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1. Introduction

Motivation and previous results. The subject of the present thesis is the maxi-
mization of the information divergence DE(P ) := D(P‖E) from an exponential family
E over a finite set. This problem was first formulated by Nihat Ay. The original
motivation was the quest for global variational principles that explain local learning
rules in neural networks, in particular Hebb’s rule. One such principle is the infomax
principle, suggested by Linsker [47] in 1988. Later, in 2002, Ay suggested a variation,
the IMI principle [6]. Both principles stipulate that a learning neural network tries to
maximize the mutual information or multiinformation between different parts of the
network, leading Ay to formulate the abstract mathematical problem to characterize
the maximizers of the information divergence from an exponential family [5]. Both
principles will be discussed in Section 5.1.
The case where the exponential family is the independence model E1 of a finite set

of random variables X1, . . . , Xn was treated by Ay and Knauf in [7]. In this case
the information divergence of the joint distribution P of X1, . . . , Xn is also called the
multiinformation I(X1; . . . ;Xn) := D(P‖E1). Assume that Xi takes values in the
finite set Xi of cardinality Ni, and assume that Nn = maxi Ni. Using the chain rule
for the entropy, Ay and Knauf observed that the multiinformation is bounded from
above by

∑n−1
i=1 log(Ni). This upper bound is tight if and only if

Nn ≥
∑

A⊆{1,...,n},S 6=∅
(−1)|S|−1 gcd ({Ni : i ∈ S}) , (1.1)

where gcd denotes the greatest common divisor. If this inequality holds, then there
is an easy description of the set of global maximizers. This covers, in particular, the
homogeneous case N1 = N2 = · · · = Nn and the case n = 2. The smallest numbers
that violate this inequality are n = 3, N1 = N2 = 3 and N3 = 2. Example 3.44 in
Section 3.7 of this thesis computes the global maximum of the multiinformation in
this case, which was unknown before.
In [51] Frantǐsek Matúš generalized the methods of [7] and derived inequalities that

yield upper bounds on the information divergence for arbitrary hierarchical models
(see Section 2.4 for the definition of a hierarchical model used in this thesis). If
these bounds are tight, then global maximizers can be found by solving combinatorial
problems. For example, the global maximum of the information divergence from the
pair interaction model of four random variables of cardinality N4 = N3 = N2 = N1 is
related to the existence of two orthogonal Latin squares of size N1. Since there are
no two orthogonal Latin squares of size two, the global maximum of the information
divergence was previously unknown in the case N1 = 2. This global maximum is
computed in Example 3.42 in Section 3.6.
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1. Introduction

The problem simplifies if it is possible to compute the rI-projection map P 7→ PE in
closed form. This is the case if the exponential family is convex, and this example is
treated by Matúš and Ay in [52]. They describe the set of local and global maximizers
and find criteria when the global maximizers are isolated. A special class of convex
exponential families, the partition exponential families, plays an important role in
Chapters 4 and 5. Other exponential families where a closed form of the rI-projection
map is known are the binary i.i.d. sequences and binomial models. In [49] Matúš
considers these one-dimensional examples and computes the global maximizers. The
results were recently generalized by Juŕıček to multinomial models [41]. Section 4.4
revisits the binary i.i.d models and the binomial models and finds the local maximizers.
In 2007, Matúš computed the full first order optimality conditions of DE [50], gen-

eralizing results of [5]. His analysis shows that all local maximizers P of DE satisfy
the projection property, that is, P equals the truncation of its rI-projection PE onto
E to its support:

P (x) =

{

1
PE(supp(P ))

PE(x), if P (x) > 0,

0, else.

This projection property will be discussed in Section 3.2; it is the basis for the theory
developed in Chapter 3.
Apart from the original motivation there are further reasons to study the maxi-

mization of the information divergence: In the case of an independence model of two
random variables X, Y , the information divergence is a natural measure of statistical
dependence of random variables, called the mutual information I(X;Y ) (this is a spe-
cial case of the multiinformation mentioned above). In [76] Jana Zvárová presented
axioms that such measures should satisfy; for example, such a measure should be nor-
malized to take values between zero and one. The mutual information itself does not
satisfy this constraint, but any upper bound of the form I(X;Y ) ≤ g(X;Y ) yields a
normalized measure ig(X;Y ) := I(X;Y )/g(X;Y ) (where some care has to be taken
if g(X;Y ) = 0). The function g determines under which conditions ig(X;Y ) = 1. For
the trivial choice g(X;Y ) = I(X;Y ) the measure ig is constant. Therefore, depending
on the applications one has in mind, further axioms should be required on ig, and such
axioms lead to conditions on g. Zvárová suggests to use Shannon’s inequality

I(X;Y ) ≤ min {H(X);H(Y )} ,

where H is the Shannon entropy. With this choice ig(X;Y ) = 1 if and only if X is a
function of Y or vice versa. The main problem discussed in this thesis corresponds to
the case where g depends only on the ranges of the random variables X and Y .
Similarly, the information divergence from the interaction models (see Section 2.4)

can be interpreted as a measure of complexity. One possible definition of complexity
states that a composite system is complex if its behaviour cannot be understood by
analyzing its subsystems independently. In [4] Ay proposed to formalize this idea by
measuring the distance of the state of the system from some suitably defined product
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state. In the special case that the distance measure is the information divergence and
the state of the system is described by a probability distribution this leads to the
multiinformation. Later, e.g. in [8, 42], the multiinformation was decomposed into
terms corresponding to different interaction orders. Upper bounds on the information
divergence can be used, as above, to define normalized measures of complexity. Infor-
mation about the maximizing probability distributions is useful when studying under
which conditions such normalized measures are maximal. Complexity measures will
be discussed in Section 5.1.

Both the infomax and the IMI principle take into account constraints which may
arise both from the structure of the network and from the environment in which the
network is situated. Therefore, it is necessary to study the constrained maximization
of the information divergence. Under appropriate constraints the problem is well-posed
even for exponential families on infinite sets. Such constrained maximization problems
also arise, for example, in information theory, where the capacity of a channel is the
supremum of the multiinformation between input and output under arbitrary input
distributions. The constrained problem is beyond the scope of this thesis. Apart from
some remarks in Section 5.1 it will be left as an open problem for the future.

A third motivation for maximizing the information divergence is the search for small
exponential families such that the maximum value of the information divergence is
bounded by a constant D. The idea is that such exponential families can approximate
arbitrary probability distributions well, up to a divergence of D. Yaroslav Bulatov
proposed that such exponential families are useful in machine learning (personal com-
munication). This problem is presented and studied in Section 5.2.

As with any optimization problem, a lot of insight can be gained from a first order
analysis. The points at which all existing two-sided directional derivatives of DE
vanish satisfy the projection property; and they are interesting in their own right.
For example, they play a special role in the empirical estimation of the information
divergence. If the true probability distribution satisfies the projection property, then
the asymptotic distribution is a generalized χ2-distribution. Otherwise the empirical
distribution is asymptotically normally distributed. This was observed for the case
of independence models by Milan Studený in [68]. The general case is presented in
Section 5.3.

New results and outline of this thesis. This thesis contributes mainly to the math-
ematical aspects of the maximization of DE . In Chapter 3 the first order optimality
conditions are analyzed and yield a reformulation of the problem: Finding the maxi-
mizers of DE is equivalent to finding the maximizers of a function DE that is defined
on the boundary of a polytope UN in the normal space of the exponential family E .
The main theorem, relating the two functions DE and DE , is Theorem 3.28. This
reformulation leads to both theoretical insights and new algorithms. Two examples
demonstrate the effectivity of these algorithms. For these examples it is important that
the optimization problem can be transformed into algebraic equations. This makes it
possible to use computer algebra systems and to automatize a large part of the calcu-
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1. Introduction

lations. The relation to algebraic equations was known before, see Remark 3.46, but,
as is often the case with algebraic equations, the running time of algebraic algorithms
depends crucially on the form of the equations. From an algebraic viewpoint, the
results of Chapter 3 lead to a significant reduction of the number of variables in these
equations.

A second emphasis of this thesis is on examples. Chapter 4 discusses mainly two
classes of exponential families: One-dimensional exponential families are easy to un-
derstand, since it is easy to parametrize the set of all one-dimensional exponential
families. Moreover, the problem can be reduced to a collection of one-dimensional
problems that involve the study of real functions on subintervals of the real line. This
is true both for the maximization of DE and the maximization of DE . A second im-
portant class of examples are the partition exponential families. These exponential
families have interesting properties with respect to the maximization of DE : The value
of the maximum is comparatively low, in a certain sense.

The last chapter is dedicated to applications. The connection to neural learning,
complexity and channel capacities can only be sketched in this thesis. For these ap-
plications it would be desirable to extend the results of Chapter 3 to account for
constraints, an undertaking that is beyond the scope of this thesis. The second ap-
plication, the search for small exponential families that can approximate arbitrary
probability distributions up to a fixed information divergence, can be directly studied
with the tools developed in this thesis. Section 5.2 contains some results on this prob-
lem. The results are of theoretical nature, but they yield ideas how to adjust machine
learning algorithms, like the minimax algorithm. These ideas will be tested in practise
in a future project.

This thesis is organized as follows: Chapter 2 reviews the basic properties of ex-
ponential families and the information divergence. Most results of that chapter are
rather well-known, but the presentation of some of the results, focusing on the implicit
description in Theorem 2.21, is novel. The chapter contains two sections on algebraic
exponential families and hierarchical models.

The heart of this thesis is contained in Chapter 3. After a review on the first order
optimality conditions of DE and related results in Section 3.1, a new interpretation
of these conditions is given in Section 3.2. This is used in Section 3.3 to show that
the global maximizers of DE are in bijection with the global maximizers of DE . In
Section 3.4 the first order optimality conditions of DE are computed. Section 3.5 shows
that the local maximizers and the critical points of DE can also be found by studying
the local maximizers and critical points of DE . Section 3.6 discusses how the critical
equations can be solved systematically, using the help of computer algebra systems in
the case where E is algebraic. Section 3.7 proposes a different algorithm, which uses
the projection property of local maximizers of DE more directly. Sections 3.6 and 3.7
contain detailed discussions of two examples to which the proposed algorithms have
been applied.

Chapter 4 is dedicated to examples. In addition to results for concrete exponential
families it also presents useful general methods to treat the problem. Section 4.1
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studies low-dimensional exponential families, with an emphasis on the one-dimensional
case. The partition models, introduced in Section 4.2, are convex exponential families
and have a low global maximum value of DE . The results of Chapter 3 imply that
maxDE ≥ log(2), unless E contains all strictly positive probability measures. The
exponential families where this bound is achieved are found in Section 4.3; it turns
out that the minimal such exponential families are partition models. Partition models
also appear in the study of symmetries. The set of all probability measures that are
symmetric under the action of a given group of permutations of the ground set X
is a partition model, and exponential families that consist of symmetric probability
measures are subfamilies of partition models. Section 4.4 illustrates how to exploit
this fact using the example of the binomial models and binary i.i.d. models.
Chapter 5 is dedicated to the possible applications: Section 5.1 explains the con-

nection to learning theory and complexity measures and comments on the importance
of generalizing the results from this thesis to the constrained maximization of the
information divergence. Section 5.2 studies small exponential families with bounded
maximum information divergence. Many such exponential families that are optimal
in a certain sense are partition models. The asymptotic behaviour of the empirical
information divergence is analyzed in Section 5.3. It is shown that the type of the
asymptotic distribution changes if the underlying distribution satisfies the projection
property.

Notation and conventions. In this work only probability spaces over finite sets are
discussed (with one exception: Section 5.3 discusses a countable family of independent
identically distributed random variables with values in a finite set X ). Therefore,
technical details concerning, for example, null sets or the sigma algebra, are ignored.
The sigma algebra on a finite set is always the full power set.
The cardinality of a set X is denoted by |X |. For any natural number n ∈ N the

set {1, . . . , n} is denoted by [n]. Let X be a finite set of cardinality |X | > 1. The set
of all functions on X with values in a set V is V X . The set of real numbers is denoted
by R, the set of nonnegative real numbers by R≥. The set of complex numbers is C,
and C× is the multiplicative group of the field C. The set of integers is denoted by Z,
and the set of natural numbers is N. The floor function ⌊·⌋ and the ceiling function
⌈·⌉ are defined for all a ∈ R via

⌊a⌋ = max{z ∈ Z : z ≤ a} and ⌈a⌉ = min{z ∈ Z : z ≥ a}.

A real function µ ∈ RX is also called a (signed) measure. RX is a vector space with
a basis {δx}x∈X given by the point measures

δx(y) =

{

1, if x = y,

0, else.

The components of µ ∈ RX are written as either µ(x) or µx. Real functions f, g ∈ RX

can be multiplied pointwise, such that (fg)(x) = f(x)g(x). Furthermore, RX has a
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1. Introduction

canonical scalar product

〈u, v〉 =
∑

x∈X
u(x)v(x).

This scalar product defines orthogonal complements V ⊥ of subsets V ⊆ RX .
If Y ⊆ X , then µ(Y) :=

∑

x∈Y µ(x). A measure µ 6= 0 is positive if all its components
are nonnegative, i.e. µ(x) ∈ R≥ for all x ∈ X . It is strictly positive if all components are
positive. Arbitrary nonzero measures µ 6= 0 can be uniquely decomposed µ = µ+−µ−

as a difference of two positive measures µ+, µ− such that µ+µ− = 0. A measure µ
is normalized if µ(X ) = 1. A normalized positive measure is a probability measure.
The set of all probability measures on X is denoted by P(X ). The set of all strictly
positive probability measures is denoted by P(X )◦.
The following convention from probability theory is useful: If u ∈ RX , then equal-

ities and inequalities like u = 0, u 6= 0, u < 0, and so on, are interpreted as their
corresponding solution sets when they appear as the argument of a measure. For
example, µ(u 6= 0) =

∑

x:u(x) 6=0 µ(x).

Any map φ : X → Z induces a natural map φ∗ : RZ → RX by pullback, such that
φ∗v(x) = v(φ(x)). If φ is a surjection, then φ∗ is an injection, so RZ can be considered
as a subset of RX . There is also a pushforward φ∗, defined by φ∗v(A) = v(φ−1(A)).
For example, for any subset Y ⊆ X the set of functions RY on Y can be seen as a
subset of RX , with v(x) = 0 for all v ∈ RY and x ∈ X \ Y .
The support of a measure µ on X is defined as supp(µ) = {x ∈ X : µ(x) 6= 0}. If

supp(µ) = X , then µ has full support. The restriction of µ to a subset Y ⊆ X is
the measure µ|Y ∈ RY given by µ|Y(x) = µ(x) for all x ∈ Y . If a positive measure
µ on X satisfies µ(Y) > 0, then the truncation of µ to Y is the probability measure
µY = 1

µ(Y)
µ|Y ∈ P(Y) ⊆ P(X ) satisfying

µY(x) =

{

1
µ(Y)

µ(x), if x ∈ Y ,

0, else.

If P ∈ P(X ) satisfies P (Y) > 0, then the truncation PY is also written P (·|Y) and
called the conditional probability of P given Y .
The constant function (1, . . . , 1) ∈ RX is denoted by 1. It is also called the uni-

form measure on X . The uniform distribution is 1
|X |1 = 1X . More generally, the

characteristic function 1Y of a subset Y ⊆ X is

1Y(x) =

{

1, if x ∈ Y ,

0, else.

All logarithms are natural logarithms. This convention plays a role only in few parts
of this thesis: In Section 3.6 the fact that different branches of the logarithm differ
by an integral multiple of 2πi is used. Furthermore, the approximate numerical values
given in Sections 3.6 and 3.7 as well as the scale for the various figures is given in
units corresponding to the natural logarithm (such units are sometimes called nits , as
opposed to bits).
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2. Exponential families

The purpose of this chapter is to define exponential families and to collect some basic
properties and tools. An early geometric treatment on exponential families is [10], a
more detailed textbook is [15]. Exponential families also play an important role in
information geometry, see [3]. The most general results about closures and boundaries
of exponential families can be found in a series of papers by Csiszár and Matúš,
see [21]; earlier results are due to Chentsov [16]. The first three chapters of [20] are
a short introduction to the relation between exponential families and the information
divergence.

Some of the properties presented in this chapter are well-known. Unfortunately,
there exists no reference including all the necessary results. Furthermore, the nota-
tion varies from one author to the next, and sometimes also the definitions. Finally,
in this thesis only the case of a finite ground set will be needed, which leads to a con-
siderable simplification of many results. For these reasons most proofs are included in
a generality adapted to the applications in mind.

Section 2.1 defines exponential families and relates them to the information diver-
gence. The proofs of the results on the closure and the boundary in Section 2.2 are
organized such as to highlight the usefulness of the implicit representation, given in
Theorem 2.21. This result seems to be new in this form and was published in [61]. The
implicit representation generalizes the fact that algebraic exponential families have an
implicit description by polynomials, a result due to Geiger, Meek and Sturmfels [31].
This algebraic result is presented in Section 2.3 together with an overview of other
algebraic notions that are used in this thesis. The most important class of algebraic
exponential families are the hierarchical models, discussed in Section 2.4.

2.1. Exponential families, the convex support and the

moment map

Throughout this chapter let X be a finite set of cardinality N .

Definition 2.1. Let ν be a strictly positive measure on X . Let T ⊆ RX/R1 be a
linear subspace of the vector space of functions on X modulo the constant functions,
and write T̃ = {f ∈ RX : f + R1 ∈ T }. The exponential family Eν,T with reference
measure ν and tangent space T consists of all probability measures on X of the form

Pθ(x) =
νx
Zθ

exp (θ(x)) , (2.1)

7



2. Exponential families

where θ ∈ T̃ and Zθ ensures normalization. T̃ is called the extended tangent space
of E . The orthogonal complement N = T̃ ⊥ (with respect to the canonical scalar
product on RX ) is called the normal space of Eν,T .
The topological closure of Eν,T is denoted by Eν,T . The boundary of Eν,T is Eν,T \Eν,T .

Remark 2.2. The reason that T is defined as a subspace of RX/R1 is that the effect
of 1 itself is cancelled by the normalization condition. To be precise, if θ − θ′ ∈ R1,
then Pθ = Pθ′ , and conversely. Therefore, one can always assume Zθ = 1 by choosing
θ correspondingly.

Remark 2.3. The restriction that ν is strictly positive can be relaxed. However, if
νx = 0 for some x ∈ X , then P (x) = 0 for all P ∈ Eν,T , so for most considerations x can
be removed from X . Furthermore, in this case the maximum value of the information
divergence, studied in the next chapter, is always infinite, see Proposition 2.14.
Sometimes it is convenient to require that ν be a probability measure, but in other

cases it simplifies the notation to allow arbitrary reference measures. For example, in
the case of a uniform reference measure a factor of 1

|X | is needed to normalize 1.

Remark 2.4. The nomenclature used in this thesis is slightly unorthodox. Usually, an
exponential family E is defined using an explicit parametrization of E with the help of
a generating set of T̃ as in (2.2) below. The notions of (extended) tangent space and
normal space are introduced here in order to allow a formulation of the results that is
invariant from the choice of a parametrization. The nomenclature is justified by the
following considerations:
The differential geometric tangent space of E in a point P ∈ E equals the image of T̃

under the differential of θ 7→ Pθ. Computing the differential of (2.1) (cf. Section 5.3)
shows

TP =

{

fP : f ∈ T̃ ,
∑

x

f(x)P (x) = 0

}

.

The natural map T → TP , f+R1 7→ (f−∑x f(x)P (x))P is an isomorphism, justifying
the name tangent space for T . In particular, the dimension of E (as a manifold) equals
dim T = dim T̃ − 1.

If X is infinite (and if the notion of an exponential family is suitably generalized),
then there are different notions of closure for an exponential family, see [21]. In
the finite case, they all agree. A similar remark applies to the setting of quantum
statistics, see [71]. Since the maximal value of the function DE that will be studied
in the next chapter is usually infinite if X is infinite, only the finite case is considered
here. Possible generalizations to the quantum case are beyond the scope of this thesis.
Eν,T can be parametrized by choosing functions {ai}hi=1 ⊂ RX such that the ai + R1

generate T . It is convenient to arrange this generating set as rows in a matrix
A ∈ Rh×X such that Ai,x = ai(x). Then Eν,T consists of all probability measures
on X of the form

Pϑ(x) =
νx
Zϑ

exp

(

h
∑

i=1

ϑiAi,x

)

, (2.2)

8



2.1. Exponential families, the convex support and the moment map

where ϑ ∈ Rh. Alternatively, the monomial parametrization

Pξ(x) =
νx
Zξ

h
∏

i=1

ξ
Ai,x

i (2.3)

can be used, where ξ ∈ Rh, ξi > 0 for all i (the name comes from the fact that if
all entries Ai,x are nonnegative integers, then the mapping ξ 7→ Pξ(x) is indeed an
algebraic monomial for all x ∈ X , cf. Section 2.3). Conversely, using either (2.2)
or (2.3), an exponential family Eν,A can be associated to any reference measure ν and
to any matrix A ∈ Rh×X .

Definition 2.5. Any matrix A ∈ Rh×X such that Eν,T = Eν,A is called a sufficient
statistics of Eν,T .
For an interpretation of the name “sufficient statistics” and its meaning outside of

the theory of exponential family see [10] and [17].
The following lemma follows easily from the definitions:

Lemma 2.6. Let A,A′ ∈ Rh×X and let ν, ν ′ ∈ RX be strictly positive measures. Then
Eν,A = Eν′,A′ if and only if the following two conditions are satisfied:

• The probability measure 1∑
x∈X

νx
ν lies in Eν′,A′.

• The row space of A equals the row space of A′ modulo 1.

Definition 2.7. Let Eν,A be an exponential family. The linear map

πA : RX → Rh, v 7→ Av

corresponding to the sufficient statistics A is called the moment map. The image of
P(X ) under the moment map is a polytope MA, called the convex support of Eν,A.
Every x ∈ X can be identified with the point Ax ∈ MA given by the corresponding

column of A. The polytope MA equals the convex hull of these points. Therefore,
every vertex of MA is of the form Ax for some x ∈ X ; but in general not every point Ax

needs to be a vertex. See Appendix A.1 for a summary of basic facts about polytopes.
The polytope MA is, up to affine equivalence, independent of the choice of A (see

Remark 2.23 for an invariant characterization of the face lattice of MA):

Lemma 2.8. Let A ∈ Rh×X and A′ ∈ Rh′×X be two matrices. If Eν,A = Eν′,A′ for some
reference measures ν, ν ′, then there are linear maps B : Rh → Rh′

, C : Rh′ → Rh and
vectors b ∈ Rh′

, c ∈ Rh such that b+ BAx = A′
x and c+ CA′

x = Ax for all x ∈ X . In
particular, MA and MA′ are affinely equivalent. Conversely, if such affine maps exist,
then Eν,A = Eν,A′ for all reference measures ν.

Proof. By Lemma 2.6 every row ai of A can be written as ai =
∑h′

j=1 bi,ja
′
j + bi1. Let

B be the matrix (bi,j)i,j and let b be the vector (bi)i; then Ax = BA′
x+ b for all x ∈ X .

The matrix C and the vector c are defined similarly, by exchanging the roles of A
and A′. The last statement follows from Lemma 2.6.

9



2. Exponential families

For some applications it is advantageous to choose A such that the constant function
1 ∈ RX is contained in the row space of A. In this case T̃ equals the row space of A,
the normal space is N = kerA, and dim(Eν,T ) = rank(A)− 1. On the other hand, one
may choose the rows {ai}hi=1 such that the row space of A is a vector space complement
of R1 in T̃ . This reduces the number of parameters, such that rank(A) = dim(Eν,A).

Lemma 2.9. Let A ∈ Rh×X . The following statements are equivalent:

(i) The row space of A contains 1.

(ii) N = kerA = ker πA.

(iii) Every u ∈ kerA satisfies
∑

x∈X u(x) = 0.

(iv) The polytope MA lies in a hyperplane in Rh that does not contain the origin.

(v) There is a dual vector ℓ ∈ (Rh)∗ such that ℓ(p) = 1 for all p ∈ MA.

Proof. The fact that the first two statements are equivalent was already remarked
before the statement of the lemma. kerA is the orthogonal complement of the row
space of A. (i) says that the constant vector 1 is orthogonal to kerA; so the first two
statements are equivalent to (iii). The equivalence of the last two statements follows
directly from the definition of a hyperplane.
If (v) holds, then 0 = ℓ(Au) =

∑

x∈X ℓ(Ax)u(x) =
∑

x∈X u(x), so (iii) holds.

Conversely, if (i) holds, then write 1 as a linear combination
∑h

i=1 ℓiai of the rows ai
of A. Then ℓ(ϑ) :=

∑h
i=1 ℓiϑi defines a dual vector ℓ ∈ (Rh)∗ satisfying ℓ(Ax) = 1 for

all x ∈ X . This implies (v).

Definition 2.10. An exponential subfamily of an exponential family E is an exponen-
tial family E ′ such that E ′ ⊆ E .

Lemma 2.11. If E ′ is an exponential subfamily of E , then any reference measure of E ′

is a reference measure of E , the tangent space of E ′ is a linear subspace of the tangent
space of E , and the convex support of E ′ is an affine image of the convex support of E .

Proof. If ν is a reference measure of E ′, then 1
ν(X )

ν ∈ E ′ ⊆ E . This implies the first

statement. The tangent spaces T ′ and T of E ′ and E satisfy

T ′ =

{(

log
P (x)

Q(x)

)

x∈X
: P,Q ∈ E ′

}

⊆
{(

log
P (x)

Q(x)

)

x∈X
: P,Q ∈ E

}

= T .

Let A′ ∈ Rh′×X and A ∈ Rh×X be sufficient statistics of E ′ and E . Then any row a′i of
A′ is a linear combination a′i = bi +

∑

j Bi,jaj of 1 and the rows aj of A. Therefore

MA′ = b+ BMA, with b = (bi)i ∈ Rh′

and B = (Bi,j)i,j ∈ Rh′×h.

The fibres of the restriction of πA to P(X ) are themselves important statistical
models.

10



2.1. Exponential families, the convex support and the moment map

Definition 2.12. A linear family on a set X is the intersection of P(X ) with an affine
subspace of RX . Let P ∈ P(X ). If E is an exponential family on X with normal space
N , then write NP for the linear family

NP := {Q ∈ P(X ) : P −Q ∈ N} .

Theorem 2.16 will show that there is a deep relation between exponential families
and their corresponding linear families. This relation is best understood with regard
to the information divergence:

Definition 2.13. The information divergence of two positive measures µ, ν on X is
defined as

D(µ‖ν) =
∑

x∈X
µ(x) log

(

µ(x)

ν(x)

)

,

with the convention that 0 log 0 = 0 log(0/0) = 0. If there exists x ∈ X such that
ν(x) = 0 and µ(x) 6= 0, then D(µ‖ν) = +∞. The information divergence of a positive
measure µ from an exponential family E is

DE(µ) := D(µ‖E) = inf
Q∈E

D(µ‖Q).

The information divergence is also known under the name Kullback-Leibler diver-
gence or relative entropy . It is most commonly used when µ and ν are probability
measures. It has the following properties:

Proposition 2.14. Let µ and ν be two positive measures on X . Then:

(i) D(aµ‖bν) = aD(µ‖ν) + aµ(X ) log(a/b) for all a, b > 0.

(ii) D(µ‖ν) = ∞ if and only if supp(ν) 6⊆ supp(µ).

(iii) The function (µ, ν) 7→ D(µ‖ν) is convex. For fixed ν it is strictly convex in µ.

If P and Q are two probability measures on X , then:

(iv) D(P‖Q) ≥ 0, and D(P‖Q) = 0 if and only if P = Q.

Proof. (i) and (ii) follow directly from the definition. (iii) and (iv) are consequences
of the log sum inequality, which is a special case of Jensen’s inequality, see Chapters 2.6
and 2.7 in [17].

The information divergence is not continuous (because limp→0,q→0
p
q
does not exist),

but the following holds:

Lemma 2.15. Let E ⊆ P(X )◦. The function µ 7→ DE(µ) is continuous.

Proof. See [5, Lemma 4.2].

The following theorem sums up the main facts about exponential families and the
information divergence:

11



2. Exponential families

Theorem 2.16. Let E be an exponential family on X with normal space N and ref-
erence measure ν, and let P ∈ P(X ). Then there exists a unique probability measure
PE ∈ E ∩ NP . Furthermore, PE has the following properties:

(i) For all Q ∈ E the Pythagorean identity

D(P‖Q) = D(P‖PE) +D(PE‖Q). (2.4)

holds. In particular, D(P‖E) = D(P‖PE).

(ii) PE satisfies
D(P‖E) = D(P‖ν)−D(PE‖ν). (2.5)

(iii) D(PE‖ν) = min {D(Q‖ν) : Q ∈ NP}.

Proof. Corollary 3.1 of [20] proves existence and uniqueness of PE as well as the
Pythagorean identity (2.4) for all probability measures P and all probability mea-
sures Q ∈ E . Statement (ii) follows from (i) and Proposition 2.14 (i). If Q ∈ NP ,
then NQ = NP . Hence (ii) implies D(Q‖ν) = D(Q‖E) +D(PE‖ν) ≥ D(PE‖ν).

Definition 2.17. The probability measure PE in Theorem 2.16 is called the (gener-
alized) reverse information projection or rI-projection of P onto E .

Remark 2.18. The attribute “generalized” is often used to distinguish the case that
PE lies in the boundary E \ E , see [22]. This distinction is important in statistical
applications, since in this case there are no parameters ϑ such that PE = Pϑ, and this
must be taken care of when computing PE . In this work this problem will play no big
role, and the attribute “generalized” will be omitted.

Remark 2.19. In the important case that ν = 1 the function D(P‖ν) equals minus
the (Shannon) entropy :

H(P ) := −
∑

x∈X
P (x) logP (x) = −D(P‖1).

Remark 2.20. In general there is no analytical formula for the rI-projection PE of a
probability measure P . There are, however, relatively fast algorithms to compute PE .
Most of them are iterative algorithms, like iterative scaling (see [23] and references
therein; see also [20]). An implementation for hierarchical models is given by cipi [67].

2.2. The closure of an exponential family

Recall that the boundary of an exponential family E is defined as E \ E . Probability
measures in the boundary are not reachable by the canonical parametrization (2.2).
There are three possibilities to work around this problem: First, Theorem 2.16 implies
that the restriction of the moment map πA is a bijection E 7→ MA. Therefore, E can be
parametrized with the help of the polytope MA. Unfortunately, there are no analytic

12



2.2. The closure of an exponential family

formulas for this parametrization in general, see Remark 2.20. Second, it is possible to
choose an appropriate sufficient statistics and allow the parameters in the monomial
parametrization (2.3) to become zero. This approach is discussed in [61]. The third
possibility is to work with an implicit description of E .
It is convenient to use the following notation: For any two functions u, p ∈ RX

define
pu :=

∏

x∈X
p(x)u(x),

whenever this product is well defined (e.g. when u and p are both non-negative). Here
00 = 1 by convention. Any u ∈ RX can be decomposed uniquely into a positive part
u+ ∈ RX

≥ and a negative part u− ∈ RX
≥ such that u = u+ − u− and supp(u+) ∩

supp(u−) = ∅.

Theorem 2.21. Let E be an exponential family with normal space N and reference
measure ν. A probability measure P on X belongs to E if and only if P satisfies

P u+

νu−

= P u−

νu+

, for all u ∈ N . (2.6)

The proof is based on a lemma and the following definition:

Definition 2.22. Let V be a linear subspace of RX . A subset Y ⊆ X is facial (with
respect to V) if there exists a vector θ0 ∈ V and constants a < b such that

θ0(y) = a for all y ∈ Y , θ0(z) ≥ b for all z /∈ Y . (2.7)

Y is facial with respect to an exponential family E if Y is facial with respect to the
extended tangent space T̃ of E . In this case one may assume a = 0 and b = 1 since
1 ∈ T̃ .

Remark 2.23. Let A ∈ Rh×X be a sufficient statistics of an exponential family E . A
subset Y ⊆ X is facial (with respect to E) if there exists a vector τ ∈ Rh and constants
a < b such that

∑

i

τiAi,y = a for all y ∈ Y ,
∑

i

τiAi,z ≥ b for all z /∈ Y .

This can be rephrased as follows: A set Y ⊆ X corresponds to a collection of points
in MA. Let F be the smallest face of the polytope MA that contains all these points.
Then Y is facial if and only if Y = {x ∈ X : Ax ∈ F}. If A satisfies the statements of
Lemma 2.9, then one may additionally require a = 0 and b = 1.

Lemma 2.24. If P satisfies (2.6), then supp(P ) is facial with respect to E .

Proof. If Y := supp(P ) is not facial, then the intersection of the extended tangent
space T̃ and the set B := {θ ∈ RX : θ(x) = 0 for x ∈ Y , θ(x) ≥ 1 for x /∈ Y} is
empty. Consider the projection θ 7→ θ + T̃ along T̃ . The image of T̃ is the origin
0 ∈ RX/T̃ , and the image of B is a polyhedral set B̃. By assumption 0 /∈ B̃. By
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2. Exponential families

Theorem A.3 there exists a linear form ℓ : RX/T̃ → R that strictly separates B̃ and
0. Composition with the projection yields a vector u ∈ RX and c ∈ R such that
∑

x∈X u(x)θ(x) < c <
∑

x∈X u(x)θ′(x) for all θ ∈ T̃ and all θ′ ∈ B. If θ ∈ RX is not
orthogonal to u, then limλ→±∞

∑

x∈X θ(x)λu(x) → ±∞. Hence u ∈ N and c > 0.

If u(y) < 0 for some y ∈ X , then limλ→∞
(

∑

x∈X\(Y∪{y}) u(x) + u(y)λ
)

= −∞ < c.

Hence u(x) > 0 for all x /∈ Y . But this contradicts (2.6), since the left hand side
of (2.6) vanishes, while the right hand side is greater than zero.

