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Chapter 1

Introduction

1.1 Motivation

The four fundamental interactions in the universe are the gravitational force, the
electromagnetic-, as well as the weak- and the strong interaction. A major discovery in
the 20th century was that all forces can be described by corresponding particles. In this
description of nature, interactions are described by scattering processes which occur on
a quantum level between particles. In the case of the electromagnetic interaction the
photon mediates the electromagnetic force. While for the weak interaction the W and Z
bosons, and in the strong interaction eight gluons are responsible for the interaction. The
boson responsible for the gravitational force has still not been experimentally verified.
This boson is known under the name of graviton.

Attempts to quantize the gravitational field in a quantum field theoretical context
have failed, due to the lack of an important and very successful principle which
leads to finite theories: renormalizability. By treating the gravitational field like the
electromagnetic field and quantizing it in a similar fashion, one ends up with a quan-
tum field theory (QFT) that is nonrenormalizable. This means that the quantum field
theory by hand does not make any sense in sensible physical terms and has to be discarded.

Despite unsuccessful attempts to unify gravity with quantum field theory, efforts to
unify the electromagnetic and the weak interactions were rewarded by the electroweak
theory. Furthermore, by amplifying the electroweak theory with quantum chromodynam-
ics, the theory that describes strong interactions, on was led to the formulation of the
standard model.

Even among nonphysicists, it is agreed upon that the standard model displays one
of the greatest intellectual achievements in human history. But despite major success on
experimental and theoretical level, the standard model fails to explain many aspects of
nature.

First of all, as already mentioned above, the graviton has still not been experimen-
tally verified. Furthermore at energies where the particle is expected, the standard model
will not hold anymore. Secondly, the most accurate description of gravitation is given by
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8 CHAPTER 1. INTRODUCTION

the theory of general relativity. In this theory, matter and spacetime are intertwined by
the famous field equations of Einstein, and gravitation is understood as the curvature of
spacetime induced by the matter by hand. Attempts to unify quantum field theory with
general relativity have failed even in the linear approximation of gravitation. The reasons
vary from renormalizability to the understanding of spacetime not as a stage where the
dynamics takes place, but as an intrinsic property of the dynamics of the matter content.

Moreover, cosmological observations predict the existence of dark matter. The pre-
diction of existence of dark matter can be deduced from its gravitational effects on
atomic matter, radiation and the large-scale structure of the universe. It supposedly
constitutes about 84% of the matter and energy content of the universe. Because
the standard model only deals with atomic, i.e. visible particles, the major part of the
matter contribution in the universe can not be explained or modeled by the standard model.

Another major philosophical problem in the search for a theory of quantum gravity
concerns the picture of spacetime at small scales. According to an argument originating
from John A. Wheeler the classical picture of spacetime should break down at very short
distances of the order of the Planck- length lp =

√
G~/c3. Around this scale the concept

of spacetime as a continuum breaks down due to the quantum indeterminacy.

Wheeler argues that, if one wants to probe an event in the length scale of Planck
length with a photon, by the uncertainty principle, the particle has to have roughly
Planck energy. Now according to general relativity, a photon on such energy scales causes
a gravitational collapse and therefore it does not yield any information of the event. The
gravitational collapse is caused by the fact that the Schwarzschild radius of a particle
with Planck energy is approximately equal to the Planck length. Consequently, due to
the uncertainty principle and the Schwarzschild radius, the very measurement of an event
in this length scale creates a black hole and no information about this event will emerge.
The region with Planck-length of radius, therefore becomes in a sense noncontinuous, i.e.
experimentally not accessible.

There are many approaches available in order to solve the problem of unifying
quantum field theory with general relativity, and to solve the measurement problem
on scales of order of the Planck-length there. In this introduction the author will try
to give a brief review of popular approaches on the market and point out the shortcomings.

One idea to approach the problem of handling spacetime on a quantum level, is to
quantize the geometry in a canonical fashion. The theory is well known under the name
of loop quantum gravity (LQG). Quantization of the spacetime geometry in LQG leads
to the picture of a granular space. Thus space itself becomes discretized. Another
point usually stressed in the context of LQG, is the background independence. This in
particular means, that for the theory by hand no assumption of a preexisting spacetime
is needed. Thus one does not have to start with a classical background (spacetime) and
try to quantize it. As appealing as LQG may sound, no semi-classical limit for recovering
general relativity has been shown to exist. Therefore it is not clear if LQG describes
spacetime on a quantum level at all. Furthermore, the theory is unfortunately far from
describing matter and achieving similar successes as the standard model.
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Another major field of research is string theory. In this theory, the point like ob-
jects referred to in the standard model as particles, are replaced by 1-dimensional
oscillating lines called strings. It then depends on the oscillations of the string to give
the particles their flavor, charge, mass and spin. At first, only the bosonic string was
formulated. The investigation how to include fermions led to the use supersymmetry.
Theories that include fermionic strings are known as superstring theories. Five different
superstring theories were defined and were further shown to be equivalent, since in
particular these theories are different limits to M-theory.

Up to this date, string theory was not able to give a mathematical precise answer
why it should be the theory that unifies all fundamental forces. Furthermore, the theory
requires additional dimensions that have still not been experimentally verified. Very high
energies are needed to test or falsify the theory. Up to this date no precise falsifiable
experimental prediction that can be measured with the accessible energies has been done
to proof or disproof parts of the theory. The lack of experimental evidence is dangerous
due to the fact that it places theories in corners that are out of reach for science. There is
also the lack of background independence. String theory assumes a preexisting classical
spacetime. Background independence is a property that is expected from a true theory of
quantum gravity.

A more down to earth approach, is quantum field theory on curved spacetimes
(QFTCST). In QFTCST, one tries to extend the definition of a QFT in flat Minkowski
space to curved spacetimes. Scattering processes in QFT on flat spacetime can be
calculated by the S-matrix. One very important assumption therein, is that the incoming
and outgoing particles behave like free particles. In QFTCST, the notion of incoming and
outgoing particles are only recovered in the situation of asymptotically flat spacetimes.
But also in this special case, the particle number depends on the observers. This means
that different observers may measure a different number of particles in such a spacetime.
On CST, there is also an issue with the vacuum state. In QFT on flat spacetimes, the
vacuum state is unique due to the condition of it being the only Poincaré invariant state.
In QFTCST on the other hand, unless the metric of the curved spacetime has a global
time-like Killing vector, there is no unique way of defining the vacuum.

Nevertheless, QFTCST seems to have many applications to cosmology, like Hawk-
ing’s prediction of thermal radiating black holes and the prediction of the primordial
density perturbation spectrum arising from cosmic inflation, just to name a few. Despite
its problems and predictions, QFTCST can only be considered as a first approximation
to quantum gravity, because the curved spacetime is always taken to be classical, i.e not
quantized.

Another appealing approach that gained wide popularity among theoretical physi-
cists is known under the name of noncommutative quantum field theories (NCQFT).
Roughly speaking, in this approach one constructs a noncommutative spacetime and
tries to define a reasonable QFT on it. The noncommutative spacetime is constructed
in a similar fashion as the phase space in quantum mechanics. One simply replaces the
coordinates of space and time by operators on a Hilbert space. Furthermore, one endows
the operators with an noncommutative algebraic structure. The physical idea for this
ansatz is the following: Due to the measurement problem on the scale of Planck lengths
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on NC spacetimes, the pointwise structure is replaced by some sort of cell structure. In
measurement terms, this means that one cannot experimentally determine the spacetime
coordinate of a spacetime event with arbitrary accuracy. In the next step a QFT can be
defined on such a spacetime by replacing the pointwise product with a deformed product.
By taking the limit of the deformation parameter to zero, one recovers the classical picture
of spacetime. The deformation parameter which has to be determined by experiment,
gives the strength of noncommutativity.

It is interesting to note that even among the string theory community NCQFT,
gained popularity due to the observation that NCQFT can be obtained in a certain low
energy limit from string theory, [SW99]. From a quantum field theoretical aspect it
gained interest due to many reasons. First of all, it was thought that by the introduction
of a fundamental length, renormalization ambiguities will disappear and many ultra
violet divergences will cancel. It turned out that, the quantum field theoretical euclidean
approach exhibited a new type of divergences, the so called UV-IR mixing. Nevertheless,
in a series of papers [GW03, GW05a, GW05b], the authors proved renormalizablity of the
φ4 model on a NC space to all orders, by adding a term due to duality considerations.
This was a great breakthrough, because it provided the way towards other renormalizable
noncommutative field theories.

After remarkable progress has been made in understanding field theory on a fixed
NC spacetime, the next step would be to try to formulate a dynamical structure of NC
spacetime, to enable the incorporation of GR with QFT. A realization of this idea was
proposed in a matrix model and has been published by a few authors [Ste07, Yan09].
The basic observation is that matrix models that define noncommutative (NC) gauge
theory contains a specific version of gravity. This provides a dynamical theory for
noncommutative spaces. The ideas of these matrix models were further investigated
[Ste08, GSW08, Muc] and were moreover applied to cosmology, [BS10].

After much work was done on euclidean space, NCQFT was further developed on
Minkowski space. Quantum field theory on a noncommutative Minkowski spacetime
was rigorously realized in [DFR95]. The quantum field therein was defined on a tensor
product space V ⊗H . Where H is the Bosonic Fock space and V is the representation
space of the noncommuting coordinate operators x̂ν , satisfying the Moyal-Weyl plane
commutator relations, i.e. [x̂µ, x̂ν ] = iθµν . The matrix θµν is a constant, nondegenerate
and skew-symmetric matrix.

There were serious questions posed about the unitarity of the S-matrix for scalar
QFT defined on the Moyal-Weyl plane. Nevertheless, in a series of papers [LS02c, LS02b]
it was shown that the unitarity of the S-matrix is not violated. The authors proved that
the apparent violation of unitarity is due to the naive approach of taking the commutative
Feynman rules for NCQFT. Instead, one has to be careful due to the fact that the
time-ordering procedure does not commute with the star multiplication in the case of
time space noncommutativity.

Many authors [ABJJ07, Gro79, GL07] succeeded in representing the scalar field on
H instead of V ⊗H . In [GL07], this representation was used to construct a map from
the set of skew-symmetric matrices, which describes the noncommutativity, to a set of
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wedges. The next step was to apply the construction to map the noncommutative scalar
field to a scalar field living on a wedge. The respective model led to weakened locality and
covariance properties of the field and to a nontrivial S-matrix. A result which is astonishing
because notions of covariance and locality are usually lost on a noncommutative spacetime.

The method of deformation was further generalized in [BS08, BLS11, Lec12] and
was made public under the name of warped convolutions. The method in [Lec12] was
also successfully used to define deformations of a scalar massive Fermion, [Ala12]. It is
interesting to note that the model formulated in [GL07] can be obtained from warped
convolutions by using the momentum operator for the deformation. In fact any strongly
continuous unitary representation of the group Rn can be used to deform the free scalar
field.

1.2 Aim and overview of the thesis

The main focus of the present work is the construction of a quantum spacetime
from theory. We take physical objects, i.e. operators of the underlying quantum theory
and deform with those objects, to obtain noncommutative structures. The obtained
noncommutativity will give us some insight about the physical nature of the deformation
parameter. The general guideline of this thesis is to construct such quantum spacetimes
in a purely algebraic way. This means that we use deformation procedures and try to
extract from them in a sensible physical way, quantum spacetimes.

One advantage of the construction of those quantum spacetimes is their background
independence. Although we take the flat Minkowski metric as our background, the
quantum spacetime that we obtain is of purely algebraic nature and also obtained in a
very different way from usual approaches. The commutative limit which in our approach
is equivalent to the flat limit, can be obtained by setting the deformation parameter equal
to zero.

The organization of the thesis is as follows: In Chapter 2 we lay out the funda-
mental building blocks of the deformation that we use throughout the entire work. This
deformation method is called warped convolutions. To use this method in mathematical
sensible way one is obliged to have a strongly continuous unitary representation. Such a
unitary representation is taken in the third chapter by the exponential of the coordinate
operator and the deformation is performed with the so defined group. In Chapter 3
quantum mechanical objects, as for example the Hamiltonian, are deformed. Many
interesting physical phenomena follow and those physical theories are used to define a
quantum space. We further show that this method can be generalized to the case of the
scalar fields and commit ourselves to such a search in a quantum field theoretical context.
Before doing so, we review in Chapter 4 some important developments that were achieved
in the context of NCQFT on Minkowski space.

In Chapter 5 we construct for the massless and massive scalar field reasonable co-
ordinate operators and show many paths of obtaining a quantum spacetime in this way.
We further deform the scalar field with the constructed operators and show that they live
on a nonconstant noncommutative momentum space. Moreover, we show that a QFT



12 CHAPTER 1. INTRODUCTION

defined on such a space still fulfills reasonable properties. We prove that the field satisfies
the Wightman properties, wedge-covariance under a subgroup the Poincaré group and
wedge-locality.

In Chapter 6 we deform the free massless scalar quantum field with the special
conformal operator. The proof of self-adjointness of the special conformal operators was
given rigorously in [SV73] and is shortly sketched. The proof therein relies on the fact
that the momentum operator and the special conformal operator are unitarily equivalent.
Furthermore, we use the unitary equivalence to proof convergence of the deformation
in the Hilbert space norm. The Wightman properties, transformation properties and
wedge-locality of the deformed field are further proven. In the end of the Section we
show how the deformation with the special conformal operators leads to a nonconstant
noncommutative spacetime. The last chapter focuses on the conclusion and outlook.



Chapter 2

Warped Convolutions

The main focus of this work is the construction of an emerging quantum spacetime.
In particular this means that we take physical objects, i.e. operators of the underlying
quantum theory, and deform with those objects in order to obtain noncommutative
structures. The obtained noncommutativity may give us some insight about the physical
nature of the deformation parameter. The deformation technique that is used throughout
the entire thesis is known by the name of warped convolutions, [BS08, BLS11].

The reason for our specific choice is owed to the fact that warped convolutions give
a mathematical rigorous framework in which deformations of operators in QM and QFT
can be considered. For easy reference we recapitulate this novel deformation procedure
and state the most important definitions, lemmas and propositions in a form appropriate
for the current work. For proofs of the lemmas and propositions introduced in this Section
we refer the reader to the original papers [BS08, BLS11].

2.1 C∗ algebra

To give a mathematical rigorous definition of the deformation of operators, one has to
work in a C∗ algebraic setting, where deformations of bounded operators are considered.
For this purpose, let us first define a C∗ algebra. We start by defining an algebraA, [Lan97].

Definition 2.1. A is called an algebra over the vector space of complex numbers C,
if αa + βb with a, b ∈ A and α, β ∈ C, are well defined. In addition, there is a product
A×A → A, which is distributive over addition,

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc, ∀a, b, c ∈ A.

The algebra A is called a unital algebra if it has a unit I.

Definition 2.2. An algebra A is called a *-algebra if it admits an involution * : A → A,
such that

a∗∗ = a, (ab)∗ = b∗a∗, (αa+ βb)∗ = αa∗ + βb∗

for any a, b ∈ A and α, β ∈ C and bar denoting the usual complex conjugation.

13
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Definition 2.3. An algebra A with a norm ‖·‖ : A → R is called a normed algebra if
the following properties are fulfilled,

‖a‖ ≥ 0, ‖a‖ = 0⇔ a = 0, ‖αa‖ = |α|‖a‖,

‖a+ b‖ ≤ ‖a‖+ ‖b‖, ‖ab‖ ≤ ‖a‖‖b‖

for any a, b ∈ A and α,∈ C.

The topology defined by the norm is called the norm topology. The neighborhoods of any
a ∈ A are given by

U(a)ε = {b ∈ A : ||a− b|| < ε}, ε > 0.

Definition 2.4. A Banach algebra is a normed algebra which is complete in the norm
topology.

Definition 2.5. A Banach *-algebra is a normed *-algebra which is complete and
satisfies the additional requirement

‖a∗‖ = ‖a‖, ∀a ∈ A.

Definition 2.6. A C∗-algebra is a Banach *-algebra whose norm satisfies the additional
identity

‖a∗a‖ = ‖a‖2, a ∈ A.

2.2 Deformation with warped convolutions

Warped convolutions were introduced in the realm of algebraic quantum field theory
as a new tool to construct non-trivial quantum field theories. It was further shown
in [BLS11], that the deformation procedure is an isometric representation of Rieffel’s
strict deformations of C∗-dynamical systems in [Rie93]. In this Section we introduce the
important definitions, lemmas and propositions of warped convolutions.

The authors in [BS08, BLS11] start by considering the C∗-algebra CCC of all uni-
formly continuous bounded functions A : Rn → B(H ), where B(H ) is the Hilbert space
of bounded operators. The algebraic operations of the C∗-algebra CCC are pointwise defined,

(A + B)(x) = A(x) + B(x), (AB)(x) = A(x)B(x), A∗(x) = A(x)∗, x ∈ Rn.

The norm on CCC is given by the supremum norm

‖A‖ = sup
x∈Rn
‖A(x)‖.

Elements A ∈ CCC that are considered for deformation belong to the subalgebra CCC∞ := {A ∈
CCC : ‖∂µA(x)‖ ≤ ∞}. In the proofs of the lemmas and propositions it is important to
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integrate the functions x 7→ A(x) and in general these functions are not absolutely inte-
grable, w.r.t. the Lebesgue measure. In order to have suitable decay properties, mollifiers
Fn : Rn → C are introduced and a specific choice for Fn ∈ L1(Rn) is given by

Ln(x) = (i+ x1 + · · ·+ xn)−1
∏

k=1,··· ,n
(i+ xk)

−1, x ∈ Rn.

The next lemma is of great technical importance for all further lemmas concerning the
warped convolutions of operators.

Lemma 2.1. Let A, B ∈ CCC be n+ 1 times continuously differentiable and let f ∈ S (Rn×
Rn) with f(0, 0) = 1.

(i) The norm limit of the Bochner integrals in B(H ),

lim
ε→0

(2π)−n
∫∫

dx dy f(εx, εy) e−ixy A(x) B(y)=̇A×B,

exists and does not depend on f . Here xy, x, y ∈ Rn is any symmetric bilinear form
on Rn with determinant 1 or −1.

(ii) With Ln as above, there exists a polynomial u, v 7→ Pn(u, v) on Rn × Rn of degree
n+ 1 in the components of u and v, respectively, such that

A×B = (2π)−n
∫∫

dx dy e−ixy Pn(∂x, ∂y)Ln(x) A(x)Ln(y) B(y),

where the integral is defined as a Bochner integral in B(H ).

(iii) ‖A×B‖ ≤ cn ‖A‖n+1 ‖B‖n+1, for a universal constant cn.

(iv) Let C ∈ B(H ). Then

(CA×B) = C(A×B), (A×BC) = (A×B)C, (AC ×B) = (A× CB)

and the linear map
C 7→ A× CB

is continuous on the unit sphere of B(H ) in the strong operator topology.

To define the deformation of operators belonging to a C∗-algebra C, we consider elements
belonging to the subalgebra C∞ ⊂ C∗. The subalgebra C∞ is defined to be the ∗−algebra
of smooth elements with respect to α, which is the adjoint action of a weakly continuous
unitary representation U of Rn given by

αx(A) = U(x)(A)U(x)−1, x ∈ Rn.

By using Lemma 2.1 and the spectral calculus one can present the warped convolution
of A ∈ C∞ given by

∫
αθx(A)dE(x) or

∫
dE(x)αθx(A), on the dense domain D ⊂ H of

vectors smooth w.r.t. the action of U , in terms of strong limits∫
αθx(A)dE(x)Φ = (2π)−n lim

ε→0

∫ ∫
dxdyf(εx, εy)e−ixyαθx(A)U(y)Φ, Φ ∈ D,∫

dE(x)αθx(A)Φ = (2π)−n lim
ε→0

∫ ∫
dxdyf(εx, εy)e−ixyU(y)αθx(A)Φ, Φ ∈ D,
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where E is the spectral resolution.

The following lemma shows first that the two different warped convolutions are equivalent.
Second, it shows how the complex conjugation acts on the warped convoluted operator.

Lemma 2.2. Let θ be a real skew symmetric matrix on Rn and let A ∈ C∞. Then

(i)
∫
αθx(A)dE(x) =

∫
dE(x)αθx(A)

(ii)
(∫
αθx(A)dE(x)

)∗ ⊂ ∫ αθx(A∗)dE(x)

The deformations of operators that we consider make use of the following definition.

Definition 2.7. Let θ be a real skew symmetric matrix on Rn and let A ∈ C∞. The cor-
responding warped convolution Aθ of A is defined on the dense domain D ⊂H according
to

AθΦ :=

∫
dE(x)αθx(A)Φ =

∫
αθx(A)dE(x)Φ, Φ ∈ D. (2.1)

In particular, 1θ = 1.

In the following lemma we introduce the deformed product, known as the Rieffel product
[Rie93], by using warped convolutions [Rie93]. The circumstance that the two are inter-
related is due to the fact that the warped convolutions supply isometric representations
of Rieffel’s strict deformations of C∗-dynamical systems with actions of Rn. The defini-
tion of the Rieffel product, given by warped convolutions, is used to calculate deformed
commutators. For example, in 6 one can use the Rieffel product to argue that the deforma-
tion with the special conformal operator induces a nonconstant noncommutative spacetime.

Lemma 2.3. Let θ be a real skew symmetric matrix on Rn and let A,B ∈ C∞. Then

AθBθΦ = (A×θ B)θΦ, Φ ∈ D,

The deformed product ×θ is known as the Rieffel product on C∞ and is given by,

(A×θ B)Φ = (2π)−n lim
ε→0

∫ ∫
dxdyf(εx, εy)e−ixyαθx(A)αy(B)Φ, Φ ∈ D. (2.2)

The next proposition gives the transformation property of the warped convolution of
an operator under the adjoint action of a unitary or antiunitary operator on H . This
is important in Chapters 5 and 6 when we examine the transformation properties of
deformed operators under the Lorentz transformations.

Proposition 2.1. Let V be a unitary or antiunitary operator on H such that
V U(x)V −1 = U(Mx), x ∈ Rn, for some invertible matrix M . Then, for A ∈ C∞,

V AθV
−1 = (V AV −1)σMθMT ,

where MT is the transpose of M w.r.t the chosen bilinear form, σ = 1 if V is unitary and
σ = −1 if V is antiunitary.

The transformation property of the deformed operator becomes important after we
relate in the realm of quantum field theory, skew symmetric matrices θ to wedges W
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by using the homomorphism given in [GL07]. This in particular means that to each
deformed operator with deformation matrix θ there is a corresponding wedge W. The
transformation behavior of the deformed operator given in proposition 2.1 corresponds to
the transformation property of a wedge-covariant field.

The following proposition is crucial to prove that two deformed fields satisfy a weakened
locality know as wedge locality.

Proposition 2.2. Let A,B ∈ C∞ be operators such that [αθx(A), α−θy(B)] = 0 for all
x, y ∈ spU . Then

[Aθ, B−θ] = 0.

Due to the fact that in physics one usually works with unbounded operators, in the next
Sections we are obliged to show that the deformation formulas still have a proper mathe-
matical meaning.
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Chapter 3

Deformations in QM

In this Chapter we study deformations of operators from a quantum mechanical point
of view. The tool used to study deformations is the warped convolutions. At first, we
study deformations of the simplest Hamiltonian of quantum mechanics, namely that of
a free particle. The generators of a unitary representation, needed to define the warped
convolutions, are chosen to be the coordinate operators. The idea behind deformations of
QM with the coordinate operator is the intention to study similar deformations of a QFT.
Thus, the main objective in this Section is gaining some insight into the physical effects
appearing by a deformation with the coordinate operator and try to implement those ideas
in the realm of QFT.

3.1 The canonical commutation relations

In quantum mechanics the momentum Pi and coordinate Xj are represented as self-
adjoint operators on a Hilbert space H . These operators do not commute mutually, but
satisfy the canonical commutation relations instead. In this section, we give a functional
analytic introduction to the representation of the coordinate and the momentum operator
as self-adjoint operators. We start by giving the definition of the canonical commutation
relations, [RS75a, Chapter VIII.5, Example 2].

Definition 3.1. A pair of self-adjoint operators (Pi, Xj) is said to satisfy the canonical
commutation relations if

PiXj −XjPi = −iδijIH , (3.1)

where IH is the unity operator on H and δij is the Kronecker delta in n-dimensions.

Operators satisfying the canonical commutation relations are unbounded operators and
therefore one has to further specify the domain of self-adjointness. In this context it is
easier to work with bounded operators and use the fundamental theorems of von Neumann
and Stone to obtain the essentially self-adjoint operators (Pi, Xj). Let us start by defining
strongly continuous unitary representations of the additive group Rn. This is done by
using Stone’s theorem, [RS75a, Theorem VIII.7].

19
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Theorem 3.1. Let Qj be commuting self-adjoint operators, with j = {1, · · · , n} , i.e.
[Qj , Qk] = 0, and define C(b) := eibkQ

k . Then

1. For each bk ∈ R, C(b) is a unitary operator and C(b)C(s) = C(b + s), for all
bk, sk ∈ R.

2. If φ ∈ L2(Rn) and bk → b0k, then C(b)φ→ C(b0)φ.

The next definitions are given in [RS75a, Chapter VIII].

Definition 3.2. An operator valued function C(b) satisfying the properties stated in
the last theorem is called a strongly continuous unitary group.

Definition 3.3. If C(b) is a strongly continuous unitary group, then the self-adjoint
operator Qi with C(b) = eibkQ

k is called the infinitesimal generator of C(b).

In the next step we define the strongly continuous unitary groups satisfying the so called
Weyl relations.

Definition 3.4. Let V (a) and U(b), with a, b ∈ Rn, be two continuous unitary groups
on a separable Hilbert space H satisfying the following relations

U(a)V (b) = e−iaib
i
V (b)U(a). (3.2)

Then the groups V (a) and U(b) are said to satisfy the Weyl relations. The unitary
operators V (a) and U(b) are defined by using the canonical conjugate pair (Xj , Pk) in the
following way

V (a) := eia
jXj , U(b) := eib

jPj , a, b ∈ Rn.

The corollary that follows shows that any strongly continuous unitary group fulfilling the
Weyl relations (3.2), have infinitesimal generators satisfying the canonical commutation
relations. Furthermore, the generators turn out to be essentially self-adjoint operators on
a dense domain D ⊂H , [RS75a, Chapter VIII.5, page 275].

Corollary 3.1. Let V (a) and U(b) be strongly continuous unitary groups satisfying the
Weyl relations (3.2) on a separable Hilbert space H . Let the operator Pi be the generator
of U(b) and the operator Xk be the generator of V (a). Then, there is a dense domain
D ⊂H so that

1. Pi : D → D,Xk : D → D,

2. PiXkϕ−XkPiϕ = −iδikϕ, ∀ϕ ∈ D,

3. Pi and Xk are essentially self-adjoint on D.

The common domain of essential self-adjointness is chosen to be the Schwartz space
S (Rn) ⊂ L2(Rn), defined in (8.20). In the next section we use the fact that the essentially
self-adjoint operators (Pi, Xj) define unitary representations of the additive group Rn, in
order to define warped convolutions.
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3.2 Warped convolutions in QM

For a deformation of the Hamiltonian we choose to work in the standard realization of
quantum mechanics, the so called Schrödinger representation, [BEH08, RS75a, Tes01].
In this representation the pair of operators (Pj , Xk) satisfying the canonical commutation
relations are represented as essentially self-adjoint operators on the dense domain
S (Rn). Here Pj and Xk are the closures of i∂/∂xj and multiplication by xk on
S (Rn), respectively. In this section we apply the definitions of a strongly continuous uni-
tary group to define the warped convolutions formula (2.7) of a densely defined operator A.

First, we define the warped convolutions by using the coordinate operator.

Definition 3.5. Let B be a real skew-symmetric matrix on Rn and let χ ∈ S (Rn×Rn)
with χ(0, 0) = 1. Then, the warped convolution of an operator A with the coordinate
operator, denoted as AB,X , is defined on the dense domain S (Rn) as follows

AB,XΨ := (2π)−n lim
ε→0

∫∫
dny dnk e−iylk

l
χ(εy, εk)V (k)αBy(A)Ψ. (3.3)

The automorphisms α are implemented by the adjoint action of the strongly continuous
unitary representation V (y) of Rn given by

αx(A) = V (x)AV (x)−1, x ∈ Rn.

In the quantum mechanical case most of our considerations involve the deformation of
operators using the coordinate operator.

However, for some arguments we also need warped convolutions defined with the
momentum operator.

Definition 3.6. Let θ be a real skew-symmetric matrix on Rn and let χ ∈ S (Rn×Rn)
with χ(0, 0) = 1. Then, the warped convolution of an operator A with the momentum
operator, denoted as Aθ,P , is defined on the dense domain S (Rn) as follows

Aθ,PΨ := (2π)−n lim
ε→0

∫∫
dny dnk e−iylk

l
χ(εy, εk)U(k)αθy(A)Ψ. (3.4)

The automorphisms α are implemented by the adjoint action of the strongly continuous
unitary representation U(y) of Rn given by

αx(A) = U(x)AU(x)−1, x ∈ Rn.

3.3 Deforming the Hamiltonian

To explore the physical consequences of deformation, we take the free Hamiltonian of
quantum mechanics and deform it by using the novel tool of warped convolutions. Later
on we solve the eigenvalue equation to obtain a deeper physical insight. The Hamiltonian
of a free particle in quantum mechanics is given as follows

H0 = −PjP
j

2m
. (3.5)



22 CHAPTER 3. DEFORMATIONS IN QM

This Hamiltonian describes a non-relativistic and non-interacting particle. For the
following considerations, let us restrict the deformation to three space dimensions.
A restriction obvious due to its physical relevance. Let us start the section with an
important theorem concerning the domain of self-adjointness and the spectrum of the free
undeformed Hamiltonian H0, [Tes01, Theorem 7.8].

Theorem 3.2. The free Schrödinger operator H0 is self-adjoint on the domain D(H0)
given as

D(H0) = H2(R3) = {ϕ ∈ L2(R3)||P|2ϕ ∈ L2(R3)},

and its spectrum is characterized by σ(H0) = [0,∞).

Before proceeding with deformation, a mathematical problem arises at this point of our
work. The deformation formula, given by warped convolutions, is only well-defined in the
strong operator topology for a subset of bounded operators that are smooth w.r.t.
unitary representation U of Rn. In view of the fact that this thesis deals with unbounded
operators we have to show that the deformation formula, given as an oscillatory integral,
is well-defined. For the subsequent discussion let us introduce the notion of an oscillatory
integral, ([Hör04], Section 7.8, Equation 7.8.1).

Definition 3.7. Let X ⊂ Rn be open and let Γ be an open cone on X × (RN\{0})
for some N . This means that Γ is invariant under multiplication by positive scalars of
components in RN . We shall say that a function φ ∈ C∞(Γ) is a phase function in Γ if

• φ(x, ty) = tφ(x, y) if (x, y) ∈ Γ, t > 0.

• Imφ ≥ 0 in Γ,

• dφ 6= 0 in Γ.

Then an integral of the form ∫
eiφ(x,y)b(x, y) dy,

is called an oscillatory integral.

Another important notion in our subsequent discussion is that of a symbol ([Hör04],
Section 7.8, Definition 7.8.1).

Definition 3.8. Let m, ρ, δ, be real numbers with 0 < ρ ≤ 1 and 0 ≤ δ < 1. Then we
denote by Smρ,δ(X × Rn), the set of all b ∈ C∞(X × Rn) such that for every compact set
K ⊂ X and all α, β the estimate

|∂βx∂αk b(x, k)| ≤ Cα,β,K(1 + |k|)m−ρ|α|+δ|β|, x ∈ K, k ∈ Rn,

is valid for some constant Cα,β,K . The elements Smρ,δ are called symbols of order m and
type ρ, δ.

By using the former definitions it can be shown [Hör04, Section 7.8, Theorem 7.8.2],
([LW11]), ([Jos99]), that if m < −n+ 1 the oscillatory integral converges to a well-defined
function. In the case m ≥ −n + 1, the oscillatory integral can still be defined in a
distributional manner. The cases considered in this thesis belong to the second class.
Thus, the task throughout the thesis is to show that b(x, y) belongs to a symbol class and
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therefore can be well-defined as a distribution.

To prove that the deformation formula (3.3) holds in the case of the unbounded
operator H0, let us consider the deformed free Hamiltonian HB,X as follows

〈Ψ, HB,XΦ〉 = (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk)〈Ψ, V (k)αBy(H0)Φ〉

=: (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk) b(k, y)

for Ψ,Φ ∈ S (R3).

Remark 3.1. The scalar product 〈y,k〉 satisfies the conditions of a phase function given in
Definition 3.7. It is actually one of the most considered examples of a phase function, due
to its close relation to the Fourier transformation.

As one can see 〈Ψ, HB,XΦ〉 is given in the form of an oscillatory integral. Thus to prove
that the expression is well-defined, we show in the next lemma that b(k, y) belongs to a
symbol class.

Lemma 3.1. Let the function b(y, k) be given as the scalar product 〈Ψ, V (k)αBy(H0)Φ〉.
Then b(y, k) ∈ S2

1,0, for Ψ,Φ ∈ S (R3) and therefore deformation with the coordinate
operator, via warped convolution, of the free Hamiltonian H0 is given as a well-defined
oscillatory integral.

Proof. For the proof we first calculate the adjoint action of V (By) on H0 given by,

αBy(H0) = V (By)H0V (−By) = − 1

2m
V (By)PjP

jV (−By)

= − 1

2m
V (By)PjV (−By)V (By)P jV (−By).

To solve this expression we look at the adjoint action of V (By) on the momentum operator,

ei(By)kX
k
Pje
−i(By)kX

k
= Pj + i(By)k[X

k, Pj ] +
i2

2
(By)l(By)k[X

l, [Xk, Pj ]] + · · ·︸ ︷︷ ︸
=0

= Pj + (By)j . (3.6)

By taking equation (3.6) into account we obtain for the adjoint action of V (y) on H0

αBy(H0) = − 1

2m
(Pj +Bjky

k)(P j +Bjryr)

= H0 −
1

2m

(
2P jBjky

k +Bjky
kBjryr

)
.

It is easily derived by using the canonical commutation relation and the Baker-Campbell-
Hausdorff formula.
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In the next step we look at the expression

|∂αki∂
β
yrb(y, k)| = |〈Ψ,

(
∂αkiV (k)

)
∂βyr (αBy(H0)) Φ〉|

≤ ‖(−iXα)Ψ‖︸ ︷︷ ︸
=:C1,α

∥∥∥∥∂βyr (H0 −
1

m
P j(By)j −

1

2m
(By)l(By)l

)
Φ

∥∥∥∥
≤ C1,α

(∥∥∥∂βyrH0Φ
∥∥∥+

1

m
|∂βyr(By)j | ‖PlΦ‖+

1

2m
|∂βyr(By)j |2 ‖Φ‖

)
,

where the Cauchy-Schwarz inequality was used to obtain the last line.

