
Tensor product methods in numerical simulation of
high-dimensional dynamical problems

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

DISSERTATION

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr. rer. nat.)

im Fachgebiet

Mathematik

vorgelegt

von M.Sc. Sergey Dolgov
geboren am 19.03.1988 in Sankt Petersburg

Die Annahme der Dissertation wurde empfohlen von:

1. Priv.-Doz, Dr. Boris N. Khoromskij (Leipzig)

2. Professor Dr. Reinhold Schneider (Berlin)

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 20.08.2014 mit dem Gesamtprädikat magna cum laude.

Bibliographische Daten

Tensor product methods in numerical simulation of high-dimensional dynamical prob-
lems
Universität Leipzig, Dissertation, 2014
154 Seiten, 30 Abbildungen, 241 Referenzen

Abstract

Quantification of stochastic or quantum systems by a joint probability density or wave
function is a notoriously difficult computational task, since the solution depends on
all possible states (or realizations) of the system. Due to this combinatorial flavor,
even a system containing as few as ten particles may yield as many as 1010 discretized
states. None of even modern supercomputers are capable to cope with this curse of
dimensionality straightforwardly, when the amount of quantum particles, for example,
grows up to more or less interesting order of hundreds. A traditional approach for
a long time was to avoid models formulated in terms of probabilistic functions, and
simulate particular system realizations in a randomized process. This is mirrored to
some extent by a pointwise sparse handling of a multivariate function.

Since different times in different communities, data-sparse methods came into play.
Generally, they aim to define all data points indirectly, by a map from a low amount of
representers, and recast all operations (e.g. linear system solution) from the initial data
to the effective parameters. In principle, interpolation may bring any realization-based
approach into this class. However, the most advanced techniques can be applied (at
least, tried) to any given array, and do not rely explicitly on its origin. The current
work contributes further progress to this area in the particular direction: tensor product
methods for separation of variables.

The separation of variables has a long history, and is based on the following el-
ementary concept: a function of many variables may be expanded as a product of
functions of one variable each, for example, f(x, y, z) = u(x)v(y)w(z). Note that on
the discrete level, the number of entries in a three-index array, or tensor, encoding f ,
is proportional to the cubed amount of degrees of freedom, required to store univariate
functions u, v, w. The idea can now be got across: instead of a huge array generated
by f , we will work with its univariate factors with much less efforts.

More elaborated generalizations are usually required in practice. This dissertation
gives a short overview of the well-established tensor representations: the canonical
PARAFAC, Tucker/MCTDH and Hierarchical Tucker/ML-MCTDH decompositions,
Matrix Product States/Tensor Train format, as well as the artificial tensorisation,
resulting in the Quantized Tensor Train (QTT) approximation method. Any of these
formats has its historical niche and adjustments to particular problems. However, the
latter three are especially suitable for high-dimensional problems. The Tensor Train
(TT) is the simplest one, so it is convenient to formulate and describe tensor product
algorithms on its base.

The contribution of the dissertation consists of both theoretical constructions and
practical numerical tools for high-dimensional models, illustrated on the examples of
the Fokker-Planck and the chemical master equations. Both arise from stochastic
dynamical processes in multiconfigurational systems, and govern the evolution of the
probability function in time. Therefore, a special focus is put on time propagation
schemes and their properties related to tensor product methods. We show that the
considered applications result in large-scale systems of linear equations, and prove an-
alytical separable representations of the involved functions and operators. We propose a
new combined tensor format (QTT-Tucker), which descends from the TT format (hence
TT algorithms may be generalized smoothly), but provides complexity reduction by

an order of magnitude. We develop a robust iterative solution algorithm, constituting
most advantageous properties of the classical iterative methods from numerical anal-
ysis and alternating density matrix renormalization group (DMRG) techniques from
quantum physics. Numerical experiments confirm that the new method is preferable
to previously known DMRG/ALS algorithms. It is as fast as the simplest alternat-
ing schemes, but as reliable and accurate as the Krylov methods in traditional linear
algebra.

4

Zusammenfassung

Quantifizierung von stochastischen Systemen oder Quantensystem durch eine gemein-
sameWahrscheinlichkeitsdichte oder Wellenfunktion ist bekanntermaßen eine schwierige
Rechenaufgabe, da die Lösung von allen möglichen Zuständen (oder Realisierungen)
des Systems abhängt. Durch diese kombinatorische Eigenschaft kann schon ein System
mit nur zehn Partikeln zu 1010 Diskretisierungszuständen führen. Keiner der modernen
Supercomputer kommt mit diesem Fluch der Dimension auf direktem Wege zurecht,
wenn die Anzahl der Quantenpartikel auf, zum Beispiel, mehrere Hundert ansteigt. An
klassischer Ansatz war für lange Zeit war die Vermeidung von Modellen, die in Form
von probabilistischen Funktionen formuliert sind. Stattdessen simulierte man eine bes-
timmte Systemrealisierung in einem Zufallsprozess. Das ist bis zu einer bestimmten Art
und Weise ähnlich zum Ansatz der dünnbesetzten Speicherung einer hochdimensionalen
Funktion.

Zu verschiedenen Zeiten kamen in verschiedenen Forschungsbereichen datenschwache
Methoden ins Spiel. Allgemein betrachtet zielen diese Methoden darauf ab, die Daten-
punkte indirekt durch eine Abbildung von einer geringen Anzahl an Representierungen
zu definieren. Es werden alle Operationen (z.B. die Lösung des linearen Systems) aus
den initialen Daten in die effektiv verwendeten Parameter umgewandelt. Im Prinzip
kann Interpolation jeden realisierungsbasierten Ansatz in diese Form bringen. Allerd-
ings können die meisten fortgeschrittenen Techniken auf jedes beliebige Feld angewen-
det werden ohne dass dabei die Herkunft der Daten beachtet werden muss. Diese
Arbeit leistet einen Betrag zum Vorankommen in diesem Bereich in einer bestimmten
Richtung: Tensorproduktmethoden zur Trennung der Variablen.

Die Trennung der Variablen hat eine lange Geschichte und basiert auf dem folgenden
grundlegenden Konzept: eine Funktion mehrerer Variablen kann unter Umständen als
ein Produkt von Funktionen einer Variablen dargestellt werden. Z.B. f(x, y, z) =
u(x)v(y)w(z). Man beachte, dass auf der diskreten Ebene die Anzahl der Einträge eines
drei dimensionalen Feldes (oder auch Tensors), welche die Punkte von f definieren,
proportional zur Anzahl der Freiheitsgrade hoch drei ist, die benötigt wird, um die
Funktionen u, v und w zu speichern. Die Idee ist nun wie folgt: anstelle der Speicherung
des riesigen Feldes, dass durch f erzeugt wird, speichern wir nur die Funktionen u, v
und w mit viel weniger Aufwand.

In der Praxis sind höher entwickelte Verallgemeinungen üblicherweise gefordert.
Diese Dissertation gibt einen kurzen Überblick über die wohlbekannten Tensorfor-
mate: kanonisches Format/PARAFAC, Tuckerformat/MCTDH- und Hierarchisches
Format/ML-MCTDH, Matrix Product States-/Tensor Train Format, sowie eine kün-
stliche Tensorisierung, die im Quantisierten Tensor Train Format (QTT-Format) mün-
det.

Jedes dieser Formate hat seine eigene historisch bedingte Nische und seine eigenen
Anpassungen an bestimmte Problemstellungen. Allerdings sind die letzten drei genan-
nten Formate besonders passend für hochdimensionale Probleme. Das Tensor Train
Format (TT) ist das einfachste, also ist es passend, die Tensorproduktalgorithmen auf
dessen Basis zu beschreiben.

Der Beitrag dieser Dissertation besteht sowohl aus der theoretischen Konstruk-
tion, als auch aus praktischen numerischen Werkzeugen für hochdimensionale Modelle,

die wir auf Beispiele von der Fokker-Planck -Gleichung und der chemischen Master-
gleichung anwenden wollen. Beide Beispiele haben ihren Ursprung in stochastischen
dynamischen Prozessen in Mehrkonfigurationssysteme und sind zeitabhängig. Daher
legen wir einen besonderen Fokus auf Zeitentwicklungschemas und deren Eigenschaften
in Verbindung mit Tensorproduktmethoden. Wir zeigen, dass die betrachteten Anwen-
dungen in einem großen System linarer Gleichungen resultieren, und leiten analytisch
separable Darstellungen der beteiligten Funktionen und Operatoren her. Wir schlagen
ein neues, kombiniertes Tensorformat (QTT-Tucker-Format) vor, welches vom TT-
Format abstammt (daher können die TT-Algorithmen einfach verallgemeinert werden),
jedoch eine Reduzierung der Komplexität um eine Größenordnung bietet. Wir entwick-
eln einen robusten, iterativen Lösungsalgorithmus. Dieser vereint die vorteilhaftesten
Eigenschaften klassischer iterativer Methoden der Numerischen Analysis sowie der al-
ternierenden DMRG-Techniken (Density Matrix Renormalization Group Techniken)
aus der Quantenphysik. Numerische Experimente bestätigen, dass die neue Methode
bekannten DMRG-/ALS-Verfahren vorzuziehen ist. Sie ist so schnell wie die einfach-
sten alternierenden Schemas, aber gleichzeitig so verlässlich wie die Krylov-Methoden
in der traditionellen linearen Algebra.

6

Acknowledgements

I composed this dissertation from my research, carried out from 2011 to 2014 in a
marvelous atmosphere at the Max Planck Institute for Mathematics in the Sciences,
Leipzig. I would like to cordially thank my supervisor, Prof. Boris N. Khoromskij,
who’s attentive mentoring, wise advices and never-ending patience were invaluable on
this hard, but exciting way of our collaboration on the topics of my thesis.

I am indebted to the International Max Planck Research School and personally to
Prof Stephan Luckhaus, Dr Hayk Mikayelyan and Dr Georgy Kitavtsev for excellent
research and educational opportunities at the Max Planck Institute. I am glad to recall
discussions and coffee breaks with Dr Venera Khoromskaia, Dr Maryna Kachanovska,
Stefan Handschuh, Christian Schindler, Dr Mike Espig, Dr Alexander Litvinenko and
many other people at the institute. I am particularly thankful to Stefan Handschuh
for his assistance with the German translation of the abstract.

Organizational questions arise in everyday life, but it is hard to imagine how difficult
they could be without a constant help of Valeria Hünniger, Heike Rackwitz and other
members of the administration, IT and library team.

I am kindly appreciating a fruitful scientific collaboration with Prof Eugene Tyr-
tyshnikov, Dr Ivan Oseledets from the Institute of Numerical Mathematics, Moscow
and Dr Dmitry Savostyanov from the University of Southampton. My special thanks
go to Dmitry for his far not only scientific support and help during these years.

At last, but not the least, I am warmly thankful to my family for only not scientific
support and motivation, that is sometimes much more important...

Contents

Introduction 10

1 Multidimensional partial differential equations 19
1.1 Stochastic dynamical systems . 19

1.1.1 Stochastic differential models and Fokker-Planck equation . . . 19
1.1.2 Discretization of the Fokker-Planck equation 22
1.1.3 Bead-spring chain in the Brownian motion: a micro-model for

non-Newtonian dilute polymer flows 23
1.2 Chemical master equation for stochastic chemical kinetics 28
1.3 From dynamical to stationary problem and back 34

1.3.1 Simultaneous space-time discretization 34
1.3.2 Solution of stationary problems by dynamical evolution 38

2 Tensor product representations and approximations 40
2.1 Separation of variables in two and many dimensions 40

2.1.1 Matrix low-rank decomposition 41
2.1.2 Low-parametric canonical and Tucker formats 42
2.1.3 Tensor Trains and trees: recurrent decompositions 46
2.1.4 Tensor product notations . 48
2.1.5 Principal operations in the TT format 51

2.2 Quantized tensor approximation . 54
2.2.1 Quantized Tensor Train . 54
2.2.2 QTT-Tucker: two-level separation of initial and virtual dimensions 57
2.2.3 TT to Extended TT (QTT-Tucker) conversion 60
2.2.4 QTT-Tucker arithmetics . 61
2.2.5 QTT-Tucker rounding . 62

3 Tensor structure properties of some classes of operators and functions 64
3.1 Separabilities of gradients and the block time scheme 64

3.1.1 Tensor structure of the space-time matrix 65
3.1.2 Shift and gradient matrices in the QTT format 65

3.2 Tensor properties of the Fokker-Planck and chemical master equations . 67
3.2.1 Bilinear form in the TT format 68
3.2.2 Gaussian distribution in the QTT format 72
3.2.3 Cascade operator . 74

3.3 Inverse Laplace operator and Fourier transform 76

8

4 Classical and alternating tensor approximation and solution methods 78
4.1 Truncated iterations . 78
4.2 Constrained minimization on tensor format elements 81

4.2.1 Alternating vs. classical iterations 81
4.2.2 Solution of linear algebra problems by optimization 83
4.2.3 Rank adaptation problem and two-site DMRG 84

4.3 Adaptive alternating energy minimization as a black-box linear solver . 88
4.3.1 A conception of enrichment . 88
4.3.2 Steepest descent technique and its error analysis 90
4.3.3 AMEn: alternating optimization meets steepest descent 93
4.3.4 Enrichment versus the 1.5-site DMRG 98

4.4 Practical aspects of DMRG and AMEn algorithms 100
4.4.1 Computation of local systems 101
4.4.2 Truncation of the solution . 102
4.4.3 Approximation of the residual: SVD method 103
4.4.4 Approximation of the residual: ALS method 103
4.4.5 AMEn and DMRG for the QTT-Tucker format 105

5 Verification with applications: numerical experiments 107
5.1 Chemical master equation for biological networks 108

5.1.1 Short time cascade: comparison of methods 108
5.1.2 Long time cascade: full evolution history 114
5.1.3 Genetic toggle switch with a parameter 116
5.1.4 λ-phage . 119

5.2 Fokker-Planck equation for non-Newtonian fluid dynamics 123
5.2.1 Hookean model . 123
5.2.2 Hookean + repulsive potential 126
5.2.3 High-dimensional FENE model 130

Conclusion 133

Bibliography 151

List of notations 152

9

Introduction

This dissertation is devoted to the numerical solution of high-dimensional problems
via tensor product methods. What we mean by the high-dimensional problems, and
how they arise in practice? The linear algebra considers vectors and matrices, and
by “dimension” one understands usually the size, or the number of elements in a vec-
tor. It may be classified as “high”, compared to an available computer memory, for
example. However, the term “high-dimensional” is reserved for something different. As
the main applications we identify quantum and probabilistic physical models, such as
the Fokker-Planck, master or Schroedinger equations. To comprehend why are they
high-dimensional, we begin with the following introductory example.

Suppose not a particular vector, but instead a class, or a family of vectors is defined,
such that the elements obey certain independent computational rules. Let the rule for
each element be able to throw a finite number of distinct values. Then all instantiations
of such a class may be collected into another vector: we simply enumerate all possible
combinations of outcomes one by one. How many of them are there? If each initial
element may take n values, there are already n · n = n2 combinations of two of them,
and n · n · · ·n = nd realizations of a d-elements class. To imagine what a huge number
it may be: just 80 elements (requiring as few as 640 bytes to store them with double
precision) with only 10 possible values for each yield 1080 combinations – the qualitative
estimate of the number of atoms in the universe. This toy example illustrates two key
points of the current work: the way how we derived an enormous amount of values from
a relatively moderate number of initial items will arise in our main applications, and
the conception and understanding that we may store not all 1080 instances, but just
80 rows of 10 values, defining the governing rules, will lie behind our computational
methods.

The idea of a space of instantiations, in more rigorous terms, the state space is a
cornerstone in quantum and stochastic world. A many-body system may be described
by an ordinary differential equation, which stands for the evolution of d coordinates
of particles positions, or other degrees of freedom. Typical issues emanate from a
nonlinear form of the physical laws, but do not concern the computer storage of the
solution, since nowadays even a workstation can handle a billion of unknowns with
ease.

However, this is no more true, as soon as the randomness is introduced. Nobody
can definitely predict the position of a randomly walking particle. But what is possible
to quantify, is the probability that the particle visits a prescribed region at the current
moment.

Now a natural idea is to compare such probabilities for different regions. So we have

10

to split the whole space to the enumerated cells (possibly infinitesimally small), and
assign a function, which returns a quantitative probability value for a given cell num-
ber. To store the probabilistic description in a computer, we have to consider a finite
amount of splitting regions. Suppose the particle lives in an ordinary three-dimensional
isotropic space. Then there is no preferable direction, and it looks reasonable to select
some amount n of region labels for each of three axes. In total, we end up with n3

probability values for three independent coordinates.
If we would like to describe simultaneously several interacting but randomly driven

bodies, the joint probability density function will live in a d-dimensional space, and
typically require nd discretization values, where d is the amount of all coordinates
of all particles. Therefore, by the “dimension” we mean the number of configuration
coordinates d in the system’s state space, while n stands for the amount of possible
points in each coordinate. Certainly, even the cases d = 3 or d = 2 may be considered as
“high-dimensional”, if n is very large. The situation becomes even more dramatic if the
physical or mathematical model stipulates to work with d of the order of tens, hundreds
and more. Unless the ridiculous n = 1 is chosen for most of coordinates, the exponential
complexity growth with the dimension prevents straightforward calculations on any
supercomputer. For example, in quantum world, spin-1/2 particles (electrons and
nuclei can be simplified to “just spins” in appropriate conditions, such as the magnetic
resonance experiments) possess only n = 2 states, “spin up” and “spin down”, for
each particle. However, a simple linear chain of d = 100 interacting spins (which is
usually considered as a toy benchmark problem in quantum physics) is described by a
wavefunction with 2100 ∼ 1030 unknowns.

This phenomenon of the exponential contribution of the number of configuration
coordinates is called the curse of dimensionality since [16]. Therefore, the only way
to treat such problems is to handle some effective discrete information, which requires
much less storage than the initial bulk nd. Along the line with this suggestion, it is
natural to expect that we do not actually need all nd numbers. Quantum, as well as
stochastic modeling is usually performed to detect accurate statistics, or observables,
such as the mean, dispersion, energy and other quantities, which are themselves low-
dimensional, and only agglomerate high-dimensional data in some way.

Among all approaches that involve the reduction of the information volume, the so-
called data-sparse methods, we may identify problem-oriented and general methods.
The first class assumes and utilizes heavily specific properties of the problem, such
as the smoothness of involved functions, particular rules how to evaluate statistical
quantities, and so on. The well established state of the art includes Monte Carlo
methods [178, 65, 1, 12, 57] (in lots of versions and improvements like Quasi MC
[184, 220, 171], Markov Chain MC [107], etc.), Smolyak’s sparse grids [221, 31, 94, 68],
radial basis functions [29, 30], wavelet and other best N -term representations [37, 22],
as well as special reduction techniques and bases devised from the physical intuition
about particular problems. As one of the most successful approaches of the latter type,
we may mention the Gaussian Type Orbitals [58, 110] with extensions to grid-based
quadratures in more general bases [151, 152, 153, 137, 138, 140], and Coupled Cluster
[13, 172] for the Hartree-Fock calculations, or State Space Restriction [167, 114] for
spin dynamics.

11

General methods do not use the physical meaning of the problem or the outputs
explicitly, relying instead on purely mathematical tools to represent the whole high-
dimensional set via a wisely chosen mapping from a feasible amount of data. For the
sake of justice, it is worth to note that a proof of the usefulness of such methods may
often require an insight into the problem details. Moreover, specialized methods have
more chances to beat general techniques in performance tests. However, a possibility to
deliver any portion of information (possibly approximate) about the high-dimensional
object on request, and a black-box interface for the inputs reserve an important niche
for general data-sparse methods. For example, one may try such an approach on any
new problem without a substantial re-development of the procedures to see whether it
works in principle, or cross-verify some other (probably more specific and fast) method.

A remarkably strong member of the general data reduction class is the tensor prod-
uct concept for the separation of variables, developed rapidly in the recent decade,
and investigated further in the current work. The common idea is, given a large array
with many indices, to represent (or approximate) it with a combination of products
and additions of smaller arrays with few degrees of freedom. Importantly, there are
particular factorizations and methods, that require only the initial data and use only
algebraic tools (such as the singular value decomposition) to determine the reduced
set of parameters. Obviously, they do not depend on the underlying physical model of
the data, though the actual efficiency of the reduction does depend on the functional
properties such as the smoothness. Interestingly, narrowing the conditions imposed on
the data, we may even notice that different methods behave similarly in both theory
and practice, see, for example, a comparison of sparse grids and separation of variables
[95].

The key point in the separation of variables is the representation of a multi-variate
function (or its discrete counterpart, a tensor), by a product of univariate terms, i.e.

x(i1, . . . , xd) = x(1)(i1)x
(2)(i2) · · ·x(d)(id).

If this direct product decomposition does not hold exactly, one may consider it as a
dictionary, and approximate a more general object via a combination of direct prod-
ucts. A widely used computational approach is the greedy methods. The fundamental
concept is outlined, for example, in the book [226]. A significant contribution to the
tensor product greedy framework, where a linear combination of direct products is re-
covered, was brought by [5, 168, 186, 64, 25, 33, 79]. This approach reduces the error
(e.g. ‖x−x̃‖2 or another function such as the residual or Rayleigh quotient), associated
with the problem, by retrieving subsequently the best (or quasi-best) approximations
in the form of the direct product. It is possible to establish a convergence analysis for
the greedy methods (see the references given above), provided that each optimization
of the direct product components is conducted with a guaranteed accuracy. However,
this requirement is hard to satisfy in practice. First, the residual becomes more and
more oscillatory in the latter iterations, and its direct product approximation (even
optimal) becomes of poorer and poorer quality. Second, the optimality of the approx-
imation is harder to achieve numerically. This is usually the reason why greedy tensor
methods get stuck at some error level, which can be unsatisfactory large.

A reliable alternative, and an important part of justification of the tensor product
decompositions comes from the analytical separable constructions, which are typically

12

written as convergent series of direct products. One of the most remarkable examples of
operators, written directly as a sum of direct products, is the inverse Laplace operator
[71, 72, 100, 101] and the related Green functions [142, 146].

The sum of R separable components is called the rank-R canonical polyadic decom-
position,

x(i1, i2, . . . , id) =
R∑
α=1

x(1)α (i1)x
(2)
α (i2) · · ·x(d)α (id).

Besides the greedy methods, one may try a general error minimization method to fit
the elements of the canonical factors x(1), . . . , x(d), such as the Newton [160, 60, 133] or
alternating least squares [106, 34, 28, 38, 23, 24]. However, in case of R > 1 and d > 2,
the error optimization may become an ill-posed problem [42]: it is possible to construct
a sequence such that the error converges to zero, but the limit (the minimizer) would
have an ∞−∞ uncertainty.

The low-rank matrix factorization (d = 2) has a crucial difference: the low-rank
matrix fitting problem is well-posed, and can be solved efficiently using the singular
value decomposition (SVD) [81]. The SVD delivers a minimizer of the error in the
euclidean norm on the set of rank-R matrices. Moreover, it is incredibly robust numer-
ically [80], and is highly optimized during the decades of development of the LAPACK
library.

If we stick to higher dimensions, several generalizations of the SVD decomposi-
tion for many variables have been developed. One idea is to compute singular value
decompositions independently for each coordinate. This results in the Tucker [228]
representation,

x(i1, . . . , id) =

r1,...,rd∑
γ1,...,γd=1

x(c)(γ1, . . . , γd)x
(1)
γ1

(i1) · · ·x(d)γd (id).

Note that each Tucker factor x(k) possesses its own rank index γk, contrarily to the
shared enumerator α in the canonical representation. This independence allows to
solve the approximation problem using the so-called Higher Order SVD (HOSVD)
algorithm [39, 40, 41], which computes Tucker factors as senior singular vectors of
certain matrices, associated with the initial array x. This gives reliability and a quasi-
optimal accuracy/rank ratio. The extension of this technique to large-rank canonical
inputs, the so-called Reduced HOSVD (RHOSVD) was proposed in [151].

The alternating least squares approximation can be employed for the Tucker ele-
ments as well. This technique was proposed mainly as a low-rank model fitting tool,
and traces back to [165], see also [40, 119]. One may say that the HOSVD was per-
haps motivated by the principal component analysis, but the general data compression
purpose was considered at the second place.

The latter was put into stream when the tensor product representations had been
targeted to the structured solution of multivariate PDEs [23]. Since then, the key
ingredient r � n was discovered for smooth functions, both numerically and analyt-
ically, with the aid of the theory of the polynomial interpolation, see [72, 142, 100].
This approach is also applicable for a small amount of distinct singularities [150].

13

Moreover, the functional insight stimulated elaboration of the computational algo-
rithms, including combinations of several techniques. For example, the multigrid
scheme provided a significant acceleration of the alternating least squares iterations
[151], the mixed canonical-Tucker representation was suggested in [142, 150, 151].
Important results stemmed from the application-related focus in integral equations
[210, 187, 194, 150, 146] and electronic structure calculations [153, 151, 66, 136, 143,
152, 196, 137, 140, 139, 138, 211, 195, 82].

The references above consider mostly three-dimensional problems. In higher di-
mensions, the Tucker core x(c) still suffers from the curse of dimensionality, since it
contains O(rd) elements. The alternative came from recurrent two-dimensional factor-
izations. The idea is as follows: we introduce a reduced basis in one variable, then
join it with another index, determine a reduced basis in two variables, and so on. This
procedure can be conducted in accordance with a balanced binary tree, and result in
the so-called Hierarchical Tucker (HT) [105, 90, 166] decomposition, or along the lin-
ear tree, which gives the Tensor Train (TT) [197, 188, 191] construction, or even in
more general Tensor Tree Networks (TTN) [63] with multi-branched dimension trees.
The TT decomposition was discovered and used since longer for many problems, which
is reflected by many independent names existing for this construction: valence bond
states [2], matrix product states (MPS) [62, 158, 201] and density matrix renormal-
ization group (DMRG) [237] in condensed matter quantum physics, before the “tensor
train” term appeared in 2009 in numerical linear algebra [197, 191].

In principle, the Tucker decomposition may be also considered as a d-branched
TTN. We see that the general framework, the representation of a multivariate function
by a polylinear combination of univariate functions, is common for all tensor decompo-
sitions, but the particular rules how to assemble the initial tensor, the so-called tensor
formats, may differ significantly in both formulation and computational properties.

It is natural to expect that a particular tree will be the most efficient for a particular
problem. Nevertheless, more complicated tensor networks require more complicated
and lengthy descriptions. Fortunately, the main concepts do not depend explicitly on
the tree structure, so we stick to the TT representation to make the presentation more
simple and elegant.

The Tensor Train format may be placed between the canonical and Tucker decom-
positions,

x(i1, . . . , id) =

r1,...,rd−1∑
α1,...,αd−1=1

x(1)α1
(i1)x

(2)
α1,α2

(i2) · · ·x(d−1)αd−2,αd−1
(id−1)x

(d)
αd−1

(id).

Each block x(k) in the right-hand side is a three-dimensional array of size O(nr2), hence
the total storage O(dnr2) is able to remove the curse of dimensionality, provided that
the rank r is moderate.

Discretization of multidimensional PDEs may require fine grids, resulting in large
mode sizes n. Interestingly, a further cost reduction may be achieved in the very same
TT framework. The linear contribution of the dimension to the complexity of the TT
format tempts to increase the number of variables. The quantization suggests to split
each index i1, . . . , id to sub-indices according to the prime factors of n. Applying the

14

TT approximation to the resulting tensor with O(d log n) dimensions, but low mode
sizes (∼ 2–3), one ends up with the so-called Quantized TT (QTT) format [144, 148].
It is important that the rank bounds for many quantized one-dimensional functions
can be estimated rigorously [148, 192], and the logarithmic storage asymptotic with
respect to the initial data volume takes place. The same approach is applicable for
compression of matrices [189].

Contrarily to the Tucker and one-dimensional QTT formats, general smoothness
assumptions for multidimensional functions lead to pessimistic rank-vs-accuracy esti-
mates in the TT format, see e.g. [215], stating a O(| log ε|d) term. Fortunately, the
reality behaves usually much better. Combined tensor formats may yield an addi-
tional compression and speed-up. For example, the Extended TT [198] constitutes the
Tucker format with the TT representation of the Tucker core, and the QTT-Tucker
decomposition [44] employs also the QTT approximation for Tucker factors.

Any tensor structure requires numerical methods for data approximation and other
operations. Perhaps it is the strong focus on applications in physics community that
gave us many versatile computational algorithms, especially in the TT/MPS format.
First, similarly to the Tucker HOSVD method, the TT representation can be com-
puted using singular value decompositions with a guaranteed accuracy. Second, the
alternating direction concept developed in quantum physics is essentially more powerful
than the alternating least squares for e.g. Tucker format. Numerical Renormalization
Group (NRG) and Density Matrix Renormalization Group (DMRG) algorithms were
extensively used to simulate wavefunctions of spin systems in tensor product formats
since 1970’s [241], and many impressive modifications and improvements have been de-
veloped, which were later adopted in the numerical analysis community as well [115].
A far not complete list of references includes [237, 238, 200, 239, 124, 234, 240, 236,
202, 216, 217]. The power of alternating methods stems from the linearity of tree-based
tensor formats with respect to a fixed block of entries. Therefore, approximation, linear
system or eigenvalue problems, posed for initial tensors, recast to the same formula-
tions on the elements of the formats, which may be solved using standard methods.
This stays in sharp contrast with the simultaneous optimization of all format entries
at once, which may be a substantially nonlinear and nonconvex problem.

However, the latter phenomenon impedes the reliability of the alternating methods
as well. Even the simplest error function ‖x−x?‖2, recast to the tensor format elements
of x, may have numerous local minima. The alternation brings the speed, but it is also
a drawback. Since only a part of the format is considered in each step, the simple
alternating linear schemes and DMRG algorithms are likely to deliver a local but not
the global error minimizer. In many cases this is not a desired result, since we would
like to solve an initial physical problem posed in the high-dimensional space. This
motivates us to take another approach into account.

As soon as the format is equipped with a reliable approximation procedure, which
allows to compress any data with a quasi-optimal storage for a given accuracy threshold,
one may think about implementation of classical iterative algorithms with the data-
sparse arithmetics, such as the solvers for linear systems [210, 104, 195, 162, 156, 141,
145, 163, 6, 45, 9] and partial eigenproblems [170, 164, 116, 102, 176]. We may think
about tensor formats in a similar way as about numbers in a computer: additions and

15

multiplications of the initial data recast to the tensor format blocks, these operations
typically increase the amount of elements, and the approximation, like the numerical
rounding, keeps the storage limited.

The question is, however, what is this particular storage requirement. For numbers,
a fixed mantissa length always ensures a guaranteed accuracy. This is not the case with
the tensor product methods: the storage depends on both the accuracy and a weakly
justified “structure” of the data. Unfortunately, the classical (e.g. Krylov) methods
are essentially based on the residual, and suffer from the same difficulty as the greedy
methods: the better is the solution, the worse is the structure of the error and other
auxiliary vectors, which require either a poor approximation, or a large storage of
their tensor formats. Relaxation techniques, developed in the theory of inexact Krylov
methods [219], improve the situation to some extent, admitting a rough rounding in
the latter iterations, but the methods are still far from being reliable in general.

The main computational method, suggested and employed in this dissertation, com-
bines the advances of the alternating tensor optimization algorithms and the classical
approximate iterative schemes in terms of the initial tensor elements [52, 53]. During
the alternating DMRG iteration, we augment (enrich) the tensor format of the so-
lution by the tensor format of the approximate residual. This leads to a remarkable
cooperation of the classical and alternating techniques. Since the solution is being
improved by the alternating optimization, accurate results are delivered even with a
very crude approximation of the residual (and no more Krylov vectors are needed).
On the other hand, injection of the global residual information into the local steps of
the alternating process supports the latter with proper descent directions, helping it
to escape from spurious local minima. As was mentioned, such traps are a notorious
problem in variational methods on tensor manifolds. Contrarily, for the new Alter-
nating Minimal Energy (AMEn) method we prove the geometrical convergence with
respect to the global tensor elements, similarly to the steepest descent technique. The
history behind the name AMEn can be illustrated as follows.

Minimal Residual → Minimal Energy
(steepest descent) → Alternating

Minimal Energy
Alternating
Least Squares ↗

Its practical convergence rate is much faster than the theoretical steepest descent esti-
mate, which makes this method reliable even for non-symmetric linear systems, cf. the
FOM theory [208].

Applications, considered in this dissertation, remind our discussion about the ran-
dom walking particle and the related probability distribution. We apply tensor product
methods to differential and difference equations, governing the probability functions.
A system described with continuous coordinates, affected by stochastic forces, yields
the so-called Fokker-Planck equation, the high-dimensional diffusion-convection equa-
tion on the probability density function [206]. As a particular engineering problem, we
consider numerical modeling of liquids with dissolved polymer molecules [26]. Some re-
markable non-Newtonian properties of such solutions result from the micro-mechanics
of polymer chains, experiencing the Brownian motion of the solvent molecules.

16

Another application has a crucial role in accurate stochastic simulation of cellular
processes, life cycles of viruses and other micro-biological processes, where random
fluctuations are significant. This is the case if the amount of reacting molecules is
very small compared to the volume of the whole system, and collisions between the
molecules occur occasionally. The chemical kinetics becomes governed by the jump
Markov process, which may be again described by a multi-variate probability function.
Contrarily to the Fokker-Planck model, the configuration states are now discrete, so
that the probability function obeys the difference (chemical) master equation [232].

Both mentioned equations describe the evolution of the probability function in
time. Therefore, as the third application, we show how a general time propagation
scheme, such as Euler or Crank-Nicolson, can benefit from tensor product methods.
We consider time variable as an additional dimension. Then, the QTT approximation
in time leads to the logarithmic complexity in the number of time steps.

The presented problems end up with very large-scale linear systems. We establish
several analytical separable constructions, showing that the matrices and right-hand
sides in these systems can be given or efficiently approximated in tensor product rep-
resentations, and in particular in the newly developed QTT-Tucker format. The issue
is now to compute the solution. In the numerical experiments, we demonstrate that
the new iterative optimization algorithm is more fast and accurate than the previously
known methods, and may finally pretend to be a “black-box” tool for various problems,
which are suitable for the separation of variables concept in principle.

Organization of the dissertation

In Chapter 1 we introduce our three main applications: a stochastic dynamical system
and the related Fokker-Planck equation, a stochastic chemical kinetics and the chemical
master equation, and the simultaneous space-time discretization scheme for dynami-
cal equations, prepared for the encapsulation into tensor product solution schemes,
providing ultimately a logarithmic complexity reduction with the aid of the QTT ap-
proximation in time variable.

Chapter 2 is devoted to the description of different sides of the separation of vari-
ables approach. It overviews existing tensor decompositions: the canonical/CP, Tucker,
Hierarchical Tucker and the Matrix Product States/Tensor Train formats, as well as
related algorithms and their properties. In the end, it proposes a new combined ten-
sor representation (QTT-Tucker), agglomerating both analytical and practical insights
from the Tucker, TT and QTT formats.

In Chapter 3 we join together the applied problems outlined in the first chapter,
and the tensor product techniques from the second chapter. We prove several explicit
low-rank TT/QTT tensor representations of the matrices and vectors (tensors), rele-
vant to the differential and difference operators and some illustrative functions in our
applications. Among them are the anisotropic diffusion operator, discretized gradients,
nearest-neighbor interacting systems and the Gaussian function.

Chapter 4 presents tensor product solvers: classical iterative methods equipped
with tensor roundings, alternating iterative optimization techniques developed in quan-
tum physics (DMRG) and numerical mathematics (Alternating Least Squares/Linear

17

Scheme) communities, and finally the new improved algorithm, which supports the tra-
ditional alternating optimization scheme with the classical gradient direction (residual)
from the global system. We analyze its convergence, prove the geometric convergence
rate, and discuss some practical aspects.

Chapter 5 serves as a confirmation of all said before. We consider several relevant
biological systems governed by the chemical master equation, as well as the polymer
micro-model described by the Fokker-Planck equation, investigate their features related
to the tensor product conception, verify and compare computational algorithms. By
various numerical experiments we confirm that the tensor formats and methods are
useful as efficient and accurate tools for the discussed applications.

In the end, we summarize the main points and observations in the Conclusion.

18

Chapter 1

Multidimensional partial differential
equations

1.1 Stochastic dynamical systems

1.1.1 Stochastic differential models and Fokker-Planck equa-
tion

A mathematical model in terms of ordinary differential equations is probably the most
intuitive and understandable description of physical phenomena in nature. The New-
ton’s second law is one example, which everybody can literally feel in hand. In a
stochastic dynamical system some components (e.g. forces) emanate from stochastic
processes.

How a stochastic force can occur? We begin with an illustrative example, following
[206]. Imagine a particle immersed in a fluid. It experiences the friction Stokes’ force,
and a force arising from collisions with fluid molecules. Therefore, the equation of
motion writes

m
dv

dt
= −αv + F (t),

where v(t) is the velocity of the particle, m is its mass, α is a friction coefficient, and
F is a resultant collisional force. This simple equation has only one drawback: one will
usually never manage to solve it exactly. The reason is that it must be coupled with
similar equations of motions for all ∼ 1023 molecules in a fluid.

This phenomenon is known as the Brownian motion, and we have to employ the
stochastic description, the usual way in thermodynamics. Instead of a certain system,
we consider an (Gibbs) ensemble of them. The force F is then a stochastic process,
which may be characterized only on average, for example,

〈F (t)〉F = 0, 〈F (t)F (t′)〉 = fδ(t− t′).

In turn, we can not predict and hence are not interested in the velocity v in a particular
realization of the particle and the fluid. However, the statistical properties make sense:
we might like to simulate the average velocity 〈v〉, or a probability that the particle
will move with a velocity lying in a prescribed interval. If the length of this interval is

19

infinitesimally small, it holds usually that this probability is proportional to the length,
i.e.

P(v∗ 6 v(t) 6 v∗ + δv) = ψ(v∗, t)δv + o(δv).

In other terms, the probability is differentiable w.r.t. the system configuration coor-
dinate v. The derivative ψ(v), called the probability density, or distribution function,
will be the main interest in this section, because it allows to compute other statistics,
for example, any average function on v,

〈g(v(t))〉 =

∞∫
−∞

ψ(v, t)g(v)dv.

Note that ψ itself does not involve stochasticity. Therefore, an equation we are
going to formulate to describe ψ directly is deterministic – and we may employ stan-
dard tools of analysis. But before we proceed to this question, let us see how the
stochastic system and probability density embody the example from Introduction of
variable vector elements. One initial component v defines now a continual set of values
ψ(v), which can be discretized at n points. Taking in addition several time points, we
obtain a two-dimensional array [ψ(vi, tp)]i,p with n2 elements. The same will happen
if we consider two particles with the corresponding density function ψ(v, w), and for d
degrees of freedom one needs to handle a d-dimensional function.

We will come to the d-dimensional discretization later, now supply the high-dimensional
probability density and its governing equation with more details, according to [206].

Suppose a stochastic process ξ(t) ∈ Rd, and time points t1, . . . , tn are given. The
probability to find a system in corresponding state volumes [q1, q1 +dq1], . . . , [qn, qn+
dqn]1 writes as

ψ(qn, tn, . . . , q1, t1)dq1 · · ·dqn, where
ψ(qn, tn, . . . , q1, t1) = 〈δ(q1 − ξ(t1)) · · · δ(qn − ξ(tn))〉.

We may also define a conditional probability of the system transition from the history
q1, . . . , qn−1 to qn,

P (qn, tn|qn−1, tn−1, . . . , q1, t1) = 〈δ(qn − ξ(tn))〉|ξ(tn−1)=qn−1,...,ξ(t1)=q1

=
ψ(qn, tn, . . . , q1, t1)

ψ(qn−1, tn−1, . . . , q1, t1)
.

For Markov processes, the transition probability P does not depend on the whole
history, but only on the previous state tn−1, qn−1. So we may omit n and write a
two-states expansion

P (q, t′|q′, t) =
ψ(q, t′, q′, t)

ψ(q′, t)
.

1if ξ = (ξ1, . . . , ξd) is a multi-dimensional vector, these intervals read as hypercubes, e.g. [q11 , q11 +
dq11] ⊗ · · · ⊗ [q1d, q

1
d + dq1d]. The same holds for differentials, dq1 = dq11 · · · dq1d, and delta functions

δ(q − s) = δ(q1 − s1) · · · δ(qd − sd).

20

Choosing an infinitesimal time step t′ = t+ δt, and integrating over q′, obtain

ψ(q, t+ δt) =

∫
P (q, t+ δt|q′, t)ψ(q′, t)dq′. (1.1)

Define the (j1 + · · ·+ jm)-order moments

Mm
j1,...,jm

(q′, t, δt) = 〈(ξj1(t+ δt)− ξj1(t)) · · · (ξjm(t+ δt)− ξjm(t))〉

=

∫
(qj1 − q′j1) · · · (qjm − q

′
jm)P (q, t+ δt|q′, t)dq,

where j1, . . . , jm ∈ {1, . . . , d}, possibly repeating. Now we may derive the Kramers-
Moyal expansion. First, rewrite

P (q, t+ δt|q′, t) =

∫
δ(s− q)P (s, t+ δt|q′, t)ds,

and expand the delta function into the Taylor series at s = q′,

δ(s− q) = δ(q′ − q + s− q′)

=
∞∑
m=0

∑
j

1

m!
(sj1 − q′j1) · · · (sjm − q

′
jm)

∂m

∂q′j1 · · · ∂q
′
jm

δ(q′ − q)

=
∞∑
m=0

∑
j

1

m!

(−1)m∂m

∂qj1 · · · ∂qjm
(sj1 − q′j1) · · · (sjm − q

′
jm)δ(q′ − q),

where j = (j1, . . . , jm), summation for each jk goes from 1 to d. From the last two
equations obtain

P (q, t+ δt|q′, t) =
∞∑
m=0

∑
j

1

m!

(−1)m∂m

∂qj1 · · · ∂qjm
Mm

j1,...,jm
(q, t, δt)δ(q′ − q),

and plug this into (1.1):

ψ(q, t+ δt) = ψ(q, t) +
∞∑
m=1

∑
j

1

m!

(−1)m∂m

∂qj1 · · · ∂qjm
Mm

j1,...,jm
(q, t, δt)ψ(q, t).

To deduce the time derivative, assume that the moments expand w.r.t. δt,

Mm
j1,...,jm

(q, t, δt) = Dm
j1,...,jm

(q, t)m! · δt+ o(δt),

then the final Kramers-Moyal series in the limit δt→ 0 writes

∂ψ(q, t)

∂t
=

∞∑
m=1

∑
j

(−1)m∂m

∂qj1 · · · ∂qjm
Dm
j1,...,jm

(q, t)ψ(q, t). (1.2)

The Fokker-Planck (after Fokker [67] and Planck [203], proposed it for the descrip-
tion of the Brownian motion), or Forward Kolmogorov equation is the Kramers-Moyal
expansion, truncated after the second term:

∂ψ(q, t)

∂t
= −

d∑
k=1

∂

∂qk
Ck(q, t)ψ(q, t) +

d∑
k,m=1

∂2

∂qk∂qm
Dk,m(q, t)ψ(q, t). (1.3)

One may see that it is a second-order convection-diffusion equation, with

21

• drift coefficients Ck(q, t) = lim
δt→0

1
δt
〈ξk(t+ δt)− ξk(t)〉|ξ(t)=q, and

• diffusion coefficients
Dk,m(q, t) = 1

2
lim
δt→0

1
δt
〈(ξk(t+ δt)− ξk(t)) (ξm(t+ δt)− ξm(t))〉 |ξ(t)=q.

By construction, the diffusion matrix is symmetric and semi-positive definite, i.e. (1.3)
is a proper parabolic equation. Moreover, it can be seen as a continuity equation

∂ψ

∂t
+∇S = 0,

where the probability flux components are defined as follows,

Sk = Ckψ −
d∑

m=1

∂

∂qm
Dk,mψ.

If the configuration domain q ∈ Ω is the whole space, or the flux vanishes at the
boundary, it leads to the conservation of the probability normalization

∫
ψ(q, t)dq and

non-negativity of the solution, provided the initial state ψ(q, 0) was nonnegative and
of a finite norm.

The justification of the Fokker-Planck equation is provided by the Pawula theorem,
which says that the Kramers-Moyal expansion (1.2) either stops after the second term
(many physical processes, like the Brownian motion), and in this case the Fokker-
Planck equation models the probability density exactly, or contains infinite number of
terms. The latter case is more difficult (even higher-order terms may yield a rather
slowly convergent approximation), and is not considered in the current work.

1.1.2 Discretization of the Fokker-Planck equation

We now focus on the numerical solution of the equation (1.3). First, recall how the
curse of dimensionality arises. The accuracy of finite element methods, for example,
is governed by the number of basis functions n introduced in each coordinate qk. In
most cases neither of components of C or diagonal submatrices of D vanishes, so all
dimensions have approximately equal importance. Hence, it is reasonable to introduce
comparable numbers of points in each variable, but it results in O(nd) finite element
coefficients or grid values required to define the solution ψ(q, t). We will address this
issue by an approximate indirect representation of nd elements via a much smaller
amount of data in tensor product formats. In the next subsection we show an example,
where such a low-parametric format may be derived analytically.

The particular discretization scheme must be chosen in accordance with the Fokker-
Planck coefficients C and D. Most difficulties arise from the convection term: the
simple finite difference or finite element methods suffer from spurious oscillations if the
convection coefficient is significantly larger than the diffusion, and the grid is not fine
enough. As we will see, the convection coefficient may be even infinite, and though the
solution of the exact equation is well defined, no grid refinement can help to make the
finite difference scheme stable.

22

However, since all data will be stored in a compact form, and the solution exhibits
usually a high order of smoothness, a method of choice can be the spectral discretization
methods [227]. This approach yields dense stiffness matrices and hardly adapts to an
arbitrary geometry of the domain. Fortunately, in our case the problem is posed in
a direct product of low-dimensional domains (the whole space, for example), while
the storage and computational complexities are effectively one-dimensional. Thus,
dense, but small (due to a rapid convergence) differentiation matrices do not produce
difficulties. Moreover, a great advantage is that even essentially convection dominating
equations may be properly resolved, with the maximum principle persisting already on
rather moderate grids.

We will identify appropriate discretization schemes in more details in the partic-
ular examples. Here let us see that if the Galerkin basis, or the discretization grid
are tensor product, the discrete counterpart of (1.3) stays within the tensor product
structure. Indeed, suppose the chosen basis functions φi(q) = φi1(q1) · · ·φid(qd), and
the convection coefficients Ck(q) = C

(1)
k (q1) · · ·C(d)

k (qd) factorize. Then the Galerkin
element for the convection reads∫

φi
∂

∂qp
Ckφjdq =

(∫
φi1C

(1)
k φj1dq1

)
· · ·
(∫

φip−1C
(p−1)
k φjp−1dqp−1

)
·

(∫
φip

dC
(p)
k φjp
dqp

dqp

)

·
(∫

φip+1C
(p+1)
k φjp+1dqp+1

)
· · ·
(∫

φidC
(d)
k φjddqd

)
,

i.e. retains the factorized form.
The diffusion terms may be written similarly. Tensor product decomposition issues

for the diffusion part will be addressed in Section 3.2.1.
If a finite (or spectral) difference scheme is used, the situation is even simpler: each

partial derivative casts to the Kronecker product of matrices, and the coefficients cast
to diagonal matrices,

∂

∂qp
→ I ⊗ · · · ⊗ I ⊗∇p ⊗ I ⊗ · · · ⊗ I,

Ck(q)→ diag(C
(1)
k (q1(i1)))⊗ · · · ⊗ diag(C

(d)
k (qd(id))).