Proof of Theorem 2.21. For any probability measure P on X let P 1(x) := 1
Z

P (x)
νx

,

where Z :=
∑

x∈X
P (x)
νx

. Then P ∈ E if and only if P 1 ∈ E1,A; and P satisfies (2.6) if

and only if P 1 satisfies the same equations with ν replaced by 1. Therefore it suffices
to consider the case ν = 1.
Equations (2.6) hold on E : By continuity, it is enough to check this on E . On E this

is equivalent to P u = 1 for all u ∈ N , so the statement follows from the calculation

P u
θ =

(

1

Zθ

)

∑
x u(x)

exp

(

∑

x∈X
θ(x)u(x)

)

= 1,

using
∑

x u(x) = 0 =
∑

x θ(x)u(x).
For the other direction, suppose that P satisfies (2.6). Let Y := supp(P ), and define

l ∈ RY via l(x) = log(P (x)) for all x ∈ Y . Suppose that l 6= θ|Y for all θ ∈ T̃ . Then
there exists v ∈ RY ⊆ RX such that

∑

x∈Y l(x)v(x) 6= 0 and 0 =
∑

x∈Y v(x)θ(x) =
∑

x∈X v(x)θ(x) for all θ ∈ T̃ , whence v ∈ N . But then

0 6=
∏

x∈Y
P (x)v

+(x) −
∏

x∈Y
P (x)v

−(x) =
∏

x∈X
P (x)v

+(x) −
∏

x∈X
P (x)v

−(x),

in contradiction to the assumptions.
By Lemma 2.24 the set Y is facial. Choose θ0 ∈ T̃ as in (2.7) with a = 0 and b = 1,

and let θt := θ + tθ0, where θ ∈ T̃ satisfies l = θ|Y . Then limt→−∞ Pθt(x) = 0 for
x /∈ Y , and limt→−∞ Pθt(x) = P (x) for x ∈ Y , proving P ∈ E .
The implicit characterization of E in Theorem 2.21 consists of infinitely many equa-

tions. The following result shows that a finite subset of these equations suffices. Such
a finite subset can be found using a circuit basis, which consists of precisely one circuit
vector for every circuit, see Section A.2. A circuit determines its corresponding circuit
vector up to a multiple. On the other hand, replacing u ∈ N by a nonzero multiple
replaces (2.6) by an equation which is equivalent over the non-negative real numbers.
This means that the systems of equations corresponding to different circuit bases C
are all equivalent.

Theorem 2.25. Let E be an exponential family, and let C be a circuit basis of its
normal space N . Then E equals the set of all probability distributions P that satisfy

P c+νc− = P c−νc+ for all c ∈ C. (2.8)
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2.2. The closure of an exponential family

Proof. Again, one may assume that ν = 1. It suffices to show: If P ∈ P(X ) sat-
isfies (2.8), then P satisfies pu

+

= pu
−

for all u ∈ N . By Lemma A.6 there are
circuit vectors ci such that u =

∑l
i=1 ci, where the sum is sign-consistent. This means

u+ =
∑r

i=1 c
+
i and u− =

∑l
i=1 c

−
i . If P satisfies (2.8), then P satisfies P c+i − P c−i = 0.

Using the equality

P u+ − P u−

= P
∑l

i=2
c+i

(

P c+
1 − P c−

1

)

+
(

P
∑l

i=2
c+i − P

∑l
i=2

c−i

)

P c−
1 ,

the theorem follows by induction on l.

Definition 2.26. Let E1, . . . , Ec ⊆ P(X ). The mixture of E1, . . . , Ec is the set of
probability measures

{

P =
c
∑

i=1

λiPi : P1 ∈ E1, . . . , Pc ∈ Ec and λ ∈ Rc
≥,

c
∑

i=1

λi = 1

}

.

Corollary 2.27. Let E be an exponential family with normal space N . Let Y ⊂ X .
If every circuit vector c ∈ N satisfies supp(c) ⊆ Y or supp(c) ⊆ X \ Y, then E equals
the mixture of E ∩P(Y) and E ∩P(X \ Y).

Proof. By Theorem 2.25, a probability measure P ∈ P(X ) lies in E if and only if its
truncations PY and PX\Y lie in E ∩P(Y) and E ∩P(X \ Y), respectively.

The corollary can be reformulated as follows, using terminology from matroid the-
ory: If X1, . . . ,Xc are the connected components of the matroid of N , then E equals
the mixture of E1, . . . , Ec, where Ei = E ∩ P(Xi)

◦ is an exponential family on Xi for
i = 1, . . . , c.
The statement of Lemma 2.24 can be reversed:

Lemma 2.28. Let PE be the rI-projection of P ∈ P(X ) onto an exponential fam-
ily E . Then supp(PE) equals the smallest facial subset of X containing supp(P ). In
particular, a set Y ⊆ X equals the support of some Q ∈ E if and only if Y is facial.

Proof. supp(PE) contains supp(P ), because otherwise D(P‖PE) = ∞. Since the inter-
section of faces of a polytope is again a face, the intersection of facial subsets is again
facial. Hence there exists a smallest facial set Y ⊆ X containing supp(P ). Choose
θ0 ∈ T̃ and a < b as in Definition 2.22. Let x ∈ X \Y . Any Q ∈ P(X ) with Q(x) > 0
satisfies

∑

x θ0(x)Q(x) > a =
∑

x θ0(x)P (x), and hence P − Q /∈ N . Therefore,
supp(PE) ⊆ Y . Since supp(PE) is facial by Lemma 2.24 the assertion follows.

Theorem 2.29. Let E be an exponential family on X with reference measure ν and
extended tangent space T̃ . Let Y ⊂ X be facial, and let EY be the set of all probability
distributions P in E such that supp(P ) = Y. Let 1Y : X → {0, 1} be the characteristic
function of Y. Then EY consists of all probability measures of the form

PY
θ (x) =

1Y(x)νx
ZY

ϑ

exp(θ(x)), (2.9)

where θ ∈ T̃ . In other words, EY equals the set of truncations of E to Y.
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2. Exponential families

The proof makes use of the following lemma, which can also be generalized to a
characterization of support sets; see [61].

Lemma 2.30. Let P ∈ E and u ∈ N . Then supp(u+) ⊆ supp(P ) if and only if
supp(u−) ⊆ supp(P ).

Proof. Let Y = supp(P ). If supp(u) 6⊆ Y , then take x ∈ supp(u) \ Y . Assume
u(x) > 0. Plugging P and u into (2.6) the left hand side vanishes. Therefore the right
hand side vanishes, too, and so there exists y ∈ supp(u) \ Y such that u(y) < 0.

Proof of Theorem 2.29. As above, assume ν = 1 without loss of generality. By Theo-
rem 2.21 a probability measure P with support Y belongs to E if and only if P satisfies
P u+

= P u−

for all u ∈ N . By Lemma 2.30, if u ∈ N satisfies supp(u) 6⊆ Y , then
P u+

= 0 = P u−

. It follows that a probability measure P with support Y belongs to
E if and only if P satisfies P u+

= P u−

for all u ∈ NY := N ∩ RY . By Theorem 2.21
these equations characterize EY as an exponential family over Y with normal space
NY . Clearly T̃Y := {ϑ|Y : ϑ ∈ T̃ } is orthogonal to NY . Conversely, N⊥

Y = N⊥+RX\Y ,

so if θ′ ∈ RY is orthogonal to NY , then θ′ = θ + θ2 = θ|Y , where θ ∈ N⊥ = T̃ and
θ2 ∈ RX\Y . Therefore, EY has the parametrization (2.9).

2.3. Algebraic exponential families

For the basic definitions of commutative algebra and algebraic geometry the reader is
referred to [19].

Definition 2.31. An exponential family E is called algebraic if its extended tangent
space T̃ is spanned (as a real vector space) by T̃Z := T̃ ∩ ZX . In other words, E is
algebraic if and only if it has an integer valued sufficient statistics matrix A ∈ Zh×X .
Equivalently, E is algebraic if and only if its normal space N is spanned by NZ :=
N ∩ ZX .

The equivalence follows from elementary facts about homogeneous systems of linear
equations with integer coefficients: Namely, the solution space of such a system has
a basis that consists of integral vectors. As a consequence of this, algebraic expo-
nential families can be described as the intersection of an algebraic subvariety of CX

with P(X )◦:

Theorem 2.32 (Geiger, Meek, Sturmfels [31]). Let E be an algebraic exponential
family with normal space N . A probability distribution P ∈ P(X ) belongs to E if and
only if P satisfies the polynomial equations

P u+

νu−

= P u−

νu+

, for all u ∈ NZ. (2.10)
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2.3. Algebraic exponential families

Proof. This theorem is an easy consequence of Theorem 2.25 and the following fact:
If the vector space N has an integral basis, then N has a circuit basis that consists of
integer vectors. The reason is that in this case the set of circuit vectors belonging to a
given circuit Y ⊆ X can be characterized by linear equations with integer coefficients.

This connection between exponential families and algebraic geometry is one of the
most fruitful topics in the relatively new field of algebraic statistics, which tries to
systematically analyze statistical problems with the help of algebraic methods, see [57]
and [26]. Algebraic exponential families are particularly nice, because many questions
about algebraic exponential families can be answered by solving algebraic equations.
This means that the tools of commutative algebra and algebraic geometry are available
to study algebraic exponential families. For example, the rI-projection PE of some P ∈
P(X ) is characterized by the algebraic conditions PE ∈ E and PE ∈ NP . Unfortunately,
it is still not possible to find an analytical expression for the map P 7→ PE : For
example, Proposition 3 in [31] shows that, in general, the rI-projection has no closed
form in terms of radicals.
There are a lot of specialized algorithms and computer algebra systems for commu-

tative algebra, like Singular [34] and Macaulay2 [32]. Sections 3.6 and 3.7 contain
two examples that show the power of computer algebra systems.
In the following assume that N is spanned by NZ. Polynomial equations are easier

to understand over an algebraically closed field. For this reason, equations (2.10) will
be considered as complex polynomials in the following. Denote by C[P (x) : x ∈ X ]
the polynomial ring with one variable P (x) for each x ∈ X . For any subset B ⊆ NZ

let Iν(B) be the ideal in C[P (x) : x ∈ X ] generated by the polynomials

P u+

νu− − P u−

νu+

, for all u ∈ B.

For all algebraic considerations the reference measure plays only a secondary role:
There is a linear coordinate transformation φ : u(x) 7→ u(x)

νx
such that φ−1(Iν(B)) =

I1(B) (this fact was used already several times, e.g. in the proof of Theorem 2.21).

Remark 2.33. Elements from an exponential family also satisfy
∑

x P (x) = 1. This
equation can be seen as a normalization condition. The ideal Iν(B) is generated by
homogeneous polynomial equations. This means that any positive solution µ ∈ RX

≥
to Iν(B) induces a normalized positive solution 1

µ(X )
µ ∈ P(X ). Formally, the ideal

Iν(B) defines a projective variety, and the condition
∑

x P (x) 6= 0 defines an affine
subvariety that contains the closure of the exponential family. For some theoretical
considerations it is better to work in this projective picture, but in applications it is
convenient to use the normalization condition

∑

x P (x) = 1 to eliminate one of the
variables P (x).

The ideals Iν(B) are binomial ideals, i.e. they are defined by polynomials that have
only two terms. Binomial ideals are special in many ways, and there are specialized
algorithms to deal with them, due to the fact that a lot of algebraic properties of
binomial ideals can be interpreted combinatorially. There is a specialized Macaulay2
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2. Exponential families

package for computations with binomial ideals [43]. The theory of binomial ideals
started with the paper [27] of Eisenbud and Sturmfels. One of the main results is the
characterization of binomial prime ideals. The following construction is needed:

Definition 2.34. Let X be a finite set. A subgroup of ZX is called a lattice. A lattice
L is saturated if there exists a vector space N ⊆ RX such that L = NZ := N ∩ ZX .
A character of a lattice L is a group homomorphism from L into the multiplicative
group C× of C.

Let Y ⊆ X , let L ⊆ ZY be a lattice, and let ρ : L → C× be a character. For any
subset B ⊆ L let IY,L,ρ(B) ⊂ C[P (x) : x ∈ X ] be the ideal generated by

P (x), for all x /∈ Y ,

P v+ − ρ(v)P v− , for all v ∈ B,

Denote IY,L,ρ(L) by IY,L,ρ. Let ρ1 : v 7→ 1 be the trivial character. The ideal IY,L,ρ1 is
also called the lattice ideal of L. If ρ is an arbitrary character, then the linear change
of coordinates φ defined above transforms IY,L,ρ(C) into a lattice ideal.

Theorem 2.35 (Eisenbud, Sturmfels [27]). A binomial ideal I ⊆ C[P (x) : x ∈ X ] is
prime if and only if it is of the form I = IY,L,ρ, where L ⊆ ZY is a saturated lattice.

Proof. See [27, Corollary 2.6].

It follows from Theorem 2.35 that Iν(NZ) is a prime ideal: In this case Y = X ,
L = NZ, and ρ is given by ρ(v) = νv. Therefore, the corresponding variety VE :=
V (Iν(NZ)) is irreducible, i.e. it cannot be written as a union V1 ∪ V2 of nontrivial
subvarieties. Since the (real) dimension of E equals the complex dimension of VE , it
follows that VE is the Zariski closure of E , i.e. the smallest variety containing E .

Definition 2.36. A binomial prime ideal is also called a toric ideal . The (affine or
projective) variety of a toric ideal is called an (affine or projective) toric variety .

Toric varieties are an important subject of algebraic geometry. See [30] and [18] for
an introduction.

Definition 2.37. Let Y , L and ρ be as before. A finite set B ⊂ L is called a Markov
basis of IY,L,ρ if IY,L,ρ = IY,L,ρ(B).

Hilbert’s Basissatz implies the existence of Markov bases. A change of coordinates
similar to φ defined above can be used to prove that the notion of a Markov basis does
not depend on ρ. The name “Markov bases” comes from the fact that a Markov basis
can be used as a set of moves in a Markov Chain Monte Carlo simulation to explore
the integer points of polytopes, see [25].
It follows from the proof of Theorem 2.32 that it would be enough to consider the

polynomial equations coming from an integral circuit basis. Therefore, a circuit basis
is a natural candidate for a Markov basis. Yet a Markov basis may contain vectors that
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are not circuit vectors. An example is given by the binomial models Bin(n) for n ≥ 3,
see [61]. Even in the case that a given integral circuit basis C is not a Markov basis,
Theorem 2.25 implies that the ideals Iν(C) and Iν(NZ) have the same non-negative
real solutions. Still, there are some computational issues to bear in mind.
Over C the equations corresponding to different integral circuit bases do not have

the same solutions. The reason is that proportional circuit vectors only yield equiva-
lent equations if they are considered over the non-negative real numbers. In particular,
in general Iν(C) 6= Iν(C

′) if C and C ′ are two different circuit bases. From a compu-
tational viewpoint it is advantageous to choose the equations such that the number
of negative real solutions or complex solutions is as small as possible. This can be
achieved by considering those integral circuit vectors that are as small as possible:

Definition 2.38. An integer vector u ∈ ZX is prime if the greatest common divisor
gcd {u(x) : x ∈ X} of its components is one. A circuit basis is prime if all of its
elements are integral and prime.

The prime circuit vector corresponding to a given circuit is uniquely determined up
to a sign. Therefore, in the algebraic case the distinction between circuits and circuit
vectors is often ignored.
Any integral circuit vector is an integral multiple of a prime circuit vector, so prime

circuit bases exist. Furthermore, if C is a prime circuit basis and C is the set of all
integral circuits, then Iν(C) = Iν(C). If C is a prime circuit basis, then I1(C) is also
called the circuit ideal of N . If ν is arbitrary, then the linear change defined above of
coordinates φ transforms Iν(C) into a circuit ideal.
The question when a circuit ideal is a toric ideal is discussed in [14]. In general, the

difference between toric ideals and circuit ideals is, in a certain sense, small:

Proposition 2.39. Let Y ⊆ X , let B be a Markov basis of a saturated lattice L ⊆ ZY ,
and let C be the set of circuits of L. For any character ρ on L the ideal IY,L,ρ(B)
equals the radical of IY,L,ρ(C).

Proof. See Proposition 8.7 in [27].

Corollary 2.40. If E is an algebraic exponential family and if C is a prime circuit
basis of its normal space N , then Iν(NZ) equals the radical of Iν(C). In particular,
the variety of Iν(C) equals the Zariski closure of E .

Corollary 2.40 shows that the ideal Iν(C) of any prime circuit basis C does not
admit any superfluous non-negative or complex solutions. Still, knowing the radical of
an ideal may greatly decrease the running time of many algorithms of computational
commutative algebra, so it is preferable to work with a Markov basis instead of a
prime circuit basis if possible.
Finding a Markov basis or a circuit basis is in general a non-trivial task. [48] and [36]

discuss algorithms for both tasks, which are implemented in the open source software
package 4ti2 [1]. Let A be a matrix such that N equals the row space of A. Markov
basis computations tend to depend on the size of the entries of A: If A has only small
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2. Exponential families

entries, then one may hope that there are “enough” vectors in NZ with small entries,
corresponding to polynomials of low degree. The Markov bases algorithm is related
to Buchberger’s algorithm, and the speed of this algorithm depends on the degrees of
the starting polynomials. Circuit computations do not depend in any essential way
on the size of the entries of A. The number of circuits, however, tends to be much
larger than the number of Markov basis elements. Therefore, generically, Markov basis
computations are faster when A has only “small” entries (which is the most important
case for applications), and circuit computations are faster when A has “large” entries.

Most algorithms to compute Markov bases make use of a relation similar to the
relation stated in the following proposition. First, a definition is needed:

Definition 2.41. Let I ⊆ C[P (x) : x ∈ X ] be an ideal and let J ⊆ C[P (x) : x ∈ X ]
be an arbitrary set of polynomials. Then the ideal

I : J = {f ∈ C[P (x) : x ∈ X ] : fg ∈ I for all g ∈ J}

is called the quotient of I with respect to J . The ideal

I : J∞ :=
⋃

n≥1

I : Jn,

where I : J1 = I : J and I : Jn+1 = (I : Jn) : J , is called the saturation of I with
respect to J .

The saturation of two ideals I, J corresponds to the difference of the varieties, in
the sense that the variety V (I : J) of I : J equals the Zariski closure of V (I) \ V (J).

Proposition 2.42. Let Y ⊆ X , let L ⊆ ZY be a saturated lattice, and let ρ be a
character of L. If B ⊆ L generates L (as an abelian group), then

IY,L,ρ = IY,L,ρ(B) : (
∏

x∈Y
p(x))∞.

Hence, the varieties VY,L,ρ and VY,L,ρ(B) of IY,L,ρ and IY,L,ρ(B) satisfy

VY,L,ρ ∩
(

CX\Y ⊕ (C×)Y
)

= VY,L,ρ(B) ∩
(

CX\Y ⊕ (C×)Y
)

,

where C× = C \ {0}.

Proof. See [69, Lemma 12.2].

The second statement of the proposition, applied to algebraic exponential families,
is the algebraic version of the fact that a basis of N is enough to describe E : A
probability measure P ∈ P(X )◦ lies in E if and only if log(P ) is orthogonal to (a basis
of) N (cf. the proof of Theorem 2.21). Things get complicated only at the boundary.
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2.4. Hierarchical models

2.4. Hierarchical models

Hierarchical models are important examples of algebraic exponential families, and
many examples appearing throughout this thesis are, in fact, hierarchical models.
They describe the interaction of a finite set of finite subsystems Xi. The restrictions
Xi : X := X1 × · · · × Xn → Xi to the subsystems can be viewed as random variables,
and hierarchical models can be used to study the relationship of these discrete random
variables. This section summarizes the main facts which are needed in the following.
See [46] and [26] for further information.
Unfortunately, different authors mean different things when they talk about hierar-

chical models. Here, the following definition is used:

Definition 2.43. Let X1, . . . ,Xn be finite sets of cardinality |Xi| = Ni, and let X =
X1 × · · · × Xn. For any subset S ⊆ [n] let XS = ×i∈SXi. For any family ∆ of subsets
of [n] let E ′

∆ be the set of all probability measures P ∈ P(X )◦ that can be written in
the form

P (x) =
∏

S∈∆
fS(x), (2.11)

where each fS is a non-negative function on X that depends only on those components
of x lying in S. In other words, fS(x) = fS(y) for all x = (xi)

n
i=1, y = (yi)

n
i=1 ∈ X

satisfying xi = yi for all i ∈ S. The hierarchical exponential family E∆ of ∆ with
parameters N1, N2, . . . , Nn is defined as E ′

∆∩P(X )◦. The closure of E∆ (which equals
the closure of E ′

∆) is called the hierarchical model of ∆ with parameters N1, N2, . . . ,
Nn. If Ni = N1 for all i = 1, . . . , n, then the hierarchical model and the hierarchical
exponential family are called homogeneous of size N1. They are called binary if they
are homogeneous of size two.

At first sight one might think that E ′
∆ = E∆. Unfortunately, this is not true, see [31].

For certain applications, when the factorizability probability is important, one might
want to call E ′

∆ a hierarchical model. When studying optimization problems it is more
important that the models are closed.
If S ∈ ∆ and if S ′ ⊂ S, then ∆ and ∆∪{S ′} determine the same hierarchical model.

In order to make the correspondence ∆ 7→ E∆ injective, it is convenient to require that
∆ is a simplicial complex . By definition this means that S ∈ ∆ and S ′ ⊆ S implies
S ′ ∈ ∆. This requirement associates the largest possible set ∆ to a hierarchical model
E . Alternatively, there is a unique minimal set ∆ describing E ; it is characterized by
the following property: If S, S ′ ∈ ∆ satisfy S ′ ⊆ S, then S ′ = S. Due to its minimality
property this second choice is convenient when giving examples.
For any S ⊆ {1, . . . , n} the subset of RX of functions that only depend on the S-

components can be naturally identified with RXS . The natural projection X → XS

induces a natural injection RXS → RX .
It is easy to see that hierarchical exponential families are indeed exponential families:

Namely, (2.11) implies that E∆ consists of all P ∈ P(X )◦ that satisfy

(log(P (x)))x∈X ∈
∑

S∈∆
RXS ⊆ RX .
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2. Exponential families

Therefore, E∆ is an exponential family with uniform reference measure and extended
tangent space T̃ =

∑

S∈∆ RXS . This vector space sum is not direct, since every
summand contains 1. There is a natural sufficient statistics: The marginalization
maps πS : RX 7→ RXS defined for S ⊆ {1, . . . , n} via

πS(v)(x) =
∑

y∈X :yi=xi for all i∈S
v(y)

induce the moment map

π∆ : v ∈ RX 7→ (πS(v))S∈∆ ∈
⊕

S∈∆
RXS ,

where ⊕ denotes the external direct sum of vector spaces.

Definition 2.44. For any S ⊆ [n] the image πS(v) of v ∈ RX under πS is called the
S-marginal of v. If ∆ is a collection of subsets of [n] and π∆ is defined as above,
then π∆(v) = (πS(v))S∈∆ is called the ∆-marginal of v. The convex support of the
hierarchical model E∆ is called the marginal polytope (of E∆ or of ∆).

Lemma 2.45. Let ∆ be a collection of subsets of [n], and let K = ∪J∈∆J . The
marginal polytope of ∆ is (affinely equivalent to) a 0-1-polytope with

∏

i∈K Ni vertices.

Proof. The moment map π∆ corresponds to a sufficient statistics A∆ that only has
entries 0 and 1, so MA is a 0-1-polytope. The set of vertices of MA is a subset of
{Ax : x ∈ X}. Let x = (xi)

n
i=1, y = (yi)

n
i=1 ∈ X . If xi = yi for all i ∈ K, then Ax = Ay,

so MA has at most
∏

i∈K Ni vertices. If xi 6= yi for some i ∈ K, then Ax 6= Ay, so the
set {Ax : x ∈ X} has cardinality

∏

i∈K Ni. Since this set consists of 0-1-vectors and
since no 0-1-vector is a convex combination of other 0-1-vectors, it follows that the set
of vertices of MA equals {Ax : x ∈ X} and has cardinality

∏

i∈K Ni.

The following examples of hierarchical models are particularly important:

Definition 2.46. For 1 ≤ k ≤ n let ∆k = {J ⊆ [n] : |J | = k}. The hierarchical model
of ∆k is called the k-interaction model . The hierarchical models of ∆1, ∆2 and ∆3

are also called (in a slightly inconsistent manner) the independence model , the pair
interaction model and the three-way interaction model , respectively.

Denote by Xi the random variable corresponding to the natural projection X 7→ Xi.
If P is the joint distribution of X1, . . . , Xn, then the information divergence D(P‖E1)
is called the multiinformation of X1, . . . , Xn, denoted by I(X1; . . . ;Xn). If n = 2, then
I(X1;X2) is also called the mutual information of X1 and X2.

A basis of the normal space N can be found using the following construction
from [38]. This basis has the advantage that it has only few nonzero entries, and
these are all equal to plus or minus one.
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2.4. Hierarchical models

Definition 2.47. Assume that Xi = {1, . . . , Ni}. Let S be a subset of [n]. For each
j ∈ S let 1 ≤ ij < Nj. Then the vector uS;{ij}j∈S

∈ RX defined by

uS;{ij}j∈S
(x1, . . . , xn) =











(−1)
∑

j∈S(xj−ij), if xj ∈ {ij, ij + 1} for all j ∈ S

and xj = 1 else,

0, otherwise.

is called an adjacent minor supported on S.

Theorem 2.48. Let ∆ be a simplicial complex. The set of all adjacent minors which
are supported on some S /∈ ∆ forms a basis of the normal space N of the hierarchical
model E∆. Therefore, the dimension of E∆ is

∑

S∈∆

∏

i∈S
(Ni − 1)− 1.

Proof. See Theorem 2.6 and Corollary 2.7 in [38].

Examples 3.13 and 3.42 contain the bases of adjacent minors for the independence
model of two binary variables and the pair interaction model of four binary variables.
Let S ⊆ [n]. It is sometimes useful to separate the “pure” S-interactions from the

lower S ′-interactions for S ′ contained in S. This amounts to choosing an orthogonal
complement to

∑

S′(S R
XS′ in RXS . A natural choice is the orthogonal complement

(with respect to the natural scalar product). For example, the exponential family of
pure pair interactions E(2) has the uniform reference measure and the tangent space

T(2) =







θ ∈
∑

S⊆[n],|S|=2

RXS :
∑

x∈X
θ(x)f(x) = 0 for all i ∈ [n] and all f ∈ RXi







+ R1.

See Section 5.1 for another possibility to quantify the contributions of different levels
of interaction, which uses the Pythagorean identity.
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3. Maximizing the information

divergence from an exponential

family

Nihat Ay proposed the following mathematical problem in [5]:

• Given an exponential family E , find the maximal value of DE := D(·‖E), and
find the maximizing probability measures.

An overview of previous works on this problem as well as a short summary of the
applications was already given in the introduction. Some of the previous results will
be summarized in Section 3.1. The possible applications will be discussed again in
Chapter 5, after the problem has been studied from its mathematical side.

The main result in this chapter, Theorem 3.28, shows that the original maximization
problem can be solved by studying the related problem:

• Maximize the function DE(u) =
∑

x∈X u(x) log |u(x)|
νx

for all u ∈ N such that
∑

x |u(x)| ≤ 2.

The local and global maximizers of DE are in bijection with the local and global
maximizers of DE .
Section 3.1 presents Matúš’s result on the directional derivatives of DE and some

corollaries, including the first order optimality conditions of maximizers of DE . These
conditions include the projection property, which is analyzed in Section 3.2, leading
to the notion of a kernel distribution. It is easy to see that probability measures that
satisfy the projection property and that do not belong to E come in pairs (P+, P−)
such that P+ − P− ∈ N and supp(P+) ∩ supp(P−) = ∅. This pairing is used in
Section 3.3 to relate the maximization of DE to the maximization of DE . The first
order optimality conditions of DE are computed in Section 3.4. Section 3.5 contains
the main result of this chapter, Theorem 3.28, which states that finding the critical
points or the local or global maximizers of DE is equivalent to finding the critical
points or the local or global maximizers of DE . Section 3.6 discusses how to solve
the critical equations from Section 3.4. Section 3.7 presents an alternative method
for computing the local maximizers of DE , which uses the projection property more
directly. Sections 3.6 and 3.7 contain two examples where the global maximizers
were unknown before. Some of the results in this section have been published in [60]
and [53].
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3. Maximizing the information divergence from an exponential family

3.1. The directional derivatives of D(·‖E)
The directional derivatives of the information divergence where first computed by Ay
in the special case that PE has full support, see [5]. The general case is due to Matúš:

Theorem 3.1. Let E be an exponential family on a finite set X , and let P,R ∈ P(X ).
Let Y ⊆ X be the smallest facial set containing supp(P ).

• If supp(R) ⊆ supp(P ), then the two-sided derivative of DE at P in the direction
R− P equals

∑

x∈supp(P )

[R(x)− P (x)] log
P (x)

PE(x)
.

• If supp(R) ⊆ Y and if R(X \ supp(P )) > 0, then the one-sided derivative of DE
at P in the direction R− P equals −∞.

Proof. See Theorem 4.1 in [50].

Theorem 4.1 in [50] also discusses the one-sided directional derivatives in the case
supp(R)\Y 6= ∅. From this more general result the following theorem can be deduced:

Theorem 3.2. Let P be a local maximizer of DE with support Z = supp(P ), and let
PE be its rI-projection onto E . Then the following holds:

(i) Suppose Y := supp(PE) 6= X . Then {Ax : x ∈ Y} and {Ax : x ∈ X \ Y} lie in
distinct parallel hyperplanes.

(ii) P satisfies the projection property, i.e. P equals the truncation PZ
E of PE to Z:

P (x) =

{

PE(x)
PE(Z)

, if x ∈ Z,

0, else.
(3.1)

(iii) Assume Y 6= X , and let EPE = {QX\Y : Q ∈ E and QY = PE}. Then

D(P‖E) ≥ D(R‖EPE ) for all probability measures R on X \ Y . (3.2)

Proof. Statement (ii) is due to Ay [5] in the special case where Y = X . Statements (i)
and (iii) and the general form of statement (ii) are due to Matúš [50, Theorem 5.1].

Definition 3.3. A probability measure that satisfies the projection property (3.1) is
called a projection point . A projection point P is proper if P /∈ E . A proper projection
point that satisfies statement (i) of Theorem 3.2 is called a quasi-critical point of DE .
If P ∈ P(X ) \ E satisfies all three conclusions of Theorem 3.2, then P is a critical
point of DE .
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3.1. The directional derivatives of D(·‖E)

This definition is motivated by the following philosophy: In convex analysis, a
point satisfying all first-order optimality conditions (which in general comprise both
equations and inequalities) of an optimization problem is called a critical point . In
many respects, equations are much easier to analyze than inequalities. Therefore it
makes sense to treat these two kinds of conditions separately, and the term “quasi-
critical” point is chosen for points that satisfy only the equations derived from the first
order optimality conditions. It is convenient to exclude the trivial solutions P ∈ E in
these definitions.

Lemma 3.4. Let E be an exponential family with normal space N , and let Q ∈ E \ E .
Write Y = supp(Q) and Y ′ = X \ Y. Then EQ = {PY ′

: P ∈ E and PY = Q} is an
exponential family on Y ′ with normal space N Y ′

= {v|Y ′ : v ∈ N ,
∑

x∈Y ′ v(x) = 0}.
Proof. The statements of this lemma are hidden in the proof of Theorem 5.1 in [50].
Let T̃ be the extended tangent space of E , and let E ′ = {P ∈ E : PY = Q}. Then E ′

is an exponential family with extended tangent space

T̃ ′ =
{

θ ∈ T̃ : θ|Y ∈ R1Y
}

=
(

T̃ ∩ RY ′
)

+ R1.

Therefore, EQ = {PY ′

: P ∈ E ′} is also an exponential family, with normal space

N Y ′

=
{

v|Y ′ : v ∈ RX is orthogonal to T̃ ′,
∑

x∈Y ′

v(x) = 0
}

,

hence N Y ′ ⊇ {v|Y ′ : v ∈ N ,
∑

x∈Y ′ v(x) = 0}. The orthogonal complement of T̃ ′ is
(

T̃ ⊥ +
(

RY ′
)⊥)∩1⊥

Y ⊆ N +RY . Therefore, any w ∈ N Y ′

is of the form (v1+ v2)|Y ′ =

v1|Y ′ , where v1 ∈ N and v2 ∈ RY , so N Y ′ ⊆ {v|Y ′ : v ∈ N ,
∑

x∈Y ′ v(x) = 0}.
The following two lemmas are useful to restrict the study of the maximizers of DE

to small faces of the probability simplex P(X ). The first lemma is due to Ay [5]
and Matúš [52, Proposition 3.2]. It is instructive to compare its proof to the proof of
Lemma 3.30.

Lemma 3.5. Let E be an exponential family with normal space N and sufficient
statistics A. Let P be a local maximizer of DE , and let Z = supp(P ). Then the set
{Ax : x ∈ Z} is affinely independent. Equivalently, if v ∈ N satisfies supp(v) ⊆ Z,
then v = 0. In particular, the cardinality of Z is bounded by dim E + 1.

Proof. By Theorem 2.16 the restriction of DE to the polytope NP is strictly convex.
If P is a local maximizer of DE , then P must be an extreme point of NP . Assume that
v ∈ N satisfies supp(v) ⊆ Z. Choose ǫ > 0 such that |ǫv(x)| < |P (x)| for all x ∈ Z.
Then P = 1

2
((P + ǫv) + (P − ǫv)), where P + ǫv, P − ǫv ∈ NP . Therefore v = 0. The

second statement follows from dimMA = dim E .
Lemma 3.6. Let Z ⊆ X , and let P /∈ E be a local maximizer of DE under the
constraint that supp(P ) ⊆ Z. If supp(PE) = X , then P is a local maximizer of DE .
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3. Maximizing the information divergence from an exponential family

Proof. Let A be a sufficient statistics of E . The composition of θ 7→ Pθ with the
moment map πA is continuously differentiable and injective (see Theorem 2.16). By
assumption the image of the composition θ 7→ πA(Pθ) contains a neighbourhood of
πA(PE). Since the differential has full rank (see the proof of Lemma 5.12 in Section 5.3
for a proof of this well-known fact), the inverse function theorem states that the in-
verse mapping a 7→ θ(a) is continuously differentiable in a neighbourhood of πA(PE).
Moreover, since PE has full support, the map Q 7→ D(Q‖ν) is continuously differen-
tiable in a neighbourhood of PE . Therefore, there is a neighbourhood U of P and a
constant C > 0 such that |D(QE‖ν)−D(Q′

E‖ν)| < C‖Q − Q′‖∞ for all Q,Q′ ∈ U .
Let D be the maximum of D(·‖ν) on P(X ). Making U smaller if necessary one may
assume that U satisfies the following three conditions:

(i) Q ∈ U implies QZ ∈ U .

