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Motivated by the recent experimental progress in the search for Majorana fermions, we

identify signatures of topological superconductivity and propose realistic experiments to

observe these signatures. In the first part of this thesis, we study charge transport through

a topological superconductor with a pair of Majorana end states, coupled to leads via

quantum dots with resonant levels. The nonlocality of the Majorana bound states opens

the possibility of Cooper pair splitting with nonlocal shot noise. In the space of quantum

dot energy levels, we find a characteristic four-peaked cloverlike pattern for the strength

of noise due to Cooper pair splitting, distinct from the single ellipsoidal peak found in the

absence of Majorana end states.

Semiconductor-superconductor hybrid systems are promising candidates for the realiza-

tion Majorana fermions and topological order in solid state devices. In the second part, we

show that the topological order is mirrored in the excitation spectra and can be observed in

nonlinear Coulomb blockade transport through a ring-shaped nanowire. Especially, the ex-

citation spectrum is almost independent of magnetic flux in the topologically trivial phase

but acquires a characteristic h/e magnetic flux periodicity in the nontrivial phase. The

transition between the trivial and nontrivial phase is reflected in the closing and reopening

of an excitation gap.

In the third part, we investigate characteristic features in the spin response of doped

three-dimensional topological insulators with odd-parity unequal-spin superconducting

pairing, which are predicted to have gapless Majorana surface modes. These Majorana

modes contribute to the spin response, giving rise to a characteristic temperature behavior

of the Knight shift and the spin-lattice relaxation time in magnetic resonance experiments.
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1. Introduction

The search for new states of quantum matter is one of the central pursuits in modern

physics. In condensed matter physics we know in principle the Hamiltonian exactly, at

least in the simplification which is relevant for the vast majority of applications. The fun-

damental constituents of any condensed matter system are nuclei and electrons which are

bound together by the Coulomb interaction. As a consequence, the underlying theory is

quantum electrodynamics with a trivial extension for several species of charged particles

(electrons and nuclei). However, we also know that at low temperature many systems ex-

hibit quantum phases which behave dramatically different compared to their fundamental

constituents. This phenomenon is called emergence [1, 2], and the list of examples is long

and ranges from crystallization and magnetism to high-temperature superconductivity and

quantum Hall effects.

The traditional paradigms to characterize such emergent quantum phases are Landau’s

Fermi liquid theory [3] and the Ginzburg-Landau theory of symmetry breaking [4]. In

Fermi liquid theory, the interacting many-body problem is significantly simplified by iden-

tifying the interacting fermions with effectively noninteracting quasiparticles with renor-

malized parameters such as mass, velocity, and other dynamical properties. This theory

was particularly successful in describing the normal-state properties of liquid 3He and

metals. However, at low temperatures some systems provide instabilities towards phases

which are characterized by a local order parameter and in these cases the paradigm of

the noninteracting electron picture fails. The phase transitions are usually well described

by the Ginzburg-Landau theory where an effective field theory for the order parameter of

the interacting fermion system is investigated. This field theory is determined by general

properties such as the symmetry of the order parameter and dimensionality, and gives

a universal description of the broken-symmetry phase. The classification of phases with

broken symmetries is well described by the mathematical concept of group theory which

describes the physical system in terms of symmetry groups. Together, Fermi liquid the-

ory and the theory of symmetry breaking were successful in the explanation of a series

of interacting many-body problems. Examples are crystalline solids, where translational

symmetry is broken, magnets, where spin rotation symmetry is broken, and superconduc-
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tors, where the global gauge symmetry is broken leading to exotic phenomena such as

Josephson effects and flux quantization.

Over the last thirty years, there were several experimental and theoretical discoveries

which did not fit into this simple traditional picture. Until the discovery of the quantum

Hall effect in a two-dimensional electron gas subjected to a strong perpendicular magnetic

field [5], it was conjectured that most states of matter can be classified in terms of the

Ginzburg-Landau theory of symmetry-breaking, i.e., by local order parameters. However,

for the quantum Hall states there is no local order parameter, instead, each state is char-

acterized by a global topological invariant [6]. Topology is a mathematical concept to

characterize different geometrical objects and to classify them into broad classes. Topo-

logical classification and in particular homotopy theory discards small details and focuses

on the fundamental distinction of shapes. In the quantum Hall effect, the topological in-

variant n is given by a Brillouin zone integral over the Berry curvature and determines

the precisely quantized transverse conductance σxy = ne2/h [6]. This topological invariant

cannot change unless the energy gap between electronic bands closes and reopens. In par-

ticular, it remains unchanged by small perturbations in the physical system. Similarly to

order parameters in systems with broken symmetry, the topological invariants act as topo-

logical order parameters in systems without symmetry breaking. The transition between

two phases, which can be distinguished by a topological invariant, is called topological

phase transition.

With the theoretical prediction and the experimental confirmation of the two-dimensional

quantum spin Hall effect in HgTe/CdTe quantum wells [7,8] and its three-dimensional coun-

terpart in bismuth chalcogenides [9, 10], the search for topological phases attracted much

interest [11,12]. While the quantum Hall states belong to a class of topological states which

explicitly breaks time-reversal symmetry, these new quantum states called topological in-

sulators belong to a class which is invariant under time reversal and in which spin-orbit

coupling plays a key role. The topological insulator can be distinguished from the trivial

band insulator by a Z2 topological invariant which is determined by the electronic band

structure. It is well-known that the electronic band structure of trivial insulators is char-

acterized by a band gap and hence has vanishing longitudinal conductivity for sufficiently

small voltages and temperatures. In contrast, the topological insulator has a band gap

in the bulk, but has gapless surface states consisting of an odd number of Dirac fermion

modes which give rise to quantized electronic transport. With surface we here mean any

interface between the topological and the trivial insulator (including vacuum). The ex-

istence of the surface states is deeply related to the Z2 topological invariant because the

topological invariant can only change when the excitation gap closes. As a consequence,
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Introduction

there is a region between the topological and the trivial insulator where the excitation gap

closes giving rise to low-energy electronic states [11].

Shortly after the prediction and the experimental confirmation of topological insulators,

theorists generalized this concept to superconductors where we distinguish between topo-

logically trivial and nontrivial superconductors [12–15]. The situation in superconductors

is analogous to insulators because the Bogoliubov-de Gennes Hamiltonian for the quasi-

particles of a superconductor is equivalent to the Hamiltonian for an insulator, with the

band gap replaced by the superconducting gap and the electrons replaced by quasipar-

ticles. However, despite the recent efforts on topological phases of matter, a complete

classification of topological phases which also captures interacting systems is still missing.

1.1. Topological superconductivity and Majorana fermions

Topological superconductors are one type of topologically nontrivial states of quantum

matter. They are particularly interesting because they host Majorana fermions as low-

energy quasiparticle excitations. Majorana fermions [16] are particles which are their own

antiparticles. In the notation of second quantization, this yields the simple relation

γ = γ†, (1.1.1)

where γ denotes the quasiparticle operator for the Majorana fermion. The anti-commutation

relation for Majorana fermion operators has the unusual form

γmγn + γnγm = 2δmn. (1.1.2)

This relation is strikingly different from the usual fermion anti-commutation relations

cmcn + cncm = 0 and c†mcn + cnc
†
m = δmn for fermion operators cm. Majorana fermions

were originally proposed as real-valued solutions of the Dirac equation describing charge

neutral fermionic fields in the context of high-energy physics [16]. However, it is still

unclear if there are elementary particles which are Majorana fermions. Ettore Majorana

suggested that neutrinos could be described by Majorana fermions, but the experimental

verification (as well as the falsification) of this hypothesis is still elusive.

More than five decades later, it was proposed that Majorana fermions might emerge as

exotic quasiparticle excitations in certain condensed matter systems [17–19]. Being its own

antiparticle implies that the Majorana fermion can be represented as equal superposition

of electron and hole components. Therefore, Majorana fermions are likely to exist as

quasiparticle excitations in superconductors where particle-hole symmetry relates states

3



Topological superconductivity and Majorana fermions

with positive energy and states with negative energy. More precisely, in superconductors

creating a quasiparticle with energy E is equivalent to annihilating a quasiparticle with

energy −E,

γ(E) = γ†(−E). (1.1.3)

As a consequence, the states with zero-energy are special as they are by default charge

neutral superpositions of electrons and holes. The most common type of superconductors

is characterized by pairing between electrons with opposite spin directions forming a sin-

glet. In second quantization, the Bogoliubov quasiparticles describing singlet pairing read

γ↑ = uc†↑ + vc↓, where c†σ creates an electron with spin σ =↑, ↓. For u = v∗, the operator

γ↑ describes a neutral fermion at zero energy, but it is not a Majorana fermion due to

the spin degree of freedom. A Bogoliubov quasiparticle, which satisfies for E = 0 the

Majorana criterion by construction, is γ = uc†σ + vcσ where fermions with the same spin

direction are paired into Cooper pairs with triplet symmetry. This type of pairing does

not occur in conventional superconductors and was first predicted to be realized in the

fractional quantum Hall state at filling fraction ν = 5/2 [19, 20]. Before we discuss the

details of the experimental realization of Majorana fermions, we will concentrate on their

exotic properties.

Recently, Majorana fermions have attracted much interest, mainly because of their spe-

cial exchange statistics [21–23]. It is well known that the many-body wave function for

bosons is invariant under exchange of two bosons and the many-body wave function for

fermions acquires a minus sign under exchange of two fermions. In three spatial dimensions,

the statistics of bosons and fermions are the only possible statistics of particle exchange

since the fermion and boson statistics are the only one-dimensional representations of the

permutation group of indistinguishable particles. In contrast, in two dimensions, exchange

of two identical particles is not only described by the change of the order of the parti-

cles, i.e., the permutation group, but it is also necessary to specify the paths along which

the particles are exchanged. As a consequence, in two dimensions particle exchange is no

longer described by the permutation group but by the braid group. The braid group is

much richer than the permutation group and in addition to bosons and fermions, there are

more general types of wave functions called anyons. We distinguish between abelian [24,25]

and non-abelian anyons [20]. Abelian anyons acquire a complex phase exp(iθ), which is

described by the statistical angle θ, under particle exchange and therefore interpolate be-

tween θ = 0 for bosons and θ = π for fermions. It was shown that certain fractional

quantum Hall states have anyonic quasiparticles with abelian statistics, e.g. the ν = 1/3

state with θ = π/3 [26]. In addition, there are non-abelian anyons which necessarily have a

degenerate space of ground states and whose many-body wave functions are more generally
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Figure 1.1.1.: Sketch of a two-dimensional topological superconductor with well-
separated vortices binding Majorana fermions. (a) Under the counter-
clockwise exchange of two Majorana fermions j and k, the many-body
wave function is transformed by the unitary operator Bjk. (b) Two
exchange paths of Majorana fermions with identical initial and final
Majorana configuration. The two paths are described by the unitary
operators U1 and U2 which do not commute U1U2 6= U2U1.

transformed by matrices within the ground-state space. Since matrix multiplication is in

general non-commutative, the outcome of the exchange of non-abelian anyons depends on

the order of how the particles are exchanged.

Majorana fermions are one particularly simple type of non-abelian anyons. In the follow-

ing, we consider the exchange statistics of Majorana fermions which are bound to defects in

a two-dimensional system as illustrated in figure 1.1.1(a). The adiabatic counter-clockwise

exchange of two Majorana fermions γj and γk is described by the unitary operator

Bjk = exp
(
−π

4
γjγk

)
. (1.1.4)

Thus, two consecutive exchanges return both Majorana fermions to their initial positions,

but the final state is |f〉 = B2
jk|i〉 = −γjγk|i〉, which is in general not identical to the initial

state |i〉. A transformation of the form Eq. (1.1.4) is fully determined by the topology of

the exchange paths and does not depend on details of the paths [27].

In the following, we consider an example which illustrates the non-abelian character of

the Majorana exchange statistics. We consider four Majorana fermions which are bound

to some defects and which are not coupled to each other. As illustrated in figure 1.1.1(b),

we consider two exchange paths with the same initial and final configuration of Majo-

rana fermions. For exchange U1, we directly move Majorana 2 counter-clockwise around

Majorana 3. For exchange U2, we first move Majorana 2 counter-clockwise around Majo-

rana 4 and then we move Majorana 2 counter-clockwise around Majorana 3. These two

5



Proposed realization of Majorana fermions

interchanges are described by the unitary operators

U1 =B2
23 = −γ2γ3, (1.1.5a)

U2 =B2
24B

2
23 = (−γ2γ4)(−γ2γ3) = −γ4γ3 (1.1.5b)

and [U1, U2] = −2γ2γ4 6= 0, i.e., the transformations U1 and U2 do not commute. We

note that the operator U2 is identical to the operator B2
43 which describes the counter-

clockwise exchange of Majoranas 4 and 3 despite the fact that both Majoranas have not

been moved physically according to the exchange trajectories in figure 1.1.1(b). Realizing

this unconventional exchange statistics stimulated huge research efforts in the condensed

matter community [21–23].

1.2. Proposed realization of Majorana fermions

The first system, which was proposed to realize Majorana fermions, is the fractional quan-

tum Hall state at filling fraction ν = 5/2 [20]. The insight of Moore and Read was to

identify the many-body wave function of the ν = 5/2 state with chiral correlators (con-

formal blocks) in a two-dimensional conformal field theory and quasiparticle excitations

with Ising anyons (Majorana fermions bound to vortices). Greiter et al. [28] and Read

et al. [19] more generally suggested that Majorana fermions appear as vortex excitations

in spin polarized superconductors with p + ip pairing and that the ν = 5/2 state can be

described by a condensate of composite fermions with p + ip pairing symmetry. Later, it

was proposed that this unconventional pairing symmetry and hence Majorana fermions

also appear in other systems such as the A-phase of 3He films [18], in Sr2RuO4 [29], and in

cold atoms in optical traps [30]. However, despite the intense research efforts over the last

years clear signatures of Majorana fermions and the topological superconducting state in

these systems are still missing.

In 2007, Fu and Kane proposed in a pioneering work [31] that the p+ip superconducting

pairing can be induced on the surface of a strong topological insulator which is strongly

coupled to a conventional s-wave superconductor. The surface of a topological insulator

is described by a single Dirac cone with a helical band structure. Because of the single

electronic band, the system is effectively spinless and because of the helical spin structure,

there is a finite antiparallel spin component between states with opposite momenta. The

underlying ingredient for induction of p + ip pairing is the strong spin-orbit coupling of

the topological insulator which gives rise to momentum dependent spin directions. Later,

it was realized that the same mechanism can be used to induce p+ ip pairing symmetry in
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more conventional semiconductor nanowires with strong Rashba spin-orbit coupling such

as InSb and InAs in proximity to an s-wave superconductor [32–37]. There, the system

becomes effectively spinless by applying a strong magnetic field which opens a Zeeman

gap. The large spin-orbit coupling guarantees that there is a finite antiparallel spin com-

ponent between opposite momenta within each electronic band and the superconducting

pairing opens a quasiparticle excitation gap. Based on these proposals, a large number

of possible systems was suggested including vortices in topological insulators [38], cold

atomic gases [39], carbon nanotubes [40], chains of quantum dots [41], and domain walls

in topological insulator nanowires [42].

Currently, it was proposed that Majorana fermions might also occur as surface states

on three-dimensional topological superconductors with intrinsic odd-parity pairing sym-

metry [43, 44]. Fu and Berg [45] showed that the strong spin-orbit-coupled bands of a

doped topological insulator indeed favor an odd-parity pairing symmetry which gives rise

to the existence of surface Majorana modes. The advantage of this system is the intrinsic

superconductivity which does not require the superconducting proximity effect. On the

other hand, the Majorana fermions in this system are delocalized on the entire surface and

thus magnetic films are necessary to bound the Majorana fermions to some defect.

1.3. Experimental situation

Before coming to the recent experimental findings, we briefly recap the characteristic sig-

natures of Majorana fermions and what needs to be shown experimentally to verify the

existence of Majorana fermions. The defining properties of Majorana fermions are, for

system sizes much larger than the superconducting coherence length, zero excitation en-

ergy and non-abelian braiding statistics. The ultimate proof for the existence of Majorana

fermions would be the demonstration of non-abelian statistics by using them to build a

quantum computer [27, 46]. However, experimentally this has not yet been realized and

the high level of difficulty makes it challenging that the non-abelian statistics (and the

Majorana quantum computer) will be realized in the near future. Therefore, a legitimate

goal is to study other consequences of Majorana fermions and to show that these conse-

quences can be clearly distinguished from the situation without Majorana fermions [47–54].

Recently, a series of experimental works presented first evidence for Majorana fermions in

semiconductor-superconductor hybrid devices. We divide the experiments into two classes

studying the local density of states via tunneling experiments and studying supercurrents

via Josephson effects. A detailed analysis of the experiments goes beyond the scope of this

introduction, but we still want to discuss some questions and potential difficulties with the
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interpretation of these experiments in terms of Majoranas fermions.

Mourik et al. [55] investigated the differential conductance for tunneling into an InSb

nanowire proximity coupled to a NbTi superconductor. They showed evidence for the zero-

energy nature of Majorana fermions in the form of a zero-bias anomaly in the differential

conductance above a certain critical value of the Zeeman field. The behavior of this zero-

bias feature under rotations of the magnetic field and against local variations of gate

voltages is consistent with the theoretical predictions. Later, these findings have been

confirmed by other experimental groups in similar systems [56–58]. However, there are

several features in the experimental data which shed doubt on the interpretation in terms of

Majorana fermions, in particular since these features appear in all published experimental

data. These features include: (i) the absence of a clear signature associated with the

closing of the quasiparticle excitation gap at the topological phase transition separating

the topologically nontrivial from the trivial phase; (ii) the measured zero-bias conductance

is more than an order of magnitude smaller than the expected quantized value 2e2/h;

(iii) the observation of a soft superconducting gap instead of a hard gap with suppressed

differential conductance for voltages smaller than the gap and sharp coherence peak. In

addition to these unexpected experimental observations, theorists proposed a number of

alternative scenarios which explain the appearance of the zero-bias anomaly based on more

conventional physical phenomena. These scenarios involve pair-breaking effects by strong

nonmagnetic disorder [59], smooth confinement potentials [60], weak antilocalization [61],

Kondo physics [62], or the 0.7 anomaly in nanowires [58]. Therefore, we conclude that

tunneling experiments alone are not sufficient to verify the existence of Majorana fermions

and that complementary experiments are desirable.

So far, one experiment reported evidence of unconventional Josephson effects in semi-

conductor-superconductor nanowires [63]. In conventional superconductivity, the only

low-energy charge carriers which can tunnel across the junction between two supercon-

ductors are Cooper pairs with charge 2e which give rise to a 2π periodic Josephson current

I ∝ sin(φ), where φ denotes the superconducting phase difference across the junction. In

contrast, the presence of Majorana fermions enables the tunneling of single electrons with

charge e across the junction between two topological superconductors. This halving of the

transferred charge from 2e to e yields a doubling of the Aharonov-Bohm phase for con-

structive interference. Therefore, the periodicity of the Josephson current I ∝ sin(φ/2) is

4π and hence doubled as compared to conventional superconductors. However, this effect

cannot be seen in dc Josephson experiments where fluctuations between the two degenerate

ground states screen the 4π periodicity. In contrast, in the ac Josephson effect the 4π pe-

riodicity is not screened and gives rise to unconventional Shapiro steps [64]. It was shown
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experimentally that above some critical value of the Zeeman field, the height of the first

Shapiro step is doubled which is a signature of the topological phase transition. However,

in a recent theoretical work it was shown that fractional Josephson effects can also appear

in high-transparency conventional superconductor–normal-state–superconductor junctions

as a result of Landau-Zener processes associated with the Andreev bound states of the

junction [65].

We conclude that despite the recent experimental progress clear experimental signa-

tures of Majorana fermions and the topological superconducting state are still absent. We

believe that additional theoretical work is necessary in order to identify complementary

experimental signatures and to clearly distinguish the case with Majorana fermions from

the case without Majorana fermions.

1.4. This thesis

In the following, we give a brief description of the content of this thesis. In chapter 2,

we begin with an introduction to the basic physics and concepts of topological supercon-

ductivity. There, we provide the basic theoretical methods to distinguish between trivial

and nontrivial superconducting states and we show how to obtain ground-state properties

of the superconductor. In particular, we note that the following main chapters of this

thesis build on the concept introduced in chapter 2. In the three main chapters, we study

physical consequences of topological superconductivity and their experimental signatures.

In the following, we briefly present the content of the main chapters.

1.4.1. Transport signatures of Majorana bound states coupled to

quantum dots

In chapter 3, we consider transport through a three-terminal normal-state–topological

superconductor nanowire–normal-state device. The topological superconductor nanowire

is characterized by a pair of Majorana fermions which are bound to the two ends of the

nanowire. Because of the finite length of the nanowire, the Majorana bound states are tun-

nel coupled to each other and have a finite energy splitting εM ∼ ∆ exp(−L/ξSM) sin(kFL),

where ξSM is the superconducting coherence length and kF the Fermi momentum in the

semiconductor. A possible probe for the nonlocal nature of Majorana bound states is

Cooper pair splitting [66–68]. The electrons in superconductors form Cooper pairs and the

process of converting a Cooper pair into two electrons in spatially separated normal metal

contacts is called Cooper pair splitting. To realize Cooper pair splitting, a tunneling ma-

9
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trix element is required, which allows a pair of electrons to leave the superconductor into

two separate contacts. One particular realization of such a matrix element is the Majorana

energy splitting εM . It has been shown theoretically that at sufficiently low voltages and

small level broadening, Cooper pair splitting by the pair of Majorana bound states is the

dominating transport process and gives rise to positive current cross-correlations [69, 70].

For voltages larger than the Majorana energy splitting εM , resonant tunneling of electrons

and holes gives rise to negative current cross-correlations, and the total current cross-

correlations vanish.

V

Nanowire Right LeadLeft Lead

IL IR

Γ Γtt

ǫL ǫR

Figure 1.4.1.: Illustration of a system with a pair of Majorana bound states coupled to
quantum dots which themselves are coupled to lead electrodes. Cooper
pair splitting can be detected by correlating the currents IL and IR that
flow via Majorana bound states into the superconductor nanowire.

In this chapter, we study the effect of quantum dots on the transport signatures of Ma-

jorana bound states. In particular, we focus on the physics of coupling a pair of Majorana

bound states at the ends of a quasi one-dimensional topological superconductor nanowire

to lead electrodes via quantum dots in the Coulomb blockade regime. The proposed ex-

perimental setup is illustrated in figure 1.4.1. As demonstrated in recent experiments with

similar systems [71–73], the quantum dots suppress local Andreev reflection and thus pro-

vide a suitable tool to probe current cross-correlations. Building on this observation, we

investigate the effect of quantum dots on the differential conductance and on the current

cross-correlations in topological superconductors. We underline our findings for an effec-

tive low-energy model with numerical results for a microscopic model of a spinless p-wave

superconductor [19] and the more realistic semiconductor-superconductor hybrid system

discussed above.
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1.4.2. Signatures of topological order in Coulomb blockade transport

through semiconductor – superconductor nanowire rings

In chapter 4, we investigate signatures of topological order and the topological phase transi-

tion in quasi one-dimensional ring shaped superconductor nanowires in nonlinear Coulomb

blockade transport. Here, we associate topological order with the existence of ground-state

degeneracies which depend on the manifold on which the system is defined. We focus on

a regime in which the quasiparticle gap ∆ is larger than the single-particle level spacing

d. In the Coulomb blockade regime, the total particle number and hence the parity of the

superconductor nanowire are fixed by the charging energy Ec > ∆, and the degeneracy

of grand canonical ground states is reflected in the excitation energies, which can be ob-

served in nonlinear Coulomb blockade transport [74, 75]. The lowest excited states above

the ground state of a trivial superconductor with even parity involve two quasiparticles and

thus breaks a Cooper pair, incurring an excitation energy δE ≈ 2∆, which is essentially

independent of magnetic flux. In contrast, the ground state for odd parity always has one

quasiparticle, and hence the lowest excited state involves both annihilating and creating a

quasiparticle which costs the excitation energy δE ≈ d2/∆� 2∆.

Figure 1.4.2.: Cross section of the experimental setup for a ring shaped
semiconductor-superconductor hybrid system. We consider a quasi
one-dimensional semiconductor (SM) nanowire with strong spin-orbit
coupling and a magnetic field B perpendicular to the plane of the semi-
conductor ring. The superconductor (SC) is sputtered on top of the
semiconductor which itself is deposited on a gate electrode. The semi-
conductor is weakly tunnel coupled to source and drain electrodes.

For nontrivial topological superconductors, the situation is very different. Here, ground

states without unpaired particles at the Fermi energy have odd parity for periodic boundary

condition, and even parity for antiperiodic boundary condition. Therefore, the excitation

energy δE oscillates between d2/∆ and 2∆ as function of magnetic flux with period h/e

which is doubled as compared to trivial superconductors. This connection between the

ground-state degeneracy on manifolds with nonzero genus and the h/e flux periodicity of
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ring structures demonstrates that these properties are a general consequence of topological

order and that nonlinear Coulomb blockade transport is a suitable tool to investigate this

order.

We propose an experiment which directly investigates consequences of topological order

on a nontrivial manifold. For this purpose, we use the Coulomb energy as a tool to fix

the parity of the hybrid system and thus, to observe the above discussed ground-state

degeneracy. Our analysis is based on the identification of the pfaffian Z2 invariant for

Hamiltonians in class D, i.e., Hamiltonians whose only symmetry is particle-hole symme-

try [76], with the parity Q of the grand canonical ground state. Thus, we use this key

piece of information about the grand canonical ground state to construct two classes of

states with parity Q and −Q, where the class of states with parity Q (−Q) contains all

eigenstates with an even (odd) number of quasiparticle excitations. We find two types of

excitation spectra which display trivial or nontrivial superconductivity depending on pa-

rameter values. The transition between the different topological phases is characterized by

the closing and reopening of an excitation gap. As these findings only rely on the existence

of a superconducting gap ∆ > d and the S1 topology of the system, the excitation spectra

are robust against nonmagnetic disorder, spatial variations of the superconducting pairing

potential, geometry details, and the existence of additional transverse subbands.

1.4.3. Spin response in three-dimensional topological superconductors

Recent experiments showed first evidence for unconventional superconductivity with a

critical temperature Tc ≈ 4 K in the electron doped topological insulator CuxBi2Se3 [43].

Based on specific heat measurements, it was proposed that this system possibly shows

a fully-gapped, time-reversal invariant p-wave superconducting state [77]. By now, the

existence of surface states in CuxBi2Se3 has been probed by photoemission [78] and point

contact spectroscopy [79–83]. Currently, the experimental situation for the superconduct-

ing state of CuxBi2Se3 is rather controversial [84]. While recent point contact spectroscopy

experiments [79–81] showed signatures of subgap surface states, no such signatures were

found in references [82,83]. As a consequence, at the moment the superconducting pairing

symmetry of CuxBi2Se3 cannot be unambiguously determined from tunneling spectroscopy,

and data obtained by complementary experimental techniques are desirable.

Nuclear magnetic resonance and quadrupole resonance, as well as the electron and muon

spin resonance are another class of powerful techniques to investigate the electronic prop-

erties locally. The Knight shift for example is determined by the static spin susceptibility,

which is directly connected to the spin structure of the superconducting pairing. In conven-
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Figure 1.4.3.: (a) Cut through the quasiparticle excitation spectrum for a topological
insulator with odd-parity interorbital pairing. The energy band within
the superconducting gap reflects the surface states. (b) Local density
of states as function of distance from the surface and energy. Note the
subgap states near z = 0 which decay exponentially into the bulk.

tional s-wave superconductors with spin-singlet pairing, the Knight shift is significantly

reduced and vanishes for zero temperature because spins pair up and longitudinal spin

excitations cost the pair-breaking energy 2∆. However, in superconductors with strong

spin-orbit coupling the spin susceptibility is suppressed as compared to the normal state,

but does not vanish for zero temperature due to coupling between up and down spins.

In chapter 5, we study characteristic features in the spin response of odd-parity pairing

in doped topological insulators and predict clear signatures for the above resonance tech-

niques.

Fu and Berg [45] showed that strong spin-orbit-coupled bands indeed favor an odd-parity

interorbital unequal-spin pairing [85, 86]. To gain insight into its topologically nontrivial

nature, we map this pairing Hamiltonian onto the conduction band, which yields an effec-

tive time-reversal invariant p ± ip pairing in three dimensions. Because of this topology,

there is a pair of Majorana zero-energy modes located at each surface and protected by

time-reversal symmetry. Additionally, there are unconventional surface Andreev bound

states originating from the band inversion as shown in figure 1.4.3(a). In addition to terms

linear in momentum, we here consider quadratic momentum terms, which determine the

energy range of coexistence between Dirac modes and unconventional surface Andreev

bound states, and which may give rise to other species of zero-energy surface Andreev

bound states. The main motivation for introducing the quadratic terms is the possibility

to investigate the competition between the different surface states and the bulk.

The coexistence of the Majorana zero-energy modes and the surface Andreev bound

states originating from the band inversion [87] gives rise to two characteristic length scales.

The Dirac modes decay on the nanometer scale ξ0 whereas the decay length ξ1 for the Ma-
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jorana zero-energy modes is hundreds of nanometer as shown in figure 1.4.3(b). Hence,

the local spin susceptibility shows different characteristic behavior in the bulk, at the

surface, and within ξ1 into the bulk. Conventional bulk nuclear magnetic resonance can

distinguish between competing pairing symmetries by the characteristic temperature de-

pendence of the Knight shift and the spin-lattice relaxation rate. We propose that nuclear

magnetic resonance in thin films of several hundred nanometer thickness, or depth con-

trolled probes [88,89] allow to clearly determine the pairing symmetry and investigate the

Majorana zero-energy modes.
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2. Introduction to topological

superconductivity

In this chapter, we give an elementary introduction to topological superconductivity with

the focus on the most important aspects for understanding the basic physics. Our goal is

to provide basic concepts and tools which are useful to describe superconductors in gen-

eral and to discriminate between topologically distinct superconducting phases in special.

In section 2.1, we begin with an introduction to general superconducting Hamiltonians

and discuss how to obtain various ground-state properties of superconductors, such as the

energy, mean particle number, and parity. In particular, we show that the parity of the

many-body wave function determines the topology of the superconducting state, and we

formulate a criterion for topological superconductivity. Then, in section 2.2 we discuss in

some detail a toy model for a one-dimensional superconductor and show that this model

is characterized by two classes of ground-state wave functions with distinct topology. In

section 2.3, we generalize this toy model by extending the model to two dimensions, and

we discuss the topological order of this system in section 2.4. We conclude this chapter

in section 2.5 with the introduction of an experimentally promising system in which topo-

logical superconductivity can be engineered using a semiconductor nanowire with strong

spin-orbit coupling, exposed to a magnetic field, and proximity coupled to a conventional

s-wave superconductor.

2.1. Topological invariant for bilinear Hamiltonians

We begin our discussion with an abstract introduction to the zero-temperature formalism

of how to calculate ground-state properties and excited states of a general superconducting

system described by a bilinear Hamiltonian. In the mean-field approximation, supercon-

ductors are characterized by nonvanishing anomalous expectation values of operators which

annihilate or create pairs of electrons. These anomalous expectation values result from the

decoupling of an attractive electron-electron interaction and give rise to the superconduct-

ing order parameter. The consequence of the anomalous expectation values is the violation

15



Topological invariant for bilinear Hamiltonians

of particle-number conservation in the mean-field ground-state wave function which is a

coherent superposition of states with different particle numbers. Instead of a certain par-

ticle number, the mean-field wave function is characterized by particle-number parity, i.e.,

particle number modulo two. In this section we will discuss a connection between the

parity of the wave function and the topological properties of the superconducting state.

In the following, we consider a superconducting system which is described by a bilinear

Hamiltonian in the mean-field approximation. In second quantization, we write the general

Hamiltonian as

H = C†TC +
1

2
C†∆(C†)T +

1

2
CT∆†C, (2.1.1)

where C = (c1, c2, . . . , cN)T is an N -component column vector of fermion annihilation

operators ci, and C† is the corresponding N -component row vector of fermion creation

operators. Here, we do not specify the number N , however, for electrons the c operators

are typically labeled by momentum and spin, and then N is two times the number of

momenta. The Hermitian N × N matrix T contains the kinetic and potential energy

terms, which describe the normal-state properties, and the N × N matrix ∆ contains

the superconducting pairing potential. In addition, the pairing matrix is skew-symmetric

∆T = −∆ which is a direct consequence of the anti-commutation relations of fermions.

It is standard practice to consider the so-called Nambu space representation of the

Hamiltonian in Eq. (2.1.1) by including fermion creation and annihilation operators into

a single 2N -component vector. Hence, we rewrite the Hamiltonian in matrix form as

H =
1

2

(
C† CT

)
HBdG

(
C

(C†)T

)
+

1

2
Tr(T ), (2.1.2)

where HBdG is the Hermitian 2N × 2N matrix denoting the single-particle Hamiltonian,

HBdG =

(
T ∆

−∆∗ −T ∗

)
, (2.1.3)

and Tr(T ) denotes the trace of the matrix T . Here, the trace term is a real number and

appears because to obtain Eq. (2.1.2) we split the kinetic energy into two parts. Then,

we used the fermionic anti-commutation relations to interchange the order of creation and

annihilation operators in one of the parts. This interchange gives rise to a minus sign in the

second line of Eq. (2.1.3) and in addition, it yields a constant rest term when interchanging

creation and annihilation operators which describe the same fermion.

The entries in the basis vector (C† CT ) are not independent of each other and can be

transformed into each other by applying a particle-hole transformation C → (C†)T and
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C† → (C)T . In matrix notation, the particle-hole operator is given by

P = τxK ≡
(
0 1

1 0

)
K, (2.1.4)

where K denotes an operator which applies complex conjugation to all elements on the right

and 1 (0) denotes the N ×N identity matrix (zero matrix). Applying the transformation

P to the Hamilton matrix, we find P HBdGP−1 = −HBdG. From this relation, we conclude

that for all positive eigenvalues Ei of HBdG, there is a negative counterpart −Ei which is

also an eigenvalue of HBdG. In addition, the corresponding eigenvectors |ψE〉 and |ψ−E〉
can be transformed into each other by applying the operator P|ψE〉 = |ψ−E〉.

The Hamiltonian Eq. (2.1.1) can be diagonalized by a unitary transformation described

by N × N matrices U and V which transform the fermion operators C and C† into new

fermion operators A and A† by

C = UA+ V (A†)T . (2.1.5)

This transformation is called Bogoliubov transformation and the operators A are called

Bogoliubov quasiparticle operators. The conditions for the unitarity of transformation

Eq. (2.1.5) are

UU † + V V † = 1, (2.1.6a)

UV T + V UT = 0. (2.1.6b)

With this transformation, we write(
C

(C†)T

)
=

(
U V

V ∗ U∗

)(
A

(A†)T

)
(2.1.7)

and hence,

H =
1

2

(
A† AT

)(U † V †

V T UT

)
HBdG

(
U V

V ∗ U∗

)(
A

(A†)T

)
+

1

2
Tr(T ). (2.1.8)

In the following, we demand that the Hamiltonian is diagonal in the new operators,

H = A†DA+ E0 (2.1.9)

with the diagonal matrix D = diag(E1, . . . , EN), which has nonnegative entries only, and
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with the ground-state energy E0. This demand yields the eigenvalue equation

HBdG

(
U V

V ∗ U∗

)
=

(
U V

V ∗ U∗

)(
D 0

0 −D

)
(2.1.10)

and the ground-state energy is given by

E0 =
1

2
Tr(T )− 1

2
Tr(D). (2.1.11)

The eigenvalue equation (2.1.10) is called Bogoliubov-de Gennes equation. The ground-

state many-body wave function |ψ〉 of Hamiltonian Eq. (2.1.1) is given by the state for

which all quasiparticle states Ai with quasiparticle energy Ei > 0 are empty, i.e., Ai|ψ〉 = 0.

According to Eq. (2.1.9), the Hamiltonian is the sum over occupied quasiparticles with

nonnegative energy plus the residual energy E0. Since the ground state is characterized

by zero quasiparticles, the terminology ground-state energy is justified for E0.

To further investigate the ground-state properties, we distinguish two generic cases:

(i) All quasiparticle energies are positive, Ei > 0, and the superconductor is fully gapped

with the energy gap EG = min(Ei). As a consequence, the many-body ground-state

wave function is uniquely defined by the state without quasiparticles Ai. This situation

is for instance realized in conventional s-wave superconductors where electrons form spin

singlet Cooper pairs and where the superconducting gap is protected against nonmagnetic

perturbations according to Anderson’s theorem [90].

(ii) Some excitation energies vanish, i.e., Ei = 0 for i in some set S of indices. In this case,

the ground state is not uniquely defined and there is a 2n-dimensional space of ground

states where n denotes the number of elements in S. To further discuss this situation, we

specify the set S and assume that the energies Ei = 0 for i = 1, . . . , n. By definition of the

operators Ai, there is one ground state |ψ(0)〉 for which Ai|ψ(0)〉 = 0 for all i. Starting

from this specific state, we construct new states

|ψ(s)〉 =
(
A†1
)s1 . . . (A†n)sn|ψ(0)〉 (2.1.12)

with s = {s1, . . . , sn} and si ∈ {0, 1}. On the first view, this space of degenerate ground

states looks rather artificial for superconducting systems. However, in the following sec-

tions we will show that this situation is for instance realized in topological superconductors

where zero-energy states exist in defects.

For the rest of this section, we consider systems which fall into class (i) where all energies

Ei > 0 and where the ground state is unique. In most problems, the ground-state wave
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function is highly complicated and usually we are not interested in the explicit form of the

wave function itself. Instead, we are interested in some specific properties of the ground

state such as its energy E0 which is determined by diagonalizing the matrix HBdG. In

addition, we are interested in the mean particle number and the parity of the ground

state. Similarly, we are not interested in the explicit form of the wave functions for the

excited states. Again, we are only interested in the excitation energies Ei and in the

operators Ai which describe the quasiparticle excitations. In the following, we show how

all these quantities can be derived from the Bogoliubov-de Gennes matrix HBdG without

knowing the explicit form of the ground-state wave function.

The ground-state electron number is given by the expectation value of the particle-

number operator N̂ = C†C in the state where all quasiparticle levels are empty. Rewriting

the particle-number operator in terms of quasiparticle operators and taking the expectation

value with respect to the ground state (〈A†iAi〉 = 0), we find

N0 = Tr(V †V ). (2.1.13)

For superconductors, the particle number operator N̂ does not commute with the Hamil-

tonian and as a consequence, there are states which do not have a definite mean-field

particle number. In contrast, the parity operator P̂ = (−1)N̂ commutes with the Hamilto-

nian because all terms in the Hamiltonian contain two fermion operators and each fermion

operator changes the parity. Hence, two fermion operators change the parity twice which is

equivalent to no change of the parity. As a consequence, the eigenstates of H can be divided

into two classes ψe and ψo with even (〈ψe|P̂ |ψe〉 = +1) and odd parity (〈ψo|P̂ |ψo〉 = −1).

The parity of the unique ground-state wave function is determined by the number

Q =
Pf (HBdGiτ

x)√
det (HBdGiτx)

, (2.1.14)

where τx denotes the Pauli matrix acting on the particle-hole space introduced above. Pf

denotes the so-called pfaffian which is defined for 2N × 2N skew-symmetric matrices as

Pf(A) =
1

2NN !

∑
σ∈S2N

sign(σ)
N∏
i=1

aσ(2i−1),σ(2i). (2.1.15)

Here, S2N denotes the permutation group and sign(σ) is the signature of the permutation

σ. One special property of the pfaffian is Pf(A)2 = det(A) which is a crucial relation

to see that Q is dimensionless and in particular, Q = ±1. As noted above, for systems

with gapped quasiparticle excitation spectrum the number Q = +1(−1) corresponds to
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the even (odd) parity of the ground state. For a proof of Eq. (2.1.14), we refer the reader

to reference [91].

For superconducting systems without time-reversal symmetry, i.e., systems in class D

of the Altland-Zirnbauer classification of Hamiltonians [13,92], the parity Q becomes par-

ticularly interesting. It was proposed that Q is a topological invariant which is intricately

related to the topology of the superconductor. This topological invariant is robust against

weak perturbations of the system, where weak is defined in comparison to the supercon-

ducting gap EG, and cannot be changed in a continuous way without closing the excitation

gap of the superconductor.

If we apply Eq. (2.1.14) to an ordinary s-wave superconductor (without or very weak

magnetic perturbations) described within the BCS framework, we always find Q = +1, i.e.,

an s-wave superconductor has always even parity independent of the microscopic details.

The origin of the even parity is that all electrons near the Fermi surface form Cooper pairs

and pairs have by definition an even parity. However, below we will show that theoretically,

there are also more exotic superconductors with Q = −1 and that these systems behave

very different as compared to conventional s-wave superconductors.

2.2. One-dimensional lattice model of spinless fermions

In this section we introduce a simple toy model for a one-dimensional superconductor and

we apply the concepts discussed above in section (2.1) to this model. We consider a one-

dimensional chain of N spinless fermions as illustrated in figure 2.2.1(a). The fermions

can hop between nearest-neighbor lattice sites and exhibit long-range-ordered p-wave su-

perconductivity. We write the Hamiltonian as

HK = −
N−1∑
x=1

(
t0c
†
xcx+1 + t0c

†
x+1cx + ∆0c

†
xc
†
x+1 + ∆∗0cx+1cx

)
− µ0

N∑
x=1

c†xcx, (2.2.1)

where µ0 denotes the chemical potential, t0 the hopping amplitude between nearest neigh-

bors, and ∆0 the superconducting pairing potential between nearest neighbors. The opera-

tor cx (c†x) denotes the annihilation (creation) operator for a spinless fermion on site x. We

stress that for spinless fermions onsite pairing is not possible since Pauli’s exclusion princi-

ple forbids doubly occupied sites. Hence, pairing between nearest neighbors is the simplest

possible pairing term for spinless systems. We note that the Hamiltonian Eq. (2.2.1) is

sometimes dubbed Kitaev model since Kitaev introduced this model to describe Majorana

bound states in quantum wires [76].
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Figure 2.2.1.: (a) Illustration of the one-dimensional chain of spinless fermions
Eq. (2.2.1) with nearest-neighbor hopping potential t0, nearest-neighbor
superconducting pairing potential ∆0, and chemical potential µ0.
(b) Bare dispersion relation εk = −2t0 cos(k) for a half filled one-
dimensional tight-binding model with band width 4t0.

At first, we consider the limit that the chain forms a closed loop with periodic bound-

ary conditions. This limit allows us to study the properties of the superconducting bulk

without perturbations from the ends of the chain. Therefore, it is appropriate to consider

Hamiltonian Eq. (2.2.1) in momentum space by Fourier transformation of the fermion

operators

cx =
1√

2πN

∑
k

e−ikxck. (2.2.2)

In the following, we assume that the number of lattice sites N is even which yields the

allowed momenta k = 2πn/N with n ∈ {−N/2 + 1,−N/2 + 2, . . . , N/2}. The analysis of

the chain with an odd number of lattice sites is analogous and therefore we neglect this

case here. We rewrite the Hamiltonian as

HK =
∑
k

{
εkc
†
kck + ∆0 sin(k)c†kc

†
−k + ∆∗0 sin(k)c−kck

}
(2.2.3)

with the kinetic energy εk = −2t0 cos(k) − µ0. From the pairing term, we see that there

are two special momenta k = 0 and k = π, which do not contribute in the pairing since

sin(0) = sin(π) = 0. All other fermions are paired with their time-reversed partners,

i.e., pairing is between momenta k and −k. According to Eq. (2.1.8), we rewrite the

Hamiltonian as

HK =
1

2

∑
0<k<π

C†kHkCk +
1

2

∑
l=0,π

(
c†l cl

)(εl 0

0 −εl

)(
cl
c†l

)
+

1

2

∑
−π<k≤π

εk (2.2.4)
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Figure 2.2.2.: (a) Quasiparticle excitation spectrum Ek as function of momentum k for
the one-dimensional Kitaev model Hamiltonian Eq. (2.2.3) with µ0 = 0.
The solid line is the spectrum for ∆0 = t0/4 and the dashed line is the
spectrum for ∆0 = 0. (b) Quasiparticle excitation spectrum as function
of chemical potential. The black area is characterized by a continuum
of quasiparticle states bounded from below by a quasiparticle gap for
|µ0| 6= 2t0. For |µ0| = 2t0, the quasiparticle gap closes.

with the Bogoliubov-de Gennes matrix

Hk =


εk 0 0 ∆0 sin(k)

0 ε−k −∆0 sin(k) 0

0 −∆∗0 sin(k) −εk 0

∆∗0 sin(k) 0 0 −ε−k

 (2.2.5)

and the vector

C†k =
(
c†k c†−k ck c−k

)
. (2.2.6)

By diagonalizing the matrix Hk, we find the quasiparticle energies

Ek =

√(
− 2t0 cos(k)− µ0

)2
+ |∆0|2 sin2(k). (2.2.7)

As shown in figure 2.2.2, for |∆0| � t0 the quasiparticle spectrum has a superconducting

gap of magnitude EG = |∆0|
√
|1− µ2

0/4t
2
0| which is finite for all |µ0| 6= 2t0.

