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Onsager’s Conjecture

ABSTRACT

In 1949, Lars Onsager in his famous note on statistical hydrodynamics conjectured
that weak solutions to the 3-D incompressible Euler equations belonging to Hélder
spaces with Holder exponent greater than !/3 conserve kinetic energy; conversely, he
conjectured the existence of solutions belonging to any Holder space with exponent less
than !/3 which do not conserve kinetic energy. The first part, relating to conservation
of kinetic energy, has since been confirmed (cf. [Eyig4, CWT94]). The second part,
relating to the existence of non-conservative solutions, remains an open conjecture and
is the subject of this dissertation.

In groundbreaking work of De Lellis and Székelyhidi Jr. [DLSJ12a, DLSJ12b], the
authors constructed the first examples of non-conservative Holder continuous weak so-
lutions to the Euler equations. The construction was subsequently improved by Isett
[Ise12, Ise13a], introducing many novel ideas in order to construct 1/s — ¢ Holder con-
tinuous weak solutions with compact support in time.

Adhering more closely to the original scheme of De Lellis and Székelyhidi Jr., we
present a comparatively simpler construction of 1/s — ¢ Hélder continuous non-
conservative weak solutions which may in addition be made to obey a prescribed kinetic
energy profile.! Furthermore, we extend this scheme in order to construct weak non-
conservative solutions to the Euler equations whose Hélder 1/3 — ¢ norm is Lebesgue
integrable in time.

The dissertation will be primarily based on three papers: [BDLSJ13], [Buc13] and
[BDLS14] - the first and third paper being in collaboration with De Lellis and Székely-

hidi Jr.

!The ability to prescribe an energy profile was also present in the original schemes of De Lellis and
Székelyhidi Jr.
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Die Vermutung von Onsager

ZUSAMMENFASSUNG

Im Jahr 1949 stellte Lars Onsager in seiner berithmten Arbeit zur statistischen Hydro-
dynamik die Vermutung auf, dass alle schwachen Losungen der 3-D Euler Gleichungen,
welche Holder-stetig mit Exponent 6 > 1/3 sind, die kinetische Energie erhalten. Zu-
dem vermutete Onsager, dass es in jedem Holder-Raum mit Exponent § < 1/3 Losun-
gen gibt, die nicht konservativ sind, das heifit ihre kinetische Energie bleibt nicht erhal-
ten. Der erste Teil der Vermutung wurde in [Eyig4, CWT94] bewiesen. Ein Beweis fiir
den zweiten Teil der Vermutung steht noch aus und ist Gegenstand der vorliegenden
Dissertation.

Erste Beispiele von nicht-konservativen Holder-stetigen schwachen Losungen der
Euler Gleichungen wurden in der bahnbrechenden Arbeit [DLSJ12a, DLSJ12b] von
De Lellis und Székelyhidi Jr. konstruiert. Die in dieser Arbeit verwendete Methode
wurde im Folgenden durch Isett in [Ise12, Ise13a] verbessert, dem es gelang 1/s — ¢
Holder-stetige schwache Losungen mit kompaktem Tréger in der Zeit zu konstruieren.

In dieser Arbeit prisentieren wir eine alternative, vergleichsweise einfachere Kon-
struktion, die niher an der urspriinglichen Konstruktion von De Lellis and Széke-
lyhidi Jr. ist, und dabei nicht nur solche 1/s — & Hélder-stetigen, nicht konser-
vativen, schwachen Losungen liefert, sondern uns auch erlaubt, das Energieprofil
vorzuschreiben (vgl. die urspriingliche Methode von De Lellis und Székelyhidi Jr.).
Dariiberhinaus erzielen wir eine Verbesserung dieser Methode, insofern dass wir die
Existenz einer solchen Ldsung nachweisen, deren 1/3 — ¢ Holder-Norm Lebesgue-
integrierbar beziiglich der Zeit ist.

Diese Dissertation basiert hauptsitchlich auf den Arbeiten [BDLSJ13 ], [Buc13] und
[BDLS14], wobei der erste und dritte Artikel gemeinsame Arbeiten mit De Lellis und

Székelyhidi Jr. sind.
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Introduction

1.1 THE EULER EQUATION

glNCE THEIR INCEPTION IN THE MID 18TH CENTURY [EULss], the Euler equa-
tions remain subject of both intense study and debate. The equations have broad
applications, from modeling tidal flows to air flow over an airfoil, capturing the essential
features of an idealised flow where viscous effects are negligible.

In the incompressible case, where the fluid is assumed to have constant material den-

sity, the Euler equations may be formally written as

Oow—+v-Vv+Vp=0
dive =0

, (1.1.1)

where here v is a vector field representing the velocity of the fluid and p is the pressure.
In three dimensions, the question of whether the Cauchy problem is globally well-
posed for smooth initial data remains famously unresolved. However, when one relaxes
one’s notion of solutions and considers weak solutions to the Euler equation, then the
solutions are known to exhibit bad and in some cases paradoxical behavior.
In testament to the paradoxical behavior of weak solutions, in the remarkable work of

Scheffer [Schg3] and in the subsequent work of Shnirelman [Shng7], the existence of
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nontrivial weak solutions with compact support in time was proved (see also [DLSJoo,
Wie11]). Despite this, weak solutions remain the subject of study due to their perceived
connection with the theory of turbulence.

Specifically, a pair (v, p) is said to be a weak solution on the 3-dimensional torus T® =
[—7, )3 if for all test functions ¢ € C°(T® x (0, T),R3) and ¢ € C°(T? x (0, T)),
the following identities holds

T
/ / (Op-v+V¢:v@v+pdive) dxdt =0 (1.1.2)
0 T3

T
/ / v-Vydxdt=0. (1.1.3)
0 T3

Alternatively, we may replace the identity (1.1.2) by the requirement that

T
/ / (Op-v+Vo:v®@v) dedt =0, (1.1.4)
0 T3

holds for all divergence free test functions ¢ € C°(T? x (0, T), R?). If v belongs to L?,

then the pressure up to an arbitrary function in time can be recovered by the formula
—Ap =divdiv(v®@v), (1.1.5)

where again (1.1.5) is assumed to hold in a distributional sense. With these observation
in mind, we also call an L? vector field v a weak solution if it satisfies the identities (1.1.3)

and (1.1.4).

1.2 THE ONSAGER CONJECTURE

A fundamental feature of turbulent flow is that of dissipation of kinetic energy [ Ons49,
Kolg1a, FK9s ], where given a solution to (1.1.1), its kinetic energy is defined to be

B = = [ |o(a,0)? dx.
2 I
A simple calculation however yields the conservation of energy for any smooth solu-
tion of (1.1.1). This formal calculation does not however hold for distributional solu-
tions to Euler as is demonstrated by the paradoxical solution of Scheffer. In his famous
note [Ons49] on statistical hydrodynamics, Lars Onsager conjectured the following di-

chotomy:

Conjecture 1 (Onsager’s conjecture).
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(a) Any weak solution v belonging to the Hélder space C°(T? x [0, T]) for 8 > % con-
y ging P 3

serves its kinetic energy.

(b) Forany < } there exist weak solutions v € C%(T® x [0, T]) which do not conserve

its kinetic energy.

Part (a) of this conjecture has since been resolved: it was first considered by Eyink
in [Eyig4] following Onsager’s original calculations, and later proven by Constantin, E
and Titi in [CWTo4] (see also [DRoo, CCFSo8]):

Theorem 1.2.1 (Constantin, E, Titi'). Letv € L*([0, T], C?(T?)) N C(T® x [0, T])
be a weak solution of the 3-D incompressible Euler equation. Then if 6 > 1/3, we have

conservation of energy:

forallt € [0, T].

The proofis beautiful in its simplicity, involving a mollification of the flow and a com-
mutator estimate (see Section 4.4, Chapter 4). Indeed such arguments will play an im-
portant role in the present work (cf. Proposition 4.3.5, Chapter 4.).

Part (b) remains an open conjecture and is the subject of this dissertation. The first
constructions of non-conservative 1 /10— & Holder-continuous® weak solutions appeared
in work of De Lellis and Székelyhidi Jr. [DLSJ12b], which itself was based on their ear-
lier seminal work [ DLSJ12a] where continuous weak solutions were constructed. In the
recent doctoral work of Isett [Ise12, Ise13a], a number of new ideas were introduced
in order improve the Hélder exponent to 1/S — ¢, for weak solutions with compact
support in time. In this work we will provide an alternative, simplified construction of
non-conservative 1/5 — ¢ Holder continuous weak solutions, which in addition may
be made to obey any prescribed smooth energy profile. Specifically, we will prove the

following theorem:

Theorem 1.2.2. Assumee : [0, T] — R is a strictly positive smooth function. Then there
exists a continuous vector fild v € C/S~¢(T3 x [0, T], R3) and a continuous scalar field

p € C72(T3 x [0, T]) which solve (1.1.1) in the weak sense and such that E(t) = e(t).

'In fact the precise result proved in [CWTo4], which is written in terms of Besov spaces, is slightly
stronger than the result stated here (see the remarks at the end of Section 1.3.1).

*Here and below we will let £ denote an arbitrarily small positive number.
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Going beyond the exponent 1 /s seems to be a particularly challenging problem. Ow-
ing to the beauty of the Constantin-E-Titi result, it may seem natural to attempt to con-
struct solutions v belonging to the spaces L? ([0, T], C*~¢(T?)) N C(T3 x [0, T]) for

some p > 1.% In this direction, we prove the following theorem:

Theorem 1.2.3. Assumee : [0, T] — R is a strictly positive smooth function. Then for
every 8 > 0, there exists a weak solution v € L'([0, T], C*~(T3)) N C(T3 x [0, T]) to
(1.1.1) such that |E(t) = e(t)| < & forallt € [0, T].

Observe that unlike Theorem 1.2.2, the solutions in Theorem 1.2.3 are not guaran-
teed to obey the prescribed energy profiles exactly. In particular, given a monotonically
decreasing energy profile, we cannot guarantee that the solutions constructed in Theo-
rem 1.2.3 also have monotonically decreasing energy. Monotonically decreasing energy

has been proposed as a possible admissibility criteria for Euler flows [DLS]J10].

1.3 REFERENCES AND REMARKS

The proof of Theorems 1.2.2 and 1.2.3 will be based primarily on the joint papers
[BDLSJ13] and [BDLS14] respectively, written in collaboration with Camillo De Lel-
lis and Laszlé Székelyhidi Jr. The work [BDLS14] in part builds on ideas introduced
in [Buc13] which describes the construction of non-trivial, non-conservative 1/s — ¢
Hélder continuous solutions which for almost every time belong to the /3 — £ Hélder
regularity class (see Section 8.4, Chapter 8 for a discussion of the result).

A minor difference between Theorem 1.2.3 and [BDLS14] is that instead of
constructing weak solutions approximately obeying a prescribed energy profile, in
[BDLS14] weak solutions are constructed having compact temporal support. This dif-

ference does not play an important role in the proof of the theorem.

1.3.1 A WEAK VERSION OF ONSAGER'S CONJECTURE

Akey postulate of Kolmogorov’s K41 theory [Kol4 1a, Kolg1¢, Kolg1b, FKgs ] is that for
homogeneous, isotropic turbulence, the dissipation rate is non-vanishing in the invis-
cid limit. In particular, let us define the structure functions for homogeneous, isotropic

turbulence by
Sp(0) = ([Bve(O)])

*Inline with [CWTo4], it may also be interesting to study the problem with the Hélder norms replaced
by the appropriate Besov norms (see the remarks in Section 1.3.1 below).
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where (-) denotes an ensemble average and 8vy (¢) is the longitudinal difference

A

Svp(€) == (v(x + £) — v(x)) -

Sy

for a spatial vector lof length £. Then Kolmogorov’s famous four-fifths law can be stated

as .
S5(€) ~ —gsdﬁ, (1.3.1)

where here £ denotes the mean energy dissipation per unit mass. More generally, Kol-

mogorov's scaling laws can be stated as
Sp(0) = Cpejlv (1.3.2)

for any positive integer p, for {, = r/3.

A well known consequence of the above scaling laws is the Kolmogorov spectrum,
which postulates a scaling relation on the ‘energy spectrum’ of a turbulent flow (cf.
[FKos, ESo6]). It was this observation that provided the original motivation for On-
sager’s conjecture.

For the particular case of p = 3, the scaling (1.3.2) is generally supported by experi-
mental and numerical studies; however, evidence suggests that the exponents Zp seem to
deviate significantly from the conjectured p/3 for p > 3 [Kol62, AGHA84, CDK " 05 ].

Since the current work in concerned with individual realisations and not statistical
averages, it is interesting to note that in the work [Eyio3], Eyink provides analytical
evidence that suggests at the inviscid limit, the 4 /S law should hold with just local space-
time averaging and angular averaging over the direction of the separation vector. This
viewpoint has both numerical and experimental support [SVB196].

We now recall that in [CWTog4], Constantin, E and Titi actually prove a stronger
version of Theorem 1.2.1 with the spatial Besov norm Bg’oo replacing the Hoélder norm

C% where here the Besov space Bf,’oo is defined as
—0
Alggee = sup ly| ™ If) = =5)le -
y
Observing the trivial bound

|SuL () §£9P||v||f’( (1.3.3)

L2([0,T];(By ™ (T3))

we are naturally lead to the following weak version of Onsager’s conjecture:



6 CHAPTER 1. INTRODUCTION

Conjecture 2 (Weak Version of Onsager’s conjecture). For any 0 < 1/3, there
exists weak solutions v € C([0, T]); L*(T?)) to (1.1.1) belonging to the Besov space
L3([o, T], ngo (T3)) which do not conserve its kinetic energy.

Theorem 1.2.3 can then be seen as a first step in this direction, proving the case for
the space L3([0, T], BY™(T?)) replaced by L' ([0, T}, B&S° (T?)).



Outline of Convex Integration Scheme

2.1 CONVEX INTEGRATION AND THE APPROACH OF DE LELLIS AND SZEKELY-

HIDI JR. TO ONSAGER'S CONJECTURE

@ONVEX INTEGRATION was first proposed by Gromov in 1973 as a general method

for solving soft/flexible partial differential equations of a geometric nature
[Gro73]. The method itself was based on the earlier work of Nash [Nass4] and Kuiper
[Kuiss] on Cl-isometric embeddings of Riemannian manifolds into Euclidean space.

More recently, these techniques have been extended and adapted to various prob-
lems arising in mathematical physics. In particular, building on a framework of plane-
wave analysis introduced by Tartar [ Tar79, Tar83, DiP85 ], the method was adapted by
De Lellis and Székelyhidi Jr. to the Euler equation in order provide an alternative con-
struction of Scheffer’s paradoxical flows [DLSJog]. As is typical with such methods, the
solutions constructed were shown to be wildly non-unique [DLS]J10, Wie11].

In a breakthrough paper of De Lellis and Székelyhidi Jr. [DLSJ12a], an alternate
convex integration scheme was proposed in order to attack the problem of Onsager’s
conjecture, resembling more closely the arguments of Nash and Kuiper. Specifically,
they proved the existence of continuous weak solutions to the Euler equations satisfy-

ing a prescribed kinetic energy profile. The scheme involved constructing a sequence of
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triples (vg, pq, Ry) solving the Euler-Reynolds system:

{ Opg + div (vg ® vg) + Vpg = divR, (2.1.1)

divvq =0.

such that the pairs (v, py) converge uniformly to the desired weak solution to the Euler
equations (1.1.1).

The Euler-Reynolds system arises naturally upon considering spatial averages of
highly oscillatory flows: Suppose (v, p) is a solution to (1.1.1) and let (v, p) be a spatial
average of (v, p) over some given length scale’, then (7, p, R) is a solution to (2.1.1) for
R = v® v — v ® v. In this context the 3 X 3 symmetric tensor R is referred to as the
Reynolds stress.

The velocity field v, turns out to provide a good approximation of the final flow v,
averaged over a spatial length scale ~ l;l: the parameter A4 being the approximate

frequency of the perturbation
Wq 1= Vg — Vg 1.

Owing to this observation, the symmetric tensor i{q , which we note without loss of gen-
erality may assumed to be traceless, is also referred to as the Reynolds stress.
Since the relation (2.1.1) is linear in the Reynolds stress, the right hand side can be

split into three key components:

div (wg ® wg + Rg—1) — Vpg
Owg +vg-1- Vg

wg - Vg1,

which we call the oscillation error, transport error and Nash error respectively. The
Reynolds stress Iolq can then be constructed by applying an —1 order differential op-
erator R (see Chapter 3) to the sum of the errors. Letting ||-||, denote the uniform
norm, then heuristically, given a function f : T3 — R3 with spatial frequency A, we
have || Rfll, &~ 27" |fllo: i.e. we achieve a gain of a factor of A.

The perturbation wy is constructed by superimposing highly oscillatory waves known
as Beltrami flows at frequency A4 in such a way to cancel the low frequency component of

the oscillation error (see Chapter 3). Analogous to the use of Nash twists and Kuiper cor-

'For concreteness, one may consider (7, p) to be a mollification of (v, p).
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rugations in order to minimise metric error for the C' embedding problem, the problem
of cancelling the low frequency error is essentially algebraic in nature (cf. Proposition
3.1.1 and Lemma 3.1.2 of Chapter 3), with the amplitude of the waves being propor-
tionate to the square root of the size of the previous Reynolds stress error 102,1,1.

