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Abstract

The evolution of biological species depends on changes in genes. Among these changes are the grad-

ual accumulation of DNA mutations, insertions and deletions, duplication of genes, movements of

genes within and between chromosomes, gene losses and gene transfer. As two populations of the

same species evolve independently, they will eventually become reproductively isolated and become

two distinct species. The evolutionary history of a set of related species through the repeated oc-

currence of this speciation process can be represented as a tree-like structure, called a phylogenetic

tree or a species tree. Since duplicated genes in a single species also independently accumulate point

mutations, insertions and deletions, they drift apart in composition in the same way as genes in two

related species. The divergence of all the genes descended from a single gene in an ancestral species

can also be represented as a tree, a gene tree that takes into account both speciation and duplication

events.

In order to reconstruct the evolutionary history from the study of extant species, we use sets of

similar genes, with relatively high degree of DNA similarity and usually with some functional resem-

blance, that appear to have been derived from a common ancestor. The degree of similarity among

different instances of the “same gene” in different species can be used to explore their evolutionary

history via the reconstruction of gene family histories, namely gene trees.

Orthology refers specifically to the relationship between two genes that arose by a speciation event,

recent or remote, rather than duplication. Comparing orthologous genes is essential to the correct

reconstruction of species trees, so that detecting and identifying orthologous genes is an important

problem, and a longstanding challenge, in comparative and evolutionary genomics as well as phylo-

genetics.

A variety of orthology detection methods have been devised in recent years. Although many of

these methods are dependent on generating gene and/or species trees, it has been shown that orthology

can be estimated at acceptable levels of accuracy without having to infer gene trees and/or reconciling

gene trees with species trees.
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Therefore, there is good reason to look at the connection of trees and orthology from a different

angle: How much information about the gene tree, the species tree, and their reconciliation is already

contained in the orthology relation among genes?

Intriguingly, a solution to the first part of this question has already been given by Böcker and

Dress [Böcker and Dress, 1998] in a different context. In particular, they completely characterized

certain maps which they called symbolic ultrametrics. Semple and Steel [Semple and Steel, 2003]

then presented an algorithm that can be used to reconstruct a phylogenetic tree from any given sym-

bolic ultrametric. In this thesis we investigate a new characterization of orthology relations, based on

symbolic ultramterics for recovering the gene tree.

According to Fitch’s definition [Fitch, 2000], two genes are (co-)orthologous if their last common

ancestor in the gene tree represents a speciation event. On the other hand, when their last common

ancestor is a duplication event, the genes are paralogs. The orthology relation on a set of genes is

therefore determined by the gene tree and an “event labeling” that identifies each interior vertex of

that tree as either a duplication or a speciation event.

In the context of analyzing orthology data, the problem of reconciling event-labeled gene trees with

a species tree appears as a variant of the reconciliation problem where genes trees have no labels in

their internal vertices.

When reconciling a gene tree with a species tree, it can be assumed that the species tree is correct

or, in the case of a unknown species tree, it can be inferred. Therefore it is crucial to know for a

given gene tree whether there even exists a species tree. In this thesis we characterize event-labelled

gene trees for which a species tree exists and species trees to which event-labelled gene trees can be

mapped.

Reconciliation methods are not always the best options for detecting orthology. A fundamental

problem is that, aside from multicellular eukaryotes, evolution does not seem to have conformed

to the descent-with-modification model that gives rise to tree-like phylogenies. Examples include

many cases of prokaryotes and viruses whose evolution involved horizontal gene transfer. To treat

the problem of distinguishing orthology and paralogy within a more general framework, graph-based

methods have been proposed to detect and differentiate among evolutionary relationships of genes in

those organisms. In this work we introduce a measure of orthology that can be used to test graph-

based methods and reconciliation methods that detect orthology. Using these results a new algorithm

BOTTOM-UP to determine whether a map from the set of vertices of a tree to a set of events is a

symbolic ultrametric or not is devised. Additioanlly, a simulation environment designed to generate

large gene families with complex duplication histories on which reconstruction algorithms can be

tested and software tools can be benchmarked is presented.
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Rekonstruktion von evolutionären Beziehungen zwischen phylogenetischen Bäumen”, The EU-projects

EMBIO and EDEN and the Max Planck Institute for Mathematics in the Sciences. Thanks to all of

them.

xii



CHAPTER 1

Introduction

M any fields of mathematics have been applied to different areas of biology. In particular,

graph theory is the formal basis of the field of phylogenetics. Graphs are a general way

of representing biological entities as vertices and the relations between them as edges. For example,

two extant organisms may be the descendants of a common ancestor that existed many years ago. Due

to adaption processes and genetic drift, the ancestor might have diverged genetically in two different

locations or ecological niches, resulting in two new organisms or species. The new species are said

to have originated through a speciation process. The species can be represented by the vertices of a

graph and the relation between parent species and offspring species by the edges of the graph.

Likewise, a gene in an species may occasionally be duplicated in one individual and several gener-

ations later this change is found to be a property of all extant individuals of this species. For a single

gene, when speciation occurs, we may trace two copies of that gene, one in each new species. Again,

we can represent the genes by the vertices of a graph, where two genes are connected by an edge if

one is derived from the other, either through duplication within a single species or through speciation.

For a larger amount of organisms, related to each other by a number of speciation events, the

collection of vertices defines a graph structure known as a rooted tree. This tree is called a phylogeny

or a species tree.

If we consider all the versions of a gene in all the extant species, deriving from a single ancestor

gene through a series of duplications and speciations, as vertices and edges in a graph, then we also

obtain a rooted tree, which we call a gene tree. Gene trees are also a form of phylogeny or phylogenetic

tree.

Whenever we are able to formalize biological entities like species or genes, in terms of mathemat-

ical objects, we are able to leverage mathematical tools to analyse the properties of these objects and
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Introduction

carry over the results to help understanding the underlying evolutionary process. Thus, depending on

whether a tree is built with parent and offspring species or ancestral and derived genes, every leaf rep-

resents a current organism (a species) or a gene. Based on the hierarchical structure of rooted trees,

we can easily see which species (or genes) are more closely related than others. There are several

mathematical connections between gene trees and species trees.

A fundamental concept in evolution and genomics is orthology, which pertains to the relation be-

tween two similar genes, each present in one of two related species. Two genes may have derived

from a single ancestral gene form, while the two species have evolved independently from a most

recent common ancestor. The two genes are orthologs if they are derived from a single ancestral gene

that was present in their ancestor species. I.e. the most recent common ancestor of the two related

species contained only a single copy of this gene and passed it on to its descendants. If the most

recent common ancestor species already had two or more versions of the ancestral gene, then their

descendants are not orthologs.

When we want to describe in a phylogenetic tree the evolutionary history of a gene to elucidate

its relation with other genes we need a mathematical model to help us to say whether the biological

assumptions we made were right or wrong.

Elucidating whether pairs or sets of genes are orthologous to each other is an important task in the

reconstruction of evolutionary histories. As yet, however, there has not been a formal mathematical

characterization of orthology or criteria for ensuring that orthology relations between sets of genes

are being inferred correctly.

In this thesis we present the theory and methods for analysing orthology in order to help scientists

develop more accurate algorithms for orthology prediction and have more certainty about their results.

Organization of this thesis

The aim of this work is to define a new mathematical characterization of orthology relations. This

implies the study of gene trees, species trees and their reconciliation map. New methods are proposed

for the reconstruction of evolutionary gene histories. Simulated data is analyzed to discover a measure

of noise in orthology relations based on these new characterizations.

Firstly, basic concepts and definitions that will be used in this thesis are presented in Chapter 2.

Then an introduction on the concepts of orthology and paralogy together with the description of the

mechanisms involved when those take place are described in Chapter 3. Some existing methods from

orthology detection and their differences are also presented here.

We continue in Chapter 4 by presenting the terminology of phylogenetic trees, extending it to the

special case of supertrees and rooted triples, as well as some previous results related to these entities

that will be of help when presenting the next chapters. The terminology for symbolic ultrametrics as

well as the link to phylogenetic trees is also presented.

In chapter 5 we build upon the results of Böcker and Dress [1998] and Semple and Steel [2003] on
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symbolic ultrametrics and present new characterizations for them and novel algorithms for recovering

the associated trees. An emphasis will be on how these results and algorithms could be potentially used

to cope with arbitrary orthology relations. In so doing we shall also show that, somewhat surprisingly,

symbolic ultrametrics are very closely related to a well-studied class of graphs called cographs, which

is precisely the class of graphs that do not contain induced paths on any subset of four vertices [Corneil

et al., 1981].

Continuing with the characterizations, in Chapter 6, we study partitions, cliques and pseudo-

cherries that are closely related to the structure of the symbolic representation of orthology relations

and present a new algorithm BOTTOM-UP to determine whether a map is a symbolic ultrametric or not.

Given that a cograph does not contain the full information on the event-labeled gene tree but it is

equivalent to the gene tree’s homomorphic image obtained by collapsing adjacent events of the same

type one of the results of the previous chapters points out that the orthology relation places strong and

easily interpretable constraints on the gene tree.

This observation suggests that a viable approach for reconstructing histories of large gene families

may start from an empirically determined orthology relation, which can be directly adjusted to con-

form to the requirement of being a cograph. The result is then equivalent to an (usually incompletely

resolved) event-labeled gene tree, which might be refined or used as a constraint in the inference of a

fully resolved gene tree. In Chapter 7 we study the derivation of a species tree from an event-labeled

gene tree. As we will show, this problem is much simpler than the full tree reconciliation problem.

Technically, we approach this problem by reducing the reconciliation map from gene tree to species

tree to rooted triples of genes residing in three distinct species. This is related to an approach that was

developed in [Chauve and El-Mabrouk, 2009] for addressing the full tree reconciliation problem.

In Chapter 8 we present a simulation environment designed to generate large gene families with

complex duplication histories on which reconstruction algorithms can be tested and software tools

can be benchmarked. Using simulations along with the results of previous chapters we introduce a

measure of noise in orthology relations, we then test two of the most commonly used graph-based

methods Proteinortho [Lechner et al., 2011] and OrthoMCL [Li et al., 2003] to measure their per-

formance when predicting orthology relations. Using the same measure, we test the database OMA to

show the accuracy of the data contained in there.

Finally, we present a summary of this thesis in Chapter 9 and propose some ideas for future work

and on how all these results can be used to improve orthology prediction methods as well as proposing

some ways to modify an “almost” valid orthology relation to a valid one.

Publications

Some results presented in this thesis have been published in the following articles:

• Chapters 5 and 6 introducing new characterizations for valid orthology relations and symbolic

ultrametrics are based on the paper:
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Marc Hellmuth, Maribel Hernandez-Rosales, Katharina T. Huber, Vincent Moulton, Peter F.

Stadler, and Nicolas Wieseke. Orthology relations, symbolic ultrametrics, and cographs. J.

Math. Biol., 2013. 66(1-2):399-420.

• Chapter 7 defining event-labelled genes for which a species tree exists is based on the paper:

Maribel Hernandez-Rosales, Marc Hellmuth, Nicolas Wieseke, Katharina Huber, Vincent Moul-

ton, and Peter F. Stadler. From event-labeled gene trees to species trees. BMC Bioinformatics,

13(Suppl 19):S6, 2012.

• The simulation enviroment presented in Chapter 8 was accepted as a poster and won the best

poster prize:

Maribel Hernandez-Rosales, Nicolas Wieseke, Marc Hellmuth, and Peter F. Stadler. Simulation

of Gene Family Histories, JOBIM, Paris, France, 2011.

• Simulations with a modified version of the previous simulations enviroment that integrates syn-

teny information are used from the just submitted paper:

Marcus Lechner, Maribel Hernandez-Rosales, Daniel Doerr, Nicolas Wieseke, Annelyse Thevenin,

Jens Stoye, Sonja J. Prohaska and Peter F. Stadler. Orthology Detection Combining Clustering

and Synteny for Very Large Data Sets. Submitted.
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CHAPTER 2

Basic Concepts and Definitions

Graphs, trees, partitions, triples and symbolic ultrametrics play an important role in the anal-

ysis of orthology. In this chapter we introduce some notation and concepts of graph theory

and ultrametrics.

2.1 Graphs

A graph is represented by a set of “objects” where pairs of objects have “connections”. In mathematics

a graph G is an ordered pair (V,E), where V is a non-empty set of objects called the vertices and E

is a set of connections called the edges and is defined as E = {e = {u,v} : u,v ∈ V}, where u and v

are called the ends or endpoints of e. If e = {u,v} is an edge of a graph, then u and v are adjacent

or neighbours, and e is said to be incident to both u and v. A vertex v that exists in a graph but does

not belong to an edge is called an isolated vertex. The order and the size of a graph are |V | and |E|,

respectively. The degree of a vertex is the number of edges that connect it to other vertices. An edge of

the form {v,v} is called a loop and is counted twice for the degree of v. A graph that contains multiple

edges that connect the same two vertices, is called a multigraph. An graph that is not a multigraph

and does not contain loops is called simple. Unless otherwise stated, we will assume from now on

that all graphs in this work are simple.

In an undirected graph, the edges have no orientation, since each edge is not an ordered pair but a set

{u,v} of two vertices. Fig. 2.1(a) shows an example of an undirected graph with vertices {a,b,c,d,e}.

In a directed graph, each edge is represented by an ordered pair of vertices (u,v) and this is called a

directed edge. In a directed edge (u,v), v is the head and u is the tail of the edge, since it is considered

to be directed from u to v. The number of edges whose tail endpoints are incident to a vertex v is

5
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(b)

a

c

d e

a b

c

d e

(a) (c)

c

ad e

Figure 2.1: (a) Undirected graph with vertices represented as green circles and edges as black lines. In

this graph an example of neighbors are the vertices {a,b}. The degree of vertex a is three

since there are three edges incident to it. This graph is simple since it does not containt

multiedges or loops. (b) An induced subgraph on vertices {a,c,d,e} from the graph in (a).

This graph forms the path c,d,a,e. (c) The resulting graph after contracting edge {a,d}
from the graph in (b).

a b

c

d e

Figure 2.2: A directed graph. Here directed edges are represented by arrows. Edge (d,e) has d as its

tail vertex and e as its head vertex. Vertex d has an indegree of two and outdegree of one.

If we obtain the induced subgraph on vertices {b,d,e}, we will obtain the cycle (d,e,b,d).

called the outdegree of v and the number of edges whose head endpoints are incident to v is called the

indegree of v. An example of a directed graph is shown in Fig. 2.2.

Two basic operations on edges in graphs are the deletion and contraction. If e = {u,v} is an edge

of a graph G = (V,E), then G\e is the graph obtained by deleting (removing) the edge e from E. The

graph G/e is the graph obtained after contracting e, that is, by identifying u and v as the ends of e and

merging them into a new vertex w, where the edges incident to u and v before contraction will be then

incident to w. The new graph will then be G′ = (V ′,E ′), where V ′ =V \{u,v}∪{w} and E ′ = E \ e.

Fig. 2.1(c) shows an example of an edge contraction from Fig. 2.1(b). An operation on vertices is the

deletion of a vertex. G\ v denotes the graph obtained by removing v and all the edges incident to it.
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2.1 Graphs

A graph H = (U,D) is a subgraph of a graph G = (V,E) if U is a subset of V and D is a subset of

E. If a subgraph A = (W,F) of G, is the graph where W is a non-empty subset of V , and F is the set of

those edges in E that have both ends in W , then A is the subgraph of G induced by W , and is denoted

by A = G[W ]. Fig. 2.1(b) shows an example of an induced subgraph from the graph in Fig. 2.1(a).

A path in a graph is a sequence of distinct vertices connected by a sequence of edges. The first

vertex of the path is the start vertex and the last vertex of the path is the end vertex, all other vertices

in the path are internal vertices, if in a path no vertex is repeated then it is called a simple path. A

path on n vertices is often referred as Pn. Fig. 2.1(b) shown an example of a simple path. A cycle is a

path whose start and end vertices are the same.

In a path in a directed graph if the vertex v can be reached from vertex u then v is said to be a

sucessor of u and u is said to be a predecessor of v. A weighted graph is a graph whose every edge

has an associated value called weight. The weight of a path is the sum of the weights of the edges in

the path.

a b

c

d e

f

g

Figure 2.3: A graph with three connected components: {a,b,c,d}, {e} and { f ,g}. The set {e} is a

singleton.

A graph G is connected if for any pair of vertices {u,v} there is a path from u to v, otherwise G

is disconnected. In a disconnected graph, the maximal connected subgraphs are called the connected

components of G. A connected component consisting of only one vertex is called a singleton set.

Fig. 2.3 shown a graph with three connected components where one of them is a singleton.

A map f is called map isomorphism if for two graphs G = (V,E) and H = (U,D) there is a bijection

f : U → V between the vertex sets U and V , where adjacency is preserved, i.e. {u1,u2} ∈ D if

{ f (u1), f (u2)} ∈ E, then G and H are said to be isomorphic.

In a graph G, if every pair of distinct vertices are adjacent, then G is a clique. A clique is also

known as a complete graph. A clique on n vertices is defined as Kn. Fig. 2.4 illustrates a clique.

7
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a b

c

d e

Figure 2.4: A clique on five vertices, a K5. Every pair of vertices is connected by an edge. A clique

is also a cograph since any induced subgraph in four vertices is also a clique and therefore

contains no induced P′
4s.

2.2 Trees

A tree T = (V,E) is a connected cycle-free graph with vertex set V (T ) = V and edge set E(T ) = E.

A vertex of T of outdegree zero is called a leaf of T and all other vertices of T are called interior. A

star is a tree that has at most one interior vertex. An edge of T is interior if both of its end vertices

are interior vertices. The sets of interior vertices and interior edges of T are denoted by V 0 and E0,

respectively.

Figure 2.5: An unrooted tree. Leaves have degree one and all other nodes have degree greather than

two.

An unrooted tree is a tree with no vertices of degree two, like the one shown in Fig. 2.5.
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2.2 Trees

A rooted tree T = (V,E) is a tree that contains a distinguished vertex ρT ∈ V with indegree zero,

called the root. Without explicitly stating it we will always assume that a rooted tree is directed in that

all edges of T are directed away from ρT . For ease of representation we will always draw rooted trees

with the root at the top. A rooted tree T is called binary if every interior vertex of T has outdegree

two. A caterpillar tree is an example of a binary tree that has a central path and deleting all leaves and

their incident edges would produce a path. An example of a catepillar tree is shown in Fig 2.6. We

define a partial order �T on V by setting v �T w for any two vertices v,w ∈V for which w is a vertex

on the path from v to ρT . In particular, if v �T w we call w an ancestor of v and v a descendant of w.

A subtree of a tree T is a tree consisting of a vertex v in T and all of the descendants of v in T .

g

a

b

c

d

e

f

V

Figure 2.6: A binary tree. This special structure of binary tree is known as a catepillar tree.

A phylogenetic tree T (on X) is a rooted tree with leaf set X that does not contain any vertices with

in- and outdegree one and whose root ρT has indegree zero. The most recent common ancestor (lca)

of two vertices v and w in T is defined as the lowest vertex u in T such that both v �T u and w �T u.

For A ⊆ X a non-empty subset, we define lcaT (A), or the most recent common ancestor of A, to be the

unique vertex in T that is the greatest lower bound of A under the partial order �T . In case A = {x,y}

we put lcaT (x,y) = lcaT ({x,y}). For W ⊆ X we denote by T (W ) the (rooted) subtree of T with root

lcaT (W ). For convenience, we will sometimes denote the root of T (W ) by ρW . Two phylogenetic

trees T1 and T2 on X are said to be isomorphic if there is a bijection ψ : V (T1)→V (T2) that induces a

(directed) graph isomorphism from T1 to T2 which is the identity on X and maps the root of T1 to the

root of T2.

In the remainder of this work, X will always denote a finite set of size at least three.

Suppose T is a phylogenetic tree on X with root ρT and a non-empty subset Y ⊆ X with |Y | ≥ 2.

Then the restriction T |Y of T to Y is the phylogenetic tree obtained from T (Y ) by deleting all leaves

9
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x 6∈Y and all interior vertices of degree two with the exception of ρT if ρT ∈V (T (Y )). For every vertex

v ∈V (T ) we denote by C(v) the subset of X such that v = lcaT (C(v)) and put C (T ) =
⋃

v∈V (T ){C(v)}.

We say that a phylogenetic tree S on X refines T , in symbols T ≤ S, if C (T )⊆ C (S). In addition, we

say that T displays a phylogenetic tree S on Y if S can be obtained from the restriction T |Y of T to

Y by contracting interior edges. T |Y is said to be the restricted subtree of T . Fig. 2.7 illustrates this

definition. Note that contraction of non-interior edges would not result in a valid phylogenetic tree as

such a tree could e. g. have an interior vertex contained in Y .

(a) (b)

b c d e f g h a c e g
a

Figure 2.7: (a) A phylogenetic tree T = (V,E) on the set X = {a, . . . ,h}. (b) The restricted subtree

T |{a,c,e,g}.

A phylogenetic tree T = (V,E) can have labels on its vertices that represent events, thus we define

a map t : V → M, such that M is a set of events and for every u ∈V , t(u) ∈ M is the event represented

by u. This definition will be useful for the next chapters since a specific case is when an interior vertex

of a tree is labeled as “duplication” or “speciation” event. This labeling plays a very important role in

orthology analysis.

2.3 Partitions

A partition of a set A is the result of dividing A into non-overlapping subsets of A such that for each

a ∈ A is in one and only one of the subsets. These subsets are called parts or blocks. Equivalently, a

set B is called a partition of A if /0 6⊂ B, the union of all the blocks in B is equal to A and the intersection

of any two blocks in B is empty.

An equivalence relation on a set A is a binary relation ∼ that satisfies the properties of reflexivity

(a ∼ a), symmetry (if a ∼ b, then b ∼ a) and transitivity (if a ∼ b and b ∼ c, then a ∼ c) for every

a,b,c ∈ A. A partition defines an equivalence relation on a set A, when every two elements in a block

of the partition are considered to be equivalent and each block is defined as an equivalence class. In

Fig. 2.8 each color represents a block in the partition or an equivalence class.

10
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Figure 2.8: A partition of a set into 5 blocks. Each color represents a block and therefore an equiva-

lence class.

2.4 Rooted Triples and Clusters

A (rooted) triple is a binary phylogenetic tree on a set Y with |Y | = 3. For Y := {x,y,z} ∈
(

X
3

)
,

we denote by xy|z the unique triple t on Y with root ρt for which lcat(x,y) 6= ρt holds. Given a

phylogenetic tree T on X we denote by

RT :=

{
T |Y : Y ∈

(
X

3

)
and T |Y is binary

}
(2.1)

its set of rooted triples. Note that, for any phylogenetic tree T on X , we have |RT | ≤
(
|X |
3

)
and that the

maximum is attained precisely if T is binary.

A cluster of T is a subset of X whose elements are descendants of a specific vertex of T . In

particular, the cluster {x,y} is contained in the leaf set {x,y,z} of the rooted triple xy|z. A fan triple is

a rooted tree with three leaves and no interior vertices.

2.5 Cographs and Cotrees

Complement-reducible graphs, also named cographs [Corneil et al., 1981], are defined recursively as

following:

1. K1 is a cograph.

2. If G is a cograph, then its complement G is also a cograph.

3. If G1 and G2 are both cographs, then their union G1 ∪G2 is also a cograph.

11
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a b

c

d e

Figure 2.9: A graph that contains an induced P4, the induced subgraph on vertices {a,c,d,e}. The P4

is highlighted in red.

Cographs have been studied extensively, which has led to new characterizations of cographs (see

e.g. [Brandstädt et al., 1999] for a survey):

Theorem 1. [Corneil et al., 1981] Let G be a cograph, then the following statements are equivalent:

• G can be constructed from isolated vertices by disjoint union and complementation.

• G is a cograph if and only if any induced subgraph on four vertices is not the path P4.

• G is connected if and only if G is disconnected.

• the complement of any nontrivial connected induced subgraph of G is disconnected.

• If G1 and G2 are both cographs, then their join G1 ▽G2 is also a cograph.

In particular, cliques are cographs since every induced subgraph in four vertices will be a clique as

well, and therefore it will not contain P′
4s, like the one shown in Fig. 2.4. An example of a graph that

is not a cograph is shown in Fig. 2.9 since the induced subgraph on vertices {a,c,d,e} form a P4, the

path c−d −a− e.

Furthermore, a graph is a cograph if it can be decomposed in series and parallel modules. These

modules are defined as follows:

Definition 2. Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs, then:

• A graph G = (V,E) is a parallel composition of G1 and G2 if V =V1 ∪V2 and E = E1 ∪E2.

• A graph G is the series composition of G1 and G2 if V =V1∪V2 and E =E1∪E2∪{{x1,x2}|x1 ∈

E1,andx2 ∈ E2}.
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a b

c

d e

(a)

a b c d e

0

0

1 1

(b)

Figure 2.10: (a) A cograph. (b) The corresponding cotree.

Along with the previous properties, cographs admit a unique tree representation called a cotree

[Corneil et al., 1981]. A cotree is a tree whose leaves are the vertices of the cograph G and whose

internal nodes are labeled either by either 0 or 1. Two vertices in G are connected if and only if their

lowest common ancestor in the cotree has a label 1. Moreover, any path from the root to any node

of the cotree consists of alternating 0 and 1 labels, Fig. 2.10 shows an example of a cograph and

its corresponding cotree: we can see that the path from the root of the cotree to the leaf e consists of

alternating 1 and 0 labels. By inverting the labeling of the internal nodes of the cotree, the complement

of G is obtained. Nodes with label 1 correspond to series modules, while nodes with label 0 correspond

to parallel modules in the modular decomposition.

