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Abstract 

Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the 

genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the 

phylogenetic position of these genes and to elucidate the evolutionary history of opsins in 

Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of 

broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference 

methods in conjunction with carefully selected substitution models. According to our 

findings, the opsin repertoire of H. dujardini comprises representatives of all three major 

bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin 

(neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the 

first record of this opsin type in a protostome, but our screening of available metazoan 

genomes revealed that it is also present in other protostomes. Our opsin phylogeny further 

suggests that two r-opsins, including an “arthropsin”, were present in the last common 

ancestor of Panarthropoda. While both r-opsin lineages were retained in Onychophora and 

Arthropoda, the “arthropsin” was lost in Tardigrada. The single (most likely visual) r-opsin 

found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod 

ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-

opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, 

our findings suggest that the last common ancestor of Bilateria possessed six opsins: two r-

opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the 

ecdysozoan lineage. 
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Introduction 

Opsins are light-sensitive proteins used for photoreception. These proteins function as G 

protein-coupled receptors (GPCRs) that trigger phototransduction cascades associated with 

animal vision and circadian clocks (e.g. Arendt et al. 2004; review Fain et al. 2010; review 

Hankins et al. 2008; Rubin et al. 2006; review Shichida and Matsuyama 2009; Velarde et al. 

2005). Previous studies had unveiled that the last common ancestor of Bilateria possessed 

representatives of three major opsin clades, including ciliary [=c-opsins], rhabdomeric [=r-

opsins], and Group 4 opsins (review Porter et al. 2012). Among these three clades, only the c-

opsins and r-opsins have been known to be involved in vision (e.g. Koyanagi et al. 2008; 

Koyanagi and Terakita 2013; Land and Nilsson 2012). Independent diversification of c-opsins 

in vertebrates and r-opsins in arthropods has led to convergent evolution of color vision in 

these animals (review Shichida and Imai 1998). 

Within Panarthropoda (Onychophora + Tardigrada + Arthropoda), color vision has 

been confirmed only in arthropods, whereas onychophorans most likely show monochromatic 

vision due to the presence of a single visual r-opsin, dubbed onychopsin (Hering et al. 2012). 

Moreover, while all three major bilaterian opsin clades are represented in the arthropod 

lineage, Group 4 opsins are absent from onychophorans (Eriksson et al. 2013). However, 

since the corresponding information is completely missing from tardigrades, the opsin 

repertoire in the last common ancestor of Panarthropoda remains unknown. 

Tardigrades typically possess a pair of simple, ocellus-like eyes (Dewel et al. 1993; 

Greven 2007; Kristensen 1983) – a situation which is similar to that in onychophorans but 

different from that in arthropods, which show two types of visual organs: the median ocelli, 

and the compound eyes (fig. 1A–C). While the onychophoran eyes have been homologized 

with the median ocelli of arthropods (Mayer 2006), the homology of the tardigrade eyes 

remains obscure (Greven 2007). Experimental data revealed that tardigrades clearly respond 
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to light (Baumann 1961; Beasley 2001; Marcus 1929; Ramazzotti and Maucci 1983), but 

beyond this nothing is known about the photoreceptive system in these animals. 

The major objective of our study is therefore to analyze the opsin repertoire in a 

tardigrade to clarify the following questions: (i) Do tardigrades show only a single r-opsin as 

in onychophorans (Hering et al. 2012), or is there evidence for multiple visual pigments as in 

arthropods (e.g. review Briscoe and Chittka 2001; Henze et al. 2012; review Marshall et al. 

2007)? (ii) Did the last common ancestor of Onychophora, Tardigrada and Arthropoda have 

monochromatic vision? (iii) How many orthologs of c-opsins and Group 4 opsins have been 

retained in the tardigrade lineage? (iv) Did losses and duplications of opsin genes occur in 

tardigrades and, if so, how many? (v) What was the opsin composition in the last common 

ancestor of Panarthropoda and Bilateria? 

To answer these questions, we sequenced and analyzed the transcriptome of the 

eutardigrade Hypsibius dujardini using an Illumina-based sequencing approach. In addition, 

we screened various metazoan genomes, including the recently released genome of H. 

dujardini, and reconstructed the phylogeny of broadly sampled metazoan opsin genes, which 

allowed us to firmly place the tardigrade sequences in the bilaterian opsin tree. 
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Material and Methods 

Specimens, library preparation, sequencing and assembly 

Specimens of Hypsibius dujardini (Doyère, 1840) (Eutardigrada, Hypsibiidae) were obtained 

commercially from Sciento (Manchester, UK). Several hundred specimens were used to 

extract total RNA using TRIzol
®
 reagent (Invitrogen, Carlsbad, CA) and RNeasy MinElute 

Cleanup Kit (Qiagen, Hilden, Germany) according to the manufacturers’ protocols. Library 

preparation for double indexing (Kircher et al. 2012; Meyer and Kircher 2010), 76 cycles 

paired-end sequencing on an Illumina Genome Analyzer IIx (San Diego, CA), and post-

sequencing processing (adapter trimming, removal of reads with falsely paired indices and 

filtering of reads at three different levels of stringency) were performed as described by 

Hering et al. (2012). Each of the three obtained datasets (Filter15, Filter25, and Filter30) was 

then assembled de novo using two different software packages to assess the occurrence of 

opsin transcripts in a broader methodological framework: CLC Genomics Workbench v5.1 

(CLC bio, Århus, Denmark), and IDBA-Tran v1.1.0 (Peng et al. 2013). The IDBA-Tran 

assemblies were done twice, allowing for the retention of one or three isoforms of a transcript, 

respectively, using the -num_isoform option (additional assembly parameters and statistics; 

supplementary table S1, Supplementary Material online). 