The perturbation w, must be further corrected in order to control the transport error.
Then, as long the frequency A; > 1, is chosen sufficiently large, one can ensure the
remaining error is small in the uniform norm: for the case of the Nash error, we have

heuristically

HR (Wq ) vqul) Ho ~ WM , (2.1.2)
q

where here ||-|| y denotes the norm associated with the space C([0, T]; CN(T?)) (cf. Ap-
pendix A.1). Such errors are characteristic of errors encountered in the C' embedding
problem, which motivates the naming of the error.

Proceeding in this manner, with the frequency parameters A; growing at a super expo-
nential rate, De Lellis and Székelyhidi Jr. showed that the Reynolds stresses can be made
to converge uniformly to zero, and consequently the pairs (v, pg) converge uniformly
to a weak continuous solution (v, p) to Euler’s equaton (1.1.1).

By keeping better track of first order estimates of the components of the construction
and employing mollification in order to resolve an inherent loss of derivative issue (dis-
cussed in Section 3.2) associated with the scheme, the convex integration scheme was
improved in [DLS]J12b] in order to construct C"/**~¢ Hélder continuous weak solutions

obeying a prescribed kinetic energy profile.

2.2 THE CONVEX INTEGRATION SCHEME OF ISETT

Building on the work of De Lellis and Székelyhidi Jr., Isett proved in his doctoral thesis
the existence of ! /s — ¢ Holder continuous weak solutions to Euler’s equation with com-
pact support in time [Ise12, Ise13a]. The proof employs a convex integration scheme
similar to that of [DLSJ12a, DLSJ12b], although with a number of notable improve-
ments.

Principal among these improvements is the replacement of the Beltrami flows of
[DLSJ12a, DLSJ12b] with microlocal Beltrami flows that are better transported by the
previous flow v;_;. This change necessitates the introduction of sharp time cut-offs
which limit the life span of the oscillatory of waves of the perturbation w, in order to con-
trol the effects of the flow v;; on the perturbation. The use of such time cut-offs are

comparable to the use of Courant-Friedrichs-Lewy (CFL) conditions [CFL28] em-
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ployed in numerical analysis to study evolutionary equations.

Isett also recognised the importance of keeping track of the material derivative Oy +
vg - V associated with the flow v, of the Reynolds stress Iolq. Analogous to the use of
mollification in [DLSJ12b] in order to resolve the problem of loss of derivative, the tech-
nique of mollification along the flow was introduced in order to resolve a problem of loss

of material derivative (cf. Section 4.2).

2.3 AN EXAMINATION OF SCALES

As part of L.F Richardson’s celebrated treatise on weather forecasting [Ric65s ], Richard-
son introduced the concept of an energy cascade in turbulent flows, whereby energy is

transfered from larger scales to smaller scales through a hierarchy of eddies:

Bigwhorls have little whorls. That feed on their velocity,. And little whorls have

lesser whorls. And so on to viscosity.

Such eddies are typically charaterised by their size ¢, charateristic velocity vy and
turnover time tp ~ % The turnover time #; being the typical time scale at which ed-
dies of length scale ¢ experience significant distortion, or alternatively the time scale at
which energy is expected to be transfered to smaller scales [FKgs].

Suppose we have a discrete family of decreasing eddy length scales £, with associated
frequencies 14 ~ ﬁ;l , we may assume (as is often done [FKos]) that the associated ve-
locities vy scale according to some asymptoticlaw v, ~ 14  for some regularity exponent
B > 0. Applying this framework, together with the heuristic ||f]|; ~ Alqv |Ifllo for func-
tions at characteristic frequency A, to the scheme of De Lellis and Székelyhidi Jr. leads

to the estimates

Jog < 2y (23

iy < 32,24 (32)

Observe that we have invoked the requirement that size of w, is proportional to the
square of size of f{q_l , which we recall was related to the algebraic cancellation of low
frequencies in the oscillation error.* The higher order estimates of f{q then follows as a

. -1
consequence of the frequency support of wy and v;_;. The turnover time t; ~ lg ,

*Note that as long as the frequencies 1, are sufficiently spaced out, then we expect v, to be approxi-
mately the spatial average ¥ of v at length scale A for Ay > 1 > A411. It is then instructive to compare
R, to the Reynolds stress R := v ® v — ¥ ® v. Applying Proposition 4.3.5 from Chapter 4, we obtain
IR||, < 17, i.e. we obtain the correct scaling.
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should play an important role with regards to the temporal resolution at which we exam-
ine the perturbation.

The present work began as an effort to better understand the scheme of De Lel-
lis and Székelyhidi Jr. under the above framework, as well reconcile the scheme with
the conjectured solutions of Onsager. Suppose we can construct a sequence of triples
(vqs Pg» Rq) satisfying the Euler-Reynolds system (2.1.1), and let us further assume the
frequency parameters 4 grow at (at least) an exponential rate, then upon application
of interpolation (A.1.1) we obtain that the sequence v, converges to a weak solution
v € CY of the Euler equations (1.1.1) for any § < B. In particular, in order to prove
Onsager’s conjecture we would need to show such a sequence of triples exist converging
to a non-conservative weak solution for any given < 1/3.

Let us assume the super exponential rate A; ~ XZ_ | for some b > 1.> Now consider
for the moment the estimates of the Nash error under the above framework. Observe

that from (2.3.1) we have

q—1 q—1
il < 3 gl < €30 <
q'=0 q'=0

and hence from (2.1.2) we obtain

_ CA,— _ _
HR (Wq . VVq—l) Ho -~ HWHO qu 1 Hl < AH_;A‘;I < qu_(ll-i-b)ﬁ—kl b (23.3)
a q qg—1

Then from (2.3.2) and (2.3.3) we obtain the restriction —(1 + b)g + 1 — b < —28b?,
which itself leads to the requirement

1
2b+1°

B <

Taking b arbitrarily close to 1 leads naturally to a constraint compatible with Onsager’s
conjecture. Unfortunately for us, while the Nash error appears to be relatively harm-
less and does not seem to impose an obstruction to Onsager’s conjecture, the two other
errors, namely the oscillation error (discussed in Chapter 3) and the transport error
(discussed in Chapter 4) seem to be far from harmless.

As was observed by Isett, in order to obtain better estimates on the transport error,
the Beltrami waves used in the scheme of Dellis and Székelyhidi Jr. need to be modified

in order that they are better transported by the flow of the previous iteration. However

*The requirement of super exponential growth is a technical consideration (cf. Section 3.3, Chapter 3).
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unlike the scheme of Isett, where microlocal Beltrami waves were used, we will instead
employ the comparatively simpler solution of solving the transport equation directly.
Analogous to Isett’s scheme, this will necessitate the introduction of time cutofts in order
to partition time into intervals of length comparable in scale to the turnover time t,.

Following the basic principles outlined above, we will show that is it possible to con-
struct a convex integration scheme producing the weak solutions of Theorem 1.2.2. We
note that in additional to having the ability to prescribe the kinetic energy profile and
being comparatively simpler to the construction of Isett, the numerology of the scalings
involved in the scheme of Theorem 1.2.2 will be considerably more opaque (cf. Chapter
7).

In contrast to the proof of Theorem 1.2.2, in order to prove Theorem 1.2.3, the pa-
rameter ff will be allowed to depend on the time t and the iteration g, with the additional

constraints

B(t,q) > B, (2.3.4)

{t:B(t,q) <r} < Cl(rfﬂ""JrE forf, <r <P, (2.3.5)
for some constants 0 < , < B, < !/3and e > 0. Then the appropriate interpolation
argument yields v € L'(]0, T]; C?(T3)) N C¥ (T3 x [0, T]) for any 6 < B, — €and
8" < B, Under the phenomenology of turbulence introduced above, the eddies at a
particular length scale will have characteristic velocities and turnover times depending
on time. The variable turnover times will complicate the partitioning of time and will
require us to keep an elaborate bookkeeping system (see Section 8.1, Chapter 8). We
note in passing that such temporal irregularity is not entirely unnatural in the theory of

turbulence [Sig77, OY89].

2.4 CONVERGENCE OF THE ENERGY

Observe that in the previous section, we made no mention of the estimates required in
order to ensure the convergence of our convex integration schemes to a energy profile
satisfying the requirements of Theorems 1.2.2 and 1.2.3. These estimates will be detailed
below.

In order to simplify matters somewhat, we begin by considering a normalised energy

profile e : [0, T] — R satisfying the following properties:

mtaxe(t) = cOAI_ZB, irtlfe(t) > 12_2[3, mtaxe’(t) <1, (2.4.1)
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for some small constant ¢y > 0 to be specified later, where here we write § =  for the
proof of Theorem 1.2.2 and = p,, for the case of Theorem 1.2.3.

In the case of Theorem 1.2.2, we want to show that the energy of the approximate
solutions v, converge to the given energy profile e : [0, T] — R from below. To this

aim, we impose the following estimate along the iteration

< col;_i’lz . (2.4.2)

e(t) — col;_flf - /11‘3 |vg(x,t)[* dx

For Theorem 1.2.3 we need only show that the energy of approximate solutions v, con-
L. -2 . . .
verge to a function in a CA, o~ 0 neighbourhood of e in the uniform norm. In par-

ticular, this will be achieved given

<cn o (2.4.3)

e(t) — /T o1, )2 dx

and

S / g, B de < ;%P0 (2.44)
g=2 7T

Remark 2.4.1. The difficulty of obtaining convergence to the exact energy profile e
arises from the fact that for the scheme used to prove Theorem 1.2.3, we do not neces-

t,g+1 —B(t,
gq )Slqﬂ( q)

sarily have lq__f for a given time .

For the case of general energy profiles which do not necessarily satisfy the inequal-
ities (2.4.1), we apply a simply scaling argument in order reduce the problem to the
case of a normalised profile. First note that the Euler equations are invariant under the

transformation

(v,p) — (tv(x, 7t), T*p(x, Tt)) (2.4.5)

for any 7 > 0. Now fix an energy profile e and define

1 t
e(t) ;= —=——e | x, = ,
Collﬂémax 1/13 RV4 COEmax

where here e,x = max; e(t). Hence assuming A to be sufficiently large (depending or
¢, band B) we obtain (2.4.1).

Suppose then that Theorem 1.2.2 is satisfied for the normalised profile e, then it fol-
lows by (2.4.5) that Theorem 1.2.2 holds for e. Similarly, if Theorem 1.2.3 is satis-
fied for the normalised profile e with § = C2, 2 , then Theorem 1.2.3 holds for e and

8= Cliﬂ A, %, Assuming 2 to be sufficiently large we can make this rescaled § as small
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as required. Thus, we can safely restrict ourselves to considering normalised profiles.

2.5 REFERENCES AND REMARKS

Following the pioneering work of De Lellis and Székelyhidi Jr. [DLSJog], the general
framework of incorporating plane-wave analysis in the context of convex integration (cf.
[MSo3, KMSo3, CFMMos]) has seen a number of implementations in the theory of
evolutionary equations besides the incompressible Euler equations. In particular, the
framework has been used in the context of the incompressible porous media equation
[CFGu11], a class of active scalar equations [Shvi1] and the isentropic compressible
Euler equations [CDLK13].

The refined convex integration of De Lellis and Székelyhidi Jr. introduced in
[DLSJ12a, DLSJ12b] has also been adapted to the 2-D Euler equatons [CDLS12]
and indeed it seems that the methods presented here are also adaptable to 2-D case.
It should also be noted that as was the case with L?> non-conservative weak solu-
tions to the Euler equations, the convex integration schemes presented here and in
[DLSJ12a, DLSJ12b, Ise12, Ise13a] construct solutions which are highly non-unique
[Cho12,Dani4, Ise12, Ise13a].



Cancellation of low frequency error

N THIS CHAPTER, we will study how by superimposing highly oscillatory Beltrami
flows, we can cancel low frequency error. This will be used to construct an ansatz

for the definition of the perturbation w,. The oscillation error of the resulting ansatz

will then be estimated.

3.1 BELTRAMI FLOWS

A stationary divergence free vector field v is called a Beltrami flow if it satisfies the Bel-
trami condition:
Ax)v(x) = curlv(x), Ax) >0, (3.1.1)

for all x. The function A is called the Beltrami coefficient.

Given a Beltrami flow v, from the divergence free condition we have the following

identity
[vf? [vf? [vf?
divir®v)=v-Vv= VT —v X (curlv) = VT —Wxv= VT. (3.1.2)
2
In particular setting p := % , then (v, p) is a stationary solution to the Euler equations.

In the mathematical physics literature, it has been postulated that that in regions of

1§
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turbulence, flows organise themselves into hierarchies of weakly interacting superim-
posed approximate Beltrami flows [YOY " 87, CM88]. With this thought in mind, and

with the aim to mininise the oscillation error, we consider the ansatz

Wot1 = ZWk, (3.1.3)

where W are approximate Beltrami flows oscillating at frequency A4 1, and the projec-
tion of wg 11 ® wgy1 onto low frequencies (< 144 1) provides a good approximation of
fiq modulo the addition of a function depending solely on time.

The two propositions below will be used to describe the construction of the approx-

imate Beltrami flows W.

Proposition 3.1.1. Letd > 1 and let A; € R® be such that
A k=0, |A] = %,A_k:Ak,

fork € Z3 with |k| = A. Furthermore, let

k
Bk:Ak+im XAkE(C3.

For any choice of ar € C with ai = a_y the vector field

w() = Z agBie*t (3.1.4)

[k|=2

is a real-valued Beltrami flow with constant Beltrami coefficient A satisfying

1 k k
WRW) =4+ WRWdf =~ ar|? <Id—®) : (3.1.5)
WEW =T 2 2l (Mg o g

Proof. By definition aiBy = a_;B_i and hence by symmetry it follows that W is real

valued. By direct calculation we have

diviWw = Z ik - Bkakeik's =0,
| =2

since k - B = 0 for each k. Moreover, we have

curl W(§) = Z ik - ik X Byare™*
Ik[=2
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k k k
=12 E (i X A — — X <><Ak>)
K| k| \ K|

|k|=2

k
ZAZ (l|k| XAk+Ak)

[k|=2

= aw(§),

and hence Wis a real-valued Beltrami flow with Beltrami coefficient A.

It remains to show (3.1.5). Averaging in space yields

(Wow) =) Wi W
|k|=2
= |a* B @ By
|k|=2

— Z |ax|* Re (By. ® By)

|k|=4

= |l (Ak®Ak+ <|’Z| ><Ak> ® <|,’Z| ><Ak>> - (re)

|k|=4

Finally, observe that V24, |—£| and V2 ﬁ X Ay form an orthonormal basis and hence
we have the identity

2A®A—|—2<k><A>®<k><A> Id k®k

k@ Ak T X Ak T XA ) =ld = 2 ® e

K| k| K[ [K]

With this identity together with (3.1.6) we obtain (3.1.5). O

In order to choose the coeflicients gy in such a way to cancel the the low frequencies

of the Reynolds stress we will require the following lemma.

Lemma 3.1.2. For every N € N we can choose ro > 0 and A > 1 with the following
property. Let B, (1d) denote the ball of symmetric 3 x 3 matrices, centred at1d, of radius r,.

Then, there exist pairwise disjoint subsets
3. — :
NClkeZ: |kf=2} jed{l,...,N},
and smooth positive functions

7 ec®(B,0d)  je{l,...,N}LkeA,
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such that
(a) k € Ajimplies —k € Aj and 7/,(3) = Y(Z)k;

(b) Foreach R € B,,(1d) we have the identity

R= % 3 ( ,(j)(R))2 (Id SLIP k) VREB,(Id).  (3.1.7)

kEA,‘

Proof. First consider the case for N = 1. We set eq, e;, €3 to be the standard orthonor-

mal basis for R3 and define
A={t(e+te)|1<i<j<3}CZ>N{k =2},

and
AT ={(e*e)|1<i<j<3}.

With these choice we make the following observations:

1. The tensors

B:{Id—k®k]keA+} (3.1.8)

are linearly independent, and thus form a basis for the space of symmetric matri-

ces.

2. We have the identity

1 k®k
— Id — = 41d. .1.
22( !k!2> 4 (3.1.9)

keA

Hence applying the inverse function theorem we obtain property (b).
Now consider the case for N > 1. Let B be the rotation by angle arccos % about the

e axis, i.e.

o]

Il
S O =
©niw O
©niw nlh O

_4
s

Since 7~ ! arccos % isirrational (7! arccos QNQ = {0, 1/3,1/2,2/3, 1}) it follows that

{B A}icqa,...,ny form a disjoint family of sets of rational vectors satisfying properties 1

and 2. Thus there exists an integer M such that A; = MB/A is a disjoint family of sets
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of vectors with integer coefficients satisfying property (a). Again, property (b) then

follows upon applying the inverse function theorem. O

With the help of the above propositions, we may now realise our ansatz (3.1.3). First
define

o

R(x,t) := p(t)Id — Ry(«,t) (3.1.10)

where p : [0, T] — Risascalar function depending on time, satisfying the constraints

o

R -2
=21 <o, lplly < lq_i_ll; . (3.1.11)

0

Let A; be asin Lemma 3.1.2 (with N = 1), and for each k € A define the coefficient

> . (3.1.12)

wo(x,t) := Z apByetatikx (3.1.13)
k€A

functions ay by

o) = /oy, (40

Our principle perturbation w,, is then defined to be

The function p will allow us later better control of the energy of v, ; which will be es-
sential in ensuring our convex integration scheme converges to a flow satisfying our pre-
scribed energy profile. Unfortunately, since the functions a; depend on the spatial vari-
able ay, the vector field w, does not necessarily satisfy the divergence free condition.

