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1 Introduction

This thesis has two big parts, one is a new proof of the Borel-Brascamp-Lieb (BBL)
inequality via geodesics in general Wasserstein spaces which makes it possible to define an
abstract curvature condition. In the second part, the observation of Jordan, Kinderlehrer
and Otto [JKO98] to identify the heat flow and the gradient flow of the entropy functional
in the 2-Wasserstein space is developed further to show that a similar identification holds
for the q-heat flow and the gradient flow of the Renyi entropy in the p-Wasserstein space.

1.1 Borel-Brascamp-Lieb and the curvature dimension

The proof of the BBL inequality for Riemannian manifolds by Cordero-Erausquin-McCann-
Schmuckenschläger [CEMS01], and later for Finsler manifolds by Ohta [Oht09], led Lott-
Villani [LV09, LV07] and Sturm [Stu06a, Stu06b] to a new notion of a lower bound on the
generalized Ricci curvature for metric measure spaces, called curvature dimension. Both,
the BBL inequality and the curvature condition, rely on geodesics in the 2-Wasserstein
space, which was a natural candidate because of its connection to convex analysis in the
Euclidean setting.
Based on Ohta’s proof [Oht09] we show how to prove the BBL inequality via geodesics

in the p-Wasserstein spaces for any p > 1. Following Lott-Villani-Sturm, a new curvature
condition can be defined via convexities along geodesics in the p-Wasserstein space, and
many known results, like Poincaré inequality and Bishop-Gromov volume comparison,
follow by similar arguments.
The proof of the BBL inequality relied on three ingredients: (1) a solution to the Monge

problem and a prescription of the interpolation maps, (2) second order differentiability of
the solution potential and a cut locus description, and (3) positive (semi-) definiteness of
the Jacobian of the interpolation map. The solution to the Monge problem easily follows
by combining [McC01] and [Oht09]. The interpolation maps already give the idea that
optimal transport is along geodesics, which is well-known by Lisini’s result [Lis06]. For
the proof of second order differentiability, we rely on two observations: (1) Ohta [Oht09]
noticed that the lack of C2-smoothness of square distance d2(·, ·) at the diagonal can
be avoided by splitting the transport plan into a moving and a non-moving part, this
actually works for all smooth functions of the distance, (2) the set of cp-concave functions
is star-shaped. (1) says we only need to check where the transport map maps to different
points and (2) helps to move the terminal point away from the cut-locus. Using this,
a proof of the (almost) semiconcavity of solution potentials (Theorem 4.10) is given,
which is shorter than Ohta’s orginial proof [Oht08], yet it doesn’t show that cp-concave
functions are everywhere locally semiconcave. However, it easily adapts to the Orlicz
case, see Theorem 7.17.
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1 Introduction

The star-shapedness of cp-concave functions, resp. pseudo star-shapedness of cL-
concave functions, and positive (semi-) definiteness of the Jacobian rely on the following,
quite innocent looking inequalities: if z ∈ Zt(x, y) then for any m

tp−1dp(m, y) ≤ dp(m, z) + tp−1(1− t)dp(x, y)

and
t−1L(d(m, y)) ≤ L(d(m, z)/t) + t−1(1− t)L(d(x, y))

where L is a strictly increasing convex function. The orginial inequality with p = 2 can
be easily derived from the binormial formula. The more general cases need explicitly
convexity of L, resp. p > 1. The form of these inequalities can be predicted by analyzing
the original proof of the interpolation inequality for p = 2 backwards. For this one
needs a precise description of the Breinier-McCann-Ohta solution and the interpolation
solution. In the cases 1 < p < ∞ this was long known. In this thesis, it will be shown
that the statement geodesics in Wasserstein spaces transport their mass along geodesics
also holds for Orlicz-Wasserstein spaces.
As a "vertical dual" one can use the recent theory and calculus developed around the

q-Cheeger energy (q is the Hölder conjugate of p) by Ambrosio-Gigli-Savaré [AGS13,
AGS11a, Gig12] to even get a q-Laplacian comparison, which, however, is equivalent to
the usual one in the smooth setting. In chapter 6, we will study the gradient flow of the
q-Cheeger energy, called q-heat flow, and use the "duality" and curvature condition to
identify it with the gradient flow of the (3− p)-Renyi entropy if p ∈ (1, 3).

1.2 Heat and gradient flows

In [JKO98] Jordan, Kinderlehrer and Otto showed in the Euclidean setting that one
can identify the heat flow with the gradient flow of the entropy functional in the 2-
Wasserstein space. The main idea was to show that the solution of the gradient flow
problem solves also the heat equation. Uniqueness of the solution implies that the two
flows are identical. The identification of the heat flow and the gradient flow of the entropy
functional on manifolds was later accomplished by Erbar [Erb10].
Otto [Ott96, Ott01] also gave a formal proof of how to use gradient flows in the p-

Wasserstein spaces modeled on Rn in order to solve other equations like the porous media
equation and the parabolic q-Laplace equation, i.e. the q-heat flow. Rigorous proofs were
later given by Agueh [Agu02, Agu05]. Only recently Ohta and Takatsu [OT11a, OT11b]
also showed that a similar construction works on manifolds if the functionals are K-
convex.
All proofs until then required the contraction property which follows, at least in the

Riemannian setting, from the curvature dimension condition introduced by Lott-Villani
and Sturm [LV09, LV07, Stu06a, Stu06b]. Since this condition can be defined on any
metric measure spaces it was believed that a similar identification holds also under such
a condition. In [Gig09] Gigli gave a proof which did not require the contraction property.
This proof let Ambrosio-Gigli-Savaré [AGS13] to define a new generalized gradient from
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which one gets a natural heat flow associated to a metric space. With the help of a
calculus of the heat flow and its mass preservation they could show that the heat flow
is a solution of the gradient flow problem of the entropy functional in the 2-Wasserstein
space. Using a convexity of the square of the upper gradient of the entropy functional
one gets uniqueness and hence the two flows are identical.
One of the main ingredient of the proof was the Kuwada lemma, i.e. if µt = ftµ is a

solution of the heat flow and |µ̇t| is the metric derivative of t 7→ µt in the 2-Wasserstein
space P2(M) then

|µ̇t|2 ≤
ˆ
|∇ft|2

ft
dµ

where the write hand side is called the Fisher information of ft. This was the “missing”
ingredient, since it was long known that the derivative along the heat flow t 7→ ft of the
entropy functional is (minus) the Fisher information of ft.
In [AGS11a] Ambrosio-Gigli-Savaré showed the Kuwada lemma for q 6= 2, namely if

t 7→ ft is the q-heat flow such that the density is bounded from above and away from
zero from below (implying the measure µ is finite), they showed

|µ̇t|p ≤
ˆ
|∇ft|q

fp−1
t

dµ

where this time the metric derivative is taken in the p-Wasserstein space Pp(M), t 7→
µt = ftµ is a solution of the q-heat flow and p and q are Hölder conjugates. A formal
calculation reveals that the derivative of the following functional

f 7→ 1

(3− p)(2− p)

ˆ
f3−p − fdµ,

called (3− p)-Renyi entropy, along the q-heat flow in the p-Wasserstein space is exactly
minus the right hand side of the previous inequality, which can be called the q-Fisher
information.
In this paper, we will follow [AGS13] and first develop a calculus of the q-heat flow to

show mass preservation in the non-compact setting and that the formal calculation above
holds in an abstract setting. In case q > 2 there is almost no restriction on the measure
to get mass preservation besides a “not too bad” growth of the measure of a ball. The
cases q < 2 are more restrictive. Using generalized exponential functions already know
from information theory [OT11a, Section 3] one of the conditions can be stated as

ˆ
expp(−V p)dµ <∞

where V (x) = Cd(x, x0) for some C > 0 and expp is the generalized exponential function
which agrees with the usual exponential function and the condition with the condition
stated in [AGS13]. In Rn this condition boils down to q > 2n

n+1 . However, the current
proof requires the more restrictive conditionˆ

V p expp(−V p)dµ <∞.
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In the second part under some assumptions on the functional, which hold assuming
a curvature condition defined in chapter 46, we show that the proof of [AGS13] can be
adjusted to show that the q-heat flow solves the gradient flow problem of the Renyi
entropy in Pp(M). For q > 2 we also get convexity of the q-the power of the upper
gradient and hence uniqueness of the gradient flow. This implies that the q-heat flow
and the gradient flow of the Renyi entropy can be identified. The current proof of the
cases q < 2 requires the space to be compact and the measure be n-Ahlfors regular for
some n depending on q. However, this condition is satisfied on smooth manifolds if the
the curvature condition CDp(0, N) holds for N > n.
The difficulty of the cases p 6= 2 rely on a lack of Cauchy-Schwary inequalty and

that in the original proofs many times the binormial formula is used instead of Jensen’s
inequality or convexity. Furthermore, the entropy functional and the heat equation are
already well-studied objects . In particular, the condition

´
exp(−V 2)dµ <∞ was known

to be sufficient to obtain mass preservation of the heat flow long before the paper [AGS13]
whereas the author couldn’t find any known condition on the mass preservation of the
q-heat flow.

A note on the notation and prepublished results

Notation

In this work we try to use a context-sensitive notation in order to avoid overcomplicated
names with ,̃ ,̂ .̄ Below we will define distinct functionals UN ,Up and Um and assume
m, p,N ∈ R. Whereas U3 is ambiguous, we hope that statements about Up, UN or Um are
unambiguous in the embedded context. Furthermore, whenever possible we will assume
that p and q are Hölder conjugates and if not otherwise stated 1 < p, q <∞.

Preprints

Chapter 3 to 5 and chapter 7 are already available as a preprint [Kel13] on arXiv and
chapter 6 as [Kel14]. All results are sole work of the author; only the remark on page 48
was given by Shin-ichi Ohta on an early version of [Kel13].
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2 Notation and Preliminaries

In this part, we will introduce the main concepts used in this work. Most of the notation
and concepts of abstract metric spaces and gradients are taken from [AGS13, Gig12] (see
also [AGS08]). For an introduction to the theory of optimal transport see [Vil09].
As a convention we will always assume that (M,d) is a locally compact metric space

and if not otherwise stated it is assumed to be geodesic (see below). Since we will also deal
with non-locally compact spaces (e.g. (Pp(M), wp) with M non-compact), the sections
below do not assume that (X, d) is locally compact.

2.1 Calculus in metric spaces

Let (X, d) be a (complete) metric space and for simplicity we assume that X has no
isolated points.

2.1.1 Lipschitz constants and upper gradients

Given a function f : X → R = [−∞,∞], the local Lipschitz constant |Df | : X → [0,∞]
is given by

|Df |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

for x ∈ D(f) = {x ∈ X | f(x) ∈ R}, otherwise |Df |(x) = ∞. The one sided versions
|D+f | and |D−f |, also called ascending slope (resp. descending slope)

|D+f |(x) := lim sup
y→x

[f(y)− f(x)]+
d(y, x)

|D−f |(x) := lim sup
y→x

[f(y)− f(x)]−
d(y, x)

for x ∈ D(f) and∞ otherwise, where [r]+ = max{0, r} and [r]− = max{0,−r}. It is not
difficult to see that |Df | is (locally) bounded iff f is (locally) Lipschitz.

The following lemma will be crucial to calculate the derivative of functionals along the
gradient flow of the Cheeger energy.

Lemma 2.1 ([AGS13, Lemma 2.5]). Let f, g : X → R be (locally) Lipschitz functions, φ :
R→ R be a C1-function with 0 ≤ φ′ ≤ 1 and ψ : [0,∞)→ R be a convex nondecreasing
function. Setting

f̃ := f + φ(g − f), g̃ = g − φ(g − f)

10



2 Notation and Preliminaries

we have for every x ∈ X

ψ(|Df̃ |)(x) + ψ(|Dg̃|)(x) ≤ ψ(|Df |)(x) + ψ(|Dg|)(x).

We say that g : X → [0,∞] is an upper gradient of f : X → R if for any absolutely
continuous curve γ : [0, 1] → D(f) the curve t 7→ g(γs)|γ̇s| is measurable in [0, 1] (with
convention 0 · ∞ = 0) and

|f(γ1)− f(γ0)| ≤
ˆ 1

0
g(γt)dt.

It is not difficult to see that the local Lipschitz constant and the two slopes are upper
gradients in case f is (locally) Lipschitz.

2.1.2 Relaxed slopes and the Cheeger energy

In a metric space there is no natural gradient of Lr-functions which are not Lipschitz.
Cheeger defined in [Che99] a gradient via a relaxation procedure using slopes of Lipschitz
function. In [AGS13, AGS11a] Ambrosio-Gigli-Savaré used a more restrictive version of
Cheeger’s original definition.

Definition 2.2 (q-relaxed slope). A function g ∈ Lq is a q-relaxed slope of f ∈ L2 if
there is a sequence of Lipschitz functions fn strongly converging to f in L2 such that
|Dfn| converges weakly (in Lq) to some g̃ ∈ Lq with g ≤ g̃. We denote by |∇f |∗,q the
element of minimal Lq-norm among all q-relaxed slopes.

Remark. In order to apply the gradient flow theory of Hilbert spaces, we divert from the
approach in [AGS11a] and use approximations of f in L2 instead of Lq. Note that the
proofs of [AGS11a] also work in this setting if appropriate changes are made.
It was shown in [AGS11a] that this definition, Cheeger’s original and two other defi-

nitions agree almost everywhere. However, if the space does not satisfy a local doubling
condition and a local Poincaré inequality, then the q-relaxed slope might be different
from the q′-relaxed slope if q 6= q′, see [DS13]. Nevertheless, we will drop the dependency
on q and just write |∇f |∗.
One can show that the relaxed slope is sublinear, i.e. |∇(f + g)|∗ ≤ |∇f |∗ + |∇g|∗

almost everywhere, and satisfies a weak form of the chain rule, i.e. for any C1-function
φ : R → R, which is Lipschitz on the image of f , we have |∇φ(f)|∗ ≤ |φ′(f)||∇f |∗ with
equality if φ is non-decreasing [AGS13, Proposition 4.8]. This can be easily proven for
Lipschitz functions and their slopes, and follows by a cut-off argument also for functions
and their relaxed slopes.
Now the q-Cheeger energy of the metric measure space (M,d, µ) is defined as

Chq(f) =
1

q

ˆ
|∇f |q∗dµ

for all f admitting a relaxed slopes, otherwise Chq(f) = ∞. Similarly, given a convex
increasing function L : [0,∞) → [0,∞) with L(0) = 0, the L-Cheeger energy is defined
as ChL(f) =

´
L(|∇f |)dµ. Then the q-Cheeger energy is nothing but the L-Cheeger

energy for L(r) = rq/q.

11



2 Notation and Preliminaries

Proposition 2.3. Let f, g ∈ D(Chq) and φ : R → R be a nondecreasing contraction
(with φ(0) = 0 if µ(M) =∞) then µ-almost everywhere in M

|∇(f + φ(g − f))|q∗ + |∇(g − φ(g − f))|q∗ ≤ |∇(f)|q∗ + |∇(g)|q∗.

Proof. The proof follows along the lines of the proof of [AGS13, Proposition 4.8] using
Lemma 2.1 (see [AGS13, Lemma 2.5]).

2.1.3 Fisher information

The Fisher information is the derivative of the entropy functional along the heat flow.
The Kuwada lemma, a key tool of [AGS13] to identify the heat flow and the gradient
flow of the entropy functional, shows that the square of the metric derivative in the 2-
Wasserstein space along the heat flow is bounded from above by the Fisher information.
In a different paper [AGS11a] they showed that in the compact setting with density of
the measure bounded from below and above, there is also a version of this along the
q-heat flow in the p-Wasserstein space (see Lemma 6.9 for a precise version). For that
reason we define the following q-Fisher information as follows.

Definition 2.4 (q-Fisher information). Let q ∈ (1+
√

5
2 ,∞). For a Borel function f :

M → [0,∞] we define the q-Fisher information Fq(f) as

Fq(f) := r−q
ˆ
|∇f r|q∗dµ = qr−q Chq(f

r)

where q 6= 1+
√

5
2 and

r = 1− p− 1

q
= 1− (p− 1)2

p
.

In case q = 1+
√

5
2 , note q = p− 1 and thus we define

Fq(f) =

ˆ
|∇ log f |qwdµ = qChq(log f).

Remark. For q ∈ (1+
√

5
2 ,∞), we also have r ∈ (0, 1), which will be our main interest

for technical reasons. Nevertheless, all case q ≥ 2 are covered. In the following, we
will just write r > 0. Furthermore, notice that N ≥ 2 and 1 − 1

N = 3 − p implies
p = 2 + 1

N ≤ 2.5 < 3+
√

5
2 . Thus only the cases N ∈ (1, 2) remain to be covered. In the

smooth setting CDp(K,N) with N ∈ (1, 2) can only hold for 1-dimensional spaces.

Proposition 2.5. Let r > 0. Then for every Borel function f : M → [0,∞] we have the
equivalence

f ∈ D(Fq) ⇐⇒ f ∈ L2r(M,µ) and
ˆ
{f>0}

|∇f |q∗
fp−1

dµ <∞

12



2 Notation and Preliminaries

and in this case we have
Fq(f) =

ˆ
{f>0}

|∇f |q∗
fp−1

dµ.

In addition, the functional is sequentially lower semicontinuous w.r.t. the strong conver-
gence in L2r(M,µ) and L2(M,µ). If p < 2 then the functional is also convex.

Remark. Compare this to [AGS11a, Remark 6.2] and [AGS13, Lemma 4.10]. And note
that the statement |∇f |w ∈ L1 follows already from f ∈ L1 and

´ |∇f |2w
f dµ < ∞ by

applying the reverse Hölder inequality.

Proof. Similar to [AGS13, Lemma 4.10] first assume f is bounded. Then note that
f ∈ D(Fq) requires f r ∈ L2(M,µ), i.e. f ∈ L2r(M,µ) and by chain rule

|∇f r|q∗ = rq
|∇f |q∗
fp−1

.

Conversely, just use φ(r) =
√
r + ε−

√
ε, apply the chain rule and let ε→ 0.

Convexity for p < 2 follows from [Bor97]: Since in that case q ≥ p, we know (x, y) 7→
xq/yp−1 is convex in R2.

Later we will see that the q-Fisher information is the derivative of the Renyi entropy

f 7→ 1

(3− p)

ˆ
f lnp fdµ

along the q-heat flow. In case q = p = 2 we see that this boils down to the classical case.

2.1.4 Absolutely continuous curves and geodesics

If I ⊂ R is an open interval then we say that a curve γ : I → X is in ACp(I,X) (we
drop the metric d for simplicity) for some p ∈ [1,∞] if

d(γs, γt) ≤
ˆ t

s
g(r)dr ∀s, t ∈ J : s < t

for some g ∈ Lp(J). In case p = 1 we just say that γ is absolutely continuous. It can be
shown [AGS08, Theorem 1.1.2] that in this case the metric derivative

|γ̇t| := lim sup
s→t

d(γs, γt)

|s− t|

with lim for a.e. t ∈ I is a minimal representative of such a g. We will say γ has constant
(unit) speed if |γ̇t| is constant (resp. 1) almost everywhere in I.
It is not difficult to see that ACp(I,X) ⊂ C(Ī , X) where C(Ī , X) is equipped with the

sup distance d∗

d∗(γ, γ′) := sup
t∈Ī

d(γt, γ
′
t).
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2 Notation and Preliminaries

For each t ∈ Ī we can define the evaluation map et : C(Ī , X)→ X by

et(γ) = γt.

We will say that (X, d) is a geodesic space if for each x0, x1 ∈ X where is a constant
speed curve γ : [0, 1]→ X with γi = xi and

d(γs, γt) = |t− s|d(γ0, γ1).

In this case, we say that γ is a constant speed geodesic. The space of all constant speed
geodesics γ : [0, 1] → X will be donated by Geo(X). Using the triangle inequality it is
not difficult to show the following.

Lemma 2.6. Assume γ : [0, 1]→ X is a curve such that

d(γs, γt) ≤ |t− s|d(γ0, γ1)

then γ is a geodesic from γ0 to γ1.

A weaker concept is a length space: In such spaces the distance between point x0 and
x1 ∈ X is given by

d(x0, x1) = inf

ˆ 1

0
|γ̇t|dt

where the infimum is taken over all absolutely continuous curves connecting x0 and
x1. In case X is complete and locally compact, the two concepts agree. Furthermore,
Arzela-Ascoli also implies:

Lemma 2.7. If (X, d) is locally compact then so is (Geo(X), d∗) where d∗ is the sup-
distance on C(Ī , X).

2.1.5 Geodesically convex functionals and gradient flows

A functional E : X → R ∪ {+∞} is said to be K-geodesically convex for some K ∈ R if
for each x0, x1 ∈ D(E) there is a geodesic γ ∈ Geo(X) connecting x0 and x1 such that

E(γt) ≤ (1− t)E(γ0) + tE(γ1)− K

2
(1− t)td2(γ0, γ1).

In such a case it can be shown ([AGS08, Section 2.4] that the descending slope is an
upper gradient of E and can be expressed as

|D−E|(x) = sup
y∈X\{x}

(
E(x)− E(y)

d(x, y)
+
K

2
d(x, y)

)
In particular, it is lower semicontinuous if E is. Furthermore, if x : [0,∞) → D(E) is a
locally absolutely continuous curve then

E(xt) ≥ E(xs)−
ˆ t

s
|ẋr||D−E|(yr)dr

14
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for every s, t ∈ [0,∞) and s < t. Note by Young’s inequality we also have for any
p ∈ (1,∞)

E(xt) ≥ E(x0)− 1

p

ˆ t

0
|ẋt|pdt−

1

q

ˆ t

0
|D−E|q(xr)dr.

Definition 2.8 ((E, p)-dissipation inequality and metric gradient flows). Let E : X →
R ∪ {∞} be a functional on X then we say that a locally absolutely continuous curve
t 7→ yt ∈ D(E) satisfies the (E, p)-dissipation inequality if for all t ≥ 0

E(x0) ≥ E(xt) +
1

p

ˆ t

0
|ẋt|pdt+

1

q

ˆ t

0
|D−E|q(xr)dr.

t 7→ xt is a gradient flow of E starting at y0 ∈ D(E) if

E(y0) = E(xt) +
1

p

ˆ t

0
|ẋt|pdt+

1

q

ˆ t

0
|D−E|q(xr)dr.

In the geodesically convex case we immediately see that if t 7→ xt satisfies the (E, p)-
dissipation inequality then it is a (generalized) gradient flow and

d

dt
E(xt) = −|ẋt|p = −|D−E|q(xt)

for almost all t ∈ (0, 1).

Remark. The theory developed in [AGS08] covers mainly the case p = 2 and only men-
tioned the required adjustments. For a comprehensive treatment of the case p 6= 2 and
even more general situations see [RMS08].

2.1.6 Optimal Transport

Let (M,d) be a proper metric space. Given two probability measure µ0, µ1 ∈ P(M)
and a (non-negative) cost function c : M ×M → [0,∞) one can define the following
Kantorovich problem

C(µ0, µ1) = inf
π∈Π(µ0,µ1)

ˆ
c(x, y)dπ(x, y)

where Π(µ0, µ1) is the set of all π ∈ P(M ×M) such that (p1)∗π = µ0 and (p2)∗π = µ1

with pi being the projections to the i-th coordinate.
It is well-known that the problem has a solution πopt, i.e. a probability measure πopt

in Π(µ0, µ1) such that

C(µ0, µ1) =

ˆ
c(x, y)dπopt(x, y).

Given any such cost function one can define a dual problem

C̃(µ0, µ1) = sup
φ(x)+ψ(y)≤c(x,y)

ˆ
φdµ0 +

ˆ
ψdµ1.

15
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It is not difficult to see that C̃ ≤ C.
The solution to this problem can be described by a pair of c-concave potentials: if

ψ : M → R then one can define the c-transform as

ψc(y) = inf
x∈M

c(x, y)− φ(x).

We say that φ is c-concave if it is the c-transform of some function ψ. Similarly, with c
replaced by c̄(x, y) = c(y, x) one defines the c̄-transform of φ and says ψ is c̄-concave if
it is the c̄-transform of a function φ.
Given a c-concave function φ = ψc one can define the c-superdifferential ∂cφ by

∂cφ(x) = {y ∈M |φ(x) + ψ(y) = c(x, y)}.

One of the major results in optimal transport theory is the following:

Theorem 2.9. [Vil09, Theorem 5.11]One always has

C̃(µ0, µ1) = C(µ0, µ1)

and the dual problem is attained by a pair (φ, ψ) of c-concave/c̄-concave functions with
φ = ψc and ψ = φc̄. Assuming, for simplicity, that c is continuous, then the optimal
transport measure πopt is supported on the graph of the c-superdifferential which is c-
cyclically monotone, i.e. given n couples (xi, yi) ∈ ∂cφ one has

n−1∑
i=0

c(xi, yi) ≤
n−1∑
i=1

c(xi, yi+1).

Furthermore, if ∂cpφ(·) is single-valued µ0-almost everywhere, then πopt is concentrated
on the graph of a measurable function T where T is a measurable selection of x 7→ ∂cφ(x)
which is uniquely defined µ0-a.e..

Wasserstein spaces

In this section, we will give a short introduction to the Wasserstein spaces Pp(M), for
an overview see [Vil09, Chapter 6].
Fix some x0 ∈ M and let P(M) be the set of probability measures on M . The p-

Wasserstein space for 1 < p < ∞ is the space of all probability measures with finite
p-moments

Pp(M) = {µ ∈ P(M) |
ˆ
dp(x, x0)dµ(x) <∞}

equipped with the metric
wp(µ0, µ1) = (Cp(µ0, µ1))

1
p

where the cost function is given by cp(x, y) = dp(x, y)/p.
It is well know that (Pp(M), wp) is a complete metric measure space if (M,d) is and is

geodesic if M is. Furthermore, it is compact iff M is (see [Vil09, Chapter 6]). However,
it is not locally compact ifM is just locally compact. Nevertheless, in caseM is a proper
metric space there is a sufficiently nice weak topology induced by the subspace topology
of P(M) with its weak topology.
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Lemma 2.10 (see e.g. [Kel11, Theorem 6]). Let (M,d) be a proper metric space, then
every bounded set in Pp(M) is precompact w.r.t. to the weak topology induced by Pp(M) ⊂
P(M).

Proof. Let x0 be some fixed point in M . By [Vil09, Lemma 4.3] we know that the
wp(δx0 , ·) is weakly lower semicontinuous. Thus we only need to prove tightness of every
wp-ball B

p
R(δx0) ⊂ Pp(M), i.e. for every ε > 0 there is a compact set Kε ⊂M such that

every µ ∈ Bp
R(δx0)

µ(M\Kε) ≤ ε.

