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Abstract

The metabolism constitutes the universe of biochemical reactions taking place in
a cell of an organism. These processes include the synthesis, transformation, and
degradation of molecules for an organism to grow, to reproduce and to interact
with its environment. A good way to capture the complexity of these processes
is the representation as metabolic network, in which sets of molecules are trans-
formed into products by a chemical reaction, and the products are being processed
further. The underlying graph model allows a structural analysis of this network
using established graphtheoretical algorithms on the one hand, and a visual rep-
resentation by applying layout algorithms combined with information visualization
techniques on the other.

In this thesis we will take a look at three different aspects of graph visualiza-
tion within the context of biochemical systems: the representation and interactive
exploration of static networks, the visual analysis of dynamic networks, and the
comparison of two network graphs. We will demonstrate, how established infovis
techniques can be combined with new algorithms and applied to specific problems
in the area of metabolic network visualization.

We reconstruct the metabolic network covering the complete set of chemical re-
actions present in a generalized eucaryotic cell from real world data available from
a popular metabolic pathway data base and present a suitable data structure. As
the constructed network is very large, it is not feasible for the display as a whole.
Instead, we introduce a technique to analyse this static network in a top-down
approach starting with an overview and displaying detailed reaction networks on
demand. This exploration method is also applied to compare metabolic networks
in different species and from different resources. As for the analysis of dynamic
networks, we present a framework to capture changes in the connectivity as well

as changes in the attributes associated with the network’s elements.
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1 Introduction

Graph visualization plays a central role in the field of information visualization.
This is especially true for applications in the life sciences, as many biological sys-
tems can be modelled as networks. Examples are regulatory networks describing
complex interaction patterns of chemical compounds with DNA to control gene
expression and protein synthesis. In signaling pathways chemical signals invoke
cellular reactions by interacting with receptor proteins triggering a cascade of in-
tracellular processes. A Metabolic network represents the set of chemical reactions
transforming molecules. The interactions and relations between different chemi-
cal molecules — or compounds — define a highly complex network augmented with
domain-specific annotations. These annotations provide semantic information to
the network and may include molecule structures, chemical names of compounds,
enzymes catalyzing certain chemical reactions, reaction kinetics, or concentration
values.

In biochemistry, these networks are often clustered into so-called metabolic path-
ways. The term pathway in this context refers to a subset of this network per-
forming a specific biological function, such as the synthesis, transformation, or
degradation of certain organic substances in biological systems. The classification
is inferred from expert knowledge and takes into account functional properties of
the subsets as well as spatial characteristics. Often the location of specific sub-
stances within a biological cell is limited to specialized cell compartments providing
more criteria to distinguish between different pathways.

This thesis will demonstrate how graph visualization techniques can be applied to
common problems in the work with chemical networks in bioinformatics research.
In the following, we give some formal definitions of graph-related terms used in this
thesis. Chapter 2 will give an overview on related work and applications designed

for the work with complex networks in general and metabolic networks in particular.



CHAPTER 1. INTRODUCTION

Chapters 3 through 5 address three major tasks in the domain of metabolic net-
work visualization: representation and navigation techniques for static networks,
the exploration of dynamic metabolic pathways, and the comparison of chemical
networks based on two scenarios — the metabolism in different species and the
comparison of metabolic network data retrieved from two major bioinformatics
resources.

To fully comprehend and appreciate the existing knowledge on chemical processes
in living organisms it is essential to develop suitable tools to explore and navigate
through vast amounts of information stored in biological databases. The software
mentioned throughout this work was developed as part of the project. A detailed

description of the framework is given in chapter 6.

1.1 Definitions

A (simple) graph G = (V, E) consists of a finite set of vertices V' and a set of
edges £ C {(u,v)|lu,v € V,u # v}. Each edge e = (u,v) is incident to the
vertices u and v. Both u and v are then called adjacent. A digraph G = (V, E) is
a graph with oriented edges called arcs. A path is a sequence of unique edges that
connects vertices u and v. A cycle is a non-empty path from u to u. A graph is
connected if for each pair of vertices u, v there exists a path from u to v. A graph
or digraph is acyclic if it contains no cycle. A directed acyclic graph or DAG is an
acyclic digraph.

A hypergraph H = (V, E) is an extension of a graph allowing hyperedges of E
to connect multiple vertices: ¢ = (Vi,, Vour) with Vi, Ve € Voand Vi, # 0,
Vour # 0. Conceptually, a chemical reaction can be described as a hyperedge
between compounds that are modeled as vertices. This requires a mark whether
a vertex is a substrate u € V;,, or product v € V,,; as shown in Fig. 1.1. In the
hypergraph model, a regular edge is a hyperedge with | V;,, |[= 1 and | V,,; |= 1.
We use the term regular edge to represent relations between nodes other than
chemical reactions. A half-edge establishes the link between a vertex u € V;,, or a
vertex v € V,,; and the edge e. We say that e = (V},,, Voui) has | Vi, | incoming
and |V, | outgoing half-edges.

A tree is a connected graph with n nodes and (n — 1) edges not containing any



1.1. DEFINITIONS

cycles. The height is the length of the longest path in the tree. There exists
exactly one path between any two nodes. In directed trees, there exists exactly
one node without incoming edges called root. All nodes without outgoing edges
are called leaves. If a graph is not connected and each connected component is a
tree, we call this graph a forest.

A bipartite graph G,.. = (V,, V., E) is a (simple) graph with two types of vertices
V. and V. (V, N V. = ()). Edges in a bipartite graph may only connect nodes
of different types, i.e., E C {(u,v)lu € V,,v € V.Vu € V,v € V,}. ltis
often desirable to work with bipartite graphs instead of hypergraphs, since common
graph algorithms for layout or traversal, for example, are defined on (simple) graphs
rather than on hypergraphs. Bipartite graphs represent hypergraphs without loss
of information and can be constructed simply by adding vertices to V, for every
hyperedge e € E. The original (compound) nodes are the vertices V.. For every
hyperedge e = (V;y,, Vour) we add edges to the bipartite graph G, . representing
the half-edges in H: For every incoming half-edge (u,e),u € V;,, we add an edge
(ug,us),uy € Vo,us € V., and for every outgoing half-edge (e,v),v € V,,; we
add an edge (v1,v2),v1 € V,,u3 € V.. In the bipartite version of the graph, V.
represents the set of chemical reactions, and V, represents compounds.

The drawing or layout of a graph assigns vertices to points and edges to curves in
the image space, which is usually the 2D drawing plane. In some definitions, the

size of the node is included in the layout description.

Aminotransferase

Figure 1.1: A hyperedge which represents a biochemical reaction. The direc-
tion of the hyperedge specifies, whether a compound is substrate — L-Aspartate
and 2-Ketoglutarate — or product — Ozxaloacetate and L-Glutamate. Note that
many reactions are reversible. In those cases, the direction of the hyperedge
simply gives a hint on the reaction’s chemical equilibrium.



CHAPTER 1. INTRODUCTION

1.2 Metabolic Networks as Hierarchical
Hypergraphs

Based on the clustering of the metabolic network into pathways, we can define a
hierarchy on the graph. This hierarchy can be represented by an additional (simple)
graph. The graph is either a DAG with exactly two layers for overlapping subsets
or a forest with trees of height 1 for non-overlapping subsets of the chemical
network. In a reaction network with unified compound nodes, i.e., there is exactly
one node representing a specific chemical species, the clustering into pathways
therefore results in an overlapping network. The intersection of two clusters can be
considered as biomass exchange between the two pathways. We call two pathways
with a non-empty intersection of their compound node sets as adjacent. To convert
an overlapping hierarchy into a non-overlapping, compound nodes being present
in more than one pathway are duplicated and appear in each respective pathway.
Within a pathway, reaction and compound nodes are always unified.

To obtain a hierarchical graph, each metabolic pathway is represented by a node at
the top level. In the case of non-overlapping pathways, these nodes represent the
root nodes in the forest. The set of compound nodes constitutes the bottom-level
of the hierarchy graph.

We augment the hierarchy graph with different sets of edges:

1. For each reaction in the metabolic network, we add a hyperedge connecting the
substrate nodes with the product nodes of the respective chemical reaction.

2. In non-overlapping pathway graphs, the biomass exchange between two adjacent
pathways is indicated by a regular edge connecting two nodes representing the same
chemical species in different pathways.

3. The connection indicating a biomass exchange is propagated to the top-level to
show that two pathways are adjacent. In section 3.1.2 we introduce the concept
of virtual edges supporting node expansion and collapse to navigate the hierarchy.
Virtual edges are (regular) edges representing adjacency relations between different
clusters.

Fig.1.2 depicts three metabolic pathways represented as a non-overlapping hier-
archy. In practice, non-overlapping hierarchical graphs are easier to handle with

respect to the layout computation and exploratory interaction. In a hierarchical

10



1.2. METABOLIC NETWORKS AS HIERARCHICAL HYPERGRAPHS

Figure 1.2: 2-layer hierarchy of a non-overlapping pathway graph. Each top-
level node represents a pathway, which has the biochemical network as nested
graph. The bottom-level nodes represent chemical compounds, hyperedges
represent chemical reactions. To obtain a forest-like hierarchy, elements present
in more than one pathway will be duplicated and appear in a pathway at
most once. Links between pathways are established by regular edges between
identical chemical compounds located in different pathways to indicate a flux
from one pathway to another. These links are propagated to the top-level
reflecting pathway adjacencies.

graph represented by a forest-like hierarchy, each cluster can be layouted indepen-
dently, and we can use the hierarchy to explore the network in a top-down manner
by examining the top-level graph at first and adding additional information on

pathways of interest by expanding nodes.

11



2 Related Work

The visualization of large and complex biological networks is one of the key anal-
ysis techniques to cope with this enormous amount of data. Here, the layout of
networks should be in agreement with biological drawing conventions and draw
attention to relevant system properties that might remain hidden otherwise [4].
Further important issues are the preservation of the so-called mental map [51]
when applying small changes to the graph and the possibility of clustering nodes.
Depending on the concrete network drawing, there are further important visual rep-
resentation and interaction techniques that play important roles, e.g., navigation in
the complete network, focusing on parts of the network, or gradual differentiability
of nodes with less importance (side metabolites) [43]. However, only little research
has been done in the past to solve the special layout and visualization problems
arising in this area. A lot of the most used software systems for the visual anal-
ysis of generic biological networks, i.e., different kinds of networks like regulatory
networks or protein-protein interactions, only provide implementations of standard
graph drawing algorithms, such as force-directed or hierarchical approaches [15].
Cytoscape [68] is one of the most popular tools for generic biochemical network
visualization and supports a number of standard graph layout algorithms. Filtering
functions are provided to reduce the network complexity. For instance, the user
can select nodes and edges according to their name and other attributes. This
system also allows a simple mapping of data attributes to visual elements (mainly
color and labels) of nodes and edges. VisANT [34] is another system designed to
visualize generic biochemical networks. In addition to the features of Cytoscape,
it provides statistical analysis tools, e.g., based on node degrees or the distribution
of clustering coefficients. Their results are displayed in separate views, for example
as scatter plots.

Especially for metabolic networks, large and hand-drawn posters were produced in

12



the past, for example, Nicholson's pathway map [54] or the widely-used metabolic
pathway poster published by Roche Applied Science [50]. Other projects have
created graphical representations of metabolic networks and offer them via web
pages (e.g., the BioCyc collection [40]). The widespread pathway drawings of
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [42], see Sec-
tion 3.1.1, were also produced by hand. These drawings are connected via links,
but real interaction is not available. Because of their manual generation, they
are well readable and can thus serve as an example in terms of quality and user
conventions. Moreover, the availability of these representations has established
a de facto standard for metabolic network drawings: it features near-orthogonal
drawings where, for example, important paths are aligned or relevant subgraphs
are placed close to the center of the drawing [4]. A set of visualization tools for
metabolic networks is available that follow these established drawing styles. We
will briefly describe a choice of related work in the following.

The software BioPath [66] is a web-based visualization tool for metabolic path-
ways that also refers to the aforementioned posters by taking over its drawing
conventions and data. The developers propose a number of requirements for the
visualization of biochemical networks to make the resulting diagrams acceptable
for the domain experts. The drawings are produced by a Sugiyama-style hierar-
chical layout algorithm allowing restrictions on the horizontal and vertical order of
nodes both for preserving the mental map and for drawing cyclic subnetworks in a
special way. Thus, they respect the conventions commonly used in the hand-made
diagrams of the biologists. However, there are no means of influencing the draw-
ings interactively. This drawback was partly resolved by the KGML-ED system of
the same authors [46] through the possibility to delete or add network elements or
to change labels and colors.

Another method for drawing metabolic networks automatically was devised by
Becker and Rojas [6]. For several kinds of subnetworks, different layout algorithms
are used (hierarchical or force-directed). The subnetwork drawings are then com-
bined to a global drawing. This idea has a positive effect on the layouts, but the
partition is only obtained heuristically. However, the good readability of the draw-
ings is also due to the fact that neither side metabolites nor enzymes are displayed.

No interaction is possible, and neither clustering nor preservation of mental maps

13



CHAPTER 2. RELATED WORK

is implemented.

Other tools produce better layouts but do not allow to group, focus on, fix, or even
format parts of the graph, e.g., PathFinder [27]. This tool allows to identify paths
between metabolites and to compare reaction paths with own data. The Pathway
tools [41] stand out due to their ability to draw metabolic networks in different
steps of abstraction, which is obtained by using symbols for certain subgraphs.
This approach could lead to a better readability in general; the quality of the
drawings, however, needs to be improved.

PathBank [32] is a web-based 3D pathway visualization system with a database
back end that integrates data from various sources. Pathways can be automatically
visualized in two or three dimensions. This is coupled with standard interactions
that allow the user to zoom, pan, rotate, and drag. A number of layout algorithms
are available, but they are mainly based on traditional methods that do not consider
pathway conventions.

A further 3D approach was presented by Rojdestvenski. His Metabolic Network
Visualizer [63] draws metabolic networks in three dimensions in order to avoid
crossings between edges. Interaction is again limited to standard techniques for
navigation. Other disadvantages are the unusual visual representation that will
hardly be accepted by the user and the inadequate visualization of larger networks.
In summary, none of the above discussed tools fully meets the requirements for the
visualization of metabolic networks. Some approaches already fail when producing
static drawings, either because they were developed by computer scientists using
standard graph drawing techniques without adapting them to the special situation,
or because they were developed by domain experts who are not familiar with
visualization techniques. Additionally, most tools lack interaction techniques, such
as focus&context, and does not scale for the same reason. A visual representation
of results from abstract analyses, experimental series, or simulations is usually
impossible or in its infancy [4].

Newer approaches are based on a close interdisciplinary work between researchers
in visualization and biochemistry. An example is the Caleydo framework [71] that
extends the standard pathways of KEGG into 2.5D, similar to the report of Ker-
ren [43] and the work of Brandes et al. [8], combined with brushing, highlighting,

focus&context, and detail on demand. In this way, it supports the interactive
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exploration and navigation between several interconnected (but static!) networks.
Saraiya et al. [64] discussed in their paper the requirements of metabolic network
visualization collected from interviews with biologists. They observed five require-
ments that are important for biologists working on pathway analysis, but still not

completely realized in existing visualization systems (adapted from [49]):

1. automated construction and updating of pathways by searching literature

databases;
2. overlaying information on pathways in a biologically relevant format;

3. linking pathways to multi-dimensional data from high-throughput experi-

ments, such as microarrays;

4. overlooking multiple pathways simultaneously with interconnections between

them; and

5. scaling pathways to higher levels of abstraction to analyze effects of complex

molecular interactions at higher levels of biological organization.

