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Chapter 1

Introduction

1.1 Abstract:

In this thesis we investigate a Kac-type many particle model that allows a reference-
free description of plastic deformation. We calculate an upper bound for the
energy barrier of plastic relaxation. Furthermore, we construct local Lagrangian
coordinates and use them to bound the energy-density from below.

1.2 Motivation

The basic of the theory of non linear elasticity The classical theory of
elasticity is based on the concept of a reference configuration. The reference
configuration is the fictive ground state of the deformed object. The ground
state is assumed to have no external forces and no defects in the interior that
create internal stresses. The reference configuration is given as a set @ C R%
Then one uses a differentiable map ¢ : @ — R? to describe the deformation that
turns the reference ) into the deformed configuration Q = ¢(2) The energy is
assumed be a functional of the deformation ¢. One assumes that the energy is
translational invariant and local. Translational invariance means that it is actual
only a functional of V¢. Locality means that the energy can be described as an
integral over an energy density F that only depends on the local gradient V().
That means:

H::/QF(V(;S(Z))CZZ | (1.2.1)

where F denotes the energy density function, FGLq (R) — R* satisfying the
following properties:

1) F(RA) = F(A) for all A € R and all R € SO; (Frame indifference)

2) F(A) >0 for all A € R¥™4 (Positivity)

1



2 CHAPTER 1. INTRODUCTION

3) F(id) = 0 (Reference configuration as a minimizer)

Frame indifference ensures that rigid motions do not change the energy. The
other two conditions ensure that the reference configuration is really the ground
state. The energy functional (1.2.1) determines the form some object will have
under certain boundary conditions by a minimization of F' over all ¢ that fulfill
these boundary conditions. A detailed description of the theory of non-linear
elasticity is found in [1].

Introduction of the model for reference-free plasticity If we deform a
metal object with low stress, we get a elastic deformation that can be well de-
scribed in the framework of the elasticity theory. The elastically deformed con-
figuration is a global minimum of the energy functional. However, the elastically
deformed configuration is not the lowest energy state in real physics. Between
this minimizer and lower energy states there is an energy barrier. High pressure,
high temperature or long time may allow the system to overcome this barrier and
reach lower energy states. Since the elastically deformed configuration is already
the global minimum of the elastic energy functional (1.2.1), this process can not
be described within the framework of elasticity theory. The use of a reference
configuration is fixing the local order. The plastic deformation includes a change
of the local structure of the metal, reaching configurations, that are excluded in
elasticity theory. To describe these processes we want to study a model which
has the freedom to change the local order. Still we want to make use of elastic-
ity theory. Hence, we use the elasticity theory and bring the model to a point,
where we do not need a reference configuration anymore. We start with a map
¢ : Q — R Since we do not want to use a reference configuration, we transform
from Lagrangian coordinates to Eulerian coordinates.

H= /Q F(V (6" (x)))de (1.2.2)

with F(A) := F(A)det A~ and Q := ¢(€Q). In this formulation we need the
reference configuration for calculating V¢ (¢~'(x)). This we want to substitute
by information over the local lattice structure around the point x. To see the
local order we will fill the reference  with an atom lattice Z¢ This gives us atom
positions ¢(Z?) in the configuration Q. The neighborhood of a point z produces
to first order the configuration:

z = ¢(z) = o(2) + Vo(2)(z —2) . (1.2.3)
So in the neighborhood of the point x € {2 the configuration looks like
z; =~ ¢(2) + V(o (2))(zi — 2) . (1.2.4)

This means that for an atom configuration in €2 and a lattice G (Zd + 7') fitted
to it in a neighborhood around a point = € 2, where G € Gl4(R) and 7 € R?, the
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Eulerian energy functional (1.2.2) does only depend on G and there is no need
to use a reference configuration.

1.3 Definition of the model
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Figure 1.1: Multi-scale model with three different scales: Microscopic scale: |A™|
distance between atoms, macroscopic scale L size of the body , mesoscopic scale:
A the configuration looks like a lattice

In this section we will briefly present our model. In our model the actual state
of the described body is given by a domain Q C R? and aset y = {z; € B (Q)]i =
1...N} of atom positions, where A is the mesoscopic scale A << diam(§2). Here d
denotes the dimension. We will focus on dimension d = 2 and d = 3. The set of
atoms y fall consists of two subsets y = x; U xs. The internal atoms x; C €2 can
move freely inside a compact set Q C R? but are not allowed to leave it. The
boundary atoms xg C By (2) /Q are fixed and serve as our boundary condition.
We call the number of internal atoms N; = fy; and the number of boundary
atoms Ng = fixs. The energy in our model is given by an integral over an energy
density and an hardcore particle interaction V' with radius so.

H00= [ k) + V(e (1.3.)

The main part of the model is the energy density &, (x, ) in Eulerian coordinates
x. This density is determined by fitting a Bravais lattice. x4, +x = A~ (Z% —
7)+x locally to the atom positions y, where A € Gl4(R) and 7 € R?. We denote:
A = (A, 7). For every A one can calculate a pre-energy density hy (A, xx) at
a given point The energy density h (x, ) is then given by the infinum of this
pre-energy densities.

hy (x,x) = inf {hy (A, x.2)} (1.3.2)
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The pre-energy density hy (A, yx) consists of three parts.
hy (A, xx):=F(A) + Jy (A, x,z) + vy (x, A, x) (1.3.3)

The first term [’ measures the elastic contribution to the energy and corresponds
to the energy density in the classical theory. The second part Jy (A, x,x) mea-
sures energy cost of deviations of the configuration y from the fitted lattice . The
last part vy (x, A, ) assigns a cost to the vacancies, and introduces a chemical
potential In the following we will explain the properties of the different parts of
the energy density in more detail.

The elastic energy F(A) is related to F of the classical theory with the
formula F(G) = F(G~")det(G') for the transformation between Eulerian and
Lagrangian coordinates. We want to consider I’ with the following properties for
CEL CEL >

F € 0y (Gly(R)) (Regularity)

F(A) = F(AR),VA € Gl4(R), VR € SO, (Frame indifference)

JE € Gly(R) with F(E) = 0 (Existence of minimizer)
o F(A) > CFl(det(E) — det(A)))* + CPldist? (A, E SO4) (Coercivity)

Here we use the euclidean norm to define the distance for two matrices dist(A, E) =
| X -Y|.

The deviation energy J, (A, x,x) uses the affine transformation A(z) =
Ax 4 7 to map the atom positions in the A-neighborhood of the position z into a
periodic potential W with minima in Z? and W is assumed to be locally convex
around the minima. In this way J) is approximately the standard deviation of
the configuration y from the fitted lattice x4 + .

JA-?
I (A, x, x) =
C,\?

> WAz —2) + ) (A |z — =) (1.3.4)

i

where ¢ is a smooth and monotone decreasing cut-off function. It ensures that
only atoms in the neighborhood of = contributes to the energy density in x, and
has the following

° o€ C™(RY)
e p(r)=1forz<1

e p(z)=0forz>2
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® J,p <0

We use C,, := [, ¢(|z])dz as a normalization constant. We also use the notation
px) = p(lz)

There are some constants Oy, 2, cg, ClV, OV > 0 such that the periodic
potential W fulfills:

o W e C? (RY) (Regularity)

W (z) = W(z+ 2,) Vz, € ZWz € R (Periodicity)

Qy? < yV2W (z)y < cpy® Yy € R,z € Be,, (Z?) (Local convexity)

W is infinitely times differentiable at all z € Bg,, (Z?)

W(z) = W(—2)V € R? (Symmetry)

CWdist?(z,2%) < W(z) < C}Vdist?(z, Z4) (Coercivity)

Penalizing the vacancies The density of atoms in a lattice x4 is det(A). We
define the local density of a configuration x by

oa(x, ) = Cj)\d ng (A — ) (1.3.5)

Hence, we define :
U (X>Aax) ::ﬂ(detA_p)\(pr)) (136)

So the energy per vacancies is ¢/. This part also ensures that a lattice that is finer
than necessary will not be fitted to the configuration because it would contain a
big number of vacancies.

Hard core potential V :R* — {0,00} is an hard core repulsion. It has the
technical purpose, to prevent several atoms from sitting at the same lattice side.

V(z) =

{0 for T > Sy (13.7)

oo for T < Sp.

The hard-core potential implies, that any configuration with finite energy
smaller than p7'** + O(A71).

d

2
P = = £ O(s,A7Y) (1.3.8)

Where wy is the volume of the d-dimensional unit sphere!

'One can use the density of the closest sphere packing for an improvement
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Integration domain and boundary values. We integrate the energy density

over By () instead of € so that the effective chemical potential for atoms is
not different at the boundary of Q (see section 2.1.1). In our model boundary
values are given by the atoms placed in By)(€2)/Q. We define these atoms by
Xs = x N B2x(Q) and we consider them to have fixed positions. The atoms
x7 = x N can be moved but are forbidden to leave 2. So for most cases we deal
with fixed particle number.

Compatibility conditions The model has a large number of parameters and
not in any combination of them it will work as intended. Therefore, we assume
the following compatibility conditions.

1)

The Compatibility condition for the hard core potential

W3(2)
Cp 5 > 9 (1.3.9)

This condition guarantees that a configuration with one atom per potential
valley of J, is of lower energy than one with two atoms per valley. This
condition is primary used in theorem 2.4.3, which is used throughout the
thesis.

Compatibility condition for elastic potential
¥ < CF det(E) (1.3.10)

This compatibility condition ensures together with the coercivity condition
for F' that for low particle density only matrices A of a compact subset Gl4(R)
have low pre-energy densities. This condition is only used in Lemma 2.2.6.
But the result of Lemma 2.2.6 is used in many proofs.

Reparametrisation:

Definition 1.3.1. We call a pair B = (B, 2) € Gly(Z) x Z¢ a reparametrisation.
For A= (A,7) € Gly(Z) x Z* we define the reparametrisation of A as

BA = (BAR,BTg +t) (1.3.11)
We note that

TE x4 =Ar+71€Z°
<=BAr + Brp+t € Z*
T € XBA

So Bravais-lattices are invariant under reparametrisations
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1.4 Overview of the results

Our model is a modified version of the one that was proposed and studied by
S.Luckhaus and L.Mugnai in [7]. The main difference is that a different J, is
used for the same purpose. In that paper the authors have shown that for points
with low energy density the approximation procedure leads to a uniquely defined
fitted Bravais lattice y 4 + . One can span the same lattice with different affine
transformations Ag. Furthermore it is proved in [7] that the multivalued map
Ap(z) is differentiable and its gradients satisfies
CB

AMVAs@)| + [[As(x) = Vrs(z)] < == (1.4.1)
Finally, the authors discuss the possibility to use 75(x) to construct local La-
grangian coordinates and to define ‘holonomy representation map’, which can be
used to identify topological defects as dislocations.

In Chapter 3 we study the properties of the model in the case, that the particle
configuration is a Bravais lattice y4, or a elastically deformed state x = ¢(Z%).
As the first main result Theorem 3.1.5 states that, even in the case that the
atom configuration is the Bravais lattice x 4, the approximated lattice x 4(») +
will not coincide with the prescribed particle configuration x 4,. The difference
between A and Ap scales like A2, Furthermore, we define the average effective
elastic potential as the average energy density of the model in the case, that the
configuration is a Bravais lattice, and calculate an upper bound for the energy
of elastically deformed configurations y = (Z%). This way we get an estimate
that also holds in the case L — oo and fixed A We apply this estimate to gain
an upper bound for the energy barrier of plastic deformation for dimension two,
considering the formation and movement of a pair of dislocations. This upper
bound scales like A\*( Theorem 3.3.2). One of the main technical difficulties is,
that we allow reparametrisations. If we restrict A to one map of Gl4(R)/Gl4(Z),
many estimates become easier.

In Chapter 3 we explore the possibility to construct Lagrangian coordinates
in the framework of our model. First we concentrate on a method to calculate
discrete Lagrangian coordinates. We prove in Theorem 4.1.2 that for two points
y1 and ys satisfying some regularity condition and |y; — yo| < 1.5\ there is a
reparametrisation B = (B,t) € GI(Z) x Z% such that

) _ J
lid — A7 (1) BA(yn) || <C4-2

J )
A
BA +A
el AW g, )| <V

Br(y2) +t —7(y1) —

This estimate is a discrete analogon to the estimate for the gradient (1.4.1).
For a finite sequence of regular points |y; — y;11] < 1.5\ the product of the
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reparametrisations gained from Theorem 4.1.2 is a topological quantity (Theorem
4.1.8). Hence, one can use these sequences for homotopy-type arguments just
as one would use a differentiable curve. The sequence of reparametrisations
for such a chain, that comes back to its starting points, will allow us to define
a generalized Burgers vector as the product of the reparametrisations in the
sequence. Compared to the method, that is used in [7] to identify topological
defects, our methods has the advantage, that we do not need a differentiable
curve of low energy points for the homotopy argument but only some points so
the homotopy class can be extended through areas of irregular points, provided
the thickness of the area is maximal 1.5\ . This framework also allows to proof
a lower bound for the energy of the core region of a dislocation scaling like \2.

In the second part of Chapter 4 we finally adapt the method of [7] for con-
structing Lagrangian coordinates to our model. Since, in our case, the global
minimizer A(x) of hy(+, x, x) will not be differentiable we will use local minimiz-
ers instead. We prove that ,under some regularity assumptions, local minimizers
of hy and of J, are differentiable functions of x and of the atom positions. (
Theorem 4.2.5). Furthermore we improve the estimate (1.4.1) to

MV Ag(@)]| + | As(z) — Vrs(z)]| < O (@) . (1.4.2)

and calculate the corresponding estimate for the second derivatives of the mini-
mizer B that it holds

(1.4.3)

NIV2 As (@) | + [V2As(x) — Vrs(@)]] < (Tﬁ)

This improved estimates allow us to calculate in Theorem 4.2.5 a lower bound for
the energy density as a functional of the Lagrangian coordinate 7g in the form

~

i) 2Fe (Vin) + 505 (22 ) 97500 A7)l det (V7).
(1.4.4)

where F is a modified elastic potential satisfying

Fo (A) = min { F(BA)|B € Gl(Z)} + O(\7?) . (1.4.5)



Chapter 2

Basic mathematical properties

2.1 General properties

The energy density is in our model

A~

hy (x, @) = inf {F (A) + Jy + 0 (det A — py)} . (2.1.1)

Because py(x, ) does not depend on A we get

A~

hy (x,x) = iI}‘f {F(A)+ Jy+vdet A} —Ipy . (2.1.2)

Hence, in the definition of the energy density appears the particle density py(x, x)
as a linear contribution. We can integrate this density out and see that this term
is depending on the particle number but not on the position of the inner atoms.

Lemma 2.1.1. For all configuration x holds

/ pa(x; z)dz = Ny + / pa(xs, z)dz | (2.1.3)
Bax () B2 ()

where Ny is the number of inner atoms.

Proof. We have

/ pA(X? I)d.ﬁﬂ
Bax(Q)

o (50 E o0 o)

TiEXT TiEXT

1 / .
= o (AN |z — dx—l—/ palxs, z)dx . (2.1.4)
CpA? Z Bax(Q) ( ) B ()

TiEXT
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For z; € xy C Q and z ¢ Bg () holds ¢ (A7 |z; — x]) = 0. We calculate

X, x)dr =—— / AN — dx+/ Xs,)dx
/BzA(Q) ( )\d Z | D Bax () p)\( i )

TiEXT
e+ [ mxsaldo
C IZE;I/ Box ()
:N1+/ palxs, x)dzv . (2.1.5)
Bax ()
U
This lemma implies
Vo, € X1 ami/ oA, x)dr =0 . (2.1.6)
Bax

Hence, atoms in the interior do not experience a force due to the chemical po-
tential. An integration of the density over  instead of By (£2) would make the
contribution of the atoms near the boundary smaller. So the boundary would be
repulsive for atoms. This would have the consequence that the ground state can
not be a Bravais lattices.

Next we will prove a lemma that is technical very important for the further
treatment of our model. If the configuration is a Bravais lattice x.,, then for
any function ¢ that is infinitely times differentiable and has compact support the
difference between the sum of the values of the function ¢ and the integral of
Y times det Ag >t (A"H(x; — x)) is bounded from above with O(A™) for any
m. In particular the particle density of the Bravais lattice is det Ar up to order
O(A™). This will be important in Section 3.1, where our configuration is a Bravais
lattice, and in Section 3.2, where we deform a Bravais lattice. However the result
is also used in many other sections where we only compare the configuration with
a Bravais lattice.

Lemma 2.1.2. For every m € N there exists C,, > 0 such that for all Ag €
Gla(R), Tr € R and ¢ € CF(R?) with supp(y) C By (0) it holds

1

N Z (A (2 — ) —det Ag | ¥(y)dy
Ti€EXAR Rd
AR™ (A + 4R
= |Am‘ ( L W’ IV |loc det Ag . (2.1.7)

In particular for ¥ = ¢ we have

|p(X.A37 ) — det AR‘
C | AR ™ (M + AR )
—C, Am A4

V7] det Ag (2.1.8)
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Proof. We consider

p)‘(X(ARyTR)7 l’) - pA(X(AR,TR—AR:C)7 0) . (219)

This means that we can assume w.l.o.g x = 0. We calculate

x; GXAR T eXA
= [ e+ (@ (V) — e (A y) dy
Ti€XAR g
(2.1.10)
We have)
> [ e dy= [ v ()
xZGXA
=\ [ (@) dy . (2.1.11)
R4
Next we apply a Taylor expansion up to order m. We obtain
» (N y) =0 (A a) + Iz: WJI () (AN ) (y — ;)
J 1
+ O\ 1)tm[3>1<] IV (tr; + (1= Oy)| o —y[™ . (2.1.12)
€
We use this to calculate the second term in (2.1.10) and we get
3 / (A1) — v (A ) dy
xléxA
S X S @9 6 -
ziexay 9 |jl= 1
+Oo\™h / max ||V ep(tz; + (1 — )y)|| |z — y|™ dy
riexa t€[0,1]
(2.1.13)

We estimate the error term of order m + 1 in (2.1.13). The ¢ only contributes
to the sum if @; N Boy(z) is none empty. Hence, z; € B2A+\/3\A§1|($) and @Q; C
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BQ)\+2\/3|A§1\(33)

oA™Y / ma [V (b + (1= )| s — " dy
S te[0,1]

SO()\—m—l)F(z)\+4‘A1—%1|>d2m+1‘Al—%1|m+1||Vm+1,¢||oodet AR

_‘A1}1|m+1 —11\d m+1
<0 A+l (A4 AR DNV )| det A . (2.1.14)

Now we prove by induction that for every multi index j it holds

Z/A'J&%A:@)

xZGXA

m—j—1

=Y X [ ) ()
|k|=1 zi€xag

1‘m+1

+0 (%) O+ [AZ DUV™ Y| o det Ag (2.1.15)

Integrating directly (y — ;)" and making a change of coordinates, we get

Z / A (aﬂb) ()\_lxz') (y - Iz‘)j dy

= 3 A @) (A ay) / (y — 2 dy

TiEXAR Qi

= > A Gw) (A ) , Pdy . (2.1.16)

Ti€EXAR

If |j| is odd, then [ 9 73dy is zero, because it is an odd function integrate over an
symmetric domain. If [j| is even, then [ Qo 73dfj may be not 0 but is still indepen-
dent of 7. This means, we can write the contribution of j as some constant times
det A" times ZriGXAR | AR | WIN-HI(B3) (A\~ta;). Since ¢ is an infinitely often
differentiable function with compact support, so is #®1 Hence, the calculation
above for 1 applies also to #. We can split the sum as follows

Z det Az'0y (A ')

Ti€EXAR

- / o) dy+ S [ o (e — e (i) dy . (2117)
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We have

Z y —x))dy =\ 5 Fp () dy . (2.1.18)

Ti€XApR

Since M is a derivative of a function with compact support its integral is zero.
and the first term in (2.1.17) is zero too. To estimate the difference term (2.1.17)
we again consider the Taylor expansion up to order (m — |j|).

;AR /Q | My (A ) — v (AN y) dy
m—\JI

- Y X @ M @) (0 -

TiEXAR [k|=1

|A 1‘m+1—|j\
+O<R7.) A+ AR DYV ™ || oo det Ar . (2.1.19)

Am+1-]j

We get together with the factor |AR!BIA=H

[ @) ()
m—\JI

- Y Y g M @) (')

TiEXAR [k|=1

| AR ™! i] . X
+0 <W) A+ AR DUV oo det A (2.1.20)

Now we iteratively increase the multi index [j| of the derivative on 1) and we only
AR [

produce error terms of order O ( s ) A+ AR D V™19 || oo det AR , Since,

we need to increase the multi index only up to |j| = m this procedure terminates.
Finally, this leads to

A—l m+1
det AR! Z (A ay) = Xi/dw(y) dy+O <‘)1\%m7|+1) AH AR DUV |
Ti€XAR R
(2.1.21)
O

We study the symmetries of the model and note that rotations and transla-
tions are not changing the energy density.

Lemma 2.1.3. The energy functional is translational invariant. This means

VyeR hy(x.2)=h(x+y.2+y) . (2.1.22)
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Additionally the energy functional is frame indifferent. This means
VR € SO; hy(x,x) = hy (Rx, Rz) . (2.1.23)
Proof. The pre-energy density is
hy (A, x,z) = F(A)+ Jy (2, A, x) +9det A — (U + Va) pa

The configuration enters at two points into the pre-energy density, namely in J)
and in py.

A1)
I oo 0) =Sl S WA (- ) + ) (7 - 1)
® i
1
px) =5 )\ngp(}\—l‘xi—x‘) (2.1.24)
(] -

2

In both cases z; only appears as z; —x and we can add y to both z; and x without
changing J, and p,. We get for every A

ha (A x, @) =y (A x +y, 0 +y) (2.1.25)

This proves the translation invariance. If we apply a rotation matrix R to both
x and x, then p, is not changing at all.

1
pA(RX, Rr) = 73 > @ (A |Ra; — Ral)
® i
1
O\ oWz —z)) = palx @), (2.1.26)
® i

Furthermore, because a rotation is not changing the norm of a matrix, we simi-
larly obtain

—1112
Jx (A, 7, Rx, Rx) :Héi)\(! Z W (A (Rx; — Rx) + 7)¢ (A |[Ra; — Rx|)
® i
AR)™Y|? .
_lAR)—” C’:Ad | Z W(AR (z; —x) + 1) (A" |2 — 2])
=IO (AR, 7, x,z) . (2.1.27)

Finally, also the determinant is invariant under rotations and the frame invariance
of F' leads to

hy (A, 7, Rx, Rx) = hy (AR, T, x, Rz) . (2.1.28)
Since the energy density hy is the infimum over all A, we finally get
ha (x,x) = hy (Ry, Rz) . (2.1.29)

O
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2.2 Existence and properties of the minimizing

A

The energy density of our model is defined as

~

hy (x, x) := iﬂf {hr (A, x,2)}

In this section will prove that there exists a minimizer A € Gly(R?) x R? such
that

hy </l,x,x) =hy(x.z) . (2.2.1)

First we will prove that Jy(A, x, z) can be estimated form below and above with
the mean square distance between the atoms and the Bravais lattice x4 + x.
We can use this to show that there is a general upper bound for the energy of a
configuration only depending on the particle density py. Then we proof that there
is a compact subset of Gly(IR?) such that all A with low enough pre- energy has to
be in this compact subset. If we combine this with the continuity of hy(A, x, )
in the first argument, we get the existence of a minimizer, and some bounds on
its norms and determinate. Finally we use the existence of the minimizers to
define the effective particle potential.

Jx (A, x, ) acts like a standard deviation of the atom position J and the
lattice x4 + @

Lemma 2.2.1. For all A € GLy(R), allT € R%, all positions x and configurations
X it holds

cy . _
I (A, x,z) > 0>\d g dist*(z, xa + ) (A 2y — ),
® i
CV AP A < . )
Iy (A, x, ) <= | C“ )\|L | E dist®(z;, x4+ 2)p (A2 —2]) . (22.2)
® i

This implies in particular

0 < Jy (A, x,z) < dCP AP [|[ A" pa(x2) (2.2.3)



16 CHAPTER 2. BASIC MATHEMATICAL PROPERTIES

Proof. On the one hand we have
CoXJy (A, X, )
= HA‘1H2 > W(A@ — )+ 1) (A [ — )

<oV ;}A—lﬁ2 3 dist?(A (2; — 2) + 7, Z%¢ (Ao — )

<l Ay’ Z dist?(A (z; — ), 2 — 7)%p (A |a; — z))

<c [l Z A dist® (i — ), A (Z* = 7)) (A i — )

<cl Ay’ ||;1||2 > dist*(zi, xa+ 2)p (A —af) (2.2.4)

On the other hand we have
O@)\d‘])\ (A7X>'T)
= AP S WA @i — ) + 1) (A |z — )

SO0 (|A7YP S dist*(A (2 — 2) + 7, Z%p (A7 i — )
>Cy | AP dist*(A (s — 2), 29 = 7)% (A |2 — )
>y dist* (i — 7), ATNZ! = 7))p (A s — )

>Cp" Y " dist® (i, xa + @) (A |z —a]) (2.2.5)

O

We introduce a corollary that is not important for the main line of thoughts
of this section. However it will be important in Section 4.2. Since Jy(A, x, )
can be estimate with the mean square distance between the configuration y and
the Bravais lattice x4 + x And a reparametrisation of BA has the same Bravais
lattice. We can estimate J) (A, x,z) with Jy(AA, x, z).

Corollary 2.2.2. For all A € Glu(R) x R? and B € Gl4(Z) x Z2 fulfill

w A 2 A_l 2
T (o, A x) <] C!L 147 S+ 0
CW A 2 A1 2 ‘
< 1 H C!@)\’L H zi:dISt2(xi7 XBA,Br+z + I)(p ()\—1 |xl _ 33|)

O A A
<

Iy (x,(BA, BT+ 2),x) . (2.2.6)
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Since the infimum in the energy density h, is smaller equal the pre-energy for
every 7, Jy is always smaller than the average over W. No matter how irregular
the configuration is. Hence, we get a general upper bound for the energy density.

Lemma 2.2.3. For any configuration x with finite energy we have

~

hy (x,x) < igf {F(A) +Jdet A —py + HA_1H2 (/ W(T)dT) p,\(X,x)}
[0,1)¢

(2.2.7)
In particular we get
ha (z,x) < 9det E — Opy + HE_1H2 < W(T)dT) Pr - (2.2.8)
[0,1]¢
Proof. We calculate
]AZ)\ (I, X) - lgf {hA (Av X JI)}
:H}‘f {F (A) + J)\ (A7 X5 .23) + U (Aa X?x)}
= inf {F (A) + vy (v, A, 2) + inf {Jy (A, v, x)}} . (2.2.9)

We will study inf, {J) (A, x, )} in more detail. We use that the infimum is less
or equal than the average.

irTlf {I\ (A, x,2)} S/ {I(A x,x)}dr

[0,1]¢

AP
S/[m] HC’ )\‘|1| ZW(A(xi—x)—i-T)cp (A — 2]) dr
14 ¥ i

AP
<z
<o 2

W(A(x; —x) + T)dT) o (A z; — )

[0,1]¢
(2.2.10)
The periodicity of W leads to the conclusion
inf {Jy (A, x,2)} < [|[A~H? < W(T)dT) o (2.2.11)
i [0,1]¢
O

We introduce the definition of regular and irregular atoms.

Definition 2.2.4. For an atom configuration x and lattice parameters A €
Gla(R), 7 € R, and a position x and a distance 3 > 0, we define
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o the (A, 5, x)-reqular atoms

reg

Xapa = {wi € X|dist(zi, x4+ x) < B}, (2.2.12)
e and the irregular atoms
X0 = {: € x|dist(zi, xa+x) > B}, (2.2.13)

e and the densities of reqular atoms and irregular atoms

e re 1 —
Pas@) =naba ) = mya Yo e (Wl mi—al) L (22.14)
¥ xiGXrAe,gB,a:
irr T 1 _
Pas() ==pa(X A 520 T) = o Z o (AN —af) . (2.2.15)
©

ziEXZ,TB,m
We proof simple estimate on the density of regular and irregular atoms de-
pending on J).
Lemma 2.2.5. If x € B2\(Q) and A € Gl3(R) x R?, we have

irr

1
P () SWJA(A,XJ) ;
Te 1
Pu%(x) > pa(x: ) = Fag (A X T) (2.2.16)
Co 8

Proof. We use equation (2.2.2) to get

"

I\ (Av XAr> JJ) ZC¢)\d

>—Cgv E dist*(z;, xa + 2)p (A" |2 — )
_Csa)\d Y

i EXAp o

Z dist*(z;, xa + z)p (A" |z — 2)

[ISHY

> C(I)/V Z 52(’0 ()\—1 |£E—33|)

irr

Ti€XA,B,2

>Co B0 (2.2.17)

T reg

Because it holds px = p'4’s + p 5, We obtain

T

1
Pas(T) SWJA (A, XAn,x)

reg

P58 (@) 2(p - %J (A, 7)) (2.2.18)
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We want to prove that all A with pre-energy below our general upper bound
are elements of a compact subset of Glg(R)?. Due to the coercivity condition
on F(A we directly get that det A and |A| are bounded from above. However
Gl4(R)? itself is not a compact subset of R¥?. Therefore, we also need to find a
lower bound for |A| If the particle density is sufficiently small, we get this bound
from the coercivity condition. If, in contrast, there is a particle density that is not
vanishing, then an A with a small determinant can not offer enough low energy
positions for all the atoms. In this way we get a lower bound for det A and we
can derive from it bounds for |A| and |A™!|.

LemAma 2.2.6. There exists A\ € R and C1,C,C3,Cq, C5,Cg > 0 such that for all
A\ > \, for all positions x, and all configurations x, and all A € GI;R x R* with

h(A,x,z) <9det B — dpy + ||E7|” < W(T)dT) PA (2.2.19)
[0,1)¢
it holds
cp <detA<c |
<A <e
s <A <6 - (2.2.20)

Proof. Step 1: Upper Bound for det A and |A|: With the upper bound
(2.2.19) on the pre-energy density and the coercivity condition on F(A) we di-
rectly get

hy (A, x, ) <ddet E —Jpy + HE‘IH2 ( W(T)dT) Pr

[0,1]¢

<I\(A,x,x) + F(A) +ddet A

<¥det E + HE‘lHQ( W(T)dT) P - (2.2.21)

[0,1]¢

We will use the abbreviation X := ||E~Y|? f[o e W(T)dr Because Jy > 0 we get
with the coercivity condition for F'(A) the estimates

CE(det(E) — det(A))* + 9 det A + CPldist? (A, ESOy) < 9det E + Xpy
2 2

Cfl (det(A) — det(E) + %) + CQEldiStz (A, ESOd) < 19_ + X

1

= 1cE
(2.2.22)

Hence, we get an upper bound for det(A).

¥ ) 2
det(A) < det(E) — som + (CEY~2 ( + Xp,\) : (2.2.23)
1

1CH
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Since the density is bounded from above by pj*** for any configuration with finite
energy we have

__v
2CHl

Finally because of dist (A, ESO,) > ||E| — | A|| we get the upper bound

L[ 02 :
+ (Cfh~z <—+ngm) : (2.2.24)

det(A) < det(E) 1CF
1

Al < |E| +(C3") 2 (40El + Xl ) . (2.2.25)
1

Step 2: Lower Bound in case of low density: It holds the compatibility
condition (2)
¥ < CFldet(E)

Hence, we have the estimate

< CEldet(E)? —ddet E

2.2.26
ST B (2:2.26)

For p) < p the estimates (2.2.22) leads to

9 R :
1 1

2 2
> det(E) — % — (CFY)~2 <% +1/4CF det(E)? — 1/49 det E)
1 1

91 9\’ 92 \*
> - _Z - -
> det(FE) 20F T3 ((det(E) 20{31) +3/4401El>
1
det(E)—w LA (2.2.27)

Because of |A|? > det A. This also implies a lower bound for |A|.
Step 3: Lower bound in case of higher density: We only need to search
a lower bound for det A in case of a density

CFldet(E)? —ddet E

2.2.28
B X (2:2.28)

We use F(A) > 0, det A > 0 and the lower bound (2.2.21) for J) to get
ha(A, x, ) = (A, x,x) + F(A) +ddet A

>0 det E + HE_1H2< W(T)dT) oy (2.2.29)

[0,1]¢
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With Lemma 2.2.1 we get

Ogv ) -1 —11|2
N Xi:dlst (25, xatx)o (A o — 2f) < ddet E+||E7| /[0,1}d W (r)dr | px
(2.2.30)
We consider the set of regular points p’y%(z) with 3 given by
1 1/ detE 2
B=z(Cy)® (19 S |E W(T)dT) (2.2.31)
2 P [0,1]d
According to Lemma 2.2.5, the density of regular atoms satisfies
Te 3
P = 2o 00 (2232

4

On the other hand each atom in p/y% is taking a volume of wad (%O)d. All this
space has a maximal distance of sq/2 + 3 to a lattice point. On the other hand,

there is only wqyd (6 + %O)d space near this point Therefore, the number of atoms
nearby one lattice point can be maximal

N < ’LUdd (5 + 30/2)d — (% + 1)d ) (2233)

T wd(y)” e

Since £ is not growing with A and %gp('gﬂ_—/\xi') is scaling like O(1/\), all this atoms
have the same weight as the lattice point up to O(8/\). Therefore, we get for
large enough A

23 -
palxa) = pa(x)/N > (S— + 1) pr - (2.2.34)
0
Furthermore, we know from Lemma 2.1.2 that for any B € Gly(Z%) it holds

AT A+ A1)

pa(xa) =det A+ C,p, o X

V™))l det A (2.2.35)

We note that in this equation the error term is the only term depending on
the parametrization. This allows us to re-parametrize the lattice in the sense of
Definition 1.3.1 to arrive at the estimate We can choose B € Gl4(Z) to make the
error minimal. We define

X = min max [A7'B7le;| . (2.2.36)
BEGI,(Z) j=1...d

We have for the minimizing B

JAT'BT? =D e;|AT' B ey > dx? . (2.2.37)

J
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Hence, it holds
|ATIB7Y < ||A7'B7Y| < VdX . (2.2.38)

We apply this on the estimate 2.2.35 and get:
m d
(vﬁx) (A+~¢EX>
AT Ad

We get from the inequality (2.2.34) and the equation (2.2.39) a lower bound for
det A provided X/\ is small enough.

det A > py(xu,2) — O (Xm) (% + 1) ) — O (Xm) . (2.2.40)

am )\ s A

pa(xa, ) = det A+, IV llodet A . (2.2.39)

We still need to treat the case that XA\™! is not small. The d dimensional lattice
is spanned by d vectors A~ B~'e; each have a length smaller equal X. And at
least one A~ B~ te, has a length equal to X. The to other vectors are spanning a
plain. If we project A~'B~!e; on this plain the distance p between the projected
point and the next lattice position and the distance &, between A~'B~'e) and
the plain fulfill

o4pt =X . (2.2.41)

Since it holds p? < HLX? we get
Sp>1/2(6—d)*x . (2.2.42)

At least in one direction the layers of the lattice have a distance larger than Jp.
There are maximal (2A\dp~')+1 layers that intersect Boy(x). In the neighborhood
of these layers there is less than wgA4"123((2\dp~* + 1) space for regular atoms.
But we know that regular atoms have a density py% > 3/4p (x). Hence, they
are filling, up to order A™!, a volume of at least “4(s0/2)%3/4px (x) CpoA%. We get

wq (So\43 d d—1 -1
“H(3) 3 (0 G <128 ((22dp7) +1)
2V/d)
<
P < Sty 1 (2.2.43)
29733
If we combine this with (2.2.42), we obtain
2/d)
< o oa-1/2
X<2(5-d) g 1 (2.2.44)
d2d+3,3
Hence, we have an upper bound for X provided that
d2d+3
o (x) > g (2.2.45)

~ 3s3C,\
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Therefore, we have an lower bound for det A for sufficiently large p,. If X is
large enough one of the conditions (2.2.45) or (2.2.26) will be always fulfiled. So
both bounds together gives a bound for any density. Furthermore, we know from
Lemma B.2.2 that it holds

A7 < JA|[4 P det A7 < ey (2.2.46)

So with the lower bound for det A and the upper bound for |A| we get also an
upper bound for |[A™!|. We convert the upper bound of |[A~!| in a lower bound
for |A]

1 =lid| < |[ATY|A] < calp)|A]
lg\A| . (2.2.47)
C4

And the same way we get from the upper bound of | A| a lower bound of |A|~!. O

With the compactness of the set of A with low pre energy density we can
finally proof that there exists an A such that hy(x, ) = hy(A, x, z) Furthermore,

we get upper an lower bounds on det A, ‘/1_1 and |A|.

