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Referat:

In dieser Arbeit wird die analytische Fortsetzung von Quantenfeldtheorien auf dem nichtkom-
mutativen Euklidischen Moyal-Raum mit kommutativer Zeit zur entsprechenden Moyal-Minkowski
Raumzeit (Wick Rotation) erarbeitet. Dabei sind diese Moyal-Raume durch eine konstante Nichtkom-
mutativitat gegeben. Einerseits wird die Wick Rotation im Kontext der algebraischen Quanten-
feldtheorie, ausgehend von einer Arbeit von Schlingemann, hergeleitet. Von einem Netz Euk-
lidischer Observablen wird die Lorentz’sche Theorie durch alle Bilder der fortgesetzten Poincaré
Gruppenwirkung auf der Zeit-Null Schicht erhalten. Dabei wird gezeigt, dass die Vorgénge der
nichtkommutativen Deformation und der Wick Rotation kommutieren. Andererseits ist so eine an-
alytische Fortsetzung ebenfalls fiir Quantenfeldtheorien, die durch einen Satz von Schwingerfunk-
tionen definiert ist, moglich. Durch die Giiltigkeit einer Kombination aus Wachstumsbedinungen,
die aus der Wick Rotation von Osterwalder und Schrader bekannt sind, kann der Ubergang zu einer
deformierten Wightman-Theorie gezeigt werden. Abschliefend beinhaltet diese Arbeit erganzende

Resultate zu den physikalischen Eigenschaften der Kovarianz und der Lokalitét.
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Chapter 1
Introduction

Quantum field theory was initiated as a generalization of quantum mechanics obeying to the fun-
damental principles of special relativity. It has become the prior instrument that is supposed to
solve the main problems of modern physics. Due to its enormous increase both in specificity and
versatility over the last 80 years, scientists were made to focus on certain branches in order to
come to new conclusions. Since the beginning of modern science, sustainable physical theories
had to pass the tests by the experiment. This is the main reason why quantum field theory has
reached great popularity: for example, quantum electrodynamics came up with a prediction of the
anomalous magnetic moment of the electron which agreed with the experimental data up to 10 sig-
nificant digits [ea01]. Success like this was possible due to the progression of renormalization theory.
The physically relevant models of quantum field theory, like quantum electrodynamics or quantum
chromodynamics may so far only be treated perturbatively because of their intrinsic nonlinearity
coming from self-interaction. The occurring integrals inhabit divergences, which superficially ren-
der the perturbation series - and therefore the theory - meaningless. This lead the founders of
quantum field theory to think about alternative viewpoints and brought young scientist Hartland
Snyder to publish the first model on a noncommutative space [Sny47]. Nevertheless, the systematic
absorption of the brought up divergences into redefined physical constants, i.e., renormalization,
let theorists rapidly come back to the primary perturbative approach. In the second half of the
twentieth century, the standard model of high energy physics was completed: a renormalized sym-
biosis of models describing the electromagnetic as well as the weak and the strong nuclear forces of

nature.



Despite this great achievement, certainly not all problems found an appropriate solution. While
the divergences can be kept under control at each perturbation order, not a single interacting model
in four space-time dimensions could be shown to have a converging perturbation series. At first
sight this could be classified as minor problem, but from a viewpoint closer related to philosophy
of science, this spoils the ability of deriving physical predictions from a mathematical well-defined
theory. Each of the perturbation series contained in the standard model is asymptotic and the
consequences of this fact are subtle. In an asymptotic series it may happen that the first, say, four
approximation orders make predictions very close to the experimental data, whereas the next ten
orders differ dramatically from any physical measurement. In other words, converging perturbation
series are desirable because they guarantee for approximations getting better order by order.

Parallel to the investigation of renormalization theory, mathematical physicists sought for a set
of few striking properties that are fulfilled by every quantum field theory model in use. The so-called
Wightman(-Garding) azioms [SW89] in brief demand the following of the correlation functions of
a quantum field theory: structural relation to quantum mechanics, covariance with respect to the
Poincaré group, relativistic causality and some technical analyticity and domain properties’. With
the exception of the purely mathematical requirements, any of these not to hold would question
our empirical picture drawn from thousands of experiments so far. This may give an idea of the
desire for having a well-defined model that satisfies all the Wightman axioms in four dimensions.

A somewhat differently motivated approach comprises the school of R. Haag’s algebraic quantum
field theory; there, the structural relations of quantum field theoretic models are central, irrespective
of any realization through vacuum expectation values. As will be explained in great detail in the
following sections of this thesis, a physical theory is built up of C*-algebras? associated to space-
time regions. This net structure obeys the so-called Haag-Kastler axioms [HK64], which under
some further conditions can be well related to the Wightman axioms [FH81].

The task of having an example at one’s disposal - either obeying to the Wightman or to the
Haag-Kastler axioms - marks the starting point of constructive quantum field theory and we are
going to state the main achievements of this branch now. For a thorough introduction to the
topic, see [Sum12]. Models featuring no self-interaction on Minkowski space-time were the first

successfully constructed and soon the same was attempted for interacting models. Even at "toy

"'We will come to a precise definition in Ch. 3 of this thesis.
2In fact, they are rather *-algebras comprising most properties of C*-algebras but are unbounded in general.



models” which are restricted in both interaction complexity and space-time dimension, the arising
technical difficulties were astonishing. While in the beginning the constructions were carried out in
Minkowski space-time using operator algebraic and functional analytic methods, this techniques did
not work out for a long time. By a theorem which is referred to as "Haag’s theorem” [Haab5, RS75],
an interacting quantum field theoretic model cannot be represented on Fock space. Rather, the
underlying Hilbert space must have another form which is unknown in general.

A completely different approach resulted in more success. In the 1970’s it was realized that
going over to Fuclidean space, one can consider the real scalar field as a generalized random process
[Sym66, Nel73a]. Before we deal with the Euclidean framework in detail, we try to give a summary
of its influence on the constructive program. Besides the interest of having proved existence of
certain models, one clearly is interested in the physical significance of such. Not just more (low-
dimensional) interacting models have been shown to exist, but the particle content and scattering
properties have been analyzed to a much greater extent in the Euclidean framework. Space-times
of dimension d = 4 are for many physicists the only "realistic” scene for a quantum field theory
to take place. Unfortunately, it is exactly this case which has not been reached satisfactorily by
constructive field theory up until today. Additionally we want to remark that there well have been
models who were shown to exist in four (and potentially in higher) dimensions, but every single one
of them proved to be trivial, i.e., its correlation functions coincide with those of the corresponding
free theory. As we will discuss in Sec. 1.2.5, the noncommutative approach to quantum field theory
is likely to provide an improvement of the situation, and it is the Euclidean framework which is
the method of choice again.

Euclidean quantum field theory started approximately when K. Symanzik realized that the
passage to "imaginary time” used before by Schwinger and Dyson at loop integral calculations
can be formalized more extensively® [Sym66]. Nelson made clear the connection of the correlation
functions in the Euclidean formulation, the Schwinger functions, and stochastic processes. He
showed that these Schwinger functions are in fact moments of a probability measure defining a
Markov process [Nel73a, Nel73b]. Given the "field measure” du(¢), the Schwinger functions &,

write

3Concerning the time scale involved: K. Osterwalder in [Ost73] attests the Euclidean framework “a long history”.

That was almost 40 years ago...



Sultr, ... ) = f o(21) - () du(9)

The necessary generalization is the use of a continuous time parameter, opposed to discrete
time steps, making the Euclidean scalar field a generalized stochastic process. In fact the integral
representation we just wrote down is only valid at non-coinciding Euclidean points z;, € R?*, k =
1,...,n, which can be cured by smearing with suitable test-functions, in the same way as in the
Minkowski case. Pursuing the analogy with stochastics, one can introduce a generating functional
from which any Schwinger function can be obtained via functional derivation, see for example
[GJ87, Roe94]. These generating functionals are the structure reminiscent of the path integral of
Feynman, with the slight difference that it can be given a well-defined mathematical meaning much
more easily?.

But all this keen model building will lead to nothing valuable as long as the way of passing
through to Minkowski space-time is vague. Therefore the precise analytical continuation of Eu-
clidean towards Lorentzian models is of high importance. Nelson gave a sufficient set of axioms a
Markov process has to fulfill to be a field theory on Minkowski space-time. This very important
step was further enhanced to theories which can be fully described by their set of n-point functions
(which by Wightman’s theorem is sufficient to completely determine the physical field and the
underlying Hilbert space, c¢f. [Wigh6]), but which do not fit into a description by a probability
measure. These Osterwalder-Schrader-Azioms [OS73, OST5] are the key contribution to the field.
The exact formulation of these and the similar set of axioms geared to the path integral formula-
tion can be found in Appendix A and Ch. 3. In a mathematically rigorous way, they clarified the
connection of given sets of Wightman functions and their corresponding Schwinger functions. It
is one of the main purposes of the thesis at hand to investigate the generalizations of analytical
continuations of this type to noncommutative theories.

The second unresolved problem of quantum field theory consists of the unification of general
relativity, the still unchallenged theory of classical gravity, and the standard model. Regarding
this point, the situation seems less clear than ever. There are both major conceptual and technical
difficulties plaguing the development of a quantum theory of gravity that last for decades. In the

ongoing twenty-first century, a few more or less large branches of research have formed. First of all,

4We do not want to ignore that using more subtle methods, the Feynman path integral can also be tamed [A1b08]



String Theory, having become vast both in the number of scientists involved and ideas uttered so
far. This set of theories tries to unify the fundamental forces by considering the oscillation modes
of closed or open space-time curves, the “strings”. These are regarded as the building blocks of the
physical world; indeed, the elementary particles are produced by string oscillations, while inspired
by quantum mechanics, their energy is proportional to the vibration frequency. We immediately see
that String Theory relies on simple ideas of the space-time structure which circumvent some insistent
problems of conventional quantum field theory such as intrinsic divergences. A contemporary
introduction to the field is given in [BBS06]. Admittedly, we stressed that a physical theory must
be experimentally tested, and this might be the biggest problem for all the candidates trying to
achieve grand unification. And due to the comparably high proportion of ideas born, models
proposed, etc. and concrete outcome, unique falsifiable predictions, etc., String Theory might
be the framework suffering most from this obstruction. Having lost contact with reality or not,
the mathematical theories pursued or even invented during the study of String Theory speak for
themselves [CHSW85, Wit89, GPR94].

Secondly, we mention the theory of Loop Quantum Gravity. Ashtekar [Ash86] found variables
for classical gravity that resemble the structure of canonical quantum field theory. People in this
program have tried to benefit from the upcoming analogies with Yang-Mills theory to quantize
gravity. The theory got its name from the loop-representation, decomposing the physical states
into Wilson-loops, which are known from gauge theory. Surely, the elaboration of Loop Quantum
Gravity is far from being complete, as is that of the other approaches to a unified theory. An
introductory course including a summary of current objections and methods of resolution is given
in [GP11]. Unfortunately, a more specified introduction to these areas of research cannot be given
within the scope of this thesis.

Our investigations are aiming at the third approach, noncommutative quantum field theory.
At the end of the 1980’s, French mathematician Alain Connes caused a stir in the mathematics
society by his invention of noncommutative geometry [Con94]. This theory relies on the strikingly
close relationship between algebraic and geometric entities. This relationship becomes manifest
by the theorems of Gelfand and Naimark [GN43], as well as Serre and Swan [Serb5, Swa62], for
example. Actually, the former is the name for two theorems. The first one, called the “commutative
Gelfand Naimark theorem“ states that a commutative C'*-algebra is isometrically *-isomorphic to

the space of continuous functions on a locally compact Hausdorff space. The second one is the



noncommutative generalization, implying that any C*-algebra admits a faithful embedding into
the space of bounded operators on a Hilbert space. The main focus of Connes’ work lies on the
geometrical consequences of equivalence theorems like these and culminates in statements about
reconstructing geometries out of algebraic data. To be a bit more precise, given a so-called spectral
triple (A, H, D), consisting of a C*-algebra A, a Hilbert space H and a self-adjoint, unbounded
operator D, satisfying specific properties, one can reconstruct a compact spin manifold [Con96].
Let us keep the mathematical achievements of noncommutative geometry this fragmentary for
now and come to the physical applications. As we have already mentioned, a noncommutative
structure additional to that of the quantum operators was once introduced to overcome the di-
vergences arising during the perturbative analysis of quantum field theory models. It have been
semi-classical considerations of combining quantum mechanical rules with those of general relativ-
ity that lead to the revival of noncommutative position operators in physics. Nowadays, it seems
like an improvement of the convergence crisis could be the first benefit thereof. But first things
first. The semi-classical gedanken experiment we mentioned is attributed to J.A. Wheeler and says
the following: in order to resolve space-time points that are very close to one another, we have to
put in a high amount of energy. Assuming the validity of general relativity to very small length
scales (and up until today there is no reason why one should doubt that) the energy density in
this small space-time region will be high enough to form a black hole, preventing any accretion of
knowledge about the region in focus. A physically well-motivated and very influential approach
to quantum field theory on noncommutative space is due to Doplicher, Fredenhagen and Roberts
[DFR95]. They introduced space-time commutation relations determined by a tensorial entity that
is assumed to fulfill physical properties, making it possible to maintain Poincaré covariance despite
deforming the space-time structure. Later in this thesis, we will contemplate a simpler model that

has gained some attention, too.

1.1 Algebraic Quantum Field Theory

As has been said in the general introduction, the Wightman axioms arose out of the desire to have
a short list of properties which any quantum field model fulfills. Mandatory from a mathematical
point of view, this list shall be of importance for future model building, too. But clearly, it

can only be meant provisionally: we simply cannot know which characteristics better developed
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theories of the future will possess. Going a bit more into detail, the Wightman axioms are aiming
at m-point functions, expectation values of field products in a physical state. Most often this
state is the physical vacuum and its realization is actually a part of the axioms: motivated by
quantum mechanics, they shall be expressed via vectors on a Hilbert space H. Moreover, the
Poincaré group is to be unitarily represented on H and there exists a unique invariant state, which
is the vacuum. Due to assumed Poincaré covariance the energy-momentum operator P* must
have its spectrum contained in the forward light-cone. The Wightman functions are demanded to
be sequences of tempered distributions, which also incorporate the theories’ covariance. Being a
vacuum expectation value, they are expected to be invariant under actions of the Poincaré group.
Furthermore, the fundamental concept of locality is realized by making sure that the Wightman
functions coincide whenever spatially separated fields in their evaluated products are interchanged.
The stability of matter relies in large part on the positivity of energy, a physical concept which
is included by a positive Hamiltonian on the one hand and by demanding that the Wightman
functions represent a positive state on the field algebra on the other hand. The latter property is
not straightforward to appreciate, but will be treated with greater rigor and detailedness. Finally,
a cluster property is assumed to hold in order to have a unique vacuum. This last axiom will be
the least important for our treatment.

In the late 1950’s and the beginning 1960’s, mathematical physicists added a further degree
of abstraction. As one of the founders of algebraic quantum field theory, R. Haag, argues in his
book [Haa92], the quantum field itself is just an auxiliary entity for physics. Its main purpose is
to establish the concept of locality, while the physically accessible quantities are scattering cross-
sections of elementary particles. So if one wants to capture the main structure of quantum physics,
one should focus on the physical observables which can be measured in a certain region of space-time.
An accurate inspection shows that the observable quantities form an algebra. The representation
of its elements as operators on the Hilbert space makes the use of C'*-algebras manifest. This was
first pointed out by Segal [Seg47]. Haag and Kastler [HK64] showed that the best-suited concept
comprises nets of C* or von Neumann algebras A(O), indexed by open, bounded subsets O of
Minkowski space-time. We collect these subsets into & and occasionally call them regions. Since
we are aiming at the Euclidean framework as well, we will be a bit more general in the upcoming
definition of our observable net. It is important how to implement symmetries there. If a group G

is realized on the quasi-local algebra A (the inductive limit of the algebra net) by automorphisms,
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Gogr—a,eAut A,

where all the oy leave ¢ invariant, then G is called a symmetry group. In fact, it can be shown
that Wigner’s theorem on space-time symmetries being unitary operators on Hilbert space can
be suitably generalized to this notion, c.f. [Ara99, chapter 4]. On a net of *-algebras concretely

realized on a Hilbert space, these automorphisms will be adjoint actions of unitary operators.

Definition 1. Given a manifold M, a family & of subsets of M, and a symmetry group G of point
transformations of M, a G-covariant net (A, 0, a) on M is defined as the following structure. A
is a map from & to C*-algebras A(O) (respectively von Neumann algebras acting on a common
Hilbert space H), such that

A(O1) € A(Oy) for O1 < O,. (1.1)

The smallest C*-algebra (respectively von Neumann algebra) containing all A(O), O € €, is also

denoted A, and « is an automorphic action of G on A, such that
ag(A(0)) = A(gO),  geG,0€e0. (1.2)

Thus so far the axiom of covariance was included in a natural way into the algebraic con-
text. Locality can be incorporated straightforwardly. To this end we specify the considerations to
Minkowski space-time again and write M(O) for the corresponding P(d)-covariant net. The reason
for us to do so is that there will be no reference to any curved space-time in this thesis. We can
easily incorporate the spectrum condition in the same way as in the Wightman case: we demand
the spectrum of the translation generators to be subsets of the forward light-cone. Now we call a

P(d)-covariant net M(O) local, if the following equation is valid,

[M(Oy), M(Os)] = {0} for 0, c Oy, (1.3)

where O denotes the causal complement of O, with respect to the Minkowski metric n =
diag(+1,—1,...,—1) on R% By causal complement, we mean the following set: y € O if (z* —

Y ) (2 —y¥) < 0 for all x € O,.

12



2

Figure 1.1: Schematic picture of assigning algebras to regions.

We have got almost all the main structures needed for an algebraic approach to quantum field
theory. But the main notion for the quantum structure is still missing: the physical states. We

adopt the nomenclature which has become standard in the literature.

Definition 2. Let G™ < P(d) be a subgroup of the Poincaré group. Let furthermore (M, &, o)
be a GM-covariant net on R?. A vacuum state on M is a normalized, positive, linear functional

w : M — C such that

o GM 39— w(Ax)'(B)) is continuous for all A, B e M,
° woaé\/‘ = w for all g e GM,

e There is a weakly dense subset D < M such that —i w(A*a | (A)) exists and is non-

‘i—_
dt 0

A few explaining remarks are in order. The last property of w is the algebraic version of the
positive energy requirement. Oz{:"l denotes a translation of the amount ¢ in the direction e, which we

choose to be timelike. So implicitly, we have picked subgroups G™ of P(d) which contain these ”time
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translations”. The introduced notions are the building blocks of algebraic quantum field theory and
can in principle incorporate the main structure of a variety of physical models. Nevertheless, as we
have started to explain in the main introduction, such models still have not been found to exist in
a mathematically rigorous sense. One therefore hopes that the purely mathematical consequences
of the axioms and the properties of better and better models will support each other in the way
towards a sound and predictive description of quantum field theory.

Before we go on we want to remark that it has shaped up to be advantageous to decouple the
description from an underlying Hilbert space in some fields of study. Concerning thermodynamics,
it happens that thermodynamic equilibrium states in the infinite volume limit cannot be represented
as density matrices in the vacuum Hilbert space. Algebraic quantum field theory is able to well
incorporate these states, as can be comprehended from [HHWG67]. The situation appears more
fundamental at quantum field theory on curved space-times, which has become a comprehensive
area of research, see for example [BF09]. There, it is always sensible to start the theory from the
algebraic structure alone as there is no vacuum state in generic space-times. One of the implications
of this fact is cosmological particle creation, which is introduced in [Wal94].

Nonetheless, when contemplating quantum field structures, it is not restrictive to take the
elements of the local algebras to be represented on a Hilbert space with the symmetry action given
by the adjoint action of unitaries. In this case we will talk of a covariant representation. Indeed,
by the GNS construction [GN43, Segd7], any C*-algebra which possesses a state w gives rise to a
Hilbert space H,,, a *-representation m, and a cyclic vector €),,, such that all elements A € A can
be realized on #,, through the relation w(A) = (Qy,, m,(A)Q,).

As has been remarked in [BLS11, Above Sec. 2.1], any abstract algebra faithfully represented on
a separable Hilbert space gives rise to a covariant representation [Ped79, Lemma 7.4.9, Prop. 7.4.7].
We will thus consider concretely realized algebras throughout this thesis.

Next we want to study the correspondence between the introduced algebraic framework and the
one situated on Euclidean space. The measure theoretic approach to Euclidean field theory treated

in [GJ87] amongst others delivers a local C*-algebra by the closure of

{exp{ig(f)} | f € S (R?), supp f < O},

where ¢(f) arises as moment of the Euclidean measure du(¢). This measure defines an un-

derlying generalized stochastic process. As a concrete realization, ¢ maps a Schwartz function to
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an operator on the Euclidean Hilbert space L?(.#'(R?) — C,du(¢)). The Schwinger functions
can be obtained by functional derivatives of the generating functional S{f}, defined as the Fourier
transform of the Euclidean measure.

Approaching a framework irrespective of an underlying measure, we again fix a unit vector
e € R? and write et = R? for the hyperplane orthogonal to e. Let r denote the e-reflection on R%:
r: (x9,2) — (—x0,2) and write RZ for the subspace of R? with positive components in e-direction,

i.e., R: ;=R e+ et. We are just ready to give a definition of the notion analogous to Def. 2:

Definition 3. Let G¢ = E(d) be a subgroup of the Euclidean group. Let furthermore (&€, 0, a®)
be a G¢-covariant net on R?. A reflection positive functional on € is a continuous normalized linear

functional o : £ — C such that

1. G® 3 g+ 0(Aa%(B)) is continuous for all A, B € &,

2. aoa;f:aforallgeGg,

3. There exists an automorphism ¢ of £ such that Lozg L= 045(9) for all g € G¢ and

¥(z, R) := (ra,rRr). Furthermore, ¢ fulfills the following property,

o(L(A*)A) =0, (1.4)
for all A€ €. = E(RL).

Inequality (1.4) is the important concept of reflection positivity. In principle, any Euclidean
direction would be fine for this definition, as they are all equivalent. When it comes to the physical
interpretation, e will be determined to be ”"Euclidean time”, i.e., the imaginary part of complex
generalization of the time coordinate in Minkowski space-time. An FE(d)-covariant net together
with a reflection positive functional will be the starting point for our algebraic Wick rotation in
Ch. 2.

15



1.2 Noncommutative Quantum Field Theory

1.2.1 Noncommutative Geometry

The notions introduced so far give an idea how important C*-algebraic techniques are for modern
quantum physics. The theorems by Gelfand and Naimark prepare a clear correspondence between
the abstract notion of a C*-algebra and that of bounded operators on Hilbert spaces, which are
mandatory for quantum mechanics and quantum field theory. Commutative C*-algebras are even
isometrically *-isomorphic to the space of continuous functions on a locally compact Hausdorff
space. This circumstance serves as a first example of fully describing geometrical properties by
means of purely algebraic ones. Extending this consideration to noncommutative C*-algebras was
the starting point for A. Connes in developing noncommutative geometry [Con94]. There one
most often starts by the algebra C*(M) of smooth functions on a manifold M and builds the
corresponding deformed noncommutative algebra using a certain deformation scheme. One main
achievement is the direct generalization of vector bundles; we will only sketch the main ideas. Given
a vector bundle in which M is the base space, its space of sections is a vector space carrying a
representation of C*(M) through multiplication by smooth functions on M. Put differently, the
section space is a module over the algebra of functions. By the theorem of Serre-Swan, any vector
bundle corresponds canonically to a finitely generated projective module, i.e., a direct summand of
a free module which has a generating set of finite rank. This establishes a generalization of vector
bundles in noncommutative geometry.

Constitutively, the differential calculus of operators was developed. The derivation comes
through the spectral calculus and pseudo-differential operators. It is just impossible to do jus-
tice to this performance in an introductory section of a PhD thesis. What we can do is to present a
small part of the “noncommutative dictionary”, a collection of entities of geometric or topological
nature and their according algebraic perceptions, linked via noncommutative geometric elaborations
[GBVFO00]:

16



TOPOLOGY ALGEBRA

continuous proper maps morphisms
homeomorphisms automorphisms
compact unital
Baire measure positive functional

The main notion of Connes’ noncommutative geometry is that of spectral triples:

Definition 4. A spectral triple (A, D,H) consists of a *-algebra A of bounded operators on a
Hilbert space H, together with a self-adjoint operator D (called the Dirac operator), which is
chosen such that its resolvent operator is compact and the operators [D, A] for A € A are bounded

on H.

As a commutative example, the complex valued smooth functions on M form an algebra, and
the space of square-integrable sections on the irreducible spinor bundle over M is a suitable Hilbert
space. For D we may pick the usual Dirac operator ) = —1y"0, with respect to the Euclidean
metric there. This is sometimes being referred to as the ”canonical (spectral) triple”. Now from a
general spectral triple one is able to extract an exterior algebra of forms with the derivation [D;, .]
and that enables the treatment of connections on modules. One of the key results of the noncom-
mutative geometry framework is Connes’ reconstruction theorem [Con96]. It essentially says that
given a spectral triple with A = C*(M) for a compact manifold M which satisfies a certain list
of axioms, one can reconstruct the geometrical data of the corresponding spin manifold. There
have been some generalizations of this theorem and we are going to introduce one of them in the
following subsection. Furthermore, one can use the spectral triples to consider noncommutative
generalizations of Yang-Mills theories. In fact, Connes and Chamseddine [CCO7] have carried the
noncommutative model building up until predictions for the Higgs mass in their ”almost com-
mutative” version of the standard model of particle physics. Indeed, the concrete prediction was
precluded by experiments at Tevatron [B708], but this example shows that using more refinements
could really bring the abstract mathematical generalizations to new physics some time.

Ending our general introduction to the growing branch of noncommutative geometry, we mention

that most applications to physics are still handled at Euclidean signature. Anyhow, it is clear that
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becoming a true candidate for improved quantum field theory needs the Minkowski signature,
especially when it comes to efforts concerning the inclusion of gravity. For a Lorentzian approach

to spectral triples, one can have a look at [Bar07], for example.

1.2.2 Moyal Space

Seiberg and Witten [SW99] have found a connection between String Theory and a certain variant
of a noncommutative space, so-called Moyal space. The defining relations there, for the moment

just in a formal sense, are the famous commutation relations

[X,, X,] =i, , mv=01,....d—1 (1.5)

between coordinate operators X,,. Here, 6, are the components of a completely antisymmetric,
d-dimensional matrix with real, constant entries. The Moyal commutator defines the simplest
model which is still consistent with the demand of the X, being self-adjoint operators. Due to its
plainness, it is the model most widely used in noncommutative quantum field theory and may serve
as a first approximation to generalized and more predictive models in the future.

The matrix 6 is sometimes referred to as "noncommutativity “, as it gives an account of how
far the coordinate operators are away from being commutative. The similarity to the fundamental
commutator of quantum mechanics is obvious, and one may even draw at least some related con-
clusions. Indeed, if the commutation relations (1.5) are to hold on a space(-time) in a sense needed
to be accurately exposed, the minimal observable distance is limited by the analog of Heisenberg’s
uncertainty relations. Without a deeper knowledge, one understands that the underlying space(-
time) is divided into cells of magnitude V0, where ¥ denotes the non-zero entries of §. Of course, it
is not required per se that all the parameters ¢/ in # need to be the same. Summing up, we deduce

the standard noncommutativity matrix for 4-dimensional Moyal theory:

0 9. 0 0

9, 0
0. — 1.6
' 0 0 0 v, (1.6)



Clearly, the specific choice constituting which coordinates are non-commuting is completely
arbitrary. However the simplicity of Moyal space(-time) brings along inapplicabilities: by again
having a glance at (1.5) we directly infer the breaking of Lorentz covariance (but emphasize the
persisting of translation covariance) of any physical theory defined thereon. Thus the incorporation
of such a commutator changes physics in a rigid way. So, one prevalent philosophy is to see the
institution of the Moyal commutator as a ”"deformation” of the underlying theory. In other words,
sending all parameters 9 to zero re-establishes the previous, commutative theory. This latter
operation is called the commutative limit and is one of the most important parts of well-defining a
theory on noncommutative spaces.

It was shown in [GGBIT04] that Euclidean space with superimposed commutation relations
(1.5), which is called the “Moyal plane”, fits into the framework of spectral triples. In order to
sustain more knowledge on how this is achieved and for later convenience, too, we introduce the

so-called star-product:

Definition 5. Let f,g € .(R%) and let Q be a skew-symmetric, invertible matrix. Then, the

Groenewold-Moyal star product is defined in the following way,

(f % 9)(x) = (27)~" fddk Ay o=k F(z 1 Qk/2)g(x + v)

Let us add as a short remark that this product, as the whole Moyal plane, has a long history of
development concerning quantum mechanics on the phase space [Gro46, Moy49]. In a technically
challenging work it was possible to go over to a suitable unitization Ay of the nonunital algebra
Ag = (L (R?), x¢). Since we do not want to give a more detailed repetition of the spectral triple
formalism, we refrain from formulating the exact theorem, but give an incomplete summary (again,
D denotes the usual Euclidean Dirac operator): The Moyal planes (Ag, Ag, D, L2(R?) @ C2") are
connected real noncompact spectral triples. In particular, the noncommutative position operators
X, can be included into the involved algebras by left multiplication. We close the recapitulation
of the Moyal plane by posing a lemma which tells about the different representations of the star

product on Schwartz space.