Remark 3.2. In the first line we changed the order of integration and differentiation. This
can be done due to the following relation,

b(k, y) =

∫
dxe−iklx

l
Ψ(x)

(
−∆x + i

1

m
(By)j

∂

∂xj
+

1

2m
(By)l(By)l

)
Φ(x).

By using the fact that Ψ,Φ ∈ S (R3) and e−iklxl is continuous in k, we can interchange the
order for k. Furthermore, the adjoint action of V (By) on H0 yields a second order polyno-
mial in y at most and thus it is clear that we can interchange the order of differentiation
and integration.

Without loss of generality, one can choose the skew-symmetric matrix B to have the form
Bij = εijkB

k, where εijk is the three dimensional epsilon-tensor. Then the following
inequality for the norm of vector Bijyj holds,

|Bijyj | ≤
√

2|B||y|. (3.7)

This is easily seen by using the Cauchy-Schwarz inequality and the relation |a| − |b| ≤
|a|+ |b|.

|Bijyj |2 = (−BijyjBisys)

= −εijkBkyjεisrBrys

= −
(
δsjδ

r
k − δrj δsk

)
BrB

kyjys

=
(
Bry

rBky
k −BrBryjyj

)
= (By)2 − (B)2y2 ≤ (B)2y2 + (By)2

≤ 2|B|2|y|2.

Thus for β = 0 and by choosing Bij = εijkB
k, we have inequality

|∂αkib(y, k)| ≤ C1,α

(
‖H0Φ‖+

1

m
|(By)j | ‖PlΦ‖+

1

2m
|(By)j |2 ‖Φ‖

)

≤ C1,α

‖H0Φ‖︸ ︷︷ ︸
=:C2

+2|y| |B|√
2m
‖PlΦ‖︸ ︷︷ ︸

=:C3

+|y|2 |B|
2

m
‖Φ‖︸ ︷︷ ︸

=:C4


≤ C1,αCB︸ ︷︷ ︸

=:C1,α,B

(1 + |y|)2 ,
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where in the last lines a constant CB satisfying

CB ≥ C1, C2, C3. (3.8)

has been chosen, which is possible since C1, C2 and C3 are finite constants. Therefore
b(y, k) belongs to the symbol class S2

1,0. Note that for β = 1, 2 the behavior of b(y, k) for
large y becomes even better.

Having shown that b(k, y) belongs to a symbol class theorem [Hör04, Section 7.8, Theo-
rem 7.8.2] can be applied and thus it follows that the oscillatory integral is defined in a
distributional sense.

In the subsequent discussion we drop the scalar product in order to clarify the physical
outcome of the deformation. Nevertheless, throughout this work we show that the de-
formation formula of warped convolutions holds for the unbounded operators that are used.

After clearing the mathematical problem of well-definedness we turn to the explicit
result of deformation. The resulting Hamiltonian obtained by deformation of the free
Hamiltonian using warped convolutions is given in the next proposition.

Proposition 3.1. Let the free Hamiltonian H0 be given as in (3.5), then the deformed
free Hamiltonian HB,X , which is obtained by using warped convolutions as defined in (3.3)
is given by

HB,XΨ = − 1

2m
(Pj +BjkX

k)(P j +BjrXr)Ψ. (3.9)

Proof. To solve the integral of deformation for H0 we let HB,X act on wave functions
Ψ(q) ∈ S (R3), which are eigenfunctions of the coordinate operator.

(HB,XΨ)(q) =

= −(2π)−3 lim
ε→0

(∫ ∫
d3kd3ye−ikr(y−q)

r
χ(εk, εy)αBy(H0)Ψ

)
(q)

= −(2π)−3 lim
ε1→0

(∫
d3y lim

ε2→0

(∫
d3ke−ikr(y−q)

r
χ2(ε2k)

)
χ1(ε1y)αBy(H0)Ψ

)
(q)

= −(2π)−3 lim
ε1→0

(∫
d3y (2π)3 δ(y − q)χ(ε1y)αBy(H0)Ψ

)
(q)

= − 1

2m
(Pj +BjkX

k)(P j +BjrXr)Ψ(q).

Here we used the fact that the oscillatory integral does not depend on the cut-off function
chosen. As in [Rie93] and [MM11], we choose χ(εk, εy) = χ2(ε2k)χ1(ε1y) with χl ∈ S (R3×
R3) and χl(0, 0) = 1, l = 1, 2, and obtained the delta distribution δ(y − q) in the limit
ε2 → 0, [Hör04, Section 7.8, Equation 7.8.5].

The proposition tells us that the deformation with the coordinate operator amounts to
a non-constant shift of the momenta. In physics this is usually referred to as minimal
substitution. Such a minimal substitution is in QM usually based on Galilei invariance
and then implemented accordingly by an external electromagnetic field (see [JM67]), [Sib].
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In our approach we obtain such a substitution by deformation. The connection between
deformation and an external electromagnetic field is explored in the next sections.

For our next results the deformation of the momentum operator is necessary. Due
to the unboundedness of P j we are obliged to show that formula (3.3) can be defined as a
well-defined oscillatory integral. A reader more interested in the result of the deformation
can skip the following lemma.

As for the proof of Lemma 3.1 we take the scalar product of P jB,X ,

〈Ψ, P jB,XΦ〉 = (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk)〈Ψ, V (k)αBy(P

j)Φ〉

=: (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk) bj(k, y)

for Ψ,Φ ∈ S (R3).

Lemma 3.2. Let the function bj(y, k), for j = 1, 2, 3, be given as the scalar product
〈Ψ, V (k)αBy(P

j)Φ〉. Then bj(y, k) ∈ S1
1,0, for Ψ,Φ ∈ S (R3) and thus the deformation

with the coordinate operator, via warped convolutions, of the momentum operator is given
as a well-defined oscillatory integral.

Proof. We start by looking at the following expression,

|∂αki∂
β
yrb

j(y, k)| = |〈Ψ,
(
∂αkiV (k)

)
∂βyr
(
αBy(P

j)
)

Φ〉|

≤ ‖(−iXα)Ψ‖︸ ︷︷ ︸
=:C1,α

∥∥∥∂βyr (P j + (By)j
)

Φ
∥∥∥

≤ C1,α

(∥∥∥∂βyrP jΦ∥∥∥+ |∂βyr(By)j | ‖Φ‖
)
,

where in the last lines we used the adjoint action given in Equation (3.6). By using
inequality (3.7) for Bij = εijkB

k and taking β = 0 we obtain

|∂αkib
j(y, k)| ≤ C1,α

∥∥P jΦ∥∥︸ ︷︷ ︸
=:C5

+|y|
√

2|B| ‖Φ‖︸ ︷︷ ︸
=:C6


≤ C1,α (C5 + C6|y|)
≤ C1,αCD︸ ︷︷ ︸

=:C1,α,B

(1 + |y|) ,

where in the last line a constant CD satisfying

CD ≥ C5, C6, (3.10)

has been chosen, which is possible since C5 and C6 are finite. Therefore bj(y, k) belongs
to the symbol class S1

1,0 for i = 1,2, 3. Note that for β = 1 the behavior of b(y, k) for large
y becomes even better.

Now again by the virtue of the theorem given in [Hör04, Section 7.8, Theorem
7.8.2] it follows that the oscillatory integral is well-defined in a distributional sense.
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Proposition 3.2. Let the deformed Hamiltonian H ′B,X be defined by the deformed mo-
mentum operator P jB,X as follows

H
′
B,XΨ := − 1

2m
PB,Xj P jB,XΨ, Ψ ∈ S (R3). (3.11)

Then, the operator H ′B,X is equal to the deformed Hamiltonian HB,X given in (3.9), i.e.
H
′
B,X = HB,X .

Proof. We begin by looking at the deformed momentum operator. As before, calcula-
tions are performed by using the action of the deformed operator on eigenfunctions of the
coordinate operator.(

P jB,XΨ
)

(q) =

= −(2π)−3 lim
ε→0

(∫ ∫
d3kd3ye−ikr(y−q)

r
χ(εk, εy)αBy(P

j)Ψ

)
(q)

= −(2π)−3 lim
ε1→0

(∫
d3y lim

ε2→0

(∫
d3ke−ikr(y−q)

r
χ2(ε2k)

)
χ1(ε1y)αBy(P

j)Ψ

)
(q)

= −(2π)−3 lim
ε1→0

(∫
d3y (2π)3 δ(y − q)χ(ε1y)αBy(P

j)Ψ

)
(q)

= (P j +BjrXr)Ψ(q).

Where again in the last lines we chose χ(εk, εy) = χ2(ε2k)χ1(ε1y) with χl ∈ S (R3 × R3)
and χl(0, 0) = 1, l = 1, 2, and obtained the delta distribution δ(y−q) in the limit ε2 → 0.
Therefore, we obtain for the deformed momenta,

P jB,XΨ =
(
P j +BjrXr

)
Ψ. (3.12)

The previous proposition settles the arbitrariness of deformation, because a deformed
Hamiltonian could be defined as given in (3.11).

Another important result of this deformation is the fact that the deformed momen-
tum operator does not commute along its components and is therefore an example of a
noncommutative space. Therefore, we have the following result.

Lemma 3.3. Let θ be a skew symmetric matrix of the Moyal-Weyl plane R3
θ. Then, the

deformed momentum operators PB,Xj given in (3.12), satisfy the commutator relations of
a Moyal-Weyl plane with the skew symmetric matrix θ = −2B,

[PB,Xj , PB,Xk ] = −2iBjk. (3.13)

Furthermore, the velocity operators of the system ẊB,X
j satisfy the following commutation

relations
[ẊB,X

j , ẊB,X
k ] = − 2i

m2
Bjk.
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Proof. To calculate the commutator of the deformed momentum operator one makes use
of the canonical commutation relations and the skew-symmetry of the deformation matrix
Bjk, namely

[PB,Xj , PB,Xk ] = [Pj +BjrX
r, Pk +BklX

l] = Bkl[Pj , X
l]−Bjl[Pk, X l]

= iBkj − iBjk = −2iBjk.

The velocity operator of the system ẊB,X
j is calculated by applying the Heisenberg equa-

tion,

i[HB,X , Xj ] = Ẋj
B,X

=
1

m

(
Pj +BjrX

r

)
=

1

m
PB,Xj .

By using relation (3.13) the commutation relations of the velocity operators follow

[ẊB,X
j , ẊB,X

k ] = − 2i

m2
Bjk.

For solving the eigenvalue equation in the next section it is important to rewrite the
Hamiltonian in terms of the velocity operator as follows,

HB,X = −m
2
ẊB,X
j Ẋj

B,X .

3.3.1 Solving the eigenvalue problem

The eigenvalue equation of the deformed Hamiltonian HB,X is solved in order to gain
some insight concerning the deformed energy properties of a free particle. Using standard
quantum mechanical methods, we diagonalize the Hamiltonian and solve the eigenvalue
equation. The solution of the eigenvalue equation is given in the following lemma.

Lemma 3.4. Let the deformation matrix Bij have the following form

Bij = −
κ2
B

2

0 0 0
0 0 1
0 −1 0

 . (3.14)

Then, the eigenvalues of the deformed Hamiltonian HB,X obtained in (3.9), are given by

EB,n =
p2

1

2m
+

(
n+

1

2

)
ωB,

where ωB := κ2
B/m and p1 ∈ R, n ∈ N.

Proof. In particular, it turns out that HB,X can be rewritten in terms of creation and
annihilation operators similar to the Hamiltonian of an harmonic oscillator. The velocity
operators ẊB,X

2 and ẊB,X
3 are conjugate variables satisfying the following commutation

relation

[ẊB,X
2 , ẊB,X

3 ] = i
κ2
B

2
. (3.15)
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Since the velocity operators form a canonical pair we define deformed annihilation and
creation operators aB, a∗B as follows

aB := (ẊB,X
2 + iẊB,X

3 )

√
m

2ωB
, a∗B := (ẊB,X

2 − iẊB,X
3 )

√
m

2ωB
.

By using Relation (3.15) one can easily see that the annihilation and creation operators
satisfy

[aB, a
∗
B] = 1.

The deformed Hamiltonian is written in terms of the annihilation and creation operators
and therefore takes the form of an harmonic oscillator, namely

HB,X =
P 2

1

2m
+

(
a∗BaB +

1

2

)
ωB.

Hence, the eigenvalue problem can therefore be solved by standard methods and we obtain
quantized energy values

EB,n =
p2

1

2m
+

(
n+

1

2

)
ωB, p1 ∈ R, n ∈ N,

for fixed p1.

This result implies that the deformation of the free Hamiltonian with the coordinate op-
erator lead the continuous spectrum into a discrete spectrum. This already gives us a hint
on the physical nature of the deformation. A well known example of quantum mechanical
models where the transition of the energy from a continuous spectrum to a discrete spec-
trum occurs, involves the interaction of a magnetic field with a free particle. This will be
explored in the next sections.

3.3.2 Langmann-Szabo Duality

An interesting duality appearing in noncommutative quantum field theory is the so
called Langmann Szabo duality. This duality appears for noncommutative quantum field
theories of charged bosons, described by Lagrangians and parameterized by some matrices
that give the noncommutativity of spacetime and momentum space. The duality of these
noncommutative quantum field theories preserves their form under Fourier transformation,
[LS02a]. The same duality appears in the deformed model introduced above.

Lemma 3.5. Let F (HB,X) be the Fourier transformation of the deformed Hamiltonian
HB,X . Then, the following duality holds

HB,X(~x) = F (HB,X)( ~Bx).

Proof. To see that this duality holds we apply the deformed Hamiltonian to an eigenfunc-
tion Ψ of the coordinate operator.

(HB,XΨ)(~x) = − 1

2m

(
(Pj +BjkX

k)(P j +BjrXr)Ψ

)
(~x)
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= − 1

2m

(
i
∂

∂xj
+Bjkx

k

)(
i
∂

∂xj
+Bjrxr

)
Ψ(~x).

In the next step we calculate the Fourier transformation of the deformed Hamilton operator
to obtain the representation in momentum space.

F (HB,XΨ)(~p) = − 1

2m

(
pj − iBjk

∂

∂pk

)(
pj − iBjl ∂

∂pl

)
Ψ(~p)

It is not just a fact of academic interest that this duality holds, but it also has a deeper
physical meaning which is compatible with the result of the previous section. The duality
appears in NCQFT due to a constant magnetic field B. We have a rather simpler model
with the Langmann Szabo duality but nevertheless the physical interpretation of B can
also be adopted for this simple model. Namely, the deformation matrix B plays the role
of a constant magnetic field.

3.4 Physical models from deformation

One of the most important aspects of the interplay between mathematics and physics
lies in the physical dimensionality of the physical constants. The main question that
motivated this work is the following one: What is the physical meaning of the deformation
parameter? In the simple model above there is an interesting answer.

3.4.1 Landau quantization

An example of a dynamical system interacting with a magnetic field in quantum mechanics,
is given by the Landau quantization. It is also an important example of the appearance of
quantum space in a physical context. The Landau quantization describes the dynamics of
a system of nonrelativistic electrons confined to a plane, lets say in the y−z plane ( ~A =
(0, y, z)), in the presence of a homogeneous magnetic field in x-direction ~B = B(1, 0, 0).
In the symmetric gauge the Hamiltonian of the Landau quantization is given by, [Eza,
Equation 9.2.1],

HL = − 1

2m
(Pi − eAi)

(
P i − eAi

)
,

with gauge field Ai = −εijkBkXj . The deformed Hamiltonian HB,X we introduced above
describes almost the Landau model with the main difference that in our deformed model
the deformation parameter κ2

B is still variable. If one sets this parameter equal to zero
one obtains the Hamiltonian of a free particle. By setting κ2

B to be equal to a constant
with physical dimension we obtain the following lemma.

Lemma 3.6. Let the deformation parameter κ2
B of the matrix Bij (3.14) be equal to eB,

where B characterizes the constant of a homogeneous magnetic field and e the elementary
charge. Then, the deformed free Hamiltonian HB,X becomes the Hamiltonian HL of the
Landau quantization.
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Proof. For the proof we consider the free deformed Hamiltonian HB,X which is given in
Proposition 3.1.

HB,X = − 1

2m
(Pj +BjkX

k)(P j +BjrXr).

In the next step we set the deformation parameter κ2
B = eB. Then Bij is given as Bij =

−eεijkBk, where Bk is the homogeneous magnetic field in the x-direction (Bk = B(1, 0, 0)).

Now this is truly an astonishing result. We started with the free Hamiltonian and deformed
it with warped convolutions using the coordinate operator. By simply taking the defor-
mation parameter to be equal to the physical constant eB we obtain the Landau problem.
Therefore, deformation with the coordinate operator is physically of great importance.
Note that our model is formulated in a general manner, and just for the specific choice of
the deformation parameter κ2

B = eB we obtained the Landau effect.

3.4.2 Zeeman effect from Deformation

The Hamiltonian of the hydrogen atom is given as follows, [Thi79, Equation 4.1.1]

HA = −PjP
j

2m
+

e2

(−XkXk)1/2
. (3.16)

By solving the stationary Schrödinger equation HAψ = Eψ one obtains the energy spec-
trum of the hydrogen atom, the so called Balmer series, [Str08]. In the presence of a
constant magnetic field, an interesting physical effect influences the spectral lines of the hy-
drogen atom. The spectral lines split into further spectral lines depending on the presence
of the homogeneous magnetic field Bk. This phenomenon is called the Zeeman effect
and is governed by the following Hamiltonian, [Thi79, Equation 4.2.1]

HAZ = − 1

2m
(Pj − eεijkBkXk)(P j − eεijkBkXr) +

e2

(−XkXk)1/2
. (3.17)

In the last section we discovered that deformation with the coordinate operator induces
a gauge field. Taking this as a lesson we perform a deformation on the Hamiltonian of
the hydrogen atom to obtain the Hamiltonian of the Zeeman effect. As for the previous
Hamiltonians we are obliged to show that for the (from above) unbounded operator HA

formula (3.3) can be defined as an oscillatory integral in a distributional sense. We first
note that the Hamiltonian of the hydrogen atom is HA = H0 + e2/(−XkX

k)1/2. Since we
already proved in Lemma 3.1 that H0 can be deformed by using the warped convolutions
formula (3.3), it suffices to show it holds for the second term. So again as before, we take
the scalar product involving HD := e2/(−XkX

k)1/2,

〈Ψ, HD
B,XΦ〉 = (2π)−3 lim

ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk)〈Ψ, V (k)αBy(H

D)Φ〉

=: (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk) bD(k, y)

for Ψ,Φ ∈ S (R3).
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Lemma 3.7. Let the function bD(y, k), be given as the scalar product 〈Ψ, V (k)αBy(H
D)Φ〉.

Then bD(y, k) ∈ S0
1,0, i.e. just a constant function for Ψ,Φ ∈ S (R3) and thus the defor-

mation, via warped convolution, of HA is given as a well-defined oscillatory integral.

Proof.

|∂αki∂
β
yrb

D(y, k)| = |〈Ψ,
(
∂αkiV (k)

)
∂βyr
(
αBy(H

D)
)

Φ〉|
≤ ‖(−iXα)Ψ‖︸ ︷︷ ︸

=:C1,α

∥∥(HD
)

Φ
∥∥︸ ︷︷ ︸

=:CD

≤ C1,αCD,

where in the last lines we used the commutation relation , [Xi, Xj ] = 0 to show that HD

is invariant under the adjoint action of V (By). Moreover, since C1,α and CD are finite
constants, bD(y, k) belongs to the symbol class S0

1,0.

In the next step we choose the deformation parameter to be the same as in the last section
and therefore the deformation of HA yields the following lemma.

Lemma 3.8. Let the deformation parameter κ2
B of the matrix Bij (3.14) be equal to eB,

where B characterizes the constant of a homogeneous magnetic field and e the elementary
charge. Then the deformed Hamiltonian of HZ (3.16), denoted by HZ

B,X , becomes the
Hamiltonian of the Zeeman effect HAZ (3.17).

Proof. Due to the fact that the coordinate operator commutes with itself the only part of
the Hamiltonian HZ which is affected is the free part and therefore we obtain

HZ
B,XΨ =

(
− 1

2m
(Pj +BjkX

k)(P j +BjrXr) +
e2

(−XkXk)1/2

)
Ψ

=

(
− 1

2m
PB,Xj P jB,X +

e2

(−XkXk)1/2

)
Ψ.

By setting the deformation parameter κ2
B = eB, the skew-symmetric matrix Bij takes the

same form as in the last section, Bij = −eεijkBk, and we obtain the Hamiltonian of the
Zeeman effect for a homogeneous magnetic field in the x-direction.

As in the case of the Landau quantization the deformation parameter plays the role of the
magnetic field which leads to this important physical effect. Let us summarize the result.
We deformed the Hamiltonian of the hydrogen atom using the coordinate operator. By
setting the deformation parameter equal to the constant of a magnetic field we obtain the
Zemann effect.

3.4.3 The Aharonov-Bohm effect

In the last sections we recognized the consequence of deformation with the coordinate op-
erator. Warped convolutions with the coordinate operator induces a gauge field. Now
since we work in a quantum mechanical setting we want to reproduce other physical ef-
fects where magnetic fields play a significant role. One of the most striking ones is the
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Aharanov-Bohm (AB) effect. It takes place in a system in which the gauge field Ak
influences the dynamics of a charged particle even in regions where the magnetic field Bk
vanishes, [Ber96, Eza]. To be more precise, it tells one how to quantize if the configuration
space is not simply connected. The gauge field Ak(x) of the magnetic version of the AB
effect for a homogeneous magnetic field in x-direction takes the following form

Ak =
φM

2π(X2
2 +X2

3 )
εijke

kXj ,

where φM is the magnetic flux and ek is the unit vector in x-direction. Moreover, from
quantum mechanical considerations it follows that the interference pattern is the same
for two values of fluxes φ1 and φ2 if only if

e(φ1 − φ2) = 2πn, n ∈ Z. (3.18)

In this section we take the free Hamiltonian of quantum mechanics and deform it with
a vector-valued function of the coordinate operator and set the deformation parameter
equal to a physical constant, namely that of a magnetic flux. The gauge field induced by
this specific deformation is equal to the gauge field of the Aharonov-Bohm effect.

As before, prior to the deformation we prove that the formula of warped con-
volutions (3.3) is well-defined in the case of deformation with the operator
Fj(X) := Xj/(−

∑3
s=2XsX

s)1/2, of the unbounded operator H0. Therefore we
consider the deformed free Hamiltonian HφM ,F (X) in the scalar product, where the unitary
operator is now defined by VF (y) := eiy

jFj(X). So we have

〈Ψ, HφM ,F (X)Φ〉 = (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk)〈Ψ, VF (k)αBy(H0)Φ〉

=: (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk) bF (k, y)

for Ψ,Φ ∈ S (R3). As one can see 〈Ψ, HφM ,F (X)Φ〉 is given in the form of an oscillatory
integral and thus to prove the expression is well-defined, we show in the next lemma that
bF (k, y) belongs to a symbol class.

Lemma 3.9. Let the function bF (y, k) be given as the scalar product 〈Ψ, VF (k)αBy(H0)Φ〉.
Then, b(y, k) ∈ S2

1,0, for Ψ,Φ ∈ S (R3) and thus the deformation, via warped convolution,
of the free Hamiltonian, using VF (k), is given as a well-defined oscillatory integral.

Proof. We first calculate the adjoint action of VF (By) on H0 given by,

αBy(H0) = − 1

2m
VF (By)PjP

jVF (−By)

= − 1

2m
VF (By)PjVF (−By)VF (By)P jVF (−By).

To solve this expression one first has to calculate the adjoint action of V (By) on the
momentum operator Pj . This is done by using the Baker-Campbell-Hausdorff formula. So
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we have

VF (By)PjVF (By) = Pj − i(By)k

(
iηkj /(−XsX

s)1/2 + iXkXj/(−XsX
s)3/2

)
+

+
i2

2
(By)l(By)k[X

l/(−XsX
s)1/2, [Xk/(−XrX

r)1/2, Pj ]] + ...︸ ︷︷ ︸
=0

= Pj + (By)k

(
ηkj /(−XsX

s)1/2 +XkXj/(−XsX
s)3/2

)
︸ ︷︷ ︸

=:Xk
j

, (3.19)

here in the last lines we used the CCR and the fact that the coordinate operator satisfies
[Xi, Xj ] = 0. Thus, the adjoint action w.r.t. VF (By) on H0 is

αBy(H0) = − 1

2m
(Pj + (By)sX

s
j )(P j + (By)rXj

r )

= H0 − (By)r
1

2m

(
PjX

j
r +Xj

rPj
)

︸ ︷︷ ︸
=:Rr

−(By)r(By)s
1

2m
Xs
jX

j
r︸ ︷︷ ︸

=:Rsr

= H0 − (By)rRr − (By)r(By)sR
s
r. (3.20)

Remark 3.3. The term Rsr is important in the following considerations and one should note
that it has a structure which allows us to use the Cauchy-Schwarz inequality, namely

Rsr =
1

2m

(
ηst /(−XlX

l)1/2 +XsXt/(−XrX
r)3/2

)(
ηtr/(−XkX

k)1/2 +XtXr/(−XzX
z)3/2

)
=
(
ηsr/(−XlX

l) +XsXr/(−XlX
l)2
)
. (3.21)

Furthermore, the interchanging of the order of integration and differentiation is allowed
due to the same arguments given in Remark (3.2).

In the next step we look at the expression

|∂αki∂
β
yrb

F (y, k)| = |〈Ψ,
(
∂αkiVF (k)

)
∂βyr (αBy(H0)) Φ〉|

≤ ‖(−iF (X)α)Ψ‖︸ ︷︷ ︸
=:C1,α

∥∥∥∂βyr (H0 − (By)rRr − (By)r(By)sR
s
r) Φ

∥∥∥
≤ C1,α

(∥∥∥∂βyrH0Φ
∥∥∥+ |∂βyr(By)j | ‖RlΦ‖+ |

∥∥∥∂βyr(By)j(By)sRltΦ
∥∥∥) .

Thus, for β = 0, Bij = εijkB
k and by the form of Rsr given in Equation (3.21) we have the

following inequality

|∂αkib
F (y, k)| ≤ C1,α

(
‖H0Φ‖+ |(By)j | ‖RlΦ‖+ 2|(By)j |2

∥∥∥(−XlX
l)−1Φ

∥∥∥)

≤ C1,α

‖H0Φ‖︸ ︷︷ ︸
=:C2

+2|y| |B|√
2
‖RlΦ‖︸ ︷︷ ︸

=:C3

+|y|2 4|B|2

m

∥∥∥(−XlX
l)−1Φ

∥∥∥︸ ︷︷ ︸
=:C4


≤ C1,αCB︸ ︷︷ ︸

=:C1,α,B

(1 + |y|)2 , (3.22)
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As in the proof of Lemma 3.1 a constant CB obeying inequality (3.22) exists, because C1,
C2 and C3 are finite constants. Therefore, bF (y, k) belongs to the symbol class S2

1,0 and it
follows that the oscillatory integral is defined in a distributional sense.

Let us now return to the result for deforming the free Hamiltonian with unitary operators
VF (k).

Proposition 3.3. Let the deformation parameter κ2
B of the matrix Bij (3.14) be

equal to −eφM/2π, where φM characterizes the magnetic flux. Moreover, let HφM ,F (X)

denote the free Hamiltonian (3.5) deformed with unitary representations VF (y) of R3 that
are given as follows

VF (y) = eiy
jFj(X), Fj(X) := Xj/(−

3∑
s=2

XsX
s)1/2.

Then, the induced gauge field obtained from HφM ,F (X) is equal to the gauge field of the
magnetic version of the Aharonov-Bohm effect for a magnetic field in x-direction.

Furthermore, if the deformation parameters of the Hamiltonians Hφ1,F (X) and Hφ2,F (X)

fulfill Equation (3.18), the physical systems described by the Hamiltonians have the same
interference pattern.

Proof. To prove this proposition we use the spectral measure representation of the defor-
mation given in Definition 2.7. As shown in [BLS11] the deformation with the spectral
measure is equivalent to the one given as an integral. Due to simplicity and readability
reasons we use the integral representation for the current case. The deformation of H0 is
then given as follows,

HφM ,F (X)Ψ =

∫
dE(y)αBy (H0) Ψ

=

∫
dE(y)

(
− 1

2m
(Pj + (By)sX

s
j )(P j + (By)rXj

r )

)
= − 1

2m
(Pj + (BF (X))sX

s
j )(P j + (BF (X))rXj

r )

= − 1

2m

(
Pj + (BX)j/(−

3∑
s=2

XsX
s)

)2

, (3.23)

where in the last lines we used Equation (3.20) and the skew-symmetry of B. Therefore,
the deformed Hamiltonian HφM ,F (X) takes the following form

HφM ,F (X) = − 1

2m

(
Pi +BikX

k/(−XsXs)

)2

− 1

2m

(
Pi − e

φM
2π(X2

2 +X2
3 )
εijke

kXj

)2

= − 1

2m

(
Pi − eAi

)2

.
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The gauge field Ai(x) which is induced by deformation is given as follows

Ai(x) =
φM

2π(X2
2 +X2

3 )
εijke

kXj ,

which is exactly the gauge field of the AB effect for a homogeneous magnetic field in
x-direction.

This is an important result. We were able to induce the AB-gauge field by deforming
the free Hamiltonian with a function of the essentially selfadjoint coordinate operator
Xj . In this case the deformation parameter corresponds to the magnetic flux rather as
in the previous cases to the magnetic field itself. This shows the extendability of this
rather simple model. In particular one can induce an arbitrary (abelian) gauge field by
deformation.

For our next results we deform the momentum operator with Fj(X). Due to the
unboundedness of P j , we are obliged to show that deformation formula (3.3) is well-
defined in this case. Analogously for the proof of Lemma 3.2, we take the scalar product
of P jB,F (X),

〈Ψ, P jB,F (X)Φ〉 = (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk)〈Ψ, VF (k)αBy(P

j)Φ〉

=: (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk) bj(k, y)

for Ψ,Φ ∈ S (R3).

Lemma 3.10. Let the function bj(y, k), for j = 1, 2, 3, be given as the scalar product
〈Ψ, VF (k)αBy(P

j)Φ〉. Then bj(y, k) ∈ S1
1,0, for Ψ,Φ ∈ S (R3) and thus the deformation,

via warped convolutions, of the momentum operator P j is given as a well-defined oscillatory
integral.

Proof. We start by looking at the following expression,

|∂αki∂
β
yrb

j(y, k)| = |〈Ψ,
(
∂αkiVF (k)

)
∂βyr
(
αBy(P

j)
)

Φ〉|

≤ ‖(−iF (X)α)Ψ‖︸ ︷︷ ︸
=:C1,α

∥∥∥∂βyr (P j + (By)rXj
r

)
Φ
∥∥∥

≤ C1,α

(∥∥∥∂βyrP jΦ∥∥∥+ |∂βyr(By)j |
∥∥∥X l

rΦ
∥∥∥) ,

where in the last lines we used the adjoint action given in Equation (3.19). By using
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inequality (3.7) for Bij = εijkB
k and for β = 0 we obtain

|∂αkib
j(y, k)| ≤ C1,α

∥∥P jΦ∥∥︸ ︷︷ ︸
=:C5

+|y|
√

2|B|
∥∥∥X l

rΦ
∥∥∥︸ ︷︷ ︸

=:C6


≤ C1,α (C5 + C6|y|)
≤ C1,αCD︸ ︷︷ ︸

=:C1,α,B

(1 + |y|) ,

A a constant CD satisfying
CD ≥ C5, C6,

can be found, since C5 and C6 are finite constants. Therefore, bj(y, k) belongs to the symbol
class S1

1,0, for i = 1,2,3. As before by the virtue of the theorem given in [Hör04, Section
7.8, Theorem 7.8.2] it follows that the oscillatory integral is well-defined in a distributional
sense.

Analogously to Proposition 3.2 the following proposition holds.

Proposition 3.4. Let the deformed Hamiltonian H
′

φM ,F (X) be defined by the deformed

momentum operator P jφM ,F (X) as follows

H
′

φM ,F (X)Ψ := − 1

2m
P
φM ,F (X)
j P jφM ,F (X)Ψ, Ψ ∈ S (R3).

Then, the operator H ′φM ,F (X) is equal to the deformed Hamiltonian HφM ,F (X) given in
(3.23), i.e. H ′B,X = HB,X .

Proof. As in the proof of Proposition 3.2 we calculate the deformation of the momentum
operator using unitary representations of R3, defined by Xj/(−

∑3
s=2XsX

s)1/2.

P jφM ,F (X)Ψ =

∫
dE(y)αBy

(
P j
)

Ψ

=

∫
dE(y)

(
P j + (By)rXj

r

)
= (P j + (BF (X))rXj

r )

=

(
P j + (BX)j/(−

3∑
s=2

XsX
s)

)
,

where we used the skew-symmetry of B and Equation (3.19). Thus the deformed momen-
tum operator is the following

P jφM ,F (X)Ψ = P j +BjkXk/(−XsXs)Ψ.
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The last proposition settles, as in the last sections, the arbitrariness of defining the
deformed Hamiltonian.

There are two ways to interpret these results. The first one lies in understanding
deformation, in the case of QM, as the rightful minimal substitution. Thus the procedure
sheds new light on quantum mechanical effects involving magnetic fields. The fields have
to be understood as consequences of deformation with the coordinate operator.

The other way of understanding the result is the following. The coupling of an
external magnetic field in QM is well understood and studied for various physical appli-
cations and models. Deformation on the other hand is a mathematical tool, rather than a
procedure that generates physical effects. Hence, in these examples deformation of a QM
system can be understood as the coupling of an external field. Thus, if the deformation
goes hand in hand with Moyal-type spacetimes one sees in these examples that Moyal
spacetimes correspond to ordinary spacetimes in the presence of an external field. By
having this observation in mind it does not seem far fetched that certain deformations of
spacetime correspond to gravitation.
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3.4.4 Physical Moyal-Weyl plane from deformation

In this section we show that the Moyal-Weyl plane occurs in a limit of the deformed
model, given in Proposition 3.1. To see the appearance of a noncommutative plane one
has to rewrite the deformed free Hamiltonian in to a Lagrangian, which is done by a
Legendre transformation.

