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CHAPTER 1

Introduction

Biological complexity is one of the most striking feature of the world we live in
[64], [84]. There are none more complicated systems than biological living organ-
isms. How much do we know about our bodies and how they are meant to function?
How much do we know about biochemical processes occurring in our cells? How
much do we know about the molecular machinery of networks in cells, such as gene
regulatory networks and protein-protein interactions controlling cell growth? The
truth is that in the 21st century we are only beginning to understand the true
complexity of the biological world. But what has been known for many years now
is that periodic oscillations are central in a variety of biological systems [40], [84].
They play important physiological roles at all biological organization levels and are
present at each scale of biological complexity. Important examples include oscilla-
tory enzyme reactions, breathing, pulsatile hormone secretion, neural and cardiac
rhythms [38], [40], [83]. Hence, understanding the mechanisms underlying these
phenomena is a key to a global understanding of biological complexity.
Often a starting point for modelling biological phenomena are ordinary differ-

ential equations (ODEs) [3], [16], [54], [76], [103]. ODE models have proved to be
particularly useful for describing different oscillatory processes and have the form

(1.1)
dx

dt
= F (x),

where x ∈ Rn represents some vector state variable and F is the nonlinear rate
function describing the underlying biological mechanism. An oscillatory time series
of the model corresponds to a periodic solution of (1.1) with the period T , i.e.,

(1.2) x(t+ T ) = x(t),

which in turn corresponds in the phase space to a closed curve called a limit cycle
[92]. Typically, realistic biological models involve many parameters. In this case the
behaviour of the solution x(t,λ) varies accordingly to the parameter values. Mostly
we are interested in the bifurcations of a system, i.e., whether a small parameter
change of a system causes a sudden qualitative change in its behaviour [18], [46],
[116]. One example of a local bifurcation is the Hopf bifurcation, i.e., the appear-
ance or the disappearance of a limit cycle through a local change in the stability
properties of a steady point [104]. Thus, some oscillations in the model can be
controlled, i.e., either induced or suppressed via Hopf bifurcation.
One interesting type of periodic solutions are relaxation oscillations [42], [73],

[81], [111]. These highly non-linear oscillations characterized by repeated switching
of slow and fast motions appear frequently in applications of biological nature. A
prototypical system where they occur is the van der Pol equation of a triode circuit
[118], [119]. Oscillations observed by van der Pol were quickly recognized as having
a lot of similarities to biological oscillations. Indeed, relaxation oscillators appear

3



4 1. INTRODUCTION

to characterize many important biological phenomena such as heartbeat (van der
Mark and van der Pol model [120]), neuronal activity (the Fitz-Hugh-Nagumo
model and the Morris-Lecar model [60]), and population cycles of predator-prey
type [58]. Based on a detailed stylistic and linquistic analysis of the Petrarch’s
poems, a relaxation oscillator was proposed to model the dynamics of love between
Petrarch and his beloved Laura [96]. In Petrarch’s emotional cycle slow change
phases interrupted by sudden and fast transitions can be observed. Those slow-
fast transitions are another key to the understanding of a wide range of biological
problems.
The uniqueness and specificity of different phenomena in chemistry and biology

is due to the interplay between the time scales. To ensure the correct timing and
ordering of important biological processes such as cell division, metabolism, food
digestion, biochemical phenomena involved in these processes occur at different
time scales. For instance, many important chemical reactions proceed with time
scales of 10−9 to 10−12 s. In enzyme kinetics the binding of the substrate to the
active site on the enzyme occurs in a few nano-seconds, while enzymatic reactions
last up to a few seconds. This mix of various time scales appears to give rise to the
presence of sudden (often surprising) jumps in the state of biological systems.
Mathematical models contributed greatly to uncovering of the mechanisms of

oscillatory multiple time scale phenomena. In particular, processes evolving on dif-
ferent time scales have been successfully modeled by singularly perturbed ordinary
differential equations [90] of the form

(1.3)
εẋ = f(x, y, ε),
ẏ = g(x, y, ε)

with (x, y) ∈ Rn × Rm, smooth functions f and g, and a small parameter ε > 0.
The derivative in system (1.3) is with respect to the slow time scale t. On the fast
time scale τ = t/ε the governing equations are

(1.4)
x� = f(x, y, ε),
y� = εg(x, y, ε).

Traditionally, slow-fast systems and the related oscillatory phenomena have
been studied by the method of the matched asymptotic expansions, see e.g. [42],
[71] [74], and also [81], [121]. Techniques from non-standard analysis [26] have
been employed in the study of slow-fast systems as well. Recently, a more qualitative
approach based on the methods from dynamical systems theory known as geometric
singular perturbation theory has been developed [34], [61], [62]. Its foundation goes
back to Fenichel [34] and the basic reasoning is the following.
The dynamics of system (1.3) for ε > 0, or of the equivalent fast system (1.4), is

studied by analyzing and suitably combining the dynamics of the reduced problem

(1.5)
0 = f(x, y, 0),
ẏ = g(x, y, 0),

and the dynamics of the layer problem

(1.6)
x� = f(x, y, 0),
y� = 0,

which are the ε = 0 limiting problems on the slow and fast time scale, respectively.
The equation f(x, y, 0) = 0 defines the critical manifold S on which the reduced
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problem (1.5) acts as a dynamical system. On the other hand, the critical manifold
S is a manifold of equilibria of the layer problem (1.6). Due to results by Fenichel
[34], normally hyperbolic pieces of critical manifolds perturb smoothly to locally
invariant slow manifolds for ε sufficiently small. While in systems (1.3) – (1.4)
slow and fast processes are combined, it is beneficial and much easier to study
slow and fast processes separately. Thus, we can concentrate on the slow dynamics
and analyze the algebraic-differential problem (1.5), in which the fast variables are
entrained by the slow ones. On the other hand, focusing on the layer problem (1.6),
we simplify the study by considering the slow variables fixed. The essence of the
geometric approach is to obtain (under suitable assumptions) orbits of a singularly
perturbed system (1.3) as perturbations of singular orbits consisting of pieces of
orbits of the reduced problem (1.5) and of the layer problem (1.6).
Interesting phenomena take place when the critical manifold S has a folded

structure, i.e., attracting and repelling parts of the critical manifold are separated
by fold points, which are singularities of the reduced system (1.5). Under certain
assumptions, such folded structures of critical manifolds give rise to the jumping
behavior for solutions, i.e., reaching a fold point in finite forward time, the solutions
jump from one attracting part following approximately the dynamics of the layer
problem (1.6). Such jump points explain the fast transitions described above and
are an ingredient of relaxation orbits. Namely, a limit cycle of a relaxation type
is formed when solutions after following the slow flow along one attracting branch
jump at a fold point to another stable branch of the critical manifold, follow the
slow flow along it until a second fold point is reached. From there the final jump
occurs, back to the first attracting branch possibly forming a closed loop.
The above described scenario with S-shaped critical manifolds is the prototypi-

cal situation to obtain classical relaxation oscillations. A substantial difficulty in the
analysis of these oscillations are the fold points of the critical manifold and other
points, where normal hyperbolicity of the critical manifold is lost. At these points
Fenichel theory fails, i.e., the existence of slow manifolds under ε-perturbations is
not guaranteed. Recently, it has become clear how to extend geometric singular
perturbation theory beyond non-hyperbolic points. The answer came with the pi-
oneering work by Dumortier and Roussarie [28], in which the blow-up method has
proven to be an effective tool in the geometric analysis of singularly perturbed equa-
tions near non-hyperbolic points [10], [21], [22], [27], [30], [31], [56], [69], [71],
[73], [95]. Thus, classical relaxation oscillations have been analyzed by combining
Fenichel theory and the blow-up method, and are well-understood phenomena [73],
[111].
However, relaxation oscillations can be found in a more general setting; in par-

ticular, in slow-fast systems, which are not written in the standard form (1.4).
Systems in which separation into slow and fast variables is not given a priori, arise
frequently in applications [23], [50], [51], [56], [68], [79]. Many of these systems
include additionally various parameters of different orders of magnitude and compli-
cated (non-polynomial) nonlinearities. This poses several mathematical challenges,
since the application of singular perturbation arguments is not at all straightfor-
ward. As a result it is hard to seek for locally attracting and repelling slow manifolds
that organize phase space and extract the geometry that for example organizes the
oscillations. Obviously, it is hard to deal with problems in which disjoint time scales
cannot be used to our advantage. For that reason most of such systems have been
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studied only numerically guided by phase-space analysis arguments or analyzed in a
rather non-rigorous way. It turns out that the main idea of the singular perturbation
approach can also be applied in such non-standard cases.
This thesis is concerned with the application of concepts from geometric sin-

gular perturbation theory and geometric desingularization based on the blow-up
method to the study of relaxation oscillations in slow-fast systems beyond the stan-
dard form. We present a detailed geometric analysis of oscillatory mechanisms in
three mathematical models describing biochemical processes. Our work shows – in
the context of non-trivial applications – that the geometric approach, in particular
the blow-up method, is valuable for the understanding of the dynamics of systems
with no explicit splitting into slow and fast variables, and for systems depending
singularly on several parameters.
First we present the study of a two-variable chemical oscillator called the au-

tocatalator. We explain in detail the dynamics and the asymptotic dependence on
the parameter ε of the model. In this work we demonstrate that to understand the
dynamics of even a rather simple system a careful singular perturbation analysis
is needed. An interesting phenomenon occurs in the model due to a folded critical
manifold with an unbounded branch, i.e., the orbits of the autocatalator jump at
the fold point and come back to the attracting slow manifold after a large excursion.
In order to find a limit cycle of a relaxation type, the variables of the autocatalator
model are rescaled such that the resulting equations are no longer in the standard
form (1.3). This renders the analysis more complex as there is no global separation
of slow-fast variables; however, it allows to capture the full dynamics of the model
and explain large oscillations related to mixed-mode oscillations [10], [69], [70],
[79], [80], [93].
The second and the third problem under consideration arise from biochemistry.

We consider two models from enzyme kinetics, i.e., an ODE system describing gly-
colytic oscillations and a three-dimensional model for the mitotic oscillator, both
models proposed by Albert Goldbeter [40]. The glycolytic oscillator is a slow-fast
system; however, it is a two-parameter singular perturbation problem. The corre-
sponding critical manifold has a folded-structure and its geometry depends singu-
larly on one of the parameters. Thus, we again deal with the interaction between
slow and fast processes in a model beyond the standard form. A comprehensive and
clear picture of the oscillatory dynamics of the model is given.
The mitotic oscillator displays also interesting non-linear dynamics, which can

be studied in the GSPT spirit. More precisely, we transform the mitotic oscillator
into a system that exhibits dynamics of slow-fast character, but lacks a global
separation of slow-fast variables. We have found that the dynamics of cyclin (one
of the variables of the mitotic oscillator) plays an essential role in the generation of
relaxation oscillations of a new type. They arise from the phenomenon of a delayed
exchange of stability, which occurs at non-hyperbolic lines along which branches of
the two-dimensional critical manifold intersect. This novel phenomenon is analyzed
and explained by means of the blow-up method.
In addition to the intrinsic interest in these models, there are several other

motivations for their analysis. We believe that the first two problems under con-
sideration are well-suited to serve as an introduction to the blow-up method in
the context of non-trivial applications. In particular, the potential of iterating sev-
eral blow-ups becomes clearly visible. One of the motivations of these works is
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to exemplarily show how geometric constructions (especially blow-up) can handle
complicated singular perturbation problems with a variety of scaling regimes.
Another central message of our work is that the novel blow-up construction

and the original two-parameter character of the problem presented in Chapter 4
could be useful in other problems depending singularly on several parameters. It
will turn out that one parameter mainly affects the slow-fast structure, while the
second parameter mainly influences the geometry and the singularities of the crit-
ical manifold. We will show that the blow-up method leads to a clear geometric
picture of this fairly complicated two-parameter multi-scale problem. There is a
strong need for a more general framework for slow-fast systems with several singu-
lar perturbation parameters and we believe our work is a starting point for further
development.
Last, but not least, our analysis of the mitotic oscillator in Chapter 5 shows

that the hidden slow-fast nature of the dynamics of the ”regularized”/rescaled
mitotic oscillator can be used to obtain insight into the understanding of the original
model, which so far has been obtained by numerical simulations guided by phase-
plane arguments. Due to the occurrence of non-polynomial nonlinearities, it is not
immediately obvious from the governing equations that the slow-fast nature of the
rescaled problem can be helpful. One message of this work is that the combination
of geometric singular perturbation theory with the blow-up method is a powerful
and systematic tool for the analysis of oscillatory multiple time scale phenomena.
This thesis consists of five chapters. In Chapter 2, which has a theoretical

character, we recall basic results in Fenichel theory covering slow-fast systems with
compact critical manifolds. Furthermore, a brief review of the extension of Fenichel
theory beyond normal hyperbolicity is given. In Chapter 3 – 5 we present a detailed
geometric singular perturbation analysis of the autocatalator model, the glycolytic
oscillator, and the mitotic oscillator, respectively. The results presented in Chapter 3
and Chapter 4 led to the publications [50], [67], and [68], respectively, which are
joint work with Peter Szmolyan (Vienna University of Technology).

We now turn to the description of the background and the specifics of the
problems presented in each of the chapters, and summarize our main results.

Main results

Chapter 3: Autocatalator model

The secret of life is autocatalysis1

Oscillatory chemical reactions are fundamental in biology. They provide a mech-
anism for the biological processes, for instance ageing, the heart beat or the develop-
ment of cardiac arrhythmias [98]. The autocatalator model was originally proposed

1
Review by Gert Korthof of ”At Home in the Universe. The Search for Laws of Self-

Organization and Complexity” by Stuart Kauffman.
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by P. Gray and S. Scott [45] to model the following hypothetical chemical reaction

(1.7)

P −→ A, rate = k0p,
A −→ B, rate = k1a,

A+ 2B −→ 3B, rate = k2ab2,
B −→ C, rate = k3b,

where P,A,B, and C are certain chemical species with concentrations p, a, b, and
c, respectively, and constants ki, i = 0, . . . , 3. Thus, the scheme (1.7) considers the
conversion of chemical precursor P to a final product C via two reactive interme-
diates A and B through the above sequence of steps. The third step in (1.7) is
autocatalytic (hence the name of the model), i.e., in the autocatalytic reaction the
product of the reaction is the catalyst. Consequently, the rate of reaction increases
and the reaction accelerates as the reaction progresses. Mathematically speaking,
this happens due to the cubic term k2ab2 in the autocatalytic step, which is qua-
dratic in b, i.e., for small values of b this therm is small, but for large values of b it is
large. Autocatalytic reactions are present in important biological processes such as
the initial transcripts of rRNA and glycolysis (see Chapter 4). Recently, Kauffman
has emphasized the role of autocatalysis in processes of life [64].
The autocatalator model and its extensions have been used to reproduce many

typical features of chemical oscillations [43], [44], [98]. In this work we consider
the rate equations describing the progress of reaction (1.7) in the following dimen-
sionless form

(1.8)
ȧ = µ− a− ab2,
εḃ = −b+ a+ ab2,

where (a, b) ∈ R2, µ ∈ R and ε > 0. Thus, the autocatalator model (1.8) has two
parameters µ and ε, which enter the model due to the dimensionlessness procedure.
While the parameter µ is not interesting in itself, the occurrence of the parameter ε
will have a consequence for the nature of the dynamics of the model, i.e., small values
for ε will make typically b a fast variable. In other words, due to the occurrence of
the small parameter ε solutions evolve on several time scales. Thus, system (1.8)
with ε > 0 small is written in the standard form of slow-fast systems with the slow
variable a and the fast variable b. The derivative in (1.8) is with respect to slow
time scale t. For certain parameter values a limit cycle exists. Geometric singular
perturbation theory is used to prove the existence of this limit cycle. A central
tool in the analysis is the blow-up method, which allows the identification of a
complicated singular cycle, which is shown to persist.
More precisely, in our analysis of system (1.8) we will encounter a fold point,

but also other non-hyperbolic points, which will be treated by suitable blow-ups.
We will show that for µ > 1 and ε sufficiently small system (1.8) has a globally
attracting limit cycle of relaxation type. However, the asymptotic behavior and the
global structure of the limit cycle is considerably more complicated than that for
the van der Pol oscillator. It will turn out that additional scalings are needed to
capture the full dynamics, since for b = O(1/ε) the dynamics and limiting behavior
are not captured by the corresponding reduced and layer problems. In the regime
b = O(1/ε) the cubic terms in system (1.8) dominate and a different slow-fast
structure emerges. Thus, it is necessary to match the regime b = O(1) with the
regime b = O(1/ε). We demonstrate that the blow-up method is a convenient tool
for geometric matching of these two regimes. It will turn out that several iterated
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blow-ups have to be used to obtain a complete desingularization of the problem. In
fact, this novel feature motivated much of our interest in the problem.
The complicated dynamics of a related three-dimensional system, where roughly

speaking µ becomes a dynamic variable, has been studied numerically and analyt-
ically in [78], [79], [80], [93]. The main feature of that system is the occurrence
of mixed-mode oscillations, which consist of periodic or chaotic sequences of small
and large oscillations. Mixed-mode oscillations have been related to certain types of
canards, which generate the small oscillations while the large oscillations are often
of relaxation type [10], [69], [78], [79], [80]. In [79] a mechanism for the occur-
ring large relaxation oscillations was proposed. In Chapter 3 we will give a detailed
analysis of this mechanism in the context of the planar system (1.8).

Chapter 4: Glycolytic oscillator

Glycolysis is a cellular process that occurs in almost every living organism. It
involves a complex chain of enzyme reactions and results in the release of free en-
ergy, which is then used in other processes. An interesting feature of this important
bioenergetic process is that the concentrations of the glycolytic intermediates os-
cillate under certain conditions. Such oscillations have been observed in yeast cells
[15], muscle cells [37], tumor cells [59], pancreatic beta-cells [17], and heart cells
[91]. Whereas the molecular basis of glycolytic oscillations is known, their biological
significance and function are still unclear [40], [52].
Several — slightly different — planar ODE models have been proposed [41],

[53], [102], which reproduce these oscillations. An important feature of all these
models is their ability to capture the autocatalytic nature of the glycolysis reac-
tion. In the first two models, however, the allosteric nature of the enzyme kinetics
is not considered. In contrast, the Goldbeter-Lefever model is based on allosteric
regulation2 with positive feedback. Later this basic model has been extended by
including a larger number of enzymes of the glycolytic chain; see, e.g. [106]. Never-
theless, the two-variable Goldbeter-Lefever model still serves as a starting point for
modern theoretical and experimental studies as it reflects the core of the oscillatory
mechanism. More recently various two- and three-dimensional models of glycolytic
oscillations have been used as parts of larger systems modeling the production of
insulin in pancreatic beta-cells; see, e.g. [8].
Understanding of these models has been mostly obtained by numerical simula-

tions guided by phase-plane arguments. The slow-fast nature of the dynamics has
also been frequently used to obtain insight into the dynamics. Due to the occur-
rence of various parameters of very different orders of magnitude and complicated
(non-polynomial) nonlinearities, the application of singular perturbation arguments
is not at all straightforward.
We will be concerned exclusively with the Goldbeter-Lefever model [41], written

in the form (1.9). In [101] Segel and Goldbeter gave a fairly detailed – but still
non-rigorous – analysis of the Goldbeter-Lefever model. In dimensionless variables

2
Allosteric control is one means of regulating enzyme action, i.e., a molecule binds to an

enzyme at a site other than the active site and changes the activity of the enzyme. A reader

interested in enzyme kinetics is referred to [65]. A detailed description of the allosteric model for
glycolytic oscillations can be found in [40], [41].
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the governing equations have the form

(1.9)
ρα� = µ− φ(α, γ),
γ� = λφ(α, γ)− γ,

where α and γ denote certain substrate and product concentrations and

φ(α, γ) =
α2(γ + 1)2

L+ α2(γ + 1)2
.

The equations contain four positive parameters λ, L, µ and ρ, where L and λ turn
out to be large3 and satisfy λ� L, while µ and ρ are of moderate size.
In their analysis of system (1.9) Segel and Goldbeter applied what they call the

method of scaling. In particular, they identified a small parameter

(1.10) ε :=

�
λ

L
,

which causes the slow-fast structure of system (1.9). It turns out that system (1.9)
exhibits classical relaxation oscillations in the limit of large L and fixed λ. However,
the main interest in [101] lies in the situation where L and λ are both large. In this
case, the asymptotics of system (1.9) become more complicated. By considering
several different scaling regimes, Segel and Goldbeter argued that the condition

(1.11)

�
λ

L
� 1√
λ
� 1

implies the existence of a relaxation cycle.
In this work we complement the reasoning given in [101] by proving that condi-

tion (1.11) indeed implies the existence of a relaxation cycle of system (1.9). We will
rewrite system (1.9) in the standard form (2.6) of singularly perturbed problems,
which we then examine geometrically in the spirit described above. By a suitable
scaling of the variables α and γ, we rewrite system (1.9) in the form

(1.12)
a� = ε(a2b2(µ− 1) + µδ2),
b� = a2b2(1− b) + δ2(a2b2 − b+ δ2),

where (a, b) correspond to (α, γ), ε is given by (1.10), and

(1.13) δ := λ−1/2.

Hence, a is the slow variable and b is the fast variable with respect to ε. In our
notation condition (1.11) has the from

(1.14) ε� δ � 1.

We now briefly outline our approach to the analysis of system (1.12). Setting
ε = 0 and δ = 0 in system (1.12) gives the layer problem

(1.15) a� = 0,
b� = a2b2(1− b).

The corresponding critical manifold S0, defined by a2b2(1− b) = 0, consists of the
lines a = 0, b = 0, and b = 1, which we denote by lb, la, and lh, respectively. Since the
zeros a = 0 and b = 0 have multiplicity two, the lines la and lb are non-hyperbolic
lines of equilibria, whereas the line lh corresponding to the simple zero b = 1 is

3L is the allosteric constant influencing the degree of the cooperativity of the enzyme, see
[40] and [41] for a detailed biochemical explanation.
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normally hyperbolic. Hence, this limiting problem is degenerate and the structure
of the relaxation oscillations is not visible at all. We introduce three scaling regimes
in which parts of the relaxation cycle become visible again by partially undoing the
scaling leading to system (1.12). Not surprisingly, these scaling regimes are closely
related to the scaling regimes of Segel and Goldbeter. However, the three scaling
regimes do not overlap and matching these regimes is a difficult problem.
The main goal of this work is to show that the blow-up method is well suited to

overcome these difficulties. It turns out that two blow-ups of the degenerate critical
manifold S0 (with respect to δ) lead to a complete desingularization of the problem
such that uniform results in ε become possible. In this approach the degenerate
lines a = 0 and b = 0 are blown-up to cylinders by rewriting the original (a, b, δ)
variables in suitable cylindrical variables. In the blown-up geometry the existence
of the relaxation cycle can be proved. Matching of the scaling regimes now takes
place in additional charts covering parts of the cylinders not covered by the scaling
regimes.

Chapter 5: Mitotic oscillator

While you are reading this text dramatic events occur in your body: every
second millions of your cells divide. Each of them divides in half coping itself to
maintain your body healthy. Each of them goes through several phases of the cell
division cycle, the last of which is called mitosis. What drives the cell through the
cell cycle? What controls it and how does the cell know what to do in each of
the phases? When and how does the cell know it is ready to divide? As simple as
the cell division story sounded in the biology class, the cell division is a complex
fundamental process of life, which at the molecular level has been understood just
recently.
The key regulators of the cell cycle control system have been found by the No-

bel Price Laureates: Paul Nurse and Tim Hunt [57], [88], [89]. They discovered two
classes of proteins, cyclin dependent kinases (cdks) and cyclins, which are respon-
sible for the timing and ordering of the cell cycle transitions. Their experiments
showed that the binding of cyclin and cdk results in a formation of an enzyme in
which cdk plays the role of a molecular engine driving the cell forward from one
stage to another. This engine is switched on and off by cyclin, which regulates the
function of cdk. Furthermore, it has been discovered that cyclin levels go up before
the division and go down after the cell divided.
It is this cyclin periodic oscillatory behavior feature among the others, which

motivated Albert Goldbeter that the cell cycle could be driven by a continuous
biochemical oscillator [39]. Taking into account the fact that the activation of cdc2
kinase (a type of kinase involved in mitosis) is driven by accumulation of cyclin while
the former promotes cyclin degradation, Goldbeter developed a minimal model of
the mitotic oscillator based on a negative feedback [39]. The model involves the
Michaelis-Menten type kinetics and therefore the dynamics of the model is described
by highly non-linear ordinary differential equations.
Namely, the model consisting of three coupled ordinary differential equations

for the fraction of active cyclin protease X, the fraction of active cdc2 kinase M ,
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and the cyclin concentration C, has the form
dX

dτ
= V3(M)

1−X
k3 + 1−X

− V4
X

k4 +X
,

dM

dτ
= V1(C)

1−M
k1 + 1−M

− V2
M

k2 +M
,(1.16)

dC

dτ
= vi − vdX

C

Kd + C
− kdC,

with the effective maximum rates V1(C) and V3(M) given by

V1(C) = VM1C/(Kc + C), V3(M) = VM3M.

The parameter vd denotes the maximum rate of cyclin degradation by protease
X, vi is the constant rate of cyclin synthesis. Kd and Kc denote the Michaelis
constants for cyclin degradation and for cyclin activation of the cdc25 phosphatase
acting on the phosphorylated form of the cdc2 kinase, respectively. kd represents
an apparent first-order rate constant related to non-specific degradation of cyclin.
Parameters Vi and ki, i = 1, . . . , 4 denote the effective maximum rates and the
Michaelis constants, respectively, for each of the enzymes Ei involved in the two
cycles of phosphorylation-dephosphorylation.
For certain parameter values and Michaelis constants small the qualitative fea-

tures of the cell-cycle are captured, i.e, switching behavior of cyclin and cdk2 kinase
emerges. More explicitly, Goldbeter and Erneux [33] showed that under certain con-
ditions the model exhibits sustained oscillations in all mitotic intermediates. From
the molecular point of view the mechanism how oscillations are generated has been
understood; however, from the mathematical point of view the pattern of the oscilla-
tions observed in system (1.16) remained mysterious, i.e., the existence of periodic
orbits in (1.16) was too difficult to prove. To overcome this difficulty, Goldbeter
and Erneux simplified the problem by applying the quasi-steady-state approxima-
tion (QSSA) for one of the dependent variables. In particular, assuming that the
enzyme reacts so fast with the substrate that it can be taken as being in equi-
librium, i.e., dM

dt
= 0, they eliminated M and analyzed the reduced two-variable

system. The QSSA is commonly used tool in modelling of biochemical networks
and has been employed in chemical kinetics for more than 80 years. However, the
main disadvantage of this approach is that the resulting simplified systems may be
qualitatively different from the original ones, which was illustrated and emphasised
by the authors in the case of the mitotic oscillator. More precisely, the traditional
approach to explain oscillations based on the QSSA showed that the resulting two-
dimensional problem exhibits no oscillations. Then, to improve the QSSA approach,
a rather complicated rescaling was introduced. In spite of the fact that a new QSSA
reduced two-dimensional problem exhibited some oscillatory behavior, the obtained
oscillations did not explain the time series of the full model (1.16).
In this work we analyze the mitotic oscillator (1.16) in the spirit of geometric

singular perturbation theory. This approach due to complicated non-polynomial
non-linearities is not straightforward at all. Our results show that by introducing a
suitable time change, the mitotic oscillator can be reformulated into a singular per-
turbation problem with respect to small Michaelis constants. Due to the occurrence
of these small parameters solutions of the rescaled problem evolve on different time
scales. However, the resulting equations are not in the standard form of slow-fast
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systems. Nevertheless, we will demonstrate that the hidden slow-fast nature of the
dynamics of the rescaled system can be used to obtain new insights into the un-
derstanding of the mitotic oscillator, which so far has been obtained by numerical
simulations guided by phase-plane arguments.
Our main results are that for certain parameter values the model exhibits a

novel type of relaxation oscillations, and the concepts from Fenichel theory and
geometric desingularization based on the blow-up method are the right tools for
their description. Our approach is the following.
We rewrite the model as a three-dimensional singularly perturbed system in

the variables (X,M,C). The equations are, however, not in standard form, i.e.,
away from the critical manifold all variables are fast. The critical manifold consists
of four planes M = 0, X = 0, M = 1, and X = 1. Each of these planes
changes its stability at non-hyperbolic line given by C = Ccrit, M = Mcrit,
C = Ccrit, and M = Mcrit, respectively. In addition, the planes intersect along
another four non-hyperbolic lines, where the phenomenon of delayed exchange of
stability occurs resulting in the generation of relaxation oscillations of a new type.
More precisely, within the geometric singular perturbation approach we are able to
identify a singular periodic orbit the first half of which consists of

(1) slow motion in the attracting part of the plane M = 0 towards the (non-
hyperbolic) edge (X,M) = (0, 0),

(2) very slow drift along the edge (X,M) = (0, 0),
(3) slow motion in the attracting part of the plane X = 0 to a point p on the
non-hyperbolic line M =Mcrit,

(4) and a fast jump from p to the attracting part of the plane M = 1.
The second half of the cycle is generated in a similar manner. This novel type
of relaxation oscillations is studied by means of several blow-up transformations.
In this approach the degenerate lines M = Mcrit and the edges are blown-up
to cylinders by rewriting the original (X,M,C) variables in suitable cylindrical
variables. In the blown-up geometry the existence of the relaxation cycle is proven.
Our geometric study provides new insight into the nature of the oscillations and
the dynamics of proteins related to mitosis of the cell division cycle. It naturally
leads to a number of question for future research.



CHAPTER 2

Introduction to geometric methods of singular
perturbation theory

In this chapter we give a brief guide to recently developed geometric methods for
the analysis of systems of singularly perturbed ordinary differential equations. We
provide some introductory definitions, introduce slow-fast systems, and present a
collection of fundamental results in Fenichel theory [34]. Furthermore, we introduce
the blow-up method [28] and recall the results by Szmolyan and Krupa [71] on slow
manifolds of slow-fast systems with critical manifolds containing non-degenerate
folds.
All the definitions and theorems collected in this chapter are based on [27], [34],

[61], [62], [66], [82], [90], [110]. The techniques presented here are a basic part of
the toolbox from geometric singular perturbation theory. A non-trivial application
of some of these concepts to different biochemical oscillations models are in detail
presented in Chapter 3 – 5.

2.1. Regularly vs. singularly perturbed systems

Perturbation problems are characterized by the presence of a small parameter
ε > 0. We distinguish two types of perturbations: regular and singular [82], [90].
The purpose of this section is to recall some basic notions and properties of regularly
and singularly perturbed ordinary differential equations.
Consider an autonomous system of ODEs of the form

(2.1) ẋ = F (x, ε),

where x ∈ Rn, F (x, ε) = (F1(x, ε), . . . , Fn(x, ε)) is an n-dimensional vector function
of the arguments x and a small parameter ε > 0, with all Fj , j = 1, . . . , n, defined
and continuous at all points of a certain domain Ω ⊂ Rn+1. The derivative in (2.1)
is with respect to t ∈ R. Setting ε = 0 in (2.1) defines the unperturbed problem
(2.2) ẋ = F (x, 0).