Lemma 1. For f,g e #(R%), the following equations hold for f *g g:
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(frQ9)(x) = J Ay dw e 2QT WD) £ (1)) g (1)
= (2n) J d'pdiq eIt ir@D2 F(p)5(q) |

Proof. A straightforward calculation. O

1.2.3 Generalization to Operator Algebras

We are able to gladly observe that the simple deformation of Euclidean space given by the Moyal
plane can be rigorously fit into the noncommutative geometry framework. As a consequence, the
commutator (1.5) readily serves as a first order approximation of a general intrinsic noncommuta-
tivity of space-time to certain quantum field theoretic models. On the other hand, we straightfor-
wardly comprehend that this still is not enough to act on algebraic quantum field theory for the
sake of its intended generality. But also in this case, we can access an elaborate generalization. The
monograph [Rie93b] has successfully adopted the deformed products to the C*-algebra setting. We

will now explain the cornerstones of this treatment.

Definition 6 ([Rud87]). A locally convex topological Hausdorff space is called a Fréchet space, if
it is complete as a uniform space and its topology can be induced by a countable set of semi-norms
| |m- A topological algebra A is called a Fréchet algebra, if its vector space structure is that of a

Fréchet space.

Let G denote a finite-dimensional Lie group with identity element 14, endowed with an inner
product (, ) and « a strongly continuous, isometric action of G, realized as automorphisms of the
Fréchet algebra A. Like it is done in [Rie93b], we call a representation isometric, if it is isometric
for all the semi-norms || ||, on A. Then, we define A® to be the dense subalgebra of smooth vectors
for a, i.e., those A admitting the map G 3 g — a,(A) to be smooth.

For the following, the subset of smooth vectors (or, smooth elements) is a very important notion.
In order to explain this a bit further, we need an integral on a general Lie group. For achieving
this aim, we follow mainly [Tay86]: If the dimension of our Lie group G is n, we can pick an n-form
w(lg) e A" T5_(G), which is determined up to a scalar factor. If we write Ly : G — G for the left
multiplication with g, then we set w(g) := A" (DLy-1)*w(L¢), where D denotes the derivative on
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the tangent space here. We directly deduce that w(g) is left multiplication invariant. Furthermore,
it is different from zero on the whole of G and non-degenerate. Thus, it serves as an orientation

form and the measure dg gained from w is called Haar measure.
Lemma 2. A® is dense in A.

Proof. Let f e €*(G) and A € A. Then define the entity

A(f) = f F(g)ay(A)dg ,

which is a bounded element of A due to the compact support of f. Given ¢g; € G, the important
property is

an A) = | @)l g = | Flag)ay(A)dg
G a
being valid for every f € €,°. Hence we directly infer that the map g — a,A(f) is a smooth
map, in other words, A(f) € A®. Now let f, € €* be a delta sequence, i.e., a sequence of
normalized functions weakly converging to the delta distribution. In this rather abstract setting,
this means that { fr(g)dg — 1 for k — oo and the fj, are supported on smaller and smaller compact

neighborhoods of e. Then, by continuity,

k—o0

lim A(f) = Jim [ ful)a(4)dg = 4.,
G

which shows that an arbitrary algebra element A € A can be approximated by smooth elements.
m

We are able to define a set of seminorms [|A| ;5 :=sup >, (u!)7[|0"Al,,, where || |, denotes the
msJ |pl<k

seminorms inducing the topology of A. Furthermore, we comprehend that A% is a Fréchet algebra
with seminorms | |;; and A% is closed with respect to the | |;;-isometric, differentiable action c.
For any linear map @) : G — G and for any A, B € A®, the function ag,(A)a,(B) is a smooth
element and bounded w.r.t. the seminorms | ||;;. This allows for the well-definition of the following

product:

21



Definition 7. With the notation as above, the product

Axq Bi= (r) " [[ dudv agu(A)a (B
is called deformed product or Rieffel product.

Next, we specify a list of properties permitting a reasonable implementation of the Rieffel

product for (algebraic) quantum field theory.

Proposition 1 ([Rie93b]). Let A, B, C € A and F € A®. The Rieffel product fulfills the following

properties:

1. Continuity: for any j there is a k and a constant ¢ such that

[A >q Blj; < c| Al Bl - (1.7)

2. Let M : G — G be a linear map. Then

3. Associativity:

Axg(BxgC)=(AxgB)xqC. (1.9)
4. Let A comprise a continuous involution and « be a *-automorphism. Then the involution on
A is compatible with x¢:

(A xg B)* = B* xg A* . (1.10)
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5. Let A be a C*-algebra and Q) be invertible. Then the left multiplication operator L, defined
by LpB := F x¢g B, is bounded on the multiplier algebra. In particular,

|LF| < det(@ DIIFI: (1.11)

where | | denotes the operator norm and || ||, the usual L*-norm.

The *-algebra given by the linear space A* equipped with the product x is denoted Ag. From
the treatment in [Rie93b, chapter 4] it follows that there exists C*-norm induced by (A%, x ), which
we denote by ||.||g. The C*-algebra obtained by completing (A%, X¢) in the norm | - | is then
named Ag.

Let us mention another property of the Rieffel product, which will gain more importance in the

context of deformations with respect to degenerate matrices 6:

Lemma 3. Denote the rank and the image of 6 by rk 0 and Im 6, respectively. Then, for A, B € A,
the Rieffel product fulfills

Axg B = (2m) 072 J dk dv e (A)ay(B)

Imé xIm6
Proof.
AxyB = (2m)"%? Jdk‘ dv e *ag (A)ay,(B) = (2m) 7@ J dk dv ek +ilkvmo o) (A, (B)
_ (27T)7d/2+(dim(ker9))/2 J dk f dw ei(k,v)lmgé(kere) (U)Oéek (A)CKU(B)
Imé
_ (am)on f b dv €50 (A) g (B)

Im@ xImé

]

From the latter property we infer that given the kernel of a certain noncommutativity matrix 6
is nontrivial, the corresponding algebras of functions will only be deformed in a proper subspace of
the underlying space-time. Naturally, this will lead to important conclusions in the “commutative-

time” setting later on.
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1.2.4 Warped Convolution

Until this point, we have worked with the noncommutative deformation of a commutative C*-
algebra in terms of the Rieffel product. D. Buchholz and S. Summers [BS08] have investigated
a way of deforming the algebra itself and leaving the product unchanged. The so-called warped
convolutions keep the main features of noncommutative quantum fields while they seem to be more
applicable to the construction of such. In a following paper, the same authors together with G.
Lechner [BLS11] have worked out the connection between usual C*-algebraic dynamical systems
equipped with the Rieffel product and these warped convolutions.

The deformation in terms of warped convolutions relies on a general setting that mimics the
vacuum representation of quantum field theory. So, in the following, we will consider a concrete
realization of the C*-algebra A on a Hilbert space H again. We will denote the smooth elements
represented on H by C®. The Moyal space setting is reached when the general Lie group G of
Rieffel’s treatment is chosen to be simply R? and the automorphic action « is given by the adjoint
action of the unitary operator U: a,(A) = U(x)AU(x) ! for x € R? and A € A. In this guise, the
Rieffel product takes the following form

AxgB= (27r)’dlirr(1) A%k d% x(ek, ev) agr(A)ay(B) ) | (1.12)

where x denotes a necessary, but irrelevant mollifier satisfying x(0,0) = 1. The main existence

result of [BLS11] is the validity of the following expression:

Definition 8. Let ® denote a smooth vector w.r.t. the action of U and let E be the spectral

resolution of U. Then the warped convolution is defined as the following object:

AQ(I) = fan(A)dE(x)® .
A listing of some fundamental properties of this notion is in order.

Proposition 2 ([BLS11]). Let A, B € C* and let Q, Q1 be d-dimensional skew-symmetric matrices.

Then we have
]. (AQ)* = (A*)Q and 1Q = 1
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2. AQBQ = (A XQ B)Q

3. VAQ V_l == (VAV_I)AQAT

for V' a unitary (or anti-unitary) operator on H, such that VU(x,1)V ! = U(Az,1).

4 (AQ)e: = Agran
5. Let Qe H be a U-invariant vector. Then Agf) = AQ.

6. Ay = A.

The form we will use during the remainder of this thesis has its origin in the concrete form of

R?translations implemented by a and reads,

AQV = (27) lim | A%k d% h(ek, ev) e agr(A)U )V | (1.13)

for a smooth vector ¥ € D < H and h a mollifier which satisfies h(0,0) = 1. It has been shown
in [BLS11] that A is independent of the concrete choice of h.

Thus the fundamental technical concepts are available at this stage. Before we finally get started
on adopting these methods in a combined way to noncommutative Wick rotation, we are going to
give an impression on how advantageous new results thereon might be with respect to quantum
field theory.

1.2.5 Advances in Field Theory

After its rebirth at the end of the twentieth century, noncommutative quantum field theory was
studied intensively in terms of renormalization. The intuitive picture of space-time cells mentioned
in Sec. 1.2.2 made most theorists involved believe that ultra-violet (UV) divergences appearing
naturally in standard quantum field theory could be cured right from the start. To be more precise,
the occurring of a "minimal length” was thought to prevent theories from inconsistencies coming
from the formal limit of ”distance going to zero”, ¢.e. the UV-limit in momentum space. Feynman
rules for Moyal-deformed scalar field theory introduced in [Fil96] were shown to inhibit a completely
new phenomenon [MVRS00]: so-called ultraviolet - infrared (UV-IR) mizing. In a nutshell, it can be

described as follows: in a field theoretic perturbation series, there are graphs containing integrated
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phases €7 which have been described in Sec. 1.2.2. When performing the loop integrations
(involving integrations of inner momenta), these phase factors lead to terms proportional to (6p) .
These specific terms are responsible for divergences when the outer momenta are sent to zero.
Eventually, the appearance of subgraphs leading to UV-IR mixing at any order of the perturbation
series spoils any attempt of renormalization.

Surprisingly enough, the cure of the UV-IR mixing problem in Fuclidean scalar field theory lead
to positive results which are not contained in the corresponding commutative theories. In [GWO05]
it was shown that adding a harmonic oscillator term into the action of Moyal deformed scalar ¢*-
theory leads to the disappearance of UV-IR mixing. Thus the oscillator-extended noncommutative
¢* on four dimensional Euclidean space is renormalizable to all orders of perturbation theory. In
addition to this success, the new action shows more interesting properties. In fact, it features a
non-trivial renormalization group fixed point [DGMRO07], which the commutative ¢*-theory does
not exhibit. Investigations aiming at the constructability of this model are in progress, c.f. [Wanll1,
GW12|. These achievements concerning renormalization and presumably constructive field theory
gave rise to new noncommutative models, containing scalar as well as gauge fields. All these
models®, including the Grosse-Wulkenhaar model, contain problematic constituent parts, either
from a physical and mathematical point of view.

Roughly speaking, all these new invented field theory models are meant to build an intermediate
step in understanding the consequences of quantum field theory on noncommutative spaces. If they
are ever going to produce predictions falsifiable in physical experiments, they have to be re-arranged
in a relativistic setting. This marks one of the central reasons why the Wick rotation of Moyal
deformed theories in particular, and noncommutative quantum field theory in general is desirable.
In addition, directly working out noncommutative theories on Minkowski space-time is even in the
simplest cases highly non-trivial [LS02b, LS02a, BEG*03].

Ssee for example [GMRT09, GVT10] for other renormalizable scalar field models, or [MST00, MSSWO00] and

references therein for implications on gauge fields
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Chapter 2

Algebraic Wick Rotation

In this chapter, the analytic continuation of a Euclidean net of *-algebras towards the correspond-
ing Minkowskian net of observables will keep us occupied. We are going to describe in detail the
results of the paper [GLLV11], concerning noncommutative Wick rotation in terms of algebraic
quantum field theory. To this end we will first recapitulate the known transition from “commuta-
tive” Euclidean nets satisfying full covariance with respect to the Euclidean group E(d) towards
Haag-Kastler nets. Afterwards, the generalization to theories covariant just with respect to a proper
subgroup of E(d) is obtained, without any reference to noncommutative geometry at this stage.
The next step consists in the deformation in terms of warped convolutions, together with the anal-
ogous Wick rotation result for the noncommutative Euclidean net. Eventually, we are interested
in the net evolving from the deformation of the commutative Haag-Kastler net which leads to the

main finding that it is in fact isomorphic to the one gained before.

2.1 The Schlingemann Approach

Apparently detached from the known theorems about Wick rotation, most importantly those by
Osterwalder and Schrader, we introduced the main notions of algebraic quantum field theory in the
introduction. There are tight relations between theories described via local observable algebras and
those defined through the sequence of n-point functions [FH81]. Nevertheless, it was Schlingemann
[Sch99] in 1999 who gave a precise figure to algebraic Wick rotation. As an analogous road is taken

when it comes to deformed theories, we will summarize his work in the following.
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Let E(d) = R? x SO(d) denote the d dimensional connected Euclidean group. The Euclidean
quantum field theory one starts with is given by a E(d)-covariant net {£(O)}ocg, where € is the
set of open bounded regions in RY, together with a reflection positive functional o of Def. 3. The
net shall satisfy a specific condition in accordance with the physically demanded notion of locality.
Namely, we demand that any two algebra elements A € £(O;) and B € £(O3) commute under the
condition that O; n Oy = . We are able to write

01 M 02 = @ = [5(01),5(02)] = {0} . (21)

Since on R? with Euclidean metric there is no preferred direction, we choose some direction e
to be “Euclidean time”. Then its orthogonal complement e will serve as the “time-zero-plane”.
As we will see, one fundamental concept of the algebraic Wick rotation is the time-zero content of
the theory. Since on both the Euclidean and the Minkowski framework we will deal with them, we

define the time-zero algebras for more general G-covariant nets (A, &, ) on R%:

Ag(K) = (] A©0), K cet. (2.2)

OoK
Schlingemann’s approach, as well as our noncommutative generalization coming up later in
this chapter, largely relies on the following additional assumption. We say that a G-covariant net
(A, O, a) satisfies the time-zero condition, if its time-zero algebras are enough to generate any local

algebra A(O) when acted on with the full automorphic symmetry action, i.e., if

"
A(0) = ( U {ay(Ao(K)) g€ G, gK = 0}> , Oeo0, (TZ)
Kceb

where B" for B ¢ (M) denotes the double commutant, which is equivalent to the weak
closure in the von Neumann setting if B is a unital *-algebra. In a C*-setting, one would prefer the
norm-closure instead.

Let us explain this definition more extensively. Any local algebra A(O), O in a suitable index
set, coming from a net of C*-algebras satisfying the time-zero condition can be obtained in the

following way:
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Figure 2.1: Time-zero condition: each local algebra £(O) is generated by the time-zero algebras

Ay(K) via actions of the actions a,.

e Pick a subset K of the time-zero plane e* and build the time-zero algebra Ay(K) in terms of
(2.2) upon it.

e Act with all a, on A(K), where g is an element of the symmetry group G, such that K is
mapped into O under g.

e Form the algebraic closure: build the union over all K < et of these symmetry group images

a,Ao(K) < A(gK) < A(O) and afterwards, go over to the weak closure of this union.

Thus the time-zero condition assumes that the algebra closure at the end of this procedure
gives in fact the whole local algebra A(O). The following definition summarizes the net content
and implicitly the axioms a Euclidean theory shall fulfill in order to give sense to a corresponding

analytical continuation:

Definition 9. A E(d)-covariant net (£, 0, a) on R? together with a reflection positive functional
o is called Fuclidean field theory. If in addition (€, O, a, o) satisfies the locality property (2.1), it

is said to be! local.

!Observe a somewhat unhandy nomenclature: a local algebra is the image A(O) of the net prescription and got
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While the goal of the following recapitulation is a Haag-Kastler net obtained by Wick rotation

of such a Euclidean field theory, its achievement goes through a number of important steps:

1. Define the “physical” Hilbert space H via the reflection-positive functional ¢ and properly

represent the Euclidean algebra on .

2. Examine how the representation of the Euclidean group acts on this Hilbert space and ana-

lytically continue it to a unitary representation of the Poincaré group P(d).

3. Define the Minkowski net of observables M(O) as the image of the time-zero algebras under
this P(d)-representation.

4. Show that M(O) satisfies the Haag-Kastler axioms.

Since we are going to explain all these steps in full detail for deformed theories, we will not
give a pronounced repetition at the scenario of full F(d)-covariant nets. We will see in the next
section that deforming causes a restriction of the underlying symmetry group and this leads to our
treatment being a generalization of step 2. here.

The biggest drawback, however, is the lack of locality in the noncommutative case. Having
said that, it is only natural to demand such a loss of locality due to general noncommutativity of
the algebras involved. Nevertheless, one is able to re-establish a remnant of locality here as well:
so-called wedge localiy, which we will discuss in Ch. 4. So let us proceed to the noncommutative

case after summarizing commutative algebraic Wick rotation in the following

Theorem 1 ([Sch99]). Let (£, 0, ) be a local Euclidean field theory satisfying the time zero con-
dition. Further let o™ denote the analytically continued representation of d-dimensional Poincaré

group and T be the *-representation of & on the physical Hilbert space. Then, the net

0 — A0)
M©O) = | {aé‘/‘(WEO(K)ngP(d),chO}M'

is a P(d)-covariant Haag-Kastler net represented on the Hilbert space H.

Remark 1. By definition, the net (M, &, a™) of Thm. 1 satisfies the time-zero condition as well.

its name from containing those quantum observables measurable in the space-time region O. On the other hand, a

net is said to be local it fulfills (a Euclidean version of) Einstein locality, i.e., micro-causality.
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2.2 Reduced Symmetry Groups

Since we are aiming at formulating a noncommutative generalization of a reconstruction theorem
similar to the famous one of Osterwalder and Schrader, we will deal with Moyal space later on. A
certain property of this deformation scheme is that the symmetry group gets restricted. In order to
give an eligible definition of the noncommutative framework, we consider nets which are covariant
with respect to a subgroup of the ordinary Euclidean or Poincaré group. We therefore introduce

the reduced symmetry groups as follows:

Definition 10. The (connected) reduced Euclidean and Poincaré groups Eg(d) and Py(d) are de-
fined to be

Eo(d) :={(z,R) : (x,R) e E(d), RO =0R} = SOy(d) x R?, (2.3)
{(z,A) : (x,A) e P(d)], A =OA} = Lo(d)| x RY, (2.4)

respectively.

As a small anticipation, we can easily legitimate definitions like the latter by demanding an
automorphic symmetry action o which is at the same time a homomorphism with respect to the
Rieffel product, see subsection 1.2.3. Take the invertible matrix M to be a realization of any

symmetry group element g = (a, M), then from property (1.8) we obtain

ay(A xg B) = azA X pep—1 oy B (2.5)

which leaves invariant the noncommutativity if and only if M6 = M, just as in (2.3),(2.4).

Construction of the physical Hilbert space Consider the algebra & := £(et + R, ¢), which

serves as our “positive-time environment”. Furthermore, define a sesquilinear form on £.. as follows:

£ x £ 3 (A, B) — o(u(A*)B)

This sesquilinear form is positive due to reflection positivity of o and can be degenerate. There-

fore, we build equivalence classes with respect to its null space
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N, ={Ae&. |o(L(A")A) =0},

in the standard way, [ ], : A — A + N, and observe that we can thus define a scalar product
on the pre-Hilbert space &~ /N, via

(Als, [Blo) := o ((A)B) .

Finally, we define the completion H := (€~ /N, {.,.)) with respect to the (., )-induced norm to
be our physical Hilbert space. For later convenience, we assert that the vector €2 := [1], will play
the role of the vacuum. We demanded of our Euclidean field theory in 2. of Def. 3 that e-reflections
act covariantly on the net £(0) and we easily comprehend that all the time-zero algebras & (K) are
t-invariant. Hence, for B € &, which is the same as £(e*), the element +(B*)C lies again in &-. for all
C € &... By the Cauchy-Schwarz inequality, we infer that N, = {A € & | o (L (A*)C) =0V C € E-}.
These facts lead to the well-definition of the map 7 : & — Z(H), which is given in the following

way,

7(B)[A], := [BA], , Ac&. , Be&. (2.6)

In other words, 7 is a well-defined GNS representation of & on H. Indeed, let us take A € N,

then we have

#(B)Al,, [Cle) = o(((BA))C) = a((A")u(B*)C) =0,

for all C' € €. Hence 7(B)[A], is again in [N, ], and 7 is well-defined.
At some stage in the current treatise we want to go over to a noncommutative deformation of
the algebraic content. Keeping this in mind, we work out how the reduced symmetry groups Ey(d)

and Py(d) act on the Hilbert space H in advance. Consider the involutive automorphism + of 3 in
Def. 3 on E(d), which was defined by

v: (x,R) — (ra,rRr) .
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The e-reflection r acts on E(d), and therefore on Ey(d), via v. It can be directly seen that ~ is
an involution, thus it possesses exactly the eigenvalues +1. The subgroup E§(d) of Ep(d) is defined
to consist of fixed points of v and thus is called “spatial subgroup”.

We could go on by directly adjusting the analytic continuation of the Euclidean group repre-
sentation to a unitary representation of the Poincaré group as it was done in [KL82]. Though we
consider it more appropriate to make the underlying mathematical structure visible for sake of

generality. But this requires a little background, which we shall sketch, following mainly [Hel62]:

Definition 11. Let G be a Lie group, K be a closed subgroup of G and 7 be an involutive
automorphism. Furthermore, let K., be the set of fixed points in K with respect to v and (K)o
its identity component. Then the triple (G, K, ) is called a symmetric space, if

(Ky)oc K €K,
The group G is sometimes called symmetric group.

Theorem 2 ([Hel62]). If g = ¢ @ m, where g is the Lie algebra of G, while ¢ and m denote the

eigenspaces of v for the eigenvalues +1 and —1, respectively, then we have

[e,t]lcet, [Emlcm, [mm]jct (2.7)

Definition 12. The dual symmetric Lie algebra g* of g is defined by

gh=t@im

and due to the relations (2.7) it is still a real Lie algebra. We call the symmetric space (G*, K*, )
the dual space of (G, K,~), where g* is the Lie algebra of G* and called the dual symmetric Lie
algebra of g.

In complete analogy to [FOS83] we distinguish between two cases of symmetric spaces in the
following; the choice to do so will be justified in a moment when it comes to the interpretation of

these abstract notions.
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Definition 13. A symmetric space (G, K,7) is defined to be of type (I) if K is compact.
A symmetric space (G, K, ) is defined to be of type (I1) if

G=GyxT, K=Kyx P, Ko & Gy, P<T, T abelian

Remark 2. For type (II) symmetric spaces it holds:

gOt= (L ®m) @ (pDh) =tOm

where the small German letters denote the Lie algebras of the corresponding capital letter Lie

groups and b is the Lie algebra of T/P. From this we can see

(80, 8] < €, [to,mp] cmy, [mg,mp] ¥y,

as well as

[E(]ap]cp ) [E()’h]Cb )

and

[mo.b] < p, [mo,p]ch, [tt]=0.
Remark 3. Physical examples one has in mind are:
e Type (I):
G=S0(n), K=50n-1)=G*=50(1,n—1)
e Type (I1):

G = En)=8S0n)xR", K=En-1)=S50(n—-1)xR"!
=G = SO(l,n—1)x R".
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Coming back to the specific case at hand, the involution v introduced before Def. 11 induces
a decomposition of the Lie algebra ey(d) of Ey(d) into corresponding eigenspaces with eigenvalues

+1

)

co(d) = 5(d) D my (2.8)

where ¢§(d) denotes the Lie algebra of E§(d). The pair (eg(d), e5(d)) in fact has the structure of

a symmetric Lie algebra, i.e.,

[eg,e5] < ef, [e5,mp] cmy, [mp,my] < ef (2.9)

Our next task consists of obtaining the correct representation of Ey(d) on H. For a given
element of Ey(d), we have to take care of it staying in the equivalence class of the positive-time
algebra &., because H was defined in this way. Hence it is necessary to consider a sufficiently
small neighborhood % of the identity in Fy(d) and define the representing operators V' (g) there

for elements A € £~ as follows:

V@IAL = [ag(A)]s,  ge . (2.10)

More precisely, for a given g € %, we consider all regions O < R% such that both, gO and
v(g)~1gO, are still contained in RZ. For A € £(0), the right hand side of (2.10) is then well-
defined by covariance and isotony, o,(A) € £(gO) < E... Furthermore, we have to check that the
above assignment is well-defined, i.e., independent of the choice of representative in [A],. In fact,

for A e N, we can use the Ey(d)-invariance of o to compute

V(@A V(9)lAl)

oy (Vo> = 010y (4)) 0y (A4)) = 001y (1)) 00 (A))
= 0((A) agry(4)) (2.11)

According to our assumption on the region O, we have y(g)"'gO < R%, and hence a,(5)-1,(A)
is again an element of £.. Thus the Cauchy-Schwarz inequality yields V' (g)[A], = 0, which shows
that V(g) leaves invariant the null space N, of the product {, ) and therefore is well-defined. The
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subspace of H which is spanned by all [£(O)],, where O runs over the described set of regions, will
be taken as the domain domV'(g) of V(g), i.e.,

domV(g) = {[£(0)],|O < Ri, g0 R‘fr, v(g)"tg0 = Ri} cH .

In order to obtain a common domain for all operators V(g), g € Ey(d), we choose a particular
region.

In spite of the more general approach permitted by the usage of an arbitrary Euclidean direction
serving as the time direction, it is oftentimes more convenient to go over to a concrete descrip-
tion of these spaces. This is the reason why we introduce orthonormal coordinates (zg, ..., 24 1)
of RY, with the property e = (1,0,...,0). Whenever we consider it more convenient, we write
(2%, ) := (x¢, ..., 4_1). Since we are dealing with the Euclidean group, corresponding generators
of translations are needed and denoted by Fj, ..., P;_;. In addition we have operators My, k <[,
k,l =0,...,d — 1, which implement the rotations in the z,-x;-plane. It is straightforward to com-
prehend that the Lie algebra ej(d) is spanned by Py, ..., P,y (spatial translations) and all linear

combinations of My, k > 1, which commute with 6.

Remark 4. At the physically interesting case of d = 4 the Lie algebra ej contains rotations with
respect to exactly one axis. Therefore, ¢ generates SO(2). The remaining linear space my is
spanned by P and all linear combinations of My, k = 1,2,3. But by the definition of Ey(d) these
Moy must commute with 6. Hence my generates SO(2) as well. This makes ey(4) the Lie algebra
of R* x (SO(2) x SO(2)).

The region serving as the common domain of our representation is defined to be

C:={zxeR’: 20>1+(2?+ .. + xi_l)m}. (2.12)

Clearly there exists a neighborhood % < Ejy(d) of the identity such that ¢gC and v(g) 'gC are
both contained in RY for all g € %. Furthermore, we can choose % so large that it contains the full
spatial subgroup Ej(d) (Euclidean group elements commuting with the time reflection ¢), since the
latter cannot push C to a region of negative time: gC < RZ for all g € Ef(d). These considerations

qualify the subspace
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Figure 2.2: The boundary of the common domain C plotted for d = 3.

Dy :=[E(C)], cH (2.13)

to be the domain for our representation. In the context of symmetric spaces, a theorem guar-
anteeing the existence of an analytic continuation of certain group representations is available
[FOS83]. Before we reflect the exact statement, we define the notions the said theorem deals with

and simultaneously prove that the representation we constructed fits into that framework:
Proposition 3. The data (% ,Dy, V) form a virtual representation [FOS83] of Ey(d), i.e.

1. Dy c H is dense and for all g € % , one has Dy < domV (g).

2. If g1, 92 and g1go lie in % and V € Dy, then V(ge)V € domV (g1) and
VgV (g2)¥ = V(g192)V .

3. For g € E§(d), the operator V(g) extends to a unitary on all of H.

4. For g =exp M € % with M € my, the operator V(g) is hermitian.
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5. Let W e Dy. Then % 3 g V(g)V is strongly continuous.
6. The translations in e-direction {V (exptPy)}i=0 form a contraction semi-group.

Proof. 2. Let g1,92 € % such that also g1go € . It follows g1goC < RL. % was chosen
such that v(g)™'gC < RZ for all g € %, thus by V(g2)Dy = [E(92C)], we have established
V(g2)Dy < domV (g1). The group law V(g1)V(g2)V = V(g1g2)V, ¥ € Dy, follows from (2.10).
Indeed, let ¥ € Dy, then it follows W = [A], for an A € £(C'). Thus,

V(g)V(g)¥ = V(g1)V(92)[Als = V(g1)[ag(A)]s = [ag, (g, (A))]s
= [age(A)]e = V(g192)[Als = V(9192) ¥ .

To establish 3. and 4., we compute with A, Be€ £(C) and g € %

V(9IAl, [Blo) = o(t(ag(A*)B) = o(ay ) (1(A%)) B)
= 0 (A" g)-1(B)) = [As, V(4(9) DIBlo). (2.14)

vielding V(g)*  V(v(g)™!). This shows that for a y-invariant group element g € E(d), we have
V(g)* © V(g)~ !, and once we have checked that Dy is dense (part 1.), it is clear that such V(g)
extend to unitaries on all of H. On the other hand, for g = expM € %, M € my (the “time-

dependent” part of the Euclidean Lie algebra), we have v(g) = g~*

, and thus the representing
operator V(g) is hermitian.

5. Let g€ % and A € £(C). Then we compute as in (2.11),

Vi{g)[Als — [A]aH2 =0 (L(A*) (O‘V(g)‘lg(A) - av(g)‘l(A) —ay(A) + A)) .

In the limit where g approaches the identity in Ey(d), this norm difference vanishes because of
the assumed continuity of o (1. of Def. 3).

6. For positive parameters ¢t > 0, the domain of the e-translations Vi (t) := V(exptF) is the
dense subspace domV;(t) = D = £~ /N,. As the generator Py of translations along e lies in the —1
eigenspace my of v, we find analogously to the proof of /. that Vi(¢) is a hermitian operator for

any t = 0. As R, 3t~ Vj(¢) is strongly continuous on D by the continuity of o, it follows that V}
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is a symmetric local semi group [KL81]. In particular, there exists a self-adjoint operator H with

D < dome *# for any t > 0, such that V;(t) = e on D. For A€ £.,t > 0, we estimate

le AL | = [Vi@®[AL | = lletexp er, (Ao < lovespir, (A)e = 4] -

Since this bound is uniform over all ¢ > 0, and D < H is dense, it follows that H is positive,
i.e. V4 is a contraction semi group.