Six pathway visualization systems were evaluated according to these requirements.
As result, biologists are usually reluctant to use these systems, because of the
absence of the previously listed requirements. Also, they prefer visualizations that
are similar to those in text books they are working with.

Currently, our approach to visualize static metabolic networks as described in chap-
ter 3 addresses several of the aforementioned requirements and improves the most
previous work by using interaction techniques from information visualization. Our
new interactive layouts are based on the KEGG data (Req. 1), and we provided
the visualization with an intuitive focus&context view. In this way, we can handle,
for example, the complete metabolism of a generalized eukaryotic cell (Req. 4)
by following Shneiderman’s mantra [69]: overview first, zoom and filter, details on
demand. If the user explores the pathways interactively, the visualization approach
preserves the mental map. Our system is also able to embed textual informa-
tion into the drawings and to use glyphs/icons for the representation of lower-level
subgraphs if needed, similar to the Pathway tools. The integration of more compli-
cated attributes as well as biological patterns regarding topological substructures
are still missing. Here, other tools, such as BioPath, still have an advantage to be

fully accepted by biologists.
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CHAPTER 2. RELATED WORK

A good introduction from a general point of view on the visualization of dynamic
— by the authors also referred to as longitudinal — networks is given in the article
Bender-DeMoll and McFarland [7]. The authors propose a framework for the visu-
alization of social networks and their dynamics and present the tool SoN/A (Social
Network Image Animator, http://sonia.stanford.edu) in which they compare
different layouts and navigation techniques. Their work addresses general issues in
the field of dynamic network visualization with applications to social interactions
and refers topological changes, i.e., dynamics in the network’s connectivity, only. In
biological systems, however, much information is also stored in the set of attributes
associated with the network elements, that is subject to change over time as well,
which will be discussed in chapter 4. An overview on open problems and challenges
in biological network visualization is provided by the papers [62,5]. They provide
a comprehensive list of related work, however not focused on the visualization of
dynamic biochemical pathways. Oldiges et al. [56] address the specific problem of
metabolic network model visualization. Nevertheless, their article is particularly re-
lated to the numerical analysis of dynamic biochemical systems with less emphasis
on the visual analysis of the dynamics of the network topology.

In general, the visualization of dynamic graphs is a well-known area in the graph
drawing community [10]. Dynamic graph drawing addresses the problem to layout
graphs, which evolve over time by adding and deleting edges and nodes. This
results in an additional esthetic criterion known as preserving the mental map [51].
Ad-hoc approaches compute a new layout for the entire graph after each time step
using algorithms developed for static graph layout, see for example those presented
in the book [15]. In most cases this approach produces layouts which violate the
mental map. One solution of this problem is to apply a technique known from
key-frame animations called inbetweening to achieve smooth transitions between
subsequent graphs, i.e., animations show how nodes are moved to their new po-
sitions. Prominent examples were presented by various authors [19,48,20,47]. In
our own work, we follow the basic idea of the so-called Foresighted Layout (FL) of
dynamic graphs [17]. Given a sequence of n graphs, a global layout is computed,
which induces a layout for each of the n graphs. The FL-algorithm is generic in the
sense that it takes a static graph drawing algorithm as a parameter. It optimally

preserves the mental map, but this can lead to an oddly visual appearance at the
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beginning of the resulting graph animation. A subsequent extension of the origi-
nal approach improved this drawback [16]. An algorithm for drawing a sequence
of graphs online, i.e., where the graph sequence to be laid out is not known in
advance, was presented by Frishman and Tal [23].

The general design of our plug-in as described in chapter 4 is based on standard
coordinated and multiple view visualization techniques. An excellent starting point
for related work of this kind of visualization techniques is the annual conference
series on Coordinated & Multiple Views in Exploratory Visualization (CMV) or the
work of Roberts [61]. In our case, the coordination between the different views is
mainly done by brushing techniques. The work of Moody et al. [52] focuses on the
visualization of dynamic networks in general and the evolution of social networks in
particular. The authors state two common approaches: plotting network summary
statistics as line graphs over time and examining separate images of the network
at each point in time. Our work has been inspired by these two techniques.
Some important publications on the specific topic of metabolic network comparison
can be found in [67] and [3]. Albrecht et al. focus on finding a suitable layout
for the union graph, which is constructed from the two individual graphs to be
compared. The union graph layout is used to layout common subsets, while still
preserving the differences. The algorithm is designed in a hierarchic manner. An
overview graph construction is provided by laying out the backbone first, and
the detailed graph representing changes is constructed and laid out afterwards.
While the work in [3] addresses generic biological networks, a comparison of similar
metabolic pathway graphs is given in [67]. Identical parts of the network are
identified to define constraints for a common layout. The proposed method is
applied to data obtained from the BIOPATH System and the KEGG PATHWAY
database. A different, non-visual approach of comparing metabolic networks is
found in [79]. A cross-species comparison (archae, bacteria, eukaryotes) is based
on topological properties, i.e., network indices, degree distribution measures, and
motive profile measures. For the visualization of these networks, the algorithm of
Kamada and Kawai [36] algorithm was used to optimize the layout.

The two bioinformatics resources we use in this work provide very limited ca-
pabilities for comparing different metabolic networks. The KEGG web interface

allows the user to project metabolic pathways specific to one of approximately
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CHAPTER 2. RELATED WORK

1400 organisms onto the reference pathway diagrams. The respective enzymes are
highlighted. The web interface of BioCyc [12] is more flexible in that respect.
Pathways are dynamically rendered with a user-specified level of detail. A cross-
species comparison is possible for two organisms. METACYC also provides the
software package Pathway Tools [41] for navigating the data, metabolic pathway

prediction, analysis and visualization.

18



3 Focus& Context View for
Static Metabolic Networks

In this chapter, we introduce methods for the exploration of a metabolic network.
When investigating those networks, we can identify three different scales — or levels

of detail — being of interest for the researcher:

1. Pathway graph (top-level) consisting of functional units and their relations

to each other in terms of biomass transfer.

2. Reaction graph (bottom-level) containing nodes and edges representing the

transformation of chemical compounds.
3. Molecular level describing the chemical structure of compounds.

The objective is to integrate all three levels into one framework allowing a seemless
transition between the scales. This is crucial for the preservation of the mental
map when navigating the network.

We take the hierarchical structure of the graph modelling the network into account
for the layout computation and exploit the hierarchy for navigation within the
data. The exploration process is performed in a top-down manner following Ben
Shneiderman’s mantra of information visualization: overview first, zoom and filter,
details on demand. Two interaction techniques are combined for that purpose:
expansion of top-level pathway nodes to reveal the detailed reaction network of
pathways of interest, and a semantic zoom displaying more and more properties
associated with the nodes of the graph as drawing space becomes available.

To support the domain expert in the exploration and analysis process, we adapt
the well-known Table Lens [60] metaphor with the possibility to select multiple

foci. Here, we regard each grid position in our layout as a cell in a table that
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CHAPTER 3. FOCUSHYCONTEXT VIEW FOR STATIC METABOLIC
NETWORKS

can be expanded to locally reveal lower levels in the hierarchy. The layout places
the network nodes on a fixed rectilinear grid and routes the edges orthogonally
between the node positions. The approach supports bundled edge routes heuristi-
cally minimizing a given cost function based on the number of bends, the number
of edge crossings and the density of edges within a bundle.

Furthermore, our visualization tool offers additional features, such as highlighting
of individual paths. We successfully applied our method to provide interactive
access to the complete biochemical network stored in the KEGG database.

In the following section, we present the graph generation from metabolic network
data provided by KEGG PATHWAY to generate a reasonably realistic scenario
for testing and demonstrating the implemented methods. Section 3.2 describes
the layout algorithm used as basis for the interaction and navigation techniques
discussed in Section 3.3. The results and concluding remarks are presented in
Sections 3.4 and 3.5.

3.1 Network Data Source

The development of graph interaction techniques especially suited to fit biological
problems makes it necessary to experiment with realistic datasets. To generate
artificial graph data is of course possible, but it is hard to estimate the required
complexity of such datasets to simulate realistic scenarios. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) System [42] provides annotated pathway data
facilitating the construction of metabolic pathway graphs of different sizes. In the
following section we give a short summary on the contents and accessibility of the

KEGG System, and how the used example graphs were generated.
3.1.1 KEGG Database

Kyoto Encyclopedia of Genes and Genomes is one of the major bioinformatics re-
sources publicly accessible. It integrates genomic, chemical, i.e., molecular, and
systemic functional information describing cellular processes and organism behav-
ior. It provides a knowledge base for systematic analysis in bioinformatics research
and the live sciences. KEGG consists of 19 individual databases establishing three

major components [37].
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3.1. NETWORK DATA SOURCE

Systems information: KEGG PATHWAY represents higher order functions
presented as a network of interacting molecules. It contains graphical diagrams
of cellular processes, such as metabolic pathways, regulatory networks, membrane
transport, and cell cycle. Additionally, pathway modules are stored in KEGG
MOoODULE; and KEGG DISEASE represents molecular-level knowledge on diseases.
BRITE supplements KEGG PATHWAY and the genomic resources representing
functional hierarchies of biological systems. It is a collection of classifications based
on an object’s biochemical role. This part of the KEGG database incorporates many

types of relationships not limited to molecular interactions and reactions.

Genomic information: it is gathered in nine databases to present gene catalogs
of all organisms with completely sequenced genomes and selected organisms with
partial genome sequences [38,55]. Comprehensive annotations on genomes and

chemical compounds are included in the KEGG ORTHOLOGY system.

Chemical information: KEGG LIGAND is a union of six databases comprising
the knowledge on chemical compounds, particularly metabolites, drugs, glycans,

enzymes, and enzymatic reactions.

3.1.2 Data Acquisition and Graph Construction

The KEGG System provides several ways to access its contents. Via a web in-
terface the user can examine single pathways displayed as manually drawn images
(Figure 3.1). Each node in the illustration is linked to a database entry of the
associated compound or enzyme revealing information on the structure, chemical
properties and participation in other pathways. Pathway maps are also linked to
adjacent pathways indicating that a compound is shared by both pathways, i.e., a
biomass exchange from one pathway to another.

Pathway data can be downloaded from a daily updated ftp archive. Pathway maps
are stored as XML representation in KGML (KEGG Markup Language) [44] files.
KGML is an exchange format intended to describe KEGG graph objects. Each
KGML file contains entry elements for three types of graph objects: boxes either
represent maps of adjacent pathways or enzymes with a reference to a reaction

element, circles represent compounds. Relation elements may have two types
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[lustration of the central pathway Clitrate cycle taken from

within a metabolic pathway KGML file: ECrel for intra-pathway links to create

connections between a pair of enzyme nodes and a compound node in between the

two enzymes, and maplink for inter-pathway links to create connections between

a compound node and an adjacent pathway.

To develop our novel layout algorithm and implement suitable interaction and

navigation techniques, we used KEGG PATHWAY as primary data source to create

a realistic scenario. Constructing a hierarchical directed hypergraph with two layers

involves four steps:

1. Add a node to the hypergraph for each KGML file specifying a pathway. For

each enzyme entry found in the file, add an empty hyperedge (not connected

to any node), and for each compound entry add a node to the pathway node’s

children.

. Add half-edges to link the hyperedges with in- and out-nodes within a path-

way by evaluating the KGML file's relation elements of type ECrel. The

direction of the hyperedge is determined by the associated reaction element,
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which specifies two sets of compounds (substrates and products).

3. Evaluate the maplink relations to connect identical compounds occurring in
the current and the referenced pathway via a regular edge, i.e., a hyper-
edge having input and output sets with exactly one element. Regular edges
simply express links between pathways realized by substances shared by two
pathway graphs, and if directed, a flux from one pathway to another. If
the referenced pathway was not loaded from a KGML file in (1), simply add
a (non-expandable) node and connect it with the compound node of the

current pathway specified in the "maplink”.

4. Add virtual edges for each edge connecting two identical compound nodes

in different pathways (see below).

The evaluation of KGML files and converting the data into a graph is similarly
done and discussed in [46] in more detail. The result of the KGML conversion of
a single pathway is shown in Figure 3.2. We used our visualization tool to display
the graph and to manually route the edges for improved clarity. Node positions
were taken directly from the KGML description.

To construct a hierarchical graph supporting interactive operations such as node
expansion and collapse, we follow the concept of virtual edges as depicted in
Figure 3.3. When a bottom-level subgraph belonging to a single cluster is collapsed,
all elements of the subgraph are hidden and the elements’ parent node is displayed
instead. Obviously, edges incident on invisible nodes will also be hidden. To
propagate connections through all hierarchy levels regardless the expansion state
of the graph, edges connecting sublevel nodes are replaced by their virtual edges.
In a hierarchical graph with two layers, each inter-pathway edge connecting two
bottom-level nodes having different parents requires the construction of up to three
virtual edges: one edge connecting the two parent nodes, i.e., pathway nodes, and
two edges symmetrically connecting the compound node on the bottom level with
the opposite compound'’s parent node. To avoid a large number of multi-edges in
the graph, a virtual edge is inserted only once and a counter keeps track of the
number of bottom-level edges it represents.

In addition to the topology of the graph, we store a number of textual attributes

to each graph element to provide that information on demand.
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Figure 3.2: Conversion from the KGML description to a hypergraph and ren-
dered using our graph visualization software. Node positions were taken di-
rectly from the graph element description, edges were manually routed.

3.2 Hierarchical Graph Layout

We model the data in the KEGG database as a hierarchical hypergraph. Each
pathway is a graph in the hierarchy. If two pathways exchange compounds, there
are maplinks connecting both pathways, and we add regular edges in the top level
graph consisting of all pathways as vertices.

The layout of the hierarchical KEGG hypergraph is generated by laying out the
corresponding hierarchical regular graph. We consider a graph as regular, if it
only contains regular edges connecting exactly two vertices. The top level graph
is already a regular graph and each pathway hypergraph is converted to its corre-
sponding bipartite graph consisting of compounds and reactions as vertices and an

edge exists between a compound ¢ and a reaction r if ¢ is present in the reaction

24



3.2. HIERARCHICAL GRAPH LAYOUT

>)
(@)

n1 el'e2' n2 @e1'e2'@
€3
e N o @

Figure 3.3: A simple hierarchical graph with two layers. L.h.s.: Dashed lines
reflect the parent-child-relationship. Inserting the edge el requires the con-
struction of three virtual edges el’, el”, el”’. Edge e2 is already represented
by two previously added virtual edges. Edges e0, e3 and e4 connect vertices
having the same parent. No virtual edge is necessary. R.h.s.: Four expansion
states of the graph (n1 and n2 collapsed [A], nl expanded and n2 collapsed
[B], n1 collapsed and n2 expanded [C|, nl and n2 expanded [D]).

r.

The layout algorithm allows multiple edges but no loops and proceeds recursively,
starting with the top level graph and laying out a graph after its parent in the
hierarchy has been laid out. For each graph, the layout consists of three phases:
Vertex Position places the vertices at crossing sections of a regular grid mini-

mizing the stress,

Edge Routing places edges on a sequence of grid lines, minimizing a global edge

cost function, and

Edge Bundling displaces edges by a small amount to avoid overlapping edge

routes.