However, there are other types of modules called prime modules, these are modules that are neither

parallel nor series. Finding a prime module in a graph means that it contains an induced P4, implying

that cographs do not contain prime modules and that prime modules contain induced P4’s while series

and parallel modules do not. These observations are useful for recognizing cographs, which can be

done in linear time as well as the computing of the corresponding cotree [Corneil et al., 1985].

2.6 Ultrametrics and Tree Metrics

A metric is a distance function that defines a distance between elements of a set. The distance function

on a set X is defined as:

d : X ×X → R

where R is the set of real numbers.

For all x,y,z ∈ X , d must satisfy the following conditions:

1. d(x,y)≥ 0

2. d(x,y) = 0 if and only if x = y

13
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3. d(x,y) = d(y,x)

4. d(x,z)≤ d(x,y)+d(y,z)

Condition 4 is called the triangle inequality.

An ultrametric is a metric that satisfies the following stronger version of the triangle inequality. For

all x,y,z ∈ X ,

d(x,z)≤ max{d(x,y),d(y,z)}.

An ultrametric on X can be seen as a matrix whose rows and columns correspond to the elements

of X . Thus, a matrix di j is an ultrametric on X if and only if all the elements dii in the diagonal are

zero, and it satisfies:

di j ≤ max{dik,dk j}.

for all i, j,k ∈ X .

A tree metric is a matrix di j with zero diagonal which satisfies the four-point condition:

di j +dkl ≤ max{dik +d jl,dil +d jk}

for all i, j,k, l ∈ X .

By checking the possible configurations of paths which can connect four points x,y,z,w in a tree, it

can be seen that the distance function satisfies the inequality:

d(x,y)+d(z,w)≤ max{d(x,z)+d(y,w),d(x,w)+d(y,z)}.

Every ultrametric is, therefore, a tree metric, and a tree metric can be characterized in terms of an

associated ultrametric [Bandelt, 1990].

2.7 Symbolic Ultrametrics

Let T = (V,E) be a compact rooted tree with leaf set X . T is said to be dated by a map t : V → R if

t(x) = 0 for all x ∈ X , and t(v)≺ t(u) for every edge (u,v) ∈ E.

Let M denote an arbitrary non-empty finite set. A map t : V → M is called a symbolic dating map.

Now, let ⊙ be a special element not contained in M, and M⊙ := M ∪{⊙}. The symbol ⊙ corre-

sponds to a “non-event” and is introduced for purely technical reasons. It will always correspond only

to the leaves of T since these will not usually correspond to events such as speciation and duplication.

Now, suppose δ : X × X → M⊙ is a map. We call δ a symbolic ultrametric1 if it satisfies the

following conditions:

(U0) δ (x,y) =⊙ if and only if x = y;

1Note that in [Böcker and Dress, 1998] a symbolic ultrametric is defined without the requirement (U0), which we have

introduced for technical reasons.
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(U1) δ (x,y) = δ (y,x) for all x,y ∈ X , i.e. δ is symmetric;

(U2) |{δ (x,y),δ (x,z),δ (y,z)}| ≤ 2 for all x,y,z ∈ X ; and

(U3) there exists no subset {x,y,u,v} ∈
(

X
4

)
such that

δ (x,y) = δ (y,u) = δ (u,v) 6= δ (y,v) = δ (x,v) = δ (x,u). (2.2)

Note that every symmetric map δ on X with |X |= 3 that also satisfies Properties (U0) and (U2) is

as well a symbolic ultrametric on X .
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CHAPTER 3

Homologs, Paralogs and Orthologs

T he variation coded in the genomes of a group of living species, which may have evolved for

many millions of years, contains a wealth of information on how these species have diverged

from their common ancestor. Before whole genome sequences became available, this information

pertained mostly to the evolution of one gene at a time, relating to one protein or RNA molecule as it

accumulated mutations in various evolutionary lineages.

The realization that many genes reoccurred in two or more highly similar versions in a single

genome, due to various duplication processes, prompted the study of gene families, although lacking

complete genomes, uncertainty about the total membership of a gene family was a major hindrance.

3.1 Homology

The availability of many complete or nearly complete genome sequences, due to rapid new sequencing

technology, allows us access to much higher quality data that were previously available in only very

rudimentary form. Two important aspects of genome-scale data are

• A near-complete inventory of all the genes or putative genes in the genome, as well as other

structural elements, ordered along the chromosomes.

• A partition of the genes in one or more genomes into gene families, as defined by an analyst’s

choice of threshold of gene similarity, i.e, a criterion of homology.

Homologous regions of genomic sequence in one or more genomes are regions which are believed

to have had a relatively recent common ancestry. More specifically, homologous genes are inferred to

have descended from a common ancestor.
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A1 AB1 B1B2 C1 C2 C3

Figure 3.1: The evolution of a gene. Extant species A, B and C (in yellow elipses) contain instances

of genes after duplications and speciations. Speciations are depicted as red circles and

duplications as blue squares. Horizontal gene transfer is depicted as a dashed line from

species B to species A. (Figure adapted from Fitch 2000 [Fitch, 2000])

We can distinguish at least three kinds of homology:

• Orthology pertains to two homologous genes whose divergence stems from a speciation event.

Orthologs have the property that the phylogeny of a set of genes is the same as the true phy-

logeny of the organisms where they reside [Fitch, 1970].

• Paralogy relates genes whose ancestors diverged from each other starting at a duplication event

within a single ancestral genome [Fitch, 1970].

• Xenology is the result of horizontal transfer, where one of two homologous genes is the result

of an interspecies transfer of genetic material [Gray and Fitch, 1983].

Homology should be distinguished from analogy, a similarity between two genes that have de-

scended from different ancestors but are similar at the sequence level and/or perform the same func-

tion, as result of convergent evolution.

Fig. 3.1 depicts a gene tree illustrating the three kinds of homology, orthology, paralogy and xenol-

ogy. Gene A1 is orthologous to all genes in species C. All genes C1, C2 and C3 are paralogous to each

other, however only gene C1 is orthologous to gene B1 in species B, similarly, gene B2 is orthologous

to genes C2 and C3 but not to C1. Xenology is created by the horizontal gene transfer from species B

to species A.

In this chapter and throughout this thesis, we will focus on paralogy and orthology.
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3.2 Orthology and Paralogy

The distinction between paralogous and orthologous genes often correlates at the level of gene func-

tion. After a speciation event, the two orthologs descending from a single gene in the ancestor must

continue to fulfill the same function. After a duplication event, however, the two paralogs thus created

in a single genome need not both conserve exactly the same function. As long as one copy continues

to perform the original function, the other may diverge to carry out a different function, or may lose

functionality completely. Alternatively the two paralogs may share, or divide up between themselves,

the original function.

Orthologous genes belong to different species, by definition. Paralogous genes are usually thought

of as belonging to the same species, but this is not always the case. If a speciation event occurs after a

duplication, then genes from the two daughter species may be paralogous as well. In Fig. 3.1 one can

observe than even if genes B1 and C3 belong to different species, they are paralogs since they are the

result of an earlier duplication.

Additional terminology pertaining to homology relations refer to the temporal sequencing of two

events [Kristensen et al., 2011]:

• In-paralogy: paralogs that arose by duplication after a specific speciation event.

• Out-paralogy: paralogs that arose by duplication before a specific speciation event.

• Co-orthology: in-paralogs that collectively are orthologous to genes in other organisms.

3.2.1 Functional divergence

In this section we analyse the evolutionary mechanisms of diversification of paralogous genes.

When gene duplication occurs, changes in each copy generally occur independently, although there

may be repair and conversion mechanisms that tend to keep them similar as well as selection at the

functional level that ensures the viability of the organism.

The changes are normally point mutations or indels in the gene that could result in functional

novelty or in the loss of function of one of the paralogs.

Three types of mechanisms [Dittmar and Liberles, 2010] operating on duplicated genes, illustrated

in Fig. 3.2, are:

• Pseudogenization

• Subfunctionalization

• Neofunctionalization
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duplication

divergence

NeofunctionalizationSubfunctionalizationPseudogenization

Figure 3.2: Functional divergence. Pseudogenes are genes that are not functional and not necessary

for the survival of the organism where they reside. Subfunctionalization gives rise to

division of labor of the new paralogs, each new copy will take a different subfunction of

the original ancestral one. Neofunctionalization occurs when one of the paralogs takes a

complete new function that the ancestral gene did not have and the other paralog retains

the original ancestral function.

Pseudogenization

Pseudogenization, sometimes referred as gene degeneration or gene loss, since it gives rise to genes

(pseudogenes) that are not functional, typically due to mutations producing stop codons within previ-

ously coding regions. This type of gene is not protein-coding and its product is not necessary for the

survival of the organism, since it continues to be produced by the other copy of the gene.

Subfunctionalization

Some genes are wholly responsible for a general function throughout the organism at all develop-

mental stages. After a gene duplication, the new paralogs can undergo division of labor and take on

different subfunctions of their original ancestral function. Each new copy will only retain a special-

ized version of the original function, say at a particular developmental stage or in a specific tissue.

This mechanism is called subfunctionalization. Genes affected by several regulatory regions are more

prone to subfunctionalization. An example is shown in Fig. 3.2, here each function is depicted with a

different color. The new paralogs take some of the subfunctions of the original ancestral gene.
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Neofunctionalization

Neofunctionalization is associated with the formation of new functions. After gene duplication, neo-

functionalization can occur if one of the paralogs takes a complete new function. This gene must have

been mutated to develop a function that the ancestral gene did not have while the other paralog retains

the original ancestral function.

3.3 Small and Large Scale Gene Duplications

Small scale duplications refer to processes that result in the duplication of one or few genes, or some-

times even just a part of a gene. When genes are duplicated, they may be fixed in the population to

become an invariant part of the genome.

Occasionally large scale duplication occurs, whereby a whole genome, one or more whole chromo-

somes, or a large chromosomal segment is duplicated. Typically this type of duplication is followed

by massive gene loss and a period of intensified genome rearrangement.

Because of mutational divergence and functional change it is often difficult to distinguish paralo-

gous genes from orthologous genes. Several methods have been developed over the years. In the next

section we will discuss some of the most important of these.

3.4 The Orthology–Paralogy Distinction

Sets of orthologous genes are used to explore evolutionary history and to infer phylogenies, largely

on the basis of nucleic acid and protein sequence divergence. Using paralogs, mistakenly identified as

orthologs, in two species instead of true orthologs leads to errors in phylogenetic inference, especially

with respect to speciation events for which these paralogs are out-paralogs.

Tree-based methods for distinguishing between orthologs and paralogs are designed to avoid such

problems. These methods often rely on the comparison of a gene tree with a species tree.

If the gene trees and species trees have been constructed accurately, the identification of orthologs

is straightforward, namely the pairs of genes that diverge as result of speciation of their most recent

common ancestor.

In the following section we present some of the tree-based methods available for this purpose.

3.4.1 Tree-based Methods

Methods based on gene tree/species tree reconciliation involve the identification of every internal

node of the gene tree as a duplication or speciation event, by taking into account the phylogeny of

the species tree. The gene tree with each internal node labeled as duplication or speciation is called

the reconciled tree. From this tree it is straightforward to deduce orthologs and paralogs, so that the

distinction between orthology and paralogy can be reduced to tree reconciliation. Fig 3.3 shows an

example of a species tree, a gene tree and their reconciliation tree.

21



Homologs, Paralogs and Orthologs

A B C D

A1 B1A2 B2 C1 D1 D2C2 D3

A1 B1 A2 B2 C1 D1 D2C2 D3

A1 B1 A2 B2 C1 D1 D2C2 D3

(a)

(b)

(c) (d)

Figure 3.3: (a) A species tree.(b) A gene tree.(c) The reconcilied tree, the gene tree is embeeded in

the species tree. (d) The reconciled tree with duplication/speciation events at the internal

nodes. Red circles represent speciation event, blue square duplications, a gene loss is

represented with a green cross.

Most reconciliation tree methods rely on parsimony: the reconciliation that requires the least num-

ber or duplications and losses is suggested as the solution to the reconciliation problem. Some methods

may weight duplications and losses differently.

The reconciliation problem has some limitations in practice which have given rise to refinements to

solve them. In Table 3.1 we summarize some of them and in the following sections we discuss them

in more detail.

Unrooted trees

Reconciliation methods often require that the species tree and the gene tree be rooted. Frequently,

however, rooting information is not directly available. To root the gene tree Hallett and Lagergren

[2000] adopted the principle of parsimony. The root is chosen in such a way that the gene tree has the

minimum number of duplications. Storm and Sonnhammer [2002] present Orthostrapper a method

that analyzes a set of bootstrap trees to estimate orthology support values from pairs of sequence in a

multiple aligment. If the gene tree is unrooted, they place the root at the center of tree based on the

idea that there is a molecular clock [Farris, 1972]. A similar method is implemented in the software

package RIO [Zmasek and Eddy, 2002], which estimates how reliable orthology assignments are by

performing analyses over bootstrap-resampled phylogenetic trees. For the case of multiple optimal

rootings the method will select the tree that minimizes the tree height.

In the case of unrooted species trees, the rooting approach most often used is the identification of

an outgroup species. A reliable outgroup must be closely enough related to share significant DNA
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Method Description

Orthostrapper Uses bootstrap trees to calculate orthology. If the gene tree is unrooted, a

midpoint is calculated and the root is placed here.

RIO Estimates the reliability of orthology assignments by performing analyses over

bootstrap-resampled phylogenetic trees. In the case of multiple optimal root-

ings the method selects the tree that minimizes the tree height.

TreeBeST Integrates multiple tree topologies, combining this with a species-tree aware

penalization of those topologies inconsistent with known species relationships.

Treats the problem of species uncertainty by treating ambiguous regions of the

tree as multifurcarting nodes.

LOFT A species trees is not needed. The method makes use of the species-overlap

method, constructing hierarchical groups that highlight relatedness differences

between orthologous and paralagous genes.

PhylomeDB Alignment trimming phases and evolutionary models are implemented in a

pipeline which makes use of the species-overlap method.

MetaPhOrs Integrates information from multiple phylogenetic trees obtained from differ-

ent sources. Makes use of the species-overlap algorithm.

COCO-CL Explores the correlation of evolutionary histories of homologous genes in a

more global context by using a measure of sequence distance.

HOGENOM For a given tree topology, infers speciation and duplication events and then

identifies probable orthologs and paralogs. If the gene tree has unresolved

regions, it collapses them into multifurcating nodes.

Softparsmap Algorithm that enables soft parsimony by the mapping of gene trees onto

species trees and subsequent modification of uncertain or weakly supported

branches. The method takes account of low bootstrap values while minimiz-

ing the number of gene duplication and loss events.

TreeFam Orthologs and paralogs are inferred from the phylogenetic tree of a gene fam-

ily. After the automatic generation of gene trees, these are curated by experts.

PHOG Relies on pre-computed gene trees in the first step and thereafter on tree dis-

tance thresholds that can be defined by the user.

Table 3.1: Tree-based methods for orthology inference.

or protein homology with the species under study, but it must be clear that it is less closely related

to these than they all are to each other. Huerta-Cepas et al. [2007] make use of this method for the

rooting of gene trees.

Uncertainty in species trees

Most reconciliation methods rely on the correctness of the species tree. Often, however, these trees

contain uncertainties. TreeBeST [Li et al., 2006] tackles this problem by treating ambiguous regions

of the tree as multifurcating nodes. This is integrated into the EnsemblCompara project [Vilella et al.,

2009].

PhylomeDB [Huerta-Cepas et al., 2007] and MetaPhOrs [Pryszcz et al., 2011] adopted an approach
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that does not require a species tree. This approach identifies, for each given internal node in the gene

tree, the set of species represented in each subtree of the node. If the intersection of the sets is empty,

then a speciation event is inferred, otherwise a duplication event is. This method, which was called

species overlap by the authors was first implemented in LOFT [van der Heijden et al., 2007]. A similar

method for unknown species trees is implemented in BranchClust [Poptsova and Gogarten, 2007].

This relies on the identification of subtrees in gene trees. These subtrees consist of sequences found

in most species and the method in effect delineates COGs-like clusters.

A different approach that also constructs clusters, but in a hierarchical way, is implemented in

COCO-CL [Jothi et al., 2006]. This method explores the correlation of evolutionary histories of homol-

ogous genes in a more global context by using a measure of sequence distance.

Uncertainty in gene trees

Another problem in reconciliation methods is the assumption that the gene tree is correct. As with

uncertainty in species trees, however, this assumption does not always hold true. In HOGENOMDufayard

et al. [2005] proposed to take care of this problem by collapsing unresolved parts of the gene tree into

multifurcating nodes, in the same way as it is done for species trees. In Softparsmap Berglund-

Sonnhammer et al. [2006] propose a similar approach by collapsing only branches with low bootstrap

values.

A more elaborate approach is adopted by TreeFam [Li et al., 2006]: after the automatic generation

of gene trees, these are curated by experts. As orthologs and paralogs are inferred from the phy-

logenetic tree of a gene family and not from BLAST matches, curators only edit a tree if additional

considerations, such as in gene function analysis, strongly suggest that the automatically generated

tree is incorrect. PHOG [Datta et al., 2009] is another method that relies on pre-computed gene trees

in the first step and then on user-defined tree distance thresholds. For each sequence (leaf in the gene

tree), the closest sequence in each other species is identified by a tree distance defined by the sum over

the edge lengths. In this way, this method obviates the need for a species tree, since it only requires

the list of species, the tree topology and the tree distances.

3.4.2 Graph-based Methods

Explicit phylogenomic analysis may be the best approach to the inference and differentiation of or-

thologs and paralogs. Trees, however, have the disadvantage that constructing them is computationally

expensive when the number of leaves is large. Moreover tree reconstruction is sensitive to noise, so

that when automated methods are used for large number of sequences at large evolutionary distances

the output can be biased by the inaccuracy of multiple sequence alignments [Felsenstein, 2004]. A

fundamental problem is that, aside from multicellular eukaryotes, evolution does not seem to have

conformed to the descent-with-modification model that gives rise to tree-like phylogenies. The evo-

lution of prokaryotes and viruses seems to have involved a substantial component of horizontal gene
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Figure 3.4: (a). An evolutionary scenario with three speciation events represented by circles and two

duplication events represented by squares. (b). The orthology graph. Each oval represents

a species. The color of the edges between genes represents the corresponding speciation

in the tree in (a) that makes the pair of genes to be orthologs. Due to a duplication after

speciation, in-paralogs C1 and C2 are both orthologs to gene D1. Here one can observe

1− to− 1 orthology relationship between genes A1 and B1, 1− to−many between gene

D1 and genes C1 and C2 and many− to−many between genes A1, A2 and genes C1, C2.

transfer [Puigbo et al., 2010]. A graph representation of their evolutionary history, such as a reticu-

lated tree or even a more general structure, would then be more appropriate in this case. To treat the

problem of distinguishing orthology and paralogy within this more general framework, graph-based

methods have been proposed to detect and differentiate among evolutionary relationships between

genes in those organisms. Nodes in the graphs represent genes, and edges the paralogy or orthology

relationship. Fig. 3.4 shows an example of this approach.

Methods motivated by this approach typically run in two phases:

• The graph construction phase: pairs of orthologs are inferred.

• The clustering phase: clusters of orthologs are constructed.

Approaches for the graph construction phase

Using sequence similarity scores as a measure of relatedness, algorithms identify orthologous genes

for each pair of genomes. This is commonly done by identifying, for each gene, its ortholog in the

other genome using the criterion of bidirectional best hit (BBH). This requires, for a candidate pair of

orthologs a, b, that a is the best hit for b and vice versa, that b is the best hit for a. In Fig 3.5 a scenario

of the BBH approach is pictured. Due to the limitations of the BBH approach, refinements have been

developed, as found in Table 3.2.

In Inparanoid [Remm et al., 2001] the authors improve on the BBH approach by identifying one-

to-many and many-to-many orthologous relationships. If a duplication event takes place after the
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Subfunctionalization

Recent Duplication

Figure 3.5: An escenario using the BBH approach to identify orthologous genes. (a) Three horizontal

bars represent three different species. Circles on each bar represent genes belonging to

that species. Colors of the circles indicate a certain biological function; same colors in-

dicate the same biological function. Black bi-directional arrows represent BBHs: a solid

BBH arrow means a true positive, i.e., it links two genes with the same function, and a

dashed BBH arrow means a false positive, i.e., it links two genes with different functions.

Duplicated genes are connected by blue lines. Genes are arranged into three columns on

the panel. The first column includes four genes. The two green genes from species A and

B is a pair of true positive BBH. There is a duplication event that caused a subfunctional-

ization event in species C, i.e., the original green function is shared by the blue and yellow

functions in this species. Green gene from species A is connected through a BBH linkage to

the yellow gene in species C, but their function are not identical. Similarly, green gene in

species B is connected to blue gene in species C. Here, subfunctionalization results in two

false positive BBH linkages. In second column, there are three orange circles, which should

have been all connected by true positive BBHs. However, if the function corresponding to

the orange circle has some relationships with that corresponding to red circle at the third

column, the orange gene from species B and a red gene from species A are detected as a

pair of BBH. This is an example of false positive, which is shown as a dashed BBH arrow.

The third column is is a group of four red circles representing four genes with identical

functions. There is a recent gene duplication event in species A, which creates two par-

alogs (two red circles on the first bar) with the same biological function. (b) A network

showing the topology of a plausible ortholog group. Nodes are genes and edges are BBH

linkages. There are four different functions in this ortholog group (indicated by the four

colors). Further partition work is required. (This figure is a partial self-reproduction of

one in [Fang et al., 2010]).

speciation event at the most recent origin of both genomes under study, the result will be a set of in-

paralogs, all as orthologs to one or more genes in the other organism, depending whether duplication

occurs in one or both lineages. OrthoInspector [Linard et al., 2011] is a software system that also

incorporates in-paralog detection before investigating the BBH between pairs of groups. In addition, it

detects contradictory information between groups.

Another approach that makes use of the BBH is implemented in the pipeline DODO (Domain-based

detection of orthologs) [Chen et al., 2010]. In a first step, DODO classifies proteins into groups based

26



3.4 The Orthology–Paralogy Distinction

Method Description

Inparanoid Identifies BBH for pairs of organisms and then applies statistical rules to iden-

tify in-paralogs that might be merged due to duplication after speciation.

OrthoInspector software system that detects in-paralogous groups and then investigates the 1-

to-1, 1-to-many and many-to-many BBH between pairs of groups. In additional,

it detects contradictory information between groups.

DODO Uses domain-based detection of orthologs to classify proteins into groups and

then applies BBH to each of them.

Roundup Calculates maximum likelihood of the evolutionary distance between pairs of

sequences.

EggNOG Contains orthologous groups constructed hierarchically through identification

of BBH and triangular linkage clustering.

OrthoDB Hierarchical catalog of orthologs.

OrthoMCL Uses a Markov clustering involving iterative simulations of randomized flow

on edges of the orthology graph obtained by BBH.

ProteinOrtho Applies an adaptive best match method together with spectral clustering to

define co-orthologs.

Table 3.2: Graph-based methods for orthology inference.

on protein domain information. This approach is motivated by the idea that domain composition

is more likely conserved through evolution than similarity between primary orthologous sequences.

Thereafter, orthology relationships are refined by identifying the BBH in each protein group.

An alternative to sequence similarity measures is the calculation of maximum likelihood of the

evolutionary distance between pairs of sequences. This approach is implemented in Roundup [Wall

et al., 2003] and is motivated by studies that have shown that often the nearest phylogenetic neighbor

is not the one that obtains the closest BLAST hit in the alignment [Koski and Golding, 2001].

Approaches for the ortholog clustering phase

The concept of Clusters of Orthologous Groups (COGs) was first introduced by Tatusov et al. [1997];

the motivation was to work with clusters of orthologs instead of lists of orthologous pairs. The clus-

tering algorithm first identifies all triplets of genes connected to each other (triangles) and then merges

them if they share a common face. When there are no more triangles to be added, the algorithm stops.

The idea behind this approach is to cluster genes that have diverged from a single gene belonging to

the most recent common ancestor of the species involved.

OMA [Altenhoff et al., 2011] is a database where, for two genomes, clusters of genes are defined as

groups where all pairs of genes are orthologs. To avoid errors when classifying orthologs, and not to

confuse them with paralogs, when an ortholog is missing the method verifies what the authors define

as “stable pairs” [Roth et al., 2008] with sequences in a third genome that can act as “witnesses” of

evolution.

Hierarchical clustering is an approach adapted by EggNOG [Jensen et al., 2008] and OrthoDB [Wa-
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terhouse et al., 2013], where groups of orthologs are clustered with respect to a particular speciation.

In this way, the groups will contain orthologs and in-paralogs with respect to that particular speciation.

Clustering is performed by triangular linkage in both methods.

A different clustering approach is presented by OrthoMCL [Li et al., 2003], making use of Markov

Clustering [van Dongen, 2000]. The process starts by simulating a random walk in the weighted graph

where each edge has an orthology score. Later the Markov Clustering calculates the probability of

two genes to belong to the same cluster. According to these probabilities the graphs is then partitioned

into orthologous groups.

A program that can be run in stand-alone mode is ProteinOrtho [Lechner et al., 2011] whose

clustering method focuses on analysing an edge-weighted directed graph. The result is disjoint com-

plete multipartite subgraphs where a species is represented at most once in each of them, therefore

each subgraph represents a set of orthologs.