1. With this information, we can now prove that Dy is a dense subspace of H as well, using a
Reeh-Schlieder type argument (see also [Sch99]). For ¥ € Dy and A € £(O) with some bounded
O < RZ, consider the function f: R — C,

f(s) = (e [Als) = (T, [Oexpsry (A)]o) - (2.15)

Since H is positive and V; is strongly continuous, f extends to a holomorphic function in the
right half plane, with continuous boundary values. Moreover, as O is bounded, there exists sq > 0
such that O +s-e < C and thus qexpsp,(A) € E(C) for all s = s9. Hence f(s) =0 for s > s, which

by the analyticity of f implies 0 = f(0) = (¥, [A4],), i.e., ¥ L [E£(O)],. But by definition of &,

d

¢, is norm-dense in £, and by

the union of all £(0), where O runs over all bounded regions in R
construction of the Hilbert space, [€~], is a dense subspace of H. Hence ¥ = 0, which proves the
density of Dy € H. The fact that Dy < domV (g) for all g € % follows from the definitions of Dy
and the domains domV'(g): Dy was defined to be [£(C)], and we already noticed that the region
C causes gC' as well as 7(g)~'gC being elements of R? for all g € %. The subalgebra generated

by elements satisfying exactly these relations was defined to be domV'(g). O

Now we are ready to perform the analytic continuation of the virtual representation established
right now. For the full Euclidean group, it has been shown in miscellaneous guises by a number of
authors that this is possible. For a thorough treatment in a more general group theoretic setting see
[JO99]. Using the notions worked out so far, we can generalize their results to the case of reduced
symmetry groups, which is of great importance when it comes to deformation.

We start by the assertion that we will obtain the group we are aiming at: given ey(d), its dual

Lie algebra leads to the corresponding reduced version of the d-dimensional Poincaré group:
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Lemma 4. The connected, simply connected Lie group Eo(d)* with Lie algebra eg(d)* is the uni-

versal covering group of the reduced Poincaré group,
Ey(d)* = Py(d) . (2.16)

Proof. For 6 = 0, this fact is well known [FOS83, JO99]. Now ey(d)* < e(d)* consists of all those

* which commute with 6, i.e., ¢g(d)* coincides with the Lie algebra of the reduced

elements of e(d)
Poincaré group Py(d), defined in (2.4). Hence Ey(d)* is the unique connected simply connected Lie

group with the same Lie algebra as Py(d), that is, the universal covering group P (d). O

The adaptation of the framework of symmetric spaces and virtual representations reaches its aim
when it comes to the application of the following theorem. We have shown that the representation
of the reduced Euclidean group Ey(d), given by the operators V(g) on our physical Hilbert space

‘H is “virtual” in the above sense. This makes us able to profit from the following:

Theorem 3 ([FOS83|). Let (Gy x T, Ky x P,7) be a type (II) symmetric space and let ™ be a
virtual representation of (Go x T') such that there exists a basis {e;}i_, of T /P with the property
that {m(e™")},<0 s a symmetric contraction semi-group for each i = 1,...r. Then 7 can be

analytically continued to a unitary representation ©* of (Go x T')*.

Combining Prop. 3, Lemma 4 and Thm. 3 we obtain that V' can be analytically continued to a
unitary representation U of Fy(d)*, which is nothing else than Py (d). Before we go on, we remark
that in the concrete situation at hand, U actually descends to a unitary representation U of the
reduced Poincaré group Py(d) itself: For 6 = 0, this follows from the analysis in [KL82|, where
the analytic continuation of V' was carried out for Ey(d) = E(d) and shown to result in a unitary
representation of Py(d) = P(d) instead of the universal covering group. This feature then restricts
to the reduced group Py(d) < Po(d) for § # 0.

Furthermore, the vacuum vector 2 = [1], € Dy is invariant under all V(g), g € %, as can be
seen from (2.10). As U is obtained from V by analytic continuation, € is invariant under the
representation U as well.

We collect what we have obtained in the following theorem, preparing the ground for going over to

Moyal space(-time):

Theorem 4. There exists a strongly continuous unitary representation U of Pa(d) on H such that
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1. U(g) =V (g) for g € E§(d) = Po(d).
2. U(g)2 = Q for all g € Py(d).

The representation U provides us in particular with a strongly continuous representation x —
U(z,1) of the translation group R?, generated by Py := H and the (Euclidean) momentum operators
Py, ..., P; . It is important to note that the usual spectrum condition gets modified as well by the

restriction to proper symmetry subgroups.

Proposition 4. The joint spectrum S of the generators Py, ..., Py 1 of the translations U(x,1) =
et s a Py(d)-invariant subset of R? satisfying {po : (po,...,pa—1) € S} <Ry and 0 € S.

Proof. As U(z,1) extends to a representation of Py(d), the joint spectrum of its generators is a

Py(d)-invariant subset of RY. Moreover, Py is positive by 6. of Prop. 3, and hence

{pO : (p07 "'7pd—1) € S} = SpeCPO C R+ X
We have 0 € S because € is translation invariant. 0

Remark 5. Let us give more details on the explicit shape of the translation generators’ spectrum. In
terms of this “noncommutative” spectrum condition one can easily realize a physical consequence

of the strict Moyal deformation prior to its actual implementation:

e For a theory satisfying full E(d)-covariance, we as usual gain a unitary P(d)-representation,
which leaves the spectrum of the Fy, ..., P;_; invariant due to the latter proposition. Together
with the condition {py : (po,...,pa—1) € S} < R, this means nothing else than S must be

contained in the closed forward light-cone.

e If d > 2iseven and ker 0 = {(pg, p1,0,...,0) : po, p1 € R}, just the boosts A1() in z1-direction
lie in Py(d): indeed, we know from (2.5) that for any matrix M to be an element of Py(d),
it is necessary and sufficient that (x, M) € P(d) for any z € R? and MM~ = . Given an
arbitrary boost realization Ag(() the only possibility for the latter equation to hold is k = 1,
as one can easily realize while having a look at (1.6) and setting ¥, = 0. It is immediately

clear that A;(5) being the only boost in Py(d) is more than ever correct if one does not set
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X0
X,, X3

X1

Figure 2.3: The light-wedge Y

¥ equal to zero, i.e., at a noncommutative-time scenario.

For an explicit form of the spectrum it is thus enough to consider (A;(8)p)o and from

(A1(B)p)o = cosh(B)po + sinh(5)py

as well as from the positivity statement it follows that py may not be smaller than |p;|. Hence

in this case, we only get S < Y, where Y denotes the closed light-wedge

Yi={peR: py = |pl}, (2.17)

which is indicated in Fig. 2.3. Spectrum conditions like these have also been discussed else-
where [AGVMO03].

We are almost done with our Wick rotation of an algebraic Euclidean theory with a reduced
symmetry group. The last step will comprise a meaningful definition of a theory on Minkowski
space-time, fulfilling adapted Haag-Kastler axioms. As we will see in a moment, the analytical con-

tinuation of the symmetry group representation was already the most exhaustive part of achieving
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this aim. The rest relies purely on the given algebraic properties of the Euclidean field theory and
the time-zero condition.

At first we denote by a™ the automorphic action of the unitary representation U of Py(d),

a)'(A) :=U(9)AU(g) " , gePyl(d), AcéE. (2.18)

So we have reached the point where we have collected everything necessary to come to our
Lorentzian theory: we define it to be the net (M, &,a™), where € is still the collection of open
bounded regions of R%. We recall the representation 7 (2.6) of the time-zero algebra & = &(et)
on H and remark that by the time-zero condition on the net &£, this algebra is non-trivial, or put
differently, not equal to C1. The next theorem includes a definition and finishes the commutative

treatment of algebraic Wick rotation in this thesis:

Theorem 5. 1. The algebras M(O), defined as

M(0) := < U {a;w(w&)(K))‘ g€ Po(d), gK O}> (2.19)

Kcel

for any open bounded region O < R? and the action o™ given in (2.18) form a net (M, 0, ™)

of von Neumann algebras on Minkowski space-time which satisfies the following properties:

(a) Isotony: Oy < Oy € O = M(O1) € M(Os)
(b) Covariance: h € Pp(d) = aMM(O) = M(RO) YO e 0
(c) Time-Zero Condition: (TZ) holds with respect to Py(d)

2. The state w(A) :={Q, AQ) is a Py(d)-invariant vacuum state on M.

Proof. 1. First of all, we make sure that equation (2.19) displays well-defined von Neumann algebras
M(O) depending on O € ¢. This on the one hand is guaranteed by the weak closure applied to
the rhs. of this very equation. On the other hand, a™ = Ad U is an automorphic Py(d)-action on
PB(H), which is part of Thm. 4. Thus, according to Def. 1, we now are able to show the claimed

properties.
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(b) Let O = R? be open, K < e', A € &(K), and g € Py(d) such that gK = O. Then, for
an element B € M(O) defined to be B := a)!(n(A)), and for any h € Py(d), we have ap'(B) =
apt(m(A)). Since clearly hgK < hO, we have a;'(B) € M(hO), and as M(O) is generated by
operators B, also a'(M(0)) € M(hO). By also considering the inverse transformation h=!, we

arrive at the covariance property ai'(M(0)) = M(hO).

(a) Let O; < Oy be an inclusion of two regions in R?, and K < el such that there exists
g € Py(d) with gK < O;. Then we obtain gK < O,. Hence, by covariance we have that for any
A € &(K) it follows a2 (m(A)) € M(Oy). By the first consideration, this is contained in M(O;)

as well. As these aM(m(A)) generate M(O,), isotony holds, i.e., M(O1) = M(Oy).

g

(c¢) This property is satisfied by the very construction of the net {M(O)}oes-

2. By definition, w is a linear functional on M, which is positive: on the one hand we have
(Q, AQ) := o (1(1)*Al). On the other hand take B € M to be a positive element of M. Then there
exists A € M such that B = A*A. Hence we have

W(B) = w(A*A) = (Q, A*AQ) = (AQ, AQ) >0 .

Covariance follows similarly: Since €2 is a Py(d)-invariant unit vector, it follows for every g €

Py(d) and every A e B(H),

w(oy'A) = (Q, 0y AQ) = (U(g) 7', AU(9) Q) = w(4) ,

M

thus w is an a’-invariant state on Z(#H). This implies the claim of Py(d)-invariance on the

subalgebra M < %B(H). Furthermore, Thm. 4 implies that U is strongly continuous, which means
that

Po(d) 3 g = w(Aay(B)) = (U(g) " A™Q, BU(9)"'Q)

is continuous for all A, B € M, as required in Def. 3.
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Finally, we show that w fulfills positivity: M is weakly closed and invariant under the trans-
lations ozﬁf‘l, r € RY. Moreover, we use that U is strongly continuous to deduce that M contains
a strongly dense subalgebra M® consisting of operators A for which x — aé\j‘l (A) is smooth (see
Lemma 2 in the introduction). In particular, the function R 3 ¢ — w(A*a;¥! | (A)) is differentiable
at t = 0 for such A, and —i4|,_ow(A*o | (A)) = (AQ, ByAQ) > 0 because Py is positive. This

completes the list of properties of w required in Def. 3. O

2.3 Noncommutative Algebraic Wick Rotation

In the present chapter we made some effort in preparing the ground for the application of a certain
deformation scheme in order to get to a noncommutative algebraic quantum field theory. Nonethe-
less, not at any time we have relied on such, not even on a fairly general noncommutative theory up
until now. In other words, all we have done in the ongoing chapter so far is valid for any algebraic
Euclidean field theory, covariant with respect to a certain subgroup of the Euclidean group. At this
point we are going to implement the procedures of 1.2.3 and 1.2.4 in our framework of Fuclidean
and Lorentzian nets of observables. Though our treatment happens to be quite abstract, we expect
some practicability: all our assumptions with the time-zero condition as the only exception? are
considered natural in the area of Moyal deformation.

Before we start going into detail, we explain the main ambition of the following considerations.
At first, we work on the net of observables resulting from the deformation of a Euclidean field
theory in the sense of Def. 9. We saw in (2.5) that choosing our degenerate noncommutativity 6
for the general skew-symmetric matrix () causes the appearance of the reduced symmetry group
Ey(d). The circumstances under which a Wick rotation of such deformed nets are still possible will
be explained in detail. By taking a different point of view, we can first use the existing notions of
Wick rotation to arrive at an undeformed Lorentzian net of observables from the usual Euclidean
field theory. There is no reason why one should not use the warped convolutions framework to
deform a theory situated on Minkowski space-time. Quite the contrary, this deformation scheme
was designed to work on Lorentzian theories originally. So another main result of the following is
the uniformity of the noncommutative net of observables on Minkowski space-time. What just has

been sketched can apparently be visualized in Fig. 2.4.

2In fact, this restriction is valid in many constructed models; we will come to that later.
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Figure 2.4: The apparent objective of algebraic Wick rotation

E —— M

Figure 2.5: The complete task of our algebraic Wick rotation.

Taking a closer look, however, infers that one actually is left with two deformed nets on
Minkowski space-time. One, denoted by My, arises when figuring out the Wick rotation of section
2.2 for the deformed Euclidean net & and the other one is obtained by deforming the Wick rotated
net M. That latter net we are going to denote by M?. The task of working out whether these two
deformed nets are equivalent is depicted in Fig. 2.5.

While in 1.2.3 we have prepared the main features of Rieffel’s deformation of the C*-algebra
product, we present more such results useful for the algebraic framework now. Making a specific
choice for the matrix ) of deformation parameters is the first mandatory step. From now on, we

will deal with the following noncommutativity matrix in arbitrary d = s + 2n dimensions:
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0:=0,00, D Db, (2.20)

where the 2 x 2 matrices 6, are given by the standard Moyal form:

0 v
O = g , WpeR, k=1,....n
— 0

For maintaining the largest noncommutativity possible in presence of the “commutative-time”
scenario (corresponding to s > 0 here) we will oftentimes choose s = 2 if d is even and s = 1 if d is

odd. So, the most interesting case in our treatment will be d = 2 + 2, where 0 assumes the form

, (2.21)

o O O O

0
0
0
0

o D O O

—

which coincides with (1.6) when ¥, is set to zero and ¥, =: ¥. Let us consider the dense
subalgebra A® < A of the (for the moment still general) C*-algebra A consisting of smooth
elements. By Lemma 3, it suffices to perform the integration at the Rieffel product along a basis
of Im#. These we will sometimes call “noncommutative directions”.

Next we are going to figure out some of the modifications of the warped convolution deformation
when deciding to use such a noncommutativity matrix 6. All of the fundamental properties of
Prop. 2 stay correct when we consider a skew-symmetric matrix 6 of the degenerate Moyal type.
The covariance property 3. there in particular simplifies even. Indeed, let A, B € C*. Then we get
a simpler relation for V' being a unitary operator on H such that VU (z)V* = U(Mz), z € R? and
for some M € GL(d) satisfying M7 = M~! and M0 = OM:

VAV* = (VAV*), . (2.22)

In particular, U(z)ApU(—z) = (U(z)AU(—x)), for all z € R%
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We need one more result before we can finally appease our appetite for the Moyal deformation
of local nets of observables. Namely, the fact that the Hilbert space representation of the original

algebra can be directly continued to a representation of the noncommutative algebra:

Lemma 5 ([BLS11]). Let A be a C*-algebra with strongly continuous R%-action o and m an -
covariant representation of A on H, i.e., U(z)m(A)U(zx) ' = 7(a,(A)), A€ A. Then

T(A®) < C®

and the map

mo(A) :=mw(A)y , Ae A"

extends continuously to an a-covariant representation of the deformed C*-algebra Ag.

2.3.1 Deformation of a Euclidean Field Theory

Now that we have introduced all the notions and facts we are going to need in the algebraic frame-
work, we can start to explain how the diagram 2.5 happens to commute in the case of degenerate
Moyal deformation. To this end we start with a Euclidean field theory (£, 0, «, o) as introduced
in Def. 9. The first question that arises is how to obtain a local algebra via warped convolutions.

The best way in order to achieve this may be considering the Rieffel-type deformation of the net
& on Moyal space. What is schematically represented with the arrow & — &y in the Figs. 2.4 and

2.5 actually consists in a distinct procedure which gets started by the following definition:

Definition 14. Given the global algebra £ of a Euclidean field theory (£, 0, «), we define the
Rieffel deformed algebra Ep to be (€%, x4) with x4 being the Rieffel product of Def. 7 and the

corresponding norm being | |-

The general inner product (, ) of Def. 7 is taken to be the Euclidean product from now on.
and For two vectors z,y € R? it is oftentimes denoted by xzy. We want to proceed to the largely
equivalent, but more convenient point of view regarding warped convolutions. A question of high
importance concerns the generalizability of the field theory structure from a given net of observables
to a Rieffel-deformed one. The following lemma answers this question in large part and is for sake

of generality formulated for C*-algebras not restricted to the cases at hand:
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Lemma 6 ([Rie93a, Rie93b]). 1. Let Ay, Ay be C*-algebras with strongly continuous automor-
phic Re-actions oy, as and B : A — As an isomorphism such that Bay , = ag B for all
x € R and some M € GL(d) with MT = M~* and M0 = M, where the transpose M™ refers
to the bilinear form used in Def. 7. Then B(AY) = Ay, and B|azr extends to an isomorphism
B%: Arg — Az such that %08 , = of 8% for all x e R%.

2. Let v be an a-invariant linear continuous functional on A. Then v|s= extends to a linear

continuous functional v° on Ay, and there holds

V(A x¢g B) = v(AB), A,Be A%. (2.23)

Proof. 1. This is a combination of Thm. 5.12 and Prop. 2.12 of [Rie93b].

Part 2. of this lemma can be inferred from [Rie93a], where it was proven that a translationally
invariant state w on & satisfies |w(A)| < ¢|A|g for all A € £* and some constant ¢ > 0. But following
the proof of [Rie93a, Thm. 4.1] it becomes apparent that neither positivity nor normalization of w
are necessary for the argument. Hence also v can be extended to a continuous functional on Ay,

which finishes the proof of the lemma. n

Remark 6. Up until this point, we could well have worked with a noncommutativity matrix of
full rank, i.e. a noncommutative-time scenario. The only thing that would have changed is the
reduced groups would no longer contain discrete transformations. Since we were concerned with
the connected groups all along, we experience no modifications. All the lemmata and propositions
above have been proved for general skew-symmetric matrices () as deformation parameters in the

corresponding original treatise.

Now that we realized that the constituents of C'*-algebras behave well under the deformation,
the next step consists in bothering about the net structure. One possible choice to get to the

respective noncommutative net of von Neumann algebras is built up of deforming each element of

£(0), i.e.,

E(0)y :={Ay |AcEQO)Y ., Oel .

As one can see straightforwardly, £(0), is a well-defined algebra, generated by £(O). Anyhow,

we will not work with this prescription in the thesis at hand. The reason for that is as follows:
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Figure 2.6: Cylindrical regions: Z5 is the xg, z1-projection of Zy and Zy(0O) is the cylindrical region

associated to O.

Let O < R? be an open, bounded region. Then the set {4y | A € £(O)} is not a local algebra
indexed by O w.r.t. the Rieffel product. This can be seen by examining Lemma 3 and 2. of Prop. 2:
indeed, the product of two warped convoluted algebra elements equals the warped convolution of
their Rieffel product. But at the product, the elements are translated in the direction of Im 6 to
arbitrary extent. So, any region bounded in this direction will be outranged by the smallest region
containing the Rieffel product. These considerations illustrate the fact that the only reason £(O)y
is closed under the operator product is due to building the weak closure in its very definition. Put
differently, together with the warped convolutions of each undeformed algebra element A € £(O)
one includes countable sums of products of such into the definition of £(0),. But this abstract
closure makes it unhandy for working out the changes the Euclidean net of algebras faces during
the deformation.

So we prefer to establish an algebra of warped convolutions indexed by another family Z, of
Re-subsets. We demand that this family makes every local prescription Zy 3 Z — &(Z) a net
of well-defined von Neumann algebras. We have just shown that the smallest sets applicable for

building an algebra of warped convolutions are

Zy(0) :={z+ 0k, v O, ke R}, (2.24)
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which are called cylindrical regions. In other words, (E9(Z4(0)), x4) is a local algebra. It is
obvious that in terms of algebra nets one can forget about the explicit form of O, the region that

“generated” Zy(0). So, we give another definition

Zy:={ZcR Z+1Imd =7} ={Z,(0), 0 R} . (2.25)

Some cylindrical regions are shown in Fig. 2.6. We appreciate from these definitions that Zj
still allows for Ey and Py-covariance: Im @ is left invariant with respect to xs, x3-rotations and any

boost or rotation involving just the xy, x;-plane.

Remark 7. Concerning the generalization to a noncommutative-time scenario, ¢.e. contemplating
a noncommutativity © which is (any SO(d)-rotation) of the form (1.6), we will no longer be able
to argue the way we did to arrive at a local algebra of warped convolutions. This follows directly
from having a look at (2.25) and the fact that Im© = R?, so the “full Moyal” cylinders would all
be the whole space.

We find that the net {£(Z4(0))}oecs was the correct choice for our purposes:

Proposition 5. The data E(Z), Z € Zy, and the automorphic symmetry action restricted to the

reduced Buclidean group, a|p,y, form a Ey(d)-covariant net (€, Z9, ) of C*-algebras.

Proof. We have already seen that the net structure can be regained by going over to the set Zj.
The remaining parts of the proposition follow mainly by the application of Lemma 6: At first we
choose A; = Ay = £ and a3 = as = alga there. This implies that the deformed C*-algebra &
carries an automorphic action o of Ep(d) which coincides with /g, on the smooth subalgebra
E®. Furthermore, ¢ gives rise to an automorphism ¢? representing the reflection r on &.

By Def. 14, we see that &(Z)® and £(Z)* are equal as linear spaces, and thus

Eo(Z1)* < Eg(Z2)* |, Y Zy,Z9€ 2y suchthat Z, < Z; .

This inclusion remains valid after closing in |||y, yielding a net Z — &(Z) indexed by cylindrical
regions. Furthermore, we have made clear below the definition in ((2.25)) that the family Zj is

invariant under the reduced Euclidean group Fy(d). Finally, we are making use of Lemma 6 again:
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this time, we set A; = E(Z), Ay = E(9Z), g € Ep(d), and ay,ay both being the action of the

translations along Im 6 on these algebras. We hence see that

ol (E(2)) = E(9Z),  geEp(d), Ze 2. (2.26)

which brings the proof to an end.
O

Remark 8. Again we want to highlight the necessity of the special form we chose for 6 in this
context. The construction of the physical Hilbert space is based on the functional o which fulfills
reflection positivity on &-, the subalgebra generated by open bounded subsets of e + eR,. If we
had used a noncommutativity © of full rank, due to property 2. of Prop. 2, &~ would have been

unstable with respect to the Rieffel product.

2.3.2 From Deformed Euclidean to Deformed Lorentzian Theories

The upcoming treatment will rely on a generalization of the time-zero condition. To this end, let

us denote the notion of a (time-zero) stripe S by

SeSy:={r+0k|ze K (open, bounded) c e, ke R?} .

Analogously to the case just before, £ (S) is stable with respect to the Rieffel product x4, and
hence & ¢(5) is well-defined as a local algebra of warped convolutions.

The following lemma shows that for the warped net of algebras, the symmetry group Fy(d) is
sufficient to keep a generalized time-zero condition; since there is no fundamental difference to the

Lorentzian case here, we prove both cases at once:

Lemma 7. Let S € Sy and g € E(d) (respectively g € P(d)) such that gS < Z for some Z € Z,.
Then there exist g, € Ey(d), go € E(d) (respectively g1 € Py(d), go € P(d)) such that g = g1g2 and
QQS =5.

Proof. We write g = (z, M) referring to the semidirect product structure of F(d) = R? x SO(d)
respectively P(d) = R? x L1 (d). The set MS satisfies MS + x = MS for x € MIm#@. If
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MIm6O¢Im0, it follows that MS is not bounded in projection to kerf, and can thus not be
contained in an element of the family Zy. Thus the assumption implies M Im 6 < Im#, and since
M is invertible, M Im# = Im6 and M7 ker = ker 6. In the Euclidean case, M7 = M~ and we
have M ker @ = ker§. In the Lorentzian case, M7 = nM~1n. But the metric n commutes with 6,
such that also in this case we arrive at M ker § = ker 6.

So for both signatures, M decomposes as a direct sum M = M; @ My € B(ker ) ® Z(Imf), and
we define g, := (z, M1 ® 1), g2 := (0,1 ® M;). Then g1go = (x, M; ® M) = g, and as the slice S
contains the full image of 6, we have g2S = S and consequently ¢1.5 = ¢1¢2S = ¢S. Furthermore,
g1 € Ep(d) (respectively g; € Py(d)) as M; @ 1 commutes with 6 =0, D0, D ---Db,. O

Remark 9. The preceding Lemma 7 is significant for the operability of noncommutative Wick
rotation, but might seem a bit unhandy. So let us consider the special case most interesting from
a physical point of view, namely that of d = 4. We are going to illustrate the proof of the latter
lemma from a more geometric point of view in this case.

Let Z, denote the projection of Z € Z, to the subspace of commutative directions ker § ~ R2.
Further let d; := Uﬁrulg})éz{|v1 —wy| | vo = wp} be the maximum width of Z; (and thus of Z) in
x1-direction. Then, any line on the z-axis of length smaller than d; can be translated into Z5, i.e.,

for any S € Sy of the form

St ={reR?|zy=0,a<x, <b,a,beR, |b—a| <d}; (2.27)

see Fig. 2.7 a.
Ifd,, = u%e%)éz{”v —w ||} denotes the maximal diameter of Z in the x¢, x;-plane (which is bounded
by definition), we can always find stripes of width smaller than d,,, that can be rotated into Z via
a specific zg, x1-rotation. This can bee seen in Fig. 2.7 b.

Let Z € Zy and take g € E(d)\Ey(d). Then ¢ has to have a non-vanishing component generated
by one of By, B3, Ry, Ry, where By, (resp. Rj) denotes the generator of the z, xx-rotation (resp. a
spatial rotation). Without loss of generality we take S to be of the form (2.27). We then have
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Figure 2.7: A stripe translated into a cylinder (a) and one rotated (b)

By(B)S = {reR|zgcosB+aysinf=0,a <z <b}
B3(B)S = {reR%|zycosf+a3sinB=0,a<z <b}
Ry (B)S = {xeRd|x0=O,a<x1COSB+xQSin5<b}
Ry(B)S = {reR|20=0,a <z cosfB+z3sinf <b} .

None of these rotated stripes can lie in any Z € 2y, except for those resulting of rotations with
B =kr ,k=0,1,..., which let S invariant or map it to® S_{. But the latter are elements of
Ey(d) and all the others are unbounded in a direction not contained in Im 6 and therefore cannot

be bounded when projected on ker §. Thus we conclude ¢S © Z = g € Ey(d).

These findings enforce us with the generalization of the time-zero condition to the case of

deformed nets of reduced symmetry:

Proposition 6. 1. The net (&, 2y, a’) satisfies the time zero condition with the Rieffel-deformed

time zero C*-algebras

5970(5) = 5079(5’) , S e Sg .

3Concretely, Bo(km), Bs(km), Ri(2l7), Ra(2im) leave S° invariant while R;((2] + 1)7), Ro((20 + 1)7) map it to
STy kl=1,2,...
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2. The restriction of o to E® extends to a reflection positive functional o’ on &.

Proof. 1. As vector spaces, the smooth time zero algebras of the net & are, S € Sy,

E00(S) =E"n [ &(Z) = [ &(2)” = [ E(2)" = E(9)”,

ZGZQ ZGZQ ZeZy
Z>S Z>S8 Z>oS

where we have used that E(Z)* = £(Z)* as vector spaces. Thus the closure in the norm | - |g
gives Eo(S) = &p(S). By assumption, the undeformed net £ satisfies the time-zero condition,

that is, the time zero algebras & (S) generate the cylinder algebras,

"
£(2) = <U {ag(&0(5)) g € E(d), g5 = Z}> : (2.28)
SeSy

According to Lemma 7 in its Euclidean version, the transformations g € E(d), ¢S < Z, which
appear here, split as g = g19o with g; € Ep(d) and g5 = S. In view of the covariance of the
undeformed net, this implies that ay, leaves & (S) invariant, i.e., o, (E9(S)) = E(S). Thus (2.28)
also holds if we restrict to g € Ey(d) < E(d).