Since for |µ0| 6= 2t0 all quasiparticle energies are nonzero and the spectrum is fully

gapped, we can calculate the topological number Q introduced above in Eq. (2.1.14),

Q =
ε0
|ε0|

( ∏
0<k<π

E2
k

E2
k

)
︸ ︷︷ ︸

≡1

επ
|επ|

= sign(ε0επ). (2.2.8)
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Introduction to topological superconductivity

If we insert the expression for the single-particle energies ε0 = −µ0−2t0 and επ = −µ0 + 2t0,

we find Q = sign(µ2
0 − 4t20) which yields Q = +1 for |µ0| > 2t0 and Q = −1 for |µ0| < 2t0.

Thus, we find that the one-dimensional spinless p-wave superconductor has two topolog-

ically distinct phases which are both characterized by the same superconducting order

parameter ∆0. For |µ0| > 2t0, the superconductor is in the trivial phase which is topo-

logically equivalent to the vacuum. This equivalence becomes immediately clear when

considering the limit µ0 → −∞, in which the system becomes fully depleted, and in the

limit µ0 → +∞, in which the system becomes fully occupied. However, for |µ0| < 2t0

the situation is different. Here, we find a topological number Q = −1 and therefore, the

superconducting state cannot be continuously transformed into the vacuum state without

closing the energy gap. Equivalently, we could argue that in this case, the Hamiltonian

Eq. (2.2.3) cannot be continuously transformed into the vacuum Hamiltonian |µ0|
∑
c†xcx

without closing the energy gap.

So far, we have shown that the spinless superconductor with periodic boundary condi-

tions shows two phases which can be distinguished by the topological number Q. Except

for the topological number, both systems show a superconducting gap characterized by

∆0, and so far, we have not seen a way to experimentally distinguish between the two

phases. For that purpose, we now consider a finite chain with open boundary conditions.

It will be instructive to consider two special limits. As illustrated in figure 2.2.3(a), for

∆0 = t0 = 0 the Hamiltonian is just a sum over local chemical potentials and the ground

state is the completely empty (filled) wave function for µ0 < 0 (µ0 > 0). Obviously, this

describes the trivial phase which was characterized by the topological invariant Q = +1

in the last paragraph.

(a)

(b)

. . .

. . .−2t0

−µ0

γA,1 γA,2 γA,NγB,1 γB,2 γB,N

γA,1 γA,2 γA,NγB,1 γB,2 γB,N

−µ0−µ0−µ0−µ0−µ0

−2t0−2t0−2t0

Figure 2.2.3.: Illustration of the Hamiltonian Eq. (2.2.1) and the ground state (a) for
µ0 6= 0 and ∆0 = t0 = 0, and (b) for µ0 = 0 and ∆0 = t0. The green
bonds describe pairs of Majorana fermions which form a finite energy
quasiparticle. Note that in (b), there are two uncoupled Majorana
operators γB,1 and γA,N which give rise to a zero-energy quasiparticle
state.
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One-dimensional lattice model of spinless fermions

To understand the physics of the topologically nontrivial phase more easily, we consider

the special limit ∆0 = t0 > 0 and µ0 = 0. To diagonalize Hamiltonian Eq. (2.2.1), we

decompose the fermion operators into a sum of Majorana operators [76],

c†x =
1

2
(γA,x + iγB,x) , (2.2.9a)

cx =
1

2
(γA,x − iγB,x) . (2.2.9b)

This decomposition can be understood as decomposition of a complex Dirac fermion into

real and imaginary parts which correspond to Majorana fermions. The Majorana operators

can be obtained by inverting the transformation, i.e.,

γA,x = c†x + cx, γB,x =
c†x − cx

i
. (2.2.10)

Hence, it can be easily seen that the γ operators are Hermitian and satisfy the Majorana

anti-commutation relations {γi, γj} = 2δij for i, j ∈
{

(Ax), (Bx)|x ∈ {1, . . . , N}
}

. Using

the definitions Eqs. (2.2.9), we rewrite Hamiltonian HK as

HK = it0

N−1∑
x=1

γA,xγB,x+1, (2.2.11)

where only Majorana operators on adjacent lattice sites are coupled and form bonds be-

tween (A, x) and (B, x + 1) as sketched in figure 2.2.3(b). However, we note that the

operators γB,1 and γA,N are not coupled to any Majorana operator and thus commute with

the Hamiltonian.

In the next step, it is useful to define new fermion operators dx and d†x by

γA,x = dx + d†x, (2.2.12a)

γB,x+1 =
dx − d†x

i
(2.2.12b)

for 1 ≤ i ≤ N − 1. The fermion operators dx are defined on the bond between two

adjacent lattice sites and satisfy fermionic anti-commutation relations. In addition, we

define another fermion operator f = (γA,N + iγB,1)/2 which yields

γA,N = f + f †, (2.2.13a)

γB,1 =
f − f †
i

. (2.2.13b)
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Introduction to topological superconductivity

This fermion operator describes a highly nonlocal state since γB,1 and γA,N are localized

at opposite ends of the chain. With these definitions, we finally rewrite the Hamiltonian

HK = 2t0

N−1∑
x=1

d†xdx − t0(N − 1), (2.2.14)

with the ground-state energy E0 = −t0(N − 1). Hence, it is obvious that the ground state

|ψGS〉 is characterized by the empty single-particle states dx|ψGS〉 = 0 and the dx cor-

respond the Bogoliubov quasiparticle annihilation operators. However, since the fermion

operator f is absent from Hamiltonian Eq. (2.2.14) occupying the corresponding quasipar-

ticle state requires zero excitation energy. As a consequence, the ground state is two-fold

degenerate and the corresponding wave functions can be distinguished by the occupancy

of the f -fermion. As discussed above in Eq. (2.1.12), the two ground states are given by

|ψ1〉 and |ψ2〉 = f †|ψ1〉 with 〈ψ1|f †f |ψ1〉 = 0 and 〈ψ2|f †f |ψ2〉 = 1. This behavior is very

different from conventional gapped superconductors, where there exists a unique ground

state with even parity such that all electrons form Cooper pairs.

In the more general case |µ0| < 2t0 and ∆0 arbitrary, the Majorana bound states are

no longer simply given by γA,N and γB,1 but decay exponentially into the bulk of the

chain. The physically relevant parameter regime |∆0| � t0 is characterized by a supercon-

ducting gap which is typically much smaller than the width 4t0 of the electronic bands.

In this limit, the Majorana wave functions decay exponentially on the length scale of

the superconducting coherence length ξ. Here, ξ is given by the ratio of Fermi velocity

vF = ∂εk/∂k(εk = 0) and quasiparticle gap EG. Consequently, this yields for the Kitaev

model ξ = vF/∆ = 2t0/∆0 in units of the lattice distance. The overlap of the Majorana

wave functions results in an exponentially small energy splitting εM between the states

|ψ1〉 and |ψ2〉. However, if the nanowire becomes much longer than the superconducting

coherence length, the splitting becomes so small that the states |ψ1〉 and |ψ2〉 are quasi de-

generate for all temperatures which are relevant for experiments and possible applications.

2.3. Two-dimensional topological superconductor

Aside from the special choice of parameters t0 = ∆0 and µ0 = 0, it is difficult to investigate

the Kitaev model Eq. (2.2.1) analytically. For arbitrary parameters, the decomposition of

the Hamiltonian into a sum over bonds between adjacent lattice sites is not possible and

diagonalizing the Hamiltonian requires the diagonalization of the N × N matrix HBdG.

However, in many cases it is easier to study differential equations instead of large systems
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Two-dimensional topological superconductor

of algebraic equations.

In this section we consider the continuum limit of the model introduced in the last

section and in addition, we extend the system into two spatial dimensions. To derive the

continuum model from the tight-binding Hamiltonian HK , we consider the case that the

wave functions change slightly on the length scale of the lattice constant a. For realistic

semiconductor systems this assumption is justified since the lattice constant is the distance

between atoms, and the Fermi wavelength λF is typically at least one order of magnitude

larger than the distance between the atoms. For the tight-binding dispersion relation

εk = −2t0 cos(ka) − µ0, this condition is satisfied if µ0 ≈ −2t0, i.e., if the number of

electrons in the system is small compared to the number of lattice sites.

In this low-density limit, we approximate the lattice fermion operators cx by electron field

operators ψ(x) with the continuous space-variable x. Henceforth, we replace the fermion

anti-commutation relations for the lattice operators by the anti-commutation relations for

the field operators

{ψ(x), ψ†(x′)} = δ(x− x′) (2.3.1)

and

{ψ(x), ψ(x′)} = 0, (2.3.2)

and we approximate the sum over lattice sites by an integral
∑

x ≈
∫
dx/a. Moreover, we

expand all nearest-neighbor terms in powers of a� λF and keep the lowest nonvanishing

powers only,

c†xcx+a ≈ aψ†(x)ψ(x+ a)

≈ aψ†(x)
(
ψ(x) + a

∂

∂x
ψ(x) +

a2

2

∂2

∂x2
ψ(x)

)
, (2.3.3a)

c†xc
†
x+a ≈ aψ†(x)ψ†(x+ a) ≈ aψ†(x)

(
ψ†(x) +

∂

∂x
ψ†(x)

)
. (2.3.3b)

Here, the appearance of the lattice distance a as prefactor is necessary for dimensional

reasons, since the field operators have units 1/
√
a and the operators in the lattice model

are dimensionless. Applying these replacements to the individual terms in the lattice

Hamiltonian Eq. (2.2.1), we find

c†xcx ≈ aψ†(x)ψ(x), (2.3.4a)

c†xcx+a + c†xcx−a ≈ a3ψ†(x)
∂2

∂x2
ψ(x) + 2aψ†(x)ψ(x), (2.3.4b)

c†xc
†
x+a ≈ a2ψ†(x)

∂

∂x
ψ†(x). (2.3.4c)
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Introduction to topological superconductivity

This yields the one-dimensional continuum Hamilton operator for spinless fermions with

p-wave superconducting pairing,

H1D =

∫
dxψ†(x)

(
− ~2

2m∗
∂2

∂x2
− µ

)
ψ(x)

+

∫
dx

{
∆ψ†(x)

∂

∂x
ψ†(x) + ∆∗

(
∂

∂x
ψ(x)

)
ψ(x)

}
, (2.3.5)

where m∗ = ~2/2a2t0, ∆ = a∆0, and µ = µ0 + 2t0. The first line in Eq. (2.3.5) is the

usual Hamiltonian for a one-dimensional spinless electron gas with effective mass m∗ and

Fermi energy µ. The second line describes the p-wave pairing with superconducting order

parameter ∆. The p-wave symmetry can be easily seen if one Fourier transforms the

Hamiltonian and therefore replaces the first derivative terms by linear momentum terms

which are odd under k → −k.

In the following, we extend this model by adding the y direction to the Hamiltonian.

We assume that the kinetic energy of the electrons in the x-y plane is isotropic, i.e., the

effective mass m∗ is the same for x and y directions, and we assume that the pairing

potential also has p-wave symmetry in y direction with the same order parameter ∆ as

for the x direction but with a phase shift of π/2. With these assumptions, we write the

Hamiltonian for spinless fermions with px + ipy pairing symmetry in the convenient form

H2D =

∫
d2r ψ†(r)

(
− ~2

2m∗
∂2

∂r2
− µ

)
ψ(r)

+

∫
d2r

{
∆ψ†(r)

(
∂

∂x
+ i

∂

∂y

)
ψ†(r) + ∆∗

[(
∂

∂x
− i ∂

∂y

)
ψ(r)

]
ψ(r)

}
. (2.3.6)

The topological number Q for the infinitely large one-dimensional (two-dimensional) sys-

tem described by Eq. (2.3.5) (Eq. (2.3.6)) can again be determined by Fourier transforming

the Hamiltonian and applying Eq. (2.1.14). Simplifying the expression for Q consequently,

we find that the parity is entirely determined by the quasiparticle energy at zero momen-

tum. This yields the final result Q = −sign(µ). In the context of the continuum model,

the topologically nontrivial phase for µ > 0 is usually called weak pairing phase and the

topologically trivial phase for µ < 0 is called strong pairing phase [19].

2.4. Ground-state degeneracy on nontrivial manifolds

Topological phases are quantum phases which cannot be described by the Ginzburg-Landau

theory with a local order parameter. Instead, the defining order of topological phases is a
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Ground-state degeneracy on nontrivial manifolds

pattern of long-range quantum entanglement which is called topological order [93–95]. One

characteristic property of a topologically ordered state is the dependence of the ground-

state degeneracy on the topology of the manifold on which the system is defined [96]. This

degeneracy on manifolds might also serve as a starting point for a general classification of

topological phases of strongly correlated quantum matter, in contrast to the topological

band theory which is only applicable to noninteracting systems [11,31,98,99]. In this sec-

tion we investigate the degeneracy of the two-dimensional spinless px+ ipy superconductor

Eq. (2.3.6) on the torus and discuss differences to the findings for conventional s-wave

superconductors [19, 96].

Γ1

Γ2

Figure 2.4.1.: Illustration of the bijective mapping from a square with periodic bound-
ary conditions onto the torus. Under this mapping, both green (red)
lines are mapped onto one of the fundamental circles on the torus. The
loops Γ1 and Γ2 describe the two holes piercing the torus and are iden-
tified with magnetic flux lines 0 or Φ1/2 = h/2e.

Before discussing superconducting systems on the torus, we briefly discuss some prop-

erties of the torus and its relation to squares. It can be shown that a torus is topologically

equivalent to a unit-square with periodic boundary conditions in both x and y direction.

The bijective map from the unit square to the torus embedded into a three-dimensional

space can be easily written down as

(
x

y

)
7→

(R + r cos(2πx)) cos(2πy)

(R + r cos(2πx)) sin(2πy)

r sin(2πy)

 , (2.4.1)

where R denotes the major radius and r � R denotes the minor radius of the torus as

depicted in figure 2.4.1. Hence, instead of considering Hamiltonian H2D on the torus,

it is sufficient to consider the system on a square with periodic boundary conditions. In

addition, we may imagine that either zero magnetic flux or half of a magnetic flux quantum

Φ1/2 = h/2e threads either of the two fundamental cycles Γ1 or Γ2 in the torus. The effect of
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Introduction to topological superconductivity

the magnetic flux Φ1/2 is the multiplication of the wave function by exp(2πieΦ1/2/h) = −1

if a particle of charge e encircles the magnetic flux once. Hence, we can represent the

magnetic flux Φ1/2 through one of the fundamental cycles either by a vector potential

and periodic boundary conditions, or by no vector potential and an antiperiodic boundary

condition. These two choices are related by a gauge transformation and thus are fully

equivalent. In our analysis, we choose to incorporate the magnetic flux via changing

the boundary conditions along the two fundamental cycles. Hence, we identify the four

magnetic flux configurations on the torus with boundary conditions on the square,

{(0, 0), (0,Φ1/2), (Φ1/2, 0), (Φ1/2,Φ1/2)} ≡ {(++), (+−), (−+), (−−)}, (2.4.2)

where the + (−) refers to (anti-) periodic boundary conditions along the respective direc-

tion on the square. For each of the four boundary conditions, the allowed values for the

momenta k = (kx, ky) run over the usual sets, ki = 2πni for + and ki = 2π(ni + 1/2) for

−, where ni ∈ Z and i = x, y. In particular, the special momentum k = (0, 0) is a member

of the set of allowed momenta only in the case ++.

In the following, we consider a superconducting system on the torus with a nonvanishing

quasiparticle excitation gap above the ground state. As elementary low-energy excitations,

the superconductor has Bogoliubov quasiparticles and vortices with magnetic flux Φ1/2.

We introduce the process Bi (i = x, y) which creates a vortex-antivortex pair, followed by

the vortex encircling the torus in i direction and finally the pair annihilation. We may

imagine the vortex and the antivortex as the two points where a closed h/2e magnetic flux

tube pierces the torus. Under the process Bi, we create such a closed flux tube, move one

of the punctures around the torus, and thereby deform the flux tube. Finally, the vortex-

antivortex pair is annihilated which can be understood by smoothly fusing the punctures.

However, this leaves a closed flux tube through one of the holes of the torus which cannot

be smoothly contracted to a point without crossing the torus and thereby creating new

vortices. Therefore, the process Bi introduces a magnetic flux Φ1/2 into the hole of the

torus which is not encircled by the vortex. Consequently, we may identify Bi with an

operator which changes the boundary condition +↔ − for the other cycle ī.

Before discussing the spinless px + ipy superconductor, we consider the conventional

s-wave superconductor which has two electronic bands, one for each spin direction and

the pairing is between electrons with (k, ↑) and (−k, ↓). In particular, for ++ boundary

conditions the electrons with (0, ↑) and (0, ↓) pair. As a consequence of the two spin

bands, the ground-state wave function is a product over all pairs (k, ↑) and (−k, ↓), and in

particular, for the parity of the ground state it is irrelevant whether the k = 0 state is one
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Ground-state degeneracy on nontrivial manifolds

of the allowed momenta or not. Thus, all four combinations of boundary conditions are

characterized by a wave function with even parity corresponding to Q = +1. In addition,

the above introduced operators Bx and By allow to change the boundary conditions and

thus, they transform the different ground states into each other. We conclude that the

ordinary s-wave superconductor shows a four-fold degeneracy of the ground state on the

torus [97].

In contrast, for the px + ipy superconductor the situation is richer. Depending on the

chemical potential, the ground state of the px + ipy superconductor is realized by the weak

or the strong pairing phase. Here, aside from the unpaired state k = 0 all states k and −k
are paired. In the strong pairing phase µ < 0, the single-particle state corresponding to the

momentum k = 0 is unoccupied and hence, all four combinations of boundary conditions

are characterized by a wave function, which contains only pairs k and −k, with even parity

similarly to the conventional s-wave superconductor. As a consequence, the strong pairing

phase possesses the same four-fold degeneracy as the ordinary s-wave superconductor and

the operators Bi transform between the different ground states.

In contrast, the ground state of the weak pairing phase on the torus depends on boundary

conditions for each of the two primitive directions. Here, the ground state with only

periodic boundary conditions is special and shows an odd parity since all momenta k and

−k are paired except for k = 0 where a single electron resides. In contrast, the three

ground states with at least one antiperiodic boundary condition are described by an even

parity since there, the momentum k = 0 does not correspond to a single-particle eigenstate.

The operators Bi now behave very different as compared to the trivial superconductor. If

we apply the operators to the ground state | −−〉 for antiperiodic boundary conditions in

both directions, we find a new ground state

Bx| − −〉 = | −+〉, (2.4.3a)

By| − −〉 = |+−〉. (2.4.3b)

However, the consecutive application of both operators ByBx| − −〉 is blocked because

applying Bx changes the boundary condition in y direction and then By would no longer

give a new ground state since Q(++) 6= Q(−+). Instead, the final state would be an

excited state which contains a Bogoliubov quasiparticle above the superconducting gap.

As a consequence the vortex/antivortex pair is blocked from the pair annihilation and

hence the consecutive operation ByBx is not a mapping from the ground-state space into

itself [96].

We conclude that there are in total four ground states, three for boundary conditions

30
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+−, −+, −− which are linear combinations of states with even values of the fermion

number in both phases, and for ++ boundary conditions the ground state has odd (even)

fermion number for µ > 0 (µ < 0).

2.5. Semiconductor-superconductor hybrid systems

While superconductors with px+ipy pairing symmetry have been investigated theoretically

for a long time, so far, it is not clear whether there is a realization in nature. Candidate

materials for systems with px + ipy pairing symmetry are the Pfaffian quantum Hall state

at filling fraction ν = 5/2 [19], superfluid 3He A [18], and Sr2RuO4 [29]. However, ex-

periments on the systems are all highly complicated and despite intensive experimental

work, direct signatures of topological superconductivity and of Majorana fermions remain

elusive. In recent years, a series of theoretical works established that one can engineer

the topological superconductor in more conventional materials. The common ingredient

in these proposals is the use of semiconducting materials with strong spin-orbit coupling

and proximity coupling to an ordinary s-wave superconductor. These proposals are based

on two material classes: (i) topological insulator materials with protected surface Dirac

fermion states [31, 38] and (ii) semiconducting quantum wires with strong Rashba spin-

orbit coupling and induced magnetization [32–36]. In the following, we only discuss the

second type of proposals of a semiconducting quantum wire, however, the physics is very

similar for the Dirac surface states of topological insulators.

In figure 2.5.1(a), we illustrate the basic setup required to engineer a spinless px + ipy

Hamiltonian [32–36]. We consider a one-dimensional semiconductor nanowire aligned along

the x direction with strong Rashba spin-orbit coupling with spin in the y direction. We

assume that this nanowire is deposited on an s-wave superconductor and that a magnetic

field is pointing in z direction. We model this system by the Hamiltonian H = HSM +HSC

with the normal state Hamiltonian

HSM =

∫
dx
∑
σ,σ′

ψ†σ(x)

(
− ~2

2m∗
∂2

∂x2
σ0 − µσ0 − iα~

∂

∂x
σy + EZσz

)
σσ′

ψσ′(x) (2.5.1)

and the superconducting proximity Hamiltonian

HSC =

∫
dx
(

∆ψ↑(x)ψ↓(x) + ∆∗ψ†↓(x)ψ†↑(x)
)
. (2.5.2)

Here, Hamiltonian HSM contains four terms: the kinetic energy of free electrons with

effective mass m∗, the chemical potential µ, which determines the filling of the nanowire,
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Semiconductor-superconductor hybrid systems

the Rashba spin-orbit velocity α, and the Zeeman energy EZ = gµBB/2. The matrices

σy and σz denote the 2× 2 Pauli spin matrices and σ0 the corresponding identity matrix.

The operator ψ†σ(x) (ψσ(x)) creates (annihilates) a fermion with spin σ at position x. The

Hamiltonian HSC describes the spin-singlet pairing between electrons in the nanowire with

proximity induced pairing potential ∆. If the interface between the nanowire and the

superconductor is good enough Cooper pairs tunnel between these two systems with the

effect that electrons in the nanowire feel an effective pairing potential.
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Figure 2.5.1.: (a) Schematic sketch of the semiconductor-superconductor heterostruc-
ture. A semiconductor nanowire with strong spin-orbit coupling is prox-
imity coupled to an s-wave superconductor which itself is located in the
x-y plane. A magnetic field is applied in z direction. (b) Dispersion
relation of Hamiltonian HSM for finite Zeeman energy (solid lines) and
vanishing Zeeman energy (dashed lines). The Zeeman energy EZ opens
a spin gap 2EZ at zero momentum. (c) Expectation value of the spin
operator for the two energy bands for EZ > 0 and α < 0. (d) Quasi-
particle excitation spectrum as function of Zeeman energy. The grey
area is the continuum of quasiparticle states bounded from below by
the quasiparticle gap. The dashed lines denote the energy gap at zero
momentum and at the finite Fermi momentum kF

Let us first consider the case ∆ = 0 and investigate the Hamiltonian HSM which describes

the normal state of the nanowire. As above, we consider a translationally invariant system
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and Fourier transform the fermionic field operators ψσ(x) which yields

HSM =

∫
dk

2π

∑
σ,σ′

ψ†kσ

(
~2k2

2m∗
σ0 − µσ0 + α~kσy + EZσz

)
σσ′

ψkσ′ . (2.5.3)

Hence, we find two electronic bands with the dispersion relations

ε±(k) =
~2k2

2m∗
− µ±

√
E2
Z + (α~k)2, (2.5.4)

which are shown in figure 2.5.1(b). The effect of spin-orbit coupling on the parabolic disper-

sion of the electron gas is a shift with respect to the origin by the momenta δk± = ±m∗α/~
and by the energy δE = m∗α2/2. This creates two electronic bands which cross at k = 0

[see figure 2.5.1(b)] and the spin of the two electronic bands is aligned along ±y. Switching

on a magnetic field now tilts the spins into z direction and thereby opens a spin gap 2EZ

at k = 0 which separates the two bands. For |µ| > EZ , there are four Fermi points which

gives rise to a topologically trivial superconducting state. In contrast, when the Fermi level

resides within the spin gap at zero momentum, i.e., |µ| < EZ , the number of Fermi points

is two and the nanowire appears to be spinless in the sense that just a single electronic

band is partially occupied.

In order to understand the effect of the superconducting proximity effect, we first con-

sider the spin structure of the lower electronic band. In figure 2.5.1(c), we sketch the spin

orientation of the electron wave function as function of momentum for α < 0. The situa-

tion for α > 0 is equivalent with inverted y direction of the spin operator, i.e., Sy → −Sy.
For positive momenta, the spins of the lower band are pointing in y direction since for large

momenta the spin-orbit term, which is linear in k, dominates over the Zeeman energy. This

connection between the spin and the momentum direction is called helicity. In the limit

k → 0, the spin direction rotates in −z direction and for k = 0, the spins of the lower band

are perfectly aligned in −z direction. For negative momenta, the situation is now com-

plementary as for positive momenta but with y → −y spin direction. As a consequence,

despite the existence of an applied magnetic field, the states within the same electronic

band and with finite momentum k and −k have a nonvanishing antiparallel component

which allows for s-wave pairing between the states of the lower electronic band. Similarly,

we find a nonvanishing antiparallel spin component for the upper helical band.

In the following, we consider the situation of a nonzero pairing amplitude ∆ 6= 0. Di-

agonalizing the Hamiltonian using a Bogoliubov transformation, we find the quasiparticle

energies [35] by solving the corresponding 4× 4 Bogoliubov-de Gennes equations. We find
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the energies

Ek,± =

√
(α~k)2 + ξ2

k + E2
Z + ∆2 ± 2

√
ξ2
k (α~k)2 + ξ2

kE
2
Z + E2

Z∆2 (2.5.5)

with ξk = ~2k2/2m∗ − µ. The superconducting pairing modifies the energy spectrum in

a crucial way. In figure 2.5.1(d), we display the quasiparticle energies for fixed chemical

potential and fixed pairing amplitude as function of EZ . Evaluating Eq. (2.5.5) at k = 0

we find

E0,− = |EZ −
√

∆2 + µ2| (2.5.6)

which vanishes for E2
Z = ∆2 + µ2. For EZ = 0, the system is an ordinary s-wave super-

conductor with spin-orbit coupling and the superconducting gap at all four Fermi points

(±0,±2m∗α/~). Switching on the Zeeman field and considering the limit EZ →
√

∆2 + µ2,

we find the closing of the excitation gap at k = 0 while the gap at the finite-momentum

Fermi points does not change qualitatively. For EZ >
√

∆2 + µ2, the quasiparticle gap

at k = 0 opens again. With further increasing Zeeman field, the quasiparticle gap is de-

termined by the finite momentum Fermi points and decreases like ∆α~kF/EZ due to the

alignment of the spins in the lower helical band and the reduction of the antiparallel spin

components. The closing of the excitation gap for E2
Z = ∆2 + µ2 is crucial for the topo-

logical properties of the semiconductor nanowire. If we determine the topological number

Q using Eq. (2.1.14), we find

Q = sign
(
µ2 + ∆2 − E2

Z

)
. (2.5.7)

Hence, we conclude that the closing and reopening of the excitation gap is intricately

related to a change of the ground-state parity and therefore to a topological phase transition

between a trivial and a nontrivial superconducting phase similarly to the situation in

section 2.2. Therefore, we find that Eq. (2.5.7) yields the necessary condition

E2
Z > ∆2 + µ2 (2.5.8)

for the existence of the topological phase in spin-orbit coupled systems.

In the following, we show that in the topological phase the semiconductor nanowire can

be mapped isomorphically onto the one-dimensional spinless superconductor Hamiltonian

Eq. (2.3.5) by projecting HSC onto the lower helical band ε−,k [33, 34]. We consider this

mapping in the limit |µ|, |∆| � EZ far away from the topological phase transition. We

approximate the spinful electron operators by the fermion operators χk for the lower helical
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band, (
ψk↑

ψk↓

)
≈ 1√

2


k
|k|

√
1− EZ√

E2
Z+(α~k)2√

1 + EZ√
E2
Z+(α~k)2

χk. (2.5.9)

In the next step, we rewrite the superconducting pairing HSC in terms of the fermion

operators χk for the lower helical band

HSC ≈
∑
k

{
∆

α~k
2
√
E2
Z + (α~k)2

χ−kχk + ∆∗
α~k

2
√
E2
Z + (α~k)2

χ†kχ
†
−k

}
, (2.5.10)

which is nonzero for finite spin-orbit coupling. Hence, in the limit |µ|, |∆| � EZ , the

semiconductor nanowire is described by a one-dimensional spinless superconductor with

the effective electronic band structure

εp(k) =
~2k2

2m∗
− µ−

√
(α~k)2 + E2

Z (2.5.11)

and with the effective p-wave superconducting potential

∆p(k) = ∆
α

2
√
E2
Z + (α~k)2

. (2.5.12)

If we further assume that m∗α2 � EZ , we approximate the denominator in Eq. (2.5.12) by

2EZ . As a consequence, we find the effective parameters for the spinless superconductor

mp = m∗, µp = −EZ , and ∆p = ∆α/2EZ [36].
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3. Transport signatures of Majorana

bound states coupled to quantum

dots

In the introductory chapter we have argued that the defining properties of Majorana bound

states are zero excitation energy and non-abelian braiding statistics. Obviously, the ul-

timate proof for the existence of Majorana bound states would be the demonstration of

non-abelian statistics by using them to build a topological quantum computer. However,

experimentally this has not yet been realized and the high level of difficulty makes it un-

likely that the topological quantum computer will be realized in the near future. Therefore,

a legitimate goal is to study other consequences of Majorana bound states and to show that

these interesting and relevant consequences can be clearly distinguished from the situation

without Majoranas. While recent experiments show evidence for the zero-energy nature of

Majorana bound states in the form of a zero-voltage anomaly in the differential conduc-

tance in semiconductor-superconductor heterostructures [55–58], it has been demonstrated

in a series of theoretical works [59–62] that such a feature is not an unambiguous proof for

Majorana bound states and might also result from more conventional mechanisms.

In this chapter we identify signatures in nonlocal charge transport which we believe

are more specific of the Majorana nature than the zero-voltage conductance studied in

recent tunneling experiments. Due to the finite length of the topological superconductor

nanowire, the Majorana bound states at the ends are tunnel coupled to each other and

have an energy splitting εM ∼ ∆effexp(−L/ξ) sin(kFL) [100,101]. Here, ξ is the coherence

length and ∆eff the quasiparticle energy gap of the topological superconductor nanowire.

The Majorana energy splitting depends in an oscillatory manner on the distance between

the Majorana bound states with oscillation period 2π/kF . Since the Fermi momentum kF

depends on both chemical potential and magnetic field strength, the nonlocal transport,

i.e. transport involving quantum mechanical tunneling between the two localized Majo-

rana states, is expected to depend in an oscillatory manner on these parameters as well.

This characteristic aspect of Majorana physics is absent in samples where the splitting is
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suppressed due to the large distance between the Majorana bound states.

For a normal-state–Majorana bound state–normal-state device, it was shown theoret-

ically that at sufficiently low voltages eV < εM and small level broadening Γ � εM ,

crossed Andreev reflection by the pair of Majorana bound states is the dominating trans-

port channel and gives rise to positive current cross-correlations and a crossed Fano factor

of two [69, 70, 102–106]. Crossed Andreev reflection denotes the nonlocal conversion of

an incoming electron into a hole excitation in a separate lead [107–109], in contrast to

local Andreev reflection where electron and hole reside in the same lead. Crossed Andreev

reflection is equivalent to Cooper pair splitting where a Cooper pair is converted into two

electrons in spatially separated leads. Similarly, we can identify local Andreev reflection

with the injection a Cooper pair in a single lead. The current cross-correlations mediated

by crossed Andreev reflection are positive since the charge of the incoming and the charge

of the outgoing particles are opposite. For eV > εM , the current is dominated by local

Andreev reflection and resonant tunneling of electrons and holes gives rise to negative

current cross-correlations which exactly cancel the positive contributions from eV < εM .

As a consequence, the total current cross-correlations vanish in the limit eV � εM .

Despite the theoretical prediction of positive current cross-correlations for eV < εM , this

setup is of limited use to experimentally probe cross-correlations. As shown in recent tun-

neling experiments [55–58], the differential conductance of semiconductor-superconductor

heterostructures is characterized by a soft superconducting gap with a smooth subgap con-

ductance whose origin is not yet fully understood but most likely related to interface effects

between the superconductor and the normal-conducting lead [110]. As a consequence, the

current fluctuations are also determined by these interface effects which makes it experi-

mentally very difficult to detect current cross-correlations. In addition, we note that the

positive cross-correlations and especially the crossed Fano factor of two are difficult to

detect experimentally because for eV < εM , the current mediated by the Majorana bound

states is nonresonant and thus suppressed. However, when approaching the resonance for

eV → εM , the negative cross-correlations due to fermionic statistics become important and

thus the crossed Fano factor vanishes.

In this chapter we study the effect of quantum dots on the transport signatures of Ma-

jorana bound states. In particular, we focus on the physics of coupling a pair of Majorana

bound states at the ends of a quasi one-dimensional topological superconductor nanowire

to leads via quantum dots in the Coulomb blockade regime. Recent experiments on simi-

lar three-terminal systems with ordinary s-wave superconductors [71–73] have shown that

quantum dots are suitable tools to generate Cooper pair splitting. In particular, quantum

dots suppress local Andreev reflection and allow for Cooper pair splitting with large ef-
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ficiency approaching 100% [73, 111]. In addition, coincidence measurements have shown

positive current cross-correlation as expected for crossed Andreev processes [73]. Building

on these observations, we investigate the effect of quantum dots on the differential conduc-

tance and on the current cross-correlations in topological superconductors. Here, the key

role of the quantum dots is to stimulate an imbalance between the competing transport

processes with the goal to perturb the fine-tuning between positive and negative current

cross-correlations and thus to produce finite cross-correlations even for eV � εM .

This chapter is organized as follows: In section 3.1, we introduce the proposed model

system and the theoretical method. We continue in section 3.2 with the study of the dif-

ferential conductance and current correlations in a simple normal-state–Majorana bound

state–normal-state structure. In section 3.3, we investigate the energy spectrum and the

charge transport in the two-terminal normal-state–quantum dot–Majorana bound state

device. Then, we continue in section 3.4 by considering two quantum dots coupled to

the Majorana bound states and compare the results to the simpler setup without quan-

tum dots and with one quantum dot. In our numerical analysis, we concentrate on the

semiconductor-superconductor heterostructure which we was introduced in chapter 2.5,

however, our main results are more general and can also be applied to other (quasi) one-

dimensional topological superconductor systems. Finally, we consider the case of interact-

ing spinful quantum dots in section 3.5 and discuss the differences which originate from

the spin degree of freedom. We summarize our results in section 3.6.

3.1. Model system and theoretical methods

3.1.1. Model system

As illustrated in figure 3.5.1, we investigate a three-terminal normal-state–quantum dot–

nanowire–quantum dot–normal-state device. In this section, we introduce the model for the

closed quantum dot–nanowire–quantum dot system without the coupling to the electron

reservoirs. We consider the Hamiltonians

HM =
εM
2
iγLγR, (3.1.1a)

HD =
∑
i=L,R

{
εid
†
idi + t∗i d

†
iγi + tiγidi

}
, (3.1.1b)

HS = ∆∗d†Ld
†
R + ∆dRdL. (3.1.1c)
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Here, HM describes two Majorana bound states with an energy splitting (tunnel coupling)

εM . The Majorana bound states are described by Hermitian operators γi = γ†i which

satisfy the anti-commutation relations {γi, γj} = 2δij. The Majorana operators can be

combined into a single fermion state described by the fermion operators f † = (γL + iγR)/2

and f = (γL− iγR)/2. The chemical potential of the superconductor nanowire hosting the

Majorana bound state is zero. For the derivation of the Majorana energy splitting starting

from a microscopic model of superconducting spinless fermions, we refer to Appendix B.2.

g gt t

I I

V

Nanowire
s−wave SC

Right LeadLeft Lead

L R
L R

RL

ǫRǫL

∆

Figure 3.1.1.: Schematic setup for a system with a pair of Majorana bound states
(red dots) coupled to quantum dots which themselves are coupled to
lead electrodes. The leads are biased with the positive chemical poten-
tial eV . Crossed Andreev reflection can be detected by correlating the
currents IL and IR that flow into the superconductor nanowire via Ma-
jorana bound states. The nearby s-wave superconductor also induces a
proximity pairing ∆ between the quantum dots.

Hamiltonian HD describes two quantum dots and their coupling to the Majorana bound

states, where di (d†i ) annihilates (creates) an electron with energy εi on quantum dot i.

We consider the regime where the quantum dot single-particle level spacing δε satisfies

δε > eV > kBT . We assume that the spin degeneracy is lifted by the Zeeman energy

splitting, and that the ground state of the quantum dot has an even number of electrons.

Then, Kondo physics is absent, and in the Coulomb blockade regime, it is justified to

consider only a single quantum dot level in HD. The quantum dot i is coupled to the

Majorana bound state i with coupling strength ti. As long as ∆ → 0, we choose the

tunneling matrix elements ti to be real and positive. This choice is justified, since a

complex phase |ti|eiφi can be removed by the local gauge transformation di → die
iφi .

Hamiltonian HS describes an additional proximity induced pairing between the quan-

tum dots with an amplitude ∆ ∼ ρSexp(−L/ξSC) sin(kFL)/(kFL) [108], where ρS is the

normal-state quantum dot level broadening due to the coupling between superconductor

and quantum dot, kF the Fermi momentum, L the length, and ξSC the coherence length
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of the superconductor. We have in mind that the superconducting pairing term may

mainly be due to a coupling between the quantum dots and the s-wave superconductor in

a semiconductor-superconductor heterostructure. For the derivation of the induced pairing

amplitude in a realistic system, we refer to Appendix B.3.

We diagonalize the Hamiltonian for the coupled Majorana bound state–quantum dot

system by the Bogoliubov transformation

αε =
∑
i=L,R

(ui
2
γi + vidi + wid

†
i

)
. (3.1.2)

With the demand [HD + HM + HS, αε] = −εαε, we find the corresponding Bogoliubov-de

Gennes equation

hΨ = ε(ID +
1

2
IM)Ψ (3.1.3)

with

h =



0 i εM
2

tL 0 −t∗L 0

−i εM
2

0 0 tR 0 −t∗R
t∗L 0 εL 0 0 ∆∗

0 t∗R 0 εR −∆∗ 0

−tL 0 0 −∆ −εL 0

0 −tR ∆ 0 0 −εR


(3.1.4)

in the basis {γL, γR, d†L, d†R, dL, dR}. Here, the 6× 6 matrices ID = diag(0, 0, 1, 1, 1, 1) and

IM = diag(1, 1, 0, 0, 0, 0) denote the identity matrices in the dot and Majorana space. The

factor of 1/2 in the Majorana sector of the Bogoliubov-de Gennes equation originates from

the algebra {γi, γj} = 2δij of Majorana fermions which differs from the algebra of ordinary

fermions. Since the two Majorana operators γL and γR can be combined into a fermion f ,

it is also possible to express the Bogoliubov-de Gennes equations in terms of this fermion

without the factor of 1/2. For details about the alternative representation of the Hamilton

matrix Eq. (3.1.4), we refer to Appendix B.1.

3.1.2. Generalized scattering formalism

As shown in figure 3.1.1, we assume that the mesoscopic device introduced above is con-

nected to two electron reservoirs by means of two leads which are considered to be ideal

Fermi liquids. The reservoirs are held at the same chemical potential eV ≥ 0. We model

the semi-infinite ideal leads i = L,R by the energy independent density of states ρi and

assume that the lead i is coupled to the quantum dot i via the coupling strength gi. This

coupling strength has two effects, (i) it provides a matrix element for tunneling of an elec-
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tron/hole from the lead to the dot and (ii) in addition, it gives rise to the level broadening

Γi = 2πρi|gi|2 in the quantum dots. We assume that the size L of the region between

the two electron reservoirs is much smaller than the phase breaking length lφ and the en-

ergy relaxation length lrel such that the electron motion can be regarded to be quantum

mechanically coherent.

In our analysis, we concentrate on the average current Ii = 〈Îi〉 in lead i, and on the

zero-frequency shot noise

Sij = 2

∫
R
dt 〈δÎi(0)δÎj(t)〉, (3.1.5)

which measures the correlation of the current fluctuations in leads i and j, where the

current fluctuation operator δÎi = Îi − Ii measures the deviation of the current from the

average current. To compute the average current Ii in lead i and the zero-frequency noise

Sij through the normal–superconductor–normal device, we use a generalized scattering

matrix approach which also allows for Andreev reflection processes.

In the following, we derive the expressions for the average current and the shot noise

starting from the multi-terminal Landauer-Büttiker single-particle approach for purely

normal systems [113–115],

Ii =
e

h

∫
R
dε
∑
k

Aik,knk, (3.1.6a)

Sij =
2e2

h

∫
R
dε
∑
k,l

Aik,lA
j
l,knk(1− nl), (3.1.6b)

where the roman indices denote the lead electrodes, Aik,l = δikδil − s∗i,ksi,l contains the

scattering matrix elements, and where nk is the Fermi function for electrons in lead k. To

extend this formalism to superconductors which explicitly mix electron and hole degrees

of freedom, Anantram and Datta [116] rewrote Eq. (3.1.6) by taking electron and hole

degrees of freedom explicitly into account. Thus, we decompose the current Ii into the

electron current Iei and the hole current Ihi . The same holds for the current fluctuations

and the noise correlator. Thus, we find

Iαi =
qα
h

∫ ∞
0

dε
∑
k;γ

A
(iα)
k,k;γ,γnk,γ, (3.1.7a)

Sαβij =
2qαqβ
h

∫ ∞
0

dε
∑
k,l;γ,δ

A
(iα)
k,l;γ,δA

(jβ)
l,k;δ,γnk,γ(1− nl,δ), (3.1.7b)

where the greek indices denote electron (e) and hole (h) degrees of freedom, qα is the charge

of particle type α, and with the matrix A
(iα)
k,l;β,γ = δikδilδαβδαγ − sαβ∗i,k s

αγ
i,l . We note that in
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Eq. (3.1.7) we integrate over positive energies since the negative energies are associated

with holes and therefore implicitly included via the hole index. For purely normal systems,

the expressions Eq. (3.1.6) and Eq. (3.1.7) are fully equivalent since sαβi,k = δαβs
αα
i,k . However,

in principle the matrix A in Eq. (3.1.7) also allows for scattering of electrons to holes and

vice versa via the matrix elements sehi,k and shei,k. As a consequence, Eqs. (3.1.7) is also

suitable to describe superconducting systems. Superconductors are characterized by four

different types of transport processes. The matrix element sααi,i is the reflection amplitude

of a particle α in lead i. The matrix element sααi,k with i 6= k is the transmission amplitude

of an α particle from lead k to lead i. For α 6= β, the matrix element sαβi,k describes the

conversion of an incoming α particle in lead k into an outgoing β-particle in lead i. For

i = k this conversion process is called local Andreev reflection and for i 6= k it is called

crossed Andreev reflection.

