
Introducing Aesthetics to Software Visualization

David Baum
University of Leipzig

Grimmaische Strasse 12
04109, Leipzig, Germany

david.baum@uni-
leipzig.de

Abstract
In software visualization, but also in information visualization in general, there is a great need for evaluation of
visualization metaphors. To reduce the amount of empirical studies a computational approach has been applied
successfully, e.g., to graph visualization. It is based on measurable aesthetic heuristics that are used to estimate the
human perception and the processing of visualizations. This paper lays a foundation for adopting this approach to
any field of information visualization by providing a method, the repertory grid technique, to identify aesthetics
that are measurable, metaphor-specific, and relevant to the user in a structured and repeatable way. We identified
25 unique aesthetics and revealed that the visual appearance of the investigated visualizations is mainly influenced
by the package structure whereby methods are underrepresented. These findings were used to improve existing
visualizations.

Keywords
Aesthetics, Repertory Grid Technique, Software Visualization

1 INTRODUCTION
The benefit of a specific visualization depends upon
many factors, such as addressed end-user (e.g., devel-
oper, project manager, or client), method of represen-
tation and its use case. Therefore it is not possible
to prove the superiority of one kind of visualization
over another one in general, regardless of dimension-
ality, method of representation and other influencing
factors. Every method of representation, usually called
metaphor, has to be empirically evaluated on its own
[Kos03]. Unfortunately, only a minority of approaches
in software visualization has been empirically validated
yet [WLR11a, TC08]. This disproportion is caused by
the time effort as well as the expense that is necessary
for the implementation of empirical studies such as con-
trolled experiments [LBI+12]. Due to many influenc-
ing factors a single experiment is often insufficient and
therefore a series of experiments is required [IW03]. In
practice the resulting overall costs are a problem, be-
cause the empirical studies have to be repeated with ev-
ery slight modification of the metaphor or for example
the layout algorithm. Further a controlled experiment

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

can only show if the use of a metaphor is more effective
or more efficient than the used object of comparison.
Unfortunately, such experiments provide no explana-
tion for measured values and thus no indication on how
to improve it.

For these reasons we want to take a different approach
for evaluating software visualizations that has the po-
tential to reduce the required number of empirical stud-
ies. It is based on a cognitive model which explains the
perception and processing of visualizations [Nor04].
This process is influenced by aesthetic heuristics and
they in turn depend on the underlying data [BRSG07].
Once we know the relations between these elements we
are able to evaluate visualizations by computation in-
stead of empiricism. However this goal can only be
achieved in several stages, and this paper is the first one.
This is to identify user-relevant aesthetics. Therefore
this paper focuses on the following contributions:

(1) We show, how the repertory grid technique can
be applied to software visualization for identifying
metaphor-specific aesthetics systematically.

(2) We provide a classification scheme to evaluate the
influence of the depicted software entities and to draw
comparisons between different metaphors.

(3) We present a study that identified aesthetics for the
recursive disk metaphor and revealed undesired side ef-
fects.

2 RELATED WORK
The concept of aesthetics is widely used in the field of
graph visualization especially for evaluating graph lay-
out algorithms [Hua14, BRSG07]. Basic research was
done by Purchase [Pur97, PMCC01, PAC02, PCA02]
which led to increased research activity of several au-
thors [BRSG07, WPCM02]. All in all at least 18 graph
aesthetics were proposed by different researchers al-
though only a few of them were evaluated empirically
[BRSG07]. Due to its successful use the concept of
aesthetics has already been transferred to other domains
such as UML class and use case diagrams [PMCC01].
However none of these approaches includes a method
for identifying aesthetics that are relevant to the user.
All of the proposed aesthetics, e.g., in graph visualiza-
tion have been found without user involvement. This
might be a reason why only a minority of the proposed
aesthetics has a significant effect with respect to the
user performance.

We are not aware of any application in the field of
software visualization. In addition no other approach,
which has the goal to evaluate visualizations by com-
putation does exist so far.

