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1 Introduction

The interplay between geometry and topology is a widely occurring theme in modern
mathematics, whose most elementary appearance is the formula of Hopf’s Umlaufsatz :
Let c : [0, a]→ R2 be a closed smooth curve in the plane. Then the winding number of
the curve is given by the integral over the curvature:

nc = 1
2π

∫ a

0
κ(t)‖c′(t)‖dt.

This result is surprising: The quantity on the left-hand side is an integer and purely
topological – vividly speaking this means: it does not depend on small alterations
of the curve. Whereas, on the right-hand side, one integrates a real-valued function,
which does depend on the geometry – how long the curve is and how strongly it is
curved.
A first generalization of the Umlaufsatz is known as the Gauss-Bonnet theorem,

which states that for any compact surface M of genus g in R3:

2(g − 1) = 1
2π

∫
M
κ,

where now κ denotes the Gaussian curvature of the surface.
The generalizations of these statements by characteristic classes are based on de

Rham cohomology: The differential forms on a smooth manifold form a chain complex,
which depends on the geometry of the space, but the cohomology of this chain complex
is isomorphic to any real cohomology theory, e.g., to singular cohomology with real
coefficients. This means that any real cohomology class – a topological object – can be
represented by a closed differential form, a geometric object.
In these terms, the left-hand side of the equations above will be generalized by the

image of an integral cohomology class in real cohomology; the curvature on the right-
hand side will be replaced by a closed differential form (depending on the curvature)
and the integral will be expressed by taking the cohomology class of this form.

In general, characteristic classes associate cohomology classes to (isomorphism classes
of) vector bundles. For smooth bundles, there are two well-known procedures to
construct them, one which applies the geometric structure and one which uses topology
only:

The Chern-Weil-Homomorphism starts with a connection on the bundle and evaluates
an invariant symmetric polynomial on the associated curvature form, which leads to a
closed differential form, the characteristic form. As the difference of the characteristic
forms of two connections is an exact form – the exterior derivative of the transgression
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1 Introduction

form – one gets a class in de Rham cohomology which is independent of the chosen
connection and called the characteristic class of the bundle.
On the other hand one may also obtain these classes by pulling back universal

characteristic classes via the classifying map of the bundle.
Both construction have their own strengths: The characteristic form contains geo-

metric data, while the class is purely topological. The class itself actually is not
an element in real, but in integral cohomology, where algebraic torsion may deliver
finer information, which cannot be reflected by the characteristic form, as there is no
algebraic torsion over the field of real or complex numbers.

To use both, the geometric information of the characteristic form and its transgression
and the algebraic torsion information from integral cohomology in one object, one
defines differential cohomology and differentially refined characteristic classes. This
was done first by Jeff Cheeger and James Simons in [14]. The differential cohomology
theory extends integral cohomology by closed differential forms. A notable result is that
– while the classical first Chern class classifies complex line bundles up to isomorphism –
the first differential Chern class classifies complex line bundles with connection up to
isomorphism.
From this starting point there are various ideas of differential refinements of coho-

mology theories: Besides the differential characters of Cheeger and Simons, there is
an isomorphic model by smooth Deligne cohomology (see [8, 9]). On the other hand
there are various models for differential K-theory (see [11] for a survey, which includes
a discussion of the literature). A general framework for these differential refinements is
given in [12] and [10].
We want to go back to the starting point and generalize the idea of the differential

refinement to an equivariant setting, i.e., we have a Lie group G acting on a smooth
manifold M and ask for characteristic classes of equivariant bundles over M . Therefore
we need a differential form model for equivariant cohomology, which is capable to
receive a homomorphism from integral cohomology. Moreover, there should be two
constructions of real/complex equivariant characteristic classes, one via equivariant
characteristic forms and one via integral equivariant characteristic classes, which should
coincide under the homomorphism between the cohomology theories.

The construction of the differential refinement, which we will give, is an equivariant
version of smooth Deligne cohomology, but to stress that it fits into the picture of
differential refinements, we will use the term equivariant differential cohomology, even
if we will not discuss equivariant differential refinements in general.

Equivariant cohomology and simplicial manifolds

Defining equivariant cohomology H∗G(M) is a simple business using two expected
properties of this functor: homotopy invariance and that, for free actions, the equivariant
cohomology should coincide with the cohomology of the quotient. Namely, let EG be
a contractible space with a free G-action, then the diagonal action of G on EG×M
is free and the map EG×M → {∗} ×M is a homotopy equivalence. Hence, we have
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described the well-known Borel construction, which is in formulas

H∗G(M) = H∗G({∗} ×M) = H∗G(EG×M) = H∗(EG×GM),

for any cohomology theory and any coefficient group, e.g. singular cohomology with
values in Z,R or C. Here EG×GM is the quotient of the diagonal G-action on EG×M .

As short and easy this construction is, it creates a task for us: EG is even in simple
cases not a finite-dimensional manifold, hence we have no de Rham cohomology. But
EG is something similar to a manifold: Namely there is a simplicial manifold ([16, 19]),
i.e., a simplicial set such that the set of p-simplices forms a smooth manifold for each p
and all face and degeneracy maps are smooth, and the geometric realization of this
simplicial manifold is EG×GM . This will be introduced in Section 3.1.1 and we will
explain how one defines (simplicial) differential forms on a simplicial manifold. They
lead to a complex, which is bi-graded: by the form degree and the simplicial degree.
The cohomology of this double complex calculates equivariant complex cohomology. In
fact, simplicial differential forms also form a (graded) simplicial sheaf Ω•,∗C .
Using the language of simplicial sheaf cohomology, the de Rham homomorphism is

induced by the inclusion of the locally constant simplicial sheaf Z→ Ω•,∗C , as locally
constant functions.

In Section 3.1.2, we will introduce the reader to a more famous model of equivariant
cohomology using differential forms, known as the Cartan model. This is given by the
so-called equivariant differential forms, i.e., equivariant polynomial maps g→ Ω∗(M),
where the differential dC on (C[g]⊗ Ω∗(M))G is given by

(dCω)(X) = d(ω(X)) + ιX](ω(X)),

i.e. the sum of the exterior differential and the contraction with the fundamental vector
field of X, and hence increases the grading given through

twice the polynomial degree + the differential form degree

by one.
The Cartan model has the advantage that its cochain complex is substantially

slimmer than the double complex Ω•,∗ defined above, but it is not directly capable to
receive a homomorphism from integral cohomology. Therefore we apply ideas of [23] to
compare the different models of equivariant cohomology. This comparison will enable
our construction of a differential refinement of equivariant integral cohomology.

Equivariant characteristic classes and forms
After this introduction to equivariant cohomology, we will discuss equivariant charac-
teristic classes and forms in Section 3.2.
Let G act on the vector bundle E →M , i.e., we have an action on the total space

and the base space, such that the projection is equivariant. Via the Borel construction,
one can define equivariant characteristic classes easily: Take the usual characteristic
classes of EG×G E → EG×GM !
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1 Introduction

There is also a characteristic form construction (see [3]) which does not only depend
on the curvature, but also uses the moment map µ∇ of the connection ∇. This is a map
from the Lie algebra of the acting group to the endomorphisms of the vector bundle
(see Definition 3.59 for details). In this way, one obtains an equivariant characteristic
form, which is a closed equivariant differential form, i.e., an element in the Cartan
complex.

Our first important result is to prove that both constructions lead to the same class
in equivariant complex Borel cohomology (see Section 3.2). This was, on the one hand,
only shown for special cases (compare [5]) and, on the other hand, stated in general in
[23] as a citation, but the original work of Johan Dupont, which is cited, only proves
the correctness of the construction in the non-equivariant setting. Nevertheless, the
methods of Dupont can be generalized to solve the equivariant problem.

Equivariant differential cohomology

After we have achieved this understanding of equivariant characteristic forms, we can
review previous definitions critically to obtain a more satisfactory one.
There is a definition of equivariant smooth Deligne cohomology Ĥ∗G(M,Z) in [25],

and Kiyonori Gomi shows there that Ĥ2
G(M,Z) classifies G-equivariant line bundles

with connection. We will show that his definition fits, for actions of compact groups,
into a differential cohomology hexagon (Theorem 4.15) and thus can be interpreted
as a model for equivariant differential cohomology. But this definition neglects the
secondary information of the moment map and is, thus, only satisfactory in the case of
finite groups, where there is no moment and in low degrees, where the moment map
does not play a role. There are also other, less elaborated, definitions (see Remark
4.30), which are all unsatisfactory from our insight to characteristic forms.

Therefore, in Section 4.1.3, we define (full) equivariant differential cohomology
Ĥ∗G(M,Z) (using a mapping cone construction similar to the non-equivariant case in
[9]) and show (see Theorem 4.23) that for any compact Lie group G, one has the
commutative diagram

Ωn−1
G (M)�(d+ ι)Ωn−2

G (M) Ωn
G(M)cl

Hn−1
G (M,C) ĤnG(M,Z) Hn

G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)

→
a

→
d+ι

→
→

→

→R

�
I

↪→
→

→
−β

→

where the line along the top, the one along the bottom and the diagonals are exact.
In the case of the trivial group one obtains the classical differential cohomology. In

degree up to two, our definition coincides with the one of Gomi. In higher degrees one has
additional geometric data, e.g., in the case of the conjugation action of S3 = SU(2) on
itself, as discussed in Section 4.3.3, one has Ĥ4

S3(S3,Z) = H3
S3(S3,C/Z)⊕H4

S3(S3,Z) =
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C/Z⊕ Z, while we have a short exact sequence

0→ Ω1(S3)S1

�
dC∞(S3)S1 → Ĥ4

S3(S3,Z)→ Ĥ4
S3(S3,Z)→ 0,

hence we have additional transgression data.
From the hexagon, one concludes that equivariant differential cohomology is the right

group to define equivariant differential characteristic classes in, since they can refine
both, the equivariant integral characteristic class and the equivariant characteristic
form. The details of this constructions are worked out in Section 4.2.

Towards equivariant differential K-theory?

The question of defining equivariant differential K-theory will not be a topic in this
thesis. There is a definition in the case of finite groups by Michael Luis Ortiz [40], who
remarks the following difficulty: The construction of equivariant characteristic classes
as mentioned above uses the map

K0
G(M)→ K0(EG×GM), E 7→ EG×G E,

and applies the normal characteristic class to the last object. Ortiz stresses that maybe
this construction is not fine enough as it does not reflect the fixed point sets and thus
he gives a definition of the equivariant Chern character, which is no longer an element
of equivariant (Borel-)cohomology.

Remarks on notations
It might be helpful for the reader to have the following notations in mind:

• Throughout the thesis, M will denote a smooth paracompact manifold.

• Simplicial sets will be marked by •, which can occur as sub- and superscript
depending on the situation without a change of meaning.

• The sub- or superscript ∗ can denote push-forwards respectively pullbacks or
gradings of non-simplicial objects (and simplicial objects, if we only care about
the induced chain complex and not about the simplicial structure).

• In general the group acts from the left and will be denoted by G. On principal
fiber bundles the fiber group will act from the right and will mostly be denoted
by K.

• The general rule for boundary operators is: d denotes the exterior derivative for
differential forms, ∂ denotes the boundary of a simplicial set, δ is the boundary
of resolutions.

9



1 Introduction

• As the standard example of characteristic classes we have in mind are Chern
classes, we work with complex cohomology. Hence differential forms are always
complex-valued forms and the dual space of a real vector space V is V ∨ =
HomR(V,C).

• prk will denote the projection to the k-th factor in a Cartesian product.
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2 Foundations
In this chapter we will fix some basic notations and recall some well-known facts.

2.1 Group actions
Let the Lie group G act from the left on the manifold M and denote its Lie algebra by
g = TeG. There is a list of standard notations (which can be found in [44, Chapter 3]
or [17, Chapter 1]) we want to state:

1. G acts on itself by conjugation G×G 3 (g, h) 7→ ghg−1 ∈ G.

2. There is the exponential map exp: g→ G. For a definition see, e.g., [44, Prop.
3.30].

3. The adjoint action
G× g 3 (g,X) 7→ Adg(X) ∈ g

is the derivative of the conjugation in the second argument at the identity.

4. The coadjoint action Ad∨ is the dual of the adjoint action on the dual of the Lie
algebra, i.e., let f ∈ g∨, X ∈ g, then (Ad∨g f)(X) = f(AdgX).

5. Let X ∈ g. The fundamental vector field X] is defined as

X](m) = d

dt

∣∣∣∣
t=0

(etX ·m) ∈ TmM.

6. Let N be a second G-space, i.e., a space with G-action, then there is a natural
G-action on the space of maps {f : M → N} defined as (gf)(m) = gf(g−1m) for
any g ∈ G and m ∈M .

7. A superscript G marks the subspace of fixed points, i.e., those points x of the G
space, such that gx = x for any g ∈ G. In particular, C∞(M,N)G is the space
of smooth equivariant maps from M to N .

2.2 Geometry
2.2.1 (Equivariant) bundles
Before we are going to recall the definition of bundles in detail, we want to remark
the following: An important property of bundles that one would like to have, is that a
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2 Foundations

bundle over X × [0, 1] is the same as an isomorphism of bundles over the topological
space X. This does not hold in general, but there are two ways to obtain this property:
restrict your base spaces X to be paracompact or restrict the bundle you investigate
to so called ‘numerable bundles’ (compare [27, Section 4.9.]). We will choose the
first option and hence assume, that all topological spaces, occurring in this thesis, are
paracompact.

First, we will define principal bundles and afterwards we will turn attention to vector
bundles.

Definition 2.1 (see, e.g., [17, p.56]) Let G and K be Lie groups. A G-equivariant
principal K-bundle is a continuous map π : E → B of topological spaces, such that the
following conditions hold:

1. K acts freely from the right on E and π is K-invariant.

2. for every point b ∈ B there is a neighborhood U and an K-equivariant homeo-
morphism ϕ : π−1(U)→ U ×K over U , i.e., π = pr1 ◦ϕ and

ϕ(xk) = (pr1(x),pr2(ϕ(x))k)

for any x ∈ π−1(U) and k ∈ K.

3. G acts from the left on E and B and π is G-equivariant.

4. The actions of G and K commute.

E is called total space and B base space of the bundle. Furthermore, the maps ϕ are
called local trivializations.
The bundle is called smooth, if E and B are smooth manifolds, π is a smooth

map, both actions are smooth and the trivializations ϕ above can be chosen to be
diffeomorphisms.

If G is the trivial group, one omits the attribute equivariant.

Remark 2.2 There is a more general definition of equivariant bundles (compare [30]),
where one imposes a stronger condition on the trivializations. This stronger condition
can be omitted if K is compact [30, Cor. 1.5.] or if K is a closed subgroup of Gln [30,
Prop 1.11.]. This point will not be relevant in our discussions.

Definition 2.3 (see [17, p. 56]) A morphism of (smooth) G-equivariant principal
K-bundle is a continuous (smooth) map of the total spaces, which is equivariant with
respect to G and K.

Given a principal K-bundle, there is the following description by local data, from
which the bundle can be reconstructed: Let U = {Uα} be an open cover of the base space
of some principal-K-bundle such that there are trivializations ϕα : π−1(Uα)→ Uα ×K.
If Uα ∩ Uβ 6= ∅ consider

ϕβ ◦ ϕ−1
α : (Uα ∩ Uβ)×K → (Uα ∩ Uβ)×K.

12



2.2 Geometry

As both trivializations are over the base, this map is of the form

ϕβ ◦ ϕ−1
α (x, a) = (x, gβα(p) · a), a ∈ K,x ∈ Uα ∩ Uβ,

for some smooth map gβα : Uα ∩ Uβ → K. The set {gβα} is called the collection of
transition functions of the bundle with respect to the cover and clearly satisfy the
cocycle conditions

gγβ · gβα = gγα, on Uα ∩ Uβ ∩ Uγ
gαα = e ∈ K at any point in Uα.

Definition 2.4 (see, e.g., [17, p. 56]) The pullback of a principal-K-bundle E p→M
along the continuous (smooth) map f : N →M is the triple (f∗E, π, f̄), such that

• π : f∗E → N is a (smooth) principal-K-bundle

• f̄ : f∗E → E is a homomorphism of (smooth) principal-K-bundle

• f ◦ π = p ◦ f̄

and this triple is universal in the sense, that for any other triple (Q, q1, q2) with these
three properties, there is a unique map u, such that

Q

f∗E E

N M
→

q1

→

q2

→
∃!u

→
f̄

→ π → p

→
f

commutes. The pullback of a G-equivariant bundle is defined analogously by imposing
all maps to be G-equivariant.

Note that the pullback is only defined up to unique isomorphism. The existence of a
pullback is given by the construction f∗E = {(v, x) ∈ E ×N |f(x) = π(v)} ⊂ E ×N ,
which yields an equivariant bundle (with the diagonal action), if E and f are equivariant.

Even if the definition of morphism of principal K-bundles is more general, they are
actually of a very special type:

Lemma 2.5 (compare, e.g., Proposition 8.6 of [17, Ch. I]) Any homomorphism of
principal K-bundles is a pullback.

Proof. Let

E′ E

M ′ M

→
f̄

→

π′ → π
→
f

be homomorphism of principal-K-bundles and the triple (Q, q1, q2) as above.
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2 Foundations

First assume E′ = M ′ × K is trivial. Then define u = (u1, u2) : Q → M × K by
u1(q) = q1(q) and u2(q) ∈ K such that (f̄(q1(q), e))u2(q) = q2(q). This is well defined
as K acts free and transitive on the fibers. Moreover, one sees that this map is smooth
by taking local sections (what is the same as local trivializations) of E → M . As f̄
is equivariant, u is a map, such that all triangles commute. Assume u′ = (u′1, u′2) is
another such map, then π′ ◦ u′ = q1 implies u′1 = u1 and f̄ ◦ u = q2 = f̄ ◦ u′ implies
f̄(q1(q), e))u2(q) = f̄(q1(q), e))u′2(q), hence u2 = u′2.
For general E′: Cover M ′ = ⋃

α Uα by open sets, which trivialize E′. For any open
set Uα there is a map uα : q−1

1 (Uα)→ E′|Uα and by uniqueness, these maps coincide
on intersections Uα ∩ Uβ, hence they define a global map u : Q→ E′ as claimed.

There is a special principal K-bundle such that all principal K bundles are (up to
unique isomorphism) pullbacks of this bundle.
Definition 2.6 (see, e.g., [27, pp. 53-54]) The principal K-bundle EK → BK is
called universal, if for each principal K-bundle E → X, there exists a continuous map
f : X → BK, such that f∗EK is isomorphic to E and the map f is unique up to
homotopy.
Remark 2.7 Note the following:

1. The base space of a universal principal K-bundle, BK, is called the classifying
space of K

2. The universal bundle can also be characterized by the requirement that EK is a
contractible topological space with free K-action (compare, e.g., [38, Theorem
7.4].

