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Abstract

The history of populations or species is of fundamental importance in a variety of
areas. Gaining details about demographic, cultural, climatic or political aspects of
the past may provide insights that improve the understanding of how populations
have evolved over time and how they may evolve in future. Different types of re-
sources can be informative about different periods of time.

One especially important resource is genetic data, either from a single individual
or a group of organisms. Environmental conditions and circumstances can directly
affect the existence and success of a group of individuals. Since genetic material gets
passed on from generation to generation, traces of past events can still be detected
in today’s genetic data. For many decades scientists have tried to understand the
principles of how external influences can directly affect the appearance and features
of populations, leading to theoretical models that can interpret modern day genetic
variation in the light of past events.

Among other influencing factors like migration, natural selection, etc., population
size changes can have a great impact on the genetic diversity of a group of organisms.
For example, in the field of conservation biology, gaining insights into how the size of
a population evolves may assist in detecting past or ongoing temporal reductions of
population size. This seems crucial since the reduction in size also correlates with a
reduction in genetic diversity which in turn might negatively affect the evolutionary
potential of a population. Using computational and population genetics methods, se-
quences from whole genomes can be scanned for traces of such events and, therefore,
assist in new interpretations of historical details of populations or groups of interest.

This thesis focuses on the detection and interpretation of past population size
changes. Two approaches to infer particular parameters from underlying demo-
graphic models are described. The first part of this thesis introduces two summary
statistics which were designed to detect fluctuations in size from genome-wide Single
Nucleotide Polymorphism (SNP) data. Demographic inferences from such data are
inherently complicated due to recombination and ascertainment bias. Hence, two
new statistics are introduced: allele frequency-identity by descent (AF-IBD) and al-
lele frequency-identity by state (AF-IBS). Both make use of linkage disequilibrium
information and exhibit defined relationships to the time of the underlying mathe-
matical process. A fast and efficient Approximate Bayesian Computation framework
based on AF-IBD and AF-IBS is constructed that can accurately estimate demo-
graphic parameters. These two statistics were tested for the biasing effects of hidden
recombination events, ascertainment bias, and phasing errors. The statistics were
found to be robust to a variety of these tested biases. The inference approach was
then applied to genome-wide SNP data to infer the demographic histories of two
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human populations: (i) Yoruba from Africa and (ii) French from Europe. Results
suggest that AF-IBD and AF-IBS are able to capture sufficient amounts of informa-
tion from underlying data sets in order to accurately infer parameters of interest,
such as the beginning, end, and strength of periods of varying size. Additionally, the
results from empirical data suggest a rather stable ancestral population size with
a mild recent expansion for Yoruba, whereas the French apparently experienced a
rather long-lasting strong bottleneck followed by a drastic population growth.

The second part of this thesis introduces a new way of summarizing informa-
tion from the site frequency spectrum. Commonly applied site frequency spectrum
based inference methods make use of allele frequency information from individual
segregating sites. Our newly developed method, the 2 point spectrum, summa-
rizes allele frequency information from all possible pairs of segregating sites, thereby
increasing the number of potentially informative values from the same underlying
data set. These additional information are then incorporated into a Markov Chain
Monte Carlo framework. This allows for a high degree of flexibility and implements
an efficient method to infer population size trajectories over time. We tested the
method on a variety of different simulated data sets from underlying demographic
models. Furthermore, we compared the performance and accuracy of our method
to already established methods like PSMC and diCal. Results indicate that this
non-parametric 2 point spectrum method can accurately infer the extent and times
of past population size changes and, therefore, correctly estimates the history of
temporal size fluctuations. Furthermore, the initial results suggest that the amount
of required data and the accuracy of the final results are comparable with other
publicly available non-parametric methods. An easy to use command line program
was implemented and will be made publicly available.

In summary, we introduced three highly sensitive summary statistics and pro-
posed different approaches to infer parameters from demographic models of interest.
Both methods provide powerful frameworks for accurate parameter inference from
genome-wide genetic data. They were tested for a variety of demographic models
and provide highly accurate results. They may be used in the settings as described
above or incorporated into already existing inference frameworks. Nevertheless, the
statistics should prove useful for new insights into populations, especially those with
complex demographic histories.
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Chapter 1
Introduction

“The scientist is not a person who gives the right answers, he’s one who
asks the right questions.”

Claude Lévi-Strauss (1908 - 2009)

1.1 Motivation

Our world as it exists today is only a snapshot of a process that started several
billion years ago. Some of the oldest known traces of life, which most likely repre-
sented bacterial organisms found in some banded iron formation rocks, date back
to 3.5 billion years ago [35]. Ever since the conditions on our planet were sufficient
for the origin of life, a process called evolution has constantly been changing the
inheritable characteristics of organisms from generation to generation. Life on earth
has been influenced by the prevalent environmental conditions, forces, and factors
at respective periods over time. On the other hand, the appearance and features
of our environment are as well influenced and shaped by all kinds of living forms.
Mutual dependence and control have created an enormous diversity of which we as
the human species only represent a small part.

The interest and curiosity about the origins of life in general, or about particular
species, is widespread. This interest can be expressed on a personal level as histori-
cal research and genealogical investigation, or on a wider scale at the level of society
(the general scientific investigation of our past). These goals can be achieved by
means of a variety of different resources. Not only do we have access to the past by
historical traditions (either oral or in writing), but by records of the past enclosed
in ice, soil, rocks, etc. Each of the available sources provides information about dif-
ferent periods and ranges of time. The written word and oral histories were handed
down through the centuries and their very first appearance can be dated back to
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1. Chapter Introduction

around five thousand years ago, providing insights into the recent part of history
[69]. Evolutionary linguistics is the scientific study of the origins and evolution of
languages. By studying the history of spoken languages today and performing a
detailed comparison among themselves, additional insights into the history of the
populations that spoke them can be obtained. Linguistics can, therefore, assist
in the identification of historical patterns of migrations and foundations of human
populations. However, rough estimates suggest that languages do not retain evi-
dence of their origins for more than six thousand years. Further down the timeline,
overlapping with the origin of modern humans, physical objects that have been
used and shaped by human contact can be used as archaeological record. Examples
are ceramics, stone tools, ornaments, houses, etc. Depending on the location and
age of these specimens, interesting facts about human and non-human history, as
far back as two million years, can be acquired. Paleontology and Paleoclimatology
are sciences that investigate and analyze fossil remains of living organisms or their
traces, and physical remains (e.g. ice) that contain information about past climatic
conditions. These sources can provide insights into the entire period of life existing
on our planet [69].

All mentioned data and methods are stand-alone sciences, but their interaction
can be an even more powerful way of studying the past focusing on different peri-
ods of times from a variety of different materials and resources. Nevertheless, one
important field of research has not been mentioned so far. Every time living or-
ganisms reproduce, parts of their genomes are mixed and new genomic variations
are generated. The genetic material we can analyze today contains a record of the
past. Since environmental conditions (i.e. changes) directly affect the behavior and
existence of individuals, these factors leave traces in the inheritable material of each
individual over time. Information can either be obtained from genomes of present
day organisms, or ancient DNA from especially well preserved samples. Of course,
all the available data we have today, no matter from which source, are biased rep-
resentations of the true past, since only a tiny part is still existent today. Social
rules, climatic conditions, environmental changes, demographic events, natural se-
lection, etc. are limiting the amount, quality, and geographical locations of present
day records that provide information about the foretime. It should, therefore, be
mentioned, that even analyzing all possible information together is still just an ap-
proximation to the truth. However, with an increasing standard of technology and
computational power this approximation is continuously getting more and more re-
liable.

Depending on the addressed question, suitable data and information can be ob-
tained, or vice versa, depending on the available data, only certain types of questions
can be answered. This is due to the fact that different records only provide insights
into particular periods of time (and into either social, demographic, genetic, or
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1. Chapter Introduction

climatic, etc. aspects). Nevertheless, although the combined analysis of interdis-
ciplinary records might assist in answering particular questions, they are to some
extent independent pictures of the past and might give different conflicting signals
that are even harder to interpret and to disentangle than single results. Therefore,
a standardized and simple approach to analyze all kinds of different data and to
answer questions as diverse as possible does not exist at all. To account for this,
caution should be applied at any time and specific methods and analyses need to be
designed for every new question.

The current work focuses on one particular aspect of records of the past, namely
genetic data. As already mentioned, what we see in today’s genomes provides in-
sights into how populations of a species of interest evolved tens, or hundreds, or
even thousands of generations ago. Therefore, one of the most overwhelming bio-
logical discoveries of the last centuries is the fact that all features, characteristics,
and genetic properties of organisms alive today are derived from ancestors that can
be traced back over millions of years. In 1859, Charles Darwin, a British biologist,
published his highly significant work “On the Origin of Species” [25], stating that
all species are related by common descent and that the vast diversity observed is
just a product of the accumulation of small, but favorable, modifications over large
periods of time. “... say, that after a certain unknown number of generations, some
bird had given birth to a woodpecker, and some plant to the mistletoe, and that
these had been produced perfect as we now see them; but this assumption seems to
me to be no explanation, for it leaves the case of the coadaptation of organic beings
to each other and to their physical conditions of life, untouched and unexplained.”
(Charles Darwin, On the origin of species, 1959, p. 3-4, [25]). This quote expresses
a deep sense of curiosity and skepticism that is required to unravel the mysteries
and hidden secrets of our past. Because Humans share a common ancestor with
every other species on this planet - with the never-ending process of evolution ad-
justing the genomes of individuals to face new environmental challenges, allowing
to conquer new habitats and geographical locations - genetic data represent a book
full of historical information. This common ancestry allows us to draw conclusions
by looking at more or less related and diverged species - conclusions that could not
be drawn by just looking at the human genome.

As I hope will be clear at the end of this thesis, the role of genetics in the past
decades has largely been used for testing hypotheses that were derived based on
data from other disciplines. This is mainly due to the fact that different evolu-
tionary processes (i.e. different histories) can create similar genetic patterns whose
interpretation is not easily feasible by means of only genetic methods. However,
with the advent of ancient DNA analyses (e.g. [46]) and improved and sophisticated
inference methods, more reliable conclusions from genetic data have been and pos-
sibly will be obtained in the future.
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1. Chapter Introduction

The question why one should study the evolution and history of living organisms
is a complex combination of smaller problems and interests. For example, unlike
many other non-human species, human populations have never in the past been as
large as they are now1. How long have species been in growth or decline phases?
How and when did they expand to new habitats and geographical regions? When
and how did patterns of gene flow across multiple populations start and evolve?
But also medical aspects are becoming more and more important, focusing on the
analysis of variable drug response in different individuals, association studies, and
inferences about gene function from patterns of genetic variation [43]. For example,
reconstructing the demographic history of species is essential for the purpose of
finding evidence for adaptation at the molecular level (e.g. [29]) and results of these
kinds of investigations can assist in the fine determination of disease gene positions
(e.g. [70]).

Evolutionary anthropology and population genetics, both independent sciences,
try to answer questions concerning the origin, history, structure, migration patterns,
and relationships of groups of individuals, be it from humans (anthropology) or any
other species on our planet (e.g. [69]). They also try to develop methods by which
one can infer how populations are shaped by evolutionary or demographic factors
like mutation, selection, recombination, population size changes, or changes in the
availability of resources, etc. The goal is to understand the forces that produce and
maintain genetic variation within and between species.

1.2 Subject of this thesis

Over the past few years I have been involved in a variety of population genetic
studies, mostly as part of a group of colleagues from Leipzig, but also as part of
studies that were lead by scientists from all over the world. Because of the diverse
topics of the particular projects I was able to deepen my knowledge in a large num-
ber of studies from theoretical and practical population genetics. Although I could
talk about a couple of exciting topics, the current work only focuses on my two
most comprehensive projects. Since for this work I took a major role in the design
and implementation of all the procedures, this thesis is written in first-person form
throughout most of the parts. However, I want to emphatically stress that none of
the achieved results would have been possible without the ideas, support, guidance,
and brilliance of a lot of people. They encouraged me and suggested valuable ideas
throughout all the states of my time at the Max Planck Institute in Leipzig. So,
whenever I use the first-person form it should be clear that this work was deeply
dependent on many people’s ingenious supports. I explicitly mention and thank all

1http://www.census.gov/popclock/, last visited on 14/12/2013
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1. Chapter Introduction

the involved people in the acknowledgements and here again would like to express
my deepest appreciation. In the text I explicitly cite the work that other people
contributed.

The idea for this thesis arose from the need for new methods to infer demographic
details from the history of organisms, in particular the past population size changes.
Modern population genetics methods can make use of a large amount of genetic
data. Often these data are first summarized by some summary statistics, each of
them capturing specific aspects of the underlying diversity distribution (e.g. [113]).
Depending on the question of interest, great efforts have been payed to develop new
summary statistics or to modify the usage of conventional ones in order to gain
better insights. On the other hand, data are often biased toward certain directions,
therefore, statistics should be constructed to be robust toward bias. The more ro-
bust a summary statistic is to a bias, the more reliable the results of parameter
inference are.

Part of the main goal of the current work was not to rely only on known and
common statistics, but to develop new ways of summarizing data in order to con-
tribute new details to the overall question of population history conclusions. The
first project in this thesis (AF-IBS/IBD) is a consequent derivative of the results of
my Diploma thesis from 2009 [131]. The original goal of that previous study was
to find summary statistics that were sensitive enough to detect past population size
changes and, at the same time, are robust to ascertainment bias (see chapter 5).
Summarizing this prior work, we were able to show that the statistics we chose did
exhibit distinct patterns when calculated from data based on different demographic
scenarios. However, as discussed in its outline, further steps were needed and did
include the use of these statistics in a comprehensive framework of parameter infer-
ence. This then inspired the work I have been doing for the last couple of years in
this field, leading to the results discussed in the current dissertation (including the
second project presented here, the 2 point spectrum method, see chapter 6).

In summary, I will present two methods to infer past population size changes from
genetic data. The methods I propose here are mostly tested for human demographic
models, but I emphasize that the methods are generally applicable to genetic data
from other species as well, as long as sufficient amounts of data are available.

1.3 Organization of this thesis

This thesis is structured in a way that allows the reader to gradually understand the
initial idea and all aspects that rely on it. The remainder of this work is organized
as follows: After the introduction, chapter 2 briefly explains all general backgrounds
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1. Chapter Introduction

that are needed to introduce the reader to this field of population genetic analyses.
Chapter 3 gives a short summary on the software that was used, the details of the un-
derlying mathematical models, and fundamental concepts on which all my analyses
are built on. In chapter 4 similar work and projects that aim to infer past popula-
tion size changes, mostly based on single statistics that try to detect deviations from
a standard model of constant population size, are introduced. Furthermore, that
chapter will give a brief introduction into more recent genome-wide approaches. The
core part of this thesis contains two main projects that will be discussed separately
in chapter 5 and 6. Chapter 5 describes the first project, the AF-IBD/IBS statistics
and the use of Approximate Bayesian Computation. Chapter 6 presents a work that
implements a MCMC approach using the 2 point spectrum statistics. Both chapters
5 and 6 were written in the style of research articles, containing their own introduc-
tion, methods, results, and discussion section. After chapter 6, a final discussion
section will be given, trying to compare both approaches in a more general view. In
addition it provides an outlook on the potentials and possible further developments
of the newly proposed methods. After all, the appendix and the references of this
thesis are listed. Since the methods I have been developing during my time as a
PhD student at MPI EVA are advancements of my Diploma thesis, chapters 2 and
3 are inspired by this work [131]. Brief definitions and explanations of unknown
technical terms can be found at the end of chapter 2. A list of all nomenclatures
and abbreviations is given at the end of the appendix chapter 8.
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Chapter 2
Background

“Millions saw the apple fall, Newton was the only one who asked why?”

Bernard M. Baruch (1870 - 1965)

The purpose of this chapter is to give a basic introduction to topics necessary for
an understanding of this work.

2.1 The principles of population genetic inference

One of the fundamental questions in population genetics is how to make use of
data. In this field data means genetic information sampled from any kind of living
creatures, be it animals (including humans) or plants. There are two basic ways
of looking at data, in particular non-parametric and parametric methods. In the
non-parametric case one tries to reason things by not relying on models, whereas
parametric methods provide explicit models for the data. For example, in phylo-
genetics, the study of evolutionary relatedness among several groups of organisms,
methods that use a parsimony (non-parametric) approach are applied. They assess
a topology by using a relatively simple metric. This metric can be the minimum
number of character state changes necessary to generate the data on a given tree,
not presuming any specific model or distribution. A different class of methods uses
a likelihood (parametric) approach, which assesses a topology using the assump-
tion, that there exists an evolutionary model from which the data are identically
distributed, to infer phylogenetic trees.

Population genetic models are used to combine the information about observed
sequence variation (resulting in the part of an organism’s genome that makes it
unique compared to other organisms of the same species, see section 2.3.1) with
assumptions about the history and demographic influences that shape the picture
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of a population. Most of the methods used to infer and to understand the history of
such are model based. The overall goal of every model is to depict a reality under
examination (in this case genetic data) by means of certain declarations within the
scope of a scientific theory (population genetic models). One of the first and most
basic models was the standard Wright-Fisher model, a stochastic process used to
describe how genes from one generation get transferred to the next one. This model
has been widely used and still continues to be. Compared to realistic populations,
all models developed so far contain many unrealistic assumptions. For example, the
Wright-Fisher model assumes a population of constant size, with uniform rates of
mutation and recombination across the genome, with all individuals being equally
fit, i.e. random mating [141]. Migration models like the Island model [141] assume
no mutation, no selection, and that populations are divided into ’islands’ of an equal
size which can exchange genes per generation at the same rate and persist indefi-
nitely. Another migration model, the stepping stone model, tries to bypass the as-
sumption of no population substructure by introducing the possibility of exchanging
genes between adjacent discrete subpopulations [76]. Despite all the advantages and
simplifications these models yield, the main problem is to decide which one to use
and regarding the tremendous variety of model parameters, demographic scenarios,
and biological causes, it is still not possible to get the “correct” model from data. If
assumptions are not met, inferred results can be incorrect. A natural approach for
modeling would be to start with the simplest possible model that appropriately char-
acterizes the data. Dealing with populations (e.g. humans) one, therefore, assumes
no population structure, no recombination, and no selection which also defines the
null hypothesis: “Nothing interesting ever happens in biology”. The first step is to
estimate some parameters of the so called null model, assuming it is correct, e.g.
mutation rate and population size. After that, questions of interest, for example
whether this simple model is a good description of the data, or, if not, what can be
said about the forces that cause the deviation from the null model, can be asked.
As a consequence, each step includes the comparison of observed (or empirical) data
and artificial data.

2.2 Simulating evolution

To make inference about the past and answer questions of interest (as indicated in
the previous section), simulated data are often required for each step. The challenge
of this is to emulate a process of creating genetic data representing the true evolu-
tion as well as possible. Unfortunately, it is yet not feasible to include all existing
natural forces, circumstances, and parameters that shape the genetic diversity of
organisms, since this would result in a search with an underlying high dimensional
space not computable in a fair amount of time. Due to this fact, the complexity
of the simulation process needs to be simplified in a way that still ensures to get
reasonable results.
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In principle there exist two ways of simulation that can be distinguished. The
most obvious and natural way of simulating evolution would be to start in the past
and end in the present, thus time is running forwards. But there exist problems
for which considering time running backwards is easier and faster. In fact, in the
last 20 years, the most important tool has been backward or coalescent simulation
[77–79]. This development was a natural consequence of the availability of genetic
data sampled at the present but shaped by past processes. To get an idea of how
this approach can be applied, a family tree can be imagined. One way of drawing
this kind of graph is to start with an individual in the present and go backwards
in time following the lineages through parents, grandparents, etc. This example
can be used as a good illustration for why, at least in some cases, time should
be considered running backwards. To apply the opposite method, drawing the tree
forward in time, also called forward simulation (e.g. [108]), each individual alive from
a specific population at a certain point in the past needs to be considered. With the
information about each parent to child relationship the tree could be drawn for each
generation until the present day, implying that every family lineage can be traced
back to a day forward in time. The crucial point is that just a very small part of all
the information is sufficient to create the family tree. Since just the lineages leading
to a specific individual need to be kept, forward simulation represents a memory
inefficient way of using data. But it should be noted that the family tree example
only serves as an example for a better understanding. These so called genealogies,
the ancestry of sequences back to their most recent common ancestor (MRCA), refer
to the genetic ancestry of a sample at a locus in a genome and not to the described
usual definition of a genealogy being the family relationships of a set of individuals.
Figure 2.1 shows the basic principle of the coalescent and one possible graphical
representation of genealogies. A detailed description of the coalescent process itself
will be given in section 3.2.

Referring to figure 2.1, “genealogy” and “tree” are used interchangeably through-
out this thesis. Both cases refer to the use of edges, nodes, and node times to
represent a rooted history. Coalescent approaches are fast and have been the best
choice for several years, for they are easy to handle and were computable with the
available computer power at that time. But one important drawback needs to be
mentioned. The unusual way of the coalescent process to emulate the evolution
results in limitations in terms of the complexity of scenarios that can be simu-
lated, such as environmental effects, selection, population structures, recombination
events, or the complexity of natural genetic data. The continuous progress in com-
putational power and memory capacities exploit new capabilities to benefit from the
more realistic approach of forward simulations.

Since the complexity of demographic models used in this work is relatively simple,
e.g. no selection is assumed and very time consuming ABC and MCMC approaches
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Figure 2.1: The basic principle behind the coalescent. A) shows a so called genealogy
for a population of size N=10. The black lines represent the backtracking of n=3
sampled lineages to their common ancestor. The present day population is at the
bottom and the most ancient population at top of the picture, indicating that time is
running backwards. B) shows the sub genealogy for the 3 sampled lineages. Tj, j= 2,
3 is the time while there are j ancestors to the sampled 3 lineages. Image was adopted
from [116]

are applied, coalescent software was used to simulate huge amounts of genetic data
in the current work. For this purpose the advantages of the coalescent (speed and
simplicity) prevailed.

2.3 The features of population genetic data

As in the field of conventional statistical inference the amount and quality of the
available data is usually sufficient to get satisfactory results. Not only are there
independent data points and a sample space of low dimensions, but also analytical
formulations for inference using all possible information are feasible. In the case
of population genetics data usually represent a single draw from the evolutionary
process. Due to the tremendous amount of natural forces that shape the genetic
structure of a population (e.g. recombination, migration, natural selection, genetic
drift - see section 2.5), the sample space that needs to be considered consists of many
dimensions. All these facts implicate that analytical formulations for inference using
all potential information are generally impossible or at least hard to derive.
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2.3.1 Single Nucleotide Polymorphisms

Since the empirical data used for the AF-IBD/S method in this thesis are SNP data,
this section gives a short introduction to SNPs (pronunciation: “snips”). Most of the
DNA between different members of a species or between paired chromosomes of an
individual is completely the same 1. In the case of evolutionary genetics, the study of
how one individual genome differs from another, implications about the past and the
present of organisms are derived from the varying part of a genome. Often there is
little or no additional information when considering the positions between the SNPs
in a particular population [104]. Imagine the DNA sequence ACGTA. A mutation
can cause a change to a single nucleotide within this sequence, creating ACGTG.
These are positions that vary within or between populations. If this mutation gets
transmitted and consequently occurs in a certain number of individuals it can be
referred to as a SNP, a single base pair mutation at a specific locus, resulting in two
alleles, namely A and G.

Beside a large amount of various genetic markers, for example RFLP (Restriction
fragment length polymorphism), AFLP (Amplified fragment length polymorphism),
STR (Short tandem repeat), etc., single nucleotide polymorphisms are frequently
chosen for studies of linkage and for studies of historical demography. Compared to
other markers, SNPs are comprehensively available in the (human) genome. Fur-
thermore they can be efficiently assayed and analyzed [137]. Approximately 90% of
the variation of the human genome is represented by SNPs and they can be found
every 100 to 300 bases along the human genome which consists of 3 billion bases
[41]. If the SNP occurs in a protein coding gene and the amino acid is changed by
the mutation, the SNP is called non-synonymous, otherwise it is called synonymous.

There exist various ways of identifying SNPs, e.g. genotyping, sequencing, screen-
ing databases for expressed sequence tags (ESTs), etc. [104, 128]. Due to economic
reasons SNPs are often first discovered in a small sample of individuals (’discovery
panel’) and later genotyping of these SNPs in a larger sample follows. This approach
results in the fact that only SNPs detected in the small sample can later be typed
in the larger sample and the probability that a SNP can be identified in the small
sample is crucially dependent on the allele frequency [19]. In general there are at
least three possibilities how a candidate site is determined to be a SNP. Those sites
may be classified as a SNP because it is a polymorphic site in the actual sample
(“sample SNPs”), or because it is a polymorphic site in a panel drawn from the same
population (“panel SNP”), or it is a polymorphic site in a panel from a different,
but related, population (“different population panel SNP”) [83].

As a consequence all statistical properties of genotype frequencies of the larger

1see http://hapmap.ncbi.nlm.nih.gov/whatishapmap.html.en, last visited on 04/12/13
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sample are more or less different from what would be expected by full resequencing
of this sample [137]. For example, SNPs at a high frequency in the larger panel are
more likely to go undiscovered when these SNPs only have a low frequency in the
smaller sample. This fact, called ascertainment bias, has a massive impact on how
inference of any underlying history or parameter has to be carried out. Not consid-
ering the effect of ascertainment bias can lead to erroneous results when inference is
solely based on the site frequency spectrum of the larger sample. Several methods
of correcting for ascertainment bias are published (e.g. [86, 105]) and consist of pre-
dictions of properties of those SNPs that are missing in the larger sample, resulting
in a set of SNPs that would have been observed with full resequencing.

2.3.2 Haplotype phasing

With the new advances in technology an increasing amount of data is produced from
comprehensive and low-cost genome-wide SNP microarrays and from ever more af-
fordable whole-genome and whole-exome sequencing tools. Empirical data are usu-
ally obtained as unphased genotype data, which is subject to an additional statistical
calculation of phase reconstruction to infer the haplotype composition. The prob-
lem arises from the fact that sequence and SNP array data generally take the form
of unphased genotypes, i.e. it is not directly observed which of the two parental
chromosomes, or haplotypes, a particular allele falls on [12]. However, there exist a
large number of computational methods to infer the phase of haplotypes from un-
derlying data. In general, the number of unrelated individuals present in a sample
is an important factor in determining how well the phase can be estimated: the
more individuals, the better and easier the estimation. In order to illustrate the
mentioned problem imagine a diploid organism and two bi-allelic loci (e.g. SNPs)
on the same chromosome with the first locus having alleles G or C and the second
locus having alleles A or T. Hence, there exist three possible genotypes at both loci:
(GG, GC, and CC) and (AA, AT, and TT). More information can be found in a
relatively recent study that reviews publicly available programs and methods and
discusses general issues [12].

2.4 Bayesian inference, MCMC and ABC

Since Markov Chain Monte Carlo (MCMC ) and Approximate Bayesian Compu-
tation (ABC) are applied in this work, this section will give a short introduction
explaining the background, advantages and disadvantages of both. By doing so, the
reasons for choosing ABC for the first and MCMC for the second method should
become clear. If not explicitly stated, all theoretical facts and information are based
on [5, 20, 42, 54].
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Markov Chain Monte Carlo means Monte Carlo integration using Markov chains.
To make inferences about model parameters it is often necessary to integrate over
high-dimensional probability distributions. In Bayesian inference, a kind of statisti-
cal inference, Bayesians need to make predictions about a posterior distribution of
model parameters given the data.

2.4.1 Bayesian inference

In Bayesian statistics observations can be used to update a probability of any given
thesis being true. Probability acts as a direct measure of uncertainty that might or
might not represent a long term frequency as it would in the frequentistic way of
inference.