3.2.1 Vertex Position

In the VERTEX POSITION phase, we try to find a unique integer position for
each vertex in a given layout graph (V, E)) that minimizes the stress and therefore
producing nicer images. The stress describes the amount of error that takes place

by the projection of the high-dimensional graph-theoretic distances d, ; to the
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distances between the vertices' positions 7;, 7; € R? (here d = 2):

stress =y d; *(diy — ||& — Zl],)° (3.1)
i<j

« controls the impact of (graph theoretic) distant vertices on the cost function.
Larger values for « suppress the influence of distant vertices on the stress function.
We choose o = 0 to also consider vertices being more distant. p denotes the norm
to use, p = 2 is the Euclidean distance, but as we are laying out the vertices
and edges on a grid, we found it more natural to use the Manhattan distance,
p = 1. If the graph consists of multiple connected components, we assume the
graph theoretic distance between their elements to be \/m rather than infinity.
We position the vertices in a regular quadratic grid graph G = (P, S), with P
being at least 4 - ¢ - |V| positions. c is the ratio of the number of available grid
positions with respect to the number of graph vertices. We used ¢ = 4 to give
enough room for chain-like substructures to unfold. Throughout this phase, we
restrict vertices to lie on even integer positions in both dimensions, the other
positions are reserved for the edges’ routes. The edges of the grid graph S are
called segments and connect neighboring positions, i.e., positions that differ by an
amount of one in exactly one coordinate. The positioning can be described as a
function p : V' — P, and is feasible if no two vertices map to the same position.
We developed three algorithms for this phase. Each of them starts with a random,
feasible positioning and iteratively improves the stress by finding a better feasible
positioning.
A first brute force version selects a random vertex and puts it at the grid position
that minimizes the local stress by testing each grid position. This has the nice
property that the stress can never increase, because the vertex may always be put
back at its original position. If the desired position is already taken by another
vertex, their position is swapped.
As graph drawing by stress minimization was pioneered by Kamada and Kawai [36],
we implemented a version of their algorithm using integer positions: we select
a vertex with high local stress and, using a Newton-Raphson iteration, find a
continuous position for that vertex where its local stress becomes minimal. We

then find the closest grid position and insert it at that place.
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Figure 3.4: A layout graph and its route graph during the insertion of two
edges. The layout graph consists of the big square vertices and the thick
bending lines. The grid is indicated by the shaded bars in the background.
(a) The route nodes are drawn as small circles and the possible connections
between them as thin curves. (b) To route an edge from A to B, edges to their
neighboring route nodes are inserted first. Then, a SPSP algorithm finds the
thick red path that is used for the edge route. The dashed red lines indicate
alternatives. (c) When routing an edge from A to C, again there are several
possible paths each one resulting in different crossing points of the new edge.
The dashed blue deviation from the red path is illegal: the algorithm avoids
it by prohibiting connections that belong to the same grid position to appear
in direct succession on an edge route.

The third method selects a random vertex, inserts it randomly at a new position
and then reevaluates the stress. Improvements are always kept. Should the stress
deteriorate by A, it is only kept with a probability of exp(—A - 1000/7) with i
being the current iteration number. On rejection, the vertex is simply put back at
its original position. This principle is known as simulated annealing [45].

All discussed algorithms terminate after a fixed number of iterations that is pro-
portional to the number of vertices.

In the hierarchical version of the algorithm, edges connecting vertices of different
pathway graphs will be specially treated. As the top level has already been laid
out, it is known whether the edge enters a pathway vertex from the north, east,
south, or west. For each of these directions, we add a port vertex centered on
the boundary of the grid. A port channels all inter-pathway edges when entering a
pathway from one of the four directions. The port vertex is not moved during the
VERTEX POSITION phase, but is included in the stress minimization computation.

This favors vertices incident on inter-pathway edges being closer to the port vertex.
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3.2.2 Edge Routing

The EDGE ROUTING phase computes a combinatorial description of an edge
routing along the segments (edges) of the grid graph leaving the vertices at their
fixed positions computed by the VERTEX POSITION phase. It starts with the
trivial edge routing for the layout graph containing only the vertices and successively
inserts edge routes.

The routing of one edge given the fixed routing of all previous edges is computed by
solving a Single Pair Shortest Path (SPSP) problem on a route graph R = (N, C)
and a function r, which yields for each grid segment a (possibly empty) ordered
list of edges. For each grid segment s, R contains |r(s)| 4+ 1 route nodes each
one denoting a position between the existing routes on s. If no edges have been
laid out yet, then this graph simply contains one vertex for each grid segment. A
connection (u,v) exists in C'if a route node u of a particular grid segment may be
followed by the route node v of an adjacent grid segment in an edge route and vice
versa. Conceptually, we could add all possible connections between route nodes
that lie on adjacent grid segments, but we restrict the set of edges to avoid several
undesirable configurations. Firstly, we do not want edge routes to lie on vertices
they do not connect, and therefore, we only consider grid segments that are not
incident on a position taken by a vertex. Furthermore, there may be no connection
between route nodes of adjacent grid segments if there is an existing route using
both segments and the route nodes lie on different sides. This ensures that edge
routes can only cross at the points they meet or leave each other. Figure 3.4 shows
the route graph for a small layout graph where some edges have already been laid
out. Note that in that image, the vertices are not restricted to lie on positions
divisible by 2 for illustrative purposes.

As there can be several possible routes for an edge, we have the ability to choose
the one that gives the best visual impression. We found that we can simply assign
weights to each route node and connection and perform a weighted SPSP algorithm
to get the best route. The weight of a route path consists of four parts: its length,
the sum of its segment densities, the number of edge crossings, and the number of
bends. The length is simply the number of route nodes on the path. The density
of each segment is the number of edges already routed using this segment. The

edge crossing and number of bends can be computed for each connection before
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the SPSP is executed. Note that these costs never change during the SPSP as
this would mean that an edge crosses itself or uses a segment more than once.
Visually this would result in a cycle — an impossible output configuration of the
SPSP algorithm.

To reduce runtime and memory consumption, we use the A* search algorithm [30]
to solve the SPSP instance. As a heuristic, we only use the Manhattan distance
from the current route node to the destination and add 2 if we require at least one
more bend. The crossing and population cost cannot be trivially approximated.
After all edges have been laid out, we try to further optimize the layout by removing
edges of high cost and reinserting them again using the SPSP routing. Note that
because of the optimality of the edge routing, the global cost can never increase.

Each edge always has the possibility to use exactly the same route it had before.

3.2.3 Edge Bundling

The EDGE BUNDLING phase removes overlaps by shifting segments of edges’
routes orthogonal to the grid segments they lie on. It preserves the edges’ relative
ordering and straightens them in the process. This problem can be solved for each
row and each column separately.

We generate for each row and each column a directed acyclic graph (DAG) D =
(L,O) called the displacement graph. A maximal line of an edge route r is a
maximal sequence of consecutive grid segments that lie on a line and that r uses.
For each maximal line of an edge route, we add a vertex to L, and O contains an
arc (ly,l5) if and only if the maximal lines 1, [ share at least one grid segment and
[, precedes [y in the relative ordering of routes on any shared segment. Because
we disallowed parallel maximal lines to cross, the resulting displacement graph
is acyclic. Figure 3.5 shows an example for the displacement graph of a set of
maximal lines.

Any topological numbering of the displacement graph gives a displacement that
avoids occlusions between edge routes of the same column/row. However, we use
the topological numbering of minimum weight to get a displacement that packs
lines closer together. Let 0 : O — R™ be the minimum separation between lines
and w : O — R" be the importance of an edge (for our purposes simply 2).

The topological numbering of minimum weight A : L — R can be solved by the
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Figure 3.5: The displacement graph for a set of maximal lines. Actually, the

transitive reduct is shown only.

following linear program:

min Y w(u,v)(A(v) = Mu)) (3.2)
subject to: d(u,v) < A(v) — A(u) VY(u,v) € O.

We note that the transitive reduct of the displacement graph suffices for our
purposes. We use the same minimum separation for all pairs of lines and get the
final displacements centering the lines by subtracting the output of the topological

numbering by their barycenter weighted by line length.

3.2.4 Alternative Grid Generation

In the presented grid layout algorithm, the vertex placement and edge routing
are performed in two separate consecutive steps. This offers the opportunity to
develop alternative node placement routines fitting the specific needs of metabolic
pathway visualization. Topological substructures, such as cycles or chains, are
fairly common patterns in chemical reaction networks and should be taken into
account when laying out pathway graphs. An algorithm for accomplishing this
task is suggested in [6]. Metabolic network graphs provided by KEGG have already
been laid out manually keeping these criteria in mind. As the drawings provided
by KEGG constitute a de-facto standard in metabolic network visualization and
biologists are familiar with that kind of representation, it is preferable to incorporate
the layout information in our algorithm. Using the pathway data from KEGG

has a particular advantage over other sources of metabolic data since the layout
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is partially accessible. For the bottom-level graphs — reaction networks — node
positions are given, however edge routes are not available.

As explained in the previous section, the vertex positioning phase of the algorithm
generates a grid placing the vertices to discrete positions with no two vertices
occupying the same location. The edge routing then takes this grid and vertex
assignments as input. Instead of the aforementioned routine to assign vertices to
grid cells, we iteratively generate a compact grid from given vertex positions in the

following way:

1. Generate a sparse grid with as many columns as unique x values and as

many rows as unique y values among the vertex positions in the 2D plane.

2. For each row 7, we store a set of vertices U; and for each column j a set of
vertices V; occupying that particular row or column. If no two nodes occupy
the same point in the original 2D space, all grid cells will contain at most
one node, i.e., V;;|U; N V| <1.

3. Merge U, ;11 = U; U U;;; with the shortest distance |y;+; — v;| that
causes no collision, i.e., for every column j we check the condition
Uiiva 0V < 1.

4. Merge V; ;41 := Vi UV} with the shortest distance |z, — ;| that causes
no collision, i.e. for every row i we check the condition

5. Go back to step 3. Repeat until no rows or columns can be merged without

violating the collision condition.

When merging the vertex sets of two adjacent columns, the new z coordinate of all
vertices in that union is the arithmetic mean value of the x coordinates of the two
adjacent columns. The same holds for the y coordinate of vertices in the set union
after merging two adjacent rows. In a sense we perform a one-dimensional k-means
clustering on the x and y coordinates separately to achieve a compact grid. This
algorithm ensures that the directional relations of the node positions are preserved.
In other words, if node A was “above’ node B before the grid computation, A

will never be “below” B on the resulting grid. The discretization of the node
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positions preserves the mental map as much as possible. Figure 3.6 depicts the
iterative grid generation. Setting appropriate constraints for the following edge
route computation, the final drawing closely resembles the pathway presentations
provided by KEGG (see Figure 3.7). We found that penalizing edge bends and
favoring edge bundles in the edge routing phase yields to the most appealing

results.

@ @

2,

o5
%i <

Figure 3.6: Iterative grid generation using original node positions. L.h.s.:

sparse grid before the first merge step. The algorithm starts with a 6-by-7
grid for seven nodes. In the first step nodes 1 and 6 are merged into one set
containing the nodes of row 5 and 6. The last step merges columns 2 and
3 resulting in a compact 3-by-4 grid. The algorithm terminates because any
further merge operation violates the collision condition.
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Figure 3.7: TCA cycle. L.h.s.: de-novo layout computation using our grid lay-
out algorithm for node placement. R.h.s.: Grid generated from node positions
of the KEGG layout.

3.3 Graph Exploration

The graph interaction and exploration methods described in this chapter have
all been implemented in our visualization software. The grid layout algorithm is
the central component of the adapted Table Lens method to explore hierarchical
graphs. We first present this technique with supplementary search and highlighting
operations and explain later how the graphical user interface of the program lets
the user apply these methods to interact with the graphical representation for

exploring the metabolic network graph.

3.3.1 Hierarchical Graph Navigation

Two fundamental navigation operations on hierarchical graphs are node expansion
to reveal the node’s nested graph and collapse. For 2D graph representations, it is
natural and desirable to present a flat graph at all times regardless the graph's ex-
pansion state. This means that the expansion of a node requires it to be hidden and
replaced by its nested graph. The inverse operation replaces the nested graph by
its parent. The well-known Table Lens metaphor [60] applied to hierarchical graph
exploration fulfills this requirement. It is an established focus&context method to
give an overview on large tabular datasets to visually examine data patterns and

to provide detailed view on specific items at the same time. In our application,
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pathway nodes at the top level are placed in the center of a cell, edges are routed
along the cell borders as intended result of the previously presented layout algo-
rithm. When a node is expanded, the row and the column are enlarged in which
the node is situated. Edges leading to and from one of the four ports (see Section
3.2.1) of the pathway node are elongated while the remaining elements keep their
relative position.

This approach follows Ben Shneiderman’s mantra of visual information-seeking:
overview first, zoom and filter, details on demand [69]. Our application supports
this concept in the following ways:

Overview first. The grid layout algorithm positions top-level nodes on a regular
grid where each grid position can be regarded as a cell in a table. The user
starts with examining the completely collapsed graph, i.e., only top-level nodes are
visible. The application allows to display a node simply by showing the associated
pathway’'s name as caption or by creating an iconized view of the node's nested
graph (see Figure 3.8).

Zoom and Filter. We have implemented semantic zooming to display labels once a
certain threshold is reached. Tool tips add additional information on each pathway
node. If enabled, icons in top-level nodes depicting the nested graph give a quick
hint on the pathway's size and layout.

Details on Demand. The user can expand selected pathway nodes to explore the
detailed network of chemical reactions. In contrast to the established Table Lens
method, an arbitrary number of cells (pathways) can be enlarged (multiple foci)

and examined in detail (see Figure 3.9 and 3.10).

3.3.2 Semantic Zoom

In contrast to the conventional geometric zoom, which simply scales the graph
drawing and therefore changes the size of the viewport, the semantic zoom in-
creases the amount of detail being displayed while zooming into the scene. It can
be considered as a form of 'details on demand’. Detailed information not relevant
to the global view on the data is hidden at large scales, but can be made visible as
the scene is enlarged and additional drawing space is provided. In current applica-

tions for the visualization of general graphs, this technique is often limited to hiding
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Figure 3.8: The top-level graph of the Carbohydrate Metabolism. Pathway
nodes drawn in bright green color belong to the carbohydrate metabolism and
can be expanded to reveal the reaction networks. Non-expandable related
pathways are shown in dark green. L.h.s.: The pathway Clitrate Cycle was
selected and all incoming and outgoing connections are highlighted. R.h.s.:
Icons within the pathway nodes represent the nested graph.

or displaying textual information in node or edge labels. In the context of metabolic
network visualization, we included a renderer for molecule structures drawn inside
nodes representing a chemical compound. As the user increases the level of detail,
the chemical structures of metabolites is rendered within the associated nodes. We

offer five levels of detail for rendering compound nodes:

1. Totals formula specifying the numbers for each atom present in the molecule
(see Figure 3.11 Lh.s.).

2. Totals formula and systematic name of the compound.

3. Backbone or skeletal graph. Only the bonds between atoms are shown (Fig-

ure 3.11 center).
4. Molecular graph depicting the Fischer projection [53] of the molecule .

5. Molecular graph with all atoms (including inner Carbon and Hydrogen atoms,

see Figure 3.11 r.h.s.).

The molecule structures can be considered as graphs, in which the vertices repre-

sent the atoms and the edges represent the covalent bonds between two atoms.

35



CHAPTER 3. FOCUSHYCONTEXT VIEW FOR STATIC METABOLIC
NETWORKS

Figure 3.9: Detailed view of the expanded node Citrate Cycle (TCA). The
highlighted compound node Pyruvate establishes several connections to adja-
cent pathways.
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Figure 3.10: Multiple foci in the network visualization. Three expanded
pathway nodes: Citrate Cycle (TCA), Pentose Phosphate Pathway, and Gly-
colysis/Gluconeogenesis. The compound node Pyruvate within the Glycoly-
sis/Gluconeogenesis pathway is highlighted showing the connections to adja-
cent pathway nodes.
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Figure 3.11: Semantic Zoom: Three views on some reactions of the Citric Acid
Cycle (TCA). While zooming into the drawing of the metabolic pathway, the
totals formula (Lh.s.), the backbone of the chemical compound (center), and
the full molecule including all atoms present in the molecule are shown inside
the compound nodes. The blue rectangles indicate the size and position of the
viewport of the following image.

