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Referat:

In dieser Arbeit wird die analytische Fortsetzung von Quantenfeldtheorien auf dem nichtkom-

mutativen Euklidischen Moyal-Raum mit kommutativer Zeit zur entsprechenden Moyal-Minkowski

Raumzeit (Wick Rotation) erarbeitet. Dabei sind diese Moyal-Räume durch eine konstante Nichtkom-

mutativität gegeben. Einerseits wird die Wick Rotation im Kontext der algebraischen Quanten-

feldtheorie, ausgehend von einer Arbeit von Schlingemann, hergeleitet. Von einem Netz Euk-

lidischer Observablen wird die Lorentz’sche Theorie durch alle Bilder der fortgesetzten Poincaré

Gruppenwirkung auf der Zeit-Null Schicht erhalten. Dabei wird gezeigt, dass die Vorgänge der

nichtkommutativen Deformation und der Wick Rotation kommutieren. Andererseits ist so eine an-

alytische Fortsetzung ebenfalls für Quantenfeldtheorien, die durch einen Satz von Schwingerfunk-

tionen definiert ist, möglich. Durch die Gültigkeit einer Kombination aus Wachstumsbedinungen,

die aus der Wick Rotation von Osterwalder und Schrader bekannt sind, kann der Übergang zu einer

deformierten Wightman-Theorie gezeigt werden. Abschließend beinhaltet diese Arbeit ergänzende

Resultate zu den physikalischen Eigenschaften der Kovarianz und der Lokalität.
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Chapter 1

Introduction

Quantum field theory was initiated as a generalization of quantum mechanics obeying to the fun-

damental principles of special relativity. It has become the prior instrument that is supposed to

solve the main problems of modern physics. Due to its enormous increase both in specificity and

versatility over the last 80 years, scientists were made to focus on certain branches in order to

come to new conclusions. Since the beginning of modern science, sustainable physical theories

had to pass the tests by the experiment. This is the main reason why quantum field theory has

reached great popularity: for example, quantum electrodynamics came up with a prediction of the

anomalous magnetic moment of the electron which agreed with the experimental data up to 10 sig-

nificant digits [ea01]. Success like this was possible due to the progression of renormalization theory.

The physically relevant models of quantum field theory, like quantum electrodynamics or quantum

chromodynamics may so far only be treated perturbatively because of their intrinsic nonlinearity

coming from self-interaction. The occurring integrals inhabit divergences, which superficially ren-

der the perturbation series - and therefore the theory - meaningless. This lead the founders of

quantum field theory to think about alternative viewpoints and brought young scientist Hartland

Snyder to publish the first model on a noncommutative space [Sny47]. Nevertheless, the systematic

absorption of the brought up divergences into redefined physical constants, i.e., renormalization,

let theorists rapidly come back to the primary perturbative approach. In the second half of the

twentieth century, the standard model of high energy physics was completed: a renormalized sym-

biosis of models describing the electromagnetic as well as the weak and the strong nuclear forces of

nature.
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Despite this great achievement, certainly not all problems found an appropriate solution. While

the divergences can be kept under control at each perturbation order, not a single interacting model

in four space-time dimensions could be shown to have a converging perturbation series. At first

sight this could be classified as minor problem, but from a viewpoint closer related to philosophy

of science, this spoils the ability of deriving physical predictions from a mathematical well-defined

theory. Each of the perturbation series contained in the standard model is asymptotic and the

consequences of this fact are subtle. In an asymptotic series it may happen that the first, say, four

approximation orders make predictions very close to the experimental data, whereas the next ten

orders differ dramatically from any physical measurement. In other words, converging perturbation

series are desirable because they guarantee for approximations getting better order by order.

Parallel to the investigation of renormalization theory, mathematical physicists sought for a set

of few striking properties that are fulfilled by every quantum field theory model in use. The so-called

Wightman(-Garding) axioms [SW89] in brief demand the following of the correlation functions of

a quantum field theory: structural relation to quantum mechanics, covariance with respect to the

Poincaré group, relativistic causality and some technical analyticity and domain properties1. With

the exception of the purely mathematical requirements, any of these not to hold would question

our empirical picture drawn from thousands of experiments so far. This may give an idea of the

desire for having a well-defined model that satisfies all the Wightman axioms in four dimensions.

A somewhat differently motivated approach comprises the school of R. Haag’s algebraic quantum

field theory ; there, the structural relations of quantum field theoretic models are central, irrespective

of any realization through vacuum expectation values. As will be explained in great detail in the

following sections of this thesis, a physical theory is built up of C�-algebras2 associated to space-

time regions. This net structure obeys the so-called Haag-Kastler axioms [HK64], which under

some further conditions can be well related to the Wightman axioms [FH81].

The task of having an example at one’s disposal - either obeying to the Wightman or to the

Haag-Kastler axioms - marks the starting point of constructive quantum field theory and we are

going to state the main achievements of this branch now. For a thorough introduction to the

topic, see [Sum12]. Models featuring no self-interaction on Minkowski space-time were the first

successfully constructed and soon the same was attempted for interacting models. Even at ”toy

1We will come to a precise definition in Ch. 3 of this thesis.
2In fact, they are rather �-algebras comprising most properties of C�-algebras but are unbounded in general.
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models” which are restricted in both interaction complexity and space-time dimension, the arising

technical difficulties were astonishing. While in the beginning the constructions were carried out in

Minkowski space-time using operator algebraic and functional analytic methods, this techniques did

not work out for a long time. By a theorem which is referred to as ”Haag’s theorem” [Haa55, RS75],

an interacting quantum field theoretic model cannot be represented on Fock space. Rather, the

underlying Hilbert space must have another form which is unknown in general.

A completely different approach resulted in more success. In the 1970’s it was realized that

going over to Euclidean space, one can consider the real scalar field as a generalized random process

[Sym66, Nel73a]. Before we deal with the Euclidean framework in detail, we try to give a summary

of its influence on the constructive program. Besides the interest of having proved existence of

certain models, one clearly is interested in the physical significance of such. Not just more (low-

dimensional) interacting models have been shown to exist, but the particle content and scattering

properties have been analyzed to a much greater extent in the Euclidean framework. Space-times

of dimension d � 4 are for many physicists the only ”realistic” scene for a quantum field theory

to take place. Unfortunately, it is exactly this case which has not been reached satisfactorily by

constructive field theory up until today. Additionally we want to remark that there well have been

models who were shown to exist in four (and potentially in higher) dimensions, but every single one

of them proved to be trivial, i.e., its correlation functions coincide with those of the corresponding

free theory. As we will discuss in Sec. 1.2.5, the noncommutative approach to quantum field theory

is likely to provide an improvement of the situation, and it is the Euclidean framework which is

the method of choice again.

Euclidean quantum field theory started approximately when K. Symanzik realized that the

passage to ”imaginary time” used before by Schwinger and Dyson at loop integral calculations

can be formalized more extensively3 [Sym66]. Nelson made clear the connection of the correlation

functions in the Euclidean formulation, the Schwinger functions, and stochastic processes. He

showed that these Schwinger functions are in fact moments of a probability measure defining a

Markov process [Nel73a, Nel73b]. Given the ”field measure” dµpφq, the Schwinger functions Sn

write

3Concerning the time scale involved: K. Osterwalder in [Ost73] attests the Euclidean framework “a long history”.

That was almost 40 years ago...
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Snpx1, . . . , xnq �
»
φpx1q � � �φpxnqdµpφq .

The necessary generalization is the use of a continuous time parameter, opposed to discrete

time steps, making the Euclidean scalar field a generalized stochastic process. In fact the integral

representation we just wrote down is only valid at non-coinciding Euclidean points xk P R4, k �
1, . . . , n, which can be cured by smearing with suitable test-functions, in the same way as in the

Minkowski case. Pursuing the analogy with stochastics, one can introduce a generating functional

from which any Schwinger function can be obtained via functional derivation, see for example

[GJ87, Roe94]. These generating functionals are the structure reminiscent of the path integral of

Feynman, with the slight difference that it can be given a well-defined mathematical meaning much

more easily4.

But all this keen model building will lead to nothing valuable as long as the way of passing

through to Minkowski space-time is vague. Therefore the precise analytical continuation of Eu-

clidean towards Lorentzian models is of high importance. Nelson gave a sufficient set of axioms a

Markov process has to fulfill to be a field theory on Minkowski space-time. This very important

step was further enhanced to theories which can be fully described by their set of n-point functions

(which by Wightman’s theorem is sufficient to completely determine the physical field and the

underlying Hilbert space, cf. [Wig56]), but which do not fit into a description by a probability

measure. These Osterwalder-Schrader-Axioms [OS73, OS75] are the key contribution to the field.

The exact formulation of these and the similar set of axioms geared to the path integral formula-

tion can be found in Appendix A and Ch. 3. In a mathematically rigorous way, they clarified the

connection of given sets of Wightman functions and their corresponding Schwinger functions. It

is one of the main purposes of the thesis at hand to investigate the generalizations of analytical

continuations of this type to noncommutative theories.

The second unresolved problem of quantum field theory consists of the unification of general

relativity, the still unchallenged theory of classical gravity, and the standard model. Regarding

this point, the situation seems less clear than ever. There are both major conceptual and technical

difficulties plaguing the development of a quantum theory of gravity that last for decades. In the

ongoing twenty-first century, a few more or less large branches of research have formed. First of all,

4We do not want to ignore that using more subtle methods, the Feynman path integral can also be tamed [Alb08]
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String Theory, having become vast both in the number of scientists involved and ideas uttered so

far. This set of theories tries to unify the fundamental forces by considering the oscillation modes

of closed or open space-time curves, the “strings”. These are regarded as the building blocks of the

physical world; indeed, the elementary particles are produced by string oscillations, while inspired

by quantum mechanics, their energy is proportional to the vibration frequency. We immediately see

that String Theory relies on simple ideas of the space-time structure which circumvent some insistent

problems of conventional quantum field theory such as intrinsic divergences. A contemporary

introduction to the field is given in [BBS06]. Admittedly, we stressed that a physical theory must

be experimentally tested, and this might be the biggest problem for all the candidates trying to

achieve grand unification. And due to the comparably high proportion of ideas born, models

proposed, etc. and concrete outcome, unique falsifiable predictions, etc., String Theory might

be the framework suffering most from this obstruction. Having lost contact with reality or not,

the mathematical theories pursued or even invented during the study of String Theory speak for

themselves [CHSW85, Wit89, GPR94].

Secondly, we mention the theory of Loop Quantum Gravity. Ashtekar [Ash86] found variables

for classical gravity that resemble the structure of canonical quantum field theory. People in this

program have tried to benefit from the upcoming analogies with Yang-Mills theory to quantize

gravity. The theory got its name from the loop-representation, decomposing the physical states

into Wilson-loops, which are known from gauge theory. Surely, the elaboration of Loop Quantum

Gravity is far from being complete, as is that of the other approaches to a unified theory. An

introductory course including a summary of current objections and methods of resolution is given

in [GP11]. Unfortunately, a more specified introduction to these areas of research cannot be given

within the scope of this thesis.

Our investigations are aiming at the third approach, noncommutative quantum field theory.

At the end of the 1980’s, French mathematician Alain Connes caused a stir in the mathematics

society by his invention of noncommutative geometry [Con94]. This theory relies on the strikingly

close relationship between algebraic and geometric entities. This relationship becomes manifest

by the theorems of Gelfand and Naimark [GN43], as well as Serre and Swan [Ser55, Swa62], for

example. Actually, the former is the name for two theorems. The first one, called the “commutative

Gelfand Naimark theorem“ states that a commutative C�-algebra is isometrically �-isomorphic to

the space of continuous functions on a locally compact Hausdorff space. The second one is the
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noncommutative generalization, implying that any C�-algebra admits a faithful embedding into

the space of bounded operators on a Hilbert space. The main focus of Connes’ work lies on the

geometrical consequences of equivalence theorems like these and culminates in statements about

reconstructing geometries out of algebraic data. To be a bit more precise, given a so-called spectral

triple pA,H, Dq, consisting of a C�-algebra A, a Hilbert space H and a self-adjoint, unbounded

operator D, satisfying specific properties, one can reconstruct a compact spin manifold [Con96].

Let us keep the mathematical achievements of noncommutative geometry this fragmentary for

now and come to the physical applications. As we have already mentioned, a noncommutative

structure additional to that of the quantum operators was once introduced to overcome the di-

vergences arising during the perturbative analysis of quantum field theory models. It have been

semi-classical considerations of combining quantum mechanical rules with those of general relativ-

ity that lead to the revival of noncommutative position operators in physics. Nowadays, it seems

like an improvement of the convergence crisis could be the first benefit thereof. But first things

first. The semi-classical gedanken experiment we mentioned is attributed to J.A. Wheeler and says

the following: in order to resolve space-time points that are very close to one another, we have to

put in a high amount of energy. Assuming the validity of general relativity to very small length

scales (and up until today there is no reason why one should doubt that) the energy density in

this small space-time region will be high enough to form a black hole, preventing any accretion of

knowledge about the region in focus. A physically well-motivated and very influential approach

to quantum field theory on noncommutative space is due to Doplicher, Fredenhagen and Roberts

[DFR95]. They introduced space-time commutation relations determined by a tensorial entity that

is assumed to fulfill physical properties, making it possible to maintain Poincaré covariance despite

deforming the space-time structure. Later in this thesis, we will contemplate a simpler model that

has gained some attention, too.

1.1 Algebraic Quantum Field Theory

As has been said in the general introduction, the Wightman axioms arose out of the desire to have

a short list of properties which any quantum field model fulfills. Mandatory from a mathematical

point of view, this list shall be of importance for future model building, too. But clearly, it

can only be meant provisionally: we simply cannot know which characteristics better developed
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theories of the future will possess. Going a bit more into detail, the Wightman axioms are aiming

at n-point functions, expectation values of field products in a physical state. Most often this

state is the physical vacuum and its realization is actually a part of the axioms: motivated by

quantum mechanics, they shall be expressed via vectors on a Hilbert space H. Moreover, the

Poincaré group is to be unitarily represented on H and there exists a unique invariant state, which

is the vacuum. Due to assumed Poincaré covariance the energy-momentum operator P µ must

have its spectrum contained in the forward light-cone. The Wightman functions are demanded to

be sequences of tempered distributions, which also incorporate the theories’ covariance. Being a

vacuum expectation value, they are expected to be invariant under actions of the Poincaré group.

Furthermore, the fundamental concept of locality is realized by making sure that the Wightman

functions coincide whenever spatially separated fields in their evaluated products are interchanged.

The stability of matter relies in large part on the positivity of energy, a physical concept which

is included by a positive Hamiltonian on the one hand and by demanding that the Wightman

functions represent a positive state on the field algebra on the other hand. The latter property is

not straightforward to appreciate, but will be treated with greater rigor and detailedness. Finally,

a cluster property is assumed to hold in order to have a unique vacuum. This last axiom will be

the least important for our treatment.

In the late 1950’s and the beginning 1960’s, mathematical physicists added a further degree

of abstraction. As one of the founders of algebraic quantum field theory, R. Haag, argues in his

book [Haa92], the quantum field itself is just an auxiliary entity for physics. Its main purpose is

to establish the concept of locality, while the physically accessible quantities are scattering cross-

sections of elementary particles. So if one wants to capture the main structure of quantum physics,

one should focus on the physical observables which can be measured in a certain region of space-time.

An accurate inspection shows that the observable quantities form an algebra. The representation

of its elements as operators on the Hilbert space makes the use of C�-algebras manifest. This was

first pointed out by Segal [Seg47]. Haag and Kastler [HK64] showed that the best-suited concept

comprises nets of C� or von Neumann algebras ApOq, indexed by open, bounded subsets O of

Minkowski space-time. We collect these subsets into O and occasionally call them regions. Since

we are aiming at the Euclidean framework as well, we will be a bit more general in the upcoming

definition of our observable net. It is important how to implement symmetries there. If a group G

is realized on the quasi-local algebra A (the inductive limit of the algebra net) by automorphisms,
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G Q g ÞÑ αg P AutA ,

where all the αg leave O invariant, then G is called a symmetry group. In fact, it can be shown

that Wigner’s theorem on space-time symmetries being unitary operators on Hilbert space can

be suitably generalized to this notion, c.f. [Ara99, chapter 4]. On a net of �-algebras concretely

realized on a Hilbert space, these automorphisms will be adjoint actions of unitary operators.

Definition 1. Given a manifold M , a family O of subsets of M , and a symmetry group G of point

transformations of M , a G-covariant net pA,O, αq on M is defined as the following structure. A
is a map from O to C�-algebras ApOq (respectively von Neumann algebras acting on a common

Hilbert space H), such that

ApO1q � ApO2q for O1 � O2 . (1.1)

The smallest C�-algebra (respectively von Neumann algebra) containing all ApOq, O P O, is also

denoted A, and α is an automorphic action of G on A, such that

αgpApOqq � ApgOq , g P G , O P O . (1.2)

Thus so far the axiom of covariance was included in a natural way into the algebraic con-

text. Locality can be incorporated straightforwardly. To this end we specify the considerations to

Minkowski space-time again and writeMpOq for the corresponding Ppdq-covariant net. The reason

for us to do so is that there will be no reference to any curved space-time in this thesis. We can

easily incorporate the spectrum condition in the same way as in the Wightman case: we demand

the spectrum of the translation generators to be subsets of the forward light-cone. Now we call a

Ppdq-covariant net MpOq local, if the following equation is valid,

rMpO1q,MpO2qs � t0u for O1 � O1
2 , (1.3)

where O1
2 denotes the causal complement of O2 with respect to the Minkowski metric η �

diagp�1,�1, ...,�1q on Rd. By causal complement, we mean the following set: y P O1
2 if pxµ �

yµqηµνpxν � yνq   0 for all x P O2.
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Figure 1.1: Schematic picture of assigning algebras to regions.

We have got almost all the main structures needed for an algebraic approach to quantum field

theory. But the main notion for the quantum structure is still missing: the physical states. We

adopt the nomenclature which has become standard in the literature.

Definition 2. Let GM � Ppdq be a subgroup of the Poincaré group. Let furthermore pM,O, αMq
be a GM-covariant net on Rd. A vacuum state on M is a normalized, positive, linear functional

ω :MÑ C such that

• GM Q g ÞÝÑ ωpAαM
g pBqq is continuous for all A,B PM,

• ω � αM
g � ω for all g P GM,

• There is a weakly dense subset D �M such that �i d
dt

��
t�0

ωpA�αM
t�e,1pAqq exists and is non-

negative for all A P D.

A few explaining remarks are in order. The last property of ω is the algebraic version of the

positive energy requirement. αM
t�e,1 denotes a translation of the amount t in the direction e, which we

choose to be timelike. So implicitly, we have picked subgroupsGM of Ppdq which contain these ”time
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translations”. The introduced notions are the building blocks of algebraic quantum field theory and

can in principle incorporate the main structure of a variety of physical models. Nevertheless, as we

have started to explain in the main introduction, such models still have not been found to exist in

a mathematically rigorous sense. One therefore hopes that the purely mathematical consequences

of the axioms and the properties of better and better models will support each other in the way

towards a sound and predictive description of quantum field theory.

Before we go on we want to remark that it has shaped up to be advantageous to decouple the

description from an underlying Hilbert space in some fields of study. Concerning thermodynamics,

it happens that thermodynamic equilibrium states in the infinite volume limit cannot be represented

as density matrices in the vacuum Hilbert space. Algebraic quantum field theory is able to well

incorporate these states, as can be comprehended from [HHW67]. The situation appears more

fundamental at quantum field theory on curved space-times, which has become a comprehensive

area of research, see for example [BF09]. There, it is always sensible to start the theory from the

algebraic structure alone as there is no vacuum state in generic space-times. One of the implications

of this fact is cosmological particle creation, which is introduced in [Wal94].

Nonetheless, when contemplating quantum field structures, it is not restrictive to take the

elements of the local algebras to be represented on a Hilbert space with the symmetry action given

by the adjoint action of unitaries. In this case we will talk of a covariant representation. Indeed,

by the GNS construction [GN43, Seg47], any C�-algebra which possesses a state ω gives rise to a

Hilbert space Hω, a �-representation πω and a cyclic vector Ωω, such that all elements A P A can

be realized on Hω through the relation ωpAq � xΩω, πωpAqΩωy.
As has been remarked in [BLS11, Above Sec. 2.1], any abstract algebra faithfully represented on

a separable Hilbert space gives rise to a covariant representation [Ped79, Lemma 7.4.9, Prop. 7.4.7].

We will thus consider concretely realized algebras throughout this thesis.

Next we want to study the correspondence between the introduced algebraic framework and the

one situated on Euclidean space. The measure theoretic approach to Euclidean field theory treated

in [GJ87] amongst others delivers a local C�-algebra by the closure of

texptiφpfqu | f P S pRdq , supp f � Ou ,

where φpfq arises as moment of the Euclidean measure dµpφq. This measure defines an un-

derlying generalized stochastic process. As a concrete realization, φ maps a Schwartz function to
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an operator on the Euclidean Hilbert space L2pS 1pRdq Ñ C, dµpφqq. The Schwinger functions

can be obtained by functional derivatives of the generating functional Stfu, defined as the Fourier

transform of the Euclidean measure.

Approaching a framework irrespective of an underlying measure, we again fix a unit vector

e P Rd and write eK � Rd for the hyperplane orthogonal to e. Let r denote the e-reflection on Rd:

r : px0, xq ÞÑ p�x0, xq and write Rd
¡ for the subspace of Rd with positive components in e-direction,

i.e., Rd
¡ :� R�e� eK. We are just ready to give a definition of the notion analogous to Def. 2:

Definition 3. Let GE � Epdq be a subgroup of the Euclidean group. Let furthermore pE , O, αEq
be a GE -covariant net on Rd. A reflection positive functional on E is a continuous normalized linear

functional σ : E Ñ C such that

1. GE Q g ÞÝÑ σpAαE
g pBqq is continuous for all A,B P E ,

2. σ � αE
g � σ for all g P GE ,

3. There exists an automorphism ι of E such that ιαE
g ι � αE

γpgq for all g P GE and

γpx,Rq :� prx, rRrq. Furthermore, σ fulfills the following property,

σpιpA�qAq ¥ 0 , (1.4)

for all A P E¡ :� EpRd
¡q.

Inequality (1.4) is the important concept of reflection positivity. In principle, any Euclidean

direction would be fine for this definition, as they are all equivalent. When it comes to the physical

interpretation, e will be determined to be ”Euclidean time”, i.e., the imaginary part of complex

generalization of the time coordinate in Minkowski space-time. An Epdq-covariant net together

with a reflection positive functional will be the starting point for our algebraic Wick rotation in

Ch. 2.
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1.2 Noncommutative Quantum Field Theory

1.2.1 Noncommutative Geometry

The notions introduced so far give an idea how important C�-algebraic techniques are for modern

quantum physics. The theorems by Gelfand and Naimark prepare a clear correspondence between

the abstract notion of a C�-algebra and that of bounded operators on Hilbert spaces, which are

mandatory for quantum mechanics and quantum field theory. Commutative C�-algebras are even

isometrically �-isomorphic to the space of continuous functions on a locally compact Hausdorff

space. This circumstance serves as a first example of fully describing geometrical properties by

means of purely algebraic ones. Extending this consideration to noncommutative C�-algebras was

the starting point for A. Connes in developing noncommutative geometry [Con94]. There one

most often starts by the algebra C8pMq of smooth functions on a manifold M and builds the

corresponding deformed noncommutative algebra using a certain deformation scheme. One main

achievement is the direct generalization of vector bundles; we will only sketch the main ideas. Given

a vector bundle in which M is the base space, its space of sections is a vector space carrying a

representation of C8pMq through multiplication by smooth functions on M . Put differently, the

section space is a module over the algebra of functions. By the theorem of Serre-Swan, any vector

bundle corresponds canonically to a finitely generated projective module, i.e., a direct summand of

a free module which has a generating set of finite rank. This establishes a generalization of vector

bundles in noncommutative geometry.

Constitutively, the differential calculus of operators was developed. The derivation comes

through the spectral calculus and pseudo-differential operators. It is just impossible to do jus-

tice to this performance in an introductory section of a PhD thesis. What we can do is to present a

small part of the “noncommutative dictionary”, a collection of entities of geometric or topological

nature and their according algebraic perceptions, linked via noncommutative geometric elaborations

[GBVF00]:
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TOPOLOGY ALGEBRA

continuous proper maps morphisms

homeomorphisms automorphisms

compact unital

Baire measure positive functional
. . . . . .

The main notion of Connes’ noncommutative geometry is that of spectral triples:

Definition 4. A spectral triple pA, D,Hq consists of a �-algebra A of bounded operators on a

Hilbert space H, together with a self-adjoint operator D (called the Dirac operator), which is

chosen such that its resolvent operator is compact and the operators rD,As for A P A are bounded

on H.

As a commutative example, the complex valued smooth functions on M form an algebra, and

the space of square-integrable sections on the irreducible spinor bundle over M is a suitable Hilbert

space. For D we may pick the usual Dirac operator {D � �iγµBµ with respect to the Euclidean

metric there. This is sometimes being referred to as the ”canonical (spectral) triple”. Now from a

general spectral triple one is able to extract an exterior algebra of forms with the derivation rD, .s
and that enables the treatment of connections on modules. One of the key results of the noncom-

mutative geometry framework is Connes’ reconstruction theorem [Con96]. It essentially says that

given a spectral triple with A � C8pMq for a compact manifold M which satisfies a certain list

of axioms, one can reconstruct the geometrical data of the corresponding spin manifold. There

have been some generalizations of this theorem and we are going to introduce one of them in the

following subsection. Furthermore, one can use the spectral triples to consider noncommutative

generalizations of Yang-Mills theories. In fact, Connes and Chamseddine [CC07] have carried the

noncommutative model building up until predictions for the Higgs mass in their ”almost com-

mutative” version of the standard model of particle physics. Indeed, the concrete prediction was

precluded by experiments at Tevatron [B�08], but this example shows that using more refinements

could really bring the abstract mathematical generalizations to new physics some time.

Ending our general introduction to the growing branch of noncommutative geometry, we mention

that most applications to physics are still handled at Euclidean signature. Anyhow, it is clear that
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becoming a true candidate for improved quantum field theory needs the Minkowski signature,

especially when it comes to efforts concerning the inclusion of gravity. For a Lorentzian approach

to spectral triples, one can have a look at [Bar07], for example.

1.2.2 Moyal Space

Seiberg and Witten [SW99] have found a connection between String Theory and a certain variant

of a noncommutative space, so-called Moyal space. The defining relations there, for the moment

just in a formal sense, are the famous commutation relations

rXµ, Xνs � iθµν , µ, ν � 0, 1, . . . , d� 1 (1.5)

between coordinate operators Xµ. Here, θµν are the components of a completely antisymmetric,

d-dimensional matrix with real, constant entries. The Moyal commutator defines the simplest

model which is still consistent with the demand of the Xµ being self-adjoint operators. Due to its

plainness, it is the model most widely used in noncommutative quantum field theory and may serve

as a first approximation to generalized and more predictive models in the future.

The matrix θ is sometimes referred to as ”noncommutativity“, as it gives an account of how

far the coordinate operators are away from being commutative. The similarity to the fundamental

commutator of quantum mechanics is obvious, and one may even draw at least some related con-

clusions. Indeed, if the commutation relations (1.5) are to hold on a space(-time) in a sense needed

to be accurately exposed, the minimal observable distance is limited by the analog of Heisenberg’s

uncertainty relations. Without a deeper knowledge, one understands that the underlying space(-

time) is divided into cells of magnitude
?
ϑ, where ϑ denotes the non-zero entries of θ. Of course, it

is not required per se that all the parameters ϑ in θ need to be the same. Summing up, we deduce

the standard noncommutativity matrix for 4-dimensional Moyal theory:

Θ1 �

������
0 ϑe 0 0

�ϑe 0 0 0

0 0 0 ϑm

0 0 �ϑm 0

����� . (1.6)
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Clearly, the specific choice constituting which coordinates are non-commuting is completely

arbitrary. However the simplicity of Moyal space(-time) brings along inapplicabilities: by again

having a glance at (1.5) we directly infer the breaking of Lorentz covariance (but emphasize the

persisting of translation covariance) of any physical theory defined thereon. Thus the incorporation

of such a commutator changes physics in a rigid way. So, one prevalent philosophy is to see the

institution of the Moyal commutator as a ”deformation” of the underlying theory. In other words,

sending all parameters ϑ to zero re-establishes the previous, commutative theory. This latter

operation is called the commutative limit and is one of the most important parts of well-defining a

theory on noncommutative spaces.

It was shown in [GGBI�04] that Euclidean space with superimposed commutation relations

(1.5), which is called the “Moyal plane”, fits into the framework of spectral triples. In order to

sustain more knowledge on how this is achieved and for later convenience, too, we introduce the

so-called star-product :

Definition 5. Let f, g P S pRdq and let Q be a skew-symmetric, invertible matrix. Then, the

Groenewold-Moyal star product is defined in the following way,

pf �Q gqpxq :� p2πq�d{2
»

ddk ddv e�ikvfpx�Qk{2qgpx� vq .

Let us add as a short remark that this product, as the whole Moyal plane, has a long history of

development concerning quantum mechanics on the phase space [Gro46, Moy49]. In a technically

challenging work it was possible to go over to a suitable unitization rAθ of the nonunital algebra

Aθ :� pS pRdq, �θq. Since we do not want to give a more detailed repetition of the spectral triple

formalism, we refrain from formulating the exact theorem, but give an incomplete summary (again,

D denotes the usual Euclidean Dirac operator): The Moyal planes pAθ, rAθ, D, L2pRdq b C2N q are

connected real noncompact spectral triples. In particular, the noncommutative position operators

Xµ can be included into the involved algebras by left multiplication. We close the recapitulation

of the Moyal plane by posing a lemma which tells about the different representations of the star

product on Schwartz space.

Lemma 1. For f, g P S pRdq, the following equations hold for f �Q g:
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pf �Q gqpxq �
»

ddy ddw e�2ipQ�1py�xqqpw�xqfpyqgpwq

� p2πq
»

ddp ddq eipp�qqx�ippQqq{2 rfppqrgpqq .
Proof. A straightforward calculation.

1.2.3 Generalization to Operator Algebras

We are able to gladly observe that the simple deformation of Euclidean space given by the Moyal

plane can be rigorously fit into the noncommutative geometry framework. As a consequence, the

commutator (1.5) readily serves as a first order approximation of a general intrinsic noncommuta-

tivity of space-time to certain quantum field theoretic models. On the other hand, we straightfor-

wardly comprehend that this still is not enough to act on algebraic quantum field theory for the

sake of its intended generality. But also in this case, we can access an elaborate generalization. The

monograph [Rie93b] has successfully adopted the deformed products to the C�-algebra setting. We

will now explain the cornerstones of this treatment.

Definition 6 ([Rud87]). A locally convex topological Hausdorff space is called a Fréchet space, if

it is complete as a uniform space and its topology can be induced by a countable set of semi-norms

} }m. A topological algebra A is called a Fréchet algebra, if its vector space structure is that of a

Fréchet space.

Let G denote a finite-dimensional Lie group with identity element 1G, endowed with an inner

product p , q and α a strongly continuous, isometric action of G, realized as automorphisms of the

Fréchet algebra A. Like it is done in [Rie93b], we call a representation isometric, if it is isometric

for all the semi-norms } }m on A. Then, we define A8 to be the dense subalgebra of smooth vectors

for α, i.e., those A admitting the map G Q g ÞÑ αgpAq to be smooth.

For the following, the subset of smooth vectors (or, smooth elements) is a very important notion.

In order to explain this a bit further, we need an integral on a general Lie group. For achieving

this aim, we follow mainly [Tay86]: If the dimension of our Lie group G is n, we can pick an n-form

ωp1Gq P
�n T �

1G
pGq, which is determined up to a scalar factor. If we write Lg : GÑ G for the left

multiplication with g, then we set ωpgq :� �npDLg�1q�ωp1Gq, where D denotes the derivative on
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the tangent space here. We directly deduce that ωpgq is left multiplication invariant. Furthermore,

it is different from zero on the whole of G and non-degenerate. Thus, it serves as an orientation

form and the measure dg gained from ω is called Haar measure.

Lemma 2. A8 is dense in A.

Proof. Let f P C8
c pGq and A P A. Then define the entity

Apfq :�
»
G

fpgqαgpAqdg ,

which is a bounded element of A due to the compact support of f . Given g1 P G, the important

property is

αg1Apfq �
»
G

fpgqαg1gpAqdg �
»
G

fpg�1
1 gqαgpAqdg ,

being valid for every f P C8
c . Hence we directly infer that the map g ÞÑ αgApfq is a smooth

map, in other words, Apfq P A8. Now let fk P C8
c be a delta sequence, i.e., a sequence of

normalized functions weakly converging to the delta distribution. In this rather abstract setting,

this means that
³
fkpgqdg Ñ 1 for k Ñ 8 and the fk are supported on smaller and smaller compact

neighborhoods of e. Then, by continuity,

lim
kÑ8

Apfkq � lim
kÑ8

»
G

fkpgqαgpAqdg � A ,

which shows that an arbitrary algebra element A P A can be approximated by smooth elements.

