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Abstract

Amajor challenge in life sciences is the understanding of mechanisms that regulate the

expression of genes. An important step towards this goal is the ability to identify

transcriptional regulatory elements like binding sites for transcription factors. In computa-

tional biology, a popular approach for this task is comparative sequence analysis using both

distantly as well as closely related species. Although this method has successfully identified

conserved regulatory regions, the majority of binding sites can change rapidly even between

closely related species. This makes it difficult to detect them using DNA sequences alone. In

this thesis, we introduce two new approaches for the detection and evolutionary analysis of

transcriptional elements that consider the challenges of binding site turnover.

In the first part, we develop a method for detecting homologous motifs in a given set

of sequences in order to obtain evidence for evolutionary events and turnover. Based on

a detailed theoretical scaffold, we develop a simple, but effective and efficient heuristic for

assembling local pairwise sequence alignments into a local multiple sequence alignment. This

kind of multiple alignment only contains conserved motifs represented in columns which satisfy

the order implied by the underlying sequences. By favoring motifs that are contained in a

great range of sequences, our method is additionally able to detect even small conserved

motifs. Furthermore, the calculation of the initial local pairwise alignments is generic. This

allows the use of fast heuristic methods in case of large data sets while exact alignment

programs can be used for small data sets where detailed information is needed. Application

to artificial as well as biological data sets demonstrate the capabilities of our algorithm.

In the second part, we propose a conceptually simple, but mathematically non-trivial,

phenomenological model for the binding site turnover at a genomic locus. The model is based

on the assumption that binding sites have a constant rate of origination and a constant decay

rate per binding site. The elementary derivation of the transient probability distribution is

affirmed by simulations of sequence evolution as well as biological data. Based on the derived

distribution, we develop a phenomenological model of binding site number dynamics in order

to detect changes in selective constraints acting on transcription factor binding sites. Using

ix



a maximum likelihood implementation as well as exploratory data analysis, we show the

functionality of the model by identifying functionally important changes in the evolutionary

turnover rates on biological data.

Each part of this thesis leads to the development of a new program. While Tracker

allows the computation of conserved homologous motifs and their representation in a local

multiple alignment, Creto determines the evolutionary turnover rates for arbitrary clades of

a phylogenetic tree with given binding site numbers at the final taxa. Both software tools are

freely available to the scientific community for further research in this important and exciting

field.
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CHAPTER 1

Introduction

“Once we were blobs in the sea, and then fishes, and then lizards

and rats, and then monkeys, and hundreds of things in between.

This hand was once a fin, this hand once had claws! In my human

mouth I have the pointy teeth of a wolf and the chisel teeth of a

rabbit and the grinding teeth of a cow! Our blood is as salty as

the sea we used to live in! When we’re frightened, the hair on our

skin stands up, just like it did when we had fur. We ARE history!

Everything we’ve ever been on the way to becoming us, we still are.

Would you like the rest of the story? I’m made up of the memories

of my parents and my grandparents, all my ancestors. They’re in

the way I look, in the color of my hair. And I’m made up of everyone

I’ve ever met who’s changed the way I think.”.

A Hat Full of Sky

Terry Pratchett

T he diversity of form in life has interested humanity for thousands of years. Since

Plato’s first idealistic concepts, in which all natural phenomena are imperfect rep-

resentations of the true essence of an ideal unseen world, and Aristotle’s scala naturae, a

chain-like series of links in the progress from most imperfect to most perfect, see Figure 1.1,

life sciences have made progresses.

By the end of the 1950s, it was clear that causal differences between the body plans of

animals like insects, mammals and fishes are somehow encoded in their genomes (Beadle and

Tatum, 1941; Avery et al., 1944; Watson and Crick, 1953). But this fact alone does not provide

the mechanisms by which the various life forms develop or emerge during evolution. Today

we know more about how genomes actually work, but questions of where in the genome the
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Introduction

Figure 1.1: The Scala Naturae of Aristotle by Mark Dion (1993). This ladder of nature starts
with the imperfect inanimate matter and ends with the most perfect form, the human.

causal differences responsible for morphological diversity reside and how exactly they function

remains.

A large part of the answer lies in the gene control circuitry encoded in the sequence, the

structure and the functional organization of the DNA. The regulatory interactions mandated

by this circuitry determine whether a gene is expressed in a cell through out developmental

space and time and, if so, at what amplitude. Based on this regulation, changes in the DNA

over time and geographical space are thought to be responsible for the evolution of species.

In this thesis we introduce new computational approaches for detecting regulatory elements

in the genome and characterizing evolutionary changes in regulatory regions. We start in this

chapter by considering the biological basics that are necessary to develop and understand

these approaches.

1.1 Regulatory Control Structures

The genome of a species contains in its DNA almost all the information that is necessary for

the development of this species. Therefore, it is not surprising that for a long time we thought

that the amount of DNA in a genome correlates with complexity, i.e. the number of different

types of cells, and the degree of cellular organization of an organism. And indeed, species vary

2
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Figure 1.2: Comparison of genome size (gray bars, left axis) and gene number (red: all genes,
blue: protein coding genes, right axis) based on data from Hou and Lin (2009).

enormously from one another in the amount of DNA per haploid genome. But then, data

about the complexity of genomes revealed that the range of DNA sizes in many groups can

vary over several orders of magnitude, even between related species. Furthermore, “simple”

species like gymnosperms can have bigger genomes than “complex” species like mammals.

This lack of correlation between genome size and complexity is called the C-value paradox

where C stands for the haploid genome size. The term was popularized by Benjamin Lewin.

In Genes II (Lewin, 1983) he wrote:

“The C value paradox takes its name from our inability to account for the content

of the genome in terms of known function. One puzzling feature is the existence of

huge variations in C values between species whose apparent complexity does not

vary correspondingly. An extraordinary range of C values is found in amphibians

where the smallest genomes are just below 109 base pairs (bp) while the largest

are almost 1011 bp. It is hard to believe that this could reflect a 100-fold variation

in the number of genes needed to specify different amphibians.”

Consequently, the next theory was that the number of genes is responsible for the complexity.

3
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But neither is the number of genes reflected by the genome size nor are there any correla-

tion between complexity and gene number. For example, humans (Homo sapiens), chickens

(Gallus gallus), the nematode Caenorhabditis elegans and thale cress (Arabidopsis thaliana)

all have about the same number of genes, see Figure 1.2. This G-value paradox, where G is

the number of genes in a haploid genome, (Hahn and Wray, 2002) is even more problematic

since it can not be explained by varying ploidy, i.e. multiple copies of chromosomes.

Today, most scientists think that the informational paradox in complex organisms can be

explained by the complexity of the regulatory control structures (Taft et al., 2007). For

example, the combinatorial variety of 20, 000 genes allows theoretical up to 106000 different

gene expression patterns.

1.1.1 Gene Expression

Life depends on the ability of cells to synthesize the information from a gene into the cor-

responding product. These products are either proteins, in case of protein coding genes, or

functional non-coding RNAs (ncRNAs) , in case of non-coding genes, and they are essential

for all metabolic processes. Their synthesis involves multiple steps, summarized in Figure 1.3.

In detail, the following happens (Lewin, 2007; Alberts et al., 2002):

Transcription: Within the genome, genes are informational units of DNA. Every molecule of

DNA consists of two strands, each of them having asymmetric 5′ and 3′ ends oriented

in anti-parallel direction. The coding strand contains the genetic information of a gene

while the non-coding template strand serves as a blueprint for the production of RNA.

The transcription of a gene is the production of RNA copies based on the corresponding

DNA. It is performed by RNA polymerases. These complex molecules bind with the

assistance of other molecules to the promoter, a region of DNA in front of the gen

that facilitates the transcription and move along the template strand from 3′ to the 5′

end. Thereby it unwind and unzips the DNA by breaking the hydrogen bonds between

complementary nucleotides. The unpaired nucleotides on the template strand are then

paired with complementary RNA nucleotides that are connected by forming the sugar-

phosphate backbone. The hydrogen bonds of the untwisted RNA-DNA compound break

and the growing newly synthesized RNA strand is freed. This transcript is identical to

the coding DNA strand with the exception that thymines are replaced by uracils in the

RNA.

Transcription in prokaryotes is carried out by a single type of RNA polymerase while

in eukaryotes three types of RNA polymerases exists. RNA polymerase I transcribes

rRNA genes. RNA polymerase II is responsible for all protein-coding genes and some

non-coding RNAs like snRNAs, snoRNAs and long ncRNAs. RNA polymerase III

transcribes 5S rRNA and tRNA genes and some small ncRNA genes like 7SK. Each of
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Figure 1.3: Gene expression. The gene is transcribed in mRNA by RNA polymerase. During
the subsequent processing, the 5′ cap and the polyA tail are added and the introns are spliced
out. In this example, one intron contains a miRNA that is processed to a short stem loop
structure in the maturation step by the proteins Drosha and Pasha. The resulting pre-
miRNA is then exported to the cytosol. The mRNA is also exported to the cytosol where it
is translated in to protein by the ribosome. The structure-less protein chain is then folded at
the endoplasmatic reticulum with help of chaperones and finally transported to its destination
by the Golgi apparatus.

the eukaryote types has its own kind of promoter and factors to initiate the process.

Transcription ends at a special sequence called terminator.

RNA processing: The transcript of prokaryotic protein-coding genes is already messenger

RNA (mRNA) that carries the gene information that is needed for the translation. In

contrast, the primary transcript of eukaryotic genes, the pre-mRNA has first to undergo

a series of modification to become a mature mRNA. These modifications include 5′

capping, 3′ cleavage with polyadenylation and splicing.

The 5′ capping adds 7-methylguanosine to the 5′ end of pre-mRNA. This cap protects

the RNA from degradation by exonucleases and aids the mRNA export to cytoplasm.

The 3′ cleavage and polyadenylation occur if the polyadenylation signal sequence is

present in the pre-mRNA. In this case, about 200 adenines are added after the cleavage.

This poly-A tail protects the RNA from degradation and mediates the mRNA export

as well as the re-initiation of translation. The RNA splicing removes areas that are not

5
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needed for the final product, the so-called introns, out of the pre-mRNA. The responsible

RNA-protein catalytic complex, known as spliceosome, catalyzes two transesterification

reactions, which releases the introns in the form of a lariat structure and then splice the

neighbors, the exons, together. In certain cases, alternative splicing removes or retains

some introns or exons and creates so series of different transcripts originating from a

single gene which extends the complexity of eukaryotic gene expression.

ncRNA maturation: The ncRNA of non-coding genes is mostly transcribed as precursors

which undergo further processing (Eddy, 2001). For example, ribosomal RNA (rRNA)

is often transcribed as a pre-rRNA, containing one or more rRNA. This pre-rRNA is

cleaved and modified by snoRNP, small nucleolus-restricted RNA (snoRNA) that is

associated with proteins. Within the complex, the RNA part binds at a precise position

while the associated proteins catalyse the reaction. One example is the cleaving of the

45S pre-rRNA into the 28S, 5.8S, and 18S rRNA in eukaryotes. Transfer RNA (tRNA)

is processed by RNase P which removes the 5′ end, by tRNase Z which removes the 3′

end, and by a nucleotidyltransferase which adds the 3′ CCA tail. Micro RNA (miRNA)

is processed to short stem-loop structures known as pre-miRNA by the enzymes Drosha

and Pasha. This pre-miRNA is after the export to the cytoplasm processed to mature

miRNA by interaction with Dicer. This endonuclease also initiates the formation of the

RNA-induced silencing complex with the RNase argonaute. Even snoRNA and small

nuclear RNA (snRNA) are processed before they become part of the functional RNP

complexes. For ncRNA the mature RNA is the final gene product.

RNA export: Some RNAs function in the nucleus. In all other cases, the mature RNA is

transported in the cytoplasm through the nuclear pores. Linker proteins bind to specific

sequences on the RNA and mediate the transport by motor proteins in the cytoplasma

(Köhler and Hurt, 2007).

Translation: In case of protein coding genes, the mRNA carries the information for the syn-

thesis of the corresponding protein or, common in prokaryotes, for multiple proteins.

Flanked by the untranslated regions (UTRs) at the 5′ and 3′ end, the open reading is

the part of the mRNA containing the information for the protein synthesis. This in-

formation is encoded by the genetic code. Each triplet of nucleotides is complementary

to an anticodon triplet of an tRNA and each tRNA with the same anticodon always

carries the same appropriate amino acid.

The translation is performed by the ribosome, a complex of RNAs and proteins. The

small ribosomal subunit binds to the start codon and recruits the large ribosomal sub-

unit. Then tRNAs with the respective amino acids bind to the ribosome, which synthe-

sizes the elongation of the structure-less peptide according to the order of the triplets

and releases the free tRNAs. In prokaryotes, the translation is done together with the

6
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transcription in the cytoplasm, often simultaneously. In eukaryotes, translation of mem-

brane proteins or proteins for export from the cell is mainly done on the membrane of

the endoplasmic reticulum while soluble cytoplasmic proteins are mainly translated in

the cytoplasm.

Folding: In order to perform its function, the structure-less random coil polypeptide has

to fold into a characteristic and well-defined three-dimensional structure (Hebert and

Molinari, 2007). This is done by the interaction of amino acids and by enzymes, called

chaperones, that help proteins and RNAs to attain their functional shapes. In eukary-

otes the folding is mainly done in the endoplasmic reticulum.

Protein transport: Proteins that do not act in the cytosol have to be modified, sorted, and

packed for the transport to the correct organelle. In eukaryotes these targeting processes

are mainly done by the Golgi apparatus (Moreau et al., 2007).

The synthesis of gene products is essential but the regulation of this process it not less

important.

1.1.2 Gene Regulation

The regulation of genes allows cells to control the timing, the location, and the amount of gene

expression. Hence, it is the basis for differentiation, morphogenesis and for the versatility and

adaptability of any organism. The first discovered regulation system was the lac operon in E.

Coli (Jacob and Monod, 1961). In this example, the proteins involved in lactose metabolism

are expressed only in the presence of lactose and absence of glucose. This prevents the

inefficient production of these enzymes when no lactose is available, or if glucose is available,

which is a better energy source.

In general, the expression is regulated through changes in the number and type of inter-

actions between molecules that collectively influence transcription of DNA or translation of

RNA. Thereby it is advantageous to regulate gene expression as early as possible to prevent

wasting of resources. Nevertheless, all other expression steps are also modulated. Based on

the corresponding step, one distinguishes the following kinds of regulations (Lewin, 2007;

Alberts et al., 2002):

Transcriptional regulation: The binding of the RNA polymerases to the promoter sequence

on the DNA is influenced by other molecules. These molecules, also referred to as

trans-regulatory factors or transcription factors (TFs) bind to specific sequence motifs

of the DNA, the so-called cis-regulatory elements (CREs) or transcription factor binding

sites (TFBSs) . This binding increases or decreases the probability of RNA polymerase

binding and transcription initiation. In prokaryotes, the CREs are usually close to the

RNA polymerase start site and either activate or repress transcription. The flexibility
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of the DNA helix, however, also allows factors bound at distant sites to affect the RNA

polymerase at the promoter by the looping out of intervening DNA. This is extremely

common in eukaryotic cells, where factors, bound to sequences thousands of nucleotides

away from the promoter, control gene expression.

Whereas the transcription of a typical prokaryotic gene is controlled by only a few fac-

tors, the regulation of higher eukaryotic genes is much more complex, corresponding to

the larger genome size and the high number of different cell types. The control region of

the eve gene in Drosophila melanogaster , for example, encompasses 20, 000 nucleotide

pairs of DNA and has binding sites for over 20 gene regulatory proteins (Reinitz and

Sharp, 1995). In general, eukaryotic transcription regulation is composed of two main

systems. The first system is epigenetic (Bird, 2007). To turn on gene expression, the

molecules responsible for the transcription have to reach the corresponding DNA. In eu-

karyotes this accessibility depends on chemical modifications of the DNA itself and on

the structure of the chromatin. The chemical modification is done by cytosine methy-

lation, mostly at CpG dinucleotide sequences. The resulting 5-methylcytosine performs

similar to regular cytosine but tends to be less transcriptionally active. The structural

modifications are done by acetylation, methylation, ubiquitylation, phosphorylation or

sumoylation of the histon amino acids. Being temporary, like phosphorylation, or more

permanent, like methylation, they have significant impacts on the expression of genes

in the lightly packed euchromatin and the tightly packed heterochromatin areas (Reik,

2007).

The second system is the interaction of regulatory factors with the transcription machin-

ery. Thereby a wide variety of mechanism exists. The simplest and most straightforward

method is direct interaction with the DNA. Genes often have binding sites around the

coding region that are recognized by the DNA-binding domains of TFs. There are

many classes of TFBSs. Enhancers increase the transcription levels of genes. They

are bound by activators, which directly increase the rate of transcription by assisting

the formation of the RNA polymerase holoenzyme, or by coactivators, which connect

enhancers with activators. Silencers are bound by repressors, proteins that block the

attachment of RNA polymerase to the promoter, and thus prevent the transcription of

the gene. Insulators are boundary elements that either block enhancers or, more rarely,

act as a barrier against condensed chromatin proteins spreading onto active chromatin.

They prevent induction and repression mechanisms of independently regulated genes

from interfering with one another. Together, enhancers, silencers and insulators act as

a cis-regulatory modules and regulate the correct spatial and temporal pattern of gene

expression, see Figure 1.4. Thereby, similar transcription responses can be produced by

different combinations of TFBSs, differing in both, number and sequence (Hare et al.,

2008). Hence, binding sites underlie a turnover during phylogeny, which may or may
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Figure 1.4: Interaction of activating and repressing transcription factors bound to tran-
scription factor binding sites. In this cis-regulatory module multiple sets can work
together to influence the probability of transcription initiation.

not affect regulatory function (Ludwig and Kreitman, 1995; Ludwig et al., 2000, 2005).

Besides direct interactions, the activity of TFs is also modulated. Intracellular signals

cause protein post-translational modifications like phosphorylations, acetylations or gly-

cosylations. These changes influence the ability of TFs to bind to promoter DNA, to

recruit RNA polymerase, or to favor elongation of a newly synthesized RNA molecule.

The nuclear membrane in eukaryotes allows further regulation of TFs by the duration of

their presence in the nucleus through reversible changes in their structure or by binding

to other molecules (Veitia, 2008).

Post-transcriptional regulation: The mRNA created by transcription is the target of post-

transcriptional regulation. In eukaryotes the transport out of the nucleus to the trans-

lation machinery is controlled by a wide range of import and export proteins. The

degradation of mRNA can also be modulated. This is done via the stabilizing post-

transcriptional modifications like the 5′ cap and the poly-adenylated tail. The RNA

interfering is another way of regulating the amount of mRNA. In this case, miRNA or

small interfering RNA (siRNA) with complementary sequence bind to the mRNA and

either increase or decrease their activity.

Translational regulation: Direct regulation of translation is less prevalent than control of

transcription or mRNA stability. Nevertheless, the translation is, for example, a major

target for antibiotics and toxins. The corresponding mechanisms are primarily based

on the control of ribosome recruitment. In most cases, translational regulation involves

specific RNA secondary structures on the mRNA (Kozak, 1999).

Protein degradation: Finally, the level of gene expression can be modulated by the degrada-

tion of the corresponding protein. There are major protein degradation pathways in all

prokaryotes and eukaryotes. For example, unneeded or damaged protein is often labeled

for degradation via the proteasome by addition of ubiquitin (Ciechanover, 2005).
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A great part of the gene products have again influence on the expression of other genes.

These feedback loops create a regulatory network that allow the cells to respond to internal

or external signals by up-regulation or down-regulation of the expression of specific genes.

This mechanism plays a key role during the development of organisms since a small change

in a TF expression level can affect the regulation of a large number of genes and result in

a significant phenotypic effect (Seidman and Seidman, 2002). In addition, only a few TFs

are required to determine or to change the type of cells (Zhou et al., 2008). Based on this

essential meaning of regulatory elements, where small variations can result in profound effects

in the development, changes in regulatory elements are a key process for evolution (Wray,

2007).

1.2 Evolution in the Context of Regulation

The replication of organic molecules started approximately four billion years ago. Since this

time, evolutionary events have created the diversity of life forms we find on earth today, no

matter if we talk about ancient fossils or present organisms. The genetic constancy with

which organism transmit the genetic information to their offspring is crucial to maintain life.

Nevertheless, evolution cannot occur without genetic variability.

1.2.1 Genetic Constancy and Diversity

Changed or unchanged, the genetic information is transmitted from one generation to the next

by cell division. In prokaryotes this happens by binary fission while eukaryotes use somatic cell

divisions (mitosis) or gamete-producing division (meiosis). While the daughter cells created

by binary fission and mitosis are supposed to be genetically equivalent, meiosis provides the

first mechanism for variability. By recombination among homologous chromosomes and by

random assortment of these chromosomes into the gametes, an exponential number of different

chromosome configurations are possible. The second mechanism is provided by mutations.

They are caused by physical influences like energetic radiation including UV and X-rays,

mutagenic chemicals or biological reasons like viruses, transposons and errors during meiosis

or DNA replication. Mutations can also be induced by the organism itself like in the case of

hypermutation where deamination of cytosine to uracil in immunoglobulin genes causes high

mutation rates that provide a fast adaption of the immune system to foreign elements (Teng

and Papavasiliou, 2007).

Based on the structural effect of the mutation, one can distinguish between large and small

changes (Dayhoff et al., 1983):

Small-scale mutations are minor and local changes which affect only one or at most a few

consecutive nucleotides. These include:
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Point mutations: A single nucleotide is exchanged by another. If a purine is exchanged

by a purine (A ↔ G) or if a pyrimidine is exchanged by a pyrimidine (C ↔ T )

the mutation is a transition. The contrary transversions (A/G ↔ C/T ) are less

common.

Insertions: One or more extra nucleotides are added into the DNA. This is usually

caused by transposable elements and hence, not entirely random.

Deletions: One or more nucleotides are removed randomly.

Large-scale Mutations are changes in the chromosomal structure, mostly caused by unequal

crossing-over of the chromosomes. They result in changes of the amount of genetic

material and include:

Amplifications: Multiple copies of chromosomal regions are inserted.

Deletions: Large chromosomal regions are removed.

Translocations: Parts of non-homologous chromosomes are interchanged.

Inversions: The orientation of a chromosomal segment is reversed.

Transposition: Parts from the same chromosomes are rearranged.

In contrast to recombination and mutation, natural selection is a source for genetic con-

stancy. Based on the fitness of an organism, i.e. the ability to survive and reproduce, changes

in the genome can be advantageous, neutral or disadvantageous. Individuals with lower fitness

are more likely to die early or fail to reproduce. Therefore, changes which on average result in

greater fitness become more abundant in the next generation, while changes which generally

reduce fitness become rarer. If groups of organisms of the same species are isolated, this

process can lead to the emergence of new species. For genetic regions with essential meaning

for the organism, changes are mostly disadvantageous. This leads to conserved sequence or

structure patterns inside the genome.

1.2.2 The Meaning of Regulatory Elements

Discrete changes in cis-regulatory sequences can alter gene expression and thus generate

potential for novel species-specific traits to arise (Carroll, 2008). For example, recent studies

have suggested that regulatory changes could play key roles in primate evolution (Wray,

2007). This is supported by computational analyzes showing that changes in the genomic

region surrounding orthologous human and chimpanzee genes are correlated with increased

expression divergence (De et al., 2009).

While gene regulation can be altered quickly during evolution, substantial changes to gene

expression may only occur at late stages of the speciation process. The comparison of expres-

sion patterns of different tissues between related vertebrates including pufferfish, frog, chicken,

mouse, and human shows that gene expression profiles are more similar among homologous

11



Introduction

tissues in different species than among tissues of the same species (Chan et al., 2009). How-

ever, the conservation of gene expression during evolution did not correlate with the amount

of nearby conserved non-exonic DNA (Schmidt et al., 2010). Hence, tissue-specific expression

patterns can be maintained despite extensive sequence divergence in regulatory DNA (Fisher

et al., 2006; Tsong et al., 2006; Crocker and Erives, 2008).

Binding Preferences of Transcription Factors

Tissue-specific gene expression is driven by the non-covalent protein-DNA interactions where

trans-regulatory TFs bind to cis-regulatory TFBSs. During vertebrate evolution the reper-

toire of TFs has expanded. For example, the human organism contains over 400 cell types.

Each of them is defined by a specific set of expressed genes that are regulated by over 1300

TFs annotated so far. Most of these TF are either tissue-specifically expressed (2 to 3 tissues)

or generally expressed (more then 30 tissues) (Vickaryous and Hall, 2006). Unfortunately the

understanding of transcriptional control is restricted since binding preferences of TFs are

complex (Wilson and Odom, 2009).

In a novel approach, Badis et al. (2009) used microarrays containing all possible 10 base

pair sequences to determine binding preferences of over 100 TF of mouse. An unexpected

observation was that half of the binding domains analyzed had strong, mutually exclusive

secondary binding motif preferences. In vivo, these secondary motifs are often bound with

equally high affinity as the primary motif.

The authors divide the secondary binding motifs in four categories:

• Motifs with variable spacer lengths are motifs where a variable number of nucleotides

separating the recognized parts of a motif. An example is the leucine zipper transcrip-

tional regulator Jundm2 that binds TGACGTCA or TGAGTCA.

• Motifs with position interdependence are motifs where binding depends on the mutual

presence of certain nucleotides at certain positions. An example is the estrogen related

receptor alpha that binds CAAGGTCA or AGGGGTCA, but not CAGGGTCA or CGGGGTCA.

• Motifs with multiple effects display a combination of position interdependence and vari-

able spacer lengths.

• Motifs with alternate recognition interfaces are not readily explainable by variable spacer

length or position interdependence. This category is the most intriguing, since it sug-

gests that some TFs recognize their DNA binding sites through multiple, completely

different interaction modes. This could be via alternate structural features or by switch-

ing between alternate conformations.

The fact that many TFs possess similar binding affinities for divergent sequences is an im-

portant and unexpected observation with direct relevance for cis-regulatory evolution.

12



1.3 Detection of Regulatory Elements

Abundance of Binding Sites

In a relatively short time, new binding sites can evolve. This process can be influenced by pre-

sites, which are regions of DNA predisposed to evolving into new regulatory sites (MacArthur

and Brookfield, 2004). Rapid expansion of regulatory sequences can also be driven by genomic

duplications (Wapinski et al., 2007) or by certain families of transposons that serve as an

abundant source of pre-sites for specific TFs (Bourque et al., 2008). Binding sites are also

lost due to disruption (Moses et al., 2006). Genome-wide comparisons between multiple

Drosophila species suggest that the fraction of shared TFBS decreases as the divergence time

increases (Kim et al., 2009). This is consistent with the molecular clock hypothesis (Kumar,

2005).

The resulting divergence in potential regulatory regions between closely related species

seems to be the general rule for many species (Dermitzakis and Clark, 2002; Schmidt et al.,

2010). One explanation is that transcriptional control often involves multiple TFs that act

together as cis-regulatory modules. Therefore, the birth or death of single binding sites has

only small influence on the transcription (Odom et al., 2007) which relaxes the selective

pressure onto single sites. This is especially the case when regulation is only determined by

the quantity of TF binding to target sites (MacArthur et al., 2009).

Differences in transcriptional regulation are caused by cis-regulatory sequence variations

and changes in trans-regulatory TFs. An example for the importance of cis-regulation is that

mouse encoded TFs bind an additional human chromosome in a mouse cell almost as precisely

as human-genome-encoded TFs (Wilson et al., 2008), i.e. TFs of mouse work also with hu-

man cis-regulatory sequences. Nevertheless, under changing environmental conditions, trans

regulation becomes increasingly prevalent. One example are sensory changes like mutations

in cell surface receptors (Tirosh et al., 2009).

While regulatory cis-acting DNA in specific organisms and pathways can be highly con-

served both in sequence and function, the combination of plasticity, regulatory potential, and

rapid turnover provides an excellent basis for rapid evolutionary changes.

1.3 Detection of Regulatory Elements

In addition to knowing “how” and “what” DNA sequences TFs bind, the question of “where”

TFs bind in the genome is important for understanding motif preference, tissue-specific gene

regulation and evolution. For the detection of regulatory TFBSs, experimental as well as

computer-based approaches are used. If the binding site is known, motif search algorithms

are used to determine locations in the genome.

13



Introduction

1.3.1 Experimental Binding Site Mapping

Mapping binding sites of TFs can be done using chromatin immunoprecipitation, or short

ChIP (Collas, 2010). The first step of ChIP is the crosslinking of proteins to chromatin in

a cell lysate. The DNA-protein complexes are then sheared and DNA fragments associated

with the proteins of interest are selectively immunoprecipitated. This is done by specific

antibodies to the proteins, commonly coupled to agarose, sepharose or magnetic beads. The

relative amount and genomic location of enriched DNA fragments can then be analyzed using

microarrays, short ChIP-chip (Reimer and Turck, 2010), or DNA sequencing, short ChIP-seq

(Johnson et al., 2007). ChIP-seq experiments are amenable to any species with a genome

assembly and can detect TF binding at high resolution in all but the most degenerate repeat

regions within a mammalian genome. Importantly, TF binding events often occur in repetitive

regions, which by design are absent from most microarrays (Bourque et al., 2008).

1.3.2 Computer-Based Binding Site Prediction

The experimental detection of binding sites certainly provides results of highest quality, but

caused by the experimental effort it is limited to a small number of cases. For analyzes beyond

single TFs, computational approaches are the first choice. The problem here is that binding

site motifs can be very short, down to only a few nucleotides. Located in the regulatory

regions, which can cover several thousand nucleotides (Dieterich et al., 2002), they are not

very significant. They can become outweighed by random similarities and it is very likely that

similar patterns exist by chance. Prediction algorithms try to overcome this problem using

two strategies. The first is based on sequence conservation between orthologous sequences,

the so-called phylogenetic footprinting, while the second is based on nucleotide composition

and detects overrepresented motifs (Wasserman and Sandelin, 2004; Ureta-Vidal et al., 2003).

Phylogenetic Footprinting

Phylogenetic footprinting is a technique used to identify TFBSs within intergenic regions of

DNA through cross-species comparison. The term is used in analogy with DNAase footprint-

ing (Tagle et al., 1988). In case of closely related species, it is called phylogenetic shadowing

(Boffelli et al., 2003).

It is based on the assumption that due to selective pressure during evolution, mutations

within functional regions of genes will accumulate more slowly than mutations in regions

without sequence-specific function (Frazer et al., 2003). The resulting sequence similarity can

be used to indicate segments that might direct transcription by comparison of orthologous

genes. Indeed, putative transcription-factor binding sites are enriched in conserved non-coding

genomic sequences (Wasserman et al., 2000; Levy et al., 2001; Fickett and Wasserman, 2000)

and evolutionarily conserved regions can be linked to experimentally determined regulatory
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elements (Aparicio et al., 1995).

Although originally used for the detection of conserved regions between orthologous se-

quences, phylogenetic footprinting can be used for all kinds of homologous sequences or even

sequences that have no common ancestor but that share similar regulatory characteristics.

Nevertheless, the regulation of homologous genes is only for moderate evolutionary distances

subject to the same regulatory mechanisms. Comparison of promoters from closely related

species, such as inside the primates, generally provide little benefit, as the sequences closely

resemble each other. In contrast, promoters of widely divergent species, e.g. within the ver-

tebrates, can show no detectable similarity (Lenhard et al., 2003). Furthermore, the rate of

evolutionary events in promoters is different for individual genes within the same organism.

For instance, regulatory elements in the vertebrate Hox gene clusters have a high selective

pressure. This is linked to chromatin structure or unknown mechanisms (Santini et al., 2003)

and results in evolutionary distances as extreme as 450−500 million years necessary for useful

comparisons (Aparicio et al., 1995).

In general, phylogenetic footprinting algorithms consist of three components: defining suit-

able homologous gene sequences, comparison of the promoter sequences of homologous genes

and visualizing or identifying segments of significant conservation.

For the definition of homologues, the assumption is made that homologous genes are under

common evolutionary pressures. This can be problematic in some cases since retained function

is not inherent to the definition of homology. In addition, duplication as well as deletion

of genes during evolution makes it sometimes difficult to select reliable sets of sequences.

Databases that provide homologues between species include HomoloGene (Sayers et al., 2011),

COG (Tatusov et al., 2003) and HOPS (Storm and Sonnhammer, 2003).

Once suitable sequences are obtained, they must be compared. The standard method for

the detection of conserved regions is the computation of alignments. An alignment is an

arrangement of biological sequences in order to identify regions of similarity that could be

interpreted as the consequence of functional, structural or evolutionary relationships between

sequences. In computational biology, this arrangement is based on the optimization of a scor-

ing scheme that rewards matches, i.e. arrangements of similar sequence areas, and penalizes

mismatches, i.e. arrangements of dissimilar areas. Gaps between arranged areas correspond

to insertions (respective deletions) of areas and they are also penalized.

There are two widely used strategies: local alignments that target short segments of similar-

ity and global alignments that determine a description of similarity across the entire sequences.

An example for the local approach is the LASTZ algorithm, a drop-in replacement for BLASTZ

(Schwartz et al., 2003). It identifies short segments of exact identity, the so-called seeds, and

constructs local pairwise alignments by extending the seeds in both directions. The global

approach is, for example, used by LAGAN (Brudno et al., 2003). This program generates short

local alignments to identify related sub-segments. This segments are used as anchors for the
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computation of the intermediate alignments with a standard Needleman-Wunsch algorithm

(Needleman and Wunsch, 1970). The program mLAGAN uses the pairwise alignments of the

LAGAN algorithm to determine multiple alignment in a progressive manner (Thompson et al.,

1994).

Global alignment tools generally have difficulties with large-scale mutations. For example,

duplications will lead to results that indicate that one of the copies is not conserved. While

local approaches circumvent such problems, the failure to consider collinearity, i.e. the upkeep

of order and orientation of functional elements along the genome, might result in decreased

ability of identifying subtle but important similarities in weakly conserved segments between

well-conserved blocks or an increased detection of random similarities that are not based on

phylogenetic relationships.

An alternative approach is used by the Footprinter algorithm (Blanchette and Tompa,

2003). Instead of the computation of alignments in order to detect conserved regions, the

algorithm determines for a given phylogenetic tree the motifs of an explicit length that mini-

mize the parsimony score. The parsimony score is the total number of substitutions over the

tree needed to explain the observed motifs. In order to determine the minimal parsimony

score, Footprinter enumerates over all possible motifs at all nodes of the tree whereas the

score of terminal taxa is 0 if the motif is part of the sequence or infinite else. The final motifs

are determined by backtracking based on the minimal score.

For visualization or identification of significant segments various tools are available. The

program rVista (Loots et al., 2002) discovers CREs, combining the prediction of TFBSs by

searching for motifs given in the TRANSFAC database (Matys et al., 2003), the clustering of

this predictions and the analysis of interspecies sequence conservation. Elnitski et al. (2003)

used the distribution of mutations to distinguish coding regions from regulatory sequences.

