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Introduction

This thesis has its central motivation around the following general question:

Question 1: Let A = {1,2, . . . ,n} ⊂ Rd and A′ = {′1,
′
2, . . . ,

′
m} ⊂ R

d′ be

two point configurations. What is the relation between triangulations of their

cartesian product:

A×A′ := {(,′j ) :  ∈ A,
′
j ∈ A

′} ⊂ Rd+d
′
,

and triangulations of A and A′?

A systematic treatment of triangulations of cartesian products of point con-

figurations is currently nonexistent in the literature, and may well be out of

reach in full generality. Indeed, even when both factors in the cartesian product

are the standard simplices A = Δn−1 and A′ = Δd−1, which only have the triv-

ial triangulation consisting of one simplex, the collection of all triangulations of

Δn−1×Δd−1 is quite intricate [GKZ08, DS04, San04, DRS10]. We briefly mention,

in particular, that1:

(a) a general description of the set of regular triangulations of Δn−1 × Δd−1 for

min{n, d} > 2 is unavailable [GKZ08, DRS10],

(b) it is not known in general whether the set of triangulations of Δn−1 ×
Δd−1 is connected under geometric bistellar flips for min{n, d} > 3 [San04,

DRS10],

(c) it took some time until non-regular triangulations of Δn−1 × Δd−1 were dis-

covered, and their existence turned out to be closely related to realizability

of matroids over the reals [GKZ08, De 96, Stu96, San02],

(d) triangulations of Δn−1×Δd−1 have been used to model combinatorial struc-

tures coming from various fields of mathematics, such as (i) elimination

theory [GKZ08, Stu96], (ii) tropical geometry [DS04, AD09], (iii) Schubert

calculus [AB07].

Moreover, triangulations of Δn−1 × Δd−1 have also been featured in many works

in discrete geometry [Hai91, BB98, OS03, San04, AC13, San12]; in [San00], for

instance, Santos used triangulations of products of simplices as building blocks

to cleverly construct a triangulation of a point configuration that does not admit

modifications via geometric bistellar flips.

In this thesis, we explore two problems concerning triangulations of cartesian

products of simplices with a focus on their product structure and their relevance
1The reader can find the definitions of the italicized terms in chapter 1 and appendices A and B.
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INTRODUCTION

in combinatorial commutative algebra, as implied by Sturmfels’ correspondence

between initial ideals of toric ideals and triangulations of integer point configu-

rations (Theorem A.3.5 or [Stu91, Theorem 3.1]).

In chapter 1, we present joint work with Samu Potka relating to cut ideals of

graphs [PS12]. These are homogeneous polynomial ideals introduced by Sturm-

fels and Sullivant in [SS06] and further studied by Engström [Eng11] and Nagel

and Petrovič [NP08]. Cut ideals of graphs can be thought of as defining a family

of probability distributions on the cuts of a tree, where the probability of a cut

only depends on the collection of edges it separates2.

Concretely, we study minimal free resolutions for the family of cut ideals of

tree graphs. Our main result consists of upper bounds for the Betti numbers3

of cut ideals of trees. Our bounds take the form of exponential formulas on the

number of vertices of the tree, which result from the enumeration of induced

subgraphs of certain graph associated to the edges of the tree.

In order to achieve this combinatorial description, we start with the obser-

vation that the cut ideal of a tree in n vertices (henceforth denoted Tn) equals

the (n− 1)-fold Segre product of the cut ideal of an edge (in particular, this im-

plies that all cut ideals of trees in a fixed number of vertices are algebraically

the same, regardless of the shape of the tree). In view of the correspondence

between toric ideals and integer point configurations (cf. section A.3 or [Stu96,

Chapter 4]), this translates into the statement that the point configuration asso-

ciated to Tn is the cartesian product of n− 1 segments: an (n− 1)-dimensional

cube. We exploit this product structure to define an initial ideal for Tn that

equals the edge ideal of a certain graph n−1, denoted Xn−1 . The vertices of

n−1 are subsets of the edge set of the tree Tn, and its edges are pairs of in-

comparable subsets of edges. By Sturmfels’ correspondence (cf. theorem A.3.5

or [Stu91, Theorem 3.1]), choosing this initial ideal corresponds to choosing a

staircase triangulation for the family of (n− 1)-cubes [DRS10, Remark 6.2.17].

We then use an idea of Dochtermann and Engström from [DE09], and regard

Xn−1 as the Stanley-Reisner ideal of the independence complex of n−1; the up-

per bounds for the Betti numbers follow from application of Hochster’s formula

(theorem 1.1.3 or [Hoc77, Theorem 5.1]) and enumeration of the induced sub-

graphs of n−1. We conclude chapter 1 discussing an extension of our methods

for deriving upper bounds for the Betti numbers of the homogeneous ideal defin-

ing the Segre embedding of the cartesian product of several projective spaces

of any dimension.

Chapter 2 undertakes a combinatorial study of triangulations of the carte-

sian product of two standard simplices, developed in collaboration with César

2A tree is a finite simple connected graph without cycles, and a cut is an unordered partition of

its vertices into two subsets. Some edges of the tree may have their endpoints lying on different

parts of a given cut, i.e., may be separated by the cut.
3Recall briefly that these invariants of homogeneous polynomial ideals give the numbers of mini-

mal generators, in the different degrees, for the ideal and its syzygy modules (c.f. definition A.1.15),

and that they are used to define further invariants of interest in commutative algebra [Eis05].

2



INTRODUCTION

Ceballos and Arnau Padrol in [CPS13]. It departs from a general framework to

study triangulations of products of point configurations through certain associ-

ated partial triangulations that are defined to reflect the product structure.

First, we recall some existing results about “full” and partial triangulations

of Δn−1 × Δd−1. It turns out that the representation of triangulations of Δn−1 ×
Δd−1 as fine mixed subdivisions of the dilated simplex nΔd−1 by the Cayley trick

(cf. theorem B.4.3 or [HRS00, Theorem 3,1], [San04, Theorem 1.4]) provides a

convenient representation for the partial triangulations we consider, as well as

useful geometric intuition. Making use of this representation we are led to our

main result, which is perhaps the strongest in the thesis; namely, a “finiteness

theorem” that loosely reads:

Theorem (Theorem 2.4.25). If d > n+ 1, every triangulation of Δn−1 × Δd−1 is

uniquely obtained by “gluing” compatible triangulations of the faces of Δn−1 ×
Δd−1 of the form Δn−1 × Δn.

In other words, triangulations of Δn−1 × Δd−1 are not “much more compli-

cated” than triangulations of Δn−1 × Δn, provided d > n+ 1.

With an explicit construction, that appears to be new, we prove moreover

that the bound d > n+ 1 is tight:

Theorem (Theorem 2.4.32). For every n ∈ N, n ≥ 2, there is a collection of

compatible triangulations of the faces of Δn−1 ×Δn of the form Δn−1 ×Δn−1 that

do not correspond to the restriction of any triangulation of Δn−1 × Δn.

A key ingredient towards our construction is a family of triangulations of

Δn−1 × Δn−1 that can be considered their second “simplest” triangulation (the

simplest one being the staircase triangulations cf. theorem 2.2.8 or [DRS10,

Theorem 6.2.13]). As it also seems to be new, and we call it the Dyck path

triangulation of Δn−1 × Δn−1 (cf. theorem 2.4.27). Given its simplicity and its

versatility to produce the family of non-extendable triangulations, we deem it

deserves further study which, unfortunately grows out of the scope of this the-

sis. Based on the “finiteness” interpretation of theorem 2.4.25, we conclude

chapter 2 formulating analogous finiteness conjectures for triangulations of the

cartesian product of several simplices.

Since the concepts from commutative algebra we deal with tend to lie dis-

tant apart in a typical learning curve, and the theory of triangulations has only

recently received a unified treatment in [DRS10], we have included two ap-

pendices that contain some definitions and facts pertinent to our presentation.

However, we have not made an attempt towards being self-contained, and at

several points refer the reader to the relevant literature.

Why triangulations of products?

Question 1 is a special case of the following question:

3
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Question 2: Let A = {1,2, . . . ,n} ⊂ Rd, A′ = {′1,
′
2, . . . ,

′
m} ⊂ Rd

′
and

A′′ = {′′1 ,
′′
2 , . . . ,

′′
 } ⊂ R

d′′ be point configurations such that the points of A

and A′ affinely project to the points of A′′; that is, such that there are affine

maps π1 : A→ A′′ and π2 : A′ → A′′. What is the relation between triangulations

of the point configuration:

A×A′′ A′ := {(,′j ) :  ∈ A,
′
j ∈ A

′ with π1() = π2(′j )} ⊂ R
d+d′ , (1)

and triangulations of A, A′ and A′′?

Point configurations of the form (1) are called fiber products, and were in-

troduced by Engström, Kahle and Sullivant in their study of composition of hier-

archical log-linear statistical models in [EKS11]. Specifically, they showed that

the composite nature of a hierarchical log-linear model induces the fiber prod-

uct structure (1) on the point configuration associated to the toric ideal defining

the hierarchical log-linear model.

Let us recall some definitions in order to make sense of the preceding para-

graph; most are taken from [GMS06, DSS09, EKS11]. Consider a collection

of random variables X1, X2, . . . , XN, where Xα takes values in the set [dα] =
{1,2, . . . , dα} (for α ∈ [n] and dα ≥ 2), and let:

p =
n

pλ1,λ2,...,λN := p(X1 = λ1, X2 = λ2, . . . , XN = λN)
o

(λ1,λ2,...,λN)∈
∏N

γ=1[dγ]
,

be a joint probability distribution for the outcomes of the random variables.

Given a subcollection of the random variables indexed by σ = {α1, α2, . . . , α} ⊂
[N], we define the σ-marginal of p as the joint probability distribution on the

variables {Xα : α ∈ σ} gotten from p by summing over all indices not in σ. In

symbols:

pσλα1 ,λα2 ,...,λα
:=

∑

(λγ1 ,λγ2 ,...,λγt )∈
∏

κ∈[N]\σ[dκ]

pλ1,λ2,...,λN , (2)

(i.e., [N]\σ = {γ1, γ2, . . . , γt}).

Let T be a simplicial complex on the base set [N]. The hierarchical log-

linear model defined by T is a family of probability distributions for the joint

outcomes of X1, X2, . . . , XN parameterized by the σ-marginals of the outcomes,

with σ ranging over the maximal faces of T :

pλ1,λ2,...,λN =
∏

σ maximal
face of T

tσ(λ1,λ2,...,λN)|σ ; (3)

here, (λ1, λ2, . . . , λN)|σ = (λα1 , λα2 , . . . , λα) for σ = {α1, α2, . . . , α} ⊂ [N], and

tσ(λ1,λ2,...,λN)|σ ∈ C
∗ := C\{0}4.

4Although only real, nonnegative and normalized probability distributions are meaningful, the

algebraic study of the parameterization (3) is commonly simplified by allowing domain and range of

the parameterization to be complex [PS05, DSS09].
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Example 1. (a) Let N = 2, d1 = r and d2 = c and T = {{1},{2}}. Here T
defines the hierarchical log-linear model given by the parametrization:

(C∗)r+c
ϕT−→ (C∗)r·c

(t(1)λ1 , t
(2)
λ2 ) 7−→ pλ1,λ2 = t

(1)
λ1 · t

(2)
λ2 , 1 ≤ λ1 ≤ r, 1 ≤ λ2 ≤ c.

The (projective closure of the) image of the parametrization ϕT can be

identified with the projectivized set of rank-1 r×c complex matrices (equiv-

alently, the Segre embedding of Pr−1(C) × Pc−1(C) into Prc−1(C)). In the

statistics literature, such a model is called the independence model for the

random variables X1, X2 [DSS09].

(b) Let N = 3, d1 = d2 = d3 = 2 and T = {{1,2},{2,3},{1,3}}. The hierarchi-

cal log-linear model is given by the parametrization:

(C∗)4+4+4
ϕT−→ (C∗)2·2·2

(t(12)λ1,λ2 , t
(23)
λ2,λ3 , t

(13)
λ1,λ3) 7−→ pλ1,λ2,λ3 = t

(12)
λ1,λ2 t

(23)
λ2,λ3 t

(13)
λ1,λ3 , 1 ≤ λ1, λ2, λ3 ≤ 2,

and is called the binary no-threeway-interaction statistical model [DSS09].

9

From the viewpoint of algebraic statistics, the study of hierarchical log-linear

models proceeds by examining the projective variety VT obtained as the pro-

jective closure of the image of the parameterization (3) (which is taken for the

hierarchical log-linear model) and the ideal T of homogeneous polynomials

vanishing on it. By virtue of the monomial form of the parametrization (3), a

hierarchical log-linear model turns out to be a (irreducible) projective toric va-

riety and its ideal of vanishing polynomials a (prime) homogeneous toric ideal

[Stu96, DSS09].

A homogeneous toric ideal arising from a monomial parametrization as (3)

has associated an integer point configuration AT , consisting of the points

λ1,...,λN ⊂ Rd with coordinates given by the exponents of the monomial in the

right hand side of equation (3). Thus, ranging over the entries of p we obtain a

collection of d1 · d2 · . . . · dN points in Rd, where d =
∑

σ∈T
∏

α∈σ dα.

Example 2. (a) Suppose N = 2, d1 = d2 = 2 and T = {{1,2}}: a 1-dimensional

simplex. The monomial parametrization (3) then reads:

(C∗)2·2
ϕT−→ (C∗)2·2

t(12)λ1,λ2 7−→ pλ1,λ2 = t
(12)
λ1,λ2 , 1 ≤ λ1, λ2 ≤ 2.

The projective closure of the parametrization equals P3(C), whose ideal of

vanishing polynomials is {0} ⊂ C[p1,1, p1,2, p2,1, p2,2]. The coordinates of

the points in the point configuration associated to T are the standard basis

vectors of R4: AT = {e1,e2,e3,e4} ⊂ R4.

(b) Let N = 2, d1 = d2 = 4 and T = {{1},{2}}. We have that VT is the Segre

embedding of P3(C)×P3(C) into P15(C). The point configuration associated

5
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to T is the cartesian product of two standard 3-simplices:

AT = {(eλ1 ,eλ2) : eλ1 ∈ R
4,eλ2 ∈ R

4} = Δ3 × Δ3 ⊂ R8.

(c) Let N = 3, T = {{1,2},{2,3}} and d1 = d2 = d3 = 2. This defines the

parameterization pλ1,λ2,λ3 = t(12)λ1,λ2 t
(23)
λ2,λ3 , with 1 ≤ λ1, λ2, λ3 ≤ 2. We list

the points in the associated point configuration as the columns of an 8× 8
matrix:

AT =



































marginals\X1X2X3 = 111 112 121 122 211 212 221 222

X1X2=11 1 1 0 0 0 0 0 0

X1X2=12 0 0 1 1 0 0 0 0

X1X2=21 0 0 0 0 1 1 0 0

X1X2=22 0 0 0 0 0 0 1 1

X2X3=11 1 0 0 0 1 0 0 0

X2X3=12 0 1 0 0 0 1 0 0

X2X3=21 0 0 1 0 0 0 1 0

X2X3=22 0 0 0 1 0 0 0 1



































⊂ R8

9

In the algebraic statistics literature, it had been observed that certain aspects

of the composite nature of a simplicial complex T defining a hierarchical log-

linear model were displayed by the associated point configuration AT (see for

example [SS03, HS07]). A general “product” pattern underlying such point con-

figurations was identified by Engström, Kahle and Sullivant in [EKS11], where

they pursued an algebraic investigation of the hierarchical log-linear model

specified by a simplicial complex T , on account of T ’s being of composite na-

ture. We briefly paraphrase their reasoning.

Let T be a simplicial complex on the base set [N], and let , J ⊂ [N] be such

that both T | and T |J are subcomplexes of T and T = T | ∪ T |J. Viewing T | and

T |J as individual simplicial complexes on base sets  and J, respectively, T can

be considered as being composed of T | and T |:

T = T | ∪ T |J = T | ∪̇T |J
.

(T |)|∩J ∼ (T |J)|∩J . (4)

Broadly speaking, Engström, Kahle and Sullivant studied the question:

Question 3: How are the properties of the ideal T related to the properties of

the ideals T | , T |J and T |∩J .

They observed that if τ ∈ T |∩J and σ ∈ T | are maximal faces with τ ⊂ σ,

the τ-marginal of a probability distribution on X1, X2, . . . , XN can be written in

terms of the σ-marginal, so that there is a natural affine projection π1 mapping

the points of AT | to the points of AT |∩J . Likewise, there is a natural affine

projection π2 mapping the points of AT |J to the points of AT |∩J . With this, the

point configuration AT proves to be related to the point configurations AT | , AT |J
and AT |∩J according to [EKS11, Proposition 5.1]:

AT = AT | ×AT |∩J
AT |J .

6
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Example 3. Let N = 3, T = {{1,2},{2,3}} and d1 = d2 = d3 = 2 as in exam-

ple 2 (c). Consider the decomposition T = T | ∪T |J with  = {1,2} and J = {2,3}.

It follows that:

AT | =



















mrg.\X1X2 = 11 12 21 22

X1X2=11 1 0 0 0

X1X2=12 0 1 0 0

X1X2=21 0 0 1 0

X1X2=22 0 0 0 1



















, AT |J =



















mrg.\X2X3 = 11 22 21 22

X2X3=11 1 0 0 0

X2X3=12 0 1 0 0

X2X3=21 0 0 1 0

X2X3=22 0 0 0 1



















,

AT |∩J={2} =







mrg.\X2 = 1 2

X2=1 1 0

X2=2 0 1






,

from where the reader readily verifies that AT = AT | ×AT |∩J
AT |J . 9

The initial motivation for the subject of this thesis was that, together with

Sturmfels’ correspondence (theorem A.3.5), an understanding of triangulations

of point configurations of the form (1) with respect to their product structure

might, in principle, furnish insight into the combinatorics of Gröbner bases of

toric ideals defining hierarchical log-linear models.
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Chapter 1

Betti numbers of cut ideals

of trees

The study of families of ideals associated to discrete objects, like graphs or sim-

plicial complexes, is a subject of interest in combinatorial commutative algebra.

Here, a typical problem asks to determine certain algebraic properties of a fam-

ily of ideals that are associated to a family of discrete objects in terms of the

combinatorial properties of the discrete object. In the framework of algebraic

statistics, for instance, the discrete objects may be simplicial complexes encod-

ing interaction structures in hierarchical log-linear models, and the algebraic

properties of interest may be the degrees of minimal generating sets for the

toric ideals defining them.

Such problems usually involve tracing the combinatorial features of the dis-

crete object to the algebraic context, insofar as this is possible. In some situa-

tions, it is even possible to develop combinatorial interpretations or characteri-

zations for algebraic properties of interest of the associated families of ideals.

In this chapter, we consider a family of homogeneous toric ideals that were

introduced by Sturmfels and Sullivant in [SS06]: cut ideals of graphs. These

can be thought of as defining a toy statistical model on the cuts of a graph.

Concretely, we present joint work with Samu Potka concerning the estimation of

the Betti numbers of cut ideals for the class of tree graphs [PS12] (cf. definition

A.1.15). In this case, it turns out that the cut ideals are a “product” of the cut

ideals of the individual edges of the tree, which makes their algebraic properties

irrespective of the shape of the tree (cf. section 1.3).

The organization is as follows. In section 1.1, we introduce the objects from

combinatorial commutative algebra relevant to our study, as well as the ap-

proach we have employed to obtain our results; this is an idea by Dochtermann

and Engström from [DE09] to regard edge ideals of graphs as Stanley-Reisner

ideals of certain associated simplicial complexes. Section 1.2 introduces cuts

of graphs and their toric cut ideals. In section 1.3, we restrict to the class of

trees and remark that their cut ideals equal the homogeneous ideal defining

9
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the Segre embedding of several projective lines [SS06]. Finally, in section 1.4

we develop our approach to minimal free resolutions of cut ideals of trees and

derive our main result, consisting in exponential formulas giving upper bounds

for the Betti numbers. We conclude in section 1.6 briefly framing our discussion

within the context of triangulations of products of simplices, and listing possible

further directions of research.

Although our results do not achieve a unified combinatorial characterization

of the Betti numbers of cut ideals of trees, they do provide a succinct description

of the computation of upper bounds, namely enumeration of induced graphs for

a particular family of graphs and knowledge of their independence complexes.

This leaves exposed various possible directions for further elaboration of our

results.

Throughout we fix k to be an algebraically closed field of character-

istic zero.

1.1 Edge ideals and combinatorial topology

Let G be a finite simple graph with vertex set V(G) and edge set E(G) ⊂
�V(G)

2
�

.

Definition 1.1.1. Consider the polynomial “vertex” ring YG = k[ :  ∈ V(G)].
The edge ideal of G is the following monomial ideal in YG:

XG := 〈′ : {,′} ∈ E(G)〉.

Edge ideals are a classical object of study in combinatorial commutative al-

gebra, and have motivated several investigations in the literature [Vil95, FVT07,

MV12]. In [DE09], Dochtermann and Engström introduced a general method to

systematically study edge ideals of graphs with tools from combinatorial topol-

ogy. They were able to simplify proofs of existing results about the edge ideals

associated to certain families of graphs, and to provide stronger versions in

some cases.

The entry point of combinatorial topology in [DE09] is the theory of square-

free monomial ideals, where ideals of this type are identified with simplicial com-

plexes [MS05]. To every simplicial complex T on the base set [n] := {1,2, . . . , n}
we can associate a square-free monomial ideal JT ⊂ k[1, . . . , n].

Definition 1.1.2. The Stanley-Reisner ideal of T is the square-free monomial

ideal in k[1, . . . , n] generated by the non-faces of T :

JT :=
¬

12 . . . q : τ = {1, 2, . . . , q} ⊂ [n], τ /∈ T
¶

.

Conversely, every square-free monomial ideal J ⊂ k[1, . . . , n] can be asso-

ciated the simplicial complex TJ := {{1, 2, . . . , r} ⊂ [n] : 12 . . . r /∈ J} on the

base set [n]. Among the many implications of this correspondence, its power

10
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can be demonstrated by Hochster’s formula, which expresses the Betti numbers

of square-free monomial ideals in terms of simplicial homology.

Theorem 1.1.3 (Theorem 5.1 in [Hoc77]). Let T be a simplicial complex on the

base set [n] and JT be its Stanley-Reisner ideal. For  ≥ 0, the Betti numbers of

JT are given by:

β,j(JT ) =
∑

F⊆[n]
|F|=j

dimk H̃j−−2(T |F, k), (1.1)

where T |F is the subcomplex of T induced by restricting T to the vertices in F,

and H̃j−−2(T |F, k) is its (j− − 2)-th reduced (simplicial) homology group.

The punch-line of the approach by Dochtermann and Engström to edge ideals

was to regard these as Stanley-Reisner ideals of independence complexes of

graphs. We recall the definition.

Definition 1.1.4. For a finite simple graph G, let nd(G) be the independence

complex of G. This is the simplicial complex on the base set V(G) where σ ⊂
V(G) is a simplex of nd(G) whenever {,′} /∈ E(G) for every ,′ ∈ σ. Equiv-

alently, nd(G) = C(Ḡ), the clique complex of the (unlooped) complement of

G.

We see therefore that Jnd(G) = XG, so knowledge of the complexes nd(G)
for families of graphs can be entered in Hochster’s formula and translated into

algebraic information about the corresponding edge ideals.

As a sample of the results obtained from this observation in [DE09], Dochter-

mann and Engström used the fact that the independence complex of the com-

plement of a chordal graph with d connected components is homotopy-equivalent

to d disjoint points to obtain a simple formula for the Betti numbers of edge ide-

als of graphs in this class (a chordal graph is a graph where in every cycle of

length four or larger there is an additional edge joining two non-consecutive

vertices of it: a chord). A corollary of this is a celebrated result in combinatorial

commutative algebra [DE09, Theorem 3.4].

1.2 Cut ideals

To define our main object of study, consider again a finite simple graph G.

Definition 1.2.1. A cut of G is an unordered partition of V(G) into two subsets

A,B ⊂ V(G), which we denote A|B. If |V(G)| = n, then G has 2n−1 cuts.

Note that a cut A|B of a graph G partitions the set of edges E(G) into the

subset SA|B of edges whose endpoints are separated by the cut (hence the S)

and the subset TA|B of edges whose endpoints lie together within one part of the

cut (hence the T).

The motivation for the definition of the cut ideal of a graph is to regard two

collections of cuts as indistinguishable if both involve the same subsets of edges

11
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being separated and kept together. To make this more precise, let RG and QG

be the polynomial rings in 2n−1 and 2|E(G)| variables, respectively:

RG := k[rA|B : A|B cut of G],

QG := k[se, te : e ∈ E(G)].

Definition 1.2.2. Consider the monomial homomorphism:

ϕG : RG −→ QG

rA|B 7→
∏

e∈SA|B

se
∏

e∈TA|B

te.

The cut ideal of G is the homogeneous toric ideal in RG:

G := ker(ϕG).

Example 1.2.3. Let G be the graph on 4 vertices displayed on Figure 1.1. The

cut A|B = {2,3}|{1,4} displayed in that figure has SA|B = {(2,4), (3,4)} and

TA|B = {(1,4)}, which corresponds to the assignment r{2,3}|{1,4}
ϕG7→ t14s24s34.

The remaining images of the variables in RG under ϕG are:

Figure 1.1: A cut on a graph.

r∅|{1234} 7→ t14t24t34 r{13}|{24} 7→ s14t24s34

r{1}|{234} 7→ s14t24t34 r{12}|{34} 7→ s14s24t34

r{2}|{134} 7→ t14s24t34 r{4}|{123} 7→ s14s24s34

r{3}|{124} 7→ t14t24s34

In this example, the cut ideal G = ker(ϕG) has a minimal generating set

consisting of the 9 quadratic binomials:

r2|134r13|24 − r1|234r14|23 r3|124r12|34 − r1|234r14|23 r3|124r4|123 − r13|24r14|23

r2|134r4|123 − r12|34r14|23 r1|234r4|123 − r12|34r13|24 r∅|1234r4|123 − r1|234r14|23

r2|134r3|124 − r∅|1234r14|23 r1|234r3|124 − r∅|1234r13|24 r1|234r2|134 − r∅|1234r12|34;

in particular, the multisets of edges cut by the cuts in the first and second terms

of any binomial agree. Finally, a minimal free resolution of G takes the form:

0 −→ RG(−6) −→ RG(−4)9 −→ RG(−3)16 −→ RG(−2)9 −→ G −→ 0

9

In analogy with the work of Robertson, Seymour and others on graph minors,

Sturmfels and Sullivant put forward several conjectures in [SS06] concerning

the algebraic properties of cut ideals of families of minor-closed graphs. They

conjectured, for instance, that cut-ideals of K4-minor-free graphs are generated

12
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by quadrics. This was proved by Engström in [Eng11], where he first showed

that the series-parallel composition characterizing K4-minor-free graphs takes

at the level of the cut ideal the form of a toric fiber product (cf. Introduction).