Using the relations qe = e and qh = −e for the charge of electrons and holes, and

summing up the contributions of electrons and holes to the total current in lead i, we find

the final expressions for the average current in lead i and the correlations between the

current fluctuations in leads i and j,

Ii =
e

h

∫ ∞
0

dε
∑
α

sign(α)
∑
k;γ

A
(iα)
k,k;γ,γnk,γ, (3.1.8a)

Sij =
2e2

h

∫ ∞
0

dε
∑
α,β

sign(αβ)
∑
k,l;γ,δ

A
(iα)
k,l;γ,δA

(jβ)
l,k;δ,γnk,γ(1− nl,δ). (3.1.8b)

Here, the sign functions originate from the opposite charge of electrons and holes. As

before, roman indices denote the left (L) and right (R) lead, greek indices denote electron

(e) and hole (h) channels, sign(e) = +1 and sign(h) = −1, and

A
(iα)
k,l;β,γ = δikδilδαβδαγ − sαβ∗i,k s

αγ
i,l . (3.1.9)

The reservoir distribution functions nk,γ are Fermi functions with different chemical po-

tentials for the electron and hole bands

nk,γ =
1

1 + eβ(ε−sign(γ)eVk)
. (3.1.10)

For the setup in figure 3.1.1, we assume that VL = VR ≡ V . The coefficients sαβi,j are the

elements of the scattering matrix

S(ε) = 1− 2πiW †
[
G−1(ε) + iπWW †

]−1

W, (3.1.11)
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where W describes the coupling between the states of the system without leads and the

scattering states in the leads. The matrix

G−1(ε) = εID +
ε

2
IM − h (3.1.12)

is the inverse of the retarded electron Green function for the closed system Eq. (3.1.4), and

iπWW † is the self energy due to the level broadening on the quantum dots. The factor of

1/2 in front of the unit matrix for the Majorana sector originates from the unconventional

form of the anti-commutation relations for the Majorana fermions as compared to the

ordinary fermion algebra. The coupling matrix W in the lead basis {ψ†L, ψ†R, ψL, ψR} is

given by

Wilαil ,idαid
= sign(αid)gil

√
ρilδil,idδαil ,αid , (3.1.13)

where αid (αil) denotes the particle species of quantum dot id (lead il). The coupling

strengths gi give rise to the level broadening Γi = 2πρi|gi|2 in the dots. In the following,

we concentrate on the special case ΓL = ΓR ≡ Γ, tL = tR ≡ t, and take the limit of zero

temperature. We note that, unlike the rate equation formalism, the scattering approach

does not assume weak coupling between the leads and the mesoscopic system and can also

be applied even to ballistic conductors [115].

In the following, we analyze the zero-temperature limits of Eqs. (3.1.8). For that purpose,

we define the matrix

Rαβ
ij =

∑
k

sαe∗ik sβejk , (3.1.14)

which only depends on the matrix elements describing the scattering of an incoming elec-

tron. With this definition and with nk,h = 0, nk,e = Θ(eV − ε), we write for the average

current in lead i,

Ii =
e

h

∫ eV

0

dε
(
1−Ree

ii +Rhh
ii

)
. (3.1.15)

Similarly, we find for the current correlations

Sij =
2e2

h

∫ eV

0

dε
{
Ree
ij

(
δij −Ree

ji

)
+Rhh

ij

(
δij −Rhh

ji

)
+ |Reh

ij |2 + |Rhe
ij |2
}
, (3.1.16)

where we used the unitarity of the scattering matrix to obtain the linear R terms. For

i = j, we express Eq. (3.1.16) in terms of the scattering matrix elements and find the local

noise correlators

Sii =
2e2

h

∫ eV

0

dε
∑
k,l

∣∣she∗ik shhil − see∗ik sehil ∣∣2 , (3.1.17)
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which is always nonnegative independent of the details of the mesoscopic system. In

contrast, the cross-correlations

SLR ≡ SRL =
2e2

h

∫ eV

0

dε
{
− |Ree

LR|2 − |Rhh
LR|2 + |Reh

LR|2 + |Rhe
LR|2

}
(3.1.18)

contain both positive and negative contributions. Therefore, the cross-correlations can

either be positive or negative [116] depending on the relative size of the positive and

negative terms in Eq. (3.1.18). This is in stark contrast to purely normal-conducting

systems where cross-correlations are always negative due to the presence of a single charge

carrier species [114].

In the following, we analyze the nature of the negative cross-correlation terms. We write

the negative contributions as

|Ree
LR|2 = |see∗LLseeRL + see∗LRs

ee
RR|2, (3.1.19a)

|Rhh
LR|2 = |she∗LL sheRL + she∗LRs

he
RR|2

SS†=1
= |shh∗LL s

hh
RL + shh∗LR s

hh
RR|2, (3.1.19b)

which are nonzero for sααLLs
αα
LR 6= 0 or sααRRs

αα
RL 6= 0. Therefore, we conclude that resonant

tunneling of electrons and holes gives rise to negative current cross-correlations. In con-

trast, the existence of positive cross-correlations demands the existence of a nonzero matrix

element seh describing Andreev processes,

|Reh
LR|2 = |see∗LLsehRL + see∗LRs

eh
RR|2. (3.1.20)

The Fano factor F relates the actual shot noise S to the Poisson noise that would be

measured if the system produced noise SP due to single independent electrons [114]. The

Poissonian statistics of charge transmission requires the Poissonian noise SP = 2eI [117],

which yields the Fano factor

F =
S

2eI
. (3.1.21)

For purely normal systems, the Fano factor assumes values between zero (all channels are

transparent) and one (Poissonian noise). For superconducting systems, the Fano factor

assumes values between zero and two, where the F = 2 corresponds to the charge 2e of

Cooper pairs. In our analysis, we define a more general Fano factor

F k
ij =

Sij
2eIk

, (3.1.22)

which relates the current correlations between leads i and j with the current in lead k. In

45



Model system and theoretical methods

most calculations we assume symmetric lead contacts and hence IL = IR. In these cases,

we use the simplified notation FL
ij = FR

ij ≡ Fij.

3.1.3. Microscopic model

To make contact with possible experiments and to study the robustness of the results for

the effective Majorana model introduced above, we consider the Hamiltonian describing a

narrow semiconductor nanowire with strong spin-orbit coupling which is predicted to host

Majorana end states [32–35]. We describe the low-energy physics of the nanowire by the

tight-binding lattice Hamiltonian

H = HSM +HSC (3.1.23)

with the normal-state Hamiltonian

HSM =−
∑
r,r′,σ

trr′c
†
rσcr′σ +

∑
r,σ

(
EZ σ̂

z
σσ − µ+ Vr

)
c†rσcrσ

+
i~α
2a

∑
r,σ

(
c†rσσ̂

y
σσ̄cr+δxσ̄ − c†rσσ̂

y
σσ̄cr−δxσ̄ − c†rσσ̂xσσ̄cr+δyσ̄ + c†rσσ̂

x
σσ̄cr−δyσ̄

)
, (3.1.24)

where the operator c†rσ (crσ) creates (annihilates) an electron at site r with spin σ and

mass m. The first term in HSM describes hopping on a simple square lattice with lattice

parameter a, tr,r+δ = t0 ≡ ~2/2m2a2 for the nearest–neighbor lattice vectors δx = (a, 0)

and δy = (0, a), and tr,r = −2t0. The second term in Eq. (3.1.24) contains the Zeeman

splitting EZ = gµBB/2 due to a magnetic field in z direction, the chemical potential µ,

and the electrostatic potential Vr which describes nonmagnetic disorder. The second line

in Eq. (3.1.24) represents the Rashba spin-orbit coupling with spin-orbit velocity α, and

σ̂s are the Pauli spin matrices with s = x, y, z. The proximity coupling between the s-wave

superconductor and the nanowire is described by the effective s-wave pairing Hamiltonian

HSC = ∆SC

∑
r

(
c†r↑c

†
r↓ + cr↓cr↑

)
(3.1.25)

with the superconducting pairing potential ∆SC.

In our numerics, we use the lattice constant a = 10 nm and the realistic material param-

eters ~2/2m = 500 meV · nm2, EZ = 1 meV, ~α = 10 meV · nm, and ∆SC = 0.5 meV. We

consider a nanowire of length L = 520 nm and width 70 nm. For the above parameters and

µ = 0, the superconducting coherence length is ξ = vF/∆eff = 150 nm where vF denotes
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the Fermi velocity and ∆eff the superconducting gap. For details about the numerical

calculations, we refer to Appendices A.1 and A.2.

3.2. Normal-state–Majorana bound state–normal-state

device

Before discussing the full model, we consider simpler systems for zero temperature without

quantum dots and with one quantum dot only. We begin our discussion with the limit

where the Majorana bound states are directly coupled to the leads as sketched in figure 3.2.1

and where no quantum dots are present, i.e., we consider tL = tR = 0. This situation was

studied for εM = 0 in reference [69] using the Keldysh Green function approach and for

arbitrary εM in reference [70] using a scattering matrix approach.

I I

g g

Majorana bound states

V

Right LeadLeft Lead Nanowire

L R

L R

Figure 3.2.1.: Schematic setup of a topological superconductor nanowire with a pair
of Majorana bound states (red dots) coupled to lead electrodes. The
leads are biased with the positive chemical potential eV with respect
to the grounded superconductor nanowire.

In this limit, the Hamiltonian simplifies significantly to H = HM and the inverse Green

function matrix is given by

G−1(ε) =
1

2

(
ε −iεM
iεM ε

)
(3.2.1)

in the basis {γL, γR} for the Majorana bound states. This Green function describes a two-

level system where the tunnel coupling εM splits the two zero-energy levels into a doublet

at ±εM . We describe the coupling between the leads and the Majorana bound states by

the matrix

W =
1√
2

√ΓL
2π

0 −
√

ΓL
2π

0

0
√

ΓR
2π

0 −
√

ΓR
2π

 (3.2.2)

in the basis {ψ†L, ψ†R, ψL, ψR} for the leads and {γL, γR} for the Majorana bound states,
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and with Γi = 4πρi|gi|2. By inserting these expressions for W and G into Eq. (3.1.11), we

find the 4× 4 scattering matrix

S(ε) =

(
1 + A A

A 1 + A

)
(3.2.3)

with

A =
1

ε2M −
(
iΓL + ε

)(
iΓR + ε

) (iΓL(iΓR + ε
)
−εM
√

ΓLΓR

εM
√

ΓLΓR iΓR
(
iΓL + ε

)) . (3.2.4)

We note that this expression for the scattering matrix is different from the one in refer-

ence [70]. The differences originate from different definitions of εM and the Γi, and have

no physical consequences.

Using Eq. (3.1.15) for the total average current I = IL + IR that flows via the supercon-

ductor into the ground, we find the total zero-temperature differential conductance,

G(eV = ε) ≡ ∂I

∂V
=

2e2

h

(Γ2
L + Γ2

R)ε2 + 2Γ2
LΓ2

R + 2ε2MΓRΓL(
ε2M − ε2 + ΓLΓR

)2

+ ε2
(

ΓL + ΓR

)2 . (3.2.5)

Here, the first two terms originate from the scattering matrix element describing local

Andreev reflection and the last term originates from the matrix element describing crossed

Andreev reflection. In particular, we find that the crossed Andreev contribution is propor-

tional to ε2M and hence is nonzero only for a finite coupling between the Majorana bound

states. In the limit where only one lead is coupled to one Majorana bound state, say

ΓL = Γ and ΓR = 0, the differential conductance is determined by local Andreev reflection

only and acquires the form

G(eV = ε) =
2e2

h

ε2Γ2

(ε2M − ε2)2 + ε2Γ2
. (3.2.6)

We note that for εM = 0, we recover the quantized zero-bias conductance 2e2/h which

was predicted to be a signature of Majorana bound states [21, 22] as discussed in the

introductory chapter 1.3.

In figure 3.2.2(a), we plot the differential conductance for extremely asymmetric cou-

pling, where only one of the Majorana bound states is coupled to the corresponding lead,

and for symmetric coupling, where each Majorana bound state is coupled to the corre-

sponding lead with the same coupling strength. For ΓR = 0, the differential conductance

Eq. (3.2.6) has a peak at eV = εM of quantized height G(εM) = 2e2/h whereas in the
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Figure 3.2.2.: (a) Total differential conductance as function of voltage for tunneling
into a pair of Majorana bound states. GLAR (GCAR) denote the differ-
ential conductance due to local (crossed) Andreev reflection. (b) Fano
factor as function of voltage. The × markers denote the results for the
microscopic model of the semiconductor-superconductor nanowire.

symmetric case the peak is not quantized and located at e2V 2 = 2εM
√
ε2M + Γ2− ε2M − Γ2

for Γ <
√

3εM and at V = 0 for Γ >
√

3εM . In addition, we find that the differential

conductance for symmetric coupling is dominated by crossed (local) Andreev processes for

e2V 2 < ε2M − Γ2 (e2V 2 > ε2M − Γ2).

Similarly, we determine the zero-temperature current correlations Sij =
∫ eV

0
dε Pij(ε)

using Eq. (3.1.16). We find

Pii(ε) =
4e2

h

2Γ2
i ε

2
(
ε2 − ε2M + Γ2

ī

)2
+ ΓLΓRε

2
M

[(
ε2M − ε2 + ΓLΓR

)2
+ ε2

(
ΓL + ΓR

)2
]

[(
ε2M − ε2 + ΓLΓR

)2
+ ε2

(
ΓL + ΓR

)2
]2 ,

(3.2.7a)

Pīi(ε) =
4e2

h

ΓLΓRε
2
M

[(
ε2M − ε2 + ΓLΓR

)2 − ε2
(
ΓL + ΓR

)2
]

[(
ε2M − ε2 + ΓLΓR

)2
+ ε2

(
ΓL + ΓR

)2
]2 , (3.2.7b)

where ī = L (R) for i = R (L). In the limit εM = 0, the current correlations become

particularly simple, Pij(ε) = δij(8e
2/h)Γ2

i ε
2/(Γ2

i + ε2)2. Thus, the cross-correlations vanish

exactly and the only nonzero Fano factors are

F i
ii(eV = xΓi) =

Sii
2eIi

= 1− x

(1 + x2) arctan(x)
(3.2.8)

with the limits F i
ii = 0 for eV � Γi and F i

ii = 1 for eV � Γi. Here, the Fano factor is

bounded by one because after the resonance at eV = 0 the Fano factor for superconducting

systems typically assumes its normal-state value F = 1 [118].

For εM > 0, we distinguish between symmetric coupling to the leads and the extremely

49



Normal-state–Majorana bound state–normal-state device

asymmetric limit when only one lead is coupled to one of the Majoranas. In figure 3.2.2(b),

we compare the crossed and the local Fano factors. For ΓL = Γ and ΓR = 0, we find that

the local Fano factor is two for eV � εM and decreases when approaching the resonance

at εM . In the limit eV � εM , the Fano factor converges to one in analogy to the situation

for vanishing Majorana energy splitting in Eq. (3.2.8). In contrast, for symmetric coupling

strengths ΓL = ΓR = Γ, the situation is much richer since there the cross-correlations SLR

and as a consequence, the crossed Fano factor FLR, are nonzero. For eV � εM , we find

positive cross-correlations FLR ≈ Fii ≈ 1, where FLR = SLR/2eIL. This yields a total

Fano factor Ftot = (SLL + SRR + SLR + SRL)/2e(IL + IR) = 2 describing the transfer of

Cooper pairs with charge 2e into the grounded superconductor. The crossed Fano factor

FLR+FRL = 2 directly measures the transferred charge 2e of the crossed Andreev process.

As shown in figure 3.2.2(b), with increasing voltage FLR significantly decreases and is

suppressed for eV ≈ εM in contrast to Fii which is approximately independent of voltage

with a small valley at eV = εM . The origin of the suppression of cross-correlations is

resonant tunneling of electrons and holes which gives rise to negative cross-correlations as

discussed in Eq. (3.1.19b). Since each Majorana bound state is an equal superposition of

electron and hole components, the negative contribution cancel the positive contribution

exactly.

In figure 3.2.3, we show the differential conductance and the Fano factor for the micro-

scopic model of the semiconductor-superconductor hybrid system with symmetric tunnel-

ing strengths ΓL = ΓR. As discussed in chapter 2.5, the nanowire is in the topologically

trivial phase for E2
Z < ∆2

SC + µ2. There, the transport for eV < EG ≡ |EZ −
√

∆2
SC + µ2|

is nonresonant and thus suppressed, G ∝ ρSM where ρSM denotes the normal-state density

of states of the semiconductor nanowire [118]. The local Fano factor Fii is two and the

crossed Fano factor vanishes signaling that the transport is fully determined by nonreso-

nant local Andreev reflection. For eV > EG, the current is carried by resonant Andreev

processes and as a consequence, the local Fano factor drops to one which gives rise to the

sharp yellow-red transition in figure 3.2.3(c).

In contrast, for E2
Z > ∆2

SC +µ2 the nanowire is in the topologically nontrivial phase with

a pair of split Majorana bound states at εM ∼ ∆effexp(−L/ξ) sin(kFL) [see Appendix B.2

for details] which oscillates as function of magnetic field (chemical potential) [101]. In full

agreement with our results for the low-energy model discussed above, we find that the

differential conductance is peaked for eV ≈ εM and that the crossed Fano factor is two

(zero) for eV < εM (eV > εM) as shown in figure 3.2.2(d).

In addition, we find that the topological phase transition at E2
Z = ∆2

SC + µ2 clearly

shows up in the local and the crossed Fano factors. In particular, the crossed Fano factor
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Figure 3.2.3.: Transport properties of the microscopic model for the semiconductor-
superconductor nanowire in the three-terminal geometry illustrated in
figure 3.2.1 with symmetric coupling ΓL = ΓR. (a) Lowest excitation
energy, (b) differential conductance in the left lead, (c) Fano factor in
the left lead, and (d) crossed Fano factor as function of voltage and
Zeeman energy.

increases if EZ approaches the topological phase transition from below due to the closing

of the excitation gap in the nanowire which gives rise to a divergence of the superconduct-

ing coherence length and thereby allows for crossed Andreev reflection processes via the

bulk superconducting state. Hence, we propose that the appearance of cross-correlations

FLR with increasing magnetic field signals the closing of the bulk excitation gap which is

intricately related to the bulk topological phase transition.

Despite the clear theoretical prediction of the crossed Fano factor of two for eV � εM ,

we argue that this setup is of limited use for an experimental verification of Majorana

bound states. The major drawback in this proposal is that for eV � εM , the current is

nonresonant and hence very small. On the other hand, when approaching the resonance

eV = εM , the crossed Fano factor is almost completely suppressed. In order to observe

finite cross-correlations for eV � εM , we suggest to perturb the fine-tuning between the

different transport channels. Quantum dots are natural candidates to favor some transport

processes and suppress competing processes. In the following sections, we investigate the

effect of quantum dots on the differential conductance and on the current cross-correlations.
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3.3. Coupling one quantum dot to a Majorana bound

state

In this section, we consider the situation that one quantum dot is coupled to one of the

Majorana bound states. Especially, we consider tR = 0 and ΓR = 0. Throughout this

section, we set εL ≡ εd, dL ≡ d, and tL ≡ t. The excitation spectrum for the quantum dot–

Majorana bound state system can be calculated exactly by solving the 4×4 Bogoliubov-de

Gennes equation for the Hamilton matrix Eq. (3.1.4). This yields the two quasiparticle

energies

E± =
1√
2

√
ε2M + 4|t|2 + ε2d ±

√
(ε2M + 4|t|2 + ε2d)

2 − 4ε2Mε
2
d. (3.3.1)

For fixed |εM | � |t|, the quasiparticle energy spectrum has levels at |εM | and |εd|, with

avoided crossings where these two levels intersect each other. The energy splitting due

to the avoided crossing is ±2|t|. However, for εM = 0 or εd = 0, there is one special

Bogoliubov quasiparticle at exactly zero energy which is described by a pair of Majorana

operators.

In the following, we concentrate on the situation εM > 0 and εd = 0, where we find the

zero-energy Majorana operators

γ1 =
t∗d† + td

|t| , (3.3.2a)

γ2 =

√
8|t|2γR − iεM

(
t∗d† − td

)
|t|
√
ε2M + 8|t|2

. (3.3.2b)

Here, γ1 is completely localized on the quantum dot, while γ2 is partially delocalized, and

the weight of γ2 on the quantum dot is determined by the Majorana energy splitting.

The existence of these zero-energy Majorana operators depends on the fine-tuning of the

quantum dot energy level and thus, they are not topologically protected. In particular,

we note that for finite εd, the Majorana operators are tunnel-coupled with coupling energy

δE ≈ |εdεM |/
√
ε2M + 4|t|2. We note that throughout this chapter, the name Majorana

bound state is used for the topological Majoranas γL and γR which should not be confused

with the induced Majorana operators Eq. (3.3.2).

Pictorially, we can understand the formation of the zero-energy Majorana states by con-

sidering a mechanism similar to the one in the introductory chapter 2.2 when studying

the one-dimensional Kitaev chain. As illustrated in figure 3.3.1, we can decompose the

quantum dot fermion operators d and d† into a pair of Majorana operators. There exists
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ǫM

γ1 γLγL,t γR

t
ǫd = 0

γ2

Figure 3.3.1.: Formation of the zero-energy Majorana operators for εd = 0. The quan-
tum dot fermion operators d and d† are decomposed into two Majorana
operators γ1 and γL,t. Due to the coupling (t∗d† − td)γL, only γL,t
is coupled to γL while γ1 commutes with the Hamiltonian indicating
zero energy. Since two Majorana operators are necessary to describe a
physical fermion, there exists another zero-energy Majorana operator
γ2 which is a nontrivial combination of γL,t, γL, and γR.

a special decomposition for which only one of the dot Majoranas couples to γL. In the

limit εd = 0, the two Majoranas in the dot are not coupled to each other, such that an

uncoupled Majorana γ1 resides on the quantum dot. Since the three other Majorana op-

erators cannot form a single physical fermion, there necessarily exists another zero-energy

Majorana operator γ2 which is in general not localized, as can be seen from Eq. (3.3.2).

In the following, we study the transport properties through the quantum dot–Majorana

bound state junction. By inserting the Bogoliubov-de Gennes Hamiltonian into Eq. (3.1.12)

and neglecting the uncoupled quantum dot, we obtain the inverse Green function matrix

G−1(ε) =


ε
2

i εM
2

−t∗ t

−i εM
2

ε
2

0 0

−t 0 ε− εd 0

t∗ 0 0 ε+ εd

 (3.3.3)

in the basis {γL, γR, d†, d}. The coupling of the quantum dot to the left lead is given by

the coupling matrix

W =


0 0

0 0√
Γ
2π

0

0 −
√

Γ
2π

 (3.3.4)

in the basis {ψ†L, ψL} for the lead. Inserting the expressions Eqs. (3.3.3) and (3.3.4) into
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Eq. (3.1.11) for the scattering matrix, we find the 2× 2 scattering matrix

S(ε) =
1

Z

(
[ε2 − ε2M ][4ε2 − (2εd + iΓ)2]− 16|t|2ε2 −8i|t|2Γε

−8i|t|2Γε [ε2 − ε2M ][4ε2 − (2εd − iΓ)2]− 16|t|2ε2

)
(3.3.5)

with

Z = (ε2M − ε2)(4ε2d − (2ε+ iΓ)2)− 8ε|t|2(iΓ + 2ε). (3.3.6)

Using Eqs. (3.1.15) and (3.1.16) for the zero-temperature average current I, which flows

via the superconductor into the ground, and the shot noise, we find the total differential

conductance and the current correlations

GL =
2e2

h
TA|ε=eV , (3.3.7a)

PLL =
8e2

h
TA(1− TA)|ε=eV , (3.3.7b)

where

TA(ε) =
64|t|4Γ2ε2[

(ε2M − ε2)(Γ2 − 4ε2 + 4ε2d)− 16ε2|t|2
]2

+ 16ε2Γ2
[
ε2M − ε2 + 2|t|2

]2 (3.3.8)

is the probability that an incoming electron with energy ε is Andreev reflected as a hole.

We note that the numerator of the Andreev probability is proportional to the square of

the voltage and thus vanishes for zero voltage despite the existence of a pair of zero-energy

Majorana operators γ1 and γ2.
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Figure 3.3.2.: (a) Differential conductance and (b) local Fano factor as function of
voltage and quantum dot level for the normal-state–quantum dot–
Majorana bound state device with t = εM and Γ = 2εM .

In figure 3.3.2, we show the differential conductance and the local Fano factor for the

normal-state–quantum dot–Majorana bound state device. In the εd-V plane, the differen-
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tial conductance shows peaks whenever eV ≈ E± and hence displays the two electronic

bands of the quasiparticle spectrum. We find two different characteristic regimes. For

|εd| � εM , |t|, the differential conductance is determined by virtual processes via the quan-

tum dot. As a consequence, the differential conductance has one sharp peak at eV ≈ εM

of height ≈ 2e2/h and renormalized width Γ(|t|/εd)2 and another peak at eV ≈ |εd| of

suppressed height (16e2/h)(|t|/εd)4 and width Γ.

In the opposite limit |εd| . εM , |t|, the quantum dot is characterized by the formation

of the zero-energy Majorana states γ1 and γ2. However, in contrast to a topological zero-

energy Majorana bound state, the Majorana states γ1 and γ2 do not show a zero-bias

conductance peak because they are partially localized on the same dot which gives rise

to destructive interference between the Andreev reflection due to γ1 and γ2. Instead, the

differential conductance is characterized by nonuniversal behavior for eV � εM with a

plateau-like feature of height . e2/h and a wide peak of height ≈ 2e2/h and width Γ|t|/εM
at eV ≈ E+ =

√
ε2M + 4|t|2.

In figure 3.3.2(b), we display the local Fano factor FLL = 2 for eV . E− which can be

directly seen from Eqs. (3.3.7) for TA � 1. With increasing voltage, the quadratic term

in Eq. (3.3.7b) becomes important and gives rise to FLL ≈ 1 for eV > E−. At eV ≈ E−,

we find a sharp crossover between the two behaviors. Therefore, the local Fano factor is

mainly determined by the lowest excitation energy as it is usually the case for tunneling

into a superconductor [118].

3.4. Coupling two quantum dots to a pair of Majorana

bound states

In this section, we consider the full system containing two quantum dots and the pair of

Majorana bound states. In the case ∆ = 0, the quasiparticle energy spectrum has levels at

εM , |εR|, and |εL|, with avoided crossings where these levels intersect each other as shown

in figure 3.4.1. If at least one of the quantum dot levels resides at the chemical potential

of the superconductor, e.g. εL = 0, we always find one zero-energy state described by the

Majorana operators

γ1 =
t∗Ld
†
L + tLdL
|tL|

, (3.4.1a)

γ2 =

√
8|tL|(t∗Rd†R + tRdR − εRγR) + i εM εR|tL|

(
t∗Ld
†
L − tLdL

)√
ε2Rε

2
M + 8|tL|2(ε2R + 8|tR|2)

. (3.4.1b)
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Figure 3.4.1.: Quasiparticle energy spectrum for the quantum dot–Majorana bound
state–quantum dot system with tL = tR = εM/4 as function of εR. (a)
εL = 2εM and (b) εL = 0. The red dashed lines denote the uncoupled
case tL = tR = 0. Note the existence of a zero-energy quasiparticle in
panel (b) for all values of εR.

Here, γ1 is localized on the resonant dot, while γ2 is partially delocalized, and the weight

of γ2 on the resonant dot is determined by the energy εR of the nonresonant dot. In the

limit εL = εR = 0 and tL = tR = t ∈ R, the Majorana operators acquire a particularly

simple form and we find

γ1 =
1√
2

(
d†L + dL

)
, γ2 =

1√
2

(
d†R + dR

)
. (3.4.2)

In this limit, both zero-energy Majorana operators are fully localized on the two separate

quantum dots and thus form a nonlocal fermion state. Pictorially, we can understand the

formation of the zero-energy Majorana states by considering a mechanism similar to the

one in section 3.3. As sketched in figure 3.4.2, we can decompose the quantum dot fermion

operators into a pair of Majorana operators each. In the limit εL = εR = 0, the two

Majoranas in each dot are not coupled to each other, such that an uncoupled Majorana

resides on the respective dot.

ǫL = 0 ǫR = 0
ǫM

tL tR

γR,tγ1 γ2γLγL,t γR

Figure 3.4.2.: Formation of the zero-energy Majorana operators for εL = εR = 0.
The quantum dot fermion operators di and d†i are decomposed into two

Majorana operators each. Due to the peculiar coupling (t∗i d
†
i − tidi)γi,

only γi,t is coupled to γi (i = L,R) while γ1 and γ2 commute with the
Hamiltonian indicating zero energy.
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The superconducting pairing potential ∆ gives rise to the formation of quasiparticles

which are superpositions of electron and hole components from different quantum dots.

Thus, it couples the quantum dots if they are close to the chemical potential of the su-

perconductor, i.e., for |εL|, |εR| < |∆|, or if they are anti-symmetrically aligned, i.e. for

εL = −εR. As a consequence, for εL = εR = 0, the pairing term competes with the

formation of the zero-energy Majorana states and and therefore gives rise to an effec-

tive Majorana energy splitting ∆ which couples the zero-energy Majorana operators in

Eq. (3.4.2).

3.4.1. Weak quantum dot–lead coupling

We begin our analysis of charge transport through the quantum dot–Majorana bound

state–quantum dot system in the regime ∆ = 0 and Γ� t < εM . In figure 3.4.3, both dif-

ferential conductance and cross-correlations SLR are displayed as a function of bias voltage

for several characteristic points in the εL-εR plane. The differential conductance is peaked

at the eigenenergies of the Bogoliubov-de Gennes Hamiltonian in Eq. (3.1.4). The peak

width is determined by the level broadening Γ and the quantum dot-Majorana coupling t.

If one of the dot levels is aligned with the chemical potential of the superconductor, say

εL = 0, we always find a zero-bias peak with height

G0 =
4e2

h

1

1 +
ε2M

|8tLtR|2

(
ε2R + Γ2

4

) (3.4.3)

because of the existence of the induced Majorana states Eq. (3.4.2). For details about the

derivation of Eq. (3.4.3), we refer to Appendix B.4.

In the special limit εL = εR = 0, the zero-voltage differential conductance is approxi-

mately quantized with value 4e2/h which is identical to the zero-energy limit of Eq. (3.2.5)

for two uncoupled Majoranas and hence describes two zero-energy Majorana states, one

at each each end of the nanowire. For εR 6= 0, we find that the differential conductance is

suppressed since in this limit both Majorana zero-energy states have finite weight on the

left quantum dot and thus, destructive interference reduces the differential conductance,

similar to the situation in section 3.3 for a single quantum dot coupled to one of the Ma-

jorana bound states. Since the existence of zero-energy Majorana states implies a strongly

reduced coupling between the ends of the nanowire, we find that these resonances yield

only a small contribution to the cross-correlations despite their large conductance.

In contrast, we do not find a zero-bias conductance peak if both quantum dots are non-

resonant. In this regime, there is a striking difference between symmetric (εL = εR) and
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Figure 3.4.3.: Current cross-correlations SLR in the weak quantum dot–lead cou-
pling regime with Γ = εM/8, t = 2εM/5, and ∆ = 0. The lines for
panel (b) are defined in (a), those for panel (c) in (d). The × and ?
markers denote the results for the spinless superconductor model with
εM = 0.01 meV and Γ = εM/5.

antisymmetric (εL = −εR) positions of the dot levels. In both cases, we find contributions

to the differential conductance and SLR due to the hybridization between the quantum

dots and the Majorana bound state. However, in the antisymmetric case both the differ-

ential conductance and SLR are much larger than in the symmetric case, and additional

resonances close to the quantum dot energies contribute to cross-correlations. This is due

to the fact that Cooper pairs have zero energy, which leads to a suppression of transmission

through two quantum dot levels which have both the same energy in the symmetric case,

but allows passage through quantum dots with opposite level energies in the antisymmetric

case.

As shown in figure 3.4.3, these findings agree very well with results for the microscopic

model of a spinless p-wave superconductor defined in Eq. (3.4.6). The only small deviation

in SLR can be seen if both quantum dots are tuned to the chemical potential of the super-

conductor, where the effective model has a small negative SLR for large bias voltage, while

it approaches zero for the microscopic model. This deviation has its origin in the presence

of an additional transport channel due to a proximity coupling ∆ in the microscopic model,

which in principle could be described by the Hamiltonian HS in Eq. (3.1.1c), but which is

not included in the effective model H = HM +HD considered in this section.
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3.4.2. Strong quantum dot–lead coupling

In this section, we consider the case t < εM � Γ and begin with the situation ∆ = 0.

In figure 3.4.4(a), we show the current cross-correlations SLR for εM � eV = Γ/2 in the

εL-εR plane. We find a characteristic four-leaf clover feature with a suppression of cross-

correlations along lines with either εL = 0 or εR = 0, and peaks at |εL| = |εR| ≈ Γ/2. The

height of the peaks scales like ε2M/Γ and therefore directly reflects the Majorana energy

splitting. The width of the clover feature is determined by the broadening Γ and hence

much larger than the Majorana energy splitting. Similarly to the situation in the last

section, we find a suppression of the cross-correlations along εL = 0 and εR = 0 which

is mediated by the formation of zero-energy Majorana states by virtue of the quantum

dot–Majorana bound state coupling.
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Figure 3.4.4.: Current cross-correlations SLR for strong quantum dot–lead coupling.
(a) Effective model with eV = Γ/2, t = Γ/20, εM = Γ/5, and ∆ = 0.
(b) Spinless superconductor with εM = 0.01 meV and Γ = 3εM . For
both (a) and (b), the pattern changes little for larger bias voltages.

We find an approximate symmetry between symmetric and antisymmetric positions of

the quantum dot levels. This symmetry was absent in the weak-coupling limit Γ� t and

can be understood as follows. For Γ� t, the quantum dots are strongly coupled to the lead

electrodes and effectively become part of them. As a consequence, there are no separate

resonances at the positions of the quantum dot levels anymore, and only a single resonance

due to the Majorana bound states in the topological superconductor nanowire survives.

The broadening of this resonance is renormalized by the quantum dot–lead coupling and

becomes t2/Γ, which much smaller than Γ. As the quantum dot levels can neither resolve

this small broadening of the resonance, nor resolve the location of the resonance, the

distinction between symmetric and antisymmetric quantum dot levels becomes blurred,

and the approximate symmetry arises. On the other hand, the emergence of the Majorana
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zero-energy state Eq. (3.4.1), which appears for εL = 0 or εR = 0 and resides on the

respective quantum dot, is not qualitatively affected by the large broadening Γ, and the

current cross-correlations are still suppressed in this case, giving rise to the four-leaf clover

pattern in figure 3.4.4(a).

In figure 3.4.4(b), we complement these findings for the low-energy model with results

for the microscopic model Eq. (3.4.6) for a spinless p-wave superconductor, for which a

similar four-leaf clover structure emerges. However, similarly to the weak quantum dot–

lead coupling regime, there are small deviations with respect to the effective model near

εL = εR = 0, mediated by the superconducting proximity effect.

To gain insight into the effect of an additional proximity term HS, we first discuss the

situation without Majorana bound state, H = HD + HS. In figure 3.4.5(a), we show the

cross-correlations for the superconducting proximity case. Here, SLR has a single peak of

height ∝ ∆2/Γ near εL = εR = 0, with broadening Γ along the direction εL = εR, and

width eV along the direction εL = −εR. In contrast to the Majorana bound state case,

there is no additional structure in this peak. For details about the transport properties of

mediated by the superconducting proximity effect, we refer to Appendix B.5.
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Figure 3.4.5.: Current cross-correlations SLR for eV = Γ/2. The quantum dots are
coupled (a) via the superconducting proximity effect with ∆ = Γ/10
and (b) via superconducting proximity effect and with coupling to a pair
of Majorana bound state with t = Γ/20, ∆ = Γ/20, and εM = Γ/5.

In figure 3.4.5(b), we consider the combined Hamiltonian H = HM + HD + HS which

allows for crossed Andreev reflection via the Majorana bound states and additionally via

the superconducting proximity effect. As function of quantum dot energy levels, we also

find a four-leaf clover feature similar to the case ∆ = 0 studied above. However, here we

find that the center of this feature acquires a peak of height ∆2/Γ due to the proximity term

in HS. From this, we conclude that the contributions from the superconducting proximity
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Figure 3.4.6.: Finite temperature current cross-correlations SLR for strong dot–lead
coupling with eV = Γ/2, t = Γ/20, εM = Γ/5, and ∆ = 0. (a) kBT = 0,
(b) kBT = Γ/10, (c) kBT = Γ/2, and (d) kBT = Γ. In our numerical
calculations, we used an energy cutoff εc = 5eV in the energy integrals
of Eq. (3.1.8).

effect and the Majorana bound state mediated crossed Andreev reflection approximately

add up. The relative peak heights in the cross-correlations reflect the ratio of ∆2 and ε2M .

3.4.3. Effect of finite temperatures

In this section, we study the current cross-correlations through the quantum dot–Majorana

bound states–quantum dot device for finite temperatures T . We determine the current and

the current correlations for finite T using the finite temperature expressions in Eq. (3.1.8).

As shown in figure 3.4.6(a), for kBT � eV the cross-correlations show the characteris-

tic four-leaf clover feature with equal peak heights. With increasing temperature [Fig-

ures 3.4.6(b) and (c)] the amplitude of the symmetrically arranged peaks in the cloverlike

pattern decreases and becomes negative while the height of the anti-symmetrically ar-

ranged peaks remains constant. Here, we observe that finite temperatures break the 90◦

rotation symmetry of the cross-noise pattern. For kBT ≥ eV , the cross-correlations also
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show a cloverlike pattern, but now with negative height for symmetric and positive height

for antisymmetric dot levels. We attribute the negative cross-correlations for symmetric

dot levels εL ≈ εR to resonant tunneling of electrons and holes. For antisymmetric dot

levels εL ≈ −εR, this resonant tunneling is suppressed and crossed Andreev reflection with

zero total Cooper pair energy is enhanced, giving rise to positive cross-correlations. Hence,

we conclude that for kBT > Γ the pattern from figure 3.4.4(a) is modulated in such a way

that the peaks for symmetric dot levels become negative of same height.

Above, we have found that for T = 0 the cross-correlations are significantly reduced

when at least one of the dot levels lies at the chemical potential of the superconductor.

For kBT ≥ Γ, this suppression becomes complete with vanishing cross-correlations along

the lines εL = 0 and εR = 0.

3.4.4. Amplitude of the current cross-correlations

For zero temperature, we find the maxima of the cloverlike pattern at |εL| = |εR| = Γ/2

with amplitude

SMLR,max = 8π
2e2

h

ε2M t
2
M

Γ3
(3.4.4)

for εM , tM � Γ. This analytical result is exact for zero temperature. However, for finite

temperatures the cross-correlations are still proportional to the Majorana energy splitting

ε2M which is also confirmed by the numerics in figure 3.4.7 where we plot the Majorana

bound state mediated cross noise as function of εM . In particular, we find that the cross-

correlations vanish for vanishing Majorana energy splitting independent of temperature.
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Figure 3.4.7.: Current cross-correlations SLR for strong quantum dot–lead coupling
with eV = Γ/2, t = Γ/20, εM = Γ/10, ∆ = 0, and kBT = Γ as function
of the Majorana energy splitting εM .
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For cross-correlations induced by the standard superconducting proximity effect, we find

for the case eV/Γ→∞ a maximum along εL + εR = 0 with amplitude

SSLR,max = 2π
2e2

h

∆2

Γ
(3.4.5)

for ∆ � Γ. Thus, the current cross-correlations vanish for ∆ = 0 similarly to the Majo-

rana bound state case. For details about the system in which the topologically nontrivial

nanowire is replaced by an ordinary superconductor and the derivation of Eq. (3.4.5), we

refer to Appendix B.5.

3.4.5. Spinless p-wave superconductor

We complement our calculations for the effective low-energy Majorana model by the anal-

ysis of a microscopic lattice model for a spinless p-wave superconductor with Hamilto-

nian [76],

HK = −
N−1∑
j=1

(
tKc

†
j+1cj + ∆Kcjcj+1 + H.c.

)
− µK

N∑
j

c†jcj, (3.4.6)

where the cj annihilate a spinless fermion on site j with nearest-neighbor hopping tK

and nearest-neighbor pairing amplitude ∆K . This model describes the low-energy physics

of a nanowire in the topologically nontrivial phase. In the numerical analysis, we use

the parameters L = 1000 nm for the nanowire length, N = 200 sites, tK = 20 meV,

∆K = 0.8 meV, and µK = 39.4 meV. These parameter values yield the superconducting

gap ∆SC = 0.3 meV and the Majorana energy splitting εM = 0.01 meV. For the coupling

of the operators c1 and cN to the dots, we use tD,K = 0.025 meV. The results for this

model agree very well with those for the effective model Eq. (3.1.1) as can be seen from

figures 3.4.3 and 3.4.4.

In addition, we study the effect of additional transverse channels N⊥ in the nanowire

and estimate a critical channel number for which the cross-correlations induced by the

proximity effect and the Majorana bound state are equal. The coupling Hamiltonian

between a multichannel nanowire and a quantum dot can be written as

HT = TSD

(
d†ψ(r = 0) + ψ†(r = 0)d

)
, (3.4.7)

where d (ψ(r = 0)) denotes the annihilation operator for the dot (nanowire at site r = 0)

and TSD the coupling matrix element. We decompose the operator ψ(r = 0) into Majorana
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bound state and delocalized states,

ψ(r = 0) =
γL√
2ξ

+
1√
L

∑
k,n;Ek>0

ψk,n (3.4.8)

where ψk,n denotes the operator for an electron with transverse channel index n and lon-

gitudinal momentum k. If the energy difference between the subbands is larger than the

superconducting gap, we write the coupling Hamiltonian Eq. (3.4.7) as sum of the coupling

between the dot and the Majorana bound state and the coupling between the dot and the

Bogoliubov quasiparticles,

HT =
TSD√

2ξ

(
d† − d

)
γL +

TSD√
L

∑
n,k;Ek≥∆SC

(
ψ†n,kd+ d†ψn,k

)
. (3.4.9)

Hence, we find the quantum dot–Majorana bound state coupling strength tM = TSD/
√

2ξ

and the quantum dot–quasiparticle coupling strength tS = TSD/
√
L.

In the previous section, we have determined the amplitude of the current cross-correla-

tions mediated by Majorana bound state and the superconducting proximity effect. Using

this result, we find that the relative strength of the Majorana and the proximity induced

cross noise is determined by the ratio of Eqs. (3.4.4) and (3.4.5). There, the Majorana

energy splitting is

εM ≈ ∆SC sin(kFL)e−L/ξ (3.4.10)

and the proximity induced pairing potential is

∆ ≈ ρSt
2
S cos(kFL)e−L/ξ, (3.4.11)

where ∆SC denotes the quasiparticle gap, kF the Fermi momentum, and ρS = LN⊥/2πvF

the normal-state density of states of the nanowire [108]. For details about the analytical

derivation of the expressions for the Majorana energy splitting εM in Eq. (3.4.10) and the

proximity induced superconducting pairing ∆ between the quantum dots in Eq. (3.4.11),

we refer to Appendices B.2 and B.3.

In the following, we approximate the sin and the cos term by one and only compare the

maxima of ∆ and εM . With vF denoting the Fermi velocity and N⊥ denoting the number

of partially occupied transverse channels, this yields

SMLR
SSLR

=
( 4πvF∆SC

N⊥TSD
√
ξΓ

)2

. (3.4.12)
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For the observation of the clover like pattern in the current cross-correlations, we demand

that the Majorana bound state mediated cross noise is larger than the one mediated by

the superconducting proximity effect, i.e., SMLR > SSLR. In this way, we obtain the condition

that

N⊥ < 4π
vF∆SC√
ξTSDΓ

. (3.4.13)

For the parameters used in figure 3.4.4(b), this yields the condition N⊥ ≤ 7.

3.4.6. Realistic semiconductor-superconductor hybrid system

In the following, we study the current cross-correlations for the realistic semiconductor

model introduced in section 3.1.3. In particular, we investigate the effect of small changes

of the chemical potential or the external magnetic energy, different numbers of transverse

channels, and nonmagnetic disorder on the cloverlike cross-correlation pattern. For de-

tails about the numerical diagonalization of the Hamiltonian, we refer to Appendices A.1

and A.2.
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Figure 3.4.8.: Lowest quasiparticle energies of the semiconductor model as function
of chemical potential µ. The numbers denote the number of partially
occupied subbands. Even numbers correspond to the trivial supercon-
ducting phase with a quasiparticle gap ∼ ∆eff . Odd numbers corre-
spond to the nontrivial phase with an oscillating subgap state at εM .
The transitions between odd and even numbers are characterized by a
topological phase transition which shows up as closing and reopening
of the quasiparticle excitation gap.

Variation of the chemical potential

In this section, we consider the influence of small changes of the chemical potential on the

current cross-correlations. In figure 3.4.8, we plot the two lowest quasiparticle energies for
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Hamiltonian Eq. (3.1.23). Here, a topologically nontrivial phase exists in sectors with a

subgap state of energy εM � ∆eff . This low-energy state corresponds to two coupled Ma-

jorana bound states with energy splitting εM . Such a state always exists if an odd number

of subbands is partially occupied. As function of the chemical potential the Majorana

energy splitting oscillates with period 2πvF/L and with energy minima of εM = 0.

In figure 3.4.9, we plot the current cross-correlations for two values of the chemical po-

tential for which the Majorana energy splitting has a local maximum and a local minimum.