We are able to define a set of seminorms }A}jk :� sup
m¤j

°
|µ|¤k

pµ!q�1}BµA}m, where } }m denotes the

seminorms inducing the topology of A. Furthermore, we comprehend that A8 is a Fréchet algebra

with seminorms } }jj and A8 is closed with respect to the } }jj-isometric, differentiable action α.

For any linear map Q : G Ñ G and for any A,B P A8, the function αQupAqαvpBq is a smooth

element and bounded w.r.t. the seminorms } }jj. This allows for the well-definition of the following

product:
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Definition 7. With the notation as above, the product

A�Q B :� p2πq�d{2
¼

du dv αQupAqαvpBqeipu,vq

is called deformed product or Rieffel product.

Next, we specify a list of properties permitting a reasonable implementation of the Rieffel

product for (algebraic) quantum field theory.

Proposition 1 ([Rie93b]). Let A, B, C P A and F P A8. The Rieffel product fulfills the following

properties:

1. Continuity: for any j there is a k and a constant c such that

}A�Q B}jj ¤ c}A}k}B}k . (1.7)

2. Let M : GÑ G be a linear map. Then

αMpA�Q Bq � A�MQMT B (1.8)

3. Associativity:

A�Q pB �Q Cq � pA�Q Bq �Q C . (1.9)

4. Let A comprise a continuous involution and α be a �-automorphism. Then the involution on

A is compatible with �Q:

pA�Q Bq� � B� �Q A
� . (1.10)
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5. Let A be a C�-algebra and Q be invertible. Then the left multiplication operator LF , defined

by LFB :� F �Q B, is bounded on the multiplier algebra. In particular,

}LF } ¤ | detpQ�1q|}F }1 , (1.11)

where } } denotes the operator norm and } }1 the usual L1-norm.

The �-algebra given by the linear space A8 equipped with the product �Q is denoted A8
Q . From

the treatment in [Rie93b, chapter 4] it follows that there exists C�-norm induced by pA8,�Qq, which

we denote by } . }Q. The C�-algebra obtained by completing pA8,�Qq in the norm } � }Q is then

named AQ.

Let us mention another property of the Rieffel product, which will gain more importance in the

context of deformations with respect to degenerate matrices θ:

Lemma 3. Denote the rank and the image of θ by rk θ and Im θ, respectively. Then, for A,B P A,

the Rieffel product fulfills

A�θ B � p2πq�rk θ{2

»
Imθ�Imθ

dk dv eipk,vqαθkpAqαvpBq

Proof.

A�θ B :� p2πq�d{2
»

dk dv eipk,vqαθkpAqαvpBq � p2πq�d
»

dk dv eipk,vqkerθ�ipk,vqImθαθkpAqαvpBq

� p2πq�d{2�pdimpkerθqq{2

»
Imθ

dk

»
dv eipk,vqImθδpkerθqpvqαθkpAqαvpBq

� p2πq�rk θ{2

»
Imθ�Imθ

dk dv eipk,vqαθkpAqαvpBq .

From the latter property we infer that given the kernel of a certain noncommutativity matrix θ

is nontrivial, the corresponding algebras of functions will only be deformed in a proper subspace of

the underlying space-time. Naturally, this will lead to important conclusions in the “commutative-

time” setting later on.
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1.2.4 Warped Convolution

Until this point, we have worked with the noncommutative deformation of a commutative C�-

algebra in terms of the Rieffel product. D. Buchholz and S. Summers [BS08] have investigated

a way of deforming the algebra itself and leaving the product unchanged. The so-called warped

convolutions keep the main features of noncommutative quantum fields while they seem to be more

applicable to the construction of such. In a following paper, the same authors together with G.

Lechner [BLS11] have worked out the connection between usual C�-algebraic dynamical systems

equipped with the Rieffel product and these warped convolutions.

The deformation in terms of warped convolutions relies on a general setting that mimics the

vacuum representation of quantum field theory. So, in the following, we will consider a concrete

realization of the C�-algebra A on a Hilbert space H again. We will denote the smooth elements

represented on H by C8. The Moyal space setting is reached when the general Lie group G of

Rieffel’s treatment is chosen to be simply Rd and the automorphic action α is given by the adjoint

action of the unitary operator U : αxpAq � UpxqAUpxq�1 for x P Rd and A P A. In this guise, the

Rieffel product takes the following form

A�Q B � p2πq�d lim
εÑ0

»
ddk ddv χpεk, εvqαQkpAqαvpBq eipu,vq , (1.12)

where χ denotes a necessary, but irrelevant mollifier satisfying χp0, 0q � 1. The main existence

result of [BLS11] is the validity of the following expression:

Definition 8. Let Φ denote a smooth vector w.r.t. the action of U and let E be the spectral

resolution of U . Then the warped convolution is defined as the following object:

AQΦ :�
»
αQxpAqdEpxqΦ .

A listing of some fundamental properties of this notion is in order.

Proposition 2 ([BLS11]). Let A,B P C8 and let Q, Q1 be d-dimensional skew-symmetric matrices.

Then we have

1. pAQq� � pA�qQ and 1Q � 1.
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2. AQBQ � pA�Q BqQ

3. V AQ V
�1 � pV AV �1qΛQΛT

for V a unitary (or anti-unitary) operator on H, such that V Upx, 1qV �1 � UpΛx, 1q.

4. pAQqQ1 � AQ�Q1

5. Let Ω P H be a U-invariant vector. Then AQΩ � AΩ.

6. A0 � A.

The form we will use during the remainder of this thesis has its origin in the concrete form of

Rd-translations implemented by α and reads,

AQΨ � p2πq�d lim
εÑ0

»
ddk ddv hpεk, εvq eikv αQkpAqUpvqΨ , (1.13)

for a smooth vector Ψ P D � H and h a mollifier which satisfies hp0, 0q � 1. It has been shown

in [BLS11] that AQ is independent of the concrete choice of h.

Thus the fundamental technical concepts are available at this stage. Before we finally get started

on adopting these methods in a combined way to noncommutative Wick rotation, we are going to

give an impression on how advantageous new results thereon might be with respect to quantum

field theory.

1.2.5 Advances in Field Theory

After its rebirth at the end of the twentieth century, noncommutative quantum field theory was

studied intensively in terms of renormalization. The intuitive picture of space-time cells mentioned

in Sec. 1.2.2 made most theorists involved believe that ultra-violet (UV) divergences appearing

naturally in standard quantum field theory could be cured right from the start. To be more precise,

the occurring of a ”minimal length” was thought to prevent theories from inconsistencies coming

from the formal limit of ”distance going to zero”, i.e. the UV-limit in momentum space. Feynman

rules for Moyal-deformed scalar field theory introduced in [Fil96] were shown to inhibit a completely

new phenomenon [MVRS00]: so-called ultraviolet - infrared (UV-IR) mixing. In a nutshell, it can be

described as follows: in a field theoretic perturbation series, there are graphs containing integrated
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phases eipθq, which have been described in Sec. 1.2.2. When performing the loop integrations

(involving integrations of inner momenta), these phase factors lead to terms proportional to pθpq�1.

These specific terms are responsible for divergences when the outer momenta are sent to zero.

Eventually, the appearance of subgraphs leading to UV-IR mixing at any order of the perturbation

series spoils any attempt of renormalization.

Surprisingly enough, the cure of the UV-IR mixing problem in Euclidean scalar field theory lead

to positive results which are not contained in the corresponding commutative theories. In [GW05]

it was shown that adding a harmonic oscillator term into the action of Moyal deformed scalar φ4-

theory leads to the disappearance of UV-IR mixing. Thus the oscillator-extended noncommutative

φ4 on four dimensional Euclidean space is renormalizable to all orders of perturbation theory. In

addition to this success, the new action shows more interesting properties. In fact, it features a

non-trivial renormalization group fixed point [DGMR07], which the commutative φ4-theory does

not exhibit. Investigations aiming at the constructability of this model are in progress, c.f. [Wan11,

GW12]. These achievements concerning renormalization and presumably constructive field theory

gave rise to new noncommutative models, containing scalar as well as gauge fields. All these

models5, including the Grosse-Wulkenhaar model, contain problematic constituent parts, either

from a physical and mathematical point of view.

Roughly speaking, all these new invented field theory models are meant to build an intermediate

step in understanding the consequences of quantum field theory on noncommutative spaces. If they

are ever going to produce predictions falsifiable in physical experiments, they have to be re-arranged

in a relativistic setting. This marks one of the central reasons why the Wick rotation of Moyal

deformed theories in particular, and noncommutative quantum field theory in general is desirable.

In addition, directly working out noncommutative theories on Minkowski space-time is even in the

simplest cases highly non-trivial [LS02b, LS02a, BFG�03].

5see for example [GMRT09, GVT10] for other renormalizable scalar field models, or [MST00, MSSW00] and

references therein for implications on gauge fields
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Chapter 2

Algebraic Wick Rotation

In this chapter, the analytic continuation of a Euclidean net of �-algebras towards the correspond-

ing Minkowskian net of observables will keep us occupied. We are going to describe in detail the

results of the paper [GLLV11], concerning noncommutative Wick rotation in terms of algebraic

quantum field theory. To this end we will first recapitulate the known transition from “commuta-

tive” Euclidean nets satisfying full covariance with respect to the Euclidean group Epdq towards

Haag-Kastler nets. Afterwards, the generalization to theories covariant just with respect to a proper

subgroup of Epdq is obtained, without any reference to noncommutative geometry at this stage.

The next step consists in the deformation in terms of warped convolutions, together with the anal-

ogous Wick rotation result for the noncommutative Euclidean net. Eventually, we are interested

in the net evolving from the deformation of the commutative Haag-Kastler net which leads to the

main finding that it is in fact isomorphic to the one gained before.

2.1 The Schlingemann Approach

Apparently detached from the known theorems about Wick rotation, most importantly those by

Osterwalder and Schrader, we introduced the main notions of algebraic quantum field theory in the

introduction. There are tight relations between theories described via local observable algebras and

those defined through the sequence of n-point functions [FH81]. Nevertheless, it was Schlingemann

[Sch99] in 1999 who gave a precise figure to algebraic Wick rotation. As an analogous road is taken

when it comes to deformed theories, we will summarize his work in the following.
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Let Epdq � Rd � SOpdq denote the d dimensional connected Euclidean group. The Euclidean

quantum field theory one starts with is given by a Epdq-covariant net tEpOquO�O , where O is the

set of open bounded regions in Rd, together with a reflection positive functional σ of Def. 3. The

net shall satisfy a specific condition in accordance with the physically demanded notion of locality.

Namely, we demand that any two algebra elements A P EpO1q and B P EpO2q commute under the

condition that O1 XO2 � H. We are able to write

O1 XO2 � H ñ rEpO1q, EpO2qs � t0u . (2.1)

Since on Rd with Euclidean metric there is no preferred direction, we choose some direction e

to be “Euclidean time”. Then its orthogonal complement eK will serve as the “time-zero-plane”.

As we will see, one fundamental concept of the algebraic Wick rotation is the time-zero content of

the theory. Since on both the Euclidean and the Minkowski framework we will deal with them, we

define the time-zero algebras for more general G-covariant nets pA,O, αq on Rd:

A0pKq :�
£
O�K

ApOq , K � eK . (2.2)

Schlingemann’s approach, as well as our noncommutative generalization coming up later in

this chapter, largely relies on the following additional assumption. We say that a G-covariant net

pA,O, αq satisfies the time-zero condition, if its time-zero algebras are enough to generate any local

algebra ApOq when acted on with the full automorphic symmetry action, i.e., if

ApOq �
� ¤
K�eK

tαgpA0pKqq | g P G, gK � Ou
�2

, O P O , (TZ)

where B 2 for B � BpHq denotes the double commutant, which is equivalent to the weak

closure in the von Neumann setting if B is a unital �-algebra. In a C�-setting, one would prefer the

norm-closure instead.

Let us explain this definition more extensively. Any local algebra ApOq, O in a suitable index

set, coming from a net of C�-algebras satisfying the time-zero condition can be obtained in the

following way:
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Figure 2.1: Time-zero condition: each local algebra EpOq is generated by the time-zero algebras

A0pKq via actions of the actions αg.

• Pick a subset K of the time-zero plane eK and build the time-zero algebra A0pKq in terms of

(2.2) upon it.

• Act with all αg on A0pKq, where g is an element of the symmetry group G, such that K is

mapped into O under g.

• Form the algebraic closure: build the union over all K � eK of these symmetry group images

αgA0pKq � ApgKq � ApOq and afterwards, go over to the weak closure of this union.

Thus the time-zero condition assumes that the algebra closure at the end of this procedure

gives in fact the whole local algebra ApOq. The following definition summarizes the net content

and implicitly the axioms a Euclidean theory shall fulfill in order to give sense to a corresponding

analytical continuation:

Definition 9. A Epdq-covariant net pE ,O, αq on Rd together with a reflection positive functional

σ is called Euclidean field theory. If in addition pE ,O, α, σq satisfies the locality property (2.1), it

is said to be1 local.
1Observe a somewhat unhandy nomenclature: a local algebra is the image ApOq of the net prescription and got

29



While the goal of the following recapitulation is a Haag-Kastler net obtained by Wick rotation

of such a Euclidean field theory, its achievement goes through a number of important steps:

1. Define the “physical” Hilbert space H via the reflection-positive functional σ and properly

represent the Euclidean algebra on H.

2. Examine how the representation of the Euclidean group acts on this Hilbert space and ana-

lytically continue it to a unitary representation of the Poincaré group Ppdq.

3. Define the Minkowski net of observablesMpOq as the image of the time-zero algebras under

this Ppdq-representation.

4. Show that MpOq satisfies the Haag-Kastler axioms.

Since we are going to explain all these steps in full detail for deformed theories, we will not

give a pronounced repetition at the scenario of full Epdq-covariant nets. We will see in the next

section that deforming causes a restriction of the underlying symmetry group and this leads to our

treatment being a generalization of step 2. here.

The biggest drawback, however, is the lack of locality in the noncommutative case. Having

said that, it is only natural to demand such a loss of locality due to general noncommutativity of

the algebras involved. Nevertheless, one is able to re-establish a remnant of locality here as well:

so-called wedge localiy, which we will discuss in Ch. 4. So let us proceed to the noncommutative

case after summarizing commutative algebraic Wick rotation in the following

Theorem 1 ([Sch99]). Let pE ,O, αq be a local Euclidean field theory satisfying the time zero con-

dition. Further let αM denote the analytically continued representation of d-dimensional Poincaré

group and π be the �-representation of E0 on the physical Hilbert space. Then, the net

O ÞÑ ApOq
MpOq :�

¤
K�eK

 
αM
g pπE0pKqq | g P Ppdq, gK � O

(}.}
is a Ppdq-covariant Haag-Kastler net represented on the Hilbert space H.

Remark 1. By definition, the net pM,O, αMq of Thm. 1 satisfies the time-zero condition as well.

its name from containing those quantum observables measurable in the space-time region O. On the other hand, a

net is said to be local it fulfills (a Euclidean version of) Einstein locality, i.e., micro-causality.
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2.2 Reduced Symmetry Groups

Since we are aiming at formulating a noncommutative generalization of a reconstruction theorem

similar to the famous one of Osterwalder and Schrader, we will deal with Moyal space later on. A

certain property of this deformation scheme is that the symmetry group gets restricted. In order to

give an eligible definition of the noncommutative framework, we consider nets which are covariant

with respect to a subgroup of the ordinary Euclidean or Poincaré group. We therefore introduce

the reduced symmetry groups as follows:

Definition 10. The (connected) reduced Euclidean and Poincaré groups Eθpdq and Pθpdq are de-

fined to be

Eθpdq :� tpx,Rq : px,Rq P Epdq, Rθ � θRu � SOθpdq 
 Rd , (2.3)

Pθpdq :� tpx,Λq : px,Λq P PpdqÒ�, Λθ � θΛu � LθpdqÒ� 
 Rd , (2.4)

respectively.

As a small anticipation, we can easily legitimate definitions like the latter by demanding an

automorphic symmetry action α which is at the same time a homomorphism with respect to the

Rieffel product, see subsection 1.2.3. Take the invertible matrix M to be a realization of any

symmetry group element g � pa,Mq, then from property (1.8) we obtain

αgpA�θ Bq � αgA�MθM�1 αgB (2.5)

which leaves invariant the noncommutativity if and only if Mθ � θM , just as in (2.3),(2.4).

Construction of the physical Hilbert space Consider the algebra E¡ :� EpeK �R�eq, which

serves as our “positive-time environment”. Furthermore, define a sesquilinear form on E¡ as follows:

E¡ � E¡ Q pA,Bq ÞÑ σpιpA�qBq

This sesquilinear form is positive due to reflection positivity of σ and can be degenerate. There-

fore, we build equivalence classes with respect to its null space
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Nσ :� tA P E¡ |σpιpA�qAq � 0u ,

in the standard way, r sσ : A ÞÑ A �Nσ, and observe that we can thus define a scalar product

on the pre-Hilbert space E¡{Nσ via

xrAsσ, rBsσy :� σpιpA�qBq .

Finally, we define the completion H :� pE¡{Nσ, x., .yq with respect to the x., .y-induced norm to

be our physical Hilbert space. For later convenience, we assert that the vector Ω :� r1sσ will play

the role of the vacuum. We demanded of our Euclidean field theory in 2. of Def. 3 that e-reflections

act covariantly on the net EpOq and we easily comprehend that all the time-zero algebras E0pKq are

ι-invariant. Hence, for B P E0, which is the same as EpeKq, the element ιpB�qC lies again in E¡ for all

C P E¡. By the Cauchy-Schwarz inequality, we infer that Nσ � tA P E¡ |σpιpA�qCq � 0 @C P E¡u.
These facts lead to the well-definition of the map π : E0 Ñ BpHq, which is given in the following

way,

πpBqrAsσ :� rBAsσ , A P E¡ , B P E0 . (2.6)

In other words, π is a well-defined GNS representation of E0 on H. Indeed, let us take A P Nσ,

then we have

xπpBqrAsσ, rCsσy � σpιppBAq�qCq � σpιpA�qιpB�qCq � 0 ,

for all C P E¡. Hence πpBqrAsσ is again in rNσsσ and π is well-defined.

At some stage in the current treatise we want to go over to a noncommutative deformation of

the algebraic content. Keeping this in mind, we work out how the reduced symmetry groups Eθpdq
and Pθpdq act on the Hilbert space H in advance. Consider the involutive automorphism γ of 3 in

Def. 3 on Epdq, which was defined by

γ : px,Rq ÞÑ prx, rRrq .
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The e-reflection r acts on Epdq, and therefore on Eθpdq, via γ. It can be directly seen that γ is

an involution, thus it possesses exactly the eigenvalues �1. The subgroup Ee
θpdq of Eθpdq is defined

to consist of fixed points of γ and thus is called “spatial subgroup”.

We could go on by directly adjusting the analytic continuation of the Euclidean group repre-

sentation to a unitary representation of the Poincaré group as it was done in [KL82]. Though we

consider it more appropriate to make the underlying mathematical structure visible for sake of

generality. But this requires a little background, which we shall sketch, following mainly [Hel62]:

Definition 11. Let G be a Lie group, K be a closed subgroup of G and γ be an involutive

automorphism. Furthermore, let Kγ be the set of fixed points in K with respect to γ and pKγq0
its identity component. Then the triple pG,K, γq is called a symmetric space, if

pKγq0 � K � Kγ

The group G is sometimes called symmetric group.

Theorem 2 ([Hel62]). If g � k ` m, where g is the Lie algebra of G, while k and m denote the

eigenspaces of γ for the eigenvalues �1 and �1, respectively, then we have

rk, ks � k , rk,ms � m , rm,ms � k (2.7)

Definition 12. The dual symmetric Lie algebra g� of g is defined by

g� � k` im

and due to the relations (2.7) it is still a real Lie algebra. We call the symmetric space pG�, K�, γq
the dual space of pG,K, γq, where g� is the Lie algebra of G� and called the dual symmetric Lie

algebra of g.

In complete analogy to [FOS83] we distinguish between two cases of symmetric spaces in the

following; the choice to do so will be justified in a moment when it comes to the interpretation of

these abstract notions.
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Definition 13. A symmetric space pG,K, γq is defined to be of type pIq if K is compact.

A symmetric space pG,K, γq is defined to be of type pIIq if

G � G0 
 T , K � K0 
 P , K0

cpt.� G0 , P � T , T abelian

Remark 2. For type pIIq symmetric spaces it holds:

g` t � pk0 `m0q ` pp` hq � k`m

where the small German letters denote the Lie algebras of the corresponding capital letter Lie

groups and h is the Lie algebra of T {P . From this we can see

rk0, k0s � k0 , rk0,m0s � m0 , rm0,m0s � k0 ,

as well as

rk0, ps � p , rk0, hs � h ,

and

rm0, hs � p , rm0, ps � h , rt, ts � 0 .

Remark 3. Physical examples one has in mind are:

• Type pIq:

G � SOpnq , K � SOpn� 1q ñ G� � SOp1, n� 1q

• Type pIIq:

G � Epnq � SOpnq 
 Rn , K � Epn� 1q � SOpn� 1q 
 Rn�1

ñ G� � SOp1, n� 1q 
 Rn .
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Coming back to the specific case at hand, the involution γ introduced before Def. 11 induces

a decomposition of the Lie algebra eθpdq of Eθpdq into corresponding eigenspaces with eigenvalues

�1,

eθpdq � eeθpdq `mθ , (2.8)

where eeθpdq denotes the Lie algebra of Ee
θpdq. The pair peθpdq, eeθpdqq in fact has the structure of

a symmetric Lie algebra, i.e.,

reeθ, eeθs � eeθ , reeθ,mθs � mθ , rmθ,mθs � eeθ (2.9)

Our next task consists of obtaining the correct representation of Eθpdq on H. For a given

element of Eθpdq, we have to take care of it staying in the equivalence class of the positive-time

algebra E¡, because H was defined in this way. Hence it is necessary to consider a sufficiently

small neighborhood U of the identity in Eθpdq and define the representing operators V pgq there

for elements A P E¡ as follows:

V pgqrAsσ :� rαgpAqsσ , g P U . (2.10)

More precisely, for a given g P U , we consider all regions O � Rd
¡ such that both, gO and

γpgq�1gO, are still contained in Rd
¡. For A P EpOq, the right hand side of (2.10) is then well-

defined by covariance and isotony, αgpAq P EpgOq � E¡. Furthermore, we have to check that the

above assignment is well-defined, i.e., independent of the choice of representative in rAsσ. In fact,

for A P Nσ we can use the Eθpdq-invariance of σ to compute

xV pgqrAsσ, V pgqrAsσy � }rαgpAqsσ}2 � σpιpαgpAqq�αgpAqq � σpαγpgqpιpAqq�αgpAqq
� σpιpAq�αγpgq�1gpAqq . (2.11)

According to our assumption on the region O, we have γpgq�1gO � Rd
¡, and hence αγpgq�1gpAq

is again an element of E¡. Thus the Cauchy-Schwarz inequality yields V pgqrAsσ � 0, which shows

that V pgq leaves invariant the null space Nσ of the product x, y and therefore is well-defined. The
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subspace of H which is spanned by all rEpOqsσ, where O runs over the described set of regions, will

be taken as the domain domV pgq of V pgq, i.e.,

domV pgq � trEpOqsσ |O � Rd
� , gO � Rd

� , γpgq�1gO � Rd
�u � H .

In order to obtain a common domain for all operators V pgq, g P Eθpdq, we choose a particular

region.

In spite of the more general approach permitted by the usage of an arbitrary Euclidean direction

serving as the time direction, it is oftentimes more convenient to go over to a concrete descrip-

tion of these spaces. This is the reason why we introduce orthonormal coordinates px0, ..., xd�1q
of Rd, with the property e � p1, 0, ..., 0q. Whenever we consider it more convenient, we write

px0, xq :� px0, ..., xd�1q. Since we are dealing with the Euclidean group, corresponding generators

of translations are needed and denoted by P0, ..., Pd�1. In addition we have operators Mkl, k   l,

k, l � 0, ..., d � 1, which implement the rotations in the xk-xl-plane. It is straightforward to com-

prehend that the Lie algebra eeθpdq is spanned by P1, ..., Pd�1 (spatial translations) and all linear

combinations of Mkl, k ¥ 1, which commute with θ.

Remark 4. At the physically interesting case of d � 4 the Lie algebra eeθ contains rotations with

respect to exactly one axis. Therefore, eeθ generates SOp2q. The remaining linear space mθ is

spanned by P0 and all linear combinations of M0k, k � 1, 2, 3. But by the definition of Eθpdq these

M0k must commute with θ. Hence mθ generates SOp2q as well. This makes eθp4q the Lie algebra

of R4 � pSOp2q � SOp2qq.
The region serving as the common domain of our representation is defined to be

C :� tx P Rd : x0 ¡ 1� px2
1 � ...� x2

d�1q1{2u . (2.12)

Clearly there exists a neighborhood U � Eθpdq of the identity such that gC and γpgq�1gC are

both contained in Rd
¡ for all g P U . Furthermore, we can choose U so large that it contains the full

spatial subgroup Ee
θpdq (Euclidean group elements commuting with the time reflection ι), since the

latter cannot push C to a region of negative time: gC � Rd
¡ for all g P Ee

θpdq. These considerations

qualify the subspace
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Figure 2.2: The boundary of the common domain C plotted for d � 3.

D0 :� rEpCqsσ � H (2.13)

to be the domain for our representation. In the context of symmetric spaces, a theorem guar-

anteeing the existence of an analytic continuation of certain group representations is available

[FOS83]. Before we reflect the exact statement, we define the notions the said theorem deals with

and simultaneously prove that the representation we constructed fits into that framework:

Proposition 3. The data pU ,D0, V q form a virtual representation [FOS83] of Eθpdq, i.e.

1. D0 � H is dense and for all g P U , one has D0 � domV pgq.

2. If g1, g2 and g1g2 lie in U and Ψ P D0, then V pg2qΨ P domV pg1q and

V pg1qV pg2qΨ � V pg1g2qΨ .

3. For g P Ee
θpdq, the operator V pgq extends to a unitary on all of H.

4. For g � expM P U with M P mθ, the operator V pgq is hermitian.
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5. Let Ψ P D0. Then U Q g ÞÑ V pgqΨ is strongly continuous.

6. The translations in e-direction tV pexp tP0qut¥0 form a contraction semi-group.

Proof. 2. Let g1, g2 P U such that also g1g2 P U . It follows g1g2C � Rd
¡. U was chosen

such that γpgq�1gC � Rd
� for all g P U , thus by V pg2qD0 � rEpg2Cqsσ we have established

V pg2qD0 � domV pg1q. The group law V pg1qV pg2qΨ � V pg1g2qΨ, Ψ P D0, follows from (2.10).

Indeed, let Ψ P D0, then it follows Ψ � rAsσ for an A P EpCq. Thus,

V pg1qV pg2qΨ � V pg1qV pg2qrAsσ � V pg1qrαg2pAqsσ � rαg1pαg2pAqqsσ
� rαg1g2pAqsσ � V pg1g2qrAsσ � V pg1g2qΨ .

To establish 3. and 4., we compute with A,B P EpCq and g P U

xV pgqrAsσ, rBsσy � σpιpαgpA�qqBq � σpαγpgqpιpA�qqBq
� σpιpA�qαγpgq�1pBqq � xrAsσ, V pγpgq�1qrBsσy , (2.14)

yielding V pgq� � V pγpgq�1q. This shows that for a γ-invariant group element g P Ee
θpdq, we have

V pgq� � V pgq�1, and once we have checked that D0 is dense (part 1.), it is clear that such V pgq
extend to unitaries on all of H. On the other hand, for g � expM P U , M P mθ (the “time-

dependent” part of the Euclidean Lie algebra), we have γpgq � g�1, and thus the representing

operator V pgq is hermitian.

5. Let g P U and A P EpCq. Then we compute as in (2.11),

}V pgqrAsσ � rAsσ}2 � σ
�
ιpA�q �αγpgq�1gpAq � αγpgq�1pAq � αgpAq � A

��
.

In the limit where g approaches the identity in Eθpdq, this norm difference vanishes because of

the assumed continuity of σ (1. of Def. 3).

6. For positive parameters t ¥ 0, the domain of the e-translations V1ptq :� V pexp tP0q is the

dense subspace domV1ptq � D � E¡{Nσ. As the generator P0 of translations along e lies in the �1

eigenspace mθ of γ, we find analogously to the proof of 4. that V1ptq is a hermitian operator for

any t ¥ 0. As R� Q t ÞÑ V1ptq is strongly continuous on D by the continuity of σ, it follows that V1
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is a symmetric local semi group [KL81]. In particular, there exists a self-adjoint operator H with

D � dom e�tH for any t ¥ 0, such that V1ptq � e�tH on D. For A P E¡, t ¥ 0, we estimate

}e�tHrAsσ} � }V1ptqrAsσ} � }rαexp tP0pAqsσ} ¤ }αexp tP0pAq}E � }A}E .

Since this bound is uniform over all t ¥ 0, and D � H is dense, it follows that H is positive,

i.e. V1 is a contraction semi group.

1. With this information, we can now prove that D0 is a dense subspace of H as well, using a

Reeh-Schlieder type argument (see also [Sch99]). For Ψ P DK
0 and A P EpOq with some bounded

O � Rd
¡, consider the function f : RÑ C,

fpsq :� xΨ, e�sHrAsσy � xΨ, rαexp sP0pAqsσy . (2.15)

Since H is positive and V1 is strongly continuous, f extends to a holomorphic function in the

right half plane, with continuous boundary values. Moreover, as O is bounded, there exists s0 ¡ 0

such that O� s � e � C and thus αexp sP0pAq P EpCq for all s ¥ s0. Hence fpsq � 0 for s ¥ s0, which

by the analyticity of f implies 0 � fp0q � xΨ, rAsσy, i.e., Ψ K rEpOqsσ. But by definition of E¡,

the union of all EpOq, where O runs over all bounded regions in Rd
¡, is norm-dense in E¡, and by

construction of the Hilbert space, rE¡sσ is a dense subspace of H. Hence Ψ � 0, which proves the

density of D0 � H. The fact that D0 � domV pgq for all g P U follows from the definitions of D0

and the domains domV pgq: D0 was defined to be rEpCqsσ and we already noticed that the region

C causes gC as well as γpgq�1gC being elements of Rd
� for all g P U . The subalgebra generated

by elements satisfying exactly these relations was defined to be domV pgq.

Now we are ready to perform the analytic continuation of the virtual representation established

right now. For the full Euclidean group, it has been shown in miscellaneous guises by a number of

authors that this is possible. For a thorough treatment in a more general group theoretic setting see

[JO99]. Using the notions worked out so far, we can generalize their results to the case of reduced

symmetry groups, which is of great importance when it comes to deformation.

We start by the assertion that we will obtain the group we are aiming at: given eθpdq, its dual

Lie algebra leads to the corresponding reduced version of the d-dimensional Poincaré group:
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Lemma 4. The connected, simply connected Lie group Eθpdq� with Lie algebra eθpdq� is the uni-

versal covering group of the reduced Poincaré group,

Eθpdq� � rPθpdq . (2.16)

Proof. For θ � 0, this fact is well known [FOS83, JO99]. Now eθpdq� � epdq� consists of all those

elements of epdq� which commute with θ, i.e., eθpdq� coincides with the Lie algebra of the reduced

Poincaré group Pθpdq, defined in (2.4). Hence Eθpdq� is the unique connected simply connected Lie

group with the same Lie algebra as Pθpdq, that is, the universal covering group rPθpdq.
The adaptation of the framework of symmetric spaces and virtual representations reaches its aim

when it comes to the application of the following theorem. We have shown that the representation

of the reduced Euclidean group Eθpdq, given by the operators V pgq on our physical Hilbert space

H is “virtual” in the above sense. This makes us able to profit from the following:

Theorem 3 ([FOS83]). Let pG0 
 T,K0 
 P, γq be a type pIIq symmetric space and let π be a

virtual representation of pG0 
 T q such that there exists a basis teiuri�1 of T {P with the property

that tπpe�teiqut¤0 is a symmetric contraction semi-group for each i � 1, . . . r. Then π can be

analytically continued to a unitary representation π� of pG0 
 T q�.

Combining Prop. 3, Lemma 4 and Thm. 3 we obtain that V can be analytically continued to a

unitary representation Ũ of Eθpdq�, which is nothing else than rPθpdq. Before we go on, we remark

that in the concrete situation at hand, Ũ actually descends to a unitary representation U of the

reduced Poincaré group Pθpdq itself: For θ � 0, this follows from the analysis in [KL82], where

the analytic continuation of V was carried out for E0pdq � Epdq and shown to result in a unitary

representation of P0pdq � Ppdq instead of the universal covering group. This feature then restricts

to the reduced group Pθpdq � P0pdq for θ � 0.