For example, coding regions tend to vary at the third codon and have insertion or deletion

lengths that are multiples of codon sizes. In contrast, regulatory regions tend to have more

frequent mutations inside distinct blocks that are separated by segments of high similarity.

For the purpose of visualization, the VISTA browser (Loots et al., 2002) presents a graph of

nucleotide identity within a sliding window along an alignment. Similarly, PipMaker (Elnitski

et al., 2002) displays BLASTZ results in an intuitive presentation.

Motif Overrepresentation

This technique tries to find binding sites by searching for motifs that are overrepresented

in a cluster of genes. It is also based on the assumption that meaningful sequences evolve

much slower than adjacent non-functional DNA. Given a set of sequences that is expect to

contain this conserved motif it is likely that the motif is contained in a significantly higher

number than random sequences. There are various approaches (Tompa et al., 2005; Wei and

Yu, 2007) where the exact operating principle depends on the algorithm. For example, the
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program MEME (Bailey et al., 2006) optimizes the expectation value of a statistic related to

the information content of the motif while AlignAce (Roth et al., 1998) is a Gibbs sampling

algorithm.

An important drawback of finding motifs by overrepresentation is the relatively bad perfor-

mance on a small set of input sequences. With increasing amounts of sequence, the distinction

between the conserved motifs and the diverged background becomes clearer. Also, this ap-

proach works less well with large sequences. Therefore, the usefulness is limited. Nevertheless

this approaches can find motifs that independently satisfy the initial parameters of the sur-

rounding sequence identity. This is not the case with global alignments, in which the noise of

the diverged non-functional background can overcome the short conserved signal.

1.3.3 Motif Modelling and Search

Once a binding site of a TF is determined, one is also interested in further potential binding

sites of this factor in the genome. This motif finding problem is complicated by the high

variability of regulatory DNA motifs. Therefore, it is not sufficient to find an exact substring

of some length. Instead, the known binding sites correspond to a multiple alignment and the

motif finding problem consists of finding high scoring local alignments of the motif alignment

and the genome (Frith et al., 2004). Despite the variability on the nucleotide level, regulatory

sites have in most cases a constant size, based on the conserved DNA binding site domains

of TFs. The resulting insignificance of gaps allows linear search, or sublinear search by using

index based algorithms, for suitable motif representations.

Modelling of Sequence Specific Binding Sites

For the representation of binding site patterns multiple possibilities exist (cf. Figure 1.5). The

basis for all the models is the multiple alignment of the known binding sites. The simplest

description is the consensus sequences. In this case, a consensus nucleotide letter is assigned

to represent the nucleotide composition in each column. Although the use of consensus

sequences provides better representation than a single sequence, this model tends to result in

an information loss of the original data. Since binding bias towards certain nucleotides is not

reflected, consensus sequences fail to represent the quantitative characteristics of TF binding.

This problem is circumvented by position frequency matrices (PFMs) . They contain for

each column i in the multiple alignment the number fb,i of observations of each nucleotide b

(Hertz and Stormo, 1999). However, for efficient computational analysis this representation

has to be transformed. In a first step, the numbers are transform into the probabilities pb,i

to have nucleotide b at position i by

pb,i =
fb,i + cb

n+
∑

b ′ c(b ′)
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Figure 1.5: Possible descriptions for TFBSs. Here, the binding site of the TF AP-1 is used
as example. AP-1 is a basic zipper that binds as heterodimer to DNA (a) and controls a
number of cellular processes including differentiation, proliferation, and apoptosis (Glover
and Harrison, 1995; Ameyar et al., 2003). Given a data collection of aligned binding sites
(b), the consensus sequence (c) is defined by the degeneracy nucleotide symbol, in this case
the IUPAC nucleotide code, for each column. The position frequency matrix (d) gives the
number of observed nucleotides for each position. The position weight matrix (e) contains
the normalized frequency values, here with pseudocount function cb = pb

√
n, in a log-scale

and is the most commonly used model. The sequence logo (f) scales the information content
multiplied by the relative occurrence of the nucleotides at each position. It is used for a fast
and intuitive assessment of characteristics. Given an arbitrary DNA pattern (g), the scores
of the position weight matrix can be used to determine a quantitative score that reflects the
similarity between the pattern and the binding site. This score is also proportional to the
binding energy (Stormo, 2000).

where n is the number of binding site sequences in the multiple alignment and cb is the

pseudocount for nucleotide b. The pseudocount is a sampling correction used to eliminate

null values before log-conversion and to correct for small samples of binding sites (King and

Roth, 2003). The exact value for cb varies widely.

The probabilities pb,i are then normalized by the background probability pb of base b and

converted to a binary log scale weight

wb,i = log2

(

pb,i

pb

)

.

The resulting position weight matrix (PWM), also known as position specific scoring ma-
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trix (PSSM, pronounced possum), is the most common model. Although PWMs capture a

broad spectrum of the variability of regulatory regions, effects like variable spacer lengths

and position interdependence (Badis et al., 2009) must be described by multiple matrices.

Alternatively, hidden Markov models that are able to account for the neighborhood of each

nucleotide can be used.

For a fast and intuitive visualization of the regulatory motif, sequence logos are used. They

display the information content Di = 2 +
∑

b pb,i log2(pb,i) for each column i and mark the

contribution of each nucleotide.

Furthermore, databases such as TRANSFAC (Matys et al., 2003) and JASPAR (Sandelin et al.,

2004b) exist which contain known binding site models for TFs.

Prediction of Binding Sites in Genomic Sequences

Using position weight matrices, a quantitative score s for a potential site consisting out of

basis bi is produced by summing the relevant nucleotide PWM values over all columns i

s =
∑

i

wbi,i .

This score is directly related to the binding energy of the DNA-protein interaction (Berg

and von Hippel, 1987; Stormo, 2000) so the representation by PWM can be viewed both as

a statistical and as an energy-based model. By determining all subsequences in a genomic

sequence with a score above a certain percent value of the maximal score, for example with

the MATCH program (Kel et al., 2003), potential binding sites can be determined in linear time.

Although not perfect, models for representing the specificity of the factors are generally

reliable and can be used to search genomic DNA to predict new potential binding sites. The

largest problem is the tendency for many false positives in such searches. Based on the short

length of binding sites, applications will report binding sites every 500 to 5000 bp although

only a very small fraction of reports is functional in the organism. For example, in the case

of myoD, a muscle-specific TF, 106 predictions of binding sites are accompanied by 103 sites

that are likely to be functional (Fickett, 1996).

The high number of false predictions is not simply a result of inadequate model frameworks.

They are bound readily by factors in vitro (Tronche et al., 1997) and would also be bound

in vivo if they were available in epigenetic terms. Hence, the pattern recognition methods

detect potential binding sites, albeit not necessarily those of functional importance. Never-

theless, the difference between true and false predictions is intolerable. Algorithms that are

biologically motivated and that consider the highly quantitative nature of DNA binding need

to be developed.
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1.4 Structure of the Thesis

In this thesis, I present new methods for the detection and evolutionary analysis of transcrip-

tional regulatory elements. In the first part, the detection of regulatory elements, we develop

a new algorithm for phylogenetic footprinting based on local alignments. As pointed out

in the introduction, it is important to maintain the order and the orientation of functional

elements along the genome. Otherwise, one might miss important similarities in weakly con-

served segments between well-conserved blocks or to detect random similarities that are not

based on homology.

In order to avoid these effects, we develop and analyze in Chapter 2 a new algorithm. For

a given set of arbitrary local alignments, it determines maximal subsets that are consistent

with respect to order and orientation. The chapter is based on the following publications:

• Otto W, Stadler PF, Prohaska SJ (2011). Local, Multiple Alignments Based on

Consistent Subsets of Pairwise Alignment Collections. in prep. for Theoretical

Computer Science

• Otto W, Stadler PF, Prohaska SJ (2011). Phylogenetic Footprinting and Consis-

tent Sets of Local Alignments. In R. Giancarlo and G. Manzini, editors, CPM 2011,

Lecture Notes in Computer Science, volume 6661, pages 118–131, Heidelberg, Germany.

Springer-Verlag. in press.

• Otto W*, Will S*, Backofen R (2008). Structural Local Multiple Alignment of

RNA. In A. Beyer and M. Schroeder, editors, German Conference on Bioinformatics,

volume 136 of LNI, pages 178–177. GI. (* equal authorship)

In Chapter 3, we use the algorithm for consistent alignment subsets as basis for the devel-

opment of Tracker, a program for the detection of phylogenetic footprints.

For the second part, the evolutionary analysis of regulatory elements, we focus on the

abundance of specific TFBS motifs and its change during evolution. This is a completely

new approach, based on the recent insides of transcriptional regulation, as described in this

introduction, that the specific location of a binding site seems to be less important and binding

sites underlie a turnover during phylogeny which may or may not affect their regulatory

function.

In Chapter 4, we present and analyze a stochastic model for TFBS abundance evolution

under the assumption of a constant rate of binding site origination and a constant per site

decay rate. The chapter is based on following publication:

• Wagner GP, Otto W, Lynch V, Stadler PF (2007). A Stochastic Model for the Evo-

lution of Transcription Factor Binding Site Abundance. Journal of Theoretical

Biology 2007 Aug 7; volume 247, issue 3, pages 544–53.
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This model is subsequently used in Chapter 5 for the development of Creto. For a given

phylogenetic tree with known binding site numbers for the terminal taxons, this program

determines the origination and decay rates that explain the tree with the maximal likelihoods.

The chapter is based on following publication:

• Otto W, Stadler PF, López-Giraldéz F, Townsend JP, Lynch VJ, Wagner GP (2009).

Measuring Transcription Factor-Binding Site Turnover: A Maximum Like-

lihood Approach Using Phylogenies. Genome Biology and Evolution. 2009 May

25; volume 1, pages 85–98.
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CHAPTER 2

Alignment Consistency

Unfortunately, Ponder was a clear logical thinker who, in times of

mental confusion, fell back on reason and honesty, which, when deal-

ing with an angry Archchancellor, were, to use the proper academic

term, unhelpful. And he neglected to think strategically, always a

mistake when talking to fellow academics, and as a result made the

the mistake of employing, as at this point, common sense.

Unseen Academicals

Terry Pratchett

R egulatory sequence elements are highly important for the development of organisms.

Therefore, they are likely to be subject to stabilizing selection and hence to evolve

much slower than adjacent non-functional DNA. This makes these phylogenetic footprints de-

tectable by comparative sequence analysis. In cases where large intergenic regions are under

investigation and pattern discovery approaches fail to detect overrepresented sequence motifs,

comparative sequence analysis is the only way to detect regulatory elements. The standard

method thereby is to identify these conserved footprints using multiple alignments. Since

the general alignment problem is NP-complete (Elias, 2006), the computation of multiple

alignments is mainly done by heuristic approaches which reduce the problem to the computa-

tion of pairwise alignments for all sequence pairs under investigation. Based on well-defined

optimization functions, these alignments are determined by summing up substitution scores

and penalties for insertions or deletions (Needleman and Wunsch, 1970). Then, they are

combined to a final alignment of all sequences. In case of global alignments, good heuristic

approaches already exist, like e.g. progressive alignment construction (Thompson et al., 1994;

Notredame et al., 2000), iterative methods (Morgenstern et al., 1998; Edgar, 2004) or hidden
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A BA B

Figure 2.1: Alignment support and consistence as indicators for homologous regions. (a)
Alignments between motifs that occur in many sequences are likely to be based on homology.
Therefore, alignment A is more trustworthy than alignment B, even if the similarity of the
sequences in B is higher. (b) The consistency with other alignments is also an indicator
for homology. Therefore, alignment B that creates an inconsistency by crossing a second
alignment is more likely to assign heterologous sequences than alignment A that is consistent
with the remaining alignments.

Markov models (Hughey and Krogh, 1996).

However, regulatory sequence elements can be very short down to only a few nucleotides

and they are surrounded by large areas of unconserved DNA. Additionally they can undergo

rapid changes, caused by evolutionary events, that do not necessarily conform with the general

phylogenetic relationships of the surrounding sequences (Chiu et al., 2002). These are serious

problems for a comparative sequence analysis based on pairwise alignments. Small regions

can easily be overseen since they may not appear statistically significant or they become

outweighed by random similarities in the surrounding areas.

One way to overcome this problem is to use a low stringency for the alignment computation

but this creates another challenge: low significance. In addition to alignments between evo-

lutionary conserved sequences we also get a vast number of false positive alignments between

random similarities. Nevertheless, alignments between long motifs and motifs that occur in

many sequences are likely to be evolutionary related. In contrast, alignments based on ran-

dom similarities are arbitrarily distributed and create inconsistencies with other alignments.

This can be used to detect alignments between homologous sequence parts, see Figure 2.1.

In summary, given a set of pairwise alignments over different sequences, we are interested

in consistent subsets of these alignments where the aligned areas occur in a great range of

sequences in order to detect homologous areas. This chapter is dedicated to this problem.

First, we set up the theoretical scaffold by defining the mathematical models and formal-

izing the problem. This is followed by an overview of existing approaches with analyses of

advantages and disadvantages. Subsequently we describe our new method and analyze its

complexity. Finally, we show some results of the correctness of our method and its runtime

behavior.
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Figure 2.2: Illustration of possible inconsistencies of alignments over the same sequences. In
the first subfigure, alignment A and B create a contradiction since they align the same area
of sequence y with different areas of sequence x. Furthermore alignment B and C cause
a crossing since the order of the aligned regions is not identical on both sequences. These
inconsistencies can also be indirect over third party alignments as shown in the second and
third subfigure for contradictions and crossings respectively.

2.1 Basics and Definitions

The composition of sequences define a linear order between their sites. Since alignments

are assignments of sequence sites, this order applies also for parts of alignments over the

same sequence. Thereby, different sequences can imply contrary orders. For example, two

alignments between the same sequences x and y can have different orders at x and y. In this

case, both alignments create a conflict in respect to the order implied by the sequences and

we say that the alignments are inconsistent or that they create an inconsistency.

We distinguish between two kinds of inconsistencies, see Figure 2.2. In cases where align-

ments assign the same area at one sequence to different areas at one other sequence, we denote

the inconsistency as a contradiction. Inconsistencies based on contrary orders are denoted

as a crossing. Since the order relation is transitive, such inconsistencies can also be caused

indirectly. This is, for example, the case in the middle and the right illustration of Figure 2.2,

where sequence x implies A < B while sequence y and z imply A = C = B (middle illus-

tration), or where sequence x implies B < A while sequence y and z imply A < C < B

(right illustration). A set of alignments is therefore consistent, if there is no direct or indirect

inconsistency.

This interpretation of consistency is similar to the constraints that define a valid alignment

(Needleman and Wunsch, 1970), where alignment columns have at most one entry for each

sequence and different alignment columns are not allowed to cross each other. If we split all

alignments in single columns and if we join columns when they contain equal sequence sites,

columns with multiple entries at one sequence correspond to contradictions while crossing

columns correspond to alignment crossings.

Based on this correlation, we will later detect consistent alignment sets by joining single

alignments to a multiple alignment that satisfies these constraints. In contrast to the standard

definition of alignments, not all sequences sites will be part of this multiple alignment. If sites

are not aligned by any consistent pairwise alignment in the set, these sites will be missing.
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Figure 2.3: Column based local multiple alignment. The left part of the figure shows the initial
situation of the sequences where corresponding motifs have the same color. The determination
of pairwise alignments will result in three alignments C (red areas), D (blue areas) and H
(green areas). The assembly of these alignments creates the multiple alignment showen in
the right part. The sequence areas of the pairwise alignments are aligned in columns where
the order is determined by the order of the motifs on the sequences. The gray parts are
gaps. Note that the alignment is local since sequence areas that are not aligned by pairwise
alignments are not included.

Hence, the resulting multiple alignment is a local alignment that corresponds to an ordered

list of conserved but not necessarily consecutive motifs, see Figure 2.3.

In theory, the method of joining pairwise alignments to a multiple alignment corresponds to

the standard alignment problem (Needleman and Wunsch, 1970) with a scoring scheme where

gaps, i.e. indels, are neutral, mismatches are negative and matches positive. This scoring in

theory allows the detection of conserved motifs in respect to the underlying sequence order

even if the distance between motifs differs dramatically between the sequences. Practically,

gap neutral scoring will end up in highly fragmented alignments that are insignificant and

unlikely to be based on homology.

In contrast, conventional scoring schemes, used by algorithms like ClustalW2 (Thompson

et al., 1994), penalize gaps. On the one hand, this enables them to detect significant motifs.

On the other hand, it makes them inappropriate for the detection of sequence elements where

the exact position, and hence the distance between them, is less important than the general

presence.

Joining local alignment between significant motifs to a multiple alignment without penal-

izing different distances between these motifs is therefore a possibility to use the advantages

of both scoring schemes while avoiding the disadvantages. Furthermore, this approach pre-

serves the order and orientation of functional elements along the genome. This is a further

advantage since the additional information supports the detection of homologous similarities.

In contrast, programs like Footprinter (Blanchette and Tompa, 2003) miss this additional

information since they enumerate over all possible motifs of a certain length without checking

the location, see Section 1.3.2 (p.14).

In summary, this kind of multiple alignment assembly is well suited for the determination

of consistent alignment subsets in order to detect conserved, regulatory sequences based on

homology. For the formalization of the problem, we start with necessary basics.
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2.1.1 Biological Sequences and Alignments

A biological sequence is a generic term for DNA, RNA, or proteins. It is a single, continuous

molecule consisting of nucleic acids in the cases of DNA and RNA or amino acids in the

case of proteins. In computer science it can be thought of as a multiple inheritance class

hierarchy. One hierarchy is of the underlying molecule type: DNA, RNA, or protein. The

other hierarchy is how the underlying biological sequence is represented by the data structure.

It could be an actual sequence of amino acids or nucleic acids, a physical or genetic map, or

a some more complicated data structure building a composite view from other entries.

Sequences: In this thesis we represent biological sequences as words of a formal language

over a finite set Σ of characters, called the alphabet. Thus, Σ consists of letters that correspond

to the different nucleic or amino acids. In this theoretical consideration, however, we do not

restrict Σ in any way in order to allow a broad range of applications. The Kleene-closure

Σ∗ =
⋃

i∈N

Σi

defines the sequence space over Σ and each word ω ∈ Σ∗ is called a sequence. The length |ω|
of sequence ω is defined as the unique number l ∈ N with ω ∈ Σl. Furthermore, ω[i] with

1 ≤ i ≤ |ω| refers to the i-th letter of ω while ω[i : j] with 1 ≤ i ≤ j ≤ |ω| stands for the

consecutive subsequence ω[i] ◦ . . . ◦ ω[j]. Any function S : {1, . . . ,m} → Σ∗ is a sequence

family of m sequences over Σ and we refer to the x-th sequence S(x) by Sx. The site space

S of a sequence family S = {S1, . . . , Sm} is defined as the set

S(S) = {[x, i] : 1 ≤ x ≤ m, 1 ≤ i ≤ |Sx|}.

If the context is clear, we denote the site space S(S) only by S.

Alignments: An alignment A of a sequence family S is a bijective assignment of elements of

the site space S that is consistent with the linear order of the sites in the individual sequences.

Formally this can be represented as a relation A ⊆ S × S (Morgenstern et al., 1999), as a

graph A = (V,E) with V ⊆ S and E ⊆ S × S (Notredame et al., 2000; Morgenstern et al.,

1998), or as higher forms of representations like matrices (Needleman and Wunsch, 1970).

Here, however, we use the basic formulation in form of graphs.

Definition 2.1 (Alignment). Given a sequence family S of m sequences S1, . . . Sm with the

corresponding site space S, an alignment A(S) of S is an undirected graph A(S) = (V,E)

with nodes V = V (A) ⊆ S, vertex labels σ : V → Σ with σ([x, i]) = Sx[i], and edge set

E = E(A) ⊆ {[x, i], [y, j] : [x, i], [y, j] ∈ V } satisfying the following three conditions:

1. The connected components of A are complete graphs Kp with p ≤ m (i.e. graphs with
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p vertices and p(p − 1)/2 edges). These complete graphs correspond to the alignment

columns. Vertices without adjacent edges are unaligned positions.

2. For each connected component c of A we have [x, i] ∈ V (c) ∧ [x, j] ∈ V (c) ⇒ i = j.

Thus, every alignment column contains at most one position from each sequence.

3. All connected components conform to the partial order � which reflects the linear

order of the sites in the individual sequences and which is defined for two connected

components c and c′ by c � c′ ⇔ ∃[x, i] ∈ V (c) ∧ ∃[x, j] ∈ V (c′) ∧ i ≤ j. This ensures

that the columns of the alignment never cross each other.

Note that alignments can be stored and manipulated more efficiently, for example as a

partially ordered sets of alignment columns. This point of view is used later. The graph

structure introduced here, however, appears more convenient for theoretical analysis, in par-

ticular when starting from collections of pairwise alignments whose union in general does not

form an alignment. Additionally, this definition is very flexible. On the one hand the align-

ment can be local, i.e. not all elements of the site space S have to be part of A. On the other

hand, the alignment can contain gaps, i.e. the elements of the site space of one sequence in

A have not to be consecutive. Furthermore, for m = 2 we call A a pairwise alignment while

for m > 2 we say A is a multiple alignment.

As mentioned above, alignments should arrange regions together which are evolutionary

related. In order to describe and compare the level of the relatedness of the sequences in

different alignments we assume a scoring function β that assigns each alignment A a weight

β(A). Without loosing generality we assume that the weight correlates with the relatedness

of the sequences in the alignments, i.e. the higher the weight of an alignment the higher the

relatedness. Further assumptions like additivity are not necessary for this consideration. In

fact, the weight of each input alignment A can be assigned arbitrarily in our setting.

Each alignment A of a sequence family S includes subgraphs for each subset R ⊆ S of the

site space of S. The restriction A(S)[R], or short A[R] of A to this subset R is the subgraph

of A induced by R, i.e. A[R] = (V,E) with V = R and ([x, i], [y, j]) ∈ E ⇔ [x, i], [y, j] ∈
V ∧([x, i], [y, j]) ∈ E(A). Note that R not only represents the site space of single subsequences

of a subset of the sequence family S but also of an arbitrary number of subsequences for each

sequence in S and that this subsequences do not have to be consecutive. We can show that

these subgraphs induced by R in return are alignments:

Lemma 2.1. Let A be an alignment of a sequence family S and R ⊆ S a subset of the

corresponding site space. Then the subgraph A[R] is an alignment.

Proof. It suffices to show that all three conditions of Definition 2.1 (p.27) hold for A[R].

This is trivial for the second condition since the vertex set of A[R] is a subset of V (A). The

restriction of A to R is the union of the disjoint sets in A restricted to R. These disjoint
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sets are the alignment columns and hence complete graphs. Since every induced subgraph

of a complete graph is again complete, the first condition holds for the subgraph as well.

Furthermore, the induced columns remain disjoint sets and are therefore still conform to the

partial order � of the last condition.

2.1.2 Consistency of Alignment Collections

A collection of alignments can be inconsistent as seen in Figure 2.2. Nevertheless, a single

alignment is consistent by definition. We therefore use Lemma 2.1 (p.28) and define the

consistency of an alignment with the help of a superior single alignment.

Definition 2.2 (Consistency). Given a sequence family S and a collection A = {A1, . . . An} of

n alignments over subsets of the site space of S, i.e. V (Ai) = Ri with Ri ⊆ S for 1 ≤ i ≤ n.

The collection A is consistent if and only if there is an alignment M of S so that for all

1 ≤ i ≤ n holds M [V (Ai)] = Ai, i.e. the given alignments Ai are the subalignments of M

restricted to the subsequences aligned by Ai.

E contrario, a given alignment collection A is consistent if and only if it is possible to join

these alignments to a single alignment M .

Lemma 2.2. Let S be a sequence family with site space S and let A be an alignment collection

over subsets of S. A is consistent if and only if the transitive closure (S, E′)+ = (S, E′+) of

the graph (S, E′) with E′ =
⋃

Ai∈A
E(Ai) is an alignment.

Proof. In the following we proof both directions:

A is consistent ⇒ (S, E′)+ is an alignment: Since A is consistent, it exists an alignment M

and by construction the graph (S, E′) is a subgraph of M . In particular each connected

component is a subgraph of a connected component in M . Furthermore, the transitive

closure of a graph is the union of the transitive closures of its connected components.

Thus, the transitive closure of (S, E′) is a transitive subgraph and therefore itself an

alignment by Lemma 2.1 (p.28).

(S, E′)+ is an alignment ⇒ A is consistent: By construction of (S, E′)+ the subgraph in-

duced by the site space V (Ai) is the alignment Ai itself. Hence, (S, E′)+ corresponds

to alignment M in Definition 2.2 (p.29) and therefore A is consistent.

Based on this Lemma, we can finally formalize the combinatorial optimization problem.

Definition 2.3 (Maximal Consistent Alignment Subset Problem). Given a sequence family

S and a collection A = {A1, . . . An} of n alignments over subsets of S, i.e. Ai = (V,E) with

V = Ri and Ri ⊆ S for 1 ≤ i ≤ n. The Maximal Consistent Alignment Subset Problem

(MCASP) is to find a maximal subset A′ of A that is consistent.
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Note that the term maximal is not qualified and can be arbitrarily defined. For example,

one can maximize the cardinality |A′| of the consistent subsets, or the sum of the alignment

scores
∑

Ai∈A′ β(Ai), or one can maximize the score of the multiple alignment M formed by

the alignments in A′.

Also, we do not restrict A to contain only pairwise alignments. However, the heuristic

algorithm introduced later works on pairwise alignments since comparative sequence analysis

are based on pairwise alignments. Nevertheless the heuristic could also be used on multiple

alignments by decomposing them into all pairwise subalignments based on Lemma 2.1 (p.28).

2.1.3 Alignment Operations and Intervals

Evolutionary relationships are transitive. This also applies to alignments for which the align-

ment columns are complete graphs that correspond to the transitive closure. In case of the

union of pairwise alignments this means that if two alignments assign two different regions

to the same third region, the first two regions are also aligned indirectly. We already used

this fact when constructing the transitive closure in Lemma 2.2 (p.29). For two alignments,

however, we define an extra concatenation operation. Before doing so, we first adapt some

basic operations for sets:

Union: The union of alignments is defined as the union of the vertex sets and the union of

the edge sets, i.e. A ∪B = (V,E) with V = V (A) ∪ V (B) and E = E(A) ∪ E(B).

Intersection: Analog to the union the intersection of alignments is defined as the intersection

of the vertex sets and the intersection of the edge sets, i.e. A ∩ B = (V,E) with V =

V (A) ∩ V (B) and E = E(A) ∩ E(B).

Difference: The difference of alignments is also well-defined in terms of their graphs. Given

two consistent alignments A and B over subsets of the same site space, the difference A \ B
is the alignment (V,E) with E = E(A) \ E(B) and V = {[x, i] : ∃[y, j]{[x, i], [y, j]} ∈ E}.

Concatenation: The concatenation of two pairwise alignments is the alignment that is im-

plied by the composition of their alignment edges. Given two pairwise alignments A and B

over subsets of the same site space S, the concatenation A •B is defined as follows:

1. If A and B are inconsistent or disjoint, i.e., there is no vertex [x, i] with [x, i] ∈ V (A)∧
[x, i] ∈ V (B), we set A •B = ∅.

2. If A and B have exactly one sequence in common, A • B is defined as the relational

composition of the edge sets E(A) ◦ E(B). In other words, {[x, i], [z, k]} is an edge

in the concatenated alignment A • B if and only if there is a vertex [y, j] ∈ S such

30



2.1 Basics and Definitions

x

y

z

A

B

i j

j'

i' A\(B•(A•B))

A

B•(A•B)

B\(A•(A•B))A•(A•B)

A•B

Figure 2.4: Concatenations and differences of pairwise alignments. The first part shows the
alignment A • B implied by A and B. The second part describes the subparts of A and B
induced by A •B in terms of the alignment operations concatenation and difference.

that {[x, i], [y, j]} is an alignment edge in A and {[y, j], [z, k]} is an alignment edge in

B, and x 6= z. The vertex set consists of all vertices belonging to these edges, i.e.

V (A •B) = {[x, i] : ∃[y, j]{[x, i], [y, j]} ∈ E(A •B)}.

3. If A and B are two pairwise alignments of the same two sequences, A •B is defined as

the intersection A ∩B.

By construction A•B is consistent with A and B. Additionally, the concatenation operation is

commutative but not associative. For a graphical representation see the first part of Figure 2.4.

For a collection of pairwise alignments A, we define the transitive closure with respect to

the • operation, formal A•, as the set of all alignments that can be generated by the repeated

application of the concatenation operator • to the alignments in A. Note that this set is finite.

By definition of the operator the number of alignment columns in A • B is less or equal to

the number of columns in A and in B. Furthermore, A •B is in the same site space as A and

B. Thus, the repeated application of • does at some point not generate any new alignments.

Furthermore, the union
⋃A• of the alignments in A• is equivalent to the transitive closure

(S, E′)+ in Lemma 2.2 (p.29). The set of pairwise alignments A is therefore consistent if and

only if A• is consistent, i.e. if M =
⋃A• is an alignment.

Based on the concatenation of two pairwise alignments we can furthermore define the

concatenation A • B of a multiple alignment A with a pairwise alignment B over the same

site space S. If A and B are inconsistent, A•B = ∅. Otherwise we reduce the problem to the

concatenation of pairwise alignments by defining A • B as the union
⋃

i,j(A[Ri,j ], Ei,j) • B,

where Ri,j ⊆ V (A) is the site space based on sequences Si and Sj and where Ei,j ⊆ E(A)

is the corresponding edge set. The concatenation of two multiple alignments can now also

be reduced to the concatenation of the first multiple alignment with the pairwise alignments

corresponding to the second multiple alignment.

By this operations, it is possible to refer to specific parts of the transitive closure, see the

second part in Figure 2.4.
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Figure 2.5: Alignment concatenation based on mapping. This picture shows all four pos-
sible cases of the relative location of two alignments that overlap at one sequence with the
corresponding mappings of the overlap positions.

Alignment Intervals: In contrast to exact alignments, it is also possible to treat local pair-

wise alignments as matches between two sequence intervals, disregarding the exact position

of the individual alignment edges within these intervals (Prohaska et al., 2004b). This ap-

proximation can be implemented by representing only the delimiting edges, i.e. the left- and

rightmost edge of the alignment with respect to the sequence positions. More formally, a

pairwise alignment A = (V,E) is defined by the two edges {[x, bx], [y, by]} and {[x, ex], [y, ey]},
where bx = min{ix : {[x, ix], [y, iy]} ∈ E}, ex = max{ix : {[x, ix], [y, iy]} ∈ E}, and by and ey

are defined analog. It will be convenient in to following to specify an interval on sequence x

as a triple [x, b, e], where b and e are the begin and end coordinates. A pairwise alignment is

then described by the unordered pair of intervals A = {[x, bx, ex], [y, by, ey]}.

Mapping: For the construction of the concatenation A •B of two alignments A and B two

additional interval boundaries that delimit the overlap of A and B have to be known (see

for example ([S1, i
′], [S2, i]) and ([S2, j], [S3, j

′]) in Figure 2.4). In principle, these boundaries

could be derived from edges in the original alignment. Here, however, we use a linear inter-

polation scheme. Given an alignment A = {[x, bx, ex], [y, by, ey]}, the mapping µs→t(ps) of the

position ps on the source sequence s ∈ {x, y} at the target sequence t ∈ {x, y} \ {s} is defined

as

µs→t(ps) = pt =
et − bt
es − bs

(ps − bs) + bt (2.1)

See also Figure 2.5 for a graphical representation of the possible mappings.

For alignments with a small number of gaps this method is almost exact. Nevertheless, in

this approximate model it is reasonable to relax the requirements by allowing a small tolerance

ε for alignments. Therefore, we adapt the conditions of Definition 2.1 (p.27) as follows:

• The second condition is relaxed by allowing more than one vertex of the same sequence

as long as the distance between them does not exceed a given error tolerance ε. More

formal: For each connected component c of an alignment A we have [x, i] ∈ V (c)∧[x, j] ∈
V (c) ⇒ |i− j| ≤ ε.
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• The connected components of the first condition do not have to be complete graphs any-

more. Instead it suffices if the sequence graph of a connected component c, which is de-

fined as the graph (V,E) with x ∈ V ⇔ ∃[x, i] ∈ V (c) and (x, y) ∈ E ⇔ ∃{[x, i], [y, j]} ∈
E(c), is a complete graph.

• The partial order of the last condition is now defined for two connected components c

and c′ by c � c′ ⇔ ∃[x, i] ∈ V (c) ∧ ∃[x, j] ∈ V (c′) ∧ i ≤ j + ε.

Consistency, as defined originally, is recovered for the case ε = 0.

Column Intervals: Analog to the representation of pairwise alignments by intervals we also

simplify the representation of multiple alignments. Since the connected components, i.e. the

columns, in the multiple alignment are not necessary consecutive for all sequences, we can

not describe the whole alignment by intervals without loosing this important information.

Instead we combine the columns that are consecutive and involve the same sequences to thick

columns and represent a thick column c as a set of intervals of the form [z, bcz, e
c
z], one for each

involved sequence z. Since these thick columns are alignments, we can use the previously

defined operations. Also we use linear mapping for the determination of internal assignments

as described in Equation 2.1 (p.32).

2.1.4 Complexity Classifications

Clearly, the empty set is consistent and subsets of consistent alignment sets are also consistent,

i.e. consistency is hereditary. Hence, consistent subsets A′ of A form an independence system

(Euler, 1983) what suggests to explore greedy-like heuristics. However, the union of two

consistent subsets can be inconsistent. Thus, a consistent subset is not a matroid or greedoid

and distinct maximal consistent subsets may have different cardinalities. A canonical greedy

algorithm will therefore in general fail to find maximal consistent subsets (Helman et al.,

1993).

In fact, one can expect that the optimal solution of the general Maximal Consistent Align-

ment Subset Problem takes exponential time.

Lemma 2.3. The general Maximal Consistent Alignment Subset Problem is NP-complete.

Proof. For the proof we assume a given collection A = {A1, . . . An} of n alignments of subse-

quences of a sequence family S with m sequences S1, . . . Sm whose length is bounded by l. To

show that the MCASP is NP-complete, we first have to show that the MCASP is NP-hard

and secondly, that we can solve the MCASP in polynomial time with a non-deterministic

algorithm.

The problem is NP-hard: In order to show that the MCASP is NP-hard, we reduce the

general multiple alignment problem which is NP-complete (Elias, 2006) in deterministic
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polynomial time to the MCASP. This is done by representing each possible alignment

edge by a pairwise alignment. Then we solve the MCASP to determine the consistent

subset of all possible alignment edges that lead to the highest sum-of-pairs score of the

corresponding multiple alignment. Since the site space of S is in O(lm), there are only

O(l2m2) possible alignment edges and hence the reduction can be done in polynomial

time.