(ii) P maximizes D(Q‖E) subject to Q ∈ UZ := U ∩ RZ .

(iii) h(s(Q), 1 − s(Q)) ≥ (C + D)s(Q) for all Q ∈ U , where s(Q) = Q(X \ Z) and
h(s, 1 − s) = −s log(s) − (1 − s) log(1 − s) is the entropy of a binary random
variable.

Fix Q ∈ U . If supp(Q) ⊆ Z, then D(Q‖E) ≤ D(P‖E) by assumption. Otherwise
write Q = (1− s)Q′ + sR, where s = Q(X \ Z) > 0, Q′ = QZ and R = QX\Z . Then
D(Q‖ν) = (1− s)D(Q′‖ν) + sD(R‖ν)− h(s, 1− s). Theorem 2.16 (ii) implies

D(Q‖E) = D(Q‖ν)−D(QE‖ν)
= −h(s, 1− s) + s(D(R‖ν)−D(Q′‖ν))

+ (D(Q′‖ν)−D(Q′
E‖ν) + (D(Q′

E‖ν)−D(QE‖ν))
≤ −h(s, 1− s) + s(D(R‖ν)−D(Q′‖ν)) +D(Q′‖E) + C‖Q−Q′‖∞

Note that

‖Q−Q′‖∞ = max

{

smax
x∈Z

{R(x)}, s max
x∈X\Z

Q′(x)}
}

≤ s,

whence D(Q‖E) ≤ D(P‖E)− h(s, 1− s) + (C +D)s ≤ D(P‖E).
Lemma 3.6 implies, in particular, that any point measure δx that rI-projects into

E is a local maximizer. This statement is false in general if δx rI-projects into the
boundary of E , even under the additional assumption that δx /∈ E . One reason is
Theorem 3.2. See 4.1.2 and 4.1.3 for counter-examples.

3.2. Projection points and kernel distributions

In this section assume that E 6= P(X )◦. Otherwise the function DE is trivial, and
there are no projection points. Under this assumption consider the map

ΨE : P(X ) \ E → N ,

P 7→ P − PE
(P − PE)+(X )

.
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aa

aA

AAaa

aA

AAaa

aA

AAaa

aA

AA

Figure 3.1.: A pair of projection points in the Hardy-Weinberg exponential family
(ν(aa) = ν(AA) = 1, ν(Aa) = 2, A = (0, 1, 2)), see Section 4.4. The blue
dots mark the two global maximizers, which are a pair of associated kernel
distributions. The grey line connecting the two maximizers intersects the
exponential family (in red) at their common rI-projection.

It maps each probability measure P ∈ P(X ) \ E to a vector which points from PE to
P . The normalization is chosen such that the image u = ΨE(P ) is a difference of two
probability distributions u+, u− of disjoint supports.

Lemma 3.7. P ∈ P(X ) \ E is a projection point if and only if ΨE(P )+ = P .

Proof. Let P be a projection point with support Z. Let P− := λP +(1−λ)PE , where

λ = − PE(Z)
1−PE(Z)

. Then P − P− ∈ N , and

P−(x)

{

0, if x ∈ Z,
1+PE(Z)
1−PE(Z)

PE(x) ≥ 0, else.

Hence P− is a probability measure with support contained in X \Z, and u := P −P−

lies in the normal space N . Geometrically, P− is the point where the line through P
in the direction of PE leaves P(X ). Both u and ΨE(P ) are positive multiples of P−PE .
Both are differences of probability distributions of disjoint supports, and hence they
are equal, whence P = u+ = ΨE(P )+.
Conversely, if P = ΨE(P )+, then the line through P in the direction ΨE(P ) leaves

P(X ) in the measure P− := ΨE(P )−. The rI-projection PE must be on this line.
Therefore, PE is a convex combination of P and P−. Since P and P− have disjoint
supports, P is a projection point.

If P is a projection point, then it is easy to see that ΨE(P )− is a second projection
point with the same projection PE to E as P . Figure 3.1 illustrates the situation.
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3. Maximizing the information divergence from an exponential family

Figure 3.2.: An exponential family on four states (see Example 3.10). The blue dots
are the local maximizers, green dots are the other projection points. As-
sociated projection points are joined by grey lines. The set KE is marked
in yellow.

Definition 3.8. Let E be an exponential family. A probability distribution P ∈ P(X )
is called a kernel distribution of E if there exists a probability distribution Q ∈ P(X )
such that supp(P ) ∩ supp(Q) = ∅ and P − Q ∈ N . In this case P and Q are called
associated kernel distributions . The set of all kernel distributions of E is denoted
by KE .

To any kernel distribution P there may be more than one associated kernel dis-
tribution Q ∈ P(X \ supp(P )). See Remark 3.27 below for a natural choice of Q.
Lemma 3.7 implies:

Corollary 3.9. Every local maximizer of DE is a kernel distribution

As a consequence, the local maximizer of DE can be found by maximizing the
function DE over KE . This motivates the following mathematical problem:

• Find a “nice” statistical model M such that KE is contained in the closure of M.

Ideally M should be a low-dimensional manifold in P(X ) such that M \ M = KE .
It is relatively easy to find such manifolds theoretically; for example, one could try
to define M to be a minimal submanifold of P(X ) with boundary KE . To be useful
for applications (as in Section 5.1) it is important to find a nice parametrization
of M. The following example shows that in general there is no exponential family
with boundary KE , since in general KE is not a union of exponential families.

Example 3.10. Figure 3.2 shows KE for the one-dimensional exponential family on
four states with uniform reference measure and sufficient statistics A = (0, 5, 12, 15).
One-dimensional exponential families will be studied in more detail in Section 4.1.
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Figure 3.3.: A polar plot of the function DE . The black line is ∂UN . See Example 3.11
for an explanation.

KE can be parametrized using the following construction: Let u ∈ N \ {0}. Then
u = u+ − u−, where u+ and u− are positive vectors of disjoint supports. By definition
of N it follows that du := u+(X ) = u−(X ). Thus

u = du(P
+ − P−),

where P+ and P− are two associated kernel distributions. The mapping u 7→ 1
du
u+ is

a surjective parametrization N \ {0} → KE . Therefore, the maximizers of DE can be
found by studying the function

u ∈ N \ {0} 7→ D(
1

du
u+‖E).

It suffices to consider this function on the set {u ∈ N : du = 1}. This set equals the
boundary ∂UN of the polytope

UN := {u ∈ N : du ≤ 1} .

∂UN is the intersection of N with the sphere of radius 2 with respect to the ℓ1-norm
in RX .

Example 3.11. Figure 3.3 gives a polar plot of the function DE for the exponential
family from Example 3.10. This plot was obtained by the following method: The
normal space has dimension two, so it can be parametrized by two-dimensional polar
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3. Maximizing the information divergence from an exponential family

coordinates (here, the basis of 4.1.3 was used). Denote the unit vector with angular
coordinate φ by uφ. Then the point 1

duφ
uφ lies in ∂UN . To visualize the behaviour of

D( 1
duφ

u+
φ ‖E), the set

{

1

duφ

(

1 + 0.3 ·D(
1

duφ

u+
φ ‖E)

)

uφ : 0 ≤ φ < 2π

}

is plotted in red. This representation is chosen such that in regions, where DE is
constant, the red line is parallel to the boundary of the polytope, and the larger
DE is, the further the red line moves away from the black polytope (normalized by
the distance of the polytope from the origin). The point measure δ2 corresponds to
the straight line at x = 1. On the corresponding face of UN all points u have the
same positive part u+ = δ2, and therefore, the function DE is constant. Similarly,
δ3 corresponds to the face of UN given by y = 1. The third local maximum of DE
corresponds to a point on the line x+ y = −1. This third maximum is inconspicuous
and less pronounced than the other two maxima.

Some properties of the set KE are collected in the following proposition:

Proposition 3.12. Let KE be the set of kernel distributions of the exponential fam-
ily E .

(i) Let Y ⊂ X . If P(Y)◦ contains a kernel distribution, then KE ∩P(Y)◦ is convex,

and the closure KE ∩P(Y)◦ is a polytope. Hence KE is a union of polytopes.

(ii) If Y ⊆ X is facial, then P(Y)◦ ∩KE = ∅. In particular, KE ∩ E = ∅.

(iii) If Z ⊂ X is not facial, then there is a kernel distribution P with supp(P ) ⊆ Z.

Proof. (i) If u, v ∈ ∂UN satisfy supp(u+) = supp(v+), then (1 − λ)u+ + λv+ is the
positive part of ((1 − λ)u + λv)+ for all 0 < λ < 1. Since KE ∩ P(Y)◦ = {u+ : u ∈
UN , supp(u+) = Y} the closure equals the orthogonal projection of the polytope

{u ∈ UN : u(x) ≥ 0 for all x ∈ Y , u(x) ≤ 0 for all x /∈ Y}

to RY ⊆ RX , and projections of polytopes are again polytopes (see Appendix A.1).
(ii) Let P,Q be associated kernel distributions. By Lemma 2.30, if Y is facial, then

supp(P ) ⊆ Y implies supp(Q) ⊆ Y , and so P /∈ P(Y)◦.
(iii) Let A be a sufficient statistics of E , and let F be the smallest face of MA

containing {Ax : x ∈ Z}. By assumption there exists x ∈ X \ Z such that Ax ∈ F.
Therefore, the set {Ay : y ∈ Z ∪ {x}} is affinely dependent, so there exists a v ∈ N
such that supp(v) ⊆ Z ∪ {x}. Without loss of generality assume that v(x) ≤ 0, then
P := 1

|v+(X )|v
+ is a kernel distribution in P(Z).

Example 3.13. If N is one-dimensional, then ∂UN consists of only two points ±u,
where u = P+ − P− is a difference of two associated kernel distributions P+, P−.
One of P+ and P− must be a global maximizer. It may happen that they are both
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3.3. The function DE

Figure 3.4.: The independence model of two binary variables.

global maximizers, see Figure 3.1. In any case, both P+ and P− are local maximizers.
This fact will follow easily from Theorem 3.28 below. Alternatively, this can be seen
directly as follows: By Theorem 2.21, E equals the solution set of the equation P P+ −
P P−

= 0; hence the maximum of DE among all probability distributions P such that
P P+ −P P− ≥ 0 is at P+, and the maximum of DE among all probability distributions
P such that P P+ − P P− ≤ 0 is at P−.
This result can serve as a source of examples and counterexamples. For example, it

is easy to see that any probability measure P+ supported on a set Y ⊂ X of cardinality
less than |X | is a global maximizer of DE for some exponential family E : Just choose
P− ∈ P(X \ Y) and let E be an exponential family with normal space N spanned by
u. By selecting an appropriate reference measure, either P+ or P− can be made the
global maximum. The same argument proves that the support of the rI-projection of a
local maximizer can be an arbitrary set Y of cardinality at least two. Of course, when
the reference measure is fixed or when the class of exponential families is restricted in
any other way, these statements are not true in general anymore.
As a special case, consider the independence model of two binary units, see Fig-

ure 3.4. A sufficient statistics is

A2,2 =









00

1
01

1
10

0
11

0
0 0 1 1
1 0 1 0
0 1 0 1









.

By Theorem 2.48 the normal space is spanned by

u = (+1,−1,−1,+1),

corresponding to two global maximizers P+ = 1
2
(δ00 + δ11) and P− = 1

2
(δ01 + δ10).

3.3. The function DE

Example 3.13 shows that Corollary 3.9 is a valuable tool to study the maximizers
of DE . Yet it is still difficult to obtain the function u ∈ ∂UN 7→ DE(u+), because
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3. Maximizing the information divergence from an exponential family

it is difficult to compute rI-projections, see Remark 2.20. Fortunately, it is possible
to replace this function by another function, which is easier to compute and more
naturally defined directly on N .
Let P+ be a projection point with support Z, and let P− = ΨE(P+)−. The rI-

projection PE of P+ and P− can be written as a convex combination of P+ and P−,
i.e. PE = µP+ + (1 − µ)P−, where 0 < µ < 1. Since the supports of P+ and P− are
disjoint, µ = PE(Z) and (1− µ) = PE(X \ Z). In other words,

PE(x) =

{

µP+(x), x ∈ Z,

(1− µ)P−(x), x /∈ Z.

When P+ and P− are known, the rI-projection PE can be characterized as the
unique probability measure that minimizes the strictly convex function D(·‖ν) over
the convex hull of P+ and P−, see Theorem 2.16. The following lemma collects some
consequences for similar triples of probability measures:

Lemma 3.14. Let P+ and P− be two associated kernel distributions. Let P̂ be the
unique probability measure that minimizes D(·‖ν) over the convex hull of P+ and P−.
Define µ = P̂ (Z), where Z = supp(P+). Then the following equations hold:

exp(−D(P̂‖ν)) = exp(−D(P+‖ν)) + exp(−D(P−‖ν)), (3.3a)

µ

1− µ
= exp

(

D(P−‖E)−D(P+‖E)
)

, (3.3b)

D(P+‖P̂ ) = D(P+‖ν)−D(P̂‖ν)
= log(1 + exp(D(P+‖E)−D(P−‖E))). (3.3c)

Proof. The first observation is

D(P̂‖ν) = µD(P+‖ν) + (1− µ)D(P−‖ν)− h(µ, 1− µ), (3.4)

where h(µ, 1− µ) = −µ log(µ)− (1− µ) log(1− µ). Since P̂ minimizes D(·‖ν) on the
convex hull of P+ and P−, it follows that

∂ (µ′D(P+‖ν) + (1− µ′)D(P−‖ν)− h(µ′, 1− µ′))

∂µ′

∣

∣

∣

∣

µ′=µ

= D(P+‖ν)−D(P−‖ν)− log(1− µ) + log(µ)

vanishes, which rewrites to

µ

1− µ
= exp

(

D(P−‖ν)−D(P+‖ν)
)

.

Theorem 2.16 (ii) shows D(Q+‖ν) − D(Q−‖ν) = D(Q+‖E) − D(Q−‖E) whenever
Q+ −Q− ∈ N , whence (3.3b). Solving for µ yields

µ =
exp(−D(P+‖ν))

exp(−D(P+‖ν)) + exp(−D(P−‖ν)) =
1

1 + exp(D(P+‖ν)−D(P−‖ν)) . (3.5)
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3.3. The function DE

This implies

h(µ, 1− µ) = µD(P+‖ν) + (1− µ)D(P−‖ν)
+ log

(

exp(−D(P+‖ν)) + exp(−D(P−‖ν))
)

.

Comparison with (3.4) yields (3.3a), which in turn transforms (3.5) into

µ = exp(D(P̂‖ν)−D(P+‖ν)).

The information divergence equals

D(P+‖P̂ ) =
∑

x∈Z
P+(x) log

1

P̂ (Z)
= − log(µ)

= D(P+‖ν)−D(P̂‖ν)
= log(1 + exp(D(P+‖E)−D(P−‖E))),

completing the proof of the lemma.

Remark 3.15. As an easy consequence

exp(−D(P+‖E)) + exp(−D(P−‖E)) = 1.

Hence, in general only one of P+ and P− is a local maximizer of DE . Furthermore,
D(P‖E) ≥ log(2) for any global maximizer P (assuming that E 6= P(X )).

These facts can be used to relate two different optimization problems. The first one
is the maximization of DE . The second one is the maximization of the function

DE : ∂UN → R, u 7→
∑

x

u(x) log
|u(x)|
νx

. (3.6)

Theorem 2.16 (ii) shows that DE satisfies

DE(u) = D(u+‖ν)−D(u−‖ν) = D(u+‖E)−D(u−‖E). (3.7)

In particular, DE does not depend on the choice of the reference measure. Since DE
is a continuous function on a compact set ∂UN , a maximum is guaranteed to exist.

Theorem 3.16. Let E be an exponential family with normal space N . The map ΨE
restricts to a bijection from the set of global maximizers of DE to the set of global
maximizers of DE . An inverse is given by the restriction of the map Ψ+ : u 7→ u+. If
P ∈ P(X ) and u ∈ ∂UN are global maximizers of DE and DE , respectively, then

D(P‖E) = log(1 + exp(DE(u)))

Later, Theorem 3.28 will show that the projection points and the local maximizers
of DE can also be found by studying the function DE . The proof of Theorem 3.16
builds upon the following lemma:
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3. Maximizing the information divergence from an exponential family

Lemma 3.17. D(u+‖E) ≥ log(1 + exp(DE(u))) for all u ∈ ∂UN , with equality if and
only if u+ is a projection point.

Proof. Let E ′ be the exponential family with normal space N ′ = Ru and reference
measure ν. Then u+ is a projection point of E ′. Furthermore, E ⊆ E ′. By Lemma 3.14,

log(1 + exp(DE(u))) = log(1 + exp(DE ′(u))) = D(u+‖E ′) ≤ D(u+‖E).
Equality holds if and only if (u+)E ′ = (u+)E . In this case (u+)E lies in the convex hull
of u+ and u−, which means that u+ is a projection point.

Proof of Theorem 3.16. If u ∈ ∂UN is a global maximizer of DE and if P ∈ P(X ) is
a global maximizer of DE , then

DE(P ) = DE(ΨE(P )+) = log(1 + exp(DE(ΨE(P )))) ≤ log(1 + exp(DE(u))) ≤ DE(u
+)

by Lemmas 3.7 and 3.17. By the maximality assumptions these inequalities hold as
equalities, so DE(ΨE(P )) = DE(u) and DE(u+) = DE(P ). It remains to show that the
restrictions of ΨE and Ψ+ are mutually inverse bijections. Lemma 3.7 implies that ΨE
is injective and Ψ+ is surjective on the global maximizers; hence it suffices to show
that Ψ+ is injective on the global maximizers of DE . Let u, v ∈ ∂UN be two global
maximizers of DE such that u+ = v+. By (3.7) both u− and v− minimize the convex
function D(·‖ν) on P(X \ supp(u+)), whence u− = v−.

Remark 3.18. DE can be extended to a function onN using (3.6) or, equivalently, (3.7).
Then DE is homogeneous of degree one on N : For any α ∈ R

DE(αu) = α
∑

x

u(x) log
|u(x)|
νx

+ α

(

∑

x

u(x)

)

log |α| = αDE(u).

Hence the global maximizers of DE on UN agree with the global maximizers on ∂UN .
Another possibility is to maximize the function

D
1

E : N \ {0} → R, u 7→ DE(u/du) =
1

du
DE(u),

where du = u+(X ). A signed measure u ∈ N \ {0} is a local maximizer of D
1

E if and
only if 1

du
u is a local maximizer of DE on ∂UN .

Example 3.19. Figure 3.5 gives a polar plot of DE and DE for the exponential family
from Example 3.10. The polar plot was obtained in the same way as in Example 3.11.
The one-to-one correspondence between the local maximizers, which will be proved in
Theorem 3.28, is also clearly visible.

Example 3.20. Consider again the case where dimN = 1, which was discussed already
in Example 3.13. The value of DE at the two local maximizers P+ and P− is easy to
compute in terms of DE(u): By Lemma 3.14

D(P+‖E) = log(1 + exp(DE(u))), D(P−‖E) = log(1 + exp(−DE(u))).

In particular, if 1 is a reference measure of E , then P+ is a global maximum of DE if
and only if the entropy of P+ is not greater than the entropy of P−.
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Figure 3.5.: A polar plot of DE and DE for Example 3.19.

3.4. The first order optimality conditions of DE

The goal of this section is to compute the first order optimality conditions of DE .
The next section will show that the bijection of Theorem 3.16 between the global
maximizers of DE and DE extends to a bijection of all critical points.

Proposition 3.21. Let E be an exponential family with normal space N , let u ∈ ∂UN
be a local maximizer of DE , and let Y = supp(u). The following statements hold:

(i) v(Y) = 0 for all v ∈ N .

(ii) If v ∈ N satisfies supp(v) ⊆ Y and v(u > 0) = 0, then

∑

x:u 6=0

v(x) log
|u(x)|
νx

= 0. (3.8)

(iii) Let PE be the rI-projection of u+ and u−. If Y 6= X , then

DEPE (v) ≤ DE(u), for all v ∈ UN ′ , (3.9)

where N ′ = {v|X\Y : v ∈ N} is the normal space of the exponential family
EPE = {QX\Y : Q ∈ E and QY = PE}.

These are all first-order optimality conditions.
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3. Maximizing the information divergence from an exponential family

Definition 3.22. A point u ∈ N \{0} is called a facial difference of projection points
(f.d.p.) if supp(u) is facial and if u satisfies equations (3.8) for all v ∈ N satisfying
supp(v) ⊆ supp(u) and v(u > 0) = 0. If u ∈ N \ {0} satisfies statements (i) and (ii)
of Proposition 3.21, then it is a quasi-critical point of DE , and u ∈ N \ {0} is called a
critical point if it satisfies all three statements of Proposition 3.21.

The name “f.d.p.” is justified by Lemma 3.25 below.

Remark 3.23. Only critical points which lie in ∂UN can be local maximizers ofDE . If u
is an arbitrary critical point, then 1

du
u ∈ ∂UN is also a critical point, cf. Remark 3.18.

Similar remarks hold for the quasi-critical points and f.d.p.s.

The proof of the proposition makes use of the following two lemmas. The first shows
that condition (i) can be seen as an algebraic version of statement (i) of Theorem 3.2.
While the geometric notion of parallel hyperplanes can be quickly read off on low
dimensional convex supports, the algebraic version is easier to check by a computer.

Lemma 3.24. Let Y ( X , let A ∈ Rh×X , and let N = {u ∈ kerA :
∑

x u(x) = 0}.
Then the following two conditions are equivalent:

(i) The sets {Ax : x ∈ Y} and {Ax : x /∈ Y} lie in distinct parallel hyperplanes.

(ii) All u ∈ N satisfy u(Y) = 0.

Proof. If (i) holds, then there exist real numbers a 6= b and a vector c ∈ Rh such that
∑h

i=1 ciAi,x = a for all x ∈ Y and
∑h

i=1 ciAi,x = b for all x ∈ X \ Y . Let u ∈ N . Then

0 =
h
∑

i=1

ci
∑

x∈X
Ai,xu(x) = au(Y) + bu(X \ Y).

Together with 0 = u(X ) = u(Y) + u(X \ Y) this implies (ii).
Conversely, if (i) does not hold, then the two affine spaces generated by {Ax}x∈Y

and {Ax}x∈X\Y must meet in a nontrivial vector z ∈ Rh\{0}. Write z =
∑

x∈Y αxAx =
∑

x∈X\Y βxAx, where
∑

x∈Y αx = 1 =
∑

x∈X\Y βx. Define v ∈ RX via

v(x) =

{

αx, if x ∈ Y ,

−βx, else.

Then Av = z − z = 0, so v ∈ N , and
∑

x∈Y v(x) = 1, so (ii) holds neither.

Lemma 3.25. Let u ∈ ∂UN , and let PE be the rI-projection of u+ and u−. Then u is
a f.d.p. if and only if PE is contained in the convex hull of u+ and u−. In particular,
if u is a f.d.p., then u+ and u− are projection points, and supp(u) is facial.

Proof. Let u ∈ ∂UN , and let P̂ be the probability measure that minimizes DE on the
convex hull of u+ and u−. For any v ∈ N such that supp(v) ⊆ supp(P̂ ) the directional
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3.4. The first order optimality conditions of DE

derivative of D(·‖ν) in the direction v at P̂ equals

∑

x∈supp(v)
v(x) log

P̂ (x)

νx
=

∑

x∈supp(v)
v(x) log

|u(x)|
νx

+ v(u > 0) log µ+ v(u < 0) log(1− µ)

=
∑

x∈supp(v)
v(x) log

|u(x)|
νx

− v(u > 0)DE(u), (3.10)

using µ = P̂ (u > 0) and Lemma 3.14.
If u is a f.d.p., then supp(u) is facial, and so supp(PE) ⊆ supp(u) by Lemma 2.28.

By (ii) the directional derivative (3.10) vanishes for v = PE − P̂ . But on the convex
hull of P̂ and PE the function DE is strictly convex and attains its minimum at PE ,
whence P̂ = PE .
Conversely, if PE = P̂ , then (3.10) vanishes for all v ∈ N such that supp(v) ⊆

supp(u). Furthermore, supp(u) = supp(PE) is facial, and so u is a f.d.p.

Proof of Proposition 3.21. The degree dv =
∑

x v
+(x) =

∑

x v
−(x) is piecewise linear

in the following sense:

• Let u, v ∈ N . Then there exists λ1 > 0 such that

du+λv = du + λd′u(v) for all 0 ≤ λ ≤ λ1, (3.11)

where d′u(v) =
∑

x:u>0 v(x)+
∑

x:u=0 v
+(x) = v(u > 0)+ v+(u = 0) ∈ R depends

only on u and v (but not on λ).

Fix u, v ∈ N . If ǫ > 0 is small enough, then

DE(u+ ǫv) =
∑

x

u(x) log
|u(x)|
νx

+
∑

x:u 6=0

u(x) log

(

1 + ǫ
v(x)

u(x)

)

+ ǫ
∑

x

v(x) log
|u(x) + ǫv(x)|

νx

= DE(u) + ǫ

(

∑

x:u 6=0

v(x) log
|u(x)|
νx

+
∑

x:u=0

v(x) log
|v(x)|
νx

)

+ ǫ log |ǫ|v(u = 0) + ǫv(u 6= 0) + o(ǫ),

where log(1 + ǫx) = ǫx+ o(ǫ) was used. Equation (3.11) yields

D
1

E(u+ ǫv) = D
1

E(u)− ǫ
d′u(v)

du
D

1

E(u)

+
ǫ

du

(

∑

x:u 6=0

v(x) log
|u(x)|
νx

+
∑

x:u=0

v(x) log
|v(x)|
νx

)

+
1

du
(ǫ log |ǫ|v(u = 0) + ǫv(u 6= 0)) + o(ǫ)
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3. Maximizing the information divergence from an exponential family

for the function D
1

E from Remark 3.18.

Let u ∈ ∂UN be a local maximizer of DE . Then u is also a local maximizer of D
1

E
by Remark 3.18. The derivative of ǫ log ǫ diverges at zero, and if v is replaced by −v,
then the coefficient 1

du
v(u = 0) changes its sign. Therefore, v(u = 0) = 0, and hence

the first statement follows from v(Y) = v(X )− v(u = 0) = 0. This implies

∑

x:u 6=0

v(x) log
|u(x)|
νx

+
∑

x:u=0

v(x) log
|v(x)|
νx

≤ d′u(v)DE(u) (3.12)

for all v ∈ N . If supp(v) ⊆ supp(u), then d′u(−v) = −v(u > 0) = −d′u(v). In this case
the two sides of the inequality change their sign when v is replaced by −v, and thus

∑

x:u 6=0

v(x) log
|u(x)|
νx

= d′u(v)DE(u), (3.13)

for all v ∈ N satisfying supp(v) ⊆ supp(u). The proof now follows in two steps, which
reformulate (3.12) and (3.13):

(1) Condition (ii) is equivalent to equations (3.13) for all v ∈ N that satisfy
supp(v) ⊆ supp(u): The function d′u(v) is linear on N ∩ RY . Hence (3.13) is linear
in v and trivially satisfied for v = u. Therefore, it is enough to check (3.13) on a
vector space complement of Ru in N ∩ RY . Since d′u(u) = 1 such a complement can
be defined by d′u(v) = 0.

(2) Given (i) and (ii), condition (iii) is equivalent to the inequalities (3.12) for
all v ∈ N : If Y = X , then there is nothing to show, so assume Y 6= X , and let
Y ′ = X \ Y . Suppose that u ∈ UN is quasi-critical. By Lemma 3.24 the support
of u is facial. Hence u+ and u− are projection points by Lemma 3.25. Denote the
rI-projection of u+ and u− by PE . By Theorem 2.29 there exists Q ∈ E such that
PE = QY . Hence Q|Y ′ is a reference measure for EPE . Let v ∈ N . Then

∑

x∈supp(u)
v(x) log

|u(x)|
νx

=
∑

x∈supp(u)
v(x) log

Q(x)

νx
− v(u > 0) logQ(u > 0)− v(u < 0) logQ(u < 0).

By definition of the normal space, v is orthogonal to the vector log Q
ν
, so

∑

x∈supp(u)
v(x) log

Q(x)

νx
= −

∑

x∈supp(v)\supp(u)
v(x) log

Q(x)

νx
.

Furthermore, Q(u > 0) = PE(u > 0)Q(Y) and Q(u < 0) = PE(u < 0)Q(Y). By
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3.5. The relation between D(·‖E) and DE

assumption v(u > 0) + v(u < 0) = v(u 6= 0) = 0, so Lemma 3.14 implies

∑

x∈supp(u)
v(x) log

|u(x)|
νx

= −
∑

x∈supp(v)\supp(u)
v(x) log

Q(x)

νx
− v(u > 0) log

PE(u > 0)

PE(u < 0)
.

= −
∑

x∈supp(v)\supp(u)
v(x) log

Q(x)

νx
+ v(u > 0)DE(u),

Hence inequality (3.12) is equivalent to

DEPE (v|Y ′) =
∑

x∈Y ′

v(x) log
|v(x)|
Q(x)

≤ v+(u = 0)DE(u).

Therefore, the claim follows from Lemma 3.4, Remark 3.18 and the observation that
{

1

v+(Y ′)
v|Y ′ : v ∈ N

}

= UN ′ .

The next lemma shows that the dimension of the set of f.d.p.s is bounded from
above by the dimension of the exponential family:

Lemma 3.26. Let E be an exponential family with normal space N , let u ∈ N be a
f.d.p., and let Z = X \ supp(u+). Denote by EZ the exponential family on Z with
reference measure ν|Z and normal space {v|Z : v ∈ N}. Then u− ∈ EZ .

Proof. Since supp(u) is facial for E , it follows that supp(u−) is facial for EZ . By
Lemma 3.25 and the assumptions u− is a projection point, and the rI-projection PE of
u− has support supp(u). By Theorem 2.29 there exists Q ∈ E such that Qsupp(u) = PE .

Therefore, u− = P
supp(u−)
E = Qsupp(u−) ∈ EZ by Theorem 2.29.

Remark 3.27. Lemma 3.26 suggests to assign a unique associated kernel distribution
Φ(P ) to any given kernel distribution P ∈ KE in the following way: Take

Φ(P ) := argmin {D(Q‖ν) : Q ∈ NP , supp(Q) ∩ supp(P ) = ∅} .

Then Φ(P ) is an element of EX\supp(P ), and if P = u+ for some f.d.p. u ∈ ∂UN , then
Φ(P ) = u−. More generally, if P = v+ for some v ∈ ∂UN , then Φ(v+) equals the
rI-projection of v− onto EX\supp(v+). This idea is useful to find the local maximizer of
DE for low-dimensional exponential families, see Section 4.1.

3.5. The relation between D(·‖E) and DE

The goal of this section is to generalize Theorem 3.16. The first step is to characterize
the largest subsets of P(X ) and ∂UN such that the two maps ΨE and Ψ+ : u 7→ u+

induce mutually inverse bijections. On one side, the situation is clear: Lemma 3.7 says
that the property Ψ+ ◦ ΨE(P ) = P characterizes projection points. The other side
is given by the f.d.p.s, as Theorem 3.28 will show. The second step is to study how
subsets of the sets of projection points and f.d.p.s behave under the maps ΨE and Ψ+.
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3. Maximizing the information divergence from an exponential family

Theorem 3.28. Let E be an exponential family with normal space N . The maps ΨE
and Ψ+ : u 7→ u+ restrict to mutually inverse bijections between the set of proper
projection points and the set of facial differences of projection points. ΨE maps the

set of















local maximizers
global maximizers
critical points

quasi-critical points

of DE onto the set of















local maximizers
global maximizers
critical points

quasi-critical points

of DE .

For any projection point P ∈ P(X ) and f.d.p. u ∈ ∂UN such that P = u+,

D(P‖E) = log(1 + exp(DE(u))). (3.14)

The proof of the statement about the local maximizers needs the following inequality,
which is an analogue to Lemma 3.17:

Lemma 3.29. DE(P ) ≤ log(1+exp(DE(ΨE(P )))) for all P ∈ P(X ) \ E , with equality
if and only if P is a projection point.

Proof. Let u = ΨE(P ), and let E ′ be the exponential family with reference measure
ν and normal space N ′ = Ru. Then E ⊆ E ′, and u+ is a projection point of E ′.
Furthermore, PE = PE ′ , since P − PE ∈ N ′ and PE ∈ E ′. Example 3.13 shows that
D(P‖E ′) ≤ D(u+‖E ′). Therefore,

log(1 + exp(DE(ΨE(P )))) = log(1 + exp(DE ′(u))) = D(u+‖E ′) ≥ D(P‖E ′) = D(P‖E).

Equality is equivalent to P = u+, and by Lemma 3.7 this means that P is a projection
point.

Proof of Theorem 3.28. The proof has four steps:
(1) Projection points and f.d.p.s: If P is a projection point, then ΨE(P )− is also a

projection point, and supp(ΨE(P )) = supp(PE) is facial. By Lemma 3.25, projection
points are mapped to f.d.p.s by ΨE . Lemma 3.25 also shows that Ψ+ maps f.d.p.s
to projection points. By Lemma 3.7, ΨE is injective on the projection points, and
Ψ+ is surjective onto the projection points. Injectivity of Ψ+ on the f.d.p.s follows
from Lemma 3.25: Let u, v ∈ ∂UN be f.d.p.s such that u+ = v+, and let PE be the
rI-projection of u+ onto E . Then PE is a convex combination of u+ and u− as well
as a convex combination of u+ and v−. Since u− and v− are probability measures on
X \ supp(u+), they must be equal. This proves the statement about the projection
points and f.d.p.s. Equation (3.14) is a consequence of Lemma 3.17 or Lemma 3.29.
(2) The quasi-critical points: By Lemma 3.24, a projection point P is a quasi-critical

point of DE if and only if the f.d.p. ΨE(P ) is a quasi-critical point of DE .
(3) The critical points: Let P ∈ P(X ) be a quasi-critical point of DE with rI-

projection PE . From Theorem 3.16 applied to the exponential family EPE and equa-
tion (3.14) it follows that P satisfies inequality (3.2) if and only if u = ΨE(P ) satis-
fies (3.9).
(4) The maximizers: The statement about the global maximizers is Theorem 3.16.