Furthermore, the vacuum vector Ω � r1sσ P D0 is invariant under all V pgq, g P U , as can be

seen from (2.10). As U is obtained from V by analytic continuation, Ω is invariant under the

representation U as well.

We collect what we have obtained in the following theorem, preparing the ground for going over to

Moyal space(-time):

Theorem 4. There exists a strongly continuous unitary representation U of Pθpdq on H such that
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1. Upgq � V pgq for g P Ee
θpdq � Pθpdq.

2. UpgqΩ � Ω for all g P Pθpdq.

The representation U provides us in particular with a strongly continuous representation x ÞÑ
Upx, 1q of the translation group Rd, generated by P0 :� H and the (Euclidean) momentum operators

P1, ..., Pd�1. It is important to note that the usual spectrum condition gets modified as well by the

restriction to proper symmetry subgroups.

Proposition 4. The joint spectrum S of the generators P0, ..., Pd�1 of the translations Upx, 1q �
eiP �x is a Pθpdq-invariant subset of Rd satisfying tp0 : pp0, ..., pd�1q P Su � R� and 0 P S.

Proof. As Upx, 1q extends to a representation of Pθpdq, the joint spectrum of its generators is a

Pθpdq-invariant subset of Rd. Moreover, P0 is positive by 6. of Prop. 3, and hence

tp0 : pp0, ..., pd�1q P Su � specP0 � R� .

We have 0 P S because Ω is translation invariant.

Remark 5. Let us give more details on the explicit shape of the translation generators’ spectrum. In

terms of this “noncommutative” spectrum condition one can easily realize a physical consequence

of the strict Moyal deformation prior to its actual implementation:

• For a theory satisfying full Epdq-covariance, we as usual gain a unitary Ppdq-representation,

which leaves the spectrum of the P0, . . . , Pd�1 invariant due to the latter proposition. Together

with the condition tp0 : pp0, ..., pd�1q P Su � R� this means nothing else than S must be

contained in the closed forward light-cone.

• If d ¡ 2 is even and ker θ � tpp0, p1, 0, ..., 0q : p0, p1 P Ru, just the boosts Λ1pβq in x1-direction

lie in Pθpdq: indeed, we know from (2.5) that for any matrix M to be an element of Pθpdq,
it is necessary and sufficient that px,Mq P Ppdq for any x P Rd and MθM�1 � θ. Given an

arbitrary boost realization Λkpβq the only possibility for the latter equation to hold is k � 1,

as one can easily realize while having a look at (1.6) and setting ϑe � 0. It is immediately

clear that Λ1pβq being the only boost in Pθpdq is more than ever correct if one does not set
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Figure 2.3: The light-wedge Y

ϑe equal to zero, i.e., at a noncommutative-time scenario.

For an explicit form of the spectrum it is thus enough to consider pΛ1pβqpq0 and from

pΛ1pβqpq0 � coshpβqp0 � sinhpβqp1

as well as from the positivity statement it follows that p0 may not be smaller than |p1|. Hence

in this case, we only get S � Y , where Y denotes the closed light-wedge

Y :� tp P Rd : p0 ¥ |p1|u , (2.17)

which is indicated in Fig. 2.3. Spectrum conditions like these have also been discussed else-

where [AGVM03].

We are almost done with our Wick rotation of an algebraic Euclidean theory with a reduced

symmetry group. The last step will comprise a meaningful definition of a theory on Minkowski

space-time, fulfilling adapted Haag-Kastler axioms. As we will see in a moment, the analytical con-

tinuation of the symmetry group representation was already the most exhaustive part of achieving
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this aim. The rest relies purely on the given algebraic properties of the Euclidean field theory and

the time-zero condition.

At first we denote by αM the automorphic action of the unitary representation U of Pθpdq,

αM
g pAq :� UpgqAUpgq�1 , g P Pθpdq , A P E¡ (2.18)

So we have reached the point where we have collected everything necessary to come to our

Lorentzian theory: we define it to be the net pM,O, αMq, where O is still the collection of open

bounded regions of Rd. We recall the representation π (2.6) of the time-zero algebra E0 � EpeKq
on H and remark that by the time-zero condition on the net E , this algebra is non-trivial, or put

differently, not equal to C1. The next theorem includes a definition and finishes the commutative

treatment of algebraic Wick rotation in this thesis:

Theorem 5. 1. The algebras MpOq, defined as

MpOq :�
� ¤
K�eK

 
αM
g pπE0pKqq

�� g P Pθpdq , gK � O
(�2

(2.19)

for any open bounded region O � Rd and the action αM given in (2.18) form a net pM,O, αMq
of von Neumann algebras on Minkowski space-time which satisfies the following properties:

(a) Isotony: O1 � O2 P O ñMpO1q �MpO2q ,

(b) Covariance: h P Pθpdq ñ αM
h MpOq �MphOq @O P O ,

(c) Time-Zero Condition: (TZ) holds with respect to Pθpdq .

2. The state ωpAq :� xΩ, AΩy is a Pθpdq-invariant vacuum state on M.

Proof. 1. First of all, we make sure that equation (2.19) displays well-defined von Neumann algebras

MpOq depending on O P O. This on the one hand is guaranteed by the weak closure applied to

the rhs. of this very equation. On the other hand, αM � AdU is an automorphic Pθpdq-action on

BpHq, which is part of Thm. 4. Thus, according to Def. 1, we now are able to show the claimed

properties.
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(b) Let O � Rd be open, K � eK, A P E0pKq, and g P Pθpdq such that gK � O. Then, for

an element B PMpOq defined to be B :� αM
g pπpAqq, and for any h P Pθpdq, we have αM

h pBq �
αM
hg pπpAqq. Since clearly hgK � hO, we have αM

h pBq P MphOq, and as MpOq is generated by

operators B, also αM
h pMpOqq �MphOq. By also considering the inverse transformation h�1, we

arrive at the covariance property αM
h pMpOqq �MphOq.

(a) Let O1 � O2 be an inclusion of two regions in Rd, and K � eK such that there exists

g P Pθpdq with gK � O1. Then we obtain gK � O2. Hence, by covariance we have that for any

A P E0pKq it follows αM
g pπpAqq PMpO1q. By the first consideration, this is contained in MpO2q

as well. As these αM
g pπpAqq generate MpO1q, isotony holds, i.e., MpO1q �MpO2q.

(c) This property is satisfied by the very construction of the net tMpOquOPO .

2. By definition, ω is a linear functional on M, which is positive: on the one hand we have

xΩ, AΩy :� σpιp1q�A1q. On the other hand take B PM to be a positive element ofM. Then there

exists A PM such that B � A�A. Hence we have

ωpBq � ωpA�Aq � xΩ, A�AΩy � xAΩ, AΩy ¥ 0 .

Covariance follows similarly: Since Ω is a Pθpdq-invariant unit vector, it follows for every g P
Pθpdq and every A P BpHq,

ωpαM
g Aq � xΩ, αM

g AΩy � xUpgq�1Ω, AUpgq�1Ωy � ωpAq ,

thus ω is an αM-invariant state on BpHq. This implies the claim of Pθpdq-invariance on the

subalgebra M � BpHq. Furthermore, Thm. 4 implies that U is strongly continuous, which means

that

Pθpdq Q g ÞÑ ωpAαM
g pBqq � xUpgq�1A�Ω, B Upgq�1Ωy

is continuous for all A,B PM, as required in Def. 3.
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Finally, we show that ω fulfills positivity: M is weakly closed and invariant under the trans-

lations αM
x,1, x P Rd. Moreover, we use that U is strongly continuous to deduce that M contains

a strongly dense subalgebra M8 consisting of operators A for which x ÞÑ αM
x,1pAq is smooth (see

Lemma 2 in the introduction). In particular, the function R Q t ÞÑ ωpA�αM
t�e,1pAqq is differentiable

at t � 0 for such A, and �i d
dt
|t�0ωpA�αM

t�e,1pAqq � xAΩ, P0AΩy ¥ 0 because P0 is positive. This

completes the list of properties of ω required in Def. 3.

2.3 Noncommutative Algebraic Wick Rotation

In the present chapter we made some effort in preparing the ground for the application of a certain

deformation scheme in order to get to a noncommutative algebraic quantum field theory. Nonethe-

less, not at any time we have relied on such, not even on a fairly general noncommutative theory up

until now. In other words, all we have done in the ongoing chapter so far is valid for any algebraic

Euclidean field theory, covariant with respect to a certain subgroup of the Euclidean group. At this

point we are going to implement the procedures of 1.2.3 and 1.2.4 in our framework of Euclidean

and Lorentzian nets of observables. Though our treatment happens to be quite abstract, we expect

some practicability: all our assumptions with the time-zero condition as the only exception2 are

considered natural in the area of Moyal deformation.

Before we start going into detail, we explain the main ambition of the following considerations.

At first, we work on the net of observables resulting from the deformation of a Euclidean field

theory in the sense of Def. 9. We saw in (2.5) that choosing our degenerate noncommutativity θ

for the general skew-symmetric matrix Q causes the appearance of the reduced symmetry group

Eθpdq. The circumstances under which a Wick rotation of such deformed nets are still possible will

be explained in detail. By taking a different point of view, we can first use the existing notions of

Wick rotation to arrive at an undeformed Lorentzian net of observables from the usual Euclidean

field theory. There is no reason why one should not use the warped convolutions framework to

deform a theory situated on Minkowski space-time. Quite the contrary, this deformation scheme

was designed to work on Lorentzian theories originally. So another main result of the following is

the uniformity of the noncommutative net of observables on Minkowski space-time. What just has

been sketched can apparently be visualized in Fig. 2.4.

2In fact, this restriction is valid in many constructed models; we will come to that later.
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Figure 2.4: The apparent objective of algebraic Wick rotation

Figure 2.5: The complete task of our algebraic Wick rotation.

Taking a closer look, however, infers that one actually is left with two deformed nets on

Minkowski space-time. One, denoted byMθ, arises when figuring out the Wick rotation of section

2.2 for the deformed Euclidean net Eθ and the other one is obtained by deforming the Wick rotated

netM. That latter net we are going to denote byMθ. The task of working out whether these two

deformed nets are equivalent is depicted in Fig. 2.5.

While in 1.2.3 we have prepared the main features of Rieffel’s deformation of the C�-algebra

product, we present more such results useful for the algebraic framework now. Making a specific

choice for the matrix Q of deformation parameters is the first mandatory step. From now on, we

will deal with the following noncommutativity matrix in arbitrary d � s� 2n dimensions:
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θ :� 0s ` θ1 ` � � � ` θn (2.20)

where the 2� 2 matrices θk are given by the standard Moyal form:

θk :�
�

0 ϑk

�ϑk 0

�
, ϑk P R , k � 1, . . . , n

For maintaining the largest noncommutativity possible in presence of the “commutative-time”

scenario (corresponding to s ¡ 0 here) we will oftentimes choose s � 2 if d is even and s � 1 if d is

odd. So, the most interesting case in our treatment will be d � 2� 2, where θ assumes the form

θ �

������
0 0 0 0

0 0 0 0

0 0 0 ϑ

0 0 �ϑ 0

����� , (2.21)

which coincides with (1.6) when ϑe is set to zero and ϑm �: ϑ. Let us consider the dense

subalgebra A8 � A of the (for the moment still general) C�-algebra A consisting of smooth

elements. By Lemma 3, it suffices to perform the integration at the Rieffel product along a basis

of Im θ. These we will sometimes call “noncommutative directions”.

Next we are going to figure out some of the modifications of the warped convolution deformation

when deciding to use such a noncommutativity matrix θ. All of the fundamental properties of

Prop. 2 stay correct when we consider a skew-symmetric matrix θ of the degenerate Moyal type.

The covariance property 3. there in particular simplifies even. Indeed, let A,B P C8. Then we get

a simpler relation for V being a unitary operator on H such that V UpxqV � � UpMxq, x P Rd and

for some M P GLpdq satisfying MT �M�1 and Mθ � θM :

V AθV
� � pV AV �qθ . (2.22)

In particular, UpxqAθUp�xq � pUpxqAUp�xqqθ for all x P Rd.
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We need one more result before we can finally appease our appetite for the Moyal deformation

of local nets of observables. Namely, the fact that the Hilbert space representation of the original

algebra can be directly continued to a representation of the noncommutative algebra:

Lemma 5 ([BLS11]). Let A be a C�-algebra with strongly continuous Rd-action α and π an α-

covariant representation of A on H, i.e., UpxqπpAqUpxq�1 � πpαxpAqq, A P A. Then

πpA8q � C8

and the map

πθpAq :� πpAqθ , A P A8

extends continuously to an α-covariant representation of the deformed C�-algebra Aθ.

2.3.1 Deformation of a Euclidean Field Theory

Now that we have introduced all the notions and facts we are going to need in the algebraic frame-

work, we can start to explain how the diagram 2.5 happens to commute in the case of degenerate

Moyal deformation. To this end we start with a Euclidean field theory pE ,O, α, σq as introduced

in Def. 9. The first question that arises is how to obtain a local algebra via warped convolutions.

The best way in order to achieve this may be considering the Rieffel-type deformation of the net

E on Moyal space. What is schematically represented with the arrow E Ñ Eθ in the Figs. 2.4 and

2.5 actually consists in a distinct procedure which gets started by the following definition:

Definition 14. Given the global algebra E of a Euclidean field theory pE ,O, αq, we define the

Rieffel deformed algebra Eθ to be pE8,�θq with �θ being the Rieffel product of Def. 7 and the

corresponding norm being } }θ.
The general inner product p , q of Def. 7 is taken to be the Euclidean product from now on.

and For two vectors x, y P Rd it is oftentimes denoted by xy. We want to proceed to the largely

equivalent, but more convenient point of view regarding warped convolutions. A question of high

importance concerns the generalizability of the field theory structure from a given net of observables

to a Rieffel-deformed one. The following lemma answers this question in large part and is for sake

of generality formulated for C�-algebras not restricted to the cases at hand:
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Lemma 6 ([Rie93a, Rie93b]). 1. Let A1, A2 be C�-algebras with strongly continuous automor-

phic Rd-actions α1, α2 and β : A1 Ñ A2 an isomorphism such that βα1,x � α2,Mxβ for all

x P Rd and some M P GLpdq with MT �M�1 and Mθ � θM , where the transpose MT refers

to the bilinear form used in Def. 7. Then βpA8
1 q � A8

2 , and β|A81 extends to an isomorphism

βθ : A1,θ Ñ A2,θ such that βθαθ1,x � αθ2,Mxβ
θ for all x P Rd.

2. Let ν be an α-invariant linear continuous functional on A. Then ν|A8 extends to a linear

continuous functional νθ on Aθ, and there holds

νpA�θ Bq � νpABq , A,B P A8. (2.23)

Proof. 1. This is a combination of Thm. 5.12 and Prop. 2.12 of [Rie93b].

Part 2. of this lemma can be inferred from [Rie93a], where it was proven that a translationally

invariant state ω on E satisfies |ωpAq| ¤ c}A}θ for all A P E8 and some constant c ¡ 0. But following

the proof of [Rie93a, Thm. 4.1] it becomes apparent that neither positivity nor normalization of ω

are necessary for the argument. Hence also ν can be extended to a continuous functional on Aθ,
which finishes the proof of the lemma.

Remark 6. Up until this point, we could well have worked with a noncommutativity matrix of

full rank, i.e. a noncommutative-time scenario. The only thing that would have changed is the

reduced groups would no longer contain discrete transformations. Since we were concerned with

the connected groups all along, we experience no modifications. All the lemmata and propositions

above have been proved for general skew-symmetric matrices Q as deformation parameters in the

corresponding original treatise.

Now that we realized that the constituents of C�-algebras behave well under the deformation,

the next step consists in bothering about the net structure. One possible choice to get to the

respective noncommutative net of von Neumann algebras is built up of deforming each element of

EpOq, i.e.,

EpOqθ :� tAθ |A P EpOqu2 , O P O .

As one can see straightforwardly, EpOqθ is a well-defined algebra, generated by EpOq. Anyhow,

we will not work with this prescription in the thesis at hand. The reason for that is as follows:
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Figure 2.6: Cylindrical regions: Z2 is the x0, x1-projection of Zθ and ZθpOq is the cylindrical region

associated to O.

Let O � Rd be an open, bounded region. Then the set tAθ |A P EpOqu is not a local algebra

indexed by O w.r.t. the Rieffel product. This can be seen by examining Lemma 3 and 2. of Prop. 2:

indeed, the product of two warped convoluted algebra elements equals the warped convolution of

their Rieffel product. But at the product, the elements are translated in the direction of Im θ to

arbitrary extent. So, any region bounded in this direction will be outranged by the smallest region

containing the Rieffel product. These considerations illustrate the fact that the only reason EpOqθ
is closed under the operator product is due to building the weak closure in its very definition. Put

differently, together with the warped convolutions of each undeformed algebra element A P EpOq
one includes countable sums of products of such into the definition of EpOqθ. But this abstract

closure makes it unhandy for working out the changes the Euclidean net of algebras faces during

the deformation.

So we prefer to establish an algebra of warped convolutions indexed by another family Zθ of

Rd-subsets. We demand that this family makes every local prescription Zθ Q Z ÞÑ EθpZq a net

of well-defined von Neumann algebras. We have just shown that the smallest sets applicable for

building an algebra of warped convolutions are

ZθpOq :� tx� θk , x P O, k P Rdu , (2.24)
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which are called cylindrical regions. In other words, pEθpZθpOqq,�θq is a local algebra. It is

obvious that in terms of algebra nets one can forget about the explicit form of O, the region that

“generated” ZθpOq. So, we give another definition

Zθ :� tZ � Rd , Z � Imθ � Zu � tZθpOq , O � Rdu . (2.25)

Some cylindrical regions are shown in Fig. 2.6. We appreciate from these definitions that Zθ
still allows for Eθ and Pθ-covariance: Im θ is left invariant with respect to x2, x3-rotations and any

boost or rotation involving just the x0, x1-plane.

Remark 7. Concerning the generalization to a noncommutative-time scenario, i.e. contemplating

a noncommutativity Θ which is (any SOpdq-rotation) of the form (1.6), we will no longer be able

to argue the way we did to arrive at a local algebra of warped convolutions. This follows directly

from having a look at (2.25) and the fact that Im Θ � Rd, so the “full Moyal” cylinders would all

be the whole space.

We find that the net tEpZθpOqquOPO was the correct choice for our purposes:

Proposition 5. The data EθpZq, Z P Zθ, and the automorphic symmetry action restricted to the

reduced Euclidean group, α|Eθpdq, form a Eθpdq-covariant net pEθ,Zθ, αθq of C�-algebras.

Proof. We have already seen that the net structure can be regained by going over to the set Zθ.
The remaining parts of the proposition follow mainly by the application of Lemma 6: At first we

choose A1 � A2 � E and α1 � α2 � α|Rd there. This implies that the deformed C�-algebra Eθ
carries an automorphic action αθ of Eθpdq which coincides with α|Eθpdq on the smooth subalgebra

E8. Furthermore, ι gives rise to an automorphism ιθ representing the reflection r on Eθ.
By Def. 14, we see that EθpZq8 and EpZq8 are equal as linear spaces, and thus

EθpZ1q8 � EθpZ2q8 , @Z1, Z2 P Zθ such that Z1 � Z2 .

This inclusion remains valid after closing in }�}θ, yielding a net Z ÞÑ EθpZq indexed by cylindrical

regions. Furthermore, we have made clear below the definition in ((2.25)) that the family Zθ is

invariant under the reduced Euclidean group Eθpdq. Finally, we are making use of Lemma 6 again:
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this time, we set A1 � EpZq, A2 � EpgZq, g P Eθpdq, and α1, α2 both being the action of the

translations along Im θ on these algebras. We hence see that

αθgpEθpZqq � EθpgZq , g P Eθpdq, Z P Zθ . (2.26)

which brings the proof to an end.

Remark 8. Again we want to highlight the necessity of the special form we chose for θ in this

context. The construction of the physical Hilbert space is based on the functional σ which fulfills

reflection positivity on E¡, the subalgebra generated by open bounded subsets of eK � eR�. If we

had used a noncommutativity Θ of full rank, due to property 2. of Prop. 2, E¡ would have been

unstable with respect to the Rieffel product.

2.3.2 From Deformed Euclidean to Deformed Lorentzian Theories

The upcoming treatment will rely on a generalization of the time-zero condition. To this end, let

us denote the notion of a (time-zero) stripe S by

S P Sθ :� tx� θk | x P K popen, boundedq � eK , k P Rdu .

Analogously to the case just before, E0pSq is stable with respect to the Rieffel product �θ, and

hence E0,θpSq is well-defined as a local algebra of warped convolutions.

The following lemma shows that for the warped net of algebras, the symmetry group Eθpdq is

sufficient to keep a generalized time-zero condition; since there is no fundamental difference to the

Lorentzian case here, we prove both cases at once:

Lemma 7. Let S P Sθ and g P Epdq (respectively g P Ppdqq such that gS � Z for some Z P Zθ.
Then there exist g1 P Eθpdq, g2 P Epdq (respectively g1 P Pθpdq, g2 P Ppdq) such that g � g1g2 and

g2S � S.

Proof. We write g � px,Mq referring to the semidirect product structure of Epdq � Rd � SOpdq
respectively Ppdq � Rd � LÒ�pdq. The set MS satisfies MS � x � MS for x P M Im θ. If
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M Im θ {� Im θ, it follows that MS is not bounded in projection to ker θ, and can thus not be

contained in an element of the family Zθ. Thus the assumption implies M Im θ � Im θ, and since

M is invertible, M Im θ � Im θ and MT ker θ � ker θ. In the Euclidean case, MT � M�1, and we

have M ker θ � ker θ. In the Lorentzian case, MT � ηM�1η. But the metric η commutes with θ,

such that also in this case we arrive at M ker θ � ker θ.

So for both signatures, M decomposes as a direct sum M � M1 `M2 P Bpker θq `BpImθq, and

we define g1 :� px,M1 ` 1q, g2 :� p0, 1 `M2q. Then g1g2 � px,M1 `M2q � g, and as the slice S

contains the full image of θ, we have g2S � S and consequently g1S � g1g2S � gS. Furthermore,

g1 P Eθpdq (respectively g1 P Pθpdq) as M1 ` 1 commutes with θ � 0s ` θ1 ` � � � ` θn.

Remark 9. The preceding Lemma 7 is significant for the operability of noncommutative Wick

rotation, but might seem a bit unhandy. So let us consider the special case most interesting from

a physical point of view, namely that of d � 4. We are going to illustrate the proof of the latter

lemma from a more geometric point of view in this case.

Let Z2 denote the projection of Z P Zθ to the subspace of commutative directions ker θ � R2.

Further let d1 :� max
v,wPBZ2

t|v1 � w1| | v0 � w0u be the maximum width of Z2 (and thus of Z) in

x1-direction. Then, any line on the x1-axis of length smaller than d1 can be translated into Z2, i.e.,

for any S P Sθ,2 of the form

Sba � tx P R2 | x0 � 0 , a ¤ x1 ¤ b , a, b P R , |b� a|   d1u ; (2.27)

see Fig. 2.7 a.

If dm :� max
v,wPBZ2

t}v�w }u denotes the maximal diameter of Z in the x0, x1-plane (which is bounded

by definition), we can always find stripes of width smaller than dm, that can be rotated into Z via

a specific x0, x1-rotation. This can bee seen in Fig. 2.7 b.

Let Z P Zθ and take g P EpdqzEθpdq. Then g has to have a non-vanishing component generated

by one of B2, B3, R1, R2, where Bk (resp. Rk) denotes the generator of the x0, xk-rotation (resp. a

spatial rotation). Without loss of generality we take S to be of the form (2.27). We then have
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Figure 2.7: A stripe translated into a cylinder (a) and one rotated (b)

B2pβqS � tx P Rd | x0 cos β � x2 sin β � 0 , a ¤ x1 ¤ bu
B3pβqS � tx P Rd | x0 cos β � x3 sin β � 0 , a ¤ x1 ¤ bu
R1pβqS � tx P Rd | x0 � 0 , a ¤ x1 cos β � x2 sin β ¤ bu
R2pβqS � tx P Rd | x0 � 0 , a ¤ x1 cos β � x3 sin β ¤ bu .

None of these rotated stripes can lie in any Z P Zθ, except for those resulting of rotations with

β � kπ , k � 0, 1, . . ., which let Sba invariant or map it to3 S�a�b . But the latter are elements of

Eθpdq and all the others are unbounded in a direction not contained in Im θ and therefore cannot

be bounded when projected on ker θ. Thus we conclude gS � Z ñ g P Eθpdq.
These findings enforce us with the generalization of the time-zero condition to the case of

deformed nets of reduced symmetry:

Proposition 6. 1. The net pEθ,Zθ, αθq satisfies the time zero condition with the Rieffel-deformed

time zero C�-algebras

Eθ,0pSq � E0,θpSq , S P Sθ .
3Concretely, B2pkπq, B3pkπq, R1p2lπq, R2p2lπq leave Sb

a invariant while R1pp2l � 1qπq, R2pp2l � 1qπq map it to

S�a
�b , k, l � 1, 2, . . .
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2. The restriction of σ to E8 extends to a reflection positive functional σθ on Eθ.

Proof. 1. As vector spaces, the smooth time zero algebras of the net Eθ are, S P Sθ,

Eθ,0pSq8 � E8 X
£
ZPZθ
Z�S

EθpZq �
£
ZPZθ
Z�S

EθpZq8 �
£
ZPZθ
Z�S

EpZq8 � E0pSq8 ,

where we have used that EθpZq8 � EpZq8 as vector spaces. Thus the closure in the norm } � }θ
gives Eθ,0pSq � E0,θpSq. By assumption, the undeformed net E satisfies the time-zero condition,

that is, the time zero algebras E0pSq generate the cylinder algebras,

EpZq �
�¤
SPSθ

tαgpE0pSqq | g P Epdq, gS � Zu
�2

. (2.28)

According to Lemma 7 in its Euclidean version, the transformations g P Epdq, gS � Z, which

appear here, split as g � g1g2 with g1 P Eθpdq and g2S � S. In view of the covariance of the

undeformed net, this implies that αg2 leaves E0pSq invariant, i.e., αg2pE0pSqq � E0pSq. Thus (2.28)

also holds if we restrict to g P Eθpdq � Epdq.
To make the transition to the deformed C�-algebras, we first contemplate the smooth time zero

algebras E0pSq8 � E0pSq, and consider the �-algebra ÊpZq generated by all αgpE0pSq8q, where S

runs over Sθ and g over Eθpdq such that gS � Z. As vector spaces, E0,θpSq8 � E0pSq8, and also

the automorphisms αθg and αg, g P Eθpdq, coincide on E8. Hence αθgpE0,θpSq8q � αgpE0pSq8q, and

as this algebra is } � }θ-dense in αθgpE0,θpSqq, it follows that the } � }θ-closure of ÊpZq coincides with

EθpZq. In particular, we have the claimed time zero property,

EθpZq �
�¤
SPSθ

 
αθgpE0,θpSqq | g P Eθpdq, gS � Z

(�2

. (TZθ)

2. The restriction of the continuous linear translationally invariant functional σ to E8 extends

to a } � }θ-continuous functional σθ on Eθ by 2. of Lemma 6. Since σ is Epdq-invariant, it follows

that this extension is invariant under the extension αθ of α|Eθpdq from E8 to Eθ. The continuity

Eθpdq Q g ÞÑ σθpAαgpBqq, A,B P Eθ, is then clear.
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It remains to check reflection positivity. By the translational invariance of σ, we have for smooth

A,B P E8 by 2. of Lemma 6,

σpιpA�q �θ Bq � σpιpA�qBq ,

and hence in particular σpιpA�q �θ Aq ¥ 0 for A P E8¡ . In view of the } � }θ-continuity of σθ and

ιθ, this positivity extends to E¡,θ.

Finally, let us collect what we have got before we write down the candidate for the Pθpdq-
covariant net of von Neumann algebras on Minkowski space-time. We realized that the deformed

Euclidean field theory pEθ,Zθ, αθ, σθq satisfies the time-zero condition, if the corresponding un-

deformed theory pE ,O, α, σq does. Detached from any deformation intent, we demonstrated the

analytical continuation of reduced Euclidean group representations (with the groups forsightfully

named Eθpdq) to unitary representations of the reduced Poincaré group. This directly admits an

automorphic action αθ,M of Pθpdq, whose corresponding unitary representation we call Uθ. To be

specific, αθ,M is exactly the adjoint action of the unitary representation on the physical Hilbert

space Hθ gained from the virtual Eθpdq-representation by the methods of section 2.2. We remember

that the construction of Hθ comes with equivalence classes r sθσ and a Eθ,0-representation denoted

by πθ. The latter representation of the time-zero data acts in the following way:

B P Eθ,0 : πθpBqrAsθσ � rB �θ Asθσ @A P Eθ .

Finally, we will combine these elaborations to conclude the noncommutative Wick rotation of

an algebraically given Euclidean theory.

Definition 15. On Hθ, the noncommutative analogue of the physical Hilbert space in section 2.1,

we define a deformed Lorentzian net prescription as follows:

Zθ Q Z ÞÑ MθpZq ,

MθpZq :�
�¤
SPSθ

 
αθ,Mg pπθE0,θpSqq | g P Pθpdq, gS � Z

(�2

Furthermore, we call the vector Ωθ :� r1sθσ the vacuum.
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Figure 2.8: The noncommutative algebraic Wick rotation visualized.

Proposition 7. The collection pMθ,Zθ, αθ,M,Ωq given in Def. 15 is a Pθpdq-covariant net of von

Neumann algebras on the Hilbert space Hθ, satisfying the time-zero condition and the modified

spectrum condition of (2.17),

spec tP0, P1, . . . , Pd�1u � Y .

Moreover, the vacuum Ωθ is Pθpdq-invariant and cyclic for the chosen representation on Hθ.

Proof. We start by checking the validity of the time-zero condition for tMθpZquZPZθ : by construc-

tion, pπθE0,θpSqq2 is the time-zero data ofMθpZq for suitable S P Sθ, Z P Zθ. Moreover, αθ,M acts

strongly continuously while πθ is a continuous mapping. Therefore, the smooth time-zero content

of the Lorentzian net takes the following form:

Mθ,0pSq8 � πθpE0,θpSqq8 � πθpE0pSq8q .

The last ingredient needed to appreciate the time-zero condition is the weak density of C8 �
BpHq which directly leads to the relation Mθ,0pSq � pMθ,0pSq8q2. The statement now follows
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from the very definition of Mθ.

We know that αθ,Mg is a homomorphism for g P Pθpdq and that gS � Z is equivalent to kS � hZ

for all k � hg P Pθpdq. It thus follows αθ,Mh MθpZq �MθphZq from PθpdqSθ � Sθ, which proves

Pθpdq-covariance.

The net structure itself has been treated in detail in the paragraphs before Prop. 5 and stays un-

affected by the change of the symmetry action αθ Ñ αθ,M.

Similarly, the claimed version of the spectrum condition has already been proved for general Pθpdq-
covariant nets and for our choice of the underlying noncommutativity θ before and in Remark 5,

respectively.

We finish the proof by observing the stated properties of the vacuum just by glancing at its defi-

nition.

A schematic picture of this noncommutative algebraic Wick rotation can be seen in Fig. 2.8.

2.3.3 Deformation of a Lorentzian Theory

We will now follow another point of view in arriving at a noncommutative net of observables

on Minkowski space-time. Sketched by our main diagram, there is always the possibility of first

performing the Wick rotation pE ,O, α, σq Ñ pM,O, αM,Ωq as we presented it in section 2.2. The

resulting Lorentzian net M is equally well qualified for the deformation in the sense of warped

convolutions. Before we start that deformation, we call attention to the connection between the

two deformed nets Eθ andMθ in terms of analyticity. In the same way as on Euclidean space, one

can define Moyal-Minkowski space-time by imposing commutation relations

rXM
µ , XM

ν s � iθMµν

on the Moyal space-time coordinates XM
0 , ..., XM

d�1. A Wick rotation shall link a theory on

analogously deformed Euclidean space involving Euclidean coordinates Xθ
µ and parameters θEµν with

a theory on such Moyal-Minkowski space-time. Though Wick rotation is a complicated procedure, it

schematically transforms the Euclidean time components into purely imaginary values, XM
0 � iXE

0

which are then interpreted as ”real” time. During this transformation, the spatial components

stay unchanged. In the thesis at hand, we are always considering the case of commutative time,
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so Lemma 4 has the effect of coinciding deformation parameters, i.e., θE � θM. This shows that

the same noncommutativity θ can be used consistently for both the Euclidean and Lorentzian

signature.