If we set Kε = B 1
ε
(x0) then

µ(M\Kε) ≤ εp
ˆ
d(x,x0)≥ 1

ε

dp(x, x0)dµ(x)

≤ εppwpp(δx0 , µ) ≤ εpRp

which implies tightness since any ball in M is compact.

In the chapter 7, we introduce more general Wasserstein spaces, called Orlicz-Wasserstein
space. For those the distance is not given by a single optimization problem and so far
there is no nicely defined dual problem. However, the lemma above also holds in a similar
way (see Proposition 7.5).
We say that a function E : Pp(M) → R ∪ {∞} is weakly lower semi-continuous if it

is lower semicontinuous w.r.t. the weak topology on Pp(M) ⊂ P(M). In particular, the
weak closure of bounded subset of sublevels of E are contained in that sublevel.

Theorem 2.11. Let (M,d) be a proper geodesic metric space and E be a functional on
Pp(M) such that E and |D−E| are weakly lower semicontinuous. Then for all µ0 ∈ D(E)
there exists a gradient flow t 7→ µt of E starting at µ0.

Proof. Just note by the previous lemma the assumptions [AGS08, Assumption 2.4a,c]
hold and thus [AGS08, Corollary 2.4.12] can be applied.

Remark. The requirement |D−E| to be weakly lower semicontinuous is rather restrictive
in the non-compact case. Note, however, below we only need lower semicontinuity, which
follows from K-convexity. Existence will follow from existence of the q-heat equation.

2.2 Finsler manifolds

In this section, we recall some notation and facts from Finsler geometry. We will mainly
follow the notation of [Oht09, Oht08] and otherwise refer to [BCS00, She01].
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2.2.1 Finsler structures

Let M be a connected, n-dimensional C∞-manifold.

Definition 2.12 (Finsler structure). A C∞-Finsler structure on M is a function F :
TM → [0,∞) such that the following holds

1. (Regularity) F is C∞ on TM\{0} where 0 stands for the zero section,

2. (Positive homogeneity) for any v ∈ TM and any λ > 0, it holds F (λv) = λF (v),

3. (Strong convexity) In local coordinates (xi)ni=1 on U ⊂M the matrix

(gij(v)) :=

(
1

2

∂2(F 2)

∂vi∂vj
(v)

)
is positive-definite at every v ∈ π−1(U)\0 where π : TM → M is the natural
projection of the tangent bundle.

Strictly speaking, this is nothing more than defining a Minkowski norm F |TxM on
each TxM with some regularity requirements depending on x. We don’t require F to be
absolutely homogeneous, i.e. F (v) 6= F (−v) is possible. In such a case the “induced”
distance (see below) is not symmetric. As an abbreviation we let F̄ denote the reverse
Finsler structure, i.e. F̄ (v) = F (−v).
Remark. Most of the statements below and in Chapter 4 only require C2-regularity of
the Finsler structure. The C∞-regularity is only assumed for convenience.
On any C∞-manifold one can define the differential df of a C1-function f . In order to

define the gradient of f one needs the following: let L : T ∗M → TM be the Legendre
transform associating to each co-vector α ∈ T ∗xM the unique vector v = Lx(α) ∈ TxM
such that F (v) = F ∗(v) and α(v) = F (v)2, where F ∗ is the dual norm of F on T ∗M .
This transform is C∞ from T ∗M\{0} to TM\{0} and is C∞ in case F is a Riemannian
structure, i.e. the parallelogram inequality holds on each TxM . The gradient ∇f at x
of f is now defined by ∇f(x) = Lx(dfx) ∈ TxM . Then we have for every unit speed
C1-curve η : [0, l]→M (i.e. F (dη/dt) ≡ 1)

−
ˆ l

0
F (∇(−f)(ηt))dt ≤ f(η(l))− f(η(0)) ≤

ˆ l

0
F (∇f(ηt))dt.

Thus one can define an intrinsic metric of the Finsler manifold by

d(x, y) = sup
f∈C1,F (∇f)≤1

f(y)− f(x)

which is symmetric iff F = F̄ .
In the Finsler setting, there is no good notion of a (Finsler) Hessian of a C2-function

f , so that we will use the well-defined differential of df : M → T ∗M which can be written
in local coordinates as

d(df)x =
n∑

i,j=1

(
δij

∂

∂xi

∣∣∣∣
dfx

+
∂2f

∂xi∂xj
(x)

∂

∂vi

∣∣∣∣
dfx

)
dxj
∣∣
x
.

Note, however, that this expression is not coordinate free.
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2.2.2 Chern connection, covariant derivatives and curvature

In contrast to Riemannian manifolds there is no “unique” canonical connection defined
on a Finsler manifold. As in [Oht09] we will only use the Chern connection in this article
which is the same as the Levi-Civita connection in the Riemannian case. In order to
reduce the notation we will only use the Chern connection and denote it by ∇ without
stating its exact property ([Oht09, Definition 2.2]). For a thorough introduction see
[Oht09, BCS00, She01].
Recall that by strong convexity of F the matrix (gij(v)) is positive definite for every

v ∈ TxM\{0} and hence defines a scalar product on TxM which will be denoted by
gv(·, ·), i.e.

gv(
n∑
i=1

wi1
∂

∂xi

∣∣∣∣
x

,
n∑
j=1

wj2
∂

∂xj

∣∣∣∣
x

) =
n∑

i,j=1

gij(v)wi1w
j
2.

Using the definition of Legendre transform one sees that L−1
x (v)(w) = gv(v, w) for w ∈

TxM and thus gv(v, v) = F (v)2. Different from Riemannian metrics, gv is non-constant
and the following tensor, called Cartan tensor is non-zero (at least for some v ∈ TM\{0}).

Aijk(v) :=
F (v)

2

∂gik
∂vk

(v) =
F (v)

4

∂3(F 2)

∂vi∂vj∂vk
(v).

Further, we can define the formal Christoffel symbol by

γijk(v) :=
1

2

n∑
l=1

gil(v)

{
∂glj
∂xk

(v)−
∂gjk
∂xl

(v) +
∂gkl
∂xj

(v)

}
for v ∈ TM\0 and also

N i
j(v) :=

n∑
k=1

γijk(v)vk − 1

F (v)

∑
k,l,m=1

Aijk(v)γklm(v)vlvm

where (gij) is the inverse of (gij) and Aijk :=
∑

l g
ilAljk.

Given the Chern connection ∇ let ωij be its connection one-forms which are defined by

∇v
∂

∂xj
=

n∑
i=1

ωij(v)
∂

∂xi
,∇vdxi =

n∑
j=1

−ωij(v)dxj

and by torsion-freeness can be written as

ωij =
∑
k

Γijkdx
k.

Given two non-zero vectors v, w ∈ TxM\{0}, a C∞-vector field X and the connection
one-forms, one can define the covariant derivative Dw

v X with reference vector w as

(Dw
v X)(x) :=

n∑
i,j=1

{
vj
∂Xi

∂xj
+

n∑
k=1

Γijk(w)vjXk

}
∂

∂xi

∣∣∣∣
x

.
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In the Riemannian case, the covariant derivative does not depend on the vector w and
is just the usual covariant derivative.
From the Chern connection one can also define its curvature two-forms

Ωj
i := dwij −

n∑
k=1

ωkj ∧ ωik

which can be also written as

Ωj
i (v) =

1

2

n∑
k,l=1

Rijkl(v)dxk ∧ dxl +
1

F (v)

n∑
k,l=1

P ijkl(v)dxx ∧ δvl

where we require Rijkl = −Rijlk and δvk = dvk +
∑

lN
k
l dx

l.
With the help of Rijkl one can define the Riemannian tensor with reference vector

v ∈ TM

Rv(w, v)v :=

n∑
i,j,k,l=1

vjRijkl(v)wkvl
∂

∂xi

∣∣∣∣
x

which enjoys the following

gv(R
v(w, v)v, w′) = gv(R

v(w′, v)v, w) and Rv(v, v) = 0.

Given all those definition we finally have the flag curvature

K(v, w) :=
gv(R

v(w, v)v, w)

gv(v, v)gv(w,w)− gv(v, w)2

and the Ricci curvature

Ric(v) :=

n−1∑
i=1

K(v, ei)

where e1, e2, · · · , en−1, v/F (v) form an orthonormal basis of TxM w.r.t. gv.
On unweighted Finsler manifolds we say that (M,F ) has Ricci curvature bounded from

below if
Ric(v) ≥ K

for every unit vector v ∈ TM . For weighted manifolds we need the following: Let µ be
the reference measure and volgv be the Lebesgue measure on TxM induced by gv. If µx
denotes the measure TxM induced by µ define

V(v) := log

(
volgv(B

+
TxM

(0, 1)

µx(B+
TxM

(0, 1)

)

where B+
TxM

(0, 1) denotes the (forward) unit ball of radius 1 w.r.t. the norm F |TxM .
Further, let

∂vV :=
d

dt

∣∣∣∣
t=0

V(η̇(t)), ∂2
vV :=

d

dt

∣∣∣∣
t=0

V(η̇(t))

where η : (−ε, ε)→M is a geodesic with η̇(0) = v.
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Definition 2.13 (Weighted Ricci curvature). Define the following objects:

1. Ricn(v) :=

{
Ric(v) + ∂2

vV if ∂vV = 0

−∞ otherwise

2. RicN (v) := Ric(v) + ∂2
vV + ∂vV

N−n for N ∈ (n,∞).

3. Ric∞(v) := Ric(v) + ∂2
vV

Which is called the (weighted) n-Ricci curvature, resp. N - and ∞-Ricci curvature of the
weighted Finsler manifold (M,F, µ).

Remark. By a recent paper of Ohta [Oht13a] it also makes sense to define the N -Ricci
curvature for negative N .

Now a lower curvature boundK on theN -Ricci curvature (resp. n-,∞-Ricci curvature)
is nothing but

RicN (v) ≥ K

for all unit vector v ∈ TM . In the Riemannian setting Ric∞ is the so called Bakry-Émery
Ricci tensor and a lower curvature bound K is equivalent to the Bakry-Émery curvature
condition on the heat flow, i.e.

|∇Ptf |2 ≤ e−2KtPt(|∇f |2).

Similarly, a lower bound on RicN is equivalent to a more general Bakry-Émery conditions
involving N . However, the Bakry-Émery calculus requires the space to be Riemannian,
resp. infinitesimal Hilbertian. Nevertheless, one could define a Finsler version of the
Bakry-Émery condition similar to the Finslerian Bochner inequality of [OS11]. It is not
difficult to see that those curvature bounds are equivalent. The lack of a well-defined
linearization of the heat flow makes it difficult to even define such a generilized Bakry-
Émery condition for more abstract spaces.

2.2.3 Geodesics and first and second variation formula

Given a C1-curve η : [0, r]→M its arclength is defined by

L(η) :=

ˆ r

0
F (η̇t)dt

where η̇t = d
dtηt. We say that a C∞-curve η is a geodesic (of constant speed) if Dη̇

η̇ η̇ = 0
on (0, r). Note however that the reverse curve η̄t = η(r−t) may not be a geodesic (not
even w.r.t. the reverse Finsler structure F̄ ).

The exponential map is given by exp(v) = expπ(v) v := η(1) if there is a geodesic
η : [0, 1] → M with η̇0 = v. Note however, that the exponential map is only C1 at
the zero section. We say that (M,F ) is forward geodesically complete if the exponential
map is define on all of TM , i.e. if we can extend any constant speed geodesic η to
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geodesic η : [0,∞) → M . For such case, we can connect any two points of M by a
minimal geodesic, i.e. for every x, y ∈ M there is a geodesic η from x to y such that
L(η) = d(x, y).

Given a unit vector v ∈ TxM , let r(v) ∈ (0,∞] be the the supremum of all r > 0
such that t 7→ expxtv is a minimal geodesic. If r(v) < ∞ then we say that expx(r(v)v)
is a cut-point of x and denote by Cut(x) the set of all cut points of x, also called
the cut locus of x. One can show that the exponential map is a C∞-diffeomorpism
from {tv | v ∈ TxM,F (v) = 1, t ∈ (0, r(v))} to M\(Cut(x) ∪ {x}). This also shows
that the distance d(x, ·) is C∞ away from x and the cut locus of x. In particular, if
L : [0,∞) → [0,∞) is C∞ away from 0 then L(d(x, ·)) is C∞ away from x and the cut
locus of x.
A variation of a C∞-curve η : [0, r] → M is a C∞-map σ : [0, r] × (−ε, ε) → M such

that η(t) = σ(t, 0). We abbreviate the derivatives as

T (t, s) = ∂tσ(t, s), U(t, s) = ∂sσ(t, s).

The first variation of the arclenth is given by

∂L(σs)

∂s
=

[
gT (U, T )

F (T )

]r
t=0

−
ˆ r

0
gT

(
U,DT

T

[
T

F (T )

])
dt.

where we dropped the dependency on t and s. In case η is a geodesic, the second term
is zero. Furthermore, the second variation along a geodesic has the form

∂2L(σs)

∂s2

∣∣∣∣
s=0

= I(U,U) +

[
gT (U, T )

F (T )

]r
t=0

−
ˆ r

0

1

F (T )

(
∂F (T )

∂s

)2

dt

where
I(V,W ) :=

1

F (η̇)

ˆ r

0

{
gη̇(D

η̇
η̇V,D

η̇
η̇W )− gη̇(Rη̇(V, η̇)η̇,W )

}
dt.

Since the tensor Rη̇ enjoys some symmetry, we easily see that I(V,W ) = I(W,V ). And
if V is a Jacobi field then the second term is zero and one can show

I(V,W ) =
1

F (η̇)

[
gη̇(D

η̇
η̇V,W )

]r
t=0

.

And finally, we say that a C∞-vector field J along a geodesic η : [0, r]→M is a Jacobi
field if it satisfies

Dη̇
η̇D

η̇
η̇J +Rη̇(J, η̇)η̇ = 0.

Any Jacobi field can be represented as a variational vector field of some geodesic variation
σ (each σs is a geodesic) and vice versa.

22



3 cp-Concave Functions

Assume throughout that M is a proper geodesic space.
Define for 1 < p <∞

cp(x, y) =
dp(x, y)

p
.

We say that a function φ : X → R is proper if it is not identically -∞.
Remark. Almost all results about cp-concave functions also hold for cL-concave functions
by exchanging cp with cL where L is a strictly convex, increasing, function differentiable
in (0,∞) and

cL(x, y) = L(d(x, y)).

If L is fixed then ct will be an abbreviation for cLt where Lt(r) = L(r/t).
The definition of cp-transform can be localized. This has the advantage to give proper-

ness of the function and Lipschitz regularity on the domain also in the non-compact
setting.

Definition 3.1 (cp-transform and the subset Icp(X,Y )). Let X and Y be two subsets of
M . The cp-transform relative to (X,Y ) of a function φ : X → R is defined as

φcp(y) = inf
x∈M

cp(x, y)− φ(x).

In case X = Y = M we just write cp-transform. Similarly, we define the c̄p-transform
relative to (Y,X) of a function ψ : Y → R as

ψc̄p(x) = inf
y∈Y

cp(x, y)− ψ(y).

We say that a proper function φ : X → R is cp-concave (relative to (X,Y )) if there is a
function ψ : Y → R such that φ = ψc̄p . Similarly, we define c̄p-concave function relative
to (Y,X) as those proper function ψ such that ψ = φcp for some function φ : X → R.
Let Icp(X,Y ) (resp. I c̄p(Y,X)) denote the set of all cp-concave functions relative to

(X,Y ) (resp. the set of all c̄p-concave functions relative to (Y,X)).

Note that Icp(X,Y ′) ⊂ Icp(X,Y ) for all Y ′ ⊂ Y . Indeed, if φ ∈ Icp(X,Y ′) and
ψ′ : Y ′ → R is such that φ = (ψ′)c̄p then let

ψ(y) =

{
ψ′(y) if y ∈ Y ′

-∞ if y ∈ Y \Y ′.

Then obviously φ = (ψ′)c̄p = ψc̄p and thus φ ∈ Icp(X,Y ). Similarly, if X ′ ⊂ X, we can
extend any function φ ∈ Icp(X ′, Y ) to a cp-concave φ ∈ Icp(X,Y ) by letting φ be the
c̄p-transform of ψ : Y → R relative to (Y,X).

The following is easy to show:
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Lemma 3.2. Let φ : M → R ∪ {−∞} and let all statement be relative to some pair
(X,Y ) of compact subsets. Then the following holds:

1. φ ≤ φcpc̄p and φcp = φcpc̄pcp

2. if φ is not identically −∞ then φ is cp-concave iff φ = φcpc̄p

3. if {φi}i∈I ⊂ Icp(X,Y ) for some index set I and φ(x) := infI φi(x) is a proper
function, then φ ∈ Icp(X,Y ).

4. If φ is cp-concave, then it is Lipschitz continuous and its Lipschitz constant is
bounded from above by a constant depending only on X,Y and p.

Corollary 3.3. If M is compact and φ is cp-concave then φ is Lipschitz continuous
with Lipschitz constant bounded from above by a constant only depending on M and p.
In particular, the set of cp-concave functions with φ(x0) = 0 is a precompact subset of
C0(M,R) with bounded Lipschitz constant only depending on M .

Since X and Y are compact, the inf in the definition of cp/c̄p-transform is actually
achieved and the following sets are non-empty for each cp/c̄p-concave functions.

Definition 3.4 (cp-superdifferential). Let X and Y be two compact subsets of M and
φ : X → R be a cp-concave function relative to (X,Y ) then the cp-superdifferential of φ
at x ∈ X is the non-empty set

∂cpφ(x) = {y ∈ Y |φ(x) = cp(x, y)− φcp(y)}.

Similarly, we define c̄p-superdifferential of a c̄p-concave function ψ : Y → R as the non-
empty set

∂ c̄pψ(y) = {x ∈ X |ψ(y) = cp(x, y)− φcp(x)}.

It is not difficult to see that

y ∈ ∂cpφ(x) ⇐⇒ x ∈ ∂ c̄pφcp(y)

whenever φ is cp-concave. Furthermore, y ∈ ∂cpφ (∂ c̄pφcp(y)).

Lemma 3.5 (Semicontinuity of the cp-superdifferential). Let X,Y be two compact subsets
of M and φ be a cp-concave function relative to (X,Y ). Then, whenever yn ∈ ∂cpφ(xn)
for some sequence (xn, yn) ∈ X × Y such that (xn, yn) → (x, y), we have y ∈ ∂cpφ(x).
In particular, if ∂cpφ(x) = {y} is single-valued, then for every neighborhood V of y, the
set (∂cpφ)−1 (V ) contains a neighborhood U of x (relative to X), in particular, for any
x′ ∈ U ∩X there is a y′ ∈ ∂cpφ(x) ∩ V ∩ Y .

Proof. Note that φ and φcp are Lipschitz continuous on X, resp. Y . Since X and Y are
closed we have (x, y) ∈ X × Y and hence

0 = φ(xn) + φcp(yn)− cp(xn, yn)→ φ(x) + φcp(y)− cp(x, y) = 0,

i.e. y ∈ ∂cpφ(x).
The second statement directly follows from the set-wise continuity of x′ 7→ ∂cpφ(x′) at

x in case ∂cpφ(x) is single-valued.
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3 cp-Concave Functions

In case M is non-compact and X = Y = M we can show the following.

Lemma 3.6. Let φ be a cp-concave function and Ω ⊂ X the interior of {φ > −∞}.
Then φ is locally bounded and locally Lipschitz on Ω and for every compact set K ⊂ Ω
the set ∪x∈K∂cpφ is bounded and not empty.

Remark. This lemma extends [GRS13, Lemma 3.3] to all cases p 6= 2. The same result
also holds for cL-concave functions if we assume that L is strictly increasing and convex
and satisfies the following

L(R)− L(R− ε)→∞

as R→∞ for any ε > 0, i.e. if L(R) =
´ R

0 l(r)dr with l increasing and unbounded.

Proof. By definition φ = (φcp)c̄p and thus φ is the infimum of a family of continuous
functions and therefore upper semicontinuous and locally bounded from above.
As in [GRS13], we prove that φ is locally bounded from below by contradiction. As-

suming φ is not locally bounded near a point x∞ ∈ Ω, there is a sequence Ω 3 x → x∞
such that φ(xn)→ −∞.
Furthermore, for every n ∈ N we can find yn ∈M such that

φ(xn) ≥ cp(xn, yn)− φcp(yn)− 1.

This immediately yields φcp(yn)→∞. Because

R 3 φ(x∞) ≤ cp(x∞, yn)− φcp(yn),

we must have cp(x∞, yn)→∞, i.e. yn is an unbounded sequence. In addition, also note
cp(xn, yn)→∞.
So w.l.o.g. we can assume cp(xn, yn) ≥ 1. Now let γn : [0, d(xn, yn)] → M be a unit

speed minimal geodesic between xn and yn. We will show that

sup
B̄1(γn1 )

φ→ −∞ as n→∞.

In order to prove this, note that for x ∈ B̄1(γn1 ) we have d(x, γn1 ) ≤ 1 = d(xn, γ
n
1 ) and

thus

φ(x) ≤ cp(x, yn)− φcp(yn) ≤ (d(x, γn1 ) + d(γn1 , yn))p

p
− φcp(yn)

≤ (d(xn, γ
n
1 ) + d(γn1 , yn))p

p
− φcp(yn)

= cp(xn, yn)− φcp(yn) ≤ φ(xn) + 1.

Because φ(xn)→ −∞, we proved our claim.
Since M is proper, we can assume γn1 → z such that d(x∞, z) = 1. In addition, the

claim implies that φ is identically −∞ in the interior of B1(z). But this contradicts
x∞ ∈ Ω. Therefore, φ is locally bounded in Ω.
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3 cp-Concave Functions

It remains to show that φ is locally Lipschitz. Choose x̄ ∈ Ω and r > 0 such that
B2r(x̄) ⊂ Ω. Choose x ∈ Br(x̄) and let yn be a sequence such that

φ(x) = lim
n→∞

cp(x, yn)− φcp(yn).

We will show that yn ∈ BC(x̄) for some C only depending on x̄, r and φ. We may assume
d(x, yn) > r otherwise we are done. Let γn : [0, d(x, yn)] → M a minimal unit speed
geodesic from x to yn. We have

lim sup
n→∞

φ(x)− φ(γnr ) ≥ lim sup
n→∞

cp(x, yn)− cp(γnr , yn)

and we know already that the left hand side is bounded. If Rn := d(yn, x)→∞ then for
l(r) = rp−1

cp(x, yn)− cp(γnr , yn) =

ˆ Rn

Rn−r
l(s)ds ≥ r · l(Rn − r)→∞

which is a contradiction. Hence yn is bounded and by properness has accumulation points
which all belong to ∂cpφ(x). Similarly, we can show that ∪x∈K∂cφ(x) is bounded for any
compact K.
Finally, for all x ∈ Br(x̄)

φ(x) = inf
y∈M

cp(x, y)− φcp(y)

= min
BC(x̄)

cp(x, y)− φcp(y).

Since for y ∈ BC(x̄) the functions x 7→ cp(x, y)−φcp(y) are uniformly Lipschitz on Br(x̄),
φ is locally Lipschitz as well.

For x, y ∈M and t ∈ [0, 1] define Zt(x, y) ⊂M as

Zt(x, y) := {z ∈M | d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y)}.

If there is a unique geodesic between x and y then obviously Zt(x, y) = {γ(t)}. Further-
more, for general set X,Y ⊂M define

Zt(x, Y ) :=
⋃
y∈Y

Zt(x, y)

and Zt(X,Y ) as
Zt(X,Y ) :=

⋃
x∈X

Zt(x, Y ).

The following three results are crucial ingredients to show absolute continuity of the
interpolation measure in the smooth setting (see Lemma 4.17 below). It generalizes
[CEMS01, Claim 2.4] and will be used in Lemma 3.8 (see [Oht09, (3.1) p. 221] for
the case p = 2). Lemma 3.9 will also help to prove “almost everywhere” second order
differentiability of cp-concave functions. This proof is much easier than the original one
given in [CEMS01, Oht08]. There is also a counterpart in the Orlicz-Wasserstein case
which is stated and proved in the appendix (see Lemma 7.7).
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3 cp-Concave Functions

Lemma 3.7. If x, y ∈M and z ∈ Zt(x, y) for some t ∈ [0, 1]. Then for all m ∈M

tp−1dp(m, y) ≤ dp(m, z) + tp−1(1− t)dp(x, y).

Furthermore, choosing x = m this becomes an equality.

Proof. Using the triangle inequality, the fact that d(z, y) = (1−t)d(x, y) and that r 7→ rp

is convex for p > 1, we get

tp−1dp(m, y) ≤ tp−1

{
t · 1

t
d(m, z) + (1− t)d(x, y)

}p
≤ tp−1

{
t ·
(

1

t
d(m, z)

)p
+ (1− t)dp(x, y)

}
= dp(m, z) + tp−1(1− t)dp(x, y).

Furthermore, choosing m = x we see that each inequality is actually an equality.

Lemma 3.8. Let η : [0, 1] → M be a geodesic between two distinct points x and y. For
t ∈ (0, 1] define

ft(m) := −cp(m, ηt).

Then for some fixed t ∈ [0, 1] the function h(m) := ft(m) − tp−1f1(m) has a minimum
at x.

Proof. Using Proposition 3.7 above we have for z = ηt ∈ Zt(x, y)

−ph(m) = tp−1dp(m, y)− dp(m, z) ≤ tp−1(1− t)dp(x, y)

= tp−1dp(x, y)− dp(x, ηt) = −ph(x).

The following lemma will be useful to describe the interpolation potential of the optimal
transport map. It generalizes [CEMS01, 5.1] to the cases p 6= 2.

Lemma 3.9 (cp-concave functions form a star-shaped set). Let X and Y be compact
subsets of M and let t ∈ [0, 1]. If φ ∈ Icp(X,Y ) then tp−1φ ∈ Icp(X,Zt(X,Y )).

Proof. Note that the cases t = 0 and t = 1 are trivial since 0 ∈ Icp(X,X). For the rest
we follow the strategy of [CEMS01, Lemma 5.1]. Let t ∈ [0, 1] and y ∈ Y and define
φ(x) := cp(x, y) = dpy(x)/p. We claim that the following representation holds

tp−1dpy(m)/p = inf
z∈Zt(X,y)

{
dpz(m)/p+ inf

{x∈X | z∈Zt(x,y)}
tp−1(1− t)dpy(x)/p

}
.

Indeed, by Lemma 3.7 the left hand side is less than or equal to the right hand side for
any z ∈ Zt(X, y). Furthermore, choosing x = m we get an equality and thus showing
the representation.
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3 cp-Concave Functions

Now note that the claim implies that tp−1φ is the c̄p-transform of the function

ψ(z) = − inf
{x∈X | z∈Zt(x,y)}

tp−1(1− t)dpy(x)/p

(real-valued on Zt(X,Y )) and therefore tp−1φ is cp-concave relative to (X,Zt(X, y)).
Since Icp(X,Zt(X, y)) ⊂ Icp(X,Zt(X,Y )) we see that each tp−1dpy/p is in Icp(X,Zt(X,Y )).