Let V ⊆ ∂UN be a neighbourhood of u such that DE(v) ≤ DE(u) for all v ∈ V , and
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3.6. Computing the critical points

let U = Ψ−1
E (V ). Since u is a critical point of DE , the open set U contains u+. By

Lemmas 3.17 and 3.29, if Q ∈ U , then

D(Q‖E) ≤ log(1 + exp(DE(ΨE(Q)))) ≤ log(1 + exp(DE(u))) ≤ D(u+‖E).
Conversely, if P ∈ P(X ) is a local maximizer ofDE , then let U ⊆ P(X ) be a neighbour-
hood of P such that D(Q‖E) ≤ D(P‖E) for all Q ∈ U . The open set V = (Ψ+)−1(Q)
is a neighbourhood of ΨE(P ). By Lemmas 3.17 and 3.14, if u ∈ V , then

DE(u) ≤ log(exp(D(u+‖E))− 1) ≤ log(exp(D(P‖E))− 1) = DE(ΨE(u)).

Theorem 3.28 makes it possible to relate properties of the local maximizers of DE
and DE . For example, the following lemma is a consequence of Lemma 3.5. It is
instructive to prove it directly, though. The proof should also be compared to the
proof of Lemma 3.26.

Lemma 3.30. Let E be an exponential family with sufficient statistics A, and let u
be a local maximizer of DE . Then the set {Ax : u(x) > 0} is affinely independent. In
particular, the support of u+ has cardinality at most dim E + 1.

Proof. Let Z = supp(u+). If u is a local maximizer of DE , then u+ is a local maximizer
of the strictly convex function D(·‖ν) restricted to the polytope P(Z) ∩Nu− . There-
fore, u+ is a vertex of this polytope, so {Ax : u(x) > 0} is affinely independent.

Remark 3.31. It is an interesting question when the rI-projection PE of a local maxi-
mizer P lies in E . More generally one can ask for the support of PE . Since supp(PE) =
supp(ΨE(P )) it is equivalent to ask for the support of a local maximizer of DE by
Theorem 3.28. In many cases the support of PE is equal to X , but the construction
of Example 3.13 shows that PE can have any support (of cardinality at least two).

3.6. Computing the critical points

The most direct approach to finding the local maximizers of DE is to solve the critical
equations (3.8). The function DE is not smooth, since the function p 7→ p log |p| is
not smooth at p = 0. This makes it difficult to treat the first order conditions of
DE . However, DE is smooth when the sign vector is restricted: For any v ∈ N let
sgn(v) = (sgn(vx))x∈X ∈ {0,±1}X be the sign vector of v. Then the restriction of
DE to N sgn(u) = {v ∈ N : sgn(v) = sgn(u)} is a smooth function for any u ∈ N .
Proposition 3.21 (i) and Lemma 3.30 can also be seen as conditions on the sign vector
sgn(u) of u:

Definition 3.32. Let N ⊆ RX . A sign vector σ ∈ sgn(N ) is facial if its support is
facial. σ is a quasi-critical sign vector of N if it satisfies

v(σ = 0) = 0, for all v ∈ N .

If σ is quasi-critical and if {Ax : σx > 0} is affinely independent, then σ is a critical
sign vector . By Lemma 3.24, quasi-critical and critical sign vectors are facial.
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3. Maximizing the information divergence from an exponential family

By what was said until now, the following strategy can be used to compute the local
maximizers of DE :

1. Compute all critical sign vectors.

2. For any critical sign vector σ = (σx)x∈X ∈ sgn(N ) find all u ∈ N σ that solve the
equations

∑

x:σx 6=0

v(x) log
σxu(x)

νx
= 0 (3.15)

for all v ∈ N satisfying supp(v) ⊆ supp(u) and d′u(v) = v(u > 0) + v+(u = 0) =
0.

3. Determine which quasi-critical points are critical.

4. Check which critical points are local maximizers.

If only the global maximum is of interest, then it is sufficient to compute the value of
DE at each quasi-critical point. Similarly, the f.d.p.s can be computed by considering
all facial sign vectors. The set of all sign vectors occurring in a vector space (in this
case N ) forms a (realizable) oriented matroid. The basic facts about sign vectors and
oriented matroids which are needed in the following are collected in Appendix A.2.
The number of sign vectors of N can be very large. A naive upper bound is 3N ,

where N = |X |. In contrast, the number of subsets of X is 2N . Therefore, one might
think that there are much more quasi-critical sign vectors than possible support sets
for local maximizers of DE . The following lemma states that this is not true:

Lemma 3.33. Let σ, τ ∈ sgn(N ) be two facial sign vectors. If σ+ = τ+, then σ = τ .

Proof. By Lemma 2.30, if supp(σ+) ⊆ supp(τ), then supp(σ−) ⊆ supp(τ), and vice
versa.

Let σ be the sign vector of some u0 ∈ ∂UN . Write Y := supp(σ) = supp(u0). Define
dσ(v) :=

∑

x:σx>0 v(x). This implies dσ(v) = d′u0
(v) whenever supp(v) ⊆ supp(u0) =

supp(σ). Let

Kσ :=
{

v ∈ N : dσ(v) = 0 and supp(v) ⊆ supp(σ)
}

.

If u ∈ ∂UN satisfies sgn(u) = σ, then u − u0 ∈ Kσ. Exponentiating the critical
equations (3.15) proves the following result:

Proposition 3.34. Let σ be the sign vector of u ∈ ∂UN , and suppose that u satisfies

∏

x∈Y

(

σxu(x)

νx

)v+(x)

=
∏

x∈Y

(

σxu(x)

νx

)v−(x)

, for all v ∈ Kσ. (3.16)

If σ is facial, then u is a f.d.p. If σ is quasi-critical, then u is a quasi-critical point of
DE . Conversely, if u is a f.d.p., then u satisfies (3.16).
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3.6. Computing the critical points

Remark 3.35. The system of equations (3.16) contains infinitely many equations. The
derivation of (3.16) from (3.15) (which is linear in v) shows that it is enough to consider
these equations for v from a spanning set of Kσ. This is due to the fact that these
equations correspond to the directional derivatives of a smooth function. Hence a
finite number of equations is sufficient.

If v ∈ Kσ happens to be an integer vector, then (3.16) is a polynomial equation.
Therefore, if

Kσ
Z := Kσ ∩ ZX

contains a spanning set of Kσ, then the critical points with sign vector σ are solutions
to polynomial equations.

Lemma 3.36. If E is an algebraic exponential family, then Kσ
Z spans Kσ for all sign

vectors σ ∈ sgn(N ). Conversely, if the codimension of E is at least two and if Kσ
Z

spans Kσ for all sign vectors σ ∈ sgn(N ), then E is algebraic.

Proof. Assume that N has an integer basis. For any σ the vector space Kσ is the
solution set of a system of linear equations with integer coefficients; therefore, Kσ also
has an integer basis.
For the other direction, if dim(N ) ≥ 2, then there exist two sign vectors σ, σ′ with

maximal support such that σ 6= σ′ 6= −σ. Then Kσ and Kσ′

are two different vector
subspaces of codimension one of N . If Kσ and Kσ′

both have an integer basis, then
N = Kσ +Kσ′

also has an integer basis.

Proposition 3.37. Let E be an algebraic exponential family. Let σ be the sign vector
of u ∈ ∂UN , and suppose that u satisfies the polynomial equations

uv+νv− = uv−νv+ , for all v ∈ Kσ
Z , (3.17)

If σ is facial, then u is a f.d.p. If σ is quasi-critical, then u is a quasi-critical point of
DE . Conversely, if u is a f.d.p., then u satisfies (3.17).

Proof. It only remains to see that the factors σ
v±(x)
x cancel each other; then the state-

ments follow from Proposition 3.34, Lemma 3.36 and the discussion above. If v ∈ Kσ
Z ,

then v(σ < 0) = v(σ 6= 0)− v(σ > 0) = 0. Hence v+(σ < 0) + v−(σ < 0) = 0, and so

∏

x:v(x)>0

(σx)
v(x) = (−1)v

+(σ<0) = (−1)v
−(σ<0) =

∏

x:v(x)<0

(σx)
−v(x).

In the rest of this section only algebraic exponential families will be considered.
The study of polynomials is in many respects easier when the field is algebraically
closed (but not always, see Remark 3.39). Therefore, it is convenient to interpret
equations (3.17) as complex equations in the variables u(x). Of course, only real solu-
tions with the right sign pattern are candidate solutions of the original maximization
problem.
Fix a critical sign vector σ, and let A be a sufficient statistics of E satisfying the

statements of Lemma 2.9. Let Iσ2 be the ideal generated by all equations (3.17) in
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3. Maximizing the information divergence from an exponential family

the polynomial ring C[u(x) : x ∈ Y ] with one variable for each x ∈ Y . Similarly, let
Iσ1 ⊆ C[u(x) : x ∈ Y ] be the ideal generated by the equations

∑

x∈Y
Ai,xu(x) = 0, for all i.

Finally let Iσ := Iσ1 + Iσ2 . The set of all common complex solutions of all equations in
Iσ is an algebraic subvariety of CY and is denoted by Xσ.

Remark 3.38. It is possible to add the equation dσ − 1 = 0 to any of the ideals
defined above. Without this equation the above ideals are all homogeneous and define
projective varieties. As in Remark 2.33 the equation du − 1 = 0 corresponds to a
normalization condition and can be ignored for theoretical purposes, but it is useful
in applications to eliminate one of the variables.

Both ideals Iσ1 and Iσ2 taken for themselves are easy to solve: Iσ1 corresponds to a
system of linear equations, so it can be treated by the methods of linear algebra. On
the other hand, Iσ2 is a binomial ideal, so the discussion of Section 2.3 applies. The
relation between the binomial ideals Iν(B) of Section 2.3 and the binomial ideals Iσ2
will become clearer in the next section.
The sum of a linear ideal and a binomial ideal can be arbitrarily complicated. In

fact, it is easy to see that any system of polynomial equations can be reparametrized as
a combination of linear and binomial equations: For example, a polynomial equation
∑

i mi = 0 with arbitrary monomials mi, is equivalent to the system of equations

zi −mi = 0, for all i,
∑

i

zi = 0,

where one additional variable zi has been introduced for every monomial. Still, the
two ideals Iσ1 and Iσ2 under consideration here are closely related, and one may try to
exploit this relationship.
Xσ equals the intersection of Xσ

1 and Xσ
2 , where Xσ

1 and Xσ
2 are the varieties of Iσ1

and Iσ2 , respectively. The variety Xσ
1 is easy to determine: It is given by the (complex)

kernel of A restricted to Y :

Xσ
1 = kerC A ∩ CY = kerCAY ,

where AY is the submatrix of A with columns Ax for x ∈ Y . The variety Xσ
2 is slightly

more complicated. Theorem 2.35 implies that Iσ2 is a prime ideal, so Xσ
2 is a toric

variety. In particular Xσ
2 is irreducible.

For any subset B ⊆ Kσ
Z let Iσ2 (B) be the ideal generated by the polynomials

∏

x∈Y

(

u(x)

νx

)v+(x)

−
∏

x∈Y

(

u(x)

νx

)v−(x)

for v ∈ B. If B generatesKσ
Z (as an abelian group), then Proposition 2.42 says that any

u ∈ ∂UN with sign vector σ solves Iσ2 (B) if and only if u solves Iσ2 . Therefore, one may
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3.6. Computing the critical points

replace Iσ2 with Iσ2 (B) in the following calculations. Even more is true: Remark 3.35
applies, hence it suffices if B is a basis of Kσ. However, for computational reasons it
is preferable if B is a circuit basis or even a Markov basis, as discussed in Section 2.3.
Although Xσ

1 and Xσ
2 are both irreducible, in general Xσ may be reducible. This

means that Xσ is a finite union of irreducible components Xσ = V σ
1 ∪· · ·∪V σ

c . To each
of these components V σ

i corresponds a polynomial ideal Iσi , and u ∈ Xσ if and only if
u solves (at least) one of these ideals, i.e. Iσ = Iσ1 ∩ · · · ∩ Iσc . The procedure to obtain
the ideals Iσi is called primary decomposition. In fact, a primary decomposition of an
ideal can give much more information than an irreducible decomposition of varieties,
since an ideal may contain more information than a variety, in the sense that different
ideals can define the same variety. These fine points play no role in the following,
since, in the end, only the varieties are of interest here.
There are symbolic algorithms [33] as well as numerical algorithms [65] for pri-

mary decomposition. The symbolic algorithms are implemented, for example, in the
computer algebra systems Singular [34] or Macaulay2 [32]. An implementation of
the numerical algorithms is Bertini [11]. The applicability of numerical algorithms is
discussed below in Remark 3.41.

Remark 3.39. Symbolic and numerical algorithms differ in their requirements on the
ground field: Symbolic algorithms cannot work with arbitrary real or complex num-
bers, since these cannot be represented exactly in a computer. The exact representa-
tion of algebraic numbers overQ is possible, but many implementations of the symbolic
algorithms contend themselves to compute a primary decomposition over Q. It is then
possible to deduce the full primary decomposition by adjoining certain algebraic num-
bers to Q (and this last step is usually not difficult). On the other hand, the numerical
algorithms usually work with complex numbers, or with floating point approximations,
to be precise. Most algorithms rely on homotopy continuation of solutions of polyno-
mial equations, and hence they need a ground field that is algebraically closed as well
as topologically complete.

Primary decompositions can be computationally challenging, even for moderately
sized systems of polynomial equations. Therefore, it is important to choose the set
of equations wisely1 before invoking a computer algebra system. The choice of the
binomials discussed above is one aspect. Another possibility is to incorporate further
knowledge about the sign vector in the algebraic equations. The construction of the
ideal Iσ already ensures that the support of any point in Xσ is contained in Y . While
it is difficult to find only real solutions satisfying the right sign conditions by purely
algebraic means, there is an algebraic method to discard some solutions with a too
small support.
Let x ∈ Y . For every irreducible component V σ

i of Xσ there are two alternatives:

• Either u(x) = 0 for all u ∈ V σ
i . In this case, sgn(u) 6= σ for all u ∈ V σ

i ,

• or u(x) = 0 holds only on a subset of V σ
i of measure zero.

1
or use trial and error
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3. Maximizing the information divergence from an exponential family

The reason for this is that the equation u(x) = 0 defines a closed subset of V σ
i , and

either this closed subset is all of V σ
i , or it has codimension one (this argument needs

the irreducibility of V σ
i ).

When computing the primary decomposition the irreducible components of the first
kind can be excluded algebraically by saturation (see Section 2.3): Namely, the variety
corresponding to the saturated ideal

Iσ :
(

∏

x∈Y
u(x)

)∞

consists only of those irreducible components of Xσ that are not contained in any
coordinate hyperplane. Similarly, one may saturate Iσ by the polynomial dσ(u), since
any solution u with sgn(u) = σ has 0 6= d(u) = dσ(u).
Both Singular and Macaulay2 provide routines to compute saturations. Still,

saturations can be a computationally difficult. If different saturations have to be
performed, then changing the order of these saturations can decisively speed up the
calculation. For example, instead of saturating with respect to all monomials at the
same time, it may be advantageous to saturate with respect to the variables u(x),
x ∈ Y , one by one.
If the saturation can be computed, then it may reduce the complexity of subsequent

symbolic calculations. Furthermore, saturation removes irreducible components from
the solution set that do not contain a point with the right sign vector, thus simplifying
the analysis of the results.

Assume that the irreducible decomposition Xσ = V σ
1 ∪ · · · ∪ V σ

c can be found. If
an irreducible component V σ

i is zero-dimensional, then it consists of only one point
(at least over an algebraically closed field like the complex numbers, cf. Remark 3.39),
and it is easy to check whether this unique element u ∈ V σ

i satisfies sgn(u) = σ. Com-
ponents of positive dimension may arise, however. In this case it is difficult to decide
whether these components contain elements u satisfying sgn(u) = σ. Fortunately, in
many cases this information is not required if only the global maximum is of interest:

Theorem 3.40. Let u be an element of an irreducible component V of Xσ such that
dσ(u) = 1. Suppose there exists a real u0 ∈ V such that dσ(u0) = 1 and sgn(u0) = σ.
Then

DE(u0) =
∑

x∈Y
ℜ(u(x)) log |u(x)|

νx
.

Proof. Let
V ′ := {v ∈ V : v(x) 6= 0 for all x ∈ Y , and dσ(v) 6= 0}.

Then V ′ is a Zariski-open subset of V , hence V ′ is irreducible. This implies that V ′

is pathwise connected, so there exists a smooth path γ : [0, 1] → V ′ from u to u0.
This is obvious if V ′ is regular, since V ′ is a locally pathwise connected and connected
complex manifold in this case. In the general case, all regular points can be connected
by a smooth path. Finally, every singular point p can be linked by a smooth path
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to some regular point in any neighbourhood of p. This path can be chosen such that
dσ(γt) = 1 for all t ∈ [0, 1], cf. Remark 3.38.
Let u ∈ V ′, and fix a branch of the complex logarithm. For every x ∈ Y the

logarithm can be continued analytically along the path t 7→ γt(x) to a map t 7→
logt,x(γt(x)), such that log0,x(σxγ0(x)) = log(σxu(x)). Let K

σ
C be the complexification

of Kσ. For every t ∈ [0, 1] define a linear functional st : K
σ
C → C via

st(v) =
1

2πi

∑

x∈Y
v(x) logt,x

σxγt(x)

νx
.

The definition of Xσ shows that exp(2πist(v)) = 1 for all t ∈ [0, 1] and all v ∈ Kσ
Z .

Hence st takes only integer values on Kσ
Z and can be identified with an element of the

dual lattice Kσ∗
Z of Kσ

Z . Since Kσ∗
Z is a discrete subset of the dual vector space Kσ∗

C

and since the map t 7→ st is continuous, st is constant along γ.
Consider the function

f(t) =
∑

x∈Y
γt(x) log

t,x

(

σxγt(x)

νx

)

.

Its derivative is

f ′(t) =
∑

x∈Y
γ′
t(x) log

t,x

(

σxγt(x)

νx

)

= 2πis0(γ
′
t),

where γ′
t(x) =

∂
∂t
γt(x) ∈ Kσ

C. Hence, f(1)− f(0) = 2πis0(γ1 − γ0). In other words,

∑

x∈Y
u0(x) log

1,x σxu0(x)

νx
=
∑

x∈Y
u(x) log0,x

σxu(x)

νx
+ 2πis0(u0 − u).

If log1,x(σxu0(x)) = log(σxu0(x)) + 2πikx with kx ∈ Z, then

DE(u0) = f(0) + 2πi

(

s0(u0 − u)−
∑

x∈Y
u0(x)kx

)

.

Taking the real parts of this equation gives

DE(u0) = ℜ(f(0)) + 2πs0(ℑ(u)) = ℜ(f(0))− i

∑

x∈Y
ℑ(u(x)) log σxu(x)

νx

= ℜ
(

∑

x∈Y
ℜ(u(x)) log σxu(x)

νx

)

=
∑

x∈Y
ℜ(u(x)) log |u(x)|

νx
.

By continuity this formula continues to hold when u belongs to the closure of V ′,
which equals V .
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If only the global maximum of DE is of interest, then the theorem implies that for
many irreducible components of some Xσ it is enough to know one point u. Only if
∑

x∈Y ℜ(u(x)) log |u(x)|
νx

is exceptionally large, then it is necessary to analyze this irre-
ducible component further and see if there is a real point u0 from the same irreducible
component that satisfies the sign condition.

Remark 3.41. The above theorem makes it possible to use methods of numerical al-
gebraic geometry [65], like those implemented in Bertini [11]. These methods can
determine the number of irreducible components and their dimensions. In addition, it
is possible to sample points from any irreducible component. In fact, each component
is represented by a so-called witness set, a set of elements of this component. These
points can be used to numerically evaluate DE .

Example 3.42. The above ideas can be applied to the pair interaction model of four
binary random variables. The maximization problem of this model is related to or-
thogonal Latin squares: A global maximizer of the information divergence from the
homogeneous pair interaction model with variables of size N1 = k is easy to find if
two orthogonal Latin squares of size k exist, and in this case the maximum value of
DE equals 2 log(k), see [51]. Otherwise the maximum value of DE is strictly less than
2 log(k). From this point of view, the following computation is a very complicated
proof of the trivial fact that there are no two orthogonal Latin squares of size two.
A sufficient statistics and a basis of the normal space N were given in Section 2.4.

The software package TOPCOM is used to calculate the oriented circuits ofN , from which
all sign vectors are computed by composition. Up to symmetry there are 73 different
sign vectors occurring in N . Here, the symmetry group of the model is generated by
the permutations of the four binary units and the relabellings 1 ↔ 2 of each unit.
From these 73 sign vectors only 20 are critical. The sign vectors of small support are

easy to handle: There are two critical sign vectors σ1, σ2 with support of cardinality
eight. They are oriented circuits, which implies that there are two unique elements
u1, u2 ∈ ∂UN such that sgn(ui) = σi, i = 1, 2. They satisfy DE(ui) = 0, so they are
surely not global maximizers. There are three critical sign vectors with support of
cardinality twelve. Let σ be one of these. Then the restriction supp(u) ⊆ supp(σ)
selects a two-dimensional subspace of N , and it is easy to see that DE = 0 on this
subspace. The reason for this is that there is a permutation τ of supp(σ) such that
v(τ(x)) = −v(x) for all x ∈ supp(σ) and all v ∈ N that satisfy supp(v) ⊆ supp(σ).
There remain 15 critical sign vectors with full support. For every such sign vec-

tor σ, the system of the algebraic equations in Iσ = Iσ1 + Iσ2 has to be solved. To
reduce the number of equations and the number of variables one may parametrize the
solution set Xσ

1 of Iσ1 by finding a basis u1, . . . , u5 of N . Then the parametrization
u(λ1, . . . , λ5) =

∑5
i=1 λiui of X

σ
1 is plugged into the equations of Iσ2 . This yields an

ideal in C[λ1, . . . , λ5]. Some of these ideals are at the limit of what today’s desk-
top computers can handle. Therefore, care has to be taken how to formulate these
equations. The general strategy is the following:

1. Compute a basis v1, . . . , v4 of K
σ
Z using a Gram-Schmidt-like algorithm: Renum-
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ber the ui such that dσ(u5) 6= 0 and let

vi :=
dσ(u5)

g
ui −

dσ(ui)

g
u5,

where g = gcd(dσ(u5), dσ(ui)).

2. Let I be the ideal in the variables λ1, . . . , λ5 generated by the equations

∏

x:vi>0

u(x)vi(x) −
∏

x:vi<0

u(x)−vi(x), for i = 1, . . . , 4,

where u(x) =
∑5

i=1 λiui(x), and compute the saturation J = I :
(
∏

x∈X u(x)
)∞

.

3. Compute a primary decomposition of J .

The ideal I in the second step corresponds to the ideal Iσ2 (B) defined above for the
basis B = {v1, . . . , v4}, where the variables u(x) have been restricted to the linear
subspace kerCA. As discussed in Section 2.3 it would be better to replace B with a
circuit basis or a Markov basis of Kσ

Z . However, a basis proved to be sufficient. To
automatize the algorithm a C++ program was written that takes a sign vector and
computes the generators of I in Singular syntax. Using a circuit basis or a Markov
basis would have made it necessary to use external programs or libraries, and it was
easier to implement the above Gram-Schmidt-like algorithm.
Unfortunately, this simple algorithm does not work for all sign vectors. Some further

tricks are needed to compute the primary decomposition within a reasonable time: The
basis of adjacent minors of N (see Theorem 2.48) is given by the rows u1, . . . , u5 of
the matrix













1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 0 −1 0 −1 0 1 0 −1 0 1 0 1 0 −1 0
1 −1 0 0 −1 1 0 0 −1 1 0 0 1 −1 0 0
1 −1 −1 1 0 0 0 0 −1 1 1 −1 0 0 0 0
1 −1 −1 1 −1 1 1 −1 0 0 0 0 0 0 0 0













.

This basis has the following property: Let u =
∑5

i=1 λiui. If λj = 0 for some j =
2, 3, 4, 5, then DE(u) = 0, because in this case there is a bijection between the positive
and negative entries of u such that corresponding entries have the same absolute value.
Hence, in order to determine the global maximizers of this model, one may saturate
J by the product λ2λ3λ4λ5.
Replacing J by (J : (λ2λ3λ4λ5)

∞) makes it possible to solve all but one system of
equations. For the last sign vector σ a special treatment is necessary: The complexity
of the above algorithm depends on the chosen basis v1, v2, v3, v4 of Kσ

Z . The ℓ1-norm
of each vector vi equals twice the degree of the corresponding equation. Thus it is
advisable to choose the vectors v1, v2, v3, v4 as short as possible. As a first approxi-
mation, one may try to use a basis of prime circuit vectors. This approach provides
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a basis v1, v2, v3, v4 for Kσ
Z of the last sign vector, such that the rest of the algorithm

sketched above works (an alternative would be to replace {v1, v2, v3, v4} with a prime
circuit basis or a Markov basis of Kσ

Z , cf. Section 2.3).
The calculations were performed with the help of Singular. The primary de-

compositions were done using the algorithm of Gianni, Trager and Zacharias (GTZ)
implemented in the Singular library primdec.lib [56]. The following theorem sums
up the results, which confirm a conjecture by Thomas Kahle (personal communica-
tion):

Theorem 3.43. The pair interaction model with four binary units has, up to symme-
try, a unique maximizer of the information divergence, which is the uniform distribu-
tion over the states 1112, 1121, 1211, 2111 and 2222. The maximal value of DE is
log 3− 1

3
log 5 ≈ 0.56, and it is attained at

u =
1

15
(−5, 3, 3,−1, 3,−1,−1,−1, 3,−1,−1,−1,−1,−1,−1, 3).

The maximum value of DE is log(1 + 3 · 5− 1

3 ) ≈ 1.01.

3.7. Computing the projection points

The results of Section 3.2 motivate a second method for computing the maximizers of
DE . This method is actually more elementary than solving the critical equations of DE
as in the previous section. Knowing the first order conditions of DE gives additional
insight into the method presented in this section.
Let P be a projection point of the exponential family E , let u = ΨE(P ), and let PE

be the rI-projection of P and u−. Then

u(x) =

{

1
µ
PE(x), if u(x) > 0,

− 1
1−µ

PE(x), if u(x) < 0,
(3.18)

where µ = PE(supp(P )). Let Y = supp(PE), and let A be a sufficient statistics of E .
Theorem 2.29 implies that there exist ξ1, . . . , ξh > 0 such that

PE(x) = c′νx

h
∏

i=1

ξ
Ai,x

i , for all x ∈ Y . (3.19)

Here c′ > 0 is a normalization constant.
Define an (h + 1) × Y-matrix Aσ as follows: Take the columns Ax of A for x ∈ Y ,

then add a zeroth row with entries

Aσ
0,x :=

1

2
(1− σx) ∈ {0, 1}, for x ∈ Y .
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Then (3.18) and (3.19) together show that u has the form

u(x) = cνx

h
∏

i=0

ξ
Aσ

i,x

i , for all x ∈ Y . (3.20)

Here, c = c′

µ
, ξ0 = − µ

1−µ
< 0, and all the other parameters are positive. If A satisfies

one of the conditions of Lemma 2.9, then c may be assumed to be one and omitted.
The projection points of E can be found by plugging the parametrization (3.20) into
the equation Au = 0 and solving for the ξi.
Again, this method simplifies if E is algebraic. In this case it is possible to choose

a sufficient statistics A ∈ Nh×X
0 which has only nonnegative integer entries. This

nonnegativity requirement can be achieved by adding a suitable multiple of 1 to each
row of A. With such a choice the parametrization (3.20) is monomial (in the algebraic
sense), so the equation Au = 0 is equivalent to h polynomial equations in the h + 1
parameters ξ0, . . . , ξh.
This method is linked to the ideal Iσ2 of the previous section. As stated there, Iσ2

is a toric ideal, hence it defines a toric variety. Every toric variety has a monomial
parametrization, which induces the monomial parametrization (3.20). Unfortunately,
in general this monomial parametrization is not surjective, see [44]. The argument
leading to equation (3.20) shows that it is “surjective enough,” though.
The polynomial equations obtained from Au = 0 and the monomial parametriza-

tion (3.20) for u can be solved by primary decomposition. Every solution (ξ0, . . . , ξh)
yields a point of Xσ. Theorem 3.40 applies in this context.

Example 3.44. The above ideas can be applied to the independence model of three
random variables of cardinalities 2, 3 and 3. As explained in the introduction, this is
the smallest independence model to which the analytical solution of Ay and Knauf [7]
does not apply.
The dimension of the model is d = 5 and the state space has cardinality 18, so the

normal space N has dimension 18 − 5 − 1 = 12. The symmetry group of the model
is generated by the permutation of the two random variables of cardinality three and
the permutations within the state spaces of each random variable.
The cocircuits can be computed by TOPCOM. Testing all 318 possible sign vectors of

length 18 shows that there are 365 592 nonzero sign vectors in N up to symmetry
(this is the second algorithm proposed in A.2; the first algorithm takes too long in
this case). Only 975 of them are quasi-critical. Excluding all sign vectors where the
support of both the negative and the positive part exceeds 6 (cf. Lemma 3.5) reduces
the problem to 240 sign vectors.
Again, the 72 sign vectors that do not have full support are easier to handle. They

can be treated, for example, with the algorithm from the previous section. For the 168
sign vectors that have full support this is not possible. The corresponding systems of
equations consist of dimN −1 = 11 equations of dimN = 12 variables. The computer
takes too long to solve these equations, but the sign vectors can be treated using the
method proposed in this section, which only requires the primary decomposition of a
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3. Maximizing the information divergence from an exponential family

system of d = 5 polynomials in d+1 = 6 variables. The treatment of the sign vectors
without full support is also faster with the algorithm from this section.

The analysis was carried out with the help of Singular. It proved to be advan-
tageous to use the algorithm of Shimoyama and Yokoyama (SY) implemented in the
library primdec.lib [56]. The following result was obtained:

Theorem 3.45. The maximal value of DE for the independence model of cardinalities
2, 3 and 3 equals log(3+2

√
2) ≈ 1.76, and the maximal value of DE is log(2(1+

√
2)) ≈

1.57. Up to symmetry there is a unique global maximizing probability distribution

(1−
√
2

2
)(δ122 + δ111) + (

√
2− 1)δ000.

In order to compare the two methods of finding the maximizers of DE and DE
presented in this section and in the last section let d be the dimension of the model
and let r = dimN . Choose a sufficient statistics A such that h = d+ 1. For any sign
vector σ with full support, the algorithm from Section 3.6 starts with r− 1 equations
(corresponding to a basis of Kσ

C) in r variables λ1, . . . , λr. On the other hand, the
algorithm in this section starts with the d+1 equations Au = 0 in the d+2 variables
ξ0, . . . , ξd+1. Thus, heuristically, the first method should perform better when the
codimension of the model is small, and the second method should perform better
when the dimension of the model is small.

Remark 3.46. The discussion in this section also shows, that the projection property
with respect to an algebraic exponential family is an “algebraic property,” in the sense,
that the projection points can be computed by solving polynomial equations. This
fact was already noticed by Bernd Sturmfels, who proposed the following algorithm
to compute the projection points (unpublished):

1. Let I be the ideal in the polynomial ring C[P (x), Q(x) : x ∈ X ] with 2N variables
generated by the following polynomials:

Qv+νv− −Qv−νv+ , for all v ∈ N ,

AQ− AP,

P (x)P (y)(P (x)Q(y)− P (y)Q(x)), for all x, y ∈ X .

The first equations are equivalent to Q ∈ E by Theorem 2.32. The equation
AP = AQ implies that Q = PE . The last set of equations expresses the fact,
that P (x)

P (y)
= Q(x)

Q(y)
, unless P (x)P (y) = 0.

2. Eliminate the variables Q(x), i.e. compute I ∩ C[P (x) : x ∈ X ].

3. Saturate with respect to the equations P v+νv− − P v−νv+ for all v ∈ N , in order
to remove the trivial solutions with P ∈ E .
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Then the probability measures that satisfy the resulting ideal are the proper projection
points.
One drawback of this algorithm is that the starting ideal I is an ideal in 2N vari-

ables. Even if the support of P is known (or if each possible support of P is consid-
ered separately), the starting ideal will be an ideal in more than N variables (unless
supp(PE) 6= X ). In contrast to this, the algorithms proposed in Section 3.6 and in
this section deal with ideals in polynomial rings with less than N variables. In fact,
depending on the codimension of the model, one of the two algorithms will always
work with a polynomial ring in at most N+1

2
variables.
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The purpose of this chapter is to discuss some examples and to compare the two
optimization problems ofDE andDE . The theoretical results from the previous chapter
are valuable tools in the study of the maximizers of DE , mainly because of two reasons:

1. The dimension of the problem is reduced.

Instead of maximizing over the whole probability simplex the maximization takes place
over the set of kernel distributions KE or the bounded subset ∂UN of the normal space
N , respectively. Therefore, the dimension of the problem is reduced by the dimension
of the exponential family. One has to admit that in view of Lemma 3.5 the gain is not
so large for low-dimensional exponential families, see Section 4.1.