The molecule graph and its drawing are provided by KEGG via MDL mol-files.
MDL mol is a common format for the representation of biochemical compounds.

A description of the format can be found in [2].

3.3.3 Selection and Highlighting

The exploration of a large metabolic network is a highly interactive process as
suggested in the previous sections. The hierarchical navigation of the network is a
straightforward process and intuitive in its application, however the method has an
inherent drawback. As the user expands pathway nodes, the total space needed for
drawing the network can become very large. The worst case scenario arises when
expanding the diagonal elements of the grid. In terms of the Table Lens metaphor,
expanding a cell requires the column and the row in which the cell is located to be
enlarged making room for the detailed network. External connections to compound
nodes in the focused pathway have to be alongated making it difficult to discern
their origin in adjacent pathways. To alleviate this problem, we provide several

methods to highlight nodes and incident edges:

e Selecting a top-level node in the Data Browser (see Figure 3.13) highlights
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all nested elements including incident inter-pathway edges.

e Selecting a bottom-level node (chemical compound or reaction) in a partic-
ular pathway highlights the corresponding item in the Graph Scene together

with its incident edges.

e A search mask allows the user to select items by performing a string-based
pattern matching among the textual attributes of the graph elements high-

lighting the results in the scene.

e The selection of bottom-level nodes is propagated to the top-level of the

graph to display search results regardless of the network’s expansion state.

The search function is an intuitive way to state queries as “Select all pathways

containing the compound Pyruvate” (see Figure 3.12).

The implementation of the Graphical User Interface follows the linked view paradigm.
In this respect, the Data Browser and the Graph Scene components represent dif-

ferent views on the underlying graph model of the network. Selecting items in

either one of the views instantly updates the selection state in the other. A more

in-depth description of the developed software can be found in chapter 6.

3.4 Performance Results

The KGML import routine is suitable to construct pathway graphs of different
size and complexity. To implement, test and demonstrate the discussed visu-
alization and exploration techniques, we constructed two pathway graphs. Im-
ages 3.8 through 3.12 were created from 15 KGML files downloaded from the
KEGG database covering the complete carbohydrate metabolism. Additional non-
expandable pathway nodes were created when referenced in one of the input files
by maplink elements. A graph was created with a total of 640 compound nodes,
67 pathway nodes (52 non-expandable), 894 reaction hyperedges and 466 regular
inter-pathway edges. Even though we model the pathway graph as a directed hy-
pergraph, the proposed layout algorithm deals with regular graphs. The portion
of the graph containing the hyperedges and nodes was converted into a bipartite

graph, where the previous hyperedges are displayed as rectangular nodes (yellow)
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Figure 3.12: The bottom-level graph. Reaction network of pathways asso-
ciated with the carbohydrate metabolism. The search result for Pyruvate is
highlighted including its incident edges.
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(right, top) resulting in highlighting all its compound and reaction nodes in-
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Figure 3.14: A more detailed view of the bottom level graph. This portion of
the graph displays the pathway Starch and Sucrose metabolism. The Algorithm
Info Area (bottom, right) gives feedback on invoked algorithms and /or displays
results from a keyword search within the data browser. In this scenario a
search for the term alpha-D-Glucose was performed resulting in 13 matches
within the pathways related to Carbohydrate metabolism. The Data Browser
also highlights the matched items within the hierarchical representation of the
dataset.
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labeled with the EC numbers of the catalyzing enzymes and the nodes as ellipses
(green) labeled with the compound’s chemical name, resulting in a total number
of 1,601 nodes and 2,505 edges. This graph could easily be handled by the visu-
alization software. Response times of the graphical user interface were less than
0.2 sec for any operation discussed previously enabling a smooth interaction with
the displayed graph.

A second example was more complex. The graph covers the complete metabolism
of a generalized eucaryotic cell and contains 4,980 compound and 145 pathway
nodes, 4,943 reactions and 1,248 inter-pathway edges. After the conversion to the
corresponding bipartite graph, the network had a total number of 10,067 nodes and
11,706 edges. Depending on the visible portion in the scrollable graph view area,
any collapse/expand operation took up to 4 sec if the complete graph was visible,
and up to 2 sec if one pathway was located in the visible area. The response times
for scrolling, zooming, and highlighting elements for the worst-case scenario (all
pathways expanded) were less than 0.75 sec if up to 1/4 of the graph's elements
were visible, and less than 0.25 sec if the visible portion was 1/10 of the completely
laid out graph.

The program was tested on a machine with a Intel(R) Xeon(R) CPU at 2 GHz and
32 GB RAM.

The runtime of the grid layout algorithm heavily depends on the choice of param-
eters. For large graphs, the brute force method testing all grid positions naturally
takes longer compared to the simulated annealing method. The choice of the area
ratio a = 4 - |V/| generally produced more aesthetic layouts for cyclic and chain-like
structures. This is due to the larger space available to unfold those substructures.
However, a higher number of potential node positions increases the runtime for

the brute force method.

3.5 Conclusion

With the development of our graph visualization and exploration framework, we
are able to layout and display complex graphs with a high number of edges and
nodes. For metabolic pathway networks in particular, not only the graph topology
is relevant, a high number of additional attributes — mainly textual annotations,

but also hierarchical and structural information — has to be considered in the
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visualization, too. This leads to different scales in granularity. We can conclude
that the exploration of static metabolic networks containing different levels of
detail, specifically the pathway level, reaction level, and molecular level, is a highly
interactive process.

Semantic zooming and focus&context methods are applied to accomplish this task,
instant highlighting of graph elements fitting the pattern of a string based search
operation is an intuitive way to extract specific information on the dataset.

The main benefit of the adapted Table Lens method is the preservation of the
mental map. Many of the visualization tools currently available lack this key
feature. Even though node expansion and collapse produce very discrete and rather
abrupt changes in the appearance of the graph, only the row and the column of the
grid position are affected. All remaining elements keep their relative position to
each other. In combination with continuous zooming, it is a straightforward task
to explore even large graphs. Highlighting individual or groups of edges greatly
facilitates the tracking of routes. A simple extension may be to perform node
expansion and collapse in a semi-continuous manner by interpolating node and
edge route positions between the two states thus creating the effect of smooth
and gradual changes to the graph layout. This will support maintaining the mental
map and simply look appealing. Of course, this should be verified by user studies

and/or evaluations.
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4 Visualization of Dynamic

Graphs

We extend our previous work on the exploration of static metabolic networks to
evolving, and therefore dynamic, pathways. We apply our visualization framework
to data from a simulation of early metabolism. Thereby, we show that our tech-
nique allows us to test and argue for or against different scenarios for the evolution
of metabolic pathways. Virtually, no aspect of the system under research is left un-
considered due to the versatile points of view and high scalability that is provided.
This supports a profound and efficient analysis of the structure and properties of
the generated metabolic networks and its underlying components, while giving the
user a vivid impression of the dynamics of the system. The analysis process is
again inspired by Ben Shneiderman’s mantra of information visualization. For the
overview, user-defined diagrams give insight into topological changes of the graph
as well as changes in the attribute set associated with the participating enzymes,
substances and reactions. This way, “interesting features’ in time as well as in
space can be recognized. A linked view implementation enables the navigation
into more detailed layers of perspective for in-depth analysis of individual network

configurations.

4.1 Evolution of Metabolic Networks

Metabolic networks, the set of chemical compounds and their interactions that con-
stitute life in the most basic sense, are the best studied biological networks. With a
wide availability of genomic, proteomic and metabolomic data it becomes possible
to study cell behavior. However, to understand the underlying principles of life

and gaining further insights about the metabolism of cells for the use in biotech-
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nological applications, e.g., pharmaceutical target prediction or metabolic engi-
neering, we need tools to model and analyze the metabolic processes, pathways,
and networks. There exist successful means for the reconstruction of metabolic
networks from annotated genomes [58], the analysis of these networks in terms of
elementary pathways [24], and description of their behavior with the help of ODE
models [78]. Further insight into the development of kinetic models of metabolic
networks addressing rate laws of the involved enzymes is provided in [70]. The
situation becomes more difficult when we want to explain the evolutionary mecha-
nisms of these systems, i.e., the formation of metabolic pathways or the emergence
of complex network properties. Although, several scenarios exist that provide some
insight into the evolution of metabolic pathways [11], only few aspects are well
understood. Especially, the first steps in early metabolism evade observation by
conventional approaches. To this end, Ullrich et al. [73] developed a multi-level
computational model to study the transition to life: the evolution of metabolic
pathways from catalyzed chemical reactions. The simulation approach implements
components on different scales in a more realistic manner than has been done so
far.

In this work we introduce a plug-in for exploring dynamic graphs extending the
existing graph visualization software described in the previous chapter. The im-
plementation of the extension was primarily driven by the given data and the

requirements stated by the scientists providing it. These include

1. Overview of the complete series of evolving metabolic networks, i.e., involve-
ment of metabolites, reactions and enzymes, and evaluation of key proper-

ties, e.g. quantity (concentration) and activity (participation in pathways).

2. Analysis of dynamics in the network's topology and attribute set. Compare
networks of different time steps and analyze topology dynamics in more
detail.

3. Elementary pathway analysis of selected network generations.

4. Time series analysis of attributes associated with selected node.

For the analysis of the simulation results, an efficient visualization system tailored

to suit our needs is of utmost importance. The main function of the software
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introduced in this article lies in the analysis of metabolic networks in general and
studying the evolution and dynamic behavior of metabolism in particular. This
is achieved by providing an insightful overview on different scales (e.g., on the
metabolite-, pathway-, or network-level) and different angles (e.g., dynamics in
topology vs. attribute dynamics) of the vast amount of extracted information.
Being able to observe all components (individually or together) for the entire sim-
ulation time in one representation gives us a much deeper understanding of the
system’s dynamics than any statistical analysis or static view can provide. By
means of one sample simulation, we show the possibilities of the method and

which potential general insights we can gain.

4.2 The Model

In this section we introduce a computational model of early metabolism for studying
the emergence and evolution of catalyzed chemical reaction networks. The model
consists of a graph-based artificial chemistry allowing for realistic kinetic behavior,
and a protocell-like entity that inhabits the artificial chemistry and that is exposed
to changes (e.g., mutations, source) and selection against other protocells.

The artificial chemistry of this model is motivated by the chemist’s intuition of
molecules and chemical reactions. Consequently, molecules are modeled as labeled
graphs, with atoms as nodes and bonds as edges. Given this representation, it is
easy to see that chemical reactions can be understood as graph transformations,
or in computer science terms, as simple graph rewriting rules. Metabolic networks
are expanded using a stochastic network generator inspired by Faulon [21]. For
simplicity, reaction rates were computed here based on topological indices (Wiener
number [77]) of the educt and product molecules of the reactions.

The protocell depicted in Figure 4.1 contains a simple cyclic genome with several
RNA-genes encoding for a particular reaction type (graph rewriting rule) through a
sophisticated genotype-phenotype mapping [74]. The genome is subject to muta-
tion, deletion, duplication and horizontal gene transfer events. Therefore, reactions
can occur, change and disappear from the protocell or even get copied to a neigh-
bor. In each generation, only half of all protocells is selected and generates an

identical copy. There is steady influx of metabolites from the environment and out
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Figure 4.1: The protocell in the simulation consists of a cyclic RNA genome
encoding rewriting rules applied to the graphs representing the cell’s artificial
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Figure 4.2: One iteration of the simulation run. After introducing mutations
on the RNA genome, the genome-function mapping determines how the molec-
ular structure graphs are rewritten. The metabolic pathway analysis decides
the cell’s survival for the next iteration.
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flux of produced metabolites in way of biomass production. The constitution of
either may change during the course of the simulation.

The metabolism of a protocell is evaluated based on its metabolic yield, which can
be determined by the set of extreme (elementary) pathways [58] in a metabolic
network. We use metabolic pathway analysis to compute this set of elementary
pathways from the stoichiometric matrix by fulfilling the steady-state constraint as

well as all inequality constraints.

4.3 The Data

In the analysis of the simulation results, several types of information on different
levels are processed. Most importantly, the structure of the metabolic network
in form of a bipartite labeled graph is stored in a GraphML [9] file. Metabolites
and enzymes are the nodes of the graph, while reactions are represented by edges.
The labels for enzymes and reactions are unique identifiers giving insight to their
function. The metabolite label is its canonical SMILES strings [76], a unique struc-
tural representation that is easily readable for chemists. Further, the concentration
(number of molecules) for each metabolite is included in the network information.
In addition to the network information, flux information — the set of elementary
pathways through the network — is made available to the visualization plugin, in
a simple text file. Extremal nodes are listed. These represent the metabolites
transferred into the cell and those that are used as biomass or excreted into the
environment, respectively. For each reaction it is noted whether it is present in a
particular elementary pathway or not (0 or 1).

All types of information are generated for each generation. Since the simulation
has several parameters and input options, the data can be very diverse in size
and number of files as well as complexity. Here lies also one important merit
of the visualization method: Choosing an “interesting” simulation run for further
analysis from the range of possible simulations. The visualization of all levels
and generations combined allows an efficient decision process that is of particular
importance in a development and testing stage.

In the generated data, each enzyme catalyzes an arbitrary number of chemical

reactions. We therefore represent a metabolic network as a hierarchical bipartite
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Figure 4.3: One enzyme node can have an arbitrary number of reaction nodes
as children. Metabolites (circles) are un-grouped. Either the red elements
(Reaction View) or the yellow elements (Enzyme View) are visible. Metabolites
are always shown. The dashed lines indicate the child-parent-relationship.

graph, where reaction nodes have exactly one associated enzyme node as parent
(see Figure 4.3).

4.4 Visual Data Exploration

In this section we focus on different visualization techniques implemented to sup-
port the data analysis process. Based on the hierarchical nature of the graph
as described in the previous section, we implemented two different views on the
metabolic network graph:
e Reaction View, Figure 4.4(a): Showing the bottom-level of the graph by
expanding all enzyme nodes reveals the associated child nodes (reactions)

and hides the enzymes with their incident edges.

e Enzyme View, Figure 4.4(b): Showing the top-level of the graph by collapsing

all enzyme nodes hides the associated child nodes.

During the data exploration process, the user may always switch between the
two views without changing the actual topology of the graph. In this context,
mental map preservation is a key requirement for analyzing dynamic networks [51].
Furthermore, changes in the graph drawing from one network generation to the next
should be minimal if the topological changes are small. “Jumping nodes” should

therefore be avoided. We put special emphasis on that issue when switching
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(b) Enzyme View

Figure 4.4: Union Graph laid out using the Sugiyama layout algorithm. The
reaction nodes (rectangles) are colored according to their first appearance (red:
earlier, blue: later). Note that the positions of metabolite nodes (ellipses)
remain the same. In the enzyme view, we apply the node coloring scheme to
metabolites instead of reactions.
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between reaction and enzyme view, and browsing the time line. Preserving the
mental map is also crucial for producing animations of the network evolution.