Let xε(t) and x0(t) denote solutions of (2.1) and (2.2), respectively, defined on some
finite time interval t0 � t � T , and with the same initial condition x0 = xε(t0) =
x0(t0), (x0, ε) ∈ Ω.
Suppose the functions Fj are continuously differentiable with respect to x and

continuous in ε in the domain Ω, then for a sufficiently small ε, solution xε(t) is
defined on the same interval t0 � t � T as solution x0(t) and can be represented as
(2.3) xε(t) = x0(t) +R0(t, ε),

where R0(t, ε)→ 0 as ε→ 0 uniformly with respect to t on the interval t0 � t � T .
If, in the domain Ω, the right hand side of (2.1) is continuously differentiable

m � 1 times with respect to all the variables x and ε, then for a sufficiently small

14
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ε, solution xε(t) can be represented as

(2.4) xε(t) = x0(t) + εx1(t) + . . .+ εm−1xm−1(t) +Rm(t, ε),

where, as ε → 0, R0(t, ε) → 0 as a quantity of order εm uniformly with respect to
t on the interval t0 � t � T .
If, in the domain Ω, the right hand side of (2.1) is an analytic function of its

arguments, then for a sufficiently small ε, solution xε(t) can be represented as a
series

(2.5) xε(t) = x0(t) +
∞�

m=1

εmxm(t)

converging uniformly on the interval t0 � t � T .
In all these cases, system (2.1) is called regularly perturbed or a regular pertur-

bation of the system (2.2). In contrast to these systems, the nature of expansions for
singular perturbation problems is much more complex and unexpected, i.e., in the
asymptotic expansions for singular perturbation problems more complicated terms
can occur, such as logarithmic terms εm/k logl ε or εm/k, m, k, l,∈ N; see e.g. [94].
Thus, one defines singular perturbation problems, in an informal way, as problems
in which a breakdown of the regular perturbation limit xε(t)→ x0(t) occurs.
In this thesis we deal with singular perturbation problems, which describe pro-

cesses evolving on time scales with different orders of magnitude. Such processes
arise frequently in applications ranging from physics to biochemistry. In the follow-
ing section we will see that these singularly perturbed equations frequently have a
specific structure, i.e., a small parameter ε > 0 multiplies one of the derivatives,
which makes the standard regular perturbation theory inapplicable. The parameter
ε is called the singular perturbation parameter and measures the separation between
time scales.
In the following we present slow-fast systems, which may be employed in the

case of processes occurring at two different time scales, i.e., when the dynamics of
some variables is much faster than the dynamics of the other variables. Moreover,
we present an overview of geometric methods to study such systems.

2.2. Slow-fast systems in standard form

The equations we consider are of the form

(2.6)
x� = f(x, y, ε),
y� = εg(x, y, ε)

with a small parameter ε > 0, (x, y) ∈ Rn×Rm for n,m ∈ N, and smooth functions
f and g (in all three arguments). The derivative in (2.6) is with respect to the
time variable τ . By introducing a change of time scales t = τε, system (2.6) can be
reformulated as

(2.7)
εẋ = f(x, y, ε),
ẏ = g(x, y, ε).

The overdot differentiation in (2.7) is with respect to the slow time scale t. Hence,
near points where f(x, y, ε) is O(1) the variable x varies on the fast scale τ , while
near points where f(x, y, ε) is O(ε) solutions vary on the slow time scale t = τε.
Thus, we call system (2.6) and (2.7) the fast system and the slow system, respec-
tively. For ε > 0 these two systems are equivalent, i.e., the phase portrait remains
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unchanged, only the speed of propagation along the orbit changes. The parame-
ter ε varies in a small interval around zero and measures the ratio between the
time scales. Note that for ε > 0 fast and slow processes are combined in (2.6)
(equivalently in (2.7)).
To study fast and slow processes separately, but simultaneously, we analyze the

dynamics of two limiting problems obtained by taking the limit ε→ 0 in (2.6) and
(2.7), respectively. Namely, setting ε = 0 in (2.6) defines the layer problem

(2.8)
x� = f(x, y, 0),
y� = 0.

The corresponding reduced problem on the slow time scale t, obtained by setting
ε = 0 in (2.7), is given by

(2.9)
0 = f(x, y, 0),
ẏ = g(x, y, 0).

Note that the reduced problem (2.9) is an algebraic-differential equation, i.e.,
(2.9) is considered as a dynamical system for y, however, only on the set

S := {(x, y) ∈ Rn+m : f(x, y, 0) = 0}.
called the critical manifold. In contrast to (2.9), in the analysis of the layer prob-
lem (2.8) one studies the dynamics of the fast variables x, while keeping the slow
components y frozen. This is closely related to a bifurcation analysis, i.e., the as-
ymptotic behavior of the layer problem, its attractors and repellers are analyzed for
all possible values of y treated as parameters. In particular, the critical manifold
S is a set of equilibria of the layer problem (2.8), and therefore strongly influences
also the fast dynamics.
The linearized stability of points in S as the steady states of the layer problem

(2.8) is determined by the Jacobian ∂f
∂x
. We call the critical manifold S normally

hyperbolic1, when the Jacobian ∂f
∂x
|S is uniformly hyperbolic, i.e., its spectrum is

uniformly bounded away from the imaginary axis. A normally hyperbolic connected
compact subset S0 ⊂ S is called attracting (repelling), if all eigenvalues of ∂f∂x |p have
negative (positive) real parts for p ∈ S0. If S0 is normally hyperbolic and neither
attracting nor repelling, we call it of saddle-type.
The critical manifold S is not always a manifold in the strict sense, since points

of self-intersection or other singularities may arise. In a neighborhood of any point
in S, where the Jacobian ∂f

∂x
is nonsingular the equation f(x, y, 0) = 0 can be

solved for x = h0(y) by the implicit function theorem. In this situation the reduced
problem (2.9) is described by the equation

(2.10) ẏ = g(h0(y), y, 0).

In many problems valuable information on the dynamics of system (2.6) with ε
small can be obtained by analyzing and suitably combining the dynamics of the
layer problem (2.8) and the reduced problem (2.9). It is natural to expect that
the layer problem is an approximation of the fast dynamics and that the reduced
problem is an approximation of the slow dynamics. In many situations higher order

1
The notion of normal hyperbolicity is defined for invariant manifolds more generally. It

states that the attraction to and/or repulsion from the manifold is stronger than the dynamics on

the manifold itself; the exact definition can be found in [116].



2.3. FENICHEL THEORY – BASIS THEOREMS 17

approximations are obtained by the method of matched asymptotic expansions [42],
[66], [81], [90].

Remark 2.1. In the figures of this thesis the dynamics of reduced problems
and corresponding layer problems are shown simultaneously, in blue and green, re-
spectively. Hyperbolic behavior of the layer problem is indicated by double arrows,
while a single arrow indicates non-hyperbolic behavior of the layer problem, see e.g.
Figure 2.5.

2.3. Fenichel theory – basis theorems

During the last twenty years, in addition to the method of matched asymptotic
expansions, a more qualitative approach based on methods from dynamical systems
theory known as geometric singular perturbation theory has been developed. This
approach goes back to Fenichel [34], and in this section we recall some of the basic
results of his pioneering work. As a more detailed introduction to the theory we
recommend the survey [61], where also references to numerous applications can be
found. For a thorough discussion including proofs we refer to the original work by
Fenichel [34]. An interesting explanation of geometric singular perturbation theory
and its use in biological practice can be found in [51].
The two theorems cited below and illustrated in Figure 2.1 and Figure 2.2 de-

scribe precisely the relation between the dynamics of system (2.6) and the combined
dynamics of the layer problem (2.8) and the reduced problem (2.9).

Theorem 2.1. (Fenichel, [34]) For f , g Ck in (x, y, ε) and S0 a normally
hyperbolic compact subset of the critical manifold S given by S0 = {(h0(y), y) : y ∈
U} with U compact2, there exists ε0 > 0 such that for ε ∈ (0, ε0] there exists a locally
invariant n-dimensional Ck manifold Sε given as a graph Sε = {(h(y, ε), y)}, where
h is Ck in x and ε, and h(y, 0) = h0(y).
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Figure 2.1. Illustration of Fenichel theorems: persistence of a
slow manifold Sε.

The manifold Sε is called a slow manifold. Note that local invariance of Sε means
that trajectories enter or leave through boundaries of Sε. Moreover, S0 perturbs to

2
Fenichel theory for non-compact manifolds has been developed as well [32].
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Sε, which has a distance O(ε) from S0 and the flow on Sε converges to the slow
flow as ε→ 0, i.e., the slow flow on Sε can be described as

ẏ = g(h(y, ε), y, ε).

For a given critical manifold S0, let ns and nu denote the number of negative
and positive eigenvalues, respectively. Close to S0 the layer problem (2.8) has two
manifolds, which intersect in S0, i.e., the (m + ns)-dimensional stable manifold
W s(S0) and the (m+ nu)-dimensional unstable manifold Wu(S0), where m is the
dimension of the slow variables (for the planar case m = 1). The characterization
of the slow flow on Sε in terms of its stable and unstable manifolds W s(Sε) and
Wu(Sε) is given in the following theorem

Theorem 2.2. (Fenichel, [34]) Let α > 0 and β > 0 be such that Re(λs) <
−α < 0 and Re(λu) > β > 0, then there exists ε0 such that for ε ∈ (0, ε0] the
following holds.
(1) There exists a stable (m + ns)-dimensional Ck-manifold W s(Sε) and an
unstable (m+nu)-dimensional Ck-manifoldWu(Sε), which are both locally
invariant and Ck-close to W s(S0) and Wu(S0), respectively.

(2) The dynamics in W s(Sε) ( Wu(Sε)) is described by stable (unstable) in-
variant Ck-foliation Fs (Fu) of W s(Sε) ( Wu(Sε)) such that the distance
between orbits, which start in the same leaf of Fs (Fu) is decaying (grow-
ing) exponentially fast with rate e−αt (eβt).

(3) The leaves of Fs (Fu) are invariant under the flow, i.e., each leaf Fs(x, y)
(Fu(x, y) ) is mapped to another leaf Fs(x(t), y(t)) (Fu(x(t), y(t)) ) by
flow in forward (backward) time t.
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Figure 2.2. Behavior near a slow manifold Sε.

The slow manifold Sε has the same stability properties with respect to the
fast variables as S0, i.e., the attracting and repelling manifolds Sa and Sr perturb
smoothly to locally invariant manifolds Sa,ε and Sr,ε, respectively, for sufficiently
small ε �= 0.
To obtain Sa,ε (respec. Sr,ε) the center-manifold theory can be used in an

elegant manner [13]. Consider the following extended system

(2.11)
x� = f(x, y, ε),
y� = εg(x, y, ε),
ε� = 0
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in the extended phase space R3. Note that the planes ε = const. are invariant for
(2.11). Moreover, on the plane ε = 0 the dynamics is governed by the layer problem
(2.8). Thus, S × {0} is a manifold of equilibria for the extended system (2.11).
Assume that S is normally hyperbolic and fully attracting, i.e., S = Sa. Then, the
linearization of system (2.11) at points Sa × {0} has a double zero eigenvalue and
one uniformly hyperbolic stable eigenvalue. From the center manifold theorem we
conclude that there exists an attracting two-dimensional center-like manifold Ma.
The slow manifold Sa,ε is then obtained as sections ε = const. ofMa. Since the slow
manifold Ma is not unique, neither is Sa. However, all manifolds lie exponentially
close to each other, i.e., lie at a Hausdorff distance O(e−K/ε) from each other for
some constant K > 0.
Similarly, we can obtain the repelling manifoldMr. Note that this construction

breaks down when the linearization of system (2.11) has a triple zero eigenvalue.
More precisely, the critical manifold S contains then points where the Jacobian ∂f

∂x

is non-hyperbolic, i.e., ∂f
∂x
has a zero eigenvalue or a purely imaginary eigenvalue.

A zero eigenvalue of the Jacobian ∂f
∂x
at a point in S is typically related to a

singularity of the critical manifold S. The most common singularity in that context
are fold points corresponding to a saddle-node bifurcation of the layer problem.
In the method of matched asymptotic expansions these singularities of S lead to
complicated asymptotic expansions containing fractional powers and logarithms
of ε, see e.g. [42], [81], and also [71], [121].
Hence, such non-hyperbolic points are a major source of difficulties in all ap-

proaches and it is of great interest to study how Sa,ε as well as nearby solutions
behave as they pass near non-hyperbolic points.

2.4. Blow-up method

For a long time it was unclear how to extend geometric singular perturbation
theory to fold points and other non-hyperbolic points of the critical manifold S.
After the pioneering work of Dumortier and Roussarie [28] it turned out that the
blow-up method is a powerful tool in the analysis of singular perturbation problems
with non-hyperbolic points. Here we closely follow [71] and [110], and present the
blow-up of a non-hyperbolic point. See also [29], where the blow-up technique is
presented on different interesting examples in the plane and 3d-space.
Consider a planar singularly perturbed system augmented by a trivial equation

ε� = 0, i.e.,

(2.12)
x� = f(x, y, ε),
y� = εg(x, y, ε),
ε� = 0

and suppose that an equilibrium located at the origin is such that

f(0, 0, 0) = 0,
∂f

∂x
(0, 0, 0) = 0.

Note that the linearization of system (2.12) at the origin has a triple zero
eigenvalue; thus, the origin is a very degenerate equilibrium of the extended system
(2.12). To overcome this degeneracy, we apply the blow-up method, i.e., a suitably
weighted spherical coordinates transformation by which the degenerate equilibrium
is blown-up to a sphere. More precisely, the blow-up transformation is defined as a
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mapping Φ : S2 × [0, r0]→ R3

(2.13)
x = rαx̄,
y = rβ ȳ,
ε = rγ ε̄

with r0 > 0, the weights (α,β, γ) ∈ Z3, and S2 = {(x̄, ȳ, ε̄) : x̄2 + ȳ2 + ε̄2 = 1}.

!
!

"
!

!

"

!

Figure 2.3. Blow-up of a point to the two-sphere.

The map Φ is a diffeomorphism for r > 0 and for r = 0 is singular, i.e., it maps
the two-sphere Z = S2 × {0} to the origin, see Figure 2.3. The map Φ induces the
blown-up vector field X̄ such that the diagram in Figure 2.4 commutes. Since an
equilibrium is blown-up, the blown-up vector field vanishes on the sphere. After
dividing out a suitable power of the radial variable r, a sufficiently non-degenerate
flow on the sphere is obtained to allow a complete analysis.

Remark 2.2. In other words, after the blow-up and local division one obtains
a non-trivial rescaled version of the blown-up vector field on the sphere S2 × {0},
which contains vital information about the flow of the vector field X corresponding
to (2.12). This procedure of a local division by r called desingularization will be
explained in more detail in Chapter 3 – 5.

B
Φ−−−→ R3

X̄

�

�X

TB −−−→
Φ∗
TR3

Figure 2.4. Commutative diagram for the induced vector field,
where B = S× [0, r0].

The blown-up vector field is analyzed in local charts, which are obtained by
setting one blown-up variable on S2 equal to ±1 in the definition of the blow-up
transformation (2.13). Thus, the charts cover the two-sphere by planes perpendic-
ular to the axes. The most important chart in the blown-up analysis is the chart
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corresponding to ε̄ = 1 in (2.13). The corresponding blow-up transformation is sim-
ply an ε-rescaling of the original variables (x, y), since r = ε−γ . Thus, it is called
the rescaling chart or the classical chart to emphasize its importance. Due to the
equation ε� = 0, which implies r� = 0, r acts as a parameter in the rescaling chart.
However, in other charts the radial variable r becomes dynamic, and thus, the
blown-up systems are not a family of planar vector fields. These additional charts
are needed to capture the dynamics on unbounded domains in the classical chart,
i.e., points at the infinity correspond to points on the ”equator” on the sphere.
By now the blow-up method has found numerous applications in the analy-

sis of the dynamics associated with non-hyperbolic points of singularly perturbed
differential equations, see e.g. [21], [28], [30], [31], [69], [73], [95], [110], [111].
In many of these applications degenerate points are blown-up to spheres, however
in our works, presented in Chapter 3–5, higher dimensional degenerate objects are
blown-up, e.g. non-hyperbolic curves are blown-up to cylinders (see also [56], [95],
[100], [111] for other applications). Moreover, the blow-up method applied to our
problems has to be used iteratively, i.e., several consecutive blow-ups have to be
used to obtain a complete desingularization. More explicitly, this means that if
a certain blow-up leads to a less degenerate problem, which still has degenerate
points, these points can be treated by additional blow-ups [50].
How to determine the proper weights for each specific problem to obtain a

complete desingularization is the most subtle part of the blow-up method. A general
method for finding suitable weights does not exists, however, in certain singular
perturbation problems the theory of Newton polyhedra of polynomial vector fields
can be useful (see [11] for the existing theory).
A more detailed and excellent exposition of the blow-up method in the context

of singular perturbation can be found in [110]. For a more general background on
dynamical systems, we refer to [46].

2.5. Background on singularly perturbed planar folds

In this section we briefly describe results from [71] on slow manifolds of planar
singularly perturbed systems with critical manifolds containing non-degenerate fold
points.
We consider planar systems of the form (2.6). Assume that the critical manifold

S is a folded curve with a non-degenerate fold point at the origin, i.e.,

f(0, 0, 0) = 0, fx(0, 0, 0) = 0,
fxx(0, 0, 0) �= 0, fy(0, 0, 0) �= 0, g(0, 0, 0) �= 0.

Thus, the critical manifold S consists of an attracting branch Sa and a repelling
branch Sr with fx(x, y, 0) < 0 on Sa and fx(x, y, 0) > 0 on Sr.
Without a loss of generality we assume that the position of the critical manifold

S is as shown in Figure 2.5. We assume further that the reduced flow on S is down-
wards, i.e., g(x, y, 0) is strictly negative on S. The dynamics of the layer problem
and the reduced problem are as shown in Figure 2.5. Thus, we have the typical
behavior of a jump point. Solutions starting between Sa and Sr are attracted by
Sa, then follow the reduced flow until the fold point from where they jump to the
right along the weakly unstable fiber of the fold point.
Compact parts of Sa and Sr are normally hyperbolic. Fenichel theory [34], [61]

implies that Sa and Sr perturb smoothly to locally invariant slow manifolds Sa,ε
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Figure 2.5. Jump point and dynamics of the layer and the re-
duced problems.

and Sr,ε for ε small. The slow manifold Sa,ε (Sr,ε) is attracting (repelling) and has
an invariant stable (unstable) foliation with fibers close to the horizontal orbits of
the layer problem. The slow flow on Sa,ε and Sr,ε is a smooth perturbation of the
reduced flow on Sa and Sr, and hence is still directed downwards; see Figure 2.6.
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Figure 2.6. Slow manifolds and sections.

These results are valid outside any fixed small neighborhood of the fold point.
The analysis of the asymptotic behavior of solutions close to the fold point has
been the central problem in the analysis of relaxation oscillations [42], [81] by the
method of matched asymptotic expansions. A more recent approach in the analysis
of critical manifolds with non-hyperbolic points based on the blow-up method is
introduced in [28]. A detailed geometric analysis of the dynamics and asymptotics
close to the fold point based on the blow-up method is given in [71]. There it is
shown that the dynamics close to the fold point is governed by equations of the
form

(2.14)
x� = x2 − y +O(ε, xy, y2, x3),
y� = ε(−1 +O(x, y, ε)),
ε� = 0.
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The degenerate equilibrium (0, 0, 0) of system (2.14) is blown-up to a sphere by the
transformation

(2.15) x = rx̄, y = r2ȳ, ε = r3ε̄

with (x̄, ȳ, ε̄) ∈ S2 and r ∈ R. After dividing out a suitable power of the radial
variable r, a nontrivial flow on the sphere is obtained. The resulting flow on the
sphere is sufficiently non-degenerate to allow a complete analysis. For details we
refer to [71].
In order to describe the behavior of the attracting slow manifold Sa,ε beyond

the fold point, we consider a section Σin transverse to Sa defined by y = y0, y0 > 0
and a section Σout transverse to the unstable fiber of the fold point defined by
x = x0, x0 > 0. The following result has been proved as Theorem 2.1 in [71].

Theorem 2.3. Under the assumptions made in this section there exists ε0 > 0
such that the following assertions hold for ε ∈ (0, ε0]
(1) The manifold Sa,ε passes through Σout at a point (x0, h(ε)), where

h(ε) = O(ε2/3).

(2) Under the flow of system (2.6) the section Σin is mapped to an interval
around Sa,ε ∩ Σout. The transition map from Σin to Σout is a contraction
with contraction rate e−c/ε, where c is a positive constant.

We conclude that for ε small, solutions starting between Sa,ε and Sr,ε are
exponentially contracted onto Sa,ε, follow the slow flow on Sa,ε downwards, and
jump almost horizontally to the right after passing the fold point.



CHAPTER 3

Geometric singular perturbation analysis of an
autocatalator model

We consider the planar system of differential equations

(3.1)
ȧ = µ− a− ab2,
εḃ = −b+ a+ ab2,

where (a, b) ∈ R2, µ ∈ R and the parameter ε > 0 varies in a small interval around
zero. As explained in the introduction, system (3.1) is a model for an autocatalytic
chemical process with the variables a and b being scaled concentrations. The auto-
catalytic nature of the process is modeled by the ab2 term, i.e., the production rate
of b increases linearly with the concentration of b, see e.g. [93], [98]. Naturally the
physically meaningful range of the variables is a, b � 0. Our main result is that for
µ > 1 and ε sufficiently small system (3.1) has a globally attracting limit cycle of
relaxation type.
This chapter is organized as follows. In Section 3.1 we analyze the dynamics and

asymptotic behavior of the autocatalator in the regimes b = O(1) and b = O(1/ε).
Section 3.2 presents the blow-up analysis. In Section 3.3 we prove the existence of
a periodic orbit of relaxation type for the blown-up system. Section 3.4 contains
some remarks about canard cycles of system (3.1), which occur for µ ≈ 1. In order
not to interrupt the main argument and to avoid confusing notation the proof of
Theorem 3.8 based on a second blow-up procedure is given in Section 3.5.

3.1. Slow–fast analysis of the autocatalator

Due to the occurrence of the small parameter ε solutions evolve on several time
scales. System (3.1) is written in the standard form of slow-fast systems with the
slow variable a and the fast variable b. The derivative in (3.1) is with respect to slow
time scale t. By transforming to the fast variable τ := t/ε we obtain the equivalent
fast system

(3.2) a� = ε(µ− a− ab2),
b� = −b+ a+ ab2,

where � denotes differentiation with respect to τ . Setting ε = 0 defines two limiting
systems: the reduced system (obtained from (3.1))

(3.3) ȧ = µ− a− ab2,
0 = −b+ a+ ab2,

and the layer problem (obtained from (3.2))

(3.4) a� = 0,
b� = −b+ a+ ab2.

24
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In problems of this type the reduced problem captures essentially the slow dynamics
and the layer problem captures the fast dynamics.

3.1.1. Regime 1: b = O(1). We begin by discussing some of the basic prop-
erties of the layer problem (3.4) and the reduced problem (3.3). The layer problem
is a one-dimensional dynamical system in the fast variable b with the slow variable
a acting as a parameter. The critical manifold S

(3.5) S =
�
(a, b) : a− b+ ab2 = 0

�

is the manifold of steady states of the layer problem. S is a graph a = b

1+b2 , b � 0,
see Figure 3.1. The linearized stability of points in S as the steady states of the
layer problem (3.4) is determined by the sign of b

2−1
1+b2 ; thus, the manifold S consists

of an attracting branch Sa with b < 1, a repelling branch Sr with b > 1, and a
non-hyperbolic fold point pf = (1/2, 1).

Figure 3.1. Critical manifold S and fast flow of the layer problem (3.4).

The slow dynamics of the reduced problem (3.3) on the critical manifold S is
obtained by differentiating equation a = b

1+b2 with respect to time t and substitut-
ing this expression into ȧ = µ− a− ab2, which gives

(3.6) ḃ =
1 + b2

1− b2 (µ− b).

This system is singular at b = 1 and has a steady state for b = µ. Three different
cases can be distinguished (depicted in Figure 3.2):

(1) For µ < 1 the steady state is stable and lies on the attracting critical
manifold Sa. All solutions corresponding to b > µ approach the fold in
finite backward time.

(2) For µ = 1 there is no equilibrium since the singularity in (3.6) at b = 1
cancels and the reduced flow passes through the fold point.
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(3) For µ > 1 the steady state is unstable and lies on the repelling manifold
Sr. All solutions corresponding to b < µ approach the fold in finite forward
time.

Figure 3.2. Dynamics of the reduced problem (3.6) depending on parameter µ.

In this work we focus on the case µ > 1. In the singular limit solutions starting
on the left side of S are rapidly attracted to Sa, follow the reduced dynamics until
they reach the fold point and then jump up vertically along the orbit a = 12 of the
layer problem. Thus, we have the familiar phenomenon of a jump point in Regime 1,
see the µ > 1 case in Figure 3.2.
A precise description of the dynamics for 0 < ε << 1 can be given by combining

standard Fenichel theory [34] with the blow-up analysis of planar fold points given
in [71]. We conclude from [34] that outside a small neighborhood of the fold point
pf , the manifolds Sa and Sr persist as nearby invariant slow manifolds Sa,ε, Sr,ε,
respectively for ε small, i.e.,

Theorem 3.1. For small δ > 0 there exist ε0 > 0 and smooth functions b =
ha,ε(a) and b = hr,ε(a) defined on Ia := [−δ, 12 − δ] and Ir := [δ,

1
2 − δ], respectively,

such that the graphs

Sa,ε = {(a, b) : b = ha,ε(a), a ∈ Ia}, Sr,ε = {(a, b) : b = hr,ε(a), a ∈ Ir}

are locally invariant attracting, respectively repelling slow manifolds of system (3.1)
for ε ∈ (0, ε0].
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At the fold point pf , where normal hyperbolicity fails, Fenichel theory does not
apply. Nevertheless, the description of the dynamics near pf for ε �= 0 by using blow-
up techniques has been given in [28], [71]. In particular, the asymptotic behavior
of the continuation of Sa,ε beyond the fold point has been studied in [71], see
Section 3.3.1 for details. Hence, the singular limit behavior described above persists
for small ε, i.e. all orbits starting between Sa,ε and Sr,ε are rapidly attracted by
Sa,ε, follow the slow flow to the right and jump almost vertically to large values of
b after passing the fold point, see Sections 3.3.5 and 3.3.1 for a detailed description
based on suitably defined transition maps.
This analysis implies that for µ > 1 limit cycles with b = O(1) do not exist. In

order to find a cycle for system (3.1) larger values of b must be taken into account.

3.1.2. Regime 2: b = O(1/ε). For large values of b the cubic terms in (3.1)
become dominant and the asymptotic behavior is not correctly described by the
layer equations (3.4), i.e., new scales arise and a different asymptotic analysis is
needed. This is best seen if the variables are rescaled according to

(3.7) a = A, b =
B

ε
, T = t/ε2.

In these variables the equations have the form

(3.8) A� = µε2 −Aε2 −AB2,
B� = −Bε+Aε2 +AB2,

where � denotes differentiation with respect to T .
Setting ε = 0 in (3.8) gives

(3.9) A� = −AB2,
B� = AB2.

The A-axis and B-axis are two lines of equilibria, denoted by lA and lB , respectively,
which intersect at the origin. Hence, system (3.8) is a singularly perturbed system
which, however, is not in standard form since both variables evolve in the ε = 0
problem. Therefore, system (3.9) will be also called layer problem in the following.

Figure 3.3. Dynamics of the layer problem (3.9).
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The dynamics of this layer problem is rather simple, see Figure 3.3. The two
lines of equilibria are connected by heteroclinic orbits, i.e., an equilibrium (A0, 0) ∈
lA is connected to the equilibrium (0, A0) ∈ lB by an orbit of the layer problem
lying on the straight line B = A0 −A.
Outside of a neighborhood of the origin the line lB is exponentially attracting,

whereas the line lA is non-hyperbolic for the layer problem. Thus, any compact
subset of the line lB that does not contain the origin can be taken as a normally
hyperbolic critical manifold M0. Then, Fenichel theory [34] implies the existence
of a slow manifold Mε that is a perturbation of M0, i.e., lies within O(ε) of M0.
More precisely, we have the following result.

Theorem 3.2. Let M0 = {(0, B) : B ∈ [B0, B1], B0 > 0}. There exists ε0 > 0
such that for ε ∈ (0, ε0] there exists a smooth locally invariant attracting one-
dimensional slow manifold Mε given as a graph

(3.10) Mε = {(A,B) : A = h(B, ε), B ∈ [B0, B1]}.
The function h(B, ε) is smooth and has the expansion h(B, ε) = ε2 µ

B2
+O(ε3).

Proof. The existence of the slow manifold as a graph A = h(B, ε) follows from
Fenichel Theory due to the normal hyperbolicity of M0. By plugging the expansion
of h in powers of ε into (3.8) and comparing coefficients of powers of ε the expansion
(3.10) is easily obtained. �
The equation governing the slow dynamics on Mε is found by substituting the

function h(B, ε) into (3.8). Hence, the slow flow on Mε is governed by the equation

(3.11)
dB

dτ
= −B +O(ε),

where τ = εT = t/ε. We conclude that B decays exponentially on Mε.
Thus, Regime 2 provides the following mechanism for obtaining a closed singu-

lar cycle. All of Regime 1 is compressed into the non-hyperbolic line of equilibria
lA. In particular, the fold point pf of the critical manifold S and its fast fiber in
Regime 1 collapse into the point p = (1/2, 0). The point p is connected to the point
p∗ = (0, 1/2) ∈ lB by a heteroclinic orbit ω of the layer problem (3.9). From there
the singular orbit follows the reduced dynamics (3.11) along the critical manifoldM0
until it reaches the origin. Thus, we introduce the singular cycle γ0 := SA∪ω∪SB ,
where SA is the segment from the origin to pf on lA and SB is the segment from
p∗ to the origin on lB .
Note, however, that we have no valid description of the dynamics and asymp-

totics near the non-hyperbolic line lA in Regime 2. A full description of the dynamics
will be obtained by matching Regime 2 with Regime 1. In fact, we will prove the
following theorem.

Theorem 3.3. For µ > 1 and ε sufficiently small there exists a unique at-
tracting periodic orbit γε of system (3.8), and hence of the equivalent system (3.1),
which tends to the singular cycle γ0 for ε→ 0.

We illustrate these results with numerical simulations obtained by using Math-
ematica 6. Figure 3.4 shows the limit cycle γε for ε = 0.001 and µ = 3 lying close
to the singular cycle γ0. In Figure 3.5 the part of γε corresponding to Regime 1
is shown. The solution corresponding to the limit cycle is attracted to the slow
manifold, follows the slow manifold and jumps to large values of b after passing the
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fold point. The unstable equilibrium is shown in Figure 3.5. Due to the scaling the
unstable equilibrium seems to lie on the limit cycle in Figure 3.4.

Figure 3.4. Limit cycle γε for ε = 0.001 and µ = 3 of system (3.8).

