

∫∞
−∞ x2qt(x)dx∫ ∞
−∞ qt(x)dx

− [πt(X)]2. (7.4.9)

By the approximation (7.2.11),∫ ∞

−∞
qt(x)dx ∼=

∫ ∞

−∞
qn
t (x)dx =

n−1∑
i=0

ψ
(n)
i (t)

∫ ∞

−∞
ei(x)dx (7.4.10)

and by the definition of ei,∫ ∞

−∞
ei(x)dx =

1√
i!

∫ ∞

−∞
(2π)−

1
4 e−

x2

4 Hi(x)dx

=
1√
i!

√
2(2π)−

1
4

∫ ∞

−∞
e−

x2

2 Hi(
√

2x)dx

=
1√
i!

√
2(2π)−

1
4

∫ ∞

−∞
e−

x2

2

i∑
k=0

ϑi
k2

k
2xkdx

=
1√
i!

√
2(2π)

1
4

∫ ∞

−∞

1√
2π
e−

x2

2

i∑
k=0

ϑi
k2

k
2

k∑
j=0

ιkjHj(x)dx

=
1√
i!

√
2(2π)

1
4

i∑
k=0

ϑi
k2

k
2

k∑
j=0

ιkj

∫ ∞

−∞

1√
2π
e−

x2

2 Hj(x)dx

=
1√
i!

√
2(2π)

1
4

i∑
k=0

ϑi
k2

k
2

k∑
j=0

ιkj

∫ ∞

−∞

1√
2π
e−

x2

2 Hj(x)H0(x)dx

=
1√
i!

√
2(2π)

1
4

i∑
k=0

ϑi
k2

k
2

k∑
j=0

ιkj δ0,j

=
1√
i!

√
2(2π)

1
4

i∑
k=0

ϑi
k2

k
2 ιk0 .
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Therefore,

∫ ∞

−∞
qt(x)dx ∼=

√
2(2π)

1
4

n−1∑
i=0

ψ
(n)
i (t)

1√
i!

i∑
k=0

ϑi
k2

k
2 ιk0 .

Likewise, we get

∫ ∞

−∞
xei(x)dx =

1√
i!

2(2π)
1
4

i∑
k=0

ϑi
k2

k
2 ιk+1

0 ,

∫ ∞

−∞
x2ei(x)dx =

1√
i!

2
3
2 (2π)

1
4

i∑
k=0

ϑi
k2

k
2 ιk+2

0 ,

and ∫ ∞

−∞
xqt(x)dx ∼=

∫ ∞

−∞
xq

(n)
t (x)dx = 2(2π)

1
4

n−1∑
i=0

ψ
(n)
i (t)

1√
i!

i∑
k=0

ϑi
k2

k
2 ιk+1

0 ,

∫ ∞

−∞
x2qt(x)dx ∼=

∫ ∞

−∞
x2q

(n)
t (x)dx = 2

3
2 (2π)

1
4

n−1∑
i=0

ψ
(n)
i (t)

1√
i!

i∑
k=0

ϑi
k2

k
2 ιk+2

0 .

Combining the obtained results, we get Equation (7.2.13) and (7.2.14).

Proof of Equation (7.3.23) and (7.3.24). The desired result can be obtained similarly as the
proof of Equation (7.2.13) and (7.2.14).

By definition of ēi, Equation (7.3.7),∫ ∞

−∞
ēi(x)dx =

∫ ∞

−∞

1√
σb
ei(
x− μb

σb
)dx =

√
σb

∫ ∞

−∞
ei(x)dx.

Similarly, we get ∫ ∞

−∞
xēi(x)dx =

∫ ∞

−∞
x

1√
σb
ei(
x− μb

σb
)dx

=
∫ ∞

−∞
(σbx+ μb)

1√
σb
ei(x)σbdx

=
√
σb

{
σb

∫ ∞

−∞
xei(x)dx+ μb

∫ ∞

−∞
ei(x)dx

}
,

and∫ ∞

−∞
x2ēi(x)dx =

∫ ∞

−∞
x2 1√

σb
ei(
x− μb

σb
)dx

=
∫ ∞

−∞
(σbx+ μb)2

1√
σb
ei(x)σbdx

=
√
σb

{
(σb)2

∫ ∞

−∞
x2ei(x)dx+ 2σbμb

∫ ∞

−∞
xei(x)dx+ (μb)2

∫ ∞

−∞
ei(x)dx

}
.
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Then, applying Equation (7.4.8), (7.4.9), (7.4.10), and Equation (7.3.22) which are the definitions
of c1, c2, we get

πt(X) ≈
∫ ∞
−∞ xq

(n)
t (x)dx∫ ∞

−∞ q
(n)
t (x)dx

=

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ xēi(x)dx∑n−1

i=0 ψ
(n)
i (t)

∫ ∞
−∞ ēi(x)dx

=

√
σb

{
σb

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ xei(x)dx + μb

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ ei(x)dx

}
√
σb

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ ei(x)dx

=σbc1 + μb,

and

E

[(
Xt − πt(X)

)2|FZ,Y
t

]
≈

∫ ∞
−∞ x2q

(n)
t (x)dx∫ ∞

−∞ q
(n)
t (x)dx

− (μ̃b)2

=

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ x2ēi(x)dx∑n−1

i=0 ψ
(n)
i (t)

∫ ∞
−∞ ēi(x)dx

− (μ̃b)2

=

√
σb

{
(σb)2

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ x2ei(x)dx+ 2σbμb

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ xei(x)dx

}
√
σb

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ ei(x)dx

+
(μb)2

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ ei(x)dx

√
σb

∑n−1
i=0 ψ

(n)
i (t)

∫ ∞
−∞ ei(x)dx

− (μ̃b)2

=(σb)2c2 + 2σbμbc1 + (μb)2 − (μ̃b)2.

The desired result is obtained.

Proof of Corollary 7.3. Applying Theorem 6.11, the desired result is obtained if we can show
that ∪nVn is dense in V , where Vn = span{e0, e1, . . . , en−1} and V = H1(Rd). One the one
hand, let C∞

0 be the set of infinitely differentiable functions with compact support. Then, by
Bongioanni and Torrea (2006), Proposition 1, page 339, and Bongioanni and Torrea (2006),
Theorem 4, page 348, we get ∀u ∈ C∞

0 , there exist a sequence un ∈ ∪nVn, s.t.,

‖u− un‖V → 0, as n→∞.

Therefore, we obtain

∪nVn ⊃ C∞
0 .

Moreover, by Frey (2008), Theorem 2.17, page 31, C∞
0 is dense in V . Then,

∪nVn ⊃ C∞
0 ⊃ V.

