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Abstract

This thesis is about a systematic approach to stochastic models in population genetics.

We considered Markov chain models called the Wright-Fisher models, and their continuous

versions, diffusion models for the evolution of finite monoecious diploid populations of non-

overlapping random mating.

An important question in population genetics is that how do genetic change factors

(random genetic drift, selection, mutation, migration, random environment, etc.) affect

the behavior of gene frequencies or genotype frequencies in generations?

As we know, in a Hardy-Weinberg model, the Mendelian population model of a very

large number of individuals without genetic change factors, gene frequencies remain un-

changed from generation to generation, and genotype frequencies from the second gener-

ation onward remain also unchanged (see for example [33, 20]). With directional genetic

change factors (selection, mutation, migration), we will have a deterministic dynamics of

gene frequencies, which has been studied in detail in [33, 20]. With non-directional genetic

change factors (random genetic drift, random environment), we will have a stochastic dy-

namics of gene frequencies, which has been studied with much more interests ([21, 24]).

A combination of these factors has also been considered there.

In this thesis, I will only focus on affects of random genetic drift to the WF-models

and the corresponding diffusion models without other factors (such as selection, mutation,

migration, or random environment, etc.). This thesis is organized as follows.

Chapter 1 is an introduction to Wright-Fisher models and problems of interest.

Chapter 2 briefly discusses probabilistic aspects of the Wright-Fisher models. Results

given here will be compared with results in Chapters 4, 5.

Chapter 3 focuses on the rigorous approach to the convergence of the Wright-Fisher

models to diffusion models. We will see that diffusion model is a good approximation

of the corresponding WF model. We also recall the method of Kolmogorov equations to

diffusion models. The classification of boundaries has been considered.

In Chapter 4, we will systematically consider the diffusion model in one dimension. We

recall results obtained by Kimura and others concerning local solutions, then we define a

new solution (global solution) as a probability density function of diffusion model on the

whole state space (Problem 4.3.5-4.3.7). We will prove the existence and uniqueness of this
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global solution (Theorem 4.9). Then we apply this global solution to calculate some genetic

quantities such as probabilities of fixation, coexistence, heterogeneity, kth−moments, and

the absorption time as well as distribution at the absorption time. Results have been

checked with results known.

In Chapter 5, we will systematically consider the diffusion model in higher dimension.

We recall local results due to different methods by Kimura, Littler and Fackerell, Baxter,

Blythe, McKane. We also define a global solution for this general diffusion model ([65]).

With this new definition, we can prove that there is such a unique solution (Theorem 5.19).

J. Hofrichter’s hierarchichal product and boundary then allow the more precise definition

of the global solution and yield a more transparent proof (Definition 5.7 and Section 5.3.5.).

We then apply this global solution to calculate some genetic quantities (Section 5.4.).

Some genetic quantities have been known to satisfy singular elliptic linear second order

equations with given boundary values. A lot of papers, textbooks have used this property

to find those quantities ([16, 24]). However, the uniqueness of these problems have not

been proved. Littler, in his PhD thesis in 1975 ([52]), took up the uniqueness problem

but his proof, in my view, is not rigorous. In joint work with J. Hofrichter, we showed

two different ways to prove the uniqueness rigorously. The first way is the approximation

method (Lemma 5.25). The second way is the blow-up method which is conducted by J.

Hofrichter ([34]).

In Chapter 6, we will consider geometric structures lying in the existing biological

phenomena to get a deeper understanding of them. Firstly, we note that the state space

is an n−dimensional smooth statistical manifold, an Einstein space, and also a dually flat

manifold with the Fisher metric. We then will see that the Fisher metric is nothing but

a the standard metric on the positive part of sphere of radius two. Next, we consider

the affine Laplacian as well as its behavior in various coordinates and on various spaces.

Finally, we deal with dynamics on the whole state space.

Appendix 1 is a brief introduction to hypergeometric functions used in Chapter 4.

These functions are very useful tools for solving singular linear second order ODEs.

Appendix 2 is an overview of generalized hypergeometric functions used in Chapter 5.

These functions are very useful tools for solving singular linear second order PDEs.

Information geometry is a bridge connecting non-Euclidean geometry and probability

theory which reached maturity through the work of Amari in 1980 ([2]). The main idea is

to find out the correspondence between structure of the families of distributions and that

of manifolds. Formally, we can consider a distribution as a point, the score as a tangent

vector, a family of distributions as a Riemannian manifold with the Riemannian metric as

the Fisher information metric, etc. Then geometrical and probability theoretical results

are interchangeable. Appendix 3 summaries the basis of Information Geometry used in

Chapter 6.



Contents

Acknowledgment iii

Abstract vii

Chapter 1. Wright-Fisher models 5

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. The simplest WF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. The general WF models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2. Probability aspects 9

2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. The simplest WF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. The probability mass function . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2. Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3. Eigenvalues of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4. Probability of fixation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5. Absorption times and distribution at absorption time . . . . . . . . 17

2.3. The general WF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1. Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2. Eigenvalues of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3. Diffusion approximation and Kolmogorov equations 21

3.1. Diffusion approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1. The simplest case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



2 Contents

3.1.2. The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Kolmogorov equations for the general WF model . . . . . . . . . . . . . . . 24

3.3. Classification of boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 4. Analytical aspects of the simplest diffusion model 31

4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. Kimura’s local solution to the simplest diffusion model . . . . . . . . . . . . 32

4.3. The global solution to the simplest diffusion model . . . . . . . . . . . . . . 34

4.3.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2. Eigenvalues and eigenvectors of the operators L and L∗ . . . . . . . 35

4.3.3. The global solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.4. Proof of Theorem 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4. Applications of the global solution . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1. Probabilities of fixation and Probability of coexistence of two alleles 43

4.4.2. Loss of heterozygosity . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3. kth−moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.4. Absorption time and the distribution at absorption time . . . . . . . 45

Chapter 5. Analytical aspects of the general diffusion model 49

5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2. The local solution to the general diffusion model . . . . . . . . . . . . . . . 51

5.2.1. Kimura’s local solutions . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2. Littler and Fackerell’s local solutions . . . . . . . . . . . . . . . . . . 52

5.2.3. Baxter, Blythe, and McKane’s local solutions . . . . . . . . . . . . . 53

5.3. The global solution to the general diffusion model . . . . . . . . . . . . . . . 54

5.3.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2. Eigenvalues and eigenvectors of operators Ln and L∗n . . . . . . . . . 55

5.3.3. The global solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.4. Proof of Theorem 5.19 . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.5. Boundary flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents 3

5.4. Applications of the global solution . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1. Probability of having (k + 1) alleles . . . . . . . . . . . . . . . . . . 73

5.4.2. Loss of heterozygosity . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.3. αth-moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.4. Rate of loss of one allele in a population having (k + 1) alleles . . . . 74

5.4.5. Absorbtion time of having (k + 1) alleles . . . . . . . . . . . . . . . . 74

5.4.6. Probability distribution at the absorbtion time of having (k+1) alleles 75

5.4.7. Probability of a particular sequence of extinctions . . . . . . . . . . 76

Chapter 6. Geometric structures 81

6.1. The geometry of the state space . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1. The Fisher information metric on the state space . . . . . . . . . . . 81

6.1.2. The Fisher metric as the standard metric on the sphere . . . . . . . 86

6.2. The affine Laplacian on the state space . . . . . . . . . . . . . . . . . . . . . 87

6.2.1. The affine Laplacian in dual coordinates . . . . . . . . . . . . . . . . 88

6.2.2. The affine and the Beltrami Laplacian on the sphere . . . . . . . . . 88

6.2.3. Eigenvalues and eigenfunctions ofA andA∗ and orthogonality relations 89

6.3. Dynamics on the whole state space . . . . . . . . . . . . . . . . . . . . . . . 90

Appendices 92

Chapter A. Introduction to hypergeometric functions 93

A.1. Gegenbauer polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2. Jacobi polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.3. Hypergeometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter B. Introduction to generalized hypergeometric functions 97

B.1. Appell′s generalized hypergeometric functions . . . . . . . . . . . . . . . . . 97

B.2. Lauricella′s generalized hypergeometric functions . . . . . . . . . . . . . . . 99

B.3. Biorthogonal systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



4 Contents

Chapter C. Introduction to Information Geometry 109

C.1. Family of probability distributions as a Riemannian manifold . . . . . . . . 109

C.1.1. Probability distributions as points . . . . . . . . . . . . . . . . . . . 109

C.1.2. Families of probability distributions as manifolds . . . . . . . . . . . 110

C.1.3. Affine connections and their dual connections . . . . . . . . . . . . . 112

C.2. Some special families of probability distributions . . . . . . . . . . . . . . . 113

C.2.1. Exponential families . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.2.2. Mixture families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

List of Figures 115

List of Notations 117

References 119



Chapter 1

Wright-Fisher models

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. The simplest WF model . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. The general WF models . . . . . . . . . . . . . . . . . . . . . . . 7

In this chapter, we shall introduce one of the most popular stochastic models in pop-

ulation genetics, the Wright-Fisher models. We shall then give brief overview of their

generalized versions. We also discuss some interesting questions about population genet-

ics.

1.1. Introduction

Figure 1.1 Fisher, Wright and Kimura

In a population of finite size, changes in gene frequencies must be viewed as part of a

stochastic (rather than a deterministic) process. So, it is necessary to set up a stochastic

model which reasonably describes the behavior of a population in the stochastic case and

arrive at theoretical estimates keeping track of the stochastic factor.

One of the stochastic models, caused by random genetic drift, was first introduced
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implicitly by Fisher1 and explicitly by Wright2 in 1920s, 1930s and was called the Wright-

Fisher model (the WF model for short).

The effect of genetic drift is larger in small populations, and smaller in large popu-

lations. Many debates occurred over the relative importance of natural selection versus

neutral processes, including genetic drift. In 1968, Kimura3 rekindled the debate with his

neutral theory of molecular evolution which claims that most of the changes in the genetic

material (although not necessarily changes in phenotypes) are caused by random genetic

drift.

For convenience, we describe some terminologies we have used in this thesis, for detail,

we refer the readers to [20, 32, 33]:

• Diploid population means that we consider the somatic cells whose chromosome

occur in pairs;

• Haploid population means that we consider the germ cells having only half the

number of chromosome, one from each pair;

• Phenotype is the set of manifested attributes of an organism, for instance eye color

or blood group;

• Locus (in a diploid population) is the specific location of a pair of genes on a chro-

mosome (A,B, . . .);

• Alleles are different types of genes which may occupy a locus (A1, . . . , An);

• Genotype is determined by a pair of alleles which actually occurs;

• The genotype is homozygous if the same allele appears twice (AiAi);

• The genotype is heterozygous if the different alleles appear (AiAj);

• An individual is monoecious if it has both male and female reproductive units;

• If AiAj manifests itself as AiAi then Ai is dominant and Aj is recessive.

1.2. The simplest WF model

We consider here a diploid population of fixed size N . Suppose that the individuals in

this population are monoecious, that no selective difference between two possible alleles

A1, A2 at a given locus A, and that there is no mutation. There are 2N alleles in the

population in any generation, and it is sufficient to center our attention on the number

1Fisher R. A., On the dominance ratio, Proc. Roy. Soc. Edinb., 42 (1922), 321-341.
2S. Wright, Evolution in Mendelian populations, Genetics, 16 (1931), 97-159.
3Kimura, M., Evolutionary rate at the molecular level, Nature, 217, (1968) 624-626.
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X of A1 alleles. Clearly in any generation X takes one of the values {0, 1, . . . , 2N}, and

we denote the value X in generation t by Xt. The model which we consider assumes

that the alleles in generation t + 1 are derived by sampling with replacement from the

alleles in generation t (multinomial sampling). This means that the number Xt+1 is

a binomial random variable with index 2N and parameter Xt
2N . In another word, the

transition probability function is

pi,j =P
(
Xt+1 = j

∣∣∣Xt = i
)

=

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j
for i, j = 0, . . . , 2N.

(1.2.1)

1.3. The general WF models

By dropping out some assumptions of the simplest WF model, we will have more

general WF models with more interesting problems. Below are brief introductions about

some general WF models.

• The WF models of multi-alleles: Which will be considered in detail in this thesis;

• The WF models of the finite size - The effective population size: When the population

size is finite, it is considered as a special constant, called the effective population

size (usually smaller than the absolute population size). The concept of effective

population size Ne was first introduced by Wright in two landmark papers [69, 70].

Effective population size may be defined by 1
Ne

= 1
t

∑t
i=1

1
Ni

.

• The WF models of multilocus: When population has more than one locus, perhaps

there are genetic linkages between loci, i.e. there the cross combine of alleles on other

loci. To consider this problem, the recombination frequency has been introduced.

See, for example, [20, 31, 32, 52].

• The WF models with Selection: When the affect of selection is considerable, the

fitness function should be introduced. We can see that the affect of selection is as a

directional force. See, for example, [20, 21, 31, 32].

• The WF models with Mutations: When the affect of mutation is considerable, the

mutation rate should be introduced. We can see that the affect of mutation is as a

directional force. See, for example, [20, 21, 31, 32].

In this thesis, to emphasize the mathematical methods, we will focus on only the WF

model with multi-alleles, one locus, no selection, no mutation, and call it the general WF

model.
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2.2. The simplest WF model . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. The probability mass function . . . . . . . . . . . . . . . . . . . . 10

2.2.2. Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3. Eigenvalues of M . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4. Probability of fixation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5. Absorption times and distribution at absorption time . . . . . . 17

2.3. The general WF model . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1. Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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In this chapter we will discuss some properties of WF-models. The moment results

will be applied in Chapter 3 as the conditions to approximate the diffusion models. More-

over, we demonstrate the behavior of gene frequencies in these WF-models which will be

compared with the corresponding ones in diffusion models in Chapter 4 and Chapter 5.

2.1. Motivation

The problem of WF models as a problem in finite Markov chains was first considered

by Malécot [56]. Based on the largest non-unit eigenvalue of the transition probability

matrix M, Malécot obtained the asymptotic rate of decrease of heterozygosity. Feller in

1951 [27] succeeded in finding a general expression for all eigenvalues of M.

2.2. The simplest WF model

Let Xτ be the relative frequency of alleles A1 in population at generation τ . By rescal-

ing time axis t = τ
2N , we consider Markov chain {Xt}t∈ 1

2N
N0

taking values in {0, 1
2N . . . , 1},
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with the transition probability matrix

M = (pij)i,j , for i, j = 0, . . . , 2N,

where

pi,j =P
(
Xt+δt =

j

2N

∣∣∣Xt =
i

2N

)
=

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j
.

(2.2.1)

2.2.1. The probability mass function

Denote by pt the probability mass function in population at time t of the simplest WF

model. Then we have the following result:

Theorem 2.1. If p0 is the initial probability mass function in population, then the prob-

ability mass function at time t is

pt = Mtp0,

where

Mij = pi,j =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j
for i, j = 0, . . . , 2N. (2.2.2)

By direct calculation, we see that the genetic frequency could be accumulated at bound-

ary and after a large number of generations, the genetic frequency concentrate on the

boundary. It means that the population eventually becomes homozygous (one allele is

extinct).

Below is the Mathematica code to plot the behavior of the population in discrete case.

a[n_, i_, j_] :=

If[(i <= 0 && j <= 0) || (i >= n && j >= n), 1,

Binomial[n, j] (i/n)^j (1 - i/n)^(n - j)]

Matran[n_] := Table[a[n - 1, j - 1, i - 1], {i, n}, {j, n}]

MP[n_, k_] := MatrixPower[Matran[n], k]

X0[n_, p_] := Table[If[i < p || i > p, 0, 1], {i, n}, {j, 1}]

X[n_, k_, p_] := MP[n, k].X0[n, p]

G[n_, k_, p_] := BarChart[Table[X[n, k, p][[i]], {i, 1, n}]]

Table[G[9, k, 5], {k, 0, 10}]

Table[G[20, k, 5], {k, 0, 50}]
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Figure 2.1 Behavior of the probability mass function of 2N = 9, p = 0.5 at times t =

{0, 1, · · · 18} and t = 32

Figure 2.2 Behavior of the probability mass function of 2N = 20, p = 0.25 at times

t = {0, 1, · · · 18} and t = 30

2.2.2. Moments

By direct calculation, we immediately have (where δt = 1
2N ) the following proposition:
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Proposition 2.2. We consider a Markov chain Xt as above. Assume that x is the initial

state, then we obtain

E(δx|x) = 0; (2.2.3)

E((δx)2|x) = x(1− x)δt; (2.2.4)

E((δx)k|x) = o(δt) with k ≥ 3. (2.2.5)

Proof. In fact,

•
2N∑
j=0

pi,j =
(
i

2N +
(
1− i

2N

))2N
= 1;

•

2N∑
j=0

jpi,j = 2N
2N∑
j=0

(
2N − 1

j − 1

)(
i

2N

)j (
1− i

2N

)2N−j

= i
2N∑
j=1

(
2N − 1

j − 1

)(
i

2N

)j−1(
1− i

2N

)2N−j

= i

(
i

2N
+

(
1− i

2N

))2N−1

= i.

•

2N∑
j=0

j(j − 1)pi,j = 2N(2N − 1)
2N∑
j=2

(
2N − 2

j − 2

)(
i

2N

)j (
1− i

2N

)2N−j

=
2N − 1

2N
i2

2N∑
j=2

(
2N − 2

j − 2

)(
i

2N

)j−2(
1− i

2N

)2N−j

=
2N − 1

2N
i2
(

i

2N
+

(
1− i

2N

))2N−2

=
2N − 1

2N
i2.
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•

2N∑
j=0

j(j − 1)(j − 2)pi,j = 2N(2N − 1)(2N − 2)

2N∑
j=3

(
2N − 3

j − 3

)(
i

2N

)j (
1− i

2N

)2N−j

=
(2N − 1)(2N − 2)

(2N)2
i3

2N∑
j=3

(
2N − 3

j − 3

)(
i

2N

)j−3(
1− i

2N

)2N−j

=
(2N − 1)(2N − 2)

(2N)2
i3
(

i

2N
+

(
1− i

2N

))2N−3

=
(2N − 1)(2N − 2)

(2N)2
i3.

• By induction, we have

2N∑
j=0

j(j − 1) . . . (j − k)pij =
(2N − 1) · · · (2N − k)

(2N)k
ik+1.

Thus, by setting

x =
i

2N
, δx =

j − i
2N

, δt =
1

2N

we conclude that the conditional expectation of the change is

E(δx|x) =

2N∑
j=0

(
j − i
2N

)
pi,j =

1

2N

 2N∑
j=0

jpi,j − i
2N∑
j=0

pi,j

 =
1

2N
(i− i) = 0;

the conditional variance of the change is

E((δx)2|x) =
2N∑
j=0

(
j − i
2N

)2

pi,j

=
1

4N2

 2N∑
j=0

j2pi,j − 2i

2N∑
j=0

jpi,j + i2
2N∑
j=0

pi,j


=

1

4N2

 2N∑
j=0

j(j − 1)pi,j +
2N∑
j=0

jpi,j − 2i2 + i2


=

1

4N2

(
2N − 1

2N
i2 + i− i2

)
=

1

4N2

(
i− 1

2N
i2
)

=

(
i

2N
−
(

i

2N

)2
)

1

2N

= x(1− x)(δt);
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and the conditional higher moments of the change are

E((δx)3|x) =
1

8N3

 2N∑
j=0

j3pi,j − 3i
2N∑
j=0

j2pi,j + 3i2
2N∑
j=0

jpi,j − i3
2N∑
j=0

pi,j


=

1

8N3
(

2N∑
j=0

j(j − 1)(j − 2)pi,j + 3
2N∑
j=0

j(j − 1)pi,j +
2N∑
j=0

jpi,j

− 3i

(
2N − 1

2N
i2 + i

)
+ 3i3 − i3)

=
1

8N3
(
(2N − 1)(2N − 2)

4N2
i3 + 3

2N − 1

2N
i2 + i

− 3i

(
2N − 1

2N
i2 + i

)
+ 3i3 − i3)

=
1

8N3

(
2

4N2
i3 − 3

2N
i2 + i

)
=

(
2

(
i

2N

)3

− 3

(
i

2N

)2

+
i

2N

)(
1

2N

)2

=(2x3 − 3x2 + x)(δt)2

=o(δt),

and similarly, we have

E((δx)4|x) = o(δt),

as well as for k > 4

E((δx)k|x) =
2N∑
j=0

(
j − i
2N

)k
pi,j for k > 4

≤
2N∑
j=0

(
j − i
2N

)4

pi,j because of

∣∣∣∣j − i2N

∣∣∣∣ ≤ 1

=o(δt).

This completes the proof.

From (2.2.3) it follows the expected number of alleles is constant in time.

2.2.3. Eigenvalues of M

We present here all eigenvalues of M proved first by Feller in 1951

Lemma 2.3. The transition probability matrix M has 2N + 1 eigenvalues as

λ0 = 1, λj =

(
2N

j

)
j!

(2N)j
for j = 1, · · · , 2N
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Proof. It is easy to see that λ0 = λ1 = 1 is the eigenvalue with the corresponding eigen-

vectors u0 = (1, 1, · · · , 1) and u1 = (0, 1
2N , · · · , 1). We now find out other eigenvalues λr

and their corresponding eigenvectors ur by solving the system of linear equations

2N∑
k=0

pjku
k
r = λru

j
r, j = 0, 1, . . . , 2N.

Put for abbreviation

k[ν] = k(k − 1) . . . (k − ν + 1) =
Γ(k)

Γ(k − ν)

and note that

2N∑
k=0

pjkk[ν] =
dν

dxν

(
1− 1

2N
+

1

2N
x
)2N
|x=1 = (2N)[ν]

( 1

2N

)ν
. (2.2.6)

We will find the eigenvector ukr as a polynomial in k of degree r in the following form

ukr = ark[r] + ar−1k[r−1] + · · ·+ a1k + a0.

In fact, ai can be solved as solution of system

λr

r∑
ν=0

j[ν]aν =
2N∑
k=0

pjk

r∑
ν=0

k[ν]aν

=

r∑
ν=0

aν

2N∑
k=0

pjkk[ν]

=

r∑
ν=0

aν(2N)[ν]

( 1

2N

)ν
, due to (2.2.6)

for r = 0, 1, . . . , 2N .

We expand once again
(

1
2N

)ν
by j[s] in the form

( 1

2N

)ν
=

ν∑
s=0

cs,νj[s], (2.2.7)

then we obtain

λr

r∑
s=0

j[s]as = λr

r∑
ν=0

j[ν]aν (2.2.8)

=
r∑

ν=0

(2N)[ν]

ν∑
s=0

cs,νj[s]aν (2.2.9)

=

r∑
s=0

j[s]

r∑
ν=s

(2N)[ν]cs,νaν . (2.2.10)
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Equating the coefficients in (2.2.10) we get

r∑
ν=s

(2N)[ν]cs,νaν = λras, s = 0, . . . , r. (2.2.11)

Note that in (2.2.7)

cν,ν =
1

(2N)ν
.

Then for s = ν = r in (2.2.11), we get

λr = cr,r(2N)[r] =
(2N)[r]

(2N)r
=

(
2N

r

)
r!

(2N)r
,

and ar is arbitrary. Put ar = 1, we can calculate in succession ar−1, ar−2, . . . , a0 to get

the eigenvector ur.

Remark 2.4. Some first eigenvectors are

uk2 =
k

2N

(
1− k

2N

)
and

uk3 =
k

2N

(
1− k

2N

)(1

2
− k

2N

)
.

2.2.4. Probability of fixation

By denoting

pni,j is the probability of starting at i alleles and having j alleles after n generations

we have the following lemma

Lemma 2.5.

lim
n→∞

pni,0 = 1− i

2N

lim
n→∞

pni,2N =
i

2N

lim
n→∞

pni,j = 0 for j 6= 0 or 2N

Proof.

pni,j =

(
2N

j

) 2N−j∑
t=0

(−1)t
(

2N − j
t

)
(2N)−t−j

2N∑
s=2

s∑
β=1

λn−1
s usj+tv

β
s i
β

pni,2N =
i

2N
+ (2N)−2N

2N∑
s=2

s∑
β=1

λn−1
s us2Nv

β
s i
β
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pni,0 = 1− i

2N
+

2N∑
t=1

(−1)t
(

2N

t

)
(2N)−t

2N∑
s=2

s∑
β=1

λn−1
s ustv

β
s i
β

See [41, 42]

Remark 2.6. It is easy to see that

pni,0 > 0, pni,2N > 0, pn0,j = pn2N,j = 0 for j 6= 0 or 2N.

It means that boundaries 0 and 2N are exit boundaries.

2.2.5. Absorption times and distribution at absorption time

In the previous subsection we know that extinction or fixation of the allele A1 occurs

with probability one. This conclusion suggests the interesting problem of determining the

time required for the population to reach one of the homozygous conditions. To do that,

we denote by τi the first time taken to reach 0 or 2N given that initially there were i allele

A1

Denote by

C(i, s, β) = (λs − 1)[iβ + (2N − i)β]us2Nv
β
s .

Then we have

Lemma 2.7.

