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Introduction and summary of results

The enormous amount of capabilities that every human learns throughout his life, is prob-
ably among the most remarkable and fascinating aspects of life. Learning has therefore
drawn lots of interest from scientists working in very different fields like philosophy, biol-
ogy, sociology, educational sciences, computer sciences and mathematics. We will focus on
the mathematical and information theoretical aspects of learning within this thesis.

We are interested in the learning process of an agent (which can be for example a human, an
animal, a robot, an economical institution or a state) that interacts with its environment. The
formulation of a learning problem in the sensorimotor loop is far from being obvious, since
the dynamic of the process (i.e. the distribution of the sensor values, memory values, action
values etc.) depends crucially on the learning algorithm used by the agent. The definition of
the problem must therefore include the complex dependencies within this learning process:

• The agent’s actions depend on the sensor input, since this is the only source of infor-
mation about the environment that is accessible to the agent;

• future sensor input depends on current actions, if for example a young dog nibbles
his owner’s favorite shoes he is likely to receive a high volume signal with his ears in
near future;

• adjustable learning parameters and memory values might complicate this causal struc-
ture further.

This thesis is organized in two parts. In Part I we revisit and develop the mathematical
framework and in Part II we use this framework to formulate and solve a general class of
learning problems in the sensorimotor loop.

Motivation and state of the art for Part I
Part I is organized in two chapters that together provide the theoretical foundation for Part II.
Chapter 1 is dedicated to a proper stochastic description of an agent interacting with its
environment. The description must finally contain both, causal dependencies within the
agent-environment system that restrict the dynamic and degrees of freedom in the system
that can be adjusted in a learning process. An appropriate mathematical tool to describe
causal dependencies and learnable degrees of freedom is the well-known theory of causal
networks (also known as Bayesian networks or graphical models, see for example Lauritzen
[114], Murphy [133] or Rückert et al. [158]). Unfortunately the well-known theory is not
immediately applicable in our setup, since we are interested in the process over an infinite
time horizon. This is why we provide a generalization of the known results from the theory
of graphical models in Chapter 1. The theory developed in Chapter I can also be seen as
a generalization of discrete-time Markov-processes to processes with more involved causal
dependencies.

In order to illustrate the idea of graphical models and its relation to the sensorimotor loop
we will discuss the sensor-action process in a reinforcement learning setup (compare for
example Sutton and Barto [179]). Assume an agent to receive a sensor value si at time i
and to perform an action ai (that we assume to be independent of the former sensor values
and actions at this point). Both the sensor value, si, and the action, ai causally influence
the next sensor value si+1. These dependencies can be illustrated by the following causal
graph:
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Caus. mod. 1 - Causal structure of a simple open-loop controlled MDP

A graphical model roughly speaking consists of a graph indicating the causal dependencies
and a probability distribution that is compatible with this graph. The learnable degrees of
freedom mentioned above are given by the free actions, ai. The causal dependencies (and
the resulting dynamic) of the state-action process change significantly when the process is
altered into a closed-loop dynamic. Formally a feedback can be included by changing the
causal graph, Caus. mod. 1, into the following one:
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Caus. mod. 2 - Causal structure of a simple closed-loop controlled MDP

The resulting process is a controlled version of the former one. By this we mean that
the probabilistic transition rules from the pair (si, ai) to si+1 remains exactly the same
as before. On the level of graphs this requires, that the open-loop controlled MDP is a
subgraph of the closed-loop MDP with the further property that new arrows either point
to newly introduced vertices or to input vertices of the former graph (by input vertices
we mean vertices without parents). There exist other controlled dynamics over the graph
Caus. mod. 1 that are of great relevance for practical applications. One extension is what
we will refer to as (simple) sensorimotor loop. It describes an agent, that receives a sensor
value, updates its memory and reacts to the state of its memory. Therefore we introduce
some memory values, mi, and assume the following causal relationship:
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Caus. mod. 3 - Causal structure of a simple sensorimotor loop

Once a mathematical model for the dynamic of the agent-world system is settled, the learn-
ing objective has to be formulated and appropriate solution algorithms have to be intro-
duced. Mathematically this issue is commonly known as optimization theory (or optimal
control, if the optimization variables are paths subject to dynamical constraints). Therefore
Chapter 2 is devoted to optimization theory and stochastic gradient algorithms (for good
references see for example Clarke [50], Jahn [93], Aubin [7], Aubin and Frankowska [8],
Anger, Aubin, and Cellina [6], Troutman [185], Troutman [185], Borkar [38], Bharath and
Borkar [25], Kushner and Clark [109] and Kushner and Yin [110]). Since we will finally
optimize over compact constraint sets, we focus on projected stochastic gradient algorithms
as a tool to find stationary points of an optimization problem in a stochastic setup.

Summary and results from Chapter 1
In order to specify a model of an agent interacting with the environment, the following
questions have to be answered:



• Which observables exist and which of them are adjustable?

• How are these observables causally related over an infinite time-horizon?

• What is the stochastic dynamic of these variables, if the adjustable input variables are
fixed before the process starts (by stochastic dynamic we mean a probability distribu-
tion on the collection of all variables)?

• What is the stochastic dynamic , if the adjustable input variables depend causally on
previous observables and maybe on some new memory variables?

These questions can be modelled using the theory of causal models as known from the
machine learning literature (see for example Lauritzen [114], Murphy [133] or Rückert et
al. [158]). In order to describe an agent interacting with the environment over an infinite
time horizon there remain two challenges:

• The theory is needed for infinite graphs.

• Continuous state spaces and deterministic transition laws should be permitted, such
that the standard construction of the theory of directed models as a special case of the
theory for undirected models does not work.

First of all an appropriate class of graphs needs to be defined that is on the one hand powerful
enough to contain at least the sensorimotor loop and on the other hand should be restric-
tive enough to yield a convenient mathematical theory. We introduce an appropriate class
of graphs that satisfies these requirements. We will refer to this class of graphs as recur-
sively constructible graph (see Definition 1.1.1, especially Definition 1.1.1). We illustrate
this class of graphs by appropriate examples and counterexamples and proceed with a proof
of existence of a unique process law (i.e. a probability distribution on the space of possible
configurations over this graph) that is compatible with a given configuration of initial ver-
tices and the causal transition rules in Theorem 1.2.1. The main results from this chapter
are two conditional independence results for directed graphical models (Theorem 1.3.1 and
Theorem 1.4.1). Stochastic independence in graphical models over finite graphs has been
investigated intensively. A fundamental result has been proven by Hammersley and Clif-
ford in 1971 (see Hammersley and Clifford [80]), showing that a probability distribution
with positive density satisfies some Markov property with respect to a given finite graph if
and only if it factorizes over the cliques of the graph. There are at least three different rea-
sonable versions of Markov properties in undirected graphs, namely the pairwise Markov
property, the local Markov property and the global Markov property - see for example Lau-
ritzen [114]. The Hammersley-Clifford theorem immediately gives a similar statement for
finite directed graphs with positive density. We go beyond the known results in three main
aspects:

• We consider causal models over infinite graphs (this is unavoidable to describe a
Markov decision process or the sensorimotor loop over infinitely many time steps,
which is again necessary to investigate stochastic convergence in these models).

• For Theorem 1.3.1 we provide an alternative proof for the relation between graph
separation and conditional independence. Our proof needs less technical prerequi-
sites and is therefore applicable in more general cases (unlike the classical result, as
provided in Lauritzen [114] for example, we do not need the existence of a positive
density. Our result includes continuous state spaces and deterministic transition rules
for example - hence all statements remain true for (controlled) deterministic dynami-
cal systems with random initial values).

• In Theorem 1.4.1 we formulate and prove strong conditional independence proper-
ties, i.e. conditional independence results for randomly chosen vertex sets. This is
essential to understand certain conditional independence statements that we need in
Chapter 4. To our knowledge strong conditional independence properties have not



been considered systematically in a causal model setup so far. Even for the theory
of ordinary Markov processes, where we borrowed the terminology from, our result
extends the common statements (see Kallenberg [99], Rogers and Williams [154] or
Bauer [22]) in a non-trivial way: Our theorem allows conditional independence state-
ments given certain pairs of stopping times for example (compare Example 1.4.2).

The second point is worth a further comment. It is a well-known fact that the existence
of a positive density (or another slightly weaker constraint) is crucial for the Hammersley-
Clifford theorem to hold true. There exist examples of probability distributions showing that
the three Markov properties mentioned above are actually different in general (see Lauritzen
[114] for a good summary). Directed models on the other hand, under very mild technical
restrictions, always satisfy the strongest Markov property with respect to the moral graph
(for a clarification of these concepts see Section 1.3 in Chapter 1). The existence of a
positive density is usually not satisfied in these models and henceforth nothing can be fac-
torized over the cliques. The recursive construction of the probability law from appropriate
transition kernels (similar to the standard construction in the theory of finite time Markov
processes) assures the desired conditional independence results.

We think that causal models on recursively constructible graph, and especially the (strong)
independence results offer a very convenient technical tool to investigate the stochastic
properties of systems with Markovian dependencies with and without controls.

From a practical prospective, the first chapter offers a clear language to define what is meant
by convergence of a learning algorithm in a non-IID setup, where it is well-possible that no
state-action pair is observed more than once, that no pair of sensor values (or actions) have
identical distributions and that no pair of variables are stochastically independent. The
definitions and the conditional independence results also simplify many arguments in con-
secutive chapters of this thesis. Structural robustness is most naturally described in the
language of statistics. A statistical model is commonly known as a parameterized (or non-
parameterized) family of probability measures on a given probability space. In the case of
graphical models the probability space consists of all configurations on the graph equipped
with an appropriate σ-algebra . Any collection of free initial values defines a unique process
law and a collection of different initial configurations therefore naturally defines a statisti-
cal model over the causal model. Structural robustness of some property then means that
this property holds for any probability measure in the given family. In Definition 1.2.2 we
therefore also define the concept of a statistical model over a causal model. The statistical
language is also very useful for the formulation of learning problems - it is usually desirable
that a learning algorithm converges for all possible laws from a given family.

Summary and results from Chapter 2
Chapter 2 introduces some mostly well-known concepts and terminology from theoretical
optimization theory and set-valued analysis. The main ideas and results from this chapter
are:

• We suggest to back-project onto the constraint set using quasi-projectors different
from the Euclidean best-approximation (for a definition see for example: Aubin [7]).
The problem with general quasi-projectors is that they might introduce spurious sta-
tionary points at the boundary. We will show that this can be compensated by using an
appropriate metric for the gradient ascent. As a possible application we will describe
a suitable quasi-projector and a compatible metric for an optimization problem over
the unit ball in the set of matrices equipped with operator norm (see: example Exam-
ple 2.3.2 - an example that we will built upon in Chapter 4).

• We provide a detailed proof for the asymptotic behavior of an iterative stochastic
approximation sequence that is back-projected onto the constraint set by a general
quasi-projector. (see: Theorem 2.4.1)



• We give a proof of convergence for a stochastic gradient algorithm with back-projection
by a general quasi-projector where the gradient ascent is performed with respect to
some possibly discontinuous metric (or several metrics where the actual choice at
each step depends on the history, see Theorem 2.4.3).

Motivation and state of the art for Part II
The second part of this thesis deals with application of the theory of causal models on in-
finite graphs to learning problems in the sensorimotor loop. This topic is strongly inspired
by current developments in robotics and artificial intelligence. Therefore we will provide
an overview about recent developments and targets in this field before we continue with a
short summary of the last two chapters of this thesis.

The construction of robots that are able to perform more than a little number of highly-
specialized tasks remains a very challenging problem. It is practically impossible to specify
all relevant situations that the robot might ever encounter during interaction with its envi-
ronment and to implement all possible reactions right from the beginning into the software
of the robot. Current research in robotics usually tackles this problem by leaving non-fixed
parameters in the software architecture of the robot and by applying sophisticated methods
from machine learning and/or (stochastic) optimal control theory to learn these parame-
ters. Examples for robotic tasks that have attracted lots of interest include table tennis (see
for example Muelling, Kober, and Peters [131] or Muelling et al. [132] for two recent pa-
pers containing a good overview over the subject), baseball (see Peters and Schaal [142] or
Senoo et al. [169]). Another important application is grasping (see Peters and Schaal [152]
for application of Gaussian process implicit shape potential to robot grasping or see the
recent paper Dragiev, Toussaint, and Gienger [66] that applies the approximate inference
control framework to a novel coordinate representation of physically stable grasps). Typi-
cally the degree of freedom of the robot exceeds the dimension of the physical space by far.
Therefore target positions can usually be reached in many different ways. Coping with this
redundancy is known as operational state control , which is another important research field
in robotics (see for example Nakanishi et al. [182] or Zarubin et al. [197] for an approach
to operational space control using reward weighted regression). The paradigm shift away
from robots with a totally pre-implemented software towards partially self-learning robots
came along with another important insight: It is well possible that the robot can operate
successfully without having an explicit model of the environment and its own interaction
with the environment. For many tasks this explicit model representation within the robot is
superfluous, since the relevant physical constraints are already encoded in the physical laws
that the robot is automatically subjected to. This phenomena and related ideas are known
as embodiment. A very famous example for embodiment is the passive walker (see also
example Collins, Wisse, and Ruina [53], and Hoffmann and Pfeifer [87] for a recent case
study of embodiment in robotics and biology).

A significant portion of the literature in robotics deals with an appropriate representation of
the state spaces, the action spaces and appropriate representations of the policies. Common
representation include spline-based approaches (see Miyamoto et al. [129]), an encoding
by appropriate dynamical systems (see Ijspeert, Nakanishi, and Schaal [116] and Paraschos
et al. [139] for a probabilistic version) and many other task-dependent representations (see
Zarubin et al. [197] for different representation with a special focus on grasping for ex-
ample). The construction of good policy search algorithms is very actively investigated in
robotics (see Deisenroth, Neumann, and Peters [60] for a recent survey on this topic).

There has also been lots of successful attempts in applying methods from reinforcement
learning (see for example Kaelbling, Littman, and Moore [98] or Sutton and Barto [179])
to problems in robotics. Our work focuses on the agent-environment interaction, and is
therefore strongly connected to the theory of reinforcement learning. A key concept in this
field is the Markov decision problem. A Markov decision problem usually consists of two
ingredients, a stochastic model describing how the upcoming sensor values are influenced



by current actions (see Caus. mod. 2 and Caus. mod. 1) and an optimization problem. The
optimization problem is the maximization of the expectation of a reward function that maps
the state-action trajectories to a real number (see Eugene and Feinberg [71] for a good ref-
erence). The value of the expected reward can be modified via the policy, i.e. the way
of choosing new actions. Important instances of expected reward problems that have been
discussed extensively in the literature include the immediate rewards, discounted rewards
and average rewards (see Eugene and Feinberg [71] for a good overview). In reinforcement
learning some parts of the input data for the Markov decision problem are unknown (this
might include the reward function and/or the transition probabilities). Most of the policy
optimization algorithms use gradient ascent methods (see for example Peters and Schaal
[143], Sutton et al. [180] or Peters, Mülling, and Altün [145]) or some EM-inspired algo-
rithms (see Murphy [133]) applied to an equivalent statistical inference problem (see for
example Kober and Peters [103], Rawlik, Toussaint, and Vijayakumar [150], Vlassis et al.
[189], Toussaint and Goerick [183]).

A very important recent target in robotics is to increase the level of autonomy. Present
robots are still far from interacting with the world, gathering knowledge with relevance for
different tasks and successfully extracting appropriate behavorial routines for the current
situation automatically. One problem lies in a special feature of many algorithms from ma-
chine learning and statistics: they strongly rely on the observation of IID samples. In many
tasks in robotics this is reached by repeating the following steps:

• put the robot into a well-defined initial state with some well-defined set of parameters;

• perform a roll-out;

• evaluate the roll-out, return to the initial position and restart the procedure (maybe
with changed parameters).

For a step towards more autonomy it would be desirable to let the robot follow a certain
trajectory without the reset step. Any learning algorithm then necessarily requires a clear
model about the influence of the robot on the environment and vice versa. This is very
different from the situation in standard computing. In standard computing the machine
transfers input into output and does usually not have to care about the influence of its output
on future input. In robotics, however, this influence is crucial (as for example an instable
position might cause the robot to fall down and break etc.).

The search for a way to make robots more autonomous also led to reinforcement learning
algorithms with non-reward like objective functions, like the predictive information (see Ay
et al. [17], Zahedi, Ay, and Der [196] and Ay et al. [16]). The underlying idea is that learn-
ing of a robot (or another agent) might be driven by a comparatively simple information
theoretical principle. A maximization of the predictive information is one such principle.
The predictive information has the appealing property that it is a compromise between a
high entropy on the one hand and a very coordinated transition on the other hand. Applica-
tions to physically realistically simulated robots indeed show a very interesting coordinated
behavior of the robot (see Ay et al. [17], Zahedi, Ay, and Der [196]) and might therefore be
an appropriate ingredient to guide the exploration of a self-learning robot.

The idea of maximizing information measures is tightly related to another important cor-
nerstone of modern research in artificial intelligence, theoretical biology, theoretical neu-
rosciences, coding theory etc.: information theory (for good monographs on information
theory and information geometry see Amari [2], Amari, Nagaoka, and Harada [5], Cover
and Thomas [54], Csiszár and Korner [58], Shannon [170] and Liese and Vajda [118]). Be-
side their theoretical importance, information theoretical insights can often improve known
algorithms. One example for this is the natural gradient. To our best knowledge, the idea
of using the so-called Fisher metric in a gradient ascent algorithms in the parameter space
of a statistic models dates back to Amari (see for example Amari [3] and Amari and Dou-
glas [4]). The natural gradient outperforms the plain-vanilla gradient (which is the gradient



with the underlying metric being the standard Euclidean metric on the chosen parameter
set) in many applications. An intuitive explanation is that the Fisher-metric is associated to
statistical properties of the model (it lower bounds the variance of an unbiased estimator in
the Cramer-Rao inequality for example, see Amari, Nagaoka, and Harada [5]), whereas the
Euclidean metric in parameter space is rather arbitrary and highly depends on a good choice
of parameters. A problem with plain-vanilla gradients is often that they do not relate to the
probabilistic properties of the statistical model. In Peters and Schaal [143] the authors give
an example where the plain-vanilla gradient suppresses exploration too quickly, whereas the
Fisher gradient performs reasonably well. The issue has also been addressed in the recent
paper Peters, Mülling, and Altün [145] where the authors suggest to update the parameters
with bounded information loss (measured by the Kullback-Leibler divergence between the
observed empirical distribution of state-action pairs and the distribution resulting from the
new policy).

The causal models over infinite graphs and the language developed in the first chapter of this
thesis provide an appropriate tool for describing an agent interacting with the environment
and rigorously defining reinforcement learning problems with non-reward-like objective
functions as statistical problems. This is what we do in the second part of this thesis.

Summary and results from Chapter 3
In Chapter 3 we describe our model of an agent interacting with the environment with and
without learning. The concepts originate from the theory of Markov decision problems and
will appear familiar to everyone working in related fields. What differs from most defini-
tions is that we split the dynamical part of a Markov decision problem from the optimization
part. The reason is twofold. First of all we want to define our model rigorously, meaning
that we want to have a clearly defined probabilistic model of the process for different ex-
terior parameters and different learning algorithms. For the convergence proofs to follow
in Chapter 4 we need a clear language for what is actually mean by learning - it is the
convergence of the learning algorithm to a specified context-dependent optimizer for every
measure in the given statistical model. There exists a collection of world parameters, each
of which determines a well-defined process law for a given learning algorithm. We want
that the agent reaches to find the right, possibly parameter-dependent learning objective
with probability one. A rigorous definition of the stochastic model of an agent interacting
with the environment needs a certain amount of care and further explanation. The second
reason for a separation of dynamical model and the optimization problem is that we will
optimize more general process functionals than the expected reward.

The main results from Chapter 3 are a clarification of the models to be considered in Chap-
ter 4 (see section 3.1), the introduction of a reinforcement learning problem that goes beyond
expected reward maximization (see: Problem 3.2.1 and the special instances Problem 3.2.2
and Problem 3.2.3), a presentation and motivation of numerous interesting instances of this
problem with a collection of relevant policy gradient formulas (see section 3.3). We prove
the relation between discounted functionals of the process law (a generalization of the dis-
counted expected reward) and their ergodic counterparts (a generalization of the long-time-
average reward) for finite state space models (see Theorem 3.2.1). The gradient formulas
use some results from perturbation theory for finite state Markov chains. The idea to apply
this theory to gradient ascent algorithms in machine learning is also new to our knowledge.

Summary and results of Chapter 4
In Chapter 4 we finally prove convergence of a collection of learning algorithms that are
supposed to find local optima for the functionals discussed in Chapter 3. Applying this to
the predictive information we are able to improve an algorithm given in Zahedi, Ay, and
Der [196] and to show its convergence for the first time. We start with a convergence result
for finite state spaces and proceed with a general convergence result. The general result is
based on a (in an appropriate sense) consistent estimator of the world parameters and the ex-



istence of a suitable back-projection onto the constraint set. The proofs and the algorithms
strongly depend on the definitions and results in Chapter 2. For finite state space MDPs and
for linear Gaussian MDPs we explicitly provide these tools, such that the algorithm can be
implemented with a computer without further theoretical work. The main outcomes of this
section are Theorem 4.1.1, Theorem 4.2.1 and the application to linear Gaussian dynamics
in section4.3

Concluding remarks
We have collected several mathematical preliminaries from probability theory, differential
geometry of submanifolds ofRn and information theory in the Appendix.

To improve readability we have collected a list of own definitions or definitions that differ
slightly from their common usage in a glossary. We have also included a list of abbrevia-
tions and a symbol index.
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Chapter 1

Causal models on recursively
constructible graphs

In the first section we introduce a class of stochastic models, that we will refer to as causal
models in this thesis. On the one hand this class of models is broad enough to capture a
huge variety of different models, on the other hand this class is narrow enough to posses
some interesting non-trivial properties. For a mathematical treatment of causal models we
combine some concepts from probability theory, namely from the theory of Markov chains
(with general state space) with the theory of causal models as it is known in the machine
learning community.

In machine learning causal models are a frequently used tool (compare Murphy [133] or
Bishop [31] for example). They consist of a graph that illustrates the causal relationship
between variables. The model is then constructed by assigning a state space to each vertex
and constructing a probability measure that respects the causal structure of that graph in a
certain sense. Even though there exists a huge amount of literature on causal models (com-
pare for example Lauritzen [114]) we need to extend the standard results in order to make
statements about the sensorimotor loop (a definition of our model of the sensorimotor loop
follows in Chapter 3).

Our definition generalizes the usual setup in two aspects. First of all we do not assume that
the overall probability measure has a density with respect to some product measure (com-
pare Lauritzen [114]) and secondly we allow certain infinite graphs. The latter typically
arise whenever ergodic or asymptotic properties of processes are of interest. We are in-
terested in asymptotic probabilistic statements about an agent (usually a robot) interacting
with the environment by reacting to sensor inputs via outputs to a motor controller. The
class of models that we describe is in our opinion also appropriate for a stochastic model
of multiple agents interacting via a specified interface for example in biology or economy.
We include non-discrete state spaces and transition kernels whose transition probabilities
are not dominated by a single measure. As a simple example for a kernel with the latter
property, consider a deterministic transition, i.e. a kernel of the form K(x,A) := δf(x)(A)
where x ∈ R, f is a measurable real-valued function and δy is the Dirac measure at point
y, i.e.

δy(A) =

{
1 if y ∈ A
0 else.

The measures δf(x) are dominated by a single σ-finite measure µ if and only if the image of
f is countable. Let X be a random variable with uniform distribution on [0, 1] and define
Y := f(X) and Z := g(Y ) for some continuous non-single valued functions f, g : [0, 1]→
[0, 1]. The standard theorems on conditional stochastic independence (compare Lauritzen
[114], Bishop [31] and Murphy [133]) do not guarantee that Z is independent fromX given
Y . The reason is that it is impossible to find a product measure on [0, 1]× [0, 1]× [0, 1] that
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dominates the common distribution of (X,Y, Z).

For the purpose of this thesis it is conceptually advantageous to distinguish between the
causal model (by this we mean the state space on the graph together with the transition
rules) and a specific stochastic dynamic on the graph (or more generally a statistical model
of several possible dynamics). This is very common in the theory of Markov chains, where
the law of the stochastic process contains two ingredients - the transition kernels (this is
what we called transition rules) and the initial distribution. Most questions in the theory
of Markov chains are concerned with the dependence of certain stochastic quantities on
the starting point, or more generally on the initial measure (like mean passage times of
certain points or sets, absorption probabilities for traps, expectation values of first hitting
times of certain sets, return probabilities and many more). These statements are statistical
statements, since one is interested in the behavior of the model for different measures from
a certain class. We will prove the existence of a unique probability law on the entire state
space, that is compatible with the initial measure and the transition kernel structure - a result
very similar to the theory of Markov chains again.

Afterwards we will focus on the conditional independence properties of causal models.
The main result of this chapter is a generalization of the usual conditional independence
results known from the standard theory of causal models in machine learning. Our result
generalizes the known theorems in two aspects:

• The requirement of the existence of a product measure that dominates the probability
law (as assumed in all proofs of the conditional independence results known to the
authors) is dispensable.

• The underlying graph is not required to be finite but can rather be chosen from a
certain class of infinite graphs (which we will call recursively constructible). This
extension is essential for our analysis of the sensorimotor loop later on. Generally
speaking this extension is crucial whenever the conditional independence properties
are used to describe an infinite process of several variables that influence each other.

Moreover we will prove the strong Markov property of causal models and give some exam-
ples for possible applications. To our knowledge this problem has not been addressed so far.
The formulation of strong conditional independence statements for general causal models
is a little bit technical but we think that once established it provides a very clear view onto
the subject. Some new results for Markov chains follow immediately (as strong indepen-
dence statements for certain pairs of stopping times for example). We will also motivate the
definitions and theorems of this section by numerous examples.

In our opinion the theory of causal models on recursively constructible graphs as developed
in this chapter is a versatile tool to describe conditional stochastic dependencies between
several state variables of a stochastic process that mutually influence each other. In probabil-
ity theory these dependencies are often described by the underlying process being adapted
to an appropriate filtration. This assumption can easily be translated into the language of
causal models on recursively constructible graphs. However the full strength of the machin-
ery pops up whenever certain process values do not depend on all the past values but only
on a certain collection. In this case a careful graphical representation reveals many more
non-trivial (strong) conditional independence results between the state variables.
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1.1 Recursively constructible graphs

For this chapter we need some concepts from probability theory, most of which we listed
in the Appendix, A.1. First we will summarize some graph-theoretical concepts and define
what we will refer to as recursively constructible graph. Afterwards we will justify the
definitions and give some examples to illustrate the concept (for a reference on graph theory
see for example the first chapter of Lauritzen [114], Diestel [65], Bang-Jensen and Gutin
[20] or Bondy and Murty [35]).

Definition 1.1.1 - (Concepts from graph theory and definition of recursively con-
structible graphs)

I Definition 1.1.1.1: A directed graph is a pair (V,E) where V denotes the set of vertices
and E ⊆ V × V denotes the set of edges. This relation can be illustrated graphically by
plotting the vertices and linking v and w by an arrow if (v, w) ∈ E.
I Definition 1.1.1.2: Let (V,E) be a graph. For a given vertex v ∈ V we define the set of
its parents

Par (v) := {w ∈ V |(w, v) ∈ E }

and the set of its children

Child (v) := {w ∈ V |(v, w) ∈ E }

I Definition 1.1.1.3: A subset A ⊆ V is called ancestrally closed, if v ∈ A implies
Par(v) ⊆ A. The intersection of an arbitrary collection of ancestrally closed sets is an-
cestrally closed again, such that there exists a smallest ancestrally closed set containing a
given set A ⊆ V . This set is called ancestral closure of A:

An(A) := ∩B∈{X∈2V |X⊇A ; X ancestrally closed}B (1.1)

I Definition 1.1.1.4: We will write u  v if there exists a path from u to v, i.e. there
exists a finite sequence (v1, v2, . . . , vn) ∈ V n with v1 = u, vn = v and (vi, vi+1) ∈ E for
1 ≤ i < n.
I Definition 1.1.1.5: A directed graph (V,E) is called acyclic if vu  vv does not hold
true for every v ∈ V .
I Definition 1.1.1.6: Let (V,E) be a directed acyclic graph. The set of vertices without
parents will be called input vertices, i.e.:

V0 := {v ∈ V |Par v = ∅}

inductively define the set of “vertices with information available from vertices of degree i
with i ≤ n” only, i.e. if V0, V1, . . . Vn have already been defined then:

Vn+1 := {v ∈ V \ (∪0≤i≤nVi) |An ({v}) \ {v} ⊆ ∪0≤i≤nVi }

I Definition 1.1.1.7: A directed acyclic graph (V,E) with vertex set V will be called
recursively constructible if V = ∪i∈N0Vi.

It is clear that a graph describing a causal structure should be acyclic, since an effect cannot
be its own cause. The last condition (the recursive constructability assumption) in Def-
inition 1.1.1 is worth a closer look. The usefulness of this statement will become more
obvious later on, when we investigate the probabilistic properties of causal models. Intu-
itively imagine the graph to illustrate some evaluation scheme and the kernels to express
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calculation rules. In a zeroth step assign some value to each input vertex v ∈ V0. In a first
evaluation step calculate the value of each v ∈ V1 from the values of the vertices V0 (which
is possible since all parents of vertices in V1 are elements of V0). All other vertices have
non-evaluated parents and therefore cannot be evaluated yet. In a second step the values
of vertices in V2 can be calculated since they have parents in V1 and V0 only. Proceeding
this way one can evaluate vertices in Vi in the i-Th step. In this picture the recursive con-
structability condition implies that any given vertex is finally evaluated.
Here is an examples of an infinite graph that is directed but is not recursively constructible:
V = Z and E :=

{
(i, i+ 1) ∈ V 2 |i ∈ Z

}
or graphically:

· · · // (i) // (i+ 1) // (i+ 2) // (i+ 3) // · · ·

Caus. mod. 4 - First example of an acyclic, directed graph that is not recur-
sively constructible

An example of a directed, non-recursively constructible graph with non-empty set of input
vertices is the following one:
V = Z × {0, 1}, E =

{
((i, 0), (i+ 1, 0)) ∈ V 2 |i ∈ Z

}
∪
{

((i, 1), (i, 0)) ∈ V2
2 |i ∈ Z

}
or graphically:

· · · // (i, 0) // (i+ 1, 0) // (i+ 2, 0) // (i+ 3, 0) // · · ·

· · · (i, 1)

OO

(i+ 1, 1)

OO

(i+ 2, 1)

OO

(i+ 3, 1)

OO

· · ·

Caus. mod. 5 - Second example of an acyclic, directed graph that is not recur-
sively constructible

Recursively constructible graphs can also be characterized by their communication struc-
ture. This requires the following concepts about ordering relations (compare Kemeny and
Snell [101] for example):

Definition 1.1.2 - (Ordering relations)

Let V be some set and let ≤ be a binary relation on V .
I Definition 1.1.2.1: The binary relation ≤ is called weak ordering relation (often also
denoted as preorder or quasi order) if

• it is transitive, i.e. x ≤ y and y ≤ z implies x ≤ z

• and reflexive, i.e. x ≤ x for all x ∈ V

I Definition 1.1.2.2: Let V be a set, let a ∈ V and assume ≤ to be a weak ordering
relation. Then a is a maximal element of A if for all x ∈ V : a ≤ x implies x ≤ a.
Moreover a is called minimal element if for all x ∈ V the identity x ≤ a implies a ≤ x.
I Definition 1.1.2.3: The binary relation ≤ is called partial order relation if it is a weak
ordering relation and it is antisymmetric, i.e. whenever x ≤ y and y ≤ x then x = y.
I Definition 1.1.2.4: Let A ⊆ V and assume ≤ to be a partial ordering relation. Then A
is called totally ordered with respect to ≤ if any two elements x, y ∈ A are comparable, i.e.
either x ≤ y or y ≤ x.

For any directed graph (V,E) the set of edges induce a canonical weak ordering relation on
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the set of vertices indicating whether it is possible to go from one vertex to another, namely

a ≤ b if a = b or a b

These concepts allow an alternative definition of recursively constructible graphs:

Theorem 1.1.1 - (Alternative definition of recursively constructible graph)

Let G = (V,E) be a directed graph and let ≤ denote the canonical weak ordering relation
induced by E. Then G is recursively constructible if and only if

• ≤ is a partial ordering (alternative statement of G being acyclic) and

• For every a ∈ V there exists some N ∈ N such that every totally ordered subset
A ⊆ V with maximal element a has cardinality |A| ≤ N (equivalent formulation of
recursively constructability).

Proof of Theorem 1.1.1. As usual we write a < b for a ≤ b and a 6= b.
Let (V,E) be a directed graph. If for x, y ∈ V both x ≤ y and y ≤ x are satisfied then
either x = y or there exists a path from x to y and from y to x. Therefore ≤ is a partial
ordering if and only if the graph is acyclic.
Assume (V,E) to be recursively constructible and let v ∈ V . By definition there exists
some n ∈ N0 such that v ∈ Vn (compare Definition 1.1.1). Then necessarily |A| ≤ n + 1
for every totally ordered subset A ⊂ V with maximal element v, for otherwise there exist
elements wi ∈ V such that w1 < w2 <, . . . , < wk < v for some k > n which contradicts
v ∈ Vn.
Now assume that for every v ∈ V there exists some N ∈ N such that every totally ordered
subset, A ⊆ V , with maximal element v has cardinality at most N . Then v ∈ ∪0≤n<NVn.
To see this assume that the contrary holds true. Then there exists some element w1 ∈ V
with w1 ∈ Par(v) and w1 /∈ ∪0≤n<N−1Vn. Recursively one can construct a sequence
(w1, w2, . . . , wN−1) such that wk /∈ ∪0≤n<N−kVn and wi+1 ∈ Par(wi). Since wN−1 /∈ V0

there exists wN < wN−1 and

{w1, w2, . . . , wN} ∪ {v}

is a totally ordered subset of V with maximal element v and cardinalityN+1 contradicting
the assumption.

This characterization of Definition 1.1.1 can be formulated in a more colloquial language
as the statement, that the “ancestral tree” of every vertex v has finite depth. Note that every
finite acyclic graph is automatically recursively constructible.

1.2 Causal models and laws on causal models

Beside the graph describing the causal structure, the state spaces and the transition rules
have to be specified. The algebraic product (or Cartesian product) of sets Bi where i ∈ I ,
is the set of choice functions:∏

i∈I
Bi := {f : I → ∪i∈IBi |f(i) ∈ Bi } . (1.2)

We will frequently need the projections onto the individual factors:

πi :
∏
i∈I

Bi → Bi ; f 7→ f(i) (1.3)

Chapter 1
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For each i ∈ I let (Bi,Fi) be a measurable space. Then the product
∏
i∈I Bi equipped

with the product σ-algebra,

⊗i∈I Fi := σ({πi}i∈I), (1.4)

is a measurable space. The product σ-algebra is obviously the coarsest σ-algebra that ren-
ders all projections πi measurable. In this thesis we will always equip algebraic products
with the product σ-algebra if not stated elsewise.

Now we will define what we mean by a causal model over a given recursively constructible
graph. Again we will write down a definition first and then we will give an example to
illustrate the concepts.

Definition 1.2.1 - (Causal model)

A causal model is a triple C := ((V,E),S,T) where

• (V,E) is a recursively constructible graph encoding the causal structure of the model

• S is a collection of measurable state spaces indexed by the vertex set of V :

S =
∏
v∈V

Sv,

where (Sv,Fv) are measurable spaces

• T is a collection of transition rules, i.e. probability kernels from the parent vertices
to their children:

T ∈
∏

v∈V \V0

Λ
(Sv ,Fv)
(
∏
w∈Par(v) Sw,⊗w∈Par(v)Fw)

Remark 1.2.1 - (Remark on Definition 1.2.1)

Even though the choice of the σ-algebras Fv is part of the specification of the model we do
not explicitly mention this in the definition of C to keep notation simple. Very frequently Sv
is a finite set (andFv is the entire power set, 2Sv ) or Sv = Rn (more generally a topological
space) such that Fv is canonically the corresponding Borel σ-algebra.

To keep notation short we will use the following abbreviations:

SA :=
∏
v∈A

Sv and FA := σ({πv}v∈A) ⊆ ⊗v∈V Fv, (1.5)

whereA ⊆ V . Note that in the definition we assumed πv : S→ Sv such that strictly speak-
ing FA is different from ⊗v∈AFv. The former consists of subsets of

∏
v∈V Sv whereas the

latter consists of subsets of
∏
v∈A Sv. Of course FA and ⊗v∈AFv are naturally isomorphic

to each other but we prefer FA to be a sub σ-algebra of FV .

We will provide an example to illustrate the concepts now: Imagine a robot that receives
input values from it’s sensors and can output values to a motor controller (in order to move
his arm for example). The causal structure is described by the following recursively con-
structible graph, denoted by (V,E) in the sequel:
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vm,1

��

vm,2

��

vm,3

��

vm,4

��

vm,5

��

. . .

ve,0 // ve,1 //

��

ve,2 //

��

ve,3 //

��

ve,4 //

��

ve,5 //

��

. . .

vs,1 vs,2 vs,3 vs,4 vs,5 . . .

Caus. mod. 6 - Example: Non-observing robot

Here vertex ve,i denotes the state of the environment at time i ∈ N0, vertex vm,i denotes the
state of the motor controller at time i ∈ N and vertex vs,i denotes the sensor value at time
i ∈ N. The set of input vertices is

V0 = {ve,0} ∪ (∪i∈N {vm,i}) .

Furthermore
V1 = {ve,1} ; Vi = {ve,i, vs,i−1} for i ≥ 2.

Let (S,FS) denote the state space for the sensor values and let (M,FM ) be the state space
for the motor controller. Let the environment contain both the body of the agent (described
mathematically by coordinates for all relevant degrees of freedom - this includes coordi-
nates for the center of mass, angles of arm joints etc.) and all degrees of freedom of the
environment that are necessary to describe the interaction with the agent’s body. Denote the
entire space of the environment by (E,FE). Note that we do not impose any strong condi-
tions on the state space of the environment. We only assume it to be a measurable space. If
the environment has a finite amount of relevant states only (a situation that naturally arises
from approximating the dynamic by coarse-graining), the state space can be chosen to be a
finite set. If the system’s interaction with the environment can be described by Newtonian
mechanics, the state space can be chosen to be a subset of Rn or more generally it can
be chosen to be a differentiable manifold equipped with its Borel σ-algebra. If the robot
can be described as a test-particle interacting with a fluid (if the robot steers an aircraft
for example) the environment can also be chosen to be an appropriate infinite dimensional
topological vector space equipped with it’s Borel σ-algebra.
To sum up:

Sv =


E if v = ve,i for some i ∈ N0

S if v = vs,i for some i ∈ N
M if v = vm,i for some i ∈ N

Assuming a time homogeneous, deterministic, Markovian dynamic, the new environment
state depends on the current motor value and the previous state of the environment only. Let
T : E ×M → E be a measurable map encoding the transition from the old environment
state and a given state of the motor controller to a new state of the environment. Then

Tve,i((e,m), A) = δT (e,m) (A) where i ∈ N; e ∈ E;m ∈M and A ∈ FE.

The robot can get information about the environment via its sensor values only. For sim-
plicity we assume again that the sensor value depends deterministically on the current envi-
ronmental state. If we denote this (measurable) map by T ′ : E→ S then

Tvs,i (e,A) = δT ′(e) (A) for i ∈ N; e ∈ E and A ∈ FS.

Then the triple ((V,E),S,T) is a causal model according to Definition 1.2.1.

The notion of causal model captures all dynamical restrictions on the system that hold
for all possible dynamics. For the specification of a specific dynamic, the values of all
initial vertices must be specified (more generally we allow initial probability measures
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p ∈ M1 (⊗v∈V0Fv)). To ensure compatibility with the Markovian structure of the graph,
we require these probability measures to be product measures, i.e. we require the family
(πv : SV0 → Sv)v∈V0 to be independent under p. A product measure p ∈ M1 (⊗v∈V0Fv)
is completely determined by the distribution of the projections πv, denoted by

πv∗p (1.6)

(also referred to as marginal distributions of p). On the other hand every collection of mea-
sures pv ∈M1 (Fv) where v ∈ V0 determines a unique product measure p ∈M1 (⊗v∈V0Fv)
with marginals pv. This existence theorem does not require any further regularity assump-
tions on the state spaces. For countable index sets this follows directly from the Ionescu-
Tulcea extension theorem (compare Lemma 1.2.1) and the extension to uncountable index
sets is straightforward (compare Kallenberg [99], Corollary 6.18 on p. 117 for example).

Definition 1.2.2 - (Admissible initial measures and causal statistical models over a
causal model)

Let C := ((V,E),S,T) be a causal model.

I Definition 1.2.2.1: An admissible initial measure on C is a probability measure,
p ∈ M1 (⊗v∈V0Fv), such that the family (πv : SV0 → Sv)v∈V0 is independent under the
measure p.
I Definition 1.2.2.2: A causal statistical model over C is a set of admissible initial mea-
sures on C.
I Definition 1.2.2.3: A parametric causal statistical model over C is a pair (Z, p̂) where

• Z is the parameter set.

• p̂ is an injective map from Z to the admissible initial measures on C.

In the robot example above there are several canonical ways to define a statistical model
over the causal model describing the environment-agent system. One canonical choice is

Q := {p ∈M1 (⊗v∈V0Fv) |p admissible initial measure ;πv∗p = δsv ; v ∈ V0; s ∈ SV0 } ,

where δx denotes the Dirac measure centered at x. This choice corresponds to arbitrary ini-
tial states and a fixed, deterministic sequence of motor controller values. A second canonical
choice corresponds to the time-homogeneous situation. By this we mean that the value of
the motor controller is the same for all instances of time, i.e.

Q′ := {p ∈M1 (⊗v∈V0Fv) |p admissible initial measure ;

πve,0∗p = δz;πvm,i∗p = δq; z ∈ E; q ∈M
}

Our restrictions on the graph imply that any initial measure on⊗v∈V0Fv extends to a unique
probability law on F := FV that is compatible with the initial measure, the transition
kernels and satisfies a further independence assumption to be stated later on. The proof is
based on the following lemma, a proof of which can be found in Kallenberg [99], p.116:

Lemma 1.2.1 - (Extension theorem by Ionescu-Tulcea)

Let (Sn,Fn) be measurable spaces, let µ1 ∈M1 (F1) and let

µn ∈ Λ
(Sn,Fn)

(
∏

1≤i<n Si,⊗1≤i<nFi)
for every n > 1.
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For every cylinder set A ∈ ⊗n∈NFn (by (finite) cylinder set we mean that A can be written
as A = A′ ×

∏
k>n Sk where A′ ∈ ⊗1≤k≤nFk) define

P (A) =

∫
A′
µ1(dω1)µ2(ω1, dω2) . . . µn((ω1, . . . , ωn−1), dωn) (1.7)

Then P is a well defined map from the (finite) cylinder sets to the positive real numbers and
possesses a unique extension to a probability measure on ⊗n∈NFn.

Definition 1.2.3 - (Some notation)

Let G := (V,E) be a recursively constructible graph. Let Vn be the sets from Defini-
tion 1.1.1. Set:

V<n := ∪0≤k<nVk and V≤n := ∪0≤k≤nVk (1.8)

We need the following lemma, that follows immediately from existence and uniqueness of
the product measure:

Lemma 1.2.2 - (Independent combination of kernels)

Let C := ((V,E),S,T) be a causal model and let A ⊆ Vn for some n ≥ 1 (see Defini-
tion 1.2.3). Then there exists a unique kernel

TA ∈ Λ
(SA,⊗v∈AFv)

(SV<n ,⊗v∈V<nFv)

such that for every set of the form

B :=

(∏
v∈J

Bv

)
×SA\J where J ⊆ A; |J | <∞;Bv ∈ Fv (1.9)

we have
TA(s,B) :=

∏
v∈V

Tv

(
(sw)w∈Par(v) , Bv

)
(1.10)

For the proof we need the monotone class argument, based on the following definition:

Definition 1.2.4 - (π-systems, λ-systems)

I Definition 1.2.4.1: Let Ω be a set and let C ⊆ 2Ω. Then C is called π-system if A,B ∈ C
implies A ∩B ∈ C.
I Definition 1.2.4.2: Let Ω be a set and let C ⊆ 2Ω. Then C is called λ-system if

• Ω ∈ C

• C is closed under proper differences, i.e. whenever A,B ∈ C and B ⊆ A then
A \B ∈ C

• C is closed under increasing limits, i.e. whenever An ∈ C and An ⊆ An+1 then
∪n∈NAn ∈ C

The monotone class theorem is a useful tool to extend certain statements from a π-system
to the σ-algebra generated by this π-system. It is used in the standard proof of Fubini’s
theorem for example. The following version originates from Kallenberg [99], p.2:
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Lemma 1.2.3 - (Monotone class argument)

Let C be a π-system, let D be a λ-system such that C ⊆ D. Then σ (C) ⊆ D.