3.4.3 Synteny

Most of the methods mentioned in the previous sections rely on sequence similarity and do not take

into account local gene order (synteny) that might provide valuable evolutionary information. Synteny

is more conserved between closely-related organisms. When a set of orthologs surround a set of

homologous genes, it is likely that those homologs are orthologs as well [Jun et al., 2009].

Synteny information has been introduced as a second step in several methods to increase confi-

dence in orthology prediction. After investigating each gene’s neighbourhood only genes in similar

neighbourhoods are kept as potential orthologs.

OrthoParaMap [Cannon and Young, 2003] and PhyOP [Goodstadt and Ponting, 2006] are orthology

prediction tree-based methods that combine phylogenetic trees with synteny information between

pairs of closely related species.

SYNERGY [Wapinski et al., 2007] infers orthology of all genes among a large group of species

and uses synteny information when available for all the species. The identification of mammalian

orthologs using local synteny was performed by MSOAR [Shi et al., 2010]. This approach incorporates

tandem duplication information based on genome rearrangement when assigning orthology.

The Encapsulated Gene-by-gene Matching (EGM) [Mahmood et al., 2010] is a graph-based method

that identifies orthologs and conserved gene segments for pairs of genomes. EGM constructs a global

gene matching with maximum weight in the bipartite graph taking into account gene context, orien-

tation information and sequence similarity. This matching will result in a one-to-one correspondence

between putative orthologs in the pair of genomes.

A similar approach is proposed by Sankoff [Sankoff, 2011], where pairwise synteny blocks are

constructed as a first step, making use of sequence similarity. This is followed by the combination

of all the possible orthologs thus identified from all pairs of species into sets from which optimal

multipartite subgraphs may be extracted. Here a species is represented at most once in each subgraph,

so that it represents a set of orthologs.
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3.5 Concluding Remarks

Identification of orthologous genes is important in elucidating the evolutionary history of species and

their genes. Here we have presented several methods for orthology identification that fall into two

main classes: tree-based methods and graph-based methods. In both classes synteny information can

be added to increase confidence in orthology prediction. Tree-based models employ specific models

of evolution and therefore the identification of orthologs, co-orthologs, paralogs and in-paralogs falls

out naturally. The disadvantages of these methods are that they are computationally demanding and

that not all organisms have a tree-like evolutionary history, in particular the prokaryotes and viruses.

In such cases graph-based methods are more suitable.

We have seen that the nature of duplication mechanisms lead to several difficulties in distinguishing

between paralogs and orthologs. In the course of this work we will focus on evolutionary histories

represented by trees. Once a reconciled tree is reconstructed the identification of orthologous and

paralogous genes is straightforward; but we can never be sure that the reconstructed reconciliation tree

is the right one. Moreover, for a given set of genes and species one would like to know beforehand

whether it is even possible to reconstruct their evolutionary history.

In this thesis we study the mathematical properties of species trees, gene trees and their reconcilia-

tion trees to characterize valid orthology relations and a valid mapping of the gene tree onto a species

tree.
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CHAPTER 4

Mathematics of Phylogenies

T he reconstruction of the evolutionary history of a set of genes and a set of species is still a

challenge in phylogenetics. Therefore tree reconstruction is an important task. In this chapter,

we present some previous results on phylogenetic trees and rooted triples which play an important

role determining properties of phylogenetic trees and supertrees. Here we also present a summary

of supertree methods for the reconstruction of large phylogenetic trees. Surprisingly, phylogenetic

trees have a 1-to-1 correspondance to symbolic ultrametrics and some properties of this relation are

presented as well.

4.1 Introduction

A phylogenetic tree is a tree that represents evolutionary relationship between species. Internal nodes

represent speciation events and the branching structure of the tree reflects the species tree evolution.

All the species in the phylogenetic tree have one common ancestor, this is depicted as the root of the

tree. Extant species are depicted as the leaves of the tree.

Phylogenetic trees are used to represent tree-like evolutionary histories. The inference of a phyloge-

netic tree that contains a large number of leaves is a difficult task due to the computational complexity

that this requieres.

An approach that has been used more often in the recent years is the divide-and-conquer-based

supertree method [Bininda-Emonds, 2004a, Rauch Henzinger et al., 1999, Jiang et al., 2002]. A

supertree is the result of merging many smaller overlapping phylogenetic trees into a single larger

tree.

In the following sections, we present some mathematical results of phylogenetic trees and su-
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pertrees. Unless stated otherwise, we will follow the notation in [Semple and Steel, 2003].

4.2 Supertrees

Supertrees have been used to combine rooted phylogenetic trees with overlapping leaf sets. The most

widely used method is Matrix Representation with Parsimony analysis (MRP) [Ragan, 1992, Baum,

1992]. This supertree method analyzes multiple trees whose internal nodes are ordered hierarchically.

This method is based on nodes instead of on full trees. This allows to combine data sets with not

necessarily the same taxa. However the taxa can be overlapping [Baum, 1992]. Other more recent

methods have been developed, examples are: MRD (Matrix Representation with Distances) [Lapointe

and Cucumel, 1997], MRC (Matrix Representation with Flipping) [Eulenstein et al., 2004], MRC (Ma-

trix Representation with Compatibility) [Purvis, 1995], and Bayesian Supertrees [Bininda-Emonds,

2004b].

Aho et al. [1981a] have given a polynomial algorithm for determining whether a set of rooted

phylogenetic trees is compatible. In [Semple and Steel, 2003] this algorithm is described and called

BUILD. In the following subsection we describe this approach.

4.2.1 The Algorithm BUILD

In this subsection we review the algorith BUILD by Aho et al. [1981a].

This algorithm constructs a phylogenetic tree T on X consistent with a set R of compatible phylo-

genetic trees all having leaves in X . We say that R is compatible if R = /0 or if there is an phylogenetic

tree T on X that displays every tree contained in R.

The main idea of of the algorithm is to find a partition of the leaf set X according to the trees

contained in R. The algorithm will output a tree with a root node whose children are the roots of the

trees obtained by recursing on each part of the partition. The base case is when the leaf set contains

only one leaf. Then a tree with this single leaf is returned.

The partition of the set of leaves X is performed by BUILD using an auxiliary graph that that plays

a role in the recursion of the algorithm. This graph is defined as following: let X ′ be a subset of X ,

then define the graph [R,X ′] with vertex set X ′. Put an edge between vertices x and y if there exists a

z ∈ X ′ and a T ∈ R such that T |{x,y,z} is the restricted subtree in which the path from x to y does

not intersect with the path from z to the root. This graph is called the clustering graph on X ′ induced

by R. Fig. 4.1(b) shows an example of this graph for where R = {T1,T2,T3,T4} shown in Fig. 4.1(a),

and X = {a,b, ...,g}.

This approach has been motivated by the following Proposition by Aho et al. [1981b]:

Proposition 3. If [R,X ] has only one connected component and |X |> 1 then R is not consistent with

any phylogenetic tree.

32



4.2 Supertrees

The key observation here is that for any restricted subtree T |{x,y,z}, the leaves labeled by x and y

cannot descend from two different children of the root of T , since x and y must belong to the same

block [Jansson et al., 2012].

Fig. 4.2 illustrates the output tree of BUILD when applied to the set of trees from Fig. 4.1(a).

Algorithm 1 BUILD(R,v,T)

Input : A collection R of rooted phylogenetic trees and a vertex v.

Output: A rooted phylogenetic tree T that displays R with root vertex v, or the statement R is not

compatible.

1 Let X = x1,x2, ...,xn be the label set of R. if |X |= 1 then

2 output the rooted phylogenetic tree consisting of the single vertex v labelled by x1.

3 end

4 if |X |= 2 then

5 output the rooted phylogenetic tree consisting of the single vertex v labelled by x1.

6 end

7 if |X | ≥ 3 then

8 construct [R,X ].

9 end

10 Let X1,X2, ...,Xk denote the vertex sets of the components of [R,X ]. if k = 1 then

11 stop and output R is not compatible.

12 end

13 for i = 1 → k do

14 call BUILD(Ri,vi,Ti), where Ri is the collection of rooted phylogenetic trees obtained from R by

restricting each tree in R to Xi. if BUILD(Ri,vi,Ti) outputs a tree then

15 attach Ti to v via de edge {vi,v}.

16 end

17 end

Semple and Steel [2003] have presented the following results:

Theorem 4. Let R be a collection of rooted phylogenetic trees. Then BUILD applied to R either

(i) outputs a rooted phylogenetic tree that displays R if R is compatible; or

(ii) outputs the statement “R is not compatible” otherwise.

In Algorithm 1 we reproduce the description of BUILD. Note that a more efficient solution of the

same problem has been described e.g. by Rauch Henzinger et al. [1999], however the authors restrict

the set R to trees that only contain three species.
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Figure 4.1: (a) The set of phylogenetic trees R . (b) The auxiliary graph [R,X ].

4.2.2 Rooted triples

Rooted trees can be analysed in terms of their smallest phylogenetically informative subtrees called

rooted triples. In this subsection we will present some previous results related to rooted triples.

The importance of sets of rooted triples stems from the fact that the set RT of rooted triples dis-

played by a phylogenetic tree T uniquely determines T up to isomorphism, i.e. if T ′ is a phylogenetic

tree for which RT = RT ′ holds then T and T ′ must be isomorphic. In fact, a more general result of

this nature is presented by Semple and Steel [2003]:

Theorem 5. Let R be a collection of triples so that the union of their leaf sets is X. Then, when

applied BUILD to R, either:

(i) outputs a phylogenetic tree on X that displays R if R is compatible; or

(ii) outputs the statement “R is not compatible”.

Ng and Wormald [1996] give two algorithms: ONETREE and ALLTREES, which take a set of rooted

triples and fan triples and return a compatible tree and a list of all compatible trees, respectively. In

[Bryant and Steel, 1995] a simplification of ONETREE is presented, which does not handle fan triples

and that has a time complexity of O(mn) for a set of m triples and n leaves.

The requirement that all the triples in the set must be compatible, allows us to infer new phyloge-

netic relations from the input set and by iteration, we can obtain the closure of a set of triples.
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a b c d e f g

Figure 4.2: The BUILD output tree with R = T1,T2,T3,T4 from Fig. 4.1(a).

Closure of a set of triples

Given R, a set of of rooted triples, we say R ⊢ ab|c if for each phylogenetic tree that displays R,

displays ab|c as well.

Following the notation in [Grünewald et al., 2007], let co(R) be the set of rooted phylogenetic trees

on X that display all the triples in R. If co(R) is not empty, then R is compatible.

The closure of R is defined by

cl(R) =
⋂

T∈co(R)

RT

where RT is the set of all induced triples displayed by T as defined before.

We can as well define the closure set as

cl(R) = ab|c : R ⊢ ab|c

The set R is closed if for each triple R ⊢ ab|c implies that ab|c ∈ R

This closure operator satisfies the following properties:

• cl(R) is the minimal closed set containing R.

• cl(R) = cl(cl(R)).

• R is closed if and only if R = cl(R).

• T is compatible with R if and only if T is compatible with cl(R).

The closure operator leads to the following Lemma and Proposition [Grünewald et al., 2007]:

Lemma 6. Let R be a set of rooted triples. Then R is incompatible if and only if there exists a set

R ′ ⊂ R such that for every rooted triple ab|c ∈ R−R ′ either R ′ ⊢ ac|b or R ′ ⊢ bc|a.

For the Proposition we define:

[R1,R2] := {ab|c ∈ R1 : ∄R ′ ⊆ R2 : R ′ ⊢ ac|b or R ′ ⊢ bc|a}.
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Proposition 7. Let R1 and R2 be two sets of rooted triples (compatible or not) for which R1 ⊆ R2.

Then [R1,R2] is compatible. In particular [R1,R1] is compatible.

This proposition is relevant for supertree methods, since we want to ensure that if yz|x is displayed

by the output tree, then yz|x is an input triple or implied by some combination of input triples and no

input triple or combination of input triples displays or implies xz|y or xy|z.

Closure of minimal sets that provides all the information in a tree

Triples play an important role in the branching information of supertrees, in [Rauch Henzinger et al.,

1999] it is shown that a phylogenetic tree with n leaves can be represented by a set of O(n) rooted

triples, i.e. one rooted triple per edge. Here we show some of the definitions presented in [Grünewald

et al., 2007] that lead to this result.

We say that a phylogenetic tree T ′ refines another phylogenetic tree T if the set of clusters of T is

a subset of the set of clusters of T ′, then we write T 6 T ′.

Definition 8. A collection of rooted triples R identifies a rooted phylogenetic tree T if T displays R

and every other tree that displays R is a refinement of T .

Lemma 9. For any subset R of RT , cl(R) = RT if and only if R identifies T .

A rooted triple xy|z distinguishes an edge e in T if the path from x to z in T intersects the path from

y to the root of T only on the edge e.

Corollary 10. If R is a minimal set of rooted triples identifying T then each element of R distin-

guishes an internal edge of T .

4.2.3 Inconsistent Set of Triples

Data obtained experimentally often contain errors, meaning that there will be no tree consistent with

all the trees in the input set. A single error in one of the input trees will make BUILD return the

null tree. Optimization versions called the maximum inferred consensus tree problem (MICT) and the

maximum inferred local consensus tree problem (MILCT) have been introduced in [Gasieniec et al.,

1999].

MICT deals with the construction of a rooted tree that is consistent with as many LCA constraints

as possible from a given set. An LCA constraint on a set X is a constraint of the form {i, j}< {k, l},

where i, j,k, l ∈ X , that specifies that the lowest common ancestor of i and j is a proper descendant

of the lowest common ancestor of k and l. If the LCA constraint is of the form {i, j} < { j,k}, the

constraint is called a 3-leaf constraint which is the specific case MILCT of MICT to determine the

relative topology of i, j and k.

Jansson [2001] has proved that both MICT and MILCT are NP-complete. Therefore, other authors

have developed approximations to solve this problem [He et al., 2006, Byrka et al., 2010a, Wu, 2004,
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Byrka et al., 2010b]. Here we are specifically interested in MILCT since it deals with 3-leaf constraints

that represent triples as defined in the previous subsection.

These approximations can be divided in two categories:

• Maximum rooted triples consistency problem (MaxRTC)

• Minimum rooted triples inconsistency problem (MinRTI)

To introduce these problems we need the two following defintions for a phylogenetic tree T over a

leaf set X and a set of rooted triples R over X :

Definition 11. J(R,T ) = |R ∩RT | is the number of rooted triples in R that are consistent with T .

Definition 12. I(R,T ) = |R \RT | is the number of rooted triples in R that are inconsistent with T .

Maximum rooted triples consistency problem

In [Byrka et al., 2010a] the MaxRTC is defined as following:

Definition 13. Given a set R of rooted triples with leaf set X, output a phylogenetic tree T leaf-labeled

by X which maximizes J(R,T ).

In [Gasieniec et al., 1999] the greedy top-down algorithms One-Leaf-Split and Min-Cut-Split

were presented and were the first polynomial-time approximation algorithms to solve MaxRTC. The

idea of One-Leaf-Split is to construct a catepillar tree that is consistent with at least one third of

the whole input set of triples. On the other hand, Min-Cut-Split performs similarly to BUILD, with

the exception that the edges are weighted in the auxiliar graph and if this forms only one connected

component with more than one vertex, then a minimum weight edge cut process is carried out to

delete some edges so that the algorithm can continue instead of returning null. Semple and Steel

[2000] independently developped their heuristic called MinCutSupertree which uses the same idea

for merging phylogenetic trees, later Page [2002] presents the modified version of MinCutSupertree

to tackle some of the weaknesses of this method.

Snir and Rao [2006] presented an approach called MXC which performs similar to Min-Cut-Split

with the difference that instead of deleting edges, MXC adds edges in the auxiliary graph in order to

find a cut that maximizes the ratio between the extra edges and the ordinary edges when BUILD is

stuck with one connected component.

A different approximation named Best-Pair-Merge-First is presented by Wu [2004] who gives

an bottom-up greedy heuristic which runs in polynomial time and makes use of the well known

UPGMA/WPGMA and Neighbor-Joining methods [Felsenstein, 2004]. The idea of this approach is to

repeatedly merge two sets A and B and then creating a node representing the merged set and whose

children are the already existing nodes that represent sets A and B. The algorithm starts with singleton

sets, each containing a single leaf label.
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Byrka et al. [2010a] present the bottom-up algorithm Modified-BPMF which outperforms and is a

modified version of Wu’s Best-Pair-Merge-First. The idea here is to merge two existing trees Ti

and Tj whose leaves participate in many rooted triples of the form xy|z, where x belongs to Ti and y

to Tj but z to none of them. Similar to One-Leaf-Split, Modified-BPMF guaranties that the output

tree is consistent with at least one third of R.

Minimum rooted triples inconsistency problem

Similarly, in [Byrka et al., 2010a] the MinRTI is defined as following:

Definition 14. Given a set R of rooted triples with leaf set X, output a phylogenetic tree T leaf-labeled

by X which minimizes I(R,T ).

As the algorithm Min-Cut-Split [Gasieniec et al., 1999] performs the deletion of edges in the

auxiliary graph when this is formed by only one connected component, this corresponds to removing

one or more rooted triples from R. By introducing a parameter m which is the minimum total weight

of triples to remove then this implies that Min-Cut-Split gives as well an approximation algorithm

for MinRTI.

Byrka et al. [2010a] investigate as well approximation algorithms for MinRTI that can be used to

approximate MaxRTC.

The forbidden rooted triples consistency problem [He et al., 2006] is a different approach where a

set of good triples and a set of forbidden triples are given, the idea here is to construct a phylogenetic

tree that is consistent with the set of all good triples and that is inconsistent with the set of forbidden

ones. This approach is motivated by the discovering of some rooted triples that are very unlikely to

appear as induced subtrees in the true tree. The algorithm is an extension of BUILD that deals with a

nonempty set of forbidden rooted triples.

4.3 Minimal Trees

Supertree methods have been criticized because the output tree can yield evolutionary relationships

among leaves that are not supported by any of the input trees, which can created novel clades that

should be regarded as spurious [Bininda-Emonds, 2004a]. For this reason supertrees containing as

few internal nodes as possible while still being consistent with the input trees need to be studied in

order to avoid introducing unsupported branching information.

As we have seen so far, most of supertree methods use the same principle as BUILD, however in the

case where the set of triples is consistent BUILD does not always produce a tree with the minimum

number of internal nodes. Therefore, for a given triple set R it does not necessarily generate a minimal

phylogenetic tree T that displays R, i.e., T may resolve multifurcations in an arbitrary way that is

not implied by any of the triples in R. The problem of constructing a tree consistent with R and

minimizing the number of interior vertices is NP-hard as proved by Jansson et al. [2012].
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Figure 4.3: (a) A consistent set of triples. (b) The auxiliary graph retrieved by BUILD. (c) Output

supertree by BUILD. (d) Minimal resolved supertree.

In fact, they have shown that the output tree produced by BUILD might have Ω(n) times more

internal nodes than necessary, where n is the cardinality of X , the leaf set of the input triples. As

shown in Fig. 4.3, BUILD will produce a tree with two internal nodes consistent with the triple set

R = {ab|z,cd|z,de|z}. One internal node is the parent of leaves a and b and the other internal node

the parent of leaves c, d and e, while the optimal solution is a tree with only one internal node which

is the parent of leaves a, b, c, d and e.

Jansson et al. [2012] furthermore, generalize this example by defining R as follows:

R = {x1x2|x0,x3x4|x0, ...,x2i−1x2i|x0}

This is a set of consistent triples for which BUILD will produce a tree with i internal nodes. How-

ever, a tree with a root node being the parent of leaf x0 and the internal node x whose children are

the 2i leaves x1,x2, ...,x2i is also consistent with R, showing that BUILD may produce a tree with Ωn

times more internal nodes that the minimally resolved supertree. From this observation the authors

define the minimally resolved supertree consistent with rooted triples problem (MinRS) as following:
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Input: A set R of rooted triples with leaf set X .

Output: A rooted, unordered tree whose leaves are distinctly labeled by X which has as few in-

ternal nodes as possible and which is consistent with every rooted triple in R, if such a tree exists;

otherwise, null.

As this problem has been proved to be NP-hard, the authors provide a modification to BUILD to

reduce the number of internal nodes. The idea is to compute a minimum coloring on undirected graph

and then merge nodes with receive the same color. In this graph each node represents one connected

component in the auxiliary graph, and edges are placed between two nodes C1 and C2 if R contains

a triple xy|z where x,y ∈ C1 and z ∈ C2 or vice versa. However whether this method gives always an

optimal solution or not to MinRS is still an open question.

Semple [2003] gives an algorithm that produces all minor-minimal trees consistent with R, i.e., if

T ′ is obtained from T by contracting an edge, T ′ does not display R anymore. He also proves that the

tree produced by BUILD is minor-minimal. However, depending on R, not all trees consistent with R

can be obtained from BUILD.

The definition of a minimal tree in this context is a rooted phylogenetic tree T that is consistent with

a set of triples R if no internal edge of T can be contracted so that the resulting tree is also consistent

with R. The purpose is to find the set T min
R

of all minimal trees consistent with R. The motivation

for finding T min
R

is that it contains all the information provided by the set of all phylogenetic trees

consistent with R since any other tree consistent with R that is not minimal can be deduced from

T min
R

by resolving internal nodes of some tree in from T min
R

.

Semple [2003] gives an algorithm called AllMinTrees that requires only polynomial time for the

calculation of each of the possibly exponentially many minor-minimal trees.

4.4 Symbolic Ultrametrics and the Link to Phylogenetic Trees

It turned out that there is a 1-to-1 correspondance between symbolic ultrametric and phylogenetic trees

when these are defined as symbolically dated trees. Ultrametrics are well-studied in phylogenetics as

they correspond to weighted, rooted trees.

In this section, we recall some results from Böcker and Dress [1998] and Semple and Steel [2003]

concerning symbolic ultrametrics and their relation to phylogenetic trees.

Suppose that T = (V,E) is a phylogenetic tree on X and that t : V → M⊙ is a map such that t(x) =⊙

for all x ∈ X . We call such a map t a symbolic dating map for T ; it is discriminating if t(u) 6= t(v), for

all edges {u,v} ∈ E. To the pair (T ; t) we associate the map d(T ;t) on X ×X by setting, for all x,y ∈ X ,

d(T ;t) : X ×X → M⊙; d(T ;t)(x,y) = t(lcaT (x,y)). (4.1)

Clearly this map is symmetric and satisfies (U0). We call the pair (T ; t) a symbolic representation of

a map δ : X ×X → M⊙ if δ (x,y) = d(T ;t)(x,y) holds for all x,y ∈ X ; it is called discriminating if t is
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Figure 4.4: A phylogenetic tree T = (V,E) on the set X = {a, . . . ,e}, together with a map t from the

set of interior vertices of T to the set of events M = {m1,m2,m3}, as indicated by the labels

on the interior vertices of T . The vertex in V that is the least common ancestor of c and e

has label m2 and so d(T ;t)(c,e) = m2.

discriminating (see Fig. 4.4 for an example of a discriminating symbolic representation). Note that

we call two symbolic representations (T ; t) and (T ′; t ′) of δ isomorphic if T and T ′ are isomorphic

via a map ψ : V (T )→V (T ′) such that t ′(ψ(v)) = t(v) holds for all v ∈V (T ).

In [Böcker and Dress, 1998], the following fundamental results concerning the relationship between

symbolic ultrametrics and symbolic representations are proven:

Theorem 15. Suppose δ : X ×X → M⊙ is a map. Then there is a discriminating symbolic represen-

tation δ (T ; t) if and only if δ (T ; t) is a symbolic ultrametric. Furthermore, up to isomorphism, this

representation is unique.

Given any symbolic ultrametric δ on X , we denote the unique discriminating symbolic representa-

tion of δ by (Tδ ; tδ ), tδ (u) = δ (x,y) for every pair of leaves x,y in T (u).

Another very importante result from the same authors that is related to rooted triples and supertrees

is stated in the following Theorem:

Theorem 16. Given the finite set X, there exists a canonical 1-to-1 correspondence between

(i) (isomomorphism classes of) rooted trees T = (V,E) with leaf set X

(ii) ternary relations
∫

defined on X (with (x,y,z) ∈
∫

denoted by xy
∫

z, for x,y,z ∈ X) satisfying

the following assertions for all x,y,z,w ∈ X

(H1) xx
∫

y ⇔ x 6= y

(H2) xy
∫

z ⇒ yx
∫

z

(H3) xy
∫

w and yz
∫

w ⇒ xz
∫

w

(H4) xy
∫

z and yz
∫

w ⇒ xz
∫

w.
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This correspondance is given by xy
∫

z if and only if lca(x,y) 6= lca(x,z) = lca(y,z), for all x,y,z∈ X

which makes the ternary relation satisfy (H1) - (H4). One can immediately observe that this has a

direct relation with discriminating symbolic representation for phylogenetic trees.

Now we are ready to present the following relevant result concerning triples and ultrametrics:

Lemma 17. Given a discriminating symbolic representation (Tδ ; tδ ) , let the map δ denote the induced

ultrametric. Let
∫

denote the ternary relation on X induced by T = (V,E). Then, for all x,y,z ∈ X we

have xy
∫

z if and only if one of the two following conditions holds:

• δ (x,y) 6= δ (x,z) = δ (y,z) , or

• δ (x,y) = δ (x,z) = δ (y,z), and there is some w ∈ X with δ (x,w) = δ (y,w) 6= δ (z,w) = δ (x,y).

In particular, the relation
∫

can be recovered and therefore T up to isomorphism from δ .