Lemma 2.2.7. There exists\ and €1, Ca, C3, €4, C5,Co > 0 such that for all X > 5\,
positions x, and configurations x there exists A € Glg(R) and 7 € Z% such that

h </l,x, X) =h (x,x) - (2.2.48)

Additionally the minimizer A satisfies

C1 S detfl S Cy
<A <e
<A< (2.2.49)

Proof. From Lemma 2.2.3 we know that there exists an A € Gly(R) and 7 € R
such that

h (A 72,x) SVt E—dpy + |7 (/ W(T)dT) pr . (2.250)
[0,1]¢
So, we can conclude that

gnfh (A, 1,2, x) < ddet E — 9py + HE_1H2 ( W(T)dT) pa - (2.2.51)

[0,1]¢

If the equality holds in (2.2.51) then (A7) is the minimizer and satisfies the
conditions according to Lemma 2.2.6 the conditions (2.2.49). If inf4 ; h (A, 72, )
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is smaller it is still bounded from below by —¥p, so there exists a minimizing
sequence (A,, 7,). Therefore, for all n large enough it holds

h(Ap, T, x,x) < ddet E — Jpy + HE_1H2 ( W(T)dT) o - (2.2.52)

[0,1]¢
Hence, for n large enough (A,,7,) satisfies the conditions of Lemma (2.2.6).
Therefore, A, satisfies the bonds (2.2.49). 7, can be selected to be confined in
[0, 1]¢ because of the periodicity of hy(A, T, x, x)- Therefore, (A,,7,) is confined
in a compact subset of Glg(R) x R? and converges to some (A, 7) also satisfying
the bonds (2.2.49). The conclusion follows from the continuity of hy(A, x,x) in

A and 7. O

Since we now know that there exists a A minimizing hy(-, x, ) we use this to
define the effective particle potential.

Definition 2.2.8. Let A(x) : Q — Gla(R) x R? be such that for all x holds
ha(x,z) = ha(A(z), x, x). We define the effective particle potential
2
A_l(x)H A 1
Vi) = [ A WA (= )+ ) (0 fy — al)
Box(©) ®
(2.2.53)

To motivate this definition reformulate the model using the definition If the
hard core condition is fulfilled our model has the following form

H)\(X)/ = II}‘f (F (A) + J)\ (.A,X,JI) + 791 det A — (791 + 192) p)\) dzx
Baa ()

(2.2.54)
According to Lemma 2.2.7 the infimum is actually a minimum. We introduce
(not necessary unique) A(z) minimizing F (A)+ Jy (z, A, x) + v (x, 4, ) for the
configuration x in the point x. Next we look at our energy functional for given
A(z) F(A) and det A are immediately determined by A(z). Changes of the atom
positions will not influence f Bon () (91 + 13) prdx as shown in Lemma 2.1.1. We

reformulate
Hy(x) :/ F(A(z)) 4+ 01 det A(z) + (91 + 92) prdx
B2 (£2)

| A~ (@)1

" Z /Bw(m WW(A(@ (2 — @) + 7(2)p (A" 2; — )

:/ F(A(x)) + 9, det A(x)dx + Ny + / oa(xB, x)dx
Bax ()

By

+ Z Vap () - (2.2.55)

TiEX
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The effective can be used to estimate the energy difference between two con-
figurations. The idea is that if we changing the configuration without changing
the A the resulting energy will be higher than if we adapting the A to the new
configuration.

Lemma 2.2.9. For two configurations x and x it holds

H\(X) < Ha(x +ZVA )= > Vapgla) (2.2.56)

Proof. For all A, (z) = argmin ¢ gy, r) ra) Pr(A, 7, X, ¥)dz it holds

— /B o F(A(z)) + 9, det A(x)dx + Ny + / pa(xs, z)dx + Z V(i)

By

:/ F(A(x)) + ¥, det A(x)dx + Ny —|—/ oa(xB, x)dx + ZVA(%)
BaA(Q) Bax i

+ Z VA Z VA
—H)\ —|— Z VA(X xz Z VA(X) (xl) . (2.2.57)

O

There are two possible applications for this. If the atoms of a configuration
does do not sit in the local minima we can move them to the local minima.
This will lead to a new configuration xy with lower energy and with a smaller
number of defects. The second way is to calculate bounds for perturbations of
configurations. If we have an idea of how A(z) of a configuration looks like we can
get upper bound for the energy difference between this and other configurations
with lemma 2.2.9.

2.3 Regular and irregular points

In this section we introduce the notation of regular points

Definition 2.3.1. Let A = (A, 7) € Gl4(R) x R? and €,,¢;,C4 € R and let x
be the configuration then we say that x € Boy(Q2) is (€,, €5, Ca)-regular with A, if
the following conditions are fulfilled

1. HA_1|| < OA,
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2. |pa(x, x) — det A| < ¢e,det A,
3. J)\(A,X,.T) < EJp)\(Xax)}
4. |xi — x| > s, for alli,j

Remark 2.3.2. The definition above implies an upper for |A| since

1 d—1
Al S AT et A < AT p < A _gmer (231
1+e¢, 1 —¢,
For €, = 1/8 we get
8C4
|A| < Oy i= —2p7er . (2.3.2)

7

If the point x is regular with A this means that the configuration looks like the
lattice x4 + = in the Bsy(x). A reparametrisation of A creates the same lattice.
Therefore, if x is a regular with A, it is also regular with reparametrisations of
BA (See Corollary 2.2.2). The main goal of this section is to proof for small
enough €, and e; that, if x is (e,, €7, Ca)-regular with two 4; and A, then A,
has to be a reparametrisation of A; up to a small difference controlled by +/J,.
We will proof that in three steps. Lemma 2.3.3 has primary a technical purpose.
It deals with a very specific case that the configuration is locally a subset of a
Bravais lattice x4, and the mean square difference of these atoms to an other
Bravais lattice x4 is small. Lemma 2.3.4 deals with the same case but improves
the estimates. The final theorem 2.3.5 generalizes the result to general regular
configurations. A similar result is obtained in Lemma 5.12 from [7]. However
the estimate in [7] is not using all atoms in the 2A-ball but just the ones in a
smaller cube. Hence, it needs much higher density to be true. Furthermore, we
will explicitly calculate the coefficient for the estimate of the difference between

./41 and ./42.

LemAma 2.3.3. For all C4 > sg there exists A €ER and €y > 0 such that for all
N>\ e <éy, A Ap € Gly(R) and 7,7 € R? satisfying

1) |A7Y < Ca and || AR < Ca
2) x N Bax(0) € xap,

3) +det A < 2det Ar < pa(x,0),
4) |lxi — x| > s, for all i, j,

5)

. Cy” , -
Gm60) > 2o S distta e (A nl) . (233)
©

TiEX
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the following holds:

1) There exists a reparametrisation B € GLy(Z) and t € Z* such that

o anzo(48) s

|Brr +t— 71| <O(\/€)) (2.3.5)

2) if additionally x; € x4, and T; € x4 such that
dist(z;, xa) = dist(z;, Z;) (2.3.6)
then for all z € Z¢ with x; + A;fB‘lz € Bs) (0) it holds

dist(z; + AR' B2, x) = dist(z; + Az' B~ 2,2, + A7'2) . (2.3.7)

Proof. Due to remark 2.3.2 ||A]|~! can be bounded from below uniformly Because

of equation (2.2.5) we get for 8 = 2,/ gi‘, < 1/10]| 4|71
0

Paso = 3/4px > 9/16det A . (2.3.8)

Hence, we know that at least at 9/16 of all points of x4, there is a regular
atom. Now lets consider A'e;. Because of |[A7Y| < C4 we know that up to
order O(A\™!), x; and z; + Aﬁlej have the same contribution to p,. That means
there have to exist z;; € x/1%( and z;; + Axle; € X0+ By contradiction argu-
ment, if there would not exist such a x;;, for each regular point there would be

a irregular point. Hence, it would hold p%, < sdet Ag + O(A™1), which con-

tradicts pff% . > 9/16 det Ag. Therefore, there exists z;; such that both z;; and
zi; + Az'e; € X% o and there also have to exists &}, #7; € x4 with |z;; — 1| <

and }xij + Aglej — jf]} < . Hence, we get

(2.3.9)

We get one ¢; for every dimension basis vector e;. This vectors form a matrix B
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with entries in Z such that €¢; = Be;. Furthermore, we obtain

d
IA™'B — A <) [(A7'B — Ag")e;]
j=1

d
= Z ‘A_léj — Aélej}
j=1

<2dB < 4dy| == (2.3.10)
Co

Now we look at a regular point z; € x4, and the corresponding Z; € x4 with
|z; — %] < B Let assign additionally x; + Ap'ne; that is regular for an € Z .
There are two cases. In Case one ¥; + A~*Bne; is the closest point to x; + Az ne;
in 4. In case two an other point Z; + A~'Bne; + A~10z € x4 is closer. In case
one we estimate

‘xi + Ap'ne; — ¥ — A_anej‘ <pg ,
I(AR" — A7 B)ne|| — |l — @il < B,
B
|(AR" — A7'B)e;|

n<?2 (2.3.11)

In the second case the closes point in x4 is Z; + A~ Bne; + A~10z and we get

‘xi + Aglnej — (@ + A_anej + A_15z)‘ <p
|A71 02| — [(AR' — A7'B)nej| — |z — 3| < B,

|A]~" —28
T A5 <n . (2.3.12)

This means that in a line next to a regular atoms there are maximal Z; :=

QW other regular atoms. And then there comes a minimum of Z; :=

lAl—'—28
|(AR'=A~1B)e;|

line. Since 8 < 15||Ag|| ™", we know
Zy B

a9 F
Ly | A7t — 28

positions of x4, before there can be regular atoms again in this

1
- . 2.3.1
>4 (2.3.13)

Therefore, there are at least 4-times more irregular than regular atoms. Hence,
the regular atoms need to have in average a higher weight ¢ than the irregular
atoms. The highest weight can be found in the middle of every line (see Figure
2.3). We define py, ;1 as the contribution to the density atoms from the finite series
closest to the middle of the line k and py, ;2 as the contribution to the density of
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Figure 2.1: The left picture shows a line of atoms(red) going through the 2\-
Ball around x The point where the red line intersects with the blue line is the
middle of the line of atoms. The right picture shows how to compare the irregular
positions(black) with the regular positions (red) to see that except of one central
sequence the weight of the irregular parts are four times higher.

all other series of regular positions in the line k. For every finite series of regular
position but the closest to the middle there exists at least 4 times as many irreg-
ular atoms that has at least the same weight since ¢ is monotone decreasing(see
Figure 2.3). For the contribution to the density of irregular position in x4, in
the line k, we get p“”’” > 4py jo. The density of irregular atoms consists of the
contributions of every line and is at least four times bigger than the contribution
of regular atoms from the outer series.

Pas(0) = ol > 42%2 = 42% 2 (2.3.14)
k

On the other hand the density of regular points and of irregular positions together
are given asymptotically by det Az to O(A~*). Hence, we have

7/16det Ag + O(A™%) > pli's(2) > 4> prjo - (2.3.15)
k

Furthermore, we have 9/16 det Ag density of the regular points. These consists
of the regular points from the inner series plus the contribution from the outer
series.

Zpk,],ﬁzpm Pl(x) > 9/16det A . (2.3.16)

Putting the estimates (2.3.15) and (2.3.16) together, we get

Zpkﬂ> detAR . (2.3.17)
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A A

Figure 2.2: The left picture shows the change in equation (2.3.18) from vertical
slights to horizontal slights using with Fubinis theorem. The right picture show
how we cover the parts of a circle with radius r, that have a distance from the
middle line less than h, with a rectangle. For dimension three we have to cover
a sphere instead of the circle an cover it with a cylinder instead of rectangle

Hence,the contribution to the density of the regular atoms in the series closest
to the middle of each line is at least 2_?1 det Ap . On the other hand we know that
those series consists at most of Z; atoms, which implies a length of at most
h =2, }Aﬁlej‘. Since the inner regular series cover 29/64 of the total density,
we can calculate a lower bound for h. The maximum contribution, that one can
reach with a given h, is obtained, if the series is centered in the middle. We notice
that we can rewrite(see Figure 2.3)

/ p(z/N)dr = /0 | Bog-1() (0)| dy (2.3.18)

All spheres B,-1(,)(0) have a radius of at least A\. Hence, it is sufficient to study
how much of a sphere with radius » > A can be filled for a given h.

Case 2D: The filled part of the circle can be estimated from above by a
rectangle with one side 2r and the other h. The circle itself has an area 7r?. If
the rectangle is supposed to be bigger than 29/64 of the circle we need

2rh - 29
mr2 = 64
297

Case 3D: The filled part of the sphere can be estimated from above by an
cylinder with radius 7 and the height h. The sphere itself has an volume 4 /3773,
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If the cylinder is supposed to be bigger than 29/64 parts of the sphere we need

mr2h >29
4/3mr3 ~ 64 7

29
h >4—8r > 0.6A . (2.3.20)

We get for both cases 2D and 3D that

h >0.6\
Zy >06]|A e TN,
10]|AR!
(47— A B)e, | <2210
10Vd|| AR
(A7) — A7'B)| <wg (2.3.21)

Therefore, as B has entries in Z, the determinant of B is an integer. Since we
know |Az' —A™1B|| < O(B/A), det B can not be zero. Due to 3/2det Ag > det A,
det B can not be bigger than 1. So, det B =1 and B € Gl Z.

1 e _ 10\/3 A-NIB
A~ !B = A7 < | 3R il ||§ ’

|Ag'B™ — A7 <O <ﬂ> : (2.3.22)

A

Further more we know that there exist a regular point with ||z; — Z;|| < § and
we have
|7 = A7 (2 = 1) <O(VE)
Az — (2 —7)] ,<O(V€))
|BAR.Z'Z - (Z] - ’7" - ‘(B_IAR - A) Z‘
‘BARIZ (Z] - 7')
}BARA_ (Zl — TR)
|T — BTr + (2; — Bz
|7 — Bt + (

(\/73) . (2.3.23)

Finally we assume that z; € x N Byy(0) is regular. And that Z; is the clossest
point to it in y. Now we consider z, € Z¢ satisfying x; + AEIB_lzk € By, (0).
We calculate

2j — Bz

‘(.TZ + AI_%lB_le) — (fz + A_lzk)‘ = |.TZ — .f?l‘ + ‘(ABIB_I — A_l)Zk)}
=B+ |[Ag'B™ = AR |a] . (2.3.24)
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Because of z; € Boy(z) and z; + AR' B2, € Box(7). 2 is maximal of order \.
It holds

(2 + AR B 2) — (& + A7'z)| =0(e5) . (2.3.25)
Hence, for sufficiently small €7 it holds

1
[(zi + AR' B 2) — (& + A7 '2)| < oA (2.3.26)

Hence, (7; + A~'z,) is the element in y 4 that is closest to (z; + Az'B™12). O

The next lemma improves the estimate (2.3.4) for the difference of the lattice
parameters in Lemma 2.3.3. According to Lemma 2.3.3 there is a reparametri-
sation of Apg close enough too A, such that, if z; € x4, is the nearest neighbor
to y; € xu, then x; + AR'z is the nearest neighbor to x; + A~*B~1z. There-
fore, we just need to distribute atoms on positions that contributes to Jy in a
quadratic potential. If we fill up the positions with the lowest contribution, we
get a lower bound for Jy, that can be transformed to an upper bound for the
difference between Ap and BA.

Lemma 2.3.4. For all Cx > sq there exists A ER and €y > 0 such that for all
N>\ e <éy, A Ap € Gly(R) and 7,7r € R? satisfying

1) [[A7Y| < Ca and [|ARH]| < Ca,
2) X mBQ}\(O) g XAg >

3) $det A < 2det Ap < pA(x,0),
4) |z — x| > s, foralli,j
5)

w
0

C A

> dist* (2, xa)e (A aal) (2.3.27)

T, €X

e5pA(x,0) >

the following holds: There exists an reparametrisation B € GL4(Z) and t € Z°
such that

! OXVCW . w .
Hl A BARH < dC detAR 800 (detAR p)\)

®
Ve (2.3.28)

(NI

|Bre — 7+t <[ AIl (CY (202 — det Ag))~



2.3. REGULAR AND IRREGULAR POINTS 33

Proof. We use the abbreviations

olid . _
Xi=ztg D dist’ (@ xae (W al)
® TiEXA
R
Yi:=  sup  dist®(zy, x4) (2.3.29)
z;,EXARNB2x(0)

and estimate

. CyY : _
€702 >C'—0)\d E dist*(z;, x.a) (A" |z:))
©

TiEX

cy . _

=X -0 Y. dist® () (N )
7 wiexag/x

—X — G Z o (A ) sup dist?(2;, x4)

C<P)‘d Z T, EXARNB2x(0) v

T E€XAR/X R
=X — (det Agr — p») sup dist? (x5, x )
TiE€XARNB2x(0)

=X — (det AR — p)\)y . (2330)

Next, we calculate dist?(z;, x.4). According to Lemma 2.3.3 for sufficiently high
A and low €% there exists an reparametrisation B = (B, t) € GLq(Z)x € Z% such
that the closest point to z; = Ap' B (2; — Brgp — t) in x4 will be A7}(z; — 7).
Hence, we get

distQ(xi, xa) =(x; — Az — T))2
=(z; — A"Y(BApx; + Brg +t —7))?

=(1 - A'BAR)x; + A Y (Brg +t —1)))* . (2.3.31)
We set
ba=1—A"'BAp |,
6, =AY (Brg+t—1) (2.3.32)
and obtain
Y = sup (8ax; + 6,)?
TiEXARMNB2x(0)
<(ll0.l12X + [6-])
<8XX([|64])% +210,)* . (2.3.33)
Using (2.3.31) we get
X = o Z (64 4+ 0,)%0 (A1 |mi]) (2.3.34)
O@)\d ALy T i . -J.

Ti€XAR
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Next, we estimate the sum in equation 2.3.34 by an integral using Lemma 2.1.2
with m = 2 and get

Ogv S il 5 2 -1~ A ~ ||5A||§\
D (g + 0% (Al det Apd + O (552 ) L (23.35)

CN

X >

We substitute y = X and obtain

W 2
x> Y 04y +6,)%0 (Jyl) det Ardy + O <%) . (2.3.36)
Co ZiExa A
¢ R

The integral of an odd function over an even area is zero. So the mixed term
vanishes

w
Co

X
Ry

/ ((6ay)* + (6:)*) o (A" |yl) dz+ O (H(;;H?\) . (2.3.37)

The symmetric matrix 6504 has d eigenvalues a;..a; In the eigensystem of (6%4)
we get

/(5Ay)2<p (A yl) Z/Zakyiso (At y|) d=
S it

—Tr(5%60) LA / N0 () d=

d
C
:7”2)\‘”2”6,4”2 . (2.3.38)
We obtain
x> (GGl \2s. 12 5 (16,02 det Ag + 0 (10415 (2.3.39)
dCSD A T R \2 . cJ.

We apply our estimates for X and Y to (2.3.30), and get

cye
€70\ > ( 022 32164]1% + CXVH(STHQ) det Ap

dCy,
— Co" (det Ag — pa) BN ([[0.4]1)* + 2/16-[7) - (2.3.40)
We resubstitute d4, and 9, with equation 2.3.32 and obtain
N clve ehp
11— A B AL < ( 22 et Ay, — SO (det A — pA)) i,
©
W —% / *
11— AT'BAR| < (CZCC@Q det Ap — 8C}Y (det Ar — pA)) ‘;‘f’”. (2.3.41)
©
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Hence, we get
|AY(Brg +t— |2 < (CgV(sz — det AR))_1 ipa
|(Brn+t = D)l <AL (CY (20x — det Ar)* /Spn . (23.42)
0

In Theorem 2.3.5 we apply the specfic Lemma 2.3.4 to get a more general
result. If the configuration y in one point is regular with two different lattice
parameters A; and As,, there exists a number of atoms regular with both lattices.
If we take the lattice points of one of theses lattices, that are close to theses points,
then we get a set fulfilling the conditions of Lemma 2.3.4. Hence, we get the the
same estimate as we did in the specific case.

Theorem 2.3.5. For all C4 > s exists )A€ R and €y such that for all X >
N A = (AL ), A = (ALm) € Gly(ZY) x Z% and © € Boy(Q), that are
(1/28, €5, Cy)-regular with Ay and with Ay, we have

(NI

CWC, J,
d— A7'BA O —%° det A nar
Jid = A7 Bas] < (S aee ) e
X -1
[B(1 +1) = 72| <[|A]] (ECXV detA2) Vmaz (2.3.43)
where
Jmaz = max Jy(Aq, x, x), Jn(Ag, x, ) . (2.3.44)

Proof. We have [ A7, |A7*|| < Ca. Using equation (2.2.5) and § = 4,/ 5 <
0
min{so/2,2lc_% (pgmz)‘l} we get the estimate p}’5, > 15/16py. Hence, we
have that at least a density of 7/8p, atoms, that are regular for A; and Ay. We
call the set of this atoms x,.,. Because of 8 < s0/2, two different regular atoms

can not belong to the same lattice point. Furthermore, if 8 < zlc_dﬁfl (prany~t <
A

1| A;]I* alattice point can not belong to two different atoms. Therefore, there is
a bijection between the atoms of x,¢, and the corresponding points in the lattices
X4, For every x; € X,y we denote by w;; the corresponding element in x 4, . We

reg

denote by x A the set of these regular lattice points. We get

w
2 a >% xEZX: (dist? (i, xa, + ) + dist?(z;, x4, + 7)) (A" |25 — z|)
C(I)/V 2 2 -1
Co\

(2.3.45)
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Using a® + b* = 3(a — b)*> + 3(a + b)? one gets

CW
4T maz >C X Z (za — 22)* + (22 — 21 — @2 — 22)%) 0 (A |2y — )

Ti€Xreg

C’)\d Z Ty — Tig)? (_1 |x2—x|) ) (2.3.46)

X4 GXreg

We can count the z;, instead of the x; due to the one to one correspondence
between them and change the argument of ¢ from (A™!|z; — z|) to (A7 |zs2|)
paying with an error term as follows:

CW

4.J, CSDO ZEQ dist(zi2, X4, )20 (A zia])
szGXAQ
oY _ _
+5 0 = Y dist(wig, xay) (9 (A mial) = (A |z — 2))
wzQGX;\Zg
(2.3.47)
Next, we estimate the error term. We use dist(z;1, x4,)? < 462
C(I)/V 4 2 )\—1 ) o )\—1 o
v Iz2€XTA€29
5 [Vell
s 8 Blinsos
ZQEXA2
wadd IVell
<4 det A, 3
. 2
wad || V| &\ 2
256—— det A;2 . 2.3.48
( C, X lew ) | (23.48)

The error will be negligible for small enough e;. The density of x;¥ fulfills
oA x) < T/9pa(x; ) + O(A") > 3/4det Ay, Hence x';7 fulfills with the
fitted Ay the conditions for Lemma 2.3.4 with density 7/9p) and €5p) = 5Jpmas,
Ar = Ag, TR = 1, A = Ay and 7 = 7y. Therefore, there exists B = (B, 1) €
Gly(Z%) x 74 satisfying

w 4 =

||]d — Al_lBAQH < C 0@2 de tA2 — 200 (det A2 7/9p)\) Imaa ,
4dC,, A

IB(r +1) — 1 <[ 4] (gch(7/4pA ~ det Ag)) NG (2.3.49)

For €, < 1/28 we have (det Ay — 7/9p,) < 16dC det Ay and det Ay < 5/4p) and
we get 2.3.43. U
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2.4 Regularity of low energy states

In Section 2.3 we proved some properties of regular points. Even more properties
of regular points will be studied in Chapter 4. In this section we prove that points
with low energy density are regular, and that we can control the coefficient €; and
€, with the energy density. The main difficulty here is, that in the definition of the
pre-energy density the particle density enters with a negative sign. Therefore, we
first calculate an lower bound for J, depending on the matrix A and the particle
density py. If we combine this estimate with the coercivity condition on F'(A) we
get a lower bound for h) (A, xx). Once we have this lower bound the regularity
follows, since we constructed the model to penalize configurations that are not
close to a lattice.

First we calculate a lower bound for Jy depending on det A and p, in the case
that there are no irregular atoms in the configuration.

Lemma 2.4.1. For all C4 > 0 there ezists A € R such that for all X > A\,
A= (A,7) € Gla(R) x R? such that |A™1| < Cy and configurations x satisfying
A (X, ) > det A and x = X1, where f = min{s,/2, |A]} it holds

A, x, ) > (C'(ZV +O(\")) det AN (py — det A+ O()\_m))2 . (2.4.0)

where

1 ¢12 -1
A B —— . 2.4.2
o = (gre |5 tubay) 242)

Proof. Without lose of generality we can restrict ourself to x = 0. As proven in
Lemma 2.1.2 the density of a lattice fulfills for any m € N.

palxa) =det A+ O(N™) . (2.4.3)

According to Lemma 2.2.1 we have the estimates (2.2.2)

cy
>

Z dist? (x5, x4)p (>\_1 |7 — $|) ,
(2.4.4)

The configuration x 4 with py(x4) = det Ag has Jy, = 0. If we increase the density
by moving the atoms, we automatically increase J,. We denote y; := A~ (2, — 1)
and dx; == x; — y;

. cowv
I (A x,x) > Iy (1, A x) = OAd > oato (A [yi + 0mil) (2.4.5)
® i

C
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We will now minimize .Jy for constant py (z,x) = 5 € R. Hence, we consider the
Lagrange function

. 1 3
L:=J\(z,A,x) - p <O Y > o (A i — owy]) — p) : (2.4.6)
® i

For the minimizing dx; it holds

agzip)\ ((5331, 33) :a(;zi j)\ (33, .A, (5331) s
(10s, ¢ (A yi + 62]) =203 dwip (N |yi + 64])
+ C’g)/v5xfagmicp (A ys + x4]) - (2.4.7)

Since dz? penalizes increases of dx; isotropically, the minimizing dz; will be par-
allel to V(A ™|y;]) that means anti parallel to y;. Furthermore, the term on the
left side of equation 2.4.6 balances the two terms on the right side. If the left
side would have to balance only one of the terms on the right side |z;| would be
larger. Hence, we get two upper bounds

poo "
T (A ys + omi]) (2.4.8)
0

m
162i] <, /2ch . (2.4.9)

Due to the upper bound (2.4.8) and mean value theorem there exists §&; := vix;
with v € [0, 1] such that

i‘i‘(si 1 , - ! - T
o (E20) — o (B) < o 2 O bk 0l) 1 (0 s+ 0

|5JIZ| <

) ) 2002
(2.4.10)
We have two cases. In the first case it holds
P (A‘l vi + 01 ) > || <>\‘1 yi + 01, ) (2.4.11)
. Then, we have
lyi + O il w9
- = — | < LD i+ 0x; . 2.4.12
o () <o (1) < s (7 i ) (24.12)
In the second case it holds
P (A‘l vi + 01 ) <|¢] <>\‘1 yi + 01, ) (2.4.13)

Then, we get

|yi + o] |yl poo Lo, 02 (y-1

yi + 0, )
(2.4.14)
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Since ¢ is monotone decreasing, we have

|yi + 0] |yl T o
Wi ol A\
30( ) AN ) Saame (

In both cases, we obtain

i +oxil\ ([ lwil
14 ) LAWY
o | (il = oz 1
< - L 2.4.1
<max { TR < )\ |0z; € |0, Yo ( 6)

We now look closer at %(x). Since ¢ is continuous, monotone decreasing and
fulfills p(2) = 0, there has to exists o € [1,2] such that ¢(z) > 0 for z < x
and ¢(z) = 0 for z > xy Since ¢ is continuously differentiable lim, ,,, ¢’ = 0
Applying L’ Hospital we get:

) . (2.4.15)

2 !, 1

2
lim 2—(z) = lim > (z) = lim V' =0 . (2.4.17)

T—T0 SO T—rT0 (p’ T—rT0

Therefore, %Q(x) is bounded in a neighborhood of x, and therefore bounded
everywhere, since is a continuous function on a compact set. Hence, we get

PN Y\ TN W)

H 1 ¥ -1 I
SN CTON % max{ ()\ (|l (5@)) |0z; € {0, 200”,} }

(2.4.18)
where
1 2 -
W 4 -1 P
R A R Lt
(2.4.19)
and obtain

Due to equation (B.1.31) we get u = gT‘]p and therefore

dp B B
Jr(9p) 2/ w(dp)dop > C’g/)\25p2 : (2.4.21)
0
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Finally, we estimate

—1
~ 1 (,0/2 _ /J“
W_ e — [ 1 . — . . —_
“ _<00ch S { Ol 000 < [0 cgvm
1 2 -1
_ E (ap_ ~1(|4;. -1

— 1 @’2 1 -1 »
_<00qu>\d /Rd - (A (Iy\)dy) +OY

1 30/2 -1 .
(e [ thar) oo (242
0 Y
Hence, we get the conclusion. O

Next, we calculate a general lower bound for Jy for given A and p,. There are
two ways to increase the density. First, one can move exiting atoms to positions
of higher ¢ second one can add additional atoms. As show in Lemma 2.4.1 J,
increases quadratically, if we move the atoms. In contrast if we add atoms it
will increase linearly. Hence, our lower bound has a quadratically grow up to a
certain threshold and grows linear from there

Lemma 2.4.2. For all C4 € R there exists A € R such that for all X > \ and
A € Gly(R) such that |A™Y < Cy4 the following estimates hold:

1) For px(x,z) < pa(xa,0) it holds

InA, x,z) >0 . (2.4.23)
2) For pr(xa,0) < pa(x, ) < palxa,0) < p1 it holds
OW
2 22(py — pa(xa,0)* . (2.4.24)
det A ’
3) For py < py it holds
2
py det A
Iy > 1072 + 1 (pr —p1) - (2.4.25)

where

1 90,2 -1
CV = =— — d
Vi (g LS )

y _cwsn _ Co solle®ll
P00 16p\2 ’

oL = (1%) det A . (2.4.26)
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Proof. Since, by construction it holds J) > 0, no prove is needed for first state-
ment. Instead, we note that we note J, = 0 for x C y4. Hence, the trivial bound
is optimal in this generality. We minimize J, with the constrain of fixed density
pa(x, ) = p. Therefore, we consider the Lagrange function

L= Jy (A x. @) = i (pa (X, 2) = p) (2.4.27)

The function is minimized by the configuration. This means the particle position
and the particle number can change. In Lemma 2.4.1 we calculated a lower
bound in the case of constant particle number. Now we study the change of
particle numbers.

Step 1: More than one atom per valley in the center With energy
valley we mean for any point y; € x4 the sphere Bj4-1/5(y;) For K atoms in one
energy valley, we get

K ow K K C K K
ONK) =) Cfow} > =3 0% bt =02 D (0x] +0af)
=1 i=1 j=1 i=1 j=1
—Kz::; 25932593]+(5a7) 7;%;%
2
C(I)/V g W ZZKl Li

Since the second term of in the last line of (2.4.28) is a square,, it is always larger
equal zero. The first sum contains K? terms. The K-terms with i = j are 0. The
remaining K? — K terms has to be at least C}Vs2. Hence, we get

SINK)>CYVs3/2(K —1) . (2.4.29)

Hence, added atoms has to cost at least C}Vs2/2. Every two so/2 spheres has
to touch each other to reach this minimal cost. In d dimensions this can be
fulfilled by maximal d + 1 spheres. Then the density of atoms can potentially be
increased up to d + 1det A without further change of p. If we move the atoms
in the potential valleys the chemical potential increases when it reaches C¥ s3/2
it becomes more favorable to add more atoms then to move the existing ones.
Therefore, adding of additional atoms in the center starts when p reaches CJ¥ s3 /2

Step 2: More than one atom per valley at the boundary If i # 0, the
atoms are already moved out of the positions of x4 in the area where Vi # 0.
Hence, the transition to more than one atoms happens there at a lower p than
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CJ}Vs2/2 For the contribution of one potential valley in that area we will consider
for one atom.

OLi(1) =Cy e (N yil) + S O il (2:4.30)

That basically neglects changes of ¢ in the first part and changes of ¢ in the
second part. Minimizing L we get

0 =205 Sasp O i) + S/ 7 luil)

My,
0w; QCgV)\ A wl)
2
_ H ‘P AL,
L) = b Ol (2.4.31)

If we denote with dz; the difference between the ¢ minimum and the center of
math of the atoms in the i-valley, we get analogous to (2.4.28):

2
5 B B
0Li(K) :=(K — 1)CW—30(A Hyil) + KCVox7 (A i)

+ K(M’ZA@( “Hyil) = (B = Dpo(Awil) (2.4.32)
Hence, the minimizing §; fulfills:

0 :KC'Wéxigo()\_l\yiD + K%@'O\_l‘yﬂ) y

“P| AL
6i ) )
5 =250 2 )

2
1>V
SL(K) = — K4CWs0A2

The transition from one atom to K atoms only reduces the Lagrange function, if
dJ(K) < 6J(1). This leads to

+ (K —1) (OOW%(% - u) 0 . (2.4.33)

2 2 2
PV w2 oV
N T 4 (K-1 9 _p) < —Forr
40([)/[/'%0)\2 +( ) (CO 80/ /’L) = 4OW¢)\2 )
v sg WAV (y;)
2 OV p(y)N?
2 OW /2
> _wS _ r
> 1y 05 T Ien || oo
(2.4.34)

Hence for g < p; the minimal Jy the atom number is fixed. The atoms are just
moving in the valleys and the lower bound is given by Lemma 2.4.1.

CW
—2 _N2(py— det A)® . (2.4.35)

J_
AT det A
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This leads to the chemical potential

=259 72 A%, —detA) . 2.4.
=5 2 qa (pr — det A) (2.4.36)

Until the p = %j reaches p;. For g > py . For higher densities we use a constant
= p1 to estimate the increase of the lower bound for J, O

The next theorem shows that every state with sufficiently low energy has to be
regular. Furthermore, €; is bounded from above by a term of the form Ae+BA\~2.
Hence, we can apply all our results for regular points on points with low energy
density.