In spite of the usability of the warped convolutions on the Wick rotated Lorentzian observable

net pM,O, αM,Ωq we risk a clash of notation. To avoid this, we emphasize on writingMθ for the

net obtained in the way just explained. This Mθ is built up of the elements Aθ, which for their

part are obtained via

AθΨ � lim
εÑ0

»
dk dv hpεk, εvq e�ipk,vq αθkpAqUpvqΨ , Ψ P D, (2.29)

where p., .q denotes the Minkowski space-time product and αM denotes the adjoint action of the

unitary representation U gained from the virtual Epdq-representation V on H. Hence the definition

of the Lorentzian net we are using now writes

MθpZq :� tAθ |A PMpZqu2 , Z P Zθ . (2.30)

The Ppdq-action αM provides a corresponding Pθpdq-action, which is called αM,θ.

Remark 10. We admit that the notation might be confusing at this point. As a memory hook,

αθ,M was the reduced symmetry automorphism we introduced earlier on and corresponds to “first

deforming, then Wick rotating”. Regarding αM,θ we are treating right now, it’s the other way

round. And to the readers’ alleviation, later results will imply that the distinction between the two

is in fact redundant.

Applying the treatment around Prop. 5, we follow thatMθ gives rise to a well-defined Lorentzian

net as well:

Proposition 8. The collection pMθ,Zθ, αM,θq is a Pθpdq-covariant, isotonic net of von Neumann

algebras satisfying the time-zero condition.

Proof. It should be clear from the defining relation (2.30) that Zθ Q Z ÞÑMθpZq is a net of von

Neumann algebras on H. Due to property 3. of Prop. 2, it holds that

UpgqAθUpgq�1 � pUpgqAUpgq�1qθ
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for g P Pθpdq and A PM8. Taking into account the covariance of the undeformed net M and

remembering M8 �M on the vector space level, this implies

UpgqMθpZq8Upgq�1 �MθpgZq8 , Z P Zθ , g P Pθpdq .

Now the shape of the cylinder regions was designed to permit

A�θ B PMpZq8 , A,B PMpZq8 , Z P Zθ .

In view of Lemma 3, property 1. of Prop. 2 states that the warped convolution commutes with

the algebra involution. Together with the product property 2. of the same lemma, this implies

that the set tAθ |A PMpZq8u is a �-algebra. Hence the double commutant in (2.30) amounts to

just taking the weak closure, and covariance of MθpZq follows.

The smooth time zero algebras of the net Mθ are, S P Sθ,

Mθ
0pSq8 �

£
ZPZθ
Z�S

MθpZq8 �M θ
0 pSq8 .

By the same reasoning as in Prop. 7, the validity of the Wick rotation of the deformed Euclidean

net, we have

M0pSq � πpE0pSqq2 � pπpE0pSqq8q2 ,

while πpE0pSqq8 � πpE0pSq8q implies that

Mθ
0pSq � πpE0pSq8qθ2 .

As we know, the undeformed nets tMpZquZPZθ fulfill the time zero condition. Having in mind

pM0pSq8q2 �M0pSq, we follow that MpZq is the smallest von Neumann algebra containing the

set

tUpgqM0pSq8Upgq�1 | g P P0pdq , S P Sθ : gS � Zu .
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As in the proof of Prop. 5, we can apply (the Lorentzian version of) Lemma 7 to conclude that

restriction to g P Pθpdq � Ppdq does not change the generated von Neumann algebra. After passing

to warped convolution time zero algebras Mθ
0pSq8 � πpE0pSq8qθ, we obtain

MθpZq �
�¤
SPSθ

 �
UpgqπpE0pSq8qUpgq�1

�
θ
| g P Eθpdq, gS � Z

(�2

�
�¤
SPSθ

 
UpgqMθ

0pSq8Upgq�1 | g P Eθpdq, gS � Z
(�2

,

which is the claimed time zero condition.

2.3.4 Interrelation Between the Lorentzian Nets

So far we have accomplished two types of Wick rotation, both starting from a Euclidean field

theory pE ,O, α, σq. The first one, elaborated on in the above part of the ongoing section, consists

in the deformation of E and is followed by the analytical continuation of the reduced symmetry

groups. The second type we have just worked out takes a different route and first performs this

sort of Wick rotation on the undeformed Euclidean net. If we then deform according to the warped

convolutions, the last proposition showed that we gain a deformed Lorentzian net, which might be

quite detached from the one we obtained going the first way. From an operational point of view,

this would only be constrictedly helpful since this could prefer the deformation of a distinct metric

signature. Before we spread out the possible consequences of such an incompatibility, we are able

to present the heart of the algebraic Wick rotation on degenerate Moyal space(-time):

Theorem 6. The two nets pMθ,Zθ,AdUM|Pθpdqq and pMθ,Zθ,AdUM
θ q are isomorphic, i.e., there

exists a unitary operator W : HÑ Hθ such that

WΩ � Ωθ , (2.31)

WUpgqW � � Uθpgq , g P Pθpdq , (2.32)

WMθpZqW � �MθpZq , Z P Zθ . (2.33)

Proof. In order to prove the first statement, we inspect the connections between the two Hilbert

spaces Hθ and H. The definition of the following map W0 linking them is already the key issue of

the proof:
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W0 : E8¡ {pNσ X E8¡ q Ñ E8¡ {pNσθ X E8¡ q
rAsσ ÞÑ rAsθσ .

For A,B P E8¡ , we have by the translational invariance of σ and point 2. of Lemma 6,

xrAsσ, rBsσyH � σpιpA�qBq � σθpιpA�q �θ Bq � xrAsθσ, rBsθσyHθ
.

This shows that W0 is well-defined and isometric. Since its domain and range lie dense in the

corresponding Hilbert spaces, we can extend it to a unitary operator W : H Ñ Hθ. Clearly W

satisfies WΩ � W r1sσ � r1sθσ � Ωθ.

Using this, relation (2.32) is not hard to realize. Strictly speaking, we have two virtual rep-

resentations g ÞÑ Vθpgq and g ÞÑ WV0pgqW � of the reduced Euclidean group Eθpdq on Hθ. For g

in a sufficiently small neighborhood of the identity, these representations act according to (2.10),

A P E8¡ ,

VθpgqrAsθσ � rαE
g pAqsθσ ,

WV0pgqW �rAsθσ � WV0pgqrAsσ � W rαE
g pAqsσ � rαE

g pAqsθσ ,

where we use the same fact in both of these equations. That is, the two virtual representations

coincide. After analytic continuation to unitary representations of Pθpdq, this implies (2.32) again

by E8 being dense in E .

To show that W also intertwines the nets, it is sufficient to consider the time zero algebras.

Indeed, both Mθ and Mθ satisfy the time zero condition and are generated from their time zero

data by representations of Pθpdq. We have just shown that these representations are in fact W -

equivalent. So let us write down the two time-zero algebras at first:

Mθ,0pSq8 � πθpE0pSq8q � tπθpAq : A P E0pSq8u ,
Mθ

0pSq8 � πpE0pSq8qθ � tπpAqθ : A P E0pSq8u .
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Comparing these, one fact becomes apparent: it is sufficient to show that W intertwines πpAqθ
and πθpAq for A P E0pSq8, as then (2.33) follows by continuity.

With A P E0pSq8 and B P E8¡ , we compute, using property 5 stated in Prop. 2,

WπpAqθW �rBsθσ � WπpAqθrBsσ � WπpAqθπpBqΩ
� WπpAqθπpBqθΩ .

Note that the warped convolutions πpAqθ, πpBqθ are built here with the representation U and

the Minkowski inner product in the oscillatory integral (2.29). But as θe � 0, we have already

seen in Lemma 3 and used several times that only spatial translations along x K e enter. For

p, x K e, the Euclidean and Minkowski inner products differ by a sign which is compensated by the

definitions of the respective warped convolutions. Furthermore, for x K e, the unitaries UMpx, 1q
implement αE

x. So we can use Lemma 5 stating that A ÞÑ πpAqθ is an α-covariant representation

of the Rieffel-deformed C�-algebra E0,θpSq, and again 5. of Prop. 2 to compute further

WπpAqθW �rBsθσ � WπpA�θ BqθΩ � WπpA�θ BqΩ � W rA�θ Bsσ
� rA�θ Bsθσ � πθpAqrBsθσ .

As all operators appearing here are bounded and trBsθσ : B P E8¡ u � Hθ is dense, we obtain

WπσpAqθW � � πθσpAq by continuity.

Thm. 6 finally establishes the commuting diagram, given in Fig. 2.9, for the case of commutative

time deformations of algebraic quantum field theory. One of the consequences is the independence

of a noncommutative Lorentzian theory being obtained either by Wick rotation of a deformed

Euclidean one or by deforming a commutative theory on Minkowski space-time. A more extensive

discussion of the various consequences of our findings will be contained in Ch. 5. The more abstract

the algebraic framework presents itself, the more beneficial it gets when it comes to applications

in concrete models. In the next chapter, we will examine the model of the free scalar field, which

on the one hand is the simplest thinkable model. On the other hand, it is the only existing (in

the sense of rigorous constructed) physical model in four space-time dimensions, up to freedom in

definition of the mass.
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Figure 2.9: The finally established commutative diagram.

Since we are going to treat the free field in terms of its n-point functions, we will also discover

properties that still hold for more general models.
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Chapter 3

Correlation Functions

In the preceding chapter, we have shown that under certain assumptions which are restrictive to

some extent, it is possible to perform a Wick rotation from a noncommutative Euclidean to a

quantum field theory on Minkowski space-time in the algebraic setting. Due to its generality, the

outcome of the algebraic approach can be applied to a variety of physically interesting models.

A different approach is given by the definition of a physical theory through its set of correlation

functions. According to Wightman’s reconstruction theorem [Wig56], a physical theory given by

properties of a quantum field is equivalent to the theory defined via its corresponding set of n-point

functions. In the current chapter we will focus on this viewpoint.

There are strong interrelations between the algebraic framework and the one given by n-point

functions [FH81, Haa92]. In the chapter at hand, these will be used to make visible the abstract

Wick rotation explained in the previous part of this work on the example of the Euclidean free

scalar field at first. The connections to the standard approaches concerning analytical continuation

of Schwinger functions will then be investigated. During this treatment, new implications on the

applicability of noncommutative Wick rotation for general theories in terms of n-point functions

will occur.

3.1 The Euclidean Free Scalar Field

Let us consider Euclidean Rd, endowed with the inner product xy :� x0y0 � x1y1 � . . .� xd�1yd�1

for x, y P Rd. We write Rd Q x � px0, xq. Let V denote the unitary representation of the Euclidean
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group Epdq :� Opdq 
 Rd on the underlying Euclidean Hilbert space HE . Since a thorough de-

scription of HE would require to rigorously derive the theory of Euclidean free fields and since we

are going to use the physical Hilbert space H instead, we omit such a detailed explanation. The

Euclidean (commutative) free scalar field φpτ, xq is governed by the well-known action

Srφs :� 1

2

¼
dτ dd�1x φpτ, xq ��B2

τ �∆x �m2
�
φpτ, xq , (3.1)

which incorporates the Helmholtz equation

��B2
τ �∆x �m2

�
φpτ, xq � 0 (3.2)

as the equation of motion. As is also commonly known, the latter equation written down

for imaginary values of τ is the Klein-Gordon equation. So, one directly sees that at least the

fundamental field equations of the free field on Euclidean and Minkowski space(-time) respectively

are linked by the mapping τ Ñ iτ .

We would like to see the exact connection between the corresponding n-point functions. In the

usual undeformed scenario, the mainly complete answer was given in the 1970’s, as has been indi-

cated in the introduction. Regarding the noncommutative case, we want to see how the framework

of Ch. 2 applies to the Euclidean free field. So, at first we shall identify the notions needed for the

algebraic Wick rotation in terms of free field entities.

The Green function Cpx� yq of the differential operator of (3.2), written as �∆�m2, fulfills

p�∆�m2qCpx� yq � δpx� yq .

Inspired by the Gaussian measure setting of the free field (see for example [GJ87] and [Roe94]

for thorough treatments), Cpx�yq is oftentimes referred to as “free covariance”, while the quantum

field theory perspective would rather favor the name “propagator”. All these different designations

mean the same object, namely the distribution on Rd �Rd, which can be made a bilinear form on

S pRdq �S pRdq and reads
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Cpx, yq � Cpx� yq �
»

ddp
eippx�yq

p2πqdpp2 �m2q , x, y P Rd, (3.3)

Cpf1, f2q �
»

ddp ddx ddy
eippx�yq

p2πqdpp2 �m2qf1pxqf2pyq , f1, f2 P S pRdq , (3.4)

where p2 :� p2
0 � p2 denotes the Euclidean inner product of Rd-vectors p � pp0, pq, p0 P R,

p P Rd�1. We remark that (3.3) can also be written in the following form,

Cpx� yq � p2πq�d{2
�

m

|x� y|

 d�2

2

K d�2
2
pm|x� y|q , (3.5)

where Kν denotes the modified Bessel function of the second kind [GJ87, sec. 7.2]. Sometimes

it is more convenient to write the free covariance in Fourier representation:

Cpf1, f2q �
»

ddp
rf1p�pq rf2ppq
p2 �m2

.

In order to investigate the structural manifestations of our algebraic theory, we recall the main

properties of the free covariance. Before we do so, we need some further notions: first of all, the

implementation of the time reflection r : px0, xq ÞÑ p�x0, xq is again denoted ι on Schwartz space

i.e., ιfpxq � fprxq. This means that we choose the Euclidean time direction e to be p1, 0q. The

Euclidean group shall act on Schwartz functions via the pull-back, i.e.,

g � pa,Rq P Epdq , f P S pRdnq ,
fpgqpx1, . . . , xnq :� pf � pg�1 b � � � b g�1qqpx1, . . . , xnq �

� fpR�1px1 � aq, . . . , R�1pxn � aqq .

In accordance with the literature (with respect to the general impact and the practicability for

this thesis, we are geared mainly to [OS73]), we define
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S pRd
�q :� tf P S pRdq | supp f � tpx0, xq : x0 ¥ 0uu , (3.6)

Dαfpx1, . . . , xnq :� B|α|
Bxα1

1 � � � Bxαnn
fpx1, . . . , xnq , |α| :� α1 � . . .� αn , (3.7)

S0pRndq :� tf P S pRndq |Dαfpx1, . . . , xnq � 0 @ |α| ¥ 0 if D j � k : xj � xku ,
S�pRndq :� tf P S pRndq |Dαfpx1, . . . , xnq � 0 @ |α| ¥ 0 unless 0   x0

1   � � �   x0
nu .
(3.8)

Proposition 9. The Euclidean scalar field propagator C : S pRdq�S pRdq Ñ C fulfills the following

properties:

1. Continuity: The map Epdq Q g ÞÑ Cpf1,pgq, f2q is continuous for all f1, f2 P S pRdq.

2. Invariance: Let g P Epdq. Then

Cpf1,pgq, f2,pgqq � Cpf1, f2q @f1, f2 P S pRdq

3. Reflection positivity:

Cpιf�, fq ¥ 0 @ f P S pRd
�q

4. Symmetry:

Cpf1, f2q � Cpf2, f1q @f1, f2 P S pRdq

Proof. 1. This is an easy consequence of Lebesgue’s dominated convergence theorem. For the

sake of completeness we prove it for the translations (the rotations follow by decomposing

them into small angles). From the definition of Cpf1, f2q we infer

Cpf1,pa,1q, f2q �
»

ddp ddx ddy
eippx�yq

p2πqdpp2 �m2qf1px� aqf2pyq �
»

ddp eipa
rf1p�pq rf2ppq
p2 �m2

.
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Thus the translation just results in a phase. The function eipa rf1p�pq rf2ppqpp2 � m2q�1 is

bounded by
��� rf1p�pq rf2ppqpp2 �m2q�1

��� for all a P R and therefore

lim
aÑ0

Cpf1,pa,1q, f2q � lim
nÑ8

Cpf1,pan,1q, f2q � Cpf1, f2q

by the dominated convergence theorem.

2. Follows straightforwardly from the invariance of the kernel Cpx � yq: let g � px,Rq P Epdq
where x P Rd and R PMd�dpRq an orthogonal matrix. Then

Cpf1,px,Rq, f2,px,Rqq �
¼

ddp eippx�yq

p2πqdpp2 �m2q f1pR�1px� aqqf2pR�1py � aqq ddx ddy

�
¼

ddp eipRpx�yq

p2πqdpp2 �m2q f1pxqf2pyq ddx ddy

�
¼

ddp eippx�yq

p2πqdpp2 �m2q f1pxqf2pyq ddx ddy

� Cpf1, f2q .

In the third equality, we have substituted p by Rp.

3. Define the spatial Fourier transform pf to be

pfpx0, pq :� p2πq� d�1
2

»
dd�1x e�ipxfpx0, xq , (3.9)

then we have for f P S pRd
�q and ωp :�

b
p2 �m2,
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Cpιf�, fq �
¼

ddp eippx�yq

p2πqdpp2 �m2q ιf
�pxqfpyq ddx ddy

�
¼

ddp eippx�yq

p2πqdpp2 �m2q fp�x
0, xqfpy0, yq ddx ddy

�
0»

�8

dx0

8»
0

dy0

»
ddp eip

0px0�y0q

p2πqppp0q2 � p2 �m2q f̂p�x
0, pqf̂py0, pq

�
8¼
0

dx0 dy0

»
ddp e�ip

0px0�y0q

p2πqppp0q2 � p2 �m2q f̂px
0, pqf̂py0, pq

�
8¼
0

dx0 dy0

»
dd�1p

2ωp
e�ωppx

0�y0q f̂px0, pqf̂py0, pq

�
»

dd�1p

2ωp

������
8»
0

dx0 e�ωpx
0

f̂px0, pq
������
2

¥ 0 , (3.10)

since p2ωpq�1 ¥ 0. In the fifth equality, we have utilized the residue theorem in the form

»
dp0

p2 �m2
eip

0A �
»

dp0

pp0 � iωpqpp0 � iωpq eip
0A � 2π

ωp
e�|A|ωp . (3.11)

4. Symmetry:

Cpf1, f2q �
¼

ddp eippx�yq

p2πqdpp2 �m2q f1pxqf2pyq ddx ddy

�
¼

ddp e�ippy�xq

p2πqdpp2 �m2q f1pxqf2pyq ddx ddy

pÑ�p�
¼

ddp eippy�xq

p2πqdpp2 �m2q f2pyqf1pxq ddx ddy � Cpf2, f1q . (3.12)

It happens that arbitrary n-point functions can be completely determined by the exact form of

the free covariance. In other words, the vacuum representation of the free field provides a quasi-free
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state. Although we wrote Cpx� yq for the kernel of the two-point function Cpf1, f2q we choose to

denote those of more general n-point functions in German letters (”fraktur”). That is to say, we

write

Snpfq �
»

ddnx Snpx1, . . . , xnqfpx1, . . . , xnq ,

where this association is distributional in general.

One can derive the reduction formula in the sense of quasi-freedom for the Euclidean free field

n-point distributions Sn P S 1pRdnq in various ways, but we are not going to recapitulate this to

a large extent at this place. We rather mention that any theory built up of fields which for their

part are sums of a creation and annihilation operator (which is valid for the free field) satisfies the

preconditions of Wick’s theorem. Therefore the vacuum expectation value of a product of fields

cascades into sums of products of field contractions. The Euclidean case in particular can as well

be derived by varying the generating functional with respect to a source function, which is not the

philosophy we are into in the framework at hand. Whatever way one chooses to gain a reduction

relation for a (quasi-)free theory, they all have the following form,

S1pxq � 0

S2px1, x2q � Cpx1 � x2q

Snpx1, . . . , xnq �
n�1̧

k�1

Sn�2px1, . . . , pxk, . . . , xn�1qCpxk � xnq , n ¡ 2 (3.13)

where the variables pxk are meant to be omitted.

3.2 Fock Space

After this short part intended to make ourselves familiar with the two-point function of the Eu-

clidean free scalar field again, we are ready to catch the many particle aspect of this theory. This is

needed for the Euclidean algebra of observables to take shape in the case at hand. A well established

arena for countable particle excitations is the so-called Borchers-Uhlmann algebra [Bor62, Uhl62],

and is defined to be the direct sum
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S :�
8à
n�0

S pRndq , S pR0q :� C .

The elements of S are terminating sequences of Schwartz space functions

S Q f :� pf0, f1, f2, . . . , fN , 0, . . .q , f0 P C , fn P S pRndq

for an arbitrary N P N. Let α denote the action of Epdq on this algebra,

αgf � αgpf0, f1, f2 . . .q :� pf0, f1,pgq, f2,pgq . . .q .

The tensor product

pf b gqnpx1, x2, . . . , xnq :�
ņ

k�0

fkpx1, x2, . . . , xkqgn�kpxk�1, xk�2, . . . , xnq

makes S an algebra. One can as well define an involution and a Euclidean time reflection as

pf�qnpx1, x2, . . . , xnq :� fnpxn, xn�1, . . . , x1q ,
pιfqnpx1, x2, . . . , xnq :� fnprx1, rx2, . . . , rxnq ,

respectively. Together with δn,0, these definitions make the Borchers-Uhlmann algebra a unital
�-algebra with automorphic Epdq-action α.

How are we going to see the connection to the Euclidean algebra of observables now? The Borchers-

Uhlmann algebra is the correct framework to give a description of the field excitations, whatever

exact field model one is considering. As in the one-particle case, the important entities are the

functionals on the suitable function space.

In the following way we are able to define a net tEpOquOPO of Euclidean �-algebras using the

Borchers-Uhlmann algebra

O Q O ÞÑ EpOq :� tf P S | supp fn � O

n timeshkkikkj
� � � � �Ou � tf P S | supp fn � O�nu .
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According to the investigations in Ch. 2 we denote the inductive limit of this net by E :� S .

Nevertheless: defined in this way, the Euclidean algebra E is not a set of bounded operators on

some Hilbert space. This causes no serious problems for our treatment, but we remark that we

could have defined it as the set of all exptiφpfqu (with the right support properties), which is more

suitable to a C�-algebra setting.

The next ingredient needed for the application of the algebraic Wick rotation is the reflec-

tion positive functional. Given a sequence of distributions Sn P S 1pRndq satisfying the specific

customized properties of the Euclidean n-point functions (see section A.1 in the appendix), one

defines the Euclidean functional σ to be

σ : E Ñ C

σpfq :�
8̧

n�0

Snpfnq . (3.14)

It remains to work out whether the Euclidean axioms as stated in Definition 3 are fulfilled for

the Euclidean Borchers-Uhlmann functional σ. This is done next.

Lemma 8. The linear functional σ on E defined in (3.14) satisfies the following properties:

1. Continuity: The map Epdq Q g ÞÑ σpαgf b hq is continuous for all f, h P E.

2. Invariance: σpαgfq � σpfq @g P Epdq, @f P E

Proof. 1. This results from the map in question being a composition of continuous functions:

The map g ÞÑ αgf is continuous for all f P S since α is an automorphic symmetry action.

Furthermore, the tensor right multiplication Rb
h : S Q f ÞÑ fbh is continuous in the topology

of pS ,bq. Since σ is a continuous functional on S , the map

g ÞÑ pσ � Rb
h � αp.qfqpgq

is continuous for all f, h P S .

2. Follows from the definition of α on S and the Euclidean invariance of the Schwinger functions

given in pE1q of Sec. A.1 in the appendix.
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As we have seen in the last chapter, the Lorentzian quantum field theory can be obtained from

the Euclidean one with the aid of the reflection positive linear functional σ. For this notion of

reflection positivity and, as a consequence, for the construction of the physical Hilbert space, it

is essential to remain on the ”positive-time“ algebra E¡. At the Borchers-Uhlmann algebra this

circumstance gets well visualized, as E¡ is defined to be

E¡ :� S � :� tf P S | supp fn � Rnd
� u .

Now let us define the following sesqui-linear product on E¡:

xf, gy :� σpιf� b gq , f , g P E¡ .

In the algebraic framework we arrived at the physical Hilbert space H by performing a GNS-

like construction with the aid of a general version of the product x., .y. Now we want to identify

the concrete form of the corresponding Hilbert space for the free scalar field. To this end we first

study the ”one particle“ content, described by vectors f
1

:� p0, f1, 0, . . .q. Recapitulating the proof

of reflection positivity of the free covariance (3. of Prop. 9) and the spatial Fourier transform pf ,

defined in equation (3.9), we are able to write

xf, fy � Cpιf�, fq �:

»
dd�1p

2ωp
fppqfppq �: xf, fyH , (3.15)

with the map

p.q : S pRd
�q Ñ S pRd�1q

fppq �
»

ddx e�ipx�ωpx
0

fpx0, xq � p2πq d�1
2

8»
0

dx0 e�ωpx
0 pfpx0, pq , (3.16)

see also [Roe94, Sec. 7.5.2]. This map p.q is the Fourier-Laplace transform of a Schwartz

function having support at positive time values. Thus p.q is an isometry from pS pRd
�q, x., .yq to

pS pRd�1q, x., .yHq endowed with the inner product
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xs1, s2yH �
»

dµ s1ppqs2ppq ,

where we use the abbreviation dµ :� dd�1pp2ωpq�1.

Lemma 9. On the one-particle sector, the algebraic process of forming the quotient of pS pRd
�q, x , yq

with the kernel Nσ of x , y reveals the pre-Hilbert space pS pRd�1q, dµq. Thus,

H1 � pL2pRd�1q, dµq .

Proof. The image of p.q is a dense subset of pS pRd�1q, dµq, as one can see in the following way:

in [OS75, Lemma 2.4], it was proven that the Fourier-Laplace transform is a continuous map from

S pR4n
� q to S pR4n

� q with dense range and trivial kernel. This finding goes back to [OS73, Lemma

8.2]. Clearly, the generalization of this fact to S pRdn
� q is straightforward, as the Laplace transform

stays one-dimensional. Hence the completion of this mapping’s image coincides with the completion

of pS pRd�1q, dµq, which is nothing else than the one-particle Hilbert space H1 � pL2pRd�1q, dµq.
Furthermore, let g P ker x., .y. Then we cannot deduce g � 0, but from inequality (3.10) we may

infer g � 0. Hence ker x., .yH � t0u.

The next step consists of the generalization of this procedure to arbitrary elements f �
pf0, f1, f2, . . .q of the Borchers-Uhlmann algebra. Consider the Bosonic Fock space F built up

on the Hilbert space H1 � L2pRd�1, dµq, that is

F � à
n¥0

P�Hn

Hn :� pHbn
1 , x., .ynq .

Here, P� :� 1
n!

°
πPτpnq

V pπq denotes the symmetrization operator on Hbn
1 and V pπq is the im-

plementation of the n-permutation π P τpnq, while x., .yn denotes the fully symmetrized n-particle

version of the scalar product x., .yH, i.e.,

xΨ,Φyn :� xP�Ψ, P�ΦyHbn
1
.
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The scalar product on F is given by xΨ,ΦyF :� °
n¥0

xΨn,Φnyn while in the usual way, we define

the vacuum to be Ω :� p1, 0, 0, . . .q. The creation and annihilation operators on F are essential for

the generalization of the one-particle quotient map p.q to E¡. Let χ P H1 and Ψ P F , then we

identify

pa:pχqΨqnpp1
, . . . , p

n
q :� 1?

n

ņ

k�1

χpp
k
qΨn�1pp1

, . . . ,pp
k
, . . . p

n
q , pa:pχqΨq0 � 0 ,

papχqΨqnpp1
, . . . , p

n
q :� ?

n� 1

»
dµ χppqΨn�1pp, p1

, . . . , p
n
q .

Furthermore, let us define another Fock space operator by

φ : H1 Ñ LpFq
φpχq :� appχ�q � a:pχq , (3.17)

which is our Euclidean field candidate (LpFq denoting general linear operators on F here). In

the latter formula, p denotes the parity operator, pspxq :� sp�xq, and its importance in the latter

definition will become clear in a moment. One immediately comprehends that φ is compatible with

the involution on E¡, i.e.,

φpfq� � apppfq�q� � a:pfq� � a:pppfq�q � apfq � a:ppf�qq � app2fq
� a:ppf�qq � appppf�qq�q � φppf�qq , (3.18)

just by pfq� � ppf�q.
Lemma 10. σ can be continuously extended to a linear functional acting in a well-defined way on

elements of the form δ b s :� ps0, δ b s1, δ b s2, . . .q, where sk P S pRpd�1qkq.
Proof. We follow the standard approach and firstly verify this statement on the one-particle space

S pRdq. Take pgnqnPN to be a delta-sequence in S pR�q. Then we have

lim
nÑ8

Cpgn b s, fq � lim
nÑ8

»
ddp ddx ddy

eip
0px0�y0q

p2πqdpp2 �m2qgnpx
0qrsp�pq pfpy0, pq

�
»

ddp

p2πqpp2 �m2q

8»
0

dy0rs1p�pq e�ip
0y0 pfpy0, pq �

»
ddp

pp2 �m2q rs1p�pq rfppq .
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In particular, for pgjnqnPN denoting two delta-sequences we obtain

lim
nÑ8

Cpg1
n b s1, g

2
n b s2q �

»
dµ rs1p�pqrs2ppq , (3.19)

so we are able to define the numbers Cpδbs, fq and Cpδbs1, δbs2q by the continuity of C. The

vacuum representation of the free field in use is quasi-free, thus for f � pf0, f1, f2, . . .q consisting of

Schwartz functions of product form, fn :� f
p1q
n b � � � b f

pnq
n , f

pjq
n P S pRd

�q for j � 1, . . . , n it holds

σpfq �
¸
n¥0

Snpfnq �
¸
n¥0

n�1̧

k�1

Sn�2pf p1qn , . . . , pf pkqn , . . . , f pn�1q
n qCpf pkqn , f pnqn q ,

which means that we may insert functions supported ”at sharp times“, i.e., those being of the

form δbs, since σ is a regular functional (see Lemma 8). This regularity together with the linearity

of σ leads to the validity of this conclusion for arbitrary functions fn P S pRndq.

From now on, operating with the generalized function δb s on E is meant in the way explained

in the above lemma. Now it is time to introduce the field content on F .

Definition 16. On the Fock space F defined via the reflection positive functional σ on the Eu-

clidean Borchers-Uhlmann algebra E¡, we prepare the following notions:

1. The time-zero algebra E0 is defined to be the Borchers-Uhlmann algebra generated by all

generalized functions of the form δ b s for s being a Schwartz function, i.e.,

E0 :� tδ b s � ps0, δ b s1, δ b s2, . . .q | sn P S pRnpd�1qqu .

2. The time-zero field ϕpsq is given by the representation of the generalized function δ b s:

ϕpsqrgsσ :� rδ b sb gsσ .

Finally,
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3. Let f � °
mPN

hm b sm for hm P S pR�q and sm P S pRd�1q for m P N. Then we define the

Euclidean field φE in the following way,

φEpfq :�
¸
m

8»
0

dt hmptqαtϕpsmq .

The first two points of the latter definition are well-defined according to Lemma 10. The

symmetry group shall act on these fields consistently with respect to the algebraic approach,

g P Epdq : αgφ
Epfq :� V pgqφEpfqV pgq�1 @f P S pRd

�q ,

and the same shall be true for the time-zero field ϕ.

Proposition 10. 1. The time-zero field fulfills the following relation,

ϕpsq � φppδ b sqq @ s P E0 :

2. ϕ is a well-defined representation of E0 on F .

3. The two-point function in terms of φE equals the free covariance, i.e.,

xφEpfqΩ, φEpgqΩyF � Cpf, gq @f, g P S pRdq .

Proof. 1. We start by calculating the scalar product of two time-zero elements of the one-particle

sector:

xpδ b s�q, pδ b uqyH1 �
»

dµ

8¼
0

dx0 dy0 δpx0q rs�ppq e�ωppx
0�y0q δpy0qruppq

�
»

dµ rsp�pq ruppq � Cpδ b s, δ b uq . (3.20)
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The last equality follows from (3.19). Form the two-point function of the operator φpp.qq to

obtain

xΩ, φppδ b sqqφppδ b uqqΩyF � xpδ b s�q, pδ b uqyH1 � Cpδ b s, δ b uq
� σpιp1q� b pδ b sb δ b uqq � xr1sσ, ϕpsqϕpuqr1sσyF ,

where the first equality is gained by the definition of φ and the second is just equation (3.20).

2. Let s P S pRd�1q and g P E¡ such that xrgsσ, rhsσyF � 0 for all h P E¡. Using 1., we observe,

xϕpsqrgsσ, rhsσyF � xφppδ b sqqrgsσ, rhsσyF � xrgsσ, φppδ b sqq�rhsσyF
� xrgsσ, φppδ b s�qqrhsσyF � xrgsσ, ϕps�qrhsσyF
� xrgsσ, rδ b s� b hsσyF � 0 ,

where in the third equation we have used relation (3.18). Thus ϕpsq is independent of the

concrete representative s.

3. Let f, g P S pRd
�q, such that f � °

m1PN
hm1

1 b sm1
1 and g � °

m2PN
hm2

2 b sm2
2 and such that

f b g P S¡pR2dq. This latter condition reflects the demand on complete time-ordering. Then

we infer,

xφEpfqΩ, φEpgqΩyF �
¸

m1,m2PN

¼
dt1 dt2 h

m1
1 pt1qhm2

2 pt2qxαt1ϕpsm1
1 q, αt2ϕpsm2

2 qy

�
¸

m1,m2PN

¼
ddx ddy hm1

1 px0qhm2
2 py0q

»
dµ e�ωppy0�x0qsm1

1 pxqsm1
2 pyq

� Cpf, gq ,

where in the second equality we have renamed t1 and t2 into x0 and y0, respectively. By

time-ordering, x0   y0 and the exponential is a damping. The last equality is then obtained

by recollecting the Schwartz functions f and g, while drawing on the techniques of Sec. 3.1.