4.5 Concluding Remarks

We have presented definition and properties of phylogenetic trees. Moreover, we have analysed a

specific type of phylogenetic tree called “triple”, a phylogenetic tree in three leaves that has been

shown to contain much of the information of the phylogenetic tree that displays them. Furthermore,

we have presented methods for supertree reconstruction that use triple sets for the reconstruction of

phylogenetic trees. Finally, we have presented some results from Böcker and Dress [1998] that throw

light on the relation between symbolic ultrametrics and phylogenetic trees. These properties show

that this type of trees can be characterized mathematically in terms of symbolic representations. In

the following chapters, we will make use of the terminology here presented.
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CHAPTER 5

Orthology Relations, Symbolic Ultrametrics, and Cographs

Orthology detection is an important problem in comparative and evolutionary genomics, con-

sequently, a variety of orthology detection methods have been devised in recent years. Al-

though many of these methods are dependent on generating gene and/or species trees, as described in

Chapter 3, it has been shown that orthology can be estimated at acceptable levels of accuracy without

having to infer gene trees and/or reconciling gene trees with species trees. Thus, it is of interest to

understand how much information about the gene tree, the species tree, and their reconciliation is

already contained in the orthology relation on the underlying set of genes.

Here we shall show that a result by Böcker and Dress [1998] concerning symbolic ultrametrics,

and subsequent algorithmic results by Semple and Steel [2003] for processing these structures can

throw a considerable amount of light on this problem. We also prove some mild generalizations of

these results that are relevant when dealing with orthology relations. More specifically, we present

some new characterizations for symbolic ultrametrics. In so doing we shall also show that, somewhat

surprisingly, symbolic ultrametrics are very closely related to cographs, graphs that do not contain an

induced path on any subset of four vertices. We also show that the tree corresponding to a symbolic

ultrametric can also be recovered using cotrees, trees that can be canonically associated to cographs.

We conclude with some remarks on how these results might be applied in practice to orthology

detection.

5.1 Orthology Relations

Suppose that X is a set of genes having a common origin, and that their evolutionary history is given

by a gene tree, i.e. a (graph-theoretical) tree T = (V,E) with vertex set V , edge set E and leaf set X .
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Typically one can think of T as being derived from a species tree, in which case the interior vertices of

T will correspond to speciation or duplication events. In reality, other events such as horizontal gene

transfer might also occur, although we will not consider these explicitly here.

a b c d e

Figure 5.1: A phylogenetic tree T = (V,E) on the set X = {a, . . . ,e}, together with a map t from the

set of interior vertices of T to the set of events M = { ,�}. Leaves are depicted by the

symbol ⊙.

Two genes x,y in X are orthologs if the event corresponding to the (unique) least common ancestor

lcaT (x,y) of x and y in T is a speciation; if x and y are not orthologs then lcaT (x,y) will correspond

to some other events such as a duplication. In particular, we obtain a map t from the set of interior

vertices of T to some set M of events, and, consequently, a map d(T ;t) from distinct pairs x,y in X to

M given by putting d(T ;t)(x,y) = t(lcaT (x,y)). These concepts are illustrated in Fig. 5.1. Note that

in practice, we do not necessarily know the pair (T ; t), but that there are bioinformatics methods that

allow us to estimate the values d(T ;t)(x,y) for x,y ∈ X [Altenhoff and Dessimoz, 2009, Lechner et al.,

2011]. The question that interests us here can be stated as follows:

Given an arbitrary symmetric map δ : X ×X → M, i.e. an orthology relation, can we deter-

mine if there is a pair (T ; t) for which d(T ;t)(x,y) = δ (x,y) holds for x,y ∈ X distinct and, if not,

can we at least find some pair (T ; t) where this is almost true?

In the following sections we develop an answer to this question.

5.2 Symbolic Ultrametrics

Suppose that T = (V,E) is a phylogenetic tree on X and that t : V → M⊙ is a symbolic dating map.

Note that the symbolic tree representation of an orthology relation on a set of genes need not necessar-

ily be discriminating, since duplication events do not necessarily have to come directly after speciation

events and vice versa. To help deal with this, we shall now prove a simple result concerning the rela-

tionship between symbolic ultrametrics and arbitrary symbolic representations. To this end, suppose

that t is then not discriminating. Then there must exist some e = {u,v} ∈ E0 such that t(u) = t(v).
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Let ve denote the vertex in T obtained by collapsing the edge e. Then the tree Te = (Ve,Ee) with

vertex set Ve =V \{u,v}∪{ve}, edge set Ee = E \{e}∪{{ev,w} : {w,u} or {w,v} ∈ E} is clearly a

phylogenetic tree on X . Furthermore the map te : Ve → M⊙ defined by putting, for all w ∈Ve,

te(w) = t(w) if w 6= ve and t(ve) = t(u) (5.1)

is again a symbolic dating map for Te. Clearly, this construction can be repeated, with (Te; te) now

playing the role of (T ; t), until a phylogenetic tree T̂ = (V̂ , Ê) on X is obtained together with a dis-

criminating symbolic dating map t̂ on T̂ .

Proposition 18. Let δ : X ×X → M⊙ be a map. Then the following are equivalent:

(i) δ is a symbolic ultrametric.

(ii) there is a discriminating symbolic representation of δ .

(iii) there is a symbolic representation of δ .

Moreover, if δ is a symbolic ultrametric, and (T ; t) is any symbolic representation of δ , then (T̂ ; t̂) is

isomorphic to (Tδ ; tδ ).

Proof. (i) ⇒ (ii): Apply Theorem 15 (previous chapter).

(ii) ⇒ (iii): This is obvious.

(iii) ⇒ (i): It is straight-forward to check that if there is a symbolic representation (T ; t) of δ , then

δ must satisfy (U0)–(U3). Then apply Theorem 15.

To see that the final statement holds, note that if δ : X ×X → M⊙ has a symbolic representation

(T ; t), and e = {u,v} ∈ E(T ) with t(u) = t(v), then d(Te;te) = d(T ;t). Therefore, d(T̂ ;t̂) = d(T ′;t ′) must

also hold. Moreover, t̂ is discriminating by construction and thus, by Theorem 15, the proposition

follows.

We conclude this section by recalling a practical approach for constructing the discriminating sym-

bolic representation (Tδ ; tδ ) from a given symbolic ultrametric δ : X×X →M⊙ based on the algorithm

BUILD.

This result is a mild generalization from [Semple and Steel, 2003, p. 167-8] which states the fol-

lowing:

Theorem 19. Let M be a finite set, and let δ be a map from X ×X into M. Then, there is a discrim-

inating symbolic representation of δ if and only if δ is a symbolic ultrametric. Furthermore, up to

isomorphism, this representation is unique.

Before presenting our generalization stated in proposition 20 we introduce the following definitions.

Let δ : X ×X → M⊙ be a symbolic ultrametric on X and let R(δ ) be the set of triples xy|z, {x,y,z} ∈(
X
3

)
satisfying one of the following two conditions:
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(R1) δ (x,y) 6= δ (x,z) = δ (y,z), or

(R2) δ (x,y) = δ (x,z) = δ (y,z), and there is some w ∈ X such that δ (x,w) = δ (y,w) 6= δ (z,w) =

δ (x,y).

Furthermore, denote by Rδ ⊆ R(δ ) the subset of R(δ ) consisting only of the triples satisfying con-

dition (R1). If δ is a symbolic ultrametric then R(δ ) = RTδ
(Lemma 17).

Proposition 20. Let δ : X ×X →M⊙ be a map that satisfies Properties (U0)–(U2). Then the following

are equivalent:

(i) δ is a symbolic ultrametric.

(ii) R(δ ) is compatible.

(iii) Rδ is compatible.

In particular, δ is a symbolic ultrametric if and only if the BUILD algorithm applied to Rδ or R(δ )

returns a phylogenetic tree T , in which case the map t : V (T )→ M⊙, v 7→ δ (x,y) with v = lcaT (x,y),

x,y ∈ X, is well-defined and (T ; t) is isomorphic to the discriminating symbolic representation for δ .

Proof. Clearly all 3 assertions are equivalent if |X | = 3. So assume |X | ≥ 4. The implications (i) ⇒

(ii) and (ii) ⇒ (iii) are trivial in view of the observation preceding Proposition 20.

(iii) ⇒ (i): Suppose for contradiction that Rδ is compatible but that δ is not a symbolic ultrametric.

Then δ does not satisfy Property (U3) and so there exists some {x,y,u,v} ∈
(

X
4

)
such that δ (x,y) =

δ (y,u) = δ (u,v) 6= δ (y,v) = δ (x,v) = δ (x,u). But then R := {xy|v,xu|y,uv|x}⊆Rδ must hold which

is impossible as R is not compatible and thus Rδ cannot be compatible.

It follows from this result and Theorem 20 that we can decide in polynomial time whether or not

δ is a symbolic ultrametric by applying the BUILD algorithm to the set Rδ , which will also construct

a symbolic representation of δ in case it is. The following additional consequence, which will not be

used later, is also worth noting:

Corollary 21. Suppose δ is a symbolic ultrametric on X. Then δ has a unique symbolic representation

if and only if |R(δ )|=
(|X |

3

)
.

Proof. Suppose first that |R(δ )|=
(
|X |
3

)
. Then |RTδ

|=
(
|X |
3

)
in view of Lemma 17 recalled above as δ

is a symbolic ultrametric. Since only a binary phylogenetic tree can display
(
|X |
3

)
triples, it follows that

Tδ must be binary. But this implies immediately that (Tδ ; tδ ) is the unique symbolic representation

for δ because any symbolic representation for δ can be obtained from (Tδ ; tδ ) by resolving interior

vertices of Tδ .

Conversely, assume that δ has a unique symbolic representation (T ; t). Then T must be binary as

otherwise, by Proposition 18, there would exist an interior vertex of T that could be resolved to obtain

a new symbolic representation (T ′; t ′) for δ contradicting the uniqueness of (T ; t). But then (T ; t) is
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isomorphic to (Tδ ; tδ ) and so |RTδ
|=

(
|X |
3

)
. Since δ is a symbolic ultrametric on X , Lemma 17 implies

RTδ
= R(δ ) and so the corollary follows.

It follows from this corollary that if the tree Tδ is unique then it must be fully resolved and there is

a discriminating symbolic representation for δ since for each triple in R(δ ) which is displayed by Tδ ,

there is a discrimitating symbolic representation of δ as well.

5.3 Cographs and Cotrees

In this section, we investigate a connection between symbolic ultrametrics and complement-reducible

graphs or cographs. See section 2.5 for more material on cographs.

Let δ : X ×X → M⊙ be a map satisfying Properties (U0) and (U1) of Definition 2.2. For x ∈ X and

m ∈ M, we define the neighborhood Nm(x) of x with respect to m and δ as

Nm(x) = Nm,δ (x) := {y ∈ X : δ (x,y) = m} . (5.2)

Note that, in view of Property (U0), x /∈ Nm(x) and that, in view of Property (U1), y ∈ Nm(x) if and

only if x ∈ Nm(y). We also define, for each fixed m ∈ M, an undirected graph Gm(δ ) = (Vm,Em) with

vertex set Vm =Vm(δ ) = X and edge set

Em = Em(δ ) :=

{
{x,y} ∈

(
X

2

)
: y ∈ Nm(x), x ∈ X

}
. (5.3)

For example, if δ = d(T ;t) for the pair (T ; t) depicted in Fig. 5.2(b), then Gm1
(δ ) is the graph with

vertex set {a, . . . ,e} and edge set {{a,d},{a,c},{a,e},{b,d},{b,c},{b,e}}, Gm2
(δ ) and Gm3

(δ ) are

the graphs with the same vertex set as Gm1
(δ ) and edge set {{a,b},{c,d},{c,e}} and {{d,e}}, re-

spectively. The graph Gm(δ ) = (Vm,Em) is shown in Fig. 5.2(a).

In the following result we present the aforementioned connection between symbolic ultrametrics

and cographs:

Proposition 22. Let δ : X ×X → M⊙ be a map satisfying Properties (U0) and (U1). Then δ is a

symbolic ultrametric if and only if

(U2’) For all {x,y,z} ∈
(

X
3

)
there is an m ∈ M such that Em(δ ) contains two of the three edges {x,y},

{x,z}, and {y,z}.

(U3’) Gm(δ ) is a cograph for all m ∈ M.

Proof. Suppose that δ is a map as in the statement of the proposition. Note that we may assume

|X | ≥ 4.

Clearly, δ satisfies (U2) if and only if it satisfies Property (U2’). Moreover, it is easy to see that

(U3’) implies (U3). Thus if (U3’) and (U2’) hold, then δ is a symbolic ultrametric on X . Thus, it only
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Figure 5.2: For the symbolic ultrametric δ = d(T ;t), with (T ; t) pictured in (b), the three cotrees

(T (Gmi
(δ )),λGmi

(δ )), i = 1,2,3, pictured in that order from left to right in (c). Note that

the tree T depicted in (b) refines each of the cotrees. The corresponding Gmi
(δ ) is depicted

in (a).

remains to show that if δ satisfies (U2) and (U3) (i.e. δ is a symbolic ultrametric), then it must satisfy

(U3’).

Suppose this is not the case, i.e. (U3’) does not hold. Then there exists {x,y,u,v} ∈
(

X
4

)
and some

m ∈ M such that the subgraph of G(δ ) induced on {x,y,u,v} is a path of length three. Suppose that

this path is x,y,u,v. Then δ (x,y) = δ (y,u) = δ (u,v) = m and m 6∈ {δ (x,u),δ (x,v),δ (y,v)}. But

(U2) implies δ (x,u) = δ (x,v) = δ (y,v), and so (U3) does not hold. This contradiction completes the

proof.

Intriguingly, it is well-known in the literature concerning cographs that, to any cograph G, one can

associate a canonical cotree T (G) = (V,E). This is a rooted tree with root1 ρ , leaf set equal to the

vertex set V (G) of G and inner vertices that represent so-called ”join” and ”union” operations together

with a labeling map λG : V 0 → {0,1} such that λG(ρ) = 1 and, if v ∈V 0 and w1, . . . ,wk ∈V 0, k ≥ 2,

are the children of v, then |λG(v)−λG(wi)| = 1, for all i = 1, . . . ,k (cf. [Corneil et al., 1981]). For

1Note that in cotrees the root might have outdegree one; in such cases we will simply suppress this vertex and its outgoing

edge.
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example, if δ = d(T ;t) for the pair (T ; t) depicted in Fig. 5.2(b), then the cotrees associated to the

cographs Gm1
(δ ), Gm2

(δ ), and Gm3
(δ ), respectively, are depicted in Fig. 5.2(c). Note that the cotree

associated to a cograph has root labeled with 0 if and only if the cograph is disconnected.

The key observation about cographs is that, given a cograph G, a pair {x,y} ∈
(

V (G)
2

)
is an edge in

G if and only if λG(lcaT (G)(x,y)) = 1 (cf. [Corneil et al., 1981, p. 166]). It is therefore natural to ask

what the relationship is between the discriminating representation of a symbolic ultrametric δ and the

cotrees associated to the cographs coming from δ given by Proposition 22. We shall now show that

there is a very close connection between these structures.

To this end, suppose δ : X ×X → M⊙ is a map satisfying Properties (U0) and (U1) and m ∈ M.

Consider the map δm : X ×X →{0,1,⊙} defined, for all x,y ∈ X , by putting

δm(x,y) =





⊙ if x = y,

1 if {x,y} ∈ Em(δ ),

0 if else.

(5.4)

Note if δ is a symbolic ultrametric on X , then it is easy to see that δm is also a symbolic ultrametric

on X , m ∈ M (essentially because G(δm) is a cograph).

Lemma 23. Let δ : X ×X → M⊙ be a symbolic ultrametric. Then, for all m ∈ M, (T (Gm(δ )); λGm(δ ))

is the discriminating symbolic representation for δm.

Proof. Suppose m ∈ M, and let T ′ = T (Gm(δ )) and t ′ = λGm(δ ). In view of Theorem 15 it suffices

to show that δm(x,y) = d(T ′;t ′)(x,y) holds for all x,y ∈ X . Let x,y ∈ X . Then, by the aforementioned

properties of the cotree associated to a cograph and Proposition 22, it follows that d(T ′;t ′)(x,y) =

t ′(lcaT ′(x,y)) = 1 if and only if {x,y} ∈ Em(δ ) if and only if δm(x,y) = 1, as required.

Using this lemma, we now prove a technical result which, given a symbolic ultrametric δ , relates

triples in R(δ ) and, for m ∈ M, triples in Rδm
.

Theorem 24. Let δ : X ×X → M⊙ be a symbolic ultrametric. Then the following holds:

(i) For all m ∈ M, Rδm
⊆ Rδ .

(ii) For all m ∈ M, R(δm)⊆ R(δ ).

(iii) Rδ =
⋃

m∈M Rδm
.

Proof. (i) Suppose m ∈ M and xy|z ∈ Rδm
. Then δm(x,y) 6= δm(x,z) = δm(y,z) and so either (a)

δm(x,y) = 1 and δm(x,z) = δm(y,z) = 0 or (b) δm(x,y) = 0 and δm(x,z) = δm(y,z) = 1.

If Case (a) holds then {x,y}∈Em(δ ) and {x,z},{y,z} 6∈Em(δ ). Hence δ (x,y)=m and δ (x,z),δ (y,z) 6=

m. Since δ is an ultrametric and so satisfies Property (U2) it follows that δ (x,z) = δ (y,z). Conse-

quently, xy|z ∈ Rδ in this case.
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If Case (b) holds then {x,y} 6∈ Em(δ ) and {x,z},{y,z} ∈ Em(δ ). But then δ (x,z) = δ (y,z) = m 6=

δ (x,y) and so xy|z ∈ Rδ must hold in this case, too.

(ii) Let m ∈ M. Suppose xy|z ∈ R(δm). Assume first that xy|z satisfies Property (R1). Then As-

sertion (i) implies xy|z ∈ Rδ ⊆ R(δ ). So assume that xy|z does not satisfy Property (R1). Then

xy|z 6∈ Rδm
and xy|z must satisfy Property (R2), that is, δm(x,y) = δm(x,z) = δm(y,z) and there must

exist some w ∈ X such that δm(x,w) = δm(y,w) 6= δm(z,w) = δm(x,y). We distinguish the cases

δm(x,y) = δm(x,z) = δm(y,z) = 1 and δm(x,y) = δm(x,z) = δm(y,z) = 0.

Assume first that δm(x,y) = δm(x,z) = δm(y,z) = 1 holds. Then m = δ (x,y) = δ (x,z) = δ (y,z) and

so δ (z,w) = m and m 6∈ {δ (x,w),δ (y,w)} must hold. But then Property (U2) implies that δ (x,w) =

δ (y,w) 6= m and so (R2) holds. Thus, xy|z ∈ R(δ ) in this case.

Now, assume that δm(x,y)= δm(x,z)= δm(y,z)= 0 holds. Then m 6∈ {δ (x,y),δ (x,z),δ (y,z),δ (z,w)}

and so m = δ (x,w) = δ (y,w). By Property (U2) it follows that m1 := δ (y,z) = δ (z,w) = δ (z,x) 6= m.

If m2 := δ (x,y) = m1 then xy|z satisfies Property (R2) for δ and so xy|z ∈ R(δ ). If m2 6= m1 then

xy|z ∈ Rδm2
⊆ Rδ ⊆ R(δ ) in view of Assertion (i). This completes the proof of (ii).

(iii) Statement (i) clearly implies
⋃

m∈M Rδm
⊆ Rδ . To see that the converse set inclusion holds, let

xy|z ∈ Rδ . Then there exists some m ∈ M such that m = δ (x,y) 6= δ (x,z) = δ (y,z) and thus {x,y} ∈

Em(δ ) and {x,z},{y,z} 6∈ Em(δ ). Hence, δm(x,y) = 1 6= 0 = δm(x,z) = δm(y,z) and so xy|z ∈ Rδm
, as

required.

Using this theorem, we now see how the discriminating symbolic representation Tδ of a symbolic

ultrametric δ can be constructed from the cotrees T (Gm(δ )), m ∈ M (or, equivalently, the discriminat-

ing symbolic representations of the maps δm, m ∈ M). The first statement of the following corollary

is illustrated in Fig. 5.2(c).

Corollary 25. Let δ : X ×X →M⊙ be a symbolic ultrametric. Then, for each m∈M, T (Gm(δ ))≤ Tδ .

Moreover, Tδ is isomorphic to the tree obtained by applying BUILD to the set
⋃

m∈M Rδm
.

Proof. The second statement follows immediately from Theorem 24(ii) and Proposition 20.

To see that T (Gm(δ )) ≤ Tδ holds for all m ∈ M, note that since δm is a symbolic ultrametric

R(δm) = RTδm
holds by Lemma 2 of [Böcker and Dress, 1998] recalled above. Hence by Theo-

rem 24 (ii), RTδm
⊆ RTδ

. By Theorem 6.4.1 of [Semple and Steel, 2003] this last statement holds if

and only if Tδm
≤ Tδ . Now apply Lemma 23.

By modifying the argument in the proof of part (iii) of Theorem 24, it is straight-forward to show,

under the same assumptions given in the theorem plus the additional assumption |M| ≥ 3, that Tδ

is isomorphic to the tree obtained by applying BUILD to the set
⋃

m∈M′ Rδm
, for any M′ ⊆ M with

|M′| = |M|− 1. However, in general it is not possible to obtain Tδ using BUILD in this way by using

subsets of M with size less than |M|−1 (see Fig. 5.3).
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Figure 5.3: A symbolic representation of a symbolic ultrametric δ on the set X = {x1, . . . ,xn−1} with

values in the set M = {m1, . . . ,mn}. It can be shown that it is not possible to reconstruct

Tδ by applying BUILD to the set
⋃

m∈M′ Rδm
, for any M′ ⊆ M with |M′| ≤ n−2.

5.4 Concluding Remarks

The case of most immediate practical relevance for the results presented in this chapter is the case

|M| = 2, where the events in M are simply speciation and duplication. Here, we assume that we

are given an arbitrary orthology relation δ : X ×X → {0,1}⊙ on a set X of genes (i.e., a map that

satisfies (U0) and (U1) and that assigns the value 1 to pairs of genes that are (co-)orthologs and 0 to

pairs that are paralogs), a relation that can be reliably estimated from X using various bioinformatics

techniques; cf. e.g. [Lechner et al., 2011] and the reference therein. We then aim to obtain a symbolic

representation (T ; t) of δ , such that x,y∈X are orthologs if lcaT (x,y) corresponds to a speciation event

and paralogs if lcaT (x,y) corresponds to a duplication event within a single lineage (i.e. t(lcaT (x,y))

equals 1 or 0, respectively).

The above results immediately provide the following characterizations of orthology relations for

which a symbolic representation exists:

Corollary 26. Suppose that δ : X ×X → {0,1}⊙ is an orthology relation. Then the following are

equivalent:

(i) δ has a symbolic representation.

(ii) δ is a symbolic ultrametric.

(iii) G1(δ ) = G0(δ ) is a cograph.

Somewhat surprisingly, this simple characterization of “ideal” orthology relations does not seem

to appear in the literature, even though Falls et al. [2008] describes clusters of orthologous genes

as Turán graphs, a subclass of cographs. Related methods, which use clustering algorithms to help

identify orthologs, have been developed e.g. by Tatusov et al. [2000], Li et al. [2003], Berglund et al.

[2008], Wheeler et al. [2008] and Lechner et al. [2011].

We suspect that Corollary 26 could have far-reaching consequences for the area of orthology detec-

tion. In particular, instead of employing clustering techniques, given an arbitrary orthology relation
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δ , it suggests looking for either a symbolic ultrametric or a cograph that is ‘close’ to δ , from which a

(partially resolved) gene tree could then be constructed. Clearly this is not a trivial endeavor since in

practical applications any estimate of δ will be plagued by noise and hence will be neither a symbolic

ultrametric nor a cograph.

For finding cographs there is a large literature that could be useful for analyzing orthology relations.

For example, in the cograph editing problem, given a graph G = (V,E) one aims to convert G into

a cograph G∗ = (V,E∗) such that the number |E △ E∗| of inserted or deleted edges is minimized.

Recently it has been proven that this optimization problem is NP-complete [Liu et al., 2011] which,

in view of the above results, implies the following:

Corollary 27. Let δ : X ×X → {0,1}⊙ be an orthology relation map, and K be a positive integer.

Then the problem of deciding if there is a map δ ∗ : X ×X → {0,1}⊙ such that G1(δ
∗) is a cograph

(or, equivalently, δ ∗ a symbolic ultrametric) with |E1(δ ) △ E1(δ
∗)| ≤ K is NP-complete.

Even so, it should be noted that the cograph editing problem is fixed parameter tractable [Protti

et al., 2009], and so there may be off-the-shelf solutions to help get around this difficulty. Alterna-

tively, efficient Integer Linear Programming (ILP) approaches might be worth investigating.
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CHAPTER 6

Partitions, Pseudo-Cherries and Cliques

I n this chapter, we will show that the cliques in a certain graph G(δ ) that can be associated to a

symbolic ultrametric δ : X ×X → M⊙ are closely related to the structure of the discriminating

symbolic representation of δ . We use this result to help derive a new algorithm for determining

whether a map is a symbolic ultrametric or not. We shall also show that cliques in G(δ ) can be

characterized in terms of cliques in the graphs Gm(δ ), m ∈ M, defined in the previous chapter.

6.1 From Partitions and Pseudo-Cherries to Cliques

In this section we present a connection between symbolic ultrametrics and a certain collection of

partitions that can be associated with the corresponding tree (see Corollary 31). We will later use this

result to help obtain a new algorithm for deciding whether or not a map is a symbolic ultrametric and,

if this is the case, for constructing its corresponding tree representation.