We find that the patterns in the current cross-correlations are very different in the two

cases, with a cloverlike pattern for εM 6= 0 and an ellipsoidal pattern for εM = 0. This is

in full agreement with our findings that the Majorana induced current cross-correlations

are proportional to ε2M . Thus, we conclude that small variations of the chemical potential

can be used as a tool to switch between different patterns of current cross-correlations.

Such a switching mechanism does not exist in the topologically trivial phase and is thus

a signature for Majorana bound states with oscillating Majorana energy splitting. The

change of the chemical potential can be realized by applying a global gate voltage. An

alternative route to demonstrate the oscillations is a change of the magnetic field which

gives rise to oscillation of periodicity ωB = 4πvF/gµBL.
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Figure 3.4.9.: Current cross-correlations SLR for TSD = 0.12 meV · nm1/2 and
Γ = 0.04 meV. (a) Cloverlike pattern for µ = 0.1 meV with
εM = 0.01 meV and (b) elliptic pattern for µ = 0 with εM = 0.001 meV.

Above we have discussed that the proximity induced pairing oscillates as function of kFL

which changes when changing the chemical potential. However, for the standard proximity

coupling in semiconductor nanowires we do not find a unique Fermi momentum because of

the spin-orbit coupling. Thus, the oscillation of the proximity induced pairing potential is

smeared out and we always find a nonzero contribution of the superconducting proximity

effect to the cross-correlations.
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Multiband systems

Due to the finite extension of the nanowire in y direction, we expect to find a multiband

system where the bands have a separation of several meV. For an even number of occupied

transverse channels, the nanowire is in the topologically trivial phase, i.e., the Majorana

bound states are absent and thus, we find a single ellipsoidal cross-noise pattern similar to

the one in figure 3.4.5(a) where we studied the current cross-correlations through a pair of

quantum dots with superconducting pairing. For an odd number of occupied transverse

channels, the nanowire is in the topologically nontrivial phase with Majorana end states.

In figure 3.4.10, current cross-correlations are shown for µ = 4.1 meV and width 70 nm

which corresponds to the three-band case and for µ = 6.1 meV and width 90 nm which

corresponds to the five-band case. In both case, we still find the characteristic four-leaf

clover pattern in current cross-correlations, similar to the single-band case. However, the

amount of noise for εL = εR = 0 is increased by a factor of ≈ 9 in the three-band system

as compared to the single-band case, as expected from the estimate Eq. (3.4.12). This

numerical finding confirms our analytical result Eq. (3.4.12) that the cloverlike pattern is

not restricted to the single-band nanowire and can also be found in multiband nanowires.
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Figure 3.4.10.: Current cross-correlations SLR for TSD = 4
√

10εM nm1/2 and
Γ = 4εM . (a) Three-band semiconductor of width 70 nm with
µ = 4.1 meV and (b) five-band semiconductor of width 90 nm with
µ = 6.1 meV.

Nonmagnetic disorder

In this section, we address the question of how robust the cross-correlation pattern is

against nonmagnetic disorder. We consider a spatially fluctuating disorder potential with
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mean value 〈V (r)〉 = 0 and random variations with

〈V (r′)V (r)〉 = U2δ(r− r′). (3.4.14)

We here consider the regime of disorder strengths U . Um with Um =
√
α~∆SC, since

strong disorder U � Um breaks the nanowire into topological and nontopological domain

walls and thereby gives rise to additional localized subgap states. For a detailed discussion

of the physical interpretation of Um, we refer to section 4.3.2. In figures 3.4.11(a) and (b),

we display the disorder averaged current cross-correlations for disorder strengths ∆SC

√
a/4

and ∆SC

√
a/2. We here averaged over 50 random disorder configurations, and find that

the cloverlike pattern is robust with respect to moderate nonmagnetic disorder.
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Figure 3.4.11.: Current cross-correlations SLR of the single-band semiconductor
model with µ = 0 for various disorder strengths. Ensemble aver-
aged cross-correlations for disorder strengths (a) U = ∆SC

√
a/4 and

(b) U = ∆SC
√
a/2. Cross-correlations for a characteristic disorder

realization with (c) U = ∆SC
√
a/4 and (d) U = ∆SC

√
a/2.

In figures 3.4.11(c) and (d), we display the current cross-correlations for single character-

istic disorder configurations of strengths U = ∆SC

√
a/4 and U = ∆SC

√
a/2, respectively.

When comparing the cross-correlations for a random configuration with the clean case,

we find that nonmagnetic disorder distorts the cloverlike pattern and disorder averaging
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averages over distortions which restores the cloverlike pattern as shown in figures 3.4.11(a)

and (b).

Variation of the Zeeman field

In figure 3.4.12, we display the local and nonlocal current correlations and the correspond-

ing Fano factors for the microscopic model of the semiconductor nanowire as function

of Zeeman energy and voltage for εL = −εR = ∆SC/10. As discussed in chapter 2.5, the

nanowire is in the topologically trivial phase for E2
Z < ∆2

SC +µ2 and in the nontrivial phase

for E2
Z > ∆2

SC + µ2. We find different characteristic behavior of the current correlations in

the topologically trivial and nontrivial superconducting phases.
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Figure 3.4.12.: (a) Current cross-correlations, (b) crossed Fano factor, (c) local cur-
rent correlations in the left lead, and (d) Fano factor in the left lead
for the microscopic model for εL = −εR = ∆SC/10 as function of
magnetic field and voltage.

In the trivial phase for E2
Z < ∆2

SC + µ2, the current correlations and the corresponding

Fano factors are qualitatively similar to our findings in section 3.2 where the nanowire was

directly coupled to the normal-conducting lead electrodes. In particular, we find that the

cross-correlations as well as the crossed Fano factor vanishes and that the local Fano factor

is two (one) for eV ≶
√

∆2
SC + µ2−EZ and drops to one above this threshold. In addition,

we also find that the topological phase transition at E2
Z = ∆2

SC +µ2 clearly shows up in the
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local and the crossed Fano factors. In particular, the crossed Fano factor increases when

E2
Z → ∆2

SC + µ2 due to the closing of the excitation gap in the nanowire, which gives rise

to a divergence of the superconducting coherence length and thereby allows for crossed

Andreev reflection processes via the bulk superconducting state.
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Figure 3.4.13.: (a) Current cross-correlations, (b) crossed Fano factor, (c) local cur-
rent correlations in the left lead, and (d) Fano factor in the left lead
for the microscopic model for eV = ∆SC/5 as function of magnetic
field and quantum dot energy level εL = −εR.

In contrast, for E2
Z > ∆2

SC +µ2 the nanowire is in the topologically nontrivial phase with

a pair of split Majorana bound states at εM ∼ ∆effexp(−L/ξ) sin(kFL) [see Appendix B.2

for details] which oscillates as function of magnetic field. In this phase, we find that the

quantum dots qualitatively affect the cross-correlations as compared to the case with-

out quantum dots. Our main observation is the existence of oscillating cross-correlations

SLR ∝ ε2M for eV � εM which directly reflects the Majorana character of the subgap state.

In figure 3.4.13, we show the current correlations and the Fano factors for eV = ∆SC/5

as function of Zeeman energy and antisymmetric quantum dot energy εL = −εR. We find

that both the cross-correlations and the crossed Fano factor show finite contributions for

eV > εM and clearly display the oscillating Majorana energy splitting. In particular, we

find that the cross-correlations are suppressed for εd → 0 and show a peak of height ∝ ε2M
for |εd| ≈ εM . Similarly, we also find that the auto-correlations SLL reflect the oscillating

Majorana energy splitting.
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3.4.7. Relation to previous work

In the recent work [119] (short LLS in the following), current cross-correlations in a setup

similar to ours were studied by using the diagonalized master equation approach in the

sequential tunneling regime. In particular, for εM = 0 finite current cross-correlations were

found, in disagreement with our result that current cross-correlations are proportional to

ε2M and should thus vanish in the limit εM → 0. In the following, we discuss possible

reasons for this discrepancy.

The physical conditions under which the diagonalized master equation approach is jus-

tified are (i) that the bath correlation time is small compared to the relaxation time of the

quantum dot–Majorana bound states–quantum dot device, i.e., weak coupling between the

leads and the dot–Majorana bound state–dot system Γ � kBT , and (ii) that the excita-

tion energies ∆E within each parity sector are large compared to Γ [120]. For εM = 0, the

states with different parity are always degenerate, which should be unproblematic since the

coherent superposition between these states is unimportant for electronic transport. How-

ever, for energies εM = εL = εR = 0, LLS find in their Eq. (16) an additional degeneracy of

the two lowest lying states in each sector, which is problematic since it violates condition

(ii). Thus, we conclude that for the energy spectrum used by LLS the diagonalized rate

equation approach is not appropriate in the vicinity of this point.

Nonetheless, if one forgoes the question of whether the diagonalized master equation ap-

proach is applicable, we can compare the single-particle energy spectrum we find by solving

the Bogoliubov-de Gennes equations with the many-particle energy spectrum discussed by

LLS when diagonalizing the Hamiltonian in the eight-dimensional many-body Fock space.

Since parity is a good quantum number for the isolated dot-Majorana bound state-dot

system, it is possible to decompose the Fock space into two four-dimensional subspaces

with even and odd parity, and to diagonalize the Hamiltonian in each subspace separately.

Then, the ground state is given by the vector with lowest energy, and the parity changing

excitations are described by many-body wave functions with a parity different from that

of the ground state. In particular, for εM = εL = εR = 0 and |tL| = |tR| = t, LLS find in

their Eq. (16) that the states for even and odd parity are degenerate, and that each sector

has energies {−
√

2t,−
√

2t,
√

2t,
√

2t}. Thus, the excitation energies for parity changing

excitations of the ground state are {0, 0, 2
√

2t, 2
√

2t}.
In contrast, in this thesis we use the Bogoliubov-de Gennes formalism to diagonalize the

Hamiltonian. The Bogoliubov-de Gennes formalism is a single-particle formalism based

on the single-particle Schrödinger equation and describes quasiparticle excitations above

the ground state. Since the Bogoliubov-de Gennes formalism doubles the physical Hilbert

space, only three out of the six eigenvalues obtained by diagonalizing the Hamiltonian
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Eq. (3.1.4) are independent solutions. Excited states can be constructed by adding one

quasiparticle (three possible states), two quasiparticles (three possible states), or three

quasiparticles (one state). Thus, together with the ground state, these states span an

eight-dimensional Fock space, in agreement with LLS. Using the Bogoliubov-de Gennes

formalism, we find for parameters εM = εL = εR = 0 the single-particle excitation ener-

gies {0, 2t, 2t}, and as a consequence the three-particle excitation energy 4t. Thus, the

energy difference between the many-body ground state and parity changing excited states

should be {0, 2t, 2t, 4t}, different from the excitation spectrum obtained above by using

the energies of LLS. This discrepancy in the energy spectrum casts additional doubt on

the results of LLS and their interpretation. In addition, even when using the correct en-

ergy spectrum, there exist degeneracies between excited states within each parity sector

for the choice of parameters |εR| = |εL|, where the current cross-correlations are strongest.

Therefore, it seems that the applicability of the diagonalized rate equation approach to

the three-terminal quantum dot–Majorana bound states–quantum dot device is limited.

3.5. Spinful quantum dots with finite Coulomb repulsion

Above, we have investigated the effect of coupling quantum dots to Majorana bound states

with a nonzero Majorana energy splitting εM in sections 3.3 and 3.4. There, we have as-

sumed that the quantum dots are fully spin polarized and that the Coulomb charging

energy of the quantum dots is infinitely large. We have shown that, when aligning the

quantum dots with the chemical potential of the superconductor, a pair of exactly zero-

energy Majorana states is induced on the quantum dots. In addition, we have shown that

the induced pair of Majorana operators significantly affects the nonlocal transport prop-

erties of the three-terminal norma-state–quantum dot–Majorana bound states–quantum

dot–normal-state device.

In this section, we study the effect of finite Coulomb repulsion on the induced Majorana

states. For that purpose, we modify the Hamiltonian for the quantum dots by considering

spinful quantum dots with finite Coulomb repulsion. Hence, we replace the Hamiltonian

HD from Eq. (3.1.1b) by

HD =
∑
i=L,R

(
HD,i +HT,i

)
(3.5.1)

72



Transport signatures of Majorana bound states coupled to quantum dots

with

HD,i =
∑
σ=↑,↓

εiσd
†
iσdiσ + Uid

†
i↑di↑d

†
i↓di↓, (3.5.2a)

HT,i =
∑
σ=↑,↓

(
tiσd

†
iσγi + t∗iσγidLσ

)
. (3.5.2b)

The operator HD,i denotes the Hamiltonian for the quantum dot i with the fermion an-

nihilation (creation) operators diσ (d†iσ) with spin σ. The quantum dots are characterized

by the single-particle energy levels εiσ and the Coulomb energy Ui > 0 which penalizes

double occupancy. The operator HT,i denotes the coupling Hamiltonian with coupling

strength tiσ between the quantum dot i and the corresponding Majorana bound state γi.

In figure 3.5.1, we show a schematic illustration of the system.

I I

gg t t

V

Nanowire Right LeadLeft Lead

RL

RL L R

ǫL↑ + ǫL↓ + UL ǫR↑ + ǫR↓ + UR

ǫLσ ǫRσ

Figure 3.5.1.: Schematic setup of a topological superconductor nanowire with a pair of
Majorana end states (red dots) coupled to quantum dots. The quantum
dots are characterized by single-particle levels εiσ and by the Coulomb
energy Ui for i = L, R. The parameter ti is the coupling between the
quantum dot i and Majorana i.

In total, the system now contains the four fermions describing the two quantum dots and

one fermion describing the Majorana bound states. Each of these five fermions is defined

on a two-dimensional Hilbert space Fλ which is spanned by the basis vectors for zero and

single occupancy. Hence, Hamiltonian H = HM +HD itself is defined on a 25-dimensional

Hilbert space F =
⊗Fλ where

⊗
denotes the direct product. The Hamiltonian does not

conserve particle number since Majorana bound states are a equal superposition of electron

and hole degrees of freedom. However, the Hamiltonian commutes with the parity operator

P = (1− 2f †f)
∏
i,σ

(1− 2d†iσdiσ), (3.5.3)

and hence conserves particle number modulo two. The reason for the vanishing of the

commutator of H and P is that all individual terms in the Hamiltonian contain two fermion

73



Spinful quantum dots with finite Coulomb repulsion

operators. Since each fermion operator changes the parity, two fermion operators change

the parity twice which is equivalent to no change of the parity. Because of this commutation

relation, the Hilbert space can be decomposed into two 24-dimensional subspaces Fe and

Fo with even and odd parity, i.e., F = Fe ⊕ Fo where ⊕ denotes the direct sum of two

vector spaces. Here, even parity corresponds to Pψe = +ψe for ψe ∈ Fe and odd parity

corresponds to Pψo = −ψo for ψo ∈ Fo.

To diagonalize the Hamiltonian for arbitrary parameters, we use an unbiased exact

diagonalization technique. For that purpose, we construct two classes of ansatz wave

functions with even and odd parity,

|ψe〉 =
[
u(e) +

∑
a<b

v
(e)
ab a

†b† +
∑

a<b<c<d

w
(e)
abcda

†b†c†d†
]
|0〉 , (3.5.4a)

|ψo〉 =
[∑

a

u(o)
a a† +

∑
a<b<c

v
(o)
abca

†b†c† + w(o)d†L↑d
†
L↓f

†d†R↑d
†
R↓

]
|0〉 . (3.5.4b)

Here, the summation indices correspond to the fermion operators {d†L↑, d†L↑, f †, d†R↑, d†R↓}
and we formally introduce an order of fermion operators, d†L↑ < d†L↑ < f † < d†R↑ < d†R↓.

The ket vector |0〉 denotes the vacuum which is defined by dLσ|0〉 = f |0〉 = dRσ|0〉 = 0

for σ =↑ (↓). In total, each wave function for odd and for even parity is characterized

by 16 coefficients (ui, vj, wk). We then derive the many-body Schrödinger equation by

minimizing the energy expectation values 〈ψe|H|ψe〉 and 〈ψo|H|ψo〉 with respect to the

coefficients (ui, vj, wk). By solving both resulting matrix equations, we find the ground

state and all excited states. This is an exact diagonalization method in the many-particle

Hilbert space which yields the full energy spectrum and the corresponding wave functions.

We note that by applying this method to the bilinear Hamiltonians in Eq. (3.1.1) studied

above and simplifying the matrices consequently, we obtain exactly the Bogoliubov-de

Gennes equations in Eq. (3.1.4).

3.5.1. One spinful quantum dot coupled to a Majorana bound state

In the following, we consider the situation where one Majorana bound state is coupled

to a quantum dot, i.e., HT,R = 0. The Hilbert space for this system is eight-dimensional

containing four states with even and four states with odd parity, respectively. For this

system, the ansatz wave functions |ψe〉 and |ψo〉 for the even and odd parity states become
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particularly simple,

|ψe〉 =
[
u(e) + v

(e)
↑↓ d

†
L↑d
†
L↓ + v

(e)
↑f d

†
L↑f

† + v
(e)
↓f d

†
L↓f

†
]
|0〉, (3.5.5a)

|ψo〉 =
[
u

(o)
↑ d

†
L↑ + u

(o)
↓ d

†
L↓ + u

(o)
f f † + v

(o)
↑↓fd

†
L↑d
†
L↓f

†
]
|0〉. (3.5.5b)

For εL↑ = εL↓ ≡ εd and t2L↓ = t2L↑ ≡ t2, we solve the many-body Schrödinger equation

and we find the energies

E1,±,p =
1

2

[
εM + εd ±

√
8t2 +

(
εd + pεM

)2
]
, (3.5.6a)

E2,±,p =
1

2

[
εM + U + 3εd ±

√(
U + εd − pεM

)2
+ 8t2

]
, (3.5.6b)

where even (odd) parity corresponds to p = +1 (p = −1). The energies are mainly

determined by the energies of the left quantum dot {0, εd, 2εd + U} and the energies of

the Majorana level {0, εM}. When these energies cross, the coupling t splits some of them

and gives rise to avoided level crossings in the energy spectrum. In figure 3.5.2, we show

the eigenenergies and the energies of the parity changing excitations as function of the

quantum dot level εd. We here concentrate on parity changing excitations since they are

the relevant excitations in transport processes. While the energy spectrum itself does not

look very symmetric, the spectrum for parity changing excitations is mirror-symmetric

around εd = −U/2. The origin for the mirror symmetry is the particle-hole symmetry

(dLσ ↔ d†Lσ) of Hamiltonian Eq. (3.5.1) with the replacements U → −U and εd → εd + U .
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Figure 3.5.2.: (a) Energies Ei,±,± of the quantum dot–Majorana bound state system
for even parity (solid lines) and odd parity (dashed lines). (b) Ex-
citation energies for parity changing excitations between the ground
state and the lowest excited states. The excitation spectrum is mir-
ror symmetric around εd = −U/2. The system parameters are
εM = tLσ = U/10 and εL↑ = εL↓ ≡ εd.

The ground state shows different characteristic behavior in the three regimes (i) εd < −U ,
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(ii) −U < εd < 0, and (iii) εd > 0. In our discussion of the energy spectrum, we focus on

the limit 0 < t � εM � U , in which we can identify the eigenstates with the occupation

of the bare fermion states. The regime (i) εd < −U is characterized by a unique ground

state with even parity. For weak coupling t, this ground state corresponds to the doubly

occupied quantum dot and empty Majorana level with ground-state energy E2,−,e, and

the lowest excited state corresponds to occupying the Majorana level and thus, costs the

excitation energy E2,−,o − E2,−,e. At the special point εd = −U , this excitation energy

vanishes and the ground state is two-fold degenerate with one even and one odd parity

ground state. In the regime (ii) with −U < εd < 0, the ground state and the first

excited state have odd parity corresponding to one fermion which is mainly localized on

the quantum dot. For εd < −U/2 (εd > −U/2), the ground state is the antisymmetric

(symmetric) superposition of spin up and down quantum dot electron, and the first excited

state is then the opposite superposition. The second excited state has even parity and in

the weak t limit, it corresponds to occupying the Majorana level. At the second special

point εd = 0, the energy E1,−,e − E1,−,o for the lowest parity changing excitation vanishes

and the ground state is again two-fold degenerate with one odd and one even parity ground

state. In the regime (iii) with εd > 0, the parity of the ground-state wave function is again

even corresponding to a completely empty system. Here, the lowest excited state with odd

parity has excitation energy E1,−,o − E1,−,e and describes occupying the Majorana level.

In the following, we further investigate the special points εiσ = 0 and εiσ = −U where

the ground state is two-fold degenerate. For εiσ = 0, we find the odd and the even parity

ground-state wave functions

|ψo(εd = 0)〉 =
[A+√

2

(
d†L↑ + d†L↓

)
− A−f †

]
|0〉, (3.5.7a)

|ψe(εd = 0)〉 =
[
A+ −

A−√
2

(
d†L↑ + d†L↓

)
f †
]
|0〉, (3.5.7b)

where A± =
√

1± εM/
√
ε2M + 8t2/

√
2. Both wave functions have only contributions from

the empty and the single-occupied quantum dot in order to minimize the Coulomb energy.

The unitary operator γ1, which describes rotations γ1|ψo(εd = 0)〉 = |ψe(εd = 0)〉 and

γ1|ψe(εd = 0)〉 = |ψo(εd = 0)〉 in the two-dimensional space of ground-state wave functions

is given by

γ1 =
1√
2

(
d†L↑ + d†L↓ + dL↑ + dL↓

)
. (3.5.8)

This operator satisfies the Majorana criteria γ†1 = γ1 and γ2
1 = 1. Similarly, we de-

fine another unitary operator γ2 by the rotations γ2|ψo(εd = 0)〉 = −i|ψe(εd = 0)〉 and
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γ2|ψe(εd = 0)〉 = i|ψo(εd = 0)〉 in the two-dimensional space of ground-state wave func-

tions. We find

γ2 = − i√
2

εM
(
d†L↑ + d†L↓ − dL↑ − dL↓

)
−
√

8t
(
f † − f

)√
ε2M + 8t2

, (3.5.9)

which is also a Majorana operator. However, in contrast to γ1, this operator also has weight

from the Majorana bound state γR = (f †−f)/i. The origin for the formation of this pair of

Majorana operators is the peculiar coupling between the quantum dot and the Majorana

bound state. For εd = 0, the Coulomb charging energy blocks the quantum dot from

being doubly occupied and therefore the three quantum dot states |0〉, | ↑〉 = d†L↑|0〉, and

| ↓〉 = d†L↓|0〉 are degenerate. When coupling the quantum dot to the Majorana bound state

γL, this degeneracy is partially lifted and a two-fold degenerate ground state survives. For

t� εM , these two ground states correspond to |0〉 and | ↑〉+ | ↓〉, while the state | ↑〉− | ↓〉
obtains a finite excitation energy t due to the coupling HT,L in Eq. (3.5.4b). In contrast, in

the strong coupling limit t� εM , the ground states correspond to (| ↑〉+ | ↓〉)/
√

2− f †|0〉
and |0〉 − (| ↑〉+ | ↓〉)⊗ f †|0〉/

√
2, where again only the state with even spin superposition

contributes. In both limits, the degeneracy is described by the Majorana operators γ1 and

γ2 given by Eqs. (3.5.8) and (3.5.9). Thus, we conclude that by adjusting the energy levels

of the quantum dot to the degeneracy point εd = 0, a pair of exactly zero-energy Majorana

states is produced similarly to the situation in section 3.3.

Similarly, for εiσ = −U the ground state of the quantum dot is degenerate with respect

to being single or double occupied. Here, the empty state is blocked by the large negative

quantum dot energy εd. In analogy to above, we find the ground-state wave functions

|ψo(εd = −U)〉 =
[A+√

2

(
d†L↑ − d†L↓

)
− A−d†L↑d†L↓f †

]
|0〉, (3.5.10a)

|ψe(εd = −U)〉 =
[
− A+d

†
L↑d
†
L↓ +

A−√
2

(
d†L↑ − d†L↓

)
f †
]
|0〉. (3.5.10b)

As before, these two states span a two-dimensional ground-state space and the unitary

operators γ1 and γ2 which describe rotations in this two-dimensional space of ground

states are identical to the ones introduced above for εiσ = 0 in Eqs. (3.5.8) and (3.5.9).
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3.5.2. Two spinful quantum dots coupled to a pair of Majorana

bound states

In this section, we consider the full system containing two interacting quantum dots and

each dot is coupled to a Majorana bound state. Similarly, to the quantum dot–Majorana

bound state system studied in the last section, we find a two-fold ground-state degeneracy

for εiσ = 0 and εiσ = −Ui for i = L,R.

In the following, we explicitly consider the special case εiσ = 0, tiσ = t, and Ui = U for

i = L, R and σ =↑, ↓. We find the lowest eigenenergies for even and odd parity,

E
(e,o)
1,± =

1

2

[
εM ±

√
ε2M + 32t2

]
, (3.5.11a)

E
(e,o)
2,3,±,± =

1

2

[
εM + U ±

√
ε2M + 16t2 + U2 ± 2

√
64t4 + ε2MU

2 + 8t2U2

]
. (3.5.11b)

In analogy to the quantum dot–Majorana bound state system studied in the last sec-

tion, the ground state does not contain contributions from doubly occupancy of the quan-

tum dots due to the blocking by the Coulomb energy U . When solving the many-body

Schrödinger equation analytically, we find the ground-state wave functions for odd and

even parity,

|ψo(εd = 0)〉 =
[
A+

(
d†L↑ + d†L↓ − id†R↑ − id†R↓

)
+
A−√

2

(
− 2f † + i(d†L↑ + d†L↓)f

†(d†R↑ + d†R↓)
)]
|0〉, (3.5.12a)

|ψe(εd = 0)〉 =
[A+√

2

(
2− i(d†L↑ + d†L↓)(d

†
R↑ + d†R↓)

)
− A−

(
(d†L↑ + d†L↓)f

† − if †(d†R↑ + d†R↓)
)]
|0〉. (3.5.12b)

with A± =
√

1± εM
√
ε2M + 32t2/

√
8. The operators which describe the transformation

between the two ground states are again given by a pair of Majorana operators

γ1 =
1√
2

(
d†L↑ + d†L↓ + dL↑ + dL↓

)
, (3.5.13a)

γ2 =
i√
2

(
d†R↑ + d†R↓ − dR↑ − dR↓

)
. (3.5.13b)

Here, the operator γ1 (γ2) is entirely located on the left (right) quantum dot in full analogy

to section 3.4 where we modeled the quantum dots by single resonant levels. Thus, we

conclude that for εiσ = 0 the formation of the zero-energy Majorana states on the quantum
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dots also appears in the case of interacting quantum dots. Numerically, we have also

confirmed that these states exist for finite Zeeman energy splitting εi↑− εi↓. Therefore, we

argue that the formation of the induced zero-energy Majorana states is a robust feature

of quantum dots coupled to a pair of Majorana bound states and does not depend on the

details of the system.

3.6. Summary

In this chapter, we have identified signatures in nonlocal charge transport which we believe

are more specific of the Majorana nature than the zero-bias anomaly studied in recent

tunneling experiments. The nonlocality of the pair of Majorana bound states can be

probed by crossed Andreev reflection, i.e., the conversion of an incoming electron into a

hole excitation in a separate lead electrode. We have shown that at sufficiently low voltages

and small level broadening, crossed Andreev reflection by the pair of Majorana bound states

is the dominating transport process and gives rise to positive current cross-correlations.

In contrast, for large voltages the current is dominated by local Andreev reflection, and

resonant tunneling of electrons and holes gives rise to negative current cross-correlations

which exactly cancel the positive contributions. Because of the vanishing total cross-

correlations for large voltages, we argue that coupling Majorana bound states directly to

lead electrodes is not suitable to observe current cross-correlations.

Instead, we have suggested to connect the lead electrodes with the Majorana bound

states via quantum dots in order to suppress local Andreev reflection and thus to provide

a suitable tool to probe current cross-correlations even for large voltages. In our analysis,

we have distinguished two parameter regimes. In the case of weak coupling between the

quantum dots and the lead electrodes, we find a set of discrete transmission resonances in

the differential conductance. However, we find that one type of resonances is special as it

does not contribute to current correlations. When at least one of the quantum dot levels is

tuned to the chemical potential of the superconductor, a zero-energy Majorana state forms

in the respective quantum dot. Since the existence of zero-energy Majorana states implies

a strongly reduced tunneling matrix element between the quantum dots, we find that these

resonances yield only a small contribution to the current cross-correlations despite their

large conductance. In the strong quantum dot-lead coupling regime, the current cross-

correlations show a four-leaf clover pattern as function of quantum dot energies. This

feature shows an approximate symmetry between symmetric and antisymmetric positions

of the quantum dot levels due to the large level broadening of the quantum dots. The

clover pattern can be clearly distinguished from the single ellipsoidal peak found without
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split Majorana bound states.

In our numerical calculations, we have shown that the cloverlike pattern can be observed

for realistic material parameters and can be clearly distinguished from the situation with-

out split Majorana fermions. This pattern is robust against nonmagnetic disorder, a finite

number of transverse subbands in the nanowire, and finite temperatures kBT . εM . In

particular, we have shown that by varying the external magnetic field, the cross-correlation

pattern oscillates between the cloverlike pattern for split Majorana bound states and a sin-

gle ellipsoidal pattern originating from the superconducting proximity effect. We propose

that the oscillation between the two different shot noise patterns is a robust signature of

Majorana bound states in short topological superconductor nanowires.
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4. Signatures of topological order in

Coulomb blockade transport through

semiconductor–superconductor

nanowire rings

Identifying unambiguous experimental signatures and verifying their experimental real-

ization is a key problem in the study of topological phases of matter. In chapter 3, we

have investigated current and noise characteristics of Majorana bound states and com-

pared the results with the characteristics for conventional superconductors. In particu-

lar, we have emphasized that tunneling experiments, which probe only one normal-state–

superconductor junction, do not yield a definite proof of Majorana fermions since mundane

physical effects such as nonmagnetic disorder [59], interface effects [61], and Kondo [62]

yield similar tunneling characteristics under certain conditions. In contrast, normal-state–

superconductor–normal-state systems are more suitable to probe the existence of Majorana

fermions via current cross-correlations.

Recent experiments [55–57, 63] showed first evidence for Majorana end states in super-

conductors which were proposed to be topologically nontrivial. However, so far there are

no experiments which directly investigate the topology of the superconducting state. In

this chapter we propose an experiment which directly investigates the topological super-

conducting state rather than Majorana bound states. As pointed out in chapter 2.4, one

characteristic property of topological phases is the dependence of the ground-state degen-

eracy on the topology of the manifold on which the system is defined. We consider a quasi

one-dimensional ring-shaped superconductor in the limit where the gap ∆eff is much larger

than the single-particle level spacing d. In the Coulomb blockade regime, the total electron

number and thus the parity of the superconductor nanowire are fixed by the charging energy

Ec > ∆eff and the degeneracy of grand canonical ground states is reflected in the excitation

energies, which can be observed in nonlinear Coulomb blockade transport [74, 75]. In our

numerical analysis, we concentrate on the semiconductor-superconductor heterostructure
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which was introduced in chapter 2.5 and studied in a series of recent experiments. However,

our main results are more general and can also be applied to other (quasi) one-dimensional

topological superconducting systems.

This chapter is organized as follows: In section 4.1, we introduce the model system and

the proposed experimental setup. We begin our analysis with a idealized one-dimensional

ring-shaped nanowire in section 4.2. We then continue in section 4.3 with single-subband

nanowires and study the robustness of the results from section 4.2 against details of the

geometry, nonmagnetic disorder, and local variations of the superconducting pairing poten-

tial. In section 4.4, we make a departure from the case of strict one-dimensional nanowires

and consider the experimentally realistic case of quasi one-dimensional nanowires with

several partially occupied subbands. In section 4.5, we compare the current for the single-

electron tunneling with the current due to cotunneling of Cooper pairs which turns out

to be the transport channel which competes with sequential tunneling of single electrons.

We make a connection to possible future experiments and discuss the expected differential

conductance pattern in section 4.6. We conclude with a summary of the main results of

this chapter in section 4.7.

4.1. Model system

4.1.1. Setup and Coulomb Hamiltonian

We consider a quasi one-dimensional semiconductor nanowire with strong spin-orbit cou-

pling which is proximity coupled to an s-wave superconductor. The nanowire forms an

annulus in the x-y plane with radius R and radial extension L⊥ � R. We assume a strong

confinement in z direction, i.e., the extension perpendicular to the plane of the annulus

Lz � L⊥, such that only the lowest subband with momentum in z direction is occupied.

This hybrid system is separated from a back-gate by a thin insulating layer and weakly

tunnel-coupled to source and drain electrodes with symmetric electric potentials ±eV/2.

The proposed experimental setup is illustrated in figure 4.1.1

Assuming a strong capacitive coupling between the nanowire and the superconductor,

the total number of electrons in this system is determined by the Coulomb Hamiltonian

HC = Ec(N +NSC)2 − eVG(N +NSC), (4.1.1)

where Ec denotes the charging energy and N (NSC) the number of excess electrons in the

semiconductor (superconductor) attracted by the back-gate. Varying the gate potential

eVG allows to change the total electron number N + NSC in discrete units. A single-
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Figure 4.1.1.: Cross section of the experimental setup for a ring-shaped
semiconductor-superconductor hybrid system. We consider a quasi
one-dimensional semiconductor (SM) nanowire with strong spin-orbit
coupling and a magnetic field B perpendicular to the plane of the semi-
conductor ring. The superconductor (SC) is sputtered on top of the
semiconductor which itself is deposited on a gate electrode. The semi-
conductor is weakly tunnel coupled to source and drain electrodes.

electron current through this island involves changing the electron number from N +NSC

to N + NSC ± 1 and creating or annihilating an odd number of quasiparticle excitations.

Thus, resonances in the differential conductance appear when the condition

eV/2 = EN+NSC±1 − Egs
N+NSC

(4.1.2)

is satisfied, where EN+NSC
is the total energy of a state with N+NSC electrons and Egs

N+NSC

is the respective ground-state energy. The spacing between the resonance peaks for fixed

VG is independent of the charging energy Ec and displays the excitation spectrum for fixed

electron number,

δEN+NSC
= EN+NSC

− Egs
N+NSC

. (4.1.3)

In figure 4.1.2(a), we illustrate a typical result for the nonlinear conductance pattern

as function of gate and bias voltage. A finite single-electron conductance (yellow area) is

only found for a set of bias and gate voltages (V, VG) which satisfy the resonance condition

Eq. (4.1.2). In the white areas, called Coulomb diamonds due to their shape, the current is

fully suppressed by the Coulomb charging energy. The edges of the Coulomb diamonds are

found from Eq. (4.1.2) if the state with N+NSC±1 electrons is a ground state. The distance

between the diamonds as well as their height is mainly determined by Ec. For larger

voltages (orange area) the transport is dominated by processes which change the electron

number in the ring system by two or more. If we consider the nonlinear conductance for

single-electron tunneling through an s-wave superconducting grain with quasiparticle gap

EG, we typically find a diamond pattern similar to the one in figure 4.1.2(b). Here, we find
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Figure 4.1.2.: Illustration of a stability diagram as function of gate potential
eδVG = eVG −NEc and bias voltage V . (a) In the white area, transport
is blocked by the Coulomb charging energy Eq. (4.1.1). In the yellow
area, tunneling of single electrons is possible if the resonance condi-
tion Eq. (4.1.2) is satisfied. In the orange area, two-electron processes
contribute to transport. (b) Idealized stability diagram for an s-wave
superconducting grain (see e.g. reference [121]) with quasiparticle gap
EG = Ec/5 and single-particle level spacing d = Ec/10. The black lines
denote resonances of the differential conductance. In the white areas of
height 2EG in the downward pointing diamonds centered around odd
N , the current is suppressed by superconducting gap and hence there
are no resonance lines. Note the different resonance pattern for tunnel-
ing from grains with odd to even parity with energy gap 2EG and from
even to odd parity without energy gap between the resonances.

a characteristic even-odd effect with an energy gap between the two lowest resonance lines

for tunneling processes which change the parity from odd to even. In the opposite case, for

tunneling processes from states with even to odd parity, this energy gap is absent and the

separation between the resonance lines displays the single-particle level spacing. This even-

odd effect was experimentally confirmed in ultrasmall superconducting aluminum grains

by Black et al. [74]. In addition, we note that the location of the Coulomb diamonds is

slightly shifted and the separation between two diamonds becomes 2Ec−2EG (2Ec+2EG)

for the diamond centered around a ground state with odd (even) parity.

In our analysis, we assume that both the charging energy Ec and the quasiparticle gap ∆s

in the superconductor are larger than the effective gap ∆eff in the semiconductor. Hence,

for small voltages eV . Ec,∆s all electrons in the superconductor are paired and unpaired

electrons as well as breaking of Cooper pairs can only show up in the semiconductor. As

a consequence, the parity in the superconductor is always even and the parity in the semi-

conductor nanowire is determined by the total parity of the hybrid system. The Coulomb

Hamiltonian Eq. (4.1.1) fixes the total electron number while the electron number in the

semiconductor fluctuates because of the strong coupling between the semiconductor and
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the superconductor. In the following, we assume that the average electron number in the

semiconductor is fixed and whenever we refer to the electron number in the semiconductor,

we refer to its average.

4.1.2. Hamiltonian for the semiconductor-superconductor hybrid

system

We describe the low-energy physics of the semiconductor nanowire by the continuum

Hamiltonian H = HSM +HSC [32–36] with

HSM =

∫
d2r

∑
σ

ψ†σ(r)
{
− ~2

2m∗
∂2

∂r2
− µ+ V (r) + EZ σ̂

z
σσ

}
ψσ(r)

+ iα~
∫
d2r

∑
σ,σ′

ψ†σ(r)

(
σ̂yσσ̄

∂

∂x
− σ̂xσσ̄

∂

∂y

)
ψσ′(r), (4.1.4)

where the operator ψ†σ(r) (ψσ(r)) creates (annihilates) an electron at position r with spin σ

and mass m∗. The first line in Eq. (4.1.4) describes the kinetic energy of a two-dimensional

electron gas, the chemical potential µ, the nonmagnetic disorder potential V (r), and the

Zeeman energy splitting EZ = gµBB/2 due to the magnetic field in z direction. The second

line in Eq. (4.1.4) represents the Rashba spin-orbit coupling with spin-orbit velocity α,

and σ̂s are the Pauli spin matrices with s = x, y, z. In our analysis, we incorporate

the magnetic flux Φ(r), which is enclosed by the ring, by the azimuthal vector potential

A(r) = Φ(r)êϕ/2πr and the minimal coupling

− i~ ∂
∂r
→ −i~ ∂

∂r
+ eA(r), (4.1.5)

where e > 0 denotes the absolute value of the electron charge.

The proximity coupling between the s-wave superconductor and the nanowire is de-

scribed by the effective s-wave pairing Hamiltonian

HSC =

∫
d2r
(

∆(r)ψ†↑(r)ψ
†
↓(r) + ∆∗(r)ψ↓(r)ψ↑(r)

)
(4.1.6)

with pairing potential ∆(r). We assume that the superconducting state of the s-wave

superconductor is not affected by the semiconductor. Thus, we describe the s-wave super-

conductor within the Ginzburg-Landau formalism by the real space free energy density

fGL[|∆s|, φs] = f0(|∆s|2) +
~2

2ms

∣∣∣∣(− i ∂∂r + 2
Φ(r)êϕ
rΦ0

)
∆s

∣∣∣∣2 +
B2

2µ0

, (4.1.7)
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where f0 is the free energy for zero magnetic flux, ∆s = |∆s|eiφs is the superconducting

order parameter, Φ/Φ0 is the magnetic flux in units of the flux quantum Φ0 = h/e, and ms

is the mass of the Cooper pairs [122]. Minimization of the Ginzburg-Landau free energy

FGL =
∫
d2r fGL demands that δFGL/δ|∆s| = 0 and that δFGL/δφs = 0. In the following,

we neglect the small oscillations in |∆s| and focus on the effect of magnetic flux on the

phase of the superconducting order parameter. The phase satisfies the periodic boundary

condition φs(ϕ + 2π) = φs(ϕ) such that the order parameter is a single-valued function.

Since the length of the superconductor is much longer than its radial extension, we assume

that ∂φs/∂r = 0 which simplifies the Ginzburg-Landau free energy density significantly,

fGL[|∆s|, φs(ϕ)] = f0(|∆s|2) +
~2|∆s|2
2msr2

(∂φs
∂ϕ

+ 2
Φ(r)

Φ0

)2

+
B2

2µ0

. (4.1.8)

Throughout this chapter, we assume that the s-wave superconductor fixes the phase of the

proximity induced pairing potential

∆(r) = |∆(r)|eiφs(ϕ), (4.1.9)

while the amplitude |∆(r)| might fluctuate locally due to inhomogeneities in the interface

transparency between the semiconductor and the superconductor. We note that in a

microscopic model, in which the semiconductor and the superconductor are coupled via

a single-particle tight-binding hopping Hamiltonian, the proximity induced gap is mainly

given by ∆ = ∆sλ/(∆s + λ) with the interface transparency λ [123].

We diagonalize the full Hamiltonian H by defining the Bogoliubov quasiparticle opera-

tors

αl =

∫
d2r

∑
σ

[
uσl(r)ψσ(r) + vσl(r)ψ

†
σ(r)

]
, (4.1.10)

where {l} is a complete set of quasiparticle quantum numbers. This yields

H =
∑
l

Elα
†
lαl + EGC (4.1.11)

with the quasiparticle energies El > 0 and the grand canonical ground-state energy

EGC = −1

2

∑
l

El +
1

2

∫
d2r

∑
σ

{
V (r)− µ+

~2

2m∗

∫
d2r′

∣∣∣∣ ∂∂rδ(r− r′)

∣∣∣∣2
}
. (4.1.12)

Here, the second term originates from the anti-commutation relation of the creation and

annihilation operators in the normal-state Hamiltonian Eq. (4.1.4). We note that the
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evaluation of Eq. (4.1.12) is nontrivial because the first term yields −∞ due to the infinite

number of quantum numbers l and the last integral term yields +∞ due to the derivative

of the delta function. To avoid the appearance of the diverging terms, we introduce an

energy cutoff EΛ and assume that all El > EΛ satisfy El = ~2l2/2m∗ with the momentum

l. This cutoff is justified since the kinetic energy term is the only second-derivative term

and will dominate the energy spectrum for large momenta. This assumption introduces a

characteristic lattice length scale a = 2π/Λ = h/
√

2mEΛ which allows us to approximate

the delta function by δ(r − r′) = δnx,n′xδny ,n′y/a
2 with r = (nxa, nya) and (nx, ny) ∈ N2.

Similarly, we rewrite the derivative as differential quotient and the integral as sum over

lattice sites. With these approximations, we find the ground-state energy

EGC
quasi1D

= −1

2

Λ∑
l

El +

∫
d2r
{
V (r)− µ

}
+ 8

m∗RL⊥
πh2

E2
Λ, (4.1.13a)

EGC
1D
= −1

2

Λ∑
l

El +

∫
dx
{
V (x)− µ

}
+ 2

√
2m∗R

πh
E

3/2
Λ (4.1.13b)

for quasi one-dimensional and exactly one-dimensional semiconductor nanowires. We note

that in solid state systems the cutoff Λ naturally appears as the size of the first Brillouin

zone, i.e., as the inverse of the atomic lattice parameter.

The corresponding ground-state electron number is given by the expectation value of

the particle number operator

N̂ =

∫
d2r

∑
σ

ψ†σ(r)ψσ(r) (4.1.14)

in the state where all quasiparticle levels are empty. Rewriting the particle number operator

in terms of quasiparticle operators Eq. (4.1.10) and taking the expectation value with

respect to the ground state 〈α†lαl′〉 = 0, we find

NGC =

∫
d2r

∑
σ

∑
l

|vσl(r)|2. (4.1.15)

The parity of the grand canonical ground state is determined by the pfaffian Z2 topological

number

Q =
Pf (Hiτx)√
|det (Hiτx) |

, (4.1.16)

where H denotes the first quantized Bogoliubov-de Gennes Hamilton matrix in the basis

(ψ†↑(r), ψ
†
↓(r), ψ↑(r), ψ↓(r)) and τx denotes the Pauli matrix acting on the particle-hole
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space [76, 124]. Here, the topological number Q = +1(−1) corresponds to the even (odd)

parity of the grand canonical ground state. From the grand canonical ground state with

parity Q we construct two classes of states with parity P by creating Nqp quasiparticle

excitations. The parity P of these states is determined by

P = (−1)NqpQ, (4.1.17)

i.e., depending on whether Nqp is even (odd), P = Q (P = −Q)).