We achieve the requirement of mental map preservation by following the idea
of [17] and create a foresighted layout by constructing the Set Union Graph or
Super Graph G = (V, E) with V = Ui, V; and E = Ui, E; where (V;, E;) = G;
is the network after i generations. After the preceding cycle removal, we lay out G
using Sugiyama's method for directed acyclic graphs [72,25]. This layout method
is suitable for our visualization, because the constructed graph contains very few
cycles, and the general direction of fluxes through the network is suggested by
the graph drawing, i.e., from top (source) to bottom (sink). To emphasize the
importance of extremal nodes — metabolites existing in the cell with no reaction
producing them (source metabolites) and metabolites with no reaction consuming
them (biomass production) — we connect them to a global source or sink node,
i.e, the resulting acyclic graph becomes a so-called st-graph [15].

The super graph contains elements of the reaction view and the enzyme view
at the same time. Layouting this graph ensures the metabolite nodes’ positions
to remain constant when switching between the views or changing to a different
network generation.

The three requirements stated in the Introduction meet Ben Shneiderman’s mantra
of information visualization [69]. In the following we describe the visual analysis

process based on the scheme “Overview first, zoom and filter, details on demand".

4.4.1 Overview

After construction of the Set Union Graph and associating the flux information
with the graph elements, the primary objective of the overview visualization is to
give the user a general idea of the network elements — metabolites, reactions and
enzymes — involved, their life time, and the development of fundamental attributes
associated with the network elements over time (see Figure 4.5). When presenting
the Set Union Graph (Figure 4.5a), a given node coloring scheme distinguishes
between older and newer nodes. The time of first occurrence of a node in the

network determines its color. The node appearing first is red, the node appearing
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CHAPTER 4. VISUALIZATION OF DYNAMIC GRAPHS

last is blue. Node colors in between are interpolated using the color scale depicted in
Figure 4.10c, third from left. The user may choose, whether this scheme is applied
to reaction nodes, to molecule nodes, or both. Further insight into the life times

of metabolites and reactions give the interval diagrams depicted in Figures 4.5(f,

g).

Graph Scene

e e 6
= EEEmoE
""""""" & Treoo@

Figure 4.5: Graphical User Interface of the Dynamic Graph Analysis plug-in.
Overview visualization: Time Series Charts of selected attributes (d, e) display
attribute dynamics over time. Interval Charts (f, g) represent the dynamic
topology of the graph in terms of life times of metabolites, enzymes, and
reactions. In (g), horizontal bars depicting the nodes’ life time have been
overlaid with the attribute Fluzes through node. The Graph Scene (a) shows
the Set Union Graph with the applied node coloring scheme. As for Zoom and
Filter, the user may select different network generations in the Dynamic Graph
Control Panel (b) to apply the set operators DIFF, AND, OR for filtering
certain elements. These will be assigned a user-defined alpha value and/or
highlighted for selection.

Except for the artificially inserted environment nodes (global source and sink),
each row represents a node in the graph. Horizontal bars depict the life time and
may be overlaid with additional quantitative information, e.g., node degree, fluxes
through that node, and concentration for metabolite nodes, which is depicted as
a curve inside the corresponding interval bar. In addition to interval diagrams,
time series charts (4.5d, 4.5¢) summarize selected attributes and display their
dynamics over time. The user can again choose the subset of nodes to be taken
into account (metabolites, enzymes, or reactions) and the attribute to be visualized

(node number, node degree, number of elementary fluxes through a node, and
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concentration values), and combine these time series in any way for comparison.

4.4.2 Zoom and Filter

In this analysis step, the user wants to detect “interesting features” in the overview
and select individual networks for further inspection. Interesting in an evolving
metabolic network may be periods of stabilities or instabilities in a topological
sense — appearance of new reactions or metabolites — as well as in terms of flux
behavior — changes of associated attributes.

The straightforward approach is to simply browse the time line. For that purpose,
we have implemented a linked view connecting the diagrams of the overview vi-
sualization with the dynamic graph in the Graph Scene. The screen shot of the
software given in Figure 4.6 gives an impression on that type of navigation. The
user may jump directly to that time point of interest by clicking into any of the
displayed diagrams to further inspect the associated network. For each point in
time, the current attributes are visualized in the nodes. For metabolites, the con-
centration values are depicted by the “filling level” of the node. Additionally, the
node sizes and edge widths represent the number of elementary pathways these el-
ements participate in. At this point, the user can control the scaling of edge widths
and node sizes (see Figure 4.7). Controlling the scaling of network attributes with
respect to the global maximum — considering all time steps — vs. the local maxi-
mum — considering each time step separately — has been proven useful [56]. Local
scaling emphasizes attribute differences within a network generation, while global
scaling is suitable for comparing attributes between different generations. In addi-
tion, a node degree histogram is generated for each network generation currently
displayed.

For comparing different network generations from a topological point of view, the
user may select a number of time steps in the Dynamic Graph Control Panel and
apply operators on the node and edge sets of the chosen graph to filter certain
elements of the super graph. Set operators include AND, OR, and DIFF for
the symmetrical difference between different network snapshots. This is used for
detecting subset relations and selecting appearing or disappearing elements (see
Figure 4.5b).
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Figure 4.6: Linked View realization facilitates browsing different graph snap-
shots in time. The blue arrows indicate the current position in time, red arrows
indicate the selected node in the current generation. These components of the
graphical user interface are also sensitive to user input and can be used for
navigation. Selecting a node in the Graph Scene (bottom) highlights the asso-
ciated row in the appropriate interval chart as well as the associated point in
time in all charts. The five diagrams given on the upper display the following
data. Top: Life time diagram of reactions overlaid with the number of path-
ways through each reaction node. Life time diagram of metabolites overlaid
with each node’s degree. Bottom: Time series chart giving number of nodes,
edges, and nodes-to-edges-ratio. Time series chart of summarized node degree
(minimum, maximum, average) over all metabolites. Node degree histogram
of the currently displayed graph generation.
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(b) Local scaling for emphasizing flux differences within one network step.

()

Figure 4.7: Global versus local scaling for visualizing graph attributes. Note

the dark gray “filling level” in the metabolite nodes depicting the current con-
centration value (c).
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4.4.3 Detailed View

In this section, the user takes a closer look at the emergence of individual elemen-
tary pathways (fluxes) in a single network evolution step. The aim is to further
investigate elements being more or less likely to participate in pathways through the
metabolic network and to identify individual elementary pathways. As described
in the previous section, the user has identified reactions and metabolites preferred
to form pathways as well as key enzymes with high activity. Interactivity plays a
crucial role in this analysis step. There are two methods of operation: First, the
user can select any number of elementary pathways to be highlighted in the Graph
Scene displaying the current network generation. Second, the previously identified
key elements can be selected in the Graph Scene for highlighting all associated
elementary pathways. See the screen shot given in Figure 4.8. We again imple-
mented set operators on the selected nodes applied for the flux visualization. We
found that this is a highly flexible and intuitive way to detect pathways running
through all the selected elements — AND operator, at least one of the selected
elements — OR, or none of the selected elements — NOT.

Concerning the attribute dynamics associated with an enzyme, reaction, or metabo-
lite, we take advantage of the linked view implementation depicted in Figure 4.6
to display the attribute development of the selected node over time. Selecting a

different node instantly updates the displayed time series of the chosen attribute.

4.5 Results

We will present an excerpt of the analysis of metabolic evolution on one simple
example simulation run, illustrating the usefulness of the visualization. The simu-
lation takes two molecules as steady input, namely, the sequential and cyclic form
of glucose. The particular enzymes are determined by the random genome, their
catalytic activities encompass the full set of chemical reactions. The simulation is
run as an adaptive walk over 100 generations. In Figure 4.9, four snapshots from
different stages (generations) of the metabolic network evolution are depicted.
The information about the life time of all reactions during the entire simulation is

kept in Figure 4.10. Some basic properties, such as node degree and number of
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Figure 4.8: Details on Demand: Interactive flux analysis for one chosen time
step (here: t=99). Individual elementary pathways can be selected for visual-
ization. All pathways containing the molecule CsOs are highlighted.

reactions and metabolites are recorded in Figure 4.11.

In this analysis we wanted to investigate the early steps in the formation and
evolution of metabolic pathways and interpret our findings in terms of existing
evolutionary scenarios. We will focus on three popular theories, that can be com-
pared nicely to our results. One of the first theories proposed on this matter is
backward or retrograde evolution [33], stating that pathways evolved upwards, in
the need of finding more and more distant metabolites to build a particular ben-
eficial substrate due to depletion of metabolites. Contrary, forward evolution [14]
suggests the opposite direction of pathway evolution. Due to ever further pro-
cessing of molecules to gain more beneficial molecules and production of energy,
pathways evolve in such a way that ancient enzymes are upstream along the path-
way, while younger enzymes are further downstream. For backward evolution we
see the opposite picture. The third scenario is the patchwork model [35], which
explains the formation of new metabolic pathways through recruiting of enzymes
from already existing pathways. Looking at the enzyme age distribution along a

pathway or network, one would expect a mosaic-like pattern (see Figure 4.9¢).
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metabolites=11, reactions=8 metabolites=18, reactions=15

metabolites=27, reactions=27 metabolites=30, reactions=30

(c) (d)

Figure 4.9: A series of simulated metabolic networks after (a) 11, (b) 31, (c) 67,
and (d) 100 generations. The squares represent reactions. The color of these
nodes and their incident edges indicates the first occurrence of the reaction
(red: early, blue: late). Gray circles represent metabolites. An edge leading
from a metabolite to an enzyme indicates that the respective metabolite is an
educt in the reaction. An edge from an enzyme to a metabolite marks it as
a product. The size of the nodes and the width of the edges encode for the
number of minimal pathways in which the respective object is involved.
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The four snapshots in Figure 4.9 showing the metabolic network in different stages
are aligned to the Union Graph over all generations. Thus, we can see that in the
first steps the reactions upstream in the network are added. The pathways are
formed further in this forward direction. Looking at the last generation, basically
all pathways from source to sink follow the forward evolution scenario, with older
(red) enzymes being at the top (upstream) and younger (blue) enzymes more at
the bottom (downstream). This observation is further established through the
interval graph for all chemical reactions in Figure 4.10. The reactions are here
ordered according to their position in the graph. There is a clear trend of older
reactions being on the top and younger ones following more downstream. If we
compare the colored bars (Figure 4.10c) showing the enzyme age distribution for
our results and the three scenarios mentioned above, the pathway evolution again
seems to explain our results best. Therefore, it appears that in the early phase
of metabolic evolution, forward evolution is dominant. In a recent study [75], we
tested this speculation with a more exhaustive approach using 100 simulations
with more complex settings and metabolic networks. Similar to this analysis, we
find forward evolution to be acting in the early steps of pathway formation. In
later stages, enzyme recruitment seems to take over. However, a core of forward
evolved pathways from the beginning seems to remain.

We turn now to the evolution of general properties of the metabolic networks
from our simulation. The numbers of metabolites and chemical reactions (see Fig-
ure 4.11a) develop with almost the same rate. This indicates that most metabo-
lites are only involved in exactly one reaction. Combining this reasoning with the
observation that the maximal node degree of metabolites increases significantly
more than their average node degree (see Figure 4.11b), we can conclude that
our metabolic networks evolved one or only a few highly connected metabolites,
socalled hub-metabolites, and probably has a scale-free node-degree distribution,
typical for real-world metabolic networks. Another observation is the steady in-
crease of the average enzyme connectivity while the average metabolite connec-
tivity converges. The explanation for the latter is the high number of metabolites

involved in only one reaction. A similar trend will likely arise in more complex
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Figure 4.10: Overview visualization of the analyzed dataset. Life time diagram
of metabolites (top) and reactions (bottom). Their position in the diagram (y-
axis) reflects the associated nodes’ positions in the graph layout. The DOT
layout algorithm places reaction nodes close to the source metabolites in upper
positions, and reaction nodes close to the excreted metabolites at the bottom.
The color scheme (bottom, right) given on the first vertical bar lists the node
colors as they appear from top to bottom and from left to right. The second bar
depicts idealized retrograde evolution, the third idealized forward evolution,
and the last bar with random coloring depicts an instance of the patchwork
model, respectively. Comparing our scenario with the three evolution models,
our data bear resemblance to the forward evolution model.

60



4.5. RESULTS

O MO0 A0 00 TO 8 % 10
30 130
20/ 120
104 L10

0 T T T T T T T T T T T T T T T T T T T 0

0 10 20 30 40 50 60 70 80 90 100

(a)

O Mo 2, %, 4 %0 8 70 . & % 10
60] [60
50] [50
40] [40
30] [30
201 [20
10] [10

0 . 0

0 10 20 30 40 50 60 70 80 90 100

Figure 4.11: Tracking selected attributes over time. (a) Number of metabolites
(green) and reaction nodes (red). (b) Node degree (maximum and average) of
metabolites (green) and enzyme nodes (red).
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stages for enzyme connectivity as well.

4.6 Conclusion

In this chapter we have presented an extension to our existing graph visualization
system to support the exploration and analysis of dynamic metabolic networks.
The development process was intensively accompanied by the scientists providing
the data and was found to be extremely helpful to understand the underlying mech-
anisms of metabolic network and biochemical pathway evolution. The visualization
could reveal general properties of the considered systems in terms of network topol-
ogy, but also answered specific questions on the evolution of metabolic networks
and the emergence of pathways within the network. The results from the visual
analysis stated in this work could be confirmed and validated by statistical methods
presented in [75].

We found that interactivity plays a crucial role in the analysis process. It was
successfully implemented using linked views for fast and intuitive navigation in time
as well as within a selected network configuration. We intend to examine more
simulation runs with different parameter configurations to compare the results and
to gain a deeper understanding of metabolic network evolution.

For laying out the constructed Super Graph, the Sugiyama method has proven to
produce the best results. The layout algorithm was a suitable choice due to the fact
that the considered network contained only a few number of cycles, and therefore,
the observed elementary pathways followed the general direction from top (source
nodes) to bottom (sink nodes). The major disadvantage of this layout method is
the amount of space required for the drawing. The number of graph elements in the
Super Graph was small enough for a feasible application of this layout algorithm.
Datasets with more generations can become very large and too complex for using
the applied graph layout. However, there is room for improvement, since many
elements in the Super Graph do not overlap in time and may therefore occupy the
same position reducing the total space for the layout. The same argument holds
for simultaneously laying out the described reaction and enzyme view as the set
of reaction nodes and the set of enzyme nodes are disjoint. The improved layout

method for dynamic graphs taking advantage of that fact is presented in [17].
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5 Comparative Visualization of

Network Graphs

The third aspect of visualizing biochemical content we want to focus on is the
investigation of how graphs representing metabolic data can be compared. This

work is application driven and shall answer two fundamental questions:
e How does the metabolism differs from one species to another?

e How can metabolic network data from one resource be compared to a dif-

ferent resource?

The first question is of course biologically motivated. As we have discussed in the
previous chapter, metabolic networks underlie evolutionary mechanisms leading to
the assumption that different organisms may have realized metabolic processes in
different ways. While a specific chemical reaction can be considered as a constant
unit in the network defined by its stoichiometrics, i.e., the proportion of substrates
and products of a chemical reaction, reactions do not take place in every environ-
ment due to thermodynamic constraints. More specifically, the activation energy
is responsible for how fast substrates are converted into products and may prevent
the conversion under normal circumstances. The catalyzing function of enzymes
is the reduction of the activation energy increasing the conversion rate, however
enzymes often depend on a specific range of temperature and pH value. Further-
more, some environments may even be toxic to most of the organisms while others
dwell under those conditions. The adaption to different environments raises two
issues we want to discuss in the following section: Which metabolic pathways are
realized in different organisms and if there is a specific pathway present in two

species, how do these differ from another in terms of chemical reaction sets.
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The second question mentioned above is of a rather technical nature. Many bi-
ological databases make metabolomic data available, however the organisation of
these data, i.e., classification of reaction sets into metabolic pathways as func-
tional subunits, may differ as well as the coverage. Another aspect to consider is
the correctness of data provided by the respective resources. We will address these

issues in section 5.2.