It remains to show that for an arbitrary cp-concave function φ and t ∈ [0, 1] the function
tp−1φ is cp-concave relative to (X,Zt(X,Y )). Since φ = φcpc̄p we have

tp−1φ(x) = inf
y
tp−1cp(x, y)− tp−1φcp(y).

But each function
ψy(x) = tp−1cp(x, y)− tp−1φcp(y)

is cp-concave relative to (X,Zt(X,Y )) and φ is proper, thus also the infimum is cp-concave
relative to (X,Zt(X,Y )), i.e. tp−1φ ∈ Icp(X,Zt(X,Y )).

Finally, assuming the space is non-branching, e.g. a Riemannian or Finsler manifold,
we want to show the well-known result that the optimal transport rays cannot intersect
at intermediate times. The proof is easily adaptable to Orlicz-Wasserstein spaces and
will give positivity of the Jacobian for the interpolation measures.

Definition 3.10 (non-branching spaces). A geodesic space (M,d) is said to be non-
branching, if for all x, y, y′ ∈M with d(x, y) = d(x, y′) > 0 one always has

Zt(x, y) ∩ Zt(x, y′) 6= ∅ for some t ∈ (0, 1) =⇒ y = y′.

Lemma 3.11. Assume M is non-branching and µ0 and µ1 two measures in Pp(M). If π
is an optimal transport plan between µ0 and µ1 then there is a subset U of M ×M of π-
measure 1 such that for i = 1, 2 let γi be a geodesic between xi, yi ∈ U , then γ1(t) = γ2(t)
for some t ∈ [0, 1] implies (x1, y1) = (x2, y2).

Remark. Exactly the same results hold for the optimal transport plan with cost function
L(d(·, ·)). In particular, it holds for Orlicz-Wasserstein spaces using [Stu11, Proposition
3.1] and cλ-cyclicity of the support where λ = wL(µ0, µ1) (see appendix for definition of
wL).

Proof. According to [Vil09, Theorem 5.10] there is a subset U of M ×M of π-measure 1
such that for each (xi, yi) ∈ U

d(x1, y1)p

p
+
d(x2, y2)p

p
≤ d(x1, y2)p

p
+
d(x2, y1)p

p
,

this property is called cp-cyclically monotone (of order 2) (see [Vil09, Definition 5.1]).
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3 cp-Concave Functions

Now assume for some (xi, yi) ∈ U there is a t ∈ (0, 1) such that we have z = γ1(t) =
γ2(t). Then

d(x1, y2)p + d(x2, y1)p ≤ (d(x1, z) + d(z, y2))p + (d(x2, z) + d(z, y1))p

= (td(x1, y1) + (1− t)d(x2, y2))p

+ (td(x2, y2) + (1− t)d(x1, y1))p

≤ td(x2, y2)p + (1− t)d(x2, y2)p

+ td(x2, y2)p + (1− t)d(x1, y1)p

= d(x1, y1)p + d(x2, y2)p.

Because U is cp-cyclically monotone we see that the inequality actually must be an
equality. Since p > 1 we must have d(x1, y1) = d(x2, y2) and

d(x1, y2)p + d(x2, y1)p = d(x1, y1)p + d(x2, y2)p.

This also implies that d(x1, y2) = d(x1, y1) = d(x2, y1). Because z is the common t :
(1 − t) fraction point and there are no branching geodesics, we must have x1 = x2 and
y1 = y2.
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4 Optimal Transport on Finsler
manifolds

In this section we will assume throughout thatM is a C∞-Finsler manifold. We are going
to show that the interpolation inequality can be proven along p-Wasserstein geodesics.
From this inequality and a lower Ricci curvature bound, one can easily derive the cur-
vature dimension condition as defined in the next section. Furthermore, it turns out
to be equivalent to the lower Ricci curvature bound. As Ohta [Oht09] noted, in the
Finsler setting one needs additional assumptions on the background measure to get a
lower (weighted) Ricci curvature bound from the curvature dimension condition.

4.1 Notation and technical ingredients

Let q be the Hölder conjugate of 1 < p <∞, i.e. 1
q + 1

p = 1 or equivalently (p−1)(q−1) =
1.
In order to get a nice description of the interpolation maps we need to define the

following q-gradient
∇qφ := |∇φ|q−2∇φ.

Note that for v ∈ TxM
∇φ(x) = |v|p−2v

iff
∇qφ = v.

Also note that ∇φ = 0 iff ∇qφ = 0, and x 7→ ∇qφ(x) is continuous iff x 7→ ∇φ(x) is. For
t > 0 we have

∇q(tp−1φ) = t∇qφ.

In addition, we use the abbreviation Kdφ = ∇qφ (note that Ldφ = ∇φ). This is indeed
invertible, continuous from T ∗M → TM and C∞ away from the zero section. Further-
more,

Kxtp−1dφx = t∇qφ(x).

Remark. Kx can actually be seen as the Legendre transform from T ∗xM → TxM that
associates to each cotangent vector α ∈ T ∗M the unique tangent vector v = K(α) ∈ TM
such that F (v)p = F ∗(α)q and α(v) = F ∗(α)q where F ∗ denotes the dual norm of F on
T ∗M .

In order to show that optimal transport is almost everywhere away from the cut locus
we need to following result. Its proof is based on [Oht09, Lemma 3.1].
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4 Optimal Transport on Finsler manifolds

Lemma 4.1 (Cut locus charaterization). If y 6= x is a cut point of x, then f(z) :=
dp(z, y)/p satisfies

lim inf
v→0∈TxM

f(ξv(1)) + f(ξv(−1))− 2f(x)

F (v)2
= −∞

where ξv : [−1, 1]→M is the geodesic with ξ̇v(0) = v.

Proof. First recall that y is a cut point of x if either there are two minimal geodesics
from x to y, or y is the first conjugate point along a unique geodesic η from x to y, i.e.
there is a Jacobi field along η vanishing only at x and y (see [BCS00, Corollary 8.2.2]).
So let’s first assume there are two distinct unit speed geodesics η, ζ : [0, d(x, y)]→M

from x to y and let v = ζ̇(0) and w = η̇(0). For fixed small ε > 0 set yε = η(d(x, y)− ε)
then yε /∈ Cut(x) ∪ {x} and using the first variation formula we get for t > 0

f(ξv(−t))− f(x) ≤ {d(ξv(−t), yε) + ε}p /p− {d(x, yε) + ε}p /p
= t {d(x, yε) + ε}p−1 gη̇(0)(v, η̇(0)) +O(t2)

= tdp−1(x, y)gη̇(0)(v, η̇(0)) +O(t2).

The term O(t2) is ensured by smoothness of ξv and by the fact that x 6= yε. We also get
by the Taylor formula

f(ξv(t))− f(x) = {d(x, y)− t}p /p− dp(x, y)/p = −tdp−1(x, y) +O(t2).

Combining these two facts with gw(v, w) < 1 (η and ξ are distinct), we get

f(ξv(−t)) + f(ξv(t))− 2f(x)

t2
≤ 1− gw(v, w)

t
dp−1(x, y) + t−2O(t2)→ −∞ as t→ 0.

Next we will treat the case that y is the first conjugate point of x along a unique
minimal geodesic η : [0, 1]→M from x to y. By definition, let J be a Jacobi field along
η vanishing only at x and y. For v = Dη̇

η̇J(0) ∈ TxM\{0} let V1 be the parallel vector
field along η (i.e. Dη̇

η̇V1 ≡ 0) such that V1(0) = v. Furthermore, define for t ∈ [0, 1] the
vector field V (t) := (1− t)V1(t) and Jε = J + εV for small ε > 0. Note that Jε(0) = εv
and Jε(1) = 0, and since gη̇(0)(v, v) > 0 also Jε 6= 0 on [0, 1) for sufficiently small ε > 0.
We define a variation σ : [0, 1] × [−1, 1] → M by σ(t, s) = σs(t) := ξJε(t)(s). Because

Jε 6= 0 on [0, 1) this variation is C∞ on (0, 1)×(−1, 1). According to the second variation
formula we get (see [Oht09, Proof of 3.1])

∂2L(σs)

∂s2

∣∣∣∣
s=0

= I(Jε, Jε)−
gη̇(D

η̇
Jε
Jε, η̇)

d(x, y)
− 1

d(x, y)

ˆ {
∂F (∂tσ)

∂s
(t)

}2

dt

where L is the length functional

L(σs) = length(σs(·)).
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4 Optimal Transport on Finsler manifolds

By definition of tangent curvature T (see [Oht09]), we have

Tη̇(0)(v) = gη̇(D
v
vv −Dη̇

vv, η̇) = ε−2gη̇(0)(D
Jε
Jε
Jε −Dη̇

Jε
Jε, η̇) = −ε−2gη̇(0)(D

η̇
Jε
Jε, η̇)

where the last equality follows from the fact that σ0 = ξJε(0) is a geodesic. Combining
these we get

∂2L(σs)

∂s2

∣∣∣∣
s=0

≤ I(J, J) + 2εI(J, V ) + ε2I(V, V ) + ε2Tη̇(0)(v)/d(x, y)

=

{[
gη̇(D

η̇
η̇J, J)

]1

t=0
+ 2ε

[
gη̇(D

η̇
η̇J, V )

]1

t=0
+ ε2Tη̇(0)(v)

}
/d(x, y) + ε2I(V, V )

=
{
−2εgη̇(0)(v, v) + ε2Tη̇(0)(v)

}
/d(x, y) + ε2I(V, V ).

Furthermore, note by the first variations formula and the fact that σ0 is a geodesic

∂L(σs)

∂s

∣∣∣∣
s=0

= [gη̇(Jε, η̇)]1t=0 = [εgη̇(V, η̇)]1t=0 = −εgη̇(0)(v, η̇(0)) ≥ −εF (v).

So that we get

lim
s→0

L(σs)
p + L(σ−s)

p − 2L(σ0)p

s2
= pLp−2(σ0)

[
L(σ0)

∂2

∂s2
L(σs)

∣∣∣∣
s=0

+(p− 1)

(
∂L(σs)

∂s

∣∣∣∣
s=0

)2 ]
≤ pdp−2(x, y)

(
− 2εgη̇(v, v)

+ε2
{
Tη̇(0)(v) + d(x, y)I(V, V ) + (p− 1)F (v)2

})
.

Using the fact that f(ξv(εs)) ≤ L(σs)
p/p we obtain

lim inf
s→0

f(ξv(εs)) + f(ξv(−εs))− 2f(x)

ε2s2
≤ lim inf

s→0

L(σs)
p + L(σ−s)

p − 2L(σ0)p

pε2s2

≤ dp−2(x, y)

(
− 2ε−1gη̇(v, v)

+T (v) + d(x, y)I(V, V ) + (p− 1)F (v)2

)
.

Letting ε tend to zero completes the proof.

4.2 The Brenier-McCann-Ohta solution

The first step to prove the interpolation inequality is showing the existence of a transport
map. This was first done by Brenier [Bre91] in the Euclidean setting and later by McCann
[McC01] for Riemannian manifolds and any cost function cL. Later Ohta proved it for
Finsler manifolds for the cost function c2. The proof easily adapts to any p ∈ (1,∞).
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4 Optimal Transport on Finsler manifolds

Lemma 4.2. Let φ : M → R be a cp-concave function. If φ is differentiable at x
then ∂cpφ(x) = {expx(∇q(−φ)(x))}. Moreover, the curve η(t) := expx(t∇q(−φ)(x)) is a
unique minimal geodesic from x to expx(∇q(−φ)(x)).

Proof. Let y ∈ ∂cpφ(x) be arbitrary and define f(z) := cp(z, y) = dp(z, y)/p. By defini-
tion of ∂cpφ(x) we have for any v ∈ TxM

f(expx v) ≥ φcp(y) + φ(expx v) = f(x)− φ(x) + φ(expx v) = f(x) + dφx(v) + o(F (v)).

Now let η : [0, d(x, y)] → M be a minimal unit speed geodesic from x to y. Given
ε > 0, set yε = η(d(x, y)− ε) and note that η|[0,d(x,y)−ε] does not cross the cut locus of x.
By the first variation formula, we have

f(expx v)− f(x) ≤ 1

p
{(d(expx v, yε) + ε)p − (d(x, yε) + ε)p}

= − (d(x, yε) + ε)p−1 gη̇(0)(v, η̇(0)) + o(F (v)).

= −dp−1(x, y)L−1
x (η̇(0))(v) + o(F (v)).

Therefore, dφx(v) ≤ −dp−1(x, y)L−1
x (η̇(0))(v) for all v ∈ TxM and thus ∇(−φ) =

dp−1(x, y)·η̇(0)., i.e. ∇q(−φ) = d(x, y)·η̇(0). In addition, note that η(t) = expx(t∇q(−φ)(x)),
which is uniquely defined.

Let Lipcp(X,Y ) be the set of pairs of Lipschitz function tuples φ : X → R and
ψ : Y → R such that

φ(x) + ψ(y) ≤ cp(x, y).

Lemma 4.3. Let µ0 and µ1 be two probability measures onM . Then there exists a unique
(up to constant) cp-concave function φ that solves the Monge-Kantorovich problem with
cost function cp. Moreover, if µ0 is absolutely continuous, then the vector field ∇q(−φ)
is unique among such minimizers.

Proof. Note that if (φ, ψ) ∈ Lipcp(X,Y ) then (φcpc̄p , φcp) ∈ Lipcp(X,Y ) and φcp ≥ ψ and
φcpc̄p ≥ φ.

Now fix some x0 ∈ X and let {(φn, ψn)}n∈N ⊂ Lipcp(X,Y ) be a maximizing sequence of
the Kantrovich problem. By the remark just stated, it is easy to see that also (φ̂n, ψ̂n) =
(φ
cpc̄p
n −φcpc̄pn (x0), φ

cp
n −φcpc̄pn (x0)) is maximizing and in addition φcpn is cp-concave. Since

the sequence has uniform bound on the Lipschitz constant and φ̂n(x0) = 0, the sequence
is precompact and thus we can assume w.l.o.g. that (φ̂n)n∈N converges to a Lipschitz
function φ : X → R. By similar arguments, we can also assume that (ψ̂n)n∈N converges
to a function ψ : Y → R. In addition, note that φcp = ψ and that because each φ̂i is
cp-concave also φ is, in particular, a solution of the Monge-Kantorovich problem exists
and each solution is a pair (φ, φcp) ∈ Lipcp(X,Y ).

It remains to show that this solution is unique: Let (φ1, ψ1), (φ2, ψ2) ∈ Lipcp(X,Y ) be
two solutions of the problem. Now setting φ = (φ1+φ2)/2, we see that φcp ≥ (φ

cp
1 +φ

cp
2 )/2

and thus (φ, φcp) ∈ Lipcp(X,Y ) and hence, by maximality, φcp = (φ
cp
1 + φ

cp
2 )/2 and φ is

cp-concave.
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Now if y ∈ ∂cpφ(x) then y ∈ ∂cpφ1(x) ∩ ∂cpφ2(x). Thus, using Lemma 4.2 above and
the absolute continuity of µ0 we see that

∇qφ(x) = ∇qφi(x) µ0-almost every x ∈ X.

Theorem 4.4. Let µ0 and µ1 be two probability measure on M and assume µ0 is ab-
solutely continuous with respect to µ. Then there is a cp-concave function φ such that
π = (Id×F)∗µ0 is the unique optimal coupling of (µ0, µ1), where F(x) = expx(∇q(−φ)).
Moreover, F is the unique optimal transport map from µ0 to µ1.

Remark. The proof follows line by line from [Oht09, Theorem 4.10]. For convenience, we
include the whole proof.

Proof. Let φ be given by the Lemma above. Define F(x) = expx(∇q(−φ)) for all points
where φ is differentiable. Since µ0 is absolutely continuous, F is well-defined and contin-
uous on some Ω with µ0(Ω) = 1, in particular it is measurable.
Now let h be a continuous function and put ψε = φcp + εh for ε ∈ R close to 0. Let

x ∈M be arbitrary, then we can find yε ∈M such that

(ψε)
c̄p(x) = cp(x, yε)− ψε(yε).

Furthermore, whenever φ is differentiable at x then yε converges to y0 = F(x). In
addition, we have

φ(x)− εh(yε) ≤ cp(x, yε)− φcp − εh(yε) = (ψε)
c̄p(x)

≤ cp(x,F(x))− ψε(F(x)) = φ(x)− εh(F(x))

and thus (ψε)
c̄p(x) = φ(x)− εh(F(x)) + o(|ε|) and |o(|ε|)| ≤ 2ε‖h‖∞.

Now set J(ε) =
´

(ψε)
c̄pdµ+

´
ψεdν and by maximality of (φ, φcp) we have

0 = lim
ε→0

J(ε)− J(0)

ε
= −

ˆ
hdF∗µ0 +

ˆ
hdµ1

and hence F∗µ0 = µ1.
Obviously we have for πφ := (Id×F)∗µ0 that cp(x, y) = φ(x) +φcp(y) holds πφ-almost

everywhere and thus
´
cpdπφ =

´
φdµ0 +

´
φcpdµ1, which implies that πφ is optimal.

Conversely, if π is an optimal coupling of (µ0, µ1) then cp(x, y) = φ(x) + φcp(y) holds
π-almost everywhere, therefore π

(⋃
x∈M (x,F(x))

)
= 1 which implies π = πφ.

Corollary 4.5. If µ0 is absolutely continuous and φ is cp-concave, then the map F(x) :=
expx(∇q(−φ)) is the unique optimal transport map from µ0 to F∗µ0.

Furthermore, we will see in Lemma 4.17 below that the interpolation measures are
absolutely continuous if µ0 and F∗µ0 are.
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Corollary 4.6. If φ is cp-concave and µ0 is absolutely continuous, then the map Ft(x) :=
expx(∇q(−tp−1φ)) is the unique optimal transport map from µ0 to µt = (Ft)∗µ0 and
t 7→ µt is a constant geodesic from µ0 to µ1 in Pp(M).

Proof. We only need to show that

wp(µs, µt) ≤ |s− t|wp(µ0, µ1).

Let π be the plan on Geo(M) = {γ : [0, 1] → M | γ is a geodesic in M} give by µ0, the
map F and the unique geodesic connecting µ-almost every x ∈M to a point F1(x) (see
e.g. [Lis06, Theorem 4.2] and [Vil09, Chapter 7]), in particular, µt = (Ft)∗µ0. Since
(es, et)∗π is a plan between µs and µt for s, t ∈ [0, 1], we have

wp(µs, µt) ≤
(ˆ

dp(γs, γt)dπ(γ)

)1/p

= |s− t|
(ˆ

dp(γ0, γ1)dπ(γ)

)1/p

= |s− t|wpp(µ0, µ1).

4.3 Almost Semiconcavity of cp-concave functions

This section will be one of the main ingredients to show Theorem 4.16. In [Oht08] Ohta
showed that every cp-concave function is almost everywhere twice differentiable. He
proved this by showing the the square of the distance function d2

y = d2(·, y) for fixed
y ∈ M is semiconcave [Oht08, Corollary 4.4] and extending the Alexandrov-Bangert
Theorem [Oht08, Theorem 6.6] to Finsler manifolds.

Theorem 4.7 (Alexandrov-Bangert [Vil09, 14.1] [Oht08, 6.6]). Let M be a smooth sym-
metric Finsler manifold, then every function φ : M → R which is locally semiconvex in
some open subset U of M is almost everywhere twice differentiable in U .

Even though for general 1 < p <∞ we cannot show that every cp-concave function is
semiconcave, we show that almost all points x of differentiability of a cp-concave function
φ with dφx 6= 0 are twice differentiable.
We will show this result in two different ways: The first one will show, similar to

[Oht08], that dpx is semiconcave on M\{x}. In the second one we will use Lemma 3.9
and the fact that dp(·, y) is C∞ in U\{y} for some sufficiently small neighborhood U of
y. In both cases we conclude that φ is semi-convex in an open set of full measure relative
to M\{x ∈M |x ∈ ∂cpφ(x)}.

Proposition 4.8 (Almost Smoothness of dpx). LetM be a connected, forward geodesically
complete C∞-Finsler manifold. Then for any distinct points x and y in M and w ∈ TyM
with F (w) = 1 we have

lim sup
s→0

1

2s2
{dpx(ξw(−s)) + dpx(ξw(s))− 2dpx(y)} ≤ C <∞
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where ξw : (−ε, ε) → M is a geodesic with ξ̇w(0) = w and dx = d(x, ·). Furthermore,
C > 0 can be chosen uniformly in a neighborhood of x and y. In a similar way it is
possble to prove

lim sup
s→0

1

2s2

{
dpy(ξv(−s)) + dpy(ξv(s))− 2dpy(x)

}
≤ C <∞.

Remark. In [Oht08, Theorem 4.2,5.1] showed that the same holds for d2(x, ·). He used
the semiconcavity (see below) to show that c2-concave functions are semiconcave [Oht08,
Theorem 7.4]. Note that the second statement follows by using the inverse Finsler struc-
ture.

Proof. We will only indicate where Ohta’s proof needs adjustment:
Set r = d(x, y) and note that if σ : (−ε, ε) × [0, r] is a C∞-variation such that σ0 =

σ(0, ·) is a minimal, unit speed geodesic between x and y then the first variation of the
length function s 7→ L(σs) at s = 0 has the following form

∂

∂s
L(σs)|s=0 = gσ̇0(r)(U(r), σ̇0(r))− gσ̇0(0)(U(0), σ̇0(0)),

where
U(t) =

∂

∂s
σ|s=0.

Note because L−1
x (v)(w) = gv(w, v) for every v, w ∈ TxM (see [Oht09, p.215]) we easily

see that
gσ̇0(t)(U(t), σ̇0(t))

is bounded as long as U(t) is.
Now let σ be a C∞-variation such that σ0 is a geodesic then

∂2

∂s
(L(σs))

p |s=0 = p (L(σ0))p−2

{
L(σ0)

∂2

∂s
L(σs)|s=0 + (p− 1)

∂

∂s
L(σs)|s=0

}
= prp−2

{
r
∂2

∂s
L(σs)|s=0 +

∂

∂s
L(σs)|s=0 + (p− 2)

∂

∂s
L(σs)|s=0

}
= prp−2 {I1 + (p− 2)I2} .

In the first case we choose the variation as in [Oht08, Theorem 4.2]) to get the following
bound of I1:

S2r
√
k cosh(

√
kr)

sinh(
√
kr)

+ rδ

where δ > 0, S ≥ 1 and k > 0 can be chosen uniformly in a neighborhood of (x, y)
depending only on (M,F ). Note that −k represents a lower bound on the flag curvature
which is locally bounded by C∞-regularity of the Finsler structure. Since the norm of
U(t) is bounded we easily see that the second term I2 is bounded from below and above.
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Furthermore, we note that this bound can be chosen unformly in a neighborhood of y.
Thus, we see that prp−2 {I1 + (p− 2)I2} is bounded and noting that

lim sup
s→0

1

2s2
{dpx(ξv(−s)) + dpx(ξv(s))− 2dpx(y)} ≤ ∂2

∂s
(L(σs))

p |s=0

we can conclude the proof.

Following the proof of [Oht08, Corollary 4.4] we immediately get the following.

Corollary 4.9. For every distict x, y ∈M there is a ball neighborhood BR(x) of x with
R = R(x, y) such that dpy satisfies

dpy(γ(t)) ≥ (1− t)dpy(γ(0)) + tdpy(γ(1))− C(1− t)td2(γ(0), γ(1))

for any γ(0), γ(1) ∈ BR
2

(x) and some K = K(x, y). In particular, each dpy is locally
semi-convex on M\{y}.

Remark. Note that we can actually prove that there are neighborhoods U of x and V of
y such that each dpy′ is semiconcave on V with constant C.

Proof. Let U be a neighborhood such that the previous lemma holds for some constant
C > 0. Then, in particular, V contains a ball BR(x).
Now let η : [0, 1] → M be a minimal geodesic between two arbitrary point z, z′ ∈

BR
2

(x). Then η(t) ∈ BR(x) and therefore for each τ ∈ (0, 1)

lim sup
ε→0

1

2ε2
{dp(η(τ − ε), y) + dp(η(τ − ε), y)− 2dp(η(τ), y)} ≤ C · d2(z, z′).

Thus τ 7→ dp(η(τ), y)− τ2Cd2(z, z′) is concave on [0, 1] and hence we have

dp(η(τ), y)− τ2Cd2(z, z′) ≥ (1− τ)dp(z, y) + τ
{
dp(z′, y)− Cd2(z, z′)

}
.

The desired inequality is obtained after rearrangement.

Finally, we can prove that any cp-concave function is semiconcave away from the points
with x ∈ ∂cpφ(x).

Theorem 4.10 (Almost semiconcavity of cp-concave functions). Assume M is a con-
nected, forward geodesically complete C∞-Finsler manifold. Let Y ⊂M be compact and
U be an open, precompact set. Then any cp-concave function φ : ClU → R relative to
(ClU, Y ) is locally semiconcave in U\Ωid where Ωid = {x ∈ ClU |x ∈ ∂cpφ(x)}. In
particular, φ is twice differentiable almost everywhere U\Ωid. The same result holds for
c̄p-concave functions.

Remark. Note by continuity of x 7→ ∂cpφ(x) the set Ωid is closed and U\Ωid contains all
point x of differentiability of φ with dφx 6= 0.
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Proof. The second statement immediately follows from Ohta’s extension of the Alexandrov-
Bangert theorem [Oht08, Theorem 6.6]. Thus we only need to show that φ is semiconcave
on U\Ωid.
Choose some x ∈ U with y ∈ ∂cpφ(x). Then for some sufficiently small neighborhood

BR(x) of x and and V ′ of y the functions {dpy′ = dp(·, y′)}y′∈V ′ are semiconcave on U ′

with some constant C > 0. By continuity of z 7→ ∂cpφ(z) at x (see Lemma 3.5) we can
also assume that ∂cpφ(z) ∩ V ′ is non-empty for every z ∈ BR(x).
Now let γ : [0, 1] → B2ε(x) be a minimal geodesic and set xt = γ(t). Choose yt ∈

∂cpφs(xt) ∩ V1. By the definition of cp-concavity we have

φs(x0) ≤ φs(xt) +
1

p
dp(x0, yt)−

1

p
dp(xt, yt)

φs(x1) ≤ φs(xt) +
1

p
dp(x1, yt)−

1

p
dp(xt, yt).

Further, because yt ∈ V1 we also have

dp(xt, yt) ≥ (1− t)dp(x0, yt) + tdp(x1, yt)− C(1− t)td2(x0, x1).