Hence we will define a corrector w, such that for

Wot1 = Wo + W, (3.1.14)

we have divw = 0. First we note the identity

1 kx B p k-> < i kxBe\\ ok
—curl | iag Mt ) = | g By + —Vag X | ——— | | e"te
Ag+1 ( K[> g1 |K[2

It follows by defining the corrector w, to be

i k x B ;
we i = Vayg X ( k) gharikx (3.1.15)
)‘q-i-l

we have from the elementary identity div curl = 0 that divw = div (w, + w,) = 0.

A secondary consequence of having non-constant coefficients gy, is that the identity
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(3.1.2) is no longer satisfied, rather we have the identity:

Lemma 3.1.3. For w, and R defined above we have the identity

’W0’2
2

+ Z (B;c ® By — %(Bk . Bk/)Id) V(akak/)eilq+1(k+k,)'x . (3.1.16)
k+k/£0

div(w, ® w, + R) =V

Proof. Let us write

Wu()’a ga t) = Z ak(y’ t)BkeikE ,

keA

where here y is the slow variable and £ is the fast variable. In particular we have w, (x, t) =
wo(%, Ag1%, t). With this notation and the identification § = A5 1xand y = «, the left
hand side of (3.1.16) becomes

Ag+1dive(wo @ wy) + divy(wo ® wo +R) = I+ 11.

From (3.1.2) we have
|W0|2

div¢(w, ® w,) = Vg 5

and from the choice of a; we have

div(wo ® w, + R) = Z (B ® By )1d) V(agay )etarr (k)=
k-HR/£0

Finally we calculate

2
1 ; /
Ul Va0 41 D0 (B Ba) Viasap )P 00
k-+k/#0
1 ; /
== Z ((By - By )1d) V (agay )elat1(kH-)
k-+k/£0
Combining the above identities we arrive at our claim. O

3.2 THE OPERATOR R

A stated goal for this chapter was to construct a perturbation w,  ; which minimises the

oscillation error, which we write as div R, where R, is a solution to the equation

divf{o = div (Wq+1 & Wg+1 + i{q) — qu+1 . (3.2.1)
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To solve the above equation for R, we define a singular operator R which acts as a partial

inverse to the divergence operator.

Definition 3.2.1. Letv € C>°(T3, R3) be a smooth vector field. We then define Rv to

be the matrix-valued periodic function
1 T 3 T L.
Ry := Z (VPpsu+ (VPru)") + Z (Vu+ (Vu)") — i(dwu)m,

where u = A)f € C*°(T®, R?) is defined to be the solution of

Au=v— v,
T3

with fT3 u = 0 and Prs is the Leray projection onto divergence-free fields with zero

average.

Lemma 3.2.2 (R = div™!). Foranyv € C>°(T3,R3) we have
(a) Rv(x) is a symmetric trace-free matrix for each x € T3;
(b) divRv=v— JCT3 .

Proof. The matrix Rv(x) is symmetric by definition. To see that it is also traceless, we

note that since div Pv = 0, it follows that

t(Rv) = > (2dive) — 2divu =0

r == - = =0.

v) =7 (2divu) — Sdivu
Moreover, from the identity A(Pu) = Au — Vdivu we obtain
. 1 . 3 o |-
div (Rv) = Z(Au — Vdivu) + Z(deu + Au) — Edeu =Au. (3.2.2)
Recall Au = v — f vand thus we obtain (b). O
Hence if we define R, by the formula
R, =R (div (wg ® wg + loqul) — qu,l) ,

we obtain (3.2.1).
As mentioned in Chapter 2, since R is a —1 order differential operator, we have the
rough heuristic that for a function fwith frequency 2, | Rfl|, & A~ |[fll: i.e. we achieve

a gain of a factor of A. This heuristic is made precise in the proposition below.
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Proposition 3.2.3. FixA > 1 and let k € 7> be a vector satisfying |k| = A. Then for a
smooth vector field a € C*° (T3, R3), if we set F(x) := a(x)e*™*, we have

IRE)lo < —=

C
— 11—5 HaHO + W HaHm 9 (3.2.3)

where C = C(e,m) andm > 1.

In order to prove the Proposition 3.2.3 we will need the following standard singular

integral estimate.

Lemma 3.2.4. Foranye € (0,1) andanym = 0, 1, ... there exists constants C(m) and

C(m, €) such that we have the following estimate

I Rv[lm < C(m)[[v]]m (3.2.4)

IRvflm1 < Clm, )|l - (3.2:5)
Proof. We first consider a related operator Rys defined by the formula
1 T 3 T 1 :
Rrs(f) := 2 (VPgeu+ (VPgau)") + y (Vu+ (Vu)") — E(dlvu)ld,

forany f € C*°(IR®, IR?) with support contained in a ball of radius 87, where here u :=
AHQ; fis the unique smooth rapidly decaying solution to the Laplace equation Au = f
and Pps is the Leray projection operator acting on R® (see Appendix A.2).

By inspection, one sees that the composition Rg3 V can be written in terms of sums
and compositions of Riesz operators (see (A.2.2) and (A.2.3)). In particular it follows
from (A.2.4) that RV is a bounded operator on L spaces for 1 < p < 0o. Hence

applying Sobolev inequalities (Lemma A.2.1) we have

[Resfllcomsy < ClIRreAllins < Cllfllpacs) (3.2.6)

and

[RR3ﬂCN+1(]R3) < C||RR3ﬂ|wN+e,p(R3) > (3~2-7)

foranyp > 3/e.

To compare the original operator R with Rps, we fix a smooth 27 periodic vector
field f : R®> — R3 and let y be a cut-off function identically 1 on the ball of radius 47,
with support contained in the ball of radius 87. Nowset u : T — RR3 to be the function
u = AL f,and define i := Ag; (xf). Obviously, by definition we have A(u—it) = f,
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on the the torus. We also have A (Prsu — Pgsit) = 0 on the torus: to see this we write

Prsu — Prstt = Prsu — Prpsti+ Ppsu — Prati .

I II

Then by linearity, we have AI = 0 on the torus. Also by the definition of the projections
P and Pps we have div Il = V' for some scalar function h. Moreover, since div II = 0,
it follows that & (and by implication IT) is harmonic. We may apply a Sobolev inequality
(Lemma A.2.1) and the harmonic function estimates (A.2.5) for 1/2 < (s — r) /3 to

obtain

IRf — Restfll errsy < IR — Regs tfll s (13
< CIRf = Restfll 2 (e
< CHfHLZ(T3)
< Cllfllpoers) - (3.2.8)

The L* — L? boundedness of R and R follow as a consequence of Plancherel theo-

rem. Then from (3.2.6), (3.2.7) and (3.2.8) we obtain our claim. O

Proof of Proposition 3.2.3. Forj=0,1,... define

Aj(x) = —i [’Z’ <1‘Z‘ : V>ja(x)] ek

F(x) = [<l";‘ - V)ja(x)] gk

Direct calculation shows that
1
Fj = il (Fj1 + diva) .

In particular, for any m € N, applying telescoping yields

o 1 1 1
a(x)e®* = Fo = WF,,, + = Z —div (4;) .

Then from Lemma 3.2.4 we obtain that for any € > 0 there exists a constant C such



24 CHAPTER 3. CANCELLATION OF LOW FREQUENCY ERROR

that
[Rafe)e |y = 1l §: ol
N ’ ‘m N+m ‘k‘ |k’] N+j+e *
Finally, applying interpolation (A.1.1) we obtain the desired claim. t

Notice that Proposition 3.2.3 requires higher order derivatives of the Reynolds stress,
although we will only keep track of first order estimates. This loss of derivatives problem,
as it is known in Nash-Moser theory [Ando2 ], may be resolved by replacing f{q in the
definition of a;, with the its mollification Ry at length scale £ = lgﬂ__ll, for some small
€0 > Osuchthatl; < {71 < A441. Precisely, let € C>°(T?) be a standard mollifier:
supp(¥) C (—1,1),¥ > 0and [15 ¥ = 1; and define

Ro(x,1) = (Rg * ¥,) (%, 1) = €3 (Rg # 9 (/0)) (1) = €7 /JI‘S Ry()¥ (x 2y) v

Now define the pressure g1 to be

Pgtli=pg = T T (3.2.9)

We can then replace R, with

. . V |wo|?
R | div(w, @ w, + Ry) — 5

|WC|2 2<W0aWC>
+w. Qw. +w, Qw, +w, Qw, — 3 + 3 1d

—+ 10{,1 — lolg
/ iz nmn
=R +R/'+R".
In particular with this definition we have

div (R + R} +R)') = divR, .

As a product of Lemma 3.1.3 and Proposition 3.2.3 (with m > é) and the easily

verifable bounds
laelly < CAEy(1+2g6"7N)
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it is not difficult to show that for any small > 0

A
/ q ~ )~ (1+b)B+1-b
IRl < Oty ~ a7 e8>,
a+1 g
Similar estimates can be found to hold for R and R)’. Then, as was pointed out at the
end of Section 2.3, Chapter 2, such estimates are compatible with Onsager’s conjecture.
Unfortunately, the definition of wy; given above does not lead to good estimates on

the transport error and therefore this definition will need to be modified so that the

perturbation is better transported by the flow v,. This is the topic of the next chapter.

3.3 REFERENCES AND REMARKS

The results of the chapter are almost entirely contained in the papers [DLS]12a,
DLSJ12b] of De Lellis and Székelyhidi Jr. The proof however of Lemma 3.1.2 fol-
lows more closely the style of an alternative proof given in [Ise12, Ise13a]. For the
analogous results for the 2-D case Euler equation, we refer the reader to the papers
[CDLS12, Cho12].

We note that the estimate (3.2.3) (and consequently (3.2.5)) can be further im-
proved by observing that the Riesz operators are bounded on space of functions of
bounded mean oscillation (BMO): one can then replace the use of Sobolev inequal-
ity with the logarithmic Sobolev inequality of Kozono and Taniuchi [KToo]. Such an
improvement could potentially enable the convex integration schemes presented here
to be modified in order to obtain better (slower) frequency growth rates. Recently, an
entirely different approach to solving the equation div R = v was taken by Isett and Oh
in [I014] which allowed the authors to construct non-conservative 1/s — e Holder con-
tinuous weak solutions to (1.1.1) in R? with an exponential growth rate of characteristic

frequencies.






Minimisation of Tranéport Error

4.1  THE PRINCIPAL TRANSPORT ERROR

gs WAS POINTED OUT IN THE PREVIOUS CHAPTER, we need to modify our defini-
tion of wy 1 in order that it is approximately transported by v,. In particular, we

need to minimise the transport error:
Owgy1 +vg - Vwgyr . (4.1.1)

The principle error arising from our previous definition of wy in Section 3.1 arises
when the material derivative (J; + v, - V) falls on the oscillatory terms e?++1¥*, To fix
this we introduce cut-off functions y: [0, T] — Rforindices¢ € N. We also introduce
a family of large parameters y g1, and require that each cut-off y_is identically 1 on a
closed interval oflength atleast _,:17 . and are supported on an interval of length at most
4[4,; 1,- The cut-offs will be constructed such that their squares provides a partition of
unity of time, i.e. ) )(g(t)2 = 1fort € [0, T|. Moreover, only cut-off functions with
neighbouring indices will be allowed to have overlapping support. We then replace the

ilq+1k-x

terms e in the definition of wy 1 with Xgeilqﬂk@s, where @ are phase functions

27
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solving the transport equation

8tq)g +1/£ . Vq)g =0

O (x,t) =x

where f is the centre of the interval supp(xg) and vy is a mollification of v, at length
scale { = AZ‘;‘II. We will also replace the function p : [0, T] — R by constants p candin
order to weaken the interaction between waves from neighbouring cut-off regions, we
apply Lemma 3.1.2 with n = 2 to create to disjoint families of wave vectors Ag and A;.

The principle perturbation w, is then redefined to be

R (x,t i1 kO (x
s

keAg,s odd

Re(x,t .
\/;7; Z Xg(t)Yk (;(&)) Bkeo‘qulk'(D;(x,t).
Ps

k€A1,6 even

(4.1.2)

We will defer the definition R, until the next section, however for now it suffices to say

that R. will play the role of R in Chapter 3.1. Employing the notation

i k(D —
Py = (BT (4.1.3)

we define

ag(x,t) := \/P>§)(g(f)7’k (Rgi)x, t)) ‘Pkg(x7 t), (4.1.4)

which will roughly replace a; in the previous definition (3.1.12): in particular we may

rewrite (3.1.13) as

wo(x,t) 1= Z ak¢(x, t)Bke’%“k"‘ 7 (4.1.5)
ks

where here and from now on we let ), . denote the short hand for the sum over k €
Ao U A and indices ¢.

Analogous to (3.1.15), the corrector w, is then defined by the formula

. B\ .
we(x, t) 1= Z ;Vak,g(x, t) X <k a k) gharikx (4.1.6)

oz WP

and as before we set wg 1 := w, + w,.

Clearly, assuming / is sufficiently small and the parameters y g+1, are sufficiently
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large, then the transport error arising when when the material derivative falls on the
phase functions @, will be relatively small, and @, will provide a good approximation
of the identity. As a trade off, a new error will be introduced when the time derivative

falls on the cut-off functions in the regions of overlapping cut-offs.

Given an index ¢, we denote the interval {s : X (s) = 1} by K& and the overlapping
region supp(x,) Nsupp(x, ) by K?. Informally, we will refer to the union | J, K as the
set of good times, and conversely | ¢ Ké’ will be referred to as the set of bad times. The
rational for such a choice of terminology is that we will obtain better estimates on the

good set than on the bad set.

In order to better parameterise the error obtained when time derivatives fall on the
cut-offs, we introduce new small parameters 5 g+1,c and assume Ké’ tobe an open interval
contained in a ball of radius at least max(qq+17gy;$17g, '7q+1,;+1é‘q_+11,g+1)- Furthermore,

for N =0,1,... we assume the following estimate

N
Bat1,6 Hgtiet1
tqTe PgTaeTd 7 (4'1.7)

] = cmim { S22
Mg+1,6 Mg+1,6+1

where the constant C depends only on N.

Remark 4.1.1. For the purpose of proving Theorem 1.2.2, one may assume the param-
eters i, | . = g, to be chosen uniformly depending on the given iterate g and the

parameters 7,  to be a uniform constant, say 11—0. The cut-off functions y_can then be

defined in a uniform manner: set )(g(t) =y (y g1t — g> for some smooth function y,

supported in (—3/4,3/4), bounded above by 1 and such that

sz(t—i)zl.

i€Z

The choice of 4, , 7, and x, taken in the proof of Theorem 1.2.3 will be more
delicate (see Chapter 8).

Finally, we replace the definition (3.2.9) of the pressure pq; with the following
slightly modified definition

2

wol* 1 2
ol o L) — o). (418)

2

Pg+1 = pq —

The addition of the last term is a technical consideration that shifts the focus of estimat-
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ing (4.1.1) to instead estimating
Owgi1 +ve- Vwgyr .
In particular, we set
Ryt =R+ R + R+ R+ R+ RS,

where

R® =R (Owgi1 +vi - Vwgs1) (4.1.9)

R!' = Rdiv (wo Q w, — ZX?R‘; — @Id) (4.1.10)
¢

RP=R (wq_H . va) (4.1.11)

R3:wo®wc—|—wc®wo+wc®wc—w1d (4.1.12)

RY = wai1 ® (vg — vo) + (vg — v0) @ wgp1 — wld (4.1.13)

R® =R, + Z}(?flg . (4-1.14)
3

Note > ¢ x?tr R, is a function of time only. Then by inspection one obtains

divRy11 — Vpgi
= Owgy1 + div (vg @ way1 +way1 @ vg + war1 ® wayr)
+ divf{q — Vpy
= Owgq1 + div (vg @ wap1 + w1 @ vy + war1 © way)
+ Oy + div (vg ® vg)

= 8tvq+1 + diVVq+1 &® Vq+1 y

i.e. the triple (vg+1, pgt1, Rgt1) is a solution to the Euler-Reynolds system (2.1.1).

4.2 TRANSPORT ERROR OF PREVIOUS REYNOLDS STRESS

A secondary transport error arises when the material derivative (J; + v, - V) falls on
the functions R, which will themselves be defined in terms of the Reynolds stress Iolq. It

then becomes necessary to keep track of the material derivatives of the Reynolds stress.

One potential pitfall is that the previous material derivative (0; + v4—1 - V) of the
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previous Reynolds stress Io{q_l appears in definition of the Reynolds stress lolq. It will
then become convenient to approximate Iolq with a function Ioig that has good second

order material derivative estimates.

In line with the definition of @, a possible definition of R, (whose trace free part we

denote as R;) would be the solution to the free transport equation

8th + vy - VRG =0
(4.2.1)
Re(x,t;) = p 1d — Re(x,t,) .

Alternatively, another possibility is to mollify along the flow. Let {; be a small molli-
fication parameter and X;(x, s) be the flux of vy with initial time #: X;(x, s) solves the

ordinary differential equation

2 Xu(x.9) = vl )

Xe(x,t) = x.