Figure 3.5. Part of the limit cycle γε for ε = 0.001 and µ = 3 in Regime 1.
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The matching of Regime 1 with Regime 2 will be done in a geometric way
based on the blow-up technique. In the next section, we begin this blow-up analysis
by defining a suitable blow-up of the non-hyperbolic line of steady states lA. We
analyze the dynamics of the blown-up system and define a better resolved singular
cycle. In Section 3.3 we prove that the singular cycle of the blown-up system persists
for ε �= 0.

3.2. Blow-up analysis

The starting point of our geometric analysis is the rescaled extended system in
the form

(3.12)
A� = µε2 −Aε2 −AB2,
B� = −εB +Aε2 +AB2,
ε� = 0.

System (3.12) is viewed as a three dimensional vector field X, i.e., ε is viewed as a
variable instead of as a parameter. Note that the planes ε = const. are invariant for
this three dimensional system. In particular, on the plane ε = 0 the flow is given by
the layer problem (3.9). Moreover, lA∪{0} is a manifold of equilibria for (3.12) and
the eigenvalues of the linearization of system (3.12) evaluated at these equilibria
are all equal to zero. To overcome this degeneracy we apply the following blow-up
transformation

(3.13) A = ā, B = rb̄, ε = rε̄

with ā ∈ R, (b̄, ε̄) ∈ S1 =
�
(b̄, ε̄)| b̄2 + ε̄2 = 1

�
, and r ∈ R+0 . The blow-up transfor-

mation simply introduces polar coordinates in the (B, ε)-plane. For r > 0 the blow-
up transformation is a diffeomorphism. The preimage of the singular line lA × {0}
is the cylinder Z = R× S1 × {0}, i.e., the singular line lA × {0} is blown-up to the
cylinder Z, see Figure 3.6.

Figure 3.6. Blow-up transformation (3.13) for system (3.12) and
local charts K1 and K2.

The vector field (3.12) induces a vector field X̄ on the blown-up space R×S1×
R+0 . Since the cylinder Z is constructed as the blow-up of a line of equilibria, the
blown-up vector field vanishes on the cylinder. To obtain a non-trivial flow on the
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cylinder the blown-up vector field must be desingularized by dividing out a factor
r.
The blown-up vector field is analyzed in charts K1 and K2 defined by setting

ε̄ = 1 and b̄ = 1, respectively, in the blow-up transformation (3.13). Thus, chart K1
covers the front side of the cylinder corresponding to ε̄ > 0, while K2 covers the
upper part of the cylinder corresponding to b̄ > 0, see Figure 3.6. It turns out that
after desingularization the blown-up vector field written in chart K1 is precisely
the original system (3.2). Thus, the specific form of the blow-up transformation is
directly linked to the form of the rescaling (3.7), see also Remark 3.2 below.

Remark 3.1. Intuitively, it is clear that chart K1 covers Regime 1 and that
chart K2 covers Regime 2. Note, however, that a rigorous perturbation analysis
in Regime 1 is only possible for bounded values of b, whereas a rigorous pertur-
bation analysis in Regime 2 is only possible for B bounded away from zero. It is
an important property of the blow-up method that these results are recovered in the
corresponding charts. In addition, the blow-up method provides a compactification
of the region corresponding to unbounded b in Regime 1 and a desingularization of
the nonhyperbolic line lA in Regime 2, which allows to match the two regimes.

3.2.1. Dynamics in charts. Consider the charts K1 and K2 defined by set-
ting ε̄ = 1 and b̄ = 1 respectively, in the blow-up transformation (3.13). Hence, the
blow-up transformation in charts Ki, i = 1, 2, is given by

(3.14) A = a1, B = r1b1, ε = r1,

(3.15) A = a2, B = r2, ε = r2ε2.

The change of coordinates κ12 from K1 to K2 is given by

(3.16) a2 = a1, r2 = r1b1, ε2 = 1/b1.

We denote the inverse transformation of κ12 by κ21.

Dynamics in chart K1. By inserting (3.14) into system (3.12), we obtain the
blown-up system, which is a family of planar vector fields with parameter r1, (since
r�1 = 0)

(3.17)
a�1 = r21(µ− a1 − a1b21),
r1b�1 = r21(a1b21 + a1 − b1),
r�1 = 0.

Now we desingularize the equations by rescaling time t1 := r1t, so that the factor
r1 disappears. We obtain

(3.18) a�1 = r1(µ− a1 − a1b21),
b�1 = a1 − b1 + a1b21,

which is precisely the original system (3.2) with

a = a1, b = b1, ε = r1.

Thus, the geometric singular perturbation analysis of Regime 1 is valid on compact
regions in chart K1.
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Remark 3.2. Writing system (3.12) in chart K1 corresponds to undoing the
scaling (4.3). This explains also the choice of the weights, i.e., the r-factors, in the
blow-up transformation (3.13). The blow-up transformation has to be chosen such
that the rescaling (4.3) corresponds to the blow-up transformation (3.14) in chart
K1 defined by ε̄ = 1.

Dynamics in chart K2. Applying transformation (3.15) to system (3.12) and
desingularizing by dividing out the factor r2, we obtain

(3.19)
a�2 = −r2(a2 + ε22a2 − ε22µ),
r�2 = r2(a2 + ε22a2 − ε2),
ε�2 = −ε2(a2 + ε22a2 − ε2),

where � denotes differentiation with respect to a rescaled time variable t2. System
(3.19) has two invariant subspaces, namely the plane ε2 = 0 and the plane r2 = 0.
The dynamics in the invariant plane ε2 = 0 is governed by

(3.20) a�2 = −a2r2,
r�2 = a2r2.

The r2-axis and the a2-axis are two lines of equilibria, which we denote by LB and
LA, respectively. The line LB corresponds to the normally hyperbolic line lB . Away
from (a2, r2) = (0, 0) the line LB is attracting for the flow in ε2 = 0. The new line
of equilibria LA is repelling for the flow in ε2 = 0. Thus, the dynamics in ε2 = 0
is very similar to the dynamics of the layer problem (3.9), but with the normally
hyperbolic line LA instead of the non-hyperbolic line lA, see Figure 3.7.
In the invariant plane r2 = 0 system (3.19) reduces to

(3.21) a�2 = 0,
ε�2 = −(a2 + ε22a2 − ε2)ε2.

The equilibria of this system are the line LA and a curve of equilibria corresponding
to the critical manifold S from Section 3.1.1. Recall that S consists of an attracting
branch Sa and a repelling branch Sr separated by the non-hyperbolic fold point pf .
Within r2 = 0 the line LA is attracting, i.e., there exist heteroclinic orbits from Sr
to LA in r2 = 0.

Remark 3.3. Note that the repelling slow manifold Sr and the unstable fiber
of the fold point pf , which are unbounded in Regime 1, have been compactified in
chart K2.

Lemma 3.1. The following assertions hold for system (3.19):
(1) The linearization at the steady states in LB has a double zero eigenvalue
and a simple eigenvalue −r1 with eigenspaces span{(0, 1, 0)T , (0, 0, 1)T }
and span{(−1, 1, 0)}.

(2) The line LA is a line of hyperbolic steady states of saddle type.
(3) The linearization of the system (3.19) at the origin has a triple zero eigen-
value.

Proof. Computations. �
Property 1 of the lemma suggests the existence of an attracting two-dimensional

invariant manifold containing the line LB as long as r2 is bounded away from zero.
Since the region r2 � δ corresponds to B � δ, this manifold is precisely the slow
manifold described in Theorem 3.2. Thus, we conclude
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Figure 3.7. Dynamics of system (3.19) in ε2 = 0 and r2 = 0.

Lemma 3.2. Let δ > 0. For r2 � δ system (3.19) has an exponentially attracting
two-dimensional slow manifoldM containing the line of equilibria LB. The manifold
M is given as a graph a2 = µε22 + O(r32ε32). There exists a stable foliation F with
base M and one-dimensional fibers. The contraction along F in a time interval of
length t is stronger than e−ct for any 0 < c < δ. For the slow flow on M the variable
r2 is strictly decreasing.

Note that away from the origin the line LA has gained hyperbolicity due to the
blow up in contrast to the situation for the line la for system (3.9). The origin is
still a very degenerate equilibrium of system (3.13), which will be studied later by
means of further blow-up (Section 3.4).

3.2.2. Dynamics of the blown-up system. The above analysis provides us
with the following picture of the dynamics of the blown-up vector field shown in
Figure 3.8. We find the critical manifold S with its attracting and repelling branches
Sa, Sr on the cylinder and the lines LB , LA of equilibria.
There are five particular points, denoted by p∗ ∈ Sa, pf ∈ S, ps ∈ LA, p∗ ∈ LB ,

q ∈ LA ∩ LB ∩ Sr. The point pf is the fold point of S and the other points are
described below. We introduce the following notation: ω1 is the segment of Sa from
p∗ to pf ; ω2 is the heteroclinic orbit of system (3.20) connecting pf to ps; ω3 is the
union of ps and the heteroclinic orbit of system (3.21) connecting ps to p∗; ω4 is the
segment of LB connecting p∗ to q; ω5 is the heteroclinic orbit connecting q with p∗
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on the cylinder r = 0, which is described by system (3.20) close to q and by (3.18)
close to p∗.
We define the singular cycle Γ0 = ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪ ω5. Note that due to

the blow-up the singular cycle γ0 of Theorem 3.3 has been replaced by the more
complicated singular cycle Γ0. Due to the improved hyperbolicity properties of Γ0
we can show that Γ0 persists as a genuine periodic orbit for ε small. Since ε = rε̄
we have to analyze the blown-up vector field for r small or ε̄ small, i.e., close to the
cylinder r = 0 or close to the invariant plane ε̄ = 0, respectively.

Figure 3.8. Dynamics of the blown-up system, singular cycle Γ0,
and sections.

Theorem 3.4. For µ > 1 the blown-up vector field X̄ has a family of attracting
periodic orbits Γ̄ε parameterized by ε ∈ (0, ε0], ε0 sufficiently small, which for ε→ 0
tend to the singular cycle Γ0 = ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪ ω5.

Remark 3.4. Theorem 3.3 follows from Theorem 3.4 by applying the blow-up
transformation (3.13).

3.3. Construction of the Poincaré map

In this section we prove Theorem 3.4 by showing that an appropriately de-
fined Poincaré map possesses an attracting fixed point. The Poincaré map will be
constructed as the composition of five local transition maps defined in suitable
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neighborhoods of the singular cycle Γ0. The five local transition maps are discussed
in detail in Subsections 3.3.1 – 3.3.5.
We choose sections Σi, i = 1, . . . , 5 as shown in Figure 3.8, i.e.,

Σ1 is transversal to the curve of steady states Sa and close to the fold point pf ;
Σ2 is transversal to the heteroclinic orbit ω2 and close to ps;
Σ3 is transversal to the heteroclinic orbit ω3 and close to the line LB ;
Σ4 is transversal to the line LB and close to the nilpotent point q;
Σ5 is transversal to the heteroclinic orbit ω5 and close to q.
The sections Σi will be defined more precisely in Subsections 3.3.1 – 3.3.5,

where the blown up system is considered in specific charts.
We introduce the following maps defined by the flow of X̄:

Π1 : Σ1 → Σ2 − passage of the fold point pf ,
Π2 : Σ2 → Σ3 − passage of the hyperbolic line LA,
Π3 : Σ3 → Σ4 − contraction onto the vertical slow manifold,
Π4 : Σ4 → Σ5 − passage of the nilpotent point q,
Π5 : Σ5 → Σ1 − contraction onto the attracting slow manifold.

We will show that the map Π : Σ1 → Σ1 defined as

Π = Π5 ◦Π4 ◦Π3 ◦Π2 ◦Π1
is a contraction with a fixed point.
Let δ > 0, β1 > 0, β2 > 0 and αi be fixed small numbers, which will be used in

the definition of all sections Σi, i = 1, . . . , 5.

3.3.1. Analysis of Π1 – passage of the fold point. The construction of
the transition map Π1 is carried out in chart K1, i.e., the dynamics is governed by
system (3.18), which is the original system (3.2) with a = a1, b = b1, ε = r1. We
define

Σ1 =
�
(a1, b1, r1) : a1 = 12 − δ, b1 ∈ [0,

1
2 ], r1 ∈ [0,β1]

�

and
Σ2 = {(a1, b1, r1) : | 12 − a1| � α2, b1 = 1/δ, r1 ∈ [0,β1]}.

For ε sufficiently small all orbits starting in Σ1 are rapidly attracted by the slow
manifold Sa,ε from Theorem 3.1. The analysis in [71] implies that the continuation
of Sa,ε intersects Σ2 transversally. Hence, the map Π1 is well defined. By combining
the analysis of the generic fold point in [71] with standard Fenichel theory [34] we
obtain

Theorem 3.5. For fixed δ > 0 there exists β1 > 0 such that the transition map

(3.22) Π1 : Σ1 → Σ2
is defined. The transition map Π1 is exponentially contracting, i.e., for r1 fixed the
a1 component of the map is contracting with rate e−c1/r1 with a constant c1 > 0.

3.3.2. Analysis of Π2 – passage of the hyperbolic line LA. We now
analyze the dynamics close to the point ps ∈ LA. The construction of the transition
map Π2 is carried out in chart K2, i.e., the dynamics is governed by system (3.19).
In K2 the section Σ2 is a subset of the plane ε2 = δ. We define the section

Σ3 by
Σ3 = {(a2, r2, ε2) : | 12 − a2| � α3, r2 = δ, ε2 ∈ [0,β2]}.
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Let p0 = ( 12 , 0, δ) ∈ Σ2 denote the point, where the singular cycle Γ0 intersects
the section Σ2. Let R2 ∈ Σ2 be an arbitrarily small rectangle centered at p0, see
Figure 3.9. Recall that the invariant plane r2 = 0 corresponds to the cylinder and
that the plane ε2 = 0 is invariant.

Figure 3.9. Passage of the hyperbolic line LA.

For computational purposes we shift the point ps to the origin by making the
change of coordinates ã2 = a2− 12 . For the sake of readability we omit the subscript
of the variables in this subsection. In these variables the system has the form

(3.23)
ã� = −r − 2rεG(ε, ã),
r� = r,
ε� = −ε

with

G(ã, ε) :=
(1− µε)

1 + 2ã+ 2ε2(ã+ 1/2)− 2ε ,

where we have divided the vector field by the factor F (ã, r, ε) = ã+ 12+ε
2(ã+ 12 )−ε,

which does not vanish in a small neighborhood of the origin. For this system the
origin is a non-hyperbolic equilibrium whose eigenvalues are −1, 1, 0 and are in
resonance (−1+ 1 = 0). This indicates that the resonant terms in (3.23) cannot be
eliminated by a normal form transformation and that the transition map is difficult
to compute due to the occurrence of logarithmic terms. However, we are able to
show
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Theorem 3.6. For system (3.19) the transition map

Π2 : R2 → Σ3, (ain, rin, δ) �→ (aout, δ, rin)
is well defined for δ small enough and sufficiently small rectangle R2 ⊂ Σ2, and
satisfies

(3.24) ain + rin − δ − 2(1 + c2)δrin ln rin � aout � ain + rin − δ,
where the constant c2 > 0 can be made arbitrarily small for δ small. The map Π2
restricted to the line rin = const. is at most algebraically expanding.

Proof. In the proof we use the system (3.23) with the shifted variable ã =
a − 12 . To estimate aout for given (rin, ain) ∈ Σ2 consider a solution (ã, r, ε)(t) of
(3.23), which satisfies

(3.25)
ã(0) = ãin, ã(T ) = ãout,
r(0) = rin, r(T ) = δ,
ε(0) = δ, ε(T ) = εout.

The formulas ε(t) = δe−t and r(t) = rinet imply that the transition time T is given
by

(3.26) T = ln
δ

rin
.

Since 0 � G(ã, ε) � 1 + c2 with c2 > 0 small for δ small, we obtain the inequality
−rinet − 2δrin(1 + c2) � a� � −rinet

by using the formulas for r(t) and ε(t). Inequality (3.24) follows by integrating and
using the initial conditions and the formula for the transition time.
Since ã satisfies the scalar non-autonomous differential equation

ã� = rinet − 2δrinG(δe−t, ã),
ãout depends Lipschitz continuously on ãin on a line rin = const. with a Lipschitz
constant of the order r−L

in
for some constant L.

�
3.3.3. Analysis of Π3 – contraction towards the vertical slow manifold

M . The construction of the transition map Π3 is carried out in chart K2, i.e., the
dynamics is governed by system (3.19) in the variables (a2, r2, ε2). We define Σ4 by

Σ4 = {(a2, r2, ε2) : |a2| � α4, r2 = δ, ε2 ∈ [0,β2]}
with β2 and α4 > 0 small. For B = r2 � δ the system is equivalent to system (3.8)
and Lemma 3.2 is applicable for ε = r2ε2 small enough, which can be guaranteed
by choosing β2 small.
We conclude that all orbits starting in Σ3 are rapidly attracted by the slow

manifold M , follow the slow flow downwards, and intersect Σ4. More precisely we
have

Theorem 3.7. For δ > 0 there exists β2 small enough such that
(1) The transition map

Π3 : Σ3 → Σ4, (a2,in, δ, ε2,in) �→ (a2,out, δ, ε2,in)
is well defined. Restricted to lines ε2,in = const. in Σ3 the map Π3 is
contracting with a rate e−c3/ε2 with c3 > 0 as ε2,in → 0.
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(2) The intersection of M with Σ4 is a smooth curve σ4 given by a2 = µε22 +
O(ε32δ3).

(3) The image Π3(Σ3) is an exponentially thin wedge lying exponentially close
to the curve σ4.

Proof. Since r2,in = r2,out = δ the relation ε = r2ε2 implies ε2,out = ε2,in.
The other assertions of the theorem follow from standard Fenichel theory. �

3.3.4. Analysis of Π4 – passage of the nilpotent point q. The construc-
tion of the transition map Π4 is carried out in chart K2. We define the section
Σ5

Σ5 = {(a2, r2, ε2) : |a2| � α5, r2 ∈ [0,β1/δ], ε2 = δ}.
Let R4 ⊂ Σ4 be an arbitrarily small rectangle centered at the origin, where the
singular cycle Γ0 intersects Σ4.

Theorem 3.8. For δ small enough and a sufficiently small rectangle R4 ⊂ Σ4
the transition map Π4 : R4 → Σ5 is a C1- map and has the following properties
(1) The continuation of M by the flow intersects Σ5 in a C1-curve σ5, which
is tangent to r2 = 0.

(2) Restricted to lines ε2 = const. in R4 the map Π4 is contracting with a rate
e−c4/ε2 with c4 > 0 as ε2,in → 0.

(3) The image Π4(R4) is an exponentially thin wedge containing the curve σ5.

Proof. The proof based on blowing up the point q is given in Section 3.5. �

3.3.5. Analysis of Π5 – transition towards the attracting slow mani-
fold Sa. We now analyze the transition map from Σ5 to Σ1. This is done in chart
K1, where the dynamics is described by system (3.18). Recall that system (3.18) is
just the original system (3.2), where ε = r1 is constant along the flow. In K1 the
section Σ5 is given by

Σ5 = {(a1, b1, r1) : |a1| � α5, b1 = 1/δ, r1 ∈ [0,β1]} .

For β1 small the analysis from Regime 1 implies that all orbits starting from
(ain, 1δ , ε) ∈ Σ5 are attracted by the slow manifold Sa,ε, follow the slow dynamics
along Sa,ε and after a while cross the section Σ1 transversally. More precisely, we
have

Theorem 3.9. For δ > 0 there exists β1 small such that
(1) The transition map Π5 : Σ5 → Σ1 is well defined.
(2) Its restriction to a slice ε = const. is a contraction with the contraction
rate O(e−c5/ε), where c5 > 0.

(3) The image Π5(Σ5) is an exponentially thin wedge lying exponentially close
to the smooth curve formed by the intersection of the family Sa,ε with Σ1.

3.3.6. Proof of Theorem 3.4.

Proof. It follows from Theorems 3.5 – 3.9 that for β1 sufficiently small the
transition map Π : Σ1 → Σ1 given by

Π = Π5 ◦ κ21 ◦Π4 ◦Π3 ◦Π2 ◦ κ12 ◦Π1
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is well defined. In this formula the coordinate changes are needed because Π1 and
Π5 have been defined in chart K1, while Π2, Π3 and Π4 have been defined in chart
K2.
Since ε is a constant of motion for the blown-up system, lines ε = const. are

invariant under the map Π. Since the maps Π1, Π3, Π4, Π5 are exponentially con-
tracting on lines ε = const. and Π2 is at most algebraically expanding, the map
Π restricted to ε = const. is exponentially contracting. The contraction mapping
theorem implies the existence of a unique fixed point corresponding to an exponen-
tially attracting periodic orbit Γ̄ε of the blown-up vector field close to the singular
cycle Γ0 for ε sufficiently small. �

3.4. Canard cycles

As the parameter µ passes through µ = 1, the a-nullcline of system (3.1)
crosses the fold point pf of the critical manifold S. According to [71] the non-
hyperbolic point pf is a canard point for µ = 1. The corresponding reduced flow
on the critical manifold S is smooth at the point pf and passes through the fold
point, see Figure 3.2. It has been shown in [6], [7], [12], [25], [28], and [71] that
this configuration implies the existence of canard solutions and the occurence of a
canard explosion for µ ≈ 1 and ε small. Canard solutions correspond to situations
where the slow manifolds Sa,ε and Sr,ε are exponentially close in a neighborhood
of pf . A canard solution is a solution which is initially attracted by Sa,ε, passes the
fold point and follows the repelling slow manifold Sr,ε for a while before it is finally
repelled from Sr,ε. A canard solution which forms a closed cycle is called a canard
cycle. Canard explosion is the phenomenon that a small limit cycle is generated
in a Hopf-bifurcation at µ = µHopf (ε) and grows to a large relaxation cycle as µ
varies in an exponentially small interval.
As µ grows the following types of canard cycles of System 3.1 exist, see Fig-

ure 3.8:
(1) Canard cycles corresponding to singular cycles, which start at a point on
Sa, pass through pf , follow Sr, and jump back to the starting point on
Sa.

(2) Canard cycles corresponding to the singular cycle, which start at p∗ ∈ Sa,
pass through pf , follow Sr until the point q, and jump back to p∗ ∈ Sa.

(3) Canard cycles corresponding to singular cycles, which start on Sa, pass
through pf , follow Sr, jump to the line LA, jump to the line LB , follow
the slow flow on LB downwards to the point q, and jump back to the point
p∗ ∈ Sa. This type of canards limits on the relaxation cycles corresponding
to µ > 1 considered in this paper.

Canard cycles of Type 1 are covered by the results in [71].
Canard cycles of Type 3 can be analyzed by combining results on canard points

from [71] with the return mechanism discussed in this paper corresponding to the
map Σ2 → Σ5 (with an in a-direction suitably extended section Σ2).
The analysis of intermediate canard cycles of Type 2 is more subtle and requires

a more detailed analysis of the system from Section 3.5 obtained by blowing up the
nilpotent point q, see Figure 3.11.
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3.5. Passage of the nilpotent point q

Here we construct the transition map Π4 : R4 → Σ5 and prove Theorem 3.8.
Since the construction of the transition map Π4 is done in chart K2 only, we omit
the subscript 2 of the variables for the sake of readability. Hence, the governing
equations are

(3.27)
a� = −r(a+ ε2a2 − ε2µ),
r� = r(a+ ε2a2 − ε),
ε� = −ε(a+ ε2a− ε).

We know from Section 3.2 (Lemma 3.1) that q = (0, 0, 0) is an equilibrium of system
(3.27) with a triple zero eigenvalue. To analyze this degenerate equilibrium we again
use the blow-up method. We use the radial homogeneous blow-up

(3.28)
a = ρā,
r = ρr̄,
ε = ρε̄,

where (ā, r̄, ε̄) ∈ S2 and ρ ∈ [0, ρ0] for ρ0 sufficiently small, i.e., the origin is blown-
up to a two-sphere, see Figure 3.10. The analysis of the blown-up vector field is

Figure 3.10. Blow-up transformation (3.28) for system (3.27).

again carried out in two charts K1 and K2 defined by setting r̄ = 1 and ε̄ = 1,
respectively. The blow-up transformation is given by

(3.29) a = ρ1a1, r = ρ1, ε = ρ1ε1,

in chart K1 and by
(3.30) a = ρ2a2, r = ρ2r2, ε = ρ2

in chart K2. The change of coordinates from K1 to K2 is given by
ρ2 = ε1ρ1,

a2 = a1ε
−1
1 ,(3.31)

r2 = ε−11 .

The section Σ4 from Subsection 3.3.4 written in chart K1 lies in the plane ρ1 = δ,
similarly the section Σ5 written in chart K2 lies in the plane ρ2 = δ.
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The dynamics in chart K1 is governed by

(3.32)
a�1 = −a1 − a21 + ε1a1 + ρ1ε21µ− ε21a1ρ21(a1 + 1),
ρ�1 = a1ρ1 + ε21a1ρ31 − ε1ρ1,
ε�1 = 2ε1(ε1 − a1)− 2ρ21a1ε31.

We recover the line of steady states LB = {(0, ρ1, 0), ρ1 � 0} of system (3.27). We
denote the steady state at (0, 0, 0) ∈ LB by pB . Furthermore, the planes ε1 = 0,
ρ1 = 0 and the ε1- and a1-axes are invariant under the flow (3.32).
In chart K1 the rectangle R4 is defined by

R4 = {(a1, ρ1, ε1) : a1 ∈ [0, α̃], ρ1 = δ, ε1 ∈ [0, α̃]}.

Lemma 3.3. The following assertions hold for system (3.32):
(1) The linearization of system (3.32) at the steady states in LB has a stable
eigenvalue −1 and a double zero eigenvalue. The associated stable and cen-
ter eigenspaces are Es

b
= (1, 0, 0)T and Ec

b
= span{(0, 0, 1)T , (0, 1, 0)T }.

(2) There exists a two-dimensional center manifold M at pB which contains
the line of steady states LB and the invariant ε1-axis. In K1 the manifold
is given as a graph a1 = h(ρ1, ε1) = µρ1ε21+O(ε31ρ51). The center manifold
M can be chosen to be the continuation of M from Lemma 3.2 by the
flow.

(3) The manifoldM is an attracting center manifold. All orbits starting from
R4 are exponentially attracted ontoM.

Proof. Assertion (1) follows from simple computations. Assertion (2) − (4)
follows from center manifold theory [18], [46] applied at the point pB which has
gained an attracting direction due to the blow-up. �

The dynamics in K2 is governed by

(3.33)
a�2 = a22 − a2 − a2r2 + r2µρ2 + a2ρ22(a2 − r2),
r�2 = −2r2 + 2a2r2 + 2a2r2ρ22,
ρ�2 = ρ2(1− a2)− ρ32a2.

The system has an equilibrium at the origin, which we denote by ph. The planes
r2 = 0, ρ2 = 0 and the a2-, r2- and ρ2-axes are invariant under the flow.

Lemma 3.4. The linearization at the equilibrium ph is hyperbolic with the eigen-
values −1, −2 and 1 with eigenvectors (1, 0, 0)T , (0, 1, 0)T and (0, 0, 1)T , respec-
tively.

This implies that there exists a heteroclinic orbit γ of the blown-up vector field
on the sphere connecting pB to ph, which corresponds to the ε1-axis in K1 and to
the r2-axis in K2, see Figures 3.10 and 3.11. To prove Theorem 3.8 we have to study
how orbits starting in R4 pass the non-hyperbolic point pB , follow the heteroclinic
orbit across the sphere and exit close to the hyperbolic point ph where they intersect
Σ5 by following the unstable ε̄-direction. It turns out that the behavior of all orbits
is determined by the behavior of the continuation of the center manifoldM which
attracts all other orbits.
To study the dynamics near pB , we define the section Σloc in chart K1 by

Σloc =
�
(a1, ρ1, ε1) : a1 ∈ [0,α], ρ1 ∈ [0, δ], ε1 = α

�
.



42 3. AUTOCATALATOR MODEL

To study the dynamics near ph, we define the section Σin in K2 by

Σin = {(a2, r2, ρ2) : a2 ∈ [0,α], r2 = α, ρ2 ∈ [0, δ]}.

In K1 the section Σin lies in the plane ε1 = 1/α.
The transition map Π4 will be obtained as the composition of a local transition

map π1 from R4 to Σloc, a global transition map π2 from Σloc to Σin and a local
transition map π3 from Σin to Σ5, see Figure 3.11.

Figure 3.11. Blown-up phase space S2× [0, ρ0] for system (3.27):
sections, slow manifoldM, and an orbit which is attracted toM.

Analysis of π1. Here we work in chart K1. At the point pB the dynamics of system
(3.32) is controlled by the attracting center manifold M from Lemma 3.3 and we
conclude the following.

Lemma 3.5. For δ and α sufficiently small the transition map π1 : R4 → Σloc
is a smooth map with the properties:
(1) The intersection ofM with Σloc is a smooth curve given by

a1 = µρ1α2 +O(α3ρ51).

(2) Restricted to lines ε1 = const. the map π1 is exponentially contracting
with a rate e−c/ε1 with a constant c > 0.
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Analysis of π2. We are still working in chart K1. In the blown-up system the
singular orbit Γ0 intersects the section Σloc in the point P = (0, 0,α) and Σin in
the point Q = (0, 0, 1

α
), hence orbits staring in Σloc intersect Σin. More precisely,

we have

Lemma 3.6. For δ and α sufficiently small the map π2 : Σloc → Σin is a
diffeomorphism. The intersection of the continuation of M with Σin is a smooth
curve with tangent vector tQ = (

�
1/α,
√
α, 0)T at the point Q.

Proof. For δ and α sufficiently small all orbits starting in Σloc reach Σin in
finite time hence π2 is a diffeomorphism.
To have some information on the continuation ofM, we compute the evolution

of its tangent space along the heteroclinic orbit γ. We parametrize γ by

(3.34) γ = {(0, 0, ε1), ε1 ∈ [0,∞)},
where ε1 = α corresponds to the point P ∈ Σloc and ε1 = 1

α
corresponds to the

point Q ∈ Σin. The variational equations along γ are

(3.35)




δa�

δρ�

δε�



 =




(ε1 − 1) ε21µ 0
0 −ε1 0
−2ε1 0 4ε1








δa
δρ
δε





coupled to the equation

(3.36) ε�1 = 2ε
2
1

for ε1 along γ. Due to the invariance of the ε1-axis one tangent vector of M is
(0, 0, 1)T . We conclude from Lemma 3.5 that the tangent vector ofM∩Σloc at the
point P = (0, 0,α) is tP = (µα2, 1, 0)T . Note that the first two equations in (3.35)
decouple from the third one. By solving the initial value problem

δa(α) = µα2, δρ(α) = 1, δε(α) = 0

for (3.35) coupled to the equation (3.36) for ε1 ∈ [α, 1α ] we obtain

(δa, δρ, δε)(ε1) ≈ (
√
ε1,

1√
ε1
, ∗),

where the third component ∗ is of no importance since (0, 0, 1)T is also tangent to
M. Evaluating this expression at ε1 = 1/α finishes the proof of the lemma. �

Analysis of π3. We now switch to chart K2 to study the transition map π3 : Σin →
Σ5 close to the hyperbolic equilibrium ph from Lemma 3.4.
We rewrite system (3.33) as

(3.37)
a� = −aF (a, r, ρ) + r(µρ− a− aρ2),
r� = −2rF (a, r, ρ),
ρ� = ρF (a, r, ρ),

where F (a, r, ρ) = 1−a−aρ2 and the subscript 2 of the variables is suppressed. In a
small neighborhood of the origin the factor F does not vanish. Hence, we transform
(3.37) by dividing out F to obtain

a� = −a+ r(µρ− a− aρ
2)

1− a− aρ2 ,(3.38a)

r� = −2r,(3.38b)

ρ� = ρ,(3.38c)
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The origin is a hyperbolic equilibrium whose eigenvalues are −1,−2, 1. It is easy to
see that all orbits starting in Σin with ρ > 0 exit through Σ5. Hence, the map π3 is
well defined and can be approximately described by the linearization. However, the
eigenvalues are in resonance (−1 = −2+1), which indicates difficulties in finding a
differentiable coordinate change that linearizes the vector field. Within the invariant
plane ρ = 0 the eigenvalues are −1 and −2 therefore (3.38) can be linearized in the
plane ρ = 0 by a smooth near identity transformation

(3.39) a→ Ψ(ã, r)

with Ψ = ã + h(ã, r), see [108]. A computation shows that h(ã, r) = 12 ãr + O(3).
Under the transformation (3.39) system (3.38) becomes

ã� = −ã+ rρ(µ+H),(3.40a)

r� = −2r,(3.40b)

ρ� = ρ,(3.40c)

where H = H(ã, r, ρ) = ãh1+rh2+ ãρh3 with bounded smooth functions h1, h2, h3.
After these preliminary transformations we prove the following result.