The Coulomb Hamiltonian Eq. (4.1.1) fixes the parity in the nanowire since ∆s � ∆eff ,

and the total number of electrons in the hybrid system. Because of the strong tunnel

coupling between the semiconductor and the superconductor, the individual electron num-

ber in each subsystem may fluctuate, however, we assume that the mean electron number

in each subsystem is fixed by a relative charging energy E∗c � Ec which is discussed in

the next section. Hence, we describe the semiconductor by the parity P and the mean

electron number N . Since the resonances in the differential conductance are determined

by the total energy and not by the grand potential, we Legendre transform the class of

states with parity P into a pseudo-canonical ensemble with Nqp quasiparticles and mean

electron number N . This ensemble contains states with energy

E[{l1, . . . , lNqp}, N,P ] = EGC +

Nqp∑
j=1

Elj + µN (4.1.18)

and the chemical potential µ is determined by the constraint of fixed mean electron number,

N = NGC(µ) +

Nqp∑
j=1

∫
d2r

∑
σ

{
|uσlj(r, µ)|2 − |vσlj(r, µ)|2

}
. (4.1.19)

4.1.3. Material parameters

Both InAs and InSb have been shown experimentally to be suitable semiconducting materi-

als because of their strong spin-orbit coupling and their large g-factor g ≈ 20 . . . 50 [55–57].

In the experimental situation, the confinement energy in transverse direction is the largest

energy scale so that only a few subbands are partially occupied. It is useful to express the

kinetic energy and the spin-orbit coupling in terms of a characteristic energy εso = m∗α2

and a spin-orbit length lso = ~/m∗α. With these definitions, we rewrite the kinetic energy

term ~2/2m∗ = εsol
2
so/2 and the spin-orbit term ~α = εsolso. Typical values for InAs, InSb,

and related materials are εso = 0.1 meV, lso = 100 nm, and gµB/2 = 1 meV/T which

corresponds to g ≈ 35. Thus, we find with R = 0.5 µm, EZ = 1 meV, and ∆ = 0.5 meV,
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the single-particle level spacing at the Fermi energy of d = 0.08 meV and an effective

quasiparticle excitation gap in the semiconductor of ∆eff ≈ 0.2 meV. In the following,

the magnetic field B is varied in discrete steps with the magnetic flux always being fixed

modulo Φ0, such that the only effect is a change of the Zeeman energy EZ .

To ensure single-electron tunneling through the semiconductor-superconductor hybrid

system, we consider the case ∆s, Ec � ∆eff . In our model, we consider a strong capacitive

coupling between semiconductor and superconductor in the sense that we only discuss the

effect of a global charging energy for adding charge to the total systems with respect to

particle exchange with an external reservoir. Additionally, there can be a relative charging

energy E∗c for the relative electron number in the semiconductor and the superconductor.

Because of the strong capacitive coupling, we assume that Ec � E∗c and thus neglect E∗c .

Therefore, only the total electron number is a good quantum number while the individual

electron numbers in the semiconductor and in the superconductor may fluctuate because

of tunneling between them. A relative charging energy between the semiconductor and the

superconductor of 1 meV together with a pairing gap ∆s = 2 meV in the superconductor

would reduce ∆eff by 20 % [125]. Thus, we conclude that a moderate relative charging E∗c

does not change our findings qualitatively and is hence neglected.

4.2. Idealized one-dimensional ring-shaped nanowire

We begin our analysis with a idealized one-dimensional nanowire of radial extension

L⊥ → 0 for spatially constant magnitude of the superconducting pairing |∆(r)| = ∆ and

vanishing disorder potential V (r) = 0. To derive the Hamiltonian for a one-dimensional

ring-shaped nanowire, we first rewrite the normal-state Hamiltonian Eq. (4.1.4) in polar

coordinates,

HSM =
∑
σσ′

∫
dϕ

∫
dr r ψ†σ′(r, ϕ)HSM,σσ′(r, ϕ)ψσ′(r, ϕ) (4.2.1)

with the first quantized 2× 2 Hamilton matrix

HSM(r, ϕ) =− ~2

2m∗

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

]
− µ+ EZσ

z

− ~
α

r

(
cos(ϕ)σx + sin(ϕ)σy

)
i
∂

∂ϕ
+ i~α

(
cos(ϕ)σy − sin(ϕ)σx

) ∂
∂r
. (4.2.2)

The naive derivation of the one-dimensional Hamiltonian could be obtained by replacing

r = R and neglecting the radial derivative terms. However, this yields an incorrect non-

Hermitian operator. To derive the correct Hamiltonian, we first separate angular and radial
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components of the electron wave function ψ(r, ϕ) = χ(r)ψ(ϕ). Then, the normalization of

the wave function yields the equation
∫
dr r χ2(r) = 1. We assume that the electron wave

function is confined to the ring by a radial confining potential and that only the lowest

radial subband is occupied. Hence, we approximate
∫
dr χ2(r) ≈ 1/R+O(L⊥/R

2). In the

limit L⊥ → 0, this approximation becomes exact and we find the integral∫
dr r χ(r)

∂

∂r
χ(r) = −

∫
dr
( ∂
∂r
r χ(r)

)
χ(r) = − 1

2R
. (4.2.3)

With this relation we obtain the Hamiltonian for the one-dimensional nanowire by inte-

grating out the radial coordinate, HSM,1D(ϕ) =
∫
dr r χ(r)HSM(r, ϕ)χ(r), which yields (up

to ϕ independent terms)

HSM,1D(ϕ) =− ~2

2m∗R2

∂2

∂ϕ2
− µ+ EZσ

z

− ~
α

R
(cos(ϕ)σx + sin(ϕ)σy) i

∂

∂ϕ
− i~α

2R
(cos(ϕ)σy − sin(ϕ)σx) . (4.2.4)

Here, the last term originates from the last term in Hamiltonian Eq. (4.2.2) which contained

a first-order radial derivative and was therefore absent in the naive derivation of setting

r = R. In the derivation of the correct Hamiltonian we did not specify the details of the

confining potential and only assumed that the confining potential is rotation symmetric

and that only the lowest transverse subband is occupied. Therefore, we argue that the

result is the generic Hamiltonian for an idealized one-dimensional ring with spin-orbit

coupling.

With the expression in Eq. (4.2.4) for the one-dimensional normal-state Hamiltonian,

we write the full Hamiltonian for the semiconductor nanoring pierced by the magnetic flux

Φ as

HSM,1D =

∫ 2π

0

dϕ
{∑

σ

ψ†σ(ϕ)
[ ~2

2m∗R2

(
−i ∂
∂ϕ

+
Φ

Φ0

)2

− µ+ EZ σ̂
z
σσ

]
ψσ(ϕ)

+
~α
R
e−iϕψ†↑(ϕ)

(
−i ∂
∂ϕ

+
Φ

Φ0

− 1

2

)
ψ↓(ϕ)

+
~α
R
eiϕψ†↓(ϕ)

(
−i ∂
∂ϕ

+
Φ

Φ0

+
1

2

)
ψ↑(ϕ)

}
. (4.2.5)

We rewrite this Hamiltonian by Fourier transforming the electron operators

ψσ(ϕ) =
1√
2π

∑
k∈Z

eikϕψkσ, (4.2.6)
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where the operator ψ†kσ (ψkσ) creates (annihilates) an electron with spin σ and angular

momentum ~k. Hence, we find the Hamiltonian describing the lowest energy subband of

the nanowire in momentum space [126]

HSM,1D =
∑
k∈Z

{∑
σ

ψ†kσ

[ ~2

2m∗R2

(
k +

Φ

Φ0

)2

− µ+ σEZ

]
ψkσ

+
~α
R

(
k +

1

2
+

Φ

Φ0

)(
ψ†k↑ψk+1↓ + ψ†k+1↓ψk↑

)}
. (4.2.7)

Here, the Rashba spin-orbit velocity, α, couples states {|k ↑〉, |k + 1 ↓〉} and creates two

helical bands with the spin rotating within the x-y plane. The bands cross each other at

k = −1/2 − Φ/Φ0. The magnetic field, B, tilts the spin direction out of the x-y plane,

removes the level crossing, and opens a spin gap EZ = gµBB/2. By diagonalizing the 2×2

normal-state Hamilton matrix

HSM,1D(k) =

 ~2

2m∗R2

(
k̃ − 1

2

)2

− µ+ EZ
~α
R
k̃

~α
R
k̃ ~2

2m∗R2

(
k̃ + 1

2

)2

− µ− EZ

 , (4.2.8)

we find the single-particle dispersion of the tilted helical bands,

ε±,k̃ =
~2
(
k̃2 + 1

4

)
2m∗R2

− µ±

√√√√(EZ − ~2k̃

2m∗R2

)2

+

(
α~k̃
R

)2

, (4.2.9)

where k̃ = k + Φ/Φ0 + 1/2. For |k̃| � 1, which is satisfied for the realistic parameters

R� lso and |µ| . εso, we can approximate the single-particle energies by

ε±,k̃ ≈
~2k̃2

2m∗R2
− µ±

√√√√E2
Z +

(
α~k̃
R

)2

. (4.2.10)

This expression is identical to the single-particle energy for a straight long nanowire, dis-

cussed in chapter 2.5, but with k replaced by k̃ = k + Φ/Φ0 + 1/2. Here, the appearance

of the magnetic flux is a trivial shift of the angular momentum due to the perpendicular

magnetic field which gives rise to a circular persistent current of the electrons.

The momentum shift of 1/2 originates from the conservation of the total angular momen-

tum of the electrons in the ring structure. More specifically, this conservation yields a spin-

orbit coupling between states with equal total angular momentum (~k, ↑) and (~k + ~, ↓)
and thus effectively shifts orbital angular momenta pR by ±~/2. This shift can be under-

91



Idealized one-dimensional ring-shaped nanowire

stood by identifying it with a 2π spin rotation of an electron encircling the ring. Since

electrons carry spin 1/2 a rotation of 2π in spin space corresponds to a phase of 1
2
(2π) ≡ π

for a rotation in real space. This is equivalent to a Berry phase factor −1, i.e., an effective

shift of the magnetic flux by −Φ0/2. The Berry phase is exact up to corrections of order

lso/R for |µ| . εso. We use the parameters lso/R � π and µ ≈ 0 and therefore, the

corrections are expected to be small.

For the strictly one-dimensional system, we write the Ginzburg-Landau free energy den-

sity Eq. (4.1.8) for the s-wave superconductor in momentum space as

fGL[|∆s|, q] = f0(|∆s|2) +
~2|∆s|2
2msR2

(
q +

2Φ

Φ0

)2

+
B2

2µ0

, (4.2.11)

where ~q is the angular momentum of the condensate, i.e., φs = qϕ. Minimization of

fGL demands that Q is the integer nearest to −2Φ/Φ0 and that δfGL/δ∆s = 0. In the

following, we neglect the small oscillations in |∆s| and focus on the large effect of parity

and magnetic flux on the excitation spectrum of the semiconductor ring. With the angular

momentum of the Cooper-pair condensate, the proximity pairing term Eq. (4.1.6) becomes

HSC =

∫ 2π

0

dϕ
{

∆e−iqϕψ†↑(ϕ)ψ†↓(ϕ) + ∆eiqϕψ↓(ϕ)ψ↑(ϕ)
}

=∆
∑
k∈Z

{
ψ†k↑ψ

†
−k+q↓ + ψ−k+q↓ψk↑

}
, (4.2.12)

which couples states |k ↑〉 and | − k + q ↓〉. As a consequence, the total Hamiltonian

H = HSM +HSC is block diagonal, and within each block a quadruplet

{|k ↑〉, |k + 1 ↓〉, | − k + q ↓〉, | − k − 1 + q ↑〉} (4.2.13)

is coupled. For odd Q, the quadruplet for k = (q − 1)/2 reduces to a single doublet

{|(q − 1)/2 ↑〉, |(q + 1)/2 ↓〉}. The pairing potential ∆, which is reduced in magnitude as

compared to ∆s, plays a crucial role since it sets two excitation energies. It both opens an

effective pairing gap at the Fermi surface and it modifies the Zeeman gap at k̃ = 0. For

∆2 > E2
Z − µ2 both helicities are occupied in the ground state and ∆ pairs generalized

time-reversed pairs at both sets of Fermi points. Hence, the nanowire is in a trivial state

with superconductor gaps at both ±k̃F and k̃ = 0. For ∆2 < E2
Z − µ2 on the other hand,

the band structure is different in an important way because now there is a spin gap at

k̃ = 0 and a superconducting gap only at ±k̃F . If EZ � ∆, µ, it is justified to only consider

the lower band and to project the proximity induced singlet pairing onto that band [34,36].
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In this limit, the low-energy theory of the ring model with magnetic flux Φ can be mapped

onto Kitaev’s model [76] with periodic boundary condition and magnetic flux Φ + Φ0/2.

The projected model contains doublets {|p〉, | − p〉} for Φ/Φ0 ∈ [n − 1/4, n + 1/4] with

integer n and effective momentum p = k−q/2+1/2, whereas for Φ/Φ0 ∈ [n+1/4, n+3/4],

the doublet for p = 0 reduces to the singlet |p = 0〉.
As discussed above, the Hamiltonian for the one-dimensional ring-shaped nanowire can

be decomposed into a sum over quadruplets and depending on Φ into an additional doublet.

Thus, the many-body wave function for this Hamiltonian can be written in an analytical

form as the tensor product of the many-body wave function for the individual quadruplets.

In the following, we define two classes of grand canonical ansatz wave functions with even

and odd parity as generalized BCS wave functions [75]. Then, we determine the ground

state by an unbiased minimization of the energy expectation value and the lowest excited

states are given by pairwise creation of Bogoliubov quasiparticles. This method is fully

equivalent to the method introduced above which only relied on the parity Q of the many-

body wave function and the quasiparticle excitations. In this section we prefer to use the

wave-function based method because it is more intuitive than the pfaffian invariant and

allows to clearly read off the ground as well as the excited states.

4.2.1. Wave functions: Spinless p-wave superconductor

Before investigating the full model, we discuss the system for |µ|,∆, εso � EZ where we

can map the lower helical band onto the Kitaev model introduced in chapter 2.2 with the

Hamiltonian

HK =
∑
p

{
εpc
†
pcp + ∆0pc

†
pc
†
−p + ∆∗0pc−pcp

}
, (4.2.14)

where εp = ~2p2/2m∗R2 − EZ and ∆0 = ∆α~/2EZ [see Eqs. (2.5.11) and (2.5.12)]. The

angular momentum sum in (4.2.14) runs over p + 1/2 ∈ Z for Φ/Φ0 ∈ Z and it runs over

p ∈ Z for Φ/Φ0 + 1/2 ∈ Z. The operator cp (c†p) annihilates (creates) an electron with

energy εp,− and momentum p in the lower helical band.

In analogy to the generalized variational approach in reference [75], we consider varia-

tional wave functions for the projected Hamiltonian. For each doublet, states with even

and odd parity are generated by applying the operators

P−(p) = spc
†
p + tpc

†
−p, (4.2.15a)

P+(p) = up + vpc
†
pc
†
−p (4.2.15b)
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to the vacuum state. General ansatz wave functions for even (odd) parity are

|Ψe(o){τp}〉 =
∏
p≥0

Pτp(p)|0〉 with
∏
p≥0

τp = +1(−1), (4.2.16)

where |0〉 is the vacuum for the c electrons.
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Figure 4.2.1.: Sketch of the dispersion and the effective pairing for the lower helical
band ε−(p). The • markers (×) denote the occupied (empty) single-
particle levels for ∆ → 0. The dashed ellipses illustrate the paired
single-particle levels when switching on the proximity induced super-
conducting pairing potential. Arrows indicate the transport of a single
quasiparticle to produce the lowest excited state.

To obtain the energy spectrum for arbitrary magnetic flux, we first minimize the Ginzburg-

Landau free energy Eq. (4.2.11) to find the pair wave number Q, which is then used to

construct the grand canonical mean-field ansatz wave functions Eq. (4.2.16) via P±. For

each set of {τp}, we determine the corresponding energy by unbiased minimization of

E(N, {τp}) = 〈HK〉+µNN with respect to the variational parameters (sp, tp, up, vp). Here,

µN is fixed by the mean electron number N = 〈∑ c†pcp〉 in the semiconductor nanowire.

By rank-ordering the E(N, {τp}), we find the ground states for both even and odd parity.

To obtain the excited states, we then apply the Bogoliubov operators a†p,1 = upc
†
p − vpc−p

and a†p,2 = upc
†
−p + vpcp with p > 0 to the ground-state wave function.

In figures 4.2.1(a) and (b) we sketch a bare parabolic dispersion and the single-particle

excitation spectrum for Φ = −h/2e. The ground-state wave function for odd parity is
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given by ∣∣∣Ψgs
o

(
Φ = − h

2e

)〉
= P−(0)

∏
p>0

P+(p)
∣∣∣0〉, (4.2.17)

where all time-reversed partners are paired and the zero-momentum electron is unpaired.

The lowest excited state has two unpaired electrons at the Fermi number pF and at pF +1,∣∣∣Ψij
o

(
Φ = − h

2e

)〉
= a†pF ,ia

†
pF+1,j

∣∣∣Ψgs
o

(
Φ = − h

2e

)〉
, (4.2.18)

which shows up in a spectroscopic gap of 2∆eff . On the other hand, the ground state for

even parity is given by∣∣∣Ψgs
e

(
Φ = − h

2e

)〉
= P−(0)P−(pF )

∏
p 6=0,pF

P+(p)
∣∣∣0〉 (4.2.19)

with two unpaired electrons. In contrast to the odd parity case, we find the lowest excited

state by breaking the pair at pF − 1 and creating a new one at pF ,∣∣∣Ψij
e

(
Φ = − h

2e

)〉
= apF ,ia

†
pF−1,j

∣∣∣Ψgs
e

(
Φ = − h

2e

)〉
. (4.2.20)

Therefore, the excitation energies for the even parity are determined by the single-particle

level spacing. In figures 4.2.1(c) and (d) we illustrate the pairing for Φ = 0. Here, we find

that the behavior is reversed compared to the case Φ = −h/2e; i.e., the ground state for

the even parity contains only paired levels whereas the ground state for the odd parity has

one unpaired electron at the Fermi surface.

4.2.2. Wave functions: Semiconductor-superconductor hybrid system

We now consider the full Hilbert space for the semiconductor Hamiltonian again. Since

the Hamiltonian for the full model can be decomposed into a sum over quadruplets, we

decompose the total wave function into a (tensor) product of the wave functions for the

individual quadruplets. In analogy to what we explained above, we first define generalized

operators P±(k) for each quadruplet of the full unprojected Hamiltonian and then construct

the ansatz wave functions in analogy to Eq. (4.2.16). We define

P−(k) =
∑
α

sαα
† +

∑
α<β<γ

tαβγα
†β†γ†, (4.2.21a)

P+(k) = uk +
∑
α<β

vαβα
†β† + wkψ

†
−k−1+q,↑ψ

†
−k+q,↓ψ

†
k,↑ψ

†
k+1,↓ (4.2.21b)
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for k ≥ (q−1)/2. Here, the greek summation indices correspond to the quadruplet fermion

operators α, β, γ ∈ {ψ†−k−1+q,↑, ψ
†
−k+q,↓, ψ

†
k,↑, ψ

†
k+1,↓} and for notation reasons we defined an

order of fermion operators ψ†−k−1+q,↑ < ψ†−k+q,↓ < ψ†k,↑ < ψ†k+1,↓ with respect to the orbital

angular momentum. Hence, the general ansatz wave functions for even (odd) parity are

|Ψe(o){τk}〉 =
∏

k≥(q−1)/2

Pτk(k)|0〉 with
∏

k≥(q−1)/2

τk = +1(−1), (4.2.22)

where |0〉 is now the vacuum for the ψ fermions.

We obtain the energy spectrum in full analogy to what we explained above for the Kitaev

model. This leads to the following algorithm:

(i) At first, we minimize the Ginzburg-Landau free energy Eq. (4.2.11) to find the Cooper

pair pair wave number Q.

(ii) We use this information to construct the operators P±(k) and the grand canonical

ansatz wave functions |Ψe(o){τk}〉 Eq. (4.2.22). Since τk = ±1 for each k, we have in

total 2nΛ ansatz wave functions, where nΛ denotes the number of quadruplets with kinetic

energy smaller than the cutoff EΛ [see Eq. (4.1.13)]. In our numerical calculation, we

choose nΛ = N , i.e., the number of quadruplets is the number of electrons. In addition,

each of the 2nΛ operators P± depend on eight variational parameters.

(iii) For each set of {τk}, we determine the corresponding eigenenergies by unbiased mini-

mization of

E(N, {τk}) = 〈Ψ{τk}|H|Ψ{τk}〉+ µNN (4.2.23)

with respect to the variational parameters (sk,i, tk,i) for i = 1, . . . , 4 and (uk, vk,j, wk) for

j = 1, . . . , 6. Here, the chemical potential µN is fixed by the mean electron number

N = 〈Ψ{τk}(µN)|
∑
kσ

ψ†kσψkσ|Ψ{τk}(µN)〉 (4.2.24)

in the semiconductor nanowire.

(iv) By rank-ordering the set {E(N, {τk})}, we find the ground states for both even and

odd parity. We then obtain the excited states by choosing higher energy states in the

rank-ordered set {E(N, {τk})}.

4.2.3. Numerical results

In the following, the magnetic field is varied in discrete steps with the magnetic flux always

being a (half-) integer multiple of Φ0, such that the only effect is a variation of the Zeeman

energy. As discussed above, at E2
Z = ∆2 + µ2 the Zeeman energy drives the nanowire
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Figure 4.2.2.: Lowest excitation energies for fixed mean electron number as function
of Zeeman energy for several combinations of magnetic flux and fermion
parity. The magnetic field is varied in discrete steps with the magnetic
flux always being a (half-) integer multiple of Φ0. The lowest excited
states in the nontrivial phase (EZ & ∆) are sketched in figure 4.2.1 for
the projected model. Not all excited states are shown.

through a topological phase transition with the trivial phase for EZ <
√

∆2 + µ2 and the

nontrivial phase for EZ >
√

∆2 + µ2 [162].

In figure 4.2.2, we plot the lowest excitation energy δEN = EN − Egs
N as function of

Zeeman energy with N chosen such that µ ≈ 0. We see qualitative differences between the

trivial phase of the nanowire for EZ . ∆ and the nontrivial phase for EZ & ∆. For EZ . ∆,

results are typical for s-wave superconductivity in ultrasmall metallic grains [74, 75]. For

even parity, the excitation spectrum displays a large spectroscopic gap 2∆eff independent of

magnetic flux since all excited states contain two Bogoliubov quasiparticles. In contrast,

the ground state for odd parity always has one Bogoliubov quasiparticle and therefore

the spectrum is qualitatively independent of magnetic flux and determined by the single-

particle level spacing as

δE = ζ(n = 1)− ζ(n = 0) ≈ d2

2∆eff

(4.2.25)

for quasiparticle energies ζ(n) =
√
n2d2 + ∆2

eff where n counts the energy levels relative

to the Fermi energy. Similarly, a variation of magnetic flux by Φ0/2 changes ζ(n) on the

order of d2/∆eff .
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For EZ & ∆, we observe a strikingly different parity effect, and find that the excitation

energies depend on both magnetic flux and electron parity. In figures 4.2.2(a) and (d)

we find a spectroscopic gap 2∆eff since the lowest excited states require two Bogoliubov

quasiparticles and thus break a Cooper pair. In contrast, the excitation energies in fig-

ures 4.2.2(b) and (c) are determined by the single-particle level spacing as d2/2∆eff since

always one unpaired electron is located near the Fermi surface. As shown in figure 4.2.2(d),

the characteristic signature of the topological phase transition is the closing and reopening

of the excitation gap.
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Figure 4.2.3.: Lowest excitation energies for fixed mean electron number as function
of the magnetic flux, (a) for EZ = 0.6∆, and (b) for EZ = 2∆. Not all
higher excitation energies are shown.

These different parity effects become even more impressive when fixing the Zeeman

energy and varying the magnetic flux. In figure 4.2.3, excitation energies as a function of

magnetic flux for both trivial (EZ = 0.6∆) and nontrivial sectors (EZ = 2∆) are shown for

even parity. In the trivial phase, they are of order 2∆eff with small Φ0/2 periodic oscillations

of order d2/∆eff as shown in figure 4.2.3(a). For the odd parity case (not shown), they

are determined by the single-particle level spacing. In the nontrivial phase however, we

find large oscillations with period Φ0 and amplitude 2∆eff as shown in figure 4.2.3(b).

There, the excitation energies for Φ/Φ0 ∈ (1/4, 3/4) are determined by the single-particle

level spacing, while they display the effective gap 2∆eff for Φ/Φ0 ∈ (3/4, 5/4) due to the

pairwise creation of Bogoliubov quasiparticles. For odd parity, we qualitatively find the

same spectrum but shifted by Φ0/2, as follows from the earlier discussion. All these results

back up the general arguments in the introduction, connecting ground state degeneracies

on the torus to parity and magnetic flux periodicities of excitations.

In the last step, we relate the Φ0 magnetic flux periodicity in the topologically nontrivial

phase to the recently discovered 4π periodicity of the Josephson current between two

topological superconductors [31, 76, 127]. To leading order in the tunnel coupling, the

Josephson energy between two one-dimensional topological superconductors is given by
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the Hamiltonian

HJ(∆φ) = iγ1γ2Γ cos
(∆φ

2

)
, (4.2.26)

where γ1 and γ2 are operators for the end Majorana states connected by the junction,

Γ is the tunneling matrix element, and ∆φ the phase difference between the two super-

conductors. The operator iγ1γ2 with eigenvalues ±1 describes the parity of the neutral

fermion state shared between the two Majoranas fermions. For a fixed parity, the Joseph-

son energy is 4π periodic in the phase difference. We here consider the case that the 4π

periodic Josephson junction is inserted into a ring structure. Then, the superconducting

phase difference between the two ends is related to a magnetic flux through the ring via

∆φ = (e/~)
∫
S1 dr · A(r) = 2πΦ/Φ0, and the 4π phase periodicity is equivalent to a Φ0

flux periodicity. If the parity is not fixed, a change of ∆φ by 2π ∼ Φ0/2 will change the

occupancy (iγ1γ2+1)/2 of the neutral fermion and hence the ground state parity. This is in

full agreement with our finding that in the nontrivial phase the parity of the ground state

changes (if coupled to an electron reservoir) when changing the magnetic flux through the

ring by Φ0/2. Since occupying the neutral fermion describes a change in the parity of the

pairing wave function and not in the mean number of (charged) particles, the terminology

“neutral fermion” is appropriate.

4.3. General single-band Hamiltonian

In this section we consider the full model and study the deviations from the ideal ring-

shaped nanowire in order to make contact with possible experiments. For numerical pur-

pose, we now consider a lattice model and replace the derivatives in Eq. (4.1.4) by a

nearest-neighbor hopping. Thus, the low-energy physics of the nanowire is described by

the lattice Hamiltonian H = HSM +HSC with

HSM =−
∑
r,r′,σ

trr′c
†
rσcr′σ +

∑
r,σ

(
EZ σ̂

z
σσ − µ+ Vr

)
c†rσcrσ

+
iα

2a

∑
r,σ

(
c†rσσ̂

y
σσ̄cr+δxσ̄ − c†rσσ̂

y
σσ̄cr−δxσ̄ − c†rσσ̂xσσ̄cr+δyσ̄ − c†rσσ̂xσσ̄cr−δyσ̄

)
, (4.3.1)

where the operator c†rσ (crσ) creates (annihilates) an electron at site r with spin σ and mass

m∗. The first term describes hopping on a simple square lattice with lattice parameter

a, tr,r+δx = tr,r+δy ≡ t0 = ~2/2m∗a2 for the nearest-neighbor lattice vectors δx = (a, 0),

δy = (0, a), and tr,r = −2t0. The proximity coupling between the s-wave superconductor
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and the nanowire is described by the lattice s-wave pairing Hamiltonian

HSC =
∑
r

(
∆rc

†
r↑c
†
r↓ + ∆∗rcr↓cr↑

)
. (4.3.2)

To incorporate the magnetic flux Φ, we reformulate the minimal coupling Eq. (4.1.5) for

the continuous system in terms of hopping matrix elements,

tr,r+δ → tr,r+δ e
− ie~

∫ r+δ
r dr′ ·A(r′), (4.3.3a)

α→ α e−
ie
~
∫ r+δ
r dr′ ·A(r′), (4.3.3b)

where
∫ r+δ

r
dr′ ·A(r′) is the line integral of the vector potential along the hopping path δ.

This lattice version of the minimal coupling is called Peierls substitution. In analogy to

the one-dimensional case Eq. (4.2.12), the superconducting order parameter is modulated

by a complex phase

∆r → ∆re
iq·r, (4.3.4)

where q is the Cooper pair wavenumber which needs to be determined by minimizing the

Ginzburg-Landau free energy Eq. (4.1.8).

For details about the numerical solution of the lattice Hamiltonian H = HSM +HSC, we

refer to Appendix A.1.

4.3.1. Dependence on geometry details

In this section we study how details of the geometric realization of the ring topology affect

the excitation spectrum. For this purpose, we compare the spectra for a ring, a square,

and for a model with periodic boundary condition as sketched in figure 4.3.1(a). Above we

have shown that the low-energy physics of the ring-shaped nanowire is equivalent to that of

a strip of width L⊥ and length L = 2πR� L⊥ with periodic boundary condition along the

x direction and with vector potential A = (Φ−Φ0/2)x̂/L in the Landau gauge. Here, the

first term in the bracket describes the magnetic flux penetrating the ring. The second term

originates from the conservation of the total angular momentum of the electrons in the

ring structure. More specifically, this conservation yields a spin-orbit coupling between

states with equal total angular momentum (pR, ↑) and (pR + ~, ↓) and thus effectively

shifts orbital angular momenta pR by ±~/2 [126]. This shift was identifyed with a 2π spin

rotation of an electron encircling the ring which is equivalent to a Berry phase factor −1

and an effective shift of the magnetic flux by −Φ0/2.

Experimentally, the fabrication of nanoring structures with radii of several hundred
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Figure 4.3.1.: (a) Sketch of three different geometric realizations of the S1 topology
of the circle: a ring, a square, and a straight nanowire with periodic
boundary condition indicated by dots. (b) Lowest excitation energy
for EZ = 2∆ as function of magnetic flux, and (c) lowest excitation
energy for Φ = 0 (mod Φ0) as function of Zeeman energy. The pa-
rameters used in the numerical calculation are: even parity, N = 44,
L = 2πR = 3 µm, and a = 2 nm. In (c), the magnetic flux for the
system with periodic boundary condition is Φ = −Φ0/2 (mod 2). The
lines for panel (b) are defined in panel (c).

nanometers is challenging and the approximation of the ring by a triangle or a rectangle

is likely. For this purpose, we consider a square-like structure made out of four nanowires,

however, our results are qualitatively also valid for a triangular structure which consists of

three nanowires.

In figure 4.3.1(b) and (c), we compare the fixed electron-number excitation spectrum

for the three different geometric realizations of the lattice on which the Hamiltonian is

defined; the ring of radius R, a quadratic approximation of the ring with edge lengths

πR/2, and a straight nanowire of length L = 2πR with periodic boundary condition. In

our numerics, we model the ring-shaped nanowire by the one-dimensional tight-binding

Hamiltonian Eq. (4.3.1) with spin-orbit coupling perpendicular to the nanowire, and thus

rotating in the x-y plane. As function of the discretized azimuthal angle ϕi = 2πi/n with

n = 2πR/a lattice sites, the spin-orbit direction is then given by

σSO,ring(i) = sin(ϕi)σ
y + cos(ϕi)σ

x. (4.3.5)

Similarly, we model the square by abrupt changes in the spin-orbit direction at the position
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of the corners,

σSO,square(i) =


σx, for 0 < i ≤ n

4

σy, for n
4
< i ≤ n

2

−σx, for n
2
< i ≤ 3n

4

−σy, for 3n
4
< i ≤ n

(4.3.6)

and the straight nanowire with periodic boundary condition by a constant spin-orbit di-

rection,

σSO,periodic(i) = σy. (4.3.7)

The spectra for these three models are qualitatively very similar and show a Φ0 flux pe-

riod. As expected, we find that the model with periodic boundary condition yields the same

spectrum as the ring model but with vector potential shifted by −Φ0x̂/2L due to the Berry

phase factor −1 which is exact up to corrections of the order of d/
√
E2
Z + (α~k)2 � 1.

This phase shift originates from the 2π spin rotation, and therefore also exists for the

square model where the spin rotation happens in discrete jumps rather than continuously.

Without superconductivity ∆ = 0, the spectra for the ring and the square are identical

since both Hamiltonians can be transformed into each other by a global gauge transforma-

tion with different gauge fields for spin up and spin down electrons. However, for ∆ 6= 0

this transformation is not possible since the spin singlet pairing Hamiltonian breaks the

local gauge symmetry. As a consequence, the spectrum for the square geometry shows

small deviations from that for the ring geometry because of the existence of corners where

the spin-orbit direction jumps by π/2. In particular, we find that the excitation spectrum

for the square is slightly shifted towards smaller values of the magnetic flux as compared

to the ring geometry, with the shift being of the order of ∆eff/α~k. In addition to the

nonuniversal phase shift, we find that quasiparticle states with reduced excitation energy

exist, which are predominately localized near the corners of the square.

We see that our main results are robust against the details of the geometric realization

and rely on the existence of a void such that the topology of the nanowire is homotopi-

cally equivalent to an annulus. All these results underline the general arguments in the

introduction, connecting ground-state degeneracies on the torus to parity and magnetic

flux periodicities of excitations.

4.3.2. Nonmagnetic disorder

On the one hand, disorder is known to often have drastic influence on the electronic proper-

ties of low-dimensional systems. On the other hand, superconducting pairing correlations

in s-wave superconductors are protected against time-reversal invariant impurity scatter-
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Figure 4.3.2.: Lowest excitation energy for a ring-shaped nanowire with N = 44,
L = 3 µm, and a = 5 nm as function of magnetic flux and for several
variances γ of the nonmagnetic disorder potential. The curves repre-
sent the average over 50 random disorder configurations. The lines are
defined in panel (a).

ing by Anderson’s theorem [90]. This motivates us to address the question of how robust

the ground-state degeneracies in the torus topology are against potential nonmagnetic dis-

order. In the following, we discuss the effect of disorder on the excitation energies in the

regime where the effective gap is larger than the single-particle level spacing, i.e., for

∆eff ≡
∆εsolsoN

4REZ
> d. (4.3.8)

Here, we used Eq. (2.5.12) with ~α = εsolso and kF = N/2R. We model nonmagnetic

disorder by a locally varying impurity potential Vr with vanishing mean value and Gaussian

white noise correlator

〈VrVr′〉 = γ
δr,r′

a
. (4.3.9)

We here consider the regime of disorder strengths γ . γm with γm = ∆εsolso, since strong

disorder γ � γm breaks the nanowire into topological and nontopological domain walls

and thereby destroys the excitation gap [128].

In figure 4.3.2 we display the excitation spectra for the topologically nontrivial and

trivial phase as a function of magnetic flux, and in figure 4.3.3 we display the excitation

spectrum as a function of Zeeman energy for several combinations of parity and magnetic

flux. We find that the effect of nonmagnetic disorder is very different in the topologically

trivial and the nontrivial phase. In the trivial phase, the quasiparticle excitation gap is re-

markably robust against disorder which is characteristic for s-wave superconductivity [90].

In contrast, we find a significant reduction of the excitation gap due to disorder in the non-

trivial phase. While the Φ0 flux periodicity is not directly affected by disorder as shown

in figure 4.3.2(b), there is a maximum level of nonmagnetic disorder γm = ∆εsolso such
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Figure 4.3.3.: Lowest excitation energy for a ring-shaped nanowire with N = 44,
L = 3 µm, and a = 5 nm as function of Zeeman energy and for several
variances γ of the nonmagnetic disorder potential. The curves repre-
sent the average over 50 random disorder configurations. The lines are
defined in panel (c).

that only for γ . γm the excitation gap ≈ 2∆eff is larger than the single-particle level

spacing d and the Φ0 periodicity is observable. Since the topologically nontrivial phase

for large Zeeman energies EZ � ∆, µ can be mapped onto a spinless p-wave superconduc-

tor [34], this reduction is in full agreement with the effect of disorder on the excitation

gap in spinless p-wave superconductors [129,130]. Furthermore, we find that the reduction

is very efficient near the topological phase transition since there already weak disorder

breaks the nanowire into domains of different chemical potential and thereby shifts parts

of the nanowire through the topological phase transition which reduces the excitation gap

locally. Away from the topological phase transition, the reduction of the excitation gap is

weaker because the existence of partially trivial domains due to disorder becomes unlikely.

Furthermore, we find that disorder shifts the topological phase transition towards larger

values of the Zeeman energy [130,131]. As before, we argue that this shift originates from

local topological phase transitions at E2
Z = ∆2 + (µ+Vr)

2 which are shifted towards larger

Zeeman energies due to disorder.

Since the parity and magnetic flux dependence of excitation energies reflect the presence

or absence of nontrivial topological order, our findings for the nonlinear Coulomb block-

ade transport are robust against nonmagnetic disorder and other perturbations as long
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as the topological order is not destroyed by the formation of domain walls. In particu-

lar, we find a maximum variance γm of nonmagnetic disorder below which the condition

∆eff > d is clearly satisfied, and the Φ0 periodicity is observable. Before finishing this

section, we discuss the physical interpretation of the maximum disorder strength γm. Us-

ing the definition of ∆eff in Eq. (4.3.8), the Fermi momentum kF = N/2R, and the Fermi

velocity vF ≈ 2EZ/kF , we write γm = ∆effvF . The characteristic energy scale for a super-

conducting system is the quasiparticle gap ∆eff and the characteristic length scale is the

superconducting coherence length ξ = vF/∆eff . Thus, we find that the maximum disorder

strength

γm = ∆2
effξ (4.3.10)

reflects the two characteristic scales of the topological superconductor in a natural way.

4.3.3. Non-superconducting segments

In this section we consider the situation that the proximity induced superconducting or-

der parameter has a position dependence. Experimentally, this might appear due to the

roughness of the nanowire/superconductor interface, or if the nanowire is not completely

covered with the s-wave superconductor. As sketched in figure 4.3.4(a), we describe this

spatial dependence of the superconducting pairing amplitude by a step function such that

∆r = 0 for 0 < x < λ � L and ∆r = ∆ elsewhere. In figure 4.3.4(c), we display the

excitation energies for several lengths λ of the non-superconducting segment. We find a

significant reduction of the excitation gap in the trivial phase while the excitation energies

in the nontrivial phase are only weakly reduced even for λ ∼ lso. We argue that the origin

of the robustness of the excitation gap in the topological phase is the small effective gap

∆eff < ∆ and the enhanced Fermi velocity vF (EZ > ∆) ∼ 2vF (EZ = 0) due to the occu-

pation of a single spinless band. Hence, the superconducting coherence length ξ = vF/∆eff

in the topologically nontrivial phase is significantly enhanced as compared to the trivial

phase. Thus, in the nontrivial phase superconducting pairing correlations are more effi-

ciently induced in the non-superconducting part of the nanowire which here shows up as

the robustness of the superconducting gap against the existence of a quite long normal

segment.

From the robustness of the excitation gap, we conclude that it is not necessary for our

proposed setup that the nanowire is completely covered with the s-wave superconductor. In

particular, we propose that it is sufficient to place superconducting grains on the nanowire

in order to significantly increase the charging energy and to reduce Cooper pair cotunneling

through the superconductor [see section 4.5]. We now assume that the nanowire contains
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Figure 4.3.4.: Sketch of the nanowire with (a) one and (b) ten non-superconducting
segments of length λ, i.e., segments which are not covered with super-
conducting material. (c), (d) Lowest excitation energy for a ring-shaped
nanowire of length L = 3 µm with even parity, N = 44, Φ = 0, and
a = 5 nm for the case with (c) one and (d) ten non-superconducting
segments.

ten non-superconducting segments of length λ uniformly distributed over the nanowire as

sketched in figure 4.3.4(b). In figure 4.3.4(d), we study the excitation spectrum for several

characteristic lengths λ. While the excitation gap for λ = 3lso/2 ∼ 150 nm in the trivial

phase is completely absent, we find that the excitation energies in the nontrivial phase are

only reduced by 30% as compared to the situation where ∆ 6= 0 everywhere.

There is a renormalization of ∆eff in the case of covering the semiconductor nanowire

with superconducting grains. Such a situation was discussed by van Heck et al. in ref-

erence [127], and the mechanism for the renormalization of ∆eff are phase fluctuations in

the regions between two grains, which are enhanced by the existence of a relative charging

energy between the superconducting grains. The dimensionless parameter controlling the

strength of phase fluctuations is δ/∆eff , where δ denotes the energy for charging one grain

relative to the other. For a covering with distance between the grains much smaller than

the coherence length ξ, it is reasonable to assume that δ � Ec such that a regime with

δ < ∆eff can be reached, where the renormalization of ∆eff is unimportant.
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4.4. Multi-band Hamiltonian

In this section we make a departure from the case of strict one-dimensional nanowires and

consider the experimentally realistic situation of quasi one-dimensional nanowires of finite

thickness with a � L⊥ < ξ. To ensure that the induced superconducting phase remains

quasi one-dimensional and the nanowire exhibits a substantial gap, we demand that the

width does not exceed the superconducting coherence length ξ = vF/∆eff [131–136]. The

spatial extension in y direction gives rise to the existence of additional transverse modes

and thus subbands which might be partially occupied depending on the chemical potential.

In figure 4.4.1(a), we plot the Bogoliubov quasiparticle spectrum for Φ = −Φ0/2 as function

of Zeeman energy and chemical potential. For

µ .
(2π~)2

2m∗L2
⊥

(4.4.1)

only one subband is partially occupied and the excitation spectrum is equivalent to the

one discussed in sections 4.2 and 4.3. With increasing chemical potential higher subbands

are filled up consecutively and similarly to the single-band case, the higher subbands can

be either topologically trivial or nontrivial depending on the chemical potential and the

Zeeman energy.
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Figure 4.4.1.: (a) Lowest energy of the Bogoliubov quasiparticle spectrum as func-
tion of Zeeman energy and chemical potential and (b) phase diagram
of the topological number Q as function of Zeeman energy and mean
electron number. The green dashed lines in (a) represent the topologi-
cal phase transition for the various subbands in the limit of uncoupled
subbands α → 0. The parameters used in the numerical calculation
are: Lx = 3 µm, L⊥ = 100 nm, a = 5 nm, and Φ = −Φ0/2.

In figure 4.4.1(a), the topologically nontrivial phase shows up as islands which are en-

closed by lines of vanishing excitation energies, i.e., by topological phase transitions. As-
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suming that the subbands are uncoupled, we find a topological phase transition whenever

the chemical potential lies well within one of the spin gaps at zero momentum and when

the Zeeman energy satisfies the relation

E2
Z > ∆2 + (µ− εn)2, (4.4.2)

where εn = (~nπ)2/2m∗L2
⊥ denotes the kinetic energy of subband n. However, the trans-

verse spin-orbit term αc†r,σσ
x
σσ′cr+δy ,σ couples the subbands and thereby modifies the lines

where the topological phase transitions occur. These modifications are similar to avoided

crossings with energy splitting δµ ≈ 2αkF,y between the lines of topological phase tran-

sitions and thus reduce the size of the topologically nontrivial islands. With increasing

chemical potential, the spin-orbit energy in transverse direction increases and thus the

energy splitting due to the avoided crossing increases δµ ∼ α
√
εn.
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Figure 4.4.2.: Lowest excitation energy in the fermionic excitation spectrum with
fixed mean electron number as function of magnetic field and mean
electron number for several combinations of magnetic flux and electron
parity; Lx = 3 µm, L⊥ = 100 nm, and a = 5 nm. Note the different
color scale in (c) where all excitation energies are determined by the
single-particle level spacing d.

In figure 4.4.1(b), we plot the topological number Q as function of Zeeman energy and

mean particle number N . As before, the topological number is +1 in the trivial and −1 in

the nontrivial phase and thus we conclude that the parity of the grand canonical ground
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states in both phases is different with even parity in the trivial and odd parity in the

nontrivial phase. Similarly to figure 4.4.1(a), we find islands of topologically nontrivial

phase which are enclosed by the trivial phase. We propose that the fixed electron-number

excitation energies can be used as a tool to investigate the topological phase diagram.