The mollification of Ry along the flow v, is then defined by the formula

Ry(x,t) = p Id — /RIOQ(Xt(x, t+s),t4s) ¥, (s)ds, (4.2.2)
for standard mollifer ¢ € C*°(R), where by abuse of notation Ry denotes the vanishing
temporal extension of Ry to R — in application, such an extension will require us to be

careful near the temporal boundary.

4.3 TRANSPORT ESTIMATES

Before we state estimates for our Reynolds stress approximations lolg, we recall some
elementary transport equation estimates. In what follows, we will assume f : T3 x

[T, T] — R to be a smooth solution to the transport equation

(4.3.1)

{ Of+v-Vf=g
f(%,0) = fo(x),

for some smooth function g and smooth vector field v.

We will let X(x, t) to be the flux of v from initial time 0, i.e. X(x, t) is described by the
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ordinary differential equation

d
d—tX(x, t) = v(X(x, 1), t)

X(x,0) = x.

In particular note we have the identity

d

%f(X(tv x>7 t) = g(X(t, x)’ t) . (4'3'2)

The inverse flow to X(x, t) will be denoted by X (¢, - ), which by definition is a solution
to the free transport equation, i.e with ¢ = 0. Furthermore, we will adopt the notation

D; := 0; 4+ v - V for the material derivative associated with v.

Proposition 4.3.1. We have the following estimates on f

fllo < [follo + Tllgllg (4.33)
[flr < ([fols + Tlgh) ™, (4-3.4)
and, more generally, for any N = 2,3, . .. there exists a constant C so that

fin < (ol + CTlolnlfols ) e + €T (gl + Tholwlgh )™ (43.9)
Let O be either the flux X or the inverse flux X1, then we have the following estimates:

DO —1d||, < e — 1, (4.3.6)
@]y < CT[V]NeCT["]1 VN > 2. (4.3.7)

Proof. Without loss of generality we may assume t > 0. To see this, simply replace v

with —v.

We begin by considering the estimates on f. Integrating (4.3.2) in time we obtain

t
flt,x) = fo(X (x,8)) + / g(X(X(t,x),5),s) ds, (4.3.8)
0
from which (4.3.3) readily follows. Spatially differentiating (4.3.1) yields the identity

DiDf = (0¢ + v - V)Df = Dg — DfDv, (4.3.9)
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and thus

IDDf(B)[lo < [g(O)]1 + [v(B)L[AE)]1 (4.3.10)

where here we have employed the shorthand from Appendix A.1 where we write [f(t)],
and ||f(t)||+ to denote the seminorm/norm of f evaluated for the restriction of f to the
t-time slice. Then from (4.3.8) and Gronwall’s inequality we obtain (4.3.4). Further
differentiating (4.3.9) and applying interpolation yields

D], < by + € Bhalftl
< [glnv + ClvInlf()]1 + Clv1 [f(t)]n -

Hence applying (4.3.4), (4.3.8) and Gronwall’s inequality we obtain (4.3.5).

We now consider the estimates on @. Again by replacing v by —v, we may without
loss of generality assume that @ is the inverse flux X *. Note that ® — x is a solution
to the transport equation with vanishing initial condition and nonlinearity g(x) = —v.

Moreover, we have D(® — x) = D® — Id. Applying (4.3.8) and (4.3.10) we obtain

D00 14l < [ o (D@ ~ 1a], + 1) ds.

Then from Gronwall’s inequality we have
t
IDO(t) —1d||, < / eIy ds < T — 1
0

Finally, since @ solves (4.3.1) with g = 0 and qu)(-, 0) = 0, the estimate (4.3.7) isa
consequence of (4.3.5). O

To state our estimates on lolg, we introduce amplitude parameters {8, 8, } satisfy-

ing 8, < S%g , and assume the following inductive estimates for times t € supp y.:

*H"q )|, <84 (4.3.11)
1
i Hpq(t)Hl + )Tz Hpq(t)Hz < 4 (4.3.12)
1 q
o 1 1 -
HR(t)qHO + f HRq(t)Hl + }Tz HRq(t)Hz < ClSq—i—l,g (4.3.13)
q

H(at + g - Ho < 613 Sar1.chg s (4.3.14)
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where ¢; > 0 is a small constant to be chosen later. The second order estimates of
the pressure and Reynolds stress are important in controlling second order material
derivative estimates of our approximation 10{% , which in turn will be used in controlling
the material derivative of our new Reynolds stress Io{,ﬁ 1, more specifically, the material
derivative of the transport error (cf. Section 4.4).

Since our approximation of the Reynolds stress Iolg is constructed to be approximately
transported by the mollified velocity v, the notation D; will from now be used solely to

represent the operator 0y + vy - V.

Remark 4.3.2. Forthe proof of Theorem 1.2.2, one may simply set Sq,g =84 = lq_zﬁ
uniformly for all ¢; however for Theorem 1.2.3 the parameters §; ; < Sq,g will depend

ong.

Lemma 4.3.3. Assume the estimates (4.3.11)-(4.3.14) are satisfied for timest € supp X
Futhermore, assume S;/z = 8;/2. Then for R, defined by (4.2.1) and bgr1e = 8;{1% we

obtain the following estimates

IR(£)]lo < c18q+1,¢ (4.3.15)
IR ()5 < C8qp1,eAgl" N forN >0 (4.3.16)
[(Rg — R)(£)]lo < Cogy1,61g (3;/,2u;+11,g + f) : (4.3.17)

Moreover fixing N and assuming cy is sufficiently small, the constant C in the estimates above

can be made arbitrarily small.

Proof. Restricting to times in the support of x_and applying Proposition 4.3.1, we ob-
tain (4.3.15) as direct consequence of (4.3.3) and (4.3.13). Similarly, from (4.3.4),
(4.3.5) and (4.3.13), together with the observations

sup pty [v(Oln < Cugly 8L 2007N < et
tEsupp x,

for N € N, we conclude (4.3.16).
Again, applying Proposition 4.3.1, from (4.3.3) and (4.3.14), we obtain

o

I(Rg — Re)(8)llo < [IRg(ts) — Re(te)llo + pyly . [|DeRg (1)
= [IRq(ts) = Relte)[lo + Cugity  [|(8e+vq - VIR (D)
+ CH;L; [[vq(t) — W(t)Ho i{q(t)Hl

1L —1 1/ -1
< Cog41,64q <8q/,§yq+l,g +0+ Sq{clqu—l—l&g)
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< Cogt1,6lq (8 /Zsyq_il ¢ T E) :

Here we used the decomposition Dy = (9; 4 v4 - V) + (vg — v4) - V and the inequality
2,0 < 1. 0

Lemma 4.3.4. Assume 8;/72;% < 47! and the estimates (4.3.11)-(4.3.14) are satisfied in
a 4ls-neighbourhood of the support of X Then if R¢ is defined by (4.2.2) andt € supp(xg),

the following estimates are satisfied:

IR(£)]lo < c18q+41,¢ (4-3.18)

IR ()| < cesq+1 AN forN >0 (4.3.19)

IDiR(£) | < C5 5q+1,g1q5_N (4-3.20)
ID?R; (1) |l < C8.8g41.0q6; 14N (4.3.21)
IRy — R) (B0 < csqm (8204 0), (4.3.22)

Moreover, fixing N and assuming c; to be sufficiently small, the constant C in the estimates

above can be made arbitrarily small.

Before we can prove the above lemma, we will require the following commutator es-

timate which we will prove at the end of the section:

Proposition 4.3.5. Letf,g € C(T®) and y the mollifier of Chapter 3. For anyr > 0

we have the estimate

|00+ 10— (P e+ 10| < 2Nl lglr

where the constant C depends only on 0 < r < 1.

Proof of Lemma 4.3.4. Recall that in this case we have the formula
R (x,t) = /f{g(Xt(x, t+s),t+s)¥, (s)ds. (4.3.23)
From (4.3.13) we have forany N € N

IRe(t)llo < c18g41,6
IDNRy()||lo < C8gp1,2g0 N

We immediately obtain (4.3.18) for N = 0. Then for N > 1 we apply (A.1.5) to obtain
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the estimate

IDN(Re(Xe(t+5),t+5))[lo SCIDVX(t + 5)[| 0844162
+ C||DXe(t + )|V 8441,64g0 N . (4-3.24)

Taking |s| < 4/;, by Proposition 4.3.1 we conclude
IDVXe(t + )l < Clluele® I < c7N, (43.25)

where here we used the inequalities [v(t)]; < 8;{ 1q and ﬁtS;{ :Ag < 1. Inserting in

(4.3.24), we conclude
IDY(Re(Xe(t +5), £+ 5))[lo < Coayr,ehgl" N,

forall N > 1 Hence differentiating (4.3.23) we achieve (4.3.19) for any N.

We now observe the following identities:
Dtlolg(x, t) = /(th(g)(Xt(x, t+s),t+s) 17/&(3) ds (4.3.26)
DR, (s, £) = / (DPRe) (X, 4+ ), £+ 5) 1, (5) ds
(4-3.2) d o ~
=7 S DR X, t45), 84 5)] 4, (5) ds
S / (DeRe) (Xe(, £+ 5), £ +5) ¥, (5) ds (43.27)

Hence we deduce from the following estimates

IDRg ()|l < sup ClIDeRe(Xe(t + ).t +5))l|n (4.3.28)
|S|§4€t

IDFR(8) | < sup COMDRe(Xe(t +5), ¢+ 5)) I - (4.329)
|S|S4£t

Observe the following decomposition

th{z :(th{q) * Y, + div (vg & f{e — (Vq ® f{q) * ‘//Z)
+ [(vg — ve) - VRg] % ¥, -

Therefore applying Proposition 4.3.5 on the second summand we conclude that taking
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|s| < 4¢; we have the estimate

IDeRe(t +5)[|n < C88g1,6Agl N + C828,541,2264 N
< CS;/;Sq_Hﬁlqﬁf . (4.3.30)

Then from (4.3.28), (4.3.30),(4.3.25) and (A.1.5), we obtain

IDVDeR,(8)lo < CIDNX,(t + 5) 10828 4+1,AgL
+ C||DXt(t+s)||Ns Sgrrhgl N
< C88gr1dgl V.

Hence we conclude (4.3.20). The estimate (4.3.21) also follows analogously by utilising

(4.3.29) in place of (4.3.28).

Finally, we note that
80~ R0, < sop e+ 949~ R
ls|<4
Since by definition X¢(x, t) = x, differentiating in s we conclude
IR (£) = Re(D)lo < LelIDeRello - (4.331)

Hence (4.3.22) then follows from (4.3.31) and the mollification estimate

||1°3q(t) —Re(t)]jo < Cogr1,cAql - O

Proof of Proposition 4.3.5. Begin by noting that for a fixed x we have following identity

(fe) x v, — (Fxy,)(g*y,) =
[(f = A=) (g — g(x))] = ¥y — (Flx) — ) * ¥, (g(x) — ) x ¥, .

Let a be a multi-index, then noting the identity h(x) * D*y, = 0, we obtain

D* [(fg) * ¥, — (F* Vo) (g% V)] = [(F — fx))(g — g(x))] * Dy,
— Y (fle) =+ D"y, (g(x) —g) * D"y, .

a'+a'’=a
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Next, for |y| < 2/ note the trivial estimate

A =5) =fC)llo < Iy 1Al
<crA,

and similarly

(- =) = 8()llo < CE7[lgll, -

Then combining the above estimates with the above identities, we obtain our claim. [

4.4 REFERENCES AND REMARKS

The basic construction of the perturbation w1 presented here was first introduced in
[BDLSJ13] and later refined in [Buc13, BDLS14]. The construction itself being heavily
influenced by the earlier papers of De Lellis and Székelyhidi Jr. [DLSJ12a, DLSJ12b].

The careful reader will note in contrast to inductive second order bounds of (4.3.12)
and (4.3.13), in [BDLS]J13], only first order estimates of the pressure p,; and Reynolds
stress lciq were needed. The lack of second order estimates necessitated the careful choice
of the mollification parameter ¢; such a choice however seems incompatible with a
scheme constructing solutions at Onsager-critical regularity such as Theorem 1.2.3. It
seems however, at least for the purpose of proving Theorem 1.2.3, that only second or-
der estimates on the pressure are required. Such an approach was taken in [Buc13]. For
reasons of symmetry, and in the event that the resulting sharper estimates are required
for future schemes, we decided to include the second order inductive estimate of lolq —
as we note was also done in [Ise12, Ise13a, BDLS14].

The parameter notation (8g., 8¢, 8g+1,c aite nq+17g) differs from that of
[BDLSJ13, Buc13, BDLS14]: this is done in order to deal with Theorems 1.2.2 and
1.2.3 simultaneously in a coherent manner. The necessary translations between the dif-
fering notations will be dealt with in Chapters 7 and 8.

The convex integration scheme of Isett [Ise12, Ise13a] was the first to keep track of
material derivatives of the Reynolds stress. Isett’s scheme also introduced the concept of
microlocal Beltrami waves in order to obtain better estimates on the principal transport
error discussed in Section 4.1. The simpler solution of modifying the phase function
of the Beltrami waves so that they solve the free transport equation was introduced in
[BDLSJ13].

Isett’s scheme was also the first to directly consider the transport error of the pre-

vious Reynolds stress (discussed in Section 4.2), where the technique of mollifying
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along the flow (4.2.2) was applied. The free transport solution (4.2.1) was introduced
in [BDLSJ13] as an alternative solution to handling this error. We note that for the
purpose of proving Theorem 1.2.2, either approximation may be used; however for the
proof of Theorem 1.2.3 we will require both. Specifically, the mollification along flow
provides a better approximation of the Reynolds stress in situations where the time mol-
lification parameter ¢, is less than the size of the cut off y;j 1,c- One minor issue however
with the technique is that it requires estimates on the Reynolds stress in a neighbourhood
of the support of the cut-off.!

The commutator estimate of Proposition 4.3.5 played an essential role in Constantin,
E and Titi’s elegant proof that H6lder continuous weak solutions to the Euler equations
(1.1.1) with Holder exponent greater than 1/3 conserve their kinetic energy [CWTo4].

For the reader’s convenience we present this proof below:

Proof of Theorem 1.2.1. > Let uy be the spatial mollification of u an length scale {. By
abuse of notation, let us extend uy smoothly in time to whole real line — the specific
extension will play no role in later arguments. Define u ; to be the time mollification of

uyg at length scale 7:

() = ¥, 0) = [ )¢ = 5) s
R
Then fort € (27, T — 27) we have that uy ; satisfies the differential equation
Opttgz + div (u @ u)e *¢ Y, + Vpr e 7, .

Taking the inner product of the equation with uy ; and integrating on the range (27, t —

27), we obtain

— 2dx — up (2, x =

/ﬂg lug(x, t — 27)|" d / ue( 21)| d
/ / Tr(( g*t\// (Vug,))dxds (4.4.1)
27 T3

!This issue could potentially be resolved by replacing lolq in the definition of loig with the free transport
extension of the restriction of Ry to the support of y , which in some sense would be an amalgamation of
the two approximations.

2As was mentioned at the end of Section 1.3.1, the result of [ CWTo4 ], which is stated in terms of Besov
spaces, is in fact stronger than Theorem 1.2.1, which is stated in terms of Hélder spaces. We note however
the proof presented here easily transfers to the Besov case.
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From the continuity of u, letting 7 tend to zero, we obtain

/TS e t)lzdx—/Ts e 0)|2dx:2/0t/w Te((u @ u)o(Viug)dds

Since we have

/T (e @ ) (V) = 0,

then we obtain the identity

[ et ds = [ s, 0P =
2/0 /T Tr (4 © w)e — (e @ g)) (Vi) dds

Applying Proposition 4.3.5 we deduce

[t Pas = [t 0P s

Thus if 6 > 1/3 then the right hand side converges to zero as £ — 0. U

< U ulj




Perturbation estimates

m HE GOAL OF THIS CHAPTER will be to collect a number of estimates involving the

velocity perturbation wg 1 and the pressure perturbation pg 1 — pg;. These es-

timates will also be important in estimating the new Reynolds stress Iolqﬂ (see Chapter

6).

5.1 ADDITIONAL NOTATION AND PARAMETER ORDERINGS

For future reference it is useful to introduce the notation

R
~ o G
kg -= \/ng')/k — 1>
P
and so in particular, we have the identity ax; = x ak@y, . We also write

ng = XgakgBk

Li; =X, (

Lig == Ly, + L,

k x By
K[>

' Vay, — a (DO, — Id)k> x
qurl

(5.1.1)

(5.1.2)
(5.1.3)

(5.1.4)
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which yields the additional formulas

w, = E Ligea‘f“ko@ (5.1.5)
ks
we = E Lfcgea‘f“k'mg (5.1.6)
ks
iAg+1k-®
Wgi1 = E Lygetat%e (s5.1.7)
kg

Before stating our estimates, let us list a number of parameter orderings that will assist
in simplifying the statement of such estimates: for all indices ¢ we assume the following

inequalities

3/2
Mo age< <8‘”“> <1

Ag+1 8q,s
_1/2 1/
8%; Aq < 8[1/757‘11 < 1 _ 1 (5.1.8)
8;{&-21,;111"!‘1 B qurl,g B gl’ﬁ‘l AZ?FI

—1/2 1/2 2
Sq,98q+1,;7‘q1q+1 < Bagt1,-
1
Observe that together, the identities yield y gl = Sq{ zglq which was a key constraint
in Lemma 4.3.3. We also set
1/2
b= 8(1«‘,»1,;)’(1"1‘1 ) (5-1-9)
1

and so from the above inequalities, we deduce Sq{ Zglq < ¢; ! which was a key constraint

in Lemma 4.3 .4.