With this, he was able to construct generating sets for the (cut ideal of the)

series-parallel composition by gluing generating sets of the components.

1.3 Segre embeddings and cut ideals of trees

In [SS06], Sturmfels and Sullivant proved that the operation of 0-sum for two

graphs translates in the algebraic setting to the Segre product of the cut ideals

of the graphs. Let us recall the definitions involved.

Given two graphs G1 and G2 with one vertex  identified (i.e., V(G1)∩V(G2) =
{}), recall that the 0-sum G1#G2 is the graph with vertex set V(G1) ∪ V(G2)
and edge set E(G1) ∪ E(G2).

On the other hand, the Segre embedding provides a geometric realization of
the cartesian product of two projective varieties as a projective variety [Har92].
Indeed, if V1 ⊂ Pd1−1 and V2 ⊂ Pd2−1 are projective varieties, the image of the
cartesian product V1 ×V2 under the Segre embedding1:

Pd1−1 × Pd2−1 ,→ Pd1d2−1

[1 : 2 : . . . : d1], [y1 : y2 : . . . : yd2] 7→

�

z11 = 1y1 : z12 = 1y2 : . . . : z1d2 = 1yd2 :

z21 = 2y1 : z22 = 2y2 : . . . : z2d2 = 2yd2 :
...

zd11 = d1y1 : zd12 = d1y2 : . . . : zd1d2 = d1yd2
�

,

is a projective variety in Pd1d2−1. Its defining ideal in k[zj : j ∈ [d1] × [d2]]
is the Segre product of the homogeneous ideals (V1) ⊂ k[1, 2, . . . d1] and

(V2) ⊂ k[y1, y2, . . . , yd2] of polynomials vanishing on V1 and V2, denoted

(V1)×Seg (V2). A generating set for it consists of the following (infinitely many)

polynomials [Sul07]:

�

2× 2 minors

of [zj]j∈[d1]×[d2]

�

∪
¨

ƒ̂
�

{zj : j ∈ [d1]× [d2]}
�

:

ƒ̂
�

{yj : j ∈ [d1]× [d2]}
�

∈ ̂(V1)

«

∪
¨

ĝ
�

{zj : j ∈ [d1]× [d2]}
�

:

ĝ
�

{yj : j ∈ [d1]× [d2]}
�

∈ Ĵ(V2)

«

,

(1.2)

where ̂(V1) and Ĵ(V2) are the ideals in the larger polynomial ring

k[1, . . . , d1 , y1, . . . , yd2] generated by the generators of (V1) and of (V2),
respectively.

Remark 1.3.1. The set of polynomials in (1.2) can be reduced to a finite set of

generators of (V1) ×Seg (V2), whose construction, presented by Sullivant in

1We slightly depart from the standard notation for the homogeneous coordinates of projective

space. The reason is to parallel the notation for the standard simplex Δn−1 = {e1,e2, . . . ,en},

whose associated toric ideal defines Pn−1 (see appendix A).
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[Sul07], is as follows. To every degree  generator ƒ of (V1) ∈ k[1, . . . , d1]:

ƒ =
s
∑

α=1
αα1α2 . . . 

α

, 2

associate a -tuple j = (j1, j2, . . . , j) ∈ [d2][] of indices, and define the polyno-

mial:

ƒ j :=
s
∑

α=1
αzα1 j1zα2 j2 . . . z

α
 j
∈ k[zj : j ∈ [d1]× [d2]].

Ranging over all all generators of (V1) and d-tuples in [d2][], we obtaine a

finite collection of polynomials which generate the ideal generated by the poly-

nomials in the second term of (1.2); we schematically illustrate this lifting in

figure 1.2. Lifting every generator of (V2) of degree  likewise, according to

some -tuple in [d1][], yields then the desired finite generating set.

Figure 1.2: Each block in the bottom row represents a (ocurrence of a) variable,

and blocks of the same color are variables in the same monomial. For a choice of

j1, j2, j3, ƒ j is gotten by concatenating j1, j2 and j3 to the index in each variable.

9

With these definitions at hand, we turn to the cut ideals G1 , G2 and G1#G2 .

The Segre product of G1 and G2 is the homogeneous ideal in the polynomial

ring:

R := k[zA1 |B1,A2 |B2 : A1|B1 cut of G1, A2|B2 cut of G2],

generated by the binomials coming from equation (1.2). To see that it equals

G1#G2 , first notice that the polynomial ring R equals precisely RG1#G2 , for any

two cuts A(1)|B(1) of G1 and A(2)|B(2) of G2 define a unique cut A|B of G1#G2
given by A(1)∪A(2)|B(1)∪B(2) (we implicitly set  ∈ B(1)∩B(2)); conversely, every

cut of G1#G2 can be gotten this way. Next, recall that every edge in E(G1#G2)
is either in E(G1) or in E(G2); consequently, the image of rA|B ∈ RG1#G2 under

2Here, each power of a variable is counted as a separate occurrence; e.g., 21 would contribute

11 to a term of ƒ .
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ϕG1#G2 can be written:

rA|B
ϕG1#G27−→

∏

e∈SA|B

se ·
∏

e∈TA|B

te = ϕG1
�

r(1)A∩V(G1)|B∩V(G1)

�

· ϕG2
�

r(2)A∩V(G2)|B∩V(G2)

�

,

where r()A|B denote the cut variables in RG ( = 1,2), and the images of ϕG1
and ϕG2 are understood as lying inside the larger polynomial ring QG1#G2 . In

particular:

G1#G2 = ker
�

rA|B 7→ ϕG1
�

r(1)A∩V(G1)|B∩V(G1)

�

· ϕG2
�

r(2)A∩V(G2)|B∩V(G2)

��

, (1.3)

from which the containment G1 ×Seg G2 ⊆ G1#G2 is easily seen to hold.

We verify the opposite containment for a quadratic binomial b = rA1 |B1rA2 |B2−
rC1 |D1rC2 |D2 ∈ G1#G2 , the general case admitting the same argument. The as-

signment zj 7→ yj from equation (1.2) reads for cut variables:

rA|B = rA(1)∪A(2) |B(1)∪B(2) 7→ r(1)
A(1) |B(1)r

(2)
A(2) |B(2) ,

where A(1), B(1) ⊂ V(G1) and A(2), B(2) ⊂ V(G2). Applying this substitution to b,

we obtain:

r(1)
A(1)1 |B

(1)
1

r(2)
A(2)1 |B

(2)
1

r(1)
A(1)2 |B

(1)
2

r(2)
A(2)2 |B

(2)
2

− r(1)
C(1)1 |D

(1)
1

r(2)
C(2)1 |D

(2)
1

r(1)
C(1)2 |D

(1)
2

r(2)
C(2)2 |D

(2)
2

.

From the expression (1.3), we know that the binomial r(1)
A(1)1 |B

(1)
1

r(1)
A(1)2 |B

(1)
2

−r(1)
C(1)1 |D

(1)
1

r(1)
C(1)2 |D

(1)
2

lies

in ̂G1 , so we can divide b by it to obtain:

b = r(1)
C(1)1 |D

(1)
1

r(1)
C(1)2 |D

(1)
2

�

r(2)
A(2)1 |B

(2)
1

r(2)
A(2)2 |B

(2)
2

− r(2)
C(2)1 |D

(2)
1

r(2)
C(2)2 |D

(2)
2

�

∈ ̂G2 ,

confirming that G1#G2 ⊂ G1×SegG2 .

Since any tree Tn on n vertices can be obtained as the 0-sum of n− 1 edges

K2, it follows that Tn = K2 ×Seg K2 ×Seg . . . ×Seg K2 (n − 1 times). Thus, the

cut ideals of all trees on n vertices are algebraically the same, irrespective of

the shape of the tree. In fact, we see that Tn is the ideal defining the Segre

embedding of n−1 copies of P1 in P2
n−1−1, for we have K2 = {0} ⊂ k[r∅|12, r1|2],

which defines the projective line P1.

The approach to cut ideals of trees in [PS12] tacitly arrived at the identifica-

tion we just proved from the more specific remark below.

Proposition 1.3.2. Let Tn be a tree on n vertices. The cuts of Tn are in bijection

with the power set 2E(Tn) of the set E(Tn).

Proof. First observe that |Cts(Tn)| = |2E(Tn)|. Let ϵ : Cts(Tn) → 2E(Tn) be the

map defined by ϵ(A|B) = SA|B. The assertion of the lemma follows once we verify

that ϵ is injective. But this is true for any connected graph: if A1|B1 6= A2|B2,

both cuts differ at least in one vertex that lies in different parts; accordingly,

there is at least one edge e ∈ E(G) such that e ∈ SA1 |B1 but e /∈ SA2 |B2 .
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Proposition 1.3.2 says that we may consider the indeterminates in RTn to

be as well labeled by subsets of E(Tn). This allows us to define a normal form

(modulo Tn) for cut monomials in RTn . For this purpose, we depict the edge

subset associated to every rA|B ∈ RTn as a string of the edges in Tn, with dashes

on those edges that are cut by A|B; a cut monomial m ∈ RTn is represented by

the strings of edges of each cut indeterminate stacked on top of each other.

The normal form of m is then gotten by sending all dashes representing cuts to

the bottom. This is drawn for the tree T4 in Figure 1.3; here the normal form of

r14|23r1|234r2|134 is seen to be r4|123r2|134r∅|1234.

Figure 1.3: Normal form for the cut monomial of a tree on 4 vertices.

The precise definition for the normal form is the following one.

Lemma 1.3.3. Let Tn be the cut ideal of a tree on n vertices. There is a term

order ≺ in RTn with respect to which the set:

G≺ := {rXrY − rX∪YrX∩Y : X, Y ⊆ E(G) incomparable} ⊂ Tn ,

is a Gröbner basis for Tn .

We paraphrase the proof of this lemma from [PS12], which is based on the

proof of [Stu96, Theorem 9.1].

Proof. Throughout we refer to cut monomials in RTn by their corresponding sub-

set of edges cut. To every indeterminate rX in RTn assign a weight equal to the

number of indeterminates (labeled by subsets) incomparable with rX, and let ≺
be any total order refining the partial order induced by the weight defined. We

will prove that the initial term of any polynomial in Tn is divisible by some mono-

mial in in≺(G≺) := {rXrY : X, Y incomparable}. To this end, suppose b =m−m′ is

a binomial in Tn that gives a counterexample minimal with respect to the term

order ≺, where m and m′ have no common factors. By the minimality of b we

mean that the initial term of any binomial b′ = n − n′ ∈ Tn with nn′ ≺ mm′ is

divisible by some monomial in in≺(G≺). Since m is not divisible by any of the

monomials in in≺(G≺), all the indeterminates appearing in m are labeled by com-

parable subsets of E(Tn). We may actually assume that the same holds for m′,

for otherwise we could divide it by an element of G≺, yielding a counterexample

b′ of smaller weight.

Note that the multisets of E(Tn) of edges cut in m and m′ coincide, because

b ∈ Tn . But the only way for this to hold while the indeterminates in m and in
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m′ are both indexed by collections of mutually comparable subsets of E(Tn) is if

m =m′, so we have a contradiction.

1.4 Upper bounds for β,j(Tn)

As stated in proposition A.2.5 (alternatively [MS05, Theorem 8.29]), the Betti

numbers of in≺(Tn) give upper bounds for the Betti numbers of Tn . On the

other hand, the Gröbner basis G≺ gives us a simple combinatorial description

for the monomials generating in≺(Tn): they generate the edge ideal of the

incomparability graph n−1 of the power set 2E(Tn) = 2n−1, whose vertices are

subsets of E(Tn) and whose edges are pairs of incomparable subsets of E(Tn).

In view of the idea from [DE09] to regard edge ideals of graphs as Stanley-
Reisner ideals of independence complexes of graphs, application of Hochster’s
formula (1.1) will then reduce the estimation of the Betti numbers of Tn to the
enumeration of induced subgraphs of n−1:

β,j(in≺(Tn )) = β,j(Xn−1 ) = β,j(Jnd(n−1)) =
∑

F∈([n]j )
dimk

�

H̃j−−2 (nd(n−1|F), k)
�

(1.4)

(because nd(G)|F = nd(G|F) holds for every F ⊂ V(G)). This is an easy combi-

natorial exercise that can be performed using the principle of inclusion-exclusion.

We illustrate this with the enumeration of labeled occurrences in n−1 of the

graph g = .

View the element  ∈ 2E(Tn) as an (n−1)-tuple in {0,1}[n−1]. For two different

, ∈ {0,1}[n−1], let  be the number of indices  ∈ [n−1] such that  = 0 and

 = 1 and b be the number of indices j ∈ [n − 1] such that j = 1 and j = 0;

then (,) ∈ E(n−1) ⇐⇒  > 0 and b > 0. Likewise (,) /∈ E(n−1) ⇐⇒ either

 = 0 or b = 0.

Label the vertices of g as V(g) = {,,}, so that E(g) = {(,), (,)},

and denote by , b, . . . , h the number of indices  ∈ [n − 1] for which (, ,)
equals (0,0,0), (1,0,0), . . . , (1,1,1), respectively, as shown in table 1.1.

 b c d e ƒ g h

 0 1 0 1 0 1 0 1

 0 0 1 1 0 0 1 1

 0 0 0 0 1 1 1 1

Table 1.1: Possible values of (, ,).

When comparing the three (n−1)-tuples

, and , we obtain a list of counts for

, b, . . . , h which sum up to n− 1; there are
� n−1
,b,...,h

�

ways of obtaining such counts. Fi-

nally, (,) ∈ E(n−1) ⇐⇒ b + ƒ > 0 and

c + g > 0, (,) ∈ E(n−1) ⇐⇒ c + d > 0

and e + ƒ > 0, and (,) /∈ E(n−1) ⇐⇒
either b+ d = 0 or e+ g = 0. That is to say,

the labeled occurrences of in n−1 are given by the following restricted sum:
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#g(n−1) =
∑

+b+...+h=n−1,
b+ƒ>0, c+g>0,
c+d>0, e+ƒ>0,

b+d=0 xor e+g=0

�

n− 1
, b, . . . , h

�

=
∑

+c+e+ƒ+g+h=n−1,
ƒ>0, c+g>0,
c>0, e+ƒ>0,

b+d=0

�

n− 1
, c, e, ƒ , g, h

�

+
∑

+b+c+d+ƒ+h=n−1,
b+ƒ>0, c>0,
c+d>0, ƒ>0,

e+g=0

�

n− 1
, b, c, d, ƒ , h

�

− 2
∑

+c+ƒ+h=n−1,
ƒ>0, c>0,

b+d=0,e+g=0

�

n− 1
, c, ƒ , h

�

,

The terms on the right hand side are decomposed further according to inclusion-

exclusion, for example:

∑

+c+ƒ+h=n−1
ƒ>0

=
∑

+c+ƒ+h=n−1
−

∑

+c+h=n−1
ƒ=0

.

After arriving to a sum of unrestricted multinomial coefficients, we use:

∑

1 ,...,ℓ∈N
1+...+ℓ=N

�

N

1, . . . , ℓ

�

= ℓN,

and find:

#g(n−1) = 2 ·
�

6n−1 − 2 · 5n−1 + 2 · 3n−1 − 2n−1
�

.

Observe now that nd(g) is homotopy equivalent to two isolated vertices, so

dimk Ĥ3−1−2(nd(g)) = 0; thus, the only contribution of the reduced homology

groups of nd(g) to the Betti numbers of in≺(Tn) is to β1,3(in≺(Tn)).

In [PS12], the information about nd(G) for graphs with up to 5 vertices

displayed in table 1.2 allowed the authors to implement the strategy outlined

above to obtain the following exponential formulas on n, giving upper bounds

for some Betti numbers of Tn+1 .

Theorem 1.4.1. Let ≺ be a term order in RTn+1 with respect to which the bi-
nomials in G≺ from lemma 1.3.3 form a Gröbner basis for Tn+1 . The following
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bounds hold for the Betti numbers of Tn+1 :

β0,2(Tn+1 ) ≤ β0,2(in≺(Tn+1 )) =
1

2

�

4n − 2·3n + 2n
�

β1,3(Tn+1 ) ≤ β1,3(in≺(Tn+1 )) =
1

3

�

8n − 3·6n + 3·4n − 2n
�

β2,4(Tn+1 ) ≤ β2,4(in≺(Tn+1 )) =
1

8

�

16n − 4·12n + 6·8n + 2·7n − 4·6n + 4·5n

−9·4n + 2·3n + 2·2n
�

β1,4(Tn+1 ) ≤ β1,4(in≺(Tn+1 )) =
1

4

�

7n − 4·6n + 6·5n − 4·4n + 3n
�

β3,5(Tn+1 ) ≤ β3,5(in≺(Tn+1 )) =
1

60

�

2·32n − 10·24n + 30·20n − 120·18n + 30·17n

−40·16n + 180·15n + 375·14n − 420·13n − 180·12n

+200·11n − 280·10n − 220·9n + 985·8n − 720·7n

+655·6n − 710·5n + 35·4n + 340·3n − 132·2n
�

β2,5(Tn+1 ) ≤ β2,5(in≺(Tn+1 )) =
1

12

�

3·14n − 12·12n − 2·11n + 22·10n − 2·9n

−9·8n − 6·7n + 9·6n − 10·5n + 11·4n − 4·3n
�

Graph dim H̃0 dim H̃1

1 0

2 0

Graph dim H̃0 dim H̃1

3 0

2 0

1 0

1 0

1 0

0 1

Graph dim H̃0 dim H̃1 Graph dim H̃0 dim H̃1

4 0 3 0

2 0 2 0

1 0 0 1

1 0 1 0

2 0 1 0

1 1 0 1

1 0 0 1

0 2 1 0

1 0 1 0 1

Table 1.2: Contributions to the reduced homology over Z of the independence com-
plexes of graphs. Notice that there is no torsion in any of these homology groups. 1 does
not contribute because incomparability graphs of posets are perfect, i.e., they have neither induced odd cycles of
length ≥ 5 nor their complements [CB84].

Remark 1.4.2. The main algebraic ingredient we have used is Hochster’s for-

mula (1.1). Therefore, as long as there is no torsion in the (reduced) homology
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groups of independence complexes of the induced graphs of n−1, our bounds

are independent of the characteristic of the underlying field k. This will be the

case for the estimates β,j(in≺(Tn+1)) up to at least j = 10. This follows from

the results in [Kat06] or [Ada12], which assert that the clique complexes of all

graphs on less than 11 vertices are torsion-free. It is an interesting question

whether the clique complexes of the class of comparability graphs (i.e., inde-

pendence complexes of incomparability graphs) start having torsion at a larger

number of vertices. 9

1.5 The triangulation viewpoint

The homogeneous ideal ×Seg(d1,d2,...,ds) defining the Segre embedding of s pro-

jective spaces Pd1−1,Pd2−1, . . . ,Pds−1 into Pd1d2...ds−1 is the toric ideal resulting

as the kernel of the monomial homomorphism:

k[z] := k
h

z1 2...s : (1, 2 . . . , s) ∈ [d1]× [d2]× . . .× [ds]
i

−→ k















1,1, . . . , 1,d1 ,

2,1, . . . , 2,d2 ,
...

s,1, . . . , s,ds















(1.5)

z1 2...s 7−→ 1,12,2 . . . s,s .

Hence, according to [Stu96, Chapter 4] or A.3, the point configuration asso-

ciated to ×Seg(d1,d2,...,ds) is the cartesian product of s simplices: Δd1−1 × Δd2−1 ×
. . .×Δds−1. Together with the identification Tn = K2×Seg . . .×Seg K2 (n−1 times)

proved in section 1.3, we therefore see that the point configuration associated

to Tn is a unit (n− 1)-cube.

The term order we use in this chapter defines a square-free initial ideal of

Tn generated by (products of indeterminates indexed by) pairs of incomparable

elements of 2n−1. By Sturmfels’ correspondence in theorem A.3.5 and theorem

A.3.7, this initial ideal corresponds to a unimodular triangulation of the (n− 1)-
cube Δ1 × . . . × Δ1 (n − 1 times). This is the so-called staircase triangulation of

Figure 1.4: Staircase triangulation of the 3-cube, corresponding to in≺(T4).
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the product of several simplices (see figure 1.4), which generalizes the staircase

triangulation of the product of two simplices (cf. section 2.2).

Its description is equally simple: we represent the points of Δd1−1 × Δd2−1 ×
. . .×Δds−1 by positions in an s dimensional grid of dimensions d1×d2× . . .×ds,
and consider the collection of (d1+d2+ . . .+ds−s)-simplices that correspond to

connected paths in the grid from (1,1, . . . ,1) to (d1, d2, . . . , ds), where at each

step exactly one coordinate increases. It is a well known fact that this triangu-

lation is unimodular [DRS10, Theorem 6.2.18], and that its minimal non-faces

are edges indexed by the pairs of incomparable elements of the distributive

lattice d1 × d2 × . . . × ds
3, where dα stands for the chain (totally ordered set)

{1 < 2 < . . . < dα − 1 < dα} (this is easily seen from [DRS10, Lemma 9.4.4]).

1.6 Concluding remarks

The incomparability graph method presented in this chapter can be used to

effectively bound individual Betti numbers of Tn , even when the algebraic com-

putation from monomial initial ideals of Tn is not possible. The limiting factors

are () knowledge of the independence complexes of graphs on 6 vertices and

more, that for 5 or less vertices can be worked out “by eye”, and () eventu-

ally the computational cost of performing inclusion-exclusion which, although

straightforward, required (in our implementation) exponentially many opera-

tions (on
� j
2
�

, where j is the number of vertices of the induced subgraphs in

equation (1.4)).

A major drawback of the enumerative computation of upper bounds for β,j(Tn)
presented is precisely that it focuses on individual Betti numbers, whereas to in-

vestigate general properties of algebraic interest of Tn we need collective infor-

mation about the Betti numbers. Hence, we consider interesting a more general

combinatorial-topological study of independence complexes of incomparability

graphs of Boolean lattices 2n , because it would have direct consequences in

our work. To the best of our knowledge, such an investigation is currently un-

available in the literature.

The identification Tn ∼= {0}(⊂ k[, y])×Segn−1 remarked in [SS06], and red-

erived in section 1.3 by identifying cuts of Tn with elements of the Boolean lat-

tice 2n−1, points towards a direct extension of the incomparability graph method

to obtain upper bounds for the Betti numbers of ×Seg(d1,...,ds). Indeed, viewing

the indeterminates in k[z] as labelled by elements in d1 × d2 × . . . × ds, there

is a term order ≺′ for which in≺′(×Seg(d1,d2,...,ds)) = 〈zizj : i, j incomparable〉, and

thus equals the edge ideal of the incomparability graph of d1 × d2 × . . . × ds.

Needless to say, knowledge of topological properties of the independence com-

plexes of these family of incomparability graphs would be of great significance

for the study of this much more general family of ideals.

3Recall that the distributive lattice d1 × d2 × . . .× ds has elements i = (1, 2, . . . , s) with α ∈ dα,

and if j = (j1, j2, . . . , js) ∈ d1 × d2 × . . .× ds we have i ≤ j whenever α ≤ jα for every α ∈ [s]
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Chapter 2

Partial triangulations of

cartesian products of

simplices

In the introduction, we have argued that triangulations of products of point con-

figurations are interesting from diverse perspectives. In this chapter, we pro-

pose an approach to triangulations of cartesian products of simplices that was

developed in collaboration with César Ceballos and Arnau Padrol in [CPS13]. It

concerns the study of the extendability of certain partial triangulations of carte-

sian products of simplices that are defined to reflect the product structure: trian-

gulations of the polyhedral complex Δn−1×skelk−1(Δd−1) (see definition B.2.19).

The organization of this chapter is as follows. In section 2.1, we state our

general approach to triangulations of cartesian products of point configura-

tions, and introduce the concepts and questions that we will consider in this

chapter. Next, in section 2.2, we specialize to products of simplices, and re-

call some well-known properties and results that will be used in our proofs. In

section 2.3, we present the connection between triangulations of products of

simplices and mixed subdivisions of dilated simplices that was elaborated by

Santos in [San04], together with some of their combinatorial aspects. In sec-

tion 2.4, we first review some existing results about partial triangulations of

products of simplices. Then, we present our main results. After observing that

when n ≤ k < d a triangulation of Δn−1 × skelk−1(Δd−1) essentially defines a

unique list of simplices of Δn−1 × Δd−1: () we obtain necessary and sufficient

conditions for a triangulation of Δn−1 × skelk−1(Δd−1) to extend, () we prove

that the bound n < k < d ensures the achievement of the conditions from (),
and () we prove that this bound is tight by explicitly constructing an infinite

family of non-extendable triangulations of Δn−1 × ∂(Δn), which was unavailable

in the literature and may be of independent interest. A key ingredient towards

our construction is a triangulation of Δn−1 × Δn−1, which we call the Dyck path
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triangulation, that also seems to be new. Finally, in section 2.5, we briefly com-

ment on the general scope of our constructions, and we state two conjectures

generalizing our results to partial triangulations of the cartesian product of sev-

eral simplices.

2.1 On triangulations of products of point con-

figurations

In the Introduction, we mentioned that the composite nature of a simplicial com-

plex defining a hierarchical log-linear statistical model is reflected at the level

of its defining toric ideal as a product structure for the associated point con-

figuration. In parallel to the algebraic questions about the composite nature of

hierarchical log-linear models that were investigated by Engstŕ’om, Kahle and

Sullivant in [EKS11] (cf. question 3 in the introduction), we raised the following

general question in the Introduction:

Question 1: Let A = {1,2, . . . ,n} ⊂ Rd and A′ = {′1,
′
2, . . . ,

′
m} ⊂ R

d′ be

two point configurations. What is the relation between triangulations of their

cartesian product:

A×A′ := {(,′j ) :  ∈ A,
′
j ∈ A

′} ⊂ Rd+ed
′
,

and triangulations of A and A′?

Part of the difficulty in question 1 can be understood with the following rea-

soning. Let TA be a triangulation of A and T ′
A

be a triangulation of A′. The

cartesian product of TA and T ′
A

:

TA × T ′
A
:= {σ × τ : σ ∈ TA, and τ ∈ T ′

A
}

gives a polyhedral subdivision of the point configuration A × A′ into polyhedral

cells that are cartesian products of subsimplicies of A and of A′. Any triangula-

tion T of A×A′ that is obtained by refining TA×T ′
A

(i.e., further triangulating the

cells in TA × T ′
A

) has two projections T → TA and T → T ′
A

that are induced by the

natural affine projections π1 : A × A′ → A and π2 : A × A′ → A′. Therefore, T is

specified after saying how the cells in TA×T ′
A

are triangulated, and the combina-

torics of T can be understood, to some extent, already from the combinatorics

of triangulations of products of simplices.