3. Universal K-bundles exist, as there is an explicit construction of an universal
K-bundles for any Lie group, which goes back to [36]. We will apply, in particular
in Section 3.2, a slightly different concrete construction of EK → BK.

Let us now turn attention to vector bundles shortly.
Definition 2.8 (Def. 1.1 of [27, Chapter 3]) A (smooth) real (complex) vector bundle
is a continuous (smooth) map π : E → B, such that each fiber Eb := π−1(b), b ∈ B, has
the structure of a real (complex) vector space and for any point b ∈ B there is an open
neighborhood U of b and a homeomorphism (diffeomorphism) ϕ : π−1(U)→ U × Rn
(Cn respectively) over U , which is fiberwise linear.

The most important example of vector bundles are the tangent bundle TM of a
smooth manifold M . In this case the fiber above x ∈M is denoted by TxM .
Definition 2.9 (Def. 2.1 of [27, Chapter 3]) A morphism of (smooth) vector bundles
(f, f̄) : (E,B, π)→ (E′, B′, π′) is a pair of continuous (smooth) maps f : B → B′ and
f̄ : E → E′ such that the diagram

E E′

B B′

→
f̄

→ π →

π′

→
f

14



2.2 Geometry

commutes and such that the map between the total spaces f̄ : E → E′ is fiberwise
linear.

Definition 2.10 (see [17, p. 67]) A G-equivariant vector bundle is a vector bundle
π : E → B, where E and B are G-spaces π is equivariant and G acts by morphism of
vector bundles.

Definition 2.11 A morphism of G-equivariant vector bundles is a morphism of vector
bundles (f̄ , f), such that both maps are G-equivariant.

The definition of pullbacks of vector bundles is completely analogous to the case of
principal bundles: just replace the term ‘principal K-’ by ‘vector’. Note that in the
category of vector bundles, it does not hold, that any morphism is a pullback. This is
only true for morphism which are fiberwise isomorphisms (see, e.g., [37, Lemma 2.3]).
One can construct new bundles out of old ones (compare [29, III,§4]): Given a

(continuous) functor on the category of vector spaces, then one performs functorial
operations on vector bundles by performing them fiberwise:

• Let E be a vector bundle. The fibers of the dual bundle E∨ are the dual spaces
E∨x = Hom(Ex,C) of the fibers of E. In particular T∨M is called the cotangent
bundle and smooth sections of T∨M are called 1-forms.

• Given two bundle E and F over the same base. There is the Whitney sum
E ⊕ F and the tensor product E ⊗ F with fibers (E ⊕ F )x = Ex ⊕ Fx and
(E ⊗ F )x = Ex ⊗ Fx respectively.

• Combining direct sums and tensor products, one obtains the tensor algebra⊕
k∈NE

⊗k, whose quotient by the ideal of symmetric tensor (i.e., the ideal
generated in the fiber at x by v⊗w+w⊗ v for v, w ∈ Ex) is the exterior algebra
Λ∗E (where the degree is the smallest tensor degree of a representative). The
image of the product ⊗ in ⊕k∈NE

⊗k is called ∧-product. Sections of Λ∗T∨M
are called (complex valued) differential forms and the algebra of all differential
forms is denoted by Ω∗(M).

• Given again the vector bundle E on M , Ω∗(M,E) denotes the space of sections
of Λ∗T∨M ⊗ E, so called differential forms with values in E. In particular, given
a vector space V , Ω∗(M,V ) = Ω∗(M,M × V )

2.2.2 Derivations and Connections
There are more operations on differential forms, which will be applied later on. This
section is a collection of [29, V,§§4-5] and [22, 1.F-G].

Definition 2.12 Let ω ∈ Ωn(M) be an n-form on M and X a vector field. The
contraction of ω by X is the n− 1-form ιXω ∈ Ωn−1(M) defined by

ιXω(x)[v2, . . . , vn] = ω(x)[X(x), v2, . . . , vn],

for any x ∈M and v2, . . . , vn ∈ TxM .
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Definition 2.13 The Lie derivative of a differential form ω ∈ Ωn(M) along a vector
field X on M is defined as

LXω = d

dt

∣∣∣∣
t=0

α∗tω,

where α : R×M ⊃ U →M is the flow of the vector field X, i.e., α′(t, x) = X(α(t, x)),
which is uniquely defined on an open neighborhood of 0 ∈ R for any x ∈M (see [29,
IV,§1]).
Definition + Proposition 2.14 For any n ∈ N, there is a unique operator, the
exterior derivative, d : Ωn(M)→ Ωn+1(M), such that

1. d is compatible with restrictions to open subsets,

2. for p = 0, d : C∞(M) → Ω1(M) is the differential on functions, i.e., df(X) =
LXf ,

3. for f ∈ C∞(M), we have d(df) = 0,

4. for α ∈ Ωn(M) and β ∈ Ω∗(M), we have

d(α ∧ β) = dα ∧ β + (−1)nα ∧ dβ.

The following proposition collects important properties of these operations.
Proposition 2.15 On any smooth manifold M , the following holds:

1. d ◦ d = 0,

2. d is functorial, i.e., for any smooth map ϕ : M → N , d ◦ ϕ∗ω = ϕ∗ ◦ d,

3. for a vector field X on M , LX ◦ d = d ◦ LX and LX = d ◦ ιX + ιX ◦ d.
By the first assertion of Proposition 2.15, the pair (Ω∗(M), d) is a cochain complex,

thus there is an cohomology theory.
Definition 2.16 (see, e.g, [29, p.490]) The de Rham cohomology of M is defined as

Hn
dR(M) = ker

(
d : Ωn(M)→ Ωn+1(M)

)
�dΩn−1(M).

Differential forms in the kernel of d are called closed forms and differential forms in
the image of d are called exact forms. Thus, in this terminology, de Rham cohomology
is defined as the quotient of closed forms modulo exact forms.
Remark 2.17 Observe that the chain complex

Ω0(M) d→ Ω1(M) d→ Ω2(M) d→ . . .

induces for any n an exact sequence

0→ Hn
dR(M)→ Ωn(M)�dΩn−1(M)

d→ Ωn+1(M)cl → Hn+1
dR (M)→ 0.

This follows directly from the definition, as Hn
dR(M) = ker(d : Ωn(M)�dΩn−1(M) →

Ωn+1(M)cl) and Hn+1
dR (M) is the cokernel of this map.
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In our discussions of vector bundles and principal fiber bundles later, we will make
use of the notation of a connection. Different authors prefer different notations, what
arises naturally as the object one wants to define is a split of some exact sequence
(compare [29, p. 57]). Namely, let π : E →M be a vector bundle. For any x ∈M , there
is the inclusion Ex → E as fiber at x, which induces a map T (Ex)→ TE. Moreover,
as T (Ex) = Ex × Ex, there is an isomorphism π∗E →

⋃
x∈M T (Ex). This map yields,

together with Tπ, a short exact sequence of vector bundles

0→ π∗E → TE → π∗TM → 0

over E. There are many ways to say what a split of this sequence is. We prefer the
following:

Definition + Proposition 2.18 (see, e.g.,[9, Section 2.1]) Let E be vector bundle
over M .

1. A connection on E is a mapping

∇ : Ω0(M,E)→ Ω1(M,E)

which satisfies a Leibniz rule

∇(fϕ) = df ∧ ϕ+ f∇ϕ for f ∈ Ω0(M,C), ϕ ∈ Ω0(M,E).

2. The connection ∇ extends uniquely to a linear map ∇ : Ω∗(M,E)→ Ω∗+1(M,E)
satisfying the Leibniz rule

∇(ω ∧ ϕ) = dω ∧ ϕ+ (−1)kω ∧∇ϕ for ω ∈ Ωk(M,C), ϕ ∈ Ω∗(M,E)

3. The map ∇ ◦ ∇ : Ω0(M,E) → Ω2(M,E) is C∞(M,C)-linear. Hence there is a
section R∇ ∈ Ω2(M,EndE) of the endomorphism bundle, such that

∇ ◦∇ϕ = R∇ϕ for all ϕ ∈ Ω0(M,E).

One calls R∇ the curvature of the connection.

One can do an analogous construction for principal G-bundles (compare [19, pp.45-
49]): Let π : E → M be a principal G-bundle. The action of the Lie algebra on
E

E × g 3 (x,X) 7→ d

dt

∣∣∣∣
t=0

x exp(tX) ∈ TE

actually is a map onto the kernel of Tπ. Thus we have an exact sequence

0→ E × g→ TE → π∗TM → 0,

for which one defines a G-equivariant split:

17
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Definition 2.19 A connection on a principal G-bundle π : E → M is a 1-form
ϑ ∈ Ω1(E, g) satisfying:

1. ϑx ◦ νx = idg, where νx : g→ Tx(E) is the differential of the map g 7→ xg.

2. R∗gϑ = Adg−1 ◦ϑ for any g ∈ G, where Rg denotes the right translation of G on
E.

It is an immediate corollary of the definition that convex combinations of connections
are a connection again. On a trivial principal G-bundle M × G → M , there is a
connection given by the derivative of the left multiplication Lg−1 : T(m,g)(M ×G)→
TgG→ TeG = g.

Recall, that one has the Lie bracket [·,·] : g⊗g→ g, which induces by past composition
a map Ω2(E, g⊗ g)→ Ω2(E, g). For a 1-form ϑ ∈ Ω1(E, g), [ϑ, ϑ] denotes the image of
ϑ ∧ ϑ under the Lie bracket.

Definition 2.20 The curvature of a connection ϑ ∈ Ω1(E, g) is defined to be the
2-form

Ωθ := dϑ+ 1
2[ϑ, ϑ] ∈ Ω2(E, g).

2.2.3 Sheaves
Clearly, differential forms can not only defined for any manifold, but also for every open
subset of a manifold as this is itself a manifold. Moreover, given two differential forms,
which are defined on open subsets and coincide on the intersection, there is a form on
the union such that the two given forms are its restrictions to the corresponding open
set. This behavior of functions is axiomatized in the Definition of sheaf, what is one of
the notational foundations of the definition of cohomology, which we will apply.

Definition 2.21 (see, e.g., [26, p. 61]) Let B be an abelian category. A presheaf F
of objects of B on a topological space X consists of an object of B, denoted by F(U),
for any open subset U ⊂ X and for any inclusion V ⊂ U of open subsets of X a
B-morphism ρUV : F(U)→ F(V ), such that the following conditions hold:

1. F(∅) = 0, where ∅ is the empty set,

2. ρUU is the identity map F(U)→ F(U), and

3. if W ⊂ V ⊂ U are three open subsets, then ρUW = ρUV ◦ ρVW .

The presheaf is called sheaf , if additionally for any open subset U ⊂ X and {Vα} an
open cover of U

4. if s ∈ F(U) an element, such that s|Vα := ρUVα(s) = 0 for all α, then s = 0, and

5. if for each α sα ∈ F(Vα) is an element, such that for each pair α, β, sα|Vα∩Vβ =
sβ|Vα∩Vβ , then there is an element s ∈ F(U) such that s|Vα = sα.
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Example 2.22 Let M be a manifold. The assignment

M ⊃ U 7→ C∞(U,C)

is, as one checks directly from the definition, a sheaf of rings.

Definition 2.23 (see [26, p. 62]) Let F and G be (pre-)sheaves on a topological space
X. A morphism of (pre-)sheaves ϕ : F → G consists of morphisms ϕ(U) : F(U)→ G(U)
for each open set U ⊂ X, such that whenever V ⊂ U is an inclusion, the diagram

F(U) G(U)

F(V ) G(V )

→ ρFUV

→
ϕ(U)

→ ρGUV

→
ϕ(V )

is commutative.

Definition + Proposition 2.24 (Prop.+Defn. 1.2 in [26, Chapter II]) Given a
presheaf F , then there is a sheaf F+ and a morphism ϑ : F → F+, with the property,
that for any sheaf G and any morphism ϕ : F → G, there is a unique morphism
ψ : F+ → G such that ϕ = ψ ◦ ϑ. Furthermore the pair (F+, ϑ) is unique up to unique
isomorphism and F+ is called the sheaf associated to the presheaf F

Definition 2.25 (see [26, p. 65]) Let f : X → Y be a map of topological spaces. The
inverse image sheaf f−1F of a sheaf F on Y is the sheaf associated to the presheaf
U 7→ limV⊃f(U)F(V ). Here, the limit is ranges over all open sets V ∈ X containing
f(U).

Many of the sheaves, which will occur in this thesis, have another property, which is
of high relevance in the context of cohomology.

Definition 2.26 (see 5.10 of [44]) A sheaf F on X is called fine, if for each locally
finite open cover {Uα} of X there exists for each α an endomorphism fα of F such that

1. supp fα ⊂ Uα and

2. ∑α fα = id.

Here, supp fα is the support of fα, i.e., the complement of the union of all open sets U
such that fα(U) : F(U)→ F(U) is the zero morphism.

Example 2.27 (compare 5.10 of [44]) Let M be smooth manifold. The sheaf C∞ is
fine, as the existence of a partition of unity {ϕα} subordinated to a locally finite cover
{Uα}α∈A of M (see, e.g., [44, Theorem 1.11]) induces endomorphisms

fα(U) : C∞(U) 3 s 7→ s · ϕα ∈ C∞(U).

On the other hand the sheaf U 7→ {h : U → Z|h continuous}, called locally constant
sheaf Z, is not fine, if the manifold has positive dimension.
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Definition 2.28 (compare [26, p. 109]) Let M be a manifold. A sheaf of C∞-modules
is a sheaf of abelian groups F on M , such that for each open set U ⊂ M , F(U) is
an C∞(U)-module and the module structure is compatible with restrictions, i.e., the
diagram

C∞(U)×F(U) F(U)

C∞(V )×F(V ) F(V )

→

→ ρC∞UV ×ρFUV → ρFUV
→

commutes for any inclusion of open sets V ⊂ U ⊂M .

Lemma 2.29 (compare 5.28 of [44]) Any sheaf F of C∞-modules is fine.

Proof. Take a partition of unity and the endomorphisms as in Example 2.27. By the
module structure on the sheaf F the endomorphisms of C∞ turn into the desired
endomorphisms of F .

Remark 2.30 Actually, another view on sheaves fits better to the functorial properties
of cohomology theories. Objects like, e.g., differential forms are not only defined for
a single manifold, but for any manifold in a functorial manner. Thus the object one
has, is a functor from the category of smooth manifolds to, let’s say, the category of
abelian groups. How to formulate the properties with respect to covering of the sheaf?
Therefore we need an additional structure on the category of manifolds, a so called
Grothendieck topology, which turns the category into a site.
For the points, which we want to make, this language is not necessary, because we

will not draw to much attention on the functorial properties of the cohomology theory
we will define.

2.3 Topology
2.3.1 Simplices
The standard n-simplex ∆n is the convex hull of the standard basis in Rn+1. That is

∆n =
{
t = (t0, . . . , tn) ∈ Rn+1|ti ≥ 0 for all i,

∑
i

ti = 1
}
,

what is a closed subset of the hyperplane

V n =
{
t = (t0, . . . , tn) ∈ Rn+1|

∑
i

ti = 1
}
.

The geometric structure of the simplex is given in the following way. The tangent
space of the simplex equals the restriction of the tangent space of V n to ∆n, and a
differential k-form on ∆n is differential k-form on V n, where forms which coincide on
any open neighborhood of ∆n are identified. (By a standard argument it is sufficient
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to define the form on any open neighborhood of the simplex). The face maps of the
simplex are

∂i : ∆n−1 → ∆n, i = 0, . . . , n
(t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

From the viewpoint of category theory on thinks differently about simplices (compare,
e.g., [24, Section I.1]):

Definition 2.31 The simplex category ∆ is the category, whose objects are non empty
finite ordered sets

[p] = {0 < 1 < . . . < p}, for p ∈ N,

and the set of morphisms ∆(p, q), p, q ∈ N is the set of order preserving maps f : [p]→
[q].

The morphisms are generated by coface maps ∂i : [p − 1] → [p], which is the map
that misses i and codegeneracy maps σi : [p]→ [p− 1], which is uniquely determined
by hitting i twice. These maps satisfy the following cosimplicial relations:

∂j∂i = ∂i∂j−1 if i < j

σj∂i = ∂iσj−1 if i < j

σi∂i = 1 = σi∂i+1

σj∂i = ∂i−1σj if i > j + 1
σjσi = σiσj+1 if i ≤ j

2.3.2 Chain and double complexes

We will also need some homological algebra. The material can be found in Chapter 1
of [45].
Let B be an abelian category.

Definition 2.32 A cochain complex C = (C, d) in B is a family {Cn}Z of objects of
B, s.t. there exist some k ∈ Z with Cn = 0 for all n < k, together with morphisms
d = dn : Cn → Cn+1 such that d ◦ d : Cn → Cn+2 is the zero. The kernel of dn is the
module Zn of cocycles and the image of dn−1 is the module Bn of coboundaries. As
d2 = 0, we have

{0} ⊂ Bn ⊂ Zn ⊂ Cn

and the quotient Hn(C, d) := Zn/Bn is called n-th cohomology of the cochain complex
C.
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Remark 2.33 In general one would prefer the term bounded below cochain complex
for the object defined in the last definition. As all our cochain complexes will we
bounded below, we skip the attribute.

Given two chain complex C,D. A morphism f : (C, dC)→ (D, dD), also called chain
complex map, is a family of morphisms fn : Cn → Dn in B for any n ∈ N, such that

fn+1 ◦ dnC = dnD ◦ fn,

i.e., f commutes with the coboundary maps.
Thus, there is a category of Cochain complexes and in fact Cochain complexes in

an abelian category form themselves an abelian category. Thus one may iterate the
procedure and forms cochain complexes of cochain complexes. In general one prefers a
slightly different, but equivalent object.

Definition 2.34 A double complex (C, dv, dh) in B is a family of {Cp,q}p,q∈N of objects
in B together with maps

dv : Cp,q → Cp+1,q and dh : Cp,q → Cp,q+1,

called vertical and horizontal coboundaries, such that d2
v = d2

h = dvdh + dhdv = 0.

One can easily turn a cochain complex of cochain complexes into a double complex:
Just change the sign of the boundary operator in every other column. This turn
the commuting boundaries into anti-commuting operators. To see, why the anti-
commutativity is useful, take a look at the following procedure, which reduces a double
complex to a cochain complex:

Definition 2.35 The total complex of a double complex (C, dv, dh) is the cochain
complex

totC :=

 ⊕
p+q=n

Cp,q


n∈N

, dv + dh

 .
Clearly d = dv + dh squares to zero. Moreover, the cohomology of the double complex
is defined as

Hn(C, dv, dh) = Hn(totC, dv + dh).