3 SOFTWARE VISUALIZATION
In software visualization the structure, behavior and/or
evolution of software systems are visualized to facili-
tate a better understanding of abstract and complex soft-
ware artifacts. Over the last years several visualization
metaphors were proposed such as the recursive disk
metaphor [MZ15] and the city metaphor [WLR11b].
They differ among other properties in the depicted in-
formation and in the used glyphs for representing soft-
ware entities. “A glyph is a small visual object that
can be used independently and constructively to depict
attributes of a data record or the composition of a set
of data records“ [BKC+13]. Glyphs use visual chan-
nels such as shape, color and size to depict information
[BKC+13] and they can contain other glyphs as well
[War02].

Within this paper we want to focus on the recursive
disk metaphor. It uses a glyph-based approach to vi-
sualize the structure of software systems. Each soft-
ware entity, i.e., attributes, methods, classes, and pack-
ages is mapped to a different glyph [MZ15]. An at-
tribute is represented by a yellow ring segment. Method
glyphs are blue ring segments and their size corre-
sponds roughly to the methods number of statements
(NOS). Classes and packages are depicted by purple
and gray rings respectively any they may contain sev-
eral attribute, method and class glyphs. With these
basic glyphs even large structures can be visualized.
Figure 1 shows a package that contains some exem-
plary classes. For a more complex real world exam-
ple see Figure 2. It visualizes the structure of JUnit 4,

Figure 1: Basic glyphs and relations with the recursive
disk metaphor: 1 - Package with five classes, 2 - Gen-
eral classes with altogether eighteen methods and five
attributes, 3 - Method class with two methods, 4 - Data
class with four attributes, 5 - Class with eight methods,
eight attributes, and three inner classes [MZ15].

Figure 2: The structure of JUnit 4.12 visualized with
the recursive disk metaphor.

one of the most frequent used test frameworks for Java
[JUn15].

4 AESTHETICS
Since aesthetics originates in graph visualization we
want to introduce them using a corresponding example
(c.f. Figure 3). All three node-link diagrams visualize
the same graph and only differ in their layout algorithm.
Readability as well as understandability is decreased
from left to right. This is caused by their different ap-
pearance and not only detectable through empirical ex-
periments but also directly measurable. For example
the diagrams differ among other things in their num-
ber of edge crossings and in their degree of symmetry.
which are both basic aesthetics. Studies haven shown,
that reducing edge crossings and increasing symmetry
will lead to a faster perception and a better understand-
ing of graphs. If a further layout algorithm will be eval-
uated with respect to understandability and readability
no further empirical studies are necessary. By taking

the number of edge crossings and the degree of sym-
metry into account we can predict the mentioned prop-
erties of the graph.

Since a unified definition for aesthetics is missing in
the literature, we define them as follows: Aesthetics are
visual properties of a visualization that are observable
for human readers as well as directly measurable. By
this definition abstract attributes such as complexity are
not considered as aesthetics. Indeed the complexity of
a visualization can be measured as well, but only after
it was operationalized.

Aesthetics can be used in two different ways: On the
one hand certain aesthetics can be optimized, so that
the resulting graph is easier to understand for human
readers [BRSG07]. This can be measured by the time
needed by a user to solve different tasks and the number
of errors he made while doing so [Hua14]. On the other
hand due to the different appearance of the three node-
link diagrams a user would expect the graph on the right
side to be more complex than the graph on the left side
[PAC02]. It is a basic purpose of a model that assump-
tions about its original are made. If the visualizations of
two systems differ clearly in one point the beholder as-
sumes that this is caused by the underlying data. But in
some cases these differences are merely undesired side
effects without any reasonable meaning. The resulting
assumptions would be at best useless or even wrong
as in the mentioned example since all graphs share the
same degree of complexity.

However, the use of aesthetics in software visualization,
especially when the third dimension is used, is hindered
by the lack of methods to identify new aesthetics in a
structured and repeatable way. If 18 aesthetics would
be proposed for every visualization metaphor, the need
for empirical studies is not reduced but increased. This
is the key problem that has to be solved in order to ap-
ply aesthetics efficiently to a wide field of applications.
Therefore we used the repertory grid technique to iden-
tify metaphor-specific aesthetics as described in the fol-
lowing section.

5 RESEARCH DESIGN
For the identification of user-relevant and metaphor-
specific aesthetics empirical studies are still required.
Therefore we investigated the perception of different

Figure 3: Three node-link diagrams of the same graph
[Hua14]

software systems focusing on the following research
questions:

(1) Which aesthetics affect the perception of a software
visualization based on the recursive disk metaphor?