On the other hand, by the properties of Hermite functions, we have

Vn ⊂ V, ∀n.
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Notice that V is complete, we get

∪nVn ⊂ V.

To sum up, we get

∪nVn = V.

Proof of Example 7.1. Equation (7.2.15) is obtained from the orthogonality of {ei}. Now, it is
time to compute B(n). By the definition of B(n), and Remark 6.1,

bji = 〈A∗ei, ej〉 = 〈Aej, ei〉 = (Lej , ei) =
1√
i!
√
j!

(LEj , Ei).

Recall that L is a second order differential operator defined by Equation (2.2.4), then, we get,

LEj =bx(Ej)′ +
σ2

2
(Ej)′′

=− b

2
Ej+2 −

b

2
Ej +

bj(j − 1)
2

Ej−2 +
σ2

2
(
1
4
Ej+2 −

2j + 1
4

Ej +
j(j − 1)

4
Ej−2

=(− b
2

+
σ2

8
)Ej+2 − (

b

2
+
σ2(2j + 1)

8
)Ej + (

b

2
+
σ2

8
)j(j − 1)Ej−2.

Finally, we obtain Equation (7.2.16).

Similarly, Equation (7.2.17) and (7.2.18) are obtained from Equation (6.1.5) and (6.1.6) applying
Equation (7.4.2) repeatedly. It remains to compute q0j . By the definition

q0j = (q0, ej) =
∫

1√
2πσ0

e
− (x−μ0)2

2σ2
0

1√
j!

(2π)−
1
4 e−

x2

4 Hj(x)dx

=
1√
j!

(2π)−
1
4

1√
2πσ0

∫
e
−
[

(x−μ0)2

2σ2
0

+ x2

4

]
Hj(x)dx.

Notice that

(x− μ0)2

2σ2
0

+
x2

4
=

(x− c2)2
2c21

− c3,

then, we get

q0j =
1√
j!

(2π)−
1
4

1√
2πσ0

∫
e
− (x−c2)2

2c21
+c3

Hj(x)dx

=
1√
j!

(2π)−
1
4

1√
2πσ0

ec3
∫
e
− (x−c2)2

2c21 Hj(x)dx

=(2π)−
1
4

1
σ0
ec3c1

∫
1√
j!

1√
2π
e−

x2

2 Hj(c1x+ c2)dx.

Finally, the desired result is obtained by Lemma 7.6 and the orthonormal property of Hermite
polynomials.
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Proof of Example 7.2. Notice that in this case

LEj =bx(Ej)′ +
σ2

2
x2(Ej)′′

=
σ2

8
Ej+4 + (− b

2
+
σ2

2
)Ej+2 −

[ b
2

+
σ2

8
(2j2 + 2j − 1)

]
Ej

+
b

2
j(j − 1)Ej−2 +

σ2

8
j(j − 1)(j − 2)(j − 3)Ej−4,

and the desired result is obtained similarly as in Example 7.1.

Proof of Example 7.3. Notice that in this case

LEj =(α− βx)(Ej)′ +
σ2

2
x(Ej)′′

=
σ2

8
Ej+3 +

β

2
Ej+2 −

[α
2

+
σ2

8
(j − 1)

]
Ej+1 +

β

2
Ej

+
[α
2
j − σ2

8
(j + 2)j

]
Ej−1 −

β

2
j(j − 1)Ej−2 +

σ2

8
j(j − 1)(j − 2)Ej−3,

and the desired result is obtained similarly as in Example 7.1.

Proof of Equation (7.3.19). By the definition of bji and Remark 6.1,

bji = 〈A∗ēi, ēj〉 = 〈Aēj , ēi〉 = (Lēj , ēi) =
1√
i!
√
j!

(LĒj , Ēi).

Notice that, by Equation (7.4.3) and (7.4.4), then,

LĒj =b(x)(Ēj)′ +
[σ(x)]2

2
(Ēj)′′

=b(x)
1
σb

1√
σb
E′

j(
x− μb

σb
) +

[σ(x)]2

2
1

(σb)2
1√
σb
E′′

j (
x− μb

σb
)

=
b(x)
σb

1√
σb
E′

j(
x− μb

σb
) +

[σ(x)]2

2(σb)2
1√
σb
E′′

j (
x− μb

σb
)

=
b(x)
σb

1√
σb

[−1
2
Ej+1(

x− μb

σb
) +

j

2
Ej−1(

x− μb

σb
)]

+
[σ(x)]2

2(σb)2
1√
σb

[
1
4
Ej+2(

x− μb

σb
)− 2j + 1

4
Ej(

x− μb

σb
) +

j(j − 1)
4

Ej−2(
x− μb

σb
)]

=
b(x)
σb

[
− 1

2
Ēj+1 +

j

2
Ēj−1

]
+

[σ(x)]2

2(σb)2
[1
4
Ēj+2 −

2j + 1
4

Ēj +
j(j − 1)

4
Ēj−2

]
.

Then, we have

(LĒj, Ēi)

=
∫ {b(x)

σb
[−1

2
Ēj+1 +

j

2
Ēj−1] +

[σ(x)]2

2(σb)2
[
1
4
Ēj+2 −

2j + 1
4

Ēj +
j(j − 1)

4
Ēj−2]

}
Ēidx

=
∫ {b(μb + σbx)

σb
[−1

2
Ej+1 +

j

2
Ej−1] +

[σ(μb + σbx)]2

2(σb)2
[
1
4
Ej+2 −

2j + 1
4

Ej +
j(j − 1)

4
Ej−2]

}
Eidx,



138 CHAPTER 7. GALERKIN APPROXIMATION

where the last equality is obtained by changing the variable in the integration. Applying Equation
(7.4.5), b(μb + σbx) and [σ(μb + σbx)]2 are polynomials as follows

b(μb + σbx) =
bn∑

m=0

[ bn∑
k=m

bkC
m
k (μb)k−m(σb)m

]
xm := b̃(x),

[
σ(μb + σbx)

]2
=

σn∑
m=0

[ σn∑
k=m

σkC
m
k (μb)k−m(σb)m

]
xm := σ̃(x).

Then we have

(LĒj, Ēi) =− 1
2σb

(b̃Ej+1, Ei) +
j

2σb
(b̃Ej−1, Ei)

+
1

8(σb)2
(σ̃Ej+2, Ei)−

2j + 1
8(σb)2

(σ̃Ej, Ei) +
j(j − 1)
8(σb)2

(σ̃Ej−2, Ei).

Applying Equation (7.4.7), we obtain the desired results.

Proof of Equation (7.3.20) and (7.3.21). By the definition of cji,

cji =(hēi, ēj)

=
1√
i!

1√
j!