2. It is not necessary to compute an rI-projection onto E in order to evaluate DE .

This is particularly important for the numerical search for maximizers using gradient
search algorithms, which is now feasible for larger models. There may be many local
maximizers and saddle points, however, so it is still a difficult problem to find the
global maximizers of DE , see Example 4.29.
Theorem 3.28 and Lemmas 3.17 and 3.29 allow to translate results on the maximiz-

ers of one problem to the other problem. Therefore, it might seem irrelevant to discuss
differences between the two optimization problems. There are, however, some differ-
ences between the two formulations. First, different points of view lead to different
intuitions, and some results are easier to see in one formulation than in the other. Sec-
ond, there is a more technical difference: Any probability measure P ∈ P(X ) gives a
lower bound of maxDE , if its rI-projection can be computed. In this case, u = ΨE(P )
can also be computed and gives a lower bound of maxDE . In the other direction, if a
basis of N is known, then one can construct elements u ∈ ∂UN , but since it is difficult
to compute the rI-projection of u+, it may not be possible to compute DE(u+) exactly.
Sections 3.6 and 3.7 demonstrated that the results of the previous chapter yield

new algorithms for exact computations. The case where the exponential family E has
codimension one, discussed in Examples 3.13 and 3.20, is another clear example of
the elegance of the theory of maximizing DE . Section 4.1 discusses the opposite case,
when the exponential families has a low dimension. In this case the maximization
of DE and the maximization of DE are very similar. Section 4.2 introduces partition
models, a class of convex exponential families with peculiar properties. For example,
the smallest exponential families E with maxDE = log(2) are partition models, as
Section 4.3 shows. Partition models also appear in the study of symmetric exponential
families. Section 4.4 discusses binomial models and binary i.i.d. models, two classes
of one-dimensional exponential families.
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4.1. Low-dimensional exponential families

This section is devoted to low-dimensional exponential families. The trivial zero-
dimensional case, in which both maximization problems are easy to understand, is
summarized in 4.1.1. The main emphasis of this section is on one-dimensional expo-
nential families, which are studied in 4.1.2. In 4.1.3 the results are specialized to the
case where the cardinality of X equals four. In this case the number of local max-
imizers and their support sets can be computed as a function of the tangent space
and the reference measure. The methods used in this section generalize and are also
useful to handle other low-dimensional exponential families. This is sketched in 4.1.4.
Two other classes of (closures of) one-dimensional exponential families, the binary
i.i.d. models and the binomial models, will be treated later in Section 4.4.

4.1.1. Zero-dimensional exponential families

A zero-dimensional exponential family is just a single point E = {ν} in the interior of
P(X ), which can be taken as the reference measure. Both the optimization problem
of DE and the maximization of DE are easy to solve. The normal space N is the
orthogonal complement of 1 in RX , i.e. N consists of all u ∈ RX such that

∑

x u
+(x) =

∑

x u
−(x). Note that, if E ′ is an arbitrary exponential family with normal space N ′

and reference measure ν ∈ P(X ), then the maximization of DE ′ over ∂UN ′ can be
formulated as the maximization of DE over ∂UN subject to linear constraints.
Any probability measure P satisfies PE = ν. Therefore, P is a projection point if and

only if P is a truncation of ν. By Proposition 2.14 (iii) the function DE = D(·‖ν) is
strictly convex, so every local maximizer is a point measure. Conversely, by Lemma 3.6
any point measure is a local maximizer with D(δi‖E) = − log(νi). For any subset
Z ⊆ X the convex function DE has a unique minimum in the interior of P(Z), and
this minimum agrees with the unique projection point P = νZ in P(Z).
The critical points ofDE are of the form νZ−νX\Z for nonempty subsets Z ⊂ X such

that Z 6= X . The value of DE at such a critical point is DE(νZ − νX\Z) = log ν(X\Z)
ν(Z)

.

4.1.2. One-dimensional exponential families

Let E be a one-dimensional exponential family on X = {1, . . . , N} = [N ], where
N ≥ 3. Then E has a sufficient statistics matrix of the form

A = (a1, a2, . . . , aN) ,

where {a1, . . . , aN} has cardinality at least two. Reordering X if necessary one may
assume that ai ≤ ai+1 for all i. Then a1 < aN . If a1 6= 0, then replace A by A− a11.
If aN 6= 1, then replace A by 1

aN
A. After these transformations the sufficient statistics

is of the form
A = (0, a2, . . . , aN−1, 1) (4.1)

with 0 = a1 ≤ a2 ≤ · · · ≤ aN−1 ≤ aN = 1.
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Remark 4.1. There is one remaining symmetry: replacing v by 1 − v and reordering
X replaces ai and (1− aN+1−i). This symmetry can be used to reduce the number of
cases in certain case distinctions.

For any 1 ≤ i < j ≤ N let ∆i,j be the line segment between δi and δj. The relative
interior of ∆i,j is denoted by ∆◦

i,j. The following theorem sums up the main results
of the following calculations. These calculations contain much more information than
stated in the theorem. For example, they contain a characterization of the maximizers
in the convex case, and they contain information on other critical points. Furthermore,
the calculations are important in their own right, since they demonstrate a general
method for computing the local maximizers of low-dimension exponential families, as
explained in Section 4.1.4.

Theorem 4.2. Let E be a one-dimensional exponential family on [N ] with sufficient
statistics given by (4.1). If the set {ak : k = 1, . . . , N} contains only two elements,
then E is a convex set. Otherwise, the following holds:

• For any i ∈ [N ], if a1 < ai < aN , then δi is a local maximizer.

• Let i, j ∈ [N ]. If there is no ak such that ai < ak < aj, then there is no local
maximizer in ∆◦

i,j. Otherwise, there is at most one local maximizer in ∆◦
i,j.

• If ai = 0 and aj = 1, then there is one local maximizer in ∆◦
i,j.

There are no further local maximizers. Hence, the total number of local maximizers is
bounded from above by

(N − 2) + 1 + 2(N − 3) +
(N − 2)(N − 3)

2
− (N − 3) =

1

2

(

N2 −N − 2
)

.

If 0 < a2 ≤ · · · ≤ aN−1 < 1, then the number of local maximizers is bounded from
below by

(N − 2) + 1 = N − 1.

Remark 4.3. The two bounds on the number of local maximizers are strict for N = 4,
see Subsection 4.1.3, i.e. there are exponential families on X = {1, 2, 3, 4} with three
and with five maximizers. Interestingly, there are no exponential families on X with
four local maximizers.

It is more difficult to make general statements on the global maximizers. In many
cases, the global maximizers are point measures, but not always. For example, the
global maximizers for the binary i.i.d. models are point measures, and the global maxi-
mizers of the binomial models are supported on two states, as discussed in Section 4.4.
For N = 4, any of the local maximizers that Theorem 4.2 allows may be the global
maximizer, see Remark 4.7. This is not true if E is assumed to include the uniform
distribution:

Proposition 4.4. Let E be a one-dimensional exponential family on [N ] with uniform
reference measure and sufficient statistics given by (4.1). Let aξ=1 =

1
N

∑

i ai.
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(i) If ak = aξ=1 for some k, then the set of global maximizers of DE consists of all
point measures δi with ai = ak.

(ii) Otherwise, there exists k < N such that ak < aξ=1 < ak+1. If a global maximizer
P of DE has support {i, j} for some 1 ≤ i < j ≤ N , then either ai = 0 and
aj = ak+1, or ai = ak and aj = 1. In this case, ak <

∑

l P (l)al < ak+1. If δi is a
global maximum, then ai ∈ {ak, ak+1}.

The proof of the proposition will be given at the end of this section. The statement
of this proposition may not be optimal: In all known cases the global maximizer of
the information divergence from a one-dimensional exponential family E containing
the uniform distribution is a point measure, unless E is convex.
The calculations below involve functions of the form

f : ϑ > 0 7→
n
∑

k=0

νkϑ
bk ,

where νk, bk ∈ R for all k. One may assume that νk 6= 0 for all k and that b0 < b1 <
· · · < bn. If all bk are integral, then f is a Laurent polynomial, or even a polynomial if
all bk are non-negative. If all bk are rational, then f is a Puiseux polynomial. In the
general case f can be identified with a finite Hahn series over R with value group R

(one might be tempted to call such a function a Hahn polynomial, but this name is
already reserved for a class of orthogonal polynomials).
In particular it will be important to count sign changes of f in an interval 0 ≤

ϑmin < ϑ < ϑmax ≤ ∞. Since f is real analytic for ϑ > 0, the zeros of f are
isolated, unless f = 0. Furthermore, for large ϑ the highest order term νlϑ

bl with
l = argmax{bk : νk 6= 0} dominates, therefore the number of sign changes is finite.
Only “true” sign changes from + to − or from − to + are counted. For example, the
function f(ϑ) = (ϑ− 1)2 has no sign changes, and the finite sequence 1, 0, 1, 0,−1 has
only one sign change.
The following lemma is well-known for polynomials under the name of Descartes’

rule of signs . It formalizes the following intuition: For small ϑ the lowest order term
determines the behaviour of f , and the highest order term determines the behaviour
for large ϑ. For intermediate ranges of ϑ, the intermediate terms play a role, one after
the other. The polynomial version of the lemma is usually proved using induction and
polynomial division. Unfortunately, the division algorithm does not work here.

Lemma 4.5. Let f(ϑ) =
∑n

k=0 νkϑ
bk , where νk, bk ∈ R and b0 < b1 < · · · < bn. Let cf

be the number of sign changes of the function f on R≥, and let cν be the number of
sign changes in the sequence ν0, ν1, . . . , νn. Then cf ≤ cν, and cν − cf is even.

Proof. Suppose that none of the coefficients νk, k = 0, . . . , n vanishes. Then one
may divide by νn and assume without loss of generality that νn = 1. With this
normalization limϑ→+∞ f(ϑ) = +∞. If ν0 < 0, then f(ϑ) < 0 for sufficiently small
ϑ > 0, so cf is odd, otherwise, if ν0 ≥ 0, then cf is even. This proves that cν − cf is
even.
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The inequality cf ≤ cν follows from induction on n: If n = 1, then f is monotone,
and f has a root if and only if a0 < 0, so the statement holds. Suppose that the
statement holds for all such functions with n or less terms.
Assume that b0 = 0 and ν0 6= 0. This is possible without loss of generality, since

the numbers of sign changes of f and of ϑ−ν0f are the same. Let

g = ϑ
∂

∂ϑ
f =

n
∑

k=1

bkνkϑ
bk .

Then g has less terms than f . Let c′ν be the number of sign changes in the sequence
b1ν1, . . . , bnνn, and let cg be the number of sign changes of the function g on R≥. By
the induction assumption, cg ≤ c′ν . Clearly c′ν ≤ cν .
Assume that the function f changes its sign at ϑ0. Then g cannot change its sign

at ϑ0, for otherwise f would have a local extremum at ϑ0. Let ϑ1, . . . , ϑcf be the

places where f changes its sign. Then ∂
∂ϑ
f must change its sign in each open interval

(ϑi, ϑi+1). Hence the same is true for g, so cg ≥ cf − 1. Therefore,

cf − 1 ≤ cg ≤ c′ν ≤ cν .

Since cf and cν are either both even or both odd, it follows that cf ≤ cν

The calculations proving Theorem 4.2 is spread across four paragraphs: First, the
convex case is discussed. Second, assuming that E is not convex, certain right inverses
of the rI-projection map are computed. This is useful, since there is no analytic for-
mula for the rI-projection itself. In a third step, these inverses can be used to compute
the derivatives of the information divergence. Finally, an analysis of the derivatives
yields the statements of Theorem 4.2. It is also possible to do the same calculations
for the maximization of DE ; this will be sketched at the end of the calculations.
The one-dimensional exponential family with sufficient statistics (4.1) and reference

measure ν can be parametrized by

Pξ(i) =
νi
Zξ

ξai , for all i ∈ X ,

where 0 < ξ < ∞. The convex support is the closed one-dimensional interval [0, 1].
By Lemma 3.5 the support of any local maximizer has cardinality one or two. Let
i0 < j0 be such that 0 = a1 = · · · = ai0 < ai0+1 and aj0−1 < aj0 = · · · = aN = 1. Let
Z = {1, . . . , i0} and Z ′ = {j0, . . . , N}.

The convex case. Assume that j0 = i0 + 1. Then E is actually a linear family: E
consists of all probability measures of the form Pλ = (1− λ)νZ + λνZ′

. In particular,
E is a convex exponential family. Such exponential families and their maximizers have
been studied by Ay and Matúš in [52]. If 1 is a reference measure, then E also belongs
to the class of partition models, see Section 4.2.
For any probability measure P the moment map computes πA(P ) = P (Z). There-

fore, PE = Pλ(P ), where λ(P ) = P (Z ′). Write P = (1 − λ(P ))PZ + λ(P )PZ′

. Then
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D(P‖E) = P (Z)D(PZ‖νZ) + P (Z ′)D(PZ′‖νZ′

). Without loss of generality assume
that max{D(P‖E) : P ∈ P(Z)} ≥ max{D(P‖E) : P ∈ P(Z ′)} =: C. Then the set of
all local maximizers equals the set

{

δi : i ∈ Z, D(δi‖νZ) > C
}

∪
{

(1− λ)δi + λδj : i ∈ Z, j ∈ Z, D(δi‖νZ) = D(δj‖νZ′

) = C, 0 ≤ λ < 1
}

.

This set is connected if and only if either max{D(P‖E) : P ∈ P(Z)} = max{D(P‖E) :
P ∈ P(Z ′)} or if the set

{

δi : i ∈ Z, D(δi‖νZ) ≥ C
}

consists of a single element.

If P is a probability measure with support contained in Z, then the support of its
rI-projection PE equals Z by Lemma 2.28 (in fact, PE = νZ). If P is a local maximizer
ofDE , then {Ax : x ∈ Z} and {Ax : x ∈ X \Z}must lie in distinct parallel hyperplanes
by Theorem 3.2 (i). Hence j0 = i0 + 1, and P is a point measure by Lemma 3.5. The
same statements hold true on Z ′. Therefore, if E is not convex, then there are no local
maximizers with support contained in Z or Z ′.

Right inverses of the rI-projection. In the following assume that j0 > i0 + 1 and
let Y = {i0 + 1, . . . , j0 − 1}. All point measures δi for i ∈ Y are local maximizers by
Lemma 3.6. All other possible local maximizers have a support of cardinality 2. Each
such maximizer lies in the convex hull ∆i,j of two point measures δi, δj, and ai 6= aj
by Lemma 3.5.

Fix 1 ≤ i < j ≤ N such that ai < aj. Any probability measure on ∆i,j is of the
form

Pλ = (1− λ)δi + λδj.

While it is difficult to compute the mapping λ 7→ ξ(λ) such that (Pλ)E = Pξ(λ), the
inverse mapping ξ 7→ λ(ξ) is easy to obtain: Observe that

πA(Pλ) = (1− λ)ai + λaj and πA(Pξ) =
1

Zξ

∑

k∈X
akνkξ

ak .

From aξ := πA(Pξ) = πA(Pλ(ξ)) it follows that

λ(ξ) =
aξ − ai
aj − ai

=

∑

k∈X (ak − ai)νkξ
ak

(aj − ai)Zξ

. (4.2)

There exist ξi ≥ 0 and ξj ≤ ∞ such that λ → 0 for ξ → ξi and λ → 1 for ξ → ξj.
Then ξi = 0 if and only if i ∈ Z, and ξj = ∞ if and only if j ∈ Z ′.

The information divergence and its derivatives. D(Pλ‖E) equals

D(Pλ‖Pξ(λ)) = (1− λ) log
1− λ

νiξai
+ λ log

λ

νjξaj
+ logZξ. (4.3)
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By Theorem 3.1 the directional derivative with respect to λ equals

∂

∂λ
D(Pλ‖Pξ(λ)) = − log

Pλ(i)

Pξ(i)
+ log

Pλ(j)

Pξ(j)
= log

νiλ

νj(1− λ)ξaj−ai
. (4.4)

If i /∈ Z, then ∂
∂λ
D(Pλ‖Pξ(λ)) → −∞ for ξ → ξi. Similarly, if j /∈ Z ′, then

∂
∂λ
D(Pλ‖Pξ(λ)) → +∞ for ξ → ξj. This expresses the fact, that all point measures δk

for k ∈ Y are local maximizers. Otherwise, assume that i ∈ Z. Then ai = 0, so

lim
λ→0

∂

∂λ
D(Pλ‖Pξ(λ)) = lim

ξ→0
log

νiλ(ξ)

νjξaj
= log

νi
νjajZ0

+ lim
ξ→0

log
∑

k>i0

akνkξ
ak−aj ,

=

{

log
νi

∑
k:ak=ai0+1

νkak

νjajZ0
, if aj = ai0+1,

+∞, else.
(4.5)

where Z0 =
∑

k∈Z νk.
The second derivative of D(Pλ‖Pξ(λ)) with respect to λ equals

∂2

∂λ2
D(Pλ‖Pξ(λ)) =

1

λ
+

1

1− λ
− aj − ai

ξ

∂ξ

∂λ
=

1

λ(1− λ)
− aj − ai

ξ

∂ξ

∂λ
.

Using

1− λ =
aj − aξ
aj − ai

=

∑

k∈X (aj − ak)νkξ
ak

(aj − ai)Zξ

and

∂λ

∂ξ
=

∑

k,l(ak − ai)akνkνlξ
ak+al −∑k,l(ak − ai)alνkνlξ

ak+al

(aj − ai)ξZ2
ξ

=

∑

k,l(ak − al)akνkνlξ
ak+al

(aj − ai)ξZ2
ξ

this rewrites to

∂2

∂λ2
D(Pλ‖Pξ) = Z2

ξ (aj − ai)
2

(

1
∑

k,l(ak − ai)(aj − al)νkνlξak+al

− 1
∑

k,l(ak − al)akνkνlξak+al

)

=
C(ξ)

Z(ξ)2

(

∑

k,l

(ak − al)akνkνlξ
ak+al +

∑

k,l

(ak − ai)(al − aj)νkνlξ
ak+al

)

=
C(ξ)

Z(ξ)

∑

k

(ak − ai)(ak − aj)νkξ
ak , (4.6)
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where

C(ξ) =
(aj − ai)

2Z2
ξ

(aξ − ai)(aj − aξ)(
∑

k,l(ak − al)akνkνlξak+al)
.

The variance of the function k 7→ ak under the probability distribution Pξ equals

σ2(ξ) =
1

Zξ

∑

k

a2kνkξ
ak − a2ξ ≥ 0;

it vanishes only in the limits ξ → 0 and ξ → +∞. So if ξi < ξ < ξj, then C(ξ) =
(aj−ai)

2

(aξ−ai)(aj−aξ)σ2(ξ)
> 0.

Assume that ai > 0. Then ξi > 0, so 1
Zξi

∑

k(ak − ai)(ak − aj)νkξ
ak
i = σ2(ξi) is

strictly positive. Therefore, ∂2

∂λ2D(Pλ‖Pξ(λ)) > 0 if ξ is close to ξi. Similarly, if aj < 1,

then ∂2

∂λ2D(Pλ‖Pξ(λ)) > 0 if ξ is close to ξj.

Analysis of the derivatives. If there is no ak such that ai < ak < aj, then the second

derivative ∂2

∂λ2D(Pλ‖Pξ(λ)) is strictly positive, so DE is strictly convex on ∆i,j. If ai = 0

and aj = 1, then ∂2

∂λ2D(Pλ‖Pξ(λ)) is strictly negative, so DE is strictly concave on ∆i,j.

If either ai = 0 or aj = 1, but not both, then Lemma 4.5 shows that ∂2

∂λ2D(Pλ‖Pξ(λ))
has up to one sign change. Hence ∂

∂λ
D(Pλ‖Pξ(λ)) has up to two zeros, corresponding

to up to two critical points of DE on the relative interior ∆◦
i,j of ∆i,j, and at most

one of them may be a local maximizer. Assume that 0 < ai < aj < 1. Lemma 4.5

shows that ∂2

∂λ2D(Pλ‖Pξ(λ)) has up to two sign changes for ξi < ξ < ξj and may be
negative in a subinterval of [ξi, ξj ]. Therefore, ∂

∂λ
D(Pλ‖Pξ(λ)) has up to three zeros,

corresponding to up to three critical points of DE in ∆◦
i,j, and only one of them may

be a local maximizer, since the boundary points δi and δj are also local maximizers of
DE .
From this differential analysis, the following general statements can be deduced:

• If i ∈ Z and j ∈ Z ′, then DE is concave on ∆i,j . Since the directional derivative
of DE along ∆i,j is +∞ at δi and −∞ at δj, there is exactly one local maximizer
with support {i, j}.

• Assume i ∈ Z and j ∈ Y . Let δ = limξ→0
∂
∂λ
D(Pλ‖Pξ(λ)). If aj = ai0+1, then DE

is convex on ∆i,j . In this case, if δ < 0, then the restriction DE |∆i,j
of DE to ∆i,j

has a local minimum in ∆◦
i,j , and if δ ≥ 0, then there is no critical point in ∆◦

i,j.

Otherwise, if aj > ai0+1, then δ = +∞ by (4.5). There may be up to two critical
points in ∆◦

i,j , and one of them may be a local maximizer.

• Similar remarks apply to the case i ∈ Y , j ∈ Z ′.

• If i, j ∈ Y , then the two endpoints δi and δj are local maximizers of DE . Hence
there must be at least one local minimizer of DE |∆i,j

in ∆◦
i,j , and the number

of such minimizers is one more than the number of local maximizers in ∆◦
i,j . If
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4.1. Low-dimensional exponential families

there is no k such that ai < ak < aj, then DE is convex on ∆i,j, so there is
no local maximizer in ∆◦

i,j in this case. Otherwise, Lemma 4.5 shows that the
second derivative of DE along ∆i,j has at most two sign changes. Therefore,
there are at most three critical points in ∆◦

i,j , corresponding to at most one local
maximizer.

For the proof of the theorem it remains to show the two bounds. The lower bound
corresponds to the points measures δi for i ∈ Y . Let j′0 = N +1− j0. From the above
statements it follows that the number of local maximizers is bounded from above by

(N − i0 − j′0) + i0j
′
0 + i0(N − i0 − j′0 − 1) + j′0(N − i0 − j′0 − 1)

+

((

N − i0 − j′0
2

)

− (N − i0 − j′0 − 1)

)

=
1

2
(N2 −N − i20 − j′20 − i0 − j′0),

and this value is maximal if i0 = 1 and j0 = N .

Maximizing DE . Theorem 3.28 allows to translate the statements of Theorem 4.2 to
statements about the local maximizers ofDE . It is instructive to derive the correspond-
ing statements directly and to compare the necessary arguments. The calculations are
similar; hence they will only be sketched.
It is easy to calculate the circuits of N : If ai = aj for some i < j, then (i, j) is a

circuit, corresponding to the circuit vector δi − δj. If ai < aj < ak for some i < j < k,
then (i, j, k) is a circuit, corresponding to the circuit vector (ak − aj)δi − (ak − ai)δj +
(aj − ai)δk. These are all the circuits: This expresses the fact that two columns i, j
of A are affinely dependent if and only if ai = aj, and all triples of columns of A are
affinely dependent.
From these considerations it is easy to determine all sign vectors of N : A sign vector

σ ∈ {0,±1}X occurs in N if and only if there are at least two true sign changes in
the sequence σ1, σ2, . . . , σN . To see this, note that in this case there exist i < j < k
such that σi = σk = −σj 6= 0, corresponding to an oriented circuit τ0. Then there are
signed circuits τl such that supp(τl) ⊆ {i, j, k, l} and (τl)l = σl for all l = 1, . . . , N ,
whence σ = τ0 ◦ τ1 ◦ · · · ◦ τN .
By Lemma 3.30 it suffices to consider the case that the support of σ+ has cardinality

one or two. If Y = ∅, then all circuits have cardinality two and are contained either
in Z or in Z ′. Therefore, the same statements as above can be concluded from
Corollary 2.27.
Assume that Y 6= ∅ in the following. For any local maximizer u ∈ ∂UN the support

of u+ cannot be contained in Z, because of Proposition 3.21 (i) and Lemma 3.24.
For any i ∈ Y there exists a local maximizer of DE such that supp(u+) = {i}: Since
σ = δi −

∑

j 6=i δj is a sign vector of N there exists v ∈ ∂UN such that vi = 1 and
vj < 0 for all j 6= i. Let u− = Φ(v+), where Φ is defined as in Remark 3.27. In
the notation of Lemma 3.26, u− is the rI-projection of v− to EX\{i}. By assumption
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supp(v−) = X \ {i}, and so u− must also have support X \ {i}. Then u := δi − u−

is a local maximizer of DE on ∂UN , since u− is a local minimizer of D(·‖ν|X\{i}) and
since there is a neighbourhood U of u in ∂UN such that any v ∈ U has the same sign
vector as u.

It remains to discuss the case that u+ is contained in the relative interior ∆◦
i,j of

∆i,j for some i < j satisfying ai < aj. Let u+
λ = (1 − λ)δi + λδj. By Remark 3.27, if

u+
λ is the positive part of some critical point, then the corresponding negative part is

of exponential form Φ(u+
λ ). Let X ′ = X \{i, j}, and let u−

ζ be the probability measure
with

u−
ζ (k) =

{

νk
Z′
ζ

ζak , if k ∈ X ′,

0, else,

where Z ′
ζ =

∑

k∈X ′ νkζ
ak . Then u+

λ − u−
ζ ∈ N if and only if

λ = λ(ζ) :=

∑

k∈X ′(ak − ai)νkζ
ak

(aj − ai)Z ′
ζ

,

cf. (4.2). The function ζ 7→ λ(ζ) is injective, but in general it is difficult to compute
the function λ 7→ ζ(λ). It may happen that the image of the map ζ 7→ λ(ζ) is not the
complete interval (0, 1). Namely, if for some 0 < λ < 1 the probability measure u+

λ is
not a kernel distribution, then there is no ζ such that λ = λ(ζ). This happens if i = 1
and a2 > 0 or if j = N and aN−1 < 1. Otherwise, there exist ζi ≥ 0 and ζj ≤ +∞
such that ζ 7→ λ(ζ) maps the interval (ζi, ζj) onto the interval (0, 1).

Let uλ = u+
λ − u−

ζ(λ). Then

DE(uλ) = (1− λ) log
1− λ

νi
+ λ log

λ

νj
− aζ log ζ + logZζ

has the same form as DE(Pλ), cf. (4.3). The partial derivative of DE(uλ) equals

∂

∂λ
DE(uλ) = log

νiλ

νj(1− λ)ζaj−ai
,

cf. (4.4). The asymptotic behaviour is similar to the asymptotic behaviour of (4.4),
see (4.5). The second derivative of DE(uλ) equals

∂2

∂λ2
DE(uλ) = C ′(ζ)

∑

k∈X ′

(ak − ai)(ak − aj)νkζ
ak = C ′(ζ)

∑

k∈X
(ak − ai)(ak − aj)νkζ

ak ,

where C ′(ζ) > 0, cf. (4.6).

This leads to the following peculiar situation: The two functionsDE(Pλ) and DE(uλ)
for 0 < λ < 1 have the same critical points, and their second derivatives differ only by
a positive factor C ′(ζ)/C(ξ).
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Proof of Proposition 4.4. The entropy of the uniform distribution is maximal. There-
fore, the entropy at Pξ

H(ξ) := −
∑

l

Pξ(l) logPξ(l) = log(Zξ)− aξ log(ξ)

has a maximum at ξ = 1, where the notation from the calculations proving Theo-
rem 4.2 was used. By (2.5), if P ∈ P(X ) rI-projects to Pξ, then DE(P ) ≤ H(ξ) ≤
H(1) = log |X |, with equality if and only if P is a point measure projecting to the
uniform distribution. This proves (i).

The function ξ 7→ aξ is monotone, and so the derivative
∂aξ
∂ξ

is positive. From

∂

∂ξ
H(ξ) = −∂aξ

∂ξ
log(ξ)

it follows thatH(ξ) is monotonically increasing for ξ < 1 and monotonically decreasing
for ξ > 1. Let ξk, ξk+1 such that Pξk and Pξk+1

equal the rI-projections of δk and δk+1,
respectively (if ak = 0, then let ξk = 0, and if ak+1 = 1, then let ξk+1 = ∞).
Let P ∈ P(X ) be a global maximizer of DE , and let Pξ be its rI-projection. Then

H(ξ) ≥ H(ξ) − H(P ) = DE(P ) ≥ DE(δk) = H(ξk). Similarly, H(ξ) ≥ H(ξk+1),
whence ξk ≤ ξ ≤ ξk+1. Therefore, if P = δi is a point measure, then ai ∈ {ak, ak+1}.
Otherwise, if P is not a point measure, then ξk < ξ < ξk+1, and so ak < aξ =
∑

l P (l)al < ak+1. Write P = (1− λ)δi + λδj, where λ =
aξ−ai
aj−ai

/∈ {0, 1}. Applying the

symmetry of Remark 4.1 one may assume that λ ≥ 1
2
. Let λ′ =

aξ
al
. Then λ′ ≥ λ, with

equality if and only if ai = 0 and aj = al. The rI-projection of P ′ := (1−λ′)δ1+λ′δk+1

agrees with Pξ. Equation (2.5) specializes to

DE(P ) = H(Pξ)−H(P ) = H(Pξ)− h(λ, 1− λ),

where h(λ, 1−λ) equals the entropy of a binary random variable. Similarly, DE(P ′) =
H(Pξ) − h(λ′, 1 − λ′). Hence DE(P ′) ≥ DE(P ) follows from 1

2
≤ λ ≤ λ′ and the fact

that h(λ, 1−λ) is concave in λ, with maximum at 1
2
. Therefore, λ = λ′, so ai = 0 and

aj = ak+1.

4.1.3. One-dimensional exponential families on four states

In this section the results are specialized to the case N = 4. This gives an illustration,
how the general statements of the previous section can look like in a concrete case.
Let E be a one-dimensional exponential family on X = {1, 2, 3, 4}. The discussion in
the previous section shows that one may assume that

A = (0, s, t, 1) (4.7)

is a sufficient statistics of E , where 0 ≤ s ≤ t ≤ 1. In this case the symmetry of
Remark 4.1 is

1 ↔ 4, 2 ↔ 3, (4.8)

s ↔ 1− t, t ↔ 1− s.
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Figure 4.1.: A heat map of δν for ν = 1. For most values of s and t there are only
six extremal points of DE . If δν < 0, then there are four more extremal
points of DE . This happens on the left and on the top, i.e., for small s or
for large t. The cyan line marks the zero set of δν .
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Figure 4.2.: The function DE for s = 1
3
and t = 4

5
as a polar plot. The six extreme

points are clearly visible.
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Figure 4.3.: The function DE for s = 1
40

and t = 2
5
as a polar plot. In this case the

function DE has ten extreme points, but four of them are hardly visible.
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Figure 4.4.: The function DE for s = 1
40

and t = 2
5
. The diagram on the right shows

a zoom on two of the extreme points that are hardly visible on the left.
The black vertical bars correspond to the vertices of the black polygon in
figure 4.3.

69



4. Examples

Figure 4.5.: The exponential family (red line) with s = 1
40

and t = 2
5
. The five local

maximizers are marked with blue dots, other projection points are marked
with green dots. The rI-projections lie at the intersections of the grey lines
with the exponential family.

Theorem 4.6. Let E be a one-dimensional exponential family on X = {1, 2, 3, 4},
parametrized by a sufficient statistics of the form (4.7).

(i) If 0 < s < t < 1, then there is a function δν(s, t), defined in (4.9), such that the
following holds: If δν(s, t) ≥ 0, then the function DE has six extremal points on
∂UN (three maximizers and three minimizers). Otherwise there are ten extremal
points (two additional maximizers and minimizers, respectively).

(ii) If 0 = s ≤ t < 1 or if 0 < s = t ≤ 1, then there are six extremal points.

(iii) If 0 = s < t = 1, then DE is a linear function, so the set of local maximizers is
either all of ∂UN or a proper face of the polytope UN . If ν = 1, then DE = 0
on N , so any point on ∂UN is a local maximizer. Conversely, if any element of
∂UN is a local maximizer, then 1 is a reference measure of E .

Figure 4.1 shows a heat map of the function δν for ν = 1. In the chosen parametri-
zation the region with ten extreme values is relatively small. Figures 4.2 and 4.3 show
polar plots of the function DE for two different representative values of s and t. See
Example 3.11 for an explanation how to interpret these polar plots.
Figure 4.3 shows the case s = 1

40
and t = 2

5
. By Figure 4.1 there are ten extreme

values of DE . Four of them are hardly visible: They lie very close to one another.
This can be seen on Figure 4.4. The vertices of the polygon are marked by vertical
lines. They correspond to the points where DE is not smooth. In fact, at these points
the directional derivatives of DE are infinite, but this is not visible from the diagram.
By Theorem 3.28 the maximizers of DE are in bijection with the maximizers of DE .

Figure 4.5 shows a typical exponential family with five local maximizers. The three
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a)a)a)a)a)a)a)

c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)

b)b)b)b)

d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)

Figure 4.6.: The local maximizers of DE in the four degenerated cases for ν = 1:
a) 0 = s = t < 1. b) 0 = s < t = 1. c) 0 = s < t = 0.3 < 1.
d) 0 < s = t = 0.3 < 1. The labelling and the colours are as in Figure 4.5.
In b) the set of maximizers equals the set KE of kernel distributions.

local maximizers which are always there are easy to interpret, using Lemma 3.6: Point
measures δx that are mapped by the moment map into the relative interior of MA are
always local maxima, by Lemma 3.6. Furthermore, consider the convex hull ∆1,4 of
δ1 and δ4. By compactness of ∆1,4, there must be a local maximum P in ∆◦

1,4. By
Lemma 3.6, P is a local maximum of DE without constraints.
The degenerated cases are visualized in Figure 4.6. Note that two of the three

local maximizers in the case 0 = s < t = 1 share the same rI-projection, and if
0 < s = t < 1, then all local maximizers share the same rI-projection. These facts can
be easily proved using that two probability measures P,Q have the same rI-projection
if and only if P −Q ∈ N .

Remark 4.7. Theorem 4.6 implies that there are only five possible support sets for the
global maximizer. For any of these support sets Z ∈ {{2}, {3}, {1, 4}, {1, 3}, {2, 4}}
it is possible to find a reference measure ν and parameters 0 ≤ s ≤ t ≤ 1 such that
there is a unique global maximizer of DE , and this maximizer has support Z: In many
cases one of the point measure δ2 and δ3 will be a global maximizer, see for example
Figures 4.2 and 4.3. The binomial model Bin(3), discussed in Section 4.4, is an example
of an exponential family where the global maximizer is 1

2
(δ1+δ4), see Figure 4.7 b). To

find an example of an exponential family such that the global maximizer is supported
on {1, 3}, note that in Figure 4.3 the local maximizer with support {1, 3} has a larger
value of DE than the local maximizer with support {3}. This motivates to adjust the
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Figure 4.7.: a) A polar plot of DE for s = 1
40

and t = 2
5
and ν = (2, 4, 1, 2). b) A polar

plot of DE for Bin 3.

reference measure in such a way to move the exponential family towards {2}. At the
same time it is necessary to make sure that the local maximizer supported on {1, 4}
is not the global maximizer. A solution is presented in Figure 4.7a).
There do not seem to be one-dimensional exponential families with uniform reference

measure such that the global maximizer has support of cardinality two, although this
would be possible according to Theorem 4.6 and Proposition 4.4. An empirical search
for such exponential families did not yield a positive result.