(2) How strong is the influence of different software
entities on the perception of a software visualization?

Hence the study is based on an exploratory research
design. Since the method for identifying relevant aes-
thetics is the main contribution of this publication the
methodology of the applied repertory grid method is de-
scribed in general as well as our implementation below
in detail.

5.1 The Repertory Grid Technique
The repertory grid technique is an empirical research
method that originates in psychology. It was already
adopted to other research fields such as marketing and
software engineering, e.g., to analyze soft skills of soft-
ware engineers [KSB06], to identify aspects in require-
ments engineering and risks in software development
projects [EMM09] and to evaluate the user experience
[VLR+10]. As you will see below neither the method in
general nor our implementation are specific to software
visualization but also applicable to any kind of infor-
mation visualization.

The theoretical foundation of the repertory grid tech-
nique is the “theory of personal constructs“ developed
by G. Kelly [Kel55]. Its basic assumption is that ev-
erybody constructs its own reality through his individ-
ual perception of the world. To describe and evalu-
ate elements of this world as well as to distinguish be-
tween them, people use bipolar constructs. A construct
is defined as “a way in which two or more things are
alike and thereby different from a third or more things“
[Kel55, p. 61]. These construct consist of a construct
pole (e.g. “reliable“), a contrast pole (e.g. “unreliable”)
and a construct continuum in between, i.e., different de-
grees of reliability. For example, regarding user experi-
ence a user categorizes software A as fast, reliable and
ugly and software B as slow, unreliable and handsome.
Thereby he used three bipolar constructs, “fast – slow“,
“reliable – unreliable“ and “ugly – handsome“ which
means these are the relevant attributes for him in which
the two systems differ. The repertory grid method is an
approach to make these constructs explicit and visible.
Within the terminology of the repertory grid technique
software A and B are referred to as elements, that are
described through constructs [Fra04, p. 15].

A repertory grid interview consists of several steps. For
each step multiple design decisions have to be made,
e.g., about how elements and constructs are selected. In

the following we do not discuss all possibilities, but the
research design that corresponds to our research ques-
tions, hence variants such as constructs provided by the
researcher are not reasonable for exploratory research.
In the first step the investigated elements have to be cho-
sen through the participant or the researcher. In our
case visualizations of software systems were used as
elements. Second, these elements are combined into
triads. This can be done randomly or by creating com-
binations of particular interest. Then the triads are pre-
sented successively to the participant, i.e., the partici-
pant sees exactly three elements at the same time with-
out access to the other elements.

For each triad presented, the participant has to answer
the following question: “How are any two of these alike
in some way?“, complemented by “What is the opposite
of that?“ [Fra04, p. 29]. The answer to the first question
is the construct pole and the answer to the second is the
contrast pole. It might happen that these abstract con-
structs lead to further constructs if they are investigated
in depth. It is not uncommon that a construct implies
another construct. They only vary in their level of ab-
straction. The process of using a construct to attain a
construct on a different level of abstraction is called lad-
dering and is a common part of the repertory grid inter-
view [Fra04, p. 39]. This can be done by asking “Why
appears this software more reliable to you?“. The whole
procedure is repeated by using other randomly selected
triads as long as the participant creates new constructs
to distinguish between the elements. During the inter-
view the participants have no access to any constructs
they used before. It is crucial that the interviewer un-
derstands what exactly the participant describes with a
construct. For this reason informal communication be-
tween both persons is a regular and intended part of the
repertory grid technique.

Once no new constructs can be elicited, the participant
has to assess all elements in consideration of all men-
tioned constructs. For twelve elements and, e.g., 15
constructs the participant has to make 180 decisions.
Since a repertory grid interview is already exhausting
for the participant often a 5-point rating scale is used
to simplify the process [EMM09]. During this phase
the participant has access to all 12 visualizations at any
time.

To sum up, the participants assess specified elements on
constructs they create. As the repertory grid technique
demands high standards of the interviewer and of the
research design, a pretest is advisable to detect unex-
pected difficulties.