LB,X = −P iẊB,X
i −HB,X

= −(mẊi
B,X −BikXk)Ẋ

B,X
i +

m

2
ẊB,X
j Ẋj

B,X

= −m
2
ẊB,X
j Ẋj

B,X +BikXkẊ
B,X
i (3.24)

In the next step one imposes the quantization condition upon the conjugate momenta and
the coordinate operators, and obtains in a particular limit the Moyal-Weyl plane.

Lemma 3.11. By imposing the quantization condition between the conjugate momenta
Πi, obtained from the deformed Lagrangian LB,X (3.24), and a coordinate operator Xj one
obtains for large values of the deformation parameter κ2

B >> m2, the Moyal-Weyl plane
R3
θ

[Xi, Xj ] = iθij . (3.25)

Proof. For large values of the deformation parameter where one can neglect the mass term,
κ2
B >> m2, the conjugate momenta Πi, obtained from differentiating the Lagrangian w.r.t
ẊB,X
i , is given as

Πi := −
∂LB,X(X, ẊB,X)

∂ẊB,X
i

= −BikXk.

By imposing the quantization condition that the conjugate momenta and the coordinates
form a canonical conjugate pair, [Πi, Xj ] = iηij one obtains, [Sza04]

[Xi, Xj ] = i(B−1)ij .

Now by defining (B−1)ij to be θij one obtains the well-known three dimensional Moyal-
Weyl plane R3

θ.

Remark 3.4. We use in this work the inverse of a skew-symmetric 3× 3 matrix. This is in
general singular. Thus the inverse of Bij (see Equation 3.14), is given as

B−1
ij =

κ−2
B

2

0 0 0
0 0 1
0 −1 0

 .

The three dimensional Moyal-Weyl plane R3
B−1 can also be obtained by defining the guiding

center coordinates Qi as in [Eza, Equation 9.2.4] by

Qi := Xi + (B−1)ikP
k. (3.26)

This is usually done to describe the circular motion of an electron in the lowest Landau
level, [Eza, Sza04].
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For our next result we show by deforming the coordinate operator with the momentum
operator using Definition 3.4, that the deformed coordinate operator corresponds to the
guiding center coordinates.

As before, we first prove that the deformation formula (3.4) is well defined in this
case. Thus, let us consider the deformed coordinate operator as follows

〈Ψ, Xj
θ,PΦ〉 = (2π)−3 lim

ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk)〈Ψ, U(k)αθy(X

j)Φ〉

=: (2π)−3 lim
ε→0

∫∫
d3y d3k e−iylk

l
χ(εy, εk) bj(k, y)

for Ψ,Φ ∈ S (R3).

Lemma 3.12. Let the function bj(y, k), for j = 1, 2, 3, be given as the scalar product
〈Ψ, U(k)αθy(X

j)Φ〉. Then, bj(y, k) ∈ S1
1,0, for Ψ,Φ ∈ S (R3) and thus the deformation

via warped convolutions of the coordinate operator Xj is given as a well-defined oscillatory
integral.

Proof. For the proof we first calculate the adjoint action of U(y) on the coordinate operator.

αθy(X
j) = U(θy)XjU(−θy)

= Xj − (θy)j , (3.27)

where in the last line we used the canonical commutation relations and the Baker-
Campbell-Hausdorff formula. Now let us look at the following

|∂αki∂
β
yrb

j(y, k)| = |〈Ψ,
(
∂αkiU(k)

)
∂βyr
(
αθy(X

j)
)

Φ〉|

≤ ‖(−iPα)Ψ‖︸ ︷︷ ︸
=:C1,α

∥∥∥∂βyr (Xj − (θy)j
)

Φ
∥∥∥

≤ C1,α

(∥∥∥∂βyrXjΦ
∥∥∥+ |∂βyr(θy)j | ‖Φ‖

)
,

where in the last lines we used Equation (3.27). By using Inequality (3.7), θij = εijkθ
k and

β = 0 we obtain

|∂αkib
j(y, k)| ≤ C1,α

∥∥XjΦ
∥∥︸ ︷︷ ︸

=:C5

+|y|
√

2|θ| ‖Φ‖︸ ︷︷ ︸
=:C6


≤ C1,α (C5 + C6|y|)
≤ C1,αCD︸ ︷︷ ︸

=:C1,α,θ

(1 + |y|) ,

a constant CD satisfying
CD ≥ C5, C6.

exists, because C5 and C6 are finite constants and therefore bj(y, k) belongs to the symbol
class S1

1,0 for i = 1,2,3. As before, by the theorem given in [Hör04, Section 7.8, Theorem
7.8.2] it follows that the oscillatory integral is well-defined in a distributional sense.
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Let us now turn to the explicit result of deformation given by the following lemma.

Lemma 3.13. The deformation of the coordinate operator via warped convolutions using
the momentum operator P i yields

Xj
θ,P = Xj − θjrPr. (3.28)

The operators Xi
θ,P satisfy the commutation relations of the Moyal-Weyl plane R3

−2θ,

[Xi
θ,P , X

j
θ,P ] = −2iθij . (3.29)

Moreover, let −θij be (B−1)ij then the deformed coordinate operators Xi
θ,P are equal to the

guiding center coordinates given in Equation (3.26).

Proof. We start by calculating the action of the deformed operator on eigenfunctions of
the momentum operator Ψ(p) ∈ S (R3) and obtain(

Xj
θ,PΨ

)
(p) =

= −(2π)−3 lim
ε→0

(∫ ∫
d3kd3ye−ikr(y−p)

r
χ(εk, εy)αθy(X

j)Ψ

)
(p)

= −(2π)−3 lim
ε1→0

(∫
d3y lim

ε2→0

(∫
d3ke−ikr(y−p)

r
χ2(ε2k)

)
χ1(ε1y)αθy(X

j)Ψ

)
(p)

= −(2π)−3 lim
ε1→0

(∫
d3y (2π)3 δ(y − p)χ(ε1y)αθy(X

j)Ψ

)
(p)

= (Xj − θjrPr)Ψ(p),

here again in the last lines we chose χ(εk, εy) = χ2(ε2k)χ1(ε1y) with χl ∈ S (R3×R3) and
χl(0, 0) = 1, l = 1, 2. Moreover, we obtained the delta distribution δ(y − p) in the limit
ε2 → 0. The commutator of the deformed coordinate operator is calculated by using the
canonical commutation relations (3.1) and the skew-symmetry of the deformation matrix
θjk.

[Xj
θ,P , X

k
θ,P ] = [Xj − θjrPr, Xk − θklPl]

= −θkl[Xj , Pl] + θjl[Xk, Pl]

= −2iθjk.

Although implied, it is important to emphasize that the deformation parameter used to
define θ is equal to the inverse of κ2

B.

Lemma 3.13 gives a well-defined path to obtain an effective quantum plane by the deforma-
tion procedure of warped convolutions. As shown, the lemma results from well understood
physical models and ideas, which are in circulation in condensed matter field theory for
quite some time. In the example of the Landau problem one defines guiding center coor-
dinates which satisfy the commutator relations of the Moyal-Weyl Plane. The reader is
cautioned to notice that the effective quantum plane obtained by the Landau problem is
not merely an abstract construct, but has the precise meaning that the coordinates cannot
be measured simultaneously. A more precise mathematical way to obtain this Moyal-Weyl
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plane is introduced in this work. We receive the Landau problem by deforming the Hamil-
tonian of a free nonrelativistic particle. The deformation is performed using the coordinate
operator for the deformation and by setting the deformation parameter equal to a certain
physical value that corresponds to a magnetic field. Furthermore, we show that the non
commuting coordinates referred to as the guiding coordinates are obtained by deforming
the coordinate operator, using the momentum operator. In our opinion, this method can
be further used in the quantum field theoretical approach to define an effective quantum
plane.
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3.5 Groups from Warped Convolution

This section is devoted to the mathematical explanation why the Landau problem appears
from deformation with the coordinate operator.

3.5.1 Heisenberg-Weyl Group

The free Hamiltonian H0 is defined by using the momentum operator Pk. Furthermore,
the deformation of H0 is performed by using the coordinate operator Xj . Therefore, the
two operators involved in the deformation procedure form the canonical conjugate pair
(Pi, Xk). The canonical conjugate pair generate continuous unitary groups which satisfy
the Weyl relations. These operators define a representation of the Heisenberg-Weyl group.
In the following we define the Heisenberg-Weyl group by using the groups V (a) and U(b),
that satisfy the Weyl relations, [BEH08, Example 10.2.2].

Definition 3.9. Let V (a) and U(b) be strongly continuous unitary groups satisfying the
Weyl relations (3.2). These operators give rise to a true representation of theHeisenberg-
Weyl group defined as the (2n+ 1)-parameter set G = {g(s, t, u) : s, t ∈ Rn, u ∈ R} with
the binary operation

g(s, t, u)g(s′, t′, u′) := g

(
s+ s′, t+ t′, u+ u′ +

1

2
(ts′ − st′)

)
.

It is a (2n+ 1)− dimensional noncommutative Lie group. The corresponding Lie algebra
is spanned by elements Pi, Xk, N , where the pair (Pi, Xk) satisfies the canonical commu-
tation relations and N commutes with all other generators. Therefore, the Schrödinger
representation of the CCR yields a representation of the generators of the Heisenberg-Weyl
algebra.

3.5.2 Magnetic Translation Group

The magnetic translation group was first defined in [Zak64a], [Zak64b]. In the presence of
a homogeneous magnetic field the group corresponds to an extension of the translation
group generated by Pk. In this section we give representations of the magnetic translation
group in the same functional analytic manner in which we defined the Heisenberg-Weyl
group.

Definition 3.10. Let W (a) be a strongly continuous unitary group on a separable
Hilbert space H satisfying the following relations

W (a)W (b) = eieF
ijaibjW (b)W (a), a, b ∈ Rn.

Then, the group generated by the unitary operators W (a) is referred to as the magnetic
translation group.



44 CHAPTER 3. DEFORMATIONS IN QM

Definition 3.11. Let πi be the canonical momentum operator defined as follows

πi := Pi − eAi, (3.30)

where Pi is the momentum operator and Ai is the vector potential of the magnetic field
Bi. Furthermore, let the spatial part of the field strength tensor Fij be defined as follows

eFij := −e[Pi, Aj ] + e[Pj , Ai].

The infinitesimal generators of the n-dimensional magnetic translation group are the canon-
ical momentum operators πi defined by Equation (3.30). In particular the strongly con-
tinuous unitary operator W (a) is defined as follows

W (a) := eia
jπj , a ∈ Rn.

From the definition of the the magnetic translation group it is obvious that the translation
group follows by setting F ij equal to zero.

3.5.3 Deformation of the Heisenberg-Weyl Operators

In this section we intend to show that from the deformed momentum operator of the
Heisenberg-Weyl group, the infinitesimal generators of the magnetic translation group
follow. As before, we use the method of warped convolutions for deformation.

Note that from a constant magnetic field a constant spatial field strength tensor follows.
This is owed to the relation between the magnetic field and the field strength tensor given
by Fij = −eεijkBk. In the symmetric gauge, (3.31), the vector potential Ai for a constant
magnetic field is given by

eAi =
e

2
FijX

j = −e
2
εijkB

kXj . (3.31)

Lemma 3.14. Let the deformation matrix Bij be related to the field strength tensor in
the following way Bij = − e

2Fij. Then the deformed momentum operator P jB,X (3.12)
becomes the canonical momentum operator of the magnetic translation group (3.30) in the
symmetric gauge (3.31).

Proof. For Bij = e
2Fij the deformed momentum operator is given as

P jB,X = P j − e

2
F jkXk = P j − eAj .

This is exactly the definition of the canonical momentum operator πi, (3.30).

This is a very interesting result. We started with the Heisenberg-Weyl group and deformed
the momentum operator. This deformation induced a shift given by the coordinate oper-
ator. By making a simple identification of the deformation matrix with the field strength
tensor we obtained the magnetic translation group. Thus, in the spirit of deformation the
magnetic translation group can be understood as a deformation of the Heisenberg-Weyl
group. This gives a group theoretical explanation why the effects of a magnetic field ap-
pear, when we deform the underlying operators, i.e. the momentum operators, with the
coordinate operator.
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3.5.4 Noncommutative Torus from deformation of the HW group

Next, we show that the commutator relations of the noncommutative torus T 2
0,B follow

from deformation with warped convolutions. The first index in T 2
0,B denotes the noncom-

mutativity of the coordinate space while the other index denotes the noncommutativity
of the momentum space. More precisely the noncommutative torus T 2

θ,B̃
, is defined as

follows, [MP01].

Definition 3.12. The associative noncommutative torus algebra T 2
θ,B̃

is generated
by the operator Pi and the unitary operator Uj := eiXj , for i, j = 2, 3 and θ ∈ R. (Xi, Pj)
forms a canonical conjugate pair (3.1) and the algebra spanned by Pi and the unitary
operator Uj is the following

U2U3 = e−iθU3U2, PiUj = Uj(Pi + δij) [Pi, Pj ] = iB̃εij .

Definition 3.13. Let the unitary operators V2, V3 satisfy the following algebra

V B
2 V B

3 = e2πim/nV B
3 V B

2 ,

for n,m ∈ N. Then, the operators are said to satisfy the so called clock and shift
algebra.

Furthermore, the authors in [MP01] proved that the torus algebra T 2
θ,B̃

is isomorphic to

the torus algebra T 2
0,B iff B = B̃/(1− B̃θ).

Lemma 3.15. Let the deformation matrix be given as Bij = Bεij. Then, the noncom-

mutative torus algebra T 2
0,B is spanned by the unitary operator UB,Xj := eiX

B,X
j and the

deformed momentum operator PB,Xj (3.12). Furthermore, if the deformation parameter is

given by B = −2πm/n, for n,m ∈ N, the unitary operators V B,X
i := eiP

B,X
i satisfy the

clock and shift algebra.

Proof. The operators deformed with the coordinate operator satisfy the following relations,

[XB,X
2 , XB,X

3 ] = 0, [PB,X2 , PB,X3 ] = iB, [XB,X
i , PB,Xj ] = iδij .

One can easily see that the deformed operators generate the torus algebra T 2
0,B. In addi-

tion, the unitary operators V defined with the deformed momentum operator satisfy the
following relations

V B
j V

B
k = RjkV

B
k V

B
j . Rjk = e−2iBjk .

Setting the deformation constant B = −2πm/n, yields that the unitary operators V B
i :=

eiP
B,X
j satisfy the clock and shift algebra

V B
2 V B

3 = e2πim/nV B
3 V B

2 .
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Chapter 4

NCQFT on Minkowski space

In this chapter the author intends to give a brief review about well established mathemat-
ical building blocks of NCQFT on Minkowski space. The review is aiming in the direction
of a better understanding of the the next chapters.

The starting point is [DFR95]. In this work major progress was achieved in defin-
ing a scalar quantum field on a NC spacetime. This achievement was obtained by
constructing coordinate operators, obeying the relations of a Moyal-Weyl plane, from a
set of axioms. Next, a quantum field on such a noncommutative spacetime was defined.

4.1 Quantum spacetime and QF

In [DFR95], the authors propose uncertainty relations for the spacetime coordinates in
four dimensions. These relations are motivated by the fact, that localization with high
accuracy at Planck scale causes a gravitational collapse. Thus spacetime, as a continuous
entity has no meaning below the Planck scale. After imposing such uncertainty relations
one replaces the commutative algebra of functions, for example the algebra given by
C∞0 (M) over a commutative manifold M , by a noncommutative algebra describing a
noncommutative spacetime, i.e. a quantum spacetime.

The uncertainty relations found by the exploration of localizing measurements, which are
the outcome of the possibility of creating a black hole by concentration of energies, are
the following

∆x̂0 (∆x̂1 + ∆x̂2 + ∆x̂3) ≥ l2p,
∆x̂1∆x̂2 + ∆x̂1∆x̂3 + ∆x̂2∆x̂3 ≥ l2p.

The selfadjoint operators x̂µ implying those uncertainty relations satisfy certain
conditions dubbed as quantum conditions. They are given by the following set of

47
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equations,

[[x̂µ, x̂ν ], x̂ρ] = 0,

[x̂µ, x̂ν ][x̂µ, x̂ν ] = 0,(
1

8
[x̂µ, x̂ν ][x̂ρ, x̂σ]εµνρσ

)2

= l8p.

The *-algebra which is generated by the selfadjoint operators x̂µ and the quantum condi-
tions has a center given by the commutator relation

[x̂µ, x̂ν ] = −iθµν . (4.1)

The tensor θ represents the noncommutative matrix, which contains the deformation
parameter that gives the strength of noncommutativity. By setting the parameter to zero,
the commutative case results.

In the next step, the authors in [DFR95] defined a free scalar quantum field on the
noncommutative space that is generated by the commutation relations (4.1).

Before we give their realization, let us define free scalar field φ with mass m on
the (n + 1)-dimensional Minkowski spacetime as an operator-valued distribution acting
on its domain in the Bosonic Fock space. Such a particle with momentum p ∈ Rn has the
energy given by ωp = +

√
p2 +m2.

Definition 4.1. The Bosonic Fock space H + is defined as in [Fre06, Sib93]:

H + =
∞⊕
k=0

H +
k

where the k-particle subspaces are given as

H +
k = {Ψk : H+

m × · · · ×H+
m → C symmetric|

‖Ψk‖2 =

∫
dnµ(p1) . . .

∫
dnµ(pk)|Ψk(p1, . . . ,pk)|2 <∞},

with
H+
m := {p ∈ Rd|p2 = m2, p0 > 0}.

The particle annihilation and creation operators a, a∗ for the massive Bosonic Fock space
are defined in the following.

Definition 4.2. The particle annihilation and creation operators are defined by
their action on k-particle wave functions,

(a(f)Ψ)k(p1, . . . ,pk) =
√
k + 1

∫
dnµ(p)f(p)Ψk+1(p,p1, . . . ,pk)

(a(f)∗Ψ)k(p,p1, . . . ,pk) =


0, k = 0

1√
k

k∑
i=1

f(pi)Ψk−1(p1, . . . ,pi−1,pi+1, . . . ,pk), k > 0
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with f ∈H1 and Ψk ∈H +
k . The commutator relations of a(f), a(f)∗ follow immediately

and are given as

[a(f), a(g)∗] = (f, g) =

∫
dnµ(p)f(p)g(p), [a(f), a(g)] = 0 = [a∗(f), a∗(g)].

Particle annihilation and creation operators with sharp momentum are introduced as op-
erator valued distributions and are given by

a(f) =

∫
dnµ(p)f(p)a(p), a(f)∗ =

∫
dnµ(p)f(p)a∗(p),

where the particle annihilation and creation operators with sharp momentum satisfy the
following commutator relations

[a(p), a(q)∗] = 2ωpδ
n(p− q), [a(p), a(q)] = 0 = [a∗(p), a∗(q)]. (4.2)

By using the former definitions of the particle creation and annihilation operators with
sharp momentum, one writes the free field φ with mass m

φ(x) =

∫
dnµ(p)

(
e−ipxa(p) + eipxa∗(p)

)
, p = (ωp,p) ∈ H+

m.

Since we work with unbounded distribution valued operators, the massive free scalar field
is smeared with test functions f ∈ S (Rd),

φ(f) =

∫
ddxf(x)φ(x) = a(f−) + a∗(f+), (4.3)

where the test functions f± are chosen as follows

f±(p) :=

∫
ddxf(x)e±ipx, p = (ωp,p) ∈ H+

m. (4.4)

The particle number operator and the momentum operator are given in terms of particle
creation and annihilation operators, and are defined in the following manner.

N =

∫
dnµ(p)a∗(p)a(p), Pµ =

∫
dnµ(p)pµa

∗(p)a(p) (4.5)

By using the former definitions we can give the realization of the free scalar field on the
constant noncommutative spacetime.

Let the space V be the representation space of the selfadjoint coordinate operators
x̂µ and H + the Bosonic Fock space. Then, the free scalar field on noncommutative
Minkowski spacetime can be realized on the tensor product space V ⊗H + as follows,

φ⊗(x) :=

∫
dµ(p)

(
e−ipxa⊗(θ,p) + eipxa∗⊗(θ,p)

)
, p ∈ H+

m,

with the following creation and annihilation operators

a⊗(θ,p) := e−ipx̂ ⊗ a(p), a∗⊗(θ,p) := eipx̂ ⊗ a∗(p). (4.6)



50 CHAPTER 4. NCQFT ON MINKOWSKI SPACE

Now by taking the canonical commutation relations of the particle operators and the
noncommutative algebra generated by (4.1) into account, one obtains for the operators
given in (4.6) the following relations

a⊗(θ,p)a⊗(θ,p′) = e−ipθp
′
a⊗(θ,p′)a⊗(θ,p),

a∗⊗(θ,p)a∗⊗(θ,p′) = e−ipθp
′
a∗⊗(θ,p′)a∗⊗(θ,p)

a⊗(θ,p)a∗⊗(θ,p′) = e+ipθp′a∗⊗(θ,p′)a⊗(θ,p) + 2ωpδ(p− p′)idV⊗H + .

In this review we adapted the notation of the authors in [GL07].

4.2 Wedge fields

A number of authors [ABJJ07, Gro79, GL07] succeeded representing the scalar field
on H + instead of V ⊗ H +. In [GL07] the representation of the scalar field on non-
commutative Minkowski space was used to show that one should take a whole orbit of
noncommutative matrices. This idea was the starting point to construct a map from
the set of skew-symmetric matrices, i.e. the noncommutative matrices θ describing the
noncommutativity, to a set of wedges. As next, we briefly review those results in or-
der to relate the fields defined on a noncommutative spacetime, to fields defined on a wedge.

By using the momentum operator Pµ (see Equation 4.5), one is able to represent
the distributions (4.6) on H + as follows,

a(θ,p) = ei/2pθPa(p), a∗(θ,p) = e−i/2pθPa∗(p). (4.7)

The corresponding field can be defined as

φ(θ, x) :=

∫
dµ(p)

(
e−ipxa(θ,p) + eipxa∗(θ,p)

)
. (4.8)

Now by considering the adjoint action of U(0,Λ) on a(θ,p) and a∗(θ,p), the following
transformation is induced upon θ

θ 7−→ γΛ(θ) :=

{
ΛθΛT ; Λ ∈ L↑,
−ΛθΛT ; Λ ∈ L↓. ,

where L↑ and L↓ denote the subgroups of orthochronous and antiorthochronous Lorentz
transformations, respectively. The transformation is calculated by taking the Lorentz
covariant behavior of the momentum operator into account.

Since the adjoint action of the unitary operator U(0,Λ) also acts on the skew-symmetric
matrix θ, it seems of importance to consider a whole family of fields given by the
deformation parameters that characterize θ. This was the starting consideration to define
a correspondence from the set of wedges to a set Q0 ⊂ R−d×d of skew-symmetric matrices.

Before we give this correspondence, we define the wedge.
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x

x0

W ′1 W1

Figure 4.1: Right Wedge W1

Definition 4.3. The reference wedge region most commonly used, is called the right
wedge (see figure 4.1). It is defined to be given by following region,

W1 := {x ∈ Rd : x1 > |x0|}.

Under coordinate reflections, i.e. jµ : xµ 7→ −xµ, the wedge region transforms in the
following manner,

j0W1 = W1, j1W1 = −W1 = W
′
1, jkW1 = W1, k > 1, (4.9)

where W ′
1 denotes the causal complement of W1.

Definition 4.4. The set W of all wedges in Rd is defined as the set of all Poincaré
transforms of W1, given as follows

W := PW1,

where P is the Poincaré group. In this work we mainly work with a subgroup W0 ⊂ W
consisting only of the Lorentz transforms of W1,

W0 := L↑+W1, (d > 2).

Now in order to give the map between wedges and skew-symmetric matrices, we specify
two homogeneous spaces for the proper orthochronous Lorentz group L↑+ and the subgroup
L̂ ⊂ L, generated by the proper orthochronous Lorentz group L↑+ and spacetime reflections
jµ defined in (4.9). The first space is (W0, τ) endowed with the action τ defined by

τΛ(W ) := ΛW,

which corresponds to the set of wedges. The second space is an L̂-homogeneous space
(Q0, γ), corresponding to the skew-symmetric matrices, defined as

Q0 := {γΛ(θ1) : Λ ∈ L̂},
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with action γ defined by

θ 7−→ γΛ(θ) :=

{
ΛθΛT ; Λ ∈ L↑+,
−ΛθΛT ; Λ ∈ jL↓+.

.

As next, we show that the two defined homogeneous spaces (Q0, γ) and (W0, τ) are iso-
morphic. Matrix θ1 has to have a specific form such that the map Q,

Q :W0 7−→ Q0, Q(ΛW1) := γΛ(θ1). (4.10)

is well-defined. The specific form of θ1 is the subject of the following lemma ([GL07],
Lemma 3.1).

Lemma 4.1. (i) The mapping Q (4.10) is a homomorphism of the L̂-homogeneous
spaces (W0, τ) and (Q0, γ) if and only if θ1 has in d dimensions the following form

0 λ 0 · · · 0
λ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , λ ≥ 0. (4.11)

and for the physical most interesting case of four dimensions the skew-symmetric
matrix θ has a more general form

0 λ 0 0
λ 0 0 0
0 0 0 η
0 0 −η 0

 , λ ≥ 0, η ∈ R. (4.12)

If θ1 is not equal to zero, the map Q is an isomorphism.

(ii) If θ1 has the form (4.11, 4.12), its L̂-orbit Q0 is

Q0 = {θ1,−θ1}, (d = 2),

Q0 = {Λθ1ΛT : Λ ∈ Λ ∈ L↑+}, (d > 2),
(4.13)

and for any W ∈ W0, there holds

Q(W ′) = −Q(W ) = γj(Q(W )).

By using the map Q (4.10), one can relate the scalar fields on NC Minkowski to wedges.
In the next step one can show that these scalar fields satisfy concepts of locality and
covariance in a wedge setting. Therefore, in what follows we give the definitions of a
wedge-covariant and a wedge-local field, ([GL07], Definition 3.2).

Definition 4.5. Let φ = {φW : W ∈ W0} denote the family of fields satisfying the
domain and continuity assumptions of the Wightman axioms. Then, the field φ is defined
to be a wedge-local quantum field transforming covariantly if the following two condition
are satisfied:
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• Covariance: For any W ∈ W0 and f ∈ S (Rd) the following holds

U(y,Λ)φW (f)U(y,Λ)−1 = φΛW (f ◦ (y,Λ)−1), (y,Λ) ∈ P↑+,
U(0, j)φW (f)V U(0, j)−1 = φjW (f ◦ j)−1.

• Wedge-locality: Let W, W̃ ∈ W0 and f ∈ S (R2). If

W + supp f ⊂ (W̃ + supp g)′,

then
[φW (f), φW̃ (g)]Ψ = 0, Ψ ∈ D.

The last definition can be given in a simpler form due to the geometrical properties of the
wedges. This is the subject of the following lemma, ([GL07], Lemma 3.3).

Lemma 4.2. Let φ = {φW : W ∈ W0} denote the family of fields satisfying the domain
and continuity assumptions stated in Definition 4.5. Then φ is wedge-local if and only if

[φW1(f), φ−W1(g)]Ψ = 0, Ψ ∈ D,

for all f, g ∈ C∞0 (Rd) with supp f ⊂W1 and supp g ⊂ −W1.

It was shown that the collection of fields φW , given by the deformed field (4.8) and the
map Q, satisfies the Wightman properties and is a wedge-local field that transforms wedge
covariantly under the unitary representation U(a,Λ) of P̂ := L̂oRd.

Furthermore, a relation between the model defined by the collection of fields φW
and completely integrable models was found. The calculation of the two-particle S-matrix
elements leads to the description of non-trivial interactions.
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4.3 DFR-Model from Deformation

In this section we obtain the DFR-model represented on H + given in (4.8), by deformation
with the momentum operator using warped convolutions. To do so we use the formula
of deformation given in Section 2 (see Definition 2.7), on the creation and annihilation
operators of the free scalar field.

Before deforming we have to concern ourselves with the issue of convergence for
the Formula 2.1 applied to the free field. One possibility as before would be to show that
the scalar product of the adjoint action acting on the free field is a symbol. Another
approach is to show that the expression 〈Ψ, φθ,P (f)Φ〉 converges by using the bounds of a
free field and thus conclude that deformation with the momentum operator is well-defined.
Since in the next sections we deform the free field with operators unitarily equivalent to
the momentum operator, it seems wise to choose the second path. The result is given in
the following lemma.

Lemma 4.3. The deformed field φθ,P (f) for f as given in Equation (4.4) fulfills in the
scalar product with Ψl,Φl ∈ S (Rn×l) the following inequality

〈Ψl, φθ,P (f)Φl〉 ≤ 2
√
l + 1‖Ψl‖‖Φl‖

(∫
dnµ(p)|f±(p)|2

)1/2

<∞. (4.14)

Therefore, the deformation of the free scalar field φ(f) with the momentum operator Pµ is
well-defined.

Proof. Let us show that Inequality (4.14) holds.

〈Ψl, φθ,P (f)Φl〉 ≤ ‖Ψl‖‖φθ,P (f)Φl‖

≤ 2
√
l + 1‖Ψl‖‖Φl‖

(∫
dnµ(p)|f±(p)|2

)1/2

<∞,

where in the last lines we used Cauchy-Schwartz and the inequality given in [GL07, Prop
2.2, b)]. Thus, by showing that the integral of deformation is bounded and for wave
functions ∈ S (Rn×l) it converges, the Formula (2.1) is well-defined.

In the next step we calculate the deformation of the free scalar field with the momentum
operator. For the convenience of the reader we use the notation q = (q1, · · · ,qN ) and we

define uµ :=
N∑
l=1

qµl . To solve the integral of deformation we let the operators act on wave

functions ΨN (q) ∈ S (R3N ) that are eigenfunctions of the momentum operator. Let us
first apply the deformation on the annihilation operator,
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(aθ,P (p)ΨN )(q) =

= (2π)−d lim
ε→0

(∫ ∫
ddkddye−ik(y−u)χ(εk, εy)αθy(a(p))ΨN

)
(q)

= (2π)−d lim
ε1→0

(∫
ddy lim

ε2→0

(∫
ddke−ik(y−u)χ2(ε2k)

)
χ1(ε1y) e−ipθya(p)ΨN

)
(q)

= (2π)−d lim
ε1→0

(∫
ddy (2π)d δ(y − u)χ(ε1y) e−ipθya(p)ΨN

)
(q)

= e−ipθPa(p)ΨN (q).

where in the last lines we calculated the adjoint action of U(y) on a(p) by using the
Baker-Campbell-Hausdorff formula, and as in the former proofs we chose χ(εk, εy) =
χ2(ε2k)χ1(ε1y) with χl ∈ S (R3 × R3) and χl(0, 0) = 1, l = 1, 2, to obtain the delta
distribution δ(y − u) in the limit ε2 → 0. The same calculation can be done for the
creation operator a∗(p) and thus one obtains the following,

aθ,P (p) = e−ipθPa(p), a∗θ,P (p) = eipθPa∗(p).

As one can easily see the deformed creation and annihilation operator are equal to the
ones given in Equation. (4.7) as the representation of the DFR field on H +. Note that
they differ by a constant. This means that these operators correspond to a field on NC
Minkowski obeying the commutator relations [x̂µ, x̂ν ] = −2iθµν . This is merely a question
of convention.

Next we show how to obtain the underlying NC spacetime in the framework of
warped convolutions. A deformed associative product is defined in the following way.

Definition 4.6. An associative deformed product ×θ of A,B is defined as

A×θ B = (2π)−d
∫∫

ddvddue−ivuαθv(A)αu(B).

Furthermore, the deformed commutator [A ×θ, B] of A, B is defined in the following way

[A ×θ, B] := A×θ B −B ×θ A. (4.15)

The deformed product can be used to calculate the commutator of the coordinates. In
the case of deformation with the momentum operator Pµ one obtains the following lemma.

Lemma 4.4. Let the deformed product given in Definition 4.6 be defined by the generator
of translations Pµ. Then the deformed commutator (4.15) of the coordinates gives the
Moyal-Weyl plane (see figure 4.2),

[xµ ×θ, xν ] := xµ ×θ xν − xν ×θ xµ = −2iθµν .
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Figure 4.2: Example of a Moyal-Weyl plane R2
θ

Proof. We first calculate the deformed product of the coordinates using Definition 4.6.

xµ ×θ xν = (2π)−d
∫∫

ddvddue−ivuαθv(xµ)αu(xν)

= (2π)−d
∫∫

ddvddue−ivu(xµ + (θv)µ)(xν + uν) = xµxν − iθµν

In the last lines, we applied the adjoint action of the momentum operator Pµ on the
coordinates, which induces a translation. The next step consists in calculating the deformed
commutator of the coordinates. Due to the skew-symmetry of the deformation matrix θ,
one obtains for the deformed commutator the Moyal-Weyl plane.

This result is not surprising. As already mentioned, in [GL07] a quantum field was defined
on the Moyal-Weyl plane, which also can obtained by using the momentum operator for
deformation via warped convolutions. Therefore, it is only natural that the Moyal-Weyl
plane appears for the deformed commutator of the coordinates. In the next chapters we
calculate the commutator of the coordinates by using the deformed product induced by
the operators that are used for deformation.

Thus one option to obtain a quantum spacetime, is to deform the underlying field
theory with certain operators and to examine the wedge-covariance and wedge-locality
properties of the deformed theory. Now by letting wedge-locality be our guiding principle
we pick those deformed fields that satisfy it, and calculate the spacetime that they induce.
Thus we have a deformed field that satisfies certain locality properties and in addition it
lives on a NC spacetime that is induced upon from deformation. This is a very different
approach from the usual path taken. Rather than starting on some given noncommutative
spacetime, we rather first demand that the deformation satisfies certain covariance and
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locality properties. Then, we take those deformed field that satisfy such relations and
calculate the underlying noncommutative spacetime. Thus in this spirit it is appropriate
to say that the approach is background independent. This is due to the fact that we
do not start a priori with a certain spacetime, but it rather emerges by the conditions
demanded from the QF.
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Chapter 5

Coordinate operator in QFT

"One can see the world with the p-eye or one can
see the world with the x-eye, if one opens both eyes
at once, one becomes crazy."

— Pauli to Heisenberg, Letter 19. October 1926

"I opened both eyes."
— Anonymous, Leipzig, 07. March 2013

In this Chapter we review the main results of [SS09]. The authors constructed operators
Xµ by requiring them to fulfill a symplectic structure with the momentum operator, i.e.
[Pµ, Xν ] = iηµνN , for µ = ν, where N is the particle number operator. The operators are
constructed in a quantum field theoretical manner by using building blocks of the Fock
space, the creation and annihilation operators.