P(τi = n) = (2N)−2N
2N∑
s=2

s∑
β=1

C(i, s, β)λn−2
s ;

E(τi) =
(

1− i

2N

)2N
+
( i

2N

)2N
+ (2N)−2N

2N∑
s=2

s∑
β=1

C(i, s, β)
2− λs

(1− λs)2
;

E(τ2
i ) =

(
1− i

2N

)2N
+
( i

2N

)2N
+ (2N)−2N

2N∑
s=2

s∑
β=1

C(i, s, β)
2− λs

(1− λs)2

+ (2N)−2N
2N∑
s=2

s∑
β=1

C(i, s, β)
2

(1− λs)3
.

Proof. See [41, 42].

2.3. The general WF model

Similar to the simplest WF model case, with Xi
τ the related frequency of alleles Ai

(i = 1, . . . , n) in population at generation τ , by rescaling time axis t = τ
2N we receive a
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discrete time discrete space Markov chain {Xt}t∈ 1
2N

N0
in

S(2N)
n =

{
x = (x1, . . . , xn) : xi ∈

{
0,

1

2N
, . . . , 1

}
,

n∑
i=1

xi ≤ 1

}
,

with the transition probability function

pα,β =P
(

Xt+δt =
β

2N
|Xt =

α

2N

)
=

2N !

β1! . . . βn+1!

(
α1

2N

)β1

· · ·
(
αn+1

2N

)βn+1

for α,β ∈ Ω.

(2.3.1)

where αn+1 = 2N − α1 − . . .− αn;βn+1 = 2N − β1 − . . .− βn.

2.3.1. Moments

By directly calculating we will immediately have (where δt = 1
2N ) the following propo-

sition

Proposition 2.8. • E(δxi|x) = 0;

• E(δxiδxj |x) = bij(x)δt, where bij(x) = xi(δij − xj);

• E((δx)δ|x) = o(δt) with δ ∈ Nn0 : |δ| = δ1 + . . .+ δn ≥ 3.

Proof. Prove similarly as in the simplest WF model, we note that

•
∑
β∈Ω

pα,β =
(
α1

2N + · · ·+ αn

2N

)2N
= 1;

•
∑
β∈Ω

βipα,β = αi;

•
∑
β∈Ω

βiβjpα,β = 2N−1
2N αiαj ;

•
∑
β∈Ω

(βi)2pα,β = 2N−1
2N (αi)2 + αi;

•
∑
β∈Ω

βiβjβkpα,β = (2N−1)(2N−2)
4N2 αiαjαk;

•
∑
β∈Ω

(βi)2βjpα,β = (2N−1)(2N−2)
4N2 (αi)2αj + 2N−1

2N αiαj ;

•
∑
β∈Ω

(βi)3pα,β = (2N−1)(2N−2)
4N2 (αi)3 + 32N−1

2N (αi)2 + αi;
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Thus, by setting

x =
α

2N
, δxi =

βi − αi

2N
, δt =

1

2N
,

we follow the conditional expectation of the change is

E(δxi|x) =
∑
β∈Ω

(
βi − αi

2N

)
pα,β = 0;

the conditional covariance of the change is

E((δxi)(δxj)|x) =
∑
β∈Ω

(
βi − αi

2N

)(
βj − αj

2N

)
pα,β

=
1

4N2

∑
β∈Ω

βiβjpα,β − αi
∑
β∈Ω

βjpα,β − αj
∑
β∈Ω

βipα,β + αiαj
∑
β∈Ω

pα,β


=

1

4N2

(
2N − 1

2N
αiαj − αiαj

)
= −xixj(δt);

the conditional variance of the change is

E((δxi)2|x) =
∑
β∈Ω

(
βi − αi

2N

)2

pα,β

=
1

4N2

∑
β∈Ω

(βi)2pα,β − 2αi
∑
β∈Ω

βipα,β + (αi)2
∑
β∈Ω

pα,β


=

1

4N2

(
2N − 1

2N
(αi)2 + αi − (αi)2

)
= xi(1− xi)(δt);

and the conditional moments of the change are

E((δxi)3|x) =
(
2(xi)3 − 3(xi)2 + xi

)
(δt)2

E((δxi)2(δxj)|x) =
(
2(xi)2xj − xixj

)
(δt)2

E((δxi)(δxj)(δxk)|x) =
(

2xixjxk
)

(δt)2,

Moreover, we easily have by the same way as the simplest WF model

E((δx)δ|x) = o(δt), ∀|δ| ≥ 3.

This completes the proof.
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2.3.2. Eigenvalues of M

Proposition 2.9. The transition probability matrix M has eigenvalues

λj =

(
2N

j

)
j!

(2N)j
for j = 2, · · · , 2N

with multiplicity (
n− 1 + j

n− 1

)
and λ1 = 1 has multiplicity n+ 1.

Proof. See [24].
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In this chapter we give rigorous proof for diffusion approximations to make sure that

making limits is acceptable and manageable and derive Kolmogorov equations of these

diffusion models.

3.1. Diffusion approximation

3.1.1. The simplest case

We start from the simplest WF model with N diploid individuals of type A1, A2. Xt

is the frequency of allele A1 is a Markov chain on the state space {0, 1, · · · , 2N} with the

transition probability operator

PNf(i) =
2N∑
j=0

pijf(j)

and the associated continuous time pure jump process has generator

LNf(i) = (PN − I)f(i) =

2N∑
j=0

pij

(
f(j)− f(i)

)
One then considers the re-scaled process

XN (t) =
1

2N
X2Nt
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which is a continuous-time Markov (pure jump) process on {0, 1
2N , . . . , 1} ⊂ [0, 1] with

generator

LNf(
i

2N
) = 2N

2N∑
j=0

pij

(
f(

j

2N
)− f(

i

2N
)
)
.

Expanding this expression up to second order, we obtain

LNf
( i

2N

)
=

2N∑
j=0

pij(j − i)f ′
( i

2N

)
+

1

2

2N∑
j=0

pij
(j − i)2

2N
f ′′
( i

2N

)

+
1

6

2N∑
j=0

pij
(j − i)3

4N2
f ′′′(θ),

where θ ∈ (0, 1). Now, in the limit N → ∞, due to Proposition 2.2 we obtain a second

order differential operator which we can associate to a diffusion process, where the first

part corresponds to the ”deterministic component” and the second order part corresponds

to the ”random component”. We choose i = iN such that iN
2N → x ∈ [0, 1] as N → ∞,

and thus the limiting generator becomes

Lf(x) =
1

2
x(1− x)f ′′(x).

Definition 3.1. We say that a sequence of processes {Xn(t)}t≥0 converge weakly in path

space to the process {X(t)}t≥0 if for all continuous functions f on trajectories.

lim
n→∞

∫
f(ω)Pnx(dω) =

∫
f(ω)Px(dω),

where Pnx,Px are unique distributions starting from x of the processes Xn, X correspond-

ingly.

Using the Trotter-Kato theorem (see [18, 62, 74]) we obtain the weak convergence of the

processes, i.e., the discrete processes will converge weakly in path space to the continuous

process with the generator L.

3.1.2. The general case

We denote by

S(M)
n =

{
x = (x1, . . . , xn) :

n∑
i=1

xi ≤ 1, xi =
ji

M
≥ 0 ji integer , i = 1, . . . , n

}
,

R(M)
n =

{
x = (x1, . . . , xn) :

n∑
i=1

xi < 1, xi =
ji

M
> 0 ji integer , i = 1, . . . , n

}
,

Sn =
{

x = (x1, . . . , xn) :
n∑
i=1

xi ≤ 1, xi ≥ 0, i = 1, . . . , n
}

= Vn,



3.1. Diffusion approximation 23

Rn =
{

x = (x1, . . . , xn) :

n∑
i=1

xi < 1, xi > 0, i = 1, . . . , n
}

= Vn,

Suppose we have a sequence of finite Markov chains indexed by M , {X(M)(t)}t≥0,

having state space S
(M)
n with discrete time t and state variable

X(M)(t) = (X
(M)
1 (t), . . . , X(M)

n (t)).

We define, for each chain in the sequence, the transition distributions by

P (M)(t,x, B) = P(X(M)(t) ∈ B|X(M)(0) = x),

where we assume that x ∈ S(M)
n and that B is a Borel subset of Sn.

Definition 3.2. We say that a sequence of Markov chains {X(M)(t)}M≥1 satisfies condi-

tion I if each chain satisfies

• E
(
δX

(M)
i (t)|X(M)(t) = x(t)

)
= ai(x(t))δt+ o(δt), i = 1, . . . , n;

• E
(
δX

(M)
i (t)δX

(M)
j (t)|X(M)(t) = x(t)

)
= bij(x)δt+ o(δt), i, j = 1, . . . , n;

• E
(

(δX(M)(t))α|X(M)(t) = x(t)
)

= o(δt), with α ∈ Nn0 : |α| = α1 + . . .+ αn ≥ 3.

Definition 3.3. We say that a sequence of Markov chains {X(M)(t)}M≥1 satisfies con-

dition II if to any given polynomial h1(x), there corresponds a finite number of further

polynomials h2(x), . . . , hm(x) such that for each M and x(t) ∈ Sn we have

E(hi(X
(M))(t+ 1)|X(M)(t) = x(t)) =

m∑
j=1

wijhj(x(t)),

where W = (wij)i,j is an matrix whose elements may depend on M .

Theorem 3.4. Suppose the sequence of Markov chains {X(M)(t)}M≥1 satisfies conditions

I and II, so that x ∈ S
(M)
n and that t is a nonnegative integer. Then the sequence of

transition distributions

{P (kM)(kt,x, B)}k≥1

converges weakly to a unique proper distribution, P (τ,x, B), on Sn with τ = t
M .

Proof. We refer the reader to [53].
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3.2. Kolmogorov equations for the general WF model

Figure 3.1 Kolmogorov

The Kolmogorov backward equation (KBE) and its adjoint known as the Kolmogorov

forward equation (KFE) are second order partial differential equations (PDE) that arise

in the theory of continuous-time continuous-state Markov processes. Both were published

by Andrey Kolmogorov1 in 1931. Later it was realized that the forward equation was

already known to physicists under the name Fokker-Planck equation.

The following proposition is due to Kolmogorov

Proposition 3.5. Let {X(t)}t≥0 be a N−dimensional state continuous time continuous

Markov process with the conditional probability density function f(x, t|y, s). Then the

function f satisfies the Kolmogorov backward equation (KBE)

− ∂f

∂s
=

N∑
i=1

ai(y, s)
∂

∂yi
[f ] +

1

2

N∑
i=1

N∑
j=1

bij(y, s)
∂2

∂yi ∂yj
[f ] , (3.2.1)

and the Kolmogorov forward equation (KFE)

∂f

∂t
= −

N∑
i=1

∂

∂xi
[
ai(x, t)f

]
+

1

2

N∑
i=1

N∑
j=1

∂2

∂xi ∂xj
[
bij(x, t)f

]
, (3.2.2)

where,

ai(x, t) = lim
δt→0

1

δt
E(δxi|x)

are the drift terms,

bij(x, t) = lim
δt→0

1

δt
E(δxiδxj |x)

1Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Mathematische An-

nalen, Vol. 104, Nr. 1, (1931) 415-458.
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are diffusion terms.

Proof. We will prove for the forward equation. The backward equation is similar. In fact,

for h ∈ C∞c (RN ) a smooth function with a compact support, we have

∫
RN
h(x)

∂f(x, t|y, s)
∂t

dx = lim
δt→0

∫
RN

h(x)
f(x, t+ δt|y, s)− f(x, t|y, s)

δt
dx

= lim
δt→0

∫
RN

h(x)

∫
RN f(x, t+ δt|z, t)f(z, t|y, s)dz− f(x, t|y, s)

δt
dx

(using the Chapman-Kolmogorov equation)

= lim
δt→0

1

δt

[ ∫
RN

f(z, t|y, s)
∫
RN

h(x)f(x, t+ δt|z, t)dxdz−
∫
RN

h(x)f(x, t|y, s)dx
]

(using the Fubini theorem)

= lim
δt→0

1

δt

∫
RN

f(z, t|y, s)
[ ∫

RN
h(x)f(x, t+ δt|z, t)dx− h(z)

]
dz

(transforming x→ z in the second term)

= lim
δt→0

1

δt

∫
RN

f(z, t|y, s)

{∫
RN

f(x, t+ δt|z, t)
[
h(x)− h(z)

]
dx

}
dz

= lim
δt→0

1

δt

∫
RN

f(z, t|y, s)

{∫
RN

f(x, t+ δt|z, t)
[ ∑
|α|≥1

h(α)(z)
(x− z)α

α!

]
dx

}
dz

=

∫
RN

f(z, t|y, s)
∑
|α|≥1

1

α!
Dα(z)h(α)(z)dz

where Dα(z) = lim
δt→0

1

δt

∫
RN

f(x, t+ δt|z, t)(x− z)αdx = lim
δt→0

1

δt
E
(

(δx)α|x
)

=

∫
RN

h(z)

{ ∑
|α|≥1

(−1)α

α!

∂α

∂zα

(
Dα(z)f(z, t|y, s)

)}
dz.

integration by parts.

Therefore we conclude

∫
RN

h(x)

{
∂f(x, t|y, s)

∂t
−
∑
|α|≥1

(−1)α

α!

∂α

∂xα

(
Dα(x)f(x, t|y, s)

)}
dx = 0.
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Because h is arbitrary, this follows that

∂f(x, t|y, s)
∂t

=
∑
|α|≥1

(−1)α

α!

∂α

∂xα

(
Dα(x)f(x, t|y, s)

)
=

∑
1≤|α|≤2

(−1)α

α!

∂α

∂xα

(
Dα(x)f(x, t|y, s)

)
due to the continuity of process (diffusion)

= −
N∑
i=1

∂

∂xi
[
ai(x, t)f

]
+

1

2

N∑
i=1

N∑
j=1

∂2

∂xi ∂xj
[
bij(x, t)f

]
,

The proof is finished.

By applying for our general WF model, we have the drift terms

ai(x) = lim
δt→0

1

δt
E(δxi|x) = 0,

and diffusion terms

bij(x) = lim
δt→0

1

δt
E(δxiδxj |x) = xi(δij − xj)

Therefore, the Kolmogorov forward equation of the general WF model is

∂u(x,p, t)

∂t
=

n−1∑
i,j=1

1

2

∂2(bij(x)u(x,p, t))

∂xi∂xj
,

and the Kolmogorov backward equations is

∂u(x,p, t)

∂t
=

n−1∑
i,j=1

1

2
bij(p)

∂2u(x,p, t)

∂pi∂pj
,

where

bij(x) = xi(δij − xj)

In particular, in the simplest WF model, we have also the Kolmogorov forward equation

∂u(x, p, t)

∂t
=

1

2

∂2
(
x(1− x)u(x, p, t)

)
∂x2

,

and the Kolmogorov backward equations

∂u(x, p, t)

∂t
=

1

2
p(1− p)∂

2u(x, p, t)

∂p2
.
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3.3. Classification of boundaries

This section is to classify boundaries of a diffusion equation. In practical problems,

due to some simple estimations we can learn the properties of the boundary and make

some conclusions on the behavior of solutions at the boundary. This work was started by

William Feller in 19522. In the paper, he showed the result for a differential equation

ut(t, x) = a(x)uxx(t, x) + b(x)ux(t, x),

and its adjoint

vt(t, x) =
((
a(x)v(t, x)

)
x
− b(x)vx(t, x)

)
x
,

where a′(x), b(x) are continuous, but not necessarily bounded, in the interval (r1, r2),

a(x) > 0, a 6≡ 1, a′′(x) need not exit. Set a function

W (x) = e
−

∫ x
x0
b(s)a−1(s)ds

,

where x0 ∈ (r1, r2) is fixed. Denote L(r1, r2) by the space of integrable function on (r1, r2).

Then we have

Proposition 3.6.

(i) The boundary rj is regular if for all x0 ∈ (r1, r2)

W (x) ∈ L(x0, rj) and a−1(x)W−1(x) ∈ L(x0, rj),

in this case, the trajectory can reach rj from the interior of (r1, r2) and can return to the

interior within a finite length of time;

(ii) The boundary rj is exit if for all x0 ∈ (r1, r2)

a−1(x)W−1(x) /∈ L(x0, rj) and W (x)

∫ x

x0

a−1(s)W−1(s)ds ∈ L(x0, rj),

in this case, the trajectory can reach rj from the interior of (r1, r2) within a finite length

of time but can not return to the interior;

(iii) The boundary rj is entrance if for all x0 ∈ (r1, r2)

a−1(x)W−1(x) ∈ L(x0, rj) and a−1(x)W−1(x)

∫ x

x0

W (s)ds ∈ L(x0, rj),

in this case, the trajectory can enter from rj to the interior of (r1, r2) but can not return

from the interior to rj;

2William Feller, The parabolic differential equations and the associated semi-groups of transformations,

Annals of Mathematics, Vol 55, No. 3 (1952) 468-519.
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(iv) The boundary rj is natural in all other cases, in this case, the trajectory can neither

reach rj from the interior of (r1, r2) to rj, nor from rj to the interior.

Some signification of these boundaries are (also see [57], Chapter 3)

1. If rj is a regular or exit boundary, a trajectory has a probability to reach it from the

interior within a finite time, thus they are also called ”Accessible”;

2. If rj is a entrance or natural boundary, a trajectory will never reach it from the

interior within a finite time, thus they are also called ”Inaccessible”;

3. If both r1 and r2 are inaccessible, there exists one and only one process in (r1, r2)

obeying a given KBE.

4. If both r1 and r2 are accessible, there exists an ”absorbing barrier process” in (r1, r2)

obeying a given KBE. By absorbing we mean that at the first arrival at a boundary

(i.e. as soon as it arrives at boundary) it is terminated.

5. Suppose that ρ1, ρ2 is a proper subinterval of (r1, r2) where r1, r2 are inaccessible

and ρ1, ρ2 are regular. We can construct a solution for the absorbing barrier process

in (ρ1, ρ2). Then as we let ρ1 → r1 and ρ2 → r2, the solution corresponding to the

absorbing process converges to the unique solution describe in (iii).

Now, we apply the proposition to our simplest WF model. We have a(x) = 1
2x(1− x)

and b(x) = 0, r1 = 0, r2 = 1. Then W (x) = 1. Obviously, at r1 = 0, for all x0 ∈ (0, 1) we

have W (x) ∈ L(0, x0) but

a−1(x)W−1(x) =
2

x(1− x)
/∈ L(0, x0)

Hence r1 = 0 is not regular. We also have

W (x)

∫ x

x0

a−1(s)W−1(s)ds = 2 log
(x(1− x0)

x0(1− x)

)
∈ L(0, x0).

Therefore r1 = 0 is an exit boundary. Similarly we can show that r2 = 1 is also an exit

boundary.

We will prove that, the boundary of KBE corresponding to the general WF model are

also exit as this following proposition

Proposition 3.7. ∂Vn is an exit boundary.

Proof. In fact, it is easy to see that the X(t) is also a vector valued random variable which

satisfies a stochastic dynamics

dXi(t) =
n∑
j=1

σij(X(t))dW j(t),
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where

σij(x) =
√
xi

(
δij −

√
xixj

1 +
√
xn+1(t)

)
.

Therefore, when X(t) goes to the boundary ∂Vn, for example at Xi(t) = 0, we have

dXi(t) =
n∑
j=1

√
Xi(t)

(
δij −

√
Xi(t)Xj(t)

1 +
√
Xn+1(t)

)
dW j(t) = 0,

i.e., Xi(s) = 0 for all s ≥ t.
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In this chapter, we describe a systematic approach to solve the Kolmogorov equations

of simplest diffusion models (derived from the simplest WF models). We shall define a

probability density function on the entire state space [0, 1] (the global solution). Qualita-

tive results such as existence, uniqueness, behavior at boundary and behavior as t → ∞
of the global solution gives us a clear picture about the evolution of initial WF model as

well as other evolutionary quantities.

4.1. Motivation

In 1945, Wright1 first used the Fokker-Planck equation to study these WF models.

His approach led us to use Partial Differential Equations to solve the diffusion equations

1S. Wright, The differential equation of the distribution of gene frequencies, Proc. Nat. Acad. Sci., 31

(1945), 382-389.
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corresponding to the original WF models. In 1955, Kimura2 used Fokker-Planck equations

and moments of distribution to obtain an exact local solution for the simplest diffusion

model. That gave us more information about the WF model as well as the corresponding

diffusion model. However, Kimura considered this continuous process locally, by dividing

it into fixed probabilities and the probability distribution of unfixed classes. Therefore,

his solution (the improper probability density function of unfixed classes (0, 1) which

was assumed to be bounded at boundary) satisfies only the corresponding Fokker-Planck

equation, but has no clear connection with its condition on moments. For example, we

can see that the integrated probability density function on its defined domain is not equal

to 1.

We will construct a new space H and a generalized integration [·, ·] with respect to a

special measure µ on ([0, 1],B([0, 1])). On this new space H, we define a new solution which

is not necessarily bounded at the boundary but satisfies both Fokker-Planck equation and

the condition on moments (4.3.7). We will then prove that there is such a unique solution

(see Theorem 4.9). We will see that many results can be calculated easily and quickly due

to this global solution (see Section 4.4).

4.2. Kimura’s local solution to the simplest diffusion model

In 1955, Kimura found the local solution (probability density function in the unfixed

class) of the problem
∂v(x,t)
∂t = Lv(x, t), in (0, 1)× (0,∞)

v(0, t), v(1, t) <∞ for 0 ≤ t <∞,
v(x, 0) = δ(x− p),

(4.2.1)

where

Lv(x, t) :=
1

2

∂2

∂x2

(
x(1− x)v(x, t)

)
.

Theorem 4.1 (Kimura, 1955). The problem (4.2.1) has a local solution as follows

uloc(x, p, t) :=
∑
m≥0

cm(p)Xm(p)Xm(x)e−λmt,

where,

λm =
(m+ 1)(m+ 2)

2
, cm(p) =

8p(1− p)(m+ 3/2)

(m+ 1)(m+ 2)
;

Xm(x) = C
( 3
2

)
m (1− 2x) is the Gegenbauer polynomial (see Appendix A.1).

2Kimura M., Solution of a Process of Random Genetic Drift with a Continuous Model, PNAS–USA,

Vol. 41, No. 3, (1955), 144-150.
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Proof of Kimura. Due to the form of moments, the solution is of the form

u(x, t) =
∑
m≥0

cmXm(x)e−λmt

Then, due to the definition of the Gegenbauer polynomials and the boundedness at bound-

ary we have

Xm(x) = C
( 3
2

)
m (1− 2x).

Finally, the coefficients cm can be determined from the initial condition

cm = 4pq
2m+ 3

(m+ 1)(m+ 2)
Xm(p).

Thus, the local solution is

uloc(x, p, t) :=
∑
m≥0

4pq
2m+ 3

(m+ 1)(m+ 2)
Xm(p)Xm(x)e−λmt.

This completes the proof.

GENETICS: MOTOO KIMURA

FIGS. 1-2.-The processes of the change in the probability distribution of heterallelic classes,
due to random sampling of gametes in reproduction. It is assumed that the population starts
from the gene frequency 0.5 in Fig. 1 (left) and 0.1 in Fig. 2 (right). t = time in genera-
tion; N = effective size of the population; abscissa is gene frequency; ordinate is probability
density.

The probability of heterozygosis is calculated by equation (15):

fo12x(1-x~~x~t~dx =(2i+ l)TH. = O 2X(1- X)+O(X, t)di= E (i+1) i i (1-2p) X

(1 -Z2)T,._.(z) e-'i(i + 1)/4N]t dZ.

By virtue of equation (14) (put m = 0), the last integral is 0 except for i = 1.
Hence

Hg= pq 1 4 (2)t 2pqe-(l/2lt = Hoe-(l/2N)t, (18)
2 3

showing that the heterozygosis decreases exactly at the rate of 1/(2N) per generation.
This is readily confirmed by a simple calculation: Let p be the frequency of A in
the population, where the frequency of the heterozygotes is 2p(l - p). The
amount of heterozygosis to be expected after one generation of random sampling of
the gametes is

E{2 ( + 5p) (1 -P- 6P)} 2p(1 -p) -2E(ap)2=

2p(l - p) - 2 =(-22p(1-p),
as was to be shown.

149VOL. 41) 1955

Figure 4.1 Kimura’s description of the behavior of the local solution in the simplest diffu-

sion model
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4.3. The global solution to the simplest diffusion model

In this section, we will construct the new space of global solutions and a generalized

integration. Then, we will find out eigenvalues and eigenvectors of the operators L and L∗,

solve the local problem using the method of separation of variables. Next, we determine

the probability density function for the simplest diffusion model on the whole state space

[0, 1]. The existence and uniqueness result of this solution will be proved (Theorem 4.9).

We will see that behavior of this global solution as its corollary.

4.3.1. Preliminaries

We denote by H0 = C∞([0, 1]),

H =
{
u = u1χ(0,1) + fδ0 + gδ1, for u1(·, t), f(·, t), g(·, t) ∈ H0

}
, ∀t ≥ 0

where χ is the indicator function and δ0, δ1 are the Dirac functions. We define a measure

µ on the measurable space ([0, 1],B([0, 1])) as

µ(A) = dx(A ∩ (0, 1)) + δ0(A ∩ {0}) + δ1(A ∩ {1}) ∀A ∈ B([0, 1]),

and define the integration (the action from H into H0) as∫
A
u(x)dµ(x) =

∫
A∩(0,1)

u1(x)dx+ χA(0)f(0) + χA(1)g(1) ∀A ∈ B([0, 1]).