6.1.1 Partitions and Pseudo-Cherries

Let δ : X ×X → M⊙ be a symmetric map that satisfies (U0) of Definition 2.2. For δ (x,y) = m ∈ M,

x 6= y, we have {x,y} ⊆ Nm(x) △ Nm(y), where △ denotes the usual symmetric difference of sets. For

future reference note that, with Nm[x] := Nm(x)∪{x}, x ∈ X , we have

Nm(x) △ Nm(y) = {x,y} if and only if Nm[x] = Nm[y], (6.1)

for all m ∈ M and all x,y ∈ X . Also note that this condition is satisfied for at most one m ∈ M for any

given pair {x,y} ∈
(

X
2

)
.
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m1

m2

m3

m2

m1

m2

m3

m2

a b c d e

Figure 6.1: A phylogenetic tree T on the set X = {a, . . . ,e}, together with a map t from the set of

interior vertices of T to the set of events M = {m1,m2,m3}. The corresponding graph

G(δ ) is the graph with vertex set {a, . . . ,e} and edge set {{a,b},{d,e}}.

Now, define G(δ ) to be the graph with vertex set X and edge set

E(δ ) :=

{
{x,y} ∈

(
X

2

)
: Nm[x] = Nm[y] for some m ∈ M

}
. (6.2)

For example, if δ = d(T ;t) for the pair (T ; t) depicted in Fig. 6.1, then the graph G(δ ) is the graph with

vertex set {a, . . . ,e} and edge set {{c,e},{a,d}}.

Suppose that T is a phylogenetic tree on X with root ρ . Let C ⊆ X be a non-empty subset of X

and put vC = lcaT (C). We call C a pseudo-cherry of T if a leaf x of T is adjacent to vC if and only if

x ∈ C. If, in addition, every vertex v ∈ V (T ) adjacent to vC that does not lie on a path from ρ to vC

is contained in X , then we call C a cherry of T . Note that a pseudo-cherry must contain at least one

element and that the definition of a cherry C reduces to the usual definition of a cherry (as given e.g.

by [Semple and Steel, 2003]) in case |C|= 2. We illustrate these two definitions in Fig. 6.2.
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Figure 6.2: A phylogenetic tree T on X = {a,b,c, · · · , j}. The vertices x = lcaT (C
′) and y = lcaT (C)

are the most recent common ancestors of the sets C = {a,d,e} and C′ = {h, i, j}. Both C

and C′ are pseudo-cherries of T . However, C′ is also a cherry of T whereas C is not.

Now, let t : V (T )→ M⊙ be a symbolic dating map for T . For each m ∈ M, we define a relation ∼m

on X by putting, for all x,y ∈ X , x∼m y if x = y or, in case x and y are distinct, t(u) = m holds for every

interior vertex u of T that lies on the unique path from x to y. Clearly ∼m is an equivalence relation
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6.1 From Partitions and Pseudo-Cherries to Cliques

on X . We write Π̃m for the corresponding partition of X . Note that the ∼m-equivalence classes can

in some cases be estimated directly from data without having to construct a tree (e.g. for inparalogs,

that is, paralogs which all arise from duplication events after a speciation event). Fig 6.3 shows an

example of this partition.

a b c d e f hg i

Figure 6.3: An example of the partition Π̃m. A phylogenetic tree T on the set X = {a, ..., i}. For every

u of T in the unique path from a to c it holds t(u) =  , similarly, for every v of T in the

unique path from g to i, t(v) =� holds.

6.1.2 Cliques

We now show that if δ is a symbolic ultrametric, then the cliques in the graph G(δ ) correspond to

pseudo-cherries in the discriminating symbolic representation of δ .

Proposition 28. Let T be a phylogenetic tree on X, t : V (T )→ M⊙ be a symbolic dating map, and

δ = d(T ;t) be the associated symbolic ultrametric on X. Then:

(i) x∼m y if and only if Nm[x] = Nm[y], for all {x,y} ∈
(

X
2

)
and all m ∈ M.

(ii) The graph G(δ ) is the disjoint union of its maximal cliques.

(iii) If the map t is discriminating, then a non-empty subset C of X is a maximal clique of G(δ ) if

and only if C is a pseudo-cherry of T .

Proof. (i) Suppose first that {x,y} ∈
(

X
2

)
such that x∼m y for some m ∈ M. Assume for contradiction

that Nm[x] 6= Nm[y], that is, (Nm(x)△ Nm(y))\{x,y} 6= /0, in view of Equ. (6.1). Choose some element

z in that set. Then the restriction T ′ := T |{x,y,z} of T to {x,y,z} is either the star with leaf set

{x,y,z} or isomorphic to one of the triples in R := {xy|z,yz|x,xz|y}. If T ′ were the star on {x,y,z}

then lcaT (x,z) = lcaT (z,y) = lcaT (x,y) would follow. But then δ (x,z) = δ (z,y) = δ (x,y) = m so that

z ∈ Nm(x)∩Nm(y), contradicting z ∈ Nm(x) △ Nm(y)−{x,y}. Thus T ′ must be isomorphic to one of

the triples in R.

If T ′ were isomorphic to the triple xy|z then lcaT (x,z) = lcaT (y,z) and so δ (x,z) = δ (y,z). But

the choice of z implies that we may assume without loss of generality that z ∈ Nm(x) \Nm(y), so
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that δ (x,z) = m 6= δ (y,z), a contradiction. If T ′ were isomorphic to the triple xz|y, then lcaT (x,y) =

lcaT (z,y) and so δ (z,y) = δ (x,y) = m would follow as, by assumption, x∼m y holds. But then z 6∈

Nm(x) \Nm(y), a contradiction. By symmetry, T ′ cannot be isomorphic to the remaining triple yz|x

either which yields the final contradiction.

Conversely, suppose that {x,y} ∈
(

X
2

)
such that Nm[x] = Nm[y], some m ∈ M. We need to show

that t(w) = m holds for every interior vertex w ∈ V (T )0 on the path P from x to y. Assume, for

contradiction, that there exists some interior vertex u ∈V (T )0 on P with t(u) 6= m. Then u 6= lcaT (x,y)

since t(lcaT (x,y)) = δ (x,y) = m as, by assumption, Nm[x] = Nm[y]. Starting at x and traversing P, let

u′ ∈ V (P) and u′′ ∈ V (P) denote the predecessor and successor of u, respectively. Since T is an

phylogenetic tree and so has no vertex with in- and outdegree one, there must exist a leaf z ∈ V (T )

such that the path from u to z does not cross the edges {u′,u},{u′′,u} ∈ E(P). Thus z /∈ {x,y} and

either lcaT (x,z) = u or lcaT (y,z) = u must hold. By symmetry, we may assume without loss of

generality that lcaT (x,z) = u. Then δ (x,z) = t(u) 6= m and so z /∈ Nm(x). By construction of z, we

have lcaT (y,z) = lcaT (y,x) and so δ (y,z) = δ (y,x) = m. Hence, z ∈ Nm(y) and so z ∈ Nm(y)\Nm(x)⊆

Nm(y) △ Nm(x) = {x,y}. This is a contradiction in view of Equ. (6.1). Thus, t(w) = m for every

interior vertex w ∈V (T )0 on P, as required.

(ii) The observation that G(δ ) is the disjoint union of its maximal cliques is a trivial consequence

of (i) and the fact that ∼m is an equivalence relation on X , for all m ∈ M.

(iii) Suppose that t is discriminating. Then the definition of a pseudo-cherry immediately implies

that any pseudo-cherry of T must be a maximal clique of G(δ ).

Conversely, assume that C is a maximal clique of G(δ ). Put vC := lcaT (C). We show first that every

leaf of T adjacent with vC must be contained in C. To see this, note that if there is a leaf z ∈ X −C of

T adjacent to vC then lcaT (z,x) = vC would hold for all x ∈ C and, so, δ (z,x) = t(vC) would follow

for all such x. But then C∪{z} would be a clique in G(δ ) that contains C which is impossible as C is

a maximal clique in G(δ ).

Now, for contradiction, assume that there exists some leaf z ∈V (T ) of T that is contained in C but

is not adjacent to vC. Then, by the definition of vC, we must have |C| ≥ 2. Put m = t(vC) and note that

δ (x,y) = m holds for all {x,y} ∈
(

C
2

)
. Also note that the path P from vC to z must be of length at least

two. Let w ∈ V (T )0 denote the child of vC on P. Since t is discriminating, it follows that t(w) 6= m.

Let y ∈ X be a leaf of T for which there exists a directed path from w to y and this path does not have

an edge in common with the path from w to z. Note that y ∈C cannot hold since lcaT (z,y) = w and,

so, δ (z,y) = t(w) 6= m. Thus, y ∈ X −C. Since y 6∈ Nm(z) and y ∈ Nm(x) clearly holds for all x ∈ C,

we obtain y ∈ Nm(x)∆Nm(z) = {x,z} in view of the fact that C is a clique, x,z ∈ C, and Equ. (6.1), a

contradiction. Thus, C is a pseudo-cherry of T .

6.1.3 Maximal Cliques

We denote by C(G) the (set-inclusion) maximal cliques of a graph G, and for brevity we let C(δ )

denote C(G(δ )), for δ : X ×X → M⊙ a symmetric map that satisfies (U0). Note that δ (x,y) = δ (u,v)
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holds for any clique C ∈ C(δ ) with |C| ≥ 2 and any two {x,y},{u,v} ∈
(

C
2

)
in case δ is a symbolic

ultrametric. Also note that there exists a C ∈ C(δ ) with |C| ≥ 2 because the tree Tδ has a vertex such

that all of its children (of which there must be at least two) are leaves.

We now give an alternative description of the maximal cliques of G(δ ) for δ a symbolic ultrametric,

in terms of the graphs Gm(δ ) defined in the last chapter. To this end, we first describe a general way

of constructing a partition from a collection of subsets of a non-empty, finite set. Denote the power

set of a non-empty, finite set Y by P(Y ) and assume that Z is a finite, non-empty set. We say that a

collection A ∈ P(Z) is a cover for Z if
⋃

A∈A A = Z holds. Now, suppose A ∈ P(Z) is a cover for Z.

Then we associate to A a collection Π(A) of subsets B ⊆ Z that satisfy the following three conditions:

(P1) there exists some A ∈ A such that B ⊆ A,

(P2) there are no two distinct elements x,y ∈ B such that there exists some A ∈ A with x ∈ A and

y /∈ A, and

(P3) B is (set-inclusion) maximal with respect to satisfying Property (P2).

The proof of the following lemma is routine.

Lemma 29. Suppose Z is a non-empty, finite set. If a collection A of subsets of Z is a cover for Z then

Π(A) is a partition of Z.

Now, suppose δ : X ×X → M⊙ is map that satisfies Properties (U0) and (U1). Then, for all m ∈ M,

Lemma 29 implies that Π(C(Gm(δ ))) is a partition of X , since any vertex of a graph must be a vertex

in a maximal clique of that graph. For example, consider again the symbolic ultrametric δ = d(T ;t)

associated to the pair (T ; t) depicted in Fig. 6.1. Then Π(C(Gm3
(δ )))= {{d,e}} and Π(C(Gm2

(δ )))=

{{a,b}} and Π(C(Gm1
(δ ))) is the partition that consist of all singletons of {a, . . . ,e}.

We now show that for all m ∈ M the partition Π̃m corresponding to the equivalence relation ∼m

defined above can be given in terms of the cliques of Gm(δ ).

Theorem 30. Let T be a phylogenetic tree on X and let t : V (T ) → M⊙ be a symbolic dating map.

Then Π(C(Gm(d(T ;t)))) = Π̃m holds for all m ∈ M.

Proof. Suppose m ∈ M and put δ = d(T ;t) and Πm = Π(C(Gm(δ )). Since both Πm and Π̃m are parti-

tions of X it suffices to show that a subset A ⊆ X with |A| ≥ 2 is an element in Πm if and only if it is

an element in Π̃m.

Suppose first that A ∈ Π̃m. Let {x,y} ∈
(

A
2

)
. Then x∼m y and so t(lcaT (x,y)) = m. Thus {x,y} ∈

E(Gm(δ )). Consequently, there must exist a maximal clique C ∈C(Gm(δ )) such that x,y∈C. Without

loss of generality, we may assume that C is of minimal size with this property. Since A is a maximal

clique in C(δ ) it follows that A ⊆ C and that there cannot exist some C′ ∈ C(Gm(δ )) and distinct

x,y ∈ A such that x ∈ C′ and y 6∈ C′. But then A satisfies Properties (P1) – (P3) with regards to

C(Gm(δ )) and so A ∈ Πm must hold.
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Conversely, suppose A ∈ Πm and assume for contradiction that A is not an equivalence class in Π̃m.

Let {x,y} ∈
(

A
2

)
. Then there must exist some interior vertex v on the path P from x to y in T such that

t(v) 6= m. Since A ∈ Πm we cannot have v = lcaT (x,y). Assume without loss of generality that v lies

on the path from lcaT (x,y) to the leaf x. Also assume without loss of generality that v is such that

t(w) = m holds for all interior vertices w on the path P′ from v to x. Since T does not have vertices of

degree two (except possibly the root of T ) there must exist a child w of v that is not a vertex of P′. Let

z ∈V (T ) denote a leaf of T such that w lies on the path from v to z. Since X is the vertex set of Gm(δ )

and t(lcaT (z,y)) = m 6= t(v) = t(lcaT (x,z)) there must exist some D ∈ C(Gm(δ )) such that z,y ∈ D

and x /∈ D. But this is impossible as x,y ∈ A and A ∈ Πm.

As a consequence we now immediately obtain the aforementioned relationship:

Corollary 31. Suppose δ : X ×X → M⊙ is a symbolic ultrametric. Then the maximal cliques of G(δ )

are the set-inclusion maximal subsets in
⋃

m∈M Π(C(Gm(δ ))).

Proof. The statement follows from Proposition 28(ii) and (iii), the fact that a non-empty subset C of

X is a pseudo-cherry of Tδ if and only if A ∈ Π̃m holds for some m ∈ M, and Theorem 30.

6.2 A Bottom-Up Construction of Symbolic Representations

We have seen in Proposition 20 that the BUILD algorithm can be used to determine whether a map is

a symbolic ultrametric or not, and if so, constructs its discriminating symbolic representation. BUILD

can be thought of as a “top-down” algorithm as, in essence, it starts at the root of the tree (if it exists)

and ends when it reaches the leaves. In this section, we present an alternative “bottom-up” algorithm,

called BOTTOM-UP, which will use our clique-based analysis of symbolic representations in the last

section. Such an algorithm could provide a potentially useful alternative to BUILD as it is based on

finding (nearly) maximal cliques in graphs, for which many different algorithms have been developed

in the literature (see e.g. Bron and Kerbosch [1973], Eblen et al. [2011], Kazuhisa and Takeaki [2004],

Schmidt et al. [2009]).

Suppose that δ : X ×X → M⊙ is a symbolic ultrametric, and that (T ; t) is some symbolic represen-

tation of δ . For every maximal clique C ∈ C(δ ) let xC ∈C denote an arbitrary but fixed element in C.

Then it is easy to check that the map

d′
(T,t) : C(δ )×C(δ )→ M⊙, d′

(T ;t)(C,C′) = d(T ;t)(xC,xC′), (6.3)

C,C′ ∈ C(δ ), is well-defined. A key observation that we shall use in the BOTTOM-UP algorithm is that

the map d′
(T,t) is in fact a symbolic ultrametric on C(δ ).

In order to prove this last statement, we shall associate a phylogenetic tree T ′ on C(δ ) plus a

symbolic dating map t ′ : C(δ )→ M⊙ for T ′ as follows. Note that by Proposition 28, every element in

C(δ ) is a pseudo-cherry of Tδ ; we put vC = lcaTδ
(C), for all C ∈ C(δ ), and fix some leaf xC ∈ L(Tδ )
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contained in C. Next, we remove all leaves in C \ {xC} from T together with all edges in {{vC,y} ∈

E(T ) : y ∈C\{xC}}. If vC 6= ρT and this process has rendered vC a vertex of degree two then suppress

vC, and if vC = ρT and this process has rendered vC a vertex of outdegree one then identify vC with its

unique leaf. Let T ′ = (V ′,E ′) denote the resulting tree. Then the restriction t ′|V ′ of t to V ′ is clearly a

discriminating symbolic dating map for T ′. Moreover, since

d′
(T ;t)(C,C′) = d(T ;t)(xC,xC′) = t(lcaT (xC,xC′)) = t ′(lcaT ′(C,C′)) = d(T ′;t ′)(C,C′)

holds for all C,C′ ∈ C(δ ), it follows that (T ′; t ′) is the (necessarily unique) discriminating symbolic

representation of d′
(T ;t). Thus, by Theorem 15 we have:

Proposition 32. Let T be a phylogenetic tree on X and t : V (T ) → M⊙ be a symbolic dating map.

Then the map d′
(T ;t) : C(d(T ;t))× C(d(T ;t)) → M⊙ defined in Equ. 6.3 is a symbolic ultrametric on

C(d(T ;t)).

We now establish a second result which will be central to the BOTTOM-UP algorithm. Given a map

δ : X ×X → M⊙ satisfying (U0)–(U2) we denote the set of connected components of G(δ ) by π(δ )

and, for future reference, we let π2(δ ) denote those elements in π(δ ) with size at least two.

Lemma 33. Suppose that δ : X ×X → M⊙ is a map that satisfies Properties (U0)–(U2), and K ∈

π2(δ ). Then the following hold:

(i) If {x,y,z} ∈
(

K
3

)
is such that x,y,z is a path in K of length two, then δ (x,y) = δ (y,z).

(ii) If {x,y,z} ∈
(

K
3

)
is such that {x,y} and {y,z} are edges in K, then {z,x} must also be an edge

in K.

(iii) K is a clique and δ (x,y) = δ (u,v) holds for all {x,y},{u,v} ∈
(

K
2

)
.

Proof. (i) Suppose for contradiction that there exists {x,y,z} ∈
(

K
3

)
such that x,y,z is a path of length

two but m1 := δ (x,y) 6= δ (y,z) =: m2. Then Property (U2) implies δ (x,z) ∈ {m1,m2}. Without loss

of generality we may assume that δ (x,z) = m1. Then z ∈ Nm1
(x) and, since δ (x,z) 6= m1, we also

have z 6∈ Nm1
(y). Hence, z ∈ Nm1

(x)−Nm1
(y)⊆ Nm1

(x)∆Nm1
(y) = {x,y} since {x,y} is an edge in K,

a contradiction.

(ii) Suppose for contradiction that there exists {x,y,z} ∈
(

K
3

)
such that {x,y} and {y,z} are edges in

K but {x,z} is not an edge in K. Then Assertion (i) implies that δ (x,y) = δ (y,z) =: m. We distinguish

the cases δ (x,z) = m and δ (x,z) 6= m.

First, suppose δ (x,z) = m. Then there must exist some u ∈ K −{x,z} such that u ∈ Nm(x)∆Nm(z)

as otherwise {x,z} would be an edge in K. Without loss of generality, we may assume that u ∈

Nm(x)−Nm(z). Note that since both {x,y} and {y,z} are edges in K it follows that y ∈ Nm(x)∩Nm(z)

and so u 6= y. Moreover, since {x,y} is an edge in K, {x,y} = Nm(x)∆Nm(y) must hold, and so

u ∈ Nm(y). Similarly, since {y,z} is an edge in K, u ∈ Nm(z) which is impossible. Thus {x,z} must be

an edge of K.
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Now suppose δ (x,z) 6= m. Then z 6∈ Nm(x). Since {y,z} is an edge in K we have z ∈ Nm(y) and

so z ∈ Nm(y)−Nm(x)⊆ Nm(y)∆Nm(x) = {x,y} as {x,y} is an edge of K, a contradiction. Thus {x,z}

must be also an edge of K in this case.

(iii) This is an immediate consequence of Assertions (i) and (ii).

We now present the BOTTOM-UP algorithm. The pseudo-code for this algorithm is given in Algo-

rithm 2. BOTTOM-UP works in a similar way to the UPGMA algorithm [Sneath and Sokal, 1973] for

constructing phylogenetic trees from distance matrices. Essentially BOTTOM-UP works by iteratively

looking for pseudo-cherries and, if it finds them, defining a new map on the set of these pseudo-

cherries along the lines of Proposition 32.

We now prove a result that is analogous to Proposition 20.

Theorem 34. Suppose δ : X ×X → M⊙ is a map. Then the algorithm BOTTOM-UP is a polynomial-

time algorithm that either:

(i) outputs a symbolic discriminating representation for δ if δ is a symbolic ultrametric, or

(ii) the statement “δ is not a symbolic ultrametric”

Proof. We first remark that if the input map δ : X ×X → M⊙ satisfies Properties (U0)–(U2) then, at

each execution step of the while loop at Line 3, if Line 5 is not executed then the map δ ′ defined in

Line 12 must also satisfy (U0)–(U2). Moreover, the map tC defined in Line 8 is well-defined since,

in view of Lemma 33, δ (C1,C2) = δ (C3,C4) holds for all {C1,C2},{C3,C4} ∈
(

C
2

)
. In addition, since

the set of connected components of a graph can be found in polynomial time and the size of the set

F defined in Line 11 decreases by at least one in each execution of the while loop in Line 7 (in case

Line 9 is not executed), it follows that the run time for BOTTOM-UP is polynomial in |X |.

Now, to complete the proof, given a map δ : X ×X → M⊙ we will prove the following claims: (i)

if δ is a symbolic ultrametric, then BOTTOM-UP will output a phylogenetic tree T on X and a discrim-

inating symbolic dating map for T , and (ii) if BOTTOM-UP returns a phylogenetic tree T on X and a

discriminating symbolic dating map t on T , then (T ; t) is a discriminating symbolic representation for

δ . This will complete the proof of the theorem in view of Theorem 15.

Proof of (i): Assume δ is a symbolic ultrametric so that, in particular, δ satisfies Properties (U0)–

(U2). We first remark that, since π2(δ ) 6= /0 (in view of Proposition 28(iii)), Line 11 is not executed

at the first execution of the while loop on Line 15. Moreover, as in each execution step of that loop

the map δ ′ defined in Line 15 is a symbolic ultrametric, in view of Proposition 32 we must also have

π2(δ
′) 6= /0.

We now show that BOTTOM-UP returns a pair (T δ ; tδ ) where T δ is a phylogenetic tree on X and tδ

is a discriminating symbolic dating map for T δ . Note that it suffices to show that at the end of each

execution of the while loop in Line 7, every element (TC; tC) in the set F defined at Line 14 consists

of a phylogenetic tree TC and a discriminating symbolic dating map tC for TC.
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Algorithm 2 BOTTOM-UP

Input: Non-empty finite sets X and M with |X | ≥ 3 and a map δ : X ×X → M⊙.

Output: Discriminating symbolic representation of δ or the statement “δ is not a symbolic ultrametric

on X”.

1 if δ does not satisfy Property (U0), (U1), or (U2) then

2 return the statement “δ is not a symbolic ultrametric on X” and stop.

3 end

4 forall the x ∈ X do

5 F = {(T{x}, t{x})}, where T{x} is the tree consisting of one vertex x and t{x} is the map on V (T{x})

given by putting t{x}(x) =⊙.

6 end

7 while |F| ≥ 2 do

8 Compute the sets π(δ ) and π2(δ ).

if π2(δ ) = /0 then

9 return the statement “δ is not a symbolic ultrametric on X” and stop.

10 end

11 forall the C ∈ π2(δ ) do

12 Let TC be the phylogenetic tree obtained by adding a new vertex w and edges {w,ρC′} from w

to the root ρC′ of TC′ , for all C′ ∈C.

Define tC : V (TC)→ M⊙ by putting tC(w) equal to δ (C1,C2) for any C1 6= C2 ∈ C, and tC′(v)

for any v ∈V (TC′), C′ ∈C.

Collapse edges of TC as necessary to ensure that the restriction of tC to the vertex set of the

resulting tree is discriminating. Denote the resulting pair also by (TC; tC).

13 end

14 Let F = {(TC; tC) : C ∈ π(δ )}, where we identify each singleton set in π(δ ) with its unique

element.

forall the C ∈ π(δ ) do

15 choose some xC ∈ C and define δ ′ : π(δ )× π(δ ) → M⊙ to be the map given by setting

δ ′(C1,C2) := δ (xC1
,xC2

) for all C1 6=C2 ∈ π(δ ).

16 end

17 Let δ = δ ′.

18 end

19 Return the unique element in F .

To this end, assume that k ≥ 1 executions of that loop have been carried out, and denote the map

computed in Line 15 at execution l by δl , for l = k− 1,k, where we set δ0 := δ . Let C ∈ π(δk−1).

If C 6∈ π2(δk−1) then, by assumption, TC and tC are of the required form, where we identify C with
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its unique element. So assume that C ∈ π2(δk−1). Then, by construction, the tree TC generated in

Line 12 is a phylogenetic tree on
⋃

A∈C L(TA). Since δ satisfies properties (U0)–(U2), the map tC

defined is well-defined in view of the remark at the beginning of the proof. Now, note that there

can be at most one C′ ∈ C such that tC(w) = tC(ρC′). If there exists no such element, then tC is a

discriminating symbolic dating map for TC. Moreover, if such an element C′ exists, then the map

obtained by restricting tC to the vertex set of the phylogenetic tree obtained from TC by collapsing the

edge {w,ρC′} is a discriminating symbolic dating map for that tree. Thus the pair (TC; tC) is of the

required form and so (i) follows.