Lemma 3.7. For δ and α sufficiently small the transition map π3 : Σin → Σ5
for system (3.33) is a C1- map and has the form

(3.41) π3(ain,α, ρin) =




π̃3(ain, ρin)
α(ρin
δ
)2

δ





with π̃3(ain, ρin) given by

π̃3(ain, ρin) =
ρinain
δ
− µρ2

in
ln ρin +O(ρ2in).

Proof. In the proof we use system (3.40) to construct the map π3. The tran-
sition time T needed for a point (ain,α, ρin) ∈ Σin to reach Σ5 under the flow of
(3.40) satisfies

(3.42) T = ln(
δ

ρin
).

We compute (ρout, aout) as a function of (ρin, ain) ∈ Σin. Substituting exact solu-
tions of (3.40b) and (3.40c) into (3.40a) we obtain

(3.43) ã� = −ã+ µαρine−t +G,

where
G = αρine−tH(αe−2t, ρinet, ã).

The above equation (3.43) is viewed as a small perturbation of

(3.44) ã�0 = −ã0 + µαρine−t.

Equation (3.44) can be solved explicitly,

ã0(t) = aine−t + µαρinte−t.

Suppose the solution of (3.43) has the form

(3.45) ã(t) = aine−t + µαρinte−t + e−tz,
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where z(0) = 0. One gets the following equation for z

z�(t) = αρin[(aine−t + µαρinte−t)h1 + αe−2th2 + (ainρin + µαρ2int)h3]+

+[αρine−th1 + αρ2inh3]z.
(3.46)

We transform the equation (3.46) to the equivalent integral equation of the form

z(T ) = αρinain
�
T

0
e−th1 dt+ µδ2ρ2in

�
T

0
te−th1 dt+ α2ρin

�
T

0
e−2th2 dt

+ainαρ2in

�
T

0
h3 dt+ µρ3inα

2
�
T

0
th3 dt+ αρin

�
T

0
e−th1z dt+ αρ2in

�
T

0
h3z dt.

(3.47)

The bounds for the functions hi, i = 1, . . . , 3 and T = ln δρin imply that the sum of
the first five terms is of order O(ρin). Thus, we have

(3.48) |z(T )| � O(ρin) + αρinK
�
T

0
|z|dt

with a suitable constant K > O. Applying Gronwall’s inequality to (3.48) yields to
the following result

z = O(ρin).
Hence, we obtain

(3.49) ã(T ) =
ρinain
δ
− µαρ

2
in

δ
ln(
ρin
δ
) +O(ρ2

in
).

Finally, due to the corresponding inverse transformation ã = Ψ̃(a, r) = a+ O(ar),
the transition map is given by

π̃3(ain, ρin) =
ρinain
δ
− µρ2

in
ln ρin +O(ρ2in)

which implies the lemma. �
Proof of Theorem 3.8. Lemma 3.5, Lemma 3.6 and Lemma 3.7 imply all

assertions of Theorem 3.8 except the tangency of the curve σ5 with the line r2 = 0.
In chart K2 the point Q is given by (0,α, 0) and the tangent vector tQ of M

is given by (
√
α, 0, 1√

α
)T . By taking tQ as a first order approximation of the curve

M ∩ Σin and applying the transition map 3.41 we obtain that σ5 is tangent to
r2 = 0. �



CHAPTER 4

Blowing-up the glycolytic oscillator

In this chapter a detailed geometric analysis of the Goldbeter-Lefever model

(4.1)
ρα� = µ− φ(α, γ),
γ� = λφ(α, γ)− γ,

with

φ(α, γ) =
α2(γ + 1)2

L+ α2(γ + 1)2
,

is given. System (4.1) is a model of glycolytic oscillations with the variables α and
γ being certain substrate and product concentrations and four positive parameters
L, λ, µ, and ρ. As mentioned in the introduction, in suitably scaled variables the
governing equations are a planar system of ordinary differential equations depending
singularly on two small parameters ε and δ defined by (1.10) and (1.13), respectively.
In [101] it was argued that a limit cycle of relaxation type exists for ε� δ � 1.

The existence of this limit cycle is proven in this thesis by analyzing the problem
in the spirit of geometric singular perturbation theory. The degeneracies of the
limiting problem corresponding to (ε, δ) = (0, 0) are resolved by a novel variant of
the blow-up method. It is shown that repeated blow-ups lead to a clear geometric
picture of this fairly complicated two parameter multi-scale problem.
Chapter 4 is organized as follows. In Section 4.1 we discuss basic properties of

the model, in particular, a preliminary slow-fast analysis is given. A more detailed
analysis of three scaling regimes is performed in Section 4.2. In Section 4.3 the
blow-up analysis is carried out and the existence of a periodic orbit of relaxation
type is proven. We have included the discussion of the scaling regimes in Section 4.2
to emphasize that: i) in the blow-up approach to singular perturbation problems
with non-hyperbolic critical manifolds results obtained by conventional scaling are
recovered in the so-called rescaling charts and ii) matching of the non-overlapping
rescaling charts is conveniently carried out in other charts, which are obtained in a
natural way from the blow-up construction.

4.1. Scaling properties and singular limits

4.1.1. Basic properties and scaling. We begin by reproducing a numerical
simulation of system (4.1) from [101] for the parameter values L = 5×106, ρ = 2.5,
λ = 40, µ = 0.15. The results shown in Figure 4.1 indicate the existence of an
attracting periodic solution of relaxation type.
Figure 4.1 illustrates the nullclines in the (α, γ)-plane. Note that in all figures

the α-axis is drawn downwards since this leads to better visibility in later figures.
Straightforward calculations in [101] prove the following properties. The condition
λ > 8 guarantees that the γ nullcline is a folded curve with fold points B and D.
For µ < 1 the nullclines intersect just once in the unique equilibrium point of the

46
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system. The steady state is unstable when it lies between the fold points B and D
of the γ-nullcline. This is the situation where a limit cycle is expected to exist. For
µ = 0.15 we have this situation. The numerically computed attracting limit cycle is
shown in Figure 4.1. The limit cycle is of relaxation type, i.e., the solution follows
the left branch of the γ-nullcline until it reaches the fold point B, and from there
the solution jumps to a point C on the right branch of the γ-nullcline, then follows
the right branch until it reaches the fold point D, from where it jumps back to a
point A on the left branch. Here we have followed the notation of [101], where more
details can be found.
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Figure 4.1. Nullclines and numerically computed limit cycle for
µ = 0.15, L = 5× 106, λ = 40.

Following [101] our analysis will be based on the assumption that L and λ are
large, where L is larger than λ in the sense of condition (1.11). The scaling analysis
in [101] is based on the following scaling properties of the points A, B, C, D with
respect to L and λ. To leading order these points are

(4.2) A ≈ (2
√
L

λ
, 1), B ≈ (1

2

�
L

λ
, 1), C ≈ (1

2

�
L

λ
,λ), D ≈ (2

√
L

λ
,
λ

2
).

To simplify notation, we make the shift α = â, γ = b̂− 1, which does not affect
the validity of (4.2). Based on the orders of magnitude of B and C we introduce
the scaling

(4.3) â =

�
L

λ
a, b̂ = λb.
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For the rest of the paper we set ρ = 1 and restrict our attention to the physically
meaningful range of the variables a, b � 0. In these variables system (4.1) has the
form

(4.4)
a� = ε[µ− a

2
b
2

δ2+a2b2 ],

b� = a
2
b
2

δ2+a2b2 − b+ δ
2,

where ε and δ are defined by (1.10) and (1.13), respectively. For computational
purposes we prefer to write system (4.4) in the equivalent polynomial form

(4.5)
a� = ε[a2b2(µ− 1) + µδ2],
b� = a2b2(1− b) + δ2(a2b2 − b+ δ2).

System (4.5) is obtained by multiplying the right-hand side of (4.4) by the non-
vanishing factor δ2 + a2b2, which leaves the orbits of the system unchanged. The
resulting rescaled time variable is denoted by τ .
System (4.5) with ε small is in the standard form of slow-fast systems with

slow variable a and fast variable b. By transforming to the slow time scale t = ετ
the equivalent system

(4.6)
ȧ = a2b2(µ− 1) + µδ2,
εḃ = a2b2(1− b) + δ2(a2b2 − b+ δ2)

is obtained, where the derivative is with respect to the slow time t.

4.1.2. Slow-fast analysis of classical relaxation oscillations for fixed
δ > 0. Setting ε = 0 in (4.5) and (4.6) defines two limiting systems: the layer
problem

(4.7) a� = 0,
b� = a2b2(1− b) + δ2(a2b2 − b+ δ2),

and the reduced problem

(4.8)
ȧ = a2b2(µ− 1) + µδ2,
0 = a2b2(1− b) + δ2(a2b2 − b+ δ2).

The equation
a2b2(1− b) + δ2(a2b2 − b+ δ2) = 0

defines the critical manifold S, which is of crucial importance for problems of this
type, because it controls the slow and the fast dynamics as explained in the intro-
duction.
Since S is precisely the γ-nullcline in the new variables, it is again a folded

curve for δ < 1/
√
8. The fold points of S are still denoted by B and D, respectively;

see Figure 4.2. The points B and D divide S into an attracting left branch Sl, a
repelling middle branch Sm, and an attracting right branch Sr, where attracting
and repelling refer to the stability properties of points in S considered as steady
states of the layer problem (4.7). Since the a-nullcline intersects S only once in the
middle branch Sm with ȧ > 0 on the left of this nullcline, the variable a increases for
the reduced flow on Sl and decreases on Sr. Hence, we obtain the following standard
scenario of relaxation oscillations for fixed δ > 0. A solution starting close to the
point A is attracted by Sl, follows the reduced dynamics on Sl until it reaches the
fold point B, jumps from the point B to the point C ∈ Sr, and follows the reduced
dynamics on Sr until it reaches the fold point D from where it finally jumps back
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to the point A. The closed curve consisting of the segment of Sl from A to B, the
heteroclinic orbit of the layer problem (4.7) connecting B to C, the segment of Sr
from C to D, and the heteroclinic orbit of the layer problem (4.7) connecting D to
A is called a singular cycle Γ0.
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Figure 4.2. Critical manifold S and singular cycle Γ0.

The situation is essentially as in the classical Van der Pol oscillator [42], [81]. In
these works and the references therein, problems of this type have been analyzed by
the method of matched asymptotic expansions. The main difficulty in the analysis
of relaxation oscillations is the analysis of the behavior of the solutions near the
fold points B and D. During the last decade it became clear how to approach these
problems in the framework of geometric singular perturbation theory by combining
standard Fenichel theory [34] with the blow-up method [28], [71]. The relevant
results from geometric singular perturbation theory and the treatment of fold points
by the blow-up method are summarized in Chapter 2. Theorem 2.1 in [73] implies
the existence of an attracting relaxation cycle of system (4.6) for fixed δ > 0 and
sufficiently small ε.
Our main interest will be the analysis of a certain limit, where ε and δ tend

to zero simultaneously. For later reference we now change the notation for all the
objects introduced in this section by explicitly adding the parameter δ; i.e., the
critical manifold is denoted Sδ, and the points defining the singular cycle Γδ0 are
denoted by Aδ, Bδ, Cδ, and Dδ, where δ ∈ (0, 1/

√
8). The above analysis for ε→ 0

for δ fixed is highly non-uniform with respect to δ. In particular, the geometry of
the critical manifold Sδ depends singularly on δ for δ → 0.

4.1.3. The case ε, δ small. It turns out that the limit (ε, δ) → (0, 0) for
system (4.5) is more singular than the limit ε → 0 in Subsection 4.1.2. In [101] it
is argued that condition (1.11) is sufficient for the existence of a relaxation cycle.
We will show that this condition indeed implies the existence of a relaxation cycle.
For (ε, δ) = (0, 0) system (4.5) has the simple form

(4.9) a� = 0,
b� = a2b2(1− b),

which is the layer problem (4.7) with δ = 0. This limiting problem is dynamically
fairly degenerate as shown in the following. System (4.9) has a set of equilibria
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defined by the equation a2b2(1−b) = 0, which we denote by S0. The critical manifold
S0 of (4.9) consists of the lines a = 0, b = 0, and b = 1, which we denote by lb, la,
and lh, respectively. Since the zeros a = 0 and b = 0 have multiplicity two, the lines
la and lb are non-hyperbolic lines of equilibria, whereas the line lh corresponding
to the simple zero b = 1 is normally hyperbolic. The family of critical manifolds Sδ

from Subsection 4.1.2 converges to (the more degenerate) critical manifold S0 as
δ → 0 in a singular way.
The lines of equilibria la and lh are connected by heteroclinic orbits; i.e., an

equilibrium (a0, 0) ∈ la is connected to the equilibrium (a0, 1) ∈ lh by an orbit
of the layer problem lying on the straight line a = a0 (see Figure 4.3). This very
degenerate situation allows us to define many singular cycles, consisting of segments
of lh, lb, la, and one heteroclinic orbit of the layer problem. Fenichel theory applies
near the normally hyperbolic line lh, but we have no control of the behavior of the
non-hyperbolic lines la and lb for (ε, δ) �= (0, 0).
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Figure 4.3. Critical manifold S0 of system (4.7).

Remark 4.1. In view of the scaling properties (4.2) of the points A,B,C,D
the collapse of the folded critical manifold Sδ of system (4.5) for δ > 0 to the
more singular “manifold” S0 = la ∪ lb ∪ lh for δ = 0 is not surprising; i.e., roughly
speaking, Sδ

l
and the left half of Sδ

m
are compressed onto la, the right half of Sδm and

the part of Sδ
r
corresponding to smaller values of a are compressed onto lb, while

the part of Sδ
r
corresponding to larger values of a converges to the line lh.

4.2. Scaling regimes

The starting point of the analysis are the equations (4.5), where ε plays the
role of a singular perturbation parameter causing the slow-fast structure, while δ
affects mainly the shape of the critical manifold Sδ corresponding to ε = 0. For
δ = 0 essential parts of the sought limit cycle of system (4.5) are “hidden” in the
non-hyperbolic lines la and lb. To make these parts visible we use appropriate re-
scalings corresponding to the following regimes shown in Figure 4.4 as R1, R2, and
R3:
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• Regime 1, a = O(1), b = O(δ2),

• Regime 2, a = O(1), b = O(1),

• Regime 3, a = O(δ), b = O(1).
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Figure 4.4. Scaling regimes R1, R2, and R3.

It will turn out that in Regime 3 the slow-fast structure persists only if the
assumption ε� δ � 1 is used. Anticipating this we will write

(4.10) ε = δε̃

in certain places, where ε̃ � 0 is still considered as a small parameter.

4.2.1. Regime 1, a = O(1), b = O(δ2). We introduce the scaling

(4.11) a = a1, b = δ2b1.

In these variables system (4.5) has the form

(4.12)
a�1 = εδ2[δ2a21b21(µ− 1) + µ],
δ2b�1 = δ4a21b

2
1(1− δ2b1) + δ2(δ4a21b21 − δ2b1 + δ2).

By rescaling time we cancel a factor of δ2 on the right-hand side to obtain the
equivalent system

(4.13)
a�1 = ε[δ2a21b21(µ− 1) + µ],
b�1 = a21b

2
1(1− δ2b1) + δ2a21b21 − b1 + 1.

This system is a slow-fast system for ε small, which depends regularly on δ ∈ [0, δ0]
for (a1, b1) bounded.
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For ε = 0 we obtain a new layer problem depending on δ

(4.14) a�1 = 0,
b�1 = a21b

2
1(1− δ2b1) + δ2a21b21 − b1 + 1.

By setting δ = 0 problem (4.14) simplifies to

(4.15) a�1 = 0,
b�1 = a21b

2
1 − b1 + 1.

The critical manifold S01 of this system defined by a21b21−b1+1 = 0 has an attracting
branch S0

l,1 corresponding to b1 < 2, and a repelling part S
0
m,1 corresponding to

b1 > 2, which are separated by a fold point B01 = (1/2, 2). The branch S0m,1 is
asymptotic to the b1-axis as b1 → ∞. An orbit which starts close to the b1-axis
is rapidly attracted by S0

l,1, follows the reduced dynamics until it reaches the fold
point from where it jumps to the right along the orbit ω of the layer problem; see
Figure 4.5. Thus, we have the situation of a jump point as described in Section 2.5
in Chapter 2. We specify Regime 1 by the conditions a1 ∈ [α1, 1] and b1 ∈ [0,β1],
with a small constant α1 > 0 and a large constant β1 > 0. Regime 1 is shown
as a rectangle in Figure 4.5. This gives precise meaning to the assertion that the
original variables a, b satisfy a = O(1) and b = O(δ2) in Regime 1. On the domain
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Figure 4.5. Critical manifold S01 and fast dynamics in Regime 1.

under consideration, results for δ > 0 follow by regular perturbation theory; i.e.,
system (4.14) has a folded critical manifold Sδ1 close to S01 with similar dynamics
(slow motion on the left branch Sδ

l,1 and a fast jump from the point B
δ

1 to the
right). We conclude from the results described in Section 2.5 in Chapter 2 that
the attracting critical manifolds S0

l,1 and S
δ

l,1 perturb smoothly to attracting slow
invariant manifolds for small ε > 0.
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Remark 4.2. The slow manifold S01 is the limit of parts of the rescaled slow
manifolds Sδ

l
and Sδ

m
from Subsection 4.1.1 as δ → 0. The fold point B01 corresponds

to the fold point Bδ, and the point A01 = (0, 1) corresponds to the point Aδ. In some
sense the fold point Dδ corresponds to b1 =∞ on S0m,1 in the limit δ → 0. Hence,
the jump back from Dδ to Aδ in Figure 4.1 corresponds to the unbounded stable fiber
of the point A01 on the positive b1-axis, which is, however, not included in Regime 1
since perturbation methods do not apply there uniformly in (ε, δ).

4.2.2. Regime 2, a = O(1), b = O(1). In Regime 2 we consider system (4.5)
away from the non-hyperbolic lines la and lb, i.e., we consider a ∈ [α2, 1] and
b ∈ [β2, 2] with small constants α2 > 0,β2 > 0. Setting ε = 0 in system (4.5) gives
the layer problem (4.7). In this regime systems (4.5) and (4.7) depend regularly in
δ. For δ = 0 the layer problem (4.7) has the form

(4.16) a� = 0,
b� = a2b2(1− b).

In the region under consideration the line lh,2, defined by b = 1, is a normally
hyperbolic attracting critical manifold. The reduced flow for system (4.8) on lh,2
for δ = 0 is governed by the equation

ȧ = a2(µ− 1);

hence, a decreases under the slow flow on lh,2, see Figure 4.6.
For δ > 0 the line lh,2 perturbs regularly to a part of the normally hyperbolic

attracting critical manifold Sδ
r
with similar dynamics. Results for ε > 0 follow from

standard Fenichel theory uniformly for small δ; i.e., solutions starting on the left
side of lh,2 are rapidly attracted by the slow manifold corresponding to lh,2 and
follow the slow flow.
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Figure 4.6. Critical manifold lh,2 and fast dynamics in Regime 2.
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Remark 4.3. In the limit δ → 0 the line lh,2 corresponds to the part of Sδr ,
where the variable a is large. The point C02 = (1/2, 1) ∈ lh,2 corresponds to the point
Cδ ∈ Sδ

r
. The fold point Dδ is not visible in this regime. Parts of the singular orbit

connecting B01 to C02 are visible as the left side of the stable fiber of the point C02 .

4.2.3. Regime 3, a = O(δ), b = O(1). We use (4.10) and rewrite system (4.5)
as

(4.17)
a� = ε̃δ[a2b2(µ− 1) + µδ2],
b� = a2b2(1− b) + δ2(a2b2 − b+ δ2),

where ε̃ causes the slow-fast structure, while δ mainly affects the shape of the critical
manifold Sδ corresponding to ε̃ = 0.
We use the scaling

(4.18) a = δa3, b = b3

with a3 ∈ [0,α3] and b3 ∈ [−0.1, 2], with a large constant α3 > 0. In these variables
system (4.5) has the form

(4.19)
a�3 = ε̃[a23b23(µ− 1) + µ],
b�3 = a23b

2
3(1− b3)− b3 + δ(a23b23 + 1),

where we have again divided out a factor δ; i.e., the derivative is now with respect
to the rescaled time variable δτ . In the following system (4.19) is considered as a
slow-fast system with ε̃ being a singular perturbation parameter, whereas δ acts
as a regular perturbation parameter. This is the place where the condition (1.14)
expressed in the form (4.10) is crucial. For δ = 0 the layer problem, obtained from
(4.19) by setting ε̃ = 0, has the form

(4.20)
a�3 = 0,
b�3 = a23b

2
3(1− b3)− b3.

The critical manifold S03 of (4.20) is defined by the equation

b3[a23b3(1− b3)− 1] = 0.

It consists of an attracting branch S0
l,3 defined by b3 = 0, and a repelling branch

S0
m,3 and an attracting branch S0r,3, which are the left and right branches of the
curve

a3 =

�
1

b3(1− b3)
corresponding to b3 ∈ (0, 1/2) and b3 ∈ (1/2, 1), respectively. These branches are
separated by the fold point D03 = (2, 1/2) corresponding to the point Dδ; see Fig-
ure 4.7.
It is easy to see that D03 is a jump point. Our main interest is in the singular

orbit, which follows the slow flow on S0
r,3 until it reaches the fold point D03 from

where it jumps to A03 to follow the slow flow on S0l,3. Note that the fast jump from B
0
3

to C03 is not visible in this regime. Since δ acts as a regular perturbation parameter
in (4.19), we obtain a slightly perturbed critical manifold Sδ3 with branches Sδl,3,
Sδ
m,3, Sδr,3 and the fold point Dδ3, which is still a jump point. As before these
critical manifolds correspond to parts of the critical manifolds Sδ

l
, Sδ
m
, and Sδ

r
from

Subsection 4.1.2.
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Figure 4.7. Critical manifold S03 and fast dynamics in Regime 3.

Geometric singular perturbation theory is applicable in Regime 3 to obtain
rigorous results for small ε̃ > 0 uniformly in δ � 0. In particular, we conclude
from the results described in Section 2.5 in Chapter 2 that the attracting critical
manifolds S0

r,3 and Sδr,3 perturb smoothly to attracting slow invariant manifolds for
small ε > 0.

4.2.4. Singular cycles. Based on these results we now define the singular
cycle Γ00 of system (4.5) for (ε, δ) = (0, 0) as

(4.21) Γ00 := σ1 ∪ σ2 ∪ σ3 ∪ σ4,

where σ1 is the segment of the slow manifold lh connecting the points C0 = (1/2, 1)
and D0 = (0, 1), σ2 is the segment of the slow manifold lb connecting the point D0

with the point A0 = (0, 0), σ3 is the segment of the slow manifold la connecting
the points A0 to B0 = (1/2, 0), and σ4 is the heteroclinic orbit of (4.7) connecting
the point B0 with the point C0. Keep in mind that all of Regime 1 collapses onto
the non-hyperbolic line la, all of Regime 3 collapses onto the non-hyperbolic line
lb, and σ1, σ2, σ3 are just sets of equilibria of system (4.9); see Figure 4.8.
The analysis in Regimes 1 – 3 suggests that Γ00 is indeed a good candidate to

obtain relaxation oscillations of the form described in Section 4.1 given approxi-
mately by slow motion from the point Aδ to Bδ, a fast jump from Bδ to Cδ, slow
motion from Cδ to Dδ, and a final jump from Dδ to Aδ for (ε̃, δ) close to (0, 0).
The degeneracy of the singular cycle Γ00 and of the non-hyperbolic slow manifolds
la and lb has been partially resolved by the scaling methods used in Regimes 1 and
2, respectively. However, uniform perturbation results are possible for Regimes 1
– 3 only in the way they were defined. Note that the domains in the (a, b)-plane
corresponding to Regimes 1 – 3 do not overlap. Hence, the perturbation analysis
of the singular cycle Γ00 requires a detailed study of extending and matching the
individual regimes.
This could possibly be carried out in the framework of classical matched as-

ymptotic expansions, but the procedure would be much more complicated than
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Figure 4.8. Critical manifold S0 of system (4.7) and singular cycle Γ00.

for the — already complicated — case of classical relaxation oscillations. Circum-
venting these difficulties, the main goal of this work is to show that a geometric
approach based on the blow-up method is well-suited to carry out the matching
and to provide a comprehensive and clear picture of the global situation in this
two-parameter singular perturbation problem.
Our main result is the following theorem.

Theorem 4.1. For µ < 1 there exist δ0 > 0 and ε̃0 > 0 such that system (4.5)
has a unique attracting periodic orbit Γδ

ε
for 0 < δ � δ0 and 0 < ε � ε̃0δ with the

following properties:
(1) Γδ

ε
tends to Γδ0 as ε→ 0 for δ ∈ (0, δ0].

(2) Γδ
ε
tends to the singular cycle Γ00 as (δ, ε)→ (0, 0).

Proof. The assertions of the theorem will follow from Theorem 4.4 by setting
ε = ε̃δ and by applying the blow-up transformations (4.23) and (4.34). �

4.3. Blow-up analysis

In this section we carry out the blow-up analysis for (4.5). We start by rewriting
system (4.5) with ε = ε̃δ (see (4.10)) as

(4.22)
a� = ε̃δ[a2b2(µ− 1) + µδ2],
b� = a2b2(1− b) + δ2(a2b2 − b+ δ2),
δ� = 0;

i.e., we consider (4.22) as a three-dimensional vector field Xε̃ defined on R3 by
treating the parameter δ as a variable, while ε̃ is the singular perturbation parameter
causing the slow-fast structure. Obviously, all planes δ = const. are invariant for
system (4.22). The family of critical manifolds Sδ, δ ∈ [0, δ0], from Section 4.1.1 and
Section 4.2 is now viewed as a two-dimensional critical manifold S. For δ > 0 the
critical manifold S has a folded structure, i.e., S = Sl∪Sm∪Sr with folds along the
curves FB := {(Bδ, δ) : δ ∈ [0, δ0]} and FD := {(Dδ, δ) : δ ∈ [0, δ0]}. On the plane
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δ = 0 the critical manifold S limits on S0×{0} with S0 = la∪ lb∪ lh. For δ bounded
away from zero the results on the existence of slow manifolds and relaxation cycles
from Section 4.1.2 can be readily interpreted for analogous two-dimensional objects
obtained by adding the δ direction.
It turns out that the main task is to analyze the dynamics close to the degener-

ate lines la ∪ {0} and lb ∪ {0}, where for ε̃ = 0 the linearization of system (4.22) at
points of la∪{0} and lb∪{0} has a triple zero eigenvalue. This will be achieved by a
cylindrical blow-up of the line lb ∪ {0} followed by a cylindrical blow-up of the line
la ∪ {0}, which leads to a desingularization of the extended system (4.22) at δ = 0.
Roughly speaking, the non-hyperbolic lines la and lb will be blown-up to cylinders
by introducing suitable polar-like coordinates in the directions transverse to the
lines. We will see that the blow-up procedure is able to resolve the degeneracies of
the original problem. In particular, the critical manifold S of system (4.22) will be
blown-up to a critical manifold S̄, which is normally hyperbolic away from the fold
curves.
The analysis of the blown-up problem will be carried out in charts K1 – K4

introduced below. We use the following notation: any object O of the extended
system (4.22) is denoted as Ō for the blown-up problem, and by Oi in chart Ki,
i = 1, . . . , 4. It will turn out that the charts K1 and K3 correspond to the scaling
Regimes 1 and 3, respectively, and that scaling Regime 2 is covered by parts of chart
K2 (and also by parts of K4). We will see that chart K2 and parts of K4 provide
sufficient overlap to match Regimes 1 – 3. We will be able to identify a singular
cycle Γ̄00 of the blown-up system with improved hyperbolicity and transversality
properties. Once the correct singular cycle has been found the proof of Theorem 4.1
on the existence of the relaxation cycle can be based on well- established methods
from geometric singular perturbation theory.

4.3.1. Blow-up of the non-hyperbolic line lb×{0}. We define the blow-up
transformation of the non-hyperbolic line of steady states lb × {0} by

(4.23)
a = rā,
b = b̄,
δ = rδ̄

with (ā, δ̄, r, b̄) ∈ S1 × R× R. The line lb × {0} corresponding to r = 0 is blown-up
to the cylinder Zb := S1 × {0}× R, see Figure 4.9.
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Figure 4.9. Blow-up of the non-hyperbolic line lb × {0}.
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The vector field (4.22) induces a vector field on the blown-up space S1×R×R.
Since the cylinder Zb is constructed as the blow-up of a line of equilibria, the blown-
up vector field vanishes on the cylinder. To obtain a non-trivial flow on the cylinder,
the blown-up vector field must be divided by a suitable power of r. Note that δ = 0
in the original system corresponds to either δ̄ = 0 or r = 0; thus, the dynamics
of the blown-up system in the plane δ̄ = 0 and on the cylinder Zb is particularly
important.
The blown-up vector field is analyzed in charts K3, K4 defined by setting δ̄ = 1,

ā = 1, respectively, in the blow-up transformation (4.23); again, see Figure 4.9.
Thus, chart K3 covers the whole upper part of the cylinder corresponding to δ̄ > 0,
while K4 covers its front side corresponding to ā > 0. In chart K3 the blow-up
transformation is given by

(4.24) a = r3a3, b = b3, δ = r3

and in chart K4 the blow-up transformation is given by

(4.25) a = r4, b = b4, δ = r4δ4.