5.1 Inter-species Comparison of KEGG
Pathway Networks

Many metabolic pathway resources offer reaction networks from different organ-
isms. While the metabolism of a few model organisms, e.g., Saccharomyces cere-
visiae (yeast) and Drosophila melanogaster (fruit fly) as eukaryotic organisms, or
Escherichia coli as procaryotic organism is fairly well understood and widely avail-
able, the KEGG ORGANISM branch of the KEGG PATHWAY database provides
metabolic networks of as much as 1371 studied species in addition to the 140
reference pathways examined in chapter 3. A fundamental question in this context
is, to what extend corresponding pathways in different organisms are identical or,
if present, where different reactions realize the same metabolic function. Two sce-
narios can be considered: The comparison of analogue metabolic pathways in two
different organisms, and the comparison of organism-specific pathways against the
reference pathways.

The KEGG PATHWAY web interface does not provide a way for comparing parts
of the metabolism between different species. However, the set of organism-specific
reactions can be displayed by highlighting the particular chemical reactions in the
reference map for one selected pathway. The reactions of organism-specific path-
ways are depicted as green boxes, which are hyperlinked to GENES entries, in-
dicating the presence of genes in the genome and also the completeness of the
pathway [1].

We follow a more global approach and adhere again to Ben Shneiderman's infor-
mation visualization paradigm. For all organisms found in KEGG ORGANISM,

a compact table view depicts the set of metabolic pathways being present in a
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particular organism and informs about the sets of identical pathway realizations.
Based on the layout of the reference map, the chemical reaction networks of two
selected organisms can then be visually compared by applying set operators on the

vertex and edge sets.

5.1.1 Organism Overview Visualization

The KEGG ORGANISM database comprises 140 metabolic pathways, of which
only a subset is present in the 1371 species. In our analysis, we included 94964
organism-specific pathways stored in KGML files. These were converted to graphs
in the same way as described in section 3.1.2. Given the set of organisms O, | O |=
1371 and the set of pathways P,| P |= 140, we can define the set of pathway
realizations R C O x P with the organism-specific pathway realization r,, € R.
In our case, | R |= 95118. In the overview exploration phase of the analysis, we

are interested in two sets:

e The organism-specific set of pathways:
P(0),0€ O,P(o) C P.

e The set of organisms realizing a particular pathway:
O(p),p € P,O(p) C O.

Due to the fact, that many organisms realize a pathway in exactly the same way,
i.e., many pathway realizations are equivalent in terms of reactions and chemical
compounds, the above number of pathway realizations greatly reduces to a small
number of equivalence classes: [r,].. C R(p) defining a partition on the organisms
having a particular pathway O(p).

The image in 5.1 visualizes the sets P(0) and O(p) in a compact boolean ma-
trix. The implementation of our analysis tool allows interaction with the graphical

output in two ways:

1. The columns can be reordered with respect to a selected row (pathway) to

emphasize the set of organisms having that particular pathway, O(p).

2. A column (organism) can be selected to highlight all pathways present in
that organism, P(0), and to highlight the equivalence class containing that

organism-specific pathway in all of the partitions.
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Figure 5.1: Pathway realizations matrix for the first 55 pathways (rows) and
the first 650 organisms (columns) according to KEGG. Each entry indicates,
if a particular pathway is present in an organism (blue) or not (white). The
column for hsa (Homo sapiens) is highlighted in red.
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Figure 5.2: Partitions for the first 55 pathways. Each row depicts the pathway-
specific partition on the organism set. The width of the rectangles is deter-
mined by the number of organisms of the respective equivalence class. All sets
containing the pathway realized in hsa (Homo sapiens) is highlighted in green.
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The image in 5.2 displays all possible partitions on the organism sets defined by
the pathways. Each partition is depicted as a bar subdivided into the partition’s
equivalence classes. The size of each subdivision reflects the size of the equivalence

class, i.e., the number of organisms realizing that particular pathway.

5.1.2 Chemical Network Comparison

After selecting a set of pathways of interest for two organisms a union graph
containing all elements of the different pathway realizations is constructed. Con-
sidering the two graphs G; = (Vi, E1) and Gy = (Va, Ey) for the pathway re-
alizations of the first and second selected species, the union graph is defined as
G = (V4UV,, E1UE,). The union graph computation is very straightforward, since
all reactions and chemical compounds of the considered metabolic networks have
unique identifiers provided by KEGG, which are consistent among all organism-
specific pathway graphs. These IDs are used to map the nodes of GG; to the
corresponding nodes of (G5. In addition to the connectivity, GG also preserves the
2-layer hierarchy of GGy and GG, with pathway nodes on the top level containing the
chemical networks as nested graphs. We can explore the graph in the same manner
as suggested in chapter 3 from top to bottom. Set operations applied to nodes
and edges of the individual pathway realizations select and highlight elements in

the following ways:

e (; only

G5 only

G1\ Go

G\ G,

G1 NGy
e G\ (G1 NG2) (symmetrical difference)

The exploration process starts with a fully collapsed network, i.e., only the top-
level pathway nodes are visible. If elements of the bottom layer (reaction and

compound nodes) are selected in the manner described above, the parent nodes of
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ID Pathway name Reference Pwy | H. sapiens (hsa)
Cpd Ret | Cpd ‘ Rct

00730 | Thiamine metabolism 26 23 26 20
00740 | Riboflavin metabolism 21 17 21 14
00750 | Vitamin B6 metabolism 32 40 32 19
00760 | Nicotinate and nicotinamide met. 44 57 44 29*
00770 | Pantothenate and CoA biosynthesis 27 30 27 23%*
00780 | Biotin metabolism 11 10 11 9

Table 5.1: List of pathways depicted in Figure 5.3. Except the two pathways
00760 and 00770, the hsa realizations are subgraphs of the reference pathway.
In the two cases (*), there is one additional node referencing a gene product
only present in Homo sapiens. These nodes are isolated, i.e., not connected to
any chemical compound node.

the selected elements are also highlighted (see Figure 5.3, box) giving an overview
on differences or similarities in the underlying chemical networks. We can then
expand the highlighted pathway nodes to explore the detailed network (Figure 5.3,
large image). The two images show the graph, which was constructed from six
metabolic pathways belonging to the metabolism of cofactors and vitamins (see
Table 5.1).

5.1.3 Results

The analysis of a total of 94964 pathways for 1371 organisms and the set of refer-
ence pathways reveals several interesting facts about the data provided by KEGG
ORGANISM. Table 8 in the Appendix gives an overview on the identified equiv-
alence classes for every pathway. Many pathway realizations are indeed identical.
The detailed analysis described in the previous section exposes a large number of
isolated nodes representing gene products, which are specific to the respective or-
ganism. Taking isolated nodes into account naturally results in a higher number of
equivalence classes. However, these do not contribute to the metabolic network in-
formation of the graph. The removal of isolated nodes representing gene products
prior computing the equivalence classes on the pathway realizations is based on
this rationale. The next-to-last column of Table 8 depicts the number of different

pathway realizations being considerable smaller than the number of organisms re-
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Figure 5.3: Top-Level graph of selected pathways (reference map vs. homo
sapiens hsa) and detailed view on two expanded pathways. The highlighted
pathway nodes (box, top-left) indicate that there are elements in the hsa re-
alizations which are not present in the reference pathways (G3 \ G1). The
highlighted elements in the detailed view of pathways 00760 and 00770 rep-
resents the symmetrical difference (G; U Gq) \ (G1 N G2) . The blue arrows
point to the two nodes present only in the hsa realizations.
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alizing this pathway. Removing isolated nodes representing gene products reduces
this number even further as depicted in the last column of Table 8. In fact, most
of the metabolic pathways are realized in exactly the same way in every organism
observed.

By not taking isolated elements into account, another observation can be made.
Almost all metabolic pathways realized in different organisms are subsets, or sub-
graphs, of the reference pathway. As Figure 5.3 suggests, the subgraph may be
considerably smaller than the reference pathway graph. This is at least question-
able and should be veryfied by experts in the field of biochemistry, as the deviation
from the reference pathway together with the lack of deviation in pathway real-
izations among different organisms may point to artifacts or missing knowledge in
the metabolic network data provided by KEGG ORGANISM. The next section
will address this issue by comparing metabolic network data of KEGG PATHWAY

to a different resource.
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5.2 Visual Comparison of KEGG Pathway and
BioCyc content

Bioinformatics research in general and the exploration of metabolic networks in
particular rely on processing data from different sources. Visualization in this
context supports the exploration process and helps to evaluate the data quality of
the used sources.

In this work, we extended our existing metabolic network visualization toolbox and
hereby address the fundamental task of comparing metabolic networks from two
major bioinformatics resources for the purpose of data validation and verification.
This is done on different levels of granularity by providing an overview on retrieval
rates of chemical compounds and reactions per pathway on the one hand, as well
as giving a detailed insight into the differences in the biochemical reaction networks
on the other.

We reconstructed different subsets of the metabolism stored at the KEGG PATH-
WAY database and compare these networks against the complete metabolic net-
work provided by the METACYC branch of the BioCycC database collection
(http://biocyc.org/). Matches among the sets of chemical compounds and
reactions are highlighted and propagated to higher levels of abstraction to infere

pathway correspondence between the two resources.

5.2.1 Motivation

During the last decade a wealth of high throughput sequence data of both genomes
and proteomes have become available for a wide variety of organisms. For a small
number of model organisms, on the other hand, detailed information is available
on their metabolic chemical reactions and the enzymes that catalyze them. Com-
bining these sources of knowledge allows the inference of metabolic networks, see
e.g. [40]. Databases, including KEGG PATHWAY [39, 37], BioCyc [13, 12],
WIKIPATHWAYS [59], Reactome [31] as well as a wide variety of species-specific
resources such as LEISHCYC [18] provide metabolic network data with a varying
degree of manual curation.

Both the computational inference of metabolic networks and the manual curation

process is subject to errors, however. Systematic misannotations and ambigui-

71


http://biocyc.org/

CHAPTER 5. COMPARATIVE VISUALIZATION OF NETWORK
GRAPHS

ties in assignments of enzyme functions [29, 65], for instance have been identified
as sources of errors. The most common type of error is associated with “over-
prediction” of molecular function. Further problems arise from the incomplete
modeling of the chemical reactions themselves, which typically are treated as an-
notation texts rather than data in their own right [57] and can lead to stoichio-
metric inconsistencies [26] that can hamper the analysis of metabolic data. The
notorious incompleteness of genome annotations even in well-studied organisms
such as E. coli, yeast, or human, furthermore translates into an incompleteness of
metabolic pathway maps. Enzymes also may change their function and substrate
specificity over the course of evolution, fundamentally limiting the accuracy of
functional annotations that are rooted in sequence similarities. Taken together,
thus even well-curated metabolic network data cannot be assumed to be complete
and entirely accurate.

The direct comparative analysis of the chemical reaction networks describing the
metabolism can be used to identify and expose potential weaknesses and errors
in the representation of biochemical networks. Our approach is inspired by a set-
theoretic approach to comparing chemical (and in particular metabolic) networks
[22], originally proposed as a means of identifying metabolic innovations.

In this contribution we focus in particular on the KEGG PATHWAY Database.
KEGG pathways are relatively large sub-systems of the metabolic network that com-
bine multiple biological processes from different organisms in a way that matches
biological intuition, but lacks a formal definition in terms of the underlying reaction
network [28]. The database contains a set of manually drawn metabolic pathway
diagrams presented as semi-static visualizations used for navigating the data on
line as well as XML-like descriptions of those pathways. We use this network as a
template graph and perform a multi-scale comparison to the metabolic network pro-
vided by BioCyc. Firstly, we describe how compounds and reactions are matched
between the two networks and how this information is used to infere relationships
between pathways defined by KEGG vs. the ontology defined in BIoCyc. The
results can be viewed by the user from a global point of view, i.e., a quantification
of the node matching quality for each pathway of the KEGG network, and in more
detail by interactively expanding the pathways of interest to reveal the respective

reaction networks. Brushing techniques for highlighting portions of the detailed
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network are used to draw the users attention to inconsistencies or ambiguities
among the two resources. We combine several popular information visualization
methods to navigate the presented network, such as semantic zoom, hierarchical
exploration by node expansion, and focus&context techniques. Once the user has
identified network points of interest based on the highlighted differences, we pro-
vide the context of the matched reaction or compound in the BiIoCYC graph as
overlay on the current KEGG network. Additionally, the respective subset of B1io-
CYC's pathway ontology can be viewed on demand for every reaction, compound,
and pathway node. The implementation of the exploration process is inspired by

Ben Shneiderman’s mantra of visual information-seeking [69].

5.2.2 Data Resources, Preprocessing, and Data Structure

Both databases provide a semi-structured flat-file dump of metabolic network data,
either as KGML files (KEGG) or attribute-value files (B1oCyC). The reconstruc-
tion of the chemical reaction networks from KGML files is a straight-forward task
and was already explained in chapter 3. Each KGML file represents a metabolic
pathway as defined by KEGG and contains the connectivity information of reac-
tion and compound nodes, as well as layout information for each node. This allows
a very similar depiction of the pathway maps as provided by the KEGG system.
It helps preserving the mental map as these drawings constitute a de-facto stan-
dard among biologists. After the construction of bipartite graphs representing
the pathways, we add parent nodes for each pathway and insert inter-pathway
edges connecting two identical compounds in different pathways as defined by the
maplink elements in the KGML file. These inter-pathway edges are propagated
to the higher pathway level and will be visible in the abstracted network overview
part of the visualization. The hierarchy introduced by the pathway nodes is non-
overlapping due to the duplication of compound nodes present in more than one
pathway. Within a pathway, all compound and reaction nodes are unified facilitat-
ing the mapping process from one network to the other.

In the case of BIoCycC, we only use the METACYC branch of the database
collection containing multi-organism metabolic pathways. It relates most closely

to the reference pathways from KEGG as these also represent the union of the

73



CHAPTER 5. COMPARATIVE VISUALIZATION OF NETWORK
GRAPHS

reaction sets realized in different organisms. Unlike the KEGG PATHWAY graph,
we construct a large unified bipartite graph from a reactions data file. As for
the pathway ontology, we add nodes for each occurring pathway and evaluate the
super-pathway and sub-pathway relations to reconstruct the ontology represented
as a directed acyclic graph. Each pathway references several reactions, creating
an overlapping hierarchical clustering of the reaction set. The annotations, i.e.,
synonym lists for chemical compounds and enzyme commission numbers (EC) for

reactions are stored and serve as the basis for the mapping process.

5.2.3 Graph Matching

We use the metabolic network constructed from the KEGG PATHWAY database
as template graph, which is considerably smaller than the BioCycC graph, but not
necessarily a subset. The mapping we describe here is uni-directional from KEGG

to BIoCyc, so we identify three cases:

1. Unique match: a node in the KEGG network can be mapped to exactly one

node in the Bi1oCycC network.

2. Ambiguous match: a KEGG node will be mapped to more than one BioCyc

node.

3. “No hit": the KEGG compound or reaction cannot be found in the BioCyc

collection.

The actual mapping process is done in two steps: (1) matching compound nodes,
and (2) match reaction nodes based on the compound mapping.