Proof of (ii): Suppose that δ is an arbitrary map, and that BOTTOM-UP returns a pair (T δ ; tδ ) with T δ

a phylogenetic tree on X and tδ a discriminating symbolic dating map for T δ . Note that in this case,

δ must satisfy Properties (U0)–(U2). To show that (ii) holds, it suffices to show that in each execution

of the while loop in Line 7 every element (TC; tC) in the set F defined in Line 14 is a discriminating

symbolic representation of δ restricted to L(TC).

To this end, assume that k ≥ 1 executions of the while loop have been carried out and, as before,

denote the map defined in Line 15 at execution l by δl , l = k−1,k where δ0 := δ . Let C ∈ π(δk−1). If

C 6∈ π2(δk−1) then, by assumption, (TC; tC) is a discriminating symbolic representation for δ restricted

to L(TC), where we identify C with its unique element.

So, assume that C ∈ π2(δk−1). Suppose x,y ∈ L(TC). Since, by assumption, (TC′ , tC′) is a discrim-

inating symbolic representation of δ restricted to L(TC′), for all C′ ∈C, we may assume without loss

of generality that there exist distinct C1,C2 ∈ C such that x ∈ L(TC1
) and y ∈ L(TC2

). Note that the

definition of the tree TC and the map tC imply that w = lcaTC
(c1,c2) holds for all c1 ∈ L(TC1

) and all

c2 ∈ L(TC2
), and so δ (c1,c2) = tC(w) for all such c1 and c2. But then d(TC;tC)(x,y) = tC(lcaTC

(x,y)) =

tC(w) = δ (x,y). Thus, again, (TC; tC) is a discriminating symbolic representation of δ restricted to

L(TC). This completes the proof of (ii).

6.3 Concluding Remarks

With the new characterizations for symbolic ultrametrics, in terms of partitions, pseudo-cherries and

cliques we have presented new algorithms for recovering the associated trees, with an emphasis on

how these algorithms could be potentially extended to deal with arbitrary orthology relations.

More specifically, for finding symbolic representations, it could be of interest to try modifying the

BOTTOM-UP algorithm to enable it to handle arbitrary orthology relations. For example, ideas behind

the MIN-CUT supertree algorithm [Semple and Steel, 2000], an algorithm extending BUILD which

outputs a tree given any set of rooted triples, could be explored, as well as related approaches for

finding compatible sets of triples that have as many triples as possible in common with a given set of

triples, such as those in e.g. [Byrka et al., 2010a]. Alternatively, Proposition 28 suggests that heuristics

for finding maximum cliques (or subsets that are close to being maximum cliques) in graphs might

be useful for modifying the BOTTOM-UP algorithm. In this direction it would be as well interesting to
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explore graphs whose edges have assigned weights and then apply a modified version of the MIN-CUT

supertree algorithm for weighted graphs.
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CHAPTER 7

From Orthology Relations to Species Tree Inference

T he reconstruction of the evolutionary history of a gene family is necessarily based on at least

three interrelated types of information. The true phylogeny of the investigated species is

required as a scaffold with which the associated gene tree must be reconcilable. Orthology or paralogy

of genes found in different species determines whether an internal vertex in the gene tree corresponds

to a duplication or a speciation event. Speciation events, in turn, are reflected in the species tree.

According to Fitch’s definition [Fitch, 2000], two genes are (co-)orthologous if their last common

ancestor in the gene tree represents a speciation event. Otherwise, i.e., when their last common an-

cestor is a duplication event, they are paralogs. The orthology relation on a set of genes is therefore

determined by the gene tree T and an “event labeling” that identifies each interior vertex of T as either

a duplication or a speciation event.

In the previous chapter we have shown that a relation on a set of genes is an orthology relation (i.e.,

it derives from some event-labeled gene tree) if and only if it is a cograph. The orthology relation thus

places strong and easily interpretable constraints on the gene tree.

This observation suggests that a viable approach to reconstructing histories of large gene families

may start from an empirically determined orthology relation, which can be directly adjusted to con-

form to the requirement of being a cograph. The result is then equivalent to an (usually incompletely

resolved) event-labeled gene tree, which might be refined or used as constraint in the inference of a

fully resolved gene tree. In this work we are concerned with the next conceptual step: the deriva-

tion of a species tree from an event-labeled gene tree. As we shall see below, this problem is much

simpler than the full tree reconciliation problem [Hernandez-Rosales et al., 2012]. Technically, we

will approach this problem by reducing the reconciliation map from gene tree to species tree to rooted

triples of genes residing in three distinct species. This is related to an approach that was developed in
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[Chauve and El-Mabrouk, 2009] for addressing the full tree reconciliation problem.

7.1 Reconciliation Map

A gene tree T arises through a series of events along a species tree S. We consider both T and S

as phylogenetic trees with leaf sets L (the set of genes) and B (the set of species), respectively. We

assume that |L| ≥ 3 and |B| ≥ 1. We consider only gene duplications and gene losses, which take place

between speciation events, i.e., along the edges of S. Speciation events are modeled by transmitting

the gene content of an ancestral lineage to each of its daughter lineages.
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Figure 7.1: (a) Example of an evolutionary scenario showing the evolution of a gene family. The

corresponding true gene tree T̂ appears embedded in the true species tree Ŝ. The map µ̂ is

implicitly given by drawing the species tree superimposed on the gene tree. In particular,

the speciation vertices in the gene tree (red circles) are mapped to the vertices of the species

tree (gray ovals) and the duplication vertices (blue squares) to the edges of the species tree.

Gene losses are represented with “⊗” (mapping to edges in Ŝ). The observable species

a,b, . . . , f are the leaves of the species tree (yellow ovals) and extand genes therein are

labeled with “⊙”. (b) The corresponding gene tree T with observed events from the tree

in (a). Leaves are labeled with the corresponding species.

The true evolutionary history of a single ancestral gene thus can be thought of as a scenario such as

the one depicted in Fig. 7.1. Since we do not consider horizontal gene transfer or lineage sorting in

this contribution, an evolutionary scenario consists of four components:

1. A true gene tree T̂
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2. A true species tree Ŝ

3. An assignment of an event type (i.e., speciation , duplication �, loss ⊗, or observable (extant)

gene ⊙) to each interior vertex and leaf of T̂

4. A map µ assigning every vertex of T̂ to a vertex or edge of Ŝ in such a way that

(a) the ancestor order of T̂ is preserved

(b) a vertex of T̂ is mapped to an interior vertex of Ŝ if and only if it is of type speciation

(c) extant genes of T̂ are mapped to leaves of Ŝ.

It will be convenient for our discussion below to extend the ancestor relation �T on V to the union

of the edge and vertex sets of T . More precisely, for the directed edge e = [u,v] ∈ E we put x ≺T e if

and onfly if x �T v and e ≺T x if and only if u �E x. For edges e = [u,v] and f = [a,b] in T we put

e � f if and only if v � b.

In order to allow µ̂ to map duplication vertices to a time point before the last common ancestor

of all species in Ŝ, we need to extend our definition of a species tree by adding an extra vertex and

an extra edge “above” the last common ancestor of all species. Note that strictly speaking Ŝ is not a

phylogenetic tree anymore. In case there is no danger of confusion, we will from now on refer to a

phylogenetic tree on B with this extra edge and vertex added as a species tree on B and to ρB as the

root of B. Also, we canonically extend our notions of a triple, displaying, etc. to this new type of

species tree.

The true gene tree T̂ represents all extant as well as all extinct genes, all duplication, and all spe-

ciation events. Not all of these events are observable from extant genes data, however. In particular,

extinct genes cannot be observed. The observable part T = T (V,E) of T̂ is the restriction of T̂ to the

leaf set L of extant genes, i.e., T = T̂ |L.

Furthermore, we can observe a map σ : L → B that assigns to each extant gene the species in which

it resides. Of course, for x ∈ L we have σ(x) = µ̂(x). Here B is the leaf set of the extant species tree,

i.e., B = σ(L). For ease of readability, we also put σ(T ′) = {σ(x) : x ∈ L(y)} for any subtree T ′ of T

with T ′ = T (y) where y ∈ V 0. Alternatively, we will sometimes also write σ(y) instead of σ(T (y)).

Last but not least, for Y ⊆ L, we put σ(Y ) = {σ(y) : y ∈ Y}.

The observable part of the species tree S = (W,H) is the restriction Ŝ|B of Ŝ to B. In order to account

for duplication events that occurred before the first speciation event, the additional vertex ρS ∈W and

the additional edge [ρS, lcaS B] ∈ H must be part of S.

The evolutionary scenario also implies an event labeling map t : V → { ,�,⊙} that assigns to

each interior vertex v of T a value t(v) indicating whether v is a speciation event ( ) or a duplication

event (�). It is convenient to use the special label ⊙ for the leaves x of T . We write (T, t) for the

event-labeled tree. Here t is a “symbolic dating map” as we introduced it in the previous chapter. It

is called discriminating if, for all edges {u,v} ∈ E, we have t(u) 6= t(v) in which case (T, t) is known

to be in 1-1-correspondence to a cograph [Hellmuth et al., 2013]. Note that we will in general not
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require that t is discriminating in this contribution. For T = (V,E) a gene tree on L, B a set of species,

and maps t and σ as specified above, we require however that µ and σ must satisfy the following

compatibility property:

(C) Let z ∈V be a speciation vertex, i.e., t(z) = , and let T ′ and T ′′ be subtrees of T rooted in two

distinct children of z. Then σ(T ′)∩σ(T ′′) = /0.

Note the we do not require the converse, i.e., from the disjointness of the species sets σ(T ′) and

σ(T ′′) we do not conclude that their last common ancestor is a speciation vertex.

For x,y ∈ L and z = lcaT (x,y) it immediately follows from condition (C) that if t(lcaT (x,y)) =  

then σ(x) 6= σ(y) since, by assumption, x and y are leaves in distinct subtrees below z. Equivalently,

two distinct genes x 6= y in L for which σ(x) = σ(y) holds, that is, they are contained in the same

species of B, must have originated from a duplication event, i.e., t(lcaT (x,y)) = �. Thus we can

regard σ as a proper vertex coloring of the cograph corresponding to (T, t).

Let us now consider the properties of the restriction of µ̂ to the observable parts T of T̂ and S of Ŝ.

Consider a speciation vertex x in T̂ . If x has two children y′ and y′′ so that L(y′) and L(y′′) are both

non-empty then x = lcaT̂ (z
′,z′′) for all z′ ∈ L(y′) and z′′ ∈ L(y′′) and hence, x = lcaT (L(y

′)∪L(y′′)).

In particular, x is an observable vertex in T . Furthermore, we know that σ(L(y′))∩σ(L(y′′)) = /0,

and therefore, µ̂(x) = lcaS(σ(L(y′)∪L(y′′)). Considering all pairs of children with this property this

can be rephrased as µ̂(x) = lcaŜ(σ(L(x))). On the other hand, if x does not have at least two children

with this property, and hence the corresponding speciation vertex cannot be viewed as most recent

common ancestor of the set of its descendants in S, then x is not a vertex in the restriction T = T̂ |L of

T̂ to the set L of the extant genes. The restriction µ of µ̂ to the observable tree T therefore satisfies

the properties used below to define reconciliation maps.

Definition 35. Suppose that B is a set of species, that S = (W,H) is a phylogenetic tree on B, that

T = (V,E) is a gene tree with leaf set L and that σ : L → B and t : V → { ,�,⊙} are the maps

described above. Then we say that S is a species tree for (T, t,σ) if there is a map µ : V → W ∪H

such that, for all x ∈V :

(i) If t(x) =⊙ then µ(x) = σ(x).

(ii) If t(x) = then µ(x) ∈W \B.

(iii) If t(x) =� then µ(x) ∈ H.

(iv) Let x,y ∈V with x ≺T y. We distinguish two cases:

1. If t(x) = t(y) =� then µ(x)�S µ(y) in S.

2. If t(x) = t(y) = or t(x) 6= t(y) then µ(x)≺S µ(y) in S.

(v) If t(x) = then µ(x) = lcaS(σ(L(x)))
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We call µ the reconciliation map from (T, t,σ) to S.

We note that µ−1(ρS) = /0 holds as an immediate consequence of property (v), which implies that

no speciation node can be mapped above lcaS(B), the unique child of ρS.

We illustrate this definition by means of an example in Fig. 7.2 and remark that it is consistent with

the definition of reconciliation maps for the case when the event labeling t on T is not known. Doyon

et al. [2009] presented the following definition for this case:

Definition 36. Let T be a binary tree with vertices V (T ) and edges E(T ), such that only its leaves are

labeled. Let r(T ),L(T ) and Λ(T ) respectively denote its root, the set of its leaves, and the set of the

labels of its leaves. Let σ : L(G)→ L(S) be the function that maps each leaf of G to the unique leaf of

S with the same label. The LCA−mapping M : V (G)→V (S) maps each vertex u of G to the unique

vertex M(u) of S such that Λ(SM(u)) is the smallest cluster of S containing Λ(Gu). A reconciliation

between a gene tree G and a species tree S is a mapping α : V (G)→V (S)∪E(S) such that:

1. For all u ∈ L(G),α(u) = M(u) = σ(U).

2. For any vertex u ∈V (G)\L(G),

• if α(u) ∈V (S), then α(u) = M(u).

• if α(u) ∈ E(S), then M(u)≺S α(u).

3. For any two vertices u,v ∈V (G), such that v ≺G u,

• if α(u),α(v) ∈ E(S), then α(v)�S α(u),

• otherwise, α(v)≺S α(u).

Continuing with our notation from Definition 35 for the remainder of this section, we easily derive

their axiom set as

Lemma 37. If µ is a reconciliation map from (T, t,σ) to S and L is the leaf set of T then, for all x ∈V ,

(D1) x ∈ L implies µ(x) = σ(x).

(D2.a) µ(x) ∈W implies µ(x) = lcaS(σ(L(x))).

(D2.b) µ(x) ∈ H implies lcaS(σ(L(x)))≺S µ(x).

(D3) Suppose x,y ∈ V such that x ≺T y. If µ(x),µ(y) ∈ H then µ(x) �S µ(y); otherwise µ(x) ≺S

µ(y).

Proof. Suppose x ∈ V . Then (D1) is equivalent to (i) and the fact that t(x) = ⊙ if and only if x ∈ L.

Conditions (ii) and (v) together imply (D2.a). If µ(x) ∈ H then x is duplication vertex of T . From

condition (iv) we conclude that lcaS(σ(L(x))) �S µ(x). Since lcaS(σ(L(x))) ∈ W , equality cannot

hold and so (D2.b) follows. (D3) is an immediate consequence of (iv).

69



From Orthology Relations to Species Tree Inference

Gene Tree Species Tree

a

b

c

c

d e

f

f

b

a b c

d e

f

µ

Figure 7.2: Example of the mapping µ of nodes of the gene tree T to the species tree S. Speciation

nodes in the gene tree (red circles) are mapped to nodes in the species tree, duplication

nodes (blue squares) are mapped to edges in the species tree. σ is shown as dashed green

arrows. For clarity of exposition, we have identified the leaves of the gene tree on the left

with the species they reside in via the map σ .

For T a gene tree, B a set of species and maps σ and t as above, our goal is now to characterize:

1. Those (T, t,σ) for which a species tree on B exists.

2. Species trees on B that are species trees for (T, t,σ).

Unless stated otherwise, we continue with our assumptions on B, (T, t,σ), and S as stated in Defi-

nition 35. We start with the simple observation that a reconciliation map from (T, t,σ) to S preserves

the ancestor order of T and hence T imposes a strong constraint on the relationship of most recent

common ancestors in S:

Lemma 38. Let µ : V →W ∪H be a reconciliation map from (T, t,σ) to S. Then

lcaS(µ(x),µ(y))�S µ(lcaT (x,y)) (7.1)

holds for all x,y ∈V .

Proof. Assume that x and y are distinct vertices of T . Consider the unique path P connecting x with

y. P is uniquely subdivided into a path P′ from x to lcaT (x,y) and a path P′′ from lcaT (x,y) to y.

Condition (iv) implies that the images of the vertices of P′ and P′′ under µ , resp., are ordered in S

with regards to �S and hence are contained in the intervals Q′ and Q′′ that connect µ(lcaT (x,y)) with

µ(x) and µ(y), respectively. In particular µ(lcaT (x,y)) is the largest element (w.r.t. �S) in the union

of Q′∪Q′′ which contains the unique path from µ(x) to µ(y) and hence also lcaS(µ(x),µ(y)).
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7.2 Inferring species trees from triple sets

Since a phylogenetic tree (in the original sense) T is uniquely determined by its induced triple set RT ,

it is reasonable to expect that all the information on the species tree(s) for (T, t,σ) is contained in the

images of the triples in RT (or more precisely their leaves) under σ . However, this is not the case in

general as the situation is complicated by the fact that not all triples in RT are informative about a

species tree that displays T . The reason is that duplications may generate distinct paralogs long before

the divergence of the species in which they eventually appear. To address this problem, we associate

to (T, t,σ) the set of triples

G=G(T, t,σ) =
{

r ∈ RT

∣∣t(lcaT (r)) = and σ(x) 6= σ(y), for allx,y ∈ L(r)pairwise distinct
}
.

(7.2)

As we shall see below, G(T, t,σ) contains all the information on a species tree for (T, t,σ) that can

be gleaned from (T, t,σ).

Lemma 39. If µ is a reconciliation map from (T, t,σ) to S and ((x,y),z) ∈G(T, t,σ) then S displays

((σ(x),σ(y)),σ(z)).

Proof. Put G = G(T, t,σ) and recall that L denotes the leaf set of T . Let {x,y,z} ∈
(

L
3

)
and as-

sume w.l.o.g. that ((x,y),z) ∈ G. First consider the case that t(lcaT (x,y)) =  . From condition

(v) we conclude that µ(lcaT (x,y)) = lcaS(σ(x),σ(y)) and µ(lcaT (x,y,z)) = lcaS(σ(x),σ(y),σ(z)).

Since, by assumption, lcaT (x,y) ≺ lcaT (x,y,z), we have as a consequence of condition (iv) that

µ(lcaT (x,y)) ≺ µ(lcaT (x,y,z)). From lcaT (x,z) = lcaT (y,z) = lcaT (x,y,z) we conclude that S must

display ((σ(x),σ(y)),σ(z)) as S is assumed to be a species tree for (T, t,σ).

Now suppose that t(lcaT (x,y)) =� and therefore, µ(lcaT (x,y)) ∈ H. Moreover, µ(lcaT (x,y,z)) ∈

W holds. Hence, Lemma 38 and property (iv) together imply that lcaS(σ(x),σ(y))≺S µ(lcaT (x,y))≺S

µ(lcaT (x,y,z)). Thus, we again obtain that the triple ((σ(x),σ(y)),σ(z)) is displayed by S.

It is important to note that a similar argument cannot be made for triples in RT rooted in a duplica-

tion vertex of T as such triplets are in general not displayed by a species tree for (T, t,σ). We present

the generic counterexample in Fig. 7.3.

To state our main result (Theorem 41), we require a further definition.

Definition 40. For (T, t,σ), we define the set

S=S(T, t,σ) = {((a,b),c)|∃((x,y),z) ∈G(T, t,σ) with σ(x) = a, σ(y) = b, and σ(z) = c} (7.3)

As an immediate consequence of Lemma 39, S(T, t,σ) must be displayed by any species tree for

(T, t,σ) with leaf set B.

Theorem 41. Let S be a species tree with leaf set B. Then there exists a reconciliation map µ from

(T, t,σ) to S whenever S displays all triples in S(T, t,σ).
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x y z x y zz

(c)(a) (b)

y x

Figure 7.3: Triples from T whose root is a duplication event are in general not displayed from the

species tree S. (a) Triple with duplication event at the root obtained from the true evolu-

tionary history of T shown in panel (b). Panel (c) is the true species tree. In the triple (a)

the species y appears as the outgroup even though the x is the outgroup in the true species

tree.

Proof. Recall that L is the leaf set of T = (V,E). Put S = (W,H) and S=S(T, t,σ). We first consider

the subset G := {x ∈V | t(x) ∈ { ,⊙}} of V comprising of the leaves and speciation vertices of T .

We explicitly construct the map µ : G →W as follows. For all x ∈V , we put

(M1) µ(x) = σ(x) if t(x) =⊙,

(M2) µ(x) = lcaS(σ(L(x))) if t(x) = .

Note that alternative (M1) ensures that µ satisfies Condition (i). Also note that in view of the simple

consequence following the statement of Condition (C) we have for all x ∈V with t(x) = that there

are leaves y′,y′′ ∈ L(x) with σ(y′) 6= σ(y′′). Thus lcaS(µ(L(x)) ∈W \B, i.e. µ satisfies Condition (ii).

Also note that, by definition, alternative (M2) ensures that µ satisfies Condition (v).

Claim: If x,y ∈ G with x ≺T y then µ(x)≺S µ(y).

Since y cannot be a leaf of T as x ≺T y we have t(y) =  . There are two cases to consider, either

t(x) = or t(x) =⊙. In the latter case µ(x) = σ(x) ∈ B while µ(y) ∈W \B as argued above. Since

x ∈ L(y) we have µ(x)≺S µ(y), as desired.

Now suppose t(x) =  . Again by the simple consequence following Condition (C), there are leaves

x′,x′′ ∈ L(x) with a = σ(x′) 6= σ(x′′) = b. Since x ≺T y and t(y) = , by Condition (C), we conclude

that c = σ(y′) /∈ σ(L(x)) holds for all y′ ∈ L(y) \L(x). Thus, ((a,b),c) ∈ S. But then ((a,b),c) is

displayed by S and therefore lcaS(a,b)≺S lcaS(a,b,c). Since this holds for all triples ((x′,x′′),y′) ∈G

with x′,x′′ ∈ L(x) and y′ ∈ L(y)\L(x) we conclude µ(x) = lcaS(σ(L(x)))≺S lcaS(σ(L(x))∪σ(L(y)\

L(x))) = lcaS(σ(L(y))) = µ(y), establishing the claim.

It follows immediately that µ also satisfies Condition (iv.2) if x and y are contained in G.

Next, we extend the map µ to the entire vertex set V of T using the following observation. Let x ∈V

with t(x) = �. We know by Lemma 38 that µ(x) is an edge [u,v] ∈ H so that lcaS(σ(L(x))) �S v.

Such an edge exists for v = lcaS(σ(L(x))) by construction. Every speciation vertex y ∈V with x ≺T y
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therefore necessarily maps above this edge, i.e., u �S µ(y) must hold. Thus we set

(M3) µ(x) = [u, lcaS(σ(L(x)))] if t(x) =�.

which now makes µ a map from V to W ∪H.

By construction, Conditions (iii), (iv.2) and (v) are thus satisfied by µ . On the other hand, if there is

a speciation vertex y between two duplication vertices x and x′ of T , i.e., x ≺T y ≺T x′, then µ(x)≺S

µ(x′). Thus µ also satisfies Condition (iv.1).

It follows that µ is a reconciliation map from (T, t,σ) to S.

Corollary 42. Suppose that S is a species tree for (T, t,σ) and that L and B are the leaf sets of T and

S, respectively. Then a reconciliation map µ from (T, t,σ) to S can be constructed in O(|L||B|).

Proof. In order to find the image of an interior vertex x of T under µ , it suffices to determine σ(L(x))

(which can be done for all x simultaneously, e.g. by bottom up transversal of T in O(|L||B|) time) and

lcaS(σ(L(x))). The latter task can be solved in linear time using the idea presented in [Zhang, 1997]

to calculate the lowest common ancestor for a group of nodes in the species tree.

We remark that given a species tree S on B that displays all triples in S(T, t,σ), there is no freedom

in the construction of a reconciliation map on the set {x ∈V | t(x)∈ { ,⊙}}. The duplication vertices

of T , however, can be placed differently, resulting in possibly exponentially many reconciliation maps

from (T, t,σ) to S.

Lemma 39 implies that consistency of the triple set S(T, t,σ) is necessary for the existence of a

reconciliation map from (T, t,σ) to a species tree on B. Theorem 41, on the other hand, establishes

that this is also sufficient. Thus, we have

Theorem 43. There is a species tree on B for (T, t,σ) if and only if the triple set S(T, t,σ) is consis-

tent.

We remark that a related result is proven in [Chauve and El-Mabrouk, 2009, Theorem.5] for the full

tree reconciliation problem starting from a forest of gene trees.

It may be surprising that there are no strong restrictions on the set S(T, t,σ) of triples that are

implied by the fact that they are derived from a gene tree (T, t,σ).

Theorem 44. For every set X of triples on some finite set B of size at least one there is a gene tree

T = (V,E) with leaf set L together with an event map t : V → { ,�,⊙} and a map σ : L → B that

assigns to every leaf of T the species in B it resides in, such that X=S(T, t,σ).

Proof. Irrespective of whether X is consistent or not we construct the components of the required 3-

tuple (T, t,σ) as follows: To each triple rk =((xk1,xk2),xk3)∈X we associate a triple Tk =((ak1,ak2),ak3)

via a map σk : Lk = {ak1,ak2,ak3} → {xk1,xk2,xk3} with σ(aki) = xki for i = 1,2,3 where we assume

that for any two distinct triples rk,rl ∈X we have that σk(Lk)∩σl(Ll) = /0. Then we obtain T = (V,E)
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Figure 7.4: The set S(T, t,σ) inferred from the event labeled gene tree (T, t,σ) does not necessarily

define a unique species tree. For clarity of exposition, we have identified, via the map σ ,

the leaves of the gene tree and of the set of triples S(T, t,σ) with the species they reside

in .

by first adding a single new vertex ρT to the union of the vertex sets of the triples Tk and then connect-

ing ρT to the root ρk of each of the triples Tk. Clearly, T is a phylogenetic tree on L =
·⋃

rk∈X L(ρk).