The problem is in NP: We solve the MCASP by checking for each subset A′ of A if the

transitive closure M = (S, E′)+ of the graph (S, E′) with E′ =
⋃

Ai∈A′ E(Ai) is an

alignment. This can be done in polynomial time:

The construction of the graph M = (S,⋃Ai∈A′ E(Ai)) can be done in O(l2m2) which

corresponds to the number of possible alignment edges. This graph has at most O(lm)

connected components which can be found in O(l2m2) (Tarjan, 1972). Each component

has maximally m vertices so that the determination of the transitive closure of one

component can be done in O(m3) (Floyd, 1962; Warshall, 1962). This results in a total

construction time of O(l2m2 + lm4).

The decision whether a graph M = (V,E) is an alignment or not can be done in

O(l2m2) time. We first insert directed edges ([x, i], [y, j]) for all nodes [x, i] and x[x, j]

with i < j, corresponding to the order of letters in the sequences in O(l2m2) time. Then

we determine the strongly connected components of M (Tarjan, 1972) in linear time to

the number of edges in M which is in O(lm2). If these components are complete graphs

and have at most one position from each sequence, which can be checked in O(lm2),

the partial order � is also well defined for all pairs of components.

The time statements used in the proof are just of theoretical nature. By checking the

alignment prerequisites while constructing M , as described later, it is possible to achieve

better running times.

The complexity of the operations on pairwise alignments depends on the size of the site

space which is for m = 2 in O(l). Given a vertex out of the site space of the first alignment, we

can determine in constant time if this vertex also exists in the second alignment and whether

there is an adjacent edge. Therefore, the concatenation, the intersection, and the difference

of two pairwise alignments can be determined in O(l). Using intervals, these operations can

be done in constant time on pairwise alignments.

The arbitrary complexity of the operation with m > 2 is O(lm3) since each of the O(lm)

vertices can be adjacent to O(m) edges which gives O(m2) possible edge pairs ending in one

vertex. Using intervals, the operations can be done in O(m2) time on arbitrary alignments.
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2.2 Related Approaches

For an overview of related approaches, we have to divide the MCASP into two settings. In the

first case we examining solutions for the general problem, i.e. the determination of consistent

subsets A′ out of a given set of alignments A. Since there are no other known solutions for the

arbitrary problem with whole alignments, we are concentrating here on the optimal solution

and the first Tracker approach (Prohaska et al., 2004b). The second setting is a special case

of the MCASP where the alignments in A are individual alignment edges. This version is the

problem faced by consistency-based alignment procedures and hence is subject of most of the

research on alignment consistency.

2.2.1 Consistent Alignment Subsets

In Lemma 2.3 (p.33) we have shown that the MCASP is NP-complete. Therefore, any attempt

of developing a fast algorithm to compute an optimal solution of MCASP in polynomial time

is expected to fail. However, using branch and bound methods, it is possible to determine

exact solutions for a limited number of alignments in A.

Optimal Solution

Given a set A = {A1, . . . , An} of n alignments over the sequence space S of the sequence

family S = {S1, . . . , Sm} of m sequence whose length is bounded by l. In order to determine

if a subset A′ of A with |A′| = n′ is consistent, we can use our heuristic algorithm, introduced

in the next section which needs O(n′lm) time.

Furthermore, we have 2n possible subsets of A that have to be checked. These subsets have

between 1 and n elements where the number of subsets with exactly i elements is
(

n
i

)

. Based

on the binomial theorem

(x+ y)n =

n
∑

i=0

(

n

i

)

xn−iyi

we get for x, y = 1 the final time estimation

O





∑

1≤i≤n

(

n

i

)

lm



 = O (2nlm) .

If a set of alignments A′ is consistent, each subset A′′ ⊆ A′ is consistent as well and we

can omit the consistency test for all these subsets. The final bunch and bound algorithm

is therefore recursive and works like this: The procedure starts with all alignments A′ =

{A1, . . . , An} and with the alignment switch position p = 1. Solutions are saved in Aopt and

the score of the solution is saved as βopt.

In each procedure cycle we first use our heuristic approach to check if A′ with |A′| =
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n′ is consistent in O(n′lm) time. In this case, we further determine the score β(A′) =
∑

Ai∈A′ β(Ai). If β(A′) > βopt, A′ is a better solution and we set Aopt = {A′} and βopt =

β(A′). If β(A′) = βopt, A′ is an additional solution and we add A′ to Aopt. If A′ is not

consistent, we continue the cycle by checking the next subsets A′′ ⊆ A′. For each i with

p ≤ i ≤ n we iteratively set A′′ = A′ \ {Ai} and repeat recursively the procedure with

A′ = A′′ and p = i+ 1.

This procedure has at most 2n recursive calls. Each alignment set A′′ that is produced by

the recursive calls in a certain step with alignment set A′ is a subset of A′. Therefore we stop

the recursive calls if A′ is consistent.

An alternative method would be to save all consistent alignment sets and to perform an

additional check in each procedure cycle if the new A′′ is a subset of an existing solution. In

this case, we would not have to perform the next recursion step. Unfortunately, there are
(

n
⌈n/2⌉

)

possible solutions that are not subsets of each other. If we save the solutions in a

binary tree, we could perform the subset check in O(n) time but the drawback would be the

exponential need for time and memory to save the solutions. If all alignments have the same

score, our method would in the worst case face the same problem but this is not very likely

for biological data.

Nevertheless, we use this method if we want to determine all alternative solutions, i.e. all

consistent subsets that are not itself subsets of other consistent subsets. Of course the number

of such subsets is in the worst case in O(
(

n
⌈n/2⌉

)

) and hence exponential.

The First Tracker Approach

The Tracker program (Prohaska et al., 2004b) has been developed to determine phylogenetic

footprints by comparative sequence analysis. For a given set of sequences the approach

determines a set A = {A1, . . . , An} of local, pairwise alignments, see Figure 2.6 (a). In order

to find conserved motifs that are consistent to each other, Trackerdetermines a heuristic

solution for the MCASP in two steps. First, for each pair (Ai, Aj) : Ai, Aj ∈ A, Tracker

checks if Ai and Aj are consistent.

This is done by determining all pairs of alignments that overlap with each other, see Fig-

ure 2.6 (b). These unordered pairs {Ai, Aj} of overlapping alignments form then the vertex

set of the inconsistency search graph. In this undirected graph, two vertices {Ai, Aj} and

{Aj , Ak} are connected by an edge if and only if Ai and Ak are transitive connected by Aj .

This is the case if Ai aligns one sequence of Aj and if Ak aligns the other sequence of Aj , see

Figure 2.6 (c).

For the detection of inconsistencies, a depth-first search on the inconsistency search graph

is performed. Starting for each node of overlapping alignments, the algorithm calculates a

path alignment Ā that is the concatenation of all alignments in the path from the start to the

present one. Thereby the concatenation and the presentation of the alignments as intervals

36



2.2 Related Approaches

x

y

z

CB

A D
E

(a) input alignments

A B

C

D

E

(b) overlaps

CD BC

CE

AE

AB
BE

zx

yx
yx

yy

yz

xz

(c) inconsistency search graph

A B

C

D

E

(d) inconsistencies

A B

C

D

E

(e) consistence graph

A B

E

CE

B

D

C

D

(f) cliques

Figure 2.6: Example for the functionality of the first Tracker approach. For a given alignment
set (a), the program first determines the overlaps (b). Based on this data, Tracker creates
the inconsistency search graph (c). The nodes of this graph consists of overlapping alignment
pairs, labeled with the corresponding alignments and the sequences that are connected by
this pair. Two nodes are connected by an edge iff they have a common alignment and if the
other two alignments are connected by this alignment. The program then determines the
inconsistencies by a deep first search for each node. Two alignments are inconsistent if a path
between them exists that is connected through other alignments and that begins and ends at
the same sequence but at different areas. Based on the inconsistencies (d), the consistency
graph (e) is created. The cliques of this graph are the maximal consistent subsets (f).

is similar to our definitions. At the start, Ā is set to the concatenations of both alignments.

In each elongation step from node {Ai, Aj} to note {Aj , Ak}, the algorithm first checks if

the path alignment Ā aligns the same two sequences as the new alignment Ak. If this is

not the case, it continues with the concatenation of them, i.e. Ā = Ā • Ak. Otherwise the

concatenation would result in a path that ends at the same sequence where it has started.

Therefore, the concatenation is not performed. Instead the algorithm checks if Ā and Ak are

consistent. If this is the case, i.e. Ā • Ak 6= ∅, the present search path is stopped since each

inconsistency with the start alignment will be detected by the search path starting at Ak. If

Ā and Ak are inconsistent, i.e. Ā • Ak = ∅, the search branch is also abandoned while the

start alignment and Ak are marked as mutual incompatible, see Figure 2.6 (d).

The complexity of the deep first search depends on the number and edges in the search

graph. Given n alignments, the number of possible pairwise overlaps, and hence the number

of vertices in the search graph is in O(n2). Based on the O(n4) possible edges between these

vertices, the determination of inconsistencies for all nodes is in O(n6).
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Figure 2.7: Inconsistency problems of the first Tracker approach. In the first subfigure
showing direct inconsistencies, Tracker will find the A-B-contradiction while not regarding
the B-C-crossing. In the second subfigure showing an indirect contradiction, Tracker will
detect the pairwise A-B-inconsistency. Therefore, the consistent solutions are {A,C} and
{C,B}. The third consistent solution {A,B} is not considered. The indirect crossing in the
last subfigure is also not regarded.

Based on these results, the algorithm creates the consistence graph, see Figure 2.6 (e). The

vertices consist out of the n alignments and two alignments are connected by an edge if there

is no inconsistency between them. The final step is the determination of all maximal cliques

in this graph, i.e. subgraphs where each vertex is connected with all other vertices. To this

end, Tracker uses the Bron-Kerbosch algorithm (Bron and Kerbosch, 1973). The complexity

of this algorithm corresponds to the worst case number of O(3n/3) maximal cliques in a graph

with n nodes (Moon and Moser, 1965). This complexity is justified by the assumption, that the

number of inconsistencies is usually low. This makes the consistency graph almost complete

and the number of cliques as well as the time to determine them small. The so calculated

cliques correspond to the maximal subsets of A that are consistent, see Figure 2.6 (f).

Besides the exponential worst case time and space demands, Tracker has two further

drawbacks, see Figure 2.7. First, the algorithm is based on pairwise inconsistencies. Two

pairwise inconsistent alignments can not be part of the same solution. This is also the case if

both alignments have no overlap and the solution did not contain any alignments that connect

them, i.e. if both alignments are consistent under the given circumstances. Therefore, not

all possible solutions are considered. Second, the algorithm disregards inconsistencies based

on crossings. Based on this limitations, the algorithm have to be classified as a heuristic,

although it determines the exact solution of the clique problem.

2.2.2 Edge Consistency

This setting of the assembly of individual alignment edges to a multiple alignment is subject of

intensive research about consistency-based alignment procedures. Based on joining alignment

edges from pairwise alignments to a multiple alignment, i.e. to a consistent set of alignment

edges, the approaches differ in the form of the assembly.
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The T-Coffee algorithm

T-Coffee Notredame et al. (2000) stands for Tree-based Consistency Objective Function

For alignmEnt Evaluation. This function creates a multiple alignment based on a library

of pairwise alignments data from heterogeneous data sources. In the standard case of the

first version of T-Coffee, these data came from global pairwise alignments calculated with

ClustalW (Thompson et al., 1994) and not necessarily consistent local pairwise alignments

determined with Lalign(Huang and Miller, 1991). All edges of the calculated alignments

are combined into a library. Each edge achieve a weight that corresponds to the pairwise

sequence identity of the corresponding alignment. Equal edges are joined whereas the weight

is summed up.

This library is then extended by the information of the other edges in the library. The weight

of an edge is thereby enhanced if two other edges support it. The subsequent assembly of the

multiple alignment is done by a progressive alignment strategy (Thompson et al., 1994) that

derives a distance matrix for all pairs of input sequences based on the global alignments. This

matrix is used to create a phylogenetic guide tree by the neighbor-joining method (Saitou and

Nei, 1987) that determines the order of the grouping during the multiple alignment process.

For each alignment in a grouping step, the weights of the extended library are used. For an

overview see Figure 2.8.

The multiple alignment produced by T-Coffee is a global alignment where conserved local

motifs are supported by the higher scores in the extended library. The complexity of the

procedure for m sequences where the length of each sequence is bounded by l is O(m2l2 +

m3l). This value is made up by the computation of the library in O(m2l2), the extension

of the library in O(m3l), the computation of the neighbor-joining-tree in in O(m3) and the

progressive determination of the multiple alignment in O(ml2).

The DIALIGN algorithm

Unlike traditional alignment approaches that sum up substitution scores for aligned residues

and subtract penalties for gaps, DIALIGN performs a DIagonal ALIGNment that focuses on

comparing complete segments of sequences. The original version of the algorithm (Morgen-

stern et al., 1998) first calculates all optimal pairwise alignments and extracts all gap-free

segments, the so called diagonals. These diagonals are sorted to their overlap-weight scores

that reflect the weight as well as the degree of overlap with other diagonals (Morgenstern

et al., 1996) in order to favor motifs occurring in more than two sequences. The resulting list

of diagonals is then used to assemble a multiple alignment in a greedy manner. All diagonals

are in the order their score checked for consistency and added to the alignment if consistent.

Once a diagonal is added, it becomes part of the alignment and cannot be removed at any

later stage. The final step is the introduction of gaps until all diagonals contained in the

alignment are matched.
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S3 GARFIELD THE VERY FAST CAT
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(a) Regular Progressive Alignmnet Strategy

(b) Primary Library

S4 -------- THE FA-T CAT
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S4 -------- THE ---- FAT CAT
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S3 GARFIELD THE VERY FAST CAT
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         |||      || | |||

         |||      || | |||

S2 GARFIELD THE ---- FAST CAT

S4 -------- THE ---- FA-T CAT

S1 GARFIELD THE LAST FAT CAT

S2 GARFIELD THE   FAST   CAT

S1 GARFIELD THE LAST FA-T CAT

S2 GARFIELD THE ---- FAST CAT

Alignment and Triplets Extended Library

Final Alignment

Figure 2.8: Example for library extension (Notredame et al., 2000). (a) Progressive alignment.
Four sequences have been designed. The tree indicates the order in which the sequences are
aligned when using a progressive method such as ClustalW. The resulting alignment is shown,
with the word CAT misaligned. (b) Primary library. Each pair of sequences is aligned using
ClustalW. In these alignments, each pair of aligned residues is associated with a weight equal
to the average identity among matched residues within the complete alignment (mismatches
are indicated in bold type). (c) Library extension for a pair of sequences. The three possible
alignments of sequence S1 and S2 are shown (S1 and S2, S1 and S2 through S3, S1 and S2

through S4). These alignments are combined to produce the extended library (the thickness
of the lines indicates the weight). This library is resolved by dynamic programming to give
the correct alignment.

The determination of a multiple alignment of m sequences with lengths smaller then l

by DIALIGN can be done in O(m4l2). This is composed of O(m2l2) for the computation of

the pairwise alignments, O(n4l2) for the calculation of the overlap weights for the O(m2l)
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diagonals and O(n2l2) for the insertion of gaps.

Since the first version of DIALIGN, a variety of extensions and variations has been described.

The successor DIALIGN2 (Morgenstern, 1999) uses an improved weight function for diagonals

while DIALIGN-T (Subramanian et al., 2005) uses a more context-sensitive approach that

takes the overall significance of pairwise alignments into account. The most recent version

DIALIGN-TX (Subramanian et al., 2008) combines the greedy assembly with a progressive

approach. In addition to this official DIALIGN versions, several related algorithms on segment

based alignments have been developed. Lenhof et al. (1999) introduced an exact solution

for the NP-complete segment-to-segment multiple alignment problem in terms of a branch-

and-cut algorithm. Sammeth et al. (2003) combined the local segment based approach with a

global divide-and-conquer strategy. The algorithm developed by Corel et al. (2010) determines

local similarities shared by more than two sequences by using a min-cut, max-flow algorithm

to identify highly connected positions in the sequence space in O(n6l4) for the worst case

scenario.

Other Approaches

Besides the introduced algorithms that especially consider local motifs, a wide range of other

approaches exist. For example, Gotoh (1990) introduced a method that determines consistent

regions out of a set of single pairwise alignments over m sequences with maximal length l in

O(m3l) time. For the case that multiple alternative pairwise alignments are given for one

sequence pair he uses this method to determine the combination of pairwise alignments that

gives the greatest consistency in an exponential worst case time. Vingron and Argos (1991)

identify common patterns in dot-matrices by a procedure based on matrix multiplication in

O(m3l3) time for m sequences whose length is bound by l. Abdeddäım (1997) developed an

algorithm that maintains the transitive closure of an alignment graph over m sequences with

maximal length l in O(m2l + l2) time. This procedure can be used by any greedy alignment

algorithm to know in constant time if two characters are alignable or not.

2.3 Heuristic Algorithm

Since the structure of consistent alignment collections is an independence system we apply a

greedy-like heuristic to find solutions for the Maximal Consistent Alignment Subset Problem.

However, the union of two consistent collections can be inconsistent. Thus, a consistent

alignment collection is not a matroid or greedoid and distinct maximal consistent subsets

may have different cardinalities. A canonical greedy algorithm will therefore in general fail

to find maximal consistent subsets (Helman et al., 1993). We thus have to find a criteria for

the greedy determination of consistent subsets which minimizes this effect.

Given a collection A = {A1, . . . An} of n pairwise alignments of subsequences of a sequence
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family S, we determine the heuristic solution iteratively trying to add one pairwise alignment

A ∈ A after the other to the consistent subset A′ ⊆ A. This is done by inserting the alignment

A into the multiple alignment M =
⋃A′• corresponding to the transitive closure of the union

over all alignments in A′. If the transitive closure of M∪A is still an alignment, A is consistent

with the alignments in A′ and we insert A into A′. Otherwise A is inconsistent with A′ and

we refuse it.

In this strategy, an alignment once inserted is fixed and cannot be removed at a later stage.

Since each inserted alignment influences the compatibility of later alignments, the order of

insertion is determinative for the final result and hence crucial.

Intuitively, we are looking for an order where the final alignment collection A′ implies a

multiple alignment M that is “biologically correct”. Of course, in real life we do not know if

this is the case for a calculated M . Therefore, we use in our heuristic the score β(M) of M

that is defined as the sum
∑

Ai∈A′ β(Ai) of the scores of the alignments in A′ as an indicator

of the “biological correctness”.

Hence, we have to insert the alignments in such an order that β(M) becomes maximal.

Thereby, it is problematic to insert the alignments in the order of their scores. For example,

the insertion of a high scoring alignment can prevents the insertion of a group of alignments

that have smaller individual scores but a higher group score. This would result in a suboptimal

solution. Instead, we have to prefer the insertion of alignments that allow other alignments to

be inserted as well. Therefore, we combine the score of an alignment with the support by other

alignments to an extended score. This idea is similar to the extended library in T-Coffee

(Notredame et al., 2000). By adding the pairwise alignments in the order of the extended

score we try to minimize the cases where the greedy heuristic determines only suboptimal

local maxima instead of the optimal solution of the MCASP.

2.3.1 Extended Scores

An alignment A is supported by a set of other alignments A′ if and only if parts of the

sequences aligned by A are also aligned directly or indirectly by the alignments in A′. This is

the case if the multiple alignment M =
⋃A′• restricted to the subsequences aligned by A is

itself a subalignment of A, i.e. if M [V (A)] = A[V (M)]. The extended score γ(A) of alignment

A is then defined as the basic score β(A) enlarged by the scores
∑

M β(A[V (M)]) of all parts

of A that are supported by sets of alignments with corresponding multiple alignment M .

Obviously the Maximal Consistent Alignment Subset Problem is part of the determination

of extended scores. Thus, the determination of the extended scores is also NP-hard. However,

it is biologically reasonable to assume that the evolutionary distances between conserved

sequences are an ultrametric and hence satisfy the strong triangle inequality ∀x, y, z : d(x, z) ≤
max(d(x, y), d(y, z)). In other words, if we have three sequences x, y and z and we have

alignments between x and y and between y and z we should also have an alignment between
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Figure 2.9: Direct and indirect support of alignments. In the direct case on the left picture
the score of A and B is extended by the score of the overlapping part β(A • B). The same
holds for for the indirect case on the right picture where A is extended by β(B • C), B by
β(A • C) and C is extended by β(A • C).

x and z. This is because of the triangle inequality that tells us that the distance between x

and z is smaller or equal than the distance between x and y and between y and z respectively.

Otherwise it is likely that both given alignments are based on random similarities. Based on

this assumption, it is sufficient to look only for supporting alignment sets with at most two

alignments.

Therefore, we determine the extended scores for each alignment A ∈ A by determining the

intersection A ∩ B for each alignment B ∈ A with B 6= A and the intersection A ∩ (B • C)

for each pair of alignments B,C ∈ A with B,C 6= A. If the first intersection A ∩ B is not

empty, we have a direct support and extend the score of A with the score of the overlapping

part β(A ∩B). This is done using linear interpolation of the basic score β(A):

βA(B) =
|A ∩B|
|A| × β(A)

Analog we have an indirect support if the second intersection A ∩ (B • C) is not empty and

extend the score of A by:

βA(B • C) =
|A ∩ (B • C)|

|A| × β(A).

For a graphical representation of the extension cases see Figure 2.9. All together we calculate

the extended score by

γ(A) = β(A) +
∑

B∈A

βA(B) +
∑

B,C∈A

βA(B • C)

2.3.2 Greedy Assembly

The first step for the assembly of the multiple alignmentM that represents the (local) maximal

consistent subset A′ ⊆ A is therefore, the determination of the extended scores γ for all

alignments in A. The alignments are then ordered by these scores and inserted into a queue
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Q. If alignments have the same extended score γ, we sort them by the basic score β. If this

score is also equal, we sort by the input order.

Starting with the highest scoring alignment we check for all alignments A in Q whether A

is consistent with the set of the already determined consistent alignments A′. If this is the

case, we update M as well as the consistent alignment set A′ by A. If not, we refuse A and

insert A into the set I of alignments that are inconsistent with the alignments in A′.

Due to the iterative structure of the greedy approach, we describe the exact algorithm by

induction over the alignments A ∈ Q. In each step, we assure that M is a multiple alignment

and that M corresponds to the consistent subset A′ ⊆ A. We represent the alignments as

intervals and the columns in M as thick columns which are again intervals.

Base case: In the beginning Q = A and A′ as well as I are empty. The multiple alignment

M is the graph (S, ∅) and therefore a valid alignment.

Induction step: In the induction step, M consists of alignment columns where each column

c = {[x, bcx, ecx] : 1 ≤ x ≤ m ∧ 1 ≤ bcx ≤ ecx ≤ |Sx|} is a set of intervals on the sequences.

The columns satisfy the conditions of Definition 2.1 (p.27), i.e. each column is a transitive

closure, each column has at most one entry per sequence and all columns underlie the partial

order �. In addition, we assume that the columns are ordered relative to �.

We then take the highest-scoring alignment A = {[x, bAx , eAx ], [y, bAy , e
A
y ]} from the beginning

of the queue, update Q by Q = Q \ {A} and check whether (M ∪ Ax)• is an alignment. If

this is the case, we add A to A′ and update M by M = (M ∪ Ax)•. Else we update I by

I = I ∪ {A} and leave M unchanged.

In practice, the insertion of A and the test of consistency are performed column-wise. We

do this iteratively over all columns in M relative to the partial order �. For each column c we

check if A and c overlap. In this case, we insert the area of A or c in front of the overlap as a

new column before c. Then, the overlapping parts of c, A and possible other columns d that

A connects with c are joined. Finally, we insert the remaining part of the column as a new

column behind c or continue with the remaining part of the alignment and the next column.

This is done until A is empty, all columns are checked or we found an inconsistency. While in

the first two cases A is consistent with M and we thus keep all changes, we undo all updates

in the last case, remove the newly inserted columns in M and refuse A as being inconsistent.

Furthermore, it is possible that A contains additional information about the relative location

of the columns based on the partial order �. In this case it necessary to adapt the order of

the columns in M .

Since the exact actions depend on the location of the present column c relative to the

alignment A, the first step for each column update is the determination of the positions of c

for each of the two intervals of A. For each sequence interval [i, bAi , e
A
i ] ∈ A with i ∈ {x, y}

four cases can be distinguished (cf. Figure 2.10):
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Figure 2.10: Possible locations of columns relative to the entries in alignment A. Column c1
is a prefix, c4 is independent, c5 overlaps and c7 is a suffix in both sequences x and y. The
remaining columns c2 (prefix in x, overlap in y), c3 (independent in x, overlap in y) and c6
(overlap in x, suffix in y) have different locations for the sequences x and y.

w

x

y

z

A

cc'

s

A

c

s

c'

Figure 2.11: Switching columns. In the first case c and s are independent and we insert an
alignment A with c � A and A � s. Therefore, we know that c � s and we move all columns
c′ � c in front of s. In the second case the column c′ additionally tells us that s � c so that an
insertion of A would results in c � s and s � c. This is a contradiction in form of a crossing
and hence we refuse A.

independence: c contains no entry [i, bci , e
c
i ]. In this case we do not have any information

about the �-order of A and c at sequence i.

overlap: c contains an entry [i, bci , e
c
i ] and we have [i, bAi , e

A
i ] ∩ [i, bci , e

c
i ] 6= ∅. Thus, c can be

extended based on the information of A over the other sequence {x, y} \ {i}.

prefix: c contains an entry [i, bci , e
c
i ] and we have eci < bAi . In this case, c is in front of A for

sequence i. This information is important to maintain the partial order �. We therefore

remember the column as the closest prefix si of A for sequence i detected so far.

suffix: c contains an entry [i, bci , e
c
i ] and we have bci > eAi . In this case, c is behind A for

sequence i. If c is the first column behind A at i we remember c as the closest suffix si

of A at i, corresponding to the prefix case.

An update of c is only necessary if the column overlaps with at least one sequence. All other
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cases are not meaningful and we can continue with the examination of the next column, except

for the case that one of the two following situations occurs: If c is a prefix at one sequence

but there was already an earlier column which is the closest suffix s at the other sequence,

A contains additional information c � s about the order of s and c. Thus, we have to move

c and all smaller columns c′ with c′ � c between s and c to the front of s. If, additionally,

s is smaller than c or if c is a prefix and a suffix at the same time, the insertion of A would

create an inconsistency in form of a crossing and we therefore reject A, see Figure 2.11. The

second special case occurs if c is the first suffix for both sequences or just at one sequence but

there was already an earlier column that was the closest suffix for the other sequence. In this

case, we can stop the column check since, according to the induction hypothesis, all following

columns area suffix or independent.

If A and c overlap we assume, without loss of generality, that the overlap is at sequence x and

denote the overlapping interval by [x, b̄x, ēx]. In order to update c and A, we additional need

to determine the corresponding overlap [y, b̄y, ēy] at sequence y of A and the corresponding

overlap [w, b̄w, ēw] for all entries [w, bw, ew] ∈ c. We do this for y by mapping based on A, i.e.

b̄y = µA
x→y(b̄x) and ēy = µA

x→y(ēx) and for w by mapping based on c, i.e. b̄w = µc
x→w(b̄x) and

ēw = µc
x→w(ēx).

In general, the update itself consists of three steps: First, we separate the part in front of

the overlap from the alignment or the column and insert it as a new column c′ in front of c.

More exactly, if A starts in front of c, i.e. if bAx < b̄x = bcx, the new column c′ is the prefix

{[x, bAx , b̄x − 1], [y, bAy , b̄y − 1]} of A and A is set to the remaining part {[x, b̄x, eAx ], [y, b̄y, e
A
y ]}.

Otherwise if c starts in front of A, we insert the prefix part c′ = {[w, bcw, b̄w−1] : [w, bcw, e
c
w] ∈ c}

of the column and update c by the remaining part {[w, b̄w, ecw] : [w, bcw, e
c
w] ∈ c}. The next

step is the separation of the area behind the alignment from A or c. If A ends behind c,

i.e. if eAx > ēx = ecx we shorten A to {[x, b̄x, ēx], [y, b̄y, ēy]} and memorize the remaining part

{[x, ēx + 1, eAx ], [y, ēy + 1, eAy ]} for the check of the next columns as A′. If c ends behind A

we append the prefix part c′ = {[w, ēw + 1, ecw] : [w, bcw, e
c
w] ∈ c} as a new column behind c

and set c to {[w, b̄w, ēw] : [w, bw, ew] ∈ c}. Finally, if A contains additional information about

column c, i.e. if c has no entry for sequence y, we insert [y, b̄y, ēy] as a new entry into c. See

Figure 2.12 for a graphical representation of the possible cases.

Since it is possible that multiple columns have an intersection with A and since we allow

a small error tolerance ε for alignments, our concept of overlap does not correspond to the

intersection between the alignment and the column. Given the begin b̂x and the end êx of the

intersection of A and c, we have to consider three cases for the determination of the begin b̄x

and the end ēx of the overlap:

1. First of all, it is possible that c already has an entry [y, by, ey] for the second sequence

y of A. In this case the mapping positions at y can not only be calculated by mapping

based on A but also by mapping based on c. We therefore denote the mapping values
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Figure 2.12: Update of a column c by an alignment A. Given the overlap at sequence x
beginning in b̄x and ending in ēx and the corresponding overlaps at w and y determined by
mapping (labeled with a bar) together with the begin and end values of A and c, the first
two figures represent the splitting of the alignment or the column in a prefix part c′, which is
inserted in front of c, and the remaining overlap part of A and c. The last two figures show
the splitting at the overlap end where the suffix part A′ of A is used for the update of the
next column or the suffix part c′ of c is inserted behind c.

based on A by b̄Ay and ēAy and the mapping values based on c by b̄cy and ēcy. If A is

consistent with c the values of both mapping methods are the same and correspond

to the real intersection b̂y and êy. Otherwise A contradicts c and the maximum of

the values δb = |b̄Ay − b̄cy| and δe = |ēAy − ēcy| reflects the rate δ of this contradiction,

see Figure 2.13 (a). Since the mapping values depend on the size of the intervals of

c at both of the sequences, we assume, without loss of generality, that the x interval

is smaller than the y interval. This is more stringent since the mapping values have a

higher distance.

If δ is above a given error tolerance ε we regard A as incompatible and reject it. Oth-

erwise, i.e. δ ≤ ε, the contradiction is small enough to be ignored and we update c.

In this case, the overlap is defined as the intersecting area of A and c extended by all

alignment positions the can be reached by mapping of column positions based on A.

Formally for i ∈ {x, y}, j ∈ {x, y} \ {i}, b̄Ai = µA
j→i(b̂j) and ēAi = µA

j→i(êj) we have

b̄i = min{b̂i, b̄Ai } and ēi = max{êi, ēAi }, see Figure 2.13 (b). The entry of c at sequence

y is created by an earlier alignment. Since this alignment has a higher extended score

and therefore is more trustworthy, we do not update this entry. Hence, we only insert

the prefix part c′ of A in front of the overlap and the remaining part A′ of A behind the

overlap, as described in the general case above.

2. The second case occurs if A overlaps with c at sequence x and is independent at sequence

y but an earlier column is already the closest suffix sy at y. Then A contains the

additional information c � sy about the order of sy and c. Thus, we have to move c and

all columns c′ with c′ � c between s and c to the front of s. If s � c as well, the insertion

of A would create an inconsistency in form of a crossing and we would therefore reject
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Figure 2.13: Determination of the alignment overlap. The figures illustrate the special
cases that affect the assumed overlap: (a) determination of the contradiction rate, (b)
overlap in case of contradictions, (c) order information by former column, (d) order
information by later column, (e) merge of columns and (f) overlap end correction.

A. The subsequent update of c is done like in the general case with b̄x = b̂x and ēx = êx.

See Figure 2.13 (c).

3. Finally, it is possible that A overlaps with c at sequence x, is independent at sequence

y and we have no suffix for y so far. We then check the columns following c for the first

column d that overlaps A in y. If no such column exists, c is updated as in the general

case with b̄x = b̂x and ēx = êx. Otherwise we have three subcases depending on the

position of b̂x and the mapping b̄Ax = µA
y→x(b̂y) of the intersection start b̂y of A and d at

sequence y onto sequence x:

a) If b̄Ax < b̂x, A tells us that d � c, see Figure 2.13 (d). If even c � d the insertion

of A creates an inconsistency in form of a crossing and we reject A. Otherwise,

we have to move d and all smaller columns d′ with d′ � d between c and d to the

front of c. After the transposition we stop the update of c and continue with the

update of d that is now in front of c.
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b) If b̄Ax = b̂x, A connects the begin of column c with the begin of column d, see

Figure 2.13 (e). In order to merge both columns, we first adapt the order by

moving d and all smaller columns d′ with d′ � d between c and d to the front of c.

Beginning at b̄Ax = b̂x, the overlap ends at ēAx = min{êx, ēAx } with ēAx = µA
y→x(êy).

After merging c and d along the overlap, the prefix and suffix parts of A, c and d

are treated as in the general case.

c) If b̄Ax > b̂x, A extents the begin of column c, see Figure 2.13 (f). If column d starts

in front of the end of column c, the columns have to be merged at the corresponding

area. In order to perform the merging during the following column update, we set

the end of the overlap to ēAx = min{êx, b̄Ax − 1} and update A and c as described

for the general case.

After the column is updated, we set A to the remaining part A′ of the alignment and

continue with the next column in M until A′ is empty. If A′ = ∅, the insertion is complete

and we stop the iteration over the columns in M . Otherwise, if A′ is not empty after we have

checked and updated all columns in M , we insert the remaining A′ as a new column. The

position of the insertion is behind the last closest prefix or, if no closest prefix exists, in front

of the first closest suffix. If non of them exists, we insert A′ as the last column in M .

After the successful insertion of a single alignment A, the columns in M are still transitive

closures, have at most on entry per sequence and underlie the partial order �. In other words,

M satisfies the conditions imposed by Definition 2.1 (p.27) and is therefore still a multiple

alignment. Therefore the alignments in A′, which now also includes A, are consistent based

on Definition 2.2 (p.29). If the insertion of A was not successful, M and A′ remain unchanged.

In both cases the induction hypothesis is satisfied.

Assembly end: The assembly is finished when all alignments in the queue Q are divided into

the set A′ of consistent alignments with corresponding multiple alignment M and the set I of

alignments that are not consistent with A′. Note that M is not a multiple alignment in the

usual sense. According to Definition 2.1 (p.27) and the applied simplifications, M consists

out of thick columns. Each thick column aligns consecutive sequence areas but not all parts

of the sequences have to be part of a column. If a sequence area is not aligned by any of the

consistent alignments in A′ it is not part of M .