Given two graphs, finding a graph isomorphism or inclusion relations is NP-hard.
However, the problem described here is not of a graph-theoretical nature in the
traditional sense, but rather a lexicographical one. With every chemical entity
comes a set of annotations from the respective database. For mapping the chemical
compounds found in the KEGG network to nodes in BIOCYC, we use a list of
synonymous chemical names associated with the compound. These two sets of
lists will be cross-referenced to identify matches. For every compound node in
the template network (KEGG), we hold a — possibly empty — list of matching
candidates in the BloCYC network.
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In the second step, we do not have to rely on string comparison operations. In-
stead, we take advantage of the unique adjacency of a reaction node. In general,
a reaction is defined by the sets of chemical compounds it consumes — substrates
— and the set of compounds it produces — products. Given this signature, we
can robustly identify nodes in the bipartite BIOCYC network that fulfill a certain
neighborhood configuration. For each reaction node in the KEGG graph, we de-
termine the set of adjacent compounds and identify the set of reaction nodes in
the BioCyc graph that have the matched compounds as neighbors. In case of am-
biguous compound matches, we have to repeat the search for every combination
of potential compound candidates, resulting in a potentially larger set of reaction
matches. Reactions can still be robustly identified even if one or more compounds
in its neighborhood could not be matched at all. We refer the reader to section
5.2.5 for a detailed discussion on the different mapping scenarios. For multiple hits
on reaction nodes, we use the EC nomenclature given with the reactions to refine
the search result.
As a measure for the overall quality of the mapping serves a simple match score
s, for each pathway p in KEGG, which accumulates the match score s, for each
node v € V)

{o | m(v) |=0 S
Sy = . =

7 o lm(v) >0

[m(v

It takes ambiguous matches m(v) into account and penalizes a large number of

candidates for a specific node.

5.2.4 Visual Comparison and Exploration

After the mapping process has been completed, the overview on the metabolic
network comparison is presented to the user (see Figure 5.4). We start with a
completely collapsed network with only the pathway nodes visible. Several prop-
erties of the underlying networks will be visualized: relative pathway size, match
score s, as the green “filling level” and the number of entities without match in
relation to the network size (saturation of the red color).

For a selected pathway node, the user may investigate the relations to the BioCyc

pathway ontology (Figure 5.5). On demand, the portion of the directed acyclic
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Figure 5.4: Overview on the metabolic network constructed from KEGG
PAaTHWAY. 15 Pathways associated with the carbohydrate metabolism are
shown. The node size depicts the number of reactions and compounds of the
respective pathway. The nodes’ filling level reflects the match score s, for the
respective pathway, which is closely related to the ratio of matched nodes and
total node number, but also penalizes ambiguous matches. The saturation of
the red color in the upper portion of a node hints to the relative number of
nodes that could not be matched at all.
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graph representing the nesting relations of pathways together with the respective
chemical reaction nodes is overlaid onto the current view. The selected KEGG
pathway node remains highlighted. The subgraph of the DAG contains at least
all the matched reactions belonging to the selected KEGG pathway. Reactions
present in the current subset of the ontology but not part of the selected KEGG

pathway are not displayed to avoid clutter.

GLUDEG
e

PWY-5939

PWY-5101 PWY-5103 PWY-5750 PWY-5938 .

R-2-METH
YLMALATE

-DEHYDRA
TASE-RXN

S2METH
YLMALATE

-DEHYDRA
TASERXN

METHYLAS
PARTATE
-AMMONIA
LYASE-RXN

ACONITATE
-DECARBOX|
YLASE-RXN

ITACONYL
-COAHYD
RATASE-RXN|

CITRAMALY|
oh ACETOLAC

TSYN-RXN

RXN-7746 RXN-7751 RXN-8987

[CITRAMALAT
-LYASE-RXN

METHYLAS
PARTATE
[MUTASE-R;

.LYASE-RXN“

YLASE-RXN

4-METHYL
ENEGLUTA
MINASE-RX\

2837RN

CITRANVA

LATE-COA
-TRANS
[FERASE-R

-AMMONIA

Figure 5.5: Visualization of pathway relations from a selected KEGG pathway
node (C5-branched dibasic acid metabolism) to the pathway ontology provided
by BioCyc.

Once the user selects a pathway for further investigation by expanding one or more
pathway nodes, the detailed chemical network as found in KEGG PATHWAY is
revealed (see Figure 5.6). The three types of matches are indicated by different
node colors. The white color is used for compounds unable to map, red is used for
unmapped reactions. A compound node appears in a color on a scale from yellow
to green depicting the number of matched BioCYC compounds (green for exact
match). If a reaction node can still be mapped to one or more BioCYC compounds
even though in its neighborhood is at least one unmapped node, the reaction node
appears blue. The saturation channel is used to indicate the ambiguity of the
mapping. We make the distinction between reaction nodes with a completely
mapped neighborhood vs. an incompletely mapped neighborhood, because with
fewer node sets being taken into account when searching for a reaction match in
the BIoCYC graph, the higher is the degree of freedom and the less reliable is the
match.
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Figure 5.6: Match results on the detailed reaction network of the Pentose-
Phosphate-Pathway. A color on the scale between yellow and green depicts
the local match score, i.e., the inverse of the number of hits in the BioCyc
graph. A white node color for compounds and red for reactions indicates, that
the compound or reaction could not be found in the BIoCyC graph. A reaction
node drawn in blue indicates, that only a subset of adjacent compound nodes
could be found in the BIoCYC graph. In those cases, the reaction matches are
much less reliable, but could very often verified using the EC number of the
associated enzyme.
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The user can finally verify the highlighted discrepancies in the two networks by
displaying the context information in the BIoCYC graph. For a selected reaction
node, the mapped reaction(s) in BIOCYC are displayed with the respective sub-
strate and product compounds (Figure 5.7, r. h. s.). Vice versa, for a selected
compound in KEGG, the corresponding match(es) with their adjacent reaction
nodes are overlaid over the current graph (Figure 5.7, I. h. s.). The aforemen-
tioned node coloring scheme is applied on the BIOCYC nodes as well. In addition
to the selected node's neighborhood, the partial pathway ontology containing the

displayed reaction nodes is presented.
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Figure 5.7: Details on demand: For the selected compound 2-Dehydro-3-

.

DEOXYGLUC|
ONOKIN-R:

deoxy-D-gluconate (L.h.s.) and the chemical reaction identified by the enzyme
2.7.1.45 (r.h.s.) of the Pentose-Phosphate-PW, the direct neighbors in the Bio-
Cyc graph are displayed and the corresponding subset of the pathway ontology.

Displaying the KEGG template graph and the reaction graph context in BIoCyC si-
multaneously has another advantage besides mental map preservation. This choice
of design allows the user to edit the KEGG PATHWAY graph to correct flaws in
the network. The graph editing capability of the software tool allows manipulating

the graph's topology as well as assigning attributes to graph elements.
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5.2.5 Results

We constructed two different KEGG networks as template graph and ran the com-
parison on both graphs. The first network contains the complete set of available
pathways (140). The second is a compilation of 15 pathways related to the car-
bohydrate metabolism. For experimental purposes, we ran two scenarios on that
smaller network. The pathways provided by KEGG usually do not contain chem-
ical compounds participating in a large number of reactions, e.g., H,O, ATP,
ADP, CO,. Because of their high abundance, it is meaningful to exclude them
from the visualization. However, these compounds greatly influence the quality
of the reaction mapping, as these are obviously present in the BIoCyC network.
That fact becomes apparent when comparing Figures 5.6 and 5.8. In the first
scenario, ubiquitous molecules were artificially added to the neighborhood of ev-
ery reaction node according to the reaction’s specific substrate and product sets.
The second scenario neglects the presence of these compounds resulting in an
improved visualization. In this way, the reaction’s neighborhood constraint for a
match is weakened, and therefore, leads to more ambiguous mappings. It is easy
to conclude that many of the matches present in the simplified network are in-
deed mismatches as they do not occur in the scenario with stronger neighborhood
conditions. Table 5.2 supports this observation.

This network contained 552 chemical compounds including ubiquitous molecules
of which 455 could be mapped to at least one BIOCYC compound. 471 of 616
reactions were identified in the BIoCYC network. In the case of the simplified
graph, 380 out of 449 compounds (84.6%) and 519 out of 616 reactions (84.3%)
were mapped to BIOCYC elements.

The observation of different mapping qualities depending on the in- or exclusion
of ubiquitous metabolites can be verified in the detailed view as depicted in Fig-
ure 5.9. We could yet make another discovery on the reaction level. In some
cases of ambiguous mappings, a perfect match would indeed be a mapping error!
As the context graph in Figure 5.10 shows, the KEGG compound ‘D-Glucose' is
mapped to two Glucose nodes in BIOCyC: ‘D-Glucose’ and ‘GLC'. Referring to
the annotation, the KEGG compound is more precisely alpha-D-Glucose, and GLC

is beta-D-Glucose, a stereo-isomer of the former. Since no annotation is given
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Figure 5.8: Match results on the detailed reaction network of the Pentose-
Phosphate-Pathway. Unlike in Figure 5.6, ubiquitous molecules were omitted.
This greatly improves the visualization. However, the reaction mapping is not
as accurate as before. More reactions could be matched as suggested by the
lower number of red-colored reaction nodes.
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Compounds Reactions total
Pathway Name # f sp | # f Sp f Sp sp 1—f
Glycolysis / Gluconeogenesis 31 087 083 |44 0.93 0475|082 0.72 | 0.622 0.093
Citrate cycle (TCA cycle) 20 0.75 0.75 124 092 0.364 | 0.79 0.65 | 0.539 0.159
Pentose phosphate pathway 32 091 088 |38 1.00 0.775 | 087 0.84 | 0.825 0.043
ChH-Branched dibasic acid metabolism 32 075 0.75 |32 0.69 0.589 | 0.66 0.60 | 0.669 0.281
Pentose and glucuronate interconv. 55 096 095 |61 090 0.804 | 0.82 0.79 | 0.871 0.069
Propanoate metabolism 36 092 092 |52 0.79 0.466 | 0.67 0.60 | 0.651 0.159
Fructose and mannose metabolism 48 088 087 |63 0.81 0.718 | 0.76 0.74 | 0.782 0.162
Galactose metabolism 41 090 0.86 | 37 0.73 0.628 | 0.68 0.61 | 0.750 0.179
Ascorbate and aldarate metabolism 47 094 094 | 47 0.83 0.673 | 0.70 0.67 | 0.804 0.117
Starch and sucrose metabolism 50 0.72 0.70 | 69 0.70 0.543 | 0.65 0.57 | 0.607 0.294
Amino sugar and nucleotide sugar met. | 87 0.84 0.81 | 95 0.74 0.672 | 0.69 0.67 | 0.739 0.214
Butanoate metabolism 40 0.85 0.85 |53 0.87 0.632 | 0.74 0.70 | 0.726 0.140
Inositol phosphate metabolism 39 077 073 |41 0.61 0.437 | 0.76 0.66 | 0.580 0.312
Pyruvate metabolism 32 0.88 0.88 |65 094 0.419 | 0.77 0.70 | 0.570 0.083
Glyoxylate and dicarboxylate met. 50 098 096 | 66 0.97 0.637 | 0.88 0.84 | 0.776 0.026

Table 5.2: Summary of the mapping process. 84.6% of the compounds and 84.3% of the chemical reactions from the
KEGG network could be mapped to nodes in the BIoOCYC network. f denotes the frequency of a match. For the
reaction mapping, the first column contains match frequencies and scores in a graph without ubiquitous molecules (see
Figure 5.8). This leaves a higher degree of freedom when checking the reaction’s neighborhood condition. As a result,
many ambiguous matches are found. In the latter reaction column we have the scenario in which ubiquitous molecules
were present (compare with Figure 5.6). The last two columns summarise the overall mapping quality of the complete
pathway without the ubiquitous metabolites. 1 — f denotes the ratio of elements unable to map.
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5.2. VISUAL COMPARISON OF KEGG PATHWAY AND BIOCYC
CONTENT
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Figure 5.9: The number of compound nodes adjacent to reaction nodes in-
fluences the quality of the mapping. Top: Without the ubiquitous molecules
(white elliptic nodes, not present in the KEGG network), the neighborhoods
of the two reaction nodes are identical. Both reaction nodes will be mapped
to the same reaction in KEGG.

83



CHAPTER 5. COMPARATIVE VISUALIZATION OF NETWORK
GRAPHS

Acceptor

Figure 5.10: Example for an ambiguous match being closer to the ground truth
than a unique match. Both types of D-Glucose are present in the network.
The reaction node in KEGG represents a complex reaction consisting of several
alternatives for metabolizing the different stereo-isomers of D-Glucose.
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for the BIOCYC node ‘D-Glucose’, we can only assume, that it represents indeed
alpha-D-Glucose as specified in KEGG. In that case, the BIoCyC pathway con-
tains more — and more accurate — information, since both isomers are metabolized.
In addition, the two reaction nodes mapped to the highlighted KEGG reaction are
again a more precise description than provided by KEGG. The annotation for the
KEGG reaction reveals two EC names, which indicate a complex reaction catalyzed
by more than one enzyme. The two matches in BIOCYC support this assumption
as the reaction ‘RXN-11334' corresponds to the enzyme number 1.1.99.35, and the
reaction ‘GLUCOSE-DEHYDROGENASE-ACCEPTOR-RXN' is identified with the
EC number 1.1.99.10. Both EC numbers match the annotation of the respective
reaction in KEGG.

For the complete metabolic network, 2872 out of 4817 compounds (60%) and 2169
out of 3129 reactions (69.3%) were identified in the BIOCYC graph. The retrieval
rates in the large network were considerably smaller than in the network repre-
senting the carbohydrate metabolism. This may have different reasons. Firstly,
pathways related to the carbohydrate metabolism are well studied and understood.
We can assume, that those pathways contain fewer errors. Secondly, among the
more ‘exotic’ pathways in KEGG, there may be some reaction sets not present in

the BioCYC collection at all.

5.2.6 Concluding remarks

In this work we have presented an extension to our graph visualization software
capable of comparing metabolic networks from different bioinformatics resources.
The network constructed from the KEGG PATHWAY database served as template
graph and was used for navigating and exploring the data exploiting its 2-layer
hierarchical structure. The reaction and compound nodes of this network were
mapped to the metabolic network provided by the BiIoCYC database collection
for the purpose of validation and verification of the KEGG data. The mapping
quality was summarized using a simple, but yet meaningful score and presented
to the user as an overview over the matched pathway graph. Discrepancies could
be located and investigated in more detail taking advantage of the implemented

focus&context technique described in chapter 3 for navigation and exploration.
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Some differences in the datasets are plausible as explained in the results section,
others are indeed incorrect entries or annotations. The proposed method helps
to identify those problems, however, the evaluation of those discrepancies is the
task of the user and certainly requires some background knowledge about the
biochemical processes in question.

A very useful feature only shortly mentioned in this work is the graph editing
capability of the software tool. By displaying portions of the BioCycC graph
relevant to the selected elements in the KEGG graph on top of the current graph
representation, the user can manually refine the metabolic network and save the
changes.

There are, however, a few issues to be addressed. The mapping of compound
nodes relies on the string comparison of the provided annotations and may miss
matches due to syntactic errors in the synonym lists. Although the results suggest
the matching process to be rather robust, manual refinement of the synonym lists
may be necessary in some cases. On the other hand, identifying reaction nodes by
their adjacency relations works very well even if some of the adjacent nodes could
not be matched. In addition, perfect matches on reaction nodes with under-defined
neighborhood can be exploited to match the missing compounds.