 

Obtaining opsin sequences from the transcriptome of H. dujardini and publicly 

available metazoan genomes 

To obtain the sequences of putative opsin genes from the transcriptome of H. dujardini, 

BLAST v2.2.27+ (Altschul et al. 1997) and HMMER v3.1b1 (http://hmmer.org/; Eddy 1998) 

were used in custom Perl scripts on nine assemblies in total as described by Hering et al. 

(2012) with the following modifications: for the tBLASTn/BLASTP searches, 16 opsin 

sequences from all major opsin groups were used as bait sequences with an E value of 1e-5 as 
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a threshold (for accession numbers of all query sequences, see supplementary table S2, 

Supplementary Material online). For the HMMER search, the same value was used and the 

search was performed by applying previously built HMMER profiles (Hering et al. 2012). In 

total, 1,634 non-redundant contigs were obtained as putative opsin genes and used as 

candidates in further analyses. For reciprocal BLAST searches against the nr database of 

GenBank, 530 non-redundant contigs from a BLASTP search with the E value 1e-10 and a 

HMMER search with the E value 1e-20 were used and every best hit was stored (101 hits 

after the removal of redundant sequences). Furthermore, we mined the publicly available 

genomes of the annelids Capitella teleta and Helobdella robusta, and the mollusks Lottia 

gigantea (http://www.jgi.doe.gov/) and Crassostrea gigas (http://gigadb.org/) to enrich our 

metazoan opsin dataset by using BLAST searches. In addition, we screened the genomes of 

the aphid Acyrthosiphon pisum (http://www.aphidbase.com/) and the water flea Daphnia 

pulex (http://www.jgi.doe.gov/) to identify putative orthologs of the new opsin-5 gene 

(vertebrate opsin-5/neuropsin-like gene) from H. dujardini. All identified putative opsin 

genes from these genomes were checked for the presence of lysine at the retinal-binding site 

corresponding to the K296 position of bovine rhodopsin (Palczewski et al. 2000). Due to the 

uncertain placement of one of the opsins of the ctenophore Mnemiopsis leidyi (MleiOpsin3; 

see Schnitzler et al. 2012) and an unusual insertion downstream of the predicted retinal-

binding site corresponding to the K296 position of bovine rhodopsin, it is unclear whether or 

not MleiOpsin3 is a functional opsin gene. We therefore decided to exclude MleiOpsin3 prior 

to our analyses (supplementary figure S8, Supplementary Material online). 

 

Computational pre-analyses 

To decide whether or not a contig identified by BLAST/HMMER is a potential opsin gene, 

several maximum likelihood analyses (ML) were performed to sort out non-opsin contigs. 
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Therefore, we aligned all query sequences for the BLAST searches and the opsin sequences 

used to build the HMMER profiles to an opsin master alignment using the web server of 

MAFFT version 7 (Katoh and Standley 2013). Thereafter, we extended this alignment with 

the 101 unique best hits obtained by the reciprocal BLAST search using the -add option in 

MAFFT. In the next step, the initially obtained 1,634 candidate contigs were split into batches 

of 150 sequences and each batch was also added to the master alignment using MAFFT (-add 

option) resulting in 11 separate alignments. Each of the 11 alignments was masked using 

ALISCORE v2.2 (Kück et al. 2010; Misof and Misof 2009) and ALICUT v2.3 

(http://www.utilities.zfmk.de) to exclude randomly aligned sections prior to tree 

reconstruction (sliding window size 64, comparing 10,000 random pairs). After running 11 

independent ML analyses to obtain the best tree for each dataset using RAxML v7.5.8 

(Stamatakis 2006) with the PROTGAMMAAUTO option for automatic selection of the best-

fitting substitution model (10x LG+G, 1x MTZOA+G), a total of 43 in-group opsin 

transcripts from all assemblies were curated manually using BioEdit v7.0.9 (Hall 1999) and 

CLC Main Workbench v6.8.4 (CLC bio, Århus, Denmark). These transcripts yielded five 

different opsin genes (Hd-r-opsin, Hd-c-opsin1, Hd-c-opsin2, Hd-c-opsin3 and Hd-neuropsin) 

for the tardigrade H. dujardini, named after the clade in which they occur. 

 

Cloning and Rapid Amplification of cDNA Ends (RACE) 

Rapid amplification of cDNA ends was performed using SMARTer
®
 RACE cDNA 

Amplification Kit (Clontech Laboratories, Inc., Mountain View, CA) according to the 

manufacturer’s protocol for a putative c-opsin (Hd-c-opsin3) and putatively new Hd-

neuropsin of H. dujardini, due to the short length of the corresponding contigs obtained from 

our transcriptome data. The fragments of all five identified opsin genes of H. dujardini were 

cloned from cDNA using the pGEM
®
-T Vector System (Promega, Madison, WI) and verified 
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by Sanger sequencing (GATC Biotech, Konstanz, Germany) using a standard M13 

amplification. The sequences of the tardigrade opsin genes (Hd-r-opsin, Hd-c-opsin1, Hd-c-

opsin2, Hd-c-opsin3 and Hd-neuropsin) were submitted to GenBank under the accession 

numbers KM086335–KM086339. 