Example 2.36 Let X be a topological space and A an abelian group. Denote by
Sn(X) the set of continuous maps ∆n → X, so called singular n-simplices in X. The
singular cochain groups Sn(X,A) consists of all maps Sn(X) → A with the groups
structure induced from A. The boundary of a cochain is defined as

df(σ) :=
n+1∑
i=0

(−1)if(σ ◦ ∂i),

for any σ : ∆n+1 → X. It is a short exercise to see, that d2 = 0. The groups

Hn(X,A) = Hn
sing(X;A) := Hn(Sn(X,A), d)

are called singular cohomology of X with values in A.
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Remark 2.37 The short exact sequence of abelian groups

0→ Z→ C→ C/Z→ 0

yields short exact sequences

0→ Sn(X,Z)→ Sn(X,C)→ Sn(X,C/Z)→ 0

for any topological space X and any n ∈ N, which commute with the coboundary maps.
Thus by the Snake lemma (see/watch [15] for a proof), there is a long exact sequence

. . .→ Hn−1(X,C)→ Hn−1(X,C/Z) β→ Hn(X,Z)→ Hn(X,C)→ . . .

known as the Bockstein sequence. The connecting morphism β is called Bockstein
(morphism).

We will apply more operations on cochain complexes.

Definition 2.38 The truncation below n of a cochain complex is the cochain complex

(
C≥n

)i
=
{

0 if i < n

Ci if i ≥ n,

with the same boundary maps, if the Ci is not replaced by zero. The truncation above
n is given by C<n = C/C≥n.

Observe, in particular, that Hn(C≥n) = Zn.

Definition 2.39 Let C be a cochain complex. The shifted complex C[p] is defined as

C[p]i := Ci+p, diC[p] := (−1)pdi+pC .

Definition 2.40 Let f : C → D be a map of cochain complexes in an abelian category.
The cone of f is a chain complex defined by

Cone(f)i := Ci+1 ⊕Di, dCone(x⊕ y) := (−dCx⊕ (dDy − f(x)))

Lemma 2.41 The cone fits into a short exact sequence of chain complexes

0→ D → Cone(f)→ C[+1]→ 0

and hence induces a long exact sequence in cohomology

. . .→ Hn−1(Cone(f))→ Hn(C) f→ Hn(D)→ Hn(Cone(f))→ . . . .
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2.3.3 Characteristic classes
Let A be a principal ideal domain, e.g., Z,R or C.

Definition 2.42 (Def. 5.1 of [19]) A characteristic class c for principal K-bundles
associates to every isomorphism class of topological principal K-bundles π : E → X
a cohomology class of c(E) ∈ H∗(X,A), such that c((f̄ , f)∗E) = f∗c(E) for every
pullback-diagram

E′ E

X ′ X.

→
f̄

→

π′ → π
→
f

If A = Z the class is called integral.

Theorem 2.43 (Theorem 5.5 of [19]) The map associating to a characteristic class c
for principal K-bundles the element c(EK) ∈ H∗(BK) is a one to one correspondence.

Thus there is in particular a one to one correspondence between integral characteristic
classes and H∗(BK,Z).
For many important Lie groups, the cohomology of the classifying space can be

described by polynomials.

Definition 2.44 (see, e.g., [19, p. 61]) Let V be a finite-dimensional vector space. For
p ≥ 1 let Sp(V ∨) denote the vector space of symmetric complex valued multilinear
functions in p variables on V . In other words P ∈ Sp(V ∨) is a linear map P : V ⊗ . . .⊗
V → C which is invariant under the action of the symmetric group on the entries. The
map

◦ : Sp(V ∨)⊗ Sq(V ∨)→ Sp+q(V ∨),

given by

P ◦Q(v1, . . . , vp+q) = 1
(p+ q)!

∑
σ

P (vσ(1), . . . , vσ(p))Q(vσ(p+1), . . . , vσ(p+q)),

where the sum runs through all permutations of 1, . . . , p+ q, defines a product on the
graded sum ⊕

p≥0 S
p(V ∨) (where S0(V ∨) = C). The graded algebra thus obtained is

denoted by S∗(V ∨).

Let K be a Lie group. The adjoint action on the Lie algebra k induces an action on
the Sp(k∨) for every p:

(kP )(v1, . . . , vp) = P (Adk−1 v1, . . . ,Adk−1 vp), v1, . . . , vp ∈ k, k ∈ K.

Definition 2.45 (see, e.g., [19, p. 62]) Let K be a Lie group. The K-invariant part of
the graded algebra S∗(k∨) is called the algebra of invariant symmetric polynomials,

I∗(K) =
(
S∗(k∨)

)K
.
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Theorem 2.46 (Theorem 8.1 of [19]) Let K be a compact Lie group, then there is a
natural isomorphism

I∗(K)→ H∗(BK,C).

Moreover, note that any Lie group K with a finite number of connected components
(see the Remark after [19, Theorem 8.1]) is contractible to a compact subgroup K̃
and thus its cohomology is given by invariant polynomials on this subgroup I∗(K̃) ∼=
H∗(BK̃,C) ∼= H∗(BK,C).
The polynomials which correspond to integral cohomology classes will be called

integral.

There is a completely different way of constructing characteristic classes, known as
Chern-Weil-Construction.

Definition 2.47 (compare Def. 2.39 of [9]) A characteristic form ω for principal
K-bundles of degree n associates to each connection ϑ ∈ Ω1(E, k) on a smooth principal
K-bundles π : E →M a closed differential form ω(ϑ) ∈ Ωn

cl(M), such that ω((f̄ , f)∗ϑ) =
f∗ω(ϑ) for every pullback-diagram

E′ E

M ′ M.

→
f̄

→
π′ → π
→
f

It can be shown (see, e.g., [9, Lemma 2.51]) that the difference between the charac-
teristic forms of two connections is an exact form and hence the equivalence class of a
characteristic form ω(ϑ) in de Rham cohomology is a characteristic class, denoted by
ω(E). Moreover, any invariant symmetric polynomial yields a characteristic form. We
will discuss both procedures – from the form to the class and from the polynomial to
the form – later in a slightly more complicated context, see Theorem 3.48.

Definition 2.48 (Def. 2.85 of [9]) . A characteristic form ω is called integral if
ω(E) ∈ H∗(M,C) is integral, i.e., lies in the image of H∗(M,Z)→ H∗(M,C), for every
principal K-bundle E →M .

We are now turning to principal Gln-bundles, what is the same as vector bundles.
As the map H∗(BGln,Z) → H∗(BGln,C) is injective, one can show the following
statement:

Lemma 2.49 (Theorem 2.117 of [9]) An integral characteristic form for principal
Gln-bundles defines uniquely an integral characteristic class for principal Gln-bundles
such that the image in complex cohomology coincides for every bundle.

Example 2.50 An important example of integral characteristic forms and classes are
Chern classes. The Lie algebra of Gln is the vector space of all n× n matrices. The
Chern polynomials Ck ∈ Ik(Gln) are defined by

det
(
λ · idn×n−

1
2πiA

)
=
∑
k

Ck(A, . . . , A)λn−k (2.1)
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and induce the integral Chern classes and Chern forms (compare, e.g., [19, p. 68],[9,
Def 2.42]).
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3.1 Models for equivariant cohomology
Let M be a smooth manifold acted on from the left by a Lie group G. To define
equivariant cohomology one uses two properties which one expects from such a theory:
it should be homotopy invariant and for free actions, the equivariant cohomology should
be the cohomology of the quotient. Recall from Remark 2.7 that the total space of the
classifying bundle EG is a contractible topological space with free G-action. Hence
EG ×M has the homotopy type of M and the diagonal action is free. Hence one
defines

H∗G(M) := H∗(EG×GM),

where EG×GM is the quotient of EG×M by the diagonal action. We are interested
in differential form models for equivariant cohomology, but in general EG is not a
finite-dimensional manifold, hence we cannot use the usual de Rham cohomology. But
there is a model for EG, which consist of finite dimensional manifold:

3.1.1 Simplicial manifolds and differential forms
The model of EG×GM we are going to use is a given by a simplicial manifold.

Definition 3.1 (see, e.g., [19, p.89]) A simplicial manifold is contra-variant functor
from the simplex category ∆ to the category of smooth manifolds.

Explicitly this is an N-indexed family of manifolds with smooth face and degeneracy
maps satisfying the simplicial relations, i.e.

∂i ◦ ∂j = ∂j−1 ◦ ∂i, if i < j

σi ◦ σj = σj+1 ◦ σi, if i ≤ j

∂i ◦ σj =


σj−1 ◦ ∂i, if i < j

id, if i = j, j + 1
σj ◦ ∂i−1, if i > j + 1

Example 3.2 Our most important example of a simplicial manifold is the following
(compare [25, p.316],[23, section 3.2]):

G• ×M = {Gp ×M}p≥0,
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where Gp stands for the p-fold Cartesian product of G. The face maps Gp ×M →
Gp−1 ×M are given as

∂0(g1, . . . , gp, x) = (g2, . . . , gp, x)
∂i(g1, . . . , gp, x) = (g1, . . . , gi−1, gigi+1, . . . , gp, x) for 1 ≤ i ≤ p− 1
∂p(g1, . . . , gp, x) = (g1, . . . , gp−1, gpx)

and the degeneracy maps for i = 0, . . . , p by

σi : Gp ×M → Gp+1 ×M
(g1, . . . , gp, x) 7→ (g1, . . . , gi, e, gi+1, . . . , gp, x).

These maps satisfy the simplicial relations. In particular for p = 1 the map ∂1 equals
the group action, while ∂0 is the projection onto the second factor, i.e. onto M .

Definition 3.3 (see, e.g., [19, p.75]) The (fat) geometric realization of a simplicial
manifold M•, is the topological space

‖M•‖ =
⋃
p∈N

∆p ×Mp/ ∼

with the identifications

(∂it, x) ∼ (t, ∂ix) for any x ∈Mp, t ∈ ∆p−1, i = 0, . . . , n and p = 1, 2, . . . .

Example 3.4 The geometric realization of the simplicial manifold G• ×M is a model
of EG×GM and in particular if M is single point the geometric realization of G• × pt
is a model of the classifying space BG (compare [19, pp.75]).

Before giving a differential form model for equivariant cohomology, we will explain
sheaves and sheaf cohomology for simplicial manifolds, as this is the technical basis for
all further constructions and definitions.

Definition 3.5 (see [16, (5.1.6)]) A simplicial sheaf on the simplicial manifold M• is
a collection of sheaves F• = {Fp}p∈N, where, for each p, Fp is a sheaf on Mp and there
are morphisms ∂̃i : ∂−1

i Fp → Fp+1 and σ̃i : σ−1
i Fp+1 → Fp satisfying the simplicial

relations as stated above.

The simplicial sheaf cohomology is defined as the right derived functor of the global
section functor [16, def. 5.2.2.], where global sections of a simplicial sheaf, are the
equalizer

ker
(
∂̃0 − ∂̃1 : F0(M0)→ F1(M1)

)
.

This definition opens the question: Are there enough injectives? As Pierre Deligne is
quite short on this and there are mistakes in the literature (see Remark 3.8), we should
give an answer.

Lemma 3.6 The category of simplicial sheaves has enough injectives.
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3.1 Models for equivariant cohomology

Proof. Let F• be a simplicial sheaf. Let Pp be the functor from simplicial sheaves to
sheaves, which sends a sheaf to its p-th level, i.e., F• is sent to the sheaf Fp on Mp.
Pick for any Fp an injective sheaf Ip on Gp ×M , in which Fp embeds (for existence
see e.g. [26, section III.2]).

Now we construct a right adjoint of Pp (analogous to [24, p.409]): Let B be a sheaf
on Gp ×M . Define a simplicial sheaf on G• ×M as

(SpB)q =
∏

h∈∆(q,p)
h−1B

By the adjointness of the functors, injectivity of B implies injectivity of SpB. Moreover
the equality

Hom
(
F•,

∏
p

SpI
p

)
=
∏
p

Hom(F•, SpIp) =
∏
p

Hom(PpF•, Ip) =
∏
p

Hom(Fp, Ip)

shows that the simplicial sheaf F• embeds into ∏p SpI
p because for each Fp there is

an injection into Ip.

Now let
0→ F• → I•,0

δ→ I•,1
δ→ . . .

be an injective resolution. Omitting the first columns and taking global sections yields
to a double complex (

Ip,q(Mp),
p∑
i=0

(−1)i∂̃i + (−1)pδ
)
,

whose cohomology is defined to be the cohomology

H∗(M•,F•) = H∗
(
Ip,q(Mp),

p∑
i=0

(−1)i∂̃i + (−1)pδ
)

of the simplicial sheaf F• on the simplicial manifold M•.
The definition does not depend on the injective resolution chosen. In the non-

simplicial case, this is a well-known fact: the identity on the space and the sheaf
induces a morphism between two chosen injective resolutions, which is an isomorphism
in cohomology. In the simplicial case, we need an additional argument: As before we
obtain a morphism of the double complexes of global sections from the identity on
the space. When taking cohomology in every horizontal line (Ip,∗(Mp), (−1)pδ), this
morphism will induce an isomorphism between the bi-graded complexes. Hence we can
apply the following lemma, to see, that we have an isomorphism in cohomology.

Lemma 3.7 (see e.g. [19, Lemma 1.19]) Suppose f : (C∗,∗1 , d′1 + d′′1)→ (C∗,∗2 , d′2 + d′′2)
is homomorphism of double complexes and the induced homomorphism

(Hq(Cp,∗1 , d′′1), d′1)→ (Hq(Cp,∗2 , d′′2), d′2)

is an isomorphism, then f induces an isomorphism in the total cohomology of double
complexes.
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Remark 3.8 One could have the idea (e.g. [7, p.3],[25, Section 3.2]) that an injective
resolution on any simplicial level would be sufficient as the maps ∂̃i lift by the injectivity
of the sheaf. But as this lift is not unique, no one ensures, that the simplicial relations
hold and thus there is no general reason why ∂ = ∑

i(−1)i∂̃i is a boundary operator.
In fact one can construct the following counterexample: Take the trivial group, acting
on a point, then all ∂̃i : Z→ Z are the identity. A injective resolution of the abelian
group Z is given by Z→ C→ C/Z. Beside id : C→ C, the complex conjugation is also
a lift of idZ. Making appropriate choices, for the lifts ∂̃i one finds an example where
∂ ◦ ∂ 6= 0.

In practice, one usually uses acyclic resolutions, instead of injective ones, to calculate
cohomology. This works in the simplicial case, too. Let

0→ F• → A•,0 δ→ A•,1 δ→ . . .

be an acyclic resolution, i.e., each A•,k is a simplicial sheaf and all but the zeroth
cohomology of each sheaf Ap,q vanish. Let I•,∗ be a simplicial injective resolution. The
identity map on the simplicial manifold and the sheaf F• induce a homomorphism of the
double complex of global sections (by injectivity of I), which induces an isomorphism
of the bi-complexes, (Hq(Ap,∗, δ), ∂)→ (Hq(Ip,∗, δ), ∂), as acyclic resolutions calculate
cohomology. Thus the last lemma implies the isomorphism in the cohomology of the
double complexes.

In the examples, which we study later, the simplicial sheaf will actually not just be a
sheaf of abelian groups, but a cochain complexes of simplicial sheaves of abelian groups.
A resolution for a chain complex goes by the name Cartan-Eilenberg resolution and
exists for cochain complex in any abelian category with enough injectives (compare [45,
Section 5.7]). In our context, the resolution of a cochain complex of simplicial sheaves
is a triple instead of a double complex. Nevertheless, one can form a total complex of
the global sections of the triple complex and the cohomology of the cochain complex of
simplicial sheaves is defined as the cohomology of this total complex.
We will now discuss some explicit models for simplicial sheaf cohomology.

Simplicial de Rham cohomology

This exposition is based on [19, Section 6]. Let M• = {Mp} be a simplicial manifold.
For any p, differential forms on Mp form a the cochain complex of sheaves (Ω∗Mp

, d).
The face and degeneracy maps of M• induce, via pullback, face and degeneracy maps
between the differential forms on Mp and Mp±1. Thus, one obtains the simplicial sheaf
Ω•,∗ of differential forms on M•.
On the global sections of this sheaf

Ωp,q(M) = Ωq(Mp),

there is a horizontal differential d : Ωp,q(M•) → Ωp,q+1(M•), given by the exterior
differential and vertical differential

∂ : Ωp,q(M•)→ Ωp+1,q(M•),
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given by the alternating sum of pullbacks along the face maps

∂(ω) =
p+1∑
i=0

(−1)i∂∗i ω. (3.1)

Proposition 3.9 (Ωp,q(M•), d+ (−1)q∂)p,q forms a double complex.

Proof. (d + (−1)q∂)2 = 0, as d2 = 0 by Proposition 2.15, ∂2 = 0 by the simplicial
relations and d∂ = ∂d as d is functorial.

Moreover, since the differential forms form a sheaf of C∞-module, they form a fine
(Lemma 2.29) and hence acyclic sheaf.

In particular, for the simplicial manifold G• × M , we have the double complex
Ωq(Gp ×M), what is a first de Rham type model for equivariant cohomology by the
following Proposition.

Proposition 3.10 (Prop. 6.1 of [19]) Let M• be a simplicial manifold. There is a
natural isomorphism

H∗(Ω•,∗(M•), d+ (−1)∗∂) ∼= H∗(‖M•‖,C).

Simplicial Čech cohomology

Definition 3.11 (see [7, 25]) A simplicial cover for the simplicial manifold M• is a
family U• = {U (p)} of open covers such that

1. U (p) = {U (p)
α |α ∈ A(p)} is an open cover of Mp, for each p, and

2. the family of index sets forms a simplicial set A• = {A(p)} satisfying

3. ∂i(U (p)
α ) ⊂ U (p−1)

∂iα
and σi(U (p)

α ) ⊂ U (p+1)
σiα for every α ∈ A(p).

Definition 3.12 (see [7, 25]) Given a simplicial cover U•, one forms the Čech chain
groups Č•,∗(U•,F•) by

Čp,q(U•,F•) =
∏

α
(p)
0 ,...,α

(p)
q ∈A(p)

F p
(
U

(p)
α

(p)
0
∩ . . . ∩ U (p)

α
(p)
q

)
,

with the usual Čech boundary operator δ : Čp,q → Čp,q+1 and the simplicial boundary
map ∂ : Čp,q → Čp+1,q defined as alternating sum as above.

Observe, that the third condition of the simplicial cover ensures that ∂ maps between
the Čech groups. The simplicial Čech cohomology, denoted by

Ȟ∗(U•,F•),
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is the cohomology of the double complex (Čp,q, ∂, (−1)pδ). As in the non-simplicial case
(see [26, section III.4]), any simplicial open cover induces a canonical homomorphism

Ȟ∗(U•,F•)→ H∗(M•,F•).