1.1.3 Bead-spring chain in the Brownian motion: a micro-model
for non-Newtonian dilute polymer flows

An area of great interest in physics and engineering is the viscoelastic materials, for
example, polymer solutions and melts, liquid crystals and so on. Such liquids are called
non-Newtonian due to nontrivial features of their flows: hysteresis effects, die swells
or jet break-ups and more. These phenomena arise because the macroscopic stress
depends on the previous history of deformations, as a result of a nonlinear coupling
between the macroscopic flow parameters (geometry, rheological response) and the
micro-configurations and motions of the dissolved molecules.

23

Figure 1.1: Bead-spring model of a polymer in a fluid

q1 q2

· · ·
qd−1 qd

As we noted in the beginning of the section, an exact simulation of such flows
would require a coupled modeling of all polymer and fluid molecules, which is surely
infeasible in the macroscopic scales. As an alternative, micro-macro models have been
proposed in the computational rheology (see e.g. the review [135]). They consider the
macroscopic continuum models (Navier-Stokes equations) together with the stochastic
kinetic theory at the molecular level. The latter may involve more or less accurate
mechanical descriptions of the molecules, for example, linear chains of beads connected
by rigid rods or elastic springs (depending on the number of chain segments and their
properties). In particular, we will focus on the bead-spring chains, see Fig. 1.1. Each
bead experiences elastic, drag and Brownian forces. It is the latter that makes the
stochastic description necessary. So we derive the micro-scale Fokker-Planck equation,
following [26].

Let the position vectors of beads be R1, . . . ,Rd+1, then the equations of motion
write

m
d2Rk

dt2
= Gk(Rk) + Fk(Rk+1 −Rk)− Fk−1(Rk −Rk−1) + fk(t),

where Gk is the viscous drag force, Fk is the elastic force of the spring between k-th
and k + 1-t beads, and fk is the Brownian stochastic force, such that

〈fk(t)〉 = 0, 〈fk(t)fm(t′)〉 = kTδ(t− t′)δk,m,

where k is the Boltzmann constant (not the index k). For brevity, we may agree that
F0 = Fd+1 = 0.

The drag force is proportional to the total velocity of the bead w.r.t. the fluid, and
reads

Gk = −η
(
dRk

dt
− v0 − (∇yv)Rk

)
,

where η is the drag constant, v is the fluid velocity field, and v0 is its average. The
gradient∇y is taken for each velocity component with respect to the spatial coordinates
in the fluid, such that ∇yv is a 3× 3 matrix. The first-order (homogeneous) expansion
v = v0 + (∇yv)Rk is reasonable, since in most cases the velocity does not change
significantly at the distances comparable to the polymer molecule size. In addition, we
neglect the inertia of a bead, i.e. m = 0.

Therefore, it is convenient to transform the position vectors to the elongations of
the springs, qk = Rk+1 − Rk (see Fig. 1.1), which we choose as the configuration
coordinates of the system, and write

η
dqk
dt

= (∇yv)qk + Fk−1(qk−1)− 2Fk(qk) + Fk+1(qk+1) + fk+1(t)− fk(t).

The last two terms may be gathered into another stochastic force gk(t) = fk+1(t)−fk(t),
with the moments

〈gk(t)〉 = 0, 〈gk(t)gm(t′)〉 = kTδ(t− t′)Ak,m,

24

where

Ak,m =

2, k = m,
−1, k = m± 1,

0, otherwise
is the so-called Rouse matrix. Recalling the definitions of the Fokker-Planck coeffi-
cients, we are now ready to write the scale-normalized equation,

∂ψ(q, t)

∂t
= −

d∑
k=1

∂

∂qk

(
(∇yv)qk −

1

4W

d∑
m=1

Ak,mFm(qm)

)
ψ

+
d∑

k,m=1

1

4W
Ak,m

∂2

∂qk∂qm
ψ,

(1.4)

where q = (q1, . . . , qd) = (q11, q
2
1, q

3
1, . . . , q

3
d) is the tuple of elongation components of

all springs, and W = 2η/kT is the Weissenberg number, which reflects the relation
between macro and micro scales.

The domain for Eq. (1.4) depends on the elastic forces. In the Rouse, or Hookean
model Fm = qm, the domain is the whole space. If a finitely extensible spring law is
used, the domain restricts to the tensor product of balls,

Ω = B√b1 ⊗ B√b2 ⊗ · · · ⊗ B√bd ,

where
√
bm is the maximal length of the m-th spring.

The following finitely extensible laws are typically chosen:

• Inverse Langevin Fm =

√
bm
3

L−1
(
|qm|√
bm

)
qm
|qm|

, where L(s) = coth(s) − 1/s is

the Langevin function, or its approximations:

• CPAIL, Fm =
1− |qm|2/(3bm)

1− |qm|2/bm
qm, and

• FENE Fm =
qm

1− |qm|2/bm
.

All these functions have a pole at |qm| =
√
bm, and the probability density vanishes at

the boundary. In terms of well-posedness and discretization issues, it is convenient to
pose natural non-leak, or zero flux boundary conditions [64],(

(∇yv)qkψ −
1

4W

d∑
m=1

Ak,m

(
Fmψ +

∂ψ

∂qm

))
· nqk = 0, q ∈ ∂Ω,

where nqk is the normal vector at ∂B√bk .

Remark 1.1.1. Generally, in addition to the configuration space of spring elongations,
the probability density diffuses in the physical space, and one has to add a dependence
on the position in the fluid y of the form

(l/L)2

4W (d+ 1)
∆yψ −∇y · (vψ)

25

to the right-hand side of (1.4), where l is the length scale of a spring, and L is the macro
length scale. However, in many cases l � L, while ∇y · v = 0 due to the incompress-
ibility of the fluid, and we will consider (1.4) only in the configuration coordinates for
simplicity. The only term depending on y is now ∇yv, but it allows to solve equations
(1.4) uncoupled for each y point. So it is enough to discuss the configuration equation
with constant ∇yv.

Remark 1.1.2. We have presented the full three-dimensional model, i.e. where each
configuration degree of freedom qk = (q1k, q

2
k, q

3
k) constitutes a three-dimensional elon-

gation vector. Some processes (linear stretch, planar shear) are effectively one- or
two-dimensional. In these cases, we may consider reduced models with qk = (q1k, q

2
k) or

even one-dimensional formulation.

The micro-model influences the macroscopic properties of the flow via the stress
tensor. The Navier-Stokes equation for the macro-flow writes

∂v

∂t
+ v · ∇yv =

1

ρ
∇y ·

(
−pI + ηs∇yv + ηs(∇yv)> + τ

)
,

∇y · v = 0,

(1.5)

where ρ is the fluid density, p is the pressure, I is the identity matrix, ηs is the viscosity
coefficient such that ηs∇yv+ηs(∇yv)> is the stress contribution from the solvent, and
τ is the stress contribution from the polymer.

The latter may be derived as follows [26]. By definition, the stress is the force per
unit area, which results from the action of beads on the medium. Without external (e.g.
gravitational or electric) forces, we are left with the spring tensions and the motion of
beads. Suppose the polymer concentration is c, then each spring acts in the volume
qk ·S, where cqk ·nS beads are contained (here S is an arbitrary plane of area S and
the normal n). Therefore, the spring contribution to the stress (i.e. we take S = 1)
will be

−c
d∑

k=1

〈qkFk〉 = −c
∫ d∑

k=1

qkFkψ(q)dq.

The beads motion provides the stress component in terms of the average value of the
momentum flux, which in the case of the Brownian motion with the Maxwellian velocity
distribution writes simply as cdkTI. Normalizing the scales, we obtain the following
Kramers expression for the polymeric stress tensor:

τ = dI −
∫ d∑

k=1

qkFkψ(q)dq, (1.6)

provided that the probability density is normalized such that
∫
ψdq = 1. Note that

(1.6) is a linear functional on the high-dimensional Fokker-Planck solution.
The case of zero velocity gradient ∇yv = 0 leads to the potential form of the

right-hand side in (1.4), i.e.

∂ψ(q, t)

∂t
=

1

4W

d∑
k,m=1

Ak,m
∂

∂qk

(
−ψ∂Vm(qm)

∂qm
+

∂

∂qm
ψ

)
,

26

since Hookean or FENE forces are potential, Fm = −∂Vm(qm)/∂qm. We may introduce
the total potential V = V1(q1) + · · · + Vd(qd) and cast the Fokker-Planck right-hand
side to the symmetric form [64]:

∂ψ(q, t)

∂t
=

1

4W

d∑
k,m=1

∂

∂qk
Ak,mM

∂

∂qm

1

M
ψ,

where we introduce the (unnormalized) Maxwellian M = exp(−V) and use

−ψ∂Vm(qm)

∂qm
+

∂

∂qm
ψ = M

∂

∂qm

1

M
ψ.

Though the Fokker-Planck is now a diffusion operator, its numerical treatment is dif-
ficult due to an extremely high variability of M with q. However, it provides nice
theoretical arguments, for example, one may see immediately that the Maxwellian
satisfies the stationarity condition,

ψ?(q) = M(q),
∂ψ?
∂t

= 0.

In addition, the Lax-Milgram theorem may be employed to show the existence and
uniqueness of a weak solution. Here, we would like to note that he Maxwellian is a
factorisable function: since the potential is additive, it holds

M(q) = exp(−V1(q1)) exp(−V2(q2)) · · · exp(−Vd(qd)).

Therefore, the computation of the stress (1.6) does not involve in fact a multidimen-
sional integration, only univariate terms∫

qkFk(qk) exp(−Vk(qk))dqk∫
exp(−Vk(qk))dqk

have to be evaluated. This example shows a strong motivation to the application of
tensor product techniques to this problem, especially for velocity gradients of moderate
magnitude.

For the Hookean spring force Fm = qm, the analytical stationary solution may
be written not only for zero velocity gradient. Indeed, in this case the convection
Fokker-Planck coefficient becomes linear in all q components,

∂ψ

∂t
= −

dD∑
k=1

∂

∂qk

dD∑
m=1

Ck,mqmψ +
dD∑

k,m=1

Ak,m
∂2

∂qk∂qm
ψ, (1.7)

where D is the physical dimension (1, 2 or 3), q = [qk], and the matrices read

C = Id×d ⊗ (∇yv)−A, A =
1

4W
A⊗ ID×D.

It was proven for example in [32] that the (unnormalized) steady probability density
is given by the generalized Gaussian

ψ|t→∞ = exp(−q>Bq), (1.8)

27

where B is the solution of the following Lyapunov matrix equation,

CB−1 +B−1C> = 4A.

For a nonzero ∇yv, the matrix B is not diagonal, and the solution (1.8) is not factoris-
able. However, we will see how it is still possible to approximate it via more elaborated
separation of variables techniques.

Finally, consider the two-dimensional physical space and finitely extensible springs.
Since both the spectral methods and tensor decompositions are suited for cubic do-
mains, we employ the polar coordinates to get rid of the ball domains,

qk = (q1k, q
2
k)→ (rk, θk) ∈

(
[0,
√
bk)⊗ [0, 2π)

)
.

Now we have periodic boundary conditions over θk, and natural boundary conditions
over rk. Using the differentiation rules, one obtains immediately

∂

∂q1k
= cos(θk)

∂

∂rk
− sin(θk)

rk

∂

∂θk
,

∂

∂q2k
= sin(θk)

∂

∂rk
+

cos(θk)

rk

∂

∂θk
,

and the Fokker-Planck operator (1.4) rewrites accordingly. The FENE force, for ex-
ample, casts to a factorisable function

Fk =
rk

1− r2k/bk
·
[
cos(θk) sin(θk)

]
.

The spectral matrix elements are written according to [227]: the periodic Sinc inter-
polation elements are introduced in each θk, and the Chebyshev polynomials are used
for the radial discretization, with the Galerkin coefficients (e.g.

∫
Si(θk)f(θk)∇θkSjdθk)

calculated using the quadrature rules of the same classes with twofold amount of points.

1.2 Chemical master equation for stochastic chemical
kinetics

A study of biological systems and molecular biology is undergoing a rapid development
in recent years, and demonstrates impressive advances in understanding of genome
sequences, cell behavior, vaccine design and other relevant problems. A proper de-
scription of the processes in living organisms is particularly challenging, due to both
experimental issues (accurate measurements and separation of different substances)
and the complexity of the systems. The latter means that a separate consideration
of system components (genes or proteins) is not enough to understand possible very
nontrivial and sometimes counter-intuitive phenomena (such as in the cell differentia-
tion). The components experience complex interconnections, resulting in a nonlinear
dynamical evolution, which has to be considered at the level of the whole system.

The system biology, a research area devoted to both molecular biology and system
theory, takes into account specific properties of the components and their interactions

28

in the system, aiming for revealing and understanding of biological laws, and finally
for development of new biological systems, efficient production of vaccines and drugs
or treatment of diseases.

The mathematical modeling in this area is crucial. Each experiment in vivo may
be very complicated and expensive. Moreover, a mathematical model allows to isolate
some phenomena in order to understand their contribution to the whole picture, or
to put a system in conditions, which could be impossible in real life. Of course, dis-
crepancies between the predictions provided by a model and actual measurements may
evidence for both inappropriate model and inaccurate experiments. So, it is important
to keep the experimental investigation of real biological systems and in silico modeling
connected, supplying corrections and insights from one to another.

Different scales yield different levels and methods of simulations. Approximately,
they may be classified into four categories.

• Macroscopic deterministic scale,

• mesoscopic (e.g. cell) scale,

• classical microscopic (molecular) scale, and

• quantum formalism and corresponding scales.

The first approach is suitable if the number of molecules is sufficiently large, of the
order of the Avogadro constant. In this case, the quantum and stochastic fluctuations
are negligible, and the chemical kinetics or biological dynamics can be described in
terms of macroscopic concentrations by ordinary differential equations (ODEs) with
a satisfactory accuracy. Standard analytical or numerical tools can be employed to
construct a complete portrait of the system.

Essentially microscale processes at the molecular and atom levels have to be con-
sidered via the molecular dynamics, tracking all coordinates, velocities and physical
forces (e.g. via the Fokker-Planck equation). Though being rather accurate, this way
may be too computationally hard for large molecules, typical for biological systems,
such as DNA, RNA or proteins.

Even more involving is the quantum simulation. The Schroedinger equation proved
to be in an extremely accurate correspondence with the experiment for small systems:
for example, the energy levels for the Helium were predicted with 8 and more decimal
digits [56]. However, it seems to be infeasible yet to employ the quantum level for
calculation of protein reactions.

At the mesoscopic scale, the system description is still more or less phenomeno-
logical (the kinetic rates are usually estimated from experiments and intuition rather
than quantum ab initio models), but the stochastic noise brings already a significant
contribution, which can not be properly resolved by deterministic ODEs. In intra-
cellular systems, the number of molecules of chemical species is typically of the order
of hundreds. For such dilute concentrations, stochastic fluctuations in the numbers of
molecules may hit the level O(10−1) [223, 7], since collisions between molecular species
and corresponding reactions occur in an inherently random way. Moreover, this bio-
logical noise itself plays an important role in inter- and intra-cellular functions. Such
systems may exhibit unexpected responses, e.g. metastability patterns [69, 183].

29

Therefore, the stochastic kinetics is more appropriate for such systems, since it can
cope with the stochastic noise. The system state is introduced as a vector of copy
numbers of species, interacting through several biochemical reaction channels. The
states are essentially discrete: a copy number of substances is always integer, and a
reaction may also yield only an integer change in the number of molecules. The reaction
rate is cast now to the propensity function, which defines a probability that a reaction
will occur in the next infinitesimal time interval.

Thus, the dynamical evolution of the stochastic reaction system can be seen as a
jump Markov process. An accurate stochastic description of that may be given by the
so-called chemical master equation (CME), which simulates the probability distribution
over all possible system states [232, 74, 77].

During the history of the chemical kinetics modeling in biology, different approaches
have been developed. Monte Carlo methods are based on a statistically large ensemble
of realizations of the stochastic process associated with the CME. The most famous is
the stochastic simulation algorithm (SSA) by Gillespie [74]. In each step, SSA selects
the next reaction to fire according to its propensity and a thrown random number, and
performs the corresponding transition to the new state. However, SSA is often very
computationally demanding by several reasons. First, due to the randomized setting
of a single realization, a lot of simulation trajectories (106–108 and more) are required
to ensure correct statistical outputs. It may be especially challenging to estimate the
probability of rare events, since only a few trajectories may enter the proper regimes
of a system.

Second, even a phenomenological biological model may contain multiple reactions
and species, significantly separated in magnitude with respect to both time and pop-
ulation scales. For example, fast reactions stabilize the related effects very rapidly,
while slow reactions may require much longer simulation to be satisfactory captured.
However, in most of the steps the SSA samples the fast reactions, which may be not
so interesting in the end.

Several improvements include advanced sampling techniques [112], τ -leaping meth-
ods [75], or system-partitioning hybrid methods [88, 111, 123]. Additionally, the chemi-
cal Fokker-Planck equation may be considered [76] to treat high-concentration systems.
The Fokker-Planck equation can be discretized with a coarse grid, containing less un-
knowns than the initial CME.

A principal alternative to the Monte Carlo-type methods is the solution of the mas-
ter equation directly as a linear ODE. For many systems, the probability distribution
vanishes rapidly outside a bounded domain. Thus, it is possible to truncate the state
space to a finite domain, without a significant deterioration of the solution [181].

However, this setting inherits the same difficulty as the Fokker-Planck equation:
even the truncated state space volume is usually still very large and grows exponentially
with the number of species. Therefore, some data-sparse approximation is needed.
The sparse grids technique was one of the first in this direction [108], followed by
tensor product methods, demonstrated already their potential in the form of greedy
algorithms in the canonical tensor format [4, 64, 168, 33, 25, 109], and the so-called
Dirac-Frenkel dynamical approach on the Tucker manifold (see [159, 175, 193] and
[122] for a particular application to the CME). We use more advanced tensor formats

30

and methods, which allow to simulate systems of higher complexity.
Now, we present the formulation and basic properties of the chemical master equa-

tion in more detail. Suppose that d different active chemical species S1, . . . , Sd in
a well-stirred medium can react in M reaction channels. Each channel is specified
by a stoichiometric vector zm ∈ Zd, and a propensity function wm(i) : Rd

+ → R+,
m = 1, . . . ,M , R+ = {x ∈ R : x > 0}, such that the m-th reaction writes

S1a
m
1 + · · ·+ Sda

m
d

wm−−→ S1(a
m
1 + zm1) + · · ·+ Sd(a

m
d + zmd)

in the classical chemical notation.
To introduce the stochastic description, we denote the states by i = (i1, . . . , id),

and always mean the copy numbers of species, so that ik is a nonnegative integer,
ik ∈ ({0} ∪ N). The probabilistic role of the propensity functions is the following: for
an infinitesimal time interval dt,

Wm(i, t, dt) = wm(i)dt

is the probability that, given copy numbers i at the time t, one reaction in the m-th
channel will occur in the system in the next time interval [t, t+ dt).

The state i is quantified by the probability that the numbers of molecules of species
S1, . . . , Sd take particular values i1, . . . , id at the time t,

Ψ(i, t) : ({0} ∪ N)d ∪ [0, T]→ R+.

This probability is in fact conditional, and depends also on the initial state, i|t=0, but
we omit it for the sake of brevity.

Now, taking dt small enough, such that the probability that more than one reac-
tion will occur in [t, t + dt) is negligible, we may write the distribution in the end of
the interval, Ψ(i, t + dt), using the probability addition and multiplication laws for
independent and mutually exclusive events,

Ψ(i, t+ dt) = Ψ(i, t)

(
1−

M∑
m=1

wm(i)dt

)
︸ ︷︷ ︸

state was i, and
no reaction fired

≡not(any reaction fired)

+
M∑
m=1

Ψ(i− zm, t) · wm(i− zm)dt︸ ︷︷ ︸
m-th reaction occurs

s.t. final state is i, hence
initial state is i− zm

.

Combining the terms Ψ(i, t + dt) − Ψ(i, t) in the left-hand side and taking the limit
dt→ 0, derive [77, 78] the chemical master equation,

dΨ(i, t)

dt
=

M∑
m=1

wm(i− zm)Ψ(i− zm, t)− wm(i)Ψ(i, t). (1.9)

Any copy numbers of species are potentially possible, so Eq. (1.9) is an infinite-size
ODE. Of course, to conduct numerical simulations, we need a procedure to truncate
it to a finite problem. The finite state space projection (FSP) algorithm [181] employs
the fact that very large copy numbers are unlike to appear in a finite time,

Ψ(i, t)→ 0, |i| → ∞.

31

So, we consider each ik in a finite range, ik = 0, . . . , nk − 1, taking nk large enough,
such that Ψ(i, t) is e.g. below the machine precision for ik > nk, and one can neglect
the error introduced by the state space truncation.

As in the previous section, even if each nk = O(n) is of the order of tens, the total
number of degrees of freedom scales as nd, and indirect storage and processing for Ψ is
indispensable. We will postpone this for the next chapters, when we introduce tensor
product notations and methods. Now let us focus on algebraic and spectral properties
of the CME operator.

First, introduce a more convenient counterpart to (1.9) with the help of the shift
matrices. Denote

Jz =

0
... . . .

1
. . .

.
1 · · · 0

 ← row z + 1, if z > 0, (1.10)

and for z < 0 we define Jz = (J−z)>. Now we write the finite state approximation
(FSP) of (1.9) as a linear ODE,

dψ(t)

dt
= Aψ(t), A =

M∑
m=1

(Jz
m − J0) diag(wm), ψ(t) ∈ R

∏d
k=1 nk

+ , (1.11)

where the multidimensional shift operator reads

Jz = Jz1 ⊗ · · · ⊗ Jzd ,

wm = {wm(i)} and ψ(t) = {ψ(i, t)}, i ∈
d⊗

k=1

{0, . . . , nk − 1}, are the corresponding

values of wm and ψ stacked into vectors, diag(wm) is a diagonal matrix with the values
of wm stretched along the diagonal, and ⊗ means the Kronecker product in the usual
sense (see Eq. 1.18). Note that J0 is just an identity matrix of the proper sizes. The
finite solution ψ(i, t) does not generally coincide with the infinite one Ψ(i, t) at the
finite state points, even if the initial state was projected exactly, ψ(i, 0) = Ψ(i, 0),
though the discrepancy can be quantified, see Thm. 1.2.1.

The boundary values of the propensity functions wm require a specific consideration.
Suppose that a reaction decreasing the number of molecules of some kind, zmk < 0, is
allowed to process in the case when there is no sufficient amount of the corresponding
component, wm(i) > 0 for ik < |zmk |. It would result in a nonphysical phenomenon:
negative ik occur with a nonzero probability. To avoid this situation, we shall always
pose boundary conditions :

wm(i) = 0 if any of i+ zm < 0. (1.12)

These non-leak boundary conditions are enough for the infinite equation (1.9) to be
well-posed in physical and probabilistic senses, i.e. negative copy numbers never occur,

32

the probability Ψ is nonnegative, and the total normalization
∑
i Ψ(i, t) is conserved

during the time evolution (provided that Ψ(i, 0) obeys these properties). However, it
might be not the case, if the FSP is applied straightforwardly, with no adjustment of
wm.

Basic properties of the FSP approximation established in [181] are the following.
First, if ψ(i, 0) > 0 and wm(i) > 0 then it remains ψ(i, t) > 0. Second, the error in
the solution “does not blow up”, and is related to the probability normalization loss.

Theorem 1.2.1 ([181], Theorem 2.2). Suppose ψ(i, 0) = Ψ(i, 0) > 0, wm(i) > 0. If it
holds for some ε > 0 and t > 0 that∑

i

ψ(i, t) > 1− ε,

then

ψ(i, t) 6 Ψ(i, t) 6 ψ(i, t) + ε, i ∈
d⊗

k=1

{0, . . . , nk − 1}.

Further regularity analysis may be found in [70].
As was shown in [120], all eigenvalues of the CME operator in (1.11) have nonpos-

itive real parts. Indeed, each row sum of Jzm − J0 is either −1 or 0, and diag(wm) is
nonnegative, so both the diagonal entries and row sums of A are nonpositive. By the
Gershgorin’s theorem, all eigenvalues lie in the left half of the complex plane. This
provides stability of the CME dynamics. However, if both wm and ψ are nonzero at
the points ik such that ik + zmk > nk, all eigenvalues are strictly negative in real part,
and the norm of the solution ψ(t) decreases with t. It leads to the accumulation of
the error shown in Theorem 1.2.1. This evidences for the necessity of taking nk large
enough, such that the truncated part of ψ is negligibly small.

It is possible to recover the normalization conservation for the truncated problem
[121]. All what we need is to perturb the propensity functions, setting

wm(i) = 0 if any of ik + zmk > nk, k = 1, . . . , d, (1.13)

in addition to the natural boundary conditions (1.12). Now, following [121], we may
observe that∑

i

wm(i− zm)ψ(i− zm) =
∑
i+zm

wm(i)ψ(i) =
∑
i

wm(i)ψ(i),

and hence e>(Jz
m − J0) diag(wm)ψ = 0, where e is a vector of all ones, constituting

the summation over i.

Lemma 1.2.2. Suppose that both left (1.12) and right (1.13) boundary conditions
hold for the FSP truncated CME. Then the minimal singular value of A is zero, with
e being the left singular vector, and a stationary solution ψ? : dψ?

dt
= 0 being the right

singular vector.

The second claim comes immediately from the fact that Aψ = 0 yields dψ
dt

= 0.

33

Remark 1.2.3. The multiplicity of the kernel of A requires additional study. As was
shown in [97], a sort of non-redundancy in the set of species and reactions guarantees
the uniqueness of the stationary solution. However, generally the kernel dimension
can be as large as n and more (a reversible conversion reaction S1 + S2 � S3 with a
constant propensity may be an example). In this case, the initial state, governing the
actual kernel vector the process converges to, is crucial.

Now let us estimate the maximal singular value of the CME operator.

Lemma 1.2.4.

‖A‖2 6 2
M∑
m=1

max(wm).

This can be shown via the simple matrix norm inequality applied to (1.11): ‖Jzm−
J0‖ 6 2 (see the next section for a detailed argumentation), and the norm of a diagonal
matrix is its maximal element.

Notice that the matrix may be rather stiff: if wm is a degree-p polynomial, its
maximal element may be bounded by (n− 1)p. Therefore one may need a lot of small
time steps to make the approximate dynamics accurate. The next section presents a
conception how to address this issue in a smart way.

Finally, we may note that the nonpositivity of the CME operator helps to damp a
high-frequency noise arising from tensor approximations in each step. Generally one
could expect the tensor approximation error to grow in each time step, but we observed
that even in a long dynamics, the noise maintains at a stable level.

1.3 From dynamical to stationary problem and back

1.3.1 Simultaneous space-time discretization

Supposing some discretization is introduced in space or state variables, we are left with
an ODE

dx(t)

dt
+ Ax(t) = f(t) ∈ CN

x(0) = v, t ∈ [0, T],
(1.14)

possibly of a very large size N = nd.
For simplicity, we assume that the matrix A is independent on t and x, though a

generalization is also possible. To be precise, let us focus on the well-known Crank-
Nicolson scheme (which is always suitable for a linear ODE as soon as the time step is
small enough). Given a time grid (let it be uniform),

t ∈ {tp}Ntp=0, tp = pδt, p = 0, . . . , Nt, fp = f(tp), T = Ntδt,

the approximate solution of (1.14) may be computed stepwise, from the following linear
system in each step,(

I +
δt

2
A

)
xp+1 =

(
I − δt

2
A

)
xp +

δt

2
(fp + fp+1), p = 0, . . . , Nt − 1, (1.15)

34

and x0 = v. Provided the matrix A is nonnegative definite, it holds that the spectral
norm of the transition matrix is bounded by one,∥∥∥∥∥

(
I +

δt

2
A

)−1(
I − δt

2
A

)∥∥∥∥∥
2

6 1,

and hence the method is absolutely stable [134].
The scheme possesses the second order of approximation, ‖x(tp) − xp‖ = O(δt2).

However, if the matrix A is stiff, the number of time steps required to ensure a rea-
sonable accuracy in a long time dynamics may be quite large. On the other hand,
the smaller time step we take, the smaller error is allowed in solution of the linear
system (1.15) – but we would like to keep this error “not too small”, to achieve a good
compressibility of the solution in a tensor product format.

As a non-standard alternative, we may consider time as an additional dimension
and agglomerate several time steps into one global linear system,

I + δt
2
A

−I + δt
2
A I + δt

2
A

.
−I + δt

2
A I + δt

2
A

x1
x2
...
xNt

 =

v − δt

2
Av

0
...
0

+
δt

2
g, (1.16)

where g =
[
f0 + f1 f1 + f2 · · · fNt−1 + fNt

]>. Of course, this system makes no
sense if we try to keep it in a general form – the stepwise elimination (1.15) is the op-
timal method for a bidiagonal matrix. However, imagine that it is possible to compute
its solution more efficiently in a structured representation via a fast algorithm. Then it
becomes tempting to obtain the whole time history at once, and use excessively small
time steps to guarantee that all spectral components of A are properly resolved.

It is natural to expect that a structured representation is efficient under certain
assumptions on the solution. For example, such a statement was considered with the
sparse grids approach to parameter reduction [96, 235], where the numbers of spatial
and time degrees of freedom contribute additively to the total complexity. To achieve
that, appropriate smoothness conditions are imposed.

In this work, we focus on tensor product approximations. Generally, it is difficult
to relate their efficiency to the smoothness of the solution. Existing estimates are
comparable with the sparse grids complexity (see [215, 95]), but in most cases the actual
cost is significantly lower than the theoretical predictions. Moreover, there is no general
prevention for tensor product algorithms to be useful for some non-smooth examples
as well. The low-rank separation of space and time variables was also employed in
[224]. With multidimensional tensor techniques, however, we may introduce additional
virtual dimensions, and ultimately approximate both spatial and temporal parts of
(1.16) with the asymptotically logarithmic storage reduction, O(log(N) log(Nt)), which
is confirmed in numerical experiments.

The solution scheme will be described in more details below, after the tensor product
formalism will be introduced. Now, let us focus on spectral properties of (1.16). First
of all, a more convenient counterpart may be written via Kronecker products,

Ax = F, A = I ⊗Gt + A⊗ δt

2
Mt, F =

(
v − δt

2
Av

)
⊗ e1 +

δt

2
g, (1.17)

35

where the Kronecker product ⊗ defines the following block matrix,

A⊗B =

AB1,1 · · · AB1,n
...

...
ABm,1 · · · ABm,n

 , (1.18)

e1 is the first identity vector, and Gt, Mt are the temporal stiffness and mass matrices,

Gt =

1
−1 1

.
−1 1

 , Mt =

1
1 1

.
1 1

 .
We remind that x =

[
x1 x2 · · · xNt

]> is the global solution vector, containing all
time steps of the initial Cranck-Nicolson scheme.

Since Gt and Mt are triangular, one may conclude immediately that all their eigen-
values are equal to 1. To ensure the stability of the system, the spectrum of A is
assumed to lie in the right half plane. Under this condition, we may prove the well-
posedness for (1.16).

Theorem 1.3.1. Suppose Reλ(A) > 0, then the critical singular values of A in (1.17)
are estimated as follows,

σmax(A) 6 2 + δt‖A‖2, σmin(A) >
1

Nt

, (1.19)

so that cond(A) 6 2Nt + T‖A‖2.

Proof. Since both Reλ(A) > 0 and λ(Mt) > 0, we may claim that ‖Az‖ > ‖(I ⊗Gt)z‖
for any vector z. In particular, using also the properties of the Kronecker product, we
may estimate σmin(A) > σmin(Gt). The latter is computed using the spectral norm of
G−1t , which can be bounded via the following inequality,

‖M‖2 6
√
‖M‖1‖M‖∞, ‖M‖1 = max

j=1,...,n

m∑
i=1

|Mi,j|, ‖M‖∞ = max
i=1,...,m

n∑
j=1

|Mi,j|

for any m× n matrix M . One may verify straightforwardly that

G−1t =

1
1 1
...
1 1 1 1

 ,
with both the row and column sums achieving Nt. Hence,

σmin(A) > σmin(Gt) =
1

‖G−1t ‖2
>

1√
‖G−1t ‖1‖G−1t ‖∞

=
1

Nt

.

36

The second claim is proved.
The first estimate is derived similarly: the triangle inequality yields

σmax(A) = ‖A‖2 6 ‖Gt‖2 +
δt

2
‖Mt‖2‖A‖2,

whereas
‖Gt‖1 = ‖Gt‖∞ = ‖Mt‖1 = ‖Mt‖∞ = 2,

so the spectral norms are not greater than 2. Finally, recalling that δt = T/Nt, we
finish the proof.

It is not unnatural that the condition number depends linearly on all main prop-
erties of the system: number of time steps, time interval length, and the norm of the
spatial matrix. Of course, this theorem is very general, and taking into account par-
ticular properties of A, one may provide refined results. Is there other ways to reduce
the condition number? One of the mostly used approach is preconditioning. A simple
and intuitive step is to relax the temporal contribution. Namely, we multiply (1.17)
with the matrix I ⊗G−1t , so that we come to

Ãx = F̃, Ã = I ⊗ I + A⊗ δt

2
(G−1t Mt),

F̃ =

(
v − δt

2
Av

)
⊗ e+

δt

2
(I ⊗G−1t)g,

(1.20)

where e = G−1t e1 is a vector of all ones.

Theorem 1.3.2. Suppose Reλ(A) > 0, then the critical singular values of Ã in (1.20)
are estimated as follows,

σmax(Ã) 6 1 + T‖A‖2, σmin(Ã) > 1, (1.21)

so that cond(Ã) 6 1 + T‖A‖2.

Proof. Using the same arguments as before, we deduce that σmin(Ã) > 1. Since both
Gt and Mt are triangular, so is G−1t Mt, which contains all real positive eigenvalues 1
on the diagonal, and the property Reλ(A⊗ (G−1t Mt)) > 0 persists. The upper bound
writes

σmax(Ã) 6 1 +
δt

2
‖G−1t ‖2‖Mt‖2‖A‖2 6 1 + δtNt‖A‖2 = 1 + T‖A‖2.

Now, choosing the time interval, we may make the simultaneous space-time matrix
as well conditioned as prescribed.

Remark 1.3.3. Note that the time interval [0, T] might not mean the whole time range
required in application. We are not obliged to dispose the time stepping framework
completely – the global time schemes (1.16) – (1.20) may be considered as the tech-
niques to conduct “large” time steps of size T each. Suppose that the desired interval is

37

[0, T̂], we split it into subintervals [0, T], [T, 2T], . . . , [T̂ − T, T̂], and use (1.16) – (1.20)
with restarts. When the system for [(q− 1)T, qT], q = 1, . . . , T̂ /T is solved, we extract
the last snapshot xNt , and use it as the initial state for the next interval. We may use
the freedom in T to achieve the fastest computations.

Remark 1.3.4. If A is not symmetric, the fact that the spectrum of G−1t Mt is real
is important for such type of preconditioning to be useful. Indeed, suppose that both
λ(A) and λ(G−1t Mt) are complex. Then it is possible that Re

(
λ(A)λ(G−1t Mt)

)
< 0 for

some eigenvalues. It may yield even worse conditioning than in (1.17), if 1 + Reλ(A⊗
(G−1t Mt)) will be too close to zero.

The complex eigenvalues of the temporal matrices may appear if the Galerkin or
spectral [218, 128, 227] discretizations are used. Advantages of the spectral methods
stem from their rapid convergence w.r.t. the number of degrees of freedom – if no
more than O(40) temporal basis functions are used, one may safely proceed with the
unpreconditioned counterpart of (1.17).

1.3.2 Solution of stationary problems by dynamical evolution

In some problems, posed initially as dynamical equations, we need only the stationary
solution. Suppose for simplicity that the attractor is a point (e.g. a linear ODE
dx/dt+Ax = 0 is considered), which obeys the null-space condition Ax? = 0. However,
computation of x? as a solution of the partial eigen- or singular value problem may suffer
from some drawbacks. First, for a non-symmetric matrix the eigenvalue problem is
difficult to solve, especially in tensor formats, since no variational formulation exists. A
tensor-structured algorithm for the partial singular value decomposition could improve
the situation, but it is unclear now how it will perform.

More important is the second issue: how to separate multiple kernel vectors, and
filter them from higher eigen/singular vectors in case of very small spectral gaps. As we
noted in Remark 1.2.3, a kernel of dimension greater than one may be a natural situa-
tion in the chemical master equation, and it is important to select a proper projection
of the initial state to the null-space.

It is the latter consideration that gives us a natural idea how to solve this problem.
All we need is to conduct a dynamical evolution, starting from a desired initial guess,
until the residue (typically |x(t+ δt)− x(t)| or |Ax(t)| is used) falls below a prescribed
threshold. In this case, the fine discretization in the block scheme (1.16) is superfluous.
Instead, we use the implicit Euler, a.k.a. the inverse power iteration,

(I + δtA)xp = xp−1, p = 1, . . . , Nt. (1.22)

Note that here δt may be much larger than in (1.16). The intermediate solutions
approximate the transient processes poorly, but as soon as the method converges, it
recovers an accurate component in the lowest eigenspace of A. As was noted, the
number of steps Nt is chosen such that

η =
‖xNt+1 − xNt‖

δt‖xNt‖
6 ε, or η =

‖AxNt‖
‖xNt‖

6 ε. (1.23)

38

Provided the ODE system is stable, i.e. A > 0, one may quickly conclude that the
condition number of the matrix in (1.22) is bounded by 1 + δt‖A‖2. As usual in the
power method, the convergence rate (1+δt|Reλ2(A)|)−1 emerges from the spectral gap,
and higher δt leads to a faster convergence, but one has to care about the difficulty of
the shifted matrix inversion.

Since the latter operation is usually done iteratively up to some accuracy (and this
is the only way in the tensor approximation framework), we propose the following trick
to reduce the cost. Compute the residual by one of the definitions in (1.23). If η is
large, we do not need to solve (1.22) very precisely. When η diminishes, the accuracy
may be improved. Practically, we use a rule of the form ε = cη (e.g. c = 10−1), where
ε is the threshold for the solution of (1.22). This approach decreases the complexity
of intermediate iterations significantly.

In the following we may refer to this method as the (implicit) Euler iterations. No
ambiguity arises since the global space-time formulations (1.16)–(1.20) use the Crank-
Nicolson scheme.

39

Chapter 2

Tensor product representations and
approximations

We have seen that multidimensional arrays arise in many applications, but their direct
storage and processing is impossible for really high dimensions, since usually we have
to face the exponential growth of the number of degrees of freedom to maintain the
same accuracy level with the increase of dimensionality.

Fortunately, in practical applications tensors are usually not very general, but arise
from some physical problem, and possess a certain hidden structure, which is to be
determined. Sometimes this structure follows obviously from the model. For example,
we may mention (pointwise) sparse, or shift invariant (Toeplitz or Hankel) tensors [8].
However, these particular classes are not wide enough for our purposes, and we will
consider some other low-parametric representations.

2.1 Separation of variables in two and many dimen-
sions

A method of choice in this work is the separation of variables. Suppose we are given
a tensor x = [x(i1, . . . , id)], with ik = 1, . . . , nk 6 n, k = 1, . . . , d, such that the
cardinality of x is bounded by nd. However, assume that x can be written as a direct
product of univariate arrays (vectors), i.e.

x(i1, . . . , id) = x(1)(i1)x
(2)(i2) · · · x(d)(id). (2.1)

Note that each x(k) requires only n elements to store, but they define in fact all values
of x. So, the effective storage cost reduces to nd � nd. Of course, the ultimate
separation (2.1) is too restrictive in practice. To generalize (2.1) efficiently, we need
two important ingredients: first, the representation should allow a summation of several
product terms, and second, it should admit approximate computations.

40

2.1.1 Matrix low-rank decomposition

To understand the basic ideas, consider first the two-dimensional case. Let X =[
x(i1, i2)

]
be a matrix, then the variables are naturally separated as follows,

x(i1, i2) =
n∑

α=1

x
(1)
α (i1)x

(2)
α (i2) ⇔ X = X(1)(X(2))>.

This equation is called the dyadic decomposition, and the (approximate) reduction is
done by limiting the range of the rank index α from n to r < n, such that∥∥X −X(1)(X(2))>

∥∥ 6 ε, X(k) =
[
x
(k)
α (ik)

]r,n
α,ik=1

.

So, x(1) and x(2) contain now 2nr1 entries, and we may suggest a choice of these
factors, and how the approximation error ε depends on the rank r. A special property
of the matrix case is that the optimal factorization is provided by the very particular
decomposition, which is robustly computable using the well-established software (e.g.
LAPACK).

Theorem 2.1.1. Any matrix X admits the singular value decomposition (SVD),

x(i1, i2) =
n∑

α=1

Uα(i1)σαVα(i2), (2.2)

where σ1 > σ2 > · · · > σn > 0, σ2
i ∈ λ(X∗X), and U and V are matrices with

orthonormal columns. Moreover, the truncated rank-r SVD yields an optimal rank-r
approximation, i.e. ∥∥∥∥∥X −

r∑
α=1

UασαV
>
α

∥∥∥∥∥
2

= min
rank(Y)=r

‖X − Y ‖2 = ε.

Obviously, one may assign X(1) = U,X
(2)
α = σαVα or X(1)

α = Uασα, X
(2) = V ,

obtaining either left- or right-orthogonal decompositions, respectively. The conception
of orthogonality will be used heavily in computational algorithms and thus recalled in
the tensor formats sections below.

Though generally r(ε) is unknown, if x comes from the discretization of a smooth
function, reasonable bounds may be proven, typically of the form [230, 231, 103]

r = O(logβ(1/ε) logγ(n)), β, γ > 0.

One drawback of the SVD is perhaps its cost: it requires all elements of a matrix,
and O(mnmin(m,n)) operations, so it may be difficult to apply if n is tens thousands
or more. In such a case, we may be satisfied with a quasi-optimal, but much cheaper
technique: the Gaussian elimination, also known as the cross interpolation scheme

1In the following, to write asymptotic estimates in a brief way, we will implicitly assume nk 6 n,
and so on.

41

[85, 86, 87, 84, 229]. It is based on the selection of “representative” columns and rows
of a matrix, i.e.

X(i1, i2) ≈ X̃(i1, i2) =
r∑

α,α′=1

X(i1, J
2
α)Mα,α′X(J1α′ , i2), (2.3)

where M = (X(J1, J2))
−1, and J1 ⊂ {1, . . . , n1}, J2 ⊂ {1, . . . , n2} are the chosen sets

of indices of cardinality r. To select these “cross” indices properly is crucial to ensure
good approximation properties. In [84], the following maximum volume principle has
been proven.

Lemma 2.1.2. If J1 and J2 are such that detX(J1, J2) is maximal among all r × r
submatrices of X, then

‖X − X̃‖C 6 (r + 1) min
rank(Y)=r

‖X − Y ‖2 = (r + 1)ε.

Though the exact volume (determinant) maximization is a NP-hard problem, a
heuristic quasi-optimal scheme, proposed in [83] (the so-called maxvol algorithm), gives
satisfactory results in most relevant cases. There are also specific estimates for the cross
approximation applied directly to smooth functions, see e.g. [214].

2.1.2 Low-parametric canonical and Tucker formats

A generalization to the higher-dimensional case is not obvious. The first idea that
comes in mind is to take a simple sum of rank-1 components (2.1) in the same way as
in two dimensions.

Definition 2.1.3. A tensor x is said to be presented (or approximated) in the Canon-
ical format if it holds

x(i1, i2, . . . , id) ≈
R∑
α=1

x(1)α (i1)x
(2)
α (i2) · · ·x(d)α (id). (2.4)

This representation format is known since [113]. R is called the canonical rank of
a tensor, and x(k) ∈ Cnk×R are canonical factors. It was then used heavily for data
structuring under several other names such as CANDECOMP, Canonical Polyadic
(CP) format or PARAFAC, see the review [160] and references therein, e.g. [106, 34,
28, 38, 23, 24].

For certain classes of tensors (typically arising from discretizations of integral opera-
tors) it is possible to prove existence of low-rank canonical approximations analytically
[230, 103, 36, 23, 24, 72, 100, 101, 89, 99, 145, 49]. These proofs are often constructive
and allow to build approximations with modest R (e.g. tens or hundreds), such that
the total storage reduction to O(dnR) is reasonable.

However, the analytical considerations are of limited applicability, and provide usu-
ally sub-optimal rank estimates. Moreover, there is no robust method to compute the
CP format for a given array (data compression procedure), since it suffers from an in-
trinsic instability [42], which prevents efficient calculations. There are several working

42

techniques (see [60, 133] and reviews [24, 160]), but still they may converge slowly, and
require a priori knowledge of the rank.

So, we come to the main problem of tensor approximations: given elements (or a
procedure to compute them) of a tensor, find its low-parametric approximation. Since
a reliable approach is known only in two dimensions for the dyadic factorization, several
ways how to bring it to higher dimensions were developed.

The first representation of that type was the so-called Tucker [228] format.

Definition 2.1.4. A tensor x is said to be presented (or approximated) in the Tucker
format if it holds

x(i1, . . . , id) ≈
∑

γ1,...,γd

x(c)(γ1, . . . , γd)x
(1)
γ1

(i1) · · ·x(d)γd (id). (2.5)

The rank indices γk vary in the ranges γk = 1, . . . , rk, where rk = rk(x) are the so-called
Tucker, or multilinear ranks, the tensor x(c) ∈ Cr1×···×rd is called the Tucker core, and
x(k) ∈ Cnk×rk are the Tucker factors.

The first glance at the Tucker format shows that it is not free from the curse of
dimensionality: to store the core, still O(rd) elements are required. Therefore, for quite
a long time it was used only in low-dimensional cases. However, the Tucker format
possesses several advantageous properties, and the problem of the core storage can be
resolved in a separate way. We address this issue later in Sections 2.1.3 and 2.2.2.

The first positive feature is that the Tucker formats admits a black-box SVD-based
approximation procedure, see [39, 40, 41]. It follows from the crucial property that
each Tucker rank is in fact a rank of a certain matrix, constructed from the elements
of the initial tensor. To show this, we first need to introduce several definitions.

Definition 2.1.5. By a multiindex i = i1,...,k = i1, . . . , ik we denote an index which
takes all possible combination of values of i1, . . . , ik, i.e. if im = 1, . . . , nm,m = 1, . . . , k,
then2

i1, . . . , ik = i1 + (i2 − 1)n1 + · · ·+ (ik − 1)n1 · · ·nk−1.

This conception of the index grouping is crucial in the description of multidimen-
sional tensors. We may recall the considerations from the first chapter: a discrete
solution of a partial differential equation can be seen as a tensor x(i1, . . . , id), but the
calculation of the same data via an iterative process with the Galerkin linear system
is written in terms of a vector x(i) = x(i1, . . . , id).