Note that until now, we have not defined the value of p . This will be left to Chapters

7 and 8, however in what follows we will require the following bounds on p_
41’71618(1_’_17; <p. < 2008041 (s.1.10)

where we recall ¢y was the constant appearing in Section 2.4 which is yet to be spec-

ified. The lower bound on p . together with Lemmas 4.3.3 and 4.3.4 ensures that for

t € supp x, we have

R(t)
Ps

<ro;

0

in particular, Rgpg_1 is in the domain of the functions y, which is an essential require-

ment in order to ensure the perturbation wy; is well defined. The upper bound in
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(5.1.10) is essential in order to control the size of the perturbation.

5.2 ESTIMATES ON COMPONENTS OF PERTURBATION
We begin by estimating the components in the definition of wg 1 and pg1 — pg.

Lemma §.2.1. Taket € supp(y ) and assume the estimates (4.3.11)-(4.3.14) hold. Then
for N > 0 the following estimates are satisfied:

[DD(t)[[o < C (5.2.1)

||Dq)§(t) - IdHO < qu/zglq q+1; (5.2.2)

||Dq)g(t)HN < qu/g qk q+1 gf N (5.2.3)
1, (s:18)

log, (8) I < C8AAG 1ty AN S N (5.2.4)
1/ 2 _ ( .1. ) 1/ _

HLig(t)”N < qu/ssq/ﬁLlsl‘iqu gg Vs qu/+1,s€ N (5.2.5)

ks (B0 + s (B)lo + 128, (8)]o < 822, (5.2.6)

laes(®)lo + Lg(8)lw < €83y Ag0' N (5.2.7)
1h o'/2 (s-1.8) 1/ _

larg (Bl < C820.%, Aghgrauly N < sl 0N (5.2.8)

Moreover fixing N and assuming co and ¢y to be sufficiently small, the constants C in the

estimates (5.2.5)-(5.2.4) can be taken to be arbitrarily small.

Proof. First recall again as a result of (4.3.11) we have the mollification estimate
lve(®)lly < C8fRLY

for N > 1. Since [vs(t)]; < Hqi1, and l"q_+11,g bounds the length of supp(y,), from
Proposition 4.3.1 we deduce (5.2.1), (5.2.2) and (5.2.3).
To estimate ¢, we apply (A.1.5) and (5.2.2) to obtain for N = 1,2, . ..

logg (D)l < Chgis [DD(t) — 1d||n—1 + CAG, [ DD (1) — 1d]lg'
< C8l Aty N+ CO LA G rau )Y
(5.1.8)

< CS/ A lq+19‘q+1 561 N

which implies (5.2.4).
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Let us now consider ay, and L}, . estimating we have
llaxe () [l + Hng(t H <Cp 1/2 < qu/Jrl ¢ (5.2.9)

and by applying (A.1.5) we obtain for N > 0

(4.3.16)
5 o B e &(4.3.19) 1 B
ks (Dl + (L8 (Dl < Cp P IRIw + Cpl" MRIY < €85, A0
(5.2.10)
Next we estimate L making use of (A.1.3):
ILE (B)llv < » ks (8) L1+ llaks (£) |y DD (£) — 1d]lo
q
+ [laks(8) [l [1DD(¢) — Id||x ,
For N = 0 we have
(5.2.2)&(s.2. )
5/ - 12 -
L (D)o < C8 11,60 Aq+1 + qu/sSqul sl‘il‘qll,;
(5.1.8)
/2 -1
< csq/;asq+1 Mgzt
Similarly, utilising in addition (5.2.3) and (5.2.10) for N = 1,2, ... we have
1/ —1 - 1 /2 2 —1 1-N 1/ o1/ _
HLis(t)”N < C8q+1 ;A lq+1€ q/zssq+1 slq Hg-+1, ;é T sq/zssqul S qu+1 §€
(5.1.8)
1/2 N
< qu/sgtﬁls quH £
Thus from the above estimates we obtain (5.2.5)-(5.2.8). O

We now present a number of material derivative estimates. Recall the notation Dy =

at+1/['v.

Lemma 5.2.2. Assumet € supp(y,) N supp(x,) — importantly we do not exclude the
possibility ¢ = ¢. Then the following estimates are satisfied:

|Deve(t)|Jo < C84,q (5.2.11)
|IDpve(t)||n < CS‘MX%I_N forN >0 (5.2.12)
|D:DO(t)||n < C8g, glsyq__il gﬁ_N (5.2.13)
IDZDD(8) ||l < C8LeAdu, ty N (5.2.14)



5.2. ESTIMATES ON COMPONENTS OF PERTURBATION 45

I Dsare (£) | < cs;/i_s;/;l AtV (5.2.15)
| DZar (t)||n < cs BRIy Y Y (5.2.16)
1D (Ol + IDLE ()l < OOl (80 + tgirgiyheg ) N (527)

||D%L2g(t)HN + HDsz;( )HN < ng/j-lg (Sq/;gq/-i-l,gl‘ik‘l‘i‘l + l‘q+1,;/’7q_+1,g'> B_N :

(5.2.18)
1/ 2 —
IDVLL(E) v < €81 g (el ™ + bgrngtytig ) £ (5.2.19)
Ifin addition we have t € K& then we have
IDL )l + [IDLE(B)ln < C858750 gl ™™ (5.2.20)
IDLE ()| + [IDPLE ()|l < 828541, 62qdqu1l ™ . (5.2.21)
IDVLE, (D)ln < CBL812, gt N (5.2.22)

Moreover fixing N and assuming co and ¢y to be sufficiently small, the constants C in the

estimates (5.2.15)-(5.2.21) can be taken to be arbitrarily small.

Proof. We note the following decomposition
Dywy = divRy * ¥, — Vpg * ¥, + div(vg * ¥, @ vg x ¥, — (vg @ vg) % ¥,) -
Applying Proposition 4.3.5 we deduce

Hdi"[(”q +9,)(8) @ (vg * ¥,) (8) — ((vg @ vg) * ¥,)(¢)] HN < qu Hl o
< Cog AN

Together with the estimates (4.3.12) and (4.3.13) we can then conclude (5.2.11) and
(5.2.12).

We recall the formula
D;Vf= —DviVf+ VDf. (5.2.23)
Taking a further material derivative of (5.2.23) and applying (A.1.3) yields

IDFVA(E)ll < Cllve(®)llysy lve () [0 + C lloe(®)IIT F(E)]v+1
+ ClIDwe(B) [y O]1 + ClIDwe(B)y [E)]n41
+ Clloe(®)llya PAD]L + Cllve(®l [DSAE)n41
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+C||D2AE) |
< C8qehg (VIO + [f(8)]n1)
+ €82, (VDA + DA )
+C[[DEAD |y, - (5.2.24)

Now consider D®, and observe
DD, = Dy(DD, — Id) = —(D®, — 1d) Dy, , (5.2.25)
and thus, using Lemma s5.2.1 and (A.1.3) we obtain

DD ()|l < C8 ALY Bgtie-

Taking a further material derivative of (5.2.25), estimating in an analagous was to

(5.2.24), and applying Lemma s5.2.1 yields

IDEDO(#)llw < C lvell s [Ivell, IDOg —1d]lg + C flvel|7 DO — Td]
+ ClIDwe (8|4 DD —1d[, + C[|Dewe (1) |, [DD; — 1]y

32493 —1 p)—N
< G chgtgrigl -

Hence we conclude (5.2.13) and (5.2.14)

We next consider ai, and applying Lemmas 4.3.3 and 4.3.4 yields

~ — o —1 1
Dk ()l < Cp; 2 IDiR(1)llo < €828, Mg,

and for N > 0, by the (A.1.3) and (A.1.5) we have

| Dedeg(6) | < Cp; IIDeRy(8) |
_3 o ° _ o N
+ Cps IRl (|l + 2 IR
< G g (67N 42,607 28)

q,67q+1

(s.1.8) _
15 A _N
= Cs%ssq-i-l,sl‘ig ’

from which (5.2.15) follows. Taking a further material derivative and applying Lemmas
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4.3.3 and 4.3.4 yields

ID?axs(1)llo < Cp, IIDFR()llo + p; 7 IDeRS()][5

<A N 12 2
< qu,gsq—i-l,glq)‘q—i-l + C8q7§8q+17§l‘1

(s5.1.8) s
< ng,;SquL;lqqurl

and by analogous arguments to those used to estimate ||Dyay(t)||n we obtain
~ <1 —
D2k (1) I < C8.28qr1,Agharal ™.

We may apply (5.2.23), Lemma 5.2.1 and the estimates for D,ay to conclude

~ L _N— 2 <1/ <1/ L _
”Dtvakg(t)”N < CS;H,;A‘IE M (8;/,§ + Sq/,c> < qu{g5§+1,g"35 .

Since
ID:VL (1) v < ClIDeVagg(t)lv + Cllx, Varg(t) [

we obtain (5.2.19) and (5.2.22) with the help of (4.1.7), (5.2.6) and (5.2.7).
Using (5.2.24), we obtain with the help of Lemma 5.2.1
ID?Vakg() |y < C8g 87y ALY
QU2 ol ol 2,)—N—1
+ Cs%ssq{zgsq-irl,slqg
+ C8 81 hadgrr N

(5.1.8) _1) o
<8 Sy ghgent N L

Assume now t € K&. Applying (5.2.13)-(5.2.16) and (5.1.8) we obtain (5.2.20) and

(5.2.21). With the addition of (4.1.7) we conclude (5.2.17) and (5.2.18).

O]

We now move on to estimating the perturbation w, 1 and consequently the new ve-

locity and pressure. In the lemmas above we estimated components of the perturbation

which correspond to a single index ¢. However in order to estimate the perturbation

we will require additional parameter orderings corresponding to neighbouring indices

(and accordingly overlapping regions): if §,11 . > 8,1, for some ¢ = ¢ & 1 then
gly pping reg q+1 q+1.

we assume the following inequalities

81/2 81/2

Barie  Hgtig

S 45 96’
8q6 > 8q¢s 8¢ > 8¢5 — . (5.2.26)
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Remark s.2.3. In particular, the above inequality implies that for index ¢ the estimates
in Lemma 5.2.1 and Lemma 5.2.2 are weaker than the corresponding estimates for ¢’

This observation will be used repetitively in the lemmas below.

Lemma §.2.4. If t belongs to the non-overlapping zone K and the constants co and ¢, are

chosen sufficiently small, we have

[we()|ln < CS;/ZSq/jrl glqu_,_l glg’+1 (5.2.27)
[wo()llx < €821 A (5.228)
Atillvg 1Ol + wgsa(B)llo < 871 (5.2.29)

Aotallpgr1 @l + A1 Ipgrr (Ol + 1 (pg1 — pa) (Dl < Sgt1s,  (5230)

Moreover, the same estimates hold ift € supp(x,) Nsupp(x,/) for¢' = ¢t land 8441, >

8q+17§/'

Proof. Recall by definition, and (A.1.3), we have the following inequalities:

||W0(t)”N < Z Haka llﬁlkaN < Z Cllako( )HN + C)‘q+1 ||akzr(t)||0
k,o

Ie(®)lly < D [k (g (O™

< 3 ClLE Ol + LGl (s + o ©)])
k,o

a1 (8)ly < lIwo(lly + we(®)l
a1 @l < llra®ly + [[wara ©)]l
lpas1 Ol < gl + llmwole) Fll + [l [y + N0 (8), we(®)
[ {va = ves wain)ly
< [lpa(®)lly + Cllwo(®) g (1wo(6)lg + [1wel®)lo) + lwelt) g e )l

= {lvg = velly lwaallo + llva = vellg [Pwaal

Henceif tis in the good region K& (the only non-vanishing cut-offis y g) then the claimed
estimates follow directly from Lemma 5.2.1 and the inequalities (5.1.8). Now assume
t € supp(y,) N supp(x,,) for some ¢’ = ¢ 1and 841, > 84+41,¢, then taking into
account Remark §.2.3, the claimed estimates again follow directly from Lemma 5.2.1

and the inequalities (5.1.8) and (5.2.26). O

Finally, we list material derivative estimates of the principal perturbation w, and the
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corrector we.

Lemma s.2.5. Ift belongs to the non-overlapping region K§ we then conclude

IDewo ()| + [[Dswe ()| < csq/zsq/il AN, (5.2.31)
| Owgt1(t)[lo < C (1 + H"qH ) q+1 cAqt1 (5.2.32)
||8f(pq+1 _Pq)( )HO < C( + HVQHO) q+17g7tq+1 . (5.2.33)

Moreover, if t € supp(y,) N supp(y,) for ¢ =c¢Etland 81 > 8441, then the
following estimates hold

IDewo (8)l | + [Dewe(O)lly < C8J5y gty bty 1 A (52.34)
Hatwlﬁ'l(t)HO <C <Aq+1 + quHO Aq-i-l + ’7;_&17;[4‘14_17;> Sq/j_L; (5.2,35)

10:(pg+1 = pq) (t)lo < C (Aqﬂ + H"ququ + ’1;1,;##1,;) Sg+1,6-  (5.2.36)

Proof. Analogous to the proof of Lemma 5.2.4, the estimates (5.2.31) and (5.2.34) fol-
low as a result of Remark 5.2.3, Lemma 5.2.1, (5.1.8), (5.2.26) and the additional esti-

mates of Lemma 5.2.2.

Taking into account the identity 9; = D; — vy - V, the estimate (5.2.32) follows from
(5.2.27), (5.2.28) and (5.2.31). Using (5.2.34), the estimate (5.2.35) on the overlap-

ping region follows analogously.
To estimate O;(pg+1 — pq), we observe by construction we have

[10:(pg+1(t) — pa(t)llo <(llwe(t)llo + l[wo(t)[l0) ([|Oewe(t)[|lo + [|Oewo()][0)
+ 2[|wg+1()[[ol|Orvg () lo + Lllvg () |1 | Oewg+1(¢) o ,

where here we used the fact ||Ovyl|, < H@tquO By (5.1.8) we have £||vy(t)||; <
Sq/-&-l ¢ From the 0; = D; — vy - V and (5.2.11) we have

[8evq()]lo < IDea(®)lly + Iva(®)llg [Ira(®l], < CBasdq + [vally 852

Applying (5.1.8) and (5.2.26), the estimates (5.2.33) and (5.2.36) then follow from
(5.2.27), (5.2.28), (5.2.31) and (5.2.34). O
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5.3 REFERENCES AND REMARKS

The estimates presented here can essentially all be found in [BDLS14], which itself is
based on [BDLSJ13] and [Buc13]. In particular, in [BDLSJ13], no distinction was
made between the estimates on good regions and those on bad regions. This distinction
was first introduced in [Buc13], being one of the key new ideas, enabling for the first
time the ability to construct weak solutions to the Euler equations with Onsager criti-
cal regularity a.e. in time. In order to take advantage of these time localised estimates,
we will require a very careful choice of the parameters y Ay and 7 g1, 28 well as the
introduction of a sophisticated bookkeeping system (see Chapter 8).

We note that in comparing the scheme presented here to that of [BDLS]13, Buc13,
BDLS14], there are a number of notational differences. The amplitude functions a
are chosen here so that they more closely resemble the ansatz (3.1.13); in comparison
the functions ai ¢ of [BDLSJ13, Buc13, BDLS14] correspond to the functions dj ¢ of
the present work. The notation L ¢ also differs slightly from that of [BDLSJ13, Buc13,
BDLS14]. This is done in order to better organise some of the estimates of the new

Reynolds stress lciq+ 1 in the next chapter.



Reynolds Stress Estimates

6.1 REYNOLDS STRESS ESTIMATES

m 0 ENSURE CONVERGENCE of our convex integration scheme, we will need to ob-
tain good estimates on the new Reynolds stress IOQq_H. We note that as a particu-

lar consequence of the parameter inequalities (5.1.8) we obtain the additional ordering:

IRV 1/ 12
Sq,gsq-f—l,glq < 8‘1»;8‘14-17;1‘1 < 8‘1+175y‘1+17§ ) (6.1.1)
Ag+1 bag+1, ’7q+l,§l‘1+1

Notice that with the identification 85, ~ 24 * and Sqr16 ~ l;fllz , then modulo an
iteration index change (¢ — g — 1), the expression appearing on the left appeared
previously in our preliminary estimate (2.3.3) of the contribution of Nash error to the
Reynolds stress. The expression in the middle will make an appearance in the estimates
of the oscillation error. Finally, the expression on the right will appear in estimates in-
volving a time derivative falling on the cut-off functions y — since such errors will only
appear in a subset of time, it seems natural to allow the expression to be considerably

larger than the other two expressions.