However, not all triangulations of A×A′ have this structure; see the triangu-

lation of the 3-cube with 5 simplices in figure B.7 for an example.

In this case, we may still consider certain natural projections of T that high-

light the product structure of A×A′. Namely, recall from proposition B.2.18 that

if T is a triangulation of a point configuration A ⊂ Rd and F � A is a face of A,

then the restriction T |F is a well-defined triangulation of the point configuration

F. Then, it can be seen that a general triangulation T of the cartesian product
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A×A′ does not project to only one triangulation of each of A and A′, but rather

to a collection of them, gotten by restricting T to some faces of A×A′:
�

T |A×{w} : w vertex of A′
	

∼ triangulations of A
�

T |{v}×A′ : v vertex of A
	

∼ triangulations of A′.

More generally, associated to a triangulation T of A×A′ we can consider the

following collections of triangulations gotten by restricting T :

T ·×skel(A
′) :=

�

T |A×F : F ∈ skel(A′)
	

T skelk(A)×· := {T |G×A′ : G ∈ skelk(A)} ,

where skel(A′) is the set of faces of the point configuration A′ of dimension

smaller than or equal to . With the terminology from appendix B, these are tri-

angulations of the polyhedral complexes A×skel(A′) and skelk(A)×A′, respec-

tively (equivalently, partial triangulations of A × A′ with respect to

K := A× skel(A′) and K′ := skelk(A)×A′, respectively).

Our strategy to study triangulations of products of point configurations is

summarized by the following particularization of question 1:

Question 4: What are necessary and sufficient conditions on A,A′ and  for a

triangulation of the polyhedral complex A× skel(A′), where 0 ≤  < dim(A′), to

equal the restriction of a triangulation T of A×A′?

A solution to question 4 would give us a way to describe triangulations of

A × A′ as partial triangulations and, consequently, would say that the “compli-

catedness” of triangulations of A × A′ is dominated by the complicatedness of

triangulations of A× F, for F ∈ skel(A′).

Remark 2.1.1. We consider it worth pointing out the similarity of question 4 with

analogous questions in fiber bundle theory. Indeed, we can intuitively think of

a triangulation T ′ of A× skel(A′) as a “bundle of triangulations” over skel(A′).
Then, the fact that T ′ equals the restriction of some triangulation T of A × A′

can be interpreted as the bundle T ′ being “trivial”. As in bundle theory, we can

look for necessary conditons for a bundle T ′ to extend, along with corresponding

“obstructions”, that is, partial triangulations that do not extend to triangulations

of A × A′. This geometric picture provided the motivation for our investigation

in this chapter. 9

2.2 Cartesian products of simplices

We now introduce our main objects of study in this chapter, and fix the notation

and conventions to be used. All facts in this section are well-known, and can be

found, for instance, in [GKZ08, Stu96, DRS10].

Simplices are the first family of point configurations for which we carry out

the strategy outlined in section 2.1 for studying triangulations of cartesian prod-

ucts of point configurations. We have mentioned that triangulations of products
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of simplices are the building blocks of triangulations refining the product of two

triangulations. Therefore, understanding triangulations of products of simplices

is also of relevance for understanding triangulations of products of point config-

urations.

Recall from appendix B that the standard (n − 1)-dimensional simplex in Rn

consists of the independent points with coordinates {e1,e2, . . . ,en}, where e
denotes the -th standard basis vector of Rn. If  ⊂ [n] stands for some index

subset, we will refer to the face of Δn−1 spanned by the points labeled by  with

the symbol Δ.

In order to distinguish the two factors in the cartesian product Δn−1 × Δd−1,

the vertices in the first factor will be labelled by the indices 1,2, . . . , , . . . , n,

and those in the second factor by A,B, . . . , , . . . , d. Moreover, to simplify the

notation, we denote the points (e,e) of the point configuration Δn−1×Δd−1 :=
{(e,e) ∈ Rd+n : e ∈ Δn−1, e ∈ Δd−1} just by the indices (, ), or even by .

In view of the simplicial complex structure of triangulations of point config-

urations, a triangulation of Δn−1 × Δd−1 will be determined by a collection of

(n + d − 1)-element subsets of the index set { = (, ) : 1 ≤  ≤ n, A ≤  ≤ d},

defining a collection of (n + d − 2)-simplices that fulfill the properties in defini-

tion B.2.8.

For the study of triangulations of Δn−1 × Δd−1, there are various ways to

represent subsets (i.e. subconfigurations) of Δn−1×Δd−1, which aid considerably

when examining some of their features (e.g. independence, dependence). We

first present two common ones; the next section wil be devoted to the more

recent geometric representation of mixed subdivisions that was developed by

Santos in [San04].

Bipartite graph representation

Let Kn,d be the complete bipartite graph on n + d vertices with the bipartition

[n] ∪ [d], where the vertices in the first part are labelled by {1,2, . . . , n} and

those in the second part by {A,B, . . . , d}, as before. A point (, ) in Δn−1×Δd−1
is represented by the undirected edge (, ) in Kn,d; correspondingly, a subset σ

of Δn−1 × Δd−1 is represented by a subgraph of Kn,d. See figure 2.1.

One of the main advantages of the bipartite graph representation is the fol-

lowing characterization of dependent and independent subsets of Δn−1 × Δd−1.

Lemma 2.2.1 (Lemma 6.2.8 in [DRS10]). Let σ be a subset of points of Δn−1 ×
Δd−1. Then:

1. σ is affinely independent if and only if the corresponding subgraph of Kn,d
is a forest (i.e. contains no cycles).

2. σ is affinely independent and of maximal dimension if and only if the cor-

responding subgraph of Kn,d is a spanning tree.
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3. σ is a minimal affinely dependent set, that is, a circuit, if and only if the

corresponding subgraph of Kn,d is a cycle. Moreover, each part in the par-

tition of the circuit σ = (σ+,σ−) consist of all the edges that are at an even

distance from each other.

Proof. We only prove item 3, from which items 1 and 2 directly follow. For the

“if” direction, suppose σ is represented by a cycle C in Kn,d. To obtain the

minimal affine dependence among the elements in σ, assign alternatingly the

coefficients +1 and −1 to the points of σ corresponding to the edges encoun-

tered when traversing the cycle C. Since each vertex in C has degree 2 and C

has even length, every e appears exactly twice, with opposite signs, as points

(e,e) and (e,eb) of Δn−1 × Δd−1, so the assignment of coefficients yields a

minimal affine dependence. For the “only-if” direction, we prove by induction

on m := n+d that if σ is represented by forest, then σ is an independent subset

of Δn−1 × Δd−1. Indeed, for m = 2 the statement holds trivially. Suppose the

statement holds for m = n + d − 1, and assume without loss of generality that

σ corresponds to a spanning forest of Kn,d. Let  ∈ [n] be a vertex in the forest

with degree 1 (which exists since forest have no cycles). Its removal gives a

spanning forest of Kn−1,d, which represents an independent set by the induction

hypothesis. Since the edge of Kn,d connecting to vertex  represents the only

point (e,e) of Δn−1×Δd−1 having e in its first entry, we have that σ is also an

independent set.

Since all cycles in bipartite graphs are of even length, the next corollary is an

easy consequence of lemma 2.2.1

Corollary 2.2.2. The circuits of Δn−1 × Δd−1 are balanced, that is, they are all

of the type (k, k) (cf. section B.2), where 2 ≤ k ≤min(n, d).

Example 2.2.3. Let n = 4 and d = 5. In figure 2.1a, we see the representa-

tion of a 7-simplex as a spanning tree of K4,5. In figure 2.1b, we see a depen-

dent subset of Δ3 × Δ4. Note that it is not a circuit, whereas the subset C of

points spanned by the cycle of K4,5 (shown with colored edges) is. The par-

tition of this circuit is indicated by the coloring of the edges: C = (C+,C−) =
({(e4,eA), (e2,eC), (e1,eD)} ,{(e2,eA), (e1,eC), (e4,eD)}). 9

(a) A maximal independent subset of Δ3×Δ4. (b) A dependent subset of Δ3 × Δ4.

Figure 2.1: Bipartite graph and grid representations of subsets of Δn−1 × Δd−1.

An interesting fact that can be conveniently established with the bipartite

graph representation is the following one.
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Proposition 2.2.4 (Proposition 6.2.11 in [DRS10]). All the full-dimensional sim-

plices in Δn−1 × Δd−1 are unimodular, that is, they have the same euclidean

volume (in their affine span).

Proof. Again we prove this by induction on m = n + d − 2. The case m = 2

is easily seen to be true: all the triangles spanned by vertices of the regular

square conv({(e1,e), (e1,eb), (e2,e) , (e2,eb)}) have area 1
2 . Suppose the

statement is true for (n − 1, d) and (n, d − 1) with m > 2, and consider Δn−1 ×
Δd−1. By the induction hypothesis, all codimension-1 simplices on the facets of

Δn−1×Δd−1 have the same volume. The following two claims will yield the proof:

• Let F = Δ[n]\{}×Δd−1 be a facet of Δn−1×Δd−1. The perpendicular distance

between any point q ∈ (Δn−1×Δd−1)\F and the (n+d−3)-dimensional plane

of Rn+d spanned by F is the same. Indeed, it equals (q − p) · ŝ, where p

is any point on F and ŝ is the unit normal to (the plane spanned by) F

pointing towards the interior of Δn−1 × Δd−1 in the affine space spanned

by Δn−1 × Δd−1. We can always choose p so that (q − p) is of the form

(e−ek ,0), with k 6= . That the distance between any different q′ ∈ (Δn−1×
Δd−1)\F and F is the same then holds because we have (e − ej,0) · ŝ =
�

(e − ek ,0) + (ek − ej,0)
�

· ŝ = (e − ek ,0) · ŝ, since (ek − ej,0) · ŝ = 0 for

every j ∈ [n]\{}.

• For any two maximal simplices σ1,σ2 of Δn−1 × Δd−1, and facets τ1 � σ1

and τ2 � σ2, there is a maximal simplex σ of Δn−1 × Δd−1 such that it has

facets lying on the same facets of Δn−1×Δd−1 as τ1 and τ2. In the bipartite

graph representation, σ1 and σ2 are spanning trees, so each has at least

one vertex of degree one. Consider the vertices of Kn,d spanned by σ1 and

σ2 after removing from each the vertex of degree one. Extend any tree

spanning those vertices by adding edges to the two vertices of degree one

we removed. We obtain a spanning tree of Kn,d that represents a maximal

simplex with the desired property.

The first claim establishes the equality of the euclidean volume of any two sim-

plices with a facet lying on the same facet of Δn−1 × Δd−1. The second claim

extends the equality of the volumes to any pair of simplices of Δn−1 × Δd−1.

Remark 2.2.5. A further well-known property of maximal simplices of Δn−1×Δd−1
is that they are in fact totally unimodular. This means that for every simplex

{v1,v2, . . . ,vn+d−1} ⊂ Δn−1 × Δd−1 the vectors wk := vk − v1, where k ∈ [2, n+
d− 1] satisfy:

cone(w2,w3, . . . ,wn+d−1) ∩Zn+d−2 = N{w2,w3, . . . ,wn+d−1}

= {z2w2, z3w3, . . . , zn+d−1wn+d−1 : z2,

z3, . . . , zn+d−1 ∈ N} .

A consequence of this is that all the (minimal) arithmetic relations that may hold

among points of Δn−1×Δd−1 precisely coincide with the (minimal) affine depen-
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dencies of the point configuration (the correct statement is [Stu96, Proposition

8.11]), which by (the proof of) lemma 2.2.1 involve only coefficients +1 or −1
(here by arithmetic relations we mean those encoded in the toric ideal associ-

ated to the points of Δn−1 × Δd−1; see discussion before proposition A.3.1.) 9

Grid representation

Consider an rectangular array of squares of height n and width d, that we refer

to as the n×d grid Gn×d. A point (, ) in Δn−1×Δd−1 is represented by the square

in Gn×d in row  ∈ [n] and column  ∈ [d], where the indices increase southwards

and eastwards, as for an n × d matrix. A subset of Δn × Δd is represented as a

subset of squares in Gn×d as in figure 2.1, where these are shown grey.

Remark 2.2.6. Let C = (C+,C−) be a circuit in Δn−1 × Δd−1. In Gn×d, C can be

seen as a closed path whose corners alternatingly use squares (representing

points) from C+ and C−. This merely expresses the fact that, in order to have a

minimal affine dependence in Δn×Δd, for every point in C+ with first coordinate

e there must be exactly one further point in C− with first coordinate e, and

similarly for the points with second coordinate e. 9

While the grid representation is slightly less apt to see that a subset of Δn−1×
Δd−1 is dependent or independent, it is very useful to explicitly describe some

triangulations of Δn−1 × Δd−1. The triangulation below, for example, can be

considered the “simplest” triangulation of Δn−1 × Δd−1.

Definition 2.2.7 (Definition 6.2.12 in [DRS10]). A monotone staircase in the

n × d grid is a subset of n + d − 1 squares containing the squares (1, A) and

(n, d), such that if (, ) is in the monotone staircase (for  < n and  < d),

exactly one of {(,  + 1), ( + 1, )} is also in the staircase. Said differently, a

monotone staircase is a walk on the grid from (1, A) to (n, d) where only steps

southwards and eastwards are allowed.

Theorem 2.2.8 (Theorem 6.2.13 in [DRS10]). The set of monotone staircases

in a n × d grid gives the collection of (n + d − 2)-simplices of a triangulation of

Δn−1 × Δd−1, called the staircase triangulation of Δn−1 × Δd−1.

To illustrate this construction, in figure 2.2 we see the simplices in a staircase

triangulation of Δ2 × Δ4.

Figure 2.2: A staircase triangulation of Δ2 × Δ4
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Note that every linear ordering of the vertices of Δn−1 and of Δd−1 gives

a different staircase triangulation of Δn−1 × Δd−1, and therefore there are n!d!
2

different staircase triangulations of Δn−1 × Δd−1.

Example 2.2.9. Suppose n = 2. There are d! staircase triangulations of Δ1 ×
Δd−1, which are in bijection with the d! linear orderings of the labels of the

vertices of Δd−1. Moreover, all triangulations of Δ1 × Δd−1 are of this form

(see [DRS10, Proposition 6.2.3] or example 2.3.9 below for a proof of this fact).

9

Remark 2.2.10. The staircase triangulation of Δn−1 × Δd−1 has been commonly

used in algebraic topology to give a canonical structure of simplicial complex

to the cartesian product of two simplicial complexes [GKZ08, p. 248]. Also,

in topological combinatorics it can be interpreted as the order complex of the

poset n × d := {1 < 2 < . . . < n} × {1 < 2 < . . . < d}, whose elements are

{(, ) : 1 ≤  ≤ n, 1 ≤  ≤ d} and we have (, ) ≤ (j, b) if and only if  ≤ j and

 ≤ b. Indeed, recall that the order complex of n × d is the simplicial complex

whose base set are the elements of n×d and whose simplices are the chains (i.e.

totally ordered subsets) of n × d (which coincide with the monotone staircases

in a n× d grid). 9

Proposition 2.2.11. The staircase triangulation of Δn−1 × Δd−1 has
�n+d−2

n−1
�

full-dimensional simplices.

(See [DRS10, Section 6.2] for a proof)

Remark 2.2.12. Propositions 2.2.4 and proposition 2.2.11 together say that all

triangulations of Δn−1×Δd−1 have
�n+d−2

n−1
�

full-dimensional simplices. This prop-

erty is called equidecomposability, and already follows from the weaker fact that

all the circuits of Δn−1×Δd−1 are balanced [Bay93]. A very helpful consequence

of this property is that we can check whether a given collection of (distinct)

(n+ d− 2)-simplices of Δn−1 × Δd−1 cover the volume of Δn−1 × Δd−1 simply by

checking that the number of simplices is
�n+d−2

n−1
�

. 9

A third way to represent simplices in triangulations of Δn−1 × Δd−1 is as fine

mixed cells in fine mixed subdivisions of the dilated simplex nΔd−1.

2.3 Fine mixed subdivisions of dilated simplices

Observe that if P1 = P2 = . . . = Pn = Δd−1 are n copies of the standard (d − 1)-
simplex in Rd, then the following holds (see example B.4.2):

C






Δd−1, . . . ,Δd−1
︸ ︷︷ ︸

n times






= Δn−1 × Δd−1 ⊂ Rn+d,

where C(Δd−1,Δd−1, . . . ,Δd−1) denotes the n-fold Cayley embedding of Δd−1.
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In [San04], Santos observed that, with this identification, the Cayley trick

could be used to represent triangulations of the cartesian product Δn−1 × Δd−1
as fine mixed subdivisions of the dilated simplex:

nΔd−1 := Δd−1 + . . .+ Δd−1
︸ ︷︷ ︸

n times

.

An immediate consequence of this correspondence is that we have a repre-

sentation of triangulations of the (n+ d − 2)-dimensional object Δn−1 × Δd−1 as

fine mixed subdivisions of the (d− 1)-dimensional object nΔd−1. Santos investi-

gated further combinatorial and geometric aspects of fine mixed subdivisions of

nΔd−1, and was able to obtain several results about triangulations of products

of simplices that had gone unnoticed before. It is the purpose of this section

to expose some of Santos’ results in preparation for our treatment of partial

triangulations of the product of two simplices in section 2.4.

Before we start, let us present an example of the use of the Cayley trick for

products of simplices.

Example 2.3.1. Let n = d = 3. The following collection of 4-simplices is a

triangulation of Δ2 × Δ2:

σ1 = {1A,1B,1C,2A,3A} σ2 = {1B,2A,2B,2C,3B} σ3 = {1C,2A,3A,3B,3C}

σ4 = {1B,1C,2A,3A,3B} σ5 = {1B,1C,2A,2C,3B} σ6 = {1C,2A,2C,3B,3C}

According to the Cayley trick (theorem B.4.3), the fine mixed cells corresponding

to the simplices above are:

B1 = ABC+ A+ A B2 = B+ ABC+ B B3 = C+ A+ ABC

B4 = BC+ A+ AB B5 = BC+ AC+ B B6 = C+ AC+ BC,

where the labels of the Minkowski summands are 1, 2 and 3. Note that we

have used our convention for denoting subsimplices of Δ2 just by the labels

of the points; for instance, cell B1 above stands for the 2-dimensional point

configuration:

{eA,eB,eC}+ {eA}+ {eA} ⊂ R3.

The cells {B1, . . . ,B6} constitute a fine mixed subdivision of the dilated simplex

3Δ2, which is illustrated in figure 2.3a. In relation with the bipartite graph rep-

(a) A fine mixed subdivision of 3Δ2.

(b) The spanning tree in K3,3 representing

B5.

resentation, notice that the -th summand of a fine mixed cell B in a fine mixed
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subdivision M of nΔd−1 precisely says which vertices of the part [d] of Kn,d are

adjacent to vertex  ∈ [n]. The cell B5, for instance, has the representation as

spanning tree of K3,3 shown in figure 2.3b. One can thus think of the fine mixed

subdivision representation of a triangulation of Δn−1 × Δd−1 as a “geometriza-

tion” of its bipartite graph representation. 9

Remark 2.3.2. Under the Cayley trick, triangulations of Δn−1×Δ2 are in bijection

(up to symmetry and labeling) with lozenge tilings of the dilated regular triangle

nΔ2. These are tilings using unit upward triangles and unit rhombi , ,

, also called lozenges. Among other things, Santos used this correspondence

to obtain asymptotic formulas for the number of triangulations of Δn−1×Δ2 and

to establish the connectedness of the set of triangulations of Δn−1 × Δ2 under

geometric bistellar flips [San04] (see definition B.2.23). 9

Remark 2.3.3. Just as we identify Δn−1 × Δd−1 with the n-fold Cayley lifting of

Δd−1, we may identify it with the d-fold Cayley lifting of Δn−1. In this case, the

Cayley trick also establishes the equivalence of triangulations of Δn−1 × Δd−1
with fine mixed subdivisions of dΔn−1. Hence, the triangulation in example 2.3.1

also corresponds to the fine mixed subdivision of 3Δ2 with fine mixed cells:

B?1 = 123+ 1+ 1 B?2 = 2+ 123+ 2 B?3 = 23+ 3+ 13

B?4 = 23+ 13+ 1 B?5 = 2+ 13+ 12 B?6 = 2+ 3+ 123,

where the Minkowski summands of each cell are labelled by A, B, and C. This

fine mixed subdivision is displayed in figure 2.3.

Figure 2.3: A fine mixed subdivision of 3Δ2

We think of the fine mixed subdivisions of nΔd−1 and of dΔn−1 that corre-

spond to a given triangulation of Δn−1×Δd−1 as being dual to each other [San04,

AC13], and will denote the fine mixed subdivision of dΔn−1 dual to a fine mixed

subdivision M of nΔd−1 by M?. Clearly, every (d − 1)-dimensional fine mixed

cell B of M has a unique dual cell B? of M? which is (n − 1)-dimensional and

fine. 9

We argue that the representation of a triangulation of Δn−1 × Δd−1 as a fine

mixed subdivision of nΔd−1 gives a “geometric” description that is rich enough

to encode all the combinatorial information in the triangulation.

With a view towards justifying this assertion, let us begin with two observa-

tions about the geometry of mixed cells in a fine mixed subdivision of a dilated
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simplex, which the reader can inspect in example 2.3.1. Let B be such a cell of

dimension d− 1 in a fine mixed subdivision M of nΔd−1.

First, B has a “position” inside nΔd−1, which is specified by a weak inte-

ger composition of n − 1 of length d. This is a tuple q(B) = (q1(B), q2(B), . . . ,
qd(B)) ∈ Nd such that

∑d
=1 q(B) = n − 1, where q(B) is the -th barycentric

coordinate of B nΔd−1. To obtain it, we simply count the number of times e
appears among all the Minkowski summands of B and subtract one. We call

q(B) the position vector of B.

Second, note that since the Minkowski summands of B all lie on indepen-

dent affine spaces, B has the form of (is combinatorially equivalent to – see

proposition B.3.1) a cartesian product of several simplices: there is one factor

for every summand of B (with possibly some factors of dimension zero). There-

fore, we can define the “shape” of B as a weak integer composition r(B) =
(r1(B), r2(B), . . . , rn(B)) ∈ Nn of d − 1 of length n, where r(B) stands for the di-

mension of the -th Minkowski summand of B. For example, the possible shapes

(modulo labeling) for 2-dimensional fine mixed cells in a fine mixed subdivision

of nΔ2 are a triangle and a rhombus (or lozenge); in a fine mixed subdivision of

nΔ3, the 3-dimensional fine mixed cells can be tetrahedra, triangular prisms or

parallelepipeds. We call r(B) the shape vector of B.

Remark 2.3.4. It follows from the definition of duality that, if B? is the cell in M?

dual to B in M, then the shape and position vectors of B? are related to those

of B by:

r(B?) = q(B)

q(B?) = r(B)

9

In lemma 2.3.5 below, we prove that the notions of position and shape of a

full-dimensional fine mixed cell are actually well defined.

Lemma 2.3.5. Let M be a fine mixed subdivision of nΔd−1, and let B,B′ ∈
M be such that q(B) = q(B′) or r(B) = r(B′); i.e. B and B′ have the same

combinatorial shape or the same position inside nΔd−1. Then B = B′.

Proof. Suppose B and B′ are two different full-dimensional cells in M such that

q(B) = q(B′), and denote by σ and σ′ the full-dimensional simplices of Δn−1 ×
Δd−1 that B and B′ represent under the Cayley trick. Using induction on the

number ℓ of points by which B and B′ differ, we will prove that for every w ∈
σ′\σ, there is a circuit C = (C+,C−) of Δn−1×Δd−1, with w ∈ C−, on which σ and

σ′ overlap. This is sufficient to contradict the assumption that M represents a

legal triangulation of Δn−1 × Δd−1.

To this end, assume first that ℓ = 1, that is, σ′ = σ\{v1} ∪ {w1}. Let

C1 = (C+1 ,C
−
1 ) be the unique circuit contained in the minimally dependent set

σ ∪ σ′ = σ ∪ {w1}, and view C1 as an even cycle in Kn,d. Note that by the

symmetry between σ and σ′, C1 must use the edges representing v1 and w1.
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Since q(B) = q(B′), v1 and w1 are represented in nΔd−1 by different points in

the same summand of B and of B′ which, in accordance with the remark at the

end of example 2.3.1, correspond to adjacent edges in C1; in particular, v1 and

w1 are within an odd distance from each other in C1. Given that v1 and v2 are

the only points by which σ and σ′ differ, the cycle C1 can be traversed using

edges (representing points) from σ and from σ′ alternatingly, that is, C+1 ⊂ σ

and C−1 ⊂ σ′, where we set v1 ∈ C+1 and w1 ∈ C−.

Now suppose ℓ = o, that is, σ′ = σ\{v1, . . . ,vo}∪{w1, . . . ,wo}, and consider

the full-dimensional cell B′′ represented by the simplex σ′′ = σ\{v1, . . . ,vo−1}∪
{w1, . . . ,wo−1}, so that σ′ = σ′′\{vo}∪{wo}. The induction hypothesis asserts

that for each  ∈ [o−1] there is a circuit eC = ( eC+ ,
eC− ), with w ∈ eC− , on which σ

and σ′′ overlap. Denote by eCo the unique circuit on the minimally independent

set σ′′ ∪ σ′ = σ′′ ∪ {wo}, for which we set vo ∈ eC+o ⊂ σ′′ and wo ∈ eC−o ⊂ σ′.

The following two reasons may prevent the collection of circuits { eC1, . . . , eCo−1, eCo}

from satisfying the induction hypothesis, namely that σ and σ′ overlap on every

such circuit:

• eC+o 6⊂ σ, i.e., there is some subset {w1, . . . ,wp} ⊂ eC+o ,

• eC− 6⊂ σ′, i.e., vo ∈ eC− for some  ∈ [o− 1].

To deal with these situations, we first get rid of the {w1, . . . ,wp} ⊂ eC+o by adding

the minimal affine dependences inducing the circuits eC1, . . . , eCp, eC+o together.

This results in an affine dependence c? that may not be minimal, but by propo-

sition B.2.6 can be decomposed into minimal affine dependencies. Let Co be

the circuit induced by the minimal dependence such that wo ∈ C−o , which ex-

ists since wo appears only once among all the minimal dependences that were

added. Observe that the circuit Co has the property that C+o ⊂ σ and C−o ⊂ σ′

(since all the v’s and w’s that may appear after the addition can only end up

within C+o and C−o , respectively).

Now we proceed to remove the vo that may lie within some of the eC− (for

some  ∈ [o − 1]). This we do by adding the affine dependencies inducing the

circuits eC and Co. In the resulting, perhaps non-minimal, affine dependence,

we let C be the circuit induced by the minimal dependence such that w ∈ C− .