The free covariance in its form (3.3) is seen to be independent of any time-ordering.
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Proposition 11. 1. For the Euclidean free field the Fock space F over H1 is given by E¡{Nσ.

The abstract quotient map r sσ : E Ñ x , y{Nσ given in Ch. 2 has the following form:

r.sσ : E¡ Ñ F

f ÞÑ
¸
n¥0
M¥0

n¹
k�1

φpf pkq,Mn, qΩ .

Here, lim
NÑ8

N°
M�0

nÂ
k�1

f
pkq,M
n denotes the tensor product expansion of an arbitrary function fn in

S pRdnq.

2. The virtual representation V on F is given by V pgqrf sσ :� rfpgqsσ.

Proof. 1. The one-particle structure was shown in Lemma 9. For the arbitrary particle numbers

we contemplate a Fock space vector Ψ having product form, i.e.,

Ψ � pψ0, ψ
p1q
1 , ψ

p1q
2 b ψ

p2q
2 , . . . , ψp1qn b � � � b ψpnqn , . . .q .

The connection between F and the Euclidean free field given by σ on E¡ will be realized by

the following calculation with the help of relation (3.15): we calculate the scalar product of

two vectors evolving from the action of a polynomial
°
n

n±
k�1

φpψpkqn q on the vacuum, i.e.,

C
2̧

n�0

n¹
k�1

φpψpkqn qΩ,
2̧

m�0

m¹
l�1

φpχplqm qΩ
G

F

�

� xpψ0 � φpψp1q1 q � φpψp1q2 qφpψp2q2 qqΩ, pχ0 � φpχp1q1 q � φpχp1q2 qφpχp2q2 qqΩy
� ψ0χ0 � 0� 0� xψp1q1 , χ

p1q
1 y � ψ0xpχp1q�2 , χ

p2q
2 y � χ0xψp2q2 , pψ

p1q�
2 y � 0� 0

� pxψp2q2 , pψ
p1q�
2 yxpχp1q�2 , χ

p2q
2 y � xψp2q2 , χ

p1q
2 yxψp1q2 , χ

p2q
2 y � xψp1q2 , χ

p2q
2 yxψp2q2 , χ

p1q
2 yq .

Now consider two functions δ b s, δ b u P E0 of product form such that pδ b sqpkqn, � ψ
pkq
n and

pδ b uqpkqn, � χ
pkq
n for all k, n P N. Then from equation (3.15) we recognize that the last two

lines of the latter calculation are equal to
2°
n,m

Sn�mpιpδ b sq�n b pδ b uqmq.
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In order to identify the scalar product of general polynomials in φ with the sum of all Then,

we assume the equation to hold for the sum over n until N�1 and m until M�1, respectively.

Abbreviating ΣN
ψ :�

N°
n�0

n±
k�1

φpψpkqn qΩ we calculate,

xΣN
ψ ,Σ

M
φ yF � xΣN�1

ψ ,ΣM�1
χ y � x

N¹
k�1

φpψpkqN qΩ,
M¹
l�1

φpχplqM qΩyF

� x
N¹
k�1

φpψpkqN qΩ,ΣM�1
χ yF � xΣN

ψ ,
M¹
l�1

φpχplqM qΩyF

Now we apply Wick’s theorem. It states that the expectation value of any field monomial

is equal to the sum of all possible contractions. The two-valent contractions are given by

the free covariance C. In view of relation (3.13), any higher contraction is given by the

suitable product of such free covariances. In a reduced notation leaving out the distributional

arguments this leads to,

xΣN
ψ ,Σ

M
φ yF �

N�1,M�1¸
n,m�0

Sn�m �SN�M �
M�1̧

m�0

SN�m �
N�1̧

n�0

Sn�M

�
N,M̧

n,m�0

Sn�m ,

which proves the assertion. Thus, for E0-elements δ b s and δ b u having product form it

holds

σpιpδ b sq� b pδ b uqq �
C¸

n¥0

n¹
k�1

φppδ b sqpkqn,qΩ,
¸
m¥0

m¹
l�1

φppδ b uqplqm,qΩ
G

F

�
C¸

n¥0

n¹
k�1

ϕpspkqn qΩ,
¸
m¥0

m¹
l�1

ϕpuplqm qΩ
G

F

. (3.21)

For an arbitrary element fn P S pRdnq we have fn � lim
NÑ8

N°
M�1

f p1q,M b � � � b f pnq,M , where

f plq,M P S pRdq for all M � 1, . . . , N and l � 1, . . . , n. Moreover, φ and therefore also ϕ is
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a linear operator on Fock space. Hence we can pull out the sum of this latter expansion to

conclude

σpιf� b gq �
C ¸

n¥0
M¥0

n¹
k�1

ϕpspkq,Mn qΩ,
¸
m¥0
M 1¥0

m¹
l�1

ϕpuplq,M 1

m qΩ
G

F

, (3.22)

for general elements f :� δ b s and g :� δ b u of E0.

We thus observe that due to relation (3.22) the map r sσ maps a Borchers-Uhlmann vector

g P E0 to the polynomial
°
n¥0
M¥0

n±
k�1

φpgpkqn,qΩ in the admittedly not very clear version using one-

particle contributions. One could just as well define a corresponding n-valent functional Φ by

Φpfnq :� °
m

±n
k�1 φpf pkq,mn q, which would simplify the relation above to rf sσ :� °

n Φpfn,q,
where fn, for n � 1 is given in (3.16) while for arbitrary n, the generalization is obvious,

fn,pp1
, . . . , p

n
q � p2πq�npd�1q

2

8»
0

dnx0 e
�

n°
k�1

ωp
k
x0k pfnppx0

1, p1
q, . . . , px0

n, pnqq .

It remains to show that the quotient map is of this form for arbitrary elements in E¡, and not

just for those of E0. But this is a straightforward implementation of 3. of Prop. 10. Indeed,

the sum structure stays untouched by the action of the Euclidean time-translations. Thus,

the two-point functions of d-dimensional Schwartz functions gained through the procedure

above will result in the corresponding free covariances, which proves the identity

σpιpf�q b gq �
C ¸

n¥0
M¥0

n¹
k�1

φEpf pkq,Mn qΩ,
¸
m¥0
M 1¥0

m¹
l�1

φEpgplq,M 1

m qΩ
G

F

�:

C¸
n¥0

ΦEpfnqΩ,
¸
m¥0

ΦEpgmqΩ
G

F

. (3.23)

So, we have assured ourselves that the Hilbert space obtained by the completion of the

quotient space of pE¡, x., .yq{ker x., .y is given by the Bosonic Fock space F .
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2. Now it is straightforward to identify the ”virtual“ representation of the Euclidean group on

H1 and, consequently, also on F . Again, everything follows from the one-particle extent,

where we have

V1ptqfppq :� pfppt,0q,1qqppq � p2πq� d�1
2

»
dx0 e�ωpx

0 pfpx0 � t, pq

� p2πq� d�1
2 e�ωpt

»
dx0 e�ωpx

0 pfpx0, pq � e�ωptfppq .

V1ptq is a symmetric operator onH1, generating a strongly continuous contraction semi-group.

Hence we indeed have V1ptq � e�tH for the positive generator H, fulfilling

Hfppq � ωpfppq , @f P S pRd
�q ,

pHΨqnpp1
, . . . , p

n
q �

�
m̧

k�1

ωp
k

�
Ψnpp1

, . . . , p
n
q .

The Euclidean subgroup commuting with the time reflection, which we have termed Eepdq in

the algebraic setting defines a unitary operator

g P Eepdq : U0,1pgqf :� pfpgqq ,

while the boosts have to be defined on an invariant, dense subspace of H1, as we have done

in Ch. 2. The second quantization of these operators is standard and writing V pgq for the

implementation of Epdq on F we have

αgφpχq :� V pgqφpχqV pgq�1

g P Epdq : V pgqΨ � V pgqpψ0, ψ1, ψ2, . . .q :� pψ0, V1pgqψ1, Vbpgqψ2, . . .q ,

where

Vbpgqpψp1qn b � � � b ψpnqn q :� pV1 b � � � b V1qpgqpψp1qn b � � � b ψpnqn q � pV1pgqψp1qn b � � � b V1pgqψpnqn q .
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A consequence of this finding is the following

Corollary 1. The Euclidean functional σ fulfills reflection positivity, i.e.,

σpιf� b fq ¥ 0 @f P E¡ .

Proof. We rely on relation (3.23). By continuity of σ, we obtain

σpιf� b fq �
¸
n,m

Sn�mpιf�n b fmq �
¸
M¥0

C¸
n¥0

n¹
k�1

φEpf pkq,Mn qΩ,
¸
m¥0

m¹
l�1

φEpf plq,Mm qΩ
G

F

¥ 0 .

At this stage we have built up enough to verify the consistency of our Fock space operator φ

with the Euclidean field φE . So far we have identified the structure pE ,O, αq as well as the time-zero

data E0 at the special case of the free field, so let us list the relevant notions now,

EpOq :� tf P S
�� suppfn � O�nu , σpfq :�

¸
n¥0

Snpfnq

F �à
n¥0

P�H bn
1 , H1 � L2pRd�1, dµq , ϕpsq � φppδ b sqq

g � ppa0, aq, Rq P Epdq : αpp0,aq,Rq � adrU0pa,Rqs , V1pa0qfppq � e�ωpa0fppq
pV pgqΨqnpp1

, . . . , p
n
q � pVbpgqψnqpp1

, . . . , p
n
q , Ψ � pψ0, ψ1, . . .q P F . (3.24)

Since the basic framework is set up, we can move on to extract the Minkowskian theory out

of our free field. During the next section, we will stick to the findings of section 2.2. This is

well-grounded, since we provided the net of Euclidean algebras defined by the free field and it is

evident that the action of V pgq, g P Eθpdq is an automorphic symmetry action thereon.

3.3 Reconstruction of Quantum Fields

We have shown in Ch. 2 that the representation V pgq of the Euclidean group Epdq on the physical

Hilbert space fits into the framework of “virtual representations“ [FOS83]. This physical Hilbert
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space in fact is the Bosonic Fock space F in the free scalar field scenario. By analytic continuation

of V it follows that we are left with a unitary representation Upgq of the Poincaré group Ppdq on F .

We denote the automorphic action on the Fock space operators by αM, leading to the symmetry

action on the Fock space,

A : F Ñ F , g P Ppdq : αM
g pAq � UpgqAUpgq�1 . (3.25)

The translations are most important for the ongoing treatment. Their representation Uptq is

given by the analytical continuation of V ptq to purely imaginary values of t, thus it acts on the

Hilbert space in the following way,

Uptqfppq � eiωptfppq ,

and correspondingly on F . Moreover, let us abbreviate the action αM
ppt,0q,1q by αM

t . Relying on

Proposition 2, we are lead to

Definition 17. 1. We define the Minkowski field φMpfq as the image of the time-zero field ϕ

under the Poincaré representation Uptq, smeared with a time-dependent Schwartz function,

that is

φMpfq :�
¸
m

»
dt hmptqαM

t ϕpsmq , f � °
mPN

hm b sm P S pRdq .

2. To the space-time region O � Rd we associate the Lorentzian algebra MpOq, defined in the

following way:

MpOq :�
ª

K�Rd�1

K�t�O

tαM
t pδ b sq | s � ps0, s1, . . .q , sn P S pRnpd�1qq , supp sn � Ku .

Remark 11. For the Minkowski field we do no longer need the restriction to positive values of the

time coordinate. Therefore, we can plug in any Schwartz function on Rd and integrate over the

whole of R in the definition of φM.
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So, in the same way as in the algebraic part, MpOq defines a von Neumann algebra and is

obtained by the application of the Poincaré action on the time-zero algebra E0. In fact, tMpOquOPO
defines an isotonous and Ppdq-covariant net. The proof goes along the lines of that given for the

more generally defined Lorentzian net given in Ch. 2, but using the full Poincaré group instead of

a proper subgroup. This causes no more difficulty.

Let us check if our definition of the free field on Minkowski space-time gives rise to the correct

Wightman functions. To this end, we appreciate the behavior under Minkowski-time translations

as they are given by analytic continuation,

pUptqΨqnpp1
, . . . , p

n
q � peiHtΨqnpp1

, . . . , p
n
q � e

i
n°
k�1

ωp
k
t
Ψnpp1

, . . . , p
n
q ,

for all Fock space vectors Ψ. For the expectation value of two Minkowski fields f1, f2 P S pRdq
we calculate

xΩ, φMpf1qφMpf2qΩy :�
¸
m,m1

xΩ,
»

dt1 h
m
1 pt1qαM

t1
ϕpsm1 q

»
dt2 h

m1

2 pt2qαM
t2
ϕpsm1

2 qΩy

tj�:x0j�
¸
m,m1

¼
ddx1 ddx2

»
dµ hm1 px0

1qhm
1

2 px0
2q�sm1 p�pq�sm1

2 ppqe�iωppx01�x02q

� lim
εÑ0

»
ddx1 ddx2

»
ddp

p2πqd
e�ip0px

0
1�x

0
2qeippx1�x2q

p2
0 � p2 �m2 � iε

f1px1qf2px2q , (3.26)

which equals the Feynman propagator. Defining the Wightman functions in the canonical way,

i.e.,

Wnpf1, . . . , fnq :� xΩ, φMpf1q � � �φMpfnqΩy ,

the calculation above shows that we obtain the correct Minkowski two-point function and, as

we have stressed continuously, all the Wightman functions by quasi-freedom.

3.4 Deforming the Theory

We intentionally made some effort to restate the main facts about the Euclidean free field in terms

of the Borchers Uhlmann algebra in the last sections. Also, the time-zero content of the theory was
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introduced with care, in order to make the application of the deformation scheme more visible.

Since we operate on Schwartz space (of several variables), the warped convolutions and Rieffel

product deformations are equivalent to the utilization of the Moyal product. In this context it

is essential that the product of Def. 5 incorporates the evaluation at a single point, which is not

appropriate for the tensor structure of S pRdq
nhkkikkj

� � � � �S pRdq � S pRdnq. The Moyal tensor product

for functions f, g P S pRdq is more suitable for these purposes [GL08],

pf bθ gqpx, yq :� p2πq�d{2
¼

ddu ddw eiuwfpx� θu{2qgpy � wq ,

and for coinciding arguments y Ñ x passes on to the Groenewold-Moyal product. For more

general fn P S pRndq, gm P S pRmdq it is best written down using the Fourier transformation:

p �fn bθ gmqpp1, . . . , pn, q1, . . . , qmq �
n¹
k�1

m¹
l�1

e�
i
2
pkθpl f̃npp1, . . . , pnqg̃mpq1, . . . , qmq ,

where we use the notation pθq :�
d°

k,l�0

pkθklq
l. Due to the complete antisymmetry and the

degeneracy of θ just two terms remain in this sum at the probably most interesting case of d � 4:

p2θ23q
3�p3θ32q

2 which result in p2ϑq3�p3ϑq2, where �ϑ are the only nonzero entries of the matrix

θ. The n-fold product of S pRdq-functions can be written in the following way

Fθ

�
nâ
k�1

fk

�
pp

1
, . . . , p

n
q �

n¹
j�1

rfjppjq ¹
1¤l m¤n

e�
i
2
plθpm (3.27)

where Fθ
�

2Â
k�1

fk



:� �pf1 bθ f2q. For later convenience, let us abbreviate the Moyal phase

factor
±

1¤l m¤n

e�
i
2
plθpm by Dθ

nppq. In opposition to the “point-wise Moyal star product” the Moyal

tensor product is not plagued by convolutions when the Fourier transformation is applied. For the

product of two functions we calculate
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p rf bθ rgqpp, qq � p2πq�d{2
¼

ddk ddv eikv rfpθk{2,1qppqrgpv,1qpqq
� p2πq�d{2

¼
ddk ddv eikv�

ipθk
2

�iqv rfppqrgpqq
�

»
ddk δpk � vq e

ipθk
2 rfppqrgpqq � rfppq rgpqq e�

ipθq
2

� p�f bθ gqpp, qq ,

where the last equality is valid according to formula (3.27). This relation holds for arbitrary n

Moyal factors by induction. Moreover, we have got a “cyclic formula”:

»
ddypf bθ gqpx, yq � p2πq�d{2

»
ddy ddk ddv e�ikv fpx� θk{2qgpy � vq

� p2πqd{2
»

ddy ddk ddq δpq � kq fpx� θk{2qrgpqq eiqy

� p2πqd
»

ddk fpx� θk{2qrgpkqδpkq � p2πqd{2
»

ddyfpxqgpyq . (3.28)

Back at our free field model, we realize that for spatial x P Rd�1, we have αxϕpsq � ϕpspp0,�xq,1qq
in the Euclidean and the Minkowski case. Thus we can define a “tensorial Rieffel product” for

(time-zero) fields in the same way we did for Schwartz functions. For convenience, we write down

its definition:

pϕ�θ ϕqps1, s2q :� p2πq�d{2
»

ddk ddv e�ikvαθk{2ϕps1qαvϕps2q

� p2πq�d{2
»

ddk ddv e�ikvϕps1,pθk{2qqϕps2,pvqq .

The time-zero field ϕ is a linear operator on the Fock space F , thus its warped convolution with

respect to the skew-symmetric matrix θ is well-defined and denoted by ϕθ, c.f. Sec. 1.2.4.

3.4.1 Noncommutative Four Point Function

Given that we just deform the action, i.e. use star products for every commutative product there,

the bilinear terms stay unchanged due to the cyclicity of the star product (“leaving out one star“),
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see equation (3.28) for coinciding arguments. So the deformed free field theory would then be

exactly the commutative one. Using the deformation to a greater extent at least lets the bilinear

part stay the same and therefore also the propagator. This implies that from n ¥ 4, the correlation

functions differ from their commutative counterparts. Now let us go over to this first nontrivial

noncommutative correlation function, the deformed time-zero 4-point function. It reads

Sθ
4ps1, s2, s3, s4q � xΩ, ϕθps1qϕθps2qϕθps3qϕθps4qΩy

� xΩ, ppϕ�θ ϕ�θ ϕ�θ ϕqps1, s2, s3, s4qqθ Ωy
� xΩ, pϕ�θ ϕ�θ ϕ�θ ϕqps1, s2, s3, s4qΩy ,

due to the product property pϕ1qθpϕ2qθ � pϕ1 �θ ϕ2qθ and the translational invariance of the

vacuum. We will give an account of its derivation in appendix C, while for now, we go on with the

result,

Sθ
4ps1, s2, s3, s4q � Cps1, s2qCps3, s4q � Cps1, s4qCps2, s3q �

�
»

dµppq dµpqq rs1p�qqrs2p�pqrs3pqqrs4ppqeiqθp . (3.29)

This specific form makes us learn a few things right from looking at it:

1. For every n ¥ 4, the expansion (3.13) gets modified by an integrated Moyal phase.

2. Symmetry cannot hold for arbitrary noncommutative n-point functions. In fact, Sθ
2 � S2 is

the only one fulfilling permutation symmetry of arguments.

3. We know that we have to shrink the symmetry group to Eθ or Pθ respectively in order to

gain a well-defined theory. All deformed n-point functions will then satisfy the corresponding

invariance.

Giving an intermediate summary using shortened notation, we have so far

sk P S pRd�1q , fk P S pRd
�q , k P N

Sθ
2ps1, s2q � S2ps1, s2q , Cpf1, f2q �

B»
h1 αϕ1

»
h2 αϕ2

F
W2pf1, f2q �

B»
h1 α

Mϕ1

»
h2 α

Mϕ2

F
ñ Wθ

2pf1, f2q �W2pf1, f2q . (3.30)
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Assuming the time-ordering t1   t3, t2   t4, we can write the full Euclidean deformed 4-point

function in the following way,

Sθ
4pf1, f2, f3, f4q � Cpf1, f2qCpf3, f4q � Cpf1, f4qCpf2, f3q �∆θ

4,

∆θ
4 �

»
dt1 h1pt1q � � � dt4 h4pt4q

»
dµppq dµpqq eωppt2�t4q�ωqpt1�t3q�iqθprs1p�qqrs2p�pqrs3pqqrs4ppq

����
t1 t3,t2 t4

�
»

dt1 h1pt1q � � � dt4 h4pt4q
»

ddp ddq e�ip0pt2�t4q�iq0pt1�t3q�iqθp

pp2 �m2qpq2 �m2q rs1p�qqrs2p�pqrs3pqqrs4ppq

�
»

ddp ddq eiqθp

pp2 �m2qpq2 �m2q
rh1p�q0qrh2p�p0qrh3pq0qrh4pp0qrs1p�qqrs2p�pqrs3pqqrs4ppq

�
»

ddp ddq

pp2 �m2qpq2 �m2q
rf1p�qq rf2p�pq rf3pqq rf4ppq eiqθp , (3.31)

as one can check by inserting suitable V ptqrs for rs and applying the residue theorem ”in the

other direction“. The time-ordering condition has to be satisfied in order to make possible a

representation by means of exponential factors e�ωp∆t. After the reverse application of the residue

theorem, one can drop any condition on time-ordering again. Equivalently, one could define the

particular n-point function as limit of a finite time-integration, since the transition to the familiar

form of Sθ
4 is done via a p0-integration only.

In complete analogy to the Euclidean case, one finds for the deformed Minkowski 4-point function

Wθ
4pf1, f2, f3, f4q � Dpf1, f2qDpf3, f4q �Dpf1, f4qDpf2, f3q �Dθ

4,

Dθ
4 � lim

εÑ0

»
i ddp ddq

pp2
0 � p2 �m2qpq2

0 � q2 �m2q � iε
rf1p�qq rf2p�pq rf3pqq rf4ppq eiqθp . (3.32)

3.4.2 Moving on to Higher Orders

Each (Minkowski or Euclidean) n-point function can be treated via its corresponding (time-zero)

distributions, i.e.

Snpsnq �
»
dd�1x1 � � � dd�1xnSnpx1, ..., xnq snpx1, ..., xnq , sn P S pRpd�1qnq
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Note that by the kernel theorem, it suffices to work with tensor products of S pRd�1q-functions

on the time-zero hyperplane, which makes it possible to directly define the deformed time-zero

distributions as

Sθ
nps1, . . . , snq :�

»
dd�1x1 � � � dd�1xnSnpx1, ..., xnq ps1 bθ � � � bθ snqpx1, ..., xnq . (3.33)

We can make use of the simple form (3.27) of the Moyal tensor product in momentum space

Sθ
nps1, . . . , snq �

»
dd�1p1 � � � dd�1pn rSnp�p1

, ...,�p
n
q rs1pp1

q � � � rsnppnq ¹
1¤l m¤n

e
i
2
plθpm ,(3.34)

to deduce a surprisingly simple relation between the commutative and the deformed n-point

functions,

rSθ
npp1

, ..., p
n
q � rSnpp1

, ..., p
n
q

¹
1¤l m¤n

e
i
2
plθpm . (3.35)

This general form leads to another way of deriving the noncommutative four-point correlator.

Let us write C0 for the free covariance restricted to the time-zero plane. Bearing in mind that the

Fourier transformed free covariance is rC0pp1
, p

2
q � δpp

1
�p

2
q

2ωp
1

, we obtain by setting n � 4 in formula

(3.35):

rSθ
4pp1

, ..., p
4
q �

�
δpp

1
� p

2
qδpp

3
� p

4
q

4ωp
1
ωp

3

� δpp
1
� p

3
qδpp

2
� p

4
q

4ωp
1
ωp

2

� δpp
1
� p

4
qδpp

2
� p

3
q

4ωp
1
ωp

2

�
Dθ

4ppq .

Due to the specific combinations of the delta-distributions, all Moyal phases vanish except for

two which sum up in the second term. Thus one is left with the distributional kernel of the concrete

form (3.29).

Returning to the case of general n-point functions we just have to build the Fourier transform

of (3.13) to obtain

rSθ
npp1

, ..., p
n
q �

n�1̧

k�1

rSn�2pp1
, . . . ,pp

k
, . . . , p

n�1
q rC0ppk, pnq

¹
1¤l m¤n

e
i
2
plθpm , (3.36)
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which happens to be a comfortably simple formula linking deformed and undeformed Schwinger

functions in momentum space. Still we have to admit that the phase factors of the form eipθq cannot

be absorbed into the corresponding two-point functions of the reduction formula. This means that

the vacuum representation of the Moyal deformed theory does no longer incorporate a quasi-free

state.

3.5 Application of the Algebraic Framework

In this section, we will have a look at the consequences of the algebraic setting treated in Ch. 2

when applied to the deformed Euclidean scalar field. We have already worked out all the necessary

relations, so we just have to bring things together.

Let us collect what we have done with the noncommutative free field two- and four-point functions

up until now. Starting from Fock space F we constructed the correlation functions in terms

of Schwartz functions on the ”time-zero hyperplane“ Rd�1. Preparing the ground for a specific

representation α of the Euclidean group Epdq � Rd�Opdq, we gained the correct Euclidean two- and

four-point functions by building the time-zero correlation function of the ”dynamically integrated“

field φEpfq � °
mPN

³
dt hmptqαtϕpsmq for Schwartz functions hm defined such that f � °

m

hm b sm.

And, most importantly, in the same manner we obtained the Minkowski propagator and four-

point function by time-zero correlations of fields acted on with the analytically continued group

action αM and tested with suitable time-dependent functions. So, starting with the time-slice, we

get everything we need by acting with the dynamics. These results correspond to the free field

manifestation of the arrow E ÑM in Fig. 2.9.

Lemma 11. For the Euclidean free scalar field, given by the operator φE on F , the Wick rotation of

Schlingemann, c.f. [Sch99], can be explicitly performed and results in the free field φM on Minkowski

space-time.

Proof. According to 2. of Prop. 10, ϕ is a well-defined representation of the time-zero algebra E0

on F . Starting from the free Euclidean field theory pE ,O, α, σq as given in Sec. 3.1, we are able to

obtain the time-zero algebra E0 by performing the limit

S pRdq Q f �
¸
mPM

hm b sm Ñ
¸
mPM

δ b sm � δ b s ,
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understood to take place as in Lemma 10. By (3.26), the two-point function of the Minkowski

field φM, introduced upon E0 in Def. 17, equals the Feynman propagator. The state ω on F is

given by ωpfq :� xr1sσ, f r1sσy for f P S and is quasi-free. Thus, each n-point function can be

exactly determined from the propagator by an expansion of the form (3.13). The set of correlation

functions in turn characterizes the free field on Minkowski space-time.

So, the free scalar field fits well into our framework. This was mainly the content of Secs. 3.1,

3.2 and 3.3. If we deform the theory by a degenerate skew-symmetric matrix θ, we are able to draw

the analog conclusion:

Proposition 12. The Euclidean free scalar field may be deformed in terms of warped convolutions.

The resulting theory, given by the operators φE
θ on F , where θ is of the form (2.20), may be

analytically continued to the deformed free field on Minkowski space-time.

Proof. Given a commutative Euclidean n-point function Sn P S 1pRdq, we can deform it in terms

of warped convolutions, is equivalent to the deformation in terms of Moyal tensor products. We

have discussed this in Sec. 3.4. Due to relations (3.27), the deformed n-point functions differ by

integrated Moyal phases from their commutative counterparts.

In the proof of Lemma 11 we referenced the continuation of the two-point function. As Moyal

deformed propagators coincide with the corresponding commutative ones, the conclusion carries

over to the case at hand. Next we check the covariance properties. From the explicit form of the

two-point function,

Wθ
2px1, x2q �W2px1, x2q �

»
dd�1p

2ωp
eiωppx

0
1�x

0
2q�ippx1�x2q , (3.37)

one can read off the complete Poincaré invariance. The direct allocation to the Lorentzian case

of the expansions (3.13) and (3.36) reveals the Pθpdq-invariance of arbitrary Wθ
n, the restriction

becoming necessary due to the emergence of the noncommutative phase factors. In almost the same

manner, the spectrum condition and positivity of the noncommutative n-point functions follow on

Minkowski space-time. Indeed, the fact that noncommutativity restricts the symmetry group, the

spectrum of the four momentum operators has to be generalized. The single remaining boost

direction together with full translational invariance leads to
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specU � tp P Rd | p0 ¡ |p1|u �: Y , (3.38)

where U denotes the analytically continued translation operator,

U : Rd Q pt, xq ÞÑ eitHeix P .

The adjoint action of Pθpdq is denoted by αθ,M and acts on F as described in (3.25). The

deformed field and observable net are defined in complete analogy to Def. 17, with ϕ exchanged

by ϕθ and αM by αθ,M. Thus, in terms of n-point functions, we obtain the deformed Lorentzian

theory pMθ,O, αθ,M, ωθq from the deformed Euclidean field theory pEθ,O, αθ, σθq.

A lesson from the free field The operative point is that we can apply the unitary representation

of the reduced Poincaré group on the time-zero correlators. That is to say, the Wick rotation

of theories fulfilling the time-zero condition largely relies on the analytic continuation of their

symmetry group representations. In (3.26) we showed the consistency of this approach when it

comes to the application on the Euclidean free field. Clearly, the deformation is unaffected by the

action of the translation group; in particular, the phase factors Dθ
n are.

We are ready to give an interim result. Given a noncommutativity matrix θ, degenerate according

to the commutative-time case, the Moyal deformation effects the rise of phase factors Dθ
n in the

n-point functions of any theory. Furthermore, if a certain theory is known to allow time-zero fields,

we obtain the general time-zero correlator

Sθ
npsp1qn , . . . , spnqn q �

»
dd�1p1 � � � dd�1pn rSnp�p1

, ...,�p
n
q rsp1qn pp

1
q � � � rspnqn pp

n
q

¹
1¤l m¤n

e
i
2
plθpm .

By ”allowing time-zero fields” the well-defined evaluation of the field distributions on elements

of the form pf0, δ b s1, pδ b s
p1q
2 q b pδ b s

p2q
2 q, . . .q is meant, see Lemma 10. The set of distributions

Sθ
n P S 1pRpd�1qnq also determines the time-zero content of the corresponding Lorentzian theory.

Since the residual symmetry group commutes with θ (see (2.4)), the time-dependent part responsible

for the reconstruction also will. Moreover, it will keep this property after analytical continuation.

Though it cannot directly be adducted in terms of n-point functions, Prop. 6 states the persistence
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of the time-zero condition after deformation. Thus, also in more general theories, the image of the

time-zero content under the analytically continued symmetry group representation will be a good

candidate for the theory on Minkowski space-time.

3.6 Relation to the Standard Approach

Momentarily leaving aside the advantages of directly visualizing the algebraic Wick rotation at the

free field scenario, the setting just described is not absolutely practical. One is rather contem-

plating a full Euclidean or Lorentzian theory and highly interested in implications on the analytic

continuation without the intermediate step of restricting to the time-zero plane.

Nevertheless, we want to point out that many constructed quantum field theory models allow

for such a restriction. The P pφq2 models [GJ87] and the φ4-model in 3 dimensions [DF77] can be

analyzed in this way, for example. For general theories defined by its set of Schwinger functions,

heavy use is made of the full Euclidean or Minkowski invariance and microcausality, usually. We

do not wish to use theses axioms as they will not survive the deformation.

The two famous papers by Osterwalder and Schrader were the first to give necessary and sufficient

conditions for a set of Schwinger functions to define a Wightman theory. The linear growth con-

dition there was designed to be a substitute for demanding the existence of a holomorphic Fourier

transform directly. As a consequence, it is easier to validate in concrete models, but still requires

some effort.

Before finishing the axioms for Euclidean Green’s functions, lecture notes of Osterwalder [Ost73]

concerning this subject have been published. There, Schwinger functions satisfying a somewhat

stronger growth condition are smeared out in the spatial variables and analytically continued to

Wightman functions just in terms of the time-coordinates. We can adjust this approach to our

setting, mainly because SOpdq-invariance is not explicitly used to perform the continuation when

starting from a Euclidean theory. Before we treat the Euclidean n-point functions in higher gener-

ality, we will visualize this alternative approach in terms of the free field.

Nevertheless, we are assuming that time components are completely ordered. This means that we

contemplate Schwartz functions out of S�pRndq to be our test functions, see (3.6). In doing so, we

procure the various representations of n-point distributions.
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Continuation of the propagator Our starting point is again the (commutative as well as

noncommutative) two-point function of the free field, written in the difference variable ξ:

S1pξq :�
»

ddp

p2πqdpp2 �m2qe
ip0ξ0�ipξ �

»
dµ e�|ξ0|ωp�ipξ .

We define this distribution on S�pRdq � S pRd
�q, so we can drop the modulus in the exponent.