Theorem 2.4.3. There exists \ € R and ¢ > 0 such that for all A > 5\, € <€,
A€ GluR, 7 € R? and x € Q such that hy (A, x, x) < € the points x is (€,, €5, Ca)-
reqular with A and the coefficients satisfies

Cu=2Vd(2|E|)" " det E71 |
2

_ -1 _ 1%
¢, =2det B~ 'maz { (11 — V)", ¥ 1}6—1-403;/(”11_19))\2 ,
251 1 19,“%
=4 det £ 2.4.37
€J /J/l—’l9 € €+2(lu1_19)0(gv)\2 ( )
Furthermore we have
92 1

det(A) — det(F) — ROT CFN? < ClEl\/e — €min (2.4.38)

U i
< det A . (24,
J,\_6+u1_19<6+40};,)\2 e > (2.4.39)

where

12

o= (e [0

82 CW54H30/2H
:CW—O _ 0 0 o0
Fr=t0 7 16p)2

1

Proof. Due to the assumptions of the theorem it holds

e >hy(z,x) > F(A) + Jx (2, A,x) + 9 (det A— py) . (2.4.41)
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According to Lemma 2.2.6 |A~!| is bounded by a finite constant independent of
A. Therefore, for large enough A we can use Lemma 2.4.2 to get lower bounds for
Jy depending on det A and py. The lower bound ¥ (det A — p,) + J, is monoton
decreasing for py(x,z) < pa(xa,0) and monotone increasing for px(x,z) > py
. Therefore, the minimum of the lower bound is between py(x4,0) and p;. For
Pr(x4,0) < palx, z) < p1 we have due to the lower bound (2.4.24) from Lemma
2.4.2

w

cy
Jy + 9 (det A — py) >d—A)\2( —det A)* + 9 (det A — py) + O (A7)

cy 9 2
2 — A - A
_det A)\ <,0,\ det A+ O ()\ ) 20W}\2 det )

2

40W>\2 det A+ O(A™™)

2

> — CW)\2 det A+ (det A —pg) . (2.4.42)

Due to the coercivity condition for F' it holds

2

ha(A, x,z) >F (A) — CW)\Q det A+O(A™™)
2
>CP (det(F) — det(A))? + CPldist? (A, ESO,) — I Cﬂw 15 det A
2

El s —m

(2.4.43)
where
4 2

€min ‘= — v v det E+O(N™™) . (2.4.44)

64 (CYCE)? 3 ACT N2

Therefore, we have hy(A,x,x) > €, for all particle densities. Due to the
estimate 2.4.43 and the coercivity condition on F', we get upper bounds for the
difference between det F and det A and an other one for the difference between
|Al and |E].

92 1
< Ve — }
sCyepe| = ep vt

VE— €min - (2.4.45)

det(A) — det(E) —

1Al = |E]] <

1



2.4. REGULARITY OF LOW ENERGY STATES 45

with these estimates and Lemma B.2.2 we get an upper bound for ||A™|

|A7Y| <Vd|A™Y < Vd|A|* ! det A7

d—1
1
gx/& <|E| + € — emm>
CEl

2

—1

X | det B 4 v . (2.4.46)

(§] — € — €Emin . .
8CVCEN — /CT

Hence, for large enough A and small enough € it holds
AT < Cy=2Vd(2|E)" " det 7L . (2.4.47)

Next, we derive the estimate for the density. Inequality (2.4.41) gives us together
with F' > 0 and J > 0 a lower bound for p,.

£ >detA—py . (2.4.48)
¥1
Just with F' > 0 we get
e>1Y(det A—py)+Jn . (2.4.49)

We use the estimate (2.4.25) from Lemma 2.4.2 to obtain

2

Jr+3J(det A — py) 2% det A+ p1 (pr — p1) + I(det A —py)
6

2
e>(u1—q9)(m—det,4)—40‘;;A2det,4 . (2.4.50)
¢

Summarizing the inequalities (2.4.48) and (2.4.50) we get

2
-1 M1 €
|px — det A| < max {(ul —0) e+ 17 G =)0 det A, 5} . (24.51)

. We apply the lower bound on det A of inequality (2.4.45) and get
lpr —det Al < e,det A (2.4.52)
where

-1
V2 1 1 g
€, =: <det(E) — ROV CFIN? — o Ve — emm) max { (11 — ), 0 }e

2

1251
+ , 2.4.53
ACT (i — D) X (24.53)
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For large enough A\ and sufficiently small ¢ one gets

2

_ —1 - H1
6 <2det E-'max { (s —9) " 9 fe+ O =0 (2.4.54)

We also use the estimate (2.4.50) to get an upper bound on .J

EZﬁ(detA—p)\)—FJ)\
U i
> — det A
= Ml—ﬁ <€+4C};V)\2 € ) )

v LM oA (2.4.55)
P € o e : 4.

Furthermore, we use the lower bound for det A from inequality (2.4.45) to get

J)\ §E+

-1
1251 792 1
Iy < det(F) — — V€ — €min edet A
Y- < (&) SCWCPN | JoH )
i

+ det A . (2.4.56)

Now, we need to estimate det A from above with py. We use the estimates (2.4.48)
and (2.4.45) to get

P ZdetA—i
P1

>[(1- < (det(E)

®1

I
BCWCFN2 — \JCH

-1
\e— emm> det A
(2.4.57)

Hence, for large enough A and small enough € we have 2p, > det A and get

M1 1 19:”%
det £ e +
frn — 0 2 (i —9) CJ N2

ey =4 (2.4.58)

O

Perspective 2.4.4. In Theorem 2.4.3 we have proven that all positions with
low energy per volume density are regular. A alternative and probably better
approach would be to use low energy per particle number instead low energy per
volume as a criteria for regularity. Sadly this approach is not working for the
model as it is written. To illustrate this we will reformulate this into two related
questions
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e How does configurations looks like that have minimal energy for a fixed
particle density?

e What kind of implication does this have on our model?

Low density We define

E = argmin (F(A) + Jddet A) . (2.4.59)
AEGLy(R)

Due to the compatibility condition on the compressibility det E > 0. For any
density p < det E we consider a configuration satisfying y C E~1Z%. We get for
all x in €2

ha(x. ) =inf {F (A) + Jy (A, x, 2) + D det A~ py}
_ F( ) Y 9det E— dpa(x,x) - (2.4.60)

We realize that this atoms sit on a lattice but they are no lattice. py does not
have to be anywhere near to det A = det E. Furthermore, with Lemma 2.1.1 we
calculate

Hy(x) = / oa(x )
Bax (92)

B ()| (F (E) + 0 det B) =9 (N, - /B N pA(XS,x)dx) (2.4.61)

Hence, if the particle number fulfills 2% ) < det E, all configurations y C E—1Z¢
have the same energy. They may form a solid crystal at some point and leave
the rest of the set open or they may have a more or less homogeneous density, or
anything between, and this does not make any difference in energy. Therefore,
our model shows no crystallization for low density, and we not use it for overall

densities \gl < det E. We need the term 9 (det A — p,) in our model is to separate

the regime p, < det E, where the model doe not work, from the regime p, =
det E, where we want to study the model.

Medium density With upper and lower bound on the particle density the
energy per particle and energy per volume is essential the same. Hence, Theorem
2.4.3 proves that in this case all low energy configurations are close to lattices.

High density: We remember the coercivity condition for F

F(A) + 0 det A > CP (det(E) — det(A)))* + 9 det A

For high p, the cost of increasing det A to this p, increases quadratically with
px- On the other hand, the cost of more than one atom per valley is $Chy(s2)
per atom for a big range of atoms.

Iy~ —C’Ws (pr —det(A)) . (2.4.62)
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< Adet ECFP!4+-Cyy s2

- 4clE‘l

4det ECF'+Cyy s2
4cPt

and putting more atoms in each potential valley. The hard core potential may

prevent that this actually happens (depending on the growth of F'). But, if it

happens, then we can not expect low energy configurations to be regular for high

densities.

If we add this estimates and minimize them we get that for p,

the lower bound is actually reached by keeping det A = constant



Chapter 3

Specific configurations

3.1 The Bravais-lattice as an atom configura-
tion

In this section we want to discuss the behavior of the model when the atoms are
arranged to form exactly a Bravais-lattice x4, = AY(Z? — 7g). There are two
reasons for this. Firstly the model shows some unexpected technical difficulties
that we want to treat in the easiest case they occur. Secondly we will use lattices
as starting points for pertubative calculations in Section 3.2. For this we introduce
the effective elastic potential. As the integral of the energy density of the Bravais
lattice integrated over one periodic cell. We want to find out as much as possible
about the properties of the effective elastic potential.

In Lemma 3.1.4 we show that even if the configuration is a Bravais lattice x_4,,,
the in terms of the energy best fitting lattice will not coincide with it in most
cases. Near every reparametrisation of Ap there is a local minimizer A of the
pre-energy density hy(A, xa,, ) for fixed Ar and z. However the minimizer is
not exactly the re-parametrized Ag, but differs from it by a small 6.4 = (0 A, 1)
this is due to the fact that the elastic energy contribution F'(A) and the term
vy (A, x,x) have a non vanishing derivative in A for most Ar. The difference
between the re-parametrized Ap and the minimizing A will scale like O(A72),
and the pre-energy of the local minimizer will be O(A72) lower than the pre-
energy of the re-parametrized Ag. On the other hand the difference in 7 can be
estimated from above with any order O(A™*). Furthermore Lemma 3.1.6 shows
that even 07 does not have to be zero and will still depends on x for the special
case of locally quadratic W.

In Lemma 3.1.5 we prove that under reasonable assumptions on Ar one of
the local minimizers described in Lemma 3.1.4 is actually the global minimizer of
the pre-energy density hy (A, x4,, %) and therefore determines the effective elastic
potential. Finally, we will study the symmetries of the minimizers A (see Lemma
3.1.8) and of the effective elastic potential in Lemma (see 3.1.9).

49
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First, we introduce the definition of the effective elastic potential.

Definition 3.1.1. Let G € Glg(R) and z € R We define the local effective
elastic energy density by

F\(G,2) = hy (G (2 - 2),0) (3.1.1)

and the average effective elastic energy density by
R(G) = / (G, 2)dz (3.1.2)
[0,1]¢

When we discussing a Bravais lattice x 4, it is convenient to use the difference
between A and the closest reparamertisation of Apg as a variable.

Definition 3.1.2. Let Ag, A € Glu(R), 7r,7 € R? and let B € Gl4(Z) and
t € Z% then we define 6 A = (5A, 7)

0A :=A— BAp ,
0T :=7 — BT — BAgrr —1t . (3.1.3)

If the configuration x is a Bravais-lattice x4, and A = (A, 7) is close to a
reparametrisation of Ar = (Ag, Tr), then we can rewrite J, in terms of J.A.

Lemma 3.1.3. Let Ap, A € Glg(R), 7p,7 € R, B € Gl4(Z) and t € Z*. If the

atom configuration is the Bravais lattice
Xap = A" (28— 1R) (3.1.4)
then the following holds

W(A(x; —x)+71) =W(0A (x; —x)+ 1)
VW (A (z; — )+ 1) =VW(0A (x; — x) + 6T)
VW (A (2 — x) +7) =V2W (0 A (7; — x) + 7). (3.1.5)

Proof. Since B € Gly(Z) and t € Z? there is a numeration of Z? such that
;= AR'B ' (z; — Brp — t) . (3.1.6)
This means
WAz —z)+7)=W(A(AR'B (2 = Brp —t) —z) +7) . (3.1.7)
By the periodicity of W we have

WA, —2)+7)=W(A(AR'B(zi = Brg —t) —x) +7—2) . (3.1.8)
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Now we use 1 = BAp(BARg)™!
W(A(z; —x)+7)
=W(A(AR'B (2 — Brr —t) —x) + 7 — BAR(BAg) ')
=W ((A— BAg) (B"'AR'(zi — Brg —t) —x) — B — BAgz —t + 1)
=W((A— BAR) (x; —x) — Brg — BAgx —t+71) . (3.1.9)

Finally, we substitute with 6 A and 67 and get
W(A(x; —x)+71)=W(0A (z; — )+ 01) . (3.1.10)

Since VIV and V2W have the same argument and show the same periodicity, the
same calculation can be used to prove (3.1.5). O

Now we study the local minimizers of h) in case that the configuration is a
Bravais lattice. We will proof that there exists a unique local minimizer A =
(A,7) close to each reparametrisation of Ag. The distance between A and the
re-parametrized Ag scales like A™2. The distance between 7 and the the re-
parametrized 75 scales smaller than A% for any natural number k. The difference
between the pre-energy of the local minimum and that of the re-parametrized
lattice scales like A\=2 Finally the local minimizers A are differentiable functions

of AR.

Lemma 3.1.4. For all Cy > 0, n € N exists a \* € R such that for all A > \*,
Ap € Glu(R), 7 € RY, B € Gly(Z) and all t € Z* with |(BAg)™Y < C4 holds,

there exists a unique local minimizer

. ~ @ )
6A = min{hA(A((SA),XAR, ) ||6A] < =X 10Tl < BKV } (3.1.11)
where
A(6A) =BAgR +0A
7(0A) =Bt + BAgz +t + 01 (3.1.12)
Moreover, the local minimizer satisfies
P 1 Cyd
A=— "My + O(A~
P Ca MO0
|07 <OA™™) . (3.1.13)

Moreover for the minima, we have

ha <BAR 4 6Ap, Brg + BApz +t + 67, XAR)
1 C.d
202 || Ag' B~|)* O

—=F (BAg) — Tr (Mg (V*W(0)) "' Mo) £ 0 (A7)

(3.1.14)
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where the matriz My € R™? is defined by its scalar product' with any test matriz
M € R4 s

< My, M >:= ((04F) (BAg) + 9(9a det)(BAg)) [M] . (3.1.15)

Finally, the local minimizer 0. A is a differentiable function of the lattice parame-
ters Ar and we have

1048 AM]IIx < O IMx (3.1.16)

Proof. We will prove the statement in three steps. In the first step we will just
proof that the local minimizer exists. And give a upper bound for their distance
to the reparametrisation of Ag. In the second step we will improve the estimates
and also give a lower bound for the distance. In the third step we will prove that
the local minimizers A are differentiable functions of Ag.

Step 1 Upper bound for the difference Our pre-energy density is

il)\ ((5./4, XAR,JJ) ZZh)\ (BAR + 51213, BTR + BARx -+ t + 67:37XAR>

I(BAR +5A)7| |z —
Az —
WY % W (0A (x; —z) + 1) ¢ 3

+ F(BAR+ 6A) +Vdet(BAR + 6A) —Vpy . (3.1.17)

We estimate the first derivative of h, (0A, X4y, ) in direction 0.4 for the point
§A =0 and the second derivative for 04 < S& and |07 < 2% This will give us
an estimate for the local minima according to Lemma B.1.1 from the appendix.
We compute the derivatives of hy (6.4, x Ag, ) in direction 0.4 applied on a test
matrix M = (M, u) with M € R™4R) and p € R?. 2

dsahr[M] = ||(BARC+jdA)_1H Z (VW (0A (z; — ) +07), M (z; — ) + u) ¢
w2l D 1 W At a) +07) g

+ (O4F) (BAg + 6A) [M] + 9 (94 det) (BAg + 6A) [M]
(3.1.18)

At the position dA = 0 both W (§A (z; — x) + 07) and VW (0 A (x; — ) + 1)

are zero, so we get

O5.41A (0, X ¥)[M] = (0aF) (BAR) [M] + (04 det)(BAR)[M] = (M, ](\@ -)
3.1.19

IThe scalar product belonging to the Frobenius norm
2In what follows, we will omit the arguments of W and ¢.
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Now, we calculate the second derivative multiplied with the test matrix M from
both sides.

BAg + 64
Shadol) AR ST W 0 (o)

Cpd
CAgmﬂsz+&1W} EXVWJM@—x%HQ¢
C%WM%AHBAR+&41H M|y W

(@)@M+MWWHWMM@M+MMH.@MM

We estimate the last line of (3.1.20). Since 64 < O(A™'), we know that 0% F
and det A are O(1). We produce a factor A= by passing from [|M|? to || M||3.
Therefore, the contribution of the last line of (3.1.20) is

|M(04F) (BAR + 6A) M +9IM (02 det)(BAg + SA)M| < ONIM]|3)

(3 1.21)

Now we look at the other terms in (3.1.20). Since [6A| < 2% and |67] < &%, we
get

|0A (z; — z) 4+ 07)| < [0A]]z; — x| +]07] < Ow . (3.1.22)

Therefore, the argument of W does not leave the area of local convexity. Addi-
tionally we have W(0) = 0 and VI¥(0) = 0, and so

VAW (0A (; — x) + 67)| <|c|
quu%—@+&nﬂ%mwmuwm ,

W(SA (z; —x) + 07) <= |c@\(2>\\5A\ +167)? . (3.1.23)
We apply (3.1.23) on the parts of equation (3.1.20) and get
—&HR%+M_w 1Y VW, M (2 — ) + p)

7

<O (W BAIME) (3.1.24)

O l(BAR+ 04 P M < 3 We <O (A ISAMIR) - (3.1.25)
® i

The contribution of the last term can be written as

—1112
QJ;:WBAij§f>W S VWM (z;— )+ ple (3.1.26)
® i
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We can estimate this last term from below by using the strict convexity of W
around Z<. In fact

BAg +6A)7! T, — T
szc%”( RC X I Z ) + ) cp(‘ S ‘) . (3.1.27)
©

Next we want to pass from the discrete sum to a continuum measure using Lemma
2.1.2. To this aim we define

V(X)) = (MX 4+ p)’ ¢ (X). (3.1.28)
Since ¥ € CF(RY), we get

NS G (A @ —a) — [ dly)dydet Ag| < Cod ™ V| det Ag
T, €EXAR Rd
(3.1.29)
and we can conclude that

A2 ||(BAg +64)7Y
@72 BRI [ aty 4 2 o ) det Bty — O M3
(]
A2 ||(BAR + 6A) 7Y
:% IS RC )l d((My)2+2uMy+M2)280(\deetBARdy
© R
—O™[IM]X (3.1.30)

Since ¢ (|y[) = ¢ (| = y[) we have [ye (ly[)dy =0 and
M ||(BAg + 5A4) 7|

Ccp R4
—oIMIS (3.131)

QJ > ((My)? + 12)* ¢ (|y]) det BAgdy

We calculate the integral fRd Y (M M ) yo (y) dy in the eigensystem of the posi-
tive definite symmetric matrix M7 M we get

/Rd y (MEM) yo (y) dy = /Rd Z(MTM)j(yj)290 (y) dy

=Z (M7 ), / o (y) dy

1
d

1
—CoTr(M™M) = y || M|)? . (3.1.32)

Therefore, we get
112 C Cm
Q7 > & ||(BAs +64)| (VC—“”ZIIMF ¥ W) —OTIMIB > CIMIR
©
(3.1.33)
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Since all other contributions of 542/ (M) are O(A~1)[| M]3 or smaller we get a
lower bound for the second derivative 9%h,

. C
Dsazha(M, M) > ||(BAR + 54)7"|” (A2£’|M’|2 + |M\2)
%)
— O\ HMIE . (3.1.34)

We apply Lemma B.1.1 in the appendix combined with the estimates (3.1.19)
satisfying condition (B.1.2) and the estimate (3.1.34) satisfying condition (B.1.1).
The there exists a unique local minimizer that fulfills

[0A]y <O . (3.1.35)

Hence, A is maximal O(A™2) and 67 is maximal O(A™') for the minimizer.
Therefore, the argument of W is not only smaller than Oy but actually O(A™!)

Step 2: Improving the estimates Instead of estimating VW (§ A(z; — ) +
d7) in (3.1.27) with the local convexity one can also estimate it with a Taylor-
expansion

VAW (SA(zs — @) + 67) = V2W(0) + %V4W(0)0(A-2) | (3.1.36)

If we go through the calculation above with the modified estimate, we get similarly
0 (3.1.34)

5 Cyo
C d
ON M]3 . (3.1.37)

R M) = (BAr + 5) | (¥ EETHOTW M) + 17V O} )

Because |A;' B < €4 we can bound the change of ||[(BAg + 0A)72||° by the
change of 0A (see Lemma B.2.3), and gets

R = | (BAr) ! (W GEATr W M) + 57 W (O
O M) - (3.1.38)
Again, we can bound 93 ,h\[M] from below and above by
(M, C M) < 92 hy\[M] < (M,C M) | (3.1.39)

where

Cpo

Cy = (A2 |(BAR)Y||” =22 o

(VW (0) ® Idga = O(A7?)) & (V2W(0)) £ O()\‘Q))
(3.1.40)
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The inverse of Cy is

C' = |(BAR) Y| A g@f (V2w ()" @ Idss £ 0(172))
@ ||[(BAR) |72 (V2W(0)) T £ O(A2) . (3.1.41)

If we apply Lemma B.1.2 together with equation (3.1.19), we get Hence, we get
from the estimates (B.1.18) and (B.1.19)

il)\ ((5Amm, X_AR) :F (BAR) + ﬂdet(BAR) — igp)\
- 1 C,d
222 || A5 B |[* O

Tr (Mg (VW (0))""' M) + O (A7)
(3.1.42)

With Lemma (2.1.2) we can estimate ¥py, = det BAg + O(A™*) and get the
estimate (3.1.14). And the estimate (B.1.19) gives

[(BAR)Y|? ( (a"V*W(0)a) + ,uVQW(O)u) < MoO(A ™4 M,
(3.1.43)
where
a = 6Anin + ! Cpd (V2W(0)) ™' My . (3.1.44)

22|47 B " Cen

This implies the first part of (3.1.13). Next we use Lemma B.1.2 from the ap-
pendix one more time, This time withwe use (§ A, 0) as a starting point, and
we just minimize with respect to o7

1(BAR + 6 Apin) ™
C A

a&ThA((SAmina 07 XARr» .T) = H Z Vi (5Amm (xz - 33) + 57—) 2

(3.1.45)
Again can pass from the discrete estimate to the continuum estimate using
Lemma 2.1.2. We define

SA =)\SA |
»(X) ::vw<574(xi—x)+57) o(X) (3.1.46)
We get
~ -1)12
osciy = LSS L [ow 54y 6 () 0970 (3:147)
©

Then [ VW (6Ay) ¢ (y) dy is the integral of an odd function over an even domain.
Therefore, it is zero. Since [§A| = O(A7?), we have V™) = O(1). We already
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obtained that Q%fz A is strictly positive and O(1). Hence, the application of Lemma
B.1.2 leads to

Ir=0A\") . (3.1.48)
Step 3: Differentiability of the minimizers: We calculate

O 405405 (M1, My)

:aAR <||(BARO+)\5dA)—1|| Z <VVV,M($Z . x) +M> <,0> [M2]

OsA H(BAR-F(SA 1“
+ O, By Z W (0A (z; — ) + 07) p[M,]
+ (04F) (BAR + 6A) (M, BM,) + 9 (0% det) (BAg + §A) [My, BM,)]

(3.1.49)

We see that F and ¥ det A give contributions of order O(A72|| M ||5||Ma]»). Fur-
thermore, VW (0A (z; — x) + 1) is O(A™') and W (§A (z; — ) + 07) is O(A 7).
Therefore, the term where the derivative 04, is applied on the |[(BAg + 6A) ™! ||2
are O(A72||My|x|Ma]lx). If the derivative is applied on the atom positions
z; = AR' (2 — Tr), We get a factor (z; — 7g) for the Ag derivative. If we apply
the derivative on the argument of W, we also get an inner derivative A4 = \72.
If we apply this on the atom position in ¢, we get A~L. We have

6AR85A71A(M1,M2) = O()\_2||M1H)\||M2H>\) . (3.1.50)

Therefore, we can apply the second part of Lemma B.1.1 O

We encountered the first technical difficulty of the model §A is not zero for
most lattice. This means even in the 'best possible’ case that is when the atom
configuration is exactly a Bravais lattice the fitted lattice will not exactly coincide
with it. We also notice that |d7| is much smaller than [§A|. Hence, the model
fits 7 much better than A when the configuration is a Bravais lattice.

We studied the local minimizers of the pre-energy density h) for the case that
the configuration is a Bravais lattice in Lemma 3.1.4 Now we will proof that one
of these minimizers is in fact the global minimizer, if the energy density is low
enough. In particular in a neighborhood of the ground state E this will always
be true. This means on the one hand that the effective elastic potential is given
by one of the minima described in lemma 3.1.4. On the other hand we can use
this information when we perturb the lattice as described in Section 3.2.

Theorem 3.1.5. For all C4 € R and n € N there exists ANER and é > 0 such
that for all X > X\, all Ap € Gl4(R) and all T € R such that F(Ag) < € the
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following holds. There exists B € Gly(Z) and t € Z¢ such that

iL)\(XAR, x) =hy <BAR + (521, Btp + BARx +1t + 07, XApR» :E) ,
=F (BAR) + ﬁdet(BAR) — ’(9p)\
1 Cyd

- Tr (ME(V*W () 1M, £ 0 (A%
2)\2“141—%13—1“2 0302 T( 0( ()) 0) ( )

(3.1.51)

where

N 1 C,d
A:— ® 0 —lM —|—O )\—3 7
22 HABIB_IH2 0302 (69) 0 ( )

67 <ON™) . (3.1.52)

Proof. Because of the translation invariance 2.1.3 we can assume w.o.l.o.g x = 0.
We estimate

il)\ (XAR7 0) = H}‘f {hA (A7 XAg> O)} < h>\ (BA37 BTR - t, XAr> 0) = F(BAR>
(3.1.53)

Hence, for F(Ag) small enough and A large enough we can use Theorem 2.4.3
and get that 0 is regular with A

Ca=2Vd(2|E)" ' det 71,

2
B 21 . Ky
€, =2det E max{(,ul—ﬁ) 0 }F(BAR)+4CQV5V (i — ) N2
" B O
-4 det BT F(BA 3.1.54
0 ( R)+2(M1—79)C<ZV)‘2 ( |

Furthermore, according to Lemma 2.1.2 |det Agp — pa(xa,)| < O(A™™). By
Lemma 2.2.1 we have

cy . _
€jp = K())‘d ;;dlStQ(xi’ XA)P ()\ L |£EZ|> ) (3.1.55)

The conditions of Lemma 2.3.4 are fulfilled for small enough F(Ag) and large
enough \. Therefore, there has to exists B € Gly(Z) and t € Z? with

(SIS
=

a1 C¥ Co oW _ VIA
||1 A BARH < dC detAR 800 (detAR p) y

®

|Brr — 7+ t]| <||Al| (C¥(2p — det Ag)) 2 /Ty . (3.1.56)
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For small enough F(Ag) it holds

16A]l =IlA — BAg| < |A[[|l1 — A BAR

W -3
SH < S;l M det AR — SCXV(det AR — p) E
dC, )
Ow
<— 1.
<Sw 3.157)
and for 7
|07| = |7 — Brgr — |
<sp' (CyV(2p — det AR))_% Verp
SGTW (3.1.58)

The minimizer fulfills the conditions of Lemma 3.1.4 and one of the local mini-
mizers described in this corollary has to be the global minimizer. O

Remark: This theorem implies that there exists B € Gl4(Z) such that

1 C,d

G2 <P (BCT) = o5 ar T s

Tr (Mg (VW (0))"'My) £0 (A7),
(3.1.59)

where

My := (0aF) (BG™") + 9(da det)(BG™) . (3.1.60)

This estimate is independent of z. Hence, the same estimate holds for F)\(G). In
particular for the effective elastic potential holds

F\(G) =min {F(BG™")|B € Gl4(Z)} + O(\7?) . (3.1.61)
Corollary 3.1.6. If the atom configuration is an Bravais lattice X a,, all condi-

tions of Lemma 3.1.4 are fulfilled and additionally W is locally quadratic, then
the local minimizers defined in Lemma 3.1.4 fulfills

6tp = 06A(x —Z) | (3.1.62)

A

_ 1 |z; — x|
= i . 1.
T Coxi 2 x cp( S ) (3.1.63)

where X is the center of mass of the atom distribution weighted with <u)
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Proof. We consider a local minimizing 7. Since, d7 is local minimizing the
derivative in 07 direction is zero and since .J, is the only term where 07 appears.
Hence, we get

0 2857'(])\ (Z', 6“47 X.AR>

|[(BAR +64)
BNEPY

|z —

| ZVW((SA (2; — x) 4 07)p <T) . (3.1.64)

which simplifies to

0 :ZVW(cSA (z; — 2) + 67)p (m - x') . (3.1.65)

Since, we consider W to be locally quadratic around Z¢, we have

0= Z VAW (0)(6A (z; — x) + 67)p ('xi ; x') ,
0= Z((SA (z; — z) 4 07)p (@) . (3.1.66)

Solving this with respect to d7 we obtain

(-2 e (257)

(3.1.67)

O

Remark 3.1.7. We note that all our estimates are independent of x. However
the pre-energy density itself depends on x. Furthermore, we have estimate 3.1.13
that shows that d A will scale with A™2, but only an estimate that 7 has to scale
less than A\™™. This means that it still could be zero. This would be very nice
because it would make further calculations much easier. Unfortunately this is
generally not the case. We will address this question in the following .

Why consider 67 # 07 We will explain why it is a rare event that 67 = 0.
Since we have not introduced any probability measure, rare event is meant purely
heuristically, in the sense only for special positions or special parameter values.
We have calculated in Lemma 3.1.6 that 07 = 0 is connected to the distance
between the center of mass and z. It is a rare event that the center of mass of the
atom configuration equals x. This can be best seen, if we consider a configuration
where the z is no special symmetry point. Then, there exists an atom that has a
distance to x that no other atoms has. If we change ¢ of this special distance we
move the center of mass only very little but we move it. Therefore, only at one
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special weight the center of mass can equal . Hence, for generic ¢ and = we can
not expect this to happen automatically. Additionally, we see that d7 generally
will depends on x. Of course, this proofs nothing for W not quadratic. But, we
can not expect that higher orders will solve the problem automatically.

Why consider the z-dependence of h, for one local minimizer In
Lemma 3.1.4 we have calculated the existence of local minimizers. Furthermore
we have proven that the local minimizers are differentially functions of x. For
this we will get

d doA
—h)\((SAmzn(l’>, XAg> I‘) = arh)x((SAmzn(x>7 XAg> x)+aéAhA(5Amzn('r)u XAg> JI)—

dx dx
(3.1.68)
Since for local minimizers holds 05 4hx(0Amin(2), X4y, 2)) = 0, we have
ih (0 A () x)
dr A min y XAR»
=0, hx(0Amin (), XAp, )
I(BAR +64)7 |z — |
— Ry Z VW (§A (z; — x) + 67) §Ap .
1 12 1 _ (x;—=x
+ TN ZZ: (H(BAR+5A) W (A (z; — z) + 67) — ﬁXVgo ( S ))
(3.1.69)
The minimizer fulfills
0 :a6rh)\(5¢4min(x)> XAg> [E)
I(BAR +5A)7 |2; — =
= Az, — L ) 1.
Ry Z VW (0A (w; = 2) +07) ¢ | = (3.1.70)
Hence, equation (3.1.69) implies
- 3 <H(BA +0A) P W (A (2 — x) + 67) — 19) Ly (Bt
dz " C N & f ’ ) )
(3.1.71)

Again for some generic x find an atom, that has a distance to x that no other
atom has to. If we deform ¢ in a way that change ¢'(y) but not the ¢’ of any
other atom we automatically change %h,\(éAmm(a:), XAnsx). Hence, the local
minimizer can not be expected to be constant. One might hope that d.4,,;, could
change accordingly to keep the local minimum constant. But d.A4,,;, is uniquely
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defined by
0 :a(;Ah)\(5.Amm(x), XAR, Qf)M
_[[(BAR +64) P - -
= oo XZ: VW (0A (z; —x) +07) (M (2, —x) + ) ¢
s ll(BAR +A)7!|
By Z W (6A (x; — x) + 67) ¢
+ (04F) (BAR + 6A) M + Y (0adet) (BAgr +0A) M . (3.1.72)

In this equation only ¢ enters but not ¢’. Since we can deform ¢ in a way that
¢ (y) changes but not ¢(y), the change of §. A can not compensate the change
of ¢'(y). These small fluctuations tend to make calculations complicated, since
they are existing already in the most regular configurations. They causes an error
depending on A. For sufficiently large system size L. The integral over this small
errors can still lead to a big error in the energy.

Since we have found out that in case that the configuration is a Bravais lattice
the energy density and the minimizer A are still dependent on z. We study the
symmetries of this the minimizers and minima of hy(-, x, ). The minimizing A
and 7 have the periodicity of the lattice. Additionally A is symmetric to each
lattice point. And 7 is antisymmetric to each lattice point.

Lemma 3.1.8. Let Ap € Glg(R) and 7g € R? If the configuration is the Bravais
lattice, then it holds
Xar = Ar (27 — 15) (3.1.73)

Then it holds
1) Periodicity: For all positions v € R and all j € Z%, it holds

min  hy(A, ,T) = min hia(A, .+ ARl
AEGl(R)xRE AA; X, ) AE(GLy (R),R) MA X rJ)

argmin Ay (A, xa,,7) = argmin  hy(A, x4, T + AR'§) (3.1.74)
AEGI(R)xRd AEGI(R)xRd

2) Point Symmetry for any lattice point: For all positions v € R? and all lattice
points xj € X4, it holds

in hy(A a2 + 1) = in (A, Xap, T — 3.1.75
declin AA, X, 75 + ) oD AA X — ) ( )

Furthermore the minimizer satisfies

(fl,%) € argmin hy(A, x4, 7 + )
A€eGI4(R)x R4

& (/Al, —?) € argmin hy(A, x4, 2 —T) . (3.1.76)
A€eGI4(R)x R4
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8) For positions x € X 4, and all z € Z¢ the unique local minimizer with
e _
|7 — 2| < FX fulfills T = 2

Proof. Because of the frame indifference of the model (see Lemma 2.1.3) we can
set T = 0 without lose of generality

1) Periodicity: For all j € Z¢ we calculate

c oA | AT 1” Iy (A, Xap, T)

—%W ri—a) =)o (A |-AR + )

_IEZdW Vi4d) — o= A7) 1) (VAR G4 5) — @ — AZY))
_IEXZ: W (A(AR'k — (z+ ARYj) — 1) o (W AR (k= (z — Gj))|)

_Ck:fd A (A AR AT) (3.1.77)

We have the same J, for both points with the same A. p) can be treated the
same way and F'(A) and det A are not changed. Therefore, we get

hy (A, Xaps ) = hy (A, Xap,x +Gj) . (3.1.78)

Since this holds for every A and 7, we can also get the minimizer at one
position from the minimizer at the other and they give the same energy.