2.3.3 Alternative Solutions

The greedy assembly above determines a local optimal solution of the MCASP that maximizes

the sum of the extended scores. In addition to this result, one could also be interested in

alternative solutions. Obviously, the number of possible solutions is exponential to the number

of alignments and we have to restrict the search. Also, we are interested in solutions that

differ from the optimal solution by more then only a few alignments.
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We combine this requirements for determining alternative solutions by performing the

greedy assembly multiple times, starting each assembly with the insertion of the alignments

that have been incompatible during all previous assemblies. More detailed, we perform the

first assembly as described above. All following assemblies are then performed using two align-

ment queues Q1 and Q2 instead of just one. The first queue Q1 = I contains the alignments

that have been incompatible in all previous assemblies while the second queue Q2 = A \ Q1

contains the remaining alignments. Starting each alternative assembly with Q1 we divide

the alignments into a new consistent set A′ and a new inconsistent set I. Then we con-

tinue the assembly with Q2 whereas consistent alignments are added to A′ while inconsistent

alignments are not inserted into I.

Using this procedure, at most |A| different solutions are possible. By inserting first all

compatible alignments that are not part of any previous solution, the results differ in a

meaningful way.

2.3.4 Runtime and Memory Requirements

The amount of time and space that is needed to solve the MCASP by the heuristic approach

depends on the number m of sequences S1, . . . , Sm, of the upper bound l for the length of these

sequences and on the number n of alignments in the alignment collection A = {A1, . . . , An}.
The calculation of the extended scores is done by checking all pairs and triple of alignments

in A in O(n3) time. The subsequent assembly with the construction of the multiple alignment

M is done by inserting and updating alignment columns based on the alignments in A. The

number of these columns is obviously restricted by the number of elements in the site space

and hence in O(lm). The update of a single (thick) column with mi entries takes a constant

number of operations for each entry and hence is in O(mi) for the entire column. However,

we have also
∑

imi ≤ lm. Therefore, the effort of inserting a complete (local) alignment

A ∈ A is bounded by O(lm).

The greedy heuristic thus produces a solution in O(n3+nlm) time. In practice, however, the

number of columns of M intersected by an alignment A is much smaller than the theoretical

upper bound of O(lm). Also the calculation of the extended scores will be below O(n3) since

the check for support of the third alignment must only be performed if the first and second

alignments overlap. For the determination of all alternative solutions we need O(n4 + n2lm)

time. The amount of memory is determined by the size of the multiple alignment M and

hence is restricted by the site space that is in O(lm).

2.4 Empirical Validation of the Algorithm

In order to evaluate the performance of our algorithm, we follow two different approaches.

First, we use random alignment sets to demonstrate the correctness and the good runtime
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behavior. Then we use biological data to determine consistent subsets and compare these

results with the expected solution and other alignment programs.

2.4.1 Quality of Solutions

For the verification of our heuristic approach we compare our method with the NP-complete

model that determines the optimal solution by analyzing each subset of alignments, See

Section 2.2.1 (p.35). Because of the exponential running time of the optimal algorithm this

comparisons have to be done with small alignment collections A. Also, these small collections

need to contain a high number of conflicts in order to induce a high number of possible

solutions. Otherwise it would be easy for the heuristic to find the optimal solution and no

significant conclusions about the correctness could be made.

Based on these requirements, we decided to generate artificial data sets A. The idea is

to use a set of m sequences S1 to Sm with the same number l of motifs that are randomly

distributed in order to create alignments for A. We code each of the l motifs by a single

number. If two different sequences, Sx and Sy, have the same number at position i and j, we

create an alignment A between the two numbers and insert A into our initial alignment set

A+ = {A = {[x, i, i], [y, j, j]} : Sx[i] = Sy[j]}. For the simulation of evolutionary differences

between the motifs we do not use all of the initial alignments. Instead we insert the alignments

in A+ with the probability e/(m−1) into the final test set A. The variable e with 1 ≤ e ≤ m−1

corresponds to the expected number of adjacent edges for each element of the site space.

Hence, high values for e describe evolutionary closely related sequences while small values

correspond to distantly related sequences.

The crucial part for a high number of conflicts is the choice and the order of the l motifs

in each sequence. As seen above, there are two different kinds of conflicts: contradictions

and crossings. Contradictions arise if the same motif occurs multiple times in at least one

sequence while crossings arise if the order of the motifs is different between the sequences. In

order to create meaningful data sets, the sequences should consist of different motifs where

some of them are conserved over some sequences. To combine all this, we randomly choose

for each sequence l motifs based on the Poisson distribution. We set the parameter λ of

the distribution, that corresponds to the expected value, in dependence of the motif that is

determined. The probability p that the ith motif with 1 ≤ i ≤ l has the value k is given by

pi−1(k) =
(i− 1)k

k!
e−(i−1) .

This way the motifs described by small numbers are contained in most sequences while the

motifs described by big numbers are likely to exist multiple times in one sequence. The last

step is the concatenation of the motifs to the sequences, i.e. the determination of the order.

This is done randomly in order to create crossings.
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Model |A| |A′| Ex. Hr. Optimal Direct Error
(m/l/e) (in %) (in %) (in %)

3/8/1 10.65 5.36 21.62 3.64 86.80 60.40 2.61
4/3/1 5.96 4.16 6.74 2.08 96.40 88.00 0.67
4/3/2 11.60 6.84 29.11 3.06 87.20 70.40 2.05
4/3/3 15.72 8.66 51.40 3.91 96.40 78.80 0.42
4/4/1 7.58 5.01 12.21 2.36 96.00 82.80 0.80
4/6/1 10.90 6.54 32.65 2.95 87.60 68.00 2.08
4/8/1 14.09 8.02 63.80 3.38 72.80 47.60 3.59
5/8/1 16.22 10.00 140.58 3.05 65.20 47.60 4.48

Table 2.1: Results for the correctness analysis. The fist column gives the options that where
used to generate the alignment collection. Here, m is the number of sequences, l the number
of motifs per sequence and e the expected number of alignment edges per sequence and motif.
The other columns gives the average values for the number of input alignments (|A|), the
number of alignment in the optimal solution (|A′|), the number of exact solutions (Ex.),
the number of heuristic solutions (Hr.), the percentage of how often the heuristic found the
optimal solution (Optimal), the percentage of how often the first solution of the heuristic has
been the optimal (Direct) and the rate of missing alignments in the best heuristic solution
compared to the optimal solution in percent (Error).

In summary, we create the alignment collection A based on m sequences. Each sequence

has l motifs, whereas the probability for the ith motif with 1 ≤ i ≤ l to be k is determined

by the Poisson distribution pi−1(k) with the expectation i− 1. The order of the determined

motifs is set randomly where each position has the same probability. Alignments are created

between all equal motifs and each alignment is inserted into A with the probability e/(m−1).

The alignment collections A determined this way are used to compare our heuristic to the

optimal solutions. We first determine all consistent subsets A′ of A that are not a subset

of another consistent subset, i.e. that are maximal, with the exact algorithm described in

Section 2.2.1 (p.35). Then we use our heuristic to determine all alternative solutions. For

the estimation of the quality of the heuristic solutions, we determine and compare following

properties:

• |A|: The number of alignments in the input alignment collection A.

• |A′|: The number of alignments in the optimal consistent subset of A determined with

the exact algorithm.

• Ex.: The number of consistent maximal subsets determined by the exact algorithm.

• Hr.: The number of consistent alignment subsets determined by our heuristic.

• Optimal : This value is 1 if the heuristic has found an optimal consistent subset and 0

otherwise.
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Figure 2.14: Correctness analysis. The bars indicate the number of runs (log scale) with the
corresponding number of missing alignments the best heuristic solution.

• Direct : This value is 1 if the heuristic found the optimal consistent subset in the first

place, i.e. not as an alternative solution, and 0 otherwise.

• Error : This value gives the rate of missing alignments in the best heuristic solution

relative to the optimal solution.

The results for the different sequence numbers m, the motif numbers l and the expected

alignment edges e per motif are summarized in Table 2.1. For each set of parameters we

performed 250 runs. Based on the greedy approach, our heuristic determines in every case a

correct consistent subset. In most cases, this subset is also maximal, i.e. the heuristic detects

the optimal solution. This optimal solution is furthermore mainly found in first place. With

a rising number of input alignments, i.e. higher numbers for m and l, the number of possible

solutions grows as well. In these cases, the heuristic becomes worse. In contrast, for high

values of e, which correspond to closely related sequences, we get an improvement of the

correctness.

In summary, from the 2, 000 calculated test sets, the heuristic has one error in 242 cases,

two errors in 34 cases and four errors in one case. In all other cases, the algorithm determined

optimal results, see Figure 2.14. All optimal solutions of the test sets together have 13, 659

alignments while the errors sum up to 314 alignments. The corresponding error rate is

2.30 percent.

The worst result with the parameters m = 5, l = 8 and e = 1 has on average an optimal

solution with 10 alignments where 4.48 percent of these alignments have been missing in the
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Figure 2.15: Runtime analysis. The measured time amounts in dependence of the size of the
input alignment collection A (black line and points). For comparison we have given a linear
(red), a quadratic (blue) and a cubic function (green) scaled by a linear factor so that the
curves go through the penultimate data point. The measured runtime gives a good agreement
with the quadratic function.

heuristic solution. If we extrapolate this value we have for an optimal solution with 223 align-

ments in average one missing alignment. Unfortunately, we cannot extend the comparison to

bigger sets of input alignments since the computation of the exact result takes exponential

time. But even with slightly growing error rates, this is a very good result and we can expect

that our heuristic works.

2.4.2 Practical Runtime

In order to test the efficiency of our approach, we measure the amount of time t that our

heuristic needs to determine all alternative results depending on different sizes of the input

alignment collections A. This collections are again randomly created as described above. We

set the sequence number m to 20 and the expected alignment number e to the maximal value

19. The motif numbers l ranging from 1 to 100. The corresponding sizes of the input alignment

collection start with 190 and reach for l = 100 a size of 18, 111 alignments. The measurements

are performed on an Intel Xeon 2.13 GHz, 32 GB RAM, Fedora Linux computer and were

repeated multiple times. The average amounts of time are summarized in Figure 2.15.

The runtime is pretty close to the quadratic curve. Since the complexity is mainly de-

termined by the calculation of the extended scores, this is not surprising. Although for n

alignments the complexity for this step is in the worst case in O(n3), it is for practical usage
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closer to O(n2). During the calculation of the extended scores, the algorithm searches for

pairs and triplets of alignments that support each other. In case of triplets, the algorithm

looks for alignments that connect two overlapping alignments. If two alignments do not over-

lap, this search has not to be performed. For arbitrarily distributed alignments the number

of alignments that overlap with a certain alignment is rather constant instead of being close

to the worst case O(n). Hence, the expected complexity of the calculation of the extended

score, and therefore of the whole algorithm, is likely to be in O(n2). This is approved by the

determined running times.

Summarized, our heuristic has a very good performance. The determination of consistent

subsets with more then 18, 000 alignment is done in five minutes. The exact algorithm would

have to check in this case around 218000 ≈ 105400 subsets.

2.4.3 Biological Datasets

An evaluation of our heuristic on biological data is difficult. The problem here is that there

does not exist any set of pairwise alignments with given consistent subset or multiple reference

alignment. Instead existing benchmark data sets have been created for the evaluation of

multiple alignment algorithms. Consisting of homologue sequences and a given multiple

reference alignment of these sequences there is no possibility to extract the pairwise alignments

that have been used to calculate the reference in a reliable manner. Nevertheless we can use

these benchmark datasets to check our heuristic for the special case of the MCASP where

the alignments consist of individual alignment edges. Therefore, we calculate all pairwise

alignments for the given set of sequences S with an external alignment program and split this

global alignments into the set A of individual alignment edges. The multiple alignment M

that is created while determining the consistent subsets A′ ⊆ A can then be compared to the

given reference alignment Mref over S. Furthermore, this scenario allows us to compare our

method to other state of the art multiple alignment programs.

As source for the sequences and reference alignments we use BRaliBase II (Gardner et al.,

2005). Consisting of five RNA families, namely Group II Intron, 5S RNA, SRP RNA, tRNA

and U5 RNA, this database was created to compare multiple sequence alignment programs

upon structural RNAs. Each family has around 100 data sets where each set has 5 sequences

with a length ranging from 60nt to 300nt and sequence identities ranging from below 25% up

to almost 100%. For the comparison of M and Mref we use the program bali score which

calculates the standard accuracy measures Sum of Pairs and Total Column (Thompson et al.,

1999). The sum-of-pairs score (SP ) is defined as the rate of edges of the reference alignment

Mref that are also present in the calculated alignment M :

SP =
|{e : e ∈ E(M) ∧ e ∈ E(Mref )}|

|E(Mref )|
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Program GII Intron 5S rRNA SRP RNA tRNA U5 RNA

Hr. (ClW2) 73.77 / 62.55 92.88 / 86.12 87.10 / 76.90 86.27 / 75.48 79.58 / 64.89
Hr. (LocA) 76.35 / 63.54 94.48 / 88.76 87.43 / 77.11 96.05 / 92.06 83.65 / 70.69

ClustalW2 72.84 / 61.76 93.24 / 87.06 87.43 / 77.17 87.06 / 76.61 79.61 / 65.61
DIALIGN-TX 72.08 / 61.36 91.69 / 84.71 82.92 / 71.42 78.53 / 68.41 77.80 / 63.22
T-Coffee 79.29 / 68.13 94.59 / 89.22 87.31 / 76.77 92.00 / 84.33 83.55 / 70.36

MAFFT 77.20 / 64.02 93.83 / 87.78 87.10 / 76.75 90.14 / 83.02 80.43 / 66.35
MUSCLE 76.43 / 63.68 94.04 / 88.35 87.03 / 77.00 87.27 / 78.40 79.76 / 64.93
ProbCons 78.69 / 66.99 93.67 / 87.77 86.92 / 76.59 89.82 / 81.21 83.28 / 69.32

Table 2.2: The SP / TC scores in percent for our heuristic with ClustalW2 and LocARNA input
alignments in contrast to different multiple alignment programs. The scores are determined
with different RNA families in the BRaliBase II. The best and second best results are typed
bold.

while the Total Column score (TC) is the rate of these columns c in M where all edges in c

are aligned in Mref :

TC =
|{c ∈M : e ∈ E(c) ⇒ e ∈ E(Mref )}|

|{c ∈M}| .

For the computation of the pairwise alignments over the input sequences S, which are

needed as source for the edges in A, we used two different programs. The first one is ClustalW2

(Thompson et al., 1994), a program that determines a global multiple alignment based on

sequence similarities by the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970).

The second program is LocARNA (Will et al., 2007). It is an enhancement of PMcomp (Hofacker

et al., 2004) and calculates pairwise local sequence structure alignments of two RNAs given by

their base pair probability matrices by optimizing sequence and structure similarities at the

same time, based on the Sankoff algorithm (Sankoff, 1985). We have chosen ClustalW2 since

it also calculates multiple alignments in a progressive manner. The comparison of the quality

of these multiple alignments and the quality of our alignments allows us to estimate the

contribution of our heuristic to the correctness of the results. The second program LocARNA

allows us the comparison with other state of the art alignment programs for RNAs that also

considers the secondary structure.

Besides ClustalW2 (version 2.1) we use for the comparison the actual versions of the related

programs DIALIGN-TX (version 1.0.2, with the ’-D’ option for DNA/RNA) and T-Coffee

(version 7.97). Also the widely used programs MAFFT (version 6.851, with the local ’L-INS-i

option), MUSCLE (version 3.8.31) and ProbCons (version 1.12) are used.

The results are summarized in Table 2.2. In general we observe that our method based

on the sequence alignments with ClustalW2 and on the sequence structure alignments with

LocARNA perform well and reach scores that are similar to the other programs. Regarding the

sequence structure alignments, we have the best results for the structural tRNA and U5 RNA
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Program GII Intron 5S rRNA SRP RNA tRNA U5 RNA

Hr. (ClW2) 76.57 / 65.61 93.18 / 86.38 86.97 / 76.69 87.52 / 76.83 81.05 / 67.07
Hr. (LocA) 78.18 / 65.37 94.13 / 88.12 87.28 / 76.76 96.08 / 92.12 84.59 / 72.18

ClustalW2 71.89 / 60.95 92.59 / 85.85 86.32 / 75.68 87.04 / 76.60 79.06 / 65.26
DIALIGN-TX 79.46 / 69.22 92.46 / 85.79 84.51 / 73.19 81.18 / 70.18 81.39 / 68.40
T-Coffee 79.02 / 68.03 93.91 / 87.99 86.65 / 75.86 92.01 / 84.51 83.69 / 70.78

MAFFT 78.17 / 65.28 93.23 / 86.63 86.10 / 75.21 90.35 / 83.13 81.00 / 67.77
MUSCLE 77.62 / 65.18 93.70 / 87.75 86.22 / 75.80 87.79 / 79.09 80.32 / 66.35
ProbCons 78.63 / 66.66 93.17 / 86.81 86.29 / 75.61 90.16 / 81.61 83.41 / 69.64

Table 2.3: The true positive SP / TC scores for the BRaliBase II data. This scores have
been calculated by swapping the calculated and the reference alignment. The best and second
best results are typed bold.

families and the second best results for 5S RNA and SRP RNA. The only other program that

achieved comparable quality was T-Coffee with the highest scores for the Group II Intron

and 5S RNA families and the second highest scores for tRNA and U5 RNA. Since T-Coffee

performs the same score extension to determine biologically correct edges these results indicate

that this method based on the support of alignments by other alignments is appropriated.

If we compare the results of the heuristic based on the ClustalW2 alignments with the

direct results of ClustalW2 we observe that our method is worse in all cases except the

Group II Intron family. At first glance, this is surprising even if the difference is small. Since

the input of both methods consists of the same global pairwise alignments, and hence the

same set of edges, we would expect an improvement of the quality in our method based on the

extended scores. Nevertheless, this difference is not as surprising as it seems. Our heuristic

uses only the information of the given edges for the assembly of the multiple alignment M ,

i.e. there is no edge in the multiple alignment that is not existent in at least one pairwise

alignment. In contrast, the progressive assembly of M by ClustalW2 aligns sequences to the

growing M . Therefore, new edges can arise. Since the scoring function prefers a mismatch

instead of two gaps, the ClustalW2 alignments are more compact, i.e. with less columns and

more pairwise edges. In order to affirm this assumption, we analyze only the true positive rate

by swapping M and the reference alignment Mref . Thus, we determine the rate of correct

edges and columns in our alignments instead of the rate of reference alignment edges and

columns that have been found by our heuristic. These results are summarized in Table 2.3.

All heuristic scores are better then the ClustalW2 scores. The sequence structure results are

even better than all other methods except for the Group II Intron data.

As already mentioned, for the evaluation of the arbitrary case of the MCASP no benchmark

data sets exist. Instead we have to choose a different way. The idea is to define a set of

sequences S consisting of related sequence subsets. By calculating local pairwise alignments

between all sequence pairs in S we create our input alignments collection A. This collection

contains alignments between the related sequence subsets. Thereby these alignments should
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Figure 2.16: Consensus sequence and structure of the Rfam families used for the evaluation
of the heuristic algorithm. All families are translation control or localization elements in
Drosophila.

be consistent and there should be no alignments between sequences which belong to different

related sequence subsets. In addition, we can expect random similarities and hence there will

be some alignments in A that create inconsistencies. By using our heuristic to determine

a consistent subset A′ the corresponding multiple alignment M should consist of multiple

columns where each column contains only sequence areas from related sequences.

As source for our sequence set S, we used the Rfam database (Gardner et al., 2009) that

contains information about non-coding RNA families and other structured RNA elements.

We use five ncRNA families and from each family we pick three sequences. Thus, our data

set consists out of five related subsets where each subset consists of three sequences, see

Figure 2.16. In order to enhance the probability of random similarity we furthermore enlarge

the sequences by adding 100 nucleotides from the flanking region at both sides. For the

computation of the local pairwise alignments between the ncRNA sequences we use again

LocARNA (Will et al., 2007). Based on the 15 sequences in S we determine an alignment

collection A consisting of 105 alignments. Our heuristic determine 5 alternative solutions

where the solutions with the highest score consist out of 43 alignments. All columns of the

corresponding multiple alignment M consist mainly of sequences areas of one family. The
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Figure 2.17: Multiple alignment of the Rfam evaluation. Areas with the same color are
aligned in the same alignment column. The color itself codes the partial order of the columns,
beginning with violet for the first column, the order follows the light spectrum, ending with
red for the last column. Each Family has its own color pattern which is similar between all
member sequences. Hence, the underlying consistent alignment subset reflects the biological
relatedness of the sequences.

small number of exceptions is based on inter-familiar similarities that are not in conflict with

the partial order of the family motifs, see Figure 2.17.
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CHAPTER 3

Footprint Detection

The universe, they said, depended for its operation on the balance of

four forces which they identified as charm, persuasion, uncertainty

and bloody-mindedness.

Thus it was that the sun and moon orbited the Disc because

they were persuaded not to fall down, but didn’t actually fly away

because of uncertainty. Charm allowed trees to grow and bloody-

mindedness kept them up, and so on.

Some druids suggested that there were certain flaws in this theory,

but senior druids explained very pointedly that there was indeed

room for informed argument, the cut and thrust of exciting scientific

debate, and basically it lay on top of the next solstice bonfire.

The Light Fantastic

Terry Pratchett

I nsights into the regulation of gene expression are crucial for discovering mechanisms

of development and evolution. An important step towards this understanding is the

capability of identifying regulatory sequence elements associated with a given gene. Based on

the regulatory function, these elements are likely to be subject to stabilizing selection what

makes them detectable by comparative sequence analyses (Tagle et al., 1988) and phylogenetic

informative (Prohaska et al., 2004a).

Regulatory elements are located in the regulatory region, a non-coding sequence area around

the gene and inside the introns, that can cover several thousand nucleotides (Dieterich et al.,

2002). In contrast to the region, the regulatory elements can be very short. Furthermore,

they can undergo rapid changes that do not necessarily conform with the general phylogenetic

relationships of the surrounding sequences (Chiu et al., 2002; Schmidt et al., 2010). This char-
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acteristic makes it difficult for comparative sequence analysis to detect regulatory sequence

elements. In order to detect small motifs, local alignments with a low stringency have to be

calculated. This in turn produces plenty of alignments of which a large part is caused by

heterologous random similarities. The rapid changes inside regulatory elements demands for

additional input sequences to get additional evolutionary information which again increase

the complexity of the calculation.

In the previous chapter we pointed out, that the support of alignments by other align-

ments as well as the consistence of alignments in respect to the linear order of the sequence

sites can be used to detect homologous motifs. Based on these observations, we developed

an algorithm that is able to separate alignments between phylogenetic footprints from align-

ments between unrelated random similarities by the assembly of a multiple local alignment.

In this chapter, we use this method as basis for the development of the program Tracker

for detecting phylogenetic footprints. In contrast to other algorithms for phylogenetic foot-

printing, see Section 1.3.2 (p.14) in the introduction, Tracker determines a local multiple

alignment containing only conserved motifs. Additionally, Tracker maintains the linear or-

der of the underlying sequences in order to ensure homology. This, as well as the efficiency,

are significant advantages compared to approaches based on motif overrepresentation, see

Section 1.3.2 (p.16) in the introduction.

3.1 The Tracker Algorithm

The algorithm is based on pairwise comparisons over all pairs of homologous sequences. It is,

however, not necessary to compare the complete sequences. For example, if we are looking

for homologous regulatory elements and the sequences contain a gene, we are in most cases

not interested in the comparison of the exons of this gene. Instead we compare only the areas

in front of the gene among themselves, the introns among themselves, and the areas behind

the gene among themselves. Therefore, we define regions of homology, divide the sequences

in disjunctive fragments that contain the areas of interest and compare only fragments that

belong to the same region. In order to describe different scenarios, a region can consist of

multiple fragments or a fragment can be part of multiple regions. This is, for example, useful

if we combine multiple introns inside one region or if it is not possible to split a part of one

sequence in multiple fragments because of a missing gene. See Figure 3.1.

The input of Tracker therefore consists of a fragment family F of p disjunctive fragments

F1 to Fp, that are defined on the m homologous sequences S1, . . . , Sm under consideration.

Furthermore, two tables ψ and φ have to be defined. The first table ψ : N → N assigns

each fragment index i to the corresponding sequence index ψ(i) = x with 1 ≤ x ≤ m. The

second table φ : N → P(N) assigns each fragment index i to a set of regions φ(i) = {y :

i is in region u} with 1 ≤ u ≤ r where r is the number of different regions defined by the
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S1 1/1 2/2 3/2 4/3 5/4 6/5 7/6 8/6 9/7

A1 A2 A3 B1 B2 C1 C2 C3

10/7 11/6 12/6 13/6 14/3,4,5 15/2 16/1
S2

C1 C2 C3 C4 A1 A2

S3 17/1,2,3 18/5 19/6 20/6 21/6 22/7

B1 C1 C2 C3 C4

Figure 3.1: Example for the Tracker input consisting of m = 3 homologous sequences S1,
S2 and S3, where sequence S2 is given in the reverse direction. The sequences contain three
homologous genes A, B and C that consist of multiple exons. Each exon is indicated by the
gene name and the index of the exons. Note that gene B is missing in S2 and gene A is
missing in S3. Based on these genes, we define r = 7 regions, corresponding to the area in
front of A (1), the introns of A (2), the intergenic region (IGR) between A and B (3), the
introns of B (4), the IGR between B and C (5), the introns of C (6) and the area behind
C (7). The p = 22 fragments corresponding to the regions are marked by their index and,
separated by a slash, the regions they belong to. Note that, for example, the fragments 11
to 13 belong to the same region 6 since all the fragments are introns of the same gene. In
contrast fragment 14 belongs to multiple regions since the B gene is missing in sequence S2.
It is also possible that a sequence does not contain all regions, as in the case of sequence S3,
where gene B has no introns and hence the corresponding region 4 does not exist.

user. For convenience, there are some alternative possibilities to define the Tracker input.

A detailed overview about the exact input and output syntax, possible parameters and the

availability can be found in Section B (p.135) in the appendix.

The subsequent computation of phylogenetic footprints consists of two steps. In a first

step, we determine the initial data set of pairwise alignments over the homologous regions and

perform optional pre-processing steps in order to enhance the quality of these alignments. The

second step is the assembly of the alignments using the algorithm described in Chapter 2 (p.23)

and the evaluation of the motifs.

3.1.1 Calculation and Processing of the Pairwise Alignments

The algorithm starts with the calculation of the initial data set of pairwise alignments. Given

r homologous regions over m sequences, we calculate for each region 1 ≤ u ≤ r and for each

pair of sequences 1 ≤ x < y ≤ m all local alignments between all fragments i and j with

ψ(i) = x, ψ(j) = y and u ∈ φ(i) ∩ φ(j).

Pairwise Alignments

Since genomic sequences can be very long, we use here a seeding strategy for the alignment

calculation. Alignment algorithms based on seeds first compute a set of all possible seeds, i.e.

all words of a certain length that match a pattern in the query sequence with sufficient score.
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Then, the algorithms search in linear time for all gap-less motifs that match one of the seed

patterns and elongate this seeds in both directions to obtain high scoring segment pairs. In

case of consecutive patterns, as used in BLASTN (Altschul et al., 1997), the algorithm searches

for identical words of a certain length. Additionally, some degree of degeneracy can be allowed

to identify nearly exact words (Brudno et al., 2003). For example, an eight-consecutive model

with two levels of degeneracy will identify all subsequences that have at least six identical

nucleotides. In case of non-consecutive or two weighted-space patterns, the algorithm detects

seeds where the positions for required matches and allowed mismatches are strictly specified.

For example, BLASTZ (Schwartz et al., 2003) uses a 12of19 two weighted-spaced pattern of

1110100110010101111, where 1 stands for a required match and 0 for a position that does not

matter. This precise combination was shown to be most sensitive among all combinations of

the 12of19 seeds (Ma et al., 2002).

Here, we use the LASTZ algorithm, a drop-in replacement for blastz (Schwartz et al., 2003).

Per default, we search for seeds with a low stringency, in detail eight matches or transitions

in all positions and report all segment pairs with a score of at least 1000. Also we search per

default both strands for conserved regions and we treat ambiguous IUPAC characters like an

‘N’. Besides the default parameters that are used to minimize the number of false negatives,

Tracker provides the possibility to use other parameters for the LASTZ search.

The resulting set A of the LASTZ alignments can contain alignments that consist of highly

conserved blocks that are separated by divergent stretches or that align repetitive elements.

Therefore, it is possible to enable a pre-processing parameter. In this case, Tracker continues

with the processing of A in order to remove unconserved and repetitive areas. Since the LASTZ

segment pairs are given as sequence coordinates, it is necessary to determine first the exact

pairwise alignments for each segment pair. This part of Tracker is generic and each pairwise

alignment algorithm could be used. In our implementation, we use the conventional sequence

alignment algorithm ClustalW2 (Thompson et al., 1994) since it is a well-known standard

program that performs for this task well and that can be easily included in our program.

Removing of Unconserved Areas

In order to remove the unconserved areas, we process each alignment A in A by a sliding

window of length 12. For each window starting at position i we determine the sequence

identity wi. If wi is higher than 0.75, we mark each position in the window as highly conserved

while unmarked positions in windows with wi lower than 0.40 are marked as unconserved.

Subsequently, all unconserved regions are removed while all remaining parts that contain a

highly conserved part are inserted instead of the original alignment A.
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Removing of Repetitive Areas

For removing repetitive elements, we use a local entropy measure. Since complex repetitive

elements that are conserved could be functional, this simple method is a good choice in order

to remove only repetitive elements with low complexity. Technically, we again use a sliding

window w of length 20 over each sequence of the corresponding pairwise alignment. Inside

w, we determine the nucleotide frequencies fx for all nucleotides x and the joint frequencies

fxδy for all pairs of nucleotides x and y with the distances 1 ≤ δ ≤ 5. Based on these values,

we calculated for each position i in w the entropy

Hi = −
∑

x

fx
i log2 f

x
i

and the joint entropy

Hδ
i = −

∑

xy

fxδy
i log2 f

xδy
i .

If the resulting mutual information measure

Mi =
1

δ

∑

δ

Hδ
i −Hi

is smaller then 0.75 or the entropy Hi is smaller then 1.25 we regard position i as repetitive.

These threshold values have been determined by evaluating test sets. Finally, we remove all

parts of the corresponding alignment that have been marked as repetitive in one of the both

sequences.

After the removal of repetitive areas, the pre-processing is finished. Note that for big data

sets, the calculation of the exact alignments by ClustalW2 can take much time. In these cases

it is better to omit the optional processing steps and to continue directly with the calculation

of the multiple, local alignment.

3.1.2 Determination of the Multiple, Local Alignments

The alignments in the initial alignment collection A are represented as interval pairs A =

{[i, bx, ex], [j, by, ey]}. Note that, in contrast to the previous chapter, i and j here denote the

index of the fragment instead the index of the sequence. For the sake of simplicity, we also

omit the case distinction for the strands for the description of the algorithm. During the real

assembly of the multiple alignment M by Tracker, the first inserted alignment that contains

a fragment of sequence x determines the orientation of x in M . If the alignment orientation

is the reverse complement of the orientation given by the input, we adopt the comparisons

during the assembly. In detail, we say that an interval [i, b, e] is “in front” of a second interval

[i, b′, e′], if the orientation of both is equal to the input and if e < b′, or if the orientation

of both is the reverse compliment of the input and if e′ < b. The analogous case yields for
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the definition of the term “behind”. If the orientation of intervals is not equal, they are

incompatible. Hence, the multiple alignment M is created by alignments where all intervals

of the same sequence have the same orientation. For the further description, we assume

therefore, without loss of generality, that all alignment intervals have the same orientation as

the input sequences.

Clusters of Independent Subsets

In order to minimize the effort for the assembly of the multiple alignment, we first split the

alignment collection A into independent subsets to which we refer as clusters. Therefore, we

start with an arbitrary alignment A in A and insert it into the new cluster C. Then we use this

alignment as representative and insert all remaining alignments B in A that overlap with A

into C. Two alignments A = {[i, bAx , eAx ], [j, bAy , e
A
y ]} and B = {[j, bBy , eBy ], [k, bBz , e

B
z ]} overlap,

if and only if they have a common fragment j and if the aligned areas of this fragment overlap,

i.e. if bAy ≤ eBy and bBy ≤ eAy . After all overlapping alignments are inserted, we continue with

the next alignment in C as representative and repeat the procedure until all alignments in C
have been used as representative. In this case, C contains all alignments that overlap directly

or indirectly with the first inserted alignment. We repeat this procedure with a new cluster

until all alignments in A are subdivided into clusters.

Inconsistencies based on contradictions between alignments of different clusters are not

possible by construction. Nevertheless, alignments of different clusters can create crossings.

Therefore we compare all pairs of clusters and join them if they cross each other. Two clusters

C and C′ create a crossing if they contain alignments A,B ∈ C and A′, B′ ∈ C′ and if A is

in front of A′ in one sequence and B behind B′ at another sequence. After this step, all

clusters are independent since inconsistencies can only be created by alignments within the

same cluster. Clusters mostly correspond to homologous regions. In cases where fragments

belong to multiple regions, a cluster can contain multiple regions while in cases where the

sequences have high evolutionary distances, fragments of the same region can be part of

different clusters.

Consistent Subsets and Multiple Alignment Assembly

For the calculation of the multiple alignment that aligns conserved local motifs in thick

columns, we use the algorithm introduced in Chapter 2 (p.23) to determine the best and all

alternative solutions of the Maximal Consistent Alignment Subset Problem for each cluster

Ci. The alignments in Ci define the input. Since they contain the fragment index instead of

the sequence index, we furthermore translate the indices x into the sequence indices ψ(x).

The error tolerance ε can be set via a parameter. If no value is given, the algorithm takes

the highest difference between the length intervals of the initial alignment collection, i.e.

ε = maxA∈A{δ} with δ = |(ex−bx)−(ey−by)| for each alignment A = {[x, bx, ex], [y, by, ey]} in
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A. This value is an approximation for the highest number of gaps in the alignments and hence

a good approximation for acceptable shifts. The resulting consistent subsets for each cluster

are sorted in a descending order by their score, i.e. the sum of the scores over alignments in

the consistent subset. Since the alignments in each solution are mutually consistent, i.e. each

alignment is consistent with every other alignment, we denote the solutions as cliques. The

expression Cj
i stands for the clique with the jth highest score of cluster i. The corresponding

multiple alignment is denoted by M j
i .

Smoothing of Thick Columns

Each resulting alignment M consist of thick columns c = {[z, bcz, ecz]}, where each column

is a set of intervals that are defined by the index of the sequence z, the beginning of the

interval bcz and the end of the interval ecz. Columns represent local conserved motifs and by

construction, two columns c and d differ either in the composition of their sequences , i.e.

{z : [z, bcz, e
c
z] ∈ c} 6= {z : [z, bdz , e

d
z ] ∈ d}, or they include both an interval over the same

sequence z that are separated by a gap, i.e. ∃z[z, b
c
z, e

c
z] ∈ c ∧ [z, bdz , e

d
z ] ∈ d ∧ (ecz + 1 <

bdz ∨ edz + 1 < bcz). In a biological sense, these differences can be interpreted as evolutionary

events such as insertions or deletions of sequence parts. Hence, the sequence areas aligned in

one column can be expected to share the same evolutionary history.