P (θ|D) =
P (θ)P (D|θ)∫
P (θ)P (D|θ)dθ

(2.1)

Equation 2.1 is the conditional distribution of θ given the data D, where θ denotes
model parameters and missing data and D are the observed data. This is the object
of all Bayesian inference and is called posterior distribution of θ. It consists of
two parts, the prior P (θ) and the likelihood P (D|θ). The prior can be seen as
any available information inferred before the data were observed and the likelihood
is the conditional probability of the data D given a particular parameter θ. Any
desired properties of this distribution are valid for Bayesian inference, e.g. quantiles,
high density regions, moments, mode, mean etc. In high dimensional spaces it is
however often not possible either to solve the integrations in a feasible time, or
to solve them at all. In most cases an analytical evaluation of equation 2.1 is
impossible. That’s why a common problem in practical Bayesian statistics is that
the distribution is only known up to a specific normalizing constant. P (θ)P (D|θ) is
known, but the normalizing constant

∫
P (θ)P (D|θ)dθ, integrating over all possible

models respectively parameters, is unknown and a convenient way of defining the
posterior distribution is posterior ∝ likelihood × prior. Equation 2.1 encloses the
beliefs about θ after having observed the data and in consideration of the chosen
prior information [20].

2.4.2 Monte Carlo method

In many fields of applications one needs to make inference about a distribution of
interest. In population genetics, e.g. the distribution of the population mutation
rate given the data needs to be calculated. In this case one object would be to
calculate a function of interest f() for any vector Y, denoting model parameters and
or missing data, with ψ being the posterior distribution. As described in section
2.4.1, the expectation E[f(Y)] of this function cannot be easily calculated, since the
posterior distribution is known only up to a normalizing constant. But one way of
doing this is to draw samples {Yt,t=1,...,n} from ψ and making use of the law of
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large numbers and approximate

E[f(Y )] ≈ 1

n

n∑
t=1

f(Yt) (2.2)

In theory this approximation can be made as precise as desired just by increasing
the sample size n and making sure the samples are drawn as independent as possible.
A further drawback is the independence of the samples. Usually it is not easily
feasible to draw independent samples from ψ, yet this distribution can have any
possible non-standard shape. However, this fact can be circumvented by creating
a process that draws samples throughout the support of ψ. One possibility is to
create a Markov chain having ψ as its stationary distribution.

2.4.3 Markov chains and Markov Chain Monte Carlo

A Markov chain is a stochastic process having the Markov property. Most of the
time Markov chains are discrete in time and space. It generates a series of random
variables such that the probability distribution of future states is completely deter-
mined by the current state of the chain. Knowing just a part of the history of the
chain is as good as knowing all of its history to make predictions about the future.
This is what is called the Markov property. Formally, let Xn, n = 0, 1, 2.... be a
series of random variables, be it scalars or vectors, and having a joint distribution
such that

P (Xn|Xn−1, Xn−2, ..., X0) = P (Xn|Xn−1)∀n (2.3)

As a consequence, at each time point n ≥ 0, the next state Xn+1 is sampled from
a distribution P (Xn+1|Xn). The sequence of random variables is called a Markov
chain and P (.|.) is called the transition kernel of the chain. As n increases the chain
will gradually forget its initial state. Under certain conditions the distribution of Xn

given the starting state X0, described by P (n)(Xn|X0), will converge to a unique sta-
tionary distribution φ(.) which is not dependent on X0 or on n anymore. The more
iterations the chain is being run, the less the sampled points Xn seem to be affected
by the starting states and thus more and more look like being sampled from φ(.).
The amount of iterations, say m, after which the sampled points can be assumed
to be dependent samples from the stationary distribution is called burn-in. Often
a chain is said to be in an equilibrium state after having reached the stationary
distribution. As described in section 2.4.2, one possibility in Monte Carlo methods
to calculate equation 2.2, is to construct a Markov chain having the distribution of
interest as its stationary distribution.

The first proposal to do this came from Metropolis et al. in 1953 [99]. This
so called Metropolis Hastings algorithm can be used to construct a Markov chain
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creating samples from a required posterior distribution. Basically, the algorithm can
be divided into three steps 2:

1. If currently at any state Xn, propose a move to a candidate point Y according
to a transition kernel q(X→Y), which is a probability of moving from state X
to state Y

2. Now calculate the probability α(Xn, Y ), that the candidate point Y will be
accepted as a new state Xn+1 of the chain (also called acceptance or hastings
ratio):

α(X, Y ) = min

(
1,
ψ(Y )q(X|Y )

ψ(X)q(Y |X)

)
(2.4)

Since ψ(.) is the posterior distribution of interest,

ψ(Y ) = P (Y |D) = P (D|Y )P (Y )∫
P (Y )P (D|Y )dY

3. Now move to state Xn+1 = Y with probability α or stay at Xn and go back
to step 1

If the proposed candidate is not accepted, Xn+1 = Xn and the chain does not
move further. It can be shown that once a candidate Yn was sampled from the
stationary distribution, Yn+1 will be also. The crucial point of the acceptance ratio
is that knowledge of likelihood multiplied by the prior is sufficient for implementa-
tion, since the often high dimensional integrals in the denominator, known as the
normalizing constant, can be reduced by applied math.

The algorithm results in a sequence of sampled points which can be assumed to be
dependent on an underlying distribution of interest. Now, equation 2.2 can be used
to infer the desired features from that distribution but having the characteristic of
dependent samples.

2.4.4 Approximate Bayesian Computation

Although Markov Chain Monte Carlo can be a very efficient approach to generate
observations from a posterior distribution (equation 2.1), its dependence on know-
ing a likelihood function can be a disadvantage in some cases. For more complex
probability models and an increasing number of nuisance parameters, likelihoods
are either impossible to derive or not computable in a tolerable amount of time.
To bypass these kind of problems, observations from a posterior distribution can
be made without relying on likelihoods. The idea is to replace the full data with
summary statistics by summarizing a large amount of the data into a few represen-
tative values. This is what is called Approximate Bayesian Computation or MCMC

2adopted from [42]
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without likelihoods [8, 95].

One of the first implementations came from Tavaré et al. 1997 [130] and was one
of the first rejection sampling methods to simulate an approximate posterior random
sample. There exist many variations on rejection sampling themes. The basic idea
as well as the simplest approach for a rejection method is 3:

1. Generate θ from its prior distribution π(.)

2. Accept θ with probability h = P (D|θ) and return to step 1

In this scheme a likelihood still needs to be calculated and this can be impractical
or even impossible in many cases. In several steps this simple scheme was improved,
resulting in an approximate Bayesian computation scheme for data D and summary
statistics S4:

1. Generate θ from π(.)

2. Simulate D’ from stochastic model M with parameter θ, and compute the
corresponding statistics S’

3. Calculate the distance p(S,S’) between S and S’

4. Accept θ if p ≤ ε and return to step 1

This improved rejection scheme can be combined with MCMC and the algorithm
can be divided into 6 steps 5:

1. If currently at state X, propose a move to a new candidate point according to
a transition kernel q(X→Y), which is a probability of moving from state X to
state Y

2. Now generate some new data D’ using an underlying model M with parameters
Y

3. Calculate some summary statistics S’ of D’ and calculate the same statistics
S of data D

4. If p(S,S’) ≤ ε, for a given distance measure p and a given threshold value ε,
go to step 5, otherwise stay at state X and go back to state 1

3adopted from Marjoram 2003 [95]
4adopted from Marjoram 2003 [95]
5adopted from Plagnol and Tavaré 2002 [109]
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5. Now calculate the probability α(Xn, Y ), that the candidate point Y will be
accepted as a new state Xn+1 of the chain :

α(X, Y ) = min

(
1,
π(Y )q(X|Y )

π(X)q(Y |X)

)
, (2.5)

where π(Y) is the prior of state Y

6. Move to Y with probability α(Xn, Y ) or stay at X and return to step 1

The difference to the previous MCMC schemes is that the likelihood P (D|Y )
does not contribute to the calculation of the acceptance ratio. Knowledge of the
prior π(Y) is sufficient to run an ABC algorithm and the stationary distribution is
P (Y |p(S, S ′) ≤ ε).

The general advantages of these rejection methods are that they are easy to code
and offer the opportunity for parallel computation since they produce independent
samples. Otherwise, the more complex an underlying demographic model and with
it the underlying probability model is, the less effective it is to solely sample from
the prior, since prior and posterior can be rather different [109]. Another practical
drawback of rejection-sampling methods, as described above, is that the number of
summary statistics to be used is limited. It is also in general hard to anticipate
the effect of different summary statistics, leading to the need of intuition. The more
statistics are included, the lower the acceptance rates become. As a consequence the
tolerance ε must be increased which can negatively influence the approximation of
the posterior distribution. The approach that is used in chapter 5 is from [8] where
the authors introduce two improvements, smooth weighting and regression analysis
which shall overcome the described sensitivity of the approximation to ε. As will be
explained later in this work, the amount of data and the time needed to simulate
evolution is large. However, Approximate Bayesian Computation still seems to be
suitable, although it has some not negligible practical issues. Details of application
will be described in section 5.

2.5 Definitions

Definition 1 (Allele) An allele is one of several possible forms of a gene or DNA
sequence that is located at a certain locus on a chromosome.

Definition 2 (Allele frequency) The frequency of an allele (e.g. within a popula-
tion).

Definition 3 (Effective population size) Wright:”The number of breeding individu-
als in an idealized population that would show the same amount of dispersion of allele
frequencies under random genetic drift or the same amount of inbreeding as the popula-
tion under consideration.”
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Definition 4 (Evolution) The modification of the inheritable characteristics of a
population of living organisms from generation to generation.

Definition 5 (Genealogy) A genealogy usually represents the inheritance relation-
ships between alleles. It’s similar in form to a phylogenetic tree.

Definition 6 (Generation) Regarding the Wright-Fisher model of reproduction, a
generation is the time period from conception to reproduction (often assumed to be 25
years for humans; depending on the type of data and species). Additionally, reproduction
and death are simultaneous for all individuals and synchronous for all individuals.

Definition 7 (Genetic drift) Genetic drift is one of the basic mechanisms of evolu-
tion. An allele occurs with a certain frequency in a population. Due to the fact that
alleles in the offspring are a random sample of those in the parents, some individuals
possibly leave more descendants than others. Hence, it may cause genetic variants to be
removed from a population and reduces the genetic variability due to chance variations.

Definition 8 (Haplotype) A haplotype in the understanding of this thesis is a set of
single nucleotide polymorphisms, i.e. the combination of allelic states of a set of polymor-
phic markers. They are all lying on the same chromosome or region of a chromosome.

Definition 9 (Identity by descent) Two or more alleles are identical by descent
(IBD) if they are identical copies of the same ancestral allele.

Definition 10 (Identity by state) Two or more alleles are identical by state (IBS)
if they just share the same mutational expression.

Definition 11 (Infinite sites mutation model) A mutation model which assumes
that each new mutation changes a different nucleotide. Therefore the number of mu-
tations on the coalescent genealogy is similar to the number of segregating sites. No
recurrent mutations are allowed.

Definition 12 (Linkage Disequilibrium (LD)) A non-random association between
alleles in a population. Alleles that are observed together more often than would be ex-
pected by chance, are said to be in LD. They are co-inherited due to reduced recombination
between them.

Definition 13 (Migration) Describes the process of an individual or a population
moving from one inhabited region to another.

Definition 14 (Most recent common ancestor) The most recent individual from
which all individuals of a set of organisms are directly descended.

-18-



2. Chapter Background

Definition 15 (Mutation) Any changes in a DNA sequence of an organism. Hence,
mutations create variation in the complete set of unique alleles in a species or population.

Definition 16 (Natural selection) The varying contribution of individuals to the
next generation based on their power to survive and reproduce.

Definition 17 (Population) The summation of all individuals of the same group or
species, that live in the same geographical area and are able to interbreed, is called popu-
lation.

Definition 18 (Recombination) The exchange of DNA between the members of a
chromosomal pair. This process usually takes place in meiosis.

Definition 19 (Selective sweep) The rapid process where an advantageous allele, and
other alleles linked to it, increases in a population until all other alleles go extinct and
the locus only has one allele.

Definition 20 (Site frequency spectrum (SFS)) Given the infinite sites mutation
model, for a sample of size k, Fi(k) denotes the number of sites at which exactly i
individuals carry a mutation. A vector V=(F1(k), F2(k), ..., Fk(k)) is then called the
site frequency spectrum of the sample.

Definition 21 (Zygosity) The degree of identity for the alleles of a trait in an organ-
ism. In the case of a diploid individual, the individual is heterozygous at a specific locus,
if both alleles are different. If both alleles are the same, the organism is homozygous at
that locus.
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Chapter 3
Software, algorithms and fundamental
concepts

“Essentially, all models are wrong, but some are useful.”

George E. P. Box (1919 - 2013)

The function of this chapter is to give a summary of the software that was used,
the algorithms behind it, and the concepts that can be derived from that. The
profound description of these basic ideas will allow for a sufficient understanding of
the results of this work.
If not explicitly stated, all theoretical facts and information are based on [5, 20, 42,
47, 54].

3.1 Software

In the last few years the need for flexible and efficient software to simulate more
or less large DNA fragments, evolving under complex evolutionary models, yielded
the development of a variety of simulation programs, be it coalescent or forward
simulators. As already mentioned in section 2.2, the data simulations in this work
are all based on a coalescent approach allowing to test new ways of summarizing
data to detect deviations from neutral demography.

In order to uncover the single effects of different demographic scenarios on vari-
ous summary statistics the simulated demographic models need to be as simple as
possible at the beginning. The more complex the scenarios are, the more difficult it
is to eliminate side effects caused by combined demographic factors. Among others,
this fact simplified the decision process and supported the choice of coalescent as
a simulation tool for this work. Coalescent is relatively easy and straightforward

-21-



3. Chapter Software, algorithms and fundamental concepts

to use, computationally faster than forward simulation, and the variety of different
programs, each with its own pros and cons, fulfills the needs of a large amount of
distinctive problems and makes it easy to find the appropriate program for ones own
purpose. In [14, 31, 59] authors give a good survey of not all, but a large number of
coalescent and forward simulators.

Hudsons ms is one of the first and most classical programs [62]. It can be used
to generate many independent replicate samples including factors like migration,
recombination, and population size changes. It uses a standard coalescent approach
assuming an infinite sites model of mutation which does not allow multiple-hits or
back mutations to occur. Since the output of ms is very easy to process, it perfectly
fits into the entire workflow pipeline for AF-IBS and the 2 point spectrum method.
For each simulated population the output contains the position for each polymor-
phic site (SNP) on a scale of (0,1). Also, the haplotypes of each of the sampled
chromosomes are given, consisting of a string of zeros and ones. An ancestral state
is coded with a 0 and the derived, also called mutant state, is coded with a 1 (see
the output of ms in figure 3.1). The details of how such samples are generated by
the coalescent process are given in the next section 3.2. The Approximate Bayesian
Computation analyses crucially rely on a software called abcEst 2 [30] whose appli-
cation will be described in chapter 5.

Regarding the AF-IBD/IBS method, the processing of the ms output as well as
the workflow pipeline are coded in Perl 1, a stable cross platform programming lan-
guage that is, among others, widely used in the field of bioinformatics. One reason
for using Perl was Bio::PopMX, a large Perl package developed by Kun Tang, Marc
Bauchet, and Christoph Theunert 2, that allows handling and conversion of a huge
variety of different genetic data formats as well as calculation of lots of different
population genetic algorithms, tests, and statistics. The workflow pipeline is em-
bedded in the Bio::PopMX environment, permitting a comfortable way of analyzing
the data.

For the second project, the 2 point spectrum method, the underlying rjMCMC
framework (see chapter 6 for more details) was implemented in the C language, one
of the most widely used programming languages of all time. Many online recourses
are available for details of practical implementations and extensions 3. One of the
reasons C better fits to the requirements of the second project is that C is a rather
low level language and C scripts need to be compiled before run, i.e. the source
code needs to be translated into machine code. This is a fundamental difference

1www.perl.org
2At the time of this thesis, Bio::PopMX was not yet published. Please contact

christoph theunert@eva.mpg.de
3see for example http://cm.bell-labs.com/who/dmr/chist.html, last visited on 14/12/2013

-22-



3. Chapter Software, algorithms and fundamental concepts

Figure 3.1: Shown is the output of ms for two samples (“populations”) each con-
taining four sampled chromosomes (haplotypes are shown). The first two lines are
the command line and the random number seeds used to generate the data. Each
new sample is indicated by “//”. The first sample has four segregating (polymorphic)
sites, so there have been four different mutations on the entire coalescent tree, since
ms uses an infinite sites mutation model. The second sample has five segregating sites.

to languages like Perl where interpreters use a step-by-step execution of the source
code and no pre-runtime translation takes place. Due to the compilation process
the scripts of the C language are quicker at runtime when computationally intensive
algorithms need to be run.

3.2 The basic coalescent

This section is not meant to give a complete introduction to the process known as
the coalescent. Rather its purpose is to explain only the details necessary to under-
stand the following ideas, statistics, and results.

In order to construct and analyze random genealogies, the coalescent has become
the standard model for this purpose [116] which describes the connection between
demographic history and genetic data and provides a framework for extracting in-
formation from samples of DNA sequences. Since all data in this work are based
on the level of genes, the following meaning of population is best understood as a
population of genes rather than individuals. The coalescent is a stochastic process
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providing good approximations to the distribution of ancestral histories, resulting
from (e.g.) the Wright-Fisher or the Moran model. Three basic ideas make up the
process of coalescent [80]. In short:

1. Tracing back the ancestry of a gene backward in time, building up a tree of
genes, at a particular locus, in a population sample back to some point in the
past where they have their single common ancestor

2. For a variety of demographic models, the stochastic structure of the genealogy
does not depend on the detail of the reproductive mechanism, assuming no
selection and finite population size

3. The process of adding mutations to a genealogy is independent from the ge-
nealogy itself

To be able to make predictions about ancestral events, dating of events, likely
parameter values, etc., probability models of mutation, geography, and reproduc-
tion structures are indispensable. Without such, questions like: “Is there a sign of
population structure, recombination, selection, or population growth in the data ?”
could not be answered.

The central approach of analyses focusing on genealogies is a stochastic charac-
terization of the genealogies that relate sequences. Following that, evaluation of the
probability of a given data set consists of modeling reproduction in the population,
leading to a probabilistic description of the genealogical relationship of sampled data
and second, a genealogy will produce data with a specific probability if combined
with a mutation model. That means, (1) simulate the genealogy of n genes and (2)
add mutations to the genealogy according to the chosen mutation model.

3.2.1 The Wright Fisher model

As already mentioned in section 2.1, the first population model was introduced
by Wright and Fisher. It provides a description of the evolution of an idealized
population and how genes from one generation are transmitted to the next (where
the term gene can refer to any material transmitted from generation to generation)
[141]. Two versions of the model exist, namely the diploid version with N diploid
individuals and the haploid version with 2N haploid individuals, both assuming a
population size of 2N genes [54]. There are some simplifying assumptions which are
made in the basic Wright-Fisher model of reproduction according to [141] and [54]:

1. Discrete and non-overlapping generations

2. Haploid individuals or two subpopulations, namely males and females

3. Constant population size
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Figure 3.2: A present day sample contains 2N=10 different genes in generation t
(indicated by points). Each gene in generation t needs to find a parent in generation
t+1. The probability for 2 genes from generation t to find a different parent in
generation t+1 is p=9/10 (indicated by the red points). This “sampling” is performed
2N times with replacement. In this case 2 genes from generation t+1 find the same
parent in generation t+2 with probability p=1/10 (indicated by blue point).

4. Assumption of no recombination

5. Populations have no geographical or social structure

6. All individuals are equally fit, meaning no selective pressure

Most of these constraints are not realistic at all, since real world populations are
not likely to behave like this and the process becomes much more mathematically
complex if these assumptions are relaxed. But with these simple constraints the
basic math can be derived.

Starting with a present day population at time t, each gene needs to find a parent
in the previous generation t+1. If a gene in generation t+1 was not chosen as a
parent, its lineage dies out.

Since this sampling scheme is applied in each generation, there is either success
(finding the same parent) or failure (finding different parents) (see figure 3.2). Each
time two lineages find the same ancestor it is called a coalescent event. This is an
example of a binomial distribution Bi(m,p) with parameters vi being the number of
descendants of gene i in generation t, m=2N and p=1/(2N).

P (vi = k) =

(
2N

k

)(
1

2N

)k (
1− 1

2N

)(2N−k)

(3.1)

The mean of this distribution is 1 which ensures the population size being con-
stant. As shown in figure 3.2 at the blue point, the 2 lineages from the red genes
combine or coalesce in this point. For a set of n genes this point is called the most
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recent common ancestor, or MRCA, representing the most recent gene, or more gen-
erally individual, from which all genes are descended. If 2N is large, then vi is almost
Poisson distributed. If the number of ancestral genes is small, these calculations are
not valid anymore, since for the Wright-Fisher model they are based on large sample
size properties. This is the reason for the coalescent process to assist. In almost all
possible cases the coalescent process explains real data significantly better than the
Poisson prediction [48].

The coalescent was here introduced in the setting of the Wright-Fisher model of
neutral evolution, i.e. assuming no selection. But it applies to a variety of models
and it can be shown, that many different neutral models converge to the original
coalescent[5].

3.2.2 Generating genealogies

There are two ways of measuring time. The discrete-time coalescent is based on the
time being measured in generations on a discrete scale approximated by the geo-
metric distribution. On the other hand, time can be continuous and the analogous
distribution is the exponential distribution, being a limit distribution of a set of
geometric distributions measured on a finer scale of time points. Both systems are
coexisting and have their own mathematical representations and peculiarities. As
mentioned in section 3.2.1, time in the Wright-Fisher population model is measured
in discrete units, namely generations. The side effect of using a geometric distribu-
tion to represent properties of such a genealogy is approximation so that, e.g. the
true probability that two genes will find their common ancestor j generations ago
can slightly differ from the calculated, approximated value. Therefore it is often
conceptually and also computationally advantageous to use the exponential distri-
bution, since it is easier to use its properties to calculate important quantities of
a genealogy and, the larger N, the more accurate the approximations are. In the
continuous time coalescent one unit of time refers to the average time for two genes
to find their common ancestor which is 2N generations. Different implementations
can have different time scalings, e.g. N or 4N instead of 2N, but results are similar
up to a factor of 2. If necessary it is easy to switch from continuous, denoted by t,
back to discrete time, denoted by j, just with j=2N*t (see figure 3.3).

As already mentioned in section 3.2.1, real populations do not follow the con-
straints made to simplify the process. When the basic coalescent is used to model
real populations, the population size (2N) in the haploid model does not represent
the size of the real population. 2N is just the size of a Wright-Fisher population
that best approximates the real population and is called the effective population size
and is denoted by Ne. With these basic rules a genealogy for a set of sampled genes
can be constructed.
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Figure 3.3: A genealogy with time measured in units of generations (left) and the
corresponding time measured in units of 2N generations (right), whereas 2N is the
average time for two genes to find their common ancestor.

3.2.3 Adding mutations to genealogies

Now that the relationships between genes, or in general sequences, in a population
are constructed and, therefore, they share a common ancestry, mutations need to
be added to the genealogy in order to cause changes in the DNA and to model real
world data. Therefore, mutation models need to be considered. Historically the
infinite alleles model [75] appeared first, followed by the infinite sites model [74],
and the finite sites model by Jukes and Cantor [71]. Since the program ms uses an
infinite sites model, this section will explain the basics behind this mutation model.
The assumption of selective neutrality ensures that the process of adding mutations
to the branches of the genealogy is independent from the transmission of genes from
one generation to the next.

The infinite sites model can be interpreted as adding mutations to a very long
string of DNA having a low mutation rate at each position. Therefore, each site,
or position, mutates at most once which is the same as each mutation happens at
a new position so that there are only two possible states per site (at least in most
of the cases), an ancestral one and a derived (mutated) one [74]. The biological
explanation is that the number of variable sites in a real sample is generally smaller
than the number of sites which are identical in all sequences. All mutations are
recoverable in contrast to the infinite alleles model because no back mutations, e.g.
A→ T → A can occur. Hence, it is convenient to represent sequences as a string of
“0” and “1”, not considering positions that are identical [47].

One fundamental fact is that mutations are superimposed on the branches of the
coalescent tree, assuming this process follows a Poisson distribution of rate tθ/2. θ
is called the population mutation rate or scaled mutation rate and t is the length
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0.082 0.256 0.583 0.901 0.991
A 1 1 0 0 0
B 1 1 0 0 1
C 0 0 0 0 0
D 0 0 1 0 0
E 0 0 1 1 0

Table 3.1: Five Sequences are shown, each with five segregating (“polymorphic” or
“variable”) sites. The first row represents the position of each site (columns), relative
to the length of the sequences on an interval from 0 to 1. Positions that are invariable
are not displayed. Letters A-E (rows) represent the name of each sequence consisting
of a string of “0” and “1”, being the ancestral and mutant state.

of a branch. θ can be seen as the expected number of mutations that separate a
sample of two sequences. 2N is the expected time for two sequences to coalesce
and thus θ = 2Nµ mutations can be expected on each branch, with µ being the
chance of a mutation occurring in an organism or gene in each generation (whether
θ is defined by 2N or 4N only depends on the scaling factor of the actual coalescent
implementation, the meaning stays the same). The following algorithm explains
how mutations are actually tossed onto the genealogy after the genealogy has been
simulated 4:

1. Simulate the genealogy of n sequences according to the coalescent process with
rate

(
k
2

)
while there are k lineages

2. For each branch draw a number, Mt, from a Poisson distribution with intensity
tθ/2, where t is the length of the branch

3. For each branch, the times of the Mt mutation events are chosen randomly on
the branch

Step 2 of this algorithm represents an important point, being one of the basic ideas
that lead to the results of this work, namely that the longer the length of a branch,
the more mutations can occur. The direction of the mutation process is inverse to
the direction of generating the genealogy. Starting at the root of the coalescent tree
moving forward in time the type of genes is modified as mutations are encountered.

Table 3.1 shows a small data set consisting of five different sequences A-E, contain-
ing five different segregating sites, each site with a different position. The principle
of the infinite sites model is represented in figure 3.4. For instance sequence A has
two segregating sites, since on the path back to the root of this tree-like sequence

4adopted from [54] p. 42-43
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A       B         C      D      E

A
B
C
D
E

Figure 3.4: The data set of table 3.1 represented in a different way according to
the infinite sites model. Each dot depicts a mutation at one position, resulting in
the mutant state “1”. Each position mutates at most once. The ancestral string at
the root of this genealogy would be “00000”. Letters A-E represent the name of each
sequence.

representation only two mutations occur that can affect sequence A. Now that two
models are available, the Wright-Fisher reproduction model and the infinite sites
mutation model, these two can be combined. Since both models are stochastic, i.e.
genealogies are treated as random and mutations are treated as random, if the whole
process of coalescent (or “evolution”) was repeated, the outcome of different runs
would have different genealogies, which is very important to take into account when
analyzing coalescent data.

Each gene that is going to be passed on to the next generation is subject to
a mutation event with probability u. The chance of being copied without being
changed occurs with probability 1-u. Hence, a position along the sequence is chosen
randomly and the type of that position is changed from 0 to 1. Therefore, at this
position the ancestral allele mutated to the derived allele.

3.3 Expanding the basic coalescent

The basic coalescent acts as a foundation for a wide field of more complex adapta-
tions. Since real data is not as simple as required by the Wright-Fisher reproduction
model (3.2.1), the process of coalescent needs to be extended. Constant population
size, absence of selection, or random mating are restrictions that are hardly ever
present in real world data. This section is supposed to give a short introduction of
how to include simple deviations from these basic assumptions. However, since the
prevalent results of this work and the newly developed statistic are mainly based on
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population size changes, emphasis will be on the inclusion of non-constant popula-
tion size to the basic model.

3.3.1 The coalescent with changes in population size

It is well known that human populations vary in size over time (e.g. [2]). Such
fluctuations can be caused by a variety of factors. A population bottleneck, an
evolutionary event in which a significantly large number of individuals is either
completely removed from the population or is not able to contribute to the process
of reproduction anymore, can occur due to changes in the environment of a popu-
lation, for instance a natural disaster or diseases like polio or measles. But also a
slow change over time can happen as in the case of humans, starting at the time
of the neolithic revolution 10,000 BC [49], with 6 million individuals and growing
with constantly increasing growth rates per year up to over 6 billion individuals [13].