Moreover, given a refinement V• of the simplicial open cover U•, then the natural
diagram

Ȟ∗(U•,F•) H∗(M•,F•)

Ȟ∗(V•,F•)

→

→
→

commutes. Thus one can form the limit over all refinements of simplicial open covers
and obtains an isomorphism

lim
U•

Ȟ∗(U•,F•)→ H∗(M•,F•).

For more details see [7, 25].

Simplicial singular cohomology

Let A be an abelian group. Later, the most interesting cases for us will be A ∈
{Z,R,C,C/Z,R/Z}. Then there is the locally constant sheaf Aδ, consisting of continu-
ous maps to A furnished with the discrete topology, in any simplicial degree. The maps
∂̃i and σ̃i are given by pullback along ∂i respectively σi. One can calculate H∗(M•, A)
via singular cohomology.

Definition 3.13 (see [19, p. 81]) The simplicial singular cochain complex

(C•,•sing(M•, A), ∂, ∂sing)

is the double complex consisting of groups

Cp,qsing = Cqsing(Mp) = map(C∞(∆q,Mp), A)

of smooth singular cochains on each Mp with group structure induced from A, vertical
boundary map induced from the simplicial manifold and horizontal boundary map
given by the singular boundary operator.

To obtain a double complex one has to use the boundary map ∂ + (−1)p∂sing. A
simplicial map f• : M• →M ′• induces a map of double complexes f∗• : C•,•sing(M ′•, A)→
C•,•sing(M•, A).

Theorem 3.14 (Theorem 5.15. of [19]) There are functorial isomorphisms

H∗(‖M‖, A) = H∗sing(M•, A) := H∗
(
C•,•sing(M•, A), ∂ + (−1)p∂sing

)

32



3.1 Models for equivariant cohomology

To compare singular cohomology with general sheaf cohomology, one can use argu-
ments of [44, pp. 191-200]. Sheafify the singular cochains Cqsing(Mp): Let Sq(Mp, A)
be the sheaf associated to the presheaf

M ⊂ U 7→ map(C∞(∆q, U), A).

Then one has an acyclic resolution

0→ A• → S0(M•, A)→ S1(M•, A)→ . . .

and hence
H∗(M•, A) = H∗(M•,S∗(M•, A)).

On the other hand, the global sections of Sq(Mp, A) are exactly Cqsing(Mp).
Thus we have shown the following theorem.

Theorem 3.15

H∗(‖M‖, A) = H∗sing(M•, A) = H∗(M•,S∗) = H∗(M•, A).

In particular, for M• = G• ×M , we obtain:

H∗G(M,A) = H∗sing(G• ×M,A) = H∗(G• ×M,A).

Simplicial cellular cohomology

The most handy cohomology theory for calculation is cellular cohomology. Recall
(compare [42, p. 12]) that a CW complex is a topological space X with a collection of
subspaces, called cellular decomposition,

X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ X,

such that X0 is discrete, Xp is obtained from Xp−1 by attaching p-cells, X = ⋃
iXi,

and U ⊂ X is closed, if and only if U ∩ Xp is closed in Xp for any p ∈ N. A map
f : X → Y between cellular complexes is called cellular, if f(Xp) ⊂ Yp. The cellular
chain complex (see [42, pp. 118-122]) is given by Cn(X) = Hn

sing(Xn, Xn−1;A) and dncell
is the composition

Hn(Xn, Xn−1)→ Hn(Xn, ∅)→ Hn+1(Xn+1, Xn)

of the map induced from the inclusion (Xn, ∅) ⊂ (Xn, Xn−1) and the connecting
morphism of (Xn, ∅) ⊂ (Xn+1, ∅) ⊂ (Xn+1, Xn).
By a cellular decomposition of the simplicial manifold G• ×M , we understand a

collection of topological spaces (Xp,q)p,q∈N, such that Xp,∗ is a cellular decomposition
of Gp ×M and all face and degeneracy maps are cellular. Thus we receive a double
complex, the simplicial cellular chain complex (Cqcell(Gp ×M), dcell + (−1)q∂). We
define H∗cell(G• ×M,A) to be the cohomology of this double complex.
One has the following small proposition, for which I did not find a reference in the

literature.
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Proposition 3.16 There is an isomorphism

H∗cell(G• ×M,A) = H∗sing(G• ×M,A).

Proof. Given a map between the singular and cellular chains, Lemma 3.7 would imply
the result. Hence we are done, if we find such a map for normal, i.e., non-simplicial
spaces, in a functorial manner. There is no map between singular and cellular chains
in general, but one can construct a complex of so called simplicial singular chains (see
[18, Section V.8]), and functorial quasi-isomorphisms to both, singular and cellular
chains.

3.1.2 The Cartan model
A well-known de Rham-like model for equivariant cohomology goes back to Henri
Cartan ([13]). Our Exposition follows [31]. Let G be a compact Lie group acting
smoothly on the smooth manifold M and denote the Lie algebra of G by g = TeG. Let
S∗(g∨) be the symmetric tensor algebra of the (complex) dual of the Lie algebra g∨.
The group G acts on this algebra by the coadjoint action and on Ω∗(M) by pulling back
forms along the map m 7→ gm. Hence we have a G-action on S∗(g∨)⊗ Ω∗(M). The
invariant part of this algebra (S∗(g∨)⊗ Ω∗(M))G is exactly what one calls the Cartan
complex and is denoted by Ω∗G(M). In other words: The Cartan complex consists of
G-equivariant polynomial maps ω : g→ Ω∗(M). Let ω1, ω2 ∈ Ω∗G(M), then there is a
wedge product

(ω1 ∧ ω2)(X) = ω1(X) ∧ ω2(X).
On this algebra one defines a differential as

dCω(X) = d(ω(X)) + ι(X])ω(X),

for ω ∈ Ω∗G(M)) and X ∈ g, i.e., one takes the differential on the manifold and adds
the contraction with the fundamental vector field. To make this differential raise the
degree by one, the grading on Ω∗G(M) is given by

twice the polynomial degree + the differential form degree.

Lemma 3.17 (Ω∗G, dC) is a cochain complex.

Proof. First, observe that dC increases the total degree by one, since d increases the
differential form degree, and the contraction ι, while decreasing the form degree by one,
increases the polynomial degree by one. Next, one has to check, that the differential
really maps invariant forms to invariant forms and that it squares to zero.
Let ω ∈ Ω∗G(M)) and X ∈ g.

dCω(AdgX) = d(ω(AdgX)) + ι((AdgX)])ω(AdgX)
= d(gω(X)) + ι(gX]g−1)g(ω(X))
= gd(ω(X)) + gι(X])g−1g(ω(X))
= gdCω
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3.1 Models for equivariant cohomology

Thus dCω is G-equivariant. Moreover, we have

d2
Cω(X) = d2ω(X) + dι(X)ω(X) + ι(X)dω(X) + ι(X)2ω(X) = LXω(X)

and

LXω(X) = d

dt

∣∣∣∣
t=0

exp(tX)ω(X) = d

dt

∣∣∣∣
t=0
ω(exp(−tX)X exp(tX)) = d

dt

∣∣∣∣
t=0
ω(X) = 0.

Thus dC squares to zero, i.e., it is a boundary operator.

In the special case of M = pt, i.e., of a single point, the Cartan algebra reduces to
the algebra of invariant symmetric polynomials

Ik(G) = ((S∗(g∨)⊗ Ω∗(pt))G)k = (Sk(g∨))G.

3.1.3 Getzlers resolution
In order to investigate cohomology of actions of non-compact groups, Ezra Getzler [23,
Section 2] defines a bar-type resolution of the Cartan complex. We will apply his ideas
slightly different: The complex defined by Getzler will allow us to compare equivariant
integral cohomology (defined via the simplicial manifold) with equivariant cohomology
defined by the Cartan model.
Let, as before, a Lie group G act on a smooth manifold M from the left. Define

C-vector spaces Cp(G,S∗(g∨)⊗ Ω∗(M)) consisting of smooth maps, from the p-fold
Cartesian product

Gp → S∗(g∨)⊗ Ω∗(M),

to the space of polynomial maps from g to differential forms on M . We give these
groups a bigrading: The horizontal grading is the one of S∗(g∨)⊗Ω∗(M) defined above
and the vertical grading is p. The Cartan boundary operator d+ ι now induces a map
(−1)p(d+ ι), which increases the horizontal grading by 1 in any row. As we are not
restricted to the G-invariant part of S∗(g∨)⊗Ω∗(M), this map will not square to zero,
but

((−1)p(d+ ι))2 = dι+ ιd = L

is the Lie derivative (see Proposition 2.15). In vertical direction, there is a differential

d̄ : Ck(G,S∗(g∨)⊗ Ω∗(M))→ Ck+1(G,S∗(g∨)⊗ Ω∗(M))

defined by

(d̄f)(g0, . . . , gk|X) := f(g1, . . . , gk|X) +
k∑
i=1

(−1)if(g0, . . . , gi−1gi, . . . , gk|X)

+ (−1)k+1gkf(g0, . . . , gk−1|Ad(g−1
k )X)

for g0, . . . , gk ∈ G and X ∈ g.
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Note, in particular, that the kernel of

d̄ : C0(G,S∗(g∨)⊗ Ω∗(M))→ C1(G,S∗(g∨)⊗ Ω∗(M))

is exactly Ω∗G(M). Moreover, in case of a discrete Group G, g = 0 and thus one checks,
that

Cp(G,S∗(g∨)⊗ Ω∗(M)) = Cp(G,Ω∗(M)) = Ωp,∗(G• ×M)
and d̄ is equal to ∂.
In the case of a compact Lie group, the map d̄ admits a contraction (compare, e.g.,

[25, p. 322]):
Lemma 3.18 Integration over the group, with respect to a right invariant probability
measure, defines a map∫

G
: Cp(G,S∗(g∨)⊗ Ω∗(M))→ Cp−1(G,S∗(g∨)⊗ Ω∗(M)) (3.2)(∫

G
f

)
(g1, . . . , gp−1,m) = (−1)i

∫
g∈G

f(g, g1, . . . , gp−1,m)dg

such that d̄
∫
G f = f if d̄f = 0.

Proof. This is proven by a direct calculation:(
d̄

∫
G
ω

)
(g1, . . . , gp,m)

=
(∫

G
f

)
(g2, . . . , gp|X) +

p∑
i=2

(−1)i
(∫

G
f

)
(g1, . . . , gi−1gi, . . . , gp|X)

+ (−1)p+1gp

(∫
G
f

)
(g1, . . . , gp−1|Ad(g−1

p )X)

=
∫
G
f(g, g2, . . . , gp|X)dg +

p∑
i=2

(−1)i
∫
G
f(g, g1, . . . , gi−1gi, . . . , gp|X)dg

+
∫
G
gpf(g, g1, . . . , gp−1|Ad(g−1

p )X)dg

=
∫
G

(
f(g, g2, . . . , gp|X) +

p∑
i=2

(−1)if(g, g1, . . . , gi−1gi, . . . , gp|X)

+ (−1)p+1gpf(g, g1, . . . , gp−1|Ad(g−1
p )X)

)
dg

Now we apply d̄f(g, g1, . . . , gp|X) = 0

=
∫
G

(f(g1, . . . , gp|X)− f(gg1, . . . , gp|X) + f(g, g2, . . . , gp|X)) dg

= f(g1, . . . , gp|X)−
∫
G
f(gg1, g2, . . . , gp|X)dg +

∫
G
f(g, g2, . . . , gp|X)dg

= f(g1, . . . , gp|X)
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Thus, for compact groups, the vertical cohomology of this bi-graded collection of
groups is the Cartan complex.

One can turn the bi-graded collection Cp(G,S∗(g∨)⊗ Ω∗(M)) of groups into a double
complex. Therefore Getzler defines another map,

ῑ : Cp(G,Sl(g∨)⊗ Ωm(M))→ Cp−1(G,Sl+1(g∨)⊗ Ωm(M)),

given by the formula

(ῑf)(g1, . . . , gp−1|X) :=
p−1∑
i=0

(−1)i d
dt

∣∣∣∣
t=0

f(g1, . . . , gi, exp(tXi), gi+1, . . . , gp−1|X),

where Xi = Ad(gi+1 . . . gp−1)X.

Lemma 3.19 (Lemma 2.1.1. of [23]) The map ῑ has the following properties:

ῑ2 = 0 and d̄ῑ+ ῑd̄ = −L.

Proof. This is shown in [23] by recollection of the sums in the definition of ῑ and d̄.

Moreover one obtains:

Lemma 3.20 (Corollary 2.1.2. of [23]) dG = d̄+ ῑ+(−1)p(d+ι) is a boundary operator
on the total complex

⊕
p+2q+r=nC

p(G,Sq(g∨)⊗ Ωr(M)).

Proof. dG increases the total index by one, as d̄ increases the first index, d increases
the third index, ι decreases the third, while it is increasing the second index and ῑ
decreases the first index, while it is increasing the second one.

As d and ι are equivariant under the G-action, they commute with d̄. And as d and
ι only act on the manifold M and not on the group part, the same is true for ῑ. Thus

d2
G = (d̄+ ῑ)2 + (−1)p(d̄+ ῑ)(d+ ι) + (−1)p±1(d+ ι)(d̄+ ῑ) + (d+ ι)2

= d̄ῑ+ ῑd̄+ (dι+ ιd)
= −L+ L = 0.

Remark 3.21 The reader, who compares this with the original paper of Getzler
will note that we changed some signs. It just seems more natural to us in this way.
Furthermore Getzler uses some reduced subcomplex, which is, by standard arguments
on simplicial modules (compare Proposition 1.6.5 in [32]), quasi-isomorphic to the full
complex, which we have taken.

One can check that
 ⊕
p+q=n
q+r=k

Cp(G,Sq(g∨)⊗ Ωr(M))


n,k

, d̄+ (−1)pι, (−1)pd+ ῑ
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is a double complex. But this point of view will not fit to the construction, which we
want to do with this bigraded module later: We want to turn the groups Cp(G,S∗(g∨)⊗
Ω∗(M)) into simplicial sheaves on G• ×M .

Definition 3.22 A simplicial homotopy cochain complex of modules is a triple
(M•,∗, f, s), where M•,∗ is a Z-graded simplicial module, f is a map of simplicial
modules, which increases the degree by one and s is a simplicial zero homotopy of f2

which commutes with f and squares to zero, i.e.,

s∂ + ∂s = −f2, sf = fs, and s2 = 0.

Example 3.23 Observe that

(
C•(G,S∗(g∨)⊗ Ω∗(M)), d+ ι, ῑ

)
is a simplicial homotopy cochain complex.

Definition + Proposition 3.24 The total complex of a simplicial homotopy cochain
complex (M•,∗, f, s) is the chain complex ⊕

p+q=n
Mp,q


n

, ∂ + s+ (−1)pf

 .
Proof. We have to check that ∂ + s + (−1)pf defines a boundary map. Therefore
calculate

(∂ + s+ (−1)pf)2 = ∂2 + s2 + ∂s+ s∂ + (−1)p(∂ + s)f + (−1)p−1f(∂ + s) + f2

= s∂ + ∂s+ f2

= 0.

Observe that the total complexes of the interpretation of C•(G,S∗(g∨)⊗ Ω∗(M)) as
double complex and as simplicial homotopy cochain complex coincide. Moreover, note
for our applications later, that in the first column, of the double complex interpretation
and the degree zero part of the interpretation as simplicial homotopy cochain complex
are equal. In formulas this means ⊕

p+q=n
q+r=k

Cp(G,Sq(g∨)⊗ Ωr(M))


n,0

= Cn
(
G,S0(g∨)⊗ Ω0(M)

)
.
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3.1.4 A quasi-isomorphism
In this section, we will discuss a map defined in [23, Section 2.2.]. It will relate
the complex C∗(G,S∗(g∨) ⊗ Ω∗(M)) from the last section to the double complex
Ω∗(G• ×M), which consists in degree (p, q) of q-forms on Gp ×M with horizontal
boundary map d = dGp +dM and vertical boundary map ∂ from the simplicial manifold
structure. Thus we have an explicit identifications of chains in the one complex with
chains in the other complex. This will be of particular interest to us in the discussion
of equivariant characteristic forms (Section 3.2.3) and will allow us to compare our
definition of equivariant differential cohomology (Section 4.1.3) with definitions given
before.

Definition 3.25 (Def. 2.2.1. of [23]) The map J : Ω∗(Gp×M)→⊕p
l=0C

l(G,S∗(g∨)⊗
Ω∗(M)) is defined by the formula

J (ω)(g1, . . . , gl|X) :=
∑

π∈S(l,p−l)
sgn(π) (iπ)∗

(
ιπ(l+1)(X

(π)
l+1) . . . ιπ(p)(X(π)

p )ω
)
.

Here S(l, p− l) is the set of shuffles, i.e., permutations π of {1, . . . , p}, satisfying

π(1) < . . . < π(l) and π(l + 1) < . . . < π(p),

X
(π)
j = Ad(gm . . . gl)X, where m is the least integers less than l, such that π(j) < π(m),

ιj means, that the Lie algebra element should be a tangent vector at the j-th copy of
G, and iπ : Gl ×M → Gp ×M is the inclusion x 7→ (h1, . . . , hp, x) with

hj =
{
gm if j = π(m), 1 ≤ m ≤ l
e ∈ G otherwise,

which is covered by the bundle inclusion TM → T (Gp ×M).

Observe that the image of ω under J does only depend on the zero form part and,
in direction of any copy of G, on the one form part at the identity e ∈ G.
The next Lemma – which is mainly a citation of [23, Lemma 2.2.2.], but with signs

corrected – shows, that the map J can be interpreted as a map of double complex.

Lemma 3.26 The map J respects the boundaries with the correct sign, i.e.,

J ◦ ∂ =
(
d̄+ (−1)pι

)
◦ J

and, after decomposing d = dG + dM with respect to the Cartesian product Gp ×M

J ◦ ((−1)p dM ) = (−1)p′d ◦ J and J ◦ (−1p) dG = ῑ ◦ J ,

where p is the simplicial degree before and p′ the simplicial degree after application of
the map J ,

Proof. The following four types of terms contribute to J ◦ ∂:
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3 Equivariant cohomology

1. those terms where ∂ acts by the group multiplication G×G→ G and J take a
one form component on one of these groups: these parts cancel by symmetry;

2. those parts where ∂ acts by the group multiplication or the action on M and J
takes the zero form component on this part: these contribute to d̄ ◦ J ;

3. those terms where ∂ corresponds to the action of G on M and J takes the one
form on this corresponding G at e yield ι ◦ J . The sign comes from the fact that
∂p has this sign in ∂.