To make the transition to the deformed C*-algebras, we first contemplate the smooth time zero
algebras £(S)® < &(S), and consider the *-algebra £(Z) generated by all a,(£(S)*), where S
runs over Sy and g over Ey(d) such that ¢S < Z. As vector spaces, & g(5)* = &(5)*, and also
the automorphisms of and oy, g € Ey(d), coincide on £%. Hence of(£9(S)*) = ay(&(S)*), and
as this algebra is | - [o-dense in af(£y(S5)), it follows that the | - ||-closure of £(Z) coincides with

Ey(Z). In particular, we have the claimed time zero property,

&(2) = <U {ag(€00(9)) g € Eg(d), gS = Z}) : (TZy)

SeSy

2. The restriction of the continuous linear translationally invariant functional o to £% extends
to a || - [g-continuous functional ¢ on & by 2. of Lemma 6. Since o is E(d)-invariant, it follows

that this extension is invariant under the extension a of al Eo(@) from £ to &. The continuity
Ey(d) 3 g — 0%(Aa,(B)), A, B € &, is then clear.
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It remains to check reflection positivity. By the translational invariance of o, we have for smooth
A, Be & by 2. of Lemma 6,

o(t(A*) xg B) = 0(L(A*)B),

and hence in particular o(t(A*) xg A) = 0 for A € EX. In view of the || - ||;-continuity of o and

1%, this positivity extends to & g. n

Finally, let us collect what we have got before we write down the candidate for the Py(d)-
covariant net of von Neumann algebras on Minkowski space-time. We realized that the deformed
Euclidean field theory (&, Zp,a?, %) satisfies the time-zero condition, if the corresponding un-
deformed theory (€, 0, a,0) does. Detached from any deformation intent, we demonstrated the
analytical continuation of reduced Euclidean group representations (with the groups forsightfully
named FEy(d)) to unitary representations of the reduced Poincaré group. This directly admits an
automorphic action a®M of Py(d), whose corresponding unitary representation we call Uy. To be

0,M

specific, a is exactly the adjoint action of the unitary representation on the physical Hilbert

space Hy gained from the virtual Fy(d)-representation by the methods of section 2.2. We remember

0

that the construction of Hy comes with equivalence classes [ |7

and a &y o-representation denoted

by mg. The latter representation of the time-zero data acts in the following way:

Be gg,g . WQ(B)[A]g = [B X9 A]0 VA€ 89 .

g

Finally, we will combine these elaborations to conclude the noncommutative Wick rotation of

an algebraically given Euclidean theory.

Definition 15. On Hy, the noncommutative analogue of the physical Hilbert space in section 2.1,

we define a deformed Lorentzian net prescription as follows:

2,57 — My(Z),

My(Z) = (U {aZ’M(m&),g(S)) | g € Py(d), gS < Z})

SeSy

Furthermore, we call the vector €y := [1]% the vacuum.
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Figure 2.8: The noncommutative algebraic Wick rotation visualized.

Proposition 7. The collection (My, Zg, %™, Q) given in Def. 15 is a Py(d)-covariant net of von
Neumann algebras on the Hilbert space Hg, satisfying the time-zero condition and the modified

spectrum condition of (2.17),

spec{Py, P1,..., Py 1} cY .
Moreover, the vacuum Qy is Py(d)-invariant and cyclic for the chosen representation on He.

Proof. We start by checking the validity of the time-zero condition for {My(Z)}zez,: by construc-
tion, (mp&,6(S))" is the time-zero data of My(Z) for suitable S € Sy, Z € Z5. Moreover, o’ acts
strongly continuously while 7y is a continuous mapping. Therefore, the smooth time-zero content

of the Lorentzian net takes the following form:

Mo o(5)” = mp(E0,6(5)” = mo(E0(S)™) -

The last ingredient needed to appreciate the time-zero condition is the weak density of C* <
ZB(H) which directly leads to the relation My o(S) = (Myo(S)®)". The statement now follows
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from the very definition of M.

We know that ag’M is a homomorphism for g € Py(d) and that ¢S < Z is equivalent to kS < hZ
for all k = hg € Py(d). Tt thus follows ot My(Z) = Mg(hZ) from Py(d)Sy = Sy, which proves
Py(d)-covariance.

The net structure itself has been treated in detail in the paragraphs before Prop. 5 and stays un-
affected by the change of the symmetry action a? — oM.

Similarly, the claimed version of the spectrum condition has already been proved for general Py(d)-
covariant nets and for our choice of the underlying noncommutativity 6 before and in Remark 5,
respectively.

We finish the proof by observing the stated properties of the vacuum just by glancing at its defi-

nition. OJ

A schematic picture of this noncommutative algebraic Wick rotation can be seen in Fig. 2.8.

2.3.3 Deformation of a Lorentzian Theory

We will now follow another point of view in arriving at a noncommutative net of observables
on Minkowski space-time. Sketched by our main diagram, there is always the possibility of first
performing the Wick rotation (£, 0, a,0) — (M, 0,a™ Q) as we presented it in section 2.2. The
resulting Lorentzian net M is equally well qualified for the deformation in the sense of warped
convolutions. Before we start that deformation, we call attention to the connection between the
two deformed nets & and My in terms of analyticity. In the same way as on Euclidean space, one

can define Moyal-Minkowski space-time by imposing commutation relations

M Yy M| _ M
[Xu X5 ]—ZQW

on the Moyal space-time coordinates X3, ..., X;!,. A Wick rotation shall link a theory on
analogously deformed Euclidean space involving Euclidean coordinates Xﬁ and parameters Qil, with
a theory on such Moyal-Minkowski space-time. Though Wick rotation is a complicated procedure, it
schematically transforms the Euclidean time components into purely imaginary values, Xg' = iX§
which are then interpreted as "real” time. During this transformation, the spatial components

stay unchanged. In the thesis at hand, we are always considering the case of commutative time,
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so Lemma 4 has the effect of coinciding deformation parameters, i.e., #° = . This shows that
the same noncommutativity # can be used consistently for both the Euclidean and Lorentzian
signature.

In spite of the usability of the warped convolutions on the Wick rotated Lorentzian observable
net (M, 0, aM, Q) we risk a clash of notation. To avoid this, we emphasize on writing M? for the
net obtained in the way just explained. This M? is built up of the elements Ay, which for their

part are obtained via

Ag¥U = lim | dk dv h(ek, ev) e *) g (AU (v)¥ , T e D, (2.29)

e—0

where (.,.) denotes the Minkowski space-time product and o™ denotes the adjoint action of the
unitary representation U gained from the virtual E(d)-representation V on H. Hence the definition

of the Lorentzian net we are using now writes

M(Z) = {Ag|Ae M(2)Y |, Ze2Z. (2.30)

The P(d)-action o™ provides a corresponding Py(d)-action, which is called a™?.

Remark 10. We admit that the notation might be confusing at this point. As a memory hook,
a’M was the reduced symmetry automorphism we introduced earlier on and corresponds to “first
deforming, then Wick rotating”. Regarding o™ we are treating right now, it’s the other way
round. And to the readers’ alleviation, later results will imply that the distinction between the two

is in fact redundant.

Applying the treatment around Prop. 5, we follow that M? gives rise to a well-defined Lorentzian

net as well:

Proposition 8. The collection (M, Zy,a™M?) is a Pp(d)-covariant, isotonic net of von Neumann

algebras satisfying the time-zero condition.

Proof. 1t should be clear from the defining relation (2.30) that Z4 5 Z +— M?(Z) is a net of von
Neumann algebras on H. Due to property 3. of Prop. 2, it holds that

U@9)AU(9)™" = U(9)AU(9) ™o
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for g € Po(d) and A € M*. Taking into account the covariance of the undeformed net M and

remembering M® = M on the vector space level, this implies

UlgM®(2)°U(g)™" = M%(g2)*,  Z€ 2y, ge Pyld).

Now the shape of the cylinder regions was designed to permit

AX@BGM(Z)OO, A,BEM(Z)OO, ZEZ@.

In view of Lemma 3, property 1. of Prop. 2 states that the warped convolution commutes with
the algebra involution. Together with the product property 2. of the same lemma, this implies
that the set {Ay| A € M(Z)*} is a *-algebra. Hence the double commutant in (2.30) amounts to
just taking the weak closure, and covariance of M%(Z) follows.

The smooth time zero algebras of the net M? are, S € Sy,

MO(8)* = [N MUZ)* = MS(S)*.
ZEeZy
7Z>oS8

By the same reasoning as in Prop. 7, the validity of the Wick rotation of the deformed Euclidean

net, we have

Mo(S) = m(&(S))" = (7(&(5))*)"

while 7(&(5))* = w(&(S)®) implies that

M(S) = 7(&a(S5))s" -

As we know, the undeformed nets {M(Z)}zcz, fulfill the time zero condition. Having in mind
(Mo(S)®)" = My(S), we follow that M(Z) is the smallest von Neumann algebra containing the

set

{U(g)Mo(S)*U(9)" ' |ge Po(d), SeSy : gSc Z}.
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As in the proof of Prop. 5, we can apply (the Lorentzian version of) Lemma 7 to conclude that
restriction to g € Py(d) < P(d) does not change the generated von Neumann algebra. After passing

to warped convolution time zero algebras M?(S)® = 7(£,(S)®)s, we obtain

M(Z) = (U {{(U(g)m(&a(S)*)U(9) ™), |9 € Ep(d). gS < Z})

SeSy

- (U (U M()"U(9) ™ |g € Eold). g5 = Z}> ’

S€eSy

which is the claimed time zero condition. O

2.3.4 Interrelation Between the Lorentzian Nets

So far we have accomplished two types of Wick rotation, both starting from a Euclidean field
theory (€, 0, «,0). The first one, elaborated on in the above part of the ongoing section, consists
in the deformation of £ and is followed by the analytical continuation of the reduced symmetry
groups. The second type we have just worked out takes a different route and first performs this
sort of Wick rotation on the undeformed Euclidean net. If we then deform according to the warped
convolutions, the last proposition showed that we gain a deformed Lorentzian net, which might be
quite detached from the one we obtained going the first way. From an operational point of view,
this would only be constrictedly helpful since this could prefer the deformation of a distinct metric
signature. Before we spread out the possible consequences of such an incompatibility, we are able

to present the heart of the algebraic Wick rotation on degenerate Moyal space(-time):

Theorem 6. The two nets (M?, Zg, AdUM|p,(4)) and (Mg, Zy, AAUM) are isomorphic, i.e., there

exists a unitary operator W : H — Hg such that

W =0y, (2.31)
WM (Z)W* = Mo(Z),  Ze Z,. (2.33)

Proof. In order to prove the first statement, we inspect the connections between the two Hilbert
spaces Hy and H. The definition of the following map W, linking them is already the key issue of
the proof:
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Wo: EX/NG nEZ) — EX/(Noo 0 E2)
[Al, — 1Al -

[

For A, B € £¥, we have by the translational invariance of ¢ and point 2. of Lemma 6,

(Ao, [Bloyn = 0((A")B) = 0" (e(A*) x¢ B) = ([Al5, [Blo)n, -

This shows that W, is well-defined and isometric. Since its domain and range lie dense in the
corresponding Hilbert spaces, we can extend it to a unitary operator W : H — Hy. Clearly W
satisfies WQ = W|[1], = [1]% = Q.

Using this, relation (2.32) is not hard to realize. Strictly speaking, we have two virtual rep-
resentations g — Vy(g) and g — WVy(g)W* of the reduced Euclidean group Ey(d) on He. For g
in a sufficiently small neighborhood of the identity, these representations act according to (2.10),

Ae &,

Vo(9)[Ale = [og(A)]5,
WVo(g)W*A]; = WVo(g)[Ale = Wlag(A)]s = [ag(A)];

g g o

where we use the same fact in both of these equations. That is, the two virtual representations
coincide. After analytic continuation to unitary representations of Py(d), this implies (2.32) again
by £% being dense in £.

To show that W also intertwines the nets, it is sufficient to consider the time zero algebras.
Indeed, both My and MY satisfy the time zero condition and are generated from their time zero
data by representations of Py(d). We have just shown that these representations are in fact W-

equivalent. So let us write down the two time-zero algebras at first:

9

Moo(S)* = m(E0(S)®) = {mp(A) : Ae &(S)*}
MO(S)® = m(E(S)®)g = {m(A)g : A &(S)®}.
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Comparing these, one fact becomes apparent: it is sufficient to show that W intertwines 7(A)g
and mp(A) for A e £(S)®, as then (2.33) follows by continuity.
With A € &(S)* and B € £X, we compute, using property & stated in Prop. 2,

Wr(A)yW*[B]Y = Wr(A)[Bl, = Wr(A)yr(B)Q
= WW(A)QW(B)QQ .

Note that the warped convolutions 7(A)g, 7(B)g are built here with the representation U and
the Minkowski inner product in the oscillatory integral (2.29). But as fe = 0, we have already
seen in Lemma 3 and used several times that only spatial translations along x | e enter. For
p,x L e, the Euclidean and Minkowski inner products differ by a sign which is compensated by the
definitions of the respective warped convolutions. Furthermore, for # L e, the unitaries UM (z, 1)
implement af. So we can use Lemma 5 stating that A — 7(A)y is an a-covariant representation
of the Rieffel-deformed C*-algebra & (S), and again 5. of Prop. 2 to compute further

Wr(A)gW*[BY = Wr(A xeB)gQ = Wr(A xy B)Q = W[A x4 B],
= [A xp Bl; = m(A)[B];

o

As all operators appearing here are bounded and {[B]? : B € £} < Hy is dense, we obtain
Wy (A)gW* = 7%(A) by continuity. O

Thm. 6 finally establishes the commuting diagram, given in Fig. 2.9, for the case of commutative
time deformations of algebraic quantum field theory. One of the consequences is the independence
of a noncommutative Lorentzian theory being obtained either by Wick rotation of a deformed
Euclidean one or by deforming a commutative theory on Minkowski space-time. A more extensive
discussion of the various consequences of our findings will be contained in Ch. 5. The more abstract
the algebraic framework presents itself, the more beneficial it gets when it comes to applications
in concrete models. In the next chapter, we will examine the model of the free scalar field, which
on the one hand is the simplest thinkable model. On the other hand, it is the only existing (in
the sense of rigorous constructed) physical model in four space-time dimensions, up to freedom in

definition of the mass.
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Figure 2.9: The finally established commutative diagram.

Since we are going to treat the free field in terms of its n-point functions, we will also discover

properties that still hold for more general models.

64



Chapter 3
Correlation Functions

In the preceding chapter, we have shown that under certain assumptions which are restrictive to
some extent, it is possible to perform a Wick rotation from a noncommutative Euclidean to a
quantum field theory on Minkowski space-time in the algebraic setting. Due to its generality, the
outcome of the algebraic approach can be applied to a variety of physically interesting models.
A different approach is given by the definition of a physical theory through its set of correlation
functions. According to Wightman’s reconstruction theorem [Wigh6|, a physical theory given by
properties of a quantum field is equivalent to the theory defined via its corresponding set of n-point
functions. In the current chapter we will focus on this viewpoint.

There are strong interrelations between the algebraic framework and the one given by n-point
functions [FH81, Haa92|. In the chapter at hand, these will be used to make visible the abstract
Wick rotation explained in the previous part of this work on the example of the Euclidean free
scalar field at first. The connections to the standard approaches concerning analytical continuation
of Schwinger functions will then be investigated. During this treatment, new implications on the
applicability of noncommutative Wick rotation for general theories in terms of n-point functions

will occur.

3.1 The Euclidean Free Scalar Field

Let us consider Euclidean R?, endowed with the inner product zy := 2%° + z'y' + ... + ¢ 1y?!

for x,y € R We write RY 5 2 = (2%, 2). Let V denote the unitary representation of the Euclidean
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group E(d) := O(d) x R? on the underlying Euclidean Hilbert space H®. Since a thorough de-
scription of HE would require to rigorously derive the theory of Euclidean free fields and since we
are going to use the physical Hilbert space H instead, we omit such a detailed explanation. The

Euclidean (commutative) free scalar field ¢(7, x) is governed by the well-known action

1

S6) = 5 J f dr d* 'z ¢(r, ) (—0 — A, + m?) é(r, ) | (3.1)

which incorporates the Helmholtz equation

(=02 — Ay +m?) ¢(r,2) =0 (3.2)

as the equation of motion. As is also commonly known, the latter equation written down
for imaginary values of 7 is the Klein-Gordon equation. So, one directly sees that at least the
fundamental field equations of the free field on Euclidean and Minkowski space(-time) respectively
are linked by the mapping 7 — 7.

We would like to see the exact connection between the corresponding n-point functions. In the
usual undeformed scenario, the mainly complete answer was given in the 1970’s, as has been indi-
cated in the introduction. Regarding the noncommutative case, we want to see how the framework
of Ch. 2 applies to the Euclidean free field. So, at first we shall identify the notions needed for the
algebraic Wick rotation in terms of free field entities.

The Green function C'(z — y) of the differential operator of (3.2), written as —A + m?, fulfills

(A +m")C(z—y) =iz —y) .

Inspired by the Gaussian measure setting of the free field (see for example [GJ87] and [Roe94]
for thorough treatments), C'(x—y) is oftentimes referred to as “free covariance”, while the quantum
field theory perspective would rather favor the name “propagator”. All these different designations
mean the same object, namely the distribution on R? x R?, which can be made a bilinear form on
S (RY) x Z(RY) and reads
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etP(z—y)

ﬂ%w=0@—w==f¥mﬁwﬁ+m%,

etP(z—y)

Clh ) = [dpatedty s

z,y € R, (3.3)

A@) f2(y) o fi f2e ZRY), (34)

where p? := p§ + p* denotes the Euclidean inner product of R-vectors p = (po,p), po € R,

p e R We remark that (3.3) can also be written in the following form,

da—2

Clo—) =0 () " Kealmle =),

(3.5)

where K, denotes the modified Bessel function of the second kind [GJ87, sec. 7.2]. Sometimes

it is more convenient to write the free covariance in Fourier representation:

C(fi. f2) = f ddp% |

In order to investigate the structural manifestations of our algebraic theory, we recall the main

properties of the free covariance. Before we do so, we need some further notions: first of all, the

implementation of the time reflection 7 : (z°,z) — (—2° ) is again denoted ¢ on Schwartz space
i.e., tf(z) = f(rxz). This means that we choose the Euclidean time direction e to be (1,0). The

Euclidean group shall act on Schwartz functions via the pull-back, i.e.,

g=(a,R)e E(d) , feSR™),
(@1, zn) = (fo(g'® - ®@g N(wy,...,2,) =
= f(R_l(xl—a),...,R_l(xn—a)) )

In accordance with the literature (with respect to the general impact and the practicability for

this thesis, we are geared mainly to [OS73]), we define
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SRY) = {fe SR |supp f < {(2°,z) : 2° = 0}} , (3.6)
olel
Daf(.fEl, ,.Z'n) = mf(.’lj’l, c. ,.fljn) , |C¥| =opt+ ..t oy, (37)
1 n
FoR™) = {fe SR | Df(z1,...,2,) =0V]a| =0if Ij#k: z; = a4},
SR = {fe SR Df(x1,...,2,) =0V]a| = 0unless 0 < 2% < --- <20} .

(3.8)

Proposition 9. The Euclidean scalar field propagator C : % (R%) x . (R?) — C fulfills the following

properties:
1. Continuity: The map E(d) 3 g — C(fiy), f2) is continuous for all fi, fo € Z(R?).

2. Invariance: Let g € E(d). Then

Cfi(), foie) = C(f1, f2)  Vfi, f€ S(RY)

3. Reflection positivity:

Cf*, f)=0 Vfes (R

4. Symmetry:

C(fi, f2) = C(fa, /1) Vf1, fae L (RY)

Proof. 1. This is an easy consequence of Lebesgue’s dominated convergence theorem. For the
sake of completeness we prove it for the translations (the rotations follow by decomposing

them into small angles). From the definition of C'(fi, f2) we infer

eip(zfy)

wa J1(=D) f2(p)
(2m)d(p* + m?) '

p2+m2

C(fran f2) = Jddp d?zdly filz —a)fa(y) = fd”’pe
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Thus the translation just results in a phase. The function e fi(—p)fa(p)(p? + m?)~! is
bounded by |f1(=p) fa(p)(p* + m2)~Y| for all a € R and therefore

Cllii% C(fl,(a,l), f2) = T}gfolo C(fl,(an,l), fz) = C(fl; f2)
by the dominated convergence theorem.

. Follows straightforwardly from the invariance of the kernel C(z — y): let g = (x, R) € E(d)

where z € R? and R € Myyq(R) an orthogonal matrix. Then

C(fl,(:r:,R)y f2,(z,R)) = J (27T)d(p2 + mz)
r ddp ez‘pR(x—y)
f (2m)d(p? +m?)

AR (@ = a)) (R (y — a) d'zd’y

fi@) foly) Az dy

r dép eir(z—v)
- || o A Al

= C(fla f2) :

In the third equality, we have substituted p by Rp.

. Define the spatial Fourier transform f to be

=)
‘D..

fdd lxe 22f(2% 2) | (3.9)

then we have for f € .7(R%) and w, := 4 /p? + m?,
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dd ip(x
) = [[ b @) iy

de¢ ip(x
- H s T 0, ey

B ddpeip (z%—y") A_—OA 0
) £ v !dy | G D6

- ; ddp o~z +y°) n R
= deo dyOJ 2m)((P°)2 + p2 + m2) F@%p) f(y",p)

= J e f2% p)| =0, (3.10)
0

(&
ED
(bS]

since (2w,) " = 0. In the fifth equality, we have utilized the residue theorem in the form

0 0
j 2—dp 5ol = J L — (3.11)
pe+m

4. Symmetry:

r ddp eip(xfy)
JJ @2m)d(p? + m?)
r ddp e—ip(y—x)
JJ @2m)d(p? + m?)
r ddp eip(y—z)
(2m)d(p? +m?)

9

C(fbe) = fl(l’)fz(y) ddﬂ?ddy

|
2

i (flf)fz(y) d’z ddy

f(y) file) A’z dy = C(fo, f1) - (3.12)

&S
It
|
=

[ ?

O

It happens that arbitrary n-point functions can be completely determined by the exact form of

the free covariance. In other words, the vacuum representation of the free field provides a quasi-free
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state. Although we wrote C'(xz — y) for the kernel of the two-point function C(fi, fo) we choose to
denote those of more general n-point functions in German letters ("fraktur”). That is to say, we

write

S.(f) = Jdd”x Gy, ..., xn) flar, ..., 2)

where this association is distributional in general.

One can derive the reduction formula in the sense of quasi-freedom for the Euclidean free field
n-point distributions &,, € .#”/(R™) in various ways, but we are not going to recapitulate this to
a large extent at this place. We rather mention that any theory built up of fields which for their
part are sums of a creation and annihilation operator (which is valid for the free field) satisfies the
preconditions of Wick’s theorem. Therefore the vacuum expectation value of a product of fields
cascades into sums of products of field contractions. The Euclidean case in particular can as well
be derived by varying the generating functional with respect to a source function, which is not the
philosophy we are into in the framework at hand. Whatever way one chooses to gain a reduction

relation for a (quasi-)free theory, they all have the following form,

61(1’) = 0
62(I1,l’2) = C(xl—ac2)

n—1
Su(z1,...,2p) = Z Gpa(®1, . Thy ooy xy)Clag —x) , M > 2 (3.13)
k=1

where the variables 7, are meant to be omitted.

3.2 Fock Space

After this short part intended to make ourselves familiar with the two-point function of the Eu-
clidean free scalar field again, we are ready to catch the many particle aspect of this theory. This is
needed for the Euclidean algebra of observables to take shape in the case at hand. A well established
arena for countable particle excitations is the so-called Borchers-Uhlmann algebra [Bor62, Uhl62],

and is defined to be the direct sum
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Z:éyw%,ywpw.

The elements of . are terminating sequences of Schwartz space functions

S35 fi=(fo. i, for- -, IN.0,.), foeC L foe S (R™)

for an arbitrary N € N. Let « denote the action of F(d) on this algebra,

Oégi = ag(vaflan .- ) = (anfl,(g)7f2,(9) .- ) :

The tensor product

(f @ Pn(@1, 72, 20) = D il @2, -, ) Gk (Tht, Thez, -, T
k=0

makes . an algebra. One can as well define an involution and a Euclidean time reflection as

([ (@1, 20, .., 20) = ful@ny Ty, ooy 21)

(hHn(1, e, .. xy) i= fo(ray,rxg, ... rxy,)

respectively. Together with 4, o, these definitions make the Borchers-Uhlmann algebra a unital
*-algebra with automorphic F(d)-action .
How are we going to see the connection to the Euclidean algebra of observables now? The Borchers-
Uhlmann algebra is the correct framework to give a description of the field excitations, whatever
exact field model one is considering. As in the one-particle case, the important entities are the
functionals on the suitable function space.

*®

In the following way we are able to define a net {£(O)}oes of Euclidean *-algebras using the

Borchers-Uhlmann algebra

n times

030—E0):={feZL|supp fuc Ox---x0O} ={feS|supp f, c O"} .
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According to the investigations in Ch. 2 we denote the inductive limit of this net by £ := .Z.
Nevertheless: defined in this way, the Fuclidean algebra £ is not a set of bounded operators on
some Hilbert space. This causes no serious problems for our treatment, but we remark that we
could have defined it as the set of all exp{i¢(f)} (with the right support properties), which is more
suitable to a C*-algebra setting.

The next ingredient needed for the application of the algebraic Wick rotation is the reflec-
tion positive functional. Given a sequence of distributions &, € ./(R™) satisfying the specific
customized properties of the Euclidean n-point functions (see section A.1l in the appendix), one

defines the Euclidean functional o to be

o E-C
0-(i) = Z Gn(fn) . (3.14)

It remains to work out whether the Euclidean axioms as stated in Definition 3 are fulfilled for

the Euclidean Borchers-Uhlmann functional o. This is done next.

Lemma 8. The linear functional o on & defined in (3.14) satisfies the following properties:
1. Continuity: The map E(d) 3 g — o(ayf ® h) is continuous for all f,he E.
2. Invariance: o(ayf) = o(f) Vge E(d), Vfe&

Proof. 1. This results from the map in question being a composition of continuous functions:
The map g — «,f is continuous for all f € . since a is an automorphic symmetry action.
Furthermore, the tensor right multiplication RE 1/ 3 f+— [®his continuous in the topology

of (., ®). Since o is a continuous functional on ., the map

g— (coRZoauf)(g)
is continuous for all f,h e ~.

2. Follows from the definition of o on . and the Euclidean invariance of the Schwinger functions

given in (E1) of Sec. A.1 in the appendix.
0
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As we have seen in the last chapter, the Lorentzian quantum field theory can be obtained from
the Euclidean one with the aid of the reflection positive linear functional o. For this notion of
reflection positivity and, as a consequence, for the construction of the physical Hilbert space, it
is essential to remain on the ”positive-time* algebra £.. At the Borchers-Uhlmann algebra this

circumstance gets well visualized, as £~ is defined to be

&= ={feSL|supp f, « R} .

Now let us define the following sesqui-linear product on &..:

g =0lf*®g) , [g¢€

In the algebraic framework we arrived at the physical Hilbert space H by performing a GNS-
like construction with the aid of a general version of the product {.,.). Now we want to identify
the concrete form of the corresponding Hilbert space for the free scalar field. To this end we first
study the ”one particle“ content, described by vectors L := (0, f1,0,...). Recapitulating the proof
of reflection positivity of the free covariance (3. of Prop. 9) and the spatial Fourier transform f,

defined in equation (3.9), we are able to write

G =06 p = [ S LR = G f (3.15
with the map
()e: SRY - SR
fp) = Jdda:e’p”‘“ wpa! f(2" ) Jd 0 o—wpa’ f _), (3.16)

0

see also [Roe94, Sec. 7.5.2]. This map (.). is the Fourier-Laplace transform of a Schwartz

function having support at positive time values. Thus (.). is an isometry from (% (R%),{.,.)) to
(L (R1) (., H%) endowed with the inner product
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(81, Sa)y = Jdﬁ 51—(@52(1_7) )

where we use the abbreviation dp := d?~"p(2w,) ™"

Lemma 9. On the one-particle sector, the algebraic process of forming the quotient of (. (R%),{, ))
with the kernel Ny of {, ) reveals the pre-Hilbert space (#(R*"),du). Thus,

Hy = (LA(RY), dp) .

Proof. The image of (), is a dense subset of (.(R?" '), dyu), as one can see in the following way:
in [OS75, Lemma 2.4], it was proven that the Fourier-Laplace transform is a continuous map from
7 (R to . (R¥") with dense range and trivial kernel. This finding goes back to [0S73, Lemma
8.2]. Clearly, the generalization of this fact to .7(R%") is straightforward, as the Laplace transform
stays one-dimensional. Hence the completion of this mapping’s image coincides with the completion
of (#(R%1),dy), which is nothing else than the one-particle Hilbert space Hy = (L*(R%™1), dp).
Furthermore, let g € ker (., .». Then we cannot deduce g = 0, but from inequality (3.10) we may
infer g, = 0. Hence ker<{., .)5 = {0}. O

The next step consists of the generalization of this procedure to arbitrary elements [ =
(fo, f1, f2,-..) of the Borchers-Uhlmann algebra. Consider the Bosonic Fock space F built up
on the Hilbert space H; = L*(R?",dp), that is

F = @PPH"

nz=0

W = (HE" (D)

Here, Py := & > V() denotes the symmetrization operator on HE" and V(rr) is the im-
meT(n)
plementation of the n-permutation 7 € 7(n), while (.,.), denotes the fully symmetrized n-particle

version of the scalar product (., )y, i.e.,

(U, B, = (P, U, P, B)yen .
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The scalar product on F is given by (¥, &) := > (U, &,, while in the usual way, we define
nz=0
the vacuum to be Q := (1,0,0,...). The creation and annihilation operators on F are essential for

the generalization of the one-particle quotient map (.), to &~. Let x € H; and ¥ € F, then we
identify

n

@ COD(py,- - p) = i N sy B p )+ (@1 ()W)y =0

(@OOW)(p,, - p) = Vn+l f XD Vs pop, - p)

Furthermore, let us define another Fock space operator by

¢2 Hl — L(f)
o(x) = alpx®) +a'(x), (3.17)

which is our Euclidean field candidate (L(F) denoting general linear operators on F here). In
the latter formula, p denotes the parity operator, ps(z) := s(—zx), and its importance in the latter
definition will become clear in a moment. One immediately comprehends that ¢ is compatible with

the involution on &<, i.e.,

o(f)* = alp(f))* +d'(f.)* 2d'(p(f.)*) +alf) = a'((f*).) + a(p®f.)
= a'((f*)s) + alp((f*))*) = 6((f*)s) | (3.18)
just by (fo)* = p(f*).-

Lemma 10. o can be continuously extended to a linear functional acting in a well-defined way on

elements of the form § ® s := (50,0 @ 51,0 ® 5o, ...), where s € . (RE-DF),

Proof. We follow the standard approach and firstly verify this statement on the one-particle space
S (RY). Take (gn)nen to be a delta-sequence in .#(R, ). Then we have

. Y d,_ qd, . 1d
7}1_1;{)100(971®87f) - nh_r)glo d pd xd Yy (271')d(p2 +m2) il il

= L r 03 (— efipoyo 0,0 _ 3 (—
_ J(2W)(p2+m2)ofdy (e J) = | s B0



In particular, for (g7),ey denoting two delta-sequences we obtain

lin Clg} ®51,92@52) = [ dudi(-p)Salp) (3.19)

so we are able to define the numbers C'(d®s, f) and C(d® s, 0®s,) by the continuity of C. The
vacuum representation of the free field in use is quasi-free, thus for f = (fo, f1, f2,...) consisting of
Schwartz functions of product form, f,, := Vo .. f,(L”), f,(Lj Ve 7 (R%) for j =1,...,n it holds

n—1
o(f) = D Gulfa) = 2. X Gunal £V, B, fTYCED, £
n=0 k=1

nz=0

which means that we may insert functions supported ”at sharp times“, i.e., those being of the
form 0®s, since o is a regular functional (see Lemma 8). This regularity together with the linearity

of o leads to the validity of this conclusion for arbitrary functions f, € .7(R"). O

From now on, operating with the generalized function 6 ® s on £ is meant in the way explained

in the above lemma. Now it is time to introduce the field content on F.