51
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Proposition 6.1.1. Assumet € supp(y,). In the case t € supp(y,,) for ' = ¢ then we
assume in additional that 8,1 . > 8q1,c/. We then have the following estimates:

s
5 1. o Sgt1ckgr1el
IRg+1(8)llo + 5—[1Rg1(£)ll1 + A2*||Rq+1(t)”2 <cAE (6aa)
q+1 q+1 Na+1,c
1/2
. . 1/ bgia, 8+1,H+1,€
10Rg-1(8) + vg1 - VRga(Bllo < C [ 8,5y Ay 4T | SIS
q+1 Mg+1.
(6.1.3)
Furthermore ift € K& then we have
12 €0
: 1 : 8q,68g+1,6hqh g% 1
[Rg+1() [0 + C Ro1(t)[l1 + A27||Rq+1(t)||2 <C————"— (6.1.4)
q+1 g+1 Bat1,6
12 83/2 1 Al"‘EO
5 . 4,6%q+1,64q4g+1
||8th+1(t) + Uq+1 . VRq+1(t)‘|0 S C q” d 1 . (6.1.5)
g+l

In the proof of Proposition 6.1.1 we will make use of the following commutator esti-

mate whose proof will be postponed until the end of the chapter.

Proposition 6.1.2. LetAd > 1and0 < a < 1 be fixed. Then suppose we are given a vector
k € 73 satisfying |k| = A, a smooth vector field a € C>°(T3,R>) and a smooth function
b € C°(T3): if we set F(x) := a(x)e™*, we have

16, RI(F)llo < CA*2[|allol|blly + CA™™ (llallm—1llblls + llallollbllm)  (6.1.6)

wherem € Nand C = C(a, m).

Proof of Proposition 6.1.1. First note that from the decomposition 0y +vg41 -V = D+

(Wgt1 +vq — ve) - V we have

19Rg41(£) + vgr1 - VRg11(D)]lo <IIDeRg41(£) o
+ (Ilvg(8) = ve(®)llo + [lwg1(£)lo) [ Rg41(£)]I1
<||IDeRg11 (8o
+ O+ 8501 ) IRga ()]

(5.1.8) R 1 .
< [[DeRg+1(8)]lo + C84y 1 ([[Rg+1(8) |1 -
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Hence assuming (6.1.2) and (6.1.4), to prove (6.1.3) and (6.1.5), it suffices to prove

1/2
> 1 ot | Sarichqrt, ¢
IDR1(8)llo < C [ 83y Agyy + —L0S | AatLe (6.1.7)
q+1 Ta+1,
and for the case t € K§
12 3/ h) ll+€0
° 9% q+1,6"9%q+1
t < .1

IDeRg41 ()]0 < C (6.1.8)

Bati,

Taking advantage of the arbitrary nature of the constant C, we prove (6.1.2), (6.1.4),
(6.1.7) and (6.1.8) by showing that the estimates hold with lo{q_H replaced with R’ for
eacho = 0,1,2,3, 4,5, with the definition of R? given by (4.1.9)-(4.1.14).

Estimates on RC. By direct calculation we have

iAgt1k-
thq+1 = E Dthg(Pkael gt 1%
k,o

Applying Lemmas 5.2.1 and §.2.2, we obtain

1

IDLie (O91c Ol <85 (8100 + g2y )

(5.1.8) " . N
< C84+17€Hq+1,§11q+1,;€ ) (6.1.9)
and for times t € K}
DiLis(£)9,, ()| < €828, At (6.1.10)
[D¢Lio () @, (8) [ v < 95" q+1,6"9 : .1.10

Hence the desired estimates for HRO H o and HRO H | follow as a consequence of Proposi-

tion 3.2.3 (with m > %) together with (A.1.3) for the estimates of HRO H 1 and HROH2.

Estimates on D;R°. Again, by a direct calculation we have

2 _ § 2 iAgr1k-x
Dt Wq+1 == Dtha(pkae aHEE
k,o
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Applying (A.1.3), Lemmas 5.2.1 and 5.2.2 we obtain

1D} Lio (1), () [In <C8q/—2H ¢ (Sq/zgsq/j-l Aqrg+1 + l";—‘,—l,gﬂ;—il,g) e

12 -N
(5 1.8) & /—
< —q+l’qu+1’; , (6.1.11)
'7q+1,s
and for times t € K§
D7 Lac (D (1) < €828 11 hghg 267 (6:1.12)

Next, observe that we can write

D:R® = ([Dt, R] + RDt) Diwgi1
- ([w;, RV + RDt)thqH

=) R(D{Lio@, €™ 1%) + [0, R(V (DiLioy, )™+ 5%)
k,o

+ idgt1[ve - k, R] (Dthacpkaeilq“k'x) .

The desired estimates for HDtRO H o then follow from Proposition 6.1.2 and Proposi-

tion 3.2.3, together with the estimates (6.1.9), (6.1.10), (6.1.11) and (6.1.12).

Estimates on R'. We recall that from the decomposition (3.1.16) we have

div <wu®wu Zx )

= > (Be®By — L(Bt Bp)ld) V(apgap et )=

(k,ﬂ),(kl 7U/)
k4K £0

From (A.1.3), Lemma s5.2.1 and the orderings (5.1.8) we have for N > 1

ko (D)axa ()l < C8L28441,62 Agripigy LN, (6.1.13)

Hence the desired estimates follow from Proposition 3.2.3.

Estimates on D;R!. As we did for the estimate for D;R°, we make use of the identity
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D¢R = [vy, R]V 4 RD; in order to write

DR Y () (P )

(k’o.) b (k,’al)
k-+k'£0

+ ilq-i-l [VZ : (k + k/)7 R] (Qkaklgleilq-ﬁ-l(kJrk/)'x) + R (Qiak,a,eilq+l(k+kl)'x)> ,
where we have set Q1 = (Bk ® By — %(Bk . Bk/)Id) V(arsar o) and

Qoo =

DV (L, © Ly — 1L, - L0 )1d)] 00+

(D¢ (Liy ® Ly — 3 (LRe - Lirg 1) | V (91, P00 +

idg+1 (Lio ® Lo — %(Lia : i’a')ld) [Dt (D(fok + DCD‘,/k’)] ProPr/o’
= I+ II+1I,

where here we used the identity
Vg e itiks = Vellenk (2o kx — 1 (DO, — 1d)k)eoiF e,

Hence from Lemmas §.2.1 and 5.2.2, together with the estimates (5.1.8) we obtain the

following inequalities:

IOy <C|[(DVLE,(8) @ Ly (8] 00 (Do (8)]
+ C[|[DeLE, () © VLYo (8)] 940 (D910 (D]
+ C||[L8o(5) @ (DVLL ()] o1r (Doper ()
+ C|[|[VLE, (5) © DiLyyr (8)] 94, (D910 (B[]
SCat1.6hq <‘§;/,2;7‘q + ”q+1,;"7;+11,g') o

-1 —N .
SCS‘I"'lvgquqﬁ—l,gﬂq—‘rl,gg ’

() |y <C[[De [L3()) ® L (D] V (040 (Do () ||y
SCS;/,ZsSqul,slq)‘ﬁll‘;il,g (Sq/f;)‘q + P‘q+1,;’7q_+11,g) e

1/ —1 —N .,
Squ/v§8‘1+17§lql‘1+1rlq+l,g£ )
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and

II(#) [y <Chqrr D [[(Lie(H) @ Lyor (1) [DDDs (1)] 91y () o (1)

=00’

2 -1 y-N
<C84,8q+1,6dqhat1tg 1l
Similarly for t € K§ we obtain

<1 _N—
IT(e) |y <C8eq+1,6Agl ™"
I(8) |y <C828Y28 41, A2Aga hy 07N
|[TII(t) ||y SC8q7s8q+l,slé}‘q+lH;LgEiN :

Applying (5.1.8) again we obtain

N I

1/2
Baiie ) Sariebaris
Mgt

[ ] < © (s;/;zm .
q+1y

and for times t € Kg

H‘Q‘;cgk’g’ (t) HN < CS;/;Sq_‘_l’glqlq_i_lf_N .

The estimate (6.1.13) can be used to estimate Qp,1/o/.

The estimate on || D;R'(t)]|o now follows exactly as above for D;R? applying Propo-

sition 6.1.2 to the commutator terms Proposition 3.2.3 for the remaining terms.

Estimates on R? and D;R?.

Computing we have

wai1 - Vv = ZL’“’ ) vvwkaeaqﬂk-x
k,o

Di(wgr1 - Vvg) = Y (DeLio - Vg + Lo - VDuwy — Lig - Vg - V) gy €15
k,o

Applying Lemmas §.2.1 and 5.2.2 we obtain

Lk (£) - Ve(D)y, (1) |y < COL28130 Ag0 7N,
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and

| (DeLio (£) - Vvg(t) + Lio (£) - VDgwg(t) — Lig (£) - Vve(t) - Vve(t)) 04, (8) ||
= CS;/,chq/jrl,;lq(yq—i-l,;”qjil,s + Sq/,zclq)giN

(5.1.8) R 1 _N
C8q<298q+17;l‘1“q+1,s'7q+l,sg ’

Similarly for t € K% we have

| (DeLio(£) - Vvi(t) + Lo (£) - VDgwp(t) — Lig (£) - Vve(t) - Ve(t)) 1, (1) ||

—1/2—1/2 1/2 2 /)—N
S C8‘17§8%§8¢I-&-11€Aq£ ’

The estimates on R? then follow by Proposition 3.2.3 together with the orderings
(6.1.1) and (5.1.8). Again, making use of the identity D/R = [vg, R|V + RDy, the

estimates on D;R? follow by Propositions 3.2.3 and 6.1.2.

Estimates on R3 and D;R3. Using Lemma 5.2.4 and (A.1.3) we have

3 2 Sq/f@sqﬂ,g)‘qllqvﬂ
IR (D)l < C(I[(we(£))" [l =+ [lwo (O)we(B)]| ) < -
q+1,

Similarly, with the Lemmas 5.2.4 and 5.2.5 we achieve

DR (B)|y <CIIDawe(®)llg (lwo(E)llo + llwe(t)llo)
+ Cl[Dewo (1) o[ we(®) o
=C8gt1,¢ (Sq/,zglq + Hq—i—l,gnt]_—&l,g)

(5.1.8) 1
< C8Q+1:§Hq+l,g11q+l,g ’

andfort € K‘;g
HDtR3(t)Ho < CS;/,zs‘Squl,;lq :

Estimates on R* and D;R*. The estimates on ||R*(t)||o, [[R*(¢)||1 and ||[R*(t)||, are a
direct consequence of mollification estimates together with Lemma §.2.4. For D.R* we

have

IDR* (#) o < [[vg() = ve()lloDewg1 (8)llo + ([ Devg(£) o + [ Deve ())1) wg-1(#)llo

Concerning Dyvy, since v, solves the Euler Reynolds system (2.1.1), from our inductive
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estimates (4.3.1 1)-(4.3.13), we have

[Devg(t)llo < [|0evq(t) 4 vg - Vvg(t)llo + [lvg(t) — ve(t)[ollvg ()1
< Hpq(t)Hl + Hf{q(t)”l + C%sW
< Coghyq -

Thus the required estimate on D,R* follows from Lemmas §.2.2 and 5.2.5.

Estimates on R® and D;R°. The required estimates follow directly from (4.3.13),
(4.3.14) and Lemmas 4.3.3 and 4.3.4.

O
Proof of Proposition 6.1.2. We begin by noting that by setting
e 2
S) :=Vv+ (Vv) — g(dlvv)Icl7
we may rewrite R(v) as
1 3

R(v)=S <477(u) + 4u) ,

where u is the mean zero solution to the equation Au = v — f 1.
The operator S satisfies the following property:
divS(v) = 0 < v = const. (6.1.14)

The implication <= is obvious. In order to show the implication = holds, we observe

that the identity divS(v) = 01is equivalent to
L,
Avj-l—gajdlvv:O. (6.1.15)
Differentiating and summing the above identity in j yields the identity
4
~Adivy = 0.
3

Therefore divv is a constant and moreover from (6.1.15) it follows that v is a constant.
Since divS(v) has mean zero, we obtain from the definition of R that divS(v) =
div R (divS(v)). Hence from (6.1.14) we obtain

Sv) — R(divS(v)) =0, (6.1.16)
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here we used the fact the fact $(v) is mean zero.

For a given vector field a € C*°(T?,R%) and k € Z3 satisfying |k| = 2, let us write

ik-x ik-x 1 akk ik-x
i )':_8(412 : +412< - 12) >ek>'

In particular, by the product rule we have

_ divy(aezk-x) _ I)Ea) ezk-x + ZA(Za) e:k-x 7

for some homogeneous differential operators B; and B, of order 1 and 2 respectively
with constant coefficients (depending only on %) Moreover, again by the product rule

we obtain Al
ai()eik'ac (6.1.17)

S (bae® ™) — b.7 (ae™*) = 2 ,

Then applying (6.1.16) we obtain the following decomposition

R(bF) — bR(F) = .7 (bae™®*) — b.7 (ae™*)
+ R (bF — div.7 (bae*™)) — bR (F — div.# (ac™™))
A 7 .
= a l(Zb) ik-x + R (‘Bl(kab)elk'x + ‘Bzigb)elk.x>

i (B e P ) ot

Using the product rule to write B (ab) = By(a)b + aBy(b) and B,(ab) = B,(a)b +
aBy(b) + Ci(a)Cy(b), for some homogeneous operator C; of order 1, we may rewrite

the above decomposition as

o R(F) = AP et

+R<azsll ,kx> (aBz +C1 )Cl(b)e,-k.x>
1
—2 [b

,R] (By(a) lkx) . (6.1.19)

Observe that no zero order terms in b appear on the first two lines. The two terms on the
second line can be estimated by applying Proposition 3.2.3, withm = N — land m =

N — 2 to the first summand and second summand respectively. Applying interpolation,
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we conclude

cllallollo] lalln—1[b]lx + lla|ln—2]|]]
(b, RIE) o < CHEFI o I I
callyf[blln—1 + [lallo][bllx
;\N
H[b R] (Bi(@)e™) ||, +23 > |16 R] (Ba(a)e) ], (6.1.20)

II

We proceed by applying the same idea to the term ITin (6.1.20), which is of the form
{6, R](F")||o, where F'(x) = By(a)(x)e** and By (a) are linear combinations of first

order derivatives of a. However, this time we apply it with N — 1 in place of N:

b, RI(E)llo < A*2[|Bll1 (llallo + A~ all1)
clally-1[blls + flalln—2[b]2

AN
HaHZHbHN 2+ |lall1/blln—1 + [|allo]|b]l~
AN
1 1
+ =z H[b,R] (B/Z(a)elk'x)Ho + = H[b,R] (B’s( )e ’kx Ho , (6.1.21)

where B) = B, + Bj o By is a second order operator and B; = B, o By a third order

operator. Proceeding inductively yields

N—-2 N-1

116, RI(E) o < C2*~2[b]|x Zl_illalli + Cl_NZ lallal[bllx—s

1 / lx Hex
—I-WH“%R] (Bx—1(a) * Ho lN H R] (By(a)e * )Ho’

where Bj;_; and B} are two linear differential operators of order N — 1 and N respec-
tively.
Finally, we apply Proposition 3.2.3 and Lemma 3.2.4 to the final two terms and inter-

polate to reach the desired estimate. U

6.2 REFERENCES AND REMARKS

As with Chapter 5, the estimates presented here can essentially all be found in
[BDLS14], which itself is based on [BDLSJ13] and [Buc13]. The idea of splitting the
estimates into good and bad regions was introduced in [Buc13].

For related estimates on the Reynolds stress defined in terms of frequency cut-offs of
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arbitrary Hélder continuous weak solutions to the Euler equations (1.1.1), we refer the

interested reader to the following paper of Isett [Ise13b].






Proof of Theorem 1.2.2

N THIS CHAPTER, we conclude the proof of Theorem 1.2.2. We complete our def-
inition of the perturbation by defining our cut-off functions y and amplitude
parameters p . We then proceed in providing estimates on the energy of the approxi-
mate solutions v,. Then after carefully selecting ours parameters, we utlitise our convex
integration scheme in order to construct a sequence of approximate solutions (vq, pq)

converging to a solution (v, p) satisfying the requirements of Theorem 1.2.2.

As noted in Remark 4.1.1: for the purposes of proving Theorem 1.2.2, we may fix
g1 = Hgp and Mgt *= 1—10 uniformly for all ¢, and define the cut-off functions in
terms of the appropriate translation and scaling of a fixed function y. In Remark 4.3.2,
we noted that we may define S‘M =8 1= l;zﬁ uniformly for all , for some yet to be
chosen0 < B < 1/s. For the proof of Theorem 1.2.2, either choice of the approximation

R, described in Section 4.2 will suffice.”

!There is a very minor issue regarding the temporal boundary if one decides to use the approximation
(4.2.2). This can be rectified in a number of ways: for example one could simply smoothly extend the
prescribed energy profile and ignore estimates at the new temporal boundary.