Once the interviews are conducted successfully the re-
sulting grids can be analyzed in multiple ways. For a
qualitative interpretation the results are visualized as a
two-dimensional space based on a principal component
analysis (PCA) [Fra04, p. 86]. The distances between

elements in this space represents their similarity. Small
distances represent a high degree of similarity, whereas
large distances indicate a low degree of similarity.

Given that most constructs are mentioned only by one
or two participants a quantitative analysis of the con-
structs is not directly possible. Therefore it is necessary
to abstract from concrete constructs. This is done by as-
signing all constructs to given categories [Fra04, p. 49],
e.g., “system behavior“ and “appearance“ in the case
of the example mentioned before. This way it is pos-
sible to draw comparisons between grids of different
participants, even if these grids are based on different
elements and the participants used different constructs.

5.2 Study Design
The repertory grid technique is a very flexible method,
thus it can be applied in many ways. In the following
we describe our conducted research design and explain
the design decisions we made.

Twelve visualizations with the recursive disk metaphor
were used as elements. They were preselected based
on static code metrics such as NOS and their num-
ber of packages, classes, methods and attributes. Be-
cause the recursive disk metaphor visualizes the struc-
ture of a system the metrics were limited to structural
aspects as well. Except for NOS these structural entities
are directly represented in the visualization by glyphs
[MZ15]. The NOS were included since they are used to
ensure that small, medium and large systems are used
in the study. Table 1 gives an overview over the chosen
elements. In addition the visualizations can be accessed
online 1. The triads were created randomly and individ-
ually for each interview.

The InstantPlayer which is part of the InstantReality
platform [fCGRI15] was used to show the visualiza-
tions. The participants could freely navigate within the
model, i.e., changing the viewpoint along the x-, y- and
z-axis which includes zooming and changing the field
of view. Each visualization was presented on a separate
but similar screen.

We conducted eight repertory grid interviews with four
male and four female participants. Their age varies be-
tween 19 and 52 years. None of them has seen a re-
cursive disk visualization before. To ensure the partici-
pants focus on the visual differences and not on the un-
derlying structural differences of the software, we have
not explained the meaning of the shown visualizations
to them. The visualizations were only referred to as
“model 1“ etc., so they did not even know that the study
was about software visualization. We just determined
how the participant should call the glyphs to guaran-
tee interviewer and participant talk about the same.
This was necessary because in the pretest we detected

1 https://github.com/naraesk/aesthetics

that every participant uses different terms for naming
the same glyph. We chose easy-to-understand names,
therefore the wording differs from the regular vocabu-
lary of the recursive disk metaphor: The glyphs were
called “gray rings“, “purple disks”, “blue segments“
and “yellow segments“. Furthermore the terms “outer
gray rings“ and “inner gray rings“ were introduced. The
first one describes the root package disks and the sec-
ond term names the remaining package disks. In ad-
dition “element“ was defined to describe any glyph re-
gardless of its shape or color. Besides these small ad-
justments, we could apply repertory grid, as described
in section 5.1, without modification.

The next step after conducting the interviews is to cate-
gorize the identified constructs. The means of construct
categorization were proposed by Landfield [Lan71] and
especially for psychological grids there exist different
categorization schemes. Since we applied the reper-
tory grid technique to a new field, existing categoriza-
tion schemes are insufficient. Therefore we used a sim-
ple scheme for object-oriented software systems based
on the entities system, package, class, method, and
attribute. Every construct is now mapped to exactly
one category depending on which entity is the object
of comparison. We explain the categorization process
using the construct “many purple disks – few purple
disks“ which refers to the number of classes. Two pack-
ages can differ in their number of classes, for a class
itself this is not possible. Therefore the category of the
construct is package. Of course systems can differ in
their number of classes as well, but only the least en-
tity is used. Otherwise system would be used for every
single construct.

6 RESULTS AND DISCUSSION
The goal of this study was to reveal aesthetics for the
recursive disk metaphor. Therefore we refrain from do-
ing a large qualitative statistical interpretation of the in-
dividual constructs, because once the aesthetics were
extracted it is more meaningful to examine them in a
separate study. In this spirit the described study can be
seen as a data collection to prepare a more comprehen-
sive quantitative study. Still, we present an overview
of the identified constructs. The complete raw data is
provided online as well 1.