The same methods are used in this thesis to define coordinate operators in the
massive case. The massive temporal part of the coordinate operator was constructed in
[SS09] and in this work we construct the spatial part of the coordinate operator.

The operators Xµ obtained by construction do not commute and therefore we show
that even on a level without deformation it is possible to obtain the Moyal-Weyl plane.
This is done by calculating the expectation value of the operator that captures the
noncommutative structure.

Furthermore a noncommutative spacetime is also obtained from the coordinate op-
erator by applying an idea found in the QM context (see Lemma 3.13). An interpretation
of the so obtained deformation parameter is given. It is important to note that in the
nonrelativistic limit the QFT Moyal-Weyl becomes the one found in the QM chapter.

Since the construction of the operators Xµ is not unique we give further arguments
why the constructed position Xj fulfills the requirements of a spatial coordinate. One
of the main arguments is the essential self-adjointness of Xj , which is proven by using
the unitary equivalence, via Fourier transformation, to the spatial part of the momentum
operator Pj . After proving the essential self-adjointness of Xj we investigate the unitary

59
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transformations of the free scalar field under the adjoint action of the coordinate operators.

In the final section, the coordinate operator is used to deform the underlying quan-
tum field theory. We further investigate the Wightman properties, the transformation
properties under the Poincaré group and the locality properties of the deformed scalar
field.

5.1 Coordinate operators for the massless case

Before we give explicit expressions for the operators Xµ, we define in this section the
Bosonic Fock space for a free massless scalar field.

The free scalar field φ with mass m = 0 is defined on the n + 1-dimensional Minkowski
spacetime as an operator-valued distribution. Such a particle with momentum p ∈ Rn has
energy ωp defined by ωp = |p|. Furthermore, we use for the following definitions the well
known Lorentz-invariant measure dnµ(p) := dnp/2ωp.

Definition 5.1. Themassless Bosonic Fock space H +
0 is defined as in [Fre06, Sib93]:

H +
0 =

∞⊕
k=0

H +
0,k

where the m particle subspaces are given as

H +
0,k = {Ψk : ∂V+ × · · · × ∂V+ → C symmetric|

‖Ψk‖2 =

∫
dnµ(p1) . . .

∫
dnµ(pk)|Ψk(p1, . . . ,pk)|2 <∞},

with
∂V+ := {p ∈ Rd|p2 = 0, p0 > 0}.

In the next step we define the so called particle annihilation and creation operators a, a∗.
With the help of these operators one can go from a k-particle subspace H +

0,k to a k + 1-
particle subspace H +

0,k+1 or to a k−1- particle subspace H +
0,k−1, respectively. Furthermore,

with the particle operators one can define the particle number, the momentum and the
energy of the k- particle system. Another important property of the annihilation oper-
ator is that the vacuum vector Ω = (1, 0, · · · ) can be characterized by the equation aΩ = 0.

Definition 5.2. The particle annihilation and creation operators are defined by
their action on k-particle wave functions

(a(f)Ψ)k(p1, . . . ,pk) =
√
k + 1

∫
dnµ(p)f(p)Ψk+1(p,p1, . . . ,pk)

(a(f)∗Ψ)k(p,p1, . . . ,pk) =


0, k = 0

1√
k

k∑
i=1

f(pi)Ψk−1(p1, . . . ,pi−1,pi+1, . . . ,pk), k > 0
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with f ∈H1 and Ψk ∈H +
0,k . The commutator relations of a(f), a(f)∗ follow immediately

and are given as follows

[a(f), a(g)∗] = (f, g) =

∫
dnµ(p)f(p)g(p), [a(f), a(g)] = 0 = [a∗(f), a∗(g)].

Particle annihilation and creation operators with sharp momentum are introduced as op-
erator valued distributions and are given as follows

a(f) =

∫
dnµ(p)f(p)a(p), a(f)∗ =

∫
dnµ(p)f(p)a∗(p),

where particle annihilation and creation operators with sharp momentum satisfy the fol-
lowing commutator relations

[a(p), a(q)∗] = 2ωpδ
n(p− q), [a(p), a(q)] = 0 = [a∗(p), a∗(q)]. (5.1)

By using the former definitions of particle creation and annihilation operators with sharp
momentum, one writes a free massless field φ as follows

φ(x) =

∫
dµ(p)

(
e−ipxa(p) + eipxa∗(p)

)
, p = (ωp,p) ∈ ∂V+.

Since we work with operator-valued distributions, the massless free field has to be smeared
with test functions f ∈ S (Rd),

φ(f) =

∫
ddxf(x)φ(x) = a(f−) + a∗(f+), (5.2)

where the test functions f± are chosen as follows

f±(p) :=

∫
ddxf(x)e±ipx, p = (ωp,p) ∈ ∂V+.

The particle number operator and the momentum operator are given in terms of particle
creation and annihilation operators, and are defined in the following manner.

N =

∫
dnµ(p)a∗(p)a(p), Pµ =

∫
dnµ(p)pµa

∗(p)a(p) (5.3)

As already mentioned, the authors in [SS09] constructed the coordinate operators Xµ by
demanding the following relation

[Xµ, Pν ] = −iηµνN, (5.4)

for µ = ν. In the next section we give an explanation to the occurrence of off-diagonal
terms. Now by imposing the commutator relations the authors in [SS09] obtained for
the temporal part an operator which is not hermitian. The use of a standard trick, i.e.
Aherm = 1/2(A+A∗), turns it into a hermitian operator and for X0, we have the following,

X0 = −i
∫
dnµ(p)a∗(p)

1

ωp

(
n

2
− 1 + pj

∂

∂pj

)
a(p).

Note that we choose to work with the covariant normalization. The operator Xµ is given
in n-dimensions, which is a generalization of the coordinate operator given in [SS09]. For
the spatial part one obtains

Xj = −i
∫
dnµ(p)a∗(p)

(
pj

2ω2
p

+
∂

∂pj

)
a(p).
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5.1.1 Algebra of massless coordinate operators

By using commutation relations (5.1) we calculate the algebra of Xµ with generators of
the Poincaré group. We first give the commutator relations of the operator Xµ and the
momentum operator Pν . As already mentioned the diagonal terms satisfy the canonical
commutation relations which were required and are motivated by quantum mechanics.

[X0, P0] = −iN, [Xi, Pj ] = −iηijN

The off-diagonal terms give the following relations

[X0, Pj ] = −i
∫
dnµ(p)a∗(p)

pj
ωp
a(p),

[Xj , P0] = −i
∫
dnµ(p)a∗(p)

pj
ωp
a(p). (5.5)

The non-vanishing of the commutator between the spatial coordinate operator and the
Hamiltonian is not a mere construction failure but points out an important fact that is
given in the following lemma.

Lemma 5.1. The operator Vj obtained by commutator relation (5.5) is the Fockspace
equivalent of a relativistic velocity for massless particles.

Proof. This commutator is equivalent to the Heisenberg equation, i.e. Ȧ = i[A,P0]. The
equation describes the time derivative of the coordinate operator, which for a dynamical
system should not be equal to zero. The time derivative of the spatial coordinate operator
is the velocity operator denoted as Vj . That this operator, represents the velocity of a
relativistic system can easily be seen, by calculating the action of Vj on a wave function
ϕ ∈H1 as follows

(Vjϕ) (p) =
pj
ωp
ϕ(p).

This is the velocity for a relativistic particle. Furthermore, the operator Vj acting on an
n-particle wave function is the following,

(Vjϕ) (p1, . . . ,pk) =

k∑
l=1

plj
ωpl

ϕ(p1, . . . ,pk) =

k∑
l=1

Vj(p
l)ϕ(p1, . . . ,pk)

Thus the operator Vj acts as a velocity operator for an n-particle system.

To calculate the transformation of the coordinate operator under Lorentz transformations
it is important to know the algebra of Lorentz generators and operator Xµ. The calculation
of these relations requires the representation of the Lorentz generators in terms of creation
and annihilation operators a, a∗. This was done in [IZ80, Equation 3.54] and in this context
see also [SS09, Appendix]. The generator of the Lorentz boosts has the following form

M0j = i

∫
dnµ(p)a∗(p)

(
ωp

∂

∂pj

)
a(p), (5.6)
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and the Lorentz generator of rotations in the (i, k)-plane is given as

Mik = i

∫
dnµ(p)a∗(p)

(
pi

∂

∂pk
− pk

∂

∂pi

)
a(p).

Again, by using relations (5.1) we calculate the commutator of the Lorentz generators with
the coordinate operators. The temporal operator X0 satisfies the following relations.

[X0,Mjk] = 0, [X0,M0j ] = −
∫
dnµ(p)a∗(p)

pj
ω2

p

(
n

2
− 1 + pk

∂

∂pk

)
a(p).

As one can see the second commutator relation destroys the right transformation prop-
erty of the operator under Lorentz transformations, since it does not produce the Lorentz
covariant relation [X0,M0j ] = iXj . Although the coordinate operator Xµ does not trans-
form as a four-vector, the spatial component transforms covariantly under rotations in the
(i, k)-plane due to the following commutator relations

[Xi,Mjk] = i (δijXk − δikXj) .

The spatial coordinate operator fulfills the following commutator relation with the gener-
ator of Lorentz boosts

[Xi,M0j ] = −
∫
dnµ(p)a∗(p)

1

2ωp

(
δij + 2

pipj
ω2

p
+ 2pi

∂

∂pj

)
a(p).

In the next step we give the result of the commutator of the coordinate operators. Before
doing so, we define the commutator as

[Xµ, Xν ] =: iθ̂µν .

The skew-symmetric operator valued matrix θ̂ has the following components,

θ̂0j = −i
∫
dnµ(p)a∗(p)

1

ωp

(
(n− 1)

pj
2ω2

p
+

(
δkj +

pkpj
ω2

p

)
∂

∂pk

)
a(p), (5.7)

θ̂ij = 0.

As one can see from the algebra, the spatial components commute, which means that they
have a common eigenvector. This fact will be further explored in the next sections.

5.2 Coordinate operators in the massive case

Analogously to the last sections, we construct the coordinate operators for a massive
scalar field.

The authors in [SS09] constructed a temporal coordinate operator X0 for the mas-
sive case as well and obtained

X0 = i

∫
dnµ(p)a∗(p)

ωp

pipi

(
n

2
− 1 + pj

∂

∂pj

)
a(p).
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The massive temporal operator was in addition to requirement (5.4) constructed in such a
way, that the massless operator follows from the massive one by taking the massless limit,
i.e. m → 0. During this thesis we constructed the spatial coordinate operator for the
massive case. After some cumbersome calculations, we obtained the following operator for
the spatial part of the coordinate operator.

Xj = −i
∫
dnµ(p)a∗(p)

(
pj

2ω2
p

+
∂

∂pj

)
a(p). (5.8)

It is not accidental that the spatial part of the coordinate operator in the massive case, is
identical in form to the spatial part in the massless case. This reason is explored in the
next sections.

5.2.1 Algebra of massive coordinate operators

In this section we calculate the algebra of the massive coordinate operator with generators
of the Poincaré group. Let us start by considering the algebra of the operator Xµ with Pν .
As before the on-diagonal terms fulfill the requirement (5.4),

[X0, P0] = −iN, [Xi, Pj ] = −iηijN

The non-vanishing off-diagonal terms in the massive case are given by the following rela-
tions,

iṼj := [X0, Pj ] = i

∫
dnµ(p)a∗(p)

ωppj
pipi

a(p),

− iVj := [Xj , P0] = −i
∫
dnµ(p)a∗(p)

pj
ωp
a(p). (5.9)

The second commutator relation is the subject of the following lemma.

Lemma 5.2. The operator Vj obtained by commutator relation (5.9) is the Fockspace
equivalent of a relativistic velocity for massive particles.

Proof. The proof can be done along the same lines as the proof of Lemma 5.5 in the
massless case.

In the next step we give the commutator relations of the coordinate operator with the
Lorentz generators. We start by giving the commutator between the massive temporal
operator and the Lorentz generators.

[X0,Mjk] = 0,

[X0,M0j ] = −
∫
dnµ(p)a∗(p)

((
m2

pipi

)
∂

∂pj
− pj
pipi

(
1 +

2ω2
p

prpr

)(
n

2
− 1 + pk

∂

∂pk

))
a(p).

As in the massless case, the second commutator relation destroys the right transformation
property of the operator under Lorentz transformations, since it does not produce the
Lorentz covariant relation [X0,M0j ] = iXj . Although the coordinate operator Xµ does not
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transform as a four vector, the spatial component transforms covariantly under rotations
in the (i, k)-plane due to the following commutator relations

[Xi,Mjk] = i (δijXk − δikXj) . (5.10)

The massive spatial coordinate operator fulfills the following commutator relation with the
generator of Lorentz boosts

[Xi,M0j ] = −
∫
dnµ(p)a∗(p)

1

2ωp

(
δij + 2

pipj
ω2

p
+ 2pi

∂

∂pj

)
a(p).

As one can see, the spatial part of the massive coordinate operator satisfies the same
relations as in the massless case. The constructed massive coordinate operators do not
commute in the (0j)-component. Before giving the noncommutativity of the operators, we
define the massive noncommutative matrix as follows

[Xµ, Xν ] =: iθ̂mµν .

The algebra can be calculated as before and one obtains for the skew-symmetric operator
valued matrix θ̂m the following

θ̂m0j = −i
∫
dnµ(p)a∗(p)

1

pipiωp

((
n− 1

2
+
pkpk
ω2

p
+ (n− 2)

ω2
p

pkpk

)
pj

+

(
1 +

2ω2
p

pkpk

)
pjp

r ∂

∂pr
− ω2

p
∂

∂pj

)
a(p),

θ̂mij = 0. (5.11)

As in the massless case, the components of the spatial coordinate operator commute and
therefore have a common eigenvector.

5.3 Expectation value of massless coordinate operators

The constructed coordinate operators Xµ do not commute in the (0j)-component and
thus we are interested in the physical interpretation of this noncommutativity. To obtain
a physical interpretation for the operator-valued matrices given in Equations (5.7) and
(5.11), we calculate the expectation value. Furthermore, all calculations in this section are
done for n = 3. For the calculation of the expectation values we choose different states
ψ ∈ L2(R3). The following lemma simplifies the calculations of the expectation values.

Remark 5.1. For simplicity reasons we work during certain parts of this thesis with the non-
covariant representation of particle creation and annihilation operators. The non-covariant
representation is realized by

ã(p) =
1√
2ωp

a(p), ã∗(p) =
1√
2ωp

a∗(p).

Lemma 5.3. Let ψ ∈ L2(R3) and let the massless operator-valued matrix, (5.7) be given
in the following form

iθ̂0j =

∫
d3pã∗(p)

(
F0j(p) + F l0j(p)

∂

∂pl

)
ã(p),
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where the function valued matrices F0j and F l0j are given by

F0j(p) =
pj
ω3
p

, F l0j(p) =

(
δlj
ωp

+
pjp

l

ω3
p

)
.

Then, the expectation value of iθ̂0j, w.r.t. a state ψ is given as follows,

〈ψ|iθ̂0j |ψ〉 =

∫ ((
F0j(p)− ∂pl F

l
0j(p)

)
|ψ(p)|2 − F l0j(p)ψ(p)

∂

∂pl
ψ∗(p)

)
d3p.

Proof. For the proof we split iθ̂0j in two parts

iθ̂1
0j :=

∫
d3pã∗(p)F0j(p)ã(p), iθ̂2

0j :=

∫
d3pã∗(p)F l0j(p)

∂

∂pl
ã(p),

We begin calculating the expectation value of the first part iθ̂1
0j .

〈ψ|iθ̂1
0j |ψ〉 =

∫
d3p

∫
d3q

∫
d3mψ∗(q)F0j(m)ψ(p)〈q|a†(m)a(m)|p〉

=

∫
d3pF0j(p)|ψ(p)|2.

We used the momentum representation of the Hilbert space L2(R3) to carry out the cal-
culations. The second part iθ̂2

0j of the expectation value of the noncommutative matrix
is

〈ψ|iθ̂2
0j |ψ〉 = −

∫
d3p

(
F l0j(p)ψ(p)∂pl ψ

∗(p) + ∂pl F
l
0j(p)|ψ(p)|2

)
.

We add the expectation values of the two parts of iθ̂2
0j and obtain

〈ψ|iθ̂0j |ψ〉 =

∫ ((
F0j(p)− ∂pl F

l
0j(p)

)
|ψ(p)|2 − F l0j(p)ψ(p)

∂

∂pl
ψ∗(p)

)
d3p.

In the next step we give a lemma showing how one obtains the constant matrix of the
Moyal-Weyl plane, by the calculation of the expectation value of iθ̂µν with a simple wave
packet.

Lemma 5.4. Let the wave function Ψa(p) ∈ L2(R3) be given as

Ψa(p) = eiakp
k
f(p), f(p) =

(α
π

)3/4
e−

α
2
|p|2 , (5.12)

where the L2-norm of Ψa is equal to one, i.e. ||Ψa||2 = 1. Then, the expectation value of
iθ̂µν given in (5.7), w.r.t. Ψa is given as follows

〈ψa|iθ̂µν |ψa〉 = i
8

3

√
α

π

(
0 aj

−aj 03×3

)
. (5.13)
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Furthermore, for the following choice of the dimensional physical constant α and the di-
mensional physical constant vector aj

α = πβ2θ aj =
√
θ( 3

8β )(1, 0, 0) , β ∈ R+,

one obtains the Moyal-Weyl plane R4
θ̂
, for noncommutative space-time and commuting

space-space. Moreover the plane is characterized by the deformation parameter θ.

Proof. In this proof we only look at the components iθ̂0j , due to the fact that θ̂ij = 0.
By using Lemma 5.3 and the form of the wave functions that we chose, we obtain for the
expectation values of iθ̂0j

〈ψ|iθ̂0j |ψ〉 =

∫
d3p

((
F0j(p)− ∂pl F

l
0j(p)

)
|ψ(p)|2 − F l0j(p)ψ(p)∂pl ψ

∗(p)
)

=

∫
d3p

((
F0j(p)− ∂pl F

l
0j(p)

)
|f(p)|2 − F l0j(p)

(
−ial|f(p)|2 +

1

2
∂lf(p)2

))
Note that a simplification occurs due to partial integration and from F0j(p) = 1

2∂
p
l F

l
0j(p).

Hence we obtain,

〈ψ|iθ̂0j |ψ〉 = +ial

∫
F l0j(p)|f(p)|2d3p

= ial

(
2πδlj

√
α

π
+

∫
d3p

pjp
l

ω3
p
|f(p)|2

)
= ial

(
2δlj

√
α

π
+

2

3
δlj

√
α

π

)
= iaj

8

3

√
α

π

After using spherical coordinates for the second term one can easily see that the terms
l 6= j disappear. This is a consequence of the rotational invariance of the wave packet
chosen.

Next we take a closer look at the matrix θ̄µν where the bar denotes the mean
value of the Fock space operator θ̂µν .

θ̄µν =
8

3

√
α

π

(
0 aj

−aj 03×3

)
.

With the specific choice for α and aj

α = πβ2θ aj =
√
θ( 3

8β )(1, 0, 0) , β ∈ R+,

we obtain the matrix of the Moyal-Weyl plane R4
θ.

θ̄µν = θ


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0
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The matrix θ̄µν represents the noncommutative matrix of the Moyal-Weyl case for space-
time noncommutativity with space-space commutativity.

Thus we showed, that the Moyal-Weyl plane R4
θ̄
follows from an expectation value of

the operator valued matrix θ̂. The conclusion was reached by adjusting the dimensional
constants aj and α in a particular way. To understand their physical nature one has to
treat the wave packet (5.12) in the position space. This is done by calculating the Fourier
transformation of the wave packet.

F (ψ)(x) =

∫
d3pe−ixkp

k
eiakp

k
f(p)

=
( α

4π

)−3/4
e−

1
2α

(x−a)2

The wave function in position space is a Gaussian wave packet, where the vector a char-
acterizes the location of the peak of this Gaussian and the square root of the constant α
denotes the standard deviation (or the width) of the wave packet, [Cla97]. From the expec-
tation value (5.13) it is clear that the more the packet disperses, the bigger the uncertainty
becomes.

5.4 Expectation value of massive coordinate operators

Lemma 5.5. Let ψ ∈ L2(R3) and let the massive operator-valued matrix, (5.11) be given
in the following form

iθ̂m0j =

∫
d3pã∗(p)

(
F0j(p,m) + F l0j(p,m)

∂

∂pl

)
ã(p),

where the function valued matrices F0j(p,m) and F l0j(p,m) are given by

F0j(p,m) =
pj
2

(
1

ω3
p

+
1

ωppipi
+

2ωp

(pipi)
2

)
,

F l0j(p,m) =
ωp

pkpk
δlj −

pjp
l

ωppkpk
− 2

ωppjp
l

(pkpk)2
.

Then, the expectation value of iθ̂m0j, w.r.t. the state ψ is given as follows,

〈ψ|iθ̂m0j |ψ〉 =

∫ ((
F0j(p,m)− ∂pl F

l
0j(p,m)

)
|ψ(p)|2 − F l0j(p,m)ψ(p)

∂

∂pl
ψ∗(p)

)
d3p.

Proof. The proof is equivalent to the proof of lemma 5.3.

In the next step we give a lemma about the expectation value of the massive noncommu-
tative matrix valued operator iθ̂mµν with the same wave function we used in Lemma 5.4.
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Lemma 5.6. Let the wave function Ψa(p) ∈ L2(R3) be given as

Ψa(p) = eiakp
k
f(p), f(p) = (

α

π
)3/4e−

α
2
|p|2 ,

where the L2-norm of Ψa is equal to one, i.e. ||Ψa||2 = 1. Then, the expectation value of
iθ̂mµν given in (5.11), w.r.t. Ψa in the limit α→ 1

m2 is given as follows

〈ψa|iθ̂mµν |ψa〉 = i
ρ

3m

(
0 aj

−aj 03×3

)
, ρ ∈ R+.

Furthermore, for the following choice of the dimensional physical constant vector aj

aj =
√
θ̄(3
ρ)(1, 0, 0) , β ∈ R+,

one obtains the Moyal-Weyl plane R4
θ̄
, where it is characterized by the deformation param-

eter
√
θ/m.

Proof. By using Lemma 5.5 the mean value of iθ̂m0j is given by

〈ψ|iθ̂m0j |ψ〉 = +ial

∫
F lj(p)|f(p)|2d3p

Let us look at the first part of iθ̂m0j

〈ψ|iθ̂m,10j |ψ〉 = +ial

(α
π

) 3
2
δlj

∫
d3p

ωp

pkpk
e−α|p|

2

=
2

m
iajγ,

where in the last lines spherical coordinates were used to simplify the calculation and we
took the limit α → 1

m2 . Note that γ is some finite constant. The second part of the
expectation value of iθ̂m0j is given as follows

〈ψ|iθ̂m,20j |ψ〉 = −ial
(α
π

) 3
2

∫
d3p

pjp
l

ωppkpk
e−α|p|

2

= iajα
3/2m

2

3
HypgeoU[3/2, 2, β], β =

α

m2

= iaj
g

3m
.

Due to the rotational invariance all the terms where j 6= l are equal to zero. Moreover, in
the last step we took the limit α→ 1

m2 . Note that g is a finite constant.

The last part of the expectation value of iθ̂m0j is given as

〈ψ|iθ̂m,30j |ψ〉 = −2ial

(α
π

) 3
2

∫
d3p

ωppjp
l

(pkpk)2
exp−α|p|

2

= iajm
2 (α)

3
2

4

3
HypgeoU[1/2, 2, β]

= iaj
4

3m
h.
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As before due to rotation invariance all terms where j 6= l are equal to zero. Furthermore,
in the last step we took the limit α→ 1

m2 . Again h is a finite constant.

Picking up all terms the matrix iθ̂m0j takes the following form

〈ψ|iθ̂m0j |ψ〉 = 〈ψ|iθ̂m,10j |ψ〉+ 〈ψ|iθ̂m,20j |ψ〉+ 〈ψ|iθ̂m,30j |ψ〉 = iaj
ρ

3m
.

As one can see, the main difference in the expectation value of the noncommutative matrix
valued operator θ̂µν , lies in the deformation parameter when compared to a Moyal-Weyl
plane. In the massive case the deformation parameter depends on the mass. As in the
massless case the physical interpretation of the dimensional constant vector a and the
constant m can be deduced by calculating the wave function in position space. Again, it is
a Gaussian wave packet, where the vector a characterizes the location of the peak of this
Gaussian and the square root of the mass m denotes the width of the wave packet, [Cla97].
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5.5 Deformation of coordinate operator

In the context of QM (see Section 3.4.4) we deformed the coordinate operator with
the momentum operator and obtained a NC quantum plane. This plane can be well
understood in view of the fact, that coordinate operators describing the Landau problem
are exactly the coordinate operators obtained by deformation with the momentum
operators. In the present section we follow the idea found in QM (see Lemma 3.13) and
deform our quantum field theoretical coordinate operators with the momentum. Hence,
we calculate the commutator of the deformed coordinate operators and call the resulting
quantum plane, the QFT-Moyal-Weyl.

Before deforming we calculate the unitary transformation of the coordinate opera-
tors under translations. This is done on an operator-valued distributional level, by
considering the unitary transformation of the translations on particle creation and
annihilation operators. Let us first define the unitary operator of translations as follows,

U(β) := eiβµP
µ
. (5.14)

The unitary operator U(β) with β ∈ Rd transforms the particle creation and annihilation
operators ã, ã∗ in the following way, [IZ80, Sib93]

U(β)ã(p)U(β)−1 = e−iβµp
µ
ã(p), U(β)ã∗(p)U(β)−1 = eiβµp

µ
ã(p). (5.15)

The transformation property (5.15) is used in the next lemma to calculate the unitary
transformations of the coordinate operator.

Lemma 5.7. Under the adjoint action of the unitary transformation U(β) := eiβµP
µ, with

β ∈ Rd, the massless spatial coordinate operator transforms as follows,

αβ (Xj) = eiβµP
µ
Xje

−iβµPµ = Xj + β0Vj − βjN,

and the massless temporal coordinate operator X0 transforms in the following way,

αβ (X0) = X0 − β0N − βjV j .

Proof. By using the transformation property (see Equation (5.15)) of the creation and
annihilation operator under the unitary operator U(β), we obtain for the spatial component
of the coordinate operators the following,

eiβµP
µ
Xje

−iβµPµ = −i
∫
dnpeiβµP

µ
ã∗(p)e−iβµP

µ
∂j

(
eiβµP

µ
ã(p)e−iβµP

µ
)

= −i
∫
dnpeiβµp

µ
ã∗(p)∂j

(
e−iβµp

µ
ã(p)

)
= Xj − βµ

∫
dnp(∂jp

µ)ã∗(p)ã(p)

= Xj − β0

∫
dnp(− pj

ωp
)ã∗(p)ã(p)− βk

∫
dnpδkj ã

∗(p)ã(p)

= Xj + β0Vj − βjN.
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As in the proof for the spatial components we use equation (5.15) and obtain for the
temporal operator the following

eiβµP
µ
X0e

−iβµPµ = −i
∫
dnp

(
n− 1

2ωp
ã∗(p)ã(p) + eiβµp

µ
ã∗(p)

pj

ωp
∂j

(
e−iβµp

µ
ã(p)

))
= X0 − βµ

∫
dnp

(
pj

ωp
∂jp

µ

)
ã∗(p)ã(p)

= X0 − β0

∫
dnp(−pjp

j

ω2
p

)ã∗(p)ã(p)− βj
∫
dnp

pj

ωp
ã∗(p)ã(p)

= X0 − β0N − βjV j .

The next lemma gives the transformation of the massive coordinate operators under the
adjoint action of translations.

Lemma 5.8. Under the adjoint action of the unitary transformation U(β) := eiβµP
µ, with

β ∈ Rd, the massive spatial coordinate operator transforms as in the massless case,

αβ (Xj) = eiβµP
µ
Xje

−iβµPµ = Xj + β0Vj − βjN.

The massive temporal coordinate operator X0 transforms in the following manner,

αβ (X0) = eiβµP
µ
X0e

−iβµPµ = X0 − β0N + βj Ṽ
j .

Proof. The proof for the massive spatial part of the coordinate operator is equivalent to
the massless case. For the massive temporal operator we use equation (5.15) and obtain
the following

eiβµP
µ
X0e

−iβµPµ = X0 + βµ

∫
dnp

(
pjωp

pipi
∂jp

µ

)
ã∗(p)ã(p)

= X0 − β0

∫
dnp(

pjp
j

pipi
)ã∗(p)ã(p) + βj

∫
dnp

pjωp

pipi
ã∗(p)ã(p)

= X0 − β0N + βj Ṽ
j .

5.5.1 QFT-Moyal-Weyl from deformation

As for the deformation in QM, in QFT-case we are also obliged to prove that warped
convolutions of the coordinate operator with the momentum operator is well-defined. Thus
let us consider the deformed coordinate operator as follows

〈Ψl, X
µ
θ,PΦl〉 = (2π)−4 lim

ε→0

∫∫
d4y d4k e−iyk χ(εy, εk)〈Ψl, U(k)αθy(X

µ)Φl〉

=: (2π)−4 lim
ε→0

∫∫
d4y d4k e−iyk χ(εy, εk) bµ(k, y)
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for Ψ,Φ ∈ S (R3l).

Lemma 5.9. Let the function bµ(y, k), for µ = 0, 1, 2, 3, be given as the scalar product
〈Ψ, U(k)αθy(X

j)Φ〉. Then bµ(y, k) ∈ S1
1,0, for Ψl,Φl ∈ S (R3l) and thus the deformation

via warped convolutions of the coordinate operator is given as a well-defined oscillatory
integral.

Proof. Let us first look at the function bµ for µ = 0,

|∂αki∂
β
yrb

0(y, k)| = |〈Ψl, (∂
α
kU(k)) ∂βy

(
αθy(X

0)
)

Φl〉|

≤ ‖(−iPα)Ψl‖︸ ︷︷ ︸
=:Cl,α

∥∥∥∂βy (X0 − (θy)0N + (θy)j Ṽ
j
)

Φl

∥∥∥
≤ Cl,α

(∥∥∥∂βyrX0Φl

∥∥∥+ |∂βy (θy)0| ‖NΦl‖+ |∂βy (θy)j |
∥∥∥Ṽ jΦl

∥∥∥) ,
where in the last lines we used the adjoint action given in Lemma 5.8. By using inequality
(3.7) for θij = εijkθ

k and for β = 0 we obtain

|∂αkib
0(y, k)| ≤ Cl,α

∥∥X0Φl

∥∥︸ ︷︷ ︸
=:C0

+|y|
(
|θ0j | ‖NΦl‖+

√
2|θ|

∥∥∥Ṽ jΦl

∥∥∥)︸ ︷︷ ︸
=:C6

+|y0| |θ0r|
∥∥∥Ṽ jΦl

∥∥∥︸ ︷︷ ︸
=:C7


≤ Cl,α (C0 + C6|y|+ C7|y0|)
≤ Cl,αCD︸ ︷︷ ︸

=:Cl,α,θ

(1 + |y|+ |y0|) ,

where in the last lines we assumed there exists a constant CD satisfying

CD ≥ C0, C6, C7. (5.16)

Due to the fact that C0, C6 and C7 are finite constants, the existence of a constant
satisfying inequality (5.16) is justified and therefore b0(y, k) belongs to the symbol class
S1

1,0.

Next we show that function bµ ∈ S1
1,0 for µ = j = 1, 2, 3,

|∂αki∂
β
yrb

j(y, k)| = |〈Ψl, (∂
α
kU(k)) ∂βy

(
αθy(X

i)
)

Φl〉|

≤ ‖(−iPα)Ψl‖︸ ︷︷ ︸
=:Cl,α

∥∥∥∂βy (Xj + (θy)0V
j − (θy)jN

)
Φl

∥∥∥
≤ Cl,α

(∥∥∥∂βyrXjΦl

∥∥∥+ |∂βy (θy)0|
∥∥V jΦl

∥∥+ |∂βy (θy)j | ‖NΦl‖
)
,

where in the last lines we used the adjoint action given in Lemma 5.8. By using inequality
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(3.7) for θij = εijkθ
k and for β = 0 we obtain

|∂αkib
0(y, k)| ≤ Cl,α

∥∥XjΦl

∥∥︸ ︷︷ ︸
=:C2

+|y|
(
|θ0k|

∥∥V jΦl

∥∥+
√

2|θ| ‖NΦl‖
)

︸ ︷︷ ︸
=:C6

+|y0| |θ0j | ‖NΦl‖︸ ︷︷ ︸
=:C7


≤ Cl,α (C2 + C6|y|+ C7|y0|)
≤ Cl,αCD︸ ︷︷ ︸

=:Cl,α,θ

(1 + |y|+ |y0|) ,

where in the last lines we the existence of a constant CD satisfying

CD ≥ C0, C6, C7.

is given by fact that C0, C6 and C7 are finite constants and therefore bµ(y, k) belongs to
the symbol class S1

1,0. As before, by the virtue of the theorem given in [Hör04, Theorem
7.8.2] it follows that the oscillatory integral is well-defined in a distributional sense.

Next we turn to the deformation of the constructed massless coordinate operators with
the momentum operator.

Lemma 5.10. The deformed massless coordinate operators X0
θ,P and Xj

θ,P , obtained by
warped convolutions, are given by

X0
θ,P = X0 − (θP )0N − (θP )j Vj , Xj

θ,P = Xj + (θP )0 V j − (θP )j N.

Proof. The proof makes use of defining equation (2.1) and Lemma 5.7. Let D be a dense
domain of vectors smooth w.r.t. the action of U . By equation (2.1) the warped convolutions
of X0 is given on Ψ ∈ D as follows,

X0
θ,PΨ =

∫
αθk(X

0)dE(k)Ψ

=

∫ (
X0 − (θk)0N − (θk)jVj

)
dE(k)Ψ

= (X0 − (θP )0N − (θP )j Vj)Ψ,

where in the last lines we used Lemma 5.7 and integrated over the projection valued
measure. The same calculation can be performed for the spatial coordinate operator Xj

on Ψ ∈ D as follows,

Xj
θ,PΨ =

∫
αθk(X

j)dE(k)Ψ

=

∫ (
Xj + β0V

j − βjN
)
dE(k)Ψ

=
(
Xj + (θP )0 V j − (θP )j N

)
Ψ,
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Lemma 5.11. The deformed massive coordinate operators X0
θ,P and Xj

θ,P , obtained by
warped convolutions, are given by

X0
θ,P = X0 − (θP )0N + (θP )j Ṽj ,

and the deformed spatial operator is given as follows

Xj
θ,P = Xj + (θP )0 V j − (θP )j N.