Therefore, taking the (1− t), t convex combination of the first two inequality we obtain

φs(xt) ≥ (1− t)φs(x0) + tφs(x1) +
dp(xt, yt)

p
− (1− t)d

p(x0, yt)

p
− td

p(x1, yt)

p

≥ (1− t)φs(x0) + tφs(x1)− C

p
(1− t)td2(x0, x1).

For the alternative proof note the following: If the Finsler metric F is C∞ then the
function dpy(z) = d(z, y)p is C∞ in Uy\{y} for some sufficiently small neighborhood Uy of
y. This follows from smoothness of the exponential map expy in V \{0} ⊂ TyM for some
neighborhood V of 0x ∈ TxM , see [She97, p. 315]. In particular, for x ∈ Uy\{y} we can
choose a small neighborhood U1 ⊂ U of x and an open set V1 ⊂ U disjoint from U1 such
that {dpy′ : U1 → R}y′∈V1 are uniformly bounded in C2, in particular the functions are
uniformly semiconcave. In addition, note that since M is compact, Uy can be chosen to
contain a ball Brmin(y) where rmin > 0 can be chosen locally uniformly on M , in case
M is compact even uniformly.

Remark. Note that we only need a C2-bounds so that F only needs to be locally C2.
Also note that the same argument holds for any convex function of the distance which
is smooth enough away from the origin. Furthermore, the theorem below holds for any
cL-concave function if Lemma 7.9 is used instead of Lemma 3.9.

Theorem 4.11. Let φ be a cp-concave function. Let Ωid be the set of points x ∈ M
where φ is differentiable and dφx = 0, or equivalently ∂cpφ(x) = {x}. Then φ is locally
semiconcave on an open subset U ⊂ M\Ωid of full measure (relative to M\Ωid). In
particular, it is second order differentiable almost everywhere in U .
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Proof. Since ∂cpφ(x) is non-empty for every x ∈M and semicontinuous in x, we have the
following: if φ is differentiable in x with dφx 6= 0 then x ∈ int(M\Ωid). Thus it suffices to
show that each such point has a neighborhood U1 in which φ is uniformly semiconcave.
So fix such an x with dφ(x) 6= 0 and note that φ is semiconcave on U1 iff λφ is for an

arbitrary λ > 0. Furthermore, by Lemma 3.9 we know that φs = sp−1φ is cp-concave for
any s ∈ [0, 1].

Since dφ(x) 6= 0, there is a unique y ∈ M with ∂cpφ(x) = {y} and a unique geodesic
η : [0, 1] → M between x and y (see Lemma 4.2). Also note that φs is differentiable at
x and

∂cpφs(x) = {η(s)}.

Let s ∈ [0, 1] be such that d(x, η(s)) < rmin
2 . Because x 6= η(s) and z 7→ ∂cpφs(z)

is continuous and single-valued at x, we can find a neighborhood V1 ⊂ U of y such
that (∂cpφs)

−1(V1) ∩ U contains some ball B2ε(x) disjoint from V1. Thus the functions
{dpy : B2ε(x)→ R}y∈V1 are semiconcave with constant C.
Now let γ : [0, 1] → B2ε(x) be a minimal geodesic and set xt = γ(t). Choose yt ∈

∂cpφs(xt) ∩ V1. By the definition of cp-concavity we have

φs(x0) ≤ φs(xt) +
1

p
dp(x0, yt)−

1

p
dp(xt, yt)

φs(x1) ≤ φs(xt) +
1

p
dp(x1, yt)−

1

p
dp(xt, yt).

Further, because yt ∈ V1 we also have

dp(xt, yt) ≥ (1− t)dp(x0, yt) + tdp(x1, yt)− C(1− t)td2(x0, x1).

Therefore, taking the (1− t), t convex combination of the first two inequality we obtain

φs(xt) ≥ (1− t)φs(x0) + tφs(x1) +
dp(xt, yt)

p
− (1− t)d

p(x0, yt)

p
− td

p(x1, yt)

p

≥ (1− t)φs(x0) + tφs(x1)− C

p
(1− t)td2(x0, x1).

4.4 Volume distortion

In order to describe the interpolation density, one needs to have a proper definition of
determinant of the differential of the transport map. We follow Ohta’s idea to describe
the volume distortion as a proper replacement.
If Q : TxM → TyM we define D[Q] = µy(Q(A))/µx(A) where µx and µy are the

measure on TxM induced by µ and A is a nonempty, open and bounded Borel subset
of TxM . Note that D satisfies the classical Brunn-Minkowski inequality, i.e. if Q0, Q1 :
TxM → TyM then for Qt = (1− t)Q0 + tQ1

D[Qt] ≥ (1− t)D[Q0] + tD[Q1].
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Now if B+
r (x) denotes the forward ball of radius r around x, i.e. all y ∈ M with

d(x, y) < r and B−r (x) the backward ball around x, i.e. all y ∈M with d(y, x) < r. then
define the volume distortion coefficients as follows

v<t (x, y) = lim
r→0

µ(Zt(x,B
+
r (y))

µ(B+
tr(y))

and v>t (x, y) = lim
r→0

µ(Zt(B
−
r (x), y)

µ(B−(1−t)r(x))
.

Remark. In the symmetric setting one has v>t (x, y) = v<1−t(y, x).

Theorem 4.12 (Volume distortion for d2 [Oht09, 3.2]). For point x 6= y ∈ M with
y /∈ Cut(x), let η : [0, 1]→M be the unique minimal geodesic from x to y. For t ∈ (0, 1]
define gt(z) = −d(z, η(t))2/2.
Then we have

v<t (x, y) = D
[
d(expx)∇gt(x) ◦ [d(expx)∇g1(x)]

−1
]

v>t (x, y) = (1− t)−nD
[
d(expx ◦Lx)d(g1)x ◦ [d (d(tg1))x − d (dgt)x]

]
.

Theorem 4.13 (Volume distortion for dp). Let x 6= y with y /∈ Cut(x) and η be as above.
For t ∈ (0, 1] define ft(z) = −d(z, η(t))p/p.
Then we have

v<t (x, y) = D
[
d(expx)∇qft(x) ◦ [d(expx)∇qf1(x)]

−1
]

v>t (x, y) = (1− t)−nD
[
d(expx ◦Kx)d(tp−1f1)x ◦ [d

(
d(tp−1f1)

)
x
− d (dft)x]

]
.

Proof. The first equation follows from the fact that

∇qft(x) = ∇
(
−d(x, η(t))2/2

)
.

For the second part note that

Lz(d(tg1)z) = Kz(d(tp−1f1)z)

and thus

v>t (x, y) = (1− t)−nD [d (exp ◦L ◦ (d(tg1)z))]

= (1− t)−nD
[
d(exp ◦K)d(tp−1f1)x ◦ d

(
d(tp−1f1)

)
x

]
.

Similar to [Oht09, Proof of 3.2] since d(ft)x = d(tp−1f1)x it suffices to show that

d(expx ◦ Kx)d(ft)x ◦ d(dft)x = 0.

Note that
Lz(d(gt)z) = Kz(d(ft)z)

and thus

L(z) = expz ◦Kz(d(ft)z) = expz ◦Lz(d(gt)z)

= η(t).

Which immediately implies dL = 0.
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4.5 Interpolation inequality in the p-Wasserstein space

The following proposition is a generalization of [Oht09, 5.1] to the case p 6= 2. The proof
is up to some changes in notation and changes of powers the same as Ohta’s.

Proposition 4.14. Let φ : M → R be a cp-concave function and define F(z) =
expz(∇q(−φ)(z)) at all point of differentiability of φ. Fix some x ∈ M such that φ
is twice differentiable at x and dφx 6= 0. Then the following holds:

1. y = F(x) is not a cut point of x.

2. The function h(z) = cp(z, y)− φ(z) satisfies dhx = 0 and(
∂2h

∂xi∂xj
(x)

)
≥ 0

in any local coordinate system (xi)ni=1 around x.

3. Define fy(z) := −cp(z, y) and

dFx := d(expx ◦Kx)d(−φ)x ◦ [d(d(−φ))x − d(dfy)x] : TxM → TyM

where the vertical part of Td(−φ)x(T ∗M) and Td(−φ)x(T ∗M) are identified. Then
the following holds for all v ∈ TxM

sup
{
|u− dFx(v)| | expy u ∈ ∂cpφ(expx y), |u| = d(y, expy u)

}
= o(|v|).

Proof. As φ is differentiable at x we have ∂cpφ(x) = {y} and hence for any vector
v ∈ TxM with F (v) = 1 and sufficiently small t > 0, we have by cp-concavity of φ

h(x) = cp(x, y)− φ(x) = φcp(y) ≤ cp(ξv(±t), y)− φ(ξv(±t)) = h(ξv(±t))

where ξv : (−ε, ε)→M is a geodesic with ξ̇v(0) = v. Thus, we have

φ(ξv(t)) + φ(ξv(−t))− 2φ(x)

t2
≤ fy(ξv(t)) + fy(ξv(−t))− 2fy(x)

t2
.

Since φ is twice differentiable at x we have

−∞ <
∂2(φ ◦ ξv)

∂t2
(0) = lim sup

t→0+

fy(ξv(t)) + fy(ξv(−t))− 2fy(x)

t2

and hence y is not a cut point of x (Lemma 4.1).
Now the second statement follows immediately from the inequality above and the fact

that y /∈ Cut(x)∪{x} implies that fy is C∞ at x and ∇qfy(x) = ∇qφ(x), i.e. h takes its
minimum at x.
The last part follows from the fact that dhx = 0 implies d(fy)x = dφx and thus the

difference d(d(−φ))x − d(df)x makes sense. Putting xt = expx tv for some v ∈ TxM and
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small t ≥ 0 we can find ut ∈ TyM such that yt := expy ut ∈ ∂cpφ(xt) and d(y, yt) = F (ut).
In addition, we have

−φ(expxt w) ≥ −φ(xt)− fyt(xt) + f(expxt w) = −φ(xt) + d(fyt)xt(w) + o(F (w))

for w ∈ TxtM . Differentiating yt = exp ◦K(d(fyt)xt) at t = 0 we get

∂yt
∂t

∣∣
t=0

= d(exp ◦K)d(−φ)x ◦ d(d(−φ)x)(v).

Moreover, we have exp ◦K(d(fy)xt) ≡ y and thus d(exp ◦K)d(fy)x ◦d(dfy)x(v) = 0. There-
fore,

∂yt
∂t

∣∣
t=0

= d(exp ◦K)d(−φ)x ◦ [d(d(−φ)x − d(dfy)x] (v) = dFx(v).

Note that, because d(d(−φ)x) − d(dfy) contains only vertical terms (see also [Oht09,
Proof of 5.1]) we regard it as living in Td(−φ)x(T ∗xM) and thus replace d(exp ◦ K)d(−φ)x

by d(exp ◦ Kx)d(−φ)x . The last part follows immediately by noticing that φ is second
order differentiable and thus yt = expy ut with ut = dFx(tv) + o(t) where o(t) can be
chosen uniformly in v.

Proposition 4.15. Let µ0 and µ1 be absolutely continuous measures with density f0 and
f1 resp. and assume that there are open set Ui with compact closure X = Ū0 and Y = Ū1

such that suppµi ⊂ Ui. Let φ be the unique cp-concave Kantorovich potential and define
F(z) = expz(∇q(−φ)(z)). Then F is injective µ0-almost everywhere and for µ0-almost
every x ∈M\Ωid

1. The function h(z) = cp(z,F(z))− φ(z) satisfies(
∂2h

∂xi∂xj
(x)

)
> 0

in any local coordinate system (xi)ni=0 around x.

2. In particular, D[dFx] > 0 holds for the map dFx : TxM → TF(x)M defined as
above and

lim
r→0

µ(∂cpφ(B+
r (x)))

µ(B+
r (x))

= D[dFx]

and
f(x) = g(F(x))D[dFx].

Remark. defining dFx = Id for points x of differentiability of φ with dφx = 0, we see
that the second statement above holds µ-a.e.

Proof. The proof follows without any change from [Oht09, Theorem 5.2], see also [Vil09,
Chapter 11].
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4 Optimal Transport on Finsler manifolds

Theorem 4.16. Let φ : M → R be a cp-concave function and x ∈ M such that φ
is twice differentiable with dφx 6= 0. For t ∈ (0, 1], define yt := expx(∇q(−tp−1φ)),
ft(z) = −cp(z, yt) and Jt(x) = D[d(Ft)x] where

d(Ft)x := d(expx ◦Kx)d(−tp−1φ)x ◦
[
d(d(−tp−1φ))x − d(d(ft))x

]
: TxM → TytM.

Then for any t ∈ (0, 1)

Jt(x)
1/n ≥ (1− t)v>t (x, y1)

1/n + tv<t (x, y1)
1/nJ1(x)

1/n.

Remark. The proof is based on the proof of [Oht09, Proposition 5.3].

Proof. Note first that

d(d(−tp−1φ))x − d(dft)x =
{
d(d(−tp−1φ))x − d(d(tp−1f1))x

}
+
{
d(d(tp−1f1))x − d(dft)x

}
and

d(ft)x = d(−tp−1φ)x = d(−tp−1f1)x.

Now define τs : T ∗M → T ∗M as τs(v) = sp−1v and note

d(expx ◦Kx)d(−tp−1φ)x ◦
(
d(d(−tp−1φ))x − d(d(tp−1f1))x

)
= d(expx ◦Kx)d(−tp−1φ)x ◦ d(τt)d(−φ)x ◦ [d(d(−φ))x − d(d(f1))x]

= d(expx ◦Kx)d(−tp−1φ)x ◦ d(τt)d(−φ)x ◦
[
d(expx ◦Kx)d(−φ)x

]−1 ◦ d(F1)

= d(expx)∇q(−tp−1φ)x ◦ d(Kx ◦ τt ◦ K−1
x )∇q(−φ)x ◦ [d(expx)∇q(−φ)x ]−1 ◦ d(F1)

= t · d(expx)∇q(−tp−1φ)x ◦ [d(expx)∇q(−φ)x ]−1 ◦ d(F1),

because Kx ◦ τt ◦ K−1
x is linear and for v ∈ TxM

Kx ◦ τt ◦ K−1
x (v) = Kx(tp−1K−1

x (v)) = tv,

i.e. d(Kx ◦ τt ◦ K−1
x )∇q(−φ)x = t · Id. Note that we identified T∇q(−tp−1φ)(x)(TxM) with

T∇q(−φ)(x)(TxM) to get the last inequality.
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4 Optimal Transport on Finsler manifolds

Because D is concave we get

Jt(x)
1/n = D[d(Ft)x]

1/n

= D

[
d(expx ◦Kx)d(−tp−1φ)x ◦

[
d(d(tp−1f1))x − d(dft)x

]
+ d(expx ◦Kx)d(−tp−1φ)x ◦

(
d(d(−tp−1φ))x − d(d(tp−1f1))x

) ]1/n
= D

[
d(expx ◦Kx)d(−tp−1φ)x ◦

(
d(d(tp−1f1))x − d(dft)x

)
+ t · d(expx)∇q(−tp−1φ)x ◦ [d(expx)∇q(−φ)x ]−1 ◦ d(F1)

]1/n
≥ (1− t)D

[
(1− t)−1d(expx ◦Kx)d(−tp−1φ)x ◦

(
d(d(tp−1f1))x − d(dft)x

) ]1/n
+ tD

[
d(expx)∇q(−tp−1φ)x ◦ [d(expx)∇q(−φ)x ]−1 ◦ d(F1)

]1/n
= (1− t)v>t (x, y1)

1/n + tv<t (x, y1)
1/nJ1(x)

1/n.

Combing this with Lemma 3.11 and Lemma 4.18 below we get similar to [Oht09, 6.2]:

Lemma 4.17. Given two absolutely continuous measures µi = ρiµ on M , let φ be the
unique cp-concave optimal Kantorovich potential. Define Ft(x) := expx(∇q(−tp−1φ)) for
t ∈ [0, 1]. Then µt = (Ft)∗µ0 is absolutely continuous for any t ∈ [0, 1].

Proof. By Lemma 3.11 the map Ft is injective µ0-almost everywhere. Let Ωid be the
points x ∈M of differentiability of φ with dφx = 0. Then

µt
∣∣
Ωid

= (Ft)∗(µ0

∣∣
Ωid

) = µ0

∣∣
Ωid
.

By Theorem 4.10 the potential φ is second order differentiable in a subset Ω ⊂ M\Ωid

of full measure. In addition, D[d(F1)] > 0 for all x ∈ Ω (see Proposition 4.15) and Ft
is continuous in Ω for any t ∈ [0, 1]. The map d(Ft)x : TxM → TFt(x)M defined in
Proposition 4.14 as

d(Ft)x := d(expx ◦Kx)d(−tp−1φ) ◦
[
d(d(−tp−1φ))x − d(d(ft)x

]
where ft(z) := −cp(z,Ft(x)) for t ∈ (0, 1]. Also note that for x ∈ Ω

d(d(−tp−1φ))x−d(dft)x =
{
d(d(−tp−1φ))x − d(d(tp−1f1))x

}
+
{
d(d(tp−1f1))x − d(ft)x

}
.

Which implies D[d(Ft)x] > 0 because D[d(F1)x) > 0 and the lemma below.
The result then immediately follows by [CEMS01, Claim 5.6].
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4 Optimal Transport on Finsler manifolds

Lemma 4.18. Let y /∈ Cut(x) ∪ {x} and η : [0, 1]→M be the unique minimal geodesic
from x to y. Define

ft(z) = −cp(z, η(t)).

Then the function h(z) = tp−1f1(z)− ft(z) satisfies(
∂2h

∂xi∂xj
(x)

)
≥ 0

in any local coordinate system around x.

Proof. This follows directly from 3.8.
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5 Abstract curvature condition

In this chapter we define a curvature condition à la Lott-Villani-Sturm ([LV07, LV09] and
[Stu06b, Stu06a]) with respect to geodesics in Pp(M) with p ∈ (1,∞). For simplicity,
throughout this chapter, we assume that M is a proper geodesic space.

5.1 Curvature dimension

In [LV09] (see also [Vil09, Part II-III]) Lott and Villani introduced the following set of
real-valued functions.

Definition 5.1 (DCN ). For N ∈ [1,∞] let DCN all convex functions U : [0,∞) → R
with U(0) = 0 such that for N <∞ the function

ψ(λ) = λNU(λ−N )

is convex on (0,∞). In case N =∞ we require

ψ(λ) = eλU(e−λ)

to be convex on (−∞,∞).

Lemma 5.2 ([LV09, Lemma 5.6]). If N ≤ N ′ then DCN ′ ⊂ DCN .

Example 5.3. Note the following examples

1. if m = 1− 1
N for N ∈ (1,∞) then Um : x 7→ 1

m(m−1)x
m is in DCN

2. the classical entropy functional U∞ : x 7→ x log x is in DC∞

3. if m > 1 then Um ∈ DC∞

Given a function U ∈ DCN for N ∈ [1,∞] we write U ′(∞) = limr→∞
U(r)
r . Given

some reference measure µ ∈ P(M) we define the functional Uµ : P(M)→ R ∪ {∞} by

Uµ(ν) =

ˆ
U(ρ)dµ+ U ′(∞)νs(M)

where ν = ρµ+ µs the the Lebesgue decomposition of ν w.r.t. µ.

Remark. In the following we usually fix a metric measure space (M,d, µ) and drop the
subscript µ from the functional Uµ. In addition, we use Um, Uα etc. to denote the
functional generated by Um, Uα, etc.

46



5 Abstract curvature condition

In [LV07, Section 4] Lott and Villani defined for each K ∈ R and N ∈ (1,∞] the
functions βt : M ×M → R ∪ {∞} and t ∈ [0, 1] as follows

βt(x1, x2) =



e
1
6
K(1−t2)d(x0,x1)2 if N =∞,

∞ if N <∞,K > 0 and α > π,(
sin(tα)
t sinα

)N−1
if N <∞,K > 0 and α ∈ [0, π],

1 if N <∞ and K = 0,(
sinh(tα)
t sinhα

)N−1
if N <∞ and K < 0,

where

α =

√
|K|
N − 1

d(x0, x1)

and for N = 1

βt(x0, x1) =

{
∞ if K > 0,

1 if K ≤ 0.

Note that β and α depend implicitly on an a priori chosen K and N which will be
suppressed to keep the notation simple.

Remark. In [BS10] Bacher and Sturm defined a reduced curvature dimension condition
with a different weight function σt instead of βt. Because of the localization and ten-
sorization property this weight function turned out to be powerful ([AGS11b, AGMR12,
Raj12, Raj11, GM13, EKS13, Gig13, HKX13]). Using the inequalities of the proof of
Lemma 3.11 most of the things proven in [BS10] will also hold for localized version
CD∗p(K,N).

Definition 5.4 ((strong) CDp(K,N)). We say (M,d, µ) satisfies the strong CDp(K,N)
condition if the following holds: Given two measures µ0, µ1 ∈ P(M) with Lebesgue
decomposition µi = ρiµ+ µi,s. Then there exists some optimal dynamical transfer plan
Π ∈ P(Geo) such that µt = (et)∗Π is a geodesic from µ0 to µ1 in Pp(M) such that for
all U ∈ DCN and t ∈ [0, 1]

U(µt) ≤ (1− t)
ˆ
M×M

β1−t(x0, x1)U

(
ρ0(x0)

β1−t(x0, x1)

)
dπ(x1|x0)dµ(x0)

+t

ˆ
M×M

βt(x0, x1)U

(
ρ1(xi)

βt(x0, x1)

)
dπ(x0|x1)dµ(x1)

+U ′(∞) ((1− t)µ0,s(M) + tµ1,s(M)) ,

where π = (e0, e1)∗Π is the optimal transference plan of (µ0, µ1) w.r.t. cp associated to Π.
Furthermore, in case βs(x0, x1) =∞ we interpret βs(x0, x1)U

(
ρi(xi)

βs(x0,x1)

)
as U ′(0)ρi(xi).

In addition, we say that the very strong CDp(K,N) condition holds if the inequality
holds for all optimal dynamical transference plans (and thus all geodesics).
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5 Abstract curvature condition

Note that this definition is Lott-Villani’s [LV07, Defnition 4.7] by just requiring the
geodesic t 7→ µt to be in Pp(M) instead of P2(M). And, in case both µi are absolutely
continuous it looks like

U(µt) ≤ (1− t)
ˆ
β1−t(x0, x1)

ρ0(x0)
U

(
ρ0(x0)

β1−t(x0, x1)

)
dπ(x0, x1)

+t

ˆ
βt(x0, x1)

ρ1(x1)
U

(
ρ1(x1)

βt(x0, x1)

)
dπ(x0, x1).

An immediate consequence of the curvature condition is the following:

Lemma 5.5. Assume (M,d, µ) satisfies the strong CDp(K,N) and µ0 and µ1 are ab-
solutely continuous, if t 7→ µt satisfies the functional inequality then µt is absolutely
continuous.

Proof. The proof follows from [LV09, Theorem 5.52] (see also [LV07, Theorem 4.30]) by
noting that [LV09, Lemma 5.43] does not need µi to be in Pac2 (M).

Furthermore, we will also define a variant of Sturm’s curvature condition [Stu06a,
Stu06b]:

Definition 5.6 ((weak) CDp(K,N)). We say (M,d, µ) satisfies the weak CDp(K,N)
condition if for N ∈ (1,∞) the above inequality holds only for the functionals

UN ′(r) = N ′r(1− r−1/N ′)

for any N ′ ≥ N . In case N ′ =∞ the functional U∞ generated by

U∞(r) = r log r

and has to be K-convex along a geodesic t 7→ µt in Pp(M), i.e.

U∞(µt) ≤ (1− t)U∞(µ0) + tU∞(µ1)− K

2
t(1− t)w2

p(µ0, µ1).

The following follows immediately from Theorem 4.16 by similar statements to the
case CD2(K,N) (see e.g. [Oht09, Vil09]).

Corollary 5.7. Any n-dimensional Finsler manifold with N -Ricci curvature bounded
from below by K and N > n satisfies the very strong CDp(K,N) condition for all p ∈
(1,∞).

Remark. Note1 that in contrast to the case p = 2 the strong CDp(K,∞)-condition does
not imply the weak one. Indeed the strong CDp(K,∞)-condition [LV07, Lemma 4.14]
only gives

U∞(µt) ≤ (1− t)U∞(µ0) + tU∞(µ1)− 1

2
λ(U)t(1− t)

ˆ
d2(x, y)dπopt(x, y),

1We thank Shin-ichi Ohta for making this remark on an early version of a preprint
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5 Abstract curvature condition

where πopt is the dp-optimal coupling between µ0 and µ1. However, using Hölder inequal-
ity we get for p > 2

ˆ
d2(x, y)dπopt(x, y) ≤

(ˆ
dp(x, y)dπopt(x, y)

) 2
p

= Cpw
2
p(µ0, µ1)

and for p < 2

cpw
2
p(µ0, µ1) ≤

(ˆ
dp(x, y)dπopt(x, y)

) 2
p

≤
ˆ
d2(x, y)dπopt(x, y).

Thus we get K ′-convexity for some K ′ depending only on p and K follows if either
λ(U) > 0 and p < 2 or λ(U) < 0 and p > 2.
In the negatively curved case with bounded diameter one can also do the following:

the function
λ 7→ eλU∞(e−λ)

is convex and non-increasing. This means, if we take some β′t(·, ·) ≤ βt(·, ·) then we still
have

U(µt) ≤ (1− t)
ˆ
β
′
1−t(x0, x1)

ρ0(x0)
U

(
ρ0(x0)

β
′
1−t(x0, x1)

)
dπ(x0, x1)

+t

ˆ
β
′
t(x0, x1)

ρ1(x1)
U

(
ρ1(x1)

β
′
t(x0, x1)

)
dπ(x0, x1),

assuming µ0 and µ1 are absolutely continuous. Now choose for r < 2 and Dr =
(diamM)2−r then d2(x, y) ≤ Drd

r(x, y) and define the following function

β
′
t(x, y) = e

1
6
DrK(1−t2)dr(x,y).

If K < 0 then obviously β′t ≤ βt and the interpolation inequality above holds. As above
we conclude that the functional is K ′-convex for some K ′ depending on DrK and p > r.

5.2 Positive curvature and global Poincaré inequality

In this section we will show a Poincaré inequality for positively curved spaces first proven
by Lott and Villani in [LV07] for the case p = 2.

For that fix a metric measure space (M,d, µ) and let q be the Hölder conjugate of p.
Then for a given U ∈ C2(R) we define the generalized q-Fisher information (associated
to (U, µ))

Iq(ν) =

ˆ
U ′′(ρ)q|D−ρ|qdν

=

ˆ
ρU ′′(ρ)q|D−ρ|qdµ

where ν is an absolutely continuous measure w.r.t. µ.
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Remark. The Fisher information defined here is more general then the one define in
section 2.1.3. In case U(r) = 1

(3−p)(2−p)(r3−p − r) where p is the Hölder conjugate of q
one has equality.