Next, we define the map t : V →{ ,�,⊙} by putting t(ρT ) =�, t(a) =⊙ for all a ∈ L and t(a) = 

for all a∈V −(L∪{ρT}). Finally, we define the map σ : L→ B by putting, for all a∈ L, σ(a) = σk(a)

where a ∈ Lk. Clearly S(T, t,σ) = X.

We remark that the gene tree constructed in the proof of Theorem 44 can be made into a binary

tree by splitting the root ρT into a series of duplication and loss events so that each subtree is the

descendant of a different paralog.

Since by Theorem. 44 there are no restrictions on the possible triple sets S(T, t,σ), it is clear that

S will in general not be unique. An example is shown in Fig.7.4.

7.3 Results for simulated species and event-labeled gene trees

In order to determine empirically how much information on the species tree we can hope to find in

event labeled gene trees, we simulated species trees together with corresponding event-labeled gene

trees with different duplication and loss rates. The process to generate these trees will be described in

the following chapter.
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Figure 7.5: Left: Heat map that represents the percentage of recovered splits in the inferred species

tree from triples obtained from simulated event-labeled gene trees with different loss and

duplication rates.

Right: Scattergram that shows the average of losses and duplications in the generated data

and the accuracy of the inferred species tree.

Approximately 150 species trees with 10 to 100 species were generated. For each species tree,

we then simulated a gene tree. After determining the triple set S(T, t,σ) according to Theorem 41,

we used BUILD to compute the species tree. In all cases BUILD returns a tree that is a homomorphic

contraction of the simulated species tree. The difference between the original and the reconstructed

species tree is thus conveniently quantified as the difference in the number of interior vertices. Note

that in our situation this is the same as the split metric [Semple and Steel, 2003].

The results are summarized in Fig. 7.5. Not surprisingly, the recoverable information decreases in

particular with the rate of gene loss. Nevertheless, at least 50% of the splits in the species tree are

recoverable even at very high loss rates. For moderate loss rates, in particular when gene losses are

less frequent than gene duplications, nearly the complete information on the species tree is preserved.

It is interesting to note that BUILD does not incorporate splits that are not present in the input tree,

although this is not mathematically guaranteed.

7.4 Concluding Remarks

Event-labeled gene trees can be obtained by combining the reconstruction of gene phylogenies with

methods for orthology detection. Orthology alone already encapsulates partial information on the

gene tree. More precisely, the orthology relation is equivalent to a homomorphic image of the gene

tree in which adjacent vertices denote different types of events. We discussed here the properties of
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reconciliation maps µ from a gene tree T along with an event labelling map t and a gene to species

assignment map σ to a species tree S. We show that (T, t) event labeled gene trees for which a species

tree exists can be characterized in terms of the set S(T, t,σ) of triples that is easily constructed from

a subset of triples of T . Simulated data shows, furthermore, that such trees convey a large amount of

information on the underlying species tree, even if the gene loss rate is high.

It can be expected that for real-life data the tree T contains errors so that S := S(T, t,σ) may

not be consistent. In this case, an approximation to the species tree could be obtained e.g. from a

maximum consistent subset of S. Although (the decision version of) this problem is NP-complete

[Jansson, 2001, Wu, 2004], there is a wide variety of practically applicable algorithms for this task,

see [He et al., 2006, Byrka et al., 2010a]. Even if S is consistent, the species tree is usually not

uniquely determined. Algorithms to list all trees consistent with S can be found e.g. in [Ng and

Wormald, 1996, Constantinescu and Sankoff, 1995]. A characterization of triple sets that determine

a unique tree can be found in [Bryant and Steel, 1995]. Since our main interest is to determine the

constraints imposed by (T, t,σ) on the species tree S, we are interested in a least resolved tree S that

displays all triples in S. The BUILD algorithm and its relatives in general produce minor-minimal

trees, but these are not guaranteed to have the minimal number of interior nodes. Finding a species

tree with a minimal number of interior nodes is again a hard problem [Jansson et al., 2012]. At least,

the vertex minimal trees are among the possibly exponentially many minor minimal trees enumerated

by Semple’s algorithms [Semple, 2003]. For more details, refer to Chapter 4 where we have discussed

more widely about this problems.

For a given species tree S, it is rather easy to find a reconciliation map µ from (T, t,σ) to S. A

simple solution µ is closely related to the so-called LCA reconcilation: every node x of T is mapped

to the last common ancestor of the species below it, lcaS(σ(L(x))) or to the edge immediately above

it, depending on whether x is speciation or a duplication node. While this solution is unique for the

speciation nodes, alternative mappings are possible for the duplication nodes. The set of possible

reconciliation maps can still be very large despite the specified event labels.

If the event labeling t is unknown, there is a reconciliation from any gene tree T to any species

tree S, realized in particular by the LCA reconciliation, see e.g. [Chauve and El-Mabrouk, 2009,

Doyon et al., 2009]. The reconciliation then defines the event types. Typically, a parsimony rule

is then employed to choose a reconciliation map in which the number of duplications and losses is

minimized, see e.g. [Guigó et al., 1996, Bonizzoni et al., 2005, Burleigh et al., 2009, Górecki and J.,

2006]. In our setting, on the other hand, the event types are prescribed. This restricts the possible

reconciliation maps so that the gene tree cannot be reconciled with an arbitrary species tree any more.

Since the observable events on the gene tree are fixed, the possible reconciliations cannot differ

in the number of duplications. Still, one may be interested in reconciliation maps that minimize the

number of loss events. An alternative is to maximize the number of duplication events that map to the

same edge in S to account for whole genome and chromosomal duplication events [Burleigh et al.,

2009].
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Our approach to the reconciliation problem via event-labeled gene trees opens up some interesting

new avenues to understanding orthology. In particular, the results in this contribution combined with

those in [Hellmuth et al., 2013] concerning cographs should ultimately lead to a method for automat-

ically generating orthology relations that takes into account species relationships without having to

explicitly compute gene trees. This is potentially very useful since gene tree estimation is one of the

weak points of most current approaches to orthology analysis.
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CHAPTER 8

Simulation of gene family histories and its applications

T he reconstruction of the evolutionary history of large gene families has remained a hard and

complex problem, which amounts to disentangling speciation events from gene duplication

events. The evaluation of reconstruction algorithms is hampered, by the lack of well-studied cases that

could serve as a gold standard. We present here a simulation environment designed to generate large

gene families with complex duplication histories on which reconstruction algorithms can be tested

and software tools can be benchmarked.

We use these simulations to test the accuracy of orthology predictions made by OMA, OrthoMCL,

Proteinortho and the extended version of it: PoFF. We also present a method based on forbidden

subgraphs, induced subgraphs on five vertices which contain more than one P4, to mesure how good

the prediction of orthology relations among sets of genes is.

8.1 Simulation of gene family histories

The way gene families and genomes evolve can be understood in detail only when the location of

gene duplication episodes in the tree of life can be deciphered. Since most genes belong to larger

gene families, the analysis of the gene family histories thus plays an important role in the study of

genome evolution. Empirically, one frequently observes that the tree that describes the evolution

of species, the species tree, is inconsistent with the tree that is obtained from a group of genes of

a gene family (the gene tree). Goodman et al. [1979] deduced that this inconsistency might be the

result of mistaking paralogs for orthologs. Orthologous genes refer to copies of genes that reveal the

phylogeny of species, while paralogous genes have been created by duplication events. Phylogeny

reconstruction can help to understand how gene families evolved and to identify the chronology of
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duplications within a gene family of a single species. There is, however, lack of both test data and

evaluation procedures to test, compare, and benchmark the performance and results of prediction tools

and methods. Here we present an efficient method that simulates phylogenetic processes that fulfills

those needs.

The simulation of gene family histories starts with the generation of a species tree. Within this

rooted bifurcating tree the nodes represent species and edges their relation. Specifically, internal

nodes represent ancient species whereas leaf nodes represent extant species. Given a number N of

species, we generate a random species tree S under the “Age Model” described in [Keller-Schmidt

et al., 2010]. This model starts with a rooted tree with two leaves. In an iterative process one of the

leaves is selected and two new leaves are attached to it until the tree has N leaves. This model makes

use of the idea that the longer a node has not been involved in a speciation, the less likely it will be in

the future. These trees are balanced and edge lengths (which represent time) are normalized so that

the total length of the path from the root to each leaf is 1.

For each species tree S, we then simulated gene trees using the following rules:

1. The root of S contains an ordered list of ancestral genes, one for each gene family. The number

of families is a user-defined parameter.

2. S is traversed in a depth first order. All changes to the genome are simulated independently for

each edge of S with constant rates.

3. At each internal node of S, the ordered gene list received from its parental edge is copied without

change to both offspring edges.

4. Along each edge of S a number of events is sampled from a stochastic Poisson Process Pλ ,l ,

where the parameter λ ∈ [0,1] is the probability of the event to happen and l is the branch

length. The process may generate none, one, or several events of the following types:

• Gene duplication: one gene gets duplicated.

• Cluster duplication: a group of consecutive genes gets duplicated.

• Genome duplication: the whole group of genes gets duplicated.

• Gene loss: A gene gets lost and therefore removed from the genome.

In the case of duplications the probability of the events to happen is inversely proportional to

the number of genes in the organism, so that, the larger the familiy is the smaller the probability

is to generate new gene copies.

5. A special rule applies to recently duplicated genes to account for the deletion of redundant gene

copies before they can be stabilized by sufficient functional divergence or subfunctionalization

[Ohno, 1999, Lynch and Conery, 2000]. We model this by a probability θ = l1 +P× l2 of

immediate loss where P is the size of the gene family immediately after the duplication event,

this will allow the user to enlarge or contract families by adjusting l1 and l2, while taking into

80



8.1 Simulation of gene family histories

a3 a5 a6

A B C D

a

a −> a1, a2

a −>  a3, a4

a4 −> a5, a6

a1 a2

a3 a5 a6

a1 a2 a1 a2 a3 a6

a5 −>x

(a)

a1 a2 a1 a2 a3 a6

x

a3 a6a5

duplication
speciation

A B C D

(b)

Figure 8.1: (a) A one-gene family history: from a node parent to a node child, there could be duplica-

tions and losses of genes. (b) The reconciled tree: the gene tree embedded in the species

tree. Each internal node represents an event, either an speciation or a gene duplication.

account the gene family size. This model in particular accounts for the increased loss rates in the

wake of multiple gene duplications and in particular for genome duplications [Prohaska et al.,

2004]. These losses are constrained so that at least one copy of the gene family is retained.

6. To obtain an order of the generated genes, rearrangements are carried out for each edge of S

using translocation and inversion operations on the ordered list of genes that “survived” until

the next speciation. Breakpoints are picked randomly and the number of inversion operations is

chosen uniformly proportional to the branch length [Xu et al., 2007].

The result of this simulation is a gene tree Ti for each family i together with a true reconciliation

map to the species tree S. All gene lineages terminating in a deletion event are pruned from the gene

tree so that we retain a gene tree Ti in which only extant genes appear as its leaves. The known

reconciliation furthermore provides us with a labeling of the internal nodes of Ti with duplication or

speciation events, see Figure 8.1. This in turn determines the true orthology relation for all genes

received in the leaves of S. In addition to that, the gene orders within their respective genomes is

obtained.

Additionally, the algorithm can generate one gene tree for each species, i.e. the pruned reconciled

tree containing only genes of a certain species. Furthermore, for each gene family the orthology

and homology matrices are computed. To generate the orthology matrix, we say that two genes are

orthologous if their lowest common ancestor (LCA) in the reconciled tree represents a speciation event.

To generate the homology matrix, a gene a from species i is homologous to gene b from species j

if for every gene c from species i and every gene d from species j the LCA(a,b) ≤ LCA(c,b) and

LCA(a,b)≤ LCA(a,d).
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8.2 How close is the induced graph by a given orthology relation

to a cograph?

A graph G is P4-sparse if every subset of V (G) with five vertices induces at most one P4.

An interesting feature of P4-sparse graphs is that they generalize the cographs and therefore, they

admit a tree representation unique up to isomorphism [Jamison and Olariu, 1992].

Forbidden subgraphs we call those induced subgraphs on five vertices which contain more than

one P4. Given that a valid orthology relation can be characterized as a cograph, it has been shown

that P4-sparse graphs can be edited by adding and removing edges to obtain a cograph in polynomial

time [Liu et al., 2011]. For a graph that is not P4-sparse, a solution for the cograph editing problem is

NP-complete [Liu et al., 2011].

In this section we describe a method to measure how close the induced graph by orthology relation

is to a cograph, in terms of its P4-sparseness and induced forbidden subgraphs. We use simulations

like the ones described in the previous section to quantify the “noise” in a graph in comparison with

random graphs.

8.2.1 P4 Sparse Graphs

Cographs are in the class of P4-sparse graphs, for the set of graphs which are P4-sparse but not

cographs, there is a polynomial time solution for the so called the cograph editing problem.

Definition 45. (P4-sparse graphs, [Hoang, 1985]). A graph G is P4-sparse if every induced subgraph

H ⊆ G with |V (H)|= 5 contains at most one induced P4.

Liu et al. [2011] presented the EDP4 algorithm which takes a P4-sparse graph G as input and outputs

a minimal edge edition set to convert G into a cograph. The algorithm decomposes G into connected

components, single vertices and spider graphs, and it is based on the following lemma:

Lemma 46. [Liu et al., 2011]. For a graph G the following conditions are equivalent:

1. G is a P4-sparse graph.

2. For every induced subgraph H of G with at least two vertices, exactly one of the following

statements is satisfied:

(a) H is disconnected

(b) H is disconnected

(c) H is a spider

where spider graphs, illustrated in Fig. 8.2, are a basic component of P4-sparse graphs. These

graphs have a special structure which contain only one induced P4 on 5 vertices, and which is easy to

identify (for more details on this type of graph refer to [Jamison and Olariu, 1992]).
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(a) (b)

Figure 8.2: Spider graphs.(a) Thin spider. (b) Thick spider.

8.2.2 Forbidden Subgraphs

The definition of P4-sparse graphs leads us to the observation that for such graphs, it holds, that they do

not contain any of the forbidden subgraphs shown in Fig. 8.3. Each of these subgraphs consists of five

vertices and includes more than one induced P4, implying that these subgraphs cannot be contained in

P4-sparse graphs. Let H be one of the forbidden subgraphs, it follows that both H and its complement

are forbidden subgraphs. This can be observed in Fig. 8.3, where the prefix of some subgraphs’ name

denotes that this is the complement of the subgraph with the corresponding name. For the graphs

P5, kite, fork, their complement are co-P5, co-kite, co-fork, respectively. For the C5 it can easily be

checked that its complement is as well a C5.

kite fork

co-kite co-forkco-P5

P5

C5

Figure 8.3: The seven forbidden subgraphs that are not contained in a P4-sparse graph.

Liu et al. [2011] proved that for a graph which is neither P4-sparse nor a cograph the problem is

NP-complete, but fixed- parameter tractable when delimiting the number of edges to edit.

Berkemer [2012] presented a pipeline for estimated orthology relations to be converted into cograpghs

as well as improvements in the running time for the cograph editing problem when fixed-parameter
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tractable (where the parameter is the number of edges to be edited) by using modular decomposition

described by Habib et al. [2004].

In this chapter we are interested in quantifying forbidden subgraphs, P4-sparse subgraphs and

cographs in valid orthology relations and in random graphs and in how good an estimated orthol-

ogy relation is so as to be able to assess. In other words, we would like to be able to differentiate

between graphs that can be edited and converted to cographs (which in turn would give us a valid

orthology relation) and graphs that look more like random graphs and therefore would not be worth

trying to convert to cographs.

8.2.3 Induced subgraphs in simulated data and in random graphs

We simulated gene trees as described in Section 8.1. A series of species trees with N leaves, with

N ∈ [5,100] are generated. For each generated species tree S, one gene tree T is generated as well.

We set the following parameteres for the simulation of these trees:

1. Probability of gene duplication = 0.9

2. Probability of cluster duplication = 0.3

3. Probabiliy of genome duplication = .001

4. Probability of gene loss = 0.5

5. Parameters l1 and l2 for the probability θ = l1 +P× l2 to account for gene losses after genome

duplications are both set to 0.1.

The internal nodes of each gene tree are labeled with “duplication” or “speciation” events and

therefore we are able to obtain the corresponding orthology matrix as M. In particular, this matrix

represents a graph G = (V,E), where V is the set of leaves in the gene tree and an edge {a,b} ∈ E if

M(a,b) = 1. By definition, G will be a cograph.

We perturbed the cographs by adding a percentage of “noise”. The idea here is to find out the point

where the noisy cograph becomes indistinguishable from a random graph. The introduction of “noise”

in a cograph is carried out by removing edges and adding new ones while preserving vertex degrees.

For a pair of edges {a,b} and {c,d}, these are removed from the graph while introducing the pair

of edges {a,c} and {b,d} or the pair {a,d} and {b,c}, if none of these already exist in the original

graph. Then here “the percentage of noise” is defined as the percentage of edges in the original graph

to be edited. It is crucial to note that there is a very important restriction: new edges can be introduced

only if they connect vertices that represent genes from different species.

In our simulations, we introduce from 1% to 95% of noise to each set of cographs obtained from

the gene trees with different number of species. Therefore, there are 96 “noisy” graphs for each

percentage of noise. Noise from 1% to 20% was incremented in steps of 1. Noise from 25% to 95%

was incremented in steps of 5.
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For each noisy graph, we then obtained the number of vertices and generated random graphs with

the same number of vertices and same number of edges. Random graphs are generated in such a way

that vertex degrees have the same distribution that the corresponding noisy graph. To ensure this we

implemented the following procedure:

1. A graph with the same number of vertices as the noisy graph without edges is created.

2. For each noisy graph, the degree sequence is obtained and ordered in non-increasing order.

3. The first vertex a with degree n is connected to the next n vertices in the degree sequence.

4. Vertex a is removed from the degree sequence and this is reordered.

5. This process is repeated until all vertex degrees are fulfilled.

It is important to mention that in random graphs, we have no species assignment to each vertex of

the graph, therefore, there is no restriction when connecting two vertices as the one with noisy graphs.

For each simulated noisy graph and the corresponding random graph, we took a sample of 1000

induced subgraphs on five vertices and each was classified in one of the four categories:

• Forbidden

• P4-sparse

• Cograph

• Small Connected Component

The algorithm that samples induced subgraphs on 5 vertices, takes 5 random vertices and obtains

the induced subgraph. As each graph can contain several connected components, the algorithm makes

sure that once it has picked a vertex from a connected component in the graph, it will pick the other 4

vertices in the same connected component. If the connected component contains less than 5 vertices,

the induced subgraph will be reported as small connected component. For each set of 1000 samples,

the percentages of forbidden, P4-sparse, cographs and small connected components are calculated.

Finally, for each set of noisy graphs with a specific percentage of noise and the corresponding

random graph, we obtained the mean and the standard deviation for each category. Figs. 8.4-8.6 show

the result of these simulations. We have omitted the results for small connected components since

there were hardly any of them in our simulated data.

As can be observed, the mean of the number of induced forbidden subgraphs, P4-sparse graphs

and cographs in random graphs is independent of the numbers of vertices and edges. We can also

observe that cographs with 20% or more of noise converge to a certain range and therefore become

very similar to those of random graphs. Here, the statistics on the means of random graphs and noisy

graphs for each category do not really converge, this is due to the restriction imposed to noisy graphs.
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Figure 8.4: For each percent of noise, 96 sets of orthology relations were simulated with corresponding random ones. Random graphs with same

number of vertices and same vertex degree. (a) Means of forbidden subgraphs for noisy graphs and for random graphs are represented

with red dots and blue dots, respectively. (b) Means as dots and standard deviations as error rate as curves show the behaviour of noisy

cographs in comparison with random graphs. Graphs with more than 20% of noise converge to a certain range which makes them

indistinguishable from random graphs. However, graphs with less than 20% of noise can be edited and converted to cographs.
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Figure 8.5: For each percent of noise, 96 sets of orthology relations were simulated with corresponding random ones. Random graphs with same

number of vertices and same vertex degree. (a) Means of induced P4-sparse graphs in five vertices for noisy graphs and for random

graphs are represented with red dots and blue dots, respectively. (b) Means as dots and standard deviations as error rate as curves show

the behaviour of noisy cographs in comparison with random graphs. Graphs with more than 20% of noise converge to a certain range

which makes them indistinguishable from random graphs. However, graphs with less than 20% of noise can be edited and converted

to cographs.8
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Figure 8.6: For each percent of noise, 96 sets of orthology relations were simulated with corresponding random ones. Random graphs with same

number of vertices and same vertex degree. (a) Means of induced Cographs in five vertices for noisy graphs and for random graphs

are represented with red dots and blue dots, respectively. (b) Means as dots and standard deviations as error rate as curves show the

behaviour of noisy cographs in comparison with random graphs. Graphs with more than 20% of noise converge to a certain range

which makes them indistinguishable from random graphs. However, graphs with less than 20% of noise can be edited and converted

to cographs.
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8.2 How close is the induced graph by a given orthology relation to a cograph?

In Figure 8.7 we can observe the relation between forbidden subgraphs and induced P4-sparse

graphs in noisy graphs. The first observation is that independently of the percentage of noise intro-

duced to the cographs, the number of these two types of subgraphs increases almost directly propor-

tionally. However, when looking at Figure 8.7(a), we can note that with a low level of noise, the

high rate (close to 100%) of induced cographs is conserved, sometimes even with a percentage of

noise close to 20. Of course, after the introduction of more than 25% of noise, many more P4-sparse

subgraphs are created.

However, when observing Figure 8.8, it all becomes more interesting. When comparing Fig-

ure 8.8(a) and Figure 8.8(b), we can see that with 1% to 20% of noise, there is a bias towards more

forbidden subgraphs than with more than 20% of noise, this can be explained by the observation that

when adding or removing one edge in a cograph, it is possible to create one or more P4’s, therefore

when we have a predefined graph structure such as a cograph, this structure gets destroyed as more

and more edges are edited. However, a graph that has more than 20% of noise, already resembles a

random graph and thus, the editing of edges does not much affect its structure.

With these results we are able to quantify the “level” of noise that a given orthology relation has,

and therefore find out whether it makes sense to try to edit the graph to get close to a cograph or

whether when quantifying the number of subgraphs on 5 vertices, it shows that the graph looks like a

random graph and therefore the orthology relation is likely to be incorrect.

8.2.4 Real Data: measuring noise in OMA

In the OMA database [Altenhoff et al., 2011], the identification of orthologs among available complete

genomes has been carried out. This database includes more than 1000 genomes so far, and one is able

to find pairs of orthologs for any two genomes. We have downloaded their predictions and obtained the

corresponding orthology relation graph. We have filtered the data to obtain only orthology relations

of the type: many-to-many, one-to-many or many-to-one. Since the type 1-to-1 will be seen as a

connected component of size two and therefore unable to create P4’s we decided to exclude them to

speed the calculation of induced subgraphs on five vertices.

We test two datasets, prokaryotes and eukaryotes, to measure the accuracy of the orthology relations

based on the forbidden subgraphs, induced P4-sparse graphs, cographs and small connected compo-

nents. As these data sets are large, we also tested a smaller dataset of some eukaryotes that are more

closely related, the eight flowering plants: rice, sorghum, maize, cassava, poplar, wheat, arabidopsis

and grape, plus an alga.

The results are shown in Table 8.1. Here we can observe that the graph corresponding to the

orthology relation contains a lower percentage of forbidden subgraphs and induced P4-sparse graphs

and on the other hand, of about 90% of induced cographs, therefore it must be worth trying to apply

a cograph editing method to get rid of the false orthology edges in the graphs. It is worth mentioning

that the total number of small connected components are calculated for each dataset, and consists

of the 30% to 40% of the total number of connected components. However, none of these small
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connected components forms a clique. Taking into account that we removed all isolated edges, we

are left with connected components of three and four genes, the latter type might then be a P4 and

therefore a P4-sparse subgraph that can be edited to a cograph.

In Table 8.1 and in all the tables presented in the reminder of this chapter, we use the following

notation:

• Let G(V,E) be the induced graph obtained from the orthology relation predicted by a certain

method.

• |V | and |E| are the sizes of the sets of vertices and edges in the graph, respectively.

• |S| is the number of species involved.

• |CC| is the number of connected components found in G.

• |smallCC| is the number of connected components that contain less than five vertices.

• |Ks| is the number of cliques of size s.

• %Forbs is the abbreviation for the percentage of induced forbidden subgraphs on five vertices.

• %P4-s is the abbreviation for the percentage of induced P4-sparse graphs on five vertices.