Proof. The proof for the spatial part is equivalent to the proof of the spatial part in Lemma
5.10. As before, let D be a dense domain of vectors smooth w.r.t. the action of U . Then,
the warped convolutions of massive temporal operator is given on Ψ ∈ D as follows,

X0
θ,PΨ =

∫
αθk(X

0)dE(k)Ψ

=

∫ (
X0 − (θk)0N − (θk)j

∫
dnp

pjωp

pipi
ã∗(p)ã(p)

)
dE(k)Ψ

=
(
X0 − (θP )0N + (θP )j Ṽj

)
Ψ,

We first take the massless deformed coordinate operators Xµ
θ,P and calculate the commu-

tator.

Lemma 5.12. The commutator between the deformed temporal and spatial coordinate
operator, which were given in Lemma 5.10, is the following

[X0
θ,P , X

j
θ,P ] = iθ̂0j − 2iθ0jN2 − 2iθ0kV jVk + 2iθjkVkN − i (θP )k P jk ,

where the operator P jk is given in terms of creation and annihilation operators as

P jk =

∫
dnp

1

ωp

(
ηjk +

pjpk
ω2
p

)
ã∗(p)ã(p).

The commutator between the components of the deformed spatial coordinate operator is
given in the following,

[Xj
θ,P , X

k
θ,P ] = −2i

(
θ0jV k − θ0kV j

)
N + 2iθjkN2

Proof. We use the algebra of the massless coordinate operators, the algebra of the momen-
tum operators and the fact that the particle number operator N commutes with Xµ and
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P ν to calculate the commutator.

[X0
θ,P , X

j
θ,P ] = [X0 − (θP )0N − (θP )k Vk, X

j + (θP )0 V j − (θP )j N ]

= [X0, Xj ]− [(θP )0N,Xj ]− [(θP )k Vk, X
j ] + [X0, (θP )0 V j ]− [X0, (θP )j N ]

= iθ̂0j − θ0k[Pk, X
j ]N − [(θP )k , Xj ]Vk − (θP )k [Vk, X

j ]︸ ︷︷ ︸
=:iP jk

+ (θP )0 [X0, V j ]︸ ︷︷ ︸
=0

+

+ θ0k[X0, Pk]V
j − θj0[X0, P0]N − θjk[X0, Pk]N

= iθ̂0j − iθ0kηjkN
2 − θk0[P0, X

j ]Vk − θkr[Pr, Xj ]Vk − i (θP )k P jk−
− iθ0kVkV

j + iθj0N2 + iθjkVkN

= iθ̂0j − iθ0jN2 − iθk0V jVk − iθkrηjrVkN − i (θP )k P jk−
− iθ0kVkV

j + iθj0N2 + iθjkVkN

= iθ̂0j − 2iθ0jN2 − 2iθ0kV jVk + 2iθjkVkN − i (θP )k P jk

In the last lines we used the skew-symmetry of θ with respect to the Minkowski metric,
i.e. θ0j = θj0, θkj = −θjk. Next, we calculate the commutator of the deformed spatial
operator.

[Xj
θ,P , X

k
θ,P ] = [Xj + (θP )0 V j − (θP )j N,Xk + (θP )0 V k − (θP )kN ]

= [Xj , (θP )0 V k]− [Xj , (θP )kN ]− j ↔ k

= (θP )0 [Xj , V k] + [Xj , (θP )0]V k − [Xj , (θP )k]N − j ↔ k

= −i (θP )0 P jk + θ0r[Xj , Pr]V
k − θk0[Xj , P0]N − θkr[Xj , Pr]N − j ↔ k

= −iθ0jV kN + iθk0V jN − iθkjN − j ↔ k

= −2i
(
θ0jV k − θ0kV j

)
N + 2iθjkN2

In the last lines we used the symmetry of P jk and the skew-symmetry of θ w.r.t the
Minkowski metric.

For the massive deformed coordinate operator the commutator is calculated in an
analogous manner and it is subject of the following lemma.

Lemma 5.13. Let Xµ
θ,P be the massive deformed coordinate operator given in Lemma

5.11. Then, the commutator between the deformed massive temporal and spatial coordinate
operator is given as

[X0
θ,P , X

j
θ,P ] = iθ̂0j − 2iθ0jN2 + 2iθ0kṼkV

j − 2iθjkṼkN − i (θP )k P̃ jk + i (θP )0Rj ,

where the operator P̃ jk and Rj are given in terms of creation and annihilation operators as

P̃ jk =

∫
dnp

(
ηjk

ωp

pipi
− pjpk
ωppipi

− 2ωpp
jpk

(pipi)2

)
ã∗(p)ã(p),

Rj =

∫
dnp

pjm2

ω2
ppip

i
ã∗(p)ã(p).
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The commutator between the components of the deformed spatial coordinate operator is the
following one,

[Xj
θ,P , X

k
θ,P ] = −2i

(
θ0jV k − θ0kV j

)
N + 2iθjkN2

Proof.

[X0
θ,P , X

j
θ,P ] = [X0 − (θP )0N − (θP )k Ṽk, X

j + (θP )0 V j − (θP )j N ]

= [X0, Xj ]− [(θP )0N,Xj ]− [(θP )k Ṽk, X
j ] + [X0, (θP )0 V j ]− [X0, (θP )j N ]

= iθ̂0j − θ0k[Pk, X
j ]N − [(θP )k , Xj ]Ṽk − (θP )k [Ṽk, X

j ]︸ ︷︷ ︸
=:iP̃ jk

+ (θP )0 [X0, V j ]︸ ︷︷ ︸
=:iRj

+

+ θ0k[X0, Pk]V
j − θj0[X0, P0]N − θjk[X0, Pk]N

= iθ̂0j − iθ0jN2 − θk0[P0, X
j ]Ṽk − θkr[Pr, Xj ]Ṽk − i (θP )k P̃ jk+

+ i (θP )0Rj + iθ0kṼkV
j + iθj0N2 − iθjkṼkN

= iθ̂0j − iθ0jN2 − iθk0V j Ṽk − iθkjṼkN − i (θP )k P̃ jk+

+ i (θP )0Rj + iθ0kṼkV
j + iθj0N2 − iθjkṼkN

= iθ̂0j − 2iθ0jN2 + 2iθ0kṼkV
j − 2iθjkṼkN − i (θP )k P̃ jk + i (θP )0Rj

The proof for the spatial components is equivalent to the proof of Lemma 5.12, due to
the fact that the commutation relations between Xj and the momentum operator do not
change in the massive case.

In this section we obtained a quantum plane by deforming the coordinate operators,
constructed by demanding a canonical conjugate structure. Thus, following the same idea
obtained in the QM context (see Section 3.4.4), the commutator gives us a quantum plane
that is obtained by the deformed coordinate operators of QFT.

This is the main difference to other works on NCQFT. In this work we constructed
coordinate operators with the underlying QFT by demanding the canonical commutation
relations to be fulfilled. In the next step, we deform these constructed operators and
calculate the commutator in order to obtain the quantum plane. The deformation is
justified by the fact that in the QM case for the example of the Landau problem, we
obtained the coordinate operators of the Landau problem by deforming the coordinate
operators of a free particle using the momentum operator.
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5.6 Self-adjointness of the position operator

In this section we study the essential self-adjointness of the spatial coordinate operator
Xj . By using the Fourier transformation we show that the momentum operator is
unitarily equivalent to the coordinate operator. The operator Pj is an essential self-
adjoint operator on a dense domain and thus by unitarily equivalence it follows that the
coordinate operator is an essential self-adjoint operator as well. This section is writ-
ten in such a general manner that the considerations hold for the massless and massive case.

For the proof of self-adjointness of the coordinate operator, we work in the non-
covariant representation of the particle creation and annihilation operators. The operator
pair (Pk, Xl) satisfying (5.4) take in the non-covariant representation the following form

Pj =

∫
dnppj ã

∗(p)ã(p), Xj = −i
∫
dnpã∗(p)

∂

∂pj
ã(p). (5.17)

Now in the following steps we first define the domain of essential self-adjointness of the
momentum operator. On this dense domain we show that the momentum operator Pj is
unitarily equivalent to the coordinate operator for the one particle subspace H1 = L2(Rn).
Further on, we generalize the lemma of unitarily equivalence to the k-particle subspace Hk.

The following lemma gives the domain of essential self-adjointness of the momen-
tum operator, [BEH08, RS75a].

Lemma 5.14. The momentum operator Pk is an essential self-adjoint operator on the
dense domain S (Rn) ⊂ L2(Rn).

Proof. The proof makes use of Corollary 3.1.

The unitary equivalence of the operator pair (Pj , Xl) is subject of the following lemma.

Lemma 5.15. Let UF be the unitary operator of the Fourier transform (see Appendix
(8.5)) and let the momentum operator Pj and some operator Ql be acting on a function
ϕ(p) ∈ S (Rn) as follows

(Pjϕ) (p) = pjϕ(p), (Qlϕ) (p) = −i ∂
∂pl

ϕ(p). (5.18)

Then, the operator Qj is unitarily equivalent to the operator Pj and the equivalence is given
by the following equation

Qj = U−1
F PjUF . (5.19)

Furthermore, the operator Qj is an essentially self-adjoint operator on the dense domain
S (Rn).

Proof. This lemma can be found as an example in [BEH08]. Due to the fact that in the
next step we extend it to the k-particle subspace, it is important to consider the proof for
a one particle subspace. First note that the proof of unitarity for the Fourier transform
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can be found in [BEH08, RS75a, RS75b, SW89, SV73]. To show that unitarily equivalence
(5.19) holds, it suffices to show

UF (Qjϕ) (p) = (PjUFϕ) (p).

This can be done by making use of Equation (8.1).

UF (Qjϕ) (p) = UF (−i∂jϕ) (p) = pj (UFϕ) (p) = (PjUFϕ) (p)

By applying on both sides the inverse operator U−1
F one obtains the equivalence (5.19).

By the virtue of Proposition 8.1, from the unitary equivalence the essential self-adjointness
of Qj follows. The domain of operator Qj is the same as the domain of Pk, i.e. D(P) =
D(Q) = S (Rn). The statement holds, since the Fourier transform is a bijective operator
which maps S (Rn) into itself, (see 8.1, 8.5). Thus by Proposition 8.1 for the domains we
have,

D(Q) = U−1
F D(P) = U−1

F S (Rn) = S (Rn).

We intend to extend the essentially self-adjointness of the operator Qj to the entire
Bosonic Fock space. To do so, we first define the operator of second quantization and
give a lemma concerning its domain of essential self-adjointness, [RS75a, Chapter VIII.10,
Example 2] and [RS75b, Chapter X.7].

Definition 5.3. Let H + be the Fock space over H1 and suppose that A is a self-adjoint
operator on H1 with domain of essential self-adjointness D(A). Let the following operator
A(n) = A⊗ I · · · ⊗ I + · · ·+ I ⊗ I · · · ⊗A be defined on D(A)⊗k :=

⊗k
i=1D(A) and define

A(0) = 0. Then, the operator dΓ(A) on H + defined as

dΓ(A) :=
∞∑
k=0

A(k),

is called the second quantization of A. Furthermore, if U is a unitary operator on H1

we define Γ(U) to be second quantization of U , i.e. the unitary operator on H + which
equals

⊗k
i=1 U when restricted to Hn for n > 0 and equal to identity on H0.

Next, we define the domain on which the second quantization of the essential self-adjoint
operator dΓ(A) is symmetric.

Definition 5.4. Let A be an essential self-adjoint operator with dense domain D(A) ⊂
H1. Then, the domain of the second quantization operator dΓ(A) of A, denoted as
D(A)⊗ ⊂ H +, is defined to be the set of ψ = {ψ0, ψ1, · · · } such that ψk = 0 for k
large enough and ψk ∈

⊗k
i=1D(A) for each k.

The domain of the second quantized operator D(A)⊗ is dense in H +, since D(A) is dense
in H1. By using the definition of the extended domain D(A)⊗, one obtains the following
lemma.

Lemma 5.16. Let A be an essential self-adjoint operator with domain D(A). Then, the
second quantized operator dΓ(A) is an essential self-adjoint operator on the domain D(A)⊗,
as given in Definition 5.4.
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Proof. The lemma can be proven using Theorem 8.3.

In the former definitions and lemma we did not mention the projections onto the
symmetric and antisymmetric Fock spaces. This is because the second quantization
operator dΓ(A) commutes with the projections and thus it is not important for the proof
of essential self-adjointness.

The importance of Theorem 8.3 and Lemma 5.16 for our work is the following.
Let A be an essential self-adjoint operator on a dense subspace of the one particle Hilbert
space, then by Definition 5.3 one can define the second quantized version of the operator
A on the dense domain D(A)⊗ of the Fock space. Furthermore, one can prove that on the
domain D(A)⊗ the second quantized operator A is an essential self-adjoint operator. By
using Definitions 5.3, 5.4 and Lemma 5.16, we obtain the following theorem.

Theorem 5.1. The second quantization of Qj given by the operator dΓ(Qj), (see
Definition 5.3), is an essential self-adjoint operator on the dense domain D(Qj)⊗ (see
Definition 5.4). Furthermore, the second quantized operator dΓ(Qj) is on the Bosonic
Fock space equivalent to the position operator Xj given in Equation (5.17). Therefore, on
the dense domain D(Qj)⊗, the position operator Xj is an essentially self-adjoint operator.

Proof. That the second quantization operator dΓ(Qj) of Qj is an essentially self-adjoint
operator on the dense domainD(Qj)⊗ follows directly from Lemma 5.16, where the domain
of essential self-adjointness of Qj is given as D(Qj) = S (Rn). To prove that dΓ(Qj) is
equal to Xj , we first give the second quantized operator of the Fourier transformation
Γ(UF ). This is done by using the Definition 5.3 of the second quantized version of a unitary
operator. As mentioned before, the second quantization commutes with the projections
to the symmetric Fock spaces so that the unitary equivalence (see Equation 5.19) can be
extended to the second quantized version given as,

dΓ(Qj) = Γ(U−1
F )PjΓ(UF ). (5.20)

In the next step we calculate the action of dΓ(Qj) on the functions ϕ,ψ ∈ S (Rn×k).

〈ψ, dΓ(Qj)ϕ〉
= 〈ψ,Γ(U−1

F )PjΓ(UF )ϕ〉 = 〈Γ(UF )ψ, PjΓ(UF )ϕ〉

=

∫
dnp1 · · ·

∫
dnpk (Γ(UF )ψ) (p1, · · · ,pk) (PjΓ(UF )ϕ) (p1, · · · ,pk)

=

∫
dnp1 · · ·

∫
dnpk (Γ(UF )ψ) (p1, · · · ,pk)

k∑
l=1

plj (Γ(UF )ϕ) (p1, · · · ,pk)

=

∫
dnp1 · · ·

∫
dnpk (Γ(UF )ψ) (p1, · · · ,pk)

(
Γ(UF )

k∑
l=1

(
−i∂lj

)
ϕ

)
(p1, · · · ,pk)

=

∫
dnp1 · · ·

∫
dnpkψ(p1, · · · ,pk)

k∑
l=1

(
−i ∂

∂pl,j

)
ϕ(p1, · · · ,pk) = 〈ψ,Xjϕ〉.

In the last lines we first used the unitarity of the second quantized Fourier transformation
and the action of operator Pk, given in (5.17) on k-particle wave functions. In the next
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step we used equation (8.6) for multiple particles and the action of the operator Xk, given
in (5.17) on k-particle wave functions. The equivalence of dΓ(Qj) and the operator Xj

holds for all ϕ,ψ ∈ S (Rn×k). Thus the second quantized operator dΓ(Qj), is equivalent
to Xj and therefore the position operator is an essential self-adjoint operator.

The essential statement of Theorem 5.1 is that the position operator Xj is unique. In
particular, the coordinate operator defined in a quantum field theoretical setting is the
generalization of the coordinate operator in quantum mechanics. We were able to show
this fact, by defining the coordinate operator in the quantum mechanical case as a unitary
equivalent operator to the momentum operator. In the next step, we second quantized
this definition and were able to prove that the operator we obtain is equivalent to the
coordinate operator given by [SS09]. In the next chapter we will compare this coordinate
operator with the Newton-Wigner-Pryce operator.

5.7 The Newton-Wigner-Pryce operator

In the context of relativistic particles the Newton-Wigner-Pryce (NWP) operator is usually
mentioned as the rightful position or center-of-mass operator. To obtain the position
operator the authors in [NW49] imposed certain physical requirements on localized states.
Where in [Pry48] the author obtained the same operator by generalizing the Newtonian
definition of the mass-center to the relativistic case. The NWP operator can be given
as the product of generators of the Poincaré group in the following way, [Bac93, Ber65,
Can65, Jor80, Ste05]

XNWP
j =

1

2P0
M0j +M0j

1

2P0
.

On a one particle wave function the position operator defined in this way is given as,
[Sch61, Chapter 3c, Equation 35]

(XNWP
j ϕ)(p) = −i

(
pj

2ω2
p

+
∂

∂pj

)
ϕ(p).

Theorem 5.2. The second quantization of the Newton-Wigner-Pryce operator is equiva-
lent to the position operator Xj given in Equation (5.8).

Proof. The second quantization of XNWP
j is given by the operator dΓ(XNWP

j ) (defined
in 5.3). To prove equivalence between the two operators we first calculate the action of
dΓ(XNWP

j ) on a symmetric function Ψ ∈ S (Rn×k).

(
dΓ(XNWP

j )Ψ
)

(p1, . . . ,pk) =
k∑
l=1

XNWP
j (pl)Ψ(p1, . . . ,pk)

= −i
k∑
l=1

(
plj

2ω2
pl

+ ∂pl
j

)
Ψ(p1, . . . ,pk)

= (XjΨ) (p1, . . . ,pk)

In the last line we used the action of the position operator Xj , given in the covariant
normalization (5.8), on a function Ψ ∈ S (Rn×k).
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A few comments are in order. First, the Newton-Wigner-Pryce operator is often given
as the product of generators of the Poincaré group. This representation is only true for
one-particle states and not for n-particle states. This is because the product of second
quantized operators is not equal to the second quantized product of the operators, i.e.
dΓ(M0jP

−1
0 ) 6= dΓ(M0j)dΓ(P−1

0 ). Therefore, the representation of the NWP-operator as
the product of the boost operator and the inverse of the Hamiltonian must be discarded
for an n-particle system.

Second, from Theorem 5.2 it follows that the Newton-Wigner-Pryce operator is
equivalent to the position operator that we also obtained by second quantization of the
position operator in quantum mechanical setting. This is a major result concerning the
uniqueness of the relativistic position operator. The reason why this fact may have not
been obvious, is owed to the representation of the operator. In second quantization
from QM it is given in a non-covariant fashion and as the NWP-operator it is given in
a covariant fashion. Of course, the difference of representation is merely a normalization
feature and thus for the physical interpretation, and specially for the second quantization
not relevant.

5.8 Unitary transformations of the scalar field

In this section we study unitary transformations defined by coordinate operators on the
scalar field. The investigation leads to the conclusion that they act as translation op-
erators in momentum space. Next, we define scalar fields with the help of the unitary
transformations and investigate the locality properties of such transformed scalar fields.

5.8.1 Unitary transformations generated by position operator

By using Theorem 3.1 and the essential self-adjointness of the position operator shown in
Theorem 5.1, we define a strongly continuous unitary group as follows

V (b) := eibjX
j
, bj ∈ Rn. (5.21)

Next, we calculate the adjoint action of the unitary operator V (b) on the free massless
scalar field. This can be done by calculating the adjoint action of V (b) on the particle
creation and annihilation operators. The following lemma gives the unitary transformation
of ã, ã∗.

Lemma 5.17. The particle creation and annihilation operators ã(p), ã∗(p) transform un-
der the adjoint action of the unitary operator V (b), defined in (5.21), in the following
manner.

V (b)ã(p)V −1(b) = ã(p− b), V (b)ã∗(p)V −1(b) = ã∗(p− b).

Proof. We will give three proofs for this lemma. The last two proofs help us to calculate
the adjoint action of the creation and annihilation operators under the temporal operator
X0. Let us start with the first proof.
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The proof starts with calculating the commutator of the spatial coordinate opera-
tor with creation and annihilation operators. By using the non-covariant canonical
commutation relations between ã and ã∗, we obtain

[Xr, ã(p)] = +i
∂

∂pr
ã(p), [Xr, ã∗(p)] = +i

∂

∂pr
ã∗(p).

It continues with exponentiating and yields for the annihilation operator ã(p)

V (b)ã(p)V −1(b) = e
−br ∂

∂pr a(p) = ã(p− b),

analogously for the creation operator ã∗(p),

V (b)ã∗(p)V −1(b) = e
−br ∂

∂pr a∗(p) = ã∗(p− b).

Note that in the last lines we used the well know equation e
−br ∂

∂pr f(p) = f(p − b),
which is a simple example of the Taylor series. Since the temporal operator is not a well
known differential operator we will give two other proofs, which will help us in the case of
transformation with X0.

Proof. In the second we express V (b)ã(p)V −1(b) through investigating the effect of op-
erators V (b)−1 when applied to eigenstates |~p〉 of the vector operator Pj . The vector
V (b)−1|~p〉

PjV (b)−1|~p〉 = V (b)−1V (b)PjV (b)−1|~p〉

= V (b)−1

(
Pj + ibi[Xi, Pj ] +

(i)2bibk

2!
[Xi, [Xk, Pj ]] + ...

)
|~p〉

= V (b)−1

(
Pj − i2biNδij

)
|~p〉 = V (b)−1

(
pj + bj

)
|~p〉

=
(
pj + bj

)
V (b)−1|~p〉 (5.22)

is an eigenvector of Pj for eigenvalue ~p +~b, thus contained in the eigenspace H
~p+~b

of Pj .
This unitary transformation amounts to a constant shift in the momentum Hilbert space.
Note that in the last equation we used the fact that Xj commutes with N . Let us now
calculate the adjoint action of the unitary operator V (b) on the momentum operator given
by its representation on the Fock space, (5.17). We use the following ansatz

V (b)ã(p)V −1(b) = ã(p− b), V (b)ã∗(p)V −1(b) = ã∗(p− b). (5.23)

It is deduced from the action of V (b)−1 on the eigenspace H
~p+~b

of Pj , [Sex01]. Next we
look at the full expression.

V (b)PjV
−1(b) =

∫
dnp pj ã

∗(p− b)ã(p− b)

=

∫
dnp (pj + bj) ã

∗(p)ã(p)

= Pj + bjN.
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This expression, obtained by ansatz (5.23) is the same one as obtained by the calculation in
equation (5.22). Therefore, it follows that ansatz (5.23) is correct. We control our ansatz
by calculating the following expression

V (b)NV −1(b) = N + ibi[Xi, N ] +
(i)2bibj

2!
[Xi, [Xj , N ]] + ....

= N.

Where in the last line we used the fact the particle number operator commutes with the
spatial operator Xj . Next, we apply the unitary transformation V (b) on the particle
creation and annihilation operators and obtain

V (b)NV −1(b) =

∫
dnpã∗(p− b)ã(p− b)

=

∫
dnpã∗(p)ã(p)

= N,

where in the last line we shifted the integral variable by bi. As one can see, the unitary
transformation calculated on an operational level, i.e. by using the commutation relations
of operators Xj and N , is the same as the unitary transformation calculated on particle
creation and annihilation operators. This of course has to be the case and is subsequently
used.

In the next step we perform the unitary transformation on Xk. Since we have the
commutator relation [Xi, Xj ] = 0, the operator Xj remains invariant under this
transformation.

V (b)XjV
−1(b) = Xj .

We apply the transformation on the particle creation and annihilation operators.

V (b)XjV
−1(b) = −i

∫
dnpã∗(p− b)∂j ã(p− b)

= −i
∫
dnpã∗(p)∂j ã(p)

= Xj

In the last line we shifted the integral variable by bj . The derivative stays invariant under
this shift so we obtain Xj again.

Proof. The third proof proceeds along the lines presented in ([Ste05], Chapter VII). We
also use the ansatz (5.23) obtained from (5.22). We find the following expression for the
unitary operator V (b) on an eigenvector |p〉,

eibjX
j |p〉 = |p− b〉. (5.24)

This means we can write the unitary operator V (b) in terms of creation and annihilation
operators,

eibjX
j

=

∫
dnpã∗(p− b)ã(p).
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This representation of the unitary operator makes perfect sense due to the fact that it
satisfies (5.24). Next, we calculate the infinitesimal generator of the unitary operator V (b)
by the following equation

Xj = −i lim
b→0

∂

∂bj
eibkX

k

= −i lim
b→0

∫
dnp

(
∂

∂bj
ã∗(p− b)

)
ã(p)

= i lim
b→0

∫
dnp

(
∂

∂pj
ã∗(p− b)

)
ã(p)

= −i
∫
dnpã∗(p)

(
∂

∂pj
ã(p)

)
,

where in the last line we performed a partial integration. This is exactly the representation
of the spatial coordinate operator in terms of creation and annihilation operators. Let us
summarize. We obtained the ansatz (5.23) from equation (5.22). In the next step we
wrote the unitary operator in terms of ã, ã∗ and calculated the infinitesimal generator,
which turns out to be the operator we started with.

In the following lemma we give the transformation of the free massless scalar field,
performed with the unitary operator V (b).

Lemma 5.18. Under the adjoint action of the unitary operator V (b), defined in (5.21),
the free scalar field φ(f) (see Definitions in 4.3, 5.2), transforms as follows

βb (φ(f)) : = V (b)φ(f)V (b)−1

=

∫
dnp√
2ωp+b

(
f−(p + b)ã(p) + f+(p + b)ã∗(p)

)
. (5.25)

Proof. To prove the lemma let us look at the following expression,

V (b)φ(f)V (b)−1 =

∫
dnp√
2ωp

(
f−(p)V (b)ã(p)V (b)−1 + f+(p)V (b)ã∗(p)V (b)−1

)
=

∫
dnp√
2ωp

(
f−(p)ã(p− b) + f+(p)ã∗(p− b)

)
=

∫
dnp√
2ωp+b

(
f−(p + b)ã(p) + f+(p + b)ã∗(p)

)
, (5.26)

where in the last lines we used Lemma 5.20 and we shifted the integral variable by bj .

Next, we examine the locality properties of the unitarily transformed free scalar field
given in Lemma 5.18.

Lemma 5.19. The free transformed scalar fields βb(φ(f)) and βb′(φ(g)) defined by the
transformation given in Lemma 5.18, commute, if the support of f is space-like separated
to the support of g and b = b′.
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Proof. The free transformed scalar fields βb(φ(f)) and βb′(φ(f)φ(g)) are calculated by
using Lemma 5.18 and the commutator for the two different vectors b and b′ is given as
follows

[βb(φ(f)), βb′(φ(g))] = (5.27)

=

∫
dnp√

2ωp+b

√
2ωp+b′

(
f−(p + b)g+(p + b′)− f+(p + b)g−(p + b′)

)
=

∫
dnp√

2ωp+b−b′
√

2ωp

(
f−(p + b− b′)g+(p)− f+(p + b− b′)g−(p)

)
, (5.28)

where in the last line we shifted the integration variable p → p − b′ . The commutator
vanishes if b = b′ and the support of f is space-like to the support of g. This is due to the
fact that for b = b′ the commutator of the transformed fields becomes the commutator of
the free scalar fields [φ(f), φ(g)], which vanishes if the supports of f and g are space-like
to each other, [Fre06, Sib93].

In the next sections we find out that this expression fulfills another locality property, the
so called wedge-locality. Moreover, the expression proves to be important, since we are
able to show that the difference |b− b′| acts exactly like a deformation parameter.

5.8.2 Transformations with the temporal operator

Calculations of transformations induced by the temporal operator have a complicated
form, thus for clarity we work during this section in three space dimensions. As in the last
subsection we define the following operator

V0(α) = eiαX0 , α ∈ R (5.29)

Next, we calculate the adjoint action of the operator V0(α) on the free massless scalar
field. This is done as in the last subsection by deriving the adjoint action of V0(α) on
particle creation and annihilation operators. This will be the subject of the following
lemma.

Lemma 5.20. The particle creation and annihilation operators ã(p), ã∗(p) transform un-
der the adjoint action of the operator V0(α) defined in Equation (5.29), in the following
manner.

V0(α)ã(p)V −1
0 (α) =

(
1− α

ωp

)
ã(p(1− α

ωp
)),

V0(α)ã∗(p)V −1
0 (α) =

(
1− α

ωp

)
ã∗(p(1− α

ωp
))

Proof. The first derivation follows along the same lines as the second proof for Lemma
5.20. An explicit expression for V0(α)ã(p)V −1

0 (α) can be deduced from the investigation
of the effect of the operators V −1

0 (α) when applied to the eigenstates |~p〉 of the vector
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operator Pj . The vector V −1
0 (α)|~p〉 is given as

PjV0(α)−1|~p〉 = V0(α)−1V0(α)PjV0(α)−1|~p〉

= V0(α)−1

(
Pj + iα[X0, Pj ] +

(i)2α2

2!
[X0, [X0, Pj ]] + ...

)
|~p〉

= V0(α)−1

(
Pj − i2α

∫
kj
ωk
a∗(k)a(k)d3k

)
|~p〉

= V0(α)−1

(
pj + α

pj
ωp

)
|~p〉. (5.30)

In the last lines we used the fact that in the massless case the following expression

[X0, [X0, Pj ]] = 0

vanishes. Therefore, PjV0(α)−1|~p〉 is an eigenvector of Pj for the eigenvalue ~p
(

1 + α
ωp

)
,

thus contained in the eigenspace H
~p
(

1+ α
ωp

) of Pj . This transformation is a momentum-

dependent dilatation in the momentum Hilbert space.

The second derivation consists in calculating adjoint action of operator V0(α) on
the momentum operator, given by its representation on the Fock space (5.17). To ease
readability let us define the following function,

αp := 1− α

ωp

We use the following ansatz

V0(α)ã(p)V −1
0 (α) = αpã(pαp), (5.31)

V0(α)ã∗(p)V −1
0 (α) = αpã

∗(pαp),

which is deduced from the action of V −1
0 (α) on the eigenspace H

~p
(

1+ α
ωp

) of Pj , [Sex01].

We thus obtain,

V0(α)PjV
−1

0 (α) = Pj − i2α
∫

pj
ωp
a∗(p)a(p)d3p

=

∫
pj

(
1 +

α

ωp

)
a∗(p)a(p)d3p.

We can rewrite this term as follows

∫
pjV0(α)a∗(p)a(p)V −1

0 (α)d3p =

∫
pjV0(α)a∗(p)V −1

0 (α)V0(α)a(p)V −1
0 (α)d3p.

By using the ansatz (5.31) one is led to the same solution, as the transformation performed
on an operator level.

V0(α)PjV
−1

0 (α) =

∫
pjV0(α)a∗(p)V −1

0 (α)V0(α)a(p)V −1
0 (α)d3p

=

∫
pja
∗(pαp)a(pαp)(αp)2d3p

=

∫
(1 +

α

ωk
)kja

†(k)a∗(k)d3k.
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For obtaining the last line we made the following variable substitution

kj = pj(1−
α

ωp
), pj = (1 +

α

ωk
)kj (5.32)

d3k = det(δij(1−
α

ωp
)− pipj

ω3
p

)d3p = α2
pd

3p,

We control our ansatz by calculating the effect of transformation on P0 directly by using
the algebra between X0 and P0,

V0(α)P0V
−1

0 (α) = P0 + iα[X0, P0] +
(i)2α2

2!
[X0, [X0, P0]] + ....

= P0 − i2αN.

In the last line we used the commutator relations

[X0, P0] = −iN, [X0, [X0, P0]] = 0.

By applying the transformation to the particle creation and annihilation operators indi-
vidually, we obtain

V0(α)P0V
−1

0 (α) =

∫
ωpV0(α)a∗(p)V −1

0 (α)V0(α)a(p)V −1
0 (α)d3p

=

∫
ωpα

2
pa
∗(pαp)a(pαp)d3p

=

∫ (
ωk + α

)
a∗(k)a(k)d3k

= P0 + αN,

where in the last line we used the following variable substitution and relations

kj = pj(1−
α

ωp
), d3k = (1− α

ωp
)2d3p, ωk(1+ α

ωk
) = ωk + α.

We can control our ansatz by calculating expression

V0(α)NV −1
0 (α) = N + iα[X0, N ] +

(i)2α2

2!
[X0, [X0, N ]] + . . . .

The particle number operator commutes with all other operators thus

V0(α)NV −1
0 (α) = N.

In the next step we apply the transformation on the particle creation and annihilation
operators.

V0(α)NV −1
0 (α) =

∫
V0(α)a∗(p)V −1

0 (α)V0(α)a(p)V −1
0 (α)d3p

=

∫
α2
pa
∗(pαp)a(pαp)d3p

=

∫
a∗(k)a(k)d3k

= N,
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where in the last line we used the variable substitutions given in (5.32).

Next, we perform the transformation on X0. Due to the fact that the operator X0

has to commute with itself, the operator has to remain invariant under the transformation.

V0(α)X0V
−1

0 (α) = X0.

Thus by applying the transformation on particle creation and annihilation operators the
operator X0 should remain invariant.

V0(α)X0V
−1

0 (α) = −i
∫ (

1

ωp
V0(α)a∗(p)a(p)V −1

0 (α) +
pr

ωp
V0(α)a∗(p)∂ra(p)V −1

0 (α)

)
d3p

= −i
∫ (

1

ωp
α2
pa
∗(pαp)a(pαp) +

pr

ωp
αpa

∗(pαp)∂r

(
αpa(pαp)

))
d3p

= −i
∫ (

1

ωk
a∗(k)a(k)d3k

)
− i
∫ (

kr

ωk
a∗(k)

∂kn

∂pr
∂

∂kn
a(k)d3k

)
,

where in the last line we used the variable substitution (5.32) and the following relations

kr
∂kn

∂pr
= kn,

1

ωk(1 + α
ωk

)
+

α

ω2
k(1 + α

ωk
)

=
1

ωk
,

thus we obtain

V0(α)X0V
−1

0 (α) = −i
∫ (

1

ωk
a∗(k)a(k) +

kn

ωk
a∗(k)

∂

∂kn
a(k)d3k

)
= X0

Proof. The second derivation proceeds along the same lines as the author in ([Ste05],
Chapter VII). We use the ansatz (5.31) and obtain the following expression for the operator
V0(α) on an eigenvector |p〉,

eiαX
0 |p〉 = αp|pαp〉. (5.33)

This means that we can write the operator V0(α) in terms of creation and annihilation
operators,

eiαX
0

=

∫
d3pαpã

∗(pαp)ã(p).