Note that there is no risk of accidentally disposing of w in the addition, because

C+o ⊂ σ and C−o ⊂ σ′ (in other words, there are no w’s inside C+o ). The simplices

σ and σ′ overlap on every circuit in the collection {C1, . . . ,Co−1,Co}, thus the

proof is concluded.

It should come as no surprise that no two full-dimensional cells in a fine

mixed subdivision M of nΔd−1 may “occupy” the same position in the dilated

simplex. On the other hand, the statement that no two full dimensional cells

may have the same combinatorial shape is not directly evident from the primal

representation M, which somehow conceals the symmetry between the factors

in Δn−1 × Δd−1. Despite this “asymmetry”, the geometry of fine mixed subdivi-

sions of nΔd−1 is so constrained that we can always recover the more symmetric
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representation as a triangulation of Δn−1 × Δd−1. Part of the constraint results

from the interesting fact that actually all possible positions and combinatorial

shapes appear in a fine mixed subdivision of nΔd−1.

Proposition 2.3.6. Let M be a fine mixed subdivision of nΔd−1. The full-

dimensional cells in M are in bijection with the sets of weak integer compo-

sitions:

Λd,n−1 :=







(q1, q2, . . . , qd) ∈ Nd :
d
∑

j=1

qj = n− 1







and

Λn,d−1 :=

(

(r1, r2, . . . , rn) ∈ Nn :
n
∑

=1

r = d− 1

)

.

Proof. The cardinalities of the sets of weak compositions Λn,d−1 and Λd,n−1 equal

both
�n+d−2

n−1
�

(see [Sta11, p.25]), which coincides by proposition 2.2.11 with the

number of full-dimensional simplices in a triangulation of Δn−1×Δd−1. The state-

ment follows from the Cayley trick in theorem B.4.3 and lemma 2.3.5, which

says that the mappings q and r in:

Λd,n−1
q
←−

�

full-dimensional

cells in M

�

r−→ Λn,d−1, (2.1)

are injective.

Corollary 2.3.7. The map that sends a triangulation of Δn−1 × Δd−1 to the

unique bijection Λd,n−1↔Λn,d−1 induced according to proposition 2.3.6 is injec-

tive.

Remark 2.3.8. It is an interesting open problem to combinatorially characterize

those bijections between Λn,d−1 and Λd,n−1 that arise from fine mixed subdi-

visions of nΔd−1, thus developing a fourth representation of triangulations of

Δn−1 × Δd−1 9

Example 2.3.9. Let n = 2; there are exactly d! triangulations of Δ1 × Δd−1.

Indeed, a triangulation of Δ1 × Δd−1 defines a bijection between the vertices of

Δd−1 (that is, Λd,1) and Λ2,d−1 = {(, y) ∈ N2 : + y = d− 1}. Since there are d!

such bijections , we have an upper bound of d! for the number of triangulations

of Δ1×Δd−1 (cf. 2.2.9). But we know that there are at least d! such triangulations

(corresponding to the staircase triangulations).

Alternatively, the triangulations of Δ1 × Δd−1 are in bijection with the sub-

divisions of the dilated edge dΔ1. Every maximal cell in such a subdivision is

an unmixed segment, and the subdivision is specified by the positions of the d

unmixed segments along dΔ1 (for which there are d! possibilities). 9

Let B be a fine mixed cell in nΔd−1. To record the indices that appear in the

summands of B of positive dimension, which correspond to non-zero coordinates

of the shape vector q(B), we introduce the following notation.
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Definition 2.3.10. Let B be a full-dimensional cell in a subdivision M of nΔd−1.

By the stem of B, written ϑ(B), we mean the collection of Minkowski summands

of B of positive dimension. The support of ϑ(B), written spp(ϑ(B)), is the

subset of [n] consisting of the indices that label the Minkowski summands in

ϑ(B), i.e., the indices of the Minkowski summands of B of positive dimension.

The stem of a full-dimensional fine mixed cell in a fine mixed subdivision of a

dilated simplex can be thought of as its “combinatorial type”. It follows directly

from lemma 2.3.5 that no two full-dimensional fine mixed cells in a fine mixed

subdivision may have the same combinatorial type.

Remark 2.3.11. Let M be a fine mixed subdivision of nΔd−1. Proposition 2.3.6

says that n full-dimensional fine mixed cells in M have the simplest stem pos-

sible: a single (d − 1)-simplex. In [AB07, AC13] these cells were called the

unmixed simplices of M; they have the importance that choosing a labeling

for them completely specified the labeling of M. This is made clear in theo-

rem 2.3.12 below. 9

So far we have seen how some geometric features of the cells in a fine mixed

subdivision of a dilated simplex are constrained by the fact that they represent

subsimplices in the cartesian product of two simplices. One of the punch-lines

in the theory of fine mixed subdivisions is the following result of Santos, which

says that already the requirement that some fine mixed cells fit in and fill a

dilated simplex guarantees that the geometric polyhedral subdivision resulting

always correspond to a fine mixed subdivision that represents, up to labeling,

a triangulation of the product of two simplices.

Theorem 2.3.12 (Theorem 2.6 in [San04]). Let S be a polyhedral subdivision

of nΔd−1, and assume that every cell of it can be written as a Minkowski sum of

faces of Δd−1 lying on independent affine spaces. Then, up to reordering, there

is a unique fine mixed subdivision M of nΔd−1 consistent with S.

We explain how to obtain the labeled mixed subdivision M from S [San04].

First, we label all unmixed simplices in S, of which there are n, with the indices

from 1 to n; this corresponds to identifying them by the Cayley trick with copies

of the simplex {e} × Δd−1, 1 ≤  ≤ n, inside the product Δn−1 × Δd−1. We

can recover the -th summand of every cell by induction on its codimension as

follows.

Suppose we already know the -th summand for all cells for which that sum-

mand has dimension d′ + 1 < d− 1, and consider the (d′ + 1) dimensional sum-

mand B for a cell B ∈ S, together with some d′ dimensional face B′ ≺ B. We

want to determine which cells of S have B′ as their -th summand.

Since the Minkowski summands of every cell lie on independent affine spaces,

B has a face F parallel to B′ . Every cell in S sharing the face F with B will have

B′ contained in its -th summand, so its -th summand is either of dimension

d′′ > d′ + 1, or equals B′ . Moreover, if a full-dimensional cell B(1) of S has B′
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as its -th summand, then so does every full-dimensional cell B(2) sharing a face

parallel to B′ with B(1).

Rather than presenting a proof of theorem 2.3.12, which is available in [San04],

we illustrate its geometric content in the following example.

Example 2.3.13. (a) Consider the polyhedral subdivision S1 of 5Δ2 displayed

in figure 2.4b. After fixing a labeling for each unmixed triangle, we deter-

mine which polyhedral cells in S1 have as Minkowski summand an edge of

a given unmixed triangle. This is shown in figure 2.4b with the matching

coloring of the edges in S1.

(b) Let S2 be the polyhedral subdivision of 3Δ3 displayed in figure 2.4a. The

cells having a face of the unmixed tetrahedron with label 1 as Minkowski

summand are colored blue; cells where the summand has higher codimen-

sion have a lighter coloring.

(a) Edges of S1 with an edge of

an unmixed triangle as Minkowski

summand.

(b) Cells with a face of the unmixed tetrahe-

dron 1 as a Minkowski summand (with the

exception of 0-dimensional faces).

Figure 2.4: The inductive process in the proof of theorem 2.3.12

9

We have found that the representation of triangulations of products of sim-

plices as fine mixed subdivisions of dilated simplices provides a geometric in-

tuition that is useful when considering partial triangulations. This will become

more apparent in our development of partial triangulations in section 2.4 next.

For now, note that with theorem 2.3.12 one can easily generate triangulations

of Δn−1 × Δ3 by “inspection”, drawing the corresponding fine mixed subdivision

of nΔ3.

2.4 Triangulations of Δn−1 × skelk−1(Δd−1)

From this point on, since we always deal with triangulations of Δn−1×Δd−1, which

correspond to fine mixed subdivisions of nΔd−1, we will drop the adjective “fine

mixed”, and write only “subdivisions” when referring to fine mixed subdivisions

of nΔd−1. Likewise, when writing “cells”, we mean fine mixed cells of a fine

mixed subdivision.
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Let n, d, k be natural numbers such that n, d, k > 1 and k < d. With the

Cayley trick, we may regard a triangulation of the polyhedral complex Δn−1 ×
skelk−1(Δd−1):

• as a subdivision of the (k−1)-skeleton of the dilated simplex skelk−1(nΔd−1),
that is, a collection of subdivisions of the (k − 1)-faces of nΔd−1, or

• as a collection of
�d
k
�

subdivisions of kΔn−1, where the Minkowski sum-

mands in each subdivision are labeled by the indices in a k-element subset

of [d].

Since these are representations of a partial triangulation of Δn−1 × Δd−1, in

accordance with definition B.2.19 in the appendix, both satisfy some “consis-

tency requirements”, namely that the subdivisions agree on mutual faces of

skelk−1(nΔd−1) in the first representation, and that subdivisions of kΔn−1 agree

on the intersections of k-element subsets of [d] in the second representation.

Ocasionally we will refer to any of these representations as partial subdivision

of nΔd−1.

Remark 2.4.1. It is important to bear in mind that the notation skelk−1(nΔd−1)
refers throughout to the polyhedral complex Δn−1 × skelk−1(Δd−1), and not to

the (k − 1)-skeleton of Δn−1 × Δd−1. When k = d− 1, we will also write ∂(nΔd−1)
for Δn−1 × ∂(Δd−1): the boundary of the dilated simplex. 9

2.4.1 k = 2: systems of permutations

We start by reviewing the results around partial triangulations of products of

simplices in [AC13, San12]. We introduce them with an example.

Example 2.4.2. Let T ′ be the triangulation of Δ1 × ∂(Δ2) shown in figure 2.5a.

There is no triangulation of Δ1×Δ2 that induces the triangulation T ′ on the faces

in Δ1 × ∂(Δ2). Indeed, if there was such a triangulation, then the 2-simplices

τ1 = {1B,2A,2B} and τ2 = {1B,1C,2B} would be two facets of the 3-simplex

τ1 ∪τ2. Otherwise, if σ1 ⊃ τ1 and σ2 ⊃ τ2 were different 3-simplices, then each

of σ1 or σ2 would contain an edge whose relative interior intersects the relative

interior of an edge of τ2 and of τ1, respectively. However, the relative interior

of the edge {1A,2B} of τ1 ∪ τ2 intersects that of the edge {1B,2A} in T ′,
contradicting property (HP) in B.2.8 (see discussion preceding lemma B.2.20).

In other words, T ′ does not extend to a triangulation of Δ1 × Δ2.

9

The situation in example 2.4.2 is probably the best known instance of a non-

extendable partial triangulation, and has been called the “mother of all exam-

ples” in the triangulations literature.

We examine it from the perspective of subdivisions. In figure 2.5b we see the

subdivision M′ of ∂(2Δ2) corresponding to the triangulation T ′ in figure 2.5a.

Observe that the labels {1,2} of the unmixed simplices in the subdivisions of
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(a) A non-extendable

triangulation of Δ1 ×
∂(Δ2)

(b) Subdivision of ∂(2Δ2) corresponding to the partial triangu-

lation triangulation to the left.

Figure 2.5: Triangulation of Δ1 × ∂(Δ2)

the dilated edges in ∂(2Δ2) appear cyclically as we “go around” the dilated

triangle.

In [AC13], Ardila and Ceballos set out to characterize triangulations of Δn−1×
Δd−1 in terms of the triangulations of Δn−1 × skel1(Δd−1) they induce by restric-

tion. Starting from the observation in the previous paragraph, they identified

an appropriate generalization of the cyclic situation, and were able to formu-

late a necessary acyclicity condition, for arbitrary n and d, for a triangulation of

Δn−1 × skel1(Δd−1) to extend.

Ardila and Ceballos proved that this acyclicity condition was also sufficient to

guarantee extendability of a triangulation of Δn−1×skel1(Δd−1) for min{n, d} up

to 3, and conjectured this to be also the case for any n and d (conjecture 2.4.7

below). Shortly after, Santos presented a counterexample to the acyclicity con-

jecture in [San12], which motivated the investigation in this chapter.

Recall that, by the Cayley trick, triangulations of Δn−1 × Δ1 are in bijec-

tion with subdivisions of the dilated segment nΔ1, which are specified by an

ordering of [n] along nΔ1 (see examples 2.2.9 and 2.3.9). Ardila and Cebal-

los observed that the restriction of a triangulation of Δn−1 × Δd−1 to the prism

faces {Δn−1 × E : E edge in skel1(Δd−1)} could therefore be seen under the Cay-

ley trick as a collection of permutations written along the edges of the dilated

simplex nΔd−1. They termed this a system of permutations on skel1(nΔd−1).
With this, the situation in figure 2.5b can be described as a cyclic system of

permutations of {1,2} along the edges of 2Δ2.

Definition 2.4.3 (Definition 5.5 in [AC13]). Let ρ be a system of permutations

of [n] along the edges of nΔd−1. For a pair of indices , j ∈ [n] ( 6= j), define

an oriented graph Gj(ρ) as follows: its vertices are the vertices of nΔd−1, and

there is an oriented edge  → b if the index  appears before the index j in the

permutation of ρ along the ordered edge (, b). The system of permutations ρ

is said to be acyclic if, for every , j ∈ [n], the directed graph Gj(ρ) is acyclic.

Remark 2.4.4. In the definition of a system of permutations, we write ordered

edge to emphasize that the permutations should be regarded as an ordered
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sequence of the numbers in [n] written along an edge (, b). That is, the per-

mutation along the edge (b, ) is the reverse of the one along the edge (, b). 9

Remark 2.4.5. Among other things, Ardila and Ceballos showed in [AC13] that

an acyclic system of permutations on skel1(nΔd−1) uniquely specifies the posi-

tions of the n unmixed simplices in nΔd−1. However, this information does not

suffice to uniquely determine the extended subdivision, provided one exists; see

remark 2.4.13. The two cases are illustrated in figure 2.6: the two subdivisions

Figure 2.6: An acyclic system of permutations may or may not determine a

unique subdivision.

in the left induce the same system of permutations, whereas the subdivision in

the right is the unique extending the system of permutations. 9

Theorem 2.4.6 (Theorem 5.6 in [AC13]). Let M be a fine mixed subdivision

of nΔd−1, and ρ(M) be the associated system of permutations obtained by re-

striction of M to skel1(nΔd−1). Then ρ(M) is acyclic. If min{n, d} ≤ 3, then the

converse is also true.

Proof. Suppose indices , j ∈ [n] define a graph Gj(ρ) with a cycle around the

vertices , b, c of nΔd−1. The restriction of ρ gives a triangulation of Δ{,j} ×
∂(Δ{,b,c}) that is not extendable. However, M represents a triangulation of

Δn−1 × Δd−1 where, in particular, all its Δ1 × Δ2 faces are properly triangulated,

in contradiction to the assumption that the triangulation of Δ{,j} × ∂(Δ{,b,c})
cannot be extended. The proof of the second statement is omitted (cf. [AC13,

Theorem 4.2]).

The conjecture Ardila and Ceballos proposed was the following.

Conjecture 2.4.7 (Acyclicity conjecture). Let ρ be an acyclic system of permu-

tations on skel1(nΔd−1). Then there is a fine mixed subdivision M of nΔn−1 such

that ρ equals the restriction of M to skel1(nΔd−1).

Remark 2.4.8. In connection with the framework for triangulations of products

of point configurations suggested in section 2.1, we can assert that conjec-

ture 2.4.7 might have been fairly optimistic. Indeed, it only excludes the ob-

structions to extendability that arise at the level of Δn−1× skel1(Δd−1) whereas,

in general, higher-dimensional obstructions at the level of Δn−1 × skelk−1(Δd−1)
may also exist. One interpretation of the family of non-extendable triangula-

tions of Δn−1 × ∂(Δn) in theorem 2.4.32 ahead is precisely as an infinite family

of obstructions for extendability of a triangulation of Δn−1 × skeln−1(Δd−1). This

40



CHAPTER 2. PARTIAL TRIANGULATIONS OF Δn−1 × Δd−1

sustains the bundle-theoretic intuition that a complete characterization of ex-

tendability of partial triangulations of Δn−1 × Δd−1, for arbitrary n and d, cannot

be achieved by a finite list of excluded obstructions. 9

Santos’ counterexample to the acyclicity conjecture 2.4.7 in [San12] has as

a main ingredient the construction of a subdivision M′ of ∂(3Δ3) (resp. tri-

angulation of Δ2 × ∂(Δ3)) that does not extend to a subdivision of 3Δ3 (resp.

triangulation of Δ2 × Δ3). The partial subdivision M′ is not uniquely determined

by an acyclic system of permutations; however, this feature can be achieved by

“embedding” M′ in a non-extendable subdivision of ∂(5Δ3) that is completely

determined by a system of permutations on 5Δ3. Thus, one obtains an acyclic

system of permutations which does not correspond to any subdivision of 5Δ3.

Instead of reproducing that counterexample here, we present a smaller coun-

terexample –the smallest possible in view of theorem 2.4.6– which was con-

structed in collaboration with César Ceballos and Arnau Padrol in [CPS13]. Our

counterexample also relies on a non-extendable triangulation of Δ2 × ∂(Δ3),
which belongs to the family of non-extendable triangulations of Δn−1 × ∂(Δn)
that will be presented in generality later on in section 2.4.

The construction requires a result from [AC13] concerning the a notion of

duality for subdivisions to systems of permutations.

Lemma 2.4.9. Let ρ be an acyclic system of permutations on the edges of

nΔd−1. Then there is a unique acyclic system of permutations ρ? on the edges

of dΔn−1 dual to ρ. ρ and ρ? are related by the rule:  lies before j along the

(ordered) edge (, b) of nΔd−1 if and only if  lies before b along the (ordered)

edge (, j) of dΔn−1.

Proof. See [AC13, Section 6.2].

Lemma 2.4.10. The subdivision M′ of ∂(3Δ3) in figure 2.7 does not extend to

a subdivision of 3Δ3.

Figure 2.7: A non-extendable subdivision of ∂(3Δ3)

Proof. For the proof we will repeat Santos’ argument in his construction in [San12,

Proposition 3.1], postponing a more general idea to section 2.4. If M′ extended,

then the two rhombic cells colored yellow in figure 2.7 would be facets of a cu-

bic cell with Minkowski sum decomposition B = CD + AB + BC, whose dual cell

has Minkowski sum decomposition B? = 2 + 23 + 13 + 1 (a proof of this follows

from lemma 2.3.5). Using lemma 2.4.9, we obtain the dual acyclic system of
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permutations ρ(M′)? that uniquely determines the subdivision M? of 4Δ2 dis-

played in figure 2.8a. However, there is not such a cell B? in M?. We conclude

(a) A subdivision M? of

4Δ2 determined by its sys-

tem of permutations.

(b) Extendable subdivision of ∂(3Δ3) induced by the

subdivision dual to M?.

Figure 2.8: Proof of lemma 2.4.10.

that M′ cannot correspond to any subdivision of 3Δ3, i.e., the corresponding

triangulation of Δ3 × ∂(Δ3) does not extend.

Remark 2.4.11. Note that the subdivision of 3Δ3 dual to M? in figure 2.8a in-

duces by restriction the subdivision of ∂(3Δ3) depicted in figure 2.8b, which

differs from the one in figure 2.7 only in the subdivision of the face spanned

by the vertices {A,B,C}. We will again encounter this pattern in our family of

non-extendable subdivisions of ∂(nΔn) in section 2.4. 9

Proposition 2.4.12. The acyclic system of permutations ρ in figure 2.9 de-

termines uniquely a non-extendable subdivision N ′ of ∂(4Δ3). Thus, there is

no subdivision of 4Δ3 (that is, triangulation of Δ3 × Δ3) that induces the acyclic

system of permutations ρ.

Figure 2.9: A smallest counterexample to conjecture 2.4.7.

Proof. If N ′ extended, so would the subdivisions of ∂(3Δ3) gotten by eliminating

the fourth Minkowski summand from the cells in N ′. This corresponds to restrict-

ing the triangulation of Δ3 × ∂(Δ3) to the faces in Δ{1,2,3} × ∂(Δ{A,B,C,D}). How-

ever, this yields the non-extendable subdivision of ∂(3Δ3) from lemma 2.4.10

(in fact, elimination of any summand gives a non-extendable subdivision of 3Δ3
of the same sort as that of lemma 2.4.10), hence N ′ does not extend.

Remark 2.4.13. That the systems of permutations in lemma 2.4.10 and proposi-

tion 2.4.12 completely specify a unique subdivision of a dilated simplex has been
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established by “eye”. It remains an open problem to characterize those systems

of permutations on nΔd−1 that uniquely determine a subdivision of nΔd−1. 9

2.4.2 n ≤ k < d: necessary and sufficient conditions

After having presented the negative results for the cases n = 2, d = 3 in ex-

ample 2.4.2 and for n = 3, d = 4 in lemma 2.4.10, we ask whether there are

positive results at all:

Question 5: Are there conditions on n and d and k such that every triangulation

of Δn−1 × skelk−1(Δd−1) extends?

This is a particularization of question 4 in section 2.1, and an affirmative

answer would say that, under those conditions, every triangulation of Δn−1 ×
Δd−1 is gotten by appropriately gluing together triangulations of Δn−1×Δk−1. In

other words, an affirmative answer would assert that triangulations of Δn−1 ×
Δd−1 cannot be “much more complicated” than triangulations of Δn−1 × Δk−1.

In this section, we present one of the most important results in the thesis,

namely a precise affirmative answer to question 5. We prove that if n < k < d,

every triangulation of Δn−1×skelk−1(Δd−1) extends to a unique triangulation of

Δn−1×Δd−1. This is derived as a corollary of the characterization of extendability

of triangulations of Δn−1 × ∂(Δd−1) when n < d− 1.

A second important result in this thesis is that the bound n < k is tight,

in the sense that if k = n, there are non-extendable triangulations of Δn−1 ×
skeln−1(Δn). Although this general statement was to be expected in view of the

situations for n = 2 in example 2.4.2 and for n = 3 in lemma 2.4.10, there was

not an explicit construction of such non-extendable triangulations, for arbitrary

n, in the literature.

Positive results

We start with two useful observations.

Proposition 2.4.14. Let B be a cell in nΔd−1, then 1 ≤ |spp(ϑ(B))| ≤ d− 1.

Proof. The weak integer composition r(B) ∈ Λn,d−1 of d − 1 of length n has at

least one non-zero entry (equal to d− 1, when B is an unmixed simplex) and at

most d− 1 non-zero entries (all equal to one, when B is an (d− 1)-cube).

Lemma 2.4.15. Suppose T1 and T2 are different triangulations of Δn−1 × Δd−1,

where n < d, and denote by T ′1 and T ′2 their restrictions to the faces in Δn−1 ×
skeln−1(Δd−1). Then T ′1 6= T ′2 .

Proof. Suppose on the contrary that T1 6= T2 but T ′1 = T ′2 . There is at least one

simplex σ ∈ T1 which does not belong to T2. By lemma B.2.20, this means that

there is one simplex σ′ ∈ T2 that overlaps with σ on a circuit C; that is, such

that C+ ⊆ σ and C− ⊆ σ′. Since all the circuits of Δn−1 × Δd−1 are at most of
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type (n, n) (corollary 2.2.2), C is contained in a face F of Δn−1 × skeln−1(Δd−1).
But then the restriction σ|F does not belong to F, that is, σ /∈ T ′2 and T ′1 6= T ′2 :

contradiction.

Remark 2.4.16. Observe that lemma 2.4.15 fails if we instead consider the re-

striction of a triangulation of Δn−1 × Δd−1 to Δn−1 × skeln−2(Δd−1). This can be

checked by restricting the subdivisions of 3Δ2 at the left and center in figure 2.6

to collections of subdivisions of 2Δ2. By duality, for n = 3 this is merely the

statement from remark 2.4.5 that a system of permutations on 3Δ2 does not

necessarily specify a subdivision of 3Δ2. 9

Remark 2.4.17. Lemma 2.4.15 can also be easily proven in the language of

mixed subdivisions using lemma 2.3.5. Indeed, let M1 and M2 be the sub-

divisions of dΔn−1 corresponding to T1 and T2 and M′
1 and M′

2 be collections

of subdivisions of nΔn−1 indexed by n-subsets of [d] corresponding to T ′1 and

T ′2 . Assume that M′
1 = M′

2 but M1 6= M2; then, there will be a cell B1 ∈ M1

that is not present in M2. In accordance with proposition 2.3.6, there is a

cell B2( 6= B1) ∈ M2 with q(B2) = q(B1), and by proposition 2.4.14, there is

at least some  ∈
�[d]
n
�

such that spp(ϑ(B1)) ⊂  and B1| 6= B2| holds (cf.

proposition B.3.8 for the definition of restriction of subdivisions). But we have

q(B1|) = q(B2|) (seen as compositions of n−1 of length n) whereas we assume

M′
1| =M′

2|, in contradiction with lemma 2.3.5. 9

Corollary 2.4.18. Let T ′ be a triangulation of Δn−1 × skelk−1(Δd−1), where

k ≥ n. If T ′ extends to a triangulation of Δn−1 × Δd−1, then this triangulation is

uniquely determined by T ′.

Proof. This is almost a restatement of lemma 2.4.15, after realizing that T ′ in-

duces by restriction a unique triangulation of Δn−1 × skeln−1(Δd−1).

Remark 2.4.19. These results should be contrasted with the analogous fact that

holds for triangulations of Δ1×Δd−1. Here, there are 2(
d
2) ways to triangulate the

faces in Δ1×skel1(Δd−1). Of these, only the d! triangulations that correspond to

permutations of [d] on dΔ1 (equivalently, to acyclic systems of permutations of

{1,2} on the edges of 2Δd−1) extend to a triangulation of Δ1×Δd−1, which they

determine uniquely. Unfortunately, for n > 2 we lack such a succinct description

of triangulations of Δn−1×skeln−1(Δd−1) like permutations of [d] for n = 2, which

allow us to formulate the acyclicity condition. 9

Corollary 2.4.18 says that when n < d, there is exactly one collection of full-

dimensional simplices of Δn−1 × Δd−1 compatible with a given triangulation of

Δn−1×skeld−1(Δn−1) which, in the extendable case, gives the extended triangu-

lation of Δn−1×Δd−1. We show know how to actually build this unique collection

of candidate simplices of Δn−1×Δd−1. It turns out that It is possible to formulate

a precise necessary and sufficient condition that establishes the extendability

or not of T ′ in terms of these candidate simplices.
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We consider that the description is most clear using the representation as

fine mixed subdivisions. Recall from the beginning of the section that a triangu-

lation of Δn−1 × skelk−1(Δd−1) can be identified with a collection of subdivisions

of kΔn−1:

M′ :=

¨

M subdivision of kΔn−1 :  ∈
�

[d]

k

�«

, (2.2)

where the Minkowski summands of the cells in M are labeled by the indices in ,

and any two subdivisions in M′ agree on their restrictions to the intersection of

their index sets (that may be empty). We will call such a collection a consistent

collection of subdivisions.