∫ ( hn∑
k=0

hkx
k
) 1√

2πσb
e
− (x−μb)2

2(σb)2 Hi(
x− μb

σb
)Hj(

x− μb

σb
)dx

=
1√
i!

1√
j!

∫ [ hn∑
k=0

hk(μb + σbx)k
] 1√

2π
e−

x2

2 Hi(x)Hj(x)dx,

where the last equality is obtained by changing the variable in the integration. Notice that∑hn

k=0 hk(μb + σbx)k is a polynomials and its standard form is as follows, by Equation (7.4.5),

hn∑
k=0

hk

(
μb + σbx

)k
=

hn∑
m=0

[ hn∑
k=m

hkC
m
k (μb)k−m(σb)m

]
xm := h̃(x).

Then by Equation (7.4.7),

cji =
1√
i!

1√
j!

(h̃, EiEj)

=
√
j!√
i!

hn+i∑
m=j

m∧hn∑
k=0∨(m−i)

hn∑
r=k

hrC
k
r (μb)r−k(σb)kϑi

m−kι
m
j .

Equation (7.3.21) can be obtained similarly.

Proof of Equation (7.3.29). By definition of kji

kji =
( 1√

σb
ei(
x− μb

σb
),

1√
σ̃b
ej(

x− μ̃b

σ̃b
)
)

=
1√
i!j!

∫
1

√
2π
√
σbσ̃b

exp
[
−1

4
(
x− μb

σb
)2−1

4
(
x− μ̃b

σ̃b
)2
]
Hi(

x− μb

σb
)Hj(

x− μ̃b

σ̃b
)dx.
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For sake of simplicity, define

γa :=
1√
2

√
(σb)2 + (σ̃b)2

(σb)2(σ̃b)2
,

γb :=
1

√
2
√

(σb)2+(σ̃b)2

(σb)2(σ̃b)2

( μb

(σb)2
+

μ̃b

(σ̃b)2
)
,

γc :=− 1
4

[
(
(μb)2

(σb)2
+

(μ̃b)2

(σ̃b)2
)− 2γ2

b

]
.

Then,

exp
[
−1

4
(
x− μb

σb
)2−1

4
(
x− μ̃b

σ̃b
)2
]

= exp
{
− 1

4
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and
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where, by Equation (7.4.6),
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with, for i = 0, 1, . . . , n− 1, r = 0, 1, . . . , i,

κi
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i∑
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By the orthogonality of the Hermite polynomials
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Combining the obtained results, we obtain Equation (7.3.29).
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Proof of Equation (7.3.27). By definition of rji,
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Notice that λ̄( γb
γa

+ x
γa

) is a polynomial and its standard form is as follows, by Equation (7.4.5),
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then applying Equation (7.4.7),
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Combining the obtained result, we get Equation (7.3.27).

7.5 Simulation studies

The Galerkin approximation of Model (2.2.9) is tested in simulation studies and compared with
particle filters. In Section 7.5.1, we present the simulated results, by tables, from which we can
see the results in average sense. In Section 7.5.2, we present the simulated results by figures from
which we can see the results for some specific examples.

First, by simulation, we obtain sampled trajectory of X, Z and Y . Here X and Z are simulated
by Euler-Maruyama method, see Algorithm 7.1, while Y is simulated according to Algorithm
9.14, McNeil, Frey, and Embrechts (2005), page 399. The detailed algorithm is as follows.

Algorithm 7.9. The sampled trajectory of the state process X, the observation processes Z and
Y of Model (2.2.9) at discrete equidistance times {tk, k = 1, 2, . . . , L}, with δ = tk − tk−1, are as
follows

i Simulate the driven processes V and B.

• Simulate ΔVi, ΔBi, i = 1, 2, . . . , L using the MATLAB package, where ΔVi and ΔBi

are independent and identically N(0, δ)-normally distributed random variables.

• Then the path of the process V and B can be realized by V (0) = 0, V (tk) =
∑k

i=1 ΔVi

and B(0) = 0, B(tk) =
∑k

i=1 ΔBi.

ii Simulate a trajectory of the state process X.

• Generate X0 by the law of X0 using the MATLAB package.
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• Given X0, solve the stochastic differential equation Xt = X0+
∫ t
0 b(Xs)ds+

∫ t
0 σ(Xs)dVs

using Euler-Maruyama method, Algorithm 7.1, or splitting up method, Algorithm 7.2,
to obtain the values of the state process X at discrete times {Xtk , k = 1, 2, . . . , L} re-
cursively,

Xtk+1
= Xtk + b(Xtk )δ + σ(Xtk )ΔVk.

iii Simulate a trajectory of the observation process Z.

• Z0 = 0,
• Again using Euler-Maruyama method, Algorithm 7.1, to obtain the values of Z at

discrete times {Ztk , k = 1, 2, . . . , L},
Ztk+1

= Ztk + h(Xtk )δ + ΔBk. (7.5.1)

iv Simulate a trajectory of the observation process Y , which is equivalent to simulate the
jumping times of Y , τ1, τ2, . . .,

• Compute λ(Xt) at discrete times by {Xtk , k = 1, 2, . . . , L} obtained before.

• Compute for j ≤ k, Γj(tk) = δ
∑k−1

i=j λ(Xti).
• Set τ0 = 0.
• For i=1,2. . . , generate a unit exponential random variable E independent of X and

set
τi = τi−1 + Γ−1

i−1(E).

7.5.1 Tables

In this section, we show the simulation results by tables such that we can compare with different
method in average sense. We obtained the conditional distribution of X with respect to past
observation with different methods and compare their performance. The simulation procedure
is as follows.

1) Obtain the artificially simulated data for X, Y and Z by Algorithm 7.9 at discrete times
{tk, k = 1, 2, . . . , L}.

2) Compute the filter estimates with different methods based on the algorithms introduced
in Chapter 3 and Chapter 7.

3) Repeat procedure 1) and 2) m times. In the simulation, we take m = 100. As a measure
to compare performance, we computed the length of time used in the computation and
the root mean square error(rms error for short) which is defined by, over all simulated
trajectories and over all times,

d :=
{ 1
mL

m∑
j=1

L∑
i=1

‖Xj(ti)− X̂j(ti)‖2
} 1

2
,

where Xj(ti) is the j-th simulated trajectory of X at time ti and X̂j(ti) is the filtering
estimate at time ti in the j-th simulation.

In Table 7.3 and Table 7.4, we present some numerical examples to illustrate the effectiveness
of the proposed filter. It is seen that Galerkin method is much faster than the particle method
while the rms errors of both method are almost the same. From this point of view, the Galerkin
method performs better.
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7.5.2 Figures

In this section, we present some figures to show the numerical results of the nonlinear problem.
We show some numerical results for one-dimensional cases and multi-dimensional cases.