Furthermore, we write down the candidate for the analytical continuation of the distribution S1:

S1pζ0|sq �
»

dµ e�ζ
0ωp rsppq , ζ0 P C , (3.39)

and this notation emphasizes the spatial smearing with the Schwartz function s P S pRd�1q.

Lemma 12. For fixed s P S pRd�1q, the distribution S1pξ0|sq is the restriction to the positive real

half axis of a complex function S1pζ0|sq, analytic in C�. The Fourier-Laplace transform �W1 of S1

exists and is the Fourier transform of the Wightman two-point function W2.

Proof. One realizes that the domain of analyticity is indeed C� :� tz P C |Re z ¡ 0u. Hence, given

s P S pRd�1q, ζ0 ÞÑ S1pζ0|sq is an analytic function in C�. What remains to be checked are suitable

estimates on S1. In our simple case, writing ζ0 � τ � it, we are left with

sup
τ¡0

»
|S1pτ � it|sq|2 dt � sup

τ¡0

» �¼
dµppq dµpqq e�τpωp�ωqq�itp�ωp�ωqq rsppqrs�pqq
 dt

¤
» �¼

dµppq dµpqq eitp�ωp�ωqq rsppqrs�pqq
 dt

�
¼ ���dµppq dµpqq δp�ωp � ωqq rsppqrs�pqq��� .

The evaluation of the delta distribution causes the absolute value of the vectors p and q to

coincide. Thus, they are related by an orthogonal matrix R P SOpd� 1q. This further implies,

sup
τ¡0

»
|S1pτ � it|sq|2 dt ¤

» �����dµppq2ωp
rsppqrs�pRpq����� �:

» �����dµppq2ωp
rsppqrr�ppq����� ,

for rrppq :� rspRpq. By the Cauchy-Schwarz inequality, we finally deduce
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sup
τ¡0

»
|S1pτ � it|sq|2 dt ¤

» �����dd�1p

4ω2
p

rsppqrr�ppq�����
¤

��»
dd�1p

�����rsppq2ωp

�����
2
�1{2 ��»

dd�1q

�����rrpqq2ωq

�����
2
�1{2

�
»

dd�1p

4ω2
p

|rsppq|2 ,
which is square of the L2-norm of the function p ÞÑ rsppq{p2ωpq. Hence by the Paley-Wiener

Theorem 10 (in the appendix) it follows that there is a �W1pq0|sq P L2pR�q such that

S1pζ0|sq �
8»
0

�W1pq0|sq e�q
0ζ0 dq0 �

¼
Rd�

ddq �W1pq0, qqrspqq e�q
0ζ0 .

The latter equation follows from the concrete form (3.39) of S1. As e�q
0ζ0 for ζ0 P C� is an

exponential damping times a phase, it leaves S pR�q invariant. This shows the existence of a

distribution �W1 P S 1pRd
�q, such that we can remove the smearing in the spatial coordinates to see

that

S1pξq �
»

ddq e�ξ
0q0�iξq �W1pqq . (3.40)

The corresponding Wightman distribution is then defined to be

W2px, yq :�
»

ddq eiq
0px0�y0q�iqpx�yq �W1pqq .

Again, in this special case, the explicit forms of the functions involved are obvious: �W1pqq is

nothing else than pq2
0 � q2 �m2 � iεq�1, as one can verify by integrating over q0 in (3.40).

So, as a next step we have to check whether the approach described and calculated for the

two-point function generalizes to correlation functions of higher order in the Rieffel deformed free

field case.
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Writing the expansion (3.13) in difference variables, we obtain

Snpξ1, . . . , ξnq � Sn�2pξ2, . . . , ξn�1qS1pξ1 � . . .� ξnq � Sn�2pξ1, . . . , ξn�2qS1pξnq

�
n�1̧

k�2

Sn�2pξ1, . . . , ξk�2, ξk�1 � ξk, ξk�1, . . . , ξn�1qS1pξk � . . .� ξnq , (3.41)

so the effect of leaving out one variable xk is to contract ξk�1 and ξk into a sum in the resulting

distribution in difference variables. Furthermore, we observe that the noncommutative deformation

has the consequence of inserting Moyal phases of the form eiqθp into the distributions’ integral

representations. More generally, we have the following

Lemma 13. Let f P S pRdnq and let Dθ
nppq :�

n±
1¤k l

eipkθpl. Then rfθ :� rfDθ
n P S pRdnq and, using

fθ :� F�1r rfθs, for the Schwinger functions Sn it follows

Sθ
npfq � Snpfθq . (3.42)

Proof. It is well-known that Schwartz space is invariant under multiplication with phase factors,

so fθ P S pRdnq for any f P S pRdnq. For the second part we calculate

pφE �θ φ
Eqpf1 b f2q �

»
dv dk eikvαθk{2φ

Epf1qαvφEpf2q

�
»

dv dk dx dy eikvφEpxqf1px� θk{2qφEpyqf2py � vq

�
»

dx dy φEpxqφEpyqpf1 bθ f2qpx, yq � pφE b φEqpf1 bθ f2q .

Inductively, this is correct for arbitrary Schwartz functions of tensor form. We can take advan-

tage of Prop. 11 now. Indeed, by linearity of φE and continuity of the functional σ, it therefore

follows that xΩ, pφE �θ � � � �θ φ
EqpfqΩy � xΩ, pφE b � � � b φEqpfθqΩy holds for arbitrary f P S pRdnq.

By the definition of Sθ
npfq, relation (3.42) comes about.

Thus, by defining a new smearing function smearing function rsθpp1
, . . . , p

n
q we can go on like

in the commutative case when we are focusing on the time-dependence.
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Remark 12. The absorption of noncommutative phase factors into the spatial smearing function is

only possible due to the time-independence of the noncommutativity matrix θ. Thus this distinct

way of analytically continuing just the time-dependent part of the Schwinger distributions will get

massively changed when considering space-time noncommutativity.

On the other hand, this approach is introduced for its greater simplicity and it may happen that

the simultaneous continuation of the distributions in all their components is still possible.

In order to tackle the next step, we realize that

rSnpq1, . . . , qnq � rSn�1pp1, . . . , pn, pn�1q , qk :�
ķ

j�1

pj .

Implementing this in (3.42) and introducing the following notion for g P S 1pRpd�1qpn�m�1qq,

Sn�m�1pξ0
1 , . . . , ξ

0
n|gq :�

»
Sn�m�1pξ0

1 , . . . , ξ
0
nqgpξ1

, . . . , ξ
n
qdpd�1qnξ , (3.43)

we obtain,

Sθnpξ0
1 , . . . , ξ

0
n|gq � Snpξ0

1 , . . . , ξ
0
n|gDθ

nq , Dθ
npqq :�

n�1¹
j�1

eiqjθqj�1 .

Proposition 13. The set tSθ
nunPN of Schwinger distributions of the (commutative-time) deformed

Euclidean free field can be analytically continued to distributions tWθ
nunPN, satisfying Pθpdq-invariance

and positivity.

Proof. We find that pζ0
1 , . . . , ζ

0
nq ÞÑ Sθnpζ0

1 , . . . , ζ
0
n|gq defines a complex function analytic in Cn

� and

a distribution in the spatial variables. This can be appreciated inductively: We saw that S1 defines

an analytic function in C�. Now assume that Sn�2 is a complex function analytic in Cn�2
� . From

the first summand in (3.41), we deduce ζ0
k ¡ 0 for k � 2, . . . , n � 1 by the latter assumption.

Moreover, the second summand has the consequence of ζ0
n ¡ 0. The appearing of S1 in the first

term finally delivers
n°
j�1

ζ0
j ¡ 0, from which it follows ζ0

1 ¡ 0. Hence, we really have analyticity of

Sn on Cn
�.
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The Schwinger function Sθnpξ0
1 , . . . , ξ

0
n|gq decomposes into a sum of n!! products of propagators

and each of these products consists of pn � 1q{2 factors. We deal with complex functions in time

variables and smeared out in the spatial variables.

The absolute square of an N -fold product of functions S1 will be

» ����� N¹
l�1

S1

�
i

ņ

kl�1

vkltkl

������
2

dnt �
» N¹

l�1

dpd�1qnpl dpd�1qnpl
p2ωp

l
qp2ωq

l
q exp

�
�i

ņ

kl�1

vkltklpωpl � ωq
l
q
�

dnt

�
¼

dNµppq dNµpqq exp p�itAνq dnt ,

where t � pt1, . . . , tnq, νT � pωp
1
�ωq

1
, . . . , ωp

N
�ωq

N
q, whereas A is the corresponding coefficient

matrix, consisting just of entries equal to zero or one. If the product is part of a Schwinger function

Sn, then n delta-functions face 2N � n � 1 momentum integrations. So, there remains exactly

one integral of pfpωpqq�1 for one p P Rd�1 and a non-vanishing function f . Thus, smeared with a

Schwartz function g P S pRnpd�1qq, the absolute square of the product will fulfill

D C ¡ 0 :

¼ ����� N¹
l�1

S1

�
i

ņ

kl�1

vkltkl

������
2

gppqdpd�1qnp dnt ¤ C}g}8 @g P S pRnpd�1qq .

For the mixed terms we can argue analogously to infer the validity of the following estimate:

DK ¡ 0 : sup
τk¡0

k�1,...,n

» ��Sθnpτ1 � it1, . . . , τn � itn|gq
��2 dnt ¤

» ��Sθnpit1, . . . , itn|gq��2 dnt

¤ pn� 1qpn!!q2
2

K}g}8 @g P S pRnpd�1qq .

This assures by the Paley-Wiener Theorem that for any noncommutative Schwinger function

Sθn there exist distributions �W θ
n P S 1pRdn

� q being their holomorphic Fourier transforms,

Sθnpξ1, . . . , ξnq �
»

ddnq e
�

n°
k�1

pξ0kq
0
k�iξkqkq �W θ

npq1, . . . , qnq .

Even for more general Schwinger functions we have the following at our disposal:
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Lemma 14. Let Sn P S 1pRdnq be the n-point Schwinger distributions in difference variables of a

Euclidean quantum field theory and let �Wn denote its holomorphic Fourier transform. Then, for

the holomorphic Fourier transform �W θ
n of the deformed Schwinger function Sθn we have,

�W θ
n � �WnD

θ
n @n P N .

Proof of the Lemma. On the one hand, using the spatial Fourier transform defined in (3.9), we

have pSθn � pSnDθ
n, as Dθ

n depends only on the spatial variables. Hence we calculate,

�W θ
npq1, . . . , qnq :� p2πq�pd�1qn{2

»
ddnξ e�q

0ξ0�iqξ Sθnpξ1, . . . , ξnq

�
»

dnξ0 e�q
0ξ0 pSθnppξ0

1 , q1
q, . . . , pξ0

n, qnqq �

�
»

dnξ0 e�q
0ξ0 pSnppξ0

1 , q1
q, . . . , pξ0

n, qnqq e
i
n�1°
k�1

qkθqk�1

� �Wnpq1, . . . , qnq e
i
n�1°
k�1

qkθqk�1 � �Wnpq1, . . . , qnqDθ
npqq ,

and the claim is proved.

Continuing the proof of Prop. 13, we recognize that by the latter lemma, we have

Sθnpξ1, . . . , ξnq �
»

ddnq e
�

n°
k�1

pξ0kq
0
k�iξkqkq e

i
2

n�1°
j�1

qjθqj�1 �Wnpq1, . . . , qnq . (3.44)

Consistently with the literature, we define the Wightman distributions to be

Wθ
npx1, . . . , xnq :�

»
ddpn�1qq e

i
n�1°
k�1

qkpxk�1�xkq �W θ
n�1pq1, . . . , qn�1q

�
»

ddpn�1qq e
i
n�1°
k�1

qkpxk�1�xkq
e
i
2

n�2°
j�1

qjθqj�1 �Wn�1pq1, . . . , qn�1q . (3.45)

We are now in the position to inspect the validity of (deformed) Wightman axioms. Nevertheless,

we postpone this consideration to the next section, where we treat consequences of this approach

to Schwinger functions of more general theories.
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3.7 Implications for General Schwinger Functions

On the basis of the free field we saw in the preceding sections that the analytic continuation of

Schwinger functions belonging to the noncommutative free field can be arranged. Now the task is

to investigate the generalization to arbitrary Euclidean theories. What we should learn from these

considerations at least is that obtaining a Minkowski theory does not rely on full Euclidean invari-

ance or a certain notion of locality. It is exactly this need which confuses the issue of generalizing

the continuation in the other direction, i.e. gaining a Euclidean version of a deformed theory on

Minkowski space-time.

There are several analyticity properties of Euclidean n-point functions sufficient for the well-

definition of a Wightman theory [OS75]. The one which together with all the other axioms gives

necessary and sufficient conditions for the existence of a Wightman theory is the following:

pE01q There exist s P N and α, β P R, such that for all f P S0pRdnq and n P N we have

|Snpfq| ¤ αpn!qβ |f |sn , (3.46)

where |f |m for m P N denotes the Schwartz norm

|f |m :� sup
xPRdn
|α|¤m

��p1� x2qm{2pDαfqpxq��
� sup

xPRdn
|α|¤m

��p1� px1q2 � . . .� pxnq2qm{2Dαfpx1, . . . , xnq
�� . (3.47)

This is indeed a norm, since the supremum is taken over all multi-indices of order smaller or equal

to m. The sort of nomenclature has its origin in [OS75], where pE0q was the designation for the

Schwinger functions to be just tempered distributions. It has been shown that demanding pE0q is

not enough to guarantee for the existence of Wightman functions. As a remark, we mention another

condition: that of the Schwinger functions being in the dual of Schwartz space with the topology

given by the semi-norms |f |qm :� |f|m, where f denotes the holomorphic Fourier transform of f

on Rdn
� . This axiom, called pĚ0q, was shown to be equivalent to the Wightman axioms with the
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least effort, but at the same time seems to be most difficult to verify.

For the upcoming considerations we are interested in pE01q for our noncommutative Schwinger

functions at first. An equation like (3.34) for time-dependent Schwartz functions can easily be

written down

Sθ
npfq �

»
ddnp rSnp�p1, . . . ,�pnq rfpp1, . . . , pnqDθ

nppq , f P S pRdnq , (3.48)

and draws our attention to the noncommutative phase factors Dθ
n.

For the upcoming part of this section, we are going to refer to the following

Lemma 15. Let N P N and let MpRNq :� MpRN Ñ Cq denote the measurable functions on RN .

Furthermore, let ψ : MpRNq Ñ r0,8q be a sublinear functional, i.e., ψpf � gq ¤ ψpfq � ψpgq and

ψpafq � |a|ψpfq for all a P C and all f, g P LpRNq. Then, given m P N, we have

ψ

�� ¸
|α|¤m

cαfα

�¤ pm� 1qN max
|α|¤m

|cα| sup
|β|¤m

ψpfβq @ cα P C , @ fβ P LpRNq , α, β multi indices .

Proof.

ψ

�� ¸
|α|¤m

cαfα

� � ψpcp0,...,0qfp0,...,0q � cp1,0,...,0qfp1,0,...,0q � . . .� cp0,...,0,mqfp0,...,0,mqq

¤ |cp0,...,0q|ψpfp0,...,0qq � |cp1,0,...,0q|ψpfp1,0,...,0qq � . . .� |cp0,...,0,mq|ψpfp0,...,0,mqq
¤ max

|α|¤m
|cα|pψpfp0,...,0qq � ψpfp1,0,...,0qq � . . .� ψpfp0,...,0,mqqq .

Now, the inequality ψpfβq ¤ sup
|α|¤m

ψpfαq is valid for every set tfαu|α|¤m of functions in MpRNq.
As the sum in the upper estimate contains pm� 1qN terms, this finishes the proof.

Suppose that a field theory satisfying the Osterwalder-Schrader axioms including (3.46) is given.

We want to know if the corresponding Moyal-deformed Schwinger functions also fulfill such an esti-

mate. Relying on (3.42), we examine the behavior of the norms | . |m under Fourier transformation

for being able to gain an estimate of Sθ
npfq in terms of the Schwartz function f directly. To this end,

we need the following notion: we say that a sequence tσmumPN of positive numbers is of factorial

growth, if there exist constants α and β, such that |σm| ¤ αpm!qβ for all m P N.

103



Lemma 16. For all f P S pRdnq and for all m1 P N there exists a sequence tσnunPN of factorial

growth and s1 P N such that

|f |m1 ¤ σm1 | rf |m1�s1 ,

Proof. We start by writing the function f in Fourier representation and by pulling the derivative

and the polynomial under the integral. Then, for even m1 � 2m, m P N, we obtain by partial

integration,

|f |2m � sup
xPRdn
|α|¤2m

��p1� x2qmpDαfqpxq�� � sup
xPRdn
|α|¤2m

����» ddnp

p2πqdn{2 eipxi|α|p1�D2
pqmppα rfppqq����

¤ sup
|α|¤2m

»
ddnp

p2πqdn{2
���p1�D2

pqmppα rfppqq��� ,
as the factor eipxpiq|α| is bounded by one. Due to the Leibniz rule, we are left with the supremum

taken over arbitrary derivatives and powers of order smaller or equal 2m. Put differently, we are

left with the differential operator

���p1�D2
pqmppα rfppqq��� �

������
m̧

k�0

¸
|β|�k

p�1qm�kpmk qpkβqD2βppα rfppqq
������

�
������
m̧

k�0

¸
|β|�k

p�1qm�kpmk qpkβq
¸
γ¤2β

p2βγ qDγpαpD2β�γ rfqppq
������

�
������
m̧

k�0

¸
|β|�k

¸
γ¤mint2β,αu

p�1qm�kpmk qpkβqp2βγ q
γ!

pα � γq!p
α�γpD2β�γ rfqppq

������
¤

m̧

k�0

¸
|β|�k

¸
γ¤mint2β,αu

pmk qpkβqp2βγ q
γ!

pα � γq!
���pα�γpD2β�γ rfqppq��� ,

where we use the following notation: pmβ q is the multinomial coefficient m!
β1!���βdn!

whereas p2βγ q
denotes the product of binomial coefficients p2β1γ1

q � � � p2βdnγdn
q. Additionally, when we write γ ¤ 2β, we

mean γ1 ¤ 2β1, . . . , γdn ¤ 2βdn. In the last step we used the triangle inequality.
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We may now go on by estimating the remaining supremum over the sum of multi-derivatives. To

this end, we may take advantage of Lemma 15, where we set ψpfγq :� ³ |fγppq|ddnp and fγ :� D2β�γf

for f P S pRdnq. By the triangle inequality, this indeed makes ψ a sublinear functional on S pRdnq.
So, we obtain

|f |2m ¤ sup
|α|¤2m

»
ddnp

p2πqdn{2
m̧

k�0

¸
|β|�k

¸
γ¤mint2β,αu

pmk qpkβqp2βγ q
γ!

pα � γq!
���pα�γpD2β�γ rfqppq���

¤ sup
|α|¤2m

m̧

k�0

¸
|β|�k

pmk qpkβqc1pα, βqN1pα, βq sup
γ¤mint2β,αu

»
ddnp

p2πqdn{2
���pαpD2β�γ rfqppq���

¤ sup
|α|¤2m

m̧

k�0

pmk qc2pα, kqN2pkq sup
|β|¤k

»
ddnp

p2πqdn{2
���pαpD2β rfqppq��� ,

where c2pα, kq :� max
|β̃|�k

"
max
γ̃¤α

tp2β̃γ̃ q γ̃!
pα�γ̃q!

upk
β̃
qN1pα, β̃q

*
. The remaining sum over k can again be

estimated by the maximal contribution times the number of upcoming terms. Thus, we obtain,

|f |2m ¤ pm� 1qc3pmq sup
|α|¤2m

|β|¤m

»
ddnp

p2πqdn{2
���pαpD2β rfqppq��� ,

where c3pmq denotes a cascade of three maxima. We will deal with this coefficient below.

Now we can further estimate |f |2m by utilizing the fact that for all multi-monomials we have the

inequality p2α ¤ p1� p2q|α| by the multinomial formula, revealing

|f |2m ¤ Apmq sup
|β|¤2m

»
ddnp

p2πqdn{2
���p1� p2qmpDβ rfqppq��� ,

with Apmq :� pm� 1qc3pmq. Now we can insert a factor one, written as p1�p2qm�dn

p1�p2qm�dn
to move on,

|f |2m ¤ Apmq sup
|β|¤2m

»
ddnp

p1� p2qm
p2πqdn{2p1� p2qm�dn

���p1� p2qm�dnDβ rfppq��� .
As the first factor is integrable (giving the number c4), we can estimate the whole expression a

bit generously by
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|f |2m ¤ Apmq c4 sup
pPRdn
|β|¤2m

���p1� p2qm�dnDβ rfppq��� ¤ Apmq c4| rf |2pm�dnq ,
which finishes the estimate for σ1m :� Apm1qc4, m1 � 2m and s1 :� 2dn.

For odd m1 � 2m� 1, m P N, we make use of the fact that |f |m1 ¤ |f |m1�1 for all f P S pRdnq.
The preceding estimate then implies

|f |m1 � |f |2m�1 ¤ |f |2m ¤ cpm1q| rf |m1�s1 , s
1 :� 2dn� 1 .

Now let us verify that the overall coefficient c is of factorial growth in m.

We start by the maximal coefficient c1pmq of
°
γ¤α

p2βγ q α!
pα�γq!

, where |β| � m and |α| ¤ 2m. For

the extremal case where one γk � 2m and all others vanish, we have a contribution of 2m!. In

any case, this marks an upper bound for the asymptotic behavior of the “true“ binomial coefficient

c1, which grows exponentially. The number of summands N1 and N2 are both bounded by the

number dn2m, since this constitutes the total number of configurations when coinciding summands

are not incorporated. What remains is the maximal multinomial coefficient c2pmq of pmβ q, which is

increasing exponentially in m. It results that Apmq is of the order p2mq! pdnq4m exppmq, thus A

defines a sequence in 2m of factorial growth, while c4 is just the constant 2�dn{2 Γpdn{2q
Γpdnq

.

Remark 13. It is widely known that the Fourier transform acts continuously on Schwartz spaces of

arbitrary dimension, but the methods used to arrive at the estimate of Lemma 16 in terms of the

special norms | . |m will be useful in the following and are stronger than just continuity.

Due to this result we can get to an estimate on the functions fθ � F�1r rfθs.
Lemma 17. For all f P S pRdnq and for all m P N there exists a sequence tbnunPN of factorial

growth such that

| rfθ|m ¤ bm| rf |3m .
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Proof. Working in Fourier representation leads to the examination of the following norm,

| rfθ|m � sup
pPRdn
|α|¤m

���p1� p2qm{2Dα
p p rf Dθ

nqppq
��� � sup

pPRdn
|α|¤m

����p1� p2qm{2Dα
p

�rfppq e
i
2

°
k r

pkθpr

���� .

Let us contemplate the multi-derivative on the product of the Fourier transform and the phase

factors in more detail. In full length, it is given by a polynomial containing multi-derivatives of rf
and Dθ

n.

���Dα
p pDθ

n
rfppqq��� �

�����¸
β¤α

pαβqDβ
pD

θ
nppqDα�β

p
rfppq����� �

�����Dθ
nppq

¸
β¤α

pαβqPp|β|qppqDα�β
p

rfppq����� ,
where Pp|β|qppq is a polynomial in p of degree |β|, because every derivative with respect to any

momentum component delivers exactly one momentum power times �iϑ{2 and the terms coming

from the Leibniz rule do not increase the degree. For an arbitrary polynomial
N°
j�1

cjp
βj we may

infer

����� Ņ
j�1

cjp
βj

����� ¤
Ņ

j�1

|cj|p1� p2qβj ¤
Ņ

j�1

|cj|p1� p2qmax
k

βk ¤ N max
j
|cj|p1� p2qmax

k
βk
,

which in our case leads to

���Dα
p pDθ

n
rfppqq��� ¤ bp|α|qp1� p2q|α|

¸
β¤α

���Dα�β rfppq��� ,
with b denoting the maximal modulus of Pp|β|qppq-coefficients. If we re-insert this into our

initial expression we obtain

| rfθ|m ¤ sup
pPRdn
|α|¤m

#
p1� p2qm{2bp|α|qp1� p2q|α|

¸
β¤α

���Dα�β rfppq���+

� sup
pPRdn
|α|¤m

#
p1� p2q3m{2bp|α|q

¸
β¤α

���Dα�β rfppq���+ .
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Like in the proof of Lemma 16 we can estimate the sum of derivatives by the maximal derivative

times the number of upcoming terms. Indeed, choose ψpfβq :� sup
pPRdn

|fβppq| in Lemma 15, as well

as fβ :� Dα�β rf . Thence, we collect all constants into bm and deduce,

| rfθ|m ¤ sup
|α|¤m

|bp|α|q|Npαq sup
pPRdn
β¤α

!
p1� p2q3m{2

���Dα�β rfppq���)
¤ bm sup

pPRdn
|α|¤m

!
p1� p2q3m{2

���Dα rfppq���) ¤ bm| rf |3m .

Let us determine the asymptotic behavior with respect to m again. At first, we can estimate

the number Npαq of terms evolving in the sum over β ¤ α by p|α| � 1qdn ¤ pm � 1qdn, as this is

the maximal number of combinations for the multi-index β. Furthermore, we have to consider the

maximal modulus |bpαq| of P |β|ppq-coefficients. These are binomial coefficients with the maximal

possible contribution1 of p mrm{2sq and irrelevant powers of ϑ. Hence, we conclude that tbmumPN is a

sequence of factorial growth, which we consider apposite for our purposes.

Obviously, Lemma 16 for g :� rf serves as an estimate for the inverse Fourier transform. We

use this fact when we formulate our findings in the following

Proposition 14. Let s P N. Then, there exist s1 P N and a sequence tσmumPN of factorial growth

such that for all n P N and f P S pRdnq the estimate

|fθ|sn ¤ σn |f |s1n (3.49)

is valid.

Proof. For the norm |fθ|sn of the function fθ P S pRdnq, the application of Lemma 16 entails the

inequality |fθ|sn ¤ cpnq| rfθ|nps�dq if sn is even and |fθ|sn ¤ cpnq| rfθ|nps�2dq�1 if sn is odd. Lemma 17

then leads to the following inequalities,

|fθ|sn ¤
#

bnps�dq| rf |3ps�dqn , sn even ,

bnps�2dq�1| rf |3ps�2dqn�3 , sn odd .

1rm{2s denotes the Gaussian bracket, i.e., the largest integer which is smaller or equal to m{2.
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We observe that 3ps � dqn � 3sn � 3dn for sn even can be both even and odd, depending on

the dimension d. On the other hand, 3ps � 2dqn � 3 � 3sn � 6dn � 3 is always even if sn is odd.

Thus, a final implementation of Lemma 16 lets us end up with

|fθ|sn ¤

$''&''%
σ
p1q
n |f |p3s�4dqn , sn even , 3ps� dqn even ,

σ
p2q
n |f |p3s�5dqn�1 , sn even , 3ps� dqn odd ,

σ
p3q
n |f |p3s�7dqn�3 , sn odd .

This means that in (3.49), we observe |fθ|sn ¤ cpnq|f |t1n�t2 for either t1 � 3s � 4d, 3s � 5d, or

3s � 7d, as well as t2 � 0, 1 or 3, correspondingly. In each of these cases, the claimed estimate

follows from |f |t1n�t2 ¤ |f |pt1�t2qn for s1 :� t1 � t2.

A few remarks about the applicability of existing proofs concerning the analytical continuation of

Schwinger functions are in order. The paper [OS75] has deservedly become a classic in mathematical

physics over the last decades. The subtle details which at first spoiled the correctness of [OS73]

are of importance when trying to modify the fundamental axioms, as becomes important while

applying the Moyal deformation. As the authors explain with great care, the analytic continuation

happens at the time-components of n-point distributions and it highly matters how to treat the

spatial components. By means of the free field, we have shown in the preceding subsection that

smearing out the Schwinger functions in the spatial variables (i.e., treating them distributional) has

the drawback of demanding a stronger temperedness condition and the benefit of full Euclidean

covariance never entering the continuation. It is the restoring of the Wightman axioms for the

Minkowski space-time n-point functions when Euclidean covariance is needed for the first time.

The second method consists of showing that the Schwinger functions can be continued to analytic

functions in all the coordinates, including the spatial ones. Unfortunately, full SOpdq-covariance

must be assumed to get to this result. Going a bit more into detail, we present a few parts of

the proof residing in [OS75]: given a cone Cβ :� tx P Rd |x0 ¡ |x| tan βu for 0   β   π{4 it is

argued that any d linearly independent vectors contained in the dual cone Cπ{2�β can be mapped

to the vector p1, 0, 0, . . .q by a suitable set of rotations. Clearly, these cannot be taken just out of

Op2q � SOpd � 2q. To guarantee the sole usage of the latter group there is the need to go over to

the light wedge Yβ. But there are still many vectors of the dual wedge (which would be the analog

of the dual cone) Yπ{2�β which cannot be mapped into p1, 0, 0, . . .q just by using x0, x1-rotations!
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Showing analyticity in the spatial variables without using full SOpdq-covariance therefore must, if

possible, be done in a different manner

Next we are going to use the stronger condition pE02q for (certain) Moyal-deformed theories

and examine the corresponding Wick rotation. We prefer to give a formulation for this condition

for the set tSnun of Schwinger functions written in difference variables:

pE02q There exists s P N and α, β P R such that for all n P N and for all fk P S pRd
�q, k � 1, . . . , n

it holds

|Snpf1 b f2 b � � � b fnq| ¤ αpn!qβ
n¹
k�1

|fk|s . (3.50)

In [OS75, appendix], it has been worked out that this condition really implies pE01q. The free

field does fulfill the latter condition. We elaborated on a distributional version in the preceding

subsection, so we check the condition in terms of Schwartz norms now.

|S1pfq| �
����» ddp

p2πqdpp2 �m2q
rfppq���� ¤ » ���� ddp

p2πqdpp2 �m2qd�1

���� ���pp2 �m2qd rfppq���
¤ c2 sup

pPRd

���pp2 �m2qd rfppq��� ¤ c2| rf |d ¤ c3|f |3d .

In the last line we have used Lemma 16 for the function and its Fourier transform interchanged.

This shows (3.50) for n � 1. Similarly as in the proof of Prop. 13, we may decompose Sn into a

sum of products of the propagators S1. Applying the triangle inequality, we infer that there is a

constant cpnq such that |Snpf1 b � � � b fnq| ¤ cpnq|f1|3d � � � |fn|3d. Being a bit more specific, we have

cpnq � n!!c
pn�1q{2
3 , thus it defines a sequence of factorial growth.

Now it is time for a noncommutative generalization of the Osterwalder approach to the analytical

continuation of n-point functions satisfying pE02q.
Let Sn P S 1pRdn

� q be a sequence of Schwinger functions which satisfies (3.50) and again consider

the norms | . |m for m P N we have introduced in (3.47). Given that pE02q holds for all Schwartz

functions in S�pRdnq, we choose those of tensor form between the time and space components:

fk :� hk b sk for hk P S pR�q, sk P S pRd�1q, k � 1, . . . , n. We estimate the tensor product of

Schwartz functions in the norms | . |m in the following. Let a P S pRrq, b P S pRtq. We then have
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|ab b|m :� sup
px,yqPRr�t

|α|¤m

��p1� x2 � y2qm{2Dαpab bqpx, yq��
¤ sup

px,yqPRr�t

|α1|�|α2|¤m

���p1� x2qm{2pDα1aqpxqp1� y2qm{2pDα2bqpyq
���

¤ sup
xPRr
|α1|¤m

���p1� x2qm{2pDα1aqpxq
��� sup
xPRt

|α2|¤m

���p1� y2qm{2pDα2bqpyq
���

� |a|m|b|m . (3.51)

From this inequality it now follows that |fk|m � |hk b sk|m ¤ |hk|m|sk|m. As a next step we

define a distribution γhn by its action on a tensor product

γhn ps1 b � � � b snq :� Snph1 b s1 b � � � b hn b snq ,

which is in S 1pRpd�1qn
� q for every fixed combination h :� ph1, . . . , hnq P S pR�q � � � � �S pR�q.

Thus we obtain a useful relation from pE02q and (3.51):

|γhn ps1 b � � � b snq| ¤ ρn

n¹
k�1

|hk|m
n¹
j�1

|sj|m �: ρhn

n¹
j�1

|sj|m (3.52)

where ρhn is obviously an sj-independent sequence of factorial growth in n. We now take ad-

vantage of condition pE02q implying the estimate pE01q, as has been shown in [OS75, appendix].