We also denote by

[u, φ] =

∫
[0,1]

fφdµ =

∫ 1

0
u1(x)φ(x)dx+ f(0)φ(0) + g(1)φ(1), ∀u ∈ H,φ ∈ H0.

We will prove that this is well-defined, i.e. [u, φ] = 0 ∀φ if and only if u = 0. In fact, we

have the following lemma.

Lemma 4.2. [u, φ] = 0, ∀φ if and only if u = 0.

Proof. It is easy to see that u = 0 implies [u, φ] = 0, ∀φ. Now, we assume that [u, φ] =

0, ∀φ. Expanding u1 by the Xm(x) polynomials we have u1(x) =
∑

m≥0 amXm(x). From

the orthogonality of Xm(x) polynomials with the weighted function w(x) = x(1 − x) we

have

am =

∫ 1

0
u1(x)w(x)Xm(x)dx

= [u,wXm] = 0 ∀m

It follows that u1 = 0. Then, by choosing φ = x and φ = 1− x we have g(1) = f(0) = 0.

Therefore we have u = 0. This completes the proof.
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Remark 4.3. We will see that the kth-moment corresponding to the probability density

function u will be [u, xk].

4.3.2. Eigenvalues and eigenvectors of the operators L and L∗

Below, we formulate some results on the eigenvalues and eigenvectors of the operator

L and its dual L∗, which will be used in the proof of the existence and the uniqueness of

the global solution.

Proposition 4.4. For all m ≥ 0 we have

LXm = −λmXm, in H0.

Proof. Putting z = 1 − 2x implies Ym(z) = Xm(x) = C
( 3
2

)
m (z), it means Ym is a solution

of the Gegenbauer equation

(1− z2)
∂2

∂z2
Ym(z)− 4z

∂

∂z
Ym(z) +m(m+ 3)Ym(z) = 0.

This is equivalent to

x(1− x)
∂2

∂x2
Xm(x)− 2(1− 2x)

∂

∂x
Xm(x) +m(m+ 3)Xm(x) = 0,

⇐⇒ ∂2

∂x2
(x(1− x)Xm(x)) = −(m+ 1)(m+ 2)Xm,

⇐⇒ LXm = −λmXm.

This completes the proof.

Proposition 4.5. Let w(x) = x(1 − x) be the weighted function. If X is an eigenvector

of L corresponding to the eigenvalue λ then wX is also a eigenvector of L∗ corresponding

to the eigenvalue λ.

Proof. Assume that X is an eigenvector of L corresponding to the eigenvalue λ, i.e.,

1

2

∂2

∂x2
(wX) = −λX,

multiplying two sides by w follows

L∗(wX) =
1

2
w
∂2

∂x2
(wX) = −λ(wX).

This completes the proof.
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Proposition 4.6. The spectrum of the operator L is

Spec(L) =
⋃
m≥0

{
λm =

(m+ 1)(m+ 2)

2

}
:= Λ,

and the eigenvectors of L corresponding to λm are the Gegenbauer polynomials Xm(x) (up

to a constant).

Proof. From Proposition (4.4) we have L(Xm) = −λmXm in H0. So, Λ ⊆ Spec(L).

Inversely, for λ /∈ Λ, we will prove that λ is not an eigenvalue of L. In fact, assume that

X ∈ H0 such that LX = −λX ∈ H0. Because {Xm}m≥0 is a orthogonal basis of H0 with

respect to weighted w, we can write X =
∞∑
m=0

dmXm. It follows that

∞∑
m=0

dm(−λmXm) =
∞∑
m=0

dmL(Xm) = L(
∞∑
m=0

dmXm) = −λ
∞∑
m=0

dmXm.

For any n ≥ 0, multiplying them by wXn and then integrating on [0, 1] we have

dnλn(Xn, wXn) = dnλ(Xn, wXn).

Since (Xn, wXn) 6= 0 and λ 6= λn, dn = 0, ∀n ≥ 0. It follows X = 0, i.e., λ is not an

eigenvalue of L. It follows

Spec(L) = Λ.

Moreover, assume that X is an eigenvector of L corresponding to the eigenvalue λm, we

will prove that X = cXm. In fact, writing X =
∞∑
n=0

dnXn follows that

∞∑
n=0

dn(−λnXn) =

∞∑
n=0

dnL(Xn) = L(

∞∑
n=0

dnXn) = −λm
∞∑
n=0

dnXn.

For any k ≥ 0, multiplying them by wXk and then integrating on [0, 1] we have

dkλk(Xk, wXk) = dkλm(Xk, wXk).

Since (Xk, wXk) 6= 0 and λm 6= λk for all k 6= m, dk = 0, ∀k 6= m. It follows X = dmXm.

This completes the proof.

4.3.3. The global solution

In this subsection, we formulate the definition of solutions. We consider a diploid

population of fixed size N with two possible alleles A1, A2 at a given locus A. Suppose
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that the individuals in the population are monoecious, that there is no selection between

the two alleles and is no mutation. There are 2N alleles in the population in any generation,

so it is sufficient to focus on the number Yτ of alleles A1 at generation time τ . Assume that

Y0 = i0 and the alleles in generation τ + 1 are derived by sampling with the replacement

from the alleles of generation τ , it means that the transition probability is

P(Yτ+1 = j|Yτ = i) =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j
for i, j = 0, . . . , 2N.

With the rescaled process,

t =
τ

2N
; , Xt =

Yt
2N

,

we have a discrete Markov chain Xt taking values in
{

0, 1
2N , . . . , 1

}
with t = 1 means 2N

generations. In Chapter 2 Proposition (2.2), we proved that

X0 =p =
i0

2N
;

E(δXt) =0;

E(δXt)
2 =Xt(1−Xt)δt+ o(δt);

E(δXt)
k =o(δt) for k ≥ 3.

(4.3.1)

On the other hand, denoting by mk(t) the kth−moment of distribution about zero at

the (2Nt)th generation, i.e.,

mk(t) = E(Xt)
k.

We have

mk(t+ δt) = E(Xt + δXt)
k.

We expand the right hand side and note (4.3.1) to obtain the following recurrence formula,

under the assumption that the population number N is so large that the terms of higher

order 1
N2 ,

1
N3 etc., can be neglected without serious error:

mk(t+ δt) =E(Xt + δXt)
k

=E(Xt)
k +

(
k

1

)
E
(
(Xt)

k−1E(δXt)
)

+

(
k

2

)
E
(
(Xt)

k−2E(δXt)
2
)

+

(
k

3

)
E
(
(Xt)

k−3E(δXt)
3
)

+ . . .+

(
k

k

)
E
(
E(δXt)

k
)

∼E(Xt)
k +

k(k − 1)

2
E
(
(Xt)

k−2Xt(1−Xt)(δt)
)

due to (4.3.1)

=

{
1− k(k − 1)

2
(δt)

}
E(Xt)

k +
k(k − 1)

2
E(Xt)

k−1(δt)

=

{
1− k(k − 1)

2
(δt)

}
mk(t) +

k(k − 1)

2
mk−1(t)(δt).
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It follows that

ṁk(t) = −k(k − 1)

2
mk(t) +

k(k − 1)

2
mk−1(t). (4.3.2)

We are aiming at finding a continuous process which is a good approximation for the

above discrete process. Hence, we should look for a continuous [0, 1]-valued Markov process

{Xt}t≥0 with the same conditions as (4.3.1) and (4.3.2). Especially, if we call u(x, t) the

probability density function of this continuous process, the condition (4.3.1) implies (see

for example [24], p. 137) that u is a solution of the Fokker-Planck (Kolmogorov forward)

equation {
ut = Lu in (0, 1)× (0,∞),

u(x, 0) = δp(x) in (0, 1);
(4.3.3)

and the condition (4.3.2) implies

[ut, x
k] = ṁk(t)

= −k(k − 1)

2
mk(t) +

k(k − 1)

2
mk−1(t)

= [u,−k(k − 1)

2
xk +

k(k − 1)

2
xk−1]

= [u, L∗(xk)]

i.e.,

[ut, φ] = [u, L∗φ], ∀φ ∈ H0. (4.3.4)

This leads to a definition of solutions as follows

Definition 4.7. We call u ∈ H a global solution of the Fokker-Planck equation associated

to the simplest diffusion model if

ut = Lu in (0, 1)× (0,∞), (4.3.5)

u(x, 0) = δp(x) in (0, 1); (4.3.6)

[ut, φ] = [u, L∗φ], ∀φ ∈ H0. (4.3.7)

Remark 4.8. We note that the conditions 4.3.6-4.3.7 imply the condition 4.3.5. But because

of the usefulness in proof, we keep it as a part of the definition of the global solution.

We prove that

Theorem 4.9. The Problem (4.3.5-4.3.7) always possesses a unique global solution.
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4.3.4. Proof of Theorem 4.9

This subsection is devoted to the construction of the global solution and proves its ex-

istence as well as uniqueness. The process of finding the solution goes as follows: First, we

find the local solution of the Fokker-Planck equation (4.3.5) by the separation of variables

method. Then we construct a solution due to parameters at boundaries. Furthermore, we

use some conditions of (4.3.6, 4.3.7) to determine the parameters. Finally, we check the

properness of the solution.

Step 1: Assume that u1(x, t) = X(x)T (t) is a solution of the Fokker-Planck equation

(4.3.5). Then we have
Tt
T

=
LX

X
= −λ.

Clearly λ is a constant which is independent of T,X. Proposition (4.6) implies that the

local solution of the equation (4.3.5) is of form

u1(x, t) =
∑
m≥0

cmXm(x)e−λmt.

Remark 4.10. Note that u1 is the same solution as in Kimura (see for example [43, 44]).

Step 2: The solution u ∈ H satisfying (4.3.5) has the following form

u(x, t) =
∑
m≥0

cm (Xm(x) + am,0δ0(x) + am,1δ1(x)) e−λmt + b0δ0(x) + b1δ1(x). (4.3.8)

Step 3: We check condition (4.3.7) with φ = 1, φ = x, φ = wXn respectively, it follows

[ut, 1] = [u, L∗(1)] = 0,

and

[ut, x] = [u, L∗(x)] = 0,

and

[ut, wXn] = [u, L∗(wXn)] = −λn[u,wXn].

Combining with the condition (4.3.6) follows that

1 = [u(·, 0), 1] = [u(·,∞), 1] = b0 + b1,

p = [u(·, 0), x] = [u(·,∞), x] = b1,

1 = [u(·, 0), 1] = [u, 1] =
∑
m≥0

cm

∫
[0,1]

Xm(x)dx+ am,0 + am,1

 e−λmt + b0 + b1,

p = [u(·, 0), x] = [u, x] =
∑
m≥0

cm

∫
[0,1]

xXm(x)dx+ am,1

 e−λmt + b1,
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and

[u,wXn] = [u(·, 0), wXn]e−λnt = w(p)Xn(p)e−λnt. (4.3.9)

Therefore, we have founded all the parameters

b1 = p; b0 = 1− p

am,1 = −
∫

[0,1]

xXm(x)dx; am,0 = −
∫

[0,1]

(1− x)Xm(x)dx

cn =
w(p)Xn(p)

(Xn, wXn)
.

(4.3.10)

It follows that the solution should be of the form

u(x, t) =
∑
m≥0

cmXm(x)e−λmt +

1− p+
∑
m≥0

cmam,0e
−λmt

 δ0(x)

+

p+
∑
m≥0

cmam,1e
−λmt

 δ1(x)

(4.3.11)

where

λm =
(m+ 1)(m+ 2)

2
,

Xm(x) =GegenbauerC(m, 3/2, 1− 2x),

am,0 =−
∫

Ω1

(1− x)Xm(x)dx = −1

2
,

am,1 =−
∫

Ω1

xXm(x)dx = (−1)m+1 1

2
,

cm =
w(p)Xm(p)

(Xm, wXm)
=

8w(p)Xm(p)(m+ 3/2)

(m+ 1)(m+ 2)
.

(4.3.12)

Step 4: We will prove that the solution u found above satisfies (4.3.5, 4.3.6, and 4.3.7).

In fact, u = u1 in (0, 1), therefore u satisfies the Fokker-Planck equation (4.3.5).

Moreover, from the representation of this new solution, we have

[u, 1] =
∞∑
m=0

∫
[0,1]

Xm(x)dx+ am,0 + am,1

 e−λmt + 1− p+ p = 1,

[u, x] =
∞∑
m=0

∫
[0,1]

xXm(x)dx+ am,1

 e−λmt + p = p,

[u,wXn] = cn(Xn, wXn)e−λnt = w(p)Xn(p)e−λnt.

(4.3.13)

It follows

[u(·, 0), 1] = 1 = [δp, 1]

[u(·, 0), x] = p = [δp, x]

[u(·, 0), wXn] = w(p)Xn(p) = [δp, wXn].

(4.3.14)
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Because {1, x, {wXn}n≥0} is also a basis of H0 it follows

[u(·, 0), φ] = [δp, φ], ∀φ ∈ H0,

i.e. u(·, 0) = δp ∈ H, i.e. u satisfies the condition (4.3.6).

Finally, from (4.3.13) we have

[ut, 1] = 0 = [u, L∗(1)]

[ut, x] = 0 = [u, L∗(x)]

[ut, wXn] = w(p)Xn(p)(−λn)e−λnt = −λn[u,wXn] = [u, L∗(wXn)].

(4.3.15)

Because L∗ is linear and {1, x, {wXn}n≥0} is also a basis of H0 it follows

[ut, φ] = [u, L∗(φ)], ∀φ ∈ H0,

i.e. u satisfies the condition (4.3.7).

Therefore, u is a solution of the Fokker-Planck equation associated with the WF model.

We can easily see that this solution is unique. In fact, assume that u1, u2 are two

solutions of the Fokker- Planck equation associated with the WF model. Then u = u1−u2

satisfies

ut = Lu in (0, 1)× (0,∞),

u(x, 0) = 0 in (0, 1);

[ut, φ] = [u, L∗φ], ∀φ ∈ H0.

It follows

[ut, 1] = [u, L∗(1)] = 0,

[ut, x] = [u, L∗(x)] = 0,

[ut, wXn] = [u, L∗(wXn)] = −λn[u,wXn].

Therefore

[u, 1] = [u(·, 0), 1] = 0,

[u, x] = [u(·, 0), x] = 0,

[u,wXn] = [u(·, 0), wXn]e−λnt = 0.

Because {1, x, {wXn}n≥0} is also a basis of H0 it follows u = 0 ∈ H.

Corollary 4.11. 1. The global solution accumulates at boundaries {0, 1}.

2. As t → ∞ the global solution becomes flat in (0, 1) but blows up on the boundaries

and

lim
t→∞

u(x, t) = (1− p)δ0(x) + pδ1(x).
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Remark 4.12. It is easy to see that

f(0, t) =
1

2

∫ t

0
u1(0, s)ds

and

g(1, t) =
1

2

∫ t

0
u1(1, s)ds

These show that values at boundaries can be calculated by the boundary flux, which will

be made precise in Chapter 5.

The above solution is a continuous deformation from δp(x) to pδ1(x) + (1− p)δ0(x) in

time from 0 to ∞. For having a imagination of behavior of the new solution in time t we

construct a sequence {um(x, t)}m≥0 satisfying

um(x, t) =

m∑
i=0

ciXi(x)e−λit

+

{
1− p+

m∑
i=0

ci

(
−1

2

)
e−λit

}
m√
2π
e−x

2m2/2

+

{
p+

m∑
i=0

ci

(
(−1)i+1

2

)
e−λit

}
m√
2π
e−(1−x)2m2/2

(4.3.16)

It is easy to prove that um pointwisely converges to u as m → ∞. Therefore, we can

figure this behavior by, for example, Mathematica as follows

w[x_]:= x (1 - x)

X[m_, x_]:= GegenbauerC[m, 3/2, 1 - 2 x]

c[m_]:= 8 w[p] X[m, p] (m + 3/2)/{(m + 1) (m + 2)}

ld[m_]:= (m + 1) (m + 2)/2

u1[m_,x_,t_]:=Sum[c[i] X[i, x] Exp[-(i+1)(i+2) t/2],{i,0,m}]

f[n_, x_] := n/Sqrt[2 Pi] Exp[-x^2 n^2/2]

g[n_, x_] := n/Sqrt[2 Pi] Exp[-(x - 1)^2 n^2/2]

u2[m_,x_,t_]:={1-p+Sum[c[i](-1/2)Exp[-(i+1)(i+2) t/2],{i,0,m}]}f[m, x]

u3[m_,x_,t_]:={p+Sum[c[i](-1)^{i+1}1/2 Exp[-(i+1)(i+2)t/2],{i,0,m}]}g[m,x]

u[m_, x_, t_] := u1[m, x, t] + u2[m, x, t] + u3[m, x, t]

Plot3D[u[50, x, t] /. p -> .4, {x, 0, 1}, {t, .01, 20}]

4.4. Applications of the global solution

In this section we spell out some applications of this global solution. With the solu-

tion received, we can immediately obtain almost all information of the evolution of the
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Figure 4.2 Behavior of the global solution from δp to pδ1 + (1− p)δ0 in time with p = 0.4.

process (Xt)t≥0 such as probabilities of fixation, probability of coexistence, probability of

heterogeneity, kth−moments, the absorption time as well as the distribution at absorption

time. We detail them here.

4.4.1. Probabilities of fixation and Probability of coexistence of two alleles

The probability of fixation of A2 allele (the loss probability of A1 allele) is

P(Xt = 0|X0 = p) =

∫
{0}

u(x, t)dµ(x) = u0(0, p, t)

= 1− p+

∞∑
m=0

cmam,0e
−λmt

= 1− p− 1

2

∞∑
m=0

8w(p)Xm(p)(m+ 3/2)

(m+ 1)(m+ 2)
e−λmt.

The probability of fixation of A1 allele (the lost probability of A2 allele) is

P(Xt = 1|X0 = p) =

∫
{1}

u(x, t)dµ(x) = u0(1, p, t)

= p+

∞∑
m=0

cmam,1e
−λmt

= p− 1

2

∞∑
m=0

(−1)m
8w(p)Xm(p)(m+ 3/2)

(m+ 1)(m+ 2)
e−λmt.
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The probability of coexistence of two alleles A1, A2 is

P(Xt ∈ (0, 1)|X0 = p) =

∫
(0,1)

u(x, t)dµ(x)

=

∞∑
m=0

cm

1∫
0

Xm(x)dxe−λmt

=
∞∑
m=0

c2me
−λ2mt

=

∞∑
m=0

8w(p)X2m(p)(2m+ 3/2)

(2m+ 1)(2m+ 2)
e−λ2mt.

Remark 4.13. We note that after a large enough number of generation (t→∞), one allele

will disappear, the other will remain fixed, and the population becomes homozygous with

P(X∞ = 1|X0 = p) = p and P(X∞ = 0|X0 = p) = 1 − p. Below, we will prove that, this

phenomenon of homozygosity happens in a finite number of generations.

For more detail, we consider the behavior of these probabilities with different initial

frequency distributions p = 0.3 and p = 0.5 as follows
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Figure 4.3 Behavior of the probabil-

ity of fixation and coexistence with

p = 0.3
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Figure 4.4 Behavior of the probabil-

ity of fixation and coexistence with

p = 0.5

Remark 4.14. (i) P(Xt ∈ [0, 1]|X0 = p) = P(Xt = 0|X0 = p) + P(Xt = 1|X0 = p) +

P(Xt ∈ (0, 1)|X0 = p) = 1;

(ii) P(Xt = 0|X0 = p) increase quickly in t ∈ (0, 5) (10N generations) from 0 and then

asymptotically slowly to 1− p;

(iii) P(Xt = 1|X0 = p) increase quickly in t ∈ (0, 5) (10N generations) from 0 and then

asymptotically slowly to p;

(iv) When p = 0.5, P(Xt = 0|X0 = p) = P(Xt = 1|X0 = p).
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4.4.2. Loss of heterozygosity

The probability of heterozygosity is

Ht =

∫
[0,1]

2x(1− x)u(x, t)dµ(x)

= 2(uloc, wX0) because w vanishes on boundary

= 2
(∑
m≥0

cmXme
−λmt, wX0

)
= 2(c0X0e

−λ0t, wX0) because Xm are orthogonal

= 2w(p)X0(p)e−t

= H0e
−t.

This shows that heterozygosity decreases exactly at the rate 1
2N per generation.

4.4.3. kth−moments

By induction, it is easy to prove that

1∫
0

xkXm−1(x)dµ(x) = (−1)m
1

2

{
(k − 1) . . . (k −m)

(n+ 1) . . . (k +m)
− 1

}
.

Therefore, the kth−moment is

mk(t) = [u, xk]1

=

∞∑
m=0

cm

 1∫
0

xkXm(x)dx

 e−λmt +

(
p+

∞∑
m=0

cmam,1e
−λmt

)

= p+

∞∑
i=1

ci−1

 1∫
0

xkXi−1(x)dx+ ai−1,1

 e−λi−1t

= p+
∞∑
i=1

2(2i+ 1)

i(i+ 1)
p(1− p)(−1)iXi−1(p)

(k − 1) . . . (k − i)
(k + 1) . . . (k + i)

e−
i(i+1)

2
t.

This result of the kth−moment is consistent with the Kimura’s one in ([43]).

4.4.4. Absorption time and the distribution at absorption time

We denote by T 1
2 (p) = inf {t > 0 : Xt ∈ V0|X0 = p} the first time of population having

1 allele. T 1
2 (p) is a continuous random variable valued in [0,∞) and we call φ(t, p) its

probability density function. It is easy to see that V0 is invariant (absorption set) under

the process Xt, i.e. if Xs ∈ V0 then Xt ∈ V0 for all t ≥ s. We have the identity

P(T 1
2 (p) ≤ t) = P(Xt ∈ V0|X0 = p) = u0(0, p, t) + u0(1, p, t).
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It follows that

φ(t, p) =
∂

∂t

(
u0(0, p, t) + u0(1, p, t)

)
.

Therefore the expectation of absorption time having 1 allele is

E(T 1
2 (p)) =

∞∫
0

tφ(t, p)dt

=

∞∫
0

t
∂

∂t

(
u0(0, p, t) + u0(1, p, t)

)
dt

=

∞∑
m=0

(−λm)cm

(
am,0 + am,1

) ∞∫
0

te−λmtdt


=−

∞∑
m=0

1

λm
cm (am,0 + am,1)

=
∞∑
m=0

1

λ2m
c2m

=16p(1− p)
∞∑
m=0

(2m+ 3/2)

(2m+ 1)2(2m+ 2)2
X2m(p).

and the second moment of absorption time having 1 allele is

E(T 1
2 (p))2 =

∫ ∞
0

t2φ(t, p)dt

=

∫ ∞
0

t2
∂

∂t

(
u0(0, p, t) + u0(1, p, t)

)
dt

=

∞∑
m=0

(−λm)cm

(
am,0 + am,1

)(∫ ∞
0

t2e−λmtdt

)

=−
∞∑
m=0

2

λ2
m

cm (am,0 + am,1)

=
∞∑
m=0

2

λ2
2m

c2m

=64p(1− p)
∞∑
m=0

(2m+ 3/2)

(2m+ 1)3(2m+ 2)3
X2m(p)

(4.4.1)

We also know that E(T 1
2 (p)) is the unique solution of the following boundary value

problem in one dimension: {
L∗1v = −1, in (0,1)

v(0) = v(1) = 0.

This can be solved easily to obtain

E(T 1
2 (p)) = −2 {pln(p) + (1− p)ln(1− p)} .
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It also show that the phenomenon of homozygosity happen in a finite number of genera-

tions.

Remark 4.15. To check that two expectation results are the same, we use Mathematica as

follows

X[m_,x_]:=GegenbauerC[m,3/2,1-2 x]

c[m_,p_]:=16 p(1-p)(2 m +3/2)/{(2 m+1)^2(2 m+2)^2}

f[p_] := -2 p Log[p] - 2 (1 - p) Log[1 - p]

Plot[{Sum[c[m,p] X[2 m,p],{m,0,200}],f[p]},{p,0.1,0.9},AxesOrigin->{0,0}]
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Figure 4.5 Comparison results of expectation of the absorption time.

We note that XT 1
2 (p) is a {0, 1} valued random variable. Due to the attraction of

boundary {0, 1}, it is easy to show that its distribution is the same as the distribution of

X∞:

P(XT 1
2 (p) = 1) = P(X∞ = 1|X0 = p) = p,

and

P(XT 1
2 (p) = 0) = P(X∞ = 0|X0 = p) = 1− p.
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In this chapter, we systematically consider methods for solving the Kolmogorov equa-

tions of the general diffusion models, derived from general WF models. We shall construct

a proper probability density function on Sn (the global solution). Results are also given

for a wide range of other quantities of interest.
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5.1. Motivation

Until the publication of the paper by Kimura in 1955 ([43]), the theoretical treatment

of the problem of the random genetic drift was confined so far to the case of two-allele.

This restriction, however, seems to be unnatural and undesirable in some cases.

In 1955, Kimura1 found out the asymptotic local solution for n alleles at time having

exact k alleles. In 1956, he found out2 the exact local solution for 3-alleles, however his

method is not easy to generalize to the case of n-alleles.

By using a system of polynomials bi-orthogonal to Appel’s polynomials, in 1975, Littler

and Fackerell3 solved locally the problem of KBE to the general WF model.