The study revealed 53 unique constructs that were men-
tioned by the participants although not all of them are
aesthetics since not all of them can be directly mea-
sured. Table 2 shows all mentioned constructs and their
frequency, which we will discuss briefly. To determine
the frequency we had to decide whether two constructs
have the same meaning or not, which is not trivial. The
measurable constructs tend to be precise and for the
participants they were easy to explain by pointing on
a concrete example on the screen. A construct such

as “number of gray disks“ it is easy to understand and
therefore we were able to count these constructs. In
case of less precise terms this procedure is problematic,
because participants often use a slightly different word-
ing. Therefore we only counted identical constructs.
Some of the rarely used constructs may have the same
meaning, but still appear as two independent entries,
e.g, “chaotic – logical“ (#10) and “regular – irregular“
(#17) could be considered equal. On the one hand Ta-
ble 2 shows that eleven identified constructs were used
by at least half of the participants. On the other hand 26
constructs were mentioned only once. Actually the aes-
thetics that were mentioned more often were used more
often within an interview too. However, for example the
construct “dynamic - static“ was mentioned only by one
participant nevertheless it seems to be important to him
since he used it several times. That just shows that it is
not reasonable to focus only on the frequent aesthetics
but rather one must take all of them into account. Due
to the fact that over 50% immeasurable constructs were
used by the participants it seems that in some cases the
laddering was not done intensively enough. Neverthe-
less, this only leads to less data but not false data and
does not affect the identified aesthetics.

6.1 Categorization
The categorization revealed that the recursive disk
metaphor tends to emphasize packages. Three of the
four most frequent aesthetics refer to package disks
as objects of comparisons, 48% overall. Further the
package structure affects 60% of the identified aesthet-
ics. This means that the visual appearance as well as
the assumptions about the underlying data is primarily
influenced by how classes are grouped into packages.
From our point of view this is neither intended nor
desirable. In program understanding as well as in
program analysis methods are the center of interest.
For instance most pattern as well as anti-pattern are
detected on method level [GHJV93, Lan06]. Whereas
not a single aesthetic was identified, that refers to
methods. Merely three aesthetics use classes as objects
of comparisons. In case an aesthetic depends on
the class structure it only focuses on the absence of
methods (#51) or inner classes (#42). Although the
metaphor provides more information such as the size
of individual methods, the number of methods of a
class and the proportions of these glyphs. But none of
these aspects of the visualization were recognized by
the participants.

The last column of Table 2 shows which influencing
factors an aesthetic has, whereby everything means, that
this aesthetic is influenced by the number of the dif-
ferent software entities, NOS and the layout algorithm.
This is, e.g., the case for the density of a package. The
density specifies how much of the area of a disk is filled.
By a density of 100% there is no empty space inside

Packages Classes Methods Attributes Statements
android_packages_apps_Phone 3 262 1,426 1,394 15,113

android_packages_apps_Settings 40 1,351 5,516 6,140 51,489
apache Storm 71 3,203 2,129 7,417 35,295

ChatSecureAndroid 32 620 2,257 3,334 22,371
cw-omnibus 339 1,224 2,545 7,212 36,696

disruptor 16 271 696 1,100 4,274
FreeFlow 17 73 242 467 2,014

libsvm 2 34 136 134 2,333
JUnit 66 1,163 773 3,704 10,736

Roboguice 98 1,039 2,574 7,014 30,317
Tachyon 18 913 2,153 7,255 43,808

ua-parser 5 35 58 123 741
Table 1: Code metrics of the selected elements

the disks. Changes regarding the number of classes,
the NOS of methods or the placement strategy for the
glyphs affects the density of the visualization. Some
aesthetics are influenced by multiple factors and such a
factor in turn affects multiple aesthetics at once. That is
why we were not able to extract meaningful factors via
a PCA based on the object of comparison or the cause.
The explained variance was always insufficient – below
50% for most factors. To obtain more satisfying results
about one factor per aesthetic would be necessary. All
in all we can say that the relations between aesthetics
and their cause in the underlying data are quite com-
plex.