 

Final sequence alignment and masking 

The final dataset comprised 401 metazoan opsin and other closely related G protein-coupled 

receptors (GPCRs), such as receptors for somatostatin, allatostatin, dopamine, octopamine 

and melatonin as outgroups, selected according to the reconstructed trees from our pre-

analyses. Prior to the final alignment, a Pfam v27.0 domain search (Punta et al. 2012) was 

performed and all sequences were trimmed manually at ±20 amino acids up- and downstream 

from the predicted seven-transmembrane domain (7tm_1; PF00001). This was done to allow 

for a more accurate identification of homologous positions during the alignment step by 

removing poorly alignable regions a priori, such as the unconserved regions flanking the 

actual domain. The alignment was done using MAFFT version 7 with the most accurate 

option L-INS-i and default parameters. The software Noisy rel. 1.5.12 (Dress et al. 2008) was 

used to mask the alignment by removing homoplastic and random-like positions (-cutoff=0.8, 

-seqtype=P, -shuffles=20,000). 

 

Model choice and cross-validation 

Several analyses were performed to obtain the best-fitting substitution model for the 

phylogenetic analyses of the final dataset. First, ProtTest v3.3 (Darriba et al. 2011) revealed 

LG+G+F as the best-fitting model according to the Akaike Information Criterion (AIC; 

Akaike 1974), Bayesian Information Criterion (BIC; Schwarz 1978), corrected Akaike 

Information Criterion (AICc; Hurvich and Tsai 1989; Sugiura 1978) and Decision Theory 

Criterion (DT; Minin et al. 2003). Second, a 10-fold cross-validation with 10 replicates for 
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each chosen model (LG, GTR, CAT-LG, CAT-GTR, C20-LG, C20-GTR, C30-LG, C30-

GTR, C40-LG, C40-GTR, C50-LG, C50-GTR, C60-LG, C60-GTR, WLSR5-LG, WLSR5-

GTR) was performed for comparison using the multicore version of PhyloBayes MPI v1.4f 

(Lartillot et al. 2009). Therefore, the original alignment was split randomly 10 times into a 

learning set (9/10 of the initial dataset) and a test set (1/10 of the initial dataset). Markov 

chains were run for 1,500 generations on each learning set (160 chains in total) of the models 

for comparison. For each of the replicates, the cross-validated likelihoods were calculated 

under the test set, averaged over the posterior distribution of the learning set, discarding the 

first 500 sampled points as burn-in and using the remaining 1,000 generations. Finally, the 

cross-validation log-likelihood scores per model were averaged over the 10 replicates and 

used to rank the fit to the initial dataset. According to this, the site-heterogeneous CAT-GTR 

model fitted the data best in 8 out of the 10 replicates. As the best non-site-heterogeneous 

model, the dataset-specific GTR model fitted the data better than the empirical LG model 

(supplementary table S3, Supplementary Material online). We therefore decided to use the 

GTR model for the final ML analyses using RAxML (due to the lack of site-heterogeneous 

models) and CAT-GTR to conduct Bayesian inference analyses with PhyloBayes. 

 

Maximum likelihood and Bayesian inference analyses 

The best maximum likelihood tree was obtained running 100 independent inferences on the 

final dataset with GAMMA correction of the final tree using the Pthreads-AVX version of 

RAxML v7.7.8 (fig. 2; supplementary figure S1, Supplementary Material online). A dataset-

specific GTR substitution matrix was estimated during a prior single run and then provided as 

substitution matrix for the above-mentioned run. Bootstrap support values (BS) were 

calculated using the rapid bootstrapping algorithm implemented in RAxML from 1,000 

pseudoreplicates on the original alignment. To check whether or not a sufficient number of 
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replicates has been generated (Pattengale et al. 2009), bootstrap convergence was assessed a 

posteriori according to the weighted Robinson-Foulds (WRF) distance criterion (WC) using 

the –I autoMRE option of RAxML (supplementary figure S1, Supplementary Material 

online). Bayesian inference analysis was performed using the multicore version of 

PhyloBayes MPI v1.4f under the site-heterogeneous CAT-GTR model, which is the best-

fitting model according to the cross validation test. Two Markov chains were run 

independently for 60,000 generations each. Convergence of the chains was assessed using 

bpcomp and tracecomp statistics of PhyloBayes and Tracer v1.5.0 (Rambaut and Drummond 

2009). Therefore, bpcomp and tracecomp were run multiple times. The burn-in was increased 

by 1,000 every iteration (sampling every 10
th

 tree), beginning with a burn-in of 1,000 and 

finishing with a burn-in of 59,000. The obtained statistics and the log-likelihood traces of the 

runs were summarized and used for reliable assessment of chain convergence as described in 

the PhyloBayes manual, in dependency on the burn-in (summary statistics and parameter for 

chain convergence; supplementary figure S9, Supplementary Material online). Accordingly, 

the first 21,000 trees of each chain were discarded and every second tree thereafter was used 

to calculate the 50% majority rule consensus tree with posterior probability support values 

(supplementary figure S2, Supplementary Material online). 