As one can easily see this representation of the operator satisfies (5.33). In the next step,
we calculate the infinitesimal generator of the operator V0(α) by the following equation

X0 = −i lim
α→0

∂

∂α
eiαX

0

= −i lim
α→0

∫
d3p

∂

∂α
(αpã

∗(pαp)) ã(p)

= i

∫
d3p

(
1

ωp
ã∗(p)ã(p)

)
− i lim

α→0

∫
d3pαp

∂

∂α
ã∗(pαp)ã(p)

= i

∫
d3p

(
1

ωp
ã∗(p)ã(p) +

pj

ωp

∂

∂pj
ã∗(p)ã(p)

)
= X0
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where in the last line we performed a partial integration and replaced the derivative w.r.t.
α on the creation operator as follows,

∂

∂α
ã∗(p′α) =

∂p′jα
∂α

∂

∂p′jα
ã∗(p′α) = − p

j

ωp

∂

∂p′jα
ã∗(p′α),

p′α := pαp,

in the limit α→ 0 the vector p′α goes to the momentum p.

Thus the outcome is exactly the representation of the temporal coordinate operator
in terms of creation and annihilation operators. Let us summarize the result. We
obtained the ansatz (5.31) from equation (5.30). In the next step we gave the operator of
transformations in terms of ã, ã∗ and calculated the infinitesimal generator, which turns
out to be the operator we started with.
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5.9 Deforming the scalar quantum field

In this section, we investigate the effect of deformation directly on a free scalar field. The
unitary group used for deformation, is given by the position operator and moreover, in
accordance with relativistic covariance, with a defined zero component of the coordinate
operator. The operator, denoted by X0, that we define in this section differs from the
one obtained in [SS09]. It is defined by unitary equivalence to the zero component of
the momentum operator, i.e. the energy. Due to the unitary equivalence, the vector
operator Xµ = (X0, Xk) is an essential self-adjoint operator on a dense domain and
therefore defines a strongly continuous unitary group that we denote by V (b) := eibµX

µ .
Furthermore, by using this abelian group, an adjoint action can be defined and used for
the deformation in the framework of warped convolutions, [BS08, BLS11].

Definition 5.5. The operatorXµ is defined by the unitary equivalence to the momentum
operator as follows,

Xµ = Γ(U−1
F )PµΓ(UF ), (5.34)

where the operator Γ(UF ) :=
⊗k

i=1 UF is the second quantization of the unitary Fourier
operator.

The zero component is defined in the same manner as the spatial coordinate operator.
This definition can be considered as the relativistic generalization of the position operator
in quantum mechanics to a quantum field theoretical context.

Proposition 5.1. The operator Xµ defined by unitarily equivalence (see Definition 5.5)
is an essentially self-adjoint operator on the domain S (Rd×k) satisfying the following com-
mutator relations,

[Xµ, Xν ] = 0.

Therefore, the following unitary operator

V (p) = eipµX
µ
, (5.35)

defines a strongly continuous group for all p ∈ Rd.

Proof. Essential self-adjointness for the spatial part of Xµ was shown in Theorem 5.1. The
proof of essential self-adjointness for X0 is done in an analogous manner, since the zero
component of the momentum operator P0 is an essentially self-adjoint operator. Hence,
by unitary equivalence essential self-adjointness follows. Furthermore, we use the unitary
equivalence in order to show the commutation relations between the different components
of the operator Xµ.

[Xµ, Xν ] = [Γ(U−1
F )PµΓ(UF ),Γ(U−1

F )PµΓ(UF )]

= Γ(U−1
F )[Pµ, Pµ]Γ(UF )

= 0,

where in the last line we used the fact that the momentum operators commute. By applying
Stone’s theorem (see 3.1), it follows that V (p) defines a strongly continuous unitary group.
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Definition 5.6. Let θ be a real skew-symmetric matrix w.r.t. the Lorentzian scalar-
product on Rd and let χ ∈ S (Rd × Rd) with χ(0, 0) = 1. Furthermore, let φ(f) be the
massive free scalar field smeared out with functions f ∈ S (Rd). Then, the operator valued
distribution φ(f) deformed with the coordinate operator Xµ (see Definition 5.5), denoted
as φθ,X(f), is defined on vectors of the dense domain S (Rn×k) as follows

φθ,X(f)Ψk : = (2π)−d lim
ε→0

∫∫
dy du e−iyu χ(εy, εu)βθy(φ(f))V (u)Ψk

= (2π)−d lim
ε→0

∫∫
dy du e−iyu χ(εy, εu)βθy

(
a(f−) + a∗(f+)

)
V (u)Ψk

=:
(
aθ,X(f−) + a∗θ,X(f+)

)
Ψk. (5.36)

The automorphism β is defined by the adjoint action of the unitary operator V (y) and the
test functions f±(p) in momentum space are defined as follows

f±(p) :=

∫
ddxf(x)e±ipx, p = (ωp,p) ∈ H+

m.

The integral (5.36) has to be understood as an integral in oscillatory sense, [Rie93]. The
unboundedness of the operator Xµ questions the existence of the integral since we are
dealing with unbounded operator valued distributions. To show that the integral (5.36)
converges we use the unitary equivalence of the coordinate operator with the momentum
operator.

The following lemma is about the existence of a unitary transformation connecting
the warped convolutions of a free scalar field using the momentum operator, and the
warped convolutions of a free scalar field using the coordinate operator.

Lemma 5.21. For f ∈ S (Rd) and Ψk ∈ S (Rn×k), a transformation exists that maps
the field deformed with the momentum operator φθ,P (f) to the field deformed with the
coordinate operator φθ,X(f). This transformation is given as follows

φθ,X(f)Ψk = Γ(UF )−1
(
Γ(UF )φ(f)Γ(UF )−1

)
θ,P

Γ(UF )Ψk.

Proof. By using the unitary equivalence given in Equation (5.34), the lemma is easily
proven

φθ,X(f)Ψk = (2π)−d lim
ε→0

∫∫
dy du e−iyu χ(εy, εu)V (θy)φ(f)V (−θy + u)Ψk

= (2π)−d lim
ε→0

∫∫
dy du e−iyu χ(εy, εu) Γ(UF )−1T (θy)Γ(UF )φ(f)Γ(UF )−1

× T (−θy + u)Γ(UF )Ψk

= Γ(UF )−1
(
Γ(UF )φ(f)Γ(UF )−1

)
θ,P

Γ(UF )Ψk.

Lemma 5.22. For Φm ∈ S (Rn×k) the familiar bounds of the free field hold for the
deformed field φθ,X(f) and therefore the deformation with operator Xµ is well-defined.



5.9. DEFORMING THE SCALAR QUANTUM FIELD 93

Proof. By using Lemma 5.21 one obtains the familiar bounds for a free scalar field. For
Φk ∈ S (Rn×k) there exists a Ψk ∈ S (Rn×k) such that the following holds

‖φθ,X(f)Φk‖ = ‖φθ,X(f)Γ(UF )Ψk‖
=
∥∥(Γ(UF )φ(f)Γ(UF )−1)θ,PΨk

∥∥ = ‖(φ(UFf))θ,PΨk‖

≤
∥∥∥(a(UFf−))θ,PΨk

∥∥∥+
∥∥(a∗(UFf

+))θ,PΨk

∥∥
≤
∥∥UFf

+
∥∥∥∥∥(N + 1)1/2Ψk

∥∥∥+
∥∥UFf

−∥∥∥∥∥(N + 1)1/2Ψk

∥∥∥
=
∥∥f+

∥∥∥∥∥(N + 1)1/2Ψk

∥∥∥+
∥∥f−∥∥∥∥∥(N + 1)1/2Ψk

∥∥∥ .
where in the last lines we used the triangle inequality, the Cauchy-Schwarz inequality, the
bounds given in [GL07] and the fact that UF is equal to one w.r.t. the Lorentz-invariant
measure, (see Remark 5.2).

The obtained bounds are exactly the bounds of the free scalar field. Thus by the
same arguments given in Lemma 4.3, concerning the deformed field φθ,P , it follows that
the field deformed with the coordinate operator Xµ is well-defined.

Remark 5.2. During the calculations of the last inequality we used the fact that operator
UF is unitary w.r.t. the Lorentz-invariant measure. That this statement is holds, can be
shown by a short calculation, which is important to do, since UF is only been shown to
be unitary w.r.t. the measure dnp.

Hence, we first establish that the norm of the unitary operator UF acting on a
function f ∈ H1 is equal to the norm of f . Note that the transformation UF was
constructed in the non-covariant representation. Thus, to calculate the action of the
unitary operator on the function f in a covariant fashion we consider the following
expression in the non-covariant representation and at the end switch to the covariant
representation,

(Γ(UF )a(f)Γ(UF )−1) =

∫
dnp√
2ωp

f(p)(Γ(UF )ã(p)Γ(UF )−1)

=

∫
dnp√
2ωp

f(p) (UF ã) (p)

=

∫
dnp√
2ωp

(√
2ωUF

1√
2ω
f

)
(p)ã(p)

=

∫
dnµ(p)

(√
2ωUF

1√
2ω
f

)
(p)a(p) = a(UFf).

By using the action of the unitary operator UF on the function f , we can calculate the
norm of UFf ,



94 CHAPTER 5. COORDINATE OPERATOR IN QFT

‖UFf‖2 =

∫
dnµ(p)

(√
2ωUF

1√
2ω
f

)
(p)

(√
2ωUF

1√
2ω
f

)
(p)

=

∫
dnp

(
UF

(
UF

1√
2ω
f

))
(p)

1√
2ωp

f(p)

=

∫
dnp

(
UFU

−1
F

(
1√
2ω
f

))
(p)

1√
2ωp

f(p)

=

∫
dnp

1√
2ωp

f(p)
1√
2ωp

f(p)

=

∫
dnµ(p)|f(p)|2 = ‖f‖2 ,

where in the last line we use the fact that the conjugate of the transformation UF is equal
to the inverse of the operator.

5.9.1 Wightman properties of the deformed QF

It is important to note that due to the unitary equivalence we can show that the deformed
field φθ,X satisfies the Wightman properties with the exception of covariance and locality.
This is the subject of the following proposition. Note that in the next proposition we use
the symbol H for the massless and massive Bosonic Fockspace.

Proposition 5.2. Let θ be a real skew-symmetric matrix w.r.t. the Lorentzian scalar-
product on Rd and f ∈ S (Rd).

a) The dense subspace D of vectors of finite particle number is contained in the domain
Dθ,X = {Ψ ∈H | ‖φθ,X(f)Ψ‖2 <∞} of any φθ,X(f). Moreover, φθ,X(f)D ⊂ D and
φθ,X(f)Ω = φ(f)Ω.

b) For scalar fields deformed via warped convolutions and Ψ ∈ D,

f 7−→ φθ,X(f)Ψ

is a vector valued tempered distribution.

c) For Ψ ∈ D and φθ,X(f) the following holds

φθ,X(f)∗Ψ = φθ,X(f)Ψ.

For real f ∈ S (Rd), the deformed field φθ,X(f) is essentially self-adjoint on D.

d) The Reeh-Schlieder property holds: Given an open set of spacetime O ⊂ Rd then

Dθ,X(O) := span{φθ,X(f1) . . . φθ,X(fk)Ω : k ∈ N, f1 . . . fk ∈ S (O)}

is dense in H .
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Proof. a) The fact that D ⊂ Dθ,X , follows immediately from Lemma 5.22 , since the
deformed scalar field satisfies the same bounds as a free field. The fact that the deformed
field acting on the vacuum is the same as the free field acting on Ω, can be easily shown
due to the property of the unitary operators V (b)Ω = Ω.

b) By using Lemma 5.22 one can see that the right hand side depends continu-
ously on the function f , hence the temperateness of f 7−→ φθ,X(f)Ψ, Ψ ∈ D follows.

c) First, we prove hermiticity of the deformed field φθ,X(f). This is done along
the same lines as the proof of Lemma 2.2, demonstrating hermiticity of a deformed
operator if the undeformed one is hermitian.

φθ,X(f)∗Ψ = (2π)−d
(

lim
ε→0

∫∫
dy du e−iyu χ(εy, εu)βθy(φ(f))V (u)

)∗
Ψ

= (2π)−d lim
ε→0

∫∫
dy du e−iyu χ(εy,−εu)V (u)βθy(φ(f))∗Ψ

= (2π)−d lim
ε→0

∫∫
dy du e−iyu χ(ε(y + θ−1u),−εu)βθy(φ(f))V (u)Ψ

= φθ,X(f)Ψ.

In the last lines we performed a variable substitution (uµ → −uµ) and(
yµ → yµ + (θ−1u)µ

)
.

For real f we can prove the essential self-adjointness of the hermitian deformed
field φθ,X(f). The first step consists in showing that the deformed field has a dense set
of analytic vectors, (see Definition 8.19). Next, by Nelson’s analytic vector theorem 8.4,
it follows that the deformed field φθ,X(f) is essentially self-adjoint on this dense set of
analytic vectors, (for similar proof see [BR96, Chapter I, Proposition 5.2.3]).

For Ψk ∈ Hk the estimates of the l-power of the deformed field φθ,X(f), are given
in the following∥∥∥φθ,X(f)lΨk

∥∥∥ ≤ 2l/2(k + l)1/2(k + l − 1)1/2 · · · (k + 1)1/2 ‖f‖l ‖Ψk‖ ,

where in the last lines we used Lemma 5.22 for the estimates of the deformed field. Finally,
we can write the sum

∑
l≥0

|t|l

l!

∥∥∥φ(f)lΨk

∥∥∥ ≤∑
l≥0

(
√

2|t|)l

l!

(
(k + l)!

k!

)1/2

‖f‖l ‖Ψk‖ <∞

for all t ∈ C. It follows that each Ψ ∈ D is an analytic vector for the deformed field
φθ,X(f). Since the set D is dense in H , Nelson’s analytic vector theorem implies that
φθ,X(f) is essentially self-adjoint on D.

d) For the proof of the Reeh-Schlieder property we use the unitary equivalence
given in Definition (5.5). First note that the spectral properties of the unitary operator
V (y), are the same as for the unitary operator T (y) of translations. This leads to the
application of the standard Reeh-Schlieder argument [SW89] which states that that
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Dθ(O) is dense in H if and only if Dθ(Rd) is dense in H . We choose the functions
f1, . . . , fk ∈ S (Rd) such that the Fourier transforms of the functions do not intersect the
lower mass shell and therefore the domain Dθ(Rd) consists of the following vectors

Γ(UF )φθ,X(f1) . . . φθ,X(fk)Ω = Γ(UF )a∗θ,X(f+
1 ) . . . a∗θ,X(f+

k )Ω

= Γ(UF )Γ(UF )−1a∗θ,P (UFf
+
1 ) . . . a∗θ,P (UFf

+
k )Γ(UF )−1Ω

= a∗θ,P (UFf
+
1 ) . . . a∗θ,P (UFf

+
k )Ω

=
√
m!Pm(Sm(UFf

+
1 ⊗ · · · ⊗ UFf

+
k )),

where Pk denotes the orthogonal projection from H ⊗k
1 onto its totally symmetric subspace

Hk, and Sk ∈ B(H ⊗k
1 ) is the multiplication operator given as

Sk(p1, . . . , pk) =
∏

1≤l<j≤k
eiplθpj .

Since the operator UF is unitary and maps Schwartz functions into Schwartz functions
we have, UFf

+
k ∈ S (Rd) for f+

k ∈ S (Rd). This in particular means that UFf
+
k

will give rise to dense sets of functions in H1. Following the same arguments as in
[GL07] the density of Dθ(Rd) in H follows. Note that we proved the density for vectors
Γ(UF )φθ,X(f1) . . . φθ,X(fk)Ω and not for the vectors without the application of Γ(UF ) as
stated in the proposition. We use the unitary of Γ(UF ) to argue that vectors dense in H
stay dense after the application of a unitary operator.

5.9.2 Wedge-covariant fields

The authors in [GL07] constructed a map Q : W 7→ Q(W ) from a set W0 := L↑+W1

of wedges, where W1 := {x ∈ Rd : x1 > |x0|} to a set Q0 ⊂ R−d×d of skew-symmetric
matrices. In the next step they considered the corresponding fields φW (x) := φ(Q(W ), x).
The meaning of the correspondence is that the field φ(Q(W ), x) is a scalar field liv-
ing on a NC spacetime which can be equivalently realized as a field defined on the
wedge. To examine the covariance properties of the free scalar field deformed with
the coordinate operator, we use the the homomorphism Q : W 7→ Q(W ) to relate the
deformed scalar field φθ,X to a wedge-covariant field. Let us first define the following map.

Definition 5.7. Let θ be a real skew-symmetric matrix on Rd then the map γΛ(θ) is
defined as follows

γΛ(θ) :=

{
ΛθΛT , Λ ∈ L↑,
−ΛθΛT , Λ ∈ L↓. (5.37)

Furthermore, we need the transformation properties of the deformed field under the proper
orthochronous Poincaré group P↑+ to examine the wedge-covariance of our field. It turns
out that the deformed field φθ,X only transforms covariant under a subgroup of P↑+. The
following lemma gives the transformation property of the deformed scalar field under the
action of a subgroup of the unitary operators of the proper orthochronous Lorentz group
L↑+.
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Lemma 5.23. Let a subgroup of the proper orthochronous Lorentz group L↑+ denoted as
LR, be defined in the following way

LR :=

{
Λ =

(
1 0T

0 R

)
, R ∈ SO(3)

}
⊂ L↑+.

Then, the deformed particle annihilation and creation operator given in Definition (5.36)
transform under the adjoint action of U(0,Λ) in the following manner

U(0,Λ)aθ,X(p)U(0,Λ)−1 = aγΛ(θ),X(±Λp),

U(0,Λ)a∗θ,X(p)U(0,Λ)−1 = a∗γΛ(θ),X(±Λp),

where the first sign is for Λ ∈ LR and the second sign is for Λ ∈ L↓. Hence, the deformed
field φθ,X(x) transforms under the adjoint action U(0,Λ) as follows,

U(0,Λ)φθ,X(x)U(0,Λ)−1 = φγΛ(θ),X(Λx).

Proof. The proof is done along the lines of ([BLS11], Proposition 2.9). To follow the proof
we first calculate the Lorentz transformation of the unitary operator V (p) given in (5.35).
This can be done by considering the following relation,

U(0,Λ)PµU(0,Λ)−1 = (Λ−1)ρµPρ.

Due to the unitary equivalence given in (5.34) from the Lorentz covariance of the momen-
tum operator we have

U(0,Λ)Γ(UF )XµΓ(U−1
F )U(0,Λ)−1 = (Λ−1)ρµΓ(UF )XρΓ(U−1

F ). (5.38)

Now by applying Γ(U−1
F ) on the right side and Γ(UF ) on the left side of the equation we

obtain
Γ(U−1

F )U(0,Λ)Γ(UF )XµΓ(U−1
F )U(0,Λ)−1Γ(UF ) = (Λ−1)ρµXρ. (5.39)

From commutator relation (5.10) the following transformation property of the spatial part
of Xµ follows,

U(0,Λ)XjU
−1(0,Λ) = (Λ−1)kjXk, Λ ∈ LR.

By using this transformation property we are able to show that operators U(0,Λ) and
Γ(UF ) commute for Λ ∈ LR,

Γ(U−1
F )U(0,Λ)Γ(UF )XjΓ(U−1

F )U(0,Λ)−1Γ(UF ) = (Λ−1)ρjXρ

= U(0,Λ)XjU
−1(0,Λ).

Hence, from the commutativity of U(Λ) and Γ(UF ) it follows that the operator Xµ trans-
forms in a Lorentz covariant manner under the rotational subgroup of the proper or-
thochronous Lorentz group,

U(0,Λ)XµU
−1(0,Λ) = (Λ−1)ρµXρ, Λ ∈ LR. (5.40)

From equation (5.40) the unitary Lorentz transformation of V (k) follows,

U(0,Λ)V (k)U(0,Λ)−1 = V (Λk), Λ ∈ LR. (5.41)
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Next, we study the adjoint action of the antiunitary operator of time reversal U(it) and
the unitary operator of space inversion U(is), acting on the operator Xµ. To proceed, we
first give the transformation of the particle creation and annihilation operators under time
reversal U(it) and space inversion U(is), [Sch61, Chapter 7c, Equation (118 a,b)]

U(it,s)a(p)U−1(it,s) = ηpa(−p), U(it,s)a
∗(p)U−1(it,s) = ηpa

∗(−p),

where ηp = ±1. From the action of the reversal operators on the particle creation and
annihilation operators we can calculate the transformation of Xj under time reversal and
space inversion and it is given in the following,

U(it,s)XjU
−1(it,s) = −i

∫
d3µ(p)U(it,s)a

∗(p)

(
pj

2ω2
p

+
∂

∂pj

)
a(p)U−1(it,s)

= −i
∫
d3µ(p)η2

pa
∗(−p)

(
pj

2ω2
p

+
∂

∂pj

)
a(−p)

= +i

∫
d3µ(p)a∗(p)

(
pj

2ω2
p

+
∂

∂pj

)
a(p)

= −Xj ,

where in the last lines we used the fact that η2
p = 1 and shifted the integration variable

p→ −p.

The position operator has the same transformation properties under time reversal
and space inversion as the momentum operator. Hence, it follows from equations (5.38)
and (5.39) that the time reversal operator commute with Γ(UF ) and therefore

U(0,Λ)XµU
−1(0,Λ) = (Λ−1)ρµXρ, Λ ∈ L↓. (5.42)

Therefore, for the adjoint action of the antiunitary operator U(0,Λ) for Λ ∈ L↓ on the
unitary operator V (k) is

U(0,Λ)V (k)U(0,Λ)−1 = V (−Λk). (5.43)

Moreover, we use in the following proof the adjoint action of the unitary operators U(0,Λ)
on particle annihilation and creation operators given as follows, [Sch61, Chapter 7c, Equa-
tion (57), (58)]

U(0,Λ)a(p)U(0,Λ)−1 = a(±Λp), U(0,Λ)a∗(p)U(0,Λ)−1 = a∗(±Λp), (5.44)

where the first sign is for Λ ∈ LR and the second sign is for Λ ∈ L↓. Therefore, by using
(5.41), (5.43) and (5.44) we obtain that the deformed scalar field φθ,X transforms under
the adjoint action of the subgroup LR and L↓ in the following way:

(2π)−dU(0,Λ) lim
ε→0

∫∫
dy du e−iyu χ(εy, εu)βθy(φ(x))V (u)U(0,Λ)−1

= (2π)−d lim
ε→0

∫∫
dy du e−iyu χ(εy, εu)βΛθy(U(0,Λ)φ(x)U(0,Λ)−1)V (Λu)

= (2π)−d lim
ε→0

∫∫
dy du e−iyu χ(εσΛT y, εΛ−1u)βγΛ(θ)y(φ(Λx))V (u) = φγΛ(θ),X(Λx),

where σ is +1 if Λ ∈ LR and −1 if Λ ∈ L↓. Moreover in the last lines the integration
variable substitutions (y, u)→ (σΛT y,Λ−1u) were performed.
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Next, we use the homomorphism (5.37) to map the deformed field φθ,X to a field
defined on a wedge. Furthermore, we show that a field deformed with the spatial
part of the coordinate operator is a wedge-covariant quantum field which transforms
covariantly under the adjoint action of a subgroup of the Lorentz group. For this pur-
pose let us first introduce the notion of a wedge-covariant quantum field as given in [GL07].

Definition 5.8. Let φ = {φW : W ∈ W0} denote the family of fields satisfying the
domain and continuity assumptions of the Wightman axioms. Then, the field φ is defined
to be a wedge Lorentz-covariant quantum field if the following condition is satisfied:

• For any W ∈ W0 and f ∈ S (Rd) the following holds

U(Λ)φW (f)U(Λ)−1 = φΛW (f ◦ (Λ)−1), Λ ∈ L↑+,
U(j)φW (f)V U(j)−1 = φjW (f ◦ j)−1.

To define the deformed fields φθ,X as quantum fields defined on the wedge, we use the
homomorphism Q : W 7→ Q(W ), this is done in the following way

φW (f) := φ(Q(W ), f) = φθ,X(f). (5.45)

Proposition 5.3. The family of fields φ = {φW : W ∈ W0} defined by deformation
with the operator Xµ are wedge Lorentz-covariant quantum fields on the Bosonic Fock
space, w.r.t. the unitary representation U(0,Λ) of the subgroup LR and the antiunitary
representation U(0,Λ) of L↓.

Proof. Following Lemma 5.23, the deformed field φθ,X(x) transforms under the adjoint
action U(0,Λ) of the subgroup LR and L↓ in the following way

U(0,Λ)φW (x)U(0,Λ)−1 = U(0,Λ)φθ,X(x)U(0,Λ)−1 = φγΛ(θ),X(Λx) = φΛW (Λx),

where in the last lines we applied the map Q(ΛW ) = γΛ(Q(W )) = γΛ(θ). Therefore, one
obtains the wedge Lorentz-covariance property of the scalar field under the subgroup LR
and L↓.

5.9.3 Wedge-locality of the deformed field

The locality that we prove in this section is the so called wedge-locality. It seems to be the
appropriate locality on noncommutative spacetimes. This is due to the fact that the notion
of point-wise locality will not hold on NC spacetimes due to the loss of the notion of a point.

To show that the family of fields φW defined in (5.45) is a family of wedge-covariant
quantum fields, we first give the notion of the wedge-local field as given in [GL07].

Definition 5.9. The fields φ = {φW : W ∈ W0} are said to be wedge-local if the
following commutator relation is satisfied

[φW1(f), φ−W1(g)]Ψ = 0, Ψ ∈ D,

for all f, g ∈ C∞0 (Rd) with supp f ⊂W1 and supp g ⊂ −W1.
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By using the former definition the following proposition concerning the deformed field
φθ,X follows.

Proposition 5.4. The family of fields φ = {φW : W ∈ W0} defined by φW (f) :=
φ(Q(W ), f) = φθ,X(f) are wedge-local fields on the Bosonic Fockspace H +.

Proof. For the proof we use Proposition 2.2, the unitary equivalence given in Lemma 5.21
and the proof that the free scalar field deformed with the momentum operator is wedge
local, [GL07]. To use Proposition 2.2, we have to show that the following commutator
vanishes for f ∈ C∞0 (W1) and g ∈ C∞0 (−W1),

[βθx(φ(f)), β−θy(φ(g))] = [βθx(a(f−)), β−θy(a
∗(g+)]− [β−θy(a(g−)), βθx(a∗(f+)],

where all other terms are equal to zero. Let us first take a look at the first expression of
the commutator,

[βθx(a(f−)), β−θy(a
∗(g+)] = Γ(U−1

F )[αθx
(
Γ(UF )a(f−)Γ(U−1

F )
)
, α−θy

(
Γ(UF )a∗(g+)Γ(U−1

F )
)
]

× Γ(UF )

= Γ(U−1
F )
(∫

d3µ(p)

∫
d3µ(k)f−(p)g+(k)e−ipθxe−ikθy

× Γ(UF )[a(p), a∗(k)]Γ(U−1
F )
)
Γ(UF )

= Γ(U−1
F )

(∫
d3µ(p)f−(p)g+(p)e−ipθ(x+y)

)
Γ(UF )

= Γ(U−1
F )

(∫
d3µ(p)f+(p)g−(p)eipθ(x+y)

)
Γ(UF ),

where in the last lines we used the unitary equivalence (5.34), the commutation relations
of the Fourier transformed particle operators, which are the same as the commutation
relations of the untransformed particle operators. Furthermore the proof of Lemma 3.3 in
[GL07] was used to change the signs of f and g. Finally, we look at the second expression
of the commutator and obtain the following,

[β−θy(a(g−)), βθx(a∗(f+)] = Γ(U−1
F )[α−θy

(
Γ(UF )a(g−)Γ(U−1

F )
)
, αθx

(
Γ(UF )a∗(f+)Γ(U−1

F )
)
]

× Γ(UF )

= Γ(U−1
F )
(∫

d3µ(p)

∫
d3µ(k)f+(p)g−(k)eipθxeikθy

× Γ(UF )[a(k), a∗(p)]Γ(U−1
F )
)
Γ(UF )

= Γ(U−1
F )

(∫
d3µ(p)f+(p)g−(p)eipθ(x+y)

)
Γ(UF ).

Since the second expression of the commutator [βθx(φ(f)), β−θy(φ(g))] is equal to the first
one with a sign difference, the commutator vanishes. Hence, the fields φW are wedge-
local.

Note that from the wedge-locality of the deformed field the locality of expression (5.26)
trivially (θ0j = 0) follows. Thus the term given in Equation (5.26) is a wedge-local expres-
sion.
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5.10 NC Momentum Plane

For some readers it may seem that the warped convolutions performed on a free scalar
field with the coordinate operator defined in (5.34), is simply the deformation done by
[GL07] but in momentum space, i.e. spanning a quantum plane in momentum space
[pµ, pν ] = iBµν . This is not the case. From warped convolutions with the coordinate
operator one obtains a more physical quantum plane, since the deformation is done on the
relativistic physical momentum. This argument is made more precise by calculating the
deformed commutator of the momentum, which is defined by using the deformed product
(2.2) induced by the position operator Xj . Let us first define the deformed commutator of
two momentum vectors as the following

[pµ ×B, pν ] = (2π)−n
∫∫

dnvdnue−ivku
k

(βBv(pµ)βu(pν)− βBv(pν)βu(pµ)) . (5.46)

Lemma 5.24. Let the deformed product (2.2) be defined by the position operator Xj. Then
the deformed commutator (5.46) of the momentum four-vectors is given as

[pµ ×B, pν ] = −2iBp
µν ,

where the noncommutative matrix Bp
µν is non-constant but momentum dependent and is

given as follows

Bp
µν =

(
0 2Bkrpr/ωp

−2Bklp
l/ωp Bjr

)
. (5.47)

Proof. Since the position operator generates a translation in momentum space, the adjoint
action of the unitary transformation on a momentum vector is for the zero component
given as,

βk(p0) = βk(ωp) = ωp+k,

and on the spatial part as follows,

βk(pr) = pr + kr.

In the next step we calculate the deformed commutator of the zero component and the
spatial components,

[p0
×B, pj ] = (2π)−n

∫∫
dnvdnue−ivku

k
(βBv(p0)βu(pj)− βBv(pj)βu(p0))

= (2π)−n
∫∫

dnvdnue−ivku
k
(
ωp+Bv(pj + uj)− (pj + (Bv)j)ωp+u

)
Let us look at the first part,

(2π)−n
∫∫

dnvdnue−ivku
k
ωp+Bv(pj + uj)

= (2π)−n
∫∫

dnvdnue−ivku
k
ωp+Bvpj + (2π)−n

∫∫
dnvdnu

(
i
∂

∂vj
e−ivku

k

)
ωp+Bv

= ωppj − (2π)−n
∫∫

dnvdnue−ivku
k

(
i
∂

∂vj
ωp+Bv

)
= ωppj − i(2π)−n

∫∫
dnvdnue−ivku

k

(
2(Bp)j
ωp+Bv

+
2Bjk(Bv)k

ωp+Bv

)
= ωppj − 2i(Bp)j/ωp.
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The second part of the integral gives the following

− (2π)−n
∫∫

dnvdnue−ivku
k
(pj + (Bv)j)ωp+u

= −(2π)−n
∫∫

dnvdnue−ivku
k
pjωp+u − (2π)nBjk

∫∫
dnvdnu

(
i
∂

∂uk
e−ivku

k

)
ωp+u

= −pjωp + (2π)−nBjk

∫∫
dnvdnue−ivku

k

(
i
∂

∂uk
ωp+u

)
= −pjωp − (2π)−n2iBjk

∫∫
dnvdnue−ivku

k (pk + uk)

ωp+u

= −pjωp − 2i(Bp)j/ωp.

By summing the two parts of the integral we obtain for the deformed commutator the
following

[p0
×B, pj ] = −4i(Bp)j/ωp.

The deformed commutator of the spatial parts is derived in the same manner

[pk
×B, pj ] = (2π)−n

∫∫
dnvdnue−ivku

k
(βBv(pk)βu(pj)− βBv(pj)βu(pk))

= (2π)−n
∫∫

dnvdnue−ivku
k

((pk + (Bv)k)(pj + uj)− k ↔ j)

=

(
pkpj + (2π)−n

∫∫
dnvdnue−ivku

k
(Bv)kuj

)
− k ↔ j

= (2π)−n
∫∫

dnvdnu

(
i
∂

∂vj
e−ivku

k

)
(Bv)k − k ↔ j

= −(2π)−n
∫∫

dnvdnue−ivku
k

(
i
∂

∂vj
(Bv)k

)
− k ↔ j

= −2iBkj

The noncommutative momentum plane, spanned by the deformed product, is nonconstant.
It depends on the relativistic velocity, i.e. pj/ωp. The relativistic velocity appears in
a non-trivial manner and this is owed to the fact that we have a condition on the zero
component of the momentum. Thus the physical on-mass shell condition forces nontrivial
commutation relations on the momentum plane.

Moreover, in th QM chapter (see Lemma 3.13), the NC coordinates describing the
Landau quantization are given by a minimal substitution of the position operator,
Qi = Xi + B−1

ik P
k. Let us compare in the QFT context the approach of minimal

substitution, i.e.
XB
i := Xi − θiρP ρ, (5.48)

with the deformation of the coordinate operators. By having the QM case in mind, the
matrix θ must be in the spatial components, i.e. θij , equal to the inverse of the spatial
part of the noncommutative matrix B (see Equation 5.47). Furthermore, we choose the
(0j)-component equal to θj0 = −2θjkV

k and obtain the following lemma,
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Lemma 5.25. Let the minimal substituted coordinates XB
i be given by Equation (5.48).

Then, on a one-particle level XB
i satisfies the commutator relations

[XB
i , X

B
j ] = −2i (θ0iVj − θ0jVi) + 2iθij ,

These are the relations of the QFT-Moyal-Weyl (see Lemmas 5.12 and 5.13).

Proof. For the proof we take a look at the following commutator

[XB
i , X

B
j ] = [Xi − θiρP ρ, Xj − θjσP σ]

= −[Xi, θjσP
σ]− i↔ j

= −[Xi, θjσ]P σ − θjσ[Xi, P
σ]− i↔ j

= −[Xi, θj0]P 0 − θj0[Xi, P
0]− θjk[Xi, P

k]− i↔ j

= +2θjk[Xi, V
k]P 0 + iθj0Vi + iθji − i↔ j

= −2iθjk(η
k
i + ViV

k) + iθj0Vi − iθij − i↔ j

= 2iθj0Vi + iθij − i↔ j

= −2i (θi0Vj − θjoVi) + 2iθij ,

where in the last lines we used the commutator relations of Xi and the momentum and
the skew-symmetry of θ w.r.t. the Minkowski metric, i.e. θ0j = θj0, θkj = −θjk.