• %Cographs is the percentage of induced cographs on five vertices.
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Figure 8.7: Relation of cographs and P4-sparse graphs with 5 to 100 species. The percentage of cographs grows more less directly proportional to

the percentage of P4-sparse graphs (a) Graphs with 1% to 20% of noise conserve most of the cograph structure. (b) Graphs with 25%

to 95% of noise tend to contain more P4-sparse graphs.
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Figure 8.8: Relation of forbidden subgraphs and P4-sparse graphs with 5 to 100 species. (a) Graphs with 1% to 20% are biased towards more

forbidden subgraphs, since the editing of an edge can create none, one or more P4’s the cograph structure is destroyed as more edges

are edited. (b) Graphs with 25% to 95% of noise are more similar to random graphs, therefore the editing of edges does not really

affect their structure.
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Dataset |S| |V | |E| |CC| |smallCC| %Forbs %P4-s %Cographs

Prokaryotes 1076 2268188 72262333 19077 5273 5.74 1.52 92.74

Eukaryotes 135 1173438 13482684 23589 7913 6.46 1.82 91.72

Flowering Plants 9 152140 583919 12480 3368 8.65 3.07 88.28

Table 8.1: Measuring noise in the OMA database: 1 million samples of induced subgraphs were taken for each dataset. Flowering plants are: rice,

sorgan, maiz, yuca, puttler tree, weath, milk weather, grape and a primitive plant which is an algi. Small connected components do

not form cliques and therefore some of those with four vertices might form a P4. However, the low percentage of forbidden subgraphs

found shows that this database contains realiable ortholoy predictions and therefore, it may be easy to find the wrong predictions by

using a cograph editing method.
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8.3 Application: Testing BBH, Proteinortho, PoFF and OrthoMCL

The bidirectional best hit (BBH) criterion is often used to identify orthologs for pairs of genomes. This

method requires that for a candidate pair of orthologs a, b, that a is the best hit for b and vice versa,

that b is the best hit for a. Proteinortho and OrthoMCL are commonly used tools when aiming to

predict orthology in a group of genes. They both use a similar approach to BBH but have an additional

clustering step as described in Table 3.2. PoFF [Lechner et al., 2013] is the extended version of

Proteinortho which takes into account synteny information. It incorporates the heuristic method

FFAdj-MCS described in [Doerr et al., 2012], which assesses pairwise gene order using conserved

adjacencies and calculating a matching whose objective function maximizes for a trade-off between

adjacencies and similarity scores of genes.

We have simulated data as described in section Section 8.1 for which the entire history and hence the

orthology relation is known, to estimate how PoFF performs compared to the original Proteinortho

implementation and to compare both with BBH and OrthoMCL. We also simulated sequence evolution

and genomic rearrangements for four example data sets comprising 20, 50, 80 and 100 gene families

in 20 species. All test sets feature duplications of both individual genes and gene clusters. The set

with 80 gene families in addition includes whole genome duplications.

The parameters used for the simulation of these dataset are set as following:

1. Probability of gene duplication = 0.9

2. Probability of cluster duplication = 0.5

3. Probabiliy of genome duplication = 0

4. Probability of gene loss = 0.5

5. Parameters l1 = 0.3 and l2 = 0 for the probability θ = l1 +P× l2

The probability of genome duplication is set to 0.03 to generate genome duplications in the set with

80 gene families. We used indel-Seq-Gen [Strope et al., 2009] to generate simulated amino acid

sequences for the simulated gene trees. After applying BBH, Proteinortho, PoFF and OrthoMCL to

the datasets, we obtain the corresponging orthology graphs and sampled subgraphs as we did for the

OMA database in Section 8.2.4.

When analysing the results, we realized that the orthology graph obtained by the output from

OrthoMCL contains edges between pairs of genes that belong to the same species, thus violating

the defintion of orthology. For example, from the total number of edges in the dataset with 80 gene

families, more than 80% of them connect genes from the same species, and this might lead to dense

graphs that could be close to cliques and therefore might look like graphs that are close to cographs.

Therefore, we have decided to “clean” the output by removing the edges that violate the mathemati-

cally defined orthology relation. The results can be found in Tables 8.2-8.5. OrthoMCLean refers to

the later described datasets.
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Method |V | |E| |CC| |smallCC| |K4| |K3| |K2| %Forbs %P4-s %Cographs %s CC

BBH 668 5228 29 3 0 1 2 2.2 1.2 85.9 10.7

Proteinortho 772 5588 72 28 0 4 12 6.0 1.5 52.0 40.5

PoFF 731 4594 92 52 0 5 37 1.3 1.0 42.2 55.5

OrthoMCL 1563 151682 23 1 0 1 0 2.1 1.0 91.5 5.4

OrthoMCLean 1258 115817 21 1 0 1 0 0.9 0.6 93.5 5.0

Table 8.2: Results form the four methods when taking 1000 samples of induced subgraphs in five vertices for the dataset with 20 species and 20

gene families. In the orthoMCL graph, 23.64% of the edges connect pairs of genes of the same species.
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Method |V | |E| |CC| |smallCC| |K4| |K3| |K2| %Forbs %P4-s %Cographs %s CC

BBH 3797 15741 557 229 6 16 203 1.2 0.8 57.2 40.8

Proteinortho 4052 19216 582 217 6 20 162 1.7 1.2 58.9 38.2

PoFF 3758 14777 556 151 2 14 94 3.0 1.7 66.8 28.5

OrthoMCL 8280 883823 269 67 1 4 61 1.9 1.2 72.7 24.2

OrthoMCLean 4716 363469 249 63 1 3 58 1.0 0.5 72.5 26.0

Table 8.3: Results of the tools when taking 1000 samples of induced subgraphs in five vertices for the dataset with 20 species and 50 gene families.

In the orthoMCL graph, 58.87% of the edges connect pairs of genes of the same species.
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Method |V | |E| |CC| |smallCC| |K4| |K3| |K2| %Forbs %P4-s %Cographs %s CC

BBH 5204 22157 827 546 142 224 129 3.4 0.2 30.5 65.9

Proteinortho 5783 26791 794 397 116 95 88 5.7 1.2 42.8 50.3

PoFF 5007 20077 873 551 9 23 190 4.6 0 32.4 61.6

OrthoMCL 15038 2583597 417 195 60 66 51 2.9 1.5 50.5 45.1

OrthoMCLean 6482 453554 383 189 59 63 44 2.6 0.4 47.1 49.9

Table 8.4: Results of the tools when taking 1000 samples of induced subgraphs in five vertices for the dataset with 20 species and 80 gene families.

In the orthoMCL graph, 82.44% of the edges connect pairs of genes of the same species.
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Method |V | |E| |CC| |smallCC| |K4| |K3| |K2| %Forbs %P4-s %Cographs %s CC

BBH 14430 49312 2656 1549 13 485 1001 2.0 0.3 39.1 58.6

Proteinortho 15718 173909 2203 1036 13 374 548 4.2 0.6 49.1 46.1

PoFF 15350 43946 2951 1578 6 295 792 3.3 2.3 38.4 56

Table 8.5: Results of the tools when taking 1000 samples of induced subgraphs in five vertices for the dataset with 20 species and 100 gene

families. orthoMCL could not be applied to this dataset since it would have taken more than one month for the calculation of the graph.
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8.3 Application: Testing BBH, Proteinortho, PoFF and OrthoMCL

As we can obserbve the BBH tends to create many more small clusters than the other methods.

Proteinortho, PoFF and OrthoMCL perform similarly, althought Proteinortho and PoFF create

more small clusters than OrthoMCL, this can be explained by the graph-construction phase in the

former tools, since they make use of the BBH method and then will try to add paralagous genes to

the cluster if the putative paralogs have at least a 95% of sequence similarity to the BBH gene, while

OrthoMCL has no restrictions before the clustering phase. For all the tools, the percentage of forbidden

subgraphs is very low and therefore the graphs can be edited to convert them to cographs.

We have also run Proteinortho and PoFF on the set of 12 metazon proteomes and obtained the

corresponding orthology graphs. The aim here was to compare whether PoFF, the extended version

of Proteinortho which accounts for synteny information, however we can observe that they perfom

pretty similar, with the exception that PoFF created more small clusters than Proteinortho. The

results can be found in the Table 8.6.

99



S
im

u
latio

n
o
f

g
en

e
fam

ily
h
isto

ries
an

d
its

ap
p
licatio

n
s

Method |V | |E| |CC| |smallCC| |K4| |K3| |K2| %Forbs %P4-s %Cographs %s CC

Proteinortho 189620 363351 32981 16242 5 157 6960 5.52 2.77 42.23 49.48

PoFF 165760 176436 39524 24988 10 249 10481 8.22 3.89 25.23 62.66

Table 8.6: Results for Proteinortho and PoFF in the set of 12 metazon proteomes. We took 10 000 samples of induced subgraphs in five vertices.
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8.4 Concluding Remarks

8.4 Concluding Remarks

We propose an algorithm that simulates gene family histories akin to real data. This will allow re-

construction algorithms to measure their accuracy and performance. Given a certain reconstruction

method one might ask if the orthology matrix could be deduced from the inferred reconciled tree or

if the homology relation between the genes was predicted correctly. Furthermore it could be analysed

if the method was able to infer the gene duplications and losses. A method that is able to detect large

scale duplications will then identify the cluster and genome duplications generated by our algorithm.

We have also presented a method to measure “noise” in orthology relations based on induced sub-

graphs on five vertices that are divided in four categories: forbidden subgraphs, P4-sparse, cographs

and small connected components. Depending on the percentage of these subgraphs found in the cor-

responding orhtology relation graph from a dataset, we are able to say whether the graphs is closer to

a cograph or to a random graph. If a graph contains less than 20% of forbidden subgraphs, it is likely

that it can be edited and therefore converted to a cograph.

We have applied this approach to the output of four methods to measure their performance when

tested with simulated data: BBH, Proteinortho, PoFF and OrthoMCL. Surprisingly, we found out

that the graph obtained from the OrthoMCL output contains edges that connect pairs of genes from the

same species, which violates the definition of orthology.

We have also tested the datasets found in the OMA database and found that the orthology graph

induced by pairs of orthologs has few errors and therefore one should be interested in finding out

which of those pairs of orthologs are false positives to obtain a perfect valid ortholoy relation. We

also applied the method to the output graphs from Proteinortho and PoFF when applied to a set of

12 metazoan proteoms. We can conclude that both methods perform very well and therefore create

orthology relation graphs that are close to cographs, therefore it might be interesting to think of a

heuristic that takes two lists of edges: one with strong evidence and one with weak evidence, such

that the edges in the former should not be removed when applying a cograph editing method and edges

in the second list can be the first ones to be taken into account for removal.
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CHAPTER 9

Conclusions

Orthology refers specifically to the relationship between two genes that arose by a speciation

event, recent or remote. Comparing orthologous genes is essential to the correct reconstruc-

tion of species trees, so that detecting and identifying orthologous genes is an important problem, and

a longstanding challenge, in comparative and evolutionary genomics and phylogenetics. In this work

we were concerned about answering the following question: How much information about the gene

tree, the species tree, and their reconciliation is already contained in the orthology relation among

genes?

In this thesis we have presented a new characterization for orthology relations based on previous

results on symbolic ultrametrics. As a result we have found out that valid orthology relations can be

characterized as a well-studied class of graphs called cographs, which is precisely the class of graphs

that do not contain induced paths on any subset of four vertices. A cograph has a unique associated

cotree, whose internal nodes have labels 1 or 0. In the case of phylogenetic trees, these correspond to

“speciation” and “duplication” events, respectively. Usually this tree will not be completely resolved,

but can be used as a constraint to resolve multifurcating nodes that represent contractions of several

events of the same type.

We have shown that cliques in a certain graph that can be associated to a symbolic ultrametric are

closely related to the structure of its discriminating symbolic representation which turns out to be a

cotree. We use this result to help derive a new algorithm for determining whether a map is a symbolic

ultrametric or not. The algorithm is called BOTTOM-UP and is based on cliques, cherries and partitions

for recovering phylogenetic trees. It would be interesting to find an extension of this algorithm, like

the MIN-CUT supertree algorithm which extends the BUILD algorithm in such a way that, when one

of the conditions is not satisfied, the algorithm can continue by applying some sort of MIN-CUT or a
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Conclusions

more suitable approach.

With the characterization of event-labeled gene trees we have shown how to derive a species tree by

reducing the reconciliation map from a gene tree to a species tree to rooted triples of genes residing in

three distinct species. We have proved that the set of induced triples from the gene tree whose root is a

speciation node are the ones that define the structure of the corresponding species tree. Furthermore,

we have shown that event labeled gene trees for which a species tree exists can be characterized in

terms of set of triples of that type. Simulated data shows, moreover, that such trees convey a large

amount of information on the underlying species tree.

As described in Chapter 2 it has been shown that any graph has an associated modular decom-

position tree whose internal nodes represent series, parallel and prime modules. Series and parallel

modules correspond to labels 1 and 0 in a cotree, respectively. In general a tree structure is simpler

than a graph structure, therefore it would be interesting to find heuristics to edit a graph to a cograph

by starting resolving prime nodes in the corresponding modular decomposition tree.

It would be interesting to investigate graphs with weighted edges such that edges with strong evi-

dence about the orthology are more likely to be kept than edges weak edges. One could think of using

a method like the graph completion problem or cograph editing that additionally takes into account

such weights. Moreover, one should be interested in the investigation of different approaches for the

cograph editing problem when applied to the same graph, in such a way that each outputed cograph

has a weight and the space of cographs can be analyzed to find the best solution. Furthermore, for

the inference of species trees, finding the maximum set of consistent triples, such that each triple has

a weight that represents evidence for orthology could help in the accuracy of the species tree when

dealing with real data.

Alternatively, given an arbitrary (weighted) orthology map it may be possible to find the closest

cograph in terms of edge editing operations, using Integer Linear Programming (ILP) approaches.

Therefore a binary variable for each possible edge is created. A set of constraints is defined forbidding

each possible induced path of length four and an objective function minimizing the sum of (weighted)

edge editing operations. However, for the resulting cograph a species tree may not always exist. To

assure its existence the rooted species triples extracted from the cograph have to be compatible. This

can be achieved using the ideas from Chang et al. [2011] by forcing the existence of a taxon-cluster

representation for the species tree compatible with all the species triples. This cluster representation

of a tree is a hierarchical order of subsets of the leaf set. A node from the species tree is described

by the set of its descendant leaves. Therefore the corresponding leaf sets of two nodes have to be

either distinct or one set is included into the other, which can be easily checked within ILP using the

three-gamete condition [Gusfield, 1997].

It has been important to find a method to measure “noise” in orthology graphs which would enable

us to judge whether this graph is closer to a cograph or to random one. We have developped a method

based on “forbidden subgraphs”, induced subgraphs on five vertices that contain more than one P4, P4-

sparse graps, graphs which contain only one P4, and cographs, as a benchmark for orthology detection
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methods. We have applied our approach to output graphs produced by BBH, Proteinortho, PoFF

and OrthoMCL to test the accuracy of their predictions. We have also tested real data sets found in

the OMA database as well as the predictions obtained from Proteinortho and PoFF when applied to

a set of 12 Metazoan proteomes. The results show that the predictions of the tools are quite accurate

and that those graphs can be edited to be converted to a cograph which in turn will represent a valid

orthology relation. However, why orthoMCL predicts orthology relations between pairs of genes that

belong to the same species still remains an open question.

It is worth mentioning that the general theory developed here for duplications and speciations is

potentially useful for more refined applications. More specifically, gene duplications have several dif-

ferent mechanistic causes that are also empirically distinguishable in real data sets. Thus it could be

of interest, for example, to consider data sets which, as well as representing speciation and duplication

events could also take into account events such as local segmental duplications, duplications by retro-

transposition, or whole-genome duplications [Zhang, 2003]. Moreover, in addition to such events, it

might be of interest to consider lineage sorting and horizontal gene transfer, both of which play an

important role in genome evolution [Maddison, 1997, Page and Charleston, 1998]. From the point of

view of gene trees, these behave in a similar manner to speciations, although they introduce incongru-

encies between the gene and species trees. Hence it might be of interest to investigate whether some

of the theory developed in this work could be extended to phylogenetic networks which are graph the-

oretical structures generalizing phylogenetic trees which are commonly used for modeling horizontal

gene transfer (see e.g. [Huson et al., 2010]).

105





List of Figures

2.1 (a) Undirected graph with vertices represented as green circles and edges as black

lines. In this graph an example of neighbors are the vertices {a,b}. The degree of

vertex a is three since there are three edges incident to it. This graph is simple since it

does not containt multiedges or loops. (b) An induced subgraph on vertices {a,c,d,e}

from the graph in (a). This graph forms the path c,d,a,e. (c) The resulting graph after

contracting edge {a,d} from the graph in (b). . . . . . . . . . . . . . . . . . . . . . 6

2.2 A directed graph. Here directed edges are represented by arrows. Edge (d,e) has d as

its tail vertex and e as its head vertex. Vertex d has an indegree of two and outdegree

of one. If we obtain the induced subgraph on vertices {b,d,e}, we will obtain the

cycle (d,e,b,d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 A graph with three connected components: {a,b,c,d}, {e} and { f ,g}. The set {e} is

a singleton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 A clique on five vertices, a K5. Every pair of vertices is connected by an edge. A

clique is also a cograph since any induced subgraph in four vertices is also a clique

and therefore contains no induced P′
4s. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 An unrooted tree. Leaves have degree one and all other nodes have degree greather

than two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 A binary tree. This special structure of binary tree is known as a catepillar tree. . . . 9

2.7 (a) A phylogenetic tree T = (V,E) on the set X = {a, . . . ,h}. (b) The restricted subtree

T |{a,c,e,g}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 A partition of a set into 5 blocks. Each color represents a block and therefore an

equivalence class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9 A graph that contains an induced P4, the induced subgraph on vertices {a,c,d,e}. The

P4 is highlighted in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.10 (a) A cograph. (b) The corresponding cotree. . . . . . . . . . . . . . . . . . . . . . 13

107



3.1 The evolution of a gene. Extant species A, B and C (in yellow elipses) contain in-

stances of genes after duplications and speciations. Speciations are depicted as red

circles and duplications as blue squares. Horizontal gene transfer is depicted as a

dashed line from species B to species A. (Figure adapted from Fitch 2000 [Fitch, 2000]) 18

3.2 Functional divergence. Pseudogenes are genes that are not functional and not neces-

sary for the survival of the organism where they reside. Subfunctionalization gives

rise to division of labor of the new paralogs, each new copy will take a different sub-

function of the original ancestral one. Neofunctionalization occurs when one of the

paralogs takes a complete new function that the ancestral gene did not have and the

other paralog retains the original ancestral function. . . . . . . . . . . . . . . . . . . 20

3.3 (a) A species tree.(b) A gene tree.(c) The reconcilied tree, the gene tree is embeeded

in the species tree. (d) The reconciled tree with duplication/speciation events at the

internal nodes. Red circles represent speciation event, blue square duplications, a gene

loss is represented with a green cross. . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 (a). An evolutionary scenario with three speciation events represented by circles and

two duplication events represented by squares. (b). The orthology graph. Each oval

represents a species. The color of the edges between genes represents the correspond-

ing speciation in the tree in (a) that makes the pair of genes to be orthologs. Due to

a duplication after speciation, in-paralogs C1 and C2 are both orthologs to gene D1.

Here one can observe 1− to− 1 orthology relationship between genes A1 and B1,

1− to−many between gene D1 and genes C1 and C2 and many− to−many between

genes A1, A2 and genes C1, C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

108



3.5 An escenario using the BBH approach to identify orthologous genes. (a) Three hor-

izontal bars represent three different species. Circles on each bar represent genes

belonging to that species. Colors of the circles indicate a certain biological function;

same colors indicate the same biological function. Black bi-directional arrows repre-

sent BBHs: a solid BBH arrow means a true positive, i.e., it links two genes with the

same function, and a dashed BBH arrow means a false positive, i.e., it links two genes

with different functions. Duplicated genes are connected by blue lines. Genes are

arranged into three columns on the panel. The first column includes four genes. The

two green genes from species A and B is a pair of true positive BBH. There is a du-

plication event that caused a subfunctionalization event in species C, i.e., the original

green function is shared by the blue and yellow functions in this species. Green gene

from species A is connected through a BBH linkage to the yellow gene in species C,

but their function are not identical. Similarly, green gene in species B is connected

to blue gene in species C. Here, subfunctionalization results in two false positive BBH

linkages. In second column, there are three orange circles, which should have been

all connected by true positive BBHs. However, if the function corresponding to the

orange circle has some relationships with that corresponding to red circle at the third

column, the orange gene from species B and a red gene from species A are detected

as a pair of BBH. This is an example of false positive, which is shown as a dashed BBH

arrow. The third column is is a group of four red circles representing four genes with

identical functions. There is a recent gene duplication event in species A, which cre-

ates two paralogs (two red circles on the first bar) with the same biological function.

(b) A network showing the topology of a plausible ortholog group. Nodes are genes

and edges are BBH linkages. There are four different functions in this ortholog group

(indicated by the four colors). Further partition work is required. (This figure is a

partial self-reproduction of one in [Fang et al., 2010]). . . . . . . . . . . . . . . . . 26

4.1 (a) The set of phylogenetic trees R . (b) The auxiliary graph [R,X ]. . . . . . . . . . 34

4.2 The BUILD output tree with R = T1,T2,T3,T4 from Fig. 4.1(a). . . . . . . . . . . . . 35

4.3 (a) A consistent set of triples. (b) The auxiliary graph retrieved by BUILD. (c) Output

supertree by BUILD. (d) Minimal resolved supertree. . . . . . . . . . . . . . . . . . 39

4.4 A phylogenetic tree T = (V,E) on the set X = {a, . . . ,e}, together with a map t from

the set of interior vertices of T to the set of events M = {m1,m2,m3}, as indicated

by the labels on the interior vertices of T . The vertex in V that is the least common

ancestor of c and e has label m2 and so d(T ;t)(c,e) = m2. . . . . . . . . . . . . . . . 41

5.1 A phylogenetic tree T = (V,E) on the set X = {a, . . . ,e}, together with a map t from

the set of interior vertices of T to the set of events M = { ,�}. Leaves are depicted

by the symbol ⊙. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

109



5.2 For the symbolic ultrametric δ = d(T ;t), with (T ; t) pictured in (b), the three cotrees

(T (Gmi
(δ )),λGmi

(δ )), i = 1,2,3, pictured in that order from left to right in (c). Note

that the tree T depicted in (b) refines each of the cotrees. The corresponding Gmi
(δ )

is depicted in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 A symbolic representation of a symbolic ultrametric δ on the set X = {x1, . . . ,xn−1}

with values in the set M = {m1, . . . ,mn}. It can be shown that it is not possible to

reconstruct Tδ by applying BUILD to the set
⋃

m∈M′ Rδm
, for any M′ ⊆ M with |M′| ≤

n−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1 A phylogenetic tree T on the set X = {a, . . . ,e}, together with a map t from the set of

interior vertices of T to the set of events M = {m1,m2,m3}. The corresponding graph

G(δ ) is the graph with vertex set {a, . . . ,e} and edge set {{a,b},{d,e}}. . . . . . . 54

6.2 A phylogenetic tree T on X = {a,b,c, · · · , j}. The vertices x = lcaT (C
′) and y =

lcaT (C) are the most recent common ancestors of the sets C = {a,d,e} and C′ =

{h, i, j}. Both C and C′ are pseudo-cherries of T . However, C′ is also a cherry of T

whereas C is not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 An example of the partition Π̃m. A phylogenetic tree T on the set X = {a, ..., i}. For

every u of T in the unique path from a to c it holds t(u) = , similarly, for every v of

T in the unique path from g to i, t(v) =� holds. . . . . . . . . . . . . . . . . . . . 55

7.1 (a) Example of an evolutionary scenario showing the evolution of a gene family. The

corresponding true gene tree T̂ appears embedded in the true species tree Ŝ. The

map µ̂ is implicitly given by drawing the species tree superimposed on the gene tree.

In particular, the speciation vertices in the gene tree (red circles) are mapped to the

vertices of the species tree (gray ovals) and the duplication vertices (blue squares)

to the edges of the species tree. Gene losses are represented with “⊗” (mapping to
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S. Keller-Schmidt, M. Tuğrul, V. M. Eguı́luz, E. Hernández-Garcı́i, and K. Klemm. An age dependent

branching model for macroevolution. Technical Report 1012.3298v1, arXiv, 2010.

S. Ohno. Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Semin. Cell

Dev. Biol., 10:517–522, Oct 1999.

M. Lynch and J. S. Conery. The evolutionary fate and consequences of duplicate genes. Science, 290:

1151–1155, 2000.

S. J. Prohaska, C. Fried, C. Flamm, G. P. Wagner, and P. F. Stadler. Surveying phylogenetic footprints

in large gene clusters: applications to Hox cluster duplications. Mol. Phylogenet. Evol., 31:581–

604, May 2004.

W Xu, C Zheng, and D Sankoff. Paths and cycles in breakpoint graph of random multichromosomal

genomes. J Comput Biol, 14(4):423–435, May 2007.

B. Jamison and S. Olariu. Recognizing p4-sparse graphs in linear time. SIAM Journal on Computing,

21(2):381–406, 1992. doi: 10.1137/0221027. URL http://epubs.siam.org/doi/abs/10.

1137/0221027.

C. Hoang. Perfect graphs. PhD thesis, McGill University, 1985.

Sarah Berkemer. Cograph Editing: An Approach to Adjust the Orthology Relation for the Recon-

struction of Phylogenetic Trees. Bachelor Thesis, Saarland University, 2012.

Michel Habib, Fabien Montgolfier, and Christophe Paul. A simple linear-time modular decompo-

sition algorithm for graphs, using order extension. In Torben Hagerup and Jyrki Katajainen,

editors, Algorithm Theory - SWAT 2004, volume 3111 of Lecture Notes in Computer Science,

pages 187–198. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22339-9. doi: 10.1007/

978-3-540-27810-8 17. URL http://dx.doi.org/10.1007/978-3-540-27810-8_17.

Marcus Lechner, Maribel Hernandez-Rosales, Daniel Doerr, Nicolas Wieseke, Annelyse Thevenin,

Jens Stoye, Sonja J. Prohaska, and Peter F. Stadler. Orthology detection combining clustering and

synteny for very large data sets. Submitted, 2013.
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