Definition 16. On the Fock space F defined via the reflection positive functional ¢ on the Eu-

clidean Borchers-Uhlmann algebra £, we prepare the following notions:

1. The time-zero algebra & is defined to be the Borchers-Uhlmann algebra generated by all

generalized functions of the form § ® s for s being a Schwartz function, i.e.,
80 = {5®§ = (80,(5@81,5@82, .. ) | Sp € Y(R”(d’n)} .
2. The time-zero field ¢(s) is given by the representation of the generalized function 6 ® s:

p(s)lgls =10 ®@s®gls -

Finally,
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3. Let f= > hm®s™ for " € Z(R,) and s™ € .Z(R%!) for m € N. Then we define the
meN

Euclidean field ¢ in the following way,

dt K™ (t)ayp(s™) .

gt

The first two points of the latter definition are well-defined according to Lemma 10. The

symmetry group shall act on these fields consistently with respect to the algebraic approach,

g€ B(d): ad®(f):=V(g)¢*(f)V(9)™" Vfe S (RY),
and the same shall be true for the time-zero field .

Proposition 10. 1. The time-zero field fulfills the following relation,

p(s) = ((0®s).) Vse & :

2. ¢ is a well-defined representation of & on F.

3. The two-point function in terms of ¢f equals the free covariance, i.e.,

()" (9)DF = C(f.9) Vf.ge S (RY).

Proof. 1. We start by calculating the scalar product of two time-zero elements of the one-particle

sector:

(0@ 5%)e, (0@ u)e)ny

e f dz® dy® 5(2°)s* (p) e 2" 5(4°)ii(p)
0

d =C(0®s,0Qu) . (3.20)

=
%z

J
Jus
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The last equality follows from (3.19). Form the two-point function of the operator ¢((.).) to

obtain

2,0((6®9))((Ru))VFr = {(d®5%)e, (R U)n, = C(0® 5,0 Ru)
= o) ®(®s®@iQu)) =[]y p(s)pu)[l].)F ,

where the first equality is gained by the definition of ¢ and the second is just equation (3.20).

. Let s € #(R% ") and g € £ such that ([g],, [h],)7 = 0 for all h e £.. Using 1., we observe,

p($)glo: [hle)r = (D6 @ 5)e)lglo [Blo)F = ([glos d((6 @ 5)a)*[A]o)F

(glos d((0 @ 57)e)[1o)F = {[glos o (s7)[2]o)F

= (gl [0®5* @ hlo)r =0,

where in the third equation we have used relation (3.18). Thus ¢(s) is independent of the
concrete representative s.
. Let f,g € S (R?), such that f = Y, A" @ s and g = > h)* @ sy and such that

m1eN mo€eN

f®g e .7 (R?*). This latter condition reflects the demand on complete time-ordering. Then

we infer,

ENLEQDr = Y J]‘dtld¢2 W ()R (1) o (51, o (55

m1,m2€N

= Y[ ataty nr o) | dp e @)

m1,mo€EN

= C(f,9),

where in the second equality we have renamed t; and t; into xy and g, respectively. By
time-ordering, xy < yo and the exponential is a damping. The last equality is then obtained
by recollecting the Schwartz functions f and ¢, while drawing on the techniques of Sec. 3.1.

The free covariance in its form (3.3) is seen to be independent of any time-ordering.

[]
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Proposition 11. 1. For the Fuclidean free field the Fock space F over Hy is given by Ex /N,.
The abstract quotient map [, : € — {, )/Ny given in Ch. 2 has the following form.:

[]o: & — F
f oo D [[e(riMa
e

Here, hm Z ® f(k) denotes the tensor product expansion of an arbitrary function f, in
N=0 Nr—0 =

7 (R™).

2. The virtual representation V' on F is given by V(g)[fls := [fig)lo-

Proof. 1. The one-particle structure was shown in Lemma 9. For the arbitrary particle numbers

we contemplate a Fock space vector ¥ having product form, i.e.,

= Wo, ¥V, P @yP P @ @p™, .. ) .

The connection between F and the Fuclidean free field given by ¢ on &. will be realized by

the following calculation with the help of relation (3.15): we calculate the scalar product of

n
two vectors evolving from the action of a polynomial 3. [T ¢(#{”) on the vacuum, i.e.,
n k=1

S TTewee Y [Toaw) >F

n=0k=1 m=0 [=1

=
(o + S(W3Y) + d(wS)s (N, (xo + oY >+¢<x§”>¢<x§2>>>ﬂ>
= Yoxo + 0+ 0+ @ i) + oo XY >+><o<w s+ 040
(<¢22)7P¢2 ><PX21)*>X2 >+<¢22)7X2 ><7/)2 aX >+<¢2 aX(2)><¢2 aX21)>)

_l’_

Now consider two functions § ® s,0 @ u € & of product form such that (6 ® 3)7(1 .= (k) and

(0 ® u)n ) = ¥ for all k,n € N. Then from equation (3.15) we recognize that the last two
2

lines of the latter calculation are equal to Y] &, m(t(I®3): ® (0 @ w)m).

n,m
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In order to identify the scalar product of general polynomials in ¢ with the sum of all Then,

we assume the equation to hold for the sum over n until N —1 and m until M —1, respectively.

N n
Abbreviating ¥ := > T o( YN0 we caleulate,

n=0k=1

(NN

1=

<2{§,2§4>;

N
SN (T T o),
k=1

o~

1

OGN

— 1=

N
+ ([ To@W)o, M e+ (Y,
k=1 !

I
—

Now we apply Wick’s theorem. It states that the expectation value of any field monomial
is equal to the sum of all possible contractions. The two-valent contractions are given by
the free covariance C. In view of relation (3.13), any higher contraction is given by the
suitable product of such free covariances. In a reduced notation leaving out the distributional

arguments this leads to,

N—-1,M-1 M-—1 N-1
<2$,E§f>f = Z Grim + Gnym + Z Snim + Z Sntm
n,m=0 m=0 n=0
N,M
= Z 6n+m7
n,m=0

which proves the assertion. Thus, for &-elements d ® s and § ® u having product form it
holds

cLl(d®s)* @ Qu)) =
[Tt ﬁw<uﬂz>>9> . (3.21)

N

For an arbitrary element f, € .7(R%) we have f, = ]éim 3 fOM . @ fM ] where
—O M=1

fOM e Z (R forall M =1,...,N and [ = 1,...,n. Moreover, ¢ and therefore also ¢ is

81



a linear operator on Fock space. Hence we can pull out the sum of this latter expansion to

conclude

of*®g) = X, [[eMe, ) Hw(ug?’M’m> , (3.22)
n=0 k=1 m=0 [=1
> M'>0 F

for general elements f := 0 ® s and g := 0 @ u of &.

We thus observe that due to relation (3.22) the map [ ], maps a Borchers-Uhlmann vector
g € & to the polynomial ] ]_[ gb(gn )2 in the admittedly not very clear version using one-

nz0 k=
M=0

particle contributions. One could just as well define a corresponding n-valent functional ® by
O(fn) =2 11i; ¢(f7§k)’m), which would simplify the relation above to [f], := >}, ®(fn.),

where f,, . for n = 1is given in (3.16) while for arbitrary n, the generalization is obvious,

0

n(d 1) n 0 i wg,xg ~ 0 0
foopyoip )= (2m)” d"z"e k=1 fal(21,p)), - (asp ) -

0

It remains to show that the quotient map is of this form for arbitrary elements in £-., and not
just for those of &. But this is a straightforward implementation of 3. of Prop. 10. Indeed,
the sum structure stays untouched by the action of the Euclidean time-translations. Thus,
the two-point functions of d-dimensional Schwartz functions gained through the procedure

above will result in the corresponding free covariances, which proves the identity

o((f) @ > [ T0mne, Y 16 60 >

nz=0 k=1 mz=0 [=1
M=0 M'=0 F

<Z E(f)0, Y @ <gm>9> : (3.23)
n=0 mz0 F

So, we have assured ourselves that the Hilbert space obtained by the completion of the

quotient space of (€-,(.,.»)/ker{.,.) is given by the Bosonic Fock space F.
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2. Now it is straightforward to identify the ”virtual“ representation of the Euclidean group on

‘H, and, consequently, also on F. Again, everything follows from the one-particle extent,
where we have

= () () = @1)F f de® e (o — £, p)

(QW)*%ef‘”ﬂt deo o wpa’ f(xo,g) = e “rf, (p) -

Vit)f.(p)

Vi(t) is a symmetric operator on H;, generating a strongly continuous contraction semi-group.

Hence we indeed have Vi (t) = e~ for the positive generator H, fulfilling

Hfp) = wlfi(p), ¥fe S RY),

(HU)u(p,, --op,) = (iw) Unlpy o op,)

k=1
The Euclidean subgroup commuting with the time reflection, which we have termed F,(d) in

the algebraic setting defines a unitary operator

ge E(d): Upi(g)fe = (fig))e

while the boosts have to be defined on an invariant, dense subspace of H;, as we have done

in Ch. 2. The second quantization of these operators is standard and writing V' (g) for the

implementation of E(d) on F we have

ago(x) = V(g)o(x)V(g)™

ge E(d): V(9)¥ = V(g9)(to, 1, s, ...) := (Yo, Vi(9)¥1, Vg (9) o, . ..)

where

Vo)WV @ @v) = (1@ - @ V) (9@ @ - @v() = (Vi(g)v) @ @ Vilg)v(”) .
L]
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A consequence of this finding is the following

Corollary 1. The Fuclidean functional o fulfills reflection positivity, i.e.,

c(Lf*@f)=0Vfek. .

Proof. We rely on relation (3.23). By continuity of o, we obtain

0@®ﬁ==2%wﬁ®mbzzEHMWW%QZH&WWW>>U
n,m mz=0 [=1

M=z0 \n>0k=1 F

[]

At this stage we have built up enough to verify the consistency of our Fock space operator ¢
with the Euclidean field ¢¢. So far we have identified the structure (£, €, o) as well as the time-zero

data & at the special case of the free field, so let us list the relevant notions now,

E(0):={fe L] suppfo = 0"} | o(f) =D Gul(fn)

F=@PH Hi= LR dw) . ¢s) = 9((0®5).)

nz=0

9 = ((a0,a), R) € E(d) : a(o.a.p = ad[Us(a, R)] , Viao)fe(p) = e “**fi(p)
(V(g)qj)n(gla S >£n) = (V®(g)¢n)(£1’ S 7]2”) , U= (Yo, ¢1,...) €F . (3.24)

Since the basic framework is set up, we can move on to extract the Minkowskian theory out
of our free field. During the next section, we will stick to the findings of section 2.2. This is
well-grounded, since we provided the net of Euclidean algebras defined by the free field and it is

evident that the action of V' (g), g € Ey(d) is an automorphic symmetry action thereon.

3.3 Reconstruction of Quantum Fields

We have shown in Ch. 2 that the representation V(g) of the Euclidean group E(d) on the physical
Hilbert space fits into the framework of “virtual representations“ [FOS83]. This physical Hilbert
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space in fact is the Bosonic Fock space F in the free scalar field scenario. By analytic continuation
of V' it follows that we are left with a unitary representation U(g) of the Poincaré group P(d) on F.
We denote the automorphic action on the Fock space operators by o™, leading to the symmetry

action on the Fock space,

A:F—F,gePd): aMA) =U(g)AU(g)". (3.25)

g

The translations are most important for the ongoing treatment. Their representation U(t) is
given by the analytical continuation of V(¢) to purely imaginary values of ¢, thus it acts on the

Hilbert space in the following way,

U(t)fo(p) = e fu(p) .

and correspondingly on F. Moreover, let us abbreviate the action 0‘(\(/151,0),1) by a. Relying on

Proposition 2, we are lead to

Definition 17. 1. We define the Minkowski field ¢ (f) as the image of the time-zero field ¢
under the Poincaré representation U(t), smeared with a time-dependent Schwartz function,
that is

meN

SMf) =Y f At hm (oMo(s™) , f= 3 @ s e F(RY) |

2. To the space-time region O < R we associate the Lorentzian algebra M(O), defined in the

following way:

M(O) = \/ {aM®s) | s=(s0,51,...), $n € L(R™ D) supps, c K} .

KcRd-1
K+tcO

Remark 11. For the Minkowski field we do no longer need the restriction to positive values of the

time coordinate. Therefore, we can plug in any Schwartz function on R? and integrate over the
whole of R in the definition of ¢pM.
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So, in the same way as in the algebraic part, M(O) defines a von Neumann algebra and is
obtained by the application of the Poincaré action on the time-zero algebra &. In fact, {M(O)}oecs
defines an isotonous and P(d)-covariant net. The proof goes along the lines of that given for the
more generally defined Lorentzian net given in Ch. 2, but using the full Poincaré group instead of
a proper subgroup. This causes no more difficulty.

Let us check if our definition of the free field on Minkowski space-time gives rise to the correct
Wightman functions. To this end, we appreciate the behavior under Minkowski-time translations

as they are given by analytic continuation,

ZZka

(UB)W)nl(py,---p,) = (eth\IJ)n(]_yl, cp ) =er=t S W(p..p ),

for all Fock space vectors W. For the expectation value of two Minkowski fields fi, fo € .7 (R%)

we calculate

@MY = T fannreailer) | el

= > Ud o [ dp B DI ()T p)sF (ple 4=

ddp e—zpo (3[:1 —x2)elg(£1 —,)

= lim | d%;, dd.ilﬁgf

e—0

2m)e PP —m? 1 ie filwr) fa(xz) , (3.26)

which equals the Feynman propagator. Defining the Wightman functions in the canonical way,

i.€.,

W, (fi,.-. . fn) = <Qa¢M(f1) T ¢M(fn)9> )

the calculation above shows that we obtain the correct Minkowski two-point function and, as

we have stressed continuously, all the Wightman functions by quasi-freedom.

3.4 Deforming the Theory

We intentionally made some effort to restate the main facts about the Euclidean free field in terms

of the Borchers Uhlmann algebra in the last sections. Also, the time-zero content of the theory was
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introduced with care, in order to make the application of the deformation scheme more visible.
Since we operate on Schwartz space (of several variables), the warped convolutions and Rieffel
product deformations are equivalent to the utilization of the Moyal product. In this context it

is essential that the product of Def. 5 incorporates the evaluation at a single point, which is not

appropriate for the tensor structure of 7 (R%) % - -- x .Z(R%) ~ . (R%). The Moyal tensor product
for functions f, g € .(R?) is more suitable for these purposes [GLOS],

(7 @0 9)(w.9) = (2m) 7 | [ dhudtu ™ o+ u/2)g(y + ).

and for coinciding arguments y — x passes on to the Groenewold-Moyal product. For more

general f, € .7 (R™), g,, € /(R™) it is best written down using the Fourier transformation:

(fn®09m)(p1a-~«>pn»€11>--~an) :HH 2pk6plf pla"'7pn)§m(q1""7qm) )

k=11=1

d
where we use the notation pfg := > p*nq'. Due to the complete antisymmetry and the
k=0
degeneracy of 6 just two terms remain in this sum at the probably most interesting case of d = 4:

P?023¢% + p®032¢* which result in p?9¢> — p39q?, where +9 are the only nonzero entries of the matrix

0. The n-fold product of .7 (R?)-functions can be written in the following way

Fo (éﬁ) ) =[ 1) [T e (3.27)

1<l<m<n

2 —
where Fp (@ fk) = (f1®y f2). For later convenience, let us abbreviate the Moyal phase
k=1

factor || e 2pipm Ty DY (p). In opposition to the “point-wise Moyal star product” the Moyal
1<l<m<n -
tensor product is not plagued by convolutions when the Fourier transformation is applied. For the

product of two functions we calculate
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G pg) = (2m) H Ak d% ¢ F s 1 ()i (@)

. ipOk iav ~ ~
_ (27T)7d/2 Jf dd/{} ddv ezkar 5 T f(p)g(q)
ipbk ~ ~ __ipfq

= Jddké(kJrv)e

= (f®9)p,q)

> f(p)g(e) = f(p)g(g)e™ 2

where the last equality is valid according to formula (3.27). This relation holds for arbitrary n

Moyal factors by induction. Moreover, we have got a “cyclic formula”:

f dy(f @9 g)(x,y) = (2m) j dy Ak dto e~ * f(z + Ok/2)g(y + v)
— (2n)? f dy A’k dq 8(q — k) f(z + Ok/2)3(q) e
— () j A%k f(x + 0k/2G(R)5(k) = (2m)"? f d'yf(2)gly) . (3.28)

Back at our free field model, we realize that for spatial € R*™, we have a,¢(s) = ¢(S(0,-2)1))
in the Euclidean and the Minkowski case. Thus we can define a “tensorial Rieffel product” for
(time-zero) fields in the same way we did for Schwartz functions. For convenience, we write down

its definition:

(¢ xo )(s1,82) = (2m)~ fddk dve™ gy p(s1)aup(s2)

= (27T)_d/2 J d?k dv e_ikv90(31,(9k/2))90(52,(v)) .

The time-zero field ¢ is a linear operator on the Fock space F, thus its warped convolution with

respect to the skew-symmetric matrix 6 is well-defined and denoted by g, c.f. Sec. 1.2.4.

3.4.1 Noncommutative Four Point Function

Given that we just deform the action, i.e. use star products for every commutative product there,

the bilinear terms stay unchanged due to the cyclicity of the star product (“leaving out one star“),
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see equation (3.28) for coinciding arguments. So the deformed free field theory would then be
exactly the commutative one. Using the deformation to a greater extent at least lets the bilinear
part stay the same and therefore also the propagator. This implies that from n > 4, the correlation
functions differ from their commutative counterparts. Now let us go over to this first nontrivial

noncommutative correlation function, the deformed time-zero 4-point function. It reads

Sh(s1,52,83,51) = (Q,00(51)06(52)pa(53)pe(54)Q)
= (8, ((¢ %9 X9 @ X9 ©)(51, 52, 83734))9 Q)
= (8, (¢ x99 xg 9 xg)(51, 52, 53,54)82) ,

due to the product property (¢1)go(p2)s = (1 Xg p2)s and the translational invariance of the
vacuum. We will give an account of its derivation in appendix C, while for now, we go on with the

result,

62(51, So,83,54) = C(s1,52)C(s3,54) + C(s1,54)C(82,53) +

b | dnlp) dute) 31 (-gR(-pE R (3.20)
This specific form makes us learn a few things right from looking at it:

1. For every n > 4, the expansion (3.13) gets modified by an integrated Moyal phase.

2. Symmetry cannot hold for arbitrary noncommutative n-point functions. In fact, &4 = &, is

the only one fulfilling permutation symmetry of arguments.

3. We know that we have to shrink the symmetry group to Ey or Py respectively in order to
gain a well-defined theory. All deformed n-point functions will then satisfy the corresponding

variance.

Giving an intermediate summary using shortened notation, we have so far
sre SR fre ZRY), keN
63(51,52) = Ga(s1,82) , C(fi,f2) = <Jh1 Oé%fhz 04902>
Wo(f1, f2) = <Jh1 04M901Jh204M802> = Qng(fhfz) = W(f1, f2) - (3.30)
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Assuming the time-ordering ¢, < t3, to < t4, we can write the full Euclidean deformed 4-point

function in the following way,

S4(f1, fo f3, f1) = C(f1, [2)C(f3, fa) + C(f1, f)C(fo, f3) + AL,
Aj = Jdtl ha(ty) - - Aty ha(ta) Jd“(ﬂ) du(g) ettt tealtito) viabrg, (—q) 3, (—p)33(q)34(p)

ddp ddq e*ipo(t27t4)fiqo(t1 7t3)+iq9pm N N R
(p? + m2) (g% + m2) $1(=q)82(=p)s3(9)34(p)

— Jdtl ha(ty)---dty ha(ts) f

dipdiqe®r  ~ ~ ~ ~ - ~ ~
J (p? + m?)(¢2 + m?) hl(_qo)h2(_po)h3(qo)h4(p0)51(_Q)52(_£)53(Q)54(p)

_ d?pd’q TV EA N F () e
- | R R0 T 31

as one can check by inserting suitable V' (¢)s for § and applying the residue theorem ”in the
other direction“. The time-ordering condition has to be satisfied in order to make possible a
representation by means of exponential factors e “z2!. After the reverse application of the residue
theorem, one can drop any condition on time-ordering again. Equivalently, one could define the
particular n-point function as limit of a finite time-integration, since the transition to the familiar
form of &9 is done via a pp-integration only.

In complete analogy to the Euclidean case, one finds for the deformed Minkowski 4-point function

Wi (f1, far f3, f1) = D(f1, f2) D(fs, f1) + D(f1, f1)D(fa, f3) + DS,

:  d?p d? ~ ~ ~ iap
DY = i | e T ORI R@R @ 332

3.4.2 Moving on to Higher Orders

Each (Minkowski or Euclidean) n-point function can be treated via its corresponding (time-zero)

distributions, i.e.

Sulsn) = Jdd_lxl---dd_lxn Gn(Zy, s ) Sn(Zys v z,) , 5n € S (RETDM)
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Note that by the kernel theorem, it suffices to work with tensor products of . (R%~!)-functions
on the time-zero hyperplane, which makes it possible to directly define the deformed time-zero

distributions as

&Y(s1,...,8,) = Jddlxl e d e, G2y, sz, (51 Q0 ®g S (2,0 2,) - (3.33)

We can make use of the simple form (3.27) of the Moyal tensor product in momentum space

n n
1<l<m<n

&Y (s1,...,8,) = Jdd_lpl o dTp, Gn(—gl, =D ) §1(]_91) - 8u(p ) n e2POPm (3 34)
to deduce a surprisingly simple relation between the commutative and the deformed n-point

functions,

~

& (p,,np,) =Gulp,up,) [ e (3.35)

1<l<m<n

This general form leads to another way of deriving the noncommutative four-point correlator.

Let us write C for the free covariance restricted to the time-zero plane. Bearing in mind that the

é(gl +g2)
QW&

Fourier transformed free covariance is Cj (p ¥ g2) = , we obtain by setting n = 4 in formula

(3.35):

4(1_7) .

62(}_91,...,]_94) =

Oy +2)0s +p) | Oy + 2 )0y + ) | Oy +2)0, 2
4wglw£3 élf,ag1 Wy, 4w£1 Wp,

Due to the specific combinations of the delta-distributions, all Moyal phases vanish except for
two which sum up in the second term. Thus one is left with the distributional kernel of the concrete
form (3.29).

Returning to the case of general n-point functions we just have to build the Fourier transform
of (3.13) to obtain

Sopyin,) = > Gualps-iBy--op,_)Colpp,) [ e, (3.36)

-1 I<l<m<n

Ed
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which happens to be a comfortably simple formula linking deformed and undeformed Schwinger
functions in momentum space. Still we have to admit that the phase factors of the form €% cannot
be absorbed into the corresponding two-point functions of the reduction formula. This means that
the vacuum representation of the Moyal deformed theory does no longer incorporate a quasi-free

state.

3.5 Application of the Algebraic Framework

In this section, we will have a look at the consequences of the algebraic setting treated in Ch. 2
when applied to the deformed Euclidean scalar field. We have already worked out all the necessary
relations, so we just have to bring things together.

Let us collect what we have done with the noncommutative free field two- and four-point functions
up until now. Starting from Fock space F we constructed the correlation functions in terms
of Schwartz functions on the ”time-zero hyperplane“ R%~!. Preparing the ground for a specific
representation « of the Euclidean group E(d) = R¢xO(d), we gained the correct Euclidean two- and
four-point functions by building the time-zero correlation function of the ”dynamically integrated “
field ¢°(f) = >, [dt h™(t)aup(s™) for Schwartz functions h™ defined such that f = > h™ @ s™.

meN m

And, most importantly, in the same manner we obtained the Minkowski propagator and four-
point function by time-zero correlations of fields acted on with the analytically continued group
action o™ and tested with suitable time-dependent functions. So, starting with the time-slice, we
get everything we need by acting with the dynamics. These results correspond to the free field

manifestation of the arrow & — M in Fig. 2.9.

Lemma 11. For the Euclidean free scalar field, given by the operator ¢¢ on F, the Wick rotation of
Schlingemann, c.f. [Sch99], can be explicitly performed and results in the free field ™' on Minkowski

space-time.

Proof. According to 2. of Prop. 10, ¢ is a well-defined representation of the time-zero algebra &,
on F. Starting from the free Euclidean field theory (£, 0, a, o) as given in Sec. 3.1, we are able to

obtain the time-zero algebra & by performing the limit

SRYsf=) h"@s" > > Q5" =6®s

meM meM
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understood to take place as in Lemma 10. By (3.26), the two-point function of the Minkowski
field ¥, introduced upon &, in Def. 17, equals the Feynman propagator. The state w on F is
given by w(f) := {[1]s, f[1],) for f € Z and is quasi-free. Thus, each n-point function can be
exactly determined from the propagator by an expansion of the form (3.13). The set of correlation

functions in turn characterizes the free field on Minkowski space-time. O

So, the free scalar field fits well into our framework. This was mainly the content of Secs. 3.1,
3.2 and 3.3. If we deform the theory by a degenerate skew-symmetric matrix 6, we are able to draw

the analog conclusion:

Proposition 12. The Fuclidean free scalar field may be deformed in terms of warped convolutions.
The resulting theory, given by the operators ¢§ on JF, where 0 is of the form (2.20), may be

analytically continued to the deformed free field on Minkowski space-time.

Proof. Given a commutative Euclidean n-point function &, € .#/(R%), we can deform it in terms
of warped convolutions, is equivalent to the deformation in terms of Moyal tensor products. We
have discussed this in Sec. 3.4. Due to relations (3.27), the deformed n-point functions differ by
integrated Moyal phases from their commutative counterparts.

In the proof of Lemma 11 we referenced the continuation of the two-point function. As Moyal
deformed propagators coincide with the corresponding commutative ones, the conclusion carries
over to the case at hand. Next we check the covariance properties. From the explicit form of the

two-point function,

0 ddilp ; 0_20Y_;
QBQ(SL’l,.IQ) = Qng((lfl,.fg) = J— elwﬁ(ml_w?)_@(gl_gﬁ s (337)

2wg

one can read off the complete Poincaré invariance. The direct allocation to the Lorentzian case
0

n’

of the expansions (3.13) and (3.36) reveals the Py(d)-invariance of arbitrary 209, the restriction
becoming necessary due to the emergence of the noncommutative phase factors. In almost the same
manner, the spectrum condition and positivity of the noncommutative n-point functions follow on
Minkowski space-time. Indeed, the fact that noncommutativity restricts the symmetry group, the
spectrum of the four momentum operators has to be generalized. The single remaining boost

direction together with full translational invariance leads to
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specU c {peR¥| py > |p|} = YV, (3.38)

where U denotes the analytically continued translation operator,

U:R%3(t,z)— eHeZl

The adjoint action of Py(d) is denoted by a?* and acts on F as described in (3.25). The
deformed field and observable net are defined in complete analogy to Def. 17, with ¢ exchanged

by g and o™ by oM. Thus, in terms of n-point functions, we obtain the deformed Lorentzian
theory (My, @, w%) from the deformed Euclidean field theory (&, @, a?, o?). ]

A lesson from the free field The operative point is that we can apply the unitary representation
of the reduced Poincaré group on the time-zero correlators. That is to say, the Wick rotation
of theories fulfilling the time-zero condition largely relies on the analytic continuation of their
symmetry group representations. In (3.26) we showed the consistency of this approach when it
comes to the application on the Euclidean free field. Clearly, the deformation is unaffected by the
action of the translation group; in particular, the phase factors D9 are.

We are ready to give an interim result. Given a noncommutativity matrix 6, degenerate according
to the commutative-time case, the Moyal deformation effects the rise of phase factors ®% in the
n-point functions of any theory. Furthermore, if a certain theory is known to allow time-zero fields,

we obtain the general time-zero correlator

§2(5n1)7 SRR 87(171)) = Jdd_lpl o 'dd_lp" é"(_]_jl’ o _Bn) gg) (1_71) o g(nn) (En) H etnim

1<l<m<n

By "allowing time-zero fields” the well-defined evaluation of the field distributions on elements
of the form (fp,0 ® s1, (6 ® sgl)) R(0® sg)), ...) is meant, see Lemma 10. The set of distributions
&’ e .7 (RU=D") also determines the time-zero content of the corresponding Lorentzian theory.
Since the residual symmetry group commutes with 6 (see (2.4)), the time-dependent part responsible
for the reconstruction also will. Moreover, it will keep this property after analytical continuation.