This proves the first equation. For the second decompose the exterior derivative
d = ∑p

k=1 dG(k) + dM on Gp ×M further into a part corresponding to each copy of G
and one corresponding toM . One checks immediately that J ◦(−1)p dM = (−1)p′d◦J ,
where the sign difference comes from interchanging dM with the contractions. For the
last equation, which contains ῑ, note that one can restrict to ω ∈ Ωq(Gp ×M), whose
degree on each copy of G is either zero or one. Let π ∈ S(l, p − l) be a shuffle and
ω ∈ Ωq(Gp ×M) be a form, such that the differential form degree on the π(k)-th copy
of G is zero if k ≤ l and one if k ≥ l + 1. Then for any X ∈ g we can calculate

(ῑ ◦ Jω)(X)

=
l∑

k=1
(−1)kLkXk(Jω)(X)

where Lk should denote the Lie derivative on the k-th G,

=
l∑

k=1
(−1)k sgn(π)σ∗k−1ιk(Xk)dG(k)i∗π

(
ιπ(l+1)(X

(π)
l+1) . . . ιπ(p)(X(π)

p )ω
)

=
l∑

k=1
(−1)k sgn(π)σ∗k−1ιk(Xk)i∗π

(
dG(π(k))ιπ(l+1)(X

(π)
l+1) . . . ιπ(p)(X(π)

p )ω
)

=
l∑

k=1
(−1)k sgn(π)σ∗k−1ιk(Xk)i∗π(−1)p−l

(
ιπ(l+1)(X

(π)
l+1) . . . ιπ(p)(X(π)

p )dG(π(k))ω
)

+ terms which include a Lie derivative LkXk(Xl+j)

The sign in the first term comes from the fact that the d and ι anti-commute, since
they act on different G’s. Moreover the other terms vanish, as each of them contains a
factor of the form d

dt

∣∣∣
t=0

etXXe−tX = [X,X] = 0.

=
l∑

k=1
(−1)p−l+k sgn(π)σ∗k−1i

∗
π

(
ιπ(k)(Xk)

(
ιπ(l+1)(X

(π)
l+1) . . . ιπ(p)(X(π)

p )dG(π(k))ω
))
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Now define πk ∈ S(l− 1, p− l+ 1) as the shuffle, which is obtained from π by transpose
k and l and resorting the two groups.

=
l∑

k=1
(−1)p−l+k sgn(π)i∗πk

(
ιπ(k)(Xk)

(
ιπ(l+1)(X

(π)
l+1) . . . ιπ(p)(X(π)

p )dG(π(k))ω
))

The sign of π and πk differ by a (−1)l−k for transposing π(k) into the second group and
a sign change for every transposition which is necessary to reorder the second group.
These reordering sign also occur a second time, when reordering the contractions. Thus
they cancel out each other.

=
l∑

k=1
(−1)p sgn(πk)i∗πk

(
ιπk(l)(X

(πk)
l ) . . . ιπk(p)(X(πk)

p )dG(π(k))ω
)

= (−1)p
l∑

k=1
J (dG(π(k))ω) (X)

= (−1)pJ
(

l∑
k=1

dG(π(k))ω

)
(X)

= (−1)pJ (dGpω) (X).

Note for the last step, that J vanishes on forms, whose degree on any copy of G is
larger than one.

Moreover, the map J induces an isomorphism in the cohomology of the associated
total complexes.

Theorem 3.27 (Theorem 2.2.3. of [23]) J is a quasi-isomorphism.

3.2 Equivariant characteristic forms and classes
In this section G and K will denote Lie groups.

In analogy to the non-equivariant case (Def. 2.42), we define equivariant characteristic
classes (with values in the ring A ∈ {Z,R,C}):

Definition 3.28 An G-equivariant characteristic class c for G-equivariant principal
K-bundles associates to every isomorphism class of topological G-equivariant principal
K-bundles π : E → X a cohomology class c(E) ∈ H∗G(X,A), such that c((f̄ , f)∗E) =
f∗c(E) for every pullback diagram

E′ E

X ′ X

→
f̄

→

π′ → π
→
f

of G-equivariant principal K-bundles.
If A = Z the class is called integral.
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Any characteristic class for principal K bundles c yields to an equivariant character-
istic class cG by the following procedure (compare , e.g., [31, Section 5.4]): Let E be a
G-equivariant principal K-bundles and let EG→ BG denote the universal G bundle.
One defines

cG(E) := c(EG×G E) ∈ H∗(EG×G X) = H∗G(X).
Note that the by

πG = id× π : EG×G E → EG×GM =: MG

one constructs a principalK-bundle from the G-equivariant principalK-bundle E →M .

Lemma 3.29 The association procedure c 7→ cG is an one to one correspondence
between characteristic classes and equivariant characteristic classes.

Proof. Any principal K-bundle π : E → X can be understood as a G-equivariant
principal K-bundle with trivial G-action. This holds for morphisms, too. Moreover,
fix any point p ∈ BG, then the inclusion ip : X → {p} × X → BG × X induces a
map i∗p : H∗G(X) = H∗(EG ×G X) = H∗(BG × X) → H∗(X). Thus an equivariant
characteristic class naturally yields a characteristic class. We are now going to prove
that this is an inverse to c 7→ cG.
Let c be a characteristic class and E be a principal K-bundle. Then cG(E) =

c(EG ×G E) = c(BG × E). Let pr: BG × X → X denote the projection, then
BG×E = pr∗E and i∗pc(BG×E) = i∗pc(pr∗E) = i∗p(pr∗ c(E)) = (pr ◦ip)∗c(E) = c(E),
since pr ◦ip = idX .

On the other hand, let c be G-equivariant characteristic class. We have to show that
for any G-equivariant principal K-bundle F → Y

c(F ) = i∗c(EG×G F ) ∈ H∗G(Y ) = H∗(EG×G Y ),

where i : EG×G Y → BG× (EG×G Y ) is an inclusion as above. Both squares in the
commutative diagram

EG×G F EG× F F

EG×G Y EG× Y Y

→ →

→ →

→

→pr1 →
pr2

are pullbacks of G-equivariant bundles, hence pr∗2 c(F ) = pr∗1 c(EG×G F ) in H∗G(EG×
Y ). Since EG is contractible and Borel cohomology is invariant under (non-equivariant)
contractions, pr∗2 is an isomorphism. Thus we only have to show that (pr∗2)−1 ◦pr∗1 = i∗.
This follows, because the diagram

EG×Y BG× (EG×G Y )

(EG× EG× Y )/G

→i

→

pr2

→
pr1

commutes up to homotopy, since EG is contractible.
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3.2 Equivariant characteristic forms and classes

Remark 3.30 This lemma is a reformulation of the basic statement of [34] and the
reason why Jon Peter May thinks, that equivariant characteristic classes in Borel
cohomology are too ‘crude’.

For non-equivariant characteristic classes, one has the Chern-Weil-construction
producing characteristic classes out of differential geometric data given by a connection
and its curvature. One can do something similar in the equivariant case. The definition
of equivariant characteristic forms goes back to [3] and is also discussed in [2, pp.204]
and [31]. For compact connected Lie groups acting on the bundle, there is a proof that
the equivariant characteristic form calculates the equivariant characteristic class as
defined above via the Borel-construction give in [5]. This equality is generally assumed
the hold, see, e.g., [28, p. 311] without giving or citing a proof.

We will motivate the definition of Nicole Berline and Michèle Vergne and proof that
equivariant characteristic forms calculate the equivariant characteristic classes defined
via the Borel construction for general compact Lie groups acting. The construction
we apply therefore also shows how to extend the definition of characteristic form to
non-compact groups. To do so, we will refine a construction of [19]: Johan Dupont uses
simplicial manifolds to show that the Chern-Weil-construction is a way to construct
characteristic classes. Hence it is natural to use bisimplicial manifolds to show the
statement for simplicial manifolds. This section can be read as a proof to [23, Theorem
3.1.1], which Getzler claims to be proven in [20], where only a weaker statement is
shown. Nevertheless, some arguments are influenced by [23].

3.2.1 Bisimplicial manifolds
In this section we will define bisimplicial manifolds, as this motivates a construction we
will employ in the next section. In the end it will turn out that we don’t have to care
about bisimplicial manifold, as they are reducible to their diagonal, which as simplicial
manifold.

Definition 3.31 (see [24, p. 196]) A bisimplicial set is a simplicial object in the
category of simplicial sets or equivalently a functor ∆op ×∆op → Sets.

Remark 3.32 A bisimplicial set is a collection of Sets {Xp,q|p, q = 0, 1, . . .} together
with vertical and horizontal face and degeneracy maps, such that vertical and horizontal
maps commute.

Definition 3.33 A bisimplicial manifold is a collection of manifolds {Xp,q|p, q =
0, 1, . . .}, which forms a bisimplicial set and all face and degeneracy maps are smooth.

Example 3.34 Let M• be a simplicial manifold and U• a simplicial cover. Recall
(from Definition 3.11) that this is a family of open covers U• = {U (p)}, such that

1. U (p) = {U (p)
α |α ∈ A(p)} is an open cover of Mp and

2. the index sets form a simplicial set A• = {A(p)} satisfying
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3 Equivariant cohomology

3. ∂i(U (p+1)
α ) ⊂ U (p)

∂iα
and σi(U (p+1)

α ) ⊂ U (p)
σiα.

Thus for any p we can construct the Čech simplicial manifold [19, Example 5, p.78]:

(N2MU )p,q :=
∐

(α0,...,αq)
U (p)
α0 ∩ . . . ∩ U

(p)
αq ,

where the disjoint union is taken over all (q + 1)-tuples (α0, . . . , αq) ∈ (A(p))q+1 with
U

(p)
α0 ∩ . . . ∩ U

(p)
αq 6= ∅. The face and degeneracy maps are given on the index sets

by removing, respective doubling of the i-th index and on the open sets by the
corresponding inclusions.

Lemma 3.35 N2MU is a bisimplicial manifold.

Proof. Clearly, we have a bi-graded collection of manifolds. The third property of
the simplicial cover ensure that the face and degeneracy maps of M• restrict to the
disjoint unions of intersections of covering sets and thus induce vertical face and
degeneracy maps for the bisimplicial manifold. That these vertical maps compute with
the horizontal ‘Čech’ maps follows, because it is the same, if one first restricts the
neighborhood of a point, and then map the point, or doing it the other way around.

There are evidently two ways to geometrically realize a bisimplicial space: 1) first
realize vertically and afterwards realize the received simplicial space in horizontal
direction or 2) do it the other way around. Moreover, there is also a third one: realize
the diagonal!

Definition 3.36 (see [24, p. 197]) Let (M•,•, ∂i, σi, ∂′i, σ′i) be a bisimplicial manifold.
The diagonal is the simplicial manifold

(p 7→Mp,p, ∂i ◦ ∂′i, σi ◦ σ′i).

Lemma 3.37 (see [41, p. 10/86/94]) There are canonical homeomorphisms

‖p 7→ Xp,p‖ = ‖p 7→ ‖q 7→ Xp,q‖‖ = ‖q 7→ ‖p 7→ Xp,q‖‖.

This lemma motivates to reduce the bisimplicial manifold N2MU to its diagonal.

Definition 3.38 Let M• be a simplicial manifold with simplicial cover U•. The
simplicial manifold NMU is defined to be the diagonal of N2MU .

Lemma 3.39 The inclusions U (p) 3 U (p)
α ⊂Mp induce a map

NMU →M•, (3.3)

which induces an functorial isomorphism in cohomology

H∗(‖M‖, A) ∼= H∗(‖NMU‖, A),

with coefficients in any abelian group A.
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Proof. We will combine Čech and simplicial singular cohomology to prove this statement.
Recall from Section 3.1.1, that H∗(‖M‖, A) = H∗(M•,S∗).
Let U• be a (locally finite) simplicial open cover of M•, then we can calculate the

simplicial sheaf cohomology H∗(M•,S∗(M•, A)) explicitly by the Čech complex for the
chain complex of simplicial sheaves (S∗(M•, A))

Čp,q,r(U•) = Čp,q(U•,Sr(M•, A)

which is a triple complex with boundary map ∂+(−1)pδ+(−1)p+q∂sing. As the sheaves
(S∗(M,A)) are fine, i.e., admit a partition of unity, one can contract the triple complex
in the Cech direction and obtains the double complex Cp,qsing,U (M•, A) of cochains with
support in U , i.e., one restricts to those simplices whose image is contained completely
in one of the open sets of U . Such simplices are known as U-small simplices.
Fix some p. As any U-small simplex is a simplex, there is a restriction map

Cp,∗sing(Mp, A) → Cp,∗sing,U(p)(Mp, A). The theorem of the small simplex (see, e.g., [44,
pp.197]) states that this map induces an isomorphism in cohomology. By Lemma 3.7,
this turns over to the simplicial manifold, hence we can conclude that

C•,∗sing(M•, A)→ C•,∗sing,U(•)(M•, A)

also induces an isomorphism in cohomology.
On the other hand, one has an equality of groups

Cp,rsing(NMU ) = Čp,p,r(U ,S∗(M•, A)).

In other words C•,rsing(NMU) coincides on the set-level with the diagonal of of the
bisimplicial complex

Č•,•,r(U ,S∗(M•, A)).
Moreover, one check from the definitions, that the face and degeneracy maps coincide,
too. Thus the C•,rsing(NMU) and the diagonal of Č•,•,r(U ,S∗(M•, A)) are the same
simplicial objects.
By the generalized Eilenberg-Zilber theorem ([24, Ch. IV, Theorem 2.4]), there

is a chain homotopy equivalence between the diagonal and the total complex of a
bisimplicial complex and hence from⊕

p+r=n
Cp,rsing(NMU )→

⊕
p+q+r=n

Čp,q,r(U ,S∗(M•, A)).

This induces the asserted isomorphism in cohomology.

3.2.2 Classifying bundle and classifying map
Let K be a Lie group. A simplicial manifold, whose realization is EK → BK is given
in the following way: NK := K• × pt is the simplicial manifold of the action of K on
a point (see Example 3.2) and

(
NK

)
•
is given as NKp = Kp+1 with face maps

∂i(k0, . . . , kp) = (k0, . . . , k̂i, . . . , kp)
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and degeneracy maps

σi(k0, . . . , kp) = (k0, . . . , ki, ki, . . . , kp).

The K-action on NK given by

(k0, . . . , kp)k = (k0k, . . . , kpk)

is compatible with the face and degeneracy maps and hence a simplicial action. More-
over, there is a simplicial map

γ : NK → NK, (k0, . . . , kp) 7→ (k0k
−1
1 , . . . , kp−1k

−1
p ).

Lemma 3.40 (Prop. 5.3 of [19]) ‖γ‖ :
∥∥∥NK∥∥∥→ ‖NK‖ is a principal K-bundle.

The following lemma is is a special case of a standard argument in the theory
of simplicial sets (see [32, Prop. 1.6.7]), which applies in the case that there is an
additional degeneracy.

Lemma 3.41
∥∥∥NK∥∥∥ is contractible.

Proof. By definition
∥∥∥NK∥∥∥ = ⋃∆n×Kn+1/ ∼. Define h : [0, 1]×

∥∥∥NK∥∥∥→ ∥∥∥NK∥∥∥ by

hs(t0, . . . , tn, k0, . . . , kn) = (s, (1− s)t0, . . . , (1− s)tn, e, k0, . . . , kn)

h0((ti), (ki)) = (0, (ti), e, (ki)) = (∂0((ti)), e, (ki)) ∼ ((ti), ∂0(e, (ki))) = ((ti), (ki))
and h1((ti), (ki)) = (1, (0), e, (ki)) = ((∂1)n(1), e, (ki)) ∼ (1, (∂1)n(e, (ki))) = (1, e) ∈
∆0 ×K. Hence the homotopy h is a contraction of

∥∥∥NK∥∥∥ to a point.

Thus we have a model of EK =
∥∥∥NK∥∥∥ → BK = EK�K = ‖NK‖. The map

γ : NK → NK is a special case of the following object.

Definition 3.42 (compare [19, p. 93]) A simplicial K-bundle π : E →M is a sequence
πp : Ep →Mp of differential K-bundles, where E = {Ep} and M = {Mp} are simplicial
manifolds, π is a simplicial map and the right action of K on E, Rk : E → E, is
simplicial, i.e., commutes with all face and degeneracy maps.

An G-equivariant principal K-bundle π : E →M leads to the simplicial K-bundle

π• = idG × π : G• × E → G• ×M,

where the action of K is given by trivial extension along G. We want to construct a
classifying map of the bundle E, which will be the geometric realization of a map of
simplicial manifolds. Therefore we are going to define an intermediate bundle, mapping
to the classifying space and to G• × E → G• ×M .

Let U = {Uα} be an open cover of M and let the induced open cover of E be denoted
by π−1U = {Vα}, Vα = π−1(Uα). These covers of M and E induce simplicial covers of
G• × E and G• ×M as follows (compare [25, p.319]):
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Define a simplicial index set A(p) = Ap+1 with face and degeneracy maps given by
removing respective doubling of the i-th element. Then define the simplicial cover
π−1U (p) = {V (p)

α }α∈A(p) inductively by

V (p)
α =

p⋂
i=0

∂−1
i

(
V

(p−1)
∂i(α)

)
,

where V (0)
α = Vα for any α ∈ A(0) = A. The following lemma gives an alternative

description of this construction.

Lemma 3.43

V (p)
α =

{
(g1, . . . , gp,m) | m ∈ Vαp , gpm ∈ Vαp−1 , . . . , g1 . . . gpm ∈ Vα0

}
Proof. We will prove this by induction. For p = 0 there is nothing to show. Let p > 0:

V (p)
α =

p⋂
i=0

∂−1
i (V (p−1)

∂i(α) )

=
p⋂
i=0

{
(g1, . . . , gp,m) | ∂i(g1, . . . , gp,m) ∈ V (p−1)

∂i(α)

}

For any i = 0, . . . , p we can apply the induction hypothesis to ∂i(g1, . . . , gp,m) ∈ V (p−1)
∂i(α) ,

what implies

m ∈ Vαp , . . . , gi+2. . . gpm ∈ Vαi+1 ,

gi . . . gpm ∈ Vαi−1 , . . . , g1 . . . gpm ∈ Vα0 .

This is almost the right-hand side of the condition to be proven, just the i-th term is
missing. As i runs from 0 to p, we get for the intersection exactly

V (p)
α =

{
(g1, . . . , gp,m) | m ∈ Vαp , gpm ∈ Vαp−1 , . . . , g1 . . . gpm ∈ Vα0

}
.

By the construction of Definition 3.38, we have a simplicial bundle

π : N(G• × E)π−1U → N(G• ×M)U .