Under the hypothesis n ≤ k < d, let us observe that proposition 2.4.14 implies

that for every full-dimensional cell B in a subdivision M of dΔn−1, there are at

least 2 ≤
�d−n+1
k−n+1

�

subsets , J ∈
�[d]
k
�

such that B| and B|J are full-dimensional

cells in the restricted subdivisions M| and M|J.
On the same account, if M′ is a consistent collection of subdivisions as (2.2)

that extends, there are at least 2 ≤
�d−n+1
k−n+1

�

subsets , J ∈
�[d]
k
�

such that and

B ∈ M and B′ ∈ MJ are full-dimensional cells of kΔn−1 and ϑ(B) = ϑ(B′). It

follows by lemma 2.4.15 that B and B′ must be restrictions of a unique cell eB in

dΔn−1.

Hence, we may define a stem-equivalence relation among the full-dimensional

cells of kΔn−1 in the subdivisions in M′ by setting B ∈ M ∼ B′ ∈ MJ when-

ever ϑ(B) = ϑ(B′). Furthermore, to every stem-equivalence class ϑ(B) corre-

sponds the unique full-dimensional cell eB of dΔn−1 such that ϑ( eB) = ϑ(B). The

cell eB is obtained by “merging” the Minkowski sum decompositions of all full-

dimensional cells B in M′ with ϑ(B) = ϑ( eB) and is called the candidate cell

associated to ϑ(B). By lemma 2.4.15 and the consistent nature of M′, both

the stem-equivalence relation and the corresponding candidate cell are well-

defined. Moreover, they come in the correct amount.

Proposition 2.4.20. Let M′ be a collection of subdivisions as in (2.2), where

n ≤ k < d. There are
�n+d−2

n−1
�

stem-equivalence classes classifying the full-

dimensional cells of M′.

Proof. Every stem-equivalence class (equivalently, every candidate cell) can be

identified with a unique weak integer composition q ∈ Λd,n−1 of n − 1 of length

d. By proposition 2.4.14, there are at least two , J ∈
�[d]
k
�

containing the support

of q (that is, the labels of its positive entries). Therefore, ranging over the k-

subsets of [d] we obtain all the possible supports of the compositions in Λd,n−1.

It follows that there are
�n+d−2

n−1
�

stem-equivalence classes.

Remark 2.4.21. Observe that if we allow for n − 1 ≤ k < d, we can still iden-

tify full-dimensional cells among the subdivisions in M′ and get
�n+d−2

n−1
�

stem-

equivalence classes. However, as already indicated in remark 2.4.16 it is not

true that every stem-equivalence class defines a unique candidate cell; in de-

tail, some 0-dimensional summands may not be recovered. 9
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With all this, we specialize to the case k = d−1, that serves as an intermedi-

ate step for the case of general k, and for which the proofs of the following two

results are notationally simpler.

Lemma 2.4.22. Let T ′ be a triangulation of Δn−1 × ∂(Δd−1), where d > n, and

denote by fT ′ the collection of candidate simplices obtained from T ′. Then T ′

extends to a triangulation of Δn−1 × Δd−1 (whose maximal simplices are the

candidate simplices eT ′) if and only if the following condition is fulfilled by every

candidate simplex eσ ∈ eT ′:

for every  ∈
�

[d]

d− 1

�

, eσ|Δn−1×Δ is a valid simplex in T ′|Δn−1×Δ (?)

Proof. We check that if the condition (?) is satisfied, then the collection of can-

didate simplices gives a triangulation of Δn−1 × Δd−1; the converse is easily es-

tablished, and the proof is omitted. To this end, we employ the characterization

in theorem B.2.21 in the appendix.

That condition (TV) of theorem B.2.21 holds (the total volumes of the can-

didate simplices equals the volume of conv(Δn−1 × Δd−1)) was established in

proposition 2.4.20: T ′ defines a total of
�n+d−2

n−1
�

candidate simplices.

To verify that condition ◦b of theorem B.2.21 is fulfilled, let eτ be a facet of the

candidate simplex eσ = eτ ∪ {v} that lies in the interior of Δn−1 × Δd−1. Denote

by B(eσ) and B(eτ) the cells of dΔn−1 that correspond to eσ and eτ by the Cayley

trick, respectively. Observe first that B(eσ), and hence also B(eτ), have at least

two 0-dimensional Minkowski summands, in accordance with proposition 2.4.14

(since |spp(ϑ(B(eσ)))| < d−1). Therefore, for any two maximal simplices eσ′ and
eσ′′ that share eτ it holds that B(eσ′) and B(eσ′′) have at least one 0-dimensional

summand in common.

In the bipartite graph representation, eσ is a spanning tree t of Kn,d and eτ is

two disconnected trees of Kn,d. Let us denote these trees by t1 and t2 and the

edge representing v by (, ). Any full-dimensional simplex containing the facet
eτ must include (a vertex represented by) an edge that connects the trees t1 and

t2.

By proposition 2.4.14, there are at least two degree-1 vertices in the part

[d] of Kn,d. Of these at most one can be part of an isolated edge in the forest

formed by t1 and t2; denote by b a degree-1 vertex in [d] that does not belong

to an isolated edge.

Suppose then that there is no point v′ such that eτ∪{v′} is a full-dimensional

simplex and v′ lies in the same part as v of the unique circuit contained in
eσ∪{v′}. This translates into the assumption that there is no edge (′, ′) in Kn,d
connecting t1 and t2 such that (′, ′) is at an even distance from (, ) in the

unique cycle contained in the spanning graph formed by t and the edge (′, ′).
In particular, the same statement holds when we delete the degree-1 vertex b

from t. But then, this implies that the full-dimensional simplex eσ|Δn−1×Δ[d]\{b} is

not a valid simplex in T ′Δn−1×Δ[d]\{b} , contrary to the hypothesis (?).
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On the other hand, suppose that there are two points v′ and v′′, such that
eτ ∪ {v′} and eτ ∪ {v′′} are full-dimensional simplices, v and v′ lie on the same

part of the unique circuit contained in eσ ∪ {v′}, and v and v′′ lie on the same

part of the unique circuit contained in eσ ∪ {v′′}. Represent v′ and v′′ in Kn,d
by the edges (′, ′) and (′′, ′′). Our assumption implies that (′, ′) (resp.

(′′, ′′)) lies at an even distance from (, ) in the unique cycle contained in

t∪ (′, ′) (resp. t∪ (′′, ′′)). But then, in the unique cycle contained in the graph

g formed by t1∪ t2∪ (′, ′)∪ (′′, ′′), (′, ′) is at an odd distance of (′′, ′′), and

this still holds when deleting from the graph g a degree-1 vertex b in the part

[d] of Kn,d (since d > n, there is at least one such b). This implies that the full-

dimensional simplices (eτ ∪ v′)|Δn−1×Δ[d]\{b} and (eτ ∪ v′′)|Δn−1×Δ[d]\{b} overlap on

a circuit of Δn−1 × Δ[d]\{b}, contrary to the fact that T ′|Δn−1×Δ[d]\{b} is a “honest

triangulations".

Lemma 2.4.22 is the closest we get to completely characterizing extendabil-

ity of a triangulation of Δn−1 × ∂(Δd−1). With it we prove the following lemma,

which says that the conditions in lemma 2.4.22 are always satisfied whenever

n < d− 1.

Lemma 2.4.23. Let T ′ be a triangulation of Δn−1×∂(Δd−1), where d > 2 and n <

d−1. Then T ′ extends to a triangulation of Δn−1×Δd−1 (that by corollary 2.4.18

and the subsequent discussion is completely determined by T ′).

The proof of lemma 2.4.23 uses the following auxiliary result.

Lemma 2.4.24. 1. Let T be a triangulation of Δn−1 × Δd−1, where n > 1 and

d > 2, and let F be the facet Δn−1 × Δ[d−1] of Δn−1 × Δd−1. Suppose τ,τ′ ∈
T |F are two adjacent (n+d−3)-simplices (that is, maximal in Δn−1×Δ[d−1]
but codimension-1 in Δn−1×Δd−1) such that σ := τ∪{v} and σ′ := τ′∪{v′}
are full-dimensional simplices of T . Then either v = v′, or the simplex

σ′′ := τ ∩ τ′ ∪ {v,v′} is a full-dimensional simplex of T .

2. Let T ′ be a triangulation of Δn−1 × ∂(Δd−1), where n < d − 1, and let F

be the facet Δn−1 × Δ[d−1] of Δn−1 × ∂(Δd−1). Suppose τ,τ′ ∈ T ′|F are

adjacent (n+d−3)-simplices, where eτ = τ∪{v} and eτ′ = τ′∪{v′} are the

respective candidate simplices. Then either v = v′ or there is a candidate

simplex eτ′′ = τ ∩ τ′ ∪ {v,v′}.

Proof. 1: Assume on the contrary that v 6= v′ but σ′′ = τ ∩ τ′ ∪ {v,v′} is not

a valid full-dimensional simplex of T . Then there is circuit C = {C+,C−} of

Δn−1 × Δd−1 such that C+ ⊂ σ′′ and C− ⊂ ρ for some ρ ∈ T .

Observe first that C+ must contain at least one of v or v′, otherwise C+ ⊂
τ ∩ τ′, contradicting the hypothesis that τ ∩ τ′ is a legal simplex in T .

On the other hand, since v,v′ /∈ F (that is, v,v′ ∈ Δn−1×Δ{d}), in the bipartite

graph representation v and v′ correspond to the only two edges of σ′′ adjacent

to the vertex d of Kn,d (in terms of the subdivision of dΔn−1, v and v′ form the
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d-th summand of the cell representing σ′′, which is then 1-dimensional). In

particular, v and v′ lie within an odd distance of each other (they are adjacent),

so that either v ∈ C+ or v′ ∈ C+ but not both. The former case implies that

σ /∈ T , whereas the latter that σ′ /∈ T , either way yielding a contradiction.

2: Assume again that v 6= v′ while eτ′′ is not a candidate simplex in eT ′; we

will prove that this implies that one of eτ or eτ′ is not a candidate simplex either,

leading to a contradiction.

We handle the notation using the language of subdivisions. Denote by M′

the consistent collection of subdivisions:

M′ :=

¨

M subdivision of (d− 1)Δn−1 :  ∈
�

[d]

d− 1

�«

corresponding to T ′ by the Cayley trick. Here, τ and τ′ are represented by the

full-dimensional cells B and B′ in the subdivision M[d−1] ∈M′, respectively. Let
eB, eB′ and B′′ be the cells of dΔn−1 corresponding to eτ, eτ′, and eτ′′, respectively.

By proposition 2.4.14, B and B′ have at least 2 ≤ d − 1 − (n − 1) Minkowski

summands of dimension 0, of which at least 1 is common to both B and B′.

Denote the label of that summand by j ∈ [d − 1], and consider the subdivision

M[d−1]|[d−1]\{j} of (d−2)Δn−1, which we regard as the restriction M[d]\{j}|[d]\{j,d}.

We have that eB[d]\{j,d} and eB′[d]\{j,d} represent adjacent codimension-2 sim-

plices on the facet F′ = Δn−1 × Δ[d]\{j,d}, whereas v = eB|{d} 6= eB′|{d} = v′.

This is precisely the situation of statement 1 of the lemma, so there is a cell

B′′′ ∈ M[d]\{j} equal to eB′′|[d]\{j}, whose candidate cell we assume to satisfy
eB′′′|{j} 6= eB′′|{j}. Thus, eB′′′ and eB′′ differ only in their 0-dimensional j-th sum-

mand.

Lemma 2.3.5 says that eB′′ and eB′′′ overlap on a circuit of Δn−1 × Δd−1. But

this implies that one of eB or eB′ also overlaps with eB′′′ on the same circuit, giving

the desired contradiction.

Proof of Lemma 2.4.23. Let eσ be a candidate simplex in eT , and let  = [d− 1] ∈
� [d]
d−1
�

. Using induction on  := dim
�

eσ|Δn−1×Δ{d}
�

, we prove that eσ|Δn−1×Δ is valid

simplex in T ′|Δn−1×Δ .
The case  = 0 follows from lemma 2.4.15. Now assume that dim

�

eσ|Δn−1×Δ{d}
�

=
 > 0, and let J ∈

� [d]
d−1
�

be such that eσ|Δn−1×ΔJ is maximal (i.e., of codimension 1 in

Δn−1 × Δd−1). There is at least one maximal simplex σ′ ∈ T ′|Δn−1×ΔJ adjacent to
eσ|Δn−1×ΔJ with dim(σ′|Δn−1×Δ{d}) < . Write eσ = eσ|Δn−1×ΔJ ∪{v} and eσ′ = σ′∪{v′},

where eσ′ is the candidate simplex defined by σ′

By lemma 2.4.24 2, either v = v′ so that eσ is adjacent to eσ′ in Δn−1 × Δd−1,

or there is some candidate simplex eσ′′ = eσ|Δn−1×ΔJ ∩ σ′ ∪ {v,v′}. We have
eσ|Δn−1×Δ ⊂ eσ

′|Δn−1×Δ (resp. eσ|Δn−1×Δ ⊂ eσ
′′|Δn−1×Δ ) together with dim(eσ′|Δn−1×Δ{d}) <

 (resp. dim(eσ′′|Δn−1×Δ{d}) < , because eσ′′|Δn−1×Δ{d} = eσ
′|Δn−1×Δ{d} ⊂ eσ|Δn−1×Δ{d}).

It then follows from the induction hypothesis that eσ′|Δn−1×Δ ∈ T ′|Δn−1×Δ (resp.
eσ′′|Δn−1×Δ ∈ T ′|Δn−1×Δ ), and therefore eσ|Δn−1×Δ is a valid simplex in T ′|Δn−1×Δ .
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We now use lemma 2.4.23 in an inductive step to generalize the result to any

k such that n < k < d.

Theorem 2.4.25. Let T ′ be a triangulation of Δn−1 × skelk−1(Δd−1), where

n, d, k > 2 satisfy n < k < d. Then T ′ extends to a unique triangulation of

Δn−1 × Δd−1.

Proof. We prove this by induction on  = d − k, where we consider d fixed;

lemma 2.4.23 proves the assertion for  = 1.

Assume M′ is a collection of subdivisions of kΔn−1 corresponding to a trian-

gulation T ′ of Δn−1×skelk−1(Δd−1), where d−k =  > 1 (and k > n). Let J ∈
� [d]
d−1
�

.

Since M′ is a consistent collection of subdivisions, those subdivisions M′(J) :=
{M ∈M′ :  ∈

�[d]
k
�

,  ⊂ J} represent a triangulation of Δn−1× skelk−1(ΔJ), which

corresponds to the case (d − 1) − k =  − 1. With the induction hypothesis, we

can extend the subdivisions in the collection M′(J) to a unique subdivision of

(d− 1)Δn−1, where the summands are indexed by the elements of J; this corre-

sponds to a triangulation of Δn−1 × ΔJ. Repeating the same procedure for every

subset in
� [d]
d−1
�

, we end up with a collection of subdivisions corresponding to a

triangulation of Δn−1 × ∂(Δd−1), which extends to a unique subdivision of dΔn−1
by lemma 2.4.23. Observe that lemmas 2.3.5 and 2.4.15 guarantee that this

inductive procedure is consistent throughout, since the candidate simplices of

the extension of T ′ are already determined by T ′.

Remark 2.4.26. From lemma 2.4.22 we immediately see that k ≥ 2d − 1 is

enough to prove (unique) the extendability of all triangulations of Δn−1×skelk−1(Δd−1).
In that case, in every face F = Δn−1 × Δk−1 there is enough “room” to establish

that condition (?) holds. Theorem 2.4.25 therefore constitutes a good improve-

ment of this naive bound. 9

Negative results

As remarked at the beginning of the section, the triangulations in example 2.4.2

and lemma 2.4.10 indicate that it is not to be expected that a triangulation of

Δn−1×skelk−1(Δd−1) always be extendable when k = n, so that the lower bound

k > n guaranteeing extendability seems to be tight. We now prove that this

is indeed the case by explicitly constructing for every n ≥ 2 a family of non-

extendable triangulations of Δn−1 × ∂(Δn) that generalize the known examples

for n = 2 and n = 3.

The idea underlying our construction is that when a triangulation of a point

configuration has a flip supported on a full-dimensional circuit, that is, when it

admits a flip of codimension zero, its flipping only alters those simplices in the

triangulation of that circuit, leaving the rest of the triangulation intact (see re-

mark B.2.24). For example, the subdivisions of ∂(3Δ3) in figures 2.7 and 2.8b

differ by only one flip supported on a 4-dimensional circuit in one of the facets,
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which can be performed without affecting the subdivisions in the remaining

facets, thus rendering the partial subdivision in figure 2.8b non-extendable.

Our first aim is then to produce a triangulation of Δn−1 × Δn−1 that admits

a codimension-zero flip. While this is in principle easy (for instance, by ad-

equately perturbing a weight vector that induces a desired triangulation of a

circuit of type (n, n) of Δn−1 × Δn−1), a deterministic construction was not pre-

viously available in the triangulations literature, to the best of our knowledge.

Somewhat expectedly, our construction is described most naturally using the

grid representation for cartesian products of simplices.

A Dyck path in an n × n grid Gn×n 1 is a path from the square (1, A) to the

square (n, d = n) consisting only of squares (, ) such that  ≥  (since n = d, we

identify the label sets of the columns and rows of Gn×n; in this sense is  ≥  to

be understood). That is to say, a Dyck path is a staircase from (1, A) to (n, d = n)
which does not pass above the  =  diagonal of Gn×n.

By theorem 2.2.8, each Dyck path represents a (2n − 2)-simplex in Δn−1 ×
Δn−1, and every pair of such simplices intersect propertly. Let D(n)n stand for

the collection of simplices obtained from all the Dyck paths, which gives a tri-

angulation of the subconfiguration C(n)n := {(e,e) ∈ Δn−1 × Δn−1 :  ≥ }. It is a

well-known fact that the number of Dyck paths in an n×n grid equals the (n−1)-
th Catalan number Cn−1 =

1
n
�2(n−1)

n−1
�

(see e.g. [Sta11, Chapter 1]), so that D(n)n
consists of Cn−1 full-dimensional simplices. We can “replicate” this triangulation

of C(n)n in order to obtain a full triangulation of Δn−1 × Δn−1 as follows.

Let φ be the map acting on the index sets [n] and [d = n] of the points in

the two factors of Δn−1×Δn−1 according to  7→ +1 mod n and  7→ +1 mod n.

Define the collection of (2n− 2)-simplices:

D(ℓ)n :=
n

φℓ×(σ) ⊂ Δn−1 × Δn−1 : σ is a Dyck path in Gn×n
o

,

where φℓ× is the ℓ-fold iteration of φ×: the (“direct sum”) extension of the action

of φ to the points in Δn−1 × Δn−1 according to (e,e)
φ×7→ eφ(),eφ()). The collec-

tion D(ℓ)n gives a triangulation of the subconfiguration C(ℓ)n := {(φℓ×(e,e) :  ≥ }.

Considering all possible iterations of φ×, we end up with the following object.

Theorem 2.4.27. The collections of (2n− 2)-simplices:

Dn :=
¦

D(ℓ)n : 1 ≤ ℓ ≤ n
©

,

constitute a triangulation that we call the Dyck path triangulation of Δn−1×Δn−1.

Our proof uses the next simple but useful lemma.

1This slightly differs from the usual definition of a Dyck path, that uses the grid points in Gn×n
rather than the squares in Gn×n, and require  ≤ . Hence the number of Dyck paths of size n in our

convention is Cn−1 rather than Cn.
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Lemma 2.4.28. Let Gn×n be an n× n square grid, and let s = (j, b) be a square

in Gn×n. Then (j, b) = (φℓ(), φℓ()) for  ≥  if and only if:
(

j ≥ b and

b > ℓ

)



or

(

j ≥ b and

j ≤ ℓ

)



or

(

j ≤ ℓ and

b > ℓ

)



. (2.3)

(If ℓ = n, we may still consider the inequalities using ℓmod n, that is, ℓ = 0). In

particular, (ej,eb) is a point in C(n)n ∩ C(ℓ)n if and only if j ≥ b and {j ≤ ℓ or b > ℓ}.

Proof. Follows by noting that the action of φ on each point in Gn×n translates it

parallel to the diagonal  =  in direction of increasing  and  (modulo n). In

figure 2.10, the grey area represents points in the image of C(n)n under φℓ×.

Figure 2.10: The squares in the grey region represent points in C(ℓ)n .

Proof of theorem 2.4.27. For the proof we will use the characterization of trian-

gulations in theorem B.2.21. The verification that the volume of all the simplices

in the Dyck path triangulation of Δn−1 ×Δn−1 equals the volume of conv(Δn−1 ×
Δn−1) is by construction easy: there are Cn−1 =

1
n
�2n−2
n−1

�

full-dimensional sim-

plices in each collection D(ℓ)n , and there are n such collections, giving a total

of
�2(n−1)

n−1
�

full-dimensional simplices. By proposition 2.2.4, their total volume

equals the volume of Δn−1 × Δn−1.

To verify the property ◦b, let τ be a codimension-1 simplex D(n)n (clearly, the

restriction does not cause loss of generality). If τ is gotten by removing a (point

corresponding to a) square that is the only square in its row or in its column, then

τ lies on a facet of Δn−1 × Δn−1. If τ is gotten by removing a square s = (j, b)
lying on a corner of a Dyck path, then τ contains squares in all the rows and

columns of Gn×n. We distinguish two cases:

• Either j−b > 1 and τ contains the squares (j−1, b) and (j, b+1), or j−b ≥ 0
and τ contains the squares (j+ 1, b) and (j, b− 1).

• j− b = 1 and τ contains the squares (j− 1, b) and (j, b+ 1).

In the first case, either s′ = (j− 1, b+ 1) or s′ = (j+ 1, b− 1) is the only square

in Gn×n such that τ ∪ s′ is a simplex in Dn, which is, in fact, a Dyck path in C(n)n .
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In the second case, all the squares (, ) ∈ τ satisfy  ≥  and { ≤ b or  > b},

but we saw in lemma 2.4.28 that these are precisely the conditions for τ to lie

inside C(n)n ∩C
(ℓ)
n , with ℓ = b. Now, the unique square s′ that makes s′∪τ = φℓ×(σ)

for some (simplex represented by a) Dyck path σ ∈ D(n)n is s′ = (1, n).

To conclude, we check for the second case that s and s′ have the same sign in

the unique circuit C contained in τ∪s∪s′ (the first case being equivalent to the

situation for the staircase triangulation, where property ◦b of theorem B.2.21

holds). Indeed, suppose s ∈ C+ and s′ ∈ C−; then, since the circuit has to

be “closed” using s′ (cf. remark 2.2.6), for all squares z = (, ) ∈ C+ with

 > b(= ℓ), there is a square z′ = (′, ) ∈ C− with ′ > , so that z can only be

“reached from below”. By the same token, every square y = (, ) with  ≤ b(= ℓ)
can only be “reached from the left”. Therefore, if s ∈ C+, it is not possible to

close the circuit C. This reasoning is depicted in figure 2.11, where we draw

squares in C− red and squares in C+ blue.

Figure 2.11: Illustration of the proof of theorem 2.4.27.

The Dyck path triangulation of Δ3 × Δ3 is displayed in figure 2.12 below as

a mixed subdivision of 4Δ3. The reader may have noticed already that the

subdivision of 3Δ2 resulting after deleting the summand D from the subdivision

of 4Δ2 in figure 2.8a represents the Dyck path triangulation for n = 3.

Figure 2.12: The Dyck path triangulation of Δ3 × Δ3 drawn as a subdivision of

4Δ3.
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Remark 2.4.29. The Dyck path triangulation is a natural refinement of a coarse

polyhedral subdivision that was presented (with slightly different conventions)

by Gelfand, Kapranov and Zelevinsky in [GKZ08, Chapter 7, example 3.14].

Each polyhedral cell in their subdivision is gotten as the convex hull of the C(ℓ)n .

Although it was remarked in [GKZ08, Chapter 7, example 3.14] that the normal-

ized volume of every such cell equals the (n − 1)-th Catalan number Cn−1, we

have not found explicit mention of the Dyck path triangulation of Δn−1×Δn−1 in

the literature. 9

The Dyck path triangulation of Δn−1 × Δn−1 has the property that it admits a

geometric bistellar flip supported on the (n, n) circuit:

Z = (Z+,Z−) := ({1A,2B, . . . , nn},{2A,3B, . . . , n(n− 1),1n}).

The reader can verify that the “right-most” Dyck path:

{1A,2A,2B,3B,3C, . . . , n(n− 1), nn},

in D(n)n together with its images under φℓ× for 1 ≤ ℓ ≤ n−1 comprise the triangu-

lation T − = {Z\{v} : v ∈ Z−} of Z. Due to the fact that Z is a full-dimensional

circuit, the common link in Dn of the simplices in T − is empty, so T − can be

flipped to T + without altering the remaining simplices in Dn.

We will now present a triangulation T ′n↑ of Δn−1 × ∂(Δn) in which the face

F = Δn−1×Δ[n] has the triangulation Dn. The freedom to flip the circuit Z in the

triangulation of F will then be used to produce a non-extendable triangulation

T ′n↓ of Δn−1 × ∂(Δn). The triangulation T ′n↑ is gotten from the restriction of a

natural extension of the Dyck path triangulation to a triangulation of Δn−1 × Δn
whose construction, that relies on the φ×-action, is explained next.

For a point v = (e,e) ∈ Δn−1 × Δn−1, let vφ be the following collection of

points of Δn−1 × Δn:

vφ :=
n

(eℓ,en+1) ∈ Δn−1 × Δn : v = φℓ×(ej,eb) with j ≥ b
o

.

The indices of the points in vφ register for which values of ℓ does v = (e,e) lie

in the image of a Dyck path in Gn×n under φℓ×.

Now, associate to every simplex σ ∈Dn the simplex of Δn−1 × Δn:

σφ := σ ∪
⋂

v∈σ
vφ.

It is a remarkable fact that the resulting collection of simplices gives a triangu-

lation of Δn−1 × Δn.