Inequality (3.52) means that the requirements are fulfilled for γhn as well, which implies that there

exist r P N and a constant c such that

|γhn psq| ¤ cnρhn|s|nr ,

for all s P S pRpd�1qnq.
We are going to show the applicability of the Wick rotation without demanding full SOpdq-

covariance of the theory now. To this end, let us go over to the Moyal deformed theory defined by

the Schwinger functions Sθ. These are obtained by the use of the Moyal tensor product, which due

to our chosen scenario only affects the spatial components. We infer
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|Sθnph1 b s1 b � � � b hn b snq| �
����» Snpξ1, . . . , ξnqpph1 b s1q bθ � � � bθ phn b snqqpξ1, . . . , ξnqddnξ

����
�

����» Snpξ1, . . . , ξnqh1pξ0
1q � � �hnpξ0

nqps1 bθ � � � bθ snqpξ1
, . . . , ξ

n
qddnξ

����
Let sθ :� s1 bθ � � � bθ sn. Implementing Prop. 14, we are able to write down the best suited

estimate for our noncommutative Schwinger functions then:

pE02qθ :

|Sθnph1 b s1 b � � �hn b snq| ¤ cnρn

n¹
k�1

|hk|m|sθ|nr

¤ cnρnσn

n¹
k�1

|hk|m|s|nr1

�: pσn n¹
k�1

|hk|m|s|nr1 . (3.53)

The sequence defined through pσn :� cnρnσn is of factorial growth, as each factor is.

The remainder of this subsection is organized as follows: first of all we are going to generalize the

analytical continuation of [Ost73] to general Moyal theories of commutative time. We have already

checked its validity for the special case of the free field in 3.6. Next we will show that (3.53) leads

to the existence of the holomorphic Fourier transform of the noncommutative Schwinger functions.

Finally we are going to establish the Wightman functions and verify the axioms for them.

We utilized Hilbert space vectors made out of φE -monomials applied to Ω to represent the

Schwinger functions as scalar products in the free field case. Nonetheless, such a representation is

also valid for general Euclidean theories. Indeed, we have shown the construction of the physical

Hilbert space H in chapter 2 in the algebraic context. We as well did this in the framework of the

Borchers-Uhlmann algebra by dealing with the inner product

xf, gy :�
¸

n,m¥0

Sn�mpιf�n b gmq ,

leading to the fact that H shapes up as being the Fock space F for the free field. We want to

stress again that none of the preceding formulae are influenced by the Moyal deformation defined
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by θ. Hence it makes no difference so far if we contemplate the scalar product representation of

the deformed Schwinger functions, because this results in smearing with different spatial Schwartz

functions; those multiplied with the Moyal phase factors Dθ
n in Fourier space.

Osterwalder-Schrader Reconstruction We will show the validity of the Wick rotation of

[Ost73] for the Moyal-deformed Schwinger functions of commutative time now.

By assumption, the distributions Sn P S 1pRdnq are translation invariant. Due to the important

rule of deformation given in (3.42) and the definition of the Moyal tensor product, the noncommu-

tative distributions will keep that property. From translational invariance of the noncommutative

Schwinger functions, we may infer that for each Sθ
n P S 1pRdnq, there exists a Sn�1 P S 1pRdpn�1qq,

such that

Sθ
npfq �

»
Sn�1px2 � x1, . . . , xn � xn�1qfθpx1, . . . , xnqddnx ,

or, written distributionally, Sθ
npx1, . . . , xnq � Sθn�1pξ1, . . . , ξn�1q for ξk :� xk�1 � xk. From the

definition of our scalar product x , y on H,

xf, gy �
¸
n,m

»
fnprxn, . . . , rx1qgmpy1, . . . , ymqSn�mpx1, . . . , xn, y1, . . . , ymq , @f, g P S ,

we infer,

xf, e�tHgy �
�

¸
n,m

»
fnprxn, . . . , rx1qgmpy1, . . . , ymqSn�m�1pξ1, . . . , ξn�1, y1 � xn � t, ξ11, . . . , ξ

1
m�1q

ddpn�1qξ ddpn�1qξ1 ddy1 ddxn ,

where ξ1k :� yk�1 � yk.

By (3.42) and the form (2.20) of θ belonging to the commutative-time scenario, together with

the notation defined in (3.43), we conclude

Sθn�m�1pξ0, x0, ξ1
0|gq � Sn�m�1pξ0, x0, ξ1

0|gθq . (3.54)
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In the following, we omit the reference to the concrete smearing function g or gθ. For arbitrary

h P S pRq, the map

S pRdpn�mqq bS pRq Ñ C

pιf�n b gm, hq ÞÑ
»
xrfnsσ, e�pt�isqHrgmsσyHhpsqds

defines a continuous linear functional. Thus, we may write

»
xrfnsσ, e�pt�isqHrgmsσyHhpsqds �

»
Sn�m�1pξ0, y0

1 � x0
n � t, ξ1

0
; sqh1p�0ξqh2pξ10qhpsq ds dn�1ξ0 dm�1ξ1 ,

for a distribution Sn�m�1pξ0, y0
1�x0

n�t, ξ10; sq P pS pRn�m�1�qbS pRqq1 and p0ξq :� pξ0
n�1, . . . , ξ

0
1q.

Different smearing lets us end up with the following distribution F P pS pR�q bS pRqq1,

F pt, sq :�
»
Sn�m�1pξ0

1 , . . . , ξ
0
n�m�1; sqχpξ0

1 , . . . ,
pξ0
n, ξ

1
1

0
, . . . , ξ0

n�m�1qdξ0 � � � xdξ0
n � � � dξ0

n�m�1 .

This distribution pt, sq ÞÑ F pt, sq fulfills the Cauchy-Riemann differential equations and there-

fore,

Sn�m�1pξ0, y0
1 � x0

n � t, ξ1
0
; sq � Sn�m�1pξ0, y0

1 � x0
n � τ, ξ1

0q , τ :� t� is ,

defines a distribution in ξ0 and ξ10 as well as a function in z :� y0
1 �x0

n� τ , analytic in the right

half plane C� � tz P C | Re z ¡ 0u.
Proposition 15. Consider a fixed smearing function g P S 1pRpd�1qnq. For k :� n � m � 1

fixed and m � 0, . . . , k, the distributions Sθkpξ0
1 , . . . , ξ

0
k|gq can be analytically continued to functions

Sθkpζ0
1 , . . . , ζ

0
nq, analytic in Ck

�.

Proof. We have already stressed in (3.54) that Sθkpξ0
1 , . . . , ξ

0
k|gq � Skpξ0

1 , . . . , ξ
0
k|gθq. The statement

thus follows from the proof of [Ost73, Thm. 11] with the following notational identifications:

pTt :� αppt,0q,1q

Φpfq :� rf sσ
Sn�m�1pξ, x� x1 � t, ξ1|sq :� Sn�m�1pξ0, y0

1 � x0
n � t, ξ1

0
; sq ,
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and finally Ψ denotes the distributional kernel of rf sσ, written in difference variables.

At this point we can profit by the estimate given in (3.53). For the sake of clarity, let us write

the suppressed spatial smearing functions again.

Proposition 16. For all k P N and all ζ0
k P Ck

� there exist integers a, b and s, and a constant

c ¡ 0, such that

��Sθkpζ0
1 , . . . , ζ

0
n|gq

�� ¤ cp1� |pζ0
1 , . . . , ζ

0
kq|qap1�min

j
tRe ζ0

j u�1qb|g|sk . (3.55)

Proof. Follows from (3.53), (3.54) and [Ost73, (15) in Thm. 11], relying on the notational identifi-

cations in the proof of Prop. 15.

Remark 14. 1. The existence of constants such that this inequality holds means that we allow for

any polynomial growth and singularity of each time component separately when the deformed

Schwinger functions are restricted to hyperplanes of constant (e.g. zero) time.

2. In particular, we do not demand a time-zero condition from our deformed theory here.

As a next step, we implement a combination of two facts about analytic functions in several

variables to our analytic continuations Sk of the Schwinger functions in difference variables:

Proposition 17. 1. Let Sθn be a holomorphic function in time and a distribution in spatial

components. The existence of constants a, b, s P N and c ¡ 0, such that inequality (3.55)

holds is sufficient for the holomorphic Fourier transform �W θ
n of Sθn to exist. Moreover, �W θ

n is

then supported in Rdn
� such that the boundary distributions restricted to the n-fold product of

positive real axes in time fulfill the relation

Sθnpξ1, . . . , ξnq �
»

ddnq e
�

n°
k�1

pξ0kq
0
k�iξkqkq�W θ

npq1, . . . , qnq .

2. This holomorphic Fourier transform �W θ
n equals the deformed one of the corresponding com-

mutative theory, i.e.,

�W θ
n � �WnD

θ
n @n P N .
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Proof. 1. First of all we notice that Cn
� � Rn

� � iRn is a tubular domain. Any function f that is

analytic on such and satisfies an estimate

|fpz1, . . . , znq| ¤M
�

1�
a
pRe z1q2 � . . . pRe znq2

	m
, pz1, . . . , znq P Cn

� ,

for suitable constants M and m is the holomorphic Fourier transform of a distribution due to

[Vla66, section 26.1., eq. (1)]. The supposed stronger estimate (3.55) suffices for the existence of a

unique boundary distribution which is independent of the concrete restricting sequence, cf. [Vla66,

section 26.3., eq. (13)].

2. This was shown in Lemma 14.

Since this well-suited growth condition indeed holds for the sequence tSθnunPN, Prop. 17 allows

for the introduction of the noncommutative Wightman function candidates

Wθ
n�1px1, . . . , xn�1q �

»
ddnq e

i
n°
k�1

qkpxk�1�xkq�W θ
npq1, . . . , qnq .

2. of Prop. 17 now leads to the following form:

Wθ
n�1px1, . . . , xn�1q �

»
ddnq e

i
n°
k�1

qkpxk�1�xkq�Wnpq1, . . . , qnq e
i
n�1°
k�1

qkθqk�1

.

Finally, let us verify that these deserve to be called Wightman functions:

Obviously, the Wθ
n are Schwartz distributions by definition and the translational invariance

can just be read off there. The invariance with respect to the spatial rotations in SOpd � 2q
follows from the assumed invariance of the spatial Fourier transformed part of the noncommutative

Schwinger functions. A bit more but no more than is known from the literature has to be done

for the verification of x1-boost covariance. Due to the Euclidean x0, x1-rotational invariance of the

Schwinger functions, we act with L1, the infinitesimal generator of x0, x1-rotations, on Sθn to infer
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0 � L1S
θ
npξ1, . . . , ξnq �

¸
k

�
ξ0
k

B
Bξ1

k

� ξ1
k

B
Bξ0

k



Sθnpξ1, . . . , ξnq

� �i
»

ddnq e
�

n°
l�1

pq0l ξ
0
l �iqlξlq

¸
k

�
q0
k

B
Bq1

k

� q1
k

B
Bq0

k


�W θ
npq1, . . . , qnq

� �i
»

ddnq e
�

n°
l�1

pq0l ξ
0
l �iqlξlqB1

�W θ
npq1, . . . , qnq ,

where B1 denotes the infinitesimal generator of x1-boosts. Now we use that the kernel of the

holomorphic Fourier transform is zero, cf. [OS73, Lemma 8.2.], which leads to the vanishing of

B1
�W θ
n . This implements the invariance of the Wθ

n under these boosts. As Pθpdq � Rd�pSOp1, 1q�
SOpd�2qq, Wθ

n is invariant under the whole of Pθpdq. The spectrum condition follows directly from

the invariance of �W θ
n and the fact that supp�W θ

n � Rdn
� . Remember that the physical Hilbert space

was constructed using the Euclidean time inversion. Thus the demanded reflection positivity of the

Schwinger functions (untouched by the deformation) restates the positivity of the scalar product in

H. Since the Wightman functions are the boundary values of the analytically continued Schwinger

functions at purely imaginary time components, they fulfill the classical positivity condition. Using

our gained relations for the Wightman and Schwinger functions, this reads

0 ¤
¸
n,m

Sθn�mpιf�n b fmq �
¸
n,m

»
dξ dx

»
dq e

�
n�m�1°
k�1

pξ0kq
0
k�iξkqkq �W θ

n�m�1pqqιf�n p�x,�ξqfmpx, ξq

�
¸
n,m

»
dq �W θ

n�m�1pqqf�n,pqqfm,pqq .

Here, p.q denotes the Fourier-Laplace transform of Schwartz functions of Sec. 3.2. Since this is

a continuous mapping from S pRd
�q onto a dense subset of S pRd

�q with trivial kernel (see [OS75,

Lemma 2.4]), the latter inequality establishes positivity for the noncommutative Wightman func-

tions.

We summarize our findings in the following

Theorem 7. Given a sequence tSnunPN of Schwartz distributions satisfying the Osterwalder-

Schrader axioms of Epdq-invariance, reflection positivity and the growth condition pE02q, the corre-

sponding Moyal deformed set of distributions Sθ
n in the commutative-time scenario can be analyti-
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cally continued to tempered distributions Wθ
n fulfilling Pθpdq-invariance, positivity and the deformed

spectrum condition.

These are equal to the deformed n-point functions of the Wightman theory obtained by the Wick

rotation of Osterwalder and Schrader, c.f. 2. of Prop. 17.

Remark 15. In order to achieve this analytic continuation, we neither need full Epdq-covariance

nor permutation symmetry. These further axioms would be necessary for either requiring just

the slightly weaker condition pE01q or restoring locality. In fact, broadening the definition of the

noncommutative field can lead to a full Epdq or Ppdq-covariant theory, see [GL08]. Moreover, there

are implications on conditions on Euclidean space leading to certain remnants of locality. Finally,

we did not work on any cluster property and did not need such for our treatment. We would

like to cover some of these open problems in a continuative work. See chapter 5 for more future

perspectives.
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Chapter 4

Covariance and Locality

Wick rotation based on the algebraic as well as the correlation functions setting of Chs. 2 and

3 possess the utilization of reduced symmetry groups as a common ground. From a physical

perspective, this is not satisfactory. Even if one accepted the breaking of the fundamental property

of full Poincaré invariance in the proximity of the Planck scale (or the “noncommutative regime”,

wherever it may start to be influential), there is no reason why a specific choice of boost- and

rotation direction should be preferred. It is thus desirable to rebuild the covariance with respect

to Epdq and Ppdq from that of Eθpdq and Pθpdq, respectively. By deforming the von Neumann

algebras with respect to different parameters depending on the indexing region, we are going to do

so in the upcoming parts of this chapter.

Before we start doing so, we recall Θ1, the standard skew-symmetric noncommutativity matrix,

initially given in (1.6):

Θ1 :�

������
0 ϑe

�ϑe 0

0 ϑm

�ϑm 0

����� . (4.1)

4.1 Covariantization

The way of deforming the free scalar field invented in [GL07] was generalized in [GL08] to deform

theories given by the field polynomial algebra. In the latter paper, the restricted covariance of the
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deformed theory coming from the Moyal noncommutativity matrix θ is enlarged by the technique

of covariantization. Inspired by the influential paper [DFR95] and the latter approaches, we collect

the possible noncommutativity matrices θ into the set

Σ :� tΘ PM4�4
� pRq | trpΘ �Θq � �2pϑ2

e � ϑ2
mq , εµνρσΘµνΘρσ � �8ϑeϑmu .

This means that Θ1 is an element of Σ. In addition, this Σ is a Lorentz orbit of the standard

noncommutativity on four dimensional Minkowski space-time, i.e.,

Σ � tΛΘ1ΛT , Λ P LÒ�p4qu .

Therefore, it is a homogeneous space for proper orthochronous Lorentz transformations Λ P LÒ�
with respect to the prescription Σ Q Θ ÞÑ ΛΘΛT. From the Euclidean point of view, we realize that

Σ is also homogeneous for the group SOp4q of 4-dimensional rotations, i.e.,

Σ � tRΘ1R
T , R P SOp4qu .

Now we use property 3. of Prop. 2 to infer that

αpMq
g pAΘq � pαpMq

g AqMΘMT @ g � pa,Mq , @Θ P Σ , (4.2)

where M is either a rotation matrix or a Lorentz transformation and a P R4. Relying on this,

we can define the following assignment,

O Q O ÞÑ qEΣpOq :� ptAΘ | A P EpOq , Θ P Σuq2 . (4.3)

Lemma 18. Let tEpOquOPO be an isotonous, Epdq-covariant net of von Neumann algebras. Then

tqEΣpOquOPO is also an isotonous, Epdq-covariant net of von Neumann algebras.

Proof. • Von Neumann algebras:

Due to the algebraic closure taken in the defining relation (4.3), qEΣpOq is a (very large) von

Neumann algebra for each O P O.
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• Covariance:

Let O P O and g P Epdq. By equation (4.2) and the covariance of tEpOquOPO we deduce,

αg qEΣpOq � ptARΘRT | A P EpgOq , Θ P Σuq2

� �tAΘ | A P EpgOq , RTΘR P Σu�2 .
As Σ is homogeneous for SOpdq by the action Σ Q Θ ÞÑ RΘRT, we conclude αg qEΣpOq �qEΣpgOq for all O P O.

• Isotony:

Let O1 � O2 P O. From the isotony of tEpOquOPO , we directly conclude,

tAΘ | A P EpO1q , Θ P Σu � tAΘ | A P EpO2q , Θ P Σu ,

and the claim is proven by performing the algebraic closure.

Hence, we discover that if we do not contemplate a net of von Neumann algebras deformed just

by a single skew-symmetric matrix Θ, but the set of all such nets, we obtain a theory which is

covariant with respect to the complete symmetry group. Anticipating some of the results coming

up, we though need a somewhat tighter notion for our Epdq-covariant noncommutative nets. That

is because taking all possible deformation parameters Θ P Σ at each indexing set O P O is too much

for a predictive theory. In other words, qEΞ is just an auxiliary net for exemplifying the enlargement

of the symmetry group. We are going to contemplate advanced notions of covariantization in the

following.

Commutative Time We want to include considerations like these into our framework, which

deals with degenerate noncommutativities as a matter of principle. Therefore, we start on d-

dimensional Euclidean space, where d � s� 2n, s, n P N. Analogously to Σ, we define the set

121



Ξ :� tθ PMd�d
� pRq | trpθ � θq � �2

ņ

k�1

ϑ2
k , εµνρσθµνθρσ � 0u ,

for ϑk denotes a real number for k � 1, . . . , n. In the same way as above, Ξ is a homogeneous

space with respect to the action θ ÞÑ RθRT for R P SOpdq. For d � 4, Ξ contains the matrix θ1,

given in (2.21).

Given a Euclidean field theory pE ,O, α, σq (see Def. 9), we may deform it with respect to the

realization of θ given in (2.20). Thus we obtain the noncommutative net pEθ,Zθ, αθ, σθq. This net

is only Eθpdq-covariant, but we will show how to arrive at a Euclidean quantum field theory of full

Epdq-covariance now.

Cylindrical Regions As the considerations of Ch. 2 have shown, the cylindrical regions Zθ :�
tZθpOq , O P Ou arise naturally when deforming a Euclidean field theory with respect to a degen-

erate noncommutativity matrix θ P Ξ. Let us introduce the notion Z :� tZθ , θ P Ξu. By the

definition given in (2.24), any such Z P Z can be written as Z � ZθpOq for a θ P Ξ and an O P O.

Now we associate a noncommutativity θ to any given Z P Z in the following way,

Z � ZθpOq ÞÑ θ � θpZq .

In other words, θpZq � θpZθpOqq :� θ , O P O.

Immediately, it becomes clear that this specific assignment is some kind of problematic. The

reason for this is the fact that ZθpOq is equal to Z�θpOq for all O P O. Therefore, the map

ZθpOq ÞÑ θ is not uniquely defined. According to [GL08], one axiomatically would have

1. Z1 :� tx� θ1y , x P O , y P Rdu ÞÑ θ1 for all O P O.

2. Z Q Z � RZ1 ÞÑ Rθ1R
T

But 1. and the proof of covariance below imply that in the case of cylinders, the two attributions

are equivalent. Due to the isotony property in Prop. 18 stated in a little while, the attribution

Zθ ÞÑ �θ is the only disambiguity here.
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Definition 18. Let O Q O ÞÑ EpOq designate a Euclidean net of observables (local algebras) and

Zθ Q Z ÞÑ EθpZq its corresponding θ-deformed observable algebra, θ P Ξ. Then the covariantization

of tEθpZquZPZθ is defined as follows,

Z Q Z ÞÑ EΞpZq :� �tAθpZq , A P EpZqu Y tA�θpZq , A P EpZqu�2 ,
where θpZq is chosen in the way described above.

Examining the well-definition of this notion, we state the following

Lemma 19. The physical Hilbert space H is left unchanged by the deformation.

Proof. Clearly, each deformation parameter θ P Ξ induces a primarily distinct noncommutative

extension σθ of the Euclidean functional σ. All these σθ are reflection positive with respect to

the Euclidean direction e in use, as σ is Epdq-invariant in particular. In order to verify the latter

property, we appreciate that reflection positivity with respect to the direction e writes σpιepA�qAq ¥
0 for all A P Ee¡, where ιe implements the e-reflection re : x ÞÑ x � 2px, eqe and Ee¡ was defined to

be the Euclidean algebra generated by all open, bounded subregions of R�e � eK. The reflection

with respect to another direction e1 � Re therefore fulfills ιRe � αp0,Rq � ιe � αp0,RTq while we have

ERe¡ � αp0,RqEe¡. So, for the Euclidean functional we are able to deduce,

σpιRepB�qBq � σpιRepαp0,RqA�qαp0,RqAq � σpαp0,RqpιepA�qAqq � σpιepA�qAq ¥ 0 @B P ERe¡ ,

by Euclidean invariance. Really, all the σθ give rise to Hilbert spaces Hθ for θ P Ξ and by

Thm. 6 they all are isomorphic to the one gained from the undeformed theory.

Proposition 18. The action of αg is well-defined on EΞ for all g P Epdq. Furthermore, EΞpZq
defines an isotonous, Epdq-covariant net of von Neumann algebras on Rd.

Proof. It is clear from the considerations in Secs. 1.2.3, 1.2.4 and 2.3 that given Z P Z, EθpZqpZq is

a von Neumann algebra.
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• Isotony: Let Z1 � Z2 P Z. Then we have θpZ1q � �θpZ2q. Assume the contrary, θpZ1q �
�θpZ2q which can only be valid in two cases. Firstly, Im θpZ1q � Im θpZ2q from which we

infer that Z1 cannot be bounded in projection to ker θpZ2q. In other words, Z1 � Z2. The

second possibility incorporates θpZ1q � λθpZ2q for a real number λ � �1. But as Ξ forms an

SOpdq-orbit of the standard noncommutativity θ1, θpZ1q could not be an element of Ξ then.

So we really have θpZ1q � �θpZ2q.
Writing EθpZqpZq :� tAθpZq , A P EpZqu, it follows

EθpZ1qpZ1q Y E�θpZ1qpZ1q � E�θpZ2qpZ1q Y E	θpZ2qpZ1q � EθpZ2qpZ2q Y E�θpZ2qpZ2q ,

because of the net structure of Z ÞÑ EθpZq proved in Prop. 5. This reveals the claim after

performing the algebraic closure.

• Covariance & well-definition:

Let g � pa,Rq P Epdq. According to (2.22) and, more recently, (4.2), acting with the

symmetry group on the warped element has the consequence of αpa,RqpAθq � pαpa,RqAqRθRT .

The cylindrical regions react in the following way:

gZ � gZθpOq � tRx�Rθk � a |x P O , k P Rdu � tx�RθRTk |x P RO � a , k P Rdu
� ZRθRTpgOq .

In fact, the latter equality implies θpRZ � aq � RθpZqRT, because the “germ” O P O has no

influence on the assignment of θ.

Let g P Epdq, Z P Z and p be an arbitrary polynomial in EΞpZq. Then

p �
Ņ

k,j�1

ck,jA
k
k,θpZqB

j
j,�θpZq ,

where ck,j P C and Ak and Bj are elements of EpZq for k, j � 1, . . . , N . As αg extends to a

homomorphism on Eθ for every θ P Ξ, it follows,
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αgp �
Ņ

k,j�1

ck,jαgpAkk,θpZqBj
j,�θpZqq

�
Ņ

k,j�1

ck,jαgpAkk,θpZqqαgpBj
j,�θpZqq

�
Ņ

k,j�1

ck,jppαgAkqRθpZqRTqkppαgBjqRp�θpZqqRTqj ,

where we have used that α is the adjoint action of unitaries and inserted 1H in the second

equality. As Rp�θqRT � �RθRT for all R P SOpdq and θ P Ξ, we arrive at,

αgp �
Ņ

k,j�1

ck,jppαgAkqθpgZqqkppαgBjq�θpgZqqj ,

because RθRT � θpRZq � θpgZq. Thus, αgp generates an element in EΞpgZq, as tEpOquOPO
was assumed to be Epdq-covariant in Def. 18. By applying the same arguments once more,

one directly infers that αg acts as a homomorphism on the elements of EΞ. So, αg is indeed

well-defined on EΞ.

By carrying out the algebraic closure of EθpgZqpgZqYE�θpgZqpgZq, the covariance of tEΞpZquZPZ
is proven.

Remark 16. Let the net tEpOquOPO be realized via a continuous representation on a Hilbert space.

Then the product of algebra elements deformed with respect to different noncommutativities is

well-defined as juxtaposition of Hilbert space operators due to Lemma 19.

Lorentzian Covariantization The covariantization procedure we have specified is not bound

to the Euclidean case. In order to give the corresponding definition, let us covariantize not before

the utilization of the commutative-time Wick rotation. In particular, the starting point would then

be a commutative Euclidean field theory pE ,O, α, σq. Deforming it with respect to the warped

convolutions formalism and defining a noncommutative Lorentzian theory pMθ,Zθ, αθ,M, ωq there
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upon leads to a Pθpdq-covariant theory. Applying our covariantization procedure to this Lorentzian

net, the symmetry group can be enlarged again. In this case,

MΞpZq :� �tAθpZq , A PMpZqu Y tA�θpZq , A PMpZqu�2 ,
is the covariantization of the Wick rotated net tMθpOquOPO .

Once we have appreciated the well-definition of MΞpZq, the proof comprising Ppdq-covariance

and isotony of MΞ is provided along the lines of that belonging to Prop. 18.

Adopting the complete result of Thm. 6, we appreciate that the deformation pMθ,Zθ, αM, ωq
of the Haag-Kastler net pM,O, αM, ωq leads to a covariantization isomorphic to tMΞpZquZPZ ,

i.e., MΞpZq � MΞpZq for all Z P Z. This is a straightforward consequence of MθpZqpZq being

isomorphic to MθpZqpZq for all Z P Z.

In Remark 5, we have stressed that in a situation of full Ppdq-covariance, the joint spectrum of

the translation generators in the deformed theory is contained in the forward light-cone according

to Prop. 4. This means that by reconstituting full Poincaré covariance, we get back the original

spectrum condition.

An extensive inspection of fully covariant Wick rotation raises the question of whether we can

directly continue the net EΞ. There are two canonical ways of defining the time-zero content of a

covariantized Euclidean theory:

EΞ,0pSq :�
£
Z�S
ZPZ

EΞpZq , E0,ΞpSq :� �tBθpSq | B P E0pSqu Y tB�θpSq | B P E0pSqu
�2

Lemma 20. These two notions of covariantized time-zero algebras coincide, i.e.,

EΞ,0pSq � E0,ΞpSq @S P S ,

where S :� tSθ , θ P Ξu.

Proof. Choose certain θ P Ξ and let S P Sθ. Then
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EΞ,0pSq �
£
Z�S
ZPZθ

EΞpZq �
£
Z�S
ZPZθ

�tAθpZq | A P EpZqu Y tA�θpZq | A P EpZqu�2
� pEθ,0pSq Y E�θ,0pSqq2 .

By 1. of Prop. 6, Eθ,0pSq equals E0,θpSq for a specific choice of θ. But this conclusion is true for

any other deformation parameter, as they all induce well-defined C�-norms }.}θ, Rieffel products

and noncommutative algebras pEθ,�θq. S was defined to be the set of all time-zero stripes. Thus,

for each S P S there is a θ P Ξ such that S P Sθ. As we have discussed above, the subspace of

infinite extent up to a sign determines the corresponding deformation parameter θpZq of a cylinder

Z P Z. Thus to a time-zero stripe S P Sθ the same noncommutativity is associated, up to a sign,

as to any cylinder Z P Zθ. In other words, θpSq � �θpZq for all S P Sθ, Z P Zθ. Therefore,

EΞ,0pSq � pE0,θpSq Y E0,�θpSqq2 � E0,ΞpSq @S P Sθ .

As the concrete value θ P Ξ was arbitrary, the conclusion holds for all S P S as well.

This leads to our definition of the Wick rotated covariantization:

�MΞpZq :�
�¤
SPS

tαM
g πE0,ΞpSq | g P Ppdq : gS � Zu

�2

The action of αM on E0,ΞpSq is well-defined, as one can now see from

g P Ppdq : αM
g tπBθpSq | B P E0pSqu � tpαM

g πBqθpgSq | B P E0pSqu
� tAθpSq | A P αM

g πE0pSqu ,

and the fact that αM
g πE0pSq generates MpZq. Isotony and covariance follow straightforwardly

from this definition and the corresponding result of Prop. 7.

So we are able to write down a proposition summing up our results of noncommutative covari-

antization:
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Proposition 19. The Wick rotation �MΞ of the covariantization EΞ equals the covariantization

MΞ of the Wick rotated net Mθ. In precise terms, we have,

�MΞpZq �MΞpZq @Z P Z .

In other words: In the commutative-time scenario, the procedures of Wick rotation and co-

variantization of quantum field theories on Moyal space commute. The situation is depicted in

Fig. 4.1.

Proof. Let g P PθpZqpdq, and S P SθpZq, such that gS � Z P ZθpZq. Then we infer,

pαM
g E0qθpZqpSq Y pαM

g E0q�θpZqpSq � αM
g E0,θpg�1ZqpSq Y αM

g E0,�θpg�1ZqpSq
� αM

g E0,θpSqpSq Y αM
g E0,�θpSqpSq � αM

g pE0,θpSqpSq Y E0,�θpSqpSqq , (4.4)

because θpg�1Zq � �θpSq, as S � g�1Z. According to Prop. 7, MθpZq fulfills the time-zero

condition and this proof is again independent of the concrete parameter θ P Ξ. Next we realize,

tpαM
g πE0qθpZqpSq | g P PθpZqpdq, gS � Zu � �tαM

g πE0pSq | g P PθpZqpdq, gS � Zu�
θpZq

.

So, applying the latter relation to (4.4) and forming the algebraic closure indeed has the conse-

quence,

MΞpZq � �MΞpZq , @Z P ZθpZq .

Finally, by the full Ppdq-covariance of both MΞ and �MΞ, this equality also holds for arbitrary

Z P Z.

Other Index Sets In the thesis at hand, we are concerned with noncommutative Wick rotation.

This undertaking at the moment is only operable on noncommutative spaces featuring degenerate

deformation matrices. Moreover, the cylindrical regions we considered are favored by these spaces.
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Figure 4.1: Another commutative diagram

Nonetheless, deformed nets indexed with respect to another set of space-time regions might be

interesting as well, especially when it comes to (restricted notions of) locality. With regard to the

wedge-local quantum fields [GL08], we pose the question of a Euclidean analog. Before we elaborate

on the answer, we will give a short summary of the wedge and its connection to noncommutative

quantum field theory.

The standard wedge is defined to be W1 :� tx P Rd | x1 ¡ |x0|u and the set W0 of all wedges

of interest is given by the LÒ�-orbit of W1. Concerning Moyal-Minkowski space, we stick to the

notation of [BS08, BLS11] for the sake of confirmability. These papers feature the standard non-

commutativity Q1 of the form

Q1 :�

������
0 κe

κe 0

0 κm

�κm 0

����� . (4.5)

In the following, we are going to consider the d-dimensional generalizations of the matrices Q1

and Θ1, i.e.,
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Q1 :� Ke `K1 ` � � � `Kn , Kj :�
�

0 κj

�κj 0

�

Θ1 :� θe ` θ1 ` � � � ` θn , θj :�
�

0 ϑj

�ϑj 0

�
, j � 1, . . . , n ,

on Rd. Q1 is skew-symmetric w.r.t. the scalar product of Minkowski space-time and we have

Q1 � ηΘ1 for κe � ϑe and κm � �ϑm and η denoting the Minkowski metric. The properties of W0

and the warped convolutions combine in an amazing way according to the requirements of quantum

field theory, as one can see from the following list of properties:

1. QpW1q � Q1 ,

2. QpΛW1q � ΛQ1ΛT for all Λ P LÒ� ,

3. Q1V� � W1 for V� denoting the forward light-cone ,

4. If D pa,Λq P P such that ΛW1 � a � W1 then ΛQ1ΛT � Q1 ,

5. If D pa,Λq P P such that ΛW1 � a � W 1
1 then ΛQ1ΛT � �Q1 ,

where O1 :� tx P Rd | px� y, x� yq   0 @ y P Ou denotes1 the causal complement of the set O.

Now by wedge-locality we mean the following property,

rAQ1 , B�Q1s � 0 @A PMpW1q , B PMpW 1
1q .

Let us write W for the Poincaré orbit of the standard wedge W1. Then the important result

states: the collection pMΣ,W , αM, ωq is an isotonous, Ppdq-covariant and wedge-local net of von

Neumann algebras on Minkowski space-time, cf. [BLS11]. We will explain this in more detail in

the next subsection.