Nevertheless, during the assembly of the multiple alignment M , we determine splitting

positions inside an interval by linear interpolation and we allow an error tolerance ε > 0.

Therefore, the boundaries of the intervals are only approximations, and it is possible that

prefix or suffix areas of intervals are more likely to be part of another column with a differ-

ent evolutionary history. For an example see Figure 3.2 (a). The left part shows the true

evolutionary history between column c, d and d′ in form of a combined multiple alignment

between c and d and between c and d′. As you can see, some suffixes of c are more likely to

be part of d or d′ while prefixes of d and d′ are likely to be part of c. Unfortunately, we only

know the interval boundaries determined by the heuristic, as shown in the right part of the

figure. The next step in our algorithm is therefore the correction of these misplacements by

adopting the boundaries between adjacent intervals.

The optimal solution for this problem would be a rearrangement of the interval boundaries,

i.e. the exchange of prefixes and suffixes between intervals, that maximizes the sum-of-pair

scores over all columns. Obviously, an algorithm for this problem would also be able to solve

the general alignment problem. This makes the smoothing problem NP-complete (Elias, 2006)

and we cannot expect to find optimal solutions in an efficient manner. In order to create a

useful heuristic, we first summarize some helpful facts:

• By construction, misplaced interval boundaries are only possible between adjacent in-

tervals, i.e. intervals in different columns that are defined on the same sequence and

where the beginning of one interval is directly behind the end of the other interval. In
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(b)(a) (c)

d

(d)

d

Figure 3.2: Smoothing of columns. The interval boundaries between the thick columns c
(red) and d (green) and between c and d′ (blue) do not correspond to the relationship of the
sequences as indicated by the similarities shown by the combined alignment (a, left figure).
Note that the combined alignment contains only information about the similarities between
c and d respective d′. It contains no information about d and d′ even if d is displayed above
d′. Unfortunately, the true adjustment is hidden and we know only the interval boundaries
as determined by the heuristic assembly (a, right figure). In order to correct the boundaries,
we take the last ε sequence sites of the c intervals and align them with the first ε sequence
sites of each adjacent column d and d′ (b). Both resulting multiple alignments are combined
to a single one, whereas the highest scoring alignment (here the c-d alignment) guides the
exact arrangement of the c intervals (c). Now we compute for each alignment column of the
combined alignment the sum-of-pair score of all the thick columns under the assumption, that
the considered alignment column defines the new end of c. Thereby, it is sufficient to restrict
the computation to columns between the last column that contain only sites from c and the
last column that contains at least one site of c (c, black doted lines). The boundaries of the
intervals are then adapted in respect to the column with the highest sum-of-pair score (c,
black continuous line). The resulting intervals correspond now two the biological history of
the motifs (d, original interval boundaries are indicated by black dots).

all other cases, the heuristic does not perform a split of a column and the boundaries

are unambiguously defined by a pairwise alignment of the input alignment collection.

Hence, we only have to correct boundaries of adjacent intervals.

• If we correct the boundaries at the end on one interval, we simultaneously correct the

beginning of the adjacent interval. Hence it is sufficient to correct only the interval ends

of all columns.

• The correction of interval boundaries between two columns also affect the optimal ad-

justment of boundaries of other columns with adjacent intervals. For example, if we

move the boundaries between c and d as in Figure 3.2 towards c, the sum-of-pair score

of the three columns will be maximal if we also move the boundaries between c and

d′ towards c. Hence, changes of boundaries have side effects and we should correct

boundaries only once to avoid infinite loops.

Based on this information, we use again a greedy approach where we iteratively correct the
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interval ends of each column. Clearly, the system of thick columns is also not a matroid or

greedoid and we cannot expect to find optimal solutions. Therefore, we try to minimize cor-

rections that are disadvantageous in a global scale by starting with the correction of columns

that have a high influence onto the final sum-of-pair scores over all columns, i.e. columns that

have high scores itself. Hence, we correct the interval boundaries iteratively for all columns

in the order of their score.

For the correction of one single column c, we first determine all columns d that contain an

interval that is adjacent to one interval in c. For each of these adjacent columns, we need

to know the arrangement that corresponds to the evolutionary history between c and d in

order to adapt the interval boundaries. Therefore, we calculate a multiple alignment of the

sequences in c and d, whereas adjacent sequences are first concatenated. Instead of aligning

the complete sequences, it suffices to analyze only the areas within the error tolerance ε.

Hence, we restrict the calculation of the multiple alignment to the last ε sites of c and the

first ε sites of d, cf. Figure 3.2 (b). For the generic step of the alignment calculation, we use

again the progressive multiple alignment program ClustalW2 but other multiple alignment

programs can be used as well.

The next step is to merge the multiple alignments of the different adjacent columns d into

a single multiple alignment M c, cf. Figure 3.2 (b) and (c). If c has only one adjacent column,

we already have the result. Otherwise, we use the multiple alignment with the highest score

as a guide. In this case we remove for each multiple alignment all sequences that are only

based on c and join the remaining parts as indicated by the arrangement of the c intervals in

the guiding alignment.

The arrangement of the thick columns in M c corresponds to the evolutionary history be-

tween them, cf. Figure 3.2 (c). The final step is the determination of that alignment column

of M c as new end for thick column c, that corresponds to this history. In other words, we are

looking for that column x in M c, that maximizes the sum-of-pair scores of the thick columns if

we set the boundary between c and the adjacent columns d behind x. Obviously, that column

x is located between the last alignment column of M c that contains only sites out of c and the

last alignment column that contains at least one site out of c. Hence, we determine the new

boundary column x by computing the sum-of-pair scores for all columns under consideration.

The boundaries of non-adjacent intervals are not changed. The resulting intervals correspond

now to the biological history of the motifs, cf. Figure 3.2 (d).

Post-Processing and Representation

In order to gain more information about the single motifs, the next step is the calculation of

a global sequence alignment of each motif represented by a column. In our implementation,

we do this also with ClustalW2 but again, each global alignment algorithm would do. After

this step, the multiple alignments M j
i determined during the calculation of consistent subsets
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is an ordered list of not necessarily consecutive global alignments of conserved motifs. These

motifs are supported by a maximal number of pairwise alignments and they are consistent to

the linear order defined by the sequence sites.

The last step is the reunion of the clusters to our final results R. We do this by iterating

over all clusters in the order of their position relative to the m homologous input sequences

S1, . . . , Sm. For each cluster Ci, we iterate over all cliques Cj
i in the order of their score. Each

of the corresponding alignments M j
i has a characteristic vector {+,−, 0}m that describe the

strands that are aligned by M j
i , whereas 0 is used if the corresponding sequence is not part of

M j
i . If R already contains a multiple alignment M ′ with the same characteristic strand vector

then the M j
i under consideration, M j

i and M ′ are consistent and we append M j
i . Thereby, the

0 in the strand vector is neutral and match +, − and 0. If multiple cliques of the same cluster

match an alignment in R, we only append the alignment corresponding to the highest scoring

clique in order to avoid a combinatorial explosion. After checking all clusters, R contains all

possible solutions whereas each solution is a list of phylogenetic footprints.

By default, Tracker present this results in from of a plain text file that includes the data

in an hierarchic manner. For each solution R in R, the file contains meta information about

characteristics and scores of R together with a detailed list of all columns in R. Besides this

basic output, it is also possible to obtain a graphical HTML output. For a detailed description

of the output Chapter B (p.135) in the appendix.

3.1.3 Runtime and Memory Requirements

The worst case amount of time and space, that is needed to find phylogenetic footprints with

Tracker, depends on the number m of sequences S1, . . . , Sm and of the upper bound l for

their length. For the calculation of the initial alignment set, we have to calculate LASTZ

alignments for each of the O(m2) sequence pairs. One alignment calculation consists of the

computation of all valid seeds, the search for these seeds, and their extension. For a constant

seed length, the first two steps can be performed in O(l) space and time while the extension

asymptotically takes O(l2) time and O(l2) space. For all sequence pairs we get a complexity

of O(m2l2) time and O(l2 +m2l) space for the calculation and memorizing the results.

Since the site space is restricted by O(ml), the number of possible resulting pairwise align-

ments corresponds approximately to the possible number of subsets of site space pairs and is

therefore in O(2m2l2). Nevertheless, meaningful scoring schemes prevent most of these possi-

ble alignments so that the number will be more likely in O(m2l). For further consideration,

we denote the number of alignments by n, where the number of columns in all alignments is

also restricted by l.

The optional processing of the initial alignment set takes O(nl2) time and O(l2 +nl) space

for the calculation and the storage of the pairwise alignments and O(nl) time and space for

the removal of not conserved and repetitive areas.
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The computation of all consistent subsets needs O(n3 + n2ml) time and O(ml) space, see

Section 2.3.4 (p.50) in the previous chapter. The division into clusters has no influence on

this asymptotically complexity but it will speed up the computation of the extended scores

and the subsequent assembly. For example, c clusters with approximately n/c alignments,

speed up the calculation of the extended scores by factor 1/c3. The determination of the

clusters, as well as their reunion, are neutral compared to the assembly, since they can be

done in O(n2) time and O(n) space.

The smoothing of the interval ends depends on the number of columns in the multiple

alignments which is restricted by O(ml). Each of the columns has at most m intervals, where

in the worst case each interval has an adjacent interval. In this case, we have to calculate

O(m) multiple alignments of m sequences. Since the sequence lengths of these alignments

are restricted by the constant value ε, the calculation of m multiple alignments between m

sequences by a progressive alignment algorithm needs O(m4) time and O(m2) space. The final

computation of the global alignment needs additional O(m3 + m2l2) time and O(l2 + m2l)

space for each column. For all O(ml) columns, we would need O(m5l + m3l3) time and

O(l2 +m3l2) space for the calculation and storage. This worst case scenario assumes O(ml)

columns with length O(l) and O(m) intervals per column. Nevertheless, the product of these

values is restricted by the site space and hence below O(ml). The real complexity is therefore

significantly smaller.

In summary, we need O(m2l2) time and O(l2 +m2l) space for the calculation and storage

of the initial alignments, O(nl2) time and O(l2+nl) space for the optional processing, O(n3+

n2ml) time and O(ml) space for the determination of the consistent alignments and O(m5l+

m3l3) time and O(m3l2) space for smoothing the intervals and the calculation of the final

global alignments. All together, Tracker needs O(n3 +n2ml+m5l+m3l3) time and O(m3l3)

space in the worst case. If we process the initial alignment set, the amount of time extends by

O(nl2) and the amount of space by O(nl). However, for practical uses, the effort of time and

space is mainly influenced by the determination of the initial alignment set by LASTZ, which on

average has linear running times, and the calculation of the extended scores, which on average

needs O(n2) time. Therefore, one can expect to end up with approximately O(m2l+n2) time.

3.2 Application to Biological Data

In order to demonstrate the functionality and performance of Tracker, we applied the pro-

gram on two biological data sets concerning regulatory elements and the evolutionary history

of Hox Clusters in birds and fish respectively.
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(a) (b)

Figure 3.3: Digit position, identity and 5’HoxD expression patterns in the ancestral (a)
and frame shift conditions (b). (a) In the ancestral condition (e.g. mouse), digit position
corresponds to digit identity. The expression of Hoxd12 to Hoxd8 is restricted to the posterior
digits (gray shading). (b) In the bird wing, there is a mismatch between digit position and
digit identity. Digit positions 2 to 4 develop into digit identities I to III. Associated with
the shift in digit identity relative to position, is a shift in expression of the 5’HoxD genes to
positions 3 and 4.

3.2.1 Regulatory Elements of 5’ HoxD Gene Expression in Birds

The study of homeotic mutants, where one body part is transformed into another, has led to

advancements in our understanding of how genetics, development, and evolution interact in

generating morphological diversity. One example for homeotic transformations is the evolu-

tionary reduction in digit number in birds that has left three digits on the wing. Arguments

over the identity of these three remaining digits have been ongoing for over 150 years. The

debates stem from a direct disagreement between anatomical/paleontological and embryolog-

ical evidence of digit identity (Wagner, 2005). On the one hand, paleontological evidence,

tracking digit loss over evolutionary time, coupled with anatomical evidence of digit morphol-

ogy and function identifies these digits as I, II, and III (Sereno, 1999). On the other hand,

embryological evidence reveals that these digits develop in positions that typically form digits

II, III, and IV in most amniotes (Burke and Feduccia, 1997). To resolve this conflict, it was

hypothesized that the digits of the avian wing have undergone a homeotic transformation of

identity. This frame shift hypothesis suggests that the developmental genetic determinants

of digit identities I, II, and III have shifted and are now expressed in positions 2, 3, and 4

resulting in the transformation of digit identities (Wagner, 2005).

Recent experimental work provides strong support for the frame shift hypothesis. Ex-

aminations of posterior HoxD gene expression in the late limb development reveal a highly

conserved expression pattern in the developing digits that occurs regardless of digit position

(Young et al., 2009). Specifically, the expression of the 5’HoxD genes Hoxd12 to Hoxd8 is re-

stricted to the more posterior digit identities II to V, see Figure 3.3. Moreover, examinations
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mouse

human

dog

opossum

chicken

finch

1+

1+

1+

1+

1+

1+

21 4253

1 3241

11 3261

59 3215

188 4003

1 2832

(a)

mouse:   0|+|3404-3435|32  74 (0)  TCATTACCT-TTTTGGAAAAACACTTCTCTCCC  (27) 77
human:   0|+|2251-2282|32  72 (16) TCATTACTT-TTTCAGAAAAGCACTTTTTTCCC  (0)  76
dog:     0|+|2251-2282|32  72 (16) TCATTACCT-TTTCGGAAAAGCACTTTTTTGCC  (0)  76
opossum: 0|+|2312-2342|31  74 (0)  TCATTGCCTCTTTTGAAAGAGCA--TGTTTCCC  (0)  76
chicken:                           ---------------------------------
finch:                             ---------------------------------
                                   ***** * * ***   ** * **  * * * **     

(b)

mouse:                             -------------------------
human:                             -------------------------
dog:                               -------------------------
opossum:                           -------------------------
chicken: 0|+|3376-3400|25  82 (0)  AAAAGGAGGTAATACTTAAAGGAAA  (1) 93
finch:   0|+|2145-2169|25  82 (0)  ATAAGGAGGCAATACTTAAAGTGAA  (7) 93
                                   * ******* ***********  **

(c)

Figure 3.4: Alignments of the conserved sequence block B (CSB). Conserved motifs are
indicated by the same color. (a) Although the sequences are highly conserved, the best
scoring solution indicates small differences between mammals and birds, mainly in the green
and yellow areas. For an example of clade specific motifs see (b) and (c).

of the activity of the known 5’HoxD limb cis-regulatory element Conserved Sequence Block

B (CSB, 4kb) in primary chicken fore- and hindlimb mesenchymal cell cultures reveals that

limb-specific 5’HoxD expression is associated with limb-specific regulatory activity of CSB.

In order to identify the region of the CSB responsible for the limb-specific 5’HoxD expres-

sion, further experiments have to be made. One possibility are serial truncations of the CSB

and the test for a limb-specific activity in primary chicken fore- and hindlimb mesenchymal

cell cultures. Therefore, it is important to know the homologous regions of CSB and we

demonstrate here how Tracker can be used for this task.

First, we extract the sequences that contain the CSB in front of the 5’HoxD genes for six

species. In detail, we extract sequences for mouse, human, dog, opossum (mammals) and

for chicken and zebra finch (birds). These sequences are around 40, 000 bp long and they

are used as input for Tracker. The computation of the initial alignment set provides 1, 976

local pairwise alignments that result in 69 cliques. The highest scoring clique consists of 137

columns and is based on 178 alignments. The graphical representation is shown in Figure 3.4.

This best result has a significantly higher sum of column scores than the remaining 68
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Figure 3.5: Alternative alignments of the conserved sequence block B (CSB). For the CSB
dataset, the alternative solutions detect mainly small alternative motifs. In some cases, like
here for the zebra finch, these motifs are on different strands. The motifs are then extended
by consistent alignments already used for the determination of the best solution.

solutions. These solutions detect in this CSB data set mainly small alternative motifs that

are extended with consistent alignments already used for the best solution, cf. Figure 3.5.

The computation of all solutions needs on an Intel Xeon 2.13 GHz, 32 GB RAM, Fedora

Linux computer less then three minutes.

3.2.2 Evolutionary Analysis of the HoxA Clusters in Ray-Finned Fish

In order to demonstrate the improvements of Tracker compared to the first version (Pro-

haska et al., 2004b), we repeat the extensive evolutionary analysis of non-coding sequences

in the HoxA cluster of horn shark (Heterodontus francisci), human (Homo sapiens), bichir

(Polypterus senegalus), striped bass (Morone saxatilis), zebrafish (Danio rerio) and pufferfish

(Takifugu rubripes) by Chiu et al. (2004). In this study, the authors used the newly sequenced

HoxA cluster of bichier to examine if the considerable sequence evolution of derived ray-finned

fishes (Teleostei) such as zebrafish and pufferfish are associated with duplications that pro-

duced additional Hox clusters.

One part of this study was the examination of the evolution of non-coding sequences in

order to determine, whether the single HoxA cluster of bichir exhibits the dramatic loss of

non-coding sequence conservation observed in the duplicated HoxA clusters of the ray-finned

fishes (Chiu et al., 2002). Therefore, the authors used the first Tracker version, as described

in Section 2.2.1 (p.36), to identify conserved HoxA non-coding sequence tracts between Evx1

and HoxA1 in all seven species.

The analysis reveled 567 motifs distributed over all species. Several notable conserved

footprint clusters were detected which indicate that bichir has one HoxA cluster that is

heterogeneous in its patterns of non-coding sequence conservation and gene retention relative

to the single HoxA cluster of human and shark, and the duplicated HoxAα and HoxAβ clusters

74



3.2 Application to Biological Data

HfM

HsA

PsA

MsA

DrAa

TrAa

DrAb

TrAb

49 124484

6 157054

117 262246

1 30676

72 128403

92 117290

17 96856

1 46796

Figure 3.6: Alignments of the HoxA clusters in fishes. Fragments, presenting intergenic
regions and introns, are indicated by gray arrows. Conserved sequence areas are indicated by
colored lines whereas sequences with the same color are aligned together to a motif.

of zebrafish, pufferfish, and striped bass. This shows that the duplication, that produced

additional HoxA clusters in derived ray-finned fishes occurred after the bichir diverged from

the rest of the ray-finned fishes.

For our repeat of the study, we used the same sequences with the same homologue regions.

The six sequences ranged from 30, 676 bp (Morone saxatilis) to 262, 246 bp (Polypterus sene-

galus). Trackercomputes 424, 121 pairwise local alignments that result in 2, 693 cliques. The

best scoring clique a significant higher score (five times the second best score) and consist of

3330 motifs, see Figure 3.6. These motifs are, in analogy to the original study, distributed

over all species. An analysis of the motif pattern in the result table verifies the conserved

footprint clusters in Chiu et al. (2004). The computation of the solutions for the HoxA data

needs on an Intel Xeon 2.13 GHz, 32 GB RAM, Fedora Linux computer approximately four

hours whereas the computation of the initial alignments together with the extended scores

take most time.

This results indicates, that the new Tracker version is a significant improvement of the

first version. The higher sensitivity in combination with the use of consistency in order to

detect non-homologous similarities leads to a higher detection rates of homologous motifs.

Furthermore, the new version is more efficient in time and memory which makes the new

Tracker to an ideal tool for evolutionary analysis.
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CHAPTER 4

Evolution of Binding Site Abundance

The first words that are read by seekers of enlightenment in the

secret, gong-banging, yeti-haunted valleys near the hub of the world,

are when they look into The Life of Wen the Eternally Surprised.

The first question they ask is: “Why was he eternally surprised?”

And they are told: “Wen considered the nature of time and un-

derstood that the universe is, instant by instant, recreated anew.

Therefore, he understood, there is in truth no past, only a memory

of the past. Blink your eyes, and the world you see next did not

exist when you closed them. Therefore, he said, the only appropri-

ate state of the mind is surprise. The only appropriate state of the

heart is joy. The sky you see now, you have never seen before. The

perfect moment is now. Be glad of it.”

The first words read by the young Lu-Tze when he sought per-

plexity in the dark, teeming, rain-soaked city of Ankh-Morpork

were: “Rooms For Rent, Very Reasonable”. And he was glad of

it.

Thief of Time

Terry Pratchett

E volution of gene expression occurs through changes in transcriptional control mech-

anisms, including the modification of cis-regulatory elements (CREs) (Wilson and

Odom, 2009; Li and Johnson, 2010; Schmidt et al., 2010) and the evolution of novel functions

in regulatory proteins such as transcription factors (TF) and co-factors (Lynch et al., 2008;

Wagner and Lynch, 2008). To date, most studies have focused on the evolution of CREs.

Modification of CREs mostly consists of the acquisition and/or the loss of transcription fac-

tor binding sites (TFBSs) (Istrail and Davidson, 2005). Hence, investigating the molecular
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evolution of CREs may reveal the timing and the kind of evolutionary changes that affect

gene regulation through changes in CREs similar to the success of methods for characterizing

the tempo and mode of protein evolution.

However, studying the molecular evolution of cis-regulatory sequences poses unique chal-

lenges compared to that of coding sequence evolution (Wray et al., 2003; Wray, 2007). The

most important obstacle to the study of non-coding sequence evolution is the lack of a “ge-

netic code”, i.e. the near impossibility to deduce the functional role of a nucleotide from

the sequence context alone. Nevertheless, great progress has been made in elucidating the

selective forces acting on non-coding sequences (MacArthur and Brookfield, 2004; Wong and

Nielsen, 2004; Mustonen and Lässig, 2005; Wilson and Odom, 2009). There are two ap-

proaches that have been mostly used for studying the evolution of non-coding sequences. The

first approach focuses on experimentally well characterized cis-regulatory elements, like those

of the sea urchin gene Endo-16 (Romano and Wray, 2003; Davidson, 2006). The second uses

conserved non-coding sequences as a guide to identify functionally important non-coding se-

quences and study their evolution (Tagle et al., 1988; Blanchette and Tompa, 2002; Prohaska

et al., 2004b; de la Calle-Mustienes et al., 2005; Otto et al., 2011).

Both have serious drawbacks as general approaches to the study of cis-regulatory evolution.

The first approach is certainly the one that provides results of highest quality, but is limited

to a handful of well-studied genes in model organisms and their close relatives. The phylo-

genetic reach of this method, however, is limited because it is known that even functionally

conserved enhancers can undergo rapid sequence divergence (Fisher et al., 2006; Tsong et al.,

2006; Crocker and Erives, 2008; Wilson and Odom, 2009; Schmidt et al., 2010). Thus, the

functional significance of any base pair position is also rapidly changing during evolution and

any molecular evolution model based on nucleotide by nucleotide substitution rate parameters

is hard to parameterize except for comparisons among most closely related species.

The disadvantage of the second approach, using conserved non-coding sequences, is also

caused by the inherent instability of cis-regulatory sequences. While there are some large

islands of highly conserved non-coding sequences (Sandelin et al., 2004a; Siepel et al., 2005),

there is also strong evidence suggesting that these conserved regions are only a small fraction

of the functionally relevant non-coding sequences (de la Calle-Mustienes et al., 2005; Wray,

2007; Schmidt et al., 2010). Any study using conserved non-coding sequences as a guide

is thus likely to miss much of the evolutionary action in the evolution of gene regulation.

Population genetic and molecular evolutionary approaches to CRE evolution have applied

a number of strategies to circumvent these problems. For example, one strategy is to first

identify highly conserved non-coding sequences and then investigate the pattern and rate

of nucleotide substitutions in these conserved non-coding sequences (Wagner et al., 2004;

Prabhakar et al., 2006). Another approach is to focus on closely related species, in which the

sequence divergence is minimal, and to then apply population genetic methods (Wong and
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Nielsen, 2004; Haygood et al., 2007), but computational methods of examining the rate and

pattern of CRE evolution are still in their infancy.

Here, we propose a third approach. Non-coding sequences are not compared on a nucleotide-

by-nucleotide basis following standard molecular evolution methods, but instead, focus on

the abundance of specific TFBS motifs and its change during evolution. The rational for

this approach is that both experimental as well as sequence evolution evidence suggests that

TFBSs can undergo divergence and turnover even when the transcriptional output remains

conserved (Fisher et al., 2006; Tsong et al., 2006). Furthermore, it is likely that there exist

lineage specific differences in the retention rate of binding sites that make it desirable to

estimate the rate of acquisition and decay of TFBSs from comparative sequence data. Hence

the specific location of a binding site seems to be less important than that of a codon and

that binding sites underlie a turnover during phylogeny, which may or may not affect function

(Wilson and Odom, 2009; Schmidt et al., 2010).

Changes in cis-regulatory activity in evolution may thus be reflected in a change in a

quantitative character n, i.e. the number of TFBSs. In this chapter we present a stochastic,

phenomenological model for TFBS abundance evolution. This model is then affirmed by

simulation of sequence evolution and by real world data analyses.

4.1 The Stochastic Model

We consider the number of copies n of binding sites for a specific TF in a given genomic region

of length l. We assume that the density of binding sites and other functional constraints is

low enough so that the probability of the “arrival” of a new binding site by mutation is not

influenced by the number of binding sites already present in that region. This assumption

is considered to be plausible on the basis of preliminary studies of steroid receptor response

elements in the vertebrate HoxA clusters, which vary between less than 5 to about 30 in a

100, 000 bp region of the genome (Wagner et al., 2007). This constant arrival rate shall be

called λ. The origination process is thus a Poisson process (Taylor and Karlin, 1998). The

mutational decay of existing binding sites shall occur at a per site rate of µ. The decay process

is then an exponential “death” process (Taylor and Karlin, 1998).

Stochastic models of this kind have been extensively studied in queuing theory (Medhi,

2003), where the counting variable n stands for the number of service calls in a service center.

Models with both exponential arrival times and service times are called M/M/c, where M

stands for the exponential arrival and service time distributions and c stands for the number

of servers that can handle incoming calls. The transient characteristic of M/M/c models has

been solved by Saaty (1960) and Jackson and Henderson (1966), and summarized in Taylor

and Karlin (1998), but the results are expressed in terms of the Laplace transform of the

generating function, rather than the explicit probabilities, except for the case c = 2, which
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constant arival

BINDING SITES

random placement

DNA

exponential decay

Figure 4.1: Interpretation of the stochastic model in queuing theory. Binding sites arrive
with a constant rate and are randomly distributed to the serves, i.e. in our case the DNA.
Binding sites on the DNA disappear with a exponential decay rate.

was calculated by Saaty (1960). For c = ∞ the transient probability distribution is given,

without reference or derivation, in Gross and Harris (1998) for the initial condition n0 = 0.

Here we derive the conditional probability for the number of binding sites at time t with

arbitrary initial frequency n0.

4.1.1 A Partial Differential Equation for the Generating Function

The Kolmogorov forward equation of the system is easily derived:

ṗ0 = −λp0 + µp1,

ṗn = − (λ+ µn) pn + λpn−1 + (n+ 1)µpn+1

where pn = Pr (x(t) = n | x(t = 0) = n0), i.e. pn is the probability that we have n binding

sites at time t given that there were n0 binding sites at t = 0, and ẋ stands for the time

derivative of a variable x.

The stationary solution of this system has been derived by Agner Erlang, a Danish telephone

engineer who was originator of queuing theory. It is a Poisson distribution with parameter

λ/µ:

p̂n =
1

n!

(

λ

µ

)n

e
−

“

λ
µ

”

with expectation and variance E[n] = Var[n] = λ/µ.

The Kolmogorov forward equation determines the time dynamics of the probability of the

number of binding sites as a function of time. The system is only a linear dynamical system

but has infinitely many equations, which makes the prospect of solving them unpleasant.

Instead we replace the probability distribution pn(t) with the generating function P (z, t),
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4.1 The Stochastic Model

defined as

P (z, t) =
∞

∑

n=0

znpn, 0 ≤ z ≤ 1.

The generating function is unique to each probability distribution and the probabilities

and the moments of the distribution are easily derived from the generating function. A

differential equation for the time development of the generating function can be obtained

from the identity:

∂P (z, t)

∂t
=

∞
∑

n=0

znṗn

by substitution the Kolmogorov equations into the right-hand side of the above equation.

After substituting the Kolmogorov forward equations into the time derivative of P (z, t) and

slightly rearranging the terms one obtains:

∂P (z, t)

∂t
= −λ

∞
∑

n=0

znpn + λ
∞

∑

n=1

znpn−1 − µ
∞

∑

n=1

znnpn

+ µ
∞

∑

n=1

zn(n+ 1)pn+1 + µp1

The first term on the right-hand side simply is −λP (z, t), and the second term can easily

be rearranged to yield λzP (z, t). The third term can be shown, after slight rearrangement,

to be

−µ
∞

∑

n=1

znnpn = −µz∂P (z, t)

∂z

and in the fourth term the index can be redefined such that

µ
∞

∑

n=1

zn(n+ 1)pn+1 = µ
∞

∑

n=2

zn−1npn

which, with the last term µp1 adds up to

µ
∞

∑

n=2

zn−1npn + µp1 = µ
∂P (z, t)

∂z
.

These four terms combine to give the partial differential equation (PDE) for the time-

dependent generating function:

∂P (z, t)

∂t
= λ(z − 1)P (z, t) + µ(1 − z)

∂P (z, t)

∂z
.

This quasi-linear PDE can be solved using the method of characteristic equations. Under the

initial conditions z0, t = 0, and P (z, t = 0) = zn0 the characteristic equations of this PDE
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are:

dz

dτ
= µ(1 − z), and

dt

dτ
= −1

which have the solutions

t = −τ , and
1 − z0
1 − z

= eµτ .

The third characteristic equation is

dP (z, t)

dt
= λ(1 − z)P (z, t)

where z = z(τ) rather than a constant and we thus need to substitute z for z(z0, τ) from the

solution of the first characteristic equation before we solve this ordinary differential equation:

dP (z, t)

dt
= λ(1 − z0)e

−µτP (z, t)

which has the solution

P (z, t) = P (z0, t = 0) exp−λ
µ

(1 − z)(1 − e−µt).

For the initial condition pn0
(t = 0) = 1, the initial generating functions becomes

P (z0, t = 0) = (1 − (1 − z)e−µt)n0 .

Thus, for the initial condition pn(t = 0) = δn,n0
, i.e. at time t = 0 the system has exactly n0

binding sites, the solution of this PDE is:

P (z, t) = P (z0, t = 0) exp

(

−λ
µ

(1 − z)(−e−µt)

)

with

P (z0, t = 0) = [1 − (1 − z)e−µt]n0 .

For t = 0 this equation gives P (z, t) = zn0 , which is the generating function of the initial

distribution pn(t = 0) = δn,n0
. For t→ ∞ the equation reduces to

P (z, t→ ∞) = exp−
(

λ

µ
(1 − z)

)

which is the generating function of the Poisson distribution for the stationary distribution.

In fact, the equation can be understood as a mixture of two distributions, on the one hand
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4.1 The Stochastic Model

the initial distribution with the generating function zn0 and on the other hand the stationary

distribution with the generating function exp−((λ/µ)(1 − z)). Each of these generating

functions is supplemented with a time-dependent term that includes a e−µt, which determines

the relative weight of the initial distribution and the eventual stationary distribution have at

time t. The rate of approach to the stationary distribution only depends on the decay rate

µ, which also determines the rate at which binding sites initially present are replaced by new

arrivals, and thus the rate at which history is erased by binding site turnover.

From the PDE of P (z, t) it is easy to derive the dynamical equation for the expectation,

by taking advantage of the identity

E[n] =
∂P (z, t)

∂z

∣

∣

∣

∣

z=1

one obtains
dE[n]

dt
= λ− µE[n]

which has the solution

E[n(t)] =
λ

µ
(1 − e−µt) + E[n(t = 0)]e−µt. (4.1)

This equation again has the same structure as that for the generating function, namely a term

for the influence of the initial mean E[n(t = 0)] which is decreasing with time according to a

negative exponential function, and the expectation of the stationary distribution λ/µ whose

influence is increasing with t according to the function (1 − e−µt).

The equation for the time-dependent variance is also directly derivable:

Var[n(t)] =
λ

µ
(1 − e−µt) + n0e

−µt(1 − e−µt).

4.1.2 The Conditional Probability Distribution

The generating function can also be used to calculate the complete transient probability

distribution using the identity

pn(t) =
1

n!

dn

dzn
P (z, t)

∣

∣

∣

∣

z=0

.

The generating function can be written as

P (z, t) = e−aB(z)eza
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with a = (λ/µ)(1− e−µt) and B(z) = [1− (1− z)e−µt]n0 . Applying Leibniz’s rule for the nth

derivative of F(x) = u(x)v(x) gives

dn

dxn
F (x) =

n
∑

k=0

(

n

k

)

dku

dxk

dn−kv

dxn−k

In order to obtain an explicit expression for the time-dependent probability distribution we

need to calculate the nth derivative of P (z, t) = e−aB(z)eza for z → 0. Using Leibniz’s rule

we get

dnP (z, t)

dzn
= e−a

n
∑

k=0

(

n

k

)

dkB(z)

dzk

dn−keza

dzn−k
.

We have dn−keza/dzn−k = an−keza, which reduces to dn−k for z = 0. B(z) can be written as

B(z) =

n0
∑

l=0

(

n0

l

)

αl(zβ)n0−l

with α = (1− e−µt) and β = e−µt. This expression then can be derived and for z = 0 leads to

dkB(z)

dzk

∣

∣

∣

∣

z=0

=







(

n0

k

)

k!αn0−kβk for k ≤ n0,

0 for k > n0.

which then combines with the Leibniz’s formula to give

dnP (z, t)

dzn

∣

∣

∣

∣

z=0

=

min(n,n0)
∑

k=0

k!

(

n

k

)(

n0

k

) (

λ

µ

)n−k

× (1 − e−µt)n+n0−2k(e−µt)k

All together we obtain the conditional probability distribution

pn(t) =
1

n!
e
−

“

λ
µ

”

(1−e−µt)
min(n0,n)

∑

k=0

k!

(

n

k

)(

n0

k

)(

λ

µ

)n−k

× (e−µt)k(1 − e−µt)n+n0−2k (4.2)

which, for t→ ∞, gives the stationary Poisson distribution

p̂n =
1

n!

(

λ

µ

)n

e
−

“

λ
µ

”

, (4.3)

for t→ 0 gives

pn =







1 if n = n0,

0 else.
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Figure 4.2: Characteristics of the Conditional Probability Distribution. The diagrams shows
the probability for binding site numbers for different times, in detail t = 106 (red), t = 107

(blue), t = 108 (green), t = 109 (orange) and in the equilibrium state (gray). The binding
site number n0 for t = 0 is 30. In the left diagram (a) we use parameters λ = 5 × 10−7 and
µ = 1×10−8 while in the the right diagram (b) we use λ = 5×10−8 and µ = 1×10−9. In both
cases, the ratio λ/µ is 50. For small time values, the distribution is mainly determined by n0.
With ascending times, the distribution converts to the Poisson distribution that depends only
on the rate λ/µ. The rates in (b) are the tenth part of (a). Therefore, the same distribution
is reached after the tenfold time.

and for n0 = 0 reduces to

pn(t) =
1

n!
e
−

“

λ
µ

”

(1−e−µt)
(

λ

µ

)n

(1 − e−µt)n

(see Gross and Harris, 1998, page 101).