When considering such events the size of a population is not constant anymore
but (simplified) a function of time. At any point t the population size N is N(t).
Hence, equation 3.1 does not hold anymore, since the probability that two genes
coalesce (find the same parent in the previous generation) is now p(t)=1/(2N(t))
because N(0) might differ from N(t). This simply means that in each generation
the rate of coalescent, i.e. how many genes find the same parent in the previous
generation, is totally dependent on the size of the population. The more individ-
uals (i.e. genes) N in generation t, the smaller the probability p=1/(2N(t)), so
the probability of a coalescent event decreases. The understanding of this funda-
mental concept is crucial for the rest of this work, since it acts as the basic idea
that is used to detect population size changes in the history of a population. Thus,
the smaller the population size, the more quickly the MRCA (see figure 3.2) is found.

To simulate genealogies under changing population sizes time is the crucial point.
Still the modeling can be done by using the constant size coalescent process, but
then time needs to be stretched or compressed. If p(t) is larger than p(0), i.e. N(t)
is smaller than N(0) by e.g. a factor of 2, then time needs to be stretched locally
by a factor of 2. As already mentioned in figure 3.3, 2N is the general time for two
genes to coalesce and one unit in the continuous time coalescent model accounts
for 2N generations in the discrete time coalescent model. The time scale, therefore,
directly reflects the rate of coalescent and it can be shown that the coalescent model
with variable population size converges to a coalescent process with a non-linear
time scale [47]. Metaphorically speaking, stretching the time by a factor of 2 in
this case implicates that the constant size model would need twice as much time
to generate the same amount of coalescent events as the reduced population size
model (because this model has an increased coalescence rate). Thus, the smaller or
larger the population size is in generation t, the more or less coalescent time (time
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in units of 2N) passes. The genealogies will look the same in the basic constant
size coalescent model and in the varying population size coalescent model, just the
branch lengths are different. This idea is essential for the remainder of this work.

3.3.2 Genealogical effects of variable population size

The general effect of varying population size over time was briefly described in
the previous subsection. However, for a complete understanding, especially for the
2 point spectrum method, a more detailed explanation of the way how coalescent
times and genealogies as a whole are affected is of utmost importance. Following the
previously mentioned assumptions that need to be made when taking non-constant
size models into account, another condition is that N(t) is given in terms of continu-
ous time (in units of 2N generations) and that N(t) does not need to be an integer
value.
Let

Λ(t) =

∫ t

0

1

λ(u)
, (3.2)

where λ(t) = N(t)/N , the relative size of N(t) to N. Λ(t) is then the accumulated
coalescent rate over time measured relative to the rate at time t=0 (λ(0) = 1).
Furthermore Λ(∞) = ∞ in order to ensure that a sample of genes always finds a
MRCA. Also let T2,...,Tn be the waiting times while there are 2,...,n ancestors of the
sample and let Vk = Tn+...+Tk be the accumulated waiting times from there are n
genes until there are k-1 ancestors (see also [47]). So the distribution of times Tk
given Vk+1 = vk+1 is

P (Tk > t|Vk+1 = vk+1) = exp

{
−
(
k

2

)
(Λ(t+ vk+1)− Λ(vk+1))

}
, (3.3)

and vn+1=0. In order to calculate the time to the next event Tk it is important
to keep track when the last coalescent event occurred (Vk+1). The times of earlier
coalescent events are not required, which is a result of of the Markov property. Now
times need to be distinguished between the basic constant size coalescent (T ∗k ) and
the variable size coalescent (Tk).

Since this concept will later be picked up again, a general algorithm is given
(adopted from [54] p. 98):

1. Simulate T ∗2 ,...,T ∗n according to the basic coalescent (see previous sections),
where T ∗k is exponentially distributed with parameter

(
k
2

)
. Simulated values

are denoted by t∗k

2. Solve Λ(tk + vk+1)− Λ(vk+1) = t∗k for vk, k = 2,...,n and vn+1 = 0

3. The values tk = vk − vk+1 are an outcome of the process, T2,...,Tn, described
in equation 3.3
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This algorithm can be used to generate coalescent genealogies with arbitrary N(t).
Simply speaking, simulate times according to the basic coalescent until the start of
a size change and from there on, until the next size change happens, simulate times
from the basic coalescent with all times shortened or extended by a factor of f (with
N1 the time before and after the event and N2=N1*f the time during the event).
At the end of the event simulate again according to the basic coalescent. This will
be important for calculating the tuples of inter-coalescence times further on in this
study. The population size variation analyzed in the current work exclusively focuses
on instantaneous size changes, turning the function N(t) into a piecewise constant
function.

past

present

time

constant size bottleneck

time of 
bottleneck 
event

Figure 3.5: Shown are 2 coalescent trees, one generated under a constant size model
(left) and one under a bottleneck model (right). The red dots represent the most
recent common ancestors of each of the set of sequences. Time is running from past
to present and the dotted lines indicate the time at which the bottleneck occurred.

Figure 3.5 shows the comparison of a genealogy under a constant size model and
under a model that incorporates a population bottleneck. As can be seen, if the
population size was reduced in the history of a population, the coalescent rates are
increased during this time. Hence, more lineages than expected under a constant
size model will join and more genes will, therefore, find their common ancestor. In
the case of figure 3.5 all lineages coalesce during the bottleneck and the MRCA of
the entire sample is located within this time. At the time where two lineages coalesce
they are completely identical. The more recently this happens, the less time there is
for mutation and recombination to occur and to consequently change the sequences
until the present day. The effect of such a bottleneck is strongly dependent on the
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strength and how long ago it occurred.

Another very important way of size variation is exponential growth, the simplest
and most natural way of steady population growth, which can also be incorporated
into the basic coalescent. For the sake of completeness a brief summary of the effects
of exponential growth follows. Figure 3.6 shows the same genealogy generated under
an exponential growth model (left) and under a constant size model (right). As
indicated by the red points the MRCA is much more recent in the constant size
model. The stronger the rate of growth, the more star shaped the trees tend to look
and the sequences are expected to be equally diverged from each other [118], and
because of more time (on average) for mutation and recombination events to occur,
the sequences are expected to be more diverged as compared to a constant size
model. An interesting fact that can be seen for exponentially growing populations
is an increase in the amount of low frequency polymorphisms, especially singletons.

exponential growth constant size

time

present

past

Figure 3.6: Shown are two genealogies, the one on the left generated with exponential
growth and the one on the right generated with a constant size model. The red points
indicate the MRCA of each set of sequences.

3.3.3 The coalescent with recombination

The models and genealogies described so far have one thing in common: they do not
include recombination. Since the math behind the coalescent with recombination
is complex and a detailed understanding of this would not contribute to a better
understanding of the rest of this work, the details are just explained as necessary.
The structure needed to describe the relationship of a set of recombining sequences
turns into a complicated graph. Hence, calculations of tree properties, e.g. tree
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Figure 3.7: Shown is the haploid (2N genes) Wright-Fisher model with recombina-
tion. As already mentioned in the text, the genetic material of each individual from
generation t is transmitted by two parents from generation t+1 by recombination. If
the recombination rate is low, there is a higher chance for genes not to be affected by
recombination and being a direct copy of one of the parent genes.

height, branch lengths, etc., are not as simple as for the basic coalescent model,
actually even impossible to derive in some complex cases.

Recombination can occur by quite different mechanisms depending on whether
you look at eucaryotes, bacteria, or viruses. In humans, i.e. eucaryotes, recom-
bination is realized by sexual reproduction. In the basic Wright-Fisher model of
reproduction (see section 3.2.1) each gene in generation t finds exactly one parent
in generation t+1. With recombination the genetic material that a gene, or more
generally an individual, is made of, can be transmitted from two parent individ-
uals (see figure 3.7). That recombination can be included into the framework of
coalescent was first shown by Hudson in [61]. The disadvantage that needs to be
accepted is that there is no longer just one single underlying tree relating a set of
sampled genes. Linked sites can have different genealogical trees, so the lineage of a
segment of the sequence splits into two. Single points on the sequence of each gene
(or individual) are transmitted by only one parent from the previous generation. In
this case the relationship of the different sequences for each single point can still be
represented by a single tree, the so called local tree. Hence, the genealogy for the
entire sequence can be characterized by a collection of local trees, one for each point.
Thus, different parts of the sequence can have a different, even younger MRCA than
the MRCA of the entire sample.

Coalescent and recombination are two rival events, with coalescent merging two
lineages and with recombination splitting two lineages as time running backwards
(see figure 3.8). Like the scaled mutation rate θ (see section 3.2.3), the scaled recom-
bination rate is defined as ρ = 4Nr, with r being the probability of a recombination
event in a sequence in which case a point is chosen uniformly along the paternal
and maternal sequence and they recombine in that point. The scaled time until
the first recombination event is exponentially distributed with a rate of ρ/2 for the
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Figure 3.8: Shown is a very basic example of how coalescent and recombination can
be combined to build up the underlying graph structure. Red dots indicate coalescent
events and green dots indicate recombination events. The dark blue dot represents
the MRCA of the entire sample.

continuous time approximation if N is large. Thus, the more time passes, i.e. the
deeper the genealogy of a particular region is, the more time there is for multiple
recombination events to occur. This fact, among others, is one important insight
that has led to some of the results of this work. The effect of recombination is,
as well as for mutation, that the similarity of the sequences is decreased with each
event, resulting in a sample with more variation.

The combined effect of coalescent and recombination still leads to a MRCA (called
grand-most recent common ancestor GMRCA if recombination implicates a graph
like structure), since the coalescent intensity is proportional to the square of the
number of ancestors and the recombination intensity is linear to the number of
ancestors.
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Chapter 4
Importance of population size changes

“Wonder is the seed of knowledge.”

Francis Bacon (1560 - 1620)

The present chapter explains why inferring population size changes is of high
importance and briefly introduces commonly used methods in this field. Its special
focus is on approaches based on the site frequency spectrum (SFS) or based on
linkage disequilibrium (LD). LD and SFS are the two main principles that have been
used to develop the two approaches described in this work. This section is loosely
structured according to a recent publication that gives a comprehensive introduction
into the field of population size inference approaches [40] and to [113, 114].

4.1 Overview

As already mentioned the patterns of genomic diversity of a population or species
are shaped by a complex interplay of a large variety of demographic events like popu-
lation size changes, the exchange of genetic material between different populations,
and population splits or divergence. Trying to infer the demographic history is im-
portant for understanding evolutionary trajectories of populations. Reconstructing
temporal population size changes and understanding their causes can give insights
into how populations responded to historical events such as climate changes, glacial
cycles, or human driven events. For example, in the field of conservation biology,
gaining insights into how the size of a population is going to evolve might assist in
detecting past or ongoing bottlenecks. This seems crucial, since the reduction in size
also correlates with a reduction in genetic diversity which in turn might negatively
affect the evolutionary potential of a species. Furthermore, the effects of bottlenecks
and founder effects (the loss of genetic variation that occurs during the settlement
of a new population by a very small number of individuals from a larger population)
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can increase the presence of deleterious alleles. This effect has been shown to have
occurred in humans during the Out-of- Africa bottleneck [92].

What we see in today’s genetic data is a record of the past and, therefore, multi-
ple approaches to infer population size changes from genetic information have been
designed. Probably one of the most well studied events in human history is the al-
ready mentioned Out-of-Africa bottleneck (e.g. see [51]) with the human expansion
that began approximately 45 kya to 60 kya [56]. Often new methods were particu-
larly designed to investigate such specific events in species as the fruit fly Drosophila
melanogaster (e.g. [134]) or the thale cress Arabidopsis thaliana (e.g. [36]). Espe-
cially the fruit fly shares a similar demographic history with humans, as it also has
an African origin and over time populated new areas outside the continent [88].

4.1.1 Classical population size inference approaches

The site frequency spectrum (SFS) is the distribution of allele frequencies at a large
number of variant sites. Given the ancestral allele is known, it is then possible to re-
cover the SFS that contains the probabilities that an allele is carried by i individuals
pi=p(i|n), i=1...(n-1) for a sample of n sequences. In cases where the allele frequency
is identified experimentally by counting the two alternative alleles within this sample
of n sequences it is not clear which of the two is the mutant allele. In such situations
it is common to work with the less frequent (minor) allele, which is also called folded
spectrum [96]. Various statistical tests have been suggested to calculate one dimen-
sional summaries of the SFS and the current section will elaborate on commonly
used methods. In section 3.3.1 effects of population size changes on the coalescent
genealogy were explained and algorithms to incorporate such changes into methods
of parameter inference were given. Additionally I will now give a brief summary of
how such events can affect the SFS and lead to signatures that can, therefore, be
detected. One of the most common effects of a recent population bottleneck is the
reduction of low-frequency polymorphisms [103]. For a recent moderate bottleneck
the SFS would show a slight deficit of singletons (mutations that are only observed
once), a more significant reduction of other low frequency variants, and an increase
of high frequency variants. The more ancient a bottleneck is, the less of a signal of
singleton reduction, but the reduction of other low frequency variants remains long
after the end of the bottleneck. Strong bottlenecks imply that only few or even only
one lineage can escape and, as a result, genealogies tend to have a star-like shape
which in turn creates an excess of singletons immediately after the bottleneck event.
These deviations from a standard neutral SFS (i.e. from a population following a
standard Wright Fisher population) can be detected by many statistics. However,
single summary statistics are often not sufficient to capture the specific patterns of
deviations from the basic coalescent.
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Classical tests can be classified into three different categories based on the infor-
mation they use. Class I tests are based on the frequency spectrum of mutations,
class II tests on the haplotype distribution, and class III tests on the distribution
of pairwise differences. Class I statistics often make use of the differences between
different estimators of the population mutation rate (θ = 4Neµ), thereby detect-
ing distortions in allele frequency spectra. Commonly applied tests are Tajima’s D
[129], Fu and Li’s D, F, D* and F* [38], Fay and Wu’s H [33], and R2 [114]. Class
II tests use information from the haplotype distribution and are measures of linkage
disequilibrium. Hence, they are not completely independent of mutation frequencies
and thus not independent of class I statistics. Commonly applied class II tests and
statistics are Fu’s Fs [37], Nei’s Dh [102], EHH (extended haplotype homozygosity)
[117], Wall’s B [138], Kelly’s ZnS [73], Roza’s YA, the haplotype partition test (HP)
[63], the haplotype number statistic K [126], and the haplotype diversity statistic H
[27]. Class III statistics make use of fact that population size changes can leave a
particular signature in the distribution of pairwise mismatches. Examples are the
raggedness statistic rg [52], the MAE between observed and expected mismatch dis-
tribution [115], and the ku test [114].

In [114] the authors describe a number of statistical tests (class I, II and III) for
detecting population growth and compare them with other available tests in the
literature. Soriano et al. study several statistics (class I and II) to detect demo-
graphic expansions, contractions and bottlenecks [113]. In [118] authors investigate
the properties of test statistics of neutrality (class I) under population growth and
Cornuet et al. investigate statistics that are sensitive to population bottlenecks,
trying to detect the signature of a transient heterozygosity excess in bottleneck
populations [24]. A test for the detection of recent population bottlenecks was pro-
posed in [94], designed to detect the allele frequency distortion after a bottleneck.
In [26] departures from a simple model, caused by population bottlenecks and hitch-
hiking effects, are investigated. The authors evaluate the power of different tests
(class I and II) when faced with “severe” and “moderate” bottlenecks as a function
of age and strength. Summarizing the mentioned studies, class I and II statistics
are powerful for detecting population growth and bottlenecks. Class III statistics
often perform poorly to accept or reject a null hypothesis of growth or contraction
as they depend largely on one highly stochastic coalescent event leading to the root
of the genealogy. In particular, moderately old severe bottlenecks can best be de-
tected by statistics relying on the frequency spectrum of mutations. On the other
hand, haplotype tests are mainly useful to detect recent and more moderate bottle-
necks. Such conclusions massively depend on the details of demographic events and
on factors like mutation and recombination rate, population structure, gene flow,
etc. For example, class II statistics are strongly affected by recombination. Over-
or underestimating the recombination rate can decrease the power of such statistics
and result in biased or completely wrong conclusions.
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These classical approaches applied such test statistics to reject null hypotheses of
population growth, bottlenecks, etc. Besides those, there are alternative approaches,
e.g. maximum-likelihood based or MCMC methods to study population size changes
[6, 7, 39, 85], or different Bayesian approaches [5]. Furthermore, summary statistics
like the ones mentioned above can be included in an Approximate Bayesian Compu-
tation framework in order to infer the timing, duration, and severity of bottlenecks
as in [134] (in this case for Drosophila melanogaster). The authors consider the
variance of nucleotide diversity (θ̂π) per locus, the number of haplotypes K, and
a standardized summary of the site frequency spectrum H as informative to detect
changes in population size. In [15] the number of segregating (polymorphic) sites and
the nucleotide diversity are assumed to be informative of a population bottleneck.
Both statistics are included in an Approximate Bayesian Computation framework
(in this case for ancient DNA).

Despite using one dimensional SFS summary statistics, considering the entire SFS
can also easily be incorporated into likelihood frameworks. A variety of approaches
was suggested like analytical solutions of diffusion equations and fitting a simulated
SFS gradually to approach the observed SFS, by searching the constrained param-
eter space of given demographic models (e.g. see [36, 44, 51]).

Further approaches are based on IBD segments and runs of homozygosity. As
for the AF-IBD/S statistics (chapter 5), the idea for such methods is that homolo-
gous long segments that are IBD from a common ancestor provide clues about past
population sizes. Model based approaches showed that population growth and sub-
division can strongly affect the expected length of an IBD tract [16]. Long runs of
homozygosity contain insights into (among others) recent ancestry such as effective
population size for recent time periods. These segments can be calculated for two
homologous chromosomes within the same individual (e.g. [81]).

4.1.2 Recent genome-wide approaches

Approaches shown so far all depend on parametric demographic models. Hence,
an a-priori demographic model needs to be assumed and inference can then only
be based on this model. However, since population history is much more complex
than those described by parametric models, semi- and non-parametric methods have
been developed. The present work contains both kinds of approaches and provides
a comparison between the two principles.

One of the first and later commonly used non-parametric methods developed to
estimate historical patterns of population size from a genealogy without the need
for too many a priori restrictions on possible demographic models was the skyline
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plot framework [112] from 2000. Later various methodological extensions have been
suggested, generating a whole family of skyline plot methods (see [28, 55, 100, 107,
112, 125]) and see [58] for a comprehensive review of those. All of these methods
are based on the coalescent theory trying to reconstruct and estimate the coales-
cent genealogies. As previously described in section 3.3.1, population size changes
affect the rate of coalescent, i.e. the smaller the effective population size, the more
coalescent events take place on average. This principle is the key of all skyline plot
methods, since the rate of coalescent events (or the frequency of coalescent events in
a given time period) gives insights into the population size at a certain time point.
The first step includes estimating the genealogy, which can be done using standard
phylogenetic methods. The second step is the reconstruction of population history
based on the genealogy taking into account the relationship between population size
and expected length of the coalescent intervals, producing a piecewise reconstruction
of the demographic history. This whole process involves considerable uncertainty,
often referred to as the coalescent error. The coalescent is a stochastic process and
a single genealogy, given a specific demographic model, is only a single realization
of this process. These coalescent errors increase towards the root of each genealogy,
since population size here is only estimated from the last remaining lineages (i.e.
only two lineages in the last coalescent interval). The first published method is the
classic skyline plot [112] which is known to produce noisy reconstructions of the
demographic history owing to the number of free parameters and short branches in
the genealogy. For each coalescent interval in the genealogy a separate population
size is estimated and the genealogy is assumed to be known without error. The
generalized skyline plot [125] tries to circumvent the noise produced by short coa-
lescent intervals by grouping them with their neighbors if they are below a certain
length. Finding the optimal threshold length involves a good balance between the
reduction of noise and the information provided by the structure of the coalescent
tree. Again, the genealogy is assumed to be known without error. The Bayesian
multiple-change-point method was developed by Opgen-Rhein et al. in 2005 [107].
Purpose of this reversible jump Markov Chain Monte Carlo approach was to smooth
the piecewise demographic function of the generalized skyline plot and to estimate
the coalescent error. Sudden and drastic population size changes are assumed to be
unlikely which is implemented as a spline, a piecewise function comprising a num-
ber of polynomial curves. The 95% credible interval for the population size at each
time point can be used to estimate the coalescent error. According to its Bayesian
nature priors can be given for each parameter and the method tends to produce
relatively smooth plots. The Bayesian skyline plot [28] co-estimates the genealogy,
demographic history, and substitution model parameters in a single analysis. The
credibility intervals also represent the combined phylogenetic and coalescent error.
Since this method roots in the generalized skyline plot, the number of groups that
combine neighboring intervals need to be chosen. However, this decision needs to be
made a priori and choosing extreme numbers can increase error and be problematic
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for analyses of uninformative data sets. In the Bayesian skyride method [100] differ-
ences between population sizes of successive coalescent intervals are penalized using
a smoothing prior. Until then all methods were only capable of analyzing individ-
ual genealogies, i.e. single loci. One drawback of this approach is the coalescent
error that is associated with estimates from a single locus because each genealogy
only represents a single realization of the stochastic coalescent process. Therefore,
the extended Bayesian skyline plot [55] allows the analysis of multiple independent
unlinked loci, reducing the uncertainty of the coalescent, which can lead to an im-
proved reliability of demographic inference and reduction in estimation error. For a
simple comparison of the mentioned methods see figure 4.1.

Figure 4.1: Performance of different skyline plot methods for a simulated data set.
The actual demographic history is shown in panel A, with the faint vertical line at
50 kya indicating a change-point in the demographic function. The remaining panels
show the reconstructions of demographic history by five skyline plot methods. Note
the logarithmic scale on the y-axis. Figure was adopted from [58]. Further details of
the simulation model are given in their Appendix.

It is known that the distribution of time since the most recent common ancestor
(TMRCA) between two alleles in an individual provides information about the his-
tory of change on population size over time. Previous studies have reconstructed
the TMRCA distribution, analyzing large samples of individuals at non-recombining
loci like mtDNA [3]. Taking only a single locus into account might not provide a
sufficient resolution of inferences and power decreases with moving back in time. On
the other hand, a diploid genome sequence contains a huge amount of independent
loci, each with its own TMRCA between the two alleles carried by a single individ-
ual. Therefore, it should be possible to use this information to make demographic
inferences. Based on this idea Li and Durbin recently developed a coalescent-based
hidden Markov model for a pair of chromosomes (or one diploid individual) to es-
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timate past population size changes. This method is called pairwise sequentially
Markovian coalescent ( PSMC) [87] and the approach turned out to be useful and
efficient, but its accuracy in the very recent past is disturbed by the fact, that only
very few coalescent events occur in that time period. This is because of the small
sample size. PSMC takes linkage information into account and efficiently models
recombination between sites. It, therefore, uses the sequentially Markov coalescent
[98] for a pair of sequences to estimate an arbitrary piecewise constant population
size history. The HMM’s hidden states at a given position represent the coalescent
time of the two lineages at that position (TMRCA), whereas the observed state
represents the observed genotype (homozygous or heterozygous). Moving along the
sequences, coalescence time for the two lineages varies as a result of recombination.
Each region that can be described by a single genealogy, i.e. a region between two
recombination events, has a single TMRCA (see figure 4.2). These coalescent times
can be inferred by taking a mutation rate and sequence diversity in each region into
account. Transitions from one region to another can be detected by changes in the
spatial distribution of heterozygous and homozygous sites and TMRCA are informa-
tive about past population sizes. The demonstrated accuracy for simulated scenarios
shows that this approach can produce reliable population size estimates even from
a single diploid genome. However, as mentioned before, for very recent time periods
this method can not be recommended due to the fact that the small number of
samples causes only few coalescence events in that period of time. Metaphorically
speaking, the genetic variation information content from a pair of sequences is not
sufficient to infer very recent demographic events.

Figure 4.2: Illustration of the PSMC model. The PSMC infers the local time to
the most recent common ancestor (TMRCA) on the basis of the local density of
heterozygotes, using a hidden Markov model in which the observation is a diploid
sequence, the hidden states are discretized TMRCA and the transitions represent
ancestral recombination events. Figure was adopted from [87] Figure 1.
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Following the principles of PSMC, Sheehan and Harris developed an alternative
method that incorporates multiple sequences while retaining the key generality of the
previous approach [121]. As Sheehan et al. state, increasing the number of sequences
also increases the number of coalescence events during the recent past, thereby en-
hancing the resolution to infer size changes in those time periods. The main problem
when trying to incorporate multiple sequences in this inference framework is the ex-
plosion in the state space, i.e. the number of coalescent trees grows enormously with
the number of leaves (sequences). This method is called demographic inference using
composite approximate likelihood diCal and the computational complexity depends
quadratically on the number of sequences and can easily be parallelized, thereby
achieving a computationally efficient approach. For a direct comparison between
PSMC and diCal see figure 4.3. The aim of this figure is to show the performance
differences when using diCal and PSMC to infer a simulated demographic history.
As already mentioned, the power of PSMC in recent time periods decreases, clearly
shown by the deviation of the green line from the true simulated red line, whereas
diCal shows a perfect match for the recent constant size period of the history. Lines
shown here are the average of ten data sets.

Figure 4.3: Results of PSMC and diCal for simulated data sets under a specific
demographic history with sample size n=10 and four alleles (A,C,G and T). PSMC
significantly overestimates the most recent population size, whereas diCal obtains
good estimates up until the very ancient past. Results are shown as an average over
ten data sets (runs). Figure was adopted from [121] Figure 5.
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4.1.3 Perspectives

The current section tried to give an introduction into the field of population size
inference approaches and enumerated various methods from single statistics to com-
prehensive likelihood inference approaches. Simple test statistics like Tajima‘s D,
etc., provide valuable information and proved to be sensitive to deviations from a
standard constant size demographic model. They have been applied in a wide range
of diverse studies trying to gain insights into the demographic past of populations.
However, single number statistics can only capture specific parts of the underlying
data and often the effect of certain demographic events is quite specific on differ-
ent statistics. Therefore, genome-wide approaches that include the calculation of a
likelihood function, made up of several aspects of the data, more and more develop
into powerful methods of demographic parameter estimation. Detecting departures
from equilibrium conditions was usually done by assuming that populations can
be approximated by a Wright- Fisher model (i.e. no selective pressure, assuming
panmixia, demographic stationarity, etc.). However, natural populations are often
part of spatial networks and the assumption of completely isolated populations is as
well unrealistic, since they are often interconnected by gene flow. Hence, so called
confounding factors can lead to false positive results during demographic parameter
estimations when not accounted for. Biasing factors can also influence and skew the
estimates of demographic parameters in wrong directions. As an example, in [18]
Chikhi et al. simulated stationary populations not subject to any population size
change. Varying the levels of gene flow between populations, the mutation rate, and
sampling scheme, they showed that those factors were able to create false bottleneck
signals (detected with an MCMC method). Confounding and biasing factors can
therefore be classified into genetic factors like mutation and recombination rate, and
demographic factors like hidden population structure and the sampling scheme (i.e.
how multiple individuals are sampled from multiple populations). False assump-
tions of the underlying mutation and recombination rate can massively affect the
outcome of inference methods. If not accounted for these factors, the quality of the
results can be significantly decreased. For example, class II statistics are sensitive
to recombination events, since recombination can break down the haplotypes into
smaller chunks creating false signals if not modeled correctly. Often, such methods
are only applied together with a known recombination map of the genetic regions
of interest. Pooling samples from different populations can produce a shift in the
SFS toward low-frequency polymorphisms which in turn is a signature of population
expansion [111] and, as also shown in Chikhi et al., population structure can pro-
duce a similar SFS as a bottleneck event. Class I statistics can, therefore, heavily be
affected by factors influencing the site frequency spectrum of populations. Despite
the briefly mentioned factors, many more demographic and genetic influences like
recent admixture or ascertainment bias (see chapter 5), etc., can negatively affect
the results. Trying to take these things into account requires a complex framework
and often includes modeling a variety of different peripheral parameters. The more
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parameters are involved, the more sensitive to specific parts of the demographic
model the applied summary statistics need to be. Hence, the use of only a single
summary statistic is, therefore, not sufficient enough and a specific interplay of data
summaries and likelihood-like approaches is needed. But even if having controlled
for all these caveats, the interpretation of potential signals is still challenging, since
distinguishing between multiple potential explanations can be difficult and a variety
of scenarios can have similar outcomes. Sophisticated non-parametric methods (e.g.
[87, 121]) that allow for a high degree of flexibility, facilitate the fitting of demo-
graphic processes, and at the same time become more and more convenient to use.
However, since these methods recently emerged, little is known about the effects
of confounding and biasing factors on these approaches. Interpreting such demo-
graphic estimates of different methods must not be underestimated and is specific
from case to case.