In case the CDp(K,N) holds for K > 0 and N ∈ (1,∞) the following directly follows
from [LV07, Theorem 5.34] without changing the proofs.

Lemma 5.8. Let (M,d, µ) be a metric measure space satisfying CDp(K,N) for K > 0
and N ∈ (1,∞). Then for any Lipschitz function f on M with

´
fdµ = 0 it holds

ˆ
f2dµ ≤ N − 1

KN

ˆ
|D−f |2dµ.

However in case N =∞ we need to adjust the proof using the Lemma below.

Lemma 5.9. Let (M,d, µ) be a compact geodesic metric measure space and U be a
continuous convex function on [0,∞) with U(0) = 0. Let ν ∈ Pp(M) and assume t 7→ µt
is a geodesic in Pp(M) from µ0 = ν to µ1 = µ such that the functional U (associated to
(U, µ)) is K convex along µt, i.e.

U(µt) ≤ (1− t)U(µ0) + tU(µ1)− K

2
t(1− t)w2

p(µ0, µ1).

Then
K

2
wp(ν, µ) ≤ U(ν)− U(µ).

If U is C2-regular on (0,∞), ν = ρµ for some positive Lipschitz function ρ on M with
U(ν) <∞ and µt is absolutely continuous for each t ∈ [0, 1] then

U(ν)− U(µ) ≤ wp(ν, µ) q

√
Iq(ν)− K

2
wp(ν, µ)2.

Proof. The proof follows from [LV09, Proposition 3.36] by making some minor adjust-
ments. We will include the whole proof, since it can also be used to generalize [LV07,
Theorem 5.3] (note that U with U ∈ DCN is not necessarily K-convex).
The first part follows directly from the K-convexity: Let φ(t) = U(µt), then

φ(t) ≤ tφ(1) + (1− t)φ(0)− 1

2
t(1− t)wp(ν, µ)2.

If the inequality does not hold then φ(0)− φ(1) < 1
2wp(ν, µ)2 and hence

φ(t)− φ(1) ≤ (1− t)
(
φ(0)− φ(1)− K

2
twp(ν, µ)2

)
which implies that φ(t) − φ(1) is negative for t close to 1. But this contradicts [LV09,
Lemma 3.36], i.e. U(µ) ≥ U(ν) = U(1). Therefore, the first inequality holds.
To prove the second part, let ρt be the density of µt. Then φ(t) =

´
U(ρt)dµ and from

above we have
φ(0)− φ(1) ≤ −φ(t)− φ(1)

t
− K

2
(1− t)wp(ν, µ)2.
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So to prove the second inequality we just need to show

lim inf
t→∞

(
−φ(t)− φ(0)

t

)
≤ wp(ν, µ) q

√
Iq(ν).

Since U is convex we have

U(ρt)− U(ρ0) ≥ U ′(ρ0)(ρt − ρ0).

Integrating w.r.t. µ and dividing by −t < 0 we get

−1

t
(φ(t)− φ(0)) ≤ −1

t

ˆ
U ′(ρ0(x)) (dµt(x)− dµ(x))

= −1

t

ˆ
U ′(ρ0(γt))− U ′(ρ0(γ0))dΠ(γ)

where Π is the optimal transference plan in P(Geo) associated to t 7→ µt.
Since U ′ is non-decreasing and d(γt, γ0) = td(γ0, γ1) we obtain for

−1

t

ˆ
U ′(ρ0(γt))− U ′(ρ0(γ0))dΠ(γ) ≤ −1

t

ˆ
ρ0(γt)≤ρ0(γ0)

[
U ′(ρ0(γt))− U ′(ρ0(γ0))

]
dΠ(γ)

≤
ˆ
U ′(ρ0(γt))− U ′(ρ0(γ0))

ρ0(γt)− ρ0(γ0)

× [ρ0(γt)− ρ0(γ0)]−
d(γt, γ0)

d(γ1, γ0)dΠ(γ).

Applying Hölder inequality we get

q

√ˆ
[U ′(ρ0(γt))− U ′(ρ0(γ0))]q

[ρ0(γt)− ρ0(γ0)]q
[ρ0(γt)− ρ0(γ0)]q−

d(γt, γ0)q
dΠ(γ)

× p

√ˆ
d(γ0, γ1)qdΠ(γ).

where the second factor is just wp(ν, µ). Taking continuity of ρ0 and the definition of
|D − ρ0| into account we conclude as in the proof of [LV09, Proposition 3.36] that the
first factor equals

q

√ˆ
U ′′(ρ0)q|D−ρ0|qdν = q

√
Iq(ν).

Corollary 5.10. Assume that the (weak) CDp(K,∞) condition holds for K > 0 and
some N ∈ [1,∞]. Then for all ν ∈ Pp(M)

K

2
wp(ν, µ)2 ≤ U∞(ν).

If ν is absolutely continuous with positive Lipschitz density ρ then

U∞(ν) ≤ wp(ν, µ) q

√
Iq(ν)− K

2
wp(ν, µ)2 ≤ 1

2K
(Iq(ν))

2
q .
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Proof. Just note that if U∞ is K-convex along a geodesic t 7→ µt between absolutely
continuous measures, then each µt is absolutely continuous.

Note that in this case

Iq(ρµ) =

ˆ
ρ

1

ρq
|D−ρ|qdµ =

ˆ
|D−ρ|q

ρq−1
dµ.

Similar to [LV09, Section 6.2] we will show that the (2, q)-log-Sobolev inequality

U∞(ρµ) ≤ 1

2K
(Iq(ρµ))

2
q .

implies a global (2, q)-Poincaré inequality. Note that the (2, q)-log-Sobolev inequality is
different from the one defined in [GRS12].

Corollary 5.11. Assume for K > 0 and all positive Lipschitz functions

U∞(ρµ) ≤ 1

2K
(Iq(ρµ))

2
q .

Then the (2, q)-Poincaré inequality holds with factor independent of q, i.e.

(ˆ
(h− h̄)2dµ

) 1
2

≤ 1√
2K

(ˆ
|D−h|qdµ

) 1
q

for h ∈ Lip(M). In particular, this holds if (M,d, µ) satisfies the weak CDp(K,∞)
condition.

Proof. We will first prove
Claim. If f ∈ Lip(M) satisfies

´
fpdµ = 1 then(ˆ

f q log f qdµ

) 1
2

≤ q√
2K

(ˆ
|D−f |qdµ

) 1
q

.

Proof of the claim. For any ε > 0 let ρε = fp+ε
1+ε then from the previous corollary

ˆ
ρε log ρεdµ ≤

1

2K

(ˆ
|D−ρε|q

ρq−1
ε

dµ

) 2
q

.

By chain rule we have

|D−ρε|q

ρq−1
ε

=
1

1 + ε

(qf q−1)q

(f q + ε)q−1
|∇−f |q → qq|D−f |q

as ε→ 0, which implies the claim.
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Assume w.l.o.g.
´
h = 0. For ε ∈ [0, 1

‖h‖∞ ) set fε = q
√

1 + εh > 0. Then by chain rule

|D−fε| =
ε|D−h|

q (1 + εh)
q−1
q

and thus

lim
ε→0

1

ε

(ˆ
|D−fε|qdµ

) 1
q

=
1

q

(ˆ
|D−h|qdµ

) 1
q

.

Note that the Taylor expansion of x log x−x+1 around x0 = 1 is given by 1
2(x−1)2 + . . .,

and thus
lim
ε→0

1

ε

ˆ
f qε log f qε dµ =

ˆ
h2dµ.

Combining this we get (ˆ
h2dµ

) 1
2

≤ 1√
2K

(ˆ
|D−h|qdµ

) 1
q

.

5.3 Metric Brenier

Lemma 5.12 ([Gig12, 5.4]). Let (M,d, µ) be a metric measure space and (µn)n∈N be a
sequence P(M) and let µ0 ∈ P(M) be such that µ0 � µ . Assume for some bounded
closed set B ⊂ M with µ(B) <∞ we have suppµn ∪ suppµ0 ⊂ B, µn converges weakly
to µ and

UN (µn)→ UN (µ0) as n→∞.

Then for every bounded Borel function f : B → R it holds

lim
n→∞

ˆ
fdµn =

ˆ
fdµ

Proposition 5.13. Let (M,d, µ) be a metric measure space and B be a bounded closed
subset of M with µ(B) <∞. Assume µ0 and µ1 are two probability measures in Pp(M)
such that µ0 � µ and there is an optimal coupling π ∈ OptGeop(µ0, µ1) such that

lim
t→0
UN (µt) = UN (µ0)

and supp(µt) ⊂ B, where µt = (et)∗π. If φ is the associated Kantorovich potential
of the pair (µ0, µ1) and φ is Lipschitz on bounded subsets of X. Then for every π̃ ∈
OptGeop(µ0, µ1)

d(γ0, γ1)p =
(
|D+φ|(γ0)

)q
π̃-a.e. γ.

Remark. The proof follows by similar arguments as in [Gig12, 5.5] and [AGS13, 10.3].
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5 Abstract curvature condition

Proof. Let x ∈M be arbitrary and choose any y ∈ ∂cpφ(x), then for all z ∈M

φ(x) = cp(x, y)− φcp(y),

φ(z) ≤ cp(z, y)− φcp(y).

Thus

φ(z)− φ(y) ≤ (d(z, x) + d(x, y))p − dp(x, y)

p

= (d(z, x) + h1(d(z, x)) · d(x, y)p−1

where h1 : R→ R is such that h1(r) = o(r) as r → 0 depending only on p > 1. Therefore,
dividing by d(x, z) and letting z → x we see that

|D+φ|(x) ≤ inf
y∈∂cpφ(x)

d(x, y)p−1.

In particular, since for an arbitrary π̃ ∈ OptGeop(µ0, µ1) we have γ1 ∈ ∂cpφ(γ0) for
π̃-almost every γ, we also have

|D+φ|(γ0) ≤ d(γ0, γ1)p−1 π̃-a.e. γ.

Note that q · (p− 1) = p and thus
ˆ
|D+φ|qdµ0 ≥ wpp(µ0, µ1).

So it suffices to show the opposite inequality. For that let π ∈ OptGeo(µ0, µ1) as in
the hypothesis. Because φ is a Kantorovich potential we have for t ∈ (0, 1]

φ(γ0)− φ(γt) ≥
d(γ0, γ1)p

p
− d(γt, γ1)p

p

=
d(γ0, γ1)p

p
(1− (1− t)p) = d(γ0, γ1)p(t+ o(t)).

Thus dividing by d(γ0, γt) = td(γ0, γ1) and integrating to the q-th power we get

lim inf
t→0

ˆ (
φ(γ0)− φ(γt)

d(γ0, γt)

)q
dπ(γ) ≥

ˆ
d(γ0, γ1)pdπ(γ) = wpp(µ0, µ1).

Because φ is locally Lipschitz, |D+φ| is an upper gradient for φ, we also have
ˆ (

φ(γ0)− φ(γt)

d(γ0, γt)

)q
dπ(γ) ≤

ˆ
1

tq

(ˆ t

0
|D+φ|(γs)ds

)q
dπ(γ)

≤
ˆ
t
q
p

tq

ˆ t

0
|D+φ|q(γs)dsdπ(γ)

=
1

t

ˆ t

0

ˆ
|D+φ|q(γs)dπ(γ)ds
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5 Abstract curvature condition

because q
p = 1

p−1 = q − 1.
Now our assumptions imply that |D+φ|q is a bounded Borel functions thus we can

apply the previous lemma to get (see also [Gig12, 5.5]

lim
t→0

1

t

ˆ t

t

ˆ
|D+φ|q(γs)dπ(γ)ds =

ˆ
|D+φ|qdµ0.

In order to avoid the introduction of complicated notation, we just remark that one
can also prove [Gig12, Corollary 5.8] and show that the plan π above weakly q-represents
∇(−φ) (for definition see [Gig12, Definition 5.7]).

5.4 Laplacian comparison

As an application to the metric Brenier theorem we get the following. Since we do not
prove the theorem, we refer to [Gig12] for a precise definition of infinitesimal strictly
convex spaces.

Theorem 5.14 (Comparison estimates). Let K ∈ R and N ∈ (1,∞) and (M,d, µ) be an
infinitesimal strictly convex CDp(K,N)-space. If φ : X → R is a cp-concave function.
Then

φ ∈ D(∆q) and ∆qφ ≤ Nσ̃K,N (|∇φ|q−1
w )dµ

where

σ̃K,N (θ) =


1
N

(
1 + θ

√
K/(N − 1) cotan

(
θ
√

K
N−1

))
if K > 0

1 if K = 0

1
N

(
1 + θ

√
K/(N − 1) cotanh

(
θ
√

K
N−1

))
if K < 0

Proof. Follow [Gig12, Theorem 5.14] and just note that the metric Brenier theorem
implies d(γ0, γ1) = |∇φ|q−1

w .

Corollary 5.15 (Laplacian comparison of the distance). For any x0 one has

dpx0
p
∈ D(∆q) with ∆q

dpx0
p
≤ Nσ̃K,N (dx0)dµ ∀x0 ∈ X

and
dx0 ∈ D(∆q, X\{x0}) with ∆qdx0

∣∣
X\{x0} ≤

Nσ̃K,N (dx0)

dp−1
x0

dµ.
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5 Abstract curvature condition

Remark. Note that formally

∆q d
p
x0

p
= ∇ ·

(
|∇d

p
x0

p
|q−2∇d

p
x0

p

)
= ∇ ·

(
(dp−1
x0 )q−1∇dx0

)
= ∇ · (dx0∇dx0) = ∆

d2
x0

2
,

thus the result might not give any new results in the smooth setting.

Proof of the Remark. Note first that dpx0/p is cp-concave and because |∇dx0 | = 1 almost
everywhere and by the chain rule |∇(dpx0/p)| = dp−1

x0 .

5.5 cp-concavity of Busemann functions

In [Gig13] Gigli used, beside many other things, c2-concavity of the Busemann function
and linearity of the Laplacian to prove the splitting theorem for RCD(K,N)-spaces, i.e.
CD(K,N)-spaces with a linear Laplacian. We will show that the Busemann function
is cp-concave for any p ∈ (1,∞), even more general it is cL-concave. In the non-linear
setting and the case p = 2, Ohta [Oht13b] used a comparison principle to show that
Busemann functions on Finsler manifolds are harmonic. The author believes that such
a principle also holds in a more general non-linear setting and even for the case p 6= 2 so
that one can conclude harmonicity (resp. p-harmonicity) of Busemann functions.
A function γ : [0,∞) → M is called geodesic ray if for any T > 0 the restriction to

[0, T ] is a minimal geodesic. Furthermore, we will always assume that a geodesic rays
are parametrized by arc length. We can define the Busemann function b associated to γ
by

b(x) = lim
t→∞

bt(x) where bt(x) = d(x, γt)− t.

Note
t 7→ bt(x) is non-increasing

Lemma 5.16. Let (M,d) be a geodesic space and b be the Busemann functions associated
to some geodesic ray γ : [0,∞)→ X. Then b is cp-concave.

Proof. From Lemma 3.2 we know bcpc̄p ≥ b, so that we only need to show the opposite
inequality.
Fix an arbitrary x ∈ X and t ≥ 0 and let γt,x : [0, d(x, γt)] → X be a unit speed

geodesic connecting x and γt. Then for any t ≥ tx we have d(x, γt) ≥ 1 and

bcpc̄p(x) = inf
y∈X

sup
x̃∈X

dp(x, y)

p
− dp(x̃, y)

p
+ b(x̃) ≤ sup

x̃∈X

1

p
− dp(x̃, γt,x1 )

p
+ bt(x̃).

56



5 Abstract curvature condition

Furthermore, for any x̃ ∈ X and t ≥ tx we also have

1

p
− dp(x̃, γt,x1 )

p
+ bt(x̃) =

1

p
− dp(x̃, γt,x1 )

p
+ d(x̃, γt)− t

≤ 1

p
− dp(x̃, γt,x1 )

p
+ d(x̃, γt,x1 ) + d(γt,x1 , γt)− t

= −p− 1

p
− dp(x̃, γt,x1 )

p
+ d(x̃, γt,x1 ) + d(x, γt)− t

≤ d(x, γt)− t = bt(x)

where we used Young’s inequality and (p− 1)/p = 1/q. Therefore,

bcpc̄p(x) ≤ lim
t→∞

bt(x) = b(x).

Actually, we can also show that the Busemann function is cL-concave for any convex
functional L such that cL(x, y) = L(d(x, y)) (see chapter on Orlicz-Wasserstein spaces).

Lemma 5.17. Let (M,d) be a geodesic space and b be the Busemann functions associated
to some geodesic ray γ : [0,∞) → X. Then b is cL-concave where such that cL(x, y) =
L(d(x, y)) for some convex function L : [0,∞) → [0,∞) such that L∗(1) = r − L(r) for
some r ≥ 0.

Remark. The condition for such an r to exist rather weak, e.g. superlinearity of L is
sufficient.

Proof. Let L∗ be the Legendre transform of L, then Young’s inequality holds

xy ≤ L(x) + L∗(y),

in particular x ≤ L(x) + L∗(1).
Let r be such that L∗(1) = r − L(r). As above, we only need to show that bcLc̄L ≤ b.

We have

bcLc̄L(x) = inf
y∈X

sup
x̃∈X

L(d(x, y))− L(d(x̃, y)) + b(x̃) ≤ sup
x̃∈X

L(r)− d(x̃, γt,xr ) + bt(x̃).

Furthermore, for all x̃ ∈M and t ≥ tx such that d(x, γt) ≥ r we get

L(r)− L(d(x̃, γt,xr )) + bt(x̃) = L(r)− L(d(x̃, γt,xr )) + d(x̃, γt)− t
≤ L(r)− L(d(x̃, γt,xr )) + d(x̃, γt,x1 ) + d(γt,x1 , γt)− t
= L(r)− r − L(d(x̃, γt,xr )) + d(x̃, γt,xr ) + d(x, γt)− t
= −L∗(1)− L(d(x̃, γt,xr )) + d(x̃, γt,xr ) + d(x, γt)− t
≤ d(x, γt)− t = bt(x).

where we used Young’s inequality to get the last inequality. Therefore,

bcLc̄L(x) ≤ lim
t→∞

bt(x) = b(x).
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6 Gradient flow identification

Let µ ∈ P(M) be some reference measure, we define the functional Uµ : P(M)→ R∪{∞}
by

Uµ(ν) =

ˆ
U(ρ)dµ+ U ′(∞)νs(M)

where ν = ρµ+ µs the the Lebesgue decomposition of ν w.r.t. µ.
In the following we usually fix a metric measure space (M,d, µ) and drop the subscript

µ from the functional Uµ. In addition, we use Um, Uα etc. to denote the functional
generated by Um, Uα, etc.
Now let

Up(x) =
1

(3− p)(2− p)
(x3−p − x)

and let Up be the associated functional.

Remark. The linear term in Up is just for cosmetic reasons, it does not have any influence:
Take U = c · x with c > 0 and let U be the associated functional, then U ′(∞) = c for
p ∈ (2, 3) and thus

U(ν) = c

ˆ
fdµ+ c · νs(M) = c

where ν = ρµ+ νs is the Lebesgue decomposition w.r.t. µ. Therefore, we have Up(ν) =
Ũp(ν) − 1

(3−p)(2−p) with Ũp(x) = 1
(3−p)(2−p)x

3−p. For p ∈ (1, 2) we have Up(ν) < ∞ iff
νs = 0 and hence the linear term is constant as well.

Following the strategy in [AGS13, Section 7.2 and 8] we will show that under a cur-
vature condition the q-heat flow can be identified with the gradient flow of the function
Up in the p-Wasserstein space: More precisely, if p ∈ (1, 2) then 3 − p ∈ (1, 2) and the
functional is displacement convex if the strong version of CDp(K,∞) holds for some
K ≥ 0. If p ∈ (2, 3) we have 3−p ∈ (0, 1) so that Up is displacement convex if CDp(0, N)
holds with 1− 1

N = 3− p.
Remark. Note, that in contrast to the case p = 2, the strong version of CDp(K,∞) does
not imply K-convexity of functionals in DC∞ for K < 0 and p < 2. We get K ′-convexity
in those cases if the space is bounded (see remark on page 48). Also Ohta and Takatsu
could show that on a weighted Riemannian manifold of non-negative Ricci curvature the
functional Up with p ∈ (2, 3) is K-convex in P2(M) if CD(K,N) holds (see [OT11a,
Theorem 4.1]). This is, however, not enough for p 6= 2.

Recall from the introduction that r > 0 will be an abbreviation for q ∈ (1+
√

5
2 ,∞), or

equivalently p ∈ (1, 3+
√

5
2 ).
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6 Gradient flow identification

Lemma 6.1. Assume r > 0 then
ν 7→ Up(ν)

is lower semicontinuous in Pp(M).

Proof. Just note that Up is convex and for r > 0 we have p ∈ (1, 3+
√

5
2 ) ⊂ (1, 3) and thus

3− p > 0.

Remark. The functional Up appeared in a similar form already in [Gig12, Proof of Lemma
3.13] and Otto’s preprint [Ott96] and also Augeh’s thesis [Agu02, Agu05]. Gigli used the
functional and the gradient flow of the q-Cheeger energy to show that all gradients of
q-Sobolev functions can be weakly represented by a plan. In the Euclidean case, Otto
and Augeh showed that the parabolic q-Laplace equation, which is the q-heat flow for
smooth solutions, can be solved using the gradient flow of Up in the p-Wasserstein case.
This should also be compared to [OT11a, OT11b], where the (parabolic) porous media
equation is solved via a gradient flow of a similar functional in the 2-Wasserstein space for
Riemannian manifolds of non-negative Ricci curvature. Note, however, no identification
is done. Furthermore, our approach shows that the abstract solution of the q-heat flow
solves the gradient flow problem in the p-Wasserstein space.

6.1 Gradient flow of the Cheeger energy in L2

We assume now that Chq is the q-Cheeger energy on (M,d, µ) where (M,d) is a proper
metric space and µ is a σ-finite measure. From [AGS13, Proposition 4.1] we know that
the domain of Chq is dense in L2(M,µ).
Since L2(M,µ) is Hilbert and Chq is convex and lower semicontinuous, we can apply

the classical theory of gradient flows developed in [Bré73] (see also [AGS08]). For that
recall that the subdifferential ∂−Chq at f ∈ D(Chq) is defined as (possibly empty) set
of functions ` ∈ L2(M,µ) such that for all g ∈ L2(M,µ)

ˆ
`(g − f)dµ ≤ Chq(g)− Chq(f).

If f /∈ D(Chq) then ∂ Chq(f) = ∅. The domain D(∂ Chq) of ∂−Chq will be all f ∈
L2(M,µ) such that ∂−Chq 6= ∅, which is dense in L2(M,µ) (see [Bré73, Proposition
2.11]).
By [Bré73] the gradient flow of Chq gives for all f0 ∈ L2(M,µ) a locally Lipschitz map

t 7→ ft = Ht(ft) (we drop q if no confusion arises) from (0,∞) to L2(M,µ) and ft → f0

in L2(M,µ) as t→ 0 and the derivative satisfies

d

dt
ft ∈ −∂−Chq(ft) for a.e. t ∈ (0,∞).

Definition 6.2 (q-Laplacian). Let f ∈ D(∂ Chq) then ∆qf is defined as the element
` ∈ −∂−Chq(f) of minimal L2-norm.
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6 Gradient flow identification

By [Bré73, Theorem 3.2] we have the regularization effect that d+

dt ft exists everywhere
in (0,∞) and is the element ` ∈ −∂−Chq(ft) with minimal L2-norm, i.e. d+

dt ft = ∆qft.
Remark. We can also define the L-Laplacian using the same theory where L is a convex
increasing function with L(0) = 0. Since such flows might be interesting in combination
with Orlicz-Wasserstein spaces, we will analyze these flows in the future.

Proposition 6.3 (Properties of the Laplacian). If f ∈ D(∆q) and g ∈ D(Chq) then

−
ˆ
g∆qfdµ ≤

ˆ
|∇g|∗|∇f |q−1

∗ dµ.

Equality holds if g = φ(f) for some Lipschitz function φ : J → R with J a closed interval
containing the image of f (and φ(0) = 0 if µ(M) =∞). In that case one also has

−
ˆ
φ(f)∆qfdµ =

ˆ
φ′(f)|∇f |q∗dµ.

If, in addition, g ∈ D(∆q) and φ is nondecreasing and Lipschitz on R with φ(0) = 0 thenˆ
(∆qg −∆qf)φ(g − f)dµ ≤ 0.

Proof. The first two parts were already proven in [AGS11a, Proposition 6.5] for C1-
functions φ. However, using the proof of [AGS13, Proposition 4.15], adapted to p 6= 2,
this can be proven in the same way. For convenience we include the full proof: Since
−∆qf ∈ ∂−Chq(f) we have for all ε > 0

Chq(f)−
ˆ
εg∆qfdµ ≤ Chq(f + εg).

Furthermore, |∇f |∗ + ε|∇g|∗ is a relaxed slope of f + εg, we get

−
ˆ
εg∆f ≤ 1

q

ˆ
(|∇f |∗ + ε|∇g|∗)q − |∇f |q∗dµ

= ε

ˆ
|∇g|∗|∇f |q−1

∗ dµ+ o(ε).

Dividing by ε and letting ε→ 0 we obtain the result.
In case g = φ(f) we apply the chain rule and get |∇(f + εφ(f))|∗ = (1 + εφ′(f))|∇f |∗

and thus

Chq(f + εφ(f))− Chq(f) =
1

q

ˆ
|∇f |q∗((1 + εφ(f))q − 1)dµ

= ε

ˆ
φ′(f)|∇f |q∗dµ+ o(ε).

For the third part, just set h = φ(g − f), then h ∈ D(Chq) and for ε > 0

−ε
ˆ

(∆qf −∆qg)hdµ = −ε
ˆ

∆qf · hdµ− ε
ˆ

∆qg · (−h)dµ

≤ Chq(f + εh)− Chq(f) + Chq(g − εh)− Chq(g).
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6 Gradient flow identification

Taking ε sufficiently small such that εφ is a contraction, we can apply Proposition 2.3
and conclude.

Actually with the help of Proposition 2.3 we can also prove:

Proposition 6.4. If f, g ∈ D(∆L) and φ is nondecreasing and Lipschitz on R with
φ(0) = 0 then ˆ

(∆Lg −∆Lf)φ(g − f)dµ ≤ 0.

Proof. As above set h = φ(g − f), then h ∈ D(Chq) and for ε > 0

−ε
ˆ

(∆Lf −∆Lg)hdµ = −ε
ˆ

∆Lf · hdµ− ε
ˆ

∆Lg · (−h)dµ

≤ ChL(f + εh)− ChL(f) + ChL(g − εh)− ChL(g).

Then conclude by taking ε sufficiently small and applying Proposition 2.3.