The semantic i1,...,k allows us to write encapsulated index sets more briefly in some
special cases. For example,

i 6=k = i1, . . . , ik−1, ik+1, . . . , id, i>k = ik+1, . . . , id, (2.6)

and so on. Now, we are ready to define the unfolding matrices.
2We adopt here the little-endian convention, which is used in e.g. Arabic numerals, Fortran and

MATLAB indexing, contrarily to the big-endian used in the positional system or C language. In most
of this work the particular endiannes is not important, as soon as the index set is fixed. The Kronecker
product introduced in (1.18) is also consistent with the little-endian index grouping.

43

Definition 2.1.6. Given a tensor x(i1, . . . , id). A k-th Tucker unfolding matrix writes

x[k] =
[
x
[k]
ik,i 6=k

]
∈ Cnk×n1···nk−1nk+1···nd , where

x
[k]
ik,i 6=k

= x[k](ik, i1, . . . , ik−1, ik+1, . . . , id) = x(i1, . . . , id).

Assume that the Tucker decomposition (2.5) holds exactly. Denoting an auxiliary
matrix

V [k](γk, i6=k) =
∑
γ6=k

x(c)(γ)x(1)γ1 (i1) · · ·x(k−1)γk−1
(ik−1)x

(k+1)
γk+1

(ik+1) · · ·x(d)γd (id),

we may conclude that the Tucker expansion provides a dyadic decomposition for each
Tucker unfolding matrix,

x[k] = x(k)V [k], x(k) ∈ Cnk×rk , V [k] ∈ Crk×n1···nk−1nk+1···nd . (2.7)

This gives immediately the first corollary: if the Tucker decomposition is exact, the
ranks of unfolding matrices are not larger than the Tucker ranks, rank(x[k]) 6 rk,
k = 1, . . . , d. In fact, we may choose a non-redundant representation and turn the last
expression into an equality. The second corollary is even more useful, since it addresses
the approximation problem formulated above.

Theorem 2.1.7. Given a tensor y(i1, . . . , id), the error minimization problem in the
Tucker format with prescribed ranks r = (r1, . . . , rd) has the solution, i.e.3

∃xmin : ‖xmin − y‖ = inf
x
‖x− y‖ = min

x
‖x− y‖ = ε,

where x (and xmin) are representable in the form (2.5) with the Tucker ranks r1, . . . , rd.
A quasi-optimal approximation x∗ ensuring

‖x∗ − y‖ 6
√
dε

is provided by computing d SVD decompositions of unfolding matrices.

Proof. Though we could address to [39, 40], we present the proof here, since it will
be generalized to some other tensor formats below. To prove the first part, recall
that “inf” means that there exists a sequence xs such that lim

s→∞
‖y − xs‖ = ε. Since

all elements of xs are bounded, there exists a subsequence xst , which is pointwise
convergent to xmin. Directly from the Tucker form (2.5) the same follows for the
unfolding matrices x[k]st → x

[k]
min. Since a sequence of matrices with uniformly bounded

ranks cannot converge to a matrix with a larger rank, it holds rank(x
[k]
min) 6 rk, and

in the same time ‖y[k] − x[k]min‖ = ε. It means that the minimizer exists in the set of
tensors with Tucker ranks bounded by rk, i.e. the first claim of the theorem.

3Unless otherwise noted, we use the Frobenius norms for tensors and vectors, ‖x‖ = ‖x‖2 = ‖x‖F =√∑
i

|x(i)|2.

44

The practical computational algorithm, called HOSVD [39, 40], resembles (2.7)
“backwardly”. For each unfolding, compute the truncated SVD,

y
[k]
ik,i 6=k

≈ x
[k]
ik,i 6=k

=

rk∑
γk=1

x(1)γk (ik)σγkV
[k](γk, i 6=k),

ensuring ‖y[k] − x[k]‖ 6 εk 6 ε. The orthogonal matrix of left singular vectors is
taken as the k-th Tucker factor, and in the final step, the Tucker core is recovered as
a projection

x(c)(γ1, . . . , γd) =
∑
i

(
x(1)γ1 (i1)

)∗ · · · (x(d)γd (id)
)∗
y(i1, . . . , id).

Introduce the orthogonal projectors as follows,

Pk = I ⊗ · · · ⊗ I︸ ︷︷ ︸
k−1

⊗
(
x(k)

(
x(k)
)∗)⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

d−k

,

then the final approximant x∗(i) may be written as x∗ = P1 · · ·Pdy4. Now, using the
“add-and-subtract” trick and orthogonality, deduce

‖y − x∗‖2 = ‖(y − P1y) + (P1y − P1P2y) + (P1P2y − P1P2P3y) + · · ·
+ (P1 · · ·Pd−1y − P1 · · ·Pdy)‖2
6 ‖y − P1y‖2 + ‖y − P2y‖2 + · · ·+ ‖y − Pdy‖2
6 ε21 + · · ·+ ε2d,

which yields immediately the second claim of the theorem.

Similarly to the two-dimensional case, the actual dependence of the Tucker ranks
on the accuracy is governed by the data. The Tucker format has a long history of
applications in data mining or image processing (the seminal paper [228] was devoted
to chemometrics; many references may be found in the review [160]). Tensor numerical
methods for PDEs have originated from a theoretical justification of the exponential
convergence rate of the Tucker approximation for tensors obtained from the discretiza-
tion of analytic functions [72, 142, 100], even with a finite amount of point singularities
[150]. The latter paper presents many numerical demonstrations of the exponential
convergence rate of the Tucker approximation of functional tensors arising, in partic-
ular, in electronic structure calculations. A challenging feature of the canonical and
Tucker approximations in numerical discretization of PDEs is a large mode size n, of
the order of 104–105, resulting from a fine grid representation of functions and opera-
tors. In this case the standard algorithms described in [160] are no longer applicable.
The efficient multigrid method for the Tucker and canonical-to-Tucker approximations
of large function-related tensors was proposed in [151].

To estimate the Tucker ranks using the smoothness properties, consider f(q1, . . . , qd)

as a univariate function, depending on the other variables as parameters, i.e. f [k]
q 6=k(qk) =

4Note that we have switched to the vector notation y = [y(i)] ∈ Cn1···nd to make the matrix-by-
vector products consistent!

45

f(q1, . . . , qd). Then we may apply a polynomial approximation in qk, which is known
to converge exponentially fast with the polynomial degree for analytical functions
[20, 225]. On the other hand, f [k] yields naturally the unfolding matrix, with the
ε-rank bounded by the polynomial degree. So, the following general statement for the
multidimensional case was proven in [142, 72].

Theorem 2.1.8. Assume that an analytic function f(q1, . . . , qd), q ∈ Ω = [−1, 1]d, is
given, and a tensor x(i1, . . . , id) = f(q1(i1), . . . , qd(id)) is its discretization on a tensor
product grid. Suppose f admits an extension to the ρk-Bernstein ellipse

Eρk =

{
z ∈ C : |1 + z|+ |1− z| 6 ρk +

1

ρk

}
in each variable qk. Then there exists an ε-approximation to x in the Tucker format
with the rank bounds rk 6 C| log(ε)|/ log(ρk).

We will give the proof and a refined result in connection with the newer Tucker-
based format, see Section 2.2.2. Here we mention several successful applications of
the Tucker format in integral equations [210, 187, 150, 146] and quantum chemistry
[153, 151, 66, 136, 143, 152, 196, 137, 140, 139, 138], as well as improved (e.g. of lower
than the HOSVD complexity) general type Tucker approximation methods:

• alternating least squares compression of matrices [118],

• Newton method for the error minimization [36],

• compression from the canonical to the Tucker format by the ALS combined with
multigrid [151] and Cholesky decomposition [211], as well as

• ALS- and greedy-type algorithms for Tucker arithmetics (cf. Sec. 2.1.5), i.e. rank
reduction of sums and products of Tucker tensors [194, 209, 195, 82].

It is also interesting to note that the same representation was exploited independently
in the chemistry community under the name MCTDH [179].

However, to proceed to higher dimensions efficiently, we need some other approach.
The most recent surveys and descriptions can be found in [98, 93, 149, 147].

2.1.3 Tensor Trains and trees: recurrent decompositions

The Tucker format separates each variable from the rest of them, starting each time
from the initial tensor, which results in a d-dimensional core. To get rid of the curse
of dimensionality, we need a way to shrink several variables into the structured form.
First, we use the index grouping to reduce the dimension formally, and then perform the
actual revealing of a reduced subspace. We show two main approaches developed in the
numerical linear algebra, both relying essentially on sequential recurrent applications
of dyadic or Tucker factorizations.

First, we may group all indices pairwise, ik,k+1 = ik, ik+1, obtain a d/2-dimensional
tensor, and apply the Tucker decomposition, motivating ourselves with a lower-dimensional

46

core as a result: if the Tucker ranks remained moderate, the new core is easier to work
with. We may stop if the cost rd/2 is satisfactory, otherwise proceed further, grouping
the indices in the core, applying the Tucker decomposition again, obtaining a d/4-
dimensional core, and so on until we reach a two-dimensional tensor. Due to such
hierarchical way of Tucker approximations, the resulting format was called the Hier-
archical Tucker [105, 90, 166], or Multilevel-MCTDH (ML-MCTDH) [179]. Since the
indices of the initial tensor may have a special role (e.g. the discretized coordinates),
the first Tucker step is usually done without the binary grouping.

Definition 2.1.9. A tensor x is said to be presented (or approximated) in the (binary)
Hierarchical Tucker (HT) format if there exists the following sequence of tensors, each
being the Tucker core for the forthcoming one:

x(L+1)(γL+1
1 , . . . , γL+1

dL+1
) ≈

∑
γ11 ,...,γ

L
dL

L∏
l=1

dl∏
kl=1

x
(l,kl)

γlkl
(γl+1

2kl−1, γ
l+1
2kl

), (2.8)

where the levels run in the range L = 1, . . . , dlog2 de−1, and the last level is associated
with the initial Tucker core of (2.5), x(dlog2 de) = x(c); the dimensions are reduced recur-
rently as ddlog2 de = d, dL = ddL+1/2e, and the building blocks x(l,kl) ∈ Crlkl

×rl+1
2kl−1×r

l+1
2kl

are called the HT factors with the HT ranks rlkl . If 2kl < dl+1, the last index is agreed
to degenerate to the range {1}.

The factors are the main ingredient of such decomposition, since they are only
3-dimensional tensors, accounting for the mapping of the subspace of size rl+1

2kl−1r
l+1
2kl

,
obtained by the direct product of two variables at the higher level, to a subspace of size
rlkl at the lower level. Each rank rlkl represents thus a dyadic separation rank between
a group of initial variables (belonging to the current branch of the tree) and the rest of
them. If these ranks are bounded by a moderate constant, the total storage of the HT
format scales as O(dnr+dr3) (the first term comes from the initial Tucker factors, and
the second from the hierarchical ones), and the memory reduction is significant w.r.t.
nd.

Obviously, the ranks will depend on the order, in which the dimensions are plugged
into the tree (i.e. the index grouping). One may easily show examples where one
particular order will yield significantly smaller ranks than another. Nevertheless, in
any tree structure there are edges corresponding to the separation of nearly half of
dimensions from the others, which are likely to manifest the highest ranks. Taking
into account also the practical experience, we believe that the order of the dimensions
is indeed important (and it may be determined from the physical reasons, or using
adaptive algorithms, e.g. [10]), but the indices may be grouped in most cases in a
linear fashion starting from the first dimension, i.e. fixing the hierarchy tree to the
unbalanced linear form.

Definition 2.1.10. A tensor x is said to be presented (or approximated) in the Matrix
Product States (MPS), or Tensor Train (TT) format, if it holds

x(i1, . . . , id) ≈
∑

α1,...,αd−1

x(1)α1
(i1)x

(2)
α1,α2

(i2) · · ·x(d−1)αd−2,αd−1
(id−1)x

(d)
αd−1

(id), (2.9)

47

where x(k) ∈ Crk−1×nk×rk are called TT cores (blocks, factors), the ranges rk = rk(x) 6
r(x) of rank indices αk = 1, . . . , rk are called TT ranks, and it is agreed that r0 = rd = 1
for uniformity.

As many useful techniques, this format was discovered several times, as MPS in
quantum physics since late 80’s [2, 62, 158, 237, 201], and independently in the nu-
merical linear algebra as TT in 2009 [197, 188, 191]. The term Matrix Product States
appears from the fact that if we fix i1, . . . , id, the TT blocks become matrices of sizes
rk−1 × rk, and an element of x writes as a product of matrices,

x(i1, . . . , id) = x(1)(i1) · · ·x(d)(id).

Notice that rank-1 tensors are invariant in all formats: if rk−1 = rk = 1, the above
expression is a product of numbers, coinciding with the CP format (2.4) with R = 1
and the Tucker format (2.5) with x(c) = 1. Alternatively, fixing the rank indices, one
may write

x =
∑

α1,...,αd−1

x(1)α1
⊗ x(2)α1,α2

⊗ · · · ⊗ x(d−1)αd−2,αd−1
⊗ x(d)αd−1

, (2.10)

where ⊗ is the usual Kronecker product (see Eq. 1.18).
Besides the linear structure, another interesting difference from the (Hierarchical)

Tucker format is that neither of TT blocks can be clearly identified as “factor” or
“core” (thus “block“, “factor” and “core” may be used interchangeably), since all of
them carry both initial and auxiliary rank indices. This simplifies both the analytical
presentations and implementation of algorithms. The asymptotic storage of the TT
format is O(dnr2), which is smaller than in the HT format for higher ranks and small
ranges n of the initial indices ik (the mode sizes), which is the case in e.g. spin
systems. If the mode sizes are large, one may apply the TT format to the Tucker core
only, obtaining the so-called Extended TT decomposition [198], which is a special case
of the HT format with a linear tree.

In the rest of the work, we overview existing and present new computational ten-
sor product methods and constructions. Except the sections devoted to the special
combined format (Sec. 2.2.2–2.2.5), we will explain the analysis and algorithms on the
base of the TT format. Its simplicity allows to develop elegant notations and get the
ideas across without burying them under lots of indices.

2.1.4 Tensor product notations

To begin with, consider the Matrix-by-Vector product in a large dimension,

y = Ax, x, y ∈ Cnd , i.e. y(i) =
∑
j

A(i, j)x(j),

where i = i1, . . . , id and j = j1, . . . , jd. Suppose that x is presented in the TT format,
and we would like to preserve it for y, staying within the tractable complexity. What
representation should we choose for A? The first idea that comes in mind is just a
2d-dimensional TT, A(1)(i1) · · ·A(2d)(jd). However, in this case rd = rank(A) = nd

almost always (even for the identity A = I).

48

Therefore, the TT format for matrices, or Matrix Product Operator is introduced
using the permuted and grouped indices,

A(i1, . . . , id, j1, . . . , jd) =
∑

γ1,...,γd−1

A(1)
γ1

(i1, j1)A
(2)
γ1,γ2

(i2, j2) · · ·A(d)
γd−1

(id, jd). (2.11)

Then the Matrix-Vector product writes independently for each TT block: the result is
the TT format y(i) = y(1)(i1) · · · y(d)(id) with

y
(k)
βk−1,βk

= A(k)
γk−1,γk

x(k)αk−1,αk
, i.e. y

(k)
βk−1,βk

(ik) =
∑
jk

A(k)
γk−1,γk

(ik, jk)x
(k)
αk−1,αk

(jk), (2.12)

where βm = αm, γm = 1, . . . , rk(A)rk(x), m = 0, . . . , d. Moreover, this conception nat-
urally resolves to the standard Kronecker products if all TT ranks are ones. Otherwise,
the TT ranks of the matrix and vector multiply, i.e. rk(y) = rk(A)rk(x), which is still
feasible if r(A) and r(x) are moderate.

So, our first special definition will be the common counterpart of (2.9) and (2.11),
a slightly extended version of notations used in [207].

Definition 2.1.11. Given TT formats {x(k)(ik)} or {A(k)(ik, jk)}. A (vector) tensor
train map expands a set of TT blocks to a TT tensor as follows,

τ(x(p), . . . , x(q)) : {x(k)}qk=p → x(p,...,q) ∈ Crp−1×np···nq×rq , where

x(p,...,q)αp−1,αq
(ip, . . . , iq) =

∑
αp,...,αq−1

x(p)αp−1,αp
(ip) · · · x(q)αq−1,αq

(iq),

for 1 6 p 6 q 6 d. For boundary cases we agree that

x(1,...,q) = x(6q) = x(<q+1) ∈ Cn1···nq×rq , x(p,...,d) = x(>p) = x(>p−1) ∈ Crp−1×np···nd ,

and x(1,...,d) = x ∈ Cn1···nd .
A matrix tensor train map reads

τ(A(p), . . . , A(q)) : {A(k)}qk=p → A(p,...,q) ∈ Crp−1×np···nq×mp···mq×rq , where

A(p,...,q)
γp−1,γq

(ip, . . . , iq, jp, . . . , jq) =
∑

γp,...,γq−1

A(p)
αp−1,αp

(ip, jp) · · ·A(q)
γq−1,γq

(iq, jq),

with the analogous boundary notations.

The map τ may be used for the extraction of a tensor train chunk – an operation,
on which the alternating optimization methods rely heavily. In addition, note that in
the image of τ , the initial indices ik are always glued into a multiindex, which will
allow us to write consistent matrix products (cf. the boundary cases: these chunks are
just matrices).

Another useful type of index grouping may be devised from the conception of sub-
spaces in the HT format (2.8): recall that each factor x(l,kl) may be seen as a map
Crl+1

2kl−1r
l+1
2kl → Crlkl , associated with a matrix instead of a 3-index array. The same

consideration may be applied to the TT factors, with the maps defined as follows.

49

Figure 2.1: Tucker (left), HT (middle), and TT/MPS (right) tensor formats depicted
via tensor network diagrams

x(c)

γ1 γ2 γ3 γd

x(1)

i1

x(2)

i2

x(3)

i3

x(d)

id

x(1,1)

γ21
x(2,1)

γ31
x(1)

i1

γ32
x(2)

i2

γ22
x(2,2)

γ33
x(3)

i3

γ34
x(4)

i4
x(1)

i1

α1
x(2)

i2

α2 · · ·
αd−1

x(d)

id

Definition 2.1.12. Given a TT block x(k), introduce the following reshapes:

• Left-folded block : x|k〉(αk−1, ik, αk) = x
(k)
αk−1,αk(ik), x|k〉 ∈ Crk−1nk×rk .

• Right-folded block : x〈k|(αk−1, ik, αk) = x
(k)
αk−1,αk(ik), x〈k| ∈ Crk−1×nkrk .

• Center-folded block : x|k|(ik, αk−1, αk) = x
(k)
αk−1,αk(ik), x|k| ∈ Cnk×rk−1rk .

It is important that all folded versions point to the same data stored in a TT block
– the well-known pointer conception in programming. It will allow us to assign e.g.
x|k〉 = Q, without a need to state explicitly x(k)αk−1,αk(ik) = x|k〉(αk−1, ik, αk) afterwards,
since all reshapes share the same entries by default.

As the fourth “silent” reshape, we reuse the initial notation x(k) for a vector of TT
block elements,

[
x(k)(αk−1, ik, αk)

]
, exactly in the same way as x(i) and x(i1, . . . , id)

are unified. The meaning of x(k) will be unambiguous from the context: x(k)(ik) in the
tensor train (2.9) is still a two-dimensional slice from a three-dimensional tensor, while
the matrix product of the form Akx

(k) assumes that the elements of x(k) are stretched
in a column vector.

Another notation that became popular in the physics community is the tensor net-
work diagrams [238, 201, 117], especially convenient to describe complicated formats.
The diagrammatic formalism denotes any array as a block, any index as a line, if a
line connects two blocks, it means that we multiply the elements of the corresponding
arrays, and sum over the common index. The indices hanging from only one block are
“free”, and an equation is supposed to hold for all possible values of free indices. To
“quick start”, a matrix, a vector, and their product may be written as follows:

A = [Ai,j]: A
i j

x = [xj]:
x

j

y = Ax:
i y =

i
A

j
x

The Tucker, HT and TT formats may be denoted as shown in Fig. 2.1.

50

2.1.5 Principal operations in the TT format

We showed already the Matrix-Vector product (2.12). Other multilinear operations
may be also generalized from the Canonical format. For example, to multiply a tensor
by a scalar, it is enough to multiply any of its TT blocks.

The summation of two tensors joins the ranges of the rank indices, so that z = x+y
is represented in the TT format with the following blocks,

z(1)(i1) =
[
x(1)(i1) y(1)(i1)

]
, z(d)(id) =

[
x(d)(id)
y(d)(id)

]
, z(k)(ik) =

[
x(k)(ik)

y(k)(ik)

]
for k = 2, . . . , d− 1. Obviously, the summation adds TT ranks, rk(z) = rk(x) + rk(y),
k = 1, . . . , d− 1.

Remark 2.1.13. This procedure can be used to convert the canonical format (2.4) to
the TT representation. Indeed, each rank-1 component of the canonical format may
be seen as a rank-1 TT tensor, and the summation writes as shown above. It follows
that if x is given in the canonical form, its TT ranks are also bounded, rk(x) 6 R.

The diagonal matrix is constructed from a vector in the TT format with no change
of TT ranks, by constructing the diagonal matrix over each ik,

A(k)(ik, jk) = x(k)(ik)δik,jk , A = τ(A(1), . . . , A(d)) = diag(x) = diag
(
τ
(
x(1), . . . , x(d)

))
.

Vice versa, the vector of diagonal elements may be extracted from a matrix.
The pointwise (Hadamard) product of vectors z = x � y may be computed as a

product of a diagonal matrix by vector, x� y = diag(x)y, applying (2.12):

z = τ
(
z(1), . . . , z(d)

)
, z

(k)
βk−1,βk

= x(k)γk−1,γk
� y(k)αk−1,αk

,

which also yields the multiplication of ranks, βk = αk, γk = 1, . . . , rk(z) = rk(x)rk(y).
The scalar (dot, inner) product s = (x, y) of two vectors is equal to a product of

all TT elements of both vectors, followed by a summation over all rank and initial in-
dices. However, the straightforward implementation would require O(dnr2(x)r2(y)) =
O(dnr4) complexity. Using the blocks folding (def. 2.1.12) and auxiliary quantities,
the scalar product may be computed with O(dn(r2(x)r(y)+r(x)r2(y)) = O(dnr3) cost,
as shown in Algorithm 1.

Now let us focus on the main advantage of tensor trees – the re-compression,
or rounding procedure. We saw that algebraic operations may increase TT ranks,
such that they may be unnecessarily large for the output data. The TT rounding is
an analog of the HOSVD for the quasi-optimal rank reduction up to a given accuracy.
Given a tensor x, we will denote its compression to y as follows,

y = Tε(x), y = Tr(x), y = Tε,r(x),

where subscripts of T denote the compression strategies:

• ε-strategy: require ‖y−x‖ 6 ε‖x‖, ranks are as small as possible but not limited.

51

Algorithm 1 Scalar product in the TT format
Require: Tensors x, y in the TT format.
Ensure: Scalar product s = (x, y).
1: Initialize s0 = 1.
2: for k = 1, . . . , d do
3: z〈k| = sk−1y

〈k| ∈ Crk−1(x)×nkrk(y).
4: sk =

(
x|k〉
)∗
z|k〉 ∈ Crk(x)×rk(y).

5: end for
6: return s = sd ∈ Crd(x)×rd(y) = C.

• r-strategy: limit r(y) 6 r, unpredictable but quasi-optimal resulting accuracy.

• ε, r-strategy: follow ε-strategy when possible, but limit rk(y) = r if ε-truncation
suggests a larger value.

So, let us describe the TT rounding following [199].
We begin with the definition of the TT version of the unfolding matrices.

Definition 2.1.14. Given a tensor x(i1, . . . , id). A k-th TT unfolding matrix writes

x{k} =
[
x
{k}
i6k,i>k

]
∈ Cn1···nk×nk+1···nd , where

x
{k}
i6k,i>k

= x{k}(i1, . . . , ik, ik+1, . . . , id) = x(i1, . . . , id).

If (2.9) holds exactly, one may notice immediately from the multilinearity that
rk = rank(x{k}). In an inexact case, given x(i1, . . . , id) = x(1)(i1) · · ·x(d)(id) with TT
ranks r̂k, we would like to determine an optimal rank rk, yielding an ε-approximation
to the k-th unfolding matrix. Starting from k = d, obtain

x
{d}
i<d,id

=

r̂d−1∑
αd−1=1

x(<d)αd−1
(i<d)x

(d)
αd−1

(id), x(<d) = τ(x(1), . . . , x(d−1)). (2.13)

Supposing there is a QR decomposition

x(<d) = QR, Q∗Q = I,

we may cast the SVD problem to a small r̂d−1 × nd matrix(
Rx〈d|

)
≈ UΣV.

Filtering rd−1 senior singular values, one obtains immediately y〈d| = V . However, x(<d)
is a very large matrix, and its orthogonalization should be computed in a structured
way.

Definition 2.1.15. A TT block x(k) is said to be left- or right-orthogonal, if it holds(
x|k〉
)∗
x|k〉 = I, or x〈k|

(
x〈k|
)∗

= I,

respectively.

52

Note that for the first and the last blocks, the left and right orthogonalities mean
simply the orthogonality w.r.t. the tensor indices i1 and id, in the same way as in the
dyadic decomposition of a matrix. Since the TT representation is not unique,

x(i) =
(
x(1)(i1)R1

) (
R−11 x(2)(i2)R2

)
R−12 · · ·Rd−1

(
R−1d−1x

(d)(id)
)

for any nonsingular matrix Rk of proper sizes, the orthogonalities may be ensured
without changing the whole tensor. Indeed, neighboring TT blocks x|k〉x〈k+1| constitute
a dyadic decomposition, which may be orthogonalized either as

q|k〉
(
Rx〈k+1|) , or

(
x|k〉L

)
q〈k+1|,

where q|k〉R = x|k〉 or Lq〈k+1| = x〈k+1|, respectively. Repeating this procedure for all
blocks (see Algorithms 2 and 3) yields a TT representation with the corresponding
orthogonality. The complexity of this procedure is O(dnr3), but the orthogonality may
be ensured for large TT chunks.

Lemma 2.1.16. For a TT tensor with blocks 1, . . . , d− 1 left-orthogonal, it holds(
x(<p)

)∗
x(<p) = I, p = 2, . . . , d.

Proof. The product((
x(<p)

)∗
x(<p)

)
αp−1,βp−1

=
∑

i1,...,ip−1

x̄(<p)αp−1
(i1, . . . , ip−1) · x(<p)βp−1

(i1, . . . , ip−1)

may be computed as an unfinished scalar product (Alg. 1) with y = x, interrupting
the process at sp−1. If x(1) is left-orthogonal, from the first step it holds s1 = I. Let
sk−1 = I, then z〈k| = x〈k|, where x|k〉 is also left-orthogonal for k < p. Therefore, sk
will be also the identity, and the proofs completes by the recursion.

Now, it is clear how to build the TT rounding procedure: in the first step, we run
Alg. 2, making the TT format left-orthogonal, and so will be x(<d) in (2.13). Then we
perform a small-sizes SVD

(
Rx〈d|

)
≈ UΣV and cast UΣ to the block x(d−1). Setting

y〈d| = V ensures its right orthogonality, while the left orthogonality of x(<d−1) also
takes place. So we may perform the SVD of the block x〈d−1| and so on. The whole
procedure is summarized in Algorithm 4.

In diagrammatic notations, left-, resp. right-orthogonal tensor trains may be shown
as in Fig. 2.2: summing the block multiplied with itself over the indices emerging from
the filled part, we obtain the identity matrix w.r.t. the indices emerging from the blank
part of the block. In addition, in Fig. 2.2 (right), the reduced sizes of the blocks denote
the reduced TT ranks after the approximation procedure.

As well as the QR decomposition, each SVD of a r̂ × nr̂ matrix takes O(nr̂ · r̂2)
operations, resulting in O(dnr̂3) overall complexity. The quasi-optimal error accumu-
lation ‖x− y‖2 6 ‖x‖2

∑
ε2k may be proven using the very same projection arguments

that were used in the HOSVD Theorem 2.1.7.
If all elements of a tensor are given, and we would like to compress it into the TT

format, Algorithm 4 may be reused, omitting the left orthogonalization step (the SVD

53

Algorithm 2 Left TT orthogonalization
Require: A tensor x in the TT format.
Ensure: A tensor x with all TT blocks except x(d) left-orthogonal.
1: for k = 1, . . . , d− 1 do
2: Find QR decomposition x|k〉 = q|k〉R,

(
q|k〉
)∗
q|k〉 = I.

3: Replace x〈k+1| = Rx〈k+1|, x|k〉 = q|k〉.
4: end for

Algorithm 3 Right TT orthogonalization
Require: A tensor x in the TT format.
Ensure: A tensor x with all TT blocks except x(1) right-orthogonal.
1: for k = d, d− 1, . . . , 2 do
2: Find LQ decomposition x〈k| = Lq〈k|, q〈k|

(
q〈k|
)∗

= I.
3: Replace x|k−1〉 = x|k−1〉L, x〈k| = q〈k|.
4: end for

will consider the whole tensor anyway), and replacing the block x〈k| by a large tensor
X〈k| =

[
X〈k|(i1, . . . , ik−1, ik, αk)

]
for k = 1, . . . , d− 1, and X〈d| = x{d}.

However, the SVD-based algorithm may be too expensive to be applied to the
full tensor, and even to a TT-structured input, but of very high ranks. The latter
case may come from the Matrix-Vector product (2.12) with r(A) ∼ r(x) . r, such
that r(y) ∼ r2, so its rounding takes O(dnr6) operations. In this situation, there exist
faster, but heuristic techniques. For example, various higher-dimensional generalization
of the cross interpolation (2.3) may be used to recover a tensor from a few amount of
entries [199, 213, 59, 15, 11, 212]. If a fast partial scalar product (like the one used
in Lemma 2.1.16) of the input and an approximant is available, which is the case in
the approximation of e.g. Matrix-Vector product [190], a more reliable Alternating
Least Squares approach may be proposed. This framework is very fruitful and elegant,
but several issues are connected with its robustness and adaptivity, and we devote a
separate section 4.2 for that.

2.2 Quantized tensor approximation

2.2.1 Quantized Tensor Train

Though tensor formats were originally developed to cope with essentially high-dimensional
arrays, the linear in the dimension complexity of the TT format motivates to apply
this tool to some “lower”-dimensional data, coming e.g. from a discretization of 1D–2D
PDEs. We saw already how tensors generated by multivariate functions may be treated
as vectors or matrices (cf. Def 2.1.12). This is the standard reshaping (or folding) op-
eration. However, it can be conducted in the opposite direction: a given vector may
be recast to a tensor and approximated in a separable format. What compression rate
can be achieved?

Consider for brevity a one-dimensional vector x = [x(i)]. Suppose the number of

54

Algorithm 4 TT rounding (right-to-left)
Require: A tensor x in the TT format, accuracies εk, k = 1, . . . , d− 1.
Ensure: A tensor y : ‖x− y‖2 6 ‖x‖2

∑
ε2k with optimal ranks.

1: Apply left orthogonalization Algorithm 2 to x.
2: for k = d, d− 1, . . . , 2 do
3: Compute SVD x〈k| = U diag(σ)V .
4: Determine rank rk−1 :

∑
β>rk−1

σ2
β 6 ε2k−1‖σ‖2.

5: Take rk−1 components Ũβ = Uβ, Ṽβ = Vβ, σ̃β = σβ, β = 1, . . . , rk−1.
6: Replace x|k−1〉 = x|k−1〉 · Ũ diag(σ̃), y〈k| = Ṽ .
7: end for
8: y|1〉 = x|1〉.

Figure 2.2: Diagrams of the TT format states after Alg. 2 (left) and Alg. 4 (right).

x(1)

i1

α1
x(2)

i2

α2 · · ·
αd−1

x(d)

id
x(1)

i1

α1
x(2)

i2

α2 · · ·
αd−1

x(d)

id

admissible values for each i is a power of 2, i.e. n = 2L. Looking at the positional
representation of i with binary digits, obtain

i =
L∑
l=1

il · 2l−1, il ∈ {0, 1}. (2.14)

It corresponds to the reshaping of a vector into a tensor with L virtual quantized
dimensions. Now the TT decomposition can be applied,

x(i) = x(i1, . . . , iL) ≈ x(1)(i1) · · ·x(L)(iL).

If the TT ranks of this tensor are small, then the storage is logarithmic, O(L · 2 · r2) =
O(log n). This technique was proposed in [189] for 2L × 2L matrices and illustrated by
numerical examples. In the case of vectors and high-order tensors this approach was
developed and theoretically justified in [144, 148] under the name Quantized Tensor
Train (QTT) approximation. The name QTT is due to the term “quant”, the minimal
possible portion of information gained from determination of each digit il.

The usual question one always has to ask working with data-sparse representa-
tions, is what are the particular values of the TT (or QTT) ranks r. For many one-
dimensional function-related vectors beautiful analytic QTT constructions have been
discovered. We give here the simplest and most important examples, providing the
theoretical background for the QTT approximation theory. More elaborated analytical
TT structures, obtained in connection with the author’s research, will be shown in the
next chapter.

1. Exponential vector has all QTT ranks equal 1 [148],

exp(κi) = e(1)(i1) · · · e(L)(iL), e(l)(il) = exp(κil · 2l−1),

55

the indices il ∈ {0, 1} are according to (2.14). It requires thus 2L = 2 log2 n
numbers to define all 2L entries of the vector exactly.

2. Identity vector (QTT ranks 1) [148] writes,

ej(i) = δi,j = δ(1)(i1) · · · δ(L)(iL), δ(l)(il) = δil,jl , j =
L∑
l=1

jl·2l−1, δi,j =
{
1, i=j,
0, i6=j.

3. Sine vector sin(κi+ φ) = s(1)(i1) . . . s
(L)(il) is of QTT ranks 2 [148],

s(1)(i1) =
[
sin(κi1 + φ) cos(κi1 + φ)

]
, s(L)(iL) =

[
cos(κiL · 2L−1)
sin(κiL · 2L−1)

]
,

s(l)(il) =

[
cos(κil · 2l−1) − sin(κil · 2l−1)
sin(κil · 2l−1) cos(κil · 2l−1)

]
, for l = 2, . . . , L− 1.

4. Polynomial
p∑

m=0

ami
m = P (1)(i1) · · ·P (L)(iL) (QTT ranks p+ 1) [148], [192], [91],

P (1)(i1) =

[p∑
m=0

amC
0
mi

m
1

p∑
m=1

amC
1
mi

m−1
1 · · ·

p∑
m=p−1

amC
p−1
m im−p+1

1 ap

]
,

P (L)(iL) =

1
iL
i2L
...
ipL

 , P (l)(il) =

C0

0

C1
1 i

1
l C0

1

C2
2 i

2
l C1

2 i
1
l C0

2
... . . .

Cp
p i
p
l · · · C1

p i
1
l C0

p

 ,

for l = 2, . . . , L− 1, where Ck
m = m!/(k!(m− k)!).

The last example expands the concept for almost any smooth function, which may
be approximated via the polynomial interpolation (in the similar way as in Theorem
2.1.8 for Tucker rank estimation). For example, the vector with elements 1/(1 + i) can
be numerically approximated with QTT ranks bounded by 8 up to the accuracy 10−10,
independently on the length 2L.

Moreover, the QTT format applied to matrices (recall Matrix TT (2.11)) allows
simple constructive representations of basic operators (Laplace and gradient on a uni-
form grid, or shift), see [131] and Section 3.1, and further results in [44] and Section
3.2.1.

The logarithmic complexity w.r.t. the cardinality of the initial tensor makes the
QTT format a very promising tool for large-scale problems. There are algorithms,
which rely essentially on the binary QTT structure, such as the super-fast data-sparse
Fourier transform [50], convolution [127] and wavelet transforms [154, 132], all with
logarithmic complexity scaling. Introducing the QTT format in time variable for the
simultaneous discretization presented in Section 1.3, we build a very efficient time
integration scheme, see also Section 3.1 and [47, 73].

56

2.2.2 QTT-Tucker: two-level separation of initial and virtual
dimensions

Surely, the QTT decomposition is not limited to one dimensional problems, but may
be employed in addition to the “traditional” usage of formats, when only the initial
indices i1, . . . , id with (possibly) large ranges n1, . . . , nd are separated. Indeed, each ik
may be further coded via (2.14),

ik =

Lk∑
l=1

ik,l · 2l−1, ik,l ∈ {0, 1},

so that the global index reads

i = i1,1, . . . , i1,L1 , i2,1, . . . , id,Ld .

Enumerating the entries of a tensor with indices {ik,l}, one obtains a
∑
Lk 6 dL-

dimensional tensor, which is then compressed in a tensor format.
What particular format is favorable for this purpose? Since all new mode sizes

are small, #{ik,l} = 2, the TT (or QTT if we stress the use of quantization; the term
QTT is established for dL-dimensional tensors as well) representation with the smallest
asymptotic rank complexity O(dLr2) looks perfect at the first glance. It does indeed
a very good job in many cases if the TT ranks are moderate. However, the separation
ranks of virtual dimensions (especially near the middle of the tensor train) may grow
quite rapidly with the accuracy. For some classes of tensors, for example solutions
of the Fokker-Planck equation, it appears to be more efficient to sacrifice the linear
structure of the format, and switch to a potentially higher cost O(r3), if the new ranks
r will be smaller.

So, we start from the Tucker decomposition

x(i1, . . . , id) =
∑

γ1,...,γd

x(c)(γ1, . . . , γd)x
(1)
γ1

(i1) · · ·x(d)γd (id), (2.15)

removing the curse of dimensionality by storing the Tucker core in the TT format,

x(c)(γ1, . . . , γd) =
∑

α1,...,αd−1

xc(1)α1
(γ1)x

c(2)
α1,α2

(γ2) · · ·xc(d)αd−1
(γd). (2.16)

Now, if the Tucker factors x(k)γk (ik) are still difficult to handle due to large sizes nk, the
quantization may be introduced for index ik,

x(k)γk (ik) =
∑

γk,L,...,γk,1

xf(k,L)γk,L−1
(ik,L)xf(k,L−1)γk,L−1,γk,L−2

(ik,L−1) · · ·xf(k,1)γk,1,γk
(ik,1). (2.17)

To reduce already enormous amount of subscripts, we assume that all Lk = L are
the same. Note that the QTT block xf(k,1) in the right-hand side contains two rank
indices: while γk would correspond to αd ∈ {1} in the traditional TT format (2.9),
here it enumerates the vectors in Tucker factors, which are stored simultaneously in

57

the same QTT format. We could also put the Tucker rank index in the last QTT block
xf(k,L), but it will be convenient to assign γk,0 = γk.

Summarizing all the introduced forms, i.e. plugging the inner levels of structure
(2.16), (2.17) into the outer Tucker (2.15), we obtain the final tree tensor network,
called QTT-Tucker [44].

Definition 2.2.1. A tensor x is said to be presented (or approximated) in the QTT-
Tucker format, if it holds

x(i1, . . . , id) ≈
∑

γk,γk,l,αk

d∏
k=1

xc(k)αk−1,αk
(γk)

Lk∏
lk=1

xf(k,lk)γk,lk ,γk,lk−1
(ik,lk), (2.18)

where we agree that γk = γk,0, nk = 2Lk , and ik =
Lk∑
lk=1

ilk · 2lk−1. The parameter d

is called the physical, or core dimension, Lk are the quantics, or factor dimensions,
xc(k) ∈ Crk−1×Rk×rk is the k-th core block, xf(k,l) ∈ CRk,l×nk,l×Rk,l−1 is the k, l-th factor
block, and the indices vary in the ranges:

• ik,l = 0, . . . , nk,l − 1, nk,l 6 nQ (quantized mode size, e.g. nQ = 2),

• αk = 1, . . . , rk, rk 6 rC (core rank),

• γk = γk,0 = 1, . . . , Rk, Rk = Rk,0 6 rT (Tucker rank), and

• γk,l = 1, . . . , Rk,l, Rk,l 6 rF (factor rank).

The boundary rank agreements are r0 = rd = Rk,Lk = 1.

In the diagrammatic notation, the QTT-Tucker format is shown in Equation (2.19).

xc(1)

γ1

α1
xc(2)

γ2

α2 · · ·
αd−1

xc(d)

γd

xf(d,1)
id,1

γd,1
...

γd,L−1

xf(d,L)
id,L

xf(2,1)
i2,1

γ2,1
...

γ2,L−1

xf(2,L)
i2,L

xf(1,1)
i1,1

γ1,1
...

γ1,L−1

xf(1,L)
i1,L

(2.19)

Introducing a slight abuse of notations, we will denote the original Tucker blocks of the
decomposition (2.5) as xf(k) = x

f(k)
γk (ik), first, because it is consistent with the QTT

factor block notation xf(k,l), and second, because the term x(k) is reserved for the TT
blocks of the initial tensor (2.9).

Summing the sizes of all QTT-Tucker blocks, we find its storage cost.

Lemma 2.2.2. The storage complexity of the QTT-Tucker format is bounded by

dLnQr
2
F + drT r

2
C , or O(log(n)dr2 + dr3), (2.20)

assuming that all tensor ranks are bounded by the same constant r, and n = nLQ.

58

The O(r3) contribution of the Tucker core to (2.20) may prevail in a high rank
case, and if a tensor develops the same ranks for a given accuracy threshold as in the
QTT format, we may loose the performance gain. For example, if we apply the HT
format directly to the 2× · · · × 2-reshaped tensor, it will contain O(d log(n)) blocks of
sizes r× r× r, resulting in the total complexity of O(d log(n)r+ d log(n)r3) instead of
r× 2× r in the straightforward linear QTT representation. This complexity overhead
was illustrated in [164] on the spin system example, where the spin state variables were
artificially agglomerated to make the HT decomposition useful.

The heuristic pros for the QTT-Tucker are the following. First, we have only d
blocks with three rank indices, whereas d log(n) blocks possess the quadratic depen-
dence like in the linear QTT. Moreover, the sizes of these d blocks are governed by TT
and Tucker ranks, which are usually smaller than the ranks between virtual dimensions
in the QTT decomposition. Second, even the QTT ranks of Tucker factors appear to be
smaller for the same accuracy than the corresponding QTT ranks in the global linear
format.

The latter phenomenon may be argued using the assumption that a tensor x comes
as a discretized smooth function. The original TT block x(k)αk−1,αk(ik) may be seen as a
set of r2C vectors of size n. These vectors are derived from univariate smooth functions,
and we may expect a good QTT compressibility of each,

x(k)αk−1,αk
(ik) =

∑
αk,1...,αk,L−1

x(k,1)αk−1,αk,1
(ik,1) · · ·x(k,L)αk,L−1,αk

(ik,L)

with αk,l = 1, . . . , r̃, and r̃ is moderate. If all vectors are “independent”, the total QTT
rank of x is bounded by r2C r̃ = O(r2r̃). As a result, the storage of the QTT format
estimates as O(d log(n)r4r̃2).

Applying the similar considerations to the Tucker factors, we may expect a lower
bound for the factor ranks, rF = O(rT r̃). If the Tucker ranks are similar to the TT
ones, rF ∼ rC ∼ r (which tends to happen in practice), the overall complexity of the
QTT-Tucker format may be bounded by O(d log(n)r2r̃2+dr3), which is already smaller
than in the QTT.

Another interesting feature of the new format is that it may inherit the rank esti-
mates from the Tucker format, which may be easier to establish than in the TT format,
using the polynomial interpolation. Here we extend and prove Theorem 2.1.8 for the
QTT-Tucker format.

Theorem 2.2.3. Assume that an analytic function f(q1, . . . , qd) in Ω = [−1, 1]d is
given, and a tensor x(i1, . . . , id) = f(q1(i1), . . . , qd(id)) is its discretization on a tensor
product uniform grid. Suppose f admits an extension to the ρk-Bernstein ellipse

Eρk =

{
z ∈ C : |1 + z|+ |1− z| 6 ρk +

1

ρk

}
in each variable qk, such that M = max

z∈Eρ1⊗···⊗Eρd
|f(z)| <∞. Then the Tucker ranks of

the ε-approximation are bounded by Rk 6 C| log(ε)|/ log(ρk), and the QTT ranks of
the Tucker factors are bounded by Rk,l = Rk + 1, l = 1, . . . , L− 1.

59

Proof. The function f may be considered as a univariate function f [k](qk), depending
on the rest coordinates as parameters. So we can apply the following result from the
approximation theory: if f [k] admits an analytical extension to the ρk-Bernstein ellipse,
then there exists the polynomial interpolation Pp of degree p and the accuracy

‖f [k](z)− Pp(z)‖∞ 6 C log(n)
Mk

1− ρk
ρ−pk , z ∈ Eρk , ρk > 1, Mk = max

z∈Eρk
|f [k](z)|,

where n is the number of grid points, and C does not depend on p, n, Mk, ρk [20, 225].
However, here the constant Mk depends on the other variables q1, . . . , qd excluding qk.
To get rid of them, let us assume the uniform bound M = maxkMk. Now we may say
that for each f [k] there exists a polynomial P [k]

pk such that

ε = ‖f [k](qk)− P [k]
pk

(qk)‖∞ 6 Cρ−pkk , or pk = C| log(ε)|/ log(ρk).

Therefore, we may take a tensor product of degree pk polynomials as the new basis.
Obviously, the coefficients in this basis yield a p1 × · · · × pd tensor, which may be
considered as a Tucker core, and a set of pk polynomials on a grid is the k-th Tucker
factor. The estimate for Rk is proven.

Recalling that all polynomials of degree pk on a uniform grid are representable in
the same QTT format with the QTT ranks pk + 1 (see the previous section) we obtain
the second claim of the Theorem.

2.2.3 TT to Extended TT (QTT-Tucker) conversion

Having several tensor representations, it is worth to have a procedure to cast data from
one to another. For example, the full tensor is constructed from the TT format as a
sum of Kronecker products (2.10). Given a QTT-Tucker (or Extended TT) of a tensor,
its TT blocks are computed via the summation over Tucker rank indices,

x(k)αk−1,αk
(ik) =

∑
γk,L−1,...,γk,1,γk

xf(k,L)γk,L−1
(ik,L) · · ·xf(k,1)γk,1,γk

(ik,1)x
c(k)
αk−1,αk

(γk). (2.21)

Obviously having a TT form in the right-hand side, this expression was called an
extended factor in [44]. In the same time, it is in turn a block of another tensor train.
This shows the two-level structure from another point of view.

The inverse operation may require approximate computations. Consider the center-
folded (see Def. 2.1.12) k-th TT block x|k| =

[
x|k|(ik, αk−1, αk)

]
. Assume the TT

blocks 1, . . . , k − 1 are left-orthogonal, and k + 1, . . . , d are right-orthogonal, so that
the perturbation introduced to x|k| yields the same error level for x. Now, we may
perform the (truncated) SVD decomposition

x|k| ≈ UΣV,

and associate either xf(k) = U , xc|k| = ΣV or xf(k) = UΣ, xc|k| = V , depending on
what type of orthogonality we would like to ensure. Surely, the k-th Tucker rank
is revealed exactly as the rank of this decomposition. The new rank bound may be

60

formulated immediately as Rk 6 min(nk, rk−1rk) = O(min(n, r2)) (cf. the similar TT
vs HT comparison in [92]), as well as the complexity O(nr2 min(n, r2)).