Theorem 2.4.30. The collection of simplices:

Dφ
n :=

�

σφ : σ ∈Dn
	

,

yields a triangulation of Δn−1 × Δn, which we call the φ-extension of Dn.
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Figure 2.13: D
φ
4 as a mixed subdivision. In the third column at the top, we see

the mixed cell representation of those low-dimensional simplices σ ⊂ Δn−1×Δn−1
whose extension σφ ∈ Dφ

n is full-dimensional; at the bottom, we see their full-

dimensional extensions.

The reader will find a mixed subdivision representation of the φ-extension of

D3 in figure 2.8a. The φ-extension of D4 is displayed in figure 2.13.

We split the following fact from the proof of theorem 2.4.30.

Lemma 2.4.31. There is a (non-canonical) bijection between the full-dimensional

simplices in Dφ
n and the weak integer compositions of n of lenght n. Therefore2,

the number of full-dimensional simplices in Dφ
n is

�2n−1
n−1

�

.

Proof. Before deriving the bijection in generality, let us remark that a point
(e,e) ∈ Δn−1 × Δd−1 lies in C(ℓ1)n ∩ C(ℓ2)n ∩ . . . ∩ C(ℓk)n ∩ C(n)n , where ℓ1 < ℓ2 < . . . <
ℓk < n, if and only if:

{ ≥ } and

((

 ≤ ℓ1 and

 > 0

)

or

(

 ≤ ℓ2 and

 > ℓ1

)

or . . . or

(

 ≤ ℓk and

 > ℓk−1

)

or

(

 ≤ n and

 > ℓk

))

. (2.4)

As a consequence, a full-dimensional simplex σφ ∈Dφ
n such that σ ⊂ Δn−1×Δn−1

is contained in the region (2.4) looks like the simplex in figure 2.14.

Note that σ, and therefore also σφ, can be characterized by a unique mono-

tonically increasing (not necessarily injective) map m(n)
σ

: [d = n] → [n] such

2Recall that the number of weak integer compositions of n of length n equals
�2n−1
n−1

�

[Sta11,

Section 1.2].

54



CHAPTER 2. PARTIAL TRIANGULATIONS OF Δn−1 × Δd−1

Figure 2.14: A “generic” full-dimensional simplex σφ ∈Dφ
n. It can be represented

by the weak composition (4,0,0,1,1,0,3,1,2,1,0,2,0,0,0,3,1,0,0,2,0) of 21
of length 21. The collection of partial sums is (3,2,1,1,1,0,2,2,3,3,2,3,2,1,0,2,2,1,0,1,0);
observe that the positions of the zeros indicate the labels of the points in Δ20 × Δ{21} of σφ.

that m(n)
σ
() gives the “height” of the “tallest”3 point in σ with second coordi-

nate  ∈ [d = n] (as measured by the row-indices of Gn×n). In turn, the map m(n)
σ

can be described by the weak integer composition hσ = (hσ1, hσ2, . . . , hσn) ∈ Nn

of n given by:

hσ =







m(n)
σ
(1) if  = 1

m(n)
σ
()−m(n)

σ
(− 1) if  > 1

,

whose entries record the relative increase in height between m(n)
σ
() and m(n)

σ
(−

1) (the total height increase for m(n)
σ

is n, so the entries of hσ do sum up to n).

Since m(n)
σ

is monotonically increasing, the partial sums giving the “vertical”

distance between m(n)
σ
() and the  =  diagonal in Gn×n satisfy:


∑

b=1

hσb −  ≥ 0, for every 1 ≤  ≤ n.

We now prove that actually every simplex σ ⊂ Δn−1 × Δn−1 such that

σφ ∈ Dφ
n is full-dimensional can be described by a unique weak composition of

n of length n, and conversely that every such weak composition gives rise to a

unique simplex σ ⊂ Δn−1×Δn−1 such that σφ ∈Dφ
n is full-dimensional (the proof

is reminiscent of the so-called cycle, or Raney’s, lemma; see [DZ90] or [GKP94,

Section 7.5]).
Let σ ⊂ Δn−1 × Δn−1 be a simplex in the conditions of the preceding para-

graph. Although in general σ cannot be described by a monotonically increas-
ing map m(n)

σ
: [n] → [n], it always admits a description by a monotonically

increasing map4:

m(ℓ)
σ
: {ℓ+1 ≺ ℓ+2 ≺ . . . ≺ n ≺ 1 ≺ 2 ≺ . . . ,≺ ℓ} −→ {ℓ+1 ≺ ℓ+2 ≺ . . . ≺ n ≺ 1 ≺ 2 ≺ . . . ,≺ ℓ},

for any ℓ indexing (the first component of) a point in σφ\σ ⊂ Δn−1 × {en+1}. If

there is more than one such point, we choose the largest index (with respect to
3Which in our figures would be the “depth” of the “deepest” point.
4As customary, sums of indices are understood modulo n.
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the usual order 1 < 2 < . . . < n), thus fixing the monotonic map m(ℓ)
σ

representing

σ. Once m(ℓ)
σ

has been fixed, we set the corresponding weak composition hσ ∈
Nn according to:

hσ =







m(ℓ)
σ
(ℓ+ 1) if  = ℓ+ 1

m(ℓ)
σ
(ℓ+ )−mσ(ℓ+ − 1) (mod n) if  � ℓ+ 1

.

Moreover, since m(ℓ)
σ

is monotonically increasing, we have:


∑

b=1

hσφℓ(b) − φℓ() ≥ 0, for every 1 ≤  ≤ n.

For the inverse map, let h = (h1, h2, . . . , hn) ∈ Nn be a weak composition of n

of length n. In general, some of the partial sums

g :=

∑

b=1

hb − ,

may be negative. Set ℓh :=mx<
�

rgmin{g : 1 ≤  ≤ n}
	

, that is, the largest

index (w.r.t. <) for which gℓ is most negative. By construction,

gℓh :=

∑

b=1

hφℓh (b) − φ
ℓh() (mod n) ≥ 0, for every 1 ≤  ≤ n;

therefore, h defines a unique monotonically increasing map:

mh : {ℓh + 1 ≺ ℓh + 2 ≺ . . . ≺ n ≺ 1 ≺ 2 ≺ . . . ,≺ ℓh}→ {ℓh + 1 ≺ ℓh + 2 ≺ . . . ≺ n ≺ 1 ≺ 2 ≺ . . . ,≺ ℓh}

 7→ + gℓh mod n,

which characterizes a unique simplex σh ⊂ Δn−1 × Δn−1 such that σφh ∈ Dφ
n is

full-dimensional.

Clearly σhσ = σ and hσh = h, and thus we obtain the desired bijection, con-

cluding the proof.

Proof of theorem 2.4.30. Again we do the proof by means of the characteriza-

tion of triangulations in theorem B.2.21. We established in lemma 2.4.31 the

fact that Dφ
n has the required number of maximal simplices,

�2n−1
n−1

�

, so condi-

tion (TV) of theorem B.2.21 holds.

To verify condition ◦b of theorem B.2.21, let τφ be a codimension-1 simplex

obtained by removing a square s = (, ) from some maximal simplex σφ ∈Dφ
n,

where σ ⊂ C(n)n (by symmetry, this choice does not cause loss of generality).

Similar to the proof of theorem 2.4.27, if s is the only square in its column or

row, τφ lies on a facet of Δn−1×Δn, and there are two further cases to consider:

• Either − > 1 and τφ contains the squares (−1, ) and (, +1), or − ≥ 0
and τφ contains the squares (+ 1, ) and (, − 1).

• −  = 1 and τφ contains the squares (− 1, ) and (, + 1).
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In the first case, the situation is the same as for the Dyck path triangulation Dn,

namely the only square s′ for which τφ∪s′ a simplex in Dφ
n is either (−1, +1)

or (+ 1, − 1).
In the event that − = 1, note that after removing s, the restriction of τφ to

the (points represented by vertices in the) first n columns of Gn×(n+1) results in a

codimension-2 (in Δn−1×Δn) simplex τ′, with no points (ej,eb) such that j > −1
or b ≤  = − 1. From lemma 2.4.28, we deduce that τ′ is a simplex in C(ℓ)n with

ℓ =  − 1. Therefore, τ′ = φ−1× (ρ) for some ρ ⊂ C(n)n , so that s′ = ( − 1, n + 1) is

the only square s′ that makes τ ∪ s′ a simplex in Dφ
n.

The proof that when −  = 1, s = (, ) and s′ = (− 1, n+ 1) lie on the same

part of the circuit contained in τφ∪s∪s′ proceeds by an argument similar to the

one in the proof of theorem 2.4.27; hence, we only include the pictorial version

shown in figure 2.15.

Figure 2.15: Illustration of the fact that no two adjacent full-dimensional sim-

plices of Dφ
n may overlap on a circuit.

Let T ′n↑ be the triangulation of Δn−1×∂(Δn) obtained by restricting Dφ
n. Let T ′n↓

be the triangulation of Δn−1 × ∂(Δn) that results after flipping the triangulation

of the (n, n) circuit Z in the face F = Δn−1 × Δ[n] of Δn−1 × ∂(Δn) from T − to T +.

T ′n↓ gives a family of non-extendable partial triangulations that generalize the

known examples in example 2.4.2 and lemma 2.4.10 (so the T ′n↓ are infinitely

many relatives of the mother of all examples).

Theorem 2.4.32. The triangulation T ′n↓ of Δn−1 × ∂(Δn) is non-extendable.

Proof. This follows easily from lemma 2.4.22 in the previous section. View T ′n↓
as a consistent collection of subdivisions:

M′
n↓ :=

¨

M subdivision of nΔn−1 :  ∈
�

[n+ 1]

n

�«

The unmixed simplex with full-dimensional (n+ 1)-th summand defines a stem-
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equivalence class with the candidate simplex:

Ω = {1A,2B,3C, . . . , nn,1(n+ 1),2(n+ 1),3(n+ 1), . . . , n(n+ 1)} ⊃ Z+,

(note that Ω = {1A,2B,3C, . . . , nn}φ). Let 0 be any simplex in the triangulation

T + of the (n, n) circuit Z in the restriction T ′n↓|F, where F = Δn−1 × Δ[n]. We

observe that Z− ⊂ 0, and therefore Ω|F is not a valid simplex in the restricted

triangulation T ′n↓|F, for Ω|F overlaps with 0 on the circuit Z.

Remark 2.4.33. The representation of triangulations of Δn−1 × Δn−1 as subdivi-

sion of nΔn−1 provided the geometric intuition underlying the construction of

the φ-extension of Dn. Observe that the circuit Z in Dn is represented in the

mixed subdivision picture as a (non-fine) mixed cell  gotten as the Minkowski

sum of n minimally dependent segments in Rn (in the sense that the removal

of any segment results in an (n − 1)-cube); for n = 3 this cell is a hexagon, for

n = 4 it is a rhombic dodecahedron and in general it is called a cubical flip (see

[DRS10, Section 9.1.2]). There are exactly two ways to tile such a cubical flip

with n (n−1)-cubes, that correspond to the two ways of triangulating the circuit

Z, and one can switch freely between these two tilings without affecting the rest

of the mixed subdivision. However, by inserting an unmixed (n − 1)-simplex in

the “middle” of , it is possible to “freeze” one of the two tilings (see figure 2.16

for an depiction of this). This fixes the tiling of  that ought to appear in the

facet of ∂(nΔn) representing the facet Δn−1 × Δ[n] of Δn−1 × Δn (that bears the

triangulation Dn), so by flipping to the alternative the tiling of  we obtain a

non-extendable partial subdivision. 9

Figure 2.16: Inserting an unmixed simplex in the “middle” of a cubical flip

“freezes” one of its tilings.

2.4.3 k < d ≤ n: unsolved case

In the search for necessary conditions generalizing the acyclicity condition for

systems of permutations of Ardila and Ceballos (cf. theorem 2.4.6), Ceballos,

Padrol and the author had put forward the following conjecture

Conjecture 2.4.34. Let M′ be a subdivision of ∂(nΔd−1), where d ≤ n. Then

M′ extends to a subdivision of nΔd−1 if and only if every restriction of M′ to a

subdivision of ∂ ((d− 1)Δd−1) extends to a subdivision of (d− 1)Δd−1.
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However, close to the submission of this thesis, a counterexample was found

for n = d = 4 by Suho Oh and Hwanchul Yoo (personal communication).

In analogy with the study of triangulations of Δn−1 × skel1(Δd−1) by Ardila

and Ceballos in [AC13] and the counterexamples to their conjecture 2.4.7, we

expect that when k < d ≤ n it may only be possible to characterize extendability

of triangulations of Δn−1 × skelk−1(Δd−1) through necessary conditions, that is

excluding obstructions, in line with remark 2.4.8.

The non-extendable triangulations of Δn−1 × ∂(Δn) from theorem 2.4.32 can

be thought of as an infinite family of obstructions to extendability of Δn−1 ×
skelk−1(Δd−1) for k < d ≤ n arbitrary. However, there are further non-extendable

triangulations of Δn−1× ∂(Δn) of different “types” (as, for example, Santos’ con-

struction in [San12]), so it seems unfeasible to obtain a complete list of (families

of) obstructions.

On the other hand, it is not clear how to prove sufficiency of such neces-

sary conditions for given fixed values of n and d; the proof in [AC13] that the

acyclicity condition of theorem 2.4.6 is also sufficient when min{n, d} ≤ 3 is ge-

ometric, and therefore does not generalize for larger parameters. As observed

in remark 2.4.13 for the case k = 2, one difficulty when studying triangulations

of Δn−1×skelk−1(Δd−1) when k < d ≤ n is that it is not clear how to characterize

those partial triangulations that uniquely specify a triangulation of Δn−1 × Δd−1.

2.5 Concluding remarks

The results in this chapter can be interpreted as finiteness results for triangu-

lations of Δn−1 × Δd−1. Indeed, theorem 2.4.25 says that if k ≥ n + 1, every

triangulation of Δn−1 × Δd−1 is obtained by “gluing together” triangulations of

Δn−1 × Δn56.

Generally speaking, we conclude that the framework proposed in section 2.1

for studying triangulations of cartesian products of point configurations seems

convenient to state and derive finiteness results of the sort of theorem 2.4.25.

Needless to say, it would be interesting to discover other families of products

of point configurations admit an analysis in terms of partial triangulations, and

therefore display similar finiteness phenomena.

We conjecture that this is true for triangulations of cartesian products of sev-

eral simplices:

Conjecture 2.5.1.

1. Let d1, d2, . . . , dr be natural numbers larger than 2. There is a number
ed = ed(d1, d2, . . . , dr) such that if k ≥ ed, every triangulation of Δk−1×Δd1−1×

5In big quotation marks, an alternative statement is: “as d→∞, every triangulation of Δn−1×Δd−1
is generated by gluing compatible triangulations of Δn−1 × Δn together”.

6Yet a more geometric interpretation is: “If k ≥ n + 1, extendability of a triangulation of Δn−1 ×
skelk−1(Δd−1) can be determined locally; by theorem 2.4.32, the same does not hold if k = n”.
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Δd2−1× . . .×Δdr−1 is obtained by gluing together compatible triangulations

of the faces Δ
ed−1×Δd1−1×Δd2−1× . . .×Δdr−1 of Δk−1×Δd1−1×Δd2−1× . . .×

Δdr−1.

2. Let d0 be a natural number larger than 2. There is a number fm = fm(d0, r)
such that if d1+d2+. . .+dr ≥ fm, then every triangulation of Δd0−1×Δd1−1×
Δd2−1× . . .×Δdr−1 is obtained by gluing together compatible triangulations

of the faces in Δd0−1×skelfm−1(Δd1−1×Δd2−1×. . .×Δdr−1) of Δd0−1×Δd1−1×
Δd2−1 × . . .× Δdr−1.

The pattern behind the construction of the triangulation Dφ
n can be proposed

as a general strategy to produce triangulations displaying a form of “rigidity”,

and deserves further study. We have:

• a family Pn of point configurations indexed by the number of vertices,

• a family of groups Gn acting on Pn, whose elements can be labeled by the

vertices of Pn,

• a triangulation T (Gn)n of Pn×Pn whose maximal simplices are partitioned in

orbits under the action of Gn.

Then, an extension of T (Gn)n to a triangulation of Pn × Pn+1 is constructed by

considering an additional coordinate that “graphs” for every simplex in T (Gn)n
the elements g of Gn (which are indexed by points of Pn) for which that simplex

is a face of the g-th image of a reference maximal simplex in its orbit.
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Appendix A

Very brief account of

commutative algebra

This short appendix is meant to provide some basic definitions from commuta-

tive algebra that are worked with throughout the thesis, rather than to make

the exposition self-contained. The presentation is therefore rather brief and

narrow, but the reader can refer to one of excellent treatises on commutative

algebra available for a deeper background. We paraphrase mostly content from

the book [CLO07], along with some further material from [CLO05, Eis05, MS05,

Stu96] (since the majority of the definitions and the results from commutative

algebra are standard, we omit explicit references to the literature).

A.1 Graded minimal free resolutions

Modules over (commutative) rings are the central objects of study in commuta-

tive algebra. They can be thought of as a generalization of vector spaces in that

the coefficients of “vectors” are taken over a commutative ring instead of over

a field. A main difference with linear algebra, that partly gives rise to the much

richer phenomena in commutative algebra, is that if we have a module (for ex-

ample, coming from a system of polynomial equations), it may not be possible

to obtain a generating set for it consisting of linearly independent elements.

The necessity to adequately describe modules by means of generating sets

gives rise to the notion of a free resolution, from which many properties of

modules can be characterized. The study of properties of free resolutions of

modules is an active area of research in commutative algebra; we will restrict

here to the case of graded modules, for which a unique minimal free resolution

exists that admits the definition of invariant quantities of the module, such as

the Betti numbers of the graded module (cf. definition A.1.15).

We start with the basic definitions. Throughout we let k be an alge-

braically closed field.
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Definition A.1.1. A commutative ring consists of a set R, and two binary oper-

ations ‘·’ and ‘+’, defined on R, for which the following conditions are satisfied:

1. ‘·’ and ‘+’ are both associative,

2. ‘·’ and ‘+’ are both commutative,

3. ‘·’ distributes over ‘+’:  · (b+ c) =  · b+  · c, ∀ , b, c ∈ R,

4. ‘·’ and ‘+’ have identities, denoted by 1 and 0, respectively: ·1 = +0 = ,

∀  ∈ R,

5. There is an additive inverse: ∀  ∈ R ∃ (−) ∈ R such that + (−) = 0.

The only ring we consider in this thesis is the ring R = k[1, 2, . . . , n] of

polynomials in n variables with coefficients in k; we will therefore drop the

adjective “commutative” everywhere. Further examples of rings are the

ring of integers Z or the ring of continuous complex-valued functions on a topo-

logical space.

The following is the generalization of vector spaces when taking coefficients

in a ring.

Definition A.1.2. A module over a ring R (or R-module) is a set M, together

with a binary operation, written +, and an operation of R on M, called scalar

multiplication, satisfying the following properties:

1. M is an abelian group under addition: addition is commutative, associa-

tive, there exists an additive identity in M, and every element in M has an

additive inverse,

2. (f+ g) = f+ g, for all  ∈ R, f,g ∈M,

3. (+ b)f = f+ bf, for all , b ∈ R, f ∈M,

4. ( · b)f = (bf), for all , b ∈ R, f ∈M,

5. If 1 is the multiplicative identity in R, then 1f = f for all f ∈M.

Let N ⊆ M. If N is an R-module with the addition and scalar multiplication

inherited from M, then N is called an R-submodule of M.

Let M be an R-module and {f1, . . . , fs} ⊂M. The set:

〈f1, . . . , fs〉 :=

(

s
∑

=1

f : 1, . . . , s ∈ R

)

,

is an R-submodule of M called the R-module generated by {f1, . . . , fs}. If for

a module M we have M = 〈f1, . . . , fs〉 for some f1, . . . , fs ⊂ M, we say that M is

finitely generated.

A further example of a module is the ring R itself; its submodules are impor-

tant objects in commutative algebra.
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Definition A.1.3. Let R be a commutative ring. A subset  ⊂ R is an ideal if it

satisfies the following properties:

1. 0 ∈ 

2. , b ∈  implies + b ∈ 

3.  ∈  and b ∈ R implies  · b ∈ 

Remark A.1.4. Let R = k[1, . . . , n]. If n = 1, then every ideal of R, such as R,

is generated by a single polynomial, just as every one-dimensional vector space

is generated by a single element. In contrast with this, when n > 1 we may

need more than one element to generate an ideal of R. 9

Let t be a natural number. Probably the simplest example of an R-module is

Rt, consisting of t-tuples of elements of R with the addition defined component-

wise and the scalar product distributing over the components of a t-tuple. In

symbols:















ƒ1
ƒ2
...

ƒt















+















g1
g2
...

gt















=















ƒ1 + g1
ƒ2 + g2

...

ƒt + gt















∈ Rt , where ƒ1, . . . , ƒt , g1, . . . , gt , h ∈ R.

h















ƒ1
ƒ2
...

ƒt















=















h ƒ1
h ƒ2

...

h ƒt















∈ Rt ,

The reason why Rt is so simple is that it is the closest we can get to vector

spaces. That precise property Rt satisfies is identified next.

Definition A.1.5. Let M be a module over a ring R. We say M is a free module

if M has a module basis, that is, if there is a set {f1, . . . , fm} ⊂ M of R-linearly

independent elements such that every f ∈ M can be written (uniquely) as f =
1f1 + 2f2 + . . .+ mfm, for some 1, . . . , m ∈ R.

When an R-module M is not free, we examine the “lack of freeness” by

means of the syzygy module.

Definition A.1.6 (Proposition 1.9, Chapter 6, [CLO05]). Let (f1, . . . , fs) be an

ordered tuple of elements of M. The set of all (1, . . . , s)T ∈ Rs such that

1f1 + . . . sfs = 0 is an R-submodule of Rs called the (first) syzygy module of

(f1, . . . , fs), and denoted Syz(f1, . . . , fs). An element of Syz(f1, . . . , fs) is called

a syzygy on (f1, . . . , fs).

For polynomial rings in finitely many variables, Hilbert’s basis theorem says

that taking syzygy modules of finitely generated modules we always stay within

the class of finitely generated modules.
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Theorem A.1.7 (Hilbert’s basis theorem). Let R = k[1, 2, . . . , n]. Then every

submodule of Rt is finitely generated.

Definition A.1.8 (Chapter 5, Definition 1.7, [CLO05]). An R-module homomor-

phism between two R-modules M and N is an R-linear map ϕ :M→ N, that is, a

map ϕ such that:

ϕ(f+ g) = ϕ(f) + ϕ(g)

for all  ∈ R and f,g ∈M

Choosing a generating set {f1, . . . , fs} for an R-module M is equivalent to

choosing a matrix representation ϕ0 for a surjective R-module homomorphism:

Rs
ϕ0−→M −→ 0

(1, 2, . . . , s) 7→ 1f1 + 2f2 + . . .+ sfs

Being an R-module itself, a generating set for Syz(f1, . . . , fs) may never con-

sist of R-linearly independent elements, that is, Syz(f1, . . . , fs) need not be a

free module. Thus, when we choose a generating set for Syz(f1, . . . , fs), i.e., a

matrix representing a surjective R-module homomorphism Rt
ϕ1−→ Syz(f1, . . . , fs) ⊂

Rs such that ϕ0 ◦ ϕ1 = 0, we should also look at the syzygies among the ele-

ments of the generating set. This second syzygy module need not be free, so

we consider the syzygy module for a generating set, etc... The procedure is

represented by the following object.

Definition A.1.9 (Definition 1.9, Chapter 6, [CLO05]). Let M be an R-module.

A free resolution of M is an exact sequence F∗ of the form:

. . .
ϕ3−→ F2

ϕ2−→ F1
ϕ1−→ F0

ϕ0−→ M −→ 0,

where, for all , F ∼= Rr , is a free R-module. In other words, ϕ0, ϕ1, ϕ2, ϕ3, . . . are

R-module homomorphism which satisfy ϕ−1 ◦ ϕ = 0 for all  ≥ 1. If there is an 

such that F+1 = F+2 = . . . = 0, but F 6= 0, we say that the resolution is finite of

length . In this case, we write the resolution as:

0 −→ F
ϕ−→ F−1

ϕ−1−→ . . . . . .
ϕ3−→ F2

ϕ2−→ F1
ϕ1−→ F0

ϕ0−→ M −→ 0.

For polynomial rings in a finite number of variables, Hilbert’s syzygy theorem

ensures that taking a free resolution stops at a finite number of steps.

Theorem A.1.10 (Hilbert’s syzygy theorem, Theorem 2.1 Chapter 6, [CLO05]).

Let R = k[1, . . . , n]. Then every R-module has a finite free resolution of length

at most n.

From this point on we fix R = k[1, . . . n].

The type of ideals we deal with in this thesis are homogeneous, that is, gen-

erated by homogeneous polynomials, so their syzygy modules possess an ad-

ditional structure, called a grading. Recall that for the ring of polynomials we
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have the following decomposition into finite dimensional vector spaces:

k[1, . . . , n] =
⊕

≥0
k[1, . . . , n],

where k[1, . . . , n], denotes the set of homogeneous polynomials of degree .

The corresponding notion for modules reads.

Definition A.1.11 (Definition 3.2, Chapter 6, [CLO05]). A graded module over

R is a module M with a direct-sum decomposition into submodules M =
⊕

≥0M

that is compatible with the grading in the polynomial ring:

R ·Mj ⊂M+j.

The shifted module M(d) is the direct sum
⊕

≥0M(d), where M(d) := M+d. It

is isomorphic to M as a module, but has a different grading. (For example, in

R(−d1)⊕ . . .⊕R(−dp) the standard basis vector e has degree d, for 1 ≤  ≤ p.)

Definition A.1.12 (Definition 3.5, Chapter 6, [CLO05]). Let M,N be graded

modules over R. A homomorphism ϕ : M→ N is said to be a graded homomor-

phism of degree d if ϕ(M) ⊂ N+d for all  ∈ N

Definition A.1.13 (Definition 3.7, Chapter 6, [CLO05]). Let M be a R-module.

A graded free resolution of M is a resolution F∗ of the form:

. . . −→ F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M −→ 0,

where F is a shifted free graded module R(−d1)⊕ . . .⊕R(−dp) and each homo-

morphism ϕ is a graded homomorphism of degree zero.

To understand the last part of the definition, observe that we may achieve de-

gree zero for a graded homomorphism between graded modules by shifting the

direct summands in each free module. For instance, a m×p matrix A where the

entry j ∈ R is homogeneous of degree dj − c defines a graded homomorphism

of degree zero [CLO05]:

R(−d1)⊕ . . .⊕R(−dp)
A−→ R(−c1)⊕ . . .⊕R(−cm)

If every homomorphism ϕ in a graded free resolution is such that it sends

the standard basis of F to a minimal generating set of im(ϕ), we say it is a

graded minimal free resolution.