Another approach is due to Baxter, Blythe, McKane4 in 2007 by using the method

of change of variables to KFE. They obtained the local solution as product of Jacobi

polynomials.

From the essential properties of the diffusion process, we define a new solution (global

solution) which is not necessary bounded at boundary but satisfies both Fokker-Planck

equation and the condition of moments (5.3.10) ([65]). With this new definition, we can

prove that there is such a unique solution (see Theorem 5.19). J. Hofrichter’s hierarchichal

product and boundary then allow the more precise definition of the global solution and

yield a more transparent proof (Definition 5.7 and Section 5.3.5.). Finally, we can easily

calculate information of the continuous process due to this global solution.

One interesting property is that some statistical quantities of interest are solutions of a

singular elliptic second order linear equation with discontinuous (or incomplete) boundary

values. A lot of papers, textbooks have used this property to find those quantities ([16, 24]).

However, the uniqueness of these problems have not been proved. Littler, in his PhD thesis

in 1975 ([52]), took up the uniqueness problem but his proof, in my view, is not rigorous.

We shall formulate two different ways to prove the uniqueness rigorously. The first way is

the approximation method (Lemma 5.25). The second way is the blow-up method which

is conducted by J. Hofrichter ([34]).

1Kimura M., Random genetic drift in multi-allele locus, Evolution, 9 (1955), 419-435.
2Kimura M., Random genetic drift in a triallelic locus; exact solution with a continuous model, Biomet-

rics, 12 (1956), 57-66.
3R.A.Littler, E.D.Fackerell, Transition Densities for Neutral Multi-Allele Diffusion Models, Biometrics,

Vol. 31, No. 1, (1975) 117-123.
4G. J. Baxter, R. A. Blythe, A. J. McKane, Exact solution of the multi-allelic diffusion model, Math.

Biosciences 209 (2007) 124-170.
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5.2. The local solution to the general diffusion model

In this section, we review some methods used to find out the local solutions of the

Kolmogorov equations derived from the general diffusion model. These local solutions

defined until the first absorption time are ”improper” probability density functions of a

diffusion process on Vn.

The Kolmogorov forward equation (Fokker-Planck equation) reads as

∂u(x, t)

∂t
=

n∑
i,j=1

1

2

∂2

∂xi∂xj

(
xi(δij − xj)u(x, t)

)
, x ∈ Vn, 0 < t <∞, (5.2.1)

with the initial condition

u(x, 0) = δp(x)

and the bounded boundary condition.

The Kolmogorov backward equation is of the form

∂u(p, t)

∂t
=

n∑
i,j=1

1

2
pi(δij − pj)

∂2u(p, t)

∂pi∂pj
, p ∈ Vn, 0 < t <∞, (5.2.2)

with the initial condition

u(p, 0) = δx(p)

and the vanishing boundary condition.

5.2.1. Kimura’s local solutions

In 1955, Kimura found out an asymptotic estimate for local solution. Moreover, he

proved the following important asymptotic result:

Theorem 5.1 (Kimura, 1955). Assume we start from a population which contains m

alleles, say A1, A2, · · · , Am with frequencies p1, p2, · · · , pm respectively
( m∑
i=1

pi = 1
)

, the

probability density that it contains k of them, say A1, A2, · · · , Ak with respective frequencies

x1, x2, · · · , xk
( k∑
i=1

xi = 1
)

in the tth generation is given asymptotically by

φ1,2,...,k(x
1, x2, · · · , xk−1|p1, p2, · · · , pm−1, t) ∼ (2k − 1)!

 k∏
j=1

pij

 e−
k(k−1)t

4N ,

where k ≤ m. In the case k = m = n+ 1 we have the local asymptotic solution

uloc(x|p, t) ∼ (2n+ 1)!

n+1∏
j=1

pj

 e−
n(n+1)t

4N ,
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Remark 5.2. This indicates that as the number of coexisting alleles increases, the rate by

which that state is eliminated increases with rapid progression. In this sense, random drift

might be effective in keeping down the number of coexisting alleles in the population.

Next, in 1956, Kimura gave out the local exact solution for three alleles by using a

transformation of variables

x = ρ(1− ξ) and y = ρξ (0 ≤ ρ, ξ ≤ 1)

which makes the problem KFE become separable.

Theorem 5.3 (Kimura, 1956). In the case of three alleles, the local solution can be rep-

resented by

uloc(x, y|p, q, t) =
∑
m≥0

∑
j≥0

c(m, j)(1− z)mT 1
m

(
x− y
1− z

)
×Jj(2m+ 5, 2m+ 4, 1− z)e−

(j+m+2)(j+m+3)
4N

t,

where

z = 1− x− y, T 1
m, Jj are Gegenbauer and Jacobi polynomials,

and

C(m, j) =
4(j + 2m+ 3)!(j + 2m+ 4)!(2j + 2m+ 5)

j!(j + 1)!(m+ 1)(m+ 2)(2m+ 2)!(2m+ 3)!
pqr(1− r)m

× T 1
m(
p− q
1− r

)Jj(2m+ 5, 2m+ 4, 1− r),

with r = 1− p− q.

Remark 5.4. He stated in this paper that his transformation can solve the general case.

5.2.2. Littler and Fackerell’s local solutions

In 1975, Littler and Fackerell solved the problem of KBE.
∂u(x,p,t)

∂t = L∗nu(x,p, t), in Vn,

u(x,p, t) = 0 for p ∈ ∂Vn,
u(x,p, 0) =

∏n
i=1 δ(x

i − pi).
(5.2.3)

Theorem 5.5 (Littler & Fackerell, 1975). The problem (5.2.3) has a unique local solution

given by
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uloc(x,p, t) =
∑

α∈Nn−1
0

cn,αp
1 . . . pn ×Fα(2n− 1; 2, . . . , 2; p)

× Eα(2n− 1; 2, . . . , 2; x)e−
1
2

(|α|+n−1)(|α|+n)t,

where

cn,α = ((2n− 1) + 2|α|)(α1 + 1) . . . (αn−1 + 1)(|α|+ 2)2n−3,

and Fα, Eα are a bi-orthogonal system on Vn−1

On Vk, we may find a bi-orthogonal system for the weighted function

w(x1, . . . , xk) = (x1)γ
1−1 . . . (xk)γ

k−1(1− x1 − . . .− xk)α−γ1−...−γk

by defining

Fm1,...,mk(α, γ1, . . . , γk;x1, . . . , xk) =
[w(x1, . . . , xk)]−1

(γ1)m1 . . . (γk)mk
×

∂m
1+...+mk

∂(x1)m1 . . . ∂(xk)mk

{
w(x1, . . . , xk)(x1)m

1
. . . (xk)m

k
(1− x1 − . . .− xk)m1+...+mk

}
and

Em1,...,mk(α, γ1, . . . , γk;x1, . . . , xk) =

FA(α+m1 + . . .+mk,−m1, . . . ,−mk, γ1, . . . , γk;x1, . . . , xk),

is the Lauricella’s generalized hypergeometric function.

5.2.3. Baxter, Blythe, and McKane’s local solutions

In 2007, Baxter, Blythe, and McKane ([16]) used the method of change of variables

to find out the local solutions. This method makes the equation separable, and therefore

reduces the local problem with an arbitrary number of alleles to the two-allele case. One

advantage of this change is that it can be applied to the Kolmogorov equation with the

effect of mutation satisfying the condition that the mutation matrix has equal entries in

each row.

The change of variables are as follows

y1 = x1, yi =
xi

1−
∑
j<i

xj
, i = 2, · · · , n− 1, (5.2.4)

with the inverse transformation

x1 = y1, xi = yi
∏
j<i

(1− xi), i = 2, · · · , n− 1. (5.2.5)
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Theorem 5.6 (Baxter, Blythe & McKane, 2007). The problem to KFE has a unique local

solution given by

uloc(x,p, t) =
n−1∏
i=1

(1− x1 − · · · − xi)−1v(y,q, t),

where y,q are changed variables of x,p after the transformation of coordinates, and v is

the new probability density function with respect to these new coordinates.

v(y,q, t) =
∑
λ(n)

w(q)φλ(n)(q)φλ(n)(y)e−λ
(n)t

where the sum is for every (l1, . . . , ln) ∈ Nn0

Li =
∑

j≤i(lj + 1)

λ(i) =
Li(Li + 1)

2

φλ(n)(y) =
n∏
i=1

ψλ(n+1−i),λ(n−i)(y
i)

=
n∏
i=1

(1− yi)Li−1P
(1,2γi+1)
l (1− 2yi)

5.3. The global solution to the general diffusion model

In this section, we construct the global solution of the general WF model. The existence

and uniqueness of this solution will be proved (Theorem 5.19). From this solution, we will

have a lot of information of the considered process.

5.3.1. Preliminaries

This subsection is devoted to construct the space on which the global solutions lie and

the way to integrate these solutions.

We denote by Hn = C∞(Vn) = C∞(Sn),

H =

{
u =

n∑
k=0

ukVk =
n∑
k=0

∑
(i0,...,ik)∈Ik

u
(i0,...,ik)
k χ

V
(i0,...,ik)

k

, for u
(i0,...,ik)
k (·, t) ∈ Hn

}

We define a measure µ on the measurable space (Sn,B(Sn)) and the integration as follows∫
A
u(x, t)dµ(x) =

n∑
k=1

∑
(i0,...,ik)∈Ik

∫
A∩V (i0,...,ik)

k

u
(i0,...,ik)
k (x, t)dµk(x) +

n∑
i=0

χA∩eiu0(ei, t),

where A is a Borel subset in Sn. We also denote by
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Definition 5.7. The global solution will be defined by the hierarchical product, which is

given by J. Hofrichter ([34], Chapter 4).

[u, φ]n =

∫
Sn

u(x, t)dµ(x)

=
n∑
k=1

∑
(i0,...,ik)∈Ik

∫
V

(i0,...,ik)

k

u
(i0,...,ik)
k (x, t)φ

|V (i0,...,ik)

k

(x)dµk(x) +
n∑
i=0

u0(ei, t)φ(ei).

We will prove this is a well-defined, i.e. [u, φ]n = 0, ∀φ if and only if u = 0. In fact,

we have the following lemma

Lemma 5.8. [u, φ]n = 0, ∀φ if and only if u = 0.

Proof. Do the same as in Chapter 4, using the complete basis of eigenvectors we will have

uk = 0 with k decreases from n to 0.

Therefore we can define the integration∫
A
u(x)φ(x)µ(dx) := (u, χAφ) =

n∑
k=0

∑
(i0,...,ik)∈Ik

∫
A∩V (i0,...,ik)

k

u
(i0,...,ik)
k (x)φ(x)µ(dx),

where A is a Borel subset in Ω.

Remark 5.9. We will see that the αth-moment corresponding to the probability density

function u will be [u,xα]n.

5.3.2. Eigenvalues and eigenvectors of operators Ln and L∗n

Below, we formulate some facts on eigenvalues and eigenvectors of the operator Ln and

its dual L∗n, which will be used in the proof of the existence and uniqueness of the global

solution.

Proposition 5.10. For each 1 ≤ k ≤ n,m ≥ 0, |α| = α1 + · · · + αk = m, the m−degree

polynomial of k−variables x = (xi1 , . . . , xik) in V
(i0,...,ik)
k

X(k)
m,α(x) = xα +

∑
|β|<m

a
(k)
m,βx

β, (5.3.1)

where a
(k)
m,β is defined inductively as

a
(k)
m,β = −

k∑
i=1

(βi + 2)(βi + 1)a
(k)
m,β+ei

(m− |β|)(m+ β + 2k + 1)
, ∀|β| < m,

is the eigenvector of L
(i0,...,ik)
k corresponding to the eigenvalue λ

(k)
m .
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Proof. This is easy to see by putting (5.3.1) into

L
(i0,...,ik)
k X(k)

m,α(x) = −λ(k)
m X(k)

m,α(x),

and equalization of coefficients.

Remark 5.11. When k = 1, it is easy to see that X
(1)
m,m(x1) is the mth−Gegenbauer poly-

nomial (up to a constant). Thus, these polynomials can be understood as a generalization

of the Gegenbauer polynomials to higher dimensions.

Proposition 5.12. Denote w
(i0,...,ik)
k = xi0xi1 · · ·xik by the weighted functions in the space

V
(i0,...,ik)
k . Then, if X ∈ V (i0,...,ik)

k is an eigenvector of L
(i0,...,ik)
k corresponding to λ then

w
(i0,...,ik)
k X is also an eigenvector of (L

(i0,...,ik)
k )∗ corresponding to λ.
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Proof. If X ∈ V (i0,...,ik)
k is an eigenvector of L

(i0,...,ik)
k corresponding to λ, it follows

−λ(w
(i0,...,ik)
k (x)X) =

1

2
w

(i0,...,ik)
k (x)

∑
i,j∈{i1,...,ik}

∂2

∂xi∂xj
(
xi(δij − xj)X

)
=

1

2
w

(i0,...,ik)
k (x)

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂2X

∂xi∂xj

+
1

2
w

(i0,...,ik)
k (x)

∑
i,j∈{i1,...,ik}

∂
(
xi(δij − xj)

)
∂xi

∂X

∂xj

+
1

2
w

(i0,...,ik)
k (x)

k∑
i,j=1

∂
(
xi(δij − xj)

)
∂xj

∂X

∂xi

+
1

2
w

(i0,...,ik)
k (x)

∑
i,j∈{i1,...,ik}

∂2
(
xi(δij − xj)

)
∂xi∂xj

X

=
1

2

k∑
i,j=1

(
xi(δij − xj)

)(
w

(i0,...,ik)
k (x)

∂2X

∂xi∂xj

)
+

1

2

∑
j∈{i1,...,ik}

w
(i0,...,ik)
k (x)

(
1− (k − 1)xj

) ∂X
∂xj

+
1

2

∑
i∈{i1,...,ik}

w
(i0,...,ik)
k (x)

(
1− (k − 1)xi

) ∂X
∂xi

− k(k + 1)

2
w

(i0,...,ik)
k (x)X

=
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

)(
w

(i0,...,ik)
k (x)

∂2X

∂xi∂xj

)

+
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂w(i0,...,ik)
k (x)

∂xi
∂X

∂xj

+
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂w(i0,...,ik)
k (x)

∂xj
∂X

∂xi

+
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂2w
(i0,...,ik)
k (x)

∂xi∂xj
X

=
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂2(w
(i0,...,ik)
k X)(x)

∂xi∂xj

=(L
(i0,...,ik)
k )∗(w

(i0,...,ik)
k (x)X).

This completes the proof.

Proposition 5.13. Denoting ν by the exterior unit normal vector of the domain V
(i0,...,ik)
k ,
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we have ∑
j∈{i1,...,ik}

aijν
j = 0, on ∂V

(i0,...,ik)
k , ∀i ∈ {i1, . . . , ik}. (5.3.2)

Proof. In fact, on the surface (xs = 0), for some s ∈ {i1, . . . , ik} we have ν = −es, it

follows
∑

j∈{i1,...,ik}
aijν

j = ais = xs(δsi − xi) = 0. On the surface (xi0 = 0) we have

ν = 1√
k
(ei1 + . . .+ eik), it follows

∑
j∈{i1,...,ik}

aijν
j = 1√

k

∑
j∈{i1,...,ik}

aij = 1√
k
xixi0 = 0. This

completes the proof. This proof was conducted by J. Hofrichter, see also ([34]).

Proposition 5.14. L
(i0,...,ik)
k and (L

(i0,...,ik)
k )∗ are weighted adjoins in H

(i0,...,ik)
k , i.e.

(L
(i0,...,ik)
k X,w

(i0,...,ik)
k Y ) = (X, (L

(i0,...,ik)
k )∗(w

(i0,...,ik)
k Y )), ∀X,Y ∈ H(i0,...,ik)

k .

Proof. We denote by F
(k)
i (x) =

∑
j∈{i1,...,ik}

∂(aij(x)X(x))
∂xj

. Because w
(i0,...,ik)
k Y ∈

C∞0 (V
(i0,...,ik)
k ) and the second Green formula, and the proposition (5.13) we have

(L
(i0,...,ik)
k X,w

(i0,...,ik)
k Y ) =

1

2

∑
i,j∈{i1,...,ik}

∫
V

(i0,...,ik)

k

∂2(aij(x)X(x))

∂xi∂xj
w

(i0,...,ik)
k (x)Y (x)dx

=
1

2

∑
i∈{i1,...,ik}

∫
V

(i0,...,ik)

k

∂F
(k)
i (x)

∂xi
w

(i0,...,ik)
k (x)Y (x)dx

=
1

2

∑
i∈{i1,...,ik}

∫
∂V

(i0,...,ik)

k

F
(k)
i (x)νiw

(i0,...,ik)
k (x)Y (x)do(x)

− 1

2

∑
i∈{i1,...,ik}

∫
V

(i0,...,ik)

k

F
(k)
i (x)

∂(w
(i0,...,ik)
k (x)Y (x))

∂xi
dx

=− 1

2

∑
i∈{i1,...,ik}

∫
V

(i0,...,ik)

k

F
(k)
i (x)

∂(w
(i0,...,ik)
k (x)Y (x))

∂xi
dx

=− 1

2

∑
i,j∈{i1,...,ik}

∫
V

(i0,...,ik)

k

∂(aij(x)X(x))

∂xj
∂(w

(i0,...,ik)
k (x)Y (x))

∂xi
dx

=− 1

2

∑
i,j∈{i1,...,ik}

∫
∂V

(i0,...,ik)

k

aij(x)νjX(x)
∂(w

(i0,...,ik)
k (x)Y (x))

∂xi
do(x)

+
(
X,L∗k(w

(i0,...,ik)
k Y )

)
= (X,L∗k(wkY )) .
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Proposition 5.15. In V
(i0,...,ik)
k we have

{
X

(k)
m,α

}
m≥0,|α|=m

as a basis of H
(i0,...,ik)
k which

is degree orthogonal with respect to weighted w
(i0,...,ik)
k , i.e.,(

X(k)
m,α, w

(i0,...,ik)
k X

(k)
j,β

)
= 0, ∀j 6= m, |α| = m, |β| = j.

Proof. It is easy to see
{
X

(k)
m,α

}
m≥0,|α|=m

is a basis of H
(i0,...,ik)
k because {xα}α is a basis of

H
(i0,...,ik)
k . To prove the degree orthogonality we apply the propositions (5.10, 5.12, 5.16)

−λ(k)
m

(
X(k)
m,α, w

(i0,...,ik)
k X

(k)
j,β

)
=
(
L

(i0,...,ik)
k X(k)

m,α, w
(i0,...,ik)
k X

(k)
j,β

)
=
(
X(k)
m,α, (L

(i0,...,ik)
k )∗(w

(i0,...,ik)
k X

(k)
j,β )
)

=− λ(k)
j

(
X(k)
m,α, w

(i0,...,ik)
k X

(k)
j,β

)
Because λ

(k)
m 6= λ

(k)
j , it completes the proof.

Proposition 5.16. (i) The spectrum of the operator L
(i0,...,ik)
k is

Spec(L
(i0,...,ik)
k ) =

⋃
m≥0

{
λ(k)
m =

(m+ k)(m+ k + 1)

2

}
= Λk

and the eigenvectors of L
(i0,...,ik)
k corresponding to λ

(k)
m are of form

X =
∑
|α|=m

d(k)
m,αX

(k)
m,α,

i.e., the eigenspaces corresponding to λ
(k)
m is

(
k+m−1
k−1

)
dimensional;

(ii) The spectrum of the operator Lk is the same.

Proof. (i) Proposition (5.10) implies that Λk ⊆ Spec(L
(i0,...,ik)
k ). Inversely, for λ /∈ Λk,

we will prove that λ is not an eigenvalue of L
(i0,...,ik)
k . In fact, assume that X ∈

H
(i0,...,ik)
k such that L

(i0,...,ik)
k X = −λX in H

(i0,...,ik)
k . Because

{
X

(k)
m,α

}
m,α

is a degree

orthogonal basis of H
(i0,...,ik)
k with respect to weighted w

(i0,...,ik)
k (proposition 5.13),

we can represent X by X =
∞∑
m=0

∑
|α|=m

d
(k)
m,αX

(k)
m,α. It follows

∞∑
m=0

∑
|α|=m

d(k)
m,α(−λ(k)

m )X(n)
m,α =

∞∑
m=0

∑
|α|=m

d(k)
m,αL

(i0,...,ik)
k X(k)

m,α

=L
(i0,...,ik)
k X

=− λ
∞∑
m=0

∑
|α|=m

d(k)
m,αX

(k)
m,α.
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For any j ≥ 0, |β| = j, multiplying them by wkX
(k)
j,β and then integrating on V n we

have∑
|α|=j

d
(k)
j,αλ

(k)
j

(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
=
∑
|α|=j

d
(k)
j,αλ

(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
,∀j ≥ 0, |β| = j,

⇒
(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
β,α

(d
(k)
j,αλ

(k)
j )α =

(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
β,α

(d
(k)
j,αλ)α, ∀j ≥ 0, |β| = j,

⇒d(k)
j,αλ

(k)
j = d

(k)
j,αλ, ∀j ≥ 0, |β| = j, because det

(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
β,α
6= 0

⇒d(k)
j,α = 0, ∀j ≥ 0, |α| = j, because λ 6= λ

(k)
j .

It follows X = 0 in H
(i0,...,ik)
k . Therefore

Spec(L
(i0,...,ik)
k ) =

⋃
m≥0

{
λ(k)
m =

(m+ k)(m+ k + 1)

2

}
= Λk.

Moreover, assume that X ∈ H(i0,...,ik)
k is a eigenvector of L

(i0,...,ik)
k corresponding to

λ
(k)
j , i.e., L

(i0,...,ik)
k X = −λjX. We represent X by

X =
∞∑
m=0

∑
|α|=m

d(k)
m,αX

(k)
m,α.

It follows
∞∑
m=0

∑
|α|=m

d(k)
m,α(−λ(k)

m )X(k)
m,α =

∞∑
m=0

∑
|α|=m

d(k)
m,αL

(i0,...,ik)
k X(k)

m,α

=L
(i0,...,ik)
k X

=− λ(k)
j

∞∑
m=0

∑
|α|=m

d(k)
m,αX

(k)
m,α.

For any i 6= j, |β| = i, multiplying them by wkX
(k)
i,β and then integrating on V n we

have∑
|α|=i

d
(k)
i,αλ

(k)
i

(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
=
∑
|α|=i

d
(k)
i,αλ

(k)
j

(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
, ∀i 6= j, |β| = i,

⇒
(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
β,α

(d
(k)
i,αλ

(k)
i )α =

(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
β,α

(d
(k)
i,αλ

(k)
j )α, ∀i 6= j, |β| = i,

⇒d(k)
i,αλ

(k)
i = d

(k)
i,αλ

(k)
j , ∀i 6= j, |β| = i, because det

(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
β,α
6= 0

⇒d(k)
i,α = 0, ∀i 6= j, |α| = i, because λ

(k)
i 6= λ

(k)
j .

It follows

X =
∑
|α|=j

d
(k)
j,αX

(k)
j,α .

This completes the proof.
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(ii) We leave this for the reader to check.

5.3.3. The global solution

In this subsection, we describe a definition of solutions. We consider a diploid popula-

tion of fixed size N with n+1 possible alleles A0, . . . , An, at a given locus A. Suppose that

the individuals in the population are monoecious, that there is no selection between these

alleles and there are no mutations. There are 2N alleles in the population in any gener-

ation, so it is sufficient to focus on the number Ym = (Y 1
m, . . . , Y

n
m) of alleles A1, . . . , An

at generation time m. Assume that Y0 = i0 = (i10, . . . , i
n
0 ) and the alleles in generation

m+1 are derived by sampling with the replacement from the alleles of generation m. This

means that the transition probability can be written as

P(Ym+1 = j|Ym = i) =
(2N)!

(j0)!(j1)! . . . (jn)!

n∏
k=0

(
ik

2N

)jk
, for ik, jk ∈ {0, . . . , 2N} ∀k.

where

i0 = 1− |i| = 1− i1 − . . .− in; j0 = 1− |j| = 1− j1 − . . .− jn.

With the re-scaled process,

t =
m

2N
; , Xt =

Yt
2N

,

we have a discrete Markov chain Xt in
{

0, 1
2N , . . . , 1

}n
(for t = 1 we have 2N generations).

In Chapter 2 Proposition (2.8), we proved that

X0 =p =
i0

2N
;

E(δXi
t) =0;

E(δXi
t .δX

j
t ) =Xi

t(δij −X
j
t )(δt);

E(δXt)
α =o(δt) for |α| ≥ 3.

(5.3.3)

On the other hand, denoting by mα(t) the αth−moment of distribution about zero at

the tth generation, i.e.,

mα(t) = E(Xt)
α

Then

mα(t+ δt) = E(Xt + δXt)
α

Expanding the right hand side and recalling (5.3.3), we obtain the following recurrence

formula, under the assumption that the population number N so large that the terms of
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higher order 1
N2 ,

1
N3 etc., can be neglected without serious error:

mα(t+ δt) =E(Xt + δXt)
α

=E

((
E(X1

t )α1 +

(
α1

1

)
E
(
(X1

t )α1−1E(δX1
t )
)

+

(
α1

2

)
E(
(
X1
t )α1−2E(δX1

t )2
)

+

(
α1

3

)
E
(
(X1

t )α1−3E(δX1
t )3
)

+ . . .+

(
α1

α1

)
E
(
E(δX1

t )α1
))
×

×
(
E(X2

t )α2 +

(
α2

1

)
E
(
(X2

t )α2−1E(δX2
t )
)

+

(
α2

2

)
E
(
(X2

t )α2−2E(δX2
t )2
)

+

(
α2

3

)
E
(
(X2

t )α2−3E(δX2
t )3
)

+ . . .+

(
α2

α2

)
E
(
E(δX2

t )α2
))
× . . .