The explicit expression for the conditional probability distribution allows us the analytical

determination of the probability to have n binging sites in a genomic region at time t. This

value is determined in dependence of the constant rate of binding site origination λ, the

constant per site decay rate µ, and the number n0 of binding sites at t = 0. Thereby, µ ∼ 1/t

and µ ∼ λ since t is always linked to µ and λ is always linked to 1/µ. For a graphical

representation of the characteristics of Equation 4.2 see Figure 4.2.
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Figure 4.3: Spreading of simulated binding site numbers over time. The figure displays the
mean binding site number (solid red line) and the distribution of the data by the low and
high quartile (discontinuous red line) and the min and max values (dotted red line). The
number of binding sites increases linearly at the beginning and the rate decreases until finally
an equilibrium state (discontinuous black line) is reached at teq = 3, 257, 000.

4.2 Validation of the Phenomenological Equations

In order to confirm our model, we compare distributions of binding site numbers deduced by

simulation of sequence evolution with the analytical results of the model. Subsequently, we

demonstrate that the assumptions of the model apply to biological data.

4.2.1 Simulation of Sequence Evolution

For the determination of reference binding site distributions we created a simulation model

of sequence evolution. Starting with a single random sequence of length l, the sequence is

composed of equally frequent nucleotides. The simulation is done over tmax time steps. In

each time step, mutations occur with a mutation rate m. Thus, the number of mutations in

a time step is a Poisson variable with the expectation ml.

For each mutation, we determine a position in the sequence by a uniform random process

and perform a mutation whereby each of the three possible new nucleotides has the same

probability to replace the current one. After all mutations within a time step are done,

we check if these mutations will be fixed. In order to do so, we distinguish between two

different events. In the first case, more new binding sites are created by the mutations than

are destroyed or just as many binding sites are created as are destroyed, respectively. These

mutations are fixed by a fixation rate φ+. In the second case, if more binding sites are

destroyed by mutations than new ones created, we use a fixation rate φ−. We use φ+ > φ−
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Figure 4.4: Estimating the effective decay rate µ of binding sites. The left diagram (a)
shows the linear relationship (solid black line) between time t and the regression variable
R = ln((n̂−n0)/(n̂−n)) in the transient section of the development of the mean binding site
number. This relationships ends before reaching the equilibrium state (discontinuous black
line). The right diagram (b) shows the resulting values for µ as a function of time. The solid
black line indicates the area that is used for the estimation of the value of µ.

since we assume that binding sites are maintained by stabilizing selection, and thus the loss

of binding sites is associated with a selective penalty which decreases the fixation probability.

For our simulations we set the sequence length to 100, 000 nt, which is approximately the

size of the HoxA cluster, which we investigate later. We scan for binding site patterns with a

shape of Al, whereby A stands for the nucleotide Adenine and l for the length of the binding

site. This choice is arbitrary and does not affect the results in this simulation because any

specific sequence is equally probable with equal nucleotide frequencies. We use a binding site

length of l = 6 which is typical for small TFBSs. Mutations occur in a time step with a

mutation rate m = 10−5 per nucleotide and are fixed by a fixation rate φ+ = 1 for neutral

mutations, leading to a per nucleotide evolution rate equal to the mutation rate. We use

φ− = 0.05 for deleterious mutations. Mutations which do not affect binding sites are also

fixed at the neutral rate 1. To reach the equilibrium states for these parameters, we simulate

over tmax = 5, 000, 000 time steps and we record the number of binding sites on the coding

strand every 10, 000 steps. In order to minimize the influence of extreme random effects we

perform 1000 simulations and calculate the average number of binding sites for each time

step. The number of binding sites increases linearly at the beginning. Later, the increase

slows down until finally an equilibrium state is reached, see Figure 4.3.
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Figure 4.5: Comparison of the transient ensemble distribution of binding sites resulting from
simulations with the analytical prediction. Note the close relationship between the predicted
(red line) and the simulated frequency distribution (black points). The chosen times corre-
spond to 0.01 (a), 0.25 (b) and 1.00 (c) of the equilibrium time, see Figure 4.3. The simulation
closely resembles the model. With growing time, both distributions converge to the stationary
Poisson distribution (gray line).

In order to validate our phenomenological model, we compared the probability distribution

pn(t) predicted by the phenomenological model with the frequency distribution of the binding

site number n. For calculating the probabilities of the binding site number predicted by our

model, we first have to determine the arrival rate of new binding sites λ and the decay rate µ

for the sequence evolution model. We determine these values from the time development of

the mean binding site number, given by Equation 4.1 (p.83):

E[n(t)] =
λ

µ
(1 − e−µt) + E[n(t = 0)]e−µt.

Note that λ/µ = limt→∞E[n(t)] = n̂ is the equilibrium expectation of the number of binding

sites and E[n(t = 0)] is n0 according to our initial conditions. If we solve this equation for

t we can determine µ as a regression coefficient. Denoting the mean binding site number

E[n(t)] with n we get

t = µ−1 ln

(

n̂− n0

n̂− n

)

.

In the transient section of the function E[n(t)] exists a linear relationship between time t

and the regression variable R = ln((n̂−n0)/(n̂−n)) where the slope is µ−1, see Figure 4.4 (a).

The resulting constant value of µ in the transient section is taken for the further analysis, see

Figure 4.4 (b). The number of binding sites at the equilibrium state n̂ is an estimate of λ/µ,

and thus we can also estimate the arrival rate as λ = n̂µ.

This allows us to compare the transient probability distribution predicted by the analytical

model with the simulation data. The distribution of the simulated data is determined by
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Figure 4.6: Effect of different parameters on the results. The left diagram (a) shows the mean
binding site number of the simulation for different parameters. The right diagram (b) shows
the max like binding site number determined by our phenomenological model. Both diagrams
match perfectly. The used parameters are given in the label, where l is the motif length, ERE
stands for the estrogen response element, m for the mutation rate, eq for equally distributed
mutations, trans for a transition/transversion rate ratio of 2/1 and rev for motif count on
both strands.

the relative frequency of binding site numbers at a given time. As shown in Figure 4.5, the

simulation closely resembles the predicted probability distributions.

We repeat the simulations with different values for l andm and use a more realistic sequence

evolution model assuming a transition/transversion rate ratio of 2/1. Furthermore, we prove

the independence of our model from the recognition method of TFBSs by using a position

weight matrix for the determination of binding sites for the estrogen receptor. The estrogen

receptor is a ligand-activated enhancer protein that is a member of the steroid/nuclear recep-

tor superfamily. It binds to specific DNA sequences called estrogen response elements (EREs)

with high affinity and transactivates gene expression in response to estradiol. The PWM for

the ERE was created by 41 natural vertebrate ERE motifs (Klinge, 2001). We use the MATCH

algorithm (Kel et al., 2003) with a threshold of 0.85 which corresponds to two mismatches

in the perfect pattern AGGTCANNNTGACCT to count the EREs in the sequences. The reliability

of this counting method was cross-validated against the Dragon ERE Finder 2(Bajic et al.,

2003), which uses a hidden Markov model to identify EREs. Our approach slightly under-

counts the ERE numbers but the numbers obtained are highly correlated and we use the

PWM method for this exploratory analysis.
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Figure 4.7: Evolution of estrogen response element (ERE) number in the HoxA cluster among
mammals, represented as a unscaled phylogenetic tree. Note the variation of the number of
EREs in closely related species.

For all tested parameters, we obtained the same close fit to the phenomenological model,

see Figure 4.6. The detailed graphical analyses can be found in the appendix, see Sec-

tion A.1 (p.127). In general we observe an higher increase of the binding site number for

shorter binding sites lengths l since they are more likely to arise. High mutation rates

m enhance this effect. Short binding sites also reach higher equilibrium levels, see Fig-

ure A.1 (p.128). The decay rate µ grows with higher mutation rates and longer motif lengths

since both enhance the probability that binding sites are destroyed, see Figure A.3 (p.130).

The arrival rate λ grows with high mutation rates, while longer motifs result in smaller rates

for λ. In all cases, the simulation closely resembles the predicted probability distributions,

see Figure A.4 (p.131) and Figure A.4 (p.132).

4.2.2 Application to Biological Data

In order to see whether the assumptions of the model developed here apply to real genomic

sequences, we investigate the variation in the number of EREs in the HoxA cluster sequences

of mammals. HoxA clusters are a phylogenetically stable genomic locus within mammals and

even sharks and lobe-finned fishes (Chiu et al., 2002) which should allow the identification

of homologous binding sites. In detail, we count the EREs in human, chimpanzee, baboon,

marmoset, lemur, galago, rabbit, rat, mouse, dog, bat, armadillo and elephant, see also

Table A.1 (p.133) in the appendix. The numbers are again determined by the MATCH algorithm

(Kel et al., 2003), using the PWM created by 41 natural vertebrate ERE motifs (Klinge, 2001)

and a threshold of 0.85, see Section 4.2.1 (p.89). We search the whole HoxA cluster sequences

including 5, 000 bp at the 5′ end of HoxA13 and 5, 000 bp at the 3′ end of HoxA1. These

sequences are on average 115, 600 bp long. The results are summarized in Figure 4.7.

In mammals, the number of EREs in the HoxA cluster varies between 9, as found in the

galago and lemur, and 17, as found in the marmoset and bat. The overall mean for all mam-

90



4.2 Validation of the Phenomenological Equations

Human Chimp Baboon Marmoset Lemur Galago

Human 1 6.6 30.5 42.9 77.5 77.5
Chimp 11 1 30.5 42.9 77.5 77.5
Baboon 5 6 3 42.9 77.5 77.5
Marmoset 2 3 1 13 77.5 77.5
Lemur 1 0 0 3 5 57.1
Galago 2 3 2 1 1 4

Table 4.1: The number of autapomorphic uniquely derived EREs in the respective species
is given in the diagonal (bold). The lower triangular part of the table gives the number of
shared homologous EREs while the upper half of the table contains the time in million years
since separation of the corresponding species (Steiper and Young, 2006).

mals is 12.8. The stationary distribution of the M/M/∞ process would be a Poisson process

with variance equal to the mean. In our data the variance is about 60% of the mean which is

expected given that the individual observations are not stochastically independent, because

of the phylogenetic structure among the species, and thus the variance is expected to be less

than that of the Poisson distribution of stochastically independent events. The distribution

appears to be homogeneous among subgroups of species. For instance, the primates have a

mean of 12.0 and a variance of 9.6 while the rest of the mammals have a mean of 13.4 and

a variance of 6.3, although a formal test of homogeneity is difficult due to the phylogenetic

structure in our data. Overall the variation in ERE number is consistent with a stationary

process with an expectation between 12 and 13 ERE per HoxA cluster.

In order to test whether there was a process of binding site turnover we determine the

number of homologous binding sites among pairs of species in primates and compare these

numbers to the time since lineage separation (Steiper and Young, 2006). We found that only

among the primate species we could reliably identify homologous sites because of the high

rate of intergenic sequence divergence. We thus proceed analyzing data from the six primates

which yield 15 pairwise comparisons. The results are summarized in Table 4.1.

If the binding sites are gained and lost by a process modeled due to M/M/∞, the expected

number of shared homologous sites, E[n∩], should decrease exponentially with time since

lineage separation (Taylor and Karlin, 1998):

E[n∩] = neµt. (4.4)

Together with the number of binding sites in the species, which adds six data points at

t = 0, we perform a linear regression of ln(n∩) over time since lineage splitting, see Figure 4.8.

For the regression we omit the two data points with 0 shared ERE between chimp and lemur

as well as between baboon and lemur. Based on this data, we get for t in million years (Myr)

a regression equation of

lnn∩ = −0.0259t+ 2.34.
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Figure 4.8: Dependency of the number of shared EREs (log scale) among primate species
as a function of time (million years) since lineage separation according to the divergence
time estimates (Steiper and Young, 2006). Note the decline of shared EREs with time since
separation. The slope of decline suggests a half-life time of ERE in the primate HoxA clusters
of 27 million years.

Interpreting this equation on the basis of the theoretical model

ln(E[n∩]) = −µt+ lnn

leads to the estimate for the decay rate of binding sites of µ ≈ 0.0259/(2× 106) = 1.3× 10−8

binding sites per year or a half-life time for the ERE sites in the mammalian HoxA clusters

of about 27 Myr. Thereby, the term 1/(2 × 106) is used since the regression is performed for

106 years and the distance of two species is the sum of the times since lineage separation.

Note that the true decay rate is expected to be higher since we omitted two data points with

0 shared ERE binding sites.

A formal test of the fit between the data and the exponential decay model is hard to

perform, because of issues of stochastic dependency among the data points as well as the fact

that the exponential death process has a time-dependent variance. Instead we use the fact

that the transient probability distribution of the exponential death process is known to be a

binomial distribution with a survival probability at time t of e−µt (Taylor and Karlin, 1998).

Therefore, we have:

Pr(n∩ | t) =

(

n

n∩

)

(e−µt)n∩(1 − e−µt)n−n∩ .

We can calculate whether any data points are out of bounds in our regression. In particular

the spread of data points at t = 77.5 Myr between zero and three could either be due to
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chance or indicate a class of binding sites that are more stable than the rest of them. Using

the probability distribution above we calculate that the probability of having more than two

shared homologous sites after 77.5 Myr half-life time of 27 Myr is 0.208 for n = 12. Hence,

the observation that there are three homologous sites shared between chimp and galago HoxA

clusters is not unexpected based on the exponential decay model, see Figure 4.8.

Another suspicious data point is that the marmoset and the baboon only share a single

homologous ERE after only 42.9 Myr of separation. Assuming the exponential decay model,

the probability of sharing one or zero ERE is 0.059 for n = 12, which is marginal in terms of

statistical significance. Overall the data is consistent with a model that assumes a constant

turnover of ERE with a half-life time of 27 Myr.

We can also use this data to estimate the parameters of our model. Assuming that the mean

value of sites estimates the expected value of the stationary M/M/∞ process, one obtains

n̂ = λ/µ ≈ 12. This inference is supported by the fact that data partition by phylogenetic

group does not lead to clearly different average numbers of EREs. The regression analysis of

shared EREs among primates already gave us an estimate of µ ≈ 1.3× 10−8 binding sites per

year. Combining this result with the n̂ = λ/µ ≈ 12 leads to an estimate of the production

rate of new binding sites of λ ≈ 1.6 × 10−7 binding sites per year.

In order to test whether these numbers of sites are higher than expected for random se-

quences, we produce 1000 random DNA sequences of 104, 350 bp, which is the length of our

mammalian HoxA clusters minus the non-synonymous sites and the sites that are conserved

between human and shark (Prohaska et al., 2004b), and search for the presence of ERE ele-

ments. We observe that on average the probability of finding 12 or more ERE in a random

DNA sequence with the base composition typical for mammals is about 0.074. This number

alone is not sufficient to conclude that any of the mammalian HoxA clusters individually has

more EREs than expected by chance. However, the fact that many mammalian lineages have

approximately 12 ERE allows us to conclude that the number of ERE in the mammalian

HoxA clusters cannot be explained by chance alone.

Above we showed that the half-life of a ERE in the mammalian HoxA cluster is about

27 Myr, and hence any lineage that is separated by more than approximately 80 Myr is

essentially a stochastically independent observation. Even if there were only two such lineages

the probability for both of them to have about 12 EREs is about 0.0055. Hence, we conclude

that the number of EREs found in mammalian HoxA clusters is higher than expected by

chance and probably maintained at that level by natural selection. This is important since it

shows that the turnover with a half-life time of 27 Myr affects functionally important EREs,

i.e. those which are affected by stabilizing selection. Hence, the turnover of TFBSs seems to

be the predominant mode of evolution.
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CHAPTER 5

Measuring Binding Site Turnover

Few religions are definite about the size of Heaven, but on the

planet Earth the Book of Revelation (ch. XXI, v.16) gives it as

a cube 12,000 furlongs on a side. This is somewhat less than

500,000,000,000,000,000,000 cubic feet. Even allowing that the

Heavenly Host and other essential services take up at least two

thirds of this space, this leaves about one million cubic feet of space

for each human occupant — assuming that every creature that could

be called ‘human’ is allowed in, and the the human race eventually

totals a thousand times the numbers of humans alive up until now.

This is such a generous amount of space that it suggests that room

has also been provided for some alien races or – a happy thought –

that pets are allowed.

The Last Hero

Terry Pratchett

Acquisition of specific binding sites and the subsequent conservation was for a long

time thought to be the predominant biological mode of binding site evolution. By

the current state of knowledge, this is unlikely. The turnover of transcription factor binding

sites (TFBSs) is well established (Fisher et al., 2006; Tsong et al., 2006; Crocker and Erives,

2008). Therefore, any molecular evolution approach for the discovery of novel regulatory

architecture in developmental evolution has to take the possibility into account that derived

cis-regulatory elements are not characterized by a conserved sequence.

In the previous chapter, we explicitly derived the transient conditional probabilities for

changes in binding site number and proposed a stochastic model for TFBS evolution. In this

approach, it is assumed that the functionally important measure is likely to be binding site
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number rather than their location or precise identity. This model further assumes that TFBSs

in the genomic region of interest have a constant rate of origination λ and decay exponentially

with a relative rate µ.

We think that biologically significant changes in the upstream regulation of a locus will

be reflected in changes in the origination and decay rates of specific binding sites in certain

clades rather than the acquisition of a specific set of binding sites in the derived clade. In

fact the purpose of the development of the phenomenological model of binding site number

dynamics is to make predictions that can be tested with rigorous statistical methods to detect

deviations from a constant rate of turnover. These deviations are a proxy for differences in

the selective pressures acting on TFBSs in different clades. Therefore, the present model is

meant to set the stage for a sequence analysis tool, similar to the neutral sequence evolution

model used to detect natural selection in coding regions (Graur and Li, 2000).

We use the model to search for two kinds of deviations from the model predictions. One

is heterogeneity in the rate of origination and/or decay between different lineages or clades.

That could be done by comparing the likelihood of the observed distribution of binding site

numbers on the tips of a phylogenetic tree assuming constant rates of origination and decay

with a model which allows for different parameters in different parts of the phylogenetic tree.

A significant difference in likelihood would constitute evidence for a difference in the selective

constraints on binding sites in different groups of organisms.

The second possible application of the model is to provide evidence for binding sites with

different turnover rates. For instance it is likely that a non-coding region contains binding

sites with strong selective constraints and others with weaker constraints (Dermitzakis and

Clark, 2002). This could be detected by testing for deviations from the exponential loss of

homologous binding sites as a function of time since lineage separation.

In either case it will be necessary to use the stochastic model to calculate the likelihoods

of data sets on phylogenies. The development of this maximum likelihood approach and the

validation with simulated and biological data is subject of this chapter.

5.1 The Creto Algorithm

In order to measure the turnover rates of a TFBS on phylogenies we developed the program

Creto, short for Cis-Regulatory Element Turn-Over. Details about the exact input and output

syntax, possible parameters and the availability are given in the appendix, Chapter C (p.143).

The algorithm takes as input a phylogenetic tree T with branch lengths t and the binding

site numbers n for the terminal taxons represented by the leaves of T . In the simplest form,

the algorithm estimates the decay rate µ, and the origination rate λ, for these binding sites

by maximizing the likelihood of the observed binding site numbers on the tree. The likelihood

is calculated based on the time-dependent conditional probability distribution, derived in the
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0: 6/-

1: 8/2

2: 7/1

3: 7/0

8: 2/4
10: 1/1 F 1

4: 8/1 A 8

5: 6/1 B 6

6: 7/0 C 7

7: 11/3 D 11

9: 3/1 E 3
(λ ,µ )0 0

(λ ,µ )1 1

(λ ,µ )2 2

Figure 5.1: Example of binding site number evolution for multiple turnover parameters. The
phylogenetic tree has six species (A to F ) with 1 to 11 binding sites. Each node is labeled
with its unique id followed by the mean binding site number of the corresponding subtree
and the difference of that number to that of the ancestor node. While the subtree defined
by the root node 0 always has the parameters (λ0, µ0) (black), the alternative parameters
are per default assigned to the subtree that has the highest difference of the mean binding
site number to the mean binding site number of its ancestor. In this example showing three
parameter pairs, node 8 with a difference of 4 has parameters (λ1, µ1) (red) while node 7 with
difference 3 has the pair (λ2, µ2) (blue). Besides this automatic assignment, it is also possible
to select the subtrees manually. Note that the rates are valid from the ancestor of the subtree
on.

last chapter. To facilitate the detection of statistically significant differences in binding site

dynamics, it is also possible to estimate the parameters for the case that a subtree or several

subtrees have alternative binding site turnover rates, see Figure 5.1. Note that the parameter

pair for a subtree is applied to a clade and the stem lineage of the clade.

5.1.1 Likelihood Calculation

The likelihood L of a given phylogenetic tree T is based on the conditional likelihoods Li(n) of

the nodes i inside T . Thereby, Li(n) is the likelihood of all evolutionary histories conditional

on the assumption that at node i exactly n binding sites are present.

Based on this formalization, the likelihood of the whole tree T is the weighted average of

the conditional likelihoods of the root node r over all possible binding site numbers with the

prior probability π(n) (Felsenstein, 2003):

L =
∑

n

π(n) Lr(n).

For the prior probability, we take the equilibrium distribution for the TFBS model, which is

the Poisson distribution. We parameterize the Poisson distribution with the mean binding

site number n̄ averaged over all species. Because the number of all possible binding site

numbers is potentially infinite, we have to restrict n to a finite interval nmin ≤ n ≤ nmax for
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computational reasons.

L =
∑

nmin≤n≤nmax

n̄ne−n̄

n!
Lr(n).

For determining nmin and nmax, we use a bound value (default is 10−6) and calculate the

smallest and largest n so that the probability of the Poisson distribution from 0 to nmin − 1

is smaller than half the value for bound, and the probability of n > nmax is also smaller than

half the value for bound. Since the Poisson distribution is more dispersed than any transient

probability distribution, see Figure 4.2 (p.85), the bound value is a conservative estimate of

the error in the likelihood calculation. If the smallest or the highest binding site number is

outside this range, we adapt nmin or nmax, respectively.

The calculation of the conditional likelihoods Li(n) depends on the kind of the node i. If

the node is a leaf, i.e. representing a terminal taxon, the likelihood is calculated as

Li(n) =







1 if leaf i has n binding sites,

0 else.

If the node i is an internal node, then the likelihood is calculated as

Li(n) =
∏

j∈Descendants(i)

[

nmax
∑

m=nmin

Pr(m | n, tj) Lj(m)

]

.

The likelihood of the node i having exactly n binding sites is proportional to the product

of the probabilities of all events in all the lineages that emanate from node i. In each lineage

with descendant j, we sum the transient likelihood over all possible binding site numbers

m of j. Given the length tj of the branch leading from i to the descendant node j, the

transient likelihood is the likelihood Lj(m) of node j having m binding sites multiplied with

the probability, given by Equation 4.2 (p.84), to have n binding sites after tj time starting

with m binding sites:

Pr(n | m, t) =
1

n!
e−(λ/µ)(1−e−µt)

min(m,n)
∑

k=0

k!

(

n

k

)(

m

k

)(

λ

µ

)n−k

× (e−µt)k(1 − e−µt)n+m−2k.

If the branch length t is long, i.e. if t≫ 1/µ, then the conditional probability converges to

the equilibrium distribution

Pr(n) =
1

n!

(

λ

µ

)n

e−(λ/µ).
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Figure 5.2: Workflow of the maximum likelihood algorithm. The likelihood optimization is
performed until the likelihood improvement is smaller the abort criterion ε. In each improve-
ment cycle, a step optimization is performed in order to determine parameters with a higher
likelihood.

In the other case, i.e. if t≪ 1/µ, then the conditional probability converges to

Pr(n | m) =







1 if n = m,

0 else.

5.1.2 Parameter Optimization

For a given data set, the origination and decay parameters λ and µ of the binding sites

are estimated by a maximum likelihood (ML) procedure that uses iterative hill climbing for

optimization, see Figure 5.2 for a outline. The algorithm consists of two nested optimization

loops, one for maximizing the likelihood and one for determining the step length of the search

algorithm.

The initial step sizes are determined as ∆λ = λ/2 and ∆µ = µ/2. Then, the likelihoods for

all six combinations of parameters (λ′, µ), (λ, µ′) and (λ′, µ′) with λ′ = λ±∆λ and µ′ = µ±∆µ,

are calculated. If the maximum Lmax of these six new likelihoods is smaller than the original

likelihood L′ with parameters (λ, µ), then the step size is reduced by a factor 1/2 and the

step determination is repeated. If Lmax is higher than L′, then the step determination ends

and the corresponding parameter combination is adopted. This procedure is repeated until

the difference between Lmax and L′ is lower than the abort criterion ε (default is ε = 10−6).

In this case, the algorithm returns the last parameter pair as the ML estimate of the binding
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site turnover rates. Note that for determination of step sizes for parameter optimization the

evaluation of (λ′, µ) and (λ, µ′) would be sufficient. Because the likelihoods for this model

are strongly influenced by the ratio λ/µ, the evaluation of likelihoods for (λ′, µ′) makes the

optimization more efficient.

For an efficient optimization, it is also important to choose reasonable starting estimates

for the turnover parameters. For this purpose, we assume that about 1/2 of the binding sites

present at the root are still present in any of the species sampled. The expected number

of homologous binding sites E[n∩] after time t and n binding sites at the begin is given by

Equation 4.4 (p.91):

E[n∩] = ne−µt.

For n∩ = 1/2 × n, we initially estimate µ with ln(2)/(t). The origination rate is derived

from the predicted equilibrium-binding site number n̂ = λ/µ, i.e. λ = n̂µ. For n̂ we take

the average binding site number in the leaves for the subtree for which the parameters are

estimated, while t is the average distance from the root of the subtree to the leaves.

If the evolutionary distances between nodes in the tree are long compared to the half-life

of the binding site, the transient probability distribution approaches the stationary Poisson

distribution with parameter λ/µ (Medhi, 2003). In this case, only this ratio is optimized by

the algorithm by keeping the original µ and only adapting λ.

5.1.3 Model Characteristics

In Figure 5.3, the likelihood surface for the CBF1, a TF involved in the methionine pathway

of yeasts, in a fungal data set consisting of 13 species is plotted. The likelihood function

has a very distinct maximum and an extended ridge around the parameter values with the

same λ/µ ratio as the ML estimates of λ and µ. This functional form demonstrates that

deviations in the λ/µ ratio affect the likelihood more than individual parameter changes that

leave the λ/µ ratio unaffected. We also note that the likelihood ridge levels off for larger

parameter values, rather than approaching zero. Thus, the likelihood only depends on the

λ/µ ratio and not on the individual parameters. This leveling off occurs because, as the

turnover parameters increase, the estimated half-life time of a binding site decreases. Hence,

the probability distribution approaches the stationary distribution, which only depends on

the λ/µ ratio and not on the individual parameter values.

In order to determine the confidence intervals (CIs) of the parameter estimates, we approx-

imate the likelihood function around the optimum with the Gaussian likelihood function

L(λ/µ) ≈ e−
1

2
(v−v0)T C−1(v−v0),

where v = (λ/µ) and vO = (λopt/µopt), and C is the covariance matrix for the parameter

estimates. To give a rough estimate of the CI, we use the fact that the log-Gaussian likelihood
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Figure 5.3: Likelihood surface for the CBF1 transcription factor in a fungal data set in 2D
(a) and 3D (b). The likelihood is plotted as a function of the origination rate λ and the decay
rate µ. The likelihood function has a distinct maximum with an extended ridge (black). This
ridge is located between the λ/µ rate corresponding to the mean binding site number (green)
and the λ/µ rate corresponding to the λ/µ rate at the likelihood maximum (blue). The
likelihood of the confidence interval corresponding to two standard deviations is also given in
red (a) respective gray (b). Note that the likelihood of the ridge is higher than the likelihood
of the confidence interval. Therefore, we have no upper confidence limit for λ and µ.

L for a random variable χ two standard deviations (SDs) σ away from the optimum is:

log L(χ± 2σ) = log Lmax −2.

Hence, we find the contour line on the likelihood function that corresponds to a likelihood

value of

LCI = exp[log Lmax −2]

to determine the CIs for λ and µ. In case of normal distributed data, the 2 SDs correspond

to the 95% CI. The limits of the CIs are then the maximal and minimal values which are

compatible with LCI .

There is always a lower confidence limit for λ and µ, but in cases where the phylogenetic

signal in the data is weak, it can happen that there is no upper confidence limit. This

degenerated case occurs when the likelihood for the equilibrium case is above the likelihood

of the CI. Then both values can be arbitrarily high as long as the ratio λ/µ remains equal.
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5.2 Simulation of Binding Site Evolution

In order to confirm our approach, we determine binding site numbers for a given phylogenetic

tree by simulation of binding site evolution. Then we use our ML algorithm to determine the

turnover rates and compare this result with the rates that have been used to generate the

data.

In order to generate the data, we simulate the stochastic process of TFBS turnover. Given

a tree with known binding site number at the root, and the parameters λ and µ of the model,

the binding site number at a certain node of the tree is drawn randomly from a distribution

given by the mathematical model based on Equation 4.2 (p.84). The randomly drawn binding

site numbers at the terminal nodes of the tree is then taken as input data for the analysis by

the ML algorithm described above.

The simulations are performed on linear and binary trees, i.e. trees with a pectinate

structure and trees that are symmetrical. We simulate data over trees with 2, 3, 4, 6, 8 and

16 taxa. Trees with fewer than 16 taxa are obtained by randomly deleting taxa from a

symmetrical 16-taxa tree. We use a λ/µ ratio of 10 and we set the number at the root of

the tree to the equilibrium-binding site number λ/µ = 10. In order to obtain simulations

with different relationships between clade age and turnover rate we perform simulations with

different clade ages. We express the “age of the clade” in terms of relative clade age (RCA)

, i.e. the age of the root node divided by the half-life time of the binding sites. Therefore,

we set the root node to an age of 106 years and adjust the values of the parameters λ and

µ by a linear factor. Based on Equation 4.4 (p.91), a RCA of 1 corresponds to a decay rate

of µ = ln(2)/106 = 6.93 × 10−7. For each parameter set, 1000 simulationa are performed in

order to minimize the influences of extreme random effects.

5.2.1 The Effect of Taxon Sampling

Here, we address the question, how much the estimate of the model parameters is affected by

the number of taxa that are included in the analysis.

The first notable trend is that for is a considerable fraction of simulations the algorithm did

not converge, see Figure 5.4. On the one hand, there are cases in which the likelihood of an

equilibrium model equals that of the full model taking phylogenetic structure into account. In

the equilibrium model, the likelihood of any binding site number on the tree is estimated from

the Poisson distribution, i.e. the equilibrium distribution of the stochastic process of binding

site turnover. Equilibration of binding site numbers among species can happen even in cases

where the simulated clade is young compared to the half-life of binding sites and thus should

not be in equilibrium. If this equilibration occurs, it is impossible to estimate the individual

parameters because the equilibrium distribution only depends on their ratio. On the other

hand, there are cases in which the parameter estimates diverged toward zero. These cases
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Figure 5.4: Rate of non-converting data sets in dependence of taxa numbers for different
relative clade ages (RCAs) on binary trees. The percentage of simulated data sets for which
the algorithm did not converge ranged from about 30% for data with 2, 3 and 4 taxa to
only 5% in the case of 16 taxa. With older clades, i.e. a RCA of 1 or 4, the percentage of
non-converging is larger because they are more likely to be in equilibrium.

occur for instance when, by chance, the binding site counts of taxa are too similar suggesting

a low rate of evolution. Taking these cases together, the percentage of simulated data sets

for which the algorithm does not converge ranges for young clades with a RCA of 0.5 from

about 30% for data with 2, 3 and 4 taxa to only 5% in the case of 16 taxa. Hence, there is a

large chance (about 30%) that small data sets, i.e. 4 taxa or less, cannot be analyzed because

there is a high probability of a data structure that is “misleading” to the algorithm. In our

simulations, however, the chance that the algorithm is not converging is only 10% with eight

taxa and 5% with 16 taxa. With older clades, RCA 1 or 4, the percentage of non-converging

is larger because they are more likely to be in equilibrium.

All the results discussed below are based on only those simulations in which the algorithm

converged, i.e. the likelihood of the full model is higher than the equilibrium model and no

parameter estimate diverged close to zero. Note that there is no ambiguity in classifying the

cases as converging or diverging. The simulated parameters are of the order of 10−5 and 10−6

for λ and µ, respectively. The optimization stops if the start parameters falls more than six

orders of magnitude, typically 10−17 or lower.

5.2.2 Estimating the λ/µ Ratio

Here, we consider the influence of the mean binding site number in the taxon sample on

the estimated ratio of λ/µ. Remember that the ratio λ/µ predicts the expected binding
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Figure 5.5: Influence of the mean binding site number on the estimated λ/µ ratio for binary
trees. (a) The mean binding site number (RCA = 0.5) tends to differ more from the equilib-
rium number for few taxa than for many taxa. (b) The correlation between the binding site
number and the estimated λ/µ ratio is for 4 taxa and a relative clade age (RCA) of 0.5 very
strong (Neyman–Pearson: 0.974). (c) In contrast the correlation for 16 taxa at the same RCA
is virtually 0 (Neyman–Pearson: −0.009). (d) In general, this correlation falls with rising taxa
numbers and increase strongly with higher RCA. This suggests that λ/µ estimates are more
reliable with high taxa numbers and low RCA.
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site number in stochastic equilibrium. In the simulations, the root node is assigned to the

predicted equilibrium binding site number, in our case 10. Nevertheless, the mean binding

site number differs in some cases quite dramatically from the equilibrium expectation. In

Figure 5.5 (a), we plot the minimum, the mean, and the maximum over all mean binding

site numbers of simulations with the same parameters. While the mean corresponds to the

expected binding site number, the extrema indicate a high deviation. The differences between

the mean binding site number and the extrema get smaller with higher taxa numbers, but

even for “large” data sets with 16 taxa, the minimum mean binding site number is 7.4 and

the maximum is 12.1. These are 20 − 25% different from the expectation of 10.

One can expect that the algorithm would over- and underestimate λ/µ if the mean binding

site number in a data set deviates strongly from the expectation. In fact, for small data sets,

there is a strong correlation between the mean binding site number in a data set and the

estimated λ/µ ratio. This correlation is shown in Figure 5.5 (b) for a sample of data sets with

four taxa. The Neyman–Pearson correlation is 0.974 and the scatter is very tight. On the

other hand, in a sample of data sets with 16 taxa, the correlation is with −0.009 virtually zero,

see Figure 5.5 (c). Hence, with a moderately large data set and a young clade, for example,

16 taxa and a RCA of 0.5, the algorithm is able to correctly estimate the λ/µ ratio, even

when the mean binding site number deviates strongly from the expected equilibrium-binding

site number.