In figure 4.4.2, we present the lowest excitation energy δEN = EN − Egs
N for the multi-

band semiconductor hybrid system for several combinations of magnetic flux and parity as

function of Zeeman energy and mean particle number. As before, our findings for the trivial

phase (i.e., the dark region in figure 4.4.2(a)) are characteristic for s-wave superconductiv-

ity in ultrasmall metallic grains without excitation gap for odd parity [figures 4.4.2(a) and

(c)] and with energy gap 2∆eff for even parity [figures 4.4.2(b) and (d)]. These excitation

energies do not change qualitatively when changing the magnetic flux and show small Φ0/2

periodic oscillations of order d2/∆eff � ∆eff .

In the topologically nontrivial phase (i.e., the bright region in figure 4.4.2(a)) the par-

ity effect is very different. Here, the excitation energies depend on both magnetic flux

and electron parity. In figures 4.4.2(a) and (d) we find a spectroscopic gap 2∆eff since

two Bogoliubov quasiparticle excitations are required and thus a Cooper pair needs to

be broken. In contrast, the excitation energies in figures 4.4.2(b) and (c) are determined

by the single-particle level spacing since always one unpaired electron is located near the

Fermi surface. As shown in figure 4.4.2(d), the characteristic signature of the topological

phase transition is the closing and reopening of the excitation gap. When studying the

magnetic flux dependence of the excitation energies in the nontrivial phase, we find large

oscillations with period Φ0 and amplitude 2∆eff . For even parity, the excitation energies

for Φ/Φ0 ∈ (−1/4, 1/4) are determined by the effective gap 2∆eff while they are deter-

mined by the single-particle level spacing d2/∆eff for Φ/Φ0 ∈ (1/4, 3/4). For odd parity,

we qualitatively find the same spectrum but shifted by Φ0/2, as follows from the earlier

discussion.

Thus, the excitation spectrum for fixed electron number directly reflects the topological

phase diagram shown in figure 4.4.1(b). We conclude that the proposed nonlinear Coulomb

blockade transport experiment can be used as a tool to clearly determine the topological

order of the hybrid system by measuring the fermionic excitation spectrum.

Due to the finite width L⊥ of the nanowire, the area of the nanowire itself is penetrated

by magnetic flux and thus the magnetic flux through the ring-shaped nanowire is not well-

defined. However, the magnetic flux can be decomposed into a mean value for the central

of the nanowire and deviations due to the finite thickness

δΦ(y) = BLxy for − L⊥
2
< y <

L⊥
2
. (4.4.3)

109



Cotunneling of Cooper pairs

(E
N

−
E

N g
s)/∆

Φ/Φ
0

δ
 Φ

/Φ
0

 

 

−1 0 1
0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8
odd parity

Figure 4.4.3.: Lowest excitation energy for fixed mean electron number as function of
magnetic flux Φ (mod Φ0) which pierces the nanowire relative its central
line and as function of additional magnetic flux δΦ = BLxL⊥/2 due to
the finite thickness of the nanowire. The parameters used in the numer-
ical calculation are: odd parity, N = 43, EZ = 2∆, Lx = 2πR = 3 µm,
L⊥ = 70 nm, and a = 10 nm. For even parity, we find the same
spectrum with Φ shifted by Φ0/2.

For nanowires with radius R = Lx/2π ∼ 0.5µm and magnetic field strengths B . 1 T, we

find δΦ(L⊥/2) > Φ0. In figure 4.4.3, we plot the fixed electron-number excitation spectrum

as function of mean magnetic flux Φ (mod Φ0) and additional flux δΦ(L⊥/2). We find

that the magnetic flux periodicity of the excitation spectrum is not changed, however, the

excitation spectrum itself is shifted due to δΦ. Thus, we conclude that additional magnetic

flux due to the finite width of ring-shaped nanowires with large radii is unproblematic for

the study of the magnetic flux periodicity of the excitation energies.

4.5. Cotunneling of Cooper pairs

In this section we estimate the magnitude of Cooper pair cotunneling and compare it with

the current due to sequential tunneling of electrons. The tunneling between lead i and the

superconductor is described by

HT,i =
∑
k,q,σ

{
tk,qa

†
ikσ

(
uqσγqσ + vqσγ

†
−q−σ

)
+ H.c.

}
, (4.5.1)

where tk,q are the tunnel matrix elements, aikσ are the fermion operators in lead i with

energy εik, and γqσ are quasiparticle operators for the superconductor with excitation
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energy Eq =
√
ξ2
q + ∆2

s [137]. The uqσ and vqσ are the BCS coherence factors

(
uqσ

vqσ

)
=

1√
2

 √1− ξq
Eq

σ
√

1 + ξq
Eq

 . (4.5.2)

Tunneling of Cooper pairs between lead i and the superconductor is described by an

effective Hamiltonian which can be derived in second-order perturbation theory in HT,i. In

the first step, one electron with momentum k1 and spin σ is transferred from an initial state

into an intermediate excited state with momentum q of the superconducting island. In the

second step, another electron with momentum k2 and spin −σ tunnels into the partner

state of the first electron −q such that both electrons form a Cooper pair. Hence, the final

state contains an extra Cooper pair in the superconductor and two quasiparticle excitations

in the lead. Similarly, we find the reverse process by splitting a Cooper pair followed by two

consecutive electron tunneling events [138]. This yields the effective tunneling Hamiltonian

HCP,i = 〈BCS|HT,i
1

iη −H0

HT,i|BCS〉, (4.5.3)

where we traced out the quasiparticle operators via the BCS many-body ground state wave

function |BCS〉 with γqσ|BCS〉 = 0. We find

HCP,i =
∑
k1,k2

{
Aik1,k2aik1↑aik2↓ + A∗ik1,k2

a†ik2↓a
†
ik1↑

}
(4.5.4)

with the effective tunneling matrix elements

Aik1,k2 =
∑
q

t∗k1,q
tk2,−quq↑v−q↑

{ 1

Ec + Eq − εik1 − µi
+

1

Ec + Eq − εik2 − µi

}
. (4.5.5)

In the following, we consider the Andreev current through a normal-state–superconduc-

tor–normal-state structure with symmetric barriers and bias voltage 0 < V < ∆s/e. As-

suming that the voltage between the left (right) lead and the superconductor is ±V/2, we

calculate the rate for the Andreev reflection process using Fermi’s golden rule

I = q
2π

~
∑
i,f

∣∣〈f ∣∣T ∣∣i〉∣∣2 δ(Ei − Ef ), (4.5.6)

where q is the transferred charge, T is the perturbation operator, |i〉 is the initial state,

|f〉 is the final state, and the δ-function guarantees energy conservation. For Andreev
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reflection, we have q = 2e and T = HCP,i. The final state is given by the wave function

|f〉 = aik1↑aik2↓|i〉 (4.5.7)

and the additional charge 2e on the superconducting island. Thus, we find the current for

the scattering of two electrons from the left metallic lead into the superconductor reads

IA(V ) = 2e
2π

~
∑
k1,k2

|ALk1,k2|2f(εLk1)f(εLk2)δ(εLk1 + εLk2 + ω) (4.5.8)

with ω = eV − 4Ec and Fermi distribution functions f . In reference [138] it was shown

that the Andreev conductance GA = IA/V for sequential Cooper pair tunneling can be

written as

GA(V ) =
e2

h

G2(ω)

N⊥
, (4.5.9)

where G is the dimensionless normal-state conductance and N⊥ the number of transverse

channels through the superconducting region in its normal state. Due to the charge 2e of

Cooper pairs, sequential tunneling of Cooper pairs is not resonant for eV/2 < Ec−∆eff and

can be neglected. In the expression for the current, this suppression shows up as shifted

chemical potential ω = eV − 4Ec.

We now calculate the current for Cooper pair cotunneling from the left lead to the

right lead via the superconducting island by calculating the scattering rate in second-order

perturbation theory in HCP,i [139]. We find

IA,cot(V ) = 2e
8π

~
∑

k1,k2,k3,k4

Wk1k2k3k4f(εLk1)f(εLk2)f(−εRk3)f(−εRk4) (4.5.10)

with

Wk1k2k3k4 =
|ALk1,k2|2|ARk3,k4|2

(εLk1 + εLk2 + eV − 4Ec)2
δ(εLk1 + εLk2 − εRk3 − εRk4 + 2eV ). (4.5.11)

Building on the result for the sequential Cooper pair tunneling Eq. (4.5.9) and assuming

eV . Ec, we rewrite the Andreev cotunneling current as

IA,cot(V ) ≈ h
G2
A(eV )V 3

E2
c

. (4.5.12)

In the expression for Eq. (4.5.12), the Andreev current GA(eV ) is not suppressed by the

Coulomb energy since the charge on the superconducting island after the tunneling events
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is the same as the initial charge.

In contrast, we find for sequential electron tunneling a current

Iseq =
e

h
Γ, (4.5.13)

where Γ is the tunneling rate between the lead and the semiconductor. For characteristic

bias voltages smaller or equal to Ec/e, we compare the currents due to the sequential

tunneling of electrons and the Andreev cotunneling of Cooper pairs. With Eq. (4.5.12)

and the expression for the Andreev conductance, we find

Iseq

IA,cot

≈ N2
⊥Γ

EcG4
. (4.5.14)

We now make the conservative assumption Γ ≈ d/10 and d ≈ Ec/10, where d is the

mean single-particle level spacing in the semiconductor, and demand that single-electron

sequential tunneling be larger than Cooper pair cotunneling. In this way, we obtain the

condition that G <
√
N⊥/3, i.e., the dimensionless conductance of the junction between

lead and the superconductor in its normal state has to be smaller than one third of

the square root of the number of transverse channels. For a metal of diameter 10 nm

and with Fermi wavelength 0.3 nm, the number of transverse channels is approximately

(diameter/wavelength)2 = 1000, and thus the dimensionless normal state conductance

needs to satisfy G < 10, which is realistic for metallic quantum dots with current state

technology.

One way to realize the condition G <
√
N⊥/3 experimentally is to not cover the nanowire

with superconducting material in the vicinity of the electrodes, and to significantly reduce

the conductance between superconductor and electrodes in this way. One can even imagine

that an extreme limit could be realized, in which all electrons entering the hybrid system

have to do so via the semiconductor in the vicinity of the electrodes. One might argue

that as a consequence of removing the superconductor near the electrodes, the proximity

induced pairing amplitude in this region will be reduced as well. However, when the region

not covered with superconducting material is considerably smaller than the coherence

length in the semiconductor (of the order of 100 nm as shown in section 4.3.3), this effect

will be small. In principle, one could go even further and only deposit superconducting

nanograins on top of the nanowire instead of adding a fully connected superconductor, and

in this way eliminate the influence of Andreev cotunneling almost completely.

In order to fully suppress cotunneling of Cooper pairs through the superconductor, we

propose to use ferromagnetic leads with the polarization in magnetic field direction. While
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ferromagnetic leads fully suppress Andreev processes and thus cotunneling of Cooper pairs

in conventional s-wave superconductors, they do not significantly affect the current due to

sequential tunneling of electrons.

4.6. Connection to possible experiments

Before concluding this section, we summarize our experimental prediction and discuss how

our main findings show up in the nonlinear Coulomb blockade conductance pattern. In

figure 4.6.1, we illustrate two typical Coulomb diamond patterns as function of gate and

bias voltage. Both plots are identical but shifted relative to each other by the gate potential

eδVG = 2Ec which corresponds to a shift in the electron number by one, i.e., by a change

of the parity. We use the realistic material parameters ∆eff = 0.2 meV, d = 0.1 meV,

and Ec = 0.6 meV which clearly satisfy our criterion d < ∆eff < Ec for the single-electron

transport. Hence, the experimentally relevant voltage window, in which single-electron

tunneling through the hybrid system is the dominant transport channel, is bound by the

threshold e|V | . Ec − ∆eff = 0.4 meV. Above this threshold, Andreev processes might

become important and screen the resonance lines from single-electron tunneling.

As discussed in section 4.1.1, qualitatively figure 4.6.1(b) shows the typical diamond

pattern for single-electron tunneling through an s-wave superconducting grain. Here, we

find a characteristic even-odd effect with an energy gap between the two lowest resonance

lines for tunneling processes which change the parity from odd to even. In the opposite

case, for tunneling processes from even to odd parity states, this energy gap is absent. This

reflects, that the lowest excited state above the ground state of a trivial superconductor

with even parity involves two Bogoliubov quasiparticles and thus breaks a Cooper pair,

incurring an excitation energy δE ≈ 2∆eff . In contrast, the ground state for odd parity

always has one Bogoliubov quasiparticle, and hence the lowest excited state involves both

annihilating and creating a Bogoliubov quasiparticle which costs the excitation energy

δE ≈ d2/∆eff � 2∆eff . This even-odd effect was experimentally confirmed in ultrasmall

aluminum grains by Black et al. [74]. In addition, we note that the location of the Coulomb

diamonds is slightly shifted and the separation between two diamonds becomes 2Ec−2∆eff

(2Ec+2∆eff) for the diamond around a ground state with odd (even) parity. In full analogy,

the pattern in figure 4.6.1(b) also describes the nonlinear Coulomb blockade conductance

pattern for the trivial superconducting phase of the semiconductor-superconductor nanor-

ing. When changing the magnetic flux through the ring, this pattern shows small variations

on the order d2/∆eff � ∆eff .

For topologically nontrivial superconductors the situation is very different. Here, ground
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Figure 4.6.1.: Illustration of the stability diagram as function of gate voltage eVG with
effective gap ∆eff = Ec/3 and single-particle level spacing d = Ec/6.
In the white upward pointing triangles, transport is blocked by the
Coulomb charging energy Eq. (4.1.1). The black lines denote resonance
lines of the differential conductance. In the hatched downward point-
ing white triangles, tunneling of single electrons is possible if the reso-
nance condition Eq. (4.1.2) is satisfied. In the orange area, two-electron
processes are allowed by the charging energy. As a consequence, An-
dreev processes dominate the orange area and single-electron tunneling
is suppressed. The green area for eV > Ec marks the regime where co-
tunneling of Cooper pairs via the s-wave superconductor might become
important and might screen the single-electron processes. (a) Stabil-
ity diagram for the nontrivial semiconductor-superconductor nanoring
with Φ = −h/2e. In the white areas of height 2∆eff in the downward
pointing diamonds centered around odd N , the current is suppressed
by superconducting gap 2∆eff and hence there are no resonance lines.
(b) Stability diagram for an s-wave superconducting grain or equiva-
lently the semiconductor-superconductor nanoring with Φ = 0. Note
the different resonance pattern for tunneling from grains with odd to
even parity with energy gap 2∆eff and from even to odd parity without
energy gap between the resonance lines. Note the symmetry between
figures (a) and (b) under parity exchange.
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states without unpaired electrons at the Fermi energy have odd parity for periodic bound-

ary condition, and even parity for anti-periodic boundary condition. Therefore, the exci-

tation energy δE oscillates between d2/∆eff and 2∆eff as function of magnetic flux with

period h/e. Hence, we find that the differential conductance pattern oscillates as func-

tion of magnetic flux between the figures 4.6.1(a) and (b). In particular, this implies the

opening and closing of the excitation gap 2∆eff for single-electron tunneling processes from

even to odd ground states and the closing and opening of the excitation gap 2∆eff for

single-electron tunneling processes from odd to even ground states. In addition, we find a

periodic oscillation of the gate voltage regimes, in which the ground state has even or odd

parity, i.e., the upward pointing white triangles in figure 4.6.1. This yields an oscillation

of the diamond tips with magnitude eVG = 2∆eff .

4.7. Summary

In conclusion, we have proposed a nonlinear Coulomb blockade transport experiment to

investigate the topological order of semiconductor-superconductor hybrid nanorings, and

have shown that peculiar parity and magnetic flux periodicity effects in the excitation

spectrum mirror the distinct ground-state degeneracies of trivial and nontrivial supercon-

ducting phases on manifolds with nonzero genus. In particular, the excitation spectrum

for fixed mean electron number provides clear signatures of the topological phase transi-

tion and the h/e flux period in the nontrivial phase which is intricately related to the 4π

periodicity of the Josephson current between two topological superconductors. All these

findings are robust against geometry details of the realization of the ring structure and

rely on the existence of a hole such that the system is homotopic equivalent to a circle.

We have shown that the spectroscopic gap in the topologically nontrivial phase is robust

against moderate nonmagnetic disorder. Furthermore, the nontrivial phase is character-

ized by a large superconducting coherence length which allows to deposit superconducting

nanograins on top of the nanowire instead of adding a fully connected superconductor, and

in this way eliminate the Andreev cotunneling and enhance the charging energy. Finally,

we have studied quasi one-dimensional multi-subband nanowires and we have shown that

nonlinear Coulomb blockade transport can be used as a tool to map out the topological

phase diagram.
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5. Spin response in three-dimensional

topological superconductors

In this chapter we make a departure from low-dimensional systems, where the topolog-

ically nontrivial state was engineered in semiconductor-superconductor heterostructure,

and focus our attention on three-dimensional systems with an intrinsic topologically non-

trivial electronic structure. Topological insulators are time-reversal-invariant systems with

gapped bulk and protected massless Dirac modes at the surface [11, 12]. Semiconductors

like the bismuth chalcogenides with strong spin-orbit coupling and a Fermi surface cen-

tered at the time-reversal-invariant momentum, are of particular interest because of their

single helical Dirac cone at the surface [9]. Copper-doped Bi2Se3 is an unconventional

superconductor [43, 44, 77, 78] with nontrivial surface states and a band structure similar

to that of Bi2Se3 but with shifted chemical potential, reduced Fermi velocity, and enlarged

surface dispersion [78].

By now, the surface states in CuxBi2Se3 have been probed by photoemission [78] and

point contact spectroscopy [79–83]. Currently, the experimental situation for the supercon-

ducting state of CuxBi2Se3 is rather controversial [84]. Recent point contact spectroscopy

experiments [79–81] showed signatures of subgap surface states and hence topological su-

perconductivity from a zero-bias anomaly in the differential conductance. In contrast, no

such signatures were found in the scanning tunneling experiment [82] and in nanoscale

tunneling experiment [83]. As a consequence, at the moment the superconducting pairing

symmetry of CuxBi2Se3 cannot be unambiguously determined from tunneling spectroscopy,

and data obtained by complementary experimental techniques are desirable.

Nuclear magnetic resonance (NMR) and quadrupole resonance, as well as the electron

and muon spin resonance are another class of powerful techniques to investigate the elec-

tronic properties locally. The Knight shift for example is determined by the static spin

susceptibility K ∼ χs(q = 0, ω = 0), which is directly connected to the spin structure

of the superconducting pairing. In conventional s-wave superconductors with spin-singlet

pairing, the Knight shift is significantly reduced and vanishes for zero temperature because

spins pair up and longitudinal spin excitations cost the pair-breaking energy 2∆. However,
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in superconductors with strong spin-orbit coupling the spin susceptibility is suppressed as

compared to the normal state but does not vanish for zero temperature due to coupling be-

tween up and down spins [140]. In this chapter we study characteristic features in the spin

response of odd-parity pairing in doped topological insulators and predict clear signatures

for the above resonance techniques.

In reference [45], Fu and Berg showed that strong spin-orbit-coupled bands indeed favor

an odd-parity interorbital unequal-spin pairing [85, 86]. To gain insight into its topologi-

cally nontrivial nature, we map this pairing Hamiltonian onto the conduction band, which

yields an effective time-reversal invariant p ± ip pairing in three dimensions. Because of

this topology, there is a pair of Majorana zero-energy modes located at each surface and

protected by time-reversal symmetry. Additionally, there are unconventional surface An-

dreev bound states originating from the band inversion as shown in reference [87] for a

linear k · p model. In addition to terms linear in momentum, we here consider quadratic

momentum terms, which determine the energy range of coexistence between Dirac modes

and unconventional surface Andreev bound states, and which may give rise to another

species of zero-energy surface Andreev bound state. The main motivation for introducing

the quadratic terms is the possibility to investigate the competition between the different

surface states and the bulk. The coexistence of the Majorana zero-energy modes and the

surface Andreev bound states originating from the band inversion [87] gives rise to two

characteristic length scales. The Dirac modes decay on the nanometer scale ξ0 [141–143]

whereas the decay length ξ1 for the Majorana zero-energy modes is hundreds of nanome-

ter [87]. Hence, the local spin susceptibility shows different characteristic behavior in the

bulk, at the surface, and within ξ1 into the bulk.

Conventional bulk NMR can distinguish between competing pairing symmetries by the

characteristic temperature dependence of the Knight shift and the spin-lattice relaxation

rate. We propose that NMR in thin films of thickness L ∼ 500 nm or depth controlled

probes [88, 89] allow to clearly determine the pairing symmetry and investigate the Ma-

jorana zero-energy modes. Our work is motivated by CuxBi2Se3, however, our results

are more generally relevant for other inversion symmetric materials such as the ternary

chalcogenides [144] and the PbTe class [145, 146]. Furthermore, our findings for doped

topological insulators are complementary to the superfluid 3He-B phase [147, 148] where

spin relaxation reflects the gapless Majorana nature.

This chapter is organized as follows. In section 5.1, we introduce the model system for

the topological insulator and competing superconducting pairing symmetries. We continue

in section 5.2 with the study of the spin response where we concentrate on the real part of

the longitudinal spin susceptibility, which yields the Knight shift, and the imaginary part
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of the transverse spin susceptibility, which determines the spin lattice relaxation rate. In

section 5.3, we compare the spin response for the various pairing symmetries and predict

magnetic resonance experiments to observe the unconventional surface Andreev bound

state in topological superconductors. We summarize our results in section 5.4.

5.1. Model system

5.1.1. Hamiltonian for the doped topological insulator

In this chapter we consider doped three-dimensional topological insulators described by

the low-energy k · p Hamiltonian [9, 45]

HTI =
∑
k

C†kHTI(k)Ck (5.1.1)

with the 4× 4 Hamilton matrix

HTI(k) = m0(k)σx + vzkzσy + v(kxsy − kysx)σz − µ, (5.1.2)

where m0(k) = m + B1k
2
z + B2(k2

x + k2
y), Ck = (ci,k,s)i,s, B1, vz > 0, and m < 0. Here,

the sλ (σλ) denote the Pauli matrices for the spin (orbital) degree of freedom, and the

operators ci,k,s annihilate an electron in orbital i, with momentum k, and spin s. In our

notation, we neglect the identity matrices for the spin/orbital space and implicitly identify

the absence of a Pauli matrix with the identity matrix. As illustrated in figure 5.1.1(a),

we consider a two-orbital model, where the two orbital Wannier functions are primarily

p orbitals originating from the hybridization of the Se and Bi pz atomic orbitals [9]. The

doped charge density determines the chemical potential µ, and the Fermi surface {kF} is

given by the implicit equation

µ2 = m2
0(kF ) + v2

zk
2
F,z + v2(k2

F,x + k2
F,y). (5.1.3)

The crystal structure of topological insulators and thus the Hamiltonian is invariant

under three discrete symmetry transformations [9]. (i) Time-reversal symmetry T : The

time-reversal operator is given by T = isyK which transforms the electron operators

T ci,k,sT −1 = s ci,−k,s̄. Here, K denotes the complex conjugation operator and we use

the notation s̄ =↑ (↓) for s =↓ (↑). (ii) Inversion symmetry (parity) P : The inversion

operator transforms r
P→ −r. In the two-orbital model, we explicitly find P = σz because

of the alternating structure of the orbitals in z direction [figure 5.1.1(a)]. This yields
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Figure 5.1.1.: (a) Side view of the layered crystal structure of the bismuth chalco-
genide Bi2Se3. The red square contains a cut through the unit cell
with two outer Se layers, a central Se layer, and two intervening Bi lay-
ers. The low-energy physics is primarily determined by two pz orbitals,
which are hybridizations of the Bi and the outer Se atomic orbitals.
(b) Bulk and surface band structure of the low-energy model for the
Hamiltonian Eq. (5.1.2) confined to −L < z < 0 and with µ = 0. For
details about the numerical calculation, we refer to Appendix C.1.

Pci,k,sP−1 = cī,−k,s with ī = 1(2) for i = 2(1). (iii) Three-fold rotational symmetry

R2π/3 around the z axis: The rotation operator is given by R2π/3 = exp(isz/3). In the

low-energy continuum model Eq. (5.1.1) the Hamiltonian is even rotational symmetry

around the z axis with arbitrary angle φ. This continuous symmetry is described by the

operator Rφ = exp(iφsz/2). In particular, we note that Rφ, where φ is the azimuthal

angle corresponding to the vector (kx, ky), transforms the Hamilton matrix HTI(kx, ky, kz)

onto HTI(
√
k2
x + k2

y, 0, kz). As a consequence, we only solve the Hamiltonian for ky = 0,

kx ∈ [0,∞), and then, we create all other eigenvectors by applying the operator Rφ.

By diagonalizing the 4×4 Hamilton matrixHTI, we find the Kramers degenerate eigenen-

ergies

Ek,± = ±
√
m2

0(k) + vzk2
z + v2k2 − µ, (5.1.4)

where the “−” sign describes the valence band and the “+” sign the conduction band

of the topological insulator. In figure 5.1.1(b), we show the bulk energy spectrum with

valence and conduction bands separated by the band gap

E0,+ − E0,− = 2|m|. (5.1.5)

In the limit, where the linear momentum terms dominate over the quadratic momenta, we
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find the electronic density of states for the bulk topological insulator

NN(ε) =2

∫
d3k

(2π)3
δ

(
|ε| −

√
m2

0(kF ) + vzk2
z + v2k2

)
=

1

πvzv2

∫
dλ λ2δ

(
|ε| −

√
m2

0(kF ) + λ2

)
=

1

πvzv2

∫
dλ λ2δ(λ− λε)

∣∣∣∣ ελε
∣∣∣∣
λε=
√
ε2−m2

0(kF )Θ(|ε|−|m0(kF )|)

=
1

πvzv2
ε
√
ε2 −m2

0(kF )Θ(|ε| − |m|). (5.1.6)

In our analysis, we are interested in electron doped topological insulators and there-

fore only consider the conduction band of the bulk electronic band structure. The con-

duction band of the doped topological insulator is described by the fermion operators

αk,τ =
∑

s,σ ψ
s,σ
τ (k)cσ,k,s with the four-component electronic wave function

ψτ (k) =
1

2
√
E

( √
E + vkτeiχ/2√
E − vkτe−iχ/2

)
σ

⊗
(
ei(φ/2+τπ/4)

e−i(φ/2+τπ/4)

)
s

, (5.1.7)

which can be calculated by solving the eigenvalue equation HTI(k)ψ∗τ (k) = Ek,+ψ
∗
τ (k).

Here, k describes the in-plane momentum, φ denotes the azimuthal angle (kx, ky),

eiφ =
kx + iky

k
, (5.1.8)

eiχ describes the complex phase of the off-diagonal orbital matrix elements in Eq. (5.1.2),

eiχ =
m0(k) + ivzkz√
m2

0(k) + v2
zk

2
z

, (5.1.9)

and E denotes the energy of state ψτ (k),

E =
√
m2

0(k) + vzk2
z + v2k2. (5.1.10)

The operators αk,τ annihilate an electron of energy E > 0, with momentum k, and with

pseudospin τ in the conduction band. The pseudospin operator is given by

S =
kxsy − kysx

k
≡
(

0 −ie−iφ
ieiφ 0

)
(5.1.11)

and with the eigenvalue equation Sψ∗τ (k) = τψ∗τ (k). Thus, the pseudospin is a measure for
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the clockwise or counter-clockwise rotation of the spin when encircling the Fermi surface

in the kx-ky plane and therefore directly related to the helicity. We note that the operators

satisfy the condition

α(k,φ+2π,kz),τ = −α(k,φ,kz),τ , (5.1.12)

i.e., the operators are 4π periodic under rotation in momentum space. This is a direct

consequence of the helical electronic structure which originates from the linear in-plane

momentum term in Hamiltonian Eq. (5.1.2) and describes the rotation of a spin in the

kx-ky plane.

In the following, we study the behavior of the operators αk,τ under time-reversal and

parity transformation. We find

T αk,τT −1 =T
∑
s,σ

ψs,στ (k)cσ,k,sT −1 =
∑
s,σ

[
ψs,στ (k)

]∗
cσ,−k,s̄

Eq. (5.1.7)
=

∑
s,σ

ψs̄,στ (−k)cσ,−k,s̄ =
∑
s′,σ

ψs
′,σ
τ (−k)cσ,−k,s′ = α−k,τ , (5.1.13a)

Pαk,τP−1 =P
∑
s,σ

ψs,στ (k)cσ,k,sP−1 =
∑
s,σ

ψs,στ (k)cσ̄,−k,s

Eq. (5.1.7)
=

∑
s,σ

τψs,σ̄τ̄ (−k)cσ̄,−k,s =
∑
s,σ′

τψs,σ
′

τ̄ (−k)cσ′,−k,s = τα−k,τ̄ . (5.1.13b)

In particular, we note that the time-reversal operator inverts the momentum but leaves

the pseudospin τ invariant. In contrast, the parity operator inverts both the momentum

and the pseudospin. This is again a direct consequence of the helical spin structure which

rotates the spin direction by π for φ→ φ+ π in analogy to the pseudospin operator.

5.1.2. Superconducting pairing Hamiltonians

Possible pairing terms depend on the specific mechanism and the lattice symmetry. For

pairing induced by onsite density-density interactions, Fu and Berg [45] showed that for

realistic material parameters the spin-orbit coupled bands favor odd-parity interorbital

unequal-spin pairing,

HSC = ∆
∑
k

(
c1,k,↑c2,−k,↓ + c1,k,↓c2,−k,↑

)
+ H.c., (5.1.14)

where odd-parity pairing denotes PHSCP−1 = −HSC under parity transformation. How-

ever, if the pairing is induced by long-range interactions, such as the electron-phonon

interaction, other unequal-spin pairing channels are also possible [85]. Additionally, we
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consider (i) even-parity, intraorbital pairing

H1 = ∆1

∑
k

(
c1,k,↑c1,−k,↓ + c2,k,↑c2,−k,↓

)
+ H.c., (5.1.15)

(ii) odd-parity, intraorbital pairing

H2 = ∆2

∑
k

(
c1,k,↑c1,−k,↓ − c2,k,↑c2,−k,↓

)
+ H.c., (5.1.16)

and (iii) even-parity, interorbital pairing

H3 = ∆3

∑
k

(
c1,k,↑c2,−k,↓ − c1,k,↓c2,−k,↑

)
+ H.c. (5.1.17)

Before investigating the pairing Hamiltonians in detail, we briefly discuss the condition

under which Hamiltonian Eq. (5.1.14) is the favored pairing symmetry and sketch its

derivation. We here only sketch the main steps of how to determine unambiguously the

superconducting phase diagram, however, we do not explicitly carry out the calculation.

For a detailed analysis of the superconducting phase diagram, we refer to reference [45]. In

reference [45], Fu and Berg considered Hamiltonian Eq. (5.1.1) with a phenomenological

short-range density-density interaction

HI =

∫
d3r

[
U
(
n2

1 + n2
2

)
+ 2V n1n2

]
, (5.1.18)

where ni(r) =
∑

s c
†
i,r,sci,r,s is the electron density in orbital i. The parameters U and V > 0

are onsite intraorbital and interorbital interactions. To investigate the electronic instabil-

ities (Cooper instabilities), it is appropriate to consider the random phase approximation

(RPA) for the normal-state susceptibilities

χCijkl(q, τ) =
∑
k

〈
Tτci,k+q,↑(τ)cj,−k−q,↓(τ)c†k,k,↑c

†
l,−k,↓

〉
. (5.1.19)

With RPA we here mean the infinite sum over all ladder diagrams in a diagrammatic

perturbation theory [115]. From Eq. (5.1.19), one obtains the static susceptibility by the

analytic continuation iωn → ω + i0+ in Matsubara frequency space and subsequently

taking the limit ω → 0. The static normal-state susceptibilities χCijkl(q, ω = 0) contain all

necessary information about the electronic instabilities of the normal state. In particular,

it diverges as one approaches the critical temperature Tc and the orbital symmetry of the

superconducting order is directly related to the orbital character of χCijkl(q, ω = 0). One
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then finds the leading electronic instability from the divergence of the static susceptibilities

with the highest critical temperature Tc. One can identify the pairing potentials with the

susceptibilities via χC1111 + χC2211 → ∆1, χC1111 − χC2211 → ∆2, χC1212 − χC2112 → ∆3, and

χC1212 + χC2112 → ∆. Fu and Berg found that for low temperatures, the system shows

two different superconducting phases depending on the relative magnitude of U and V .

Superconductivity is characterized by ∆1 pairing for U/V > 1 − 2m(kF )2/µ2 and by ∆

pairing for

U/V < 1− 2
m(kF )2

µ2
. (5.1.20)

Hence, in the limit where the interorbital interaction is the dominant attractive interaction,

the ∆ pairing is indeed the favored pairing symmetry.

For a detailed analysis of the different pairing symmetries, we refer to reference [45]

where Fu and Berg investigated the electronic instabilities using a linearized gap equation

approach. We believe that, if we had carried out the RPA explicitly, we would find exactly

the same results as Fu and Berg. However, we argue that the gap equation approach is

biased in the sense that one has to preselect possible order parameters, solve their gap

equations, and compare their critical temperatures. Therefore, the validity of the results

always depends on the selection of the order parameters. In contrast, the RPA is an un-

biased approach since no preselection is required and the divergencies of the susceptibility

directly reflect the leading order parameter.

5.1.3. Doped topological insulator with odd-parity interorbital pairing

In this section we investigate the doped topological insulator with odd-parity interorbital

pairing Eq. (5.1.14). To study the effect of spin-orbit coupling on the pairing symmetry,

we project Eq. (5.1.14) onto the basis (αk,τ ) spanned by the conduction band of the bulk

topological insulator Eq. (5.1.2). For µ > |m| � ∆, this yields the effective pairing

Hamiltonian

HSC ≈ i∆
∑
k

vzkz + ivkm0(k)
µ

E0(k)
αk,+α−k,− + H.c., (5.1.21)

where E2
0(k) = v2

zk
2
z + v2k2 and k2 = k2

x + k2
y. For a detailed derivation of this expression,

we refer to Appendix C.2.

The effective pairing Hamiltonian is exact to first order in ∆/µ and yields a gapped bulk

excitation spectrum with quasiparticle gap 2∆E0(k)/µ. The corresponding Bogoliubov-de

Gennes equations are in the same universality class as the ones for two copies of spinless

superconductors with opposite chirality, which is known to be a time-reversal-invariant

topological superconductor with Majorana zero-energy modes if the chemical potential
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lies within the conduction band [14, 19]. From this analogy, we expect to find a Kramers

pair of Majorana zero-energy modes for k = 0 and additionally a pair of zero-energy

surface Andreev bound states whenever m0(kF ) = 0. In contrast, the bulk single-particle

excitation spectrum is always fully gapped with weakly momentum dependent quasiparticle

gap

EG(k) = ∆

√
1− m2

0(k)

µ2
> 0. (5.1.22)

In the following, we investigate the existence and properties of surface states of the

normal-state and the superconducting Hamiltonian. The normal-state Hamiltonian in

Eq. (5.1.2) confined in z direction has a two-dimensional helical massless Dirac cone at the

surface [9]. However, we also know that the effective pairing Hamiltonian Eq. (5.1.21) yields

a pair of helical Majorana zero-energy modes at the time-reversal-invariant momentum

k = 0 [14]. Hence, we obtain two species of surface states originating from the band

inversion and the p± ip pairing, respectively. We find these states by replacing kz → −i∂z
and solving the corresponding Schrödinger equation with boundary condition

σzψ(z = 0) = ψ(z = 0), (5.1.23)

which describes the vanishing of the wave function for orbital 2 at the surface. This

boundary condition is justified by the layered atomic structure of the topological insulator

where orbital 2 is underneath the orbital 1 surface layer.

For the normal-state Hamiltonian Eq. (5.1.2), we solve the 4× 4 system of second-order

differential equation[(
m−B1∂

2
z +B2k

2
)
σx − ivz∂zσy + vkτσz

]
ψτ = Eψτ (5.1.24a)

kxsy − kysx
k

ψτ = τψτ (5.1.24b)

and search for states localized at the surface. We obtain the surface dispersion ED,τ (k) = vk

and the surface wave functions

ψD,τ (z, k, φ) =

√
ν

vz

(
eνz/vz

0

)
σ

⊗
(

1

iτeiφ

)
s

(5.1.25)

with the exponent

ν =
1

2B1

(
1−

√
1 +

4B1(m+B2k2)

v2
z

)
. (5.1.26)
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From this expression, we find the decay length

ξ0 =
vZ

Re(ν)
=


2B1

vz
, for B2k

2 < (−m− v2
z

4B1
)

2B1

vz
1

1−
√

1+4B1(m+B2k2)/v2
z

, for (−m− v2
z

4B1
) < B2k

2 < −m. (5.1.27)

For k2 → −m/B2, the decay length diverges and the surface states become bulk states as

shown in figure 5.1.2(a).

Similarly as for the Dirac modes, we find the zero-momentum Majorana zero-energy

modes by solving the Schrödinger equation. In our analytical calculations, we linearize the

normal-state dispersion Eq. (5.1.10) by vF (−i∂z−kF,z) in the vicinity of the Fermi surface

and we set k2
z → k2

F,z in HSC Eq. (5.1.21) with the normal-state Fermi momentum kF,z in

z direction. Thus, we obtain the 2× 2 system of ordinary differential equations vF (−i∂z − kF,z) ∆
vz∂z−vk

m0(k,kF,z)

µ

µ

∆
−vz∂z−vk

m0(k,kF,z)

µ

µ
vF (i∂z + kF,z)

ψ = Eψ (5.1.28)

with open boundary conditions and the ansatz ψ ∼ eλz. In our analytical calculation, we

approximate the wave function for the surface Andreev states by λ = 1/ξ1 − ikFz with

ξ1, kF,z ∈ R which is exact to first order in ∆/vF,z. This yields the Majorana dispersion

EM(k) ≈ vk
∆(m+B1k

2
F,z +B2k

2)

µ2
(5.1.29)

near k = 0. The surface Andreev states decay on a characteristic length ξ1 as shown in

figure 5.1.2(b) where we plot ξ1 as function of the chemical potential. We find

ξ1(µ) =
vF,z
∆

(5.1.30)

with the Fermi velocity in the z direction vF,z = µ/kF,z. Typical values for ξ1 are by a

factor of E0/∆ ∼ 102 larger than ξ0. In contrast to the Dirac modes, the zero-momentum

Majorana zero-energy modes exist for all values of the chemical potential and enter the

bulk for µ → ∞ only. For both species of surface states, the quadratic terms B1 and B2

significantly determine the behavior of the decay lengths. For B1 = B2 = 0, we obtain

ξ0 = vz/|m| and ξ1 = vz/∆ whereas the decay lengths for B1, B2 > 0 strongly depend on

the Fermi velocity and thus on µ.

We find that the Majorana zero-energy modes are immune against band bending effects

due to near-surface electrostatic potential variations [149] since the characteristic length
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for band bending effects is nanometer and thus much smaller than the decay length ξ1.

Furthermore, the Majorana zero-energy modes are robust against moderate nonmagnetic

impurity scattering since pair-breaking effects are suppressed by an approximate chiral

symmetry in the spin-orbital locked band structure [150].
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Figure 5.1.2.: Decay lengths of (a) the Dirac mode of the topological insulator and
(b) the zero-momentum Majorana zero-energy mode of the odd-parity
interorbital superconductor obtained from the analytical expressions
for the wave functions for the semi-infinite topological insulator with
∆ = 1 meV and m = −0.3 eV. The lines are defined in panel (a).

Depending on the doped charge density, the superconducting state could occur with the

chemical potential either in the region where the Dirac modes are separated from the bulk

conduction band [78] [see figures 5.1.3(a) and (b)] or where only the bulk states remain

[see figures 5.1.3(c) and (d)]. Since the numerator of the effective pairing Hamiltonian

Eq. (5.1.21) vanishes for the Dirac modes with kz → −iν/vz and µ = vk, they are not

gapped by HSC and yield a ring structure of zero-energy surface Andreev bound states.

Higher order terms which couple valence and conduction band, do not change the character

of the surface modes qualitatively. The authors of reference [87] showed that a branch of

surface Andreev bound states connects the Majorana zero-energy mode and the Dirac

modes due to the mirror helicity of the Hamiltonian, which here shows up as the sign of

the mass m0(kF ) in Eq. (5.1.21). This mass is negative near the bottom of the conduction

band and changes sign for µ2 = −mv2
z/B1. However, in contrast to the zero-momentum

mode, the finite-momentum modes are not Majorana zero-energy modes in the sense that

they are equal superpositions of electron and hole creation operators such that γ = γ†.

Instead, the Bogoliubov operators for these finite-momentum modes satisfy γk = γ†−k with

a finite electron-hole imbalance.

In figure 5.1.4(a) we plot the energy of the surface states as function of momentum and

chemical potential where we see a Kramers pair of zero-momentum Majorana zero-energy

modes for all µ and depending on the chemical potential, we find three regimes, which

can be distinguished by the number of additional finite-momentum zero-energy modes.

127



Model system

0 0.25 0.5 0.75 1 1.25
0

1

2

3

k/(µ/v )

E
k
/
∆

0 0.25 0.5 0.75 1 1.25
0

1

2

3

k/(µ/v )

E
k
/
∆

0 0.25 0.5 0.75 1 1.25
0

1

2

3

k/(µ/v )

E
k
/
∆

0 0.25 0.5 0.75 1 1.25
0

1

2

3

k/(µ/v )

E
k
/
∆

(a)

(c) (d)

(b)

Figure 5.1.3.: Bulk and surface quasiparticle excitation energies for the doped topo-
logical insulator with odd-parity interorbital pairing symmetry. The
system has a thickness of L = 160 nm. The oscillations in the k depen-
dence of the energy levels originates from the finite thickness of the film.
(a) µ = 0.5 eV and m = −0.3 eV. (b) µ = 0.8 eV and m = −0.3 eV.
(c) µ = 1.1 eV and m = −0.3 eV. (d) µ = 0.5 eV and m = 0. For
details about the numerical calculation we refer to Appendix C.1.

For small chemical potentials, µ2 < −mv2
z/B1,−mv2/B2, the mass term is negative, and

hence, both the Majorana zero-energy mode and the branch of zero-energy surface Andreev

bound state originating from the Dirac mode exist. On the other hand, for large chemical

potentials, −mv2
z/B1,−mv2/B2 < µ2, the mass term m0(kF ) is positive and only the

zero-momentum Majorana zero-energy mode exists. In the regime of intermediate µ, we

distinguish two cases −mv2
z/B1 ≷ −mv2/B2. For −mv2

z/B1 ≤ µ2 < −mv2/B2, there is a

momentum kF such that the mass term m0(kF ) vanishes. As shown in figure 5.1.4(a) this

yields another species of zero-energy surface Andreev bound state emerging at k = 0, which

now carries the negative velocity from the band inversion as expected from Eq. (5.1.21) and

moves towards the Dirac mode with increasing µ and is located at the in-plane momentum

k ≈
√
B1µ2 − |m|v2

z

B1v2 −B2v2
z

. (5.1.31)

For µ = vk, both finite-momentum surface Andreev bound state meet and gap out for

µ2 → −mv2/B2. In contrast, for −mv2/B2 < µ2 < −mv2
z/B1, the Dirac modes disap-
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peared in the bulk and is replaced by the unconventional surface Andreev bound state

discussed by Hsieh and Fu [87] while m + B1k
2
F,z is negative. Moreover, with increasing

chemical potential, this finite-momentum zero-energy surface Andreev bound state moves

towards k = 0 and disappears for µ2 → −mv2
z/B1. Thus, we conclude that the number

of species of zero-energy surface Andreev bound state is even for m2 < µ2 < −mv2
z/B1

and odd for µ2 > −mv2
z/B1. Hsieh and Fu [87] do not find the competition between these

different sectors since the parameters B1 and B2 in their lattice model are small and thus

they only consider the small chemical potential regime with the zero-momentum Majorana

zero-energy mode and one species of finite-momentum modes.
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Figure 5.1.4.: Lowest quasiparticle energy in units of ∆i for a thin film of thickness
L = 240 nm confined in the z direction and with (a) ∆, (b) ∆1, (c) ∆2,
and (d) ∆3 pairing as function of in-plane momentum k and chemical
potential µ. Note the different color scales.