Proof of Lemma 1.2.2. Fix s ∈ SV<n . By the existence and uniqueness of product
measures over arbitrary index sets (compare the comment prior to Definition 1.2.2) there
exists a unique measure Ps ∈ M1 (⊗v∈AFv) such that the family πv : SA → Sv is
independent under Ps and

πv∗Ps := Tv

(
(sj)j∈Par(v) , ·

)
Let C denote the class of subsets of the form Eq. 1.9. Then C is a π-system generating the
σ-algebra ⊗v∈AFv.

It remains to show that Ps (B) is a measurable function of s for every B ∈ ⊗v∈AFv. This
is clear for every B ∈ C. Moreover the collection of all sets B ∈ ⊗v∈AFv for which
s 7→ Ps (B) is measurable is a λ-system (it is closed with respect to proper differences
by measurability of the addition in R and is closed with respect to increasing limits by
σ-additivity of the measure Ps and the measurability of the pointwise limit of a sequence
of real-valued, measurable functions). By the monotone class argument s 7→ Ps(B) is
measurable for all B ∈ σ (C). This is the statement.

From here on we will always write TA (where A ⊆ Vn) for the kernel from Lemma 1.2.2.

Theorem 1.2.1 - (Law on a causal model)

Let C := ((V,E),S,T) be a causal model. Then:

I Theorem 1.2.1.1: For every measure p ∈ M1 (⊗v∈V0Fv) there exists exactly one prob-
ability law P̂ on FV that satisfies the following two conditions:

• It is compatible with the initial measure, p, i.e.(
(πv)v∈V0

)
∗ P̂ = p (1.11)

where
πv : S→ Sv; f → f(v)

denotes the canonical projection from S to the individual factors.

• The kernels, Tv, describe the transition probabilities and the process is memoryless
in the sense that every sensor value, is independent from its ancestors given all its
parent’s values. Moreover we require that for every n ∈ N the family (πv)v∈Vn is
“maximally uncorrelated”, in the sense that this family is independent given all the
“past data”, FV<n . To sum up - using the notation from Lemma 1.2.2 - we assume
that for every A ⊆ Vn with n > 0 there exists a null set N ∈ FV such that

P̂
[
(πv)v∈A ∈ B |FV<n

]
(ω) = TA

(
(πw(ω))w∈V<n , B

)
(1.12)

For every B ∈ ⊗v∈AFv whenever ω ∈ FV \N .

I Theorem 1.2.1.2: Let s ∈ SV0 and let P̂s be the unique law from Theorem 1.2.1
associated to the initial measure δs. Then the map

K̂ : SV0 ×⊗v∈V Fv → [0, 1] ; (s, B) 7→ P̂s [B]

is a probability kernel from (SV0 ,⊗v∈V0Fv) to (S,FV ) and for an arbitrary initial measure
p ∈M1 (⊗v∈V0Fv) the associated law, P̂ , satisfies:

P̂ [B] =

∫
K(s,B)p(ds) and P̂ [B |FV0 ] = K̂

[
(πv)v∈V0 , B

]
a.s. (1.13)
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for every B ∈ FV .

Proof of Theorem 1.2.1. Set S̃n := (πv)v∈Vn . The two conditions of the first part of the
theorem are satisfied if and only if

P̂
[{
S̃0 ∈ A

}]
= p [A] (1.14)

for every A ∈ ⊗v∈V0Fv and

P̂
[{
S̃n ∈ A

} ∣∣∣S̃0, S̃1, . . . , S̃n−1

]
= TVn

((
S̃k,v

)
k<n;v∈Vk

, A

)
a.s. (1.15)

for every A ∈ ⊗v∈VnFv. Thus existence and uniqueness in Theorem 1.2.1 follows imme-
diately from the Ionescu-Tulcea extension theorem and Lemma 1.2.2.

For Theorem 1.2.1 let s ∈ SV0 and let K̂(s,B) be the unique law induced by the admissible
initial measure δs. Let C ∈ FV be a set of the form

C =

 ∏
0≤k≤n

Bk

×SV \V≤n ;Bk ∈ ⊗v∈VkFk. (1.16)

Then K̂(s, ·) satisfies

K̂ (s, C) (1.17)

= δ(sv)v∈V0
[B0]

∫
∏n
i=1Bi

TV1 [s0, ds1]TV2 [(s0, s1) , ds2] . . .TVn [(s0, . . . , sn−1) , dsn] .

It remains to show that s 7→ K̂ (s,B) is measurable for every B ∈ FV . Note that for any
K ∈ Σ

(Y,FY )
(X,FX) and any bounded FY /BR-measurable function f : Y → R, the function:

s 7→
∫
f(s′)K(s, ds′) (1.18)

is measurable. This is a standard result and follows from the following argument: Whenever
f = 1A with A ∈ FY then the result is true since K(s,A) is measurable in s. For general
bounded, measurable f the result follows from approximating f by indicator functions and
applying Lebesgue’s dominated convergence theorem (or alternatively the monotone con-
vergence theorem and linearity).
We will show that s 7→ K̂ (s, C) is measurable for every C ∈ FV of the form Eq. 1.16.
The proof uses induction over n ∈ N0. For n = 0 let J ⊆ V0 such that |J | <∞. Then for
every C ′ of the form

C ′ =

(∏
v∈J

Bv

)
×SV \J ;Bv ∈ Fv (1.19)

the map
s 7→ K

(
s, C ′

)
=
∏
v∈J

1Bv (sv)

is clearly measurable. By a monotone class argument this extends to all C ′ ∈ FV0 , such
that the claim is true for n = 0.
Now assume that the claim is true for some index n ∈ N0. Then for every C ′ of the form

C ′ = Bn ×Bn+1 ×SV \(V≤n+1);Bn ∈ ⊗v∈V≤nFv, Bn+1 ∈ ⊗v∈Vn+1Fv (1.20)

we have:

P̂s
[
C ′
]

= Es

[
1{

(πv)v∈V≤n
∈Bn

}P̂s [{(πv)v∈Vn ∈ Bn+1

} ∣∣FV≤n ]]
=

∫
Bn

TVn+1

[
s′, Bn+1

]
d (πv)v∈V≤n∗ P̂s

(
ds′
)

(1.21)
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By the inductive assumption K(s, ·) :=
(

(πv)v∈V≤m

)
∗
P̂s is a probability kernel, such

that, by the general remark, Eq.1.18, the inductive assumption implies the measurability of
s 7→ K̂ [s, C ′] for every C ′ ∈ F≤n+1. Hence the statement is true for all n ∈ N0.
The measurability of K̂ (·, B) for general B ∈ FV follows by a monotone class argument
again. This proves that K̂ is indeed a probability kernel.

To show the last statement (Eq. 1.13) consider some event C ∈ FV of the form Eq. 1.16
and some p ∈ M1 (⊗v∈V0Fv) inducing the law P̂ . Iterating the conditioning in Eq. 1.21,
using the identities Eq. 1.17 and Eq. 1.15 gives

P̂ [C] =

∫
C
p(ds0)K̂

[
s, ds′

]
By a monotone class argument this relation extends to allC ∈ FV . Eq. 1.22 clearly implies:

P̂ [C |FV0 ] = K̂
(
(πv)v∈V0 , C

)
(1.22)

Sometimes it is useful to write the transition kernels as a deterministic transition of former
state variables and a randomization variable. This will be advantageous for the analysis
of stochastic gradient algorithms for example. The relation between the kernel approach
and a description by a randomized transition is given by the following theorem a proof of
which can be found in Kallenberg [99], p.112. We also use the definition of Borel spaces
used in this book. They are defined to be measure spaces that are measure isomorphic (i.e.
there exists a measurable bijection between them with measurable inverse) to a measurable
subset of the unit interval. As a classical result in advanced measure theory every Borel
subset of a Polish space is a Borel space (compare Breiman [39], Kechris [100] and Rogers
and Williams [154] for example).

Theorem 1.2.2 - (Randomization of transition kernels)

Let (S1,B1) and (S2,B2) be Borel spaces and let K ∈ Λ
(S2,B2)
(S1,B1). Let X be a random vari-

able on some probability space (Ω,F , P ) with values in S1 Then there exists a measurable
transition function

T : S1 × [0, 1]→ S2

such that
P̂ [{T (X (π1) , π2) ∈ B} |X (π1) ] = K(X (π1) , B) a.s.

where

• P̂ ∈M1

(
F ⊗ B[0,1]

)
is the product measure of P and the Lebesgue measure, νLeb..

•
π1 : Ω× [0, 1]→ Ω ; π1 : Ω× [0, 1]→ [0, 1]

denote the projections onto the first and second factor of the Cartesian product.

One of our main interest in causal models over recursively constructible graphs lies in a
mathematical rigorous definition of a model of learning algorithms over a Markov decision
processes. This type of question is very general: Given a causal model with a certain in-
built dynamic (specified by the transition kernels) - what is a good model for a controlled
dynamic over this causal model? Abstractly a controlled dynamic can be seen as an ex-
tension of the causal model that preserves the old transition rules. For reasons that will be
explained later on we require the new kernels of the extended model to be deterministic
(compare Lemma 1.2.4 and Remark 1.2.3).
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Definition 1.2.5 - (Controller graphs and controlled model over a given causal
model)

I Definition 1.2.5.1: Let (V,E) be a recursively constructible graph. A controller graph
over (V,E) is another recursively constructible graph , (V ′, E′), with the following prop-
erties:

• (V,E) is a subgraph of (V ′, E′)

• For every v ∈ V \ V0 the parents of v in V are equal to the parents of v in V ′:

Par′(v) = Par(v) (1.23)

I Definition 1.2.5.2: Let C := ((V,E),S,T) be a causal model. A controller extension
over C is a causal model C ′ := ((V ′, E′) ,S′,T′) satisfying

• S′v = Sv whenever v ∈ V .

• T′v = Tv for every v ∈ V \ V0

• For v ∈ V ′ \ (V ′0 ∪ (V \ V0)) the transitions are deterministic, i.e. there exist mea-
surable maps T : S′Par(v) → S′v such that

T′ [s,B] = δT (s) [B] for every s ∈ S′Par(v);B ∈ Fv

Before we comment on the definition, we given an illustration for the robot example de-
scribed in Caus. mod. 6. We assume that the original dynamic is controlled in the following
way:

• A sensor value is read and written to the memory (therefore we will add some vertices
vmem,i where i ∈ N0 for the memory variables)

• From the current state of the memory an output value is calculated and sent to the
motor controller.

This yields the following recursively constructible graph (which is indeed a controller graph
over Caus. mod. 6):

vm,1

��

vm,2

��

vm,3

��

vm,4

��

. . .

ve,0 // ve,1 //

��

ve,2 //

��

ve,3 //

��

ve,4 //

��

. . .

vs,1

��

vs,2

��

vs,3

��

vs,4

��

. . .

vmem,0 //

GG

vmem,1 //

GG

vmem,2 //

GG

vmem,3 //

GG

vmem,4 //

HH

. . .

Caus. mod. 7 - Example: New causal structure of robot-world system

The specification of a controller extension requires a specification of the memory state
spaces, a specification of the transition functions describing the memory update and transi-
tion functions describing the motor update from the memory.
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Remark 1.2.2 - (Comment on Definition 1.2.5)

In our definition we allow variables in V ′ \ V to have children in V0 such that feedback
controls are included. Moreover causality is automatically satisfied (in the sense that data
from future vertices cannot be used to manipulate a vertex in the past) through the require-
ment that (V ′, E′) is a recursively constructible graph and therefore acyclic. A controller
extension specifies the transition rules for the overall model. The restriction to deterministic
transitions for the new vertices and V0 will be justified in Lemma 1.2.4 and Remark 1.2.3.

We would like to model the controlled dynamics on the same probability space as the orig-
inal dynamic, this is possible as the following lemma shows:

Lemma 1.2.4 - (Controlled dynamic as a random variable over the original
causal model)

Let C := ((V,E),S,T) be a causal model and let C ′ := ((V ′, E′) ,S′,T′) be a controller
extension of C. Let W1 := V ′0 ∩ V denote the set of non-controlled input vertices of V and
let W2 := V ′0 \ V be the set of new input vertices. Let K ′ ∈ Λ

(S′,FV ′ )(
S′
V ′0
,⊗v∈V ′0

Fv
) be the kernel

from Theorem 1.2.1 for the model C ′.

Then there exist a kernel K ′′ ∈ Λ
(S,⊗v∈V Fv)(
SV ′0

,⊗v∈V ′0
Fv
) and a ((⊗v∈W2Fv)⊗ (⊗v∈V Fv))/FV ′-

measurable map
R : S′W2

×S→ S′

such that for every s1 ∈ S′W1
and s2 ∈ S′W2

:

R(s2, ·)∗K ′′ ((s1, s2), ·) = K ′((s1, s2), ·) (1.24)

In other words for every initial value (s1, s2) ∈ SW1 × SW2 the measure K ′ [(s1, s2) , ·]
can be considered as the distribution of some S′-valued random variable R (s2, ·) on the
probability space (S,⊗v∈V Fv,K ′′ [(s1, s2) , ·]).

Proof of Lemma 1.2.4. Let K ′ ∈ Λ
(S′,FV ′ )(
S′
V ′0
,⊗v∈V ′0

Fv
) be the kernel from Theorem 1.2.1 for

the model C ′ and define for B ∈ ⊗v∈V Fv:

K ′′ [(s1, s2), B] := K ′
[
(s1, s2),

{
(πv)v∈V ∈ B

}]
(1.25)

For v ∈W2 ∪ V , s2 ∈ S′W2
and s ∈ S set

Rv (s2, s) :=

{
s2,v for v ∈W2

sv if v ∈ V
. (1.26)

Then Rv is (⊗w∈W2Fw)⊗ (⊗w∈V Fw)/Fv-measurable.
We will construct Rv for v /∈ V ∪ W2 recursively. Assume that, Rv, is a well-defined
(⊗w∈W2Fw) ⊗ (⊗w∈V Fw)/Fv measurable map for every v ∈ V ∪ V ′≤n. Then define for
v ∈ V ′n+1 \ V :

Rv (s2, s) := Tv

[
(Rw (s2, s))w∈Par(v)

]
(1.27)

where Tv is the transition function associated to vertex v.
By assumption Rw is (⊗u∈W2Fu) ⊗ (⊗u∈V Fu)/Fw-measurable for every w ∈ V ′≤n. This
implies that the map R̃ : (s2, s) 7→ (Rw (s2, s))w∈Par′(v) is (⊗w∈W2Fw)⊗ (⊗w∈V Fw)/Fv-
measurable (compare for example Lemma 1.8 in Kallenberg [99]). ThereforeRv is measur-
able as a composition of measurable maps. Similarly the mapR : (s2, s) 7→ (Rv (s2, s))v∈V ′
is (⊗w∈W2Fw)⊗ (⊗w∈V Fw)/⊗w∈V ′Fw-measurable.
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Fix s1 ∈ S′W1
and s2 ∈ S′W2

. We will show that

R(s2, ·)∗K ′′((s1, s2), B) = K ′((s1, s2) , B) (1.28)

for everyB ∈ FV ′ . By definition ofK ′′ andR this statement is true wheneverB ∈ FV . We
will show the validity 1.28 for all B ∈ FV ∪V ′≤n by induction over n. Then by a monotone
class argument the validity of Eq. 1.28 extends to all B ∈ FV ′ .

For n = 0 consider a finite subset J ⊆ V ′0 \ V , subsets Bv ∈ Fv for every v ∈ J and some
C0 ∈ ⊗v∈V Fv. Define B′ ∈ FV ′ via

B′ :=
{

(πv)v∈V ∈ C0

}
∩ ∩v∈J {πv ∈ Bv} (1.29)

Since for every v ∈ J and s ∈ S

Rv (s2, s) ∈ Bv iff s2,v ∈ Bv
we have by definition of K ′′:

R(s2, ·)∗K ′′((s1, s2), B′)

=
∏
v∈J

δBv (s2,v) ·K ′
[
(s1, s2) ,

{
(πw)w∈V ∈ C0

}]
= K ′

[
(s1, s2) , B′

]
This result extends by a monotone class argument to all sets B′ ∈ Fv∪V ′0 . Now assume that
Eq. 1.28 holds for all B ∈ Fv∪V ′≤n and let J ⊆ V ′n+1 \ V be a finite set, let Bv ∈ Fv for
every v ∈ J , let Cn ∈ ⊗v∈V ′≤n∪V Fv and consider the set

B′ :=
{

(πv)v∈V ′≤n∪V
∈ Cn

}
∩ ∩v∈J {πv ∈ Bv} (1.30)

By definition of R for any s ∈ SV

R(s2, s) ∈ B′ (1.31)

iff (Rv(s2, s))v∈V ′≤n∪V
∈ Cn and Tv

(
(Rw (s2, s))w∈Par(v)

)
∈ Bv for all v ∈ J

Thus by the inductive assumption:

R (s2, ·)∗K
′′ [(s1, s2) , B′

]
= K ′

[
(s1, s2) ,

{
(πv)v∈V ′≤n∪V

∈ Cn
}
∩ ∩v∈J

{
(πw)w∈Par(v) ∈ Tv

−1(Bv)
}]

= K ′
[
(s1, s2) , B′

]
(1.32)

where the last step followed from the definition ofK. Thus by the monotone class argument
the claim is also true for n+ 1 and Eq. 1.28 is indeed satisfied for any B ∈ FV ′

Remark 1.2.3 - (Comment on the advantages of deterministic transition rules in
Definition 1.2.5)

The proof of Lemma 1.2.4 works because the new transition rules are deterministic. Con-
structing the controlled dynamic over the same probability space as the original one has
many technical advantages. For controlled dynamics it is usually assumed that any rea-
sonable estimator depends on past observations only. This is typically incorporated by
assuming that this estimator is adapted to an appropriate filtration. Formulations become
significantly more complicated if this filtration lives on a probability space that is not known
and has to be constructed together with the extension of the model.

If “new randomness” for the controlled dynamic is unavoidable (if the determination of the
controls from former process values involves Monte-Carlo methods or noisy measurements
for example) it is often possible to add some isolated vertices to the original causal model,
C, and to use these isolated vertices as input for some vertices in V ′ \ V (compare Theo-
rem 1.2.2).
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1.3 Conditional independence in causal models

Before we investigate the conditional independence in causal models we will revise some
concepts from graph theory and probability theory. The first definition summarizes some
necessary concept related to graph separation (see for example: Lauritzen [114]):

Definition 1.3.1 - (Moral graph and d-separation)

I Definition 1.3.1.1: Let G := (V,E) be a directed graph. Then the moral graph of G,
denoted by Gm, is the undirected graph (V,E′) that originates from deleting directions and
marrying parents:
{a, b} ∈ E′ if and only if one of the following statements holds true:

• (a, b) ∈ E

• (b, a) ∈ E

• There exists c ∈ V such that (a, c) ∈ E and (b, c) ∈ E.

I Definition 1.3.1.2: Let G := (V,E′) be an undirected graph and let A,B, S ⊆ G be
disjoint. Then S separatesA andB, if and only if every path from v ∈ A to w ∈ B contains
an element s ∈ S.
I Definition 1.3.1.3: Let G := (V,E) be a directed graph and let A,B, S ⊆ G be

disjoint. Then S d-separates A and B, if S separates A and B in
(
G|An(A∪B∪S)

)m
.

Here G |W denotes the restriction of the graph G = (V,E) to the subset W ⊆ V , i.e.
G |W = (W,EW ) with (a, b) ∈ EW if and only if (a, b) ∈ E.

The next definition introduces the well-known concept of independence of σ-algebras.

Definition 1.3.2 - (Conditional independence)

Let (Ω,F , P ) be a probability space and let G1,G2,G3 ⊆ F be sub σ-algebras. Then G1 is
independent of G2 given G3, written as

G1 ⊥⊥ G2 |G3 (1.33)

if for every A ∈ G1 and B ∈ G2:

P [A,B |G3 ] = P [A |G3 ]P [B |G3 ] a.s. (1.34)

this is equivalent to
E [XY |G3 ] = E [X |G3 ]E [Y |G3 ] a.s. (1.35)

for any pair of bounded random variables X,Y : Ω → R where X is G1/BR measurable
and Y is G2/BR measurable.

The main theorem of this section is the following one:

Theorem 1.3.1 - (Conditional stochastic independence in Causal models)

Let C := ((V,E),S,T) be a causal model, let p ∈ M1(⊗v∈V0Fv) be an admissible ini-
tial measure and let P ∈ M1(FV ) be the associated law (compare Theorem 1.2.1). Let
S,A,B ⊆ V be disjoint such that S d-separates A and B. Then

FA ⊥⊥ FB |FS (1.36)
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under P .

For the proof we will need more concepts and fundamental theorems from probability the-
ory (as can be found in most textbooks on measure theoretic probability theory and measure
theory like Kallenberg [99], Bauer [22], Jacod and Protter [92], Rudin [161], Breiman [39]).
The following theorem can be found in Kallenberg [99], p. 111 for example:

Lemma 1.3.1 - (Equivalent characterization of conditional independence)

Let F be a σ-algebra and let Fn,H,G ⊆ F be sub σ- algebras (where n ∈ N0). Then the
following two conditions are equivalent:

1. H ⊥⊥ (Fn)n∈N |G

2. H ⊥⊥ Fn+1 |G,F1, . . . ,Fn for all n ≥ 0

We also need a simple version of the martingale convergence theorem:

Lemma 1.3.2 - (Martingale convergence theorem)

Let (Ω,F , P,F) be a filtered probability space and let X be a bounded F-martingale, then
Xn converges almost surely (and in Lp for every p ≥ 1) to some

F∞ := ∩n∈Nσ (Fk; k ≥ n) -measurable

random variable X∞. Moreover: Xn = E [X∞ |Fn ] almost surely.

Before proving the main theorem, we would like to transform the statement into an equiva-
lent formulation that can be handled easier. We need the following sets:

Definition 1.3.3 - (More concepts related to graph separation)

Let G := (V,E) be a directed graph and let S,A,B ⊆ V be disjoint vertex sets.

I Definition 1.3.3.1: Define the causal connected component of A by:

CONB∪A∪S,S(A) := A ∪ {v ∈ An(A ∪B ∪ S) |v!m,S a for some a ∈ A}

Here v!m,S a means that there exists a path between a and v in
(
G|An(A∪B∪S)

)m
that

does not hit S.
I Definition 1.3.3.2: The set of residual ancestors is:

ResAnc(A |S|B) := An(A ∪B ∪ S) \ (CONB∪A∪S,S(A) ∪ CONB∪A∪S,S(B))

We will use the following equivalence:

Lemma 1.3.3 - (Reformulation of causal separation)

Let G = (V,E) be a recursively constructible graph and let S,A,B ⊆ V be disjoint. Then
the following conditions are equivalent:

1. S d-separates A and B

2. ResAnc(A |S|B) d-separates CONB∪A∪S,S(A) and CONB∪A∪S,S(B)
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.

Proof of Lemma 1.3.3. All the following statements about the existence of certain paths
are with respect to the graph

(
G|An(A∪B∪S)

)m
.

Assume that S separatesA andB and that there exists a path from some a ∈ CONB∪A∪S,S(A)
to some b ∈ CONB∪A∪S,S(B) that does not pass through ResAnc(A |S|B). By definition
of CONB∪A∪S,S(A) there exists a path from a to some element a′ ∈ A that does not
pass through S. Equivalently there exists a path from b to some element b′ ∈ B that does
not pass through S. Hence there exists a path from a′ to b′ that does not pass through
S ⊆ ResAnc(A |S|B). This is a contradiction to S d-separating A and B. Therefore the
first statement implies the second one.
On the other hand assume that the second statement holds true and take an arbitrary path
from a ∈ A to b ∈ B. By validity of the second statement this path hat to pass some element
s ∈ ResAnc(A |S|B). By definition of ResAnc(A |S|B) either the path from a to s has
to pass S or the path from s to b has to pass S. Therefore the second statement implies the
first one.

Therefore:

Lemma 1.3.4 - (Towards an equivalent formulation of Theorem 1.3.1)

Let G = (V,E) be a directed graph, let (Ω,F , P ) be a probability space and let (FA)A⊆V
be a monotonous family of sub σ-algebras of F , i.e. A ⊆ B implies that FA is a sub-σ-
algebra of FB . Then the following two statements are equivalent:

1. For every sets S,A,B ⊆ V such that S d-separates A and B we have

FA ⊥⊥ FB |FS

2. For every sets S,A,B ⊆ V such that S d-separates A and B we have

FCONB∪A∪S,S(A) ⊥⊥ FCONB∪A∪S,S(B)

∣∣FResAnc(A|S|B)

.

Proof. The first condition implies the second one by Lemma 1.3.3. Assume that the second
condition holds and let A,B, S ⊆ V be such that S d-separates A and B.
Define B′ := CONB∪A∪S,S(B) ∪ ResAnc(A |S|B) \ S. Observe that An(A ∪B ∪ S) =
An(A ∪B′ ∪ S). Moreover ResAnc(A |S|B′) = S. Therefore by assumption:

FCONB∪A∪S,S(A) ⊥⊥ FCONB∪A∪S,S(B′) |FS (1.37)

Since A ⊆ CONB∪A∪S,S(A) and B ⊆ CONB∪A∪S,S(B′) the monotonicity of the family
of σ-algebras gives the desired result.

After this preparation, we proceed with the proof of Theorem 1.3.1.

Proof of Theorem 1.3.1. By Lemma 1.3.4 and Lemma 1.3.3 we can assume that A =
CONA∪B∪S,S(A), B = CONA∪B∪S,S(B) and S = ResAnc(A |S|B). In other words we
can assume that any ancestor of some element v ∈ A ∪ B ∪ S is contained in one of the
three disjoint sets A, B and S.
Define the filtrations

FA,n := FWA,n
, where WA,n := A ∩ (∪0≤k≤nVk) , (1.38)

FB,n := FWB,n
, where WB,n := B ∩ (∪0≤k≤nVk) , (1.39)

and
FS,n := FWS,n

, where WS,n = S ∩ (∪0≤k≤nVk) (1.40)
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As a first step we will show inductively that for every n ≥ 0:

FA,n ⊥⊥ FB,n |FS,n (1.41)

If n = 0 this statement is trivially true, since we assumed p to be a product measure and
thereforeFA,0,FB,0 andFS,0 are independent (we setFS,n = {∅,Ω} wheneverWS,n = ∅,
such that this statement remains true in this case).
For the step from n to n+ 1 we define the sets

An+1 := WA,n+1 \WA,n and Bn+1 := WB,n+1 \WB,n

Furthermore we divide the set WS,n+1 \WS,n into the following two subsets:

Sn+1,A := {v ∈WS,n+1 \WS,n |Par (v) ∩A 6= ∅}

and
Sn+1,B := (WS,n+1 \WS,n) \ Sn+1,A

The fact that S d-separates A and B implies that

• elements v ∈ An+1 ∪ Sn+1,A have parents in WA,n ∪WS,n only

• elements v ∈ Sn+1,B ∪Bn+1 have parents in WB,n ∪WS,n only

This implies that for every C ∈ ⊗v∈Sn+1,A∪An+1Fv the conditional expectation is

P
[{
πSn+1,A∪A ∈ C

}
|FA,n,FB,n,FS,n

]
= TSn+1,A∪An+1

(
πV≤n , C

)
a.s.

where we wrote πW as a shorthand notation for (πv)v∈W and used the notation from
Lemma 1.2.2. This expression does not depend on vertex values of v ∈WB,n and therefore
possesses a σ(FA,n,FS,n)-measurable version. Analogously for everyC ∈ ⊗v∈Sn+1,B∪Bn+1Fv
the conditional expectation

P
[{
πSn+1,B∪B ∈ C

}
|FA,n,FB,n,FS,n

]
= TSn+1,B∪Bn+1

(
πV≤n , C

)
a.s.

possesses a σ(FB,n,FS,n)-measurable version. By the very construction of the process
law (compare Theorem 1.2.1) we have for every CA ∈ ⊗v∈Sn+1,A∪An+1Fv and CB ∈
⊗v∈Sn+1,B∪Bn+1Fv:

P
[{
πSn+1,A∪A ∈ CA

}
∩
{
πSn+1,B∪B ∈ CB

}
|FA,n,FB,n,FS,n

]
= TSn+1,A∪An+1

(
πV≤n , CA

)
· TSn+1,B∪Bn+1

(
πV≤n , CB

)
More generally fix anyCA,1 ∈ ⊗v∈WA,n

Fv,CA,2 ∈ ⊗v∈An+1∪Sn+1,A
Fv,CB,1 ∈ ⊗v∈WB,n

Fv
and CB,2 ∈ ⊗v∈Bn+1∪Sn+1,B

Fv and set

CA := CA,1 × CA,2 and CB := CB,1 × CB,2.

Then almost surely:

P
[{
πWA,n+1∪Sn+1,A

∈ CA
}
,
{
πWB,n+1∪Sn+1,B

∈ CB
}
|FS,n,FA,n,FB,n

]
= P

[{
πWA,n+1∪Sn+1,A

∈ CA
}
|FS,n,FA,n

]
· (1.42)

·P
[{
πWB,n+1∪Sn+1,B

∈ CB
}
|FS,n,FB,n

]
where

P
[{
πWA,n+1∪Sn+1,A

∈ CA
}
|FS,n,FA,n

]
(1.43)

= 1{πAn∈CA,1}TSn+1,A∪An+1

(
(πv)v∈V≤n , CA,2

)
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and

P
[{
πWB,n+1∪Sn+1,B

∈ CB
}
|FS,n,FB,n

]
(1.44)

= 1{πBn∈CB,1}TSn+1,B∪Bn+1

(
(πv)v∈V≤n , CB,2

)
By the induction hypothesis

(FA,n,FS,n) ⊥⊥ (FB,n,FS,n) |FS,n . (1.45)

This, Eq. 1.42 and the tower property of the conditional expectation imply:

P
[{
πWA,n+1∪Sn+1,A

∈ CA, πWB,n+1∪Sn+1,B
∈ CB

}
|FS,n

]
= P

[{
πWA,n+1∪Sn+1,A

∈ CA
}
|FS,n

]
· (1.46)

·P
[{
πWB,n+1∪Sn+1,B

∈ CB
}
|FS,n

]
Sets of the form

CA :=
{
πWA,n

∈ CA,1, πAn+1∪Sn+1,A
∈ CA,2

}
form π-system that generates the σ-algebra FWA,n+1∪Sn+1,A

. Moreover the collection of
measurable setsCA that satisfy Eq. 1.46 for fixedCB forms a λ-system. So by the monotone
class theorem Eq. 1.46 holds true for all CA ∈ FWA,n+1∪Sn+1,A

. Fixing an arbitrary CA and
using the same argument again, yields the validity of Eq. 1.46 for allCB ∈ FWB,n+1∪Sn+1,B

.
This proves: (

FWA,n+1
,FSn+1,A

)
⊥⊥
(
FWB,n+1

,FSn+1,B

)
|FS,n (1.47)

By Lemma 1.3.1 this implies

FA,n+1 ⊥⊥ FB,n+1 |FS,n+1 (1.48)

Hence Eq. 1.41 holds for every n ∈ N0.

Now fix some arbitrary large n,m ∈ N, CA ∈ FA,n and CB ∈ FB,m. Since indicator
functions of sets are bounded, Lemma 1.3.2 implies that the martingales

Xk := E [1CA |FS,k ] , (1.49)

Yk := E [1CB |FS,k ] (1.50)

and
Zk := E [1CB∩CA |FS,k ] (1.51)

converge almost surely to some limit X (Y and Z respectively). Note that X is FS mea-
surable as a limit of FS measurable functions. Moreover for any C ∈ FS,t with t > 0 by
conditional dominated convergence:

E [1CX] = lim
k→∞

E [1CE [X |FS,k ]] = E [1C1CA ] (1.52)

This is true for any t. Since (FS,t)t∈N generates the σ-algebra FS this implies:

X = P [CA |FS ] . (1.53)

Analogously
Y = P [CB |FS ] (1.54)

and
Z = P [CB ∩ CA |FS ] (1.55)

By Eq. 1.41 and the product rule for limits of real-valued sequences:

P [CA ∩ CB |FS ] = P [CA |FS ] · P [CB |FS ] (1.56)
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Finally by the monotone class argument Eq. 1.56 is true for any CA ∈ FA and CB ∈ FB
showing that

FA ⊥⊥ FB |FS

Remark 1.3.1 - (Comment on the proof of Theorem 1.3.1)

The proof solely depends on the recursive construction of the model and therefore it strongly
relies on the underlying graph being directed. If the underlying graph is directed but not
recursively constructible, then the proof fails. However the proof technique above might
still be useful to extend known conditional independence properties to larger sets. Imagine
for example that we still have the causal ordering expressed by the sets Vn but assume that
n ∈ Z. Assume that S d-separates A and B. As in the proof above one can construct the
filtrations FA,n, FB,n and FS,n (this time with n ∈ Z). Then the independence of FA and
FB given FS holds true if

FA,n ⊥⊥ FB,n |FS,n (1.57)

is satisfied for some n ∈ Z.

Now we will give some examples of conditional independence for some specific causal
models:

Example 1.3.1 - (Graph separation and conditional independence in Causal mod-
els)

LetC = (G,S,T) be a causal model. We use the following convention for all upcoming ex-
amples: vertices of the graph will be expressed by lowercase letters and the corresponding
vertex random variables, πv, will be denoted by upper case letters. As an example consider
the following graph:

s1
// s2

// s5

s3
// s4

>>

Caus. mod. 8 - Example: example of a recursively constructible graph

By our convention we will write S1 for the random variable πs1 for example. The corre-
sponding moral graph is

s1 s2 s5

s3 s4

Caus. mod. 9 - Example: Moral graph of Caus. mod. 8

and the conditional independence theorem implies:

S1 ⊥⊥ S3 |S2, S4, S5

and
(S1, S2) ⊥⊥ S3 |S4, S5

Consider an agent interacting with the environment by controlling some motor value. This
can be modelled by the following causal model (wherewi denotes the i-th state of the world,
si denotes the i-th sensor value, ai denotes the i-th action and ci denotes the i-th state of
the agent’s memory):
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w0
//

��

w1
//

��

w2
//

��

. . .

s0

!!

a1

==

s1

!!

a2

==

s2

!!

a3

==

. . .

c0
// c1

//

OO

c2
//

OO

c3
//

OO

. . .
Caus. mod. 10 - Example: Agent interacting with the world

The corresponding moral graph is:

w0 w1 w2 . . .

s0 a1 s1 a2 s2 a3 . . .

c0 c1 c2 c3 . . .
Caus. mod. 11 - Example: Moral graph of Caus. mod. 10

The independence theorem shows for example that the process of future actions is indepen-
dent of the past actions given the current world state and the current memory value:

(Ai)i>n ⊥⊥ (Ai)i≤n |Wn, Cn+1 for any n ∈ N (1.58)

Another consequence is that the world process is independent from the memory process
given all actions and all sensor values:

(Wi)i∈N0
⊥⊥ (Ci)i∈N0

∣∣(Si)i∈N0
, (Ai)i∈N (1.59)

We will prove a partial converse of Theorem 1.3.1, namely

Theorem 1.3.2 - (Causal model from appropriate conditional independence prop-
erties)

Let G = (V,E) be a recursively constructible graph and let (Sv,Fv) (where v ∈ V ) be a
family of Borel spaces. Furthermore let P be a probability measure on ⊗v∈V Fv satisfying
the following conditional independence property:
For every disjoint sets A,B, S ⊆ V such that S d-separates A and B we have

FA ⊥⊥ FB |FS (1.60)

Then there exists a measure p ∈ M1(⊗v∈V0Fv) with independent marginals and a collec-
tion of kernels Tv ∈ Λ

(Sv ,Fv)
(
∏
w∈Par(v) Sw,⊗w∈Par(v)Fw) for every v ∈ V \ V0 such that C :=

(G, (Sv)v∈V ,T) is a causal model and the measure p induces the law P on C.

The proof relies on a fundamental theorem on the existence of regular versions of condi-
tional distributions for Borel spaces (a proof can be found in Kallenberg [99], Bauer [22],
König [105] for example):

Lemma 1.3.5 - (Borel spaces and regular versions of conditional distributions)

Let X and Y be random variables over some probability space (Ω,F , P ). Assume that X
has values in the Borel space (X,FX) and that Y has values in some measurable space
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(Y,FY ). Then there exists a kernel K ∈ Λ
(X,FX)
(Y,FY ) such that for every A ∈ FX

P [X ∈ A |Y ] = K(Y,A) a.s. (1.61)

the kernel K will be called regular version of the conditional probability distribution of X
given Y .

Proof of Theorem 1.3.2. For every v ∈ V \V0 let Tv be a regular version of the conditional
distribution of πv given (πw)w∈Par(v). Define p :=

(
(πv)v∈V0

)
∗ P to be the distribution

of (πw)w∈V0 . Note that arbitrary finite, disjoint sets A,B ∈ V0 are d-separated by the
empty set. Therefore (πv)v∈A and (πv)v∈B are independent for every pair of disjoint sets
A,B ⊆ V0, implying that p has independent marginals.

Let v ∈ Vn. Since Par (v) d-separates {v} and V<n \ Par(v):

P [πv ∈ C |FV<n ] = Tv
(
(πw)w∈Par(v), C

)
a.s. , for all C ∈ Fv (1.62)

Every pair of disjoint sets A,B ⊆ Vn is d-separated by V<n, such that

(πv)v∈A ⊥⊥ (πv)v∈B |F<n (1.63)

for every pair of disjoint sets A,B ⊆ Vn. Hence Eq. 1.62 implies:

P
[
(πv)v∈Vn ∈ C |FV<n

]
= TVn ((πw)w∈V<n , C) a.s. , for all C ∈ ⊗v∈VnFv (1.64)

By the uniqueness statement about the law, P̂ compatible with the measure p ∈M1 (⊗v∈V0Fv)
and the causal structure (see Theorem 1.3.1), we have:

P = P̂ (1.65)

Note that the restriction to Borel spaces is sufficient but not necessary. The proof of The-
orem 1.3.2 shows that a sufficient (and obviously also necessary) requirement is that πv
possesses a regular conditional distribution given (πw)w∈Par(v) for every v ∈ V \ V0.

Remark 1.3.2 - (Comment on Theorem 1.3.2)

There is a subtle point connected to Theorem 1.3.2. In a certain sense a causal model con-
tains far more informative then a single probability distribution that is compatible with the
causal structure of the underlying graph. Consider for example two Borel spaces (X,FX)
and (Y,FY ) and a probability measure P ∈ M1 (FX ,FY ). By Theorem 1.3.2 P is com-
patible with the graph

x // y

Caus. mod. 12 - Example: Causal model from probability distribution

i.e. there exists an initial distribution px ∈ M1 (FX) and a kernel K1 ∈ ΛY
X such that for

every A ∈ FX ⊗FY :

P (A) =

∫
1A [(x, y)] px(dx)K1 [x, dy]

However P is also compatible with the graph
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x yoo

Caus. mod. 13 - Example: Causal model from probability distribution

i.e. there exists an initial distribution py ∈ M1 (FY ) and a kernel K2 ∈ ΛX
Y such that for

every A ∈ FX ⊗FY :

P (A) =

∫
1A [(x, y)] py(dy)K2 [y, dx]

A causal model on the other hand does not describe a single probability distribution but
rather describes the stochastic dynamics for any initial measure (which can be considered
as process independent exterior input).

In order to allow for manipulation of some (or all) variables for Caus. mod. 12, it is reason-
able to add four vertices bx, by, xc and yc and change the underlying graph to the following
one:

x // y

bx

>>

xc

OO

by

??

yc

OO

Caus. mod. 14 - Example: Causal model with controllable x-and y-variable

Here the b-variables indicate whether the variable is controlled or not, and xc, yc denote the
input in case of manual control. Having this idea in mind attach the state space (X,FX) to
xc, the state space (Y,FY ) to yc and the state space

(
{0, 1} , 2{0,1}

)
to the vertices bx and

by. The intuitive meaning of bx, by, xc and yc can be formalized as follows:

Tx
[(
b, x′

)
, A
]

:=

{
px [A] if b = 0

1A (x′) else
(1.66)

where x′ ∈ X, b ∈ {0, 1} and A ∈ FX and

Ty
[(
x′, b, y′

)
, A
]

:=

{
K1 [x′, A] if b = 0

1A (y′) else
(1.67)

where y′ ∈ Y, x′ ∈ X, b ∈ {0, 1} andA ∈ FY . The construction of manipulable variables,
shown in the two vertex-example above provides a general strategy to formalize Pearl’s do-
calculus (compare Pearl [140] and Huang and Valtorta [90]) as a special causal statistical
model over a causal model (“do(x’)” means calculation with respect to the law generated by
b1 = 1 and πxc = x′ a.s., or in the statistical model language pbx = δ{1} and pxc = δ{x′}).

The introduction of manipulable variables in the sense above allows an investigation of
causal effects using statistical methods. Whereas Caus. mod. 12 and Caus. mod. 13 are
stochastically indistinguishable as long as only one probability distribution is involved, the
model Caus. mod. 14 clearly breaks this symmetry: a fixed value x′ ∈ X usually changes
the distribution of πy whereas a fixed value of y′ ∈ Y has no influence on the distribution
of πx. This is exactly what is commonly understood as a causal influence of x on y.

The discussion shows that a proper causality measures cannot be defined for a single proba-
bility distribution on the fundamental variables (by this we mean the variables whose causal
relation is supposed to be investigated, in the example above these variables are given by x
and y) only. Any proper causality measure must include interactions with the system. Note
however that the dynamic of the original model with interaction is a model itself, and there-
fore should be made explicit. Even though the construction above is very natural if not to
say obvious, it relies on the underlying assumptions as any model does. The knowledge of
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bx being the “switch” for x for example is essential for the conclusion to be valid. In other
words: the definition of a causality measure requires a causal model for the consequences
of input manipulations. In any way a measure defined for a single probability distribution
of the fundamental variables, like the transfer entropy (Schreiber [166]), an extension of
Granger causality (compare Granger [76]), is no proper causality measures in this under-
standing. The transfer entropy measures the average improvement of predictability of some
vertex random variable(s) by inspecting another vertex random variable (or a collection of
vertex random variables) but fails to quantify proper causal influence.

A more elaborate discussion of proper causality measures necessarily involves the consid-
eration of more complicated underlying graphs. Within the causal model framework corre-
lations between two vertex random variables at x and y might originate from either causal
influence (i.e. x ∈ An(y) and every path from an element v ∈ An(x) to y has to pass vertex
x or the same holds true with vertex x and y interchanged), from a common cause (i.e. non
of the two vertices lies in the ancestral set generated by the other) or by a mixtures of these
two possibilities (i.e. x ∈ An(y) and there exists a path from an ancestor of x to y that does
not pass through x or the same holds true with x and y interchanged). For a more detailed
discussion and a suggestion of a proper causality measure see for example Ay [9], Ay and
Zahedi [14] and Ay and Polani [13].

1.4 Strong conditional independence in causal models

In this section we will prove a generalization of the strong Markov property of Markov
processes (compare Kallenberg [99], Bauer [22], König [105]) to causal models. This gen-
eralization allows an extension of the conditional independence results from states on deter-
ministically chosen sets A,B, S ⊆ V (compare Theorem 1.3.1) to certain randomly chosen
sets. We will use this results frequently for our analysis of the sensorimotor loop in Chap-
ter 4. We will provide plenty of examples to motivate and illustrate the concepts.

Loosely speaking the strong Markov properties for Markov processes can be understood as
the independence of events in the future of a given stopping time, τ , and events in the past of
τ given the value of τ and the process value at τ ,Xτ . For general causal models it is straight
forward to replace “past” and “future” by arbitrary random sets, A and B whose position
depends on another “random set”, τ , (generalizing the stopping time) and the vertex values
at τ , (πv)v∈τ (more generally we will allow τ to be an N -tuples of random sets such that
the positions of A and B can be specified with respect to multiple random sets). To define
random sets as set-valued random variables a σ-algebra on the power set 2V is needed. For
our purpose we simply choose the entire power set:

G2V
(N) := 22V

N

(1.68)

This choice implies that measurability of a 2V
N -valued function on some probability space

which is a very strong requirement, but also implies that any map f : 2V
N → 2V

M is
G2V

(N)/G2V
(M)-measurable. Since we are only interested in countably-valued random sets,

the latter advantage overcompensates the former disadvantage.