63
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7.1 ESTIMATES ON THE ENERGY

Recall from Section 2.4, we wish to show that the energies of our approximate solutions
converge monotonically from below to our target energy profile e : [0,T] — R. In

order to achieve this goal we define our amplitude parameter p_as follows

= sy (00 = @bpa = [ astdP ) Gaa)

where we recall that ¢, is defined to be the midpoint of the support of X

Lemma 7.1.1. Let vy, be as described in Chapter 4 with amplitude parameters p _ given

by (7.1.1), then we have the following estimate on the energy of vg11

_ —Ba—2
< quil + Cl; qurll;Hq—H (7.1.2)

2
E(t) - 608q+2 - / |Vq+1’ dx
T3

Proof. We begin by setting
=302 ) (1)
s

Then it follows as a consequence of (3.1.7) and the definition of w, that we have the

following decomposition

|wo(x,t)] Z}( t)tr Re( (7.1.3)

Z ak;(x, t)ak’;' (x7 t>Bk - By eilq-o-l (k+K')-x
(k7§)7(k/7§/)7k7£*k/
= (27) 3e(t) + Z age (x, t)ay o (%, t) By ,Bkleaqﬂ(k%/)w
(k,g),(k’,g/%k?éfkl
(7.1.4)

Therefore since (k + k') # 0 in the sum above, we apply Lemma 5.2.1 and integration

by parts to conclude

/ lwo (x, t)\2 dx —e(t)| < Czk»k’,s,;’
T3

Ag+1 (7.1.5)

— 28 _—
<Qy ﬂlqﬁ”qil

ak’g’ 1
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Now recall the identity

— : +1k-x
Wgt1 = E 1 curl <zakg e gtat1 .

kyg atl

Then applying integration by parts yields

_ (6.1.1) _
<al - F < calf el (716)

/ vg (%, t) - way1(x, t) dx
T3

Moreover, as a consequence of Lemma 5.2.4, we obtain
— 28 _—
/11‘3 |Wc(x7 t)|2 + |Wc(x7 t)wo(x> t)| dx < CA; ﬂlq—l—[l;yqil (7-1-7)

Combining the above estimates, we obtain

‘ /T o ()P s~ (E(t) + /T gl t)|2dx)‘ <l (71)

Thus it remains to estimate the difference |e — e|. Note by definition we have

=327 Y x2(0)p,
= ng(t)(e(tg) —c08g42) — ng / |vg (2, t§)| dx .

Since |t — t;| < yq__il on the support of y_and since X? = 1, we have

< Clgy -

- Z X?e (%)
I

Since the triple (vq, pg, Rq) solves the the Euler-Reynolds system (2.1.1), we deduce

/ (g 0P — [ogC. ) )
// Oilvg (. ) d

_/t /’]1‘3 div (vg(x, t) (lvg(x, ) + 2pg(x, 1)) ) dx

t
+ 2/ / vg(x,t) - divRy(x, ) dx
t, JT3
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:—2//qu q(x,t) dx,
T3

where we A : B denotes tensor contraction.

Thus, for |t — t| < yq__&l we conclude

— 2 —
< Cl; ﬁlq-ﬁ-ll;yqil

‘/ |vg(x, 1)) ‘vqxt){ dx

Again using > X? = 1, we then conclude

o{t) — cogs — (e<t> + [ o dx) ‘ < Cul PR ()

Finally, the estimate (7.1.2) follows from (7.1.8) and (7.1.9). [

7.2 MAIN PROPOSITION AND CHOICE OF PARAMETERS

In this section we present our main proposition which will be used in order to construct
our sequence of pairs (v4, py) converging to a solution (v, g) to (1.1.1) satisfying the

conditions stated in Theorem 1.2.2.

Proposition 7.2.1. Forevery0 < f§ < % there existsad > 1and b > 1 such that for any
integer Ao > A and normalised energy profilee : [0, T] — R satisfying (2.4.1), the following
holds: Suppose we have lgi <A< ZXgi foreachi € N, and assume for some q € N, the
triple (vg, pg, Ry) is a solution to the Euler-Reynolds system satisfying (2.4.2) and (4.3.11)-
(4.3.14). Then there exists a solution (vgi1,pg+1, Ioiq_,_l) to the Euler-Reynolds equation
satisfying the aforementioned inequalities with q replaced by q 4 1. Furthermore, in addition

we have the following estimates

[vg+1 = vgllo + — qu—HHl < C}, E (7.2.1)
q
-2
[Pg+1 — Pallo + ZHPHIHI < Clﬁf (7.2.2)
10:(vg+1 — vg)llo < C( + quH ) q+1 (7.2.3)

10t (g1 — pg) llo < C (14 [|vg],) ;ﬁﬂ. (7.2.4)
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Proof. We begin by choosing b > 1 such that b < !/s and then set

bl b)(1—
gy = g IO (7.25)
(b—1)(1— Sbp)
= . 2.6
€o 106 (7.2.6)
Observe that apart from the inequality
572 1
24 <, (7.2.7)
Bar1 Mg

the inequalities (5.1.8) follow by simply calculations. Taking logarithms and dividing
by b4 In Ao, the inequality (7.2.7) amounts to showing

°21—f“(Hb)z(l_m*"fﬁo(bﬂiao)
_(l_b)z(l_ﬂ)—FZba)
1-b
>77
- S

where in the first inequality we assumed A to be sufficiently large such that the last term

on the right hand side is bounded by be.

Observe that (4.3.11), (4.3.12) with g replaced by g + 1 follow as a consequence of

Lemma 5.2.4. Likewise, we also obtain (7.2.1) and (7.2.2).

Note that as a consequence of the definition of ¢, | ; above we have

Bgt1 _ ap
— <&M+,

qurl

and thus we from Lemma 5.2.5 we obtain (7.2.3) and (7.2.4).

Now consider (4.3.13) and (4.3.14) with g replaced by q + 1. Applying Proposition
6.1.1, taking logarithms and dividing by b%1n A, proving the mentioned inequalities
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amounts to showing

1/2
cs 14
0>In “Oa+1bgi1” (b%1n2o) "
8q+2
1+b)(1—p) 1
> 2% —b (— —b+b O ———
= 20— bp 2 et O Cpting
1-b)(1—(4b+1
DRI I,
S 3(1 —b)(1 — Sbp) .
- 10
. . 1 b9(1—3bp)
Finally, since for large A9 we have §;1165 1; > A, > 1, then from Lemma

7.1.1, ordering (6.1.1) and the above calculation, we obtain (2.4.2) with g replaced by
g+ 1. t

7.3 CONCLUSION OF PROOF OF THEOREM 1.2.2

‘We now apply Proposition 7.2.1 in order to conclude our proof of Theorem 1.2.2.

Observe by setting (vo, po, Ro) = ((0,0,0),0,(0,0,0) ® (0,0,0)) it follows that
(vo, po, Ro) trivially satisfy the hypothesis of Proposition 7.2.1 with the exception of
(2.4.2). Nevertheless, applying the same arguments as in the proof of Proposition 7.2.1
yields a new triple (vy, p1, Rl) satisfying all requirements of Proposition 7.2.1 forq = 1.
Applying Proposition 7.2.1 iteratively then leads to a sequence of approximate solutions
(vq,pq) converging uniformly to a pair of continuous functions (v, p) solving (1.1.1)
and satisfying (2.4.2).

From (7.2.1)-(7.2.4), by interpolation we conclude

[vg+1 — vgllco(ms xfo,7) < Clg_ﬁ

Ipg+1 — pall caoqrsxjony) < CA202F

Thus, for every < B, v, convergesin C?(T? x [0, T}) to vand p, converges in C>* (T3 x
[0, T]) to p. Since B can be taken arbitrarily close to 1/5, this concludes the proof of

Theorem 1.2.2.

7.4 REFERENCES AND REMARKS

The arguments of this chapter can be found in [BDLSJ13]. Slightly different numero-

logical arguments are used here in a similar spirit to the papers [Buc13, BDLS14].



Proof of Theorem 1.2.3

8.1 BOOKKEEPING, PARTITIONING AND PARAMETER CHOICE

m 0 PROVE THEOREM 1.2.3 we will need to construct the appropriate bookkeep-

ing system in order to keep track of time localised estimates. Specifically, we

(q)

will divide the time interval [0, T] into a finite family of closed intervals I, for a =
1,...,N(q). The intervals will be ordered in ascending order with each pair 15,") , Igfgl

qu )

intersecting at a single point. To each interval I;"’ we will associate an amplitude expo-

nent f; = B9 (a)forj € 0,1,...,q, where 0 < B; < 3 is defined by the inductive

formula
ﬂj+1 = b -+ B s (8.1.1)
or alternatively

Bi= % + (1 - ;) [ (8.1.2)

where here 0 < B, < B are fixed exponents to be defined later. For notational con-

venience, we also introduce the additional exponent

B_,=bB,+(1—-Db)B, (8.1.3)

69
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which we will also assume to be positive. Note that if we assume that for everyi € N

we have lgi <A < 21(‘;", then we have the following useful inequality

1 — B —
Elfoolifloo < ;\fl_lli—fll < Zlfoo liffo : (8.1.4)

(q)

We assume the following constraint on the length of the interval I’

4

’ng)’ > (8.1.5)

~ )
B+,

where here j is chosen such that 8 ;= ﬂ(q) (a) and g g1, is2 large parameter, related to
the parameters | ; . of Chapter 4, defined by the following formula

1-
- A forj > 1
B, =8 e | (8.1.6)
g+1,j { A; ﬁ)/zk;Jrlﬂ Bm)/zl::_/; fOI‘j <1.

We will later choose b, B, and B__ in such a way that the family of parameters y g1, 1

monotonically decreasing in j: if /' > j

b1y = Bginj- (8.1.7)

Moreover, we will assume that for neighbouring intervals, the following constraint is
satisfied
F9a) <pa) = p9a) =0, (8.1.8)

where |a — a’| = 1. For the endpoint intervals a = 1, N(q) we further assume

B (a) =4q. (8.1.9)

For the special case ¢ = 0 we assume Ry = 0. This requirement together with (8.1.9)
are simply technical requirements in order to avoid potential issues involved with the
mollification along the flow approximation of the Reynolds stress at the temporal bound-

aries (see end of Section 4.2).

We denote the union of all time intervals associated to a particular exponent ; by

V9,
fRE:
V}(q) = U I‘(zq) . (8.1.10)
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Fort € V](q) we assume the following inductive estimates

Lol e

a0l a0l <™ (5.1

IRy (8)|, + ;q Ry(0)|, + ;‘21 Ry, < corpry (8.1.13)
[+ vy VRGO < codg PTALY L (808)

where here we have adopted the notation (a) = max(a,0). The measure of the set

Vj(q) will be assumed to satisfy the following constraint
‘qu)‘ < lols’;ﬂmﬁl , (8.1.15)

where £; > 01is a small constant.

Assuming that there exists such intervals {ng) bae {1,...,N(q)} satisfying the properties
above, we now describe the procedure for constructing the cut-off functions y_as well
as the amplitudes p . In the process we will also define the inductive construction of

(g+1

new time intervals {I, )}ae{ 1,...N(g+1)} satisfying the above conditions with g + 1

replacing g.
For a given interval 19 = [To, T1] such that f(a) = j, we subdivide 1% into closed
subintervals Ky 1, - . . , Ky y(q,q) Of uniform length, where n(a, q) is the largest integer

smaller than g, , - ]I,(,,q) |/2, with the intervals being indexed in ascending order, i.e.
e« Ty € Ku71
* T1 € Ky n(ag)

o Foreachd € 1,...,n(a,q) — 1 the intervals Ky o and K, o/ intersect at a

single point.

Observe that the estimate (8.1.5) ensures that such a subdivision is possible.

Now let us relabel the collection of interval {K,, }ael,...,N(q),a’el,...,n( ), inascend-

a?q
ing order as K, for ¢ = 1,...,N’. Then for a given interval K, C I‘(zq) such that

B(q) (a) = B;) we set

_ -2,

—2B;— —2B.
8q, := Aq 0 1)+7 8q, := Aq o Sgti = Agyy

q+1

bgt1c "= gt
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.  By—Bour BB
Ngrie "= Ngyr "= M2 “dgt1 -

Observe then that if we choose R, according to the formula (4.2.2) for the case
Sgt1,c = lq__ﬂ;" and for all other cases according to the formula (4.2.1), then the hy-
potheses of Lemmas 4.3.4 and 4.3.3 will be satisfied for the respective cases.

We now define the overlapping region Ké’ for¢ = 1,--- ;N — 1 in the following

manner:

e If 85, < 811 then let Ké’ be the closed interval contained in K of length
f‘q_il, c+17g 41,641 with maximal endpoint coinciding with the common endpoint
of K. and K 1.

o If 85, > 84c+1 then let KZ’ be the closed interval contained in K. of length
P‘q_—:l, ¢Mat1.c with minimal endpoint coinciding with the common endpoint of K,

and K.

Taking into account (8.1.8), in order to ensure that the overlapping regions Ké’ are

each contained in a region K/, for some ¢’, we require the following parameter inequality

to hold

7 1
'Zq+1,0 <

< = ) (8.1.16)
Bagt10  Hgt1

forj € N. Since 7 gt < L the above inequality is seen to be trivially weaker than

(8.1.7).
Define the non-overlapping region K§ as the closure of K, \ (Ké’_l U Kg)
The cut-off functions y, : [0, T| — [0, 1] are then defined such that

* X, isidentically 1 on K$ and it is supported in K& U K?i U K? ;

e« OnK = Ké’ and K = Ké’_ 1 we have the estimate

105 llo < CIK| ™.

In order that the above definition of the cut-off functions is compatible with (4.1.7)
from Chapter 4.3.1 we require

7 Mg+

a+10 o Jgtlyj

- > — , (8.1.17)
Bgt10  Hgt+1,
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forj € N. The case j = 1 is trivial since [‘q—&—lo = [‘q-i-ll and ﬁqull < [Aq_H o- For

j > 2, calculating we have

Mgt 1

_ 4Bl
=2 <=
Bg+1,0

~ ~ )
Ba+1,M9+1,0
hence we obtain (8.1.17).
Note that with the above definition of the cut-off functions X the inductive estimates
(4.3.11)-(4.3.14) follow directly from the estimates (8.1.11)-(8.1.14).
In order to conclude the construction of the perturbation (vg 1, pg+1), we define the

parameters p :

p. = co8g+1,- (8.1.18)

The new collection of intervals {ng—i—l)} ac{1,N(g+1)} is then given by the collection
of overlapping regions Ké’ and non-overlapping regions K indexed in ascending order.
We define the map p4+1) (a) as follows

0 if 19 = K for some
B (a) = T . (8.1:19)
B9 (a) +1 otherwise
where here a’ is chosen such that ng+1) C Ig,l). Observe in particular that the above

definition of 897! (a) ensures that both (8.1.8) and (8.1.9) are satisfied for the new col-
lection, i.e. with g replaced by q + 1. Note also that since

{i:B9),a=1,...,N(q)}={0,...,q},

we deduce
{i:89"Y(a),a=1,...,N(g+ 1)} ={0,...,q+1}.

8.2 MAIN PROPOSITION AND PARAMETER INEQUALITIES

‘We now state our main proposition which will be used to iteratively construct our solu-

tion (v, p) satisfying the conditions of Theorem 1.2.3.

Proposition 8.2.1. Suppose B, > 0 and . > O satisfy the constraint 1/s + B, <
B, < /3 — B, then there exists b > 1 such that for sufficiently large integers Ao we have
the following: Suppose we have lgi <A < 215 for each i € N. Furthermore, assume
that for some q € N, the triple (vg, pg, Ry) solves the Euler-Reynolds system (2.1.1) and
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let {Il(zq)}ue{l,... N(q)} be a subdivision of [0, T| satisfying the requirements of Section 8.1.
Then there exists a triple (vg41, pg+1, IOQq_H) solving the Euler-Reynolds system, together
with a subdivision {ngﬂ) Yae{1, N(g+1)} Satisfying the requirements of Section 8.1 with g

replaced with q + 1. Moreover, we have the following estimates

B
o) = v+ 3 Iy (Ol < OE (8:2.1)
1 281,
1pg+1(t) — pq(t)llo + TH||Pq+l(t)||l < Clygpy (8.2.2)
q
1-B,_
10e(vgr1 — va) (Bl < C(1+ [[vglg) Agin” (8.2.3)
1=2B-1)

10¢ (pg+1 = pg) (Do < C (1 + H"qu) Agrr o (8.24)

forallt € Vj(qH).

Proof. We begin by choosing b > 1 sufficiently close to 1 such that the following con-

ditions are satisfied

B_,=0bB,+(1—-b)p,>0 (8.2.5)
3b(By + Bo) <1 (8.2.6)
b(1+36,) < B, (8.27)

Now define €9 > 0 sufficiently small such that we have

(=)= 3b(F,+ )

g0 < < (8.2.8)

With the above choices, let us check that the parameter orderings of Chapter 5 are sat-

isfied, which will amount to proving the following lemma:

Lemma 8.2.2. Assumingthat A is appropriately large then we have the following parameter

inequalities

?tq+1 <a<ay < (825)
W < gk, <A (82:20)
7“1 ﬂj_lkqi’ < l‘q+1,1 (8.2.11)
P o T (82.12)
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In particular, the parameter orderings (5.1.8) and (5.2.26) are satisfied.

Proof. Forj =0, (8.2.9) follows from the restrictions (8.2.6) and (8.2.8). Similarly, for
j > 1 the inequality (8.2.9) follows from (8.1.4), (8.2.6) and (8.2.8).