Though it cannot directly be adducted in terms of n-point functions, Prop. 6 states the persistence
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of the time-zero condition after deformation. Thus, also in more general theories, the image of the
time-zero content under the analytically continued symmetry group representation will be a good

candidate for the theory on Minkowski space-time.

3.6 Relation to the Standard Approach

Momentarily leaving aside the advantages of directly visualizing the algebraic Wick rotation at the
free field scenario, the setting just described is not absolutely practical. One is rather contem-
plating a full Euclidean or Lorentzian theory and highly interested in implications on the analytic
continuation without the intermediate step of restricting to the time-zero plane.

Nevertheless, we want to point out that many constructed quantum field theory models allow
for such a restriction. The P(¢); models [GJ87] and the ¢*-model in 3 dimensions [DF77] can be
analyzed in this way, for example. For general theories defined by its set of Schwinger functions,
heavy use is made of the full Euclidean or Minkowski invariance and microcausality, usually. We
do not wish to use theses axioms as they will not survive the deformation.

The two famous papers by Osterwalder and Schrader were the first to give necessary and sufficient
conditions for a set of Schwinger functions to define a Wightman theory. The linear growth con-
dition there was designed to be a substitute for demanding the existence of a holomorphic Fourier
transform directly. As a consequence, it is easier to validate in concrete models, but still requires
some effort.

Before finishing the axioms for Euclidean Green’s functions, lecture notes of Osterwalder [Ost73]
concerning this subject have been published. There, Schwinger functions satisfying a somewhat
stronger growth condition are smeared out in the spatial variables and analytically continued to
Wightman functions just in terms of the time-coordinates. We can adjust this approach to our
setting, mainly because SO(d)-invariance is not explicitly used to perform the continuation when
starting from a Euclidean theory. Before we treat the Euclidean n-point functions in higher gener-
ality, we will visualize this alternative approach in terms of the free field.

Nevertheless, we are assuming that time components are completely ordered. This means that we
contemplate Schwartz functions out of .#, (R™) to be our test functions, see (3.6). In doing so, we

procure the various representations of n-point distributions.
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Continuation of the propagator Our starting point is again the (commutative as well as

noncommutative) two-point function of the free field, written in the difference variable :

ddp ipofo+ipé —|&olwp +ip€
) o= [ g e = [ e o

We define this distribution on .#, (R%) = .%(R%), so we can drop the modulus in the exponent.

Furthermore, we write down the candidate for the analytical continuation of the distribution Si:

S1¢%%s) = [ dpe < 3(p), e (3.39)
and this notation emphasizes the spatial smearing with the Schwartz function s € .%/(R?"1).

Lemma 12. For fived s € . (R41Y), the distribution S1(£°|s) is the restriction to the positive real
half axis of a complex function S1(C°|s), analytic in C,. The Fourier-Laplace transform Wl of S1

exists and is the Fourier transform of the Wightman two-point function 20,.

Proof. One realizes that the domain of analyticity is indeed C, := {z € C|Re z > 0}. Hence, given
se S (RI1), (% — S1(¢°s) is an analytic function in C,. What remains to be checked are suitable

estimates on S;. In our simple case, writing ¢° = 7 + it, we are left with

7>0 7>0 - -

< J(ﬂdg(p) dpu(g) ettt g@g*@> &
:Jﬂ%@%MWP%+%ﬁ@?@M

supj |Sl (T + Zt|5)|2 dt = Supf (JJ dﬂ(p) d/_jj(q) e*T(wngwg)Jrz’t(*wngwg) g(p)g* (q)) dt

The evaluation of the delta distribution causes the absolute value of the vectors p and q to

coincide. Thus, they are related by an orthogonal matrix R € SO(d — 1). This further implies,

L s

2w£ = =

%ﬁk@w@ﬂ:f

for 7(p) := $(Rp). By the Cauchy-Schwarz inequality, we finally deduce

Y

supJ 1S, (1 + at|s)[P dt - < f

>0
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dd—lp
supf|Sl(T—|—z't|s)|2dt < J = 3(p)m™(p)
>0 4-(*)12; -
- N 1/2 a2
< Jddl @ Jddl @
= | 2wp = | 2wy

which is square of the L?*-norm of the function p + 3(p)/(2w,). Hence by the Paley-Wiener
Theorem 10 (in the appendix) it follows that there is a W (¢°|s) € L2(R, ) such that

() = [Tl e 0 = [ Wit et
0 R

The latter equation follows from the concrete form (3.39) of S;. As e™4"¢’ for ¢° € C, is an
exponential damping times a phase, it leaves .#(R, ) invariant. This shows the existence of a
distribution W, € .%/ (R?), such that we can remove the smearing in the spatial coordinates to see
that

S1(€) = Jddq ¢ LT (g) (3.40)

The corresponding Wightman distribution is then defined to be

Qﬁg(l’,y) — fddq equ(IO,yO)Jrig(gfg) Wl (Q) .
Again, in this special case, the explicit forms of the functions involved are obvious: 17[71 (q) is
nothing else than (g5 — ¢* —m* + i)™, as one can verify by integrating over gy in (3.40). O

So, as a next step we have to check whether the approach described and calculated for the
two-point function generalizes to correlation functions of higher order in the Rieffel deformed free

field case.
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Writing the expansion (3.13) in difference variables, we obtain

Sn(€r, .o &) = Sna(bo, . &1)S1(G+ .o+ &)+ S a(b, ., En2)S1(6)

n—1

+ Z Sn—a2(&s 3 281 + &k Ghrts - 6n1)S1(E -+ &), (3.41)

k=2

so the effect of leaving out one variable xj, is to contract ,_; and & into a sum in the resulting
distribution in difference variables. Furthermore, we observe that the noncommutative deformation
has the consequence of inserting Moyal phases of the form e“% into the distributions’ integral

representations. More generally, we have the following

Lemma 13. Let f € Z(R™) and let D%(p) := ] P Then fp:= fD° € .#(R™) and, using

1<k<l

fo = ]_—71[%]; for the Schwinger functions &,, it follows

&,(f) = Gulfo) - (3.42)

Proof. 1t is well-known that Schwartz space is invariant under multiplication with phase factors,
s0 fp € (R for any f € .#(R?). For the second part we calculate

(65 %9 ) (1 ® ) = f Ao dk ¢ g sd® (f)awd® (fo)
= fdv dk dx dy e*¢° (x) f1(x — 0Kk/2)6° (y) foly — v)
- f d dy 6 (2)6 () (1 @o fo) () = (&5 @ 6°) (1 @4 fo)

Inductively, this is correct for arbitrary Schwartz functions of tensor form. We can take advan-
tage of Prop. 11 now. Indeed, by linearity of ¢¢ and continuity of the functional o, it therefore

follows that (€0, (¢ xg -+ xg ¢%)(f)Q) = (Q, (¢ ®---®¢°)(f5)Q) holds for arbitrary f e .7(R").
By the definition of &2 (f), relation (3.42) comes about.

]

Thus, by defining a new smearing function smearing function §9(]_91, ey En) we can go on like

in the commutative case when we are focusing on the time-dependence.
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Remark 12. The absorption of noncommutative phase factors into the spatial smearing function is
only possible due to the time-independence of the noncommutativity matrix 6. Thus this distinct
way of analytically continuing just the time-dependent part of the Schwinger distributions will get
massively changed when considering space-time noncommutativity.

On the other hand, this approach is introduced for its greater simplicity and it may happen that

the simultaneous continuation of the distributions in all their components is still possible.

In order to tackle the next step, we realize that

~ ~

k
Sn(q17' .. 7Q’n) = 67’L+1(p1)' .. 7pn7pn+1) y g 1= Zp] .
j=1

Implementing this in (3.42) and introducing the following notion for g € .7/ (R(4—Nr+m=1))

Snim1 (&l Enlg) = f Snima (€l &g, -, € )A I (3.43)

we obtain,

n—1
SHEL . Eg) = Su(&)....,&|gDY) . Di(q) := | [ urr
j=1

Proposition 13. The set {&°},en of Schwinger distributions of the (commutative-time) deformed
Euclidean free field can be analytically continued to distributions {20°},.n, satisfying Py(d)-invariance

and positivity.

Proof. We find that (¢?,...,¢2) — S%(¢D,...,¢0|g) defines a complex function analytic in C" and
a distribution in the spatial variables. This can be appreciated inductively: We saw that S; defines
an analytic function in C;. Now assume that S, 5 is a complex function analytic in C?~*. From
the first summand in (3.41), we deduce () > 0 for k = 2,...,n — 1 by the latter assumption.
Moreover, the second summand has the consequence of ¢ > 0. The appearing of S; in the first

term finally delivers »; ¢ > 0, from which it follows ¢ > 0. Hence, we really have analyticity of

j=1
S, on C.
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The Schwinger function S%(£Y,...,£%g) decomposes into a sum of n!! products of propagators
and each of these products consists of (n + 1)/2 factors. We deal with complex functions in time
variables and smeared out in the spatial variables.

The absolute square of an N-fold product of functions S; will be

J

2

ﬁ&GjW%>

=1 k=1

N

d(d—l)npl d(d—l)npl n

d"t = Jll exp | —i Y vty (wp —w, ) | d"t
= (2w221)(2w€l) klZ::1 s o

— [ @) @ ute) e (it ave.

where t = (ty,...,t,), v = (wgl —Wg -y Wp —ng), whereas A is the corresponding coefficient
matrix, consisting just of entries equal to zero or one. If the product is part of a Schwinger function
Sy, then n delta-functions face 2N = n 4+ 1 momentum integrations. So, there remains exactly
one integral of (f(w,))™" for one p € R*" and a non-vanishing function f. Thus, smeared with a

Schwartz function g € .7 (R™4~1)  the absolute square of the product will fulfill

N n
1C>0: fj 1_[51 (Z Z Ukltkl>
=1 k=1

For the mixed terms we can argue analogously to infer the validity of the following estimate:

2
g(p)d@ pd"t < Ollgle Vg S (RYY).

iK >0: sup J‘Sg(ﬁ + ity ..., T+ itn|g)‘2 d"t < J‘Sz(itl, . ,itn|g)‘2 d"t
7 >0
k=§,>...,n
n+ 1)(n!!)? nld
< DO ), vge i)

This assures by the Paley-Wiener Theorem that for any noncommutative Schwinger function

S? there exist distributions W,f e.’ (@in) being their holomorphic Fourier transforms,

- i (§2q2+1§kgk) ’\’0

32(517"'7571) = Jddnqe k=1 Wn(q1aaqn) .

Even for more general Schwinger functions we have the following at our disposal:
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Lemma 14. Let S, € '(R™) be the n-point Schwinger distributions in difference variables of a
Fuclidean quantum field theory and let Wn denote its holomorphic Fourier transform. Then, for

the holomorphic Fourier transform V[N/g of the deformed Schwinger function S we have,

W?=W,D? VneN.

Proof of the Lemma. On the one hand, using the spatial Fourier transform defined in (3.9), we

have §g = §anL, as DY depends only on the spatial variables. Hence we calculate,

Wg(QL cee 7Q7L) = (27r)_(d_1)n/2 Jddnf e_qogo_ig Srez(gla cee 7571)

- f 4red e € (D q), o (€, q ) =

'nfl
i k41

_ f 4ne® ' 5, (0, q), -, (0, )) e 1o

n—1
~ i qrOqK+1 ~
= Wn(Ql:---aQn)e k=1 = Wn(qhaCITL)DZ(Q) )
and the claim is proved. O
Continuing the proof of Prop. 13, we recognize that by the latter lemma, we have
G (00 'nil 0
-2 ( +i€, q,) 3 409 +1 ~
SO(Er, ... &) = Jddnq T Wolqi, - qn) - (3.44)

Consistently with the literature, we define the Wightman distributions to be

n—1
_ i3 qe(Trg1—Tk) ~
Qﬂg(m,...,xn) = Jdd(" qu k=1 ! ngl(ql,...,qn,l)
‘nfl i n—2 0
_ f Q=D o S T BB W ). (3.45)

We are now in the position to inspect the validity of (deformed) Wightman axioms. Nevertheless,

we postpone this consideration to the next section, where we treat consequences of this approach

to Schwinger functions of more general theories. O
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3.7 Implications for GGeneral Schwinger Functions

On the basis of the free field we saw in the preceding sections that the analytic continuation of
Schwinger functions belonging to the noncommutative free field can be arranged. Now the task is
to investigate the generalization to arbitrary Euclidean theories. What we should learn from these
considerations at least is that obtaining a Minkowski theory does not rely on full Euclidean invari-
ance or a certain notion of locality. It is exactly this need which confuses the issue of generalizing
the continuation in the other direction, i.e. gaining a Fuclidean version of a deformed theory on
Minkowski space-time.

There are several analyticity properties of Euclidean m-point functions sufficient for the well-
definition of a Wightman theory [OS75]. The one which together with all the other axioms gives

necessary and sufficient conditions for the existence of a Wightman theory is the following:

(E(0') There exist s € N and «, 8 € R, such that for all f € .%(R%) and n € N we have

S (NI < ()| flsn (3.46)

where |f|,, for m € N denotes the Schwartz norm

o = s (14207 ) 0)
|aj<m

= sup (14 (z1) + ...+ (2,)2)™2 D% f (1, . .. @) (3.47)
fal<m

This is indeed a norm, since the supremum is taken over all multi-indices of order smaller or equal

to m. The sort of nomenclature has its origin in [OS75], where (E0) was the designation for the
Schwinger functions to be just tempered distributions. It has been shown that demanding (E0) is
not enough to guarantee for the existence of Wightman functions. As a remark, we mention another
condition: that of the Schwinger functions being in the dual of Schwartz space with the topology
given by the semi-norms |f[ = := |f.|m, where f, denotes the holomorphic Fourier transform of f

on R%". This axiom, called (E0), was shown to be equivalent to the Wightman axioms with the
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least effort, but at the same time seems to be most difficult to verify.
For the upcoming considerations we are interested in (F0') for our noncommutative Schwinger
functions at first. An equation like (3.34) for time-dependent Schwartz functions can easily be

written down

Gfm(f) = jddnp én(_plv T _pn)f(pla T ’pn)gz(p) , J€ ‘y(Rdn) ) (348>
and draws our attention to the noncommutative phase factors D9.

For the upcoming part of this section, we are going to refer to the following

Lemma 15. Let N € N and let M(RY) := M(RY — C) denote the measurable functions on R .
Furthermore, let 1 : M(RY) — [0,00) be a sublinear functional, i.e., ¥(f + g) < ¥(f) +¥(g) and
Y(af) = lal(f) for all a € C and all f,g € L(RN). Then, given m € N, we have

(0 Z Cafa | < (m+1)N max |cq| sup ¥(fs) Vea € C, ¥V f5 € L(RY), , 8 multi indices .

la|<m lafsm g1 <m
Proof.
(0 Z Cafa | = ¢(C(0 ..... 0fo,..0 T cao,..0fa,0..0 -+ co,.0mfo,.., o,m))
lo|<m
< |C(0 ..... O)W(f(o ..... 0)) + |C(1,0 ..... 0)|¢(f(1,0 ..... 0)) + ..+ |C(0 ..... o,m)W(f(o ,,,,, o,m))
< max | |(V(flo,..0) + U(fao,..0) + -+ U(fo,..0m)) -

Now, the inequality ¥(f3) < sup ¥(f,) is valid for every set {fa}jaj<m of functions in M (RM).

la|<m

As the sum in the upper estimate contains (m + 1) terms, this finishes the proof.
O

Suppose that a field theory satisfying the Osterwalder-Schrader axioms including (3.46) is given.
We want to know if the corresponding Moyal-deformed Schwinger functions also fulfill such an esti-
mate. Relying on (3.42), we examine the behavior of the norms |. |,,, under Fourier transformation
for being able to gain an estimate of G (f) in terms of the Schwartz function f directly. To this end,
we need the following notion: we say that a sequence {o,,}men of positive numbers is of factorial

growth, if there exist constants a and 3, such that |o,,| < a(m!)? for all m € N.
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Lemma 16. For all f € .Z(R™) and for all m' € N there exists a sequence {o,}nen of factorial

growth and s' € N such that

|f|m Om/ |f|m '+s"

Proof. We start by writing the function f in Fourier representation and by pulling the derivative

and the polynomial under the integral. Then, for even m’ = 2m, m € N, we obtain by partial

integration,
2\m [ Mo ddnp ipz ;| 2ym (. af
[flzm = sup [(1+2%)"(D"f)(z)| = sup a2 €77 (L= D)™ (p° f ()
xeRIn xRN (27T)
lor|<2m lal<2m
ddnp ) ~
< = P 1= pAym(p>
s | i [0 D67 )

as the factor e’* (7)1l is bounded by one. Due to the Leibniz rule, we are left with the supremum
taken over arbitrary derivatives and powers of order smaller or equal 2m. Put differently, we are

left with the differential operator

(1=D)"w )| = | ()5 D* 0 [(p)

N

where we use the following notation: (') is the multinomial coefficient /BI'L/;d' whereas (%)
denotes the product of binomial coefficients (271) - - - (264) - Additionally, when we write v < 23, we
mean vy < 201, ..., Yan < 284,- In the last step we used the triangle inequality.
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We may now go on by estimating the remaining supremum over the sum of multi-derivatives. To
this end, we may take advantage of Lemma 15, where we set ¢(f,) := { | f,(p)|d™p and f, := D** 7 f
for f € .7(R%"). By the triangle inequality, this indeed makes ¢ a sublinear functional on .7 (R").

So, we obtain

o < s [ S N OO T 0 D)

|
a|<2m k=0 |8|=k y<min{28,a} (Oé 7)

< sw 3 S OGal AN sw | S b0 )

la|<2m k=0 |3 =k y<min{28,a}
< s SiEela kN s [0 ()
< sup ca (@, sup p p
\a|<zmk:0k ? 2 bisk d (@m)dn?

where ¢;(, k) 1= max {max{( )

(a ’Y)'
1Bl=k ( VS
estimated by the maximal contribution times the number of upcoming terms. Thus, we obtain,

}( ) NV1 (v, B)} The remaining sum over k can again be

p*(D* f)(p)

| | < ( 1) ( ) J v
Jlam = m + 1l)cg(m) su
2 ’ \a\égm (2”)dn/2

|Bl<m

where c3(m) denotes a cascade of three maxima. We will deal with this coefficient below.
Now we can further estimate |f|s,, by utilizing the fact that for all multi-monomials we have the

inequality p** < (1 + p?)l*l by the multinomial formula, revealing

Flon < Alm) swp [ 0+ (0" P

Bl<am J (2m)dn/?

(1+p2)m+dn

with A(m) := (m + 1)cz(m). Now we can insert a factor one, written as T g2y

to move on,

|f|2m < A(m) sup Jddnp (zﬂ)d,,g/lg(—;]j_i;z)m_,_dn (1 +p2)m+anB.f~(p)

As the first factor is integrable (giving the number ¢;), we can estimate the whole expression a

bit generously by
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[flzm < A(m)eq sup |(1+ )" D F(p)| < A(m) cal flagmany
peRdn
|8l<2m
which finishes the estimate for o/ := A(m')cy, m' = 2m and ¢ := 2dn.
For odd m' = 2m — 1, m € N, we make use of the fact that |f|,v < |f|mw41 for all f e . (R™).

The preceding estimate then implies

[ Flw = 1flam1 < [ flom < ()| flwrss s 8 = 2dn+ 1.

Now let us verify that the overall coefficient c¢ is of factorial growth in m.

We start by the maximal coefficient ¢;(m) of ] (35)((13—'7),, where |G| = m and |a| < 2m. For
<

the extremal case where one 7, = 2m and all others vanish, we have a contribution of 2m!. In

any case, this marks an upper bound for the asymptotic behavior of the “true* binomial coefficient

c1, which grows exponentially. The number of summands N; and Ny are both bounded by the

number dn®™, since this constitutes the total number of configurations when coinciding summands

are not incorporated. What remains is the maximal multinomial coefficient cy(m) of ('), which is

increasing exponentially in m. It results that A(m) is of the order (2m)!(dn)*™ exp(m), thus A
I'(dn/2)

defines a sequence in 2m of factorial growth, while ¢4 is just the constant 2%/ QW'

O

Remark 13. It is widely known that the Fourier transform acts continuously on Schwartz spaces of
arbitrary dimension, but the methods used to arrive at the estimate of Lemma 16 in terms of the

special norms |. |, will be useful in the following and are stronger than just continuity.

Due to this result we can get to an estimate on the functions fy = F ’l[fg].

Lemma 17. For all f € .Z(R™) and for all m € N there exists a sequence {b,}nen of factorial
growth such that
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Proof. Working in Fourier representation leads to the examination of the following norm,

f, 3 ~ i 2 Opr
[folm = sup |[(1+p*)™2Ds(fD)(p)| = sup |(1+p*)™2Dg (f(p)e%«pk ’ )‘ '
pERd" pERdn
|af<m |al<m

Let us contemplate the multi-derivative on the product of the Fourier transform and the phase
factors in more detail. In full length, it is given by a polynomial containing multi-derivatives of ]?
and DY,

D@4 Tw)| = |2 @)D w) Dy i)

B<a

= |20(0) 22 ) Dy P f ()|

B<a

where 2U°)(p) is a polynomial in p of degree |3|, because every derivative with respect to any

momentum component delivers exactly one momentum power times —i1/2 and the terms coming
N
from the Leibniz rule do not increase the degree. For an arbitrary polynomial Y ¢;p” we may

i=1
infer

N

2, b’

j=1

max Sy,

N N
Z|c]| 1+p%)° Z el (1 + )" < N max ey (14 p2) "
- O J

which in our case leads to

D% Fip)| < bla)(1 + 59! 3 D7 Fw)]

p<a

with b denoting the maximal modulus of £2U%)(p)-coefficients. If we re-insert this into our

initial expression we obtain

Foba < sup (122 b(la (142 3 [ )\}
peERIn B<a
|o]<m

= sup { (L+p°)""2(|a]) ] ‘Daﬁf(p)‘} :
peRd” B<O¢
|a|<m

107



Like in the proof of Lemma 16 we can estimate the sum of derivatives by the maximal derivative

times the number of upcoming terms. Indeed, choose (f3) := sup |fz(p)| in Lemma 15, as well
pERdn

as fp = Da_ﬁf. Thence, we collect all constants into b,, and deduce,

Foln < sup [p(laDIN (@) sup {(1+ 52| D"~ F(p)|}

lal<m peRdn
fa
< busup {(1+ 52" D°F(p) |} < bul Flam -
peRdn
|a|<m

Let us determine the asymptotic behavior with respect to m again. At first, we can estimate
the number N (a) of terms evolving in the sum over 3 < a by (Ja] + 1) < (m + 1)4, as this is
the maximal number of combinations for the multi-index 3. Furthermore, we have to consider the
maximal modulus |b(a)| of Z2/°l(p)-coefficients. These are binomial coefficients with the maximal
possible contribution! of (fm2) and irrelevant powers of . Hence, we conclude that {bin}men is a
sequence of factorial growth, which we consider apposite for our purposes.

]

Obviously, Lemma 16 for g := ]? serves as an estimate for the inverse Fourier transform. We

use this fact when we formulate our findings in the following

Proposition 14. Let s € N. Then, there ezist s € N and a sequence {0, }men of factorial growth
such that for allm € N and f € .7 (R™) the estimate

|f9|sn < On |f|s’n (349)

1s valid.

Proof. For the norm |fy|, of the function f, € .#(R%), the application of Lemma 16 entails the
inequality | fa|sn < C(n)|]?9|n(s+d) if sn is even and | fyls, < c(n)|f9|n(s+2d)+1 if sn is odd. Lemma 17

then leads to the following inequalities,

bu(sta)|fl3(s+a »  sn even

|f9|sn < ~
bn(s+2d)+1|f|3(s+2d)n+3 , Sn odd .

1[m/2] denotes the Gaussian bracket, i.e., the largest integer which is smaller or equal to m/2.
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We observe that 3(s + d)n = 3sn + 3dn for sn even can be both even and odd, depending on
the dimension d. On the other hand, 3(s + 2d)n + 3 = 3sn + 6dn + 3 is always even if sn is odd.

Thus, a final implementation of Lemma 16 lets us end up with

07(11)|f|(3s+4d)n ,  sneven, 3(s+d)n even
| folsn < 022)|f|(3s+5d)n+1 , sneven, 3(s+d)nodd,

0'£L3)|f|(35+7d)n+3 y SN odd .

This means that in (3.49), we observe |fp|sn < c(n)|f|tynst, for either t; = 3s + 4d, 3s + 5d, or
3s + 7d, as well as t = 0, 1 or 3, correspondingly. In each of these cases, the claimed estimate

follows from |fl¢nrty < |f|etr4t)n for 8" :=t1 +to. O

A few remarks about the applicability of existing proofs concerning the analytical continuation of
Schwinger functions are in order. The paper [OS75] has deservedly become a classic in mathematical
physics over the last decades. The subtle details which at first spoiled the correctness of [OS73]
are of importance when trying to modify the fundamental axioms, as becomes important while
applying the Moyal deformation. As the authors explain with great care, the analytic continuation
happens at the time-components of n-point distributions and it highly matters how to treat the
spatial components. By means of the free field, we have shown in the preceding subsection that
smearing out the Schwinger functions in the spatial variables (i.e., treating them distributional) has
the drawback of demanding a stronger temperedness condition and the benefit of full Euclidean
covariance never entering the continuation. It is the restoring of the Wightman axioms for the
Minkowski space-time n-point functions when Euclidean covariance is needed for the first time.

The second method consists of showing that the Schwinger functions can be continued to analytic
functions in all the coordinates, including the spatial ones. Unfortunately, full SO(d)-covariance
must be assumed to get to this result. Going a bit more into detail, we present a few parts of
the proof residing in [OS75]: given a cone Cjp := {z € Rz > |z[tan B} for 0 < B < 7/4 it is
argued that any d linearly independent vectors contained in the dual cone C/;_s can be mapped
to the vector (1,0,0,...) by a suitable set of rotations. Clearly, these cannot be taken just out of
O(2) x SO(d — 2). To guarantee the sole usage of the latter group there is the need to go over to
the light wedge Y. But there are still many vectors of the dual wedge (which would be the analog

of the dual cone) Y;/,_g which cannot be mapped into (1,0,0,...) just by using x¢, z1-rotations!
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Showing analyticity in the spatial variables without using full SO(d)-covariance therefore must, if
possible, be done in a different manner

Next we are going to use the stronger condition (F0") for (certain) Moyal-deformed theories
and examine the corresponding Wick rotation. We prefer to give a formulation for this condition

for the set {S,}, of Schwinger functions written in difference variables:

(E0") There exists s € N and a, 3 € R such that for all n € N and for all fy e S(R%), k=1,...,n
it holds

150 (f1® f2@-++ @ )| < a(n)? [ [ Iels - (3.50)
k=1

In [OS75, appendix], it has been worked out that this condition really implies (E0"). The free
field does fulfill the latter condition. We elaborated on a distributional version in the preceding

subsection, so we check the condition in terms of Schwartz norms now.

SO = || gyt 9] < [y Ly

(¥ +m) (p)| < ealfla < eslflaa

‘(p2 +m?)f(p)

< cosup
peRd

In the last line we have used Lemma 16 for the function and its Fourier transform interchanged.
This shows (3.50) for n = 1. Similarly as in the proof of Prop. 13, we may decompose S, into a
sum of products of the propagators S;. Applying the triangle inequality, we infer that there is a
constant ¢(n) such that |S,(fi®:--® fu)| < c(n)|filza- - |fn]s4- Being a bit more specific, we have

é"H)/ 2, thus it defines a sequence of factorial growth.

c(n) =nlle

Now it is time for a noncommutative generalization of the Osterwalder approach to the analytical
continuation of n-point functions satisfying (E0").

Let S, € .'(R%") be a sequence of Schwinger functions which satisfies (3.50) and again consider
the norms |. |, for m € N we have introduced in (3.47). Given that (£0”) holds for all Schwartz
functions in .7, (R%), we choose those of tensor form between the time and space components:
fr == hp ® s, for by € S (RL), sp € L (R 1), k= 1,...,n. We estimate the tensor product of

Schwartz functions in the norms |.|,, in the following. Let a € .Z(R"), b € . (R"). We then have
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la®bl, = sup ‘(1 + 2% + y2)m/2D°‘(a ®b)(x, y)‘

(x’y)eRr+t
la|<m
< s [+ a?) DY) @) (1 + ) EDT) )|
(2,y)eRr+t
! | +]o|<m
< sup |1+ )™ 2(D7a)(@)| sup |(1+ 52" A(D ) (y)
zeR" xeR?
\a’e\<m |a”e|<m
= |a|m|b|m - (3.51)

From this inequality it now follows that |f|m = |hi ® Sklm < |hk|m|Sk|m- As a next step we

define a distribution v by its action on a tensor product

ME® - Q8n) =Sl ®@s1® - Qhn ®sn)

which is in Y’(Rfﬁl)n) for every fixed combination h := (hy,..., h,) € L (R,) x -+ x L(R,).
Thus we obtain a useful relation from (E£0”) and (3.51):

n n

(51 @ ® n)| < pn n |k | H |85 ]m = pn H |8 lm (3.52)
j=1

k=1 j=1

where p! is obviously an s;-independent sequence of factorial growth in n. We now take ad-
vantage of condition (F0”) implying the estimate (E0), as has been shown in [OST75, appendix].
Inequality (3.52) means that the requirements are fulfilled for v® as well, which implies that there

exist r € N and a constant ¢ such that

[ (8)] < " phlslur

for all s € .7(RE-Hn).