Suppose the cover U = {Uα}α∈A trivializes E with trivialization ϕα : Vα = π−1(Uα)→
Uα ×K and transition functions gαβ : Uα ∩ Uβ → K. Then there is an induced map

ψ̄ : N(G• × E)π−1U → NK,

which is given on the intersection of p+ 1 covering sets of Gp × E

V =
p⋂
j=0

V
(p)
αj0,...,α

j
p
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by
(g1, . . . , gp, x) 7→ (ϕα0

0
(g1 . . . gpx), ϕα1

1
(g2 . . . gpx), . . . , ϕαpp(x)) ∈ Kp+1,

where, on the right-hand side, the maps ϕα are understood to be composted with the
projection to K.
Next, we want to define ψ : N(G• ×M)U → NK, such that ψ̄ covers ψ. Therefore

we need some additional transition functions of the bundle. Define

hαβ : G×M ⊃ ∂−1
0 Uα ∩ ∂−1

1 Uβ → K, (g, x) 7→ (π2 ◦ ϕα(gX))(π2 ◦ ϕβ(X))−1,

for any X ∈ π−1(x). This definition is independent of the chosen fiber element, as any
other element in the fiber equals Xk for some k ∈ K and

(π2 ◦ ϕα(g(Xk))(π2 ◦ ϕβ(Xk))−1 = (π2 ◦ ϕα(gX)k)(π2 ◦ ϕβ(X)k)−1

= (π2 ◦ ϕα(gX))kk−1(π2 ◦ ϕβ(X))−1.

As there exist local smooth section, G acts smoothly and the trivialization maps are
smooth, hαβ is smooth too.
Define ψ on

U =
q⋂
j=0

U
(p)
αj0,...,α

j
p

by

(g1, . . . , gp,m) 7→ (hα0
0α

1
1
(g1, g2 . . . gpm), hα1

1α
2
2
(g2, g3 . . . gpm), . . . , h

αp−1
p−1α

p
p
(gp,m), ∗).

One checks from the definitions that there is a commutative diagram

N(G• × E)π−1U NK

N(G• ×M)U NK

→ πU
→
ψ̄

→ γ

→
ψ

(3.4)

of simplicial manifolds. Later on we will need the following statement.

Lemma 3.44 The geometric realization of this diagram is a pullback.

Proof. This follows, as the bundle map is K-equivariant, from Lemma 2.5.

3.2.3 Dupont’s simplicial forms, connections and transgression
Let M• be a simplicial manifold. Dupont has given another definition for simplicial
differential forms than the cochain complex of simplicial sheaves Ω•,∗

Definition 3.45 (Def. 6.2 of [19]) A simplicial n-form ω on M∗ is a sequence
ω = {ω(p)}p∈N, where each ω(p) ∈ Ωn(∆p ×Mp), such that

(∂i × idMp)∗ω(p) = (id∆p−1 ×∂i)∗ω(p−1)

on ∆p−1 ×Mp for i = 0, . . . , p and p ∈ N. The space of simplicial n-forms will be
denoted by An(M•).
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3.2 Equivariant characteristic forms and classes

The differential d : An(M•) → An+1(M•) is in any simplicial level the sum of
dMp + d∆p . We can compare this complex of differential forms to the simplicial de
Rham complex.

Lemma 3.46 (Theorem 6.4 of [19]) The map∫
∆

: An(Mp)→
⊕

p+q=n
Ωq(Mp)

ω(p) 7→
∫

∆p
ω(p) ∈ Ωn−p(Mp),

given by integration over the simplices, induces a quasi-isomorphism of chain complexes.

Definition 3.47 A connection on a simplicial principal K-bundle E →M is a Dupont-
1-form ϑ ∈ A1(E, k) such that the restriction to any ∆p × Ep is a connection on the
bundle

∆p × Ep → ∆p ×Mp.

The curvature of the connection is defined as

Ω = dϑ+ 1
2[ϑ, ϑ] ∈ A2(E, k).

Theorem 3.48 Let P ∈ Iq(K) be an invariant symmetric polynomial, E• → M• a
simplicial principal K-bundle with connection ϑ and curvature Ω.

1. P (Ωq) = P (Ω, . . . ,Ω) ∈ A2q(E) is a basic 2q-form, i.e., it is an element of
π∗A2q(M) or in words a pullback from the base space M . The form ωP (ϑ) ∈
A2q(M), s.t., π∗ωP (ϑ) = P (Ωq), is called characteristic form of (E, ϑ).

2. Iq(K) 3 P 7→ ωP (ϑ) ∈ A2q(M) is an algebra homomorphism.

3. ωP (ϑ) ∈ A2q(M) is closed.

4. Given two simplicial connections ϑ0, ϑ1 on E•, then there is a path of connections
from the first to the second, i.e., a connection ϑ̃ on R× E• → R×M• such that
ϑ̃|{i}×M = ϑi for i = 0, 1. The transgression form

ω̃P (ϑ1, ϑ0) =
∫

[0,1]×M/M
ωP (ϑ̃) ∈ A2q−1(M)/dA2q−2(M),

is independent of the path chosen and satisfies as well

dω̃P (ϑ1, ϑ0) = ωP (ϑ1)− ωP (ϑ0) (3.5)

as for any third connection ϑ2 on E

ω̃P (ϑ2, ϑ1) + ω̃P (ϑ1, ϑ0) = ω̃P (ϑ2, ϑ1). (3.6)

5. Let f : N →M be a smooth map, then f∗ωP (ϑ) = ωP ((f̄ , f)∗ϑ).
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3 Equivariant cohomology

6. The class cP (E) = [ωP (ϑ)] ∈ H2n(M) is called characteristic class (defined via
the Chern-Weil-Construction). It is independent of the connection and does only
depend on the isomorphism class of the bundle.

Proof. These statements are more or less standard, but we give proofs for convenience
of the reader.

First, the simplicial form is basic, if this is true on any simplicial level, where it is a
standard fact that the curvature is horizontal and equivariant (see e.g. [19, Prop 3.12
b)]) and as P is invariant, P ((Ω(p))q) is basic. To the second assertion: the question
about sums and scalars follows clearly from the definition. Let Q ∈ I l(K), then

(P ·Q)(Ωq+l) = 1
(q + l)!

∑
σ

P (Ωq) ∧Q(Ωl) = P (Ωq) ∧Q(Ωl).

Thus P 7→ ωP (ϑ) is a homomorphism of algebras.
To show closedness, it is, since π∗ : A2q(M)→ A2q(E) is injective, sufficient to show

that dP (Ωq) ∈ A2q+1(E) vanishes. We compute

dP (Ωq) = qP (dΩ ∧ Ωq−1) (as P is symmetric)

= qP ((1
2d[ϑ, ϑ]) ∧ Ωq−1)

= qP (([dϑ, ϑ]) ∧ Ωq−1) (as d[ϑ, ϑ] = [dϑ, ϑ]− [ϑ, dϑ])
= qP (([Ω, ϑ]) ∧ Ωq−1) (as [[ϑ, ϑ], ϑ] = 0 by the Jacobi identity).

(3.7)

On the other hand, P is K-invariant. Let X,Y1, . . . , Yq ∈ k and differentiating the
equation

P (Y1, . . . , Yq) = P (Ad(exp(tX))Y1, . . . ,Ad(exp(tX))Yq)

by t at t = 0 yields

0 =
q∑
i=1

P (Y1, . . . , [X,Yi], . . . , Yq) =
q∑
i=1

P ([X,Yi], Y1, . . . , Ŷi, . . . , Yq),

what shows P (([Ω, ϑ]) ∧ Ωq−1) = 0. Thus dP (Ωq) = 0 by equation (3.7).
To prove statement four about the transgression, define the connection ϑ̃t = (1−

t) pr∗E ϑ0 + t pr∗E ϑ1 on R × E, which is obviously a path of connections from ϑ0 to
ϑ1. Thus (3.5) follows from Stokes theorem (applied to any simplicial level). Let
A2 = {x0 + x1 + x2 = 1} ⊂ R3 be the hyperplane, whose intersection with the positive
octant is ∆2. Define by ϑ̂ = ∑

i xiϑi a the connection on A2 × E• → A2 ×M•. By
Stokes one has

ω̃P (ϑ2, ϑ1) + ω̃P (ϑ1, ϑ0)− ω̃P (ϑ2, ϑ1) = d

∫
∆2
ωP (ϑ̂), (3.8)

from which (3.6) follows. To show the independence from the chosen path, take ϑ2 = ϑ1
and define another connection ϑ̂ on A2×E• → A2×M• in the following way: ϑ̂ restricts
to ϑi on the i-th vertex of the simplex (which is the intersection of the hyperplane
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3.2 Equivariant characteristic forms and classes

with the non-negative octant), it is constantly pr∗E ϑ1 on the edge (1, 2) (from vertex
1 to vertex 2), the convex combination on (0, 1), an arbitrary path on the last edge
and an interpolation in the interior (say the convex combination on lines parallel to
(1, 2)). Then (3.8) implies the independence of the path, because ω̃P (ϑ2, ϑ1) is zero as
an integral over a pullback form.
The 5th statement, about pullbacks, follows from the facts, that, on the one hand,

the curvature of the pullback connection (f̄ , f)∗ϑ is (f̄ , f)∗Ω, i.e. the pullback of
the curvature and, on the other hand, pullbacks are an algebra homomorphism on
differential forms. For the last assertion: the difference of the characteristic forms for
two connections is an exact form by 4., thus the class is independence of the connection.
That the class only depends on the isomorphism class follows from 5. applied to an
isomorphism of the bundles, which covers the identity map on the base space.

Let G and K be Lie groups and E a smooth G-equivariant principal K-bundle over
a smooth manifold M with G-invariant connection ϑ ∈ Ω1(E, k)G.

Definition 3.49 (see [4, p.543]) The moment map of ϑ is defined as

µϑ : g 3 X 7→ ι(X])ϑ ∈ C∞(E, k)K .

Lemma 3.50 The moment map is G- and K-equivariant.

Proof. The K-equivariance of µ follows from the K-equivariance of ϑ. Now let g ∈ G,
then

µ(AdgX)(gx) = ϑ(gx)
[
d

dt

∣∣∣∣
t=0

(
exp(gXg−1)(gx)

)]
= ϑ(gx)

[
g
d

dt

∣∣∣∣
t=0

(exp(X)x)
]

= ϑ(gx)[gX]]
= ϑ(x)[X]] by the G-invariance of ϑ
= µ(X)(x).

Given ϑ ∈ Ω1(E, k)G, one defines a simplicial connection on G• × E as follows
(compare [23, p.104]): Let ϑi be the pullback of ϑ to ∆p ×Gp × E along

∆p ×Gp × E → E

(t0, . . . , tp, g1, . . . , gp, e) 7→ gi+1 . . . gpe.

Now define Θ ∈ A1(G• × E, k) on G• × E by

Θ(p) = t0ϑ0 + t1ϑ1 + . . .+ tpϑp. (3.9)

It can be seen directly, that Θ satisfies

(∂i × idGp×E)∗Θ(p) = (id∆p−1 ×∂i)∗Θ(p−1)
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3 Equivariant cohomology

and hence it is a simplicial Dupont one form.
We are now going to calculate the characteristic form of the simplicial connection Θ.

We will see that this actually leads to the equivariant characteristic form of ϑ as defined
by Berline and Vergne, i.e., one replaces the curvature by the sum of the curvature
and the moment map. This is a more detailed reformulation of [23, Section 3.3.].

Theorem 3.51 Let P ∈ I∗(K) be an invariant symmetric polynomial.

pr0

(
J
(∫

∆
ωP (Θ)

))
= P (Ωϑ + µϑ) ∈ S∗(g∨)⊗ Ω∗(M)

Here J is the map defined in 3.25 and pr0 is the projection from the double complex to
its zeroth vertical level. As ϑ is G-invariant, the equation actually holds in ΩG(M) =
(S∗(g∨)⊗ Ω∗(M))G.

Proof. Let
Ω = dΘ + 1

2[Θ,Θ]

denote the curvature of Θ. We should refine the grading of the simplicial Dupont forms
(compare [19, p.91]): A form in A∗(G• ×M) restricts to a differential form on the
product ∆p× (Gp×M) for each p. Thus we can grade the form by the differential form
degree part on the simplex ∆p and on the form degree on the manifold part Gp ×M ,
where the normal degree is the sum of booth. By construction, the form degree of Θ in
direction of the simplex is zero. Thus the form degree of Ω in simplex direction can be
at most one. Therefore∫

∆
Ω = Ω0 + Ω1 ∈ Ω2(E, k)⊕ Ω1(G× E, k).

Here Ω0 is exactly the curvature of ϑ. While

Ω1 =
∫

∆1
dΘ(1) + 1

2[Θ(1),Θ(1)]

=
∫

∆1
dt0ϑ0 + dt1ϑ1

=
∫ 1

0
dt(ϑ0 − ϑ1)

= ϑ0 − ϑ1

= ∂∗1ϑ− ∂∗0ϑ

Let X = XG +XE be a vector field on G× E, decomposed in the directions of G and
E, then

(Ω1)(g, p)[X] = (∂∗1ϑ)(g, p)[X]− (∂∗0ϑ)(g, p)[X]
= ϑ(gp)[(T∂1)(X)]− ϑ(p)[(T∂0)X]
= ϑ(gp)[X]

G] + ϑ(gp)[gXE ]− ϑ(p)[XE ]
= ϑ(p)[g−1(X]

G(gp))],
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3.2 Equivariant characteristic forms and classes

where X]
G denotes the fundamental vector field of XG. Restricting this to e ∈ G, what

is the same as applying the map pr0 J , one obtains the definition of the moment map
µϑ = ι(X])ϑ.
The statement of the theorem now follows from the next lemma.

Lemma 3.52 The composition of maps

pr0 ◦J ◦
∫

∆
: A∗(G• ×M)→ S∗[g∨]⊗ Ω∗(M)

is a homomorphism of algebras.

Proof. The map is clearly a homomorphism of vector spaces. Hence we only have to
show that

pr0 J
∫

∆
ω1 ∧ ω2 =

(
pr0 J

∫
∆
ω1

)
∧
(

pr0 J
∫

∆
ω2

)
for ωi ∈ A∗(G•×M). Using the refined grading defined above, by additivity of the map,
we can restrict ourselves to ωi being a pi-form in the direction of the simplex and a
qi-form in the direction of Gp×M . Without loss of generality ω(pi)

i = dt1∧ . . .∧dtpi∧ ω̄i
Let X ∈ g. We calculate:(

pr0 J
∫

∆
ω1 ∧ ω2

)
(X)

= i∗M ι1(X) . . . ιp1+p2(X)
∫

∆
ω1 ∧ ω2

= i∗M

∫
∆p1+p2

ι1(X) . . . ιp1+p2(X)(ω1 ∧ ω2)

= i∗M

∫
∆p1+p2

∑
π∈S(p1,p2)

(−1)f(π)
(
ιπ(1)(X) . . . ιπ(p1)(X)ω(p1+p2)

1

)
∧

(
ιπ(p1+1)(X) . . . ιπ(p1+p2)(X)ω(p1+p2)

2

)
Here S(p1, p2) is the shuffle group (see Definition 3.25). What is the sign f(π)? Take
a shuffle π, let cπ(k) be the number of indices in {π(1), . . . , π(p1)}, which are larger
than π(p1 + p2 − k). Then we get, when expanding the contraction, a (−1)p1+q1−cπ(k)

for swapping ιπ(p1+p2−k(X) with the partially contracted ω1. Summing this up for
k = 0, . . . , p2 − 1 results in f(π). On the other hand the sum of the cπ(k) is exactly
the number of inversions of π as the two groups of the shuffle are in order, thus
(−1)f(π)(−1)(q1−p1)p2 sgn(π) = 1.

= i∗M

∫
∆p1+p2

∑
π

(−1)f(π)(ιπ(1)(X) . . . ιπ(p1)(X)(id∆×(∂π(p1+1) . . . ∂π(p1+p2)))∗ω1)∧

(ι1(X) . . . ιp2(X)(id∆×(∂π(1) . . . ∂π(p1)))∗ω2)

53



3 Equivariant cohomology

We can add the ∂’s in front of the ωi as σ∗i ∂∗i = id, and σi ◦ iM = iM . Now apply the
property of simplicial Dupont forms with respect to the face maps.

= i∗M

∫
∆p1+p2

∑
π

(−1)f(π)(ι1(X) . . . ιp1(X)((∂π(p1+1) . . . ∂π(p1+p2))× id)∗ω(p1)
1 )∧

(ι1(X) . . . ιp2(X)((∂π(1) . . . ∂π(p1))× id)∗ω(p2)
2 )

= i∗M

∫
∆p1+p2

∑
π

(−1)f(π)(ι1(X) . . . ιp1(X)dtπ(1) ∧ . . . ∧ dtπ(p1) ∧ ω̄1)∧

(ι1(X) . . . ιp2(X)dtπ(p1+1) ∧ . . . ∧ dtπ(p1+p2) ∧ ω̄2)

= i∗M

∫
∆p1+p2

∑
π

(−1)f(π)(dtπ(1) ∧ . . . ∧ dtπ(p1) ∧ dtπ(p1+1) ∧ . . . ∧ dtπ(p1+p2)∧

(−1)(q1−p1)p2+p2
1+p2

2(ι1(X) . . . ιp1(X)ω̄1) ∧ (ι1(X) . . . ιp2(X)ω̄2)

The sign comes from rearranging the forms. Now recall that the volume of the p-simplex
is 1

p! and the number of elements of the shuffle group is (p1+p2)!
p1!p2! . Thus we obtain:

= 1
p1!p2! (−1)p2

1+p2
2 i∗M (ι1(X) . . . ιp1(X)ω̄1) ∧ (ι1(X) . . . ιp2(X)ω̄2)

=
(
i∗M

∫
∆
ι1(X) . . . ιp1(X)ω1

)
∧
(
i∗M

∫
∆
ι1(X) . . . ιp2(X)ω2

)
=
(

pr0 J
∫

∆
ω1

)
(X) ∧

(
pr0 J

∫
∆
ω2

)
(X)

=
((

pr0 J
∫

∆
ω1

)
∧
(

pr0 J
∫

∆
ω2

))
(X).

This finishes the proof.

This theorem motivates the following definition, which translates the definition of
characteristic form and transgression to the Cartan model.

Definition 3.53 (compare [4, p. 543]) Let ϑ, ϑ0, ϑ1 be G-invariant connections on
a G-equivariant principal K-bundle E → M . The characteristic form related to
the invariant polynomial P ∈ I∗(K) is defined as P (Ωϑ + µϑ) ∈ Ω∗G(M) and the
transgression form is ω̃P (ϑ1, ϑ0) =

∫
I P (Ωϑt +µϑt), where ϑt is the convex combination

of ϑ0 and ϑ1 as in the proof of Theorem 3.48.