In an exact case, such decomposition may be performed analytically. Let us demon-
strate it on a sum of univariate objects (e.g. Laplace operator, sum of variables
q1 + · · ·+ qd, etc.),

x(i1, . . . , id) = a(i1) · b(i2) · · · b(id) + · · ·+ b(i1) · · · b(id−1) · a(id).

The exact rank-2 TT representation [131] reads

x(i) =
[
a(i1) b(i1)

] [b(i2) 0
a(i2) b(i2)

]
· · ·
[
b(id−1) 0
a(id−1) b(id−1)

] [
b(id)
a(id)

]
.

Since each block contains only 2 linearly independent elements, all Tucker factors write

xf(k)(ik) =
[
a(ik) b(ik)

]
,

and the core (2× · · · × 2 tensor) reads

x(c)(γ) =
[
e0(γ1) e1(γ1)

] [e1(γ2) 0
e0(γ2) e1(γ2)

]
· · ·
[
e1(γd−1) 0
e0(γd−1) e1(γd−1)

] [
e1(γd)
e0(γd)

]
,

where e0 =
[
1 0

]
, and e1 =

[
0 1

]
.

Remark 2.2.4. Other tensor networks can be converted first to the TT format (or a
sum of TT tensors, for example, the Tensor Chain), and then into the QTT-Tucker.
It could be helpful in quantum physical problems, if a model provides initial data in a
complicated tensor network.

2.2.4 QTT-Tucker arithmetics

The tensor format counterparts of algebraic operations over initial tensor elements,
described in Section 2.1.5, may be similarly extended to the QTT-Tucker.

Thus, the sum of QTT-Tucker tensors z = x + y is performed as a concatenation
of factors

zf(k,L) =
[
xf(k,L)(ik,L) y(k,L)(ik,L)

]
, zf(k,l) =

[
xf(k,l)(ik,l)

y(k,l)(ik,l)

]
for l = L− 1, . . . , 1, and core blocks

zc(k)(γk) =

[
xc(k)(γk) 0

0 0

]
, if γk = 1, . . . , Rk(x),[

0 0
0 yc(k)(γk −Rk(x))

]
, if γk = Rk(x) + 1, . . . , Rk(x) +Rk(y).

The matrix product y = Ax casts to the corresponding product of factors, but
with the Tucker rank indices γk(A), γk(x) joined,

yf(k,l)(ik,l) =
∑
jk,l

Af(k,p)(ik,l, jk,l)⊗ xf(k,l)(jk,l),

61

where the standard Kronecker products ⊗ are taken w.r.t. the rank indices (recall that
for fixed ik,l, jk,l, the blocks become just matrices), and the 3-dimensional Kronecker
product applied to the core blocks,

yc(k)(γk(A), γk(x)) = Ac(k)(γk(A))⊗ xc(k)(γk(x)).

All ranks are multiplied: r(y) = r(A)r(x). Note that the matrix QTT-Tucker format
contains two initial indices in the factor blocks only, but the core blocks are also 3-
dimensional, like in the vector representation.

The scalar product begins with the TT scalar product Algorithm 1 applied to
factors. The difference is that we start not from the first, but from the L-th factor block,
and obtain as a result not a number but a matrix sk ∈ CRk(x)×Rk(y), sk(γk(x), γk(y)) =(
x
f(k)
γk(x)

, y
f(k)
γk(y)

)
. When all factors are processed, the matrices sk, k = 1, . . . , d, are

multiplied with either of the Tucker cores to obtain a new intermediate tensor z of the
same sizes as another core. Without loss of generality, let it be y(c), then

z = τ(z(1), . . . , z(d)), z|k| = sky
c|k|, k = 1, . . . , d,

and the result is delivered by one additional TT scalar product, (x, y) =
(
x(c), z

)
.

One may verify straightforwardly that it will be exactly a product of elements of all
cores, summed over all indices. The complexity of such algorithm is O(d log(n)r3F) +
O(dr2F r

2
C) + O(drF r

3
C), where the first term comes from the product of factors, the

second is the construction of z, and the last is the product of cores.

2.2.5 QTT-Tucker rounding

Though the derivation of the QTT-Tucker was based on the properties of the Tucker
decomposition, it is more convenient to present alternating algorithms (the rank trun-
cation procedure also belongs to this family) in terms of a two-level TT decomposition:
the original TT (2.9) with each block being presented in the form of the extended factor
(2.21). This allows to reuse the TT versions the algorithms.

As soon as all TT blocks except the k-th are properly orthogonal, we may ap-
proximate x(k) by invoking the TT approximation procedure for its extended factor
form ∑

γk,L−1,...,γk,1,γk

xf(k,L)γk,L−1
(ik,L) · · ·xf(k,1)γk,1,γk

(ik,1)x
c|k|
γk

(αk−1, αk).

Note that the last term here is a center-folded core block xc(k).
In turn, the QR decomposition of, say, x|k〉 may be computed efficiently, by applying

the left-orthogonalization Algorithm 2 to the extended factor, followed by a small-sized
factorization of the core block

qc|k〉R = xc|k〉 ∈ Crk−1Rk×rk .

The whole method is summarized in Algorithm 5.
The complexity of Algorithm 5 comes directly from the complexities of the TT

routines. Namely, the orthogonalization/truncation requires O(dLr3F) operations for
factors and O(dr4C) for the core, resulting in the total cost O(dLr3F + dr4C).

62

Algorithm 5 QTT-Tucker round
Require: QTT-Tucker tensor x, accuracy bounds εk, η.
Ensure: QTT-Tucker tensor y with smaller ranks s.t. ‖y − x‖2 6

∑
ε2k + η2.

1: for k = 1, . . . , d do
2: Left-orthogonalize k-th extended factor via Alg. 2, such that

(
xf |k〉

)∗
xf |k〉 = I.

3: end for
4: Approximate the core y(c) : ‖y(c) − x(c)‖ 6 η‖x(c)‖ via Alg. 4.
5: for k = 1, . . . , d do
6: Approximate the extended factor y(k) : ‖y(k) − x(k)‖ 6 εk‖x(k)‖ via Alg. 4.
7: if k < d then
8: Ensure the left-orthogonality of yf |k〉 (Alg. 2).
9: Find QR decomposition yc|k〉 = qc|k〉R.
10: Replace yc|k〉 = qc|k〉, yc〈k+1| = Ryc〈k+1|.
11: end if
12: end for

Figure 2.3: QTT-Tucker rounding steps in graphical notations
Input 1–3 4 5–12 Output

It is also interesting, that the orthogonalization/rounding of the extended factors
(lines 2 and 6 of the algorithm) mimic in fact the Tucker HOSVD: the difference is in
using only one block of the core instead of the whole d-dimensional core. In diagram-
matic notations, the states of the QTT-Tucker format after certain lines of Algorithm
5 are shown in Fig. 2.3: the filled parts of the blocks denote the orthogonality, and the
sizes of the blocks are proportional to their ranks.

To finish with rounding, we present the quasioptimality result for Algorithm 5.

Theorem 2.2.5. Suppose that each truncation in QTT-Tucker factors is done via the
SVD with the relative Frobenius-norm thresholds εk,l, the Tucker ranks are determined
with εk, and each core block is truncated with ηk. Then the relative Frobenius norm
of the total error is bounded by

‖y − x‖2

‖x‖2
6

d,L−1∑
k,l=1

ε2k,l +
d∑

k=1

ε2k +
d−1∑
k=1

η2k. (2.22)

We omit the proof, since it resembles the proof of the HOSVD theorem 2.1.7 to a
large extent: we associate each SVD with the corresponding orthogonal projector in
terms of initial vectors, and then using the add-and-subtract trick, and orthogonality
of any vectors of form x = Pz and y = z − Pz, derive the result.

63

Chapter 3

Tensor structure properties of some
classes of operators and functions

During the exploitation of various tensor formats, it is helpful to construct some simple
and widely used objects explicitly, by specifying the format elements directly. For
the TT and QTT format this work was started in [148, 192, 131, 44], and for the
canonical format in [72, 100, 101]. It is especially convenient if a tensor has an exact
decomposition of a small rank – performing its compression from the full, or even
canonical formats may be quite difficult computationally, and corrupt the accuracy.
The main tool for derivation of exact tensor structures is the recurrent analytical
counterpart of the TT rounding algorithm 4. In each step, instead of computing SVD,
we extract intuitively simple linearly independent elements to form the current TT
block. If the resting tensors (cf. X〈k|(i1, . . . , ik−1, ik, αk) in the end of Section 2.1.5)
have the same analytical form for any k, it means that the recurrence takes place, and
all inner TT blocks are constructed by the same rule.

Another way, which is in many cases the only technique for deduction of approximate
tensor structures, is the assembly of a complex tensor from simpler ones via tensor
arithmetics. Mostly used is the canonical format, since usually the approximation
theory provides results in terms of convergent series. If each member of the series
has a simple (e.g. rank 1) tensor representation, we may take a finite amount of
them, obtaining a canonical or TT format (see Remark 2.1.13) with controlled rank-
vs-accuracy estimates.

3.1 Separabilities of gradients and the block time scheme
One of the principal contributions of this work is the simultaneous space-time Crank-
Nicolson scheme (1.17) or (1.20). To solve it efficiently in tensor formats, we need
three ingredients: tensor representativity of the inputs (i.e. the matrix, right-hand
side and initial state), tensor representativity of the solution, and an algorithm to
actually compute the solution, provided all data are well structured in principle.

The second part is quite hard for theoretical analysis, and one often has to try it
numerically. A robust approach for the third component will be presented in the next
chapter. Now we focus on the first part: we investigate the contribution of the time

64

dimension itself, assuming that other inputs are given in a tensor format, and then
show several examples when this assumption does take place.

3.1.1 Tensor structure of the space-time matrix

Considering first the unpreconditioned variant (1.17), assume that the right-hand side
g is zero, the matrix A is written in the TT format (2.11), and the initial state v
is given in the TT format (2.9). The global matrix is then easily constructed as a
d+ 1-dimensional TT format,

A =
∑
α

A(1)
α1
⊗A(2)

α1,α2
⊗ · · · ⊗A(d)

αd−1,αd
⊗A(d+1)

αd
,

A(k)
αk−1,αk

=

A
(k)
αk−1,αk , αk−1 = 1, . . . , rk−1(A),

αk = 1, . . . , rk(A),
I, αk−1 = rk−1(A) + 1, and

αk = rk(A) + 1,
0, αk−1 = rk−1(A) + 1, αk 6 rk(A), or

αk = rk(A) + 1, αk−1 6 rk−1(A),

for k = 1, . . . , d, and

A
(d+1)
1 =

δt

2
Mt, A

(d+1)
2 = Gt.

One notices immediately that the TT ranks r1, . . . , rd−1 are increased by one compared
to r(A), and rd = 2. Therefore, contrarily to the full format version (1.16), the tensor
product storage of the global matrix is not much larger than in each Crank-Nicolson
step.

The initial state is assembled similarly: given a d-dimensional TT representation
for v − δt

2
Av, it is concatenated with the d + 1-t TT block being the temporal unit

vector e1, without changing the ranks.
The TT format for the preconditioned scheme (1.20) writes in the same way with

Ã(k) = A(k) for k = 1, . . . , d, and only the last block changes,

Ã
(d+1)
1 =

δt

2
G−1t Mt, Ã

(d+1)
2 = I.

Similarly, e1 in the right-hand side is replaced by a vector of all ones.

3.1.2 Shift and gradient matrices in the QTT format

The number of time steps required to resolve multi scale processes may be quite large,
and the use of the Quantized TT w.r.t. the time variable is very reasonable [47, 46].

The identity matrix I, the all-ones vector e and the unit vector e1 (see Section
2.2.1) have rank-1 QTT representations for any size. More interesting is the structure
of the gradient and mass matrices Gt, Mt. As was shown in [127, 131], a shift matrix

65

of any order and size possesses a rank-2 QTT representation. In particular, the Jordan
matrix J ∈ R2L×2L has the following form1:

J(i, j) =
[
Ji1,j1 J>i1,j1

]
· · ·
[
Iik,jk
Jik,jk J>ik,jk

]
· · ·
[
IiL,jL
JiL,jL

]
,

where I =

[
1 0
0 1

]
and J =

[
0 1
0 0

]
are the elementary identity and Jordan matrices,

respectively. Note that the inner blocks are constructed in the same way for all k =
2, . . . , L− 1.

As a simple illustration, let us see how the TT rounding algorithm is conducted
analytically. The temporal matrices write Gt = I − J>, Mt = I + J>, i.e. as rank-3
structures at the first glance. However, consider the linear dependence elimination in
the last blocks, IiL,jLJ>iL,jL

IiL,jL

 =

1 0
0 1
1 0

[IiL,jL
J>iL,jL

]
,

and for k = L− 1,Iik,jkJ>ik,jk Jik,jk
Iik,jk

1 0
0 1
1 0

 =

Iik,jkJ>ik,jk Jik,jk
Iik,jk

 =

1 0
0 1
1 0

[Iik,jk
J>ik,jk Jik,jk

]
.

Since the scalar factor is thrown to the left-hand side, the recursion can be continued
for all k, and finished in the first block,

[
J>i1,j1 Ji1,j1 Ii1,k1

] 1 0
0 1
1 0

 =
[
Mi1,j1 Ji1,j1

]
,

where M = I + J> is an elementary mass matrix. That is, both Gt and Mt are repre-
sentable simultaneously in the QTT format with the blocks k = 2, . . . , L all the same,
belonging to the transposed Jordan matrix, and only the first QTT block distinguishes
the initial matrices. We may write them in the form used in the QTT-Tucker Section
2.2.2: the zeroth TT rank stands for the enumerator, i.e.[

Gt(i, j)
Mt(i, j)

]
=

[
Gi1,j1 Ji1,j1
Mi1,j1 Ji1,j1

]
· · ·
[
Iik,jk
J>ik,jk Jik,jk

]
· · ·
[
IiL,jL
J>iL,jL

]
,

where G = I − J> is an elementary gradient.
The preconditioned scheme (1.20) can be analyzed similarly. The matrix G−1t is a

Toeplitz generated by a QTT rank-1 vector
[
0 · · · 0 1 · · · 1

]
, and hence has a

rank-2 QTT structure [127]. Therefore, the matrix G−1t Mt is of QTT rank 4.
1Throughout the work, we use the little-endian convention, e.g. indices i1, j1 are the fastest, and

iL, jL are the slowest varying ones, cf. (2.14). This is different to [131, 127], where the big-endian
convention is used. So, the QTT representation writes in the “reversed” order compared to [127].

66

3.2 Tensor properties of the Fokker-Planck and chem-
ical master equations

In this section we present general and refined analysis of the tensor structures of the
two main problems in this work, the Fokker-Planck and chemical master equations.
We emphasize again that analytical solutions, as well as the tensor format properties
of the solutions can be rarely derived rigorously, most of all such results require rather
narrow class of inputs. Fortunately, the numerical evidences say in favor of separation of
variables in much wider settings, where theoretical estimates are not provided. Besides,
many relevant cases have nevertheless rather simple operator or initial state, which are
not so difficult to analyze for the separability. This will be our task for this chapter of
the manuscript.

As a naive, but most general way, assume that the coefficients in the operators
admit a tensor representation. What can we say about the structure of the operator
itself? First, consider the Fokker-Planck equation,

∂ψ

∂t
= −

d∑
k=1

∂

∂qk
Fkψ +

d∑
k,m=1

∂

∂qk
Bk,m

∂

∂qm
ψ.

In the right-hand side, each gradient term acts only in one variable,

∂

∂qk
= I ⊗ · · · ⊗ I ⊗∇k ⊗ I ⊗ · · · ⊗ I,

i.e. is a rank-1 tensor after the discretization. Assuming the uniform rank bounds
for the coefficients, r(Fk) 6 rF and r(Bk,m) 6 rB, obtain the total estimate for the
Fokker-Planck operator by the straightforward summation,

r 6 drF + d2rB.

It is natural to expect this estimate to be far not sharp. In particular, in the next section
we will show that if the diffusion matrix B is scalar (i.e. independent on q), the rank of
the diffusion operator can not grow faster than linearly in d. Similar refinements may
be introduced to the convection part, if more information on the forces Fk is known.

In an analogous way, for the chemical master equation (1.11)

dψ

dt
=

M∑
m=1

(
Jz

m − I
)

diag(wm)ψ,

where Jzm = Jz
m
1 ⊗Jzm2 ⊗· · ·⊗Jzmd is a multilevel shift matrix of the order (zm1 , . . . , z

m
d),

we conclude that the TT ranks of the operator in the right-hand side are bounded by

r 6
M∑
m=1

2r(wm) 6 2Mrw, if r(wm) 6 rw.

The factor 2 arises from the fact that both Jzm and I have rank-1 representations.

67

3.2.1 Bilinear form in the TT format

One of the interesting nontrivial tensor structures is the bilinear form:

V (Q′, Q) =
d∑

k,m=1

Bk,m Q′k ~Qm, where (3.1)

Q′k, Qm are the following rank-1 tensor product objects:

Q′k = e1 ⊗ e2 ⊗ · · · ⊗ q′k ⊗ · · · ⊗ ed,
Qk = e1 ⊗ e2 ⊗ · · · ⊗ qk ⊗ · · · ⊗ ed,
ek, qk, q

′
k ∈ V ∼ Rn, a certain euclidean vector space,

~ : V × V → V is a multiplicative bilinear operation, distributive with “⊗” (e.g.
Hadamard or matrix product), ek are the unities with respect to ~, and B is a matrix
of scalars (of course we assume that a product of Q,Q′ by a number is also defined).
Moreover, we denote q′k ~ qk ≡ q2k for brevity.

The application of the bilinear form in the Fokker-Planck equation is twofold. First,
the quadratic Lyapunov function is a principal ingredient in the Fokker-Planck equation
with a quadratic force potential, where the stationary probability density function
is given by ψ = exp(−V), recall (1.8). Here, ek are the vectors of all ones, qk =
q′k are the vectors of grid points, and ~ is the Hadamard product, so V is indeed
a multivariate polynomial of second degree. For a general polynomial, the tensor
structure was investigated in [155], and for degree 2 the general theorem gives the rank
bound d+ 2. Focusing on the bilinear form, we obtain a refined result.

Second, a d-dimensional anisotropic diffusion operator
∑
k,m

∇>k Bk,m∇m with a con-

stant matrix B is also seen as a bilinear form V , by setting ek = Ik, qk = ∇k, q′k = ∇>k ,
q2k = ∆k, and ~ being the operator composition.

For the ease of presentation, let us assume that V = [V (i)], as well as qk = [qk(ik)]
and so on, i.e. we join row and column indices if V is an operator. Now, perform the
analytic TT rounding and see what does the TT structure of (3.1) depend on.

Theorem 3.2.1 ([44]). Introduce the off-diagonal lower Ck = Bk+1:d, 1:k, and upper
Ĉk = B1:k, k+1:d submatrices. The bilinear form (3.1) possesses an exact TT decompo-
sition V (i) = V (1)(i1) · · ·V (d)(id) with the ranks:

rk = rank(Ck) + rank(Ĉk) + 2 6 d+ 2. (3.2)

Moreover, if qk = q′k (symmetric case), the ranks reduce to

rk = rank
(

(Ck> + Ĉk)/2
)

+ 2 6 d/2 + 2.

In the QTT-Tucker format, the estimates above correspond to the TT-ranks of the
core. The Tucker ranks Rk equal 4 in the general case, and 3 in the symmetric case.
The QTT ranks of the Tucker factors depend on ek, qk, q′k, q2k:

Rk 6 r(ek) + r(qk) + r(q′k) + r(q2k).

The QTT rank bound in the linear tree is r(ek)+rank(Ck)r(qk)+rank(Ĉk)r(q′k)+r(q2k).

68

Proof. Denote the off-diagonal dyadic decompositions in B,

Bk+1:d, 1:k = Ck = W kUk, W k ∈ Rd−k×rk , Uk ∈ Rrk×k,

B1:k, k+1:d = Ĉk = (Ûk)>(Ŵ k)>, Ŵ k ∈ Rd−k×r̂k , Ûk ∈ Rr̂k×k,

with orthonormal Uk, Ûk.
The rank structure is rather complicated, so we omit the initial indices i, i1, . . . , id

in the rest of the proof, i.e. agree that V = V (i), qk = qk(ik) and so on. No ambiguity
arises, since we do not investigate the matter with respect to i or ik.

In the first step of the recursion we have

V = B1,1Q
′
1 ~Q1 +

d∑
p=2

Bp,1Q
′
p ~Q1 +

d∑
m=2

B1,mQ
′
1 ~Qm + V [2],

where V [k] =
d∑

p,m=k

Bp,m Q′p ~Qm. So,

V =
[
q21B1,1 q′1 q1 e1

] [
E[2]

d∑
m=2

Q
[2]
mB1,m

d∑
p=2

Q
′[2]
p Bp,1 V [2]

]>
, (3.3)

where
E[k] = ek · · · ed,

Q
[k]
m = ek · · · em−1 · qm · em+1 · · · ed,

Q
′[k]
p = ek · · · ep−1 · q′p · ep+1 · · · ed, p,m > k.

The first term in (3.3) is the first TT block V (1). On the other hand, we can represent
it using the dyadic factors of B:

V =
[
q21B1,1 q′1Û

1 q1U
1 e1

] [
E[2]

d∑
m=2

Q
[2]
m Ŵ 1

m−1,1

d∑
p=2

Q
′[2]
p W 1

p−1,1 V [2]

]>
.

Now, we need to derive the recursive representation for the second term.
Suppose we have

Ṽ =

[
E[k]

d∑
m=k

Q
[k]
m Ŵ

k−1
m−k+1,:

d∑
p=k

Q
′[k]
p W k−1

p−k+1,: V [k]

]>
, (3.4)

where “:” denotes the whole range of the indices. Splitting the first dimension from
V [k], obtain (Is is the identity matrix of size s):

Ṽ =

ek

qk(Ŵ
k−1
1,:)> ekIr̂k−1

q′k(W
k−1
1,:)> ekIrk−1

q2kBk,k q′k qk ek

E[k+1]

d∑
m=k+1

Q
[k+1]
m (Ŵ k−1

m−k+1,:)
>

d∑
p=k+1

Q
′[k+1]
p (W k−1

p−k+1,:)
>

d∑
m=k+1

Q
[k+1]
m Bk,m

d∑
p=k+1

Q
′[k+1]
p Bp,k

V [k+1]

.

69

Note that in the terms like (W k−1
1,:)>, we first take the slice, and then transpose it, so

the column r × 1 and row 1 × r vectors are correctly distinguished. Separating the
scalar coefficients from Q-related data in the last term, obtain

E[k+1]

d∑
m=k+1

Q
[k+1]
m (Ŵ k−1

m−k+1,:)
>

d∑
p=k+1

Q
′[k+1]
p (W k−1

p−k+1,:)
>

d∑
m=k+1

Q
[k+1]
m Bk,m

d∑
p=k+1

Q
′[k+1]
p Bp,k

V [k+1]

=

1

(Ŵ k−1
2:d−k+1,:)

>

(W k−1
2:d−k+1,:)

>

Bk,k+1:d

(Bk+1:d,k)
>

1

E[k+1]

Q
[k+1]
k+1:d

Q
′[k+1]
k+1:d

V [k+1]

 . (3.5)

The term Q
[k+1]
k+1:d denotes Q

[k+1]
k+1 , . . . , Q

[k+1]
d stacked columnwise, the same is for Q′[k+1]

k+1:d.
Now, recall that

(W k−1
2:d−k+1,:)

> = Uk−1(Bk+1:d,1:k−1)
> = Uk−1(Uk

:,1:k−1)
>(W k

1:d−k,:)
>.

Similar equation holds for Ŵ k−1. That is, (3.5) splits to the scalar part, and a coun-
terpart of (3.4) with k substituted by k + 1. Therefore,

Ṽ = V (k)

E[k+1]

d∑
m=k+1

Q
[k+1]
m (Ŵ k

m−k,:)
>

d∑
p=k+1

Q
′[k+1]
p (W k

p−k,:)
>

V [k+1]

,

where

V (k) =

ek

qk(Ŵ
k−1
1,:)> ek Û

k−1(Ûk
:,1:k−1)

>

q′k(W
k−1
1,:)> ek U

k−1(Uk
:,1:k−1)

>

q2kBk,k q′k(Û
k
:,k)
> qk(U

k
:,k)
> ek

 (3.6)

is nothing else than the k-th TT block of V , since it contains only qk, ek. It has the
sizes (1 + r̂k−1 + rk−1 + 1)× (1 + r̂k + rk + 1), which confirms the first statement of the
theorem. Assuming the QTT separability of basis elements ek, qk and so on, obtain
the linear QTT rank bound. With the rest Ṽ we can proceed recursively, and the last
TT block reads (since V [d] is just a one-dimensional q2dBd,d)

V (d) =
[
ed qd Ŵ

d−1
1,: q′d W

d−1
1,: q2dBd,d

]>
. (3.7)

If the first-order term is presented with a unique object qk = q′k, the ranks are reduced
as follows. First,

V (1) =
[
q21B1,1 2q1 e1

] 1
0.5 0.5

1

 .
70

Reassigning V̄ (1) =
[
q21B1,1 2q1 e1

]
, we contract the rest matrix with the middle

blocks, obtaining

Ṽ (k) =

 ek
qk(W

k−1
1,:)> 1

2
ek U

k−1(Uk
:,1:k−1)

> 1
2
ek U

k−1(Uk
:,1:k−1)

>

q2kBk,k qk(U
k
:,k)
> qk(U

k
:,k)
> ek

 .
We note here that the constraint qk = q′k yields V ≡ 0 if B = −B>, so that only the
symmetric part B := 0.5(B+B>) is relevant. Thus, Ŵ k = W k, Ûk = Uk. All versions
of Ṽ are simplified as follows,

E[k+1]

d∑
m=k+1

Q
[k+1]
m (Ŵ k

m−k,:)
>

d∑
p=k+1

Q
′[k+1]
p (W k

p−k,:)
>

V [k+1]

=

1

1
1

1

E[k+1]

d∑
m=k+1

Q
[k+1]
m (W k

m−k,:)
>

V [k+1]

 .

Multiplying Ṽ (k) with the scalar matrix appeared here, we obtain the reduced block

V̄ (k) =

 ek
qk(W

k−1
1,:)> ek U

k−1(Uk
:,1:k−1)

>

q2kBk,k 2qk(U
k
:,k)
> ek

 (3.8)

of size (rk−1 + 2)× (rk + 2).
Applying the TT-to-Tucker conversion technique, we obtain immediately, that the

TT-ranks of the Tucker core are equal to the ranks obtained above, and the Tucker
ranks equal 4 (3 in the symmetric case), since there are 4 (resp. 3) linearly independent
elements in each block, ek, qk, q′k and q2k.

The proof gives a constructive routine for fast assembly of a bilinear form in the
TT format. Indeed, performing the SVDs of submatrices of B (their sizes are of the
order of tens) and building the blocks from (3.3), (3.6) (or (3.8) in symmetric case)
and (3.7), we get the analytical TT representation.

In the case of a degree 2 polynomial on a uniform grid, the QTT ranks of the Tucker
factors are equal to 3 (Section 2.2.1 and [192, 148]).

The ranks of the off-diagonal blocks are the so-called quasiseparable ranks. Theorem
3.2.1 establishes a connection between the coefficient matrix quasiseparability and the
TT structure of the resulting bilinear form. This rank estimate is sharp: if the matrix is
diagonal, i.e. (Ck)> = Ĉk = 0, then the TT ranks equal 2 (Laplace operator, harmonic
oscillator potential).

In our work, we always perform the recursion from left to right, revealing TT blocks
one by one. In principle, if a recurrence relation is established for inner blocks, it is
also possible to conduct decompositions from both sides of the tensor train, and finish
them at any intermediate block k. This approach was presented in an independent
work [129], devoted to the tensor structure analysis of the diffusion operator.

71

3.2.2 Gaussian distribution in the QTT format

Let us address now the second approach mentioned in the beginning of this chapter, and
investigate an approximate TT decomposition and the corresponding ε-ranks. We saw
in the previous section that the solution of the Fokker-Planck equation may be given by
a multidimensional generalized Gaussian function. Unfortunately, if the matrix B in
the Lyapunov function (3.1) is not diagonal, the corresponding Gaussian function may
manifest quite large TT ranks – in fact, the advantages of the QTT-Tucker format
w.r.t. the linear tree will be demonstrated on such an example. However, in the
diagonal (also called isotropic) case one may see immediately that the Gaussian has
all TT ranks ones:

exp
(
−b1q21 − b2q22 − · · · − bdq2d

)
= exp

(
−b1q21

)
· · · exp

(
−bdq2d

)
.

So, our question now is the QTT structure estimation for a one dimensional Gaussian
vector on a uniform grid, g =

[
exp(− q(i)2

2p2
)
]
.

Lemma 3.2.2 ([47]). Suppose uniform grid points −a = q(0) < q(1) < · · · < q(n) = a,
q(i) = −a+hi, n = 2L are given on an interval [−a, a], and the vector g is defined by its

elements g(i) = e
− q(i)

2

2p2 , i = 0, . . . , n− 1. Suppose in addition that
∞∫
a

e
− q2

2p2 dq 6 ε
2
< 1.

Then for all sufficiently small ε > 0 there exists a QTT approximation gr with the
ranks bounded as

r(gr) 6 c
a

p

√
log

(
1

ε

p

1 + a

)
, (3.9)

and the accuracy

|g − gr| 6
(r

2a
+ 1
)
ε =

(
c
1

p

√
log

(
1

ε

p

1 + a

)
+ 1

)
ε,

where c does not depend on a, p, ε or n.

Proof. We employ the Fourier transform of the Gaussian function. Indeed, consider
approximation via a partial Fourier sum

e
− q2

2p2 =
M∑
m=0

αm cos
(πmq

a

)
+ η on [−a, a],

where |η| =
∣∣∣∣ ∞∑
m=M+1

αm cos
(πmq

a

)∣∣∣∣ < ε. There are no sin functions in this sum, since

the Gaussian function is even with respect to the origin. If we discretize now this
sum on a uniform grid, all vectors generated by cos functions will have exact QTT-
representations with all ranks equal to 2, see [148] and Section 2.2.1. So it is enough
to provide an estimate on M .

72

The Fourier coefficients are computed as

αm =

a∫
−a

e
− q2

2p2 cos
(πmq

a

)
dq

a∫
−a

cos2
(πmq

a

)
dq

,

where all denominators are equal to a if m > 0, and 2a if m = 0. Let us denote them

|Cm|2 =

{
2a, if m = 0,
a, otherwise.

In the nominator, we note that the cos function is bounded by 1, and

∞∫
−∞

e
− q2

2p2 dq =

a∫
−a

e
− q2

2p2 dq + 2

∞∫
a

e
− q2

2p2 dq 6

a∫
−a

e
− q2

2p2 dq + ε,

so we approximate

αm =

 ∞∫
−∞

e
− q2

2p2 cos
(πmq

a

)
dq − ξm

 /|Cm|2, 0 < ξm < ε.

We deduce the integral over the whole axis from the continuous Fourier transform:
indeed, it is known that the Fourier image of the Gaussian function is another Gaussian
function:

∞∫
−∞

e
− q2

2p2 eiωqdq =

∞∫
−∞

e
− q2

2p2 cos(ωq)dq = pe−
ω2p2

2 ,

where i is the imaginary unity. So, plugging here ω = πm
a

in, we get the statement for
αm:

αm =

(
pe−

π2m2p2

2a2 − ξm
)
/|Cm|2

Now we truncate the series at a value m = M such that αM 6 ε, hence the condition
on M writes

M >

√
2

π

a

p
log0.5

(
p

(1 + |CM |2)ε

)
=

√
2

π

a

p
log0.5

(
p

1 + a

1

ε

)
,

which gives the first result of the lemma (up to rank 2 of each cosine function). Note
that due to the very fast decay of the Fourier coefficients, the threshold αM 6 ε implies
∞∑

m=M+1

αm 6 ε as well, starting from a small enough ε.

To obtain an expression for the error, recall that

g(q) = e
− q2

2p2 =
M∑
m=0

1

|Cm|2

(
pe−

π2m2p2

2a2 − ξm
)

cos
(πmq

a

)
+ η,

73

gr(q) =
M∑
m=0

1

|Cm|2
pe−

π2m2p2

2a2 cos
(πmq

a

)
.

Now taking into account the bounds |ξm| < ε, | cos
(
πmq
a

)
| 6 1, |η| < ε, r = 2M , we

get the estimate for |g − gr|.

Remark 3.2.3. Requiring that e
− a2

2p2 6 ε (it is to be imposed naturally in order to
compute a physically relevant solution without significant boundary effects) we obtain
a =

√
2p log0.5(1/ε), so that r(gr) 6 c log(1/ε). This result can be deduced via the

polynomial approximation. But now we have the uniform estimate with respect to all
parameters except the accuracy, hence the rank does not grow with 1/p.

Remark 3.2.4. Since the Gaussians with different p are distinguished by the Fourier
coefficients αm only, a set of Gaussians may be represented in a common QTT format
simultaneously, with the rank bound (3.9), where the minimal p from the set is plugged
in. Such a shared representation was recently used in quantum chemistry calculations
[139].

In a similar way, some analytical examples of the stationary solutions and propen-
sities in the chemical master equation (e.g. the Poisson distribution vector) may be
derived using truncated polynomial or trigonometric series [126, 130].

3.2.3 Cascade operator

Considering the chemical master equation, we saw that the tensor structure of the CME
operator is governed naturally by the tensor structure of the inputs (propensities), and
in a general case is defined by the sum of all reaction terms. However, a couple of most
important cases of system interactions are worth to be analyzed in more details.

The simplest example is a sum of independent actions or operators, described in
Section 2.2.3,

x(i) = a(i1) · b(i2) · · · b(id) + · · ·+ b(i1) · · · b(id−1) · a(id)

=
[
a(i1) b(i1)

] [b(i2) 0
a(i2) b(i2)

]
· · ·
[
b(id−1) 0
a(id−1) b(id−1)

] [
b(id)
a(id)

]
.

One step further is the pairwise, or cascadic interaction, which is also well representable
in the TT format.

Lemma 3.2.5 ([46]). Given the elementary vectors or matrices Ek(ik), F k
k (ik), F k+1

k (ik)
for k = 1, . . . , d. The cascadic sum

H = F 1
1 ⊗

(
d⊗
j=2

Ej

)
+

d∑
k=2

(
k−2⊗
j=1

Ej

)
⊗ F k

k−1 ⊗ F k
k ⊗

(
d⊗

j=k+1

Ej

)
(3.10)

74

possesses an exact rank-3 TT decomposition H(i) = H(1)(i1) · · ·H(d)(id), where

H(1)(i1) =
[
E1(i1) F 2

1 (i1) F 1
1 (i1)

]
, H(d)(id) =

 0
F d
d (id)
Ed(id)

 ,
H(k)(ik) =

Ek(ik) F k+1
k (ik) 0

0 0 F k
k (ik)

0 0 Ek(ik)

 , if k = 2, . . . , d− 1.

(3.11)

For the Tucker decomposition the same rank-3 bound holds.

Proof. The first step of the recurrent splitting writes

H(i) =
[
E1(i1) F 2

1 (i1) F 1
1 (i1)

] H̃2(i2, . . . , id)
F 2
2 (i2)E3(i3) · · ·Ed(id)
E2(i2) · · ·Ed(id)

 ,
where the first term is exactly the first TT block, and in the rest we denote

H̃k = F k+1
k ⊗ F k+1

k+1 ⊗ Ek+1 ⊗ · · · ⊗ Ed + · · ·+ Ek ⊗ · · · ⊗ Ed−2 ⊗ F d
d−1 ⊗ F d

d .

In the general form of the second term we split the k-th dimension from each row in
the same manner, H̃k(ik, . . . , id)

F k
k (ik)Ek+1(ik+1) · · ·Ed(id)

Ek(ik) · · ·Ed(id)

 = H(k)(ik)

 H̃k+1(ik+1, . . . , id)
F k+1
k+1 (ik+1)Ek+2(ik+2) · · ·Ed(id)

Ek+1(ik+1) · · ·Ed(id)

 ,
and derive the k-th TT block. The recurrence rule is now established, so we can
continue the process. The last two factors are separated as follows,F d

d−1(id−1)F
d
d (id)

F d−1
d−1 (id−1)Ed(id)
Ed−1(id−1)Ed(id)

 =

F d
d−1(id−1) 0

0 F d−1
d−1 (id−1)

0 Ed−1(id−1)

[F d
d (id)
Ed(id)

]
.

Finally, padding the second term with zeros to achieve the form of H(d) in (3.11), the
block H(d−1) is cast to the common form H(k). We see that all TT ranks are equal to
3, which confirms the claim of the lemma. To obtain the Tucker rank estimate, it is
sufficient to note that each TT block contains only 3 independent elements, and follow
the TT-to-Tucker procedure.

Remark 3.2.6. In (3.10), each summand is a rank-1 tensor. However, we can straight-
forwardly generalize the structure to the case, when the neighboring terms are summed
from several components,

rk−1∑
αk−1=1

F k
k−1,αk ⊗ F

k
k,αk

instead of F k
k−1 ⊗ F k

k ,

75

i.e., the TT rank of each two-variate contribution (e.g. the propensity function in the
CME) is not equal to 1. In this case, we can collect respectively the row and column
vectors

F k
k−1(ik−1) =

[
F k
k−1,1(ik−1) · · · F k

k−1,rk−1
(ik−1)

]
, F k

k (ik) =

 F k
k,1(ik)
...

F k
k,rk−1

(ik)

 ,
and the constructions (3.11) will be considered as block matrices, with the sizes (i.e.
the TT ranks) (2 + rk−1) × (2 + rk). Counting the linearly independent elements in
each TT factor, we conclude that the k-th Tucker rank is bounded by 1 + rk−1 + rk.

Remark 3.2.7. For simplicity, we considered the vector case, i.e. H = [H(i)]. How-
ever, all the same arguments hold for matrices, i.e. we may freely substitute i by i, j,
ik by ik, jk, and so on. This generalizes the result to the cascadic CME operator.

Remark 3.2.8. If F 1
1 = 0, the result of Lemma 3.2.5 can be derived from Theorem

3.2.1 on the bilinear form, by setting qk = F k+1
k , q′k = F k

k , q2k = 0, ek = Ek, and B = J1

according to (1.10). However, Remark 3.2.6 is not covered by Thm. 3.2.1.

3.3 Inverse Laplace operator and Fourier transform
In some cases, not only a particular solution, but the whole inverse operator may be
constructed in a structured form. One of the first and remarkable examples is the
Laplace operator [23, 71, 89, 72, 100, 101, 21].

Given a positive definite matrix A, its inverse can be written as follows,

A−1 =

∞∫
0

exp(−tA)dt,

which may be simply verified by multiplying the right-hand side with A. Now, if

A = A(1) ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗ I ⊗ A(d),

the exponential factorizes to the tensor product of univariate terms,

A−1 =

∞∫
0

exp(−tA(1))⊗ exp(−tA(2))⊗ · · · ⊗ exp(−tA(d))dt.

A constructive approximation of A−1 in the canonical tensor format is now given by
replacing the integral by a finite quadrature. For example, the Stenger rule [89] com-
putes

A−1 ≈
M∑

m=−M

cm

d⊗
k=1

exp(−tmA(k)),

tm = log
(

exp(mh) +
√

1 + exp(2mh)
)
, h = π2/

√
M,

cm = h/
√

1 + exp(−2mh),

76

providing the sub-exponential convergence∥∥∥∥∥A−1 −
M∑

m=−M

cm

d⊗
k=1

exp(−tmA(k))

∥∥∥∥∥
2

6 C(4 + 2‖A‖2) exp
(
−π
√

2M
)
.

Obviously, the canonical rank estimates as R = (2M + 1) = O(log2(1/ε)). There
also exist sinc-quadratures with O(exp(−cM/ logM)) convergence, see e.g. the survey
[147].

Interestingly, the approximation quality barely depends on small perturbations in
the quadrature rule. For example, in order to compute matrix exponentials Bk

m =
exp(−tmA(k)) via fast recursion formulae, e.g. Bk

m+1 = (Bk
m)2, a modified Sinc-

quadrature rule was proposed in [157]. Given an original Sinc scheme

h = π/
√
M, tm = emh, cm = htm,

we set formally h = log 2, so that tm = 2m = 2tm−1. The exact rule would require a
nonintegerM = (π/h)2 ≈ 20.54, so we chooseM = 21, which still provides a reasonable
approximation, especially for preconditioning purposes. The same procedure may be
applied to more general matrices of the Kronecker form, for example, arising from the
Lyapunov equation [17].

If not the whole inverse operator, but only a solution to a linear system Ax =
y is required, it may be more efficient to avoid the full matrices exp(−tmA(k)), but
instead compute the products exp(−tmA(k))y(k) directly, using the fast Fourier and
trigonometric transforms. The discrete multidimensional Fourier transform writes by
definition

ŷ(j1, . . . , jd) =
∑
i1,...,id

exp

(
−2πi

n1

i1j1

)
· · · exp

(
−2πi

nd
idjd

)
y(i1, . . . , id),

which constitutes a rank-1 multilevel matrix by a vector product

ŷ =
(
F (1) ⊗ · · · ⊗ F (d)

)
y, F

(k)
jk,ik

= exp

(
−2πi

nk
ikjk

)
.

However, there is no such straightforward extension to the QTT format, since the one-
dimensional Fourier matrix has an irreducible QTT rank 2L for any accuracy level up
to 1− δ. Nevertheless, the computation of the Fourier transform can be performed in
the QTT format with a O(r3L2) cost [50], though at a price of intermediate vectors,
which may potentially develop large QTT ranks even if both input and output are well
structured.

77

Chapter 4

Classical and alternating tensor
approximation and solution methods

We have mentioned only explicit operations, which can be performed in a finite number
of steps with a guaranteed result. Even an inverse operator in the last section was
constructed analytically. However, the variety of tensor operations is not limited to
a basic multilinear algebra. Not of less importance are the implicit solutions, which
can be computed only iteratively and approximately in many cases. Successful high-
dimensional simulation (via Fokker-Planck or chemical master equations, for example)
requires solution of linear systems (stationary problems and implicit time schemes),
eigenvalue problems, more sophisticated matrix functions like exponential, etc. In this
work, matrix functions and eigenvalue problems are left aside, since all applications
identified in the beginning may be treated via the linear system approach. We devote
this chapter to a short review of known methods and a family of novel algorithms,
addressing the linear solution problem.

To shorten the formulae, throughout this chapter we reserve the anonymous rank
notation r, rk for the tensor ranks of the solution vector x, i.e. r = r(x), rk = rk(x).
For other quantities we denote the origin as proposed in Def. 2.1.10, e.g. rk(A), rk(b).

4.1 Truncated iterations
The tensor linear algebra together with the rounding procedure allows to think in
terms of classical algorithms, and the first attempts were connected with the usage of
traditional iterative methods, equipped with the tensor arithmetics:

• Richardson and Newton iterations [210, 104, 141, 145, 156, 6, 19],

• conjugate and bi-conjugate gradients [169, 170, 162, 163, 6, 19, 27], or

• different GMRES realizations [9, 45].

The simplest truncated Richardson iteration may be performed as shown in Alg. 6.
The (left) preconditioner B may be easily incorporated by repeating steps 2 and 3

for the preconditioner action, i.e. the total MatVec reads w = Tε (BTε(Ax0)), and b in
Line 4 must be replaced by Bb.

78

Algorithm 6 TT-Richardson iteration
Require: Matrix A in the TT format (2.11), initial guess x0 and right-hand side b in

the TT formats (2.9), step size λ, approximation accuracy ε.
Ensure: Updated solution x1.
1: for until convergence do
2: Compute the MatVec w = Ax0 in the TT format.
3: Approximate w = Tε(w). {Optional}
4: Compute x1 = x0 + λb− λw in the TT format.
5: Approximate x1 = Tε(x1).
6: end for

Basic error analysis may be provided in presence of the solution truncation (Line 5
in Alg. 6), but in assumption of exact residual, w = Ax0.

Lemma 4.1.1. Given the linear system Ax = b with the exact solution x?, denote
the initial error as e0 = x? − x0, and the error after one ε-perturbed Richardson
correction as e1 = x?−x1. Suppose that the unperturbed method provides the progress
‖e1‖/‖e0‖ 6 Ω < 1. Then the inexact Alg. 6 is convergent with the rate bound

‖e1‖
‖e0‖

6 Ω

(
1 + ε

‖x0‖
‖e0‖

)
, (4.1)

until the following neighborhood of the exact solution is reached,

‖e0‖
‖x0‖

6 ε
Ω

1− Ω
.

Proof. Let us consider the solution truncation in the first step, i.e. we see Alg. 6 in
the form

1. truncate the initial guess u = Tε(x0);

2. correct the solution x1 = u+ λ(b− Au).

Then the progress may be written

‖x? − x1‖
‖x? − x0‖

=
‖x? − x1‖
‖x? − u‖

· ‖x? − u‖
‖x? − x0‖

6 Ω · ‖x? − u‖
‖x? − x0‖

.

Now we plug in the perturbation u = x0 + η, ‖η‖ 6 ε‖x0‖, to obtain

‖x? − x1‖
‖x? − x0‖

6 Ω · ‖x? − x0‖+ ‖η‖
‖x? − x0‖

6 Ω

(
1 + ε

(
‖x? − x0‖
‖x0‖

)−1)
.

The error decay is maintained below one if ‖e0‖/‖x0‖ > ε · Ω/(1− Ω).

The formula (4.1) does not only show that the convergence deteriorates when the
approximation approaches the O(ε)-vicinity of the true solution. It also gives us an
idea of relaxation: we are not obliged to keep the same ε for all iterations, but rather
may admit less accurate and cheaper computations in certain parts of the process.
Typically, in the first iterations the error ‖e0‖ is large, and we may use quite rough ε,
still having a convergent method.

79

Algorithm 7 TT-GMRES(m) [45]
Require: Right-hand side b, initial vector x0 in the TT format, matrix A as a tensor

MatVec procedure y = Tε,r(Ax), accuracy ε and/or maximal TT rank r.
Ensure: Approximate solution xj : ‖Axj − b‖/‖b‖ 6 ε.
1: Start: compute z0 = Tε,r(b− Ax0), β = ‖z0‖ v1 = z0/β.
2: Iterations:
3: for j = 1, 2, . . . ,m do
4: Compute the relaxed accuracy δ =

ε

‖z̃j−1‖/β
.

5: w = Tδ,r(Avj): new Krylov vector.
6: for i = 1, 2, . . . , j do
7: hi,j = (w, vi),
8: w = w − hi,jvi, {orthogonalization}
9: end for
10: w = Tδ,r(w). {compression}
11: hj+1,j = ‖w‖, vj+1 = w/hj+1,j.
12: Assemble the matrix H̄j = [hi,k], k = 1, . . . , j, i = 1, . . . , j + 1.
13: Compute the reduced solution: yj = arg min

y
‖βe1 − H̄jy‖.

14: Check the residual ‖z̃j‖ = ‖βe1 − H̄jyj‖: if ‖z̃j‖/‖b‖ 6 ε, then break.
15: end for
16: Update the solution: initialize xj = x0,
17: for i = 1, 2, . . . , j do
18: xj = xj + yj(i)vi {correction}
19: end for
20: xj = Tε,r(x) {compression}
21: Restart: if ‖z̃j‖/‖b‖ > ε, then set x0 = xj, go to 1.