The current study introduces two different methods, a parametric and a non-
parametric approach. Both methods represent a new way of summarizing informa-
tion from underlying data while being sensitive to past population size changes.
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Chapter 5
The AF-IBD/ AF-IBS method

“Everything must be made as simple as possible. But not simpler.”

Albert Einstein (1879 - 1955)

As already stated, the overall goal of this thesis is to analyze genome-wide data
to infer demographic parameters. Two distinct methods were developed for this
purpose and the following chapter will therefore give a detailed description of the
AF-IBD/IBS method. As mentioned, it can be read as a complete study in its own,
providing an introduction, methodology, results and discussion section. Most of the
current chapter is adopted from [132] and introduces a new set of summary statistics
that are sensitive to past population size changes. These statistics are applied within
a framework of Approximate Bayesian Computation to infer parameters of interest
from underlying demographic models of different population size histories.

5.1 Introduction

As I already introduced in chapter 2.3.1, large parts of genetic data are from the
recombinant autosomal genome, especially in the form of SNPs (see [23, 89, 93]).
As previously explained, a lot of the existing studies infer the demographic pa-
rameters of interest by examining the allele frequency spectra, which are first cor-
rected for ascertainment bias and later fit to the best demographic models using
maximum likelihood computation. Since likelihoods of SFS can be numerically de-
rived or approximated by simple simulations, such methods are computationally
efficient. However, such methods based on the SFS are often sensitive to differ-
ent sources of ascertainment bias and are usually applied under highly simplified
demographic models. Another class of methods make use of summary statistics
that capture information from different aspects of the data and evaluate how well
they fit different demographic scenarios, which often involves the simulation of large
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amounts of genome-scale SNP data, and therefore, are highly computationally in-
tensive. Another limiting fact is their mutual dependency and diverse sensitivities
toward simulation assumptions make it difficult to evaluate the inference accuracy.
Improvements in simulation efficiency and novel statistics systematically designed
for demographic inference without making too strong assumptions are much needed
(e.g. PSCMC, diCal etc.). Methods based on haplotype or linkage disequilibrium
(LD) patterns should in theory be less affected by ascertainment bias ([21]). LD is a
property of a genetic region, whereas ascertainment bias influences particular SNPs.
Effective population sizes have recently been estimated from LD ([57, 127]). How-
ever, LD based statistics often suffer from limited resolution as either Ne is estimated
as an average over long periods of time or the models studied are too simplistic. In
[124] the authors reported that measurements of intra-allelic variability can be used
to test neutrality and to infer population growth. Intra-allelic LD might also pro-
vide information for inferring more complex demography. I show that the statistics
suggested here are informative about ancient population size trajectories and can
be used in the framework of ABC to accurately estimate demographic parameters
from simulated data. Finally I applied the ABC-based method to genome-wide SNP
data for the Yoruba and French population from the CEPH-HGDP panel [89].

5.2 AF-IBD & AF-IBS

In this section I propose two statistics to infer ancient population size changes un-
der neutrality. It is known that the intra-allelic variability and the allele frequency
are two different measurements of allele ages, with the former revealing age at the
absolute time scale, for example, in generations [97], and the latter at the rescaled
coalescent time scale [123]. In [124] Slatkin and Bertorelle proposed, that the con-
trast of these two measurements can be used to test neutrality or to make inferences
about population growth. All times in the current chapter are given in units of gen-
erations, in order to be able to directly compare the results with previous studies.
Therefore, times in generations need to be divided by 4*10,000 in order to obtain
times in units of 4Ne for simulation in ms. Nordborg and Tavaré [106] suggested
that the intra-allelic LD can be informative about different aspects of demography,
such as ancient population size and population structure. We propose that the intra-
allelic LD measurement, when conditioned on allele frequency, may indeed be very
informative about complex demographic trajectories. This is because when allele
age in absolute time scale is compared with the age in coalescent scale, their ratio
actually measures the Ne in each time interval (see 8.1.1 for detailed discussion).

The two statistics proposed here are both related to the haplotype sharing for
a given derived mutation. Studies have investigated the extension of the ancestral
(identical) haplotypes from a derived mutation, and its use in disease/quantitative
trait locus (QTL) mapping and neutrality tests [64, 97, 122, 123]. Our statistics
are similarly constructed. The first statistic is the extended length of identity by
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descent (IBD) conditioned on derived allele frequency (AF-IBD). Here the literal
meaning of IBD is taken, which is the identity of sequences that descend from a
single ancestral sequence, without any change in status from either mutation or
recombination. IBD quantities usually have to be indirectly estimated, as tracts of
IBD cannot be directly observed [97, 127]. However, to directly study how AF-IBD
varies under different demographic scenarios, I start by assuming that IBD can be
directly observed, and I later relax this assumption.

Assume that the genome is continuous, and all recombination and mutation events
can be detected and exactly positioned. For any variant s of derived allele frequency
j in a sample of n haplotypes (2≤j≤n-1), denoted as ln,j,s, the length of the identical
haplotype extending from s to either side until the first detectable event (mutation or
recombination) occurs (see figure 5.1A and B). The AF-IBD for allele frequency j is
then defined as the expectation over all variants of frequency j:AF-IBDn,j=E(ln,j,s).
To study empirical sequence or SNP data, the statistic AF-IBS is proposed, simi-
larly defined as AF-IBD: for a sample of n sequences, for each site s with derived
allele frequency j (2≤j≤n-1), the distance up to which the carrier chromosomes are
identical by state (IBS) is calculated in either direction, that is, up to one site before
the first breakpoint, here denoted as xn,j,s (see figure 5.1C). The maximum distance
xn,j,s is limited to 500 kbp in the simulations and any distance larger than 500 kbp
in either empirical or simulated data is taken as 500 kbp. The AF-IBS of allele
frequency j is then taken as the average of xn,j,s over all sites of allele frequency
j:AF-IBSn,j=Mean(xn,j,s).

The underlying idea is not new, i.e. that at the root of a genealogy the sequences
are identical. Metaphorically speaking, adding mutations to a coalescent tree is a
process proceeding from the root to the tips and the root has the ancestral state,
i.e. a string of zeros. The more time there is for mutation and recombination to
change the state of a position from “0” to “1”, the more the sequences, related by
the underlying tree, will differ from each other. In the absence of mutation and
recombination, all genes would be identical, starting from the root to the tips of the
tree. Furthermore, the more ancient a mutation or recombination event is, the more
sequences are affected by it, see figure 3.4 for details. In section 3.3.1 the effects of
changes in population size are explained.

The distances calculated with the above algorithm should be, at least on average,
larger for smaller derived allele frequencies. This is rather intuitive, since the prob-
ability that a set of haplotypes is identical at the same position, decreases the more
haplotypes are considered at once. The main concepts that are expected are given
in table 5.1.

I first study the properties of AF-IBD under different demographic scenarios, and
then the performance of AF-IBD in demographic parameter estimation, using an
ABC approach on simulated data, is examined. I then analyze the relationship be-
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Figure 5.1: A) The coalescent of n individuals, where j (here j=4) lineages from
a subtree J are shown, colored red, before joining the other lineages by a root edge
colored in green. The total length of subtree J, Tn,j is the sum of the red edges
measured in generations. B) The extension of the ancestral haplotypes in red is
shown for multiple sequences from a core mutation of frequency of j=4 (shown in
green). Mutation and recombination are taken as equivalent events that terminate
the extension of the original ancestral haplotype. The ancestral shared haplotype
is, therefore, the overlapping red segment that ends at the first event among all the
sequences. The length of this segment is taken as a measurement of ln,j,s which when
averaged over all sites of frequency j defines AF-IBD for j. C) As the counterpart
of ln,j,s in empirical sequence/polymorphism data, xn,j,s is taken as the length of the
shared haplotype extending from the core mutation up to the first observed site that
varies among the j haplotypes. xn,j,s averaged over all sites of frequency j gives the
estimation of AF-IBS for sequence/polymorphism data.

tween AF-IBS and AF-IBD and establish an efficient ABC approach for relating
AF-IBS to AF-IBD. Finally, the AF-IBS-based ABC method is evaluated in simu-
lations and applied to the estimation of demographic histories from empirical SNP
data for human populations.

5.2.1 Examining AF-IBD under various demographic scenarios

I first examined how AF-IBD behaves under different scenarios of population size
changes, by analyzing the mathematics and generating simulations.

For a mutation s of allele frequency j in the n sampled sequences, when the
coalescent tree is given, it occurs on the root edge (shown in green in figure 5.1A) of
a subtree J with j lineages (shown in red in 5.1A). The recombination and mutation
events (hereafter referred to as “events”) can then be superimposed onto the tree
with rates ρ and µ base−1 generation−1, respectively. As in equation (4) of [124],
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Amount of derived alleles Similarity AF-IBD/-IBS Distance
old event high small short

young event low large long

Table 5.1: The main concepts that are expected under a neutral constant size model
are given. Events refer to mutation or recombination events. Statements refer to a
specific site (position) in a set of haplotypes, related by an underlying coalescent tree.

ln,j,s follows an exponential distribution with the rate parameter as the event rate,
integrated over time and lineages in the subtree J:

ln,j,s =∼ Exp(TJ,s(µ+ ρ)) (5.1)

where TJ,s is the total length of the subtree J in generations, defined by the
mutation s. AF-IBDn,j, which is the expectation of ln,j,s over all sites of frequency
j out of n, can be integrated over all sites of j out of n as:

AF − IBDn,j = E[ln,j,s] =

∫ ∞
L=0

∫ ∞
τ=0

P (TJ,s = τ)

P (ln,j,s = L|TJ,s = τ)dτdL

(5.2)

where E(T−1J,s) is the expectation of the inverted total length of the subtree across
all mutations of frequency j. Denote the absolute time as τ and the variable popu-
lation size as a function of τ , N(τ). The distribution of AF-IBD can be derived by
simulating a large number of coalescent trees as proposed previously [124]. Details
of calculating the distribution of AF-IBD can be found in chapter 8.1.2. This pro-
cedure is referred to as the tree sampling method, and it was used in the current
work to study different models of population size changes.

To understand how AF-IBD responds to population size changes, I simulated
models of various demographic scenarios including constant size, bottleneck, expo-
nential growth and complex models. A total of 1,000 coalescent trees were generated
for each model. The sample size was set to be 100, so AF-IBD for j=2. . . 99 were
calculated. The mutation and recombination rate were both set to the arbitrary
value of 2.5×10−8 gen−1 site−1. The constant size models assumed different popu-
lation sizes of 1,000, 5,000, and 10,000. The scenario of expansion was examined by
assuming that the population size grew exponentially from an ancestral population
size of 500, 1,000, and 10,000 to a present population size of 10,000, 50,000, and
100,000, starting at a time point between 40 and 2,400 generations ago. A series
of models of single bottlenecks were simulated with the event occurring sometime
between 200 to 3,200 generations ago, with the reduction factor being 0.3, 0.1, or
0.01, and the duration ranging between 10 and 100 generations. Finally, a series of
complex models were also simulated with an expansion event following a bottleneck
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event, or two or three consecutive bottlenecks. Combinations of events of various
times of onset, durations, and magnitudes were examined. To quantify the effects of
population size changes on AF-IBD, the AF-IBD vectors from various models were
compared with that of a standard constant size model with Ne of 10,000.

5.2.2 Parameter estimation with AF-IBD using ABC

To further analyze the properties and information content of AF-IBD, ABC was
applied. The underlying idea of ABC is that observed and simulated data sets are
summarized into several representative values, which are then compared to find the
simulations which best match the observed data. I implemented the ABC approach
as described previously [30]. The aim was to investigate whether underlying demo-
graphic parameters can be estimated, if only AF-IBD is used to summarize a data
set. Here, I assumed that AF-IBD can be calculated from the observed (simulated)
data. Later I developed a procedure to relate AF-IBD to the statistic AF-IBS, which
is directly calculated from the observed data. All data were generated by simulating
coalescent trees as described in the previous section. The sample size of 100 was
assumed but only AF-IBD for j=2, 3. . . 41 were considered as summary statistics for
the ABC calculation. Pseudo-observed (i.e., simulated data sets for which the true
values of the parameters were known) were generated for 300 parameter sets from
each of three different demographic models. One million ABC simulations, with pa-
rameters drawn from the uniform parameter prior distributions, were then compared
with the pseudo-observed data to calculate the posterior parameter distributions.
See chapter 8.1.4, for details concerning the ABC settings.

The first model assumes a constant size with a single parameter, the effective
population size Ne. The second model was a 2-parameter sudden-growth model, in
which the ancestral population size is fixed to 10,000 and starts growing exponen-
tially at time T1 ago until reaching a present day population size of β∗10,000, and
the third was a 3-parameter single-bottleneck model of a fixed ancestral population
size of 10,000, whose population size declines by a factor β at time T1 and then
recovers to 10,000 at time T2.

The accuracy and performance of this AF-IBD-ABC approach were evaluated
by the relative root mean square error (RMSE, which is the square root of the
mean square error divided by the true value), the mean absolute error (MAE, a
weighted average of the absolute errors, with the relative frequencies as the weight
factors), and the 95% and 50% coverage (proportion of times in which the true
parameter value is inside the equal tailed 95% or 50% credible interval [CI]). These
measurements were calculated by taking the mode of the posterior distribution as a
point estimate. In table 5.2, for both the sudden-growth and the bottleneck model,
ancient Ne was fixed to 10,000. In the bottleneck model, the population recovered
100% of its original size after the bottleneck event. Each estimation was based
on the comparison between one pseudo-observed AF-IBD and one million simulated
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Model Parameters Prior∼U RMSE MAE 95% Cov 50% Cov

Constant Ne 1,000-10,000 0.0498 0.0425 0.97 0.72
Sudden growth T1 200-800 0.1920 0.1392 0.94 0.68

β 2-10 0.0851 0.0624 0.97 0.63
Bottleneck T1 200-800 0.6761 0.4457 0.93 0.61

T2 200-800 0.5412 0.4414 0.95 0.55
β 0.01-0.3 0.4311 0.3259 0.94 0.54

Table 5.2: Measures of accuracy for AF-IBD-ABC parameter estimation. Prior gives
the ranges of uniform priors. Cov represents the 50% and 95% coverage.

AF-IBD statistics. The ranges for the uniform prior distributions for each parameter
are given as well.

5.2.3 Use of AF-IBS for sequence or polymorphism data

When considering realistic polymorphism data, it is not easy to estimate AF-IBD, as
the status of IBD is not directly observable. Although there exist various methods to
estimate IBD-based statistics from sequence or SNP data ([11, 97]), these methods
are too computationally intensive to apply to genome-wide data. I, therefore, use
AF-IBS to replace AF-IBD. Other than IBD, IBS can also result from recombination
among homologous haplotypes or back mutation, or simply lack of polymorphic sites
[64]. When the SNP density is high, in theory the length of IBS should be mainly
accounted for by IBD. Therefore, I test whether AF-IBS has similar sensitivity as
AF-IBD toward ancient population size changes. I simulated sequence data from
the same models as for AF-IBD (see model cartoons in appendix figure 8.2). For the
sequence simulation, sets of 100 haplotypes of length 2 Mb were simulated for 1,000
replicates for each set of demographic parameters. Simple ascertainment schemes
were applied in which only sites variable within a parallel discovery panel of 5, 7,
10, or 15 haplotypes were kept to compose the polymorphism data and used to cal-
culate AF-IBS. Throughout these simulations, the mutation rate and recombination
rate for sequence data were assumed to be 2.5×10−8 and 1.3×10−8 gen−1 site−1,
respectively, which are the reported genome averages [22, 142]. Results for different
demographic models were then contrasted to a constant size model of Ne=10,000 to
examine whether AF-IBS shows similar demographic sensitivity. I then examined
how different AF-IBD and AF-IBS are for the same demographic history. I intro-
duce the ratio between AF-IBS and AF-IBD (hereafter referred to as SD ratio) for
the same demographic model. The SD ratio is defined as a vector of index j where
SD ratioj=AF-IBSn,j/AF-IBDn,j for each frequency j.
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Model Parameters Prior∼U RMSE MAE 95% Cov 50% Cov

1 Parameter Ne 1,000-20,000 0.080 0.0714 0.96 0.69
3 Parameter T1 100-2,000 0.195 0.131 0.94 0.57

β 0.01-0.9 0.179 0.171 0.94 0.52
Ne 5,000-40,000 0.153 0.131 0.93 0.61

5 Parameter Ne 15,000-50,000 0.257 0.213 0.93 0.59
T1 50-2,000 0.391 0.314 0.92 0.49
β1 0.01-0.5 0.516 0.467 0.90 0.52
T2 10-510 0.314 0.201 0.91 0.48
β2 0.1-0.4 0.402 0.357 0.89 0.46

Table 5.3: Measures of accuracy for AF-IBS-ABC parameter estimation. Prior gives
the ranges of uniform priors. Cov represents the 50 and 95% coverage

5.2.4 Parameter estimation with AF-IBS using ABC

I established an ABC method using AF-IBS to estimate demographic parameters
and evaluated its performance in the simulated scenarios.

The accuracy and performance of this AF-IBS-ABC approach were similarly eval-
uated as already described for the AF-IBD-ABC approach (see table 5.3). I simu-
lated 300 random data sets for each of three different models, which have one, three,
and five parameters, respectively. The 1-parameter model is similar to the previous
constant size model. The 3-parameter model is a sudden-growth model in which
an ancestral population size increases instantly by a factor of β at time T1. The
5-parameter model assumes a population size reduction from an ancestral size at
time T2 by a factor of β2 and a population expansion at time T1 by a factor of β1 to
a current size of Ne. For all models I sampled the pseudo-empirical parameters from
a uniform prior on each parameter space. For each simulation, 250 10-Mb segments,
each composed of 42 haplotypes, were generated with maCS [17]. For all analyses
of AF-IBS-ABC, I used the software recosim [119] to simulate a random map of
variable recombination rates across 10-Mb regions. I used the same recombination
parameters as in the “best fit” model of [119], and the basal recombination rate is
set according to the autosomal deCODE distribution [82]. I generated 250 of such
10-Mb maps covering the whole genome, and each simulation takes one of them.

A simple ascertainment scheme was applied to match the SNP densities of all
allele frequencies to that of the empirical data, as similarly applied before [119].
Briefly, the empirical allele frequency spectrum was determined for both Yoruba and
French, and then the simulated SNPs of a certain derived allele frequency (DAF)
were repeatedly removed until the SNP densities in simulations equaled that of the
empirical data. AF-IBS was then calculated for the simulated SNP data.

Theoretically, the ABC method based on AF-IBS can be done by randomly gener-
ating large amounts of SNP data and calculating their AF-IBS as described earlier.
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However, this is computationally non-feasible as the SNP data simulation at genome
scale is very time consuming, and the required number of samplings in ABC is usu-
ally very large, for example, 106. Here I developed a new ABC approach to solve
this problem. Note that the simulation of AF-IBD is very efficient as only coales-
cent trees are sampled. If AF-IBS is calculated from AF-IBD, then the AF-IBS
values can be efficiently obtained by tree simulations. Noting that AF-IBS and AF-
IBD are closely related, and their SD ratios are relatively robust against changes
in demographic parameters (supported by the analysis, shown in section 5.3.4), I
constructed a SD ratio grid on which AF-IBD can be efficiently converted to the
corresponding AF-IBS. The SD ratio grid approach is implemented as follows: First
the ratios of AF-IBS/AF-IBD were obtained for a predefined grid of parameter val-
ues, by simulating both coalescent trees and SNP data. SD ratios for any arbitrary
parameter sets are then imputed based on this grid, assuming local linearity along
the parameter values (details about the construction of the SD ratio grid and the
SD ratio imputation method can be found in chapter 8.1.3). Based on this, the ABC
method using AF-IBS is briefly summarized as follows:

1. 106 random parameter sets are sampled from the priors

2. AF-IBD is calculated for each parameter set

3. The AF-IBS/AF-IBD ratio is imputed from the SD ratio grid, and AF-IBS is
calculated from AF-IBD

4. The simulated AF-IBS is compared with the empirical AF-IBS to give the
best-fitting model

5.2.5 Model misspecification

The real populations may have hidden population structures that are not represented
by these simple models. It is, therefore, important to evaluate whether such hidden
population structure will influence the AF-IBS calculation. I analyzed the AF-
IBS behavior under certain model misspecifications. To see the effects of potential
hidden population structure, I simulated an ancestral population of size Ne=10,000
that split into two populations, 200, 500, and 1,000 generations ago (constant size
demography). I analyzed the effect on AF-IBS of the two daughter populations
having sizes 50/50 or 30/70 percent of the ancestral population, respectively (50
samples each). After that, I additionally simulated gene flow (0.1% and 0.5% per
generation) between the two populations.

Empirical data are usually obtained as unphased genotype data, which is subject
to an additional statistical calculation of phase reconstruction to infer the haplo-
type composition. As AF-IBS essentially measures how long a homologous segment
extends, it may be sensitive to switching errors during the phase reconstruction.
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Therefore, I evaluated the effect of errors in the phase reconstruction on the AF-
IBS calculations. I applied the program fastPHASE [120] to various SNP data sets,
simulated under different demographic scenarios (1-, 3-, and 5-parameter models
with different parameter sets). The parameter values for the demographic models
were chosen to cover a broad range of possible scenarios, with ancestral Ne rang-
ing between 5,000 and 30,000 and recent Ne ranging between 5,000 and 40,000 and
times of expansion or bottleneck events ranging between 50 and 2,000 generations
ago. The parameters for fastPHASE were set to the same values used for the phas-
ing of the empirical data. I then analyzed the ratio of AF-IBS before and after
the phasing. The ratios indicate that the phasing errors do have an impact on the
AF-IBS calculation, especially for the lower DAFs (figure 8.3). As the effects are
similar for different demographic scenarios, I calculated the average ratios across
all the simulations. The AF-IBS values calculated for the empirical data were then
corrected by multiplying the inverses of these average ratios, for the lower DAFs
2-12. AF-IBS values for higher DAFs do not seem to be affected by the phase errors
and are, therefore, not corrected.

5.2.6 Parameter estimation for empirical data

I applied the ABC method using AF-IBS to the empirical SNP data. The genome-
wide SNP data from the CEPH-HGDP panel was used [89]. The data were phased
with the fastPHASE program and then corrected for the effects of phasing error, as
described before. Statistics were calculated for 42 randomly chosen chromosomes
from each population. For the calculation of AF-IBS I considered only sites at
least 5 Mb away from the chromosome ends, which resulted in AF-IBS values for
∼490,000 sites, covering a genomic length of ∼2.2 billion bp. I tested the same
three models as for the pseudo-empirical SNP data described earlier. To decide
which model performs the best, I performed a model selection using a Bayes fac-
tor analysis [9, 65]. The same number of simulations was chosen for each model,
so that they were a priori equally likely, and I computed the ratio of acceptance
rates for each pairwise model comparison. The posterior probability of a given
model is then approximated by the proportion of accepted simulations given this
model. The approach used here is implemented in the R package abc (http://cran.r-
project.org/web/packages/abc/index.html1). I additionally performed a test based
on a logistic regression method [32], where a multinomial logistic regression is fit with
the model being the categorical dependent variable. The regression is local around
the observed summary statistics vector (as in the parameter estimation). Finally,
the model probability is assessed at the point corresponding to the observed vector of
summary statistics. For this method I used the “calmod” function written by Beau-
mont (available from the popabc package at http://code.google.com/p/popabc/2).

1last visited on 30/11/2013
2last visited on 25/11/2013
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Model selection was based on 1 million simulations for each model.
On the basis of this model choice approach, I additionally analyzed the power

of this procedure to accurately recover the true model using the AF-IBS-ABC ap-
proach, following previous methods [32]. I used the 300 simulated ascertained and
phase-corrected data sets from the prior distribution for each model considered (1-,
3-, and 5 parameters) and analyzed them using the same simulations and pipeline
as for the empirical data. Each of the 300 data sets then refers to one of the three
models with the highest posterior probability. I then counted how many times this
approach was able to identify the true model.

5.3 Results for AF-IBD & AF-IBS

5.3.1 Properties of AF-IBD

When AF-IBD is plotted against the allele frequency, it can be seen that AF-IBD
decreases monotonically with increasing allele frequency (see figure 5.2A and 8.1A).
This is easily understood, as variants of higher allele frequencies are on average older,
and their intra-allelic IBD, therefore, has decreased more over time. Parameters
given in the legends of figure 5.2 represent the start and end of the bottleneck in
generations before present, as well as the reduction factor during the bottleneck, the
number of generations for each period of growth lasting to the present day as well as
the ancient and present day population sizes, respectively. As explained, different
demographic histories have distinct effects on the outcome of AF-IBD, which clearly
shows the sensitivity of this statistic to population size changes.

When AF-IBD values are compared between constant size models of different
population size, it can be seen that the ratio is constant across different allele fre-
quencies, and it is the inverse of the ratio of population size (figure 5.2B). This is
expected given that coalescent rescales with population size.

AF-IBD is essentially contrasting two different measurements of allele age. Each
allele frequency defines a time range on the coalescent time scale, for example, in
the unit of inverse of effective population size (appendix equation 8.1). For the same
time range in coalescent scale, when the effective population size is big, then the
absolute time span is long, resulting in shorter average IBD length. Otherwise, the
average IBD length becomes longer. This suggests that smaller AF-IBD indicates a
bigger effective population size and vice versa. Therefore, the AF-IBD curve along
the allele frequency spectrum reflects the details of population changes.

The observations from simulations are consistent with the above statements. I
contrasted AF-IBD values for different demographic models with that of a constant
size model of Ne=10,000. Figure 5.2C shows the comparisons among four bottle-
neck models. All ratio curves are elevated above 1, with a single peak at different
allele frequencies and magnitudes. The most recent bottleneck has a peak around
allele frequency 10 with the highest ratio approximately 2.1. The intermediate-aged
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bottleneck is shifted to the right to around frequency 15 with a peak height of 1.6
and even the relatively ancient bottleneck event, starting 1,000 generations ago, also
resulted in elevated ratios around the frequency 20-30. It is obvious that AF-IBD
has higher sensitivity to more recent events than older ones of the same magnitude.
On the other hand, strong ancient events can also induce big changes in the relative
AF-IBD curve. This can be clearly seen in the fourth model, where the duration of
the size reduction was increased to three times that of the third model (figure 5.2C).

For the scenarios of expansion, figure 5.2D shows that the ratios of AF-IBD started
from 0.3-0.4 at the lower allele frequency range, much lower than the value of 1 ex-
pected under a constant population size. The ratio curve recovers quickly back to
close to 1 for the recent expansion. The increase of the ratios along the allele fre-
quency is progressively slower and to a lower maximum when the expansion starts
earlier in time (figure 5.2D). Finally, the AF-IBD ratio is also sensitive to com-
plex models where multiple events shaped the population size trajectory. Figure
5.2E shows the AF-IBD ratios for two complex models, one defined by a recent
weaker bottleneck (200-210 generations ago, 100 times size reduction) following an
old strong bottleneck (1,000-1,100 generations ago, 100 times size reduction; colored
in black), and the other defined by a recent expansion (population size from 10,000
to 100,000, starting at 500 generations ago) after an intermediate-aged bottleneck
(1,000-1,100 generations ago, 100 times size reduction, colored in red). The two
curves clearly differ from each other: for the case of two bottlenecks, the ratio starts
above 1 and increases to a first turning point around frequency 10, then rises to
the second turning point around frequency 40. For the case of expansion following
bottleneck, the ratio starts from below 1 as expected for large population size and
keeps ascending above 1 until reaching a maximum at the highest frequency. The
increase in the AF-IBD ratio is clearly due to the bottleneck.