We further investigated the relationship between mean binding site number and estimated

λ/µ ratio for older clades with RCA of 1 and 4, see Figure 5.5 (d) for data sets of 4, 6, 8 and

16 taxa. We find that the correlation between mean binding site number and estimated λ/µ

ratio remains high even from clades with RCA = 1 and 16 taxa. It seems that the demand

on data amount increases strongly with RCA so that the algorithm can estimate the correct

λ/µ ratio. For instance, with a RCA of 1 and 16 data, the correlation is still 0.78 and with a

RCA of 4, it is higher than 0.9.

We conclude that the accuracy and reliability of the estimated λ/µ ratio critically depends

on the number of taxa sampled. With sufficient data and clades that are young enough relative

to the half-life of the binding site, the algorithm accurately estimates the equilibrium binding

site density for a clade, even when the mean binding site number observed is considerably

different from the expectation. This is also the case for linear trees.

5.2.3 Estimating the Individual Model Parameters

Since the λ/µ ratio strongly influences the expected mean binding site number among taxa,

this ratio is much easier to estimate than the individual parameters, λ and µ. In Figure 5.6, we

plot the difference between the estimated rates and the rates that are used for the simulations

in a log10 scale.

These data show that the average accuracy of parameter estimates can be pretty good
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Figure 5.6: Influence of the number of taxa on the accuracy of the individual parameter
estimates for binary trees and an relative clade age of 0.5. The values for µ (a) as well as
the values for λ (b) show relatively accurate estimates from six taxa on. For smaller taxa
numbers, the predictions become more inaccurate which suggest that parameter estimation
requires at least six taxa.

all the way down to samples of six taxa in a clade with RCA of 0.5. Hence, there seems

to be no bias in the estimates. The SDs for both log10 µ as well as log10 λ estimates are

pretty high, roughly around 0.3, and slightly higher for smaller data sets but generally in

the same order of magnitude. Evaluation of the SDs of the estimated parameters yields

to CIs for these estimates. These SDs translate into factor of two differences between the

estimated and the real parameters. The 95% CIs then would be compatible with roughly a

4-fold difference between estimates and true parameter values. Point estimates of binding site

turnover parameters are expected to be inaccurate up to a 4-fold difference even with young

clades and a moderately large taxon sample below 16. Estimated parameter values can thus

only be considered as order of magnitude estimates.

These trends are remarkably similar to clades of different age. For log10 λ, the SD is 0.369

if averaged over taxa numbers and clade ages. This value varies between 0.49 and 0.28 if

averaged over clade age and between 0.41 and 0.32 if averaged over taxa. For log10 µ, the

overall average SD is 0.365 and shows a similar range of variation as log10 λ. Hence, the

CIs for parameter estimates are not much influenced by either taxon number or clade age.

Samples with more taxa are better for estimating parameters but only slightly.
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Figure 5.7: Effects of the relative clade age (RCA) for 16 taxa. (a) While young clades are
almost every time outside the equilibrium state, the fraction of non-equilibrium data sets
tended to slowly decrease in older clades. (b) The variance/mean ratio V/m of the binding
site numbers corresponds for large clade ages to the expected equilibrium rate V/m = 1. For
small RCAs, V/m is below 1, indicating a phylogenetic signal in the data for binary as well
as for linear trees. Hence, clades which are at least three times as old as the binding site
half-life are expected to be in equilibrium.

5.2.4 The Effect of Clade Age

We performe simulations of binding site turnover in clades of 16 taxa with either binary trees

or linear trees. We simulated clades of different age that were composed of the same number

of taxa. We express the clade age in terms of RCA and simulate clades with 16 taxa and

eight different RCAs, in detail 0.5, 1, 1.5, 2, 3, 4, 8 and 16. In Figure 5.7 (a), we show the

percentage of simulations for which the likelihood of the equilibrium model is less than that of

the full model. This difference between likelihoods is manifested in almost all cases with young

clades, i.e. with an RCA of 0.5 and 1. With older clades, the fraction of non-equilibrium

data sets decreases slowly. It reaches its lowest level of 40 − 60% in old clades with an RCA

of 16. In old clades, binary trees seem to produce a smaller fraction of non-equilibrium data

sets than linear trees. This difference may occur because linear trees with the same number

of taxa will have more recent nodes than in a binary tree of equally spaced internal nodes.

In Figure 5.7 (b), the variance/mean (V/m) ratio, i.e. the ratio of the variance in binding

site number across species divided by the mean binding site number, is plotted as a function

of the RCA. Note that for the equilibrium data set, we expect V/m = 1 and phylogenetic

signal should lead to V/m < 1. The results for linear and binary trees are very similar, with
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binary trees having slightly larger average V/m for young clades. The V/m ratio starts out

around 0.4 for RCA = 0.5 but quickly approaches the equilibrium value of 1 at an RCA of 3.

Hence, clades which are three times as old or older than the binding site half-life are expected

to approach an equilibrium value of V/m = 1.

Estimates of the binding site loss rate µ on binary trees are relatively accurate in clades of

RCA up to 4 but were then systematically biased downwards, see Figure 5.8 (a). The bias

decreases approximately linearly, with a regression equation of ∆ log10(µ) = −0.037×RCA+

0.023. In contrast, µ estimates derived from linear trees, see Figure 5.8 (c), are accurate for

RCA = 0.5 but seem to be biases toward higher values for RCA = 1 to RCA = 4. The average

∆ log10(µ) is 0.085, i.e. the actual µ estimates are about 22% higher than the simulated values.

Above RCA = 4 the bias in µ estimates decreases with ∆ log10(µ) = −0.025 ×RCA+ 0.079.

For binary trees, estimates of the birth rate of binding sites, λ, are relatively accurate in

the same range as the µ estimates, see Figure 5.8 (b), i.e. between RCA = 0.5 and 4. For

RCA 4 and 8, we find a positive bias in λ estimates but with RCA = 16, a curious inversion of

the trend is observed with a negative bias for λ, whereas the µ estimates have a positive bias.

A similar pattern is found for linear trees, see Figure 5.8 (d), except that for RCA between 1

and 3 the λ estimates have a negative bias. The reversion of bias in µ and λ might be related

to the fact that the estimates of very old clades are mainly influnced by the λ/µ ratio and

any stochasticity in the binding site density in terminal taxa leads to higher µ rate estimates.

Overall, these simulations show that the method performs well in estimating binding site

turnover rates in young clades with RCA = 0.5 regardless of tree structure, and moderately

well up to RCA = 4 for binary trees. In older clades, µ estimates seem to be systematically

biased toward larger values and λ estimates seem to have variable biases depending on RCA.

5.2.5 The “Back of the Envelope” Method

The dependency of V/m on RCA shown in Figure 5.7 (b) suggests that V/m follows an inverse

exponential function of RCA

V/m ≈ 1 − exp[−k × RCA]. (5.1)

This functional form is reasonable given that the effect of history decreases exponentially

with time in our model derived in Chapter 4. In fact, the model estimating the coefficient

k from the simulation data by regressing − ln(1 − V/m) onto RCA gives a good agreement

between the simulated data and the inverse exponential function. When simulating smaller

data sets for 4 and 8 taxa, in order to see whether the rate of increase in V/m depends on

the number of taxa, we find that the rate of increase is larger with more taxa than with

fewer, see Figure 5.9. The respective regression coefficients are for 16 taxa k = 1.07, 8 taxa

k = 0.81, and 4 taxa k = 0.58. The coefficient increases almost linearly with the number of
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Figure 5.8: Influence of the relative clade age (RCA) on the accuracy for binary trees and 16
taxa. (a) For binary trees, the estimates of µ are relatively accurate up to a RCA of 3 and
start then to be biased toward higher values. (b) The estimates of λ act similarly except the
negative bias at a RCA of 16. In case of linear trees the estimates of µ (c) and λ (d) are
similar to that on binary trees.

taxa, showing a regression of

k = 0.04 ×Ntaxa + 0.45 . (5.2)

Using these empirically determined relationships, we can estimate the model parameters.
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Figure 5.9: Influence of the relative clade age (RCA) and the taxa number on the V/m
ratio of the binding site numbers for binary trees. The inverse exponential function based on
Equation 5.1 (lines) gives a good agreement with the simulated data (points).

Given a clade with N taxa and clade age T as well as the mean m and the variance V

of the binding site numbers for a TF with a V/m ratio substantially smaller than 1, we can

estimate the RCA of the clade relative to this transcription factor (TF) by

RCA =
− ln(1 − V/m)

0.04 ×N + 0.45
.

From that we obtain the half-life of the TFBS using the clade age

T1/2 =
T

RCA
,

which then relates to the decay rate µ of the TFBS by

µ =
− ln(0.5)

T1/2
.

If we assume that the mean binding site number is in equilibrium, the origination rate λ

can also be calculated by

λ = m× µ.

However, the mean binding site number does not need to be in equilibrium, and thus, this

latter estimate should be considered with caution. Although this Back Of the Envelope

method (BOE) is just an approximation, it is useful to get a rough estimate for the parameters

based only on the V/m ratio.
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5.3 Application to Biological Data

The motivation for developing the method was to be able to detect differences in selective con-

straints acting on cis-regulatory regions. Specifically, we like to determine whether biologically

interesting patterns can be detected using this method in terms of lineage- or clade-specific

differences in turnover parameters. Here, we analyze two data sets in order to see how the

method performs on biological data. The first data set is based on yeast genes (phylum As-

comycota) related to the methionine biosynthetic pathway while the second data set is based

on hormone response elements in the mammalian (phylum Chordata) HoxA gene clusters.

5.3.1 The Methionine Pathway of Yeasts

The upstream regions for the predicted protein-coding genes across thirteen yeast species

were obtained from Wapinski et al. (2007). Out of 27 methionine biosynthesis genes com-

piled by Gasch et al. (2004), eight genes, in detail Met2, Met3, Met6, Met8, Met10, Met16,

Met30 and Sah1, were identified as single-copy orthologous in all thirteen species using the

Fungal Orthogroups Repository.

To determine the TFBS density, we use a compilation of 80 binding sites represented by

consensus sequences (Gasch et al., 2004) in IUPAC nucleotide code. We searche 500 bp

upstream of our eight orthologous single-copy genes for each of the binding sites, counting

the occurrences in both strands. In 41 of 104 cases, the non-coding upstream sequence was

less than 500 bp, so the count was extrapolated linearly to this value (e.g., if eight binding

sites were found in 400 bp of upstream sequence, our final count was assigned as 10). In

two outlier cases, we instead assigned the binding site count from the closest relative to two

species because they had upstream sequences of 1 and 37 bp. Out of 80 TFBSs, five were

found to be enriched in the single-copy orthologous genes compared to the rest of the genome

(bound by Bas1p, Cbf1p, Gcn4p, Met30/31p, and Rtg1/Rtg3p). Enrichment was inferred by

applying Fisher’s exact test to compare the times the binding site was found for all species

in the single-copy orthologous genes (104 promoter regions total) and in the rest of genome

(73944 promoters). To get the final binding site count for these TFs, we summed up all

the occurrences in the eight related genes for each of the species. All these processes were

automated using PERL scripts. The results are summarized in Table 5.1.

To obtain the chronogram (ultrametric tree with branch lengths proportional to time),

we used the phylogenetic tree topology from Wapinski et al. (2007). We estimated diver-

gence times by penalized likelihood with a truncated Newton algorithm in r8s version 1.71

(Sanderson, 2006) setting the smoothing parameter to 0.06. The tree species phylogeny was

calibrated by fixing the split of Debaryomyces hansenii and Candida albicans from the other

yeast at 272 million years (Myr) (Miranda et al., 2006).
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Scientific name BAS1 CBF1 GCN4 MET30/31 RTG1/3

Saccharomyces cerevisiae 3 12 10 8 5
Saccharomyces paradoxus 3 11 10 9 7
Saccharomyces mikatae 5 10 9 6 11
Saccharomyces bayanus 4 10 8 5 7
Candida glabrata 2 5 4 4 15
Saccharomyces castellii 1 5 8 2 6
Kluyveromyces lactis 2 11 4 6 9
Ashbya gossypii 2 11 2 7 17
Kluyveromyces waltii 1 3 1 4 4
Candida albicans 2 1 4 1 5
Debaryomyces hansenii 5 2 9 1 2
Yarrowia lipolytica 5 6 8 16 15
Schizosaccharomyces pombe 0 0 1 0 2

Table 5.1: Number of nuclear receptor response elements significantly enriched in eight single
copy orthologous methionine biosynthesis genes (Met2, Met3, Met6, Met8, Met10, Met16
Met30, Sah1) in yeast.

Data Analysis

The mean binding site density, averaged over species, is highly variable, ranging from 2.7

for BAS1-binding sites to 8.1 for RTG1/3-binding sites. In order to explore the evolution of

binding site density, we computed the mean binding site density and the ratio of binding site

variance to mean (V/m ratio) for various clades of yeast species. According to our model,

the V/m ratio is predicted to be equal to 1 if the binding site density distribution is in

equilibrium, i.e. if the time of separation among the lineages is long enough to erase the

phylogenetic signal, see Equation 4.3 (p.84). If the clade is younger, the model predicts that

the V/m ratio is less than 1. If, however, the lineages are separated for a long time and

differ in their expected binding site densities, the V/m ratio can be larger than 1. With these

criteria in mind, we can perform an exploratory analysis of our data.

Figure 5.10 (a) shows the relationship of the V/m ratio over the estimated age of the clade.

In the youngest clade D (cf. Figure 5.10), consisting of 4 species most closely related to

Saccharomyces cerevisiae (about 20 Myr), the V/m ratio for all five binding sites is less than

1 (sign test: P = 0.0125) and two binding sites individually have a V/m ration significantly

less than 1 (CBF1: P = 0.032; GCN4: P = 0.039). For older clades, the V/m ratio tends

to be larger but with considerable variation among binding site classes, roughly consistent

with the expectation of the model. In all binding site classes, the count of binding sites in

Schizosaccharomyces pombe is low and will be excluded from further analysis. Below, we

summarize the variation in binding site density for individual binding site classes.

BAS1: See Figure 5.10 (b). The binding site density for BAS1 is low, with an average of 2.69

and ranging from 0 in Schizosaccharomyces pombe to a maximum of 5. In general, mean
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Figure 5.10: Evolution of binding site numbers in the methionine pathway of yeast (A). The
first diagram (a) shows the relationship of the clade age and the V/m ratio of binding sites.
The letters refer to the clade labels in (b) to (f). Whereas for the youngest clade D the
V/m ratios for all transcription factors are less than 1, the ratios tends to be large for older
clades but still have a considerable variation among binding site classes. Note that V/m ratios
larger than 1 suggest heterogeneity of binding site number among taxa. For the remaining
diagrams, clades are indicated by a letter at their root and a bracket displaying the mean
binding site number and the V/m ratio behind the corresponding binding site numbers and
species names. The whole-genome duplication of the C clade is marked by WGD. For BAS1
(b), the likelihood model estimates a half-life of 22.7 Myr. CBF1 (c) has an estimated half-life
of 57.3 Myr. There also seems to be a significant decrease in the binding site density in stem
lineage of the F clade. GCN4 (d) has with 84.1 Myr, the longest estimated half-life and a
significant loss of binding sites in the E clade.

binding site density is similar among clades and the V/m ratio generally remains below

1. There is no particular pattern to binding site density differences. The estimated

origination rate is 0.0244 binding sites/(kb × Myr) for the 4000 bp area consisting of
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Figure 5.10: Evolution of binding site numbers in the methionine pathway of yeast (B).
MET30/31 (e) has an estimated half-life of 24.2 Myr and like CBF1 a significant binding
site loss in the F clade. RTG1/3 (f) has in the D clade a V/m ratio of 0.84. This is close
to 1, suggesting equilibrium within the 20 Myr time frame of the D clade. This makes the
estimation of the rate parameters difficult and yields to the shortest half-life of only 30, 900
years.

500 bp upstream for each of our eight orthologous single-copy genes. The half-life for a

BAS1-binding site is estimated to be 22.7 Myr.

CBF1: See Figure 5.10 (c). CBF1-binding site density in the A clade (i.e., all species except

Schizosaccharomyces pombe) is 7.3. The V/m ratio in the A clade is significantly el-

evated above 1 (V/m = 2.21, P = 0.012) and thus indicates heterogeneity in average

binding site density among lineages. This heterogeneity arises from differences among

the B clade and its two outgroup clades, clade F and Yarrowia lipolytica. The B clade

itself has a V/m ratio of 1.30, which is not significantly elevated above 1 (P = 0.30).

Within the B clade, the youngest clade D has a significantly decreased V/m ratio of

0.09 (P = 0.032). This indicates that the half-life of the CBF1-binding sites is longer

than the age of the D clade. Estimating the half-life with the likelihood model yields

a value of 57.3 Myr, which is almost three times the age of D clade, about 19.8 Myr.

Comparing the binding site densities in the F clade (mean is 1.5), the direct outgroup

of B, suggests that binding site density might have been decreased in the stem lineage

of the F clade. A likelihood ratio test using our model suggests that this rate differ-

ence is significant (χ2 = 11.05; P = 0.004, 2 degrees of freedom). The ML-estimated

CBF1-binding site origination rate is 0.02 binding sites/(kb × Myr).

GCN4: See Figure 5.10 (d). The average density of GCN4-binding sites is 6.4 and has only

a slightly elevated V/m ratio of 1.6 (P = 0.09). In contrast, the B clade has significant

heterogeneity as indicated by a V/m ratio of 1.96 (P = 0.047), which is caused by

a lower binding site density in the E clade (mean = 2.3, V/m = 1.0) than in the

C clade (mean = 8.2, V/m = 0.61; P = 0.31). The outgroups of the B clade, F
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clade, and Yarrowia lipolytica are more similar to the C clade (combined mean = 7.0,

V/m = 1.0) suggesting that the E clade lost GCN4-binding sites in evolution. This

inference is supported by a likelihood ratio test with our model (χ2 = 9.29; P = 0.0096,

2 degrees of freedom). GCN4 has the longest estimated half-life among the binding

sites investigated here, 84.1 Myr, and a slightly lower than average origination rate of

0.013 binding sites/(kb × Myr).

MET30/31: See Figure 5.10 (e). Over all species (except Schizosaccharomyces pombe), the

binding site density for MET30/31 is 5.8 and heterogeneous, with a significantly elevated

V/m ratio of 2.98 (P = 5.810−4). The heterogeneity is caused by a difference between

the binding site densities in the B clade, which has a mean of 5.7 and a V/m ratio of

0.84, and the two outgroups. The first outgroup, the F clade, has a much lower binding

site density of 1 while the second outgroup, Yarrowia lipolytica has an elevated binding

site density of 16. Testing for a decreased binding site density with our likelihood model

supports the inference that the F clade has a lower equilibrium density (χ2 = 13.02;

P = 0.0015, 2 degrees of freedom). The B clade itself seems to be homogenous (P =

0.43). The half-life of MET30/31-binding sites is relatively short, at 24.2 Myr, and the

origination rate is 0.034 binding sites/(kb × Myr).

RTG1/3: See Figure 5.10 (f). The average binding site density of RTG1/3 in the A clade

is 8.6 and highly heterogeneous, V/m = 2.76 (P = 1.4 × 10−3). The heterogeneity

arises at various levels. As for MET30/31, the density is high in Yarrowia lipolytica

(m = 15) and depressed in the F clade (m = 4). Also, the B clade is heterogeneous

with a mean of 9.0 and a V/m ratio of 2.25 (P = 0.021). The heterogeneity in the B

clade is caused by heterogeneity in the E clade, which has a mean of 10 and a V/m

ratio of 4.3 (P = 0.014), where the densities range from 17 to 4. ML estimates of

the rate parameters are not possible with accuracy because the reconstructions suggest

that the process quickly equilibrates, which only makes the ratio of rate parameters

determined by data. This observation is consistent with the relatively high V/m ratio

of 0.84 among the species of the D clade, the youngest clade in our taxon sample. This

V/m ratio is not significantly different from 1 suggesting equilibration within the 20

Myr time frame of the D clade. Using the BOE method, which is just based on the

V/m ratio, the data suggests a half-life of only 6.2× 106 and an origination rate as high

as 0.21 binding sites/(kb × Myr).

Comparing the data among binding site types suggests that binding site densities come in

two modes. One mode ranges from 5 to 10 sites and the other consists of lineages having bind-

ing site densities of 1 or 2. Given that binding sites were sampled from the 5′ region of eight

genes, binding site densities of 1 or 2 probably represent spurious binding site distributions,

suggesting that this TF is not functional in the methionine pathway of the respective species.
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Figure 5.11: Comparison of the Maximum Likelihood and the Back of the Envelope estimates.
Between both methods exists a correlation (r2 = 0.764) for the µ estimates (a). In contrast,
the λ estimates (b) have a low correlation of 0.392.

If this interpretation is correct, it seems that certain TFs have been replaced in some clades,

often in the F clade, by some other TF, as has been demonstrated for the ribosomal protein

module (Tuch et al., 2008). This scenario applies to RTG1/3, MET30/31, and CBF1 in the

F clade, represented here by Debaryomyces hansenii and Candida albicans. A similar drop in

binding site density happens in the E clade, represented by Ashbya gossypii , Kluyveromyces

lactis and Kluyveromyces waltii , for the GCN4-binding sites. These inferences from the bind-

ing site density patterns predict a shift in the functional role of the respective TFs. Another

possibility is that in this clade, the binding site motifs and the TF DNA-binding specificity

has changed. Thus, the TFBSs are no longer recognizable.

We also compare the ML and the BOE estimates of the model parameters. The ML es-

timates use an explicit likelihood framework to estimate parameters for a given phylogeny,

whereas the BOE method only uses empirical relationships between V/m to estimate param-

eters. Given the difficulties of estimating these parameters, the correlation between the ML

and BOE estimates of µ are quite reasonable (r2 = 0.764) excluding RTG1/3 which inflates

the correlation, see Figure 5.11 (a). In contrast, the λ estimates have a low correlation of

0.392, excluding MET30/31, which is an outlier, see Figure 5.11 (b). However, the three

binding site origination rate estimates for CBF1, BAS1,and GCN4 are close to the line where

the BOE and ML rate are equal.
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Species ERE PRE RARE

Human 12 12 3
Chimp 14 7 4
Baboon 11 8 5
Marmoset 17 10 6
Lemur 9 14 2
Galago 9 12 4
Mouse 12 17 4
Rat 15 14 4
Rabbit 11 16 4
Bat 17 19 3
Dog 12 15 3
Armadillo 11 8 3
Elephant 16 12 5
Opossum 12 13 2
Platypus 14 10 3
Chicken 8 7 4
Frog 1 8 4
Coelacanth 7 4 0
Bichir 3 3 4
Shark 7 7 3

Table 5.2: Number of nuclear receptor response elements in the vertebrate HoxA clusters.

5.3.2 The Vertebrate HoxA Cluster

The complete HoxA clusters from 20 vertebrates, in detail human, chimp, baboon, marmoset,

lemur, galago, mouse, rat, rabbit, bat, dog, armadillo, elephant, opossum, platypus, chicken,

frog, coelacanth, bichir and shark, were downloaded from NCBI, see Table A.1 (p.133) in

the appendix. The sequence around the cluster was trimmed to include 5 kb of sequence

upstream of the most 5′ Hox gene and 5 kb downstream of the most 3′ Hox gene.

Putative estrogen, progesterone, and retinoic acid response elements are identified using

motif finding programs and in-house PERL scripts based on regular expressions. The numbers

for ERE is determined using the MATCH algorithm (Kel et al., 2003) and the PWM created

by 41 natural vertebrate ERE motifs (Klinge, 2001) with a threshold of 0.85 as described

in Section 4.2.1 (p.89) in the previous chapter. The progesterone response element (PRE)

consensus is based on experimentally determined high-affinity progesterone receptor binding

sites (Nelson et al., 1999). The motif TCTTGTNNNACAAGA has a variable half-site and a fixed

half-site, separated by three arbitrary nucleotides. One substitution in the six nucleotides

of the fixed half-site and three mismatches to the perfect PRE are allowed in the variable

half-site. For the detection of the binding sites of the retinoic acid response element (RARE)

, we perform an exact forward and reverse search of 18 experimentally defined DR5 RAREs

(Mainguy et al., 2003) that consist of five defined nucleotides on each side separated by five

arbitrary nucleotides. The results are summarized in Table 5.2.
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Data Analysis

In the total data set (clade A), containing 15 mammalian species (clade B) and 5 non-

mammalian species, the steroid response elements (SRE) , i.e. either ERE or PRE, are

significantly overdispersed, suggesting heterogeneity among lineages in terms of the ERE and

PRE density, see Figure 5.12. Specifically, the V/m ratio for PRE is 1.73 (P = 0.025) and for

ERE 1.68 (P = 0.013). This heterogeneity is caused by a difference between the mammalian

and the non-mammalian taxa. The mammalian clade has higher SRE densities (PRE: mean

is 10.8; ERE: mean is 10.9) than the non-mammalian species (PRE: mean is 5.8; ERE: mean

is 5.2). The mammalian clade shows no evidence of heterogeneity (PRE: V/m is 0.97; ERE:

V/m is 0.53; P = 0.17). This suggests that the SREs experienced a twofold increase in

equilibrium density from about 5 to about 10. The likelihood ratio test using our model

supports this conclusion (PRE: χ2 = 17.67, P = 1.46 × 10−4, 2 degrees of freedom; ERE:

χ2 = 22.72, P = 1.16 × 10−5, 2 degrees of freedom).

The density of RARE elements is low compared to that of the SRE, with an overall mean of

3.5. The variation of RARE density is also low, with an overall V/m ratio of 0.47 (P = 0.024),

suggesting that RARE have a lower turnover rate than SRE. No evidence of heterogeneity

has been found in this data set, which is consistent with the ancestral function of RARE in

Hox gene regulation.

The estimated half-life for SREs is similar, about 10 Myr based on ML estimates (PRE:

T1/2 = 11.7 Myr; ERE: T1/2 = 7.23 Myr). We choose the primate clade to do a BOE estimate

for ERE, which yields a half-life for ERE of 22.7 Myr. Within the mammals, the PRE seem

to be in equilibrium in even the most recent clade with at least four species, i.e. tamarin,

macaque, chimp, and human (V/m = 1.6, P = 0.19). This clade has an estimated age of 43

Myr and thus the BOE estimate of half-life time is likely to be less than 10 Myr, i.e. this

clade would have an RCA of 4 or higher, based on the simulation results with four taxa. This

RCA is consistent with the ML estimate of 7.23 Myr.

The half-life estimates for SREs are of the same order of magnitude as those for TFBSs

in yeast (20 to 80 Myr), but situated ,ore to the lower end of the distribution. As expected

from the V/m ratios, the half-life time of the RARE is estimated to be longer than that of

SRE, T1/2 = 147 Myr, which is one order of magnitude higher than for SRE. This probably

reflects stronger selection against changes in RARE elements because of their central role

in vertebrate development. A BOE estimate using the data from the eutherian clade yields

T1/2 = 289 Myr, which is a factor two higher than the ML estimate but still in the same order

of magnitude.

The origination rates for the SREs are 0.005 binding sites/(kb × Myr) for PRE and and

0.008 binding sites/(kb × Myr) for ERE. In contrast, the origination rate for RARE is only

0.0001 binding sites/(kb×Myr). There is a general negative relationship between origination

rates and half-life times such that the shorter the half-life time, the higher the origination rate

118



5.3 Application to Biological Data

0.
0

0.
5

1.
0

1.
5

clade

V
m

C B A

105

Myr

224

Myr

528

Myr

ERE
PRE
RARE
V m = 1

(a)

ERE

T   = 7.23 Myr1/2

p < 0.000012

Human12

Chimp14

Baboon11

Marmoset17

Lemur9

Galago9

Mouse12

Rat15

Rabbit11

Bat17

Dog12

Armadillo11

Elephant16

528 Myr

A

B

C

C

12.8

0.60

5.2

1.77

B

12.8

0.53

A

10.9

1.68

Opossum12

Platypus14

Chicken8

Frog1

Coelacanth7

Bichir3

Shark7

(b)

PRE

T   = 11.7 Myr1/2

p < 0.00014

Human12

Chimp7

Baboon8

Marmoset10

Lemur14

Galago12

Mouse17

Rat14

Rabbit16

Bat19

Dog15

Armadillo8

Elephant12

528 Myr

A

B

C

C

12.6

1.08

5.8

0.81

B

12.5

0.97

A

10.8

1.73

Opossum13

Platypus10

Chicken7

Frog8

Coelacanth4

Bichir3

Shark7

(c)

RARE

T   = 147 Myr1/2

Human3

Chimp4

Baboon5

Marmoset6

Lemur2

Galago4

Mouse4

Rat4

Rabbit4

Bat3

Dog3

Armadillo3

Elephant5

528 Myr

A

B

C

C

3.8

0.30

3.0

1.00

B

3.7

0.34

A

3.5

0.47

Opossum2

Platypus3

Chicken4

Frog4

Coelacanth0

Bichir4

Shark3

(d)

Figure 5.12: Evolution of binding site numbers in the HoxA clusters of vertebrates. The
first diagram (a) shows the relationship of the clade age and the V/m ratio of binding sites.
The binding site numbers of ERE (b) and PRE (c) are significantly overdispersed caused by
differences between the mammalian and non-mammalian taxa. The mammalian clade shows
no evidence of heterogeneity (V/m of ERE is 0.53, V/m of PRE is 0.97), which suggests a
twofold increase in equilibrium density from about 5 to 10. The P -values at the stem lineage
of the mammalian clade are those of the likelihood ratio test, showing that the mammalian
and the non-mammalian lineages have different turnover rates and equilibrium densities of
ERE and PRE. RARE (d) show a very low density and variation with a V/m ratio of 0.47
suggesting a low turnover rate. There is also no evidence for heterogeneity which is consistent
with the ancestral and conserved function of RARE.
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(see also the results for yeast-binding sites). Such a negative relationship can be explained

if we assume that binding site turnover is due to accidental fixation of slightly deleterious

mutations and the selection of compensatory mutations. In equilibrium then, the origination

rate is driven by the accidental loss rate, which in turn is determined by the population size

and the intensity of stabilizing selection on the binding sites. The stronger the selection, the

lower is the fixation probability of deleterious mutations and, as a consequence, the smaller

is the need for the fixation of compensatory mutations.

5.3.3 Biological Implications

The exploratory data analysis using this model is based on the prediction that in stochas-

tic equilibrium, the ratio of variance to mean V/m is equal to 1. The data analyzed here

is qualitatively consistent with this prediction as younger clades tend to have V/m ratios

smaller than 1 and older clades tend to have V/m ratios around 1. In the case of V/m > 1,

the model predicts that there should be heterogeneity in binding site density among lineages.

This is often the case in the data sets we analyzed as clear instances of heterogeneity of mean

binding site density are identifiable in clades with V/m > 1 (see Figures 5.10 (p.114) and

5.12 (p.119)). Likelihood ratio tests for heterogeneity in the rate of binding site turnover

confirm this inference. Hence, comparing V/m ratios between clades can be used as a use-

ful heuristic to identify homogenous binding site dynamics and infer variation in selective

constraints acting on TFBSs.

The ML method described here is most useful for testing for heterogeneity in the turnover

rate and thus testing for differences in the selective constraints on TFBSs. For example, we

found that PRE and ERE densities in HoxA clusters are heterogeneous among gnathostomes,

comparison of V/m ratios, and mean binding site densities indicate that the heterogeneity is

between mammals and the other gnathostomes. The ERE and PRE densities in mammals

are about twice that observed in non-mammalian. A likelihood ratio test indicated that these

differences are highly significant (PRE: P = 1.4 × 10−4; ERE: P = 1.2 × 10−5), suggesting

a greater involvement of HoxA genes in female reproductive function in mammals than in

non-mammalian gnathostomes. Indeed, in humans and other placental mammals, HoxA-

13, HoxA-11, HoxA-10, and HoxA-9 have been shown to be involved in female fertility and

development of the reproductive tract and mammary gland and directly responsive to hormone

signaling (Daftary and Taylor, 2006). Unexpectedly, ERE and PRE density increased in the

stem lineage of mammals rather than in the therian or eutherian stem lineage coincident with

the evolution of internal development and placentation, respectively. A possible explanation

of the early increase SREs is the involvement of HoxA-9 and HoxA-5 in mammary gland

development and function (Chen and Capecchi, 1999), which evolved in the stem lineage of

mammals. This apparent increase in involvement of steroids in regulating Hox genes might

have been preadaptive (exaptive) for the later evolving role of HoxA-11 in placental function
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(Lynch et al., 2008). In contrast, there was no heterogeneity in RARE density among the

gnathostome taxa sampled, which is consistent with the ancient and conserved role of retinoid

acid in Hox gene regulation.

In our yeast data set, heterogeneity in binding site density is most often associated with a

decrease in density in the clade including Candida albicans. We find this reduced density for

CBF1- and MET30/31-binding sites, see clade F in Figure 5.10 (c) and (e), suggesting that

these TFs play a diminished role in regulating the methionine pathway genes in these species.

A similar pattern applies to GCN4-binding sites in the clade including Kluyveromyces lactis,

see clade E in Figure 5.10 (d). It would be interesting to test for the function of these TFs

in methionine biosynthesis in these species.

Estimates of the model parameters are imprecise in our data, at least as judged by CIs

derived from the likelihood functions, suggesting that dense taxon sampling is required for

more precise parameter estimation. Indeed, our data indicate that larger taxon sampling

in younger clades is necessary to obtain more accurate estimates. Even with these caveats,

however, several general trends in binding site turnover are apparent. For example, the half-

life of a “typical” TFBS is between 10 and 100 Myr, whereas more constrained binding sites,

such as RAREs in mammalian HoxA clusters, have an estimated half-life time of about 150

Myr. At the lower end of the half-life time, distribution are EREs in the mammalian HoxA

clusters with an estimated half-life time of about 7 Myr. This indicates that the optimal

taxon sampling and phylogenetic depth needed for accurate inferences in binding site density

dynamics is variable, such that more constrained sites require deeper taxon sampling, whereas

binding sites with higher turnover rates require dense sampling of younger clades. Based on

our simulation results, we recommend that studies of binding site dynamics should include

at least six species, see Figure 5.6, although the choice of taxon sampling depends heavily

on half-life of the binding site in that clade. In studies of genomic regions from species that

are closely related, one has the benefit that the number of orthologous binding sites could be

determined by sequence alignment, which will further increase the accuracy of the parameter

estimates, see Section 4.2.2 (p.90).