Definition 1.4.1 - (Random sets )

I Definition 1.4.1.1: Let C := ((V,E),S,T) be a causal model. A random set is a
FV /G2V

(1)-measurable map:
τ : S→ 2V (1.69)
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I Definition 1.4.1.2: Let C := ((V,E),S,T) be a causal model and let N ∈ N. An
N -dimensional random set on C is a FV /G2V

(N)-measurable map:

τ : S→
(
2V
)N

(1.70)

all N ≥ 1 dimensional random sets will be summarized under the name multi-dimensional
random sets.

In addition to a random set generalizing the stopping time, the formulation of the strong
Markov property requires the specification of sets relative to this random set.

Definition 1.4.2 - (Random sets relative to another random set)

Let C := ((V,E),S,T) be a causal model and let τ be an N -dimensional random set on
C. A random set relative to τ is a map:

I : Range(τ)→ 2V

Let C := ((V,E),S,T) be a causal model and let τ be anN -dimensional random set on C.
By the comment following Eq. 1.68 a random set I relative to τ naturally defines a random
set, I ′ := I(τ). On the event {τ = t} the random variable I ′(τ) takes on the value I(t).
This is the intuitive idea behind the concept of “random set relative to another one”.
So far we have specified the vertex sets relative to a given random set, τ . We also need
some notion of events that can be inferred from looking at a given vertex set once the value
of some discrete random set is known. The associated σ-algebra is naturally defined as
follows:

Definition 1.4.3 - (Inference σ-algebras)

Let C := ((V,E),S,T) be a causal model, let τ be an N -dimensional discrete random set
on C, and let I be a random set relative to τ . The following collection of events:

FI :=
{
B ∈ F

∣∣B ∩ {τ = W} ∈ FI(W ) ∩ {τ = W} for every W ∈ Range(τ)
}
,

(1.71)
will be called inference σ-algebra of I relative to τ .
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Remark 1.4.1 - (Comment on Definition 1.4.3)

I Remark 1.4.1.1: The inference σ-algebra of I relative to τ is indeed a σ-algebra. To
see this fix a countable collection Bi ∈ FI (where i ∈ N) and some W ∈ Range(τ). For
every i ∈ N there exists B̃i ∈ FI(W ) such that Bi ∩ {τ = W} = B̃i ∩ {τ = W}. Then

∩i∈NBi ∩ {τ = W} = ∩i∈NB̃i ∩ {τ = W} ∈ FI(W ) ∩ {τ = W} .

Since FI(W ) is closed with respect to countable intersections, FI is also closed with respect
to countable intersections. Trivially Ω ∈ FI . So it remains to show that FI is also closed
with respect to complementation. This follows from the observation that for every B ∈ FI
we haveBC∩{τ = W} = {τ = W}∩(B∩{τ = W})C sinceFI(W ) is closed with respect
to complementation.
I Remark 1.4.1.2: Inference σ-algebras are monotonous in the following sense: For
two random sets IA and IB relative to some (multidimensional) random set, τ satisfying
IA(r) ⊆ IB(r) for every r ∈ Range(τ) we have: FIA ⊆ FIB .

We are only interested in scenarios where τ is countably-valued. In this case there exists
another characterization of the inference σ-algebra:

Lemma 1.4.1 - (Inference σ-algebras and countably-valued random sets)

Let C := ((V,E),S,T) be a causal model, let τ be an N -dimensional, countably-valued
random set on C and let

I : Range(τ)→ 2V (1.72)

be a random set relative to τ . Then

FI = σ
(
{τ = W} ∩BW

∣∣W ∈ Range(τ), BW ∈ FI(W )

)
(1.73)

Proof of Lemma 1.4.1. We have {τ = W} ∩ BW ∈ FI for every W ∈ Range(τ) and
BW ∈ FI(W ) by definition of FI . Therefore

σ
(
{τ = W} ∩BW

∣∣W ∈ Range(τ), BW ∈ FI(W )

)
⊆ FI .

On the other hand by definition for every B ∈ FI and W ∈ Range(τ) there exist BW ∈
FI(W ) such that B ∩ {τ = W} = BW ∩ {τ = W} and therefore by the countability as-
sumption:

B = ∪W∈Range(τ) {τ = W} ∩B = ∪W∈Range(τ) {τ = W} ∩BW
∈ σ

(
{τ = W} ∩BW

∣∣W ∈ Range(τ), BW ∈ FI(W )

)
,

proving the second inclusion.
The concepts developed so far will be illustrated in a simple example now:

Example 1.4.1 - (Stopping times and their inference maps)

Let C := ((N0, E),S,T) be a causal model where (a, b) ∈ E if and only if a < b (this
choice corresponds to a general process that can be constructed recursively by kernels.
This choice ofE does not make any further conditional independence assumptions; another
canonical choice could be (a, b) ∈ E if and only if a + 1 = b corresponding to a discrete
time Markov process). To simplify the situation we assume identical state spaces, i.e. Si :=
X for some measurable space (X,FX). As before we fix an initial measure, p ∈M1 (FX),
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inducing the law P̂ ∈M1(⊗v∈N0Fv) and consider the process (πv)v∈N0 on the probability

space
(
S,⊗v∈N0Fv, P̂

)
.

Let
τ : S→ N0

be a random time. As already mentioned we identify τ with the random set τ̃ := {τ}.
Consider the “past of τ”, i.e. the random set relative to τ̃ given by:

I : {n} 7→ {k ∈ N |0 ≤ k ≤ n} (1.74)

The associated inference σ-algebra FI includes the event

B := ∪0≤k≤τ {Xk ∈ A} . (1.75)

for example. If τ happens to be a stopping time with respect to the standard filtration,
Fn := F{0≤k≤n}, i.e. {τ ≤ n} ∈ Fn, then the associated stopping σ-algebra (compare
Kallenberg [99], Bauer [22], König [105], Liptser and Shiryayev [119], Barndorff-Nielsen
and Shiryaev [21]) is defined to be

Fτ := {A ∈ F |A ∩ {τ ≤ n} ∈ Fn } (1.76)

In this case obviously
Fτ = FI (1.77)

Using the terminology introduced above, it is very simple to formalize all events that occur
after τ for example. They lie in the inference σ-algebra generated by:

I2 : {n} 7→ {k ∈ N0 |k > n} (1.78)

As another example consider all events that occur after τ and have an even label. The
corresponding inference σ-algebra is generated by:

I3 : {n} 7→ {k ∈ N0 |k > n, k ≡ 0 mod 2} . (1.79)

A special random set relative to a given random set τ is the union of all entries of τ . Alluding
to the usual stopping time scenario we call it present random set associated to τ :

Definition 1.4.4 - (The present random set and the present σ-algebra associated to
a discrete random set)

Let C := ((V,E),S,T) be a causal model and let τ = (τi)1≤i≤N be an N -dimensional
discrete random set. The present random set associated to τ is a special random set relative
to τ , namely:

Iτ : Range (τ)→ 2V ;W 7→ ∪1≤i≤NWi (1.80)

and the present σ-algebra of τ is the associated inference σ-algebra:

Fpr,τ := FIτ (1.81)

Before continuing we define the concept of local equality of σ-algebras (compare Kallen-
berg [99] for example)
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Definition 1.4.5 - (Local equality of σ-algebras)

Let G and F be two σ-algebras over some set, Ω, and let A ∈ F ∩ G. Then F is equal to G
on A, written as

F = G on A

if B ∈ F implies B ∩A ∈ G and B ∈ G implies B ∩A ∈ F .

The σ-algebra Fpr,τ captures all events that are completely specified by the value(s) of τ
and the vertex values of vertices in τ(ω). This is the essential message behind the following
lemma:

Lemma 1.4.2 - (Local properties of the present σ-algebras)

Let C := ((V,E),S,T) be a causal model and let τ be an N -dimensional random set on
C then for every W ∈

(
2V
)N :

Fpr,τ = σ
(
{B ∩ {τ = W}}B∈FW1∪...∪WN

)
on {τ = W} (1.82)

Proof. To shorten notation we set G := σ
(
{B ∩ {τ = W}}B∈FW1∪...∪WN

)
for this proof.

First consider an arbitrary set A ∈ Fpr,τ with A ⊆ {τ = W}. By definition of Fpr,τ there
exists Ã ∈ FW1∪...∪WN

such that:

A ∩ {τ = W} = Ã ∩ {τ = W} ∈ G (1.83)

Hence Fpr,τ ⊆ G on {τ = W}.
Now let A ∈ F∪1≤i≤NWi . Then:

A ∩ {τ = W} ∩
{
τ = W ′

}
=

{
A ∩ {τ = W ′} if W = W ′

∅ else
(1.84)

and therefore A ∩ {τ = W} ∈ Fpr,τ . Since sets of the form A ∩ {τ = W} generate G the
result follows.
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Using the notation introduced above, the strong Markov property for causal models is cap-
tured by the following theorem:

Theorem 1.4.1 - (Strong Markov property of causal models)

Let C := ((V,E),S,T) be a causal model with law P generated by some admissible initial
measure p ∈M1 (FV0), let τ = (τi)1≤i≤N be anN -dimensional, countably-valued random
set. Let IA and IB be random sets relative to τ . Assume that the following separation
property holds:
For every W ∈ Range (τ) there exist WA,WB ⊆ V , CA ∈ FWA

and CB ∈ FWB
such that

• {τ = W} = CA ∩ CB

• The set S := ∪1≤i≤NWi d-separates

Ã := [IA (W ) ∪WA] \ S and B̃ := [IB (W ) ∪WB] \ S

Then
FIA ⊥⊥ FIB

∣∣Fpr,τ (1.85)

The proof uses a technical lemma, that can be found in Kallenberg [99], p.105

Lemma 1.4.3 - (Locality of the conditional expectation)

Let (Ω,F , P ) be a probability space, let G1,G2 ⊆ F be sub σ-algebras, let f1, f2 : Ω→ R

be a F /BR-measurable functions and let A ∈ G1 ∩ G2. Assume that

• f1 = f2 almost surely on A

• G1 = G2 on A

Then:
E [f1 |G1 ] = E [f2 |G2 ] almost surely on A (1.86)

Proof of Theorem 1.4.1. Fix W ∈ Range (τ) and set

SW := ∪1≤i≤NWi.

By the separation property there exists CA ∈ FWA
, CB ∈ FWB

where WA,WB ⊆ V , such
that

{τ = W} = CA ∩ CB,

SW d-separates
IA (W ) ∪WA \ SW

and
IB (W ) ∪WB \ SW

Therefore by Theorem 1.3.1

FIA(W )∪WA\SW ⊥⊥ FIB(W )∪WB\SW |FSW , (1.87)

which implies
FIA(W )∪WA

⊥⊥ FIB(W )∪WB
|FSW (1.88)

Moreover by assumption:

GA,W := {∅,Ω, CA, CAc} ⊆ FWA

Chapter 1



49 Stochastic learning algorithms on causal models

and
GB,W := {∅,Ω, CB, CBc} ⊆ FWB

such that Eq. 1.88 implies(
FIA(W ),GA,W

)
⊥⊥
(
FIB(W ),GB,W

)
|FSW (1.89)

By Lemma 1.3.1:
FIA(W ) ⊥⊥ FIB(W ) |FSW ,GA,W ,GB,W (1.90)

Now we will show that

Fpr,τ = σ (FSW ,GA,W ,GB,W ) on {τ = W} = CA ∩ CB (1.91)

To see this note that by Lemma 1.4.2 and the definition of CA and CB:

Fpr,τ = σ
(
{D ∩ {τ = W}}D∈FSW

)
(1.92)

= σ
(
{D ∩ CA ∩ CB}D∈FSW

)
on {τ = W} = CA ∩ CB.

Clearly σ
(
{D ∩ CA ∩ CB}C∈FSW

)
⊆ σ (FSW ,GA,W ,GB,W ). On the other hand every

D ∈ σ (FSW ,GA,W ,GB,W ) has the form

D = (1.93)

(D1,1 ∩ CA ∩ CB) ∪ (D0,1 ∩ CAc ∩ CB) ∪ (D1,0 ∩ CA ∩ CBc) ∪ (D1,1 ∩ CAc ∩ CBc)

where Di,j ∈ FSW . This follows from the observation that all sets compatible with the
right-hand side of 1.93 lie in σ (FSW ,GA,W ,GB,W ), form a σ-algebra and contain any el-
ement of FSW ∪ GA,W ∪ GB,W . Therefore elements D ∈ σ (FSW ,GA,W ,GB,W ) with the
further property D ⊆ CA ∩ CB can be written as:

D = D1,1 ∩ CA ∩ CB ∈ σ
(
{D ∩ CA ∩ CB}D∈FSW

)
, (1.94)

showing that σ
(
{D ∩ CA ∩ CB}

∣∣∣D∈FSW ) = σ (FSW ,GA,W ,GB,W ) on {τ = W} and
proving Eq. 1.91.
Now let A′ ∈ FIA and B′ ∈ FIB . Then almost surely

P
[
A′ ∩B′

∣∣Fpr,τ
]

=
∑

W∈Range(τ)

P
[
A′ ∩B′ ∩ {τ = W}

∣∣Fpr,τ
]

(1.95)

Consider one particular summand for fixed W ∈ Range(τ). By definition of FIA and FIB
there exist AW ∈ FIA(W ) and BW ∈ FIB(W ) such that

A′ ∩ {τ = W} = AW ∩ {τ = W} and B′ ∩ {τ = W} = BW ∩ {τ = W} .

A short calculation gives:

P
[
A′ ∩B′ ∩ {τ = W}

∣∣Fpr,τ
]

= 1{τ=W}P [AW ∩BW |σ (FSW ,GA,W ,GB,W ) ]

= 1{τ=W}P [AW |σ (FSW ,GA,W ,GB,W ) ] · P [BW |σ (FSW ,GA,W ,GB,W ) ]

= 1{τ=W}P
[
A′
∣∣Fpr,τ

]
· P
[
B′
∣∣Fpr,τ

]
,

where we used Lemma 1.4.3 together with Eq. 1.91 for the step from line 1 to line 2 and
from line 3 to line 4, and the conditional independence, Eq. 1.90, for the step from line 2
to line 3. Inserting this into the right-hand side of Eq. 1.95 and carrying out the summation
yields:

P
[
A′ ∩B′

∣∣Fpr,τ
]

= P
[
A′
∣∣Fpr,τ

]
· P
[
B′
∣∣Fpr,τ

]
(1.96)
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Since this holds true for any A′ ∈ FIA and B′ ∈ FIB the validity of the theorem follows.

We will use this theorem in Chapter 4 when we investigate learning algorithms on the sen-
sorimotor loop. As a general comment note that the Markov property for time discrete
Markov processes is really a special case of the strong Markov property for causal models.

Example 1.4.2 - (Strong Markov properties of discrete time Markov processes)

I Example 1.4.2.1: Define GMarkov := (N0, EMarkov) where (a, b) ∈ EMarkov if and only
if a+ 1 = b. Let C := (GMarkov,S,T) be a causal model and let τ be a stopping time. For
simplicity we assume that the vertex state spaces are identical: Sv = X where (X,FX) is
some measurable space. Write τ̃ := {τ} for the corresponding random set. Define

I<τ : {n} 7→ {0, . . . , n− 1} ; I>τ : {n} 7→ {k ∈ N0 |k > n} (1.97)

Since τ is a stopping time, we have:

{τ̃ = {n}} ∈ F{0,...,n} (1.98)

Moreover for every n ∈ N0 the set {n} d-separates

Ã := I<τ ({n}) ∪ {0, . . . , n} \ {n} = {0, . . . , n− 1} (1.99)

and
B̃ := I>τ ({n}) \ {n} = {k ∈ N0 |k > n} (1.100)

therefore
FI<τ ⊥⊥ FI>τ

∣∣Fpr,τ̃ (1.101)

by Theorem 1.4.1. This is the strong Markov property for discrete time Markov processes.
I Example 1.4.2.2: As a slightly more involved example that is covered by the theorem
consider the same causal model and two stopping times τ1 and τ2. The two stopping times
naturally defines the two-dimensional random set:

τ ′ : ω 7→ ({τ1(ω)} , {τ2(ω)}) (1.102)

Assume that τ2 > τ1 + 1 almost surely. By the former findings we have

πτ1−1 ⊥⊥ πτ1+1

∣∣Fpr,τ̃1

Does this imply
πτ1−1 ⊥⊥ πτ1+1

∣∣Fpr,τ ′ ?

The answer to this question is negative. Consider an IID sequence of random variables with
values in {0, 1} each occurring with probability one half. Define

τ1(s) = 3; τ2(s) =

{
5 if s2 = s4

6 else

It is easy to see that τ1 and τ2 are stopping times. We have

P
[
{π2 = a} ∩ {π4 = b}

∣∣Fpr,τ ′
]

=

{
1
2δa,b if τ2 − τ1 = 2
1
2 (1− δa,b) else
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but
P
[
{π2 = a}

∣∣Fpr,τ ′
]

= P
[
{π4 = b}

∣∣Fpr,τ ′
]

=
1

2

It is very illustrative to analyze which assumptions of Theorem 1.4.1 fail and under which
further requirements on τ1 and τ2 the conditional independence result

FI<τ1 ⊥⊥ FI>τ1
∣∣Fpr,τ ′ (1.103)

is guaranteed to be true nevertheless, where we set:

I<τ1 : ({n} , {m}) 7→ {0, . . . , n} (1.104)

and
I>τ1 : ({n} , {m}) 7→ {k ∈ N |k > n} . (1.105)

I Example 1.4.2.3: Since τ1 and τ2 are stopping times

τ ′ ({n} , {m}) = C1,n ∩ C2,m (1.106)

where
C1,n ∈ F{0,...,n} and C2,m ∈ F{0,...,m}

For fixed m > n:
S := {n,m}

clearly d-separates

Ã := I<τ1 ({n} , {m}) \ S = {k ∈ N |0 ≤ k < n}

and
B̃ := I>τ1 ({n} , {m}) \ S = {k ∈ N |k > n, k 6= m} .

However whenever m > n it is not possible to append the sets {0, . . . , n} and {0, . . . ,m},
to A or B in a way that preserves the separation property.
However under further assumptions on τ1 and τ2 ≥ τ1 the conditional independence result
might still hold. One (admittedly rather uninteresting) possibility is that the second stopping
time does not “look at values that occur after the first one”. A trivial example is τ2 = τ1+K
for some fixed integer constant K > 1. Then

τ ′ (({n} , {m})) ∈ F{0,...,n} (1.107)

and, as in the single stopping time example,

S = {n,m} (1.108)

d-separates

Ã := I<τ1 (({n} , {m})) ∪ {0, . . . , n} \ S = {0, . . . , n− 1} (1.109)

and
B̃ := I>τ1 (({n} , {m})) \ S = {k ∈ N |k > n, k 6= m} (1.110)

such that Eq. 1.103 is satisfied by Theorem 1.4.1.
I Example 1.4.2.4: A more interesting case is that τ2 depends on values after τ1 only.
This happens for example if τ1 and τ2 are the first and second hitting time of a set A ∈ FX .
Then {

τ ′ = ({n} , {m})
}

= C1,n ∩ C2,n,m (1.111)

where
C1,n = ∩0≤k<n {πk /∈ A} ∩ {πn ∈ A} ∈ F{0,...,n} (1.112)
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and
C2,n,m = ∩n<k<m {πk /∈ A} ∩ {πm ∈ A} ∈ F{n+1,...,m} (1.113)

Then
S = {n,m}

d-separates

Ã := I<τ1 (({n} , {m})) ∪ {0, . . . , n} \ S = {0, . . . , n− 1} (1.114)

and

B̃ := I>τ1 (({n} , {m})) ∪ {n+ 1, . . . ,m} \ S = {k ∈ N0 |k > n, k 6= m} (1.115)

Therefore
FI<τ1 ⊥⊥ FI>τ1

∣∣Fpr,τ ′ (1.116)

by Theorem 1.4.1.

Now we will give some examples for more general causal models:

Example 1.4.3 - (Graph separation and conditional independence in Causal mod-
els)

Let C = (G,S,T) be a causal model. We use the convention from Example 1.3.1 again:
vertices of the graph will be expressed by lowercase letters and the corresponding vertex
random variables, πv, will be denoted by upper case letters.

Consider an agent interacting with the environment by controlling some motor value. This
can be modelled by the following causal model (wherewi denotes the i-th state of the world,
si denotes the i-th sensor value, ai denotes the i-th action and ci denotes the i-th state of
the agent’s memory):

w0
//

��

w1
//

��

w2
//

��

w3
//

��

. . .

s0

!!

a1

==

s1

!!

a2

==

s2

!!

a3

==

s3

!!

a4

==

. . .

c0
// c1

//

OO

c2
//

OO

c3
//

OO

c4
//

OO

. . .
Caus. mod. 15 - Example: Agent interacting with the world

The corresponding moral graph is:

w0 w1 w2 w3 . . .

s0 a1 s1 a2 s2 a3 s3 a4 . . .

c0 c1 c2 c3 c4 . . .
Caus. mod. 16 - Example: Moral graph of Caus. mod. 15

Let τ1 be a stopping time with respect to the filtration

Gall,n := σ
(
{Si}0≤i≤n ∪ {Ai}1≤i≤n ∪ {Ci}0≤i≤n+1 ∪ {Wi}0≤i≤n

)
.
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The events inGall,n can be inferred from looking at any collection of vertices prior to cn+1.
The strong Markov property implies that the process of actions after τ1 is independent of
the actions before τ1 given the world state at τ1 and the memory value at τ1:

(Ai)i>τ1 ⊥⊥ (Ai)1≤i≤τ1 |(Wτ1 , Cτ1+1, τ1) (1.117)

Now let τ2 be a stopping time with respect to the filtration

Gagent,n := σ
(
{Si}0≤i≤n ∪ {Ai}1≤i≤n ∪ {Ci}0≤i≤n+1

)
.

The events in Gagent,n can be inferred from looking at any collection of memory values,
actions and sensor values (i.e. quantities directly accessible to the agent) prior to cn+1. By
the strong Markov property:

(Wi)0≤i≤τ2 ⊥⊥ (Ci)0≤i≤τ2+1

∣∣∣(Si)0≤i≤τ2 , (Ai)1≤i≤τ2 , τ2 (1.118)

After these examples we outline some further consequences of Theorem 1.4.1. The first
immediate corollary is essentially a reformulation that holds true if there exist certain regular
versions of the conditional probability distribution:

Corrolary 1.4.1 - (Reformulation of strong Markov property)

Let C := ((V,E),S,T) be a causal model and let τ = (τi)1≤i≤N be an N -dimensional,
countably-valued random set. Let IA and IB be random sets relative to τ and assume that
the separation property of Theorem 1.4.1 is satisfied. Assume that for everyW ∈ Range(τ)
there exists a regular version KW of FIB(W ) given F∪1≤i≤NWi , i.e.:

P
[
C
∣∣F∪1≤i≤NWi

]
= KW

(
π∪1≤i≤NWi , C

)
for every C ∈ FIB(W ) (1.119)

Let B̃ ∈ FIB . By definition for every W ∈ Range(τ) there exist BW ∈ FIB(W ) such that
B̃ ∩ {τ = W} = BW ∩ {τ = W}. Then:

P
[
B̃
∣∣Fpr,τ ,FIA

]
=

∑
W∈Range(τ)

1{τ=W}KW

(
π∪1≤i≤NWi , BW

)
(1.120)

We restricted the investigation to N -tuples of random sets but the results are also true for
sequences of random sets, (τi)i∈N. This is straight forward and we omit a proof.

In this work we are mainly interested in directed models. However the concepts developed
so far (like random sets, random sets relative to another random set and the associated
σ-algebras for example) are only related to the vertex set and make sense for undirected
graphical models as well. Moreover a closer look on the proof of the strong Markov property
shows that the directedness entered only very indirectly, namely at the point where we used
the relation between graph separation and conditional independence for deterministically
chosen sets. A proof of a strong Markov property for undirected models is essentially
identical and we only cite the result:

Remark 1.4.2 - (Strong Markov properties for undirected models)

Let G = (V,E) be an undirected graph and let (Sv,Fv) where v ∈ V be measurable
spaces. Define the measurable space of total configurations:

S :=
∏
v∈V

Sv ; F := ⊗v∈V Fv (1.121)
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As before let πv : S → Sv denote the projection onto the v-th factor and set FW :=
σ
(
{πv}v∈W

)
for any W ⊆ V . Let P ∈ M1(F) be a probability law on the space of

configurations equipped with product σ-algebra satisfying the global Markov property with
respect to G, i.e.:

FA ⊥⊥ FB |FS (1.122)

whenever S,A,B ⊆ V such that S separates A and B.
Let

τ : S→
(
2V
)N

(1.123)

be F /G2V
(N)-measurable. Assume τ to be countably-valued and let IA, IB be random sets

relative to τ . Assume that the following separation property holds:
For every W ∈ Range(τ) there exist WA,WB ∈ 2V , CA ∈ FWA

and CB ∈ FWB
such

that

•
{τ = W} = CA ∩ CB (1.124)

• The set
S := ∪1≤k≤NWk

separates
Ã := IA(W ) ∪WA \ S and B̃ := IB(W ) ∪WB \ S

then
FIA ⊥⊥ FIB

∣∣Fpr,τ (1.125)
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Chapter 2

Projected stochastic gradient
algorithms

In the current chapter we will provide a collection of mathematical tools including concepts
from optimization theory, set-valued analysis and projected differential inclusions. We will
prove a theorem on the asymptotic behavior of a collection of stochastic approximation al-
gorithms (see and Theorem 2.4.1 and Theorem 2.4.3). Our result partially extends results
from Kushner and Yin [110] and Kushner and Clark [109]. Stochastic approximation se-
quences are a frequently used method in machine learning and optimization theory. Most
of the background knowledge on stochastic optimization theory provided in this chapter is
based in the excellent books Kushner and Clark [109], Kushner and Yin [110], Bertsekas
and Tsitsiklis [24] and Borkar [38]

The main result of this chapter is a theorem about the asymptotic behavior of a projected
stochastic approximation algorithm and a convergence theorem for a stochastic general-
metric gradient ascent algorithm (see and Theorem 2.4.1 and Theorem 2.4.3). For the the-
orems we keep the regularity requirements on the metric for the gradient algorithm and the
objective funcion as small as possible. We require the set of critical values to be “sufficiently
small” (to be precised later on). Our requirement is true whenever the stationary points are
isolated but holds true for a much broader class of functions. Furthermore we do not restrict
the gradient ascent algorithms to be with respect to continuous metrices but allow for cer-
tain discontinuities or more generally for certain selections from an entire range of metrics.
For the projection onto the desired constraint set we use general quasi-projectors (see Aubin
[7] and Definition 2.3.1). The use of quasi-projectors different from othorgonal projection
with respect to Euclidean metric is advantageous if the latter is computationally expensive
or even intractable. These general quasi-projectors usually introduce spurious stationary
points on the boundary of the domain as we will explain in detail. We circumvent this prob-
lem by doing the gradient ascent with respect to a metric that is specially adapted to the
specific quasi-projector in use. This idea is essentially new to our knowledge. Therefore the
definition of the preimage cone in Definition 2.3.1, the associated compatibility condition
between metric and quasi-projector and the successive examples can also be considered to
be a central result of the current chapter.

We will provide many examples to illustrate the concepts and theorems. As examples for
quasi-projectors we consider the orhorgonal projection onto the ε-simplex in Rn and the
canonical retraction onto the unit ball in the vector space of square matrices equipped with
operator norm, i.e.:

A 7→

{
A
‖A‖Op

if ‖A‖ > 1

A else
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For each of these quasi-projectors we explicitely provide a compatible metric. Both ex-
amples aim at the second part of this thesis where we use a projected stochastic gradient
algorithm to solve certain learning problems in the sensorimotor loop.

2.1 First order optimality in constrained optimization problems

In this section we will review some concepts frequently used in mathematical optimization.
Many of the concepts posses very natural extensions to more general constraint sets, in-
finite dimensional vector spaces, functions satisfying milder differentiability requirements
(compare for example Clarke [50], Jahn [93], Aubin [7], Aubin and Frankowska [8], Anger,
Aubin, and Cellina [6], Troutman [185] and Troutman [185]). To keep this section short we
will try to find a compromise between generality and technical simplicity. We first try to
formulate first order optimality conditions for the following optimization problem:

Problem 2.1.1 - (General constrained optimization problem)

Let φ ∈ C1(Rn,R), K ⊆ Rn and assume that

M := max {φ(x) |x ∈ K } (2.1)

exists. In this case: determine M and find the maximizers:

C := {x ∈ K |M = φ(x)} (2.2)

In order to formulate first-order optimality conditions some notion of achievable, infinitesi-
mal changes at elements x ∈ K is needed. This idea is captured by the (Bouligand) tangent
cone (compare Clarke [50], Aubin and Frankowska [8], Jahn [93]) 1:

Definition 2.1.1 - (Tangent cone and normal cone)

Let K ⊆ Rn and x ∈ K. Then the (Bouligand) tangent cone of K at x is:

TK(x) =

{
v ∈ Rn

∣∣∣∣lim inf
t↘0

dK(x+ tv)

t
= 0

}
(2.3)

where dK(x) := inf {y ∈ K |‖x− y‖2 } and ‖·‖2 is the Euclidean distance. The normal
cone at x is the polar cone of TK(x):

NK(x) = {v ∈ Rn∗ |v [w] ≤ 0 for every w ∈ TK(x)} (2.4)

Before continuing the excursion we will present some important tangent and cotangent
cones. As a first example consider the closed R-ball, BR(0) := {x ∈ Rn |‖x‖2 ≤ R} of
Rn equipped with Euclidean norm:

1There are actually plenty of ways to define tangent cones to sets but we restrict to the Bouligand tangent
cone, since it is the right concept for the validity of the viability theorem that we will need later on. For a a
good overview of this topic and an illustration of different concepts of tangency see Aubin and Frankowska [8]
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Example 2.1.1 - (Tangent and normal cone for a closed ball inRn)

Let BR(0) := {x ∈ Rn |‖x‖2 ≤ R}, then:

TBR(0)(x) =

{
Rn for ‖x‖ < R

{v ∈ Rn |〈v, x〉 ≤ 0} for ‖x‖ = R
(2.5)

and

NBR(0)(x) =

{
0 for ‖x‖ < R

{α 〈x, ·〉 |α ∈ R≥0 } for ‖x‖ = R
(2.6)

Another constraint set (that will play an important role in Chapter 4) is the ε−simplex (with
S being a finite set and 0 ≤ ε ≤ 1

|S| ):

Example 2.1.2 - (Tangent and normal cone for the ε-simplex)

Let

∆ε;S :=

{
v ∈ RS

∣∣∣∣∣∑
s∈S

vs = 1; vs ≥ ε for every s ∈ S

}
(2.7)

be the ε-simplex over the finite set, S. Then

T∆ε;S
(x) =

{
c ∈ RS

∣∣∣∣∣∑
s∈S

cs = 0; cs ≥ 0 whenever xs = ε

}
(2.8)

and

N∆ε;S
(x) =

λ1T −
∑
s∈I(x)

λses,∗ |λ ∈ R;λs ∈ R≥0


=

λ1T +
∑
s∈I(x)

λs

(
1

|S|
1T − es,∗

)
|λ ∈ R;λs ∈ R≥0

 (2.9)

where I(x) := {s ∈ S |xs = ε} and 1T acts on vectors via matrix multiplication, i.e.

1v :=
∑
s∈S

vs

Later on we will also need the tangent cone of the closed unit ball B1(0) ⊆ RS×S where
RS×S is equipped with some matrix operator norm:

Lemma 2.1.1 - (Tangent and normal cone for the unit ball in RS×S equipped
with operator norm)

Let B1(0) be the closed unit ball ofRS×S equipped with operator norm

‖A‖Op,p := sup
{
‖Ax‖p

∣∣∣x ∈ RS; ‖x‖p = 1
}

(2.10)

where ‖·‖p (with 1 ≤ p ≤ ∞) is the p-norm:

‖v‖p :=

(∑
s∈S
|vs|p

) 1
p

for p <∞ and ‖v‖∞ := max {|vs| |s ∈ S}
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for A ∈ B1(0) with ‖A‖Op,p = 1 set:

KA :=
{

(λ, v) ∈ RS∗ ×RS
∣∣∣‖v‖p = ‖λ‖p∗ = 1 ; λ (Av) = ‖A‖Op,p = 1

}
(2.11)

where we wrote ‖·‖p∗ for the dual norm of ‖·‖p (by a standard result from functional anal-
ysis this norm is equal to the q-norm where 1

p + 1
q = 1). Then

NB1(0) (A) =

{
convcone ({X 7→ λ (Xv) |(λ, v) ∈ KA }) if ‖A‖Op,p = 1

0 else
, (2.12)

where convcone (A) is the convex cone generated by the set A, and

TB1(0) (A) :=

{{
X ∈ RS×S |λ (Xv) ≤ 0 for all (λ, v) ∈ KA

}
if ‖A‖Op,p = 1

RS×S else
(2.13)

Proof of Lemma 2.1.1. First of all note that B1(0) is a convex set. This implies that the
tangent cone, TB1(0), is convex, closed and the polar cone of NB1(0) (compare Aubin and
Frankowska [8]). If ‖A‖Op,p < 1 then for every X ∈ RS×S we have A + tX ∈ B1(0) for
sufficiently small t ∈ R>0 such that

TB1(0) (A) = R
S×S

which proves the statement for ‖A‖Op,p < 1.

Let BRS,1(0) denote the unit ball in (RS, ‖·‖p) and let BRS∗,1(0) denote the unit ball in
(RS∗, ‖·‖p∗). Whenever λ ∈ BRS∗,1(0) and v ∈ BRS,1(0) then

λ (Bv) ≤ 1

for every B ∈ B1(0) such that for every (λ, v) ∈ KA

inf

{
λ ((A+ tX) v)− λ(Bv)

t

∣∣∣B ∈ B1(0); t > 0

}
≥ λ(Xv) (2.14)

which implies lim inft↘0
d(A+tX,B1(0))

t > 0 whenever λ (Xv) > 0. Hence

TB1(0) (A) ⊆
{
X ∈ RS×S |λ (Xv) ≤ 0 for every (λ, v) ∈ KA

}
(2.15)

For ε > 0 define

T̃ε (A) :=
{
X ∈ B1(0) |λ (Xv) ≤ −ε for all (λ, v) ∈ KA

}
, (2.16)

and set

KA,ε :=
{

(λ, v) ∈ BRS∗,1(0)×BRS,1(0)
∣∣∣λ (Xv) < − ε

2
for all X ∈ T̃ε (A)

}
(2.17)

By compactness of B1(0) the set KA,ε is an open subset of the compact set BRS∗,1(0) ×
BRS,1(0). This together with KA ⊆ KA,ε implies

Mε := sup
{
λ (Av)

∣∣∣(λ, v) ∈ BRS,1(0)×BRS∗,1(0) \KA,ε

}
< 1 (2.18)

Now fix an arbitrary X ∈ T̃ε (A) and (λ, v) ∈ BRS∗,1(0) × BRS,1(0). There are two
possibilities:

• (λ, v) ∈ KA,ε, implying that λ (Av) ≤ 1 and λ (Xv) ≤ − ε
2
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• (λ, v) /∈ KA,ε, implying that λ (Av) ≤Mε and λ (Xv) ≤ 1

Therefore whenever X ∈ T̃ε (A) and 0 ≤ t ≤ 1−Mε then:

λ ((A+ tX) v) ≤ 1 for every (λ, v) ∈ BRS,1(0)×BRS∗,1(0)

such that by the Hahn-Banach theorem:

‖A+ tX‖Op,p ≤ 1, i.e. A+ tX ∈ B1(0) (2.19)

since TB1(0) (A) is a convex cone this implies

convcone
(
T̃ε (A)

)
⊆ TB1(0) (A) (2.20)

Since the tangent cone is closed this implies{
X ∈ RS×S |λ (Xv) ≤ 0 for every (λ, v) ∈ KA

}
= ∪ε>0 convcone

(
T̃ε

)
⊆ TB1(0) (A) ,

which proves TB1(0) (A) =
{
X ∈ RS×S |λ (Xv) ≤ 0 for every (λ, v) ∈ KA

}
. Since the

normal cone, as we defined it, is always a closed, convex cone (compare Aubin and Frankowska
[8]), this also proves the claim for the normal cone.

Most generally the first order optimality condition for the constrained optimization problem
can be formulated as follows:

Theorem 2.1.1 - (First order optimality condition - abstract version)

Consider Problem 2.1.1. Any x∗ ∈ C satisfies:

Dφ(x∗) [v] ≤ 0 for all v ∈ TK (x∗) , (2.21)

i.e. Dφ(x∗) ∈ NK (x∗).

Frequently the setK in Problem 2.1.1 is specified by equality or inequality constraints. The
following theorem specifies the tangent cone in this situation (compare Clarke [50] and Jahn
[93]):

Theorem 2.1.2 - (Sets defined by equality and inequality constraints)

I Theorem 2.1.2.1: Let fi ∈ C1(Rn,R) where 1 ≤ i ≤ k. Let

K := {x ∈ Rn |fi(x) ≤ 0 for all 0 ≤ i ≤ k} (2.22)

Let x ∈ K and set I(x) := {i ∈ {1, . . . , k} |fi(x) = 0}. Assume that the collection
{Dfi(x)}i∈I(x) is positively linearly independent, i.e.∑

i∈I(x)

λiDfi(x) = 0 and λi ≥ 0 implies λi = 0 for all i ∈ I(x) (2.23)

Then:
TK(x) = {v ∈ Rn |Dfi(x) [v] ≤ 0 for all i ∈ I(x)} (2.24)

and

NK(x) =

 ∑
i∈I(x)

λiDfi(x) |λi ∈ R≥0

 (2.25)
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I Theorem 2.1.2.2: Let f ∈ C1(Rn,Rm) and let

x ∈ K := {x ∈ Rn |f(x) = 0} (2.26)

Assume that Df(x) has full rank. Then:

TK(x) = {v ∈ Rn |Dfi(x) [v] = 0} (2.27)

and

NK(x) =

 ∑
1≤i≤m

λiDfi(x) |λi ∈ R

 (2.28)

Consider the following special case of Problem 2.1.1

Problem 2.1.2 - (Constrained optimization problem with equality and inequality
constraint)

Let f ∈ C1(Rn,Rm), gi ∈ C1(Rn,R) for 1 ≤ i ≤ k and let K ⊆ Rn be closed and
convex. Define

M := max {φ(x) |x ∈ K, f(x) = 0, gi(x) ≤ 0} , (2.29)

where φ ∈ C1(Rn,R), whenever this maximum exists. In this case also find the maximizers:

C :=
{
x ∈ K ∩ f−1({0}) ∩ ∩1≤i≤kgi

−1 ((−∞, 0 ]) |M = φ(x)
}

(2.30)

A first order optimality condition for this problem can be formulated using Lagrange-
multipliers (it is a special case of the multiplier rule on page 221 of Clarke [50] adapted
to Problem 2.1.2):

Theorem 2.1.3 - (Lagrange multipliers)

Consider Problem 2.1.2 and assume that x∗ ∈ C then there exist η ∈ R, γ ∈ Rk and
λ ∈ Rm such that the following conditions hold true:

• Nontriviality, i.e. at least one of the multipliers η, γ, λ is not equal to zero.

• Stationarity, i.e.

D

ηf − ∑
1≤i≤k

γigi −
∑

1≤j≤m
λjfj

 (x∗) ∈ NK (x∗) (2.31)

• Positivity, i.e.
η = 0 or η = 1 ; γi ≥ 0 for all 1 ≤ i ≤ k (2.32)

• Complementary slackness, i.e. ∑
1≤i≤k

γigi (x∗) = 0 (2.33)

Chapter 2



61 Stochastic learning algorithms on causal models

2.2 Set-valued analysis

For many problems in optimization theory, optimal control and related fields it is useful to
consider set-valued maps and to equip the power-set of the target space with an appropriate
topology. This is particularly useful if one wants to state and prove continuity of the solu-
tions to an optimization problem with respect to the initial data (which is the constraint set
and possibly some additional parameters).
Another potential application is a switch from ordinary differential equations to differential
inclusions. The latter ones are an appropriate tool to define a mathematical convenient the-
ory of ODEs with non-continuous right-hand side and projected differential equations. We
are only interested in set-valued maps with values in the collection of closed sets of Rn, so
we restrict our definition to this case:

Definition 2.2.1 - (Set valued maps)

A set valued map fromRn toRm is a map

f : Rn → 2R
m

We will always assume that f(x) is a closed subset ofRm.

The restriction to maps with closed values is reasonable, since most topologies defined on
the power set do not distinguish a set from its closure. The collection of closed subsets of
Rm, denoted by Cl(Rm), is also often called a hyperspace and topologies on the hyperspace
are usually called hyperspace topologies. Cl(Rm) equipped with the ordering relation⊆, is
a complete lattice. For a collection of elements Ai ∈ Cl(Rm) where i lies in an some index
set I of arbitrary cardinality. The supremum of this collection is given by:

sup
i∈I

Ai = ∪i∈IAi (2.34)

and the infimum is given by
inf
i∈I

Ai = ∩i∈IAi (2.35)

The lattice structure establishes a notion of monotonous convergence on Cl (Rm) and every
hypertopology is supposed to be compatible with this structure. The probably most com-
mon hypertopology in the literature on set-valued analysis is the Vietoris topology:

Definition 2.2.2 - (The Vietoris topology)

I Definition 2.2.2.1: For a finite collection of open sets U = (Ui)i∈I where Ui ⊆ Rm

and |I| <∞ define the hit-set of (Ui):

BU = {A ∈ Cl (Rm) |A ∩ Ui 6= ∅ for all i ∈ I } (2.36)

The sets BU where U is any finite collection of open sets that is stable with respect to in-
tersection, therefore they form the base of a topology on the hyperspace, called the lower
Vietoris topology. We will denote this topology by τ↓ (Rm). A canonical subbase of τ↓ (Rm)
is given by the hitting sets of a single open set.

I Definition 2.2.2.2: A set valued map f : Rn → Cl (Rm) is called lower semi-
continuous if it is continuous with respect to the standard topology onRn and the topology
τ↓ (Rm) on Cl (Rm).

Chapter 2



Stochastic learning algorithms on causal models 62

I Definition 2.2.2.3: For a closed set U ⊆ Rm define the miss-set of U :

BU = {A ∈ Cl (Rm) |A ∩ U = ∅} (2.37)

The family of sets BU where U is a closed set is stable with respect to finite intersections
and therefore forms the base of a topology on the hyperspace. This topology is called upper
Vietoris topology. We will denote it by by τ↑ (Rm).

I Definition 2.2.2.4: A set valued map f : Rn → Cl (Rm) is called upper semi-
continuous if it is continuous with respect to the standard topology onRn and the topology
τ↑ (Rm) on Cl (Rm).

I Definition 2.2.2.5: A set valued map f : Rn → Cl (Rm) is called continuous if it is
continuous with respect to both, τ↑ (Rm) and τ↓ (Rm). Equivalently it is continuous with
respect to the Vietoris topology τ↑↓ (Rm) := τ (τ↑ (Rm) , τ↓ (Rm)).

The notation is due to the following observation. Whenever A ∈ U where U ∈ τ↓ (Rm)
and B ⊇ A then B ∈ U and hence τ↓ (Rm). Equivalently if A ∈ U where U ∈ τ↑ (Rm)
and B ⊆ A then B ∈ U . The Vietoris topology is a Hausdorff topology and a canonical
base is given by the sets:

BV
U = {A ∈ Cl (Rm) |A ∩ V = ∅;A ∩ Ui 6= ∅} (2.38)

where V ⊆ Rm is a closed set and U = (Ui)i∈I is a finite family of open subsets Ui ⊆ Rm.
In this aspect τ↑↓ (Rm) is a hit and miss topology 2.
An important theorem for optimization is the maximum theorem (compare Aubin [7] for
example). In case of compact constraints it allows to conclude the continuity of the solution
of a constrained optimization problem in the initial data:

Theorem 2.2.1 - (Maximum theorem)

Let (X, dX) and (Y, dY ) be metric spaces, let φ : X × Y → R be a function and let
F : Y → 2X be set-valued map. If φ and F are lower semicontinuous, the marginal
function

y 7→My := sup {φ(x, y) |x ∈ F (y)}

is lower semicontinuous. If φ and F are upper semicontinuous and F has compact values
then the marginal function is upper semicontinuous. Moreover if φ is continuous and F is
continuous with compact values, then the set-valued map

y 7→ {x ∈ F (y) |φ(x, y) = My }

has non-empty values and is upper semicontinuous.