We have two observations, one is continuous, another is a Poisson process whose stochastic inten-
sity is a given function of the signal X. The objective is to compute the conditional distribution
of the state X given the past observation. We obtained the conditional distribution of X with
respect to past observation with different methods and compared their performance. As a mea-
sure for the compared performance, we computed the conditional mean and conditional variance
of X by the conditional distribution. We see from the results, the conditional expectation with
respect to both observation processes does much better.

We show some numerical results for Example 7.1 from Figure 7.4 to Figure 7.14. Here we take
b = 0.5, σ = 2, μ0 = 5, σ0 = 0.0001. And by Algorithm 7.9, simulated trajectories of X, Y and
Z are obtained at discrete equidistance times {tk, k = 1, 2, . . . , L}, where t0 = 0, tL = T = 1,
tk − tk−1 = 10−6. We compute the filter estimates with different methods based on algorithms
introduced in Chapter 3 and Chapter 7. As a measure to compare performance, we compute
conditional mean and conditional root mean square deviation(RMSD) which is the square root
of the conditional variance. For the Galerkin filter, they are obtained by Equation (7.2.13),
(7.2.14) and Equation (7.3.23), (7.3.24). For the particle filter, they are obtained by Equation
(3.3.1).

We obtain an artificial trajectory of X at discrete times. Notice, in order to compare the perfor-
mance efficiently, we keep it as the trajectory of X from Figure 7.4 to Figure 7.13. These figures
are obtained as follows:

Figure 7.4: In this figure , we compare the performance of Galerkin filter and particle filter.
The procedure is as follows:

i Set h = 0.5, λ = 0.05, obtain the simulated trajectories for Y and Z by Algorithm 7.9.

ii We compute the filter estimates with different methods. For Galerkin filter, we apply
Algorithm 7.2 with n = 20 basis functions to approximate the conditional density. For this
case, h and λ are small. That means the observation noise weight heavily. We need not
change the center and scale of the basis functions adaptively.

For particle filter, we apply Algorithm 3.1 with 103 particles.

Figure 7.5 and Figure 7.6: Here, we show the result obtained by the Galerkin filter with
more information compared to Figure 7.4. In other words, we take larger h and λ in this case.
The procedure is as follows:

i Set h = 5.5, λ = 10, obtain the trajectories for Y and Z by Algorithm 7.9.

ii Compute the estimates by Galerkin filter. Here we apply Algorithm 7.6, 7.7 and 7.8 with
n = 20 Hermite basis functions to approximate the conditional density. For this case, h
and λ are larger. That means the observation noise is small. We change the center and
scale of the basis functions adaptively by algorithms introduced in Section 7.3.3.

For particle filter, we apply Algorithm 3.1 with 103 particles.
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It is seen, in figures 7.4, 7.5, and 7.6, more information improves the estimation procedure. It
is clear that the results obtained from observations Y an Z are much better than the results
obtained from only one observation Z. And the approximation obtained by the Galerkin filter
is very close to that obtained by particle filter.

Figure 7.7, 7.8, and 7.9: Here, we compute conditional density with only continuous obser-
vation Z. In this case, the filter problem is the so called Kalman-Bucy filter and has an explicit
solution. Then, we compare the results obtained by Galerkin filter to the exact solution. The
procedure is as follows:

i Set h = 5.5, obtain an artificially trajectory for Z.

ii Compute the estimates with different methods. For Galerkin filter, we use n = 20 Hermite
basis functions to approximate the conditional density and change the center and scale of
the basis functions adaptively according to Algorithm 7.6, 7.7 and 7.8. For the Kalman-
bucy filter, it can be solved explicitly by Equation (2.1.5).

In Figure 7.7, we compare the conditional mean and conditional root mean square deviation. In
Figure 7.8 and 7.9, we compare the conditional density and show the difference of the conditional
density obtained by Galerkin filter and Kalman-Bucy filter. It is seen that approximations are
very close to the explicit solutions. Those filters with more basis functions improve the estimation
procedure.

Figure 7.10: Here, we study the convergence with respect to h. Fix λ, and increase h, then
we obtain different trajectories of Z with corresponding information. The larger h is, the more
information Z has. Finally, we compare the results obtained with different information. The
procedure is as follows:

i Set λ = 0.05, obtain a simulated trajectory for Y by Algorithm 7.9.

ii For h = 0.5, h = 5.5, h = 15.5, obtain 3 artificially trajectories Z(1), Z(2) and Z(3) of Z
with corresponding h by Algorithm 7.9.

iii Compute the filter estimates with (Y,Z(1)), (Y,Z(2)) and (Y,Z(3)) using Galerkin filter.

For Galerkin filter, we use n = 20 Hermite basis functions to approximate the condi-
tional density and change the center and scale of the basis functions adaptively according
Algorithm 7.6, 7.7 and 7.8.

Again, more information improves the estimation procedure. The estimator converges to the
trajectory of X as h increases.

Figure 7.11: Here, we study the convergence with respect to λ. Fix h, and increase λ, then
we obtain different trajectories of Y with corresponding information. The larger λ is, the more
information Y has. Finally, we compare the results obtained with different information. The
procedure is as follows:

i Set h = 0.5, obtain the artificially trajectory for Z by Algorithm 7.9.
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ii For λ = 0.05, λ = 5.05, λ = 15.05, obtain 3 artificially trajectories Y (1), Y (2) and Y (3) of
Y with corresponding λ, by Algorithm 7.9.

iii Compute the filter estimates with (Y (1), Z), (Y (2), Z) and (Y (3), Z) using Galerkin filter.

For Galerkin filter, we use n = 20 Hermite basis functions to approximate the conditional
density and change the center and scale of the basis functions adaptively according to
Algorithm 7.6, 7.7 and 7.8.

Once again, we see more information improves the estimation procedure. The estimator con-
verges to the trajectory of X as λ increases.

Figure 7.12: Here, we study the convergence with respect to n, where n is the number of the
basis functions in the Galerkin filter. The procedure is as follows:

i Set h = 5.5, λ = 10, obtain the artificially trojectories for Z and Y by Algorithm 7.9.

ii Compute the filter estimates with Y and Z using Galerkin filter with n = 4, 8, 16 ba-
sis functions. In the computation, we change the center and scale of the basis functions
adaptively according to Algorithm 7.6, 7.7 and 7.8.

It is seen that the filter with 8 and 16 basis functions improves the estimation procedure.
Although the filter with 8 basis functions is no more precise than the filter with 16, it still provides
a good estimate. Moreover, it is faster than the filter with 16 basis functions. Realistically, we
can choose the number of basis functions according to the weight of time and precision.