Dynamics in K3. Since r3 = δ, the transformation (4.24) is precisely the
scaling transformation (4.18) used in Regime 3. Thus, K3 is identical to Regime 3.
Hence, system (4.22) written in K3 has the form

(4.26)
a�3 = ε̃[a23b23(µ− 1) + µ],
b�3 = a23b

2
3(1− b3)− b3 + r3(a23b23 + 1),

r�3 = 0,

which is precisely system (4.19) with δ = r3 and additional equation r�3 = 0. As
before � denotes the derivative with respect to the rescaled time scale r3τ . System
(4.26) is the same as system (4.19); i.e., K3 corresponds to Regime 3. In this chart
the cylinder Zb corresponds to the plane r3 = 0. Thus, the geometric singular per-
turbation analysis of Regime 3 with respect to ε̃ is valid on compact domains. The
relevant dynamics on the cylinder is as shown in Figure 4.7.

Dynamics in K4. Inserting (4.25) into system (4.22) gives a system of differ-
ential equations for r4, b4, δ4. We obtain

(4.27)
r�4 = ε̃r34δ4[b24(µ− 1) + µδ24 ],
b�4 = r24[b24(1− b4) + δ24(r24b24 − b4 + r24δ24)],
δ�4 = −ε̃r24δ24 [b24(µ− 1) + µδ24 ].

By dividing out a factor r24, we obtain the (partially desingularized) blown-up sys-
tem

(4.28)
r�4 = ε̃r4δ4[b24(µ− 1) + µδ24 ],
b�4 = b24(1− b4) + δ24(r24b24 − b4 + r24δ24),
δ�4 = −ε̃δ24 [b24(µ− 1) + µδ24 ].

The derivative in (4.28) is with respect to a rescaled time variable τ4. The plane
r4 = 0, which corresponds to the cylinder Zb, and the plane δ4 = 0 are both
invariant under the flow of (4.28). System (4.28) is a singularly perturbed system
with slow variables r4, δ4, fast variable b4, and singular perturbation parameter ε̃.
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Setting ε̃ = 0 gives the layer problem

(4.29)
r�4 = 0,
b�4 = b24(1− b4) + δ24(r24b24 − b4 + r24δ24),
δ�4 = 0.

The surface defined by

(4.30) b24(1− b4) + δ24(r24b24 − b4 + r24δ24) = 0
is denoted by S4, since it corresponds to the critical manifold S of system (4.22).
Instead of analyzing the equation defining S4 directly, it is instructive to restrict
one’s attention to the invariant planes r4 = 0 and δ4 = 0 of system (4.28).
In the invariant plane r4 = 0 the dynamics is governed by

(4.31)
b�4 = b24(1− b4)− δ24b4,
δ�4 = −ε̃δ24 [b24(µ− 1) + µδ4].

This system is the standard form of slow-fast systems with respect to the small
parameter ε̃, i.e., with slow variable δ4 and fast variable b4. Setting ε̃ = 0 gives the
layer problem

(4.32) b�4 = b24(1− b4)− δ24b4,
δ�4 = 0.

The critical manifold Ŝ4 of system (4.32), defined by the equation

b4[b4(1− b4)− δ24 ] = 0,

consists of the invariant line b4 = 0, denoted by Ŝl,4, a branch Ŝm,4, and a branch
Ŝ4,r, which are given by

δ4 =
�
b4(1− b4)

with b4 ∈ [0, 1/2) and b4 ∈ (1/2, 1], respectively, see Figure 5.15. Obviously, Ŝl,4,
Ŝm,4, Ŝr,4 are the branches of the intersection of S4 with the plane r4 = 0. Ŝm,4
and Ŝr,4 are separated by the fold point D04 = (1/2, 1/2). Ŝl,4 and Ŝm,4 intersect in
the non-hyperbolic point (0, 0). The branch Ŝr,4 is attracting for the flow in r4 = 0.
Similarly, away from the origin the line Ŝl,4 is attracting, while the branch Ŝm,4 is
repelling. The variable δ4 increases for the slow flow on Ŝr,4, while it decreases for
the slow flow on Ŝl,4. Hence, the fold point D04 is a jump point from where a fast
jump to the point A04 = (0, 1/2) ∈ Ŝl,4 takes place. Note that the origin is still a
degenerate steady state of system (4.32).

Remark 4.4. The relevant dynamics in chart K3 takes place in the region
a3 � 1. Since this region is covered by chart K4, chart K3 is not explicitly needed
in our analysis; i.e., the critical manifold S03 corresponds to the parts of Ŝ4 with
δ4 � 1/α3 (compare Figure 4.5 with Figure 5.15). Furthermore, the parts of Ŝ4
with δ4 ∈ [0, 1/α3] correspond to the unbounded branches of S03 corresponding to
a3 � α3, which had to be excluded from the analysis in Regime 3.

Remark 4.5. It is an important property of the blow-up method that all results
which are obtained in the scaling regimes are recovered in some charts, i.e., here in
chart K3. The power of the blow-up method comes from the fact that other charts,
i.e., here chart K4, provide a compactification of the unbounded domains in the
scaling regimes, where perturbation methods were not applicable.
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In the invariant plane δ4 = 0 the dynamics is governed by

(4.33) r�4 = 0,
b�4 = b24(1− b4).

The equilibria of this system are the line b4 = 0 and the line b4 = 1, which we
denote by la,4 and Šr,4, respectively. Clearly, la,4 and Šr,4 are the intersections of
S4 with the plane δ4 = 0. The curves Ŝr,4 and Šr,4 meet at the point q̌4 = (0, 1, 0).
Similarly, the curves Ŝl,4, Ŝm,4 and la,4 intersect in the origin, see Figure 4.10.
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Figure 4.10. Dynamics of system (4.28) in r4 = 0 and δ4 = 0.

From the above discussion we conclude with the following lemma.

Lemma 4.1. The critical manifold S4 described by (4.30) has the following
properties at least for r4 or δ4 small:
(1) S4 is smooth away from the line la,4.
(2) S4 has a folded structure, i.e., S4 = Sl,4 ∪ la,4 ∪ Sm,4 ∪ FD,4 ∪ Sr,4, where
Sm,4 and Sr,4 are separated by the fold curve FD,4 while the branches Sl,4
and Sm,4 intersect cusp-like along la,4. The branches Sl,4 and Sr,4 are
attracting and Sm,4 is repelling for the layer problem (4.29).

(3) The branch Sr,4 limits on Ŝr,4 for r4 = 0 and on Šr,4 for δ4 = 0. Similarly,
Sm,4 limits on Ŝm,4 for r4 = 0 and on la,4 for δ4 = 0. Sl,4 limits on Ŝl,4
for r4 = 0 and on la,4 for δ4 = 0. The fold curve FD,4 limits on D04 (see
Figure 4.10).

Proof. Outside a neighborhood of the line la,4 the assertions of the lemma
follow from the implicit function theorem and the structural stability of folds. The
properties of the critical manifold S4 close to the line la,4 will be proved in Subsec-
tion 4.3.2. �
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Summing up, the singular relaxation cycle Γ00,4 in chart K4 consists of slow
motion along the branch Šr,4, followed by slow motion along Ŝr,4 from the point
q̌4 to the fold point D04, a fast jump from the point D04 to the point A04, and slow
motion along the branch Ŝl,4 from the point A04 to the origin, followed by (not yet
analyzed) slow motion along the line la,4; see Figure 4.10. Since the linearization of
system (4.28) at points in the line la,4 has a triple zero eigenvalue for ε̃ = 0, the line
la,4 is still degenerate. The geometry of the critical manifold S4 and the dynamics
in a neighborhood of the line la,4 will be studied by means of a further blow-up in
the following.

4.3.2. Blow-up of the non-hyperbolic line la,4. To study the dynamics
of system (4.28) close to the non-hyperbolic line la,4, we introduce the blow-up
transformation

(4.34)
r4 = r̄,
b4 = ρ2b̄,
δ4 = ρδ̄

with (b̄, δ̄, ρ, r̄) ∈ S1 × R × R. By this construction the line la,4 is blown-up to the
cylinder Za := S1 × {0}× R; see Figure 4.11.
The vector field (4.28) induces a vector field on the blown-up space S1×R×R,

which again leaves the cylinder Za invariant. The analysis of this blown-up vector
field is performed in local charts K1, K2, which are defined by setting δ̄ = 1,
b̄ = 1, respectively, in the blow-up transformation (4.34). Chart K1 covers the
upper part of the cylinder Za corresponding to δ̄ > 0, while K2 covers its front side
corresponding to b̄ > 0. In chart K1 the blow-up transformation is given by

(4.35) r4 = r1, b4 = ρ21b1, δ4 = ρ1,

and in chart K2 the blow-up transformation is given by

(4.36) r4 = r2, b4 = ρ22, δ4 = ρ2δ2.

Dynamics in K1. By inserting the transformation (4.35) into system (4.28) and
dividing out a factor of ρ21, we obtain the final desingularized blown-up system

(4.37)

r�1 = ε̃r1ρ1[ρ21b21(µ− 1) + µ],
b�1 = 2ε̃ρ1[ρ21b21(µ− 1) + µ] + b21(1− ρ21b1) + ρ21r21b21 − b1 + r21,
ρ�1 = −ε̃ρ21[ρ21b21(µ− 1 + µ)].

System (4.37) is a singularly perturbed system with slow variables r1, ρ1, fast
variable b1, singular perturbation parameter ε̃, and the layer problem

(4.38)

r�1 = 0,

b�1 = b21(1− ρ21b1) + ρ21r21b21 − b1 + r21,
ρ�1 = 0.

The layer problem (4.38) has a two-dimensional critical manifold S1 described by
the equation

(4.39) b21(1− ρ21b1) + ρ21r21b21 − b1 + r21 = 0.
As before, we first restrict our attention to the invariant planes, namely, the

plane r1 = 0, which corresponds to a region in the front of the cylinder Zb of the
first blow-up, and the plane ρ1 = 0 corresponding to the cylinder Za.
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Figure 4.11. Blow-up transformation (4.34) for system (4.28).

In the invariant plane r1 = 0 the dynamics is governed by

(4.40)
b�1 = 2ε̃ρ1[ρ21b21(µ− 1) + µ] + b21(1− ρ21b1)− b1,
ρ�1 = −ε̃ρ21[ρ21b21(µ− 1 + µ)],

which is a slow-fast system with singular perturbation parameter ε̃, fast variable b1
and slow variable ρ1. The corresponding layer problem (ε̃ = 0) has the form

(4.41) b�1 = b21(1− ρ21b1)− b1,
ρ�1 = 0.

The corresponding critical manifold Ŝ1, defined by the equation

b1[b1(1− ρ21b1)− 1] = 0,
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consists of a stable branch Ŝl,1 with b1 = 0, and an unstable branch Ŝm,1 and
a stable branch Ŝr,1 given by ρ1 =

�
1
b1
− 1
b
2
1
with b1 ∈ [1, 2) and b1 ∈ (2,∞),

respectively. The fold point D01 = (2, 1/2) separates the branches Ŝm,1 and Ŝr,1; see
Figure 4.12. Again, Ŝl,1, Ŝm,1 and Ŝr,1 are the branches of the intersection of S1
with the plane r1 = 0.

Remark 4.6. The configuration in the plane r1 = 0 of chart K1 is a desingu-
larized version of the configuration in the plane r4 = 0 of chart K4. The degenerate
equilibrium at the origin of system (4.32) has been blown-up to the line ρ1 = 0
(which is in fact the circle S1 × {0} × {0} on the cylinder of the second blow-up).
The branches Ŝl,1 and Ŝm,1, which intersected in chart K4, have been separated and
are attracting and repelling, respectively. Their endpoints in the plane r1 = 0 are
denoted by p̂1 = (0, 0) and q̂1 = (1, 0).

In the invariant plane ρ1 = 0 system (4.37) reduces to

(4.42) r�1 = 0,
b�1 = b21 − b1 + r21.

The equilibria of system (4.42) are given by the curve r1 =
�
b1 − b21. This curve,

denoted by Š1, consists of a stable branch Šl,1 corresponding to b1 ∈ [0, 1/2), a
repelling branch Šm,1 corresponding to b1 ∈ (1/2, 1], and the fold point B01 =
(1/2, 1/2); see Figure 4.12. Clearly, Šl,1 and Šm,1 are the branches of the intersection
of S1 with the plane ρ1 = 0.
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Figure 4.12. Dynamics in K1.

Remark 4.7. Chart K1 covers essentially Regime 1. In particular, the mani-
fold Š1 described above is precisely the critical manifold S01 of system (4.13) from
Regime 1.
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Remark 4.8. Note that for ρ1 = 0 the reduced (slow) vector fields with respect
to ε̃ on Šl,1 and Šm,1 (on the corresponding slow manifolds) vanish identically.
Hence, the fold point B01 is not a jump point. This apparent difficulty is in some
sense an artefact caused by setting ε = ε̃δ, which is needed in Regime 3, but not in
Regime 1, see also the proof of Lemma 4.6.

As before we conclude with the following lemma.

Lemma 4.2. The critical manifold S1 defined by (4.39) has the following prop-
erties at least for r1 or ρ1 small:
(1) S1 is smooth.
(2) S1 has a folded structure, i.e., S1 = Sl,1 ∪FB,1 ∪Sm,1 ∪FD,1 ∪Sr,1, where
Sl,1 and Sr,1 are attracting and Sm,1 is repelling for the layer problem
(4.38). The branches Sl,1 and Sm,1 are separated by the fold curve FB,1,
while Sm,1 and Sr,1 are separated by the fold curve FD,1.

(3) The branch Sl,1 limits on Ŝl,1 for r4 = 0 and on Šl,1 for ρ1 = 0. Similarly,
Sm,1 limits on Ŝm,1 for r1 = 0 and on Šm,1 for ρ1 = 0. Sr,1 limits on
Ŝr,1 for r1 = 0. The fold curve FD,1 limits on D01, and the fold curve FB,1
limits on B01 (see Figure 4.12).

Summing up, the singular relaxation cycle Γ00,1 in chart K1 follows the slow
dynamics along the branch Ŝr,1 to the fold point D01, the fast orbit from the point
D01 to the point A01, and the branch Sl,1 from the point A01 to the point B01 through
the point p̂1, and finally jumps to the right from the point B01 . To see how the
singular orbit continues for large b1, we have to switch to chart K2.

Dynamics in K2. By inserting transformation (4.36) into system (4.28) and
dividing out a factor of ρ22, we obtain the final desingularized blown-up system
written in chart K2

(4.43)

r�2 = ε̃r2ρ2δ2[ρ22(µ− 1) + µδ22 ],
ρ�2 =

1
2ρ2[1− ρ

2
2 + δ22(r22ρ22 − 1 + r22δ22)],

δ�2 = −ε̃ρ2δ22 [ρ22(µ− 1) + µδ22 ]− 12δ2[1− ρ
2
2 + δ22(r22ρ22 − 1 + r22δ22)].

System (4.43) is a singularly perturbed system with singular perturbation param-
eter ε̃. Setting ε̃ = 0 gives the layer problem

(4.44)

r�2 = 0,

ρ�2 =
1
2ρ2[1− ρ

2
2 + δ22(r22ρ22 − 1 + r22δ22)],

δ�2 = − 12δ2[1− ρ
2
2 + δ22(r22ρ22 − 1 + r22δ22)].

The layer problem (4.44) has a 2-dimensional critical manifold S2 described by the
equation

(4.45) 1− ρ22 + δ22(r22ρ22 − 1 + r22δ22) = 0.

Additionally, there exists a line of equilibria l2 defined by δ2 = 0, ρ2 = 0, i.e. l2 is
the r2-axis.

Remark 4.9. All of the critical manifold S2 has already been covered in chart
K1 and K4. The following discussion of S2 is included just for completeness. The
important dynamics occurs close to the line l2, which is not visible in other charts
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and provides the so far missing overlap between chart K1 and K4 (i.e., Regime 1
and 3).

Remark 4.10. Note that away from S2, ρ2 and δ2 are fast variables. This shows
that system (4.43) is not in the standard form (2.6) of slow-fast systems. However,
Fenichel theory applies in this more general situation as well. Since we focus on the
dynamics close to the line l2, we do not give further details.

The planes r2 = 0, ρ2 = 0, and δ2 = 0 are invariant under the flow of (4.43).
The plane r2 = 0 corresponds to a region in the front of the cylinder Zb of the first
blow-up, while the plane ρ2 = 0 corresponds to the front side of the cylinder Za of
the second blow-up, see Figure 4.13.
In the invariant plane ρ2 = 0 system (4.43) reduces to the system

(4.46) r�2 = 0,
δ�2 = − 12δ2[1 + r

2
2δ
4
2 − δ22 ].

The line l2 is attracting for this system. Again, the equation 1+r22δ42−δ22 = 0 defines
a folded curve Š2 of equilibria. The fold point B02 separates Š2 into an attracting
branch Šl,2 and a repelling branch Šm,2; see Figure 4.13. Clearly, Šl,2 corresponds
to the curve Šl,1, and Šm,2 corresponds to the curve Šm,1 from chart K1.
In the invariant plane δ2 = 0 system (4.43) has the form

(4.47) ρ�2 =
1
2ρ2(1− ρ

2
2),

r�2 = 0.

The line Šr,2 defined by ρ2 = 1 and the line l2 are the lines of equilibria. The
situation in the plane δ2 = 0 is similar to the situation in the plane δ4 = 0 in chart
K4, with the only difference being that the non-hyperbolic line la,4 from chart K4
has been replaced by the hyperbolic line l2 due to the second blow-up (4.34). Within
δ2 = 0 the line l2 is repelling, and the line Šr,2 is attracting.
The dynamics in the plane r2 = 0 can be analyzed similarly and turns out to be

consistent with results obtained in charts K1 and K4. Since this part of phase space
is already covered by charts K1 and K4, we omit more details. We find a curve of
equilibria connecting the point q̌2 to the point q̂2, which consists of an attracting
branch Ŝr,2 and a repelling branch Ŝm,2 separated by a fold point D02; see Figure
4.13.
As before we conclude with the following lemmas.

Lemma 4.3. The critical manifold S2 defined by (4.45) has the following prop-
erties if at least one of the variables r2, ρ2, or δ2 is small:
(1) S2 is smooth.
(2) S2 is a folded surface, i.e., S2 = Sl,2 ∪ Sm,2 ∪ Sr,2 with fold curves FB,2
and FD,2, where Sl,2 and Sm,2 are attracting and Sr,2 is repelling for the
layer problem (4.44).

(3) The branch Sl,2 limits on Šl,2 for ρ2 = 0. The branch Sm,2 limits on Šm,2
for ρ2 = 0 and on Ŝl,2 for r2 = 0. Similarly, Sr,2 limits on Ŝr,2 for r2 = 0
and on Šr,2 for δ2 = 0. The fold curve FB,2 limits on B02 , and FD,2 limits
on D02 (see Figure 4.13).

Lemma 4.4. The line l2 considered as a line of equilibria of system (4.43) is of
saddle-type. Its stable manifold lies in the plane ρ2 = 0, and its unstable manifold
lies in the plane r2 = 0.
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Figure 4.13. Dynamics in K2.

Summing up, we obtain the following description of the singular relaxation
cycle in chart K2. From the fold point B02 there is a fast jump to the point p̌2 =
(1/2, 0, 0) ∈ l2, then a fast jump to the point C02 = (1/2, 1, 0), followed by slow
motion along Šr,2 to the point D02 from where another fast jump takes place.

4.3.3. Properties of the blown-up system. The geometry of the blown-up
space M̄ after the two consecutive blow-ups (4.23) and (4.34) is shown schematically
in Figure 4.14. Recall that first the line lb is blown-up to the cylinder Zb, shown in
the back of the figure. In the second blow-up (4.34) the line la (actually a part of
its pre-image under the first blow-up) is blown-up to the cylinder Za, shown in the
front of the figure. The vector field Xε̃ on M = R3 corresponding to system (4.22)
induces the blown-up vector field X̄ε̃ on the blown-up space M̄ , which has been
analyzed in detail in the individual charts. Recall that the blow-up construction
resolves the degeneracy of the critical manifold S at δ = 0, while ε̃ still acts as
a singular perturbation parameter in the vector field X̄ε̃. The equation δ� = 0
from system (4.22) implies that the blown-up phase space has an invariant foliation
corresponding to constant values of δ. The singular leaf corresponding to δ = 0 is
the union of the cylinders Zb, Za and the plane ∆, where the plane ∆ is defined by
setting δ̄ = 0 in (4.34); see Figure 4.14.
These properties imply that the vector field X̄0 restricted to Zb∪Za∪∆ provides

the unperturbed dynamics corresponding to (ε̃, δ) = (0, 0). In particular, we will be
able to identify the singular cycle Γ̄00 ⊂ Zb ∪Za ∪∆. The analysis in the individual
charts K4, K1 and K2 implies the following results, see also Figure 4.14.
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Theorem 4.2. The blown-up vector field X̄0 on M̄ has the following properties:
(1) There exists a smooth two-dimensional critical manifold S̄ with a folded
structure, i.e.,

S̄ = S̄l ∪ F̄B ∪ S̄m ∪ F̄D ∪ S̄r,

where S̄l and S̄r are attracting, and S̄m is repelling. The attracting branches
of S are separated from the repelling branch S̄m by the fold curves F̄B
and F̄D.

(2) There exists a singular orbit Γ̄00 of relaxation type, defined by

Γ̄00 = ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪ ω5 ∪ ω6 ∪ ω7
with a fast jump from B̄0 to p̌ ∈ l along a heteroclinic orbit ω1 on Za,
a fast jump from p̌ to the point C̄0 ∈ Sr along a heteroclinic orbit ω2 in
the plane ∆ = 0, a segment ω3 of S̄r from the point C̄0 to the point q̌ in
the plane δ = 0, a segment ω4 of S̄r from the point q̌ to the fold point D̄0

on Zb, a fast jump from the fold point D̄0 to the point Ā0 ∈ S̄l along a
heteroclinic orbit ω5 on the cylinder Zb, a segment ω6 of S̄l from Ā0 to
the point p̂ on the cylinder Zb, and a final segment ω7 of S̄l from the point
p̂ to the fold point B̄0 on the cylinder Za.

(3) Within each leaf δ = const. there exists a singular cycle Γ̄δ0 for δ ∈ (0, δ0]
for δ0 small following the slow flow on S̄r and S̄l with jumps at the fold
curves F̄B and F̄D, which limits on Γ̄00 as δ → 0.
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Figure 4.14. Geometry of the blown-up space, critical manifold
S̄, and singular cycles Γ̄δ0.
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Remark 4.11. The singular behavior of the fold-shaped critical manifold Sδ

of system (4.7) for δ → 0 (with the degenerate critical manifold S0 of system
(4.9) for δ = 0) has been desingularized such that its branched structure is visible
again. Intuitively, our blow-up construction prevents the non-uniform collapse of
the critical manifold Sδ onto the degenerate manifold S0; see Remark 4.1.
Similarly, the non-uniform behavior of the singular cycle Γδ0 for system (4.5)

as δ → 0 has been resolved in the blown-up problem.

In this global picture of the critical manifold S̄ we recover all the results from
the scaling Regimes 1 – 3. In addition, compact neighborhoods of the intersec-
tions Zb ∩ ∆, Za ∩∆, and Zb ∩ Za cover the unbounded domains of the scaling
regimes, which cannot be analyzed perturbatively. We will see that smoothness
and hyperbolicity properties of the blown-up vector field X̄ε̃, ε̃ ∈ [0, ε̃0], permit us
a perturbation analysis in these neighborhoods, which allows to match the regimes.
A first result in this direction is that the attracting slow manifolds from Regimes 1
– 3 fit together smoothly as parts of global attracting slow manifolds.

Theorem 4.3. There exists ε̃0 > 0 such that the blown-up vector field X̄ε̃ has
smooth attracting slow manifolds S̄l,ε̃ and S̄r,ε̃ for ε̃ ∈ [0, ε̃0].

Proof. The result follows from Fenichel theory [34], [61] applied to normally
hyperbolic parts of the critical manifolds S̄r and S̄l. �

Remark 4.12. In the following we will assume that the slow manifolds have
been extended beyond the fold lines F̄B and F̄D by the flow corresponding to the
blown-up vector field X̄ε̃. Refer to Section 2.5 in Chapter 2 and [111] for this
standard procedure.

4.3.4. Poincaré map and existence of limit cycles. To prove Theorem 4.1,
we analyze a Poincaré map defined in a neighborhood of the singular cycle Γ̄00. We
will show that within each leaf δ = const. the Poincaré map is a strong contraction
for ε̃ small and has an attracting fixed point corresponding to the limit cycle.
To construct the Poincaré map for the vector field X̄ε̃, we choose sections Σ,

Σa, and Σb, as shown in Figure 4.15, i.e.,
Σ is transversal to the heteroclinic orbit ω2,
Σb is transversal to the heteroclinic orbit ω5,
Σa is transversal to the heteroclinic orbit ω1.

The sections will be defined more precisely later, where the Poincaré map is
considered in the individual charts. In the following we outline the construction of
the Poincaré map.
The Poincaré map will be obtained as the composition of three maps. All orbits

starting in Σ approach S̄r,ε̃, follow the slow flow along S̄r,ε̃, pass the non-hyperbolic
fold curve F̄D, and follow the heteroclinic orbit ω5 to intersect Σb. This defines the
map

Π1 : Σ→ Σb.
Similarly, all orbits starting in Σb approach S̄l,ε̃, follow the slow flow along S̄l,ε̃ until
they pass the non-hyperbolic fold curve F̄B , and follow the heteroclinic orbit ω1 to
intersect Σa. This defines the map

Π2 : Σb → Σa.
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The map
Π3 : Σa → Σ

describes how orbits pass through a neighborhood of the hyperbolic line l. The
Poincaré map Π : Σ→ Σ is defined as

Π = Π3 ◦Π2 ◦Π1.
The construction of the transition map Π1 is carried out in chart K4, whereas the
construction of the transition maps Π2 and Π3 is carried out in the charts K1 and
K2, respectively.
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Figure 4.15. Sections for the Poincaré map.

The transition map Π1. The section Σ is defined in chartK4 by the conditions
b4 = 1/2, r4 close to 1/2, and |δ4| small. Similarly, the section Σb is defined by the
conditions b4 = 1/4, δ4 close to 1/2, and |r4| small. Note that the invariant leaves
δ = const. correspond to δ = δ4r4; hence, these leaves are given by δ4 ≈ 2δ in Σ
and r4 ≈ 2δ in Σb, respectively.

Lemma 4.5. The transition map Π1 : Σ→ Σb is well defined for ε̃ small enough.
There exists a constant c > 0 such that the map Π1 restricted to a leaf δ = const.
is a contraction with a contraction rate e−c/δε̃.

Proof. All orbits starting in Σ are attracted by the extended slow manifold
S̄r,ε̃ at the exponential rate stated above. The results in [71], [111] on the behavior
of slow manifolds near generic folds imply that the intersection of S̄r,ε̃ with Σb is a
curve σ4,ε̃, which is O(ε̃2/3) close to the curve given by Γ̄δ0∩Σb with δ small. Hence,
all of Σ is mapped to a thin wedge exponentially close to σ4,ε̃; see Figure 4.16. �
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Figure 4.16. Image of the section Σ under the transition map Π1.

Remark 4.13. The above proof is carried out in chart K4, in which the blown-
up vector field is three-dimensional. However, the region corresponding to the fold
curve is also covered by chart K3, i.e., Regime 3. The governing equations (4.19) in
Regime 3 are a family of singularly perturbed planar vector fields depending regularly
on the parameter δ. Therefore, the description of the passage of the fold point can be
also based on the results for the planar singularly perturbed fold in [71]. Although
these two points of view are equivalent, the latter is useful in obtaining a more
detailed description. For the analysis of the fold curve in chart K4 one has to use
the results of [111] for folds in R3.

The transition map Π2. The transition map Π2 is studied in chart K1. The
transformation from chart K4 to chart K1 is carried out according to equations
(4.35). Hence, the section Σb is now given by ρ21b1 = 1/2 with ρ1 close to 1/2 and
r1 small. Because of δ = ρ1r1, the invariant leaves δ = const. are given by r1 ≈ 2δ
in Σb. We define the section Σa by b1 = 1, r1 close to 1/2, and ρ1 small. Because
of δ = ρ1r1, the invariant leaves δ = const. are given by ρ1 ≈ 2δ in Σa.

Lemma 4.6. The transition map Π2 : Σb → Σa is well defined for ε̃ small
enough. There exists a constant c > 0 such that the map Π2 restricted to a leaf
δ = const. is a contraction with a contraction rate e−c/δε̃.

Proof. All orbits starting in Σb are attracted by the extended slow manifold
S̄l,ε̃ at the exponential rate stated above. The intersection of S̄l,ε̃ with Σa is a curve
σ1,ε̃. Hence, all of Σb is mapped to an exponentially thin wedge close to σ1,ε̃. Note
that the results in [71], [111] do not apply directly to system (4.37); however, the
dynamics close to the fold curve FB,1 can also be described in Regime 1, which is a
family of planar singularly perturbed folds with singular perturbation parameter ε
parameterized by δ, where the results of [71] apply. This shows further that within
a leaf δ = const. the curve σ1,ε̃ is O(ε2/3) = O(δ2/3ε̃2/3) close to the point
Γ̄δ0 ∩ Σa. �
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The transition map Π3. The transition map Π3 is studied in chart K2. The
transformation from chart K1 to chart K2 is carried out according to

(4.48) r2 = r1, δ2 = b
−1/2
1 , ρ2 = b

1/2
1 ρ1.

The section Σa written in chart K2 is given by the conditions δ2 = 1, r2 close
to 1/2, and ρ2 small. The invariant leaves δ = const. in Σa are now described by
ρ2 ≈ 2δ. The transformation from chart K4 to chart K2 is carried out according to

(4.49) r2 = r4, ρ2 = b
1/2
4 , δ2 = δ4b

−1/2
4 .

Hence, the section Σ is now given by ρ2 = 1/
√
2, r2 close to 1/2, and δ2 small. The

invariant leaves δ = const. in Σ are now described by δ2 ≈ 2
√
2δ.

Remark 4.14. In order to guarantee that Π3 maps Σa into Σ the size of the
section Σ in the direction of r2 (which is equal to r4) has to be chosen slightly larger
than the size of the section Σa in the direction of r2.

Lemma 4.7. The transition map

Π3 : Σa → Σ, (r2,in, ρ2,in, 1) �→ (r2,out, 1/
√
2, δ2,out)

is well defined for ε̃ small and δ ∈ [0, δ0] for δ0 small enough. The map Π3 is
essentially a small translation in r2-direction, i.e.,

r2,out = r2,in +O(ε̃δ ln(1/δ)).

Restricted to a leaf δ = const., the map is at most weakly (algebraically) expanding.

Proof. By dividing the vector field (4.43) by the non-vanishing factor
1
2
ρ2[1− ρ22 + δ22(r22ρ22 − 1 + r22ρ2δ22)],

we rewrite the system as

(4.50)

r�2 = ε̃r2ρ2δ2R(r2, ρ2, δ2),

ρ�2 = ρ2,

δ�2 = −δ2 + ε̃r2ρ2δ2R(r2, ρ2, δ2)
with a smooth function R(r2, ρ2, δ2), which is O(1) in the domain of interest. We
consider this system as a perturbation of the linear system

(4.51)

r�2 = 0,

ρ�2 = ρ2,

δ�2 = −δ2.
A short computation shows that the transition time T , which a solution starting in
Σa needs to reach the section Σ, is

T = O(ln
1
δ
),

where we have used that δ = r2ρ2δ2. The assertions of the lemma follow. �
This completes the construction and analysis of the Poincaré map Π and allows

us to prove the existence of limit cycles for ε̃ small.