 

Sensitivity analyses using leaf stability 

To identify “unstable” taxa in the reconstructed phylogeny of opsins, especially among the 

“early-branching” clades, we calculated the leaf stability indices (LS; Thorley and Wilkinson 

1999) for each branch using Phyutility v2.2.6 (Smith and Dunn 2008), with 1,000 trees 

derived from RAxML bootstrapping as input, and mapped these LS indices on the 

corresponding ML tree using iTOL v2.1 (Letunic and Bork 2011) (LS indices; supplementary 

figure S1, Supplementary Material online). Following this, we excluded those taxa from the 
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original dataset with LS indices ≤0.50 and ≤0.60, respectively, except for the ctenophore 

opsins (LS=0.57) due to their importance for our study. These pruned datasets were aligned, 

masked and reanalyzed separately using RAxML v7.7.8 (GTR+G) with 1,000 bootstrap 

pseudoreplicates, including the a posteriori Bootstrap convergence assessment as described 

above for the full dataset (supplementary figure S3+S5, Supplementary Material online). In 

contrast to the Bayesian inference on the full dataset, two Markov chains for each pruned 

dataset were run for 30,000 instead of 60,000 generations using PhyloBayes MPI v1.4f (CAT-

GTR). After the assessment of chain convergence, as described for the full dataset 

(supplementary figure S10+S11, Supplementary Material online), the first 18,000 trees 

(LS≤0.50 dataset) and 16,000 trees, respectively (LS≤0.60 dataset), were discarded as burn-in 

and every tree thereafter was used to calculate the 50% majority rule consensus tree with 

posterior probability support values (supplementary figure S4+S6, Supplementary Material 

online). 
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Results 

Identification of opsin genes in the transcriptome of the tardigrade Hypsibius dujardini 

The sequencing of the H. dujardini transcriptome library with an Illumina Genome Analyzer 

IIx yielded 68,214,238 filtered paired-end reads. Our screening pipeline to search for putative 

opsin candidates included three different filtering stringencies of the raw data (Filter15, 

Filter25, Filter30), two different assemblers (CLC, IDBA), and two different search 

algorithms (BLAST, HMMER) (see the Materials and Methods section for more details). 

Sorting out the false positives resulted in a total of 43 contigs belonging to five different opsin 

genes. The sequences of two of them had to be extended by RACE. We successfully cloned 

partial sequences of all opsin transcripts, which we named after the clade in which they occur 

in our phylogenetic analyses (Hd-r-opsin: 703 nt, Hd-c-opsin1: 664 nt, Hd-c-opsin2: 704 nt, 

Hd-c-opsin3: 702 nt, Hd-neuropsin: 605 nt). 

To verify our results and to check for additional opsin genes, we also screened the 

recently released genome of H. dujardini (http://badger.bio.ed.ac.uk/H_dujardini/). With the 

exception of a second, slightly different predicted transcript from the genome 

(nHd.2.3.1.g15325), which is most similar to our Hd-neuropsin and therefore perhaps an 

isoform of it, we found no evidence for any additional opsin genes apart from those already 

obtained from our transcriptomic data. 

 

Phylogenetic analyses of metazoan opsin genes and the placement of H. dujardini 

opsins 

In our maximum likelihood (ML) analysis of the full metazoan opsin dataset, all three major 

bilaterian opsin subgroups were recovered, including r-opsins, c-opsins, and Group 4 opsins 

sensu Porter et al. (2012) (fig. 2; supplementary figure S1, Supplementary Material online). 

The best ML tree shows a monophyletic clade of the bilaterian c-type opsins with a weak 
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bootstrap support (BS<50), containing vertebrate visual pigments, chordate brain opsins 

(pinopsins, parapinopsins, vertebrate ancient opsins, teleost multiple tissue opsins, and 

encephalopsins), arthropod brain opsins (pteropsins), a brain opsin from the annelid 

Platynereis dumerilii (see Arendt et al. 2004), and a c-type opsin from the onychophoran 

Euperipatoides kanangrensis (see Eriksson et al. 2013) (fig. 2C; supplementary figure S1, 

Supplementary Material online). Notably, none of the opsin sequences obtained from the 

trochozoan genomes, including the annelids Capitella teleta and Helobdella robusta, and the 

mollusks Lottia gigantea and Crassostrea gigas, fall into this clade. 

Within the bilaterian c-opsin clade, three of the five obtained opsin genes from the 

tardigrade H. dujardini (Hd-c-opsin1, Hd-c-opsin2 and Hd-c-opsin3) emerge as the sister 

group to all known c-opsins/pteropsins from arthropods. The tardigrade and arthropod c-

opsins/pteropsins in turn cluster with the onychophoran c-opsin, altogether forming a well-

supported monophyletic clade (BS=85) of panarthropod c-opsins/pteropsins (fig. 2C; 

supplementary figure S1, Supplementary Material online). Our analysis further revealed a 

highly supported clade (BS=99) consisting exclusively of the anthozoan opsin genes from 

Nematostella vectensis and Acropora digitifera (hereafter referred to as “Anthozoa II”) as the 

sister group to the bilaterian c-opsins (supplementary figure S1, Supplementary Material 

online). However, this relationship exhibits a low bootstrap support value (BS<50) and our 

leaf stability analysis shows that the position of Anthozoa II is unstable in the metazoan opsin 

tree (LS=0.47). 