Remark 4.1.2. The progress Ω is typically estimated from the spectrum of the matrix
A, e.g. in the form Ω . 1− 1/cond(A), where cond(A) is the condition number of the
matrix. The error overhead is thus of the order of the condition number, Ω/(1−Ω) ∼
cond(A). While it could be harmless in the standard machine arithmetics with the
precision O(10−16), tensor format calculations involve much larger errors, e.g. 10−3—
10−8. Therefore, the use of a spectrally equivalent preconditioner is crucial.

Not any preconditioning technique is easily adjustable for tensor structured repre-
sentations. For example, the ILU approach requires the access to all elements of the
matrix, which would lead to the prohibitively costly expansion of the tensor format.
Among feasible techniques are multigrid methods (mostly geometric [9]; algebraic ver-
sions must be free from the full matrix inspection, e.g. the BPX variant in [6]), and ap-
proximate inverse operators with explicit low-rank structures. A remarkable example of
the latter is the inverse Laplace operator (see Sec. 3.3), employed in [141, 145, 156, 45].

The lack of an efficient general-purpose preconditioner may be partially compen-
sated by the use of more advanced tools. For example, the GMRES method with
approximate tensor computations of the Krylov vectors may be implemented as shown
in Alg 7. Note that the accuracy of the Krylov vectors is relaxed according to the cur-

80

Figure 4.1: An example from [45]: the TT-GMRES delivers the solution with rapidly
saturating TT ranks (left), while the TT ranks of the last Krylov vector (right) are
significantly larger and the relaxation reduces them only in the end of the process.

rent residual (Line 4). As shown in the theory of inexact Krylov methods [219], such
a relaxation does not destroy the convergence. More precisely, the following statement
holds.

Statement 4.1.3 (Corollary 4.1 [45] from Thm. 5.3 [219]). Suppose m GMRES iter-
ations are conducted. If for any i 6 m the relative error introduced in the Matrix-by-
Vector multiplication satisfies

‖w‖
‖Avj‖

6
1

m · cond(A)

1

‖z̃i−1‖/‖b‖
ε, (4.2)

then the real relative residual and the one computed in the local GMRES problem are
related as

‖zm‖
‖b‖

6
‖z̃m‖
‖b‖

+ ε.

However, the Krylov vectors develop usually large tensor ranks despite the relax-
ation of the accuracy, see Fig. 4.1. This phenomenon may be argued by the observation
that the GMRES extracts the spectral harmonics of the matrix subsequently, and the
smoother the solution is, the higher are the oscillations in the residual and the Krylov
vectors. More and more complicated structure of the latter Krylov vectors is reflected
by large tensor ranks required to assure their approximation with a reasonable accuracy.
This limits the applicability of the Krylov methods in tensor formats.

4.2 Constrained minimization on tensor format ele-
ments

4.2.1 Alternating vs. classical iterations

In the previous section we saw that the classical iterative methods with the tensor
arithmetics are not very robust, since various auxiliary quantities may require large

81

tensor ranks, even if the matrix, right-hand side and the solution are well representable
in the format. To get rid of additional vectors, another family of methods suggests to
search for the elements of a tensor format directly.

The statement of the optimization problem on tensor format entries begins with
the target function. The simplest choice is the Frobenius-norm error in terms of the
full tensors,

Ex? = ‖x? − τ(x(1), . . . , x(d))‖2 → min (4.3)

over the TT blocks x(k) ∈ Crk−1×nk×rk . Note that due to the polylinear action of
the TT map τ , the error function, being quadratic for the tensor elements, becomes
highly nonlinear and nonconvex w.r.t. to the TT elements. Though the straightforward
optimization is developed to some extent (see e.g. Newton and quasi-Newton methods
for the canonical format [160, 36, 60, 133], or generalized eigenvalue decomposition
[55]), this approach is usually applied to specific problems, and is far from being reliable
in a more general setting.

To relax the nonlinearity, a family of alternating methods was proposed. A general
approach is to substitute the problem (4.3) by a sequence of quadratic optimizations
over the elements of each TT block. Since 1980’s, the alternating least squares (ALS)
method for the Tucker [165] and canonical [34] formats became the method of choices
for low-rank data fitting in psychometrics and other classification problems.

Despite a ridiculously slow convergence in many cases, the ALS method for tensor
product formats possesses one important advantage: since the format is linear with
respect to each of its blocks, the target function restricted to the block elements remains
of the same polynomial degree, as it was defined on the initial tensor elements. This
makes the restricted problem much easier to solve than the simultaneous optimization
(4.3). How to recover a fast convergence and avoid trapping in local minima will be a
matter of this and next sections.

We first show that in particular the TT format is indeed linear with respect to a
chosen block. Recall the definition of the TT map 2.1.11 for a chunk of the tensor
train:

x(<k) = τ(x(1), . . . , x(k−1)) ∈ Cn1···nk−1×rk−1 ,
x(>k) = τ(x(k+1), . . . , x(d)) ∈ Crk×nk+1···nd .

Now we may define the frame matrix.

Definition 4.2.1. Given a tensor train x(1), . . . , x(d), the k-th frame matrix reads

X 6=k = x(<k) ⊗ Ink ⊗
(
x(>k)

)> ∈ Cn1···nd×rk−1nkrk . (4.4)

Directly from the tensor train definition follows the linearity statement.

Statement 4.2.2. The frame matrix performs a linear map from the elements of the
TT block to the elements of the initial tensor,

x = X 6=kx
(k). (4.5)

Moreover, imposing the orthogonality conditions on the TT blocks, we may make
the whole frame matrix orthogonal. Indeed, recall from Lemma 2.1.16 that the chunk

82

Figure 4.2: The frame matrix (4.4) maps a TT block (above) into a large vector (below).

x(<k) x(>k)

δ

x(k)

x(k+1) x(d)x(k−1)x(2)x(1)

x(i1i2...id)

α1 α2 αk−2
αk−1 αk

αk+1 αd−1

i1 i2 ik−1

jk

ik ik+1 id

x(<k) is left-orthogonal if so are the corresponding TT blocks x(1), . . . , x(k−1). Similarly,
the right-orthogonality of the blocks x(k+1), . . . , x(d) ensures the orthogonality of the
right chunk x(>k), and together they yield an orthogonal frame matrix, as shown in
Fig. 4.2.

4.2.2 Solution of linear algebra problems by optimization

The initial algebraic problem, such as an approximation, linear system solution or
symmetric eigenvalue problem may be often considered as an optimization of a certain
quadratic target function. The most important are:

1. error Ex?(x) = ‖x? − x‖2 = JI,x? ,

2. energy JA,b(x) = ‖x? − x‖2A = (x,Ax)− 2Re(x, b) + const for b = Ax?,

3. residual RA,b(x) = ‖Ax− b‖2 = JA∗A,A∗b(x) + const, and

4. Rayleigh quotient QA(x) = (x,Ax)/(x, x).

The minimum of the Rayleigh quotient is attained at the extreme eigenvalue problem
solution Ax = λx with λ = min QA(x), and is left aside in the current work, while the
rest three functions are related to the solution of some (may be trivial with the identity
matrix) linear system. The energy function is defined for a symmetric positive definite
(SPD) matrix, A = A∗ > 0, with the A-scalar product and A-norm introduced in the
usual sense (x, y)A = (x,Ay), ‖x‖A =

√
(x, x)A.

Now we recall the alternating least squares (ALS) method, a.k.a. the alternating
linear scheme according to [115], where it was also shown that the ALS scheme coincides
with the (one-site) Density Matrix Renormalization Group (DMRG) approach from
quantum physics. The original DMRG scheme [237, 238] was proposed to compute the
ground state of a system by the minimization of the Rayleigh quotient. It was later
applied [124] to solve a SPD linear system Ax = b, where A and b are given in the
TT format, by the minimization of the energy function. We focus on the latter linear
system problem, but the connection with the “original” DMRG is straightforward, and
most of insights can be adopted.

So, we restrict the optimization of JA,b(x) to vectors x = τ(x(1), . . . , x(d)) that are
represented by the TT format with fixed TT ranks r = (r1, . . . , rd−1), and perform the

83

actual computations in a sequence of microsteps, i.e. consecutive optimizations over
TT blocks x(k). Each such local problem writes

u(k) = arg min
x(k)

JA,b(τ(x(1), . . . , x(d))) over x(k) ∈ Crk−1×nk×rk . (4.6)

The TT core x(k) is then replaced by u(k), and the next core is considered; usually
the cores are updated in a one-by-one sweeping through the tensor train, e.g. k =
1, . . . , d (forward half–sweep), or k = d, . . . , 1 (backward half–sweep), and so on until x
converges.

The linearity of the format (4.5) allows us to rewrite (4.6) as follows

u(k) = arg min
x(k)

JAk,bk(x
(k)) over x(k) ∈ Crk−1nkrk ,

Ak = X∗6=kAX 6=k ∈ C(rk−1nkrk)×(rk−1nkrk), bk = X∗6=kb ∈ Crk−1nkrk .
(4.7)

The unique minimum is delivered by the solution of the local linear system Aku
(k) = bk,

1

which is of a reasonable size and can be solved by a standard method, e.g. iterative
schemes [208]. As shown in Fig. 4.3, Ak and bk can be assembled from the TT blocks
of A = τ({A(k)}), x = τ({x(k)}), and b = τ({b(k)}), avoiding exponentially large arrays
to appear.

The accuracy of the obtained solution crucially depends on the conditioning of
the local system. Fortunately, it can be put under control using the orthogonality
constraints on the TT blocks, and hence the orthogonality of the frame matrix. In
the sequential sweeping through the TT blocks, the alternating optimization may be
synchronized with the orthogonalization steps of Alg. 2 and 3, as shown in Alg. 8.

If X 6=k is orthogonal, the spectrum of Ak lies within the spectral range of A. Indeed,

λmin(Ak) = λmin(X∗6=kAX 6=k) = min
‖v‖=1

(X 6=kv,AX6=kv) = min
‖u‖=1

u∈spanX6=k

(u,Au)

> min
‖u‖=1

(u,Au) = λmin(A),

and similarly λmax(Ak) 6 λmax(A). It follows that the condition numbers satisfy cond(Ak) 6
cond(A), i.e. the local system (4.6) is conditioned not worse than Ax = b.

4.2.3 Rank adaptation problem and two-site DMRG

The drawback of the one-site DMRG algorithm described above is that the TT ranks
remain the same during the computations. Therefore, we have to guess the TT ranks of
the solution a priori, which might be difficult; if we underestimate them, the returned
solution will be far from the exact one; if we overestimate them, the local problems will
be more difficult to solve. Moreover, the convergence even to a quasi-optimal solution
with prescribed TT ranks may be dramatically slow.

1Recall Def. 2.1.12 and text thereafter: the product Aku
(k) implies the “vector” reshape u(k) ∈

Crk−1nkrk .

84

Figure 4.3: The linear system Aku
(k) = bk defined by (4.7), assembled from the cores

of TT formats of A, x, and b.

A(k)

u(k)

A(k+1)A(k−1) A(d)A(1)

x(k+1)x(k−1) x(d)x(1)

x(k+1)x(k−1) x(d)x(1)

x(k+1)x(k−1) x(d)x(1)

b(k) b(k+1)b(k−1) b(d)b(1)

j1 jk−1
jk jk+1 jd

i1 ik−1 ik
ik+1 id

i1 ik−1
ik ik+1 id

γ1 γk−2 γk−1 γk γk+1 γd−1

α′1 α′k−2 α′k−1 α′k α′k+1 α′d−1

α1 αk−2 αk−1 αk αk+1 αd−1

α1 αk−2 αk−1 αk αk+1 αd−1

β1 βk−2 βk−1 βk βk+1 βd−1

=

Ak

bk

Since the seminal papers [237, 238], the two-site DMRG became the method of
choice to change (usually to increase) the TT ranks adaptively during the compu-
tations. A nice review of different DMRG techniques can be found in [216] and its
“second edition” [217]. To the numerical linear algebra community the two-site DMRG
was brought in [115] under the name Modified Alternating Linear Scheme (MALS).

This method considers the vector in the following form,

x = τ(x(1), . . . , x(k−1), x(k,k+1), x(k+2), . . . , x(d)), (4.8)

where x(k,k+1) = x(k,...,k+1) = τ(x(k), x(k+1)) according to Def. 2.1.11. The local opti-
mization step is performed similarly to (4.6), but over the elements of the supercore
x(k,k+1) as follows,

u(k,k+1) = arg min
x(k,k+1)

JAk,k+1,bk,k+1
(x(k,k+1)) over x(k,k+1) ∈ Crk−1nknk+1rk+1 , (4.9)

and is equivalent to solving the two-site local linear system Ak,k+1u
(k,k+1) = bk,k+1 with

Ak,k+1 = X∗6=k,k+1AX 6=k,k+1 ∈ C(rk−1nknk+1rk+1)×(rk−1nknk+1rk+1),

bk,k+1 = X∗6=k,k+1b ∈ Crk−1nknn+1rk+1 ,
(4.10)

where X 6=k,k+1 is the two-site frame matrix

X 6=k,k+1 = x(<k) ⊗ Ink ⊗ Ink+1
⊗
(
x(>k+1)

)>
. (4.11)

85

Algorithm 8 One-site DMRG for Ax = b (forward half–sweep)
Require: Initial guess t = τ({t(k)}) in the TT format (2.9).
Ensure: Updated vector x = τ({x(k)}) s.t. JA,b(x) 6 JA,b(t).
1: Copy x(k) = t(k), k = 1, . . . , d.
2: for k = d, . . . , 2 do {Orthogonalization of the right chunk}
3: Find LQ decomposition x〈k| = LQ, QQ∗ = I.
4: Replace x〈k| := Q, and x|k−1〉 := x|k−1〉L.
5: end for
6: for k = 1, . . . , d do {Optimization over TT cores}
7: Form Ak and bk by (4.7).
8: Solve Aku(k) = bk. {If iterative algorithm is used, take x(k) as an initial guess}
9: Replace x(k) := u(k).
10: if k 6= d then {Orthogonalization of the left interface, if required}
11: Find QR decomposition x|k〉 = QR, Q∗Q = I.
12: Replace x|k〉 := Q, and x〈k+1| := Rx〈k+1|.
13: end if
14: end for
15: return x = τ(x(1), . . . , x(d)).

As previously, we assume that the orthogonality X∗6=k,k+1X 6=k,k+1 = Irk−1nknk+1rk+1

is ensured, and the conditioning of the local problem is not worse that the one of the
original system Ax = b.

The updated TT core u(k,k+1) is then separated back to u(k) and u(k+1) to recover
the original TT structure: we reshape

u(k,k+1)
αk−1,αk+1

(ikik+1) = u〈k,k+1〉(αk−1ik, ik+1αk+1),

and perform the approximate dyadic decomposition using e.g. the truncated SVD (2.2)
or cross (2.3),

u〈k,k+1〉 ≈ ũ〈k,k+1〉 = u|k〉u〈k+1|, u|k〉 ∈ Crk−1nk×r′k . (4.12)

The perturbation introduced to u〈k,k+1〉 in this decomposition step affects the whole
vector x, and the orthogonality of the frame matrix X 6=k,k+1 guarantees that the Frobe-
nius norms of the local perturbation (to u〈k,k+1〉) and the global perturbation (to x) are
the same. Moreover, the orthogonality of the frame matrices can be easily maintained
during the sweep, since the SVD returns orthogonal singular vectors, which just need
to be assigned to u|k〉. The whole procedure is presented in Alg. 9.

As in the TT rounding procedure (Section 2.1.5), there are three strategies to choose
the new rank r′k of the decomposition (4.12):

• require the rank bound r′k 6 r (which will be hit with probability one if r 6
min{rk−1nk, nk+1rk+1}),

• require the relative accuracy level ε, and find the lowest rank r′k that provides
(4.12) such that ‖u〈k,k+1〉 − ũ〈k,k+1〉‖ 6 ε‖u〈k,k+1〉‖, or

86

Algorithm 9 Two-site DMRG for Ax = b (forward half–sweep)
Require: Initial guess t = τ({t(k)}), accuracy ε or rank bound r.
Ensure: Updated vector x = τ({x(k)}).
1: Copy x(k) = t(k), k = 1, . . . , d.
2: for k = d, . . . , 2 do {Orthogonalization of the right chunk}
3: Find LQ decomposition x〈k| = LQ, QQ∗ = I.
4: Replace x〈k| := Q, and x|k−1〉 := x|k−1〉L.
5: end for
6: for k = 1, . . . , d− 1 do {Optimization over TT cores}
7: Form Ak,k+1 and bk,k+1 by (4.10).
8: Solve Ak,k+1u

(k,k+1) = bk,k+1. {Use x(k,k+1) as an initial guess}
9: Decompose u(k,k+1) into u(k) and u(k+1) by (4.12) s.t. (u|k〉)∗u|k〉 = I.
10: Choose r′k s.t. r′k 6 r and/or ‖u〈k,k+1〉 − ũ〈k,k+1〉‖ 6 ε‖u〈k,k+1〉‖ are satisfied.
11: Replace x(k) := u(k) and x(k+1) := u(k+1).
12: end for
13: return x = τ(x(1), . . . , x(d)).

• use ε-strategy when possible, and limit r′k = r if the previous condition suggests
a larger value.

The accuracy strategy may be also classified with respect to the particular norm
used in the filtering condition. For example, if ‖x − x̃‖ = ‖u〈k,k+1〉 − ũ〈k,k+1〉‖ 6
ε‖u〈k,k+1〉‖ is satisfied in the Frobenius norm, the residual estimates as follows,

‖Ax̃− b‖
‖b‖

6
‖A‖‖x̃− x?‖
‖Ax?‖

6 cond(A)
‖x̃− x?‖
‖x?‖

6 cond(A)ε.

To control the output residual more precisely, the following trick was proposed in [51]:
we filter the singular vectors in the decomposition (4.12) not by the Frobenius criterion,
but satisfying

‖Ak,k+1ũ
(k,k+1) − bk,k+1‖ 6 ε‖bk,k+1‖

instead. Of course, this heuristics does not guarantee that the total residual is exactly
below ε, but the overhead is usually close to one, since Ak,k+1 appears to reflect the
spectrum of A relatively good. In a similar way, a criterion of the form ‖u(k,k+1) −
ũ(k,k+1)‖Ak,k+1

6 ε‖u(k,k+1)‖Ak,k+1
may be requested.

After the decomposition is done, the TT cores x(k) and x(k+1) are replaced by u(k)
and u(k+1), and the TT rank rk is substituted by r′k. The tensor structure changes in
each step, and further optimization is carried out over the updated tensor manifold.
This generally speeds up the convergence, but makes the process more difficult to
analyze. In addition, even this two-site DMRG may converge not to the true solution
x?, but to some local minimum of JA,b(τ({x(k)})), especially if started from a low-rank
initial guess.

Remark 4.2.3. Both Alg. 8 and 9 may be targeted to solve the approximation problem

min Ex?(x) = ‖x− x?‖2 = JI,x?(x).

87

As soon as the interface matrices are orthogonal, the identity is preserved in local
problems (4.7) and (4.10): for example,

Ak = X∗6=kAX 6=k = X∗6=kIX6=k = I.

Therefore, in local problems we just assign u(k) = bk or u(k,k+1) = bk,k+1, and proceed
with no additional changes in the algorithms. This approach is especially useful for
a fast approximation of matrix and Hadamard products in the TT format: a sought
vector may have the form x? = Ay with TT ranks r(x?) = r(A)r(y). Its direct
approximation is difficult, but the projection X∗6=kAy is much easier to compute if the
approximant x is of small ranks.

Remark 4.2.4. Both Alg. 8 and 9 may be formally applied to solve non-symmetric
systems. In this case, we consider the non-symmetric local systems (4.7) and (4.10) as
general-type Galerkin projections. Though such a method is not variational (i.e. no
target function for monotonous optimization can be associated), it works pretty well
in some not very complicated cases, see e.g. [51, 47, 128, 126].

Interestingly, the alternating Galerkin bases generated from the current approx-
imant may be used not only for solution of the linear system directly, but also for
derivation of optimized shift parameters in the traditional ADI methods [18]. This can
perhaps render alternating schemes from another point of view (such as Chebyshev or
Krylov theories), but currently it is unclear whether a rigorous analysis is possible.

4.3 Adaptive alternating energy minimization as a
black-box linear solver

4.3.1 A conception of enrichment

Due to the local manner of optimization, the DMRG methods (even two-site) may
loose important portions of information about the direction towards the exact solution,
and stagnate at some local minimum far from the desired threshold. Usually this
phenomenon expresses with increasing dimensionality. For example, the cascade CME
problem (see Section 3.2.3 and 5.1 for more detailed description and experiments)
extends well to an arbitrary dimension, so we study the performance of the two-site
DMRG versus the dimension in Fig. 4.4. We see that this algorithm performs well up to
the dimension 6, but later the quality of the delivered solution deteriorates drastically,
becoming worthlessly poor at the dimensions higher than 10. Is it possible to overcome
this problem and develop reliable and efficient solution and approximation schemes for
high dimensions? This section shows that it actually is.

Since [51] it was noted that it is surprisingly useful to add to the solution a TT tensor
of small ranks with randomly filled blocks from time to time. Not only the previous
accuracy level is recovered in the very next microstep (4.10), but the convergence
becomes even faster in the forthcoming iterations. In [190], devoted to the fast DMRG-
based MatVec approximation (see Remark 4.2.3), the conception of the random kick

88

Figure 4.4: Residual provided by the DMRG method vs. the dimension

2 4 6 8 10 12 14 16 18 20
−6

−5

−4

−3

−2

−1

0

was further developed: when the updated TT blocks u(k), u(k+1) are computed, the Line
11 in Alg. 9 is modified to the following rule,

x|k〉 =
[
u|k〉 s|k〉

]
, x〈k+1| =

[
u〈k+1|

0

]
, (4.13)

where s|k〉 ∈ Crk−1nk×ρk are randomly populated vectors, orthogonalized to u|k〉, and the
zero block in x〈k+1| has the sizes ρk×nk+1rk+1. The enrichment (4.13) may be seen as
a zero TT-addition to the superblock: x(k,k+1) = u(k,k+1) + s(k,k+1), but the correction
s(k,k+1) = τ(s|k〉, 0) = 0. Hence both x = τ(x(1), . . . , x(d)) and JA,b(x) are preserved by
this operation, but not the interface matrix x(<k+1). It is easy to see that

x(<k+1) =
[
u(<k+1) τ(u(<k), s(k))

]
,

and hence the frame matrix expands as follows,

X 6=k+1,k+2 :=
[
X 6=k+1,k+2 τ(u(<k), s(k))⊗ I ⊗ I ⊗ (t(>k+2))>

]
.

The second term brings new basis components for the optimization (at least inside the
k-th block), and hence may accelerate the convergence.

However, for complicated problems even this trick does not prevent the method from
trapping in local minima. Sometimes additional heuristics (e.g. artificially decreased
accuracy threshold [45, Sec. 5]) improve the situation to some extent, but they still
lack robustness.

Another difficulty of the two-site DMRG is at least cubic complexity w.r.t. the
mode size n, due to the truncation step (4.12), while the one-site DMRG possesses an
asymptotic O(n2), or even O(n), if the sparsity of the matrix blocks A(k) is employed.
Therefore, if the mode sizes are large (not any problem benefits from the QTT format),
the one-site iteration may be significantly faster than the two-site counterpart.

Fortunately, note that the expansion (4.13) equips even a one-site scheme with the
rank adaptivity. Thus the first issue of the one-site approach is resolved. The second
issue (stagnation in local minima) can be now reformulated as a question, how to

89

choose the enrichment block s(k) in a smarter way than just at random, such that both
the numerical efficiency and the global convergence in terms of full tensor elements are
satisfactory.

4.3.2 Steepest descent technique and its error analysis

We have observed that the alternating schemes perform Galerkin projections (4.7),
(4.10) of the initial system to the elements of each TT block. In this sense this approach
is similar to the classical projection methods, e.g. GMRES Alg. 7 in the TT format;
the difference is that the frame matrices do not approximate Krylov bases, and hence
the stagnation may occur. Our principal idea will be to combine the alternating and
classical schemes, enriching the frame matrix with the Krylov-type information.

Since we would like to avoid senior Krylov vectors with large TT ranks, we con-
sider the simplest technique, that provides nevertheless a geometrical convergence –
the steepest descent (SD) algorithm. The traditional SD algorithm uses only the first
Krylov vector, i.e. the residual, to drive the approximant towards the exact solution.
Since all methods in the rest of the section will be one-step, it will be convenient to
change a bit the classical notation used for iterative algorithms.

An iterative algorithm starts from the initial guess, denoted usually as x0, and gen-
erates a sequence of approximations x1, x2, . . . , s.t. xi → x? = A−1b, the exact solution.
A method is called geometrically convergent if there exists a uniform bound Ω < 1,
called the convergence rate, such that ‖x?− xi‖ 6 ‖x?− x0‖Ωi with Ω independent on
x0.

One-step techniques (SD, ALS and DMRG (in terms of full cycles over all TT cores)
belong to this family) use the same formulae in all iterations, independently on i or xi.
Therefore, we will estimate Ω from one iteration, i.e. ‖x?− x1‖/‖x?− x0‖ 6 Ω for any
x0. The subscripted number of iteration i thus becomes superfluous, and we adopt a
simplified notation, typical in the analysis of one-step methods (see e.g. [185] and the
transition from a general to the Markov process in Section 1.1.1): we agree that

• t ≡ x0 is an initial guess,

• x ≡ x1 is the newer approximation,

• z = b− At is the residual,

• c = x? − t is the initial error, and

• f = x? − x is the newer error.

The subscript is reserved for microsteps k = 1, . . . , d of the optimization over TT cores
in the alternating framework.

So, we begin with a short description of the classical steepest descent step. It
minimizes the energy function in the gradient direction, i.e.

z = −∇JA,b(t) = b− At,

h = arg min
h′

JA,b(t+ zh′) =
(z, z)

(z, Az)
.

(4.14)

90

In other terms, the new solution x = t + zh satisfies the Galerkin condition on the
residual vector, (z, b− Ax) = 0. The new error writes

f = c− zh = c− z(z, z)

(z, Az)
= (I − PA,z)c, where PA,z =

zz∗A

z∗Az

is the A–orthogonal projector onto span(z), and may be estimated as follows,

JA,b(x)

JA,b(t)
=
‖f‖2A
‖c‖2A

=
(c, (I − PA,z)

∗A(I − PA,z)c)

(c, Ac)
= 1− (c,PA,zc)A

(c, c)A
= ω2

z,z. (4.15)

The orthoprojection yields the monotonicity

JA,b(x) = ‖f‖2A 6 ‖c‖2A = JA,b(t).

For a future convenience, we feature the exact progress ωz,z, equal to the quotient
of errors. Surely, it depends a posteriori on the current initial guess t. However, it is
uniformly bounded from above, according to the Kantorovich inequality [125],

ωz,z =

√
1− (z, z)

(z, Az)

(z, z)

(z, A−1z)
6
λmax(A)− λmin(A)

λmax(A) + λmin(A)
=

cond(A)− 1

cond(A) + 1
= Ω < 1, (4.16)

where λmin and λmax are minimal and maximal eigenvalues of A, respectively.

Remark 4.3.1. For z = umin(A)+umax(A), where umin(A) and umax(A) are normalized
eigenvectors of A corresponding to λmin and λmax, (4.25) turns into an equality, that
is, the bound Ω is sharp.

As was discussed alongside with the local system (4.7), a limited conditioning of
the problem, cond(A) 6 C < ∞ is crucial to ensure an accurate solution. Therefore,
we may always assume that the a priori bound ωz,z 6 Ω < 1 exists.

Now consider the inexact SD step,

x = t+ z̃h, h = arg min
h′

JA,b(t+ z̃h′) =
(z̃, z)

(z̃, Az̃)
, (4.17)

which uses the approximate residual z̃ ≈ z, and results in the perturbed new error
f̃ = x? − x = (I − PA,z̃)c. It is important to take approximation errors into account,
since they are non-negligible in numerically efficient tensor product methods.

Unlike the inexact GMRES convergence Statement 4.1.3, where bounds on the
error ‖z − z̃‖ were required, the steepest descent scheme allows to impose very mild
limitations, based on the angle ∠(z; z̃) between z and z̃.

Statement 4.3.2 (Convergence of the inexact SD [182]). Given a SPD linear system
Ax = b and an initial vector t, consider the residual z = b − At and a vector z̃, s.t.
∠(z; z̃) 6 θ < π/2. The inexact SD step (4.17) provides the following progress,

ωz,z̃ =
‖f̃‖A
‖c‖A

6
κ̃− 1

κ̃+ 1
= Ω̃ < 1, κ̃ = cond(A)

1 + sin θ

1− sin θ
. (4.18)

91

Proof. Directly from f̃ = (I − PA,z̃)c we obtain

ω2
z,z̃ =

JA,b(x)

JA,b(t)
=
‖f̃‖2A
‖c‖2A

= 1− |(z̃, z)|2

(z̃, Az̃)(z, A−1z)
. (4.19)

To bound ωz,z̃ from above similarly to (4.16), we use the generalization of the Kan-
torovich inequality from [14, Corrolary IV],

(z̃, Az̃)(z, A−1z)

‖z̃‖2‖z‖2
6

((κ+ 1) + (κ− 1) sin θ)2

4κ
, κ = cond(A). (4.20)

Together with cos∠(z̃; z) > cos θ and identity 1+sin θ
cos θ

= cos θ
1−sin θ =

√
1+sin θ
1−sin θ it gives

|(z̃, z)|2

(z̃, Az̃)(z, A−1z)
>

4κ cos2 θ

(κ(1 + sin θ) + (1− sin θ))2
=

(
2

κ̃1/2 + κ̃−1/2

)2

,

which, plugged into (4.19), completes the proof.

In case of exact computations, z = z̃, the inequality (4.20) turns into the Kan-
torovich inequality (4.16). Another aesthetically pleasant feature of the inexact SD is
that it makes progress on any step, which is not exactly perpendicular to the residual.
In tensor product algorithms, z̃ is usually an orthogonal projection of z onto a low-rank
format (e.g. in the SVD-based TT rounding, or ALS tuned for the approximation as
in Remark 4.2.3),

z = z̃ + δz, (z̃, δz) = 0, ‖δz‖ 6 ε‖z‖. (4.21)

This gives sin∠(z̃; z) = ‖δz‖/‖z‖ 6 ε, and hence ∠(z̃; z) < π/2 as soon as ε < 1.
Interestingly, even very rough approximation thresholds may ensure a sensible rate Ω̃.
Indeed, the complements of Ω and Ω̃ to one can be related as follows,

1 6
1− Ω

1− Ω̃
6

1+ε
1−εκ+ 1

κ+ 1
=

1 + εκ−1
κ+1

1− ε
6 3, for ε 6

1

2
.

Thus, in addition to a known Ω, we may assume that ε is chosen a priori or controlled
during the computations in such a way that Ω̃ in (4.18) is a reasonable a priori bound
for the convergence rate of the inexact SD algorithm.

We will also need a wide steepest descent generalization, since the interface and
frame matrices contain sets of vectors, instead of a single residual. Given a nonsingular
matrix Z of a suitable size, the solution is corrected as follows, x = t+ Zv where

v = arg min
v′

JA,b(t+ Zv′) = (Z∗AZ)−1Z∗z. (4.22)

Compared to the ordinary (4.14), or the inexact (4.17) SD steps, the optimization (4.22)
is performed over vectors in the wider manifold t + span(Z), hence the name. The
updated error may be written as an orthogonal projection as well, f = (I − PA,Z)c,
where the A–orthogonal projector PA,Z is defined for a nonsingular Z as follows,

PA,Z = Z(Z∗AZ)−1Z∗A. (4.23)

92

The progress of the wide SD writes analogously,

ω2
z,Z =

JA,b(x)

JA,b(t)
=
‖f‖2A
‖c‖2A

= 1− (c,PA,Zc)A
(c, c)A

. (4.24)

In alternating tensor product algorithms, Z will play the role of the interface or
frame matrix. Since the TT format is linear it follows from (4.5) that z̃ = Z6=kz

(k),
that is z̃ ∈ span(Z), if Z = Z6=k. Therefore, we need to relate the progress of the wide
SD to the progress of the one-dimensional inexact method.

Lemma 4.3.3. If z̃ ∈ span(Z) then ωz,Z 6 ωz,z̃, i.e. the progress (4.24) of the wide
SD step (4.22) is not worse than the progress (4.19) of the inexact step (4.17).

Proof. For the complements of ω2
z,z̃ and ω2

z,Z to one, it holds

‖PA,z̃c‖2A = ‖PA,z̃PA,Zc‖2A 6 ‖PA,Zc‖2A.

Corollary 4.3.4. If ∠(Z; z) = minz̃∈span(Z)∠(z̃; z) 6 θ < π/2, then

ωz,Z 6
κ̃− 1

κ̃+ 1
= Ω̃ < 1, κ̃ = cond(A)

1 + sin θ

1− sin θ
. (4.25)

Proof. Apply Lemma 4.3.3 for z̃ ∈ span(Z) s.t. ∠(z̃; z) = ∠(Z; z) 6 θ, and esti-
mate ωz,z̃ by (4.18).

Remark 4.3.5. In practical computations we could expect that the progress of the
wide SD is better than the one of the inexact SD, e.g. ωz,Z � ωz,z̃ if dim(Z) � 1.
Generally, however, the inequality in Lemma 4.3.3 is sharp. For example, ωz,Z = ωz,z̃
for Z =

[
z̃ s

]
with such s that (z̃, s)A = 0 and (c, s)A = 0.

Proof. For (z̃, s)A = 0 it holds PA,Z = PA,z̃ + PA,s, and the first condition (z̃, s)A = 0
gives ‖PA,Zc‖2A = ‖PA,z̃c‖2A+‖PA,sc‖2A. The condition (c, s)A = 0 annihilates the second
term and proves the sharpness.

4.3.3 AMEn: alternating optimization meets steepest descent

All versions of the steepest descent method presented above are variational w.r.t. the
energy function: in each step, they seek a constrained energy minimizer, cf. (4.22).
Inspired by the minimal residual (MR) algorithm (see e.g. [208]), we may call the
steepest descent also the minimal energy (MEn) method.

In this section we develop the algorithm for the linear system solution in the TT
format in the DMRG fashion, equipped with the enrichment (4.13) by the wide steepest
descent subspace. This motivates the name AMEn: alternating minimal energy.

The description and analysis in this section follow [52, 53]. Though it is possible to
develop an algorithm with a global enrichment, which changes all TT blocks at a time
(the so-called ALS(t + z) method), we focus on the AMEn algorithm with the local
enrichment (4.13), which appears to be more fast and accurate.

93

Algorithm 10 AMEn for SPD linear system Ax = b (recurrent version)
Require: Initial guess t = τ({t(k)}), accuracy ε or rank bounds ρ1, . . . , ρd−1
Ensure: Updated vector x = τ({x(k)}) with ranks r′k 6 rk + ρk, and JA,b(x) < JA,b(t)
1: Form A1 = T ∗6=1AT6=1, b1 = T ∗6=1b, and solve A1u

(1) = b1.

2: Let u = τ(u(1), t(2), . . . , t(d)) and z = b− Au.
3: Approximate z ≈ z̃ = τ({z(k)}), s.t. ‖z̃ − z‖ 6 ε‖z‖ or rk(z̃) < ρk

4: Expand the basis x(1) :=
[
u(1) z(1)

]
, t(2) :=

[
t(2)

0

]
5: Consider the (d− 1)–dimensional system A>2x

(>2) = b>2 given by (4.26)
6: if d = 2 then
7: Form A>2x

(>2) = b>2 and solve it directly
8: else
9: Solve A>2x(>2) = b>2 by AMEn, obtain x>2 = τ(x(2), . . . , x(d))
10: end if
11: return x = τ(x(1), x(2), . . . , x(d))

Figure 4.5: Illustration of the AMEn algorithm in two dimensions
initial guess update core 1 expand basis wide SD update core 2[
t

] [t
] [

u
] [t

] [
u z

] [t
]

[
u z

] [t
v

] [
u z

] [x?
x?

]
[
u z

] [x
x

]
µ

ω
exact

approximate

The TT format was introduced as a recurrent generalization of the dyadic decom-
position, and similarly we begin the presentation of the AMEn algorithm with the
two-dimensional case. Note that in the enrichment (4.13) we may equivalently write
x(1) instead of x|1〉, since the left rank dimension vanishes.

The one-site DMRG Alg. 8 equipped with the enrichment (4.13) after Line 9 may
be written as follows (we omit the orthogonalization steps, and assume that all frame
matrices X 6=p are made orthogonal).

1. Copy x(k) = t(k), k = 1, . . . , d.

2. Form A1 = X∗6=1AX 6=1 = T ∗6=1AT6=1, b1 = X∗6=1b = T ∗6=1b.

3. Solve A1u
(1) = b1.

4. Replace x(1) :=
[
u(1) s(1)

]
, x(2) :=

[
t(2)

0

]
.

5. Solve (possible approximately) A>2x(>2) = b>2.

According to the discussion in the previous section, it is reasonable to choose the
expansion s(1) related to the residual. At the moment s(1) is employed, the solution

94

reads u = τ(u(1), t(>2)). The steepest descent analysis did not contain the local ALS up-
date t(1) → u(1), so we have to overload the notation slightly, and denote the quantities,
initial for the wide SD step, but not for the whole algorithm:

• approximation u = τ(u(1), t(>2)),

• residual z = b− Au, and

• error c = x? − u.

Now if we computed the approximate residual, z̃ = τ(z(1), z(>2)) ≈ z, it is natural to
take its interface matrix as the wide SD basis, Z = Z1 = z|1〉⊗ In2···nd . To achieve this,
we perform the enrichment using the first TT core of the residual, s(1) = z(1). In this
case, z̃ ∈ span(Z), and Lemma 4.3.3 will take place if we show that the error is indeed
projected onto a subspace containing Z.

The latter analysis can be conducted according to the scheme in Fig. 4.5. The
reduced system A>2x

(>2) = b>2 assembles as

A>2 = X∗6={2,...,d}AX 6={2,...,d}, b>2 = X∗6={2,...,d}b, where

X 6={2,...,d} ≡ X1 = x|1〉 ⊗ In2···nd ∈ C(n1···nd)×(r1n2···nd).
(4.26)

Due to the construction of x|1〉 it holds that Z1 ∈ span(X1). The new approximant
writes (provided the reduced system is solved exactly)

x = τ(x(1), x(>2)) = X1A
−1
>2b>2 = PA,X1x?,

and the new error may be expanded as f = x?−x = (I−PA,X1)x?. However, note that
u = U1t

(>2) with U1 = u|1〉 ⊗ In2···nd ∈ span(X1) as well. In particular, PA,X1u = u, so
the error projection is established,

f = (I − PA,X1)x? − (I − PA,X1)u = (I − PA,X1)c.

As soon as z̃ ∈ span(Z1) ⊂ span(X1), this gives

JA,b(x)

JA,b(u)
=
‖f‖2A
‖c‖2A

= 1− (c,PA,X1c)A
(c, c)A

= ω2
z,X1

, (4.27)

with the a priori bounds

ωz,X1 6 ωz,Z1 6 ωz,z̃ 6 Ω̃ < 1

for ε < 1, cf. (4.18).
To proceed in higher dimensions, it is enough to repeat the previous considerations

recurrently. Indeed, all steps except the solution of A>2x(>2) = b>2 involved only
structured calculations in the TT format. The reduced system (4.26) can be assembled
using one-block operations as well: the “do-nothing” identity In2···nd leaves all TT cores
A(2), . . . , A(d) and b(2), . . . , b(d) untouched, and only the first blocks A(1), b(1) experience
the projection on x|1〉. This yields the following TT representation of (4.26):

A>2 = τ
(
τ(A<2, A(2)), A(3), . . . , A(d)

)
, A<2

γ1
=

(
x|1〉
)∗
A

(1)
γ1 x

|1〉,

b>2 = τ
(
τ(b<2, b(2)), b(3), . . . , b(d)

)
, b<2

β1
=

(
x|1〉
)∗
b
(1)
β1
,

(4.28)

95

where γ1 = 1, . . . , r1(A), β1 = 1, . . . , r1(b). Note that b<2 ∈ Cr1(x)×r1(b) and hence
τ(b<2, b(2)) ∈ Cr1(x)n2×r2(b) is feasible. Similarly, the first TT block of the matrix A>2 is
effectively of the one-core size, so that (4.28) is a (d− 1)-dimensional system with the
same TT ranks r2, . . . , rd−1 of the initial data. Moreover, as soon as the orthogonality
of x|1〉 is ensured, the conditioning is preserved, cond(A>2) 6 cond(A).

Therefore, the reduced system may be treated using the same AMEn method, which
is summarized in Alg. 10. It also gives a recurrent flavor to the convergence analysis.

In the first step, we should also account for the fact that A>2x(>2) = b>2 is not
solved exactly, since the solution x(>2) is delivered by a recursive call to the AMEn and
differs from the exact one x(>2)? = A−1>2b>2. We expand

x? − x = x? −X1x
(>2)
? +X1x

(>2)
? −X1x

(>2) = (I − PA,X1)x? +X1(x
(>2)
? − x(>2)),

where the second term is A–orthogonal to the first one we have already estimated
nearby (4.27). It gives

‖x? − x‖2A
‖x? − u‖2A

= ω2
z,X1

+
‖X1(x

(>2)
? − x(>2))‖2A
‖x? − u‖2A

.

By construction, the norm equivalence holds, ‖X1v‖A = ‖v‖A>2
. Hence the previous

equation rewrites as

‖f‖2A
‖c‖2A

= ω2
z,X1

+
‖x(>2)? − x(>2)‖2A>2

‖c‖2A
· ‖X1(x

(>2)
? − t(>2))‖2A

‖x(>2)? − t(>2)‖2A>2

, (4.29)

where t(>2) = t(2,...,d) is the initial guess in the reduced problem. Similarly to the d = 2
case it holds X1x

(>2) = PA,X1x?. At the same time

X1t
(>2) = τ(x(1), t(2), . . . , t(d)) = u = PA,X1u,

since u ∈ span(X1). We plug X1(x
(>2)
? − t(>2)) = PA,X1(x? − u) = PA,X1c into (4.29)

and compare the result with (4.27). This gives the following estimate,

JA,b(x)

JA,b(u)
= ω2

z,X1
+
‖PA,X1c‖2A
‖c‖2A

‖x(>2)? − x(>2)‖2A>2

‖x(>2)? − t(>2)‖2A>2

= ω2
z,X1

+ (1− ω2
z,X1

)
JA>2,b>2

(x(>2))

JA>2,b>2
(t(>2))

.

(4.30)
The last term in (4.30) quantifies in a recurrent way, since it is returned by the

same AMEn algorithm. One half-sweep of AMEn can be seen, therefore, as a sequence
of embedded reduced problems A>kx(>k) = b>k, where

A>k = X∗<kAX<k ∈ C(rk−1nk···nd)×(rk−1nk···nd), b>k = X∗<kb,

X<k = x|<k〉 ⊗ Ink···nd ∈ C(n1···nd)×(rk−1nk···nd), X<1 = In1···nd .
(4.31)

For each reduced problem, the one-step quantities are defined as follows.

• Initial guess t(>k) = τ(t(k), . . . , t(d)),

96

• ALS-updated solution uk = τ(u(k), t(k+1), . . . , t(d)),

• new solution x(>k) = τ(x(k), . . . , x(d)), and

• exact solution x(>k)? = A−1>kb>k,

• initial error ck = x
(>k)
? − uk,

• residual zk = b>k − A>kuk ≈ z̃k = τ(z
(k)
k , . . . , z

(d)
k), and

• new error fk = x
(>k)
? − x(>k).

The enrichment is performed using the first TT block of the reduced residual,

x|k〉 =
[
u|k〉 z

|k〉
k

]
, t〈k+1| =

[
t〈k+1|

0

]
.

Now, we may measure the progresses in each microstep, provided by both ALS and
wide SD steps,

µ2
k =

‖x(>k)? − uk‖2A>k

‖x(>k)? − t(>k)‖2A>k

6 1, ω2
k = 1−

(ck,PA>k,Xkck)A>k

(ck, ck)A>k

< 1, (4.32)

where Xk = x|k〉 ⊗ Ink+1···nd , after the enrichment x|k〉 =
[
u|k〉 z

|k〉
k

]
(and orthogonal-

ization).

Lemma 4.3.6. In definitions set above, a single iteration (half-sweep) of Alg. 10 pro-
vides the progress

ω2
AMEn =

‖x? − x‖2A
‖x? − t‖2A

=
d−1∑
k=1

ω2
k

k−1∏
j=1

(1− ω2
j)

k∏
j=1

µ2
j = φ2

(1:d). (4.33)

Proof. For d = 2 we use (4.27) and the first definition in (4.32) to establish

JA,b(x)

JA,b(t)
=

JA,b(u)

JA,b(t)

JA,b(x)

JA,b(u)
= µ2

1ω
2
1,

that gives the base of the recursion. Now we suppose that (4.33) holds in d − 1
dimensions and prove it recurrently for d dimensions. From (4.30) we see that

JA,b(x)

JA,b(t)
= µ2

1

(
ω2
1 + (1− ω2

1)
JA>2,b>2

(x(>2))

JA>2,b>2
(t(>2))

)
= µ2

1

(
ω2
1 + (1− ω2

1)φ2
(2:d)

)
.

Plugging the assumption φ2
(2:d) =

∑d−1
k=2 ω

2
k

∏k−1
j=2(1−ω2

j)
∏k

j=2 µ
2
j into the last equation,

we obtain (4.33) and complete the proof.

97

In the same way as in the steepest descent, we had to denote exact error relations
as ωk and use them to establish the a posteriori rate (4.33). Now we have to bound
all featuring quantities, as well as the total progress by uniform a priori estimates less
than one.

In terms of definition (4.24), ωk = ωzk,Xk , and since z̃k ∈ span(Zk) ⊂ span(Xk), the
upper bound (4.25) applies as follows,

ωk 6
κ̃k − 1

κ̃k + 1
= Ω̃k < 1, κ̃k = cond(A>k)

1 + sin θk
1− sin θk

, (4.34)

where θk = ∠(zk;Xk) 6 ∠(zk; z̃k). If the accuracy criterion ‖zk−z̃k‖ 6 ε‖zk‖ is enforced
for all approximation steps (Line 3) in Alg. 10, then sin θk 6 ε is known a priori. If
the rank bound criterion is applied, θk is estimated by the delivered relative accuracy
of the approximation ∠(zk; z̃k). Since

A>k+1 = X∗<k+1AX<k+1 = (x|k〉 ⊗ Ink+1···nd)
∗A>k(x

|k〉 ⊗ Ink+1···nd), (4.35)

the condition numbers cond(A>k) are related as follows

cond(A) = cond(A>1) > . . . > cond(A>k−1) > cond(A>k) > . . . > cond(A>d). (4.36)

Plugging θk 6 θ = maxk ∠(zk; z̃k) and cond(A>k) 6 cond(A) into (4.34), we obtain

ωk 6 Ω̃k =
κ̃k − 1

κ̃k + 1
6
κ̃− 1

κ̃+ 1
= Ω̃ < 1, κ̃ = cond(A)

1 + sin θ

1− sin θ
, (4.37)

which gives a uniform upper bound for all ωk.