×
(
E(Xn

t )αn +

(
αn
1

)
E
(
(Xn

t )αn−1E(δXn
t )
)

+

(
αn
2

)
E
(
(Xn

t )αn−2E(δXn
t )2
)

+

(
αn
3

)
E
(
(Xn

t )αn−3E(δXn
t )3
)

+ . . .+

(
αn
αn

)
E
(
E(δXn

t )αn
)))

=E(Xt)
α +

n∑
i=1

E
(
(Xt)

α−eiE(δXt)
ei
)

+

n∑
i=1

(
αi
2

)
E
(
(Xt)

α−2eiE(δXt)
2ei
)

+
∑
i 6=j

αiαjE
(
(Xt)

α−ei−ejE(δXt)
ei+ej

)
+O(E(δXt)

β) (|β| ≥ 3)

∼
{

1− |α|(|α| − 1)

2
(δt)

}
E(Xt)

α +

n∑
i=1

αi(αi − 1)

2
E(Xt)

α−ei(δt) due to (5.3.3)

=

{
1− |α|(|α| − 1)

2
(δt)

}
mα(t) +

n∑
i=1

αi(αi − 1)

2
mα−ei(t)(δt).

(5.3.4)

It follows that

ṁα(t) = −|α|(|α| − 1)

2
mα(t) +

n∑
i=1

αi(αi − 1)

2
mα−ei(t). (5.3.5)

With the aim to find a continuous process which is a good approximation to the above

discrete process, we should look for a continuous Markov process {Xt}t≥0 in [0, 1]n with

the same conditions as (5.3.3) and (5.3.5). Specially, if we call u(x, t) the probability

density function of this continuous process, the condition (5.3.3) implies (see for example

[24], p. 137) that u is a solution of the Fokker-Planck (Kolmogorov forward) equation{
ut = Lnu in Vn × (0,∞),

u(x, 0) = δp(x) in Vn.
(5.3.6)

Moreover, the condition (5.3.5) and the above definition of the global solution of J.

Hofrichter imply

[ut,x
α]n =

[
u,−|α|(|α| − 1)

2
xα +

n∑
i=1

αi(αi − 1)

2
xα−ei

]
n

= [u, L∗(xα)]n,∀α,
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i.e.,

[ut, φ]n = [u, L∗nφ]n, ∀φ ∈ Hn. (5.3.7)

This makes us formulate the following definition.

Definition 5.17. We call u ∈ H a global solution of the Fokker-Planck equation associated

with the general WF model if

ut = Lnu in Vn × (0,∞); (5.3.8)

u(x, 0) = δp(x) in Vn; (5.3.9)

[ut, φ]n = [u, L∗nφ]n, ∀φ ∈ Hn. (5.3.10)

Remark 5.18. Similar to the definition of the global solution in Chapter 4, here the con-

dition 5.3.8 is only for the usefulness of proof.

We shall prove that

Theorem 5.19. The Fokker-Planck equation associated with WF model of (n+1)−alleles

has always a unique global solution.

5.3.4. Proof of Theorem 5.19

This subsection will be devoted to construct the solution as well as the uniqueness of

the solution. The process of finding the solution goes as follows:

Firstly, we solve the local solution un of the problem (5.3.8-5.3.10) by the separation

of variables method. Then we find gradually sub-solutions uk from k = n−1 to k = 0 due

to the moment condition and known sub-solutions. The global solution will be sum of all

these sub-solutions.

u =
n∑
k=1

ukχVk +
n∑
i=0

ui0δei .

Finally, we check the uniqueness of this global solution.

Step 1: Consider on Vn, assume that un(x, t) = X(x)T (t) is a solution of the Fokker-

Planck equation (5.3.8). Then we have

Tt
T

=
LnX

X
= −λ

Clearly λ is a constant which is independent on T,X. From the Proposition (5.16) we

obtain the local solution of the equation (5.3.8) of the form

un(x, t) =
∞∑
m=0

∑
|α|=m

c(n)
m,αX

(n)
m,α(x)e−λ

(n)
m t,
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where

λ(n)
m =

(n+m)(n+m+ 1)

2

is the eigenvalue of Ln and

X(n)
m,α(x), |α| = m

are the corresponding eigenvectors of Ln.

For m ≥ 0, |β| = m, we conclude from Proposition (5.12) that

L∗n

(
wnX

(n)
m,β

)
= −λ(n)

m wnX
(n)
m,β.

It follows that

[ut, wnX
(n)
m,β]n =

[
u, L∗n

(
wnX

(n)
m,β

)]
n

(the moment condition)

= −λ(n)
m

[
u,wnX

(n)
m,β

]
n
.

Therefore

[u,wnX
(n)
m,β]n = [u(·, 0), wnX

(n)
m,β]ne

−λ(n)m t

= wn(p)X
(n)
m,β(p)e−λ

(n)
m t.

Thus,

wn(p)X
(n)
m,β(p)e−λ

(n)
m t = [u,wnX

(n)
m,β]n

= (un, wnX
(n)
m,β)n (because wn vanishes on boundary)

=
∑
|α|=m

c(n)
m,α(X(n)

m,α, wnX
(n)
m,β)ne

−λ(n)m t.

It follows that

(
c(n)
m,α

)
α

=

[(
(X(n)

m,α, wnX
(n)
m,β)n

)
α,β

]−1(
wn(p)X

(n)
m,β(p)

)
β

.

Step 2: The solution u ∈ H satisfying (5.3.8) will be found in the following form

u(x, t) =

n∑
k=1

uk(x, t)χVk(x) +

n∑
i=0

ui0(x, t)δei(x). (5.3.11)

We use the condition (5.3.10) to obtain gradually values of uk, k = n − 1, . . . , 0. In

fact, assume that we want to calculate u
(0,...,n−1)
n−1 (x1, · · · , xn−1, 0, t).

We note that, if we choose

φ(x) = x1 · · ·xnX(n−1)
k,β (x1, . . . , xn−1), |β| = k.



5.3. The global solution to the general diffusion model 65

then φ(x) vanishes on faces of dimension at most n−1 except the face V 0,...,n−1
n−1 . Therefore,

the expectation of φ will be

[u, φ]n = (un, φ)n + (u
(0,...,n−1)
n−1 , φ)n−1.

The left hand side can be calculated easily by the condition (5.3.10)

[ut, φ]n = [u, L∗n(φ)]n = −λ(n−1)
k [u, φ]n. (5.3.12)

It follows

[u, φ]n = φ(p)e−λ
(n−1)
k t.

The first part of the right hand side is known as

(un, φ)n =
∑
m,α

c(n)
m,α

(∫
Vn

X(n)
m,α(x)φ(x)dx

)
e−λ

(n)
m t.

Therefore we can expand u
(0,...,n−1)
n−1 (x1, · · · , xn−1, 0, t) as follows

u
(0,...,n−1)
n−1 (x1, · · · , xn−1, 0, t) =

∑
m≥0

c(n−1)
m (x)e−λ

(n−1)
m t

=
∑
m≥0

∑
l≥0

∑
|α|=l

c
(n−1)
m,l,α X

(n−1)
l,α (x1, . . . , xn−1)e−λ

(n−1)
m t.

Put this formula into Equation (5.3.12) we will obtain all the coefficients c
(n−1)
m,l,α . It

means that we will obtain u
(0,...,n−1)
n−1 (x1, · · · , xn−1, 0, t). Similarly we will obtain un−1.

And finally we will obtain all uk, k = n − 1, . . . , 0. It means we obtain the global

solution in form

u(x, t) =

n∑
k=1

ukχVk(x) +

n∑
i=0

ui0(x, t)δei(x).

=
n∑
k=1

∑
m≥0

∑
l≥0

∑
|α|=l

c
(k)
m,l,αX

(k)
l,α (x)e−λ

(k)
m tχVk(x) +

n∑
i=0

ui0(x, t)δei(x).

(5.3.13)

It is not difficult to show that u is a solution of the Fokker-Planck equation associated

with WF model.

Step 3: We can easy see that this solution is unique. In fact, assume that u1, u2 are

two solutions of the Fokker- Planck equation associated with WF model. Then u = u1−u2

will satisfy

ut = Lnu in Vn × (0,∞),

u(x, 0) = 0 in V n;

[ut, φ]n = [u, L∗φ]n, ∀φ ∈ Hn.
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It follows

[ut, 1]n = [u, L∗n(1)]n = 0,

[ut, x
i]n = [u, L∗n(xi)]n = 0,

[ut, w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

]n = [u, L∗n(w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

)]n

= [u, L∗k(w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

)]n

= −λ(k)
j [u,w

(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

]n.

Therefore

[u, 1]n = [u(·, 0), 1]n = 0,

[u, xi]n = [u(·, 0), xi]n = 0,

[u,w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

]n = [u(·, 0), w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

]ne
−λ(k)j t = 0.

Since
{

1,
{
xi
}
i
, {w(i0,...,ik)

k X
(k)
j,αχVk(i0,...,ik)}1≤k≤n,(i0,...,ik)∈Ik,j≥0,|α|=j

}
is also a basis of Hn

it follows u = 0 ∈ H.

Example 5.20. To illustrate this process, we consider the case of three alleles.

We will construct the global solution for the problem
∂u
∂t = L2u, in V2 × (0,∞),

u(x, 0) = δp(x), x ∈ V2,

[ut, φ]2 = [u, L∗2φ]2, for all φ ∈ H2,

where the global solution of the form

u = u2χV2 + u0,1
1 χ

V 0,1
1

+ u0,2
1 χ

V 0,2
1

+ u0,0
1 χ

V 0,0
1

+ u1
0χV 1

0
+ u2

0χV 2
0

+ u0
0χV 0

0
.

and the product is

[u, φ]2 =

∫
V2

u2φ|V2dx +

∫ 1

0
u0,1

1 (x1, 0, t)φ(x1, 0)dx1 +

∫ 1

0
u0,2

1 (0, x2, t)φ(0, x2)dx2

+
1√
2

∫ 1

0
u1,2

1 (x1, 1− x1, t)φ(x1, 1− x1)dx1

+ u1
0(1, 0, t)φ(1, 0) + u2

0(0, 1, t)φ(0, 1) + u0
0(0, 0, t)φ(0, 0).

Step 1: We find out the local solution u2 as follows

u2(x, t) =
∑
m≥0

∑
α1+α2=m

c
(2)
m,α1,α2X

(2)
m,α1,α2(x)e−λ

(2)
m t.
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To define coefficients c
(2)
m,α1,α2 we use the initial condition and the orthogonality of eigen-

vectors X
(2)
m,α1,α2

w2(p)X
(2)
m,β1,β2(p) =

[
u(0), w2X

(2)
m,β1,β2

]
2

=
(
u2(0), w2X

(2)
m,β1,β2

)
2

because w2 vanishes on the boundary

=
∑

α1+α2=m

c
(2)
m,α1,α2

(
X

(2)
m,α1,α2 , w2X

(2)
m,β1,β2

)
for all β1 + β2 = m.

Because the matrix (
X

(2)
m,α1,α2 , w2X

(2)
m,β1,β2

)
(α1,α2),(β1,β2)

is positive definite then we have unique values of c
(2)
m,α1,α2 . It follows that we have a unique

local solution u2.

Step 2: We will use the moment condition to define all other coefficients of the global

solution.

Firstly, we define the coefficients of u1,2
1 as follows

u1,2
1 (x1, 1− x1, t) =

∑
m≥0

cm(x1)e−λ
(1)
m t (5.3.14)

=
∑
m,l≥0

cm,lX
(1)
l (x1)e−λ

(1)
m t. (5.3.15)

We note that

L∗2

(
x1x2X

(1)
k (x1)

)
= −λ(1)

k x1x2X
(1)
k (x1).

Therefore

[
ut, x

1x2X
(1)
k (x1)

]
2

=
[
u, L∗2

(
x1x2X

(1)
k (x1)

)]
2

= −λ(1)
k [u, x1x2X

(1)
k (x1)]2.

It follows that

[
u, x1x2X

(1)
k (x1)

]
2

= p1p2X
(1)
k (p1)e−λ

(1)
k t.
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Thus we have

p1p2X
(1)
k (p1)e−λ

(1)
k t =

[
u, x1x2X

(1)
k (x1)

]
2

=
(
u2, x

1x2X
(1)
k (x1)

)
2

+
(
u1,2

1 , x1(1− x1)X
(1)
k (x1)

)
1

because x1x2 vanish on the other boundaries

=
∑
m≥0

( ∑
|α|=m

c(2)
m,α

(∫
V2

x1x2X(2)
m,α(x1, x2)X

(1)
k (x1)dx

))
e−λ

(2)
m t

+
∑
m≥0

cm,k

(
X

(1)
k , w1X

(1)
k

)
e−λ

(1)
m t

because of the orthogonality of (·, ·)1 with respect to w1

=
∑
m≥0

rme
−λ(2)m t +

∑
m≥0

cm,kdke
−λ(1)m t

By equating of coefficients of eαt we obtain u1,2
1 . Similarly we obtain u1. Then, we

define the coefficients of u1
0 from the 1−th moment.

Note that when φ = xi, L∗2(φ) = 0, therefore [ut, φ]2 = 0 or

[u, xi]2 = [u(0), xi] = pi.

It follows

p1 = [u, x1] = (u2, x
1)2 + (u0,1

1 , x1)1 + (u1,2
1 , x1)1 + u1

0(1, 0, t).

Thus we obtain u1
0(1, 0, t). Similarly we have all u0. Therefore we obtain the global

solution u.

It is easy to check that u is a global solution. To prove the uniqueness we proceed as

follows Assume that u is the difference of any two global solutions, i.e. u satisfies
ut = L2u, in V2 × (0,∞),

u(x, 0) = 0, in V2

[ut, φ]2 = [u, L∗2φ]2, for all φ ∈ H2.

We will prove that

[u, φ]2 = 0 ∀φ ∈ H2. (5.3.16)
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In fact,

[ut, 1]2 = [u, L∗2(1)]2 = 0⇒ [u, 1]2 = [u(0), 1]2 = 0,

[ut, x
i]2 = [u, L∗2(xi)]2 = 0⇒ [u, xi]2 = [u(0), xi]2 = 0,

[ut, w1(xi)X(1)
m (xi)]2 = [u, L∗2(w1(xi)X(1)

m (xi))]2 = −λ(1)
m [u,w1(xi)X(1)

m (xi)]2

⇒ [u,w1(xi)X(1)
m (xi)]2 = [u(0), w1(xi)X(1)

m (xi)]2e
−λ(1)m t = 0,

[ut, w2(x1, x2)X(2)
m,α(x1, x2)]2 = [u, L∗2(w2(x1, x2)X(2)

m,α(x1, x2))]2 = −λ(2)
m [u,w2(x1, x2)X(2)

m,α(x1, x2)]2

⇒ [u,w2(x1, x2)X(2)
m,α(x1, x2)]2 = [u(0), w2(x1, x2)X(2)

m,α(x1, x2)]2e
−λ(2)m t = 0.

We need only to prove that Eq. (5.3.16) holds for all

φ(x1, x2) = (x1)m(x2)n, ∀m,n ≥ 0.

1. If n = 0,m ≥ 0, we see that φ can be generated from {1, x1, w1(x1)X
(1)
m (x1)},

therefore [u, φ]2 = 0

2. If m = 0, n ≥ 0, we see that φ can be generated from {1, x2, w1(x2)X
(1)
m (x2)},

therefore [u, φ]2 = 0

3. If n = 1,m ≥ 1, we expand (x1)m−1 by

(x1)m−1 =
∑
k≥0

ckX
(1)
k (x1).

Note that

L∗2

(
x1x2X

(1)
k (x1)

)
= −λ(1)

k x1x2X
(1)
k (x1)

Therefore

[ut, x
1x2X

(1)
k (x1)]2 = [u, L∗2

(
x1x2X

(1)
k (x1)

)
]2 = −λ(1)

k [u, x1x2X
(1)
k (x1)]2.

It follows

[u, x1x2X
(1)
k (x1)]2 = [u(0), x1x2X

(1)
k (x1)]2e

−λ(1)k = 0.

Therefore

[u, φ]2 =
∑
k≥0

ck[u, x
1x2X

(1)
k (x1)]2 = 0.
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4. If n ≥ 2,m ≥ 1 we use the inductive method in n. We have

(x1)m(x2)n = x1x2(x1 + x2 − 1)(x1)m−1(x2)n−2 + (x1)m(1− x1)(x2)n−1

= −w2(x1, x2)(x1)m−1(x2)n−2 + (x1)m(1− x1)(x2)n−1.

In the assumption of induction, we have

[u, (x1)m(1− x1)(x2)n−1]2 = 0

Then, we expand (x1)m−1(x2)n−2 by

(x1)m−1(x2)n−2 =
∑
m,α

c(2)
m,αX

(2)
m,α(x1, x2).

Therefore

[u,w2(x1, x2)(x1)m−1(x2)n−2]2 =
∑
m,α

c(2)
m,α[u,w2(x1, x2)X(2)

m,α(x1, x2)]2 = 0.

It follows [u, (x1)m(x2)n]2 = 0.

Thus, u = 0.

5.3.5. Boundary flux

In this section, we will show that the global solution can be constructed by using

the boundary flux (the probability flux at boundary). This work was conducted by J.

Hofrichter ([34]).

Definition 5.21. Let v(x, t) be a smooth function (probability density function of a

diffusion process) in an open domain Ω × [0, T ) ⊂ Rm+1. We call G : Ω × [0, T ) → Rn a

probability flux of v if G is smooth and satisfies the continuity equation

∂v

∂t
(x, t) = −∇ ·G(x, t), (x, t) ∈ Ω× [0, T ),

and call G|∂Ω a boundary flux. We note that if v is improper, i.e.
∫

Ω vdx < 1 then the

boundary flux will be nontrivial.

In our case, u(x, t) is a solution of the KFE ut = Lnu in Ωn × [0, T ) and G =

(G1, · · · , Gn) with

Gi(x, t) = −1

2

n∑
j=1

∂

∂xj

(
xi(δij − xj)u(x, t)

)
is a probability flux of u. We will show the relation between boundary flux and difference

of the Ln and its adjoint as follows
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Proposition 5.22. If u(x, t) is a solution of the KFE ut = Lnu in Ωn×[0, T ) and φ ∈ Hn,

G is the probability flux of u, then

(Lnu, φ)n = −
∫
∂Ωn

G · νφdµn−1 + (u, L∗nφ)n

where ν is the outward unit normal to ∂Ωn.

Proof. See [34].

The theorem below will show that when we represent global solution in the form

u =
n∑
k=0

ukχVk =
n∑
k=0

(n+1
k+1)∑
l=1

uk,lχV (l)
k

,

the kth components can be calculated from (k+ 1)th components due to boundary fluxes.

Starting from a local solution un, for 0 ≤ k ≤ n− 1 decreasing, we construct

uk,l(x, t) =

∫ t

0
vτk,l(x, t− τ)dτ,

where vτk,l ∈ Hn being the unique solution of the problem
∂
∂tv

τ
k,l = Lkv

τ
k,l

vτk,l(x, 0) =
∑

m:∂V
(m)
k+1⊃V

(l)
k

G⊥k+1,m(x, τ)

and

uk(x, t) =
∑
l

uk,l(x, t)χV (l)
k

Then, we obtain all uk for k = 0, · · · , n and construct

u =
∑
k

uk

Theorem 5.23. u constructed by the above procedure is the global solution for the problem.

Proof. See [34].

Example 5.24. We consider the case of two alleles, i.e. n = 1. We know that the local

solution is

u1(x, p, t) =
∑
m≥0

4p(1− p)(2m+ 3)

(m+ 1)(m+ 2)
Xm(p)Xm(x)e−

(m+1)(m+2)
2

t

The boundary flux of u1 is

G1(x, t) = −1

2

∂

∂x

(
x(1− x)u1(x, t)

)
=

1

2
u1(x, t), x ∈ {0, 1},



72 5. Analytical aspects of the general diffusion model

The unique solution of the problem
∂
∂tv

τ
0 = 0, x ∈ {0, 1}

vτ0 (x, 0) = G⊥1 (x, τ), x ∈ {0, 1}

is vτ0 (x, t) = 1
2u1(x, τ) at boundary x ∈ {0, 1}. Therefore the 0th components of the global

solution are

u0(x, t) =

∫ t

0
vτ0 (x, t− τ)dτ =

1

2

∫ t

0
u1(x, τ)dτ, at boundary x ∈ {0, 1}

5.4. Applications of the global solution

We mention some applications of this new solution. With the solution received, we can

calculate some information of the evolution of the process (Xt)t≥0 such as the expectation

and the second moment of the absorption time, αth−moments, fix probabilities, probability

of coexistence of (k+1)−alleles, and probability of heterogeneity. Some of these quantities

have been calculated as solutions to an elliptic equation with appropriate boundary values.

However, the proof of uniqueness has not been done. We will also give a rigorous proof for

this generalized result (Lemma 5.25). Another approach, which is the blow-up method,

has been done by J. Hofrichter ([34]) and applied for a below example (Example 5.29).

Lemma 5.25. The following generalized Dirichlet problem has at most one solution.
Au = 0, in Ω ⊂ Rn

lim
x→x0

u(x) = f(x0), x0 ∈ Γ ⊂ ∂Ω,
(5.4.1)

where Ω is a domain in Rn, Γ is the set of regular points of boundary ∂Ω satisfying

|∂Ω − Γ| = 0, A is an elliptic operator, f is of class T1, i.e. f is the limit of a sequence

of continuous functions.

Proof. Step 1: If fn is a continuous function on ∂Ωn then there is a unique solution un of

the Lemma 5.25.

Step 2: Because f is of class T1, it is a limit of a sequence of continuous functions

(fn)n on ∂Ωn, therefore we obtain the sequence of corresponding unique solutions (un)n.

This sequence has the limit u. It is not difficult to prove that u is the unique solution to

the generalized Dirichlet problem.

See also [27, 28, 40, 60, 63].
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5.4.1. Probability of having (k + 1) alleles

Probability of having only 1 allele Ai (allele Ai is fix) is

P(Xt ∈ V (i)
0 |X0 = p) =

∫
V

(i)
0

u
(i)
0 (x, t)dµ

(i)
0 (x)

= u
(i)
0 (ei, t)

= pi −
n∑
k=1

∑
m(k)≥0

∑
l(k)≥0

∑
|α(k)|=l(k)

c
(k)

m(k),l(k),α(k)

(
xi, X

(k)

l(k),α(k)

)
k
e
−λ(k)

m(k)
t
.

Probability of having exactly (k+ 1) allele {A0, . . . , Ak} (coexistence probability of alleles

{A0, . . . , Ak}) is

P(Xt ∈ V (i0,...,ik)
k |X0 = p) =

∫
V

(i0,...,ik)

k

u
(i0,...,ik)
k (x, t)dµ

(i0,...,ik)
k (x)

=
∑
m≥0

∑
l≥0

∑
|α|=l

c
(k)
m,l,α

 ∫
V

(i0,...,ik)

k

X(k)
m,α(x)dµ

(i0,...,ik)
k (x)

 e−λ
(k)
m t.

5.4.2. Loss of heterozygosity

Probability of heterogeneity is

Ht =(n+ 1)! [u,wn]n

=(n+ 1)! (un, wn)n (because wn vanishes on boundary)

=(n+ 1)!
(∑
m≥0

∑
|α|=m

c
(n)
m,αX

(n)
m,αe

−λ(n)m,αt, wnX
(n)
0,0

)
n

=(n+ 1)!
(
c

(n)
0,0X

(n)
0,0 , wnX

(n)
0,0

)
n
e−λ

(n)
0,0t (because the orthogonality of eigenvectors X

(n)
m,α)

=H0 e
− (n+1)(n+2)

2
t

This means that the heterogeneity decreases with the rate (n+1)(n+2)
4N in generation.

5.4.3. αth-moments

The αth-moments are

mα(t) =[u,xα]n

=

∫
Vn

xαu(x, t)dµ(x)

=

n∑
k=0

∑
(i0,...,ik)∈Ik

∫
V

(i0,...,ik)

k

xαu
(i0,...,ik)
k (x, t)dµ

(i0,...,ik)
k (x).
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5.4.4. Rate of loss of one allele in a population having (k + 1) alleles

We have the solution of form

u =

n∑
k=0

uk(x, t)χVk(x)

Then we immediately have that the rate of lost one allele at population having (k+ 1)

alleles is the rate of decrease of

uk(x, t) =
∑
m≥0

∑
l≥0

∑
|α|=l

c
(k)
m,l,αX

(k)
l,α (x)χVk(x)e−λ

(k)
m t.

which is λ
(k)
0 = k(k+1)

2 . This means the rate of loss of alleles in the population decreases.