6.2 Implications for the Recursive Disk
Metaphor

Based on the results of the study, i.e., identified aes-
thetics and applied categories we want to identify some
drawbacks of the recursive disk metaphor. Further we
suggest some modifications to improve the metaphor.
The identified aesthetics indicate that it will not be pos-
sible to detect typical anti-pattern such as brain meth-
ods, brain classes or god classes although the metaphor
was expected to be useful for this task [MZ15]. There-
fore as a first direct consequence of this study we sug-
gest to make methods more visible and distinguishable.
Since the participants were able to perceive the size
of class and package disks as well as their proportions
methods should be visualized in the same way. Further-
more a method can be considered as the smallest unit of
a software system. The presentation is more consistent
if all structure units share a similar glyph shape. Fig-
ure 4 shows a possible modified version of the recursive
disk metaphor. Methods are now represented as own
disks just as classes and packages and thereby their im-
portance to the appearance is increased. Although this
is less space-efficient we prefer it since it leads to a bet-
ter perception of the visualization.

Multiple participants chose the thickness of the bor-
der of package disks as a construct (#5). Currently the

width of a border is fixed, but when packages exist, that
only contain exactly one other package the two gray
borders looks like one thick one as shown in the left of
Figure 5. That structure can be considered as common
for java source code and it is not apparent how this in-
formation can be used to make meaningful conclusions
about the software. For example if three nested pack-
ages org, apache and common exist it appears as one
package disk with a border three times as thick (given
that the packages org and apache do not contain any
other elements). To eliminate this undesired visual dif-
ference the three borders should be merged into one
disk representing the three packages at once as shown
in the right of Figure 5.

Another notable construct is the number of outer gray
rings (#3), i.e., package disks. The variance is caused
by the number of root packages in the source code.
Once again this information is not suitable to make

Figure 4: Old (l.) and new (r.) representation of a class
with three methods

Figure 5: Old (l.) and new (r.) representation of nested
packages

statements about the software. If a program has mul-
tiple root packages it is always possible to create a
new package containing the former root packages. This
changes the visual appearance significantly although
nearly all code metrics will be unchanged. Therefore
we suggest that the visualization should always con-
tain one all-encompassing package disk to unify the ap-
pearance regardless of the existence of a corresponding
package in the source code.

Furthermore it is conspicuous, that only two partic-
ipants consider size (#22) as a suitable construct al-
though it seems like a very basic attribute of a visu-
alization. The area of the largest visualization is about
146 as big as the smallest one. This is a sign for a miss-
ing scale which makes it nearly impossible to estimate
size of a visualization. The user interface did not con-
tain any possibility to compare the size of the displayed
objects. However this can not be seen as a disadvantage
of the visualization metaphor, because the user interface
has to provide these features. Hence it should be mod-
ified to provide a visible scale, coordination system or
something similar to empower the user to compare the
size of different visualizations.

7 FUTURE WORK
The insights provided in this paper lay a foundation for
additional avenues for future work on computational
evaluation in software visualization. First, a quantified
study is in preparation to investigate the cause and the
effect of the identified aesthetics. This will help to
understand the relations between the underlying data
and these aesthetics as well as the extracted factors of
the PCAs of the repertory grid interviews. Second, the
suggested modifications to the recursive disk metaphor
have to be evaluated empirically. Furthermore the
repertory grid technique will be applied to more visu-
alization metaphors such as the city metaphor. Thereby
we will be able to compare the impact of the depicted
software entities between the different metaphors and
investigate how this influences the drawn conclusions
from a visualization.

8 CONCLUSION
In this paper, we introduced aesthetics to pave the
way towards a computational approach of evaluating
software visualizations. Although the presented work
has only made a first step towards this goal it already
provides new means to improve existing visualization
metaphors. With the mean of the repertory grid
technique we showed how aesthetics can be identi-
fied methodically. Through categorizing the found
constructs the impact of the different software entities
was made comparable. The recursive disk metaphor
overemphasizes the package structure and hinders
comparisons between methods due to their similar

appearance. We suggested some modifications to the
glyph shape and placement strategy to counteract.

9 ACKNOWLEDGMENTS
We are grateful to the volunteers who participated in
this study.

10 REFERENCES
[BKC+13] R. Borgo, J. Kehrer, D. H. S. Chung,

E. Maguire, R. S. Laramee, H. Hauser,
M. O. Ward, and M. Chen. Glyph-
based Visualization: Foundations, Design
Guidelines, Techniques and Applications.
2013.