As stated in the previous section, the matching scores for ‘exotic pathways' were
very low suggesting that large parts of these pathways are missing in the BioCyc
collection. This issue should be investigated further in close cooperation with

bioinformatics experts and biologists.
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6 Visualization Framework

All of the aforementioned routines were integrated into the software GraphEdit, an
open-source graph visualization system based on the Qt (qt.nokia.com) frame-
work. The software can be obtained from

www.informatik.uni-leipzig.de/ hg/GraphEdit/.

The system provides an editor component to construct graphs and manually refine
the layout, as well as a GraphML parser for |/O. GraphEdit utilizes the graph library
libgraph, a collection of template classes and functions developed by Christian
Heine (www.informatik.uni-leipzig.de/ hg/libgraph).

GraphEdit contains a collection of algorithms for computing layouts and the ap-
pearance of graph elements, e.g., color, shape, size, as well as algorithms used for
analysing specific graph properties. The software serves as development and test
platform for new graph algorithms as it is easily extendable.

Although any kind of graphs (directed/undirected, multigraphs containing loops,
hierarchical graphs, hypergraphs) are supported, the main emphasis was placed on
the visualization and analysis of metabolic networks, which were modelled either as
directed hierarchical hypergraphs, or directed bipartite graphs. There is a collection

of very specific modules designed to address tasks on biochemical networks.

6.1 Graphical User Interface

The GUI of the visualization software provides five components implemented as
dockable frames inside the main window, see Fig. 6.1:

1. The Graph Scene is the central component of the application's main window.
The user has direct access to graph elements (nodes, edges, hyperedges, half-
edges) to manipulate the graph's connectivity, hierarchical relations, and layout.

Each graphical object rendered in the scene can individually be selected and appli-
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Figure 6.1: Graphical User Interface of the visualization system. The central
component of the application’s main window is the Graph Scene (1) for direct
access to the graph’s connectivity and layout. The Data View (2) represents
various properties of graph elements and nesting relations.

cable properties can be assigned via a context menu. The integrated graph editing
capability allows the user to manually construct pathway graphs or to modify a
given layout either generated by the algorithm or loaded from file. The component
allows the user to change the view on the graph, e.g., by collapsing or expanding
nodes, zooming, and panning.

2. The Data View component is a tree view displaying all associated — visual
and non-visual — properties of graph elements and the hierarchical structure of the
graph. The upper panel is used to perform a string-based search in the elements’
attributes and to select element subsets.

3. The Algorithm Info Area at the bottom-right hand side displays textual output
giving feedback on the progress of invoked graph or layout algorithms and to
present search results.

4. The Script Editor allows the user to combine several algorithms to accomplish
a complex task. Since all algorithms implemented in GraphEdit have access to the

global instance of the data structure encapsulating the graph model, the result of

one algorithm is the input of the following. All invoked algorithms are automatically
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added to the editor as script commands keeping track of the call sequence.
5. The Runtime Parameter Panel is a placeholder for user-defined data entry

masks. It is applicable to interactive algorithms described in the section below.

6.2 Algorithms in GraphEdit

All tasks manipulating the global instance of the graph data structure are im-
plemented within classes derived from GAlgorithm. This ancestor class provides
access to the graph scene and the algorithm info component as well as methods
for registering the algorithm in GraphEdit. Upon invocation of an algorithm via
the main window’s menu, a user-defined dialog is shown for setting the initial
parameters.

We distinguish between two kinds of algorithms, those requiring user intervention
during execution and those that do not. Both types must implement the doIt ()
method, which is called upon invocation from the menu. In the latter case, the
algorithm finishes after completion of this method. In the case of interactive
algorithms, the doIt() method is only used for initialization and setting up the
contents of the runtime parameter panel. For interacting with the graph in a task-
specific way, we take advantage of Qt's Signal-Slot implementation and connect
event handlers to signals emitted by the graph scene informing about changes made
in the graph by the user, for example, deletion of graph elements or changes in node
positions or other associated attributes. Data entered into the mask held by the
runtime parameter panel give the user the opportunity to control the progress of the
algorithm and to influence the visualization of the results. Examples of interactive
algorithms are described in chapters 4 and 5, whereas the layout computation

described in chapter 3 is implemented as a non-interactive algorithm.
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7 Conclusion

The goal of this thesis was to apply information visualization techniques combined
with graph layout algorithms to networks representing metabolic network data.
The systematic classification of chemical reactions into subsets, called metabolic
pathways, is a standard procedure among biochemists. We took advantage of this
classification to construct a metabolic network reflecting this hierarchical structure
and used the hierarchy to make the complete network accessible in an interactive
exploration process. One of the challenges was to integrate different scales — or
levels of detail — into the model starting with the pathway level highlighting func-
tional units within a biological cell's metabolism and biomass fluxes between them.
The next level in this model is the reaction network representing the transforma-
tion of molecules by chemical reactions. Finally, each of the molecules itself can
be considered as a graph representing the molecular structure. This hierarchical
graph is augmented with domain-specific annotations, e.g., textual information
as molecule or enzyme name, classification of enzymes, concentration values of
molecules.

The first part of the thesis demonstrated, how this hierarchical system can be
integrated into a visualization framework capturing all three levels of detail includ-
ing the representation of the given annotations characterizing network elements in
more detail. A suitable algorithm was presented to layout the pathway and reac-
tion layers of the network and a technique derived from the Table Lens Metaphor
was used to interactively explore the metabolic network data. The method was
successfully applied to the complete set of chemical reactions taking place in a
generalized eukaryotic cell.

While this static network represents the current “as is” state, little is known, how
these networks may have developed. In the second part of the thesis, we exam-

ined metabolic network data from a simulation capturing evolutionary processes
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on a cell's metabolism. In these networks, chemical reactions occur, change, or
disappear changing the metabolic network in terms of connectivity as well as with
respect to the attribute values associated with the graph elements. The presented
visual analysis process shed light on the formation of metabolic pathways and
provided a deeper understanding of evolutionary mechanisms in early metabolism.
The third part of the project covers the comparison of metabolic networks. Here
we have chosen two scenarios being of interest to the biological community: First,
how does the metabolism of one selected species differs from another species,
and second, what discrepancies are present in metabolic network data obtained
from different resources. The latter addresses the problem of data quality and
consistency among different data bases, which has not been investigated in that
detail before.

In the process of the work, a graph visualization application was developed, which
was used to implement and demonstrate the aforementioned methods and algo-

rithms.
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8 Appendix

The following table lists all metabolic pathways obtained from KEGG giving an
overview on the number of organisms realizing a particular pathway, and the num-
ber of different pathway realizations. The first number in the last column counts
different realizations directly taken from the KEGG ORGANIsMdata base. The
main source of differences among the realizations is the presence of isolated
nodes. Although carrying meaning for the presentation in KEGG, we consider
them as artifacts in the network. After removal of these nodes, the number of

realizations is greatly reduced as shown in the last column.

Pathway name (cont.) ID | #Spp. | Realizations
Glycolysis / Gluconeogenesis 00010 1366 | 36 1
Citrate cycle (TCA cycle) 00020 1339 | 61 1
Pentose phosphate pathway 00030 1357 | 42 2
Pentose and glucuronate interconversions 00040 1261 | 47 2
Fructose and mannose metabolism 00051 1353 | 34 2
Galactose metabolism 00052 1272 | 36 2
Ascorbate and aldarate metabolism 00053 892 | 35 2
Fatty acid biosynthesis 00061 1285 | 25 1
Fatty acid elongation 00062 121 1 1
Fatty acid metabolism 00071 1178 | 30 2
Synthesis and degradation of ketone bodies 00072 719 | 18 1
Steroid biosynthesis 00100 263 | 5 2
Primary bile acid biosynthesis 00120 18] 2 2
Secondary bile acid biosynthesis 00121 218 | 11 2
Ubiquinone and other terpenoid-quinone biosynthesis | 00130 1213 | 33 2
Steroid hormone biosynthesis 00140 18] 2 2
Purine metabolism 00230 1370 | 38 2
Puromycin biosynthesis 00231 1] 1 1
Caffeine metabolism 00232 85 2
Pyrimidine metabolism 00240 1370 | 32 2
Alanine, aspartate and glutamate metabolism 00250 1336 | 80 2
Tetracycline biosynthesis 00253 26 | 2 2
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Pathway name (cont.) 1D #Spp. | Realizations
Glycine, serine and threonine metabolism 00260 1352 | 77 2
Cysteine and methionine metabolism 00270 1363 | 54 2
Valine, leucine and isoleucine degradation 00280 1357 | 36 2
Geraniol degradation 00281 642 | 14 2
Valine, leucine and isoleucine biosynthesis 00290 1370 | 25 2
Lysine biosynthesis 00300 1309 | 34 1
Lysine degradation 00310 1134 | 25 2
Penicillin and cephalosporin biosynthesis 00311 273 9 2
beta-Lactam resistance 00312 31| 13 1
Arginine and proline metabolism 00330 1334 | 60 2
Clavulanic acid biosynthesis 00331 3 2 2
Histidine metabolism 00340 1188 | 25 2
Tyrosine metabolism 00350 1265 | 50 2
Trichloro-2,2-bis(4-chlorophenyl)ethane degradation | 00351 8 2 2
Phenylalanine metabolism 00360 1147 | 55 2
Chlorocyclohexane and chlorobenzene degradation 00361 532 | 19 2
Benzoate degradation 00362 905 | 40 2
Bisphenol degradation 00363 272 | 14 2
Fluorobenzoate degradation 00364 465 | 18 2
Tryptophan metabolism 00380 1261 | 34 2
Phenylalanine, tyrosine and tryptophan biosynthesis | 00400 1312 | 74 1
Novobiocin biosynthesis 00401 1018 | 21 2
Benzoxazinoid biosynthesis 00402 2 1 1
beta-Alanine metabolism 00410 1117 | 28 2
Taurine and hypotaurine metabolism 00430 1074 | 25 2
Phosphonate and phosphinate metabolism 00440 433 | 11 2
Selenocompound metabolism 00450 1357 | 32 2
Cyanoamino acid metabolism 00460 1145 | 48 2
D-Glutamine and D-glutamate metabolism 00471 1132 | 30 2
D-Arginine and D-ornithine metabolism 00472 351 5 2
D-Alanine metabolism 00473 1034 | 31 2
Glutathione metabolism 00480 1345 | 34 2
Starch and sucrose metabolism 00500 1325 | 41 2
N-Glycan biosynthesis 00510 139 | 11 1
Other glycan degradation 00511 636 | 266 10
Mucin type O-glycan biosynthesis 00512 49 2 1
Various types of N-glycan biosynthesis 00513 40 | 28 2
Other types of O-glycan biosynthesis 00514 99 | 30 1
Amino sugar and nucleotide sugar metabolism 00520 1344 | 74 2
Streptomycin biosynthesis 00521 1098 | 25 2
Biosynthesis of 12-; 14- and 16-membered macrolides | 00522 3 2 2
Polyketide sugar unit biosynthesis 00523 882 | 18 2
Butirosin and neomycin biosynthesis 00524 22 2 2
Glycosaminoglycan degradation 00531 102 | 30 2
Glycosaminoglycan biosynthesis - chondroitin sulfate | 00532 49 | 34 1
Glycosaminoglycan biosynthesis - keratan sulfate 00533 391 29 7
Glycosaminoglycan biosynthesis - heparan sulfate 00534 49 | 44 1
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Pathway name (cont.) ID #Spp. | Realizations
Lipopolysaccharide biosynthesis 00540 721 79 1
Peptidoglycan biosynthesis 00550 1093 | 234 2
Glycerolipid metabolism 00561 1269 | 29 2
Inositol phosphate metabolism 00562 1202 | 28 2
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 00563 138 | 40 1
Glycerophospholipid metabolism 00564 1354 | 37 2
Ether lipid metabolism 00565 190 8 2
Arachidonic acid metabolism 00590 768 | 14 2
Linoleic acid metabolism 00591 79 3 2
alpha-Linolenic acid metabolism 00592 664 8 2
Sphingolipid metabolism 00600 481 14 2
Glycosphingolipid biosynthesis - lacto and neolacto series | 00601 51 4 2
Glycosphingolipid biosynthesis - globo series 00603 75 6 2
Glycosphingolipid biosynthesis - ganglio series 00604 73 5) 2
Pyruvate metabolism 00620 1368 | 66 2
Dioxin degradation 00621 414 |1 19 2
Xylene degradation 00622 297 | 14 3
Toluene degradation 00623 526 | 19 2
Polycyclic aromatic hydrocarbon degradation 00624 725 | 13 2
Chloroalkane and chloroalkene degradation 00625 1000 | 27 2
Naphthalene degradation 00626 930 | 20 2
Aminobenzoate degradation 00627 849 | 38 2
Glyoxylate and dicarboxylate metabolism 00630 1346 | 49 1
Nitrotoluene degradation 00633 602 | 15 2
Propanoate metabolism 00640 1355 | 42 2
Ethylbenzene degradation 00642 240 | 15 4
Styrene degradation 00643 520 | 14 1
Butanoate metabolism 00650 1326 | 45 2
Ch-Branched dibasic acid metabolism 00660 1035 | 34 2
One carbon pool by folate 00670 1357 | 17 2
Methane metabolism 00680 1275 | 62 2
Carbon fixation in photosynthetic organisms 00710 119 ) 1
Carbon fixation pathways in prokaryotes 00720 12 2 1
Thiamine metabolism 00730 1317 | 36 2
Riboflavin metabolism 00740 1314 | 31 2
Vitamin B6 metabolism 00750 1281 | 32 2
Nicotinate and nicotinamide metabolism 00760 1348 | 36 2
Pantothenate and CoA biosynthesis 00770 1345 | 40 2
Biotin metabolism 00780 1265 9 2
Lipoic acid metabolism 00785 1206 | 15 1
Folate biosynthesis 00790 1304 | 36 2
Atrazine degradation 00791 216 4 2
Retinol metabolism 00830 49 | 13 2
Porphyrin and chlorophyll metabolism 00860 1300 | 19 2
Terpenoid backbone biosynthesis 00900 1331 | 44 2
Indole alkaloid biosynthesis 00901 2 2 2
Monoterpenoid biosynthesis 00902 2 2 2
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Pathway name (cont.) ID #Spp. | Realizations
Limonene and pinene degradation 00903 829 | 10 2
Diterpenoid biosynthesis 00904 9 4 4
Brassinosteroid biosynthesis 00905 8 2 2
Carotenoid biosynthesis 00906 271 13 3
Zeatin biosynthesis 00908 9 3 3
Sesquiterpenoid biosynthesis 00909 4 2 2
Nitrogen metabolism 00910 1312 | 36 2
Sulfur metabolism 00920 1221 | 29 2
Caprolactam degradation 00930 490 9 2
Phenylpropanoid biosynthesis 00940 9 3 3
Flavonoid biosynthesis 00941 9 3 3
Anthocyanin biosynthesis 00942 3 2 2
Isoflavonoid biosynthesis 00943 1 1 1
Flavone and flavonol biosynthesis 00944 8 2 2
Stilbenoid, diarylheptanoid and gingerol biosynthesis | 00945 9 3 3
Isoquinoline alkaloid biosynthesis 00950 12 2 2
Tropane, piperidine and pyridine alkaloid biosynthesis | 00960 14 2 2
Betalain biosynthesis 00965 2 2 2
Glucosinolate biosynthesis 00966 2 2 2
Aminoacyl-tRNA biosynthesis 00970 1372 | 791 2
Metabolism of xenobiotics by cytochrome P450 00980 49 3 2
Insect hormone biosynthesis 00981 21 2 2
Drug metabolism - cytochrome P450 00982 49 6 2
Drug metabolism - other enzymes 00983 49 8 2
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