Hence the QFT-Moyal-Weyl emerges by following the same steps as the Landau quan-
tization in QM. Let us summarize, the deformation with the coordinate operator in
a QF-theoretical context gives a wedge-local QF on a NC momentum space, that can
equivalently be interpreted as a QF on a NC space. This is similar to the QM case, where
we obtained by deformation with the coordinate operator, the Hamiltonian of a particle
in the presence of a magnetic field. By performing a minimal substitution given by the
deformation matrix (magnetic field), one obtains the guiding center coordinates, which
give the right operator description of the underlying space.

In QM we had a physical interpretation for the deformation parameter. The corre-
spondence was given by the constant of a homogeneous magnetic field. For the QFT case
such an interpretation is still missing and will be the subject of the next section.
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5.11 Deformation Parameter from Unitary Transformations

To obtain an interpretation for the deformation parameter we compare in this section
expression [φθ,X(f), φ−θ,X(g)] with the commutator of two unitarily transformed fields
given in Equation (5.28). Where the latter expression was obtained by calculating the
commutator of two unitarily transformed scalar fields, using the unitary operators V (b)
and V (b′). The investigation shows that the difference of the vectors b and b′ can be
used to obtain a deformation parameter.

Lemma 5.26. By comparing the commutator of the unitary transformed scalar fields
βb(φ(f)) and βb′(φ(g)) with the commutator of two deformed fields φθ,X(f) and φ−θ,X(g),
the square root of the deformation parameter η of the skew-symmetric matrix θ (see Equa-
tion (4.12)), can be understood as the difference of the vectors b and b′.

Proof. Let us first calculate the commutator of two deformed fields φθ,X(f) and φ−θ,X(g)
on eigenfunctions of the position operator and for the sake of clarity we define the multi
variable (x) := (x1, · · ·xk),

([φθ,X(f), φ−θ,X(g)]Ψk) (x) =

(
[aθ,X(f−), a∗−θ,X(g+)] + [a∗θ,X(f+), a−θ,X(g−)]Ψk

)
(x)

=

∫
d3p√

2ωp

√
2ωp+s

(
f−(p + s)g+(p)− f+(p + s)g−(p)

)
Ψk(x),

where in the last line to ease readability, we defined sk := (0, 2(θ
k∑
l=1

xl)r). By comparing

the last line with Equation (5.28) one can make the obvious identification

bk − b′k ≡ sk

Let us first write b and b′ in the following way

bk = bβk, b′k = b′βk, |βk| = 1

the difference becomes
bk − b′k = (b− b′)βk.

Let us set β1 = 0 for the moment. We will now turn our attention to sr.

sr = 2θre

k∑
m=1

xem = 2

(
0 η
−η 0

)
k∑

m=1
x1
m

k∑
m=1

x2
m

 = 2
√
η

(
0

√
η

−√η 0

)
k∑

m=1
x1
m

k∑
m=1

x2
m


︸ ︷︷ ︸

=dimensionless

:= 2
√
ηβr

In the last line we identified the dimensionless vector θre
k∑

m=1
xem with βk. From this simple

considerations it follows that the deformation parameter √η can be deduced from the
difference b− b′.

|bk − b′k| = |b− b′| = 2
√
η
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This is an interesting result. We first calculated the unitary transformations V (b) on the
free scalar field. Next, we derived the commutator for two different vectors b,b′ and iden-
tified the result with the commutator of the warped convoluted fields [φθ,X(f), φθ,X(g)].
We obtained as a consequence that the length of the difference of the vectors b,b′ is the
deformation parameter. How can this result be understood?

To understand this let us analyze the action of the unitary transformations acting
on the field. They act as translations in momenta space of the free scalar field. This
means that the translation in momenta space in bj direction and then the translation in
momenta space in b′k direction is not the same as the translation in momenta space in b′k
direction and then the translation in momentum space in bj direction. The difference of
the action of translation results in momenta space as a vector which is not equal to zero,
but denotes a vector who’s length is equal to the square root of deformation parameter η.

Thus by comparing two wedge-local quantities namely [φθ,X(f), φ−θ,X(g)] and expression
(5.26), one deduces the meaning of the deformation parameter.
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Chapter 6

Deformations with conformal
operator

In the last chapter we obtained a physical Moyal-Weyl plane by deforming with the
coordinate operator. The operator was chosen by requiring the fulfillment of a symplectic
structure with the momentum operator. Moreover, the investigation of deformation
showed that the deformed field satisfies certain properties, as for example wedge-locality.

In this chapter we deform a massless QFT by using the generators of the special
conformal transformations. The choice comes from the fact that the special conformal
operator fulfills a symplectic structure with the momentum operator and in addition
transforms Lorentz-covariant.

Prior to deformation, we define the conformal group. Next, we recollect some basic
results obtained in [SV73] concerning the self-adjointness of the special conformal operator
and the transformation of the free scalar field under special conformal transformations.
The investigation of deformation shows that the obtained field is wedge-local. Fur-
thermore, we are able to obtain a space-time, induced by deformation with the special
conformal operators, that is nonconstant and noncommutative. This leads to a new QFT
model which on one hand can be interpreted as a QF on a nonconstant noncommutative
spacetime, and on the other hand as a wedge-local QFT model.

This chapter is an extension of the paper published by the author, [Alb12].

6.1 Generators of the conformal group

We start discussing about the conformal group by giving a definition about the conformal
transformations, ([DMS97], Chapter IV, Section 1).

Definition 6.1. A conformal transformation of the coordinates is defined to be an
invertible mapping x′ → x, which leaves the d-dimensional metric g invariant up to a scale
factor,

g′µν(x′) = Λ(x)gµν(x). (6.1)

107
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The set of all conformal transformations forms a group. This group is denoted as the
conformal group.

It is obvious from the defining equation (6.1), that in the case Λ(x) = 1 one obtains the
Poincaré group. Thus the conformal group has the Poincaré group as a subgroup.

By exploring the consequences of the conformal transformations on the coordinates
one deduces that the finite transformations fulfilling equation (6.1) are the following.

(i) Translations,
x′µ = xµ + aµ, a ∈ Rd.

(ii) Dilatations,
x′µ = αxµ, α ∈ R+.

(iii) Lorentz transformations,

x′µ = Λµνx
ν , Λ ∈ O(1, d− 1).

(iv) Special conformal transformations,

x′µ =
xµ − bµx2

1− 2bνxν + b2x2
, b ∈ Rd,

where x2 = xµxµ.

In the case of special conformal transformations, the scale factor given in the defining
equation (6.1) depends on the coordinates. For example in the four dimensional case it is
given as,

Λ(x) =
(
1− 2bµx

µ + b2x2
)2
.

In the subsequent discussion on deformations of the free scalar field the sign of the scale
factor becomes important. Furthermore, an important fact in the context of the special
conformal transformations is the following. Any special conformal transformation can
be expressed as a translation followed by an inversion xµ → xµ/x2. This condition is a
fundamental building block of the construction of an essential self-adjoint operator of the
special conformal operators in [SV73].

The generators of infinitesimal transformations of the conformal group are given by
the (pseudo-)differential operators that generate

(i) translations,
Pµ = −i∂µ,

(ii) dilatations,
D = −ixµ∂µ,

(iii) Lorentz transformations,

Lµν = i (xµ∂ν − xν∂µ) ,
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(iv) special conformal transformations,

Kµ = −i
(
2xµx

ν∂ν − x2∂µ
)
.

The generators (Pµ,Kν , Lρσ, D) define the conformal algebra, which is given by the fol-
lowing commutation relations,

[Lµν , Lρσ] = i (ηµσLνρ + ηνρLµσ − ηµρLνσ − ηνσLµρ) , (6.2)
[Pρ, Lµν ] = i (ηρµPν − ηρνPµ) , (6.3)
[Kρ, Lµν ] = i (ηρµKν − ηρνKµ) , (6.4)

[Pρ, D] = iPρ, (6.5)
[Kρ, D] = −iKρ, (6.6)

[Pρ,Kµ] = 2i (ηρµD − Lρµ) , (6.7)

with all other commutators being equal to 0.

6.2 Isomorphism between the conformal group and SO(2, d)

To see the isomorphism between the conformal group in d dimensions and the pseudo-
orthogonal group SO(2, d), one introduces the following definitions:

J4,µ :=
1

2
(Pµ −Kµ) , J5,µ :=

1

2
(Pµ +Kµ) ,

J±µ := J5,µ ± J4,µ J−1,0 := D, Jµν := Lµν ,

Jab = −Jba, a, b = 0, 1, . . . , d, d+ 1.

The defined generators Jab obey the algebra of SO(2, d) with the following commutator
relations:

[Jab, Jcd] = i (ηadJbc + ηbcJad − ηacJbd − ηbdJac) ,

where the diagonal metric has the following form

ηaa = (+1,−1, ..,−1︸ ︷︷ ︸
d

,+1).

This shows the isomorphism between the conformal group and SO(2, d). One can easily
see in the context of the commutator relations that the full conformal group contains the
Poincaré group as a subgroup.

6.3 Self-adjointness of the special conformal operators

To proceed with deforming via warped convolutions, it is necessary to prove self-adjointness
of the special conformal operator Kµ. The proof was given in [SV73] and relies on the
following definition.
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Definition 6.2. The special conformal generator Kµ can be defined as an operator,
which is unitary equivalent to the momentum operator

Kµ := URPµUR, (6.8)

where the unitary equivalence is given by UR, the inversion operator.

As already mentioned, the reason for the definition is that any special conformal transfor-
mation

K(b)xµ =
xµ − bµx2

1− 2bνxν + b2x2
,

can be written as a product
K(b) = RT (b)R,

of a translation T (b)xµ = xµ + bµ and inversions Rxµ = −xµ/x2. Another important
reason for the definition (6.8) in a quantum field theoretical context, is the fact that the
momentum operator Pµ is well known to be an essential self-adjoint operator on a dense
subspace of the one particle Hilbert space. Thus the first step is to construct a self-adjoint
unitary representation U(R) of the inversion in the Hilbert space L2(dnµ(p)) := {f :∫
dnp (2|p|)−1 |f(p)|2 < ∞}. This is done by first constructing a symmetric sesquilinear

form R(g, f), on the dense domain

Dn := {f(p) ∈ L2(dnµ(p)) ∩ L1(dnµ(p)) :
(
p2
)r ∂k∏n

i=1 (∂pi)ki
f(p) ∈ L1(dnµ(p)),

∀0 ≤ r ≤ n, 0 ≤ k =
n∑
i=1

ki ≤ 2n}.

Next it is shown that the symmetric sesquilinear form R(g, f), defines a self-adjoint unitary
operator U(R) in L2(dnµ(p)) for n ≥ 1 acting on functions f(p) ∈ Dn as follows,

(U(R)f) (p) =
2

(2π)n

∫
dnx(x2)−

n+1
2

∫
dnµ(q)|q|e−i

(
px−qx

x2

)
f(q).

Furthermore, by using the unitary operator U(R) one constructs the essential self-adjoint
operator Kµ for µ = {0, 1, . . . , n} of the special conformal group on the dense domain
4n(R) := U(R)4n(P ). Where a dense domain 4n(P ) is given as follows

4n(P ) := {f(p) ∈ L2(dnµ(p)) : |
(
p2
)r
f(p)| ≤ cr(f) <∞; r = 0, 1, 2, . . . }.

4n(P ) is contained in the domain of the essentially self-adjoint operators Pµ for µ =
{0, 1, . . . , n} acting on functions f(p) ∈ 4n(P ) as

(Pµf) (p) = pµf(p), p0 := |p|.

Moreover the dense domain 4n(P ) is stable under the application of the translation oper-
ator Pµ:

Pµ4n(P ) ⊆ 4n(P )

Finally, on the dense domain 4n(R) one defines the operators Kµ by

Kµ := U(R)PµU(R),
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The self-adjointness of the operators Kµ follows from the fact that the operators Pµ are
essentially self-adjoint and the inversion operator U(R) is unitary. Moreover, it follows
that Pµ and Kµ have the same spectrum. Thus, by choosing the irreducible representation
of the Poincaré group to be in the closed forward cone, the spectrum of the operators Pµ
and Kµ is contained in the closed forward cone

V +
0 := {pµ : pµpµ ≥ 0, p0 ≥ 0}.

From the definition of the dense domain 4n(R) it follows,

Kµ4n(R) ⊆ 4n(R).

In the last step the authors show that the constructed essentially self-adjoint operator Kµ

is identical to the special conformal operator K̂µ defined by,

(K̂µf̃)(x) := i

(
(n− 1)xµ + 2xµxν

∂

∂xν
− x2 ∂

∂xµ

)
f̃(x).

This is done by calculating the action of K̂µ in the scalar product of the Hilbert space
L2(dnµ(p)) for all f from the dense subset S (Rn) ⊂ L2(dnµ(p)) and all g ∈ L2(dnµ(p)):

(g, K̂0f) = −
∫
dnµ(p)g(p)|p| ∂

∂pk
∂

∂pk
f(p)

(g, K̂if) =

∫
dnµ(p)g(p)

(
(n− 1)

∂

∂pi
+ 2pk

∂

∂pk
∂

∂pi
− pi ∂

∂pk
∂

∂pk

)
f(p).

The calculation is then compared with the result done with the operator Kµ and it follows

(Kµf)(p) = (K̂µf)(p), ∀f ∈ S (Rn).

6.4 Special conformal transformations

Since in the context of the present paper we need the transformation of the free scalar
field under the special conformal group, we shall also briefly summarize those results
obtained in [SV73].

For n = 1 the existence of a unitary representation for the whole conformal group
was proven. The special conformal operator transforms the free scalar field φ(x) in the
following manner

αb(φ(x)) := eibµK
µ
φ(x)e−ibµK

µ
= φ(xb)− φ(− b

bµbµ
),

where

xµb :=
xµ − bµx2

1− 2bνxν + b2x2
.

In atwo dimensional spacetime test functions f ∈ S (R2), used to smear the distribution
valued operator φ(x), are chosen to satisfy

∫
d2xf(x) = 0. The reason for this specific

choice is to circumvent IR-divergences and it is used throughout the entire work.
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Now if n = 2l + 1 for l ∈ N one obtains the following result

αb(φ(x)) = σb(x)
1−n

2 φ(xb), (6.9)

where
σb(x) := 1− 2bµx

µ + b2x2. (6.10)

It was further proven that one only obtains a unitary representation for the whole conformal
group if n = 4l+ 1 for l ∈ N. Thus, the formal transformation law (6.9) is only compatible
with the correct transformation law of the scalar field under the action of the special
conformal transformations if n = 4l + 1 for l = {0, 1, 2, . . . }. This is due to the following
argument. For odd n > 1 the following transformation law holds,

eibµK
µ
φ(0)e−ibµK

µ
= φ(0).

If one has a unitary representation of the whole conformal group for n > 1 in [HSS72] it is
shown that the following relation holds

eibµK
µ
eixµP

µ
= TUΛV,

with
T (xb) = eix

µ
b Pµ , V (log|σb(x)|) = eilog|σb(x)|D.

This relation is proved by making use of the canonical decomposition. Now by using the
relations given above the transformation of the scalar field under the adjoint action of the
special conformal operator can be written as

eibµK
µ
φ(x)e−ibµK

µ
= eibµK

µ
eix

µPµφ(0)eix
µPµe−ibµK

µ
= TUΛV φ(0)V −1Λ−1U−1T−1.

By using the invariance of the scalar field under special conformal and Lorentz transfor-
mations in the origin, one obtains

TUΛV φ(0)V −1Λ−1U−1T−1 = (|σb(x)|)
1−n

2 φ(xb).

As one can easily see this result only coincides with the correct transformation property
of the field under special conformal transformations if n = 4l + 1 for l = {0, 1, 2, . . . },
because in that case the absolute value does not play any role. Thus the reason for the
non-existence of a unitary representation for the whole conformal group lies in the non
positivity of the scale factor σb(x).

For this work it becomes important, since we intend to work in four spacetime dimensions
and therefore need a unitary representation of the whole conformal group. We prove that
the scale factor σb(x) is positive for the scalar field localized in the wedge and therefore
argue that the deformation with the special conformal operator is well defined.

In the cases of even n one has to deal with representations of the covering of the
conformal group. The subject of even n is not treated in this thesis.
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6.5 Deforming the QF with special conformal operators

In this section we deform a massless scalar field with the special conformal operators
using the framework warped convolutions. To proceed with the deformation, we use the
definitions of the massless Bosonic Fock space H +

0 , (see Definition 5.1). The undeformed
free scalar field φ with mass m = 0 on the (n + 1)-dimensional Minkowski spacetime is
defined as an operator-valued distribution acting on its domain in the Bosonic Fock space
H +

0 . Such a particle with momentum p ∈ Rn has the energy defined by ωp = |p|.

To define the warped convolutions of the free scalar field we use the essential self-
adjointness of the generators Kµ which in turn define a unitary operator U(b) := eibµK

µ .
The definition of the operator valued function U(b) leads to a strongly continuous unitary
representation of Rd, for each bµ ∈ Rd. This can be proven by using Stone’s theorem (see
Theorem 3.1).

For the deformation in a quantum field theoretical context we are obliged to give
the second quantization of the special conformal operator. This is done in the following
definition.

Definition 6.3. Let the second quantization of the momentum Pµ and the special
conformal operator be denoted by the same symbol. Then, the operator Kµ can be given
as the second quantization of the defining equation (6.8) as follows,

Kµ = Γ(UR)PµΓ(UR), (6.11)

where Γ(UR) :=
⊗k

i=1 UR is the second quantization of unitary operator of the inversions
on H +

0,k.

The former definition is used in the following proposition concerning the essential
self-adjointness of the second quantized version of the special conformal operator.

Proposition 6.1. Let the second quantized operator Pµ be an essential self-adjoint op-
erator on the extended dense domain ∆n

k(P ) defined as ∆n
k(P ) :=

⊗k
i=1 ∆n(P ). Then,

the second quantized operator Kµ given by unitary equivalence, is an essential self-adjoint
operator on the extended dense domain ∆n

k(R) = Γ(UR)∆n
k(P ). Therefore, the unitary

operator U(p) = eipµK
µ defines a strongly continuous group for all p ∈ Rd.

Proof. According to Lemma (5.16), if an operator is essentially self-adjoint on a dense
domain of the one-particle Hilbert space, then the second quantized operator is essen-
tially self-adjoint on the tensor product of the dense domain. Thus, the the essential
self-adjointness of the momentum operator follows. Due to the unitary equivalence we use
Proposition 8.1 and it follows that the second quantized operator Kµ given in Definition
6.11 is essentially self-adjoint.

Definition 6.4. Let θ be a real skew-symmetric matrix w.r.t. the Minkowski scalar-
product on Rd and let χ ∈ S (Rd × Rd) with χ(0, 0) = 1. Furthermore, let φ(f) be
the massless free scalar field smeared out with functions f ∈ S (Rd). Then the operator
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valued distribution φ(f) deformed with the second quantized special conformal operator
Kµ, denoted as φθ,K(f), is defined on vectors of the dense domain ∆n

k(R) as follows

φθ,K(f)Ψk : = (2π)−d lim
ε→0

∫∫
dy dv e−iyv χ(εy, εv)αθy(φ(f))U(v)Ψk

= (2π)−d lim
ε→0

∫∫
dy dv e−iyv χ(εy, εv)αθy

(
a(f−) + a∗(f+)

)
U(v)Ψk

=:
(
aθ,K(f−) + a∗θ,K(f+)

)
Ψk, (6.12)

where a(f) and a∗(f) are the massless particle creation and annihilation operator given in
definition 5.2 and the test functions f±(p) in momentum space are defined as follows

f±(p) :=

∫
ddxf(x)e±ipx, p = (ωp,p) ∈ ∂V+.

As in the last chapter the integral (6.12) has to be understood as an integral in oscillatory
sense, [Rie93]. The unboundedness of operator Kµ and the undeformed unbounded
operator-valued distribution φ imposes the question of existence of the integral. Hence, as
before we show that integral (6.12) converges due to the unitary equivalence of the special
conformal operator with the momentum operator.

For this purpose, we give the following transformation.

Lemma 6.1. For f ∈ S (Rd) and Ψk ∈ ∆n
k(R), a transformation exists that maps the

field deformed with the momentum operator φθ,P (f) to the field deformed with the special
conformal operator φθ,K(f). This transformation is given as follows

φθ,K(f)Ψk = Γ(UR) (Γ(UR)φ(f)Γ(UR))θ,P Γ(UR)Ψk.

Proof. By using the unitary equivalence (6.8) the lemma is easily proven

φθ,K(f)Ψk = (2π)−d lim
ε→0

∫∫
dy dv e−iyv χ(εy, εv)U(θy)φ(f)U(−θy + v)Ψk

= (2π)−d lim
ε→0

∫∫
dy dv e−iyv χ(εy, εv)Γ(UR)T (θy)Γ(UR)φ(f)Γ(UR)

× T (−θy + v)Γ(UR)Ψk

= Γ(UR) (Γ(UR)φ(f)Γ(UR))θ,P Γ(UR)Ψk.

Lemma 6.2. For Φk ∈ ∆n
k(R) ⊂ H +

k the familiar bounds of the free field hold for the
deformed field φθ,K(f) and therefore the deformation with the special conformal operators
is well-defined.

Proof. By using lemma 6.1 one obtains the familiar bounds for a free scalar field. For
Φk ∈ ∆n

k(R) there exists a Ψk ∈ ∆n
k(P ) such that the following holds

‖φθ,K(f)Φk‖ = ‖φθ,K(f)Γ(UR)Ψk‖ = ‖(Γ(UR)φ(f)Γ(UR))θ,PΨk‖ = ‖(φ(URf))θ,PΨk‖

≤
∥∥∥(a(URf−))θ,PΨk

∥∥∥+
∥∥(a∗(URf

+))θ,PΨk

∥∥ ≤ ∥∥URf+
∥∥2
∥∥∥(N + 1)1/2Ψk

∥∥∥2
+∥∥URf−∥∥2

∥∥∥(N + 1)1/2Ψk

∥∥∥2
=
∥∥f+

∥∥2
∥∥∥(N + 1)1/2Ψk

∥∥∥2
+
∥∥f−∥∥2

∥∥∥(N + 1)1/2Ψk

∥∥∥2
,
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where in the last lines we used the Cauchy-Schwarz inequality, the bounds given in [GL07]
and the unitarity of UR.

Hence, due to the bounds of the deformed field we argue along the same lines in
the proof for the coordinate operator (see Lemma 5.21), that the deformation using the
special conformal operator is well-defined.

6.6 Properties of the deformed quantum field

The Wightman properties of the deformed field are proved in this section. The Wightman
axioms of covariance and locality are not satisfied, but are replaced by wedge covariance and
wedge-locality. The relation between the fields defined on a deformed spacetime and fields
defined on the wedge is given by the the constructed map in [BLS11, GL07]. To use this
map we give the transformation property of the deformed quantum field φθ under Lorentz
transformations and thus relate the skew-symmetric matrices to wedges. Furthermore,
we prove that the field obtained by the construction is a wedge Lorentz-covariant and
wedge-local quantum field.

6.6.1 Wightman properties of the deformed QF

Let us prove first prove that the deformed field φθ,K satisfies the Wightman properties
with the exception of covariance and locality.

Proposition 6.2. Let θ be a real skew-symmetric matrix w.r.t. the Minkowski scalar-
product on Rd and f ∈ S (Rd).

a) The dense subspace D of vectors of finite particle number is contained in the domain
Dθ,K = {Ψ ∈ H +

0 | ‖φθ,K(f)Ψ‖2 < ∞} of any φθ,K(f). Moreover, φθ,K(f)D ⊂ D
and φθ,K(f)Ω = φ(f)Ω.

b) For scalar fields deformed via warped convolutions and Ψ ∈ D,

f 7−→ φθ(f)Ψ

is a vector valued tempered distribution.

c) For Ψ ∈ D and φθ,K(f) the following holds

φθ,K(f)∗Ψ = φθ,K(f)Ψ.

For real f ∈ S (Rd), the deformed field φθ(f) is essentially self-adjoint on D.

d) The Reeh-Schlieder property holds: Given an open set of spacetime O ⊂ Rd then

Dθ(O) := span{φθ(f1) . . . φθ(fk)Ω : k ∈ N, f1 . . . fk ∈ S (O)}

is dense in H +
0 .
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Proof. a) The fact that D ⊂ Dθ, follows directly from Lemma 6.2 because the deformed
scalar field satisfies the well known bounds of the free field. The fact that the deformed
field acting on the vacuum is the same as the free field acting on Ω, can be easily shown
due to the property of the unitary operators U(b)Ω = Ω.

b) By using Lemma 6.2 one can see that the right hand side depends continuously
on the function f , hence the temperateness of f 7−→ φθ,K(f)Ψ, Ψ ∈ D follows.

c) The hermiticity of the deformed field φθ,K(f)∗ is proven in the following

φθ,K(f)∗Ψ = (2π)−d
(

lim
ε→0

∫∫
dy dv e−iyv χ(εy, εv)αθy(φ(f))U(v)

)∗
Ψ

= (2π)−d lim
ε→0

∫∫
dy dv e−iyv χ(εy,−εv)U(−v)αθy(φ(f))∗Ψ

= (2π)−d lim
ε→0

∫∫
dy dv e−iyv χ(ε(y + θ−1v),−εv)αθy(φ(f))U(−v)Ψ

= φθ,K(f)Ψ.

In the last lines we performed a variable substitution(vµ → −vµ) and
(
yµ → yµ + (θ−1v)µ

)
.

For real f essential self-adjointness of the deformed field φθ,K(f) is proven by showing
that the field has a dense set of analytic vectors D. For Ψk ∈ H0,k the estimates of the
l-power of the deformed field φθ,K(f), are given in the following∥∥∥φθ,K(f)lΨk

∥∥∥ ≤ 2l/2(k + l)1/2(k + l − 1)1/2 · · · (k + 1)1/2 ‖f‖l ‖Ψk‖ ,

where in the last lines we used Lemma 6.2 to use the same estimates for the deformed field
as for the undeformed field. Therefore, we can write the sum

∑
l≥0

|t|l

l!

∥∥∥φ(f)lΨk

∥∥∥ ≤∑
l≥0

(
√

2|t|)l

l!

(
(k + l)!

k!

)1/2

‖f‖l ‖Ψk‖ <∞

for all t ∈ C. Thus each Ψ ∈ D is an analytic vector for the deformed field φθ,K(f) and
since D is dense in H +

0 , it follows from Nelson’s analytic vector theorem (see Theorem
8.4), that φθ,K(f) is essentially self-adjoint on D.

d) For the proof of the Reeh-Schlieder property we make use of the unitary equiva-
lence given in (6.8). First note that the spectral properties of the representation of
the special conformal transformations U(y) are the same as for the representation of
translations. This leads to the application of the standard Reeh-Schlieder argument
[SW89] which states that that Dθ(O) is dense in H +

0 if and only if Dθ(Rd) is dense in
H +

0 . We choose the functions f1, . . . , fk ∈ S (Rd) such that the Fourier transforms of the
functions do not intersect the past light cone and therefore the domain Dθ(Rd) consists of
the following vectors

Γ(UR)φθ,K(f1) . . . φθ,K(fk)Ω = Γ(UR)a∗θ,K(f+
1 ) . . . a∗θ,K(f+

k )Ω

= Γ(UR)Γ(UR)(Γ(UR)a∗(f+
1 )Γ(UR))θ,P . . . (Γ(UR)a∗(f+

k )Γ(UR))θ,PΓ(UR)Ω

= a∗θ,P (URf
+
1 ) . . . a∗θ,P (URf

+
k )Ω =

√
k!Pk(Sk(URf

+
1 ⊗ · · · ⊗ URf

+
k )),



6.6. PROPERTIES OF THE DEFORMED QUANTUM FIELD 117

where Pk denotes the orthogonal projection from H ⊗k
1 onto its totally symmetric subspace

H +
0,k, and Sk ∈ B(H ⊗k

1 ) is the multiplication operator given as

Sk(p1, . . . , pk) =
∏

1≤l<r≤k
eiplθpr .

Since the operator Γ(UR) is a unitary operator the functions URf+
k for f+

k ∈ S (Rd)
will give rise to dense sets of functions in H1. Following the same arguments as in
[GL07] the density of Dθ(Rd) in H +

0 follows. Note that we proved the density for vectors
Γ(UR)φθ,K(f1) . . . φθ,K(fk)Ω and not for the vectors without Γ(UR) as stated in the propo-
sition. We use the unitarity of Γ(UR) to argue that vectors dense in H +

0 stay dense after
the application of a unitary operator.

6.6.2 Wedge-covariant fields

By using the map Q : W 7→ Q(W ) from a set W0 := L ↑
+W1 of wedges to a set Q0 ⊂ R−d×d

of skew-symmetric matrices we consider the corresponding fields φW (x) := φ(Q(W ), x).
The meaning of the correspondence is that the field φ(Q(W ), x) is a scalar field living on
a NC spacetime which can be equivalently realized as a field defined on the wedge.

To show the covariance properties of the deformed quantum fields we use the ho-
momorphism Q(W ) to map the deformed scalar fields to quantum fields defined on a
wedge. Before we use the map from the set of skew-symmetric matrices to the wedges we
state the following lemma about the transformation properties of the deformed field.

Lemma 6.3. The transformation of the deformed particle annihilation and creation opera-
tor aθ,K(p), a∗θ,K(p), for p ∈ ∂V+ and θ being admissible, under the adjoint action V (0,Λ)
of the Lorentz group, Λ ∈ L, is the following

V (0,Λ)aθ,K(p)V (0,Λ)−1 = aγΛ(θ),K(±Λp),

V (0,Λ)a∗θ,K(p)V (0,Λ)−1 = a∗γΛ(θ),K(±Λp),

where the first sign is for Λ ∈ L↑ and the second sign is for Λ ∈ L↓. Hence the deformed
field φθ,K(x) transforms

V (0,Λ)φθ,K(x)V (0,Λ)−1 = φγΛ(θ),K(Λx).

Proof. The proof is done along the same lines of [BLS11]. V (0,Λ) is a unitary operator
for Λ ∈ L↑ and an antiunitary operator for Λ ∈ L↓. Due to the commutator relation of the
special conformal operator and the generator of the Lorentz transformations one obtains

V (0,Λ)U(x)V (0,Λ)−1 = U(Λx), x ∈ Rd.

Therefore, the deformed scalar field φθ,K transforms under the adjoint action of the Lorentz
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group as

(2π)−dV (0,Λ) lim
ε→0

∫∫
dy dv e−iyv χ(εy, εv)αθy(φ(x))U(v)V (0,Λ)−1

= (2π)−d lim
ε→0

∫∫
dy dv e−iyv χ(εy, εv)αΛθy(V (0,Λ)φ(x)V (0,Λ)−1)U(Λv)

= (2π)−d lim
ε→0

∫∫
dy dv e−iyv χ(εσΛT y, εΛ−1v)αγΛ(θ)y(φ(Λx))U(v) = φγΛ(θ),K(Λx),

where σ is +1 if V is unitary and −1 if V is antiunitary. Moreover in the last lines we
performed the integration variable substitutions (y, v)→ (σΛT y,Λ−1v).

In the next step we use the homomorphism, given in Equation (5.37), to map the deformed
field to a field defined on a wedge. Furthermore we show that the field deformed with
the special conformal operator is a wedge-covariant quantum field which transforms
covariantly under the adjoint action of the Lorentz group V (0,Λ). For this purpose let us
first introduce the notion of a wedge-covariant quantum field, [GL07].

Definition 6.5. Let φ = {φW : W ∈ W0} denote the family of fields satisfying the
domain and continuity assumptions of the Wightman axioms. Then the field φ is defined
to be a wedge Lorentz-covariant quantum field if the following condition is satisfied:

• For any W ∈ W0 and f ∈ S (Rd) the following holds

V (Λ)φW (f)V (Λ)−1 = φΛW (f ◦ (Λ)−1), Λ ∈ L↑+,
V (j)φW (f)V (j)−1 = φjW (f ◦ j)−1.

We use the homomorphism Q : W 7→ Q(W ) to define the deformed fields as quantum fields
defined on the wedge, this is done in the following way

φW (f) := φ(Q(W ), f) = φθ,K(f). (6.13)

Proposition 6.3. The family of fields φ = {φW : W ∈ W0} defined by the deformation
with the special conformal operators are wedge-covariant quantum fields on the Bosonic
Fock space, w.r.t. the unitary representation V of the Lorentz group.

Proof. Following lemma (6.3), the deformed field φθ,K(x) transforms under the adjoint
action V of the Lorentz group in the following way

V (0,Λ)φW (x)V (0,Λ)−1 = V (0,Λ)φθ,K(x)V (0,Λ)−1 = φγΛ(θ),K(Λx) = φΛW,K(Λx),

where in the last lines we applied the map Q(ΛW ) = γΛ(Q(W )) = γΛ(θ). Therefore, one
obtains the wedge-covariance property of the scalar field under the Lorentz group.

A few comments are in order. The covariance property is given in the four dimensional
case as well. As already explained, a unitary representation for the whole conformal group
does not exist due to the absolute value of the scale factor. Nevertheless, we show in the
next section that the scale factor is positive for a field localized in the wedge and therefore
one has a unitary representation of the whole conformal group.
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6.6.3 Wedge-local fields

The wedge-covariant quantum field defined in the last section, fulfills the locality property
of the wedges. Hence, the deformed field is a wedge-local field. We first define the notion
of the wedge-local field.

Definition 6.6. The fields φ = {φW : W ∈ W0} are said to be wedge-local if the
following commutator relation is satisfied

[φW1(f), φ−W1(g)]Ψ = 0, Ψ ∈ D,

for all f, g ∈ C∞0 (Rd) with supp f ⊂W1 and supp g ⊂ −W1.

To show that the fields defined in the last section are wedge-local, we use the following
Proposition, (see also Proposition 2.1).

Proposition 6.4. Let the scalar fields φ(f), φ(g) be such that [αθv(φ(f)), α−θu(φ(g))] =
0 for all v, u ∈ spU and for f, g ∈ C∞0 (Rd). Then

[φθ,K(f), φ−θ,K(g)]Ψ = 0, Ψ ∈ D. (6.14)

Lemma 6.4. The special conformal transformations Uθv, with v ∈ spU and θ being admis-
sible, map the right wedge into the right wedge Uθv(W1) ⊂ W1. Furthermore, the special
conformal transformations U−θu, with u ∈ spU and θ being admissible, map the left wedge
into the left wedge U−θu(−W1) ⊂ −W1.