5.3.2 AF-IBD-ABC

I first tested an ABC framework assuming that AF-IBD can be directly observed.
The purpose was to first analyze how accurate underlying demographic parameters,
connected to population size changes, can be estimated in the absence of any com-
plications introduced by the type of empirical data (e.g., ascertainment bias). In
table 5.2, shown are several calculated measures of precision, which represent the
differences between preset parameter values and estimated parameter values. I cal-
culated the RMSE, the MAE and the 95% and 50% coverage (see 5.2.2). Results
from table 5.2 show that this method of inference is highly precise for the single pa-
rameter constant size model. This can be explained by the underlying mathematical
features of AF-IBD. As shown in figure 5.2B, the reverse ratio of AF-IBD for differ-
ent constant size models coincides with the population sizes. The estimation for the
2- and 3-parameter models, although slightly less accurate, still provides estimates
that are sufficiently close to the true values. The reduced accuracy is expected,
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as the same AF-IBD curve might result from different but equivalent demographic
histories. For example, the general effect of a strong but short bottleneck can be
very similar to that of a weaker but longer bottleneck. However, in most cases, I
could estimate the true underlying parameter values with a high level of accuracy
(table 5.2), demonstrating the validity of the AF-IBD-based ABC approach.

5.3.3 Properties of AF-IBS

Presenting the comparisons between AF-IBS and AF-IBD for models of three dif-
ferent scenarios: constant size, expansion, and bottleneck. Specifically AF-IBD and
AF-IBS of the bottleneck and expansion models were contrasted against those of the
constant size model, and the ratios were plotted together (figure 8.2A and 8.2B).
It can be seen that the ratio curve of AF-IBS is close to that of AF-IBD. In the
bottleneck scenario, the AF-IBS ratios are shifted slightly below the AF-IBD ratios,
but the position of the peak is well conserved. For the expansion scenario, AF-IBS
curves are slightly above the AF-IBD curve although the general shape is unchanged.
Comparisons for additional population size change models are shown in figure 8.1B.
Overall, AF-IBS curves for different ascertainment schemes are very similar to each
other, which suggest that the AF-IBS ratio is generally robust to the ascertainment
bias schemes implemented here.

5.3.4 The IBS/IBD Ratio

I showed in the previous section that the relative AF-IBD curve is very similar to
the relative AF-IBS curve for the same demography, despite different ascertainment
schemes. This suggests that AF-IBS is related to AF-IBD in a way that is not
affected by the changes in population size. I checked the robustness of the SD ratio
between AF-IBS and AF-IBD in various demographic scenarios including constant
size, bottleneck, and expansion. Figure 8.2C shows the SD ratio curves for AF-IBS.
In figure 8.2C the SD ratio starts at a low level and rises steeply above 1.0 for
the first few frequency bins. This is an artifact due to the fact that the maximum
length of AF-IBS is 0.5 Mb (see section 5.3.1), whereas AF-IBD estimation from tree
simulation theoretically can be infinitely long. The subsequent values range between
1.5 and 3, and the curves for the two different models have a similar shape. In fact,
what can be seen is that the SD ratio curve distributes within a rather defined
interval, across a large parameter space, and the values for each bin in general are
in a roughly linear relationship with the parameters (data not shown).

5.3.5 AF-IBS-ABC

I constructed a fast ABC pipeline that applies to the observed AF-IBS values. I first
checked whether correct estimations can be obtained for simulated pseudo-observed
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1-Parameter Model 3-Parameter Model 5-Parameter Model

1-parameter model 0.84 0.13 0.03
3-parameter model 0.09 0.78 0.13
5-parameter model 0.06 0.20 0.74

Table 5.4: Power of AF-IBS ABC to recover the true model.

SNP data. Three models (constant size, sudden growth, and expansion-after bottle-
neck) were tested, which contain one, three, and five parameters, respectively. The
entire workflow of ABC for AF-IBS is shown in figure 8.4.

Figure 5.3 shows the estimated posterior distributions for some parameters of
interest from the 1-, 3-, and 5-parameter models. As presented in table 5.3, inference
based on AF-IBS-ABC is relatively accurate and precise for the 1- and 3-parameter
models and still reliable for the most complex 5-parameter model. I also analyzed the
power to correctly recover the true model based on the logistic regression procedure.
As described earlier, I counted how many times the method correctly assigned the
true model in a set of 300 simulated data sets from the prior distributions of each
model. As presented in table 5.4, data sets are properly assigned in most of the
cases. However, the more complex the model, the less power this approach has.
Also, the inferred empirical Bayes factors are in good agreement with the ones I
simulated.

5.3.6 Application to genome-wide data

I then applied the currently explained approach to the genome-wide data set of the
CEPH-HGDP panel [89]. Figure 5.4A shows AF-IBS for the first 34 DAF bins calcu-
lated from 42 randomly chosen chromosomes from each of 11 worldwide populations.
As high DAF values reflect old mutations and low DAF values reflect more recent
mutations, variation in AF-IBS values indicates population size changes at different
times in the past. The AF-IBS values for higher DAF for African populations are
clearly smaller than for all non-African populations, indicating much reduced ancient
population sizes for non-Africans compared with Africans. Furthermore, populations
show continental or areal clustering, which suggests similar demographic histories
for populations within the same cluster. All non-African populations show higher
variability in the tails of the curves. This is due to the fact that fewer sites with
high DAF are present in these populations, probably because of severe bottlenecks.
I then analyzed two representative populations in more detail: Yoruba from Africa
and French from Europe.

-60-



5. Chapter The AF-IBD/ AF-IBS method

5.3.7 Model misspecification

I calculated AF-IBS for a standard constant size model and the models assuming
different population structure and migration. The ratios of AF-IBS between the
standard model and the models with complete population structures were approx-
imately 1, ranging from 0.96 to 1.14, indicating that hidden population structure
does not significantly influence the results. Adding migration between the daugh-
ter populations further reduces the difference between the standard and alternative
models (figure 8.3).

On the other hand, the phase reconstruction error seems to have an impact on
the AF-IBS calculation. I contrasted the AF-IBS values of different scenarios both
before and after phasing (figure 8.3). The ratios are rather consistent among different
scenarios, starting at approximately 0.8 for the DAF=1 and recovering back to 1
after DAF=12. This suggests that the method might underestimate AF-IBS for the
lower DAFs, due to the phasing errors. Such bias is corrected by multiplying the
empirical AF-IBS values with the phasing error correction ratios.

5.3.8 ABC analysis for Yoruba

Table 5.5 lists the results for the estimated demographic models for Yoruba. The
logistic regression analysis was done before the actual ABC analysis. Among all
model comparisons, the 3-parameter model of sudden expansion was the best fitting
model (Bayes factor 4.1 and probability of 0.63), followed by the 5- and 1-parameter
models. The most likely constant population size was estimated to be approximately
8,850. The inferred parameter ranges for the 3-parameter model suggest a constant
recent population size of approximately 22,915 (95% CI: 21,706-24,110) followed by
a population-size decrease (backward in time) to approximately 0.57 of the recent
Ne (95% CI: 0.53-0.62) to an ancestral size of 13,061 at 806 (95% CI: 685-1,030)
generations ago. The 5-parameter model had a probability of 0.25. The inferred
parameter ranges suggest a recent population size of approximately 28,000 followed
by a bottleneck between 1,005 and 1,302 generations ago, with an ancestral size
of approximately 18, 600 and a bottleneck size of approximately 8,000. Results
from figure 5.4B show that the ratio between the observed AF-IBS and the best 1
parameter model simulations AF-IBS (black line) is approximately 1 for most DAF,
which supports a relatively stable ancient population size, followed by a more recent
expansion (ratio below 1 for the first bins). Therefore, the 3-parameter model of a
simple expansion seems to best explain the data.

5.3.9 ABC analysis for French

To analyze the French data, only the first 2...36 AF-IBS values for 42 randomly
chosen chromosomes were used, as there are not enough high-frequency DAF cases
to get a reliable genome-wide average for their AF-IBS values. Among all model
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Population Model Parameters Prior∼U Regr. Est. 95% CI

Yoruba Constant size Ne 1,000-41,000 8,850 7,825-13,617
Sudden growth Ne 5,000-40,000 22,915 21,706-24,110

T1 100-2,000 806 685-1,030
β 0.01-0.9 0.57 0.52-0.63

(Bottleneck + Ne 15,000-50,000 28,310 27,081-32,506
sudden growth) T1 50-2,000 1,005 780-1,436

β1 0.01-0.5 0.28 0.12-0.35
T2 60-2,500 1,302 895-1,498
β2 0.11-0.9 0.81 0.73-0.85

French Constant size Ne 1,000-41,000 6,311 4,753-8,623
Sudden growth Ne 5,000-40,000 5,043* *

T1 100-2,000 351 *
β 0.01-0.9 0.21* *

(Bottleneck + Ne 15,000-50,000 18,300 16,116-22,082
sudden growth) T1 50-2,000 1,300 987-1,520

β1 0.01-0.5 0.18 0.14-0.25
T2 60-2,500 1,580 1,410-1,805
β2 0.11-0.9 0.55 0.32-0.68

Table 5.5: ABC estimation results for empirical data for Yoruba and French. Prior
gives the ranges of uniform priors. Regr. Est. is the regression estimate.3

comparisons, the 5-parameter model of a bottleneck followed by sudden expansion
was the best fitting (Bayes factor 3.9 and probability of 0.71), followed by the 3- and
the 1-parameter models. Table 5.5 presents that the most likely constant population
size was estimated to be approximately 6,300, which is smaller than for the Yoruba
population. Again, note that this estimate cannot directly be compared with usual
measurements of Ne. Trying to fit a 3-parameter model of sudden growth did not
yield any reliable parameter estimates. I also analyzed the 5-parameter model with
ABC (table 5.5). The results suggest a recent population size of approximately
18,300 (95% CI: 16,115-22,082). The ancestral population size was estimated to
be 10,065 (95% CI: 5,856-12,444). The timing of the bottleneck was estimated to
be between 1,580 and 1,300 (95% CI: 1,410-1,805; 987-1,520) generations ago with
a population size of approximately 3,300 (95% CI: 2,562-4,575) during that time.
Importantly, the CIs of the parameters seem to be rather narrow compared with the
priors, except for the two time parameters. The ratio curve of the best 5-parameter
simulation against the best constant size simulation also matches closely with that
of the empirical data against the best constant size simulation (see figure 5.4C).
Therefore the 5-parameter model of a bottleneck with an expansion is the best
fitting model for the French.

3*For this model I was not able to reliably infer parameter values from the French data.
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5.4 Discussion AF-IBD & AF-IBS

Using genetic data to make inferences concerning the demography of populations
(especially population size changes) has long been of interest [47, 84]. As genome-
wide SNP and full sequence data are becoming increasingly abundant for human
populations and other species, it is of great interest to make efficient use of such
data to infer ancestral demographic history with high accuracy. In this chapter, I
introduced two potentially very useful statistics, AF-IBD and AF-IBS, which make
use of haplotype configuration changes resulting from both mutation and recombi-
nation events. As was shown, both have some desirable mathematical properties,
which determine their high sensitivity to population size changes even for complex
demographic histories over a wide time range.

The high sensitivity of AF-IBD and AF-IBS toward ancient population size changes
results from contrasting two types of age estimators: the intra-allelic LD inferring
the absolute age and the derived allele frequency surrogating the coalescent scale
age. In this study, the ABC approach to estimate the trajectory of population size
was used, by minimizing the distance between the summary statistics calculated
from simulated and observed data. On the other hand, if a closed form equation can
be found that defines the AF-IBD/AF-IBS as a function, say G(j,N(τ)) (assuming
a one-to-one map between N and G), of allele frequency j and N(τ), it is possible
to analytically derive N(t) by solving the reverse function G−1. In the perspective
of the coalescent, the AF-IBD/IBS statistics are similar to AFS: they are all con-
ditioned on the derived allele frequency. Although the AFS measures the length of
the root edge of a j-node subtree (corresponding to the green edge in figure 5.1)
by counting the number of mutations, the AF-IBD/IBS measures the total subtree
length (the red subtree in 5.1). In principle, the subtrees should be more informa-
tive about the population size changes than their root edges. This is because the
subtrees of the same DAF coalesce in the same time interval and are responsive
to the same population size changes. The root edges on the other hand do not
necessarily overlap in time for a given DAF and thus are less responsive to a par-
ticular population size change. In [91], authors proposed the HCN statistics, which
also make use of the haplotype distributions. By summarizing the local haplotype
frequency distribution, the HCN essentially makes use of both recombination and
mutation events to reflect the properties of the coalescent trees within windows of
fixed recombination size. The current statistics are similar to HCN in the use of
both mutation and recombination information, but AF-IBD/IBS focus explicitly on
the tree defined by the central SNP. The recently proposed PSMC method directly
estimates the time of most recent common ancestor (TMRCA) on a pair of genome
sequences [87]. By evaluating the coalescent density over the stepwise time intervals,
this method revealed many details of the population size trajectories. However, the
pairwise comparison by design provides less information on very recent history and
is sensitive to recent population structure. The AF-IBD/AF-IBS statistics are based
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on multiple haplotype comparisons and, therefore, may help complement the PSMC
for recent history.

In this work, AF-IBS is associated to the AF-IBD statistic by a correction ratio.
In fact, it might be possible to express AF-IBS as functions of AF-IBD in explicit
mathematical form. The greater AF-IBS than AF-IBD values at higher frequencies
are mainly due to the undetected recombination events (figure 8.2). I introduced
the SD ratio as one potential way of transforming AF-IBD to AF-IBS. However,
remember that this is an approximate way of solving this issue, and there is room
for improvement. Nonetheless, the ABC estimation based on AF-IBS already shows
promising accuracy on the pseudo-observed SNP data. The ABC parameter estima-
tion results show that even for quite complicated models such as the 5-parameter
model, parameters of interest can be estimated accurately.

Current results show that the AF-IBS ratios are relatively robust against very
different ascertainment schemes (figure 8.2). This suggests that possible misspec-
ifications of the ascertainment scheme should not affect the inference very much.
Some SNP data are censored for the lower minor allele frequencies. This will cer-
tainly cause losses of information for very recent or ancient demographic events.
On the other hand, the switching errors during the phase reconstruction from the
empirical genotype data do seem to cause a slight underestimation of AF-IBS for
lower DAFs. This is not difficult to understand: phasing errors can be seen as a low
level of artificial recombination. When this fraction of recombination rate, say ρphase
is added to the term TJ,s(µ+ρ) in equation 5.1, it tends to reduce AF-IBD/AF-IBS
when TJ,s is small, which corresponds to lower DAFs. However, the effect of ρphase
can be negligible when TJ,s or DAF is big. This problem can be minimized by using
phase certain SNP data, such as those genotyped on trio samples.

In the application of the AF-IBS statistic to the CEPH-HGDP Yoruba and French
data, it was seen that neither of the two data sets can be fully explained by the
constant size model. The three parameter model with a recent population expansion
provides a slightly better fit to the Yoruba data than the more complex 5-parameter
model. For the French, the 5-parameter model featuring both a bottleneck and an
expansion is needed to explain the observed data. This result is in general agreement
with previous studies. Most of the existing studies showed that a simple expansion is
sufficient to account for the African demography [1, 72, 96, 135], whereas Schaffner
et al. [119] suggested a minor bottleneck for the Yoruba (inbreeding coefficient
F=0.008), and Li et al. showed a mild reduction between 20,000 and 100,000 years
ago [87]. Moreover, all studies infer that European populations had at least one
bottleneck before the recent expansion [1, 72, 91, 96, 119, 135, 139]. For the specific
parameter estimation, the comparisons among different studies are summarized in
tables 5.6 and 5.7. Current result show that the Yoruba had an ancient population
size (Nanc) of ∼13,000 recovering to a present size (Ncur) of ∼22,900. This is in good
agreement with previous studies (Nanc 9,069-12,500; Ncur 16,233-31,000, tables 5.6
and 5.7). The time of expansion Texp varies considerably among different studies.
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Studies Nanc Ncur Texp(gen) Texp(kya)

Adams and Hudson (2004) 10,000 19,000/31,000 1,080 27
Marth et al. (2004) 10,000 18,000 7,500 187.5
Voight et al. (2005) 10,625 21,304 1,000 25
Keinan et al. (2007) 9,069 16,234 7,440 186
Schaffner et al. (2005) 12,500 24,000 17,000 425
Fagundes et al. (2007) 12,722 206,920 - -
This method 13,601 22,915 806 20.15

Table 5.6: Estimated African demographic parameters compared among different
studies.

Although our estimate of 806 generations (∼20 thousand years ago [kya]) is close
to previous estimates of 27 kya [1] and 25 kya [135], other studies gave much older
estimates (186-425 kya). Results from Li et al. revealed two waves of expansions (or
bottlenecks depending on the perspectives), one earlier (200-600 kya) and one later
(∼20 kya) [87]. This suggests that different methods may have captured either of
the two inferred periods of growth. The more recent expansion given by our result
coincides with that of [87] and the last glacial maximum.

For the European demography, our estimates of the ancient population size (Nanc

∼10,000) and current population size (Ncur ∼18,300) are also similar to those from
previous studies of Nanc 8,000-10,065 and Ncur 10,000-20,000 (tables 5.6 and 5.7).The
time when the bottleneck starts (Tbot) and the time of recovery (Texp) are surpris-
ingly consistent among most studies, although these two values are usually consid-
ered difficult to estimate. Other than one study [96] with older time estimates (Tbot
∼87.5 kya, Texp ∼75 kya), the other studies estimated the Tbot to be approximately
31-50 kya and Texp approximately 27.5-40 kya (tables 5.6 and 5.7). The current esti-
mations of 39.5 kya and 32.5 kya fall into these two ranges. This bottleneck probably
corresponds to the Out of Africa dispersion. Estimates of the population size of the
bottleneck (Nbot) vary considerably among studies. Our estimate of ∼3,300 is larger
than many such estimates (tables 5.6 and 5.7). When the inbreeding coefficient F is
calculated [72], the current estimate (0.042) is close to previous estimates of 0.085,
0.02 [119], and 0.032 [139], although much smaller than other studies of 0.125-0.364
(tables 5.6 and 5.7). Li et al. showed a much reduced population size of approx-
imately 1,200 between 40 and 20 kya. These suggest that the currently proposed
method may have underestimated the intensity of the bottleneck. The precise reason
is not clear, but the 95% lower bound of our Nbot is approximately 2,500, suggesting
a lower bottleneck size is also possible.

Remember that this is a preliminary study to demonstrate the usefulness of the
AF-IBD-related statistics. There are various ways in which the inference can be
improved. For example, I used the mean AF-IBD/IBS as the inference statistics
in this method. In fact, the distribution of each AF-IBD/IBS for a given DAF is
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Studies Nanc Nbot Ncur Tbot(gen)

Marth et al. (2004) 10,000 2,000 20,000 3,500
Adams and Hudson (2004) 10,000 1,500 20,000 1,500
Wall et al. (2009) - 625 - 1,240
Voight et al. (2005) 10,695 1,065.9 - 2,000
Keinan et al. (2007) 8,712 - - 1,280
Schaffner et al. (2005) - - - -
Lohmueller et al. (2009) 8,000 550 10,000 1,500
This method 10,065 3,300 18,300 1,580

Studies Tbot(kya) Texp(gen) Texp(kya) F

Marth et al. (2004) 87.5 3,000 75 0.125
Adams and Hudson (2004) 37.5 - - -
Wall et al. (2009) 31 1,200 30 0.032
Voight et al. (2005) 50 1,600 40 0.19
Keinan et al. (2007) 32 - - 0.151
Schaffner et al. (2005) - - - 0.085, 0.02
Lohmueller et al. (2009) 37.5 1,100 27.5 0.36
This method 39.5 1,300 32.5 0.042

Table 5.7: Estimated European demographic parameters compared among differ-
ent studies. Because of the limited available space, estimated parameters are split
horizontally.

also sensitive to population size changes (data not shown). This is easy to under-
stand: subtrees of the same DAF span different lengths of the coalescent time scale,
therefore may be perturbed by the fluctuating demography at different times or
intensities. The power of the inference methods may be further improved by using
the full distributions of AF-IBD/IBS.

Moreover, the current computational approach still offers room for improvement.
Although coalescent simulators are capable of simulating a wide range of demo-
graphic scenarios within a rather short time, simulating full genomes with an under-
lying variable recombination map is still computationally quite intensive, especially
when every full sequence simulation needs to be ascertained and corrected for phase
reconstruction error. Although the simulations I carried out provide support for the
overall effectiveness of this approach, further work should improve the accuracy of
the parameter estimates, especially for more complex (and hence realistic) models.

In conclusion, it was shown that quite accurate estimates of demographic param-
eters can be obtained from ascertained genome-wide SNP data, even for complex
underlying population histories. Improved inference may also be achieved by apply-
ing more elaborate methods of parameter estimation, especially when adding more
parameters to underlying demographic models. For example, combining the advan-
tages of ABC and MCMC can lead to improved estimation results [140]. Moreover,
with full sequence data sets becoming available, the limitations of SNP data will no
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longer apply. With further work, it might be possible to find the closed forms of AF-
IBS and AF-IBD as functions of population size change N(τ), and non-parametric
methods could potentially be used to infer more realistic demographic trajectories
through time.

Interestingly, after completion of this project and quite recently before the com-
pletion of the entire dissertation, Harris and Nielsen published a method for inferring
demographic history from genome-scale data based on IBS tract lengths [53]. The
method is able to predict the IBS distribution for various demographic models and
therefore might be very helpful for the AF-IBS method. Given a computationally
inferred IBS distribution, the simulations of coalescent trees and the whole idea of
the SD ratio grid might become redundant, resulting in a potentially more conve-
nient to use application and eventually more stable results. This way of improving
our method is one of the most promising and will definitely be further investigated.

-67-



5. Chapter The AF-IBD/ AF-IBS method

Figure 5.2: AF-IBD was calculated from data sets simulated as coalescent geneal-
ogies under various demographic models of interest (see subfigure cartoons) and for a
constant size reference model. A) AF-IBD curve calculated from a constant size popu-
lation of Ne = 10,000. B) AF-IBD ratios between two different models of constant
population size (Ne=5,000, Ne=10,000) and one constant Ne=1,000. C) AF-IBD ra-
tios between various bottleneck models and one constant population size model of
Ne=10,000. D) AF-IBD ratios between various exponential growth models and one
constant population size model of Ne = 10,000. E) AF-IBD ratios between a two-
bottleneck model and one constant size model of Ne=10,000, and between a complex
bottleneck followed by sudden growth and a constant size model of Ne=10,000.
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Figure 5.3: The posterior densities from ABC parameter estimation for 1-,3-,5-
parameter models are shown. Simulated polymorphism data were used as pseudo-
observed data. Vertical red lines represent the true underlying parameter values. For
each panel, a cartoon of the underlying model with all parameters that were estimated
is shown. A) Results for the single constant size model parameter Ne. B) Results for
three parameters of a demographic model of sudden growth. C) Results for five pa-
rameters of a model of an ancient bottleneck followed by more recent sudden growth.
Prior ranges for each uniformly distributed prior are equivalent to the x-axis ranges.
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Figure 5.4: A) AF-IBS calculated for various populations from the CEPH-HGDP
panel. B) Two ratios between the observed Yoruba AF-IBS and the AF-IBS of the
best constant size model simulation and the ratio between AF-IBS from the best 3-
parameter simulation and the best constant size model simulation. C) Ratio between
the observed French AF-IBS and the AF-IBS of the best constant size model simu-
lation and the ratio between AF-IBS from the best 5-parameter simulation and the
best constant size model simulation.
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Chapter 6
The 2 point spectrum method

“Science may be described as the art of systematic oversimplification.”

Karl Popper (1902 - 1994)

As previously described, by using a variety of pseudo observed simulated data we
were able to show that AF-IBD/AF-IBS are informative about past population size
changes. The new insights we gained about underlying patterns of IBD and IBS
provide means for a better and thorough understanding of how evolutionary events
affect the underlying genetic patterns of individuals and populations. Hence, the
initial goal of this project was accomplished. However, one of the limitations that
always caught the center of my attention was the dependency on a certain type of
demographic model. Using Approximate Bayesian Computation as a model choice
approach involves the realization of multiple ABC runs, each based on a different
demographic model with a fixed number of parameters, e.g. a constant size or bot-
tleneck model. Furthermore, a thoroughly and well designed validation later needs
to be performed in order to choose the best fitting model. If the tested models do not
include the true underlying model, results can be biased in various ways. Therefore,
approaches that realize the inference of underlying model parameters of interest,
while allowing for a variable number of model parameters, can be advantageous.

6.1 Introduction

Additional to my personal interest in achieving more flexibility in the actual in-
ference process itself, the site frequency spectrum, known to be sensitive to past
population size changes (see chapter 4), was successfully incorporated as part of the
summary statistics in the previous project. Hence, this is a statistic we wanted to
investigate further. We came across a more general issue that goes beyond the scope
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of population genetics. Assuming two different processes that can generate exactly
the same outputs for certain summary statistics, then these processes cannot be dis-
tinguished anymore. As a result, depending on the way the output is summarized
or analyzed, equivalence classes can contain outcomes from different processes. As
was shown for the case of the neutral allelic frequency spectrum of a population, two
different demographic history processes can produce the exact same site frequency
spectrum [101]. Even if the exact frequency spectrum is known, the history of past
population size changes is not fully determined. As a consequence, any demographic
inference approach just based on the neutral site frequency spectrum alone is bi-
ased in a way that conclusions about potential demographic parameters might only
account for one out of many possible demographic histories that can explain the
observed data. Figure 6.1 shows the example from Myers et al. in which two quite
distinct demographic processes produce the exact same frequency spectrum.

Figure 6.1: This figure was adopted from [101]. Shown is the population size for a
history corresponding to N ∼ (τ) of their figure 2. Most of the interesting structure
is for relatively small times, so also shown is an expansion of the figure for time t ≤
3.5.
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Combining the previously studied features of the SFS and results from Myers et al.
made us think of potential new ways to use the frequency spectrum for demographic
inference. One idea among others was to not only look at the frequency information
for each single mutated site but for pairs of sites. Taking this pairwise information
into account may capture more valuable information from the underlying data as is
the case for the standard SFS. We call this statistic the “2 point spectrum” method
and the following section describes the methodological steps from the first tests to
the final implementation within a rjMCMC framework.

6.2 Idea of the 2 point spectrum

Figure 6.2 describes the basic implementation of the 2 point spectrum. The following
pseudo algorithm explains how the initial approach can be calculated:

1. Based on a previously obtained recombination landscape, define a core region
r ∈[a,b] with no or very low levels of recombination

2. For a site j, with j=1,..,s, with s being the total number of polymorphic sites
in region r, calculate the derived allele frequency F

3. For the set of haplotypes that are affected by a mutation at site j, calculate
how many sites in a region r2 ∈ [j+1, j+e] have the sub frequencies f with
f =1...F and e being an arbitrarily set physical distance in bp

4. If physical position of j≤b, j=j+1 and go to step 1. Else end

The derived allele frequency information is averaged for the entire region r and
stored in a triangular matrix. These matrices represent 2-dimensional arrays with
s-1 rows and s-1 columns. Rows represent frequencies F for each site j (calculated
in step 2) and columns represent the sub frequencies f (calculated in step 3). Each
entry [m][n] is the average over all cases with F =m and f =n.

This summary (called sub-sfs) can be obtained from genetic data simulated with
ms under different demographic scenarios. In order to compare two competing
models of interest, each entry from matrix 1 is divided by the corresponding entry
in matrix 2 and differences are represented by a heat plot in R.

The number of mutations on a certain branch of a coalescent genealogy is the
outcome of a Poisson process taking the branch-length into account. Hence, the
frequency information that can be calculated with numbers of mutations can easily
be represented by the actual length of the branch of interest. For example, assuming
the infinite sites model, each mutation on branch e in figure 6.2 would result in a new
polymorphic site with derived allele frequency F =3 (red mutation), since sequences
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a, b, and d all share the same mutation and e is said to have a size of 3. The rela-
tive length of e then indicates how many possible mutation events could happen on
this branch, independent of the actual mutation rate. Incorporating the mutation
rate would give an absolute number of mutations. In order to obtain the pairwise
information, the lengths of all branches in the subtree defined by e represent the sub
frequencies f. In the above example the subtree of e is defined by branches a, b, c,
and d with sizes 1,1,2, and 1, respectively. Hence, the sub-sfs statistic is calculated
without the need to simulate mutations, only by considering lengths of branches.
This approach is computationally more efficient than simulating actual mutations,
allowing to average over a large number of coalescent genealogies.