2) Point symmetry: For all A € Gl4(R), 7 € R? we have

oA Iy (A, Xap, T) = =[|A~ IH ZW +7)e (A a]) . (3.1.79)

We use the symmetry W (—X) = W(X)
c ATy (A, Xaps T)

= [T (A (AR = 2) 7)o (A AR )

= [A7° 2 W (A(=AR = (=2) = 7) ¢ (A |45 = (-a)])
=[[A77 D2 WA (A%~ (=a) —7) o (A 4R (k= (—a)])
=c, A\ (A, —7, AR'Z%, —x) ) (3.1.80)

Since the change of 7 only influences Jy we can conclude

ha (A, GZ, z) = hy (A, AZ'Z?, —z) . (3.1.81)
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Now we apply the periodicity case to get

ha (A AR ZE, o+ ARS) = hy (A, AR'ZY, —x + ARYj) . (3.1.82)

3) Lemma 3.1.4) says that there is an unique local minimizer around zero . The
point symmetry say that +7 and —7 has the same energy. Which implies for
the unique local minimizer 7 = —7 and therefore 7 = 0. Hence, if one is the
minimizer the other has to be the minimizer too. Therefore, it holds 7 = 0.
If we combine this with the periodicity of the local minimizers, we get the
conclusion

O

In the next lemma we will summarize the symmetries of the effective elastic
potentials. These are mostly direct consequences of the general symmetries of the
model described in Lemma 2.1.3 and the symmetries of the minimizers described
in Lemma 3.1.8.

Lemma 3.1.9. The effective elastic energy density has the following symmetries:

1) The effective elastic potential is invariant under reparametrisation: For all

G € Gly(R), z € RY, B € Gly(Z) and t € Z% it holds

F)\(G,Z) :F)\(GB,B_IZ—Ft) s
F\(G) =F\(GB) . (3.1.83)

2) The effective elastic potential is frame indifferent: For all G € Gl4(R), z € R4
and R € SO4(R) it holds

F\(G,z) =F\(RG,z2)
F\(G) =F\(RG) . (3.1.84)

3) The local effective elastic potential is point symmetric to 0: For all G € Gly(R)
andz € R? we have

F\(G,z)=F\(G,—z) . (3.1.85)

4) The effective elastic energy function has the full symmetry group of xg-1e,9

for all G € Gla(R) andz € R? it holds, if R € SO4(R) and B € GLq(Z) satisfy
RG = GB, then we have

F\(G,2) = F\(G,B™'2) . (3.1.86)
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Proof. 1) Invariance under reparametrisation:

F)\(G, Z) :]AZ)\ (G (Zd - Z) ,0)
=hy (G (B (z? —t) — BB™'2) ,0)
=hy ((GB) (2 — (B™'z +1)),0)
=F\(GB,B™'2+1) . (3.1.87)

Furthermore by a coordinate change z = By we get
F\(G) :/ F\(G, z)dz
[0,1]¢
:/ F\(GB,B '2)dz
[0,1]¢
- / FA(GB,y)det By . (3.1.88)
B[0,1]4

Since the determinant of B is one, we consider F\(GB,y) = F\(GB,y+1) for
t € Z4. For every y € B[0,1]? there exists a Z € [0,1]? and a t € Z¢ such that
y +t = Z. Furthermore, if there are two y,y» € B[0,1]? with t;,t, € Z% and
Y1 +1t1 = x =y + to, then we have

B~ (g1 —y2) =B~ (h —t2) € 20 . (3.1.89)

Therefore, this can happen only on the boundary of B71[0,1]?. Since the
volume of B[0,1]? is given by det B = 1 we have

F)\(G) = /B[O " F)\(GB,y)dy == / F)\(GB,y)dy == F)\(G) . (3190)

[0,1]¢

The point symmetry is the direct consequence of the point symmetry of the
local minimizers (see 3.1.8)

The frame indifference follows from the frame indifference of the model (see
2.1.3) and the calculation:

F)\(G, Z) :]Al)\ (G (Zd - Z) ,0)
=hy (RG (2 - 2) , RO)
=F\(RG,z) . (3.1.91)
If this linear equation holds for every z, it holds also for the average over

one unit cell. Therefore, we have the corresponding equation for the average
effective elastic potential.
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4) Rotation group: For every A € Gly(R), 7 € R¢ we have
c@XiJ)\ (A, 7,G (Zd — z) ,0)
=AY W(AG (i - 2) + 7)o (ATHG (i - 2)])

=||A~Y? GZZ: W(AGBB™ (i—2) + )¢ (A" |GBB™" (i 2)|)

= ||a~Y? EZZ; W(ARG (B — B™'2) + )¢ (\H|RG (B~ Y — B™'2)|)

= HA‘lR‘Zle}TQ > W(ARG (j— B™'2) + )¢ (A\'|[RG (3 — B~'2)])

=cy A"y (AR,j:,Z dG (z*—B'z),0) . (3.1.92)

We can apply the same calculation to p. Furthermore det A = det (AR) and
F(AR) = F(A) Hence, we get

F\(G, =) :anf h(A,7,G (2% - 2) ,x)
= inf h (AR, 7, R™\Z, Rx) = F\(G,B™'2) . (3.1.93)

O

Finally, we remember the effective particle potential defined in 2.2.8. Since
we have found out so much about the minimizing A we can use this knowledge
to calculate the effective particle potential in this specific case. If we use the
symmetries of the minimizers we can proof that A can be chosen such that the
minima of the effective particle potential are exactly the lattice position. Further-
more the the effective particle potential is locally quadratic in the neighborhood
of these minima.

Lemma 3.1.10. There exists A\ € R and é > 0 such that for all X > 5\, Ap €
Gla(R) such that F(Agr) < ¢ and all T € R it holds: For the configuration
XAp = A;zl (Zd — z) there is a effective particle potential as defined in 2.2.8 such
that for § = AR' (j — 2) + Sy with |0y| < |Ag|'Ow we have

1 9
§C%|5y\2 < Va(g) < gICAIQ\Eﬂéy\? : (3.1.94)

Proof.

v - [ W) (=0 + ) Al (07 =)

A @) . _1
e WA =)+ @) ATE (7 _2 ;5).
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We know from Lemma 3.1.8 that A(z) can be chosen symmetric toy = Ax' (j — 7r)
and 7(x) can be chosen antisymmetric to y = Az'j. Since W and ¢ are sym-

metric, VW and V¢ are antisymmetric. Hence, VV4(AR'j) is an odd function

integrated over an even domain and is exactly zero as a result. The second

derivative of the effective particle potential tested with p € R? satisfies

|A~ (@)

VP Va(y)l] = / VA [A()ule

B (9) Ow)‘d

1A~ () ]
e / WA W ow, Ay (v, )
By () )\CSDAd

A" @ oo -
+/ WN=p|u. 3.1.96
Bax () )\2050)\(1 [ ] ( )

The second line of (3.1.96) is O(A™!) and the third line is O(A™2). Hence, the
dominating contribution comes from the first line.Furthermore with Lemma 3.1.8
we can calculate

A(x)(y — )+ 7(x) = (BAg + 0A(z)) (y — x) + BTr + BAgz +t + 67(x)
=0A(z) (y — x) + 07(x) + Brp + BAgy +t . (3.1.97)

Using § = AR' (j — 7r) + 0y, the periodicity of W, 64 = O(A72) and [07| <
O(\72) we get

VAW (A(z) (§ — x) + 7(x)) = VEW(BAgsy + O(\™h) . (3.1.98)

For |dy| < |Ag| 'Oy the argument is in the local convex part of W. Hence, we
get an upper bound

|A™ ()

VAl < [ I caia@ypo (- 1y — 2

Bax(9) Ow)‘d
9 _
§1\0A|2\E\2\M|2+0(>\ Do (3.1.99)

and a lower bound

V2V > ||A_l($)||200 A 20 (N |y —
WVawln = | o O BlA @) 2 (A |y — a)
2\

>Colul* . (3.1.100)

Hence, the stationary points at the lattice positions are minima and the potential
is quadratic in a neighborhood around them. O
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3.2 Perturbation of a lattice

In this section we will derive a method to calculate upper bounds for the energy
costs of a deformation of a lattice in our model. The aim is to get an upper bound
that is precise that we can calculate an upper bound for the energy density of a
pair of dislocations in an arbitrary large crystal. Hence, the estimate needs to be
very precise in all areas that are far away from the dislocations. Otherwise small
errors there integrated over the volume of the crystal will give an error larger
than the energy barrier itself. Since we do not know the energy of the lattice
itself exact prevent this. We need to estimate the energy of the configuration by
comparing it with the energy of the lattice. We assume that our configuration
has the for 1/(Z?). We will estimate the energy density of the configuration in the
point ¢(z) with the local effective elastic potential F)(V(z),z). This is a the
energy of a Bravais lattice. Hence, the first step is to calculate how the energy
density changes if we deform a Bravais lattice x4, add a perturbation to the
lattice around this one point(Lemma 3.2.1). Up to some error terms we obtain

ha(A, AN (Z), x)
Sh)\(A7 Aﬁl(Z)ax)
+2/cb X [| AR B7Y|* | BARII?| Arl* det Ap S (VA u(Ary) [} (3:21)
22 (T

If we adapt the estimate 3.2.1 to every point of ¢)(z) and integrate, we get up to
some error terms

/w(ﬂ) h(x,z)dx S/QF)\ (Vip(2), z) det Vip(2)dz

T Col(V(z)) A / V2067 ()2 det Vi (2)d=
(3.2.2)

In Lemma 3.2.2 we calculate an estimate for the change of the effective elastic
potential. Namely we show that

F)\(Gl, Z) det(Gl) SF)\(G(), Z) det(Go) + (VF)loc (Go, Z) [Gl - Go]
+ %(VQF)lOC (GQ, Z) [Gl - GO] + O ((Gl — Go)g) . (323)

Then we can use this estimate to convert the integral of the local effective elastic
potential in an integral of the global effective elastic potential at the cost of some
boundary error Xg, more precisely

/ ha((Z9), $(2))d= < / Fy(Vip(2)) det Vi 2)
+ Co|(Vib(2) A V2 (2) |2de + Xsv . (3.2.4)
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Finally, in Theorem 3.2.3 we estimate the energy difference between a lattice
AR'Z and a deformed lattice ¢(Z?) that have equal atom positions at the bound-
ary, and conclude that

/hA(w(Zd),w(z))dz—/h,\(AI_%lZd,A;llz)dz

< / (VF)aw (A") [V — AR'] dz + / %(VzF)av (A7) [VY — AR'] d=
+Col (VY (2)) NIV (2)Pdz (3.2.5)

We also derive an upper bound for a particular configuration, in dimension two
consisting of two dislocations, and construct a continuous path that leads from
the elastically deformed Bravais lattice to a plastically deformed configuration of
lower energy. The energy barrier of this path scales at most like A2,

In the first lemma we proof that if we deform a lattice in a neighborhood of
the point z with some deformation |u(z;)| < C(x; — )%, then the energy will
increase by a term that scales like A*C? up to lower order terms. If u is three
times differentiable, some cancellation takes place

Lemma 3.2.1. For all Cx > 0 and all m € N there exists A € R such that for
all X > X and for all Ag, € Glu(R),7r € R?, B € Gl4(R) and t € Z* satisfying
|BAR'| < Ca and z € Q we have Let A € Glg(R) x R? be

A = argmin {hx(ﬂ, ARNZ), x) |A € GIi(R) x R A||5A] < @TW’ lo7| < GTW } :
(3.2.6)

where
6A = (0A,067) = (A— BAg, Bt + BAgx +t—7) . (3.2.7)

Moreover we consider an atom configuration x = {x;|i = 1...N} defined by
T; = A}_%lzi +u(z) (3.2.8)
where u has the following properties
1) w is at least 3 times differentiable,
2) Vu(Agrz) =0,
3) N2|V2u(Agx)| < %chl(det AR)|ARr|72,

4) N|V3u(Agy)| < 20cs " (det AR)|Ag|™ for all y € Box(),
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where cg is as in Lemma 2.2.7, then
h)\(.A, X x) Sh)\(.A, AI_%I (Z), x)
-%&%A4w%$B‘WFHBARH%ARﬁgug;Hv%wARym}%ktAR
22 (T
+ 0N "V2u(Agrz) + ON*V3u) . (3.2.9)
Proof. We consider the Taylor expansion

fmAx@:mMAﬂzw+§mM@m@w@wmﬂ

/ / —hA x(),2)dvds . (3.2.10)

We calculate the first order contribution
d
_hA(A7 X(8)7 x)|S:0

ds
0 dz;
= ZZ: a—mhA(Aa X(S), x)\tzo ds

- Hé_)\!i' Z (VIV(A (2:(0) — 2) + 7), Au(Ag2:(0))) ¢ (A" |2:(0) — 2])

HA P \-1
C M Z —2) +7) = 0) (Orip (A |2:(0) — 2]) , u(Agz:(0))) -

(3.2.11)

x(0) is a Bravais lattice and Ay a corresponding local minimizer. Furthermore
x(0) = ArZ? = AR' B~'Z Hence, we relabel Z? as follows

= Ap'zi= AR'B™'(Bz) = (A3'B 1)z . (3.2.12)
With this we can apply Lemma 3.1.3 and get
W(A (z;(0) —z) +7) =W (5A (x;(0) — z) + 61)
VW (A (z;(0) —x) +7) =VW(JA (z;(0) —z) + 1) . (3.2.13)
According to Lemma 3.1.4 A = O(A72) and 67(0) < O(A™™) Therefore, it holds

W(SA (2;(0) — 2) + 67) =O(\7?)
VW (A (2;(0) — 2) + 67) =O(A) . (3.2.14)
We rewrite equation (3.2.11) as
%h,\(()) :Hél%g Z (VW (5A (2;(0) — z) + 07), Au(Agrz;(0))) ¢

Hé )\‘|1| Z W (0A (2;(0) — x) + 07) — V) (O, p, u(Arx;(0)))

(3.2.15)
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A Taylor expansion of u(z;) gives
u(Arz;i(0)) = V2u(Arz)[Arzi(0) — 2] + O(VPul?) . (3.2.16)

Hence, there is one contribution with V2u(Agz) and one of higher order. The
derivative on ¢ is O(A™!), furthermore W = O(A7?) and VW = O(A™!). Hence,
the higher order contribution in the estimate (3.2.15) is O(A*V3u). The second
order contribution can be bounded form above by O(AV?u) with the same argu-
ment. However, this estimate can be improved further. We apply Lemma 2.1.2
to estimate the sum with an integral

SA :=)\0A
Y1(X) = (VW(AAX + 67), AVPu[ArX]) ¢ (X)
Uo(X) = (W(0Ay + 67) — 9) (V@ (X)), V?u[ArX]) . (3.2.17)
We get
(A (), )lco
:M_l(cw ) <VW(5Ay + 07), AV2u(ARx)[ARy]> o (ly]) dydet A

" HA_lC(O)H )\ /]Rd (W(0Ay +07) = 9) (V& (y), Viu(Arz)[Ary]) dy det Ag
+ O(NVPu) + ON"'V2u) . (3.2.18)

The contribution of the ¥-term in equation (3.2.18) is zero because it is the
integral of an odd function over an even domain. If 47 would be zero, the same
would hold true for the two other integrals in equation (3.2.18). However, thought
d7 does not have to be zero, we have 67 < O(A™™) by Lemma 3.1.4. Next we
expand W in orders of 67 3

W (6Ay + 07) =W (0Ay) + VW (§Ay)OX™™)
VW (§Ay + 61) =VW (§Ay) + VW (§Ay)O(A™™) . (3.2.19)

Since the integral of an odd function over a even domain is zero, we get
0= [ (TWAy +57), AV AR Ars]) 2 (o) dy
R

0= [ W(SAY) (VP (y), Vu(Arz)[Aryl) (3.2.20)

Rd

3Because of symmetry the third derivative of W is O(A™!) near the minimum of W
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Hence, we get

d
%hx(v‘h X(8), ) |i=o
-1 2
:A“éin ) (O™, VW (6 Ay) AV*u(Arz)[Ary]) dyp (A" |y|) det Ag
© R

T 7"’4_01” : / (VW (04y), OA™) (Ve (A" lyl) , VPu(Are)[Aryl) dy det Ar

+ ONVPu) + OA"" HV?u(Agpx)
=0(N*V?u) + O(N*"™)V?u(Agrz) . (3.2.21)

The contribution of the second order is

d? dv; 02 dx

—hy( : —7 . 2.22

ds? A ZZ < ds’ 8@8% ) ” 3 )
We first calculate 3 h,\ omitting the argument of W and .

0? 0 0

C, A\

hy =——F7—Jy— ¢
63310:17]- A 0xi8xjj)‘ 6xiaa7jp)‘

= | A7Y|P ATV W Apsy; + || ATY]P (VW A) © 8,003
+ | A7 e @ (VW A)S; + [|AY]* (W — 9) 0,80, 0055

(3.2.23)
Each derivative on ¢ produces a factor A71.
9 2
d - J—
CX G, ™ = |47 ATVPW Aga; + O (3.2.24)

Hence, we get that

P (A x(s), ) = AT
ds? ’ ’ C @

ZVQW Awi(s)—2)+7)[Au(Arz) |+ O |uf?)

(3.2.25)
Furthermore we have | A7 = | Az B~!||2+O(A™Y) due to Lemma 3.1.4. Hence,
we get

o = B S o B A A0 ) = ) + OO )

(3.2.26)
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The changes in the x;(s) are only O(1). The derivative 9., is O(A™'). Hence,
we get

=t Eol 3 VW B AR Ans D)o (5:(0) = 2)OO)O0)

(3.2.27)

Performing a Taylor expansion of u(z) and by means of the assumptions we
impose on the derivatives of u, we optain

u(Ary) =%V2u(ARx) [Ar(y — )]
* /0 /Ow /0 Viu (Apz + sAr(y — 2)) [(Ar(y — 2))] dsdvdw

1
| BARu(Arzi(0))| <5|BAR|[Ag|*|2:(0) — «[*| V*u(Agz)|

+ 1/6| BAg||Ag|*|2;(0) — z*|V3u|
<6 . (3.2.28)

Hence, for sufficiently large A it holds
dist(A(s)(zi(s) —2) +7(s),2%) <6 . (3.2.29)
Therefore, the argument of W is always in the convex region and we get

HA_ _IH 1 2 (-1
hx o Z:C@|BARU(AR$Z'>| P(A” (24(0) — )

+ON Hul?) . (3.2.30)

d2

Since u(Agrx) = 0 and Vu(Agrx) = 0 We have
1
[u(Arzi(0))] <5 ]:gn&%X){llVQU(ARy)H} (214810 . (3.2.31)
22 (T

Hence, we get

d—2h 4>\4M Z max {||V?u(Agry)||}2ce | BAR*| Arl e (3.2.32)
ds? CoA 2= By (a) f OIFRI AR Ao
With Lemma 2.1.2 we get

d?

T SALX | AR B || BARE Anl* i {1172 u(Ay) [} det An
(3.2.33)

U
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Now we study how the effective elastic potential depends on its argument.
We consider the local minimizers of the pre-energy density hy (-, (GZ* — z,0). the
branches of local minimizer and the local minima are differentiable functions of G.
However the global minimizer may jump in an uncontrolled fashion between the
branches. Furthermore the global minima will be continuous but do not have to
be differentiable or locally convex. Therefore, the effective elastic potential does
not have to be differentiable as a function of G. However, the Taylor expansion
containing the branch that is the global minimizer for G still gives an upper for
the effective elastic potential for G close to G of the form

F)\(Gl) det(Gl) SF)\(G()) det(Go) + (VF)M, (Go, Z) [Gl — Go]
+ %(V2F)av (GO) [Gl - GO] + O(‘Gl o GO‘S) : (3234)

Lemma 3.2.2. There ezists \ € R and ¢ > 0 such that for all X > \ it holds For
all Gy € Glg(R) that satisfies F(Gy) < € there exist B(G.z) € Gly(Z) and r > 0
such that for all Gy € Glg(R) that satisfies |Gy — Go| < r it holds

F\(Gh, 2) det(G1) <F)\(Go, z) det(Go) + (VF)joc (Go, 2) [G1 — G|
+ %(V2F)loc (Go, Z) [Gl - Go] + O(|G1 — Go‘g) s (3235)

where (VE ). is a linear form defined for any M € R¥*4
(VF)loc (Go, Z) [M] :GAF(BGgl) [BGalMGal]
+ F(BG)Tr(Gy'M)det Go + O(N>)M ,  (3.2.36)

and (V2F)jo. is a quadratic form fulfilling

(VQF)loc (G0> Z) [M]

=03F (BGy") [BG, ' MGy det Gy
+204F (BGy") [Tr (Gy'M) BGy' MGyt — Gy " MGy MGy det Gy
— F(BGy") (Tr (G5'M)* = Tr (Gg* MGG M) ) det Go + O (A 20r?)

(3.2.37)
This implies for the effective elastic potential
F)\(Gh) det(Gr) <FA(Go) det(Go) + (VF)ay (Go, 2) [G1 — G
+ %(VQF)M (Go)[G1 — Go] (3.2.38)
where
(VE)aw (Go) X = . 1}d(VF Jioc (Go, 2) Xdz
(V2F)a (Go) (X, X) = /[0 1}d(v2F)loc (Go) (X, X)dz . (3.2.39)
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Proof. We define G(s) = sG1 + (1 — s)Gp, and consider
F\(G(s), z) det G(s) =hx(0, G(s)(Z? — z)) det G(s)
= inf ha(A, 0, G(s)(Z% — 2))det G(s) . (3.2.40)

According to Lemma 3.1.5, for A large enough and F A(G_l) < € small enough,
there is a B € Gl4(7Z) such that the global minimizer A € Gl4(R) satisfies

)BG _ A) =0(\7?) |
|7 — Bz —t| <OA™™) . (3.2.41)

The global minimizer is also a local minimizer as described in Lemma 3.1.4.
According to Lemma 3.1.4 the local minimizer is a differentiable function of the
lattice parameter G/(s). Since for all s the configuration G(s) (Z¢ — z) is a lattice
we can as in Lemma 3.1.3 and conclude that

h(0A(s),G(s),2)) == ha(A(s), G(s)(Z* — z),0) det G(s)

—co' | (BG(s) + 5A(s))‘1) " det G(s)
X Z W(SA(s)G(s)B™ (i—2) + 67(s))p (A" i — )
+ l;?éA( ) + BG~(s)) det G(s) + 0 det (6A(s) + BG'(s)) det G(s)
Ad %cp “HG(s)BTH (i —2)|) det G(s) . (3.2.42)

Moreover we have

ha(0A(1), G(1), z) =h\(0.A(0), Gy, 2) + %%@A(O), Go, 2)

+ /0 /Ov%hA(M(s),G(s),z)dsdv L (3243)

Since we have selected 9.4(0) to be the global minimizer, by construction we have
hx(6A(0), Go, z) = F(G1, z). Furthermore the global minimum for ¢ = 1 has to
be smaller or equal hy(0.A(1),G(1), z). Hence, it holds

F)\(Gl, Z) det Gl(s) <F)\(G0, Z) det GO + iﬁ)\((SA(O), G(O), Z)

/ / _m 0A(s),G(s),2)dsds . (3.2.44)

By Lemma B.1.3 and the chain rule we get

d - 0

_h)\(A(O)a GOa ) aG

ds <h/\(“4(0)> Go, Z)) [G1 — Go] . (3.2.45)
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For the ease of exposition we will omit the argument of W and ¢ in the following
calculation. For all test matrices M € R%*? we have

%BA(A(GO), z, Go(Z — 2))[M]
=0¢ (F(BGy" + 6A(0)) det Go) [M] + 904 det (B + 6A(0)Gy) [§A(0) M]

- 196@ (,0)\ det GO) [M]

2

de H (BGy' + 5A(0))‘1) [M]

+ By 'ezzzd Wy det Gy
2

H (BG;' + 5A(0))‘1H L
+ BT GXZ: (VW,5A(0)MB™ (i — z)) ¢ det Gy

|(BGy" +54(0) | i o
+ Co iezZ:dW<V<p,MB (i—z))det Gy
+ J) (BGy' 4 0A(0),07(0) + Bz +t,G™ (Z — 2) ,0) 04 det Go[M]

(3.2.46)

Since we know that 4 = O(A™?) and 7 < O(A7F). We get that W is O(A7?)
and VW is O(A™1). So Jy itself is O(A™2), and all contributions of .Jy in equation
(3.2.46) are of order O(A72|M|). Furthermore, because A = O(A7?), also the
contribution of ¥ det A is O(A™?). In contrast, the contribution of F'is O(1). We
see this using Lemma B.2.3. In fact

dc (F(BGy' + 6A(0)) det Go) [M]
= (04F[BGy " + 0A) [BGy'MGy'| + F(BGy' + 6A(0)Tr(Gy ' M)) det Gy
= (04F(BGy") (BGy'MGY) + F(BGy ) Tr(Gy'M)) det Gy + O(A > M)
(3.2.47)

We focus on the term from Jg (p, det G). We use Lemma 2.1.2 with the functions
1 defined by
1 _ . _
P(X) = C—Vgp (X)(G1 —Go) Gy X . (3.2.48)
©

Since ¢ is Cg so are 1 and we get

1
JepA[M] == — y (V@ (y), MGty dy det (BGy') + O(A"M)

OSD
(3.2.49)
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Partial integration leads to

dapr[M] = — Ci (W) (V, MG 'y)dydet G + O(A"")M
¢ JRI
1
- /R & (y) Tr (MG™1) dydet G + O(A*M])
© d
=—Tr (MG ")detG™" + O\ *M) . (3.2.50)

Due to Lemma B.2.3 we can conclude that

9g (prdet &) [M] =0c (px) [M] det G + prdg det G[M]
—Tr (MG™") +ON"M)+Tr (MG™")
=0\ . (3.2.51)

We summarize

ih)\(.A(Go), Go, Z) :8AF(BGO_1) (BGal (Gl — Go) Go_l)

ds
+ F(BG ) Tr(Gy Y (Gy — Gy)) det Gy + O(A?) (G — Gy) .
(3.2.52)

For the second order term we get as in Lemma B.1.3

@ (5A(s), G(s). ) =(Zg§ (0.A(s), G(5),2) {%

ds?
2\ [ o (oh [dc
a (66A2> [&M <aG L@D]‘ (3:2.53)

- N
As already seen in Lemma 3.1.4 0 < gf;%, and therefore 0 < (%?2) . The

second term in (3.2.53) is always negative and for an upper bound we only need

to estimate the first term. We explicitly calculate %(&4(3), G(s), z) [M], again

for the ease of exposition we omit the arguments of W and ¢, and we also write
G for G(s) and 0 A for 0A(s). we have

-
g éf; (0A, G, z) [M]

=0g (F(BG™" + §A) det G) [M] det G — 99¢ (px det G) [M]
0% det (B + §AG) [JAM] + 202, J,[M] det G
+ 20¢J\[M0q det G[M] + Jr\0E0Z det G[M] . (3.2.54)
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The second derivative of Jy is
C AN 0% I\ M
=% |(Ba +oa) [ YW
i€zd
+||BG+ 5A)‘1H2 N VEW [SA(G1 — Go) B (i—2)] ¢
lGZd

+H (BG™" +3A)" V25 [((Gr = Go) B~ (i — 2))]

i€zd

+20q || (BG™ +54) ™"

M) (VW,6AMB™" (i—z))¢
+206 || (BG™ + 5A)‘1H2 (M] Y- (WY, (MB (i~ 2)))

Z (VW (JAMB™ (i—2)), Vg (MB™ (i— 2))).

iczd

-1

+2H (BG™' + 5A)

(3.2.55)

Again we use that 64 = O(A72) and 67 < O(A7?) and therefore W is O(A7?)
and VIV is O(A71). As calculated above J, and dgJ are both O(A72). So all

terms coming from Jy are O(A72). Because 64 = O(A7?) the contribution of
(9 det Adet G is O(A\™4)). In contrast 9% (F det G) is O (1). in fact

0% (F (BG™! +0A) det G) [M ]
=04 F [0cA[M]] det G + O4F [0ZA[M]] det G
+ 204 F (0 A[M]) OG det G[M] + FO2 det GIM] . (3.2.56)

The argument of F equals BG™! up to O(A7%). We use Lemma B.2.3 for the
derivatives of det G and G~!. We get

0% (F (BG™' +0A) det G) [M]
=03F(BG™") [BG'MG™ "] det G — 204 F (BG™") [GT'MG'MG™"] det G
+204F (BG™") [BGT'MG™ ' Tr (G7'M) det G
— F(BG")Tr (G'"MG™'M) det G
F(BG™)Tr (G™Y(Gy — Go)) et G + OA2(Gy — Go)?) (3.2.57)

For the contribution of the density (p) det G) we can apply the same calculation
as we did for the first order contribution and receive

0% (padet G) [M] — O(XF) . (3.2.58)
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Hence, 9% (pydet G) (G — Gy, G1 — Gy) gives no contribution of leading order.
The only remaining part of leading order comes from F. We finally remember
that G = G(s) = Go+ O(G1 — Gy). If we apply this on the estimate (3.2.57) and
put this into the estimate (3.2.53) we get the second order contribution for the
estimate (3.2.44) together with equation (3.2.52) we get the conclusion. O

Next we study a configuration satisfying y = ¢(Z%) in some area @D(Q) We
now combine Lemma 3.2.1 and Lemma 3.2.2 to bound the integral of the energy
density over the 1)(Q) from above by the integral over the local effective elastic
energy plus the integral over some term that scales like A*||V21||? plus many lower
order terms. If additionally x is a perturbation of a lattice e.g x = AR'Z% +u(z;)
such that v = 0 at the boundary of ¢(§~2), we can bound the energy of the
configuration from above by the energy of the lattice lattice plus a linear term
in Vu and a quadratic term in Vu coming from the expansion of the average
effective elastic potential plus the A*||V?u||? term and many lower order terms.

Theorem 3.2.3. There exists A €R and é > 0 such that for all A\ > A\, holds: If
there is a set Q C R™ and a map ¢ € C® (R, R?) such that ¢(2) C Q all points

v € Boy (v(9)) satisfies

0B (4(8)) =002 2 (4(2)),

2) F(V(z) < ¢ for z € Q,

3) M|V~ (@)] < 305 [V (@) 72 for o € Baa(4(S2)),
4) NIV (@))] < 2065 Ve (@) for @ € Boa(1(2)),

then the energy fulfills
/ h(x, )z / Fy (Vib(2), 2) det Vip(2)dz
»(Q) Q

+ Col(Vi(z 4A4/ max, {HV2 Y ()1} det Vi (z)dz

Box(¥(z
+A%m/wwwvw@+mxww@wmvww,
(3.2.59)

where Cg := 2dcici and ¢y and cg are as in Lemma 2.2.6. If additionally it holds

V() = Ag'z +u(z) (3.2.60)
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then we get for the difference of the energy
/ B, 2)dz — / WAL Z, 2)de + O(|Vul)
»(Q) AR
1
< / (VE)ow (AR [Vu(2)] + 5 (VF)aw (A7) [Vu()] d=
Q
FCNIVHE) I [ max (1970 )Yz
Baox(¥(2)

/ /_; 134 (VE)ioe (Vip(2 = w), 2) [V (2)w] + O(V*) + O(‘V2u}2)dwdz

+ [ 00 VRs(E) + 00%) masx (V0] (57" () d + | Xs = X

(3.2.61)
with a boundary term
. / oy (TFie (A7 D 1902 + Oz
~5:31¢  (wt
/ / [(VF)ioe (A" + Vu(z — w), 2)| [Vu(Z)| dzdw
% % Q/ Q—i—w
/ / O((V)?) + O(A"2Vu)ddw
[=3:317 I (v +0)/ +u))
(3.2.62)

Proof. Step 1: Rewriting the energy with local elastic potential
We consider near the point z = 1 (2) the lattice x(z) with

T =(2) + V(2) (2 — 2)
T —x=Vi(z) (zi —2) . (3.2.63)
This implies

hy (X(@),2) =h\ (VY (2) (29 - 2) ,0)
=F\(ViY(2),z) . (3.2.64)

Because of F(Vi)(z)) < ¢ and A > A the conditions of Lemma 3.1.5 are fullfilled.
Hence, we have a global minimizer for hy(+, x, z) that is close to BV (z), Bz +t
for some B € Glyg(Z) and t € Z¢. We call this global minimizer A (z) and get

ha (X(@), &) =ha(Ao(2) () , X(2),7) . (3.2.65)
On the other hand x(z) is a lattice. If we define

u(z) =x; — Ty

=(z;) —(z) = V(2) (z; — 2) . (3.2.66)
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we have u(z) = 0, Vu(z) = 0 and VFu(z) = V*(z) for k¥ > 2. Since the
assumptions of Lemma 3.2.1 are fulfilled, we get
ha(Ao(), X, ) + 0(1)V?h(2) + O(N* V)
<hx(Ao(x), X, )
+2X4eh| (Vo) Ve B I BVl (Ve)
ma ([ V200 ) [} det(Vo) (3:2:67)

We have chosen A to be the global minimizer for x furthermore hy (Ao, x, ) has
to be larger than the infimum over all A According to Lemma 3.1.5 BV is
O(\7?) away from the global minimizer A;. And according to Lemma 2.2.7 the
global minimizers fulfill |A;'| < ¢; and |4q| < c3 Hence, we get the upper bound

h(x, @) <Fx (Vi(2), 2)
=+ CoX' (V)7 mane (V2" (1))} det (V)™
+0(1) V2% (2) + O(N*V3%(y)) . (3.2.68)
Integrating this, we get

~

/w(“ E(X,x)d$:/f)h(x,¢(z))det (V¢(Z)) dz

Q)
_ /Q Fy (Vh(2), 2) det (Vib(2)) d2

+CX'|(V(2) [ max)){HV%(zb‘l(y))H}2d2

QO Box(¥(z
+ [ 0TR() + 00 max 90 (47! 0) dz
(3.2.69)

Step 2: Changing from the local to the average elastic potential
We now compare the integral of the average effective elastic potential, with the
integral over the local elastic potential. We use the abbreviation

F\(G,z) = F\(G,2)detG . (3.2.70)

We use the periodicity Fy (G,w) = F) (G,w +t) for t € Z%. If we integrate over
one periodicity cell the integral is not changing if we move this cell. Hence, we
get

| B (Vo) det (Vo)) d = [ B (wio).2) dz

_ /Q /[0 . By (V(2), w) dwdz
:/Q/[ HWFA(V@D(Z),w—i—z)dwdz . (3.2.71)

22
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Next we substitutez = z —

/FA (Vi) det (Vib(2) dz—/ /§2+wa (V(E — w), 2) dzduw

114
22

:// B\ (VY(2 —w), 2) dwd? + X
R

(3.2.72)
Xy is a surface term given by
X5 = / / B\ (VY(Z —w), 2) dzdw
=341 S (e 0
/ / By (V(Z —w), 2) dzdw . (3.2.73)
l % Q/(Q4w
We get for the integral over the effective elastic potential
/ F (Vih(2), 2) det (Vab(2)) dz
9)
/ 2)dz = / / z) dwdz
[_, ES
= | (ol det (Vo) i - Xs
/ / By (VU= — w), 2) dwds. (3.2.74)
[_, ES

We use the first part of Lemma 3.2.2 and get
/Q Fy (Vib(2), 2) det (Vib(2)) d=
— [ RV det (T0) dz
# (TP (V00 ). 2) [90(2) = Ve~ w)
+ 5(V2F )i (V(z — ), 2) [V2(2) — V(= — )] dwdz — X
= [ P(Tue) et (Vo) dz
# TP (T =), ) (P ulauds

+/O(V3w)+0(}v2u‘2)dwdz+Xg ) (3.2.75)
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Step 3: Comparison with the lattice: If we apply the calculation above
to ¥(Z4) = AR'Z¢ here Vi) = AR is constant and equation (3.2.74) turns into

/ Fy (A7), 2) det (A7) d= = / Fy (A7) det (A7) d=+ X§ . (3.2.76)
Q Q

with the boundary term

X§ = / / L 2) dzdw
% % w+Q
/ / ,2) dzdw . (3.2.77)
1414 JQ/ (Q4w)
If we calculate the difference between the two boundary terms, we get
Xs— X§ _/ / FA AR+ Vu(2),2) — Fy (AR, 2) dzdw
273

- / / By (AR + Vu(Z —w), 2) — Fy (AR}, 2) dZdw
(=331 9/ (94v)
(3.2.78)
With the help of Lemma 3.2.2 this term can be estimate from above by

X5 — X g/l ]d/ . /Q\(VF)ZOC (A3 2)] IVu(3)] + O (Vu)?) d3)

O(A\2Vu) + O ((Vu) ) dw

/_1 ;]d /Q/ i) Fioe (AR + Vu(z — w), 2)| [Vu(2)

A"2Vu) + O(Vu YdZdw . (3.2.79)

Furthermore we expand F\ (Vi(z)) det (Vip(z)) using the second part of Lemma
3.2.2 and get

Fx (V(2)) det (Vip(2)) >Fy (AR') det (AR") + (VF)aw (AR") [Vu(2)]
%(V2F) (ARY) [Vu(z)] . (3.2.80)
Finally, we get

/ Fy (A7 + Vu(2), 2) det (AR} + V(=) d= — / Fy (Ag, 2) det (Vib(2)) d=
Q Q
< [ (9F)un (47) V(o)) + 5V Py (477) [Vu(2)] =

//_ (VE)ioe (Vib(z — w), 2) V2(2)w + O(V4)+

1 l
330
O(|V2u|*)dwdz + | X5 — X§|.
If we use this for the estimate (3.2.69). We get the estimate (3.2.75) O
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Remark 3.2.4. We consider the term
/ / (V)i (VU(z — w), 2) V2(2)wdwd= (3.2.81)
[_, ES
Since the integral of an odd function over an even domain is zero, we have

/ / (VF)ioe (V0(2), 2) V2 (2)wdwdz = 0 . (3.2.82)
1 1
[~3:3l
Therefore, this terms apears only due to fluctuations in (VF),,. (Vio(z —w), 2).
If the global minimizer A is not jumping between different parametrisations, then
this is actually a O(V?) term. If it is jumping then its size depend on the size
of the jump in (VF).