Using these results we can generalize [AGS13, Theorem 4.16] to the case p 6= 2 (and
also [AGS11a, Proposition 6.6] where 0 < c ≤ f0 ≤ C <∞ is required).

Theorem 6.5 (Comparison principle and contraction). Let ft = Ht(f0) and gt = Ht(g0)
be the gradient flows of Chq starting from f0, g0 ∈ L2(M,µ) respectively. Then the
following holds:

1. (Comparison principle) Assume f0 ≤ C (resp. f0 ≥ c). Then ft ≤ C (resp. ft ≥ c)
for every t ≥ 0. Similarly, if f0 ≤ g0+C for some constant C ∈ R, then ft ≤ gt+C.

2. (Contraction) If e : R → [−l,∞] is a convex lower semicontinuous function and
E(f) =

´
e(f)dµ is the associated convex and lower semicontinuous functional in

L2(M,µ) then
E(ft) ≤ E(f0) for every t ≥ 0,

and
E(ft − gt) ≤ E(f0 − g0) for every t ≥ 0.

In particular, Ht : L2(M,µ)→ L2(M,µ) is a contraction on L2(M,µ) ∩ Lr(M,µ)
w.r.t. the Lr(M,µ)-norm for all r ≥ 1, i.e. for all f0, g0 ∈ L2(M,µ) ∩ Lr(M,µ)
then

‖Ht(f0)−H(g0)‖r ≤ ‖f0 − g0‖r.

3. If e : R→ [0,∞] is locally Lipschitz in R and E(f0) <∞ then

E(ft) +

ˆ t

0

ˆ
e′′(ft)|∇ft|q∗dµds = E(f0) ∀t ≥ 0.

4. When µ(M) <∞ we have
ˆ
ftdµ =

ˆ
f0dµ for every t ≥ 0.
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6 Gradient flow identification

Remark. (1) The first two assertions also hold for the gradient flow of the L-Cheeger
energy, we will leave the details to the reader.

Proof. The proof follows along the lines of [AGS13, Theorem 4.16]. We will only show
the result assuming e′ is bounded and globally Lipschitz. By the same approximation as
in [AGS13, Theorem 4.16] the result follows.
Note first that the first statement follows by choosing e(r) = max{r − C, 0} (resp.

e(r) = max{c− r, 0}).
So let e′ be bounded and Lipschitz on R then for x, y ∈ R we have

|e′(x)| ≤ |e′(0)|+ Lip(e′)|x|,

|e(y)− e(x)− e′(x)(y − x)| ≤ 1

2
Lip(e′)|y − x|2

|e(y)− e(x)| ≤
(
|e′(0)|+ Lip(e′)

)
(|x|+ |y − x|) |y − x|,

where we assume e′(0) = e(0) = 0 if µ(M) = ∞. Furthermore, we will assume w.l.o.g.
E(f0 − g0) <∞ (which forces e(0) = 0 if µ(M) =∞).
By convexity of Chq the maps t 7→ ft and t 7→ gt are locally Lipschitz continuous in

(0,∞) with values in L2(M,µ) (see [AGS08, Theorem 2.4.15] and [Bré73, Theorem 3.2]).
Thus, the map t 7→ e(ft − gt) is locally Lipschitz in (0,∞) with values in L1(M,µ), in
particular, wherever t 7→ ft and t 7→ gt are commonly differentiable, we have

d

dt
e(ft − gt) = e′(ft − gt)

d

dt
(ft − gt)

= e′(ft − gt)(∆qft −∆qgt) ≤ 0.

Hence the function is t 7→ E(ft − gt) is locally Lipschitz in (0,∞). Integrating we see
that the second assertion holds.
For the third statement, set g0 = gt = 0. Absolute continuity of t 7→ E(ft) and the

previous theorem yields for φ = e′

d

dt

ˆ
e(ft)dµ =

ˆ
e′(ft)∆qftdµ = −

ˆ
e′′(ft)|∇ft|q∗dµ.

In case µ(M) <∞ we can choose e(r) = r and thus

d

dt

ˆ
ftdµ = −

ˆ
0 · |∇ft|q∗dµ

and hence
´
ftdµ =

´
f0dµ.

In order to prove mass preservation for µ(M) = ∞ we adjust [AGS13, Section 4.4].
First we recall some facts about the p-logarithm (see also [OT11a, Section 3]) which will
make the notation below easier.
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6 Gradient flow identification

Lemma 6.6. The following inequality holds for p ∈ (2, 3), x ≥ 0 and V ≥ 0

x lnp x ≥ x− expp(−V p)− (p− 2)V p expp(−V p)

+(p− 3)V px

where
expp(t) = {1 + (2− p)t}

1
2−p

and

lnp(s) =
s2−p − 1

2− p

which are inverse of each other for t ∈ (−∞, 1
p−2 ]. Note also that expp is monotone on

its domain and for sufficiently small h

expp(h) · expp(−h) ≤ 2.

Proof. Note first that x lnp x is convex and thus

x lnp x ≥ x0 lnp x0 + (lnp x0 + x2−p
0 )(x− x0)

= x lnp x0 + x2−p
0 (x− x0).

Now choosing x0 = expp(−V p) ≥ 0 then

x2−p
0 (x− x0) = {1 + (p− 2)V p}

2−p
2−p (x− expp(−V p))

= x− expp(−V p)− (p− 2)V p expp(−V p) + (p− 2)V px

Since x lnp x0 = −V px we see that

x lnp x ≥ x− expp(−V p)− (p− 2)V p expp(−V p) + (p− 3)V px.

Lemma 6.7 (Momentum-entropy estimate). Assume p ∈ (1, 3). Let µ be a finite measure
and V : X → [0,∞) be a Lipschitz function with V ≥ ε > 0 such that

Ip :=

{
0 if p ∈ (1, 2)
p−2
3−p
´
V p expp(−V p)dµ if p ∈ (2, 3)

is finite and if p ∈ (2, 3) assume in addition
ˆ

expp(−V p)dµ ≤ 1

Let f0 ∈ L2(X,µ) be non-negative with
ˆ
V pf0dµ <∞

63



6 Gradient flow identification

and for some z > 0

z

ˆ
expp(−V p)dµ ≤

ˆ
f0dµ

if p ∈ (2, 3) and otherwise choose z ≤ 1. Then t 7→
´
V pftdµ is locally absolutely contin-

uous in [0,∞) and for every t ≥ 0

ˆ
V pftdµ ≤ St

and ˆ t

0

ˆ
{fs>0}

|∇fs|q∗
fp−1
s

dµds ≤ 4

3− p
St

where

St = eCp Lip(V )qt

(
Ip +

ˆ
1

(2− p)
(f3−p

0 − f0) + (pV p + z−1lp)f0dµ

)
with Cp = (p · (3− p)−1)q/q and lp = max{ 1

2−p , 1}.

Proof. Define the following

M q(t) :=
´
V pftdµ, E(t) := 1

(3−p)(2−p)
´
f3−p
t − ftdµ,

F p(t) :=
´
{ft>0}

|∇ft|q∗
fp−1
t

dµ.

Applying Theorem 6.5 (see remark below that theorem) to (ft + ε) = Ht(ft + ε) and
letting ε→ 0 we see that F ∈ Lp(0, T ) for every T > 0 and

d

dt
E(t) = −F p(t) a.e. in (0, T ).

Furthermore, by the Lemma above, conservation of mass and the assumption
´

expp(−V p)dµ ≤
1, we have for p ∈ (2, 3)

(3− p)E(t) =

ˆ
ft lnp ftdµ

≥
ˆ
ft − expp(−V p)dµ− (p− 2)

ˆ
V p expp(−V p)dµ

+(p− 3)M q(t)

≥
ˆ
f0 − expp(−V p)dµ− Ip − (p− 1)M q(t)

≥ (1− z−1)

ˆ
f0dµ− Ip + (p− 3)M q(t)

≥ −z−1lp

ˆ
f0dµ− Ip + (p− 3)M q(t)
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6 Gradient flow identification

For p ∈ (1, 2) note that 1
(2−p)x

3−p ≥ 0 and hence

(3− p)E(t) =
1

(2− p)

ˆ
f3−p
t − ftdµ

≥ − 1

(2− p)

ˆ
f0dµ

≥ −z−1lp

ˆ
f0dµ− Ip + (p− 3)M q(t).

In order to estimate the derivative of M(t) we introduce a truncated weight Vk(x) =
min{V (x), k} and the corresponding functional M q

k (t) as above. We know that the
function t 7→M q

k (t) is locally Lipschitz continuous and thus for a.e. t > 0∣∣∣∣ ddtM q
k (t)

∣∣∣∣ =

∣∣∣∣ˆ V p
k ∆qftdµ

∣∣∣∣
≤ p

ˆ
V p−1
k |∇Vk|∗|∇ft|q−1

∗ dµ

≤ pL

ˆ (
V p−1
k f

1
q

t

)
·

 |∇ft|q−1
∗

f
1
q

t

 dµ

≤ pLF (t)Mk(t)

using LipVk ≤ L and Hölder inequality (note (p− 1)q = p).
Since by mass preservation Mk(t) ≥ ε̃ := ε

´
f0dµ, we can apply Gronwall’s inequality

and get

M q
k (t) ≤M q

k (0) exp

(ˆ t

0

pLF (s)

M q−1
k (s)

ds

)
≤M q(0) exp

(ˆ t

0

pLF (s)

ε̃q−1
ds

)
for t ∈ [0, N ]. Thus M q

k (t) is uniformly bounded and by monotone convergence, we
obtain the same differential inequality for M q(t), i.e. for t ∈ [0,∞)∣∣∣∣ ddtM q(t)

∣∣∣∣ = pLF (t)M(t).

Now combining this with the result above we get

d

dt
((3− p)E + pM q) + (3− p)F p ≤ p2LFM ≤ (3− p)F p + CpL

qM q

where
Cp = (p · (3− p)−1)q/q.
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6 Gradient flow identification

Combining this with the inequality above, we get by the Gronwall inequality

−z−1lp

ˆ
f0dµ− Ip + (2p− 3)M q(t) ≤ (3− p)E(t) + pM q(t)

≤ eCpL
qt ((3− p)E(0) + pM q(0)) .

≤ eCpL
qt

(
(3− p)E(0) + pM q(0)

+z−1lp

ˆ
f0dµ+ Ip

)
.

Furthermore, we have

(3−p)
ˆ t

0
F p(s)ds ≤ (3−p)(E(0)−E(t)) ≤ (3−p)E(0)+Iq+z

−1lp

ˆ
f0dµ+(3−p)M q(t).

Having established this, similar to [AGS13, Theorem 4.20] we can show that the gradi-
ent flow of the q-Cheeger energy is mass preserving even if the measure µ is just σ-finite.
The proof relies on an approximation procedure developed in [AGS13, Section 4.3]. We
will freely use the concepts and results during the proof. The reader may consult [AGS13,
Section 4.3] for further reference.

Theorem 6.8. Assume p ∈ (1,∞). If µ is a σ-finite measure such that for some Lipschitz
function V : X → [ε,∞] for some ε > 0 such that for p ∈ (2, 3)

ˆ
expp(−V p)dµ ≤ 1

and ˆ
V p expp(−V p)dµ <∞

and for p ∈ (1, 2) there is an increasing function Φ : R→ [0,∞] such that
ˆ

Φ(−V p)dµ ≤ 1.

Then the gradient flow Ht of the q-Cheeger energy is mass preserving, i.e. for ft = Ht(f0)
with

´
f0dµ <∞ ˆ

ftdµ =

ˆ
f0dµ.

Moreover, if f0 ∈ L2(M,µ) is nonnegative and
ˆ
V pf0dµ,

ˆ
f0dµ <∞

then the bound of the previous Lemma hold.
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6 Gradient flow identification

Proof. We will use the construction of [AGS13, Theorem 4.20], see in particular, [AGS13,
Proposition 4.17]. By homogeneity of the Ht, i.e. Htλf = λqHtf , we can assume´
f0dµ ≤ 1 if

´
f0dµ < ∞. In case

´
f0dµ = ∞, we can find a sequence fn0 ≤ f0 such

that n ≤
´
fn0 dµ < ∞. Since mass preservation holds for those functions, we can use

the comparison principle to show that
´
ftdµ ≥ n for all n and hence it also holds in the

case
´
f0dµ =∞. So w.l.o.g.

´
f0dµ ≤ 1.

We first show the case p ∈ (2, 3). For that use the following approximation: µ0 :=
expp(−V p)µ and µk := expp(−V

p
k )µ0 = for Vk := min(V, k). Then µk is an increasing

family of finite measures and

limµk(B) = µ(B) ∀B ∈ B(M).

Since V is Lipschitz we see that the density of µ w.r.t. µ0 is bounded from below and
above on any bounded set.
For each µk let fkt = Hk

t (f0) be the gradient flow starting at f0. Then since
´

expp(−V p)dµk ≤
1 we can apply the previous lemma with zk =

´
fkt dµ

k for all t ≥ 0 and obtain
ˆ
V pfkt dµ

k ≤ e2 Lip(V )qt

(
Ip +

ˆ
1

(2− p)
(f3−p

0 − f0) + (pV p + z−1lp)f0dµ
k

)
.

Since fkt → ft strongly in L2(X,µ0) (see [AGS13, Proposition 4.17]) we can assume up
to changing to a subsequence fkt → ft µ-almost every where, and thus Fatou’s lemma
and monotonicity of µk impliesˆ

V pftdµ ≤ lim inf
k→∞

ˆ
V pfkt dµ

k

and the bound of the previous lemma holds since zk ↗ z =
´
f0dµ = 1.

Now consider Ah = {x ∈M |V (x) ≤ h}. Since we assume
´

expp(−V p)dµ ≤ 1 we can
choose h such that expp(h) expp(−h) ≤ 2 and get by monotonicity

µ(Ah) ≤
ˆ

2 expp(h
p) expp(−V p)dµ ≤ 2expp(h

p) <∞

and thus by (4.42) of [AGS13, Proposition 4.17]ˆ
Ah

ftdµ = lim
k→∞

ˆ
Ah

fkt dµ
k.

From the bound on the p-th moment we obtain for every t > 0 a constant C > 0 such
that

hq
ˆ
X\Ah

fkt dµ
k ≤ C

for every h > 0 and henceˆ
ftdµ ≥

ˆ
Ah

ftdµ = lim
k→∞

ˆ
Ah

fkt dµ
k

≥ z − lim sup
k→∞

ˆ
X\Ah

fkt dµ
k ≥ z − C/hp.
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6 Gradient flow identification

Since h is arbitrary and the integral of ft does not exceed z we see that
´
ftdµ = z. The

second inequality of the previous lemma follows by lower semicontinuity of the Cheeger
energy (see 2.5).
Mass preservation for signed initial data f0 follows by the same arguments as in

[AGS13, Theorem 4.20].
In order to treat the case p ∈ (1, 2) let Φ be increasing such that

´
Φ(−V )dµ ≤ 1 and

construct a monotone approximation µk = Φ(−Vk)µ0 and proceed as above.

Remark. Let p ∈ (2, 3) if p→ 2 then the condition
ˆ

expp(−V p)dµ ≤ 1

converges to ˆ
exp(−V 2)dµ ≤ 1

which is precisely the condition used in [AGS13, (4.2)]. Note, however, it is stronger:
Assuming p ∈ (2, 3) and (p− 2)V p ≥ 1 we have

expp(−V p) = {1 + (2− p)(−V p)}
1

2−p

≤ {2(p− 2)V p}
1

2−p

= CV
p

2−p ≥ C exp(−V 2)

if V is sufficiently large. In the Euclidean setting with V (x) ≈ ‖x‖ we get
ˆ
Rn\B1(0)

expp(−V p)dλ ≈
ˆ
R\B1(0)

‖x‖−
p
p−2dλ

≈
ˆ ∞

1
r
− p
p−2 rn−1dr

which is finite if p < 2n
(n−1) , i.e. q >

2n
n+1 . However, note that we currently need the more

restrictive condition
ˆ
V p expp(−V p)dµ ≈

ˆ ∞
1

r
p− p

p−2 rn−1dµ

which is finite iff
p− p

p− 2
+ n < 1,

i.e. p < 1
2

(
3− n+

√
n2 + 2n+ 9

)
≈ 2 + 2

n −
2
n2 − 2

n3 +O( 1
n4 ) as n→∞.
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6 Gradient flow identification

6.2 Gradient flow in the Wasserstein space

Throughout this section we will assuming that the gradient flow of the q-Cheeger energy
is mass preserving, i.e. the conditions of Theorem 6.8 hold. Furthermore, we assume
that all slopes of Lipschitz functions are equal almost everywhere, i.e.

|Df | = |D±f | µ-almost everwhere.

This condition holds if the space satisfies a local doubling and Poincaré condition, in
particular if CDp(K,N) holds with N <∞.
Our motivation for the functional Up and the identification is the Kuwada lemma. It

appeared the first time in [Kuw10] for p = 2 and was extended by Ambrosio-Gigli-Savaré
to p 6= 2 for finite measures and 0 < c ≤ f0 ≤ C <∞.

Lemma 6.9 (Kuwada lemma). Let f0 ∈ Lq(M,µ) be non-negative and (ft)t∈[0,∞) be the
gradient flow of the q-Cheeger energy starting from f0. Assume

´
f0dµ = 1. Then the

curve t 7→ dµt = ftdµ is absolutely continuous in Pp(M) and

|µ̇t|p ≤
ˆ
|∇ft|q∗
fp−1
t

dµ for almost every t ∈ (0, 1).

Proof. The proof follows from [AGS11a, Lemma 7.2] because using Theorem 6.5 above
the requirement 0 < c ≤ f0 ≤ C <∞ can be easily dropped.

Remark. Formally this lemma can be extended to cover ∂tft = ∆φ(ft), which includes the
porous media equation, φ(r) = cm ·rm. The theorems below hold with minor adjustments
as well. However, since a general existence theory of such equations on abstract metric
spaces is not available, an identification is difficult using our approach. This is exactly
why Ohta-Takatsu [OT11a, OT11b] can only use the gradient flows in P2 to get a solution,
but they do not identify the two flows.
We say that the measure µ is local n-Ahlfors if for every R > 0 there are constants

0 < cR < CR such that for all x ∈M and 0 < r < R we have

cRr
n ≤ µ(Br(x)) ≤ CRrn.

Proposition 6.10. Let M be a proper metric measure space. In case p ∈ (2, 3) assume,
in addition, that M is compact and local n-Ahlfors regular for 3− p > 1− 1

n , i.e. n(p−
2) < 1. If r > 0 and Up(µ0) < ∞, then |D−Up|(µ0) < ∞ implies µ0 is absolutely
continuous w.r.t. µ and if there is a sequence of absolutely continuous measure µn such
that wp(µ0, µn)→ 0 and

|D−Up|(µ0) = lim
n→0

Up(µ0)− Up(µn)

wp(µ0, µn)
.

Remark. (1) The proof is extracted from [OT11a, Proof of Claim 7.7 and Remark 7.8]. It
is stated in the smooth setting but also works in the Ahlfors regular case. The proof de-
pends on the Ahlfors regularity to show that Up(µ̂r) < Up(µ0), but it might be interesting
to know if Ahlfors regularity is really needed.
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6 Gradient flow identification

(2) The only time where this proposition is needed is during the proof of Theorem 6.12
which is based on [AGS13, Theorem 7.5]. In order to use the coupling technique and
convexity absolute continuity of µn is essential.

Proof. Let m = 3 − p. In case m > 1 the measures µ0 and µn must be absolutely
continuous. So we are left to show the cases 0 < m < 1.
First assume µ0 has non-trivial singular part, i.e. µ0 = f0µ + µs where µs and µ are

mutually singular. Define for each r > 0 a measure µ̂r as follows

dµ̂r(x) = ρr(x)dµ(x) :=

{
f0(x) +

ˆ
χBr(y)(x)

µ(Br(y))
dµs(y)

}
dµ(x).

Then we have
ˆ
ρr(x)mdµ =

ˆ [ˆ {
f0(x)

µs(M)
+
χBr(y)(x)

µ(Br(y))

}
dµs(y)

]m
dµ(x)

≥ µs(M)m−1

ˆ [ˆ {
f0(x)

µs(M)
+
χBr(y)(x)

µ(Br(y))

}m
dµs(y)

]
dµ(x)

≥ µs(M)m−1

ˆ [ˆ
M\Br(y)

f0

µs(M)
dµ+

ˆ
Br(y)

1

µ(Br(y))m
dµ

]
dµs(y)

=

ˆ
fm0 dµ− µs(M)−1

ˆ (ˆ
Br(y)

fm0 dµ

)
dµs(y)

+µs(M)m−1

ˆ
µ(Br(y))1−mdµs(y).

Ahlfors regularity implies that for some C, c > 0

c · rn ≤ µ(Br(y)) ≤ C · rn

and thus
µs(M)m−1

ˆ
µ(Br(y))1−mdµs(y) ≥ c1−mµs(M)m · rn(1−m).

Furthermore, notice

ˆ
Br(y)

fm0 dµ ≤

(ˆ
Br(y)

f0dµ

)m(ˆ
Br(y)

dµ

)1−m

≤

(ˆ
Br(y)

f0dµ

)m
C1−mrn(1−m).

Since limr→0 supy∈M
´
Br(y) f0dµ = 0 we see that for sufficiently small r > 0 (note (m−

1) < 1)
Um(µ̂r) ≤ Um(µ0)− C̃µs(M)m · rn(1−m).
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6 Gradient flow identification

Furthermore, by our assumption

n(1−m) = n(p− 2) < 1.

To estimate wp(µ0, µ̂r) note that the density of µ̂r is defined as follows

ρsr(x) :=

ˆ
χBr(y)(x)

µ(Br(y))
dµs(y).

Now choose the following coupling π between µs and ρsrµ

dπ(x, y) =

ˆ
χBr(z)(x)

µ(Br(z))
dµ(x)d(Id× Id)∗µ

s(z, y)

Then

wpp(µ0, µ̂r) ≤
1

p

ˆ
dp(x, y)dπ(x, y)

≤ 1

p

ˆ ˆ
dp(x, y)

χBr(z)(x)

µ(Br(z))
dµ(x)d(Id× Id)∗µ

s(z, y)

≤ 1

p

ˆ
rpdµs

and thus

wp(µ0, µ̂r) ≤ r
(
µs(M)

p

) 1
p

.

Combining these we get

|D−Um|(µ0) ≥ lim sup
r→0

UN (µ0)− UN (µ̂r)

wp(µ0, µ̂r)

≥ lim sup
r→0

C̃µs(M)m · rn(1−m)

r
(
µs(M)
p

) 1
p

=∞

since n(1−m) < 1. Which implies that µ0 must be absolutely continuous.
For the second part, a similar argument works. Given µn we can construct µ̂rn similar

to µ̂r. The estimates for Um hold without any change. For the rest just note

wp(µ0, µ̂
r
n)

wp(µ0, µn)
≤ 1

wp(µ0, µn)
{wp(µ0, µn) + wp(µn, µ̂

r
n)}

≤ 1 +
1

wp(µ0, µn)
r

(
µs(M)

p

) 1
p

.

Thus

Um(µ0)− Um(µ̂rn)

wp(µ0, µ̂rn)
≥ Um(µ0)− Um(µn) + C̃µs(M)rn(1−m)

wp(µ0, µn)
·

(
1 +

rµsn(M)
1
p

p
1
pwp(µ0, µn)

)−1

.
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Now choosing rn such that rn/wp(µ0, µn)→ 0 we see that

lim sup
n→∞

Um(µ0)− Um(µ̂rnn )

wp(µ0, µ̂n)
≥ lim sup

Um(µ0)− Um(µn)

wp(µ0, µn)

By maximality of µn we see that this has to be an equality, so up to extracting a subse-
quence we get

|D−Up|(µ0) = lim
n→0

Up(µ0)− Up(µ̂rnn )

wp(µ0, µ̂n)
.

Theorem 6.11. Assume r > 0 and let µ0 ∈ D(Up) with |D−Up|(µ0) < ∞. Then
µ0 = ρµ, ρr ∈ D(Chq) and

r−q
ˆ
|∇ρr|q∗dµ ≤ |D−Up|q(µ0).

Proof. We will follow the strategy of [AGS13, Theorem 7.4]. First assume ρ ∈ L2(M,µ)
and let (ρt)t∈(0,∞) be the gradient flow of the q-Cheeger energy starting from ρ. Let
µt = ρtµ then according to the definition of the q-Fisher information we have by Lemma
6.5 and 6.9

Up(µ0)− Up(µt) ≥
1

q

ˆ t

0
Fq(ρs)ds+

1

p

ˆ t

0
|µ̇s|pdµ

≥ 1

q

(
1

t
1
p

ˆ t

0

q

√
Fq(ρs)ds

)q
+

1

p

(
1

t
1
q

ˆ t

0
|µ̇s|ds

)p
≥ 1

t

(ˆ
0

q

√
Fq(ρs)ds

)
wp(µ0, µt).

Thus dividing by wp(µ0, µt) and letting t→ 0+ we get the result, since lower-semicontinuity
of Fq implies

q

√
Fq(ρ0) ≤ lim inf

t→0+

1

t

ˆ t

0

q

√
Fq(ρs)ds.

In case just Up(µ0) < ∞ holds we prove the result by approximation: Let ρn =
min{ρ, n} and (ρnt ) be the corresponding gradient flow of the q-Cheeger energy. Using
the comparison principle we see that ρt = limn→∞ ρ

n
t almost everywhere. Thus using

the fact that zn =
´
ρndµ =

´
ρnt dµ we deduce that µnt = 1

zn
ρnt µ converges to µt = ρtµ

in Pp(M). Now using the lower semicontinuity properties of Up we deduce

Up(µ0)− Up(µt) ≥
1

t

(ˆ t

0

q
√

Fqds

)
wp(µ0, µt)

and conclude as above.
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Theorem 6.12. Assume µ is finite and, in addition if p > 2, assume also that (M,d, µ)
is as in Proposition 6.10. Let µ0 = ρµ ∈ D(Up) and assume ρ is a bounded Lipschitz
continuous map with ρ ≥ ε. Then

|D−Up|q(µ0) ≤
ˆ
|Dρ|q

ρp−1
dµ = r−q

ˆ
|Dρr|qdµ,

where |Dρ|(x) = max{|D+ρ|(x), |D−ρ|(x)}.

Remark. For p < 2, we have 2 − p > 0 and the idea of [AGS13, Theorem 7.5] can be
followed in a similar way using the approximation function Φ (see Theorem 6.8) so that
a similar version to that theorem follows. For p > 2, we have 2 − p < 0, so that an
appropriate version requires further work. Note, however, that Proposition 6.10 requires
M to be compact and hence µ to be finite.

Proof. Recall that

Up(r) =
1

(3− p)(2− p)
(x3−p − x)

Ũp(r) =
1

(3− p)(2− p)
x3−p.