To investigate how informative the pairwise frequency spectrum is about past
population size changes I used ms to simulate pure coalescent genealogies under
various demographic models for 20 diploid individuals. Since the coalescent is a
random process, the outcome for each demographic model was averaged over 1*106

independent trees. The branch length information from each simulation was then
stored in a triangular matrix as described above. I assumed a null model of constant
population size over time. Contrasting the matrix from a constant size to the matrix
of a non-constant size model then allows to see deviations from the null expecta-
tion. The non-constant size models were represented by a variety of bottleneck and
expansion models.

Furthermore, I analyzed whether this new statistic is able to distinguish the pre-
viously mentioned demographic models that show the exact same allelic spectrum in
[101]. As shown in figure 6.1, population size over time is a continuous function and
makes it impossible to accurately simulate without further information. The au-
thors provided 5,000 data points, enabling the simulation of the histories as discrete
piecewise constant functions with ms. Each history (constant and non-constant size)
was simulated for 20 diploid individuals (40 haplotypes). The pairwise information
was then averaged over 1*106 independent trees per demography and matrices were
compared with each other. However, graphically analyzing the results is rather dif-
ficult and imprecise, so that we had to explore different methods to make use of the
obtained information.

The initial implementation (the sub-sfs method) was thought to capture infor-
mation from sites that are nested within the same subtree. We later decided to
extent this method to all possible pairs of segregating sites (denoted as the 2 point
spectrum). This approach is very similar, since a similar information content was
captured from the data (i.e. based on the relative frequency information of pairs of
sites, the underlying core structure of the genealogy was captured with both meth-
ods). The second approach is closer to a study from Jenkins et al. [68] (details
follow in the remainder of this chapter). The initial idea was, therefore, used for the
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first tests in order to see the potential sensitivity of this method. Later, the second
approach, based on all possible pairs of sites, was used for the implementation of
the MCMC framework.

I
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III

V

1 2 3 4 5 6 7

f(1,2); f(1,3); ...; f(2,3); ...; f(6,7) 

f

a
b

c d

e

g h

Figure 6.2: The basic principle behind the 2 point spectrum statistic. Going from
top to bottom, a coalescent genealogy relates five sequences (I-V). Each mutation
(colored circles) generates a new segregating site (1-7), with the amount of sequences
affected being dependent on the position of the mutation in the genealogy. Using
the commonly defined SFS, seven frequency values would be available. However,
the final 2 point spectrum uses pairwise frequency information for all pairs of sites
(denoted as function f(i,j) for sites i and j), resulting in 21 potentially informative
frequency values. Increasing the number of informative values from the same data
set, potentially increases the power for parameter inference. The initial idea of the
2 point spectrum (the sub-sfs method) would summarize the frequency information
in a slightly different way, just focusing on sites from the same subtree (hence, only
sites that are located on the same haplotypes are summarized in pairs, resulting in a
reduction of the total number of pairs).

6.3 Implementation of the 2 point spectrum

As described in the previous section, the graphical output of the sub-sfs method
was sufficient to get first insights into the behavior and information content of this
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data summary, but had limited capabilities to directly infer potential parameters of
interest.

Approximate Bayesian Computation was the method of choice for AF-IBD/S. One
reason for using ABC was the lack of a proper way to express the likelihood of a
given data set, given a certain demographic model. This fact was easy to circumvent
by using statistics summarizing a full data set by a number of representative values.
However, in order to make use of the flexibility of MCMC approaches a likelihood
function P (D|Θ) is indispensable. To the best of our knowledge two studies have
contributed significant insights into this particular field of research. Hobolth and
Wiuf obtain the joint and marginal sample frequency spectrum of two mutant alle-
les when the mutations are genealogically nested. They also obtain the age of the
younger and older mutation [60]. Jenkins and Song [68] extended these results to
non-nested mutations which is an important case, since, as they show, the probabil-
ity of two mutations being nested approaches 1.0 with increasing sample size. Both
studies investigate the effect of a second mutation on the sample frequency spec-
trum of a segregating site where the model of Wiuf and Hobolth can be included as
a special case in the model of Jenkins and Song. Given a coalescent genealogy and
two segregating sites (implying two mutations being analyzed at once), four possible
topological events can be observed (see figure 6.3):

1. Two mutations are nested

2. Both mutations happen on the same branch

3. Two mutations are non-nested (excluding basal branches)

4. Both mutations happen on the same basal branch (the branches closest to the
root of a genealogy)

Figure 6.3: Four possible types of observation of two segregating sites. On the
coalescent tree the two mutation events are either A) nested, B) on the same branch,
C) non-nested, or D) on the two basal branches.
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and authors in [68] were able to obtain their relative probabilities. However, their
results only hold for models of constant population size over time. After personal
communication, Jenkins and Song, in particular Paul Jenkins, were able to generalize
the results of their study to account for deterministically varying population size.
The following explanations and formulas are closely based on [66, 68]. Given an
observed frequency configuration of a pair of segregating sites, let n=(na,nb,nc) with
na being the number of haplotypes carrying the ancestral allele, and nb, nc being the
numbers of haplotypes carrying the older and younger derived alleles respectively,
the total sample size is n = na+nb+nc. This configuration can be recored in the form
(fmaj,fmin), the sample count of the major (more common) derived allele, and the
sample count of the minor (less common) derived allele. The four topological cases

are represented by the following symbols: (E
(b,c)
2N ) with fmin < fmaj < n, (E

(b,c)
2S ) with

fmin = fmaj < n, (E
(b,c)
2NN) with fmin + fmaj < n, and (E

(b,c)
2B ) with fmin + fmaj = n

respectively (see listing above). As this classification is rather important for the
understanding of this method, see figure 6.3 again for a graphical representation.
Since we assume the infinite sites model, pairwise observations can only be of one of
the two forms: (1) two different haplotypes carrying a single mutation are observed,
with the set of haplotypes carrying one mutation disjoint from the set carrying the
other mutation or (2) some singleton and some doubleton mutant haplotypes are
observed, with the set of sequences carrying one mutation a subset of the other.
Furthermore, let T=(T2, T3, ...,Tn) be the random vector of inter-coalescence times
in the coalescent genealogy (see figure 6.4 for a graphical representation). Times Tj
are the time periods during which the genealogy has j=n,...,2 lineages respectively.
The vector T fully describes the entire genealogy and summarizes the demographic
effects on the coalescent tree quite well. Since in this setting the population size is
a function of time, times Tj are not independent with Tj∼exp

(
j
2

)
on the coalescent

time scale anymore. Hence, they cannot easily be integrated out and are expressed
in terms of the joint moments of T.

E[N |E2N ∪E2S] =


1
E

∑n−fmin+1
k=3

∑k−1
j=2 C

(n−fmaj ,fmaj−fmin)
j,k E[TkTj]

if fmin < fmaj,
1
E

∑n−fmin+1
k=2

∑k
j=2D

(n−fmaj)
j,k E[TkTj]

if fmin = fmaj.

(6.1)

-77-



6. Chapter The 2 point spectrum method

E[N |E2NN∪E2B] =



1
H

∑n−fmin+1
k=3

∑k
j=2

[
F

(na,fmaj)

j,k +F
(na,fmin)

j,k

]
1+δfmaj,fmin

E[TkTj]

if fmin + fmaj < n,

1
H

∑fmaj+1
k=2

G
(fmin,fmaj)

k

1+δfmaj,fmin
E[TkTj]

if fmin + fmaj = n.

(6.2)
where
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(6.3)

Provided the population size Ne(t) is such that the moments E[TjTk] can be
calculated, equations 6.1 and 6.2 provide the likelihood of an observed pair of sites
under a given demographic model without the need to simulate a full coalescent
genealogy. Equations 6.1, 6.2 and 6.3 are provided by Paul Jenkins ([66]).

6.4 Obtaining the joint moments

In order to obtain the joint moments for pairs of inter-coalescence times E[TjTk],
given a demographic model of interest, two possible approaches are available. The
first is by Monte Carlo simulations to obtain tuples (T2, T3,...,Tn) of inter-coalescence
times. This process must not be seen as the classical way of generating a full geneal-
ogy (see section 3.3.2 for explanation), but more as drawing random numbers from
an exponential distribution taking the current number of lineages and population
size N(t) into account. The following lines will explain how this process can be
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implemented.
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Figure 6.4: Shown is a coalescent genealogy relating four individuals. The times be-
tween the coalescent events are the inter-coalescence times v=(T4,T3,T2) (from present
to past). The black circle denotes the MRCA.

Every time a new demographic model is proposed, a new set of inter-coalescence
times needs to be calculated. Following algorithm 3.3.2, after drawing random
numbers from an exponential distribution, times need to be modified according to
the population size at time t. Hence, for each demographic model M multiple
instances x of (T2, T3,...,Tn) are generated. These tuples are then directly used to
obtain E[TjTk] for all possible pairs of inter-coalescence times. Within this setting
tuples are stored in a 2-dimensional array A with n-1 columns and x rows. Hence,
Tj is a vector of length x, denoted vj=[T 1

j ,...,T xj ]. Given that, the joint moment
E[TjTk] is calculated as the mean of the inner product of the two vectors vj and vk:

E[TjTk] =

∑x
i=1 vj[i]vk[i]

x
, (6.4)

However, averaging over a certain number x of tuples is only an approximation to
the true E[TjTk]. Therefore, second order moments approximated with this method
are denoted E ′[TjTk] from now on. As a consequence, calculating the second order
moments for the exact same demographic model can result in two slightly different
outcomes. The number of tuples x should be chosen large enough in order to get a
more stable approximation (see figure 6.6 for more details).

The second possibility is to directly calculate the joint moments without the need
to draw times from an exponential distribution and generate tuples. To the best of
our knowledge there exist two studies that have investigated this problem, Polanski
et al.[110] and Živković et al.[136]. One of the main differences between the two
studies is that [110] define Tk, k=2,3,...,n as coalescence times from sample of size n
to sample of size k-1, whereas [136] uses the same definition as figure 6.4. Živković
et al. derive all second order moments by using conditional expectations and all
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details are well explained in their supplementary material. Given these theoretical
results it is possible to derive a direct expression to calculate E[TjTk] (adapted from
[136]):

αn,j,k =
(2j − 1)n!(n− 1)!(k + j − 2)!

(j − k)!k!(k − 1)!(n− j)!(n+ j − 1)!

gj,i(t, t
′) =

(
j
2

)(
i
2

)
λ(t)λ(t+ t′)

exp

{
−
(
j

2

)∫ t

0

1

λ(u)
du

}
exp

{
−
(
i

2

)∫ t+t′

t

1

λ(u)
du

}
(6.5)

E(T 2
k ) =


∑n

j=k+1(−1)j+k+1 (k+1
2 )

(j
2)
αn,j,k+1

∫∞
0

∫∞
0
t′2gj,k(t, t

′)dtdt′, if 2 ≤ k ≤ n-1∫∞
0
t2gn(t)dt if k=n

(6.6)

E(Tk′Tk) =
n∑

j=k′

k′∑
i=k

(−1)i+j+k+k
′

(
j
2

)
−
(
i
2

)(
j
2

) αn,j,k′αk′,i,k

∫ ∞
0

∫ ∞
0

tt′gj,i(t, t
′)dtdt′ (6.7)

Following the notation of [136] and equations 8.3 and 6.5, for the mean waiting
times E[Tj], the first waiting time Tn is not dependent on the following waiting times,
so the density function g(tn) is given within formula 8.3, when setting j=n. First,
the expectation E[Tn] of time Tn is calculated and n is set to j. Then E[Tj] can be
iterated via a harmonic sum through the respective coalescent events to finally get
the expression for all waiting times. Regarding the calculation of the expectation of
the product of two waiting times, the joint density of Tn and Tn−1, g(tn,tn−1) does
not depend on the subsequent waiting times. Hence, when setting j=n and i=n-
1, g(tn,tn−1) is directly given by equation 8.5. Simply speaking, after calculating
E[TnTn−1], n is set to j and n-1 to i and one then iterates E[TjTi] via the double
harmonic sum and the respective coalescent events to finally get the expression for
the products of all waiting times. Iterating over the respective coalescent events
can be explained as follows: For each demographic model with a finite number
of m intervals, each with a different constant population size, equation 6.7 can
be explicitly solved by decomposing the double integrals according to the

(
m+1
2

)
arrangements of coalescent events over these m time periods. As can be seen in figure
6.5, for a simple bottleneck model with m=3 intervals (reducing the population size
from 1 to f), six possible arrangements have to be taken into account to calculate
the joint density of two coalescent times. Although the example shows a genealogy
with sample size n=3 and only the two coalescent times T3 and T2, increasing the
sample size would not change the essence of this figure. The two coalescent times
can be any pair of times within a full genealogy with arbitrary sample size n.
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Figure 6.5: Possible coalescent trees for a three-phase bottleneck model, temporarily
reducing the population size from 1 to f. λ(t) = N(t)/N . Assuming two coalescent
events and m=3 intervals, results in six possible arrangements.

I used Mathematica1 to simplify the formulas for the following pairwise coalescent
cases:

1. Both events occur in the first interval

2. Both events occur in the last interval

3. Both events occur in a middle interval

4. One event occurs in the first, the other event in the last interval

5. One event occurs in a middle interval, the other in the last interval

6. One event occurs in the first interval, the other in a middle interval

7. Both events occur in different middle intervals

With the simplified expressions for each case all possible arrangements for any
demographic model can be calculated (due to space constraints I omit the actual
notation of the expressions, but they can be obtained on request). The same prin-
ciple is applied for calculating E[T 2

j ] (see equation 6.6). With the steps from the
above listing, E[TjTk] can be calculated for (almost) any desired distribution of past

1http://www.wolfram.com/mathematica/, last visited on 03/12/2013
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population size changes, obviating the need to specify a separate formula for every
number m of Ne intervals.

The Monte Carlo approach to approximate E ′[TjTk] was used for the first tests
and for the initial investigation of this method, since only the study of Polanski et
al. was known to us at the beginning. However, after personal communication, the
Polanski et al. method could not efficiently be applied in our practical computations
for larger sample sizes and the fact, that their definition of Tj differed from ours (see
previous explanation) complicated the use significantly. Therefore, the simulation
approach that averages over a large number of values was used in the first place.
Furthermore, obtaining the second order moments E ′[TjTk] can be efficiently im-
plemented allowing for a large number of steps the MCMC chain can be run in an
appropriate amount of time.

Figure 6.6: Statistical error due to approximating first- and second order moments of
inter-coalescence times using simulations. For a constant population size (black) and a
model with m=3 intervals (bottleneck model, red) the plots show the RMSE between
the moments approximated by Monte Carlo simulations and moments calculated by
using the closed form from [136].

Figure 6.6 shows the statistical difference (calculated as the RMSE) between the
approximated and exact second order moments of inter-coalescence times for a con-
stant size and a recent bottleneck model. Because this figure illustrates that using
x=105 tuples results in negligibly small divergences from the true (closed form)
E[TjTk] and further increasing this number does not result in a significant reduction
of the RMSE, x is set to this value for the rest of this work.
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6.5 MCMC approach

The previous sections introduced all theoretical means necessary to incorporate the
setting into a MCMC framework. Starting with the new idea of the 2 point spectrum
and its calculation from observed polymorphism or sequence data to the derivation
of second order moments of pairs of inter-coalescence times, calculated from a full
expression or as an approximation, to the possibility to calculate the likelihood of a
pair of sites given a demographic model. The overall question is how to combine all
aspects to finally infer parameters of interest from observed data sets.

As already mentioned, Markov Chain Monte Carlo methods are a class of algo-
rithms that allow the sampling from probability distributions based on constructing
a Markov chain having the distribution of interest as its equilibrium distribution.
Our interest is a demographic model comprised of an unknown number of intervals
that can potentially explain the observed data. The current section will explain the
steps that lead to the realization of such a Markov chain.

See figure 6.5 for a graphical example of the current setting of the demographic
model that is to be inferred. Since the overall aim is to allow a high flexibility without
being limited to a certain model (i.e. a certain number of Ne intervals), the number
of intervals, each with a different constant Ne, should be a part of the actual inference
process. This fact complicates the whole framework. Classical Metropolis-Hastings
MCMC approaches have an a priori fixed number of dimensions, i.e. the number of
model parameters that need to be inferred is known beforehand and, therefore, are
less suitable for Bayesian model determination problems. Green [45] has suggested
a solution to this problem as he proposed a new framework for the construction of
reversible Markov chain samplers that jump between parameter subspaces of dif-
fering dimensions. The name ’reversible jump’ comes from the algorithm’s ability
to change the dimensions of the state space in a move known as a reversible di-
mension jump, or reversible jump. The shortcut of this extension to the classical
approaches is rjMCMC. As the name implies, jumps between dimensions need to be
reversible, i.e. it must be possible to revert back to the previous state in a later move.

6.5.1 RJMCMC overview

The Metropolis-Hastings-Green method according to [45] was used. Briefly, com-
pared to MH-MCMC (see section 2.4.3), rjMCMC has a slightly different procedure
of single steps that need to be considered. The algorithm starts in an arbitrary
configuration known from the previous time step. Then a move type from a set of
reversible moves is selected. Then a target object is chosen and the selected move is
applied to generate a newly proposed configuration. In an acceptance test the new
configuration needs to be evaluated. Based on the outcome of this test the previous
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or the new state is then added to the Markov chain. The following decisions about
the detailed implementation of the Markov chain are mostly based on [45, 107].

Let x be the initial state of the chain and x̃ a newly proposed state with proposal
density q(x̃). As explained in chapter 2.4.3, the acceptance ratio α of the MH-MCMC
is a ratio of the likelihood of the newly proposed configuration to the likelihood of
the previous configuration. However, since certain moves may change the number
of model parameters, the previous and proposed configurations can be of different
dimensions. Obviously, calculating the same ratio with these likelihoods would be
pointless. Therefore, the acceptance rate is written as:

α(x, x̃) = min {1,L · A · P · J} , (6.8)

with L being the likelihood ratio P (D|x̃)/P (D|x), A being the prior ratio P (x̃)/P (x),
P the proposal ratio q(x̃)/q(x) and J being the determinant of the Jacobian that
results from the potential change of dimension. In order to achieve a parameter
inference based on MCMC, several components need to be specified:

1. A proper representation of the estimated demographic function Ne(t)

2. A prior distribution that specifies the a-priori knowledge for each parameter

3. A likelihood function

4. Conditions and rules to construct the Markov chain (e.g. acceptance proba-
bilities, move types etc.)

The demographic function Ne(t) is represented as a piecewise constant function.
It consists of m distinct intervals with the first interval starting at position a0=0
(time point 0, present day) and has a Ne of Ne0 (representing the height of this
interval). This first interval is then followed by k internal positions at (a1,Ne1),
(a2,Ne2), ..., (ak,Nek) and the terminal node (ak+1,Nek+1). If representing Ne(t) as
a spline, it is defined for all t∈ [0,T], with T =

∑m
i=0 li, with m=k+2 and li being

the length of interval i.

The likelihood function L was described before (see equations 6.1 and 6.2). It de-
pends on the allele frequency configurations of each pair of fully linked segregating
sites in a genomic region with a zero-recombination rate. Since Ne(t) is represented
as a piecewise constant function, L can be calculated efficiently (with L being the
likelihood ration, l’ the likelihood of the newly proposed state and l the likelihood
of the current state). Furthermore, for computational reasons, likelihoods are cal-
culated on a log scale resulting in the likelihood ratio L=log(l’)-log(l).

Choosing the prior distributions is a crucial step in Bayesian methods. As already
mentioned and discussed in section 2.4.1, priors represent any knowledge about a
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specific parameter of interest prior to the actual inference process. In [107] a similar
approach is used to infer past population size changes using a rjMCMC framework
based on the product of densities of the waiting times between subsequent coalescent
events. Since the final question and setting of their method is to a high degree very
similar to ours, I chose to adopt the prior choices of [45] and [107] (I did validate
that parameter and prior choices closely follow the principles of the original rjMCMC
framework). The prior for the number of change points (i.e. representing the number
of distinct Ne intervals) is represented as a truncated Poisson-distribution for m:

P (k) =

{
1
c
λk

k!
e−λ for k ≤ kmax

0 otherwise,
(6.9)

where c is a normalizing constant to ensure that P(k) is a proper distribution. The
maximum number of intervals (mmax) can be specified by the user, keeping in mind
that increasing the number increases the computational burden for the calculation
of E[TkTj] when using the exact method from [136]. The smoothing parameter λ is
set between 0.1 and 1.0.

The positions of the starting points of Ne intervals (inner nodes of the spline)
are uniformly distributed on the interval [0,T]. Positions can later be modified if a
specific move type is applied, thereby extending or reducing the length of an interval
(i.e. shifting the start position) in either direction.

For the height Nei of interval i a Gamma distribution Gamma(Nei|αi, βi) is as-
sumed, which ensures that the sampled heights are always positive, with αi and βi
being the mean and variance of size Nei.

In order to construct a Markov chain with the mentioned demographic function,
likelihood functions, and prior distributions, the following reversible move types,
designed to explore a variable-dimensional state-space, were chosen:

1. Update. Either increase or decrease the Ne in interval i

2. Extend. Extend the length of interval i to the left or right by some random
number of generations

3. Join (death step). Join block i and i+1, thereby decreasing the total number
of intervals by one

4. Split (birth step). Split interval i into two intervals at a random position,
thereby increasing the total number of intervals by one

According to [45], the probabilities for the birth and death moves need to be
synchronized to ensure a detailed balance of the Markov chain. Let ηm, πm, bm and
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dm the probabilities of the four move types, with ηm + πm + bm + dm = 1. The
synchronization can be achieved by:

bk = c ·min
{

1,
P (k + 1)

P (k)

}
(6.10)

and

dk+1 = c ·min
{

1,
P (k)

P (k + 1)

}
(6.11)

with c chosen so that bk + dk < 0.9 for all k. The remaining section explains the
respective methods to propose and accept one of the mentioned steps.

Update the Ne of an interval is done by first choosing an interval i out of the
m existing intervals with probability 1

m
. Second, a new size is proposed by N ′e =

Ne · exp(z) where z is a uniformly distributed random variable on
[
−1

3
, 1
3

]
. The new

Ne is then accepted with probability

αU(x, x̃) = min {1,L + (log(N ′e −Ne)
α) + log(exp (−β (N ′e −Ne)))} (6.12)

Extending the length of an interval is done by first choosing an interval i with
probability 1

m
. The new start position a′i is chosen uniformly from U ∼ [ai−1, ai+1],

resulting in the starting position being shifted to either side with probability 1
2
. The

newly proposed step is then accepted with probability

αE(x, x̃) = min {1,L + log[ai+1 − a′i]− log[ai+1 − ai] + log[a′i − ai−1]− log[ai − ai−1]}
(6.13)

Split an interval into two (birth step) is done by first choosing an interval i out
of the m existing intervals with probability 1

m
. Second, the new change point (start

of newly generated interval) is denoted as a∗, which is between ai and ai+1. The
new Ne that corresponds to a∗, is N∗e and is generated by randomly modifying
the current Ne(a

∗) on position a∗, according to Ne(a
∗)+zNe(a

∗), with z being a
random variable, uniformly distributed on the interval

[
−1

3
, 1
3

]
. This step increases

the number of intervals by one. The newly proposed step is then accepted with
probability

αS(x, x̃) = min

{
1,L + log[k + 1] + log

[
(a∗ − ai)(Nei+1 −Nei)

ai+1 − ai
+Nei

]}
(6.14)

Join an interval with its right neighbor (death step) is done by first choosing an
interval i out of the m existing intervals with probability 1

m
. This represents the

inversion of the birth step and consists of removing an interval. This step decreases
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the number of intervals by one. The newly proposed step is then accepted with the
inverted probability of the birth step

αJ(x, x̃) = −αS (6.15)

The following algorithm briefly summarizes the necessary steps:

1. Begin with the state of the previous sample x = xn−1

2. Select a move type from the set of reversible move types (by sampling from a
distribution pmove type)

3. Apply the selected move by selecting a target object and proposing a new
configuration x̃. Choosing the target i∗ is done through a move-specific target
proposal distribution qtarget, and proposing x̃ is done through a move-specific
proposal distribution Q

4. Compute the acceptance ratio, α, taking into account that it is defined differ-
ently for the various move types

5. Add the nth sample to the chain. If α ≥ 0 , add the proposed configuration
x̃. Otherwise add the proposed configuration with probability 10α. If the
proposed configuration is rejected, add the previous configuration xn−1

6.6 Chain length

One of the most difficult steps of applying MCMC algorithms is to determine how
long it takes for the chain to reach its stationary distribution (also called limiting
distribution in a Markov chain). If the chain has not been run long enough, it may
not give a good approximation of the target distribution (the distribution of inter-
est). The number of steps it takes to reach that state is called mixing time. Mixing
is one out of many topics of MCMC convergence and is a field of research of its own.
Metaphorically speaking, it is directly connected with the speed of forgetting the
initial value or distribution of the Markov chain. For a brief summary of possible
statistical analyses see [10]. Although several authors have shown practical impli-
cations of these analyses, applying suggested tests does not guarantee satisfactory
results and they often remain difficult to use and not reliable enough. Hence, in
practice it is often advisable to experimentally determine an adequate chain length.
One commonly applied method is to run multiple parallel chains. When conver-
gence is slow this can be a serious practical limitation. Multiple chains increase the
computational complexity, but can be very useful to diagnose non-ideal convergence
behavior. For example, each chain may individually appear to have converged, but
comparisons between them may uncover discrepancies in the apparent stationary
distributions.
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6.7 Performance optimization

The whole Markov chain algorithm is implemented in C, a general purpose program-
ming language2 and compiled with gcc version 4.6.3, the GNU compiler collection,
on a x86 64 Linux environment. Furthermore, functions provided by GLib were
used. GLib is a library written in C consisting of a variety of additional functional-
ities and data structures3.

In order to get an estimate of E ′[TjTk], the calculation of (n ∗ (n − 1))/2 pairs
needs to be done after every newly proposed step, and the Markov chain is usually
run for several ten to hundred thousands of steps, which makes computational speed
optimization an important point. For that reason the calculation of the inner prod-
ucts is implemented with the use of intrinsic functions from the Intel Streaming
SIMD Extensions technology (SSE). Among others, this set of functions is often
used to optimize the performance of an algorithm by vectorization where a com-
puter program is converted from a scalar implementation, which processes a single
pair of operands at a time, to a vector implementation which processes one oper-
ation on multiple pairs of operands at once. The compiler has a direct knowledge
of the intrinsic function and can, therefore, better integrate it and optimize it for
the problem at hand. The 128 byte m128 data type I used in this setting is able
to hold four floating point values at once, reducing the time to calculate the scalar
product by a factor of 4. Therefore, SSE is a set of instructions which allow to load
the floating-point numbers to 128-bit registers, perform the arithmetic and logical
operations, and write the result back to memory. SSE was introduced by Intel in
1999 for the x86 architecture and has ever since been improved and refined. Using
this method in a program that is supposed to later be used on a variety of different
computer systems is not problematic, since all modern Intel and also AMD CPUs
support SSE, after AMD gave up on their own instruction set called 3Dnow. Vari-
ous websites provide more detailed information about the use and implementation
of this method (e.g. the Intel website4). Functions provided by the C header file
emmintrin.h were used.