3.3 Upper bound for the energy barrier

In this section we calculate an upper bound for the energy barrier of plastic
relaxation in dimension two. For this we construct an explicit continuous path
of configurations, that starts with a sheared Bravais lattice and ends with a
plastically deformed configuration of lower energy. To construct this path we
consider the example configuration consisting of two dislocations, whose cores
have distance a. In Lemma 3.3.1 we calculate an upper bound for the energy of
this configuration using Theorem 3.2.3. With this estimate it is easy to show that
in a proper regime of parameter the energy of a pair of dislocations get smaller
than the energy of a sheared Bravais lattice for sufficiently large a and that the
energy barrier scales at most like \2.

First we will define the example configuration y,. The configuration y, is
based on an undeformed lattice Ap'Z2. We consider two dislocations. The centers
of this dislocations have the distance 2a > O(\) and the distance vector is be
parallel to b. We introduce coordinates such that the first dislocation has the
Burgers vector by = 2wb = 27(1,0) and center (—a,0). The second has the
Burgers vector by = —27b and center (a,0). With ¢; we denote the angle between
the distance vector of the centers of the dislocations and the distance vector
between the center of the i dislocation and the point z. We assume A' By, (0) C
with L > O(a)). For z € By, (0) we define

P(2) =A" 24+ u(z)

w(z) =u1(2) +uo(2) +ur
(2)
(2)

= —by— . (3.3.1)
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For z € Byy () /B (0) u is discontinuous. However, since the atoms are moved
parallel to the discontinuity, there are no collisions of atoms along the disconti-
nuity line. Hence the hard core potential condition may be violated only directly
at the center of the dislocation. There the atoms are moved to fulfill the hard
core condition.

In some way this is a really bad example for a configuration with two dis-
locations since we just guessed the structure. However, we will calculate that
the leading order part of the energy will come from \*||V?u||* at the core of the
dislocation. Therefore, there are lots of possible improvements, but they will not
really make a difference as long as the core energy is so big and its estimate is
not better. More Information about dislocations can be found in [6].

Now, we proof that the difference between the energy of the example config-
uration and the energy of the undeformed lattice, can be bounded from above
by one term for the core energy that scales like A\? and on term for the elastic
relaxation scaling like a (V F,,) (b* x b) and many lower order contributions. The
logarithmic part of the elastic energy is a lower order contribution in our model.

Lemma 3.3.1. There ezists A € R and é > 0 such that for all X > A and all
Ag € Glg(R) with F(ARg) < € the configuration x, of two dislocations, as defined
above in (3.3.1), has energy

8T Co| A%|B2 N\

(7 — 3AR\)
+4AT(VF)a (A7) [ @ @]
+2/[(V2F)ay (A7) ||70° ln<2a> +0 ( (i))

+ O\ +O(a®L™°X) + O(a 2)\3 %)
+O0(@®L™%) + O(aL7h) | (3.3.2)

Hy (xa) — H) (A;de) =2m det AR *26hynar +

where

6hmaz = (19 (det E — det Ag) — F(Ag) + HE—l I W (7)dr det AR) :

0.1)¢
1/3
# =314 (14 max d (12 qer 4 )" (312 et 4y
Ow S ow

and cg 1S as in Lemma 2.2.7.

(3.3.3)

Proof. The gradient in polar coordinates is

Vi(r, @) = e 0.0(r, ¢) + %e¢6¢w(r, o) . (3.3.4)
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We get

Vu; =b; ® T_leqsz' 5
Viu; = — bﬂ”i_2 ® (eri @ €gi + €pi @ €r4)
Viu, =2bﬂ’f’ R (i @ €4i @ €gi + €4i @ €1 D € + €pi D € D €ri — €4 ® €4 B €45;) -
(3.3.5)

In particular |[Vu,| < [b|r; ! and |V2u,| < 2[bjr;? and |V2u,| < 8|b|r;®. We
consider the set of regular positions

Q :=B; (0) / (B:(a,0) U B;(—a,0))
L:=L-— 2|AgIX

1/3
:=3|Ag|A <1+max{(|g—cwﬁdetA ) ( |g§v6d tAR) }) . (3.3.6)

There is a circles of radius 7 around the centers of the dislocations, because the
derivative of u is not bounded there. Furthermore, the regular area does not cover
the whole ball B(0), because u is not differentiable at the boundary. However,
we can use this estimate for point z close tho the z-axis even for z € (—a,a),
since we can describe the atoms in a By with a continuous expansion of o with
Vi(2) = Vu(Z). BDue to |Vuy| < |blr; " we know that Vip(z) = AR + O(A 7).
Hence, for large enough A for every Z with [¢(2) — 1(z)] < 2A, we have

>

N|V2u(2)] <|VPui] + [V |+ O(L7h) < 2] (ri2 4+ r7%) O(LTY)
<Afblig® + O(L7Y) < 1/40weg | (Ve(2) |72,

NIVPu(Z)| <|VPuq| + [VPuq| < 20b] (r7? + 7)) < 86|17
<3/80wes | (V=)' [ . (33.7)

The regular area U satisfy Theorem 3.2.3.

Erey = h ,r)dr — h AI_%lZ,x dx
/ R / Bz
= [ (VP (A7) [Vu(a)] + (V2P (A7) [Vu(2)] d
/ / TP (V0 = ). 2) V2(2)w] + O(V3) + O(V242)dwd:
+ [ CNITRE) I [ max {1V @)Y+ |Xs - X

+ [0TH() + 00 max 9% (57 (w) dz (33.8)
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We note that ¢(Q), Az'Q and B,y (Q) are in fact three different sets. However,
in Byx(2)/1(BL(0)) the lattice and the example configuration are equal. In
Box(€2)/ Bay (¢(B(0))) the energy density of the deformed configuration and the
lattice are equal. Between () and By (Q)/Bay (1/(B1(0))) there is an area of
measure O(AL) We call the contribution of this area the boundary energy Fpoung
Additionally, there is an area of size A\? in the center of each dislocation, that
is not covered by (). We call the contribution of this energy the core energy
Ecore. Last, ¢(Q) and AEIQ are nearly the same set but not exactly. We call
this energy of the misfit F,,;; and obtain

H)\(X) - H)\(AI_%IZd) < ECore + EBound + Emz's + Ereg . (339)

The core energy Eco First, the center of the dislocations are not covered
by ¥(£2). We use the general upper bound for the energy density from Lemma
2.2.3

A~

hy (z,x) < vdet E —dpy + HE_IHQ/ W(r)drpy . (3.3.10)
[0,1)¢

The area not included in ¥(Q) is the image of two circles of radius 72 has the
area 2772 det A" + O(A ™)

0Eeore = 27 det A 720 (det E — det Ag) — F(Ag) + || E7Y||? W (7)dr det Ap.

0,14
(3.3.11)
The energy of the boundary We calculate the deformation u(z) at the
boundary of . If we move the whole line connecting the point z with the center
of a dislocation parallel to the z-axis, the angle do not change. If ¢ is the angle
between the z-axis and the position vector z, B (0) we get for the points at the
boundary

u(z) =u1(2) + ue(2) + up,

=b(61(2) — 62(2)) — 2by 75

=b(9(= +a) = 6(z — @) = 2y

=26V (2)(a,0) + 1/3bV36(2)((a, 0)*) — Qby%

=b; @ r2(y, —) - (a,0) — 2by% +O(a®L73)

=0(a*L7?%) . (3.3.12)

Since the boundary zone is an domain of width O(\), the derivative of u is relevant
at the boundary too. In the same way for z at a O(\) distance to the boundary
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of Q we get
Vu(z) =b(Vo(z + a) — V(2 — a)) — 21%)(
—26V26(2)((a, 0), X) — Qb%X
:0(%)){ . (3.3.13)
In a 4\ neighborhood of the boundary we get
lu(z)] <O(a®>L™?) + O(aAL™?) . (3.3.14)

Lemma 2.2.9 says that we can estimate the energy difference between our config-
uration and that of a lattice from above with the effective particle potential and
the local effective elastic potential. According to Lemma 3.1.10 the minima of
the effective particle potential of the lattice are exactly at the lattice positions.
And the potential is quadratic around them. The increase of the energy density
Ohp at the boundary is

Shp = O(0u?) = O(a°L™%) + O(a*N*L™%) . (3.3.15)
The energy contribution of the boundary is given by d Hg. Hence, we get
EBound = O(a®L™°\) + O(a*N*L7%) . (3.3.16)

Now, we estimate the different terms of (3.3.8). We do not need to treat the
boundary between 2y and 2o, because in a 2A neighborhood of this boundary
the atom configuration is equal to Aglzi—l—ﬁ(zi) with a continuous u; and Vu = Va

The misfit energy FE,,;; The sets ¢ <Q> and AIQIQ are different because

of the u(z) at the boundary of Q. We know that at the boundary of B; the
deformation u is O(a®*L™3) + O(aAL™2) The energy is O(1). Hence we get

Epis = O(@®L™%) + O(aAL™Y) . (3.3.17)

Since the Burgers Vector is parallel to the the x-axis, there is no misfit between
YQu and Qp Otherwise, we would get an O(a) term here.

Estimate for the part linear in Vu The same term appears in the linear
elasticity theory for dislocations. Hence, it was treated extensively (see for ex-
ample [3]) For the linear map (VF),, (Az') there exists a matrix such that the
application of the map on a matrix A equals the scalar product of A with the
map. We call this matrix (VF)*.

Z(VF)Z?AZ,J = <(VF)av>A> = (VF)av (AI_%l) [A] . (3318)

1,J
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With this matrix we can write

/Q (VE)™ (AR") [Vu(2)]dz = | {(VF)aw, Vu(2)) dz

1

div (wz)(VF)a) dz . (3.3.19)

1

S— 5—

By Gauss theorem we have

| (9P (A7) Fu(aldz = [ ((VF)aa)) )

Q

=(VF)a (AR") </ﬁlu(z) ®d5) . (3.3.20)

The boundary of € consists of the boundary of B 7(0) and S, the section of the
x — axis between the dislocations. We denote S, with S, if its is approached
coming from negative y and S, if it is approached coming from positive y.

Sa ::{(JI,O),‘JIG (—a—|—'f’7a—f)} )
9Q =S+ U S, UdB:(—a,0) UdB:(—a,0)UdB;(0) . (3.3.21)

The important contribution comes from S, the boundary between the dislocations
on the x-axis. At this boundary the normal vector changes sign depending on
the side we approaching it. On the other side u is discontinuous there too. If we
come from above, it holds lim, oy ¢1 = 0 and lim,_,o4 ¢ = 7. In contrast, if we
approach from below, it holds lim,_,o— ¢; = 27 and lim,_,o— ¢ = m. Therefore,
we have

(VF)uw (A7) / fu(2) ® dS]

SauSy

= /a+f (VF)a (A7) [ lim u(x,y) @ (—ey) + yl_igl_u(a:, y) ® (el)da:} dx

- a (3.3.22)
=a(VF)aw (AI_%I) [b® e] (yl_i)%lJr (P2 — 1) + yl—i)%l— (o1 — 9252))
= (20— 7) (VF)a (A7) [h @ el] . (3.3.23)

We have already calculated that on the boundary of B;(0) Hence, it holds
lu(2)| < O(a®L™3) + O(aAL7?) . (3.3.24)

We get

(VF)aw (A7Y) = 0L ) +O0(a L") . (3.3.25)

/ u(z) ®dS
9B (0)
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Finally, on the circles around the dislocations we have

(VF)aw (A7) [ /a RCE dS}
=(VF)aw (A7") [/an(_a’O) (u1(2) + ua(2) + ur) ® dS}

2
= [ (TP (A7) & ) (61 = 2 = ) o

+O((VE)oR) + O(VF)aA) . (3.3.26)

In summary, we get

/Q (VE)a (Al_zl) [Vu(z)]dz =2a(VF )4, (A;zl) (b1 ® e4]

+O0(a*L™3) + O(aAL™2) + O((VF)aN)
(3.3.27)

Estimate for the part quadratic in Vu Also this term appears in the linear
elasticity theory for dislocations (see for example [3]). We present a calculation
for completeness. We estimate

/ Q%(vz Fa (ARY) [Vu(2)] dz < %P(VQF)M (AN / Q[ Vu(z)|*dz
(

3.3.28)
We need an estimate for [ [|Vu||*dz. We realize that

1

Additionally, it holds Auy = 0, because it is a linear function. Therefore, due
to the linearity of the Laplace-operator, u is a solution of the laplace equation.
Using Gauss theorem we obtain

/ |Vuldz = / Dyuprugd=
Q Q
Q

)9}

The section of the z-axis S, = {(z,0), |z € (—a + 7,a — 7)} can be treated as in
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the case of the linear contribution

/Sms upOjurdF; :/ O1uy, (yli)%l_ ug(z,y) — yl_if& u(z, y)) dx

—a+7
.32 T —1 a
2 2
=47b? 1n< “T ) — 27rb2z2 : (3.3.31)

For the outer boundary 0B;j(0) we get
/ wdurdF, =O(L) (0(a°L ™) + O(aAL™2)) O(aAL™?)
oB;
=0(a’L™) + O(a®*A\L™?* . (3.3.32)

On the boundary around the dislocation we notice that Vu = r;'b ® ey is
orthogonal to e,; the normal vector to the surface and we get

2
/ uk&udel :f’/ WU(VUl + VUQ + VUL)€¢1CZ¢1
0B; 0

+7O(1#)(O(a™') + O(aL™?)) = (O(a™) + O(aL™?))

(3.3.33)
Therefore, we obtain
| 57 (A7) [Vl
2 A(V2F) 4 (A7) IV (m <2“7: T))
+O0(@®L™?) + (0(a™") + O(aL™?)) + O(a’L™") + O(a’AL™?) . (3.3.34)

The contribution of the term quadratic in V?u We search for an upper
bound for

Pu = [ Cox' [ (V07 max (V6@ @)IPd: . (3335)

For y € ¢! <B2,\¢§~2) we have |(Vi)(2))7H* < |Ag|* + O(A™!). Furthermore, it

holds V2u; = 0 and wee can estimate

IVAu(2)I* =[V?ur + Vus||* = 2[|VZur |* + 2| Vo |
=40” (rit + 3 (3.3.36)
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We need to estimate maxp,, () { ||V ("1 (y))||}* and not just V¢(z) With
Vi(y) = Ap' +0(A™1) and yy =t € Byy (¥(2)) we know that

I1i(2) —ri(y)| < |z —y| < |Ag|3A=dr . (3.3.37)
Our estimates (3.3.36) turns into
pmax {[V2(v” Y)YPdz <40 (o —6r) 4 (= 0r)™") . (3.3.38)

We can integrate this estimate and get

/ ! + ! dz <2 (2 /OO ! d )
2 7r ————rdr
Q(ri—or)t  (ry—0r)t T i (r—or)!

2a—0r =
=4r ( / +457“ dr)
F—or r

2
= (3.3.39)
(7 — dr)
Furthermore, we have
P = [ ColA™X' [ max {17200 )Yz
¢ Bax
_87Cq|An[*\!
mCol Ar| (3.3.40)

- (r— 57")

Since 7 and dr are O(\), this contribution is O(\?).
Estimate for the Error terms in E,., The formula (3.3.8) for E,.; the
energy of the regular area includes the volume error terms

Eregr = //_ (VE) e (V(2 — w), 2) [V2(2)w]dwdz

1
27

Ereg2 _/ 0(1 V w(’z)d’z 9

l\JI»—l

TegS—// L V3¢ + O( ‘VQu} Ydwdz
[—3.3]
Eregs =0(N?) ma ||V3w]| ( Yy )) dz . (3.3.41)
Bax (7/1
Furthermore, we have the surface error term |Xg — X§|. We consider Ereq
first. If F(G,2) is differentiable in a neighborhood of Az', then E; is actually
J O(]V*u|?)dz. Otherwise we can estimate

s

VFMVMm—)@W%@MmMSAON%@MZ
(3.3.42)

114
2:2)
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V2u = O(r~?) near the dislocations and O(ar=3) for r >> a. We get

a L
Ereqz <CO (VFIOC (Az_%l)/ 0(7’_2)7’617’+/ O(ar_?’)rdr)

=0 (|VFoe (A7) (5) ) + 0 (a?) . (3.3.43)
In the same way we can estimate F,.4 to be
Bz =0 (n () +0(a?) . (3.3.44)

Next, we consider E,.43. We calculated an upper bound for || V2u||? already. Only
this term does not have the factor A\*. Hence, this term is O(A72). The third
order term V3u is O(r~

E g3z </ O(r rdr+/ O(r—)rdr + O(\™?)

) +0(A ) =001 . (3.3.45)
Analogous to our calculation for maxp,, () || V2ul* (¥ (y)) we get for Ecgs
Eregs = N’ / O(r=3)rdr = 0(\) . (3.3.46)

Finally, the boundary term |Xg — X§|. According to Theorem 3.2.3)

/ +)/ ‘(VF>ZOC ( )} Vu(Z)| + O(Vu )dZ)dw
/ (V) iee (AR + u(Z — w)) [|u(2)|dw
14 JQ/(Qtw)

OA2Vu) + O (((Vu)?) dzdw
(3.3.47)

We remember that at the boundary of our regular area 2 the gradient of u fulfills
Vu = O(aL™?). The sets (w + Q) /Q and Q/ (Q + w) that are located at the
boundary of Bj g, have a maximal broadness of |w| and a length of L. The

area of these sets scales like O(L). O(A2Vu) and O (((Vu) ) are much smaller.
Therefore, the contribution of the outer boundary scales like O(aL~!) Additional,
we have the boundary between Q;, and Q. There the Vu is O(r~') for r < a and
O(ar2) for r > a. We get

Xs—X$<0 <|VFIOC (A7}) |In (%) + O(1)|V Epe (A§1)> . (3.348)
0
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Next, we use the result of Lemma 3.3.1 to construct a path for plastic relax-
ation with an energy barrier O(A?). If there is a lattice vector b € AL'Z such
that VEF,v(b x b) < 0 and the domain 2 is large enough, then there exists a
continuous path of configurations, that starts at the undeformed Bravais lattice
AR'7Z4, leads to a configuration of lower energy and has a energy barrier scaling
like O(A?). The path consists of a pair of dislocations with the burgers vectors b
and —b nucleated in one point and then moved apart.

Theorem 3.3.2. There exits A € R and é > 0 such that for all A > A, Ag €
GlL(R), be AZ'Z? , 29 € Q and L > a3/? satisfying the assumptions

1) F(Ag) <,

2) (VF)aw (A7") [b®bH] <0,

3) B|AI;1|L($0) C 1,

there exists a path continuous x(s) : [0,1] — (R2)™ with the properties
1) x(0) = A5'Z? N B4 (Q)

2) XN Bu (Q) /Q = AR'Z24(Q) /2

3) H(x(1)) < H(AR'Z* N Bi(Q))

4) maxepo H(x(s)) < H(0) + Cpaz A

Here Cqp and a are defined as

Crnge =21 A" 272 (19 (det EAR' — 1) — F(Ag) det Az* + ||[E7Y|? / W (T)dT)
[0,1]4

97 Co| Ar| B> \2

(7 — 3Ar\)?
Cmax)\Q
27(VE)aw (AR") [0 ® (0,1)] |

Y

a =

(3.3.49)

Proof. We introduce our coordinate system with origin xy and x- Axis parallel
to the vector b. We define the path

X(s) = Xat (3.3.50)

where x4 is the example configuration defined in Section 3.3.1. For a = 0 th
dislocations chancel. The starting value x(0) = AR'Z? N Byx(Q) is assumed.
Due to x(s)/¢Q = AR'Z/Q and ¥Q C By (0) the boundary condition

x(8)/1Q € AR Z4 /4 is fulfilled. The positions of the dislocations change con-
tinuously with ¢. The angels ¢; are continuous functions of the vector between a
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position in space and the position of the centers of the dislocations everywhere
but in the centers of the dislocation. Therefore, the atom positions are contin-
uous functions of x(s) and defines a continuous path. * According to Lemma
3.3.1 the energy of x(s) is

H(x(5)) — Hy (A5'ZY) <CpnaaX’ + 47(VF) oy (AR") b ® (0, ta))]

n %”(vzp)(w (AR") ||m0? <ln (2215)) +0 < (it))

+ O\ +O@@L™°X\) + O(a** N> L™?)
+O0@@PL?) + O(aAL™Y) . (3.3.51)

If it holds L > a2, then we have for all ¢ € [0, 1]

o(n(%)) o
O(a"t°L™°\) <O(X7%)
O(@**N’L~3) <o\ 7?)
O@@’t'L™) <0(1)
O(aAL™') <O\Y) . (3.3.52)

All these terms are smaller O(A) and does not change the scaling of the upper
bound. Since 47(VF),, (Az') [b ® (0,ta)] is negative, we have for all t € [0, 1]

X(8) = Hy < CraaX? (3.3.53)

Finally, by construction we have
Hy(x(1)) = Hy(AR'Z 0 Bis() < — Craa A2+ O(N) (3.3.54)
Hence, the path leads to an decrease of energy. O

Perspective 3.3.3. Dislocations with empty core If one wants to get a better
upper bound for the energy barrier, one should consider the possibility, that in
the core of the dislocations the effective elastic particle potential (see definition
2.2.8) is very high. Hence, we know that we can reduce the energy removing
atoms from the cores of the dislocations and move them near to occupied lattice
position somewhere far from the dislocations. This will reduce the leading order
of the energy.
Further plastic relaxation:

4If one of the dislocations moves directly through on atom. The atom can have to be moved
separately continuously, since this happens in the core region it does not change our estimates.
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1) Finally, the dislocations will get close two the the boundary of the domain.
Since we fixed the atoms of the boundary, the atoms can not adapt to the
dislocation that leads to an increase of energy. In O(dz) distance to a dislo-
cation Vu is O(dz). If we want to reduce this over a O(dx) distance to zero
and have to pay A*|V2u|? over the density, the cost scales like O(A*0x73). The
elastic gain from moving the dislocation further scales like O(x 4 dz). If we
minimize this cost, we get that we expect the dislocation to stop in distance
dz = O(A\?) from the boundary.

2) After both dislocations have stopped further plastic relaxation needs the cre-
ation of a new pair of dislocations. Since the first two dislocation line, that
has moved through the crystal, has reduced the elastic energy a little bit, VF'
is a little bit lower now. Hence, it will take a little bit longer to overcome the
energy barrier. However the crystal is really big and we moved just one single
dislocation. Therefore, the effect on the lattice is

Ay —A—1= % <O\ ?) . (3.3.55)

We need to move O(L) dislocations this way before we significantly change
the lattice structure. And before the energy barrier changes significantly.

The situation in 3d
We can do a similar calculation for 3D. We use a dislocation line in shape of a
closed loop of length 27 R, given by a map x3[0,1] — R3. The dislocation line
means that we prescribe on our local strain G(z) the condition

-1

da(s) ds . (3.3.56)

rot G(z) = /O 5= — ls) 2 day (s)

ds

We get an area of irregular points around the dislocation line with a radius scaling
like 7 = O(M). If the curvature of x, is significantly smaller than 77!, the volume
of the irregular area will be approximately 272 R72. Hence, we have a core energy
of

E! = m0hmaw R =O0(NR) . (3.3.57)

core

Furthermore, since [0, 1] describes a dislocation line. For points with distance
r to the dislocation, with a r bigger than 7 but smaller than the curvature of
the dislocation line, we expect have V2u? = O(r~2). This leads to an energy
density proportional to b*A*||V?u||?>. Integrated over the regular area close to
the dislocation line this gives another contribution of order E? . = O(M\R).
Therefore, in summary we expect a core energy of the form

FEcore = C1N’R . (3.3.58)
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The contribution of the elastic energy is

/ F(G(2))dz = / F(AN)dz + / VE (A7) (G(2) — A7) dz

+%/VFM (A7) (G(2) — AR, G(2) — Az') dz . (3.3.59)

We expect the quadratic contribution to be dominated by the core energy or by
the elastic energy gain for every radius r. A calculation for this energy contri-
bution can be found in [2]. The first contribution is equal to the energy of the
undeformed lattice. For the second contribution we use the condition prescribed
by the dislocation. If we choose any surface .Sy, that has the dislocation line as
its boundary, it holds x;, = 0.5,. The rest of the domain is simple connected and
the rotation of G(z) is zero there. Hence, G(z) is the gradient of some u(z) and
we can use gauss theorem to integrate u(z) over the boundary instead of G(z)
over the domain. The surface S, appears two times as the boundary one time
from below one time from above.

/ (G(z) — AR') dz = /afz u(z)dS . (3.3.60)

Since the normal vectors are flipped depending from which side of the boundary
we are looking at it, the contribution of Sy is proportional to the discontinuity of

/+ Cu(2)dS = | ut(z) —uT(2) ®dS . (3.3.61)

Sp

Since the gradient of u(z) is G(z), we can take for z € S, any curve z,(0,1) — R?
connecting the two sides of the surface in z through the regular area. We calculate
the discontinuity of u as the integral over G.

wH(z) — u(2) = /0 Vu(z.(5))d

_ / VG(r.(d3)ds . (3.3.62)

0

On the other hand this is the integral over a closed loop of the differentiable
vector field GG. Therefore, according to stokes theorem this equals the integral of
the rotation of G over any surface S, with boundary x,. But the rotation of G
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is given by the dislocation and we get

1
/ u(2)dS = / / VG(2.(3))d5 ® dS
s;usy Sy J0
_ / / rot GdS. © dS,
s, Js.
_ / b®dS
S

As in our calculation for d = 2 we expect the contributions of the other parts of
the boundary to be small.

(3.3.63)

/ VFE, (A7") (G(z) — ARl d= . (3.3.64)
For a circle of radius R we get
Eq =~ —CyR*|VF,, (A7") (b®n)| . (3.3.65)
Putting the core energy and the elastic energy together we get
SE(R) = C1RN* — CyR*|V F,, (A7) (b@n)| . (3.3.66)
The R of maximal energy is then
C1)\?
Rmax ~ 3.3.67
2C,VF,, (Az") (b®@n) ( )
And the energy barrier is
CiN
EBar 1 (3.3.68)

T 20,VE,, (A (b@n)

Nucleation Instead of creating a dislocation line we could also just move the
atoms locally to fit the lattice £ in a ball of radius R expanding outwards. This
creates a cost at every point in 2\ distance from the surface of the ball.

Eopw = OwARTH . (3.3.69)

On the other hand we gain a reduction in F' energy for every point that is inside
this ball.

We get an radius of maximal energy

(d—1)Cy
dCr (F(AR) — F(E))

Ronas = A (3.3.71)
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Furthermore, we get an energy barrier

Eper = — Ciy — X! (3.3.72)
(Cr (F(Ar) = F(E)))

For d = 2 the upper bound for the nucleation has the same scaling in A as the
dislocation. For d = 3 the barrier of the upper bound for the nucleation has a
better scaling in A. This is another sign that the core energy is too high in our
model.

We also note that we want to study relaxation of lattices close to SO4(R).
Our potential is convex there. Hence, VF,, (A3") = O(dist(A, SO4(R))) but
(F(Ag) — F(E)) = O(dist(A, SO4(R))) Therefore, in dimension two relaxation
via dislocations is better than via nucleation, for configurations close to the
groundstate.
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Chapter 4

Lagrangian coordinates

4.1 Discrete Lagrangian coordinates

In this section we will develop a method to identify topological defects and later
explain how this leads us to an estimate of the energy cost of such defects: For
this we first prove that all points in a A-ball around a regular point are regular
with modified coefficients and a smaller X. So, if we have two regular points
with distance less than 2\, the point between them will be regular for smaller
A. This way we can use Lemma 2.3.5 to show that the change of A between
different regular points is a reparametrisation plus a small difference controlled
by A1 /e;, and that the change of 7 between the points are given by Adz a
reparametrisation and a small difference controlled by ,/e;. Therefore, for a
sequence of regular points with |y;11 —y;| < 1.5\ we get a reparametrisation
in every point. If the sequence goes back to its starting point the composition
of these reparametrisations will give us a topological invariant, which we call
the generalized burgers vector. We use this to characterize topological defects,
especially dislocations in the framework of our model. Furthermore, we get an
upper bound on the possible changes of A and 7 as sequence of regular points in
terms of > V€ (y;j). So we can calculate how long a chain has to be to reach a
certain change in the lattice parameters. We will conclude that a barrier between
different crystal structures consists of irregular points and needs a width of at
least A or we can jump over it and expect that the crystal structure on both side
of the barrier is essentially the same. On the other hand we can interpret this
inequality as a lower bound for the sum of the |/e; at the position of the chain.
If we move a chain on a curve we can get an estimate of the average ¢; on the
curve. In particular we can get an estimate for the average €; on a curve around
a dislocation and can calculate the cost for the core energy of a dislocation.

The basic idea of our first lemma is that z is a regular point means the
configuration looks like a lattice in a A ball around the point z. Therefore, a
point y close to x has to be regular too, if one uses a smaller A, such that the A

101



102 CHAPTER 4. LAGRANGIAN COORDINATES

ball around z is a subset of the A ball around z.

Lemma 4.1.1. For all C4 > 0 there exists A\ > 0 and ¢ > 0 such that for all
A> A A e Gly(R) with ||[A7Y]| < Ca, 7 € R* and x,y € Byx(Q) we have If = is
(€p, €7, Ca)-regular with (A, 7) and |x —y| < A, then y is (€,, €5, Ca)-reqular with
(A, 7+ A(y — x)) using the smaller X = X — |z — y| where

)\ d
J;(A,T,x,y)é(i) (A rvz)

N N2 C+ ot A\ ¢
Ep:(r) %(14-6/))@]—1-(;) €

A
i MN71+¢
€] = (i) 1—€ZEJ . (411)

Proof. We claim that for every atom x; € y it holds

() e (1) a1

Because if ||z; — z|| < A, we have ¢ <‘x—)\_y‘> <l=¢p <@> because 1 is the

maximum of ¢. x; is outside By (x) and y is inside the ball. line segment between

N\

Figure 4.1: Geometric setting

y and x; is intersecting with the surface of the ball in one point. We call this
point z,. (See picture 4.1). We get

|z — | <|z—y|l+ |y -2
ly—mp| 2]z -z =z —yl=A -z —y[2 A . (4.1.3)
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and

|2 — y| = |as — 2| + |2y — y| > |23 — 2] + A

\ |z; — xp| + A

A ~
2X|xi—xp|+)\2 A

>\$z’—$\5\

(4.1.4)

Since ¢ is monotone decreasing, we have
|z — | |z —
- < . 4.1.5
@ ( ) Sl (4.1.5)

Jj\(ya A> T+ A(y - I), X)

It holds

AP <
LS W )+ -2 (3 b ol)
® 7
A ,
<fi e S WA =) o (7 e )
2\
< ﬁjj\(ﬂj,A,T +A(y —x)) . (4.1.6)

We now want to achieve a lower bound on p5(x,y). We start at a Bravais lattice
X =Xa+2z=AY2Z~ 1)+ as a configuration. This configuration has ¢; = 0
For this lattice we have p5(x,y) = det A + O(A™2). There are different ways to
reduce the density.

On the one hand one can take atoms away. This decreases p;5(x,y) but because
of equation (4.1.5) it also decreases py(x, =) at least by

)\d
ops(x,y) < §;5P : (4.1.7)

Another possibility is to move atoms to positions of lower (A~ |z; — z|)) this
does not have to reduce p,(x, ) at all but it will increase Jy. If we shift the i‘th
atom for a distance dx; we maximally reduce p5(x,y) by

-1 Ve (A i —y) 1
op; = B 3 dx; + O(0x\™7) (4.1.8)

we get a minimal cost per atom of

1
C N

6x7p (A |z — xf) + O(N1(62:)?) . (4.1.9)



104 CHAPTER 4. LAGRANGIAN COORDINATES

Furthermore, we have for z; € By;(y)

|z — | <|z;—y|+ |y — x|
<IN+ A — A
<o\,

o ('xi;ﬂ) >0 . (4.1.10)

Up to higher order we are in the case of a quadratic potential with linear con-
straint. This case is treated in Lemma B.1.5. We get

-1

~\ d
A 1 V(A oy — yl)\2 ~1 25 2
> = = + 0(A Aop”. (4.1.11

' <A> G xie%;(w 0 Tlm =) " e

We can make a discrete continuum transition using 2.1.2 with m = 2. We create
an error-term in the transition that is proportional to the second derivative.
With every derivatives of ¢ we get a factor A™' Therefore, the error is O(A7?)
that means negligible compared to the error we already made.