Theorem 4.3.7. AMEn Alg. 10 is convergent if the approximation error allowed in
Line 3 satisfies θ = maxk=1,...,d−1∠(zk; z̃k) < π/2. The convergence rate (4.33) of a
single iteration (half-sweep) is bounded from above, s.t. the following inequality holds

1− φ2
(1:d) > (1− Ω̃2)d−1, Ω̃ =

κ̃− 1

κ̃+ 1
, κ̃ = cond(A)

1 + sin θ

1− sin θ
. (4.38)

Proof. Note that φ(1:d) in (4.33) is monotonous for 0 6 ωk 6 Ω̃ and 0 6 µk 6 1,

k = 1, . . . , d − 1. By plugging the upper bounds µk = 1 and ωk = Ω̃ from (4.37)
into (4.33), we prove (4.38).

Before highlighting the practical aspects of efficient implementation of the AMEn
algorithm, we compare it with another type of adaptive one-site DMRG scheme.

4.3.4 Enrichment versus the 1.5-site DMRG

Both the two-site DMRG and AMEn are rank-adaptive algorithms. However, the
modification of ranks is performed by different techniques. The DMRG method uses
the two-dimensional separation of variables, which may return any rank up to the
row or column sizes, e.g. r′k 6 rk−1nk or r′k 6 nk+1rk+1. Thus, the rank may be
multiplicatively increased by a factor n. The projection subspaces (such as the frame

98

matrix X 6=k) are generally replaced by the new ones, since the SVD distributes the
solution correction over all singular vectors.

In AMEn, the rank growth is additive, i.e. r′k 6 rk + rk(z̃) due to the expansion of
TT cores. The same holds for the interface matrices: after the enrichment (4.13), the
k-th block is not approximated until the next sweep, so that both u(k) and z(k) belong
to span(x(6k)) exactly.

This consideration will help to understand the differences between AMEn and the
rank-adaptive one-site method from [240], the so-called corrected one-site DMRG, de-
veloped in quantum physics. The latter algorithm may be explained as follows: when
the current TT block is updated (cf. Line 8 in Alg. 8), we assemble the Gram matrix
G(k) = u|k〉

(
u|k〉
)∗, and perturb it with some correction, G̃(k) = G(k) + aH(k), where

a > 0 is some (heuristic) weight, and H(k) = p|k〉
(
p|k〉
)∗ is the Gram matrix of the

perturbation vector, discussed below. After that, the modified Gram matrix is de-
composed back to the truncated eigenvalue decomposition, G̃(k) ≈ x|k〉 diag(λ̃)

(
x|k〉
)∗,

returning the (orthogonal) eigenvectors to the k-th TT block of the solution.
It is easy to see that though rank(G(k)) = rk, and any filtering of eigenvalues in

G(k) = U diag(λ)U∗ with a positive threshold will give r′k = rk, it is no more true for
G̃(k), and the ε-filtering of λ̃ may return a different rank value r′k.

For the purpose of approximation, the eigenvalue decomposition of Gram matrices
is equivalent to the singular value decomposition of the concatenated columns of u and
p, [

u|k〉
√
ap|k〉

]
≈ x|k〉 diag (σ)V ∗, σ2 = λ̃. (4.39)

This looks very similar to the enrichment (4.13). The difference is in the approximate
equality, while the enrichment, followed by the orthogonalization

[
u|k〉 s|k〉

] [t〈k+1|

0

]
= x|k〉 ·R

[
t〈k+1|

0

]
= x|k〉

[
Rut

〈k+1|

0

]
,
(
x|k〉
)∗
x|k〉 = I,

is exact. Recalling the discussion in the beginning of this subsection, we formulate the
first difference between AMEn and corrected one-side DMRG: AMEn does not affect
the solution components by the enrichment, while DMRG mixes the information from
the solution and the expansion in the updated singular vectors. Therefore, a wise
tuning of the weight a is crucial: if a is small, the correction will be eliminated by the
ε-thresholding in the SVD; if a is too large, the solution will be significantly perturbed.

As a correction vector, [240] suggests to use a surrogate of the Krylov vector. De-
note p = A>kuk = τ(p(k), . . . , p(d)), where according to (2.12), p(k) =

[
p
(k)
ηk (αk−1ik)

]
∈

Crk−1nk×rkrk(A), and ηk = αk, γk. Now the perturbation takes p|k〉 = p(k) directly, with-
out the right-orthogonalization of p(k+1), . . . , p(d). Though it appears to be sufficient
in practical computations of the ground states of spin chains, it is possible to suggest
a matrix A>k such that p(k) will give a very poor information on p, see [54] for more
details.

Finally, the corrected one-site DMRG can be seen as a special case of the two-site
DMRG. The left-hand side of (4.39) has the sizes rk−1nk × (1 + rk(A))rk. Comparing
this with the two-site separation (4.12), we may introduce an additional variable b =

99

1, . . . , 1 + rk(A), such that[
u|k〉

√
ap|k〉

]
=
[
x̂(k)(ik, b)αk−1,αk

]
may be seen as a superblock, and pretend that we seek a solution of the form

x̂ = [x̂(i1, . . . , ik, b, ik+1, . . . , id)] = τ(x(1), . . . , x(k−1), x̂(k), x(k+1), . . . , x(d)). (4.40)

The corresponding algorithm can be called a “1.5-site” DMRG, since the size of x̂(k) is
larger than the size of x(k), but smaller than the size of the two-site superblock x(k,k+1)

for large n.
The representation (4.40) mirrors the so-called block TT format [48], since we may

say that x̂ encapsulates several vectors enumerated by the index b,

x̂ = [x̂b]
1+rk(A)
b=1 , where x̂b+1 =

√
apb, b = 1, . . . , rk(A)

are the perturbation vectors, and x̂1 = x, our sought solution.
By means of the SVD (4.39), the enumerator b may be replaced from x(k) to x(k+1)

or vice versa, i.e. moved along the tensor train, changing the order of b and i1, . . . , id.
This technique was used in [48] to store and compute several extreme eigenvectors
simultaneously in the common TT format. The same procedure takes place in the
corrected one-site DMRG from [240]. However, when we apply (4.39) to the set of
extreme eigenvectors, they are either normalized, and the truncation error distributes
fairly among the components, or scaled by physically justified weights. In the corrected
one-site DMRG, neither the surrogates p are meaningful for something except the
technical purposes, nor the weight a can be sensibly suggested.

4.4 Practical aspects of DMRG and AMEn algorithms
Algorithms 8, 9 and 10 contain the most important steps, required for analysis and
getting the idea across. In this section we focus on the implementation details that
improve the performance and make the practical methods efficient. The most powerful
insight is the subsequent sweeping along the tensor train, k = 1, 2, . . . , d, since it allows
to maintain the whole complexity linear in the problem dimension d, reusing some data
and performing only local (one- or two-block) calculations.

Since many operations will involve four-dimensional tensors, we introduce a couple
of new reshapes.

Definition 4.4.1. Given a tensor X(k) =
[
X(k)(α, i, j, β)

]
∈ Cp×m×n×q. Denote the

following matricisations.

• Outer folding X〈k〉 ∈ Cpm×nq, X〈k〉(αi, jβ) = X(k)(α, i, j, β).

• Inner folding X〉k〈 ∈ Cmn×qp, X〉k〈(ij, βα) = X(k)(α, i, j, β).

100

4.4.1 Computation of local systems

In each optimization step we create and solve the local system Aku
(k) = bk by (4.7).

As shown in Fig. 4.3, it can be assembled from the TT cores of A, x and b in O(d) time
for each k, while for the whole sweep the straightforward complexity is O(d2).

However, only small corrections (similar to (4.35)) are required to update the local
systems between microsteps k = 1, 2, . . . , d. Indeed, we saw in (4.28) that one reduc-
tion step involved effectively only one TT block. Generally we may compute the left
reductions A<k as follows. We are given A<k ∈ Crk−1×rk−1×rk−1(A), and may consider
its either three- or four-dimensional reshape A〈<k| = A〈<k〉 ∈ Crk−1×rk−1rk−1(A). Then
compute:

1. p〈k〉 =
(
x〈k|
)∗

A〈<k| ∈ Cnkrk×rk−1rk−1(A);

2. q〈k〉 = p〉k〈A〈k〉 ∈ Crkrk−1×nkrk(A);

3. A〉<k+1〈 =
(
x|k〉
)>
q〉k〈 ∈ C1·rk×rk(A)rk ,

(4.41)

followed by the “inverse” reshape A〈<k+1〉 ∈ Crk·1×rkrk(A), which permutes the dimen-
sions to the initial order, as in A<k. Note that A〈k〉 in the second line is just the reshape
of the matrix TT block A(k) according to Def. 4.4.1. In the third line, we write ex-
plicitly a dummy dimension of size 1 to emphasize how exactly the four-dimensional
reshapes are applied.

Similar recurrence takes place for the right reductions A>k ∈ Crk(A)×rk×rk .

1. p〈k〉 = x|k〉
(
A|>k〉

)> ∈ Crk−1nk×rk(A)rk ;

2. q〈k〉 = A〈k〉p〉k〈 ∈ Crk−1(A)nk×rkrk−1 ;

3. A〉>k−1〈 = x̄〈k|q〉k〈 ∈ Crk−1·1×rk−1rk−1(A),

(4.42)

and A〈>k−1〉 ∈ Crk−1(A)rk−1×1·rk−1 recovers the correct order of dimensions.
For the initialization purposes, we take A<1 = A>d = 1. Now the one-site local

system (4.7) may be assembled as Ak = τ(A<k, A(k),A>k), and the two-site system
(4.10) writes Ak,k+1 = τ(A<k, A(k), A(k+1),A>k+1). That is, Figure 4.3 of the one-site
system can be detailed as shown in Fig. 4.6.

Moreover, in an iterative local solver, the product w(k) = Akv
(k) for any vector

v(k) ∈ Crk−1nkrk may be computed efficiently in the following structured form, see also
[51].

1. p〈k〉 = v|k〉
(
A|>k〉

)> ∈ Crk−1nk×rk(A)rk ;

2. q〈k〉 = A〈k〉p〉k〈 ∈ Crk−1(A)nk×rkrk−1 ;

3. w〈k| = A〈<k|
(
q〉k〈
)> ∈ Crk−1×nkrk .

(4.43)

The complexity of this procedure, as well as of the reductions (4.41),(4.42) can be
easily estimated from the sizes of matrix products,

work [(4.41), (4.42), (4.43)] = O(nr3r(A)) + O(n2r2r(A)2). (4.44)

The second term arises from the multiplication with A〈k〉, and can be performed in
O(nr2r(A)2) operations if the TT block A(k)(ik, jk) is sparse w.r.t. the mode indices
ik, jk. Thus, the total complexity becomes linear in the mode size.

101

Figure 4.6: The linear system Aku
(k) = bk (4.7) assembled from the TT cores A(k), b(k),

and the interface reductions A<k, A>k, b<k, b>k.

A(k)

u(k)

A(k+1)A(k−1) A(d)A(1)

x(k+1)x(k−1) x(d)x(1)

x(k+1)x(k−1) x(d)x(1)

x(k+1)x(k−1) x(d)x(1)

b(k) b(k+1)b(k−1) b(d)b(1)

j1 jk−1
jk jk+1 jd

i1 ik−1 ik
ik+1 id

i1 ik−1
ik ik+1 id

γ1 γk−2 γk−1 γk γk+1 γd−1

α′1 α′k−2 α′k−1 α′k α′k+1 α′d−1

α1 αk−2 αk−1 αk αk+1 αd−1

α1 αk−2 αk−1 αk αk+1 αd−1

β1 βk−2 βk−1 βk βk+1 βd−1

=

A<k

b<k

A>k

b>k

For the computations of the right-hand side reductions b<k ∈ Crk−1×rk−1(b), b>k ∈
Crk(b)×rk (cf. (4.28)), Equations (4.41) and (4.42) can be reused, by substituting x with
b in the first lines, and skipping the second lines. In fact, b<k+1 are nothing else than
the intermediate matrices sk in the TT scalar product Algorithm 1.

4.4.2 Truncation of the solution

The AMEn algorithm increases the TT ranks of the solution in each step. Sometimes,
however, it is useful to reduce them, since the wide SD may deliver a sub-optimal
solution for the given ranks. To do this, we may apply the TT-SVD rounding Algorithm
4 to the solution after each microstep. Since the interface matrices are orthogonal, the
SVD step may be applied at low cost: we just add the truncation of u|1〉 between Lines
1 and 2 of Alg. 10. More detailed description is provided in the non-recurrent AMEn
versions below.

The convergence analysis in Section 4.3.3 does not depend on this truncation. In-
deed, since the residual is computed after the perturbation of the solution, we may
relate the truncation error to the initial guess, similarly to Lemma 4.1.1. The error
overhead Ω/(1 − Ω), as provided by Lemma 4.1.1 and Theorem 4.3.7, may look pes-
simistic, but the actual a posteriori convergence rate (as in Lemma 4.3.6) is usually
much smaller than Ω or Ω̃, and the effect of the solution truncation can be neglected.

102

4.4.3 Approximation of the residual: SVD method

In Line 3 of the AMEn Alg. 10, the formal complexity of the TT rounding procedure is
O((d−k+1)n(rr(A)+r(b))3). However, we need only one TT core of the approximate
residual to insert into the enriched block. Let us see how we can write the algorithm
such that the complexity of each microstep does not grow with d.

According to the TT arithmetics Sec. 2.1.5, the first TT block of the exact residual
zk = b>k − A>kuk writes as follows,

(ẑ
(k)
k)ηk =

{
τ(b<k, b

(k)
βk

), ηk = 1, . . . , rk(b),

−τ(A<k, A
(k)
γk)u

|k〉
αk , ηk = rk(b) + αkγk = rk(b) + 1, . . . , rk(b) + rkrk(A),

(4.45)
such that z(k)k ∈ Crk−1nk×(rk(b)+rkrk(A)), and the rest blocks read

ẑ
(d)
k (id) =

[
b(d)(id)∑

jd
A(d)(id, jd)⊗ t(d)(jd)

]
,

ẑ
(p)
k (ik) =

[
b(p)(ik) ∑

jk
A(p)(ik, jk)⊗ t(p)(jk)

]
, for p = k + 1, . . . , d− 1.

(4.46)

We see that the updated solution enters only the k-th block, while all the rest ones
(4.46) depend on the previous iterate t. Hence, the blocks ẑ(p)k = ẑ(p) are the same
for all k < p, and may be precomputed once before the AMEn sweep. The same
concerns the (right) orthogonalizations of ẑ(p), which are performed before the sweep,
constituting the first part of the TT-SVD Alg. 4. As soon as all d− 1 LQ factors are
stored during the orthogonalization, they may be later multiplied with ẑ(k)k , and only
one additional SVD delivers the approximate block z(k)k .

We summarize the whole procedure in the non-recurrent counterpart of Alg. 10,
the AMEnsvd Algorithm 11. The complexity of each LQ or SVD step for the residual
is O(n(rr(A) + r(b))3), i.e. O(nr6) if the ranks of the matrix and the solution are
comparable.

4.4.4 Approximation of the residual: ALS method

To reduce the complexity w.r.t. TT ranks, we can substitute the TT-SVD by the one-
site DMRG (or ALS) Alg. 8, which is applied to the approximation problem JI,z(z̃) =
‖z − z̃‖2 → min.

The ALS algorithm, tuned for the particular form of z = b−Au (4.46), can be writ-
ten with O(d) complexity featuring additional reductions, similar to (4.41), (4.42). We
assume that the initial guess for the residual is given in the TT format, z̃ = τ({z(k)}),
with ranks ρ = (ρ1, . . . , ρd−1), as well as the current matrix A = τ({A(k)}) and the
solution x = τ({x(k)}). Now we introduce A<kz ∈ Cρk−1×rk−1×rk−1(A), constituting parts
of the projections Z∗6=kAX 6=k, and evaluate them recurrently as follows.

1. p〈k〉 =
(
z〈k|
)∗

A
〈<k|
z ∈ Cnkρk×rk−1rk−1(A);

2. q〈k〉 = p〉k〈A〈k〉 ∈ Cρkrk−1×nkrk(A);

3. A
〉<k+1〈
z =

(
x|k〉
)>
q〉k〈 ∈ C1·rk×rk(A)ρk ,

(4.47)

103

Algorithm 11 AMEnsvd, one iteration
Require: Initial guess t = τ({t(k)}) in the TT format (2.9), accuracy ε or rank bound

r for the solution, accuracy ε or rank bound ρ for the residual.
Ensure: Updated vector x = τ({x(k)}) s.t. r′ 6 r + ρ
1: Copy x(k) = t(k), k = 1, . . . , d.
2: Compute the residual z = τ({ẑ(p)}) by (4.46).
3: Initialize A>d = A<1 = b>d = b<1 = 1.
4: for k = d, . . . , 2 do {Orthogonalization and reduction}
5: Find LQ decomposition x〈k| = LQ, QQ∗ = I.
6: Replace x〈k| := Q, and x|k−1〉 := x|k−1〉L.
7: Compute right reductions A>k−1, b>k−1 by (4.42).
8: Find LQ decomposition ẑ〈k| = Lk−1Q, QQ

∗ = I.
9: Replace ẑ|k−1〉 := ẑ|k−1〉Lk−1, store Lk−1.
10: end for
11: for k = 1, . . . , d do {Optimization over TT cores}
12: Form bk = τ(b<k, b(k), b>k), and {optional} Ak = τ(A<k, A(k),A>k).
13: Solve Aku(k) = bk. {Take x(k) as an initial guess, use (4.43)}
14: Compute SVD u|k〉 ≈ UΣV ∗ s.t.

∥∥u|k〉 − UΣV ∗
∥∥ 6 ε

∥∥u|k〉∥∥ or rank (Σ) 6 r,
replace u|k〉 := UΣV ∗. {Optional}

15: if k 6= d then {Enrichment, orthogonalization and reduction}
16: Find (4.45) and SVD ẑ

|k〉
k Lk ≈ z

|k〉
k ΣV ∗, s.t.

∥∥∥ẑ|k〉k Lk − z|k〉k ΣV ∗
∥∥∥ 6 ε

∥∥∥ẑ|k〉k Lk

∥∥∥
or rank (Σ) 6 ρ.

17: Expand x|k〉 :=
[
U z

|k〉
k

]
, x〈k+1| :=

[
x〈k+1|

0

]
.

18: Find QR decomposition x|k〉 = QR, Q∗Q = I.
19: Replace x|k〉 := Q, and x〈k+1| := Rx〈k+1|.
20: Compute left reductions A<k+1, b<k+1 by (4.41).
21: end if
22: end for
23: return x = τ(x(1), . . . , x(d)).

and the “inverse” reshape A
〈<k+1〉
z ∈ Cρk·1×rkrk(A) permutes the dimensions to the same

order as in A<kz .
The right reductions A>kz ∈ Crk(A)×ρk×rk we compute analogously.

1. p〈k〉 = x|k〉
(
A
|>k〉
z

)>
∈ Crk−1nk×rk(A)ρk ;

2. q〈k〉 = A〈k〉p〉k〈 ∈ Crk−1(A)nk×ρkrk−1 ;

3. A
〉>k−1〈
z = z̄〈k|q〉k〈 ∈ Cρk−1·1×rk−1rk−1(A),

(4.48)

followed by the “inverse” reshape A
〈>k−1〉
z ∈ Crk−1(A)ρk−1×1·rk−1 . By substituting x with

b, and omitting the second lines in (4.47), (4.48), one derives the formulae for b<kz ∈
Cρk−1×rk−1(b) and b>kz ∈ Crk(b)×ρk .

The microstep update in Alg 8 (Line 8) reduces to z(k) = bzk , and taking into

104

account the parts (4.47), (4.48), and the block structure (4.46), writes

z(k) = τ(b<kz , b(k), b>kz)− τ(A<kz , A(k),A>kz)u(k), (4.49)

where the structured computation (4.43) may be employed for the latter MatVec.
Comparing the sizes of Az, bz with A, b, we may estimate the complexity counterpart
of (4.44),

work [(4.47), (4.48)] = O(nr2ρr(A)) + O(nrρ2r(A)) + O(n2rρr(A)2).

If the TT ranks of the residual ρk are kept significantly smaller than the ranks of the
matrix and the solution, the complexity of the ALS step is cubic w.r.t. the characteristic
ranks, O(n2r3), which is essentially smaller than O(nr6) of the AMEnsvd algorithm.

It appears that even one microstep (4.49) between the updates of x is enough
to maintain a sufficiently good approximation z̃. It allows to conduct the AMEn
for the solution Ax = b and the ALS for the approximation z̃ ≈ z simultaneously,
synchronizing the steps in both methods, as shown in the AMEnals Algorithm 12.

Note that the reduced residual approximation z̃k ≈ zk, in particular the enrichment
block z(k)k in Line 16, is computed using the interface blocks z(p), p = k+1, . . . , d, shared
with the global residual. This mirrors the reuse of the LQ factors in the AMEnsvd
Alg. 11. However, as soon as the convergence of the one-site DMRG is not established
globally, nothing can be rigorously said about the approximation quality of z(p) for
either z or zk. In practice, nevertheless, a significant speed-up overweights the lack of
guarantee for this heuristics.

4.4.5 AMEn and DMRG for the QTT-Tucker format

In the same way as in the QTT-Tucker rounding section 2.2.5, the alternating opti-
mization methods may be written, applying their TT counterparts to the Tucker core
and extended factors, cf. Alg. 5. The DMRG Algorithms 8,9, as well as the AMEn
algorithms 11,12 should be only modified to return the reductions A<k,A>k, b<k, b>k

in addition to the solution. Indeed, suppose an optimization over the k-th extended
factor (2.21) is finished. Then the last reduction A

f(k,<1)
γk = (xf(k))∗Af

(k)

γk
xf(k) ∈ CRk×Rk ,

γk = 1, . . . , Rk(A), stands for the Tucker factor of the matrix, required for the optimiza-
tion over the Tucker core. Vice versa, the reductions computed during the core update,
e.g. Ac(<k) ∈ Crk−1×rk−1×rk−1(A), will be used as the last TT blocks of the matrix, re-
quired for the optimization over the extended factor. The diagrammatic notations of
the corresponding calculations can be seen in [44]. However, a detailed description like
in Alg. 11, 12 would be too lengthy, and we prefer to omit it here.

105

Algorithm 12 AMEnals, one iteration
Require: Initial guess t = τ({t(k)}) in the TT format (2.9), accuracy ε or rank bound

r for the solution, initial guess z̃ = τ({z(k)}) for the residual.
Ensure: Updated vectors x = τ({x(k)}) s.t. r′ 6 r + ρ, and z̃ = τ({z(k)}).
1: Copy x(k) = t(k), k = 1, . . . , d.
2: Initialize A>d = A<1 = b>d = b<1 = A>dz = A<1

z = b>dz = b<1
z = 1.

3: for k = d, . . . , 2 do {Orthogonalization and reduction}
4: Find LQ decomposition x〈k| = LQ, QQ∗ = I.
5: Replace x〈k| := Q, and x|k−1〉 := x|k−1〉L.
6: Find LQ decomposition z〈k| = LQ, QQ∗ = I.
7: Replace z〈k| := Q, and z|k−1〉 := z|k−1〉L.
8: Compute reductions A>k−1, b>k−1 by (4.42), A>k−1z , b>k−1z by (4.48).
9: end for
10: for k = 1, . . . , d do {Optimization over TT cores}
11: Form bk = τ(b<k, b(k), b>k), and {optional} Ak = τ(A<k, A(k),A>k).
12: Solve Aku(k) = bk. {Take x(k) as an initial guess, use (4.43)}
13: Compute SVD u|k〉 ≈ UΣV ∗ s.t.

∥∥u|k〉 − UΣV ∗
∥∥ 6 ε

∥∥u|k〉∥∥ or rank (Σ) 6 r,
replace u|k〉 := UΣV ∗. {Optional}

14: if k 6= d then {Enrichment, orthogonalization and reduction}
15: Update z(k) = τ(b<kz , b(k), b>kz)− τ(A<kz , A(k),A>kz)u(k). {Use (4.43)}
16: Update z(k)k = τ(b<k, b(k), b>kz)− τ(A<k, A(k),A>kz)u(k). {Use (4.43)}

17: Expand x|k〉 :=
[
U z

|k〉
k

]
, x〈k+1| :=

[
x〈k+1|

0

]
.

18: Find QR decomposition x|k〉 = QR, Q∗Q = I.
19: Replace x|k〉 := Q, and x〈k+1| := Rx〈k+1|.
20: Find QR decomposition z|k〉 = QR, Q∗Q = I.
21: Replace z|k〉 := Q, and z〈k+1| := Rz〈k+1|.
22: Compute reductions A<k+1, b<k+1 by (4.41), A<k+1

z , b<k+1
z by (4.47).

23: end if
24: end for
25: return x = τ(x(1), . . . , x(d)), z̃ = τ(z(1), . . . , z(d)).

106

Chapter 5

Verification with applications:
numerical experiments

In this chapter we present various numerical examples, demonstrating particular fea-
tures of the tensor product methods and algorithms, and serving as “proofs-of-concept”.

We focus mainly on the chemical master and the Fokker-Planck equations, outlined
in the first part of this thesis. Some “sanity” checks, such as the solution of the high-
dimensional Poisson equation, will not be presented. The reader is refereed to the
corresponding papers.

Most of the experiments are taken from the (co-)authored papers, e.g. [44, 46, 53].
Some verification tests, which were previously announced in a reduced form (due to
e.g. a journal page limit), are now extended and investigate certain effects of secondary
importance. Other experiments, concerning the proofs-of-concepts for particular ap-
plications, are presented with no changes.

The implementation of methods and tests is based on the MATLAB package TT-
Toolbox http://github.com/oseledets/TT-Toolbox, co-developed by author. The
TT-Toolbox provides an object-oriented framework for TT, QTT and QTT-Tucker op-
erations, and contains both the basic algebra (additions, products and roundings, cf.
Sec. 2.1.5) and advanced DMRG and AMEn algorithms, for example:
• dmrg_solve3.m two-site DMRG algorithm 9 for linear systems;
• amen_solve2.m AMEn method for linear systems (encapsulates both Alg. 11

and 12);
• amen_mv.m AMen method for the MatVec approximation (Alg. 12 tuned

for A = I and b = Gf , see Remark 4.2.3).
Some bottlenecks (such as the GMRES algorithm for the local system (4.7) solution)
were refactored to Fortran90 and C MEX libraries to improve the performance. The
computations were conducted on Linux workstations with 2.8 GHz AMD Opteron CPU
at MPI MiS, Leipzig and 2.0 GHz Intel Xeon CPU at INM RAS, Moscow.

107

http://github.com/oseledets/TT-Toolbox

Figure 5.1: Cascade signaling network

S1 S2 · · · Sd

5.1 Chemical master equation for biological networks

5.1.1 Short time cascade: comparison of methods

We start with the verification of AMEn methods, and their comparison with the DMRG
on the discretized chemical master equation for a d-dimensional cascade gene regulatory
network, following [53]. A cascade process occurs when adjacent genes produce proteins
which influence on the expression of a succeeding gene, see Fig. 5.1. This is a typical
model in genetic networks; as an example, the lytic phase of the λ-phage system [204]
can be considered. In Fig. 5.1, the arrows denote feedbacks between species arising
from the propensity rates wm: an arrow going from the i-th to j-th component means
that the rate of the reaction involving the j-th protein depends on the copy number
of the i-th one. The number of reactions in the cascade system is M = 2d, according
to the two classes of processes: self-dependent destructions (which model e.g. escapes
of molecules through the cell membrane), and neighbor-driven creations (with some
saturating propensity, e.g. Michaelis-Menten).

The stoichiometry assumes monomolecular reactions: all destruction reactions, la-
beled with m = 1, . . . , d, decrease the copy number of the m-th substance by one,
i.e. zm = −em, the negative m-th unit vector, and the creation reactions, labeled
with m = d + 1, . . . , 2d, increase the copy numbers by one, thus having positive unit
stoichiometric vectors zm = em−d.

As was noted, the m-th destruction propensity depends only on xm, and its rank-1
decomposition reads

wm(i) = e(i1) · · · e(im−1) · w̌m(im) · e(im+1) · · · e(id),

where e(ik) = 1 ∀ik = 0, . . . , nk − 1. The corresponding part of the operator is of the
Laplace form

A1 = D1 ⊗ J0 · · · ⊗ J0 + · · ·+ J0 ⊗ · · · ⊗Dd, Dm = (J−1 − J0) diag(w̌m), (5.1)

where Jz are according to (1.10). It was already discussed that (5.1) is representable
in the TT format with all ranks 2.

In the creation part, the propensities depend on the copy numbers of the previous
species, i.e. wm = ŵm(im−d−1), for m = d+ 2, . . . , 2d. Thus, the second operator part
sums the two-variate terms,

A2 = D1
1 ⊗ J0 · · · ⊗ J0 +D2

1 ⊗D2
2 ⊗ J0 · · · ⊗ J0 + · · ·+ J0 · · · ⊗Dd

d−1 ⊗Dd
d, (5.2)

where Dm
m−1 = diag(ŵm+d), Dm

m = (J1 − J0), m = 1, . . . , d. We may notice that (5.2)
possesses the TT representation (3.11) with all ranks 3. Therefore, the total CME
operator A = A1 + A2 in (1.11) is a rank-5 matrix TT format.

The particular model parameters were chosen in accordance with [108, 4, 46].

108

• Destruction propensities w̌m(im) = 0.07 · im, m = 1, . . . , d.

• Creation propensities ŵd+1 = 0.7, and the rest are ŵm(im−1−d) = im−1−d
5+im−1−d

for
m = d+ 2, . . . , 2d.

• Dimension d = 20 species;

• FSP box sizes (mode sizes for tensors) nk = n = 64.

The non–symmetric linear system Bψ = f arises after the backward Euler dis-
cretization ψ(t + δt) = (I − δtA)−1ψ(t), where ψ(t) is the n × . . . × n tensor (or
nd vector) of the CME solution (1.11). Following Section 1.3, all snapshots ψ(tp),
p = 1, . . . , Nt, are stored simultaneously in a n× . . .× n×Nt tensor ψ =

[
ψ(pδt)

]Nt
p=1

of dimension d + 1. We use the temporal preconditioning (the Euler counterpart of
(1.20)), such that the right-hand side is f = ψ(0) ⊗ e, where e = (1, . . . , 1), and the
matrix writes

B = Ind ⊗ INt − A⊗ δtG−1t ,

where Gt = tridiag(−1, 1, 0) ∈ RNt×Nt is the discrete gradient, and A is the CME
matrix, discussed above.

In this comparative experiment, we select a moderate time interval T = 10, but
relatively many time steps Nt = 212, s.t. δt = T/Nt = O(10−3) is small enough. We
compress all the data (both in the copy numbers state space and time) in the QTT
format (see Sec. 2.2.1). The initial state is the first unit vector, ψ(0) = (1, 0, . . . , 0),
which corresponds to zero copy numbers of all species with the probability one. This
results in moderate QTT ranks for both B and f .

The full problem size Ntn
d ∼ 1040 makes the straightforward solution impossible.

Existing techniques either leave the CME aside (the SSA method and its descendants),
or employ high-dimensional techniques like Smolyak’s sparse grids [108], greedy ap-
proximations [4, 3], or dynamics on tensor manifolds [122]. Here we apply the AMEn
algorithm (both AMEnsvd Alg. 11 and AMEnals Alg. 12) and compare it with the
two-site DMRG Alg. 9, both with (DMRGrnd) and without (DMRG) the random en-
richment (4.13) of rank 4. For some systems with moderate dimensions and small time
steps, the DMRG method can be of a good use, as was demonstrated in [126]. However,
we show that the AMEn algorithm performs better for this (more difficult) problem.

We set the relative tensor truncation threshold for the solution ε = 10−6, and track
the convergence of different methods towards the reference solution, which is computed
via the AMEnsvd with the ε = 10−9. The results are given in Fig. 5.2. Since Bψ = f is
not a symmetric positive definite system, we can apply the traditional symmetrization
B∗Bψ = B∗f . The symmetrization squares both the condition number and the TT
ranks of the matrix, and usually slows the computation. Therefore, we can also apply
all algorithms directly to Bψ = f , dropping the theoretical support.

We observe that neither the initial system nor the symmetrized formulation are
solved by the original DMRG (without the enrichment). Since it uses only the local
information on the system, it returns the approximation with significantly underesti-
mated TT ranks, which is also reflected by small CPU times. The random-enriched

109

Table 5.1: Errors in final time snapshots (err) and the CPU times in seconds (time) of
different methods

AMEnsvd AMEnals DMRG KSL
B B∗B B B∗B B B∗B

err 8.3e-6 2.7e-5 9.2e-6 2.4e-5 9.6e-1 1.8e+0 8.4e-4
time 48.7 343 15.3 47.4 7.30 5.21 226

DMRG fails for the non-symmetric system as well, though exhibiting a slow conver-
gence in the symmetrized formulation. This reflects the inexact steepest descent theory
(4.18) to some extent: the DMRG makes a progress if the enrichment is not orthogonal
to the residual, which is likely to happen with random vectors. However, the rate of
such progress is usually far from optimal.

All AMEn algorithms deliver a satisfactory solution. Interestingly, the non-symmetric
versions appear to be even faster and more accurate than the symmetrized counter-
parts. This evidences that the practical convergence rates of AMEn methods are much
better than the theoretical estimates provided by the steepest descent theory. Focus-
ing on two AMEn realizations, we note that the AMEnals speeds up the computations
essentially compared to the AMEnsvd algorithm (especially when TT ranks of the
matrix are large, e.g. rk ' 40 for B∗B), while the convergence does not deteriorate.

Since the CME problem is an ODE, we may be interested in the final time snapshot
ψ(Ntδt). As soon as we approximate all time layers in the common TT format, it is
worth to check the accuracy of individual components. In Table 5.1 we show the relative
Frobenius norm errors for ψ(Ntδt) verified w.r.t. the reference solution. The observed
errors are at the same level as the accuracies of the total solution ψ in Fig. 5.2.

Now we can compare the last snapshot computed by the AMEn with the result
obtained by another ODE integrator. A dynamical problem may be put onto the
tensor manifold via the so-called Dirac-Frenkel principle (see e.g. [159]): we solve the
problem

min
x(k)∈Crk−1×nk×rk

∥∥∥∥dτ({x(k)})
dt

− dy

dt

∥∥∥∥ ,
projecting the exact velocity dy/dt onto the tangent space of the TT manifold. Several
theoretical issues were addressed in [175], and the numerical splitting w.r.t. the TT
cores x(k) was proposed in [174] as the KSL scheme. The latter may be applied to our
ODE if dy/dt is substituted by Mτ({x(k)}).

The KSL scheme is efficient in simulation of molecular vibrations [193]. However,
it possesses the same drawback as the ALS Alg. 8: TT ranks of the solution are pre-
defined and fixed. Moreover, we observe that the KSL delivers much larger error than
the other methods, even if the TT ranks are set to the proper values. When we decrease
the time step, the computational cost of the KSL grows (226 seconds for Nt = 50 time
steps) and becomes larger than the one of AMEn. However, the error of the KSL
stagnates at the level of 8 · 10−4 and does not improve.

Additional study may be conducted with respect to the enrichment rank, which is
a specific parameter for the AMEn. In Fig. 5.3, we track the convergence of the the-
oretically supported symmetrized AMEnsvd and the fastest non-symmetric AMEnals

110

Table 5.2: CPU time in seconds (time), number of iterations (it), maximal TT rank of
the Krylov vector r(w), and relative solution error (err) of TT-GMRES Alg. 7 vs. the
stopping and truncation threshold ε

ε time it r(w) err
10−2 50.456 17 40 2.45e-02
10−3 776.54 27 140 2.62e-03
10−4 9514.4 37 260 2.37e-04
10−6 ***

for different residual TT ranks ρ = (ρ, . . . , ρ). We may notice that it is indeed not nec-
essary to take excessively large TT ranks; in fact, moderate intermediate values ρ ∼ 5
appear to be optimal in terms of the accuracy-cost ratio. This is a crucial difference
with the classical iterative methods in the TT arithmetics (cf. Alg. 7), which require
rather accurate high-rank approximations of the residual and Krylov vectors, otherwise
stagnations may occur, according to Stat. 4.1.3. Contrarily, the AMEn methods work
robustly with low-rank approximations of the residual, and a high-rank enrichment
may be even slower than the rank-1 update.

The behavior of the TT-GMRES method on the problem Bψ = f may be seen
in Table 5.2. Algorithm 7 demonstrates a stable convergence up to the requested
threshold. However, tensor ranks of Krylov vectors grow rapidly with the number of
iterations, and even a few more steps may require a substantially larger CPU time. In
particular, we could not conduct the TT-GMRES with the AMEn accuracy ε = 10−6

due to memory limitations.
A comparison with the corrected one-site DMRG (not presented here; please refer

to [54]) shows that there is much more freedom in the choice of the enrichment rank in
the AMEn, rather than the weight in the corrected DMRG. The AMEn converges for
any enrichment rank (possibly not in the optimal time), whereas the corrected one-site
DMRG may significantly loose the accuracy, if the weight is chosen inappropriately.

111

Figure 5.2: CME example, Frobenius-norm error (top) and the residual (bottom) in
different methods w.r.t. the iteration number (left) and CPU time in seconds (right).
Solid line: a method is applied directly to the non-symmetric system Bψ = f , dashed
line: a method is applied to the symmetrized system B∗Bψ = B∗f . The residual TT
rank is fixed to ρ = 4. The solution is truncated using the relative Frobenius-norm
threshold ε = 10−6.

2 4 6 8 10 12 14 16 18
−7

−6

−5

−4

−3

−2

−1

iter

log10 error

AMEnsvd
AMEnals
DMRGrnd

DMRG

0 1 2
−7

−6

−5

−4

−3

−2

−1

log10 time

log10 error

2 4 6 8 10 12 14 16 18
−7

−6

−5

−4

−3

−2

−1

iter

log10 residual

0 1 2
−7

−6

−5

−4

−3

−2

−1

log10 time

log10 residual

112

Figure 5.3: CME example, Frobenius-norm error vs. CPU time in seconds and the
TT rank of the residual ρ. Left: AMEnsvd applied to B∗Bψ = B∗f , right: AMEnals
applied to Bψ = f .

0 1 2 3
−7

−6

−5

−4

−3

−2

−1

log10 time

log10 error

0 1 2
−7

−6

−5

−4

−3

−2

−1

log10 time

log10 error

ρ = 1

ρ = 2

ρ = 4

ρ = 8

ρ = 12

113

5.1.2 Long time cascade: full evolution history

In the previous example we confirmed the efficiency of the AMEn algorithm in a non-
trivial high-dimensional problem. However, the time interval T = 10 is not enough to
catch the stationary solution of the CME. In this and the next experiments (Sections
5.1.2, 5.1.3 and 5.1.4), we show three examples of a long dynamical evolution (such
that the solution converges to the steady state) from [46] (see [43] for the improved
revised version), which are more relevant to practical applications.

First, we extend the simulation of the cascade to T̂ = 400. The reaction network is
the same as in the previous subsection. A couple of common differences is as follows.

• The ODE is solved via the restarted simultaneous state-time scheme from Sec-
tion 1.3, see Remark 1.3.3. We perform an additional test to detect an optimal
splitting length T .

• Tensor rounding and solution threshold ε = 10−5.

As a resulting quantity (see Fig. 5.4, left), we compute the average copy numbers
of all species in time,

〈ik〉(t) =

∑
i ikψ(i, t)∑
i ψ(i, t)

=
(ik, ψ(t))

(e, ψ(t))
, k = 1, . . . , d, (5.3)

where e = (1, . . . , 1) ∈ Rn, e = e⊗ · · · ⊗ e is the all-ones tensor, and ik = e⊗ · · · ⊗ e⊗
{ik} ⊗ e⊗ · · · ⊗ e is a tensor populated with all values of ik. Note that the TT-scalar
products in (5.3) are computed easily via Alg. 1.

One interesting feature of the cascade system is the delay between the equal concen-
tration levels of different species, which can be observed in Fig. 5.4 (left). Therefore,
an accurate time solution history is important to measure such delays.

Additionally, the convergence of the transient solution to the steady state is shown
in Fig. 5.4 (right), which confirms that the chosen interval T̂ is large enough to catch
the stationary solution with a satisfactory confidence.

To demonstrate the performance of the QTT time discretization scheme, we present
the total CPU times for different numbers of time steps Nt in each subinterval [(q −
1)T, qT], q = 1, . . . , T̂ /T (Fig. 5.5, left), and the interval widths T (Fig. 5.5, right).

We see that the QTT format ensures the logarithmic grows of the computational
time with the number of time steps.

The optimal length of the time intervals, leading to the fastest solution process, is
the intermediate value T = 10. For smaller T , the solution in each interval is cheap,
but the number of intervals is large. Contrarily, for large T the conditioning and TT
ranks of each system are high, and it takes more time to deliver the solution.

114

Figure 5.4: Cascade CME example. Left: Mean copy numbers 〈ik〉(t). Right: Residual
‖Aψ(t)‖/‖ψ(t)‖

50 100 150 200 250 300
0

2

4

6

8

10

t

k = 1

k = 3

k = 5

k = 7

k = 9

k = 11

k = 13

k = 15

k = 17

k = 19

50 100 150 200 250 300
−5

−4

−3

−2

−1

t

log10 (‖Aψ(t)‖/‖ψ(t)‖)

Figure 5.5: Cascade CME example, CPU time (sec.) vs. discretization parameters.
Left: time vs. log2(Nt), T = 15. Right: time vs. T , Nt = 214.

8 9 10 11 12 13 14
1,000

1,200

1,400

1,600

1,800

2,000

2,200

log2(Nt)

CPU time, sec.

5 7 8 10 12 14 15
1,300

1,400

1,500

1,600

1,700

1,800

1,900

T

CPU time, sec.

115

Figure 5.6: Toggle switch

S1 S2

5.1.3 Genetic toggle switch with a parameter

In this test, we simulate the synthetic bistable genetic toggle switch (see Fig. 5.6) de-
veloped in Escherichia coli [69] in presence of a parameter. The model contains d = 2
species and M = 4 reactions, specified as follows.
w1(i) =

α1

1 + iβ2
, z1 = (1, 0): generation of S1; α1 = 156.25, β = 2.5.

w2(i) = i1, z2 = (−1, 0): destruction of S1.

w3(i) =
α2

1 +
i1

(1 + y/K)η

, z3 = (0, 1): generation of S2;
α2 = 15.6, η = 2.0015,
K = 2.9618 · 10−5.

w4(i) = i2, z4 = (0,−1): destruction of S2.
According to the dominating production rate w1, we restrict the state space to

n1 = n2 = n = 256. A parameter y is the concentration of the IPTG catalyst, and is
varying from 10−6 to 10−2. The main feature of this system is the existence of the two
so-called low (low i2) and high metastable states. The probability to find the system
in either of states depends on the concentration y, see Figure 5.8.

Note that y is not governed by the CME, but only enters the coefficients as a
parameter, wm = wm(i, y), such that

dψ(y, t)

dt
= A(y)ψ(y, t) =

M∑
m=1

(Jz
m − J0) diag(wm(y))ψ(y, t) for each y.

Introducing a discretization in the parameter (in this example, the collocation at the
exp-uniform grid is used), we come to the block-diagonal linear system,

∂ψ(t)

∂t
= Aψ(t) =

A(y1)
. . .

A(yNy)

ψ(t), ψ(t) =

 ψ(y1, t)
...

ψ(yNy , t)

 ,
where {y1, . . . , yNy} is the parametric grid, and A(yj) stands for the original CME
matrix (1.11) with a fixed y = yj, j = 1, . . . , Ny.

If the total number of parametric points Ny is moderate, the very straightforward
approach is to solve each CME equation for each yj independently. However, if Ny is
large (y can represent in fact a multi -parameter tuple with dy variables, resulting in
Ny = ndy degrees of freedom in total), one may benefit from the tensor-structured data
compression, and solve the global system at once, disregarding its block-diagonality.
The cases of many parameters arise naturally in stochastic equations (e.g. [177, 61,
141]), when some coefficients may not be known exactly in advance, but only their
possible ranges can be specified, or inverse problems, such as the model calibration

116

Figure 5.7: Toggle switch example, CPU time vs. log2(Ny). Left: δt = 1, middle:
δt = 2, right: δt = 5.

0 2 4 6 8

2

3

4

5

6

log2(Ny)

log10 CPU time,sec.

0 2 4 6 8

2

3

4

5

6

log2(Ny)

log10 CPU time,sec.

0 2 4 6 8

2

3

4

5

6

log2(Ny)

log10 CPU time,sec.

full

linear QTT

QTT-Tucker

and sensitivity [222, 205]. The current example tends to the latter class, but the
difference is not significant from the computational point of view.

Contrarily to the previous cascade problem, the switch simulation can be conducted
in the full format without the separation of variables, since the problem size n2Ny is
feasible. Due to the diagonality in y, and sparsity in i1, i2, the direct elimination
algorithms for sparse matrices are quite efficient for this example, and it is interesting
to compare them with the tensor product techniques.

We seek for the steady state using the Euler iterations (see Section 1.3.2) in the
time range T̂ = 1000, so that the stationarity accuracy is below the tensor rounding
tolerance ε = 10−5. The time step δt is varied from 1 to 5.

In the first test, we track the computational times for different parametric grid sizes
and time steps δt, see Figure 5.7. As expected, the CPU time of the full format scheme
demonstrates a linear growth with. Ny. For both QTT-based tensor formats the growth
is logarithmic, but rather sensible TT ranks of the solution (up to 40) could yield a large
contribution to the complexity. Surprisingly, the tensor scheme (AMEnals applied to
the inverse Euler system (1.22)) in both QTT and QTT-Tucker formats overcomes the
full format solver even for one parametric point, i.e. on a two-dimensional problem of
size 2562.

When δt and Ny increase, so do the conditioning of the matrix and solution ranks.
In this case, the QTT-Tucker format provides additional complexity reduction, by a
factor of ca. 4 w.r.t. the linear QTT representation.

Since the tensor rounding introduces a perturbation of the magnitude ε = 10−5,
we need to check the actual error in the observable quantities. We track the point
y = 3 · 10−5 (it is located in the transient region, see Fig. 5.8) by adding it explicitly
to the grid, and check how the error propagates into the average copy numbers, i.e.
measure

E(ik) = |〈ik〉 − 〈ik〉ex|/〈ik〉ex, k = 1, 2, (5.4)

where 〈ik〉ex is taken from the simulation in the full format, see Table 5.3. For brevity,
we show only the mean and maximal errors over different Ny and δt. We may observe
a rather large error overhead up to 250, but still the accuracy O(10−3) is maintained,
which is usually enough for phenomenological models, while the complexity is substan-
tially reduced.

117

Table 5.3: Toggle switch example, mean and maximal relative errors (5.4) at y = 3·10−5

linear QTT QTT-Tucker
E(i1) E(i2) E(i1) E(i2)

mean 8.8e-4 7.8e-5 5.5e-4 4.9e-5
max 2.5e-3 2.2e-4 2.1e-3 1.8e-4
δtmax 1 1 1 1
Nmax
y 27 27 26 26

Figure 5.8: Toggle switch example, mean copy numbers 〈i1〉, 〈i2〉 vs. y

-6 -5 -4 -3
0

20

40

60

80

100

120

140

log10(y)

〈i1〉

〈i2〉

Finally, we plot the average copy numbers of both reacting proteins versus the
concentration of the catalyst, see Figure 5.8. The quantity 〈i2〉 can be used also as
a measure of the fraction of the cells occupying the high (or low) state. Indeed, it
demonstrates the asymptotic: with y tending to ∞, the cells tend to stay in the high
state. Therefore, the fraction of the high-state cells can be estimated as the normalized
〈i2〉. We observe a good agreement with the experimental results given in [69, Fig.
5(b)].