Example 2.2.1 - (Application to invariant distributions of Markov chains)

As a consequence the set-valued map which maps a given stochastic matrix to its invariant
distributions is upper semicontinuous. To see this fix a finite set S and set

φ : M1

(
2S
)
× ΛS

S → R (2.39)

(µ, T ) 7→ −‖µT − µ‖1 (2.40)

2There are many other hypertopologies that can be expressed as hit-and miss topologies for an appropriate
collection of sets, another very well-known one is the Hausdorff topology (see for example Lucchetti and
Pasquale [123])
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where ‖·‖1 is the total variation norm. In Theorem 2.2.1 set X := M1

(
2S
)
, Y := ΛS

S

and F ≡ X. By Theorem 6.0.2 any maximizer, µ∗, of φ (·,K) satisfies µ∗ = µ∗K, i.e.
φ (µ∗,K) = 0 and therefore Theorem 2.2.1 gives the desired result.

2.3 Differential inclusions

An important application of set-valued maps arises in the context of differential inclusions.
Let F : Rn → 2R

n
be a set-valued map. A differential inclusion is an equation of the form

dx

dt
(t) ∈ F (x(t)) (2.41)

a local solution on some interval I := (t1, t2) ⊆ R, is an absolutely continuous function
x : I → Rn that satisfies 2.41 almost everywhere. The standard existence proofs usually
require F to have compact, convex values but there exist several extensions to slightly more
general cases (see Anger, Aubin, and Cellina [6], Aubin [7], Aubin and Frankowska [8]
for example). The proof proceeds by constructing appropriate approximate solutions and
using the Arzela-Ascoli theorem to extract a converging subsequence. Since existence is an
immediate consequence of the stochastic version to be considered in the next section, we
will not write it down here. We only mention a very powerful approximation result, that we
will also need for our proof later on. The theorem originates from Aubin and Frankowska
[8], pp.67-68:

Lemma 2.3.1 - (Approximation for differential inclusions)

Let I be some interval and let F : Rn → 2R
n

be upper semicontinuous with closed, convex
images. Let xm, ym : I → Rn be measurable functions and assume y ∈ L1(dνLeb). Assume
that for every ε > 0 and almost every t ∈ I there exists M > 0 such that for all m > M :

dist [(xm(t), ym(t)) ,Graph (F )] < ε, (2.42)

where dist [·, ·] denotes the distance from a set and Graph (F ) is the graph of F . Assume
further that

• xm converges almost everywhere to some function x

• ym converges weakly in L1(dνLeb) to some function y ∈ L1(dνLeb),

then
y(t) ∈ F (x(t)) for almost every t ∈ I (2.43)

The learning algorithms in Chapter 4 will be based on discretized projected gradient schemes
of the form

x0 := xs ∈ K;xn+1 := P̂ [xn + hn∇gφ] (2.44)

where (hn)n∈N is the step size at step n (often called learning rate),∇g is the gradient with
respect to some metric g on the constraint set K ⊆ Rn, φ is the function to be maximized
and P̂ is a suitable projector that forces the solution to stay in the constraint set, K. Our
only assumption on P̂ is that it is a quasi-projector (compare Aubin [7] for example) that is
Lipschitz continuous in a neighborhood of K.
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Definition 2.3.1 - (Quasi-projectors)

I Definition 2.3.1.1: A map P̂ : Rn → Rn will be called essentially Lipschitz continuous
quasi-projector onto K, if Range

(
P̂
)

= K, P̂ 2 = P̂ and if there exists some ε > 0 and
some constant L ∈ R≥0 such that:∥∥∥P̂ (x)− P̂ (y)

∥∥∥ ≤ L ‖x− y‖ (2.45)

whenever dist(x,K), dist(y,K) < ε.
I Definition 2.3.1.2: Let P̂ be an essentially Lipschitz continuous quasi-projector onto
some set K ⊆ Rn. For every x ∈ K define the preimage cone of P̂ at x:

CP̂ (x) := ∩ε>0convcone
[
∪y∈Bε(x)∩K

(
P̂−1(y)− y

)]
(2.46)

where as before convcone [X] stands for the convex cone generated by the set X ⊆ Rn

I Definition 2.3.1.3: Let P̂ be an essentially Lipschitz-continuous quasi-projector onto
some set K ⊆ Rn. A metric g on K will be called P̂ -compatible if for all x ∈ K and every
v ∈ CP̂ (x):

gx (v, ·) ∈ NK(x) (2.47)

The definition of the preimage cone and the compatibility condition between a metric and
a quasi-projector are central definitions for the current chapter. Now we will illustrate the
preimage cone, CP̂ (x), and motivate our interest in this cone.

Consider the iterative sequence specified by Eq. 2.44. Assume that hn > 0, hn → 0 and∑
n∈N hn = ∞. Then this sequence can be considered as a sequence of shrinking time

steps. For every t ∈ R≥0 we set h−1 := 0 and set

btc := sup

{
n∑

k=−1

hk

∣∣∣∣∣
n∑

k=−1

hk < t

}
and dte := inf

{
n∑

k=−1

hk

∣∣∣∣∣
n∑

k=−1

hk ≥ t

}
(2.48)

and

m(t) := max

{
n

∣∣∣∣∣
n−1∑
k=−1

hk ≤ btc

}
(2.49)

Then the iterated sequence 2.44 naturally embeds into C ([0,∞) ,Rn) via linear interpola-
tion

x(t) := xbtc +
t− btc
dte − btc

(
xm(t)+1 − xm(t)

)
(2.50)

It can be guessed (and will be made more precise later on) that for large times x “nearly
satisfies” the differential inclusion

d

dt
x(t) ∈ ∇gφ(x)− CP̂ (x) and x(t) ∈ K a.e. (2.51)

A point z ∈ K is a stationary point of this differential inclusion if and only if:

∇gφ(z) ∈ CP̂ (z) (2.52)

if g is compatible with P̂ then this implies:

Dφ(z) = gz (∇gφ(z), ·) ∈ NK(x) (2.53)

such that z satisfies the first order optimality condition for the optimization problem:
Find max {φ(x) |x ∈ K } (compare Theorem 2.1.1).

In Chapter 4 we will present some learning algorithms, corresponding to the following two
cases:
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• K is the ε−simplex and P̂ is the best-approximation in Euclidean distance:

P̂ (x) = y iff ‖y − x‖2 = min
{∥∥y′ − x∥∥

2

∣∣y′ ∈ K } (2.54)

• K is the unit ball in RS×S in operator norm and P̂ is the canonical retraction onto
the unit ball:

P̂ (x) =

{
x

‖x‖Op,p
if ‖x‖Op,p > 1

x else
(2.55)

we will also consider the case

• K is the closedR-ball in (R, ‖·‖2), denoted byB1(0) again and P̂ is the best approx-
imation.

since we think that this is a rather important choice in applications. As the former illustration
(hopefully) motivates it is essential to find P̂ -compatible metrics for these cases.

Example 2.3.1 - (A compatible metric for the best projection onto some convex
set)

As a first example let K ⊆ Rn be a compact, convex set and let P̂ (x) be the best approxi-
mation of a point x ∈ Rn onto K, i.e.

P̂ (x) = y if and only if y ∈ K and ‖x− y‖2 = min {‖x− z‖2 |z ∈ K } (2.56)

As a special property of the best approximation
〈
x− P̂ (x), y − P̂ (x)

〉
≤ 0 for every y ∈

K. Hence
〈
x− P̂ (x), ·

〉
∈ NK(P̂ (x)) for every x. Moreover since the set K is compact

and convex, CP̂ (x) = P̂−1(x) for every x ∈ K such that the Euclidean scalar product or
any (possibly point dependent) multiple is compatible with P̂ .

Remark 2.3.1 - (Comment on working with non-compatible metrics)

Let K be a convex set and assume that K is the closure of its interior. If there are reasons
to perform the gradient ascent algorithm with a metric, that is not compatible with the
best approximation, P̂ , it is also possible to distort the desired metric slightly, such that it
satisfies the compatibility requirement at the boundary. If the desired metric is g and δ > 0
is some constant, a continuous P̂ -compatible metric is

g′x :=
max (δ − dist(x, ∂K), 0)

δ
〈·, ·〉+

min (dist(x, ∂K), 1)

δ
gx (2.57)

Alternatively the discontinuous metric

g′′x :=

{
gx if dist(x, ∂K) ≥ δ
〈·, ·〉 else

(2.58)

can be used.

If the underlying norm on Rn is not Euclidean, a back-projection via the canonical retrac-
tion is always possible and easy to calculate. However the construction of a compatible
metric is usually more involved. We give an example for RS×S for some finite set, S,
equipped with operator norm.
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Example 2.3.2 - (A compatible metric for the canonical retraction onto the unit
ball of

(
RS×S, ‖·‖Op,p

)
)

Consider the unit ball, B1(0), in
(
RS×S, ‖·‖Op,p

)
and let P̂ be the canonical retractions:

X 7→

{
X

‖X‖Op,p
if ‖X‖Op,p > 1

X else
(2.59)

For a point A ∈ RS×S with ‖A‖Op,p 6= 0. Fix λ ∈ RS,∗ and v ∈ RS with
‖λ‖p,∗ = ‖v‖p = 1 and λ (Av) = ‖A‖Op,p. Define

g(λ,v)
A (X,Y ) := λ (Xv)λ (Y v) + Tr

(X − Tr
[
XTA

]
Tr (ATA)

A

)T (
Y −

Tr
[
Y TA

]
Tr (ATA)

A

)
(2.60)

Then g(λ,v)
A is a scalar product. Unfortunately it is impossible to chose the vectors λ ∈

RS,∗ and v ∈ RS continuously inA (discontinuities necessarily occur at points with several
choices for λ and v). However this is no essential problem for the algorithms as will be
shown later. The maximum theorem ensures that the set-valued map:

A 7→
{
g(λ,v)

A

∣∣∣λ ∈ RS,∗; v ∈ RS; ‖λ‖ = ‖v‖ = 1;λ(Av) = ‖A‖Op

}
(2.61)

is upper semi-continuous on B1(0) \ {0} and compatible with the retraction.

In the next section we will prove the essential theorems on stochastic approximation algo-
rithms.

2.4 Stochastic approximation

The upcoming section about stochastic approximation is a partial extension of some clas-
sical results on stochastic approximation theory (compare Borkar [38], Bharath and Borkar
[25], Kushner and Clark [109], Kushner and Yin [110]). All methods used in our proof can
be found in these books and in the literature on set-valued analysis already presented. Our
approach is very closed to the line of reasoning followed by Kushner, Clark and Yin. In
contrast to their work we allow a broader class of projectors, consider more general classes
of vector fields on the right-hand side and need less restrictions on the constraint set on
the cost of stronger restrictions on the noise. Unfortunately the proof presented in the (in
other aspects fantastic) book of Yin and Kushner is very incomplete and even contains some
essential mistakes. However the original proofs by Kushner and Clark are solid and care-
fully written down. Still the authors prove the theorem by considering a special case (the
constraint set being the closure of an open rectangle) and mention that it transfers to a more
general situation and it is not easy to extract in a clear manner where the assumptions on
the underlying constraint set (namely a specification by finite number of of differential con-
straints and the assumption that the constraint set is the closure of its interior points) really
enter and how they can possibly be relaxed. We later want to analyze projected gradient
ascent algorithms on a finite product of simplices over finite sets, which is a closed subset
of Rm×n and therefore violates the underlying assumptions. We are also interested in gra-
dient ascents with respect to non-continuous metrics. This is why we insert an own proof
of a theorem on stochastic approximation. .

Let (Ω,F , P,F) be a filtered probability space, let Mn and βn be Rn-valued random vari-
ables on Ω (they can be thought of as noise variables). Let K (the constraint set) be
a compact set, let P̂ be an essentially Lipschitz continuous quasi-projector onto K, let
F : K → 2R

n
be a set-valued map (indicating the possible directions to go) and let
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gn : Ω × K → Rn be a collection of random selections of F (i.e. gn(ω, x) ∈ F (x)
for almost every ω ∈ Ω and every x ∈ K). Let (hn)n∈N be a sequence of positive random
variables, the step size process. We are interested in the following iterative sequence:

x0 := xs ; xn+1 := P̂ [xn + hn (gn(xn) +Mn + βn)] (2.62)

We impose the following assumptions on the underlying data:

Assumption 2.4.1 - (Technical Restrictions on approximation sequence)

We assume that:

I Assumption 2.4.1.1: Mn is a martingale difference sequence (with respect to F),
satisfying

sup
{
E
[
Mn

2 |Fn−1

]
|n ∈ N0

}
< C a.s.

for some constant C ∈ R≥0.
I Assumption 2.4.1.2: The process (βn)n∈N0

is F-adapted with

lim
n→∞

|βn| = 0 a.s.

I Assumption 2.4.1.3: The step-size process (hn)n∈N0
is previsible, i.e. gn is Fn−1-

measurable, and satisfies

hn > 0
∑
n∈N0

hn =∞ ; hn → 0 a.s.

and ∑
n∈N0

E
[
hn

2
]
<∞

I Assumption 2.4.1.4: F is upper semicontinuous with compact, convex values.
I Assumption 2.4.1.5: The random selections (gn)n∈N0 are progressively previsible, by
this we mean that hn is (Fn−1 ⊗ BK)/BRn measurable.

As before we set h−1 := 0 and define

btc := sup

{
n∑

k=−1

hk

∣∣∣∣∣
n∑

k=−1

hk < t

}
and dte := inf

{
n∑

k=−1

hk

∣∣∣∣∣
n∑

k=−1

hk ≥ t

}
, (2.63)

m(t) := max

{
n

∣∣∣∣∣
n−1∑
k=−1

hk ≤ btc

}
(2.64)

and define the piecewise linear interpolation

x(t) :=

{
xs if t ≤ 0

xbtc + t−btc
dte−btc

(
xm(t)+1 − xm(t)

)
else

(2.65)

Then we have the following statement:
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Theorem 2.4.1 - (Limiting behavior of the iterative stochastic sequence)

Consider the stochastic sequence (xn)n∈N defined by Eq 2.62 and assume that Assump-
tion 2.4.1 holds. Let x denote the piecewise linear interpolation as defined by Eq. 2.65. For
almost all ω ∈ Ω the family of functions

φs(t) := x(s+ t) ; s ∈ R (2.66)

is sequentially precompact in C
(
R, co(K)

)
equipped with the (locally convex) topology

of uniform convergence on compact subsets.

Moreover any limit point, φ∗, of some sequence (φsn)n∈N, where (sn)n∈N is a sequence
of real numbers with sn → ∞ is absolutely continuous and there exists some (sequence
independent!) constant R such that φ∗ satisfies

d

dt
φ∗(t) ∈

(
F (φ∗(t))− CP̂ (φ∗(t))

)
∩BR(0) and φ∗(t) ∈ K for a.e. t ∈ R (2.67)

where CP̂ (x) is the convex cone defined in Definition 2.3.1.

For the proof we need three fundamental lemmas, the first one is the well-known Arzela-
Ascoli theorem, a proof of which can be found in any good introductory text book on func-
tional analysis (like Rudin [160], Triebel [184], Werner [192], Aliprantis and Border [1]):

Lemma 2.4.1 - (Arzela-Ascoli theorem)

Let X be a compact metric space and let Λ ⊆ C (X,Rn). Then Λ is sequentially precom-
pact in the Banach space (C (X,Rn) , ‖·‖∞) if and only if {λ(x) |λ ∈ Λ} is precompact
for every x ∈ X and Λ is equicontinuous, i.e. for every ε > 0 there exists δ > 0 such that
d(x, y) < δ implies |λ(x)− λ(y)| < ε for every λ ∈ Λ.

And we need a separation theorem that is a consequence of the Hahn-Banach theorem (see
for example Rudin [160], Triebel [184], Werner [192], Aliprantis and Border [1]):

Lemma 2.4.2 - (Separation theorem)

Let K ⊆ Rn be a closed convex cone with negative polar cone

K∗ := {λ ∈ Rn,∗ |λ(x) ≤ 0 for every x ∈ K } .

Then
K = {x ∈ Rn |λ(x) ≤ 0 for all λ ∈ K∗ } (2.68)

Moreover dist(y,K) ≤ ε if and only if

λ(y) ≤ ε for every λ ∈ K∗ ∩B∗1(0) (2.69)

The next lemma, the Banach-Alaoglu theorem, is a consequence of Tychonoff’s theorem
and is also a classical result in linear functional analysis:

Lemma 2.4.3 - (Banach-Alaoglu theorem)

Let (B, ‖·‖) be a Banach space then the closed unit B0(1) ⊂ B∗ is compact in the weak∗

topology, i.e. the coarsest topology that renders the maps λ 7→ λ(v) continuous, for every
v ∈ B.

Proof of Theorem 2.4.1. We start with a proof of sequential precompactness. Since
Range (x) = co(K) is compact we only have to show that x is almost surely uniformly
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continous. Then the Arzela-Ascoli theorem and a diagonal argument will give the desired
result. More explicit - given that x is uniformly continuous- consider an arbitrary sequence
(fk)∈N with fn ∈ {φs |s ∈ R}. Then by the Arzela-Ascoli theorem there exist subse-
quences yL,k such that (yL+1,k)k∈N is a subsequence of (yL,k)k∈N and yL,k converges
uniformly on [−L,L]. Then the diagonal sequence yk,k converges to some limit uniformly
on compact subsets.

Since continuous functions on compact sets are always uniformly continuous, it is enough
to show that for almost every ω ∈ Ω and for every ε > 0 there exists some δ > 0 and some
T > 0 such that:

|x(s)− x(t)| < ε whenever |s− t| < δ and s, t > T (2.70)

By our assumptions xn+1 is Fn measurable and by our definition of essentially Lipschitz
continuous quasi-projectors there exists some ε > 0 such that∥∥∥P̂ (x)− P̂ (y)

∥∥∥ < L ‖x− y‖ (2.71)

whenever dist(x,K),dist(y,K) < κ for some κ > 0. Since F is upper semicontinuous
with compact values, F (xn) is uniformly bounded. This can be seen easily from the fol-
lowing argument: By upper semicontinuity of F it is possible to fix some some δy for every
y ∈ K such that |x− y| < δy implies

F (y) ⊆ U(F (x), 1) := {v ∈ Rn |dist(v, F (x)) < 1} .

By compactness of K there exists a finite set K ′ ⊆ K such that the balls Bδy(y) with
y ∈ K ′ cover K. Then F (K) is contained in the compact set ∪y∈K′U(F (y), 1). So there
exists some R′ ∈ R≥0 such that

sup {v |v ∈ F (x);x ∈ K } < R′ (2.72)

Note that Mn is square integrable, such that the martingale

BN :=
N∑
k=0

hnMn

converges almost surely and in L2 by the martingale convergence theorem. Therefore:

lim
n→∞

hn (‖g(xn)‖+ ‖βn‖+ ‖Mn‖) = 0 a.s. (2.73)

Define the set
Aκ,n :=

{
hn (‖g(xn)‖+ ‖Mn‖) ≤

κ

2

}
(2.74)

The validity of Eq. 2.73 implies that almost surely ω ∈ Aκ,n for all but finitely many n, i.e.

P [∪n∈N ∩k>n Aκk ] = 1 (2.75)

The defining sequence Eq. 2.62 can be rewritten in the following way:

xn+1 = 1Aκ,nxn + Yn +M ′n + β′n (2.76)

where
Yn := E

[(
P̂ [xn + hn (g(xn) +Mn)]− xn

)
1Aκ,n |Fn−1

]
, (2.77)

β′n := P̂ [xn + hn (g(xn) +Mn + βn)]− 1Aκ,nP̂ [xn + hn (g(xn) +Mn)] (2.78)

and
M ′n :=

(
P̂ [xn + hn (g(xn) +Mn)]− xn

)
1Aκ,n − Yn (2.79)
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Since we assumed P̂ to be essentially Lipschitz continuous Eq. 2.73 implies:∣∣β′n∣∣ ≤ Lhn |βn| (2.80)

almost surely for sufficiently large n.

By assumption

E
[
(Mn)2 |Fn−1

]
≤ C (2.81)

For some constant C such that Eq 2.72 implies

|Yn(ω)| ≤ hnL
(
R′ +

√
C
)

(2.82)

almost surely. The sequence M ′n is a martingale difference sequence and P̂ (xn) = xn
(since xn ∈ K) and therefore the Minkowski inequality gives:

E

[(
P̂ [xn + hn (φ(xn) +Mn)]− xn

)2
1Aκ,n

]
≤ L2E

[
hn

2
] (
R′ +

√
C
)2

Therefore our assumptions on (hn)n∈N and the martingale convergence theorem ensure that

M̃n :=
∑

0≤k≤n
M ′k converges a.s. and in L2(dP ) (2.83)

Now setC2 := R′+
√
C, fix some version of the conditional expectation whenever it occurs

and some null-set N ∈ F such that Eq. 2.80, Eq. 2.83, Eq. 2.73 and Eq. 2.82 are satisfied
for every ω ∈ F \ N . For every ω ∈ Ω \ N there exists some N0 ∈ N such that for every
n,m ∈ N0 with n,m ≥ N0:

|xn+m − xn| (2.84)

≤ C2

(
n+m−1∑
k=n

hk(ω)

)
+ L

n+m−1∑
k=n

hk |βk(ω)|+
∣∣∣M̃n+m−1(ω)− M̃n−1(ω)

∣∣∣
For given ε > 0 fix N ≥ N0 such that for every n ≥ N :

hn <
ε

8C2
; |βn(ω)| < C2

2L
;

∣∣∣∣Mn(ω)− lim
k→∞

Mk(ω)

∣∣∣∣ < ε

8
(2.85)

Then for every s ≤ t ∈ R≥0 with m(s) ≥ N and |t− s| < ε
4C2

|x(t)− x(s)| (2.86)

≤ max {|x(btc)− x(bsc)| , |x(dte)− x(bsc)| , |x(btc)− x(dse)| , |x(dte)− x(dse)|}

≤ (dte − bsc)
(
C2 +

C2

2

)
+ 2 · ε

8

≤
(
t− s+ 2 · ε

8C2

)
3C2

2
+
ε

4
≤ ε

(2.87)

Therefore the family {φs}s∈R is equicontinuous and hence precompact by the Arzela-
Ascoli theorem.

To characterize the limit of a convergent subsequence define the piece-wise constant func-
tion, Y , via:

Y (t) :=

{
0 for t ≤ 0
Ym(t)

hm(t)
else

(2.88)
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For ω /∈ ∩k≥0Aκ,n the identity Eq 2.76 can be rewritten in the following form: For all
t ∈ R

x(t)− xs −
∫ t

0
Y (t′)dt′ (2.89)

=

m(t)−1∑
k=0

(
M ′k + β′k

)
+

t− btc
dte − btc

(
M ′m(t)+1 −M

′
m(t) + β′m(t)+1 − β

′
m(t)

)
Now let (tk)k∈N be a sequence of real number with limk→∞ tk = ∞ such that φtk con-
verges to some limit φ∗ uniformly on compact intervals. Defining ψs := Y (t+ s) the
identities Eq. 2.80, Eq. 2.83 and Eq. 2.75 imply that for every s, t ∈ R and almost all
ω ∈ Ω:

φ∗(t)− φ∗(s) = lim
k→∞

∫ t

s
ψtk(t′)dt′

Now by 2.82 the function Y
∣∣
[−T,T ] is bounded by R := L

(
R′ +

√
C
)

therefore for ev-

ery T > 0 the family ψs
∣∣
[−T,T ] is precompact in L∞ ([−T, T ] ,Rn; dνLeb) equipped with

the weak∗ topology as a consequence of the Banach-Alaoglu theorem 3. Hence it is pos-
sible to extract a weak∗− convergent subsequence

(
ψt′k

)
of ψtk with some limit ψ∗ that

necessarily satisfies ‖ψ∗‖∞ ≤ R by compactness of the norm closure of the unit ball
in weak∗ topology. Since the Lebesgue measure restricted to a compact interval is finite
we have L∞ ([−T, T ] ,Rn; dνLeb) ⊆ L1 ([−T, T ] ,Rn; dνLeb) and the embedding is ac-
tually weak∗-weak continuous 4. Therefore the sequence (ψtk)k∈N converges weakly in
L1 ([−T, T ] ,Rn; dνLeb) and by a diagonal argument again it is possible to extract a subse-
quence that converges weakly to some integrable function Y∗ (without loss of generality we
assume convergence along (tk) already). Necessarily:

φ∗(t)− φ∗(s) =

∫ t

s
Y∗(t

′)dt′

such that φ∗ is absolutely continuous with derivative Y∗.
In order to conclude the desired result from Lemma 2.3.1 it remains to show that

dist
[
(φtk , ψtk) ,Graph(F − CP̂ )

]
converges to zero almost everywhere. To show this fix some linear functional λ ∈ Rn,∗

with ‖λ‖∗ = 1 and some constantN ∈ N, setAN,n := {‖Mn + g(xn)‖ ≤ N}. Then since
Mn is a martingale difference sequence:

λ

(
Yn
hn
− g (xn)

)
= I1 + I2 + I3 (2.90)

where

I1 := E

[
λ

(
P̂ [xn + hn (g(xn) +Mn)]− (xn + hn (g(xn) +Mn))

hn

)
1Aκ,n∩AN,n |Fn−1

]
,

I2 := E

[
λ

(
P̂ [xn + hn (g(xn) +Mn)]− (xn + hn (g(xn) +Mn))

hn

)
1Aκ,n∩AN,nc |Fn−1

]
,

and
I3 := −E

[
λ (Mn + g (xn))1Aκ,nC |Fn−1

]
(2.91)

3Being a consequence of Tychonoff’s theorem the Banach-Alaoglu theorem does not imply sequential com-
pactness in general. Since L1(R,R

n, dνLeb) is separable the sequential compactness follows nevertheless.
4This is clear since in this case every linear functional on L1 is necessarily also continuous on L∞

Chapter 2



Stochastic learning algorithms on causal models 72

For a bound on the third integral note that hn
‖Mn‖+‖g(xn)‖

κ > 1 on Aκ,nc such that:

|I3| ≤
hn
κ
E
[
(‖Mn‖+ ‖g (xn)‖)2 |Fn−1

]
≤
hn

(
R′ +

√
C
)2

κ
(2.92)

For a bound on the second integral we use a similar argument. On Aκ,n the Lipschitz
estimate holds true and on AN,nc we have ‖Mn+g(xn)‖

N > 1 such that:

|I2| ≤
L+ 1

N

(
R′ +

√
C
)2

(2.93)

The first summand, I1, is actually the most interesting one. On Aκ,n ∩ AN,n we have
‖xn+1 − xn‖ ≤ LhnN . Therefore the norm of the integrand is bounded by (L+ 1)N .
Moreover (

P̂ [xn + hn (g(xn) +Mn)]− (xn + hn (g(xn) +Mn))

hn

)
lies in CP̂ (xn+1) by definition such that:

I1 ≤ sup
{
λ(v)

∣∣v ∈ CP̂ (x′) ∩B(L+1)N (0) ;
∥∥x′ − xn∥∥ ≤ LhnN } (2.94)

This result holds true almost surely for a given functional λ and a given N ∈ N. Since the
unit ball in Rn,∗ is separable there exists some null-set N ′ such that whenever ω ∈ Ω \ N ′
then

λ

(
Yn
hn
− g (xn)

)
≤ sup

{
λ(v)

∣∣v ∈ CP̂ (x′) ∩B(L+1)N ;
∥∥x′ − xn∥∥ ≤ LhnN }+

+

(
L+ 1

N
+
hn
κ

)(√
C +R′

)2

holds true for all linear functionals of unit length and for all N ∈ N.
Now let ω ∈ Ω \ (N ∪N ′) and consider the sequence φtk converging to φ∗ uniformly on
compact subsets and the sequence ψtk converging to Y∗ weakly inL1. Fix any ε > 0 and any
t, that does not lie in the Lebesgue null set where one of the functions ψnk is not continuous.

First fix N > 0 such that
(
L+1
N + hn

κ

) (√
C +R

)2
< ε

3 whenever n > N . Then using

the upper semi-continuity of CP̂ ∩ B1(0) fix δ such that dist
(
v, CP̂ ∩B1(0)(φ∗(t))

)
≤

ε
3((L+1)N) for every v ∈ B1(0) ∩ ∪x∈Bδ(φ∗(t))CP̂ (x). Then fix N2 sufficiently large such
that

• For all n ≥ N2 we have hnLN ≤ δ
2

• Whenever m(tk) ≥ N2 then ‖φtk(t)− φ∗(t)‖ < ε
3

• Whenever m(tk) ≥ N2 then ‖x(bt+ tkc)− φ∗(t)‖ , ‖x(dt+ tke)− φ∗(t)‖ < δ
2

(this can be reached since the convergence of φtk is uniform on compacts. The
construction involves the usual ε-third argument - in this case a δ/6 argument to be
precise.)

Then wheneverm(tk+t) ≥ max (N1, N2) we have for any unit functional λ ∈ CP̂ (ψ∗(t))
∗,

the negative polar cone of CP̂ (ψ∗(t)), that

λ (ψtk(t)− g (xtk(t))) ≤ 2ε

3
(2.95)

such that, in virtue of Lemma 2.4.2, dist
[
(φtk(t), ψtk(t)) ,Graph

(
F − CP̂

)]
< ε for suf-

ficiently large k. This proves the second statement of the theorem.

We would like to give a typical application of this theorem.
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Example 2.4.1 - (Application of the stochastic approximation theorem)

Let (Yi) be a sequence of random variables and let λ be a Rm-valued parameter of the
distribution of this sequence. Assume that there exists a sequence of consistent estimators(
λ̂n

)
n∈N

, i.e. we assume that λ̂n is σ
(
{Yi}1≤i≤n

)
measurable and that λ̂n → λ a.s.

Let (Zn)n∈N be a sequence of Rp-valued IID random variable, independent of (Yn)n∈N.
We assume that the distribution ofZ1 has finite p-th moment for some p ≥ 1, i.e. E [‖Z1‖p] <
∞. Let K ⊆ Rn be a compact set, let P̂ be a quasi-projector onto this set, let 1

2 < α ≤ 1
be some decay coefficient and let g : K ×Rm ×Rp → Rn we assume that

• g is continuous and the continuity in the second coordinate is uniformly for fixed first
and second coordinates ,uniformly in the first and third coordinate. By this we mean
that for every ε > 0 there exists δ > 0 such that for all x ∈ K and z ∈ Zn:∣∣g(x, λ, z)− g(x, λ′, z)

∣∣ < ε whenever
∥∥λ− λ′∥∥ < δ (2.96)

• g satisfies a certain growth condition in the third coordinate. Namely we assume that
there exists a continuous function h : K ×Rm → R≥0 such that

|g(x, λ, z)| ≤ h(x, λ)
(

1 + ‖z‖
p
2

)
Consider the stochastic approximation algorithm

xn+1 := P̂

[
xn +

1

nα
g
(
xn, λ̂n, Zn

)]
(2.97)

We rewrite it in the following form:

xn+1 = P̂

[
xn +

1

nα

(
g̃ (xn, λ) + β

(
xn, λ̂n, Zn

)
+Mn

)]
(2.98)

where
g̃(x, λ) :=

∫
PZ1(dz)g (x, λ, z) , (2.99)

β(x, λ′, z) := g
(
x, λ′, z

)
− g (x, λ, z) (2.100)

and
Mn := g (xn, λ, Zn)− g̃ (xn, λ) (2.101)

Since (Zn)n∈N is independent of (Yn)n∈N we have

g̃ (xn, λ) = E [g (xn, λ, Zn) |Fn−1 ] ,

where
Fn := σ

(
{Zi, Yi}1≤i<n

)
By the growth condition on g and the compactness of K, g̃ is dominated by the integrable
random variableR

(
1 + ‖Z1‖

p
2

)
whereR ∈ R≥0 is an appropriate constant. Therefore by

dominated convergence g̃ is continuous. By the same argument, the martingale difference,
Mn, is square integrable with

E
[
Mn

2 |Fn−1

]
≤ R2

(
1 +

√
E [|Z1|p]

)2

(2.102)

and by the uniform continuity assumptions on g:

β
(
xn, λ̂n, Zn

)
→ 0 a.s. (2.103)
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Hence Theorem 2.4.1 ensures that the piecewise linear interpolation of x(t) almost surely
“asymptotically satisfies” the differential inclusion problem:

d

dt
x(t) ∈ g̃ (x(t), λ)− CP̂ (x(t)) ; x(t) ∈ K a.e. (2.104)

A problem of the form
d

dt
x(t) ∈ F (x) ; x(t) ∈ K a.e. (2.105)

is known as a viability problem (compare Aubin [7]). Any solution x necessarily satis-
fies x(t) ∈ TK(x(t)) for a.e. t (this is the first part of the well-known viability theorem
for differential inclusion, a proof of which can be found in Aubin [7] for example. The
other direction is the existence of a solution if F (x) is upper semicontinuous with compact,
convex values, if K is locally compact and if F (x) ∩ TK(x) 6= ∅). Before proving some
consequences of Theorem 2.4.1 we need the following definition, common in the theory of
dynamical systems (see for example Jost [97], Perko [141] and Marx and Vogt [125]) and a
definition of “well-behavior” for the critical values of a function:

Definition 2.4.1 - (Attractors and asymptotical stability)

I Definition 2.4.1.1: Let

x(t) ∈ F (x(t)) ; x(t) ∈ K a.e. (2.106)

be a differential inclusion. A subset A ⊆ K will be called positively Lyapunov stable, if for
every ε > 0 there exists some δ > 0 such that for any solution x of Eq. 2.106:

dist (x(0), A) < δ implies dist (x(t), A) < ε for a.e. t ≥ 0 (2.107)

I Definition 2.4.1.2: Consider the problem Eq. 2.106. A set A ⊆ K will be called
attractor if it is positively Lyapunov stable and if there exists some neighborhood U of A
such that every solution, x, to Eq. 2.106 with x(0) ∈ U converges to A, i.e.

lim
t→∞

dist (x(t), A) = 0 (2.108)

I Definition 2.4.1.3: A continuously differentiable function V : Rn → R will be called
Lyapunov function for problem Eq. 2.106. If for any x ∈ K we have:

sup {DV (x) [w] |w ∈ F (x) ∩ TK(x)} ≤ 0 (2.109)

I Definition 2.4.1.4: A continuously differentiable function V : Rn → R will be said to
have a negligible set of generalized critical values for problem Eq. 2.106, if the set

SL := {V (x) ∈ R |x ∈ K and sup {DV (x) [w] |w ∈ F (x) ∩ TK(x)} = 0}

has isolated accumulation points only (by accumulation point we mean an element y ∈ R
such that there exists a sequence (yn)n∈N ∈ SL with yn 6= y and yn → y.
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Remark 2.4.1 - (Comment on Definition 2.4.1)

First of all note that SL is closed. To see this define

φ(x) := max {− |DV (x) [v]| |v ∈ F (x) ∩ TK(x) ∩B1(x)} (2.110)

By the maximum theorem φ is upper semicontinuous and therefore

SL := {x ∈ K |V (x) ≥ 0}

is closed. The assumption that V has a negligible set of critical values is essential for our
proof technique for the upcoming theorem. It is clearly satisfied if V is convex or concave.
More generally it holds true whenever the set of generalized stationary points is discrete,
which again holds true whenever V is twice continuously differentiable and if the second
derivative is strictly positive or strictly negative at all stationary points. It is also trivially
true if the set of generalized stationary points can be splited into finitely many connected
components, on which V is constant. However it is a maybe surprising but well-known
insight that the set of critical values of V can be much more complicated - even for dif-
ferentiable functions. In 1935 Whitney presented a function f : Rn → R that is n − 1
times continuously differentiable but is non-constant on a connected component of critical
points (compare Whitney [193]). Whenever f is n times continuously differentiable this
behavior is excluded by Sard’s theorem, that states that in this case the set of critical values
has Lebesgue measure zero (compare Spivak [174, 173] and Lang [112] for proofs of par-
tial results and the original paper Sard [165] for a complete proof). A latter version even
shows, that the Hausdorff-dimension is zero in this case (compare Sard [164]). However
this is still much weaker then having a negligible set of critical values as we defined it. As a
current result of Bolte, Danilidis, Lewis and Shiota (Bolte et al. [33], Bolte, Daniilidis, and
Lewis [32]) our assumption is also satisfied by analytical functions. In this case the set of
critical values is locally finite.

A Lyapunov function is always non-increasing along a given trajectory. To see this let V be
a Lyapunov function for problem Eq. 2.106. Then by the viability theorem:

dV ◦ x
dt

(t) = DV (x(t))

[
dx

dt
(t)

]
∈ {DV (x(t)) [w] |w ∈ F (x) ∩ TK(x)} a.e.

define φmax(t) := max {DV (x(t)) [w] |w ∈ F (x(t))}. Then φmax is bounded from above
by zero and upper semicontinuous whenever F is upper semicontinuous with compact val-
ues (by the maximum theorem). In any case for t ≥ s:

V ◦ x(t)− V ◦ x(s) ≤
∫ t

s
φmax(s′)ds′ ≤ 0

We need the following theorem (the proof of the first part is equal to the proof in Kushner
and Clark [109] pp. 39-43, adapted to our theorem, also see Bertsekas and Tsitsiklis [24])

Theorem 2.4.2 - (Asymptotics of stochastic approximation sequence)

Consider the stochastic sequence (xn)n∈N defined by Eq 2.62. Assume that Assumption 2.4.1
holds. Let A be an attractor for the mean differential inclusion

dx

dt
(t) ∈

(
F (x(t))− CP̂ (x(t))

)
∩BR(0) and x(t) ∈ K for a.e. t ∈ R (2.111)

and let V be compact set in the domain of attraction of A. Then

lim
n→∞

dist (xn, A) = 0 a.s. on {xn ∈ A infinitely often } (2.112)
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Moreover if V is a Lyapunov function for Eq. 2.111 then the sequence (xn)n∈N has a
subsequence that converges to the set

S := {x ∈ K |φmax(x) = 0} (2.113)

where

φmax(x) := max
{
DV (x) [w]

∣∣w ∈ (F (x)− CP̂ (x)
)
∩ TK(x) ∩BR(0)

}
If V has negligible critical values (compare Definition 2.4.1), then xn converges almost
surely to S.

Proof of Theorem 2.4.2. To prove the first statement fix some ε > 0 such that

Uε(A) := {x ∈ K |dist (x,A) < ε} ⊆ V

and fix some δ > 0 such that any solution of Eq. 2.111 with dist (x(0), A) < δ remains in
Uε/2(A). Since the linear interpolation of the sequence, x(t), visits V infinitely often and
since V is compact, there exists a sequence tk such that the family of functions φk(s) :=
x (tk + s) converges to some solution, x∗, of Eq. 2.111 uniformly on compact intervals by
Theorem 2.4.1. Since A is an attractor, there exists some T > 0 such that dist (x∗(t), A) <
δ for every t > T . Hence (xn)n∈N visits Uδ(A) infinitely often.

If the sequence xn would leave Uε(A) infinitely often, then there existed a sequence of
real numbers (sk) k ∈ N and (Tk)k∈N such that x(sk) ∈ ∂Uδ(A), x(sk + t) /∈ Uδ(A)
for 0 < t ≤ Tk and dist(x(sk + Tk), A) = ε. By Theorem 2.4.1 again there exists a
convergent subsequence for the family φ′k(t) := x(sk + t) and we assume without loss
of generality that φ′k is already convergent. Since A is asymptotically stable, the limit x′∗
satisfies dist (x∗(t), A) ≤ ε

2 for all t and since A is an attractor dist(x(t), A) < δ
2 for

sufficiently large t ≥ T .

By uniform convergence on [0, T ] we have

sup
{

dist
(
φ′k(t), A

)
|0 ≤ t ≤ T

}
≤ 3ε

4

and
dist

(
φ′k(T ), A

)
≤ 3δ

4

for sufficiently large k. This contradicts the construction of φ′k. Therefore the assumption is
wrong and xk cannot leave Uε(A) infinitely often and since ε can be chosen arbitrary small,
the convergence to A follows.

Now let V be a Lyaponov function for Eq. 2.111. We first argue that φmax is bounded from
below. To see this consider the function

φmin := min
{
DV (x) [w]

∣∣w ∈ (F (x)− CP̂ (x)
)
∩ TK(x) ∩BR(0)

}
= −max

{
−DV (x) [w]

∣∣w ∈ (F (x)− CP̂ (x)
)
∩ TK(x) ∩BR(0)

}
.

It is lower semicontinuous and therefore takes on its finite minimum on K. Therefore there
exists some constant R′ ≥ 0 such that

φmax ≥ φmin ≥ −R′. (2.114)

Therefore
lim inf
t→∞

V (x(t)) := Cmin > −∞ (2.115)

We will show that any subsequence x (tk) with limk→∞ V (x(tk)) = Cmin converges to S.
Assume that this is not true. By taking a further subsequence if necessary we can assume
that

lim inf
k→∞

dist (x (tk) , S) ≥ ε > 0 (2.116)
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Then by upper semicontinuity of φmax and by compactness of K we have

sup {φmax (x) |x ∈ K \ Uε (S)} =: −δ < 0 (2.117)

Taking another subsequence if necessary and employing Theorem 2.4.1 again we can as-
sume that φk(s) := x(tk + s) converges to some solution x∗ of the mean ODE. By con-
struction this solution necessarily has the following properties:

V (x∗(0)) = Cmin ; φmin(x∗(0)) ≤ −δ (2.118)

By upper semicontinuity there exists some δ′ > 0 such that φmax(y) < −δ/2 whenever
|y − x∗(0)| < δ′.
We have ‖x∗(t)− x∗(0)‖ ≤ Rt and therefore for t′ := δ′

R :

V
(
x∗(t

′)
)
− V (x∗(0)) ≤

∫ t′

0

−δ
2

= −δδ
′

2R
(2.119)

In this case x(t′k) would be smaller thenCmin− δδ′

4R along some sequence t′k with limk→∞ t
′
k =

∞, which is a contradiction since Cmin is the limit inferior of x(t).
The set Vα := {x ∈ K |V (x) ≤ α} is positively Lyapunov stable. To see this fix ε > 0 and
define:

Uε,α := {x ∈ K |dist(x, Vα) < ε} (2.120)

Uε,α is an open subset of K and by construction:

M := min {V (x) |x ∈ K \ Uε,α } > α (2.121)

Then

U ′ :=

{
x ∈ K

∣∣∣∣V (x) < α+
M − α

2

}
is an open neighborhood of V that never leaves Vα+M−α

2
⊆ Uε,α. If V has negligible critical

values then there remain two possibilities:

1. Cmin is an isolated critical value. In this case there exists some constant εmax such that
(Cmin, Cmin + εmax] does not contain a critical value. Fix 0 < ε < εmax. Then there
exists some δ′ > 0

sup {φmax(x) |V (x) ∈ [−ε, εmax]} ≤ −δ′

and an argument similar to the previous one shows that any solution to the mean
differential inclusion that starts in VCmin+εmax reaches the set VCmin+ε after a time T
bounded from above by εmax−ε

δ′ . Consequently VCmin is an attractor and the first part of
the proof gives the desired result.

2. Cmin is an isolated limit point in the set of critical values. Then there exist sequences
(εn)n∈N and (ε′n)n∈N with 0 < εn < ε′n with εn → 0 such that the interval (εn, ε

′
n]

does not contain any generalized critical values. By the former argument this implies
that VCmin+εn is an attractor and since εn tends to zero this together with the first part
of the proof gives the desired result.

Our main intention is an application of these theorems to gradients with respect to a discon-
tinuous metric (or with respect set-valued metrics). First of all we equip all bilinear forms
onRn ×Rn, from now on denoted by bil (Rn), with the following norm:

‖g‖ := sup {g(v, w) |‖v‖2 = ‖w‖2 = 1} (2.122)

where ‖·‖2 is the usual Euclidean distance. The following definitions are very natural (the
last part is an extensions of Definition 2.3.1):
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Definition 2.4.2 - (Set-valued metrics)

I Definition 2.4.2.1: A set-valued map

G : K → 2bil(Rn)

will be called set-valued metric on K, if for every x ∈ K, g ∈ G(x) we have that g is
symmetric (i.e. g(v, w) = g(w, v) for every v, w ∈ Rn) and positive definite (i.e. g(v, v) >
0 for every v ∈ Rn \ 0).
I Definition 2.4.2.2: Let G : K → 2bil(Rn) be a set-valued metric on K ⊆ Rn and let
V : Rn → R be continuously differentiable. A vector v ∈ Rn will be called gradient of G
at x if there exists g ∈ G(x) such that for every w ∈ Rn:

DV (x) [w] = g(v, w) (2.123)

The set valued map

∇GV : K → 2R
n

; x 7→ {v ∈ Rn |v is gradient of V at x} (2.124)

will be called set-valued gradient of V with respect to G.
I Definition 2.4.2.3: Let G be a set-valued metric on some compact set K ⊆ Rn and let
P̂ be a quasi-projector onto K. Then G will be called P̂ -adapted if for every x ∈ K, every
v ∈ CP̂ (x) and every g ∈ G(x):

g(v, ·) ∈ NK(x) (2.125)

Note that upper semicontinuity, convexity and compactness of values of G carry over to the
gradient map ∇GV . A discontinuous metric, g̃, on Rn restricted to K naturally defines an
upper semicontinuous map with closed convex images, the Fillipov regularization (compare
Anger, Aubin, and Cellina [6], Aubin [7], Aubin and Frankowska [8] and Filippov [72]):

G : x 7→ ∩ε>0co
[
∪y∈Bε(x) {g(x)}

]
(2.126)

Note that G is a set-valued metric if and only if g̃ is lower bounded in operator norm and
has compact values if and only if g̃ is upper bounded in operator norm. We need to impose
some regularity condition on the objective function, (compare Definition 2.4.1) V :

Definition 2.4.3 - (Functions with negligible set of critical values)

A continuously differentiable function V : Rn → R has a negligible set of critical values
over some set K if the set of first order optimal values

S := {y | there exists x ∈ K s.t. y = V (x) and DV (x) ∈ NK(x)} (2.127)

has isolated accumulation points only.