5.4.5. Absorbtion time of having (k + 1) alleles

We denote by T k+1
n+1 (p) = inf

{
t > 0 : Xt ∈ V k|X0 = p

}
, the first time the population

has at most (k+ 1) alleles. T k+1
n+1 (p) is a continuous random variable valued in [0,∞) and

we call φ(t,p) its probability density function. It is easy to see that V k is invariant with

the process (Xt)t≥0, i.e. if Xs ∈ V k then Xt ∈ V k for all t ≥ s. We have the equality

P(T k+1
n+1 (p) ≤ t) = P(Xt ∈ V k|X0 = p) =

∫
V k

u(x,p, t)dµ(x).

It follows that

φ(t,p) =

∫
V k

∂

∂t
u(x,p, t)dµ(x)

Therefore the expectation of absorbtion time having (k + 1) alleles is

E(T k+1
n+1 (p)) =

∫ ∞
0

tφ(t,p)dt

=

∫
V k

∫ ∞
0

t
∂

∂t
u(x,p, t)dtdµ(x)

=

k∑
j=1

∑
(i0,...,ij)∈Ij

∑
m≥0

∑
l≥0

∑
|α|=l

c
(j)
m,l,α

∫
V

(i0,...,ij)

j

X
(j)
l,α (x)

(∫ ∞
0

t
∂

∂t
e−λ

(j)
m tdt

)
dµ

(i0,...,ij)
j (x)

−
n∑
i=0

n∑
j=1

∑
m≥0

∑
l≥0

∑
|α|=l

c
(j)
m,l,α(xi, X

(j)
j,α)j

(∫ ∞
0

t
∂

∂t
e−λ

(k)
m tdt

)
,

=

k∑
j=1

∑
(i0,...,ij)∈Ij

∑
m≥0

∑
l≥0

∑
|α|=l

c
(j)
m,l,α

∫
V

(i0,...,ij)

j

X
(j)
l,α (x)

(
− 1

λ
(j)
m

)
dµ

(i0,...,ij)
j (x)

−
n∑
i=0

n∑
j=1

∑
m≥0

∑
l≥0

∑
|α|=l

c
(j)
m,l,α(xi, X

(j)
j,α)j

(
− 1

λ
(k)
m

)
.
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and the second moment of absorbtion time having (k + 1) allele is

E(T k+1
n+1 (p))2 =

∫ ∞
0

t2φ(t,p)dt

=

∫
V k

∫ ∞
0

t2
∂

∂t
u(x,p, t)dtdµ(x)

=
k∑
j=1

∑
(i0,...,ij)∈Ij

∑
m≥0

∑
l≥0

∑
|α|=l

c
(j)
m,l,α

∫
V

(i0,...,ij)

j

X(j)
m,α(x)

(∫ ∞
0

t2
∂

∂t
e−λ

(j)
m tdt

)
dµ

(i0,...,ij)
j (x)

−
n∑
i=0

n∑
j=1

∑
m≥0

∑
l≥0

∑
|α|=l

c
(j)
m,l,α(xi, X

(j)
j,α)j

(∫ ∞
0

t2
∂

∂t
e−λ

(k)
m tdt

)
,

=

k∑
j=1

∑
(i0,...,ij)∈Ij

∑
m≥0

∑
l≥0

∑
|α|=l

c
(j)
m,l,α

∫
V

(i0,...,ij)

j

X(j)
m,α(x)

(
− 2

(λ
(j)
m )2

)
dµ

(i0,...,ij)
j (x)

−
n∑
i=0

n∑
j=1

∑
m≥0

∑
l≥0

∑
|α|=l

c
(j)
m,l,α(xi, X

(j)
j,α)j

(
− 2

(λ
(k)
m )2

)
.

Definition 5.26. The entropy of level one of the variable Y valued in {y1, . . . , yM} is

H1(Y ) = −
M∑
i=1

(1− P(Y = yi)) log(1− P(Y = yi)).

The entropy of level k, (k ≤M) of the variable Y valued in {y1, . . . , yM} is

Hk(Y ) =
k∑
s=1

(−1)k−s
(
n− 1− s
k − s

)∑
(1− P(Y ∈ {yi1 , . . . , yis}))

log(1− P(Y ∈ {yi1 , . . . , yis}))

In 1975, Little ([52]) has been shown that the expectation of the first time to have at

most k− alleles in a population of M−alleles is

E(T kM (p)) = −2
k∑
s=1

(−1)k−s
(
M − 1− s
k − s

)∑
(1− pi1 − . . .− pis) log(1− pi1 − . . .− pis)

Then we have immediately the following theorem

Theorem 5.27.

E(T kM (p)) = 2Hk(XT 1
M (p)).

5.4.6. Probability distribution at the absorbtion time of having (k+ 1) alleles

We note that XTk+1
n+1 (p) is a random variable valued in Vk. We consider what probability

of this random variable valued in V
(i0,...,ik)
k is, i.e., the probability of the population at the
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first time to have at most (k + 1)−alleles consists of (k + 1)−alleles {Ai0 , . . . , Aik}. To

make the representation simpler, we denote by gk is a function of k−variables defined by

induction as follows

g1(p1) =p1;

g2(p1, p2) =
p1

1− p2
g1(p2) +

p2

1− p1
g1(p1);

gk+1(p1, . . . , pk+1) =
k+1∑
i=1

pi

1−
∑
j 6=i

pj
gk(p

1, . . . , pi−1, pi+1, . . . , pk+1)

Then we have the following result

Theorem 5.28.

P
(
XTk+1

n+1 (p) ∈ V
(i0,...,ik)
k

)
= gk+1(pi0 , . . . , pik).

Proof. Method 1: By applying the probability of a particular sequence of extinctions and

elementary combinatorial arguments, we have immediately the result.

Method 2: By applying the Lemma (5.25) we obtain this probability as the unique

solution of the Dirichlet problem
(L

(i0,...,ik)
k )∗v(p) = 0 in Vk

lim
p→q

v(p) = 1, q ∈ V (i0,...,ik)
k ,

lim
p→q

v(p) = 0, q ∈ ∂Vk\V
(i0,...,ik)
k \Vk−1.

5.4.7. Probability of a particular sequence of extinctions

Let QM,M−1,...,2(p1, . . . , pM ) be the probability with given initial allele frequencies

(p1, . . . , pM ), allele AM becomes extinct first, followed by allele AM−1, AM−2 and so

on, ending with fixation of allele A1. Littler [55] in 1978, found the result

QM,M−1,...,2(p) = p1 p2

1− p1
· · · pM−1

1− p1 − · · · − pM−2
,

using known two allele results and elementary combinatorial arguments. Later, in 2007,

Baxter, Blythe, and McKane proved above formula by solving the generalized Dirichlet

problem{
L∗M−1QM,M−1,...,2(p1, . . . , pM ) = 0, (p1, . . . , pM ) ∈ VM−1,

lim(p1,...,pM )→(q1,...,qM )QM,M−1,...,2(p1, . . . , pM ) = f(q1, . . . , qM ),
(5.4.2)
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where

f(q1, . . . , qM ) =

{
0, if qi = 0 for i = 1, . . .M − 1,

QM−1,...,2(q1, . . . , qM−1), if qM = 0.

Unfortunately, they did not consider the uniqueness problem, therefore their proof

is not rigorous. To prove the uniqueness, note that the boundary value is incomplete

and can not be extended continuously to all boundary, so we can not apply the maximum

principle as usual. J. Hofrichter has developed a scheme of the blow-up method to solve this

problem as follows: First, change of coordinates to decrease the discontinuity (incomplete)

of boundary values. Then, after this transformation, the problem becomes a Dirichlet

problem with incomplete boundary values but can be extended to all boundary. It means

that it will be a classical Dirichlet problem which has the uniqueness of solution. From

that we have the uniqueness of the initial solution.

Example 5.29. (See also [34], Chapter 4)

1. We consider the case of 3 alleles A1, A2, A3 and want to calculate the probability

Q3,2(p1, p2, p3) which allele A3 extinct first, then allele A2 extinct, allele A1 is fixed.

We know that Q3,2(p1, p2, p3) = u(p1, p2) satisfies



L∗2u(p1, p2) = 0, p ∈ R2,

u(0, p2) = 0, 0 ≤ p2 ≤ 1,

u(p1, 0) = 0, 0 ≤ p1 < 1

u(p1, 1− p1) = p1, 0 ≤ p1 < 1.

(5.4.3)

Note that u(p) is not defined at (1, 0) because at this point, alleles A2, A3 were

disappeared without the order of extinction. By blowing-up with the transformation

q1 = p1, q2 =
p2

1− p1
, v(q) = u(p),
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Figure 5.1 Blowup by changing of variables from the simplex R2 to the square D2

we have



1
2q

1(1− q1)2 ∂2

∂(q1)2
v(q1, q2) + 1

2q
2(1− q2) ∂2

∂(q2)2
v(q1, q2) = 0, q ∈ D2

v(0, q2) = 0, 0 ≤ q2 ≤ 1

v(q1, 0) = 0, 0 ≤ q1 < 1

v(q1, 1) = q1, 0 ≤ q1 < 1.

(5.4.4)

By the continuity of v, as q1 → 1, on the part of boundary 0 ≤ q2 ≤ 1, q1 = 1, we

have v(1, q2) satisfying


1
2q

2(1− q2) ∂2

∂(q2)2
v(1, q2) = 0, 0 < q2 < 1

v(1, 0) = 0,

v(1, 1) = 1,

(5.4.5)

Therefore v(1, q2) = q2 on this part of boundary. Now Problem 5.4.4 becomes the

classical Dirichlet problem with continuous boundary values. Its unique solution is

v(q1, q2) = q1q2 thus Q3,2(p1, p2, p3) = p1 p2

1−p1 is the unique solution of this initial

problem (5.4.3).

2. In the case of four alleles A1, A2, A3, A4, the probability Q4,3,2(p1, p2, p3, p4) which

allele A4 extinct first, then allele A3 extinct, next allele A2 extinct, last allele A1 is
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fixed. We know that Q4,3,2(p1, p2, p3, p4) = u(p1, p2, p3) satisfies

L∗3u(p1, p2, p3) = 0, p ∈ R3,

u(0, p2, p3) = 0, 0 ≤ p2 ≤ p2 + p3 ≤ 1, p2 6= 1,

u(p1, 0, p3) = 0, 0 ≤ p1 ≤ p1 + p3 ≤ 1, p1 6= 1,

u(p1, p2, 0) = 0, 0 ≤ p1 ≤ p1 + p2 ≤ 1,

u(p1, p2, 1− p1 − p2) = Q3,2(p1, p2, p3) = p1 p2

1−p1 , 0 ≤ p1 ≤ p1 + p2 < 1.

(5.4.6)

By blowing-up with the transformation

q1 = p1, q2 =
p2

1− p1
, q3 =

p3

1− p1 − p2
, v(q) = u(p),

Figure 5.2 Blowup by changing of variables from the simplex R3 to the cube D3

the transformed equation is

1

2
q1(1− q1)

∂2v

∂(q1)2
+

1

2

q2(1− q2)

1− q1

∂2v

∂(q2)2
+

1

2

q3(1− q3)

(1− q1)(1− q2)

∂2v

∂(q3)2
= 0, q ∈ D3,

(5.4.7)

with incomplete boundary values

v(q) =



0, {q ∈ ∂D3 : q1 = 0} − [B1, B2],

0, {q ∈ ∂D3 : q2 = 0} − [A1, A4],

0, {q ∈ ∂D3 : q3 = 0} − [A1, A2]− [B1, A2],

q1q2, {q ∈ ∂D3 : q3 = 1} − [A3, A4],−[A3, B2]
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By the continuity of v on D3, it follows

v(q) =



0, {q ∈ ∂D3 : q1 = 0},

0, {q ∈ ∂D3 : q2 = 0},

0, {q ∈ ∂D3 : q3 = 0},

q1q2, {q ∈ ∂D3 : q3 = 1}.

We note that, missing boundary values are

int{q1 = 1} ∪ int{q2 = 1} ∪ (A2, A3).

But due to the continuity of v, we will obtain these values as follows.

By multiplying the equation (5.4.7) with (1 − q1)(1 − q2), then taking the limit as

q1 → 1, q2 → 1, we obtain

1

2
q3(1− q3)

∂2

∂(q3)2
v(1, 1, q3) = 0,

with boundary values v(A2) = 0, v(A3) = 1. Follows that v(1, 1, q3) = q3.

Then, by multiplying the equation (5.4.7) with (1 − q1), then taking the limit as

q1 → 1, we obtain classical Dirichlet problem on the face {q1 = 1} whose solution

can be seen easily as

v(1, q2, q3) = q2q3.

Similarly, by multiplying the equation (5.4.7) with (1− q2), then taking the limit as

q2 → 1, we obtain a classical Dirichlet problem on the face {q2 = 1} whose solution

can be seen easily as

v(q1, 1, q3) = q1q3.

Therefore, we obtain all the boundary values of v. It is easy to see that this boundary

value is continuous, it follows that v = q1q2q3 is the unique solution to the equa-

tion (5.4.7) with continuous complete boundary values. Thus Q4,3,2(p1, p2, p3) =

p1 p2

1−p1
p3

1−p1−p2 is the unique solution of this initial problem (5.4.6).
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In Chapters 4 and 5, we obtained the global solutions. These solutions enabled us to

calculate and understand quantitatively as well as qualitatively some biological phenomena

of the original WF models. In this chapter, we will consider geometric structures behind

these biological phenomena to get a deeper understanding of them. Firstly, we note that

the state space is an n−dimensional smooth statistical manifold, an Einstein space, and

also a dually flat manifold with the Fisher metric. We then will see that the Fisher metric

is nothing but the standard metric on the positive part of the sphere of radius two. Next,

we consider the affine Laplacian A on this state space. We shall study the behavior of A

in various coordinates as well as on various spaces. Finally, we deal with dynamics on the

whole state space.

6.1. The geometry of the state space

6.1.1. The Fisher information metric on the state space

Consider a finite set Ω = {1, . . . , n+ 1} with σ−algebra F = 2Ω on it. By convention

x({i}) := xi and x(A) :=
∑
i∈A

xi, ∀A ∈ F ,
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it follows that the probability measure x is defined by x = (x1, . . . , xn+1) and vice versa,

moreover the state space

Ωn =

{
x = (x1, . . . , xn+1) : xi > 0 for i = 1, . . . , n+ 1, and

n+1∑
i=1

xi = 1

}
with the metric

gij(x) =
δij
xi

+
1

xn+1
, ∀i, j = 1, . . . , n

is an n−dimensional smooth statistical manifold, i.e., an n−dimensional smooth manifold

whose points are probability measures defined on (Ω,F).

Definition 6.1. The Riemannian manifold M is called a space of constant sectional cur-

vature, or a space form if

K(X ∧ Y ) :=
Rijklξ

iηjξkηl(
gikgjl − gijgkl

)
ξiηjξkηl

is a constant K for all independently linear tangent vectors X = ξi ∂
∂xi
, Y = ηi ∂

∂xi
. A

space form is called spherical, flat or hyperbolic, depending on whether K > 0,= 0 or < 0.

M is called an Einstein manifold if

Rik = cgik, where c is a constant.

We can prove the following lemma.

Lemma 6.2. 1. The sectional curvature of Ωn is constant and equal to 1
4 ;

2. Ωn is an Einstein manifold with the Ricci tensor

Rik =
n− 1

4
gik;

3. The scalar curvature of Ωn is constant and equal to R = n(n−1)
4 .

Proof. By some simple calculation we obtain

Rijkl =
1

4

(δikδjl − δijδkl
xixl

+
δik − δij
xixn+1

+
δjl − δkl
xlxn+1

)
,

gikgjl − gijgkl =
δikδjl − δijδkl

xixl
+
δik − δij
xixn+1

+
δjl − δkl
xlxn+1

,

Rik = gjlRijkl =
n− 1

4
gik,

and

R = gikRik =
n(n− 1)

4
.

This completes the proof.
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We will see that the above metric is nothing but the Fisher metric. In fact, we consider a

mixture family of probability distributions with parameter η of the form (see also Appendix

C.2.2)

qα(η) := g0
α +

I∑
i=1

giαηi =
I∑
i=1

(
giα + g0

α

)
ηi + g0

α

(
1−

I∑
i=1

ηi

)
. (6.1.1)

The important assumption here is that the quantities qα(η) are linear functions of the

expectation values ηi.

Since giα + g0
α and g0

α are probability distributions, we have∑
α

(
giα + g0

α

)
= 1,

∑
α

g0
α = 1 for i = 1, . . . , I,

or simply ∑
α

g0
α = 1,

∑
α

giα = 0 for i = 1, . . . , I, (6.1.2)

and ∑
α

qα(η) = 1, (6.1.3)

i.e., q is indeed a probability distribution, and∑
α

fαi qα(η) = ηi for i = 1, . . . , I, (6.1.4)

that is, ηi is the expectation value of fi for the probability distribution q.

We consider

ϕ(η) :=
∑
α

qα(η) log qα(η) (6.1.5)

and compute

∂2

∂ηi∂ηj
ϕ(η) =

∑
α

1

qα

∂qα(η)

∂ηi

∂qα(η)

∂ηj
=
∑
α

1

qα
giαg

j
α. (6.1.6)

Thus, ϕ is a strictly convex function. Since strict convexity is invariant under affine linear

coordinate transformations, the particular form of (6.1.1) is not important, as long as we

represent our family of probability distributions as a linear family.

We can therefore consider (6.1.6) as a metric on an affine space. That is, we put

gij(η) :=
∂2ϕ(η)

∂ηiηj
(6.1.7)

The metric is called the Fisher metric, and it will play an important role below.

Since ϕ(η) is a convex function, we can perform a Legendre transformation to obtain

ϑi(η) :=
∂ϕ(η)

∂ηi
=
∑
α

giα log qα for i = 1, . . . , I (6.1.8)
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and

ψ(ϑ) : = max
η

(
I∑
i=1

ϑiηi − ϕ(η)

)

=

I∑
i=1

∑
α

(giαηi − qα) log qα

= −
∑
α

g0
α log qα, (6.1.9)

since the maximum is realized when (6.1.8) holds.

From the properties of the Legendre transformation, we also obtain

(∂2ψ(ϑ)

∂ϑiϑj

)
i,j=1,...,I

=

((∂2ϕ(η)

∂ηiηj

)
i,j=1,...,I

)−1

=

(∑
α

1

qα
giαg

j
α

)−1

, (6.1.10)

see (6.1.6).

We then have

gij(η) =
∂2ψ(ϑ)

∂ϑiϑj
=
∂ηj
∂ϑi

, (6.1.11)

again by the properties of the Legendre transform, i.e. (6.1.11) is the inverse of the Fisher

metric.

We recall (6.1.7)

gij(η) =
∂2ϕ(η)

∂ηiηj
=
∂ϑi

∂ηj
. (6.1.12)

In fact, we have ∑
i,j

gij(η)dϑidϑj =
∑
i,j

gij(η)
∑
k,l

∂ϑi

∂ηk
∂ϑj

∂ηl
dηkdηl

=
∑
i,j

gij(η)
∑
k,l

gik(η)gjl(η)dηkdηl

=
∑
k,l

gkl(η)dηkdηl,

(6.1.13)

i.e., the inverse metric tensor gij(η) in the ϑ-coordinates is the same as the tensor gij(η)

in the η-coordinates.

When we also put ϑ0 :=
∑

α g
0
α log qα, we can invert (6.1.8) and obtain

log qα(η) =

I∑
j=0

fαj ϑ
j , (6.1.14)

i.e.,

qα(η) = exp
( I∑
j=0

fαj ϑ
j
)
. (6.1.15)
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Recalling fα0 = 1 for all α, (6.1.9) and the normalization
∑

α qα(η) = 1 yield

ψ(ϑ) = −ϑ0 = log
∑
α

exp
( I∑
i=1

fαi ϑ
i
)

(6.1.16)

so that we can rewrite (6.1.15) as

qα(η) = exp
( I∑
i=1

fαi ϑ
i − ψ(ϑ)

)
=: pα(ϑ). (6.1.17)

This is the so-called Gibbs distribution.

We now compute the expectation value ηij of the product fifj for the distribution q. We

obtain, using (6.1.4),

ηij =
∑
α

fαi f
α
j p

α(ϑ)

= exp(−ψ(ϑ))
∂

∂ϑi

∑
α

fαj exp
( I∑
k=1

fαk ϑ
k
)

= exp(−ψ(ϑ))
∂

∂ϑi

(
exp(ψ(ϑ))ηj

)
=

∂ψ(ϑ)

∂ϑi
ηj +

∂ηj
∂ϑi

= ηiηj + gij(η).

We now look at an important special case that will appear below in our discussion of

the Wright-Fisher model. We simply take the probabilities p1, . . . , pk−1 as our observables,

and the expectation value ηi of the ith observable then is the pi, so that we get the special

case qα = ηα of (6.1.1) and can apply our result that the covariance is the inverse of the

Fisher metric.

From (6.1.1), we then have

qα(η) = ηα for α = 1, . . . , k − 1 (6.1.18)

qk = ηk = 1−
k−1∑
β=1

ηβ, (6.1.19)

that is,

giα = δiα, gik = −1 g0
α = 0 for α = 1, . . . , k − 1, g0

k = 1 (6.1.20)

and from (6.1.8), (6.1.9)

ϑi = log
ηi
ηk

for i = 1, . . . , k − 1, ψ(ϑ) = − log pk. (6.1.21)
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6.1.2. The Fisher metric as the standard metric on the sphere

For simplicity, we show the computations for the special case where ηα = pα, as

considered at the end of the previous section. Then, recalling (6.1.20), the metric tensor

(6.1.6) in the coordinates p1, . . . , pk becomes
1
p1

0 . . . 0

0 1
p2

. . . 0
...

...
. . .

...
0 0 . . . 1

pk

 . (6.1.22)

However, this is not yet the expression for a Riemannian metric because we have k coordi-

nates p1, . . . , pk on a (k−1)-dimensional space. This can easily be corrected by expressing

pk = 1−
k−1∑
j=1

pj . (6.1.23)

Therefore we can consider the Fisher metric as a metric on the (k−1)-dimensional simplex

Σk−1 = {(p1, . . . pk) : pi ≥ 0,
∑

pi = 1}. (6.1.24)

We know that the transformation behavior of a Riemannian metric,

gij(x) =
∑
α,β

γαβ(y)
∂yα

∂xi
∂yβ

∂xj
, (6.1.25)

where x and y = y(x) are two different coordinates.

Applying for our case with x = (p1, . . . , pk−1), y = (p1, . . . , pk), we obtain

∂pk
∂pj

= −1 for j = 1, . . . , k − 1, (6.1.26)

and the metric tensor gij(p) in the coordinates p1, . . . pk−1 as
1
p1

+ 1
pk

1
pk

. . . 1
pk

1
pk

1
p2

+ 1
pk

. . . 1
pk

...
...

. . .
...

1
pk

1
pk

. . . 1
pk−1

+ 1
pk

 , (6.1.27)

with pk given by (6.1.23). The inverse metric tensor gij(p) then becomes
p1(1− p1) −p1p2 . . . −p1pk−1

−p1p2 p2(1− p2) . . . −p2pk−1
...

...
. . .

...
−p1pk−1 −p2pk−1 . . . pk−1(1− pk−1)

 . (6.1.28)

We can also rewrite the metric in spherical coordinates, by simply putting

qi :=
√
pi. (6.1.29)
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Applying the transformation rule (6.1.25) with ∂pα
∂qj

= 2δjαqj , we obtain gij = 4δij in the

q-coordinates, which is, simply the Euclidean metric. However, as before, we need to

satisfy the normalization constraint (6.1.23) which now becomes qk =
√

1−
∑k−1

j=1(qj)2.

Using ∂qk
∂qj

= − qj
qk

for j = 1, . . . , k − 1, we obtain

(
gij(q)

)
ij

=
4

q2
k


q2
k + q2

1 q1q2 . . . q1qk−1

q1q2 q2
k + q2

2 . . . q2qk−1
...

...
. . .

...
q1qk−1 q2qk−1 . . . q2

k + q2
k−1

 . (6.1.30)

Since this has been obtained by restricting the Euclidean metric to the unit sphere, it

must be the standard metric on the unit sphere Sk−1, up to the factor 4 that emerged in

our computations. Since the standard metric on the sphere has sectional curvature ≡ 1,

and since the curvature of a Riemannian metric scales with the inverse of a scaling factor,

our factor 4 leads to the following lemma.

Lemma 6.3. The Fisher metric on the standard simplex Σk−1 is four times the standard

metric on the unit sphere Sk−1, and its sectional curvature is equal to 1
4 .

6.2. The affine Laplacian on the state space

Given an affine structure with coordinates ηi, i = 1, . . . , k as above and a metric gij ,

we formulate

Definition 6.4. The operator given by

A :=
∑
i,j

gij
∂2

∂ηi∂ηj
(6.2.1)

is called the affine Laplacian.

A solution of

Af = 0 (6.2.2)

is called an affine harmonic function.

Lemma 6.5. For the function

ϕ(η) =
∑
α

qα(η) log qα(η) (6.2.3)

of (6.1.5), we have

Aϕ = k ≡ const. (6.2.4)

The proof is obvious from the definition (6.1.7) of the Fisher metric.