Theorem 4.4. For µ < 1 there exist δ0 > 0 and ε̃0 > 0 such that the blown-up
vector field X̄ε̃ has a unique family of attracting periodic orbits Γ̄δε̃ for 0 < δ � δ0
and 0 < ε̃ � ε̃0 with the properties
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(1) Γ̄δ
ε̃
tends to Γ̄δ0 as ε̃→ 0 uniformly for δ ∈ (0, δ0],

(2) Γ̄δ
ε̃
tends to the singular cycle Γ̄00 as (ε̃, δ)→ (0, 0).

Proof. We conclude from Lemmas 4.5, 4.6, and 4.7 that there exist δ0 > 0
and ε̃0 > 0 such that the Poincaré map Π : Σ→ Σ is well defined for δ ∈ [0, δ0] and
ε̃ ∈ [0, ε̃0]. Restricted to a leaf δ = const., i.e., δ = δ4r4 with r4 ≈ 1/2, the map Π is
a contraction with contraction rate e−c/δε̃ for some constant c > 0. The contraction
mapping theorem implies the existence of a unique fixed point γδ

ε̃
corresponding to

the limit cycle Γ̄δ
ε̃
.

The point γδ
ε̃
is O(e−c/δε̃) close to the curve S̄l,ε̃∩Σ. The proofs of Lemmas 4.6

and 4.7 imply that within a leaf δ = const., the curve S̄l,ε̃ ∩ Σ is O(δ2/3ε̃2/3) close
to the point Γ̄δ0 ∩ Σ; see Figure 4.17. The assertions of the theorem follow. �

!"#$$$$%&'(
!"$$$$$$%!

)$'*+,-.

/

/0

1(2

3 !
!45

!

Figure 4.17. Image of the section Σ under the Poincaré map Π.

Remark 4.15. By setting ε = ε̃δ and by applying the blow-up transformations
(4.23) and (4.34), the limit cycles Γ̄δ

ε̃
become the limit cycles Γδ

ε̃
of the original

system (4.5). Thus, the proof of Theorem 4.1 also is completed.



CHAPTER 5

A new type of relaxation oscillations in a model of
the mitotic oscillator

This chapter is devoted to a geometric analysis of a new type of relaxation
oscillations in an enzyme reaction. We are concerned with the model presented in
the introduction, i.e., system (1.16) describing at the molecular level the mitosis
part of the cell division cycle in eukaryotes. So far this model has been studied only
numerically [33]. In this thesis we rewrite the model as a three-dimensional singu-
larly perturbed system and analyze its dynamics in the spirit of geometric singular
perturbation theory. Relaxation oscillations of a new type arise from the phenom-
enon of a delayed exchange of stability, which occurs at non-hyperbolic lines along
which branches of the two-dimensional critical manifold intersect. This novel type
of relaxation oscillations is studied by means of several blow-up transformations.
Our results extend and complete the study presented in [33].
Chapter 5 is organized as follows. In Section 5.1 we discuss the oscillatory

behavior of the model and present its slow-fast analysis. In Section 5.2 we carry out
the blow-up analysis. The main result, i.e., the existence of an attracting periodic
orbit, is proved in Section 5.3.

5.1. Slow-fast analysis of the mitotic oscillator

5.1.1. Basic properties and sustained oscillations. We begin by ana-
lyzing system (1.16) for the parameters that were employed in [40]. Namely, the
chosen parameter values are kd = 0.25, vi = 0.25,Kc = 0.5,Kd = 0, VM1 = 3, V2 =
1.5, VM3 = 1, V4 = 0.7, vd = 0.25, kj = 10−3, j = 1, . . . , 4, for which system (1.16)
has the form

dX

dτ
= M

1−X
ε+ 1−X −

7
10
X

ε+X
,

dM

dτ
=

6C
1 + 2C

1−M
ε+ 1−M −

3
2
M

ε+M
,(5.1)

dC

dτ
=
1
4
(1−X − C)

with ε := kj , j = 1, . . . , 4. We restrict our attention to the physically meaningful
range of the variables X � 0, M � 0, and C � 0, and refer to the introduc-
tion for the specification and a more detailed explanation of the variables and the
parameters.
Providing ε� 1 the following switching behavior emerges, see Figure 5.1. Given

a low cyclin concentration, this value increases at a constant rate, while M and X
stay low (close to 0). Once the variable C passes the activation threshold value
C∗ ≈ 0.5, the variable M increases sharply (up to 1). As soon as M exceeds the

73
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threshold M∗ ≈ 0.7, X is activated and also increases sharply (up to 1). This in
turn triggers the degradation of the cyclin and therefore C,M , and X drop rapidly;
in particular, first M decreases and once it drops below the threshold M∗ ≈ 0.7,
cyclin protease X is inactivated. Consequently, bothM and X return to low values,
while the level of C may rise again. This proceeds in a periodic manner and results
in the generation of the limit cycle type oscillations, see Figure 5.1 and Figure 5.2,
where a numerical simulation of (5.1) and the corresponding limit cycle in the phase
space are shown.

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

X
M
C

Variab les

Figure 5.1. Oscillatory activity of the mitotic cyclin C, cyclin
dependent kinase M , and cyclin protease X.

In [39] the behavior illustrated above of the limit-cycle oscillations for progres-
sively larger values of VM1 and V2 (V2/VM1 fixed) was shown to persist, only if
the Michaelis constants ε are small. However, in [33] the authors investigated the
observed oscillations only numerically and judged the full system (5.1) as to be too
complicated for the phase space analysis. Therefore, they decided to simplify the
problem by applying the quasi-steady-state approximation for one of the dependent
variables. Consequently, they demonstrated that the resulting reduced two-variable
system did not exhibit limit-cycle oscillations. By introducing a rather complicated
rescaling, a new QSSA-reduced system was found. However, this two-variable limit
did not allow to recover sustained oscillatory behavior of the full model.
To understand the enzyme kinetics for small concentrations of C, M , and X,

we apply singular perturbation theory. Our work extends and completes the study
of Erneux and Goldbeter [33]. By carrying out a detailed geometric analysis of
the full system (5.2), we will show that it indeed exhibits an interesting type of
oscillations, as shown in Figure 5.1.
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0

1

X

0

0.7

1

M

0

0.5

1

C

Figure 5.2. Numerically computed limit cycle (shown in red) for
kd = 0.25, vi = 0.25,Kc = 0.5,Kd = 0, VM1 = 3, V2 = 1.5, VM3 =
1, V4 = 0.7, vd = 0.25, kj = 10−3, j = 1, . . . , 4, and two orbits
attracted onto it (shown in brown).

5.1.2. Slow-fast structure. A starting point of our geometric singular per-
turbation analysis is the following system

dX

dτ
= [M(1−X)(ε+X)− 7

10
X(ε+ 1−X)]Fε(M),

dM

dτ
=
�
6C
1 + 2C

(1−M)(ε+M)− 3
2
M(ε+ 1−M)

�
Fε(X),(5.2)

dC

dτ
=
1
4
(1−X − C)Fε(X,M),

which is obtained by multiplying the right hand side of (5.1) by the factor Fε(X,M)
such that

(5.3)
Fε(X,M) = Fε(X)Fε(M),
Fε(X) = (ε+ 1−X)(ε+X),
Fε(M) = (ε+ 1−M)(ε+M).

This amounts to a space-dependent rescaling of time, but leaves the phase portrait
unchanged. Moreover, it brings the kinetic equations of the mitotic oscillator into an
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equivalent polynomial form. The derivative in (5.2) is with respect to the resulting
rescaled time variable, which we still denote by τ .

Remark 5.1. We emphasize here once more that systems (5.1) and (5.2) have
the same phase portraits, but they have different time-scales, i.e., the dynamics of
system (5.1) happens on just one time scale, whereas due to the multiplication trick,
it will turn out that the dynamics of system (5.2) is multiple-time-scale. Thus, it
is important to note that the existence result (Theorem 5.3) applies to both sys-
tems, however, the whole upcoming discussion on slow-fast time scales refers only
to system (5.2).

The parameter ε > 0 representing the Michaelis constants is very small and acts
in system (5.2) as a singular perturbation parameter. System (5.2) is, however, not
written in standard form of slow-fast systems, where the slow and fast variables are
distinguished a priori. More precisely, in system (5.2) in the corresponding limiting
problem for ε = 0 none of the three variables become constants. In the ε = 0
sub-system given by

dX

dτ
=
�
M − 7

10

�
F0(X,M),

dM

dτ
=
�
6C
1 + 2C

− 3
2

�
F0(X,M),(5.4)

dC

dτ
=
1
4
(1−X − C)F0(X,M)

with
F0(X,M) = (1−M)(1−X)MX,

all the three variables evolve on the fast time scale τ . In the following we will call
system (5.4) the layer problem.
In the next subsections, following the standard singular perturbation approach,

we analyze system (5.2) in the singular limit ε = 0, i.e., the fast and slow dynamics
of the layer problem and the corresponding reduced system.

5.1.3. Fast dynamics. The equations
�
M − 7

10

�
(1−M)(1−X)MX = 0,

�
6C
1+2C −

3
2

�
(1−M)(1−X)MX = 0,

1
4 (1−X − C)(1−M)(1−X)MX = 0

define the critical manifold S of the steady states of the layer problem (5.4). The
critical manifold S consists of four planes, defined by M = 0, X = 0, M = 1,
X = 1, which we denote by S1, S2, S3, S4, respectively, and the equilibrium point
(X,M,C) = (0.5, 0.7, 0.5) denoted by p. Hence,

S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ p.

Remark 5.2. The equilibrium point p plays no role in the analysis; however,
we include it for completeness.

Remark 5.3. Recall that our attention is restricted to the physically meaningful
range of the variables X � 0, M � 0, and C � 0.
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Figure 5.3. Critical manifold S and non-hyperbolic lines.

The planes intersect along four non-hyperbolic lines, where an exchange of
stability occurs. Two of them are of particular interest, i.e., the non-hyperbolic edge
along which the planes S1 and S2 intersect, and the non-hyperbolic edge, which is
the intersection of the planes S3 and S4. We denote them by le and le, respectively.
In addition, each of the planes changes its stability at another non-hyperbolic line
given by C = 0.5, M = 0.7, C = 0.5, and M = 0.7, respectively, denoted by lC , lM ,
lC , and lM ; see Figure 5.3. We summarize the stability properties of points in S in
the following lemma.

Lemma 5.1. The layer problem (5.4) has the following properties:
S1 is attracting for C < 0.5 and repelling for C > 0.5.
S2 is attracting for M < 0.7 and repelling for M > 0.7.
S3 is attracting for C > 0.5 and repelling for C < 0.5.
S4 is attracting for M > 0.7 and repelling for M < 0.7.
Equilibrium p is of saddle-focus type.

Proof. Computations. For instance, the linearization of system (5.4) at the
steady state p has one real negative eigenvalue and a pair of complex conjugated
eigenvalues. The real eigenvalue (λ1 = −0.8) is with the sign opposite to the sign of
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the real part of the complex conjugated eigenvalues (λ2,3 = 0, 28± 0, 6i), therefore
the steady state p is of saddle-focus type. �
Remark 5.4. We denote the attracting (repelling) part of Si by Si

a
(Si
r
) for

i = 1, . . . , 4.

From Theorem 2.1 presented in Chapter 2 we conclude that normally hyperbolic
parts of S persist under ε-perturbation as slow manifolds.

5.1.4. Slow dynamics. Any compact subset of the critical manifold S that
does not contain the non-hyperbolic lines is normally hyperbolic. To such normally
hyperbolic parts of S (away from the edges and away from the non-hyperbolic lines
lC , lM , lC , lM , respectively), Fenichel theory applies [34]. In particular, the theory
implies that these parts perturb to slow manifolds, which lie within O(ε) of S. More
precisely, we have

Theorem 5.1. For small δ > 0 there exist ε0 > 0 and smooth functions
h1
ε
(X,C) and h3

ε
(X,C) defined on Ia := [δ, 1 − δ] × [δ, 12 − δ] and Ir := [δ, 1 −

δ]× [ 12 + δ, 1− δ], respectively, such that the graphs
S1
a,ε
= {(X,M,C) : M = h1

ε
(X,C), (X,C) ∈ Ia},

S1
r,ε
= {(X,M,C) : M = h1

ε
(X,C), (X,C) ∈ Ir},

S3
a,ε
= {(X,M,C) : M = 1 + h3

ε
(X,C), (X,C) ∈ Ir},

S3
r,ε
= {(X,M,C) : M = 1 + h3

ε
(X,C), (X,C) ∈ Ia}

are locally invariant attracting, respectively repelling, slow manifolds of system (5.2)
for ε ∈ (0, ε0]. The functions have the expansions

h1
ε
(X,C) = −4C

2C−1ε+O(ε
2),

h3
ε
(X,C) = 1+2C1−2C ε+O(ε

2).

Proof. The above expansions are obtained by plugging the expansion of hj
ε
, j =

1, 3 in powers of ε into (5.2) and comparing coefficients of powers of ε. �
Similarly, normally hyperbolic pieces of the planes X = 0, X = 1 perturb to

smooth locally invariant attracting (repelling) two-dimensional slow manifolds.

Theorem 5.2. For small δ > 0 there exist ε0 > 0 and smooth functions
h2
ε
(M,C) and h4

ε
(M,C) defined on Ja := [δ, 0.7 − δ] × [δ, 1 − δ] and Jr := [0.7 +

δ, 1− δ]× [δ, 1− δ], respectively, such that the graphs
S2
a,ε
= {(X,M,C) : X = h2

ε
(M,C), (M,C) ∈ Ja},

S2
r,ε
= {(X,M,C) : X = h2

ε
(M,C), (M,C) ∈ Jr},

S4
a,ε
= {(X,M,C) : X = 1 + h4

ε
(M,C), (M,C) ∈ Jr},

S4
r,ε
= {(X,M,C) : X = 1 + h4

ε
(M,C), (M,C) ∈ Ja}

are locally invariant attracting, respectively repelling slow manifolds of system (5.2)
for ε ∈ (0, ε0]. The functions have the expansions

h2
ε
(M,C) = M

0.7−M ε+O(ε
2),

h4
ε
(M,C) = 0.7

0.7−M ε+O(ε
2).

Proof. The above expansions are obtained by plugging the expansion of hj
ε
, j =

2, 4 in powers of ε into (5.2) and comparing coefficients of powers of ε. �
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Finally, the equations governing the slow dynamics on the critical manifold S
are found by first substituting the functions hj

ε
, j = 1, . . . , 4 into (5.2), then trans-

forming to the slow time variable t = ετ , and setting ε = 0. We now analyze the
reduced flows in each of the planes.

Reduced flow on S1. The dynamics of the reduced system on S1, i.e., on the
plane M = 0, is governed by

Ẋ =
7X(1−X)(6C + 3)
10(6C − 3) ,

(5.5)

Ċ =
(1−X − C)(X − 1)X(6C + 3)

4(6C − 3) ,

where · denotes differentiation with respect to the slow variable t.
System (5.5) is singular at the line C = 0.5, i.e., the flow is not defined there.

The lines X = 0 and X = 1, shown in blue in Figure 5.4, are lines of equilibria.
The line X = 0 is attracting for C < 0.5 and repelling for C > 0.5, whereas the
line X = 1 is repelling for C < 0.5 and attracting for C > 0.5, see Figure 5.4.

Figure 5.4. Reduced flow on the critical manifold S1 (on the
right) and its desingularized version (on the left).

Remark 5.5. Note that the lines X = 0 and X = 1 of equilibria of system
(5.5) are artefacts of the multiplication trick (5.3), and are not lines of equilibria
of system (5.1).

Since the standard existence and uniqueness result for ODEs do not hold at
C = 0.5, to study the phase portrait of the reduced system in more detail, we
rescale the time in (5.5) by the factor (6C−3)

(6C+3)(X−1)X . We obtain the desingularized
system

(5.6) Ẋ = − 710 ,
Ċ = 1

4 (1−X − C).
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Systems (5.5) and (5.6) have the same phase portraits on the lower part of the
plane M = 0, i.e., for C < 0.5. On the upper part, for C > 0.5, we must reverse
time in the phase portrait of system (5.6) in order to obtain the phase portrait of
the reduced system (5.5), see Figure 5.4. Such a desingularization of system (5.5)
leads to the cancellation of the singularity and the reduced flow passes through the
line C = 0.5.

Remark 5.6. Note that for C < 0.5 systems (5.5) and (5.6) have qualitatively
the same dynamics. More precisely, the vector field (5.6) is C∞-equivalent, but not
C∞-conjugate to the original vector field (5.5). This is no problem as we are not
interested in precise time-estimation along the orbits. For C > 0.5 the orientation
is not preserved, i.e., the direction of motion along orbits must be changed due to
the time reparameterization by a decreasing function in t. We refer to [16] and
[116] for a background on conjugacies and equivalences of vector fields, and time
reparametrization of flows.

Recall that the critical manifold S1 is attracting for C < 0.5. Hence, for our
purposes it suffices to study the flow of system (5.5) in the lower part of the M = 0
plane, away from the line lC , and away from the lines of equilibria, which are non-
hyperbolic for the layer problem (5.4). Thus, it suffices to study the flow of system
(5.6) for C < 0.5. The equations in (5.6) are decoupled and integrable. Note that X
acts as a time in (5.6), hence the equation for C is non-autonomous, but linear in
C. Consequently, the flow of (5.6) is contracting in C. Since the slow flow on S2

ε
is a

regular perturbation of the reduced flow, we conclude that the contraction property
of the slow flow also holds for ε > 0, i.e., the slow flow on S1

a,ε
is contracting C.

Reduced flow on S2. On the plane X = 0 the dynamics is governed by

Ṁ =
(6C − 3)M(1−M)
2(2C + 1)(0.7−M) ,

(5.7)

Ċ =
(1− C)(1−M)M
4(0.7−M) .

System (5.7) has two lines of equilibria, i.e., M = 0 and M = 1, and is singular at
M = 0.7. The lines of equilibria are attracting for C < 0.5 and repelling for C > 0.5.
To understand better the dynamics of the reduced system (5.7) (especially, close to
the line M = 0.7), we divide out the factor M(M−1)

M−0.7 , and obtain

(5.8)
Ṁ = (6C−3)

2(2C+1) ,

Ċ = 1
4 (1− C).

Systems (5.7) and (5.8) have the same phase portraits for M < 0.7, see Figure 5.5.
The phase portrait of the reduced system (5.7) on S2

r
is obtained by changing the

direction of the flow in Figure 5.5 for M > 0.7.

Remark 5.7. Note that for C > 0.5 the reduced flow on S2 is directed towards
the lineM = 0.7. Hence, orbits on S2

a
and S2

r
reach the line lM in finite forward time

and are forced to jump. This phenomenon is studied in detail in Subsection 5.2.2.

Similarly, the reduced flows on the M = 1 and X = 1 planes have been ana-
lyzed.
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Figure 5.5. Reduced flow on the critical manifold S2 (on the
right) and its desingularized version (on the left).

5.1.5. Singular cycle. One goal of the analysis of system (5.2) in the singular
limit ε = 0 is to identify a singular cycle, i.e., a closed curve consisting of alternating
segments of the critical manifold S and orbits of the layer problem. Note, however,
that just from inspection of the layer problem and the reduced problems, it is not
clear how to define a singular cycle, which would be a good candidate to obtain
relaxation oscillations. The reason for this is that at the moment we have no valid
description of the dynamics close to the edges le nor le. Moreover, we need to
understand better the dynamics of system (5.2) in a neighbourhood of the non-
hyperbolic lines lM and lM .
A full description of the dynamics will be obtained by carrying out the blow-up

analysis presented in Section 5.2. By combining these results, we define in anticipa-
tion the following singular cycle Γ0 of system (5.2) for ε = 0, half of which consists
of

(1) slow motion in the attracting part of S1 (the plane M = 0) towards the
(non-hyperbolic) edge le,

(2) very slow drift along the edge le,
(3) slow motion in the attracting part of S2 (the plane X = 0) to a point pf
on the non-hyperbolic line lM ,

(4) a fast jump from pf to the attracting part of S3 (the plane M = 1).

More precisely, we distinguish the following points (see Figure 5.6 and Fig-
ure 5.7): qe = (0, 0, 12 ) ∈ le, pf ∈ lM , p3 ∈ P (lM ) ⊂ S

3
a
, pen ∈ le, qe = (1, 1, 12 ) ∈ l

e,
pf ∈ lM , p1 ∈ P (lM ) ⊂ S1a, and pen ∈ le, where P (lM ) and P (lM ) denote the
projections along the fast fibers of the lines lM and lM on the attracting branches
of S3 and S1, respectively. It will turn out that the points pf ∈ lM and pf ∈ lM are
jump points and we will assume that the reduced flows on S1 and S3 are transverse
to the projection curves P (lM ) and P (lM ) at the points p1 and p3, respectively.
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This transversality condition1 clearly holds, but is not checked since it is beyond
our scope to find precisely the coordinates of the points p1 and p3.
The other points we describe by introducing the following notation: ω1 is a

segment of S2
a
from qe to pf , ω2 is the heteroclinic orbit of system (5.4) from pf to

p3, ω3 is a segment of S3a from p3 to pen, ω4 is a segment of le from pen to qe, ω5
is a segment of S4

a
from qe to pf , ω6 is the heteroclinic orbit of (5.4) from pf to p1,

ω7 is a segment of S1a from p1 to pen; finally, ω8 is a segment of le from pen to qe.
We define the singular cycle Γ0 of system (5.2) for ε = 0 as

(5.9) Γ0 := ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪ ω5 ∪ ω6 ∪ ω7 ∪ ω8.

Figure 5.6. Reduced flows and singular cycle Γ0.

1
The dynamics of systems for which the transversality condition fails is more complicated.

We refer to [49] where the existence of chaotic attractors of relaxation oscillators is studied.
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Remark 5.8. Note that starting at the point qe = (0, 0, 12 ) guarantees that Γ0
defined as (5.9) is unique. Alternatively, a starting point to define Γ0 could be the
point qe = (1, 1, 12 ) ∈ l

e.

Remark 5.9. The upper picture in Figure 5.6 shows the planes M = 0 and
X = 0 intersecting along the edge le, whereas in the lower picture the planesM = 1
and X = 1, which intersect along the edge le, are shown. Both pictures show in blue
the corresponding reduced flows on S1, S2, S3, and S4, respectively; the components
of the singular cycle Γ0 are drawn as thick curves. Namely, in blue two types of solu-
tions of the reduced problems are drawn, i.e., connecting the points of the projection
curves P (lM ) and P (lM ) and the points on the edges le and le, and connecting the
points on the edges le and le and the jump points; these slow solutions are connected
by fast fibers, shown in green, from lM and lM to P (lM ) and P (lM ), respectively;
double green arrows indicate hyperbolic behavior of the layer problem, while non-
hyperbolic behavior of the layer problem is indicated by a single green arrow. In
contrast to singular cycles in standard slow-fast systems, the slow drifts along the
edges shown in purple, which separate the slow motions, are new components of Γ0
and have been discovered due to the blow-up analysis presented in Section 5.2.1. In
Figure 5.7 the singular cycle Γ0 is shown in R3.

Figure 5.7. Singular cycle Γ0 in R3.
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In fact, such identified Γ0 will be shown to persist in the form of a relaxation
cycle of system (5.2) under small singular ε-perturbation. Our main result is the
following.

Theorem 5.3. The existence of the singular cycle Γ0 with the specific properties
described above implies that for ε sufficiently small there exists a unique attracting
periodic orbit Γε of system (5.2), and hence of the equivalent system (5.1), which
tends to the singular cycle Γ0 for ε→ 0.

The proof of Theorem 5.3 is given in several steps in the following subsections,
which will be then summarized in Section 5.3. Here we briefly present our strategy.
We carry out the proof in a geometric way based on the blow-up technique.

The blow-up analysis in the next section starts by performing suitably defined
blow-ups of the non-hyperbolic edge le and the non-hyperbolic line lM . We will
work exclusively with the blown-up systems and analyze their dynamics.
To show that the existence of Γ0 implies the existence of a relaxation orbit Γε

of system (5.2), we construct a local Poincaré map, half of which is the composition
of three different intermediate maps. Two of these maps are constructed for the
blown-up systems, i.e., the maps Πe and Πf , and describe the dynamics near the
non-hyperbolic edge le and the non-hyperbolic line lM , respectively. The third map
describes a contraction onto the attracting slow manifolds S1

a,ε
.

Finally, we will show that within each leaf ε = const. the Poincaré map is
a strong contraction and has an attracting fixed point corresponding to the limit
cycle.

Remark 5.10. We do not present the results for the other two blow-ups, i.e.,
the edge le and the line lM . The analysis is analogous and for this reason we only
show how to construct one half of the return map.

5.2. Blow-up analysis

In this section we carry out the blow-up analysis for system (5.2). We focus
our attention on the dynamics close to the edge le and on the dynamics in the
plane X = 0 close to the non-hyperbolic line lM . We first perform a blow-up of the
non-hyperbolic edge le, and then we blow-up the non-hyperbolic line lM . For this
purpose we rewrite system (5.2) as

dX

dτ
= [M(1−X)(ε+X)− 7

10
X(ε+ 1−X)]Fε(M),

dM

dτ
=
�
6C
1 + 2C

(1−M)(ε+M)− 3
2
M(ε+ 1−M)

�
Fε(X),(5.10)

dC

dτ
=
1
4
(1−X − C)Fε(X,M),

dε

dτ
= 0,

where as before Fε(M) = (ε + 1 −M)(ε +M), Fε(X) = (ε + 1 −X)(ε +X), and
Fε(X,M) = Fε(X)Fε(M). System (5.10) is considered as a four-dimensional vector
field on R4 by treating the parameter ε as a variable dependent on τ .
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5.2.1. Local analysis close to the non-hyperbolic edge le. We investi-
gate the transition of the flow of (5.1) near the edge le. We concentrate on the
attracting part of S1, i.e., S1

a
and analyze the behaviour of the slow manifold S1

a,ε

together with nearby solutions as they pass near the edge le. An exchange of stabil-
ity behavior is expected to occur, i.e., a transition from slow motion along S1

a,ε
to

slow motion along S2
a,ε
. Instead, we observe a new phenomenon, which we call a de-

layed exchange of stability. We will see that a slow motion-to-slow motion transition
is delayed due to a very slow drift, which occurs almost along the C-axis.
A numerical simulation of the dynamics for ε > 0 close to the edge le is shown

in Figure 5.8. A drift almost the C-axis is observed for all trajectories starting close
to the edge with different initial conditions with C < 0.5. This new phenomenon
motivated much of our interest in this problem.

0

1

X

0

0.7

1

M

0

0.5

1

C

Figure 5.8. Numerical simulations of the flow of system (5.2)
illustrating a drift almost along the C-axis. Limit cycle Γε is shown
in red, while several trajectories attracted to Γε are drawn in
brown.

In the singular limit ε = 0 the delayed exchange of stability phenomenon is
schematically illustrated in Figure 5.9. For a better visibility of the dynamics, it is
drawn as a planar picture and viewed from inside the unit cube. Hence, the M = 0
plane is on the left, while the plane X = 0 is on the right. Recall that the critical
manifold S1 and the attracting part of the critical manifold S2 intersect along the
non-hyperbolic edge le shown in orange; the corresponding slow dynamics is shown
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in blue. A solution, which follows the reduced flow on S1
a
(shown as a thick blue

curve), reaches the edge le and then, surprisingly, the slow flow pushes it up, and a
very slow drift along the edge occurs (shown in purple). When the value C = 0.5 is
reached, the solution is repelled and follows the reduced flow in the attracting part
of S2, i.e., in the plane X = 0.

Figure 5.9. Delayed exchange of stability at the non-hyperbolic edge le.

The behavior of the solutions close to the edge will be studied in this section
systematically by the blow-up method. In fact, we will prove Theorem 5.4, which is
the main result in the study of this phenomenon. More precisely, let ∆e

in
and ∆e

out

be two sections transverse to S1
a
and S2

a
, respectively, and defined as

∆e
in
= {(δ,M,C) : (M,C) ∈ L1}, ∆e

out
= {(X, δ, C) : (X,C) ∈ L2},

for small δ > 0 and suitable rectangles L1, L2. Note that these sections are two
dimensional objects and Figure 5.9 shows their projections onto the planes M = 0
and X = 0, respectively. Let πe be a transition map from ∆ein to ∆

e

out
induced by

the flow of (5.2). We have the following result.

Theorem 5.4. For system (5.2) there exist δ and ε0 > 0 such that for ε ∈ (0, ε0]:
(1) The intersection of manifold S1

a,ε
and ∆e

out
is a curve of exponentially

small length lying close to a point (X(ε), δ, C(ε)).
(2) The image of ∆e

in
is a two-dimensional domain of exponentially small

width containing the curve S1
a,ε
∩∆e

out
.

(3) The transition map πe is an exponential contraction with a rate O(e−c/ε),
where c is a positive constant.

Remark 5.11. The proof of Theorem 5.4 based on blowing up the edge le will be
given at the end of this section. The point (X(ε), δ, C(ε)) ∈ ∆e

out
is the intersection

point of ∆e
out
and a certain one-dimensional fully attracting slow manifold, which

is visible only in the blown-up coordinates.
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We now turn to the blow-up analysis.

Blow-up of the non-hyperbolic edge le × {0}. Note that for the extended
system (5.10) the line le×{0} is a set of equilibria, at which the linearization of the
system has a quadruple zero eigenvalue. Thus, the construction of the slow manifold,
as an ε-section of an attracting three-dimensional center-like manifold W c

a
of the

extended system (5.10) corresponding to S1
a
, fails close to the edge le. To overcome

these degeneracies, we define the blow-up transformation of the non-hyperbolic line
of steady states le × {0} by

(5.11)

X = rX̄,
M = rM̄,
ε = rε̄,
C = C̄

with (X̄, M̄ , ε̄, r, C̄) ∈ S2 × R × R. More precisely, we consider the blow-up trans-

Figure 5.10. Blow-up transformation of the non-hyperbolic edge
le. For C fixed each point (0, 0, C) ∈ le is blown-up to a sphere.
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formation (5.11) as a mapping

Φe : S2 × R2 → R4,

which for r > 0 is a diffeomorphism and for r = 0 is singular, i.e., the edge le× {0}
corresponding to r = 0 is blown-up to the manifold Z := S2× {0}×R. For C fixed
each point (0, 0, C) ∈ le is blown-up to a sphere, see Figure 5.10.
The blown-up vector field is analyzed in charts K1, K2, and K3, which cover

the part of the manifold Z corresponding to X̄ � 0, ε̄ � 0, and M̄ � 0, respectively.
More precisely, we define the charts by setting X̄ = 1, ε̄ = 1, and M̄ = 1 in the
blow-up transformation (5.11). Hence, the local coordinates of charts K1, K2, and
K3 are given by

X = r1, M = r1M1, ε = r1ε1, C = C1,(5.12)

X = εX2, M = εM2, ε = r2, C = C2,(5.13)

X = r3X3, M = r3, ε = r3ε3, C = C3.(5.14)

Figure 5.11. Local charts covering the sphere for C fixed. Chart
K1 covers the region corresponding to X̄ � 0, chart K2 covers the
upper part of the sphere, and chart K3 the region corresponding
to M̄ � 0.