Figure 7.13: Here, we show the efficiency of Galerkin filter with changing the center and scale
of the basis functions adaptively. The procedure is as follows:

i Set h = 20, λ = 10, obtain the simulated trajectories of Z and Y by Algorithm 7.9.

ii Compute the filter estimates with Y and Z using Galerkin filter with n = 20 Hermite
basis functions. One result is obtained by change the center and scale of the basis functions
adaptively according Algorithm 7.6, 7.7 and 7.8. Another result is obtained without change
by Algorithm 7.2.

It is seen that adaptive Galerkin filter improves the estimation procedure. The simple Galerkin
filter without change does not do much better for this case. This poor performance can be
attributed to the small observation noise. Since we have more information, the conditional
density is well-localized in some small region of the state space and generally could not be
predicted in advance. Adaptive Galerkin filter is seen to drastically improved the performance.

Figure 7.14: Here, we compare the performance of Galerkin filter with a basis of Hermite
polynomials and particle filter for multi-dimensional case.

There are some methods to construct a multi-dimensional basis by Hermite polynomials. For the
introduction of multi-dimensional Hermite polynomials, see for example Berkowitz and Garner
(1970). Now, we construct the basis of L2(Rd) by another method. Let {ei} be the basis of
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one-dimensional Hermite polynomials defined by Equation (7.2.8) which is a basis of L2(R),
then {

ei1 ⊗ ei2 ⊗ · · · ⊗ eid : i1, i2, . . . id = 0, 1, 2, . . .
}

is a basis of L2(Rd).

Here, we take d = 5, then X = {Xt}t∈[0,T ] =
{(
X1

t ,X
2
t ,X

3
t ,X

4
t ,X

5
t

)}
t∈[0,T ]

is a 5-dimensional

stochastic process driven by 3-dimensional Brownian motion. X1
0 , X2

0 , X3
0 , X4

0 and X5
0 are in-

dependent, normally distributed with mean 0 and variance 0.012. Z is a 3-dimensional noisy
nonlinear observations of the state process X. Y is a one-dimensional stochastic Poisson pro-
cess with intensity 0.1(X1

t )2 + 0.2(X2
t )2 + 0.3(X3

t )2 + 0.1(X4
t )2 + 0.1(X5

t )2. The corresponding
coefficients are as follows:

b =

⎛⎜⎜⎜⎜⎝
1 0 0 1 0
1 1 −1 0 1
0 1 −1 −1 −1
0 −1 −1 1 1
1 −1 0 0 1

⎞⎟⎟⎟⎟⎠ , σ =

⎛⎜⎜⎜⎜⎝
1 0 1
2 1 1
1 1 1
1 1 1
0 0 1

⎞⎟⎟⎟⎟⎠ , h =

⎛⎝ 0.2 0.3 0.2 0.3 0.4
0.2 0.1 0.2 0.1 0.2
0.2 0.2 0.4 0.2 0.2

⎞⎠ .

In the Galerkin approximation of this case, we take a linear combination of{
ei1 ⊗ ei2 ⊗ · · · ⊗ ei5 : i1, i2, . . . i5 = 0, 1, 2, 3

}
(7.5.2)

to approximate the unnormalized conditional density.

The procedure is as follows:

i Obtain the simulated trajectories for X, Y and Z according to Algorithm 7.9.

ii Compute the filter estimates with different methods. For Galerkin filter, we apply Algo-
rithm 7.2 with basis functions defined by Equation (7.5.2) to approximate the conditional
density. Then, the number of basis functions is n = 45 = 1024. For particle filter, we apply
Algorithm 3.1 use 103 particles.

In the simulation study, it takes 12 seconds for particle filter and 9 seconds for the Galerkin
filter. It is seen that the approximation obtained by the Galerkin filter is very close to that
obtained by particle filter.

7.5.3 Summary

In Chapter 3 and Chapter 7 we surveyed numerical approximations for the nonlinear filtering
problem w.r.t Model (2.2.9).

The finite dimensional filter, introduced in Section 3.1, is easy to implement. The conditional
mean and variance can be computed explicitly, since the approximated conditional density is a
linear combination of Gaussian functions. However, this method performs poorly if the nonlinear-
ities are strong. Furthermore, the approximation conditional density at time t, for τn ≤ t < τn+1

is a linear combination of 2n Gaussian functions, recalling that τn is the n-th jumping time of
the jump observation. Therefore, the computation becomes expensive for higher jump intensity.
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X the trajectory of X
PF by particle method with observations Z and Y
GF by Galerkin method with observations Z and Y
PFC by particle method with only continuous observation Z
GFC by Galerkin method with only continuous observation Z
KBF the result obtained by Kalman-Bucy filter
AGF the adaptive Galerkin filter
h the coefficient w.r.t. the continuous observation Z of Model 7.1
λ the coefficient w.r.t. the jump observation Y of Model 7.1
n the number of basis functions used in the Galerkin filter

Table 7.2: Notations interpretations: From Figure 7.4 to Figure 7.14.

The finite-state Markov chain approximation, introduced in Section 3.2, is fast because, the ap-
proximated conditional probabilities are finite dimensional. The solution of a finite-dimensional
SDE and the coefficient matrices in the SDE are diagonal. Unfortunately, this method is not
flexible. In practice, one uses the information from the filtering results to dynamically move the
grid in a suitable manner.

The particle methods introduced in Section 3.3 are very flexible and easy to implement. The
basic idea is to approximate the expectation by Monto Carlo methods.

The Galerkin approximation introduced in Chapter 7 is easy to implement. In this case, the
conditional density is approximation by a linear combination of finite number of basis functions,
the corresponding Fourier coefficients are the solutions of an ordinary SDE, and the coefficients
matrices of the SDE can be computed before hand. In addition, the Galerkin approximation is
parsimonious, since, see for example Figure 7.12, it provides good results with only 8 parameters.
The key point of the Galerkin approximation is how to choose the basis functions. It will provide
perfect results with suitable basis functions, see for example Figure 7.7, 7.8, and 7.9. As with the
finite-state Markov chain approximation, the normal Galerkin approximation is not flexible. For
this, we design an adaptive Galerkin approximation. Moreover, in Section 7.3.3, we derive explicit
coefficient in the adaptive Galerkin approximations for a large class of coefficients functions of
Model (2.2.9).
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Rms error
NG/NP 5/20 10/50 15/100 20/1000
GF(EM) 0.6326 0.4245 0.4234 0.4232
GF(SU) 0.6541 0.4281 0.4259 0.4259
PF 0.4580 0.4663 0.4138 0.4277

Time(second)
NG/NP 5/20 10/50 15/100 20/1000
GF(EM) 0.10s 0.11s 0.12s 0.13s
GF(SU) 2.4s 3.08s 3.94s 4.29s
PF 9s 22s 46s 472s

Table 7.3: Performance comparison: This table Shows the performance comparison for Example
7.1. Here b = 1, σ = 1, h = 0.1, λ = 0.1, X0 ∼ N(2, 1), T = 0.5. For details, see Section 7.5.1.
See Table 7.5 for notation interpretations.