This result will play an useful role below when we want to understand exit times of genetic

drift.
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6.2.1. The affine Laplacian in dual coordinates

We can transform the affine Laplacian from the coordinates ηi to the dual coordinates

ϑi. Even though those dual coordinates also define an affine structure that is dual to

the original one, this transformation is not affine itself, simply because the two affine

structures are different. Therefore, in the ϑ-coordinates, A will acquire an additional first

order term. We have

∂2

∂ηi∂ηj
=
∑
`,m

∂ϑ`

∂ηi

∂ϑm

∂ηj

∂2

∂ϑ`∂ϑm
+
∑
`

∂2ϑ`

∂ηi∂ηj

∂

∂ϑ`
. (6.2.5)

Here and in the sequel, all sums range from 1 to k − 1.

We recall (6.1.11), i.e.,

gij(η) =
∂2ϕ(η)

∂ηiηj
=
∂ϑi

∂ηj
(6.2.6)

and therefore obtain

A =
∑
i,j

gij(η)
∂2

∂ηi∂ηj
=
∑
`,m

g`m
∂2

∂ϑ`∂ϑm
+
∑
i,j,`

gij(η)
∂3ϕ(η)

∂ηi∂ηj∂η`

∂

∂ϑ`
. (6.2.7)

Since gij(η) = ηi(δij − ηj) and ∂3ϕ(η)
∂ηi∂ηj∂η`

= − 1
(ηi)2

δijδil + 1
(ηk)2

by (6.1.6), we obtain

A =
∑
`,m

(δ`m
η`

+
1

ηk

) ∂2

∂ϑ`∂ϑm
+
∑
`

(
− 1

η`
+

1

ηk
+ k − 2

) ∂

∂ϑ`
.

=
∑
`,m

( δ`m
e(ϑ`)

+ 1
)(

1−
∑
i

eϑ
i
) ∂2

∂ϑ`∂ϑm
+
∑
`

(
−

1−
∑

i e
ϑi

eϑ`
+ k − 1−

∑
i

eϑ
i
) ∂

∂ϑ`
.

(6.2.8)

Here, ϑi ranges between −∞ and log
(

1
ηk

)
. Thus, we have transformed the singularity at

the boundary, where some ηi become 0, to −∞.

6.2.2. The affine and the Beltrami Laplacian on the sphere

Under the coordinate transformations from pi on the simplex to the coordinates qi =√
pi on the sphere, the affine Laplacian becomes

∂2

∂pi∂pj
=
∑
`,m

∂q`

∂pi
∂qm

∂pj
∂2

∂q`∂qm
+
∑
`

∂2q`

∂pi∂pj
∂

∂q`
. (6.2.9)

Then on the sphere, the affine Laplacian is given by the form

A = ḡ`m(q)
∂2

∂q`∂qm
+

1− (q`)2

4q`
∂

∂q`
,

where ḡ`m(q) = 1
4

(
δ`m − q`qm

)
is the inverse metric tensor on the sphere.
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We know that on the simplex the difference of the affine Laplacian from Beltrami

Laplacian is twice of the Christoffel force, when we change the coordinates to the sphere,

it adds some additional first order terms. To detail on this, let us consider the Beltrami

Laplacian on the sphere

∆ḡ(q) = ḡ`m(q)
∂2

∂q`∂qm
+

(1− n)q`

4

∂

∂q`
.

6.2.3. Eigenvalues and eigenfunctions of A and A∗ and orthogonality relations

In this subsection, we will summarize some properties of the operator A defined from

K = C∞0 (Ω) into itself and its dual A∗ defined from C∞(Ω) into itself. First, we recall

w(x1, . . . , xn) = x1x2 . . . xn(1− x1 − . . .− xn)

the weight function, we have the following propositions

Proposition 6.6. The spectra of A and A∗ are the same, and are given by

Spec(A) = Spec(A∗) =
⋃
m≥0

{
λm =

(m+ n)(m+ n+ 1)

2

}
= Λn.

Proposition 6.7. The eigenvectors of A corresponding to the eigenvalue λm are

w(x1, . . . , xn)Em1,...,mn(2n+ 1, 2, . . . , 2;x1, . . . , xn).

It follows that the eigenspace corresponding to the eigenvalue λm is of dimension
(
n+m−1
n−1

)
.

Proposition 6.8. The eigenvectors of A∗ corresponding to the eigenvalue λm are

Fm1,...,mn(2n+ 1, 2, . . . , 2;x1, . . . , xn).

It follows the eigenspace corresponding to the eigenvalue λm is of dimension
(
n+m−1
n−1

)
.

Proposition 6.9. The eigenvetors of A and A∗ form a biorthogonal system with the weight

function w, i.e.∫
Ω

Fm1,...,mn(2n+ 1, 2, . . . , 2;x1, . . . , xn)

× w(x1, . . . , xn)Em1,...,mn(2n+ 1, 2, . . . , 2;x1, . . . , xn)dx1 . . . dxn

=Km1,...,mnδm1,m′1
. . . δmn,m′n .

where

Km1,...mn =
1

(m1 + 1) . . . (mn + 1)(m1 + . . .+mn + 2)2n−1(2m1 + . . .+ 2mn + 2n+ 1)
.
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6.3. Dynamics on the whole state space

In Chapter 3, we learned that the diffusion equation approximation to the general WF

models is given in backward form by the equation

∂u

∂t
=

1

2
gij(p)

∂2u

∂pi∂pj
.

where (gij(p)) is the covariance matrix of the multinomial distribution. In the point of

view of Principle of Optimal Randomness (see for example [5]) we will represent this as

follows
∂u

∂t
=

1

2
∆gu+ chi(p)

∂u

∂pi
,

where chk(p) = 1
2g
ij(p)Γkij(p) is the Christoffel force and ∆g is the Laplace-Beltrami

operator with respect to the metric gij . The Christoffel forces can be obtained easily by

the following lemma

Lemma 6.10. The Christoffel forces (velocities) of the BKE of the general WF model are

chk(p) = −1

4
(1− npk).

Proof. The covariance matrix of the multinomial distribution is given by gij(p) = pi(δij −

pj) and its inverse is given by the Fisher metric gij(p) =
δij
pi

+ 1
pn . Then the Christoffel

symbols are

Γij,k(p) =
1

2
(gik,j(p) + gjk,i(p)− gij,k(p)) = −1

2

(
δijk
(pi)2

+
1

(pn)2

)
,

Γkij(p) = gkl(p)Γij,l(p) =
1

2

(
−
δijk
pk

+
δijp

k

pi
+
pk

pn

)
.

Therefore the Christoffel force are

chk(p) =
1

2
gij(p)Γkij(p) = −1

4
(1− npk).

Here, we give some immediate interpretations (see [5]) of the above results

(i) The Christoffel velocities vanish at the centroid of the frequency space, so that

near the centroid, the diffusion equation for the general WF model is very well

approximated by that of spherical Brownian motion.

(ii) The Christoffel velocities drive the populations toward the vertices of the frequency

space. These forces should not be confused with the biologically real forces of mu-

tation or selection.
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(iii) The diffusion equation for n-allele random drift is invariant under the group of

isometries of frequency space. This can be shown to be isomorphic to the group

of permutations S, of the n allelic frequencies among themselves. The diffusion

equation for random drift is optimally random relative to this permutation group

but is not relative to the full group of isometries of an (n− 1)-sphere.

(iv) Since it is a property of Brownian motion on an (n− 1)-sphere that equal distances

have equal mean transit times, this is definitely not true for the diffusion equation

of the general WF model. Therefore, the exact (rather than relative) positions of

populations are necessary in order to compute mean transit times precisely.





Appendix A

Introduction to hypergeometric

functions

In this appendix, we briefly introduce hypergeometric functions used in Chapter 4.

These functions are most useful tools for solving singular linear second order ODEs. We

refer readers to [1],[72],[73] for further details.

A.1. Gegenbauer polynomials

Definition A.1. Gegenbauer polynomials or ultraspherical polynomials (named for

Leopold Gegenbauer) Cαn (x) are defined in terms of their generating function ([72, § IV.2]):

1

(1− 2xt+ t2)α
=
∑
n≥0

Cαn (x)tn.

They generalize the Legendre polynomials and the Chebyshev polynomials, and are special

cases of the Jacobi polynomials.

Proposition A.2. [73]

• The Gegenbauer polynomials satisfy the recurrence relation

Cα0 (x) = 1 (A.1.1)

Cα1 (x) = 2αx (A.1.2)

Cαn (x) =
1

n
[2x(n+ α− 1)Cαn−1(x)− (n+ 2α− 2)Cαn−2(x)]. (A.1.3)

• The Gegenbauer polynomials are particular solutions of the Gegenbauer differential

equation

(1− x2)y′′ − (2α+ 1)xy′ + n(n+ 2α)y = 0. (A.1.4)

• The Gegenbauer polynomials are special cases of the Jacobi polynomials

C(α)
n (x) =

(2α)n

(α+ 1
2)n

P (α−1/2,α−1/2)
n (x).
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Proposition A.3. [1, p. 774] For a fixed α, the Gegenbauer polynomials are orthogonal

polynomials on the interval [−1, 1] with respect to the weight function (1− x2)α−
1
2 :∫ 1

−1
(1− x2)α−

1
2

[
C(α)
n (x)

] [
C(α)
m (x)

]
dx = δnm

π21−2αΓ(n+ 2α)

n!(n+ α)[Γ(α)]2
. (A.1.5)

A.2. Jacobi polynomials

Definition A.4.

P (α,β)
n (z) =

Γ(α+ n+ 1)

n! Γ(α+ β + n+ 1)

n∑
m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
z − 1

2

)m
,

Proposition A.5. • The Jacobi polynomials show the symmetry relation

P (α,β)
n (−z) = (−1)nP (β,α)

n (z);

• The kth derivative of the explicit expression leads to

dk

dzk
P (α,β)
n (z) =

Γ(α+ β + n+ 1 + k)

2kΓ(α+ β + n+ 1)
P

(α+k,β+k)
n−k (z);

• The Jacobi polynomial P
(α,β)
n is a solution of the second order linear homogeneous

differential equation

(1− x2)y′′ + (β − α− (α+ β + 2)x)y′ + n(n+ α+ β + 1)y = 0; (A.2.1)

• The Jacobi polynomials are special cases of the hypergeometric polynomials

P (α,β)
n (z) =

(α+ 1)n
n!

2F1

(
−n, 1 + α+ β + n;α+ 1;

1− z
2

)
.

Proposition A.6. For fixed α > −1 and β > −1, the Jacobi polynomials are orthogonal

polynomials on the interval [−1, 1] with respect to the weight function (1− x)α(1 + x)β:∫ 1

−1
(1−x)α(1 +x)βP (α,β)

m (x)P (α,β)
n (x) dx =

2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
δnm

A.3. Hypergeometric functions

Definition A.7. The Gaussian or ordinary hypergeometric function 2F1(a, b; c; z) is a

special function represented by the hypergeometric series,

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(A.3.1)
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provided c is not 0,−1,−2, . . . , where the Pochhammer symbol is given by

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
, (a)0 = 1. (A.3.2)

For complex values of z it can be analytically continued along any path that avoids the

branch points 0 and 1.

Proposition A.8. The hypergeometric function is a solution of the Euler’s hypergeometric

differential equation

z(1− z)d
2w

dz2
+ [c− (a+ b+ 1)z]

dw

dz
− abw = 0. (A.3.3)

which has three regular singular points: 0, 1 and ∞. The generalization of this equation

to three arbitrary regular singular points is given by Riemann’s differential equation. Any

second order differential equation with three regular singular points can be converted to the

hypergeometric differential equation by a change of variables.

Proposition A.9. • The Jacobi polynomials P
(α,β)
n and their special cases the Leg-

endre polynomials, the Chebyshev polynomials, the Gegenbauer polynomials can be

written in terms of hypergeometric functions using the following

2F1(−n, α+ 1 + β + n;α+ 1;x) =
n!

(α+ 1)n
P (α,β)
n (1− 2x)

• The Gegenbauer polynomials are given as Gaussian hypergeometric series where the

series is finite

C(α)
n (z) =

(2α)n
n!

2F1

(
−n, 2α+ n;α+

1

2
;
1− z

2

)
.
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Appendix B

Introduction to generalized

hypergeometric functions

In this appendix, we give an overview of generalized hypergeometric functions used in

Chapter 5. These functions are very useful tools for solving singular linear second order

equations of multivariables. We refer readers to [11], [12], [13], [15], [26], [54] for further

details.

B.1. Appell′s generalized hypergeometric functions

Definition B.1. In 1880, Appell [11, 12] introduced the concept of a generalized hyper-

geometric function

2F2(a, b, b′; c, c′;x, y) =
∞∑
j=0

∞∑
k=0

(a)j+k
(b)j(b

′)k
(c)j(c′)k

xjyk

j!k!

Proposition B.2. (i) 2F2(a, b, b′; c, c′;x, y) is a solution to the equation

x(1− x)zxx − xyzxy + (c− (a+ b+ 1)x)zx − byzy − abz = 0;

(ii) 2F2(a, b, b′; c, c′;x, y) is a solution to the equation

y(1− y)zyy − xyzxy + (c′ − (a+ b′ + 1)x)zy − b′xzx − ab′z = 0;

(iii) 2F2(a, b, b′; c, c′;x, y) is a solution to the equation

x(1− x)zxx−2xyzxy + y(1− y)zyy + (c− (a+ b+ b′ + 1)x)zx

+ (c′ − (a+ b+ b′ + 1)y)zy − a(b+ b′)z = 0.

Proof. Firstly, note that we need only to prove the first assertion, the second follows

immediately by interchanging x and y, b and b′, c and c′ respectively, the last assertion

can be obtained when we add the first two assertions.
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We use the method of equality of coefficients to prove the first assertion as follows. We

denote by [v][j, k] the coefficient of xjyk in the Taylor’s expansion at (0, 0) of v. Then for

v =

∞∑
j=0

∞∑
k=0

(a)j+k
(b)j(b

′)k
(c)j(c′)k

xjyk

j!k!
,

we have

• [v][j, k] =
(a)j+k(b)j(b

′)k
(c)j(c′)kj!k! ;

• [vx][j, k] =
(a)j+k+1(b)j+1(b′)k

(c)j+1(c′)kj!k! ;

• [vy][j, k] =
(a)j+k+1(b)j(b

′)k+1

(c)j+1(c′)k+1j!k! ;

• [vxx][j, k] =
(a)j+k+2(b)j+2(b′)k

(c)j+2(c′)kj!k! ;

• [vxy][j, k] =
(a)j+k+2(b)j+1(b′)k+1

(c)j+1(c′)k+1j!k! ;

• [xvx][j, k] =
(a)j+k(b)j(b

′)k
(c)j(c′)k(j−1)!k! ;

• [yvy][j, k] =
(a)j+k(b)j(b

′)k
(c)j(c′)kj!(k−1)! ;

• [xvxx][j, k] =
(a)j+k+1(b)j+1(b′)k
(c)j+1(c′)k(j−1)!k! ;

• [x2vxx][j, k] =
(a)j+k(b)j(b

′)k
(c)j(c′)k(j−2)!k! ;

Therefore,

[x(1− x)vxx − xyvxy + (c− (a+ b+ 1)x)vx − byvy − abv][j, k]

= [xvxx][j, k]− [xvxx][j, k]− [xyvxy][j, k]

+ c[vx][j, k]− (a+ b+ 1)[xvx][j, k]− b[yvy][j, k]− ab[v][j, k]

=
(a)j+k(b)j(b

′)k
(c)j(c′)kj!k!

{
(a+ j + k)(b+ j)

c+ j
j − j(j − 1)− jk

+ c
(a+ j + k)(b+ j)

c+ j
− (a+ b+ 1)j − bk − ab

}
= 0.

(B.1.1)

This holds for all j, k ≥ 0, thus

x(1− x)vxx − xyvxy + (c− (a+ b+ 1)x)vx − byvy − abv = 0;

i.e. v is the solution of the first equation. This completes the proof.
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B.2. Lauricella′s generalized hypergeometric functions

Definition B.3.

2Fn(a, b1, . . . , bn;c1, . . . cn;x1, . . . , xn)

=

∞∑
m1,...,mn=0

(a)m1+...+mn(b1)m1 . . . (bn)mn
(c1)m1 . . . (cn)mn

(x1)m1

m1!
· · · (x

n)mn

mn!

Proposition B.4. (i) 2Fn(a, b1, . . . , bn; c1, . . . cn;x1, . . . , xn) is a solution to the equa-

tion

Aiz =

n∑
j=1

xi(δij − xj)zxixj +
(
ci − (a+ 1)xi

)
zxi − bi

n∑
j=1

xjzxj − abiz = 0; ∀i = 1, n

(ii) 2Fn(a, b1, . . . , bn; c1, . . . cn;x1, . . . , xn) is a solution to the equation

n∑
i,j=1

xi(δij − xj)zxixj +
n∑
i=1

(
ci− (a+ b1 + · · ·+ bn + 1)xi

)
zxi − a(b1 + . . .+ bn)z = 0.

Proof. It is easy to see that the second assertion follows by adding the equalities in the

first assertion for varying i. So we need only show the first assertion.

Similar to the case of two variables, for any given (m1, . . . ,mn), we denote by [v] =

[v][m1, . . . ,mn] the coefficient of (x1)m1 . . . (xn)mn in the Taylor’s expansion at (0, . . . , 0︸ ︷︷ ︸
n

).

Then we have

• [v] =
(a)m1+...mn (b1)m1 ...(bn)mn

(c1)m1 ...(cn)mnm1!...mn! ;

• [vxi ] =
(a)m1+...mn+1(b1)m1 ...(bi)mi+1...(bn)mn

(c1)m1 ...(ci)mi+1...(cn)mnm1!...(mi−1)!...mn! ;

• [vxixj ] =
(a)m1+...mn+2(b1)m1 ...(bi)mi+1...(bj)mj+1...(bn)mn

(c1)m1 ...(ci)mi+1...(cj)mj+1...(cn)mnm1!...(mi−1)!...(mj−1)!...mn! ; for i 6= j

• [vxixi ] =
(a)m1+...mn+2(b1)m1 ...(bi)mi+2...(bn)mn

(c1)m1 ...(ci)mi+1...(cn)mnm1!...(mi−2)!...mn! ;

• [xivxixi ] =
(a)m1,...,mn+1(b1)m1 ...(bi)mi+1...(bn)mn

(c1)m1 ...(ci)mi+1...(cn)mnm1!...(mi−1)!...mn! ;

• [(xi)2vxixi ] =
(a)m1,...,mn (b1)m1 ...(bn)mn

(c1)m1 ...(cn)mnm1!...(mi−2)!...mn! ;

• [xixjvxixj ] =
(a)m1,...,mn (b1)m1 ...(bn)mn

(c1)m1 ...(cn)mnm1!...(mi−1)!...(mj−1)!...mn! ; for i 6= j

• [xivxi ] =
(a)m1,...,mn+1(b1)m1 ...(bi)mi+1...(bn)mn

(c1)m1 ...(ci)mi+1...(cn)mnm1!...mn! ;
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Therefore

[Aiv] = [xivxixi ]− [(xi)2vxixi ]−
∑
j 6=i

[xixjvxixj ] + ci[vxi ]

− (a+ 1)[xivxi ]− bi
n∑
j=1

[xjvxj ]− abi[v]

= K

{
(a+m1, . . . ,mn)(bi +mi)

ci +mi
mi −mi(mi − 1)−

∑
j 6=i

mimj

+ ci
(a+m1, . . . ,mn)(bi +mi)

ci +mi
− (a+ 1)mi − bi

n∑
j=1

mj − abi

}

= 0

This holds for all (m1, . . . ,mn) so

Aiv = 0,

i.e. v is the solution of the first equation. This completes the proof.

B.3. Biorthogonal systems

In 1881, Appell [13] introduced the polynomials

Fm,n(α, γ, γ′;x, y) =
[w(x, y)]−1

(γ)m(γ′)n

∂m+n

∂xm∂yn

(
w(x, y)xmyn(1− x− y)m+n

)
in connection with analysis of polynomials orthogonal with respect to the weight function

w(x, y) = xγ−1yγ
′−1(1− x− y)α−γ−γ

′

in the triangle T = V2.

In 1882, he also proved that in the special case α = γ + γ′, two families of functions

Fm,n(γ, γ′;x, y) =
[t(x, y)]−1

(γ)m(γ′)n

∂m+n

∂xm∂yn

(
t(x, y)xmyn(1− x− y)m+n

)
and

Em,n(γ, γ′;x, y) = 2F2(γ + γ′ +m+ n,−m,−n; γ, γ′;x, y)

form a biorthogonal system with the weight function

t(x, y) = xγ−1yγ
′−1,

i.e. ∫∫
T

t(x, y)Fm,n(γ, γ′;x, y)Ek,l(γ, γ
′;x, y)dxdy

=
δmkδnlΓ(γ)Γ(γ′)m!n!(m+ n)!

(γ + γ′ + 2m+ 2n)Γ(γ + γ′ +m+ n)(γ)m(γ′)n
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Definition B.5. In n dimensions, we call

w(x1, . . . , xn) = (x1)γ1−1 . . . (xn)γn−1(1− x1 − . . .− xn)α−γ1−...−γn

the weight function on Vn and

Em1,...,mn(α, γ1, . . . , γn;x1, . . . , xn)

= 2Fn(α+m1 + . . .+mn,−m1, . . . ,−mn; γ1, . . . γn;x1, . . . , xn)

and

Fm1,...,mn(α, γ1, . . . , γn;x1, . . . , xn) =
[w(x1, . . . , xn)]−1

(γ1)m1 . . . (γn)mn

{
∂m1+...+mn

∂(x1)m1 . . . ∂(xn)mn(
w(x1, . . . , xn)(x1)m1 . . . (xn)mn(1− x1 − . . .− xn)m1+...+mn

)}

corresponding biorthogonal systems.

We have some properties of two families of hypergeometric functions as follows

Proposition B.6. Each

Fm1,...,mn(α, γ1, . . . , γn;x1, . . . , xn)

and

Em1,...,mn(α, γ1, . . . , γn;x1, . . . , xn)

is a solution of the equation

n∑
i,j=1

xi(δij−xj)zxixj +

n∑
i=1

(
γi− (α+1)xi

)
zxi +

(
m1 + . . .+mn

)(
α+m1 + . . .+mn

)
z = 0.

Proof. From Proposition B.4, it is easy to see that

Em1,...,mn(α, γ1, . . . , γn;x1, . . . , xn)

is the solution to the equation

n∑
i,j=1

xi(δij−xj)zxixj +

n∑
i=1

(
γi− (α+1)xi

)
zxi +

(
m1 + . . .+mn

)(
α+m1 + . . .+mn

)
z = 0.

To prove the other assertion we proceed as follows. First, note that, due to the Taylor’s

expansion at (0, . . . , 0)︸ ︷︷ ︸
n

we have

(1− x1 − . . .− xn)a =

∞∑
i1,...,in=0

(−a)i1+...+in

(x1)i1 . . . (xn)in

i1! . . . in!
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Therefore

Fm1,...,mn(α, γ1, . . . , γn;x1, . . . , xn)

=
[w(x1, . . . , xn)]−1

(γ1)m1 . . . (γn)mn

{
∂m1+...+mn

∂(x1)m1 . . . ∂(xn)mn(
w(x1, . . . , xn)(x1)m1 . . . (xn)mn(1− x1 − . . .− xn)m1+...+mn

)}

=
[w(x1, . . . , xn)]−1

(γ1)m1 . . . (γn)mn

{
∂m1+...+mn

∂(x1)m1 . . . ∂(xn)mn(
(x1)m1+γ1−1 . . . (xn)mn+γn−1(1− x1 − . . .− xn)m1+...+mn+α−γ1−...−γn

)}

=
[w(x1, . . . , xn)]−1

(γ1)m1 . . . (γn)mn

{
∂m1+...+mn

∂(x1)m1 . . . ∂(xn)mn( ∞∑
i1,...,in=0

(γ1 + . . .+ γn −m1 − . . .−mn − α)i1+...+in

× (x1)m1+γ1−1+i1 . . . (xn)mn+γn−1+in

i1! . . . in!

)}

=
[w(x1, . . . , xn)]−1

(γ1)m1 . . . (γn)mn

( ∞∑
i1,...,in=0

(γ1 + . . .+ γn −m1 − . . .−mn − α)i1+...+in

× (γ1 + i1)m1 . . . (γn + in)mn
(x1)γ1−1+i1 . . . (xn)γn−1+in

i1! . . . in!

)

=

∞∑
i1,...,in=0

(γ1 + . . .+ γn −m1 − . . .−mn − α)i1+...+in

× (γ1 + i1)m1 . . . (γn + in)mn
(γ1)m1 . . . (γn)mn

(x1)i1 . . . (xn)in

i1! . . . in!
(1− x1 − . . .− xn)γ1+...+γn−α

=

∞∑
i1,...,in=0

(γ1 + . . .+ γn −m1 − . . .−mn − α)i1+...+in

× (γ1 +m1)i1 . . . (γn +mn)in
(γ1)i1 . . . (γn)in

(x1)i1 . . . (xn)in

i1! . . . in!
(1− x1 − . . .− xn)γ1+...+γn−α

= (1− x1 − . . .− xn)γ1+...+γn−α
2Fn

(
γ1 + . . .+ γn −m1 − . . .−mn − α,

γ1 +m1, . . . , γn +mn; γ1, . . . γn;x1, . . . , xn
)
.