Let Θi be the connections associated to ϑi, i = 1, 2 by (3.9). The following lemma
shows that we did not run into notational difficulties.

Lemma 3.54 We have

ω̃P (ϑ1, ϑ0) = pr0

(
J
(∫

∆
ω̃P (Θ1,Θ0)

))
,

where the right-hand side is the transgression form of Theorem 3.48.
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Proof. As the composition of maps pr0 ◦J ◦
∫

∆ is linear and all integral are taken over
compact sets, it commutes with

∫
I and thus the simplicial transgression form is mapped

to the one in the Cartan model.

There is a ‘canonical’ connection on the classifying bundle (compare [19, p.94]). As
seen above EK → BK is the geometric realization of the simplicial bundle γ : NK →
NK. Let ϑ0 ∈ Ω1(K, k) denote the Maurer-Cartan connection of the trivial bundle
K → pt, i.e.,

ϑ0(k) = Lk−1 : TkK → TeK = k.

Let
πi : ∆p ×Kp+1 → K

denote the projection to the i-th coefficient, i = 0, . . . , p and ϑi = π∗i ϑ0. Then we
define ϑ̄ on ∆p × (NK)p by

ϑ̄ =
∑
i

tiϑi,

where (t0, . . . , tp) are barycentric coordinates on the simplex. ϑ̄|∆p×(NK)p is a connection
on ∆p × (NK)p, as it is a convex combination of connections. It is seen easily from
the definition, that ϑ̄ is a simplicial-1-form.
Now we are able to prove the central theorem of this section.

Theorem 3.55 Let K be a Lie group.

1. There is a homomorphism

c : I∗(K)→ H2∗(BK) = A
2∗(NK)cl�dA2∗−1(NK)

P 7→ cP (NK) = [ωP (ϑ̄)],

which is, for compact groups, inverse to pr0 ◦J ◦
∫

∆.

2. Let G be another Lie group, P ∈ I∗(K) and let E be a smooth G-invariant
principal-K-bundle over the smooth manifold M , then

cP (E) = c(P )(EG×G E),

i.e., the definition via the Chern-Weil construction on the left-hand side equals
the pullback definition via the universal class c(P ) = cp(NK) on the right hand
side.

Proof. The homomorphism property is just a special case of Theorem 3.48 and the
statement about the inverse follows from Theorem 3.51, as the curvature of ϑ is equal
to zero and the moment map equals the identity.
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For the second assertion let U be a trivializing cover of π : E →M . From (3.4) and
(3.3) we obtain a commutative diagram

G• × E N(G• × E)π−1U NK

G• ×M N(G• ×M)U NK.

→

→

i → πU
→
φ̄

→ γ

→

i
→

φ

(3.10)

Now:
i∗c(P )(EG×G E) = c(P )(‖N(G• × E)π−1U‖)

= ‖φ‖∗c(P ) (right square is a pullback by Lemma 3.44)
= φ∗[ωP (ϑ̄)] (isomorphism of Theorem 3.14)
= [ωP (φ∗ϑ̄)]
= [ωP (i∗ϑ)] (class is independent of connection)
= i∗cP (E) (Chern-Weil definition)

The statement follows, since i∗ is an isomorphism.

Corollary Let K be a compact Lie group. Any characteristic form ω for principal
K-bundles of degree 2n corresponds to a polynomial P ∈ In(K), which induces via the
Chern-Weil construction the same characteristic class as ω.
Proof. Let ϑ̄ =

{
ϑ̄(p)

}
p∈N

denote the simplicial connection on NK → NK defined

above. By the pullback property of the characteristic form,
{
ω
(
ϑ̄(p)

)}
p∈N
∈ Ancl(NK)

is a closed Dupont n-form. Thus J ◦
∫

∆(ω) is a cocycle in the Getzler model. Since K
is compact, the Getzler model contracts to the Cartan model and thus J ◦

∫
∆(ω) is

cohomologous to an element of In(K), which we will call P . Since NK → NK is a
universal principal K-bundle, the assertion follows.

Remark 3.56 There is a shorter way, to show the main theorem above, then the one
we gave, but we will need the construction above later on, when defining differential
refinements of characteristic classes. As this shorter construction is maybe interesting
to the reader we will give a sketch (which generalizes arguments of [21]). Instead
of the simplicial manifold of the covering one defines a special classifying space for
each bundle: As before let π : E → M be an G-equivariant principal K-bundle and
G• × E → G• ×M the associated simplicial bundle. We define a simplicial manifold
N(G• × E)•, s.t., N(Gp × E)p = Gp × Ep+1, face and degeneracy maps act on the G
part as described above and on the E part be removing/doubling the ith entry. In
particular ∂p(g1, . . . , gp, b0, . . . , bp) = (g1, . . . , gp−1, gpb0, . . . , gpbp−1). K acts diagonal
on the E’s. This allows to define maps

G• × E N(G• × E)• NK

G• ×M N(G• × E)•/K NK.

→ π
→

ψ̄

→

→φ̄x

→ γ

→
ψ →φx
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Here ψ̄ is induced by the diagonal inclusion E → Ep and the map φ̄ is given by(
φ̄x
)
p

: Kp+1 → Gp × Ep+1

(k0, . . . , kp) 7→ (e, . . . , e, xk0, . . . , xkp).

As ‖N(G• × E)‖ is contractible, the right side of the diagram induces homotopy
equivalences in the geometric realization.

3.2.4 Vector bundles alias principal Gln(C)-bundles
As (complex) vector bundles are of specific interest, we want to translate the statements,
about equivariant characteristic forms in the last sections, from principal Gln(C)-
bundles to their associated vector bundles. One can also replace Gln(C) by subgroups,
e.g., U(n) to obtain analogues statements.

Definition 3.57 Let E be a principal Gln(C)-bundle. The associated vector bundle

E = E ×Gln Cn

is the quotient of E × Cn by the diagonal action of Gln, where the action on Cn is
given by matrix multiplication from the left.

Lemma 3.58 There is an isomorphism C∞(E, gln)Gln → C∞(M,End E).

Proof. This map is well known, but we give a proof for completeness.

End E = End(E ×Gln Cn) = E ×Gln End(Cn) = E ×Gln Mn(C) = E ×Gln gln

Hence, it suffices to construct the isomorphism

C∞(E, gln)Gln → C∞(M,E ×Gln gln).

Therefore, let f ∈ C∞(E, gln)Gln and s be a local section of E →M . Then,

M ⊃ U → E ×Gln gln

m 7→ (s(m), f(s(m)))

defines a local section of End E →M . Picking another local section s′ around m, there
exists A ∈ Gln, s.t., s′(m) = s(m)A and

(s′(m), f(s′(m))) = (s(m)A, f(s(m)A))
= (s(m)A,A−1f(s(m))A)
= (s(m), f(s(m))) ∈ Em ×Gln gln.

Hence the image of f is independent of the local section and defines an element in
C∞(M,End E).
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On the other hand given f ∈ C∞(M,E ×Gln gln), then for x ∈ E, f(π(x)) =
(xg,Af (x)) = (x, gAf (x)g−1) for some Af (x) ∈ gln. The map x 7→ gAf (x)g−1 is
equivariant by definition and smooth as π, f, and the action are smooth. We only have
to check that both map are inverse to each other.
Start with f : E → gln. Let x ∈ E and s be a local section of E around π(x), then,

for some g ∈ Gln,

x 7→ (s(π(x)), f(s(π(x)))) = (xg, f(xg)) = (x, gg−1(f(x))gg−1) = (x, f(x)) 7→ f(x).

Now let f ∈ C∞(M,E ×Gln gln) and s again be a local section of E. The composition
is m 7→ (s(m), Af (s(m))) = f(m), by the definition of Af .

A left G-action on E which commutes with the action of Gln clearly induces a left
G-action on E .

There is a one to one correspondence between connections on the principal-Gln-bundle
and those one the associated vector bundle (see e.g. [1, Ex. 3.4]).

Definition 3.59 (Def. 2.23. of [9]) Let ∇ be a connection on the G-vector bundle E .
The moment map µ∇ ∈ Hom(g,Ω0(M,End(E)))G is defined by

µ∇(X) ∧ ϕ := ∇
X]
M
ϕ+ LEXϕ, ϕ ∈ Ω0(M, E).

Here LEX denotes the derivative

LEXϕ = d

dt

∣∣∣∣
t=0

exp(tX)∗ϕ.

Remark 3.60 Observe that for a function f ∈ C∞(M,C),

LM×CX f(m) = d

dt

∣∣∣∣
t=0

(exp(tX)∗f) (m) = d

dt

∣∣∣∣
t=0

f
(
exp(tX)−1m

)
= −dfm(X]

M ).

Therefore, we altered the sign in the definition of [9].

Theorem 3.61 Let ϑ ∈ Ω1(E, gln) be a connection on the principal Gln-bundle E and
∇ be the associated connection on the associated vector bundle E. Then, with respect
to the isomorphism of Lemma 3.58, one has

dϑ+ ϑ ∧ ϑ = R∇ and µϑ = µ∇.

Proof. The first statement is standard, while the second is stated in [4, Lemma
3.2], where the proof is left to the reader. Here it is: The statement is local. Let
s = (s1, . . . , sn) be a local frame, i.e., a local section of E, X ∈ g and ϕ ∈ C∞(M, E).
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3.2 Equivariant characteristic forms and classes

Locally one can write ϕ = ∑
i ϕisi.

s∗(µϑ(X))ϕ = s∗(ι(X]
E)ϑ)

∑
i

ϕisi

=
∑
i

ϕi(s∗ϑ[X]
E ])si

=
∑
i

ϕi(s∗(ϑ[ds ◦ dπ(X]
E) + (1− ds ◦ dπ)(X]

E)])si

=
∑
i

ϕi
(
s∗(ϑ[ds(X]

M )] + ϑ[(1− ds ◦ dπ)(X]
E)])

)
si

see=
below

∑
i

ϕi

(
s∗(ϑ[ds(X]

M )])si + d

dt

∣∣∣∣
t=0

exp(tX) · (si)
)

=
∑
i

ϕi

(
∇
X]
M
si + d

dt

∣∣∣∣
t=0

exp(tX)∗(si)
)

=
∑
i

(
dϕi(X]

M )si + ϕi∇X]
M
si +

(
d

dt

∣∣∣∣
t=0

exp(tX)∗ϕi
)
si

+ ϕi
d

dt

∣∣∣∣
t=0

exp(tX)∗(si)
)

= ∇
X]
M

∑
i

ϕisi + d

dt

∣∣∣∣
t=0

exp(tX)∗(
∑
i

ϕisi)

= ∇
X]
M
ϕ+ LMX ϕ

= µ∇(X)ϕ
For the step in the middle, we have to show that for any m ∈M the equation

ϑs(m)

[
(1− ds ◦ dπ)

(
d

dt

∣∣∣∣
t=0

exp(tX)s(m)
)]
· s = d

dt

∣∣∣∣
t=0

exp(tX)(s(exp(−tX)m))
(3.11)

holds, where the · on the left-hand side emphasizes that the action is from the right. This
is shown as follows. The vector field (1− ds ◦ dπ)

(
d
dt

∣∣∣
t=0

exp(tX)s(m)
)
is horizontal,

since
dπ

(
(1− ds ◦ dπ)

(
d

dt

∣∣∣∣
t=0

exp(tX)s(m)
))

= 0.

Hence there is a unique Y ∈ gln, such that

(1− ds ◦ dπ)
(
d

dt

∣∣∣∣
t=0

exp(tX)s(m)
)

= s(m)Y

and thus ϑs(m)
[
(1− ds ◦ dπ)

(
d
dt

∣∣∣
t=0

exp(tX)s(m)
)]

= Y .
Now, calculate

(1− ds ◦ dπ)
(
d

dt

∣∣∣∣
t=0

exp(tX)(s(m))
)

= d

dt

∣∣∣∣
t=0

exp(tX)s(m)− d

dt

∣∣∣∣
t=0

s ◦ π(exp(tX)s(m)),

59



3 Equivariant cohomology

hence, by equivariance of π,

= d

dt

∣∣∣∣
t=0

(exp(−tX)s(m)− s(exp(tX)π ◦ s(m)))

= d

dt

∣∣∣∣
t=0

(exp(−tX)s(m)− s(exp(tX)m))

= d

dt

∣∣∣∣
t=0

exp(tX)s(exp(−tX)m).

Thus we have shown that shows that Y = s(m)−1 d
dt

∣∣∣
t=0

exp(tX)s(exp(−tX)m) and
hence equation 3.11 holds.

Let ϑ, ϑ′ be connections on the principal Gln-bundle E and ∇,∇′ the associated
connections on the associated vector bundle E . Then one has the transgression forms

ω̃(∇,∇′) =
∫
I
ω(∇t) = ω̃(ϑ, ϑ′),

which coincide in the sense of Lemma 3.58. Here∇t is, as above, the convex combination,
which is a connection on R× E → R×M .
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4 Equivariant differential cohomology

Differential cohomology is a refinement of integral cohomology for smooth manifold by
differential forms. One motivation is to define refined characteristic classes, which reflect
both, the integral characteristic class and the characteristic form. This is reflected
by the following hexagon, see [9, Proposition 3.24], whose diagonals are exact in the
middle.

Ωn−1(M,C)�im d Ωn
cl(M,C)

Hn−1(M,C) Ĥn(M,Z) Hn(M,C)

Hn−1(M,C/Z) Hn(M,Z)

→
a

→d

→
→

→

→R

�
I

↪→
→

→
−β

→

The upper sequence, as discussed in Remark 2.17, is exact. The same is true for the
bottom sequence, which is a part of the Bockstein sequence (see Remark 2.37) up to
sign.
A particular model for differential cohomology is smooth Deligne cohomology:

Definition 4.1 (see, e.g., [9, Section 3.2]) Let M be a smooth manifold and n ∈ N.
The smooth Deligne complex in degree n is the complex of sheaves

D(n) : Z→ Ω0 d→ Ω1 d→ . . .
d→ Ωn−1 → 0→ . . .

and the n-th smooth Deligne cohomology is the n-th hypercohomology of the Deligne
complex:

Ĥn(M,Z) = Hn(M,D(n)).

We will define a similar refinement in the case of the action of a Lie group on the
manifold. The goal is a theory which sits in the middle of a hexagon as above, where
the lower line is the Bockstein sequence in equivariant cohomology and the upper line
is the tautological exact sequence of the Cartan complex

0→ Hn−1
G (M,C)→ Ωn−1

G (M)�d+ ι→ Ωn
G(M)cl → Hn

G(M,C)→ 0.

The discussion of equivariant characteristic forms in the previous section motivates to
enrich integral cohomology by all integral closed equivariant differential forms.
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4 Equivariant differential cohomology

4.1 The definition
The are several attempts to a definition [33, 25, 40]. The most elaborated one is given
by Kiyonori Gomi in [25], where he defines equivariant smooth Deligne cohomology of
a smooth manifold M acted on by a Lie group G. His investigations (for G a compact
group) can be summarized in the following diagram with exact diagonals

Ωn−1(M,C)G�im d Ωn
cl(M,C)G

Ĥn(M,Z) Hn
G(M,C)

Hn−1(G∗ ×M,π−1C/Z) Hn
G(M,Z).

→
a →R

→
I

→

↪→
→

(4.1)

The subscript G stands for equivariant cohomology and the superscript G for equivariant
forms. Gomi defines the maps and shows that the diagonals are exact in the middle.

From our point of view, this diagram is not satisfactory: On the one hand, one does
not have the Bockstein sequence. On the other hand, closed equivariant forms is not,
what one expects in the upper right corner, as there indeed exists a map

Ωn
cl(M,C)G → Hn

G(M,C).

But this map is in general not surjective, as not every n-class in equivariant cohomology
is represented by a closed equivariant n-form: There are classes represented by (non-
zero degree) polynomials g→ Ω∗(M). As we have seen these are related to the moment
map, which plays an important role when discussing equivariant characteristic classes
and forms. Thus this information is neglected in Gomis curvature map.

We will start with the case of finite groups, as there is no moment map if the group
is discrete and thus everything is much more similar to the non-equivariant case. In
particular, the reader who is not used to differential cohomology hopefully will have an
easier access in this way. Afterwards we will discuss the definition of Gomi and show
how to define a better curvature map R, such that one obtains a hexagon with Gomi’s
definition of equivariant Deligne cohomology in the middle. By this we are motivated
to give another definition, which incorporates additional geometric data. The difficulty
is in general not to show that there is a hexagon, as this follows directly from the way
of the definition by ideas of [10]. What the discussion is about, is which groups sit on
the corners of the hexagon.

At the end of this section we will give some remarks on the definitions of [33, 40] for
equivariant differential cohomology.

4.1.1 The case of finite groups
Let, in this subsection, G denote a finite group. Thus a de Rham-type complex for
equivariant cohomology is given by

Ω0(M)G d→ Ω1(M)G d→ Ω2(M)G d→ . . . .
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4.1 The definition

To prepare for the case of Lie groups, we will, nevertheless, work on the simplicial
manifold G•×M . For definition of the Deligne complex, we will use a cone construction
similar to [9].
Definition 4.2 Let M be a G-manifold. The equivariant Deligne complex is defined
as

D(n)G•×M = Cone
(
Z⊕ σ≥nΩ•,∗ → Ω•,∗, (z, ω) 7→ ω − z

)
[−1].

Here Z denotes the locally constant simplicial sheaf of Z and Ω•,∗ the cochain complex
of simplicial sheaves of complex valued differential forms on the simplicial manifold
G• ×M .
Definition 4.3 Let G be a finite group acting on a smooth manifold M. The G-
equivariant differential cohomology of M is defined to be the hypercohomology

Ĥn
G(M) := Hn(G• ×M,D(n)Gp×M ).

Note that D(n)G•×M is a cochain complex of simplicial sheaves, i.e., it induces a
double complex of sheaves so that a resolution is given by triple complex. We give here
the general idea of how to define the cohomology of such an object. For details see
Section 3.1.1.
Denote the boundary map of D(n) by d and pick an injective resolution I•,∗,∗, i.e.,

for any p ∈ N there is the following double complex of sheaves on Gp ×M

Z C∞ Ω1 . . . Ωn−2 Ωn ⊕ Ωn−1 . . .

Ip,0,0 Ip,1,0 Ip,2,0 . . . Ip,n−1,0 Ip,n,0 . . .

Ip,0,1 Ip,1,1 Ip,2,1 . . . Ip,n−1,1 Ip,n,1 . . .

Ip,0,2 Ip,1,2 Ip,2,2 . . . Ip,n−1,2 Ip,n,2 . . .

...
...

...
...

...
...