-1

~ 2
N[ 1 Vel =]
> = / det Adz +0(A"1) | A25p?
CoAd Jrs

A p (A z — )

a2 - Qs )
5p<(%) C \W(Iz DE g oo | vae a2 75

o)

) d/2 1
sp <C, G) I ;’X’x) . (4.1.12)

The py(x, ) we can estimate from above with p < (1+¢,) det A If we summarize
(4.1.7) and (4.1.12) We get

d/2 -1 d
det A — ps(x,y) < <<%) Cq_()f()\)(l +€,)es + (%) 6p> det A

(4.1.13)
Starting from a lattice the density p5(x, y) of the configuration can increase in two
ways. On the one hand one can shift atoms to positions of higher . This leads
to the same increase of Jy as in the reduction case. On the other hand one can
add more atoms, that will lead to the same increase as in of py(x, z) additionally
it will increase Jy because new atoms can not be placed in the minima because all
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minima are occupied. We get the same estimate for the upper bound of p;5(x,y)

AN\ C+on? A\
det A — p3 (09| < <<X) P e+ () ) aera
(4.1.14)
Finally, we estimate
A\ ¢
JS\(A> T?Xay) < <§) J)\(A7 T,X,Qf) s
A\ ¢
S(i) ep(x, @)
A\ ¢
§<1—|—~p<7) eJdetA> s
< () 1£E (%, 9) (4.1.15)
= 5\ 1_€p€Jp)\ X?y e
]

According to Lemma 4.1.1 points close to regular points need to be regular
with smaller . If we have two regular points that are close enough, this means
that the midpoints between them needs to be regular with the lattice parameters
of both of these points, According to theorem 2.3.5 the lattice parameters have
to be equal up to a reparametrisation and the change of 7 due to the change of
the x position and a small difference. The small difference in A is controlled by
A1V J,. The small difference in 7 is controlled by v/.J5.

Theorem 4.1.2. For all C4 > s, there exists A€ R and e; > 0 such that
for all X > 5\, Ay, Ay € GL(R), 11,75 € RY and x1, 35 € Box(Q) the following
holds. If zy is (273724 €5, Cp)-reqular with Ay and o is (273724 ¢;,Cy) with A,
and |z1 — 5| < 3\, then there exists a unique reparametrisation B € Gly(Z),
t € Z%such that

A 9 d/2
lid — A7*BAs|| <—=2 < A ) vh o
Vdet Ay \ 2\ — |x1 — 29| A

BA, + A || Ay 2 4/2
Brott—m— 22T Mg V
ERIE ;o n) <o T o I

(4.1.16)
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where

J)\ szaX{J)\(Al,X,xl),J)\(AQ,X,.T2)} )

3(C -3
A2 P2 AW
7y (quoco ) ’

<

ch = < (4.1.17)
Proof.
Figure 4.2: Geometric setting.
Existence We consider T = (27 + x2)/2 and get
|ty — Z| = |20 — Z| = |21 — 22| /2 < A (4.1.18)

We apply Lemma 4.1.1 twice, one time with z; as z and T as y and the other
time with zp as x and T as y. T is (€;,€,,Ca) regular with A; := (A}, +
Ay (2o — 1) /2) and Ay := (Ag, 72 + A (21 — 22) /2). Therefore, we get

. 22 d
hAsxa) = (o) BT+ A=)

|71 — @2
€, = 2\ Y o+op (I+e€,)es+ 2 d(—:
P\ 2N — |7y — 1y A Py 2\ — |71 — 29| P
(4.1.19)

Since we have two regular lattices, we can apply Lemma 2.3.5 and get B € GL4(Z)
and t € Z% such that

A 9 d/2
- arsal < (gm—mr) S
Vdet Ay \ 2\ — |x1 — 24| A
BA, + A Al ( 2 )CW
Bro— 1+ 2 (g — ) +t] < V.
o ;  (m—m) Jdet Ay \ 2\ — |1 — a9 A

(4.1.20)
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Uniqueness Suppose there are By, By € Gly(Z) with

A 2\ d/2 T
1— AT'B A < — < CagiV A 1121
1= A7 B A < (QA_‘%_M) e s NTRE)

then we get

|AT! (B2 — B1)Aa| <|A7'BaAy — 1+ 1 — AT'Bi Ay
<|AT'BaAy — 1]+[1 — A7 B Ay|
<[[AT By Ay — 1| + |1 = A By

_ Ve

Av/det A,

Due to }Al_l} < C4 and Remark 2.3.2 we get

<2¢42° (4.1.22)

By — Bi| <|Ai] |[ATH (B2 — Bi)As| [ATY
_Vh
)\\/det A2

Since By, By € Glg(Z) and Gly(Z) is a discrete set, they are equal if the norm of
there difference is smaller than 1. Therefore, if it holds

<2C)4|Cacy2? (4.1.23)

Iy < (Claci2™1Cun) det Ay (4.1.24)

then B will be uniquely defined. Since it holds |A;'|,]A5!| < C4, the matrix
derivative of det A is bounded (see Lemma B.2.3). Additionally, it holds det Ay <
(1 —€,) " tpier. Hence, the estimate (4.1.21) implies that we can estimate

J
det A} =det Ay + O (Q) (4.1.25)
Due to the regularity condition on the density we get
pA(Xaxl) <(1+6p) detAl )
pa(x; T2) <(1+4€,)det Ay . (4.1.26)

Therefore, we get for small enough €,

J)\ = Inax {J)\(Ala X ]31), J)\(A27 X5 1'2)}

<eymax {px(X, 1), pa(X; 22) }
<ej(1+€,) max{det Ay, det Ay}

<es(1+¢€,) <1 +0 (‘/AJ_)) det Ay . (4.1.27)
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Hence, the condition (4.1.24) is satisfied for sufficiently small €; and B is unique.
Assume we have t1,t, € Z¢, we get

BA, + A 2\ a2 TN
B ti—T — ——— - <A | ————
Ty + J 1 92 (‘T2 xl) CJH ]H (2)\—‘l’1—$2|) \/M
Vi
<NV dC) 42 , 4.1.28
CJ 4] det A2 ( )
We set BA. 4 A
X :=Bn—1 — % (xg — 1) (4.1.29)
and obtain
lty —th] <|tz — X + X — 14
VI
<ty — X| 4 |X — 1] < 265VdC) 4202 (4.1.30)

det A2

Since t1,ty € Gly(Z) and Gly(Z) is a discrete set they are equal if the norm of
there difference is smaller than 1. Hence, if Jy < (20}\/30‘ A12%) 72 det Ay, then

t will be uniquely defined. Therefore, we get uniqueness of ¢ with the help of
(4.1.27). O

Definition 4.1.3. We call a point x € Q connecting-regular if
1) xis (273724 ¢;,Cy)-reqular to A,
2) 3det E < det A

where € = (((4OAC|A\ +6)c] + 180’}1) 2dC|A‘)_2 s chosen to meet the conditions
of Theorem 4.1.2 and of Theorem 4.1.8. The set of all connecting-reqular point
is called Q4

We state a simplified version of Theorem 4.1.2. The main modification is that
we use a uniform estimate for the det A.

Corollary 4.1.4. For all Cy > s, there exists A €R and €; > 0 such that
for all X > X\, Ay, Ay € GLu(R), 11,75 € R and 21,25 € Bar() the following
holds. If xy is connecting-reqular with Ay, and x4 is connecting-regular with As
and |xy — xo| < %)\, then there exists a unique reparametrisation B € Gly(Z),
t € Z%such that

9 d/2
Jid — AT'BA,| <C% < A ) Vilx

2)\—|$1—$2‘ A ’

2\ d/2
<l (—peri) Vo

X1 —
(4.1.31)

BAs + A4

Bry+t—m1 — 5

(z9 — 71)
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where

Jy :=max {J\(A1, X, 21), Jx( Ag,x,xg)} :

ct =3 (16dC g de tE)

C7 = <%C(§’V det E) ’ (4.1.32)
Proof. Just compare Theorem 4.1.2 with Definition 4.1.3. O

Qorollary 4.1.5. There exists Ajp and €;p > 0 such that for A > A\jp all x with
hy (z,Xx) < €;p are connecting reqular.

Proof. We compare Definition 4.1.3 with Theorem 2.4.3. According to Theorem
2.4.3 the parameters satisfy e; = O(e) + O(A7?) and €, = O(e) + O(A™?). Hence,
for large enough A\ and small enough e the assumptions will be fulfilled. O

We want to apply Theorem 4.1.2 iteratively on a sequence of connecting-
regular point. We introduce some definition to describe this compactly.

Definition 4.1.6. 1) We call a series of points y; € Box(2) with j = 0..K
connecting chain if all y; are connecting-reqular and |y;+1 —y;| < 3/2X for all
j=0..K

2) We call the series (yj, A;,7j) € Baa() x Glu(R)x € R* with j = 0..N a

connecting A-chain if x; is connecting-reqular with (A;, ;) for all j = 1..N
3) We call a connecting A-chain closed, if yn = yo and Ay = Ap.

4) For a connecting A-chain we call the sequence of B; = (Bj,t;) € (Gl/Z,Z%)
uniquely defined by Theorem 4.1.2 the associated reparametrisation sequence.

Definition 4.1.7. For a connecting A-chain and the associated reparametrisa-
tion sequence B; = (Bj,t;) € (Gl4Z,7%), we define the product reparametrisation
(B, t) € Gl3(R) x Z* as composition of the affine maps given by the reparametri-
sations

N
=B,.By=[][B; ,
j=1
N
=B...By=]|[B; ,
N /k-1 .
t:Z<HBj> te . (4.1.33)



110 CHAPTER 4. LAGRANGIAN COORDINATES

For a closed connecting chain we call the product of reparametrisations the gen-
eralized burgers vector. If B # Id we say the chain goes around a topological
defect in A. If t # 0 we say the chain goes around a topological defect in 7. We
also call a topological defect in T a dislocation.

If we have a connecting A-chain, we can add and leave out intermediate steps
without changing the product of reparametrisations. In particular this is not
changing the generalized burgers vector. Hence, the generalized burgers vector is
a topological quantity.

Theorem 4.1.8. If we have a connecting A-chain (y;, Aj,7;) € (Baa(2) X
Glg(R)xR? with j = 0...N, and if we have a second connecting A-chain (%;, A;, 7;) €
(Baa(2) x Gly(R)x € R with j = 0...N — 1 such that there is a n € Z with

1 < n < N such that it holds

J<n=(y; A1) = (G,4,7%)

j>n=(y,A4,7) = (Ui-1,4-1,7-1) (4.1.34)
then the reparametrisation products of both sequences are the same
N N-1
1Is=115 .
j=1 j=1
N k N-1/k
> (H BZ-) ty = <H Bi) te . (4.1.35)
k=1 \j=1 k=1 \j=1

where B; = (Bj, 1) denotes the associated reparametrisation sequence to (yj, A T))
and Bj(B;,7;) denotes the associated reparametrisation sequence to (3;, Aj, 7;)

Proof. Equality of the B products Because of the uniqueness of the reparametri-
sation proved in Theorem 4.1.2, we know B; = Bj forj=1.n—1and B; = Bj_l
for

j =n+ 2...N. Therefore, the two products are equal, if B,B,.+1 = B,. Further-
more, we estimate

J,\(k‘) = maX{J)\(Ak—bXaxk—l)a JA(Ak:,X,l"k)} )
SEJ max {pA(prk—l%p)\(prk)} ;
<ey(1+€,) max {det Aj_;,det Ay}

cott e (140 () )aun w10

Hence for sufficiently large A we have with Theorem 4.1.2 for the longer chain

lid — A1 BLA, | <c§2d+1%‘] ,

lid — A Byt Ay | <c§2d+1%‘]q . (4.1.37)
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We calculate for €; small enough

id — A, BB Ana |
<lid — AL By Ay + AL By A, (1 — AT B Ast) |
<|id = An—1BnAn + An1 By Ay| + | AL BrAn| |id — AL By A |

€J
§6c‘}‘2dx : (4.1.38)

We know from Theorem 4.1.2 for the shorter chain
lid — AZL, B, A, || <2c§2d\/A—€_" :

lid — AL BrApy || <2c§‘2d@

(4.1.39)
We get for €; < A2(8C4C|4C42%) 2
By — BpBuyi| <|An4]]A ( BanH) Ana| [A544]
<CuC ‘A Borir — A;ianBnHAnH‘
<CaCia |4 Boa | + 1= A, BuBoi A
<80JC'AC|A\2d\/_ : (4.1.40)

The distance between B,, and B, B, ;1 will be smaller than one and they have to
be equal because they are both elements of the discrete set Glg(Z). We have

N_léj: (ﬁB) H B;

j=1 j=1 j=n+1
n—1 N-1
=(1IBi)BuBurr [ Binr
j=1 j=n+1

=I5 - (4.1.41)

Equality of the 7-product: Because of the uniqueness of the reparametrisa-
tion proved in Theorem 4.1.2, we know ¢; = t for j =1.n—1and t; = t] 1
for j = n 4+ 2...N. Together with our calculation for B we get (szl Bty =

(Hk ! B))ty for k =1..n—1 and (Hk ! B))t, (Hk > Bty for k =n+1...N.
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So we need still to prove

n—1 n n—1
(o) (1) - (15
j=1 j=1 j=1

o+ Butnsr =, . (4.1.42)

If we apply Theorem 4.1.2 on the first chain, we get

B,A, + A, _
57—71 ::Bn’rn + tn — Tp—1 — Znin Lol (yn - yj—n) 5

2
‘(57%‘ <QCSC|A‘2d\/a s
Bn—l—lAn—i-l + An

67—n+1 ::Bn—l—lTn-l—l + tn-‘,—l — Tp — 9 (yn—i-l - yn) 5
6T 11| <2¢5C1a12%e5 . (4.1.43)

We calculate with the help of Theorem 4.1.2 for €; < A?(c42¢)~2 that it holds

|BpAn — Ap_i| <AL By A, —id] | Ay
gcmcfzd@ ,
|BpAn — BnBuyiAnia| < |BrAn||id — Ay By And|
<2|A,1]|A B Ay cfzd*/—;_J
<2C| ) (1 + zcﬁzﬂ—;_‘]) cf}zd\/—;_" < CA|C§12d@ :
(4.1.44)

We also get

|B,| < [Api| | A7 B | | A7

<C4C\ 4 (1 + 2c§‘2d@) < CaCla - (4.1.45)
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We obtain
B,B,i1A, 1+ A,
‘Ban—HTn—H + Bntn+1 + tn — Tp—1 — t 2+1 . (yn—i-l - yn—1>
== ‘Bn57n+1 + 57—11 + fl (yn - yn—l) + Bn + 2+1 (yn—i-l - yn)

B, B, 1A+ A
+‘_ +14n41 1

9 (yn+1 - yn—l)

1
S ‘Bn57n+1| + |5Tn| + 5 ‘(BnAn - An—l) (yn+1 - yn)‘

1
+ 5 1(BuAn = By BusiAni1) (Yn = Y1)

3\ 3\
S ‘Bn| |5Tn+1| + |5Tn| + Z |BnAn - An—l‘ + Z ‘BnAn — Ban+1An+1|
(4.1.46)
We use the estimates (4.1.43), (4.1.44) and (4.1.45).
B,B,14A, A
Ban+lTn+1 + Bntn—i-l + tn — Tp—1 — + 2+1 T - (yn+1 - yn—l)
SQ(CACW + 1)C}C\A| + 18C§C|A‘2d_2\/a
< ((4CAC) A + 2)27 + 18CF) 2% uv/er (4.1.47)

On the other hand, if we apply Theorem 4.1.2 to the second chain, we get

- . B, A, + A,_
By + ty — Tno1 — % (T — Tn1)| <265C142% /€5
7 Ban An + An— T
BB Tog1 + by — Tt — e L (Yt — yn1)| <265C1020 /€5
(4.1.48)

. BBt Api1+An_
Hence, if we call X = B,Bni1Tnp1 — Tno1 — —22etlfneifnt (

finally get with the estimates (4.1.47) and (4.1.48)

Yn+1 — yn—l)a we

| Butns1 + tn — tn| <[Butnsr +tn + X[+ | X — 1]
< ((2C4C14) + 3)c) + 18¢7) 2%Cla/es (4.1.49)

For ¢; < (((4CAC|A\ +6)cT + 180’}) 2dC|A‘)_2 the difference between B,t,.1 + t,
and ¢, is smaller than 1 and since both belong to the discrete set Z?, they have
to be equal. O

Corollary 4.1.9. Replacing in one step in the connecting sequence (y;, A;, 7;) by
(yj, Aj, ;) does not change the product reparametrisation of the chain.
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Proof. We consider a chain, that goes from (y;_1, Aj_1,7;—1) over (y;, A;, 7;) to
(541, Aj41,Tj—11)- Now, we add a point (y;, A;,7;). By Theorem 4.1.8 we know
that the new chain still has the same reparametrisation product. Now, we leave
out (y;, A;,7;) and by Theorem 4.1.8 we know the reparametrisation product is
still the same. O

Next, we calculate upper bounds for the change of A and 7 in a connecting
chain.

Lemma 4.1.10. For all Cy > 0 there exists \ such that for all X > X the
following holds: If (A;,y;) with j = 0..N is a connecting A-chain and B; =
(Bj,t;) denote the associated reparametrisation sequence to A;, then it holds for
1<k <ky<N

k2 CA ko R
Al H B Ay,| <exp TJ b; ,
k1 Jj=k1
ca XL . oa N .
L= A (EB]) Ay STZ@- exp <TJZ j> : (4.1.50)

with
Ji =I(Aj,x95)
R 9\ /2
b; = max v/ Jj, v/ Ji . 4.1.51
J (2>\_‘yj_yj_1‘) { J J 1} ( )

Proof. Because y; with j = 0...N is a connecting chain. And (A4;,7;) € Gl4(R) is
an associated A-sequence. We use the notation

a; =A; L BTA;
bj=1—A;\B:'A;=1—qa; . (4.1.52)

We can use Corollary 4.1.4 and get for every j = 1...N

A
b <[[bs]] < bjTJ ,

b; = < 2A )M max { /T, /T (4.1.53)

22 = lyj — yj-
Using this upper bound for |b;| we derive an upper bound for general products
of a;

ko ko ko
[Ta|=TTa-0)| <] @+l
Jj=k1 Jj=k1 j=k1

< H exp (|b;]) < exp (Z \bj\) : (4.1.54)

Jj=k1
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Furthermore, we get

ko ko
H a; = [ (A7,B'4;) = AL, <H Bj‘l) Ay, (4.1.55)
Jj=k1 k1 k1

We derive a bound on 1 —[]a;

N N j—1
1—Haj S 1—a1+ZHaj(1—aj)
j=1 Jj=2 j=1

§|1—a1\+ﬁ:\1—aj\ ﬁaj
<|bl\+Z\ | exp (ZV%)
ﬁ: )| exp (Z\bk>

<3710 exp <Z \bk\) . (4.1.56)

N CAA OA N R
-§ZTijeXp (szbk> . (4.1.57)

O

Now, we calculate an upper bound for the change of the lattice parameters 7
in a connecting A-chain.

Lemma 4.1.11. For all C4 > 0 ezists a A such that for all A > A the following
holds If (y;, A;) with j = 0...N is a connecting A-chain and B; = (Bj,t;) denotes
the associated reparametrisation sequence to A;, then it holds for all 1 < ky <
ko < N

éNAN + AO

Zék_ltk—FBNTN—TQ—F 9

k=1

CA N N
< <CAO|AO§ + TJ Z ‘yj-i-l ) |A0 Zb exp ( Zb ) , (4158)
7j=1

(yn — %)
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where

Ji =I(Aj, x,y5)

b, :< 2A )d/zmax{\/fj, Vi) (4.1.59)

2X = Jy; — Y-
Proof. We denote

N A
A - ByAn + A
orT ZZZBj—ltj + BNTN — To + % (yv — %)
k=1
BjA; 4+ Bj_1A;_
(57']' Z:tj+BjTj—Tj_1+ L 2] ket l(yj-H—yj) )
aj :=A;1 By 1A . (4.1.60)

Since (y;, A;,7;) with j = 0...N is a connecting A-chain, we can use Corollary
4.1.4 and get for every j = 1...N

cH.
= all <=Lb;

07;| <C3||A;_1]1b; (4.1.61)
Hence, we have bounds for 67; and want a bound for d7
N .
671 = > Bjaty + By — Bt 1+ w (5 — yj-1)
j=1

N
. 1/ . .
= E Bj_l(sTj + 5 (BNAN — BjAj + A() — Bj—lAj—l) (yj+1 — yj)
j=1

N
=C3 ) Bj—l) 1 A;-110;
j=1
1N /) - . .
+ 5 ; ()BNAN - Bj) + ‘AO - Bj_lAj_lD \yjﬂ - yj| . (4162)

Using Lemma 4.1.10 we can estimate

. . - oAl
‘Bj—l‘ S |A0| ’AO lBj—lAj—l’ }Aj_ll‘ S CA |A0| exXp <TJ Zbk
k

c4 .,
<Cy |Ag|exp (7‘] > bk) : (4.1.63)
k=1
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We calculate

3
._.

A

Ao — Bu_y Ay 1‘ <3 |B4; - Bj_lAj_lj

7j=1
n—1
<Z

< Z | Aol ‘Aaléj—lAj—l
=1

Jj— 1f% 1

|A; 1 B;A; — id|

|A1 B A; — id|

n—1 j—1
<> Aol |[ ] ak| la; —id| (4.1.64)
j=1 k=1

Due to Lemma 4.1.10 we get
) n—1 OA n—1 ) CAA
‘AO_Bn—lAn—l) S‘Ao‘ZeXp szbj TJ '
j=1 k=
n—1 N
C4 . c4 -
<|Ay| Z bej exp <TJ Z bk> : (4.1.65)

We estimate ‘éNAN — BnAn in the same way and obtain

<y

j=n+1

)BNAN_ An n

- Aj—lAj—l)

N
<> |Ao|‘A613j—1Aj—1

j=n+1

< Z |A0 HCLk
j=n+1

< | Ao Z Jb exp (C—; Zbk> : (4.1.66)
k=1

j=n+1

|A; B A; — id|

|a; — id]|

A combination of the estimates (4.1.65) and (4.1.66) leads to

N OAA OA N .
\ZTijeXp szbk
j=1

k=1
(4.1.67)

AO - Bn—lAn—l‘ + ‘ENAN - An n
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Using the estimates (4.1.61), (4.1.63) and (4.1.67) results in

N . CA N .
|67 < ClaC7C | Ag| by exp <TJ > bk>
k=1

j=1

CA N R N
+\Ao|z b exp (TJ Z%) D v — vl
N o
< (CACA|C} Z‘y]-i-l y]) |Zb exp (szk>

A closed connecting A-chain that has a topological defect in A, meaning
[1}., B; # Id, has a minimal length O()?).

Lemma 4.1.12. For all Cy exists \ such that for all X > X\ holds If (y;, Aj) €
Box(Q) x Glg(R) x R with j = 0...N is a closed connecting A-chain. and has a
topological defect, then we have

2 ( ~Aod mar) -1 1
Z\yg Yyj-1| = >\ (C 2%/ €spy ) / <7|AOI\A51\> ; (4.1.68)

7j=1

where f(x) := xexp(z) and
&= (((ACacia + 6)c5 + 18¢4) 20C14) (4.1.69)

Proof. If we have |yx4+1 — yx—1]| < 1.5 for the connecting chain A-chain (y;, A;, 7;)
with j = 1...N , then we can leave out y; in the chain. According to Lemma
4.1.8 the chain have then the same burgers vector. Hence, we can find a modified
closed connecting A-chain (#;, A;,7;) for j = 1..N with |#;;; — #;_1| > 1.5\ that
still has the same Burgers vector. We denote the associated reparametrisation
chain (B,,t;). We realize that, because of the triangle inequality, it holds

N N N/2 3
D o1y =yl > Z 8 = &l 2 ) [fase — Bl 2 AN . (4170)
j=1 j=1 Jj=0

Now, we study the term ‘1 — Ayt (H;VZI Bj) Ao‘. On the one hand, we have a

topological defect, i.e. vazl B; # Id. Since [];_, B; and Id are both in the
discrete set Gl4(Z), their distance has to be at least 1. Since the chain is closed,
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it holds

N

1<ii—(]]B
j=1
<|Ag| |1 — At HB Aol A (4.1.71)
On the other hand we know due to Lemma 4.1.10

<H3>AO

ca X ca XL
< —J Zb] exXp TJZb] s (4172)

j=1 k=1

where

<2%\/ejpmar (4.1.73)
. Combining (4.1.71) ,(4.1.72) and (4.1.73) we get

1

C c4
m ~ J N2 \/Ejpgw'x exXp ( );]NQd\/ pgnaz) . (4174)

By observing that © — f(z) := zexp(z) is a strictly monoton function, we can
solve the inequality (4.1.74) for N, and obtain

~ -1 1
N Z <CA2d\/€Jngaz) f_l (m) (4175)

The final result follows by linking the last inequality with 4.1.70

N . 1
g 2 A d /2 _mazx -1

j=1
U

We observed that a chain with a topological defect in A has a length scaling
like A\2. This means that the chain can not have short cuts. From here we
conclude, that there must be a 1.5\-barrier of not connecting-regular points.
Hence, any topological defect has an irregular core with an area scaling at least
like O(A\3). According to Corollary 4.1.5 all points that are not connecting-regular
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needs to have an energy of at least €;p. Therefore, the core energy cost of an
topological defect in A scales at least like A* times the length of the defect.

In the next lemma we prove an lower bound for the average J, of a curve of
length L arround a dislocation. The generalized burgers vector is a topological
quantity.

Therefore, if a dislocation is present in one connecting chain, then the dis-
location is present in all connecting chains, which can be obtained by replacing
single steps in the chain. We can divide the curve into N parts of equal length
L/N < 1.5) with a sequence of of points y;. There are two possibilities: First,
all points y; are regular. In this case, the sequence is a connecting chain and has
to show a dislocation. We use Lemma 4.1.11 to get an estimate for the average
Jy of the endpoints. The second possibility is, that at least one point is irregular.
We can shift the starting point of our sequence to get two connected estimates;
one for the measure of the set of irregular points and one for the average J of
the regular points.

Lemma 4.1.13. For all C4 > 0 exists \ such that for all A > \ the following
hold: For any curve u € Cl([O,}],Q) with w(0) = u(1) with length S and for a
closed connecting A-chain (I, A;) € Bax(€) x Glg(R) x RY, j = 0...N ,such that

y; € u([0,1]) and (y;,.A;) has a dislocation but no topological defect in A and for
every N € N with S < 1.5AN we have

A2 /20— S/N\“
(C4)? ( 2 )
< (f7 (14l (CosA+8)T))" L (4L77)

/ T(A(), x, 2)de >(S/N = S )N
u[0,1]NQreq

where

Sirr = / dx s
U[O,I]QQWT

fla) :=aexp(a)
_CaCiC

C 4.1.78
S 034 ( )
Proof. We consider dz € [0, S/N] and take t; such that
to
ox :/ |Vu(s)|ds
0tj+1
S/N:/ |Vu(s)|ds . (4.1.79)
tj

Therefore, we have for y; = u(t;) and can estimate

tj
/ Vu(s)ds
tjt1

\yj+1 - ?/j| =

tn
< / IVu(s)|ds < S/N < 1.5)
ti+1
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Hence, there are two possibilities. Either the y; are a connecting chain and we
can find a connecting A-chain (y;, A;, 7;) to them. Or at least one of the positions
y; is not connecting-regular. We denote the set of éx € [0,S/N] for which all
y; are connecting-regular R and the set of 0z € [0, S/N] for which one y; is not
connecting-regular /. If they are a connecting chain they have a Burgers vector
because it is a topological quantity according to Lemma 4.1.8. We will now study
the term

N
57’ = ZBk—ltk+BNTN —T0+

k=1

ByAyx + A
%(y]v—yo) . (4.1.80)

First we realize that in our case yny = yo and since the chain is closed, we have
Tn = To. Furthermore, there is no topological defect in A and therefore By = id.
On theA other Zszl By 1t # 0, because there is a dislocation. Additionally,
Zszl By_1ty, is an element of the discrete set Z¢, and it holds

67| = (4.1.81)

N
ZBk—ltk >1
k=1

Next, we use use Lemma 4.1.11 to get

|07

N N
Ca A
< (CACJC|A + \ E Yjt1 — y]) | Ao| E b exp <—>\ 321 bk)

b = <2>\ - \923')\— yj_l\) max{\/J v \/J (b1 }
< <ﬁ)d/2 max {\/J(yj), \/J(yj—l)} : (4.1.82)

We notice that

max {\/J(?/j)> \/J(yj—l)} S\/J(yj) + \/J(yj—l)
ﬁ:maX{\/J(yj%\/J(yj—l)} §2ﬁ:\/J(yj) : (4.1.83)

and that

N
Sy -yl <8 . (4.1.84)
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We summarize

1 < o]

(CAC Claj + == < ) | Aol (ﬁ)m
xzzﬁexp< (% QAS/N) ﬂzé@) . (4.1.85)

We solve the inequality for Zk:l /J(y;) using f(x) = zexp(x) and we obtain

CAC5C) c4 2\ &
< o bl N |
1—‘A0‘( cr Mt S) f< M \a—gw) VW)

Sy () (e (20009) ) -

(4.1.86)

Hence, we have the constraint Z;VZI VJ(y;) > X. With this restriction we
minimize Z;VZI J(y;) with /J(y;) as variable. This is the case of minimizing
many quadratic potential with a linear constrain described in Lemma B.1.5. We

get
N

X2
E_ J(y;) = N (4.1.87)
We integrate this estimate over R

|RIN1X? :/ N~'X?dox
R
N-1
< [ Y it
R

< / Jdr . (4.1.88)
u[0,1]NQreg

We resubstitute X
/ esdr >|R|INT1X?
[0,1]Qreg

JIRL X (2A - S/N ¢
N ey 2

(P (i (@G0 ) ) s
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On the other hand, for every dx that is not in R there is at least one y; that is
not connecting-regular and we obtain

/ de > |I| = S/N — |R| . (4.1.90)
u[O,l}ﬂQm

O

Next, we calculate a lower bound scaling like A? for the energy in the core
region of an isolated dislocation. Isolated dislocation means that all closed con-
necting chains that run around a point yo on the boundary of a circle 9B, (yo)
with » < R have up to reparametrisation the same Burgers vector. We apply
Lemma 4.1.13 to these circles. This will give us a combined estimate on the
irregular points and the average Jy. According to Lemma 2.4.3 we can bound
the energy density from below with a term linear in J). Due to Corollary 4.1.5,
irregular points have a minimal energy density. Hence, we get an estimate for
the average energy density of these circles and therefore for the core energy of
the dislocation.

Theorem 4.1.14. There exists \ such that for all X > 5\, beZi b#£0, 2, €1
and R > 3%?)\ such that Bgr(zy) € § the following holds: If all r € [?’ff)\, R] and
all closed connecting A-chain (A;, 7;,y;) with j = 1...N satisfying

PY y] =T +T(COS¢jaSin¢j)7
° 0<¢j+1_¢j§%i
o oy — ¢; =2,

have up to reparametrisation the same generalized Burgers vector (0,b), then there
exists 7 = O(N), such that for R < 7 it holds

g - 2
/ / ha(x, x)dxdr = > g)\EJP R — i)\ . (4.1.91)
392\ Ju,[0,1] 5 4

V2
A

and for R > 1 we have

h X, x)dxdr
/STﬂA/uT[o,u A )

6 . 3V2 v A
2 g)\EJP <7" — T)\) — ’ﬂ'ma/l)@ det AQ (R2 — 7’2)

§u1—19 A
25 440 A

((055)\ + 2Wf)_2 — (055)\ + 27TR)_2) . (4.1.92)



124 CHAPTER 4. LAGRANGIAN COORDINATES

where

1/3
4 —
2t = | Csg A + ({?2 19) — A
5) 4du1 (CJ) €Ejp ‘Ao‘

(4.1.93)

Proof. We consider 0B, (xp). If there exists no connecting A-chain on 0B, (xy),
there is at least a 1.5A-barrier of irregular points that prevents connecting over it.
According to Corollary 4.1.5 all points with hy (x,x) < €;p are connecting-regular
Hence, the integral over the energy density over 0B, (z}) has to fulfill

/ ha(z,x)de > 15 esp . (4.1.94)
8B,«(mb)

If there is a closed connecting A-chain, then it has up to reparametrisation the
same generalized burgers vector (0,b) like all others. Hence, Lemma 4.1.13 says
that for every N € Z such that 2mr < 1.5AN there exists S;,. € [0,.S/N] such

that
/ dv = Sy | (4.1.95)
aBr(xb)inrr

and

A2 (2X —2mr /N
(C4)? < 2) )
< (F7U (Aol (CosA+5)™))" . (4.1.96)

/ I(A(z), x, v)dz >(27r /N — Sy )N
ur[0,1]NQreg

We choose
N = [4/3arX71] . (4.1.97)

Since, it holds r > 3%4/5)\, we can estimate the discretization error made in (4.1.97)
4 4 )
gm—l <N gm—l +1< gm—l : (4.1.98)

According to Lemma 4.1.5 all points with k, (2, x) < €;p are connecting-regular.
Hence, we get

/ hiy (x,x)dx > €5pSir - (4.1.99)
u[O,l}ﬂQm

In the estimate (4.1.96) for the regular part we realize that the argument of f(x)
is very small. Therefore, it holds

(F ([ ™" (CssA + 9) ™))" = [Ao| 2 (CssA+277) 2+ 0(r®) . (4.1.100)
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Furthermore, we can estimate because of 27rrN~! < 1.5\

d
(W) >4 (4.1.101)

This turns the estimate (4.1.96) into

/ I(A(), X, 2)da
ur[0,1]NQreg

Qﬂ_.) 6
N 544 (04 Ao)

>( A (Cssh +2mr) P+ ONr ™) . (4.1.102)

For the regular area, we can use equation (2.4.38) from Theorem 2.4.3.

Jy <e+ v €+ /i det A
SRR S TE PR ’

M1 — ﬁJ)\ _ U
M1 40};/')\2

det Ay +O(\?) . (4.1.103)

Because of Lemma 4.1.10 and because reparametrisations are not changing the
determinant and the additional changes of A are O(rA~?), det A is constant up
to order O(rA=2). We get for the integral

7 p — v Ui
hx(x,z)dx > / Iy (A(x), x, ) de — 27r det A
/uT[O,l]ﬂQreg ( ) I’Ll ur[oyl}mgreg ( ( ) ) 403;/)\2

. 3
> (21 /N — Syu) LY L -
p 549 (C? | Al

_ U
L O — 2 G det Ay . (4.1.104)

(055)\ + 27T’l“)_3

This term has the structure

/ b, 2)dz = (271 /N — Sy )OO =) — O(rA=2) . (4.1.105)
ur0,1]NQreg

Together with the estimate (4.1.99) for the irregular part, we arrive at

A~

/ mwmmzf mm@m+/ i (2, ) da
Uy [O,I}OQreg Uy [Oyl]mQreg U[O,l]ﬂQirr

>(27r /N — Sipp)O(Nr™3) + €5pSipr . (4.1.106)

Since both terms depending on S, are linear, the minimum is attained either
at Sy = 0 or at S, = 27r/N, depending on the coefficients. The coefficient
that favoring Sj., = 0 is O(A3r?) and the other is O(1). We get # = O(\), where
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the minimum changes from S, = 0 to Si, = 2wr/N. If we use the estimate
(4.1.104), we get

s B 1/3
27 i (2“2 ORI CA (4.1.107)
54, (CF)" esp | Aol

Furthermore, we realize that the energy of the second estimate is lower than the
estimate for the case that there is connecting A-chain at all. Hence, for r > 7
the estimate for the regular part is better. We have

/ / ha(x, z)dxdr
7 ur[0,1]NQreg
> §M1 - A

T2 w4407 A
- U
IO

((CssA + 217) ™2 — (Csgh + 277) %)

det A (72 — 7%) . 4.1.108
0 ( )

For r < 7 we use and 6/5\ < Sy, = 2mr/N to estimate independent of whether
there is a connecting A-chain or not. Hence, we obtain with the estimate 4.1.98

" “ 2
/ / ha(x, x)dzdr = > §)\€JP r— ﬁ)\ : (4.1.109)
823 S 11, (0,1 e i) 4

This two estimates imply the conclusion. O

Remark 4.1.15. 1) The structure of the second estimate is

/ ha(x, 2)dz = O(2) — O(V'R2) — O(A\2R) . (4.1.110)
Br(zp)

This estimate reaches it maximum at some r of order O(A*?) for higher 7 the
conditions are getting stronger with growing R but the result is not getting
better. Furthermore, if we compare this energy with the energy of a lattice
with 0 < F'(A) < eyp, there will be R = O(\) such that for r < R the energy
density must be higher in case of a dislocation but not for r > R. Nevertheless
in this case we still have an core energy of O(\?).