To simplify the notations, we denote by

f(x) = Fm1,...,mn(α, γ1, . . . , γn;x1, . . . , xn),

g(x) = 2Fn(γ1 + . . .+ γn−m1− . . .−mn−α, γ1 +m1, . . . , γn +mn; γ1, . . . γn;x1, . . . , xn),
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and

φ(x) = (1− x1 − . . .− xn)γ1+...+γn−α.

Then we have

f(x) = φ(x)g(x).

It follows

n∑
i,j=1

xi(δij − xj)fxixj +
n∑
i=1

(
γi − (α+ 1)xi

)
fxi +

(
m1 + . . .+mn

)(
α+m1 + . . .+mn

)
f

=

n∑
i,j=1

xi(δij − xj)
(
φgxixj + φxigxj + φxjgxi + φxixjg

)
+

n∑
i=1

(
γi − (α+ 1)xi

)(
φgxi + φxig

)
+
(
m1 + . . .+mn

)(
α+m1 + . . .+mn

)
(φg)

=
n∑

i,j=1

xi(δij − xj)φgxixj +
n∑
i=1

(
(γi − (α+ 1)xi)φ+ 2

n∑
j=1

xi(δij − xj)φxj
)
gxi

+

(
n∑

i,j=1

xi(δij − xj)φxixj +
n∑
i=1

((
γi − (α+ 1)xi

)
φxi

+
(
m1 + . . .+mn

)(
α+m1 + . . .+mn

)
φ

)
g

= φ

(
n∑

i,j=1

xi(δij − xj)gxixj +

n∑
i=1

(
γi −

(
2γ1 + . . .+ 2γn − α+ 1

)
xi
)
gxi

−
(
γ1 + . . .+ γn −m1 − . . .−mn − α

)(
γ1 + . . .+ γn +m1 + . . .+mn

)
g

)
= 0 by Proposition B.4

This completes the proof.

Proposition B.7. The generalized hypergeometric function

Em′1,...,m′n(α, γ1, . . . , γn;x1, . . . , xn)

is a mono polynomial of degree m′1 + . . .+m′n of the form

(−1)m
′
1+...+m′n

(α+m′1 + . . .+m′n)m′1+...+m′n

(γ1)m′1 . . . (γn)m′n
(x1)m

′
1 . . . (xn)m

′
n

+

{
polynomial of degree < m′1 + . . .+m′n

}
.
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Proof. In fact, from the definition of E we have

Em′1,...,m′n(α, γ1, . . . , γn;x1, . . . , xn)

= 2Fn(α+m′1 + . . .+m′n,−m′1, . . . ,−m′n; γ1, . . . γn;x1, . . . , xn)

=

∞∑
i1,...,in=0

(α+m′1 + . . .+m′n)i1+...+in

(−m′1)i1 . . . (−m′n)in
(γ1)i1 . . . (γn)ini1! . . . in!

(x1)i1 . . . (xn)in

=

m′1∑
i1=0

. . .

m′n∑
in=0

(α+m′1 + . . .+m′n)i1+...+in

(−m′1)i1 . . . (−m′n)in
(γ1)i1 . . . (γn)ini1! . . . in!

(x1)i1 . . . (xn)in .

(
because if ik > m′k then (−m′k)ik = 0

)
= (α+m′1 + . . .+m′n)m′1+...+m′n

(−m′1)m′1 . . . (−m
′
n)m′n

(γ1)m′1 . . . (γn)m′nm
′
1! . . .m′n!

(x1)m
′
1 . . . (xn)m

′
n

+

{
polynomial of degree < m′1 + . . .+m′n

}

= (−1)m
′
1+...+m′n

(α+m′1 + . . .+m′n)m′1+...+m′n

(γ1)m′1 . . . (γn)m′n
(x1)m

′
1 . . . (xn)m

′
n

+

{
polynomial of degree < m′1 + . . .+m′n

}
.

This completes the proof.

Lemma B.8. With a1, . . . , an+1 given positive numbers, we have

∫
Vn

(x1)a1−1 . . . (xn)an−1(1− x1 − . . .− xn)an+1−1dx =
Γ(a1) . . .Γ(an+1)

Γ(a1 + . . .+ an+1)
.

Proof. It is obvious to see that when a, b > 0

r∫
0

xa−1(r − x)b−1dx =

1∫
0

(ry)a−1[r(1− y)]b−1rdy = ra+b−1 Γ(a)Γ(b)

Γ(a+ b)
.
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So we have∫
Vn

(x1)a1−1 . . . (xn)an−1(1− x1 − . . .− xn)an+1−1dx

=

1∫
0

(x1)a1−1

{ 1−x1∫
0

(x2)a2−1

. . .

( 1−x1−...−xn−1∫
0

(
xn
)an−1(

1− x1 − . . .− xn−1 − xn
)an+1−1

dxn

)
. . . dx2

}
dx1

=

1∫
0

(x1)a1−1

{ 1−x1∫
0

(x2)a2−1

. . .

((
1− x1 − . . .− xn−1

)an+an+1−1 Γ(an)Γ(an+1)

Γ(an + an+1)

)
. . . dx2

}
dx1

= · · ·

=

1∫
0

(x1)a1−1

{ 1−x1∫
0

(x2)a2−1(1− x1 − x2)a3+...+an+1−1 Γ(a3) . . .Γ(an+1)

Γ(a3 + . . .+ an+1)
dx2

}
dx1

=

1∫
0

(x1)a1−1(1− x1)a2+...+an+1−1 Γ(a2)Γ(a3 + . . .+ an+1)

Γ(a2 + . . .+ an+1)

Γ(a3) . . .Γ(an+1)

Γ(a3 + . . .+ an+1)
dx1

=

1∫
0

(x1)a1−1(1− x1)a2+...+an+1−1 Γ(a2) . . .Γ(an+1)

Γ(a2 + . . .+ an+1)
dx1

=
Γ(a1)Γ(a2 + . . .+ an+1)

Γ(a1 + . . .+ an+1)

Γ(a2) . . .Γ(an+1)

Γ(a2 + . . .+ an+1)

=
Γ(a1) . . .Γ(an+1)

Γ(a1 + . . .+ an+1)
.

This completes the proof.

Proposition B.9. The system of

Fm1,...,mn(α, γ1, . . . , γn;x1, . . . xn)

and

Em1,...,mn(α, γ1, . . . , γn;x1, . . . xn)

is a biorthogonal system with the weight function w, i.e.∫
Vn

w(x1, . . . , xn)Fm1,...,mnEm′1,...,m′ndx
1 . . . dxn = Km1,...,mnδm1,m′1

. . . δmn,m′n .
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where

Km1,...mn =
(α+m1 + . . .+mn)m1+...+mnm1! . . .mn!

[(γ1)m1 ]2 . . . [(γn)mn ]2

× Γ(m1 + γ1) . . .Γ(mn + γn)Γ(m1 + . . .+mn + α− γ1 − . . .− γn + 1)

Γ(2m1 + . . .+ 2mn + α+ 1)
.

Proof. From Proposition B.6 we have

n∑
i,j=1

xi(δij−xj)uxixj +
n∑
i=1

(
γi−(α+1)xi

)
uxi +

(
m1 + . . .+mn

)(
α+m1 + . . .+mn

)
u = 0.

(B.3.1)

where

u = Fm1,...,mn(α, γ1, . . . , γn;x1, . . . , xn)

and

n∑
i,j=1

xi(δij−xj)vxixj +
n∑
i=1

(
γi−(α+1)xi

)
vxi +

(
m′1 + . . .+m′n

)(
α+m′1 + . . .+m′n

)
v = 0.

(B.3.2)

where

v = Em′1,...,m′n(α, γ1, . . . , γn;x1, . . . , xn)

Multiplying equation B.3.2 by u and subtracting equation B.3.1 multiplied by v, we obtain

n∑
i,j=1

xi(δij − xj)
(
uvxixj − uxixjv

)
+

n∑
i=1

(
γi − (α+ 1)xi

)(
uvxi − uxiv

)
=
(
α+m1 + . . .+mn +m′1 + . . .+m′n

)(
m1 + . . .+mn −m′1 − . . .−m′n

)
uv.

Multiplying both sides of above equations by w and integrating over Vn we obtain∫
Vn

(
α+m1 + . . .+mn +m′1 + . . .+m′n

)(
m1 + . . .+mn −m′1 − . . .−m′n

)
wuvdx

=

∫
Vn

( n∑
i,j=1

xi(δij − xj)
(
wuvxixj − wuxixjv

)
+

n∑
i=1

(
γi − (α+ 1)xi

)(
wuvxi − wuxiv

))
dx

=

∫
Vn

n∑
j=1

∂

∂xj

(
n∑
i=1

xi(δij − xj)w(uvxi − uxiv)

)
dx

=

∫
Vn

divF dx, where F j =

n∑
i=1

xi
(
δij − xj

)
w
(
uvxi − uxiv

)
=

∫
∂Vn

F · ν do(σ)

= 0, since F|∂Vn = 0 follows from w|∂Vn = 0.
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It follows that if

m1 + . . .+mn 6= m′1 + . . .+m′n

then ∫
Vn

wuvdx = 0.

Now we consider the case m1 + . . . + mn = m′1 + . . . + m′n. Applying the integration by

parts to the Proposition B.7 and Lemma B.8, we obtain

∫
Vn

wuvdx

=

∫
Vn

w
w−1

(γ1)m1 . . . (γn)mn

{
∂m1+...+mn

∂(x1)m1 . . . ∂(xn)mn

(
(x1)m1+γ1−1 . . . (xn)mn+γn−1

× (1− x1 − . . .− xn)m1+...+mn+α−γ1−...−γn

)}
vdx

=
(−1)m1+...+mn

(γ1)m1 . . . (γn)mn

∫
Vn

(
(x1)m1+γ1−1 . . . (xn)mn+γn−1

× (1− x1 − . . .− xn)m1+...+mn+α−γ1−...−γn

)
∂m1+...+mnv

∂(x1)m1 . . . ∂(xn)mn
dx

=
(−1)m1+...+mn

(γ1)m1 . . . (γn)mn

∫
Vn

(
(x1)m1+γ1−1 . . . (xn)mn+γn−1

× (1− x1 − . . .− xn)m1+...+mn+α−γ1−...−γn

)

δm1,m′1
. . . δmn,m′n

(−1)m1+...+mn(α+m1 + . . .+mn)m1+...+mnm1! . . .mn!

(γ1)m1 . . . (γn)mn
dx

= δm1,m′1
. . . δmn,m′n

(α+m1 + . . .+mn)m1+...+mnm1! . . .mn!

[(γ1)m1 ]2 . . . [(γn)mn ]2

× Γ(m1 + γ1) . . .Γ(mn + γn)Γ(m1 + . . .+mn + α− γ1 − . . .− γn + 1)

Γ(2m1 + . . .+ 2mn + α+ 1)
.

This completes the proof.

Corollary B.10. When α = 2n+ 1, γ1 = . . . = γn = 2 we have the result obtained in [54]
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by Littler and Fackerell in 1975

Km1,...,mn =
(2n+ 1 +m1 + . . .+mn)m1+...+mnm1! . . .mn!

[(2)m1 ]2 . . . [(2)mn ]2

× Γ(m1 + 2) . . .Γ(mn + 2)Γ(m1 + . . .+mn + 2)

Γ(2m1 + . . .+ 2mn + 2n+ 2)
.

=
(2n+ 1 +m1 + . . .+mn)m1+...+mnm1! . . .mn!

[(m1 + 1)!]2 . . . [(mn + 1)!]2

× (m1 + 1)! . . . (mn + 1)!(m1 + . . .+mn + 1)!

(2m1 + . . .+ 2mn + 2n+ 1)!

=
1

(m1 + 1) . . . (mn + 1)

× (2n+ 1 +m1 + . . .+mn)m1+...+mn(m1 + . . .+mn + 1)!

(2m1 + . . .+ 2mn + 2n+ 1)!

=
1

(m1 + 1) . . . (mn + 1)

× 1

(m1 + . . .+mn + 2) . . . (m1 + . . .+mn + 2n)(2m1 + . . .+ 2mn + 2n+ 1)

=
1

(m1 + 1) . . . (mn + 1)(m1 + . . .+mn + 2)2n−1(2m1 + . . .+ 2mn + 2n+ 1)
.



Appendix C

Introduction to Information

Geometry

This appendix gives the basics of Information Geometry used in Chapter 6.

Information geometry is a bridge connecting between non-Euclidean geometry and

probability theory which reached maturity through the work of Amari in 1980 (see [2]).

The main idea is to find out the correspondence between structure of the families of

distributions and that of manifolds. Formally, we can consider a distribution as a point,

the score as a tangent vector, a family of distributions as a Riemannian manifold with the

Riemannian metric is the Fisher information metric, etc., with thinking that their results

are interchangeable to each other. For further details, we refer readers to [2], [3], [4], [37],

[66].

C.1. Family of probability distributions as a Riemannian manifold

C.1.1. Probability distributions as points

Note that almost all of the popular probability distributions depend on some param-

eters which constitute a domain in an Euclidean space. For example, writing a Gaussian

distribution in one dimension N (µ, σ) in the general form

p(x;µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 dx

implies parameters θ = (µ, σ) here are in M = R × R(>0). We then can consider each

Gaussian distribution as a point in M with coordinates µ, σ.

Remark C.1. Note that the parametrization of a Gaussian distribution is not unique. For

example, we can choose the parameters θ =
(
µ
σ2 ,

1
σ2

)
for the above Gaussian distribution.

This is also understood as one point can have many local systems of coordinates (local

charts).
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C.1.2. Families of probability distributions as manifolds

We extend a family of distributions P = {p(x;θ)} to a manifold M such that the

points p ∈ M are in a one-to-one relation with the distributions p. The parameters θµ

of P can thus also be used as coordinates on M. We hope to gain some insight into

the structure of such family. For example, we want to discover a reasonable measure of

nearness of two distributions in the family. To simplify the notations, we denote by (in

coordinate system θ)

`(θ) := log p(x;θ) = log p(θ), ∂µ :=
∂

∂θµ

and call ∂µ`(θ) the score of family with respect to θµ.

Then the tangent space Tθ of M is seen to be isomorphic to the vector space spanned by

the scores

T
(1)
θ = span{∂µ`(θ)}µ.

A vector field X ∈ T (M),

X(θ) = Xµ(θ)eµ,

thus is equivalent to a random variable X(1) ∈ T (1)
θ ,

X(1)(θ) = Xµ(θ)∂µ`(θ),

which is called the 1−representation of the vector field X.

Now we go to define a metric

Definition C.2. The Fisher metric on a manifold of probability distributions is defined

as

gµν(θ) = E(∂µ`(θ)∂ν`(θ)).

Remark C.3. Because p is a probability distribution, it follows

E(∂µ∂ν`) =

∫
Ω
dxp∂µ

(1

p
∂νp
)

=

∫
Ω
dx
(
∂µ∂νp−

1

p
∂µp∂νp

)
=∂µ∂ν1−

∫
Ω
dxp∂µ`∂ν`

=− E(∂µ`(θ)∂ν`(θ)) = −gµν(θ).

(C.1.1)

We can prove easily that the Fisher metric is invariant under transformations of the

random variable and covariant under reparametrizations as follows

Proposition C.4. The Fisher metric is invariant under transformations of the random

variable.
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Proof. Suppose that the probability distributions are defined by a vector random variable

X valued in Ω ⊂ Rn. Then

gij(θ) =

∫
Ω
dx

1

pθ(x)
∂ipθ(x)∂jpθ(x).

Let f be a (bijective) transformation from the random variable X to the random variable

Y valued in Ω′ then we have

p̄θ(y) =

∫
Ω
dxpθ(x)δ(y − f(x)).

Because f is bijective, we can use

δ(y − f(x)) =
1

| ∂f∂x |
δ(f−1(y)− x)

to find that

p̄θ(y) =

∫
Ω
dxpθ(x)

1

| ∂f∂x |
δ(f−1(y)− x) =

[
1

| ∂f∂x |
pθ(x)

]
x=f−1(y)

Note that | ∂f∂x | does not depend on θ, we obtain

∫
Ω′
dy

1

p̄θ(y)
∂ip̄θ(y)∂jp̄θ(y) =

∫
Ω′
dy

[
1

pθ(x)
∂ipθ(x)∂jpθ(x)

]
x=f−1(y)

=

∫
Ω
dx

1

pθ(x)
∂ipθ(x)∂jpθ(x).

(C.1.2)

Proposition C.5. The Fisher metric is covariant under reparametrization.

Proof. Suppose that, we have the reparametrization θ̄ = θ̄(θ). We define by p̄θ̄(x) =

pθ(x) then we have

ḡij(θ̄) =

∫
Ω
dx

1

p̄θ̄(x)

∂

∂θ̄i
p̄θ̄(x)

∂

∂θ̄j
p̄θ̄(x)

=

[
∂θk

∂θ̄i
∂θl

∂θ̄j
gkl(θ)

]
θ=θ(θ̄)

.
(C.1.3)

This completes the proof.
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C.1.3. Affine connections and their dual connections

To work with a statistical manifold, as usual, we need to construct a connection on it.

Here we shall briefly introduce a family of affine connections based on the 1−representation

of vectors on a statistical manifold. These connections have been named α−connections

by Amari in [2].

Definition C.6. The α−connection ∇(α) on a statistical manifold is defined by its coef-

ficients (Christoffel symbols)

Γ(α)λ
µν = E

(
∂µ∂ν`∂ρ`+

1− α
2

∂µ`∂ν`∂ρ`
)
gρλ.

or equivalent

Γ(α)
µνρ = E

(
∂µ∂ν`∂ρ`+

1− α
2

∂µ`∂ν`∂ρ`
)
.

Remark C.7. It is easy to see the metric connection (the Levi-Civita connection for the

Fisher metric) is same as the 0−connection, so we can rewrite the above expression as

follows

Γ(α)
µνρ = Γ(metric)

µνρ + αTµνρ,

where

Tµνρ = −1

2
E(∂µ`∂ν`∂ρ`).

Definition C.8. Two connections ∇ and ∇∗ are said to be dual to each other if for all

vector fields X,Y,Z, we have

X < Y,Z >=< ∇XY,Z > + < Y,∇∗XZ >

We have some properties

Proposition C.9. There exists always exactly one dual ∇∗ to any affine connection ∇,

and ∇∗∗ = ∇.

Proposition C.10.
(
∇(α)

)∗
= ∇(−α).

Definition C.11. A manifold is flat with respect to an affine connection when there is a

coordinate system such that

Γρµν = 0.

The following lemma links flatness with respect to a connection and flatness with

respect to its dual:
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Lemma C.12. When a manifold is flat with respect to an affine connection, it is also flat

with respect to its dual. We call it dually flat manifold.

On a dually flat manifold, there exist two special coordinates systems which are dual

to each other.

Definition C.13. Two coordinate systems (θµ) and (θ̄ν) are said to be dual to one another

when their coordinate basis vectors satisfy

< eµ, ē
ν >= δµν ,

where eµ and ēν are the coordinate basis vectors for the θ and θ̄ systems respectively.

C.2. Some special families of probability distributions

C.2.1. Exponential families

An exponential family of probability distributions is a family of distributions that can

be written as

M =

{
p(x;θ)|p(x;θ) = exp

{∑
µ

θµfµ(x) + c0(θ)
}
P0(x)

}
,

where P0(x) is some fixed measure, c0 ensures that the distribution is normalized.

Then the score is given by

∂µ`(θ) = fµ(x) + ∂µc0(θ).

Therefore the metric will be

gµν(θ) = −∂µ∂νc0(θ).

It follows the connection ∇(α) is given by

Γ(α)
µνρ(θ) =

α− 1

2
∂µ∂ν∂ρc0(θ).

Therefore the exponential family is 1−flat.

C.2.2. Mixture families

A mixture family of probability distributions is a family of distributions that can be

written in the form

M =
{
p(x;θ)|p(x;θ) =

∑
µ

θµPµ(x) +
(

1−
∑
µ

θµ
)
P0(x)

}
,



114 C. Introduction to Information Geometry

where P0, P ′µs are probability distributions, and θµ ∈ (0, 1) such that
∑

µ θ
µ < 1.

Then the score is given by

∂µ`(θ) =
1

p

(
Pµ − P0

)
.

Therefore the metric will be

gµν(θ) =

∫
dx

1

p

(
Pµ − P0

)(
Pν − P0

)
.

It follows the connection ∇(α) is given by

Γ(α)
µνρ(θ) = −α+ 1

2

∫
dx

1

p2
∂µp∂νp∂ρp.

Therefore the exponential family is (−1)−flat.

In the special case, when Pµ = δaµ , P0 = δa0 . The score is given by

∂µ`(θ) =
1

p

(
δaµ − δa0

)
.

Therefore the metric will be

gµν(θ) =
δµν
θµ

+
1

1−
∑

λ θ
λ
.

It follows the connection ∇(α) is given by

Γ(α)
µνρ(θ) =

α+ 1

2

{
δµνδµρ(
θµ
)2 +

1(
1−

∑
λ θ

λ
)2
}
.

Therefore the mixture family is (−1)−flat.
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List of Notations

Spaces

∆n

{
(x0, x1, · · · , xn) ∈ Rn+1 : xi ≥ 0 i = 0, · · · , n and

n∑
i=0

xi = 1
}

the standard simplex in Rn+1

e0 (0, . . . , 0) ∈ Rn
ek (0, . . . , 1︸︷︷︸

kth

, . . . , 0) ∈ Rn, k = 1, · · · , n

Ωn intco {e0, . . . , en}

=

{
n∑
k=0

xkek, (x0, x) =

(
1−

n∑
k=1

xk, x1, . . . , xn
)
∈ int∆n

}
the image of projection of the standard simplex onto hyper-surface x0 = 0

Ii0,...,ikk {i0, . . . , ik}
Ik {{i0, . . . , ik} , 0 ≤ i0 < . . . < ik ≤ n}
Ωk intco {e0, . . . , ek} , k ∈ {1, . . . , n}

the domain representing a population of alleles {A0, . . . , Ak}
V i0,...,ik
k intco {ei0 , . . . , eik}

the domain representing a population of alleles {Ai0 , . . . , Aik}
V

(l)
k the lth component of Vk, l = 1, · · · ,

(
n+1
k+1

)
Vk

{
intco {ei0 , . . . , eik} for some i0 < . . . < ik ∈ 0, n

}
=

⊔
(i0,...,ik)∈Ik

V i0,...,ik
k =

(n+1
k+1)⊔
l=1

V
(l)
k

the domain representing a population of (k + 1) alleles

V k

k⊔
i=0

Vi, k = 0, . . . , n

the domain representing a population of as most (k + 1) alleles

wi0,...,ikk (x)
∏

i∈Ii0,...,ikk

xi

Hk C∞(Ωk), k ∈ {1, . . . , n}
H i0,...,ik
k C∞

(
V i0,...,ik
k

)
H

{
f : V n → [0,∞] measurable such that

∫
V n

f(x)g(x)dx <∞,∀g ∈ Hn

}

Operators
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Lk Hk → Hk, Lkf(x) = 1
2

k∑
i,j=1

∂2

∂xi∂xj
(xi(δij − xj)f(x)), k ∈ {1, . . . , n}

L∗k Hk → Hk, L∗kg(x) = 1
2

k∑
i,j=1

(xi(δij − xj)) ∂2

∂xi∂xj
g(x), k ∈ {1, . . . , n}

L0 = L∗0 = 0
L L1

L∗ L∗1
Li0,...,ikk H i0,...,ik

k → H i0,...,ik
k , Li0,...,ikk f(x) = 1

2

∑
i,j∈Ii0,...,ikk

∂2

∂xi∂xj
(xi(δij − xj)f)

(Li0,...,ikk )∗ H i0,...,ik
k → H i0,...,ik

k , (Li0,...,ikk )∗g(x) = 1
2

∑
i,j∈Ii0,...,ikk

(xi(δij − xj)) ∂2

∂xi∂xj
g(x)

Others

[f, g]n
∫
V n

f(x)g(x)dµ, ∀f ∈ H, g ∈ Hn

=
n∑
k=0

∫
Vk

fk(x)g(x)dµk

=
n∑
k=0

(fk, g)k

where f|Vk = fk, k = 0, · · · , n
[f, g] [f, g]1

(a)n a(a+ 1)(a+ 2) · · · (a+ n− 1) = Γ(a+n)
Γ(a) , (a)0 = 1

a[n] a(a− 1)(a− 2) · · · (a− n+ 1) = Γ(a)
Γ(a−n) , a[0] = 1
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[50] Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung,

Mathematische Annalen, Vol. 104, Nr. 1, (1931) 415-458.

[51] H. J. Kushner, Probability limit theorems and the convergence of finite defference

approximations of partial differential equations, J. Math. Anal. Appl., 32, (1970)

77-103.



122 References

[52] R. A. Littler, Loss of variability at one locus in a finite population, Math. Bio. 25,

(1975) 151-163.

[53] R. A. Littler, Multidimensional stochastic models in genetics, PhD Thesis, Monash

University, 1975.

[54] R. A. Littler, E. D. Fackerell, Transition densities for neutral multi-allele diffusion

models, Biometrics, Vol 31 No. 1 (1975), 117-123.

[55] R. A. Littler, A. J. Good, Ages, extinction times, and first passage probabilities for

a multiallele diffusion model with irreversible mutation, Theor. Popul. Biol., Vol 13

(1978), 214-225.
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fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen
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