[BRSG07] Chris Bennett, Jody Ryall, Leo Spalte-
holz, and Amy Gooch. The aesthetics of
graph visualization. In Proc. of the Third
Eurographics Conf. on Comp. Aesthetics
in Graphics, Vis. and Imaging, Computa-
tional Aesthetics’07, pages 57–64, Aire-
la-Ville, Switzerland, Switzerland, 2007.

[EMM09] Helen M. Edwards, Sharon McDonald,
and S. Michelle Young. The repertory grid
technique: Its place in empirical software
engineering research. Inf. Softw. Technol.,
51(4):785–798, April 2009.

[fCGRI15] The Fraunhofer Institute for Computer
Graphics Research IGD. InstantReality.
http://www.instantreality.org/, 2015.

[Fra04] Fay Fransella. A manual for repertory grid
technique . Wiley, Chichester, 2. edition,
2004.

[GHJV93] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Pat-
terns: Abstraction and Reuse of Object-
Oriented Design. Lect. Notes Comput.
Sci., 707:406–431, 1993.

[Hua14] Weidong Huang. Evaluating Overall
Quality of Graph Visualizations Indirectly
and Directly. In Weidong Huang, editor,
Handb. Hum. Centric Vis. Springer, New
York, 2014.

[IW03] Pourang Irani and Colin Ware. Diagram-
ming information structures using 3D per-
ceptual primitives. ACM Trans. Comput.
Interact., 10(1):1–19, 2003.

[JUn15] JUnit 4. JUnit 4, May 2015. https://
github.com/junit-team/junit.
Accessed: 2015-05-20.

[Kel55] George A. Kelly. The psychology of per-
sonal constructs. Volume I. Norton, New
York, 1955.

[Kos03] Rainer Koschke. Software visualization
in software maintenance, reverse engi-
neering, and re-engineering: a research
survey. J. Softw. Maint. Evol., 15(October
2002):87–109, 2003.

[KSB06] V.A. Khamisani, M.S. Siddiqui, and M.Y.
Bawany. Analyzing soft skills of soft-
ware engineers using repertory grid. In
Multitopic Conf., 2006. INMIC ’06. IEEE,
pages 259–264, Dec 2006.

[Lan71] A. W. Landfield. Personal construct sys-
tems in psychotherapy. Rand McNally,
Chicago, 1971.

[Lan06] Michele Lanza. Object oriented metrics in
practice : Using software metrics to char-
acterize, evaluate, and improve the de-
sign of object-oriented systems. Springer,
Berlin, 2006.

[LBI+12] H. Lam, E. Bertini, P. Isenberg,
C. Plaisant, and S. Carpendale. Empir-
ical studies in information visualization:
Seven scenarios. Vis. and Comp. Graph-
ics, IEEE Transactions on, 18(9):1520–
1536, Sept 2012.

[MZ15] Richard Müller and Dirk Zeckzer. The
Recursive Disc Metaphor: A Glyph-based
Approach for Software Visualization. 6th
Int. Conf. on Inf. Vis. Theory and Applica-
tions, 2015.

[Nor04] Donald Norman. Emotional Design. Why
We Love (or Hate) Everyday Things. Ba-
sic Books, 2004.

[PAC02] Helen C. Purchase, Jo-Anne Allder, and
David Carrington. Graph Layout Aesthet-
ics in UML Diagrams: User Preferences.
J. Graph Algorithms Appl., 6(3):255–279,
2002.

[PCA02] Helen C. Purchase, David Carrington, and
Jo-anne Allder. Empirical Evaluation of
Aesthetics-based Graph Layout. Empir.
Softw. Eng., 7:233–255, 2002.

[PMCC01] Helen C. Purchase, Matthew McGill,
Linda Colpoys, and David Carrington.
Graph drawing aesthetics and the compre-
hension of uml class diagrams: An empiri-
cal study. In Proc. of the 2001 Asia-Pacific
Symp. on Inf. Vis. - Volume 9, APVis ’01,
pages 129–137, Darlinghurst, Australia,
Australia, 2001. Australian Computer So-
ciety, Inc.