We are going to show the applicability of the Wick rotation without demanding full SO(d)-
covariance of the theory now. To this end, let us go over to the Moyal deformed theory defined by
the Schwinger functions S?. These are obtained by the use of the Moyal tensor product, which due

to our chosen scenario only affects the spatial components. We infer
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10 @51 @ ®@h,®5,)] = USn(él, 8 (M ®s1) @ @ (hy @ 80)) (&, )™

= ‘an(gl, Ce ,gn)hl(f?) Tt hn(fg)(Sl ®9 Tt ®9 Sn)(ép ce 7§n)ddn§

Let sp := s51 ®9 - - - Qg s,. Implementing Prop. 14, we are able to write down the best suited

estimate for our noncommutative Schwinger functions then:

(EO”)g :

1S9 @51 @ hn @50)| < pu | [ [Plom6]nr
k=1

n

Cn,onan 1_[ |hk|m|3|nr’

k=1

=t G | [ klmlsln - (3.53)
k=1

N

The sequence defined through 7, := ¢"p, 0, is of factorial growth, as each factor is.

The remainder of this subsection is organized as follows: first of all we are going to generalize the
analytical continuation of [Ost73] to general Moyal theories of commutative time. We have already
checked its validity for the special case of the free field in 3.6. Next we will show that (3.53) leads
to the existence of the holomorphic Fourier transform of the noncommutative Schwinger functions.
Finally we are going to establish the Wightman functions and verify the axioms for them.

We utilized Hilbert space vectors made out of ¢®-monomials applied to € to represent the
Schwinger functions as scalar products in the free field case. Nonetheless, such a representation is
also valid for general Euclidean theories. Indeed, we have shown the construction of the physical
Hilbert space H in chapter 2 in the algebraic context. We as well did this in the framework of the
Borchers-Uhlmann algebra by dealing with the inner product

S = D) Crimtfi ®gm)

n,mz=0
leading to the fact that H shapes up as being the Fock space F for the free field. We want to

stress again that none of the preceding formulae are influenced by the Moyal deformation defined
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by 6. Hence it makes no difference so far if we contemplate the scalar product representation of
the deformed Schwinger functions, because this results in smearing with different spatial Schwartz

functions; those multiplied with the Moyal phase factors ®? in Fourier space.

Osterwalder-Schrader Reconstruction We will show the validity of the Wick rotation of
[Ost73] for the Moyal-deformed Schwinger functions of commutative time now.

By assumption, the distributions &,, € .#/(R%") are translation invariant. Due to the important
rule of deformation given in (3.42) and the definition of the Moyal tensor product, the noncommu-
tative distributions will keep that property. From translational invariance of the noncommutative
Schwinger functions, we may infer that for each &? e .#/(R%"), there exists a S, ; € .7/(R¥"=1),
such that

SZ(f) = JSn_l(xg — L1y Ty — Tp1) fo(Te, - ,mn)ddnx ,

or, written distributionally, &% (x1,...,2,) = S?_ (&, ..., &) for & := 21 — 15 From the

definition of our scalar product (, ) on H,

<iag> = Z ffn(rxna'-->Tx1)gm(y17"-7ym)6n+m(x1>'"7xn7y17"'7ym) ) VLQGZ>

we infer,

<Le_tH2>=
= fon(rxna-"77nx1)gm(y1>"'aym)sn+m1(61)“'75711ay1_xn+t>£17"'7 ;n—l)

dd(nfl)g dd(nfl)é—/ ddy1 ddZEn ’

where & 1= Y1 — Y.
By (3.42) and the form (2.20) of 6 belonging to the commutative-time scenario, together with

the notation defined in (3.43), we conclude

SO (€0,2° 60 9) = Snpmo1(£%,2° 6°g0) . (3.54)
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In the following, we omit the reference to the concrete smearing function g or gy. For arbitrary
h e #(R), the map

S (R @ #(R) — C
(L2 @ g h) > f (oo M g, Saeh(s)ds

defines a continuous linear functional. Thus, we may write

f Lfador e [gm]oyrh(s)ds = f Sam-1(6%1) = 25 + 1,675 ) hy (<08 ha(¢")h(s) ds A" 1 dme

for a distribution Sy 1 (€, y0—20+t, 7% 5) € (L (R 1)@ (R)) and (°¢) := (£°_,,...,£9).
Different smearing lets us end up with the following distribution F' € (/(R;) ® . (R))’,

F(ta S) = anerl(g?? S 752+m—1; S)X(glo> oo 75’27 107 S >€2+m—1)d§0 e dfg e d£2+m_1 :

This distribution (¢, s) — F(t,s) fulfills the Cauchy-Riemann differential equations and there-

fore,

0 0 .
Sn-l-m—l(goay? - x?z + t?fl 78) = STL-‘rm—l(gO?y? - :'U?L + 7, §I ) y T = t+1s )

defines a distribution in £€° and €”° as well as a function in z := y? — 2% + 7, analytic in the right
half plane C. = {z € C| Rez > 0}.

Proposition 15. Consider a fived smearing function g € ./ (R4=D"). For k == n +m — 1
fized and m =0, ...k, the distributions SY(£0,...,&2|g) can be analytically continued to functions
SH(CY, ..., ¢, analytic in Ck.

Proof. We have already stressed in (3.54) that S2(£9,...,&%g) = Sp(€),...,€2|ge). The statement
thus follows from the proof of [Ost73, Thm. 11] with the following notational identifications:

T, = Q((t,0),1)
o(f) = [flo
Sn+m71(§>$ +xl +ta§1|3) = Snerfl(gan(l) _1791 +ta§/0;3) )
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and finally ¥ denotes the distributional kernel of | f],, written in difference variables. O

At this point we can profit by the estimate given in (3.53). For the sake of clarity, let us write

the suppressed spatial smearing functions again.

Proposition 16. For all k € N and all ({ € (C’i there exist integers a, b and s, and a constant
c > 0, such that

[SE(CH, - Glg)| < e+ (¢, -, gD+ min{Re G gl - (3.55)

Proof. Follows from (3.53), (3.54) and [Ost73, (15) in Thm. 11], relying on the notational identifi-
cations in the proof of Prop. 15. [

Remark 14. 1. The existence of constants such that this inequality holds means that we allow for
any polynomial growth and singularity of each time component separately when the deformed

Schwinger functions are restricted to hyperplanes of constant (e.g. zero) time.

2. In particular, we do not demand a time-zero condition from our deformed theory here.

As a next step, we implement a combination of two facts about analytic functions in several

variables to our analytic continuations Sy of the Schwinger functions in difference variables:

Proposition 17. 1. Let S? be a holomorphic function in time and a distribution in spatial
components. The ezistence of constants a, b, s € N and ¢ > 0, such that inequality (3.55)
holds is sufficient for the holomorphic Fourier transform Wg of SY to exist. Moreover, W,f 18
then supported in ]R_er" such that the boundary distributions restricted to the n-fold product of

positive real axes in time fulfill the relation

— S (€00 +i€, q,) ~
121( RO g

S(Er . 60) =fdd”qe W (ar, .. an) -

2. This holomorphic Fourier transform Wg equals the deformed one of the corresponding com-

mutative theory, i.e.,

W?=W,D? ¥neN.
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Proof. 1. First of all we notice that C"} = R} +¢R" is a tubular domain. Any function f that is

analytic on such and satisfies an estimate

(2, z)| < M (1 ++/(Rez )2 +...(Rezn)2>m L (21, 2) ECT

for suitable constants M and m is the holomorphic Fourier transform of a distribution due to
[V1a66, section 26.1., eq. (1)]. The supposed stronger estimate (3.55) suffices for the existence of a
unique boundary distribution which is independent of the concrete restricting sequence, cf. [V1a66,
section 26.3., eq. (13)].

2. This was shown in Lemma 14. ]

Since this well-suited growth condition indeed holds for the sequence {S?},cn, Prop. 17 allows

for the introduction of the noncommutative Wightman function candidates

qek=l n(q1a--'>qn)-

g i ax(z —Tk) ~
QUZ+1($1,...,an) Jddn o) rsg

2. of Prop. 17 now leads to the following form:

n n-1
Qﬁiﬂ(aj‘l, N ,mnH) _ J‘ddnq ei El Qk(IkJrl*CEk)Wn(ql’ o ’qn) ei k; qk0qk+1

Finally, let us verify that these deserve to be called Wightman functions:

Obviously, the 20? are Schwartz distributions by definition and the translational invariance
can just be read off there. The invariance with respect to the spatial rotations in SO(d — 2)
follows from the assumed invariance of the spatial Fourier transformed part of the noncommutative
Schwinger functions. A bit more but no more than is known from the literature has to be done
for the verification of x1-boost covariance. Due to the Euclidean x, x;1-rotational invariance of the

Schwinger functions, we act with L;, the infinitesimal generator of g, r1-rotations, on SY to infer
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= SO&, ... 6
0 517 7 ;( agk gkﬁgk) n(flv 7&)

Z(ql§l+ZQ£) (9 5 -~
= dd"qe =1 (qo——i—ql—)qu,...,qn

k
— fddnqe lzl(qlgl qu)Blwﬁ(ql,..-,qn) :

where B; denotes the infinitesimal generator of xi-boosts. Now we use that the kernel of the
holomorphic Fourier transform is zero, c¢f. [OS73, Lemma 8.2.], which leads to the vanishing of
ByW?. This implements the invariance of the 20 under these boosts. As Py(d) = R% x (SO(1,1) x
SO(d—2)), WY is invariant under the whole of Py(d). The spectrum condition follows directly from
the invariance of W,f and the fact that supp Wfl) c R_‘i”. Remember that the physical Hilbert space
was constructed using the Euclidean time inversion. Thus the demanded reflection positivity of the
Schwinger functions (untouched by the deformation) restates the positivity of the scalar product in
‘H. Since the Wightman functions are the boundary values of the analytically continued Schwinger
functions at purely imaginary time components, they fulfill the classical positivity condition. Using

our gained relations for the Wightman and Schwinger functions, this reads

< Dol om =3 Jagar [age & ST @i - a0
= 3 [ @ f @)

Here, (.). denotes the Fourier-Laplace transform of Schwartz functions of Sec. 3.2. Since this is
a continuous mapping from .%(R%) onto a dense subset of .(R%) with trivial kernel (see [OST75,
Lemma 2.4]), the latter inequality establishes positivity for the noncommutative Wightman func-
tions.

We summarize our findings in the following

Theorem 7. Given a sequence {S,}neny of Schwartz distributions satisfying the Osterwalder-
Schrader axioms of E(d)-invariance, reflection positivity and the growth condition (E0"), the corre-

sponding Moyal deformed set of distributions & in the commutative-time scenario can be analyti-
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cally continued to tempered distributions 20° fulfilling Py(d)-invariance, positivity and the deformed
spectrum condition.

These are equal to the deformed n-point functions of the Wightman theory obtained by the Wick
rotation of Osterwalder and Schrader, c.f. 2. of Prop. 17.

Remark 15. In order to achieve this analytic continuation, we neither need full E(d)-covariance
nor permutation symmetry. These further axioms would be necessary for either requiring just
the slightly weaker condition (E0') or restoring locality. In fact, broadening the definition of the
noncommutative field can lead to a full E(d) or P(d)-covariant theory, see [GLO8]. Moreover, there
are implications on conditions on Euclidean space leading to certain remnants of locality. Finally,
we did not work on any cluster property and did not need such for our treatment. We would
like to cover some of these open problems in a continuative work. See chapter 5 for more future

perspectives.
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Chapter 4
Covariance and Locality

Wick rotation based on the algebraic as well as the correlation functions setting of Chs. 2 and
3 possess the utilization of reduced symmetry groups as a common ground. From a physical
perspective, this is not satisfactory. Even if one accepted the breaking of the fundamental property
of full Poincaré invariance in the proximity of the Planck scale (or the “noncommutative regime”,
wherever it may start to be influential), there is no reason why a specific choice of boost- and
rotation direction should be preferred. It is thus desirable to rebuild the covariance with respect
to E(d) and P(d) from that of Ep(d) and Py(d), respectively. By deforming the von Neumann
algebras with respect to different parameters depending on the indexing region, we are going to do
so in the upcoming parts of this chapter.

Before we start doing so, we recall O, the standard skew-symmetric noncommutativity matrix,

initially given in (1.6):

@1 = . (4]_)

4.1 Covariantization

The way of deforming the free scalar field invented in [GLO7] was generalized in [GL08| to deform

theories given by the field polynomial algebra. In the latter paper, the restricted covariance of the
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deformed theory coming from the Moyal noncommutativity matrix 6 is enlarged by the technique
of covariantization. Inspired by the influential paper [DFR95] and the latter approaches, we collect

the possible noncommutativity matrices # into the set

Y= {0 e MY (R) [tr(0 - O) = —2(92 + V2) , €poeO"O"7 = —80.9,,} .

This means that ©; is an element of ». In addition, this Y is a Lorentz orbit of the standard

noncommutativity on four dimensional Minkowski space-time, 7.e.,

Y= {AOAT, Ae Ll (4)}.

Therefore, it is a homogeneous space for proper orthochronous Lorentz transformations A € El
with respect to the prescription ¥ 3 © — AOAT. From the Euclidean point of view, we realize that

¥ is also homogeneous for the group SO(4) of 4-dimensional rotations, i.e.,
¥ = {ROR", Re SO(4)} .

Now we use property 3. of Prop. 2 to infer that

alM(Ag) = (M A) yroyr Vg=(a, M), VO e, (4.2)

where M is either a rotation matrix or a Lorentz transformation and a € R*. Relying on this,

we can define the following assignment,

030 E(0) = ({Ao| AcE(0), Oex}) . (4.3)

Lemma 18. Let {£(0)}oeo be an isotonous, E(d)-covariant net of von Neumann algebras. Then

{EZ(O)}OEﬁ is also an isotonous, E(d)-covariant net of von Neumann algebras.

Proof. e Von Neumann algebras:

Due to the algebraic closure taken in the defining relation (4.3), 52(0) is a (very large) von

Neumann algebra for each O € 0.
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e Covariance:

Let O € 0 and g € E(d). By equation (4.2) and the covariance of {£(O)}pes we deduce,

Ozggz(O) = ({Agert| A€ &(g0), O € E})”
= ({4e| A€ &(g0), RTORex})" .

As ¥ is homogeneous for SO(d) by the action ¥ 5 © — RORT, we conclude agé'vz(O) =

Es(gO) for all O e 0.

e [sotony:

Let O; € Oy € 0. From the isotony of {£(0)}pes, we directly conclude,

{Ag| A€ &(0y), OeX}c{Ag| Ac&(0Oy), ©® X},

and the claim is proven by performing the algebraic closure.

]

Hence, we discover that if we do not contemplate a net of von Neumann algebras deformed just
by a single skew-symmetric matrix ©, but the set of all such nets, we obtain a theory which is
covariant with respect to the complete symmetry group. Anticipating some of the results coming
up, we though need a somewhat tighter notion for our E(d)-covariant noncommutative nets. That
is because taking all possible deformation parameters © € 3 at each indexing set O € € is too much
for a predictive theory. In other words, 55 is just an auxiliary net for exemplifying the enlargement
of the symmetry group. We are going to contemplate advanced notions of covariantization in the

following.

Commutative Time We want to include considerations like these into our framework, which
deals with degenerate noncommutativities as a matter of principle. Therefore, we start on d-

dimensional Euclidean space, where d = s + 2n, s,n € N. Analogously to X, we define the set
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Zi= {0 e MPUR) [tr(0-0) = =2 > U}, €upobywbpe = 0} ,
k=1

for 95 denotes a real number for £ = 1,... n. In the same way as above, = is a homogeneous
space with respect to the action § — RORT for R € SO(d). For d = 4, = contains the matrix 0,
given in (2.21).

Given a Euclidean field theory (€, 0, «,0) (see Def. 9), we may deform it with respect to the
realization of § given in (2.20). Thus we obtain the noncommutative net (&, Zy, a’, ¢%). This net
is only Ey(d)-covariant, but we will show how to arrive at a Euclidean quantum field theory of full

E(d)-covariance now.

Cylindrical Regions As the considerations of Ch. 2 have shown, the cylindrical regions Zy :=
{Z4(0), O € O} arise naturally when deforming a Euclidean field theory with respect to a degen-
erate noncommutativity matrix § € Z. Let us introduce the notion Z := {Z,, 6 € Z}. By the
definition given in (2.24), any such Z € Z can be written as Z = Z4(O) for a § € Z and an O € 0.

Now we associate a noncommutativity 6 to any given Z € Z in the following way;,

Z = 24(0) — 0 =0(Z2) .

In other words, 6(Z) = 6(Zy(0)) :=0, O€ 0.

Immediately, it becomes clear that this specific assignment is some kind of problematic. The
reason for this is the fact that Z4(O) is equal to Z_4(O) for all O € &. Therefore, the map
Zy(0) — 0 is not uniquely defined. According to [GL08], one axiomatically would have

1. Zy:={x+ by, z€0,yeRY} — 0 forall Oe 0.

2. Z37Z =RZ, — RO RT

But 1. and the proof of covariance below imply that in the case of cylinders, the two attributions
are equivalent. Due to the isotony property in Prop. 18 stated in a little while, the attribution

Zy — 10 is the only disambiguity here.
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Definition 18. Let 0 3 O — £(O) designate a Euclidean net of observables (local algebras) and

2y 3 7 — Ey(Z) its corresponding #-deformed observable algebra, 6 € Z. Then the covariantization
of {€y(Z)} zez, is defined as follows,

2357w 8(2) = ({Auz), A€ E(2) U{Ayz, AcE(2))",
where §(Z) is chosen in the way described above.
Examining the well-definition of this notion, we state the following
Lemma 19. The physical Hilbert space H is left unchanged by the deformation.

Proof. Clearly, each deformation parameter ¢ € = induces a primarily distinct noncommutative

extension o of the Euclidean functional o. All these o?

are reflection positive with respect to
the Euclidean direction e in use, as o is F(d)-invariant in particular. In order to verify the latter
property, we appreciate that reflection positivity with respect to the direction e writes o(1.(A*)A) >
0 for all A € £, where ¢, implements the e-reflection r, : z — x — 2(z,e)e and £ was defined to
be the Euclidean algebra generated by all open, bounded subregions of R,e + e*. The reflection
with respect to another direction e’ = Re therefore fulfills tr. = a(o,r) © te © (g gy While we have

ER = o p)€C. So, for the Euclidean functional we are able to deduce,

0(tre(B*)B) = 0(tre(ao,r)A")ao,rA) = o(apr)(te(A*)A)) = 0(1.(A*)A) =0 VYBe ERe |

by Euclidean invariance. Really, all the ¢ give rise to Hilbert spaces Hy for § € = and by

Thm. 6 they all are isomorphic to the one gained from the undeformed theory.

]

Proposition 18. The action of o, is well-defined on E= for all g € E(d). Furthermore, E=(Z)

defines an isotonous, E(d)-covariant net of von Neumann algebras on RY,

Proof. 1t is clear from the considerations in Secs. 1.2.3, 1.2.4 and 2.3 that given Z € Z, &y (2) is

a von Neumann algebra.
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e Isotony: Let Z; < Z, € Z. Then we have 6(Z;) = £6(Z;). Assume the contrary, 6(Z;) #
+6(Z5) which can only be valid in two cases. Firstly, Im60(Z;) # Im6(Z,) from which we
infer that Z; cannot be bounded in projection to ker #(Zs). In other words, Z; ¢ Z5. The
second possibility incorporates 6(Z;) = A0(Z,) for a real number \ # £1. But as = forms an
SO(d)-orbit of the standard noncommutativity 6;, 8(Z;) could not be an element of = then.
So we really have 0(Z;) = £0(Z,).

Writing 59(2)(2) = {Ag(z) , A€ S(Z)}, it follows

Eoz)(Z1) U E_o2)(Z1) = Exoz)(Z1) U Eo(2)(Z1) © Ep(2,)(Z2) U E_o(2,)(Z2)

because of the net structure of Z — &(Z) proved in Prop. 5. This reveals the claim after
performing the algebraic closure.
e Covariance & well-definition:

Let ¢ = (a,R) € E(d). According to (2.22) and, more recently, (4.2), acting with the
symmetry group on the warped element has the consequence of aq gy(Ag) = ((a,r)A) RoRT-

The cylindrical regions react in the following way:
gZ = gZ29(O)={Rx+ ROk +a|lzeO,keRY ={x+ RIR"k|re RO +a, ke R}
= Zporr(90) .

In fact, the latter equality implies §(RZ + a) = RO(Z)R", because the “germ” O € & has no

influence on the assignment of 6.

Let g€ E(d), Z € Z and p be an arbitrary polynomial in £z(Z). Then

N
p= Z ckJAi,O(Z)B;,—G(Z) )
k,j=1

where ¢ ; € C and Ay and B; are elements of £(Z) for k,j =1,...,N. As a, extends to a

homomorphism on & for every 6 € =, it follows,

124



N
Oégp = Z Ck‘,j&g (Ai,Q(Z) B‘;’_Q(Z))
k,j=1

N

= Z Ck,j%(Aliz,e(z))%(Bj,fe(Z))
k=1
N

= Z Ck,j((agAk)RG(Z)RT)k((agBj)R(—O(Z))RT)j )

k,j=1

where we have used that « is the adjoint action of unitaries and inserted 14 in the second
equality. As R(—0)R" = —RORT for all R e SO(d) and 0 € Z, we arrive at,

N
agh = >} (AR o) (g B)-ogz)
kj=1
because ROR" = 0(RZ) = 0(gZ). Thus, a,p generates an element in E=(g9Z), as {£(0)}oeo
was assumed to be E(d)-covariant in Def. 18. By applying the same arguments once more,

one directly infers that o, acts as a homomorphism on the elements of £=. So, «, is indeed

well-defined on &=.

By carrying out the algebraic closure of yg2)(92) W€ _s(y7)(9Z), the covariance of {E=(Z)} zez

is proven.

]

Remark 16. Let the net {£(O)}oes be realized via a continuous representation on a Hilbert space.
Then the product of algebra elements deformed with respect to different noncommutativities is

well-defined as juxtaposition of Hilbert space operators due to Lemma 19.

Lorentzian Covariantization The covariantization procedure we have specified is not bound
to the Euclidean case. In order to give the corresponding definition, let us covariantize not before
the utilization of the commutative-time Wick rotation. In particular, the starting point would then
be a commutative Euclidean field theory (£, &, «,0). Deforming it with respect to the warped

convolutions formalism and defining a noncommutative Lorentzian theory (Mg, Z4, a®M w) there
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upon leads to a Py(d)-covariant theory. Applying our covariantization procedure to this Lorentzian

net, the symmetry group can be enlarged again. In this case,

Mz=(Z) = ({Aszy, Ae M(Z)} U{A gz, Ae M(2)})" |

is the covariantization of the Wick rotated net {My(O)}oes-

Once we have appreciated the well-definition of Mz=(Z), the proof comprising P(d)-covariance
and isotony of Mz is provided along the lines of that belonging to Prop. 18.

Adopting the complete result of Thm. 6, we appreciate that the deformation (M?, Z, o™, w)
of the Haag-Kastler net (M, &, a™ w) leads to a covariantization isomorphic to {Mz(Z)}zez,
i.e., ME(Z) ~ M=(Z) for all Z € Z. This is a straightforward consequence of M%%)(Z) being
isomorphic to Myz)(Z) for all Z € Z.

In Remark 5, we have stressed that in a situation of full P(d)-covariance, the joint spectrum of
the translation generators in the deformed theory is contained in the forward light-cone according
to Prop. 4. This means that by reconstituting full Poincaré covariance, we get back the original
spectrum condition.

An extensive inspection of fully covariant Wick rotation raises the question of whether we can
directly continue the net £&=. There are two canonical ways of defining the time-zero content of a

covariantized Euclidean theory:

E=0(8) = (&=(2) . &=(S) = ({Bos)| B e &o(S)} v {Bygs)| Be&(S)})"

Lemma 20. These two notions of covariantized time-zero algebras coincide, i.e.,

E=0(5) =&=(S) VSeS,
where S :={Sy, 0 € =}.

Proof. Choose certain # € = and let S € Sy. Then
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E=0(8) = (&(2) =[] ({Asz)| A E(2)} U {A gz | A £(2)})"

Z>oS Z>oS
ZeZy Z€Zy

= (Epo(S) U &_po(9))" .

By 1. of Prop. 6, &(S) equals & 4(S) for a specific choice of §. But this conclusion is true for
any other deformation parameter, as they all induce well-defined C*-norms |. |y, Rieffel products
and noncommutative algebras (&, xy). S was defined to be the set of all time-zero stripes. Thus,
for each S € S there is a 6 € = such that S € Sy. As we have discussed above, the subspace of
infinite extent up to a sign determines the corresponding deformation parameter 6(Z) of a cylinder
Z € Z. Thus to a time-zero stripe S € Sy the same noncommutativity is associated, up to a sign,
as to any cylinder Z € Zy. In other words, 6(S) = +0(Z) for all S € Sy, Z € Zy. Therefore,

E=0(59) = (£0,0(5) L Eo—a(S))" = E0=z(S) VS €S, .
As the concrete value 6 € = was arbitrary, the conclusion holds for all S € S as well. O

This leads to our definition of the Wick rotated covariantization:

M=(2) = (U{a%eo,aw) lgeP(d): g5 Z})

SeS

The action of o™ on & =(S) is well-defined, as one can now see from

geE P(d) . Oéﬁ/l{ﬂ'Bg(S) | Be 80(5)} = {(Oéé\/[ﬂ'B)g(gS) | Be go(S)}
= {AQ(S) | Ae CY;VIW(C/‘()(S)} s

and the fact that o'w&(S) generates M(Z). Isotony and covariance follow straightforwardly
from this definition and the corresponding result of Prop. 7.
So we are able to write down a proposition summing up our results of noncommutative covari-

antization:
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Proposition 19. The Wick rotation ME of the covariantization E= equals the covariantization

Mz of the Wick rotated net My. In precise terms, we have,

Mz=(2) = M=(2) VZe Z .

In other words: In the commutative-time scenario, the procedures of Wick rotation and co-
variantization of quantum field theories on Moyal space commute. The situation is depicted in
Fig. 4.1.

Proof. Let g € Pyz)(d), and S € Sp(zy, such that gS < Z € Zyz). Then we infer,

(ay"&0)o(2)(S) L (0" &0)-0(2)(S) = 0y Eo.p(4=12)(S) U 0y Eo,—p(g=12)(S)
= " &005)(S) L 0y, -0()(S) = 0y (Eo.005)(S) U Eo,-05)(S)) (4.4)

because 0(g~'Z) = +0(S), as S « g7'Z. According to Prop. 7, My(Z) fulfills the time-zero

condition and this proof is again independent of the concrete parameter 6 € =. Next we realize,

{(aé\/[ﬂ'go)g(z)(S) | g€ Pozy(d), gS < Z} = ({a;\/lWEO(S) | g € Pozy(d), g5 < Z})Q(Z).

So, applying the latter relation to (4.4) and forming the algebraic closure indeed has the conse-

quence,

Mz(Z) = M=(Z), VZ € Zyz) -

Finally, by the full P(d)-covariance of both Mz and Mez, this equality also holds for arbitrary
Z e Z.
[

Other Index Sets In the thesis at hand, we are concerned with noncommutative Wick rotation.
This undertaking at the moment is only operable on noncommutative spaces featuring degenerate

deformation matrices. Moreover, the cylindrical regions we considered are favored by these spaces.
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[1]

Mz
7

Figure 4.1: Another commutative diagram

Nonetheless, deformed nets indexed with respect to another set of space-time regions might be
interesting as well, especially when it comes to (restricted notions of) locality. With regard to the
wedge-local quantum fields [GLOS8|, we pose the question of a Euclidean analog. Before we elaborate
on the answer, we will give a short summary of the wedge and its connection to noncommutative
quantum field theory.

The standard wedge is defined to be Wi := {z € R?| z; > |x¢|} and the set Wy of all wedges
of interest is given by the El—orbit of Wi. Concerning Moyal-Minkowski space, we stick to the
notation of [BS08, BLS11] for the sake of confirmability. These papers feature the standard non-

commutativity ()7 of the form

Q1 := . (4.5)

In the following, we are going to consider the d-dimensional generalizations of the matrices Q)4

and O4, i.e.,
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L
I

0 /‘ij
KEC_BKl@"'C‘BKna Kj =

—Iij 0

0
@1 = 96@91<‘B"'<‘B9n79j::< ]>>j:1>"'7n7
—9; 0

on R Q; is skew-symmetric w.r.t. the scalar product of Minkowski space-time and we have
@, = 1O, for k., =V, and k,, = —19,, and 1 denoting the Minkowski metric. The properties of W,
and the warped convolutions combine in an amazing way according to the requirements of quantum

field theory, as one can see from the following list of properties:
L QW) =Qr,
2. QAWy) = AQAT forall A e LT,
3. 1V, < Wy for V, denoting the forward light-cone ,
4. If 3(a, A) € P such that AW, +a = Wy then AQ;AT = Q ,

5. If 3(a, A) € P such that AW, + a = W| then AQ;AT = —Q ,

where O' := {r e R?|(x —y, 2 —y) < 0Vy € O} denotes® the causal complement of the set O.

Now by wedge-locality we mean the following property,

[AQl,B_Ql] =0 VAe M(Wl), Be M(W{) .

Let us write W for the Poincaré orbit of the standard wedge W;. Then the important result
states: the collection (Myx, W, o™, w) is an isotonous, P(d)-covariant and wedge-local net of von
Neumann algebras on Minkowski space-time, ¢f. [BLS11]. We will explain this in more detail in
the next subsection.

In the following, we are going to show that there can be no subset of Euclidean space fulfilling

a canonical modification of these properties 1. - 5.