In the following, we are going to show that there can be no subset of Euclidean space fulfilling

a canonical modification of these properties 1. - 5.

1Reminder: p., .q was our symbol for the scalar product on Minkowski space-time
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Figure 4.2: The standard wedge W1 and its causal complement �W1.

Definition 19. A subset U � O of the open, bounded regions in Rd is said to consist of Euclidean

wedges, if it fulfills the following list of properties:

1. DU1 P U : θpU1q � Θ1 ,

2. θpRΘ1q � RΘ1R
�1 @R P SOpdq ,

3. Θ1Rd
� � U1 ,

4. If D pa,Rq P Epdq such that RU1 � a � U1 then RΘ1R
�1 � Θ1 ,

5. If D pa,Rq P Epdq such that RU1 � a � U c
1 then RΘ1R

�1 � �Θ1 .

Remark 17. The purpose of relations 1. and 2. is to covariantly associate skew-symmetric matrices

to space-time regions. These postulations will per se not cause a problem for any of those regions.

The example of cylindrical regions treated in the preceding paragraph illustrates this. The situation

changes when the assignment U ÞÑ θpUq shall be uniquely determined, as we are going to see later.

Coming to the third property, it is obvious that Euclidean space lacks the concept of a light-cone.

In other words, Euclidean (time-)translations are not bounded to a proper subspace of Rd, unless

they are represented on the physical Hilbert space H in view of a subsequent Wick rotation. In

that case, the analog of the forward light-cone V� would be Rd
�.
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Lemma 21. There is no set of Euclidean wedges. More precisely, we have,

1. The only realization of U satisfying 3. of Def. 19 is given by the SOpdq-orbit of

H1 :� tx P Rd | x1 ¡ 0u .

However, points 4. and 5. are violated in this case.

2. If U � Z and each U P U is generated by a sphere centered at the origin, properties 1., 2. and

4. of Def. 19 are fulfilled whereas 3. and 5. are not. In case of commutative time (using θ

from (2.20) instead of Θ1), 3. holds.

3. Allowing for dilatations, properties 1., 2. and 4. of Def. 19 are valid also for the cylinders,

Zb
a :� tx P R4 | a   x2

0 � x2
1   bu , 0   a   b .

Moreover, we can find a map D̂ρ such that D̂ρU1 � U c
1 and D̂ρΘ1D̂

�1
ρ � �Θ1, but point 5. is

still violated here.

Proof. 1. In fact, Θ1Rd
� � �H1, so the set spanned by SOpdq-rotations of this half-space is really

the only possible choice to fulfill 3. of Def. 19. However, while Θ1 is left invariant by arbitrary

x0, x1-rotations, neither H1 nor �H1 is. So, property 4. is violated. As the same rotation

about an angle of π inverts H1, but does not transfer Θ1 into �Θ1, a predicate modifying

5. would also fail to be fulfilled.

2. For U1 every cylinder in Zθ1 can be chosen. Furthermore, in the proof of covariance in

Prop. 18, we have shown the validity of the second request of Def. 19 for all elements of Z. It

remains to show property 4. and to discuss 5. Take an element R P SOp2q�SOpd� 2q of the

stabilizer group EΘ1pdq of Θ1. Now, let B denote a sphere of arbitrary radius centered at the

origin. By the spherical symmetry, B � Im θ for θ of the form (2.20) will be invariant under

x0, x1-rotations. As the cylinders are infinitely extended in the remaining directions, the

1�SOpd� 2q-invariance follows. This finishes the proof of feature 4. Yet the only Euclidean

transformations moving B� Im θ to its complement are translations which are known to have

no effect on any element of Ξ.
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3. For all a, b ¡ 0, the set Zb
a is an element of Zθ. Its germ is given by an annulus of thickness

b�a and centered at the origin. Thus, it is straightforward to comprehend that properties 1. -

4. of Def. 19 are valid for cylinders of this kind. If one allows for space dilatations additionally

to the Euclidean group, one can specify the map given by D̂ρ :� diagtρ,�ρ, 1,�1u for suitable

values of ρ ¡ 0. Indeed, we have

D̂ρZ
b
a � tx P Rd | ρ2a   x2

0 � x2
1   ρ2bu ,

which causes D̂ρZ
b
a � pZb

aqc for either ρ ¥
b

b
a

or ρ ¤ a
a
b
. Furthermore, D̂ρΘ1D̂

�1
ρ �

�Θ1 holds according to D̂�1
ρ � D̂1{ρ. Clearly, Dρ :� diagtρ, ρ, 1, 1u also maps Zb

a to its

complement under the above conditions, but does not map Θ1 into �Θ1. So 5. is still not

fulfilled completely, even when adding the dilatations.

Now assume that the Euclidean field theory pE ,O, α, σq satisfies Euclidean locality (2.1), i.e.,

O1, O2 P O : O1 XO2 � H ñ rEpO1q, EpO2qs � t0u . (4.6)

Surely, the half-spaces �H1 of 1. in the latter lemma would comply with a deformed version

of locality similar to wedge-locality. According to (4.6), the Euclidean causal complement of an

open bounded region in Rd would be its set-theoretic complement. Concerning the half-spaces, we

have pH1qc � �H1. This in turn permits rαΘ1xpAq, α�Θ1xpBqs � 0 for all x, y P Rd
� and therefore

rAΘ1 , B�Θ1s � 0 for A P H1 and B P �H1.

4.2 Remnants of Locality

Assuming (4.6) to hold, it follows from [Sch99, Thm. 3.7] that the corresponding commutative

Lorentzian theory pM,O, αM, ωq satisfies micro-causality (locality), i.e.,

O1, O2 P O : O1 � O1
2 ñ rMpO1q,MpO2qs � t0u .

We can take advantage of this fact and combine it with the results of the warped convolutions

framework. Next, we define
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U Q U ÞÑ pEΞpUq :� �tAθpUq , A P EpUqu�2 ,
and the corresponding notion xMΞ for the Lorentzian nets. This new notion is necessary as the

inclusion of both the deformations w.r.t. θ and �θ into the covariantization spoils wedge-locality

right from the start. Preparing the next result, we contemplate regions U infinitely extended in

the image of a deformation parameter θ P Ξ of a commutative-time scenario. That is to say, we

consider U � Z.

Lemma 22. 1. Let U � Z, such that the prescription U Q U ÞÑ θpUq is uniquely determined.

Then tpEΞpUquUPU and txMΞpUquUPU are isotonous nets of von Neumann algebras.

2. The quantum field theory

#
ppEΞ,U , α, σq

pxMΞ,U , αM, ωq is
Epdq
Ppdq

+
-covariant.

Proof. 1. By the uniqueness of the prescription U Q U ÞÑ θpUq, it follows that given U1 � U2 P U ,

we have θpU1q � θpU2q. The proof is analogous to that of isotony in Prop. 18 for the nets

tpEΞpUquUPU , because U � Z.

2. The covariance w.r.t. the full symmetry groups is obtained in the same way as in the proof

of covariance in Prop. 18, as this very proof does not depend on the concrete set of cylinders.

Remark 18. As we have seen, Z does not induce a uniquely determined map Z Ñ Ξ. Examples

for families of regions U that do allow such a map are the wedges W , but also the SOpdq-orbits of

the half spaces H1 and eK�, which we are going to consider below.

Now, a such deformed Wightman theory satisfies wedge-locality:

Proposition 20. For a Euclidean field theory pE ,O, α, σq the assumption of Euclidean locality (4.6)

is sufficient for the associated noncommutative Lorentzian quantum field theory pxMΣ,W , αM, ωq
to fulfill wedge-locality.

Proof. Having deformed the Wick rotated Lorentzian net pM,Oq according to Q1, given in (4.5),

we suppose the symmetry group to be enlarged by the covariantization of MQ1 . Consequently, we

can allow for all values of Θ P Σ. Then for every such Θ, there exists a Lorentz transformation
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Λ effecting ΛΘΛT � �Θ. Thus we may consider warped elements with respect to �Q1. As we

have stressed, Q1 maps the closed forward light-cone V� into the wedge W1, whereas �Q1 transfers

V� to the causal complement pW1q1 � �W1. Wedges are cones in particular, therefore it follows

y �Q1x P �W1 for all y P �W1 and x P V�. Hence by micro-causality we realize that O1 � O1
2 for

O1, O2 P O implies

rαM
pQ1x,1q

pAq, αM
p�Q1y,1q

pBqs � 0 @A P O1, B P O2, @x, y P V� .

Now the operative point is [BLS11, Prop. 2.10]: it states that the latter relation implies

rAQ1 , B�Q1s � 0 . (4.7)

The prescriptionW Q W ÞÑ θpW q is unique, as has been worked out in [GL08], so the collection

pxMΣ,W , αM, ωq really is a Ppdq-covariant and wedge-local, noncommutative quantum field theory.

Let us apply these findings to our commutative-time scenario now. Instead of Q1, we use the

degenerate matrix θ, given in (2.20), as a reference. Of course, this θ and all images ΛθΛT are

skew-symmetric, hence all the facts we have recapitulated still hold. It is Thm. 6 which says that

we could well have started with the θ-deformed Euclidean net pEθ,Zθq and continued it to pMθ,Zθq,
because it is isomorphic to pMθ,Zθq.

Both θ and �θ of this form map V� to t0u � t0u � R2n � BW1 , and an arbitrary θ P Ξ maps

V� to ΛθBW1ΛT
θ . Due to the specific form of (2.20) we have rαM

pθx,1qpAq, αM
p�θy,1qpBqs � 0 for all

x, y P Rd (and not just for elements of the forward light-cone) if A and B lie in algebras of spacelike

separated cylinders. In particular, we have rαM
pθx,1qpAq, αM

pθy,1qpBqs � 0 @x, y P Rd. It is important

to note that in general this does not lead to the vanishing of a commutator of elements warped

w.r.t. the same matrix.

In addition to these observations, we are in the position to improve the situation a bit more. In

fact, the assumption of Euclidean locality is not necessary for this sort of locality. Now we specify

a weaker condition on a Euclidean field theory causing the Wick rotated quantum field theory to

satisfy wedge-locality. To this end, denote eK� :� tx P Rd | x0 � 0 , �x1 ¡ 0u.
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Lemma 23. Let pE ,O, α, σq be a Euclidean field theory fulfilling the time-zero condition and pick

a Euclidean time direction e. If rE0peK�q, E0peK�qs � t0u, then the deformed Wick rotated theory

pxMΣ,W , α, ωq fulfills wedge-locality.

Proof. We can perform the Wick rotation of pE ,O, α, σq to obtain the Lorentzian field theory

pM,O, α, ωq by the methods of Sec. 2.1. Now we deform the Euclidean net with respect to the

standard noncommutativity Θ1 corresponding to e, which was defined in (4.1). Particularly in

Remark 1, we have stressed that the time-zero content of the commutative nets coincide, i.e.,

M0pKq � E0pKq @ K � eK .

From the time-zero condition given in (TZ) for general open bounded regions of Rd we obtain

the respective ones for the wedges:

MpW1q � tαM
g M0peK�q | g P Ppdq , g eK� � W1u2 ,

Mp�W1q � tαM
h M0peK�q | h P Ppdq , h eK� � �W1u2 .

The reasons for this simple form are the relation eK � eK� Y eK0 Y eK� for eK0 :� tx P Rd | x0 �
x1 � 0u on the one hand and the nonexistence of Ppdq-elements mapping eK� (eK�) into W1 (�W1)

on the other hand. Due to the definition of the warped convolution on Minkowski space-time, we

infer the extension of indexing space-time regions from half-planes to wedges, i.e.,

A PM0peK�q ñ A�Q1 PM�Q1p�W1q .

This is the analog to trading cylinders for arbitrary open, bounded regions and is caused by

the fact that Q1 maps the spectrum of space-time translations into the right wedge W1, while

it is mapped into the causal complement �W1 by �Q1. By assumption, the time-zero algebras

generated by the half planes eK� and eK� commute. In the above paragraphs, we have stressed that

this is enough to deduce for all x, y P V �:

A PM0peK�q , B PM0peK�q ñ rαpQ1x,1qpAq, αp�Q1y,1qpBqs � 0 ñ rAQ1 , B�Q1s � 0 .
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Figure 4.3: Variants of nc. Wick rotation & covariantization

Hence pMQ1 ,W , αM, ωq fulfills wedge-locality. Now it is straightforward to consider the set of

all theories indexed by Σ: any Poincaré transformation pa,Λq which maps Q1 to another element

Θ P Σ has the effect of mapping the net as well as the appropriate wedge W to MΛQ1ΛT �MΘ

and ΛW �a, respectively. Wedge-locality persists in each such “inertial system”, and the assertion

is proved.

Finally, we close this chapter by Fig. 4.3, which illustrates the various ways of Wick rotating

a Euclidean field theory E towards a Ppdq-covariant and wedge-local quantum field theory MΞ in

the commutative-time scenario.

137



Chapter 5

Discussion

Summary In this thesis, the Wick rotation of quantum field theories on noncommutative spaces

is worked out in detail. The elaboration has been structured in two main perspectives: the first,

located in Ch. 2, comprises the algebraic approach to quantum field theory, while the second, which

is considered in Ch. 3, focuses on the theory given by its set of correlation functions. Furthermore,

Ch. 4 consists of results concerning the recovering of the full symmetry group and conditions on

restricted notions of locality.

Quantum field theories on noncommutative spaces are considered a possible way to improve

the knowledge about high energy regimes of space-time, especially when it comes to the quan-

tum nature of gravity [DFR95]. Furthermore, there are results using Euclidean metric indi-

cating that noncommutative methods lead to better asymptotic behavior of individual models

[GW05, DGMR07, GMRT09, Wan11]. However, the exact predictive power of such results has

remained unclear until the last years. A rigorous way to generate such a noncommutative quantum

field theory is to apply the framework of warped convolutions [BS08, BLS11]. It can both be applied

to algebraic and “standard” quantum field theory, i.e., given by the set of n-point functions.

The first result on Wick rotation in algebraic quantum field theory was given in [Sch99], where

a list of axioms for a Euclidean net of C�-algebras resulted in the analytical continuation towards

a Haag-Kastler net. The main idea was not to prepare the feasibility of continuing the local

algebras themselves, but rather to arrive at a unitary representation of the Poincaré group from

the given Euclidean group representation. As a next step, the image of the time-zero net under

this unitary representation was shown to fulfill the Haag-Kastler axioms. To accomplish that, the
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C�-algebras associated to regions of no extent in a chosen “Euclidean time direction” were obliged

to be nontrivial. This additional requirement was called “time-zero condition”.

In [GLLV11] we were able to show that this “commutative” Wick rotation can be generalized

to theories located on Moyal space in a commutative-time setting. In order to achieve this aim,

in Section 2.2 the result on Euclidean nets of observables was generalized to theories covariant

with respect to subgroups of the Euclidean group, suitable for the noncommutative deformation.

Constitutively, the Euclidean net deformed in terms of warped convolutions could be analytically

continued to a noncommutative Lorentzian theory in Section 2.3. The proof carries through a deep

analysis of the deformed observable nets and the connection with the time-zero condition written

out. The cornerstones of this path are the following:

• Our deformation demands the usage of reduced symmetry groups which allow for an algebraic

Wick rotation

• Also, the expansion of open bounded regions to cylindrical subsets of Rd is caused by this

deformation

• These cylindrical regions are situated perfectly to assure the existence of a noncommutative

time-zero condition despite the use of a proper symmetry subgroup

A crucial result of this chapter is Thm. 6, stating that the deformation of a Lorentzian theory

is isomorphic to the analytical continuation of a theory on noncommutative Euclidean space. The

outcome of the algebraic Wick rotation gets visualized in the commuting diagram given in Figure

2.9.

We gave a successive illustration of our noncommutative Wick rotation in terms of the free scalar

field in Ch. 3. The quite abstract notions and results of the preceding part become more instructive

when applied to this well-known example. Afterwards, it was shown that the noncommutative free

field can be directly continued to its Lorentzian counterpart without the use of a time-zero condition.

Next, it was demonstrated that Wick rotation of more general theories is possible as well. The

methods of analytically continuing given in [Ost73] were successfully generalized to sets of Moyal

deformed Schwinger functions. A sequence of specific estimates were necessary to arrive at this

result:

• Estimates needed for a linear growth condition pE01q were shown to be fulfilled by the non-

commutative Schwinger functions
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• The Euclidean axiom pE02q, which is sufficient but not necessary for the Wick rotation, still

holds for the time-dependent part of the commutative-time deformed theory

• As a consequence, the holomorphic Fourier transforms of the Schwinger functions exist and

lead to noncommutative Wightman functions

• These are nothing else than the deformations of the corresponding commutative Wightman

theory

In particular, there is no need for a time-zero condition when performing the Wick rotation of

deformed Schwinger functions in a setting of commutative time.

The successful description of the symmetry group enlargement is done in Ch. 4. Considering the

algebraic framework, we have presented the covariantization of both a Euclidean and a Lorentzian

net there. It is defined to be the net of von Neumann algebras generated by deformation parameters

dependent on the certain space-time region and makes possible the utilization of full Euclidean and

Poincaré group, respectively. This is done by considering the symmetry group as a transformation

between local algebras deformed with respect to different matrices.

• The noncommutative Wick rotation described in this thesis commutes with this kind of co-

variantization

• The axiom of Euclidean locality causes wedge-locality for nondegenerate deformation param-

eters and commutation of wedge-like separated cylinders for the commutative-time scenario

• Locality with respect to the left and right time-zero plane is sufficient for wedge-locality of

the noncommutative-time deformation of the Wick rotated net

Conclusion The methods developed in this thesis and partly published in [GLLV11] to the

author’s knowledge mark the first rigorous treatment of Wick rotation on noncommutative spaces,

both in the algebraic as well as in the n-point function setting. Finding physically relevant models

on noncommutative Minkowski space-time is one of the actual objectives. As the majority of

candidates have been situated on Euclidean Moyal space, the treatise at hand may be seen as a

first step towards this goal.

Of course, it is more desirable to possess a Wick rotation of theories deformed with respect to

a nondegenerate skew-symmetric matrix, i.e., a theory of noncommutative time. At several points
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(Remarks 7, 8 and 12) we have drawn the attention to the inconsistency of such a setting with the

approach at hand. Nevertheless, the treatment shows that Wick rotation in a commutative-time

setting is far from being trivial.

The outcome of Ch. 3 shows that we can well-define a quantum field theory on noncommuta-

tive Minkowski space-time whenever the corresponding Schwinger functions satisfy the Euclidean

axioms including condition pE02q. We do not need to assume any sort of time-zero condition.

This condition pE02q mainly says that an n-point Schwinger function evaluated at an n-fold tensor

product can be estimated by the n-independent norms of the particular tensor factors. It is not

much more restrictive than the usual linear growth condition pE01q, as it is satisfied by practically

all constructed models known so far [OS75, Remark 2. above IV.2.].

The symmetry group is reduced to a proper subgroup by the implementation of the theory on

Moyal space(-time). Still, we are able to regain covariance w.r.t. the full group by the method of

covariantization. Thus, starting from a Euclidean field theory, we are able to obtain the correspond-

ing deformed Lorentzian theory without the abandonment of the full Poincaré group. Moreover,

it is a matter of taste which path one wants to follow to arrive at this Lorentzian theory, as the

results of the different paths were shown to be equivalent.

Last, but not least, we gave preconditions on a deformed Euclidean net of von Neumann algebras

that lead to wedge-locality of the corresponding Lorentzian net. In order to give a necessary

condition, one would have to perform the Wick rotation starting from a Lorentzian net, but the

result of Lemma 23 looks minimal.

Outlook Theories built up of a degenerate noncommutativity matrix arise naturally in situations

of three space-time dimensions. Indeed, utilizing the Moyal deformation there is attended by a

completely anti-symmetric 3� 3-matrix θ with constant real entries. This circumstance forces θ to

be of rank 2. Although it is still possible to arrange one spatial coordinate to commute with all

the others, time is picked to have this property instead. In physical situations, this is seen to be in

line with the distinction of time.

Many three dimensional models have been suggested so far and it seems impossible to deal with

a reasonable part of them on noncommutative spaces. We will just mention a few specific examples.

It is well-known that the Euclidean scalar φ4-model in d ¤ 3 dimensions can be rigorously

constructed and fulfills all the Euclidean axioms necessary for analytic continuation to a Wightman
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or Haag-Kastler theory [FO76, MS77, BFS83, GJ87]. Therefore, it seems natural to desire a

noncommutative deformation of the latter model and apply the Wick rotation of this thesis to

observe a constructable and nontrivial model on noncommutative Moyal-Minkowski space-time.

This would mark a complete novelty.

Up until now, the biggest success in giving precise meaning to noncommutative quantum field

models uses the deformation of the corresponding actions. The one due to Grosse and Wulkenhaar

[GW05] is characterized by the insertion of an oscillator potential and has a three dimensional

specification [GVT10]. To achieve renormalizability, another nonlocal term was added inside the

action there,

SGV :� Sφ4 �
»

d4x
Ω2

ϑ2
px2

2 � x2
3qφpxq2 �

»
d4x d2y

κ2

ϑ2
φpxqφpx0, x1, y2, y3q ,

where Sφ4 denotes the action of a scalar field with a φ4-interaction. Clearly, as the oscillator

breaks the translational invariance in two spatial directions, the model as it stands cannot be

considered physical yet. In the same way as in the Grosse-Wulkenhaar model, renormalizability is

the main criterion here, as it is necessary for the self-consistency of a physical model. The physical

consequences of insertions dependent on the parameters Ω and κ can be investigated once the Wick

rotation of the model has been performed.

Finally, roughly touching the scope of low dimensional models in noncommutative quantum field

theory, let us mention noncommutative gauge models. These have been used in three space-time

dimensions to qualitatively describe the integer and fractional quantum Hall effect [Sus01, Pol01,

HVR01].
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Appendix A

Euclidean Axioms

We list two sets of axioms for a Euclidean quantum field theory to guarantee the analytic continu-

ation to a Wightman quantum field theory.

A.1 Osterwalder-Schrader Axioms

The following list of axioms for the sequence tSnunPN of Schwinger functions is taken from [OS73,

OS75] and adapted to our notation convention:

pE0q Temperedness / Analyticity : see Section 3.7

pE1q Invariance: Snpfq � Snpfpgqq for all g P Epdq, f P S0pRdnq.

pE2q Reflection Positivity :
°
n,m

Sn�mpιf�n b fmq ¥ 0 for all f � pf0, f1, f2, . . .q P E¡.

pE3q Permutation Symmetry : Snpfq � Snpfpπqq for all1 π P τpnq, f P S0pRdnq.

pE4q Cluster Property :

lim
λÑ8

¸
n,m

 
Sn�mpιf�n b gm,pλp0,aq,1qq �SnpfnqSmpgmq

( � 0 ,

for a P Rd�1, |a| � 1.

1τpnq denotes the set of all n-valent permutations, see the paragraphs below equation (3.16)
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A.2 Path Integral Axioms

Let dµpφq be a Borel probability measure on the dual space of C8
c pRdq. Define the generating

functional S to be

Stfu :�
»

eiφpfq dµpφq , f P C8
c pRdq .

Then the axioms for a Euclidean quantum field theory in the path integral formalism [GJ87]

are the following:

pEP0q Analyticity : for all N P N and fk P C8
c pRdq, k � 1, . . . , N and for all z � tz1, . . . , zNu P CN

the function

z ÞÑ S

#
Ņ

k�1

zkfk

+

is entire on CN .

pEP1q Regularity : for some 1 ¤ p ¤ 2, some c P R and for all f P C8
c pRdq we have

|Stfu| ¤ ecp}f}1�}f}ppq .

pEP2q Invariance: let g P Epdq. Then it follows Stfpgqu � Stfu .

pEP3q Reflection Positivity : consider the set

A� :�
#
Apφq �

Ņ

k�1

cke
iφpfkq | ck P C , fk P C8

c pRd
�q
+
,

then
³pιAq�A dµpφq ¥ 0 for all A P A�.

pEP4q Ergodicity : lim
tÑ8

1
t

t³
0

αs,1pAq ds � ³
Apφq dµpφq.
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Appendix B

Analytical Continuation of Distributions

There are several important results of complex analysis which are serviceable for the analytic

continuation of n-point functions. In the following, we specify some of them.

Theorem 8 (Malgrange-Zerner-Kunze-Stein, [Eps66]). Let

f1pz1, x2, . . . , xnq , f2px1, z2, x3, . . . , xnq , . . . , fnpx1, x2, . . . , znq

be functions of the real variables x1, x2, . . . , xn, y1, y2, . . . , yn, and zk � xk�iyk with the following

properties

1. fkpx1, . . . , xk, . . . , xnq is a smooth function of x1, x2, . . . , xn, yk whenever 0 ¤ yk ¤ 1 and

fkpx1, . . . , zk, . . . , xnq is a holomorphic function of zk for 0   yk   1

2. For every real x � px1, x2, . . . , xnq,

f1px1, x2, . . . , xnq � . . . � fnpx1, x2, . . . , xnq (B.1)

Then there is a function F pz1, . . . , znq, holomorphic in the domain

H �
#
z � pz1, . . . , znq P Cn | 0   yk   1, 1 ¤ k ¤ n,

ņ

j�1

yj   1

+
(B.2)
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and smooth in the closure of this domain. F coincides with fkpx1, . . . , xk�1, zk, xk�1, . . . , xnq
for yj � 0 with j � k, 0 ¤ yk ¤ 1, 1 ¤ k ¤ n.

Theorem 9 (Paley-Wiener, exponential type; [RS75], IX.11). An entire analytic function gpζq
of d complex variables is the Fourier transform of a C8

c pRdq function with support in the ball

tx | |x| ¤ Ru if and only if for each N there is a CN such that

|gpζq| ¤ CN eR|Imζ|

p1� |ζ|qN @ζ P Cd . (B.3)

Theorem 10 (Paley-Wiener, L2 version; [Rud87], 19.2). Let f be an analytic function on Π� :�
tx � iy P C | y ¡ 0u and sup

0 y 8

1
2π

³ |fpx� iyq|2 dx � C   8. Then there exists a function F P
L2pR�q such that

fpzq �
8»
0

F ptq eitzdt , z P Π� (B.4)

and we have
8³
0

|F ptq|2 dt � C.
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Appendix C

Moyal Calculations

The noncommutative four-point correlator of the free scalar field can be obtained by calculating

the expectation value of the four-fold Moyal product, i.e.,

S4
θps1, s2, s3, s4q � xΩ, pϕbθ ϕbθ ϕbθ ϕqps1, s2, s3, s4qΩy .

We remember that ϕpsq � apprs�q � a:prsq, which reveals two terms that are non-vanishing:

symbolically written they are a1a2a
:
3a

:
4 and a1a

:
2a3a

:
4. The latter one reduces to the usual product

of commutative free covariances Cps1, s2qCps3, s4q since lowering directly after raising lets us end

up with the commutative scalar product of functions due to the calculational rules for the Moyal

tensor product such as (3.28). The first term a1a2a
:
3a

:
4 in fact provides two distinct contributions to

the 4-point function; one of them differs significantly from the corresponding commutative parts.

One starts by acting twice with a generator on the Fock vacuum. The second component is the

only one different from zero there,

�pa: bθ a
:qprs3, rs4qΩ

�
n
pp

1
, p

2
q � δn2

1?
2

�
eip1θp2 rs3pp1

qrs4pp2
q � e�ip1θp2 rs4pp1

qrs3pp2
q
	
,

while the application of the first of two annihilators is responsible for the two resulting terms:
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�pabθ a
: bθ a

:qpprs�2 , rs3, rs4qΩ
�

1
pp

1
q

�
»

Dkve
�ikvapUpθkqprs�2qαv �pa: bθ a

:qprs3, rs4qΩ
�

1
pp

1
q

� δn1

»
Dkv

»
dµ e�ikv�ipθk�ipp�p1qvprs2ppq

�
eipθp1rs3ppqrs4pp1

q � e�ipθp1rs4ppqrs3pp1
q
	

� δn1

»
dk

»
dµ δpp� p

1
� kqe�ipθkprs2ppq

�
eipθp1rs3ppqrs4pp1

q � e�ipθp1rs4ppqrs3pp1
q
	

� δn1pprs�2 , rs3qrs4pp1
q � δn1

»
dµ e�ipθp1prs2ppqrs4ppqrs3pp1

q . (C.1)

Finally, acting with the second annihilator brings about the evaluation of@
Ω, pabθ abθ a

: bθ a
:qpprs�1 , prs�2 , rs3, rs4qΩ

D
, which can be calculated to deliver two expressions from

a1a2a
:
3a

:
4. On the one hand, we get Cps2, s3qCps1, s4q, which is obtained by building the Moyal

tensor product of the last annihilator with the first term of equation (C.1) and using the cyclic

property. On the other hand, acting in this way on the second term we recognize the first evidence

for the deformed theory being different from the commutative one:

»
Dpq
kv e�ikv�ipθqprs2ppqrs4ppqUpθkqprs1pqqUpvqrs3pqq

�
»

dµppq
»

dµpqq eiqθpprs2ppqrs4ppqprs1pqqrs3pqq
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haben auch nicht unerheblich zur Motivation beigetragen. Besonderer Dank gilt meinem Kollegen

Jan Zschoche, der vielleicht am meisten zur Erweiterung meines Horizontes beigetragen hat.
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Symbols & Abbreviations

Symbol Meaning Def./occurance

xy . . . Euclidean inner product x0y0 � x1y1 � . . . xd�1yd�1 Below Def. 14

px, yq . . . Minkowski inner product x0y0 � x1y1 � . . . xd�1yd�1 Below (2.29)

bθ . . . Moyal tensor product Sec. 3.4

�Q . . . Rieffel product Def. 7

| . |m . . . Schwartz norm (3.47)

A . . . General �-algebra Sec. 1.1

α . . . Automorphic (Euclidean) symmetry action Sec. 1.1

αM . . . Automorphic Poincaré action (2.18)

C . . . Common domain of virtual representation (2.12)

Cpx, yq . . . Free covariance (3.3)

C8pMq . . . Smooth elements (on M) Sec. 1.2.1

C8
c pRdq . . . Smooth functions of compact support on Rd Lemma 2

dµpφq . . . Euclidean measure Ch. 1

E . . . Inductive limit of tEpOquOPO or Euclidean theory Def. 3

E¡ . . . Positive-time algebra Below (2.5)

Eθpdq . . . Restricted Euclidean group pSOp2q � SOpd� 2qq 
 Rd (2.3)qEΞ . . . Auxiliary covariantization for demonstration (4.3)

EΞ . . . Euclidean covariantization w.r.t. cylinders Def. 18pEΞ . . . Euclidean covariantization for unique maps Sec. 4.2

ηµν . . . Minkowski metric Sec. 1.1

f̂ . . . Spatial Fourier transformation of f P S pRdq (3.9)

f . . . Free field projection map (3.16)

M . . . Inductive limit of tMpOquOPO or Lorentzian theory Sec. 1.1, (2.19)

Mθ, Mθ . . . Deformed Lorentzian nets Def. 15, (2.30)�MΞ . . . Wick rotation of the covariantization Below Lemma 20

Mm�npKq . . . Space of all K-valued m� n-matrices 2. of Prop. 9

Nσ . . . Null space of σ Below (2.5)

O . . . Set of open bounded space-time regions Sec. 1.1
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Symbol Meaning Def./occurance

Pk . . . Generators of spatial translations, momentum operators Above Remark 4

p . . . Parity operator: fpx0, xq ÞÑ fpx0,�xq (3.17)

Ppdq . . . (Proper Orthochronous) d-dimensional Poincaré group Sec. 1.1

Pθ . . . Restricted Poincaré group (2.4)

π . . . Time-zero representation (2.6)

φ . . . (Free) scalar field (3.17)

φE . . . Euclidean free field Def. 16

φM . . . Minkowski free field Def. 17

ϕ . . . Time-zero field Def. 16

s . . . Element of S pRd�1q Lemma 10

Sθ . . . Time-zero stripes Sec. 2.3.2

S pRdq . . . Schwartz space of rapidly decreasing functions f : Rd Ñ C Above Def. 3

Sn . . . Time-zero n-point distribution Ch. 1

Sθ
n . . . Deformed Schwinger function Sec. 3.4.1

Sn . . . Schwinger function in difference variables (3.48)

S . . . Borchers-Uhlmann algebra Sec. 3.2

σ . . . Euclidean reflection positive functional Def. 3, (3.14)

Σ . . . Space of noncommutativities Sec. 4.1

θ . . . Standard commutative-time noncommutativity (2.20)

U . . . Suitable neighborhood of unity Below (2.12)

W . . . Unitary intertwiner of deformed nets Thm. 6

Wn . . . n-point Wightman function Below (3.26)

Wθ
n . . . Deformed Wightman function Sec. 3.4.1

ω . . . Vacuum state Def. 2

Xµ . . . Noncommutative position operator (1.5)

Ξ . . . Space of commutative-time noncommutativities Sec. 4.1

Y . . . Light wedge (2.17)

Zθ . . . Cylindrical regions (2.24), (2.25)
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