Proof of Theorem 4.6. The normal space N is spanned by
(

u1

u2

)

=

(

s− 1 1 0 −s
t− 1 0 1 −t

)

and can be parametrized by u(x, y) := xu1 + yu2. The normal space is partitioned by
the four hyperplanes

x = 0, y = 0, sx+ ty = 0, (1− s)x+ (1− t)y = 0.

If 0 < s < t < 1, then these four hyperplanes are distinct, and ∂UN is an octagon.
In this case, there are eight maximal sign vectors. Otherwise, the number of maximal
sign vectors is less. If u ∈ ∂UN is a local maximizer, then −u is a local minimizer,
and vice versa. Therefore it suffices to find the local maximizers.
First, assume 0 < s < t < 1. By the results of Section 4.1.2 there are always

local maximizers with sign vectors (+,−,−,+), (−,+,−,−) and (−,−,+,−). The
interesting sign vectors are σ = (+,−,+,−) and its inverse −σ = (−,+,−,+). By
symmetry it suffices to discuss one of them: Either there are no extremal points of DE
with sign vector σ, or there are two extremal points, one local maximizer u1 and one
local minimizer u2 of DE , and in this case −u1 is a local minimizer and −u2 is a local
maximizer with sign vector −σ.
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The equations from Section 4.1.2 are applicable: There are two extremal points of
DE with sign vector σ if and only if the derivative of ∂

∂λ
DE(uλ) takes negative values

for some λ. The map ζ 7→ λ(ζ) is

λ(ζ) =
sν2ζ

s + ν4ζ

t(ν2ζs + ν4ζ)
.

The equation

0 =
∂2

∂λ2
DE(uλ) = C ′(ξ) (−s(t− s)ν2ζ

s + (1− t)ν4ζ)

has a unique nonzero solution for ζ = ζ0 :=
(

ν2s(t−s)
ν4(1−t)

) 1

1−s

, so

λ0 := λ(ζ0) =
s

t

(1− t)ν4ζ0 + (t− s)ν4ζ0
(1− t)ν4ζ0 + s(t− s)ν4ζ0

=
s(1− s)

t(1− t+ st− s2)
.

Therefore, the minimum value of ∂
∂λ
DE(uλ) equals

∂

∂λ
DE(uλ)

∣

∣

∣

∣

λ=λ0

= log
ν1s(1− s)

ν3((1− s)(t− s)(1− t))ζt0

=
1− s− t

1− s
log

(

s

1− t

)

− 1− s+ t

1− s
log(t− s) + log

(

(

ν4
ν2

) t
1−s ν1

ν3

)

.

There are two critical points of DE in ∂UN with sign vector σ if and only if

δν(s, t) := (1−s−t) log

(

s

1− t

)

−(1−s+t) log(t−s)+log

(

(

ν4
ν2

)t(
ν1
ν3

)1−s
)

(4.9)

is less then zero.
It remains to discuss the degenerated cases. The number of local maximizers follows

from the general discussion in Section 4.1.2; in one case there are additional statements
to prove:

• If 0 = s < t < 1, then there are three local maximizers with sign vectors
(+,−,−,+), (−,+,−,+) and (−,−,+,−).

• If 0 < s = t < 1, then there are three local maximizers with sign vectors
(+,−,−,+), (−,+,−,−) and (−,−,+,−).

• If 0 = s = t < 1, then there are three maximizers with sign vectors (+,−,−, 0),
(−,+,−, 0) and (−,−,+, 0).

• If 0 = s < t = 1, then u(x, y) = (−x, x, y,−y). It follows that DE(u(x, y)) =
x log ν1

ν2
+ y log ν4

ν3
. The function DE is linear in x and y, and therefore, the

set of maximizers is either all of ∂UN or a proper face of the polytope UN .
If ν1/ν2 = ν4/ν3 = 1, then DE = 0 is constant, so every point in ∂UN is
a local maximizer. In this case, let ξ = ν2/ν3. Then Pξ = 1

4
1. Therefore,

ν1/ν2 = ν4/ν3 = 1 if and only if 1 is a reference measure of E .
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4.1.4. Other low-dimensional exponential families.

The calculations in 4.1.2 generalize to exponential families of higher dimension as
follows: First, the possible support sets of a maximizer have to be identified. For any
such support set Z ⊂ X choose an affine parametrization λ 7→ Pλ ∈ P(Z). Let Y be
the smallest facial set containing Z; then PE ∈ EY := E ∩ P(Y)◦ for all P ∈ P(Z)
by Lemma 2.28. Choose a monomial parametrization ξ ∈ Rh 7→ Pξ ∈ EY of EY , see
Theorem 2.29. The equation πA(Pλ) = πA(Pξ) is affine in λ and can be solved for
λ = λ(ξ). This solution is unique by Lemma 3.5. The restriction Pλ(ξ)(x) > 0 for all
x ∈ Z determines a connected region Ξ ⊆ Rh (in the one-dimensional case, Ξ equals
an open interval (ξi, ξj)). The function D(Pλ(ξ)‖Pξ) can be differentiated with respect
to ξ or λ and analyzed as above.
By Theorem 3.2 the first order conditions are

log
Pλ(i)

νiξai
− log

Pλ(j)

νjξaj
, for all i, j ∈ Z.

These equations are equivalent to

Pλ(i)νjξ
aj − Pλ(j)νiξ

ai , for all i, j ∈ Z. (4.10)

In short, the method of this section is to solve the equations APλ = APξ for Pλ =
Pλ(ξ) (this amounts to inverting a submatrix of A) and to plug the solution into
equations (4.10). The resulting equations have to be solved for ξ.
This method becomes impractical if the dimension of E is too large. Let dim E = d

and N = |X |. Then the dimension of the set Ξ ⊆ Rh defined above is bounded from
above by d, and by Lemma 3.5 the same is true for the dimension of P(Z). Therefore,
essentially a family of d-dimensional problems has to be solved. In contrast, the set
∂UN is (N − d − 2)-dimensional. Hence, if the codimension of E is low, then the
algorithm from Section 3.6 is preferable.
The function DE can be treated similarly: Let σ be a critical sign vector, and

let Z = supp(σ+) and Y = supp(σ). Define a parametrization λ 7→ u+
λ ∈ P(Z),

and let ζ 7→ u−
ζ be a monomial parametrization of the exponential family EY\Z =

{

QY\Z : Q ∈ E
}

. The linear equation Au+
λ = Au−

ζ can be solved for u+
λ = u+

λ(ζ). The

first order conditions of DE(uλ(ζ) are equivalent to

u+
λ (i)νjζ

aj − u+
λ (j)νiζ

ai , for all i, j ∈ Z. (4.11)

Then one can plug u+
λ(ζ) into (4.11) and solve the resulting equations for ζ. This

method also performs better if the dimension of the exponential family E is small, but
it has a slight advantage over the other method: If Y \X = supp(u−

ζ ) is small, then it

may happen that the dimension of EY\Z is less than d := dim E , and for such critical
sign vectors σ the dimension of the problem is less than d.
As in Sections 3.6 and 3.7 the corresponding equations for both methods proposed

in this section can be reformulated as algebraic equations if the exponential family E
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is algebraic. As in Section 3.7, a nonnegative integer sufficient statistics A has to be
chosen, and then the maps ξ 7→ Pξ and ζ 7→ u−

ζ are monomial.
In principle, the arguments from the proof of Proposition 4.4 concerning the global

maximizers also generalize to higher dimensions: Comparing different probability mea-
sures with the same rI-projection gives restrictions on the possible support sets (a
related idea will be used in the proof of Theorem 5.5). It is not easy to make general
statements, though. The discussion of the one-dimensional case is simplified by the
fact that one-dimensional point configurations are easy to parametrize, and the level
sets of the entropy of a binary random variable are easy to understand.

4.2. Partition models

The partition exponential families introduced in this section are a class of exponential
families, and their closures are called partition models. They arise naturally in the
study of symmetries, and they approximate arbitrary probability distributions in an
optimal way, in a sense that will be explained in Section 5.2. Partition exponential
families are convex exponential families, and the information divergence from convex
exponential families has been studied in [52]. Apart from this, partition exponential
families do not seem to have been studied before, despite their peculiar properties.
In other contexts the name “partition model” is used for other mathematical objects,
but there seems to be little danger of confusion.

Definition 4.8. A partition X ′ of X is a set X ′ =
{

X 1,X 2, . . . ,XN ′
}

of nonempty

subsets X i ⊂ X such that X = X 1 ∪ X 2 ∪ · · · ∪ XN ′

and X i ∩ X j = ∅ for all
1 ≤ i < j ≤ N ′. The subsets X i ⊆ X are called the blocks of the partition X ′. For
any x ∈ X the block X i containing x is denoted by X x.
The coarseness c(X ′) of a partition X ′ is the cardinality of the largest block of X ′. A

partition X ′ is called homogeneous if all blocks of X ′ have the same cardinality c(X ′).
Partitions are in bijection with equivalence relations, the blocks of a partition corre-
sponding to the equivalence classes. The equivalence relation corresponding to the
partition X ′ is denoted by ∼X ′ .

Let X ′ be a partition of X , and let AX ′ ⊂ RN ′×N be the matrix with entries

AX ′

i,x =

{

1, if x ∈ X i,

0, else.

This matrix has the following interpretation: For any probability measure P on X
let P ′ be the probability measure on X ′ induced by P . This means that P ′ satisfies
P ′(X i) = P (X i) for all i = 1, . . . , N ′. Then P ′ = AX ′

P .

Definition 4.9. Let X ′ be a partition of X . The exponential family EX ′ := E
1,AX′

with reference measure 1 and sufficient statistics AX ′

is called the partition exponential
family of X ′, and EX ′ is the partition model of X ′.
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Partition models are, in fact, also linear families: EX ′ consists of all probability
measures P that satisfy P (x) = P (y) whenever x ∼X ′ y. In particular, partition
exponential families are convex exponential families. Convex exponential families and
their maximizers have been studied by Ay and Matúš in [52], which contains more
detailed arguments for the following calculations. It follows from [52, Proposition 1]
that a convex exponential family is a partition exponential family if and only if it
contains the uniform distribution.

The convex support of a partition exponential family is a simplex of dimension
N ′ − 1 with vertex set {AX ′

x : x ∈ X}, since each vector AX ′

x is actually a unit vector
in RN ′

. The converse is also true:

Lemma 4.10. An exponential family with uniform reference measure and sufficient
statistics A ∈ Rh×X is a partition exponential family if and only if its convex support
is a simplex with vertex set {Ax : x ∈ X}.

Proof. Assume that the convex support MA of E1,A is a simplex with vertex set {Ax :
x ∈ X}. Define an equivalence relation ∼ on X via x ∼ y if and only if Ax =
Ay. Then E1,A equals the partition exponential family of ∼ by the last statement of
Lemma 2.8.

Remark 4.11. Composite systems have natural homogeneous partitions, which lead to
hierarchical models (see Section 2.4 for the notation): Suppose that X = X1×· · ·×Xn

and let K ⊆ {1, . . . , n}. Then K induces an equivalence ∼K on X via x ∼K y if and
only if xi = yi for all i ∈ K. The equivalence classes of ∼K form a homogeneous
partition XK of X of coarseness

∏

i:i/∈K Ni. The corresponding partition model EK
consists of those probability distributions P satisfying P (x) = P (y) whenever x ∼K y.
Therefore, EK equals the hierarchical exponential family E{K}. Conversely, any homo-
geneous partition X ′ can be used to find a bijection of X with a composite system
X1 × X2, where X1 = X ′ and X2 ∈ X ′. Then the partition X ′ arises from ∼K , where
K = {1}.
Remark 4.12. Partition models can be used to model symmetries. This was first
noted by Juŕıček, who used this idea to compute the global maximizers of DE for
the multinomial models [41]. If a symmetry group G acts on X , then it induces a
partition XG of X into orbits X 1, . . . ,XN ′

. The action of G extends naturally to
an action on RX . Any exponential family that consists of G-invariant probability
measures is a subfamily of EXG (such exponential families are called G-exchangeable
in [41]). Conversely, an arbitrary partition model EX ′ arises in this way from the group
of all permutations g of X such that g(X i) = X i for all X i ∈ X ′.

Remark 4.13. The natural map φ : x 7→ X x induces a pushforward φ∗ : P(X ) 7→ P(X ′)
via φ∗P (X j) =

∑

y∈X j P (y). This map agrees with the moment map πAX′ and restricts

to a bijection of the partition model EX ′ with the probability simplex P(X ′). This
bijection preserves the information divergence: If P,Q ∈ EX ′ , then P (x)/Q(x) =
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P (X x)/Q(X x) for all x ∈ X , whence

D(φ∗P‖φ∗Q) =
N ′

∑

j=1

P (X j) log
P (X j)

Q(X j)
=
∑

x∈X
P (x) log

P (x)

Q(x)
= D(P‖Q).

This invariance property was first noted by Juŕıček when he studied symmetries [41].
Under this bijection φ∗, exponential families on X ′ are in bijection with exponential
subfamilies of EX ′ : If E is an exponential subfamily of EX ′ with reference measure ν
and sufficient statistics A ∈ Rh×X , then νx = νy and Ax = Ay whenever x ∼X ′ y. The
bijection φ∗ maps E to the exponential family with sufficient statistics A′ ∈ Rh×X ′

given by
(A′)i,X j = Ai,x, for all x ∈ X j,

and reference measure νG = φ∗ν. The uniform reference measure is mapped to an
integer reference measure. This is another motivation for allowing arbitrary reference
measures. Since the map φ∗ preserves the information divergence, it can be used to
relate the problem of maximizing the information divergence DE(Q) from an expo-
nential subfamily E ⊆ EX ′ subject to the constraint that Q ∈ EX ′ with the problem of
maximizing Dφ∗(E) over P(X ′).

An example to the last three remarks is given by the binary i.i.d. models and the
binomial models, which will be studied in Section 4.4.
For partition models it is possible to find the mapping P 7→ PE explicitly: The

rI-projection PE of P ∈ P(X ) satisfies AX ′

PE = AX ′

P . This implies P (X i) = PE(X i)
for i = 1, . . . , N ′. Therefore,

PE(x) = PE(x|X x)P (X x), for all x ∈ X . (4.12)

Since PE maximizes the entropy subject to (4.12), it follows that PE(·|X x) = 1
|Xx|1Xx is

the uniform distribution on X x. If the partition comes from some symmetry group G,
as in Remark 4.12, then the rI-projection map P 7→ PE is the symmetrization map
with respect to the action of G.
From (4.12) and P (x) = P (x|X x)P (X x) it follows that

DE(P ) =
N ′

∑

i=1

P (X i)D(P (·|X i)‖ 1

|X x|1Xx) =
N ′

∑

i=1

P (X i)
(

log |X x| −H(P (·|X i))
)

.

(4.13)
As a consequence:

Lemma 4.14. If E is a partition model of a partition X 1, . . . ,XN ′

of coarseness c,
then maxDE = log(c). A probability measure P ∈ P(X ) maximizes DE if and only if
the following two conditions are satisfied:

(i) P (X i) > 0 only if |X i| = c.

(ii) P (·|X i) is a point measure for all i such that |X i| = c.
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Corollary 4.15. Let E be the partition model of a partition X ′ of coarseness c, and
let Z be the union of the blocks of X ′ of cardinality c. Then any Q ∈ E with support
contained in Z is the rI-projection of some global maximizer of DE . In particular,
if X ′ is homogeneous, then any Q ∈ E is the rI-projection of some global maximizer
of DE .

Proof. For any X i ∈ X ′ of cardinality c choose a representative xi ∈ X i. Define
P ∈ P(X ) by P (X i) = Q(X i) and P (·|X i) = δxi

for all i such that |X i| = c. Then
PE = Q, so the statement follows from Lemma 4.14.

Let E be an exponential subfamily of a partition model EX ′ . For P ∈ P(X ) denote
by PX ′ the rI-projection of P . By the Pythagorean identity, DE(P ) = D(P‖PX ′) +
DE(PX ′). If P is a local maximizer of DE , then P (·|X j) is a point measure for all j by
Lemma 3.5 and Remark 4.13. Therefore, (4.13) implies

DE(P ) =
N ′

∑

i=1

P (X i) log |X x|+DE(PX ′). (4.14)

In this sense, the maximization ofD(P‖E) for P ∈ P(X ) differs from the maximization
of D(P‖E) for P ∈ EX ′ just by a piece-wise linear function. See Section 4.4 for an
example. If the partition X ′ is homogeneous, then the two maximization problems are
equivalent in the sense that the solution of one yields a solution of the other:

Lemma 4.16. Let X ′ be a homogeneous partition of X of coarseness c, and let E be
an exponential subfamily of the partition model EX ′. Then

maxDE = log(c) + max{DE(Q) : Q ∈ EX ′}.

Proof. Choose Q ∈ EX ′ such that DE(Q) is maximal. By Corollary 4.15 there exists
P ∈ P(X ) such that Q = PX ′ and D(P‖Q) = log(c). Then DE(P ) = log(c) +
max{DE(Q) : Q ∈ EX ′}. Conversely, let P ∈ P(X ). By Lemma 4.14,

DE(P ) = D(P‖PX ′) +DE(PX ′) ≤ log(c) + max{DE(Q) : Q ∈ EX ′},

proving the converse inequality.

The following lemma, which is due to Matúš [51, Remark 1], is an application of
Lemma 4.16 and Remark 4.13 to hierarchical models.

Lemma 4.17. Let X =
∏n

i=1 Xi, let ∆ be a collection of subsets of [n], and let
K = ∪I∈∆I. Denote by EK,∆ the hierarchical exponential family on XK specified by ∆.
Then

max
Q∈P(X )

D(Q‖E∆) =
∑

i/∈K
log |Xi|+ max

Q∈P(XK)
D(Q‖EK,∆).
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4.3. Exponential families with maxDE = log(2)

By Remark 3.15 the value of maxDE is at least log(2) for all exponential families E (

P(X )◦. This section studies exponential families E where maxDE = log(2). For such
an exponential family, any kernel measure is a local maximizer of DE . Furthermore,
DE(u) = 0 for all u ∈ N (even if u /∈ UN ). The main results are:

Theorem 4.18. Let E be an exponential family on a finite set X of cardinality N . If
maxDE = log(2), then the dimension of E is at least ⌈N

2
⌉ − 1.

Theorem 4.19. Let X be a finite set of cardinality N , and let E be an exponential
family on X of dimension ⌈N

2
⌉ − 1 satisfying maxDE = log(2). If N is even, then E

is a partition model. If N is odd, then there is a set Z ⊆ X of cardinality three, a
partition model EX\Z on X \Z and a one-dimensional exponential family EZ on Z such
that maxD(·‖EX\Z) = log(2) = maxD(·‖EZ), and the closure E equals the mixture of
EX\Z and EZ . If 1 is a reference measure of E , then E is a partition model.

Proposition 4.20. Let X = {1, 2, 3}. For any u ∈ RX such that u1 + u2 + u3 = 0
there exists a unique exponential family E on X with normal space N = Ru such that
maxDE = log(2).

The proofs of the three results will be given below after a series of preliminary
lemmas. Under the additional assumption that N is even Theorem 4.19 has a much
simpler proof, see Theorem 5.5.
Let E be an exponential family with sufficient statistics A and normal space N .

Lemma 4.21. For any v0, v1, . . . , vs ∈ N let Z = supp(v0) \ ∪s
j=1 supp(vj). Suppose

that maxDE = log(2). Then

∑

x∈Z
v(x) log

|v(x)|
νx

= 0 and
∑

x∈Z
v(x) = 0 for all v ∈ N .

Proof. The proof is by induction on s. Let s = 0. Any v0 ∈ N is a critical point
of DE . The equality v(Z) = 0 for all v ∈ N follows from Proposition 3.21 (i). Let
Z ′ = X \ Z. Proposition 3.21 (iii) implies that

∑

x∈Z′

v(x) log
|v(x)|
νx

≤ v+(Z ′)DE(v0) = 0 for all v ∈ N .

In this inequality v may be replaced by −v, showing that
∑

x∈Z′ v(x) log
|v(x)|
νx

= 0.

Hence
∑

x∈Z v(x) log |v(x)|
νx

= DE(v)−
∑

x∈Z′ v(x) log
|v(x)|
νx

= 0.

If s ≥ 1, then let Y = X \ supp(vs). Since vs is a critical point of DE , the set
Y is facial. By Lemma 3.4 the set N ′ = {v|Y : v ∈ N} is the normal space of an
exponential family E ′, and the case s = 0 implies DE ′(w) = DE(w) = 0 for all w ∈ N ′.
Therefore, the statement follows from induction.
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Let X ′ = {x ∈ X : v(x) 6= 0 for some v ∈ N}. Define an equivalence relation ∼ on
X ′ via

x ∼ y ⇐⇒ v(y) 6= 0 for all v ∈ N such that v(x) 6= 0.

It is easy to see that this relation is indeed an equivalence relation: If there exists
v, w ∈ N such that v(y) 6= 0 = v(x) and w(x) 6= 0 6= w(y), then u := v(y)w−w(y)v ∈
N satisfies u(y) = 0 6= u(x). In the language of matroid theory (see Appendix A.2)
the equivalence classes are the coparallel classes.

Lemma 4.22. A subset Z ⊆ X is an equivalence class of ∼ if and only if there exist
circuits σ0, σ1, . . . , σs of N such that

Z = σ0 \ ∪s
j=1σj,

and such that Z \ σ ∈ {∅,Z} for all circuits σ of N .

Proof. If x 6∼ y for some y ∈ X , then there exists a v ∈ N such that v(x) 6= 0 and
v(y) = 0. By Lemma A.5 there exists a circuit with the same property. Conversely, if
y ∼ x, then y ∈ σ for any circuit σ such that x ∈ σ.

Let C ∈ Rc×X be a matrix such that the rows c1, . . . , cc of C form a circuit basis of
N . Since each circuit basis contains a basis, the rank of C equals the dimension of N .
The columns of C are denoted by {Cx}x∈X .
Lemma 4.23. Let Z be an equivalence class of ∼. The rank of the submatrix C|Z
consisting of those columns Cx indexed by Z is one.

Proof. Let Z ⊆ X . If the rank of C|Z is larger than one, then there exist two circuit
vectors c1, c2 such that c1|Z and c2|Z are linearly independent and have support Z.
Let x ∈ Z. Let v = c2(x)c1 − c1(x)c2 ∈ N . Then v|Z 6= 0 and supp(v|Z) ⊆ Z \ {x}.
Therefore, Z is not an equivalence class of ∼.

The main argument of the last proof can be reformulated in terms of the weak
elimination axiom of matroid theory, cf. Appendix A.2. In the language of matroid
theory Lemma 4.23 states that the coparallel classes of a matroid have corank one.

Proof of Theorem 4.18. Suppose maxDE = log(2). By Lemma 4.23, the rank of C
is bounded from above by the number of equivalence classes of ∼. Let Z be an
equivalence class of ∼. By definition, the submatrix C|Z ∈ Rc×Z is not the zero
matrix. By Lemmas 4.21 and 4.22 the rows ci|Z of C|Z satisfy

∑

x∈Z ci(x) = 0. Hence
each equivalence class must contain at least two elements. Therefore, the rank of
C, which equals the codimension of E , is bounded from above by ⌊N

2
⌋, and so the

dimension of E is bounded from below by N − 1− ⌊N
2
⌋ = ⌈N

2
⌉ − 1.

Lemma 4.24. If the dimension of N equals the number of equivalence classes of ∼,
then the equivalence classes are the circuits of N . In other words, the circuit vectors
c1, . . . , cc of a circuit basis are in bijection with the equivalence classes Z1, . . . ,Zc, such
that Zi = supp(ci). Hence E is the mixture of E1, . . . , Ec, where Ec is the exponential
family E ∩P(Zi)

◦.
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Proof. Let Z1, . . . ,Zc′ be the set of equivalence classes of ∼. Reorder X such that the
equivalence classes are given by consecutive numbers. Let C̃ be the matrix obtained
from C by doing a Gauss elimination through row operations, such that C̃ has c′

nonzero rows. By Lemma 4.23, the ith row c̃i of C̃ has support contained in Zi∪ · · · ∪
Zc′ . In particular, supp(c̃c′) = Zc′ . Therefore, c̃c′ is a circuit vector. If v ∈ N has

v(x) 6= 0 for some x ∈ Zc′ , then ṽ = v − v(x)
c̃c′ (x)

c̃c′(x) satisfies supp(ṽ) = supp(v) \ Zc′ .

Hence no other circuit intersects Zc′ . By induction, supp(ci) equals an equivalence class
of ∼ for each i. The first statement follows from supp(ci) 6= supp(cj) for 1 ≤ i < j ≤ c.
The last statement is a consequence of Corollary 2.27.

Proof of Theorem 4.19. Assume that the dimension of E equals ⌈N
2
⌉ − 1. By the

proof of Theorem 4.18 there must be m := ⌊N
2
⌋ equivalence classes of ∼. If N is

even, then each equivalence class has cardinality two. If N is odd, then there may
be one equivalence class Z of cardinality three. In this case, reorder X such that
Z = {N − 2, N − 1, N}. By Lemma 4.24 there exists a circuit vector c ∈ N such that
supp(c) = Z. Assume without loss of generality that cN−2 and cN−1 are positive and
that cN = −(cN−1 + cN−2) = −1. Then

N
∑

i=N−2

ci log |ci| = −h(cN−1, cN−2) 6= 0,

where h(p, q) is the entropy of a binary random variable with probabilities p, q. There-
fore, if N is even or if 1 is a reference measure of E , then all equivalence classes of ∼
have cardinality two.
By Lemma 4.24 there are exponential families E1, . . . , Ec such that Ei ⊆ P(Zi)

◦

for i = 1, . . . , c and such that E is the mixture of E1, . . . , Ec. For i = 1, . . . , c there
is a unique circuit vector with support Zi, hence Ei 6= P(Zi)

◦, so Ei has dimension
|Zi| − 1. If |Zi| = 2, then Ei consists of the uniform distribution 1

2
1Zi

on Zi, so Ei is a
partition model, and also the mixture of Ei for those i satisfying |Zi| = 2 is a partition
model.

Proof of Proposition 4.20. Let E be a one-dimensional exponential family with normal
space Ru. By Example 3.13 the set of local maximizers of DE consists of u+ and
u−, and they are both projection points. E satisfies maxDE = log(2) if and only if
(u+)E = (u−)E = 1

2
(u+ + u−), which happens if and only if u+ + u− is a reference

measure of E , proving existence and uniqueness.

4.4. Binary i.i.d. models and binomial models

This section discusses the binary i.i.d. families and the binomial families, two related
classes of one-dimensional exponential families. The goal of this section is threefold:
First, it illustrates how partition models arise in the study of symmetries, see Re-
marks 4.12 and 4.13. Second, it shows how to extend the results of [49] about the
global maximizers of DE from the binary i.i.d. families and the binomial families and
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how to obtain statements about the local maximizers. Third, Example 4.29 illustrates
the difficulties of treating the maximization problems of DE and DE numerically.

Definition 4.25. Let X1 = {1, 2}. For fixed n ∈ N let E1 be the independence
model on X n

1 . The symmetric group Sn of [n] operates on X n
1 via permutations of

the factors. Let X Sn of be the orbit partition of this action, cf. Remark 4.12. The
binary i.i.d. model En

iid of size n is the intersection of E1 with the partition model EXSn .
Equivalently, a probability measure P ∈ E1 belongs to En

iid if and only if it is invariant
under the natural action of Sn on P(X ).

The binary i.i.d. model models a collection of independent identically distributed
binary random variables. There are n + 1 orbits X 0, . . . ,X n of Sn in X n

1 , and x =
(xi)

n
i=1 ∈ X k if and only if

∑n
j=1(xj − 1) = k. Under the natural bijection from EXSn

to P({0, . . . , n}) from Remark 4.13 the i.i.d. model is mapped to the binomial model:

Definition 4.26. The binomial distribution with parameters n and p is the probability
distribution Pn,p on X = {0, . . . , n} such that

Pn,p(k) =

(

n

k

)

pk(1− p)n−k.

The binomial model of size n is the set of all binomial distributions Bin(n) = {Pn,p :
0 ≤ p ≤ 1}. The binomial model Bin(2) is also called the Hardy-Weinberg model .

Both En
iid and Bin(n) are closures of one-dimensional exponential families En

iid and
Bin(n)◦: The uniform measure is a reference measure for En

iid, and a sufficient statistics
a ∈ RXn

1 is given by the map a(x) =
∑

j=1(xj − 1) that counts the number of twos

among the components of x ∈ X n
1 . A sufficient statistics b ∈ RX of Bin(n)◦ is given

by b = (0, 1, . . . , n), and a reference measure ν is given by νk =
(

n
k

)

. By Remark 4.13
maximizing D(Q‖Bin(n)) for Q ∈ P({0, . . . , n}) is equivalent to maximizing DE(Q)
subject to Q ∈ EXSn . The global maximizers for both exponential families were first
computed by Matúš in [49]:

Proposition 4.27. The maximum of the information divergence from the binary i.i.d.
model En

iid equals nh( 1
n
⌊n
2
⌋, 1

n
⌈n
2
⌉), where h(p, 1− p) is the entropy of a binary random

variable. The set of global maximizers consists of all point measure δx such that x ∈ X n
1

satisfies
∑

i(xi − 1) ∈ {⌊n
2
⌋, ⌈n

2
⌉}.

Proposition 4.28. The maximum of the information divergence from the binomial
model Bin(n) equals (n− 1) log(2). If n = 2, then δ1 and 1

2
(δ0 + δ2) are the two global

maximizers. If n > 2, then 1
2
(δ0 + δn) is the unique global maximizer.

For the proof of Proposition 4.28 see [49]. The proof of Proposition 4.27 will be
given at the end of the section, after the following calculations that give information
about the other local maximizers and projection points. For the total number of local
maximizers of Bin(n) and En

iid see Table 4.2.
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4.4. Binary i.i.d. models and binomial models

As discussed in Section 4.1.2, all point measures δx such that 0 < a(x) < n are
local maximizers of DEn

iid
. Similarly, the point measures δi for 0 < i < n are local

maximizers of DBin(n). All other local maximizers have support of cardinality two.
Consider first the binomial model. Fix 0 ≤ i < j ≤ n. With the help of the

well-known identities

n
∑

k=0

(

n

k

)

ξk = (1 + ξ)n,
n
∑

k=0

k

(

n

k

)

ξk = nξ(1 + ξ)n−1,

n
∑

k=0

k2

(

n

k

)

ξk = nξ(nξ + 1)(1 + ξ)n−2,

the formulas of Section 4.1.2 become

Zξ = (1 + ξ)n,

λ(ξ) =
nξ(1 + ξ)n−1 − i(1 + ξ)n

(j − i)(1 + ξ)n
=

(n− i)ξ − i

(j − i)(1 + ξ)
,

1− λ(ξ) =
j − (n− j)ξ

(j − i)(1 + ξ)

(note that most formulas in Section 4.1.2 also hold without the normalization an = 1,
and hence they can be applied by setting ak = k and performing all sums from k = 0
to k = n; alternatively, the formulas can be applied with ak =

k
n
).

The inverse of the map ξ 7→ λ(ξ) can be computed explicitly:

ξ(λ) =
(j − i)λ+ i

(n− i)− (j − i)λ
.

Therefore, ξi = ξ(0) = i
n−i

and ξj = ξ(1) = j
n−j

. The derivative of DE equals

∂

∂λ
D(Pλ(ξ)‖Pξ) = log

(

n
i

)

((n− i)ξ − i)
(

n
j

)

(j − (n− j)ξ)ξj−i
.

If j = i + 1, then ∆◦
i,j contains no local maximizer. Assume that j > i + 1. The

second derivative of D(Pλ‖Pξ) equals

∂2

∂λ2
D(Pλ‖Pξ) ∼

n
∑

k=0

(k − i)(k − j)

(

n

k

)

ξk

= (1 + ξ)n−2
(

nξ(nξ + 1)− (i+ j)nξ(1 + ξ) + ij(1 + ξ)2
)

∼
(

ξ2(n− i)(n− j) + ξ(n− (i+ j)n+ 2ij) + ij
)

up to positive factors. If i = 0 and j = n, then ∂2

∂λ2D(Pλ‖Pξ) ∼ −n(n − 1) < 0,
and there is one local maximizer of DE on ∆0,n. From symmetry it follows that this
maximizer is P = 1

2
(δ0+δn), and it projects to the uniform distribution 1

2n
ν. Therefore,

DBin(n)(P ) = (n−1) log(2). This is the global maximum ofDBin(n) by Proposition 4.28.
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If i = 0 and j < n, then ∂2

∂λ2D(Pλ‖Pξ) ∼ nξ (ξ(n− j)− (j − 1)), so ∂2

∂λ2D(Pλ‖Pξ)

has a unique zero for 0 < ξ < ξj at ξ0 =
j−1
n−j

< ξj. Therefore,

∂

∂λ
D(Pλ‖Pξ) ≥

∂

∂λ
D(Pλ‖Pξ0)

∣

∣

λ=λ(ξ0)
= log

n(n− j)j−1

(

n
j

)

(j − 1)j−1
.

The minimum of ∂
∂λ
DBin(n)(Pλ) is negative if and only if

fn(j) :=

(

n

j

)(

j − 1

n− j

)j−1

> n.

The function fn(j) increases monotonically for j ≤ n
2
. For j > n

2
the binomial co-

efficient decreases again, but the fraction j−1
n−j

is larger than one, and the binomial

coefficient is larger than or equal to n (since j < n). Hence there exists a function
j0(n) such that fn(j) > n if and only if j ≥ j0(n). From the calculation

fn(3)− n =
−n3 + 12n2 − 23n

3(n− 3)2
, fn(4)− n =

n4 + 42n3 − 285n2

8(n− 4)3

one can deduce that

j0(n) =

{

3, if n < 10,

4, if n ≥ 10.