'Reminder: (.,.) was our symbol for the scalar product on Minkowski space-time
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Figure 4.2: The standard wedge W, and its causal complement —WV;.

Definition 19. A subset & = & of the open, bounded regions in R? is said to consist of Fuclidean

wedges, if it fulfills the following list of properties:

1. AU el : 6(U,) = O,

2. 9(RO,) = ROR ' VR e SO(d) ,

3. ORL c Uy

4. If 3 (a, R) € E(d) such that RU, + a < U; then RO1R™' = O, ,

5. If 3(a, R) € E(d) such that RU; + a < Uf then RO;R~! = —©; .

Remark 17. The purpose of relations 1. and 2. is to covariantly associate skew-symmetric matrices
to space-time regions. These postulations will per se not cause a problem for any of those regions.
The example of cylindrical regions treated in the preceding paragraph illustrates this. The situation
changes when the assignment U +— 6(U) shall be uniquely determined, as we are going to see later.
Coming to the third property, it is obvious that Euclidean space lacks the concept of a light-cone.
In other words, Euclidean (time-)translations are not bounded to a proper subspace of R?, unless
they are represented on the physical Hilbert space H in view of a subsequent Wick rotation. In

that case, the analog of the forward light-cone V.. would be R.
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Lemma 21. There is no set of Fuclidean wedges. More precisely, we have,

1. The only realization of U satisfying 3. of Def. 19 is given by the SO(d)-orbit of

H, := {zeR| 2, >0} .
Howewver, points 4. and 5. are violated in this case.

2. If U < Z and each U € U 1is generated by a sphere centered at the origin, properties 1., 2. and
4. of Def. 19 are fulfilled whereas 3. and 5. are not. In case of commutative time (using 0
from (2.20) instead of ©1), 3. holds.

3. Allowing for dilatations, properties 1., 2. and 4. of Def. 19 are valid also for the cylinders,

ZP={reR' | a<al+ai<b}) , O<a<b.

Moreover, we can find a map Dp such that ﬁpUl c Ut and Dp@lf?ljl = —04, but point 5. is

still violated here.

Proof. 1. In fact, ©;R% = —Hj, so the set spanned by SO(d)-rotations of this half-space is really
the only possible choice to fulfill 3. of Def. 19. However, while O, is left invariant by arbitrary
To, r1-rotations, neither H; nor —H; is. So, property 4. is violated. As the same rotation
about an angle of 7 inverts Hy, but does not transfer ©; into —©;, a predicate modifying
5. would also fail to be fulfilled.

2. For Uy every cylinder in Zj, can be chosen. Furthermore, in the proof of covariance in
Prop. 18, we have shown the validity of the second request of Def. 19 for all elements of Z. It
remains to show property 4. and to discuss 5. Take an element R € SO(2) x SO(d —2) of the
stabilizer group Eg, (d) of ©1. Now, let B denote a sphere of arbitrary radius centered at the
origin. By the spherical symmetry, B + Im @ for 6 of the form (2.20) will be invariant under
xo, r1-rotations. As the cylinders are infinitely extended in the remaining directions, the
1 x SO(d — 2)-invariance follows. This finishes the proof of feature 4. Yet the only Euclidean
transformations moving B + Im 6 to its complement are translations which are known to have

no effect on any element of =.

132



3. For all a,b > 0, the set Z° is an element of Zj. Its germ is given by an annulus of thickness
b—a and centered at the origin. Thus, it is straightforward to comprehend that properties 1. -
4. of Def. 19 are valid for cylinders of this kind. If one allows for space dilatations additionally
to the Euclidean group, one can specify the map given by ﬁp := diag{p, —p, 1, —1} for suitable

values of p > 0. Indeed, we have

D, 7t = {x e RY| p*a < x2 + 2% < p*b} ,
which causes D,Z0 < (Z2)¢ for either p > \/g or p < /2. Furthermore, D,©,D;! =
—06; holds according to D' = Dyj,. Clearly, D, := diag{p,p, 1,1} also maps 7P to its
complement under the above conditions, but does not map ©; into —0;. So 5. is still not

fulfilled completely, even when adding the dilatations.
O

Now assume that the Euclidean field theory (€, &, a, o) satisfies Euclidean locality (2.1), i.e.,

01,02 €0 01 M 02 = @ = [8(01),5(02)] = {0} . (46)

Surely, the half-spaces £H; of 1. in the latter lemma would comply with a deformed version
of locality similar to wedge-locality. According to (4.6), the Euclidean causal complement of an
open bounded region in R? would be its set-theoretic complement. Concerning the half-spaces, we
have (H;)¢ = —H;. This in turn permits [ag,.(A), @_g,z(B)] = 0 for all z,y € R? and therefore
[Ae,, B_o,| =0 for Ae H; and B € —Hj.

4.2 Remnants of Locality

Assuming (4.6) to hold, it follows from [Sch99, Thm. 3.7] that the corresponding commutative

Lorentzian theory (M, &, o™, w) satisfies micro-causality (locality), i.e.,

01,02 €0 01 @ Oé = [M(Ol),M(OQ)] = {0} .

We can take advantage of this fact and combine it with the results of the warped convolutions

framework. Next, we define
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UsU—E(U) = ({Ay), AcEWN)"

and the corresponding notion M\E for the Lorentzian nets. This new notion is necessary as the
inclusion of both the deformations w.r.t. # and —6 into the covariantization spoils wedge-locality
right from the start. Preparing the next result, we contemplate regions U infinitely extended in
the image of a deformation parameter § € = of a commutative-time scenario. That is to say, we

consider U < Z.

Lemma 22. 1. Let U < Z, such that the prescription U 5 U — O(U) is uniquely determined.

Then {E=(U)}vay and {Mz(U)}vay are isotonous nets of von Neumann algebras.

&,U, a, E(d
2. The quantum field theory /(\“’ ,0) is (4) -covariant.
(Mz,U, oM, w) P(d)

Proof. 1. By the uniqueness of the prescriptiond 3 U — 0(U), it follows that given U; < U, € U,
we have 0(U;) = 0(Us). The proof is analogous to that of isotony in Prop. 18 for the nets
{E=(U)}ueu, because U < Z.

2. The covariance w.r.t. the full symmetry groups is obtained in the same way as in the proof
of covariance in Prop. 18, as this very proof does not depend on the concrete set of cylinders.
m

Remark 18. As we have seen, Z does not induce a uniquely determined map Z — =. Examples
for families of regions U that do allow such a map are the wedges W, but also the SO(d)-orbits of

the half spaces H; and ef, which we are going to consider below.
Now, a such deformed Wightman theory satisfies wedge-locality:
Proposition 20. For a Euclidean field theory (€, O, o, o) the assumption of Euclidean locality (4.6)

is sufficient for the associated noncommutative Lorentzian quantum field theory (M\z,W,&M,w)
to fulfill wedge-locality.

Proof. Having deformed the Wick rotated Lorentzian net (M, &) according to ()q, given in (4.5),
we suppose the symmetry group to be enlarged by the covariantization of M%!. Consequently, we

can allow for all values of © € ¥. Then for every such O, there exists a Lorentz transformation
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A effecting AOAT = —O. Thus we may consider warped elements with respect to —Q;. As we
have stressed, Q; maps the closed forward light-cone V., into the wedge Wi, whereas —(Q; transfers
V. to the causal complement (W,)" = —W,. Wedges are cones in particular, therefore it follows
y+ Qix e +W, for all y € +W; and z € V. Hence by micro-causality we realize that O; < O} for
01,09 € O implies

[a{glw)l)(A), af\leyJ)(B)] =0 YAe Oy, BeO,y, Yz,yeV, .

Now the operative point is [BLS11, Prop. 2.10]: it states that the latter relation implies

[AQUB*QI] =0. (47)

The prescription W 3 W — 6(W) is unique, as has been worked out in [GLO8], so the collection
(M\z, W, o™ w) really is a P(d)-covariant and wedge-local, noncommutative quantum field theory.
O

Let us apply these findings to our commutative-time scenario now. Instead of )1, we use the
degenerate matrix 6, given in (2.20), as a reference. Of course, this # and all images AGAT are
skew-symmetric, hence all the facts we have recapitulated still hold. It is Thm. 6 which says that
we could well have started with the #-deformed Euclidean net (&, Zy) and continued it to (My, Zp),
because it is isomorphic to (M?, Zp).

Both § and —@ of this form map V, to {0} x {0} x R?" = gW, , and an arbitrary € = maps
V. to AgdW;A}. Due to the specific form of (2.20) we have [a?glm)(A),a(\fey’l)(B)] = 0 for all
z,y € R? (and not just for elements of the forward light-cone) if A and B lie in algebras of spacelike
separated cylinders. In particular, we have [04(\9/‘9:71) (A), a(g‘y,l)(B)] = 0Vaz,ye R It is important
to note that in general this does not lead to the vanishing of a commutator of elements warped
w.r.t. the same matrix.

In addition to these observations, we are in the position to improve the situation a bit more. In
fact, the assumption of Euclidean locality is not necessary for this sort of locality. Now we specify
a weaker condition on a Euclidean field theory causing the Wick rotated quantum field theory to

satisfy wedge-locality. To this end, denote et := {z € R? | 29 = 0, +z1 > 0}.
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Lemma 23. Let (€,0,a,0) be a Euclidean field theory fulfilling the time-zero condition and pick
a Euclidean time direction e. If [Eo(etl),E(et)] = {0}, then the deformed Wick rotated theory
(ﬂg, W, a,w) fulfills wedge-locality.

Proof. We can perform the Wick rotation of (£, 0, a,0) to obtain the Lorentzian field theory
(M, O, a,w) by the methods of Sec. 2.1. Now we deform the FEuclidean net with respect to the
standard noncommutativity ©; corresponding to e, which was defined in (4.1). Particularly in

Remark 1, we have stressed that the time-zero content of the commutative nets coincide, i.e.,

Mo(K) = E(K) VK cet.

From the time-zero condition given in (TZ) for general open bounded regions of R% we obtain

the respective ones for the wedges:

MW = {a)'Mo(ey) | ge P(d), get = Wi},
M(=W1) = {ap'Mo(ey) | he P(d), het < —W1}" .

The reasons for this simple form are the relation et = eX U ey U el for e := {z € R?| x5 =
x1 = 0} on the one hand and the nonexistence of P(d)-elements mapping eX (ei) into Wy (—W)
on the other hand. Due to the definition of the warped convolution on Minkowski space-time, we

infer the extension of indexing space-time regions from half-planes to wedges, i.e.,

AeMo(ey) = Aig € Mug, (W) .

This is the analog to trading cylinders for arbitrary open, bounded regions and is caused by
the fact that (); maps the spectrum of space-time translations into the right wedge W3, while
it is mapped into the causal complement —W; by —(@);. By assumption, the time-zero algebras
generated by the half planes er and e commute. In the above paragraphs, we have stressed that

this is enough to deduce for all z,y € V,:

Ae Mo(ey), BeMp(el) = lauen(A), a¢quu(B)] =0 =[Ag.Bq]=0.
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Figure 4.3: Variants of nc. Wick rotation & covariantization

Hence (Mg,, W, oM, w) fulfills wedge-locality. Now it is straightforward to consider the set of
all theories indexed by ¥: any Poincaré transformation (a, A) which maps @); to another element
© € ¥ has the effect of mapping the net as well as the appropriate wedge W to Myg,a1 = Me

and AW + a, respectively. Wedge-locality persists in each such “inertial system”, and the assertion

is proved. ]

Finally, we close this chapter by Fig. 4.3, which illustrates the various ways of Wick rotating
a Euclidean field theory £ towards a P(d)-covariant and wedge-local quantum field theory Mz in

the commutative-time scenario.
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Chapter 5
Discussion

Summary In this thesis, the Wick rotation of quantum field theories on noncommutative spaces
is worked out in detail. The elaboration has been structured in two main perspectives: the first,
located in Ch. 2, comprises the algebraic approach to quantum field theory, while the second, which
is considered in Ch. 3, focuses on the theory given by its set of correlation functions. Furthermore,
Ch. 4 consists of results concerning the recovering of the full symmetry group and conditions on
restricted notions of locality.

Quantum field theories on noncommutative spaces are considered a possible way to improve
the knowledge about high energy regimes of space-time, especially when it comes to the quan-
tum nature of gravity [DFR95]. Furthermore, there are results using Euclidean metric indi-
cating that noncommutative methods lead to better asymptotic behavior of individual models
[GW05, DGMRO7, GMRT09, Wanl11]. However, the exact predictive power of such results has
remained unclear until the last years. A rigorous way to generate such a noncommutative quantum
field theory is to apply the framework of warped convolutions [BS08, BLS11]. It can both be applied
to algebraic and “standard” quantum field theory, i.e., given by the set of n-point functions.

The first result on Wick rotation in algebraic quantum field theory was given in [Sch99], where
a list of axioms for a Euclidean net of C'*-algebras resulted in the analytical continuation towards
a Haag-Kastler net. The main idea was not to prepare the feasibility of continuing the local
algebras themselves, but rather to arrive at a unitary representation of the Poincaré group from
the given Euclidean group representation. As a next step, the image of the time-zero net under

this unitary representation was shown to fulfill the Haag-Kastler axioms. To accomplish that, the

138



C*-algebras associated to regions of no extent in a chosen “Euclidean time direction” were obliged
to be nontrivial. This additional requirement was called “time-zero condition”.

In [GLLV11] we were able to show that this “commutative” Wick rotation can be generalized
to theories located on Moyal space in a commutative-time setting. In order to achieve this aim,
in Section 2.2 the result on Euclidean nets of observables was generalized to theories covariant
with respect to subgroups of the Euclidean group, suitable for the noncommutative deformation.
Constitutively, the Euclidean net deformed in terms of warped convolutions could be analytically
continued to a noncommutative Lorentzian theory in Section 2.3. The proof carries through a deep
analysis of the deformed observable nets and the connection with the time-zero condition written

out. The cornerstones of this path are the following:

e Our deformation demands the usage of reduced symmetry groups which allow for an algebraic
Wick rotation

e Also, the expansion of open bounded regions to cylindrical subsets of R? is caused by this

deformation

e These cylindrical regions are situated perfectly to assure the existence of a noncommutative

time-zero condition despite the use of a proper symmetry subgroup

A crucial result of this chapter is Thm. 6, stating that the deformation of a Lorentzian theory
is isomorphic to the analytical continuation of a theory on noncommutative Euclidean space. The
outcome of the algebraic Wick rotation gets visualized in the commuting diagram given in Figure
2.9.

We gave a successive illustration of our noncommutative Wick rotation in terms of the free scalar
field in Ch. 3. The quite abstract notions and results of the preceding part become more instructive
when applied to this well-known example. Afterwards, it was shown that the noncommutative free
field can be directly continued to its Lorentzian counterpart without the use of a time-zero condition.

Next, it was demonstrated that Wick rotation of more general theories is possible as well. The
methods of analytically continuing given in [Ost73] were successfully generalized to sets of Moyal
deformed Schwinger functions. A sequence of specific estimates were necessary to arrive at this

result:

e Estimates needed for a linear growth condition (E0’) were shown to be fulfilled by the non-

commutative Schwinger functions
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e The Euclidean axiom (E£0”), which is sufficient but not necessary for the Wick rotation, still

holds for the time-dependent part of the commutative-time deformed theory

e As a consequence, the holomorphic Fourier transforms of the Schwinger functions exist and

lead to noncommutative Wightman functions

e These are nothing else than the deformations of the corresponding commutative Wightman

theory

In particular, there is no need for a time-zero condition when performing the Wick rotation of
deformed Schwinger functions in a setting of commutative time.

The successful description of the symmetry group enlargement is done in Ch. 4. Considering the
algebraic framework, we have presented the covariantization of both a Fuclidean and a Lorentzian
net there. It is defined to be the net of von Neumann algebras generated by deformation parameters
dependent on the certain space-time region and makes possible the utilization of full Euclidean and
Poincaré group, respectively. This is done by considering the symmetry group as a transformation

between local algebras deformed with respect to different matrices.

e The noncommutative Wick rotation described in this thesis commutes with this kind of co-

variantization

e The axiom of Euclidean locality causes wedge-locality for nondegenerate deformation param-

eters and commutation of wedge-like separated cylinders for the commutative-time scenario

e Locality with respect to the left and right time-zero plane is sufficient for wedge-locality of

the noncommutative-time deformation of the Wick rotated net

Conclusion The methods developed in this thesis and partly published in [GLLV11] to the
author’s knowledge mark the first rigorous treatment of Wick rotation on noncommutative spaces,
both in the algebraic as well as in the n-point function setting. Finding physically relevant models
on noncommutative Minkowski space-time is one of the actual objectives. As the majority of
candidates have been situated on Euclidean Moyal space, the treatise at hand may be seen as a
first step towards this goal.

Of course, it is more desirable to possess a Wick rotation of theories deformed with respect to

a nondegenerate skew-symmetric matrix, i.e., a theory of noncommutative time. At several points

140



(Remarks 7, 8 and 12) we have drawn the attention to the inconsistency of such a setting with the
approach at hand. Nevertheless, the treatment shows that Wick rotation in a commutative-time
setting is far from being trivial.

The outcome of Ch. 3 shows that we can well-define a quantum field theory on noncommuta-
tive Minkowski space-time whenever the corresponding Schwinger functions satisfy the Euclidean
axioms including condition (E0”). We do not need to assume any sort of time-zero condition.
This condition (F0”) mainly says that an n-point Schwinger function evaluated at an n-fold tensor
product can be estimated by the n-independent norms of the particular tensor factors. It is not
much more restrictive than the usual linear growth condition (E0'), as it is satisfied by practically
all constructed models known so far [OS75, Remark 2. above IV.2.].

The symmetry group is reduced to a proper subgroup by the implementation of the theory on
Moyal space(-time). Still, we are able to regain covariance w.r.t. the full group by the method of
covariantization. Thus, starting from a Euclidean field theory, we are able to obtain the correspond-
ing deformed Lorentzian theory without the abandonment of the full Poincaré group. Moreover,
it is a matter of taste which path one wants to follow to arrive at this Lorentzian theory, as the
results of the different paths were shown to be equivalent.

Last, but not least, we gave preconditions on a deformed Euclidean net of von Neumann algebras
that lead to wedge-locality of the corresponding Lorentzian net. In order to give a necessary
condition, one would have to perform the Wick rotation starting from a Lorentzian net, but the

result of Lemma 23 looks minimal.

Outlook Theories built up of a degenerate noncommutativity matrix arise naturally in situations
of three space-time dimensions. Indeed, utilizing the Moyal deformation there is attended by a
completely anti-symmetric 3 x 3-matrix # with constant real entries. This circumstance forces 6 to
be of rank 2. Although it is still possible to arrange one spatial coordinate to commute with all
the others, time is picked to have this property instead. In physical situations, this is seen to be in
line with the distinction of time.

Many three dimensional models have been suggested so far and it seems impossible to deal with
a reasonable part of them on noncommutative spaces. We will just mention a few specific examples.

It is well-known that the Euclidean scalar ¢*-model in d < 3 dimensions can be rigorously

constructed and fulfills all the Euclidean axioms necessary for analytic continuation to a Wightman

141



or Haag-Kastler theory [FO76, MS77, BFS83, GJ87]. Therefore, it seems natural to desire a
noncommutative deformation of the latter model and apply the Wick rotation of this thesis to
observe a constructable and nontrivial model on noncommutative Moyal-Minkowski space-time.
This would mark a complete novelty.

Up until now, the biggest success in giving precise meaning to noncommutative quantum field
models uses the deformation of the corresponding actions. The one due to Grosse and Wulkenhaar
[GWO05] is characterized by the insertion of an oscillator potential and has a three dimensional
specification [GVT10]. To achieve renormalizability, another nonlocal term was added inside the

action there,

2 2

Q K
Sqv = Sps + Jd%w(l‘g + 23)p(x)” + Jd% d*y 52 o(x) p(xo, 21, Y2, Y3)

where Sy denotes the action of a scalar field with a ¢*-interaction. Clearly, as the oscillator
breaks the translational invariance in two spatial directions, the model as it stands cannot be
considered physical yet. In the same way as in the Grosse-Wulkenhaar model, renormalizability is
the main criterion here, as it is necessary for the self-consistency of a physical model. The physical
consequences of insertions dependent on the parameters 2 and k can be investigated once the Wick
rotation of the model has been performed.

Finally, roughly touching the scope of low dimensional models in noncommutative quantum field
theory, let us mention noncommutative gauge models. These have been used in three space-time
dimensions to qualitatively describe the integer and fractional quantum Hall effect [Sus01, Pol01,
HVRO1].
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Appendix A

Euclidean Axioms

We list two sets of axioms for a Euclidean quantum field theory to guarantee the analytic continu-

ation to a Wightman quantum field theory.

A.1 Osterwalder-Schrader Axioms

The following list of axioms for the sequence {S, } ey of Schwinger functions is taken from [OS73,

OS75] and adapted to our notation convention:

(E0) Temperedness / Analyticity: see Section 3.7
(E1) Invariance: &,(f) = 6,(f(y) for all g € E(d), f € S (R™).

(E2) Reflection Positivity: Y, Spim(tfy @ fn) = 0 for all f = (fo, f1, fo,...) € Es.

n,m

(E3) Permutation Symmetry: &,(f) = &,(fm) for all' me 7(n), f € S (R™).

(E4) Cluster Property:

A—00

lim Z {6n+m(Lf: ®gm,()\(0,g),1)) - Gn(fn)gm(gm)} =0 s

for a € R, |a| = 1.

17(n) denotes the set of all n-valent permutations, see the paragraphs below equation (3.16)
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A.2 Path Integral Axioms

Let du(¢) be a Borel probability measure on the dual space of €*(RY). Define the generating

functional S to be

S{f} = j D du(g) | fe bR RY.

Then the axioms for a Euclidean quantum field theory in the path integral formalism [GJ87]

are the following:

(EP0) Analyticity: for all N € N and fy € €°(RY), k =1,...,N and for all z = {z,.

the function

ZHs{izkfk}

k=1
is entire on CV.

(EP1) Regularity: for some 1 < p < 2, some c € R and for all f € €°(R%) we have

IS{}] < e(Ih+nIE)

(EP2) Invariance: let g € E(d). Then it follows S{f} = S{f} .

(EP3) Reflection Positivity: consider the set

N
A= {A(¢) = e | e C, fre %f(m)} ,

k=1

then {(tA)*Adu(¢) =0 for all Ae A,.

(EP4) Ergodicity: thrn%

—00

as1(A)ds = § A(¢) dpu(e).

O ey
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Appendix B

Analytical Continuation of Distributions

There are several important results of complex analysis which are serviceable for the analytic

continuation of n-point functions. In the following, we specify some of them.

Theorem 8 (Malgrange-Zerner-Kunze-Stein, [Eps66]). Let

filzro e, own) s o, 20,25, mn) oo fu(@n, @2, 20)
be functions of the real variables 1, o, ..., Tn, Y1,Y2, -+ ., Yn, and 2z = T +1iy, with the following
properties
1. fiu(z1, o @, ... xy) 18 a smooth function of x1,xa,..., 2Ty, Yp whenever 0 < y, < 1 and
felxy, ..oy 26y - o, &n) i a holomorphic function of z, for 0 <y < 1
2. For every real © = (x1,xa,...,T,),
fi(zy, e, ) = o= fulz, 2o, ..., 2y) (B.1)
Then there is a function F(z1,. .., z,), holomorphic in the domain
H = {z:(zl,...,zn)e(C"| O<yr<1,1<k<n, Zyj<1} (B.2)
j=1
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and smooth in the closure of this domain. F' coincides with fr(x1, ..., k1, Zky Thils- -5 Tn)
foryi=0withj#k 0<y, <1, 1<k<n.

Theorem 9 (Paley-Wiener, exponential type; [RS75], IX.11). An entire analytic function g(()
of d complex variables is the Fourier transform of a €*(R?) function with support in the ball

{z||z| < R} if and only if for each N there is a Cx such that

C'n eflimd]
9O < Fre YeeC (B.3)

Theorem 10 (Paley-Wiener, L? version; [Rud87], 19.2). Let f be an analytic function on 11, :=
{r +iy e C|ly > 0} and sup %S|f(a:+zy)|2 dz = C < oo. Then there exists a function F €
O<y<oo

L*(R,) such that

f(z) = JF(t) e#dt |, zell, (B.4)

o0
and we have § |F(t)|*dt = C.
0
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Appendix C

Moyal Calculations

The noncommutative four-point correlator of the free scalar field can be obtained by calculating

the expectation value of the four-fold Moyal product, i.e.,

Sp(s1, 82, 53, 51) = {82, (9 ® © 9y ¢ ®p @) (51, 52, 53, 54)2) .

We remember that o(s) = a(ps*) + af(3), which reveals two terms that are non-vanishing:
symbolically written they are alagagal and alagagal The latter one reduces to the usual product
of commutative free covariances C(sy, s2)C(s3, s4) since lowering directly after raising lets us end
up with the commutative scalar product of functions due to the calculational rules for the Moyal
tensor product such as (3.28). The first term alagagal in fact provides two distinct contributions to
the 4-point function; one of them differs significantly from the corresponding commutative parts.
One starts by acting twice with a generator on the Fock vacuum. The second component is the

only one different from zero there,

~ o~ 1 i ~ ~ —ip16ps ~ ~
((aT Qo a') (3, 34)Q)n (]21,]_92) = Opo—— (e p16p2 33(]21)34@2) 4+ e~10p 34@1)83(1_92)) ,

V2

while the application of the first of two annihilators is responsible for the two resulting terms:
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((a ®p ' ®p al ) (P33, 53, 54)9)1 (1_’1)
_ j Dpwe*a(U(0k)p3%)a, ((a' @) a')(35,30)9), (p,)
0

nlJDka o—ikv— zp0k+z(p+p1)vp82(£) (eip9p1§3(£)§4(p ) +e —ipfpry (p)83(p ))

= 6n1(p§;7 ~3)§4(]21) + 5111 dﬂeiipepl p§2(£)§4(]_9)§3(]_91) . (Cl)

Finally, acting with the second annihilator brings about the evaluation of
(2, (a®y a®p a’ ® a')(p5}, p53, S5, 5,)Q), which can be calculated to deliver two expressions from
alagaga:ﬂ. On the one hand, we get C(sq, s3)C(s1,4), which is obtained by building the Moyal
tensor product of the last annihilator with the first term of equation (C.1) and using the cyclic
property. On the other hand, acting in this way on the second term we recognize the first evidence

for the deformed theory being different from the commutative one:

| Dot R R U R (U @ala)

= f du(p) f du(q) €p32(p)3a(p)p31(g)33(q)
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Symbols & Abbreviations

Symbol Meaning Def. /occurance

Ty Euclidean inner product 2% + ztyt + ... 2d 1yd ! Below Def. 14

(x,y) Minkowski inner product 2%y° — z'yt — ... xd71yd! Below (2.29)
o Moyal tensor product Sec. 3.4
XQ Rieffel product Def. 7
| |m Schwartz norm (3.47)

A General *-algebra Sec. 1.1

a Automorphic (Euclidean) symmetry action Sec. 1.1

aM Automorphic Poincaré action (2.18)

C Common domain of virtual representation (2.12)
C(z,y) Free covariance (3.3)
C*(M) Smooth elements (on M) Sec. 1.2.1
€*(R?) Smooth functions of compact support on R? Lemma 2

du(o) Euclidean measure Ch. 1
& Inductive limit of {£(O)}pes or Euclidean theory Def. 3
& Positive-time algebra Below (2.5)

Ey(d) Restricted Euclidean group (SO(2) x SO(d — 2)) x R4 (2.3)

&= Auxiliary covariantization for demonstration (4.3)

&= Euclidean covariantization w.r.t. cylinders Def. 18

SAE Euclidean covariantization for unique maps Sec. 4.2

Ny Minkowski metric Sec. 1.1

f Spatial Fourier transformation of f € .(R%) (3.9)

fe Free field projection map (3.16)

M Inductive limit of {M(O)}oes or Lorentzian theory Sec. 1.1, (2.19)
My, M? Deformed Lorentzian nets Def. 15, (2.30)

/WE Wick rotation of the covariantization Below Lemma 20

M, (K) Space of all K-valued m x n-matrices 2. of Prop. 9
N Null space of o Below (2.5)
7 Set of open bounded space-time regions Sec. 1.1
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Meaning

Def. /occurance

Generators of spatial translations, momentum operators
Parity operator: f(xg,z) — f(x¢, —x)

(Proper Orthochronous) d-dimensional Poincaré group
Restricted Poincaré group

Time-zero representation

(Free) scalar field

Euclidean free field

Minkowski free field

Time-zero field

Element of .%(R?"1)

Time-zero stripes

Schwartz space of rapidly decreasing functions f : R? — C
Time-zero n-point distribution

Deformed Schwinger function

Schwinger function in difference variables
Borchers-Uhlmann algebra

Euclidean reflection positive functional

Space of noncommutativities

Standard commutative-time noncommutativity
Suitable neighborhood of unity

Unitary intertwiner of deformed nets

n-point Wightman function

Deformed Wightman function

Vacuum state

Noncommutative position operator

Space of commutative-time noncommutativities

Light wedge

Cylindrical regions
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Above Remark 4

(3.17)
Sec. 1.1
(2.4)
(2.6)
(3.17)
Def. 16
Def. 17
Def. 16
Lemma 10
Sec. 2.3.2
Above Def. 3
Ch. 1
Sec. 3.4.1
(3.48)
Sec. 3.2
Def. 3, (3.14)
Sec. 4.1
(2.20)
Below (2.12)
Thm. 6
Below (3.26)
Sec. 3.4.1
Def. 2
(1.5)
Sec. 4.1
(2.17)
(2.24), (2.25)
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