The second way of calculating E[TjTk] can be achieved without averaging over a
large number of simulated inter-coalescence times. However, the practical applica-
tion of this approach contains some points that need special attention. The given
expressions include, among others, the summation of both very large and very small
positive and negative terms which leads to a numerical instable behavior of the
calculation. Therefore, with increasing sample size n or increasing number of Ne

intervals m results get less and less reliable. Even for a rather small setting with

2see http://cm.bell-labs.com/cm/cs/who/dmr/chist.html, last visited on 03/12/13
3see https://developer.gnome.org/glib/, last visited on 03/12/13
4http://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-

integrated-performance-primitives-to-accelerate-algorithms, last visited on 14/10/2013
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n = 10 and m = 6, problems already emerge. For example, E[T 2
24] with n = 40 and

m = 3 (with a specific Ne(t) function) results in −1.3 · 10−7, when calculated with
standard C data types, but its true value is 2.678 · 10−9. Hence, using the standard
C floating point data types double and long double, whose implementations range
between 64 and 128 bit precision, depending on the compiler and underlying com-
puter architecture, is not sufficient to handle these calculations. I, therefore, decided
to apply an extended precision library. Extended precision refers to floating point
number formats that provide greater precision and more exponent range than the
basic floating point formats. The MPFR library is a C library for multiple-precision
floating-point computations with correct rounding (see http://www.mpfr.org/ 5 for
more details). The basic principle of these libraries is that precision is not limited
by the provided data types, but only by the available amount of machine memory.
At the cost of a higher calculation time any desired precision can be achieved. The
syntax of most libraries differs significantly from the usual C syntax. For example,
an mpfr t object needs to be initialized with mpfr init(mpfr tx) before storing the
first value in it. Furthermore, functions to assign values mpfr set () and arithmetic
functions like mpfr sub(), mpfr mul(), etc., exist to allow the application of any
desired arithmetic. The set of provided functions is complex, however, easy to use for
reasonably short expressions. However, trying to transform the aforementioned ap-
proach turned out to be practically unfeasible. Though, a number of interfaces and
extensions exist for MPFR. An MPFR C++ wrapper, written by Pavel Holoborodko
(see http://www.holoborodko.com/pavel/mpfr 6), is based on the MPFR and uses the
possibility of operator overloading in C++ to replace mpfr mul() with the com-
monly used operator ∗. This can be achieved by transferring the actual calculations
to a C++ script and later linking both the C and C++ implementations together.
The speed of this method is then much more dependent on the actual sample size
n and number of Ne intervals m. With increasing numbers calculations get com-
putationally more intensive and time consuming. It is, therefore, currently only
feasible to use data sets with up to 5 diploid individuals (10 haplotypes) within the
MCMC framework when using E[TjTk]. C header file gmp.h and the C++ header
file mpreal.h were used.

In order to improve the runtime and hence the overall performance of the algo-
rithm I also implemented multi-threading, a widespread programming and execution
model that allows multiple threads to exist within the context of a single process.
The resources of the program are shared but threads are able to execute indepen-
dently. Users with the access to computers with mutli core processors or multiple
CPUs benefit from this implementation, since it results in a significant reduction
of computational time. Parts that can be parallelized by multiple threads are the
calculation of the likelihood (equation 6.1), the calculation of E ′[TjTk] (equation

5last visited on 10/13/2013
6last visited on 10/13/2013
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6.17) as well as the simulation of the inter-coalescence time matrix.

All mentioned steps were extensively tested and the current set of optimization
steps turned out to be the most efficient algorithm so far. This implementation
provides a significant reduction in computational time and overall accuracy.

6.8 Parameters and options

The software comes as a binary file that can run on 32 and 64 bit machines. It’s an
easy to use command line program without any graphical user interface. Although
the rjMCMC approach does not have a fixed number of model parameters to allow
for a high flexibility in terms of demographic inference, the user has to specify a
number of parameters to control the behavior and performance of the chain. The
following section will briefly introduce the parameters and their effects.

Parameters that need to be specified:

1. -file = A file containing the information about the observed population of
interest, given in vector format

2. -nhaplo = A positive integer number representing the number of haplotypes
(sample size). For example, 5 diploid individuals are 10 haplotypes

3. -mmethod = The method used for the calculation of E ′[TjTk] (approx) for the
approximation method, or E[TjTk] (exact) for the calculation based on [136]

4. -threads = A positive integer number representing the number of parallel
threads used for the program

5. -n time sims = A positive integer number representing the number x of tuples
of inter-coalescence times (only needed if -mmethod=approx)

6. -nsteps = A positive integer number representing the number of steps the chain
should be run

7. -min int size = Minimum length a block can have (effects the smoothness of
the final trajectory, default 0.0125)

8. -min ne = Minimum Ne a block can have (default 0.01)

9. -max ne = Maximum Ne a block can have (default 20)

10. max num blocks = The maximum number of Ne blocks allowed (default 10)

11. update ne interval = A number giving the range of z (see Update step, default
is [-0.3,0.3])
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6.9 Likelihood calculation and data sets

Since the current implementation of the 2 point spectrum does not take recombi-
nation into account, segregating sites that are analyzed need to be connected by
a single coalescent genealogy, which would not be possible if recombination events
happened between the sites. Therefore, it is currently not possible to analyze con-
tinuous autosomal chromosomes or entire genomes. For that reason genetic regions
need to be chosen that are known to have a very low or no recombination rate at
all. This is practically feasible, since fine scale recombination maps are available for
an increasing number of species of interest (e.g. [50], etc.). In order to decrease the
chance for recombination events to happen, the length of the chosen regions must
be kept rather short. We decided to use regions not longer than 50 SNPs of length.
Since the data under consideration, therefore, consists of independent recombination
free regions, the likelihood can not be calculated for the whole data set at once, but
each region (that is assumed to be independent from the remaining regions) needs
to be calculated separately. Hence, the likelihood is calculated as a pseudo (or com-
posite) likelihood. In many practical applications the joint distribution of the data
may be difficult to evaluate or the data consists of smaller subsets whose internal
dependencies are complex and difficult to specify. The basic principle of the class
of pseudo likelihoods is that if computing likelihoods for certain subsets of the data
is possible, a pseudo likelihood can be constructed by combining single likelihood
objects using them as a surrogate for the ordinary likelihood. Often the computing
cost of calculating the full-likelihood increases rapidly, even exponentially with the
sequence length and hence, the composite likelihood takes substantially less time
to calculate than the full-likelihood. A quite comprehensive discussion about the
accuracy and potential disadvantages can be found in [4, 34, 90]. The composite
likelihood implemented in the current work can be calculated as follows:

CL(θ|D) = Πk∈KLk(θ|D) (6.16)

Therefore, all pseudo observed data used for the initial analysis of the 2 point spec-
trum method were simulated with ms with a large number of independent replicates
(k) based on the same underlying demographic model. The replicates represent the
genomic regions in empirical data sets. Mutation rate was chosen so that each repli-
cate consisted of roughly 50 SNPs.

The simulated sequence output from ms is then summarized by a Perl script to ob-
tain the input format for the Markov chain program (denoted vector format). Given
n segregating sites per independent ms replicate, the allele frequency information
for each of the n(n − 1)/2 possible pairs need to be summarized. This results in a
format that gives the pairwise information for each pair of sites (from each replicate)
in a vector v = (fmaj, fmin,model, na, nb, nc) (see section 6.3) with model=1 repre-
senting the cases for E2N (two mutations being nested) and E2B (two mutations
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located on basal branches). Model=2 represents the cases for E2NN (two mutations
are non-nested) and E2S (two mutations are located on the same branch).

6.10 Results 2 point spectrum

I first tested whether single demographic events have an effect on the sub-sfs (the
initial implementation of the 2 point spectrum) statistic. As described in section
6.2 I simulated different demographic histories and compared them to a constant
size model. Figure 6.7A shows how the ratio between different demographic models,
represented by a triangular matrix, is affected. The first important information is
the data range, showing the extent of the ratio of the sub-sfs values for two different
demographic models. The according heat plot color code is depicted by a transition
from blue to light brown/white to dark brown, representing values being < 1, ∼
1 and > 1 respectively. First of all, the ratio matrix for two similar but indepen-
dently simulated demographic models is investigated. Despite the random nature
of the coalescent, the distribution of sub-sfs values, calculated from a large number
of coalescent trees, should be rather similar, since genealogies were generated un-
der a model with the same demographic parameters. As shown in figure 6.7A, the
comparison between 2 constant size models shows no clear color pattern, but more
the impression of random noise. As expected, the range of values is rather small,
between 0.92 and 1.09, indicating a negligible deviation from the value of 1. When
comparing a non-constant with a constant size model the difference should be more
pronounced, since changes in population size directly affect the branch lengths of
the underlying genealogy. Therefore, figure 6.7B shows the comparison between a
constant size and a bottleneck model (event happened 0.05 - 0.0525 time units ago,
decreasing the population size by a factor of 100). Times of demographic events are
from now on given in units of 4Ne generations. In order to obtain the actual number
of generations this number needs to be multiplied by 4 ∗ Ne. First of all there is a
distinct color pattern, indicated by a dark blue vertical area, representing the first
five to six low frequency bins on the x axis (sub frequencies fx). In addition one
can clearly see a dark to light brown cluster at the upper third of the plot. Since
the comparison is done by contrasting the constant model matrix by the bottleneck
model matrix, the blue and brown clusters represent values that, compared to the
constant size model, are bigger and smaller respectively in the bottleneck model.
In panel C of figure 6.7 the same analysis is shown for a more ancient bottleneck
ranging from 0.2 to 0.2025 time units ago. It is interesting to see, that the blue
area slightly moved to the right, suggesting that the first column (F =1) is now
affected in the opposite way (values >1). Further on, a similar brown cluster is
seen but its location slightly moved downwards to higher F and fx. As already
mentioned, results here are only a subset of all the cases that were tested. For other
bottleneck and expansion models similar effects could be observed. Interestingly the
time differences between different events also seem to be reflected to a certain extent.
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Figure 6.7: First tests of the sub-sfs method (the initial implementation of the 2 point
spectrum) to analyze how sensitive this statistic is to past population size changes. A)
shows the ratio between the sub-sfs entries of two independently simulated constant
size models. B and C) show the same ratio between a constant size and a recent
and ancient bottleneck event, respectively. Range of values is shown by the color key.
Data was simulated for 40 haplotypes. Y-axis values represent frequencies F=1..39
and x-axis values represent frequencies f=1..39.

Since these initial results indicated that the pairwise frequency information seems
sensitive to past population size changes to some degree, we analyzed whether it is
possible to distinguish the two demographic histories shown in [101] (see methods for
implementation details). Although being quite different, both demographic models
result in the exact same site frequency spectrum (shown analytically by Myers et
al.). After simulating two datasets, each based on one of the models, the SFS was
calculated. As can be seen from figure 6.8, the SFS ratio between the constant and
non-constant demographic histories, simulated for 20 diploid individuals, is rather
stable around a value of 1.0. The 1% difference is due to the fact that the continu-
ous Ne function was approximated as a discrete piecewise constant function with
5,000 data points (provided by Nick Patterson). This indeed indicated that the two
models cannot be distinguished just by using the SFS alone. However, analyzing the
difference between the (sub-sfs) pairwise frequency configurations revealed a subtle
pattern. Figure 6.9 shows that especially the lower frequencies F show differences
between the two models. Interestingly the range of values is between 0.79 and 1.37,
which is clearly different from the previously tested constant size models. In con-
clusion there seems to be a slight tendency for the pairwise frequency configurations
to be able to capture past population size events. However, as already mentioned,
interpreting these results just based on the graphical output is rather difficult. Since
the outcome of these calculations can be represented as pairs of allele frequencies,
the values could easily be used as summary statistics and later be used in an ABC
framework as previously done for the AF-IBD method. Though, this would imply
being limited to a certain fixed number of model parameters, which is a useful and
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valid approach, but as I mentioned, I wanted to exploit the capabilities and flexibil-
ity of a variable number of model parameters.

Figure 6.8: Shown is the ratio between the calculated site frequency spectra of the
two simulated demographies from Myers et al. [101]. Both demographies, although
clearly different from each other, are supposed to show the exact same SFS.

Figure 6.9: Similar setting as described in figure 6.7, but results are shown for the
ratio between the constant and non-constant model, simulated from 5,000 data points
(as given in Myers et al. [101]).

6.10.1 RJMCMC results

As already described, an rjMCMC algorithm implemented in the C language was
used to investigate the potential of the 2 point spectrum method to distinguish dif-
ferent demographic scenarios and to infer underlying parameters of interest (again,
now considering all possible pairs of sites). The first analyses were done by us-
ing the Monte Carlo method to calculate the approximated moments of pairs of
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inter-coalescence times E‘[TjTk]. I started by analyzing the simplest models, i.e.
a population size constant over time. In the standard infinite sites model the fre-
quency spectrum for a constant population size, where frequency j has a probability
proportional to 1/j, is independent of the actual value of Ne. A change in popula-
tion size rescales all branches in such a way that the frequency spectrum remains
unaffected. As an example, the way that the SFS from constant model of Ne differs
from the SFS of a model of 6 ∗ Ne is in the total number of mutant sites (i.e. the
branch lengths are stretched by a factor of 6) that we expect to see, not the relative
frequencies of their allele counts. Since the current method is essentially condition-
ing on this, it is discarding that part of the data which is informative about the
absolute value of Ne. The current method would result in the same likelihood for
two constant size models that differ in the absolute value of Ne. Therefore, this
method could later be used to infer Ne(t) up to a scaling constant which could be
chosen based on the total number of mutations in the data. One option could be
Tajima‘s diversity estimator, which states that the diversity is an estimate of Θ =
4*Ne ∗µ. Supposed µ is known, Ne could then be inferred and used as the timescale
in the coalescent model with Ne(t) given relative to this timescale.
Taking the previously mentioned theoretical facts into account we expect to see a
behavior of the chain that jumps between different models of constant population
size only differing in the actual value of Ne. Therefore, inference results shown here
are all scaled to a fixed present day population size of 1.0, which makes it easy
to directly compare results from different MCMC runs with the true underlying
simulated history. First, a data set of 10 and 20 haplotypes respectively were sim-
ulated with ms under a fixed value of Ne. Two independent chains were run for
500,000 steps, each analyzing one of the two constant size data sets. Interestingly,
as previously expected, the chains jumped between different states of constant size,
with the final results being relatively smooth and stable, indicating that no clear
change in population size was detected. Results are not graphically shown, since the
chain quickly jumped into a model with only one or two intervals. For this simple
demographic model increasing the sample size does not significantly improve the
accuracy of the final results. The results only rarely showed two or three intervals
models, with the population sizes of the neighboring intervals being very similar,
only differing by at most 0.2 units of Ne.

A commonly applied method when working with MCMC in general is to run mul-
tiple chains in parallel and to use the average over all chains to obtain a final result.
Although MCMC, as compared to ABC, uses a directed approach to find the global
maximum or minimum in a fitness landscape, the outcome of a single MCMC run
can still be slightly biased due to the random nature of the algorithm. Therefore,
averaging over several runs may increase the reliability and quality of the results
(see section 6.6). For example, histories in figure 4.3 are shown as an average over
10 independent runs of PSMC and diCal. Therefore, if not explicitly stated, MCMC
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results represent the average over five independent Markov chains. Summarizing so
far, the method is able to infer models of constant population size without intro-
ducing too many unnecessary dimensions, as was the case for the results of the first
skyline-plot method. For the sake of clarity, a summary of the sets of chosen MCMC
parameter values that turned out to be the most suitable for the inference of specific
models will be given in section 6.11.

Gradually increasing the complexity of the underlying demographic model sug-
gests to introduce a single size change event at a given time point. Going forward
in time, this change can either be a reduction or an increase in Ne, with Ne ancestral

≶ Ne recent. Hence, two data sets in total were simulated with ms, namely a popu-
lation increase and decrease, each for a sample size of five diploid individuals (n=10
haplotypes). The time of the event was set to be 0.05 time units ago, increasing or
decreasing the population size by a factor of 2.5 and 4 respectively. Summarizing
results from figure 6.10, the method clearly identifies the direction of the events and
roughly infers the strength of the actual decrease or increase. Although the strength
of 2.5 is almost exactly identified for the expansion model, the ancestral Ne for the
decrease model is clearly underestimated. This may potentially be the cause of the
nature of the coalescent. Looking backward in time, the relatively small population
size until around 0.05 time units ago results in an increased rate of coalescent. As a
consequence this forces a large number of lineages to coalesce, reducing the present
day diversity of the population sample and potentially increasing the coalescent
variance between periods of reduced and increased Ne. However, first results clearly
show that the method can detect the direction of the size change event without in-
troducing too much random noise. For addressing the sensitivity toward timings of
events, the same basic demographic models were simulated but with different event
times.

The height of a coalescent tree is ∼ 2 coalescent units (4Ne) in total [54]. That
is, demographic changes much older that 2 coalescent units may be very difficult, if
not impossible, to detect because of too few coalescent trees that reach sufficiently
far back into the past. Hence, the chosen demographic events should be introduced
in the range of 0-1 coalescent units in order to be sure that the actual event of
interest is potentially still detectable. Figure 6.11 shows the results of shifting the
demographic event back in time. The strengths of the events are the same as before
(expansion 2.5 and decline 4). As can be seen from panel A and B, the inferred main
size reduction steps follow the different times of demographic events. However, a
similar noise as before can be observed, introducing more intervals than actually
needed, dividing the single demographic event into several smaller ones. Panels
C and D show the results for different times of expansion events. As already seen
from the single expansion case, the inferred demographic functions closely follow the
underlying simulated model without introducing too much noise. However, times
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Figure 6.10: Single run rjMCMC results for simulated reduction and increase in size,
0.05 time units ago, for n=10 haplotypes.

are slightly underestimated, resulting in too recent events, but in particular the
strengths and times of expansion can be inferred rather accurately.
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Figure 6.11: Single run rjMCMC results for simulated reduction and increase in size,
for different time points, for n=10 haplotypes.

First results demonstrate the power of the 2 point spectrum method to infer past
population size changes even if only using five diploid individuals.

As already explained and tested for the AF-IBD/S method, trying to distinguish
between bottleneck models is a rather difficult task. The problem that arises is that
short but strong bottlenecks may produce a similar SFS as a long but weaker bot-
tleneck. The following tests are supposed to illustrate whether the current method
is able to detect such temporal fluctuations in population size. The first bottleneck
occurs from 0.075 to 0.175 in units of 4Ne generations. The ancestral Ne is reduced
by a factor of 7.5 and then population size recovers again. This first model is a
rather recent demographic event, so it is interesting to see how accurate the method
can be for such time regions, since the accuracy for rather recent times is of special
interest for this project. As figure 6.12A shows, the method is able to accurately
infer the core part of the bottleneck. What can be seen is that (looking backward
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in time) the start of the bottleneck is accurately inferred and the strength of size
reduction is inferred quite accurately for the core part of the event. Again, the re-
cent population size is fixed to 1 and all subsequent sizes are scaled accordingly (due
to the fact that the method is not able to infer absolute Ne values, but only on a
relative scale). However, what can also be seen is that the method introduced some
additional intervals that would not essentially be needed to explain the underlying
model. The introduction of additional intervals is to some extent also due to the fact
that this is shown as an average over five independent runs. However, when look-
ing at the results from a single outcome with the best likelihood that was observed
for this model it can be seen that the method is indeed able to fit the underlying
model quite well (see figure 6.12B). Both results combined show that the way the
likelihood function distinguishes between different demographic models, and how
this information is used in combination with the rjMCMC approach seems to work
properly and gives reasonable results.

Figure 6.12: A) shows rjMCMC results for a simple three interval bottleneck model,
reducing the population size (from 0.075 to 0.175 time units ago) by a factor of 7.5,
simulated for n=10 haplotypes. As can be seen, the core part of the event is accurately
inferred, although averaging over different runs introduces disturbing intervals. Tra-
jectory is given as an average over five independent MCMC runs. B) shows rjMCMC
single result for the same bottleneck model, but this time showing the result from a
single run with the best likelihood that was observed for the analysis of this particular
model. As can be seen, the inference is very accurate, with time and strength of the
bottleneck closely following the underlying size trajectory.

Figure 6.13 shows the results from a bottleneck that was shifted further back in
time with the same strength as before. The core part of the bottleneck is again
inferred quite accurately. Additionally, the size before and after the event as well as
the strength of the bottleneck are closely following the true underlying history. How-
ever, shifting such demographic events further back in time allows more mutation
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events to vanish the actual effects on the SFS and diversity recovers, which makes it
more difficult to estimate population size changes, especially with SFS based statis-
tics which are known to be more informative for recent time periods. Hence, the
observed variance of the inferred timespan of the event is higher compared to the
more recent bottleneck.

Figure 6.13: RJMCMC results for a simple three interval bottleneck model, reducing
the population size (from 0.2 to 0.275 time units ago) by a factor of 7.5, simulated for
n=10 haplotypes. As can be seen, the core part of the event is accurately inferred,
although averaging over different runs introduces even more disturbing intervals than
for the more recent bottleneck in figure 6.12. The inferred trajectory is given as an
average over five independent MCMC runs.

So far the analyzed bottleneck models completely recover the Ne after the event.
However, additional simulations were performed with the ancestral and recent popu-
lation sizes being different from each other. These models are probably more re-
alistic, especially in the case of human species that left the African continent and
colonized the rest of the world. As can be seen in figure 6.14A, results averaged over
five independent runs show a rather accurate trajectory with times and population
sizes following the underlying demographic model.

Additionally, the same demographic model with the recent Ne being smaller than
the ancient Ne was tested. Figure 6.14B shows the same model as before just with
recent and ancient population sizes being swapped. As can be seen, the average over
five independent runs gives slightly less accurate results as inference for the model in
panel A. A similar trend could be observed when comparing expansion and decline
models, with less final accuracy when the population size was decreasing toward
more recent time periods.
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Figure 6.14: A) shows rjMCMC results for a simulated bottleneck, followed by an
expansion 0.075 time units ago, simulated for n=10 haplotypes. B) shows rjMCMC
results for a simulated bottleneck, followed by a weaker expansion 0.075 time units
ago, simulated for n=10 haplotypes. The inferred trajectories are given as an average
over five independent MCMC runs.

As a more numerical interpretation of the accuracy of the rjMCMC inference, table
6.1 gives the RMSE values calculated between a single simulated true size trajectory
and the inferred final estimate (average over five independent runs). Focusing on
the particular demographic models, accuracy clearly reduces as the time of the event
is shifted further back in the past. Furthermore, as already mentioned, results from
the 2-interval decline models show a rather big RMSE, since time of the event and
ancestral Ne were not estimated very accurately. However, bottleneck results are
still quite reasonable and even RMSE values are encouraging and reflect a quite
precise inference.

In summary the presented outcomes suggest a rather accurate inference of past
population size histories. The method is sensitive to timings of size changes as well
as the actual relative ratio of population sizes between neighboring intervals.
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Model Number of intervals Time of event RMSE
Constant 1 - 0.041
Decline 2 0.05 1.21
Decline 2 0.2 1.36
Decline 2 0.3 1.62
Expansion 2 0.05 0.075
Expansion 2 0.125 0.183
Expansion 2 0.3 0.191
Bottleneck 3 0.0175 - 0.175 0.18
Bottleneck 3 0.2 - 0.275 0.32
Bottleneck-2 3 0.0175 - 0.175 0.14
Bottleneck-3 3 0.0175 - 0.175 0.54

Table 6.1: RMSE calculated between an underlying simulated demographic model
and the final rjMCMC estimate for n=10 haplotypes. Inferred results are taken as the
average over five independent MCMC runs. Bottleneck models -2 and -3 represent
the cases from figures 6.14A and B, respectively.

6.11 Runtime observations and optimal parameter
settings

In this section I will briefly explain which sets of parameters turned out to give rea-
sonably accurate results. Accurate in this meaning is not a well defined term, but
more like a combined interpretation of the averaged results and the RMSE values
of the applied method. Tuning of associated parameters such as prior distributions,
proposal variances, etc., is crucial to achieve efficient mixing and accurate results
but can be very difficult. Therefore, testing the possible parameter combinations,
data sets, and demographic models was a time consuming and computationally very
costly process. The first step in the practical inference of parameters of interest is
to obtain simulated data. All of the results I have shown are based on only ten
simulated haplotypes. The decision not to start with a higher number of individuals
and then gradually reducing the amount of data in order to subsequently approach
the lower limit, was mostly driven by the fact that the computational complexity of
the exact calculation of E[TjTk] is heavily dependent on the number of individuals
and the number of intervals m of the demographic model. These facts set limits
to the amount of data that were used to compare results from the approximated
and exact calculation of second order moments of inter-coalescence times. However,
even for this relatively small number of individuals I did observe a rather accu-
rate parameter estimation. As one can see from figure 6.6, the difference between
E[TjTk] and E ′[TjTk] is negligible when approximating over 105 inter-coalescence
time tuples. This is also reflected in the final results of two independent runs, each
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with one of the possible methods to obtain the joint moments. The comparison was
done by analyzing various demographic models with the same set of chain specific
parameters. I could not observe a significant difference between the two methods,
which is expected due to the fact that the calculated moments are statistically very
similar (see figure 6.6). An example is shown in figure 6.15 where both methods were
used to calculate the final likelihood (exact method in red, approximated method
in light blue). As can be seen, no significant difference can be observed, which also
holds for a variety of other tested demographic models and parameter combina-
tions. However, the main difference between the two possible methods affects the
calculation of the likelihoods. When calculating the likelihood for the same demo-
graphic model twice, the approximated method will result in two slightly different
likelihoods, since the set of simulated inter-coalescence times is regenerated for each
new calculation. The difference between the two calculated likelihoods is marginal
but the chain applying the exact calculations was able to accept newly proposed
steps slightly more often, which is probably caused by the fact that slight changes
to the underlying model did generate a smaller likelihood change. Summarizing, the
decision to use the exact method coupled with only five diploid individuals turned
out to give reliable results for almost all of the tested demographic models. For
every demographic model 2,000 independent replicates were simulated, each with
the aforementioned number of ∼ 50 segregating sites. Hence, all inference results
were based on ∼100,000 SNPs. Simulating more sites would potentially increase the
power and accuracy of the approach, but since we are limited to recombination free
regions, it is questionable how much data would practically be available depending
on the species of interest.

Figure 6.15: Single rjMCMC results for a bottleneck model, likelihood calculation
based on the exact (E[TjTk]) or approximated (E′[TjTk]) moments calculation, simu-
lated for n=10 haplotypes.
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The prior and parameter settings that were adopted from [107] gave solid results
throughout all the tested cases. However, the prior for a height change of an interval
N ′e = Ne · exp(z) with z being uniformly distributed on [-1

2
,1
2
] turned out to be too

strong. Choosing and interval of [-0.3,0.3] gave more stable results, without the Ne

of neighboring intervals to be too different from each other. All other parameter
values and prior distributions were found to work well in this setting. This is ex-
pected to some extent, since the setting in [107] is very similar to ours, mainly just
differing by a different likelihood function and core statistics.

The Markov chain is started with an initial state which is a randomly generated
demographic model. The number m of intervals is chosen as a random number be-
tween 1 and mmax=8 which was found to be a sufficient upper limit for the chain
to efficiently explore the search space without introducing too much noise. Again,
increasing the number of intervals affects the computational runtime of the calcula-
tion of joint moments of inter-coalescence times. However, for most of the analyses
the chain was able to reduce the number of intervals to a number that closely fits
the true simulated model, i.e. in the case of a simulated bottleneck model (m=3)
final results mostly contained between three and five intervals. The initial demo-
graphic history spans a time between 0 and 1 in units of 4Ne generations and can
be extended or shortened accordingly by applying the extension move types. The
mutation rate for all simulations was chosen in a way to produce ∼50 SNPs per
replicate.