Rms error
NG/NP 5/20 10/50 15/100 20/1000
GF(EM) 0.4036 0.3996 0.3996 0.3996
GF(SU) 0.6541 0.3993 0.3993 0.3993
PF 0.4663 0.4148 0.4052 0.3928

Time(second)
NG/NP 5/20 10/50 15/100 20/1000
GF(EM) 0.10s 0.11s 0.12s 0.13s
GF(SU) 2.4s 3.08s 3.94s 4.29s
PF 9s 22s 46s 472s

Table 7.4: Performance comparison: This table shows the performance comparison for Example
7.2. Here b = 1, σ = 0.4, h = 0.2, λ = 0.2, p0 ∼ lnN(2, 1), T = 0.5. For details, see Section
7.5.1. See Table 7.5 for notation interpretations.

NG the number of basis functions in the Galerkin filter
NP the number of particle in the particle filter
GF(EM) Galerkin filter with Euler-Maruyama approximation for Equation (6.1.9)
GF(SU) Galerkin filter with splitting-up approximation for Equation (6.1.9)
PF particle filter

Table 7.5: Notation interpretations: For Table 7.3 and Tabel 7.4.
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Figure 7.4: Comparison of Galerkin filter with particle filter: A trajectory of Z (the first row),
A trajectory of Y (the second row ), Conditional mean (the third row), Conditional root mean
square deviation(bottom row). See Table 7.2 for notations interpretations.

It is seen that the approximation obtained by Galerkin filter is very close to that obtained by
particle filter.
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Figure 7.5: Galerkin filter with more information: A trajectory of Z (top row left), A trajectory of
Y (top row right), Conditional mean (bottom figure). See Table 7.2 for notation interpretations.

Here ‘up’ means conditional mean +1.64× CRMSD, and ‘down’ means conditional mean −1.64×
CRMSD. It is seen that with more information the results obtained by Galerkin filter is very
close to the trajectory of state process X.
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Figure 7.6: Comparison of Galerkin filter with particle filter with more information: Conditional
mean (top figure), Conditional root mean square deviation(bottom figure). See Table 7.2 for
notation interpretations.

It is seen that the approximation obtained by Galerkin filter is very close to that obtained by
particle filter.
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Figure 7.7: Comparison of Galerkin filter with Kalman-Bucy filter: Conditional mean (top fig-
ure), Conditional root mean square deviation(bottom figure). See Table 7.2 for notation inter-
pretations.

It is seen that the approximations are very close to the explicit solutions.
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Figure 7.8: Comparison of Galerkin filter with Kalman-Bucy filter: Conditional density (figures
left), the difference of conditional density obtained by Galerkin filter and Kalman-bucy fil-
ter(figures right). We present the results for different time t, t = 0.25(top row), t = 0.5(bottom
row).

In this case, we take 20 Hermite basis functions in the Galerkin filter. In this figure, we present
the approximated conditional density obtained by the linear combination of the first N basis
functions. It is seen that the approximations are very close to the explicit solutions and filters
with more basis functions improved the estimation procedure.
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Figure 7.9: Comparison of Galerkin filter with Kalman-Bucy filter: Conditional density (fig-
ures left), the difference of conditional density obtained by Galerkin filter and Kalman-bucy
filter(figures right). We present the results for different time t, t = 0.75(top row), t = 1(bottom
row).

In this case, we take 20 Hermite basis functions in the Galerkin filter. In this figure, we present
the approximated conditional density obtained by the linear combination of the first N basis
functions. It is seen that the approximations are very close to the explicit solutions and filters
with more basis functions improved the estimation procedure.
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Figure 7.10: Convergence study for h: Conditional mean (top figure), Conditional root mean
square deviation(bottom figure). See Table 7.2 for notations interpretations.

The results are obtained by Galerkin filter with observation Y and Z with different h, where
h is the coefficient w.r.t. continuous observation Z for Example 7.1. The larger h is, the more
information Z has. It is seen that the estimator converges to the trajectory of X as h increases.
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Figure 7.11: Convergence study for λ: Conditional mean (top figure), Conditional root mean
square deviation(bottom figure). See Table 7.2 for notations interpretations.

The results are obtained by Galerkin filter with observation Y and Z with different λ, where λ
is the intensity coefficient of the jump observation Y for Example 7.1. The larger λ is, the more
information Y has. It is seen that the estimator converges to the trajectory of X as λ increases.
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Figure 7.12: Convergence study for n: Conditional mean (top figure), Conditional root mean
square deviation(bottom figure). See Table 7.2 for notations interpretations.

The results are obtained by Galerkin filter with observation Y and Z with different n, where n is
the number of basis functions used in the Galerkin filter. The case n = 4 shows a bad performance
as the number of the basis elements is too low. It is necessary to consider a satisfied high number
of basis elements.
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Figure 7.13: Galerkin filter: Conditional mean (top figure), Conditional root mean square devi-
ation(bottom figure). See Table 7.2 for notations interpretations.

The results are obtained by Galerkin filter with observation Y and Z. One is adaptive Galerkin
filter, the other is the usual Galerkin filter both with a basis of Hermite polynomials. It is seen
that the adaptive Galerkin filter improves the estimation procedure.
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Figure 7.14: Comparison of Galerkin filter with particle filter (muti-dimensional case): Condi-
tional mean (top figures and middle figures), trajectories of X (bottom row left), trajectories
of Z (bottom row middle), a trajectory of Y (bottom row right). See Table 7.2 for notation
interpretations.

It is seen that the approximation obtained by Galerkin filter is very close to that obtained by
particle filter.
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Appendix

For the reader’s convenience we proof some well known results.

Lemma A.1. Let Y be a stochastic random time with jump intensity 1 and ξ be the correspond-
ing jump indicator process, then the moment-generating function of ξ is, ∀u ∈ R,

E(euξ) = eu(1− e−t) + e−t.

Proof. We have, by assumption,

E(euξ) = eu·1P(Y ≤ t) + eu·0P(Y > t) = eu(1− e−t) + e−t.

Lemma A.2. Let X ∈ R+ be a random variable, then, if E(X) <∞, P(X <∞) = 1.

Lemma A.3. For any x ∈ R,

∞∑
n=0

xn

(n!)
1
2

≤ 2√
3
e2x2

.

Proof.