1-8.
Now consider (8.2.10). Forj > 2 we have [‘q—i-lj = }HHII;] and thus we just need to

check l;_ﬁ17115111 < lq__i‘i Using (8.1.4), (8.2.6) and (8.2.8) we obtain the required

inequality. For j = 0, 1 we must show

1-§; 1, B~1 (1= By) fyn (B + B = D 2 — Bec/ _
j—1Pj 5 /2 o oo 2 /2 g0
Aq A1 Shg Agt1 Agz = Al

1-B_, -1 -
Applying (8.1.4) we have 14 ﬁ’_lls’_H < Zlqlq_il Poo ksfz. Then from (8.2.6) we eas-

ily obtain the first inequality. Taking logarithms and dividing by b%In 2 the second

inequality is equivalent to showing

(1=0b)(1 =B, +bB,) < —2bso — O (bﬂi?xo) , (8.2.13)

which follows from (8.2.6) and (8.2.8)

Consider (8.2.11) forj > 2: the inequality follows as a simple consequence of the

_l;j71 (8.2.9) 1_[;;'

1
fact that 4 < 441 The case for j = 0 is clearly stronger than the case for

j = 1. Forj = 0, by definition 0f[‘q+1 o we have ﬁ;fl,o < lgoﬁ-ﬁw—lkgi—lﬁw—l and
thus
1-B_ 1 1By~ — —B_1+BocBo—Bos \ 1801 —B (8.1.4) BB
7Lq llq+10l"q—|%1,0 <C (Aq 1 lq(-)i-l ) Aqo)‘q_ﬁ < quolq_ﬁ < 1.

Hence we obtain (8.2.11).
Finally consider (8.2.12). For j = 0, 1 the inequalities are trivial: assume thenj > 2

and apply (8.1.4) to deduce

8,

lq 7l;cx: Boo—1 —By~—1 (1+ By) pq — (1 +ﬁ0)/2 - 3/%@/2 3/3x/z
T S QAT S Chg U0y /lq+1 Agy1  Agia -
Ha+1,
I
Then from (8.2.6) applied to I we obtain our claim. O

Recall that in Section 8.1 we imposed the addition requirement that the family of
parameters j g+1, are monotonically decreasing in j: inequality (8.1.7). By inspection

it suffices to check the inequality holds forj = 0,1 and j/ = 2. Taking logarithms and
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dividing by b?1In A, we need to show

OZb—bﬁz—(l_ﬂo)(b+1)+b(b_l)ﬂm+o( 1 )

2 b41ln 2o
(8.12) (b — 1) (b + By (b +2) — (b* +2b+2)B,.) cof 2
- 2b b91n lo '

Applying (8.2.7) then yields (8.1.7).
It remains to check that that the new triple (vg+1, pg+1, Rg+1), together with the fam-

ily of intervals {I§q+1)}a€{17..,,N(q+1)}, described in Chapter 4 and Section 8.1, satisfy

the claimed properties.

Observe that (8.1.11),(8.1.12), (8.2.1) and (8.2.2) with q replaced by g+ 1 all follow

as a consequence of Lemma §.2.4.

To show (8.2.3) and (8.2.4) we will use the following inequality

=By o -~ ~—1
Agr1 Z Bgirjflgry- (8.2.14)
The estimates (8.2.3) and (8.2.4) will then follow as a consequence of Lemmas 5.2.4
and 5.2.5. To prove (8.2.14) we note that forj > 2 we have equality and consequently
the case j = 0 follows from (8.1.17). Hence it suffices to consider the case j = 1, which

is equivalent to showing

(1+b)(1 = By) + 3B, (b* — b) :
§ o) +bﬁl—b250+b<ﬁ_1_1>+o<b‘iln%>

(s12)&(a3) (b= D=1 = fo + (b+2)Bs) ( 1 )
bilndy )

2

Applying (8.2.6) and assuming A to be sufficiently large we obtain (8.2.14).

Now consider the estimates (8.1.13) and (8.1.14) with q replaced by q + 1. Recall
from Proposition 6.1.1 thatif t € Kg or alternatively t € K, N K for ¢ = ¢+ 1land
platl (o) =p ;< B9+1) (¢) then the following estimates hold:

. o
o 1 o 1 o H —‘,—17) +1
IRg+1(8)[lo + rHRq—H(t)”l + ;\THRq-H(t)HZ < C%
q+1 q+1 ﬂq+l,j q+1
. . Byi1 it
OiRgi1(t) + vgr1 - VR 1 (t OSCM,
q q q [
~ 6
Ng+1jhg+1

where for the last inequality we applied (8.2.14) to eliminate the prefactor § ;/er 1,chg+1+
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U .
—1t1¢ Moreover, if t € K‘g then we have

Ma+1,6
. 1. O A
IRga(®lo+ 1 IRgsa (O] + 55— Rgea () < C—— T
! s Hqul,jA‘i lqil
1+€o
, . 9hq+1
[0:Rg+1(t) + vg41 - VRgy1(t)[lo < C g? ,
- (-1 138
lgrijda g

Therefore by inspection, the estimates (8.1.13) and (8.1.14) for g replaced by g + 1

follow by the parameter orderings proved in the following lemma:

Lemma 8.2.3. According to our choice of the parameters we have

l_ﬂ(ifl)-{_ _Zﬁj~_1 _ZBH—I —2e
Aq Agt1 bgy1j = Agt2 lq+1o (8.2.15)
_ﬁi_l~ ~—1 _Zﬂo —2¢€0
}L‘Hl Bg+1,Mlg+1,j S lq-l—l Aqul : (8.2.16)

Proof. Consider the inequality (8.2.15) forj = 0, 1. Taking logarithms and dividing by
b%1n A, the inequality is equivalent to showing

b
0>~ fy+1-28p— (1) L —b(b— 1)

1
o)
* <b‘11n7to>

b—1 1
=— (148, + +2 + 0
2 (1 Bot3b) - 2bs (bqlnl())’

+ zﬁijZ + 2beg

from which applying (8.2.6) and (8.2.8) the inequality (8.2.15) readily follows.

Next, consider the case j > 2, taking logarithms and dividing by b? In 19 the inequal-

ity is equivalent to showing

5 1
0>1—8_; —b(1+p)+26,,b° +2beo + O <b‘llnlo

1
=(b—-1)(—1 2 1 2
(b—1)(=1+(2b+ 1)B) +2beo + O <bqlnlo> ,
and thus the desired estimate is implied by (8.2.6) and (8.2.8)

o -1

To prove (8.2.16), we first note that since i1, s < i, 11 o = gy and &gy 0,7
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is constant in j, it suffices to consider the case for j = 0, 1. In particular we need to show

. (1+b)(1—By) +3B,, (b —b) _b+b2ﬁo+2b50+0< . )

2 b41n 10
(b—1)(—1+ (2b+ 1)B,) +3bB..) 1
2 2O ity )
for which again we apply (8.2.6) and (8.2.8) to conclude (8.2.16). O

In order to conclude the proof of Proposition 8.2.1, we need to show that the family

of intervals Igfﬁ_l) and family of sets V}tﬁ_l) satisfy the constraints (8.1.5) and (8.1.15)

respectively with g + 1 replacing g.

Consider first (8.1.5) for intervals I‘(;Hl) = K? for some ¢, observe that
(8.2.14) —1+8 _ (8.2.11)
1 (=14 8) /o4 (Z1+B) /2 ~—1
‘Kﬂ 2 )“1 = lq /zlqﬂ =z Bat+1,00

from which — assuming that ¢ is taken large enough — we obtain (8.1.5) on bad sets.

it

For good sets, i.e. ) = K? for some g, we have by construction

(8.1.17) 2 27 (8.1.7) 1
< . rlq+l,0 >

b
K¢ —K‘; — Ko

Ba+1 Ba+10 a1

Forj = 0,since 1, o = fi,, ; the inequality follows by assuming Ao to be sufficiently
large such that y;ilyqu_m o = 4. Forj > 1, we apply (8.2.10) twice to obtain

€
1 > lﬂi_l q0+2

— q+1>

Ba+2j+1

Ba+1,)

Hence assuming ¢ sufficiently large we obtain (8.1.5).
Observe now that Vj(flrl) C qu). The inductive estimate (8.1.15) will then be pre-
served, forj > 1, provided

Bit1—Bootel

1 }+2 Bj—Boote1
q

Z lq—i—l )

which holds as long as 4 is sufficiently large depending on b and ;. Finally we have

q q
+1 - Bo—BocrPoo By B Bocter Bo—Boo
|ng )| = qu+1’j|V;q)|§221qiz Aq+1 ]Aq}+1 qulqgﬂ 7‘3#1-
j=0

i=0

Thus ‘ng—&-l) | satisfies (8.1.15) provided A is chosen sufficiently large enough such that
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AEaA 5 > 2. O

8.3 CONCLUSION OF THE PROOF OF THEOREM 1.2.3

In this section we apply Proposition 8.2.1 in order to conclude our proof of Theorem

1.2.3.

We begin by fixing postive parameters 6, f__ and f, such that
1 1
g+/30<9<ﬂoo<g—ﬂ0.

We set our initial triple as (vo, po, Ro) = ((0,0,0),0,(0,0,0) ® (0,0,0)), our initial
family of intervals will consist of one element: I(()O) = [0, T] with corresponding expo-
nent f(%) (0) = B,- The triple (vo, po, Ro) together with the singleton set {I(()O)} trivially
satisfy the constraints of Section 8.1. To construct (vy, py, R;) and the family {1&”} we
apply the same method presented in Chapter 4 and Section 8.1 with the exception that

we define the amplitude parameters p_as follows:

Taking into account this minor modification we may apply Proposition 8.2.1 in order to
obtain our new triple (vy, pa, Ry) satisfying all the requirements of Section 8.1. We now
apply Proposition 8.2.1 inductively to obtain a sequence of triples (vq, pg, 101,1). From
(8.2.1)-(8.2.4) and interpolation we see the sequence converges solution (v, p) to the
Euler equations (1.1.1). Furthermore we have v € c? (T3 x [0,T]),p € CZGI(T3 X
0, T]) for any 6" < B,,.

Utilising (8.1.15) and calculating we have:

IRCTE SO
g=1"0
<5 @ (o] ae
> [, Tt e

S Q)| 0B
<Y |l

9=0 j=0

S I S T

Bt 0-f,

<> S AT
4=0 j=0
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(8.1.4) o 0—B._ +be
< Clo Y (q+1)2g =
S Cko,

where in the last inequality we assume ¢; is chosen small enough such that we have
ber < B, — 0. An analogous calculation yields p € L' ([0, T]; C**(T?)).
It remains to check the energy inequalities (2.4.3) and (2.4.4) are satisfied. From the

definition of the cut-off functions y  we have

e(t) — |v1 (%, £)|> dx

<Cigp<an
T3 ’

Assuming A is sufficiently large, then the right hand side can be made as small as desired

in order to obtain (2.4.3). Moreover, since
o0
> [ s nP i< g <,
g=27T

we obtain (2.4.4) by assuming A to be sufficiently large.

8.4 REFERENCES AND REMARKS

The arguments of this chapter are based on the the work [BDLS14]. The parameters
(#g41j>Mg41) of [BDLS14] correspond directly with the parameters (i, .7, ;)
employed here.

The bookkeeping system of [BDLS14], which is presented here, is significantly more
complex than the one originally presented in [Buc13 ]. We recall that [Buc13 ] describes
the construction of non-trivial non-conservative !/s — £ Hélder continuous solutions
which for almost every time belong to the 1/3 — £ Hélder regularity class. We now pro-

vide brief sketch of the arguments of [Buc13 ], written in the language of this disserta-

tion:

As was done in Chapter 7, in [Buc13] the parameters g, | =y, and7, , =
Mgt are chosen uniformly in ¢. Indeed y g1 18 chosen in the same manner described
in Proposition 7.2.1; although in contrast to the approach taken in Chapter 7, the pa-
rameter 7, ; is chosen to be l;jzl , for small suitably small parameter €, > 0. In the

notation of the bookkeeping system presented in Section 8.1 (and not that of [Buc13])
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the regularity exponents ; forj > 1 are chosen as follows:

g = (s Co2p,).

100

The parameter f, is chosen in a similar manner as was the parameter  was chosen in
Proposition 7.2.1, i.e. satisfying 3, < i. In addition, B__ is chosen such that f__ < i
and B_; := pB,. Then assuming ¢ is chosen suitably small, by applying similar argu-
ments to those given in Chapter 7, one can ensure the scheme converges uniformly in
C'5=¢(T3 x [0, T)).

Observe that by definition, there exists a finite integer N depending on b, 8, and __
such that for j > N we have f8 = B..- Hence defining

-, (s.00)

{a:8,=B') (a) j>N}

it is not difficulty to see that by the choice to 7 g1 Ve have

q
’Vgg)’ >T-C 3 A>T,

q'=q—N
from which we infer
00 o0
Jim pq Vi) > T Jim cq,:q AN 2 T=Clim 4 = T.

Hence, applying interpolation, for a.e. time t € [0, T], our constructed weak solution v
is Holder 1/3 — € continuous. Indeed, as was pointed out in [Buc13], the set of times

where v is not Holder 1/3 — € continuous is of Hausdorff dimension strictly less than 1.






Appendix

A.1 HOLDER SPACES

In this section we will introduce the standard (spatial) Hélder norms and seminorms. In
what follows we let m = 0,1,2,...,a € (0,1), and p be a multi-index. The standard

supremum norm will be denoted by [[fllo := sup(, ye (2 x[o,17) [f(*; )| and then we

define the Holder seminorms as
[flm = max ID%Ao

il |DFf(x, t) — DFf(y, t)]
m-+a

= max sup 2
|Bl=m sty ¢ x — y|

Y

where DP are space derivatives only. The Holder norms are then given by

Wi = D0
Hﬂ|m+a = Hﬂ‘m"‘[ﬂmﬂw

We also employ the above notation for functions in space only. For the analogous

norms and seminorms defined on the Euclidean space R® and the scaled torus AT, for

83
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A > 0 we will employ the notation ||-|| gy, [1erw) Illcrare) and [-]erams) respec-
tively.

For brevity, given a fixed time t, we write [f(t)], and ||f(t)||, to denote the semi-

norm/norm of f evaluated for the restriction of f to the t-time slice.

Observe that since

Aearsy < ClAlcars + Wears)

forany 0 < s < r, and through homogeneity we have

[ﬂCs(T3) = E_S[f(E')]CS(E—VEs) 5

then we obtain

s < Ce" A+ °|fllo) » (A.1.1)

1o
forr > s > 0,& > 0. Settinge = ||f||{[f]r ~ we obtain the standard interpolation
inequalities

s < Cllfly " [Ar - (A1.2)

Applying Young’s inequality yields the following product estimate

[felr < C((Arllgllo + IAlolglr) (A13)

foranyr > 0.

Finally, we state a classical estimate related to the Holder norms of compositions.

Proposition A.1.1. Let ¥ : QO — Randu : R" — Q be two smooth functions, with
Q C RN. Then, for every m € N there is a constant C (depending only on m, N and n) such
that

< C((¥h1/IDullm—r + [IDY [l /I ]l ) (A1.4)

< C([¥]1]|Dullm—1 + [ID¥ |1 [u]7) - (A.1s)

The proof of Proposition A.1.1 follows by a simple expansion of the the derivatives

using the chain and product rule; then applying (A.1.2) to the resulting terms.
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A.2  LINEAR PARTIAL DIFFERENTIAL EQUATION THEORY

In this section we will recall a number of elementary results from linear partial differen-
tial equation theory on R". For proofs of stated results, we refer the reader to [GTo1].

We let ||[|yym, denote the usual Sobolev norm ||[| s (gn) + > j51=m || DP HLP(R") for
1 < p < 00 and integers m. We also denote |||/ ;. = H./T_l(l + ‘§|2)S/2‘7:(')HLP(R")
the canonical extension to non-integers s, where here 7 and 7 ! are the usual Fourier
transform and Fourier inversion respectively.

We first recall a standard Sobolev inequality:

LemmaA.2.1. Assumel < p < coands > Oissuchthat!/p < s/n. Then for any smooth

function u on R", there exists a constant C depending only on n, p and s such that

”“HC(R”) < CH“”WW(Rn) . (A.2.1)

We we now restate some properties of Riesz operators and the Leray projection op-
erator. First observe that if fis a smooth function with compact support defined on R”,

n > 3, defining

U= Aﬂgnlf:: - ! /]R fv) dy,

(n—2)w(n) Jgn \x—y|"72

where w(n) is the volume of the unit ball in R". Then u is a smooth function on R"
satisfying the Poisson equation

Au = f.

The Riesz transform Rifforj = 1, ..., nis then defined by the formula

1 (0 — %)f)

w(n - 1) R» |x —'y‘n—H

Rif(x) = Py dy.

For n > 3 the Riesz transform and Aﬂg,,l can be related by the following formula
Ox;Ox; A f = —RiRjf . (A.2.2)

Moreover, we can write the standard Leray projection operator Pgr», which projects vec-

tor fields onto its zero-divergence part as

(Peef)j:=fi— > RiRific. (A.2.3)

k=1,...,n
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A standard result from Harmonic Analysis is that the Riesz operators are bounded on

L forl <p < o0:

Lemma A.2.2. For1 < p < 00 and f a smooth function on R" for n > 2 we have
HRLfHIP(R") < Clfllzegn - (A2.4)

where the constant C depends on p and n.

Finally, we state a well-known estimate on harmonic functions:

Lemma A.2.3. Supposefis a harmonic function (Af = 0) on a bounded Lipschitz domain
U C R” then we have the following estimates on the derivatives of f

HDBfHLOO(U/) S C Hﬂ’LI(U) (A.2.5)

for U’ compactly contained in U, where the constant C depends only on n, the |B|, Uand U'.
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