After this preparation we can formulate and prove the main theorem of this section:

Theorem 2.4.3 - (Set-valued stochastic gradient ascent)

I Theorem 2.4.3.1: Let G : K → 2bilRn be an upper semicontinuous set-valued met-
ric with convex and compact values. Let V : Rn → R be a continuously differentiable
function. Let

h : Ω×K → R
n (2.128)
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be a random selection of∇GV . Consider the iterative sequence Eq. 2.62 (with g := h) and
assume that Assumption 2.4.1 holds. Assume further that the set-valued metricG is adapted
to the quasi-projector P̂ . Then xn is infinitely often in a neighborhood of first-order optimal
points:

S := {x ∈ K |DV (x) ∈ NK(x)} . (2.129)

I Theorem 2.4.3.2: Assume the same situation as in Theorem 2.4.3 but with V having
negligible critical values on K (according to Definition 2.4.3). Then xn converges to S.

Proof of Theorem 2.4.3. We show that −V is a Lyapunov function for the system. For
every vector w ∈ Rn and every metric g ∈ G(x) we have:

DV (x) [v] = g (∇gV (x), v) (2.130)

hence for the special case that v = ∇gV (x)− n with n ∈ CP̂ (x):

−DV (x) [v] = −g (∇gV (x),∇gV (x)− n) (2.131)

for almost every t ∈ R we have d
dt(x)(t) ∈ TK(x) ∩ −TK(x) by the viability theorem

(the second claim follows from differentiability almost everywhere.). Therefore, since G is
P̂ -adapted, g

(
n, ddtx(t)

)
= 0 for almost every t ∈ R and hence:

−DV (x) [v] ∈
{
−g (∇gV (x)− n,∇gV (x)− n)

∣∣g ∈ G(x), n ∈ CP̂ (x)
}
⊆ (−∞, 0]

(2.132)
Moreover DV (x)

[
d
dtx(t)

]
= 0 if and only if there exists g ∈ G(x) such that ∇gV (x) ∈

CP̂ (x) and therefore DV (x) = g (∇gV (x), ·) ∈ NK(x). Therefore the claim follows from
Theorem 2.4.2.
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Part II

Learning in the sensorimotor loop





Chapter 3

Markov decision processes, learning
algorithms and policy functionals

In this chapter we define and motivate the class of learning problems that we will investigate
in Chapter 4. We start with a mathematical model describing the interaction between the
agent and the world (see Definition 3.1.1 and Remark 3.1.1). The dynamic originates from
the well-known Markov decision problem (compare for example Eugene and Feinberg [71],
Dynkin and Yushkevich [68] and Bertsekas and Shreve [23]).

Very often the terms “Markov decision problem” and “Markov decision process” are used
synonymously. We however will carefully separate the dynamical model of the agent-
environment interaction from the optimization problem. The name, Markov decision pro-
cess (MDP), is reserved for the pure dynamical model within this thesis. This model is
a special instance of a causal model over a recursively constructible graph, as defined in
Chapter 1. The language developed in that chapter allows a mathamtical rigorous definition
of a learning algorithm over an MDP. It can be formulated an appropriate controller exten-
sion of the original causal model (compare Definition 1.2.5). We provide the corresponding
definitions and emphasize some immediate consequences from the general theory in Chap-
ter 1.

In the usual formulation of a Markov decision problem the dynamical part is not separated
from the optimization problem, which includes the maximization of the expected reward
of some reward function. There are two reasons why we distinguish strictly between the
dynamics of the agent world interaction on the one hand and the optimization problem on
the other hand.

First of all, we want to consider real learning problems. By this we mean that not all details
of the system are known at the beginning. We need a clear statement of an entire class
of possible transition models that are a priori considered to be possible. On a technical
level this is done by considering a collection of probability laws on the causal model de-
scribing the agent-environment interaction (compare definition of causal statistical models
over causal models in Definition 1.2.2 of Chapter 1). The fundamental assumption on these
laws, their properties and relations are crucial for the formulations of the learning problems
and later proofs. We therefore prefer a rigorous, well-motivated treatment of these purely
dynamical questions leaving aside the optimization problem at first.

The second reason for a separate treatment of the optimization problem and the dynami-
cal laws governing the model lies in the fact that we would like to generalize the common
objective functionals, the expected reward of some reward function. Different instances of
reward maximization have been discussed extensively in the literature, for example opti-
mization over a finite time horizon, the expected discounted reward, the mean time average
reward etc. (a good overview is given in Eugene and Feinberg [71]). We are however also
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interested in a formal treatment of situations that are not covered by reward maximization,
like:

• a risk averse agent (who might try to decrease the variance of some random variable
of later sensor values). This behavior is also a desirable goal for tracking problems or
stabilization algorithms,

• an agent optimizing certain information measures (to be discussed and clarified within
this chapter),

• an agent trying to control the ergodic properties of the sensor process,

to mention only a few examples. The interest in these functionals especially arises from
recent goals in artificial intelligence to make robots more “curious” or to let them explore
the environment in an efficient way that is restricted to and/or guided by their embodiment.
A general applicable example of an “behavior optimizing algorithm” is a gradient ascent
algorithms maximizing the predictive information (compare Ay et al. [17], Zahedi, Ay, and
Der [196] and Ay et al. [16]). The predictive information is high if the stationary distribu-
tion of the sensor values has high entropy while still allowing a prediction of the next sensor
value with high accuracy. Therefore maximization of the predictive information is expected
to lead to an exploration of large parts of the state space in a highly coordinated way. Sim-
ulations of physical robots following these algorithms show very interesting behavior that
often reminds to playing or fighting machines (see for example Der and Martius [63] and
the website: http://www.playfulmachines.com/).

The main results from the current chapter are:

• a rigorous definition of the mathematical models of the agent-world dynamic for a
non-learning and a learning agent (see Definition 3.1.1 and Remark 3.1.1),

• a clear definition of a class of learning/optimization problems that can describe the
scenarios listed in the enumeration above (see Problem 3.2.1 and the special instances
Problem 3.2.2 and Problem 3.2.3) ,

• a collection of relevant examples like the expected discounted reward, the long time
average reward, the variance of the expected discounted reward, the predictive infor-
mation and other discounted and ergodic information measures of the sensor process
of an MDP (see section 3.3),

• a collection of gradient formulas for several sensor process functionals for finite state
space MDPs (see Remark 3.2.1 and Remark 3.2.2 for two very general formulas and
section 3.3 for applications) and

• a theorem about the relation between discounted sensor functionals and their ergodic
counterparts in the case of finite state and action spaces. The theorem proves and
generalizes the insight that the optimization of a discounted reward is “somehow
similar” to the optimization of the reward in the stationary distribution in the limit of
the discount factor approaching 1 from below. (see Theorem 3.2.1)

3.1 Markov decision processes and learning algorithms over Markov
decision processes

Consider an agent interacting with the environment. We assume that the agent performs
a sequence of actions, an, and receives a sequence of sensor values, sn. We assume that
the next sensor value, sn+1, depends probabilistically on the old sensor value, sn, and the
action performed by the agent, an. At this stage we assume that there is no control, i.e. the

Chapter 3



85 Stochastic learning algorithms on causal models

actions of the agent are independent of the sensor process. This situation is described by
the following recursively constructible graph (see Definition 1.2.1):

s0
// s1

// s2
// s3

// s4
// s5

// . . .

a0

OO

a1

OO

a2

OO

a3

OO

a4

OO

. . .
Caus. mod. 17 - Causal structure uncontrolled, unparameterized MDP

We are interested in scenarios where the agent has only partial information about the world
dynamics. By this we mean that there are several a priori possible transition laws from a
given state-action pair to the new state. We assume that this transition law is the same at
every instance of time. This situation can be modeled by introducing a parameter vertex q
into the previous causal graph. The next sensor value then depends on the former sensor
value, the previous action and the parameter vertex:

q

vv }} �� !! (( **s0
// s1

// s2
// s3

// s4
// s5

// . . .

a0

OO

a1

OO

a2

OO

a3

OO

a4

OO

. . .
Caus. mod. 18 - Causal structure uncontrolled, parameterized MDP

For the final graph we introduce a feedback loop such that the new action depends on the
former sensor value. For applications it is frequently very convenient to realize the transition
from an old state- action pair to a new sensor value as a stochastically perturbed, function.
We therefore introduce some randomization variables, xn, and some policy parameters, zn.
This results in the following recursively constructible graph:

q

vv }} �� !! (( **s0
//

!!

s1
//

!!

s2
//

!!

s3
//

!!

s4
//

!!

s5
//

!!

. . .

a0

OO

a1

OO

a2

OO

a3

OO

a4

OO

. . .

x0

OO

x1

OO

x2

OO

x3

OO

x4

OO

. . .

z0

EE

z1

EE

z2

EE

z3

EE

z4

EE

. . .
Caus. mod. 19 - Causal structure controlled, parameterized MDP

In principle the randomization variables, xi, are superfluous for the description but have
some technical adventages. The idea behind the construction is the following:

• The agent observes some sensor value s ∈ S and is supposed to generate the next
action with some probability distribution Ps,z where z is the policy parameter.

• To do so, some X-valued sample, x, is drawn from a known distribution, p. The next
action is chosen to be a′ := Π (s, x, z) where Π is a (deterministic) function. This
procedure produces a random variable with the desired distribution, Ps,z , if and only
if Π (s, ·, z)∗ p = Ps,z .
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In spite of being mathematical equivalent in many purposes (see Theorem 1.2.2) a realiza-
tion of random transtions with randomized functions is sometimes more convenient than a
direct specification via transition kernels. Many models (for example autoregressive mod-
els) specify transitions in the former way. This also often simplifies a direct computer-based
implementation.

The dynamical model of the agent-environment interaction is completely specified by a
causal model over the recursively constructible graph, Caus. mod. 19 (for the definition of a
causal model see Definition 1.2.1). The complete definition of any causal model involves a
specification of all state spaces, all transition kernels and a statistical model over the causal
model (compare Definition 1.2.2). Since we are interested in time homogeneous situations
only (i.e. time-independent state and action spaces, time independent transition rules etc.),
the most general definition of an MDP is the following:

Definition 3.1.1 - (Markov decision process and the associated causal model)

IDefinition 3.1.1.1: A Markov decision process is an eight-tuple (Q,Z,S,A,X, px, T,Π)
where

• Q,Z,S,A,X are measurable spaces. If needed the σ-algebras will be denoted by
FQ,FZ and so on.

• Q denotes the set of parameters for the world transition kernel, Z denotes the set of
policy parameters.

• S is the space for the sensor values, A denotes the set of actions.

• X denotes the space of possible noise outcomes for the policy transition and sensor
transition respectively. Usually we will take X := [0, 1] (this choice is sufficient for
most practical purposes, as Theorem 1.2.2 shows).

• px is a probability measure on FX - the distribution of the policy randomization
variable. Usually we will choose px to be the uniform distribution on [0, 1].

• T ∈ ΛS
S×A×Q is a transition kernel, describing the sensor updating dynamic.

• Π : S×X× Z→ S is a measurable map (encoding the policy transition function).

I Definition 3.1.1.2: Let C := (Q,Z,S,A,X, px, T,Π) be a Markov decision process
and let (V,E) denote the recursively constructible graph Caus. mod. 19 . The causal model
C ′ := ((V,E),S,T) (compare Definition 1.2.1) associated with C is a causal model over
(V,E) defined by

Sv =



S iff v = si

A iff v = ai

Q iff v = q

Z iff v = zi

X iff v = xi

and

Tv =

{
T iff v = si

Π iff v = ai
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Remark 3.1.1 - (Comment on Definition 3.1.1 and definition of the statistical
model over an MDP)

LetC := (Q,Z,S,A,X, px, T,Π) be a Markov decision process and letC ′ := ((V,E),S,T)
be the associated causal model. We will follow the general construction and notation intro-
duced in Chapter 1. The set of initial vertices of the MDP graph is:

V0 = {s0, q} ∪i∈N0 {zi, xi}

By Theorem 1.2.1 there exists a unique probability kernel

K̂ ∈ Λ
(S,F)

(SV0 ,⊗v∈V0Fv)

with the property that K̂ (v, ·) ∈M1 (FV ) is compatible with the causal structure and with
the initial configuration v ∈ SV0 , i.e. the conditional probability distributions coincide
with the corresponding kernels and for every B ∈ ⊗v∈V0Fv we have

K̂
(
v,
{

(πv)v∈V0 ∈ B
})

= δv (B) ,

where again πv : S→ Sv denotes the projection of S onto the factor Sv. The distribution
of each noise variable is required to coincide with px, i.e. πxi is assumed to have distribu-
tion px. Hence by Theorem 1.2.1 for any given initial values, q′ ∈ Q, s′ ∈ S and z′ ∈ Z
the law of the process is given by:

PMDP,q′,s′,z′ [A] =

∫
XN0

K̂
((
q′, s′, z′,x′

)
, A
) (
⊗v∈{xi|i∈N0 }px

) (
dx′
)

(3.1)

As the MDP is a specific example of a causal model over a recursively constructible graph,
this law satisfies the independence properties of Theorem 1.3.1 and Theorem 1.4.1. For ev-
ery v ∈ V the canonical projections πv : S→ Sv are random variables on the probability
space

(
S,FV , PMDP,q′,s′,z′

)
. To improve readability we will frequently denote these ran-

dom variables by the same letter as the corresponding vertex but with an upper-case letter.
So we will write Si for πsi for example. The collection of all process laws forms a statistical
model over the probability space (S,FV ).

The set {sn, q} d-separates {sj |0 ≤ j < i} and {sj |j > i} in the recursively constructible
graph of the MDP (see Caus. mod. 19). Therefore Theorem 1.3.1 implies

Sn+1 ⊥⊥ (Sk)k<n |Sn, Q (3.2)

Moreover by compatibility with the causal structure and the fact that Q = q′ almost surely
(w.r.t. PMDP,q′,s′,z′):

PMDP,q′,s′,z′
[
Sn+1 ∈ A

∣∣Sn = s,Q = q′′
]

=

∫
X
T
[(
s,Π(s, x, z′i), q

′) , A] px(dx) =: Kq′,z′i
(s,A) a.s. (3.3)

is a regular version of the conditional distribution of Sn+1 given (Si)i≤n and Q. Since
Kq′,z′i

does not depend on q′′ this implies:

PMDP,q′,s′,z′
[
Sn+1 ∈ A

∣∣Sn = s, (Si)i<n
]

= Kq′,z′i
(s,A) a.s. (3.4)

such that (Si)i∈N0
is a Markov process under PMDP,q′,s′0,z

′ with initial distribution δs′ and
transition kernels Kq′,zi .
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So far the policy parameter sequence does not depend on the observed process. This is
precisely what is needed to describe an agent that learns some policy from observation
of the process. Therefore we need to define a controlled dynamic over the original MDP
that captures the situation of a learning agent. First of all we introduce additional memory
variables mi where i ∈ N0 and allow mn (where n ≥ 1), to depend on the former memory
valuemn−1, the sensor value sn−1, the action an and the state sn. Furthermore the values of
the parameter vertices, zn, are now controlled by the agent (i.e. they depend on the current
memory value) The former causal model Caus. mod. 19 will be extended to the following
one:

q

vv || �� "" (( ++s0
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""

��
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//

""

��		

s2
//

""
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m0
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m1
//
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m2
//
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m3
//
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m4
//

<<

m5
//

<<

. . .
Caus. mod. 20 - Learning algorithm over controlled, parameterized MDP

The specification of a learning algorithm requires the definition of the memory space, M, a
memory update Function:

L : S×A× S×M→M

and an update rule for the policy parameter from the current memory value:

U : M→ Z

This specification gives rise to the following natural definition of a learning algorithm over
an MDP:

Definition 3.1.2 - (Learning algorithm over a Markov decision process and the as-
sociated controller extension)

I Definition 3.1.2.1: Let C = (Q,Z,S,A,X, px, T,Π) be a Markov decision process.
A learning algorithm over C is a triple (M, L, U) where

• M is a measurable set, the set of possible memory values

• L : S ×A × S ×M →M is a measurable function, referred to as memory update
rule.

• U : M→ Z is a measurable function, referred to as policy choice function

I Definition 3.1.2.2: Let M = (M, L, U) be a learning algorithm over some MDP, C =
(Q,Z,S,A,X, px, T,Π). ThenM defines a natural controller extension, ((V ′, E′),S′,T′),
of the causal model associated to C (compare Definition 1.2.5 and Definition 3.1.1) via:

• (V ′, E′) is the graph, Caus. mod. 20,
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• S′mi := M for every i ∈ N0;

• T′mi ∈ ΛM
Ssi−1×Sai−1×Ssi×S′mi−1

where i ≥ 1 is defined as T′mi [(s, a, s′,m) , A] =

δL(s,a,s′,m) (A) and

• T′zi ∈ ΛZ
Smi

where i ≥ 0 is defined as T′zi [m,A] := δU(m) [A]

We will also refer to this controller extension as the sensorimotor loop associated to the
learning algorithm M .

Remark 3.1.2 - (Technical remark on Definition 3.1.2)

Let C := (Q,Z,S,A,X, px, T,Π) be a Markov decision process (with associated causal
model C ′ = ((V,E),S,T)). And letM = (M, L, U) be a learning algorithm over C (with
associated sensorimotor loop M ′ = ((V ′, E′),S′,T′)). Again we will follow the general
construction and notation introduced in Chapter 1. The set of initial vertices of V ′ is

V ′0 = {xn |n ∈ N0 } ∪ {q, s0,m0}

As in Lemma 1.2.4 we assume the configuration of the extended model to be a random
variable over the probability space (S,⊗v∈V Fv). Let

K ′′ ∈ Λ
(S,⊗v∈V Fv)(
SV ′0

,⊗v∈V ′0
Fv
)

and R : M ×SV → SV ′ be the process generating kernel and the random variable from
Lemma 1.2.4. Let q′ ∈ Q be the world parameter, let m′ ∈M be the initial memory state
and let s′ ∈ S be the initial sensor state then the associated measure on FV is

Pq′,s′,m′ [B] =

∫
XN0

K ′′
[(
m′, q′, s′,x

)
, B
]
d (⊗n∈N0px) (dx) (3.5)

for every B ∈ FV . The law of the process is

R
[
m′, ·

]
∗ Pq′,s′,m′ [B] =

∫
XN0

R
[
m′, ·

]
∗K
′′ [(m′, q′, s′,x) , B] d (⊗n∈N0px) (dx)

(3.6)
where B ∈ FV ′ . The independence properties of Theorem 1.3.1 and Theorem 1.4.1 also
hold for the sensorimotor loop associated to M under every measure Pq′,s′,m′ . As in the
MDP case we will abbreviate πv by an upper case letter that is equal to the corresponding
vertex label.

Note that the sensor process, (Si)i∈N0
is in general not Markovian under Pq′,s′,m′ , the mea-

sure of the process with learning algorithm from Remark 3.1.2, anymore. However by
Theorem 1.3.1 and by the identity Q = q′ a.s. the process of pairs ((Si,Mi))i∈N0

is a
Markov process under Pq′,s′,m′ , with initial states, S0 = s′, M0 = m′ and transition kernel,
K̃q′ ∈ ΛS×M

S×M given by:

K̃q′ [(s,m), As ×Am]

=

∫
S×X

T
[(
s,Π

(
s, x′, U(m)

)
, q′
)
, ds′

]
1Am

[
L
(
s,Π

(
s, x′, U(m)

)
, s′,m

)]
·

·1As
(
s′
)
px(dx′) (3.7)

with As ∈ Fs and Am ∈ Fm.

Having specified the dynamical models of an MDP and the dynamical model of a learning
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algorithm over an MDP 1 we will formulate a class of learning problems related to MDPs in
the next section. Finally we will prove the convergence of certain gradient-based learning
algorithms for this class of problems in Chapter 4.

For the analysis of concrete models in Chapter 4 it is rather inconvenient to write down
M, L and U explicitly. We will rather introduce some new variables (Gn for example) and
specify how they depend on the old ones (for example: Gn+1 = f(Sn, An−1, Gn) where
f : S × A ×G → G is some measurable function. It is clear that all new variables are
part of the memory and how to translate this specification into our definition of a learning
algorithm.

3.2 Optimizing policy functionals under an unknown sensor tran-
sition dynamic

3.2.1 Formulation of the problem

We consider the following general optimization problem.

Problem 3.2.1 - (The general learning problem: Optimizing policy functionals
under unknown sensor transition rule)

Let C := (Q,Z,S,A,X, px, T,Π) be an MDP. Consider some function

φ : Q× Z→ R (3.8)

and the following optimization problem: Find the supremum of φ for given q ∈ Q:

Mφ,q := sup {φ (q, z) |z ∈ Z} (3.9)

And find the (possibly empty) set of maximizers:

Lφ,q := {z ∈ Z |φ(z, q) = Mφ,q } (3.10)

We are looking for learning algorithms that find (or approximate) both Mφ,q and z ∈ Lφ,q
for every possible parameter q ∈ Q. This parameter is not known to the agent and can
at best be estimated from observations to arbitrary precision. In other words optimally we
expect some memory variable to converge to Mφ,q′ almost surely w.r.t. Pq′,s′,m′ for some
initial memory state m′ ∈M, for every q′ ∈ Q and every s′ ∈ S.

The formulation Problem 3.2.1 is probably the most general learning problem that can
be formulated within the MDP framework. We did not require that the map between the
”world” transition parameter, q ∈ Q and the transition kernel T ∈ ΛS

S×A×Q is one-to one.
Setting q = (q1, q2) and assuming that T does not depend on q2 even allows the specifica-
tion of a partially unknown objective function. However since in this case the entire process
law does not depend on q2, it is impossible to learn the optimal value (in some reinforce-
ment learning problems the reward function is not known in the beginning - this is however

1Note that we do not impose any restriction on the memory space at this point. Therefore the definition is
very broad-range. The memory space can be rich enough to store all former memory values, sensor outcomes
and actions. Moreover the memory can contain counter variables which can be used to implement time depen-
dent transition functions. On the conceptual level it would be no difference to update the memory using the
current sensor value only instead of both the last sensor value and the current one - the former one could simply
be stored in memory and be reused. Nevertheless our definition is more handy for the problems that we will
discuss in the next chapter.
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very different from the scenario outlined here, since the expectation of the reward function
can actually be learned from observations we will come back to this problem later on).

Before proceeding with possible applications we will introduce two interesting instances of
Problem 3.2.1. Let C := (Q,Z,S,A,X, px, T,Π) be a MDP. As shown in Eq. 3.1 follow-
ing Definition 3.1.1 the distribution of the sensor process, (Sn)n∈N0

, is Markovian under
the law PMDP,q′,s′,z′ . If the policy sequence is stationary, i.e. zi ≡ z′ for some z′ ∈ Z then
the sensor process is time-homogeneous with transition kernel Kq,z′ (compare Eq. 3.3 and
Eq. 3.4).

In many applications the policy parameter, z′, has to be chosen such that a given functional
of the process law, PMDP,q′,s′,z′ , is maximized. Since a time homogeneous Markov process
is completely specified by the initial measure and the transition kernel, the following special
instance of Problem 3.2.1 will be called sensor process functional:

Problem 3.2.2 - (Sensor process functionals)

Let (Q,Z,S,A,X, px, T,Π) be an MDP. A function

f : M1 (FS)× ΛS
S → R (3.11)

will be called sensor process functional. Moreover let µ ∈M1 (FS) and define:

κ : Q× Z→M1 (FS)× ΛS
S (3.12)

(q, z) 7→ (µ,Kq,z) (3.13)

where the kernel Kq,z has been defined in Eq. 3.3. The pair (µ, f) naturally defines an
instance of Problem 3.2.1 by setting φ := f ◦ κ.

often the one-point sensor distribution of a Markov process converges to some invariant
distribution (compare Appendix A.1.3). In this case one is often interested in the process
in its ”equilibrium distribution”, such that the following instance of Problem 3.2.1 is very
natural:

Problem 3.2.3 - (Ergodic functionals)

Let (Q,Z,S,A,X, px, T,Π) be an mDP and let

f : M1 (FS)× ΛS
S (FS)→ R (3.14)

be a sensor transition functional (compare Problem 3.2.2). Let

˜INV : ΛS
S →M1 (FS)× ΛS

S (3.15)

K 7→ (ν,K) with νK = ν (3.16)

map a transition kernel to a pair consisting of an invariant distribution for this kernel and
a copy of this kernel. We will consider scenarios only where ˜INV(K) exists and is uniquely
defined for every reachable kernel, K. The functional f ◦ ˜INV will be called ergodic func-
tional associated to f . Ergodic functionals naturally define an instance of Problem 3.2.1 by
setting

φ(q, z) := f ◦ ˜INV (Kq,z) , (3.17)

where the kernel Kq,z has been defined in Eq. 3.3.

Chapter 3



Stochastic learning algorithms on causal models 92

3.2.2 Finite state and action spaces

A special case of high relevance for practical applications are MDPs with finite state and
action spaces. In this case it is possible to write down explicit formulas for first-order
stationarity conditions for Problem 3.2.2 and Problem 3.2.3. We assume that the MDP
satisfy all the conditions in Assumption 4.1.1 in Chapter 4. The set of policy parameters is
the S-fold ε-simplex and by Example 2.1.2 the tangent cone at some policy z ∈ Zε is given
by:

TZε (z) =

{
C ∈ RS×A

∣∣∣∣∣∑
a∈A

Cs,a = 0; cs,a ≥ 0 whenever z (s, {a}) = ε

}
(3.18)

The sensor transition kernel depends linearly on the policy matrix:

Kq,z

(
s,
{
s′
})

:=
∑
a∈A

z (s, a) q
(
(s, a),

{
s′
})

(3.19)

Let f be a sensor process functional that continuously differentiable with respect to the pol-
icy parameter. Let φ denote the associated policy functional (compare Problem 3.2.2). By
the chain rule the directional derivative with respect to the policy of the objective function,
φ, is:

Dzφ(q, z) [C] =
∑
s′∈S

∂f

∂K (s, {s′})
(µ,Kq,z)

(∑
a∈A

q
(
(s, a),

{
s′
})
Cs,a

)
(3.20)

for every C ∈ TZε (z). This directional derivative can be used to write down an explicit
formula for the Euclidean gradient and the Fisher gradient of φ (compare Appendix A.2.2).
The result is:

Remark 3.2.1 - (Gradient formulas for policy functionals)

Let f be a sensor process functional defining the policy functional φ (as in Problem 3.2.2).
The Euclidean policy gradient of φ is

∇E,zφ (q, z)s,a (3.21)

=
∑
s′∈S

∂f

∂K (s, {s′})
(µ,Kq,z) ·

(
q
(
(s, a),

{
s′
})
− 1

|A|
∑
a′∈A

q
(
(s, a′),

{
s′
}))

and the Fisher policy gradient is

∇F,zφ (q, z) (q, z)s,a (3.22)

= z (s, {a})
∑
s′∈S

∂f

∂K (s, {s′})
(µ,Kq,z) ·

(
q
(
(s, a),

{
s′
})
−Kq,z

(
s,
{
s′
}))

The policy derivative in Problem 3.2.3 is based on the derivative of the (generally set-valued)
map

INV ΛS
S → 2M1(S)

K 7→ {µ ∈M1 (S) |µK = µ} (3.23)

The map INV is single-valued on Q × Z by the ergodic theorem for Markov chains (see
Appendix Theorem 6.0.2) and analytical (see Schweitzer [168]). We collected the result of
Schweitzer and some related perturbation statements for finite state space Markov chains in
Theorem 6.0.3 in the Appendix. The derivative of INV is given by:

(D INV) (K) [C] = INV (K)CYK for every C ∈ T∆S
S (K) (3.24)
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where
YK = (1−K +K∗)

−1 −K∗ (3.25)

with K∗ = limn→∞K
n.

Now let f : ∆S ×∆S
S → R be a sensor process functional (compare Problem 3.2.2) and

consider the associated ergodic functional (compare Problem 3.2.3 ):

φerg (q, z) := f (INV (Kq,z) ,Kq,z) (3.26)

Using the chain rule and some calculus yields the policy derivative of φerg:

Dzφerg.(q, z) [C] (3.27)

=
∑
s′∈S

∑
a′∈A

q
(
(s, a′),

{
s′
})
Cs,a′Derg.f (Kq,z)s,s′

where we introduced some shortening for what we will call ergodic derivative of f :

Derg.f (K)s,s′ (3.28)

:=

 ∂f

∂K (s, {s′})
(INV (K) ,K) + INV (K) ({s})

∑
s1∈S

YK;s′,s1

∂f

∂p({s1})
(INV (K) ,K)


with YK given by Eq. 3.25. This yields the following two gradient formulas for Prob-
lem 3.2.3:

Remark 3.2.2 - (Gradients formulas for policy functionals - part 2)

Let f be a sensor process functional giving rise to the ergodic functional φerg. (see Eq. 3.26
and Problem 3.2.3). The Euclidean policy gradient of φerg. is

∇Eφerg. (q, z)s,a (3.29)

=
∑
s′∈S

(
q
(
(s, a),

{
s′
})
− 1

|A|
∑
a′∈A

q
(
(s, a′),

{
s′
}))

Derg.f (Kq,z)
(
s,
{
s′
})

and the Fisher policy gradient is

∇Fφerg (q, z)s,a (3.30)

= z (s, {a})
∑
s′∈S

(
q
(
(s, a),

{
s′
})
−Kq,z

(
s,
{
s′
}))
Derg.f (Kq,z)s,s′

where Derg. has been defined in Eq. 3.28.

Now we will prove a fundamental relationship between ”discounted sensor process func-
tionals” and ergodic functionals which is one of the main results of the current section.

Theorem 3.2.1 - (Relation between discounted and ergodic functionals)

Let (Q,Z,S,A,X, px, T,Π) be an MDP and assume that the state space, S is finite. Let
∆S be the simplex over S and let ∆ε;S be the ε-simplex over S (compare Eq. 2.7). Let

h : ∆S ×∆ε;S
S → R (3.31)

be a continuous sensor process functional and let (nk)k∈N0 be an arbitrary sequence of
natural numbers with limk→∞ nk =∞. Define the discounted value of h along (nk)k∈N0

:

g : [0, 1)×∆S ×∆S
ε;S → R

(λ, µ,K) 7→
∑
k∈N0

λkh (µKnk ,K) (3.32)
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where we wrote Knk for the nk-fold convolution of K with itself. Define the ergodic value
of h :

gerg : ∆S
ε;S → R

K 7→ h (INV (K) ,K) (3.33)

where INV(K) denotes the unique invariant distribution of K again. Then

lim
λ↗1

(1− λ) g (λ, µ,K) = gerg (K) (3.34)

for any µ ∈ ∆S and K ∈ ∆ε;S
S. Moreover the set valued map

G : [0, 1] → 2∆ε;S
S

λ 7→

{
argmaxK∈∆ε;S

S {g (λ, µ,K)} for λ < 1

argmaxK∈∆ε;S
S

{
gerg (K)

}
else

(3.35)

is upper semicontinuous (compare Definition 2.2.2). This especially implies that for any
given sequence (λn)n∈N ∈ [0, 1)N with limn→∞ λn = 1 and any selection K∗,n ∈ G(λn),
the limit points of the sequence (K∗,n)n∈N are maximizers of gerg.

Proof. Fix δ > 0 and set H := max
{
|h (µ,K)|

∣∣µ ∈ ∆S,K ∈ ∆ε;S
S
}

. If H = 0 then
h ≡ 0 and the statement is trivial. If H 6= 0 by the ergodic theorem for finite state space
Markov chains (compare Appendix A.1.4): limn→∞ µK

n = INV(K) and the limit is
uniformly in K ∈ ∆ε;S

S and µ ∈ ∆S. Therefore by compactness of the domain and
continuity of h there exists some N ∈ N such that

|h (µKnk ,K)− h (INV(K),K)| < δ

2
for all K ∈ ∆ε;S

S and all k ≥ N (3.36)

Now whenever 1 > λ > 1− δ/(2(N + 1)H) then:

(1− λ)
∑
k∈N0

λkh (µKnk ,K)

= (1− λ)

N∑
k=0

λkh (µKnk ,K) + (1− λ)

∞∑
k=N+1

λkh (µKnk ,K)

≤ δ

2
+ (1− λ)

∞∑
k=N+1

λk [h (INV(K),K) + |h (µKnk ,K)− h (INV(K),K)|]

≤ λNh (INV(K),K) + δ (3.37)

and similarly

(1− λ)
∑
k∈N0

λkh (µKnk ,K)

= (1− λ)

N∑
k=0

λkh (µKnk ,K) + (1− λ)
∞∑

k=N+1

λkh (µKnk ,K)

≥ −δ
2

+ (1− λ)
∞∑

k=N+1

λk [h (INV(K),K)− |h (µKnk ,K)− h (INV(K),K)|]

≥ λNh (INV(K),K)− δ (3.38)

In total
lim sup
λ↗1

(1− λ) g (λ, µ,K) ≤ gerg (K) + δ (3.39)
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and
lim inf
λ↗1

(1− λ) g (λ, µ,K) ≥ gerg (K)− δ (3.40)

Since δ was arbitrary this implies:

lim
λ↗1

g (λ, µ,K) = gerg (K) (3.41)

As a consequence the function:

γ (λ,K) :=

{
(1− λ) g (λ, µ,K) for λ < 1

gerg (K) else
(3.42)

is continuous on [0, 1]×∆ε;S. Therefore the set-valued map

λ 7→ argmaxK∈∆ε,S
S γ(λ,K) (3.43)

is upper semi-continuous by the maximum theorem (compare Theorem 2.2.1). But the
function (1− λ) g (λ, µ,K) differs from g (λ, µ,K) by a positive factor only and therefore
possesses the same maximizers. This proves the second statement of the theorem.

In the next section we will describe some interesting instances of Problem 3.2.1, Prob-
lem 3.2.2 and Problem 3.2.3.

3.3 Examples of policy functionals

3.3.1 The expected reward

Let (Q,Z,S,A,X, px, T,Π) be an MDP. Consider the discounted reward of the sensor
process (Sk)k∈N

2:
R :=

∑
k∈N0

λkr(Sk) (3.44)

where 0 < λ < 1 is a discount factor and r : S → R is the reward function (we assume r
to be bounded and measurable).
As often done in the theory of Markov processes, the transition kernel K ∈ ΛS

S can be
considered as a linear operator on the set of signed measures of finite total variation on FS

via (it is convenient to write the action of this operator as a left-action):

(νK) (A) :=

∫
S
ν(ds)K(s,A) for every A ∈ FS (3.45)

and as a linear operator on the set of bounded measurable functions on S via

K : Bb(S)→ Bb(S) ; Kf(s) :=

∫
S
K(s, dt)f(t) (3.46)

Moreover the vector space of signed, measures of finite total variation and the vector space
of bounded measurable functions are Banach spaces under the total variation norm and the
supremum norm respectively. On each of these two Banach spaces the corresponding linear
operator associated to K is continuous with operator norm 1.
Applying the n-fold product of this operator to a signed measure (or a bounded measur-
able function) is the same as applying the n-fold convolution of K to this signed measure
(measurable function), where the n-fold convolution is defined as usual:

K0(s,A) = δs(A) ; Kn+1(s,A) :=

∫
S
Kn(s, dt)K(t, A) (3.47)

2For a precise definition of the sensor process, see Definition 3.1.1 and Remark 3.1.1
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Then Eµ [r (Sn)] = µ (Knr) = (µKn) r and by the summation formula for the geometric
series:

frew;r,λ(µ,K) := E [R] =
∑
n∈N0

µ ((λK)n r) = µ
(

(1− λK)−1 r
)

=
(
µ (1− λK)−1

)
r (3.48)

If the state space is finite then the initial measure, µ, is usually expressed as a row vector,
the reward function, r, is expressed as a column vector, the kernel, K, becomes a stochastic
matrix and the right-hand side of Eq. 3.48 can be interpreted as a matrix identity. In this
case the matrix inversion can be calculated efficiently using the well-known Gauß-Jordan
algorithm.

A special feature of the discounted reward problem is that the optimizers, K, do not depend
on the initial measure µ. Define the value function

V (s) := sup
{
frew ;r,λ (δs,K)

∣∣K ∈ ΛS
S

}
(3.49)

Then V satisfies the Bellman principle of optimality:

V (s) = r(s) + λ sup

{∫
S
K
(
s, ds′

)
V (s′)

∣∣K ∈ ΛS
S

}
(3.50)

On the other hand whenever a solution V to the Bellman equation is known, then any
K∗ ∈ ΛS

S satisfying∫
S
K∗(s, ds

′)V (s′) = sup

{∫
S
K(s, ds′)V (s′)

∣∣K ∈ ΛS
S

}
for all s ∈ S (3.51)

is a solution to the original optimization problem. Since the Bellman equation does not
depend on the initial measure, the same holds true for the optimizer. The Bellman equation
is usually the starting point for a solution of the maximum-reward problem (a good reference
for MDPs are Eugene and Feinberg [71], Dynkin and Yushkevich [68] or Bertsekas and
Shreve [23] for example).

For a gradient-ascent based approach, note that the optimization problem is an instance
of Problem 3.2.2 with the sensor process functional given by frew;r,λ from Eq. 3.48. The
only reward specific quantity in the general gradient formulas, Remark 3.2.1, is the partial
derivative of frew;r,λ with respect to the sensor kernel. This derivative can be calculated
using Lemma 6.0.9 from the Appendix:

Remark 3.3.1 - (Kernel derivative for expected discounted reward)

Let (Q,Z,S,A,X, px, T,Π) be a finite state space MDP (compare Assumption 4.1.1 and
section 3.2.2). Then the partial derivative of 3.2.2 (see Eq. 3.48) with respect to the world
kernel is:

∂frew;r,λ

∂K (s, {s′})
(µ,K) (3.52)

= λ

∑
s1∈S

µ ({s1}) (1− λK)−1
s1,s


∑
s1∈S

(1− λK)−1
s′,s1

r (s1)


By Theorem 3.2.1 the discounted expected reward approximates the corresponding ergodic
reward for discount factors close to 1. The process functional for the ergodic counterpart to
the expected discounted reward problem is:
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ferg.rew ;r(µ,K) :=

∫
S
rdµ (3.53)

By Remark 3.2.2 the only reward-specific ingredient in the policy gradient formula is what
we called ergodic derivative of ferg.rew ;r. The resulting expression is:

Remark 3.3.2 - (Ergodic derivative for the expected reward)

Let (Q,Z,S,A,X, px, T,Π) be a finite state space MDP (compare Assumption 4.1.1 and
section 3.2.2). Then the ergodic derivative of 3.53 (see Eq. 3.53) with respect to the world
kernel is:

Derg.ferg.rew ;r (K)s,s′ = µ ({s})
∑
s1∈S

YK
(
s′, s1

)
r (s1)

The expected reward is the simplest non-trivial example of a policy functional. As we
already highlighted reward maximization has already attracted lots of attention in reinforce-
ment learning. Even though our approach to the gradient formula is new, the final result
coincides with a gradient formula that is well-known in robotics:

Remark 3.3.3 - (Comment on the gradient formula for the expected reward)

A formula for the gradient of the discounted expected reward and of the reward in the
stationary distribution has been given in Sutton et al. [180] (and previously in Marbach
and Tsitsiklis [124], Cao and H.F. [45] and Jaakkola, Singh, and Jordan [91] ). The
authors yield the result by an elegant computational trick. It is very illustrative to see that
their formula coincides with ours. Let q ∈ Q = ΛS

S×A be a fixed world kernel and let ρ be
the reward in the stationary distribution, i.e.

ρ(z) = ferg.rew.var;r(INV (Kq,z) ,Kq,z) (3.54)

Then the policy gradient from Sutton et al. [180] is:

∇Eρ (a |s) = INV(K)(s)

(
Qz(s, a)− 1

|A|
∑
a′∈A

Qz(s, a)

)
(3.55)

where z ∈ Z and

Qz(s, a) := Ez,a,s

[∑
n∈N

(Rn − ρ(z))

]
(3.56)

where Rn is the reward at time n and Pz,a,s is the law of the fixed policy process (Zn = z)
with initial states S0 = s and A0 = a. Let r ∈ RS be the reward vector (i.e. Rn = r(Sn)),
then

Qz(s, a) =
∑
n∈N

p(s,a)T (Kq,z)
n r − ρ(z) (3.57)

where
p(s,a)(s′) := q

(
(s, a),

{
s′
})

(3.58)

Note that
ρ(z) = p(s,a)T (Kq,z

∗) r (3.59)

since Kq,z
∗ := limn→∞Kq,z

n projects any distribution onto the stationary distribution of
Kq,z . Furthermore note that for every n ≥ 1

(Kq,z)
n = (Kq,z

∗ +Kq,z −Kq,z
∗)n = Kq,z

∗ + (Kq,z −Kq,z
∗)n (3.60)
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since (Kq,z
∗)Kq,z = Kq,z (Kq,z

∗) = Kq,z
∗ and (Kq,z

∗)2 = Kq,z
∗. Inserting this into

Eq. 3.57 and using the summation formula for geometric series gives:

Qz(s, a) = p(s,a)TYzr (3.61)

where
Yz = (1−Kq,z +Kq,z

∗)−1 −Kq,z
∗ (3.62)

This shows that Eq. 3.55 is really identical to our formula, Eq. 3.29 and Remark 3.3.1. A
similar analysis shows that our gradient of the discounted expected reward coincides with
the gradient found in Sutton et al. [180]. Note however that our final gradient ascent algo-
rithm needs an estimation of q, which is usually very straight forward (we will provide an
estimator for q in the next chapter and prove its convergence), whereas the algorithm in the
paper mentioned here need to estimate z 7→ Qz directly, which is much harder.

This remark shows, that the gradient formula can be derived in a systematic way without
any computational trick. This is essential to deal with policy functionals that do not orig-
inate from an expected reward function and cannot be calculated that easily. To give a
first example of the latter class of functionals, consider a target functional corresponding
to the variance of the discounted expected reward: Consider the variance of the discounted
expected reward for some reward function, R, from Eq. 3.44:

Var := Eµ

[
(R− Eµ [R])2

]
(3.63)

Transforming this into an analytic expression depending on K and µ is slightly more in-
volved than the previous calculation for the expected reward, but follows the same line of
reasoning. The final result is:

frew.var.;r,λ(µ,K) := Var = (3.64)

µ
[(
1− λ2K

)−1
r2 + 2λ(1− λK)−1

[
r ·K (1− λK)−1 r

]]
−
(
µ (1− λK)−1 r

)2

(3.65)

Having an explicit formula for the variance as a function of the transition kernel, it is easy to
derive the policy gradient using Remark 3.2.1. To simplify the calculation of similar quani-
ties, we included a section on derivatives of holomorphic matrix functions in the Appendix
(see A.2.3 and the special case of polynomials of matrices: Lemma 6.0.9).

Next we will illustrated the gradient fields for the expected discounted reward graphically.
Therefore we consider a finite state space MDP with two sensor values and two actions and
use the following parameterization of the policies:

Assumption 3.3.1 - (Parameterization of policies for graphical illustration of gradi-
ent formulas)

Set S := {s1, s2}, A := {a1, a2} and fix a transition kernel q ∈ ∆S
S×A. Every policy

z ∈ ∆A
S can be parameterized by two real numbers p, q ∈ [0, 1] by defining zp,q via:

zp,q (s1, {a1}) := p ; zp,q (s2, {a2}) := q (3.66)

This automatically implies

zp,q (s1, {a2}) = 1− p and zp,q (s2, {a1}) = 1− q (3.67)

The gradient at a given point is always tangent to the affine subspace of matrices with row-
sum 1 and can therefore be described by two real parameters. This reduces the problem to
a 2D problem and allows a graphical representation.
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The ergodic expected reward as a function of the policy parameters p and q is plotted in
Figure 3.1 3.