Hilbert’s graded syzygy theorem says that every graded module over R has

a graded free resolution of length at most n. A further commodity of graded

modules is that their graded minimal free resolutions are unique (up to isomor-

phism).

Theorem A.1.14 (Definition 3.11 and Theorem 3.13, Chapter 6, [CLO05]). Let

F∗ and G∗ be two graded minimal free resolutions:

F∗ : . . .
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→ M −→ 0,

G∗ : . . .
ψ2−→ G1

ψ1−→ G0
ψ0−→ M −→ 0,
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of the graded module M. Then F∗ is isomorphic to G∗; that is, there are graded

isomorphisms of degree zero α : F → G such that α−1 ◦ ϕ = ψ ◦ α for every .

Hence, invariant quantities can be defined for a graded module from the

minimal free resolution. The invariant we consider in chapter 1 is the following

one.

Definition A.1.15 (Section 1B, [Eis05], Definition 1.9 [MS05]). Let F∗ be a

graded minimal free resolution of a graded R-module M. If F =
⊕

j∈NR[−j]β,j ,
we call the invariant β,j = β,j(M) the -th Betti number of M in degree j.

Said differently, the Betti number β,j(M) gives the number of minimal gen-

erators of degree j for the -th syzygy module of M (e.g., for  = 0, β0,j(M) is the

number of minimal generators of M of degree j).

Example A.1.16. Let k = R and consider the points {[1 : 1 : 0], [0 : 1 : 0], [1 :
0 : 1]} ∈ P2(k). The homogeneous ideal of polynomials in R = k[, y, z] vanish-

ing on them is:

 = 〈− y, z〉 ∩ 〈, z〉 ∩ 〈− z, y〉 = 〈2 − y− z2, z − z2, yz, 〉

We compute with Macaulay2 [GS] the minimal free resolution of  (with respect

to the graded reverse lexicographic order – see [CLO07, Definition 6, Section

2.2]); it is displayed below:

0 −→ R(−3)2
ϕ1−→ R(−2)3

ϕ0−→  −→ 0,

with the matrices representing R-module homomorphisms:

ϕ0 =
�

2 − y− z2, z − z2, yz
�

ϕ2 =









−z 0

− y+ z −y
−z − y









.

The nonzero Betti numbers of  are therefore β0,2 = 3 and β1,3 = 2. 9

A.2 Gröbner bases

Let  be an ideal in the commutative ring R = k[1, 2, . . . , n]. Gröbner bases

are special classes of generating sets of ideals in R that serve the purposes of

providing consistent representations of equivalence classes of polynomials in

R/ , also called normal forms. This makes them suitable to produce algorithms

to solve problems such as elimination of variables from a system of polynomial

equations.

The definition relies on an ordering that we introduce on the monomials of R.

Definition A.2.1 (Chapter 1, [Stu96]). A monomial ordering on R = k[1, 2, . . . , n]
is a total ordering ≺ of the monomials in R that satisfies:
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• 1 is the smallest monomial in R with respect to ≺,

• m ≺ n⇒m · p ≺ n · p for every monomials m,n, p ∈ R.

A monomial ordering ≺ on R allows us to identify the largest term in any

polynomial ƒ ∈ R. It will be called the initial term of ƒ with respect to ≺, and

written in≺(ƒ ). Initial terms of polynomials come into play when we carry out

the division algorithm for polynomials: they are the first terms we divide and

divide by.

The output of the division usually depends on the initial term chosen; fortu-

nately, it is possible to appropriately choose a set of “denominators” and leading

terms so that we can definitely establish whether a polynomial can be written

as linear combination with polynomial coefficients of the denominators.

The set of denominators to appropriately perform polynomial division is given

by a Gröbner basis. That is, a Gröbner basis consists of a generating set for 

that interacts adequately with the monomial ordering. To formalize this idea,

first associate to an ideal  in R the initial ideal of  with respect to ≺, which is

the following monomial ideal:

in≺() := 〈in≺(ƒ ) : ƒ ∈ 〉 ⊂ R.

Definition A.2.2 (Chapter 1, [Stu96]). Let ≺ be a monomial ordering on R and 

be an ideal in R. A generating set G≺ := {g1, g2, . . . , gs} for  is called a Gröbner

basis for  with respect to ≺ if the following holds:

in≺() = 〈in≺(g1), in≺(g2), . . . , in≺(gs)〉.

Example A.2.3. Let ƒ = 2 + 3y2 − 3, g = y2 − 3y2 be polynomials in C[, y],
where we choose the graded lexicographic (see [CLO07, Definition 5, Section

2.2]) ordering for the monomials. Notice that:

y2 · (2 + 3y2 − 3)−  · (y2 − 3y2) = 3y4 ∈ 〈ƒ , g〉.

However, 3y4 is neither divisible by in≺(ƒ ) = 2 nor by in≺(g) = y2. By naively

running the division algorithm with the given ordering we would conclude that

ƒ - 3y4 and g - 3y4, so we would suspect 3y4 /∈ 〈ƒ , g〉, whereas we have showed

the opposite. In this case, a Gröbner basis with respect to the glex ordering

would be G = {ƒ , g, y4}. 9

Proposition A.2.4 (Proposition 1 and Corollary 2 in [CLO07] Chapter 2 §6). Let

G≺ := {g1, g2, . . . , gs} be a Gröbner basis for  ⊂ R with respect to ≺, and let

ƒ ∈ R. There is a unique r ∈ R, called the normal form of ƒ with respect to ≺,

such that:

• r is not divisible by any of {in≺(g1), in≺(g2), . . . , in≺(gs)

• There exists some g ∈  with ƒ = g+ r.

Moreover, ƒ ∈  ⇐⇒ r = 0.
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In chapter 1, our interest in initial ideals and Gröbner bases will be that they

constitute a systematic way to approximate an arbitrary ideal  by means of the

simpler monomial ideal in≺(). The precise sense of the approximation we will

be concerned with is the following result that we quote from [MS05].

Proposition A.2.5 (Upper semicontinuity, Theorem 8.29 in [MS05]). Let R be

the polynomial ring R = k[1, 2, . . . , n], ≺ be a monomial ordering on R and 

be a homogeneous ideal in R. The following inequality holds:

β,j() ≤ β,j(in≺()) for all , j ∈ N.

An important fact about monomial orderings in a polynomial ring k[1, 2, . . . , n]
is that they can always be induced by a sufficiently generic weight vector ω =
(ω1, ω2, . . . , ωn) ∈ Rn [Stu96]. Let ƒ =

∑m
=0 c

1
1 22 . . . , nn ∈ R; we define

the initial term of ƒ with respect to ω to be the sum of the monomials of ƒ on

which the scalar ω11 +ω22 + . . . +ωnn achieves its maximum value. This

polynomial is written inω(ƒ ) and is a monomial when ω is sufficiently generic.

Hence, as ω ranges over Rn all initial ideals of  can be obtained, of which

there are only finitely many [Stu96, Theorem 1.2]. It is a remarkable result

[Stu96, Propositions 2.3 and 2.4] that the possible initial ideals of  define a

stratification of Rn into equivalence classes: set ω ∼ ω′ whenever inω() =
inω′(). Moreover, the resulting equivalence classes are relatively open polyhe-

dral cones that fit together to form a polyhedral fan covering Rn (see appendix

B for definition). This fan is called the Gröbner fan of , GrF(). In the next

section, we will mention that this polyhedral structure associated with an ideal

is closely related to the combinatorics of regular triangulations of polytopes in

the case when the ideal is toric.

A.3 Toric ideals

The polynomial ideals we study in this thesis belong to the class of toric ideals.

These are the ideals defining toric varieties, and enjoy a marked combinatorial

nature. Here we present one particular construction of toric ideals, and refer

the reader to [CLS11] for a thorough exposition. The material in this section is

mostly taken from [Stu96].

Let A be a matrix in Nd×n with the property that for some vector ω ∈ Rd we

have ωtA = (1,1, . . . ,1), so that we may regard the columns {1,2, . . . ,n}

of A as giving the coordinates of the elements of a (d − 1)-dimensional integer

point configuration in Rd.

The matrix A can be used to define a homogeneous polynomial ideal in the

polynomial ring R = k[1, 2, . . . , n]. Concretely, consider the polynomial ring
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S = k[t1, t2, . . . , td], together with the monomial homomorphism:

ϕA : k[1, 2, . . . , n] −→ k[t1, t2, . . . , td]

 7−→ t := t
1
1 t22 . . . tdd , (A.1)

where  = (1, 2, . . . , d)t ∈ Nd. The toric ideal associated to A is the homo-

geneous prime ideal:

A := ker(ϕA). (A.2)

Equivalently, A is seen to be the ideal defining the projective toric variety V(A)
resulting as the Zariski closure of the image of the monomial parametrization:

Pd−1 −→ Pn−1

[t1 : t2 : . . . : td]t 7−→ [t1 : t2 : . . . : tn]t , (A.3)

where P = P(k).
By identifying monomials x := 11 22 . . . nn with integer points

 = (1, 2, . . . , n) ∈ Nn, we see that the toric ideal A consists of all the arith-

metic relations that hold between the columns of A. Indeed, the following fact

asserts that every element in A can be written in terms of binomials.

Proposition A.3.1 (Lemma 4.1 and corollary 4.3 in [Stu96]). The toric ideal A
is generated as a vector space over k by the binomials

{x − xv : ,v ∈ Nn and A = Av}.

If we decompose  = (1, 2, . . . , n) ∈ Zn as  = +−−, where + =mx{0, }
and − =mx{0,−}, we have:

A = 〈x
+
− x

−
:  ∈ Zn and A = 0〉

Remark A.3.2. In the context of algebraic statistics [DS98, DSS09], A is a matrix

that acts linearly on a joint probability distribution to compute its marginals

according to some simplicial complex (cf. example 2 in the introduction). Given

an observed contingency table  with fixed marginals (computed with A), one

can test against the hypothesis that  was produced by a probability distribution

in the hierarchical log-linear model defined by A by sampling the collection of

all contingency tables with the same marginals. The fundamental theorem of

algebraic statistics says that this task can be performed with a random walk

on these contingency tables using “steps” that are encoded by binomials in a

generating set of A. 9

Remark A.3.3. The problem of finding the normal form modulo A of a monomial

x ∈ k[1, 2, . . . , n] with a Gröbner basis Gω() of A with respect to the term

order induced by some ω ∈ Rn is equivalent to the integer program:

minimize ω · v subject to Av = A and v ∈ Nn. (A.4)
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Indeed, if x is not in its normal form, by proposition A.2.4 we can divide it by

some g ∈ Gω() to obtain a monomial x
′

with A′ = A and smaller ω-weight.

Once x has achieved its normal form xw, no further (initial term of a) binomial

of Gω() divides it, that is, w is a solution to (A.4). Polynomial division by the

elements of a Gröbner basis of a toric ideal can therefore be seen as analogous

to the solution of linear programs by the simplex method [Tho95, ST97]. 9

Example A.3.4. 1. Let A ⊂ Rn be the matrix whose columns are the points in

the standard (n−1)-simplex Δn−1; we write this as A = Δn−1. Here we have

ϕA : k[1, . . . , n] → k[t1, . . . , tn] and ker(
ϕA7−→ t) = 〈0〉 ⊂ k[1, . . . , n]:

the defining ideal of projective space Pn−1.

2. Let A = Δd1−1 × Δd2−1. Then:

ϕA : k[z11, z12, . . . , zd1d2]→ k[1, . . . , d1 , y1, . . . , yd2]

zj 7→ yj,

and A = ker(ϕA) is the defining ideal of the Segre embedding (see chapter

1) Pd1−1×Pd2−1 ,→ Pd1d2−1. In general, if A = Δd1−1× . . .×Δds−1, A defines

the Segre embedding:

Pd1−1 × . . .× Pds−1 ,→ Pd1...ds−1.

9

The underlying motivation of this thesis concerns a correspondence between

initial ideals and triangulations that is of a similar nature as the relation between

integer programming and linear programming in remark A.3.3. Roughly speak-

ing, it gives the interpretation of regular triangulations of a point configuration

as “linear relaxations” of initial ideals. The accurate statement is the following

theorem of Sturmfels.

Theorem A.3.5 (Sturmfels’ correspondence, Theorem 3.1 in [Stu91]). Let A ∈
Nd×n with the property that (1,1, ...,1) is contained in its row span, and let ω ∈
Rn be a generic weight vector. The Stanley-Reisner ideal (see definition 1.1.2)

of the regular triangulation Tω of conv(A) induced by ω (cf. example B.2.15)

equals the radical of the initial ideal inω(A).

Recall that the radical of a monomial ideal  = 〈m1,m2, . . . ,ms〉 ⊂ R is the

ideal generated by {m′1,m
′
2, . . . ,m

′
s}, where m′ contains the same variables

as m but to the power 1. Theorem A.3.5 thus says that, modulo non-square-

free-ness, the combinatorial information of the monomials defining the initial

ideal inω(A) is contained in the regular triangulation Tω. By comparing the

stratifications of Rn induced by initial ideals of A and regular triangulations of

conv(A), this interpretation is made more accurate by the result next.

Corollary A.3.6 (Proposition 8.15 in [Stu96]). The Gröbner fan of A is a refine-

ment of the secondary polytope of A. That is, every (relatively open) polyhedral

cone in GrF(A) is contained in one (relatively open) polyhedral cone in (A).
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Among the many theorems that relate combinatorial or geometric informa-

tion in Tω to algebraic information of A, we cite the following one that is touched

upon in section 1.5.

Theorem A.3.7 (Corollary 8.9 in [Stu96]). The initial ideal inω(A) is square-

free if and only if the regular triangulation Tω of conv(A) is unimodular, that is,

iff all maximal simplices in Tω have (normalized) volume equal to one.
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Appendix B

Basics of polyhedral

geometry and

triangulations

In this appendix, we gather together some basic definitions and results con-

cerning polyhedral geometry and triangulations that are used throughout the

thesis. These are taken from the literature, and are not always the most general

possible. Our main references are the books [DRS10, Stu96, Zie95], to which

we often provide citations where the reader can find more complete statements

and developments.

B.1 Preliminary definitions

A convex polyhedron in Rd is a subset obtained as the intersection of finitely

many closed half-spaces in Rd. Here, by a closed half-space we mean a subset

of points:

H≤b := {x = (1, 2, . . . , d) ∈ Rd : r11 + r22 + . . .+ rdd ≤ b} ⊂ Rd,

where r1, r2, . . . , rd, b ∈ R.

Example B.1.1. The cone generated by the (non-zero) vectors x1,x2, . . . ,xn ∈
Rd:

cone(x1,x2, . . . ,xn) := {r1x1 + r2x2 + . . .+ rnxn : r ≥ 0 ∈ R,  ∈ [n]} ⊂ Rd

is an unbounded convex polyhedron. If no pair of vectors generating a cone are

antiparallel, the cone is pointed. 9

A convex polytope P is a convex polyhedron that is bounded. Equivalently,

a convex polytope P is the convex hull of finitely many points in Rd. We will
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exclusively deal with convex polyhedra, so we will frequently omit the adjective

“convex".

The relative interior of a polyhedron P =
⋂m
=1H

()
≤b is the set of points that

satisfy the inequalities defining P strictly; we denote it by relint(P).

A polyhedral complex K in Rd is a collection of finitely many polyhedra in Rd

such that: () if P ∈ K and Q is a face of P, then Q ∈ K, and () relint(P) ∩
relint(P′) = ∅ for every P 6= P′ ∈ K. Here, a face of a polyhedron P consists of

those points in it that maximize some linear functional.

A polyhedral complex that consists of cones and entirely covers Rd is called

a polyhedral fan. In figure B.1 we have drawn examples of each object defined.

(a) Cone.
(b) Pointed

cone.

(c) Polytope.
(d) Polyhedral

complex. (e) Fan.

Figure B.1: Examples of convex polyhedra and polyhedral complexes.

An abstract simplicial complex on a base set [n] is a collection T of subsets

of [n] with the property that if σ ∈ T and τ ⊂ σ, then τ ∈ T .

B.2 Point configurations and their triangulations

In this thesis, we deal with triangulations of polytopes: roughly speaking, a

dissection of a polytope into simplices. A triangulation is a natural step when

studying arbitrary polytopes, for it amounts to decomposing the polytope into

pieces that we know more of. To compute the volume of a polytope, for instance,

we can compute the individual volumes of the simplices in a triangulation of it,

for which there exists a formula, and then add up the contributions.

It turns out that the kind of triangulations we consider has a manifest com-

binatorial nature, with the structure of a simplicial complex, that lends itself

conveniently to computation and to abstraction to higher dimensions. To make

use of it, we need a precise combinatorial object, slightly more general than a

convex polytope: a point configuration.

Definition B.2.1 (Definition 2.1.10 in [DRS10]). A point configuration A in Rd is

a finite collection {1,2, . . . ,n} of labelled points in affine space Rd. In other

words, a point configuration is a map A : [n]→ Rd defined by  ∈ [n] 7→  ∈ A ⊂
Rd. We do not require A to be injective, therefore there may be two or more

different points in A that have the same spatial coordinates.

74



APPENDIX B. BASICS OF POLYHEDRAL GEOMETRY AND TRIANGULATIONS

With this in mind, we will think of a polytope P ⊂ Rd in terms of the combina-

torial information it contains, which is collected in the point configuration of the

points in Rd of which P is the convex hull. Accordingly, the concepts we intro-

duce below can be regarded as statements about the convex hull of the point

configuration. This will be reflected in our figures, where we often represent a

point configuration by its convex hull. However, when a point configuration has

repeated points, or points that are not vertices of the convex hull of the point

configuration, then we will explicity draw all the points for more clarity.

Let A be a point configuration in Rd. The dimension of A, written dim(A), is

the dimension of its affine span. A face of A is a subset F ⊆ A of the form:

fceω(A) := { ∈ A : ω ·  ≥ ω · y for all y ∈ A} ⊆ A ⊂ Rd,

where ω is some vector in Rd (after the identification of (Rd)∗ with Rd via the

usual inner product). We will write F � A whenever F is a face of A.

Example B.2.2. The standard (n−1)-dimensional simplex in Rn consists of the

points with coordinates given by the standard basis vectors of Rn: {e1,e2, . . . ,en}.

We denote it by Δn−1. 9

Evidently, a face of a point configuration is a point configuration itself; in

particular, its dimension is well defined. Faces of dimension 0,1, . . . , d− 2, d− 1
are respectively called vertices, edges, ..., ridges, facets. For notational con-

venience, we agree that the empty face is a face of every point configuration.

More generally, we define a subconfiguration A′ of a point configuration A in Rd

as a subset of the points in A.

Besides restriction to a subconfiguration, there are several ways to build new

point configurations from existing ones. One of them is the cartesian product,

with which we will concern ourselves mostly in this thesis.

Definition B.2.3. Let A = {1, . . . ,n} be a point configuration in Rd1 and B =
{b1, . . . ,bm} be a point configuration in Rd2 . We define the cartesian product

of A and B as the point configuration in Rd1+d2 :

A×B := {(,bj) :  ∈ A, bj ∈ B}.

Note that dim(A×B) = dim(A) + dim(B).

The faces of A × B are the point configurations of the form F × G, where F

and G are non-empty faces of A and of B, respectively. See figure B.2 for an

illustration.

We say a point configuration A = {1,2, . . . ,n} in Rd is affinely dependent,

or just dependent, if there is a nonzero vector c = (c1, c2, . . . , cn)t ∈ Rn, with
∑n
=1 c = 0, for which the equality:

n
∑

=1

c = 0
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Figure B.2: The cartesian product of (the vertices of) a triangle with (the vertices

of) a segment, that results in (the vertices of) a prism.

holds. In that case, we call c an affine dependence on A. If no such c ∈ Rn

exists, we say A is affinely independent. If a subconfiguration σ of A is affinely

independent, we say it is a subsimplex of A, which is maximal if |A| = d+ 1.

Clearly, the set of affine dependencies on a point configuration A in Rd con-

stitutes a vector space of dimension min{n − dim(A) − 1,0}, that we write as

D(A). Inside D(A) there is a collection of special elements that encode all the

combinatorial information in the point configuration A: they are called the cir-

cuits of A. These elements span D(A) redundantly, and are crucial objects in

the theory of point configurations. To “prove” the existence of circuits in a point

configuration and introduce some of their properties, we start with the following

well-known fact.

Theorem B.2.4 (Radon’s theorem). Let A = {1,2, . . . ,d+2} be a point con-

figuration in Rd. There are two disjoint subsimplices σ1 and σ2 of A such that

the following holds:

relint(σ1) ∩ relint(σ2) 6= {∅},

where for a point configuration B = {b1, . . . ,bm} ⊂ Re, the relative interior is

given by:

relint(B) :=







m
∑

j=1

rjbj :
m
∑

j=1

rj = 1 and rj > 0 ∀ 1 ≤ j ≤m







.

(The relative interior of a point is the point itself.)

For the proof of Radon’s theorem we use a basic lemma.

Lemma B.2.5 (Carathéodory’s theorem). Let A = {1, . . . ,n} be an affinely

dependent point configuration in Rd, and suppose q ∈ conv(A). There is a

minimal independent subconfiguration σ ⊂ A with |σ| ≤ d + 1, such that q ∈
relint(σ).

Proof. Suppose q =
∑n
=1 r with

∑n
=1 r = 1 and r ≥ 0 for 1 ≤  ≤ n. Define

J := { : 1 ≤  ≤ n and r > 0}, the support of r. If A|J := { :  ∈ J} is indepen-

dent, then we are done. Otherwise, let c ∈ Rn be an affine dependence on A|J.
Consider the following identity:

q =
∑

∈J
r − μ

∑

∈J
c,
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where μ ∈ R is arbitrary. We make the choice min∈J
n

r
c
: c > 0

o

=: r
c

.This way

we have:

q =
∑

∈J, 6=
(r − μc) =:

∑

∈J′
r′,

with J′ = J\{} and r′ := r−μc. Now,
∑

∈J′ r
′
 = 1, and r′ ≥ 0 for every  ∈ J′ (since

r − μc ≥ r − r
c
c = 0) so we have a convex combination giving q with smaller

support. If AJ′ is not independent, then we can repeat the same argument to

further reduce the support of the convex combination giving q. This procedure

terminates as soon as q is written as a convex combination of some independent

elements σ ⊂ A. The subsimplex σ is minimal since q ∈ relint(σ). Finally, if σ is

independent, then |σ| ≤ d+ 1, for otherwise the system of equations:
∑

∈σ
c = 0,

∑

∈σ
c = 0,

would have at least a nonzero solution, i.e., there would an affine dependence

on σ.

Proof of Radon’s theorem. The homogeneous system of (d+1) linear equations

in (c1, . . . , cd+2)t:

d+2
∑

=1

c = 0

d+2
∑

=1

c = 0,

has at least one non-trivial solution, which we can write:
∑

:c>0

c = −
∑

:c<0

c.

If we let κ =
∑

:c>0 c = −
∑

:c<0 c, this expression says that the point q :=
1
κ (
∑

:c>0 c) lies in the convex hull of the points D+ := { : c > 0} (which is

disjoint from D− := { : c < 0}). Using Carathéodory’s theorem, we find the

minimal independent σ1 ⊆ D+ containing q in its relative interior. The same

argument gives σ2.

Thus, in the case when dim(A) = d and n = d+ 2, there is exactly one affine

dependence on A, which is unique up to a non-zero scalar multiple. Radon’s

theorem says that there are disjoint subsimplices σ1 and σ2 of A such that

relint(σ1) ∩ relint(σ2) is equal to a single point, and that the subconfiguration

C = σ1∪σ2 ⊆ A is therefore minimally dependent, in the sense that the removal

of any point from it yields an independent collection of points. We shall refer

to such minimally dependent configurations, as well as to the unique (up to

scaling) affine dependence holding on them, as circuits.

The smallest circuits up to dimension two are illustrated in figure B.3. Note

that the smallest circuit, shown at the left (the one of type (1,1) – see ahead),

consists of two “different” points with the same coordinates
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Figure B.3: Circuits up to dimension two.

When dim(A) = d and n > d + 2, it follows that A has at most one circuit

for every d-dimensional (d + 2)-element subconfiguration of A, which can be

obtained by application of Radon’s theorem.

Let C be a circuit in a point configuration A = {1, . . . ,n} ⊂ Rd and
∑n
=1 c =

0, where (c1, . . . , cn)t ∈ Rn, be the unique affine dependence on C, so that

C = { ∈ A : c 6= 0} ⊆ A. Observe that C comes with a partition of its elements

into two nonempty subsets: C+ := { ∈ A : c > 0} and C− := { ∈ A : c < 0}.

If |C+| = s and |C−| = t, we say C is a circuit of type (s, t). (The choice of which

subconfiguration is C+ and which is C− is irrelevant, as long as it remains fixed.)

From Radon’s theorem, we thus see that circuits of a point configuration are

the affine dependences with minimal support. That is, if r = (r1, . . . , rn) defines

the affine dependence
∑n
=1 r = 0, then there exists a circuit C = (C+,C−) such

that C+ ⊆ { : r > 0} and C− ⊆ { : r < 0}. In fact, further development

of Radon’s theorem also says that circuits can be used to decompose affine

dependences of a point configuration in a simple way: without cancellations.

This is formalized in the next proposition that we will use in chapter 1.

Proposition B.2.6 (Lemma 6.7 in [Zie95] or corollary 4.1.13 in [DRS10]). Let

A = {1, . . . ,n} ⊂ Rd be a point configuration and suppose r = (r1, . . . , rn)t ∈ Rn

gives the affine dependence
∑n
=1 r = 0, for which we denote R+ := { : r >

0} and R− := { : r < 0}. Then r can be written as a finite sum of minimal

affine dependencies:

r =
s
∑

=1

λc,

where λ > 0, C+ ⊂ R
+ and C− ⊂ R

− for every  ∈ [s], where C is the circuit

associated to c.

Remark B.2.7. We mention that the combinatorial information present in the

dependence relation between the points in a point configuration is abstracted in

the notion of an oriented matroid. The axioms defining it can be stated in terms

of the circuits of the point configuration, which justifies our assertion above that

circuits contain all the combinatorial information of a point configuration. Below

we will encounter more examples of the fundamental role played by circuits.

For instance, they allow us to formulate useful properties and characterizations

of triangulations of point configurations, and also to characterize the minimal

modifications that a triangulation of a point configuration can undergo. 9
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We are now in the position to introduce the main definition in the thesis.