A group of several uncharacterized opsins from the genomes of Lottia gigantea and 

Crassostrea gigas, the sequence of Sp-opsin2 from the sea urchin Strongylocentrotus 

purpuratus (see Raible et al. 2006), and the c-type opsin from the brachiopod Terebratalia 

transversa (see Passamaneck et al. 2011) was recovered as sister to the clade of the 

“cnidopsins” sensu  Plachetzki et al. (2007; 2010) (hereafter used for all cnidarian opsins to 

 at U
niversitaet L

eipzig, Institut fuer Inform
atik/U

R
Z

, B
ibliothek on Septem

ber 9, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/


 - 14 - 

the exclusion of the anthozoan opsins I and II; fig 2; supplementary figure S1, Supplementary 

Material online) and the ctenophoran opsins (hereafter referred to as “ctenopsins”), also with 

low nodal support (BS<50). This clade in turn occurs as the sister group to the clade 

[Anthozoa II + c-opsins], although this relationship shows only weak bootstrap and leaf 

stability values (BS<50; LS≤0.59). Interestingly, the two ctenopsins from both ctenophoran 

species included in the analyses (Mnemiopsis leidyi and Pleurobrachia pileus) are 

monophyletic with maximum support value (BS=100), suggesting that they are ctenophoran 

in-paralogs. 

The second major clade of the bilaterian opsins – Group 4 opsins sensu Porter et al. 

(2012) – includes peropsins, RGR opsins, Go-opsins, and an assemblage of neuropsins and 

“opsin-5” genes. The sister group relationship of Group 4 opsins to all above-mentioned c-

type opsins, cnidopsins, Anthozoa II opsins, ctenopsins, and related opsins is weakly 

supported in our analyses (BS<50; see fig. 2; supplementary figure S1, Supplementary 

Material online). Surprisingly, one of our obtained putative opsin genes from the tardigrade 

H. dujardini appears together with other protostome taxa as the sister group to the 

deuterostome neuropsins/opsin-5 group (Tarttelin et al. 2003), both forming a monophyletic 

clade (BS=52) within the Group 4 opsins (fig. 2B). Besides the tardigrade sequence, this 

protostome neuropsin clade consists of single putative neuropsin homologs of Daphnia pulex 

and Crassostrea gigas, two homologs of Lottia gigantea and six homologs of Capitella teleta 

based on their screened genomes. 

A monophyletic clade of r-type opsins, the third major bilaterian opsin group, was 

recovered as the sister group to the clade [c-opsins (including related opsins) + Anthozoa II + 

cnidopsins + ctenopsins + Group 4 opsins] with strong bootstrap support (BS=85). Compared 

to the c-opsin and Group 4 opsin clades, the r-opsins occur as the best-supported and the 

earliest-branching clade. Moreover, the leaf stabilities of the r-opsins are by far the highest 
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among all taxa included (LS≥78), exceeded only by the outgroup taxa (supplementary figure 

S1, Supplementary Material online). Within the r-opsin clade, the fifth opsin candidate from 

the tardigrade H. dujardini occurs as sister to the visual r-opsins of Onychophora (onychopsin 

genes sensu Hering et al. 2012), which together form a well-supported monophyletic clade 

(BS=97) (fig. 2A; supplementary figure S1, Supplementary Material online). The r-opsins of 

the Tardigrada + Onychophora clade emerge as the closest relatives to a highly diverse group 

of visual r-opsins of Arthropoda. These arthropod r-opsins are subdivided into two major 

subgroups that to some extent reflect their spectral sensitivity, i.e. UV and short-wavelength 

sensitive vs. medium- and long-wavelength sensitive opsins. The tardigrade r-opsin is 

unlikely to be a UV-sensitive visual pigment, as it has methionine (M) instead of lysine (K) at 

the position corresponding to G90 of the bovine rhodopsin (Palczewski et al. 2000), which 

has been shown to be responsible for ultraviolet tuning properties of arthropod opsins 

(Salcedo et al. 2003). 

In addition to the panarthropod visual r-opsins, the rhabdomeric opsins are further 

subdivided into three monophyletic clades according to our analyses: (i) the lophotrochozoan 

(most likely visual) r-opsins, (ii) the chordate non-visual r-opsins (=melanopsins), and (iii) the 

arthropsins (initially described by Colbourne et al. 2011) that form the earliest-branching 

subgroup. Most intriguingly, in addition to the eight arthropsin paralogs described from the 

crustacean Daphnia pulex and the two putative arthropsins from the onychophoran 

Euperipatoides kanangrensis and the spider Cupiennius salei (see Colbourne et al. 2011; 

Eriksson et al. 2013), we identified putative arthropsin sequences in the genomes of the pea 

aphid Acyrthosiphon pisum as well as the annelid Capitella teleta and the mollusks Lottia 

gigantea and Crassostrea gigas. Moreover, even r-opsin4 from the annelid Platynereis 

dumerilii (see Randel et al. 2013) and Amphio6 from the lancelet Branchiostoma belcheri (see 
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Koyanagi et al. 2002) occur as members of the arthropsin clade in our cladograms 

(supplementary figure S1, Supplementary Material online). 