∞∑
n=0

xn

(n!)
1
2

=(
∞∑

n=0

∞∑
m=0

xn

(n!)
1
2

xm

(m!)
1
2

)
1
2

=(
∞∑

n=0

∞∑
m=0

2−m(2x)n

(n!)
1
2

2−n(2x)m

(m!)
1
2

)
1
2

≤(
∞∑

n=0

∞∑
m=0

1
2
(
2−2m(2x)2n

n!
+

2−2n(2x)2m

m!
))

1
2

=(
∞∑

n=0

2−2n
∞∑

m=0

(2x)2m

m!
)

1
2

=(
1

1− 2−2
e4x2

)
1
2 =

2√
3
e2x2

.
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Lemma A.4 (Gronwall’s Lemma). Let A and B are positive constants. If x is a non-negative
function such that, for all t ≥ 0,

xt ≤ A+B

∫ t

0
xsds,

then, for all t ≥ 0,

xt ≤ AeBt.

Lemma A.5 (Burkholder-Davis-Gundy). For a local martingale M starting at zero, with max-
imum denoted by Mt = sups∈[0,T ] |Ms|, and any real number p ≥ 1, the inequality is

cpE([M ]p/2
t ) ≤ E((M∗

t )p) ≤ CpE([M ]p/2
t ).

Here, cp < Cp are constants depending on the choice of p, but not depending on the martingale
M or time t used. If M is a continuous local martingale, then the Burkholder-Davis-Gundy
inequality holds for any positive value of p.

Theorem A.6 (Uniform boundedness principle). Let U be a Banach space and V be a normed
vector space. Suppose that F is a collection of continuous linear operators from U to V . The
uniform boundedness principle states that if for all x in U we have

sup
T∈F

‖T (x)‖ <∞,

then

sup
T∈F

‖T‖ <∞.

A.1 Preliminaries

In this section we introduce some basic concepts and properties that will be need in the devel-
opment of the theory of SPEDs. The aim is to prepare the reader with necessary material for
the study of SPDEs.

A.1.1 Sobolev spaces

In this section, the Sobolev spaces are introduced. The importance of Sobolev spaces comes from
the fact that solutions of partial differential equations are often easier to be found in Sobolev
spaces, rather than in spaces of continuous functions and with the derivatives understood in the
classical sense.

A Sobolev space is a vector space of functions equipped with a norm that is a combination of
L2 norms of the function itself as well as its derivatives up to a given order. The derivatives are
understood in a suitable weak sense to make the space complete. Let α := (α1, . . . , αd) ∈ Nd

with |α| := |α1|+ . . .+ |αd| be an arbitrary multi-index. Given two function f and g ∈ L2(Rd),
we say that ∂αf = g in the weak sense if for all φ ∈ C∞

0 (Rd), we have∫
Rd

f(x)∂αφ(x)dx = (−1)|α|
∫

Rd

g(x)φ(x)dx,
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where

∂αφ =
∂αφ

∂xα1
1 · ∂xαd

d

.

Let us now recall the definition of the Sobolev spaces. For m = 0, 1, 2, . . ., the Sobolev space,
denote by W p

m(Rd), is the space of all functions v ∈ Lp(Rd) such that the partial derivatives ∂αv
exist in the weak sense and are in Lp(Rd) whenever |α| ≤ m, that is,

W p
m(Rd) := {v : ∂αv ∈ Lp(Rd), |α| ≤ m},

with the norm

‖v‖W p
m

:=
{ ∑

|α|≤m

∫
Rd

|∂αv(x)|pdx
}1/p

. (A.1.1)

W p
m(Rd) is complete with respect to the norm defined by Equation (A.1.1), hence it is a Banach

space.

Sobolev spaces with p = 2, defined as Hm(Rd) := W 2
m(Rd), are especially important because

they form a Hilbert space with the inner product

(f, g)Hm =
∑

|α|≤m

(∂αf, ∂αg), ∀f, g ∈ Hm(Rd),

where (·, ·) is the usual inner product on L2(Rd),

(f, g) :=
∫

Rd

f(x)g(x)dx, ∀f, g ∈ L2(Rd).

For m = −1,−2, . . ., define Hm(Rd) := (H−m(Rd))∗. For any m ∈ Z, Hm(Rd) is a Hilbert space,
see Folland (1999), page 302, with the inner product, ∀f, g ∈ Hm(Rd),

(f, g)Hm :=
∫

Rd

f̂(ξ)(1 + |ξ|2)mĝ(ξ)dξ,

where ·̂ defined as the Fourier transform and · defined as the conjugate of the complex number.

A.1.2 Some spaces of processes

We look for solutions of SPDEs in a suitably chosen processes space. From now on, we define
some spaces of stochastic processes with values in Hilbert spaces. In this section, let H be a real
separable Hilbert space.

Let D(0, T ;H) be the space of H-valued functions ξ on [0, T ] that are right-continuous and have
left-hand limits:

i For 0 ≤ t < T , ξ(t+) = lims↓t ξ(s) and ξ(t+) = ξ(t).

ii For 0 < t ≤ T , ξ(t−) = lims↑t ξ(s) exists.

Lemma A.7. D(0, T ;H) is a Banach space with norm ‖x‖ := supt∈[0,T ] ‖xt‖H.
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Proof. See Billingsley (1999), page 124.

A stochastic process ξ is said to be càdlàg if it a.s. has sample paths in D(0, T ;H). That is ξ
maps Ω into D(0, T ;H).

Let M2(0, T ;H), more simply M2(0, T ) or even M2, denote the space of H-valued processes φ
which satisfy:

i φ is FZ,Y -adapted,

ii E0
{∫ T

0 ‖φ(t)‖2H
}
<∞.

Let S2(0, T ;H) denote the set of FZ,Y -adapted càdlàg processes {ξ(t), 0 ≤ t ≤ T} which are
such that

‖ξ‖T :=
{

E0 sup
t∈[0,T ]

‖ξ(t)‖2H
}1/2

<∞. (A.1.2)

Let S2
w(0, T ;H), more simply S2

w(0, T ) or even S2
w, denote the set of FZ,Y -adapted càdlàg pro-

cesses {ξ(t), 0 ≤ t ≤ T} which are such that

|ξ|T :=
{

sup
t∈[0,T ]

E0‖ξ(t)‖2H
}1/2

<∞. (A.1.3)

Let C2(0, T ;H) denote the set of FZ,Y -adapted continuous processes {ξ(t), 0 ≤ t ≤ T} which are
such that

‖ξ‖T :=
{

E0 sup
t∈[0,T ]

‖ξ(t)‖2H
}1/2

<∞.

Let C2
w(0, T ;H), denote the set of FZ,Y -adapted continuous processes {ξ(t), 0 ≤ t ≤ T} which

are such that

|ξ|T :=
{

sup
t∈[0,T ]

E0‖ξ(t)‖2H
}1/2

<∞.