2) The conditions of this lemma can be even fulfilled, if there is no dislocation at
all, but enough irregularities to prevent any connecting chains on the circles.
The statement of the lemma holds true in this case but is not a very good
estimate

3) If there is a connecting chain on the circle of radius r; and a connecting chain
on the circle of radius 9 and |ry — 75| < 5/4\, they have up to reparametrisa-
tion the same burgers vector since every point of one chain is in connecting-
distance from at least on point of the other chain. If some of the connecting
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chains would have different burgers vectors this means that between them
there is a large irregular object.

4.2 Continuous Lagrangian coordinates

Heuristic overview In this section we will construct continuous Lagrangian
coordinates for areas of regular points. Finally, we will obtain a lower bound
depending only on these coordinates. We will calculate this estimate for positions
x that have an energy density lower than some bound €. According to Lemma
2.2.7 for every x there exists A(z) € Gly(R) and 7(x) € R? such that

hy (x, ) =hy </l(x),x,x>
=J) <./Zl(x),x,x> + F (fl(a:)) +9det A(z) —Upy . (4.2.1)

We remember that A(z) is defined point wise . Hence, A(z) does not need to be
a continuous function, but it may jump between the different reparametrisations.
However we prove in Lemma 4.2.1 that Jy (-, x,z) and hy (-, x,x) are locally
convex for regular points. Using this we prove in Theorem 4.2.3 with the help
of implicit function theorem to prove that there are branches of local minimizers
of Jx(+,x,x) and hy (-, x,x) that are differentiable functions of the position x
and the atom positions y. The same strategy has been used by S.Luckhaus and
L.Mugnai in [7] on nearly the same model. However our version these results are
improvements that will be explained for every lemma separately. Most important
was to improve the estimates for the gradients of the local minimizers of J in

Corollary 4.2.4 so that we can use them to bound J, (./ZL], X, :E) We get:

02

con

i
2
9 Pxr 2 (2 112 ~ 2
—— 2N (|| VA + [ VT, — A 4.2.2
o o X (PIVAI + 197~ A7) (422)

We can also apply the same procedure to the second gradients

JIx (AJ,XJ) >

I (A xew) = Con (f’—) [a7] ot (21924002 + 1927, - VAL

Px
(4.2.3)
These improved estimates will finally allow us bound the energy density from
below with a functional only depending on 7; of the form

~

inCen) 2Fe (V7a() + 3Cs (22) [ 975 0 NIV 7m0l det (972)
(4.2.4)
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where
Fo (A) = min { F(BA)|B € Gly(ZY)} + O(A\7?) (4.2.5)
First, we concentrate on proving the local convexity of h, and .J for regular
points similar to Proposition 5.10 and Corollary 5.11 from [7]. However our
methods works with lower particle density. If we have a regular point, then this
implies a certain number of regular atoms. Regular atoms have to sit near lattice
positions. If we choose the parameters right, there can be only one regular atom
near any lattice position. Hence, for a large enough density not all regular atoms
can sit on a plain . This is sufficient to prove local convexity even if the density
is relatively low.

Lemma 4.2.1. For all Cy4 there exists 5\, € such that for all \ > 5\, x € Box(Q)
that are (Ca, €, €1)-reqular with A € Gly(R) x R? and all test matrices
M = (M, ) € R x R? it holds

PTA(A, X 2) M) =Con | A" o MIE (4.2.6)
PAha(A, X, 2)[M] >Coon | A7 oAIM3 (4.2.7)
where Co,, is defined by
1 C%C; pi
= . 4.2,
Ceon = cg min { 12" 4(9 + d) w2_,49 det A2 } (4.28)

Proof. The second derivative 0%y tested by M = (M,pn) € R>4R) x R? is
given by

O4IN(A, x, 2)[M]

_ ”é;ﬂ Z VEW (A (2 — @) + 1) [M(2: — 2) + e

w22l T Z<vw<A< )4 7), Mz~ 2) + )
+ % ”fé ;“d ZW +7)p . (4.2.9)

The two last terms lower are of order O(A™1)|| M]|». Furthermore, we can split the
first sum into one sum over the regular atoms x';% , with 3 = min {|A|~'©w, s,/3}
and one sum over the irregular atoms, and get

A 1
Bt =S a4
TiEX 4B
A 1
HC AL' > VW(A(z; — )+ 7)[M(x; — 2) + il
IEXJZ.,B,I

O IM|X . (4.2.10)
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On the one hand all the regular atoms satisfie

dist(xi, x4+ ) <B
(M (x; —x) + p)? <(M(z; —2) + W) VW(A(x; —2)+7) . (42.11)
Since W is two times differentiable and periodic, there is an upper bound for its

second derivative, which we can use to bound the contribution of the irregular
atoms. Hence, we get

AP
P (A )M M) 2GS (e =) 4o (0 )
® ziexx%’z
—1112 irr _
= 8[| AT [T IVEW loopZls (@) MR = O IMIZ
(4.2.12)
We define the average particle position by
_ re -1 1 _
T = (p%(x)) o Z zip (AN o —a]) . (4.2.13)
® :ciex;fy%’z
Using this definition we get
> 1A 2 2
P A )M 2] (M(z = 2 + (M(z — ) + )y
©

:ciexff%’z
—11[2 T -
A W apl (@) + O TDIMIE . (42.14)
Because (M(Z — z) + u)? is independent of 7, this sum can be expressed with

the density of regular points. If we denote by ej; the eigenvector the largest
eigenvalue of MT M, we get

A7
NER VY B e g P LTI
® :ciexff’%yz
+ e [JATY]P (M(z — ) + 1) (x)
—11|2 irr —
=8| AT IVEW loepZls () [IMIX + O DM
(4.2.15)
We concentrate on the calculation of
1
X = o Z (em(zi — 7)) (A Mz —2]) . (4.2.16)

XU
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Because of 8 < s,/3 there can be only one regular atom in Bg(A™'(z; — 7) + z)
for any z; Therefore, the regular atoms can not sit all on the plain P := {y €
Re,n(y — ) = 0}. We call h the minimal distance to the plain P up to which
we have to fill atoms to reach the density p'y%(z). We define the cylinder

Zp :=A{yll lear,y —x) | < 2A} . (4.2.17)
The characteristic function 1z, of this set satisfies:
lzp(z) > (A o —2]) . (4.2.18)
Hence, it holds

re 1 —
P (@) R > (A — )

reg

TiCXA,B,2

1
cho)\d Z 1ZP(xi)

reg

Ti€X A,

<2wy_12A"t det Ah . (4.2.19)

and we get

Cso)‘/)f:,%(x)
Wqa—-1 2d det A
Since for any valley with distance less then h from the plain P, that does not
have a regular atom, there needs to be an regular atom with larger distance to
reach the same density. Filling the whole cylinder gives us a lower bound for X

h > (4.2.20)

1 " 72 d—1 7
> % ederat ()’ 4.2.21
_3wc2l—14d € (pA,B) ) ( e )

We insert this into estimate (4.2.15)
2 0 || A—-1/|2 2 C’i 2 —2 ( reg\3
PaIN(A, X, 2)[M] =g [[A7H| |M] s g det A (0'3%)
wi_ 4
—1112 _ re
+eg |[ATH]T (M(T — ) + )% ()

AT IV W laeps () + OO DIMIE . (4.2:22)

We treat two cases. In case one holds || < 3A|M|. In case two holds |u| > 3A|M|.
For case one we calculate

O+ N |M[* > dN|MP + |pl? = N[ M|+ |uf? = IM]5 . (4.2.23)
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We apply this to the estimate (4.2.22) and get
C%C;

309+ d) w?
= 8[| P IVEW e () + OOTDIMIE . (4224)

Since every atom contributing to the average T is in Bay(x) also Z itself has to
be in Byy(z). Therefore, we obtain for case two

PAIA(A, x, ) M] > 7 JA7Y" det A= (013%)” | MII3

(M(z =)+ p1)* > (|l = [M]|T — 2))* > (Il = [M]2))* >

With estimate (4.2.22), we get

1
§Iu\2 . (4.2.25)

2

dcs
OAIN(A, x, 1) [M] >cg HA_1H2 ’|M’|2m)\2 det A (PTAG%)S
0
+ 2 AT e )
- HA P IV2W laopiils(@) + O IMIE . (4.2:26)
We summarize (4.2.24) and (4.2.26) to get
O (A 2) M) <y [ A7 st @)all M — [ A7 9200 |y o)
+ O\ HIM5 . (4.2.27)
where « is defined by

2
L 0 (Plip)
‘= min ¢ — ’ . 4.2.28
B { 90" 39+ d) w247 (det A)? (42.28)
We know from Lemma 2.2.5 with 3 := min{|A|~'Ow, s,/3} that it holds
irr ( ) < 1
PAGT) = I min{|A| O, 5,/3}
1
reg > o
p.A,B( ) —p)\(X>x) C’Wmin{|A\—1@W,so/3}2
Therefore, we can control ,0“"7" and py — pfi%(x) for sufficiently low €; and large
A arriving at

InA, x,x) (4.2.29)

In(A, x,z) (4.2.30)

7
PIN(A, X, z)[(M] > 8ac@HA P pa(@) M3 (4.2.31)
Furthermore, we know that
05T (A, X, ) [M] =045 (A, X, ) [M] + 04 F (A)[M] + 9 det A[M]
7
> ace [|A7 1P pa@IMIB + OO | M]3

> Coon |47 |* palMIB (4.2.32)
]
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Next, we prove as small technical lemma. that looks rather unmotivated.
However it will be necessary in the proofs of Theorem 4.2.3 and Corollary 4.2.4

Lemma 4.2.2. For all configurations x and all A € Gla(R) x R we have

~ ~ 2
I(A X 7) > ag AT CONDY IV (A (s —2) + 1) (MM — )
(4.2.33)
e VW2, [cbf?
C
ay = 64max{ 0 9 } (4.2.34)
Co O "

Proof. We bound W (A (z; — ) +7) from below with (VW)2(A (z; — ) +7). We
define for every atom

5z = dist ([l(xz- —x)+ 7 Zd) . (4.2.35)

Due to the bounds on the second derivative of W in the convex region we get for
atoms with dz; < Oy

2 112
(VW)2(62) < [eb o=l < 2l sy (1.2.36)

Due to the general bound ||W ||, we get for atoms with dz; > Oy,

2
AW ooy 52y (4.2.37)

20855 < 2 <«

IVWIZ, leb?
Cy' O ' cg

Hence, for the maximum ay := 64 max{ } we get for all atoms

(VW)%(0z) <avW(0z)

~ ~ 2 ~
DA X 7) Zag" AT CONEY VWP (A (2 —2) + 7). (4.2.38)

O

In theorem 4.2.3 we prove that, if ¢ is (Ca, €,, €5)-regular with A, then there
exist a unique local minimizer of Jy(-, x, ) and a unique minimizer of h, (-, x, x)
in the neighborhood of Ay. These results are a consequence of the local convexity
shown in Lemma 4.2.1. Furthermore, we can prove with implicit function theorem
that these minimizers are differentiable functions of x and y. The statement of
this theorem is very close to the first part of Theorem 4.5 from [7]. However we
additionally prove that the local minimizers are also differentiable functions of
the configuration.
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Theorem 4.2.3. For all Cy and €, > 0 there exists A > 0,e; >0, 04 >0 such
that for all X\ > X\, o € Q and Ay € Glg(R) x R? the following holds: If zg is

(Ca, €, €1)-regular with Ag(x) , then holds using g as a placeholder for Jy and
hx

1) There exists a local minimizer of g

A, = argmin{gr(A, x, 2)|A € Gly(R) x Riwith || A—Ag|x <4} , (4.2.39)

2) The local minimizer fulfills

—-1/2

40— < (gcomnAalu?m) V(Ao 1)

45 = |, <2 (\Clconll 45" 1202) ™ (10 F (Ao} + 1904 det Ao + O
(4.2.40)

3) We have the estimate

- 1 ~o2
(Ao, o) 2 In(As o) + 5Coon (14712 +0O7) pa Ao = Ao |
(4.2.41)

4) For every differentiable curve (z(s),x(s)) with x(0) = x and x(s) = x there
ezists a neighborhood of s = 0 such that Ay(s) inside this neighborhood there
is a differentiable function A,(s) that is a local minimizer of gy for all s and

fulfills

dJZ(g —1 A 2 -1 e ] oo
| <Can BT W+ 00 |7+ g 2 [ ¢
1 dx; dx
-1 )\_1 ’ _— b
+ CamOO M (O@MZ( as | s ‘VW))

)

(4.2.42)

Proof. Since ||Ay'|| < C4 and since the expressions |A7Y||, |A] and det A are

uniformly continuous functions of A, we can find 0 4 > 0 independent of X\ and A
such that for A\||A — Ap|| < d4 holds

AT <Ca+ O
Ipa(x,z) —det Al < (e, + O(A™")) det A . (4.2.43)
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Furthermore, we estimate

|04 (Ao, X, ) [M]]

o |4
AHC JL [M]ZW(A0($¢—$)+T)SO
|l ol 3 (W (A 0= ) 4.7, Mo =) ) 5| + OO ) LM

(4.2.44)

We can use Cauchy-Schwarz inequality on the scalar product (X,Y), = > (X;,Y;)
to get

|04Jx (Ao, X, ) [M]]

SHé;U <Z (VW)290> <Z (M (xi—x)+u)290>
+ O IMIaIy (Ao xo ) (4.2.45)

Due to Lemma 4.2.2 to obtain the bound:
047 (Ao, X, 2) IM]| < O(V T (Ao, x, ) [IM]5) (4.2.46)

Therefore, if we choose €; fulfilling the conditions of Lemma 4.2.1, then for suf-
ficiently small €; exists d4 such that z is (Ca + O(A 1), €, + O(A 1), €;) regular
with A for || A — Ag|[x < d4. Hence, for sufficiently small ¢; all the conditions
of Lemma 4.2.1 are satisfied. Furthermore J\(Aj, x, ) is for || A — Ag|[x < 64 a
strictly convex function of A

T2INA, X 2)[M] 2 Cool| AT PpAIMIIR (4.2.47)

The estimates (4.2.46) and (4.2.47) fulfill the conditions of Lemma B.1.1. Hence,
there exists a unique minimizer local minimizer A; of Jy with
| A; — Ao|lx < d.4. Since for the local minimizer holds a‘]* =0, we get

3 1 y
In(Ao, x; ) > Ia(Ag, x,x) + §Ccon (1457112 + O(A™) pall Ao — AsliA

(4.2.48)
Since Jy > 0, we estimate

3 1 ~1/2
HAO - AJHA < <§||A51H2000nm) VI Ao, x, 7). (4.2.49)
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For hy we calculate

9aha (A x. ) M| < [04F(A)[M] + 90, det ADM]| = O M]])
(4.2.50)

Additionally, for A — Ag|[x < 4 we have
Faha(Ag, x, 2)IM] 2 Cooml| AT PAIMIS (4.2.51)

Hence, the conditions of Lemma B.1.1 are fulfilled, and we get a unique local
minimizer Aj, satisfying

|45 - /thHA < 2 (ACeanl| AV 2p2) ™ (10AF(A) ]| + [[994 det Agl]) + O(A2)
(4.2.52)
Finally, we calculate estimates for z;(s) and x(s)

CoN 20T\ (Asla), x(5), (5)) M)
2; <V2W(M(xi —2)+p), A, (CZ‘Z - fl—i»@
v (G -))e

;[M]Z:<VW7A (&%)
o i e - (5 (2 - )

’ [M]Z:W<Vg5, (fg _ fl—”z» . (4.2.53)

A7

-|%

+ 0a HA;l

+ A0, HA;l)

Hence, we estimate

d ~
O3 Da A M|

dl‘z‘
ds

)

|Wﬁ)> : (4.2.54)

il

£ OO YIMIy (Z (

%

23 . dz
[Asl (IV?W oo + OOT) 1My <‘£' Co\lpr+ >

da?i

als+

d_x
ds

Therefore, the conditions of the second part of Lemma B.1.1 are fulfilled and we
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obtain
dA ~ dx 1 dx;
- < -1 -1 A 2 —1 g - i
%] <Canon VR (92wl + 0070 ( e | go)
—1 —1 1 dxz d_x ~
+CahON Ml (—C@Adm; 5] ) vl
(4.2.55)
Finally, we note
a:ca.Ah)\(A>Xax) :a:caAJ)\(Aanr) ;
Op,04hx(A, X, ) =0.,04I\(A, x, ) (4.2.56)

and therefore get, the corresponding estimates for the local minimizer of .,th. O

Now, we improve the estimate for the gradients of the local minimizers. The
basic idea is that V7; has to be very similar to A;. Hence, if we do not estimate
|V 7s]| but || V7, — Ay||, we can get a much better estimate. The result is similar
to the final estimate in Theorem 4.5 from [7]. However we improve the estimate
so that we can use the gradient of the local minimizers to bound J, from below.
Furthermore, we use the same technique to get an estimate for the second gradient
of the local minimizer Aj.

Corollary 4.2.4. For all Cy and €, > 0 there exists A > 0, e >0,040 >0
such that for all X > X, zg € Q and Ay € Glg(R) x R? the following holds: If xq

is (Ca, €, €5)-reqular with Ao(z), then gradients of the local minimizers A, (see
Theorem 4.2.3) satisfy

A1 2
i 9 Px y2 (2 qoi2 ~ ioi2
I (A > 2N N[ VA Vi, — A . (4.2.57
,\< gaX7x> _aVQdHV\/EHionA ( | g|| + |l Tg g|| ) ( )

Furthermore, if W s three times differentiable, we get:

I </~1J,X,x) > Cyo <@) HA—1

02

2
con

2 ~ ~
pa (RIV2A |2 + V37 = VAL?)

P
(4.2.58)
where
1 Yo — = 0=
(Coa(X))" 2 == (IV VBl + 172Vl + 200] /5 ) dV27X

+ \é(;—v (2d||v\/éy|§o)% (16 25X + ¢8_d\/f) L (4.2.59)

con
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Proof. Step 1: The first derivative: Since the same conditions as in Theorem
B.1.1 are fulfilled, we get the minimizers A; and A,. The proof of the first part
is the same for both and we will just call them A in the calculation. We have the
equation

0=0u9(A x,2) . (4.2.60)

In particular for all test matrices M = (M, u) € R4 x R? holds
0 = Oug(Al) . )IM] (1261)

On the one hand this implies for the 7 derivative

0= Z VW (A (z; —x) + 7)o AN oy —2]) (4.2.62)

On the other hand, the total derivative of Oag(A(z), x, z)[M] in every direction
e; is zero, because we know that d.g(A(x), x, z)[M] is constant.

d

0=->7 <3Ag(

=0%9(A(@), X >(M M( ) + V5 (dag(A@), o) M) L (4.2.63)

We realize that J is the only term in hy, that explicitly depends on = and on A.
Therefore, we get

0= Pg(A(@), x,w) (M, V;A(2)) + V; (04T (A@), v 2)[M]) . (4.2.64)
Furthermore, Jy is the only part of h) that depends on 7. Hence, it holds

Or; (Oagr[M]) = O, (QaA[M]) . (4.2.65)

J J

We compare 0, (04.Jx[M]) with V;04.J5[M]. First, we calculate the 7-derivative
and then use equation (4.2.62).

CoM0, 0405 (A, X, ) [M]
iy (VYW (A (@i = )+ 7), Mz — o) + ) o

)

vou A DO VWA (i = 2) 4 )¢

2Z<VJVW(A (z; —x) +7), M(z; — ) +u>go . (4.2.66)

i

|-
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Now, we calculate the partial derivative V,;04.J(A, x, z)[M] and get

C AV 04\ (A(x), X, ) [M]
i Z <<V2W (M(z; — ) + p) 71‘1€j> +(VW, Mej)) ©

0|4 Y (TW Ay o+ |32 (VWM — )+ 1) V6

+ 0, HA—1H2 MY WY (4.2.67)

The second and the third term are zero due to equation (4.2.62). We com-
pare equation (4.2.66) with equation (4.2.67) and see that the first term of
V; (04Jx[M]) equals — (0, (04Jx[M]), Ae;). We summarize the last two terms
into a linear map D : R™4 x RY — R,

Vi0u Tz (A(2), X, 2)IM] = = (904 3(Ale), x, 2) M], Ae; ) = DjIM]

(4.2.68)
where D[M] is defined by
~ 2
A : : :
DM = = i <VW(A (s — ) + 7), M(2: — 7) + u> vV
- 2
aA)A_lH M W(A A+ 7V 4.2.69

Using equation (4.2.68) we can reformulate equation (4.2.64) as follows
D;[M] = P g(A(x), v, ) (M, (vjA, V7 - Aej)) . (4.2.70)
We test this equation with M = (V; A4, V,;# — Ae;) and sum over j to obtain

>0, (VA V57 = Aey)| = 229(A(w), x, ) | (V54,57 = Ae )|

(4.2.71)
Because of Lemma 4.2.1, we get:

S0, (V34,957 = Aej) >Comppll AP (RIVA@)P + | 97(2) — AJP)
J

(4.2.72)
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We rewrite the left side of the last inequality

C,x3" D, [(vjzi, V7 — Aej)}
J

2
-1 (VW,V;A(z; — x) + V,;7) V5
,J

A o, HZH) v, 4]
2

Moreover, we have

WV,;3 . (4.2.73)

) =20/0VV9 (4.2.74)

and

(VJA(JIZ — I‘) + VjT — Aej)2 SQ‘VJA‘2|IZ — .73|2 + Q‘VjT — A€j|2
8N\ VA2 + 2|V, — Aej* . (4.2.75)

Therefore, we use Cauchy-Schwarz inequality to estimate

O, A Z D; (V4. V57 = Aey)
:—QHA H Z (VW, V,A(z; — 2) + V7 — AN EV/B
—QZaAHA H VAW A/3V,\/3

(S (serwae e ame - o) &) (Sivvr)
pa(ge ) e

Since we have p(z) =1 for z < 1, we estimate
D VVEP (W i = al) :Z VAR (A i = 2) 0 (20 s = 2)

<C,2NIVVE (. ) (4.2.77)

We want to bound Y W?2p and Y VZ¢ from above with Jy. We get

WA (z; —2) +7) < [[WeW(A(z; —2) +7) . (4.2.78)
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In the second term we have (VIW)?(A (z; — x) + 7) instead of W (A (z; — z) + 7).
We use Lemma 4.2.2 and the estimate (4.2.78) on the inequality (4.2.76) and get

>0, (V54 v,7 - A)
J

. o] 1
< | (ag)? |4~ +2A‘1HWHOOW (2 1V V3l 2o 2))
« AW, (/t,x,x) (VA2 + [|V7 — AP)® . (4.2.79)

If we apply this on the estimate (4.2.71), we get

Compl A2 (W2IVA@)|2 + V() - AJ2)°

1

< ((a0)® A7 + 00 (2UIVVElZpole2)) AV (A xox)
(4.2.80)
We solve this for J, and obtain for large enough A
2, A
- 2
i con Px 2 (21w 4112 ~ A2
V(A xor) 2o N (VIVAR - V7 - AP) 28

Step two: Additional derivative for the local minimizer of J,: We
start with equation (4.2.70):

DA I(A(x), x, r) </\/l, (ijl, VT — flq)) = D;|M]

We apply the total derivative dzik on both sides, and get

.
dx¥

.
dx*

(BT A@) v 2) (M, (T34, V,7 = Ae) )) = D IM] . (42.82)
We apply the product rule and separate the second derivatives of A from the first

derivatives

02T (A(z), v, ) (M, (vkvj}i, ViV, — vaej))
~ 4 pim - (%62151(,4{(;5),)(,27)) (M), (V54 9,7 = Aej)) . (4.2:83)

dxk
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We test the equation with M = (Vkvj[l, ViV;7 — kaie]), use the local con-
vexity to estimate the left side and sum over all j and k£ to obtain

Compll A7 (NI V2A|2 + V27 = VA?)
< Z ( O )) ((vkvjfl, ViV, — kalej> , (vjfl, V7 — Ae]))
+ Z ij (Vkvjjl, ViV, — kazlej) . (4.2.84)
Gk
First, we calculate (ClzikaiJ(A(x), X x)) (My, Ms), where we start with

Osp)\dait])\(ft X, T )(Ml, Mz)

:HA— Z<M2 = @) + iz, VW (My (2 — ) + 1)) ¢

|| A 1) S (VW M — 2) + )

7

voul A ) Z VW (M (z; — x) + )¢

2
+R AT (M, M) Y W (4.2.85)

We remember that a minimizer A of Jy satisfies d4J(A(x), x, z) = 0

1 6,4 /I_l 2
mZ(VW,M(%—x)JFM)@:— ZW<P
4 i CpN\? HA—l) i
Y[ s
=— — (A x,z) . (4.2.86)
A

Therefore, equation (4.2.85) turns into
FIN(A, X, ) (M1, My)
A

CoN\d

Z<Mz i — @)+ iz, VAW (M (5 — @) + 1)y

| aAHA- H (M, M) JA(A, x, z)

i

o ||| o [ A DA ) - a2
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Now, we calculate -L9%J\(A, x, )(M;, Ms). We realize that a derivative on
one of the ||A~!|| terms will produce an inner derivative VA = O(A~2V/J)).

2
Furthermore, 04 HA_I H [M] is O(A71)||M]|x. Hence, we get for the derivative of
the second line

2 ()

SO ) IMlA[Malx + O M5 ||M2H>\ A ) (4.2.88)

AMAM%)N

0 HA

(M) HA

Since 04J) = 0, we get

O@Ad%JA(A,X,x) —_ H[rl

(VWA + 22 WV/EVVE) L (42.89)

2

According to equation (4.2.62) the first term is zero. We can apply Cauchy-
Schwarz inequality as in the estimate (4.2.76) on the second term and obtain

'%JA(.A, o) <o) (4.2.90)

Therefore, it holds

@imAMxm)meﬁ

d Al

o | oo Z<M ) + pia, VW (M (z; — @) + p1))

+ONT L) MMzl (4.2.91)
The 2 derivative can be applied on ||A~!|| producing an inner derivative
VA =0(\2/J). A total z-derivative of the W will have an inner derivative
d
o
Hence, we get

030)\‘1 (d kaAJA(A X, T )) (My, Ms)

Al — ) +7) = <ka~l(xi )+ VF - Aek) — OV . (4.2.92)

=2)\7!

(My(; — ) + 1o, V*W (M (2 — 2) + 1)) VOV D
A e W e )+ )

- Hfl_le Z (Mey, VPW (Ma(2; — ) + p2) ) @

+ OOV ) [ Mila Mol (4.2.93)
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We test with some M?* and M7 and sum over j and k. We estimate with the
Cauchy Schwarz inequality

e

-2 d ~ . .
7.k

<oA1 (Z (VW (M3 = ) +45))” (Vi) )

Z‘?j7k

1
. N2 2
< 2 (M =)+ 4t) @)

i?j7k

+ {3 (VW (Mey))’ ) (Z(MJ’“ )+ )Zs)é

i7j7k 1,7 k

(X (08— + ) vow)’ @) 5 (Z(Mf”“ew?@) 5

i,5.k 0,5,k
+ OV )M [Mo]lx (4.2.94)
Finally, it holds

> (%@J(A,X,x)) ((Vij/L Vi VT — V’f‘iej) ’ <VJA’ ViT = Aej))i
7.k

< (16v/2%pa0px + 2v/8dpy ) A HA—lHZ VR (NIV2ANR + |92 w‘in?f

x <A2y|v2u|2 4 |VF — ,21||2)§ . (4.2.95)

Next we consider 2% (3% D;) [M]

dxk

Cx (D) IM

:A*% (HA*HQ > <VW(A (s — ) +7), M(2: — 7) + u> Wﬁ)
g (ol

We know from our previous calculation that W (A (z; — x) + 7) gives a O(Jy)-
contribution and VW (A (z; — x) A+7) gives an O(v/.J)-contribution. The inner
derivative of the argument of W is

Vi (,Zi (z; — ) + %) = (V3A (2; — ) + V7 — Aep) = OO WVI,) . (4.2.97)

M| Z W (A (z; — z) + %)nga) : (4.2.96)
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Furthermore, a derivative on |A™!|| will produce an inner derivative

VA =0\ 2y/7y). Finally, 9.4 HA—I M] is OA"Y) | M|l. We obtain
|72 d
' (@Da‘) [(M]
=201 (Vi (3 — 2) + ViF = ViA, VEW (M2 = 2) + 1) ) V/3V;/3

+ 27! Z (VW, M(z; — z) + 1) (\/EVeVi/ @+ 2Vi/eV1/9)

— AT (VW Me) BV B+ OB [ Ml (4.2.98)

O\ H,Zi

With /¢ we can rewirte

ViVeViVe = 4/ aX)Vi/eViy/e (4.2.99)
We denote
Uik i= ViVA (v, — x) + V. V,;7 — Vide; . (4.2.100)

We test (4.2.98) with M = <Vkv]'/1, ViV;T — kalej) and sum over j and k.
Applying the Cauchy Schwarz inequality we get

> (dde ) (vkvjfi, V. V;7 — vkziej)
Jk

1H2|V2W|OO (Z <VkA( —£E)+Vk7'_A€k) (Vj\/95)2>

7:7j7k
1
2
2 ~
x| D Uné
i7j7k

C, A

NI

<! ) A

i (Sews) 5 (5 e @)
Loaz|la (Z(VW)%;;)Q(XI \AVRVE >2
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We can use equation (4.2.38) to obtain

d ~ -
‘Z 3 <%Dj) (Va4 ViV - Vide;)
ik
2
|V2W|OOHV\/$||OOV 24px pax
x (RIVAR + V7 = AP)7 (VAR + | v27 - VAJ?)®
2007 [ A7 aw (19 VBl + 192 V/Blloo + 41V /3 © V/3ll ) /27021

* AW (A, x, ) <A4||v2Ay|+y|v2~—vAy|2)5 . (4.2.102)

<16 [|A7T

Finally, we combine the estimates (4.2.102), (4.2.95) and (4.2.84) to get

Coompl A7 (VAR + 957 - VAR)’
<2d| A7 |lvav (IVVEIE + V2Bl + 41V VBIIL ) V220X VT,
+ (16V/2702p2 + VBdps ) [V2W ||V /5
A7l HA—1H2 (VA + V7 - A||2)é . (4.2.103)

We use the the upper bound (4.2.57) on A2||VA|? + || VT — A|]? to finally arrive
at

Cconp)\HA_le <)\2||V2A||2 + Hv2~ - VAH2>§
NPA [ad VT (A, x. 2)
< (I9VEI + 192 VBl + 2001V /3I12) dv/2pn
+ Coon <2dHV\/s5H§O)§ (162%;%% + \/@\/pzx)) L (4.2.104)

O

Finally, we use the bounds from Theorem 4.2.4 to bound the energy from
below with a functional only depending on 7; of one local minimizer. According
to Lemma 2.2.7 for every point z there is a global minimizer A(x) such that

ha(A, x, ) = ha(x, x) . (4.2.105)

The global minimizer of hy does not have to be continuous. However the local
minimizers of .J are differentiable. We denote one with Ag. A is regular and so
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we can find a reparametrisation B.A that is close to Ap. Due to (4.2.41) from
Theorem 4.2.3 we then get:

~

~ 1 . e
DA X ) 2 I(Ap,xw) + 5Ccon (1471 + (0X7) pr HA - ABHA .
(4.2.106)

Next, we can bound Jy(Ag, x,z) from below with the help of Lemma 4.2.4 and
get an estimate of the form

Jy (jtg, X, x) >OM|VAg|2 + ON2| Vg — Ap|?
+ON° <A2||v2ABy|2 +ON| V27 — vABH?) . (4.2.107)

Furthermore, we can use lemma 2.4.2 to estimate the difference between py and
det A. Finally, we will take the minimum over all 75 and A. as a lower bound
and arrive at an estimate of the form

~

. = L . .
i) 2Fo (Vin) + 505 (22 ) 97500 A7)l det (97)
(4.2.108)

where

Fo (A) = min {F(BA)|B € Gl(Z)} + O\ %) . (4.2.109)

The main technical difficulty is to construct for every point x the correct B such
that BA is close enough to the local minimizer of Ag(x).

Theorem 4.2.5. For all Cy > 0 there exists X, ¢ > 0 such that for A > A the
following holds. If y(s) : [0,1] — Q is differentiable curve with fL,\(X,y(s)) < € for
all s, A € Gly(R) x R is the global minimizer of hy(-,x,y(0)), the reparametri-
sation B = (B,t) € Gly(Z%) x Z% fulfills ||A~*B~Y| < C4/2 and the compatibility
condition sy > U is fulfilled, then there exists a differentiable function Ap(y(s))

such that Ap(y(s)) is a local minimizer of Jy\(-, x,y(0)) for every s and the energy
density fulfills

~

inCen) 2Fe (V) + 1o (22) [ 975 ) NIV* 7m0l det (972)
(4.2.110)
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where

Crep (CW) 4dC2d 2
av2dllvf||io)
C? ’

054 (X) =Cr (Coal0) 1+
Fc(A) :mf{U(A, Al, B A2)|A1,A2 c Gld(R), B e Gld(Z)} ,

U(AaAbBaAQ) :F(AQ) 2CW )
1
+ £ Ccon Crepll (BA2) ™! |[* det (A) A* | BA; — Ay[?
- %C“v (%) [ATY| det (A) N2 A— A . (4.2.111)
A

Cv2(X) is defined in Corollary 4.2.4, Ccon is defined in Lemma 4.2.1 and oy is
defined in Lemma 4.2.2.

The function AB(y(s)) can be extended along the curve of reqular atoms as
long as | Ag(y(s))| < Ca. Since we started at |A~' B~ < Cy/2 this means, we
can extend it as least for a distance scaling like N\

Proof. Step 1: Following one minimizer We know from Lemma 2.2.7 that for
every x = y(0) there exists a minimizer A € Gly(R) x R* such that hy(A, y, z) =
ha(x, x). We know from Theorem 2.4.3 that for large enough A and small enough
energy density hy(x,z), z is (C., €,, €7)-regular with A satisfying

€ :O(lAz,\(X,x)) +0(\?)
e; =0(hx(x, ) + O(A72) . (4.2.112)

According to Corollary 2.2.2 for every reparametrisation B(x) = (B(z),t(z)) €
Gla(Z) x Z¢ with |(BA)™'| < 2C} it holds
~ 1 2 ~
(BA@) || 7 (A(x), X,x) .
(4.2.113)

We estimate the norm of the matrix with the norm of the inverse and the deter-
minant (see Lemma B.2.2). According to Lemma 2.2.7 we can estimate A with

some constant cy
2d R
I (Al). x.)