Theorem 3.2.1 can also be illustrated graphically. We use the following parameterization:

Assumption 3.3.2 - (Parameterization of sensor transition kernels for graphical il-
lustration)

Set S := {s1, s2}, any kernel k ∈ ∆S
S can be parameterized by two parameters:

k (s1, {s1}) := p ; k (s2, {s2}) := q (3.68)

This automatically implies

k (s1, {s2}) = 1− p and k (s2, {s1}) = 1− q (3.69)

We plotted the discounted expected reward for several discount factors and the ergodic
reward. The results are shown in Figure 3.2 4.

3.3.2 Extensions and modifications of the single sensor value expected reward
problem

A generalization from rewards depending on one sensor value to rewards that depend on the
outcome of two (or more generally n) successive sensor values is straight forward:

Consider the sliding discounted reward,

Rr,1 :=
∑
k∈N0

λkr (Sk, Sk+1, . . . , Sk+n−1) , (3.70)

and the block-wise discounted reward,

Rr,2 :=
∑
k∈N0

λkr
(
Skn, Skn+1, . . . , S(k+1)n−1

)
, (3.71)

where r : Sn → R is ⊗nFS /BR measurable and bounded. Define

Prr : ΛS
S → Bb(S) (3.72)

via

Prr (K) (s) :=

∫
Sn−1

K(s, ds2)K(s2, ds3) · · ·K(sn−1, dsn)r(s, s2, . . . , sn) (3.73)

Then the sensor process functional for the problems are:

frew,1;r,λ(µ,K) := E [Rr,1]

= µ
(

(1−K)−1 Prr (K)
)

=
(
µ (1−K)−1

)
Prr (K) (3.74)

for the sliding expected reward and

frew,2;r,λ(µ,K) := E [Rr,2]

= µ
(

(1−Kn)−1 Prr (K)
)

=
(
µ (1−Kn)−1

)
Prr (K) (3.75)

for the block-wise discounted reward.

3The plots have been generated with Wolfram Mathematica 8.0.0.0
4The plots have again been generated with Wolfram Mathematica 8.0.0.0
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Ergodic expected reward
(Compare Eq. 3.53, Remark 3.3.1, Remark 3.3.2, Eq. 3.29, Eq. 3.30, Assumption 3.3.1)

Parameters:
r (s1) = 1
r (s2) = 2

q (s1 |s1, a1 ) := 0.4 q (s1 |s2, a1 ) := 1/3
q (s1 |s1, a2 ) := 1 q (s1 |s2, a2 ) := 0.7

3D plot Contour plot

Euclidean gradient flow Fisher gradient flow

Figure 3.1: Ergodic expected reward
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Expected reward
(for notation see Eq. 3.48, Eq. 3.53 and Assumption 3.3.2)

parameters: r := (1, 2), µ = (0.5, 0.5)

(A) (1− λ)frew ;r,λ(µ,K(p, q))

λ = 0.6

(B) (1− λ)frew ;r,λ(µ,K(p, q))

λ = 0.8

(C) (1− λ)frew ;r,λ(µ,K(p, q))

λ = 0.95

(D) ferg.rew.;r(INV(K(p, q)),K(p, q))

r = was

Figure 3.2: Discounted expected reward and expected ergodic reward
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Remark 3.3.4 - (Partial derivative for the multi-point reward)

I Remark 3.3.4.1: The world kernel derivative of frew,1;r,λ reads

∂frew,1;r,λ

∂Ks,s′
(µ,K)

= λ

∑
s1∈S

µ ({s1}) (1− λK)−1
s,s1


∑
s1∈S

(1− λK)−1
s′,s1

Prr(K) ({s1})

+

+
∑

s1,s2∈S
µ ({s1}) (1−K)−1

s1,s2

n−1∑
j=1

r̃j (s)
(
s, s′

)
(3.76)

where

r̃j (s̃)
(
s, s′

)
(3.77)

:=
∑

s1,s2,...,sn∈S
δs1,s̃δsj ,sδsj+1, s

′K (s1, {s2}) · . . . ·K (sn−1, {sn})
K (sj , {sj+1})

r (s1, s2, . . . , sn)

I Remark 3.3.4.2: The ergodic counterpart of Eq 3.74 and Eq. 3.75 is the sensor process
functional

ferg.rew;r′(µ,K) :=

∫
Sn
dµ (ds1)K (s1, dss) . . .K (sn−1, dsn) r′ (s1, s2, . . . , sn) (3.78)

where now r′ : Sn → R is bounded, measurable. The ergodic derivative of ferg.rew;r′ is

Derg.ferg.rew ;r′ (K)s,s′ = A
(
s, s′

)
+B

(
s, s′

)
(3.79)

where

A
(
s, s′

)
:=

n−1∑
j=1

δsj ,sδsj+1,s′
µ ({s1})K (s1, {s2}) . . .K (sn−1, {sn})

K (sj , {sj+1})
r′ (s1, s2, . . . , sn)

and

B
(
s, s′

)
:= INV (K) ({s})

∑
s∈Sn

YK
(
s′, {s1}

)
K (s1, {s2})·. . .·K (sn−1, sn) r′ (s1, s2, . . . , sn)

More generally it is possible to consider the state-action process for a fixed policy parameter
and to take rewards that depend on state-action pairs or state-action-state triplets. However
these generalizations are straight forward and we will not write down explicit expressions.

Another generalization is the inclusion of unknown reward functions or probabilistic re-
wards (by this we mean that the reward at time n depends causally on Sn, An and Sn+1, i.e.
it is independent of the past given these values). This can be modeled easiest by modifying
the sensor space into S := S1×R, where S1 is a finite set, expressing the set of sensor value
and the second factor corresponding to the received reward signal. The transition kernels
should then be defined in an appropriate way. Even though this construction is not a finite
state action space MDP, the derivation of policy gradients follows the same pattern. For a
convergence proof the result in Section 4.2 of Chapter 4 can be employed.
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3.3.3 Entropy of the sensor distribution

The expectation of a bounded measurable random variable can be considered as a linear
functional of the underlying measure. Conceptually it is very natural to extend these linear
functionals to non-linear ones. This is indeed a very fruitful approach. Interesting non-linear
functionals include information measures or risk measures to name only two examples.

Consider a finite state space MDP with state space S. The discounted one-point entropy
(compare Definition 6.0.5) is generated by the sensor process functional:

fentr;λ(µ,K) :=
∑
k∈N0

λkH (µKn) (3.80)

where
H : M1

(
2S
)
→ R≥0; p 7→

∑
s∈S

p ({s}) log2 p ({s}) (3.81)

is the entropy. For non-discrete state spaces, (S,FS), this functional naturally generalizes
to:

fdiff.entr;η,λ(µ,K) :=
∑
n∈N0

λnHη (µKn) (3.82)

where η is some σ-finite measure on FS and Hη is the generalized entropy (compare Defi-
nition 6.0.6). The ergodic functional corresponding to fentr;λ is:

ferg.entr(µ,K) := H (µ) (3.83)

the resulting ergodic functional is the entropy in the stationary distribution. Again the gen-
eral formulas from Remark 3.2.1 and Remark 3.2.2 can be used to calculate the policy
gradient for these problems:

Remark 3.3.5 - (World kernel derivative and ergodic derivative for the entropy)

I Remark 3.3.5.1: Let S be the state space of a finite state and action space MDP. Then
the partial derivative of fentr;λ with respect to the world kernel is

∂fentr;λ

∂K (s, {s′})
(µ,K) (3.84)

= −
∑
n∈N0

λn
n−1∑
j=0

(
µKj

)
({s})

∑
s̃∈S

Kn−1−j (s′, s̃) ln (µKn) (s̃) +R1 (s)

where R1(s) is a summand that does not depend on s′. As a consequence the summation
over this term in Eq. 3.21 and Eq. 3.22 vanishes. Therefore this summand can be ignored.
I Remark 3.3.5.2: The ergodic derivative of ferg.entr is:

Derg.ferg.entr (K)s,s′ = µ({s})
∑
s1∈S

YK
(
s′, s1

)
log (INV (K) ({s1})) +R1(s)

where again R1(s) is a summand that does not depend on s′. As a consequence the sum-
mation over this term vanishes in Eq. 3.29 and Eq. 3.30. Therefore this summand can be
ignored.

Unlike the expected reward, the partial derivative of fentr;λ with respect to the world kernel is
an infinite series, that cannot be simplified in a straight forward way. From a computational
prospective the infinite sum is not a problem, since the series decays exponentially such that
a finite cutoff at a sufficiently high number of terms yields a convenient approximation. It is
also very easy to provide an a priori bound for the cutoff error. The ergodic counterpart on
the other hand gives rise to a simple explicit expression, that can be calculated efficiently.
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3.3.4 Discounted mutual information and predictive information

Consider a finite state space MDP with sensor space (S,FS). An interesting information
measure is the sliding discounted mutual information between two neighboring sensor val-
ues. The corresponding sensor process functional is

fM.I.,1;λ(µ,K) :=
∑
n∈N0

λnIµKn⊗K (π1, π2) (3.85)

a rather similar quantity is the block-wise discounted mutual information of two successive
sensor values, with sensor functional

fM.I.,2;λ(µ,K) :=
∑
n∈N0

λnIµK2n⊗K (π1, π2) (3.86)

where Ip (π1, π2) denotes the mutual information (compare Definition 6.0.6) and p⊗K ∈
M1 (FS ⊗FS) is the unique measure satisfying:

(p⊗K) (A×B) :=

∫
A
p(ds)K(s,B) for every A,B ∈ FS (3.87)

Since the process (Sn)n∈N0
is Markovian (for fixed policy) the mutual information between

two successive sensor values, Sn and Sn+1, is equal to the mutual information between all
predecessors of Sn including Sn and all successors of Sn+1 including Sn+1, i.e.

I(Sn, Sn+1) = I
(

(Sk)0≤k≤n , (Sk)k>n

)
. (3.88)

This is a consequence of Appendix Lemma 6.0.12. 5. The quantity on the right-hand side of
Eq. 3.88 is also known as predictive information (compare Grassberger [78], Grassberger
[77], Bialek, Nemenman, and Tishby [27], Bialek and Tishby [28] and Crutchfield and
Feldman [56]). For MDPs, controlled by some learning algorithm Eq. 3.88 is not true
anymore - indeed in principle it is possible to save all former sensor values in the memory
and to influence the sensor process in a way that allows the reconstruction of the entire past
from the future process - in which case the predictive information for the sensor process is
equal to the entropy of the entire past process. Therefore the following simple consequence
from the graph separation-independence property, Theorem 1.3.1, is remarkable:

Theorem 3.3.1 - (Bounds on the predictive information for controlled MDPs with
finite state and memory space)

Let C := (Q,Z,S,A,X, px, T,Π) be an MDP with finite state space, S and let M =
(M, L, U) be a learning algorithm over C with finite memory space, M. Then

I
[
(Si)0≤k≤n , (Si)k>n

]
≤ ln (|S|) + ln (|M|) (3.89)

for every n ∈ N under any measure Pq′,s′,m′ constructed in Remark 3.1.2.

Proof. By Appendix Lemma 6.0.12 and the Markov property of the process ((Si,Mi))i∈N0

we have:

I
[
(Si)0≤k≤n , (Si)k>n

]
≤ I

[
(Si,Mi)0≤k≤n , (Si,Mi)k>n

]
= I [(Sn,Mn) , (Sn+1,Mn+1)] (3.90)

5In the appendix we defined the mutual information using the KL divergence. Another possibility for finite
state spaces is a definition via entropies. However in this case the right-hand side of Eq. 3.88 would be ill-
defined except for trivial cases
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For any pair of random variables, (X,Y ) where X has values in X and Y has values in Y:

I(X,Y ) ≤ max {ln (|X|) , ln (|Y|)}

such that Eq. 3.90 implies the validity of the estimate.

Remark 3.3.6 - (Remark on Theorem 3.3.1)

With some further effort the estimate can be improved further for a specific learning al-
gorithm. Consider the kernel, K̃q′ ∈ ΛS×M

S×M, from Eq. 3.7. For a given measure p ∈
M1

(
2S×M

)
define the measure p⊗ K̃q′ ∈M1

(
2(S×M)×(S×M)

)
via:

p⊗ K̃q′
({(

(s,m), (s′,m′)
)})

:= p ({(s,m)})Kq′
[
(s,m) ,

{(
s′,m′

)}]
(3.91)

Let π1 and π2 denote the projections of (S×M) × (S×M) onto the first and second
factor. Then a tighter bound following from Eq. 3.90 is:

I
[
(Si)0≤k≤n , (Si)k>n

]
≤ sup

{
Ip⊗Kq′ (π1, π2)

∣∣p ∈M1

(
2S×M

)}
, (3.92)

Which is the channel capacity of a channel with transition kernelKq′ (this is essentially one
direction of Shannon’s noisy-channel coding theorem, compare Shannon [170]).

Again in the flavor of Theorem 3.2.1 the discounted sliding mutual information and the
block wise mutual information can be considered as approximation of an ergodic functional
for discount factors closed to 1. The sensor process functional corresponding to this ergodic
functional is:

fP.I.(µ,K) := I(µ⊗K). (3.93)

The mutual information in the stationary distribution is also known as predictive informa-
tion in a narrow sense. The optimization of this quantity has attracted lots of attention in
the past (compare Ay et al. [17], Zahedi, Ay, and Der [196] and Ay et al. [16]). The con-
vergence proof of a stochastic gradient algorithm maximizing this quantity was one of the
main motivations for this thesis. The calculation of policy gradients of the discounted mu-
tual information and its ergodic counterpart, the predictive information in a narrow sense is
very similar to the calculations for the discounted reward and for the entropy. The general
gradient formulas Remark 3.2.1 and Remark 3.2.2 can be used again and the partial deriva-
tive (and the ergodic derivative) of the corresponding sensor process functionals have to be
calculated explicitly.
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Remark 3.3.7 - (Partial derivative of the discounted mutual information with re-
spect to world kernel and ergodic derivative of the PI sensor pro-
cess functional)

Let (S,FS) be the state space of a finite stat and action space MDP.
I Remark 3.3.7.1: The partial derivative of fM.I.,1;λ with respect to the world kernel is

∂fM.I.,1;λ

∂K (s, {s′})
(µ,K) (3.94)

=
∑
n∈N0

λn
[
µKn ({s}) ln

(
K (s, {s′})
µKn+1 ({s′})

)
+

+
∑
s1∈S

∑
s2∈S

K (s1, {s2}) ln

(
K (s1, {s2})
µKn+1 ({s2})

)n−1∑
j=0

µKj ({s})Kn−1−j (s′, {s1}
)

where we did not write down s′-independent summands since they cancel in the summation
(compare formulas for entropy).
I Remark 3.3.7.2: The ergodic derivative of fP.I. from Eq. 3.93 is:

Derg.fP.I. (K)s,s′ = INV (K) ({s}) · (3.95)

·

log

(
K (s, {s′})

INV (K) ({s′})

)
+

∑
s1,s2∈S

YK
(
s′, s1

)
K (s1, {s2}) log

(
K (s1, {s2})

INV (K) ({s2})

)
where we omitted s′-independent summands since they cancel in the summation (compare
formulas for entropy).

Figure 3.3 shows an example of the predictive information as a function of the policy (we
use the parameterization suggested in Assumption 3.3.1 again). In Figure 3.4 we illustrate
Theorem 3.2.1 for the predictive information. We used the parameterization from Assump-
tion 3.3.2 again.
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Predictive information
(Compare Eq. 3.93, Remark 3.3.7, Eq. 3.29, Eq. 3.30 and Assumption 3.3.1)

Parameters:
q (s1 |s1, a1 ) := 0.4 q (s1 |s2, a1 ) := 1/3
q (s1 |s1, a2 ) := 1 q (s1 |s2, a2 ) := 0.7

3D plot
Contour plot

Euclidean gradient flow Fisher gradient flow

Figure 3.3: Predictive information
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Predictive information
(for notation see Eq. 3.85, Eq. 3.93 and Eq. Assumption 3.3.2)

parameters: µ = (0.5, 0.5)

(A) (1− λ)fM.I.,1;λ(µ,K(p, q))

λ = 0.6

(B) (1− λ)fM.I.,1;λ(µ,K(p, q))

λ = 0.8

(C) (1− λ)fM.I.,1;λ(µ,K(p, q))

λ = 0.95

(D) fP.I.(INV(K(p, q)),K(p, q))

r = was

Figure 3.4: Discounted mutual information and predictive information
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Chapter 4

Convergence proofs for learning
algorithms in the sensorimotor loop

In this chapter we propose a projected stochastic gradient algorithm to solve Problem 3.2.1
and its special instances Problem 3.2.2 and Problem 3.2.3. We start with finite state and
action spaces and prove convergence of the algorithm (see Theorem 4.1.1). In this context
a special instance of our algorithm is an improvement of the algorithm suggested in Zahedi,
Ay, and Der [196] for a maximization of the predictive information. Therefore as a partial
result we provide a rigorous convergence proof for this algorithm for the first time.

After this we consider more general MDPs and prove convergence whenever an appropriate
Q-estimator exists (see Theorem 4.2.1). Finally we apply this theorem to a linear-Gaussian
MDP, for which we also construct a Q-estimator with the desired properties. The resulting
algorithm extends results from Ay et al. [16] to a scenario where the system parameters are
previously unknown and have to be learnt (see Theorem 4.2.1).

To ease concrete implementations we provide a list of gradients for specific sensor process
functionals and ergodic functionals in Appendix A.2.

4.1 Optimization of policy functionals for finite state space MDPs

4.1.1 Model assumptions

In this section we consider a Markov decision process (compare Definition 3.1.1),

C := (Q,Z,S,A,X, px, T,Π)

with finite state space and finite action space. The aim is to approach a solution to Prob-
lem 3.2.1 for some policy functional φ : Q × Z → R. We assume that an explicit
expression of φ is known but that no analytic expression for the maximum of Mφ,q :=
max {I(q, z) |z ∈ Z} is available.

Ideally Z and Q contain all stochastic transition matrices, but we need to impose some mild
restrictions on Q and Z. The algorithm to be stated in the end of this section uses an estimate
of the sensor transition kernel T . For consistency of this estimator it is necessary that all
state action pairs (s, a) ∈ S ×A are visited infinitely often. Therefore it is reasonable to
consider the following parameter set for the world transition:

Q :=
{
k ∈ ΛS

S×A
∣∣k((s, a),

{
s′
}

) > 0 for all s, s′ ∈ S and a ∈ A
}

(4.1)
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The relation between the parameter q ∈ Q and the kernel T is the following:

T ((k, s, a), A) := k ((s, a), A) for every a ∈ A, s ∈ S (4.2)

For the set of policies, Z, we fix some parameter 1
|A| > ε > 0 and require the policies to be

sufficiently mixing, more precisely:

Z = Zε :=
{
k ∈ ΛA

S |k(s, {a}) ≥ ε for all s ∈ S and a ∈ A
}

(4.3)

We require the policy transition function, Π, and the noise distribution, px, to be compatible
with the parameter z ∈ Z, in the following sense:∫

X
Π ((s, x, z), A) dpx(x) = z (s,A) (4.4)

One possibility to generate any desired probability distribution on a finite set {1, 2, . . . ,m}
using a random variable, X , with uniform distribution on the unit interval, is to split the
unit interval into m disjoint intervals Ii of length p({i}) and to decide for i if X ∈ Ii.
Therefore we can choose X = [0, 1], px = νLeb where νLeb is the Lebesgue measure.
Assume S = {s1, s2, · · · , sn} and A = {a1, a2, · · · , am}. Then a canonical choice for Π
is the following one:

Π ((s, x, z), {ai}) =

{
1 if

∑
1≤k<i z(s, {ak}) < x ≤

∑
k≤i z(s, {ak})

0 else
(4.5)

It is clear that this definitions ensure the consistency conditions Eq. 4.4.

Here is a summary of our assumptions on C:

Assumption 4.1.1 - (Underlying spaces and transition functions)

Let C := (Q,Z,S,A,X, px, T,Π) be a Markov decision process.
I Assumption 4.1.1.1: S = {s1, s2, · · · , sn} and A = {a1, a2, · · · , am} are finite sets.
I Assumption 4.1.1.2: X = [0, 1] and px = νLeb.
I Assumption 4.1.1.3: Q and Z are given by Eq. 4.1 and by Eq. 4.3.
I Assumption 4.1.1.4: The transition kernels are given by Eq. 4.2 and by Eq. 4.5.

We will use the same notation as in Chapter 3. The finite state space MDP,

C := (Q,Z,S,A,X, px, T,Π),

naturally defines a causal model C ′ (compare Definition 3.1.1). Equivalently every learning
algorithm, M := (M, L, U), over C gives rise to a causal model M ′ (which we will call
sensorimotor loop) and any collection of initial values q′ ∈ Q, s′ ∈ S and m′ ∈ M
induces a probability measure, Pq′,s′,m′ ∈ M1 (⊗v∈V Fv) where (V,E) is the MDP graph,
Caus. mod. 19. We will write Eq′,s′,m′ for the expectation with respect to Pq′,s′,m′ . In the
next subsection we address the problem of estimating the sensor kernel parameter q′ ∈ Q.

4.1.2 Estimating the sensor kernel parameter, q′ ∈ Q for finite state space
MDPs

We will frequently need the following random times:
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Definition 4.1.1 - (Recurrence times for state-action pairs)

For a ∈ A and s ∈ S define:

Ta,s,0 := 0 ; Ta,s,1 := inf {n ≥ 0 |Sn = s,An = a}

and inductively for i ≥ 1

Ta,s,i+1 := inf {n > Ta,s,i |Sn = s,An = a}

Define the filtration, Fn = σ
(
{Q,Si,Mi, Xi}0≤i≤n

)
of F . Then the processes (Sn)n∈N0 ,

(An)n∈N0 , (Xn)n∈N0 , (Mn)n∈N0 and (Zn)n∈N are F-adapted. Consequently the random
times, Ta,s,i, are F-stopping times.
Our restrictions on Q and Z (see Assumption 4.1.1) imply the following bounds:

Lemma 4.1.1 - (Bounds on moments of Ta,s,i)

Let C := (Q,Zε,S,A,X, px, T,Π) be a MDP satisfying Assumption 4.1.1. Let M =
(M, L, U) be an arbitrary learning algorithm over C (compare Definition 3.1.2). Fix q′ ∈
Q and set d(q′) := inf {q′((s, a), {s′}) |s, s′ ∈ S, a ∈ A}.
I Lemma 4.1.1.1: We have

Eq′,s0,m0 [Ta,s,n] ≤ n

εd(q′)

for every initial states s0 ∈ S and initial memory values m0 ∈M.
I Lemma 4.1.1.2: The random variable Ta,s,n possesses a moment generating function in
the neighborhood of 0, moreover the following estimate holds:

Eq′,s0,m0 [exp (βTa,s,n)] ≤ φ(q′, β, ε)n whenever β < − ln(1− εd(q′))

where

φ
(
q′, β, ε

)
=

exp(β)

1− exp(β + ln(1− εd(q′)))

Proof. For this proof we fix s0 ∈ S, m0 ∈M, q′ ∈ Q and write P instead Pq′,s0,m0 and E
instead of Eq′,s0,m0 .
We will prove the first statement, E [Ta,s,n] ≤ n

εd(q′) , by induction over n.
For n = 0 the statement is obviously true by definition of Ta,s,0.
Assume thatE [Ta,s,n] ≤ n

εd(q′) . This implies P [{Ta,s,n =∞}] = 0. Therefore the discrete
random sets (compare Definition 1.4.1)

τj :=
{
sTa,s,n+j , aTa,s,n+j

}
; j ≥ 0 (4.6)

are well-defined for almost all ω ∈ Ω. We also define a random set, Ij relative to τj
(compare Definition 1.4.2) as follows

Ij({sk, ak}) := An ({sk, ak}) ∪ {sk, ak} (4.7)

Obviously Ij ⊆ Ij+1 for every j ≥ 0 such thatGn := FIn (whereFIn denotes the inference
σ−algebra of In, compare Definition 1.4.3) is a filtration of F . By Assumption 4.1.1 on the
parameter spaces, Theorem 1.4.1 and Corrolary 1.4.1 we have:

P
[{
STa,s,n+j+1 = s′

}
|Gj

]
= q′((STa,s,n+j , ATa,s,n+j),

{
s′
}

) ≥ d(q′)
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almost surely. By Assumption 4.1.1 and the strong Markov property again:

P
({
ATs,a,n+j+1 = a

} ∣∣Gj , STs,a,n+j+1, ZTs,a,n+j+1,
)

= ZTs,a,n+j+1

(
STs,a,n+j+1, {a}

)
≥ ε a.s. (4.8)

By the tower property of the conditional expectation, these two equations yield:

P
[{
ATs,a,n+j+1 = a, STs,a,n+j+1 = s

}
|Gj

]
= E

[
1{STs,a,n+j+1=s}E

[
1{ATs,a,n+j+1=a}

∣∣Gj , STs,a,n+j+1, ZTs,a,n+j+1

]
|Gj

]
= E

[
1{STs,a,n+j+1=s}ZTs,a,n+j+1(STs,a,n+j+1, {a}) |Gj

]
≥ εd(q′) a.s. (4.9)

We will prove by induction that

P
(
{Ta,s,n+1 − Ta,s,n ≥ k}

∣∣∣(Ta,s,m)0≤m≤n

)
≤ P

(
∩1≤j<k

{(
STa,s,n+j , ATa,s,n+j

)
6= (s, a)

} ∣∣∣(Ta,s,m)0≤m≤n

)
≤ (1− εd(q′))k−1 a.s., (4.10)

where the less-than sign in the second line is actually an equality whenever n ≥ 1.
For k = 1 the statement is trivial. The induction step from k − 1 to k for k ≥ 2 follows
from Eq. 4.9 and the fact that STa,s,n+j , ATa,s,n+j and Ta,s,n are Gj measurable for every
j ≥ 0:

P
[
∩1≤j<k

{
(STa,s,n+j , ATa,s,n+j) 6= (s, a)

} ∣∣∣(Ta,s,m)0≤m≤n

]
= E

[
1∩1≤j<k−1{(STa,s,n+j ,ATa,s,n+j)6=(s,a)}(

1− E
[
1{(STa,s,n+k,ATa,s,n+k)=(s,a)} |Gk−1

]) ∣∣∣(Ta,s,m)0≤m≤n

]
≤ (1− εd(q′))k−2(1− εd(q′)) = (1− εd(q′))k−1 (4.11)

This settles the induction step and proves Eq. 4.10.
For anyN0∪{∞}−valued random variable T the expectation value can be calculated from
the following identity:

E [T ] =
∑
k∈N

P ({T ≥ k})

Hence by Eq. 4.10 and the well-known limit of a geometric series:

E [Ta,s,n+1 − Ta,s,n] ≤ 1

εd(q′)
(4.12)

Therefore the inductive assumption yields:

E [Ta,s,n] ≤ n

εd(q′)
(4.13)

For the existence of the characteristic function and the bound in Lemma 4.1.1 consider the
following estimate (using the bound Eq. 4.10):

E [exp(β(Ta,s,n+1 − Ta,s,n)) |Ta,s,i = ti for 1 ≤ i ≤ n ]

=
∑
k∈N

exp(βk)P [{Ta,s,n+1 − Ta,s,n = k} |Ta,s,i = ti for 1 ≤ i ≤ n ]

≤
∑
k∈N

exp(βk)P [{Ta,s,n+1 − Ta,s,n ≥ k} |Ta,s,i = ti for 1 ≤ i ≤ n ]

≤
∑
k∈N

exp(βk)
(
1− εd(q′)

)k−1

≤ exp(β)
∑
k∈N0

exp(β + ln(1− εd(q′)))k = φ(q′, β, ε)
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Therefore:

E
[
exp(βTa,s,n+1)

∣∣∣{Ta,s,i}1≤i≤n ] ≤ φ(q′, β, ε) exp(βTa,s,n) (4.14)

So by induction over n:
E [exp(βTa,s,n)] ≤ φ(q′, β, ε)n (4.15)

An immediate consequence of Lemma 4.1.1 is that every Ta,s,n is almost surely finite and
possesses finite moments of arbitrary high order. Therefore every state-action pair is visited
infinitely often such that the agent can estimate the sensor kernel parameter q′ asymptoti-
cally exact.
The next lemma addresses the speed of convergence for a kernel estimator. Whenever a
certain state-action pair (s, a) is observed, the distribution of the next sensor value does not
depend on the history and is given by the distribution q′((s, a), ·). In other words for fixed
s ∈ S and a ∈ A the random variables

S̃a,s,n := STa,s,n+1 n ≥ 1

are independent, identically distributed with distribution q′((s, a), ·). This insight and the
result Lemma 4.1.1 can be used to prove the following result on the speed of convergence
of the maximum likelyhood estimator of q′:

Lemma 4.1.2 - (Convergence of the Maximum likelihood estimator)

Let C := (Q,Zε,S,A,X, px, T,Π) be a MDP satisfying Assumption 4.1.1. Let M =
(M, L, U) be an arbitrary learning algorithm over C (compare Definition 3.1.2). Define
Fn := σ

(
{Si, Ai}0≤i≤n

)
and define the (F−adapted) maximum likelihood estimator:

q̂(MLE)
n ((s, a),

{
s′
}

) :=


1
|S| if

∑
0≤j<n 1{Sj=s,Aj=a} = 0∑

0≤j<n 1{Sj=s,Aj=a,Sj+1=s
′}∑

0≤j<n 1{Sj=s,Aj=a}
else

(4.16)
Then for every α > 1

2 :∑
n∈N

n−α
∥∥q̂n − q′∥∥1

<∞ a.s. w.r.t. Pq′,s0,m0

for every q′ ∈ Q, s0 ∈ S and m0 ∈M

Proof. Again we will fix q′ ∈ Q, s0 ∈ S and m0 ∈ M and we will write P instead of
Pq′,s0,m0 and E instead of Eq′,s0,m0 .
Fix some δ > 0 such that

α > 0.5 + δ. (4.17)

Let d(q′) := inf {q′((s, a), {s′}) |s, s′ ∈ S, a ∈ A} again. Fix 0 < β < − ln(1 − εd(q′))
and note that by Markov’s inequality (compare Appendix Lemma 6.0.6) and Lemma 4.1.1
for any C > 0:

P ({Ta,s,n ≥ Cn}) = P [{exp(βTa,s,n) ≥ exp(βCn)}] ≤ φ(q′, β, ε)n

exp(βCn)

Fix someC > ln(φ(q′,β,ε))
β . Then the Borel-Cantelli lemma (compare Appendix Lemma 6.0.5)

implies that there exists some set N0 ∈ F such that P (N0) = 0 and for any ω ∈ Ω \ N0

the inequality Ta,s,n(ω) < Cn holds for all but finitely many n. Consequently for for all
ω ∈ Ω \N0 there exists some constant C0,ω ≥ 1 such that

Ta,s,n(ω) ≤ C0,ωn for all n ∈ N (4.18)
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Moreover the estimator q̂(MLE)
n satisfies the following identity:

q̃a,s,k := q̂(MLE)
Ta,s,k+1((s, a),

{
s′
}

) =

∑
1≤j≤k 1{S̃a,s,j=s′}

k

where again
S̃a,s,k := STa,s,k+1.

The random variables 1{S̃a,s,n=s′} are i.i.d. and bounded (for fixed a ∈ A and s ∈ S)

with expectation value q′((s, a), s′). Hence theorem 4.23 of Kallenberg [99] (alternatively
one could use the maybe better-known but technically more involved law of the iterated
logarithm) yields:

lim
k→∞

k0.5−δ ∣∣q̃a,s,k((s, a),
{
s′
}

)− q′((s, a),
{
s′
}

)
∣∣ = 0 a.s. (4.19)

In other words there exists some setN1 ∈ F of measure zero, such that for every ω ∈ Ω\N1

there exists some constant C1,ω such that:∣∣q̃a,s,k((s, a),
{
s′
}

)− q′((s, a),
{
s′
}

)
∣∣ ≤ C1,ωk

−0.5+δ for every s ∈ S, a ∈ A, k ∈ N
(4.20)

Consider the (random) sum

I :=
∑
n∈N

n−α
∥∥q̂n − q′∥∥1

=
∑

s,s′∈S,a∈A

∑
n∈N

n−α
∣∣q̂n((s, a),

{
s′
}

)− q′((s, a),
{
s′
}

)
∣∣

Fix ω ∈ Ω \ (N0 ∪N1) and constants C0,ω and C1,ω such that 4.18 and 4.20 hold.
Define f(a, s, n)(ω) := sup {k ∈ N |Ta,s,k(ω) < n}.
Then q̂n((s, a), {s′})(ω) = q̃f(a,s,n)(ω)((s, a), {s′})(ω) and by definition of N1 and C1,ω:

I(ω) ≤ C1,ω

∑
s,s′∈S,a∈A

∑
n∈N

n−α(f(a, s, n)(ω))−0.5+δ

By definition of C0,ω

T
a,s,

⌊
n

2C0,ω

⌋(ω) ≤ C0,ω

⌊
n

2C0,ω

⌋
. n

the sign “.” indicates that the last inequality is true whenever n is large enough - in this
case n ≥ 2C0,ω is sufficient. Hence f(a, s, n)(ω) & n/(2C0,ω). Consequently there exists
some constant C3,ω > 0 such that:

I(ω) ≤ C3,ω

∑
n∈N

n−α−0.5+δ <∞, (4.21)

where the last identity follows from the choice of δ. This statement is true for any ω ∈
Ω \ (N0 ∪N1) and N0 ∪N1 is a P -null set. Hence the statement is true.

4.1.3 A projected stochastic gradient algorithm for finite state space MDPs
with non-linear objectives

In this section we formulate an algorithm to approach Problem 3.2.1. In order to apply
a stochastic gradient ascent algorithm we will impose further restrictions on the objective
function. We canonically identify Q with (∆S)S×A

◦
and Zε with (∆ε,A)S (compare Ap-

pendix A.1.4 and section 2.1). We require the following regularity assumptions to be satis-
fied by the function φ in Problem 3.2.1:
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Assumption 4.1.2 - (Regularity of objective function)

Let φ : (∆S)S×A
◦ × (∆A)S

◦ → R. We further assume:

I Assumption 4.1.2.1: For every q ∈ (∆S)S×A
◦

the function φq : z 7→ φ(q, z) is
continuously differentiable. We further assume that the function φq restricted to (∆ε,A)S

has a negligible set of critical values for all ε > 0 (compare Definition 2.4.3).
I Assumption 4.1.2.2: The function q 7→ D2φ(q, z) is continuous uniformly in z ∈
(∆ε,A)S for every ε > 0. By this we mean that for fixed q ∈ Q and ε > 0 and any ε′ > 0
there exist δ > 0 such that:

sup
{∣∣D2φ(q′, z)−D2φ(q, z)

∣∣ ∣∣∣z ∈ (∆ε,A)S
}
< ε′ whenever

∥∥q′ − q∥∥
1
< δ (4.22)

Consider the following algorithm:

Algorithm 4.1.1 - (Gradient ascent on finite state space MDP)

I Free parameters:

• Two ascent decay parameter c ∈ R+ and α, satisfying 1
2 < α ≤ 1.

• A metric g on (∆A)S
◦

that is compatible with the orthogonal projection (compare
Definition 2.3.1 and the subsequent discussion)

I Variables and initializations:

• State-action counter: n ∈ N0
S×A; n0(s, a)← 0 for every (s, a) ∈ S×A

• Estimator for sensor transition kernel: q̂ ∈ (∆S)S×A; q̂0 ((s, a), {s′}) ← 1
|S| for

every s, s′ ∈ S, a ∈ A.

• Current policy: ẑ ∈ (∆A)S; ẑ0 (s, {a})← 1
|A|

• Step counter: t ∈ N0; t← 0

.
I Algorithm:

repeat this:
n(St, At)← n(St, At) + 1
foreach s′ ∈ S do

q̂ [(St, At) , {s′}]← q̂ [(St, At) , {s′}]+ 1
n(St,At)

(
1{s′} (St+1)− q̂ [(St, At) , {s′}]

)
end
ẑ ← PrZ

[
ẑ + c

(t+1)α∇g,2φ (q̂, ẑ)
]

t← t+ 1

forever

Where PrZ denotes the projection onto Z = (∆ε,A)S (compare Algorithm 4.1.2).

The projection PrZ can be done efficiently using an adaption of the algorithm suggested in
Michelot [128] for standard simplices to a product of ε−simplices:
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Algorithm 4.1.2 - (Projection onto (∆ε,A)S)

I Input data: x ∈ RS×A

I Variables: I, I ′ ∈ 2A, σ ∈ R
I Algorithm:

foreach s ∈ S do
I ← A
repeat

I ′ ← ∅
σ :=

∑
a∈I xs,a

foreach a ∈ I do
if xs,a ≥ σ−1+ε|A|

|I| then
xs,a ← xs,a + 1−σ+ε(|I|−|A|)

|I|
end
else

xs,a ← ε
I ′ ← I ′ ∪ {a}

end
end
I ← I \ I ′

until I ′ = ∅
end
return x
.

After this preparation we formulate and prove one of the main theorems of this section:

Theorem 4.1.1 - (Convergence of Algorithm 4.1.1)

Consider the algorithm Algorithm 4.1.1 and setK := (∆ε,A)S. Then the iterative sequence
(ẑn)n∈N converges to the set of first order optimal points of φq:

Sq := {z ∈ K |D2φ (q, z) ∈ NK(z)} , (4.23)

almost surely with respect to Pq,s0,m0 for every q ∈ Q and s0 ∈ S.

Proof. q̂ is the maximum likelihood estimator from Lemma 4.1.2. Write

∇g,2φ(q̂k+1, ẑk) := ∇g,2φ(q, ẑk) + βk (4.24)

with
βk = ∇g,2φ(q̂k+1, ẑk)−∇g,2φ(q, ẑk) (4.25)

By Lemma 4.1.2 and Assumption 4.1.2 (βk)k∈N converges to zero almost surely. Therefore
the result follows immediately from Theorem 2.4.3.

4.1.4 Simulations

In this section we will illustrate the convergence result for the learning algorithms over a
finite state spaces MDP, Theorem 4.1.1. We tested the statement for two sensor values and
two actions, i.e. S = {s1, s2}, A = {a1, a2} and the following world transition kernel:

k [(s1, a1), {s1}] = 0.4 k [(s1, a1), {s2}] = 0.6
k [(s1, a2), {s1}] = 0.95 k [(s1, a2), {s2}] = 0.05
k [(s2, a1), {s1}] = 1

3 k [(s2, a1), {s2}] = 2
3

k [(s2, a2), {s1}] = 0.7 k [(s2, a2), {s2}] = 0.3

(4.26)
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Simulation part I - the optimization problem
(Compare Eq. 3.93, Eq. 3.29, Eq. 3.30 and Assumption 3.3.1)

Parameters: k, see Eq. 4.26; α = 1, c = 0.5 (compare Algorithm 4.1.1)

Contour Plot of PI and local maxima

(non-stochastic) gradient ascent with
exact transition kernel, k

Legend

Local maximum of PI

starting point of trajectory

end point of trajectory

boundary of optimization
region

boundary for use of dif-
ferent gradients; interior
region: Fisher gradient;
outside region: Euclidean
gradient

Figure 4.1: Simulation of PI maximization - part 1

Any policy kernel z ∈ ΛA
S can be parameterized by two numbers p, q ∈ [0, 1]:

z (s1, {a1}) = p z (s1, {a2}) = 1− p
z (s2, {a1}) = 1− q z (s2, {a2}) = q

(4.27)

As target functional we choose the predictive information (compare Figure 3.4 and Fig-
ure 3.3). In our simulation we set ε := 0.05 and perform a gradient ascent with the Fisher
gradient whenever z (s, {a}) ≥ 0.1 for every a ∈ A and s ∈ S and perform a gradient
ascent with Euclidean gradient otherwise. This ensures compatibility with the othorgonal
projection onto the ε-simplex (compare Definition 2.3.1 and Example 2.3.1). Figure 4.1
shows the level set of the predictive information as a function of the parameters p and q,
the two local maximas and a gradient ascent with the true world kernel, k. In Figure 4.2 we
show several trajectories. Here the kernel, k, is assumed to be unknown and is learnt by the
agent. Last but not least we plot the PI and the squared error of the world kernel estimator
for two sample trajectories (see Figure 4.3.
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Simulation part II - sample trajectories
(Compare Eq. 3.93, Eq. 3.29, Eq. 3.30 and Assumption 3.3.1)

Parameters: k, see Eq. 4.26; α = 1, c = 0.5 (compare Algorithm 4.1.1)

Figure 4.2: Simulation of PI maximization - part 2
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Simulation part III - PI optimization
and consistency of world kernel estimator

(Compare Eq. 3.93, Eq. 3.29, Eq. 3.30 and Assumption 3.3.1)

Parameters: k, see Eq. 4.26; α = 1, c = 0.5 (compare Algorithm 4.1.1)

Trajectories
Sample 1 Sample 3

Predictive information (the red lines indicate local maximas)

Squared error of world kernel estimator

Figure 4.3: Simulation of PI maximization - part 3
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4.2 Optimization of policy functionals for general MDPs

The results from the the previous section hold true for general state spaces as long as the pa-
rameter set for the policies is a compact subset ofRn. A look on the proof of Theorem 4.1.1
shows that it relies solely on the existence of a consistent estimator of the parameter of the
world transition kernel (consistent in the sense that it converges to the right value for any
policy sequence that might arise from any possible learning algorithm). We will make this
point more precise in this section. Then the proof automatically carries over to general state
spaces - provided there exists a consistent estimator. We impose the following restrictions
on the underlying Markov decision process:

Assumption 4.2.1 - (Underlying spaces and transition functions)

Let C := (Q,Z,S,A,X, px, T,Π) be a Markov decision process.
I Assumption 4.2.1.1: X = [0, 1] and px = νLeb.
I Assumption 4.2.1.2: Q is a topological space and Z is a compact subset of Rn for
some n ∈ N.

Definition 4.2.1 - (Q-estimators)

LetC := (Q,Z,S,A,X, px, T,Π) be a MDP with associated causal modelC ′ = ((V,E),S,T)

(compare: Definition 3.1.1). Let F0 := {∅,S} and let Fn := σ
(
{Si, Aj}0≤i≤n;0≤j<n

)
for n ≥ 1. Then a Q-estimator is a F adapted sequence of random variables,

(
Q̂n

)
n∈N0

,

with values in Q:
Q̂n : S→ Q ; Q̂n is Fn/Fq-measurable (4.28)

By consistency of a Q-estimator we mean that it finally converges to the true value of Q.
We consider two different concepts of consistency:

Definition 4.2.2 - (Consistency of Q-estimators)

Let C := (Q,Z,S,A,X, px, T,Π) be a MDP with associated causal model
C ′ = ((V,E),S,T) (compare: Definition 3.1.1). Let F0 := {∅,S} and
Fn := σ

(
{Si, Aj}0≤i≤n;0≤j<n

)
for n ≥ 1.

I Definition 4.2.2.1: A Q-estimator,
(
Q̂n

)
n∈N

, will be called consistent, if

lim
n→∞

Q̂n = q′ (4.29)

almost surely with respect to PMDP,q′,s′,z′ for every q′ ∈ Q, s′ ∈ S, z′ ∈ ZN0 (compare
Remark 3.1.1).
I Definition 4.2.2.2: A Q-estimator,

(
Q̂n

)
n∈N

, will be called strongly consistent, if

lim
n→∞

Q̂n = q′ (4.30)

almost surely with respect to Pq′,s′,Z , for every q′ ∈ Q, s′ ∈ S and everyF-adapted process,
Z, with values in Z (see Remark 4.2.1).
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Remark 4.2.1 - (Comment on Definition 4.2.2)

EveryF-adapted policy process, Z, naturally defines a “learning algorithm” over the MDP
in the sense of Definition 3.1.2 and Remark 3.1.2. To see this set:

M := N× SN0 ×AN0 × Z (4.31)

Since F0 is trivial, we have that Z0 = z′ almost surely for some z′ ∈ Z. Since Z is F-
adapted for every n ≥ 1 there exists some (⊗0≤i≤nFS) ⊗ (⊗0≤i<nFA)/FZ-measurable
functions, Tn : Sn+1 ×An → Z, such that

Zn = Tn

(
(Si)0≤i≤n , (Ai)0≤i<n

)
Fix arbitrary a0 ∈ AN0 , s0 ∈ SN0 and define m′ := (0, s0,a0, z

′). Set

U : M→ Z ; (n, s,a, z) 7→ z

and
L : S×A× S×M→ Z ;

(
s, a, s′, (n, s,a, z)

)
7→ (n+ 1, s′,a′, z′)

where

a′k :=

{
a if k = n

ak else
,

s′k :=


s if k = n

s′ if k = n+ 1

sk else

and
z′ := Tn+1

((
s0, s1, . . . , sn−1, s, s

′) , (a0, s1, . . . ,an−1, a)
)
.