LetN 2(0, T ;H) denote the set of FZ,Y -adapted,H-valued processes {ξ(t), 0 ≤ t ≤ T}, continuous
in the mean square norm, which are such that

|ξ|T :=
{

sup
t∈[0,T ]

E0‖ξ(t)‖2H
}1/2

<∞. (A.1.4)

It is easy to see that | · |T < ‖ · ‖T . Therefore S2(0, T ;H) ⊂ S2
w(0, T ;H) and C2(0, T ;H) ⊂

C2
w(0, T ;H). And we have the following results:

Lemma A.8. N 2(0, T ;H) is a Banach space with norm | · |T .

Proof. See Germani and Piccioni (1984).

Lemma A.9. S2(0, T ;H) is a Banach space with norm ‖ · ‖T .
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Proof. Assume {ξn} is a Cauchy sequence, i.e.,

E0
{

sup
t∈[0,T ]

‖ξm(t)− ξn(t)‖2H
}
→ 0, as n,m→∞.

It follows that one can find a subsequence ξnk
such that

P0
{

sup
t∈[0,T ]

‖ξnk+1
(t)− ξnk

(t)‖H ≥ 2−k
}
≤ 2−k.

The Borel-Cantelli lemma implies that {ξnk
} converges P0-a.s. to a process {ξ(t), t ∈ [0, T ]},

uniformly on [0, T ]. By Lemma A.7, ξ is a càdlàg process.

Lemma A.10. C2(0, T ;H) is a Banach space.

Proof. The proof is analogous to the proof of Lemma A.9.

Remark A.1. C2
w(0, T ;H) is not a Banach space.

Proof. It is sufficient to give a counter example. For reason of simplicity, set T = 1. Let U is
a R-valued random variable with uniform distribution U(0, 1). Let {σn, n ≥ 1} is a R+-valued
sequence and σn → 0 as n→∞. For a fixed v ∈ H, set

ξn(t, U) = v
(
1{0≤t≤U} + 1{U<t≤1}e

− (t−U)2

4σ2
n

)
,

ξ(t, U) = v1{t<U}.

Notice, ξn(·, U) is continuous in t, while ξ(·, U) is not. Then,

E0‖ξn(t)− ξ(t)‖2H =
∫ 1

0
‖ξn(t, ν)− ξ(t, ν)‖2Hdν

=
∫ 1

t
‖ξn(t, ν)‖2Hdν

=‖v‖2H
∫ 1

t
e
− (t−ν)2

2σ2
n dν

≤‖v‖2H
∫

R

e
− (t−ν)2

2σ2
n dν

=‖v‖2H
√

2πσn

∫
R

1√
2πσn

e
− (t−ν)2

2σ2
n dν

=‖v‖2H
√

2πσn.

By the definition of | · |T ,

|ξn − ξ|T =
{

sup
t∈[0,T ]

E0‖ξn(t)− ξ(t)‖2H
} 1

2 ≤ ‖v‖H
√√

2πσn → 0,

as n→∞.

Therefore, ξn converges to ξ in S2
w(0, T ;H). But ξ is a non-continuous function and not in

C2
w(0, T ;H). So C2

w(0, T ;H) is not complete and in sequence it is not a Banach space.
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But this is not a counter example for Lemma A.10. Notice that

‖ξn − ξ‖T =
{

E0 sup
t∈[0,T ]

‖ξn(t)− ξ(t)‖2H
} 1

2 = 1,

ξn doesn’t converge to ξ in C2(0, T ;H).

A.2 Some Hilbert spaces

Let H be a real separable Hilbert space. (Ω̄,G,Q) be a probability space. Let {Gt}, which satisfies
the usual conditions, is the filtration.

For 0 ≤ s ≤ θ ≤ T , let L2
(
(Ω̄,G,Q, {Gt}) × [s, θ];H

)
denote the space of H-valued processes

{ξ(t), s ≤ t ≤ θ} which satisfy

i ξ is {Gt}-adapted.

ii EQ
{∫ θ

s ‖ξ(t)‖2Hdt
}
<∞.

Let L2
(
(Ω̄,G,Q);H

)
denote the space of H random variables ϕ which satisfy

i ϕ is G-measurable.

ii EQ
{
‖ϕ‖2H

}
<∞.
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List of frequently used notation and
symbols

Rk k-dimensional Euclidean space
R+ the non-negative real numbers
Rn×m the n×m matrices
C∞

0 the set of infinitely differentiable functions with compact support
Lk(Rd) {u : Rd → R measurable,with

‖u‖k := ‖u‖Lk(Rd) := [
∫

Rd ‖u(x)‖kdx]
1
k <∞}

L∞(Rd) {u : Rd → R measurable,
‖u‖L∞(Rd) : supx∈Rd ‖u(x)‖ <∞}

s ∧ t the minimum of s and t
s ∨ t the maximum of s and t
D(A) the domain of definition of the operator A
w.r.t. with respect to
s.t. such that
a.e. almost everywhere
a.s. almost surely
∼ coincides in law with
⊥ orthogonal to
:= equal to by definition
‖ · ‖∞ the supremum norm of a function
‖ · ‖ the Euclidean norm
Fξ

t the σ-algebra generated by {ξs, 0 ≤ s ≤ t}
H a real separable Hilbert space
B a Banach space
H L2(Rd)
V H1(Rd)
V ′ H−1(Rd)
C([0, T ];H) the continuous functions [0, T ] →H
C1

(
(0, T );H

)
the once continuous differentiable functions (0, T ) →H

D([0, T ];H) the right-continuous functions
[0, T ] →H have left limits in H
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166 APPENDIX B. LIST OF FREQUENTLY USED NOTATION AND SYMBOLS

E the expectation wrt. the probability measure P

E0 the expectation wrt. the probability measure P0

In the n-by-n identity matrix
Cm

k the number of m-combinations from a given set of k elements
1G the indicator function of set G,

(1G(x) = 1 if x ∈ G, 1G(x) = 0 otherwise)
N(μ, σ2) a normal distribution with mean μ and variance σ2

lnN(μ, σ2) a log-normal distribution where μ and σ are the mean and
standard deviation of the variable’s natural logarithm.
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(1nd ed.). Cambridge University Press.

Prato, G. D. and J. Zabczyk (1992). Stochastic Equations in Infinte Dimensions (1nd ed.).
Cambridge University Press.

Protter, P. E. (2005). Stochastic Integration and Differential Equations (2nd ed.). Berlin:
Springer.

Revuz, D. and M. Yor (1999). Continuous martingales and Brownian Motion (3nd ed.). Berlin:
Springer.
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