Proof. We first prove for xµ ∈W1, v ∈ spU, θ being admissible and κ > 0, that the vector
x′µ := xµ + κ(θv)µ ∈W1.

x′1 > |x′0|
x1 + κλv0 > |x0 + κλv1|.

The right hand side is obviously greater than zero and therefore we square both sides and
obtain

κ2λ2(v2
0 − v2

1)− (x2
0 − x2

1)− 2κλ(v1x0 − v0x1) > 0.

Due to the fact that the sum of the first two terms is greater than zero, we are only left
with proving that the following inequality

λv1x0 − λv0x1 ≤ 0

is satisfied. Equality only holds if v0 = 0 or λ is zero. So if v0, λ 6= 0 we have to show the
following

x1 >
v1

v0
x0. (6.15)

(6.15) is satisfied, because the stronger inequality

x1 > |v1

v0
|︸︷︷︸

0<···<1

|x0|
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holds. By using the vector x′µ we now can easily prove that xµθv ∈ W1. To show that
xµθv ∈W1 the following inequality must be satisfied.

x1
θv > |x0

θv|

(x1 − (θv)1x2)/(1− 2(θv) · x+ (θv)2x2) > |(x0 − (θv)0x2)/(1− 2(θv) · x+ (θv)2x2)|.
(6.16)

Positivity of the denominator can be seen by taking the vector x′µ as defined above and
setting κ = −x2 > 0. From x′2 < 0 we obtain

x′2 = (xµ − x2(θv)µ)(xµ − x2(θv)µ) = x2︸︷︷︸
<0

(
1− 2xµ(θv)µ + x2(θv)µ

)
< 0.

From the inequality it follows that the the denominator in (6.16) is positive and therefore
one is left with proving

(x1 − (θv)1x2) > |(x0 − (θv)0x2)|.

By choosing κ = −x2 this is exactly the inequality for the vector x′µ ∈W1. Therefore, the
special conformal transformed coordinate is still in the right wedge. The proof that the
special conformal transformations map the left wedge into the left wedge is analogous.

Proposition 6.5. For n = 4l+ 1, where l ∈ N0 the family of fields φ = {φW : W ∈ W0}
are wedge-local fields on the Bosonic Fockspace H +.

Proof. We first prove that the expression [αθv(φ(f)), α−θu(φ(g))] vanishes for all v, u ∈
spU and for f ∈ C∞0 (W1), g ∈ C∞0 (−W1). By using Proposition 6.4 it follows that the
commutator [φW1(f), φ−W1(g)] vanishes.

[αθv(φ(f)), α−θu(φ(g))] = (2π)−2(n+1)

∫∫
dn+1xdn+1yf(x)g(y)[αθv(φ(x)), α−θu(φ(y))]

= (2π)−2(n+1)

∫∫
dn+1xdn+1yf(x)g(y)σθv(x)

1−n
2 σ−θu(y)

1−n
2

× [φ(xθv), φ(y−θu)]

= 0.

In the last line we applied Lemma 6.4 to prove that after the special conformal transfor-
mation, the support of the field φW1 stays in the right wedge and the support of the field
φ−W1 stays in the left wedge. Therefore, the supports of the fields are space-like separated,
hence they commute.

Lemma 6.5. In four dimensions a unitary representation for the whole conformal group,
which gives the correct transformation law (6.9), exists for the fields φθ,K(f) with f ∈
C∞0 (W1). The same holds for the field φ−θ,K(g) with g ∈ C∞0 (−W1).

Proof. The problem with the absence of a unitary representation for the whole conformal
group that gives the correct transformation law (6.9) is due to the absolute value of the
scale factor σb(x). Nevertheless, we showed in Lemma 6.4 that the scale factor for a field
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localized in the right wedge is positive. The positivity of the scale factor in turn means that
a unitary representation for the whole conformal group in four dimensions exists, [SV73].

φW1(f)Ψ = (2π)−4

∫
d4xf(x) lim

ε→0

∫∫
d4u d4v e−iuv χ(εu, εv)αθv(φ(f))U(u)Ψ

= (2π)−4

∫
d4xf(x) lim

ε→0

∫∫
d4u d4v e−iuv χ(εu, εv)σθv(x)−1φ(xθv)U(u)Ψ.

For a quantum field defined on the left wedge the proof is done analogously.

Proposition 6.6. For n = 3, the fields φ = {φW : W ∈ W0} are wedge-local fields on
the Bosonic Fockspace H +.

Proof. Due to the existence of a unitary representation shown in Lemma 6.5 the deformed
field can be defined for n = 3. Furthermore, by applying Proposition 6.4 one shows that
the expression [αθv(φ(f)), α−θu(φ(g))] vanishes for all v, u ∈ spU and for f ∈ C∞0 (W1),
g ∈ C∞0 (−W1).

[αθv(φ(f)), α−θu(φ(g))] = (2π)−8

∫∫
d4xd4yf(x)g(y)[αθv(φ(x)), α−θu(φ(y))]

= (2π)−8

∫∫
d4xd4yf(x)g(y)σθv(x)−1σ−θu(y)−1

× [φ(xθv), φ(y−θu)]

= 0,

Analogously to the proof of Proposition (6.5) we use Lemma 6.4 in the last line.

This is an interesting result. The deformed case improves the representations such that
one does not have to deal with representations of the covering of the conformal group.

6.7 NC Spacetime from special conformal operators

The main idea in this work is to use the special conformal operator to deform the free
quantum field. We further proved that the deformed field satisfies some weakened covari-
ance and locality properties. Now a natural question arises. What is the noncommutative
spacetime that we obtain from the deformation with the special conformal operator? This
question can be answered by calculating the deformed commutator of the coordinates.

[xµ ×θ, xν ] = (2π)−d
∫∫

ddvddue−ivu (αθv(xµ)αu(xν)− αθv(xν)αu(xµ)) . (6.17)

To calculate the term αθv(xµ) we insert the generator Kµ as a differential operator defined
in ([DMS97]).

αθv(xµ) = exp

(
(θv)σ

(
2xσx

λ ∂

∂xλ
− x2 ∂

∂xσ

))
xµ =: exp ((θv)σKσ(x))xµ

We could use the transformation of the coordinates under the special conformal generators,
but in that case we would not be able to solve the integral. The ansatz we follow in this
work is to solve the integral, order by order. This will be done by preforming a Taylor
expansion of the exponentials.
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Lemma 6.6. Let the deformed product given in Definition (4.6) be defined by the generator
of special conformal transformations Kµ. Then the deformed commutator (6.17), up to
third order in θ is given as follows (see figure 6.1)

[xµ ×θ, xν ] = −2iθµνx
4 − 4i ((θx)µxν − (θx)νxµ)x2.

Proof. The deformed commutator gives the following

[xµ ×θ, xν ] = (2π)−d
∫∫

ddvddue−ivu (αθv(xµ)αu(xν)− µ↔ ν)

= (2π)−d
∫∫

ddvddue−ivu

 ∞∑
k=0

1

k!
(θv)σKσ(x) · · · (θv)ρKρ(x)︸ ︷︷ ︸

k

xµ



×

 ∞∑
l=0

1

l!
(u)λKλ(x) · · · (u)τKτ (x)︸ ︷︷ ︸

l

xν − µ↔ ν

 .

There are two properties for the series that can be easily seen. First, the different orders
between θv and u do not mix. The only terms which are not equal to zero are the terms
of equal order. The vanishing of unequal orders between θv and u will be shown in the
following calculation.

∫∫
ddvddue−ivu

∞∑
k=0

∞∑
l=0

1

k!l!
(θv)σ · · · (θv)ρ︸ ︷︷ ︸

k

uλ · · ·uτ︸ ︷︷ ︸
l

Kσ(x) · · ·Kρ(x)︸ ︷︷ ︸
k

xµ


×

Kλ(x) · · ·Kτ (x)︸ ︷︷ ︸
l

xν



=

∫∫
ddvddu

∞∑
k=0

∞∑
l=0

(−i)k

k!l!
θσκ · · · θργ︸ ︷︷ ︸

k

 ∂

∂uκ
· · · ∂

∂uγ︸ ︷︷ ︸
k

e−ivu

uλ · · ·uτ︸ ︷︷ ︸
l

×

Kσ(x) · · ·Kρ(x)︸ ︷︷ ︸
k

xµ

Kλ(x) · · ·Kτ (x)︸ ︷︷ ︸
l

xν



=

∫∫
ddvddue−ivu

∞∑
k=0

∞∑
l=0

ik

k!l!
θσκ · · · θργ︸ ︷︷ ︸

k


 ∂

∂uκ
· · · ∂

∂uγ︸ ︷︷ ︸
k

uλ · · ·uτ︸ ︷︷ ︸
l


×

Kσ(x) · · ·Kρ(x)︸ ︷︷ ︸
k

xµ

Kλ(x) · · ·Kτ (x)︸ ︷︷ ︸
l

xν
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=
∞∑
k=0

(−i)k

k!
θσλ · · · θρτ︸ ︷︷ ︸

k

Kσ(x) · · ·Kρ(x)︸ ︷︷ ︸
k

xµ

Kλ(x) · · ·Kτ (x)︸ ︷︷ ︸
k

xν


In the third line we performed a partial integration. The expression vanishes in the case
k > l, because the differentials annihilate the polynomial in u. It also vanishes if k < l
because non-vanishing polynomials in u stay and the integral sets the polynomials zero.
Furthermore, by using the symmetry of the x-dependent differential operators K, one
solves the integral. It is important to note that the result of the deformed product between
the coordinates, is exactly the same result one would encounter by using twist-deformation
with the special conformal operators, [ADK+09].

The second observation is that polynomials in u, v that are even vanish due to the
antisymmetry of the commutator. This is shown in the following.∫∫

ddvddue−ivu

(θv)σKσ(x) · · · (θv)ρKρ(x)︸ ︷︷ ︸
2m

xµ (u)λKλ(x) · · · (u)τKτ (x)︸ ︷︷ ︸
2m

xν


−
∫∫

ddvddue−ivu

(θv)σKσ(x) · · · (θv)ρKρ(x)︸ ︷︷ ︸
2m

xν (u)λKλ(x) · · · (u)τKτ (x)︸ ︷︷ ︸
2m

xµ


Where m is a natural number. In the second integral we preform the integration variable
substitution (v, u)→ (θ−1u, θv) and obtain∫∫

ddvddue−ivu

(θv)σKσ(x) · · · (θv)ρKρ(x)︸ ︷︷ ︸
2m

xµ (u)λKλ(x) · · · (u)τKτ (x)︸ ︷︷ ︸
2m

xν


−
∫∫

ddvddueivu

(θv)σKσ(x) · · · (θv)ρKρ(x)︸ ︷︷ ︸
2m

xµ (u)λKλ(x) · · · (u)τKτ (x)︸ ︷︷ ︸
2m

xν

 .

After preforming the integration variable substitution u→ −u we obtain∫∫
ddvddue−ivu

(θv)σKσ(x) · · · (θv)ρKρ(x)︸ ︷︷ ︸
2m

xµ (u)λKλ(x) · · · (u)τKτ (x)︸ ︷︷ ︸
2m

xν


−(−1)2m

∫∫
ddvddue−ivu

(θv)σKσ(x) · · · (θv)ρKρ(x)︸ ︷︷ ︸
2m

xµ (u)λKλ(x) · · · (u)τKτ (x)︸ ︷︷ ︸
2m

xν


= 0.

Therefore, the only terms that do not vanish are those of equal odd order in v and u. In
the following we calculate the noncommutativity of the coordinates up to the second order
and obtain

[xµ ×θ, xν ] = (2π)−d
∫∫

ddvddue−ivu
(
(θv)σ(2xσxµ − x2ησµ)(u)τ

(
2xτxν − x2ητν

)
− µ↔ ν

)
(6.18)

= −2iθµνx
4 − 4i ((θx)µxν − (θx)νxµ)x2 +O(θ3). (6.19)
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Figure 6.1: Example of a Conformal-Moyal-Weyl plane R2
θ,K

The deformed commutator of the coordinates shows that the deformation induced by the
special conformal operators spans a nonconstant noncommutative spacetime. This is very
interesting because the spacetime that we obtain is a curved noncommutative spacetime
and the curvature of the noncommutative spacetime is induced by the special conformal
operators. In the case of using the momentum operator, i.e. the generator of translations
in Minkowski, for the deformation one obtains a flat noncommutative spacetime. The
special conformal operators induce a conformal flat spacetime on Minkowski and therefore,
one obtains a conformally flat noncommutative spacetime when deforming with Kµ. Some
examples of a nonconstant noncommutative spacetime exist in literature, where the highest
order of noncommutativity known is the so called quantum space structure, [KS97, Wes90,
Wes98]. The quantum space structure has an x-polynomial dependence up to second order.

6.8 Generalization of the deformation

The deformation of an operator by either using the momentum operator Pµ or the spe-
cial conformal operator Kµ can be written in a general form. The generalization can be
accomplished by using a linear combination of generators of the pseudo-orthogonal group
SO(2, d). First, we redefine the operators Pµ and Kν in the following way

P̃µ :=


λ′P 0

λ′P 1

η′P 2

η′P 3

 , K̃µ :=


λK0

λK1

ηK2

ηK3

 ,

where λ′, λ ∈ R+ and η′, η ∈ R. In the next step we redefine the Lorentz generators J4,µ,
J5,µ, J±,µ and the skew-symmetric matrix θ as follows

J̃4,µ :=
1

2

(
P̃µ − K̃µ

)
, J̃5,µ :=

1

2

(
P̃µ + K̃µ

)
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J̃±,µ := J̃5,µ ± J̃4,µ,

θ̃ =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 . (6.20)

Definition 6.7. Let θ̃ be a real skew-symmetric matrix given in (6.20) and let A ∈ C∞.
Then the generalized warped convolutions, i.e. the deformation of A denoted as A±θ is
defined on Ψ ∈ D, follows

A±θ Ψ := (2π)−4 lim
ε→0

∫∫
d4y d4v e−iyv χ(εy, εv)U±(θy)AU±(θy)U±(v)Ψ,

where the unitary operator U±(v) is defined as U±(v) := exp
(
ivµJ̃±µ

)
.

The generalization of the deformation is interesting because it is obtained as a linear
combination of generators of SO(2, 4). By choosing the plus sign, one obtains the Moyal-
Weyl case and by choosing the minus sign one gets the special conformal model introduced
in this work.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

The aim of the thesis was to obtain a physical quantum spacetime from deformation.

For the entire work we used the method of warped convolutions for deformation.
The novel tool was constructed in [BLS11], for bounded operators that are smooth w.r.t.
the unitary groups, used for the deformation. For this thesis we had to prove, on various
stages, that the deformation formula is still mathematically well-defined if the deformed
operators are unbounded. This was done by using the Hörmander definitions of a an
oscillatory integral and of symbol classes.

Before we studied deformations in quantum field theory, we studied the quantum
mechanical case. In the quantum mechanical chapter the investigation of deformation
with the coordinate operator led to a variety of physical effects. In particular, defor-
mations induced by the coordinate operator, correspond to effects emerging from the
presence of a magnetic field. We reproduced the Landau-levels, the Zeeman effect and the
Aharanov-Bohm effect. This in particular means that deformation with the coordinate
operator, induces magnetic fields. Thus, a new interpretation of magnetic fields appearing
in QM context can be given. These effects can be induced by a deformation procedure.

Furthermore, we were able to interpret the NC space that emerges in the case of
the lowest Landau levels, as a deformation of the coordinate operator with the momentum
operator. These two ideas are used as guiding principles for the realization of a NC space
in the realm of QFT. The two paths leading to the same result are graphically displayed in
the following diagram. The two paths leading to the same result are graphically displayed
in Figure 7.1.

Following the path, given in the QM context, we deform physical objects in QFT
with the coordinate operator. For the investigation of a coordinate operator in QFT
we use the results of [SS09]. The authors constructed in view of the QFT-relativistic
context a temporal coordinate operator as well. In this construction on the level of
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QM
(Qj , Pk)

QM+B-
field

Moyal-Weyl
Plane

Deform
H0

Qi
min.
subs.

Deform
Qi

Figure 7.1: QM deformation

the coordinate operators one is already led to a noncommutative relations between
the temporal and the spatial component. Thus, prior to deformation, we investigated
the noncommutativity. This was done by calculating the expectation value of the
noncommutativity given by the relations between the coordinate operators. By gaug-
ing the parameters of the expectation value we were able to reproduce the Moyal-Weyl
plane. This plane displays an important example of a constant noncommutative spacetime.

In the QM case we obtained a physical NC space by deforming the coordinate op-
erator with the momentum operator. The same is done in the QFT context and we
obtain a noncommutativity that we call the QFT Moyal-Weyl. This gives a new kind of
noncommutativity, because it has terms depending on the velocity. Thus the relations
give a new example of a nonconstant noncommutative spacetime.

Now prior to deforming with the spatial part of the coordinate operator, we have
to investigate the uniqueness of such an operator. This is done by using a definition, com-
mon in QM, of the spatial coordinate operator as unitarily equivalent to the momentum
operator. We take this expression as a starting point and perform a second quantization
on the operator level. The second quantized spatial coordinate operator obtained by such
a procedure, turns out to be exactly the pre-coordinate operator found in [SS09].

Furthermore, in the context of coordinate operators the Newton-Wigner-Pryce op-
erator is usually mentioned. It is the relativistic analog of the coordinate operator on a
one particle level. A second quantization was also performed on the Newton-Wigner-Pryce
operator and the outcome was once more the operator already found by [SS09]. Thus
this operator is from an intuitive and mathematical standpoint the rightful n-particle
spatial coordinate operator. This point of view is additionally supported by calculating
the Heisenberg equation of the spatial coordinate operator and obtaining the relativistic
velocity operator for an n-particle system. The following diagram summarizes the results.
Figure 7.2 summarizes the results.
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QM:
Qj =

U−1
F PjUF

Newton-
Wigner
Op.

QFT-Pos.
Op. Xj

rel.
norm.

Second-
Quant.

Second-
Quant.

Figure 7.2: Second quantized coordinate operator

Next, we investigated the effect of deformation directly on the scalar quantum field. To
proceed with the deformation, we were obliged to prove that the operators used are
self-adjoint. In the case of the spatial part of the coordinate operator, we were able to
show essential self-adjointness, by taking the QM coordinate operator and performing a
second quantization. In particular, the coordinate operator in QM can be formulated as
unitarily equivalent to the momentum operator. The unitary equivalence is given by the
Fourier transformation. Thus the investigation shows that operator obtained by second
quantization is an essentially self-adjoint. The temporal part seizes to be self-adjoint by
the curse of Pauli’s theorem. Thus by taking the Fourier transformation to be the unitary
operator connecting the momentum and the coordinates also in the temporal part we are
able to deform the QFT.

Now actually dealing with the deformed QF we found that indeed certain Wight-
man properties of the deformed QF are satisfied. Furthermore, by using the map from
skew-symmetric matrices to a set of wedges, we were able to show that the deformed field
has wedge-covariance and wedge-locality properties. Since locality is usually lost in the
context of NCQFT, the locality found is highly nontrivial. To obtain the NC space we
calculated the momentum plane, induced by deformation with the coordinate operators.
This was done by using the deformed product. As in the QM case, we minimally
substituted the coordinate operator using the deformation matrix of the NC momentum
plane. The commutator of these new coordinate operators turns out to be equal to the
commutation relations of the deformed coordinate operators. Thus, the newly defined
coordinate operator generate the QFT-Moyal Weyl.

By comparing warped convolutions with unitary transformations of the QF under
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Figure 7.3: QFT deformation

the coordinate operator, we showed that the deformation parameter can be understood as
the absolute value of the difference of two vectors that generate unitary transformations
of the scalar field. The following diagram summarizes the results of the QFT-deformation.
Figure 7.3 summarizes the results of the QFT-deformation.

In the last chapter we deformed a quantum field theory with the special conformal
operator, using the warped convolutions. As before, we used the map from the deformed
field to a field defined on the wedge. Furthermore, it was proven that the deformed
field transforms as a wedge-covariant field under the adjoint action of the Lorentz group.
Wedge-locality for the deformed field was shown in all even dimensions. In four dimensions
one usually has a problem with the existence of a unitary representation for the whole
conformal group. The absence of a unitary representation is due to the absolute value
of the scale factor induced by the special conformal transformations. We circumvented
the problem by proving positivity of the scale factor. Positivity was proven by using the
properties of the wedge and the spectrum condition of the special conformal operator.

Moreover, we used the deformed product to calculate the NC spacetime induced by
deformation with the special conformal operators. The investigation shows that we obtain
a nonconstant noncommutative spacetime.

The main difference in this work to other works in NCQFT, is the deformation
with objects defined by the investigated physical theory. Moreover, the investigation of
the coordinate operators, leads to many physical effects in the QM context. In a QFT
context the coordinate operators are already endowed with a rich structure, that allow to
investigate the realization of a NC spacetime. This structure was thoroughly studied and
the emergence of NC spacetimes is shown. For the case of the special conformal operator
these ideas were applied and rewarded with a NC spacetime unkown up to the present
investigation. Note that on NC spacetimes the notion of locality is usually lost, but on the
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NC spacetimes that we investigated, we found that a modified version of the point-wise
locality holds: the so called wedge-locality. Thus, by virtue of those locality properties it
gives the deformation a possibility of being physically realized.

7.2 Outlook

In the QM chapter, effects of a magnetic field were reproduced by deformation. This
was done for the explicit deformation by using the spatial coordinate operator. It is
nevertheless interesting to point out that the number of operators used for the deformation
does not depend on the number of dimensions. Thus, the construction of a temporal
component or a so called time operator would be interesting in this context.

Of course, this operator would have to commute with the spatial operator to build
a unitary group for deformation and the time operator would have to be self-adjoint.
After the deformation the question of the physical interpretation of this operator would
have to be posed.

Moreover, supposing such an operator has been found, a second quantization would
have to be performed. Thus, by following the path taken in this thesis, a deformation
using the second quantized operator would be performed on the quantum field and the
locality properties would have to be further investigated.

For the QFT-coordinate operator we defined a zero component, but were unable to
show that the definition is in full agreement with Lorentz-covariance. If covariance could
be achieved, we would have solved a problem as old as QFT itself. Namely, finding for
each QFT the appropriate operator describing coordinates, in a fully Lorentz-covariant
manner.

Moreover, if the defined coordinate operator is found to be truly Lorentz-covariant
the deformed field would not only be wedge-covariant w.r.t. a subgroup of the Lorentz
group but under the full group. Furthermore, a deformation with the zero component
of the coordinate operator on the momentum plane, will supply further nontrivial relations.

In the last chapter we deformed with the special conformal operator and obtained
a wedge-local field that can be interpreted as a QF on a nonconstant noncommutative
spacetime. An interesting but still not fully exploited path, would be to take some other
abelian Fockspace operators and deform on the level of the scalar QF.

Last but not least, the question of nonabelian deformations is open and not far de-
veloped. Is the emergence of a wedge-local field by such deformations possible? What are
the resulting NC spacetimes in those cases?

These and many other questions are to this date open and provide a broad, inter-
esting and exciting area of research.
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Chapter 8

Appendix

8.1 Banach Space

On of the most basic spaces in functional analysis is the metric space. We give the
definition of the space in the following,([RS75a], Ch. I, page 4),

Definition 8.1. A metric space is a setM and a real-valued function d(., .) onM×M
which satisfies,

1. d(x, y) ≥ 0,

2. d(x, y) = 0 if and only if x = y,

3. d(x, y) = d(y, x),

4. d(x, z) ≤ d(x, z) + d(y, z),

where the last inequality is called the triangle inequality. The function d is called a
metric on M .

Another important notion on metric spaces is known under Cauchy sequences.

Definition 8.2. A sequence of elementes {xn} of a metric space (M,d) is called a
Cauchy sequence if (∀ε > 0)(∃N) n, m ≥ N implies d(xn, xm) < ε.

In the following we define two terms that we consistently make use of
Definition 8.3. A metric space in which all Cauchy sequences converge is called com-
plete.
Definition 8.4. A set B in a metric space M is called dense if every m ∈M is a limit
of elements in B.

Moreover, the normed linear space is important in the discussion of bounded linear
transformations and is defined as

Definition 8.5. A normed linear space is a vector space, V , over R (or C) and a
function, ||.|| from V to R which satisfies,

1. ||v|| ≥ 0, for all v ∈ V

133



134 CHAPTER 8. APPENDIX

2. ||v|| = 0 if and only if v = 0,

3. ||αv|| = |α|||v||, for all v ∈ V and α ∈ R (or C)

4. ||v + w|| ≤ ||v||+ ||w||, for all v, w ∈ V

Definition 8.6. We say < V, ||.|| > is complete if it is complete as a metric space in
the induced metric.

By taking all former definition into account we can give the definition of a Banach space.
Definition 8.7. A complete normed linear space is called a Banach space.
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8.2 Hilbert Space

In this Section we give the basic definitions and theorems for Hilbert spaces, [RS75a]. We
start by defining an inner product space.

Definition 8.8. A complex vector space V is called an inner product space if there
is a complex-valued function 〈·, ·〉 on V × V that satisfies the following conditions

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,

2. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉,

3. 〈x, αy〉 = α〈x, y〉,

4. 〈x, y〉 = 〈y, x〉,

where x, y, z ∈ V and α ∈ C. The function 〈·, ·〉 is called an inner product.

Now a Hilbert space H can be defined as follows.

Definition 8.9. A complete inner product space is called a Hilbert space H .

Definition 8.10. Two Hilbert spaces H1 and H2 are said to be isomorphic if there is
a linear operator U from H1 onto H2 such that 〈Ux,Uy〉H2 = 〈x, y〉H1 for all x, y ∈ H1.
Such an operator is called unitary.

An important theorem follows from the former definition of inner product spaces and
normed linear spaces.

Theorem 8.1. Every inner product space V is a normed linear space with the norm
||x|| = 〈x, y〉1/2.

8.3 Unbounded operators

An unbounded operator A is defined on dense linear subset of the Hilbert space H as
linear map from its domain, a dense subspace of H to H , i.e. D(A)→H .

Definition 8.11. The graph of the linear transformation T, denoted by Γ(T ) is the set
of pairs

{< ϕ, Tϕ > |ϕ ∈ D(T )}. (8.1)

Definition 8.12. Let T1 and T be operators on H . If Γ(T ) ⊂ Γ(T1), then T1 is said
to be an extension of T and one writes T ⊂ T1. Equivalently, T ⊂ T1 iff D(T ) ⊂ D(T1)
and Tϕ ⊂ T1ϕ for all ϕ ∈ D(T ).

Definition 8.13. An operator T is closable if it has a closed extension. Every closable
operator has a smallest closed extension, called its closure, which is denoted by T .
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Definition 8.14. Let T be a densely defined linear operator on a Hilbert space H . Let
D(T ∗) be the set of ϕ ∈H for which there is an η ∈H with

〈Tψ, ϕ〉 = 〈ψ, η〉, ∀ψ ∈ D(T ). (8.2)

For each such ϕ ∈ D(T ∗), we define T ∗ϕ = η. T ∗ is called the adjoint of T . By the Riesz
lemma, ϕ ∈ D(T ∗) iff |〈Tψ, ϕ〉| ≤ C||ψ|| for all ψ ∈ D(T ).

Definition 8.15. A densely defined operator T on a Hilbert space is called Hermitian
(or symmetric) if T ⊂ T ∗, that is, if D(T ) ⊂ D(T ∗) and Tϕ = T ∗ϕ for all ϕ ∈ D(T ).
Equivalently T is Hermitian iff

〈Tϕ, ψ〉 = 〈ϕ, Tψ〉, ∀ϕ,ψ ∈ D(T ). (8.3)

Definition 8.16. T is called a self-adjoint operator, iff T is symmetric and D(T ) =
D(T ∗).

Definition 8.17. A symmetric operator T is called essentially self-adjoint if its clo-
sure T is self-adjoint.

In the following we give an important proposition which will be made use of during the
entire thesis. We start by giving the definition of unitarily equivalent operators.

Definition 8.18. Let T, S be densely defined unbounded operators. Then, T, S are said
to be unitarily equivalent if there is a unitary operator U : D(S) → D(T ) such that
T = USU−1. This condition in particular means, that D(T ) = UD(S).

The following proposition deals with the hermiticity and self-adjointness of unitarily
equivalent operators, [BEH08].

Proposition 8.1. Let T, S be densely defined unbounded operators that are unitarily
equivalent, i.e. T = USU−1, where U is a unitary operator. Then if S is densely defined,
the same holds true for T and T ∗ = US∗U−1. In particular, if S is symmetric or self-
adjoint, then T is also symmetric or self-adjoint, respectively.

The next theorem concerns the self-adjointness of an unbounded operator on a tensor
product of Hilbert spaces, ([RS75a], Theorem VIII.33).

Theorem 8.2. Let Ak be a self-adjoint operator on Hk. Let P (x1, · · · , xN ) be a polyno-
mial with real coefficients of degree nk in the k-th variable and suppose that De

k is a domain
of essential self-adjointness for Ankk . Then, P (A1, · · · , AN ) is essentially self-adjoint on

De =

N⊗
k=1

De
k.
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Theorem 8.3. Let Ak be a self-adjoint operator on Hk. Let P (x1, · · · , xN ) be a polyno-
mial with real coefficients of degree nk in the k-th variable and suppose that De

k is a domain
of essential self-adjointness for Ankk . Then, P (A1, · · · , AN ) is essentially self-adjoint on

De =
N⊗
k=1

De
k.

To prove the essential self-adjointness of a symmetric operator A on a Hilbert space H ,
the Nelson’s analytic vector theorem can be used. Before stating the theorem we first give
the definition of an analytic vector for A, ([RS75b], Chapter X.6).

Definition 8.19. Let A be an operator on a Hilbert space H . The set C∞ :=⋂∞
n=1D(An) is called the C∞-vectors for A. A vector φ ∈ C∞(A) is called an ana-

lytic vector for A if
∞∑
n=0

|Anφ|
n!

tn <∞, (8.4)

for some t > 0.

By using the former definition we can now give the Nelson’s analytic vector theorem,
([RS75b], Chapter X.6, Theorem X.39).

Theorem 8.4. Let A be a symmetric operator on a Hilbert space H . If D(A) contains
a total set of analytic vectors, then A is essentially self-adjoint.
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8.4 Schwartz space

The Schwartz space is a dense subspace of the Hilbert space H = L2(Rn). The definition
is given as follows.

Definition 8.20. Let C∞(Rn) be the set of all complex-valued functions which have
partial derivatives of arbitrary order. For f ∈ C∞(Rn) and α ∈ Nn0 we set

∂αf =
∂|α|f

∂xα1
1 · · · ∂xαnn

, xα = xα1
1 · · ·xαnn , |α| = α1 + · · ·+ αn.

Then the Schwartz space denoted by S (Rn) is given as

S (Rn) = {f ∈ C∞(Rn)| sup
x
|xα(∂βf)(x)| <∞, α, β ∈ Nn0},

and is dense in L2(Rn).

8.5 Fourier Transformation

In this section we give a brief summary of the most basic facts of the Fourier transforma-
tion, [RS75b, Tes01].

Definition 8.21. For f ∈ S (Rn), where S (Rn) is defined in 8.20, we define the Fourier
transformation as follows

UF (f)(p) := f̂(p) =
1

(2π)n/2

∫
Rn
e−ipxf(x)dnx. (8.5)

Lemma 8.1. For any multi-index α ∈ Nn0 and any f ∈ S (Rn) we have

UF (∂αf)(p) = (ip)α(UFf)(p), (8.6)

̂(xαf(x))(p) = i|α|∂αf̂(p), (8.7)

where ∂ = (∂1, · · · , ∂n) is the gradient.

In particular UF is an operator mapping S (Rn) into itself.

Lemma 8.2. The Fourier transform of the convolution

(f ∗ g)(x) =

∫
Rn
f(y)g(x− y)dny =

∫
Rn
f(x− y)g(y)dny (8.8)

of two functions f, g ∈ S (Rn) is given by

(̂f ∗ g)(p) = (2π)n/2f̂(p)ĝ(p). (8.9)

Theorem 8.5. The Fourier transform UF : S (Rn)→ S (Rn) is a bijection. Its inverse
is given by

U−1
F (f)(x) := f̌(x) =

1

(2π)n/2

∫
Rn
eipxf(p)dnp. (8.10)

Furthermore, U2
F (f)(x) = f(−x) and thus U4

F = I.
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Figure 8.1: Example of a Moyal-Weyl plane R2
θ

Theorem 8.6. The Fourier transform UF extend to a unitary operator UF : L2(Rn)→
L2(Rn). Its spectrum satisfies

σ(UF ) = {z ∈ C|z4 = 1} = {1,−1, i,−i}. (8.11)

Lemma 8.1 allows to extend differentiation to a larger class.

Definition 8.22. The Sobolev space denoted as Hr(Rn) is defined as the following
function space

Hr(Rn) = {f ∈ L2(Rn)||P|rf ∈ L2(Rn)}. (8.12)

8.6 Moyal-Weyl Plane

We define the Moyal-Weyl plane as done in [DFR95].

Let us denote the Moyal-Weyl plane by Rdθ , see figure 8.1. Where θ is a constant
that reflects the strength of the noncommutativity. The *-algebra which is generated by
the selfadjoint operators x̂µ has a center given by the commutator relation

[x̂µ, x̂ν ] = −iθµν , (8.13)

where θµν is a constant non-degenerate tensor. An example for such an algebra is the
quantum mechanical commutation relations between the momentum and the coordinate.
Where in the QM case the deformation parameter θ is given by ~.
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Notation and Conventions

We use in this thesis n to denote the spatial dimensions and d to denote the spacetime
dimensions. While d-dimensional vectors have Greek letters, spatial vectors are denoted
with Latin indexes. To denote a spatial vector, we often use bold letters.

The Einstein convention is used when an index variable appears twice, implying
the summation over all possible values of the index, i.e.

n∑
i=1

aib
i := aib

i. (8.14)

Throughout this thesis we use the following convention for the Minkowski metric
η

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (8.15)

Not that we use this convention for the quantum mechanical case as well. This means for
example that the free Hamiltonian is defined with a minus, i.e. H0 = −P iPi.

Most of the time, except for cases were it becomes important we set the constants
of speed of light c and the Planck constant ~ equal to

c = ~ = 1. (8.16)
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