DBin(n) has a local maximum in the relative interior ∆◦
0,j of the line segment ∆0,j if

and only if j ≥ j0(n). By symmetry, DBin(n) has a local maximum in ∆◦
i,n if and only

if i ≤ n− j0(n).
Finally, consider the case 0 < i < i+ 1 < j < n. In this case, the second derivative

∂2

∂λ2DBin(n)(Pλ) vanishes if and only if ξ ∈ {ξ+, ξ−}, where

ξ± =
(i+ j − 1)n− 2ij ±

√

((j − i)2 − 2(i+ j) + 1)n2 + 4ijn

2(n− i)(n− j)
. (4.15)

The term w(i, j, n) := ((j − i)2 − 2(i + j) + 1)n2 + 4ijn under the root may assume
positive and negative values. Writing j = i+ δ it can be rewritten as

w(i, i+ δ, n) = n(nδ2 + (4i− 2n)δ + 4i2 − 4in+ n).

For fixed i and n the function w(i, i+δ, n) is monotonically increasing in δ. Let δ0(i, n)
be the smallest value of δ ∈ N such that w(i, i + δ, n) ≥ 0. Then w(i, j, n) ≥ 0 if and
only if (j − i) ≥ δ0(i, n).
Assume that w(i, j, n) ≥ 0. Since i + j − 1 ≥ 2i and n > j it follows that (i + j −

1)n− 2ij > 0. Therefore, both solutions ξ+ and ξ− are positive. From 4ijn < 4jn2 it
follows

ξ+ <
(i+ j − 1)n− 2ij + (j − i+ 1)n

2(n− i)(n− j)
= ξj.
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Similarly, 4ijn < 4in2 implies ξ− > ξi. Therefore, ∂
∂λ
DBin(n)(Pλ) shows the following

behaviour: For ξ → ξi it diverges to −∞, as discussed in Section 4.1.2. Then it
increases until it reaches a local maximum at ξ−. From ξ− it decreases down to its
local minimum at ξ+. From ξ+ to ξj it increases again monotonically, diverging to
+∞ at ξj. Hence DBin(n)(Pλ) has zero or one local maximizer in ∆◦

i,j, and the second

case occurs if and only if ∂
∂λ
DBin(n)(Pλ(ξ−)) > 0 > ∂

∂λ
DBin(n)(Pλ(ξ+)).

Now consider the binary i.i.d. model. Let x, y ∈ X n
1 . For any 0 < λ < 1 let

P̃λ = (1 − λ)δx + λδy. By the results of Section 4.2 the rI-projection of P̃λ onto the
partition model EXSn equals

(P̃λ)XSn := (1− λ)
1

(

n
a(x)

)

∑

z:a(z)=a(x)

δz + λ
1

(

n
a(y)

)

∑

z:a(z)=a(y)

δz.

It is mapped by the natural bijection φ∗ : EXSn → P(X Sn) to Pλ = (1−λ)δa(x)+λδb(x).

In particular, if ξ = ξ(λ) is defined as above, then the rI-projection of P̃λ onto En
iid

equals P̃ξ, where

P̃ξ(x) =
1

Zξ

ξa(x) for all x ∈ X n
1 .

Hence

D(P̃λ‖En
iid) = D(P̃λ‖(P̃λ)XSn ) +D((P̃λ)XSn‖En

iid)

= (1− λ) log

(

n

a(x)

)

+ λ log

(

n

a(y)

)

+D(Pλ‖Bin(n)).

Therefore,

∂

∂λ
D(P̃λ‖En

iid) =
∂

∂λ
D(Pλ‖Bin(n)) + log

a(x)!(n− a(x))!

a(y)!(n− a(y))!
,

∂2

∂λ2
D(P̃λ‖En

iid) =
∂2

∂λ2
D(Pλ‖Bin(n)),

and the following statements can be made from the above discussion of D(Pλ‖Bin(n)):

• If a(y) = a(x), then there is no local maximizer in ∆◦
x,y by Lemma 3.5.

• If a(y) = a(x) + 1, then there is no local maximizer in ∆◦
x,y by Theorem 4.2.

• If a(x) = 0 and a(y) = n, then P = 1
2
(δx + δy) is the unique local maximizer

on ∆x,y. It rI-projects to the uniform distribution and satisfies D(P‖En
iid) =

(n− 1) log(2).

• If a(x) = 0 and 0 < a(y) < n, then

∂

∂λ
DEn

iid
(P̃λ) ≥ log n

(

n− a(y)

a(y)− 1

)a(y)−1

,
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n: 4 5 6 6 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9
i: 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 2 3 1 2 1 2 1 1
j: 3 4 4 5 4 5 5 6 4 5 5 6 6 7 4 5 6 5 6 6 7 7 8

Bin: 1∗ 3 3 3 3 3 3 3 1 2 3 3 3 3 1 1 1∗ 3 3 3 3 3 3
En
iid : 1∗ 3 1 3 1 3 3 3 1 1 1 3 3 3 1 1 1∗ 1 1 3 3 3 3

Table 4.1.: The number of projection points with specific supports in Bin(n) and En
iid.

n: 2 3 4 5 6 7 8 9
Bin(n): 2 3 6 10 15 21 24 31
En
iid: 3 7 15 66 111 967 1623 3235

Table 4.2.: The total number of local maximizers of DE for Bin(n) and En
iid.

and the minimum is negative if and only if

gn(a(y)) :=

(

a(y)− 1

n− a(y)

)a(y)−1

> n.

The function gn is monotonically increasing. Hence there exists a function
j1(n) such that DEn

iid
has a local maximum in ∆◦

x,y if and only if a(y) ≥ j1(n).

From gn(⌈n
2
⌉) ≤ 1 ≤ n it follows that j1(n) > ⌈n

2
⌉. Let 1 > β > 1

2
. Then

gn(β(n− 1) + 1)− n =
(

1
β
− 1
)−β(n−1)

− n → ∞ as n → ∞, and so

lim
n→∞

j1(n)

n
= lim

n→∞
j1(n)− 1

n− 1
=

1

2
.

The following table gives the value of j1(n) for 4 ≤ n ≤ 13:

n: 4 5 6 7 8 9 10 11 12 13
j1(n): 4 4 5 5 6 6 7 7 8 9

• Similarly, if 0 < a(x) < n = a(y), then there is a local maximum in ∆◦
x,y if and

only if a(x) ≤ n− j1(n).

• If 0 < a(x) < a(y) < n, then DEn
iid
(P̃λ) has zero or one local maximizer in ∆◦

x,y.

The second case occurs if and only if w(a(x), a(y), n) > 0 and ∂
∂λ
DEn

iid
(Pλ(ξ−)) >

0 > ∂
∂λ
DEn

iid
(Pλ(ξ+)), where ξ± are defined in (4.15).

Table 4.1 shows the number of projection points with support of cardinality two for
Bin(n) and En

iid for n ≤ 9. The fourth row gives the number of projection points in
∆◦

i,j for Bin(n), and the fifth row gives the number of projection points in ∆◦
x,y for

En
iid whenever i = a(x) and j = a(y). Only the values for i ≤ n − j are printed; the

others can be reconstructed by using the symmetry (i, j) ↔ (n− j, n− i). If a triple
(n, i, j) with i ≤ n − j is missing, then w(i, j, n) < 0, and DBin(n) and DEn

iid
are both

convex on the corresponding segment. Hence there is one projection point, which is
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not a local maximum. An asterisk marks the case that wi,j,n = 0. In this case there is
exactly one projection point P , and at this projection point the second derivative of
DE along ∆i,j resp. ∆x,y vanishes at P , where E = Bin(n) or E = En

iid. This projection
point must be a local minimum of the information divergence restricted to ∆i,j, and
so the third derivative also vanishes. If there are two projection points, then only
one is a local minimum of DE |∆i,j

, and the other is a saddle point, where the first and
second derivatives vanish. If there are three projection points, then there are two local
minima and one local maximum of DE |∆◦

i,j
.

From these results, the total number of local maximizers of Bin(n) and En
iid can be

counted. The result is shown in Table 4.2.

Proof of Proposition 4.27. If n is even, then the statement follows directly from Propo-
sition 4.4. Otherwise, assume that P ∈ ∆x,y is a global maximizer of DEn

iid
. By sym-

metry and Proposition 4.4 one may assume that a(x) = 0 and a(y) = ⌈n
2
⌉. By the

calculations above a(y) < j1(n), and hence there is no critical point of DEn
iid

in ∆◦
x,y.

Therefore, P is an endpoint of ∆x,y, and so P = δy, since δx ∈ En
iid.

This section ends with a detailed discussion of one of the critical points of Bin(4),
which shows how awkward the maximization problem can be.

Example 4.29. By Table 4.1 there is a projection point P of Bin(4) in ∆1,3 at which
the first three derivatives of DBin(4) vanish. By symmetry P = 1

2
(δ1 + δ3), and P

rI-projects to 1
8
ν = 1

8
(1, 3, 3, 1). Let u = ΨE(P ) = 1

6
(2,−3, 2,−3, 2) ∈ ∂UN . The map

(x, y) 7→ u+
1

8
(x+ y,−2x,−2y, 2x, y − x)

is a linear parametrization of a neighbourhood of u in ∂UN . The Hessian of (x, y) 7→
DE(x, y) at (0, 0) equals

(

0 0
0 −1

3

)

.

Because of ∂3

∂x3DE(u(x, y))
∣

∣

x=y=0
= 0 and ∂4

∂x4DE(u(x, y))
∣

∣

x=y=0
= −3

8
the restriction of

DE to any line through u has a local maximum at u. But u is not a local maximum,
because of Theorem 3.16. This can be seen directly as follows: Consider the function
f(x) = DE(u(x,−3

8
x2)). One computes f ′(0) = f ′′(0) = f ′′′(0) = 0 and f ′′′′(0) = 3

2
.

Therefore, the function DE(u(x, y)) restricted to the curve y + 3
8
x2 = 0 has a local

minimum at the origin, and so u is only a saddle point of DE .

The existence of real functions that have a local maximum on every line that passes
through some fixed point x but that do not have a local maximum at x is usually
the subject of an exercise in an undergraduate analysis course. Nevertheless, it is
surprising that this phenomenon appears here not in some constructed example, but
in a rather natural case.
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This chapter is dedicated to applications of the mathematical theory developed in
the previous chapters. The three sections of this chapter discuss three different ap-
plications. The first two sections are related to the maximization of the information
divergence; the third section is related to the projection points. Sections 5.1 and 5.2
also state some open problems and a conjecture that indicate future research direc-
tions.
Section 5.1 reviews the original motivation to study the maximizers of DE . This

section does not contain new mathematical results. It explains how the results of this
thesis apply and which extensions are necessary to make these results useful for the
study of learning in neural networks. In particular, the most important next step is to
study the maximization of the information divergence under suitable constraints. This
constrained optimization problem is well-known in the theory of channel capacities.
Section 5.2 discusses an application to machine learning. An important topic in

machine learning is the study of algorithms for learning a probability distribution by
fitting experimental data to a statistical model (in many cases an exponential family,
or a subset of an exponential family). The idea pursued in this section is to search for
exponential families that can approximate arbitrary empirical probability distributions
well, in the sense of a low maximum value of DE . The section defines two appropriate
notions of optimality and identifies the homogeneous partition models from Section 4.2
as a class of models that contains many optimal models.
Section 5.3 studies the asymptotic behaviour of the empirical information divergence

from an exponential family. This behaviour changes qualitatively if the underlying
probability distribution that generates the empirical data is a projection point. The
goal of this section is to study and characterize this behaviour.

5.1. Principles of learning, complexity measures and

constraints

Artificial neural networks are mathematical models that have been developed to study
biological neural networks in brains and nervous systems of living beings. Neural net-
works have also proved to be useful for solving decision tasks and other computational
problems. See [37] for an introduction. Just like the biological prototypes, neural
networks consist of discrete units, called nodes or neurons. Each neuron receives an
input signal from other neurons to which it is connected with a certain connection
strength. From this input, an output signal is computed and passed on to other neu-
rons. There are also sensor neurons that receive input from the outside. The result of
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a computation is read out from the state of output neurons. Such a network is called a
feed-forward neural network if the neurons can be ordered such that no neuron receives
input from subsequent neurons.
Depending on the application in mind the different components of the neural net-

work can be modelled with more or less detail. In the simplest case the neurons are
binary units that compute a Boolean function of their inputs (e.g. a threshold function
of the sum of the inputs, weighted by the connection weights). This abstraction goes
back to McMurdoch and Pitts [54]. In more detailed models the units themselves
are described by one or more real variables. Moreover, the models may have discrete
or continuous time evolution. For single neurons there are differential equations that
can quantitatively reproduce the behaviour, e.g. the Hodgkin-Huxley model [39] and
related models. When simulating large-scale networks the single neurons have to be
modelled in a much simpler way.
An important feature of neural networks is that the connection strength of the nodes

is usually not hard-coded in the beginning. Instead, the network is trained for a specific
task with the help of training data, and it may even adapt to a continuously changing
environment. It is not necessary for the programmer to implement a complicated
algorithm into the network: If the structure of the network is sufficiently general and
adapted to the problem to be solved, then the network is able to learn a solution
strategy by itself. Therefore, the task of the programmer is to choose the design
of the network appropriately for the task at hand and to specify a suitable learning
algorithm.
One of the oldest and easiest learning rules for neural networks is Hebb’s rule that

was postulated by the psychologist Hebb on theoretical grounds. It states that if
two neurons often fire together, then the connection strength between these neurons
increases. Later, this rule could be confirmed experimentally for some neural systems
(and disproved for others). For example, the phenomenon of spike timing dependent
plasticity (see [12] and references therein) is a variant of Hebb’s rule: Plasticity means
that the connection strength has the possibility to adapt, and this adaptation depends
on the relative timing of excitations of the neurons. If neuron A often fires shortly
before neuron B, then the connection from A to B is strengthened and the connection
from B to A is weakened, and vice versa.
Motivated by Hebb’s rule Linsker proposed an information theoretic learning prin-

ciple in [47], called the infomax principle. Linsker was interested in unsupervised
learning of perceptive systems. Such systems usually have a feed-forward structure
and consist of distinct layers. The first layer receives input signals from sensors, and
it is assumed that the distribution of the signals is according to some fixed stationary
distribution. Subsequent layers receive input from their precedent layer. Each layer
uses its input to compute some output that is then passed to the next layer. The
infomax principle states:

• The system learns in such a way that the mutual information between the input
and the output of each layer is maximized.

In [6] Ay proposed a related principle, the IMI principle. This principle does not
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need the structuring of the network into layers; however, it is still assumed that some
of the neurons receive external input. The IMI principle states:

• The system learns in such a way that the multiinformation between the neurons
is maximized.

Ay shows that for a two-layer feed-forward network a gradient ascent with respect to
the multiinformation is equivalent to a Hebb-like rule. See [6] for a comparison of the
infomax and IMI principles.
The two information theoretic principles stated so far only involve the stationary

distribution of the neurons. In [9] Ay and Wennekers generalized these ideas and
formulated a learning principle that involves the dynamics of the process in the form
of a Markov transition kernel: Consider a neural network with state space X0, and
let X = X0 × X0. Write X, Y : X → X0 for the two canonical projection maps. The
two factors model the present and the future of the system. Let P ∈ P(X ). Assume
that the marginal distributions of X and Y agree. In this case, the system is in a
stationary state. The dynamics is encoded in the conditional probability distributions
P (Y = y|X = x). In this setting, Ay and Wennekers propose to use the conditional
information divergence

∑

x∈X0

P (x)
∑

y∈X0

P (y|x) log P (y|x)
Q(y|x) (5.1)

to compare different stationary distributions and different dynamics, leading to the
concept of temporal infomax [72].
A second motivation to investigate the maximizers of the information divergence is

the study of complexity measures. A widespread paradigm claims that a system is
complex if it cannot be described by looking only at smaller subsystems. Ay proposed
to formalize this idea in [4] by measuring the distance of the state of the system from
some suitably defined product state. If the system is described by Markov kernels,
then (5.1) can be used to quantify the distance of some kernel from the set of all
factorizable kernels, see [4] for the details. If the state of the system is described
by probability distributions, then choosing the information divergence as a distance
measure and the independence model E1 as the set of product states yields the mul-
tiinformation. A related idea was pursued by Ay, Olbrich, Bertschinger and Jost
in [8]: For a composite system X = X1 × · · · × Xn consider the interaction models
E1 ⊂ E2 ⊂ · · · ⊂ En−1 as defined in Section 2.4. For any vector α ∈ Rn−1 let

Cα(P ) :=
n−1
∑

k=1

α(k)D(P‖Ek).

The different terms D(P‖Ek) measure how well the distribution P can be described
by interactions of only k of the subsystems. The results of this thesis are directly
applicable to the study of Cα whenever α has only one non-vanishing component.
Another approach is taken in [42]. Based on the idea that a system is complex if
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any faithful description of the behaviour involves all levels, all components D(P‖Ek)
are considered together. By the Pythagorean identity D(P‖Ek) =

∑n−1
l D(Pl+1‖El),

where Pl is the rI-projection of P onto El (this decomposition was first studied by
Amari [2]). This motivates to consider the interaction complexity vector IC(P ) :=
(D(Pl+1‖El))n−1

l=1 . Its lth component can be interpreted as the proportion of the system
that can be understood with the help of subsystems of size l+1, but not through the
subsystems of size l. These ideas are related to the TSE-complexity, introduced by
Tononi, Sporns and Edelman in [70], see [8] for a comparison.
The mathematical results of this thesis are not directly applicable to the study of

the infomax and IMI principles in a biological context, because in these principles
the maximization usually takes place under certain internal and external constraints:
External constraints are given by the distribution of the input signals that the system
receives. Internal constraints are given by the network structure itself. For example,
the interaction between the neurons consists of pair interactions. Furthermore, de-
pending on the model, a single neuron cannot compute arbitrary functions from its
input. Other internal constraints may stipulate which connections are inhibiting and
which connections are exciting.
Two kinds of constraints appear naturally in the above considerations: Linear con-

straints can be used to model external constraints to a network in the form of marginal
distributions. Linear constraints also appear in the study of symmetries, cf. Re-
mark 4.12. Exponential constraints of the form Q ∈ E ′ for some exponential family E ′

can be used to model certain internal constraints. For example, E ′ could be taken to
be a submodel of the pair interaction model. Such exponential constraints also appear
in the study of the components ICl of the complexity vector IC(P ): The maximiza-
tion of a single component ICl(P ) = D(Pl+1‖El) corresponds to the maximization of
D(Q‖El) subject to Q ∈ El+1. These two kinds of constraints were introduced in the
framework of the IMI principle in [6]. In the dynamical framework, constraints were
studied in [72]. A special case of the constrained optimization of DE appeared in this
thesis in Remark 4.13 and in Section 4.4: If E ′ is a partition model and if E ⊆ E ,
then the constrained optimization of DE(Q) subject to Q ∈ E ′ is equivalent to an
unconstrained optimization problem. More generally, it is easy to see that the same
holds true if E ′ is any convex exponential family containing E as a subfamily (but not
necessarily containing the uniform distribution).
Even though the results in this thesis are not directly applicable to the learning

principles, one can argue that they are still relevant to the general problem: First,
the unconstrained problem gives bounds on the constrained problem. Second, if the
learning principles stated above are sufficiently important for the fitness of the biolog-
ical system, then the biological system should evolve such that the constraints on the
system do not obstruct the maximization of the corresponding entropic quantity. For
example, the sensors should evolve such that the external constraints do not restrict
the learning of the system, and the internal structure should evolve such that the
maximizers of the unconstrained optimization principle are still reachable. This line
of arguments was first proposed by Ay in [6]. It also relates learning principles and
complexity measures: It is a well-known phenomenon that the evolution of biologi-
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cal systems creates complex structures, see for example [62] and [66] and references
therein. In the light of the learning principles and the complexity measures discussed
above a possible interpretation is the following: The evolution of neural networks cre-
ates complex structures, in the sense that the resulting neural networks can exhibit
complex behaviour. The fine-tuning of the connection strengths is achieved by learn-
ing and depends on the external constraints given by the environment. Both phases,
the evolution phase and the learning phase, are imitated in the theory of artificial
neural networks: First, the network structure is chosen (by principle considerations or
by evolutionary algorithms), and then the network learns for a given task.
If the motivation is not only to understand biological neural networks but to con-

struct artificial neural networks in order to solve certain tasks, then the learning prin-
ciples suggest to construct such systems in a way that they can reach the maximizers.
This leads to the following mathematical problem:

• Given an exponential family E , find a low-dimensional statistical model E ′ that
contains all (local or global) maximizers of DE in it closure.

One may then try to construct a neural network that can generate all probability
distributions in E ′. If the IMI principle is appropriate to the problem to be solved,
then such neural networks should perform well. In [52] Matúš and Ay show that
for any exponential family E of dimension d there exists an exponential family E ′ of
dimension 3d+ 2 that contains all local maximizers of DE . Their idea is to construct
E ′ such that for any subset Z ⊆ X of cardinality |Z| ≤ dim E + 1 and any Q ∈ E
the truncation QZ is contained in E ′, cf. Lemma 3.5. In [7] Ay and Knauf show that
the global maximizers from those independence models E1 that satisfy (1.1) lie in the
closure of the exponential family of pure pair-interactions E(2). If d = dim E1, then
the dimension of E(2) grows approximately quadratic in d, and hence it grows faster
than the bound 3d+ 2 of [52]. On the other hand, E(2) has the advantage that it has
a nice interpretation. Another strategy could be to search for a statistical model M
containing the set KE of kernel distributions in its closure, see Section 3.2.
Of course, for a real biological system there will be other factors besides the learning

principles stated above that influence its evolution. In general, it is too bold to as-
sume that the learning system may reach the global maximizers of the unconstrained
optimization problem despite the internal and external constraints. Therefore, the
generalization of the results of this thesis to the constrained maximization of DE is an
important problem for the future.
Under suitable constraints the maximization of DE also makes sense in the case

where X is infinite. This makes it possible to study neurons with a continuous output.
The constrained maximization of DE also appears in information theory in the study of
(noisy) channels: Consider a (finite or infinite) system X = Xin ×Xout of two random
variables X : X → Xin and Y : X → Xout, called the input and the output of the
channel. A channel can be seen as a map c from a set Pin ⊆ P(Xin) of possible input
distributions to the joint distributions P(X ). The input distribution corresponds to
a stationary stochastic source of information, and the joint distribution determines
the relation between the output and the input. In the easiest case, it suffices to give
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a conditional distribution P (·|x) ∈ P(Xout) for any x ∈ Xin. For example, a noisy
Gaussian channel can be specified by Xin = Xout = R and Y = X + σǫ, where σ ∈ R≥
and ǫ is normally distributed with variance 1. In this case the conditional distributions
P (·|x) are also normally distributed with mean x and variance σ2. The capacity of
such a channel is defined as

C = sup
P∈Pin

Ic(P )(X;Y ),

where Ic(P )(X;Y ) is the mutual information of input and output, computed with
respect to the probability distribution c(P ). Depending on the subset Pin, the value
of C may be finite or infinite. As an example, consider the noisy Gaussian channel.
If Pin equals the set of all probability distributions with bounded variance, then the
capacity is achieved by a Gaussian input distribution, as Shannon showed in [63]. If
Pin equals the set of probability distributions on a compact interval [−a, a] ⊂ R, then
the capacity is achieved by an input distribution with finite support, see [64]. See [17]
and references therein for more results on the capacity of channels.

This gives the following interpretation of the infomax principle: Each layer in a
feed-forward neural network can be seen as a channel, and learning optimizes these
channels. In this context, the mathematical problem of finding statistical models that
can approximate the local or global maximizers of the mutual information corresponds
to a search for parametrized families of channels that can approximate optimal chan-
nels.

5.2. Optimally approximating exponential families

In this section the following question will be discussed:

• Fix a real number D > 0 and a partial order on the exponential families. Which
exponential families are minimal among all exponential families E satisfying
maxDE ≤ D? What is the answer to this question under further constraints
on E?

There are at least two partial orders of interest:

(i) The partial order induced by the dimensions of the exponential families.

(ii) The partial order by inclusion.

The partial order (i) is particularly important for applications, since the dimension
of an exponential family is one of the most important invariants that determine the
complexity of all computations. The partial order (ii) can be seen as a “local relax-
ation”: A candidate exponential family E is only compared to “similar” exponential
families, contained in E .
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Definition 5.1. Let X be a finite set and let H be a set of exponential families.
An exponential family E ∈ H is called inclusion D-optimal among H for some D ≥
maxDE if every exponential family E ′ ∈ H strictly contained in E satisfies maxDE ≤
D < maxD(·‖E ′). An exponential family E ∈ H is called dimension D-optimal among
H if every exponential family E ′ ∈ H of smaller dimension satisfies maxDE ≤ D <
maxD(·‖E ′). Exponential families that are inclusion or dimensionD-optimal amongH
for some D are also called inclusion or dimension optimal among H, without reference
to D. If H equals the set of all exponential families, then the reference to H may be
omitted in all definitions. Let

DN,k(H) = min {maxDE : E ∈ H is an exponential family of dimension k on [N ]} .

As an example, the set H may be the set of hierarchical models, or the set H1 of
exponential families containing the uniform distribution. Obviously, any dimension
optimal model is also inclusion optimal. The converse statement does not hold, see
Example 5.4 below.
A D-optimal exponential family E can approximate arbitrary probability measures

well, up to a maximal divergence of D. Yaroslav Bulatov proposed to use such expo-
nential families in machine learning (personal communication). A well-known learning
principle, sometimes called minimax principle, suggests the following algorithm for
learning a probability distribution from a set of samples x1, . . . , xm ∈ X : Let F be
a finite collection of subsets of RX . Elements of RX are also called features in this
context, so any F ∈ F is a candidate feature set. For any F ⊆ RX denote by RF
the vector space generated by F , and let EF be the exponential family with tangent
space RF/R1 and uniform reference measure. Denote the empirical distribution over
the set of samples by P̂ = 1

m

∑m
k=1 δxk

. The algorithm can be sketched as follows:

1. Start with a subset F 0 of F .

2. In the kth iteration select a set of candidate feature sets F̃k ⊆ F (this may
depend on F k−1).

3. For each F ∈ F̃k find an estimate Dk
F for D(P̂‖EFk−1∪F ).

4. Let F k+1 = F k ∪ argmin
{

Dk
F : F ∈ F̃k

}

.

5. Iterate until the fit is good enough, e.g. until minF∈F̃k Dk
F is small enough.

There are different possibilities how to fill in the details. For example, the question
when to stop in order to prevent overfitting is a version of the difficult statistical prob-
lem of model selection. The name of the algorithm refers to the fact that the elements
of the exponential family maximize the entropy, subject to constraints given by the
expectation values of the features, cf. Theorem 2.16 (iii). This is motivated by Jaynes’
principle, which states that the maximum entropy estimate is the most objective way
to incorporate knowledge about the true underlying probability distribution [40]. On
the other hand, the exponential family is chosen such that it minimizes the information

95



5. Applications and Outlook

divergence. The name was proposed in the 1997 paper [74] by Zhu, Wu and Mumford,
who discuss applications to texture modelling. In the same year, Della Pietra, Della
Pietra and Lafferty presented a similar “feature induction algorithm,” which they ap-
ply to the problem of automatic word classification in natural languages [24]. Both
papers assume that the set of possible features is given a priori; they do not specify a
way to deduce the candidate features without expert knowledge. The tangent spaces
of optimal exponential families may be natural candidates for features, if no or little
expert knowledge is available. Some suggestions for the choice of possible candidate
features are given at the end of this section.
One motivation to restrict the class H of exponential families is that the learning

system may not be able to represent arbitrary exponential families. Another motiva-
tion is given by Jaynes’ principle, which suggests to use the class H1 of exponential
families with uniform reference measure.

Remark 5.2. Remark 3.15 says that maxDE ≥ log(2) for all exponential families
E 6= P(X )◦. Therefore D-optimality is only interesting for D ≥ log(2). The case
D = log(2) was already studied in Section 4.3. The result is that DN,k = log(2) for
⌈N

2
⌉ − 1 ≤ k < N . This condition is equivalent to ⌈ N

k+1
⌉ = 2. Many log(2)-dimension

optimal exponential families are partition exponential families.

Example 5.3. All zero-dimensional exponential families are dimension-optimal. By
Section 4.1.1, if E = {ν}, then

maxDE = max{− log(νx) : x ∈ X} ≥ log |X |.

Therefore, DN,1 = log(N), and E is D-optimal if and only if νx ≥ e−D for all x ∈ X .
Zero-dimensional exponential families are the dimension D-optimal exponential fami-
lies for D ≥ log |X |. In general, they are not the only inclusion D-optimal exponential
families, see Example 5.4.

Example 5.4. Let X = {1, 2, 3}. Any zero-dimensional exponential family E = {ν}
satisfies maxDE ≥ log(3). Therefore, if log(2) ≤ D < log(3), then the dimension
D-optimal exponential families are one-dimensional. The case D = log(2) was already
discussed in Proposition 4.20. The general case can be treated similarly:
The normal space N of any one-dimensional exponential family E is spanned by a

single element u, which can be taken to be normalized, such that ∂UN = {±u}. By
Example 3.13 the set of local maximizers of DE equals {u+, u−}. Let PE = (u+)E =
(u−)E , then PE = µu+ + (1 − µ)u− for some 0 < µ < 1. Hence DE(u+) = − log µ
and DE(u−) = − log(1 − µ). It follows that E is dimension D-optimal if and only
exp(−D) ≤ µ ≤ 1− exp(−D). Alternatively, using (3.5), E is dimension D-optimal if
and only if − log(exp(D)− 1) ≤ DE(u) ≤ log(exp(D)− 1).
If D ≥ log(3), then the dimension D-optimal exponential families are zero-dimen-

sional, consisting of a single point {ν} such that min{ν1, ν2, ν3} ≥ e−D. There are
also one-dimensional inclusion D-optimal exponential families: Consider, for example,
the exponential family E with sufficient statistics A = (0, 1, 2) and reference measure
ν = (1, 4, 1). The two local maximizers are u+ = δ2 and u− = 1

2
(δ1 + δ3). Their rI-

projection is PE = 1
6
ν. Hence DE(u+) = log 3

2
and DE(u−) = log 3, and so maxDE =
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log 3. The monomial parametrization of E is

Pξ =
1

Zξ

(1, 4ξ, ξ2),

where ξ ∈ R≥ and Zξ = 1 + 4ξ + ξ2. Consequently, E does not contain the uniform
distribution. Therefore, any point P ∈ E satisfies maxD(·‖P ) ≥ maxDE .

The following theorem generalizes the special case of Theorem 4.19 when N is even.

Theorem 5.5. Let X be a finite set of cardinality N . Then DN,k ≥ log(N/(k + 1))
for all 0 ≤ k < N . If E is a k-dimensional exponential family that satisfies maxDE =
log(N/(k + 1)), then E is a partition model of a homogeneous partition of coarseness
N/(k+1). In particular, if N is divisible by (k+1), then DN,k = log(N/(k+1)), and
the dimension DN,k-optimal models are partition models.

Proof. First assume that E ∈ H1. Let A be a sufficient statistics of E . The moment
map πA maps the uniform distribution Q = 1

N
1 to a point in the interior of MA. By

Carathéodory’s theorem (Theorem A.4) there are k+1 vertices Ax0
, . . . , Axk

ofMA and

λ0, . . . , λk ∈ R≥ such that πA(Q) =
∑k

i=0 λiAxi
and

∑k
i=0 λi = 1. Let P =

∑k
i=0 λiδxi

,
then Q = PE . By the Pythagorean theorem, maxDE ≥ DE(P ) = H(Q) − H(P ) ≥
log(N)− log(k + 1), proving the first assertion.
If equality holds, then λ0 = · · · = λk = 1

k+1
. Let x ∈ X \ {x0, . . . , xk}. For

i ∈ {0, . . . , k} let Ci be the convex hull of Ax0
, . . . , Axi−1

, Axi−1
, . . . , Axk

and Ax. By
Carathéodory’s theorem the sets Ci cover the convex hull of Ax0

, . . . , Axk
and Ax.

In particular, πA(Q) ∈ Cj for some j ∈ {0, . . . , k}, so πA(Q) =
∑

i 6=j λ
′
iAxi

+ λ′
jAx.

By the same argument as above it follows that λ′
0 = · · · = λ′

k = 1
k+1

. Therefore,
Ax = (k + 1)πA(Q)−∑i 6=j Axi

= Axj
.

Let ∼ be the equivalence relation on X defined by x ∼ y if and only if Ax = Ay,
and let X ′ = (X 1, . . . ,XN ′

) be the corresponding partition into equivalence classes.
Then N ′ ≤ k + 1 by what was shown until now. From dim(E) = dim(MA) one
concludes N ′ = k+1, and MA is a simplex of dimension k. By Lemma 4.10, E equals
the partition model of X ′. Lemma 4.14 implies that the coarseness of X ′ equals N

k+1
,

which must be an integer. Furthermore, X ′ is homogeneous.
It remains to prove maxDE > log(N/(k + 1)) in the case E /∈ H1. Let N1 be

the fibre of the uniform distribution. The function DE is convex on N1, hence DE is
maximal at the vertices of N1, and any such vertex P satisfies | supp(P )| ≤ dim(X )+1
(cf. the proof of Lemma 3.5). Let PE be the rI-projection of the uniform distribution.
Denote by E1 the exponential family with uniform reference measure and with the
same normal space as E . On N1 the difference

δ(P ) := DE(P )−DE1(P ) = −
∑

x∈X
P (x) logPE(x)− logN

is an affine function that is positive at the uniform distribution. Hence there is a
vertex P of N1 such that δ(P ) > 0, and so DE(P ) > DE1(P ) = logN − H(P ) ≥
log(N/(k + 1)).
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The value of DN,k is unknown when k+1 does not divide N . The situation is known
for N = 3, see Example 5.4: If 1 ≤ k < 3, then DN,k = log(2), and all dimension
DN,1-optimal exponential families that contain the uniform distribution are partition
models. The following conjecture generalizes this example and Theorems 4.19 and 5.5:

Conjecture 5.6. DN,k = log⌈ N
k+1

⌉, and the dimensionDN,k-optimal exponential families
containing the uniform distribution are partition models.

The following weaker statement holds:

Lemma 5.7. Let X ′ =
{

X 1, . . . ,XN ′
}

be a partition of coarseness c < N such that
X 1 has cardinality l ≤ c and all other components X i for i > 1 have cardinality c.
Then the partition model E of X ′ is log(c)-inclusion optimal.