To obtain the systems of equations written in the coordinates of K1, K2, and
K3, we first insert (5.12) – (5.14) into system (5.10), respectively. Note that the
resulting systems are well defined on {r = 0}, however, have trivial flows. It is
possible to desingularize these flows by dividing out the common factors (a suitable
power of r), which results in a rescaling of time. Consequently, the desingularized
systems have nontrivial dynamics for r = 0.
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Thus, the dynamics in K1 is governed by

(5.15)

r�1 = r1f(r1,M1, ε1),

M �1 = [ 6C11+2C1
(1− r1M1)(ε1 +M1)− 32M1(r1ε1 + 1− r1M1)]g(r1, ε1)

−M1f(r1,M1, ε1),

C �1 =
1
4r1(1− r1 − C1)(r1ε1 + 1− r1M1)(ε1 +M1)g(r1, ε1),

ε�1 = −ε1f(r1,M1, ε1),

with the function g(r1, ε1) = (ε1 + 1− r1)(ε1 + 1) and f(r1,M1, ε1) given by

f(r1,M1, ε1) = [r1M1(1−r1)(ε1+1)−
7
10
(r1ε1+1−r1)](r1ε1+1−r1M1)(ε1+M1).

In chart K2 system (5.10) has the form

(5.16)

X �2 = − 710X2(1 +M2) +O(ε),

M �2 = [ 6C22C2+1
(1 +M2)− 32M2](1 +X2) +O(ε),

C �2 = 1
4 (1− C2)(1 +M2)(1 +X2)ε+O(ε

2),

and in the coordinates of chart K3 it is given by

(5.17)

X �3 = (1− r3ε3)(r3ε3 + 1− r3)(ε3 + 1)(ε3 +X3)r3+

−[ 710 (r3ε3 + 1− r3) +
6C3
2C3+1

(1− r3)(ε3 +X3)]X3(ε3 + 1)+

+ 32X3(r3ε3 + 1− r3)(ε3 +X3),

r�3 = [ 6C32C3+1
(1− r3)(ε3 + 1)− 32 (r3ε3 + 1− r3)](ε3 +X3)r3,

C �3 =
1
4 (1− r3X3 − C3)(r3ε3 + 1− r3)(ε3 + 1)(ε3 +X3)r3,

ε�3 = [ 32 (r3ε3 + 1− r3)−
6C3
2C3+1

(1− r3)(1 + ε3)](ε3 +X3)ε3.

We emphasize once more that the derivatives in (5.15) – (5.17) are with respect to
the rescaled fast time scales τi, i = 1, 2, 3, respectively, due to the desingularization
of the blown-up vector field.
To understand the flow of (5.10) near the non-hyperbolic edge le, we analyze

systems (5.15) – (5.17). Note that system (5.16) is a family of vector fields with
parameter ε (since r�2 = ε� = 0), whereas in charts K1 and K3 the variables r1
and r3 have become dynamic variables; therefore, systems (5.15) and (5.17) are
four-dimensional. To connect the flow between the charts on their overlap, we use
the following coordinate change relations.

Lemma 5.2. The changes of coordinates κij from chart Ki to Kj, i, j = 1, 2, 3,
are given by

(5.18) κ12 : X2 = ε−11 , r2 = r1ε1, M2 =
M1
ε1
, C2 = C1.

(5.19) κ23 : X3 = X2M2 , r3 = r2M2, ε3 =M
−1
2 , C3 = C2.

By κji we denote the inverse transformations, i.e., from chart Kj to Ki, i, j =
1, 2, 3.
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Remark 5.12. We use the following notation: any object P of the extended
system (5.10) is denoted as P̄ for the blown-up problem, and by Pi in chart Ki, i =
1, 2, 3.

In the following we will construct a transition map Πe : Σein → Σeout induced
by the blown-up vector field, where the sections Σe

in
and Σe

out
are transversal to

the attracting branches of the critical manifold S (see Figure 5.12), and will be
defined more precisely in specific charts. The transition map Πe will be used to
prove Theorem 5.4.
Recall that the equation ε� = 0 from system (5.10) implies that the blown-up

phase space has an invariant foliation corresponding to constant values of ε. In
particular, the singular leaf corresponding to ε = 0 is the union of the manifold Z
and the region defined by setting ε̄ = 0 in (5.11). At the end of this section we will
show that restricted to such leafs the map Πe induced by the blown-up vector field
is a strong contraction.

Figure 5.12. Sections and blow-up of the non-hyperbolic edge le.

The map Πe will be the composition of three local maps Πi, which in turn are
constructed in charts Ki, i = 1, 2, 3, respectively, i.e.,

Πe = Π3 ◦ κ2,3 ◦Π2 ◦ κ1,2 ◦Π1.
In chart K1 we will find the extension of the slow manifold S1a,ε and see that the
transition in K1 is described by a certain three-dimensional center manifold and its
foliation. Next, we will analyze how the continuation of the slow manifold S1

a,ε
can

be further extended in other charts. In chart K2, we will see that the map Π2 is an
exponential contraction due to the existence of a one-dimensional attracting slow
manifold, see Figure 5.13. This one-dimensional slow manifold plays a very special
role in the analysis. It will lead the continuation of the slow manifold S1

a,ε
across the

cylinder. In chart K3 we will see that there exists the so-called exit point. We will
analyze how the extension of the one-dimensional slow manifold found from chart
K2 exits near this point. Since the exit point is nilpotent, the construction of the
transition map Π3 is more complicated and requires a second-blow-up procedure.
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In order not to interrupt the main argument, we present the blow-up of the exit
point in Section 5.4 at the end of this chapter. We will see that the contraction
gained in chart K2 is not lost during the passage of the exit point.

Figure 5.13. The flow of (5.10) in the blown-up coordinates.

We now turn to the analysis in the individual charts, which will provide us with
the pictures illustrated in anticipation in Figure 5.13.

Analysis in chart K1. We start with system (5.15). This system has two
invariant hyperplanes, which organize the dynamics in chart K1; namely, the hy-
perplane r1 = 0 and ε1 = 0. The r1 = 0 hyperplane corresponds to the manifold Z,
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whereas the hyperplane ε1 = 0 to the region in front of it. The intersection of these
invariant hyperplanes is the (M1, C1)-plane, in which the dynamics is governed by

(5.20)
M �1 = [ 6C1−32(1+2C1)

]M1 + 7
10M

2
1 ,

C �1 = 0.

For each C1 < 1
2 fixed there are two hyperbolic equilibria p

a

1 = (0, 0, C1, 0) and
pr1 = (0,

15
7
1−2C1
1+2C1

, C1, 0). For the flow in the (M1, C1)-plane point pa1 is attracting,
while point pr1 is repelling. For C1 =

1
2 these two points collide at a non-hyperbolic

point (0, 0, 12 , 0).
In the invariant hyperplane ε1 = 0 the dynamics is governed by

(5.21)

r�1 = r1M1(r1M1 − 7
10 )(1− r1)(1− r1M1),

M �1 = M1(1− r1)(1− r1M1)[ 6C11+2C1
− 32 − r1M

2
1 +

7
10M1],

C �1 = 1
4r1M1(1− r1 − C1)(1− r1)(1− r1M1).

The plane M1 = 0 is a normally hyperbolic plane of equilibria of system (5.21),
which we denote by S1

a,1. For 0 � r1 < 1 and 0 � C1 < 12 the nonzero eigenvalue
along S1

a,1 is stable. In particular, the C1-axis contained in S1a,1 is attracting for
the flow in the r1 = 0 plane. We denote it by le,1 since it corresponds to the
non-hyperbolic edge le; however, we have gained normal hyperbolicity due to the
blow-up. Furthermore, the curve defined by

r1 = 0, M1 = −
15
7
2C1 − 1
2C1 + 1

is a curve of saddle-type equilibria for system (5.15). We denote it by N r1 , see
Figure 5.14.

Figure 5.14. Equilibria of system (5.15) in the invariant hyperplane ε1 = 0.

Remark 5.13. Note that the plane S1
a,1 corresponds to the critical manifold

S1, i.e., the plane M = 0.
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Remark 5.14. The curve of equilibria N r1 corresponds to the incoming fast
fiber, i.e., these equilibria are the points on the manifold Z, where stable fibers of
the layer problem (5.4) end. However, they do not play an important role in the
analysis, we mention them for completeness.

In the invariant hyperplane r1 = 0 system (5.15) reduces to

(5.22)

C �1 = 0,

M �1 = [ 6C11+2C1
(ε1 +M1)− 32M1](ε1 + 1) +

7
10M1(ε1 +M1),

ε�1 = 7
10ε1(ε1 +M1).

We recover the line le,1 and the curve N r1 , see Figure 5.15 (shown in blue and
orange, respectively). The Jacobian matrix at the points in le,1 is

� 6C1−3
2(2C1+1)

6C1
2C1+1

0 0

�
,

i.e., the C1-axis is attracting for the flow in the ε1 = 0 plane (0 � C1 < 12 ). How-
ever, we obtain one additional zero eigenvalue due to the equation for ε1. This
implies the existence of a two-dimensional center manifold Ca,1 with center direc-
tions (C1,M1, ε1) = (1, 0, 0) and (0,−1, 4C12C1−1 ). For C1 <

1
2 the curve of equilibria

N r1 is normally hyperbolic.

Figure 5.15. Equilibria of system (5.15) in the invariant hyperplane r1 = 0.

Remark 5.15. In chart K1 the center manifold Ca,1 plays the most important
role in the analysis since on the blown-up manifold it can be considered as the
extension of the critical manifold S1

a,1.

We summarize the analysis in the invariant hyperplanes with the following
lemmas.

Lemma 5.3. System (5.15) has the following manifolds of equilibria

N r1 = {(r1,M1, C1, ε1) : r1 = 0, M1 = − 157
2C1−1
2C1+1

, C1 ∈ [0, 12 ], ε1 = 0}

and the plane S1
a,1, which contains the line le,1.
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Lemma 5.4. For system (5.15) the following assertions hold.
(1) The linearization of system (5.15) at the steady states of S1

a,1 has the
following real eigenvalues
(a) λ1 = 6C1−3

2(2C1+1)
(1 − r1) with eigenvector (0, 1, 0, 0)T . For r1 = 0 it

corresponds to the flow in the invariant (M1, C1)-plane.
(b) double λ2 = 0 with eigenvectors tangent to the M1 = 0 plane.
(c) λ3 = 0 with the eigenvector (0,−1, 0, 4C12C1−1 ) corresponding to the
center direction in the invariant hyperplane r1 = 0.

(2) For ρ1, ρ2 sufficiently small there exists a three-dimensional center man-
ifold W c

a,1 of the line le,1, which contains the plane of equilibria S1a,1 and
the center manifold Ca,1. The manifold W ca,1 is attracting and in a set D1
D1 = {(r1,M1, C1, ε1) : 0 � r1 � δ, 0 � ε1 � α1, C1 ∈ I1}
is given as a graph

M1 = ha,1(r1, C1, ε1),

where I1 is a suitable interval. In particular, at a point pa,1 ∈ le,1 such
that C0 ∈ I1 the function ha,1(r1, C1, ε1) has the expansion

(5.23) ha,1(r1, C0, ε1) = −
4C0
2C0 − 1

ε1 +O(2).

(3) There exists c1 < 3−6C0
2(2C0+1)

such that the orbits near the center manifold
W c
a,1 are attracted to W ca,1 by an exponential rate of order O(e−c1t1).

Proof. The first assertion follows from calculations. The last two assertions
follow from center manifold theory [18], [46], applied at a point pa,1 ∈ le,1, which
has gained an attracting direction due to the blow-up. �
Remark 5.16. The manifold W c

a,1 corresponds to the slow manifold S1a,ε de-
scribed in Theorem 5.1. Recall that Fenichel theory implies the existence of an at-
tracting center-like manifold W c

a
of the extended system (5.10) for sufficiently small

ε. The slow manifold S1
a,ε
is obtained as a section ε = const. of W c

a
. In chart K1

this center manifold is given by (5.23).

Thus, in chart K1 we are mainly interested in understanding the dynamics near
the center manifold W c

a,1 as it corresponds to the neighborhood of the attracting
slow manifold S1

a,ε
of system (5.2). Let δ > 0, α1 > 0 and β1 be small constants.

We define two sections Σ1,in and Σ1,out, and a rectangle R1,in by

Σ1,in = {(r1,M1, C1, ε1) ∈ D1 : r1 = δ},

Σ1,out = {(r1,M1, C1, ε1) ∈ D1 : ε1 = α1},

R1,in = {(r1,M1, C1, ε1) ∈ D1 : r1 = δ, |M1| � β1}.
Note that with this choice of δ, α1 and β1 the following relations hold

R1,in ⊂ Σ1,in, Σ1,in ⊂ ∆ein.
Moreover, we can choose the constants such that the intersection of the center
manifold W c

a,1 with the section Σ1,in lies in R1,in, i.e., W ca,1 ∩ Σ1,in ⊂ R1,in.

Remark 5.17. The invariant leaves ε = const. are given by ε1 = ε

δ
in Σ1,in

and by r1 = ε

α1
in Σ1,out due to the relation ε = r1ε1.
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Our goal is to construct the transition map Π1 : Σ1,in → Σ1,out defined by
the flow of (5.15). We are interested how solutions starting in R1,in ⊂ Σ1,in near
the center manifold W c

a,1 reach the section Σ1,out. Therefore, we first look at the
evolution of the C1 variable in the three-dimensional center manifoldW ca,1 of the line
le,1, i.e., our goal is to estimate C1,out ∈ Σ1,out for a given (r1,in, C1,in, ε1,in) ∈ Σ1,in.
For this purpose we substitute M1 = ha,1(r1, C1, ε1) into system (5.15) and rescale
time to obtain the flow on the center manifold. Namely, we get

r�1 = −r1,
C �1 =

5
14 (1− r1 − C1)(O(r1) +O(r1ε1)),(5.24)

ε�1 = ε1.

Note that the derivative in system (5.24) is with respect to a rescaled time scale s1.
Consider a solution (r1(s1), C1(s1), ε1(s1)) of (5.24), which satisfies

(5.25)
r1(0) = δ r1(Ts) = r1,out
C1(0) = C1,in C1(Ts) = C1,out
ε1(0) = ε1,in ε1(Ts) = α1.

The formulas ε1(s1) = ε1,in exp (s1) and r1(s1) = δ exp (−s1) imply that the tran-
sition time Ts, i.e., time needed for a point (δ, C1,in, ε1,in) ∈ Σ1,in to reach Σ1,out
under the flow of (5.24), is given by

(5.26) Ts = ln
α1
ε1,in
.

By integrating the equation

C �1 =
5
14
(1− δe−s1 − C1)(δe−s1O(1) + δε1,inO(1)),

we estimate the evolution of C1, i.e., we get

(5.27) C1(s1) = C1,ine−
5
14 δ(−e

−s1+s1ε1,in) − 5
14
δe−

5
14 δ(−e

−s1+s1ε1,in)f(s1),

where f(s1) is given by

f(s1) =
�
e−2s1+

5
14 δ(−e

−s1+ε1,ins1)(−es1 + δ)(1 + es1ε1,in)ds1.

We therefore obtain that

(5.28) C1(Ts) = C1,out =: F1(δ, C1,in, ε1,in)

with
F1(δ, C1,in, 0) = −

9
5
+ C1,in

describing the flow on Sa,1 from Σ1,in to the le,1-axis. In the original variables
F1(δ, C1,in, 0) corresponds to the reduced flow from Σin to the non-hyperbolic edge
le.

Remark 5.18. We note that due to the complicated formula (5.27), the estimate
(5.28) for C1,out ∈ Σ1,out is imprecise, but it does still allow us to construct the
transition map Π1. Moreover, as it will turn out in chart K2, it is not necessary to
quantify this estimate.

We summarize the obtained results in Theorem 5.5 and illustrate them in Fig-
ure 5.16, which shows the geometry and dynamics in chart K1 projected to the
hyperplane C1 = const..
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Theorem 5.5. For system (5.15) the transition map Π1 : R1,in → Σ1,out is
well-defined for δ, α1 small enough, and sufficiently small R1,in ⊂ Σ1,in, and has
the following properties
(1) Π1(R1,in) ⊂ Σ1,out is a three-dimensional wedge-like region in Σ1,out, i.e.,
for fixed c > 6C0−3

2(2C0+1)
there exists a constant K̃ = K̃(c, δ,α1,β1) such that

for ε0 ∈ (0,α1], C0 ∈ I1, the image Π1(J(C0, ε0)) is a line inW ca,1∩Σ1,out,
whose length is bounded by K̃e−cT , where

T = O(1/ε1).

(2) The transition map Π1 is given by

(5.29) Π1





δ

M1

C1

ε1




=





δ

α1
ε1

hout
a,1 (

δ

α1
ε1, F1(δ, C1, ε1),α1)

F1(δ, C1, ε1)
α1




+





0

ψ(M1, C1, ε1)

0
0





with hout
a,1 (

δ

α1
ε1, F1(δ, C1, ε1),α1) = O(ε1) and the exponentially small func-

tion ψ(M1, C1, ε1).

Figure 5.16. Dynamics in chart K1 projected to C1 = const.

Let σ1,out denote a surface formed by the intersection of Σ1,out with the center
manifold W c

a,1. Note that σ1,out is described by the first term in the right hand
side of (5.29) and as ε1 → 0, Π1(δ,M1, C1, ε1) converges to the intersection curve
of Σ1,out and Ca,1; see Figure 5.16, where the situation projected to C1 = const. is
shown.
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Summing up, from the analysis in chart K1 we see that the behavior of all
orbits starting in Σ1,in is determined by the continuation of the slow manifold S1a,1.

Analysis in chart K2. System (5.16) is a slow-fast system with respect to
ε, i.e., C2 is the slow variable, X2 and M2 are the fast variables, and � denotes
differentiation with respect to the fast time scale τ2. By transforming to the slow
time scale t2 = ετ2, we obtain the equivalent slow system

(5.30)

εẊ2 = − 710X2(1 +M2) +O(ε),
εṀ2 = [ 6C22C2+1

(1 +M2)− 32M2](1 +X2) +O(ε),
Ċ2 = 1

4 (1− C2)(1 +M2)(1 +X2) +O(ε).

The derivative in (5.30) is now with respect to t2.

Remark 5.19. In this chart the variables M2 and X2 vary on the same time
scale, whereas the variable C2 on a slower time scale. This reflects the fact that in
system (5.2) the variable C2 is no longer fast close to the non-hyperbolic edge le.

Setting ε = 0 in (5.16) gives the layer problem

(5.31)

X �2 = − 710X2(1 +M2),
M �2 = [ 6C22C2+1

(1 +M2)− 32M2](1 +X2),
C �2 = 0.

The corresponding critical manifold, which we denote by N 02 , can be taken as any
compact subset of

�
− 7
10
X2(1 +M2) = 0, [

6C2
2C2 + 1

(1 +M2)−
3
2
M2](1 +X2) = 0

�
,

i.e., it is a curve of equilibria given by X2 = 0,M2 = − 4C2
2C2−1 , shown in purple

in Figure 5.17. The critical manifold N 02 is fully attracting. In particular, for C2-
fixed, each point qa2 = (0,− 4C2

2C2−1 , C2) is a stable node.
Setting ε = 0 in (5.30) defines the reduced problem

(5.32)

0 = − 710X2(1 +M2),
0 = [ 6C22C2+1

(1 +M2)− 32M2](1 +X2),
Ċ2 = 1

4 (1− C2)(1 +M2)(1 +X2).

The dynamics of the reduced problem (5.32) on the critical manifold N 02 is obtained
by substituting M2 = − 4C2

2C2−1 and X2 = 0 into the third equation of system (5.32).
This gives the equation

(5.33) Ċ2 =
1
4
(C2 − 1)(

2C2 + 1
2C2 − 1

).

Hence, C2 increases under the slow flow on N 02 , as shown in Figure 5.17. To see
what happens at C2 = 12 , one must switch to chart K3, since the slow flow is not
defined for C2 = 12 .
A description of the dynamics for 0 < ε � 1 in chart K2 can be given by

Fenichel theory, which implies the existence of a slow manifold N ε2 that is a per-
turbation of N 02 , i.e., lies within O(ε) of N 02 . We have
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Figure 5.17. Critical manifold N 02 , fast and slow dynamics in chart K2.

Theorem 5.6. For a suitable interval I2 there exists ε0 such that for ε ∈ (0, ε0]
there exists a smooth locally invariant attracting one-dimensional slow manifold N ε2
given by the equations

(5.34) (X2,M2) = h(C2) = (0,−
4C2
2C2 − 1

) +O(ε), C2 ∈ I2.

Remark 5.20. The description of the dynamics governed in chart K2 helps us
understand the kinetics and mitotic events that happen for small concentrations of
cdc2 kinase M and cylin protease X. A slow accumulation of cyclin C results from
the fact that a solution starting close to the slow manifold N ε2 , i.e., with a low value
of cyclin and M , X close to zero, is rapidly attracted by the slow manifold N ε2 and
follows the slow flow along it. Hence, the value of C continues to increase.

Remark 5.21. The situation corresponding to the activation of cdc2 kinase M ,
i.e., when the cyclin level reaches the threshold value C ≈ 0.5, is best seen in chart
K3.

We now construct a local transition map Π2. Recall that the outgoing section
Σ1,out in chart K1 is mapped by the diffeomorphism κ12 to the incoming section of
chart K2, i.e., section Σ2,in is defined by

Σ2,in := {(X2,M2, C2, ε) : X2 =
1
α1
, M2 ∈ [0,β2], C2 ∈ I2, ε ∈ [0,α2]}

with the invariant leaves ε = const., β2 = β1/α1, δ > 0 small, α2 = δα1, and a
suitable interval I2. We define the outgoing section Σ2,out in chart K2 by

Σ2,out := {(X2,M2, C2, ε) : X2 ∈ [0, 1/α1], M2 = β2, C2 ∈ I2, ε ∈ [0,α2]}.

Remark 5.22. Recall that Π1(R1,in) is a three-dimensional wedge-like region in
Σ1,out, and σ1,out is a surface formed by the intersection of W ca,1∩Σ1,out. Since κ12
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is a diffeomorphism restricted to Σ1,out, κ12(Π1(R1,in)) is also a wedge-like region
in Σ2,in around the surface κ12 ◦ Π1(R1,in ∩W ca,1). Let σ2,in denote the image of
σ1,out under the map κ12.

The transition map Π2 : Σ2,in → Σ2,out is described by the Fenichel theory. All
orbits starting from ( 1

α1
,M2,in, C2,in, ε) ∈ Σ2,in are attracted by the slow manifold

N ε2 , follow the slow dynamics along N ε2 , and after a while cross the section Σ2,out
transversally.

Theorem 5.7. For α1 > 0 there exists α2 small enough such that the following
assertions hold.
(1) The transition map

Π2 : Σ2,in → Σ2,out, (
1
α1
, C2,in,M2,in, ε) �→ (X2,out,β2, C2,out, ε)

is well-defined. Restricted to slices ε = const. in Σ2,in the map is con-
tracting with a rate e−c/ε, where c > 0.

(2) The intersection of N ε2 with Σ2,out is a smooth curve denoted by η2,out.
(3) The image Π2(Σ2,in) is an exponentially thin wedge lying exponentially
close to the curve η2,out.

Remark 5.23. Note that for ε-fixed, the intersection of the slow manifold N ε2
with Σ2,out, i.e., the curve η2,out is just a point, and the incoming section Σ2,in is
mapped into an interval lying exponentially close to this point.

Summing up, the importance of the slow manifold N ε2 and its strongly contract-
ing properties is that it “leads” the incoming continuation of the slow manifold S1

a,ε

through chart K2, i.e., across the cylinder to a certain exit point, which will be vis-
ible in chart K3. Hence, it is of our interest to see how this slow manifold further
extends in K3.

Analysis in chart K3. We switch to chartK3, where the dynamics is governed
by system (5.17). Again we start with the analysis in the invariant hyperplanes,
namely the hyperplane ε3 = 0 and r3 = 0. Their intersection is the (X3, C3)-plane,
which is also invariant and the dynamics there is described by

(5.35)
X �3 =

3−6C3
2(2C3+1)

X23 − 7
10X3,

C �3 = 0.

For each C3 < 0.5 there are two hyperbolic equilibria pa3 = (0, 0, C3, 0) and pr3 =
( 715
1+2C3
1−2C3 , 0, C3, 0). The point p

a

3 is attracting for the flow in the (X3, C3)-plane,
whereas the point pr3 is repelling.

Remark 5.24. Note that for C3 = 1/2 the point pr3 goes to infinity and is no
longer visible in chart K3.

In the invariant hyperplane ε3 = 0 the dynamics is governed by

(5.36)

X �3 = [(r3 − 7
10 )−X3(

6C3
2C3+1

− 32 )](1− r3)X3,

r�3 = [ 6C32C3+1
− 32 ](1− r3)X3r3,

C �3 =
1
4 (1− r3X3 − C3)(1− r3)X3r3.
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The equilibria of this system are the X3 = 0 plane denoted by S23 and the curve
of equilibria given by X3 = 7

15
1+2C3
1−2C3 , which we denote by N

r

3 . The change of the
stability of the points in S23 occurs at r3 =

7
10 , i.e., for r3 <

7
10 the points are

attracting while for r3 > 7
10 the points are repelling. We denote the attracting and

repelling part by S2
a,3 and by S2r,3, respectively. The attracting part S2a,3 emanates

from the C3-axis, which we denote by le,3. The line le,3 is also attracting for the
flow in the r3 = 0 plane. The curve N r3 is of saddle type and recovered from chart
K1, i.e., it is the image of the curve N r1 from chart K1 under the transformation
κ13, see Figures 5.14 and 5.18. This also explains the notation.

Remark 5.25. The curve N r3 is mentioned just for completeness as it plays no
important role in chart K3.

Figure 5.18. Dynamics of system (5.17) in the invariant hyperplane ε3 = 0.

For r3 = 0 system (5.17) reduces to

(5.37)

C �3 = 0,

X �3 = [−( 710 +
6C3
2C3+1

(ε3 +X3))(ε3 + 1) + 32 (ε3 +X3)]X3,

ε�3 = [ 32 −
6C3
2C3+1

(1 + ε3)](ε3 +X3)ε3.

The curves of equilibria of (5.37) are shown in Figure 5.19. We recover the curve
N r3 and the line le,3. In addition, we find one more curve of equilibria, which is
precisely the critical manifold N 02 found in chart K2, i.e., the curve N 03 is the image
of the critical manifold N 02 under the transformation κ23 given by (5.19). The curve
N 03 is fully attracting. Note, however, that at C3 = 12 the curve N

0
3 intersects the

line le,3 at the non-hyperbolic point, which we denote by qe,3 = ( 12 , 0, 0).
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Figure 5.19. Dynamics of system (5.17) in the invariant hyperplane r3 = 0.

Remark 5.26. Note that the attracting manifold N 02 , which was unbounded in
chart K2, has been compactified in chart K3, see Figure 5.17 and 5.19. Thus, what
happens when C2 → 1

2 in chart K2 is now visible in chart K3 precisely at C3 =
1
2 .

Remark 5.27. Recall that in the original problem, the variable C activates
cdc2 kinase M once the activation threshold value ≈ 0.5 is passed. This activation
corresponds to the passage of the non-hyperbolic point qe,3 in chart K3 and will be
further studied by means of a blow-up.

From the analysis in the invariant hyperplanes we conclude with the following
lemmas.

Lemma 5.5. System (5.17) has two one-dimensional manifolds of equilibria

N 03 = {(X3, r3, C3, ε3) : X3 = 0, r3 = 0, C3 ∈ (0, 12 ], ε3 =
1−2C3
4C3
},

N r3 = {(X3, r3, C3, ε3) : X3 = 7
15
1+2C3
1−2C3 , r3 = 0, C3 ∈ [0,

1
2 ), ε3 = 0},

and the plane S23 , which emanates from the line le,3.

Lemma 5.6. For system (5.17) the following assertions hold.
(1) The equilibria of system (5.17) in N 03 with C3 < 12 have
(a) a two-dimensional stable manifold corresponding to negative eigen-
values.

(b) a two-dimensional center manifold corresponding to a double zero
eigenvalue.

(2) The linearization at equilibria in S23 is
(a) hyperbolic for r �= 7

10 with the eigenvalue (r −
7
10 )(1− r).

(b) non-hyperbolic for r = 7
10 .
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(3) The linearization of (5.17) at the steady states in the line le,3 has a sta-
ble eigenvalue − 710 and a triple zero eigenvalue. There exists a three-
dimensional center manifold W c

a,3 at the point (0, 0, C3, 0) ∈ le,3. In chart
K3 close to C3 = 12 , the center manifold W

c

a,3 is given as a graph

(5.38) X3 = ε3r3( 107 +O(ε3r3)).

In chart K3 our main goal is to describe the flow of (5.17) close to the line le,3.
More precisely, we will analyze the dynamics close to the exit point qe,3 ∈ le,3. Recall
that in chart K2 we have found the slow manifold N ε2 , which is one-dimensional
and fully attracting. To find out how the extension of this manifold and nearby
orbits pass the point qe,3, we restrict attention to the following sets

Din = {(X3, r3, C3, ε3) : 0 � r3 � δ, 0 � C3 � 12 , 0 � ε3 � β3},
Dout = {(X3, r3, C3, ε3) : 0 � r3 � δ, 1

2 � C3 � 1, 0 � ε3 � β3},

and define two sections
Σ3,in = {(X3, r3, C3, ε3) ∈ Din : ε3 = β3},
Σ3,out = {(X3, r3, C3, ε3) ∈ Dout : r3 = δ},

where β3 = β−12 due to (5.19). Let Π3 be a transition map from Σ3,in to Σ3,out
induced by the flow of (5.17). As a first step to construct the map Π3, we reduce
system (5.17) to its center manifold W c

a,3 and discuss the structure of the system
governing the dynamics on W c

a,3.
By inserting (5.38) into system (5.17) and re-scaling time by dividing out the

common factor ε3(1 + 107 r3 +O(ε
2
3r
2
3)), we obtain the flow on the center manifold

(5.39)
r�3 = r3F (r3, C3, ε3),
C �3 =

1
4r3G(r3, C3, ε3),

ε�3 = −ε3F (r3, C3, ε3),

where the functions G(r3, C3, ε3) and F (r3, C3, ε3) are given by

G(r3, C3, ε3) = (1−
10
7
ε3r
2
3 − C +O(ε23r23))(r3ε3 + 1− r3)(ε3 + 1),

F (r3, C3, ε3) =
6C3
1 + 2C3

(1− r3)(ε3 + 1)−
3
2
(r3ε3 + 1− r3).

The derivative in (5.39) is with respect to the rescale time scale denoted by s3. The
plane r3 = 0 and ε3 = 0 are invariant for system (5.39).
In the invariant plane r3 = 0 system (5.39) simplifies to

C �3 = 0,
ε�3 = −ε3( 6C31+2C3

(ε3 + 1)− 32 ).