Definition B.2.8 (Theorem 4.5.4 in [DRS10]). A triangulation of a point con-

figuration A = {1,2, . . . ,n} in Rd is a collection T of subsimplices of A that

satisfy the following properties:

1. If σ ∈ T , and σ′ ≺ σ, then σ′ ∈ T as well

2.
⋃

σ∈T conv(σ) = conv(A)

3. For every pair σ,σ′ ∈ T we have conv(σ) ∩ conv(σ′) = conv(σ ∩ σ′) (which

may be empty)

Remark B.2.9. Property 1 is a closure property (CP) that states that the sim-

plices forming T have the structure of a simplicial complex. The content of

property 2 is clear, and we refer to it as the union property (UP) . Property 3 is

called hull property (HP) , and says that any two simplices of T intersect always

along a mutual face of both, which can be the empty face (note that we have

adopted the notation from [DRS10]). 9

The fact that a triangulation T of a d-dimensional point configuration A =
{1, . . . ,n} is a simplicial complex implies that it is completely specified by

the list of subsets of points of A in every maximal simplex of T . We may thus

describe T by giving the (d + 1)-subsets of [n] that label the vertices of every

d-dimensional simplex in T .

Remark B.2.10. Triangulations of point configurations are a special case of the

more general polyhedral subdivisions. These are dissections of point config-

urations into convex polytopes that define a polyhedral complex covering the

point configuration, and morally satisfy similar properties as those in definition

B.2.8. We remark that the analogous condition to property 3 above is more

subtle, because not all subsets of the vertices of a polyhedral cell are faces of

the cell. In this appendix, we will limit our exposition to the theory of triangula-

tions, refering the reader to [Zie95, DRS10] for the general theory of polyhedral

subdivisions of point configurations. 9

Remark B.2.11. In contrast to the definition of triangulation in other areas of

mathematics, such as in geometry and topology or in discretizations of partial

differential equations, in this one the points spanning the simplices of a tri-

angulation are fixed from the beginning, and we are not allowed to add new

points. 9

The simplest (non-trivial) triangulations are those of the minimally dependent

point configurations, which have only two triangulations.

Proposition B.2.12 (Lemma 2.4.2 in [DRS10]). Let C = (C+,C−) be a circuit in

Rd. C has only two triangulations:

T + := {C\{} :  ∈ C+}

T − := {C\{} :  ∈ C−}
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(See figure B.4 below for a depiction of this triangulations for the smallest cir-

cuits.)

(a) Type (2,1)

(b) Type (2,2) (c) Type (3,1)

(d) Type (3,2)

Figure B.4: Unique triangulations of the smallest circuits. Top: T +, bottom: T −.

Remark B.2.13. We see in drawings B.4a and B.4c in figure B.4 that a trian-

gulation of a point configuration A need not use all the points in A. This may

happen when the points in A are not in convex position. Also note that different

triangulations of a point configuration may have different number of maximal

simplices. 9

Example B.2.14. The five triangulations of a convex pentagon are shown in

figure B.5 below.

Figure B.5: The five triangulations of a convex pentagon.

From left to right, the following are the lists of maximal simplices in each of

the triangulations:

T1 = {{1,2,3},{3,4,5},{1,3,5}} ,

T2 = {{1,2,5},{2,3,5},{3,4,5}} ,

T3 = {{1,2,4},{2,3,4},{1,4,5}} ,

T4 = {{1,2,3},{1,3,4},{1,4,5}} ,

T5 = {{1,2,5},{2,3,4},{2,4,5}} .

9

Example B.2.15. Let A = {1,2, . . . ,n} be a point configuration in Rd. A

very important class of triangulations of A are the regular triangulations [Stu96,

DRS10, Zie95], which are triangulations that can be induced by lifting the points
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in A. Let ω ∈ Rn be some weight vector, and consider the point configuration

Aω := {(1, ω1), (2, ω2), . . . , (n, ωn)} ⊂ Rd+1. Denote by Aω↓ the collection

of faces of Aω of the form fceν(Aω), where ν = (ν1, . . . , νd+1) ∈ Rd+1 satisfies

νd+1 < 0; if ω is chosen sufficiently generic, Aω↓ consists of subsimplices of

Aω. The projection π : Rd+1 → Rd that erases the last coordinate maps therefore

maps Aω↓ to a collection of subsimplices of A that constitutes a triangulation of A,

which we denote Tω. See figure B.6a for an illustration of a regular triangulation.

The triangulation in figure B.6b is the smallest example of a triangulation that

cannot be obtained by lifting according to some weight vector: a non-regular

triangulation. 9

(a) Lifting a point configuration (generi-

cally) induces a triangulation of it.

(b) No weight vector may induce this tri-

angulation.

Figure B.6: Some triangulations are regular, others are not.

Remark B.2.16. The collection of regular triangulations of a point configuration

A = {1,2, . . . ,n} ∈ Rd defines a stratification of Rd into equivalence classes:

define ω1 ∼ ω2 whenever Tω1 = Tω2 [Zie95, GKZ08, Stu96, DRS10]. These

equivalence clases are relatively open polyhedral cones that, together with the

lower dimensional polyhedral cones of (equivalence classes of) weight functions

inducing coarser regular polyhedral subdivisions of A, form a fan that partitions

Rn. This fan is called the secondary fan of A, and denoted (A). We briefly

revisit (A) in appendix A, where it is compared with an analogous polyhedral

stratification by a polyhedral fan that is induced by the initial ideals of a toric

ideal. 9

Example B.2.17. Let A = {1, . . . ,8} ⊂ R4 be the vertices of the 3-cube

embedded in R4:

1 = (1,0,0,0)t , 2 = (1,0,0,1)t , 3 = (1,0,1,0)t ,

4 = (1,0,1,1)t , 5 = (1,1,0,0)t , 6 = (1,1,0,1)t ,

7 = (1,1,1,0)t , 8 = (1,1,1,1)t .

In figure B.7 we see two triangulation of the cube consisting of five and six

simplices. 9

Looking at figure B.7, the reader may have realized the following fact.
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Figure B.7: Triangulation of the unit 3-cube into 5 and 6 simplices.

Proposition B.2.18. Let T be a triangulation of a d-dimensional point configu-

ration A, and let F � A be a face of A. The restriction of T to F:

T |F := {σ ∩ F : σ ∈ T },

is a triangulation of the point configuration F.

Converse to starting with a triangulation of a point configuration and then

restricting it to have a triangulation of a face of it, we may also consider start-

ing with a collection of triangulations of some faces of a point configuration that

agree on their intersections, which we may think of as restrictions of a triangula-

tion of the whole point configuration. This is the notion of partial triangulations,

that will come up in chapter 2 when we study products of simplices. There,

we will partially solve the question of when does a partial triangulation of the

product of two simplices completely determine a total triangulation of them.

Definition B.2.19. Let A be a point configuration in Rd, and let K := {A1, . . . ,Ar}
be a collection of faces of A. A partial triangulation of A with respect to K, or

equivalently a triangulation of the polyhedral complex K ⊂ A, is a collection

T ′ := {TA1 , . . . ,TAr} of triangulations of the faces in K such that TA |F = TAj |F
whenever F ∈ A ∩ Aj is a nonempty subconfiguration, and , j ∈ [r]. Here we

abuse notation and call a collection of point configurations K := {A1, . . . ,Ar} a

polyhedral complex whenever A∩Aj is a face of both and relint(A)∩relint(Aj) =
{∅} for every  6= j ∈ [r].

Characterization of triangulations

We have chosen the particular characterization of a triangulation in definition

B.2.8 because it is one of the most familiar. The reader may refer to the book

[DRS10], which contains a formidable collection of characterizations of a trian-

gulation, and also of the more general polyhedral subdivisions, for a thorough

treatment. Besides that, in [DRS10] one finds many different results to check

a given collection of simplices fulfills the properties of a triangulation. They fit

diverse situations, and the ones we found more adequate for our work are the

presented next, that we paraphrase from [DRS10].

To verify property (HP) , first notice that it is equivalent to saying that any

two simplices in a collection of simplices T satisfying (CP) intersect properly,

in the sense that relint(σ1) ∩ relint(σ2) = {∅} for any two different σ1,σ2 ∈ T .
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This property is called the intersection property (IP) , and when it holds for a

collection of simplices, we say that they intersect properly.

Indeed, if σ1∩σ2 = {∅}, then from (HP) we have that conv(σ1)∩conv(σ2) =
{∅}, which in turn implies that relint(σ1) ∩ relint(σ2) = ∅. If σ1 ∩ σ2 6= {∅},

suppose q ∈ relint(σ1) ∩ relint(σ2); in particular, it holds that q ∈ conv(σ1) ∩
conv(σ2) = conv(σ1 ∩ σ2), but this is only possible if σ1 = σ1 ∩ σ2 = σ2, since

both σ1 and σ2 are independent and q belongs to the relative interiors of both.

Conversely, assume there exists some r ∈ conv(σ1) ∩ conv(σ2) such that

r /∈ conv(σ1 ∩ σ2) for two different σ1,σ2 ∈ T . Using Caratheodory’s theorem,

we find the minimal τ1 ⊆ σ1 and τ2 ⊆ σ2 such that r ∈ relint(τ1) ∩ relint(τ2).
Since r /∈ conv(σ1 ∩ σ2), we have that τ1 6⊆ σ1 ∩ σ2 and τ2 6⊆ σ1 ∩ σ2, i.e.,

relint(τ1)∩ relint(τ2) 6= {∅} for some τ1 6= τ2 ∈ T , and the equivalence follows.

See figure for an illustration of the situation conv(σ1) ∩ conv(σ2) 6= conv(σ1 ∩
σ2).

Figure B.8: Illustration of conv(σ1)∩ conv(σ2) 6= conv(σ1 ∩σ2). In the left σ1 :=
{1,2,3} and σ2 := {b1,b2,3}; in the right σ1 := {1,2,3} and σ2 :=
{b1,2,3}. In both cases relint(σ1) ∩ relint(σ2) 6= {∅}.

With the equivalence (for triangulations) of (HP) and (IP) at hand, we present

the following criterion to verify that (HP) holds for a collection of simplices.

Lemma B.2.20 (Theorems 4.1.14 and 4.1.15 in [DRS10]). Let S be a collection

of subsimplices of a point configuration A satisfying the closure property (CP) .

The following are equivalent:

1. For any two different simplices σ1,σ2 ∈ S, relint(σ1) ∩ relint(σ2) = {∅}.

2. There is no circuit C = (C+,C−) of A such that C+ ⊆ τ1 and C− ⊆ τ2, where

τ1 and τ2 are two different simplices in S.

If C+ ⊆ τ1 and C− ⊆ τ2 for two different τ1,τ2 ∈ S, we say that τ1 and τ2

overlap on the circuit C.

Proof. The proof follows directly from Radon’s theorem B.2.4.

Lemma B.2.20 is particularly useful when we know the circuits of a point

configuration, because it gives us a way to combinatorially check whether a

collection of simplices of a point configuration A intersects properly, namely by

proving that no pair of simplices overlap on a circuit of A. This will be one of our

tools of the trade in chapter 2, when we consider products of simplices.
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The characterization next proved very convenient for verifying that the trian-

gulations considered in this thesis are, in fact, triangulations.

Theorem B.2.21 (Corollary 4.5.20 in [DRS10]). Let T be a collection of sub-

simplices of a point configuration A in Rd. If:

(TV) The total volume of the simplices spanned by the elements of T equals the

volume of conv(A),

and

◦ For every interior simplex τ ∈ T of codimension 1, there are exactly two

vertices v,v′ ∈ A such that τ ∪ {v} and τ ∪ {v′} are full-dimensional sim-

plices in T and v and v′ lie on opposite sides of the plane spanned by the

points in τ

or, equivalently,

◦b For every interior simplex τ ∈ T of codimension 1, there are exactly two

vertices v,v′ ∈ A such that τ ∪ {v} and τ ∪ {v′} are full-dimensional sim-

plices in T and v and v′ have the same sign (i.e. lie in the same part) in

the unique circuit contained in τ ∪ {v} ∪ {v′},

then T is a triangulation of A.

Geometric bistellar flips

Let A = {1, . . . ,n} be a d-dimensional point configuration in Rd and T be

a triangulation of A. We are interested in the minimal modifications that can

be performed on T ; intuition tells that these are obtained by removing some

subcomplex of the simplicial complex T and properly gluing back a different

subcomplex to obtain some triangulation T ′. The concept we need to define the

proper removal or gluing back of a subcomplex σ in a simplicial complex T is

the following.

Definition B.2.22. Let τ ∈ T . The link of τ in T is the following subcomplex of

T :

linkT (τ) := {σ ∈ T : τ 6⊂ σ, σ ∪ τ ∈ T } .

Definition B.2.23 (Theorem 4.4.1 in [DRS10]). Let T and T ′ be two triangu-

lations of the point configuration A. We say T and T ′ differ by a geometric

bistellar flip supported on the circuit C ⊂ A, or just flip, if the following condi-

tions are satisfied:

• T −(C) ⊆ T and T +(C) ⊆ T ′, where T −(C) and T +(C) denote the two unique

triangulations of C (and the inclusion is defined simplex-wise).

• For any two maximal simplices σ1 and σ2 of T −(C), linkT (σ1) = linkT (σ2).

84



APPENDIX B. BASICS OF POLYHEDRAL GEOMETRY AND TRIANGULATIONS

Figure B.9: Minkowski sum of (the vertices of) a segment and (the vertices of)

a quadrilateral. Notice that the result depends on the relative positions of the

summands.

• T ′ = T \
�

T −(C) ∪ linkT (σ)
�

∪
�

T +(C) ∪ linkT (σ)
�

, where σ is a maximal

simplex of T −(C).

Remark B.2.24. Let A be a point configuration in Rd, and T be a triangulation

of A that admits a flip supported on a circuit C of A, so that T contains the

triangulation T + of C. We can define the codimension of the corresponding flip

of T as dim(A)− dim(C). If the codimension of a flip is 0, in particular, the link

of every maximal simplex in T + is empty, and the triangulation obtained after

flipping T + to T − differs from T only in the simplices in T +. Said differently, the

new triangulation is gotten after carving out C from T and gluing it back with

the triangulation T −, without altering the rest of T in the process. 9

B.3 Fine mixed subdivisions

A second way to obtain new point configurations from existing ones is via Minkowski

summation. We will use this in section 2.4 when working with partial triangula-

tions of products of simplices. Our presentation here follows closely the articles

[HRS00, San04] and the book [DRS10].

Let P and Q be point configurations in Rd. We define their Minkowski sum to

be the point configuration:

P+Q := {x+ y : x ∈ P, y ∈ Q} ⊂ Rd.

As opposed to the cartesian product, the result of the Minkowski sum P+Q, e.g.

its dimension, depends on how the point configurations P and Q are embedded

in Rd, as shown in figure B.9.

In particular, not every pair of faces of P and Q makes a face of P + Q.

Instead, we have:

fceω(P+Q) = fceω(P) + fceω(Q),
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where ω is some vector in Rd (representing a linear functional in (Rd)∗). How-

ever, we have the following special case.

Proposition B.3.1 (See section 2.3 in [HRS00]). Suppose P and Q are point

configurations lying on independent affine subspaces. Then their Minkowski

sum P+Q is combinatorially equivalent to their cartesian product P×Q. By this

we mean that P+Q and P+Q have the same set of circuits. This can be seen

in figure B.9.

In this thesis, our interest in Minkowski sums derives from the Cayley trick:

a correspondence between triangulations of a certain point configuration with

fine mixed subdivisions of the Minkowski sum of certain point configurations.

Fine mixed subdivisions emerge as natural dissections of point configurations

that are obtained as Minkowski sums. Let P1,P2, . . . ,Pn be point configurations

in Rd such that dim(P1 + . . . + Pn) = d. A fine mixed cell in the Minkowski sum

P = P1 + . . .+ Pn is a point configuration B = B1 + B2 + . . .+ Bn such that each

B is a (non-empty) subsimplex of P and dim(B) =
∑n
=1 dim(B), that is, the B

lie on independent affine spaces.

Let B =
∑n
=1B and B′ =

∑n
=1 be fine mixed cells in P = P1+ . . .+Pn. We say

B′ is a face of B, and write B′ � B, if B′ � B for every 1 ≤  ≤ n.

Definition B.3.2 (See section 2.3 in [HRS00] or definition 1.1 in [San04]). With

the notation from above, a fine mixed subdivision of P1 + . . .+Pn is a collection

M of fine mixed cells such that:

1. If B ∈M and B′ � B, then also B′ ∈M.

2. ∪B∈Mconv(B) = conv(P1 + . . . + Pn), that is, the mixed cells cover the

polytope conv(P1 + . . .+ Pn).

3. If B =
∑

B and B′ =
∑

B
′
 are mixed cells in M, then B ∩B′ =

∑

B ∩B′ is

a face of both B and B′ (here, if one of the B ∩ B′ is empty, then B ∩ B′ is

empty).

Remark B.3.3. Just as triangulations of point configurations are the “finest” in-

stance of polyhedral subdivisions, fine mixed subdivisions are the finest instance

of more general mixed subdivisions. 9

Remark B.3.4. Note that the point configurations corresponding to fine mixed

cells are combinatorially isomorphic to cartesian products of simplices, as fol-

lows from proposition B.3.1. 9

Example B.3.5. Suppose P and Q are the (vertices of the) quadrilateral and the

triangle depicted in figure B.10a. In figure B.10b we see a fine mixed subdivision

of the Minkowski sum P+Q, where the full-dimensional fine mixed cells are:

B1 = {1,3,4}+ {b1} B2 = {1,2,3}+ {b2} B3 = {1,3}+ {b1,b2}

B4 = {3}+ {b1,b2,b3} B5 = {2,3}+ {b2,b3}

9
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(a) The polytopes P and Q. (b) A fine mixed subdivision of P+Q.

Figure B.10: The mixed subdivision in example B.3.5.

The properties in the definition of a fine mixed subdivision should be regarded

in analogy to those in the definition of a triangulation. Still, we consider it crucial

to stress once more the fact that the dissection of conv(P1 + . . .+ Pn) in a fine

mixed subdivision is in the combinatorial sense of the properties in definition

B.3.2, rather than only in the geometric sense. The reason is that frequently

(more than for triangulations) there will be several mixed cells in the Minkowski

sum P1 + . . . + Pn that have the same “geometric shape”, while only one (or

none) fits in properly (in the sense of fine mixed subdivisions).

Example B.3.6. Let P1 = P2 be the vertices of a triangle, and consider P1+P2,

whose vertices are:

c1 = 1 + b1, c2 = 1 + b3, c3 = 3 + b1,

c4 = 3 + b3, c5 = 1 + b2, c6 = 2 + b1,

c7 = 3 + b2, c8 = 2 + b3, c9 = 2 + c2.

This is illustrated in figure B.11a. The fine mixed cells:

{1,2,3}+ {b1}, {1,2,3}+ {b2}, {1,2,3}+ {b3},

{1}+ {b1,b2,b3}, {2}+ {b1,b2,b3}, {3}+ {b1,b2,b3},

all correspond to the same polytope: a triangle; however they are regarded as

different fine mixed cells.

(a) Notice that several points have the same geomet-

ric coordinates.

(b) The mixed subdivision

M from example B.3.6.

Figure B.11: Minkowski sum of two point configurations.
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Now, consider the mixed cells:

B1 = {1,2,3}+ {b1}, B2 = {1,3}+ {b1,b3},

B3 = {2}+ {b1,b2,b3}, B′3 = {1,2,3}+ {b2}.

The collection M = {B1,B2,B3} (and all faces thereof) is a fine mixed subdivi-

sion of P1 + P2 (see figure B.11b), but M′ = {B1,B2,B′3} is not: even though

B3 and B′3 define the same polytope, the fine mixed cells B2 and B′3 do not

intersect properly. 9

Remark B.3.7. In view of example B.3.6 and the paragraph preceeding it, let

us remark that fine mixed cells in a Minkowski sum P1 + . . . + Pn are perhaps

better thought of as ordered n-tuples of subconfigurations of the P1, . . . ,Pn. This

way, we fix the “identity” of the summands of a fine mixed cell, and regard the

proper intersection property as “entry-wise” proper intersection of the n-tuples

of subconfigurations giving the fine mixed cells. 9

In analogy to proposition B.2.18, the following result establishes a natural

notion of restriction for mixed subdivisions.

Proposition B.3.8 (Lemma 2.1 in [San04]). Let M be a fine mixed subdivision

of P = P1 + P2 + . . . + Pn, and  ⊂ [n] be the indices of some summands of P.

The restriction:

M| :=

(

B| :=
∑

∈
B : B =

n
∑

=1

B ∈M

)

,

is a fine mixed subdivision of the Minkowski sum P| :=
∑

∈ P. In particular, if

j ∈ [n], then M|{j} is a triangulation of Pj.

The truth of this proposition can be intuitively understood by picturing that

all the summands of P not labelled by  “shrink” to have zero size, so that the

“limit object” coincides with M|. A more complete argument is postponed until

the next section, where we use the Cayley trick to prove it easily.

B.4 The Cayley trick

Generally, the Cayley trick gives a bijection between the mixed subdivisions of

the Minkowski sum P1 + P2 + . . . + Pn in Rd and the polyhedral subdivisions of

a certain point configuration C(P1,P2, . . . ,Pn) in Rn+d, called the Cayley lifting

or Cayley embedding of P1,P2, . . . ,Pn. This bijection restricts to a correspon-

dence between fine mixed subdivisions of P1+P2+ . . .+Pn and triangulations of

C(P1,P2, . . . ,Pn), and we will restrict our presentation to this special case. The

reader can find the general theory, its implications in elimination theory and dis-

crete geometry, as well as many references, in [Stu94, HRS00, San04, DRS10].

We superficially comment that the Cayley trick had its original motivation

in elimination theory, and was (re-)discovered by Sturmfels in [Stu94]. In that

formulation, it identified the resultant of a system of polynomial equations with
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the discriminant of a certain polynomial in more variables [GKZ08, HRS00]. The

polyhedral version of the Cayley trick is (the general version of) theorem B.4.3

below, and it served Sturmfels, among others, to reinterpret and generalize

several existing results about the resultant in discrete-geometric terms.

Definition B.4.1 (Section 2.4 in [HRS00] or section 1.3 in [San04]). Let P1,P2, . . . ,Pn
be point configurations in Rd. Denote by {e1,e2, . . . ,en} the standard basis

vectors in Rn, and consider the inclusions μ : Rd → Rn × Rd = Rn+d given by

μ(v) = {e}× v = (e,v), for 1 ≤  ≤ n. The Cayley lifting, or Cayley embedding,

of the point configurations P1,P2, . . . ,Pn is the point configuration:

C(P1,P2, . . . ,Pn) :=
n
⋃

=1

μ(P) ⊂ Rn+d (B.1)

Example B.4.2. The simplest examples are shown below.

• The Cayley embedding of n copies of a point is an (n− 1)-simplex.

• The Cayley embedding of two copies of a segment is a square.

• More generally, the Cayley embedding of n copies of a point configuration

P ⊂ Rd equals the cartesian product Δn−1 × P ⊂ Rn+d.

See figure B.12 for illustrations. 9

Figure B.12: Cayley embeddings of three copies of a point and of two copies of

a segment

Theorem B.4.3 (Cayley trick [HRS00, San04, San12]). In the notation of defi-

nition B.4.1, there is a bijection between triangulations of the point configura-

tion C(P1,P2, . . . ,Pn) and fine mixed subdivisions of the Minkowski sum P1 +
P2 + . . . + Pn. The correspondence is as follows: let T be a triangulation of

C(P1,P2, . . . ,Pn). To each full-dimensional simplex σ in T , assign the fine mixed

cell B1 +B2 + . . .+Bn, where B is the simplex of P such that:

{e}×B = σ ∩ ({e}× P)

In the other direction, let M be a fine mixed subdivision of P1 + P2 + . . . + Pn.

To the full-dimensional fine mixed cell B = B1 + B2 + . . . + Bn ∈M, assign the

simplex σ of C(P1,P2, . . . ,Pn) gotten as:

σ =
n
⋃

=1

{e}×B
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Example B.4.4. We illustrate the content of the Cayley trick with an exam-

ple. Let P1 be the vertices of a quadrangle and P2 be the vertices of a tri-

angle. The Cayley embedding C(P1,P2) is displayed in the figure B.13a. In

figure B.13b we see a triangulation T of C(P1,P2) having the maximal sim-

plices σ1 = {1,3,4,b3}, σ2 = {1,2,3,b2}, σ3 = {1,3,b2,b3}, σ4 =
{1,2,b1,b2} and σ5 = {1,b1,b2,b3}. The mixed subdivision of P1+P2 cor-

responding to T , in accordance with the Cayley trick, is shown at the right. The

fine mixed cells are B1 = {2,3,4} + {b3}, B2 = {1,2,3} + {b2}, B3 =
{1,3} + {b2,b3}, B4 = {1,2} + {b1,b2} and B5 = {1} + {b1,b2,b3}.

9

(a) The Cayley lifting of a square

and a triangle

(b) A triangulation and the corresponding fine mixed

subdivision

Figure B.13: Illustration of the Cayley trick

It is easy to check that the correspondences in theorem B.4.3 are inverse

to each other. Rather than include a complete proof of the Cayley trick here,

which can be found in [HRS00], we illustrate the underlying geometric idea with

a concrete example.

Let P be the vertices of the unit square embedded in R3: P =
¦

(1,0,0)t , (1,0,1)t ,
(1,1,0)t , (1,1,1)t

©

. The Cayley embedding of two copies of P consists of the

columns of the matrix:

C(P,P) =



















1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1



















.

This point configuration coincides with the vertices of a unit 3-cube. Let T be

a triangulation of C(P,P). The bijection in the Cayley trick is achieved by inter-

secting conv(C(P,P)) with the affine plane H = {12 (e1+e2)}×R
3. Such a plane

intersects every maximal simplex of any triangulation of C(P,P); in particular,

T ∩H can be seen as (a scaled copy of) a fine mixed subdivision of P+P, which

is precisely the one associated to T by the bijection in the Cayley trick.

We have drawn C(P,P) with a triangulation T in figure B.14. The intersection

of H with the codimension 1 simplices of T is shown as thick red lines in the left.

In the right, we see the fine mixed subdivision resulting. The reader can check
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that the simplex σ corresponds to the fine mixed cell B (for 1 ≤  ≤ 6), and that

the collection of fine mixed cells so obtained is a fine mixed subdivision of P+P.

Figure B.14: Geometric idea behind the Cayley trick.

With the next simple property of Cayley embeddings, we formulate a short

proof of proposition B.3.8.

Proposition B.4.5. With the notation in definition B.4.1, we have that:

{e}× P = fceω (C(P1,P2, . . . ,Pn)) ,

with ω = (e,0) ∈ Rn+d.

Proof of proposition B.3.8. With the Cayley trick, every mixed subdivision of
∑

∈ P

is in bijection with a triangulation of C({P :  ∈ }). The latter point configuration

is of the form fceω (C(P1,P2, . . . ,Pn)) with ω =
�
∑

∈ e,0
�

, to which we may

restrict any triangulation of C(P1,P2, . . . ,Pn) to get a fine mixed subdivision of
∑

∈ P.
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