The least stable taxa in our full dataset ML analysis (LS≤0.46) are the Sp-opsin5 

sequences from two sea urchins (Lesser et al. 2011; Raible et al. 2006) and the Go-opsin2 

sequence from the brachiopod Terebratalia transversa (see Passamaneck and Martindale 

2013) that branch off at the base of the tree as well as a second clade of anthozoan-specific 

opsins (hereafter referred to as “Anthozoa I” opsins) containing two paralogs from the 

genome of Nematostella vectensis and the acropsin3 sequences (Mason et al. 2012) from two 

Acropora species. Sp-opsin5 and its ortholog from Strongylocentrotus droebachiensis have 

been classified as rhabdomeric opsins (Lesser et al. 2011), but these opsins clearly cluster 

outside the r-opsin clade in our and Lesser et al.’s (2011) phylogenetic analyses. In contrast, 

according to our results, Sp-opsin4 from Strongylocentrotus purpuratus is deeply nested 

within the r-opsin clade (supplementary figure S1, Supplementary Material online). 

The 50% majority rule consensus tree of our Bayesian inference (BI) analysis of the 

full metazoan opsin dataset revealed a similar topology to our ML analysis, except that the 

Anthozoa II clade is deeply nested within the c-opsins clade. However, as mentioned above, 

the Anthozoa II opsins show low leaf stability indices (LS=0.47) (supplementary figure S2, 

Supplementary Material online). The most conspicuous deviation from the ML tree is the 

unresolved topology at the base of the tree, indicated by polytomous branches of the 

particular opsin clades (bilaterian c-opsins, r-opsins, Group 4 opsins, cnidopsins, ctenopsins, 

and Anthozoa I). Nevertheless, the placement of the tardigrade opsins in the BI analysis 

corresponds to that in the ML tree. The same holds true for the ML and BI analyses, from 

which we excluded the putatively unstable taxa with leaf stability indices LS≤0.50 and 

LS≤0.60, respectively (supplementary figures S3-S6, Supplementary Material online). 
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Discussion 

Opsin repertoire in the tardigrade Hypsibius dujardini 

Our transcriptomic analyses of the opsin repertoire in the tardigrade H. dujardini revealed a 

set of five opsin genes, including one r-opsin (Hd-r-opsin), three c-opsins (Hd-c-opsin1, Hd-

c-opsin2, and Hd-c-opsin3), and a neuropsin/opsin-5 (Hd-neuropsin). We found essentially 

the same set of genes in the publicly available genome of this species, with the exception of 

an additional neuropsin/opsin-5 isoform. However, this isoform is unlikely to be a functional 

gene, as its expression could not be confirmed by the transcriptomic analyses and gene 

cloning. Moreover, we have noticed some inconsistencies between our cloned transcripts on 

the one hand and the genomic sequences and predicted transcripts on the other hand, in which 

short fragments from putatively expressed regions are either absent or repeated 

(supplementary figure S7, Supplementary Material online). This suggests that either the 

genomic contigs and/or scaffolds were assembled incorrectly or, if the assembly was correct 

and the introns indeed contain such repeated exonic sequences, the actual splice sites were 

predicted incorrectly during the gene annotation process. It is therefore unclear whether the 

additional neuropsin/opsin-5 isoform is a real, albeit non-functional sequence, or an assembly 

artifact. Nevertheless, irrespective of these inconsistencies and minor differences in 

nucleotide composition (probably due to heterozygosity), the available genome sequences 

correspond well to our transcriptomic data, suggesting that H. dujardini has at least five 

functional opsin genes. According to our phylogenetic analyses, these genes cluster within the 

three major bilaterian opsin clades. 

 

Evidence for monochromatic vision in the last common ancestor of Panarthropoda 

Typically, either r-opsins (as in arthropods) or c-opsins (as in vertebrates) are involved in 

animal vision (e.g. Arendt 2003; Arendt and Wittbrodt 2001; Land and Nilsson 2012; 
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Vopalensky and Kozmik 2009). Given that Tardigrada is one of the closest arthropod 

relatives, one would expect that H. dujardini employs the single identified r-opsin as the sole 

visual pigment, suggesting monochromatic vision in this tardigrade species. However, in 

addition to numerous microvilli that may act as rhabdomeric photoreceptive structures, at 

least one ciliary cell has been reported from the eye of Milnesium tardigradum and 

Halobiotus crispae (see Dewel et al. 1993; Greven 2007; Kristensen 1983). Although the cilia 

described from M. tardigradum and H. crispae are unlikely to be involved in photoreception, 

a potential function of the three identified c-opsins in H. dujardini in visual photoreception 

and, hence, in color vision cannot be excluded as long as the corresponding gene expression 

data are unavailable. However, irrespective of the function of these genes, our phylogenetic 

analyses suggest that the three c-opsin genes have evolved by gene duplication in the 

tardigrade lineage (or a tardigrade subgroup) and that the last common ancestor of 

Panarthropoda possessed only one c-opsin gene (fig. 3A). This finding and the identification 

of a single r-opsin gene in H. dujardini are in line with the assumption of monochromatic 

vision in the last common ancestor of Onychophora, Tardigrada and Arthropoda (Hering et al. 

2012). 