Proof. The fact that maxDE = log(c) follows from Lemma 4.14. It remains to prove
the optimality. Let E ′ ⊆ E be an exponential family contained in E . Let Z be the
union of all blocks of X ′ of cardinality c. Assume that there exists a probability
measure Q ∈ E \ E ′ with support contained in Z. By Corollary 4.15 there exists
P ∈ P(Z) such that Q = PE and D(P‖Q) = log(c). Let Q′ = PE ′ ∈ E . Then
D(P‖Q′) = D(P‖Q) +D(Q‖Q′) > log(c) by the Pythagorean identity. Otherwise, if

E ∩ P(Z) = E ′ ∩ P(Z), then dim(E) = dim(E ∩ P(Y)) + 1 = dim(E ′ ∩ P(Y)) + 1 ≤
dim(E ′), so E = E ′.

Theorem 5.5 can be applied to the hierarchical models EK for K ⊆ [n] introduced
in Remark 4.11. By Theorem 5.5 the hierarchical model EK is dimension optimal with
maxD(·‖EK) =

∑

i∈[n]\K log(Ni). If Nn = 2, then the choice K = {1, . . . , n−1} yields

an exponential family of dimension less than |X |/2 such that maxD(·‖EK) = log(2),
and Theorem 4.18 implies that EK is dimension optimal. The following proposition
says that the exponential families EK are the unique dimension D-optimal hierarchical
models for many values of D.

Proposition 5.8. Let X = X1 × · · · ×Xn, where Ni = |Xi| < ∞. For any K ⊆ [n] let
DK =

∑

i/∈K log(Ni). The hierarchical model EK is dimension DK-optimal.
Let l be any divisor of N := |X | = ∏n

i=1 Ni. If E is any hierarchical model that is
dimension log(N/l)-optimal, then there is a subset K ⊆ [n] such that E = EK.

The proposition implies that if l is not of the form
∏

i∈K Ni for some subset K ⊆ [n],
then there exists no hierarchical model that is dimension log(N/l)-optimal.

Proof. It only remains to prove the last statement. If E satisfies the assumptions,
then E is a partition model by Theorem 5.5. Therefore, it suffices to prove that any
hierarchical model that is also a partition model is of the form EK .
Let ∆ be a simplicial complex on [n] such that E = E∆, and let K = ∪J∈∆J . Then

E is a submodel of EK . Let A be a sufficient statistics of E . By Lemma 2.45 the convex
supports of E and EK have the same number of vertices. By Lemma 4.10 they are
both simplices, hence they have the same dimension, so E = EK .
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Conjecture 5.6 would imply that the partition models of Lemma 5.7 are dimension
optimal among all exponential families. If the conjecture were true, then it would sug-
gest the following interpretation: In many cases the information divergence D(P‖Q)
can be interpreted as the information which is lost when P is the true probability
distribution, but computations are carried out with Q. For example, in the case of
the independence model E1 of two variables, DE1 equals the mutual information and
measures the amount of information that one variable carries about the other variable.
If a probability measure is replaced by its rI-projection, then this information is lost.
For the exponential families EK the loss equals DK =

∑

i/∈K log(Ni), which is pre-
cisely the maximal information that the random variables that are not in K can carry.
Assuming that the conjecture is true, if the model is smaller than EK , then, in general,
more information can be lost. In this interpretation the fact that maxDE ≥ log(2)
unless E = P(X )◦ means that for any exponential family E 6= P(X )◦ in general at
least one bit is necessary to compensate the approximation of arbitrary probability
measures.
The results of this section suggest the following strategy for the minimax algorithm:

Start with F 0 = ∅. At each step in the algorithm choose Fk such that for all F ∈ Fk

the exponential family EFk∪F is a partition exponential family of some partition. Let
X ′

k and X ′
k,F be the partitions of EFk and EFk∪F , respectively. Then the partitions X ′

k,F

refine the partition X ′
k. There are different possibilities to make these ideas concrete:

• One may require that the partitions are homogeneous partitions. In particular,
it is possible to restrict to homogeneous partitions of coarseness 2|X |−k.

• Alternatively, one may choose the candidate features such that at each step one
(or more) of the largest blocks in the partition is split.

The idea of refining the blocks of the partition one by one has the advantage that Fk

can be chosen such that any F ∈ Fk consists of only one feature f and such that this
feature f ∈ {0, 1}X takes only two values. In [24] such features have been called binary
features, and it was shown that such features can be treated efficiently. It would be
interesting to apply these ideas at an example. This will be done in a future project.

5.3. Asymptotic behaviour of the empirical information

divergence

This section studies the asymptotic distribution of the empirical information diver-
gence from an exponential family, generalizing Milan Studený’s results on the em-
pirical multiinformation [68]. For the independence models the rI-projection map
P 7→ PE is known in closed form. This makes it possible to make the results for the
case when the distribution P is a projection point more explicit. Studený’s results can
be derived from Theorem 5.11 below, as will be shown in Remark 5.16.
This section is the only part of this thesis in which infinite probability spaces occur:

The discussion of the asymptotic behaviour of estimators makes it necessary to study
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infinite sequences of independent and identically distributed random variables. There
are no principal difficulties to make the following treatment formally precise in the
setting of Kolmogorov’s axioms. Some of the technical details are discussed in [68].
For any probability measure P on X let

R[P ] :=
∑

x∈supp(P )

P (x) log2
(

P (x)

PE(x)

)

−D(P‖E)2

be the variance of the random variable x 7→ log
(

P (x)
PE(x)

)

under P . Then R[P ] ≥ 0, and

R[P ] = 0 if and only if P (x)
PE(x)

is a constant, which means that P is a projection point.

Definition 5.9. Let (X(i))i≥1 be a sequence of independent random variables, identi-
cally distributed according to P . For any n > 0 let

P̂ (n)(x) =
1

n

∣

∣

{

i ≤ n : X(i) = x
}∣

∣ (5.2)

be the empirical distribution after n steps. Every empirical distribution is a random
variable with values in P(X ). For any n the empirical information divergence is the
random variable

D̂
(n)
E := D(P̂ (n)‖E). (5.3)

Definition 5.10. The normal distribution on Rn with mean b ∈ Rn and covariance
matrix Σ ∈ Rn×n is denoted by N(b,Σ).
Let Y 1, . . . , Y n, . . . be a sequence of random variables, and let P be a probability

measure. If P is not a point measure, then Y n is asymptotically P -distributed if there
exist sequences (an)n, (bn)n ⊂ R such that an > 0 for all n and such that 1

an
(Y n − bn)

converges in distribution to a P -distributed random variable. If P = N(0, 1), then Y n

is asymptotically N(bn, a
2
n)-distributed.

Let A be a sufficient statistics of the exponential family E such that the rows of
A are linearly independent and such that 1 is not contained in the row space of A.
For any positive measure µ ∈ RX let µE be the rI-projection of 1

µ(X )
µ onto E , and let

mi(µ) =
∑

xAi,xµE(x) =
1

µ(X )

∑

x Ai,xµx. Let V (µ)−1 be the inverse of the covariance
matrix

V (µ)i,j =
∑

x

µE(x)Ai,xAj,x −
∑

x

µE(x)Ai,x

∑

y

µE(y)Aj,x

of A at µE . This inverse exists by the assumptions on A: If
∑

j Vi,jϑj = 0 for some

ϑ ∈ Rh, then the function u =
∑

j ϑjAj,x ∈ RX has variance
∑

i,j ϑiVi,jϑj = 0.
Therefore, u is a constant function in the row span of A. By assumption, u = 0, and
hence ϑ = 0, since A is invertible.

Theorem 5.11. Let P ∈ P(X ). If P is not a projection point, then the empirical
information divergence is asymptotically N(D(P‖E), 1

n
R[P ])-distributed. Otherwise,
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5.3. Asymptotic behaviour of the empirical information divergence

let λ1, . . . , λN be the eigenvalues of the X × X -matrix with matrix elements

g(x, y) =
1

2

(

δx,y −
∑

i,j

Ai,xV (P )−1
i,j (Aj,y −mj(P ))P (y)

)

,

for all x, y ∈ X . Order the eigenvalues such that λN = 1
2
. Then n(D̂

(n)
E −DE) converges

in distribution to
∑N−1

i=1 λit
2
i , where t1, . . . , tN−1 are independent N(0, 1)-distributed

random variables.

Distributions of random variables of the form
∑N−1

i=1 λit
2
i for independent N(0, 1)-

distributed random variables ti are sometimes called generalized χ2-distributions . The
proof of the theorem will be given after a series of preliminary lemmas. The idea of the
proof is to do a Taylor approximation of DE . The first lemma computes the necessary
partial derivatives of DE .

Lemma 5.12. Let DE(µ) = D(µ‖E) for any positive measure µ ∈ RX . Then

∂

∂µx

DE(µ) = 1 + log
µx

µE(x)
,

∂2

∂µx∂µy

DE(µ) =
δx,y
µx

− 1

µ(X )

∑

i,j

(Ai,x −mi(µ))V (µ)−1
i,j (Aj,y −mj(µ)),

for all x, y ∈ supp(µ).

Proof. Let Z = supp(µ). From Proposition 2.14 (i) it follows that

DE(aν) = a (DE(ν) + ν(X ) log(a)) , for all a ∈ R. (5.4)

Fix x0 ∈ Z. Consider the set of coordinates {µ, µx}x∈Z\{x0}, where µ := µ(X ). In or-
der to distinguish the partial derivatives with respect to this coordinate system from
the partial derivatives with respect to the coordinate system {µx}x∈Z the notation
(

∂
∂µx

DE
)

µ
and

(

∂
∂µx

DE
)

µx0

from statistical thermodynamics is used. The two coor-

dinate systems are related via µx0
= µ −∑x 6=x0

µx. Write µ = µQ, where Q is a
probability measure. By Theorem 3.1,

(

∂

∂µx

DE(Q)

)

µ

=
1

µ

(

log
Q(x)

µE(x)
− log

Q(x0)

µE(x0)

)

=
1

µ

(

log
µx

µE(x)
− log

µx0

µE(x0)

)

,

for all x ∈ Z \ {x0}. Therefore,
(

∂

∂µx

DE(µ)

)

µ

=
∂

∂µx

(µ (DE(Q) + log(µ))) = log
µx

µE(x)
− log

µx0

µE(x0)
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for all x ∈ Z \ {x0}. Furthermore, using (5.4),

ν(X )
∂

∂µ
DE(aν) +

∑

x∈Z\{x0}
νx

(

∂

∂µx

DE(aν)

)

µ

=
∂

∂a
DE(aν)

= DE(ν) + ν(X )(log(a) + 1) =
1

a
DE(aν) + ν(X ).

For a = µ and ν = Q this yields

∂

∂µ
DE(µ) =

1

µ
DE(µ) + 1−

∑

x∈Z\{x0}
Q(x)

(

∂

∂µx

DE(µ)

)

µ

=
1

µ
DE(µ) + 1−

∑

x∈Z
Q(x)

(

log
µx

µE(x)
− log

µx0

µE(x0)

)

= 1 + log
µx0

µE(x0)

Hence
(

∂

∂µy

DE(µ)

)

µx0

=
∂

∂µ
DE(µ) +

(

∂

∂µy

DE(µ)

)

µ

= 1 + log
µy

µE(y)
,

∂

∂µx0

DE(µ) =
∂

∂µ
DE(µ) = 1 + log

µx0

µE(x0)
.

This proves the first formula.
Deriving the first formula with respect to µy yields

∂2

∂µx∂µy

DE(µ) =
δx,y
µx

− 1

µE(X )

∂µE(x)

∂µy

.

The map µ 7→ µE factors as the composition of the map m : µ 7→ 1
µ(X )

Aµ, the inverse
of ϑ 7→ APϑ and ϑ 7→ Pϑ. Note that the second map ϑ 7→ APϑ is itself the composition
of the third map ϑ 7→ Pϑ and m. The differential of the first map is

∂m(µ)

∂µx

=
1

µ(X )
(Ax −m(µ)) .

The differential of the third map is

∂

∂ϑi

Pϑ(x) = (Ai,x −mi(Pϑ))Pϑ(x).

Hence, by the chain rule, the differential of the second map is

∂

∂ϑj

(mi(Pϑ)(x)) =
∑

x

(Ai,x −mi(Pϑ)) (Aj,x −mj(Pϑ))Pϑ(x) = V (Pϑ)i,j.

Now the second formula follows from m(µE) = m(µ) and

∂µE(x)

∂µy

=
∑

i,j

(Ai,x −mi(µ))µE(x)V (µ)−1
i,j

1

µ(X )
(Aj,y −mj(µ)).
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5.3. Asymptotic behaviour of the empirical information divergence

The next three lemmas are needed to compute the asymptotic distribution of the
different terms in the Taylor expansion:

Lemma 5.13. Let C = (c(x, y))x,y∈X ∈ RX×X be the matrix with matrix elements

c(x, y) = P (x)(δx,y − P (y)). Then P̂ (n) has expectation P and covariance matrix 1
n
C.

The normalized empirical probability δP̂ (n) :=
√
n
(

P̂ (n) − P
)

has expectation zero

and covariance C and is asymptotically N(0, C) distributed.

Proof. See [68, Proposition 2].

Lemma 5.14. Let B,C ∈ RN×N be two symmetric real matrices, and assume that
C is positive definite. Then BC is diagonalizable, and all eigenvalues λ1, . . . , λN of
BC are real. If X is a N(0, C)-distributed random vector, then the random variable
∑

i,j∈X Bi,jXiXj has the same distribution as
∑N

i=1 λit
2
i , where t1, . . . , tN are indepen-

dent N(0, 1)-distributed random variables.

Proof. See [68, Lemma 4].

See the proof of Theorem 5.11 how to apply the last lemma in the case that C is
only positive semidefinite.

Lemma 5.15. Let G = (gi,j) ∈ RN×N be a diagonalizable matrix with eigenvalues
λ1, . . . , λN . Assume that

∑

j gi,j = λN ∈ R. Then the eigenvalues of the matrix

D = (di,j) ∈ R(N−1)×(N−1) defined by di,j = gi,j − gZ,j are λ1, . . . , λN−1.

Proof. Under the assumptions of the lemma the proof of [68, Lemma 5] applies.

Proof of Theorem 5.11. Let Z = supp(P ). Consider DE : µ 7→ D(µ‖E) as a function
from (0,∞)Z to R. By Lemma 5.12, the Taylor expansion of DE around P is

DE(P + u) = DE(P ) +
∑

x∈X
u(x)

(

1 + log
P (x)

PE(x)

)

+
1

2

∑

x,y∈X
u(x)u(y)

(

δx,y
P (x)

−
∑

i,j

(Ai,x −mi(P ))V (P )−1
i,j (Aj,y −mj(P ))

)

+ ǫ(u),

where ǫ(u) = o(u3). Let u(n) = P̂ (n) − P = 1√
n
δP̂ (n). By Lemma 5.13 u(n) is asymp-

totically N(0, 1
n
C)-distributed. From

∑

x,y

(

1 + log
P (x)

PE(x)

)

c(x, y)

(

1 + log
P (x)

PE(x)

)

= R[P ]

and the general theory of asymptotic statistics (see, for example, Proposition 5.10 and
Theorem 6a.2 (ii) in [59]) it follows that

√

n

R[P ]
(D̂

(n)
E −D(P‖E)) → N(0, 1) in distribution.
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Now assume that R[P ] = 0. Then
∑

x∈X u(n)(x)
(

1 + log P (x)
PE(x)

)

= 0. Furthermore,

Lemma 5.13 implies that the error term satisfies nǫ(u(n)) → 0 in probability. Therefore,
it suffices to analyze the asymptotic behaviour of

k(n) :=
n

2

∑

x,y∈X
u(n)(x)u(n)(y)

(

δx,y
P (x)

−
∑

i,j

(Ai,x −mi(P ))V (P )−1
i,j (Aj,y −mj(P ))

)

=
1

2

∑

x,y∈X
δP̂ (n)(x)δP̂ (n)(y)

(

δx,y
P (x)

−
∑

i,j

Ai,xV (P )−1
i,j Aj,y

)

,

where the last equality follows from
∑

x∈X u(n)(x) = 0. Let

b′(x, y) =
1

2

(

δx,y
P (x)

−
∑

i,j

Ai,xV (P )−1
i,j Aj,y

)

Fix z0 ∈ X , and let X ′ = X \ {z0}. Then δP̂ (n)(z0) = −∑x∈X ′ δP̂ (n)(x). There-

fore, k(n)(x) =
∑

x,y∈X ′ b(x, y)δP̂ (n)(x)δP̂ (n)(y), where b(x, y) = b′(x, y) − b′(x, z0) −
b′(z0, x)+b′(z0, z0). Let λ1, . . . , λN−1 be the eigenvalues of the matrix D ∈ RX ′×X ′

with
matrix elements d(x, y) =

∑

z∈X b(x, z)c(z, y), where c(z, y) is defined in Lemma 5.13.

The restriction CX ′×X ′ ∈ RX ′×X ′

of C has full rank, because
∑

x∈X P̂ (n)(x) = 1 is the

only relation between the components P̂ (n)(x) of the random vector P̂ (n) (alternatively,
note that CX ′×X ′ has the same structure as V (P )i,j in the case of an independence
model, see Remark 5.16; therefore an inverse can be found using (5.5)). Therefore,
Lemma 5.14 applies and describes the distribution of k(n). It remains to characterize
the spectrum of BCX ′×X ′ .
Note that

∑

x∈X c(x, y) = 0 for all y ∈ X . Hence

∑

z∈X ′

b(x, z)c(z, y) =
∑

z∈X
b′(x, z)c(z, y)−

∑

z∈X
b′(z0, z)c(z, y),

for all x, y ∈ X ′. Let x ∈ X and y ∈ X ′. Then

2
∑

z∈X
b′(x, z)c(z, y) =

P (x)(δx,y − P (y))

P (x)
−
∑

i,j

Ai,xV (P )−1
i,j

∑

z∈X
Aj,zP (z)(δz,y − P (y))

= δx,y − P (y)−
∑

i,j

Ai,xV (P )−1
i,j (Aj,y −mj(P ))P (y)

= 2g(x, y)− P (y),

so
∑

z∈X ′ b(x, z)c(z, y) = g(x, y)− g(z0, y) for all x, y ∈ X ′. Note that
∑

z∈X g(x, z) =
1
2
. Therefore, the statement of the theorem follows from Lemma 5.15.

Remark 5.16. The remainder of this section discusses how to obtain Studený’s original
result from Theorem 5.11. Let E = E1 be the independence model of n random
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5.3. Asymptotic behaviour of the empirical information divergence

variables X1, . . . , Xn, where Xi takes values in Xi = [Ni] (see Section 2.4 for the
notation). For any i ∈ [n] let x|i = π{i}(x) for all x ∈ X , and write Pi(xi) =
∑

x∈X :x|i=xi
P (x). A sufficient statistics A satisfying the assumptions of Lemma 5.12

is given by
A(i,xi),x = δxi,x|i , for i = [n], 1 ≤ xi < Ni, x ∈ X .

Then PE(x) =
∏n

i=1 Pi(x|i), so

V (P )(i,xi),(j,yj) = δi,jPi(xi)
(

δxiyj − Pj(xj)
)

.

The inverse of V (P ) satisfies

V (P )−1
(i,xi),(j,yj)

= δi,j

(

1

Pi(Ni)
+ δxiyj

1

Pi(xi)

)

. (5.5)

Note that m(i,xi)(P ) = Pi(xi). Hence

2g(x, y) = δx,y −
∑

i,xi<Ni,yi<Ni

δxi,x|i

(

1

Pi(Ni)
+ δxiyi

1

Pi(xi)

)

(

δyi,y|i − Pi(yi)
)

P (y)

= δx,y +
∑

i

P (y)

(

δNi,y|i
Pi(Ni)

− δx|iy|i
Pi(x|i)

)

This matrix G = (g(x, y))x,y∈X differs from the matrix E = (e(x, y))x,y∈X , defined
in [68] by

2e(x, y) = δx,y − P (y)
∑

i

δx|i,y|i
Pi(x|i)

.

The matrices G and E satisfy g(x, y) − g(x, z) = e(x, y) − e(x, z) and
∑

y e(x, y) =
1
2
(1−m). Hence Lemma 5.15 implies:

Lemma 5.17. Let E be an independence exponential family. Let λ1, . . . λN−1 be as in
Theorem 5.11. Then the eigenvalues of E are λ1, . . . , λN−1,

1
2
(1−m).

Proposition 4 in [68] follows from the second part of Theorem 5.11 and this lemma.
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A.1. Polytopes

This section summarizes the basic definitions and facts concerning polytopes and poly-
hedra. Two introductory textbooks are [35] and [75].
Let V be a finite-dimensional vector space over R. A subset B ⊆ V is convex if

p, q ∈ B implies (1−s)p+sq ∈ B for all 0 ≤ s ≤ 1. The smallest convex set containing
a given set B ⊆ V is called the convex hull of B. A polytope is the convex hull of a
finite set. A 0-1-polytope is the convex hull of a subset of {0, 1}N ⊂ RN for some N .
A closed half-space of V is a set of the form {p : l(p) ≤ c}, where c ∈ R and l 6= 0
is a non-zero linear form on V . An open half-space is the complement of a closed
half-space. A hyperplane is the boundary of a half-space. Any closed convex set B is
the intersection of all closed half-spaces containing B. A finite intersection of closed
half-spaces is called a polyhedron.

Theorem A.1. Any affine image of a polyhedron is a polyhedron.

Proof. See [35, Ex. 2.6.4].

Theorem A.2. Any bounded polyhedron is a polytope. Conversely, any polytope is a
bounded polyhedron.

Proof. By definition, a polytope is a linear image of a simplex. Any simplex is a
polytope as well as a bounded polyhedron, therefore the statement follows from The-
orem A.1.

Theorem A.3 (Strict separation). Let A,B ⊆ V be two nonempty closed convex sets.
If A is bounded and if A ∩ B = ∅, then there exists a linear form l on V and c ∈ R

such that l(x) < c < l(y) for all x ∈ A and y ∈ B.

Proof. See [35, Theorem 2.2.1].

Let B be a convex set. If B is nonempty, then the dimension of B is the dimension
of the vector space generated by B − p, where p ∈ B is arbitrary. A face of B is the
intersection of B with a set {p : l(p) = c}, where c ∈ R and l is a linear form on V ,
such that B is contained in {p : l(p) ≤ c}. Note that B and ∅ are always faces of B;
all other faces are called proper faces . Each proper face of B is the intersection of B
with some hyperplane. A face of dimension zero is a vertex , a face of dimension one
is an edge, and a maximal proper face is a facet .
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Let B be a polytope. Then B is the convex hull of its vertices. Any face F of B is
a polytope itself. Any face of F is also a face of B. The intersection of faces of B is
again a face. Therefore, F is the convex hull of those vertices of B which are contained
in F. Any proper face F of B is the intersection of all facets of B containing F.

Theorem A.4 (Carathéodory’s theorem). Let B be a subset of some real vector space.
If the convex hull of A has dimension d, then every x in the convex hull of B is
expressible in the form

x =
d
∑

i=0

λixi, where xi ∈ A, λi ≥ 0 and
d
∑

i=0

λi = 1.

Proof. See [35, Theorem 2.3.5].

There are different equivalence relations on the set of polytopes. In this thesis, the
following notion will be important: Two polytopes B ⊂ V and C ⊂ V ′ are affinely
equivalent if there exist affine maps β : V 7→ V ′ and γ : V ′ 7→ V such that β(B) = C

and γ(C) = B.

A.2. Oriented matroids

This appendix collects basic facts about matroids and oriented matroids. Only repre-
sentable (oriented) matroids are needed, but general (oriented) matroids are mentioned
for comparison. The textbooks [55] and [13] contain overviews over the general theory.
See [61] for a short introduction that discusses the relation between oriented matroids
and exponential families. Oriented matroids are also a valuable combinatorial tool for
the study of polytopes and point configurations, see [13, Chapter 9], a connection that
will not be pursued further here.
Let N be a subgroup of the additive group RX (usually N will be a linear subspace,

but in the algebraic case N may be a sublattice of ZX ). A nonempty subset Z ⊆ X is
called dependent if there exists a vector v ∈ N such that Z = supp(v). An inclusion
minimal dependent set is called a circuit . If Z is a circuit, then any v ∈ N with
Z = supp(v) is called a circuit vector . The minimality condition implies that a circuit
determines its corresponding circuit vector up to a multiple, i.e if n′ ∈ N satisfies
supp(n′) ⊆ supp(n), then n′ = λn for some λ ∈ R. The sign vector sgn(v) of a circuit
vector v is a signed circuit .
In the algebraic case, when N is a vector space spanned by NZ = N ∩ ZX , every

circuit has integer circuit vectors. In other words, the circuit vectors of NZ are the
integer circuit vectors of N . It is convenient to restrict attention to those integer
circuit vectors c ∈ NZ that are as short as possible by requiring that the largest
common divisor of the components {c(x) : x ∈ X} equals one. Such circuit vectors are
called prime. To every circuit there are exactly two prime circuit vectors, and they
differ by a factor of −1.
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Let C be the set of signed circuits of N , and let C be the set of circuits of N . The
pair (X , C) is called the (representable) oriented matroid of N , and the pair (X , C) is
called the (representable) matroid of N . In the algebraic case the oriented matroids
of N and NZ agree.
There are related methods to construct representable oriented matroids: If A is a

matrix, then the oriented matroid of A is the oriented matroid of its kernel. In this
case, a signed circuit corresponds to a minimal linear relation between the columns
of A. More generally, an oriented matroid can be associated to any vector configuration
{Ax}x∈X in Rh: Just interpret the vectors Ax as columns of an h×X -matrix A.
This last construction explains how Matroids serve as a model of dependence struc-

tures: A subset Z ⊂ X is called dependent if it contains a circuit, otherwise it is
independent. In other word, circuits are the minimal dependent sets. The maximal
independent subsets of X are called bases. The rank r(Z) of Z ⊆ X is the cardinality
of the largest independent subset of Z. If the oriented matroid comes from a matrix
A, then r(Z) agrees with the rank of the submatrix AZ that consists of those columns
Ax with x ∈ Z.
A circuit basis of N is a subset of N containing precisely one circuit vector for

every circuit. It is easy to see that a circuit basis of a vector space N spans N , see
Lemma A.6 below, but in general the circuit vectors are not linearly independent.
Addition of vectors corresponds to the composition ◦ of sign vectors, where ◦ is the

associative operation defined by

(σi ◦ σi+1)x =

{

(σi)x, if (σi)x 6= 0,

(σi+1)x, else.

Two vectors u, v ∈ RX are sign-consistent if u(x) 6= 0 6= v(x) implies sgn(u(x)) =
sgn(v(x)) for all x ∈ X . For more detailed proofs of the following two lemmas see [13].

Lemma A.5. For every nonzero vector u ∈ N there exists a sign-consistent circuit
vector c ∈ N such that supp(c) ⊆ supp(u).

Proof. Let c be a vector with inclusion-minimal support that is sign-consistent with u
and satisfies supp(c) ⊆ supp(u). If c is not a circuit vector, then there exists a circuit
vector c′ with supp(c′) ⊂ supp(c). A suitable linear combination c+ αc′, α ∈ R gives
a contradiction to the minimality of c.

Lemma A.6. Every u ∈ N is a finite sign-consistent sum u =
∑r

i=1 ci of circuit
vectors c1, . . . , cr, i.e. for all x ∈ X and for all i, if ci(x) 6= 0, then sgn ci(x) = sgn u(x).

Proof. Use induction on the size of supp(u). In the induction step, use a sign-consistent
circuit vector, as in the last lemma, to reduce the support.

The dual (oriented) matroid of the (oriented) matroid of a vector space N ⊆ RX is
the (oriented) matroid of the orthogonal complement N⊥. Clearly the dual oriented
matroid of the dual oriented matroid of N equals the oriented matroid of N . The
(signed) circuits of the dual oriented matroid are called (signed) cocircuits . The rank
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r∗(Z) of a set Z ⊆ X with respect to the dual matroid is also called the corank of
Z. If the matroid comes from a vector space N , then let C be a matrix such that
the rows of C span N . Then r∗(Z) agrees with the rank of the submatrix CZ that
consists of those columns Cx of C with x ∈ Z.
Two sign vectors σ, τ ∈ {0,±1}X are called orthogonal if the following holds: Either

supp(σ) ∩ supp(τ) = ∅, or there exist x, y ∈ supp(σ) ∩ supp(τ) such that σ(x) = τ(x)
and σ(y) 6= τ(y). The fact that σ and τ are orthogonal is expressed by σ ⊥ τ . By
construction, if σ is a signed circuit and τ is a signed cocircuit, then σ ⊥ τ .

Proposition A.7. A sign vector σ ∈ {0,±1}X belongs to N if and only if σ ⊥ τ for
all signed cocircuits τ of N .

Proof. See Proposition 3.7.12 in [13]

Lemma A.5 proves that the representable oriented matroid of N is an oriented
matroid in the following abstract sense:

Definition A.8. Let C be a set of subsets of X . Then (X , C) is a matroid if

(C1) ∅ 6∈ C,

(C2) for all Y ,Z ∈ C, if Y ⊆ Z, then Y = Z,

(C3) for all Y ,Y ′ ∈ C and e ∈ Y∩Y ′ there exists Z ∈ C such that Z ⊆ (Y∪Y ′)\{e}.
(weak elimination)

Let C ⊂ {0,±1}X be a set of sign vectors. For any σ ∈ C write σ = supp(σ). Then
(X , C) is an oriented matroid if

(C0) ∅ 6∈ C,

(C1) C = −C,

(C2) for all σ, τ ∈ C, if supp(σ) ⊆ supp(τ), then σ = τ or σ = −τ ,

(C3) for all σ, τ ∈ C and e ∈ σ+∩τ− there exists ρ ∈ C such that ρ+ ⊆ (σ+∪τ+)\{e}
and ρ− ⊆ (σ− ∪ τ−) \ {e}. (weak elimination)

There are other equivalent definitions of matroids and oriented matroids, see [55, 13].
In fact, the possibility to switch between the many different viewpoints is one of the
key aspects of matroid theory.
Any oriented matroid (X , C) defines an ordinary matroid via C = {σ : σ ∈ C}.

Conversely, an oriented matroid can be seen as a matroid with an additional structure:
This additional structure is called a circuit orientation and maps each circuit Y ∈ C
to a sign vector σ with support supp(σ) = Y .

Let (X , C) be a matroid. Two elements x, y ∈ X are parallel if {x, y} is a circuit.
x and y are coparallel if there is no circuit Y ∈ C such that x ∈ Y and y /∈ Y . It is
easy to see that these two notions are dual to each other. The elimination axiom (C3)
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implies that this defines two equivalence relations that partition X into parallel classes
and coparallel classes . By definition, a parallel class has rank one. Dually, a coparallel
class has corank one.
Two elements x, y ∈ X are connected if there exists a circuit Y ∈ C such that

x, y ∈ Y . This defines a partition of X into connected components .
There are several computer programs that can handle matroids and oriented ma-

troids, at least in the algebraic case, when N is spanned by NZ = N ∩ ZX . For
example, 4ti2 [1] can compute a circuit basis. The free software package TOPCOM [58]
computes the signed circuits and cocircuits of a vector space. Unfortunately, none of
these packages can compute all the sign vectors (yet). There are two possibilities to
compute the set of all sign vectors from the oriented matroid:

1. Since every sign vector is a composition of signed circuits, the set of all sign
vectors can be computed iteratively from the signed circuits by composition.

2. Check every σ ∈ {0,±1}X whether it satisfies σ ⊥ τ for all cocircuits τ .

Fortunately, TOPCOM provides a library interface to its routines, and the sources (in
C++) are freely available under the GPLv2 [29] and clearly written. Moreover, these
libraries contain elementary routines for handling symmetry groups. The symmetry
groups can be defined by specifying how a set of generators acts on the ground set. This
makes it straightforward to implement both algorithms in a way that takes account
of the symmetries.
In the general case, when N is not spanned by NZ, there seems to be no computer

algebra system that can compute the corresponding (oriented) matroid. One problem
is that the oriented matroid is a discrete structure (the number of different oriented
matroids with fixed ground set X is finite), therefore the mapping from linear sub-
spaces N to oriented matroids cannot be continuous in any sense which would allow
for numerical approximations. On the other hand, the ideas behind the algorithms
of 4ti2 and TOPCOM do not require an integral basis of N . Therefore, it is possible to
implement these algorithms in any computer algebra system that can represent a basis
of N . There are two reasons why 4ti2 and TOPCOM prefer to work over the integers:
First, on a computer calculations with integers are much faster, and second, integers
are sufficient for most applications.
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Glossary of notations

This glossary contains a list of symbols that are used throughout this thesis. Numbers
refer to the pages that containing a definition of the symbol.

⌈a⌉ The ceiling function 5
⌊a⌋ The floor function 5
[n] A set of cardinality n
1 The uniform measure
1Y The characteristic function on Y

A The sufficient statistics matrix 9
ai A row of the sufficient statistics matrix
Ax A column of the sufficient statistics matrix

Bin(n) The binomial model 82

DE The function DE 35
∆P,Q The line segment between P and Q
∆◦

P,Q The (relative) interior of the line segment between P and Q
δx A point measure concentrated at x
D(P‖E) The information divergence from P to E 11

E An exponential family 7
E(2) The pure paire interaction exponential family 23
E∆ The hierarchical exponential family of ∆ 21
En
iid The binary i.i.d. model 82

Eν,T The closure of the exponential family with reference measure ν
and tangent space T

H1 The set of exponential families with uniform reference measure

i The imaginary unit

KE The set of kernel distributions of E 30

MA The convex support 9

N The normal space 8
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NP The linear family of P 11
ν The reference measure 7

PE The rI-projection of P onto E 12
πA The moment map 9
π∆ The ∆-margins 22
πS The S-margins 22
ΨE A map P(X ) \ E → ∂UN 28
Ψ+ The map u 7→ u+ 35
P(X ) The set of probability measures on X 6
P(X )◦ The set of strictly positive probability measures on X 6

R≥ The nonnegative reals

T The tangent space 7

T̃ The extended tangent space 8

UN The polytope of differences of probability measures in N 31

X A finite set, the ground set
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