Define

L(x, y) :=


(

1
2−pρ

2−p(x)− 1
2−pρ

2−p(y)
)+

d(x,y) if x 6= y
|Dρ|
ρp−1 if x = y.

Note that L is measurable and for fixed x ∈ M the map y 7→ L(x, y) is upper semicon-
tinuous. Furthermore, since ρ is Lipschitz and ε ≤ ρ ≤M , L is bounded.

Now take a sequence of absolutely continuous measures µn with wp(µ0, µn)→ 0 and

|D−Up|(µ0) = lim
n→0

Up(µ0)− Up(µn)

wp(µ0, µn)
.

Let ρn be the density of µn w.r.t. µ and πn be some cp-optimal transport plan of (µ0, µn).
Because r 7→ Up(r) is convex we have

Up(µ0)− Up(µn) =

ˆ
(Up(ρ)− Up(ρn)) dµ ≤

ˆ
U
′
p(ρ)(ρ− ρn)dµ

=

ˆ
U
′
p(ρ)dµ0 −

ˆ
U
′
p(ρ)dµn =

ˆ (
Ũ
′
p(ρ(x))− Ũ ′p(ρ(y))

)
dπn(x, y)

≤
ˆ
L(x, y)d(x, y)dπn(x, y) ≤ wp(µ0, µn)

(ˆ
Lq(x, y)dπn(x, y)

)1/q

= wp(µ0, µn)

(ˆ (ˆ
Lq(x, y)dπn,x(y)

)
dµ0(x)

)1/q
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where πn,x is the disintegration of πn w.r.t. the first marginal µ0 and Ũp(x) = 1
(3−p)(2−p)x

2−p.
Since

´
(
´
dp(x, y)dπn,x(y))dµ0(x)→ 0 we can assume w.l.o.g. that for µ0-a.e. x ∈M

lim
n→∞

ˆ
dp(x, y)dπn,x(y) = 0

and in particular ˆ
M\Br(x)

Lq(x, y)dπn,x(y)→ 0

for all r > 0. Furthermore, notice

lim sup
n→∞

ˆ
Lq(x, y)dπn,x(y) ≤ lim sup

n→∞

ˆ
Br(x)

Lq(x, y)dπn,x(y)

+ lim sup
n→∞

ˆ
M\Br(x)

Lq(x, y)dπn,x(y)

≤ lim sup
n→∞

ˆ
Br(x)

Lq(x, y)dπn,x(y) ≤ sup
y∈Br(x)

Lq(x, y).

By upper semicontinuity of L(x, ·) we immediately get lim supn
´
Lq(x, y)dπn,x(y) ≤

Lq(x, x) for µ0-almost every x ∈M . Since L is bounded, we can use Fatou’s lemma and
conclude

|D−Up|(µ0) = lim
n→0

Up(µ0)− Up(µn)

wp(µ0, µn)

≤
ˆ

lim sup
n→∞

(ˆ
Lq(x, y)dπn,x(y)

)1/q

dµ0(x)

≤
(ˆ

Lq(x, x)dµ0(x)

)
=

(ˆ
|Dρ|q

ρ(p−1)q
ρdµ

)1/q

=

(ˆ
|Dρ|q

ρp−1
ρdµ

)1/q

.

Proposition 6.13. If |D−Up| is sequentially lower semicontinuous w.r.t. Pp(M) then

|D−Up|q(µ0) = r−q
ˆ
|∇ρr|q∗dµ ∀µ0 = ρµ ∈ D(Up).

Remark. In [AGS13, Theorem 7.6] Ambrosio-Gigli-Savaré proved also that the converse
holds for the entropy functional. We are not able to prove the converse in case 2r > 1,
i.e. p > 2.

Proof. By the above results we only need to show that |D−Up|(µ0) ≤ r−q
´
|∇ρr|q∗dµ.

First assume ρ is bounded and find a sequence of measures µn ∈ Pp(M) with Lipschitz
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6 Gradient flow identification

densities ρn bounded from below by 1
n converging in L2r(M) to ρ (by compactness

ρrn → ρr in L2) such that

lim
n→∞

1

q

ˆ
|∇ρrn|q∗dµ = Chq(ρ

r).

Since |∇ρrn|w = |Dρrn| almost everywhere, we see that

|D−Up|(µ0) ≤ lim inf
n→∞

|D−Up|(µn)

≤ lim inf r−q
ˆ
|∇ρrn|q∗dµ = r−q

ˆ
|∇ρr|q∗dµ.

In case ρ is unbounded we can truncate ρ without increasing the q-Cheeger energy use
the lower semicontinuity again to conclude the result.

Corollary 6.14. Assume one of the following holds:

• p ∈ (1, 2) and the strong CDp(K,∞) condition holds for some K ≥ 0

• p ∈ (2, 3+
√

5
2 ), the CDp(0, N) condition holds such that p = 2N+1

N and M is n-
Ahlfors regular for some n < N .

Then |D−Up| is lower semicontinuous and an upper gradient of Up.

Proof. In case p ∈ (1, 2) note that 3−p ∈ (1, 2) and thus Up ∈ DC∞. In case p ∈ (2, 3+
√

5
2 )

we have 3− p ∈ (0, 1) and thus Up ∈ DCN for 3− p = 1− 1
N . In both cases displacement

convexity, i.e. K-convexity with K = 0, follows. Which implies that |D−Up| is lower
semicontinuous and an upper gradient of Up.

The conclusion holds equally if Up is just K-convex. Since K-convexity neither follows
from the strong CDp(K,∞)-condition in case p ∈ (1, 2) nor from CDp(K,N), we use
those conditions to imply convexity. Nevertheless, we hope that it is possible to show
that |D−Up| is lower semicontinuous and an upper gradient of Up if one of the curvature
condition holds.

Theorem 6.15 (Uniqueness of the gradient flow of Up). Let r > 0 and assume that
|D−Up|q is lower semicontinuous and convex w.r.t. linear interpolation. Then for every
µ0 ∈ Pp(M) there exists at most one gradient flow of Up starting from µ0.

Remark. By Lemma 2.5 and [AGS13, Theorem 7.8] convexity of |D−Up|q holds if p ≤
2 ≤ q.

Proof. Assume that (µ1
t ) and (µ2

t ) are two distinct gradient flows starting from µ0. Then
we have for i = 1, 2 and all T ≥ 0

Up(µ0) = Up(µiT ) +
1

p

ˆ T

0
|µ̇it|qdt

+
1

q

ˆ T

0
|D−Up|q(µit)dt.
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6 Gradient flow identification

Note that the curve t 7→ µt = (µ1
t + µ2

t )/2 is absolutely continuous in Pp(M) and

|µ̇t|p ≤
|µ̇1
t |p + |µ̇2

t |p

2
.

Using the strict convexity of Up and the convexity of |D−Up|q we conclude

Up(µ0) > Up(µT ) +
1

p

ˆ T

0
|µ̇t|qdt

+
1

q

ˆ T

0
|D−Up|q(µt)dt

≥ Up(µT ) +

ˆ T

0
|µ̇t||D−Up|(µt)dt

But this is a contradiction to

Up(µt) ≥ Up(µs)−
ˆ t

s
|µ̇t||D−U|(µt)dt

for s, t ∈ [0,∞) (note |D−Up| is an upper gradient).

Finally we can identify the two flows. The theorem and its proof is similar to [AGS13,
Theorem 8.5].

Theorem 6.16 (Identification of the gradient flows). Let r > 0 and assume that Up
is K-convex in Pp(M). Then for all f0 ∈ L2(M,µ) such that µ0 = f0µ ∈ Pp(M) the
following is equivalent:

1. If ft is the gradient flow of Chq in L2(M,µ) starting from f0, then µt = ftµ is the
gradient flow of Up in Pp(M) starting from µ0, the map t 7→ Up(µt) is absolutely
continuous in (0,∞) and

− d

dt
Up(µt) = |µ̇t|p = |D−Up|q for a.e.t ∈ (0,∞).

2. Conversely, if we assume in addition that |D−Up|q is convex w.r.t. linear interpo-
lation, then whenever µt is the gradient flow of Up in Pp(M) starting from µ0, then
µt is absolutely continuous and its density ft w.r.t. µ is the gradient flow of Chq
in L2(M,µ) starting from f0. The same holds if the gradient flow of Up in Pp(M)
starting at µ0 is unique.

Proof. By K-convexity of Up we know that |D−Up| is an upper gradient and

|D−Up|q(ρµ) = Fq(ρ)

thus by the Kuwada lemma we know that if ft is the gradient flow of the q-Cheeger
energy then

|µ̇t|p ≤
ˆ
|∇ft|q

fp−1
t

dµ = Fq(ft)
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6 Gradient flow identification

and
t 7→ Up(µt)

is absolutely continuous with

d

dt
Up(µt) = −

ˆ
|∇ft|q

fp−1
t

dµ.

Hence ˆ
|∇ft|q

fp−1
t

dµ ≥ 1

p
|µ̇t|p +

1

q
|D−Up|p

so that µt satisfies the Up-dissipation inequality, i.e.

Up(µ0)− Up(µt) =

ˆ t

0

ˆ
|∇fs|q

fp−1
s

dµds

≥ 1

p

ˆ t

0
|µ̇t|pds+

1

q

ˆ t

0
|D−Up|qds

and µt is the gradient flow of Up in Pp(M) starting at µ0. Absolute continuity of t 7→
Up(µt) in (0,∞) implies

d

dt
Up(µt) = −|µt||D−Up|

= −|µt|p

= −|D−Up|q.

For the second part, assume that t 7→ f̃t is the gradient flow of the q-Cheeger energy
starting at f0. By the previous part we know that µ̃t = f̃tµ is also a gradient flow of Up.
Uniqueness (Theorem 6.15 above) implies that µt = µ̃t for all t ≥ 0.
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7 Orlicz-Wasserstein spaces

In this chapter we show that the interpolation inequality can be proven also for Orlicz-
Wasserstein spaces using similar arguments. Before that we will define and investigate
Orlicz-Wasserstein spaces. The main difference between a general convex and increasing
function L and a homogeneous function is that there is no well-defined dual problem.
However, one can use cL-concave function and the geodesic structure to determine the
interpolation potentials.

7.1 General Results

Let L : [0,∞)→ [0,∞) be a strictly convex increasing function with L(0) = 0. Assume
further there is an increasing function l : (0,∞)→ (0,∞) with limr→0 l(r) = 0 and

L(r) =

ˆ r

0
l(s)ds

and hence L′(s) = l(s).
Define Lλ(r) = L(r/λ) and note

Lλ(r) =

ˆ r

0
lλ(s)ds

=

ˆ r/λ

0
l(s)ds

and thus
lλ(s) =

1

λ
l
( s
λ

)
and

l−1
λ (t) = λl−1(λt).

We denote by cL the cost function given by cL(x, y) = L(d(x, y)) and as an abbreviation
cλ = cLλ .

The cL-transform of a function φ : X → R relative to (X,Y ) is defined as

φcL(y) = inf
x
cL(x, y)− φ(x)

and similarly the c̄L-transform.

Definition 7.1 (Orlicz-Wasserstein space). Let µi be two probability measures on M
and define
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7 Orlicz-Wasserstein spaces

wL(µ0, µ1) = inf

{
λ > 0 | inf

π∈Π(µ0,µ1)

ˆ
Lλ (d(x, y)) dπ(x, y) ≤ 1

}
.

With convention inf ∅ =∞.
According to Sturm [Stu11, Proposition 3.2], wL is a complete metric on

PL(M) := {µ1 ∈ P(M) |wL(µ1, δx0) <∞}

where x0 is some fixed point.
Even though the following lemma is not needed, it makes many proofs below easier.

Lemma 7.2 ([Stu11, Proposition 3.1]). For every µi ∈ PL(M) there is an optimal
coupling πopt of (µ0, µ1) such that

λmin = wL(µ0, µ1)⇒
ˆ
Lλmin(d(x, y))dπopt(x, y) = 1.

Actually the Lemma shows that the whole theory of Kantorovich potentials will depend
on the distance. Furthermore, the cL-convace functions are not necessarily star-shaped.
Nevertheless, we will show that PL(M) is a geodesic space iff M is and that a similar
property to the star-shapedness holds.

Proposition 7.3. Let Φ be a convex increasing function with Φ(1) = 1, then

wL ≤ wΦ◦L.

Remark. This just uses Sturm’s idea to show the same inequality for the Luxemburg
norm of Orlicz spaces. Compare this also to [Vil09, Remark 6.6], but note that Villani
defines wp without the factor 1

p .

Proof. This follows easily from Jensen’s inequality. Let µ0, µ1 be two measures and λ > 0
and π be a coupling such that

´
(Φ ◦L)λ(d(x, y))dπ(x, y) ≤ 1 then since (Φ ◦L)λ = Φ ◦L

Φ(

ˆ
Lλ(d(x, y))dπ(x, y)) ≤

ˆ
Φ ◦ Lλ(d(x, y))dπ(x, y) ≤ 1

Since Φ(1) ≤ 1 and Φ is increasing, we see that
´
Lλ(d(x, y))dπ(x, y) ≤ 1 which implies

wL(µ0, µ1) ≤ wΦ◦L(µ0, µ1).

Proposition 7.4. Assume for all λ > 0

sup
R→∞

L(λR)

L(R)
<∞.

If µn, µ∞ ∈ PL(M) and µn converges weakly to µ∞, then

wL(µn, µ∞)→ 0 ⇐⇒ lim
R→∞

lim sup
n→∞

ˆ
M\BR(x0)

Lλ(d(x, x0))dµn = 0

for all 0 < λ < λ0.
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7 Orlicz-Wasserstein spaces

Remark. This generalizes [Vil03, Theorem 7.12]. The other equivalences in Villani’s
theorem can be proven similarly. We, however, only need the one stated above.

Proof. Fix some x0 ∈M . It is not difficult to see that for any λ > 0 and any µ′ ∈ PL(M)

lim
R→∞

ˆ
M\BR(x0)

Lλ(d(x, x0))dµ′(x) = 0 ⇐⇒ lim
R→∞

ˆ
M\BR(x0)

L(d(x, x0))dµ′(x) = 0.

First assume wL(µn, µ∞) and let πn be the optimal plans with ln = wL(µn, µ∞) andˆ
Lln(d(x, y))dπn(x, y) = 1.

For n large, for any λ > 0 choose a sequence rn ≤ 1
2 such that ln = rnλ. Then using the

triangle inequality and convexity of L we getˆ
Lλ (d(x, x0)) dµn(x) =

ˆ
Lλ (d(x, x0)) dπn(x, y)

≤ rn

ˆ
Lrnλ (d(x, y)) dπn(x, y) + (1− rn)

ˆ
L(1−rn)λ (d(y, x0)) dπn(x, y)

≤ rn + (1− rn)

ˆ
L 1

2
λ (d(y, x0)) dµ∞(y).

since L(1−rn)λ ≤ L 1
2
λ. Therefore,

lim
R→∞

lim sup
n→∞

ˆ
M\BR(x0)

Lλ(d(x, x0))dµn(x) ≤ lim
R→∞

ˆ
M\BR(x0)

L 1
2
λ(d(x, x0))dµ∞(x) = 0.

Now assume that

lim
R→∞

lim sup
n→∞

ˆ
M\BR(x0)

Lλ(d(x, x0))dµn(x) = 0

for any 0 < λ < λ0 and µn converges weakly to µ∞. This bound ensures that µ∞ is in
PL(M).
Take any λ > 0 and an optimal coupling πn of (µn, µ∞) w.r.t. Lλ. For R > 0 and

A ∧B = min{A,B} we have

d(x, y) ≤ d(x, y) ∧R+ 2d(x, x0)χBR/2(x0)(x) + 2d(x0, y)χBR/2(x0)(y)

and thus by convexity of L and L(0) = 0

Lλ(d(x, y)) ≤ 1

3
Lλ

3
(d(x, y)∧R)+

1

3
Lλ

6
(d(x, x0)χBR/2(x0)(x))+

1

3
Lλ

6
(d(x0, y)χBR/2(x0)(y)).

Thus integrating over πn we get

3

ˆ
Lλ(d(x, y))dπn(x, y) ≤

ˆ
Lλ

3
(d(x, y) ∧R)dπn(x, y)

+

ˆ
M\BR/2(x0)

Lλ
6
(d(x, x0))dµn(x)

+

ˆ
M\BR/2(x0)

Lλ
6
(d(x0, y))dµ∞(y).
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7 Orlicz-Wasserstein spaces

we first take the lim sup with n → ∞ and then R → ∞ and conclude that the last
two terms converges to zero by our assumption and since Lλ

3
(d(x, y) ∧ R) is a bounded

continuous function and πn converges weakly to the trivial coupling (Id× id)∗µ∞, the
first term converges to zero as well. In particular, for n ≥ N(λ) we have

ˆ
Lλ(d(x, y))dπn(x, y) ≤ 1.

and thus
wL(µn, µ∞) ≤ λ.

Since λ was arbitrary we conclude wL(µn, µ∞)→ 0.

Proposition 7.5. Assume M is a proper metric space and Φ is convex, increasing,
Φ(1) = 1 and L(r)→∞ and r/Φ(r)→ 0 as r →∞. In addition, assume for all λ > 0

sup
R→∞

L(λR)

L(R)
<∞.

Suppose A is closed subset of PL(M) such that wL̃ is bounded where L̃ = Φ ◦L. Then A
is precompact in PL(M).

Remark. Compare this to [Kel11, Theorem 6] for the case L(t) = tp, Φ(t) = tr for p ≥ 1
and r > 1.

Proof. It suffices to show that each wL̃-ball is compact in PL(M)
So for some r > 0 and µ0 ∈ PL̃(M) ⊂ PL(M) let

B̃ := B̃r(µ0) = {µ1 ∈ PL(M) |wL̃(µ0, µ1) ≤ r}.

and let (µn)n∈N be a sequence in B̃. Then there are (optimal) couplings πn such that
ˆ
L̃r(d(x, y))dπn(x, y) ≤ 1

(for wL̃(µn, µ0) < r just take the definition. Using the proposition above,we see
ˆ
Lr(d(x, y))dπn(x, y) ≤ 1.

Because of the stability of optimal couplings and lower semicontinuity of the cost [Vil09,
Theorem 5.20, Lemma 4.3], we only need to show that (µn)n∈N is weakly precompact
and

lim
R→∞

lim sup
n→∞

ˆ
M\BR(x0)

Lλ(d(x, x0))dµn = 0

i.e. it is precompact in PL(M) by the lemma above.
Since B̃ is bounded w.r.t. wL̃ we can assume that for some R > 0

wL̃(µn, δx0) ≤ λ0.
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Now set λ0 = 0. For cλ = λ0 and c ∈ (0, 1) we have
ˆ
M\BR(x0)

Lλ(d(x, x0))dµ(x) ≤ Lλ(R)

Φ(Lλ0(R))

ˆ
M\BR(x0)

L̃λ0(d(x, x0))dµn(x)

≤ Lλ0(R)

Φ(Lλ0(R))

Lλ0(c−1R)

Lλ0(R)
≤ C Lλ0(R)

Φ(Lλ0(R))

for some C > 0 depending only on λ0, c and L. Hence by the fact that L(R),Φ(R)→∞
as R→∞ we conclude

lim
R→∞

lim sup
n→∞

ˆ
M\BR(x0)

Lλ(d(x, x0))dµn = 0.

In order to show weak precompactness notice that L(R) ≥ 1 for R ≥ r0 = r0(L) implies
tightness, which is equivalent to precompactness by the classical Prokhorov theorem.
Indeed, BR(x0) is compact and for r0 ≤ R→∞

ˆ
M\BR(x0)

dµn ≤ C
Lλ0(R)

Φ(Lλ0(R))
→ 0

uniformly in n.

Proposition 7.6. Assume M is a geodesic space. Let πopt be the optimal coupling of
(µ0, µ1) then there is a Π supported on the geodesics such that for i = 0, 1

(ei)∗Π = µi.

Furthermore, let µt = (et)∗Π then

wL(µs, µt) = |s− t|wL(µ0, µ1).

In particular, PL(M) is a geodesic space.

Proof. The first part follows from using the measurable selection theorem for

(x, y) 7→ {γ : [0, 1]→M | γ is a geodesic from x to y}

similar to [Lis06] in case of p-Wasserstein spaces.
For the second part note for λmin = wL(µ0, µ1)

ˆ
L

(
d(γs, γt)

|s− t|λmin

)
dΠ(γ) =

ˆ
Lλmin (d(γ0, γ1)) dΠ(γ) = 1.

Hence
wL(µt, µs) ≤ |s− t|λmin.

So t 7→ µt is absolutely continuous in PL(M) and |µ̇t| ≤ λmin. But we also have

λmin = wL(µ0, µ1) =

ˆ 1

0
|µ̇t|dt.
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Therefore, |µt| = λmin and

wL(µs, µt) =

∣∣∣∣ˆ t

s
|µ̇r|dr

∣∣∣∣ = |s− t|wL(µs, µt).

It is also possible to define a dual problem by

sup{λ > 0 | sup
φ∈L1(µ0)

{ˆ
φdµ0 +

ˆ
φcλdµ1

}
≥ 1}.

However, we will not go into this dual problem and directly deal with the cλ-transform
whenever Kantorovich potentials are needed. Main “problem”: the restriction property
does not hold for wL and many results depend on (the number) wL(µ0, µ1).
The following inequality will help to show that cL-conave functionals enjoy a similar

property to star-shapedness. It will also show that the Jacobians of the interpolation
measures are positive semidefinite.

Lemma 7.7. If x, y ∈M and z ∈ Zt(x, y) for some t ∈ [0, 1]. Then for all m ∈M

t−1L(d(m, y)) ≤ Lt(d(m, z)) + t−1(1− t)L(d(x, y)).

Furthermore, choosing x = m, this becomes an equality.

Remark. This extends Lemma 3.7.

Proof. Since L is convex and increasing

L(d(m, y)) ≤ L(t · t−1d(m, z) + (1− t)d(x, y))

≤ tLt(d(m, z)) + (1− t)L(d(x, y)).

Dividing by t we get the inequality and choosing x = m we see that all inequalities are
actually equalities.

Lemma 7.8. Let η : [0, 1] → M be a geodesic between two distinct points x and y. For
t ∈ (0, 1] define

ft(m) := −ct(m, ηt).

Then for some fixed t ∈ [0, 1] the function h(m) := ft(m)− t−1f1(m) has a minimum at
x.

Proof. Using Proposition 3.7 above for t ∈ (0, 1) we have for z = ηt ∈ Zt(x, y)

−h(m) = t−1L(d(m, y))− Lt(d(m, z)) ≤ t−1(1− t)L(d(x, y))

= t−1L(d(x, y))− Lt(d(x, ηt)) = −h(x).
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Lemma 7.9. Let X and Y be compact subsets of M and let t ∈ (0, 1]. If φ ∈ IcL(X,Y )
then t−1φ ∈ Ict(X,Zt(X,Y )).

Proof. For t = 1 there is nothing to prove. For the rest we follow the strategy of
[CEMS01, Lemma 5.1]. Set Ly(x) = L(d(x, y)) and let t ∈ (0, 1] and y ∈ Y and define
φ(x) := cL(x, y) = Ly(x). We claim that the following representation holds

t−1Ly(m) = inf
z∈Zt(X,y)

{
(Lt)z(m) + inf

{x∈X | z∈Zt(x,y)}
t−1(1− t)Ly(x)

}
.

Indeed, by Lemma 3.7 the left hand side is less than or equal to the right hand side for
any z ∈ Zt(X, y). Furthermore, choosing x = m we get an equality and thus showing
the representation.
Now note that the claim implies that t−1φ is the c̄p-transform of the function

ψ(z) = − inf
{x∈X | z∈Zt(x,y)}

t−1(1− t)Ly(x)

and therefore t−1φ is ct-concave relative to (X,Zt(X, y)). Since Ict(X,Zt(X, y)) ⊂
Ict(X,Zt(X,Y )) we see that each t−1Ly is in Ict(X,Zt(X,Y )).
It remains to show that for an arbitrary cL-concave function φ and t ∈ (0, 1] the

function t−1φ is ct-concave relative to (X,Zt(X,Y )). Since φ = φcLc̄L we have

t−1φ(x) = inf
y
t−1L(d(x, y))− t−1φcL(y).

But each function
ψy(x) = t−1Ly(x)− t−1φc(y)

is cp-concave relative to (X,Zt(X,Y )) and φ is proper, thus also the infimum is ct-concave
relative to (X,Zt(X,Y )), i.e. t−1φ ∈ Ict(X,Zt(X,Y )).

7.2 Orlicz-Wassterstein spaces on Finsler manifolds

7.2.1 Technical ingredients

For simplicity, assume throughout the section that L is smooth away from 0.
For Lx = L(d(x, ·)) and x 6= y

∇Lx(y) = l(d(x, y))∇dx(y).

Define

∇Lφ :=
l−1(|∇φ|)
|∇φ|

∇φ.

Note that for v ∈ TxM with |v| = 1 and r ≥ 0

∇φ(x) = l(r)v
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iff
∇Lφ = rv.

We also use the abbreviation
∇λφ = ∇Lλφ.

It is easy to see that under our assumptions that φ 7→ ∇Lφ is continuous and (as)
smooth (as L) wherever ∇φ(x) 6= 0.

Similar to the cp-case we will use the abbreviation KLxdφx (resp. Kλxdφx) for ∇Lφ(x)
(resp. ∇λφ(x)). As mentioned above, this can also be seen as a Legendre transform from
T ∗M to TM .

Lemma 7.10 (Cut locus charaterization). If y 6= x is a cut point of x, then f(z) :=
L(d(x, y)) satisfies

lim inf
v→0∈TxM

f(ξv(1)) + f(ξv(−1))− 2f(x)

F (v)2
= −∞

where ξv : [−1, 1]→M is the geodesic with ξ̇v(0) = v.

Proof. The proof follows in the same fashion as Lemma 4.1. We will show the necessary
adjustments.
As above, let’s first assume there are two distinct unit speed geodesics η, ζ : [0, d(x, y)]→

M from x to y and let v = ζ̇(0) and w = η̇(0). For fixed small ε > 0 set yε = η(d(x, y)−ε)
then yε /∈ Cut(x) ∪ {x} and using the first variation formula we get for t > 0

f(ξv(−t))− f(x) ≤ L(d(ξv(−t), yε) + ε)− L(d(x, yε) + ε)

= tl(d(x, yε) + ε)gη̇(0)(v, η̇(0)) +O(t2)

= tl(d(x, y))gη̇(0)(v, η̇(0)) +O(t2).

The term O(t2) is ensured by smoothness of ξv and by the facts that x 6= yε and that
L(d(·, ·)) is bounded in a neighborhood (x, y). We also get by Taylor formula

f(ξv(t))− f(x) = L(d(x, y)− t)− L(d(x, y)) = −tl(d(x, y)) +O(t2).