118

Figure 5.9: λ-phage

S2 S1

S3

S5

S4

5.1.4 λ-phage

In the last example we simulate the life cycle of the bacteriophage-λ [108, 122]. The first
paper [108] considers the sparse grids approach. The second one is more tensor related
and uses the Dirac-Frenkel principle for the dynamical low-rank approximation in the
Tucker format (DLRA). The simulation was done for a relatively small time interval
(T = 10), which is not enough to achieve the stationary solution. Numerical treatment
is difficult, since both the copy number of the second protein and the relaxation time
are large (∼ 104). With the help of the QTT format, equipped with the AMEn linear
solver, we were able to perform an efficient computation of the stationary solution on
very large grids.

The model contains d = 5 species and M = 10 reactions, defined as follows
(e1, . . . , e5 are unit vectors).

w1(i) =
a1b1
b1 + i2

, z1 = e1: generation of S1; a1 = 0.5, b1 = 0.12.

w2(i) = c1 · i1, z2 = −e1: destruction of S1; c1 = 0.0025.

w3(i) =
(a2 + i5)b2
b2 + i1

, z3 = e2: generation of S2; a2 = 1, b2 = 0.6.

w4(i) = c2 · i2, z4 = −e2: destruction of S2; c2 = 0.0007.

w5(i) =
a3b3i2

b3 · i2 + 1
, z5 = e3: generation of S3; a3 = 0.15, b3 = 1.

w6(i) = c3 · i3, z6 = −e3: destruction of S3; c3 = 0.0231.

w7(i) =
a4b4i3

b4 · i3 + 1
, z7 = e4: generation of S4; a4 = 0.3, b4 = 1.

w8(i) = c4 · i4, z8 = −e4: destruction of S4; c4 = 0.01.

w9(i) =
a5b5i3

b5 · i3 + 1
, z9 = e5: generation of S5; a5 = 0.3, b5 = 1.

w10(i) = c5 · i5, z10 = −e5: destruction of S5; c5 = 0.01.
First, we investigate a short time range, T̂ = 10, and compare different methods.

The state grid 16×64×16×16×16 provides enough capacity for the FSP solution. The
initial state of the CME is chosen in accordance with [122] as the following multinomial
distribution,

ψ(i, 0) =
3!

i1! · · · i5! · (3− |i|)!
0.05|i|(1− 5 · 0.05)3−|i| · θ(3− |i|),

where |i| = i1 + · · · + i5, and θ(s) is the Heaviside function. This distribution vector
can be constructed straightforwardly as a full-format 4× 4× 4× 4× 4-tensor, since the

119

Heaviside function is zero if any of ik is greater than 3. After that, the TT decompo-
sition (with ranks 4) is computed using Alg. 4, and each factor is expanded by zeros
to the desired grid size (one-dimensional operation). Finally, the TT representation is
re-approximated into the QTT format.

Figures 5.11, 5.10 and Table 5.4 summarize the behavior of four techniques. Our
suggested method is the AMEn Alg. 12, applied to the coupled state-time system
(1.16). The tensor approximation threshold is set to ε = 10−5, but we vary the one-
step time interval T and the number of inner time steps Nt.

The second approach is the DLRA algorithm (we refer to the results reported in
[122]), and the KSL scheme, considered in Sec. 5.1.1. Since the KSL scheme does not
allow to adapt tensor ranks, we have to guess them a priory. We use the following
strategy: QTT blocks of the initial state are augmented by zeros up to the chosen rank
value (e.g. r = 20 in Fig. 5.11).

The reference solution is computed in the standard vector form without approx-
imations, using the Crank-Nicolson scheme with the time step τ = 10/4096. The
propagation matrices of size 222 were assembled in the MATLAB sparse format, and
the minimal residual method was employed for the implicit stage.

The qualitative correctness can be seen from the marginal distributions, shown in
Figure 5.10. We see that the plots coincide with the previous results in e.g. [122].

The Frobenius-norm errors of the AMEn and KSL solutions w.r.t. the reference
function, as well as the CPU times are presented in Fig. 5.11. The horizontal axis
in Fig. 5.11 is the effective time step δt. Note that the same δt may correspond to
different parameters, cf. δt = T/Nt in (1.16). For example, the most left-bottom plot in
the left plane of Fig. 5.11 is divided into two parts: in the solid region, we fix Nt = 64
and vary T ∈ {1.25, 2.5, 5, 10}, while in the dotted part T = 1.25 and Nt is varied from
26 to 211 (both parts belong to the AMEn approach). While the time step δt is large
enough, we may observe from the linear fit that the second order of approximation in
the Crank-Nicolson scheme is manifested perfectly. With smaller δt, the error drops to
the tensor truncation level O(ε). The same pattern takes place with other parameters
(see T = 5). The error level at T = 5 is slightly higher, since the linear systems have
larger condition numbers.

The error in the KSL scheme depends mostly on the tensor ranks of the solution,
rather than the time step. Though the initial state is exactly representable in the QTT
format with ranks 4, this is not the case at t = 10. From Fig. 5.11 and Table 5.4 we
may see that even if we augment the ranks up to 20, the error level is larger than in
the AMEn approach.

If we look at the complexity, from the right plane of Fig. 5.11 we observe the
logarithmic dependence of the CPU time of the AMEn scheme vs. the time step. The
number of operations in the KSL technique grows linearly with the number of time
steps, which is also reflected in Fig. 5.11.

Finally, we note that the computations in the full representation (∼ 2 hours accord-
ing to Table 5.4), as well as the SSA (∼ 3 hours according to [122]) are much slower.
This shows a clear advantage of the AMEn tool even in a relatively small problem.

To detect the convergence to the steady state, a much larger time, T̂ = exp(10) ∼
2 ·104, is needed. Moreover, since the second protein develops copy number up to 4 ·104

120

Figure 5.10: Phage-λ, marginal probabilities at t = 10.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

i

ψ1

ψ3

ψ4

ψ5

0 10 20 30 40 50 60

0.01

0.02

0.03

0.04

0.05

0.06

0.07

i

ψ2

Table 5.4: Phage-λ, T̂ = 10. CPU times (sec.) and errors in different methods.
full KSL, δt = 10

128
DLRA AMEn

δt = 10
4096

r = 4 r = 8 r = 20 from [122] δt = 10
64

δt = 1.25
2048

time 6840 21.7 24.6 37.6 ∼ 300 22.9 32.0
‖ψ − ψfull‖
‖ψfull‖

1.59e-1 1.92e-2 3.92e-4 ∼ 3e-3 9.14e-4 2.74e-5

(see Fig. 5.12, right), the FSP box is set to 128×65536×64×64×64, which makes the
problem particularly challenging. The time interval is split via the exponential grid,

tq = exp(0.05 · q), q = 1, . . . , 200.

In each subinterval [tq−1, tq] we solve the coupled state-time system (1.16) in the QTT
format with Nt = 1024 time steps. The convergence history and the cumulative CPU
times are shown in Figure 5.12 (left) and Table 5.5 (left). We see that it takes about an
hour of computational time to reveal the whole time history with the residual ∼ 10−7.
Despite the large grids, in this case the the QTT-Tucker format does not outperform
the linear QTT due to large core ranks, which dominate in the cubic asymptotic of the
QTT-Tucker. Therefore, the QTT-Tucker solver takes about 4000 seconds.

If we are not interested in the transient processes, we may use the implicit Euler
iterations (1.22) over the time points tq. The total CPU times are shown in Table 5.5
(left), and the relative accuracies of the mean copy numbers at the final time point,
compared with the fine time discretization, are shown in Table 5.5 (right). For this
simulation, the QTT-Tucker format becomes preferable.

Up to the best of our knowledge, this is the first example of the direct simulation
of the high-dimensional chemical master equation with significantly different temporal
and spatial scales. To sum um, the presented examples reveal a promising potential of
tensor product methods for accurate modeling in system biology.

121

Figure 5.11: Phage-λ, T̂ = 10. Error
‖ψqtt − ψfull‖
‖ψfull‖

(left) and CPU time (right) vs.

time interval δt.

−3−2−1
−5

−4

−3

y
=
−

1.96 · x
−

1.46

N
t =

64

T = 1.25

T = 5

KSL, r = 20

log10(δt)

log10 error

−3−2−1

20

50

100

150

200
250

log10(δt)

time, sec.

Table 5.5: Phage-λ example, large time range T̂ = exp(10). Left: CPU times (sec.).
Right: accuracies of stationary copy numbers

linear QTT QTT-Tucker
Nt 210 1 210 1
time 3500 670 4000 410

S1 S2 S3 S4 S5

4.6e-5 1.7e-6 6.2e-8 3.1e-7 1.7e-7.

Figure 5.12: Phage-λ example. Left: residual ‖Aψ(t)‖/‖ψ(t)‖ and the cumulative CPU
time (sec.). Right: average copy numbers, log10〈ik〉(t)

0 20 40 60 80 100 120 140
0

1,000

2,000

3,000

4,000

time

time step
−7

−6

−5

−4

−3

−2

−1

0

1
log

10 residual

0 1 2 3
−3

−2

−1

0

1

2

3

4

log10(t)

k = 1

k = 2

k = 3

k = 4

k = 5

122

5.2 Fokker-Planck equation for non-Newtonian fluid
dynamics

In this section, we consider solution of the multi-dimensional Fokker-Planck equation
for the polymeric flows, described in Section 1.1.3. Three examples involve Hookean,
quasi-Hookean and FENE spring forces.

5.2.1 Hookean model

In the first example, following [47], we investigate the Hookean spring law, i.e. the
Fokker-Planck equation with linear in x coefficients (1.7), and W = 1. We take a
chain of d = 4 three-dimensional springs in the shear flow regime, which yields us the
dD = 12-dimensional problem in total with the following velocity gradient,

∇yv =

0 β 0
0 0 0
0 0 0

 . (5.5)

We will vary the shear parameter β to study its influence on the tensor ranks.
First, we discretize the Fokker-Planck equation (1.7) using the standard 3-point

finite difference stencil with 256 points in each variable, and solve the dynamical prob-
lem (1.16) in the QTT format via the two-site DMRG (Alg. 9) until the steady state
is reached, which requires the time interval T̂ = 100. As the initial state we choose
the product of Gaussian functions with unit dispersion, ψ(q, 0) = exp

(
− q21+...+q

2
dD

2

)
,

corresponding to the stationary solution with β = 0. The dependence of the average
TT and QTT ranks of the ε = 10−4-approximation on the shear strength β is given in
Figure 5.13.

We see that the ranks grow linearly with the velocity gradient. Already for β = 0.2,
the average QTT rank is equal to 38, the maximal rank (in the middle of the tensor
train) is 84, and the CPU time of the whole process reaches ∼ 20000 seconds. In
practice, the values β & 1 are more relevant, and additional complexity reduction
techniques are necessary.

If we are only interested in the stationary solution, the Hookean model allows to
construct the explicit formula (1.8). The exponential argument V = q>Bq admits
an exact low-rank TT decomposition, see Thm. 3.2.1. To construct the stationary
solution (1.8), we use the scaling and squaring method [180] to compute the pointwise
exponential in the QTT or QTT-Tucker formats.

In Figures 5.14 we show the memory cells required to store the FPE solution, and
the CPU times of the scaling and squaring method versus the Frobenius-norm rounding
accuracy in different formats and methods. We compare the linear QTT (l-QTT), QTT-
Tucker (QTT-T), and also the Extended TT (ETT) format, i.e. the QTT-Tucker without
the quantization in Tucker factors, nQ = 256, L = 1. The most time consuming
operation is the squaring of the approximant in the scaling and squaring method. We
use two approaches: computation of the exact Hadamard product, followed by the
rounding Alg. 4 or 5 (round), and the two-site DMRG approximation (dmrg), see Alg.
9 and Remark 4.2.3.

123

Figure 5.13: Hookean 12D example. TT and QTT ranks of the stationary solution
versus β in a 4-spring model.

The round technique requires very large amount of memory, and fails with the
Out-of-Memory exception at higher accuracies. Indeed, it tries to construct the ex-
act Hadamard product, squaring the tensor ranks of the inputs. Therefore, we need
O(dLr4F + dr6C) storage and O(dLr6F + dr8C) operations in the QTT-Tucker format. By
the same reasons, we could not use the TT format without the quantization.

The QTT-Tucker dmrg complexity scales as O(dLr4F + dr6C), and the storage as
O(dLr3F + dr4C), which makes the highly accurate experiments feasible. The DMRG
method benefits from the quantization in all cases, though the asymptotic memory con-
sumptions of the QTT-Tucker and ETT formats are the same. The latter phenomenon
indicates that the largest tensor rank is rC , located in the Tucker core. However, the
DMRG visits the corresponding core blocks only d times, while Ld steps involve the
factor blocks, and their quantization is enough to make the whole procedure faster.

Comparing different formats, we conclude that the QTT-Tucker approach could be
more than 10 times faster than the methods based on the linear QTT format.

124

Figure 5.14: Hookean 12D example. Memory (left) and CPU time in seconds (right)
vs. − log10(ε).

2 3 4 5 6 7
3

4

5

6

7
l-QTT

QTT-T

ETT

2 3 4 5 6 7

1

2

3

4

5
l-QTT, dmrg

QTT-T, dmrg

QTT-T, round

ETT, dmrg

ETT, round

125

5.2.2 Hookean + repulsive potential

Now consider a more complex model, presented in [233]: the quadratic Hookean po-
tential perturbed by the term representing the repulsion between beads. The Fokker-
Planck equation (1.4) reads

∂ψ(q, t)

∂t
= −

d∑
k=1

∂

∂qk

(
(∇yv)qk −

1

4

d∑
m=1

Ak,m
∂V (q)

∂qm

)
ψ

+
d∑

k,m=1

1

4
Ak,m

∂2

∂qk∂qm
ψ,

where

V =
1

2
(|q1|2 + . . .+ |qd|2) +

η

σ3

d∑
k=1

d∑
m=k

exp

(
−|qk + qk+1 + · · ·+ qm|2

2σ2

)
is the total potential with the particular repulsion parameters η = 0.1, σ = 0.5 in our
case.

In the latter potential term, qk+ · · ·+qm mirrors the distance between the k-th and
m+ 1-th beads. Since the exponential is stretched along the surfaces qpk + · · ·+ qpm = c,
its representation in the TT format would require extremely large ranks, and we cannot
yet solve the corresponding Fokker-Planck equation for d > 1. It was just noted in [47]
that the components of the stress tensor (1.6), computed via the Quasi Monte Carlo
method in [233], do not differ significantly from the values delivered by the Hookean
model (1.7), i.e. the repulsive potential is indeed a perturbation.

For d = 1 case, known as the dumbbell system (only two beads connected by one
spring), the Fokker-Planck equation becomes D = 3-dimensional, and the repulsive po-
tential resolves to exp(− |q|

2

2σ2), with the rank-1 TT representation. The velocity gradient
in this experiment corresponds to the shear flow (5.5) with β = 1.

We compare the simultaneous space-time discretization (1.16) with the traditional
Crank-Nicolson scheme (1.15) with small time steps. We discretize the Fokker-Planck
equation with finite differences and the following parameters:

• computational domain Ω = [−10, 10]3,

• time interval T̂ = 10,

• tensor rounding threshold ε = 10−6.

We will vary the spatial Lq and temporal dt QTT dimensions, corresponding to the
univariate grid size n = 2Lq , mesh step h = 20/(2Lq+1), number of time steps Nt = 2dt ,
and time step length δt = 10/2dt .

As a resulting output, we compute the viscosity components of the stress tensor
(1.6),

η(t) = −τ12
β
, Ψ(t) = −τ11 − τ22

β2
, (5.6)

126

Figure 5.15: Repulsion 3D example, evolution of the stress components (5.6) in time.
Left: η(t), right: Ψ(t).

Table 5.6: Repulsion 3D example, η(T̂) and Ψ(T̂) vs. the spatial dimension Lq.
Lq η(T̂) Ψ(T̂)
4 1.0388419 2.084148
5 1.0320981 2.069552
6 1.0326395 2.070764
7 1.0327829 2.071111
8 1.0328263 2.071209
9 1.0328125 2.071143

which are shown in Fig. 5.15.
To ensure that the finite difference scheme resolves the diffusion-convection equation

properly, consider first the approximation order w.r.t. h. In Table 5.6, we vary Lq,
while the temporal dimension is fixed to dt = 8, corresponding to δt ≈ 0.04. The
relevant digits are emphasized with the boldface. The order may be detected more
clearly from Fig. 5.16, where we plot the errors ηLq(T̂)−η9(T̂) and ΨLq(T̂)−Ψ9(T̂) vs.
Lq. Linear least squares fitting reveals the numerical orders h2.5 for η, and h2.8 for Ψ,
i.e. the approximation rate O(h2) is maintained. On finer grids (cf. η8(T̂) − η9(T̂) ≈
1.4 ·10−5), the error is governed by the tensor approximation accuracy, rather than the
discretization issues.

Now we present the CPU times of the step-by-step time integration via the Crank-
Nicolson scheme (1.15) and the two-site DMRG Alg. 9, see Fig. 5.17. We see that
the complexity is sublinear in the spatial grid size due to the QTT format (log time ∼
Lq = log n). However, the growth is linear with respect to the number of time steps,
as expected.

The logarithmic complexity w.r.t. the number of time steps can be achieved via
the block time scheme (1.16). The interval T̂ = 10 is split into 8 equal subintervals
according to Remark 1.3.3, i.e. we solve (1.16) sequentially in [0, T], [T, 2T] and so
on with T = 1.25. The computational times, required to solve the system in each

127

Figure 5.16: Repulsion 3D example, grid approximation of η (left) and Ψ (right) vs. h.

Figure 5.17: Repulsion 3D example, CPU times in seconds of the stepwise scheme
(1.15). Left: log time vs. Lq. Right: time vs. Nt = 2dt .

subinterval are shown in Fig. 5.18 (left), and the total CPU time of the solution
scheme w.r.t. the number of time steps is investigated in Fig. 5.18 (right). Note that
the temporal QTT dimension dt is defined in Fig. 5.18 for each subinterval; it means
that the equivalent number of time steps in the previous experiment is 8 times larger.
The corresponding QTT dimensions are shown in Fig. 5.18 as dtst for convenience.

The main phenomenon that we observe in both parts of Fig. 5.18 is a very mild
dependence of the complexity on the number of time steps. Surprisingly, the CPU
time does not even necessarily increase with dt: for example, the fastest computations
are achieved at dt ∼ 7, but not the minimal value dt = 4. This may be accounted for
the balance between the tensor rounding and discretization errors. The exact solution
is smooth, and its TT and QTT ranks are moderate according to the polynomial
approximation Theorem 2.2.3. However, for small dt, the solution is perturbed by a
large discretization error, which increases the TT ranks. On finer grids the noise level
falls below the tensor rounding tolerance, and the TT ranks stabilize at the proper

128

Figure 5.18: Repulsion 3D example, CPU times in seconds of the block scheme (1.16)
on each subinterval (left), and of the whole process (right).

values.
With respect to the spatial grid size, the complexity remains sublinear, and the over-

all procedure overcomes significantly the previous time stepping scheme. For example,
if we extrapolate Fig. 5.17 (right) to dtst = 12, we may estimate the computational
time of the time stepping scheme as ∼ 22000 seconds, while the quantization scheme
is almost 20 times faster, as we observe from Fig. 5.18.

The decrease of the CPU time on the latter subintervals (Fig. 5.18, left) is a natural
consequence of the convergence towards the steady state. The initial solution occupies
a wide spectral interval of the Fokker-Planck operator, but the spectral components
decay with different rates in time, such that only the lowest eigenstate remains at
t→∞. Therefore, the TT ranks of the solution are large in the first subintervals, and
decrease near the end of the process, and so do the computational times.

129

5.2.3 High-dimensional FENE model

In the last example, we consider a more complicated FENE model from Section 1.1.3
for d = 4 springs in D = 2 physical space, such that the total Fokker-Planck equation
is of dimension dD = 8. The velocity gradient, corresponding to the shear flow regime
is chosen as follows,

∇yv =

[
0 0.8
0 0

]
.

Such a model was considered in [173, 35, 5, 53]. In particular, the latter paper consider
the application of the AMEn algorithm to the linear system arising from the model
(1.4) with the FENE forces, which we reconstruct here.

As was discussed in Sec. 1.1.3, the solution is posed in a product of balls, and to
discretize the spatial operator, we rewrite the Fokker-Planck equation in polar coordi-
nates and use Chebyshev spectral elements in the radial coordinates, and periodic Sinc
spectral differentiation in the angular variables. We will vary the number of spectral
elements in each radial direction nr, which governs also the number of angular points
as 2nr. With typical values nr ∼ 20, the solution is a tensor of size ∼ 1012. Moreover,
the spectral differentiation matrices are dense, and therefore the problem is intractable
in the full format. The QTT format is not efficient either, since the matrices require
maximal possible QTT ranks for any reasonable accuracy. So, we use the 8-dimensional
TT representation with mode sizes nr × 2nr × · · · × nr × 2nr.

We are interested in the stationary solution of (1.4), and therefore use the implicit
Euler iterations (1.22), rewritten as

(M − δtA)ψ(tp) = Mψ(tp−1), tp = pδt, p = 1, . . . , Nt, (5.7)

where M is the mass matrix, which is not identity in this case, and A is the stiffness
matrix. The time integration is performed until T̂ = δtNt = 20, which is enough
to approximate the steady state with a satisfactory accuracy. As the (unnormalized)
initial state, we choose the Maxwellian

ψ(q, 0) =
4⊗
i=1

(
1− |qi|

2

b

)b/2
=

4⊗
i=1

(
1− r2i

b

)b/2
,

which also obeys the Fokker-Planck equation with ∇yv = 0. Note that the Maxwellian
is a TT rank-1 function in the polar coordinates.

As in the previous cases, we are interested in the components of the Kramer stress
tensor (1.6), which is computable from the discretized function as a scalar product in
the TT format. The evolution of the stress components with time steps is presented in
Fig. 5.20 (left). Notice, however, that the step size δt is rather large in our experiment,
and the intermediate values in Fig. 5.20 do not approximate the exact evolution well.
The main point that we observe is the qualitative correctness, in particular the growth
in the beginning of the process, and stabilization at larger times. Since δt is not
a physical quantity, but a parameter of the computational method, we conduct an
additional investigation w.r.t. δt.

As the computational method for (5.7), we use the AMEnals Algorithm 12 with
the Frobenius-norm threshold ε = 10−4, and the enrichment rank ρ = 3. The solution

130

Figure 5.19: FENE example, CPU time of one Euler iteration vs. time step and grid
size

0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

δt

time, sec.

nr = 12

nr = 16

nr = 24

from the previous Euler step serves as a good initial guess for the AMEn algorithm.
Since both the mode sizes (up to 48) and TT ranks (up to 73) in this example are
relatively large, we consider only the AMEnals method.

The accuracies of the stationary stress values are shown in Fig. 5.20 (right). The
reference values τ ?11, τ ?12 were computed with the parameters nr = 28 and ε = 10−5.
The exact value (from the analytical equation) of the component τ22 is zero, so we may
use just the modulus |τ22| as an in-hand measure of the accuracy.

We observe that for all δt except 1, the stress errors decay rapidly with nr until
the limit O(10−4) of the tensor approximation. This shows that accurate solutions can
be computed by the tensor product methods with a reasonable cost, while the typical
accuracies of greedy or Monte Carlo methods for many-spring models lie at the level
O(10−1) [5, 233].

The computational times can be seen in Fig. 5.19. As expected, the complexity
increases quadratically with the number of spectral elements nr. An interesting feature
is that the total CPU time is relatively stable w.r.t. the time step δt. It is easy to
see that the condition number of the matrix in (5.7) grows linearly with δt, and hence
we could expect a deteriorating convergence, according to Theorem 4.3.7. Contrarily,
the complexity scales much milder with δt, i.e. the AMEn algorithm demonstrate a
behavior, similar to direct methods. However, the quality of the initial guess is crucial:
as in the previous section, the first Euler iterations are more difficult than the final ones,
where the solutions at succeeding time steps are close. This may motivate attempts to
relate the AMEn to Newton or Krylov methods in a future research.

131

Figure 5.20: FENE example. Left: evolution of the stress tensor components in time.
Right: accuracy of the stationary stress tensor components vs. the time step and the
grid size. From top to bottom: the components τ11, τ12, τ22, respectively.

0 2 4 6 8 10 12 14 16 18
0.0

2.0

4.0

6.0

t

τ11

0 0.2 0.4 0.6 0.8
−4

−3

−2

δt

log10 |τ11 − τ ?11|

nr = 12

nr = 16

nr = 24

0 2 4 6 8 10 12 14 16 18
1.0

1.5

2.0

2.5

3.0

t

τ12 = τ21

0 0.2 0.4 0.6 0.8
−4

−3

−2

δt

log10 |τ12 − τ ?12|

nr = 12

nr = 16

nr = 24

0 2 4 6 8 10 12 14 16 18

0.0

0.5

1.0

1.5

t

τ22 · 10

0 0.2 0.4 0.6 0.8
−4

−3

−2

δt

log10 |τ22|

nr = 12

nr = 16

nr = 24

132

Conclusion

We have proposed and investigated tensor product representations and algorithms for
approximation of functions and operators and linear system solution in high dimensions.
Particularly intriguing high-dimensional models arise in the form of time-dependent
differential equations, coming from stochastic description of dynamical systems and
chemical kinetics. For a long time, direct simulation of the probability density func-
tion via the Fokker-Planck and master equations was avoided, except low-dimensional
cases, due to the curse of dimensionality. General data-sparse formats, encapsulat-
ing indirectly all nd elements, open a way to fast and accurate methods of stochastic
modeling in engineering, biology, chemistry and physics.

The era of tensor product computations has begun several times in different com-
munities. Abstract description and data fitting traces back to 1927, robust closed
tensor formats to 1960’s, computation of the ground state wavefunction in quantum
physics, using the separable representations, was started at least in 1970’s, and many
brilliant ideas and practical methods emerged afterwards. In the numerical linear alge-
bra, low-rank matrix factorizations exist, perhaps, for more than a century. However,
three- and higher-dimensional tools for the solution of PDEs and other function-related
purposes have appeared quite recently, and the DMRG insights from quantum physics
were presented to the attention of the multilinear tensor community only in 2009–2010.

Since then, rapid development of the tensor product conception is maintained world-
wide. More applications reveal more questions and difficulties, which motivate further
elaboration of computational and analytical methods. Many fruitful techniques arise
from the combination of several approaches. For example, the multigrid interpolation
was used to supply a good initial guess for the alternating optimization in the Tucker
format [151]. In the current work, following [44], the Tucker format was extended
to the QTT-Tucker decomposition. Certain classes of high-dimensional functions and
operators can be written explicitly in a low-rank format. There are especially elegant
exact representations, for example for the bilinear form, see Chapter 3, agglomerating
[44, 46, 47].

Significant progress is made in computational algorithms for time-dependent equa-
tions. A conception of evolution in time was put into the factorized representation
with the aid of the curvilinear geometry. On the other hand, why cannot the time vari-
able be considered just as another dimension, followed by the standard discretization,
resulting in a linear system? We showed that this approach, combined with the QTT
approximation in time variable, is indeed beneficial, and provides accurate time histo-
ries of long evolutions with the logarithmic complexity in the number of time layers
[46, 47].

133

Such linear systems are strongly non-symmetric, and a solution technique must
admit a wide generality and robustness. And such a technique was developed by
bridging the DMRG optimization schemes and the classical steepest descent method
[52, 53, and the current work].

The dissertation presents extensive numerical experiments with relevant examples of
biological and mechanical systems. We have confirmed that the progress in applications
became possible after the progress in computational methods: neither the alternating
DMRG algorithms, nor the classical iterations alone are capable to deal with the sug-
gested problems, but together they demonstrate a remarkable cooperation, smoothly
delivering an accurate solution even in substantially high-dimensional cases. Up to the
best of our knowledge, this is the first example when a high-dimensional tool is efficient
practically, and in the same time is supported by the convergence theory.

Several directions of future work may emanate from the proposed framework. The
combination of the one-site update and basis enrichment steps can be applied to other
problems – first of all, naturally, to the high-dimensional eigenvalue problem. The
DMRG/MPS schemes were originally developed to solve this problem for quantum
many-body system, and they are implemented in several well-established numerical
packages for quantum physics computations. So we have enough possibilities to com-
pare the new methods with the state-of-the-art tools developed in the DMRG/MPS
community. This work was started in [48, 54, 161, 102].

Theoretical understanding of tensor product methods is still far from being com-
plete. For example, there is a certain mismatch between the theoretical convergence
estimates for the AMEn algorithm, which are at the level of the one-step steepest de-
scent algorithm, and the practical convergence pattern, which looks more like the one
of the GMRES. This may inspire us to look for possible connections with the iterative
methods of Krylov and Newton type, and more thorough analysis of the alternating
projection schemes themselves. The use of preconditioners should also be discussed,
see [145, 141, 164, 161] for example. Still under the question are the properties of
the temporal evolution methods on manifolds generated by tensor formats. There are
significant recent advances [175, 174], and we may expect them to continue in future.

To conclude, it is never possible to study and understand the nature completely. We
look forward to solving more high-dimensional problems, and are sure that they will
bring new comprehension of the advantages and drawbacks of the proposed methods,
and open even more directions for a further research.

134

Bibliography

[1] J. A. Acebrón, M. P. Busico, P. Lanucara, and R. Spigler, Domain
Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo
and Quasi-Monte Carlo Methods, SIAM J. Sci. Comput., 27 (2005), pp. 440–457.

[2] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous results
on valence-bond ground states in antiferromagnets, Phys. Rev. Lett., 59 (1987),
pp. 799–802.

[3] I. Alfaro, D. Gonzalez, F. Bordeu, A. Leygue, A. Ammar, E. Cueto,
and F. Chinesta, Real-time in silico experiments on gene regulatory networks
and surgery simulation on handheld devices, Journal of Computational Surgery,
1 (2014).

[4] A. Ammar, E. Cueto, and F. Chinesta, Reduction of the chemical master
equation for gene regulatory networks using proper generalized decompositions,
Int. J. Numer. Meth. Biomed. Engng., 28 (2012), pp. 960–973.

[5] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family
of solvers for some classes of multidimensional partial differential equations en-
countered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian
Fluid Mechanics, 139 (2006), pp. 153 – 176.

[6] R. Andreev and C. Tobler, Multilevel preconditioning and low rank tensor
iteration for space-time simultaneous discretizations of parabolic PDEs, Tech.
Rep. 16, SAM, ETH Zürich, 2012.

[7] A. Arkin, J. Ross, and H. McAdams, Stochastic kinetic analysis of develop-
mental pathway bifurcation in phage λ-infected Escherichia coli cells, Genetics,
149 (1998), pp. 1633–1648.

[8] B. W. Bader and T. G. Kolda, Efficient MATLAB computations with sparse
and factored tensors, SIAM J. Sci. Comput., 30 (2007), pp. 205–231.

[9] J. Ballani and L. Grasedyck, A projection method to solve linear systems in
tensor format, Numerical Linear Algebra with Applications, 20 (2013), pp. 27–43.

[10] J. Ballani and L. Grasedyck, Tree adaptive approximation in the hierarchi-
cal tensor format, RWTH preprint 141, 2013.

135

http://dx.doi.org/10.1137/030600692
http://dx.doi.org/10.1137/030600692
http://dx.doi.org/10.1137/030600692
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1186/2194-3990-1-1
http://dx.doi.org/10.1186/2194-3990-1-1
http://dx.doi.org/10.1002/cnm.2476
http://dx.doi.org/10.1002/cnm.2476
http://dx.doi.org/10.1016/j.jnnfm.2006.07.007
http://dx.doi.org/10.1016/j.jnnfm.2006.07.007
http://dx.doi.org/10.1016/j.jnnfm.2006.07.007
http://sma.epfl.ch/~anchpcommon/publications/bpx.pdf
http://sma.epfl.ch/~anchpcommon/publications/bpx.pdf
http://dx.doi.org/10.1137/060676489
http://dx.doi.org/10.1137/060676489
http://dx.doi.org/10.1002/nla.1818
http://dx.doi.org/10.1002/nla.1818

[11] J. Ballani, L. Grasedyck, and M. Kluge, Black box approximation of
tensors in hierarchical Tucker format, Linear Alg. Appl., 428 (2013), pp. 639–
657.

[12] A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite
element method for elliptic PDEs with stochastic coefficients, Numerische Math-
ematik, 119 (2011), pp. 123–161.

[13] R. J. Bartlett and M. Musiał, Coupled-cluster theory in quantum chemistry,
Reviews of Modern Physics, 79 (2007), p. 291.

[14] F. L. Bauer and A. S. Householder, Some inequalities involving the euclid-
ian condition of a matrix, Numerische Mathematik, 2 (1960), pp. 308–311.

[15] M. Bebendorf, Adaptive cross approximation of multivariate functions, Con-
structive approximation, 34 (2011), pp. 149–179.

[16] R. E. Bellman, Dynamic programming, Princeton University Press, 1957.

[17] P. Benner and T. Breiten, Low rank methods for a class of generalized lya-
punov equations and related issues, Numerische Mathematik, 124 (2013), pp. 441–
470.

[18] P. Benner, P. Kürschner, and J. Saak, Self-generating and efficient shift
parameters in ADI methods for large Lyapunov and Sylvester equations, MPI
Magdeburg Preprint 13-18, 2013.

[19] P. Benner, A. Onwunta, and M. Stoll, Low rank solution of unsteady
diffusion equations with stochastic coefficients, MPI Preprint 13, 2013.

[20] S. Bernstein, Lecons sur les propriétés extrémales et la meilleure approximation
des fonctions analytiques d´une variable réelle, Paris: Gauthier-Villars, 1926.

[21] C. Bertoglio and B. N. Khoromskij, Low-rank quadrature-based tensor ap-
proximation of the Galerkin projected Newton/Yukawa kernels, Computer Phys.
Comm., 183 (2012), pp. 904–912.

[22] G. Beylkin, G. Fann, Z. Gan, R. Harrison, and T. Yanai, Multiresolution
quantum chemistry: basic theory and initial applications, J. Chem. Phys, 121
(2004), pp. 11587–11598.

[23] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher
dimensions, Proc. Nat. Acad. Sci. USA, 99 (2002), pp. 10246–10251.

[24] G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in
high dimensions, SIAM J. Sci. Comput., 26 (2005), pp. 2133–2159.

[25] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wo-
jtaszczyk, Convergence rates for greedy algorithms in reduced basis methods,
SIAM J. Math. Anal., 43 (2011), pp. 1457–1472.

136

http://dx.doi.org/10.1016/j.laa.2011.08.010
http://dx.doi.org/10.1016/j.laa.2011.08.010
http://dx.doi.org/10.1007/s00211-011-0377-0
http://dx.doi.org/10.1007/s00211-011-0377-0
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1007/BF01386231
http://dx.doi.org/10.1007/BF01386231
http://dx.doi.org/10.1007/s00365-010-9103-x
http://dx.doi.org/10.1007/s00211-013-0521-0
http://dx.doi.org/10.1007/s00211-013-0521-0
http://www2.mpi-magdeburg.mpg.de/preprints/2013/MPIMD13-18.pdf
http://www2.mpi-magdeburg.mpg.de/preprints/2013/MPIMD13-18.pdf
http://www2.mpi-magdeburg.mpg.de/preprints/2013/MPIMD13-13.pdf
http://www2.mpi-magdeburg.mpg.de/preprints/2013/MPIMD13-13.pdf
http://dx.doi.org/10.1016/j.cpc.2011.12.016
http://dx.doi.org/10.1016/j.cpc.2011.12.016
http://dx.doi.org/10.1063/1.1791051
http://dx.doi.org/10.1063/1.1791051
http://dx.doi.org/10.1073/pnas.112329799
http://dx.doi.org/10.1073/pnas.112329799
http://dx.doi.org/10.1137/100795772

[26] R. Bird, C. Curtiss, R. Armstrong, and O. Hassager, Dynamics of
Polymeric Liquids, Kinetic Theory, Wiley, 1987.

[27] T. Breiten, V. Simoncini, and M. Stoll, Fast iterative solvers for fractional
differential equations, MPI Magdeburg Preprint 14-02, 2014.

[28] R. Bro, PARAFAC: Tutorial and applications, Chemometrics and Intelligent
Lab. Syst., 38 (1997), pp. 149–171.

[29] M. Buhmann, Multivariate cardinal interpolation with radial-basis functions,
Constr. Approx., 6 (1990), pp. 225–255.

[30] M. Buhmann, Radial basis functions, Acta Numerica, 9 (2000), pp. 1–38.

[31] H.-J. Bungatrz and M. Griebel, Sparse grids, Acta Numerica, 13 (2004),
pp. 147–269.

[32] B. R. Butchart, An explicit solution to the fokker-planck equation for an or-
dinary differential equation, International Journal of Control, 1 (1965), pp. 201–
208.

[33] E. Cancés, V. Ehrlacher, and T. Leliévre, Convergence of a greedy al-
gorithm for high-dimensional convex nonlinear problems, Mathematical Models
and Methods in Applied Sciences, 21 (2011), pp. 2433–2467.

[34] J. D. Caroll and J. J. Chang, Analysis of individual differences in mul-
tidimensional scaling via n-way generalization of Eckart–Young decomposition,
Psychometrika, 35 (1970), pp. 283–319.

[35] C. Chauviére and A. Lozinski, Simulation of dilute polymer solutions using
a Fokker-Planck equation, Computers & Fluids, 33 (2004), pp. 687–696.

[36] S. R. Chinnamsetty, M. Espig, W. Hackbusch, B. N. Khoromskij, and
H. J. Flad, Tensor product approximation with optimal rank in quantum chem-
istry, J. Chem. Phys., 127 (2007), pp. 84–110.

[37] A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best N-term
Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math, 10
(2010), pp. 615–646.

[38] P. Comon, Tensor decomposition: state of the art and applications, in IMA
Conf. Math. in Sig. Proc., Warwick, UK, 2000.

[39] L. de Lathauwer, B. de Moor, and J. Vandewalle, A multilinear singular
value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.

[40] L. de Lathauwer, B. de Moor, and J. Vandewalle, On best rank-1 and
rank-(R1, R2, ..., RN) approximation of high-order tensors, SIAM J. Matrix Anal.
Appl., 21 (2000), pp. 1324–1342.

137

http://www2.mpi-magdeburg.mpg.de/preprints/2014/MPIMD14-02.pdf
http://www2.mpi-magdeburg.mpg.de/preprints/2014/MPIMD14-02.pdf
http://dx.doi.org/10.1016/S0169-7439(97)00032-4
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1142/S0218202511005799
http://dx.doi.org/10.1142/S0218202511005799
http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1063/1.2761871
http://dx.doi.org/10.1063/1.2761871
http://dx.doi.org/10.1007/s10208-010-9072-2
http://dx.doi.org/10.1007/s10208-010-9072-2
http://dx.doi.org/10.1137/s0895479896305696
http://dx.doi.org/10.1137/s0895479896305696

[41] L. De Lathauwer and J. Vandewalle, Dimensionality reduction in higher-
order signal processing and rank-(R1, R2, ..., RN) reduction in multilinear algebra,
Linear Algebra Appl., 391 (2004), pp. 31–55.

[42] V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-
rank approximation problem, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084–
1127.

[43] S. Dolgov and B. Khoromskij, Simultaneous state-time approximation of
the chemical master equation using tensor product formats, arXiv 1311.3143 (to
appear in NLAA, 2014), 2013.

[44] S. Dolgov and B. Khoromskij, Two-level QTT-Tucker format for optimized
tensor calculus, SIAM J. on Matrix An. Appl., 34 (2013), pp. 593–623.

[45] S. V. Dolgov, TT-GMRES: solution to a linear system in the structured tensor
format, Russ. J. Numer. Anal. Math. Modelling, 28 (2013), pp. 149–172.

[46] S. V. Dolgov and B. N. Khoromskij, Tensor-product approach to global
time-space-parametric discretization of chemical master equation, Preprint 68,
MPI MIS, 2012.

[47] S. V. Dolgov, B. N. Khoromskij, and I. V. Oseledets, Fast solution of
multi-dimensional parabolic problems in the tensor train/quantized tensor train–
format with initial application to the Fokker-Planck equation, SIAM J. Sci. Com-
put., 34 (2012), pp. A3016–A3038.

[48] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V.
Savostyanov, Computation of extreme eigenvalues in higher dimensions using
block tensor train format, Computer Phys. Comm., 185 (2014), pp. 1207–1216.

[49] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and E. E. Tyrtysh-
nikov, Low-rank tensor structure of solutions to elliptic problems with jumping
coefficients, J. Comput. Math., 30 (2012), pp. 14–23.

[50] S. V. Dolgov, B. N. Khoromskij, and D. V. Savostyanov, Superfast
Fourier transform using QTT approximation, J. Fourier Anal. Appl., 18 (2012),
pp. 915–953.

[51] S. V. Dolgov and I. V. Oseledets, Solution of linear systems and matrix
inversion in the TT-format, SIAM J. Sci. Comput., 34 (2012), pp. A2718–A2739.

[52] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods
for linear systems in higher dimensions. Part I: SPD systems, arXiv preprint
1301.6068, 2013.

[53] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods
for linear systems in higher dimensions. Part II: Faster algorithm and application
to nonsymmetric systems, arXiv preprint 1304.1222, 2013.

138

http://dx.doi.org/10.1137/06066518x
http://dx.doi.org/10.1137/06066518x
http://arxiv.org/abs/1311.3143
http://arxiv.org/abs/1311.3143
http://dx.doi.org/10.1137/120882597
http://dx.doi.org/10.1137/120882597
http://dx.doi.org/10.1515/rnam-2013-0009
http://dx.doi.org/10.1515/rnam-2013-0009
http://www.mis.mpg.de/preprints/2012/preprint2012_68.pdf
http://www.mis.mpg.de/preprints/2012/preprint2012_68.pdf
http://dx.doi.org/10.1137/120864210
http://dx.doi.org/10.1137/120864210
http://dx.doi.org/10.1137/120864210
http://dx.doi.org/10.1016/j.cpc.2013.12.017
http://dx.doi.org/10.1016/j.cpc.2013.12.017
http://dx.doi.org/10.4208/jcm.1110-m11si08
http://dx.doi.org/10.4208/jcm.1110-m11si08
http://dx.doi.org/10.1007/s00041-012-9227-4
http://dx.doi.org/10.1007/s00041-012-9227-4
http://dx.doi.org/10.1137/110833142
http://dx.doi.org/10.1137/110833142
http://arxiv.org/abs/1301.6068
http://arxiv.org/abs/1301.6068
http://arxiv.org/abs/1304.1222
http://arxiv.org/abs/1304.1222
http://arxiv.org/abs/1304.1222

[54] S. V. Dolgov and D. V. Savostyanov, Corrected one-site density matrix
renormalization group and alternating minimal energy algorithm, in Proc. ENU-
MATH 2013, accepted, 2014.

[55] I. Domanov, Study of Canonical Polyadic Decomposition of Higher-Order Ten-
sors, PhD thesis, 2013.

[56] G. W. F. Drake, High precision theory of atomic helium, Physica Scripta, 1999
(1999), p. 83.

[57] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms
for matrices III: Computing a compressed approximate matrix decomposition,
SIAM J Comput, 36 (2006), pp. 184–206.

[58] T. H. Dunning Jr, Gaussian basis sets for use in correlated molecular calcula-
tions. I. The atoms boron through neon and hydrogen, The Journal of Chemical
Physics, 90 (1989), p. 1007.

[59] M. Espig, L. Grasedyck, and W. Hackbusch, Black box low tensor rank
approximation using fibre-crosses, Constr. Appr., 30 (2009), pp. 557–597.

[60] M. Espig and W. Hackbusch, A regularized Newton method for the efficient
approximation of tensors represented in the canonical tensor format, Numer.
Math., 122 (2012), pp. 489–525.

[61] M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander,
Efficient analysis of high dimensional data in tensor formats, in Sparse Grids and
Applications, Springer, 2013, pp. 31–56.

[62] M. Fannes, B. Nachtergaele, and R. Werner, Finitely correlated states
on quantum spin chains, Comm. Math. Phys., 144 (1992), pp. 443–490.

[63] M. Fannes, B. Nachtergaele, and R. F. Werner, Ground states of VBS
models on Cayley trees, J. Stat. Phys., 66 (1992), pp. 939–973.

[64] L. E. Figueroa and E. Süli, Greedy approximation of high-dimensional
ornstein–uhlenbeck operators, Foundations of Computational Mathematics, 12
(2012), pp. 573–623.

[65] G. S. Fishman, Monte Carlo: concepts, algorithms, and applications, vol. 1196,
Springer New York, 1996.

[66] H.-J. Flad, B. N. Khoromskij, D. V. Savostyanov, and E. E. Tyrtysh-
nikov, Verification of the cross 3D algorithm on quantum chemistry data, Rus.
J. Numer. Anal. Math. Model., 23 (2008), pp. 329–344.

[67] A. D. Fokker, Die mittlere Energie rotierender elektrischer Dipole im
Strahlungsfeld, Annalen der Physik, 348 (1914), pp. 810–820.

139

http://arxiv.org/abs/1312.6542
http://arxiv.org/abs/1312.6542
http://dx.doi.org/10.1238/Physica.Topical.083a00083
http://dx.doi.org/10.1137/S0097539704442702
http://dx.doi.org/10.1137/S0097539704442702
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1007/s00365-009-9076-9
http://dx.doi.org/10.1007/s00365-009-9076-9
http://dx.doi.org/10.1007/s00211-012-0465-9
http://dx.doi.org/10.1007/s00211-012-0465-9
http://dx.doi.org/10.1007/978-3-642-31703-3_2
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF01055710
http://dx.doi.org/10.1007/BF01055710
http://dx.doi.org/10.1007/s10208-012-9122-z
http://dx.doi.org/10.1007/s10208-012-9122-z
http://dx.doi.org/10.1515/RJNAMM.2008.020
http://dx.doi.org/10.1002/andp.19143480507
http://dx.doi.org/10.1002/andp.19143480507

[68] J. Garcke, M. Griebel, and M. Thess, Data mining with sparse grids,
Computing, 67 (2001), pp. 225–253.

[69] T. Gardner, C. Cantor, and J. Collins, Construction of a genetic toggle
switch in Escherichia coli, Nature, 403 (2000), pp. 339–342.

[70] L. Gauckler and H. Yserentant, Regularity and approximability of the so-
lutions to the chemical master equation, Matheon Preprint 1010, 2013.

[71] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, H-Matrix ap-
proximation for the operator exponential with applications, Numerische Mathe-
matik, 92 (2002), pp. 83–111.

[72] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Tensor-product
approximation to the inverse and related operators in high-dimensional elliptic
problems, Computing, (2005), pp. 131–157.