Then the law generated by the learning algorithm (M, L, U) for initial sensor state s′ ∈ S
and parameter q′ ∈ Q, Pq′,s′,m′ (compare Remark 3.1.2) does not depend on the choice
of s0 and a0 but only on the adapted process, Z. So we will simply write Pq′,s′,Z for the
measure Pq′,s′,m′ .

We assume the existence of a strongly consistent estimator of the world parameter q ∈ Q

Assumption 4.2.2 - (Existence of consistent estimator)

LetC := (Q,Z,S,A,X, px, T,Π) be a Markov decision process satisfying Assumption 4.2.1.
We assume the existence of a strongly consistent Q-estimator,

(
Q̂n

)
n∈N

.

Remark 4.2.2 - (Consistency and strong consistency)

Obviously every deterministic sequence of policies is adapted to the filtration, F, such that
strong consistency includes consistency. To see that strong consistency is really stronger
than mere consistency consider the following example:

Let C := (Q,Z,S,A,X, px, T,Π) be an MDP with

• Q := R

• Z := {+1,−1}

• S := {s1, s2}

• A := {+1,−1}

• X and px are irrelevant
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•

T
[(
s1, a

′, q′
)
, {s1}

]
:=

1

2

(
1 + a′ · tanh

(
q′
))

= 1− T
[(
s1, a

′, q′
)
, {s2}

]
and

T
[(
s2, a

′, q′
)
, {s2}

]
:=

1

2

(
1 + a′ · tanh

(
q′
))

= 1− T
[(
s2, a

′, q′
)
, {s1}

]
• Π (s, x, z) := z

for a fixed sequence of policies, z′ ∈ ZN0 , the sensor process is Markovian with transition
matrices

K̂n :=

(
1
2 (1 + z′n · tanh (q′)) 1

2 (1− z′n · tanh (q′))
1
2 (1− z′n · tanh (q′)) 1

2 (1 + z′n · tanh (q′))

)
(4.32)

with left-Eigenvectors (0.5, 0.5) (with respect to Eigenvalue 1) and (0.5,−0.5) (with respect
to Eigenvalue λ2 := zn tanh (q′)). Therefore the distribution, pn, of the n-th sensor value
converges to (0.5, 0.5) with the error estimate:

‖pn − (0.5, 0.5)‖1 ≤ |p0 − q0|
∣∣tanh

(
q′
)∣∣n

By this insight and by the law of large numbers:

lim
n→∞

∑n
k=0Ak ·

(
1{Sk=s1,Sk+1=s1} − 0.5

)
n+ 1

= lim
n→∞

∑n
k=0Ak ·

(
1{Sk=s1,Sk+1=s1} − 0.5

)
max

{∑n
k=0 1{Sk=s1}, 1

} max
{∑n

k=0 1{Sk=s1}, 1
}

n+ 1

=
1

4
tanh

(
q′
)

(4.33)

a.s. with respect to PMDP,q′,s′,z′ . Therefore

Q̂n :=


0 if

∣∣∣∣∣
∑n
k=0 Ak·

(
1{Sk=s1,Sk+1=s1}−0.5

)
n+1

∣∣∣∣∣ > 1
4

artanh

(
4

∑n
k=0 Ak·

(
1{Sk=s1,Sk+1=s1}−0.5

)
n+1

)
else

(4.34)

is a consistent estimator. Now consider the adapted policy sequence

Zk :=

{
+1 if Sk = s1

−1 else

Then Sk is still Markovian but with transition matrix

K̂ ′n :=

(
1
2 (1 + tanh (q′)) 1

2 (1− tanh (q′))
1
2 (1 + tanh (q′)) 1

2 (1− tanh (q′))

)
(4.35)

such that the stationary distribution becomes
(

1
2 (1 + tanh (q′)) , 1

2 (1− tanh (q′))
)

and a
repetition of the former calculations yields

lim
n→∞

Q̂n =

{
artanh [tanh(q′) (1 + tanh(q′))] if |tanh(q′) (1 + tanh(q′))| ≤ 1

0 else
(4.36)

almost surely with respect to Pq′,s′,Z , such that
(
Q̂n

)
n∈N0

is not strongly consistent.

Since every learning algorithm results in an adapted sequence of policy parameters, we get:

Chapter 4



123 Stochastic learning algorithms on causal models

Corrolary 4.2.1 - (Consistent estimators and learning algorithms)

Let C := (Q,Z,S,A,X, px, T,Π) be a causal model and let Q̂n be a strongly consistent
Q-estimator (according to Assumption 4.2.2). Let (M, L, U) be a learning algorithm over
C (compare Definition 3.1.2) then:

lim
n→∞

Q̂n = q′ a.s. w.r.t. Pq′,s′,m′ (4.37)

for every q′ ∈ Q, s′ ∈ S and m′ ∈M.

Last but not least we require the objective function to satisfy the following regularity prop-
erties:

Assumption 4.2.3 - (Regularity of objective function)

Let C := (Q,Z,S,A,X, px, T,Π) be a Markov decision process and assume that
Assumption 4.2.1 holds. Let

φ : Q×Rn → R (4.38)

be a function. We assume:

I Assumption 4.2.3.1: For every q ∈ Q the function φq : z 7→ φ(q, z) is continuously
differentiable in a neighborhood of Z. We further assume that the function φq restricted to
Z has a negligible set of critical values (compare Definition 2.4.3).
I Assumption 4.2.3.2: The function q 7→ D2φ(q, z) is continuous uniformly in z over Z.
By this we mean that for fixed q ∈ Q and any ε > 0 there exist δ > 0 such that:

sup
{∣∣D2φ(q′, z)−D2φ(q, z)

∣∣ |z ∈ Z
}
< ε whenever

∥∥q′ − q∥∥ < δ (4.39)

Consider the following algorithm:

Algorithm 4.2.1 - (Gradient ascent on general MDP)

I Free parameters:

• Two ascent decay parameters, c ∈ R+ and α, satisfying 1
2 < α ≤ 1.

• An essentially Lipschitz continuous quasi-projector, Pr, ofRn onto Q (compare Def-
inition 2.3.1)

• A (set-valued) metric G on Z that is compatible with the quasi-projection, Pr, (com-
pare Definition 2.3.1) and selection rules λn, i.e. a F-adapted process with values in
bil (Rn) such that:

λn ∈ G (Zn) (4.40)

I Variables and initializations:

• An Estimator for the parameter q′ ∈ Q: Q̂ ∈ Q.

• Current policy: ẑ ∈ Rn; ẑ ← z0 for some z0 ∈ Z

• Current metric g ∈ bil (Rn)

• A step counter: t ∈ N0, t← 0
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.
I Algorithm:

repeat this:
Q̂← Q̂t
g ← λt

ẑ ← Pr
[
ẑ + c

(t+1)α∇g,2φ
(
Q̂, ẑ

)]
t← t+ 1

forever

Now we are able to formulate and prove the second main theorem of this section:

Theorem 4.2.1 - (Convergence of Algorithm 4.2.1)

Assume that Assumption 4.2.1, Assumption 4.2.2 and Assumption 4.2.3 are satisfied. Con-
sider the algorithm Algorithm 4.2.1. Then the iterative sequence (ẑn)n∈N converges to the
set of first order optimal points of φq:

S∗,q := {z ∈ Z |D2φ (q, z) ∈ NZ(z)} , (4.41)

almost surely with respect to Pq,s0,m0 (definition: see Definition 3.1.2) for every q ∈ Q and
s0 ∈ S.

Proof. Write
∇g,2φ(q̂, ẑ) := ∇g,2φ(q, ẑ) + βk (4.42)

with
βk = ∇g,2φ(q̂, ẑ)−∇g,2φ(q, ẑ) (4.43)

By Assumption 4.2.2 and Corrolary 4.2.1 the sequence (βk)k∈N converges to zero almost
surely. Therefore the result follows immediately from Theorem 2.4.3.
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4.3 Example: Linear dynamic with Gaussian noise

In this section we apply Algorithm 4.2.1 to a linear Gaussian dynamic. The underlying prob-
lem and the algorithm extends the ideas from Ay et al. [16] to a dynamic that includes learn-
ing of the system parameters. Assume that the sensor process takes on values in RMand
fix some norm, ‖·‖ on RM . In this section we identify the dual space, RM,∗, of RM with
RM (via the Euclidean Riesz isomorphism). Denote the dual norm by ‖·‖∗ (usually ‖·‖ and
‖·‖∗ are either equal to the standard Euclidean norm or ‖·‖ is the 1−norm and ‖·‖∗ is the
maximum norm. The former choice is compatible with the standard scalar product, where
the later one is often computationally easier to handle). Assume further that the action pro-
cess takes on values inRN . We use the same symbol to denote a norm on the action space,
since it is always clear from the context, which norm is meant. Usually the dimension of
the action space, N , is much lower than the dimension of the sensor space, M .

Consider the following dynamic for the sensor values, Sn, taking on values inRM :

Sn+1 = RAn +Nn ; S0 := s0 (4.44)

where Nn are IID random variables having Gaussian distribution with zero mean and (un-
known) covariance matrix Σ,

R ∈
{
X ∈ RM×N

∣∣∣‖X‖Op < 1
}

is a fixed (but also unknown) matrix where we defined

‖R‖Op := sup
{
λTRx

∣∣λ ∈ RM ; ‖λ‖∗ = 1 ; x ∈ RN ; ‖x‖ = 1
}

(4.45)

We assume further that the actions depend linearly on the current sensor value, i.e.

An = CnSn + εYn (4.46)

where
Cn ∈

{
X ∈ RN×M

∣∣∣‖X‖Op ≤ 1
}

(4.47)

is a sequence of policy matrices and εYn is a regularization term forcing the agent to explore
the entire action space. We assume (Yn)n∈N0

to be a sequence of IID random variables, in-
dependent from (Nk)k∈N0

with M -dimensional standard Gaussian distribution.

Algorithm 4.2.1 can be used to optimize a functional of the policy matrix, C ∈ RN×M

and the unknown system parameters, R and Σ with respect to C. In Eq. 4.60 we show how
the stationary distribution of a stationary policy process can be calculated from the policy
matrix and the system parameters.
Finally we will present an algorithm that converges to the set of first-order optimal points
almost surely for every pair of admissible system parameters. The following list summarizes
our assumptions on the underlying Markov decision process:

Assumption 4.3.1 - (Assumptions on linear Gaussian MDP)

Let C := (Q,Z,S,A,X, px, T,Π) be a Markov decision process. We assume
I Assumption 4.3.1.1: S = RM and A = RN

I Assumption 4.3.1.2: X = RM , px is the standard Gaussian distribution in M dimen-
sions.
I Assumption 4.3.1.3:

Q = R×N
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where
R =

{
X ∈ RM×N ‖X‖Op < 1

}
(4.48)

and
N =

{
X ∈ RM×M ∣∣X = XT > 0

}
(4.49)

I Assumption 4.3.1.4:

Z =
{
X ∈ RN×M

∣∣∣‖X‖Op ≤ 1
}

I Assumption 4.3.1.5:
Π (s, x, z) := zs+ εx (4.50)

and for every A ∈ BRM :

T ((s, a, (R,Σ)) , A) =

∫
RM

1A(x)ρRa,Σ(x)dνLeb(x) (4.51)

where

ρµ,Σ(x) =
1

√
2π

N
exp

(
−(x− µ)T Σ−1 (x− µ)

2

)
(4.52)

denotes the Gaussian density.

Remark 4.3.1 - (Comment on definition Assumption 4.3.1)

Here it is more convenient to model the dynamic on the measurable space spanned by the
values of the sensor noise sequence, (Nk)k∈N0

, and the values of the policy noise, (Yk)k∈N0

(compare Eq. 4.44 and Eq. 4.46). This is possible by Definition 1.2.5, Lemma 1.2.4 and by
the observation that all other process values depend deterministically on the noise variables
and former process values. So we assume

(Ω,F) :=

(
R
MN0 ×RNN0

, (⊗n∈N0BRM )⊗n∈N0 BRN
)

Therefore the measure of the open-loop dynamic (i.e. the MDP without learning), P(R,Σ),s0,z

where (R,Σ) ∈ Q, s0 ∈ S and z ∈ ZN0 (compare Remark 4.2.1 and Definition 4.2.2), is in-
terpreted as a measure onF in this section. The same holds true for the measure P(R,Σ),s0,Z

(compare Remark 4.2.1) where again (R,Σ) ∈ Q, s0 ∈ S and Z is a policy process with
values in Z that is adapted to the filtration

F0 := {∅,Ω} and Fn := σ(Nk, Yk)0≤k<n for n ≥ 1

Since the processes (Sn)n∈N0
and (An)n∈N0

are F-adapted, any policy sequence adapted
to the process (Sn, An)n∈N0

is automatically F-adapted.

We will give a short overview about the open-loop dynamic (i.e. the dynamic that results
from the MDP without learning, with a fixed policy sequence C ∈ ZN0).

Remark 4.3.2 - (Discussion of the open-loop dynamic of a linear Gaussian MDP)

Let P be the distribution of the noise variables (Nk)k∈N0 and (Yk)k∈N0 . Then the distribu-
tion of the n−th sensor value, Sn,∗P , is Gaussian with mean:

µn =

(
n−1∏
k=0

RCk

)
s0, (4.53)
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where the multiplication always starts with the lowest index on the rightmost position and
the highest index on the leftmost position. Since we assumed ‖R‖Op < 1 and ‖Cn‖Op ≤ 1,
the expectation value of the n−th sensor value, µn, converges to zero exponentially fast as
n approaches infinity with the estimate:

‖µn‖ ≤ ‖s0‖ · ‖R‖Op
n (4.54)

The covariance matrix of S1 is
Σ1 := Σ + ε2RRT (4.55)

and the covariance matrix of Sn for n ≥ 2 is

Σn := Σ + ε2RRT +

n−1∑
k=1

 k∏
j=1

RCj

(Σ + ε2RRT
) k∏

j=1

RCj

T

(4.56)

Therefore the covariance matrices of the sensor values are uniformly bounded by:

‖Σn‖Op,* ≤

∥∥Σ + ε2RRT
∥∥

Op,∗

1− ‖R‖Op
2 (4.57)

where we wrote

‖A‖Op,* := sup
{
λTAv

∣∣λ, v ∈ RM ; ‖λ‖∗ = ‖v‖∗ = 1
}

(4.58)

One consequence is that the family of Gaussian measures is exponentially tight (compare
König [104], Dembo and Zeitouni [62], Hollander [88]), i.e. for every L ∈ R≥0 there
exists a compact set K ⊂ RM such that

lim sup
n→∞

1

n
lnP

[
Sn ∈ RM \K

]
≤ −L (4.59)

If Cn ≡ C then the distribution Sn,∗P , converges 1 to the unique invariant distribution,
P∞, that is Gaussian with mean zero and covariance matrix:

Σ∞ :=
∞∑
k=0

(RC)k
(
Σ + ε2RRT

) (
CTRT

)k
(4.60)

In order to apply Algorithm 4.2.1 to the Gaussian Markov decision process, a strongly
consistent estimator for R and σ is needed:

Lemma 4.3.1 - (Strongly consistent estimators for the linear Gaussian MDP)

Let C := (Q,Z,S,A,X, px, T,Π) be a Markov decision process satisfying
Assumption 4.3.1. Then

I Lemma 4.3.1.1: The matrix

Mn :=
1

n

n−1∑
k=0

AkAk
T (4.61)

is invertible almost surely for sufficiently large n (even the stronger statement lim supn→∞
∥∥Mn

−1
∥∥ ≤

1
ε2

holds true almost surely.).
I Lemma 4.3.1.2: Moreover

R̂n :=

(
1

n

n−1∑
k=0

Sk+1Ak
T

)
Mn
−1 (4.62)

1weakly, strongly, in KL-divergence and in total variation norm
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is a strongly consistent estimator for R and

Σ̂n :=
1

n

n−1∑
k=0

Sk+1Sk+1
T − R̂nMnR̂

T
n (4.63)

is a strongly consistent estimator for Σ.

Before starting a formal proof, we prove a simple but important bound on the moments of
the sensor and action values valid for an arbitrary adapted policy process:

Lemma 4.3.2 - (Bounds on moments of sensor and action values for closed loop
dynamic)

LetF be the filtration of Remark 4.3.1 and assume thatC := (Cn)n∈N0
is aF-adapted pro-

cess. Under the law P(R,Σ),s0,C (compare Remark 4.2.1, Definition 4.2.2 and Remark 4.3.1)
for any p > 0 there exist some constants c ∈ R>0 (depending on p, ε, the dimension of the
action space, M , the dimension of the sensor space, N and the covariance matrix, Σ) such
that:

E(R,Σ),s0,C [‖Sn‖p]
1
p ≤ ‖s0‖+

c

1− ‖R‖Op
(4.64)

and there exists a constant c2 > r (depending on p, ε and N ) such that

E(R,Σ),s0,C [‖An‖p]
1
p ≤ ‖s0‖+

c

1− ‖R‖Op
+ c2 (4.65)

Proof of Lemma 4.3.2. Note that for any sequence of positive real numbers (αn)n∈N0
, for

0 ≤ r < 1 and c ∈ R>0 satisfying the identity

αn+1 ≤ rαn + c

the following estimate holds true:

αn ≤ rnα0 +
1− rn

1− r
c ≤ α0 +

c

1− r
(4.66)

Inserting Eq. 4.46 into Eq. 4.44 and using ‖Cn‖Op ≤ 1 together with Minkowski’s inequal-
ity gives:

E [‖Sn+1‖p]
1
p ≤ ‖R‖Op E [‖Sn‖p]

1
p + ε ‖R‖Op E [‖Yn‖p]

1
p + E [‖Nn‖p]

1
p (4.67)

Setting
αn := E [‖Sn‖p]

1
p , r := ‖R‖Op

and
c := ε ‖R‖Op E [‖Yn‖p]

1
p + E [‖Nn‖p]

1
p

in Eq. 4.66 gives the desired estimate for the p-th moment of Sn. The bound for An follows
from the bound on the Moment of Sn, ‖Cn‖Op ≤ 1 and the definition of An (see 4.46). A
good upper bound for the constants c and c2 (that also justifies the claim about the depen-
dencies on on ε, N , M and p) follows from Appendix Lemma 6.0.7.

Proof of Lemma 4.3.1. Mn can be rewritten as (compare: Eq. 4.46):

Mn = Mn,1 +Mn,2 +Mn,2
T (4.68)

where

Mn,1 :=
1

n

n−1∑
k=0

(
CkSkSk

TCk
T + ε2YkYk

T
)

(4.69)
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and

Mn,2 :=
ε

n

n−1∑
k=0

CkSkYk
T (4.70)

By our independence assumption on the noise variables and since we assumed C to be
F-adapted,

(
CnSnYn

T
)
n∈N0

is a F-martingale. By Lemma 4.3.2 all moments of this se-
quence are uniformly bounded. Therefore the law of large numbers (compare Lemma 6.0.4)
implies:

lim
n→∞

Mn,2 = 0 a.s. (4.71)

The law of large numbers implies that

lim
n→∞

1

n

n−1∑
k=0

ε2YkYk
T = ε21 (4.72)

and
1

n

n−1∑
k=0

(
CkSkSk

TCk
T
)

(4.73)

is a positive matrix for any policy sequence. Therefore Mn − ε21 is a positive matrix and
Mn is invertible for suffiently large n with the estimate

lim sup
n→∞

∥∥Mn
−1
∥∥

Op ≤
1

ε2
(4.74)

Multiplying Eq. 4.44 with AnT from the right, relabeling and summing up gives:

1

n

n−1∑
k=0

Sk+1Ak
T = RMn +

1

n

n−1∑
k=0

NkAk
T (4.75)

The last summand converges to zero by the law of large numbers and Lemma 4.3.2 again
such that:

lim
n→∞

R̂n = R a.s. (4.76)

Inserting Eq. 4.44 into the definition of the estimator for the covariance matrix, Eq. 4.63,
gives:

Σ̂n =
1

n

n−1∑
k=0

(
RAkAk

TRT − R̂nAkAkT R̂Tn
)

+
1

n

n−1∑
k=0

NkNk
T +

+
1

n

n−1∑
k=0

(
RAkNk

T +NkAk
TRT

)
(4.77)

The convergence of R̂n to R and the law of large numbers yields

lim
n→∞

Σ̂n = Σ a.s. (4.78)

Beside the estimator for the system variables, a quasi-projector onto the unit ball in operator
norm and a compatible metric are needed (compare Theorem 2.4.3). As already indicated
in section 2.3 an appropriate choice is the retraction onto the unit ball:

A 7→ min

{
1,

1

‖A‖Op

}
A (4.79)
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where we set 1/0 :=∞ for convenience. As already stressed out in 2.3 a compatible metric
is:

g(λ,v)
A (X,Y ) :=

(
λTXv

) (
λTY v

)
+Tr

(X − Tr
[
XTA

]
Tr (ATA)

A

)T (
Y −

Tr
[
Y TA

]
Tr (ATA)

A

)
(4.80)

where λ ∈ RN with ‖λ‖∗ = 1 and v ∈ RN with ‖v‖ = 1 such that λ (Av) = ‖A‖Op. We
will provide a convenient formula for the gradient of some function φ : RN×N → R with
respect to the metric g(λ,v)

A. Generally the calculation of a gradient requires the inversion
of the metric tensor, which is a N2 × N2 matrix here. However the special structure of
the metric allows a reduction of the problem to two dimensions and can therefore be solved
much easier. We will write

〈X,Y 〉 = Tr
(
XTY

)
(4.81)

for the Euclidean scalar product and

∇φ(x) where∇φ(x)i,j :=
∂φ

∂xi,j
(x) (4.82)

for the Euclidean gradient. The metric g can be expressed by the Euclidean scalar product
as

g(λ,v)
A (X,Y ) := 〈X,Y 〉+ 〈v1, X〉 〈v1, Y 〉 − 〈v2, X〉 〈v2, Y 〉 (4.83)

where
v1 := λvT and v2 :=

A√
Tr (AAT )

(4.84)

Therefore the definition of the gradient,∇gφ, with respect to g(λ,v)
A can be rewritten in the

form:

〈∇φ(x), Y 〉 = 〈(∇gφ(x) + 〈v1,∇gφ(x)〉 v1 − 〈v2,∇gφ(x)〉 v2) , Y 〉 (4.85)

for every Y ∈ RN×N . Since the Euclidean scalar product is positive definite, Eq. 4.82
implies

∇φ(x) = ∇gφ(x) + 〈v1,∇gφ(x)〉 v1 − 〈v2,∇gφ(x)〉 v2 (4.86)

Let P denote the othorgonal projector of RN×N onto the linear span of v1 and v2 (we will
provide an explicit formula for P immediately after illustrating the main idea). Then

∇gφ(x) = P [∇gφ(x)] + (1− P ) [∇gφ(x)] and (1− P ) [∇gφ(x)] = (1− P ) [∇φ(x)]
(4.87)

The remaining problem is to find P [∇gφ(x)]. Expanding P [∇φ(x)] and P [∇φg(x)] into
the basis v1, v2 (the case that v1 and v2 are linearly dependent has to be treated separately)
gives a linear system of dimension two that can be solved in closed form easily. The result
is:

Lemma 4.3.3 - (Gradients with respect to the metric g(λ,v)
A)

Let φ : RN×N → R be continuously differentiable and assume A, v, λ to be the corre-
sponding parameters of g(λ,v)

A. If

v1 := λvT and v2 :=
A√

Tr (AAT )
, (4.88)

are linearly independent, set

P [x] := 〈w1,∗, x〉w1 + 〈w2,∗, x〉w2 (4.89)
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where

〈v1,∗, x〉 =
Tr
(
ATA

) (
λTxv

)
− ‖A‖Op Tr

(
ATx

)
(λTλ) (vT v) (Tr (ATA))− ‖A‖2Op

(4.90)

and

〈v2,∗, x〉 =
√

Tr (ATA)

(
λTλ

) (
vT v

)
Tr
(
ATx

)
− ‖A‖Op

(
λTxv

)
(λTλ) (vT v) (Tr (ATA))− ‖A‖2Op

(4.91)

In this case

∇gφ(x) = ∇φ(x)− P [∇φ(x)]− 〈v2,∗,∇φ(x)〉
‖A‖Op

v1 +
〈v1,∗,∇φ(x)〉
‖A‖Op

v2 +

+

(
1 +

(
λTλ

)
(vT v)

)
〈v2,∗,∇φ(x)〉

‖A‖2Op

v2

If v1 and v2 are linearly dependent then necessarily v1 = ‖A‖Op v2 and

∇gφ(x) = ∇φ(x) +

(
1

‖A‖2Op

− 1

Tr (ATA)

)
A

With this formula we finish our example on a linear dynamic with Gaussian noise. For an
implementation of the algorithm one has to modify the metric, since g(λ,v)

A is not defined at
the origin. A possible way to modify the metric is shown in Eq. 2.57 of section2.3. Another
simple choice is:

gA :=

{
〈·, ·〉 if ‖A‖Op ≤

1
2

g(λ,v)
A else

(4.92)

We choose the Gaussian dynamics as an example, because it is rather simple. The open loop
dynamic is Gaussian, it is very easy to provide analytic expressions for the estimators, and
the invariant distribution for a fixed stationary policy for example. However the algorithm
presented in the former section works in more involved cases too.

The projected gradient ascent on the unit ball of matrices equipped with some operator
norm is not bounded to the linear Gaussian dynamic of course. The idea to use quasi-
projectors different from the best approximation with respect to Euclidean distance and to
compensate for the error by using some adapted, non-Euclidean metric is essentially new to
our knowledge.
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Chapter 5

Outlook

In the first chapter we defined causal models over recursively constructible graphs and in-
vestigated their probabilistic properties. We think that these models together with the op-
timization algorithms introduced in Chapter 2 provide a powerfull tool for the formulation
and investigation of (multi-agent) learning algorithms. We applied these methods to agents
interacting with an MDP via the sensorimotor loop. There are plenty of other problems that
fit into this context, including

• Partially observable Markov decision processes (POMDP)
What changes if the sensor values form a hidden Markov process? It is clear how to
describe the dynamics by a causal graph but the formulation of reasonable objective
functions becomes more difficult. In this work we focused on objective functions that
depend on the fixed-policy sensor process, i.e. on the the transition kernel k ∈ ΛS

S×A
and the initial distribution (or a stationary distribution for the sensor process). This is
a bad approach for hidden markov model, since the transition probabilities:

P [Sn+1 ∈ · |Sn, An ]

vary with n ∈ N. For the Markov model it is reasonable to assume that there exists a
consistent estimator for the world parameter, Q. Whenever there are hidden notes in
the model this assumption can be expected to be false. In the case of hidden notes a
theoretically convenient quantity that can be estimated from the data is the conditional
expectation of Q given all the accessible vertices. There are two ways to approach
learning in models with hidden notes: Either one can optimize a target function given
the observable data, a route which naturally leads to stochastic filtering theory or one
can develop an optimization algorithm in a Markovian setup, apply it to the hidden
Markovian model and investigate its behavior. In the later case the algoithm is more
a behavorial heuristic then a propper optimization algorithm. However computer
simulations show that the finite-state space model from Chapter 4 perform very well
in a controlled POMDP setup (article in preparation, also see: list of publications).
Interestingly enough the Fisher gradient gives much better results in this case. This is
in accordance with findings from Amari (Amari [3] and Amari and Douglas [4]) and
Ay, Montúfar, and Rauh [12].

• Multi-agent problems The technics also allow a treatment of systems with several
agents who optimize their individual target functions while improving their estimates
of the system parameters in the course of time. The prerequisite is a propper under-
standing of the limiting ODE (compare Theorem 2.4.1).

Beside an investigation of specific learning dynamics it is also interesting to answer fun-
damental questions about the agent-environment system, especially which limitations for
learning originate from the dynamic (a very simple, example is Theorem 3.3.1).
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In this work we did not apply the theory to state spaces with infinite vector spaces. The
setup introduced here can also be used to describe bang control (i.e. a control at discrete
time points) of (stochastic) partial differential equations for example. This is another inter-
esting direction for future research.
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Chapter 6

Appendix

A.1 - Probability theory
In the first section of the appendix we will list some important concepts and theorems from
measure theoretic probability theory. The purpose of this section is mainly to introduce
concepts and notation that are used frequently in the main text. A detailed explanation
with essential proofs can be found in any good text book on measure theoretic probability
(see for example Kallenberg [99], Bauer [22], König [105]). In A.1.2 we will list some
important probabilistic inequalities that we need during the excursion. Last but not least
we will provide a very condensed summary of theoretical results about finite state space
Markov processes including perturbation theory in the case of finite state spaces. These
results are important for the convergence proofs in Chapter 4.

A.1.1 - Basic concepts
Let (Ω,F) be a measurable space, i.e. a set, Ω together with a σ-algebra, F ⊆ 2Ω, of
events. The set of probability measures on F will be denoted by M1 (F). A probability
space is a triplet (Ω,F , P ) where (Ω,F) is a measurable space and P ∈M1 (F).

Let (X,FX) be a measurable space. A X-valued random variable is a F /FX measurable
map:

φ : Ω→ X (6.1)

The distribution of X is the measure P∗X , defined by

P∗X [A] := P
[
φ−1 [A]

]
for every A ∈ FX (6.2)

Frequently the set X carries a natural topology, Σ, (i.e. finite or countable infinite sets
are usually equipped with the discrete topology, R is usually equipped with the standard
topology generated by open intervals). Then usually F is the Borel σ-algebra of Σ. In
this case we will frequently denote the σ-algebra by B instead of F . The standard Borel
σ−algebra on RN will be denoted by BRN . Throughout this thesis we mainly use the
notation used in probability theory. So for a X-valued random variables φ and A ∈ FX we
use the abbreviation

{φ ∈ A} := {ω ∈ Ω |φ(ω) ∈ A}

for example. If ψ is a measurable map from (X,FX) to (Y,FY ) we will write ψ(φ) for
the concatenation (instead of ψ ◦φ what is used in most analysis text books). For a positive,
(extended) real-valued random variable, X we will write either E [X] or

∫
ΩX(ω)P (dω) =∫

R
x(X∗P )(dx) for its expectation. Sometimes we will also write EP [X] if we want to

highlight the dependence of the expectation on the measure P . As usual we define:

L1(dP ) =
{
f : Ω→ R

∣∣f is F/B
R

measurable ; EP [|f |] <∞
}

(6.3)

and L1(dP ) = L1(dP )/NP where NP := {f ∈ L1(dP ) |EP [|f |] = 0} is the ideal of
random variables that vanish P -almost surely. As usual we will simply write φ ∈ L1(dP )



Stochastic learning algorithms on causal models 136

for some φ ∈ L1(dP ) instead of writing [φ] ∈ L1(dP ) or φ+NP ∈ L1(dP ). The positive
part of a real-valued random variable, X , will be denoted by X+ and the negative part by
X−.

Let G ⊆ F be a sub σ-algebra and let X be a F /B
R

measurable random variable. Assume
that either X+ ∈ L1(dP ) or X− ∈ L1(dP ). A F /B

R
-measurable random variable, Y , will

be called a version of the conditional expectation of X given G, if

1.
Y is G/B

R
measurable ; and (6.4)

2.
E [X1A] = E [Y 1A] for every A ∈ G (6.5)

This relation defines Y uniquely almost everywhere w.r.t. P 1. We will write E [X |G ] for
any random variable, Y , satisfying Eq. 6.4 and Eq. 6.5.

Since many text books define conditional expectations for random variables X ∈ L1(dP )
only we sketch an existence proof here. Define the two measures dµ+ := X+dP and
dµ− := X−dP on F . Both are absolutely continuous with respect to P (i.e. P (A) = 0
implies µ+(A) = 0 and µ−(A) = 0). Hence µ+ |G and µ− |G are absolutely continuous
with respect to the finite measure P |G . Hence the Radon-Nikodym derivatives dµ+|G

dP |G and
dµ−|G
dP |G exist. A version of the conditional expectation is

E [X |G ] :=
dµ+ |G
dP |G

− dµ− |G
dP |G

,

then this expression is shown to satisfy Eq. 6.4 and Eq. 6.5. To show uniqueness consider
two versions of the conditional expectation ofX given G, Y1 and Y2. SinceA := {Y1 < Y2}
is G−measurable, the defining identity of the conditional expectation yields:

E [X1A] = E [Y11A] = E [Y21A]

or E [(Y2 − Y1)1A] = 0. Since Y2 − Y1 > 0 on A this implies P ({Y1 < Y2}) = 0. Ex-
changing the roles of Y1 and Y2 yields P [{Y1 6= Y2}] = 0.

As common in probability theory we will simply write E [X |Y ] for E [X |σ{Y } ], where
σ{Y } denotes the σ-algebra generated by Y . Moreover we will write P [A |F ] instead of
E [1A |F ]. So the expressionP [{X ∈ A} |G ] = ξ(Y ) a.s. stands forE

[
1{X∈A} |G

]
(ω) =

ξ(Y (ω)) for every ω ∈ Ω \N for some N ∈ G with P (N) = 0.

We will consider time-discrete algorithms so we assume that all processes are indexed by
natural numbers. A family of sub σ−algebras Ft ⊆ F will be called filtration if Fs ⊆ Ft
whenever s ≤ t. We will usually denote filtrations by math-style double-barred letters, for
example F := (Ft)t∈N. A filtered probability space is a four-tuple (Ω,F , P,F) where
(Ω,F , P ) is a probability space and F is a filtration of F .

Let (Ω,F , P,F) be a filtered probability space and letX = (Xt)t∈N be a stochastic process
over the probability space (Ω,F , P ), taking on values in some measurable space (X,FX).
By this we mean that every Xt is a F /FX measurable random variable. X will be called
F-adapted if Xt is Ft/FX -measurable for every t ∈ N.
An adapted process X on the filtered probability space (Ω,F , P,F) is called Markov pro-
cess with respect to F, if for almost every ω ∈ Ω:

P [Xt ∈ A |Fs ] (ω) = P [Xt ∈ A |Xs ] (ω) whenever s ≤ t and A ∈ FX . (6.6)

1Note that “almost everywhere” means up to changes on null-sets in G here. Sometimes it is required
explicitly that G contains all P -null sets of F . In this case there is no difference between “up to null-sets” in G
and “up to null-sets” in F .
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Let (X,FX) and (Y,FY ) be two measurable sets. A probability kernel (often also referred
to as Markov kernel) is a map:

K : X×FY → [0, 1]

such that K(·, A) is FX /B[0,1] measurable for every A ∈ FY and such that K (x, ·) is a
probability measure for every x ∈ X. The set of probability kernels from some measurable
space (X,FX) to another measurable space (Y,FY ) will be denoted by ΛY

X. If we want
to emphasize the dependence on the σ-algebras on X and/or Y we will also write Λ

(Y,FY )
(X,FX),

ΛY
(X,FX) or Λ

(Y,FY )
X . In the case of finite sets we will not distinguish conceptually between

kernels and the associated stochastic matrices.

Let X = (Xt)t∈N0
be an adapted, real-valued process over the filtered probability space

(Ω,F , P,F). Then X is called F-martingale if:

E [Xt |Fs ] = Xs a.s. whenever s ≤ t (6.7)

AnRn-valued random variable Xt is a martingale if Eq.6.7 holds component-wise.

Let X be a stochastic process over some probability space (Ω,F , P ) with values in Rn

(more generally the state space could be any other topological space) and let x ∈ Rn. Then
X converges almost surely to x, if

lim
n→∞

Xn(ω) = x for P -almost all ω ∈ Ω (6.8)

A.1.2 - Some important theorems and inequalities from probability theory
We will need a simple version of the law of large numbers for martingale difference se-
quences (which is a partial result of Stoica [175] theorem 1, see also Rosalsky and Stoica
[156], Stoica [176], Wang et al. [191] and Lagodowski and Rychlik [111]):

Lemma 6.0.4 - (Law of large numbers for martingale difference sequences)

Let Xn be a real-valued martingale difference sequence with

lim sup
n→∞

E [|Xn|p] <∞ (6.9)

for some p > 1. Then

lim
n→∞

∑
1≤k≤nXk

n
= 0 a.s. (6.10)

Another well-known and important theorem about almost sure convergence is the Borel-
Cantelli lemma (compare Kallenberg [99], Bauer [22], König [105]):

Lemma 6.0.5 - (Borel-Cantelli lemma)

I Lemma 6.0.5.1: Let (Ω,F , P ) be a probability space and let An ∈ F for every n ∈ N.
Assume that ∑

n∈N
P [An] <∞

then the probability to be in infinitely many events, An is zero:

P [∩n≥1 ∪k≥n An] = 0
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I Lemma 6.0.5.2: Let X be a (time-discrete) Rn-valued stochastic process over some
probability space, (Ω,F , P ). Assume that for some x ∈ Rn:∑

n∈N
P [|Xn − x| ≥ ε] <∞ for every ε > 0 (6.11)

Then
Xn → x a.s. (6.12)

We also need some well-known inequalities:

Lemma 6.0.6 - (Some probabilistic inequalities)

Let (Ω,F , P ) be a probability space and let X : Ω→ R be a F /BR-measurable random
variable.

I Lemma 6.0.6.1: If X is non-negative and y > 0 then Markov’s inequality holds

P [X ≥ y] ≤ E [X]

y
(6.13)

I Lemma 6.0.6.2: Let X ∈ L1(dP ) and g : R → R be a convex function, then the
Jensen’s inequality holds true:

g (E [X]) ≤ E [g (X)] (6.14)

with equality if and only if g(X) = a (X − E [X]) + g (E [X]) a.s. for some a ∈ R
Whenever g is strictly convex equality in Jensen’s inequality occurs if and only if X is
almost surely constant.

(6.15)

A simple but important consequence of Markov’s inequality is an exponential decay of the
tail probabilities whenever the characteristic function

φ(t) := E [exp (tX)]

of some real-valued random variable X exists in a neighborhood of zero:

P [X ≥ a] ≤ E [exp (tX)]

exp (ta)
(6.16)

for every a > 0. An optimization over t gives:

lnP [X ≥ a] ≤ −L [lnφ] (a) (6.17)

where
L [f ] (y) := sup {yx− f(x) |x ∈ R} (6.18)

is the Legendre transform. This is actually the essential estimate in the upper bound of
Cramer’s theorem in large deviation theory (compare König [104], Dembo and Zeitouni
[62], Hollander [88], Freı̆dlin and Wentzell [73]) and possesses important extensions from
R to locally convex Hausdorff topological vector spaces. We need this estimate for our
proof of Lemma 4.1.1 and Lemma 4.1.2.

In section 4.3 of Chapter 4 we need some estimates for the centered moments of multidi-
mensional Gaussian distributions:
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Lemma 6.0.7 - (Bounds on centered moments of a Gaussian distribution)

I Lemma 6.0.7.1: Let X be a M -dimensional Gaussian random variable with mean µ
and covariance Σ. Then for any k > −M

E
[
(‖X − µ‖2)k

]
≤
√

2
k ·

(√
‖Σ‖Op,2

)k+M

√
det (Σ)

·
Γ
(
k+M

2

)
Γ
(
M
2

) (6.19)

≤
√

2
k ·
(√
‖Σ‖Op,2

)k
·
(√
‖Σ‖Op,2 ‖Σ−1‖Op,2

)M
·

Γ
(
k+M

2

)
Γ
(
M
2

)
where

Γ(z) :=

∫ ∞
0

xz−1 exp(−x)dx (6.20)

is the well-known Γ−function and

‖A‖Op,2 = sup
{√

xTAATx
∣∣x ∈ RM ; ‖x‖2 = 1

}
(6.21)

is the operator norm with respect to the Euclidean norm.

Proof. The expression to be estimated is

E
[
(‖X − µ‖2)k

]
=

1√
det (Σ)

√
2π

M

∫
RM

‖x‖k exp

(
−x

TΣ−1x

2

)
dνLeb.(x) (6.22)

The exponential factor in the integrand can be upper bounded by

exp

(
−x

TΣ−1x

2

)
≤ exp

(
− 1

‖Σ‖Op,2

xTx

2

)
The calculation of the remaining integral is an exercise in elementary calculus. Observing
the spherical symmetry of the integrand, the formula∫

RM

φ(‖x‖)dνLeb.(x) = AM

∫ ∞
0

φ(r)rM−1dr, (6.23)

where

AM :=
2
√
π
M

Γ
(
M
2

) (6.24)

is the volume of the 1−sphere of dimensionM−1, reduces the integral to a one dimensional
one. Finally the substitution z := r2

2‖Σ‖Op,2
brings the integral into the defining integral of

the Γ−function. The second claim in the statement follows from the estimate

detA ≥
(

1

‖A−1‖

)M
(6.25)

valid for every strictly positive matrix, A. The proof shows that both inequalities are equal-
ities whenever Σ is a multiple of the identity matrix.

A.1.3 - Essentials on the ergodic theory of Markov chains
A Markov chain can be defined as a special recursively constructible causal model (com-
pare Chapter 1, especially Example 1.4.2). In this section we focus on ergodic properties of
time-homogeneous Markov chains. We are mainly interested in finite state spaces but also
mention important results for general state spaces. This might be useful to generalize the
algorithms discussed in section 4. The definition of ergodicity is used slightly different in
the literature about ergodic theory and the literature on Markov chains. We mainly adapt
the notation and definitions from the survey article of Diaz-Espinosa [64].
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Definition 6.0.1 - (Markov chains)

A general state space, time homogeneous Markov chain is a pair ((S,FS) ,K) where

• (S,FS) is a measurable space

• K ∈ ΛS
S is a probability kernel, the transition kernel.

let ((S,FS) ,K) be a Markov chain. For every initial probability law µ ∈ M1 (FS) there
exists exactly one process law Pµ on (S∞,⊗∞FS) that is compatible with the probabilistic
structure of the chain, i.e.

• Pµ ({π0 ∈ A}) = µ(A) for every A ∈ FS

• Pµ [{πn+1 ∈ A} |πn = s, (πk)k<n ] = K(s,A) a.s.
for all n ∈ N, A ∈ FS and s ∈ S.

This can be seen as a special case of Theorem 1.2.1. Intuitively K(s,A) describes the
probability of landing in A ∈ FS in the next step if the current state is s ∈ S. Every kernel
acts in a natural way on bounded, measurable functions via

(Kφ) (s) :=

∫
S
K
(
s, ds′

)
φ(s′) (6.26)

the probabilistic interpretation is the following: For any Markov process with transition
kernel K:

E [φ(πn+1) |π0, . . . πn ] = (Kφ) (πn) a.s. (6.27)

especially (K1A)(s) = K(s,A) for everyA ∈ FS . The adjoint operator 2 acts on measures
µ ∈M1 (FS) via:

(µK) (A) =

∫
S
µ(ds)K(s,A) (6.28)

The probabilistic interpretation is the following: If an initial point is drawn with probability
µ then after one time step the probability distribution is given by µK.
A special role is played by invariant measures, invariant functions and functions almost
invariant with respect to a given invariant measure:

Definition 6.0.2 - (Invariant measures, invariant functions)

I Definition 6.0.2.1: Let K ∈ Λ
(S,FS)
(S,FS) be a probability kernel. A σ−finite measure

µ ∈M (FS) will be called K− invariant if

µK = µ (6.29)

The K−invariant measures on FS will be denoted by INVK (FS).
IDefinition 6.0.2.2: LetK ∈ Λ

(S,FS)
(S,FS) a function φ ∈ B (S,FS) will be calledK−invariant,

if
Kφ = φ (6.30)

and almost K−invariant with respect to some invariant measure µ, if:

Kφ = φ a.s. with respect to µ (6.31)

I Definition 6.0.2.3: For a given kernel K ∈ Λ
(S,FS)
(S,FS) the invariant σ-algebra is:

IK := {A ∈ FS |K1A = 1A } (6.32)
2The dual space of the bounded measurable functions on (S,FS) equipped with supremum norm (denoted

by B (S,FS)) can be identified with the set of signed, finitely additive measures of finite total variation on FS
(compare for example Aliprantis and Border [1])
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and for a given K−invariant measure µ the almost invariant σ-algebra is defined to be:

IµK := {A ∈ FS |K1A = 1A a.s. with respect to µ} (6.33)

I Definition 6.0.2.4: Let K ∈ Λ
(S,FS)
(S,FS) be a probability kernel and let µ be a K-invariant

measure then µ will be called ergodic, if it is IK-trivial (or equivalently IµK-trivial), i.e.