 

Neuropsins were present in the last common bilaterian ancestor 

Our phylogenetic analyses revealed that at least one opsin gene of H. dujardini belongs to the 

neuropsin/opsin-5 clade – a subgroup of the Group 4 opsins. To our knowledge, this is the 

first report of a neuropsin from a protostome, as this type of opsin so far has been known only 

from vertebrates (review Koyanagi and Terakita 2013). In addition to the tardigrade 

neuropsin, we identified up to six putative neuropsin homologs in the genomes of other 

protostomes, including the annelid Capitella teleta, the mollusks Crassostrea gigas and Lottia 

gigantea, and the crustacean Daphnia pulex. The latter is most astonishing because of its 
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well-characterized opsin repertoire of hitherto 46 identified opsin genes (Colbourne et al. 

2011). The identification of neuropsin/opsin-5 members in representatives of 

Lophotrochozoa, Ecdysozoa and Deuterostomia suggests an origin of this opsin lineage prior 

to the split Deuterostomia + Protostomia (fig. 3B). While the function of neuropsin/opsin-5 

homologs in protostomes is unknown, the vertebrate Opsin-5 (Opn5) homolog acts as a UV-

sensitive G protein-coupled receptor (GPCR), which activates the Gi-type G proteins 

(Yamashita et al. 2010) and is expressed in various tissues, including the neural retina, deep 

brain, testis, and even the outer ear (Kojima et al. 2011; Nakane et al. 2010; Tarttelin et al. 

2003; Yamashita et al. 2014). In light of our findings, it would be interesting to know whether 

the protostome neuropsin/opsin-5 homologs also have a function as UV-sensitive GPCRs or 

rather act as retinal photoisomerases, similar to the closely related peropsins (Koyanagi et al. 

2002). 

 

“Arthropsins” are not restricted to arthropods 

Arthropsins were initially described from the genome of the crustacean Daphnia pulex, in 

which eight members of this putatively novel opsin group clustered as an early-branching 

clade within the r-opsins (Colbourne et al. 2011). Interestingly, another early-branching r-

opsin, Amphiop6 – which was identified previously in the chordate Branchiostoma belcheri 

and did not group with members of the melanopsin clade (Koyanagi et al. 2005) – was 

subsequently recovered as sister to the arthropsins (Hering et al. 2012). Moreover, Randel et 

al. (2013) identified “another stable r-opsin clade (Clade I) with both mollusk and annelid 

sequences”, the phylogenetic relationship of which remained unclear, as neither the Daphnia 

arthropsins nor Amphiop6 were included in their study. The results of our phylogenetic 

analyses now show that all of these sequences, including Randel et al.’s (2013) “Clade I” and 

additional members from other bilaterian taxa, form a monophyletic group, which thus 
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includes representatives of Onychophora, Arthropoda, Lophotrochozoa, and Chordata. This 

implies that “arthropsins” are not restricted to arthropods but are the result of an ancient 

duplication of the r-opsin precursor in the last common bilaterian ancestor (fig. 3B). While 

additional duplications have occurred in some lineages (e.g. in Daphnia pulex; see Colbourne 

et al. 2011), an arthropsin homolog might have been lost in the tardigrade linage, as it is not 

found in the transcriptomic or genomic data from H. dujardini (fig. 3A). 

 

 at U
niversitaet L

eipzig, Institut fuer Inform
atik/U

R
Z

, B
ibliothek on Septem

ber 9, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/


 - 21 - 

Conclusions 

To determine the position of the tardigrade opsins, we performed an extensive phylogenetic 

analysis of broadly sampled metazoan opsins, including newly identified members from the 

available metazoan genomes. Our results suggest that the last common bilaterian ancestor 

possessed six opsins belonging to the three major opsin clades (fig. 3B): (i) two r-opsins (one 

of which was an “arthropsin”); (ii) one c-opsin; and (iii) three Group 4 opsins (including a 

neuropsin, a peropsin, and a Go opsin that was most likely lost in the ecdysozoan lineage). 

Since none of the opsins from the non-bilaterian taxa falls into any of these major clades, we 

suggest that a single duplication of the r-opsin precursor and two duplications within the 

Group 4 opsin clade have occurred within the bilaterian lineage (fig. 3B). Unfortunately, 

beyond this no unambiguous conclusion is possible on the origin and relationship of the three 

major bilaterian opsin clades, possibly due to the lack of sufficient phylogenetic signal to 

robustly resolve the deepest nodes of the opsin gene tree. This, in conjunction with the 

generally ambiguous placement of the non-bilaterian taxa, such as Cnidaria and Ctenophora 

within the metazoans (review Philippe et al. 2011), makes it a challenging task to draw any 

conclusions about pre-bilaterian opsin evolution. 

Our analyses revealed three clades of cnidarian opsins: Anthozoa I, Anthozoa II, and 

“cnidopsins” (sensu Plachetzki et al. 2007). While the Anthozoa I and II clades exclusively 

contain anthozoan sequences, the cnidopsins comprise representatives of Anthozoa, Cubozoa 

and Hydrozoa, supporting the results of previous studies (Plachetzki et al. 2010; Porter et al. 

2012; Suga et al. 2008). However, the placement of the cnidopsins differs among these 

studies, in which they form the sister group to various clades, including [r-opsins + Group 4 

opsins] (Plachetzki et al. 2007), [r-opsins + c-opsins + Group 4 opsins] (Plachetzki et al. 

2010), [Group 4 opsins] (Feuda et al. 2012), and [c-opsins] (Hering et al. 2012; Porter et al. 