In the following, we study the spin structure of the Majorana zero-energy mode. For

that purpose, we consider the Hamiltonian in Eq. (5.1.1) with superconducting pairing

Eq. (5.1.14) confined to the lower half space z < 0 and with k = 0. The Bogoliubov-de

Gennes Hamiltonian for this system is given

H =

∫
dz
(
C†0⊥(z) C−0⊥(z)

)
[(m0(kF,z)σx − ivz∂zσy − µ)ζz −∆sxσyζy]

(
C0⊥(z)

C†−0⊥(z)

)
,

(5.1.32)

129



Model system

which yields for E = 0 the Bogoliubov-de Gennes equation

[(m0(kF,z)σx − ivz∂zσy − µ)ζz −∆sxσyζy]ψ(z) = 0. (5.1.33)

Here, the ζi for i = x, y, z denote the Pauli matrices for the particle-hole space and

ψ = (ψi,s,ζ) is an eight-component wave function with i ∈ {1, 2}, s ∈ {↑, ↓}, and ζ ∈ {e, h}.
It is evident that sxψ(z) = sψ(z) with s = ±1. For ψ(z) ∼ eλz, we further simplify

Eq. (5.1.33) by multiplying it by ζz,

[m0(kF,z)σx − ivzλσy − µ−∆sσy(−iζx)]ψ(z) = 0. (5.1.34)

It is evident that ζxψ(z) = tψ(z) with t = ±1. When separating this expression into real

and imaginary parts and comparing both with the normal-state Hamiltonian in Eq. (5.1.2),

we conclude that Re(λ) = st∆/vz ≡ st/ξ1 and Im(λ) = ±kF,z. In order to have an expo-

nentially decaying wave function, we demand st = +1. This yields the two independent

solutions

ξ±(z) =

(
1

e±iθ

)
σ

⊗
(

1

s

)
s

⊗
(

1

s

)
ζ

e(±ikF,z+∆/vz)z, (5.1.35)

where eiθ = (µ + i
√
µ2 −m0(kF,z)2)/µ [87]. In order to satisfy the boundary condition

Eq. (5.1.23), we choose a suitable linear superposition of ξ±. This yields the final result

ψs=±(z) =

(
sin(kF,zz − θ)

sin(kF,zz)

)
σ

⊗
(

1

s

)
s

⊗
(

1

s

)
ζ

ez/ξ1 . (5.1.36)

From these wave functions, we obtain a pair of zero-energy Majorana operators

γ+ =

∫ 0

−∞
dz ψ†+(z) · C(z), (5.1.37a)

γ− = i

∫ 0

−∞
dz ψ†−(z) · C(z). (5.1.37b)

In the following, we argue that the zero-energy Majorana modes described by the wave

functions Eq. (5.1.36) can be identified with spinful Bogoliubov quasiparticles. Because

of time-reversal symmetry, on each surface two modes reside at zero energy and span a

two-dimensional vector space. One special basis of this vector space is determined by

quasiparticle operators Eq. (5.1.37), which satisfy the Majorana criterion, γ± = γ†±. These

basis vectors are invariant under time-reversal symmetry and thus the Majorana operators

themselves are “spinless”. Similarly, we choose another basis for the quasiparticle operators
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as superpositions of the Majorana operators, γσ = γ+ +σiγ−. In contrast to the Majorana

basis discussed above, these operators are fermion operators with γ†↑ = γ↓ and thus non-

Hermitian. Furthermore, these operators transform into each other under time-reversal

symmetry, and in particular, they are fully spin polarized with spin σ in the z direction.

We conclude that without loss of generality the zero-energy surface Andreev bound state

can be understood as a spinful quasiparticle. From this perspective, it becomes clear, that

the Majorana zero-energy modes contribute to the magnetic properties of the topological

superconductor. In particular, from the spin polarization one can easily see that for a

Zeeman field in z direction, the spinful basis is an eigenbasis of the Zeeman coupling and

the Majorana zero-energy modes acquire a finite energy proportional to the magnetic field.

In contrast, in a spin-polarized p-wave topological superconductor, the combination of a

spin ↑ particle component and a spin ↑ hole component indeed has zero net spin and would

not contribute to the spin response [14].

5.1.4. Competing pairing symmetries

In analogy to the study of the odd-parity interorbital pairing, we here investigate the

effect of spin-orbit coupling on the competing pairing symmetries. Hence, we project

Eqs. (5.1.15)–(5.1.17) onto the basis (αk,τ ) spanned by the conduction band of the bulk

topological insulator Eq. (5.1.2), which yields

H1 ≈ −i∆1

∑
k,τ

′
αk,τα−k,τ + H.c., (5.1.38a)

H2 ≈ −i∆2

∑
k,τ

′ τvk

µ
αk,τα−k,τ + H.c., (5.1.38b)

H3 ≈ ∆3

∑
k,τ

′m0(k)

µ
αk,τα−k,τ + H.c.. (5.1.38c)

For a detailed derivation of these expressions, we refer to Appendix C.2. The primed

sum denotes the sum over all momenta without doubly counting k and −k. These equal

pseudospin pairing terms do not vanish because of the 4π periodicity of the operators

αk,τ under rotation in the kx-ky plane. Even if these effective pairing symmetries are very

similar, we observe differences in the effect on the Dirac modes and characteristic bulk

behavior when the mass term m0(k) changes sign. In figure 5.1.4, we plot the energy of

the lowest quasiparticle level for the superconductor confined in the z direction as function

of in-plane momentum k and chemical potential µ.

For ∆1-pairing Eq. (5.1.38a), the orbitals pair into singlets with the same sign for both
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orbitals. In the projected Hamiltonian Eq. (5.1.38a), states with the same pseudospin

are coupled because of the helical sin structure of the topological insulator. Hence, we

find conventional s-wave behavior for a metal with spin-orbit coupling. As shown in

figure 5.1.4(b), the single-particle excitation spectra in the bulk and at the surface are

both fully gapped with gap 2∆1. The gap at the surface originates from the fact that the

helical Dirac modes have only contributions from one orbital and the pairing is intraorbital.

We find that even if the Dirac modes are gapped, they do not hybridize with the bulk states

because there is no particle-hole mixing between the bulk and the surface and the gap at

the surface arises from the pairing between the helical Dirac modes only.

For ∆2-pairing [figure 5.1.4(c)], the orbitals pair into singlets with a relative minus sign.

Because of this relative minus sign, the effective pairing term Eq. (5.1.38b) is linear in k

and vanishes for kx = ky = 0, which gives rise to point nodes in the bulk single-particle

excitation spectrum and a linear dispersion for ε � ∆2. However, for the Dirac modes

with µ = vk, we find as for the even parity case a gap 2∆2.

The effective pairing Hamiltonian for ∆3 is shown in Eq. (5.1.38c) with a fully gapped

bulk single-particle excitation spectrum for m0(kF ) 6= 0 and a momentum dependent gap

2∆3|m0(k)|/µ. Since m0(k) changes sign when k increases because of the band inversion

at k = 0, we find a gap closing and reopening as function of µ, which is intricately

related to the transition from the topological insulator phase into the band insulator phase.

Furthermore, ∆3 does not gap the Dirac modes for which m0(k,−iν/vz) = ν and the

contributions from ν and −ν cancel. However, from the quasiparticle energies we see that

the bulk spectrum has nodes whenever m0(k) changes sign as shown in figure 5.1.4(d).

Similarly to the ∆ case, we here find three qualitatively distinct sectors with transitions

at µ2 = −mv2
z/B1 and µ2 = −mv2/B2. The origin of the nodes and distinct sectors is

again the band inversion near k = 0, which changes into the trivial band order along

the gapless line in figure 5.1.4(d). However, in contrast to the odd-parity interorbital

case, here, the gapless modes are bulk modes. In our numerics, we only consider the case

µ2 < −mv2
z/B1 < −mv2/B2, where the bulk is fully gapped and the Dirac modes are

ungapped.

5.2. Density of states and linear magnetic response

In the following, we investigate signatures of the surface states in the local quasiparticle

density of states and the local spin response of the doped topological insulator confined in

the z direction. For the numerics we discretize the z direction of Hamiltonian Eq. (5.1.2)
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with surfaces at z = 0 and z = L by replacing

kzψ → −i
ψn+1 − ψn−1

2a
(5.2.1a)

k2
zψ → −

ψn+1 + ψn−1 − 2ψn
a2

, (5.2.1b)

where z = na and n = 1, . . . , L/a. In our numerical calculations, we consider a film of

thickness L = 240 nm and with lattice constant a = 6 Å. Motivated by the Bi chalco-

genides [12], we use the parameters m = −0.3 eV, v = 2vz = 4 eVÅ, B2 = 2B1 = 10 eVÅ
2
,

µ = 0.5 eV, and ∆ = 3 meV. The chemical potential is chosen such that the doped charge

density corresponds to the experimentally observed value of 1020 cm−3. Here, B2 is reduced

as compared to Bi2Se3 to guarantee the existence of the Dirac modes and its separation

from the conduction band as found for CuxBi2Se3 in angular resolved photoemission spec-

troscopy [12, 78]. From the above analysis, we know that the zero-momentum Majorana

zero-energy modes and one finite momentum zero-energy surface Andreev bound state co-

exist in this regime. For abbreviation, we neglect the quadratic momentum terms in our

analytical results where they mainly renormalize the Fermi velocity. For details about the

numerical calculation of the electronic bands, we refer to Appendix C.1.

The dynamical spin susceptibility is defined by

χij(q, iωn) =

∫ β

0

〈TτSi(q; τ)Sj(−q; 0)〉 eiωnτdτ, (5.2.2)

where Sjq is the spin operator,

Sj(q) =
1

V
∑
a,b=1,2

∑
k

∑
s,s′

c†ak+qs

sss
′

j

2
cbks′ . (5.2.3)

In our numerics, we use the analytical continuation iωn → ω + iδ with the broadening

δ = ∆/10. For a detailed derivation of the expressions for the spin susceptibilities, we

refer to Appendix C.3.
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5.2.1. Odd parity, interorbital unequal-spin pairing

Local density of states

In figure 5.2.1(a) we plot the local density of states which shows two qualitatively distinct

regions. In the bulk we obtain

NB(ε) = NN(µ)

∫
dΩ

4π

∫
dξ δ

ε−√ξ2 + ∆2
E2

0(kF )

µ


= NN(µ)

ε√
ε2 + ∆2E

2
0(kF )

µ

Θ

(
ε− ∆E0(kF )

µ

)
(5.2.4)

with the normal-state density of states NN(µ) Eq. (5.1.6). Here,
∫
dΩ denotes the solid-

angle integral and ξ the energy relative to the normal-state Fermi surface. The density of

states is characterized by the quasiparticle gap 2∆E0(kF )/µ and a sharp coherence peak,

while there is a finite midgap local density of states at the surface. Depending on whether

the Dirac modes already crossed the bulk band, we distinguish between µ2 > v2|m|/B2

where only the Majorana zero-energy modes appear with surface local density of states

NS(ε, z ≥ 0) =
2

(2π)2

∫
d2k |ψM(k, φ, z)|2δ(ε− EM,k)

≈ 1

πξ1

e−2z/ξ1

∫ vk|m|/µ

0

dk k δ(ε− vk∆|m|/µ2)

= ε
µ4

πξ1v2m2∆2
sin2

(zE0

vz

)
e−2z/ξ1 (5.2.5)

and µ2 < v2|m|/B2 where both the Majorana zero-energy mode and Dirac mode exist with

NS(ε, z ≥ 0) ≈ µ

πξ0v2
e−2z/ξ0 +

εµ4

πξ1v2m2∆2
sin2

(zE0

vz

)
e−2z/ξ1 (5.2.6)

for ε � ∆ as shown in figure 5.2.1(a). The different surface states can be clearly distin-

guished by their decay lengths ξ0 � ξ1 and their energy dependencies. While the local

density of states of the Dirac modes is almost constant as function of energy, the local

density of states of the Majorana surface Andreev bound state strongly depends on energy

with a linear increase for ε� ∆ and a peak for ε . ∆/2 [87]. The origin for this very dif-

ferent energy behavior relies on the different energy scales. While the Dirac modes disperse

on the scale of the band mass m, the Majorana surface Andreev bound states disperse on

the scale ∆ � |m|. Hence, on the energy scale ∆ the Dirac modes show a constant local
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Figure 5.2.1.: Spin response for a topological insulator film of thickness L = 240 nm
with odd-parity interorbital ∆ pairing. (a) Local density of states, (b)
Knight shift, and imaginary part of the transverse spin susceptibility
as function of (c) temperature and (d) excitation energy with T = 0.
All quantities are normalized to the normal-conducting bulk at T = 0.

density of states as function of energy. Furthermore, the Majorana zero-energy modes

oscillate with a period λ = vz/E0, which is on the nanometer scale. For details about the

numerical calculation of the local density of states, we refer to Appendix C.3.1.

Local longitudinal spin susceptibility

In figure 5.2.1(b), we plot the real part of the integrated local spin susceptibility which is

proportional to the local Knight shift

K(z) ∼ Re

∫
dz′χzz(z, z

′;q|| = 0;ω = 0). (5.2.7)

For a detailed discussion of the Knight shift and the derivation of Eq. (5.2.7), we refer to

Appendix C.4. Here, the distinction between the bulk and the surface is even clearer than

for the local density of states. Because of the unequal-spin pairing, we find a significantly

reduced contribution in the bulk for T < ∆. However, K(T → 0) does not vanish because

of the strong spin-orbit coupling [140]. In contrast, we find a large shift for T � ∆ near

the surface, which is even larger than the bulk shift in the normal state because of the large

midgap local density of states Eq. (5.2.6). The temperature dependence of the Knight shift

is shown in figure 5.2.2(a) where the light feature is determined by the bulk and the weaker
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lines at larger K by the surface states. The Knight shift from the surface states is spread

over a wide range due to the exponential decrease in the local density of states and shows

peak-like subfeatures determined by the local density of states oscillations. The lines with

largest shift originate from the surface where Dirac mode and Majorana zero-energy modes

sum up, which gives rise to a very large local density of states and therefore a large spin

response.
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Figure 5.2.2.: Distribution of (a) Knight shift and (b) spin-lattice relaxation rate for
a topological insulator film of thickness L = 240 nm with odd-parity
interorbital ∆ pairing as function of temperature. The bright features
are determined by the bulk, while the broad subfeatures are the surface-
state response. All quantities are normalized to the normal-state bulk
at T = 0.

Local transverse spin susceptibility

The imaginary part of the transverse spin susceptibility, which is shown in figure 5.2.1(c),

is proportional to the spin-lattice relaxation rate [151]

1

T1(z)T
∼ Im

∑
q||

lim
ω→0

χ−+(z, z;q||;ω)

ω
. (5.2.8)

For a detailed discussion of the spin-lattice relaxation and the derivation of Eq. (5.2.8) we

refer to Appendix C.4. Similarly to the Knight shift, we clearly distinguish between the

bulk and the surface. The bulk states give rise to an activation law for T � ∆ and the

Hebel-Slichter coherence peak for T → ∆. In contrast, we find a finite T = 0 value for

1/(T1T ) near the surface where the contributions from the Dirac modes and the Majorana

surface Andreev bound states can be distinguished by their temperature behavior due to

the almost constant local density of states of the Dirac modes as function of energy. This

temperature dependence is shown in figure 5.2.2(b) where the surface contribution is again

spread with peak-like subfeatures. However, the rate directly from the surface (z . ξ0)
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is much larger than the rate from the Majorana zero-energy mode only (z � ξ0), which

allows us to clearly distinguish the Majorana zero-energy mode from the Dirac modes.

In figure 5.2.1(d), we show the imaginary part of the dynamical transverse spin sus-

ceptibility as function of excitation energy. The spin excitation spectrum shows a very

different behavior at the surface and in the bulk. For ω > 2∆E0(kF )/µ, there is a con-

tinuum of bulk spin excitations, which is sharply bounded from below. In contrast, we

find surface-surface spin excitations for ω < 2∆E0(kF )/µ at the surface and bulk-surface

spin excitations for ω > ∆E0(kF )/µ. However, the intensity of the surface-surface spin

excitations is significantly reduced as compared to the bulk-surface spin excitations.

5.2.2. Competing pairing symmetries

Even-parity intraorbital pairing ∆1
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Figure 5.2.3.: Spin response for a topological insulator film of thickness L = 240 nm
and ∆1 pairing: (a) Local density of states, (b) Knight shift, and imag-
inary part of the transverse spin susceptibility as function of (c) tem-
perature and (d) excitation energy. All plots are normalized to the
normal-state bulk at T = 0.

The local density of states for ∆1 pairing is shown in figure 5.2.3(a) with an ordinary

s-wave

NB(ε) = NN(µ)
ε√

ε2 −∆2
1

Θ(ε−∆1) (5.2.9)

in the bulk. The derivation of this result is analogous to the one in Eq. (5.2.4) with the
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replacement ∆E0/µ → ∆1. Depending on whether the Dirac modes of the topological

insulator already crossed the bulk states, we distinguish between µ2 > v2|m|/B2 with bulk

contributions only and µ2 < v2|m|/B2, where

NS(ε, z > 0) ≈ µ

πξ0v2

ε√
ε2 −∆2

1

e−2z/ξ0Θ(ε−∆1). (5.2.10)

In our numerical calculations, we only consider the case µ2 > v2|m|/B2 with Dirac modes.
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Figure 5.2.4.: ∆1 pairing: Distribution of the temperature-dependent (a) Knight shift
and (b) spin-lattice relaxation for a topological insulator film of thick-
ness L = 240. All plots are normalized to the normal-state bulk at
T = 0. The dark features are determined by the bulk, while the sub-
features show the response from the Dirac surface modes.

As shown in figure 5.2.3(b), the Knight shift is significantly reduced in the bulk for

T < ∆1 due to the superconducting gap and has a finite T = 0 value determined by the

strong spin-orbit coupling. The temperature dependence of the Knight shift distribution

is plotted in figure 5.2.4(a) where the dark feature is the signal from the bulk with a

characteristic decrease for T → 0. The line with larger shift originates from the Dirac

modes and shows qualitatively the same temperature dependence as the bulk shift as

expected from the gapped local density of states.

Similarly to the Knight shift, we find conventional s-wave behavior for 1/(T1T ) in the

bulk and at the surface with an activation law for T � ∆1 and the Hebel-Slichter coherence

peak for T → ∆1 as shown in figures 5.2.3(c) and 5.2.4(b). Again, the surface shows

qualitatively the same behavior as the bulk but with a much larger rate due to the large

surface local density of states. The transition between the characteristic surface and bulk

behaviors occurs in a depth ξ0.

In figure 5.2.3(d) we plot the imaginary part of the transverse spin susceptibility as

function of excitation energy. For ω > 2∆1, there is a featureless continuum of bulk spin

excitations, which is sharply bounded from below at ω = 2∆1 because of the quasiparticle

gap. Again we find a larger spin susceptibility at the surface as compared to the bulk as
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a consequence of the large local density of states from the Dirac modes.

Odd-parity intraorbital pairing ∆2
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Figure 5.2.5.: Spin response for a topological insulator film of thickness L = 240 nm
and ∆2 pairing: (a) Local density of states, (b) Knight shift, and imag-
inary part of the transverse spin susceptibility as function of (c) tem-
perature and (d) excitation energy. All plots are normalized to the
normal-state bulk at T = 0.

In figure 5.2.5(a) we plot the local density of states for ∆2 pairing, which is finite for all

ε > 0 due to the linear dispersion and shows a cusp at ε = ∆2. In the bulk, we find for the

local density of states the conventional result for superconductors with point nodes,

NB(ε) = NN(µ)

∫
dΩ

4π

∫
dξ δ

(
ε−

√
ξ2 + ∆2

2 sin2(θ)

)
= NN(µ)

1

2

∫ 1

−1

dx
ε√

ε2 + ∆2(1− x2)

= NN(µ)
ε

2∆2

log
∣∣∣ε+ ∆2

ε−∆2

∣∣∣. (5.2.11)

As before, we distinguish between µ2 > v2|m|/B2 with bulk contributions only and

µ2 < v2|m|/B2 with

NS(ε, z > 0) ≈ µ

πξ0v2

ε√
ε2 −∆2

2

e−2z/ξ0 . (5.2.12)

The different energy dependence of the bulk and the surface dispersion yields strong evi-
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dence for different characteristic temperature behavior in the bulk and at the surface.

As shown in figures 5.2.5(b) and 5.2.6(a), the Knight shift is essentially independent

of temperature even for T < ∆2. Here, the weak subfeatures at smaller shift originate

from the Dirac modes and show an s-wave behavior with reduced Knight shift below Tc in

contrast to the constant bulk value.

K/KN

T
/∆

Intensity

 

 

0 0.5 1.0 1.5
0

0.5

1.0

T
1
N/T

1

T
/∆

Probability

 

 

0 2 4
0

0.5

1.0

0.01

0.1

1

0.01

0.1

1

(a) (b)

Figure 5.2.6.: ∆2 pairing: Distribution of the temperature-dependent (a) Knight shift
and (b) spin-lattice relaxation for a topological insulator film of thick-
ness L = 240 nm. All plots are normalized to the normal-state bulk at
T = 0. The dark feature is determined by the bulk, while the subfea-
tures show the response from the Dirac surface modes.

In figure 5.2.5(c) we plot the spin-lattice relaxation, which is much larger at the surface

than in the bulk. The temperature dependence of the rate is shown in figure 5.2.6(b) where

we can clearly distinguish between bulk and surface contributions. In stark contrast to the

constant Knight shift, we find for T → 0 a power law T 5 in the bulk, which is characteristic

for point nodes and an activation law exp(−∆2/T ) from the surface contribution. For

T → ∆2 we obtain a Hebel-Slichter peak at the surface whereas the bulk yields just a

small coherence peak due to the broadened local density of states Eq. (5.2.11).

The imaginary part of the dynamical transverse spin susceptibility is shown in fig-

ure 5.2.5(d) as function of the excitation energy. For all ε there is a continuum of

single-particle spin excitations with an amplitude that behaves as function of energy like

N 2
B(ω/2, z) in the bulk and like [NB(ω/2, z) +NS(ω/2, z)]2 at the surface. For ω ≈ 2∆2,

there is a peak in the spin spectrum resulting from the cusp in the local density of states.

Even-parity interorbital pairing ∆3

As shown in figure 5.2.7(a), the local density of states in the bulk is

NB(ε) =
2µE0(kF )ε

πv2vz

√
ε2 − ∆2

3m
2
0(kF )

µ2

Θ

(
ε− ∆3|m0(kF )|

µ

)
(5.2.13)
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Figure 5.2.7.: Spin response for a topological insulator film of thickness L = 240 nm
and ∆3 pairing: (a) Local density of states, (b) Knight shift, and imag-
inary part of the transverse spin susceptibility as function of (c) tem-
perature and (d) excitation energy. All plots are normalized to the
normal-state bulk at T = 0.

with a quasiparticle gap 2∆3|m0(kF )|/µ. The derivation of this expression is analogous to

the one in Eq. (5.2.4) with the replacement ∆E0 → ∆3|m0|. From this expression, we see

that the gap closes when m0(k) vanishes and decreases with increasing µ. As before, we

distinguish between µ2 > v2|m|/B2 where only the bulk contributes and µ2 < v2|m|/B2

with a gapless surface local density of states

NS(ε, z > 0) ≈ µe−2z/ξ0

πξ0v2
. (5.2.14)

In figure 5.2.7(b) we plot the Knight shift K(z) with qualitatively very different behavior

in the bulk and at the surface. In the bulk we find a reduced shift for T < ∆3 with a

finite K(T → 0) due to the strong spin-orbit coupling. In contrast, at the surface we

find a larger shift for T � ∆3 because of the strongly spin-orbit coupled massless surface

states. The temperature dependence of the Knight shift is shown in figure 5.2.8(a) where

the strong feature is determined by the bulk and the second line by the Dirac modes.

In figure 5.2.7(c) we find similarly to the Knight shift a qualitatively different behavior

for the spin-lattice relaxation in the bulk and at the surface. The gapped bulk gives rise

to an activation law for T � ∆3 and a Hebel-Slichter coherence peak for T → ∆3. In

contrast, we find a finite T = 0-value for 1/(T1T ) at the surface which is characteristic for
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Figure 5.2.8.: ∆3 pairing: Distribution of the temperature-dependent (a) Knight shift
and (b) spin-lattice relaxation for a topological insulator film of thick-
ness L = 240 nm. All plots are normalized to the normal-state bulk
at T = 0. The dark features are determined by the bulk, while the
subfeatures show the response from the Dirac surface modes.

metallic states. The temperature dependence is also plotted in figure 5.2.8(b), where the

rate from the Dirac modes is much larger than the rate from the bulk because of the large

gapless local density of states.

In figure 5.2.7(d), the imaginary part of the dynamical transverse spin susceptibility is

displayed as function of excitation energy. The spin excitation spectrum in the bulk is

very different from that at the surface. For ω > 2∆3|m0(kF )|/µ, there is a continuum

of excitations in the bulk which is sharply bounded at ω = 2∆3|m0(kF )|/µ. In addi-

tion, we find low-energy spin excitations at the surface and bulk-surface excitations for

ω > ∆3|m0(kF )|/µ within a length ξ0 into the sample.

5.3. Experimental detection scheme

Finally, we discuss experimental measurement schemes of the spin susceptibility. In ref-

erences [152, 153] it has been shown that 77Se and 209Bi NMR are suitable methods to

investigate the bulk of Bi2Se3 where the dipole hyperfine coupling dominates due to the p-

orbital character of the Fermi surface. Similarly, 125Te NMR has been successfully applied

to study the metallic surface states of bismuth telluride nanoparticles [154]. We conclude

that for low temperatures, NMR can also study the superconducting phase to determine

the pairing symmetry. As shown in figures 5.3.1(a) and (b), we find significant differences

in the bulk spin response for the competing pairing symmetries.

For the Knight shift, figure 5.3.1(a), we find three different behaviors below Tc. All

pairing terms yield a finite value for the zero-temperature spin susceptibility because of

the strong spin-orbit coupling. However, for ∆, ∆1, and ∆3 we find a decrease of the

Knight shift below Tc with a similar functional behavior for ∆1 and ∆, which differ by
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KN/4 for T = 0. For ∆3 we observe a qualitatively similar temperature dependence but

the functional form is very different as for ∆ and ∆1 because of the strongly momentum

dependent quasiparticle gap. In stark contrast to these reduced Knight shifts, we find no

change of the Knight shift for ∆2 below Tc. This also shows that a constant Knight shift

for T < Tc is not a clear signature for triplet pairing symmetry and can also appear for

singlet pairing symmetries.

In the spin-lattice relaxation, figure 5.3.1(b), the differences between the pairing symme-

tries are not as strong as for the Knight shift. For ∆ and ∆1, we find conventional s-wave

type behavior with an activation law for T → 0 and a sharp Hebel-Slichter coherence peak

for T → Tc. However, we can again clearly distinguish ∆2 and ∆3 from ∆ and ∆1 by

their functional dependence. As shown above, we find a power-law T 5 behavior for ∆2

due to the point nodes and for ∆3, the curve is compressed towards T = 0 due to the

momentum-dependent gap and shows no sharp coherence peak.

Hence, bulk NMR can clearly distinguish ∆2 and ∆3 from ∆, while ∆ and ∆1 are

qualitatively similar. Here, the main difference is that the response for ∆1 is isotropic,

whereas the ∆ case yields an anisotropic Knight shift [159]. As shown in figure 5.2.2, a

more direct way to distinguish ∆ and ∆1 are the surface Andreev bound states for ∆, which

can be observed in powder samples and thin films as additional signals. The integrated

intensity of the surface signal is reduced by a factor of ξ1/L compared to the bulk signal

where L is the thickness of the flakes. However, the surface signal shows a characteristic

temperature behavior with decreasing spin susceptibility for T → ∆.
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Figure 5.3.1.: Temperature dependence of (a) the Knight shift and (b) the spin-lattice
relaxation rate in the bulk for the different pairing symmetries with
∆i = 1 meV. The lines are defined in (a).

As shown in figure 5.2.1(c), the surface Andreev bound states yield a spatially dependent

relaxation rate up to vz/∆ ∼ 200 nm into the sample, which is a characteristic signature for

the topologically nontrivial nature of the superconducting state. To investigate this local

magnetism, depth-resolved techniques such as muon spin resonance [88] and β-NMR [89,
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155] are suitable. In particular, they could differentiate the regimes with one, two, or three

zero-energy surface Andreev bound states, which occur depending on the relative strength

of the linear and quadratic terms in the Hamiltonian as discussed above. For Bi2Se3,

it has been shown that the implanted muons most probably stop in the van der Waals

gap between quintuple layers [156]. Despite our concentration on NMR and muon spin

resonance, our results are more general and can also be applied to electron spin resonance

and surface sensitive spin-flip Raman scattering [157,158].

Doped topological insulators usually have superconducting shielding fractions of 50%

while the rest is normal-state [79]. Here, bulk NMR could detect the mechanisms, which

determine this fraction. Depending on µ in the normal part of the sample, there might

be additional signals, which can be clearly distinguished from the superconducting ones

by the very different temperature behavior. This key information about the distribution

of dopants is an important step towards the understanding of unconventional supercon-

ductivity in topological insulators. In our analysis, we did not take vortices into account,

which can be distinguished from the surface Andreev bound state by their temperature

behavior and the different length scales.

5.4. Summary

In this chapter we have studied doped three-dimensional topological insulators with sev-

eral types of unequal-spin superconducting pairing symmetries. We have investigated

the existence of surface states and have shown that the odd-parity interorbital pairing is

particularly interesting because of the existence of gapless surface Majorana modes and

additional unconventional surface Andreev states. We have shown that these surface states

have two characteristic length scales originating from the band inversion and the odd-parity

pairing, and typically differ by two orders of magnitude. The quadratic momentum terms

significantly determine the character of the different species of surface Andreev states.

Depending on the material parameters, we find three regimes, which can be distinguished

by the number of zero-energy modes. For small chemical potentials, both the Majorana

zero-energy mode and the unconventional surface Andreev state, which originates from

the Dirac mode, exist. On the other hand, for large chemical potentials only the zero-

momentum Majorana zero-energy mode exists. In the regime of intermediate chemical

potentials, there is a third type of zero-energy state emerging at zero momentum and

moving towards the Dirac mode with increasing chemical potential.

We have proposed a nuclear magnetic resonance experiment to determine the pairing

symmetry of electron doped three-dimensional topological insulators and to observe the
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Spin response in three-dimensional topological superconductors

Majorana zero-energy modes in the odd-parity interorbital unequal-spin pairing channel.

The surface Andreev states contribute to a local spin susceptibility, which can be clearly

distinguished from the bulk by their characteristic temperature behavior and the large local

density of states. Moreover, we have emphasized the usefulness of depth-controlled local

probes, which directly show the existence of unconventional surface Andreev bound states.

From our numerical analysis, we conclude that nuclear magnetic resonance experiments can

distinguish between competing superconducting pairing symmetries and therefore suggest

to use nuclear magnetic resonance in order to unambiguously determine the superconduct-

ing pairing symmetry in CuxBi2Se3. Our work is motivated by CuxBi2Se3, however, our

results are more generally relevant for other inversion symmetric materials such as the

ternary chalcogenides and the SnTe/PbTe class which also shows unconventional super-

conducting behavior.
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6. Summary and conclusions

In this thesis we have theoretically identified signatures of topological superconductors and

proposed realistic experiments to observe these signatures. Topological superconductors

are a type of topologically nontrivial states of quantum matter. They are particularly in-

teresting because their low-energy quasiparticle excitations are associated with Majorana

fermions. Recently, Majorana fermions have attracted intense research efforts because of

their exotic exchange statistics and possible applications in topological quantum compu-

tation. In the following, we summarize our main results, their physical interpretation, and

possible experimental realizations.

In chapter 3, we have studied charge transport through a topological superconductor

with a pair of Majorana end states coupled to normal-conducting lead electrodes. Due

to the finite length of the topological superconductor nanowire, the Majorana end states

are coupled to each other and have a finite energy splitting which gives rise to a nonzero

tunneling matrix element between the ends of the nanowire. The nonlocality of the Ma-

jorana end states opens the possibility of crossed Andreev reflection with nonlocal shot

noise. Crossed Andreev reflection denotes the nonlocal conversion of an incoming electron

into a hole excitation in a separate lead electrode, in contrast to local Andreev reflection

where the incoming electron and the hole excitation reside in the same lead electrode. In

our analysis, we have concentrated on a device where the lead electrodes are coupled to the

Majorana end states via resonant quantum dots in order to suppress local Andreev reflec-

tion and thus to provide a suitable tool to probe current cross-correlations. In the space

of energies of the two resonant quantum dot levels, we have found a four-peaked cloverlike

pattern for the strength of current cross-correlations due to crossed Andreev reflection,

distinct from the single ellipsoidal peak found in the absence of split Majorana end states.

If the energy of at least one of the quantum dots is aligned with the chemical potential of

the superconductor, we have found that the current cross-correlations are significantly sup-

pressed. This suppression originates from the formation of a zero-energy Majorana state

on the quantum dot which is tuned to the chemical potential of the superconductor. Since

crossed Andreev reflection relies on the existence of a nonzero tunneling matrix element

between the ends of the nanowire, the zero-energy Majorana state contributes only weakly
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to current cross-correlations and thus gives rise to the cloverlike pattern.

We have shown numerically that the cloverlike pattern can be observed for realistic

material parameters in semiconductor-superconductor hybrid systems and can be clearly

distinguished from the situation without split Majorana end states. This pattern is robust

against nonmagnetic disorder, a finite number of transverse subbands, and finite tempera-

tures smaller or equal the Majorana energy splitting. In particular, we have shown that by

varying an external magnetic field the current cross-correlation pattern oscillates between

the cloverlike pattern indicating split Majorana end states and a single ellipsoidal pattern

originating from the superconducting proximity effect. This oscillation originates from

a sinusoidal modulation of the Majorana energy splitting as function of magnetic field.

We propose that the oscillation between these two current cross-correlation patterns is a

clear and robust signature of Majorana fermions in semiconductor-superconductor hybrid

systems.

In chapter 4, we have studied signatures of topological order in nonlinear charge trans-

port through semiconductor-superconductor hybrid nanorings. Here, we associate topolog-

ical order with the existence of ground-state degeneracies which depend on the manifold on

which the system is defined. This hybrid system shows two topologically distinct phases

and an external magnetic field allows to tune between them. Because of the ring topology,

the nanowire has no ends and as a consequence, there are no Majorana end states in the

topologically nontrivial phase. However, despite the absence of Majorana end states, this

system shows an unconventional superconducting state. While trivial superconductors al-

ways have an even electron number parity due to the formation of Cooper pairs, we here

have found that the parity of the ground-state wave function in the nontrivial phase de-

pends on the magnetic flux which penetrates the nanoring. Due to the external magnetic

field, the nontrivial phase is characterized by a single electronic band, and as a conse-

quence, there is one unpaired electron at zero momentum for integer magnetic flux which

is absent for half-integer magnetic flux in units of the flux quantum h/e. This unpaired

electron gives rise to an unconventional superconducting ground state with odd parity.

To observe this unconventional parity effect, we have proposed a nonlinear Coulomb

blockade transport experiment where the Coulomb energy fixes the parity of the electron

wave functions. We have shown that peculiar parity and magnetic flux periodicity effects in

the excitation spectrum mirror the distinct ground-state properties of topologically trivial

and nontrivial superconducting phases. In particular, the excitation spectrum for fixed

mean electron number provides clear signatures of the h/e flux period in the nontrivial

phase which is doubled as compared to trivial superconductors. This h/e periodicity

is intricately related to the recently discovered 4π periodicity of the Josephson current
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between two topological superconductors. In addition, we have found that the closing

and reopening of a quasiparticle excitation gap as function of magnetic field reflects the

topological phase transition. All these findings are robust against geometry details of the

realization of the ring structure and rely on the existence of a void such that the system

is homotopic equivalent to a circle. Moreover, we have shown numerically that our results

are robust against moderate nonmagnetic disorder, additional transverse subbands, and

weak fluctuations in the superconducting order parameter. We conclude that nonlinear

Coulomb blockade transport directly reflects the topological order of the semiconductor-

superconductor nanoring and is therefore a suitable tool to map out the topological phase

diagram.

In chapter 5, we have studied special examples of three-dimensional topological super-

conductors. We have considered an electron doped three-dimensional topological insulator

equipped with several types of unequal-spin superconducting pairing symmetries. Topo-

logical insulators are materials with a bulk band gap like an ordinary insulator but with

metallic surface states. We have investigated the low-energy properties of the supercon-

ducting pairing and have shown that the odd-parity interorbital pairing is particularly

interesting. For this pairing, we have found two different types of unconventional surface

states originating from the band inversion of the topological insulator and the odd-parity

pairing, and the characteristic length scales of these two surface states typically differ by

two orders of magnitude.

We have proposed a nuclear magnetic resonance experiment to determine the super-

conducting pairing symmetry of electron doped three-dimensional topological insulators

and to observe the Majorana zero-energy modes in the odd-parity interorbital unequal-

spin pairing channel. The surface Andreev states contribute to a local spin susceptibility,

which can be clearly distinguished from the bulk by their characteristic temperature be-

havior and the large local density of states. Moreover, we emphasize the usefulness of

depth-controlled local probes, which directly show the existence of unconventional surface

Andreev bound states. From our numerical analysis, we conclude that nuclear magnetic

resonance experiments can distinguish between competing superconducting pairing sym-

metries and therefore suggest to use nuclear magnetic resonance in order to unambiguously

determine the superconducting pairing symmetry in CuxBi2Se3, however, our results are

more generally relevant for other materials such as the ternary chalcogenides and the

SnTe/PbTe class.
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A. Lattice model for the

semiconductor-superconductor

hybrid system

A.1. Lattice model for the semiconductor-superconductor

hybrid system

In chapters 3 and 4, we have investigated a (quasi) one-dimensional semiconductor-supercon-

ductor hybrid system using a low-energy continuum model. There, we have complemented

our analytical findings with numerical calculations for a tight-binding lattice model. In

this appendix we derive the Bogoliubov-de Gennes Hamilton matrix which needs to be

diagonalized numerically. We consider the lattice Hamiltonian

H = HSM +HSC (A.1.1)

with the normal-state tight-binding Hamiltonian

HSM =−
∑
r,r′,σ

trr′c
†
rσcr′σ +

∑
r,σ

(
EZ σ̂

z
σσ − µ+ Vr

)
c†rσcrσ

+
i~α
2a

∑
r,σ

(
c†rσσ̂

y
σσ̄cr+δxσ̄ − c†rσσ̂

y
σσ̄cr−δxσ̄ − c†rσσ̂xσσ̄cr+δyσ̄ + c†rσσ̂

x
σσ̄cr−δyσ̄

)
(A.1.2)

and the on-site superconducting pairing Hamiltonian

HSC = ∆SC

∑
r

(
c†r↑c

†
r↓ + cr↓cr↑

)
. (A.1.3)

Here, the operator crσ (c†rσ) annihilates (creates) an electron with spin σ at site r. The

only nonzero hopping matrix elements are tr,r±δx = tr,r±δy = t0 and tr,r = −2t0.

In this appendix we derive the Bogoliubov-de Gennes Hamilton matrix for Eq. (A.1.1).
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Lattice model for the semiconductor-superconductor hybrid system

For clarity and compactness, we only consider a one-dimensional chain of N sites, we

replace all vector indices by scalars, and neglect the hopping matrix elements in y direction.

The generalization to two-dimensional or three-dimensional systems is analogous. We

follow the procedure introduced in chapter 2.1 and combine the electron creation and

annihilation operators into a single 4N -component vector

Ψ† =
(
c†1↑ c†1↓ . . . c†N↑ c†N↓ c1↑ c1↓ . . . cN↑ cN↓

)
. (A.1.4)

Then, in the next step we rewrite the individual terms of H using this new vector of

electron operators. In this compact notation, we find the Hamiltonian

H =
1

2
Ψ†HBdGΨ +

1

2

∑
σ

∑
x

(
EZσ

z
σσ − µ̃+ Vx

)
=

1

2
Ψ†HBdGΨ +

∑
x

(
− µ̃+ Vx

)
(A.1.5)

with µ̃ = µ− 2t0 and with the Hermitian 4N × 4N Bogoliubov-de Gennes matrix

HBdG =

(
T ∆̂

−∆̂∗ −T ∗

)
. (A.1.6)

Here, T is the Hermitian 2N × 2N matrix, which describes the normal-state Hamiltonian

HSM, and ∆̂ is the skew-symmetric 2N × 2N matrix, which describes the superconducting

pairing HSC. For the normal-state matrix T , we find

T =



−µ̃+ EZ 0 −t0 ~α
2a

0 0

0 −µ̃− EZ −~α
2a

−t0 0 0

−t0 −~α
2a

−µ̃+ EZ 0 −t0 ~α
2a

0 0
~α
2a

−t0 0 −µ̃− EZ −~α
2a

−t0 0 0

0 0 −t0 −~α
2a

−µ̃+ EZ 0 −t0 ~α
2a

0 0 ~α
2a

−t0 0 −µ̃− EZ −~α
2a
−t0

0 0 −t0 −~α
2a

. . .

0 0 ~α
2a

−t0 . . .


,

(A.1.7)
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Lattice model for the semiconductor-superconductor hybrid system

and for the superconducting pairing matrix ∆̂, we find

∆̂ =



0 ∆SC 0 0 0 0

−∆SC 0 0 0 0 0

0 0 0 ∆SC 0 0

0 0 −∆SC 0 0 0

0 0 0 0 0 ∆SC

0 0 0 0 −∆SC 0

. . .

. . .


. (A.1.8)

In chapters 3 and 4, we have obtained the quasiparticle energy spectrum by numerically

solving the 4N × 4N eigenvalue equation

HBdG

(
U V

V ∗ U∗

)
=

(
U V

V ∗ U∗

)(
D 0

0 −D

)
(A.1.9)

with the nonnegative quasiparticle energies D = diag(E1, . . . , E2N) and

Ψ =

(
U V

V ∗ U∗

)(
A

A†
T

)
, (A.1.10)

where AT = (a1, . . . , a2N) is the vector of operators ai which annihilate a quasiparticle

with energy Ei.

A.2. Lattice model for the quantum dot–topological

superconductor nanowire–quantum dot system

In chapter 3, we have studied transport signatures of a three-terminal quantum dot–

topological superconductor nanowire–quantum dot system. In our numerical analysis,

we have considered a semiconductor-superconductor nanowire which was recently studied

experimentally in references [55–58]. We assume that the quantum dot is fully spin polar-

ized by an external magnetic field and that the ↑ spin determines the low-energy physics.

The Hamiltonian for that system is given by

HDND =HSM +HSC +
∑
i=L,R

εid
†
idi + tL

(
d†Lc1↑ + c†1↑dL

)
+ tR

(
d†RcN↑ + c†N↑dR

)
(A.2.1)
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system

with HSM and HSC defined in the last section. The derivation of the corresponding

(4N + 4)× (4N + 4) Bogoliubov-de Gennes Hamilton matrix is analogous to the derivation

in the last section. Henceforth, we here only present the results. We find the (4N + 4)-

component vector of electron operators,

Ψ† =
(
d†L c†1↑ . . . c†N↓ d†R dL c1↑ . . . cN↓ dR

)
. (A.2.2)

and the Bogoliubov-de Gennes Hamilton matrix

HBdG =

(
TDND ∆̂DND

−∆̂∗DND −T ∗DND

)
(A.2.3)

with the (2N + 2)× (2N + 2) matrices TDND and ∆̂DND. We find the normal-state matrix

TDND =



εL tL 0 0 . . .

tL

0

. . . T . . .

tR

0

. . . tR 0 εR


(A.2.4)

and the superconducting pairing matrix

∆̂DND =


. . . 0 0

0

. . . ∆̂ . . .

0

0 0 . . .

 (A.2.5)

with the matrices T and ∆̂ which were defined in Eqs. (A.1.7) and (A.1.8). We obtain the

energy spectrum by diagonalizing HBdG as discussed above in appendix A.1.
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quantum dots

B.1. Bogoliubov-de Gennes Hamiltonian for the coupled

quantum dot–Majorana bound state system

In chapter 3.1 we have considered a pair of quantum dots coupled to a pair of Majorana

bound states with the Hamiltonians

HM =
εM
2
iγLγR, (B.1.1a)

HD =
∑
i=L,R

{
εid
†
idi + t∗i d

†
iγi + tiγidi

}
. (B.1.1b)

There, we have obtained the energy spectrum for the total Hamiltonian H = HM +HD by

introducing Bogoliubov quasiparticle operators which contain both Majorana and ordinary

fermion operators. As a consequence, the corresponding Bogoliubov-de Gennes Hamilton

matrix was written in the unconventional basis {γL, γR, d†L, d†R, dL, dR}, and the Bogoliubov-

de Gennes equation obtains the unconventional form Eq. (3.1.3) which could not be written

in the usual form of an eigenvalue equation.