Every Markov chain was run for 600,000 iterations, whereas the initial 5,000 iter-
ations are ignored for a burn-in period. The overall runtime of the approach heavily
depends on the number of simulated haplotypes and the method to calculate the
joint moments of inter-coalescence times. If using the exact method, runtime also
depends on the number of Ne intervals m of the current demographic model. If in-
stead using the approximation method, runtime depends on the number of simulated
inter-coalescence time tuples x. Table 6.2 gives a general impression of the runtime
of single steps based on different settings. As can be seen, the exact moments cal-
culation is strongly dependent on the number of haplotypes and Ne intervals. At
the time of this thesis the exact method did not yet benefit from a parallel im-
plementation with multiple threads. This would be a crucial step towards a more
practically feasible runtime for more than five individuals. The current implemen-
tation is, therefore, limited in the amount of data that can be analyzed.
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Haplotypes(n) Intervals(m) Method Tuples(x) Threads Time
10 2 approx. 500 0 0.1s
10 10 approx. 500 0 0.46s
10 2 approx. 500 5 0.05s
10 10 approx. 500 5 0.32s
40 2 approx. 500 0 1.5s
40 2 approx. 500 5 0.65s
40 10 approx. 500 5 0.96s
10 2 exact - 0 0.06s
10 10 exact - 0 1.1s
40 2 exact - 0 25.5s
40 10 exact - 0 52.5s

Table 6.2: MCMC runtime for different parameter combinations. n=number of
haplotypes, m=number of Ne intervals, Method=method to calculate the joint mo-
ments E[] or E′[], x=number of simulated inter-coalescence time tuples in thousands,
Threads=number of threads running in parallel, Time=runtime for a single MCMC
iteration in seconds (depending on the chosen method, a single steps comprises the
simulation of x time tuples, the calculation of the joint moments and the calculation
of the likelihood for the whole data set, given a newly proposed demographic model).
The exact method does not benefit from parallel threads so far. Inference was done on
a Intel Core 2 Quad (2.66Ghz), 64bit, 4Gb memory, Ubuntu 12.04, gcc version 4.6.3
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6.12 Discussion

In the current chapter I introduced a new non-parametric approach to infer past
population size changes as a function λ(t) over time. With the advance of sequenc-
ing technology and computational facilities it is possible to process consistently
growing amounts of genetic data in order to infer parameters of interest. With
the cost for sequencing technology steadily decreasing it is possible to even use
whole genome sequence data. Therefore, genome-wide non-parametric approaches
become widely used and allow a parameter inference that is as accurate as was never
achieved before. With the two most recent approaches like the skyline plot method
family, PSMC, and its derivations of the pairwise sequentially Markovian coalescent
framework (e.g. diCal), a significant step has been made in terms of obtaining an
enormous amount of information from a rather small amount of actual sequence
data. Although these methods are widely used, the need to develop further meth-
ods will always be indispensable. With the current 2 point spectrum project I used
a commonly applied statistic (the site frequency spectrum) that is known to be sen-
sitive to demographic changes. To the best of our knowledge this is the first study
to investigate the behavior of a 2 locus site frequency spectrum on demographic
inference. One of the potential advantages is the amount of information that can be
obtained from a given set of segregating sites. Given a set of s segregating sites, a
one locus SFS would summarize the frequency information in a vector of length s. In
the case of the 2 locus SFS (the 2 point spectrum method) the data is summarized

into a vector of length s∗(s−1)
2

, since the frequency information for every pair of sites
is captured. Hence, the 2 point spectrum method is a rational function of not only
first, but second or fourth order moments, suggesting that different histories with
similar SFS will be easier to distinguish and that the method has improved power
over the commonly known SFS. I mentioned fourth order moments, since a different
approach to not only summarize the inter-coalescence times by second order mo-
ments E[TjTk], but by fourth order moments E[L2TjTk], exists. The way this is
calculated is as follows:

E[L2TjTk] =
N∑
h,l

hlE[ThTlTjTk]

E[ThTlTjTk] =

∑x
i=1 vj[i]vk[i]vh[i]vl[i]

x
.

(6.17)

Using these fourth order moments should even increase the ability to distinguish
between demographic models that have a similar one locus SFS or even quite similar
E[TjTk]. However, at the time of this thesis the practical implementation of this
approach still suffered from some computational limitations, especially when using
more than only five diploid individuals and a high number of coalescent time tu-
ples. Therefore, I was not able to intensively investigate the suggested approach and
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compare it to the already described algorithms. Hence, this is one of the potential
improvements which could significantly increase the accuracy and usability of this
method.

The current chapter clearly showed that the newly developed statistic is highly
sensitive to past population size changes and can provide a significant amount of
information for the inference of demographic parameters within the tested framework
of rjMCMC. Summarizing, simple constant size, expansion, decline, and bottleneck
models can be inferred with rather high accuracy. Even introducing unequal recent
and ancient Ne can be inferred and the method still detects the relative shape
of the size trajectories. With only 10 simulated haplotypes this method is able
to provide accurate and reliable results. The low number of haplotypes is worth
mentioning, since other SFS based methods usually require more than only five
diploid individuals. Further increasing the sample size may improve the accuracy
for later analyses. However, with the current setting 10 simulated haplotypes were
the upper limit for the variety of different models and conditions that were tested.
The direct comparison between the 2 point spectrum method and PSMC and diCal
was done by simulating the exact same demographic history as in Sheehan et al.
(history S2, [121]). Results from figure 6.16 are encouraging. The 2 point method
is able to detect the time point and strength of the fist size change (at 0.1 in units
of 2N generations), and also detects the second change and strength (at 0.4 in
units of 2N generations) quite accurately. However, the time point of the third
size change (simulated at 1 units of 2N) was not really detected anymore. These
more ancient events seem to be undetectable for the current 2 point method. The
method is thought to provide insights into the more recent time periods in order to
complement already existing and well established methods. This goal is definitely
achieved and further research should be done in order to fine tune and validate the
results.

Interestingly, Jenkins and Mueller recently showed that the general triallelic fre-
quency spectrum under demographic models with variable population size provides
valuable information for distinguishing different demographic growth models from
constant models [67]. They show that triallelic sites are more sensitive per site to the
parameters of a population that has experienced historical growth, which suggests
that they will have use when incorporated into demographic inference. However,
their results turn out to be a good motivation for the current work, since triallelic
sites are too rare to be of substantial use and are often filtered out due to sequencing
errors. This in turn means that using pairwise frequency information, as in the case
of the 2 point spectrum method, may provide similar information and acts as a more
practical and attractive alternative.

Although I was able to show that with a relatively small number of preset pa-
rameters and assumptions the proposed method is able to accurately fit a variety of
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Figure 6.16: RJMCMC results for a demographic model S2, as shown in [121].
Shown is the result from five independent 2 point spectrum runs (left) and the results
from PSMC and diCal (right, averaged over 10 runs). In both cases, the model was
simulated for n=10 haplotypes. Time is given in 2N generations to better compare
the two figures.

demographic models, I am fully aware that, at the time of this thesis, a range of fur-
ther analyses still need to be performed in order to validate the initial results. When
newly proposed and developed methods (algorithms) are introduced, it needs to be
clear how they perform under a variety of realistic assumptions and backgrounds
(as was investigated for the AF-IBD/IBS method). It still needs to be shown how
the method performs when confounding factors (see section 4.1.3) are introduced to
underlying simulated pseudo observed data sets. This is by far the most important
step in order to more thoroughly understand the internal properties and qualities
of this method. Secondly, applying the 2 point spectrum to publicly available data
sets is important to show its potential value to empirical parameter inference. Al-
together, initial results of the 2 point spectrum already suggest that this method
might be of high interest, since even for small amounts of genetic data the accuracy
for the tested cases is very encouraging and the potential use for population genetics
is given.

So far, genomic data of interest need to provide a recombination map in order to
identify regions of very low or no recombination activity at all. When valid regions
are identified, they should not be longer than approximately 50 segregating sites in
order to decrease the chance of hidden recombination events to affect the underlying
genealogy. Therefore, an interesting modification and potential improvement of the
method is including recombination rate variation into the method. As I was trying
to make clear, the current implementation of the underlying algorithm does not take

-108-



6. Chapter The 2 point spectrum method

recombination into account for a specific reason. Recombination would not influence
the SFS itself, but can for example have an effect on the estimation of summary
statistics like Tajima’s D (see [133]). In our case the 2 point spectrum captures
the relative fractions of pairwise derived allele frequency information, but ignores
information about the absolute number of segregating sites. The latter implies that
different models of constant population size have a similar likelihood and further
inference about the absolute Ne needs to be performed. On the other hand, the
relative pairwise composition of derived allele frequencies is a summary of the data,
describing the structure of the underlying coalescent genealogy. Thereby it captures
demographic events over different time periods. If sites are obtained from more than
one genealogy, the calculated 2 point spectrum is summarized over multiple coales-
cent trees, each with different branch lengths, subtree structures and TMRCAs. A
similar problem occurs for the PSMC method. A hidden Markov model is applied
to reconstruct the genome-wide TMRCA distribution across the autosomes, mak-
ing use of the local densities of heterozygous sites. Segments that are separated by
historical recombination events reflect regions of constant TMRCA. This idea could
potentially be used to approach the problem of underlying recombination events in a
similar way. The practical constraint of identifying regions of low recombination rate
before running the inference approach could be avoided by incorporating the PSMC
idea into our framework. Therefore, the underlying core algorithm could be used
unmodified. A second possibility is to incorporate recombination into equations 6.1
and 6.2 and provide a fine scale map of local recombination rates along the genome.
This approach would differ from the current implementation in that it still uses a
recombination map but data would not need to be split in recombination free seg-
ments prior to the inference. Although the suggested ideas need a thorough revision
and might turn out to be impracticable, they offer a high potential to eventually
improve the practical use and reliability of the inferred demographic parameters.

Furthermore, a number of pending problems still need to be addressed. Depend-
ing on the randomly generated initial state of the chain (i.e. the initial demographic
model), the chain sometimes gets stuck in local optima and does not proceed fur-
ther. This is most likely not a problem of the underlying likelihood, but more a
practical problem of the MCMC algorithm to efficiently explore the search space.
Hence, further solutions and refinements need to be carried out in order to solve
these problems.

Since this method is the first to introduce a two-locus site frequency spectrum
and its potential applications to demographic parameter inference, one of the most
interesting questions is to show the expected gain in accuracy and power compared
to using the more commonly applied one-locus SFS. As shown in figure 6.2, the
increase in potentially informative frequency values from the same data set may
increase the power for gaining insights into the demographic history of populations
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or species. Since in the field of theoretical population genetics the SFS is of special
interest, the currently proposed statistic and its differences to the previously applied
methods should be of high value. The obtained insights and results of this method
may assist to give a more thorough and deeper understanding of how demographic
changes affect populations and how site frequency spectrum related statistics are
influenced in particular.
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Chapter 7
Discussion

“An expert is a person who has made all the mistakes that can be made
in a very narrow field”

Niels Bohr (1885 - 1962)

In the current thesis I aimed to give a general introduction about the method-
ological parts of population genetics parameter inference. The coalescent process
has been (and still remains to be) one of the most important mathematical models
in theoretical population genetics. The past generations of scientists developed the
core ideas and subsequently refined the basic principles to an enormously powerful
conceptional framework that allows a flexible and easy calculation of a variety of
features. With the introduction of the coalescent the simulation of evolutionary pro-
cesses became possible and set the stage for a better and deeper understanding of
how a variety of demographic and selective factors affect the transmission of genetic
material from generation to generation. Additional to using the original principles
of the Wright Fisher model, extensions like recombination, variable population size,
migration, selection, etc., were quickly incorporated and soon enabled the investi-
gation of complex demographic models. Being able to simulate genetic data based
on previously defined parameters of interest not only refined the understanding of
evolutionary processes, but made it possible to compare artificially generated gen-
etic data to empirical data obtained from a population or species of interest. Over
time such approaches have been consequently improved and their applications were
enhanced from single statistics to genome-wide methods taking into account a va-
riety of different data. Many of the first methods to study the demography of a
population were designed to reject a null hypothesis, i.e. tried to answer whether
or not a deviation from neutrality could be observed. Depending on the question
of interest, neutrality could assume a constant population size over time, or that no
selective events were acting on the individual genomes, etc. Further on, instead of
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just asking relatively simple questions, methods and algorithms were developed to
gain specific details about parameters of interest, e.g. how strong potential selection
was acting or when populations most likely split. The principle of comparing sim-
ulated to empirical data is the important core part of my work. The AF-IBS/IBD
methods extensively compare observed (or pseudo observed) data to simulated data
that were generated under the assumptions of certain demographic models. The
framework that was used for the implementation is Approximate Bayesian Compu-
tation (ABC). I successfully showed that the two summary statistics we introduced
capture enough information from the underlying data in order to assist in parameter
inference based on past population size changes. The second method, the 2 point
spectrum, only focuses on frequency information from segregating sites in order to
calculate a likelihood for a data set given a demographic model. Its implementa-
tion is based on a different algorithm, namely MCMC. Both methods combined in
a single study give an illustrative example of how the evolution of population ge-
netics methods changes the focus from parametric to semi- or even non-parametric
methods. In [109] the authors compare ABC and MCMC regarding the accuracy of
parameter inference, concluding that both methods can give equally accurate results.

Results of the two methods that were proposed in the current thesis are encourag-
ing and show that the core statistics are sensitive to aspects of past population size
changes. Comparing the applicability of both methods is difficult, since they are
based on different underlying principles. The AF-IBD/S method represents a para-
metric approach which has more limiting assumptions on the demographic model
and parameter values under study. The 2 point spectrum method tries to put as
few limitations and assumptions as possible on the actual model based inference
process. However, both methods are of course based on the assumptions of the
Wright-Fisher model and principles of the coalescent process. Although chapter
5 provided a comprehensive framework for parameter inference that includes AF-
IBD/S as its core statistics, the main conclusion is the usability of AF-IBD/S as
summary statistics. They can not only be used in the setting I proposed here but
could be incorporated into already existing frameworks and studies to potentially
contribute valuable insights into the demographic history of populations of interest.
Another significant difference is the amounts of data that are required for each of
the methods. AF-IBD/S was tested for ∼40 haplotypes (20 diploid individuals),
and using large parts of all autosomal chromosomes. I simulated a variety of model
misspecifications and started to account for confounding factors and biases (e.g. re-
combination rate variation, phasing errors, ascertainment bias). Depending on the
computational equipment the runtime of the entire pipeline strongly depends on the
number of demographic models that are to be tested and compared. In the case of
the 1-, 3- and 5-parameter models, the entire analysis was running for ∼1.5 days,
where the simulations for the SD-ratio grid actually consumed most of the time.

The 2 point spectrum method uses the frequency information of pairs of seg-
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regating sites and incorporates this information into a likelihood based rjMCMC
framework. In terms of user-friendliness this method is probably more convenient
to apply, since the goal was to allow for a high flexibility and efficiency. The un-
derlying principles of the rjMCMC approach enable direct conclusions about the
demographic model that was inferred. Again, the 2 point spectrum method can in
principle not only be used in the framework that was proposed in the current work.
The statistic can also be incorporated into already existing frameworks and stud-
ies although we think that the method we presented here (likelihood calculation,
inference with rjMCMC, etc.) is already quite efficient. In terms of the amounts
of data the 2 point spectrum method was tested for much less data (number of
individuals and number of segregating sites) than the AF-IBD/S method. However,
as I mentioned before, several things still need to be tested and validated for the
final evaluation of the 2 point spectrum method. This includes a more thorough
investigation of model misspecifications, ascertainment bias, hidden recombination
events, phasing errors, etc.

The site frequency spectrum was extensively used in this thesis, at first as a sum-
mary statistic combined with the extent of identity by state/decent, and secondly
as the core statistic for the calculation of a likelihood for a pairwise frequency con-
figuration. The demographic sensitivity of SFS based statistics has been intensively
investigated in numerous studies (e.g. [113, 133]). As already mentioned, popula-
tion structure can massively skew the SFS and influence the results of parameter
inference. The more recent approaches, be it methods based on IBD tracts, skyline
plot methods, methods using ROH or LD, or derivatives of PSMC, are definitely af-
fected by multiple confounding factors as well. However, the impact of these factors
on the mentioned methods still needs to be studied and investigated which requires
a lot of caution when interpreting their results.

Due to the constantly improving technological possibilities, inference based on
genetic data alone is becoming more reliable and robust. However, this has not
always been true. Until recently, statements about past populations were inferen-
tial in nature and depended on information from other fields such as archeology,
palaeontology, or linguistics. This is due to the fact that inference is mostly based
on underlying models. As I hope is clear after reading the current thesis, such
models more or less depend on limitations, assumptions, and rules that need to
be made in order to simulate and reproduce evolution. Because of that, different
models are artificially forced to appear similar to some extent just because they rely
on the same underlying limitations. This in turn equalizes their outputs, resulting
in multiple hypotheses that can not clearly be refused or accepted. With the use
of larger genomic regions (i.e. even genome-wide data) information from a large
number of independent loci, distributed over multiple chromosomes, can be used.
Furthermore, the increase in computational speed and power enables the implemen-
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tation of more model parameters, which might increase the reliability of inferred
parameters, weakening the importance of additional evidence from different data
analyses.
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Chapter 8
Appendix

8.1 AF-IBD AF-IBS appendix

8.1.1 Part I

It is known that the intra-allelic LD pattern contains information about the allele
age in absolute time scale (in generations), independent of demographic assump-
tions . This can be illustrated by examining the decay of the ancestral haplotype
following the introduction of a new variant. The ancestral segment around the
variant becomes shorter as the ends recombine with other haplotypes in succeeding
generations. Assuming the recombination distribution is Poisson along the genetic
distance, it is easy to show that the expected length of the remaining ancestral
segment measured in Morgans is simply the inverse of the age of the variant τ1 in
number of generations . On the other hand, allele frequency provides age informa-
tion on the coalescent time scale, as a variant of frequency j can occur only after
(back in time) the j lineages coalesced into one. Griffiths and Tavaré derived an
approximation of the age distribution given the allele frequency:

P (τ1 ≤ τ) = E[(1− p)n(τ)−1] (8.1)

where p is the allele frequency, n(τ) is the number of lineages that are ancestral
to the sample at τ . τ1 is the allele age . The time in coalescent scale can be written
as
∫ τ
0

dx
2N(x)

, which is a function of population size N(τ) over the absolute time τ in

generations. The formula above suggests that each particular allele frequency j (for
a given sample size n) represents a time range on the coalescent scale, with lower
(higher) allele frequencies denoting the more recent (ancient) time ranges. When the
allele age in absolute time scale, measured by intra-allelic LD, is contrasted against
the allele frequency, it actually reflects the coalescence rate of a coalescent range
given by equation 8.1. The coalescence rate is again determined by the population
size trajectory N(τ). Since each allele frequency represents a different coalescent
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range, the intra-allelic LD measurements conditioned on allele frequency will reveal
population sizes of different parts of the entire coalescent process, and therefore may
have the resolution to trace even small changes on the population size trajectory

8.1.2 Part II

Coalescent trees of n nodes can be repeatedly sampled from a given demographic
model, and mutations that define subtrees can then be super-imposed onto the
root edges leading to j nodes. AF-IBD can then be calculated over a sample of
these mutations according to equation 5.2. Since AF-IBD is calculated on genome
scale data, we assume the number of mutations approaches infinity. Given this, the
above step of creating mutations can also be omitted. Instead, since the frequency
of mutations happening on an edge is proportional to the length of the edge, we
calculate AF-IBD by weighting on the length of the root edges. The Monte Carlo
sampling can be described via the following equation:

AF − IBDn,j =
1

(µ+ ρ)

∑
C

I(j, C)
∑
J

ωJ
TJ

(8.2)

Here C indicates instances of coalescent trees, I(j,C) is 1 if there are one or more
cases of sub-trees of j lineages given C, and 0 otherwise. J denotes cases of sub-trees
of j lineages and TJ the total length of J. The weight term ωJ is proportional to the
length of the root edge (figure 5.1A) and ωJ sums to 1. Briefly, the simulation is
done by first sampling a large number of coalescent trees C, followed by detecting
all sub-trees J of j lineages. AF − IBDn,j is then calculated over all J’s as shown in
equation 4.

8.1.3 Part III

Noting that AF-IBS and AF-IBD are strongly related, and their ratios are rela-
tively robust against changes in demographic parameters, we constructed a ratio
grid on which AF-IBD can be efficiently converted to the corresponding AF-IBS.
The simulated AF-IBS can then be compared to the empirical AF-IBS to determine
the demographic parameters that give the best fit. The grid is defined as follows:
Assume the prior of any parameter is distributed as ∼U[a,b]. The grid should then
be designed such that its boundaries coincide with a and b (i.e. for any additional
gridpoint x, a < x < b). The remaining points x can then be uniformly spaced
between a and b, whereas a tradeoff between the amount of pre-calculated grid
points (i.e. accuracy) and the amount of time needed to generate the grid has to
be found. For the 1 parameter constant size model we calculated the ratio for 21
parameter values, namely 1,000, 3,000...41,000 for steps of every 2,000 (i.e. grid
points are equally spaced on the prior range, which is ∼U[1000, 41000]). For the
3 parameter model, we chose 4 values covering the prior range of each parameter
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dimension. This gives a total of 43 = 64 different combinations of parameter sets.
For the 5 parameter model, we similarly chose 4 values for each. For any arbitrary
parameter sets within the parameter space that are not represented on the grid, the
elements of the ratio vector were imputed by assuming a local linear dependency of
it on the parameter dimensions. For the 1 parameter model, assume the parameter
variable (i.e. Ne) is represented by l1, l2...lk, and the corresponding ratio elements
are a1, a2...ak respectively. Assume the parameter point x, for which the ratio is to
be imputed, occurs between lj and lj+1, then the ratio is estimated as ratio(x) =
aj+(lj+1−lj)∗(x−lj)/(aj+1−aj). See figure 8.4 for a graphical representation. For
multi-dimensional parameter space, we use a simple approximate method to impute
the ratio elements. Using the 3 dimensional space as an example, we denote the 3 di-
mensional grid points as li,j,k = (l1, l2, l3) where I, j and k are the indexes of the fixed
parameter values on each parameter dimension, and its corresponding ratio element
is ai,j,k. We assume that an arbitrary parameter point x=(x1, x2, x3) occurs within
the cubic space defined by the two diagonal grid points li,j,k and li+1,j+1,k+1 where
li+1,j+1,k+1 = (l′1, l

′
2, l
′
3) and its ratio element is ai+1,j+1,k+1. We obtain a ratio estima-

tion on each dimension as ratio(d)(x) = ai,j,k+(l′d−ld)∗(xd−ld)/(ai+1,j+1,k+1−ai,j,k)
where d is the dimension index 1, 2, or 3. In the end the ratio is estimated as the
average of ratio(d)(x) over all the three dimensions. This method similarly extends
to the model of 5 parameters.

8.1.4 Part IV

ABC settings that generally apply for all analyses in the current paper are described
in this section. We implemented the ABC approach as described previously . The
rejection-regression algorithm basically involves fitting a local-linear regression of
all simulated parameter values to simulated summary statistics. Furthermore, the
observed summary statistics are then substituted into a regression equation. All
parameters were transformed with log tan before the actual regression analysis .
Distances between observed and simulated summary statistics were calculated as
Euclidean distances. Out of 1 ∗ 106 simulated coalescent trees, the parameter com-
binations with the smallest Euclidean distances were kept with an acceptance rate
of 1%. Throughout all estimations, parameter values were drawn from predefined
uniform prior distributions. Priors are shown in Tables 5.2 and 5.3.
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Figure 8.1: AF-IBD curve for bottleneck scenarios and AF-IBD, AF-IBS for addi-
tional bottleneck scenarios. A) AF-IBD curves calculated from three different de-
mographic models. (Black) A population that has undergone a single bottleneck
occurring from 300 to 200 generations ago, reducing the population size of 10,000 to
1,000. After the bottleneck, the population recovered to the original size of 10,000.
(Red) The same setting as in A), but with the bottleneck occurring from 341 to 138
generations ago, reducing the size by a factor of 1.6%. (Orange) The complex model
described in figure 5.2E (red). B) Ratios calculated between a model of a single bot-
tleneck occurring from 1,010 to 1,000 generations ago, reducing the population size
by Ne*0.01 (recovering the initial size after the bottleneck) and a model of constant
population size of Ne=10,000. Ratios are given for AF-IBD and AF-IBS
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Figure 8.2: Comparison between AF-IBD and AF-IBS for several demographic
models. Shown are comparisons between AF-IBD calculated from simulated coa-
lescent genealogy data and AF-IBS calculated from simulated sequence or polymor-
phism data. For each comparison, data were simulated with the same underlying
demographic parameter values (see subfigure cartoons). A) Ratios calculated between
a model of a single bottleneck occurring from 210 to 200 generations ago, reducing
the population size of 10,000 by a factor of 0.01, and a model of constant popula-
tion size of Ne=10,000. Ratios are given for the three different statistics (AF-IBS
and AF-IBD). For AF-IBS, the statistic was calculated for four different artificially
ascertained data sets (see Materials and Methods). AF-IBS 5 represents a stronger
ascertainment bias than AF-IBS 15. B) Same ratios as in (A), but calculated between
a model of exponential growth (starting 2,400 generations ago, ancient Ne=10,000,
present Ne=100,000) and a constant population size of Ne=10,000. C) Ratio coeffi-
cients between AF-IBS 5 and AF-IBD, calculated for 3 different demographic models.
As can be seen, all 3 statistics show similar results.
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Figure 8.3: Shown are results of the effects of hidden population structure. AF-IBS
from an ancestral population was contrasted to AF-IBS of a daughter population (see
Methods). Ratio without migration shown in blue, ratios with migration (0.1% &
0.5% per generation) shown in green. Also shown are results from the effects of phase
reconstruction errors on AF-IBS. In orange, 10 ratios for AF-IBS before and after
phasing are shown (see Methods) for a wide variety of demographic models. Shown
in red is the average ratio we used for the correction of our empirical data.
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Figure 8.4: AF-IBS Parameter Inference Scheme.Shown is the general AF-IBS ABC
scheme. Step 1) AF-IBS is calculated from any observed phased SNP data. Step 2)
According to a specific demographic model and predefined prior distributions, coales-
cent trees are simulated and AF-IBD is calculated for each data set. Step 3) Based on
a predefined grid of SD-ratio coefficients, a new ratio is imputed for each parameter
vector x. Step 4) Each AF-IBD from Step 2 is corrected by the imputed ratio, result-
ing in AF-IBS for each data set. Step 5) After the rejection step, only the simulations
that best fit the observed AF-IBS from Step 1 are kept and used to generate posterior
distributions for each parameter of interest.
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8.2 Exact calculation of E[TjTk]

E(Tk) =
n∑
j=k

(−1)j+kαn,j,k′

∫ ∞
0

tgj(t)dt, 2 ≤ k ≤ n, (8.3)

where

αn,j,k =
(2j − 1)n!(n− 1)!(k + j − 2)!

(j − k)!k!(k − 1)!(n− j)!(n+ j − 1)!
,

gj(t) =

(
j
2

)
λ(t)

exp(−
(
j

2

)∫ t

0

1

λ(u)
du),

(8.4)

with g2(t) being the density of (T2)2 with the second index 2 indicating the sample
size n=2.

gj,i(t, t
′) =

(
j
2

)(
i
2

)
λ(t)λ(t+ t′)

exp

{
−
(
j

2

)∫ t

0

1

λ(u)
du

}
exp

{
−
(
i

2

)∫ t+t′

t

1

λ(u)
du

}
(8.5)
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Nomenclature

Ne . . . . . . . . . . . . . Effective Population Size

A priori . . . . . . . . In the first place

ABC . . . . . . . . . . . Approximate Bayesian Computation

AF-IBD . . . . . . . . Allele Frequency - Identity by Descent

AF-IBS . . . . . . . . Allele Frequency - Identity by State

bot . . . . . . . . . . . . . Bottleneck

bp . . . . . . . . . . . . . . Base Pair

CEPH-HGDP . . Centre d’Etude du Polymorphisme Humain - Human Genome
Diversity Panel

DAF . . . . . . . . . . . Derived Allele Frequency

diCal . . . . . . . . . . . Demographic Inference using Composite Approximate Likelihood,
Software

DNA . . . . . . . . . . . Deoxyribonucleic Acid

EHH . . . . . . . . . . . Expected Haplotype Homozygosity

gen . . . . . . . . . . . . . Generation

IBD . . . . . . . . . . . . Identity by Descent

IBS . . . . . . . . . . . . Identity by State

kbp . . . . . . . . . . . . 103 Base pairs

Kya . . . . . . . . . . . . Thousand (kilo) Years Ago
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LD . . . . . . . . . . . . . Linkage Disequilibrium

MAE . . . . . . . . . . . Mean Absolute Error

Mb . . . . . . . . . . . . . 106 Base pairs

MCMC . . . . . . . . . Markov Chain Monte Carlo

MH-MCMC . . . . Metropolis Hastings - Markov Chain Monte Carlo

MRCA . . . . . . . . . Most Recent Common Ancestor

ms . . . . . . . . . . . . . Hudson’s Coalescent Simulation Software make samples

mtDNA . . . . . . . . Mitochondrial DNA

PSMC . . . . . . . . . . Pairwise Sequential Markovian Coalescent, Software

rjMCMC . . . . . . . Reversible Jump Markov Chain Monte Carlo

RMSE . . . . . . . . . . Root Mean Square Error

SFS . . . . . . . . . . . . Site Frequency Spectrum

SNP . . . . . . . . . . . . Single Nucleotide Polymorphism

TMRCA . . . . . . . Time to Most Recent Common Ancestor
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