We recover the curve of equilibria N 03 and the line of equilibria le,3, see Figure 5.20.
The curve is attracting for the flow in r3 = 0, whereas the line le,3 is attracting for
C3 >

1
2 and repelling for C3 <

1
2 . The point (0,

1
2 , 0) ∈ le,3 is degenerate.

In the invariant plane ε3 = 0 the governing equations are

r�3 = r3(1− r3)[ 6C31+2C3
− 32 ],

C �3 =
1
4r3(1− C)(1− r3).
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For the flow in the plane ε3 = 0, the line le,3 is attracting for C3 < 12 and repelling
otherwise. In addition, the flow meets the line le,3 with a quadratic tangency at
(0, 12 , 0) ∈ le,3, see Figure 5.20.
Remark 5.28. Note that the dynamics in the invariant plane ε3 = 0 corre-

sponds to the reduced flow on S2
a
in the original system, compare Figure 5.5 with

Figure 5.20.

Lemma 5.7. For system (5.39) the following assertions hold.
(1) The curve N 03 of equilibria of system (5.39) has a one-dimensional stable
manifold and a two-dimensional center manifold.

(2) The linearization of system (5.39) at the points in le,3 is



0
0 6C3

1+2C3
− 32 0

0 0 3
2 −

6C3
1+2C3



 .

(3) The point qe,3 is nilpotent.

Figure 5.20. Dynamics of system (5.39).

Recall that our goal is to construct the map Π3 : Σ3,in → Σ3,out. Note that in
the (r3, C3, ε3)-coordinates, Σ3,in is transverse to N 03 , whereas Σ3,out is transverse
to the parabolas’ branches with C3 > 12 in the ε3 = 0 plane. From the analysis of
the dynamics on W c

a,3, we see that the construction of the transition map Π3 is a
bit more complicated due to the existence of the nilpotent point qe,3. To describe
the transition map induced by the flow of (5.39) from Σ3,in to Σ3,out, a blow-up of
the point qe,3 is required. In order not to interrupt the main argument, we present
this blow-up procedure in Section 5.4, which led to the following result.
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Theorem 5.8. Let R̃ ⊂ Σ3,in be a small rectangle centered at the intersection
point N 03 ∩ Σ3,in. For δ small enough the transition map Π̃3 : R̃ → Σ3,out induced
by the flow of (5.39) is a well-defined map with the following properties:
(1) The continuation of N 03 by the flow intersects Σ3,out in a curve denoted
by η3,out.

(2) Restricted to lines r3 = const. in R̃, the map is contracting with a rate
e−c3/r3 with c3 > 0.

(3) The image Π̃3(R̃) is an exponentially thin wedge containing the curve
η3,out.

From the above analysis, we conclude that the transition map Π3 : Σ3,in →
Σ3,out induced by the flow of (5.17) is at most algebraically expanding. In particular,
this means that the contraction gained in K2 is not lost during the passage of the
exit qe,3. We have the following result.

Theorem 5.9. The transition map Π3 : Σ3,in → Σ3,out defined by the flow of
system (5.17) is given by

Π3





X3
r3
C3
β3



 =





gout(δ, C3,out, ε3,out) +Ψ3(X3, r3, C3)
δ

C3,out(ε3,out)
ε3,out



 ,

where gout describes the center manifold W c
a,3 and C3,out(ε3,out) describes the curve

η3,out ⊂ Σ3,out formed by the intersection of N 03 with Σ3,out.

Remark 5.29. Note that it was beyond our scope to obtain the asymptotics
for C3,out. In fact, due to the complicated structure of the systems governing the
dynamics in K3, it is a non-trivial task.

Phase portrait of the blown-up vector field and proof of Theorem 5.4.
The vector field on R4 corresponding to system (5.10) induces the blown-up vector
field on the blown-up space, which has been analyzed in detail in the individual
charts K1 – K3. The established results provide us with the following picture of the
dynamics of the blown-up vector field, see Figure 5.21.
Recall that the planes X = 0 andM = 0 intersect along the non-hyperbolic line

le, which due to the blow-up has been replaced by the cylinder shown in orange. The
flow on the center manifoldsW c

a,1 found in chartK1 in the ε1 = 0 plane and the flow
on W c

a,3 found in chart K3 in the ε3 = 0 plane are shown in blue. Recall that these
flows correspond to the reduced flows on M = 0 and X = 0, respectively. Hence,
the orbits ω̄7 and ω̄1 correspond to the orbits ω7 and ω1, respectively, compare
Figure 5.6 and Figure 5.21.
In chart K2 covering the interior of the cylinder we have found the slow man-

ifold. This manifold is fully attracting and explains the slow drift taking place
almost along the C-axis in the original problem, i.e., all orbits are attracted onto
the slow manifold and follow the slow flow on it upwards. Thus, due to the blow-up
the singular cycle Γ0 defined as (5.9) has been replaced by the more complicated
singular cycle Γ̄0 with improved hyperbolicity properties, again compare Figure 5.6
and Figure 5.21. More precisely, the segment ω8 of le in Figure 5.6 corresponds now
to the connection between the points p̄en and q̄e, which consists of two pieces: the
thick orange orbit and the slow motion along N̄ 0 shown in purple, see Figure 5.21.
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Figure 5.21. Geometry of the blown-up space and singular cycle Γ̄0.

Based on the results from the blow-up analysis of (5.2), we finally prove Theo-
rem 5.4. The proof is given by combining the results obtained for the local transition
maps Π1, Π2, and Π3, which describe the evolution of the center manifoldW ca,1 and
the rectangle R1,in under the flow of the blown-up vector field.

Proof of Theorem 5.4. The assertions of Theorem 5.4 follow by constructing
the map πe for ε > 0 as

(5.40) πe = Φe ◦Πe ◦ Φ−1e ,
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where Φe is given by (5.11), Φ−1e is the corresponding blow-down transformation,
and the map Πe is a transition map from Σ1,in to Σ3,out for the flow induced by
the blown-up vector field on Z. More precisely, the map Πe is given by

Πe = Π3 ◦ κ23 ◦Π2 ◦ κ12 ◦Π1.
Recall that the transition map Π1 constructed in chart K1 is described by the
attracting center manifold and its foliation, and the map Π1 is contractingM1 with
the rate O(e−c/ε1). The transition map Π2 is a strong contraction in both (M2, C2)
due to the existence of the fully attracting one-dimensional slow manifold. This
contraction is not lost in K3, in particular during the passage through the exit
point qe,3 since the map Π3 is at most algebraically expanding.
We now analyze Πe(W ca,1 ∩ R1,in). It follows from Theorem 5.5, Theorem 5.7,

and Theorem 5.9 that Πe(W ca,1 ∩ R1,in) is a curve of exponentially small length
lying close to the point

{(X3(ε3), δ, C3(ε3), ε3) : ε3 ∈ [0,β3]},
formed by the intersection of the continuation of the slow manifold N ε2 with Σ3,out.
Moreover, from Theorem 5.5, Theorem 5.7, Theorem 5.9, and the fact that κ12 and
κ23 are diffeomorphisms, we conclude that Πe(R1,in) is a two-dimensional region of
width of O(e−c/ε1) around Πe(W ca,1∩R1,in). Recall that ε = δε1 = δε3 is a constant
of motion for the flow of the blown-up vector field. Therefore, lines ε1 = ε/δ in Σ1,in
are mapped to lines ε3 = ε/δ in Σ3,out. Restricted to such leafs, the map Πe is a
contraction with contraction rate O(e−c/ε1) for some c > 0.
Finally, the transition πe is given by (5.40) with ∆ein = Φe,1(R1,in), where Φe,1

is the directional blow-up given by (5.12), and by this construction the assertions
of Theorem 5.4 follow.

�

5.2.2. Local analysis close to the non-hyperbolic line lM . In this sub-
section we study the dynamics of system (5.2) close to the non-hyperbolic line lM .
Recall that this line splits the critical manifold S2 at M = 0.7 into the attracting
branch S2

a
withM < 0.7, and the repelling branch S2

r
withM > 0.7. It will turn out

that the points p ∈ lM are jump points, i.e., system (5.2) close to lM can be viewed
as a straightened regular fold in R3 [111]. More precisely, the reduced flows near
the line lM are directed towards the line, hence the solutions following the reduced
flow in the attracting part S2

a
reach the line in finite forward time. From there

the solutions jump almost parallel to the unstable fibers, i.e., the system switches
from the slow to the fast dynamics; see Figure 5.22, where a jump phenomenon is
schematically illustrated.
Due to Fenichel, the attracting (repelling) manifold S2

a
(S2
r
) perturbs smoothly

to a locally invariant slow manifold S2
a,ε
(S2
r,ε
). To investigate the behaviour of the

slow manifold S2
a,ε
as it passes the line M = 0.7, we construct a transition map

πf : ∆
f

in
→ ∆f

out
,

where for δ > 0 small and suitable rectangles L̃1, L̃2

∆f
in
= {(X, δ, C) : (X,C) ∈ L̃1}, ∆f

out
= {(δ,M,C) : (M,C) ∈ L̃2}

are two sections transverse to S2
a
and the fast fibers, respectively.
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It turns out that the situation close to lM is as encountered in [111]. Thus, the
results for folds in R3 apply to the analysis of the dynamics close to the line lM . We
therefore sketch the construction of the map πf noting that many of the details, in
particular, the estimates of the contraction rates are as in [111]. In fact, based on
[111], the following theorem holds for system (5.2).

Figure 5.22. Jump phenomenon at the line lM .

Theorem 5.10. For system (5.2) there exist δ > 0 and ε0 > 0 such that for
ε ∈ (0, ε0]:
(1) The manifold S2

a,ε
intersects ∆f

out
in a smooth curve, which is a graph,

i.e.,
Mout = hout(Cout, ε), C ∈ Iout,

where Iout is a suitable interval. Moreover, hout(C, ε) = O(ε2/3).
(2) The section ∆f

in
is mapped to an exponentially thin strip around S2

a,ε
∩ ∆f

out
,

i.e., its width in M -direction is O(e−c/ε), where c is a positive constant.
(3) The map πf : ∆

f

in
→ ∆f

out
has the form

(5.41) πf




X
δ
C



 =




δ

πM
f
(X,C, ε)

πC
f
(X,C, ε)



 ,

where

πM
f
(X,C, ε) = hout(πC

f
(X,C, ε), ε) +Ψf (X,C, ε),
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πC
f
(X,C, ε) = Gf,0 +O(ε ln ε),

and the function Ψf (X,C, ε) is exponentially small. The function Gf,0 is
induced by the reduced flow on S2

a
from ∆f

in
to the line lM .

Remark 5.30. Note that the jump phenomenon at the line lM explains the
activation of protease kinase X, i.e., when cdc2 kinase M crosses the threshold
value ≈ 0.7, X is activated and increases up to 1. This sharp increase occurs during
the jump from the manifold S2

a
to the attracting branch of S3.

Proof. The assertions of the theorem follow by applying to system (5.10) the
following blow-up transformation

(5.42)

X = r2X̄
M = 7

10 + rM̄,

C = C̄,
ε = r3ε̄

with (X̄, M̄ , ε̄, r, C̄) ∈ S2 × R × R, and taking πf := Φf ◦ Πf ◦ Φ−1f , where Φf is
given by (5.42) and Φ−1

f
is the corresponding blow-down transformation. The map

Πf is a transition map constructed for the blown-up system and its construction
is analogous to the one presented in [111]. We briefly sketch this construction by
presenting the analysis of the blown-up vector field performed in local charts K1,
K2, and K3.
The charts are defined by setting M̄ = −1, ε̄ = 1, and X̄ = 1, respectively,

in the blow-up transformation (5.42). Hence, the coordinates of the corresponding
charts are

(5.43) X = r21X1, M = 7
10 − r1, C = C1, ε = r31ε1.

(5.44) X = r22X2, M = 7
10 + r2M2, C = C2 ε = r32,

(5.45) X = r23, M = 7
10 + r3M3, C = C3, ε = r33ε3.

In what follows we restrict our attention to the relevant parts of the dynamics,
i.e., for C > 0.5, and to the attracting objects found in the analysis. First the
dynamics in chart K1 is analyzed. We will see how the critical manifold S2a can
be extended on the cylinder. Then, it will be further studied in chart K2, where
a special orbit leads the manifold across the upper part of S2 × [0, r0]. Finally, in
chart K3, we will see how solutions take off in the direction of the fast flow.

Dynamics in chart K1. The desingularized equations in chart K1 have the form

(5.46)

X �1 =
7
10ε1 −X1 + 3X

2
1
2C1−1
1+2C1

+O(r1),

r�1 = 3
2r1X1

1−2C1
1+2C1

+O(r21),

C �1 =
1
4r1(1− C1)X1 +O(r

2
1),

ε1 = 9
2ε1X1

2C1−1
1+2C1

+O(r1).

The hyperplanes r1 = 0 and ε1 = 0 are invariant for (5.46). The results obtained
from the analysis in these hyperplanes are illustrated in Figure 5.23 and Figure 5.24,
and lead to the following lemmas.
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Figure 5.23. Dynamics of system (5.46) in the hyperplane ε1 = 0.

Figure 5.24. Dynamics of system (5.46) in the hyperplane r1 = 0.

Lemma 5.8. System (5.46) has a curve of hyperbolic equilibria defined by the
equations r1 = 0, X1 = 13

2C1+1
2C1−1 , and a normally hyperbolic plane S

2
a,1 of equilibria

given by C1 = 0, r1 = 0 that contains the C1-axis.
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Lemma 5.9. The C1-axis denoted by lM,1 is a line of non-hyperbolic equilibria
of system (5.46). More precisely, the linearization of (5.46) at p ∈ lM,1 has a triple
zero eigenvalue and the non-zero eigenvalue equal to −1.

Remark 5.31. Note that the curve lies in the plane r1 = 0, which corresponds
to the cylinder; hence, the points qr1 in the curve correspond to the points, where
stable fibers of the layer problem end on the cylinder. The plane S2

a,1 corresponds
to the attracting critical manifold S2

a
.

The most important object in chart K1 is introduced in lemma below.

Lemma 5.10. There exists an attracting three-dimensional center manifold
Wc
a,1 of the line of equilibria lM,1, which in a set

D = {(X1, r1, C1, ε1) : 0 � r1 � δ, 0 � ε � δ, C ∈ (0.5, 1]}
is given as a graph

(5.47) X1 = h̃a,1(r1, C1, ε1)

with h̃a,1(r1, C1, ε1) = 7
10ε1 + O(2). Furthermore, there exists a stable invariant

foliation with base Wc
a,1 and one-dimensional fibers along which the contraction is

stronger than e−cτ1 for c any positive constant.

By substituting (5.47) into system (5.46) and rescaling time, the flow on Wc
a,1

is obtained. Namely,

(5.48)
C �1 =

1
4r1(1− C1) +O(r

2
1),

r�1 =
3
2r1
1−2C1
1+2C1

+O(r21),
ε�1 = − 92ε1

1−2C1
1+2C1

+O(r1ε1).

A local transition map, induced by the flow of (5.46) between suitably defined two
sections, can be constructed by taking into account the properties of system (5.48)
and the attracting manifold Wc

a,1 itself. The contraction rate for such a map is as
in [111].

Remark 5.32. Note that in the invariant plane ε1 = 0 system (5.48) reduces
to a planar system, which in the original variables describes the reduced flow on S2

a
.

Dynamics in chart K2. The blown-up system in chart K2 is given by

(5.49)

X �2 =
7
10 +M2X2 +O(ε),

M �2 =
�
6C2
2C2+1

− 32
�
X2 +O(ε),

C �2 = 1
4 (1− C2)X2ε,

which is a slow-fast system with respect to ε, i.e., the variable C2 is slow, while the
variables X2 and M2 are fast. Note, however, that there is no slow manifold in the
rescaling chart, since for ε = 0 the resulting equations have no equilibria. Namely,
setting ε = 0 in (5.49) gives the system

(5.50)

X �2 =
7
10 +M2X2,

M �2 =
�
6C2
2C2+1

− 32
�
X2,

C �2 = 0

with the following properties (see Figure 5.25):
(1) the half plane X2 > 0 is positively invariant under the flow (5.50),
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(2) for C2 > 0.5 the constant factor 6C2−3
2(1+2C2)

is positive, hence M2, X2 →∞.

Figure 5.25. Dynamics of system (5.50) in the rescaling chart K2.

From this we expect that the continuation of the critical manifold S2
a
onto the

sphere (as a center manifold) described in the rescaling chart will lie in the half
plane X2 > 0. Furthermore, the continuation of the critical manifold will exit the
sphere at a hyperbolic exit point with X̄ > 0 and M̄ > 0. Figure 5.26 illustrates

Figure 5.26. Compactification phase portrait on S2.

the compactification phase portrait in the rescaling chart in the interior of a circle
X22 +M22 = 1 in the (X2,M2)- coordinate system. The critical manifold X = 0
with M < 0.7 corresponds to the point pa = (−1, 0), the critical manifold X = 0
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with M > 0.7 corresponds to the point pr = (1, 0). There are two more equilibria
on the circle qr = (Min, Xin) with Min < 0 and Xin > 0 where a stable fiber of the
layer problem ends and qa = (Mout, Xout) with Mout > 0 and Xout > 0 where an
unstable fiber of the layer problem starts. A unique orbit γ connecting pa to qa is
shown in light blue. Our expectations are confirmed by the analysis in chart K3.

Dynamics in K3. The desingularized form of system (5.10) in K3 is given by

(5.51)

C �3 = 1
4 (1− C3)r3 +O(r

2
3),

r�3 = 1
2 (M3 +

7
10ε3)r3 +O(r

2
3),

M �3 =
6C3
1+2C3

− 32 −
1
2M3[(M3 +

7
10ε3)] +O(r3),

ε3 = − 32ε3(M3 +
7
10ε3) +O(r3).

System (5.51) has a folded curve of equilibria defined by

(5.52) r3 = 0, ε3 = 0, M3 = ∓
�
6C3 − 3
1 + 2C3

.

It consists of two branches separated by a fold point. For the flow in the invari-
ant hyperplane r3 = 0 the left branch consists of unstable equilibria, whereas the
equilibria on the right branch are stable. For the flow in ε3 = 0 the left branch
is attracting, while the right branch is repelling. These points correspond to the
points where the stable fibers of the layer problem end and start on the cylinder,
respectively. Note that the eigenvalues of the linearization of (5.51) at points in
the right branch are in resonance, as is the case in [111]. Hence, one can apply a
similar analysis to theirs to prove the occurrence of logarithmic (switchback) terms
in a local transition map defined for suitable sections in K3.

The analysis of the dynamics in each chart leads to Figure 5.27, which shows
the geometry of the blown-up space.
Finally, the transition map Πf is defined as

(5.53) Πf = π3 ◦ ι23 ◦ π2 ◦ ι12 ◦ π1,
where πi is a transition map constructed in chart Ki, i = 1, 2, 3, and ιij denotes
the appropriate change of coordinates from chart Ki to chart Kj , i, j = 1, 2, 3,
respectively. �
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Figure 5.27. Dynamics of the blown-up system.

5.3. Proof of the main result

In this section we prove Theorem 5.3. Recall that the blow-up constructions
presented in Section 5.2 provide us with a detailed description of the dynamics
close to the edge le and the line lM . Based on these results we have identified in
anticipation the singular cycle Γ0 as described in Section 5.1.5, i.e.,

Γ0 = ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪ ω5 ∪ ω6 ∪ ω7 ∪ ω8,
where ωi, i = 1, 3, 5, 7 are slow motions in the attracting parts of the critical
manifold S, ωi, i = 2, 6 are the heteroclinic orbits of the layer problem (5.4),
and ωi, i = 4, 8 denote the slow drifts along the edges le and le, respectively.
In the following we will construct and analyze a Poincaré map defined in a

neighborhood of the singular cycle Γ0 and show that within each leaf ε = const.
the map is a strong contraction.

Proof of Theorem 5.3. We start by choosing four sections ∆, ∆e
in
, ∆e
out
,

and ∆f
out
, as shown in Figure 5.28, i.e.,

∆ − transverse to ω6 and close to S1,
∆e
in
− transverse to ω7 ⊂ S1 and close to the edge le,

∆e
out
− transverse to ω1 ⊂ S2 and close to the edge le,

∆f
out
− transverse to ω2 and close to the line lM .
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More precisely, we define the sections as

∆ := {(δ̃,M,C) : (M,C) ∈ L},
∆e
in
:= {(δ,M,C) : (M,C) ∈ L1},

∆e
out
:= {(X, δ, C) : (X,C) ∈ L2},

∆f
out
:= {(δ,M,C) : (M,C) ∈ L̃2},

where 0.5 < δ̃ < 1, δ > 0, and L, L1, L2, and L̃2 are suitable rectangles. Note that

Figure 5.28. Singular cycle Γ0 and sections for the Poincaré map.

the sections ∆e
in
, ∆e
out
, and ∆f

out
have been already defined in Section 5.2, where

we described the dynamics close to the edge le and the line lM . Moreover, these
sections are transversal to the singular cycle Γ0 independently of ε and can be made
small enough.
The first half of the Poincaré map is defined as the composition of three maps:

πa : ∆→ ∆ein − contraction onto the slow manifold S1
a,ε
,

πe : ∆ein → ∆eout − passage of the edge le,

πf : ∆eout → ∆
f

out
− passage of the line lM .

We start with discussing the map πa. Recall that the slow manifold S1a,ε is given
as a graph over (M,C). All orbits starting in ∆ approach S1

a,ε
, follow the slow flow

along S1
a,ε
and intersect ∆e

in
. The intersection of the slow manifold S1

a,ε
with ∆e

in

is a graph M = h1(C, ε). We choose local coordinates in ∆e
in
such that the slow
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manifold becomes the C-axis. Recall that P (lM ) ⊂ S1
a
denotes the projection along

the fast fibers of the line lM on the attracting branch S1
a
. Under the assumption

that the reduced flow on S1
a
is transversal to the curve P (lM ) ⊂ S1

a
and that there

exists the hyperbolic singular orbit Γ0, the map πa : ∆→ ∆ein is well-defined. More
precisely, πa induced by system (5.2) is given by

(5.54) πa

�
M
C

�
=

�
πM
a
(M,C, ε)

πC
a
(M,C, ε)

�

with ΠM
a
(M,C, ε) exponentially small, and ΠC

a
(M,C, ε) = GSa,0(C) +O(ε), where

GSa,0 is induced by the reduced flow on the critical manifold S1a between the base
point on P (lM ) and ∆e

in
. Remember that the slow flow on S1

a,ε
is contracting C.

Hence, the map πa is a strong contraction described by Fenichel theory.
Recall that the blow-up analysis presented in Section 5.2 led to the local results

for the transition maps πe and πf , i.e., Theorem 5.4 and Theorem 5.10. More
precisely, Theorem 5.4 implies that for δ > 0 and sufficiently small rectangle L1,
the map πe is well-defined and there exists a constant c > 0 such that the map
πe restricted to a leaf ε = const. is a contraction with a contraction rate e−c/ε.
For δ > 0 there exists a sufficiently small rectangle L2 such that the map πf is
well-defined. Theorem 5.10 implies that the map πf is exponentially contracting in
X-direction, and the derivative of πf with respect to C stays bounded.
By taking the incoming section ∆f

in
from Theorem 5.10 as the outgoing section

∆e
out
from Theorem 5.4, we conclude that there exists ε0 > 0 such that the first

half of the Poincaré map Π : ∆→ ∆f
out
given by

Π = πf ◦ πe ◦ πa
is well-defined for ε ∈ (0, ε0]. For ε > 0 the map Π is a diffeomorphism. In a similar
way a map from ∆f

out
to ∆ can be constructed and its analysis is analogous to the

one we have presented. Hence, the full Poincaré map from ∆ to ∆ is well-defined for
ε ∈ (0, ε0] and for ε > 0 is smooth. Based on the contracting properties of the maps
πa, πe, and πf , we conclude that Π(∆) ⊂ ∆, and Π is a contraction with a fixed
point. From the contracting mapping theorem the existence of a unique relaxation
orbit of system (5.2) close to the singular cycle Γ0 for sufficiently small ε follows.

�

5.4. Dynamics near the exit point qe,3

Here we describe the dynamics of system (5.17) in chart K3 close to the exit
point qe,3 and prove Theorem 5.8. We will construct the transition map Π̃3 : R̃3 →
Σ3,out induced by the flow of system (5.39), i.e.,

(5.55)
r� = rF (r, C, ε),
C � = 1

4rG(r, C, ε),
ε� = −εF (r, C, ε),

with the functions F (r, C, ε) and G(r, C, ε) given by

F (r, C, ε) =
6C
1 + 2C

(1− r)(ε+ 1)− 3
2
(rε+ 1− r),

G(r, C, ε) = (1− 10
7
εr2 − C +O(ε2r2))(rε+ 1− r)(ε+ 1).
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Note that here we have omitted the subscript 3 of the variables for the sake of
readability. Recall that qe,3 = (0, 12 , 0) is an equilibrium of system (5.55), which is
the intersection point of the line le,3 and the attracting manifoldN 03 , see Figure 5.29.
From Lemma 5.7 we know that this point is nilpotent. To analyze how the attracting
manifold N 03 extends beyond this point, we again use the blow-up method.

Figure 5.29. Blow-up of the point qe,3.

We apply to system (5.55) the following blow-up transformation

(5.56)
r = ρ2r̄,

C = ρC̄ + 12 ,
ε = ρε̄

with r̄2 + C̄2 + ε̄2 = 1 and ρ ∈ [0, ρ0] for ρ0 sufficiently small. Thus, the point
qe,3 = (0, 12 , 0) is shifted to the origin and blown-up to a sphere, see Figure 5.29.
We now briefly discuss the analysis of the blown-up vector field in two charts

Ken and Kex defined by setting ε̄ = 1 and r̄ = 1, respectively. The blow-up trans-
formation in chart Ken is given by

(5.57) r = ρ21r1, C = ρ1C1 +
1
2
, ε = ρ1,

while in chart Kex it has the form

(5.58) r = ρ22, C = ρ2C2 +
1
2
, ε = ρ2ε2.

First we will analyze in chart Ken how trajectories enter a neighborhood of the
origin. The exit through the neighborhood is analyzed in chart Kex, which covers
the part of the sphere corresponding to r̄ > 0.
The dynamics in chart Ken is governed by

(5.59)

r�1 =
9
2r1F̃ (r1, C1, ρ1),

C �1 =
3
2C1F̃ (r1, C1, ρ1) +

1
4r1(1 + ρ1C1)G(r1, C1, ρ1),

ρ�1 = − 32ρ1F̃ (r1, C1, ρ1),
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where

F̃ (r1, C1, ρ1) = 1 + C1 + 2ρ1C1 +O(r1ρ21),

G(r1, C1, ρ1) =
1
2
+
1
2
ρ1 − ρ1C1 − ρ21C1 +O(r1ρ21).

The derivative in (5.59) is with respect to the rescaled time scale τen. In the invariant
plane r1 = 0 we recover the attracting curve of equilibria N 03 of system (5.39), i.e.,
in chart Ken the curve is defined by the equation 1 +C1 + 2ρ1C1 = 0 and denoted
by Nen. The curve Nen meets the C1-axis at the point pin = (0,−1, 0). In addition,
system (5.59) has an equilibrium at the origin.

Lemma 5.11. The following assertions hold for system (5.59).

(1) The equilibrium at the origin is a saddle with eigenvalues 92 ,
3
2 ,−

3
2 .

(2) The point pin ∈ Nen has a one-dimensional stable eigenspace and a two-
dimensional center eigenspace.

The second assertion of Lemma 5.11 implies the existence of an attracting two-
dimensional center manifold N c at pin. In a suitable set the center manifold N c is
given as a graph C1 = h(r1, ρ1). Furthermore, there exists a stable foliation with
the base N c and one-dimensional fibers. For any c > − 32 the orbits near the center
manifold N c are attracted to N c by an exponential rate of order O(e−cτen).
Hence, we conclude that the dynamics close to pin is controlled by the attracting

center manifold N c, which is the continuation of N 03 . Consequently, an appropri-
ately defined local transition map induced by the flow of (5.59) and restricted to
lines r1 = const. is a contraction with a rate e−cen/r1 , cen > 0.

The governing equations in chart Kex are

(5.60)

ρ�2 =
3
4ρ2F̃ (ρ2, C2, ε2),

C �2 = − 34C2F̃ (ρ2, C2, ε2) +
1
4 (1 + ρ2C2)G(ρ2, C2, ε2),

ε�2 = − 94ε2F̃ (ρ2, C2, ε2),

where

F̃ (ρ2, C2, ε2) = ε2 + C2 +O(ρ22ε2) +O(ρ
2
2C2),

G(ρ2, C2, ε2) =
1
2
− 1
2
ρ2ε2 −

1
2
ρ22 − ρ2C2 +O(ρ22C2, ρ2ε2C2).

The planes ρ2 = 0 and ε2 = 0 are both invariant under the flow of (5.60).
System (5.60) has two equilibria on the C2-axis, namely qout = (0,

√
6
6 , 0) and

q = (0,−
√
6
6 , 0). The point q has a two-dimensional unstable eigenspace and a

one-dimensional stable eigenspace. The point qout is a saddle with resonant eigen-
values √

6
8
,−
√
6
4
,−3
√
6
8
.

Using the analysis inKen andKex we prove the following result, see Figure 5.30.

Lemma 5.12. There exists a connection from pin ∈ Ken to qout ∈ Kex.
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Proof. To prove the lemma, we look at the dynamics on the sphere. Note
that in chart Ken this corresponds to the invariant plane ρ1 = 0, while in Kex to
the invariant plane ρ2 = 0. In Ken for ρ1 = 0 system (5.59) reduces to

(5.61)
r�1 =

9
2r1(1 + C1),

C �1 =
3
2C1(1 + C1) +

1
8r1.

Note that the region r1 > 0, C1 > −1 is positively invariant under the flow of
(5.61), hence r1, C1 →∞.
In chart Kex in the invariant plane ρ2 = 0 the dynamics is governed by

(5.62)
C �2 = − 34C2(C2 + ε2) +

1
8 ,

ε�2 = − 94ε2(C2 + ε2).
Note that system (5.61) and (5.62) have no equilibria nor limit cycles away from the
C1- and C2-axis, respectively. The statement follows from the Poincaré - Bendixon
theorem. �

Figure 5.30. Blow-up of the point qe,3.

Proof of Theorem 5.8. Recall that the incoming section Σ3,in is contained
in the ρ1 = const. plane in chart Ken and transversal to the manifold Nen, while
the outgoing section Σ3,out is contained in the r2 = const. plane in chart Kex. All
orbits starting from a suitable rectangle R̃ ⊂ Σ3,in pass the non-hyperbolic point
pin. Lemma 5.11 implies that the local transition is described by the attracting
center manifold N c and its foliation. Lemma 5.12 implies that the trajectories,
which leave chart Ken, follow the flow across the sphere and exit near the point
qout. In particular, the continuation of manifold Nen intersects the outgoing section
Σ3,out as a curve. Note that the global transition across the sphere involves no
significant expansion (or in other words, the amount of expansion is negligible).
Similarly, no expansion is incurred during the transition close to qout, however, there
is occurrence of logarithmic terms due to the resonant eigenvalues. This implies all
the assertions of Theorem 5.8.

�
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