Combining these two facts with gw(v, w) < 1 (η and ξ are distinct), we get

f(ξv(−t)) + f(ξv(t))− 2f(x)

t2
≤ 1− gw(v, w)

t
l(d(x, y)) + t−2O(t2)→ −∞ as t→ 0.

For the conjugate point case, we use the same construction and notation as in the
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proof of Lemma 4.1. Note that

lim
s→0

L(L(σs)) + L(L(σ−s))− 2L(L(σ0))

s2
=

(
l(L(σ0))

∂2

∂s2
L(σs)

∣∣∣∣
s=0

+l′(L(σ0))

(
∂L(σs)

∂s

∣∣∣∣
s=0

)2)
≤ l(d(x, y))

(
− 2εgη̇(v, v)/d(x, y)

+ε2
{
Tη̇(0)(v)/d(x, y) + I(V, V ))2

})
+l′(d(x, y))F (v).

Using the fact that f(ξv(εs)) ≤ L(L(σs)) we obtain

lim inf
s→0

f(ξv(εs)) + f(ξv(−εs))− 2f(x)

ε2s2
≤ lim inf

s→0

L(L(σs)) + L(L(σ−s))− 2L(L(σ0))

ε2s2

≤ l(d(x, y))

(
− 2ε−1gη̇(v, v)/d(x, y)

+T (v)/d(x, y) + d(x, y)I(V, V )

)
+l′(d(x, y))F (v)2.

Letting ε tend to zero completes the proof.

7.2.2 The Brenier-McCann-Ohta solution

Lemma 7.11. Let φ : M → R be a cL-concave function. If φ is differentiable at x
then ∂cLφ(x) = {expx(∇L(−φ)(x))}. Moreover, the curve η(t) := expx(t∇L(−φ)(x)) is
a unique minimal geodesic from x to expx(∇L(−φ)(x)).

Remark. See also [McC01, Theorem 13] for the Riemannian case.

Proof. Let y ∈ ∂cLφ(x) be arbitrary and define f(z) := cL(z, y) = L(d(z, y)). By
definition of ∂cLφ(x) we have for any v ∈ TxM

f(expxv) ≥ φcL(y) + φ(expxv) = f(x)− φ(x) + φ(expxv) = f(x) + dφx(v) + o(F (v)).

Now let η : [0, d(x, y)] → M be a minimal unit speed geodesic from x to y. Given
ε > 0, set yε = η(d(x, y)− ε) and note that η|[0,d(x,y)−ε] does not cross the cut locus of x.
By the first variation formula we have

f(expxv)− f(x) ≤ L (d(expxv, yε) + ε)− L (d(x, yε) + ε)

= −l (d(x, yε) + ε) gη̇(0)(v, η̇(0)) + o(F (v)).

= −l(d(x, y))L−1
x (η̇(0))(v) + o(F (v)).
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Therefore, dφx(v) ≤ −l(d(x, y))L−1
x (η̇(0))(v) for all v ∈ TxM and thus ∇(−φ) =

l(d(x, y))·η̇(0)., i.e. ∇L(−φ) = d(x, y)·η̇(0). In addition, note that η(t) = expx(t∇L(−φ)(x)),
which is uniquely defined.

Lemma 7.12. Let t 7→ µt be a geodesic between µ0 and µ1, i.e. wL(µ0, µt) = tλ. If µ0 is
absolutely continuous and the unique φt the Kantorovich potential of (µ0, µt) w.r.t. Ltλ
such that φt(x0) = 0. Then φt = t−1φ.

Proof. For x 6= y ∈ ∂cλφ1(x) define xt = expx(t∇L(−φ)(x)). Since xt ∈ ∂ctλφt(x), we
have for t ∈ (0, 1]

xt = expx
(
t∇Lλ(−φ)(x)

)
= expx

(
t · l−1

λ (t · t−1|∇(−φ)|(x))

|∇(−φ)|(x)
∇(−φ)(x)

)

= expx

(
l−1
tλ (t−1|∇(−φ)|(x))

|∇(−φ)|(x)
∇(−φ)(x)

)

= expx

(
l−1
tλ (|∇(−t−1φ)|(x))

|∇(−t−1φ)|(x)
∇(−t−1φ)(x)

)
.

Since t−1φ is ct-concave and t−1φ(x0) = 0, uniqueness implies φt = t−1φ.

Remark. Note that this agrees with the cases L(r) = rp/p: Assume for simplicity that
wp(µ0, µ1) = 1 then φL = φcp and Lt = tpdp/p. Hence

φctt (y) = inf tp
dp(x, y)

p
− t−1φ(x)

= t−p inf
dp(x, y)

p
− tp−1φ(x) = t−p(tp−1φ)cp(y)

Thus up to a factor the interpolation potentials are the same (recall that tp−1φ gives the
potential of (µ0, µt) w.r.t. cp).

The next results follow using exactly the same arguments as for cp.

Lemma 7.13. Let µ0 and µ1 be two probability measures on M . Then there exists a
unique (up to constant) cL-concave function φ that solves the Monge-Kantorovich problem
w.r.t. L. Moreover, if µ0 is absolutely continuous, then the vector field ∇L(−φ) is unique
among such minimizers.

Remark. At this point we do not work with PL(M) directly. However all statements make
sense also for Lλ and any λ > 0 and we will see later that Lemma 7.9 can be used to show
that the interpolation inequality in Theorem 7.21 is actually an interpolation inequality
w.r.t. the geodesic t 7→ µt in PL(M) if the function Lλ is used with λ = wL(µ0, µ1).
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Theorem 7.14. Let µ0 and µ1 be two probability measures on M and assume µ0 is
absolutely continuous with respect to µ. Then there is a cL-concave function φ such
that π = (Id×F)∗µ0 is the unique optimal coupling of (µ0, µ1) w.r.t. L, where F(x) =
expx(∇L(−φ)). Moreover, F is the unique optimal transport map from µ0 to µ1.

Corollary 7.15. If φ is cL-concave and µ0 is absolutely continuous, then the map
F(x) := expx(∇L(−φ)) is the unique optimal transport map from µ0 to F∗µ0 w.r.t.
the cost function cL(x, y) = L(d(x, y)).

Corollary 7.16. Assume µ0 is absolutely continuous and φ is cλ-concave with λ =
wL(µ0, (F1)∗µ0) where Ft(x) := expx(∇λ(−t−1φ)), then Ft is the unique optimal trans-
port map from µ0 to µt = (Ft)∗µ0 w.r.t. Lλ and t 7→ µt is a constant geodesic from µ0

to µ1 in PL(M).

Remark. We will see in Lemma 7.22 below that the interpolation measures are absolutely
continuous if µ0 and (F)t∗µ0 are.

Proof. We only need to show that

wL(µs, µt) ≤ |s− t|wL(µ0, µ1).

Let π be the plan on Geo(M) = {γ : [0, 1] → M | γ is a geodesic in M} give by µ0, the
map F1 and the unique geodesic connecting µ-almost every x ∈M to a point F1(x) (ex-
istence follows from [Lis06, Proof of Prop. 4.1], see also [Vil09, Chapter 7]), in particular,
µt = (Ft)∗µ0. We also have

ˆ
L

(
d(γ0, γ1

λ

)
dπ(γ) = 1

for λ = wL(µ0, µ1) by definition wL. Since (es, et)∗π is a plan between µs and µt for
s, t ∈ [0, 1] we have

ˆ
L

(
d(γs, γt)

|t− s|λ

)
dπ(γ) =

ˆ
L

(
d(γ0, γ0)

λ

)
dπ(γ) = 1.

Therefore, wL(µs, µt) ≤ |t− s|λ.

7.2.3 Almost Semiconcavity of Orlicz-concave functions

The proof of almost semiconcavity of cL-concave functions follows along the lines of
the proof of Theorem 4.10 by noticing that φs = s−1φ will be cs-concave instead of
cL-concave, i.e. the type of concavity changes since the “distance changes”.

Theorem 7.17. Let φ be a cL-concave function. Let Ωid be the the points x ∈ M
where φ is differentiable and dφx = 0, or equivalently ∂cLφ(x) = {x}. Then φ is locally
semiconcave on an open subset U ⊂ M\Ωid of full measure (relative to M\Ωid). In
particular, it is second order differentiable almost everywhere in U .
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Proof. Since ∂cLφ(x) is non-empty for every x ∈ M and semicontinuous in x, we have
the following: if φ is differentiable in x with dφx 6= 0 then x ∈ int(M\Ωid). Thus it
suffices to show that each such points has a neighborhood U1 in which φ is uniformly
semiconcave.
So fix such an x with dφ(x) 6= 0 and note that φ is semiconcave on U1 iff λφ is for an

arbitrary λ > 0. Furthermore, by Lemma 7.12 we know that φs = s−1φ is cs-concave for
any s ∈ [0, 1].
Since dφ(x) 6= 0, there is a unique y ∈ M with ∂cLφ(x) = {y} and a unique geodesic

η : [0, 1]→ M between x and y (see Lemma 7.11). Note that φs is also differentiable at
x and

∂csφs(x) = {η(s)}.

Let s ∈ [0, 1] be such that d(x, η(s)) < rmin
2 . Because x 6= η(s) and z 7→ ∂csφs(z)

is continuous and single valued at x, we can find a neighborhood V1 ⊂ U of y such
that (∂csφs)

−1(V1) ∩ U contains some ball B2ε(x) disjoint from V1. Thus the functions
{Ly : B2ε(x)→ R}y∈V1 are semiconvave with constant C.
Now let γ : [0, 1] → B2ε(x) be a minimal geodesic and set xt = γ(t). Choose yt ∈

∂csφs(xt) ∩ V1. By the definition of cs-concavity we have

φs(x0) ≤ φs(xt) + L(d(x0, yt))− L(d(xt, yt))

φs(x1) ≤ φs(xt) + L(d(x1, yt))− L(d(xt, yt)).

Further, because yt ∈ V1 we also have

L(d(xt, yt)) ≥ (1− t)L(d(x0, yt)) + tL(d(x1, yt))− C(1− t)td2(x0, x1).

Therefore, taking the (1− t), t convex combination of the first two inequality we obtain

φs(xt) ≥ (1− t)φs(x0) + tφs(x1) + L(d(xt, yt))− (1− t)L(d(x0, yt))− tL(d(x1, yt))

≥ (1− t)φs(x0) + tφs(x1) + C(1− t)td2(x0, x1).

7.2.4 Interpolation inequality in the Orlicz-Wasserstein space

Theorem 7.18 (Volume distortion for L). Let x 6= y with y /∈ Cut(x) and η be the
unique minimal geodesic from x to y. For t ∈ (0, 1] define ft(z) = −Lt(d(z, η(t)).
Then we have

v<t (x, y) = D
[
d(expx)∇Ltft(x) ◦ [d(expx)∇Lf1(x)]

−1
]

v>t (x, y) = (1− t)−nD
[
d(expx ◦ Ktx)d(t−1f1)x ◦ [d

(
d(t−1f1)

)
x
− d (dft)x]

]
.

Remark. The statements hold equally if one takes Lλ and Ltλ, they only depend on the
smoothness of L.
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Proof. Recall Theorem 4.12 and the function gt(z) = −d2(x, η(t))/2.
We have for Lη(t) = Lt(d(·, η(t))

∇Lη(t)(x) = lt(d(x, η(t))∇d(x, η(t))

and thus
∇tft(z) = l−1

t (lt(d(z, η(t))∇(−d(z, η(t)) = ∇gt(z)

which implies the first equation.
For the second part note that (see calculations in the proof of Lemma 7.12)

Ktz(d(t−1f1)z) =
l−1
t (t−1|∇f1|(z))
|∇f1|(z)

∇f1(z)

= t
l−1(|∇f1|(z))
|∇f1|(z)

∇f1(z)

= t∇Lf1(z) = Lz(d(tg1)z)

and hence

v>t (x, y) = (1− t)−nD [d (exp ◦ L ◦ (d(tg1)z))]

= (1− t)−nD
[
d(exp ◦ Kt)d(t−1f1)x ◦ d

(
d(t−1f1)

)
x

]
.

We have d(ft)x = d(t−1f1)x. Indeed, since lt(r) = t−1l(t−1r) and d(d(·, η(t))x =
d(d(·, y))x

−d(ft)x = d(Lt(d(·, η(t)))x

= lt(d(x, η(t))d(d(·, η(t))x

= t−1l(t−1td(x, y))d(d(·, y))x = −d(t−1f1)x

Similar to [Oht09, Proof of 3.2] it suffices to show that

d(expx ◦ Ktx)d(ft)x ◦ d(t−1dft)x = 0.

Now since∇ft(z) = lt(d(z, η(t)))∇dη(t)(z) we get in a neighborhood U of x not containing
η(t),

Ktz(d(ft)z) = ∇Lt(t−1ft)(z)

= l−1
t (lt(d(z, η(t))))∇dη(t)(z)

= Lz(d(gt)z)

and thus the function D : U →M defined as

D(z) = expz ◦ Kz(d(ft)z) = expz ◦ Lz(d(gt)z)

= η(t),

is constant in a neighborhood of of x. This immediately implies dLx = 0.
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Proposition 7.19. Let φ : M → R be a cL-concave function and define F(z) =
expz(∇L(−φ)(z)) at all points of differentiability of φ. Fix some x ∈ M such that φ
is twice differentiable at x and dφx 6= 0. Then the following holds:

1. y = F(x) is not a cut point of x.

2. The function h(z) = cL(z, y)− φ(z) satisfies dhx = 0 and(
∂2h

∂xi∂xj
(x)

)
≥ 0

in any local coordinate system (xi)ni=1 around x.

3. Define fy(z) := −cL(z, y) and

dFx := d(expx ◦KLx )d(−φ)x ◦ [d(d(−φ))x − d(dfy)x] : TxM → TyM

where the vertical part of Td(−φ)x(T ∗M) and Td(−φ)x(T ∗M) are identified. Then
the following holds for all v ∈ TxM

sup
{
|u− dFx(v)| | expy u ∈ ∂cLφ(expx y), |u| = d(y, expy u)

}
= o(|v|).

Proof. The proof follows without any change from the proof of Proposition 4.14 but using
Lemma 7.10 instead and the fact that y /∈ Cut(x) ∪ {x} implies that fy is C∞ at x and
∇Lfy(x) = ∇Lφ(x).

Similarly the Jacobian equation holds:

Proposition 7.20. Let µ0 and µ1 be absolutely continuous measures with density f0 and
f1 and λ = wL(µ0, µ1). Also assume that there are open sets Ui with compact closed
X = Ū0 and Y = Ū1 such that suppµi ⊂ Ui. Let φ be the unique cλ-concave Kantorovich
potential and define F(z) = expz(∇λ(−φ)(z)). Then F is injective µ0-almost everywhere
and for µ0-almost every x ∈M\Ωid

1. The function h(z) = cλ(z,F(z))− φ(z) satisfies(
∂2h

∂xi∂xj
(x)

)
> 0

in any local coordinate system (xi)ni=0 around x.

2. In particular, D[dFx] > 0 holds for the map dFx : TxM → TF(x)M defined as
above and

lim
r→0

µ(∂cλφ(B+
r (x)))

µ(B+
r (x))

= D[dFx]

and
f(x) = g(F(x))D[dFx].
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Remark. defining dFx = Id for points x of differentiability of φ with dφx = 0 we see that
the second statement above holds µ-a.e.

Proof. Similar to Proposition 4.15, the proof follows without any change from [Oht09,
Theorem 5.2], see also [Vil09, Chapter 11].

Theorem 7.21. Let φ : M → R be a cL-concave function and x ∈ M such that φ is
second order differentiable with dφx 6= 0. For t ∈ (0, 1], define yt := expx(∇t(−t−1φ)),
ft(z) = −ct(z, yt) and Jt(x) = D[d(Ft)x] where

d(Ft)x := d(expx ◦Ktx)d(−t−1φ)x ◦
[
d(d(−t−1φ))x − d(d(ft))x

]
: TxM → TytM.

Then for any t ∈ (0, 1)

Jt(x)
1/n ≥ (1− t)v>t (x, y1)

1/n + tv<t (x, y1)
1/nJ1(x)

1/n.

Remark. The proof is based on the proof of [Oht09, Proposition 5.3] but is notationally
slightly more involved then the proof of Theorem 4.16.

Proof. Note first that

d(d(−t−1φ))x − d(dft)x =
{
d(d(−t−1φ))x − d(d(t−1f1))x

}
+
{
d(d(t−1f1))x − d(dft)x

}
and

d(ft)x = d(−t−1φ)x = d(−t−1f1)x.

Now define τs : T ∗M → T ∗M as τs(v) = s−1v and note for ∇φ(x) 6= 0

Ktx(t−1dφx) =
l−1
tλ (|∇t−1φ(x)|)
|∇t−1φ(x)|

∇t−1φ(x)

= t
lλ(|∇φ(x)|)
|∇φ(x)|

∇φ(x) = tKLx (dφx)

and thus
Ktx ◦ τt ◦ (KLx )−1 = t IdTxM

which implies

d(expx ◦Ktx)d(−t−1φ)x ◦
(
d(d(−t−1φ))x − d(d(t−1f1))x

)
= d(expx ◦Ktx)d(−t−1φ)x ◦ d(τt)d(−φ)x ◦ [d(d(−φ))x − d(d(f1))x]

= d(expx ◦Ktx)d(−t−1φ)x ◦ d(τt)d(−φ)x ◦
[
d(expx ◦ KLx )d(−φ)x

]−1 ◦ d(F1)

= d(expx)∇t(−t−1φ)x ◦ d(Kx ◦ τt ◦ K−1
x )∇L(−φ)x ◦ [d(expx)∇L(−φ)x ]−1 ◦ d(F1)

= t · d(expx)∇t(−t−1φ)x ◦ [d(expx)∇L(−φ)x ]−1 ◦ d(F1).

where we identified T∇t(−t−1φ)(x)(TxM) with T∇L(−φ)(x)(TxM) to get the last inequality
(remember t∇t(−t−1φ) = ∇L(−φ)).
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Because D is concave we get

Jt(x)
1/n = D[d(Ft)x]

1/n

= D

[
d(expx ◦Ktx)d(−t−1φ)x ◦

[
d(d(t−1f1))x − d(dft)x

]
+ d(expx ◦Ktx)d(−t−1φ)x ◦

(
d(d(−t−1φ))x − d(d(t−1f1))x

) ]1/n
= D

[
d(expx ◦Ktx)d(−t−1φ)x ◦

(
d(d(t−1f1))x − d(dft)x

)
+ t · d(expx)∇t(−t−1φ)x ◦ [d(expx)∇L(−φ)x ]−1 ◦ d(F1)

]1/n
≥ (1− t)D

[
(1− t)−1d(expx ◦Ktx)d(−t−1φ)x ◦

(
d(d(t−1f1))x − d(dft)x

) ]1/n
+ tD

[
d(expx)∇t(−t−1φ)x ◦ [d(expx)∇L(−φ)x ]−1 ◦ d(F1)

]1/n
= (1− t)v>t (x, y1)

1/n + tv<t (x, y1)
1/nJ1(x)

1/n.

Combing this with Lemma 3.11 (see remark after that lemma) and Lemma 7.23 below
we get similar to Lemma 4.17 and [Oht09, 6.2]:

Lemma 7.22. Given two absolutely continuous measures µi = ρiµ on M , let φ be the
unique cλ-concave optimal Kantorovich potential with λ = wL(µ0, µ1). Define Ft(x) :=
expx(∇tλ(−t−1φ)) for t ∈ (0, 1]. Then µt = ρtdµ is absolutely continuous for any t ∈
[0, 1].

Proof. By Lemma 3.11 the map Ft is injective µ0-almost everywhere. Let Ωid be the
points x ∈M of differentiability of φ with dφx = 0. Then

µt
∣∣
Ωid

= (Ft)∗(µ0

∣∣
Ωid

) = µ0

∣∣
Ωid
.

By Theorem 4.10 the potential φ is second order differentiable in a subset Ω ⊂ M\Ωid

of full measure. In addition, D[d(F1)] > 0 for all x ∈ Ω (see Proposition 4.15) and Ft
is continuous in Ω for any t ∈ [0, 1]. The map d(Ft)x : TxM → TFt(x)M defined in
Proposition 4.14 as

d(Ft)x := d(expx ◦Ktx)d(−t−1φ) ◦
[
d(d(−t−1φ))x − d(d(ft)x

]
where ft(z) := −ctλ(z,Ft(x)) for t ∈ (0, 1]. Also note that for x ∈ Ω

d(d(−t−1φ))x − d(dft)x =
{
d(d(−t−1φ))x − d(d(t−1f1))x

}
+
{
d(d(t−1f1))x − d(ft)x

}
.

Which implies D[d(Ft)x] > 0 because D[d(F1)x) > 0 and the lemma below.
The result then immediately follows by [CEMS01, Claim 5.6].
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Lemma 7.23. Let y /∈ Cut(x) ∪ {x} and η : [0, 1]→M be the unique minimal geodesic
from x to y. Define

ft(z) = −ct(z, η(t)).

Then the function h(z) = t−1f1(z)− ft(z) satisfies(
∂2h

∂xi∂xj
(x)

)
≥ 0

in any local coordinate system around x.

Proof. This follows directly from 7.8.

Using this interpolation inequality, one can show that a curvature dimension condition
CDL(K,N) holds on any n-dimensional (n < N) Finsler manifold M with (weighted)
Ricci curvature bounded from below by K. The condition CDL(K,N) is nothing but
a convexity property of functionals in DCN along geodesics in PL(M). Most geometric
properties (Brunn-Minkowski, Bishop-Gromov, local Poincaré and doubling) also hold
under such a condition. However, the lack of an “easy-to-understand” dual theory makes
it difficult to prove statements involving (weak) upper gradients.

Corollary 7.24. Any n-dimensional Finsler manifold with N -Ricci curvature bounded
from below by K and N > n satisfies the very strong CDL(K,N) condition for all strictly
convex, increasing functional L : [0,∞)→ [0,∞) which is smooth away from zero.
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Conclusion and outlook

Curvature dimension and Orlicz-Wasserstein spaces

In this thesis a proof of the Borel-Brascamp-Lieb (BBL) inequality along geodesics in p-
Wasserstein spaces and along geodesics in Orlicz-Wasserstein spaces was given. This led
to a new definition of an abstract curvature condition CDp(K,N) and resp. CDL(K,N)
along the lines of Lott-Villani [LV09, LV07] and Sturm [Stu06a, Stu06b]. The conditions
can be defined on metric measure spaces and similar to the case p = 2 one gets nice
geometric and analytical properties of the space. In particular, a metric variant of Bre-
nier’s theorem (Lemma 4.2) and a Laplacian comparison theorem (Theorem 5.14) were
derived.
To prove the interpolation inequality leading to the BBL inequality the Brenier-

McCann-Ohta solution was extened to cover the cases p 6= 2 and weak regularity proper-
ties of the transport map are given. For this the author showed how Ohta’s orginial idea
to avoid the diagonal can be used to give a nice and short proof of the almost everywhere
second order differentiability of the transport map.
For positivly curved spaces K-convexity of the entropy functional follows and a new

global Poincaré inequality can be derived. This global Poincaré inequality holds for
manifolds with positive Ricci curvature, because manifolds with Ricci curvature bounded
from below by K > 0 satisfy the CDp(Kp,∞)-condition for any p, where 0 < cK ≤ Kp ≤
CK depends on K and p (see remark on page 48).
In the future, it might be interesting to see what the strong CDp(K,∞)-condition for

negative K and unbounded spaces means. As seen on page 48, the strong CDp(K,∞)-
condition does not imply K-convexity of the functional generated by DC∞. However,
one always gets K ′-convexity if the space is bounded. Hence, the strong CDp(K,N)-
condition behaves differently for unbounded spaces.
In Chapter 7 the theory of Orlicz-Wasserstein spaces was developed. In particular, their

geodesic character and a structure of weak topologies among different Orlicz-Wasserstein
spaces similar to the cases 1 ≤ p <∞ was shown.
Having a description of the geodesics of Orlicz-Wasserstein spaces, the author could

follow along the lines of 1 < p < ∞ to show the interpolation inequality which can be
used to show that the condition CDL(K,N) holds for n-dimensional (Finsler) manifolds
with Ricci curvature bounded from below by K and N > n.
In contrast to p-Wasserstein space, Orlicz-Wasserstein spaces are defined via two op-

timization problems and there is no nice dual theory for those spaces. Furthermore, it
is not clear what the analytical “vertical dual” of the theory is. In this thesis we could
show that the analyticial dual of p-Wasserstein spaces is the theory of the q-Cheeger
functional. Only from this, one gets the q-Laplacian which is required to formulate the
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Laplacian comparison theorm. By now it is not clear what the Orlicz-Cheeger functional
looks like. But by its nonlinear character it is clear that it must be more general than
f 7→

´
L(|∇f |∗)dµ.

Heat and gradient flows

In Chapter 6 the theory of the q-heat flow as a gradient flow of the q-Cheeger energy was
developed further. On the one hand, a more general comparison theorem and a calculus
along the q-heat flow (Theorem 6.5) was given which does not require bounds for the
density from above and away from zero. This made it possible to prove mass preservation
with a natural growth condition on the measure of balls of the background measure. In
the furture the author hopes to be able to drop the condition

´
V p expp(−V p)dµ < ∞,

so that only
´

expp(−V p)dµ <∞ is required to obtain mass preservation.
In the second part of Chapter 6 the developed theory was used to show that the q-heat

flow is a solution of the gradient flow problem of the (3 − p)-Renyi entropy functional
in the p-Wasserstein space. For this, one needed to show that all measures at which
the descending slope is finite are absolutely continuous. The current proof for p ∈ (2, 3)
requires the space to be compact and n-Ahlfors regular. Finding a proof which drops
one of these conditions might be challenging.
The purpose of the chapter was to identify the q-heat flow with the gradient flow of

the Renyi entropy functional. In the cases p ∈ (1, 2) convexity of the function (x, y) 7→
xq/yp−1 are used to give uniqueness which implies immediately the identification of the
two flows. However, one can easily show that this function is no convex in case p ∈ (2, 3).
In the future, the author plans to further analyze the q-heat flow and also the heat

flow on spaces which are not infinitesimal Hilbertian, i.e. the heat flow is not linear.
Currently it is not know if the q-heat flow is contractive in the p-Wasserstein space.
However, Ohta and Sturm used in [OS11] a linearization of the heat flow on Finsler
manifolds to give pseudo-contraction property. With the help of this one can show that
for t > 0 the (nonlinear) heat flow Pt maps into the Lipschitz functions. Furthermore,
the author hopes that if a similar (semi)linearization can be done for the q-heat flow,
then it might be possible to use it to show uniqueness of the gradient flow problem of
the Renyi entropy functional in the p-Wasserstein space.
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