Overall, our results show that an ML implementation of the stochastic binding site turnover

model derived in Chapter 4 (p.77) allows for the analysis of binding site density in an explicit

phylogenetic context. The model can be used to statistically test for relative differences in

the turnover rate and equilibrium density of TFBSs as well as gain insights into the actual

rate of binding site turnover. The development of this and other models of TFBS evolution

has the potential to reveal the rate and pattern of CRE evolution similar to the development

of codon-based models of protein evolution.
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CHAPTER 6

Conclusion

The Universe is full of ignorance all around and the scientist panned

through it like a prospector crouched over a mountain stream, look-

ing for the gold of knowledge among the gravel of unreason, the

sand of uncertainty and the little whiskery eight-legged swimming

things of superstition.

Occasionally he would straighten up and say things like “Hurrah,

I’ve discovered Boyle’s Third Law.” And everyone knew where they

stood. But the trouble was that ignorance became more interest-

ing, especially big fascinating ignorance about huge and important

things like matter and creation, and people stopped patiently build-

ing their little houses of rational sticks in the chaos of the universe

and started getting interested in the chaos itself—partly because it

was a lot easier to be an expert on chaos, but mostly because it

made really good patterns that you could put on a t-shirt.

And instead of getting on with proper science, like finding the

bloody butterfly whose flapping wings cause all these storms we’ve

having lately and getting it to stop, scientist suddenly went around

saying how impossible it was to know anything, and that there

wasn’t really anything about, and how all this was tremendously

exciting, and incidentally did you know there were possibly all these

little universes all over the place but no one can see them because

they are all curved in on themselves? Incidentally, don’t you think

this is a rather good t-shirt?

Witches Abroad

Terry Pratchett
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I n this thesis, we discussed two important aspects of computational analysis of tran-

scriptional regulatory elements: the detection of them based on homology and the

examination of their evolutionary history based on a binding site turnover model.

In the first part of the thesis, we formulated the multiple sequence alignment problem as an

optimization problem of selecting a maximum collection of consistent local alignments. Based

on a detailed theoretical scaffold, we developed a simple but effective heuristic for assembling

local pairwise sequence alignments into a local multiple alignment. We then applied the

algorithm to artificial and biological data sets. In both cases, we were able to demonstrate

the capabilities of our algorithm to solve the problem of finding maximal consistent alignment

subsets. Furthermore, we demonstrated that our approach can be used for the computation

of multiple alignments based on individual alignment edges. The quality of these alignments

is comparable to other state-of-the-art multiple alignment tools.

The motivation for developing this algorithm was to be able to detect phylogenetic foot-

prints based on pairwise local alignments using consistency to detect homologous similarities.

In order to perform this task, we developed the Tracker algorithm that computes for a given

set of sequences an initial collection of local, pairwise alignments and determines on the basis

of this data consistent alignment sets. The multiple alignment that is created during the

computation of consistent subsets contains all conserved motifs that are consistent to the

alignment subset. We then applied Tracker to a set of homologous sequences and demon-

strated its capability to detect phylogenetic footprints.

In the second part of the thesis, we proposed a simple, but mathematically non-trivial,

phenomenological model for binding site number evolution at a genomic locus. The model is

based on the assumption that binding sites originate at a constant rate typical of a certain

genomic region and have a constant decay rate per binding site. We provided an elementary

derivation of the transient probability distribution and compared it to the transient frequency

distribution from simulations of a sequence evolution model. The results showed that the phe-

nomenological model fits the results of the sequence evolution model very closely, suggesting

that the phenomenological model could be a fair representation of binding site turnover, even

though the model is not based on an explicit consideration of sequence evolution. We then ap-

plied the model to data concerning the number of estrogen response elements in mammalian

HoxA clusters. We showed that this data is consistent with the assumption of a station-

ary turnover process within the mammals and that we can estimate the phenomenological

parameters.

The motivation for developing a phenomenological model of binding site number dynamics

is to be able to detect changes in selective constraints acting on transcription factor binding

sites (TFBSs). Therefore, we explored the utility of a phenomenological mathematical model

of binding site turnover for the analysis of the evolution of cis-regulatory elements (CREs).
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Specifically, we wanted to determine whether this model could guide investigators in identify-

ing clades where the selective forces acting on binding sites in CREs are different. We assume

that, in the case of poorly conserved but functionally important TFBSs, selection primarily

affects the rate of TFBS turnover and thus leads to differences in average binding site density

between lineages. We showed that the predictions of the model can be used in two ways.

On the one hand, the model can be used for exploratory “back of the envelope” data anal-

ysis. On the other hand, our maximum likelihood implementation Creto of the model can

be used to estimate model parameters and, in likelihood ratio tests, for detecting differences

in turnover rates between clades. The latter test is a key tool for identifying functionally

important changes in the evolution of cis-regulation and we demonstrated the abilities of the

approach on biological data.

Our Tracker approach for detecting phylogenetic footprints computes a new form of mul-

tiple alignments that consist of local motifs but still satisfy the order conditions. The repre-

sentation as thick alignment columns is an intuitive way to illustrate homologous motifs that

differ by evolutionary events like insertions or deletions. The computation of the initial align-

ment sets as well as the computation of other alignment steps is completely generic and can be

easily adopted to new alignment algorithms. The replacement of the relative old LASTZ and

ClustalW2 alignment programs that we used for the development of the method by modern

approaches is one of the next tasks. Also the inclusion of filter methods that allow the search

for specific motif patterns is important. A further possibility to improve the results of the

algorithm could be the usage of phylogenetic information. Alignments between far related

sequences are more likely to be based on random similarities, if they are not supported by

alignments between more related sequences We could detect false positive alignments this

way.

The statistical analysis of binding site density data in order to identify potentially important

changes in the selective constraints acting on CREs is also a completely new approach. In

contrast to other methods, it does not depend on conserved cis-regulatory sequences and

works even with data where turnover changed the location and arrangement of binding sites.

The model allows to make predictions for deviations from a constant rate of turnover that

can be tested with rigorous statistical methods. In that way Creto is meant to set the stage

for a sequence analysis tool, similar to the neutral sequence evolution model used to detect

natural selection in coding regions. It would certainly be interesting to use the present model

to search for two kinds of deviations from the model predictions. One is heterogeneity in the

rate of origination and/or decay between different lineages or clades. That could be done by

comparing the likelihood of the observed distribution of binding site numbers on the tips of a

phylogenetic tree assuming constant rates of origination and decay with a model which allows

for different parameters in different parts of the phylogenetic tree. A significant difference in

likelihood would constitute evidence for a difference in the selective constraints on binding
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sites in different groups of organisms. Another possible application of the model would be to

provide evidence for binding sites with different turnover rates. For instance, it is likely that

a non-coding region contains binding sites with strong selective constraints and others with

weaker constraints. This could be detected by testing for deviations from the exponential loss

of homologous binding sites as a function of time since lineage separation.

In summary, both parts of this thesis present new approaches for well known problems

concerning the detection and evolutionary analysis of regulatory elements. The software

tools Tracker and Creto were created in order to perform these tasks and is was shown that

they perform well. Both programs are freely available for usage and further development.

Hopefully, they shed more light on the world of transcriptional regulation.
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APPENDIX A

Supplementary Data

A.1 Simulation of Sequence Evolution

The simulation of sequence evolution in Section 4.2.1 (p.86) was performed with different

parameters for the mutations and the motifs. The corresponding results are shown in the

following figures. In detail we used following parameters:

(a) The motif length l is 5 and the mutation rate m is 10−5. All mutations are equally

probable.

(b) The motif length l is 5 and the mutation rate m is 10−5. The transition/transversion rate

ratio for mutations is 2/1.

(c) The motif length l is 5 and the mutation rate is high with m = 10−4. All mutations are

equally probable.

(d) The motif length l is 5 and the mutation rate m is 10−5. All mutations are equally

probable but the motifs are count on both strands.

(e) The motif length is higher with l = 8 and the mutation rate m is 10−5. All mutations

are equally probable.

(f) The motifs are determined with position weight matrix for the estrogen response element.

The mutation rate m is 10−5 and all mutations are equally probable.
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Figure A.1: Spreading of simulated binding site numbers over time.
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Figure A.2: Linear relationship (solid black line) between time t and the regression variable

R = ln((n̂−n0)/(n̂−n)) in the transient section of the development of the mean binding site

number.
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Figure A.3: Estimating the effective decay rate µ of binding sites as a function of the time.

The solid black line indicates the area that is used for the estimating of the value of µ.
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Figure A.4: Comparison of Simulation and Analytical Prediction (A).
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Figure A.4: Comparison of Simulation and Analytical Prediction (B). The transient ensemble

distribution of binding sites as found by simulation (black points) resembles the analytical pre-

diction (colored line). In equilibrium, the distribution corresponds to the Poisson distribution

(gray line).
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A.2 Vertebrate Data Set

Species Scientific Name Reference

Human Homo sapiens NT086366

Chimp Pan troglodytes NT107590

Baboon Papio anubis NT108362

Marmoset Callithrix jacchus NT113347

Lemur Microcebus murinus NT165887

Galago Otolemur garnettii DP000935

Mouse Microcebus murinus NT165680

Rat Rattus norvegicus NT107474

Rabbit Oryctolagus cuniculus DP001063

Bat Rhinolophus ferrumequinum DP000727

Dog Canis familiaris NT107854, NT165635

Armadillo Dasypus novemcinctus NT108274

Elephant Loxodonda africana NT161952

Opossum Monodelphis domestica NT113108, NT112848

Platypus Ornithorhynchus anatinus NT165289

Chicken Gallus gallus NT107524

Frog Xenopus tropicalis AC145789

Coelacanth Latimeria menadoensis FJ497005

Bichir Polypterus senegalus AC126321, AC132195

Shark Heterodontus francisci AF224262, AF224263

Table A.1: NCBI references for the sequences used to determine the nuclear receptor response

elements in the vertebrate HoxA clusters.
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APPENDIX B

The Tracker Program

B.1 Availability and Installation

The source code of Tracker is available at:

• http://www.bioinf.uni-leipzig.de/Software/tracker2/

It is written in ANSI C++ and does not need any additional libraries. For installation, copy

the downloaded file to an arbitrary directory, extracted the source code and compiled it as

follows:

• tar -xzf tracker2.src.tgz (extraction)

• cd tracker (change into directory)

• make (compilation)

An example run can be performed by typing:

• ./tracker example/csb/csb.fa

After the calculation, the results can be found in the file results.txt.

B.2 Input Format

In general, the input of Tracker involves three hierarchical file types. The program itself is

called with the main file including the sequence table. This table contains in each row an

entry for one of the homologous sequences that should be compared. Each row is composed

of three columns, separated by a tab character:
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1. The first column contains the id of the sequence, i.e. an arbitrary but unique name.

2. The second column contains the absolute or relative location of the region file for the

corresponding sequence. Region files are the second input level and contain the defini-

tions of the regions as described later.

3. The third column contains the ignore list, i.e. a list of comma separated ids referring to

other sequences that should not be compared with this sequence. This can, for example,

be used if sequences are not expected to contain mutual homologous areas in order to

prevent alignments caused by random similarities.

Region files are the second input level and each region file includes the fragment table for

one of the homologous sequences. This table contains in each row an entry for one fragment

consisting of seven columns separated by a tab character:

1. The first column contain a list of regions to which the corresponding fragment belongs,

separated by comma. Each region is represented by a unique id and encompasses all

fragments of all region files that containing this id in their definition.

2. The second column contains the absolute or relative location of the fasta file for the cor-

responding fragment. Fasta files are the last input level and contain multiple nucleotide

sequences given in IUPAC notation. Each entry is labeled with a tag by an extra line

in front of the sequence that starts with a ‘>’.

3. The third column contains the tag without the leading ‘>’ of the fasta entry that

contains the corresponding fragment.

4. The fourth column contains the position of the begin of the fragment in the fasta entry

whereas the first nucleotide of the fasta entry is at position 1.

5. The fifth column contains the position of the end of the fragment.

6. The sixth column contains the strand where the fragment is located. The strand given

by the fasta entry is denoted by ‘+’ while the reverse compliment strand is denoted by

‘−’.

7. In the seventh column, a name of the fragment can be defined that is used in the output

of Tracker. If no name is given, an artificial name is created consisting of the fasta file,

the tag and the begin and end positions.

Note that it is possible to split the data for a input sequence into multiple fasta entries. In this

case, Tracker determines the order and the orientation of this entries during the assembly of

the multiple alignments.
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Additionally to the given input scheme, the input can consist of only one multiple fasta

file. In this case, only one region exists and each fasta entry corresponds to one homologous

sequence where the fragment for the comparison involves the whole sequence. In other words,

each entry in the fasta file is compared to each other.

Furthermore, Tracker can be used to determine only consistent alignment subsets. In this

case the input can also consist of a single file including an alignment table. This table contain

in each row an entry for one pairwise, local alignment and each row is composed of seven

columns, separated by a tab character:

1. The first column contains the id of the first sequence.

2. The second column contains the begin of the first sequence.

3. The third column contains the end of the first sequence.

4. The fourth column contains the id of the second sequence.

5. The fifth column contains the begin of the second sequence.

6. The sixth column contains the end of the second sequence.

7. The seventh column contains the score of the alignment.

In addition to this description, the distribution contains in the examples/ sub-directory an

example for each of the possible input definitions.

B.3 Parameters

The parameters that are supported by Tracker are summarized in Table B.1.

B.4 Output Format

By default, Tracker writes all results into the plain text file results.txt. If the program

is used for the determination of consistent alignment subsets, the file contains all consistent

subsets determined by the heuristic. Each solution is described by a single line containing

the index of the solution starting with 0 followed by the list of comma separated alignment

indices. Alignment indices corresponds to the order of the input alignments whereas the first

alignment in the input file has index 0. The results are sorted by the sum of the alignment

scores in each solution, i.e. the first column contains the highest scoring solution. For example,

see Figure B.1 (p.139).

If Tracker is used for the detection of homologous regions, the file contains all results in a

hierarchic manner. After general information about the program call and the used parameters,
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short long type description

-l --lastz string Options used for calculation of initial alignment set with LASTZ.
Default is --seed=half8 --ambiguous=iupac --strand=both

--hspthresh=1000.
-s --strand flag Additional flag that causes LASTZ to align only the given strands

of the fragments.
-p --process flag Remove unconserved and repetitive parts out of initial align-

ments. This option improves the quality of the initial align-
ments. It includes the calculation of exact alignments between
segment pairs by ClustalW2 and can take some time for big
data sets.

-t --tolerance int Error tolerance for the determination of consistent subsets and
the assembly of the multiple alignment. If no value is given,
the highest difference between the length of segment pairs is
used as indicator for the maximal number of gaps in the initial
alignment set and we use this value as allowed tolerance.

-e --edges flag If set, the each alignment of the initial set is broken down to
single edges and all edges of all alignments are used as new initial
alignment set for the assembly of the multiple alignment. Note
that this includes the calculation of exact alignments between
segment pairs by ClustalW2, if not already calculated by the
pre-processing, and can take some time for big data sets. Also
this parameter sets the allowed tolerance to 0.

-i --indices flag If set, Tracker determines only the consistent alignment subsets
without calculating the multiple alignment. This parameter is
set per default if the input consist of an alignment table.

-h --html string If given, Tracker creates in addition to the text output also a
set of html files in the directory given by the parameter. These
files contain the results in a more user friendly representation
with colors and overview figures.

Table B.1: Parameters supported by the Tracker algorithm.

see Figure B.2 (p.139), the file contains for each result an entry with meta information for

the solution, see Figure B.3 (p.140). The order of the results in the file corresponds to the

alignment scores. Each result entry is followed by all included columns that describes the

homologous motifs, see Figure B.4 (p.141).

The optional HTML output contains in principle the same data, except that it is possible to

restrict the shown results to one of the defined regions. Additionally, tabulated data with links

simplify the navigation between solutions and columns, the use of nucleotide specific colors

for the alignments make it more easy to recognize patterns and graphics give an overview

about the relative locations of motifs, see Figure B.5 (p.141).
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0: 2, 3, 5, 6

1: 0, 1, 2, 4

Figure B.1: Tracker output for the determination of consistent subsets. The two lines tell

us that the heuristic found two consistent subsets. The best scoring solution consists of the

alignments 2, 3, 5 and 6 given by the input file, while the second best set consists of the

alignments 0, 1, 2 and 4.

<DATA>

call: ../../tracker csb.fa -a alignments.txt

version: v2.6 (2011/04/08 20:03:29)

time: 2011/05/29 00:17:25

sequences: 6

alignments: 1976

clusters: 1

cliques: 69

columns: 50351

<OPTIONS>

lastz: --seed=half8 --ambiguous=iupac

--strand=both --hspthresh=1000

strand: 0

process: 1

tolerance:

edges: 0

indices: 0

html:

Figure B.2: Tracker output with information about program call and used parameters.
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<RESULT>

index: 0

tolerance: 10

alignment scores: 1828952

extended scores: 8957942

column scores: 188078

column lengths: 4131

alignments: 3128

regions: csb

sequences:

0: 0|+|20-4252|4233

1: 0|+|0-3240|3241

2: 0|+|10-3260|3251

3: 0|+|58-3214|3157

4: 0|+|187-4002|3816

5: 0|+|0-2831|2832

Figure B.3: Tracker output of results. For each solution, the file contains the index, the used

tolerance, the sum of the alignment scores, the sum of the extended scores, the sum of the

column scores, the sum of all column lengths, the number of alignments and a list of regions

as well as the sequence areas that are covered by the result. For each sequence index, the

index of the fasta entry, the strand, the begin and the end of the area as well as the size of

the area are given.
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<MOTIF>

index: 81

clique: 0

species: 6

seq. length: 11

algn. length: 12

score: 361

alignments: 7

motif:

0: 0|+|3542-3552|11 79 (0) [AGGACACTTGC] (0) 82

1: 0|+|2368-2378|11 79 (0) [GAACAATTTGC] (0) 82

2: 0|+|2368-2378|11 79 (0) [GAACAATTTGC] (0) 82

3: 0|+|2423-2432|10 79 (0) [AACAAAATTG-] (14) 85

4: 0|+|3363-3373|11 80 (0) [AGGACATTTCC] (0) 82

5: 0|+|2132-2142|11 80 (0) [AGGAAATTTCC] (0) 82

[ * ** ]

Figure B.4: Tracker output of motifs. Representation of a motif by a thick alignment column.

Besides meta information like indices and scores, each motif entry contains a global alignment

of a thick column. The first part of each alignment line contains the sequence index followed

by the index of the corresponding fasta file entry, the strand, the begin and end position of

the interval and the size of the interval. This is followed by two numbers where the first gives

the index of the column that contain the predecessor of the corresponding interval and the

second gives the distance between this intervals. Behind the subsequent aligned sequence, the

same data is also given for the successor interval.

mouse
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finch

1+

1+

1+
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1+
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21 4253

1 3241

11 3261

59 3215
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Figure B.5: Graphical representation of a Tracker result. The location of motifs relative to

the sequences are indicated by colored bars whereas intervals of the same motif have the same

color.
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APPENDIX C

The Creto Program

C.1 Availability and Installation

The source code of Creto is available at:

• http://www.bioinf.uni-leipzig.de/Software/creto/

It is written in ANSI C++ and does not need any additional libraries. For installation, copy the

downloaded file to an arbitrary directory, extracted the source code and compiled it as follows:

• tar -xzf creto.src.tgz (extraction)

• cd creto (change into directory)

• make (compilation)

An example run can be performed by typing:

• ./creto example/primate HoxA ERE.txt

After the calculation, the results can be found in the file results.txt.

C.2 Input Format

Creto parses the phylogenetic data needed for the computation out of an input file. The data in

the file has to be marked with tags and the algorithm parses everything between the line behind the

tag and the line in front of the next tag. Thereby, empty lines are allowed and ’#’ can be used for

comments. Following tags are supported:

<COMMENTS> (optional) The text behind this tag is printed in result files. This is useful for the

transfer of meta information from the input file to the result file.
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<TREE> (required) The text behind this tag is interpreted as the phylogenetic tree with binding site

numbers of terminal taxa in extended Newick grammar:

<tree> ::= <subtree>";"

<subtree> ::= <leaf> | <internal>

<leaf> ::= <description>

<internal> ::= "("<branchlist>")"<description>

<branchlist> ::= <branch> | <branch>","<branchlist>

<branch> ::= <subtree><distance>

<description> ::= <empty> | <name> | <name>"|"<bsnumber>

<name> ::= <empty> | <string>

<bsnumber> ::= <empty> | <int>

<distance> ::= <empty> | ":"<double>

<SCALE> (optional) The text behind this tag is interpreted as double value and is multiplied with

the distances in the tree.

<START> (optional) The text behind this tag is interpreted as the assumed number of binding sites

for the root node. If this tag is not used, the mean of all leaf binding site numbers is used.

<ROOT> (optional) The text behind this tag is interpreted as the name of the root note, i.e. Creto

determines the parameters for the subtree that corresponds to the given name of a node in the

tree. Node names have the following syntax:

<name> ::= <leaf> | "("<name>"-"<name>")"

<ALTERNATIVES> (optional) The text behind this tag is interpreted as list of node names. For

each subtrees defined by the corresponding name, Creto will compute determines alternative

turnover rates. Node names have the following syntax:

<name> ::= <leaf> | "("<name>"-"<name>")"

In addition to this description, the distribution contains in the examples/ sub-directory an example

for a possible input definition.

C.3 Parameters

The parameters that are supported by Creto are summarized in Table C.1.

C.4 Output Format

During the optimization, Creto displays the actual turnover rates together with the corresponding

likelihood. After the optimization, the program creates the plain text file results.txt and the

postscript file results.eps. The text file contains an overview of the input (see Figure C.1 (p.146))

and used parameters (see Figure C.2 (p.146)), the initialization values together with characteristics

of the given data like mean binding site numbers, variance of the binding site numbers, ages of
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short long type description

-a --alternatives int Detect this number of subtrees that are most likely to have
alternative rates and determine this rates. Default: 0

-e --equilibrium flag Optimize root parameters under the condition that they are
in the equilibrium state.

-l --lambda flag Optimize only lambda and use root mu for all alternative
nodes.

-m --mu flag Optimize only mu and use root lambda for all alternative
nodes.

--bound float Fraction of the binding site number density on both bound-
aries that is not considered by the the calculations. Default:
1e-6

--decay float Fraction of the binding site numbers that are exists contin-
uously since root (for the determination of the optimization
start values). Default: 0.5

-d --delta int Limit number of rate value bisections in each improvement
step to given value. Default: 20

-r --repeats int Limit rounds of parameter optimizations to given value
--density float Set minimal probability density to this value.

Table C.1: Parameters supported by the Creto algorithm.

clades, variance/mean ratios and the final results for each defined subtree with alternative rates (see

Figure C.3 (p.147)).

The postscript file contains a graphical representation of the data together with the final results

(see Figure C.4 (p.148)).
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tree:

((((Human,Chimp),Baboon),Tamarin),(Lemur,Galago)) [a:0.00e+00, bs:11.06]

|-(((Human,Chimp),Baboon),Tamarin) [a:3.07e+07, bs:13.27]

| |-((Human,Chimp),Baboon) [a:4.91e+07, bs:12.16]

| | |-(Human,Chimp) [a:6.64e+07, bs:13.08]

| | | |-Human [a:7.75e+07, bs:12]

| | | ‘-Chimp [a:7.75e+07, bs:14]

| | ‘-Baboon [a:7.75e+07, bs:11]

| ‘-Tamarin [a:7.75e+07, bs:17]

‘-(Lemur,Galago) [a:2.71e+07, bs:9.15]

|-Lemur [a:7.75e+07, bs:9]

‘-Galago [a:7.75e+07, bs:9]

Figure C.1: Creto output for the input tree with age and expected binding site number for

each node.

parameters:

tree: ((((Human|12:0.0035,Chimp|14:0.0035):0.0055,

Baboon|11:0.009):0.00582,Tamarin|17:0.01482):0.00971,

(Lemur|9:0.01595,Galago|9:0.01595):0.00858);

scale: 3.1594e+09

start bs: 12

n_min: 0

n_max: 32

equilibrium: 0

only lambda: 0

only mu: 0

bound: 1e-06

decay: 0.5

convergence: 1e-06

repeats: inf

delta: 20

Figure C.2: Creto output for the used parameters.
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results:

root (id: 0, name: ’((((Human,Chimp),Baboon),Tamarin),(Lemur,Galago))’,

mean: 12, Var: 9.6, V/m: 0.8’, diff: 0)

lambda: 6.33607e-08

mu: 1.96262e-09

lambda/mu: 32.2837

min. dens: 0.607467

alternative* (id: 7, name: ’Tamarin’,

mean: 17, Var: -, V/m: -’, diff: 3.5)

=> stopped: lambda/mu -> +inf <=

lambda: 1.4451e-07 (const)

mu: 7.60014e-15 (const)

lambda/mu: 1.90142e+07

min. dens: 0.00115203

alternative* (id: 8, name: ’(Lemur,Galago)’,

mean: 9, Var: 0, V/m: 0’, diff: 3)

=> stopped: rates -> 0 <=

lambda: 9.59569e-15 (const)

mu: 4.26475e-15 (const)

lambda/mu: 2.25

min. dens: 1

likelihood: 2.86125e-05

iterations: 36

calculations: 2431

Figure C.3: Creto output for the computed evolutionary rates. For each subtree under

consideration, the rates that maximize the likelihood of the tree are given together with meta

information like the λ/µ and V/m ratio are given. The maximal likelihood is given at the end

together with the number of iterations and likelihood calculations during the optimization.
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comments:
binding site number of transcription factor
ERE in the HoxA cluster of primates.

0 ⇓

1 ⇓

2 ⇓

3 ⇓
4

5

6

7

8 ⇓
9

10

1.00e+07

Human: 12

Chimp: 14

Baboon: 11

Tamarin: 17

Lemur: 9

Galago: 9

(sub)tree λ µ λ/µ mean Var V/m ∆ ∫

0 6.33607e-08 1.96262e-09 32.28 12.00 9.60 0.80 ⇓ 0.00 0.61

7* 1.44510e-07 (∅) 7.60014e-15 (∅) λ/µ → ∞ 17.00 - - 3.50 0.00

8* 9.59569e-15 (∅) 4.26475e-15 (∅) λ, µ → 0 9.00 0.00 0.00 ⇓ 3.00 1.00

likelihood 2.86125e-05

iterations 36

calculations 2431

Figure C.4: Graphical representation of a Creto result. Subtrees with alternative rates are

marked by different colors. Arrows behind node numbers indicate v/m ratios above (red) or

below (green) 1.
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List of Abbreviations

BOE . . . . . . . . . . . . . . . . . . . . . . . back of the envelope

bp . . . . . . . . . . . . . . . . . . . . . . . . . . base pairs

CI . . . . . . . . . . . . . . . . . . . . . . . . . . confidence interval

CRE . . . . . . . . . . . . . . . . . . . . . . . cis-regulatory element

CSB . . . . . . . . . . . . . . . . . . . . . . . . Conserved Sequence Block B

ERE . . . . . . . . . . . . . . . . . . . . . . . . estrogen response element

IGR . . . . . . . . . . . . . . . . . . . . . . . . intergenic region

MCASP . . . . . . . . . . . . . . . . . . . . maximal consistent alignment subset problem

miRNA . . . . . . . . . . . . . . . . . . . . . micro RNA

mRNA . . . . . . . . . . . . . . . . . . . . . messenger RNA

Myr . . . . . . . . . . . . . . . . . . . . . . . . million years

ncRNA . . . . . . . . . . . . . . . . . . . . . non-coding RNA

PDE . . . . . . . . . . . . . . . . . . . . . . . partial differential equation

PFM . . . . . . . . . . . . . . . . . . . . . . . position frequency matrix

PRE . . . . . . . . . . . . . . . . . . . . . . . . progesterone response element

PSSM . . . . . . . . . . . . . . . . . . . . . . position specific scoring matrix

PWM . . . . . . . . . . . . . . . . . . . . . . position weight matrix

RARE . . . . . . . . . . . . . . . . . . . . . . retinoic acid response element

RCA . . . . . . . . . . . . . . . . . . . . . . . relative clade age

RNA . . . . . . . . . . . . . . . . . . . . . . . ribonucleic acid

rRNA . . . . . . . . . . . . . . . . . . . . . . ribosomal RNA

SD . . . . . . . . . . . . . . . . . . . . . . . . . standard deviation

siRNA . . . . . . . . . . . . . . . . . . . . . . small interfering RNA

snoRNA . . . . . . . . . . . . . . . . . . . . small nucleolus-restricted RNA

snRNA . . . . . . . . . . . . . . . . . . . . . small nuclear RNA

SRE . . . . . . . . . . . . . . . . . . . . . . . . steroid response element

TF . . . . . . . . . . . . . . . . . . . . . . . . . transcription factor

TFBS . . . . . . . . . . . . . . . . . . . . . . transcription factor binding site

tRNA . . . . . . . . . . . . . . . . . . . . . . transfer RNA

UTR . . . . . . . . . . . . . . . . . . . . . . . untranslated region
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Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped blast and

psi-blast: a new generation of protein database search programs. Nucleic Acids Res, 25(17), 3389–3402.

Ameyar, M., Wisniewska, M., and Weitzman, J. B. (2003). A role for ap-1 in apoptosis: the case for and against. Biochimie,

85(8), 747–752.

Aparicio, S., Morrison, A., Gould, A., Gilthorpe, J., Chaudhuri, C., Rigby, P., Krumlauf, R., and Brenner, S. (1995). Detecting

conserved regulatory elements with the model genome of the japanese puffer fish, fugu rubripes. Proc Natl Acad Sci U S

A, 92(5), 1684–1688.

Avery, O., MacLeod, C. M., and McCarty, M. (1944). Induction of transformation by a desoxyribonucleic acid fraction isolated

from pseudomococcus tye iii.

Badis, G., Berger, M. F., Philippakis, A. A., Talukder, S., Gehrke, A. R., Jaeger, S. A., Chan, E. T., Metzler, G., Vedenko, A.,

Chen, X., Kuznetsov, H., Wang, C.-F., Coburn, D., Newburger, D. E., Morris, Q., Hughes, T. R., and Bulyk, M. L. (2009).

Diversity and complexity in dna recognition by transcription factors. Science, 324(5935), 1720–1723.

Bailey, T. L., Williams, N., Misleh, C., and Li, W. W. (2006). Meme: discovering and analyzing dna and protein sequence

motifs. Nucleic Acids Res, 34(Web Server issue), W369–W373.

Bajic, V. B., Tan, S. L., Chong, A., Tang, S., Ström, A., Gustafsson, J.-A., Lin, C.-Y., and Liu, E. T. (2003). Dragon ere finder

version 2: A tool for accurate detection and analysis of estrogen response elements in vertebrate genomes. Nucleic Acids

Res, 31(13), 3605–3607.

Balhoff, J. P. and Wray, G. A. (2005). Evolutionary analysis of the well characterized Endo16 promoter reveals substantial

variation within functional sites. Proc Natl Acad Sci U S A, 102(24), 8591–8596.

Beadle, G. W. and Tatum, E. L. (1941). Genes direct the manufacture of proteins that control the basic metabolic functions.

Berg, O. G. and von Hippel, P. H. (1987). Selection of dna binding sites by regulatory proteins. statistical-mechanical theory

and application to operators and promoters. J Mol Biol, 193(4), 723–750.

Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398.

155



Blanchette, M. and Tompa, M. (2002). Discovery of regulatory elements by a computational method for phylogenetic footprint-

ing. Genome Res, 12(5), 739–748.

Blanchette, M. and Tompa, M. (2003). Footprinter: A program designed for phylogenetic footprinting. Nucleic Acids Res,

31(13), 3840–3842.

Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K. D., Ovcharenko, I., Pachter, L., and Rubin, E. M. (2003). Phylogenetic

shadowing of primate sequences to find functional regions of the human genome. Science, 299(5611), 1391–1394.

Bourque, G., Leong, B., Vega, V. B., Chen, X., Lee, Y. L., Srinivasan, K. G., Chew, J.-L., Ruan, Y., Wei, C.-L., Ng, H. H., and

Liu, E. T. (2008). Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome

Res, 18(11), 1752–1762.

Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected graph. Commun. ACM , 16(9), 575–577.

Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Program, N. I. S. C. C. S., Green, E. D., Sidow, A., and

Batzoglou, S. (2003). Lagan and multi-lagan: efficient tools for large-scale multiple alignment of genomic dna. Genome Res,

13(4), 721–731.

Burke, A. C. and Feduccia, A. (1997). Developmental patterns and the identification of homologies in the avian hand. Science,

278/5338, 666–668.

Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell,

134(1), 25–36.

Chan, E. T., Quon, G. T., Chua, G., Babak, T., Trochesset, M., Zirngibl, R. A., Aubin, J., Ratcliffe, M. J. H., Wilde, A.,

Brudno, M., Morris, Q. D., and Hughes, T. R. (2009). Conservation of core gene expression in vertebrate tissues. J Biol,

8(3), 33.

Chen, F. and Capecchi, M. R. (1999). Paralogous mouse hox genes, hoxa9, hoxb9, and hoxd9, function together to control

development of the mammary gland in response to pregnancy. Proc Natl Acad Sci U S A, 96(2), 541–546.

Chiu, C.-H., Amemiya, C., Dewar, K., Kim, C.-B., Ruddle, F. H., and Wagner, G. P. (2002). Molecular evolution of the hoxa

cluster in the three major gnathostome lineages. Proc Natl Acad Sci U S A, 99(8), 5492–5497.

Chiu, C.-H., Dewar, K., Wagner, G. P., Takahashi, K., Ruddle, F., Ledje, C., Bartsch, P., Scemama, J.-L., Stellwag, E., Fried,

C., Prohaska, S. J., Stadler, P. F., and Amemiya, C. T. (2004). Bichir hoxa cluster sequence reveals surprising trends in

ray-finned fish genomic evolution. Genome Res, 14(1), 11–17.

Ciechanover, A. (2005). Early work on the ubiquitin proteasome system, an interview with aaron ciechanover. interview by cdd.

Cell Death Differ , 12(9), 1167–1177.

Collas, P. (2010). The current state of chromatin immunoprecipitation. Mol Biotechnol, 45(1), 87–100.

Corel, E., Pitschi, F., and Morgenstern, B. (2010). A min-cut algorithm for the consistency problem in multiple sequence

alignment. Bioinformatics, 26(8), 1015–1021.

Crocker, J. and Erives, A. (2008). A closer look at the eve stripe 2 enhancers of drosophila and themira. PLoS Genet, 4(11),

e1000276.

Daftary, G. S. and Taylor, H. S. (2006). Endocrine regulation of hox genes. Endocr Rev , 27(4), 331–355.

Davidson, E. H. (2006). The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Academic

Press, Amsterdam.

Dayhoff, M. O., Barker, W. C., and Hunt, L. T. (1983). Establishing homologies in protein sequences. Methods Enzymol, 91,

524–545.

De, S., Teichmann, S. A., and Babu, M. M. (2009). The impact of genomic neighborhood on the evolution of human and

chimpanzee transcriptome. Genome Res, 19(5), 785–794.

156
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