I\ <Bfl(x),x,x) <ol (C’g‘/)_1 A(z) i

I (BA(), ) <cl (€)™ (det BA )>2H(BA(;17))_1
<CW (C'W) 4dC <detA) J>\<A,X,x)

<Crepn (A, X, :1:) , (4.2.114)
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where Cy, := (CV )_l 44C%c2. Since the density py does not depend on A and

det A = det BA, the position z is (20}, €, Cpepes)-regular with BA(z). For large
enough A and sufficiently small € the conditions of Lemma 4.2.3 are fulfilled, and
there exists a unique local minimizer Ag in a neighborhood of BA. Furthermore,
we get the estimate (4.2.40) for the distance between BA and Ap. If we combine
this with the estimates (4.2.114) and (4.2.112), we get

BAG) ~ Ao, < (SCeml At Fon) | VIBA@).

OWe+0\™) < %5/1 : (4.2.115)

Additionally we have the estimate (4.2.57) from Corollary 4.2.4 for the gradients
in this branch. Hence, we get

I <A,X,xo) >C’TepJA (le,X,xo)
- 12

B
SO
— Tav2|VVEIL p

02

con

i Doy (WIVAp ()| + [V7(2)s — As]?)
(4.2.116)

Considering a second point y = y(s) € Bysa(z) with Ax,y) < ¢ and I3 dyds >
|z — y| sufficiently small we obtain

[Ap(y) = Ap(a)| SOOJx =y VT (A, x 0)
Ol —ylVa) + Ol —yl) < o
75(y) = 7a(z) = Ap(@)(y — 2)] ONa = y))VTx (A x20)
O = yIVE) + O\ 2le ) < <
(4.2.117)

For € < €;p the points  and y will be connecting-regular according to Corollary
4.1.5, and we can use Corollary 4.1.4 to obtain B(y, z) € GLq(Z?) and t(z,y) € Z¢
such that

[1d — A(z)"' Bz, y) A(y)|| <C72'A~ mm{fx( (@), ,x),\/jx(/l(y),x,y)}
oNWet+ron?) | (4.2.118)
and

B(x,y)A(y) + A _
(*T y) (Qy) (I) <CJ’|A1||2d\/TA~

(4.2.119)

B(x,y)7(y) + t(z,y) — 7(z) — (y — )
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With small enough h, and large enough A we can control the change of 7 and A,
because we restricted B to a compact set.

NB(@) (A) - Bl i) | <5

Buwwfn+Awhy_@>\sl

=0
04

(4.2.120)

| B(x) <B(5Lx y)7(y) + iz, y) — 7(x) -

We introduce the notation B(y) := B(z)B(z,y). By comparing the estimates
(4.2.115), (4.2.117) and (4.2.120) we obtain

ABw)A) - Ap(y)| < A[Bw)Aw) - B)A()|

For 7 we estimate
|B(z) (B(z,y)7(y) + t(z,y) — T5(y)) |

B(z) <B(I, y)7(y) + iz, y) —7(x) -

<

B@wwf»+A@>@_$O‘

+BHa) +t = (@) + |Fa(2) + Ap(@)(y — @) - Fa(y)|

3 3 - 3 N
<gdat  AAs(@) — By)A(y)l + Al Ap(w) — Blz)A(2)]
<2+ PAB@)A() — BAW) + 5\ An() - B@)A()
21
§3_25.A : (4.2.122)
We summarize R 3
Bu)Aly) - Asly)| <oa - (4.2.123)

~

Since B(y).A(y) fulfills the same conditions for y as B(z).A(x) for x we can apply
Theorem 4.2.3. Hence, there is one unique local minimizer satisfying

<64 (4.2.124)

Therefore, Ag(y) has to be this minimizer because of the estimate (4.2.123).
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Step 2: The lower bound for the energy density: Due to estimate
(4.2.40) we get for Ag(y)

A («fl(y),x,y) >Cron (B( )A(y),x,y)
>C’TepJA(AB X, )

+ (Jc(mc (BA>_1 QpAHB/l—/IBHj . (4.2.125)

rep

By applying corollary 4.2.4, we get

(p4)”

# 0o (2) |45 on (32197 = sl + X924

i (A(y), X, y) zécooncrep 2 PA HB(y)A — ABH2

#Co (2) |43 or (VIV ARl + 1927~ Tnl?)
(4.2.126)

Now, we search a lower bound for the expression
1 . .
7i= S A X 2)+ 0 <detA —pa(x, x)) . (4.2.127)

Lemma 2.4.2 gives a lower bound for J, for a given p,. If we apply this estimate
to U, we get

ﬂEz?(det/Al—p,\) for p,\gdetfl ,

1 Cy . R
D> — — A A— f A<p, <
7 > Tt A)\ (pr — det A)* 4+ <det ,0>\> or detA<px<p1 ,

2detA 1

> CW)\2+ “ (p — ,01)—1—19<detA ,0>\> for pr<py . (4.2.128)

We are searching for a uniform lower bound. For py < det A the lower bound is
decreasing for increasing p,. For p; < p, the lower bound decreases for decreasing
p because of % w1 > 9. In between the estimate is just a quadratic function. Hence,
we estimate for all py

V2
QCW

p>— (4.2.129)

We apply the estimates (4.2.126) and (4.2.129) to get a lower bound for the
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density

b6 y) =3 (A<y>, X y) - ﬁ<A<y>, w9+ FUAE)

2 2
>F(A) - s Crov||(BA) H /’AHBA_“Z‘BHA
Lo (’m) |45 (VHV%B—ABH2+A6Hv2A3H2)
%(j (’;}2;) <A4y|v213||2 + M| V27 — VAB||2) : (4.2.130)

Since we calculate a lower bound, we can skip the V2Ap term. We also estimate

HBA—/(BHi > \? BA—ABH2 . (4.2.131)

Due to 2(a? + b*) > (a + b)?* we summarize
M| VAp||2 4+ M| V375 — VAR > )\4||V2 Bl* . (4.2.132)

Due to the estimate 4.2.126 and matrix derivatives (see B.2.3) we get The differ-
ence between HA;’F and HV%]}QW is O(A\"'V/Jy). We estimate for small energy
density and large A
pr =det A+ O(VE) + O(A™)
—det Ag + O(Vé) + O(\7Y)
—det Vig + O(Ve) + O(\7Y) . (4.2.133)

Hence, we get for small enough € and large enough \.

- A 92 -
i) ZF() 5o A (f’) |5 det(v 2032925 — Al
1 - - -
+ = ComCr (BA) )BA - ABHA det(Vp)
+ %év <%) V75 ) || A V2752 det(V7g) . (4.2.134)

We summarize all but the || V2752 term to U(7g, Ap, B(y), A)

h(x.0) 210 (’;) (V751 |2 A4 V275 12 det (V)

+U(TB,AB,B,A) . (42135)
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Finally, we use

U(#g, Ap, B(y), A) > inf {U (g, A1, B, A3)| A1, Ay € Gl4(R), B € Gly(Z)}
(4.2.136)
Step 3: Range of extension
For |A5'(7)| < C we can estimate with the help of Lemma B.2.3

[(OLAZH)(M)| = |Ag*MA™Y < C?3 M| . (4.2.137)

With this upper bound and the estimate (4.2.126) for the gradient we can bound
the change of |A5!| along an curve y(s) of length S of regular points

A5 (12)] — [A5 ()| <IAG (y2) — A5 ()]
<CA|AB yz) AB(yl)‘

<2 / sy ds\
<c3 [ <cepzx<y>>-”2 320 (Al), o) 152 s
< <O(>\‘2)\/O(é) T O(A—2)> S (4.2.138)

Starting with |A5'(y1)| < 5C4, we can follow every differentiable curve for of
regular points for at least a distance scaling like O (A2) (O(&)™* + O(X)) ™" O

Remark 4.2.6. If we select ¢ small enough, the local minimizer A can not leave
the Ericson Piterie neighborhood it started in without increasing the energy over
this barrier. Therefore, in this case Ap can be extended in any connected set of
regular points

Lemma 4.2.7. There exists A € R and €;0 such that for all X > 5\, and all
A € Gly(R) such that F(A) < ¢ there exists Ay, Ay € Gly(R) and B € Gly(Z)
satisfying

Fo(A) =U(A, Ay, B, Ay) (4.2.139)

Fo and U(A, Ay, B, Ag) are as defined in Theorem 4.2.5

Furthermore, it holds
Fe (A) = min {F(BA)|B € GL4(Z%)} + O(A™?) . (4.2.140)
Proof. We consider

U(A7 A17 Ba AQ) :F(AQ)

CW

+ =CoonCigl (BA2) ™" || det (A) \? || BA; — Ay|”

1
e (P [ATY[® det (A) (A — A, |
37V 19 ! 1
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Due to the coercivity condition on F' we get

2

F(AQ) — QC};V )\_2 det A2
> + CP (det(F) — det(Ay)))* + CEdist? (Ay, E SO)
2
3192 994
>CE [ det(E) — det(Ay) — —=—== A2 | — ———— 274
1 ( ( ) ( 2) SClElC(ZV ) 160{% (O(ZV)2
+ CFldist® (Ay, E SOy) (4.2.141)

Since all other terms of U(A, Ay, B, Ay) are positive, this implies:

194
U(A, Ay, B, Ay) > —9—2x4 (4.2.142)
16CF (CY)
Furthermore, it holds
192
U(A A Id, A) = F(A) — SCT A 2det Ay < é (4.2.143)
o

Therefore, we can conclude for all Ay, Ay € Gl4(R) and B € Gl4(Z) satisfying
U(A, A1, B, Ay) <U(A, A, Id, A)

Co|Ag| — |E)? <e+0(0\Y 1, (4.2.144)
392 ’
1
gccOnc;;,y| (BAy) 7" ||2det (A) N ||BAy — A4|)? <é+ O\, (4.2.146)
1~ ([ pax 112 2 2 _4 —4
3Cv (X) |ATY|" det (A) M)A — AP <e+ O™ . (4.2.147)

Due to the estimates (4.2.144) and (4.2.145) | A3| and det A are uniformly bounded
from below and above for sufficiently large A and sufficiently small €. Due to B.2.1
also |A5!| is uniformly bounded from below and above. With F(A) < ¢ and the
coercivity condition on F(A) we get the same bounds for |A|, |[A™!| and det A.
According to (4.2.147) we have

[1d — ATYAPR < | AT 1A — Ad)? < O@@) + O(A ™) (4.2.148)

Therefore, |A;!| |A;| and det A; are bounded from below and above for suffi-
ciently large A and small € . Finally, due to the estimate (4.2.146) B is also uni-
formly bounded. Hence, the Ay, Ay € Gl3(R) and B € Gly(Z) with U(A, Ay, B, As) <
U(A, A, Id, A) are a compact subset. U is continuous. Hence, there are minimiz-
ers Al,B and A, fulfilling Fo(A) = U(A,fll,B,flg). We can deduce from the
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estimate (4.2.147) that it holds |4 — A;| = O(A~2) and from (4.2.146) that it

holds HB/B — /11H = O(A2). Therefore, we have |A — BAy| = O(A\2) and we
finally get

Fo (A) = min {F(BA)|B € GL4(Z%)} + O(A™?) . (4.2.149)

O



Chapter 5

Outlook

We have studied different aspects of the model. But there are still remaining
many open questions.

Plastic Relaxations The purpose of the model is to study plastic deformation.
In Theorem 3.3.2 we have calculated an upper bound for the energy barrier of
plastic deformation scaling like A? for dimension two. However, we do not have
an lower bound for the energy barrier. In fact, we have not even proved that it
exists. As an important step towards this goal we have calculated a lower energy
bound for the core energy of a dislocation scaling like A\? in Theorem 4.1.14. To
calculate the upper bound for the energy barrier, we needed an bound for the
energy density in terms of the effective elastic potential. The lower bound for the
energy density we obtained in Theorem 4.2.5 has basically the same structure:

~

. = . . .
i) 2Fe (Vin) + 50 (2 ) 975 00l A IV70(0)| det (97)

However it uses F and not the effective elastic potential. The difference between
F) and Fg is O(A7%). Hence, there holds no equality in the estimate in case of
a Bravais lattice. If we integrate up this error over a sufficiently large domain,
the contribution of this term will get larger than the energy barrier itself. Hence,
a better lower bound for the energy density is needed, at least, if we want to
calculate an energy barrier that holds for fixed A and L — oo. Furthermore, we
would need to prove that, if we have some 1 € C3° satisfying for all connected Q

e (2) = Az'z for all z € 0 ,
o F\(Vi(z)) < éforall z €,
then it holds

FA(A§1)|Q|dz§/QFA(Vw(z))dz | (5.0.1)
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This property is related to quasi convexity (compare [5]), but is adapted to study
local minima instead of global minima. If this property is not fulfilled, then
for sufficiently large L the lattice x4, is not a local minimum, because one can
elastically deform the configuration to lower the energy without an energy barrier.
If we could get a strict estimate of the form

Fy(A7))|Qld= + /Q ClAR)(Vi(z) — A7 2dz < /Q R(Vo()d: .  (502)

one can use this estimate and the A (||V27||? term to get a lower bound for
an energy barrier for elastic deformations. The change of reparametrisations is
a major technical problem here, because the minimum of functions, that have
some kind of convexity property, does not need to have this property itself. We
expect that one can prove this, if A restricted to one map of Gl4(R)/Gl4(Z) or in
the version of the model used in [7], where reparametrisations do not change the
energy density. Once these two steps are done, one should be able to conclude
that a reduction of energy needs special kind of topological structure of the set
of regular points. This would imply the existence of irregular areas. If one
calculates an energy cost of the irregular areas as in 4.1.14, one could conclude a
lower bound for the energy barrier of plastic deformation.

Combination of the approaches for the construction of Lagrangian co-
ordinates We used two approaches to construct Lagrangian coordinates. In
section 4.1 we used an estimate for the discrete gradient of A in finite sequences
of regular points for this purpose. In section 4.2 we used an estimate for the
gradient of the local minimizers along differentiable curves. On the one hand the
discrete approach has the advantage that we can connect the Lagrange through
small areas of irregular points. On the other hand, if the distance of the jumps are
small, the estimate of the discrete gradient is much worse than the estimate for
the continuous gradient. Therefore, one might want to combine both approaches.
Using the continuous coordinates in regular areas and the discrete near irregular
areas. The definition of the generalized burgers vector would not change at all
since in the regular area we just follow one local minimizer without doing any
reparametrisations.

Modification of the model: As we have seen in Theorem 3.3.2 and Theorem
4.2.5 the energy cost for a dislocation is O()\?) in our model. Furthermore we
noticed in the Perspective 3.3.3 there are reasons to believe that for dimension
three the lowest energy path will have nothing to do with dislocations. Finally
in many real materials a rank one connection between two crystal structures is
observed. However in our model these kind of connections have not extraordinary
low energy. Hence, in general our model is not very good for estimating the energy
of irregular areas. And all points in A distance of a defect will be irregular. A
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possible way to deal with this would be to introduce a variable A. One could add
an term

CX % py (5.0.3)

where C' > 0 and k£ € Z and minimize over A for every point as we minimize over
A. In regular areas this would lead to relatively large A values and the behavior
of the model would not change much. For points x close to irregularities \(x)
would shrink down such that the irregularity will be not inside the ball Bay(x).
This would be a similar strategy to the adaptive grit method in numerics. On
first sight this might look like a completely arbitrary modification. However if
one would derives our model from a particle- particle interaction model or from
Schrdinger equation. One basically would derive the potential W in our model
by putting all but one atoms in By (z) on a lattice position calculate the energy
of this one atom depending on its position. However, this procedure neglects
the long range interaction of this atom with atoms outside By (z). The effect of
these atoms would be estimated with CA~%p, in the modified version. Of course
for this we would need to pay the price to make a technical complicated model
even more complicated.
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Appendix A

Notation

This section is supposed to help maintaining an overview about the notation, the
different kind of constants, parameters and variables.

General notations

Gla(R) := {M € R™? det M > 0}.

Gly(Z) = {M € 7% det M = 1}.

< X,Y >:=3"" | X;Y; is the scalar product of two vectors. X,Y € R"
|X| :=< X, X >'/2 the Euclidean norm of a vector X € R".

dist(xz,U) = inf {|z — y||y € U} is the distance between a set U and vector
.

SOy = {M € R™Vz,y € R?: [Mz| = |z|,det A =1} is the set of rota-
tions of RY.

B, (z) := {y € RY||z — y| <} the ball of radius r around z.

wy is the Lebesgue measure of By (0).

B.(U) := {z|3y € U such that |x — y| < r} where U C R? is the r
neighborhood of U.

Qa(z) :=[—%,2)? + x is the semi-open cube with length a and midpoint z.

diam(U) := 2inf{r|3z € R such that U C B,(z)} the diameter of the set
U C R

|M| := sup{|Mz|/|z| |z € R?/0} the matrix norm induced by the euclidean
vector norm.
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Tr(M) = 3| My is the trace of a matrix A € R4,

e M7 is the transposed matrix to A.

|M|| := Tr(MT M) is the Frobenius norm of a matrix.

My = (VM| + \u|2)1/2 is a norm of M = (M, i) € R¥4 x R? adapted

to this model.

e Q[X]=Q(X,...,X) where Q : (RY)" — R and X € R?
Example: Taylor expansion

f(x) = f(zo) + Vf(xo)[r — 0] + 1/2V2f (o) [ — T0] + ...

e j=(j1,.--,74) € N¥is a multi index.

o Xi =TI, Xj* for all X € R
e |U| where U C R? is the Lebesgue measure of U

Definition of the Model

These definitions are introduced in Section 1.3:

the number of atoms.

the dimension.

our atom configuration.

the position of the atom i.

our domain in which the atoms are moving.

the length-scale of (2

a position in Bay(€2).

the set of inner atoms that can move in (2.

the number of the inner atoms.

the set of atoms, that are fixed in By (£2)/€2.

the number of the outer atoms.

the lattice parameters fitted to the configuration.
:= A7Y(Z — 1) the Bravais lattice determined by A = (4, 7)
called a reparametrisation

the many particle energy function.

the energy density.

the pre-energy density.

the elastic energy function

a minimizer of F'.

a constant in the coercivity condition on F.
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a constant in the coercivity condition on F.

measuring the mean square distance between the
configuration y and the lattice x4 + .

a C2° cut-off function.

= ().

i= Jpa ©(|z[)dz the normalization constant for C,,.

= (o)) dr

the mesoscopic scale.

the periodic potential used to construct J).

the lower bound for [V2W| in the convex region.

the upper bound for [V2W| in the convex region.

a lower bound for the area of convexity of W.

a constant in the coercivity condition on W

a constant in the coercivity condition on W

the particle density.

the energy cost of a vacancy.

the part of the energy function that penalizes the vacancies
the hard core potential.

the radius of the hard core repulsion.

an upper bound for particle density due to the hard core repulsion

Further notation

Cm
s

XABo
ngﬁ,m
Pap (z)
PiAs (z)
Clal

a constant (see 2.1.2).

maximal distance of regular atoms to the lattice

the set of irregular atoms (see 2.2.4).

the set of irregular atoms(see 2.2.4).

the density of regular atoms (see 2.2.4).

the density of irregular atoms (see 2.2.4).

a constant bounding |A| (see2.3.2)

the minimizer of hy(-, x, )

for k = 1...6 are constants determining a compact subset
of Gl4(R) (see 2.2.6).

parameter for the effective particle potential (see 2.2.8).
parameter for the regularity of the density (see 2.2.8).
constant for the regularity of Jy (see 2.2.8).

is a parameter that controls [A™!|( see 2.2.8).

is a constant (see 2.4.1).

is some (see 2.4.2) .

(see 2.4.2).

= (Ag, Tr) the parameters of a Bravais lattice,
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if the atom configuration is a lattice.

= (0A, 07) the difference between the prescribed

and the fitted lattice (see 3.1.2)

the local effective elastic potential (see 3.1.1).

the average effective elastic potential (see 3.1.1).

describes a elastically deformed configuration by x = 1(Z%).
For a deformed Bravais lattice 1(2) = AR'z + u(2).
coefficient of a Taylor series like estimate see 3.2.2.
coefficient of a Taylor series like estimate see 3.2.2.

a constant (see Theorem 3.2.3).

a constant (see 4.1.2).

a constant (see 4.1.2)

the maximal €; for jumping regular points (see 4.1.3).

a constant (see 4.1.4).

a constant (see 4.1.4).

a constant (see 4.2.1).

a constant (see 4.2.2)

a constant only denpenden on the ration of poA and p, (see 4.2.4)
is a modified elastic potential (see 4.2.5)

Asymtotics In most lemmata we consider ) that are larger that some \. Ad-
ditionally, in some lemmata energy density or regularity constants that are below
some threshold. We use the symbol Y = O(X) in the sense that there exists a
constant C' such that |Y| < CX if the conditions are satisfied.



Appendix B

Basic calculations

B.1 Convexity and minimization

Most of our results are based on the convexity of the function W near to its
minima that leads to local convexity of Jy and h) near their local minima. In
this part of the appendix we state general estimates for the local minima of locally
convex functions.

The second derivative of Jy and h) for given = and x has different scaling in
A for the A direction and the 7 direction Lemma B.1.1 is specifically adapted for
convex functions g(A, X) with this property and that additionally depended on
the a variable X € R™ If we have a suitable upper bound on the first derivative at
one Ay, we get the existence of a local minimizer in the neighborhood of Ay Addi-
tionally we get an upper bound for the distance between the local minimizer A.
Furthermore we use implicit functions theorem to prove that the local minimizer
is a differentiable function of X.

Lemma B.1.1. If g € (R™4 x R?) x R® — R fulfills

1) g is 2-times continuously differentiable.

2) There exists C > 0, Ay € R4 x R? and Xy, € R" such that for all A €
R4 5 R? satisfying || A — Aoy < R and all M € R x R? it holds

29(A, Xo)[M] > CIM]; (B.1.1)
3) There exists D < CR such that for all M € R4 x R4:
10497 (Ao, Xo)[M]| < D||M|lx (B.1.2)

Then it holds

1) There exists a unique local minimizer

A(Xy) = argmin{gx(A, Xo)|A € R*?x Rlwith || A-Aollx < R} . (B.1.3)
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2) Furthermore, the local minimizer fulfills

2D ~
¥el >[|A(Xo) — Aollx - (B.1.4)

If additionally there exists for any j = 1..n a C']D > 0 such that for all A €
R4 x R? satisfying || A — Aol|x < R it holds
|0x;049(A, Xo)| < CP M5, (B.1.5)

then additionally there exists a differentiable functions ./Zl(X) in a neighborhood
of Xo such that

A(X) = argmin{gy(A, X)|A € R*”? x Rlwith ||A— Ao|x <R} , (B.1.6)

and

D

IV A M < (B.17)
Proof. We take some A with || A — Ag|lx < C and obtain
9(A, x, 7) =g(Ao, X0, ) + dag(Ao, X0, T)[A — Ao] + %Eﬁg(fl, Xo, Z)[A — Ao
>g(Ao, v, ) ~ DIA = Adlls + 5 A~ Aol (B19)

The local minimizer fulfills and g(A, x,z) < (Ao, x,x). Therefore, we have the
estimate

0> — D|A— Agr + C/2|| A — A3

2D
=2 A- Al (B.1.9)

At the local minimizer the derivative d49(A, x,z) is zero. Hence, we get for all
A € Ba(Ap) the estimate

(A, x0, %) >g(A, xo, ) + %339(«4, X, )[A— Al
>g(A xo0) + 5 1A~ A (B.1.10)

In particular the minimizer is unique. For a local minimizer of g holds
0= 049(A, X)(M) . (B.1.11)

According to implicit function theorem there is a differentiable solution A(X)
satisfying the equation (B.1.11), if det 93h(A, X) # 0. This is implied by the
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strict convexity given by condition (B.1.1). Because g is two times continuous
differentiable, it is strictly convex in a neighborhood of X,. Therefore, there
exists a solution of the equation in this neighborhood and the solution is a local
minimizers of ¢g. Since 0 = d4g(A, X), it is also zero for tested with any M =
(M, p) € R4 x R

0=049(A X)M] . (B.1.12)

Since this holds for all X in a neighborhood of Xy, the derivative in direction X
is zero for all j, and we get

0 =35 2a0(AX). ) M)
=0 (949 (ACO. X) M) [ VoA | + 0x; (9ag(ALX), X) (M)

(B.1:13)

We test the equation with M = Vx;A(X)
9%9(A(X), X) [VX]-A()Q} S (aAg(A(X>,X)[vXjA<X)]) . (B.1.14)

We estimate the left side of (B.1.14) with the condition (B.1.1) from above and
the right side with the condition (B.1.5) from below, and obtain

CP M|l < CIVxAX)

- cP
IV AN <5 (B.1.15)
Hence, we get
- oy < 5~ (CF)
D IVGAXIR <Y o (B.1.16)
J=1 Jj=1

O

In the next lemma we calculate estimates for the minimizer and the mini-
mum of a function strictly convex function, for which we can bound the second
derivative from below and above with positive definite matrices, and additionally
know the derivative in on point . The lemma is similar to Lemma B.1.1 Since
we do not imply a special scaling between the different variables, this lemmata
is a little bit more general. Additionally we also calculate a lower bound for the
distance between x and the minimizer.

Lemma B.1.2. If F : R — R is a two times differentiable strictly convex
function with
cilz] < V2F[2] < 2] (B.1.17)
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where 0 < ¢1 < ¢o are positive definite, symmetric real matriz, then the minimiz-
ing y of F' fulfills for all x

F(z) - %CQ_I[VF(@] <F(9) < F(x) - %CEI[VF(@] : (B.1.18)
ali—z+c'VF] < (7' =) [VF(2)] . (B.1.19)

Proof. We use the Taylor expansion of F'((1 —t¢)z + ty) in ¢ up to second order,
and get

F(y):F(x)+VF(x)[y—x]+/0 (1—t)V2F((1—t)z+ty)ly —aldt . (B.1.20)

We apply condition (B.1.17) and get
1 1
F(2) +(VF(2),y — 2)+saly—a] < Fy) < F(2)+ VE(2)ly - 2]+ Sely — 2]
(B.1.21)
Since ¢; and ¢, are strictly positive, we can invert them. We rewrite the inequality

F(y) 2F(x) + VE@)(y —2) + 5~ 2)arly — 2]

>F(z) + (VF(z)e; ' ey — z)) + lcfl [c1(y — 2)]

2
>F(z) — %cfl[VF(x)] + %cfl ey —2) + VF] . (B.1.22)
For y with F(y) < F(x) it holds
\cl|%cl_1[VF(x)] > (ely —a) + VF)? . (B.1.23)

Therefore, the set of y with F'(y) < F(z) is compact and the continuous F' attains
its minimum on it. We can apply the calculation (B.1.22) for ¢, to get an upper
bound
1 1
F(y) <F(x)— 502_1[VF(x)] + 502_1 lco(y — ) + VF(z)] . (B.1.24)
The minimum of ¢ of F' has to be lower than the minimum of the upper bound.
Therefore, we have

56 IVF@) 2 = 5 (VF@)] + 5 laly - 2) + VF]
% (¢! — ) [VF(2)] Z%cfl ler(y — 2) + VF(2)] . (B.1.25)

O
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The next lemma is a simple application of implicit function theorem. if we
have a function of the form F'(X) = min, {(f(X,Y)} for a convex function F' we
can express the derivatives of F' in form of the derivatives of f

Lemma B.1.3. If f € C5(R™ x R™) and there exists rx > 0, ry >0, Xy € R”
and YoR™ such that

1) Oy f(Xo,Ys) =0,
2) 03 f(X,Y) >0 for all (X,Y) € B, (Xo) x By, (Y0),

then there exists some r > 0 and a differentiable function Y (X) in B.(X,) such
that

I fX V(X)) =0, (B.1.26)
% == (W F(X,Y))ToxOy F(X,Y) (B.1.27)
(B.1.28)

Furthermore, for F(X) =min{f(X,Y)|Y € B,, (Yo)} it holds
oxF(X)==0xf(X,Y) |, (B.1.29)
GLF(X) =08 F(X,Y) — Oxdy (X, Y)(ORF(X,Y)) " 0x0y F(X,Y) . (B.130)

Proof. Because it holds 02 f(X,Y) > 0, all eigenvalues of 0% f(X,Y) are strictly

bigger than zero. Hence, det 9% f(X,Y") is not zero and the conditions for implicit

function theorem are satisfied. Therefore, it holds 0 = 9dy f(X,Y(X)). Due to

02 f(X,Y) > 0 this stationary point has to be a local minimizer. If we calculate
the derivative of 0 = 0y f(X, Y (X)), we get

d
0 =0 f(X,Y)

OxOyf(XY) + B ST ) 5
Z—)Y( = (2 f(X,Y)) Poxov f(X,Y) . (B.1.31)
Furthermore because dy f(X,Y) =0
OXF(X) =0x f(X.Y) 4 v f(X.Y) 00 = 0xf(XY) . (B132)

The same way we get with equation (B.1.31)

RF(X) =20 J(X.Y)

=O%FXY) + Oy S (X, V)2

—0% f(X,Y) — OxOy f(X.Y) (02 (X, Y))'oxdy (X.Y) . (B.L33)
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Remark B.1.4. If we minimize the function f(X) with some g(X) = g constant,

we have to consider the Lagrange functional: L(X) = f(X)— u(g(X)—g) Hence,
we get for the minimizer
0 =0x,f(X) — nox;9(X)
Ox, f(X)
== B.1.34
Ix.9(X) (43
We will introduce now f(g) = min {f(X)|g(X) = G}
df (g) dX;
Y9 _ X
dX;
Zuzijﬁxig(X) i
dg
% B.1.
Mg =" (B.1.35)

Lemma B.1.5. Let for any i = 1..n there exits ¢; > 0 and b; € R? . If we
minimize over all x = (x;...x,) € (]Rd)n the function

J(z) = Zczxf , (B.1.36)
with the constrain

then the minimizer T and the minimum fulfill

-1
L d dz
$i—2—ci <Z2—CZ> g

i

MingernJ () = <Z Ccl—l> 0. (B.1.38)

- (3
3

Proof. We consider the Lagrange function:

L(z) = Zczxf + (p — Zdzmz> . (B.1.39)

)

We obtain
oL
O p—
613- ’
P (B.1.40)
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We apply this on equation (B.1.37) and get

AN
= i p . (B.1.41)

Due to equation (B.1.40) we obtain
-1
.4 d;
Z; _2_02- XZ: —c> P
- (x

=8

) _ 0. (B.1.42)

2
(A
C;

B.2 Basic properties of matrices

In this section we present different elementary properties of matrices, that we
use throughout the thesis. For matrices the euclidean norm |A| is bounded from
below and above by the Frubenius norm || A]|.

Lemma B.2.1. For all A € R we have
Al < |4l < Vd|A| (B.2.1)
Proof. Per definition of |A| there exist e; with |e;| =1 and |Ae;| = | A|
Ae; = |Ale; . (B.2.2)

|A| and || A]| independent of the basis we use for RY We calculate them in a basis
with e; as the first basis vector and get

d
AP = ]Aes* <D Aes* = [lA]7 . (B.2.3)
=1
Furthermore, we get
d
dIAP = d|Ae; | =) |Aei* = ||A]” (B.2.4)
=1
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We can use |A] to bound |A™!| and the other way around, if det A is bounden
from below and above.

Lemma B.2.2. For all A € Gly(R) it holds
A7 <|A|" det AT
|A] <|A7H det A . (B.2.5)

Proof. We set without lose of generality d = 3. Per definition of |A™!| there exist
€1, €1 with norm 1 such that

A_lél :‘A_l|€1 s
A7 e, =Ae; . (B.2.6)

We form a orthonormal basis with e; and obtain

Aej(Aey x Aez) =det A |
|Aeq|[Aes|[Aes| >det A,
[ A7 [ Aez][Aes| =2 det A
| Aes||Aes| det A >|A7
|A2det A7 >|A7Y . (B.2.7)

For the second estimate just exchange the roles of A and A~!. O

We are using matrix derivatives in several occasions in the thesis. There are
two perspectives on this derivatives. On the one hand, the matrix can be seen as
a linear map and the derivative is the functional derivative of the linear map. On
the other hand, the matrix can be seen as a vector. And the matrix derivative are
ordinary vector derivatives determined by the components. In the next lemma
we the matrix derivative of det A, A=t and ||A7Y|.

Lemma B.2.3. For all A € Gly(R?) and all M € R¥? it holds:

Oadet AIM] =Tr (A~"M) det A |
OAATN M) =—ATTMA™ |

a., | A7 |2 [M] = — 2T ((A—l)+ A—lMA—l) . (B.2.8)
In coordinates we can write the derivatives:
Oa, 5(det A) =adj(A)p o = Ag; det A
OnusAnr = — Apa A (B.2.9)
Furthermore, we have for all My, My € R%*?

94 det A (My, My) = Tr (A7'My) Tr (A7 M) det A — Tr (A~ MyA™' M) det A
(B.2.10)
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Proof. Derivative of the determinant:

If one uses Laplace expansion, one can immediately see that the partial deriva-
tive of the determinant in direction of one of the components is the corresponding
minor. Hence, it is the entry of the cofactor matrix. For the functional derivative
we obtain

9 det A[M] = lim SHAT M) = det 4

t—0 t
I ATIM) -1 A
:Pr% (det(Id+t : ) — 1) det (B.2.11)

If we apply Leipnitz formula on det(Id + tA~™1M), we get products of the com-
ponents of Id + tA~'M. For each of this factors we have one term from the
identity and one from tA~'M. The summands that are linear in ¢ are those with
the contribution of tA™'M in on factor and the contribution of Id in all other.
Since all non vanishing components of Id are belong to the diagonal The one
contribution A=t M has to belong to the diagonal too. We get:

-1 2N
det A,y det A[M] :Pr%l”TT(A Mt)+0(t) b
—

=Tr (A"'M)detA . (B.2.12)

The derivative of the inverse: In coordinates:
A A =0,
Oap(Aij A7) =0,
aaﬁAZ'jAj_kl + Az‘jﬁaﬁAj_kl :0 3
Az-j(‘?agAj_l = — 5ia6jﬁA;kl ,
ALt AijOapAsy = — 0ialis A AL
OnjOapAsy = — 0ialigApl ALl
OupArt = — A;O{Agk} . (B.2.13)
We calculate the functional derivative:
A+tM) 1 — AL
9AA- [M] = Jim A M)

t—0 t
—1 o] . —1\n —1
i AT SR (tMATY" - A
t—0 t
AT —tATTMAT 4+ O(1?) — AT
= lim t

=—A'tMA™ (B.2.14)

The Second derivative of the determinant We the obtain for first deriva-
tive tested with M € R%4(RR)

Oadet AMy) =Tr (A7' M) det A . (B.2.15)
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The second derivative is
0% det A (My, My) =04 (Tr (A~ M) det A) (M)
=Tr (6AA_1 (Ms) Ml) det A+ Tr (A_lMl) 0a det A(Ms)
=—Tr (A" MyA™' M) det A+ Tr (A" My) Tr (A M) det A
(B.2.16)

O
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