µ(A) ∈ {0, 1} for every A ∈ IK (6.34)

the ergodic measures on FS will be denoted by ERGK (FS)

Ergodic measures are necessarily mutually singular and the extremal elements in the set of
all invariant measures. Moreover if the state space is Polish, every invariant measure can be
decomposed into its ergodic components 3.

Theorem 6.0.1 - (Ergodic decomposition of invariant measures)

Let K be a Markov kernel on the Polish space (S,FS) and let µ be a K− invariant proba-
bility measure. Then:

µ =

∫
ERGK(FS)

mdQ(m) (6.35)

for some probability measureQ ∈M1

(
BM1(FS)

)
, whereBM1(FS) denotes the Borel σ−algebra

of the weak topology on the set of probability measures on FS 4.

A.1.4 - Ergodic theory and singular perturbation of finite state space Markov
chains
In this section we will relate the concepts from A.1.3 to the usual terminology for finite state
space Markov chains and we will cite some important perturbation results that we need in
Chapter 4. So let

((
S, 2S

)
,K
)

be a Markov chain where S is a finite set. As before we
always equip finite sets with the discrete σ-algebra, 2S. For finite state spaces the transition
kernel is completely described by the stochastic S × S matrix Pa,b := K(a, {b}), where
a, b ∈ S. Moreover the ergodic structure of the chain can be inferred from the communica-
tion graph:

Definition 6.0.3 - (Communication graph of a finite state Markov chain)

I Definition 6.0.3.1: Let
((
S, 2S

)
,K
)

be a finite state space Markov chain. The com-
munication graph of the chain, is the directed graph GK := (S, E) where

(a, b) ∈ E iff K(a, {b}) > 0 (6.36)

I Definition 6.0.3.2: A subset A ⊆ S will be called ergodic class, if for every a, b ∈ A:
a  b and b  a and if there exists no c ∈ S \ A such that a  c for some (then every)
a ∈ A. With the terminology from Definition 1.1.2 and the considerations afterwards this is
equivalent to saying that an ergodic class is a subset of comparable, ≤-maximal elements
that is maximal with respect to set-inclusion.

3For a proof based on a generalization of Birkhoff’s ergodic theorem to arbitrary L1-l∞−contractions and
a good summary about ergodic properties or Markov operators, see for example: Diaz-Espinosa [64]

4By weak topology on M1 (FS) we mean the topology generated by linear functionals µ 7→ Eµ [φ] where
φ is a real-valued bounded, continuous function. Then µ 7→ Eµ [φ] is actually measurable for all BS /BR-
measurable function, φ (compare Diaz-Espinosa [64]). The integral appearing in Theorem 6.0.1 is the Gelfand
integral (compare Diaz-Espinosa [64]) on V ∗ where V is the Banach space of bounded, measurable functions
equipped with supremum norm.
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The ergodic properties of finite state space Markov chains are summarized by the following
theorem:

Theorem 6.0.2 - (Ergodic properties of finite state space Markov chains)

Let
((
S, 2S

)
,K
)

be a finite state space Markov chain. Then there exists at least one ergodic
subset of S. Two different ergodic subsets are necessarily disjoint. Let Ai ⊆ S be the
collection of all ergodic subsets, where 1 ≤ i ≤ k and k ≤ |S| is the number of ergodic
classes. Then:

• For every i ∈ {1, . . . , k} there exists a uniqueK-invariant, positive function φi ∈ RS

with

φi(a) =

{
1 for a ∈ Ai
0 for a ∈ ∪1≤j≤k;j 6=iAj

(6.37)

• These functions form a complete basis of right-Eigenvectors of K for the Eigenvalue
1, i.e. the set of all K−invariant functions is the vector space generated by the set
{φi}1≤i≤k. Probabilistically φi(a) is the probability to end-up in ergodic class i if
the starting state is a.

• For every 1 ≤ i ≤ k there exists a unique K-ergodic probability measure, µi, that is
equivalent to the measure

νi ({a}) =

{
1 if a ∈ Ai
0 else

(6.38)

• The set of invariant measures is the convex cone generated by {µi}1≤i≤k

• For every probability measure µ ∈M1

(
2S
)
:

lim
n→∞

1

n

n−1∑
j=0

µKj =
∑

1≤j≤k
Eµ [φj ]µj (6.39)

• If K is strictly positive, i.e. K(a, {b}) > 0 for every a, b ∈ S then k = 1, A1 = S,
φ1 ≡ 1, the ergodic measure µ1 has full support and is the only invariant probability
measure for K. Moreover

lim
n→∞

νKn = µ1 (6.40)

for every ν ∈M1

(
2S
)
. The speed of convergence is exponential with a rate depend-

ing on the second largest Eigenvalue of K.

Geometrically the setM1

(
2S
)

is equivalent to the standard simplex, ∆0,S, inRS. The latter
is the convex hull of {es}s∈S. By geometrically equivalence we mean that the isomorphism

µ 7→
∑
s∈S

µ [{s}] es

preserves the topological structure, the differentiable structure and the affine-convex struc-
ture. Every element in ∆0,S can be written as a convex combination of the extremal points,
{es}s∈S in a unique way.

A kernel from a finite set S1 to another finite set S2 is geometrically equivalent to a S1-fold
product of simplices over S2, i.e. ΛS2

S1
is canonically isomorphic to (∆S2)S1 ⊆ RS1×S2 .
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The interior points of (∆S2)S1 , denoted by (∆S2)S1
◦
, consists of all strictly positive kernels.

By Theorem 6.0.2 the set-valued map

INV : (∆S)S → 2M1(FS) ; K 7→ {µ ∈M1 (FS) |µK = µ} (6.41)

has compact, convex values and is single-valued on (∆S2)S1
◦
. By Example 2.2.1 the map

INV is upper semicontinuous (compare Definition 2.2.2). Moreover it is even analytic in
the interior of (∆S2)S1 . This is a consequence of well-known perturbation results for finite
state space Markov chains (compare Schweitzer [168], Schweitzer [167],Simon and Ando
[171], Hassin and Haviv [84], Eugene and Feinberg [71] and references therein):
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Theorem 6.0.3 - (Perturbation of finite state space Markov chains)

I Theorem 6.0.3.1: Let K ∈ (∆S)S ⊂ RS×S then the tangent cone (compare Exam-
ple 2.1.2) of (∆S2)S1 at point K is given by:

T(∆S)S (K) =

{
C ∈ RS×S

∣∣∣∣∣∑
s′∈S

Cs,s′ = 0 for every s ∈ S;Cs,s′ ≥ 0 whenever Ks,s′ = 0

}
(6.42)

If K is strictly positive then the tangent cone becomes a vector space (what is clear since
the convex-interior of (∆S)S is an analytic submanifold ofRS×S).
I Theorem 6.0.3.2: The map INV from Eq. 6.41 restricted to the interior of (∆S)S is
analytic. For any strictly positive K (∆S)S, any C ∈ TK (∆S)S and any sufficiently small
ε > 0, the matrix Kε := K + εC belongs to the interior of (∆S)S and:

INV (Kε) = INV (K) (1S − εU)−1 (6.43)

where
U = CYK (6.44)

where YK is the deviation matrix of K:

YK = (1−K +K∗)−1 −K∗ (6.45)

and
K∗ = lim

n→∞
Kn = 1 INV(K)T (6.46)

where vT is the transpose of v (we assume all vectors to be column vectors) and 1 is the
vector whose entries are all equal to 1.
I Theorem 6.0.3.3: Let K ∈ ∂ (∆S)S and let C ∈ TK (∆S)S such that Cs,s′ > 0
whenever Ks,s′ = 0 then for sufficiently small ε > 0 the matrix Kε := K + εC belongs
to the interior of (∆S)S. Then YKε posses a Laurent series expansion with a non-essential
pole of order s for some s ≥ 0:

YKε =

∞∑
k=−s

Y (k)εk (6.47)

and
INV (Kε) = π0 (1− U)−1 (6.48)

where π0K = π0 and U = CY (0).

A.2 - Gradients on the probability simplex and some calculus
In this section we will provide some definitions and formulas that are needed in Chapter 3
and Chapter 4.

A.2.1 - Technical lemma on the submultiplicativity of the trace function on
positive matrices
First of all we provide and prove a well-known lemma that we need in section 4.3.

Lemma 6.0.8 - (Submultipicativity of the trace of positive matrices)

LetA,B ∈ RN×N be positive matrices, i.e. A = AT , B = BT and xTAx ≥ 0, xTBx ≥ 0
for all x ∈ RN . Then

|Tr (AB)| ≤ |Tr (A)| · |Tr (B)| (6.49)
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Proof. By the spectral theorem for symmetric matrices there exists some orthogonal pro-
jectors Pi of rank one and some positive numbers λi ≥ 0 such that

A =
N∑
i=1

λiPi (6.50)

and some orthogonal projectors P̃i together with some real numbers µi ≥ 0 such that

B =
N∑
i=1

µiP̂i (6.51)

Then

|Tr (AB)| =

∣∣∣∣∣∣
N∑
i=1

N∑
j=1

λiµj Tr
(
PiP̂j

)∣∣∣∣∣∣ (6.52)

since
∣∣∣Tr(PiP̂j)

∣∣∣ ≤ 1 for any pair of othorgonal projectors of rank one this implies

|Tr (AB)| ≤
N∑
i=1

N∑
j=1

|λiµj | = |Tr (A)| · |Tr (B)| (6.53)

A.2.2 - Gradients on (∆A)S

For a finite state space MDP (compare Assumption 4.1.1 in Chapter 4) consider some policy
functional

φ : (∆S)S×A
◦ × (∆A)S

◦ → R (6.54)

We assume that that φ(q, ·) is continuously differentiable for every q ∈ (∆S)S×A
◦
. For a

gradient ascent algorithm it is necessary to calculate the derivative of φ (q, ·) into direction
v ∈ T

(∆A)S
◦(z):

D2φ(q, z) [v] := lim
h→0

φ (q, z + hv)− φ (q, z)

h
(6.55)

We will sometimes also write

∂φ

∂v
(q, z) := D2φ(q, z) [v] (6.56)

The directional derivative is a base independent concept. If {vi}1≤i≤|S|·(|A|−1) is a basis of
T(∆A)S (z) (compare Eq. 6.42), then an expansion with respect to this basis is:

D2φ(q, z) =
∑
i

∂φ

∂vi
(q, z)vi

∗ (6.57)

where vi∗ is the dual basis of vi. A (smooth) map that maps a given point, p ∈ M (where
most generally M can be any differentiable manifold) to an dim(M)-tuple of basis vectors
in the tangent space at p, TpM , is called frame in differential geometry and plays a special
role in general relativity theory where it encodes the local reference frames of an observer.
A special instance of frames are the ones generated by a specific coordinate system for ex-
ample.

The manifold M := (∆A)S
◦

is a (analytic) submanifold of RS×A. So the tangent space
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of TpM can be canonically identified with a subspace of RS×A. Since M is an open sub-
manifold of an affine subspace of RS×A, the tangent space is point independent (compare
6.42):

TpM =

{
C ∈ RS×A

∣∣∣∣∣∑
a∈A

Cs,a = 0

}
(6.58)

For a general metric,

g : M → bil
(
R

S×A) ; g(p) is symmetric and positive definite (6.59)

the gradient of a function is defined by the following two requirements:

Definition 6.0.4 - (Definition of gradient on a submanifold ofRS×A)

Let
g : M → bil

(
R

S×A) ; g(p) is symmetric and positive definite (6.60)

be a metric on M and let ψ ∈ C1 (M,R) be a differentiable function. Then the g-gradient
of ψ at a given point p is the unique vector∇gψ(p) ∈ RS×A that satisfies

1. g (∇gψ(p), v) = Dψ(p) [v] for every v ∈ TpM

2. ∇gψ(p) ∈ TpM

Consider the Euclidean metric at z ∈M :

gE,z (X,Y ) := 〈X,Y 〉 =
∑

s∈S,a∈A
Xs,aYs,a (6.61)

Obviously
GE(z)s,a := Dψ(z) [es,a]

satisfies the first requirement in Definition 6.0.4 but fails to satisfy the second one. However
GE(z) + n still satisfies the first requirement whenever n is perpendicular to TpM and
an appropriate choice of n yields a vector that satisfies the second requirement. A short
calculation gives:

n ⊥⊥gE TpM iff n =
∑
s∈S

λs
∑
a∈A

es,a where λs ∈ R (6.62)

and the constraint 6.58 yields

λs = −
∑

a∈AGE(p)s,a

|A|
.

Therefore the Euclidean gradient of ψ is:

∇Eψ(z) =
∑

s∈S,a∈A
Dψ(z)

es,a − 1

|A|
∑

a′∈Aes,a′

 es,a (6.63)

For the Fisher gradient consider the Fisher metric at z ∈M (compare A.3):

gF,z (X,Y ) =
∑

s∈S,a∈A

Xs,aYs,a
zs,a

(6.64)

The first requirement in Definition 6.0.4 is satisfied by

GF (z)s,a := zs,aDψ(z) [es,a]
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and
n ⊥⊥gF TpM iff n =

∑
s∈S

λs
∑
a∈A

zs,aes,a where λs ∈ R (6.65)

such that GF (z) + n satisfies the first and the second defining identity for the gradient
whenever

λs = −
∑
a∈A

zs,aGF (z)s,a

and therefore the Fisher gradient of ψ is

∇Fψ(z) =
∑

s∈S,a∈A
zs,aDψ(z)

[
es,a −

∑
a′∈A

zs,a′es,a′

]
es,a (6.66)

Therefore the Euclidean policy gradient of the policy functional is:

∇Eφ(q, z)s,a := D2φ(q, z)

[
es,a −

1

|A|
∑
a′∈A

es,a′

]
(6.67)

Whenever φ(q, ·) can be extended to an open neighborhood of M in RS×A then Eq. 6.67
can be rewritten as

∇Eφ(q, z)s,a :=
∂φ

∂zs,a
(q, z)− 1

|A|
∑
a′∈A

∂φ

∂zs,a
(q, z) . (6.68)

This equation is usually more convenient for computations. Eq. 6.67 shows that an exten-
sion of the original function to RS×A is superfluous and that the gradient is completely
determined by the vectors tangent to the manifold (∆S)S×A

◦
. We will switch between both

formulations and use the one that is most appropriate for the desired target. The Fisher
gradient becomes:

∇Fφ(q, z)s,a := zs,aD2φ(q, z)

[
es,a −

∑
a′∈A

zs,a′es,a′

]
(6.69)

A.2.3 - Directional derivatives of holomorphic functions of matrices
We start with a lemma on directional derivatives of inverses of matrices and polynomial
functions of matrices:

Lemma 6.0.9 - (Some calculus for functions of matrices)

Let
f (A) := (1−A)−1

then
Df(A) [B] = (1−A)−1B (1−A)−1 (6.70)

Let
g(A) := An,

with n ∈ N then

Dg(A) [B] =

n−1∑
k=0

AkBAn−1−k (6.71)

Now we will address the more general problem of calculating the directional derivative:

Df (A) [B] := lim
h→0

f(A+ hB)− f(A)

h
(6.72)
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whereA,B ∈M(n), f : C→ C is holomorphic in a neighborhood of the spectrum, σ (A),
of A and f(A) is defined via the Banach-space holomorphic functional calculus applied to
the n× n− matrices 5:

f (A) =
1

2πi

∮
λ
f(z) (z1−A)−1 dz

where λ denotes an arbitrary Jordan curve with the property that it surrounds the spectrum
of A. If A is invertible a short calculation gives:

d

dh
(A+ hB)−1 |h=0 = −B−1AB−1 (6.73)

Since the zeros of a polynomial depend continuously on the coefficients (compare for ex-
ample Horn and Johnson [89], Bhatia [26]) σ(A + hB) lies also in the interior of λ for
sufficiently small h. This reduces the problem to calculating:

d

dh
f (A+ hB) |h=0 =

d

dh

1

2πi

∮
λ
f(z) (z1−A− hB)−1 dz |h=0

Since for small parameters the integrand is uniformly bounded on the range of λ for all
sufficiently small h, Lebesgue’s theorem can be applied to exchange differentiation and
integration:

d

dh
f (A+ hB) |h=0 =

1

2πi

∮
λ
f(z)

d

dh
(z1−A− hB)−1 |h=0 dz

=
1

2πi

∮
λ
f(z) (z1−A)−1B (z1−A)−1 dz (6.74)

In the last step we used 6.73 and the chain rule. Assume that A is diagonalizable, i.e.

A =
r∑

k=1

λkPk, where 1 ≤ r ≤ n (6.75)

where the Eigenvalues λk are pairwise disjoint and the projection operators onto the corre-
sponding Eigenspaces satisfy

PiPj = δi,jPi. (6.76)

If at least one Eigenvalue is degenerate we have r < n. In any case no Eigenvalue lies in
the range of λ by assumption and therefore

(z1−A)−1 =
∑
k

(z − λk)−1 Pk (6.77)

for all z in the range of λ. Therefore:

Df (A) [B] =
∑
i,j

1

2πi

∮
λ
f(z)

1

(z − λi)(z − λj)
PiBPjdz

=
∑
i

f ′(λi)PiBPi +
∑
i 6=j

f(λi)− f(λj)

λi − λj
PiBPj (6.78)

In the last step we used Cauchy’s integral formula.
If A is not diagonalizable it can be written as A = D +N where D is diagonalizable, N is
nilpotent and ND = DN . The Neumann series for matrix inversion yields:

(z1−A)−1 =
n−1∑
k=0

Nk (z1−D)−(k+1) (6.79)

5This class of functions obviously includes everywhere holomorphic functions like polynomials or expo-
nentials (in which case the holomorphic functional calculus is just a power series of the underlying matrix) as
well as more complicated functions like the logarithms or the n−th root (Both functions can be defined on an
appropriate splitted complex plane C \R≥0z0, where z0 ∈ C \ 0 can be chosen arbitrarily - a common value
is z = −1)
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writing

D =
r∑

k=1

λkPk, where 1 ≤ r ≤ n (6.80)

again gives:

Df(A) [B] =
r∑

i,j=1

n−1∑
k,l=0

1

2πi

∮
λ
f(z)

1

(z − λi)k+1(z − λj)l+1
NkPiBPjN

ldz

(6.81)

This can again be splitted into a diagonal part (arising from the summation over pairs (i, j)
with i = j) and a cross part. Using Cauchy’s integral formula again yields

Df(A) [B]diag =
r∑
i=1

n−1∑
k,l=0

f (k+l+1) (λi)

(k + l + 1)!
NkPiBPiN

l. (6.82)

The cross-part is more involved. A calculation using Cauchy’s formula again gives:

Df(A) [B]cross =
r∑
i 6=j

n−1∑
k,l=0

(α [l, k, i, j] + α [k, l, j, i])NkPiBPjN
l (6.83)

where

α [l, k, i, j] =
k∑
r=0

(
l + r
r

)
(−1)r

(λi − λj)l+r+1

f (k−r) (λi)

(k − r)!
(6.84)
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A.3 - Information theory and information geometry
In this section we will give a short overview about some concepts from information theory.
The definitions, interpretations, the background and applications can be found in Shannon’s
original paper (Shannon [170]) and the books Liese and Vajda [118], Amari, Nagaoka, and
Harada [5], Csiszár and Korner [58] and Cover and Thomas [54] for example.

We present the relevant quantities for finite state spaces first and we will continue with the
general case afterwards.

Definition 6.0.5 - (Entropy related quantities for finite state spaces)

I Definition 6.0.5.1: Let f : [0,∞)→ R be a convex function. Define

m∞ := lim
r→∞

f(r)

r

(hence m∞ ∈ R \ {−∞}). Let µ, ν be measures on 2S where S is a finite set. Then

Df (µ ‖ν ) :=
∑

s∈S;ν(s)6=0

f

(
µ(s)

ν(s)

)
ν(s) +m∞µ [{s ∈ S |ν(s) = 0}] (6.85)

will be called f -divergence of µ and ν (in this formula we set 0 ·∞ := 0). If g(x) = x ln(x)
we just write

D (µ ‖ν ) for Dg (µ ‖ν ) (6.86)

I Definition 6.0.5.2: Let S be a finite set the entropy of a measure p ∈M1

(
2S
)

is

H(p) := −D (p ‖ν ) (6.87)

where ν is the counting measure ν(A) := |A| for every A ⊆ S. Frequently the entropy is
defined with the logarithm with base 2 instead of base e - both expressions differ by a factor
of ln(2).
I Definition 6.0.5.3: Let S be a finite set p, q ∈ M1

(
2S1
)

then the Kullback-Leibler
divergence of p and q is:

DKL (p ‖q ) := D (p ‖q ) (6.88)

I Definition 6.0.5.4: Let S1, S2 be a finite sets, let p ∈M1

(
2S1×S2

)
and let πi denote the

projections of S1 × S2 onto Si (where i ∈ {1, 2}) then the mutual of π1 and π2 under p is:

Ip (π1 ‖π2 ) := DKL (p ‖π1∗p⊗ π2∗p) (6.89)

where p1 ⊗ p2 denotes the product measure of p1 and p2. If the distribution of the pair
(π1, π2) is clear we will skip the subscript, p.

The extension to non-discrete state spaces requires a further technical assumption on the
underlying measures. A measure µ on some measurable space, (Ω,F), is σ-finite if there
exist Ωn ∈ F with Ωn ⊆ Ωn+1 for every n ∈ N, with ∪n∈NΩn = F and µ [Ωn] <∞. An
important theorem for σ finite measures is the existence of a Radon-Nikodym derivative,
i.e. whenever ν << µ in the sense that µ(A) = 0 implies ν(A) = 0 for every A ∈ F , then
there exists a F /BR measurable function p such that

ν(A) =

∫
A
p(ω)µ(dω) for every A ∈ F (6.90)

this function, p, will be denoted by dν
dµ . The following definition of f -divergence originates

from Liese and Vajda [118]:
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Definition 6.0.6 - (Entropy related quantities for general σ-finite measures)

I Definition 6.0.6.1: Let (Ω,F) be a measurable space, let f : [0,∞)→ R be a convex
function. Define m∞ := limr→∞

f(r)
r . Let µ, ν be σ-finite measures on F and let ρ be a

measure that dominates both, µ and ν. Set p := dµ
dρ and q := dν

dρ . Then6

Df (µ ‖ν ) :=

∫
{q>0}

f

(
p(ω)

q(ω)

)
ν(dω) +m∞µ [{q = 0}] (6.91)

will be called f -divergence of µ and ν whenever this quantity exists (in this formula we set
0 · ∞ := 0 again). If g(x) = x ln(x) we just write

D (µ ‖ν ) for Dg (µ ‖ν ) (6.92)

I Definition 6.0.6.2: Let (Ω,F) be a measurable space, let η be a σ-finite measure on Ω
and let P ∈M1 (F) then the generalized η-entropy of P is

Hη(P ) := −D (P ‖η ) (6.93)

In the special case that (Ω,F) = (Rn,BRn) and η being the Lebesgue measure, this
quantity is known as differential entropy.
I Definition 6.0.6.3: Let (Ω,F) be a measurable space and let p, q ∈ M1 (F) then the
Kullback-Leibler divergence of p and q is:

DKL (p ‖q ) := D (p ‖q ) (6.94)

I Definition 6.0.6.4: Let (Ω1 × Ω2,F1 ⊗F2), let p ∈ M1 (F1 ⊗F2) and let πi denote
the projections of Ω1 ×Ω2 onto Ωi (where i ∈ {1, 2}). Then the mutual of π1 and π2 under
p is:

Ip (π1 ‖π2 ) := DKL (p ‖π1∗p⊗ π2∗p) (6.95)

where again p1⊗p2 denotes the product measure of p1 and p2. If the distribution of (π1, π2)
is clear we will skip the subscript, p.

A useful bound on the value of f -divergences is given by the following lemma (a slight
generalization of remark 1.2 in first chapter of Liese and Vajda [118])

Lemma 6.0.10 - (Lower bounds on f -divergences)

Let f : [0,∞)→ R be convex and let ∂f(x0) denote the set of subderivatives of f at x0:

λ ∈ ∂f (x0) iff f(x) ≥ f (x0) + λ · (x− x0) for all x ∈ R≥0

Then if

• µ and ν are finite or

• ν is finite and there exists some point x0 ∈ R≥0 and λ ∈ ∂f (x0) such that λ ≥ 0 or

• µ is finite and there exists some point x0 ∈ R>0 and λ ∈ ∂f (x0) such that f (x0)−
λx0 ≥ 0 or f (0) ≥ 0 and ∂f(0) ∩R is not empty.

6As the definition indicates neither the existence of the f -divergence nor its particular value depends on the
dominating measure, ρ, a convenient choice is ρ := ν + µ for example. A proof of this statement can be found
in Liese and Vajda [118]
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then Df (µ ‖ν ) exists and the estimate

Df (µ ‖ν ) ≥ sup {ν (Ω) (f (x0)− λ · x0) + λ · µ (Ω) |x0 ∈ R≥0, λ ∈ ∂f (x0)} (6.96)

holds true7.

Proof. Set

f̃(u, v) :=

{
vf
(
u
v

)
for v > 0

u ·m∞ else
(6.97)

where we set m∞ · 0 := 0 if m∞ =∞ (compare Liese and Vajda [118], page 212). Then

Df (µ ‖ν ) =

∫
f̃

(
dµ

dρ
,
dν

dρ

)
dρ (6.98)

for v > 0
f̃ (p, q) ≥ q (f (x0)− λx0) + λp (6.99)

for every subderivative, λ ∈ ∂f (x0) by definition. For v = 0 and t > 0 we have by
definition of the subderivative:

f (x0 + t)− f (x0)

t
≥ λ for every λ ∈ ∂f (x0) (6.100)

such that the limit t → ∞ gives m∞ ≥ λ and therefore Eq 6.99 is also valid for v = 0.
Inserting this estimate for f̃ into Eq 6.98 gives the desired result.

In a similar way we can prove an upper bound for the f -divergence (compare Liese and
Vajda [118], page 10).

Lemma 6.0.11 - (Upper bounds on f -divergences)

Let f : [0,∞) → R be convex, let (Ω,F) be a measurable space. Let µ and ν be two
σ-finite measures on F dominated by the σ-finite measure, ρ. Set

p :=
dµ

dρ
and q :=

dν

dρ

Then
Df (µ ‖ν ) ≤ ν [Ω] f(0) + µ [Ω]m∞ (6.101)

If m < p
q ≤M for some m ∈ R≥0 and M ∈ R≥0 a.e. with respect to ρ. Then:

Df (µ ‖ν ) ≤ ν [Ω]

(
f(m)−mf(M)− f(m)

M −m

)
+

+µ [{q > 0}] f(M)− f(m)

M −m
+m∞µ [{q = 0}] (6.102)

Proof. By convexity of f for every m < x ≤M :

f (x)− f(m) ≤ f(M)− f(m)

M −m
(x−m) (6.103)

this gives an appropriate estimate for f̃ (compare proof of lower bound, Lemma 6.0.10) on
{v > 0}. Then an integration gives the desired result again.

Next we will quote an important property of f -divergences. The proof of the first part can
be found in the first chapter of Liese and Vajda [118] again.

7This implies positivity of the KL-divergence of two probability measures and positivity of the mutual
information. It also gives an upper bound for the generalized entropy whenever the reference measure, η, is
finite.
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Lemma 6.0.12 - (Monotonicity of the f -divergence for probability measures)

I Lemma 6.0.12.1: Let (X,FX) and (Y,FY ) be measurable spaces, let P,Q ∈
M1 (FX) and let K ∈ ΛY

X. For p ∈M1 (FX) define K ⊗ p ∈M1 (FX ⊗FY ) via

(K ⊗ p) (A) =

∫
p(dx)K(x, dy)1A ((x, y)) (6.104)

and K ∗ p ∈M1 (FY ) via

(K ∗ p) (A) :=

∫
X
p(dx)K(x,A) = K ⊗ p (X×A) (6.105)

Let f : [0,∞)→ R be convex. Then

Df (K ∗ P ‖K ∗Q) ≤ Df (P ‖Q) (6.106)

with equality if K is sufficient for P and Q, by this we mean that for every A ∈ FX there
exists a FY /B[0,1] measurable function, φA, with the property that

(K ⊗ P ) [π1 ∈ A |π2 ] = φA (π2) a.s. (6.107)

and
(K ⊗Q) [π1 ∈ A |π2 ] = φA (π2) a.s. (6.108)

where π1 : X×Y → X is the canonical projection onto the first factor and π2 : X×Y →
Y is the projection onto the second factor.

If f is strictly convex then equality in Eq 6.106 implies that K is sufficient for P and Q.
I Lemma 6.0.12.2: For every i ∈ {1, 2, 3} let (Xi,Fi) be a measurable space. Let
P ∈M1

(
⊗3

1Fi
)

and let πi : X1 ×X2 ×X3 → Xi denote the canonical projection. then

Df (P ‖(π1, π2)∗ P ⊗ π3∗P ) ≥ Df ((π2, π3)∗ P ‖π2∗P ⊗ π3∗P ) (6.109)

with equality if
π1 ⊥⊥ π3 |π2 under P (6.110)

Whenever f is strictly convex then equality in Eq. 6.109 implies conditional independence,
Eq. 6.110 8.

Proof. As already stated, the first proof can be found in the first chapter of Liese and
Vajda [118]. The second statement is a spcical case of the first one. Indeed define K ∈
ΛX2×X3
X1×X2×X3

via:
K [(x, y, z), A] := δy,z [A] (6.111)

and set Q := (π1, π2)∗ P ⊗ π3∗P . Then

K ∗ P = (π2, π3)∗ P and K ∗Q = π2∗P ⊗ π3∗P (6.112)

such that Eq. 6.109 follows. Moreover:

(K ⊗ P ) [{π1 ∈ A} ∩ {π2 ∈ B} ∩ {π3 ∈ C} |π2, π3 ]

= 1B (π2)1C (π3)P [{π1 ∈ C} |π2, π3 ]

and

(K ⊗Q) [{π1 ∈ A} ∩ {π2 ∈ B} ∩ {π3 ∈ C} |π2, π3 ]

= 1B (π2)1C (π3)Q [{π1 ∈ C} |π2, π3 ]

= 1B (π2)1C (π3)P [{π1 ∈ C} |π2 ]

8Note that f(x) = x lnx is strictly convex, such that the lemma implies I ((π1, π2) , π3) ≥ I (π2, π3) with
equality if and only if π1 is independent of π3 given π2
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such that K is sufficient for P and Q if and only iff

π1 ⊥⊥ π3 |π2 (6.113)

This proves the second statement.

Next we present a useful approximation theorem for f -divergences, as can be found in Liese
and Vajda [118] and Darbellay and Vajda [59]

Lemma 6.0.13 - (Approximation of f -divergences for probability measures)

I Lemma 6.0.13.1: Let (I,≤) be a directed set (i.e. a partially ordered set in which
every pair of elements possesses an upper bound). Let (Ω,F) be a measurable set and
let (Fi)i∈I be a monotonous family of σ-algebras, i.e. Fi ⊂ Fj for i ≤ j. Assume that
F = σ (∪i∈IFi). Then

Df (P |Fi ‖Q |Fi ) ≤ Df

(
P
∣∣Fj ∥∥Q ∣∣Fj ) for i ≤ j (6.114)

and
sup {Df (P |Fi ‖Q |Fi ) |i ∈ I } = Df (P ‖Q) (6.115)

I Lemma 6.0.13.2: Let (Ω,F) be a measurable space, let Ωi,j ∈ F with i ∈ N and j ∈ Ii
where |Ii| is a finite set be such that:

• For every i ∈ N, the sets Ωi,j form a partition of Ω, i.e. Ωi,j1 ∩ Ωi,j2 = ∅ whenever
j1 6= j2 and

Ω = ∪j∈IjΩi,j

• The sequence is nested, in the following sense: For every j ∈ Ii+1 there exist J ⊆ Ii
such that

Ωi+1,j = ∪k∈JΩI,k

• F = σ
(

(Ωi,j)i∈N,j∈Ii

)
Then

Df (P ‖Q) = lim
i→∞

∑
j∈Ij

f̃ (P [Ωi,j ] , Q [Ωi,j ]) (6.116)

monotonously with f̃ given by Eq. 6.97.

Last but not least we present a formula for the Fisher gradient, a metric on appropriate
manifolds of probability measures. For a good reference on information geometry, see
Amari [2], Amari, Nagaoka, and Harada [5], Pistone and Sempi [147], Murray and Rice
[134] and Cencov [48]. In this work we only consider the Fisher metric on strictly positive
probability measures on a finite set, S. As already claimed this space can be identified with
∆S
◦ again and the tangent space is given by Example 2.1.2. Then the Fisher metric is:

gF,p (c1, c2) =
∑
s∈S

c1,sc2,s

p(s)
where c1, c2 ∈ Tp∆S

◦ (6.117)
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Glossary

admissible initial measure

see Definition 1.2.2

causal model

see Definition 1.2.1

causal statistical model

see Definition 1.2.2

consistent Q-estimator

see Definition 4.2.2

discrete random sets

see Definition 1.4.1

discrete random sets relative to another one

see Definition 1.4.2

ergodic derivative

see Eq 3.28 and the preceding discussion

ergodic functional

see Problem 3.2.3

essentially Lipschitz continuous quasi-projector

see Definition 2.3.1

inference σ-algebra

see Definition 1.4.3

Learning algorithm over a Markov decision process

see Definition 3.1.2

Markov decision process

see Definition 3.1.1

policy functional

see Problem 3.2.1
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preimage cone

see Definition 2.3.1

present σ-algebra associated to a discrete random set

see Definition 1.4.4

present random set associated to a discrete random set

see Definition 1.4.4

recursively constructible graph

see Definition 1.1.1 and Theorem 1.1.1

sensor process functional

see Problem 3.2.2

strongly consistent Q-estimator

see Definition 4.2.2
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Acronyms

a.e. almost everywhere
a.s. almost surely

i.e. that is (latin ”id est”)
iff if and only if

MDP Markov decision process

ODE ordinary differential equation

POMDP partially observable Markov decision process

w.r.t. with respect to
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List of Symbols

1A The characteristic function of the set A, i.e.

1A (ω) :=

{
1 if ω ∈ A
0 else

|S|,|r| context dependent - cardinality of S whenever S
is a set; absolute value of r if r ∈ R

δx Dirac measure at x ∈ Ω where (Ω,F) is some
measurable space:

δx (A) :=

{
1 if x ∈ A
0 else

for every A ∈ F
IdX Identity function:

IdX : X→ X ; x 7→ x

∏
i∈I Ai Cartesian product of the sets Ai over the index set

I (see Eq. 1.2)
AI Equivalent to ∏

i∈I
A

compare entry for
∏
i∈I Ai, equivalent to the set

of functions
f : I → A

(an)n∈I Indexed family of elements - is the element f ∈∏
i∈I Ai with f(i) = ai (compare glossary en-

try for
∏
i∈I Ai). If I = N then (an)n∈N is an

ordinary sequence.
Par (v) Parents of a vertex v in a given directed graph,

(V,E). (see Definition 1.1.1)
Child (v) Children of a vertex v in a given directed graph,

(V,E). (see Definition 1.1.1)
An(A) Ancestral closure of the set A ⊆ V where (V,E)

is some directed graph (see Definition 1.1.1)
u v There exists a path from u ∈ V to v ∈ V

where (V,E) is some directed graph (see Defi-
nition 1.1.1)
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Vn V0 is the set of input vertices of some directed
graph (V,E), Vn is the set of vertices with an ”an-
cestral tree” of depth n (see Definition 1.1.1, Def-
inition 1.1.1, Theorem 1.1.1 and the successive
comment)

V<n, V≤n For definition of Vi see Vn. Then

V<n := ∪0≤k<nVk and V≤n := ∪0≤k≤nVk

R,R≤0,R>0 real numbers, positive real numbers, strictly posi-
tive real numbers

R extended real numbersR := R ∪ {∞,−∞}
Rn,Rn∗ Rn is the n-fold Euclidean space, Rn∗ is its dual

space
RS,RS∗ RS is the set of maps f : S → R; isomorphic

to R|S|, which can be considered as R{1,2,...,n}.
RS∗ is the dual space ofRS

N,N0 N is the set of natural numbers (starting with one
in this thesis);N0 = N ∪ {0}

2V Power set of V :

2V = {W ⊆ V }

⊗v∈V Fv Product σ-algebra (see Eq. 1.4)
M1 (F) Probability measures on the σ-algebra F , i.e.

maps P : F → R≥0 that are σ-additive and nor-
malized.

f∗P Pushforward of the probability measure P ∈
M1 (FX) under the FX/FY measurable map f :
X→ Y:

f∗P [A] := P
[
f−1 (A)

]
The measure f∗P is also known as distribution
of the random variable f on the probability space
(X,FX , P ).

F ,G Usually used to denote σ-algebras
F Usually used to denote filtrations of σ-algebras,

i.e. Fn is a σ-algebra for every n ∈ N (or n ∈
N0) such that Fn ⊆ Fn+1 for every n.

Λ
(Y,FY )
(X,FX), ΛY

X Probability kernel from (X,FX) to (Y,FY ), i.e.
maps

K : X×FY → [0, 1]

such that K(·, A) is measurable for every
A ∈ FY and K(x, ·) is a probability measure for
every x ∈ X

∪, ∩ Set union / set intersection
A \B Set theoretical difference of A and B
νLeb Lebesgue measure
⊥⊥ (conditional) independence, see Definition 1.3.2
Gm Moral graph of G, see Definition 1.3.1
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CONB∪A∪S,S(A) Causal connected component of A, see Defini-
tion 1.3.3

!m,S See Definition 1.3.3
ResAnc(A |S|B) Residual ancestors, see Definition 1.3.3
G2V

(N) Discrete σ-algebra on the power set of V , com-
pare Eq. 1.68

Range(f) Range of the function f
Iτ Present random set associated to the discrete ran-

dom set, τ , compare Definition 1.4.4
Fpr,τ Present σ-algebra associated to the discrete ran-

dom set, τ , compare Definition 1.4.4
TK(x) Tangent cone of the set K at x, see. Defini-

tion 2.1.1
NK(x) Normal cone of the set K at x, see. Defini-

tion 2.1.1
dK(x) distance of x from the set K
BR(x) open ball with center x and radius R
A Closure of the set A
∆ε;S ε-simplex over the (finite) set S, see. Exam-

ple 2.1.2
es, es,∗ (es)s∈S is the canonical basis inRS:

es(s
′) := δs,s′

and es,∗ is the corresponding dual basis:

es,∗ : f 7→ f(s)

δs,s′ Kronecker delta:

δs,s′ =

{
1 if s = s′

0 else

‖·‖p p-norm onRS:

‖v‖p :=

(∑
s∈S
|vs|p

) 1
p

for p =∞: ‖v‖∞ := max {|vs| |s ∈ S}
‖·‖Op,p Operator norm for for S×S matrices with respect

to p-norm onRS:

‖A‖Op,p := sup
{
‖Av‖p

∣∣∣v ∈ RS; ‖v‖p = 1
}

1 vector inRS with |S| <∞ satisfying

1s := 1 for every s ∈ S
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‖·‖∗ Dual norm of ‖·‖: :

‖λ‖∗ := sup
{
|λ(v)|p

∣∣v ∈ RS; ‖v‖ = 1
}

for λ ∈ RS∗

convcone(A) convex cone generated by the set A ⊆ V where
V is a vector space

Dφ(x∗) [v] directional derivative of φ at x∗ into direction v
Cl (Rn) The set of closed subsets ofRn

Graph (F ) Graph of the set-valued map F : Rn → Rm:

Graph (F ) = {(x, y) ∈ Rn ×Rm |y ∈ F (x)}
(6.118)

L1(dµ) Set of (extended) real-valued measurable func-
tions from some measurable space (Ω,F) with
bounded integral with respect to µ, i.e.

L1(dµ) =

{
φ : Ω→ R

∣∣∣∣∫
Ω
|φ(ω)|µ(dω) <∞

}

L1 (dµ) L1-space with respect to measure µ ∈M1 (F) for
some σ-algebra F , i.e. equivalent classes, [φ], of
F /BR measurable functions where

∫
|φ| dµ <∞

and φ2 ∈ [φ] if and only if
∫
|φ− φ1| dµ = 0

B (S,FS) Real-valued, bounded, FS /BR measurable func-
tions

∇gφ(x) gradient with respect to the metric g of the differ-
entiable function φ : M → R at point x ∈ M ,
i.e. the unique vector satisfying

g (∇gφ(x), v) = Dφ(x) [v] for every v ∈ TxM

CP̂ (x) Preimage cone of the quasi-projector, P̂ at x
(compare Definition 2.3.1)

INVK (FS) K-invariant measures, compare Definition 6.0.2
INV Set-valued map that maps a kernel to its invariant

distributions:

K 7→ {µ ∈M1 (F) |µK = µ}

A◦ Set of (topologically) interior points of A
bil (Rn) Bilinearforms onRn, i.e. the set of maps

b : Rn ×Rn → R

satisfying

b(x+αy, u+βv) = b(x, u)+αb(y, u)+βb(x, v)+αβb(y, v)

for every x, y, u, v ∈ Rn and α, β ∈ R.
Derg.f Ergodic derivative of f , see Eq 3.28 in the Ap-

pendix
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∇Eφ Euclidean gradient of φ, see Appendix A.2.2
∇Fφ Fisher gradient of φ, see Appendix A.2.2
K∗, YK see Appendix A.1.4, Theorem 6.0.3
Df (µ ‖ν ) f -divergence of µ and ν see Appendix A.3, Defi-

nition 6.0.5 and Eq. Definition 6.0.6
D (µ ‖ν ) see Definition 6.0.5
H(p) Entropy, see Appendix A.3, Definition 6.0.5
DKL (µ ‖ν ) KL-divergence, see Appendix A.3, Defini-

tion 6.0.5 and Definition 6.0.6
Hη Generalized differential entropy, see Ap-

pendix A.3, Definition 6.0.6
⊗i∈Ipi product measure of the measures pi ∈ M1 (Fi)

where Fi are σ-algebras on some sets Ωi, i.e.
⊗i∈Ipi ∈ M1 (⊗i∈IFi) is the unique measure
with the property that for any finite subset J ⊆ I
and any collection of sets Aj ∈ Fj with j ∈ J :

(⊗i∈Ipi) [∩j∈J {πj ∈ Aj}] =
∏
j∈J

pj [Aj ]

PMDP,q′,s′,z′ Law on the causal model associated to an MDP
with parameter q′ ∈ Q, initial sensor state s′ ∈ S
and policy sequence z′ ∈ ZN0 , compare Eq. 3.1

Pq′,s′,m′ Law of an a MDP with controlled policy param-
eters with parameter q′ ∈ Q, initial sensor state
s′ ∈ S and initial memory value m′ ∈ M, com-
pare Eq. 3.5

Bb(S) real-valued, bounded measurable functions on the
measurable space (S,FS)

frew;r,λ policy functional corresponding to expected, dis-
counted (one-point) reward, r, see Eq. 3.48 and
Problem 3.2.2

frew.var.;r,λ policy functional corresponding to variance of ex-
pected, discounted reward, r, see Eq. 3.64 and
Problem 3.2.2

frew,1;r,λ policy functional corresponding to the sliding ex-
pected, discounted (multiple point) reward of r,
see Eq. 3.74 and Problem 3.2.2

frew,2;r,λ policy functional corresponding to the block-wise
expected, discounted (multiple point) reward of r,
see Eq. 3.75 and Problem 3.2.2

fentr;λ policy functional corresponding to discounted en-
tropy, see Eq. 3.80 and Problem 3.2.2

fdiff.entr;η,λ policy functional corresponding to discounted
generalized entropy, see Eq. 3.82 and Prob-
lem 3.2.2

fM.I.,1;λ policy functional corresponding to sliding dis-
counted mutual information, see Eq. 3.85 and
Problem 3.2.2

fM.I.,2;λ policy functional corresponding to block-wise
discounted mutual information, see Eq. 3.86 and
Problem 3.2.2

ferg.rew ;r ergodic functional corresponding to expected re-
ward, see Eq. 3.53 and Problem 3.2.3
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ferg.entr ergodic functional corresponding to entropy, see
Eq. 3.83 and Problem 3.2.3

fP.I. ergodic functional corresponding to mutual infor-
mation/predictive information, see Eq. 3.93 and
Problem 3.2.3

Pq′,s′,Z Law on the causal model of an MDP where the
policy sequence is an adapted process, for further
details see Remark 4.2.1
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4. Juli 2011 an.

• Die eingereichte Arbeit wurde nicht in gleicher oder ähnlicher Form einer anderen
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