In this appendix we bring the Bogoliubov-de Gennes equation in the usual form by

combining the Majorana fermions into a single fermion state described by the fermion

operators

f † =
1

2
(γL + iγR) , f =

1

2
(γL − iγR) . (B.1.2)

Rewriting the Hamiltonian in terms of the f operators and including the fermion operators

into a single 6-component vector

Ψ† =
(
f † d†L d†R f dL dR

)
, (B.1.3)
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Majorana energy splitting

we find up to a constant term

H =
1

2
Ψ†hBdGΨ (B.1.4)

with the 6× 6 Bogoliubov-de Gennes Hamilton matrix

hBdG =



εM tL −itR 0 −t∗L it∗R
t∗L εL 0 t∗L 0 0

it∗R 0 εR −it∗R 0 0

0 tL itR −εM −t∗L −it∗R
−tL 0 0 −tL −εL 0

−itR 0 0 itR 0 −εR


. (B.1.5)

With this Hamilton matrix and with Eq. (2.1.10), we find the Bogoliubov-de Gennes

equation in the usual form,

hBdGψ = εψ. (B.1.6)

We note that the energy spectrum obtained by diagonalizing hBdG is identical to the result

obtained in chapter 3.1 by solving the more complicated matrix equation (3.1.3).

B.2. Majorana energy splitting

In this appendix we derive the Majorana energy splitting εM for a one-dimensional spin-

less p-wave superconductor nanowire of length L which was introduced Eq. (2.3.5) in

chapter 2.3. We write the Hamiltonian in matrix form as

H =
1

2

∫ L

0

dx
(
ψ†(x) ψ(x)

)(− ~2

2m
∂2
x − µ 2∆∂x

−2∆∂x
~2

2m
∂2
x + µ

)(
ψ(x)

ψ†(x)

)
. (B.2.1)

This Hamiltonian is characterized by two characteristic length scales kF =
√

2mµ/~ and

ξ = ∆kF/vF = ∆2m/~2. Thus, we rewrite the Hamiltonian as

H =
∆

2

∫ L

0

dx
(
ψ†(x) ψ(x)

)(−ξ∂2
x − k2

F ξ 2∂x

−2∂x ξ∂2
x + k2

F ξ

)(
ψ(x)

ψ†(x)

)
. (B.2.2)

We obtain the Bogoliubov-de Gennes equations for this Hamiltonian by the Bogoliubov

transformation

ψ(x) =
∑
l

(
ul(x)αl + vl(x)α†l

)
(B.2.3)
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with H =
∑

lElα
†
lαl. The condition [H,α] = −Eα yields the Bogoliubov-de Gennes

equations

∆

(
−ξ∂2

x − k2
F ξ 2∂x

−2∂x ξ∂2
x + k2

F ξ

)(
u(x)

v(x)

)
= E

(
u(x)

v(x)

)
(B.2.4)

with hard-wall boundary conditions u(0) = v(0) = u(L) = v(L) = 0. We assume L > ξ

and kF ξ � 1. To obtain the Majorana energy splitting εM , we first solve the ordinary

differential equation for a zero-energy Majorana bound state in the limit L→∞ and then

consider the case of finite L by computing the energy splitting in first order perturbation

theory. The Majorana criterion α = α† yields E = 0 and u = v∗. In the following,

we assume that u0 = v0 ∈ R for the zero-energy solution in the interval [0, L/2] and

iuL = −ivL ∈ R for the zero-energy solution in the interval [L/2, L].

Solving the second-order ordinary differential equation Eq. (B.2.4) in the vicinity of the

two boundaries, we find the wave functions for the zero-energy Majorana bound states

u0(x) = e−x/ξ
sin
(√

k2
F − 1

ξ

2
x
)

√
ξ − 1

k2
F ξ

, (B.2.5a)

uL(x) = ie−(L−x)/ξ
sin
(√

k2
F − 1

ξ

2
(L− x)

)
√
ξ − 1

k2
F ξ

. (B.2.5b)

Then, the Majorana energy splitting for L > ξ is given by first order-perturbation theory,

εM ≈i
∆

2

∫ L

0

dx
(
u0(x) v0(x)

)(−ξ∂2
x − k2

F ξ 2∂x

−2∂x ξ∂2
x + k2

F ξ

)(
uL(x)

vL(x)

)

=
i∆

2

∫ L/2

0

dx
(
u0(x) v0(x)

)(−ξ∂2
x − k2

F ξ 2∂x

−2∂x ξ∂2
x + k2

F ξ

)(
uL(x)

vL(x)

)

+
i∆

2

∫ L

L/2

dx
(
u0(x) v0(x)

)(−ξ∂2
x − k2

F ξ 2∂x

−2∂x ξ∂2
x + k2

F ξ

)(
uL(x)

vL(x)

)
︸ ︷︷ ︸

=0

=
i∆

2

∫ L/2

0

dx u0(x)
(

1 1
)(1

1

)[
−ξ∂2

x − k2
F ξ − 2∂x

]
uL(x)

=i∆

∫ L/2

0

dx u0(x)
[
−ξ∂2

x − k2
F ξ − 2∂x

]
uL(x). (B.2.6)

Naively, one might argue that this expression vanishes since u0 and uL are both zero-energy

solutions. However, the expression is nonzero as there are contributions originating from
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dots

the upper boundary of the integrals. With the relations

∫ b

a

dx u0(x)∂xuL(x) = u0(x)uL(x)|ba −
∫ b

a

dx (∂xu0(x))uL(x), (B.2.7a)∫ b

a

dx u0(x)∂2
xuL(x) = (u0(x)∂xuL(x)− (∂xu0(x))uL(x))|ba +

∫ b

a

dx (∂2
xu0(x))uL(x),

(B.2.7b)

we rewrite

εM =i∆

∫ L/2

0

dx uL(x)
[
−ξ∂2

x − k2
F ξ − 2∂x

]
u0(x)︸ ︷︷ ︸

=0

− iξ∆ (u0(x)∂xuL(x)− (∂xu0(x))uL(x))|L/20 − 2i∆ u0(x)uL(x)|L/20

=− ξi∆ (u0(L/2)∂xuL(L/2)− (∂xu0(L/2))uL(L/2))− 2i∆u0(L/2)uL(L/2)

=∆k2
F ξe

−L/ξ 2 cos(L
√
k2
F − 1/ξ2) +

√
k2
F − 1/ξ2ξ sin(L

√
k2
F − 1/ξ2)

−1 + k2
F ξ

2
. (B.2.8)

In the experimentally relevant limit kF ξ � 1, we expand this expression and find the final

result

εM ≈ ∆kF︸︷︷︸
=EG

e−L/ξ sin(kFL). (B.2.9)

B.3. Proximity induced superconducting pairing between

two quantum dots

In chapter 3.4.5, we have studied the current cross-correlations mediated by the supercon-

ducting proximity effect. Here, we derive the effective pairing Hamiltonian between two

quantum dots with opposite spin polarization. We consider the Hamiltonian

H0 =
∑
k,σ

Ekγ
†
kσγkσ, (B.3.1)

which describes the superconductor with energy gap ∆, and the tunnel-coupling Hamilto-

nian

HT =
∑
k

{
tL,kd

†
L

(
uk↑γk↑ + vk↑γ

†
−k↓
)

+ tR,kd
†
R

(
uk↓γk↓ + vk↓γ

†
−k↑
)

+ H.c.
}
, (B.3.2)
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where γkσ denotes the superconductor quasiparticle annihilation operator with excitation

energy Ek =
√
ξ2
k + ∆2

SC, di denotes the spin-polarized quantum dot operator, and ti,k the

quantum dot-superconductor coupling strength. The ukσ and vkσ are the BCS coherence

factors [137] (
ukσ

vkσ

)
=

1√
2

 √1− ξk
Ek

σ
√

1 + ξk
Ek

 . (B.3.3)

Without loss of generality, we assume that tL,k = tL and tR,k = tRe
ikL, where L denotes

the length of the nanowire.

We derive the effective dot-dot pairing Hamiltonian HDD in second-order perturbation

theory similar to the calculations in section 4.5,

HDD = 〈|HT
1

iη −H0

HT |〉, (B.3.4)

where |〉 denotes the BCS many-body ground-state wave function [137] of the superconduc-

tor with γkσ|〉 = 0. The convergence generating factor η is assumed to be infinitesimally

small. In our analysis, we only consider contributions which are nonlocal in the quantum

dot operators and neglect all local terms since they renormalize the bare quantum dot

energy levels. This yields the effective Hamiltonian

HDD =
∑
k

〈|
{
tL,kd

†
Luk↑γk↑ + t∗L,−kv−k↑γk↓dL

} 1

iη −H
{
tR,−kd

†
Rv−k↓γ

†
k↑ + t∗R,kuk↓γ

†
k↓dR

}
|〉

+
∑
k

〈|
{
tR,kd

†
Ruk↓γk↓ + t∗R,−kv−k↓γk↑dR

} 1

iη −H
{
tL,−kd

†
Lv−k↑γ

†
k↓ + t∗L,kuk↑γ

†
k↑dL

}
|〉

=d†Ld
†
R

∑
k

{
tL,ktR,−k

uk↑v−k↓
iη − εR − Ek

− tL,−ktR,k
uk↓v−k↑

iη − εL − Ek

}
+ H.c.

=d†Ld
†
R tLtR

∑
k

{
− e−ikL uk↑v−k↑

iη − εR − Ek
− eikL uk↑v−k↑

iη − εL − Ek

}
︸ ︷︷ ︸

≡∆

+H.c. (B.3.5)

In the following, we solve the momentum integral for a one-dimensional superconductor.

The results for higher dimensional systems can be obtained analogously. We assume that

the quantum dot energy levels are close to the resonance |εi| � ∆SC ≤ Ek. With the BCS

coherence factors uk↑v−k↑ = ∆SC/2Ek, we rewrite

∆1D =tLtR
∑
k

2 cos(kL)
∆SC

2E2
k

= tLtRN0Re

∫
R
dξ ei(kF+ξ/vF )L ∆SC

ξ2 + ∆2
SC

, (B.3.6)

where we have linearized the energy dispersion of the normal-state system in the vicinity
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of the Fermi energy with constant density of states N0 and Fermi velocity vF .

The energy integral can be solved using the residue theorem. For that purpose, we first

close the integration path in the upper half of the complex plane to the closed contour C.
Then, in the next step we look for the singularities and apply the residue theorem. This

yields

∆1D =tLtRN0Re eikFL
∫
R
dξ eiLξ/vF

∆SC

(ξ + i∆SC)(ξ − i∆SC)

=tLtRe
−L∆SC/vFN0Re eikFL

∫
R
dξ eiL(ξ−i∆SC)/vF

∆SC

(ξ + i∆SC)(ξ − i∆SC)

=tLtRe
−L∆SC/vFN0Re eikFL2πi

∆SC

2i∆SC

=πtLtRe
−L∆SC/vFN0 cos(kFL). (B.3.7)

Similarly, we obtain the result for a three-dimensional superconductor. There, we replace

cos(kL)→ cos
(
kL cos(θ)

)
with the angle θ in Eq. (B.3.6). As a consequence, we find a sim-

ilar result as the one in Eq. (B.3.7) but with cos(kFL)→
∫ 1

−1
d(cos(θ)) cos

(
kFL cos(θ)

)
/2.

Solving this integral, we find

∆3D =
π

2
tLtRe

−L∆SC/vFN0
sin(kFL)

kFL
. (B.3.8)

B.4. Zero-voltage conductance for the quantum

dot–Majorana bound state–quantum dot device

In this appendix we present the details of the scattering matrix formalism applied to the

quantum dot–Majorana bound state–quantum dot device for ε = eV = 0. In this limit,

we find the scattering matrix using Eq. (3.1.11),

S(ε = 0) =
1

X2 + |Y |2|Z|2


−Y 2|Z|2 −XY Z X2 −XY Z∗
XY Z −|Y |2Z2 XY ∗Z X2

X2 −XY ∗Z −Y ∗2|Z|2 −XY ∗Z∗
XY Z∗ X2 XY ∗Z∗ −|Y |2Z∗2

 (B.4.1)

with X = 8tLtR
√

ΓLΓR, Y =
√
εM(ΓL − 2iεL), and Z =

√
εM(ΓR − 2iεR). Using the

zero-temperature average current and shot noise formulas Eqs. (3.1.15) and (3.1.16), we
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Majorana bound states coupled to quantum dots

find the zero-bias differential conductance and the zero-bias current correlators

Gtot =
4e2

h
TA, (B.4.2a)

Pij =
4e2

h
TA(1− TA), (B.4.2b)

with

TA =
1

1 + ε2M
(Γ2
L+4ε2L)(Γ2

R+4ε2R)

64t2Lt
2
RΓLΓR

. (B.4.3)

In particular, we note that both the differential conductance and the current correlator are

independent of the signs of the quantum dot energies. Moreover, for εL = εR = 0 in the

weak-coupling limit ΓL,ΓR � tL, tR, εM we find TA → 1 which yields a quantized zero-bias

conductance Gtot = 4e2/h and Pij = 0.

B.5. Transport properties of a double-quantum dot

system coupled via the superconducting proximity

effect

In chapter 3.4.4, we have studied the current and the current cross-correlations mediated by

the superconducting proximity effect. The Hamiltonian for that system has been defined

in Eq. (3.1.1) and is given by

H = εLd
†
LdL + εRd

†
RdR + ∆(d†Ld

†
R + dRdL). (B.5.1)

We obtain the quasiparticle energy spectrum by diagonalizing the 4 × 4 Bogoliubov-de

Gennes Hamilton matrix

h =


εL 0 0 ∆

0 εR −∆ 0

0 −∆ −εL
∆ 0 0 −εR

 . (B.5.2)

This yields the two quasiparticle energies

E± =

∣∣∣∣∣∣εL − εR2
±
√(

εL + εR
2

)2

+ ∆2

∣∣∣∣∣∣ . (B.5.3)

In the following, we analytically study the transport properties for εL = εR = 0. Numeri-
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cally, we have found that the current and the cross-correlations are peaked for εL = εR = 0.

With the coupling matrix W from Eq. (3.1.13) we here find the scattering matrix using

Eq. (3.1.11),

S(ε) =
1

Z


4∆2 − Γ2 − 4ε2 0 0 −4i∆Γ

0 4∆2 − Γ2 − 4ε2 4i∆Γ 0

0 4i∆Γ 4∆2 − Γ2 − 4ε2 0

−4i∆Γ 0 0 4∆2 − Γ2 − 4ε2

 (B.5.4)

with Z = 4∆2 + (Γ − 2iε)2. Using the zero-temperature current and noise formulas

Eqs. (3.1.15) and (3.1.16), we find the total differential conductance and the current cross-

correlator

G(eV = ε) =
4e2

h
TA, (B.5.5a)

PLR(eV = ε) =
4e2

h
TA(1− TA), (B.5.5b)

where

TA =
16∆2Γ2[

4∆2 − 4ε2 + Γ2
]2

+ 16ε2Γ2
(B.5.6)

is the probability that an incoming electron with energy ε is Andreev reflected as a hole

in the different lead. We are interested in the current and the cross-correlations in the

limit of large voltages. For analytical calculations, it is appropriate to consider the limit

V → ∞. With Eqs. (B.5.5), we obtain the current I =
∫∞

0
dεG(ε) and the crossed noise

SLR =
∫∞

0
dε PLR(ε),

I =
e

h

8πΓ∆2

4∆2 + Γ2

Γ�∆−→ e

h

8π∆2

Γ
, (B.5.7a)

SLR =
2e2

h

4πΓ∆2(8∆4 − 2∆2Γ2 + Γ4)

(4∆2 + Γ2)3

Γ�∆−→ 2e2

h

4π∆2

Γ
. (B.5.7b)

This yields the crossed Fano factor

FLR =
SLR
2eI

=
8∆4 − 2∆2Γ2 + Γ4

2(4∆2 + Γ2)2

Γ�∆−→ 1

2
. (B.5.8)
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C. Three-dimensional topological

superconductors and spin response

C.1. Lattice Hamiltonian for the three-dimensional

topological superconductor

In chapter 5, we have studied a tight-binding model for a doped three-dimensional topologi-

cal insulator with several types of superconducting pairing symmetries. In this appendix we

discuss some details about the numerical calculation of the excitation spectrum. We begin

our discussion with the normal-state topological insulator confined to a film −L < z < 0

and with translational symmetry in x and y direction. In chapter 5, we have defined the

k · p continuum Hamiltonian

HTI =
∑
k⊥

∫ L

0

dz C†k⊥(z)
[(
m−B1∂

2
z +B2k

2
⊥
)
σx − ivz∂zσy + v(kxsy − kysx)σz − µ

]
Ck⊥

(z)

(C.1.1)

with the Pauli matrices si (σi) for the spin (orbital) degree of freedom, and the operators

Ck⊥(z) = (cik⊥s(z))is, where cik⊥s(z) annihilates an electron in orbital i, with in-plane

momentum k⊥ = (kx, ky), and spin s. From this Hamiltonian, we obtain the corresponding

tight-binding lattice Hamiltonian by replacing

∂zC →
Cz+a − Cz−a

2a
, (C.1.2a)

∂2
zC →

Cz+a + Cz−a − 2Cz
a2

, (C.1.2b)
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Lattice Hamiltonian for the three-dimensional topological superconductor

where a denotes the lattice constant. Thus, we rewrite

HTI =
∑
k⊥

Na∑
z=a

{
C†k⊥,z

[(
m+ 2

B1

a2
+B2k

2
⊥
)
σx + v(kxsy − kysx)σz − µ

]
Ck⊥,z

− B1

a2

[
C†k⊥,zσxCk⊥,z+a

+ C†k⊥,z+aσxCk⊥,z

]
− ivz

2a

[
C†k⊥,zσyCk⊥,z+a

− C†k⊥,z+aσyCk⊥,z

]}
, (C.1.3)

where N = L/a denotes the number of lattice sites. To diagonalize this Hamiltonian

numerically, we include the fermion operators into a single 4N -component vector Ψ†k⊥ for

electron creation operators and a single vector Ψk⊥ for electron annihilation operators with

in-plane momentum k⊥. We define

Ψk⊥ =
(
c(1↑),1 c(1↓),1 c(2↑),1 c(2↓),1 . . . c(1↑),N c(1↓),N c(2↑),N c(2↓),N

)T
, (C.1.4)

where we neglected for brevity the momentum index k⊥ of the c-operators. Thus, we write

HTI =
∑
k⊥

Ψ†k⊥Hk⊥
Ψk⊥

(C.1.5)

with the Hermitian 4N × 4N Hamilton matrix

Hk⊥ =



−µ −ivk− m̃ 0 0 0 −B− 0

ivk+ −µ 0 m̃ 0 0 0 −B−
m̃ 0 −µ ivk− −B+ 0 0 0

0 m̃ −ivk+ −µ 0 −B+ 0 0

0 0 −B+ 0 −µ −ivk− m̃ 0

0 0 0 −B+ ivk+ −µ 0 m̃

−B− 0 0 0 m̃ 0 −µ ivk−

0 −B− 0 0 0 m̃ −ivk+ −µ
. . .

. . .



.

(C.1.6)

Here, we abbreviated B± = B1/a
2 ± vz/2a, k± = kx ± iky, and m̃ = m+ 2B1/a

2 +B2k
2
⊥.

Starting from the lattice Hamiltonian for the topological insulator, we now present the

Hamilton matrix for the system with superconducting pairing. We have defined the pos-

sible pairing Hamiltonians in Eqs. (5.1.14)–(5.1.17). In all these Hamiltonians, pairing is
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between states with opposite spins and between time-reversed momenta, i.e., (k, ↑) and

(−k, ↓). If we Fourier transform the z component of the electron operators, we find that the

pairing is between states (k⊥, z; ↑) and (−k⊥, z; ↓). The only differences between the pair-

ing Hamiltonians is the different structure in orbital space. We distinguish between intra-

and interorbital pairing, and between odd and even parity under orbital exchange. Follow-

ing the procedure discussed in chapter 2.1, we find the Bogoliubov-de Gennes Hamilton

matrix

HBdG =

(
Hk⊥ ∆̂

−∆̂∗ −H∗−k⊥

)
. (C.1.7)

Here, HBdG is a 8N×8N matrix where the pre factor of 8 originates from the particle-hole,

the spin, and the orbital degrees of freedom. We summarize all four pairing symmetries

into the skew-symmetric 4N × 4N pairing matrix

∆̂ =



0 −∆1 −∆2 0 −∆−∆3 0 0 0 0

∆1 + ∆2 0 −∆ + ∆3 0 0 0 0 0

0 ∆−∆3 0 −∆1 + ∆2 0 0 0 0

∆ + ∆3 0 ∆1 −∆2 0 0 0 0 0

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0 0 . . .


. (C.1.8)

C.2. Projection of the pairing Hamiltonians for the doped

three-dimensional topological insulator

In this appendix we derive the projection of the pairing Hamiltonian onto the conduction

band of the doped topological insulator. In this projection, we assume that the valence

band is completely filled and does not contribute to the superconducting pairing. This

assumption is satisfied for ∆� |m| < µ and thus naturally satisfied for realistic material

parameters. In chapter 5.1, we have defined the Hamiltonian for the doped topological

insulator and calculated the conduction band operators

αk,τ =
∑
s,σ

ψs,στ (k)cσ,k,s (C.2.1)
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with the electronic wave function

ψτ (k) =
1

2
√
E

( √
E + vk⊥τe

iχ/2

√
E − vk⊥τe−iχ/2

)
σ

⊗
(
ei(φ/2+τπ/4)

e−i(φ/2+τπ/4)

)
s

(C.2.2)

with the definitions

eiφ =
kx + iky
k⊥

, (C.2.3a)

eiχ =
m0(k) + ivzkz√
m2

0(k) + v2
zk

2
z

, (C.2.3b)

E =
√
m2

0(k) + vzk2
z + v2k2

⊥. (C.2.3c)

We find the relations φ−k = φk + π and χ−k = −χk from the wave functions for opposite

momenta. The index τ denotes the pseudospin± of the degenerate conduction band. Using

the orthonormality of the wave functions ψ, we invert the definition of the α operators and

find

cσ,k,s =
∑
τ

[ψs,στ (k)]∗αk,τ . (C.2.4)

We now project the Hamiltonians Eqs. (5.1.14)-(5.1.17) onto the conduction band by

rewriting the Hamiltonians in terms of the new α operators. For that purpose, we write

c1,k,↑c1,−k,↓ =
1

4E

∑
τ,τ ′

[
√
E + vk⊥τe

− i
2

(χk+φk+τπ/2)αk,τ ][
√
E + vk⊥τ ′e

− i
2

(χ−k−φ−k−τ ′π/2)α−k,τ ′ ]

=
−i
4E

∑
τ,τ ′

√
E + vk⊥τe

−iτπ/4
√
E + vk⊥τ ′e

iτ ′π/4αk,τα−k,τ ′

=
−i
4E

∑
τ

(E + vk⊥τ)αk,τα−k,τ +
1

4E

√
E2 − v2k2

⊥[αk,+α−k,− − αk,−α−k,+],

(C.2.5)

c2,k,↑c2,−k,↓ =
1

4E

∑
τ,τ ′

[
√
E − vk⊥τe

i
2

(χk−φk−τπ/2)αk,τ ][
√
E − vk⊥τ ′e

i
2

(χ−k+φ−k+τ ′π/2)α−k,τ ′ ]

=
−i
4E

∑
τ,τ ′

√
E − vk⊥τe−iτπ/4

√
E − vk⊥τ ′eiτ

′π/4αk,τα−k,τ ′

=
−i
4E

∑
τ

(E − vk⊥τ)αk,τα−k,τ +
1

4E

√
E2 − v2k2

⊥[αk,+α−k,− − αk,−α−k,+],

(C.2.6)
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c1,k,↑c2,−k,↓ =
1

4E

∑
τ,τ ′

[
√
E + vk⊥τe

− i
2

(χk+φk+τπ/2)αk,τ ][
√
E − vk⊥τ ′e

i
2

(χ−k+φ−k+τ ′π/2)α−k,τ ′ ]

=
−i
4E

∑
τ,τ ′

√
E + vk⊥τe

−iτπ/4
√
E − vk⊥τ ′eiτ

′π/4e−iχkαk,τα−k,τ ′

=
−i
4E

∑
τ

√
E2 − v2k2

⊥αk,τα−k,τ

− e−iχk

4E
[(E + vk⊥)αk,+α−k,− − (E − vk⊥)αk,−α−k,+], (C.2.7)

c1,k,↓c2,−k,↑ =
1

4E

∑
τ,τ ′

[
√
E + vk⊥τe

− i
2

(χk−φk−τπ/2)αk,τ ][
√
E − vk⊥τ ′e

i
2

(χ−k−φ−k−τ ′π/2)α−k,τ ′ ]

=
i

4E

∑
τ,τ ′

√
E + vk⊥τe

iτπ/4
√
E − vk⊥τ ′e−iτ

′π/4e−iχkαk,τα−k,τ ′

=
i

4E

∑
τ

√
E2 − v2k2

⊥αk,τα−k,τ

− e−iχk

4E
[(E + vk⊥)αk,+α−k,− − (E − vk⊥)αk,−α−k,+]. (C.2.8)

If we sum over all momenta, we find the important simplifications

∑
k

1

4E

√
E2 − v2k2

⊥[αk,+α−k,− − αk,−α−k,+]

=
∑
k

1

4E

√
E2 − v2k2

⊥[α(k,φ,kz),+α(k,φ+π,−kz),− − α(k,φ,kz),−α(k,φ+π,−kz),+]

=
∑
k

1

4E

√
E2 − v2k2

⊥[α(k,φ,kz),+α(k,φ+π,−kz),− + α(k,φ+π,−kz),+α(k,φ,kz),−]

=
∑
k

1

4E

√
E2 − v2k2

⊥[α(k,φ,kz),+α(k,φ+π,−kz),− + α(k,φ+2π,kz),+︸ ︷︷ ︸
=−α(k,φ,kz),+

α(k,φ+π,−kz),−] = 0, (C.2.9)

where we used the 4π periodicity of the α operators under rotations in the kx-ky plane in
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the last line, and we find

−
∑
k

1

4E
e−iχk [(E + vk⊥)αk,+α−k,− − (E − vk⊥)αk,−α−k,+]

=
∑
k

1

4E
[(E + vk⊥)e−iχkα−k,−αk,+ + (E − vk⊥)e−iχkαk,−α−k,+]

=
∑
k

1

4E
[−(E + vk⊥)eiχkαk,−α−k,+ + (E − vk⊥)e−iχkαk,−α−k,+]

=
∑
k

1

4E

[
− (E + vk⊥)

m0(k) + ivzkz√
m2

0(k) + v2
zk

2
z

+ (E − vk⊥)
m0(k)− ivzkz√
m2

0(k) + v2
zk

2
z

]
αk,−α−k,+

=−
∑
k

1

2E

m0vk⊥ + ivzkzE√
m2

0 + v2
zk

2
z

αk,−α−k,+. (C.2.10)

Thus, we find

∆1

∑
k

(
c1,k,↑c1,−k,↓ + c2,k,↑c2,−k,↓

)
=
−i∆1

2

∑
k

∑
τ

αk,τα−k,τ , (C.2.11a)

∆2

∑
k

(
c1,k,↑c1,−k,↓ − c2,k,↑c2,−k,↓

)
=
−i∆2

2

∑
k

∑
τ

vk⊥τ

E
αk,τα−k,τ , (C.2.11b)

∆3

∑
k

(
c1,k,↑c2,−k,↓ − c1,k,↓c2,−k,↑

)
=
−i∆3

2

∑
k

∑
τ

|m0(k)|
E

αk,τα−k,τ , (C.2.11c)

∆
∑
k

(
c1,k,↑c2,−k,↓ + c1,k,↓c2,−k,↑

)
= −∆

2

∑
k

vk⊥
m0(k)
E

+ ivzkz√
m2

0(k) + v2
zk

2
z

αk,−α−k,+. (C.2.11d)

For ∆i � µ and E ≈ µ, we find the final results

H1 ≈
−i∆1

2

∑
k,τ

αk,τα−k,τ + H.c., (C.2.12a)

H2 ≈
−i∆2

2

∑
k,τ

τvk⊥
µ

αk,τα−k,τ + H.c., (C.2.12b)

H3 ≈
i∆3

2

∑
k,τ

m0(k)

µ
αk,τα−k,τ + H.c., (C.2.12c)

HSC ≈
i∆

2

∑
k,τ

vzkz + ivk⊥
m0(k)
µ√

m2
0(k) + v2

zk
2
z

αk,−α−k,+ + H.c.. (C.2.12d)
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C.3. Density of states and spin susceptibilities for

superconductors

In this appendix we derive the local density of states and the local spin susceptibilities

which we have studied in chapter 5.2. We consider a general bilinear superconducting

system with spin and orbital degrees of freedom. We write the Hamiltonian

H =
∑
i,j

∑
m,n

∑
s,s′

(
c†imst

ss′

ij;mncjns′ + c†ims∆
ss′

ij;mnc
†
jns′ + cjns′∆

ss′∗
ij;mncims

)
, (C.3.1)

where i denotes the lattice site (or momentum), m the orbital, and s the spin quantum

numbers. The matrix t describes the normal-state properties of the system and the matrix

∆ describes the superconducting pairing. As discussed in chapter 2.1, we diagonalize the

Hamiltonian by the Bogoliubov transformation

c†ims =
∑
λ

(
u[ims]λα

†
λ + v[ims]λαλ

)
, (C.3.2)

where we introduced Bogoliubov quasiparticle operators αλ. In the basis of the αλ op-

erators, the Hamiltonian Eq. (C.3.1) can be written as H =
∑

λEλα
†
λαλ with Eλ ≥ 0

where the cardinality of the set of quantum numbers λ equals the number of sites times

the number of orbitals times the number of spin directions. In chapter 5, we have

studied Hamiltonian Eq. (C.3.1) with the special choices m ∈ {1, 2}, s ∈ {↑, ↓}, and

i ∈ {(kx, ky, z)|kx ∈ R, ky ∈ R, z ∈ [0, L]}.

C.3.1. Density of states

In the following, we define the local quasiparticle density of states N (ε, z) as the number

of quasiparticles in the volume element [z, z+dz] and with energy in the interval [ε, ε+dε]

for dε→ 0 and dz → 0. We write the quasiparticle density of states

N (ε, z) =
∑
λ

δ(ε− Eλ)
∑

m,s,kx,ky

(∣∣u[kx,ky ,m,s]λ(z)
∣∣2 +

∣∣v[kx,ky ,m,s]λ(z)
∣∣2), (C.3.3)

where the last term is the density of quasiparticles with energy Eλ at position z. In our

numerical calculations in chapter 5, we have approximated the δ function by a Gaussian
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distribution with variance a. This approximation yields

Na(ε, z) =
1√
2πa

∑
λ

e−
(ε−Eλ)2

2a

∑
m,s,kx,ky

(∣∣u[kx,ky ,m,s]λ(z)
∣∣2 +

∣∣v[kx,ky ,m,s]λ(z)
∣∣2) (C.3.4)

with the limit Na → N for a→ 0.

C.3.2. Spin susceptibilities

The total electron spin operator is defined as

Si(z,q⊥) =
1

V
∑
a,b=1,2

∑
kx,ky

∑
s,s′

c†a(kx+qx,ky+qy ,z)s

σiss′

2
cb(kx,ky ,z)s′

=
1

V
∑
a,b=1,2

Sabi (z,q⊥), (C.3.5)

where q⊥ ∈ R2 is the momentum of the electron spin operator in the x-y plane. In

chapter 5, we have defined the dynamical spin susceptibility as the two-particle Matsubara

Green function

χij(z, z
′,q⊥; iωn) =

1

V

∫ β

0

dτ eiωnτ 〈TτSi(z,q⊥, τ)Sj(z
′,−q⊥, 0)〉

=
∑

a,b,c,d=1,2

χabcdij (z, z′,q⊥; iωn). (C.3.6)

From Eq. (C.3.6), we obtain the retarded Green function by the analytical continuations

iωn → ω + iη with the small broadening η. In the following, we neglect the indices kx

and ky for brevity, and assume that they are implicitly contained in the index λ for the

quantum number of the quasiparticles. This assumption is justified since kx and ky are

good quantum numbers for a translationally invariant system in x and y directions.

In the following, we explicitly explain how to calculate the transverse spin susceptibility

χabcd−+ (z, z′,q; iωn) =
∑
kx,ky

∑
k′x,k

′
y

1

V

∫ β

0

dτ eiωnτ×
〈
c†a(kx+qx,ky+qy ,z)↓(τ)cb(kx,ky ,z)↑(τ)c†c(k′x−qx,k′y−qy ,z′)↑cd(k′x,k

′
y ,z
′)↓

〉
. (C.3.7)

In the first step, we use the Bogoliubov transformation (C.3.2) to replace the c-fermion

operators by the α-fermion operators. The resulting expression for the spin susceptibility

contains sixteen two-particle Green functions of the form 〈Tταs1λ1
(τ)αs2λ2

(τ)αs3λ3
αs4λ4
〉, where
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the upper indices si ∈ {1, †} for i = 1, . . . , 4. In the next step, we calculate these sixteen

Green functions using the equation of motion technique. Equivalently, we could apply

Wick’s theorem to express the two-particle Green functions as convolution of single-particle

Green functions and then carry out the Matsubara sum [115]. We here prefer the equation

for motion technique because it is less technical than carrying out Matsubara contour

integrals.

Since the Hamiltonian is diagonal in the α-operators, the only nonzero two-particle

Green functions are the ones which contain two creation and two annihilation operators.

Hence, only six out of the sixteen Green functions are finite and need to be calculated

explicitly. As an example, we here explicitly present the calculation for the Green function

G+−−+
λ1,λ2,λ3λ4

= 〈Tτα†λ1
(τ)αλ2

(τ)αλ3
α†λ4
〉. We find the equation of motion

∂

∂τ
G+−−+
λ1,λ2,λ3λ4

(τ) = δ(τ)
〈[
α†λ1

αλ2
, αλ3

α†λ4

]〉
+
〈
Tτ

[∑
µ

Eµα
†
µαµ︸ ︷︷ ︸

=H

, α†λ1
αλ2

]
(τ)αλ3

α†λ4

〉

= δ(τ)δλ1,λ3δλ2,λ4

(
f(Eλ2)− f(Eλ1)

)
+ (Eλ1 − Eλ2)G+−−+

λ1,λ2,λ3λ4
(τ), (C.3.8)

where f denotes the Fermi distribution. After the Fourier transformation from imaginary

time τ to Matsubara frequencies iωn,

iωnG
+−−+
λ1,λ2,λ3λ4

(iωn) = δ(τ)δλ1,λ3δλ2,λ4

(
f(Eλ2)− f(Eλ1)

)
+ (Eλ1 − Eλ2)G+−−+

λ1,λ2,λ3λ4
(τ),

(C.3.9)

and the analytical continuation iωn → ω + iη, we find the retarded two-particle Green

function

G+−−+
λ1,λ2,λ3λ4

(ω) = −δλ1,λ3δλ2,λ4

f(Eλ1)− f(Eλ2)

ω + iη − (Eλ1 − Eλ2)
. (C.3.10)

Similarly, we find the five other nonzero two-particle Green functions

G−+−+
λ1,λ2,λ3λ4

(ω) = −δλ1,λ4δλ2,λ3

f(−Eλ1)− f(−Eλ2)

ω + iη − (−Eλ1 + Eλ2)
, (C.3.11a)

G−++−
λ1,λ2,λ3λ4

(ω) = δλ1,λ3δλ2,λ4

f(−Eλ1)− f(−Eλ2)

ω + iη − (−Eλ1 + Eλ2)
, (C.3.11b)

G+−+−
λ1,λ2,λ3λ4

(ω) = δλ1,λ4δλ2,λ3

f(Eλ1)− f(Eλ2)

ω + iη − (Eλ1 − Eλ2)
, (C.3.11c)

G++−−
λ1,λ2,λ3λ4

(ω) = (δλ1,λ4δλ2,λ3 − δλ1,λ3δλ2,λ4)
f(Eλ1)− f(−Eλ2)

ω + iη − (Eλ1 + Eλ2)
, (C.3.11d)
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G−−++
λ1,λ2,λ3λ4

(ω) = (δλ1,λ4δλ2,λ3 − δλ1,λ3δλ2,λ4)
f(−Eλ1)− f(Eλ2)

ω + iη − (−Eλ1 − Eλ2)
. (C.3.11e)

With these expressions for the two-particle Green functions and with the matrix elements

u and v from the Bogoliubov transformation Eq. (C.3.2), we find for the transverse spin

susceptibility

χabcd−+ (z, z′,q⊥;ω) =
∑
λµ

[
u[az↓]λv

∗
[bz↑]µ

(
v[cz′↑]µu

∗
[dz′↓]λ − v[cz′↑]λu

∗
[dz′↓]µ

) f(Eλ)− f(−Eµ)

ω + iη − (Eλ + Eµ)
+

v[az↓]λu
∗
[bz↑]µ

(
u[cz′↑]µv

∗
[dz′↓]λ − u[cz′↑]λv

∗
[dz′↓]µ

) f(−Eλ)− f(Eµ)

ω + iη − (−Eλ − Eµ)
+

u[az↓]λu
∗
[bz↑]µ

(
u[cz′↑]µu

∗
[dz′↓]λ − v[cz′↑]λv

∗
[dz′↓]µ

) f(Eλ)− f(Eµ)

ω + iη − (Eλ − Eµ)
+

v[az↓]λv
∗
[bz↑]µ

(
v[cz′↑]µv

∗
[dz′↓]λ − u[cz′↑]λu

∗
[dz′↓]µ

) f(−Eλ)− f(−Eµ)

ω + iη − (−Eλ + Eµ)

]
.

(C.3.12)

Similarly, we also find the longitudinal spin susceptibility

χzz(z, z
′,q⊥; iωn) =

1

V

∫ β

0

dτ eiωnτ 〈TτSz(z,q⊥, τ)Sz(z,−q⊥, 0)〉 . (C.3.13)

C.4. Nuclear magnetic resonance

Nuclear magnetic resonance is a powerful experimental tool in which a sample is placed

in a strong magnetic field and the magnetic response of the nuclear spins is measured. In

experiments, one measures the resonance frequency of the nuclear spins, which is mainly

determined by the Zeeman coupling between the nuclear spins and the external magnetic

field. However, in metals one typically observes that the resonance frequency of particular

nuclear isotope species is shifted with respect to the same nucleus in a specific insulating

reference substance with a similar atomic configuration. This shift is proportional to

the applied magnetic field and originates from two effects: (i) the motion of the charged

electrons gives rise to an induced magnetic field at the position of the nucleus in addition

to the external magnetic field. The shift due to this orbital effect is called chemical shift.

(ii) The external magnetic field polarizes the electrons in the conduction band which gives

rise to a finite spin polarization. The electron spins S and the nuclear spins I are coupled
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by the hyperfine coupling

Hhf =

∫
d3q

(2π)3
A(q)

{
IzSz(q) + I+S−(q) + I−S+(q)

}
, (C.4.1)

where A(q) is the hyperfine coupling strength. As a consequence, the spin polarized

conduction electrons give rise to an effective Zeeman coupling and therefore to a shift in

the resonance frequency which is called spin shift or Knight shift.

C.4.1. Knight shift

The Knight shift is measured in samples with a strong external magnetic field B which

polarizes the conduction electrons due to the Zeeman coupling

V = g B · S(q = 0), (C.4.2)

where g denotes the coupling constant. Without loss of generality, we assume B = Bẑ.

We now derive the effective magnetic field at the nuclei due to the conduction elec-

trons, Hhf ≈ gNBeffIz, using Kubo’s formula with the external magnetic field as perturba-

tion [115]. In order to guarantee the applicability of Kubo’s formula, we assume that the

conduction electrons show no magnetic order in zero magnetic field. This yields

Beff(t)

B
=

1

gN

∫
d3q

(2π)3
A(q)

〈Sz(q, t)〉V
B

Kubo
= −i g

gN

∫
d3q

(2π)3
A(q)

∫ t

−∞
dt′ 〈[Sz(q, t), Sz(q′ = 0, t′)]〉0

=
g

gN

∫
d3q

(2π)3
A(q)

∫
R
dt′ χRzz(q,0, t− t′). (C.4.3)

with the retarded spin susceptibility

χRzz(q,0, t− t′) = −iΘ(t− t′)〈[S(q, t), Sz(0, t
′)]〉0. (C.4.4)

In the limit t→∞, we find

K :=
Beff

B
=

g

gN

∫
d3q

(2π)3
A(q)χRzz(q,0, ω = 0)︸ ︷︷ ︸

∼δ(q−0)

=
g

gN
A(0)χRzz(0, ω = 0), (C.4.5)
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where

χRzz(0, ω = 0) =

∫
R
dt′′χRzz(0, t

′′). (C.4.6)

Thus, we conclude that for nonmagnetic systems the Knight shift is determined by the

static uniform spin susceptibility. We note that the order of the limits in energy space and

momentum space is crucial.

If we apply this formalism to a simple noninteracting electron gas description of a metal,

we find for the spin susceptibility

χRzz(q, ω) =
∑
k

f(εk+q)− f(εk)

ω + iη − (εk+q − εk)

ω=0,q→0−−−−−→ −
∑
k

∂f(ε)

∂ε

∣∣∣∣
ε=εk

≈ N (µ), (C.4.7)

where η is a positive infinitesimal number and N (µ) is the density of states at the Fermi

energy. For interacting systems, η is the quasiparticle lifetime and given by the imaginary

part of the self energy.

C.4.2. Spin-lattice relaxation rate

Another important quantity is the spin-lattice relaxation time T1 which is the time for

the recovery of the z component of the nuclear spin towards its equilibrium value. The

spin-lattice relaxation time yields valuable information on the dynamics of the low-energy

spin excitations. In metallic systems, the relaxation is determined by the coupling between

the nuclear spin and the spin magnetic moments of the conduction electrons. The lifetime

of the nuclear | ↑〉 spin state can be calculated in perturbation theory using Fermi’s golden

rule

1

T1

=
∑
f,i

|〈f, ↓ |Hhf |i, ↑〉|2 e−βEiδ(ω0 + Ef − Ei). (C.4.8)

To evaluate this expression, we write

|〈↓, f |Hhf |i, ↑〉|2 =

∫
d3q

(2π)3
A(q)

∫
d3q′

(2π)3
A(q′) 〈↑, i|S−(q′)I+|f, ↓〉 〈↓, f |S+(q)I−|i, ↑〉

=

∫
d3q

(2π)3
A(q)

∫
d3q′

(2π)3
A(q′) 〈i|S−(q′)|f〉 〈f |S+(q)|i〉 (C.4.9)

and

δ(ω0 + Ef − Ei) =

∫
dt

2π
e−i(ω0+Ef−Ei)t. (C.4.10)
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This yields

1

T1

=

∫
dt

2π
e−iω0t

∫
d3q

(2π)3
A(q)

∫
d3q′

(2π)3
A(q′)

∑
f,i

〈i| eiEitS−(q′)e−iEf t︸ ︷︷ ︸
S−(q′,t)

|f〉 〈f |S+(q)|i〉 e−βEi

=

∫
dt

2π
e−iω0t

∫
d3q

(2π)3
A(q)

∫
d3q′

(2π)3
A(q′)Trel

{
S−(q′, t)S+(q)e−βHel

}
. (C.4.11)

Here, Trel denotes the trace over the eigenstates of the electronic Hamiltonian Hel and

the frequency ω0 is a small excitation energy due to the external magnetic field. The last

term in Eq. (C.4.11) contains the spin-spin correlation function. Using the fluctuation-

dissipation theorem [117], we rewrite the spin-spin correlation function in terms of the

imaginary part of the spin susceptibility and we find for the spin-lattice relaxation rate

1

T1

=

∫
d3q

(2π)3
A(q)A(−q)

Imχ−+(q, ω0)

1− e−βω0
, (C.4.12)

where χ−+ denotes the transverse spin susceptibility and where we used that the suscep-

tibility is diagonal in the momentum of the spin operator. The energy ω0 is usually small

compared to the natural frequency scales of electrons. For analytical calculations, it is

appropriate to consider the limit ω0 → 0 and to expand the denominator to first order in

βω0,
1

T1T
=

∫
d3q

(2π)3
A(q)A(−q)

Imχ−+(q, ω0)

ω0

. (C.4.13)

In chapter 5, we consider an inhomogeneous system with spatially dependent relax-

ation times. Applying the above introduced calculation to this situation and assuming

A(qx, qy, z) = const., we find

1

T1(z)T
∼
∫

dqx
(2π)

∫
dqy
(2π)

∫
dz

Imχ−+(qx, qy, z, ω0)

ω0

. (C.4.14)
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