2012; Suga et al. 2008), depending on the underlying reconstruction method and the 
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substitution model used. In our analyses, the cnidopsins generally form the sister group of the 

ctenophoran opsins (=ctenopsins), but the placement of the entire cnidopsins/ctenopsins clade 

is ambiguous and depends on the analysis parameters used. The same applies to the 

Arthropsin I and II clades, the position of which is unstable. 

These discrepancies between the studies and the methods used are not surprising, given the 

old age of the major metazoan lineages, dating back to ~700 million years ago, and the 

cladogenesis events that were highly compressed in time (e.g. Rokas et al. 2005). This might 

have led to a considerable accumulation of homoplasies and, hence, to an erosion of the 

phylogenetic signal in the molecular data. Therefore, currently it seems impossible to 

reconstruct with confidence the early-branching nodes and to reconcile a reliable scenario on 

the evolutionary history of the metazoan opsins based solely on opsin phylogeny. 

Nevertheless, our phylogenetic framework allows for the following conclusions on the 

evolution of opsins in panarthropods: 

(1) The last common ancestor of Panarthropoda most likely possessed a c-opsin, two r-

opsins (an arthropsin and an additional [probably visual] r-opsin, which was not UV-

sensitive), and two Group 4 opsins (a neuropsin and a peropsin) – a set that had been 

inherited from the last common ancestor of Ecdysozoa (fig. 3A+B). 

(2) This ancestral set of opsin genes was retained in the last common ancestor of 

Arthropoda (fig. 3A), although subsequent duplications and losses occurred in some 

arthropod lineages (e.g. Briscoe 2000; Colbourne et al. 2011; Porter et al. 2013). 

(3) The last common ancestor of Onychophora had retained a c-opsin and two r-opsins 

(arthropsin and onychopsin; see Eriksson et al. 2013; Hering et al. 2012) from the 

panarthropod ancestor, whereas the two Group 4 opsins (neuropsin and peropsin) were 

lost in the onychophoran lineage (fig. 3A). However, this hypothesis requires 

confirmation by genomic analyses. 
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(4) The last common ancestor of Tardigrada (or the tardigrade subgroup containing H. 

dujardini) most likely possessed an r-opsin, three c-opsins, and a neuropsin, whereas 

the arthropsin and the peropsin were lost in the tardigrade lineage (fig. 3A). 

 

Supplementary Material 

Supplementary figures S1–S11 and tables S1–S3 are available at Genome Biology and 

Evolution online (http://gbe.oxfordjournals.org/). 
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Figure Legends 

Fig. 1. Visual organs in representatives of Panarthropoda. While most onychophorans and 

tardigrades have a pair of simple, ocellus-like eyes (arrows in A and B), arthropods usually 

show two types of visual organs: the compound eyes (arrowheads in C), and the median ocelli 

(arrow in C). (A) Scanning electron micrograph of the head of the onychophoran 

Principapillatus hitoyensis in dorsal view. Scale bar: 1 mm. (B) Light micrograph of the head 

of the tardigrade Hypsibius dujardini in dorsal view. Scale bar: 10 µm. (C) Stereomicrograph 

of the head of the hymenopteran Ectemnius cavifrons in dorsal view. Scale bar: 1 mm. 

 

Fig. 2. Simplified best obtained maximum likelihood tree of the full metazoan opsin gene 

dataset and the placement of the five opsin genes from the tardigrade Hypsibius dujardini 

(highlighted in red). See supplementary figure S1, Supplementary Material online, for the 

uncondensed tree. (A) Detail view of the bilaterian r-opsin clade, in which Hd-r-opsin of H. 

dujardini occurs as the sister group to the onychophoran onychopsin clade. (B) Detail view of 

the neuropsin/opsin-5 subgroup of Group 4 opsins, illustrating the placement of Hd-neuropsin 

of H. dujardini among the neuropsins from other protostomes. (C) Detail view of the 

bilaterian c-opsin clade, in which Hd-c-opsin1, Hd-c-opsin2 and Hd-c-opsin3 of H. dujardini 

are nested as a monophyletic group within the panarthropod c-opsin clade containing the 

arthropod pteropsins. 

 

Fig. 3. Hypotheses on the evolutionary history of opsin genes in Panarthropoda and Bilateria 

based on our phylogenetic analyses of metazoan opsin sequences. (A) Scenario on opsin 

evolution in Panarthropoda. The trichotomy is due to the uncertain position of Tardigrada as 

the sister group of Arthropoda, Onychophora, or Onychophora plus Arthropoda (see Mayer et 

al. 2013 and references therein). According to this scenario, the last common ancestor of 
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Panarthropoda possessed five opsin genes: one c-opsin, two r-opsins, and two Group 4 opsins. 

The three c-opsin genes of H. dujardini might have evolved by gene duplications either in the 

tardigrade lineage, or a tardigrade subgroup. (B) Scenario on opsin evolution in Bilateria, 

according to which the last common bilaterian ancestor possessed six opsin genes. While the 

arthropsin and melanopsin/[visual] r-opsin lineages arose by a duplication of the r-opsin 

precursor, two additional duplications in the bilaterian Group 4 opsin clade gave rise to the 

neuropsin/opsin-5, peropsin, and Go-opsin lineages. Note that the Go-opsin gene was 

subsequently lost in the last common ancestor of Ecdysozoa. 
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