[Pur97] Helen C. Purchase. Which Aesthetic Has
the Greatest Effect on Human Understand-
ing? In Proc. 5th Int. Symp. Graph Draw.,
1997.

[TC08] Alfredo R Teyseyre and Marcelo R
Campo. An overview of 3D software
visualization. IEEE Trans. Vis. Comput.
Graph., 15(1):87–105, 2008.

[VLR+10] Arnold P O S Vermeeren, Effie Lai-chong
Law, Virpi Roto, Marianna Obrist, Jettie
Hoonhout, and Kaisa Väänänen-Vainio-
Mattila. User experience evaluation meth-
ods. Proc. 6th Nord. Conf. Human-
Computer Interact. Extending Boundaries
- Nord. ’10, page 521, 2010.

[War02] Matthew O. Ward. A taxonomy of glyph
placement strategies for multidimensional
data visualization. Information Visualiza-
tion, 1(3/4):194–210, December 2002.

[WLR11a] Richard Wettel, Michele Lanza, and Ro-
main Robbes. Software systems as cities:
a controlled experiment. 2011 33rd Int.
Conf. Softw. Eng., pages 551–560, 2011.

[WLR11b] Richard Wettel, Michele Lanza, and Ro-
main Robbes. Software systems as cities:
A controlled experiment. In Proc. of the
33rd Int. Conf. on Soft. Eng., ICSE ’11,
pages 551–560, New York, USA, 2011.
ACM.

[WPCM02] Colin Ware, Helen C. Purchase, Linda
Colpoys, and Matthew McGill. Cognitive
measurements of graph aesthetics. Inf.
Vis., 1(2):103–110, June 2002.

Construct Freq Object of
Comparison Cause

1 low density – high density 8 Package everything
2 heavily nested – little nested 8 Package package structure

3 many outer gray rings – few outer gray rings 8 System
no. of packages
package structure

4 simple – complex 7
5 thin edge of outer ring – thick edge of outer ring 5 Package package structure
6 high yellow share – less yellow share 5 Class no. of attributes
7 centered – off-center 5
8 elements distributed equally/leaning to the right 5 System everything

9 short strings of purple disks – long strings of purple disks 4 Package
package structure
no. of classes

10 chaotic – logical 4
11 many purple disks – few purple disks 4 Package no. of classes

12 few/many inner outer rings with the same size 3 System
package structure
package size

13 open strings – closed strings 3

14 many/few outer rings with the same size 3 System
package structure
package size

15 many/few purple disks with the same size 3 Package class size
16 detailed – not detailed 2
17 many/few gray rings 2 System package structure
18 harmonic – inharmonic 2
19 many/few inner gray rings 2 Package package structure
20 circular/semicircular positioning of elements 2
21 symmetrical – asymmetric 2 System everything
22 small – large 2
23 nested gray rings – no nested gray rings 2 System package structure
24 boring – interesting 2
25 one layer of purple disks – multiple layers of purple disks 2 Package no. of classes
26 unstructured - structured 2
27 predominant simple/complex purple disks 2 Package class structure
28 manageable – overloaded 1
29 balanced – not balanced 1
30 many/few purple disks with a similar structure 1 Package class structure
31 dynamic – static 1
32 (no) constantly increasing element size within a gray ring 1

33 few/many elements in the outer rings 1 System
package structure
no. of classes

34 compact – not compact 1
35 regular – irregular 1

36 few/many inner gray rings with the same size 1 System
package structure
package size

37 beautiful – less beautiful 1
38 isolated purple disks – no isolated purple disks 1
39 centered y-axis – shifted y-axis 1 System everything
40 closed – open 1
41 area with dominant color – no area with dominant color 1
42 yellow rings – yellow disks 1 Class class structure
43 orderly – disordered 1
44 simple spiral shape – complex spiral shape 1
45 small purple disks – large purple disks 1 Class class size
46 complicated – uncomplicated 1
47 loose structure – compact structure 1
48 yellow evenly distributed/concentrated on one area 1 Package class structure
49 coarse structure – fine structure 1
50 flat – deep 1
51 few/many purple disks without blue segments 1 Package class structure
52 homogeneous/heterogeneous inner gray rings 1
53 artificial – natural 1

Table 2: List of identified constructs. Aesthetics are highlighted gray.