[73] I. P. Gavrilyuk and B. N. Khoromskij, Quantized-TT-Cayley transform
for computing the dynamics and the spectrum of high-dimensional Hamiltonians,
Comput. Methods in Appl. Math., 11 (2011), pp. 273–290.

[74] D. Gillespie, A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions, J Comput. Phys., 22 (1976), pp. 403–434.

[75] D. Gillespie, Approximate accelerated stochastic simulation of chemically re-
acting systems, The Journal of Chemical Physics, 115 (2001), p. 1716.

[76] D. Gillespie, The chemical langevin and fokker-planck equations for the re-
versible isomerization reaction, The Journal of Physical Chemistry A, 106 (2002),
pp. 5063–5071.

[77] D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica
A: Statistical Mechanics and its Applications, 188 (1992), pp. 404 – 425.

[78] D. T. Gillespie, The chemical langevin equation, The Journal of Chemical
Physics, 113 (2000), pp. 297–306.

[79] L. Giraldi, A. Nouy, and G. Legrain, Low-rank approximate inverse for
preconditioning tensor-structured linear systems, arXiv preprint 1304.6004, 2013.

[80] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse
of a matrix, SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

[81] G. Golub and C. Van Loan, Matrix computations, Johns Hopkins University
Press, Baltimore, MD, 1996.

[82] S. A. Goreinov, I. V. Oseledets, and D. V. Savostyanov, Wedderburn
rank reduction and Krylov subspace method for tensor approximation. Part 1:
Tucker case, SIAM J. Sci. Comput., 34 (2012), pp. A1–A27.

140

http://dx.doi.org/10.1038/35002131
http://dx.doi.org/10.1038/35002131
http://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/1214
http://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/1214
http://dx.doi.org/10.1007/s002110100360
http://dx.doi.org/10.1007/s002110100360
http://dx.doi.org/10.1007/s00607-004-0086-y
http://dx.doi.org/10.1007/s00607-004-0086-y
http://dx.doi.org/10.1007/s00607-004-0086-y
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://www.sciencedirect.com/science/article/pii/037843719290283V
http://dx.doi.org/10.1063/1.481811
http://arxiv.org/abs/1304.6004
http://arxiv.org/abs/1304.6004
http://dx.doi.org/10.1137/100792056
http://dx.doi.org/10.1137/100792056
http://dx.doi.org/10.1137/100792056

[83] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtysh-
nikov, and N. L. Zamarashkin, How to find a good submatrix, Research
Report 08-10, ICM HKBU, Kowloon Tong, Hong Kong, 2008.

[84] S. A. Goreinov and E. E. Tyrtyshnikov, The maximal-volume concept in
approximation by low-rank matrices, Contemporary Mathematics, 208 (2001),
pp. 47–51.

[85] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, Pseudo–
skeleton approximations of matrices, Reports of Russian Academy of Sciences,
342 (1995), pp. 151–152.

[86] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory
of pseudo–skeleton approximations, Linear Algebra Appl., 261 (1997), pp. 1–21.

[87] S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov, Pseudo–
skeleton approximations by matrices of maximum volume, Mathematical Notes,
62 (1997), pp. 515–519.

[88] J. Goutsias, Quasiequilibrium approximation of fast reaction kinetics in
stochastic biochemical systems, The Journal of chemical physics, 122 (2005),
p. 184102.

[89] L. Grasedyck, Existence and computation of low Kronecker-rank approxi-
mations for large systems in tensor product structure, Computing, 72 (2004),
pp. 247–265.

[90] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J.
Matrix Anal. Appl., 31 (2010), pp. 2029–2054.

[91] L. Grasedyck, Polynomial approximation in hierarchical Tucker format by
vector-tensorization, DFG-SPP1324 Preprint 43, Philipps-Univ., Marburg, 2010.

[92] L. Grasedyck and W. Hackbusch, An introduction to hierarchical (H-)
and TT-rank of tensors with examples, Comput. Meth. Appl. Math., 3 (2011),
pp. 291–304.

[93] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-
rank tensor approximation techniques, GAMM-Mitteilungen, 36 (2013), pp. 53–
78.

[94] M. Griebel, Sparse grids and related approximation schemes for higher dimen-
sional problems, SFB 611, 2005.

[95] M. Griebel and H. Harbrecht, Approximation of bi-variate functions: sin-
gular value decomposition versus sparse grids, IMA Journal of Numerical Analy-
sis, (2013).

[96] M. Griebel and D. Oeltz, A sparse grid space-time discretization scheme for
parabolic problems, Computing, 81 (2007), pp. 1–34.

141

http://www.math.hkbu.edu.hk/ICM/pdf/08-10.pdf
http://dx.doi.org/10.1016/S0024-3795(96)00301-1
http://dx.doi.org/10.1016/S0024-3795(96)00301-1
http://dx.doi.org/10.1007/BF02358985
http://dx.doi.org/10.1007/BF02358985
http://dx.doi.org/10.1137/090764189
http://www.dfg-spp1324.de/download/preprints/preprint043.pdf
http://www.dfg-spp1324.de/download/preprints/preprint043.pdf
http://dx.doi.org/10.1002/gamm.201310004
http://dx.doi.org/10.1002/gamm.201310004
http://dx.doi.org/10.1093/imanum/drs047
http://dx.doi.org/10.1093/imanum/drs047
http://dx.doi.org/10.1007/s00607-007-0241-3
http://dx.doi.org/10.1007/s00607-007-0241-3

[97] A. Gupta and M. Khammash, Determining the long-term behavior of cell
populations: A new procedure for detecting ergodicity in large stochastic reaction
networks, arXiv 1312.2879, 2013.

[98] W. Hackbusch, Tensor spaces and numerical tensor calculus, Springer–Verlag,
Berlin, 2012.

[99] W. Hackbusch and D. Braess, Approximation of 1
x
by exponential sums in

[1,∞], IMA J. Numer. Anal., 25 (2005), pp. 685–697.

[100] W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approx-
imation to multi-dimensional nonlocal operators. I. Separable approximation of
multi-variate functions, Computing, 76 (2006), pp. 177–202.

[101] W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product ap-
proximation to multi-dimensional nonlocal operators. II. HKT representation of
certain operators, Computing, 76 (2006), pp. 203–225.

[102] W. Hackbusch, B. N. Khoromskij, S. A. Sauter, and E. E. Tyrtysh-
nikov, Use of tensor formats in elliptic eigenvalue problems, Numer. Linear
Algebra Appl., 19 (2012), pp. 133–151.

[103] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov, Hierarchical
Kronecker tensor-product approximations, J. Numer. Math., 13 (2005), pp. 119–
156.

[104] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov, Approxi-
mate iterations for structured matrices, Numer. Mathematik, 109 (2008), pp. 365–
383.

[105] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J.
Fourier Anal. Appl., 15 (2009), pp. 706–722.

[106] R. A. Harshman, Foundations of the PARAFAC procedure: models and con-
ditions for an explanatory multimodal factor analysis, UCLA Working Papers in
Phonetics, 16 (1970), pp. 1–84.

[107] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their
applications, Biometrika, 57 (1970), pp. 97–109.

[108] M. Hegland, C. Burden, L. Santoso, S. MacNamara, and H. Booth,
A solver for the stochastic master equation applied to gene regulatory networks,
Journal of Computational and Applied Mathematics, 205 (2007), pp. 708 – 724.

[109] M. Hegland and J. Garcke, On the numerical solution of the chemical master
equation with sums of rank one tensors, ANZIAM, 52 (2011), pp. C628–C643.

[110] T. Helgaker, P. Jørgensen, J. Olsen, and M. A. Ratner, Molecular
electronic-structure theory, Physics Today, 54 (2001), p. 52.

142

http://dx.doi.org/10.1007/s00607-005-0144-0
http://dx.doi.org/10.1007/s00607-005-0144-0
http://dx.doi.org/10.1007/s00607-005-0144-0
http://dx.doi.org/10.1007/s00607-005-0145-z
http://dx.doi.org/10.1007/s00607-005-0145-z
http://dx.doi.org/10.1007/s00607-005-0145-z
http://dx.doi.org/10.1002/nla.793
http://dx.doi.org/10.1007/s00211-008-0143-0
http://dx.doi.org/10.1007/s00211-008-0143-0
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1016/j.cam.2006.02.053

[111] A. Hellander and P. Lötstedt, Hybrid method for the chemical master
equation, Journal of Computational Physics, 227 (2007), pp. 100–122.

[112] M. Hemberg and M. Barahona, Perfect sampling of the master equation for
gene regulatory networks, Biophysical journal, 93 (2007), pp. 401–410.

[113] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products,
J. Math. Phys, 6 (1927), pp. 164–189.

[114] H. J. Hogben, M. Krzystyniak, G. T. P. Charnock, P. J. Hore, and
I. Kuprov, Spinach — A software library for simulation of spin dynamics in
large spin systems, J Magn. Reson., 208 (2011), pp. 179–194.

[115] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme
for tensor optimization in the tensor train format, SIAM J. Sci. Comput., 34
(2012), pp. A683–A713.

[116] T. Huckle and K. Waldherr, Subspace iteration method in terms of matrix
product states, Proc. Appl. Math. Mech., 12 (2012), pp. 641–642.

[117] T. Huckle, K. Waldherr, and T. Schulte-Herbrüggen, Computations
in quantum tensor networks, Linear Algebra Appl., 438 (2013), pp. 750–781.

[118] I. Ibraghimov, Application of the three-way decomposition for matrix compres-
sion, Numer. Linear Algebra Appl., 9 (2002), pp. 551–565.

[119] M. Ishteva, L. de Lathauwer, P. A. Absil, and S. van Huffel,
Differential-geometric Newton method for the best rank-(r1, r2, r3) approximation
of tensors, Numerical Algorithms, 51 (2009), pp. 179–194.

[120] T. Jahnke, An adaptive wavelet method for the chemical master equation, SIAM
J. Sci. Comput., 31 (2010), p. 4373.

[121] T. Jahnke, On reduced models for the chemical master equation, Multiscale
Modeling and Simulation, 9 (2011), pp. 1646–1676.

[122] T. Jahnke and W. Huisinga, A dynamical low-rank approach to the chemical
master equation, Bulletin of Mathematical Biology, 70 (2008), pp. 2283–2302.

[123] T. Jahnke and M. Kreim, Error bound for piecewise deterministic processes
modeling stochastic reaction systems, Multiscale Modeling and Simulation, 10
(2012), pp. 1119–1147.

[124] E. Jeckelmann, Dynamical density–matrix renormalization–group method,
Phys. Rev. B, 66 (2002), p. 045114.

[125] L. V. Kantorovich, Funktsionallniy analyz i prikladnaya matematika, Uspehi
Mat. Nauk, 3 (1945), pp. 89–185.

143

http://dx.doi.org/10.1016/j.jmr.2010.11.008
http://dx.doi.org/10.1016/j.jmr.2010.11.008
http://dx.doi.org/10.1137/100818893
http://dx.doi.org/10.1137/100818893
http://dx.doi.org/10.1002/pamm.201210309
http://dx.doi.org/10.1002/pamm.201210309
http://dx.doi.org/10.1016/j.laa.2011.12.019
http://dx.doi.org/10.1016/j.laa.2011.12.019
http://dx.doi.org/10.1002/nla.297
http://dx.doi.org/10.1002/nla.297
http://dx.doi.org/10.1137/110821500
http://dx.doi.org/10.1007/s11538-008-9346-x
http://dx.doi.org/10.1007/s11538-008-9346-x
http://dx.doi.org/10.1137/120871894
http://dx.doi.org/10.1137/120871894
http://dx.doi.org/10.1103/PhysRevB.66.045114

[126] V. Kazeev, M. Khammash, M. Nip, and C. Schwab, Direct solution of the
Chemical Master Equation using Quantized Tensor Trains, PLOS Computational
Biology, (2014).

[127] V. Kazeev, B. Khoromskij, and E. Tyrtyshnikov, Multilevel Toeplitz ma-
trices generated by tensor-structured vectors and convolution with logarithmic
complexity, SIAM J. Sci. Comp., 35 (2013), pp. A1511–A1536.

[128] V. Kazeev, O. Reichmann, and C. Schwab, hp-DG-QTT solution of high-
dimensional degenerate diffusion equations, Tech. Report 2012-11, ETH SAM,
Zürich, 2012.

[129] V. Kazeev, O. Reichmann, and C. Schwab, Low-rank tensor structure of
linear diffusion operators in the TT and QTT formats, Linear Algebra and its
Applications, 438 (2013), pp. 4204–4221.

[130] V. Kazeev and C. Schwab, Tensor approximation of stationary distributions
of chemical reaction networks, Research Report 18, SAM, ETH Zürich, 2013.

[131] V. A. Kazeev and B. N. Khoromskij, Low-rank explicit QTT representation
of the Laplace operator and its inverse, SIAM J. Matrix Anal. Appl., 33 (2012),
pp. 742–758.

[132] V. A. Kazeev and I. V. Oseledets, The tensor structure of a class of adaptive
algebraic wavelet transforms, Preprint 2013-28, ETH SAM, Zürich, 2013.

[133] V. A. Kazeev and E. E. Tyrtyshnikov, Structure of the Hessian matrix and
an economical implementation of Newton’s method in the problem of canonical
approximation of tensors, Comput. Math. Math. Phys., 50 (2010), pp. 927–945.

[134] R. B. Kellogg, An alternating direction method for operator equations, SIAM,
12 (1964), pp. 848–854.

[135] R. Keunings, Micro-macro methods for the multiscale simulation of viscoelastic
flow using molecular models of kinetic theory, Rheology Reviews, (2004), pp. 67–
98.

[136] V. Khoromskaia, Computation of the Hartree-Fock exchange by tensor-
structured methods, Comput. Methd. Appl. Math., 10 (2008).

[137] V. Khoromskaia, Numerical solution of the Hartree-Fock equation by multilevel
tensor-structured methods, PhD thesis, TU Berlin, 2010.

[138] V. Khoromskaia, Black-box Hartree–Fock solver by tensor numerical methods,
Computational Methods in Applied Mathematics, 14 (2014), pp. 89–111.

[139] V. Khoromskaia and B. N. Khoromskij, Grid-based lattice summation of
electrostatic potentials by low-rank tensor approximation, Preprint 116, MPI MIS,
2013.

144

http://dx.doi.org/10.1371/journal.pcbi.1003359
http://dx.doi.org/10.1371/journal.pcbi.1003359
http://dx.doi.org/10.1137/110844830
http://dx.doi.org/10.1137/110844830
http://dx.doi.org/10.1137/110844830
ftp://magellan-03.math.ethz.ch/hg/pub/sam-reports/reports/reports2012/2012-11.pdf
ftp://magellan-03.math.ethz.ch/hg/pub/sam-reports/reports/reports2012/2012-11.pdf
http://dx.doi.org/10.1016/j.laa.2013.01.009
http://dx.doi.org/10.1016/j.laa.2013.01.009
http://dx.doi.org/10.1137/100820479
http://dx.doi.org/10.1137/100820479
http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2013/2013-28.pdf
http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2013/2013-28.pdf
http://dx.doi.org/10.1134/S0965542510060011
http://dx.doi.org/10.1134/S0965542510060011
http://dx.doi.org/10.1134/S0965542510060011
http://dx.doi.org/DOI:10.1137/0112072
http://opus.kobv.de/tuberlin/volltexte/2011/2948/
http://opus.kobv.de/tuberlin/volltexte/2011/2948/
http://dx.doi.org/10.1515/cmam-2013-0023
http://www.mis.mpg.de/preprints/2013/preprint2013_116.pdf
http://www.mis.mpg.de/preprints/2013/preprint2013_116.pdf

[140] V. Khoromskaia, B. N. Khoromskij, and R. Schneider, Tensor-
structured factorized calculation of two-electron integrals in a general basis, SIAM
J. Sci. Comput., 35 (2013), pp. A987–A1010.

[141] B. Khoromskij and C. Schwab, Tensor-structured Galerkin approximation of
parametric and stochastic elliptic PDEs, SIAM J. Sci. Comp., 33 (2011), pp. 1–25.

[142] B. N. Khoromskij, Structured rank-(r1, . . . , rd) decomposition of function-
related operators in Rd, Comput. Meth. Appl. Math, 6 (2006), pp. 194–220.

[143] B. N. Khoromskij, On tensor approximation of Green iterations for Kohn-
Sham equations, Computing and visualization in science, 11 (2008), pp. 259–271.

[144] B. N. Khoromskij, O(d log n)-Quantics approximation of n-d tensors in high-
dimensional numerical modeling, Preprint 55, MPI MIS, Leipzig, 2009.

[145] B. N. Khoromskij, Tensor-structured preconditioners and approximate inverse
of elliptic operators in Rd, Constr. Approx, (2009), pp. 599–620.

[146] B. N. Khoromskij, Fast and accurate tensor approximation of multivariate
convolution with linear scaling in dimension, J. Comp. Appl. Math., 234 (2010),
pp. 3122–3139.

[147] B. N. Khoromskij, Introduction to tensor numerical methods in scientific com-
puting, Preprint, Lecture Notes 06-2011, University of Zürich, 2010.

[148] B. N. Khoromskij, O(d log n)–Quantics approximation of N–d tensors in high-
dimensional numerical modeling, Constr. Appr., 34 (2011), pp. 257–280.

[149] B. N. Khoromskij, Tensor-structured numerical methods in scientific comput-
ing: Survey on recent advances, Chemometr. Intell. Lab. Syst., 110 (2012), pp. 1–
19.

[150] B. N. Khoromskij and V. Khoromskaia, Low rank Tucker-type tensor ap-
proximation to classical potentials, Central European journal of mathematics, 5
(2007), pp. 523–550.

[151] B. N. Khoromskij and V. Khoromskaia, Multigrid accelerated tensor ap-
proximation of function related multidimensional arrays, SIAM J. Sci. Comput.,
31 (2009), pp. 3002–3026.

[152] B. N. Khoromskij, V. Khoromskaia, S. R. Chinnamsetty, and H.-J.
Flad, Tensor decomposition in electronic structure calculations on 3D Cartesian
grids, J. Comput. Phys., 228 (2009), pp. 5749–5762.

[153] B. N. Khoromskij, V. Khoromskaia, and H.-J. Flad., Numerical solution
of the Hartree–Fock equation in multilevel tensor-structured format, SIAM J. Sci.
Comput., 33 (2011), pp. 45–65.

145

http://dx.doi.org/10.1137/120884067
http://dx.doi.org/10.1137/120884067
http://dx.doi.org/10.1137/100785715
http://dx.doi.org/10.1137/100785715
http://dx.doi.org/10.1007/s00791-008-0097-x
http://dx.doi.org/10.1007/s00791-008-0097-x
http://www.mis.mpg.de/preprints/2009/preprint2009_55.pdf
http://www.mis.mpg.de/preprints/2009/preprint2009_55.pdf
http://dx.doi.org/10.1007/s00365-009-9068-9
http://dx.doi.org/10.1007/s00365-009-9068-9
http://dx.doi.org/10.1016/j.cam.2010.02.004
http://dx.doi.org/10.1016/j.cam.2010.02.004
http://www.math.uzh.ch/fileadmin/math/preprints/06_11.pdf
http://www.math.uzh.ch/fileadmin/math/preprints/06_11.pdf
http://dx.doi.org/10.1007/s00365-011-9131-1
http://dx.doi.org/10.1007/s00365-011-9131-1
http://dx.doi.org/10.1016/j.chemolab.2011.09.001
http://dx.doi.org/10.1016/j.chemolab.2011.09.001
http://dx.doi.org/10.2478/s11533-007-0018-0
http://dx.doi.org/10.2478/s11533-007-0018-0
http://dx.doi.org/10.1137/080730408
http://dx.doi.org/10.1137/080730408
http://dx.doi.org/10.1016/j.jcp.2009.04.043
http://dx.doi.org/10.1016/j.jcp.2009.04.043
http://dx.doi.org/10.1137/090777372
http://dx.doi.org/10.1137/090777372

[154] B. N. Khoromskij and S. Miao, Superfast wavelet transform using QTT
approximation. I: Haar wavelets, Preprint MPI MIS, Leipzig 103, 2013.

[155] B. N. Khoromskij and I. V. Oseledets, DMRG+QTT approach to compu-
tation of the ground state for the molecular Schrödinger operator, Preprint 69,
MPI MIS, Leipzig, 2010.

[156] B. N. Khoromskij and I. V. Oseledets, Quantics-TT collocation approx-
imation of parameter-dependent and stochastic elliptic PDEs, Comput. Meth.
Appl. Math., 10 (2010), pp. 376–394.

[157] B. N. Khoromskij and I. V. Oseledets, QTT-approximation of elliptic so-
lution operators in higher dimensions, Rus. J. Numer. Anal. Math. Model., 26
(2011), pp. 303–322.

[158] A. Klümper, A. Schadschneider, and J. Zittartz, Matrix product ground
states for one-dimensional spin-1 quantum antiferromagnets, Europhys. Lett., 24
(1993), pp. 293–297.

[159] O. Koch and C. Lubich, Dynamical tensor approximation, SIAM J. Matrix
Anal. Appl., 31 (2010), pp. 2360–2375.

[160] T. G. Kolda and B. W. Bader, Tensor decompositions and applications,
SIAM Review, 51 (2009), pp. 455–500.

[161] D. Kressner, M. Steinlechner, and A. Uschmajew, Low-rank tensor
methods with subspace correction for symmetric eigenvalue problems, MATHICSE
preprint 40.2013, EPFL, Lausanne, 2013.

[162] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with
tensor product structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688–1714.

[163] D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for
parametrized linear systems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 273–290.

[164] D. Kressner and C. Tobler, Preconditioned low-rank methods for high-
dimensional elliptic PDE eigenvalue problems, Computational Methods in Ap-
plied Mathematics, 11 (2011), pp. 363–381.

[165] P. Kroonenberg and J. de Leeuw, Principal component analysis of three-
mode data by means of alternating least squares algorithms, Psychometrika, 45
(1980), pp. 69–97.

[166] S. Kühn, Hierarchische Tensordarstellung, PhD thesis, Uni. Leipzig, Faculty of
Mathematics and Informatics, 2012.

[167] I. Kuprov, N. Wagner-Rundell, and P. J. Hore, Polynomially scaling
spin dynamics simulation algorithm based on adaptive state-space restriction, J
Magn. Reson., 189 (2007), pp. 241–250.

146

http://www.mis.mpg.de/preprints/2013/preprint2013_103.pdf
http://www.mis.mpg.de/preprints/2013/preprint2013_103.pdf
http://www.mis.mpg.de/preprints/2010/preprint2010_69.pdf
http://www.mis.mpg.de/preprints/2010/preprint2010_69.pdf
http://dx.doi.org/10.2478/cmam-2010-0023
http://dx.doi.org/10.2478/cmam-2010-0023
http://dx.doi.org/10.1515/rjnamm.2011.017
http://dx.doi.org/10.1515/rjnamm.2011.017
http://dx.doi.org/10.1209/0295-5075/24/4/010
http://dx.doi.org/10.1209/0295-5075/24/4/010
http://dx.doi.org/10.1137/09076578X
http://dx.doi.org/10.1137/07070111X
http://mathicse.epfl.ch/files/content/sites/mathicse/files/Mathicse reports 2013/40.2013_DK-MS-AU.pdf
http://mathicse.epfl.ch/files/content/sites/mathicse/files/Mathicse reports 2013/40.2013_DK-MS-AU.pdf
http://dx.doi.org/10.1137/090756843
http://dx.doi.org/10.1137/090756843
http://dx.doi.org/10.1137/100799010
http://dx.doi.org/10.1137/100799010
http://dx.doi.org/10.2478/cmam-2011-0020
http://dx.doi.org/10.2478/cmam-2011-0020
http://dx.doi.org/10.1016/j.jmr.2007.09.014
http://dx.doi.org/10.1016/j.jmr.2007.09.014

[168] C. Le Bris, T. Leliévre, and Y. Maday, Results and questions on a non-
linear approximation approach for solving high-dimensional partial differential
equations, Constr. Approx., 30 (2009), pp. 621–651.

[169] O. S. Lebedeva, Block tensor conjugate gradient-type method for Rayleigh quo-
tient minimization in two-dimensional case, Comput. Math. Math. Phys., 50
(2010), pp. 749–765.

[170] O. S. Lebedeva, Tensor conjugate-gradient-type method for Rayleigh quotient
minimization in block QTT-format, Russ. J. Numer. Anal. Math. Modelling, 26
(2011), p. 465–489.

[171] C. Lécot and F. E. Khettabi, Quasi-Monte Carlo Simulation of Diffusion,
Journal of Complexity, 15 (1999), pp. 342 – 359.

[172] O. Legeza, T. Rohwedder, R. Schneider, and S. Szalay, Tensor product
approximation DMRG and coupled cluster method in quantum chemistry, arXiv
preprint 1310.2736, 2013.

[173] A. Lozinski and C. Chauviére, A fast solver for Fokker-Planck equation
applied to viscoelastic flows calculations: 2D FENE model, Journal of Computa-
tional Physics, 189 (2003), pp. 607 – 625.

[174] C. Lubich and I. V. Oseledets, A projector-splitting integrator for dynamical
low-rank approximation, BIT, 54 (2014), pp. 171–188.

[175] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, Dy-
namical approximation by hierarchical Tucker and tensor-train tensors, SIAM J.
Matrix. Anal. Appl., 34 (2013), pp. 470–494.

[176] T. Mach, Computing inner eigenvalues of matrices in tensor train matrix for-
mat, in Numerical Mathematics and Advanced Applications 2011, Springer Berlin
Heidelberg, 2013, pp. 781–788.

[177] H. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic
stochastic partial differential equations, Computer Methods in Applied Mechanics
and Engineering, 194 (2005), pp. 1295–1331.

[178] N. Metropolis and S. Ulam, The monte carlo method, Journal of the Amer-
ican statistical association, 44 (1949), pp. 335–341.

[179] H.-D. Meyer, F. Gatti, and G. A. Worth, Multidimensional Quantum
Dynamics: MCTDH Theory and Applications, Wiley-VCH, Weinheim, 2009.

[180] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponen-
tial of a matrix, twenty-five years later, SIAM Review, 45 (2003), pp. 3–49.

[181] B. Munsky and M. Khammash, The finite state projection algorithm for the
solution of the chemical master equation, The Journal of chemical physics, 124
(2006), p. 044104.

147

http://dx.doi.org/10.1007/s00365-009-9071-1
http://dx.doi.org/10.1007/s00365-009-9071-1
http://dx.doi.org/10.1007/s00365-009-9071-1
http://dx.doi.org/10.1134/S0965542510050015
http://dx.doi.org/10.1134/S0965542510050015
http://dx.doi.org/10.1515/rjnamm.2011.026
http://dx.doi.org/10.1515/rjnamm.2011.026
http://www.sciencedirect.com/science/article/pii/S0885064X99905095
http://arxiv.org/abs/1310.2736
http://arxiv.org/abs/1310.2736
http://www.sciencedirect.com/science/article/pii/S0021999103002481
http://www.sciencedirect.com/science/article/pii/S0021999103002481
http://dx.doi.org/10.1007/s10543-013-0454-0
http://dx.doi.org/10.1007/s10543-013-0454-0
http://dx.doi.org/10.1137/120885723
http://dx.doi.org/10.1137/120885723
http://dx.doi.org/10.1007/978-3-642-33134-3_82
http://dx.doi.org/10.1007/978-3-642-33134-3_82
http://dx.doi.org/10.1016/j.cma.2004.05.027
http://dx.doi.org/10.1016/j.cma.2004.05.027
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180

[182] H. Munthe-Kaas, The convergence rate of inexact preconditioned steepest de-
scent algorithm for solving linear systems, Numerical Analysis Report NA-87-04,
Stanford University, 1987.

[183] N. R. Nené and A. Zaikin, Decision making in noisy bistable systems with
time-dependent asymmetry, Phys. Rev. E, 87 (2013), p. 012715.

[184] H. Niederreiter, Quasi–Monte Carlo methods and pseudo–random numbers,
Bull. AMS, 84 (1978), pp. 957–1041.

[185] Y. Notay, Convergence analysis of inexact rayleigh quotient iteration, SIAM J.
on Matrix An. Appl., 24 (2003), pp. 627–644.

[186] A. Nouy, A priori model reduction through proper generalized decomposition
for solving time-dependent partial differential equations, Computer Methods in
Applied Mechanics and Engineering, 199 (2010), pp. 1603–1626.

[187] I. V. Oseledets, Lower bounds for separable approximations of the Hilbert ker-
nel, Mat. Sb., 198 (2007), pp. 137–144.

[188] I. V. Oseledets, Compact matrix form of the d-dimensional tensor decomposi-
tion, Preprint 2009-01, INM RAS, Moscow, 2009.

[189] I. V. Oseledets, Approximation of 2d×2d matrices using tensor decomposition,
SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2130–2145.

[190] I. V. Oseledets, DMRG approach to fast linear algebra in the TT–format,
Comput. Meth. Appl. Math., 11 (2011), pp. 382–393.

[191] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011),
pp. 2295–2317.

[192] I. V. Oseledets, Constructive representation of functions in low-rank tensor
formats, Constr. Appr., 37 (2013), pp. 1–18.

[193] I. V. Oseledets, B. N. Khoromskij, and R. Schneider, Efficient time-
stepping scheme for dynamics on TT-manifolds, Preprint 24, MPI MIS, 2012.

[194] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov, Tucker
dimensionality reduction of three-dimensional arrays in linear time, SIAM J.
Matrix Anal. Appl., 30 (2008), pp. 939–956.

[195] I. V. Oseledets, D. V. Savostyanov, and E. E. Tyrtyshnikov, Linear
algebra for tensor problems, Computing, 85 (2009), pp. 169–188.

[196] I. V. Oseledets, D. V. Savostyanov, and E. E. Tyrtyshnikov, Cross
approximation in tensor electron density computations, Numer. Linear Algebra
Appl., 17 (2010), pp. 935–952.

148

http://i.stanford.edu/pub/cstr/reports/na/m/87/04/NA-M-87-04.pdf
http://i.stanford.edu/pub/cstr/reports/na/m/87/04/NA-M-87-04.pdf
http://dx.doi.org/10.1103/PhysRevE.87.012715
http://dx.doi.org/10.1103/PhysRevE.87.012715
http://dx.doi.org/10.1137/S0895479801399596
http://pub.inm.ras.ru/pub/inmras2009-01.pdf
http://pub.inm.ras.ru/pub/inmras2009-01.pdf
http://dx.doi.org/10.1137/090757861
http://dx.doi.org/10.2478/cmam-2011-0021
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1007/s00365-012-9175-x
http://dx.doi.org/10.1007/s00365-012-9175-x
http://www.mis.mpg.de/preprints/2012/preprint2012_24.pdf
http://www.mis.mpg.de/preprints/2012/preprint2012_24.pdf
http://dx.doi.org/10.1137/060655894
http://dx.doi.org/10.1137/060655894
http://dx.doi.org/10.1007/s00607-009-0047-6
http://dx.doi.org/10.1007/s00607-009-0047-6
http://dx.doi.org/10.1002/nla.682
http://dx.doi.org/10.1002/nla.682

[197] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimension-
ality, or how to use SVD in many dimensions, SIAM J. Sci. Comput., 31 (2009),
pp. 3744–3759.

[198] I. V. Oseledets and E. E. Tyrtyshnikov, Tensor tree decomposition does
not need a tree, Preprint (Submitted to Linear Algebra Appl) 2009-04, INM RAS,
Moscow, 2009.

[199] I. V. Oseledets and E. E. Tyrtyshnikov, TT-cross approximation for mul-
tidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70–88.

[200] S. Östlund and S. Rommer, Thermodynamic limit of density matrix renor-
malization, Phys. Rev. Lett., 75 (1995), pp. 3537–3540.

[201] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, Matrix
product state representations, Quantum Info. Comput., 7 (2007), pp. 401–430.

[202] I. Pižorn and F. Verstraete, Variational Numerical Renormalization
Group: Bridging the gap between NRG and Density Matrix Renormalization
Group, Phys. Rev. Lett., 108 (2012).

[203] M. Planck, Sitzber. Preuss. Akad. Wiss., (1917), p. 324.

[204] M. Ptashne, A genetic switch: λ-phage and higher organisms, Wiley-Blackwell,
1992.

[205] H. Rabitz, M. Kramer, and D. Dacol, Sensitivity analysis in chemical
kinetics, Annual review of physical chemistry, 34 (1983), pp. 419–461.

[206] H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications,
2nd ed., Springer Verlag, Berlin, Heidelberg, 1989.

[207] T. Rohwedder and A. Uschmajew, On local convergence of alternating
schemes for optimization of convex problems in the tensor train format, SIAM J.
Num. Anal., 51 (2013), pp. 1134–1162.

[208] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.

[209] B. Savas and L. Eldén, Krylov-type methods for tensor computations I, Linear
Algebra and its Applications, 438 (2013), pp. 891–918.

[210] D. V. Savostyanov, Polilinear approximation of matrices and integral equa-
tions, PhD thesis, INM RAS, Moscow, 2006. (in Russian).

[211] D. V. Savostyanov, Fast revealing of mode ranks of tensor in canonical form,
Numer. Math. Theor. Meth. Appl., 2 (2009), pp. 439–444.

[212] D. V. Savostyanov, Quasioptimality of maximum–volume cross interpolation
of tensors, arXiv preprint 1305.1818, 2013.

149

http://dx.doi.org/10.1137/090748330
http://dx.doi.org/10.1137/090748330
http://pub.inm.ras.ru/pub/inmras2009-08.pdf
http://pub.inm.ras.ru/pub/inmras2009-08.pdf
http://dx.doi.org/10.1016/j.laa.2009.07.024
http://dx.doi.org/10.1016/j.laa.2009.07.024
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevLett.108.067202
http://dx.doi.org/10.1103/PhysRevLett.108.067202
http://dx.doi.org/10.1103/PhysRevLett.108.067202
http://dx.doi.org/10.1137/110857520
http://dx.doi.org/10.1137/110857520
http://www.inm.ras.ru/library/Tyrtyshnikov/savostyanov_disser.pdf
http://www.inm.ras.ru/library/Tyrtyshnikov/savostyanov_disser.pdf
http://dx.doi.org/10.4208/nmtma.2009.m9006s
http://arxiv.org/abs/1305.1818
http://arxiv.org/abs/1305.1818

[213] D. V. Savostyanov and I. V. Oseledets, Fast adaptive interpolation of
multi-dimensional arrays in tensor train format, in Proceedings of 7th Interna-
tional Workshop on Multidimensional Systems (nDS), IEEE, 2011.

[214] J. Schneider, Error estimates for two–dimensional cross approximation, J. Ap-
prox. Theory, 162 (2010), pp. 1685–1700.

[215] R. Schneider and A. Uschmajew, Approximation rates for the hierarchical
tensor format in periodic sobolev spaces, Journal of Complexity, (2013).

[216] U. Schollwöck, The density–matrix renormalization group, Rev. Mod. Phys.,
77 (2005), pp. 259–315.

[217] U. Schollwöck, The density-matrix renormalization group in the age of matrix
product states, Annals of Physics, 326 (2011), pp. 96–192.

[218] D. Schötzau, hp-DGFEM for parabolic evolution problems. Applications to dif-
fusion and viscous incompressible fluid flow, PhD thesis, ETH, Zürich, 1999.

[219] V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods and
applications to scientific computing, SIAM J. Sci. Comput., 25 (2003), pp. 454–
477.

[220] I. Sloan and H. Wozniakowski, When are quasi-Monte Carlo algorithms
efficient for high dimensional integrals, J. of Complexity, 14 (1998), pp. 1–33.

[221] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of
certain class of functions, Dokl. Akad. Nauk SSSR, 148 (1963), pp. 1042–1053.
Transl.: Soviet Math. Dokl. 4:240-243, 1963.

[222] S. N. Sreenath, C. Kwang-Hyun, and P. Wellstead, Modelling the dy-
namics of signalling pathways, Essays Biochemistry, 45 (2008), pp. 1–28.

[223] R. Steuer, Effects of stochasticity in models of the cell cycle: from quantized cy-
cle times to noise-induced oscillations, Journal of theoretical biology, 228 (2004),
pp. 293–301.

[224] M. Stoll and T. Breiten, A low-rank in time approach to pde-constrained
optimization, MPI Preprint 08, 2013.

[225] E. Tadmor, The exponential accuracy of Fourier and Chebychev differencing
methods, SIAM J. Numer. Anal., 23 (1986), pp. 1–23.

[226] V. Temlyakov, Greedy Approximation, Cambridge University Press, 2011.

[227] L. N. Trefethen, Spectral methods in MATLAB, SIAM, Philadelphia, 2000.

[228] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psy-
chometrika, 31 (1966), pp. 279–311.

150

http://dx.doi.org/10.1109/nDS.2011.6076873
http://dx.doi.org/10.1109/nDS.2011.6076873
http://dx.doi.org/10.1016/j.jat.2010.04.012
http://dx.doi.org/10.1016/j.jco.2013.10.001
http://dx.doi.org/10.1016/j.jco.2013.10.001
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.3929/ethz-a-002057769
http://dx.doi.org/10.3929/ethz-a-002057769
http://dx.doi.org/10.1137/S1064827502406415
http://dx.doi.org/10.1137/S1064827502406415
http://www2.mpi-magdeburg.mpg.de/preprints/2013/MPIMD13-08.pdf
http://www2.mpi-magdeburg.mpg.de/preprints/2013/MPIMD13-08.pdf
http://dx.doi.org/10.1007/BF02289464

[229] E. E. Tyrtyshnikov, Incomplete cross approximation in the mosaic–skeleton
method, Computing, 64 (2000), pp. 367–380.

[230] E. E. Tyrtyshnikov, Tensor approximations of matrices generated by asymp-
totically smooth functions, Sbornik: Mathematics, 194 (2003), pp. 941–954.

[231] E. E. Tyrtyshnikov, Kronecker-product approximations for some function-
related matrices, Linear Algebra Appl., 379 (2004), pp. 423–437.

[232] N. G. van Kampen, Stochastic processes in physics and chemistry, North Hol-
land, Amsterdam, 1981.

[233] G. Venkiteswaran and M. Junk, A QMC approach for high dimensional
Fokker-Planck equations modelling polymeric liquids, Math. Comput. Simul., 68
(2005), pp. 43–56.

[234] G. Vidal, Efficient classical simulation of slightly entangled quantum computa-
tions, Phys. Rev. Lett., 91 (2003), p. 147902.

[235] T. von Petersdorff and C. Schwab, Numerical solution of parabolic equa-
tions in high dimensions, ESAIM: Mathematical Modelling and Numerical Anal-
ysis, 38 (2004), pp. 93–127.

[236] A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac, and
J. von Delft, Variational matrix-product-state approach to quantum impurity
models, Phys. Rev. B, 80 (2009), p. 165117.

[237] S. R. White, Density matrix formulation for quantum renormalization groups,
Phys. Rev. Lett., 69 (1992), pp. 2863–2866.

[238] S. R. White, Density-matrix algorithms for quantum renormalization groups,
Phys. Rev. B, 48 (1993), pp. 10345–10356.

[239] S. R. White, Spin gaps in a frustrated Heisenberg model for CaV4O9, Phys.
Rev. Lett., 77 (1996), pp. 3633–3636.

[240] S. R. White, Density matrix renormalization group algorithms with a single
center site, Phys. Rev. B, 72 (2005), p. 180403.

[241] K. G. Wilson, The renormalization group: Critical phenomena and the Kondo
problem, Rev. Mod. Phys., 47 (1975), pp. 773–840.

151

http://dx.doi.org/10.1007/s006070070031
http://dx.doi.org/10.1007/s006070070031
http://dx.doi.org/10.1070/SM2003v194n06ABEH000747
http://dx.doi.org/10.1070/SM2003v194n06ABEH000747
http://dx.doi.org/10.1016/j.laa.2003.08.013
http://dx.doi.org/10.1016/j.laa.2003.08.013
http://dx.doi.org/10.1016/j.matcom.2004.09.002
http://dx.doi.org/10.1016/j.matcom.2004.09.002
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1051/m2an:2004005
http://dx.doi.org/10.1051/m2an:2004005
http://dx.doi.org/10.1103/PhysRevB.80.165117
http://dx.doi.org/10.1103/PhysRevB.80.165117
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevLett.77.3633
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1103/PhysRevB.72.180403

List of notations
Dimensions, sizes and indices

d dimension of a tensor, number of coordinates in an equation.
nk 6 n mode size, range of the k-th index in a tensor, k = 1, . . . , d.
ik, jk k-th index in an initial d-dimensional tensor.
i, j Multi-index of the initial tensor, i = (i1, . . . , id).
i1, . . . , id Equivalent multi-index, emphasizing the vectorization,

i1, . . . , id = i1 + (i2 − 1)n1 + · · ·+ (id − 1)n1 · · ·nd−1.
A⊗B Kronecker product: C = A⊗B =

[
Cik,jm

]
= [ABk,m] = [Ai,jBk,m].

αk, α rank index between k-th and (k + 1)-th TT blocks. α = (α1, . . . , αd−1).
rk 6 r TT rank, range of αk. A tensor of origin x is pointed as rk(x).
γk, γ Tucker rank index. Alternatively: rank index in the matrix TT.
Rk 6 R Tucker rank, range of γk.

Default tensors and their roles
x general “vector” tensor, discrete multi-variate function, solution.
A general “matrix” tensor, discrete operator, matrix in a lin. system.
b right-hand side in a linear system, “vector” tensor.
z, z̃ (approximate) residual in a linear system, z̃ ≈ z = b− Ax.
ψ a “vector” tensor as solution to the Fokker-Planck/master equations.

Blocks (cores) of tensor formats
x(k), A(k) TT blocks of a vector x, resp. matrix A. Generally are tensors[

x
(k)
αk−1,αk(ik)

]
∈ Crk−1×nk×rk ,

[
A

(k)
αk−1,αk(ik, jk)

]
∈ Crk−1×nk×mk×rk .

In products of form Mx(k), reads also as a vector, x(k) ∈ Crk−1nkrk .
x(c), xc(k) Tucker core, x(c) ∈ CR1×···×Rd , and its TT block, xc(k) ∈ Crk−1×Rk×rk .
xf(k,l) Tucker or QTT-Tucker factors, xf(k) ∈ Cnk×Rk , xf(k,l) ∈ Crk,l×nk,l×rk,l−1 .

Maps and reshapes of format blocks
τ({x(k)}) Tensor train map, τ(x(p), . . . , x(q)) ∈ Crp−1×np···nq×rq . (Def. 2.1.11)
x(6k), x(>k) Interface TT chunks, x(6k) = τ(x(1), . . . , x(k)), x(>k) = τ(x(k), . . . , x(d)).
X<k, X 6=k Frame matrices, X<k = x(<k) ⊗ Ink···nd , X 6=k = x(<k) ⊗ Ink ⊗

(
x(>k)

)>.
x|k〉 Left-folded reshape of a 3-index tensor, x|k〉 ∈ Crk−1nk×rk . (Def. 2.1.12)
x〈k| Right-folded reshape of a 3-index tensor, x〈k| ∈ Crk−1×nkrk . (Def. 2.1.12)
x|k| Center-folded reshape of a 3-index tensor, x|k| ∈ Cnk×rk−1rk . (Def. 2.1.12)
A〈k〉 Outer-folded reshape of a 4-index tensor, A〈k〉 ∈ Crk−1nk×mkrk . (Def. 4.4.1)
A〉k〈 Inner-folded reshape of a 4-index tensor, A〉k〈 ∈ Cnkmk×rkrk−1 . (Def. 4.4.1)
A<k, A>k Matrix projections onto interfaces, e.g. A<kγk−1

=
(
x(<k)

)∗
A

(<k)
γk−1x

(<k).
b<k, b>k Vector projections onto interfaces, e.g. b<k =

(
x(<k)

)∗
b(<k). (Sec. 4.4)

Quantities related to PDEs and time schemes
qk, q coordinate variables, q = (q1, . . . , qd).
t time variable.
δt effective time step in a numerical scheme.
Nt number of time steps.
T “large” time step (interval) in the simultaneous space-time scheme.
T̂ time interval of the whole dynamics, i.e. t ∈ [0, T̂].

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen
und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinngemäß aus
veröffentlichten oder unveröffentlichten Schriften entnommen wurden, und alle Angaben,
die auf mündlichen Auskünften beruhen, als solche kenntlich gemacht. Ebenfalls sind
alle von anderen Personen bereitgestellten Materialen oder erbrachten Dienstleistungen
als solche gekennzeichnet.

Leipzig, den 03.04.2014

. .
(Sergey Dolgov)

Daten zum Autor
Name: Sergey Dolgov
Geburtsdatum, -ort: 19.03.1988, Sankt Petersburg
09.2005 – 06.2009 B. Sc. Applied Mathematics and Physics, Moscow

Institute of Physics and Technology
09.2009 – 06.2011 M. Sc. Applied Mathematics and Physics, Moscow

Institute of Physics and Technology
06.2011 – 08.2014 Doktorand am Max-Planck-Institut für Mathematik

in den Naturwissenschaften, Leipzig

	Introduction
	Multidimensional partial differential equations
	Stochastic dynamical systems
	Stochastic differential models and Fokker-Planck equation
	Discretization of the Fokker-Planck equation
	Bead-spring chain in the Brownian motion: a micro-model for non-Newtonian dilute polymer flows

	Chemical master equation for stochastic chemical kinetics
	From dynamical to stationary problem and back
	Simultaneous space-time discretization
	Solution of stationary problems by dynamical evolution

	Tensor product representations and approximations
	Separation of variables in two and many dimensions
	Matrix low-rank decomposition
	Low-parametric canonical and Tucker formats
	Tensor Trains and trees: recurrent decompositions
	Tensor product notations
	Principal operations in the TT format

	Quantized tensor approximation
	Quantized Tensor Train
	QTT-Tucker: two-level separation of initial and virtual dimensions
	TT to Extended TT (QTT-Tucker) conversion
	QTT-Tucker arithmetics
	QTT-Tucker rounding

	Tensor structure properties of some classes of operators and functions
	Separabilities of gradients and the block time scheme
	Tensor structure of the space-time matrix
	Shift and gradient matrices in the QTT format

	Tensor properties of the Fokker-Planck and chemical master equations
	Bilinear form in the TT format
	Gaussian distribution in the QTT format
	Cascade operator

	Inverse Laplace operator and Fourier transform

	Classical and alternating tensor approximation and solution methods
	Truncated iterations
	Constrained minimization on tensor format elements
	Alternating vs. classical iterations
	Solution of linear algebra problems by optimization
	Rank adaptation problem and two-site DMRG

	Adaptive alternating energy minimization as a black-box linear solver
	A conception of enrichment
	Steepest descent technique and its error analysis
	AMEn: alternating optimization meets steepest descent
	Enrichment versus the 1.5-site DMRG

	Practical aspects of DMRG and AMEn algorithms
	Computation of local systems
	Truncation of the solution
	Approximation of the residual: SVD method
	Approximation of the residual: ALS method
	AMEn and DMRG for the QTT-Tucker format

	Verification with applications: numerical experiments
	Chemical master equation for biological networks
	Short time cascade: comparison of methods
	Long time cascade: full evolution history
	Genetic toggle switch with a parameter
	-phage

	Fokker-Planck equation for non-Newtonian fluid dynamics
	Hookean model
	Hookean + repulsive potential
	High-dimensional FENE model

	Conclusion
	Bibliography
	List of notations