→ι

→ δ
→

−d

→ −δ
→

−d

→ δ
→

−d
→

−d

→ (−1)n−1δ

→
(d,ι⊕−d)

→ (−1)nδ

→d

→ δ
→d

→ −δ
→d

→ δ
→d →d

→ (−1)n−1δ

→d

→ (−1)nδ

→d
→ δ

→d

→ −δ
→d

→ δ
→d →d

→ (−1)n−1δ

→d

→ (−1)nδ

→d

→

→d

→

→d

→

→d →d

→

→d

→

The triple complex which calculates the cohomology is

Kp,q,r =
(
Γ(Gp ×M, Ip,q,r), ∂ + (−1)pd + (−1)p+qδ

)
.

And in the same spirit as [9] and [25] one investigates differential cohomology by the
following two short exact sequences

0→ Cone(σ≥nΩ•,∗ ι→ Ω•,∗)[−1] a→D(n) I→ Z→ 0 (4.2)

0→ Cone(Z −ι→ Ω•,∗)[−1]→D(n) R→ σ≥nΩ•,∗C → 0 (4.3)
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4 Equivariant differential cohomology

of complexes of simplicial sheaves and the exact triangle

D(n)G•×M → Z⊕ σ≥nΩ•,∗C → Ω•,∗C → D(n)G•×M [1],

which has the following interesting part in its long exact cohomology sequence

Hn−1(G• ×M,Z)→ Hn−1(G• ×M,Ω•,∗C )→ Hn(G• ×M,D(n))
(I,R)→ Hn(G• ×M,Z)⊕Hn(G• ×M,σ≥nΩ•,∗) (−ι,ι)→ Hn(G• ×M,Ω•,∗). (4.4)

Recall from Section 3.1.1 that

Hn(G• ×M,Z) = Hn(‖G• ×M‖,Z) = Hn
G(M,Z)

and
Hn(G• ×M,Ω•,∗) = Hn

G(M,C).
Moreover, we have:

Lemma 4.4
Hn(G• ×M,σ≥nΩ•,∗) = Ωn

cl(M)G.

Proof.

Hn(G• ×M,σ≥nΩ•,∗) = {ω ∈ Ωn(M)|∂ω = 0, dω = 0}
= {ω ∈ Ωn(M)|∂∗0ω = ∂∗1ω, dω = 0}
= Ωn

cl(M)G,

as ∂0 : G×M →M is the projection to M and ∂1 is the action of G on M . Thus we
obtain closed equivariant differential n-forms.

As Ω•,∗ is a resolution of Cδ, the locally constant sheaf of continuous maps to the
field C with discrete topology, we get a quasi isomorphism

Cone(Z −ι→ Ω•,∗) ' Cone(Z −ι→ Cδ) ' C
δ
�Z.

The long exact cohomology sequence of the exact triangle

Cone(Z −ι→ Cδ)[−1]→ Z −ι→ Cδ → Cone(Z −ι→ Cδ)

is the Bockstein sequence, up to a minus sign. Comparing this with (4.4) via the
inclusion of (4.2), results in the follwing commutative diagram:

Hn−1
G (M,Z) Hn−1

G (M,C) Hn−1
G (M,C/Z) Hn

G(M,Z) Hn
G(M,C)

Hn−1
G (M,Z) Hn−1

G (M,C) Ĥn
G(M,Z) Hn

G(M,Z)⊕ Ω∗cl(M)G Hn
G(M,C).

→ →

→

→
−β

→ id⊕0

→
−ι

→ → →
I⊕R

→
(−ι,ι)

For the next steps, recall that one can define, similar to Lemma 3.18, a vertical
contraction of the double complex Ω•,∗(G• ×M).
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4.1 The definition

Lemma 4.5 ‘Integration’ over the group, defines a map∫
G

: Ωi
C(Gk ×M)→ Ωi

C(Gk−1 ×M) (4.5)(∫
G
ω

)
(g1, . . . , gk−1,m) = (−1)i 1

|G|
∑
G

ω(g, g1, . . . , gk−1,m)

such that ∂
∫
G(ω) = ω if ∂ω = 0.

Proof. The proof is given by the same calculation as for Lemma 3.18.

One has Cone(σ≥nΩ•,∗ ι→ Ω•,∗)[−1] ' σ<nΩ•,∗[−1]. Thereby, the map in degree n,
is given from right to left by η 7→ (dη, η). As differential forms form a fine sheaf (by
Lemma 2.29), they are themselves their injective resolution. Thus we can calculate the
hypercohomology Hn−1(G• ×M ; Ω<n

C ), by the total complex of the double complex:

Ω0(M) . . . Ωn−2(M) Ωn−1(M) 0

Ω0(G×M) . . . Ωn−2(G×M) Ωn−1(G×M) 0

Ω0(G2 ×M) . . . Ωn−2(G2 ×M) Ωn−1(G2 ×M) 0

...
...

...

→
−d

→ ∂
→

−d
→

−d

→ ∂
→

→ ∂
→d

→ ∂
→d →d

→ ∂
→

→ ∂
→
−d

→ ∂
→
−d

→
−d

→ ∂
→

→ ∂

An (n− 1)-cocycle is given by an n-tuple

ωi ∈ Ωi−1(Gn−i ×M), i = 1, . . . , n,

lying in the kernel, i.e., satisfying ∂ω1 = 0, dωi = ∂ωi+1 for i = 1, . . . , n − 1 and
dωn = 0.
As ∂ω1 = 0, we have ∂(

∫
G(ω1)) = ω1, hence by altering the cocycle (ωi) by the

coboundary (∂ − d)(
∫
G(ω1), 0, . . . , 0) we get

(ωi) ∼ (0, ω2 − d
∫
G

(ω1), ω3, . . . , ωn−1).

We now can proceed inductively as ∂(ω2−d
∫
G(ω1)) = ∂ω2−d∂

∫
G(ω1)) = ∂ω2−dω1 = 0,

and hence obtain
(ωi) ∼ (0, . . . , 0, ω̃n−1).

This proved that there is a surjection Ωn−1(M)G → Hn−1(G•×M ; Ω<n). To complete
the calculation of the cohomology we have to find the kernel of this map: We only
have to care about forms on M , as forms on Gk ×M for k 6= 0 are already discussed
to be zero homologous. Let η ∈ Ωn−2(M) ⊂⊕n−2

p=0 Ωn−2−p(Gp ×M). The boundary of
η should conserve that the forms in positive simplicial degree are zero, therefore one
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4 Equivariant differential cohomology

wants that ∂η vanishes. ∂η = 0 is equivalent to ∂∗0η = ∂∗1η, i.e., η being G-invariant.
Thus we obtain

Hn−1(G• ×M,Ω<n) = (Ωn−1(M))G�
d
(
Ωn−2(M)G

),
and from (4.2) an induced map

a : (Ωn−1(M))G�
d
(
Ωn−2(M)G

)→ Hn(G• ×M,D(n))

Lemma 4.6 R ◦ a = d : (Ωn−1(M))G�
d
(
Ωn−2(M)G

)→ Ωn
cl(M)G

Proof. Let η ∈ (Ωn−1(M))G�
d
(
Ωn−2(M)G

). Recall that the quasi-isomorphism

σ<nΩ•,∗[−1] ' Cone(σ≥nΩ•,∗ ι→ Ω•,∗)[−1] is in degree n given by η 7→ (dη, η). Thus
one calculates

R(a(η)) = R(dη, η) = dη,

since R comes from the projection to the first summand.

Collecting these statements, we have proven the following theorem.

Theorem 4.7 Let G be a finite group acting on the smooth manifold M , then there is
a commutative diagram

Ωn−1
C (M)G�

d
(
Ωn−2
C (M)G

) Ωn
C,cl(M)G

Hn−1
G (M,C) Ĥn

G(M,Z) Hn
G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)

→
a

→d

→
→

→

→R

�
I

↪→
→

→
−β

→

whose top line, bottom line and diagonals are exact.

Remark 4.8 If G is the trivial group this is exactly the hexagon of the non-equivariant
case.

Proposition 4.9 If G acts freely on M , then

Ĥn
G(M,Z) = Ĥn

(
M�G,Z

)
Proof. Let Q denote the quotient manifold, q : M → Q the quotient map and {e} the
trivial group. The simplicial manifold {e}• ×Q equals Q in any level and all face and
degeneracy maps are the identity. This implies that

Ĥn
{e}(Q,Z) = Hn({e}• ×Q,D(n)) = Ĥn(Q,Z),
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4.1 The definition

since ∂ alternately equals id or the zero map.
Moreover, q and G→ {e} induce a smooth simplicial map G•×M → {e}•×Q, whose

geometric realization is a fattened, homotopy equivalent, version of EG×GM → Q.
This map induces homomorphism between the exact lines

Hn−1(Q,Z) Hn−1(Q,C) Ĥn(Q,Z) Hn(Q,Z)⊕ Ωn
cl(Q) Hn(Q,C)

Hn−1
G (M,Z) Hn−1

G (M,C) Ĥn
G(M,Z) Hn

G(M,Z)⊕ Ωn
cl(M)G Hn

G(M,C)

→

→

→

→

→

→

→

→

→
→ → → →

As the two maps on the left and the right-hand side are isomorphisms, the same is true
in the middle by the five lemma.

How about homotopy invariance in equivariant differential cohomology? It is the
same as in the non-equivariant case: It is not, but one can measure the deviation from
being so.

Proposition 4.10 Let it : M → [0, 1] ×M be the inclusion at t ∈ [0, 1], let G act
trivially on the interval and let x̂ ∈ Ĥn

G([0, 1]×M,Z), then

i∗1x̂− i∗0x̂ = a

(∫
[0,1]×M/M

R(x̂)
)
.

Proof. This is almost verbatim [9, Prop. 3.28]. As integral cohomology is homotopy
invariant, there is y ∈ Hn

G(M,Z), such that I(x) = pr∗M y. By surjectivity of I there is
a lift ŷ ∈ Ĥn

G(M,Z), with I(ŷ) = y. Hence I(x̂−pr∗M ŷ) = 0 and thus x̂ = pr∗M ŷ+a(ω)
for some ω ∈ (Ωn−1([0, 1]×M))G. Note that R(x̂) = R(pr∗M ŷ) + dω.

i∗1x̂− i∗0x̂ = i∗1a(ω)− i∗0a(ω) = a

(∫
[0,1]×M/M

dω

)
= a

(∫
[0,1]×M/M

R(x̂)
)
.

Where the second equality is Stokes theorem, and the third equality follows as the fiber
integral of pullback forms is zero:∫

[0,1]×M/M
R(pr∗M ŷ) =

∫
[0,1]×M/M

pr∗M (R(ŷ)) = 0.

4.1.2 A version for Lie groups by Gomi
From now on, let G denote a Lie group. In this section we restate the definition for
equivariant smooth Deligne cohomology given in [25] and show how one can define a
‘curvature’ map, which does lead to a differential cohomology hexagon. Gomi notes
the lack of his definition himself (see [25, Lemma 5.9]) and this lemma is the starting
point for our alteration.
Combining the ideas of Gomi with the cone construction, we reformulate the definition
for the equivariant Deligne complex for Lie groups by Gomi:
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4 Equivariant differential cohomology

Definition 4.11 Let M be a G-manifold for a Lie group G. The equivariant Deligne
complex in degree n is defined as

DGomi(n)G•×M = Cone(Z⊕F1
nΩ•,∗ → Ω•,∗, (z, ω) 7→ ω − z)[−1].

Here F1
nΩ∗C is the simplicial sub-sheaf achieved from the simplicial sheaf of differential

forms on G• ×M by imposing the following conditions: in simplicial level zero, i.e.,
on M , forms shall have at least degree n and on any other level the differential form
degree on the G-part is at least 1, if the total form degree is less then n.

In particular, if G is discrete, this is the same complex as in the last section, because
on discrete groups G there are no positive degree differential forms.

Definition 4.12 Let G be a Lie group acting on a smooth manifold M. The G-
equivariant differential cohomology of M is defined to be the hypercohomology

Ĥn
G(M) := Hn(G• ×M,DGomi(n)Gp×M ).

We investigate equivariant differential cohomology for Lie groups with the same
methods as for finite groups namely with the following two short exact sequences

0→ Cone(F1
nΩ•,∗ ι→ Ω•,∗)[−1] a→DGomi(n) I→ Z→ 0 (4.6)

0→ Cone(Z −ι→ Ω•,∗)[−1]→DGomi(n) R→ F1
nΩ•,∗ → 0 (4.7)

of complexes of simplicial sheaves and also with the exact triangle

DGomi(n)G•×M → Z⊕F1
nΩ•,∗ → Ω•,∗ → DGomi(n)G•×M [1],

which has the following interesting part in its long exact cohomology sequence

Hn−1(G• ×M,Z)→ Hn−1(G• ×M,Ω•,∗)→ Hn(G• ×M,DGomi(n))
(I,R)→ Hn(G• ×M,Z)⊕Hn(G• ×M,F1

nΩ•,∗) (−ι,ι)→ Hn(G• ×M,Ω•,∗).

As before one has ([19, Prop. 5.15 and Prop. 6.1])

Hn(G• ×M,Z) = Hn
G(M,Z), Hn(G• ×M,Ω•,∗) = Hn

G(M,C)

and
Cone(Z −ι→ Ω•,∗) ' C

δ
�Z.

Thus, the only things left to discuss, are the differential form sheaves on the left in
(4.6) and on the right in (4.7).

Lemma 4.13 (Lemma 4.5 of [25]) Let G be a compact Lie group, then

Hn(G• ×M,Cone(F1
nΩ•,∗ ι→ Ω•,∗)[−1]) = Ωn−1(M)G�d(Ωn−2(M)G)

and
Hn+1(G• ×M,Cone(F1

nΩ•,∗ ι→ Ω•,∗)[−1]) = 0.

68
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Proof. We proof the first equation first. Let (ω, η) be a cocycle in the total complex
for the cohomology on the left-hand side, i.e., ω = (ωi)i=1...n, ωi ∈ Ωi(Gn−i ×M) such
that differential form degree on G of each ωi is at least one for i = 1, . . . , n − 1 and
η = (ηi)i=0...n−1, ηi ∈ Ωi(Gn−1−i ×M) such that (d+ ∂)η = ω (thus (d+ ∂)ω = 0).
Boundaries are ((d + ∂)α, α − (d + ∂)β) with α = (αi)i=1...n−2, αi ∈ Ωi(Gn−1−i ×

M) such that differential form degree on G of each αi is at least one and β =
(βi)i=0...n−2, βi ∈ Ωi(Gn−2−i ×M).

One may decompose the forms ηi = η′i + η′′i , where the differential form degree of η′i
on the G part is at least one and of η′′i is zero. Taking the boundary of (η′, 0), we see
that (ω, η) is cohomologous to (ω̃, η̃), where the differential form degree of η̃ is purely
on M . Let dg denote a left invariant probability measure on G, then, in analogy to
(4.5), the following integration formula for forms γ ∈ Ωk(Gp+1 ×M), such that the
differential form degree on the first G is zero,(∫

G
γ

)
(g1, . . . , gp,m) =

∫
G
γ(g, g1, . . . , gp,m)dg,

results in a k-form on Gp ×M , which satisfies ∂ (
∫
G γ) = γ if ∂γ = 0. This as shown

by the same calculation as for (4.5).
We have ∂η̃0 = 0, hence adding the boundary of (0, ((

∫
G η0) , 0, . . . 0)), we can assume

η̃0 = 0 without altering the cohomology class. Of course, this also alters η̃1, which,
by another boundary argument as above, again may be assumed to have degree zero
on the G-part. As (d+ ∂)η = ω, we have ∂η1 = ω1. How can ∂ lead to a differential
form degree on the G-part? Only by the action of G on M , hence the differential form
degree on the first G of ω1 is zero if n ≥ 3 and hence (

∫
G ω1) ∈ F1Ω1

C(Gn−2 ×M).
Altering by (((

∫
G ω1) , 0, . . .) , 0), shows that we may assume ω1 = 0 in the cohomology

class. Repeating the argument before, shows, that we may assume η1 = 0. Repeating
these steps (and forgetting about the ∼ for simplicity of notation) yield the situation,
where the only non-vanishing forms are ηn−1, ωn−1 and ωn, satisfying dηn−1 = ωn and
∂ηn−1 = ωn−1. Taking X to be a (n− 1)-tuple of tangent fields on M , as ωn−1 has a
positive differential form degree on G, we obtain

0 = ωn−1[X](s,m)
= ∂ηn−1[X](s,m)
= ηn−1[X](m)− ηn−1[sX](sm),

hence ηn−1 ∈ Ωn−1
C (M) is G-invariant. The only boundaries we still can mod out

are from ((. . . , 0, αn−2), (. . . , 0, βn−2)), satisfying αn−2 − ∂βn−2 = 0 to avoid changing
ηn−2 = 0. αn−2 = ∂βn−2 implies βn−2 is G-invariant, as if not, αn−2 would have a
summand with degree zero on G. Hence, the first claim is proved.
To proof the second statement, define the tuples ω, η, β, α analogously to above.

Observe first that the tuples ω, η, β get one additional element, whereas tuple α increases
by two elements, as F1

nΩn−1
C (M) = 0, but F1

nΩn
C(M) = Ωn

C(M) may not. Now, we can
repeat exactly the same arguments as above, until only the three forms ηn,ωn and
ωn+1 satisfying the relations dηn = ωn+1 and ∂ηn = ωn are left over. This element is
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4 Equivariant differential cohomology

a boundary, because it is exactly the image of (α, β) = ((0, . . . , ηn), 0) under d + ∂.
Thus we have shown that any (n+ 1)-cocycle is zero homologous, hence there is no
cohomology in degree n+ 1.

From (4.6) we obtain an induced map

a : (Ωn−1(M))G�
d
(
Ωn−2(M)G

)→ Hn(G• ×M,DGomi(n)).

Lemma 4.14 R◦a = d+∂ : (Ωn−1(M))G�
d
(
Ωn−2(M)G

)→ Ωn
cl(M)G⊕g∨⊗Ωn−2(M)

Proof. Let η ∈ (Ωn−1(M))G�
d
(
Ωn−2(M)G

). From the proof of Lemma 4.13 we get

that a(η) = (0, (. . . , 0, ∂η, dη), (. . . 0, η)), and as R is the projection to the tuple of
forms in the middle, we obtain the assertion.

Collecting these statements we obtain the following theorem.

Theorem 4.15 Let G be a compact Lie group acting from the left on the smooth
manifold M . Then there is the following commutative diagram

(Ωn−1(M))G�
d
(
Ωn−2(M)G

) Hn(G• ×M,F1
nΩ∗)

Hn−1
G (M,C) Ĥn

G(M,Z) Hn
G(M,C),

Hn−1
G (M,C/Z) Hn

G(M,Z)

→
a

→
d+∂

�
→

→

→R

�
I→

→
−β

→

(4.8)

where the top line, the bottom line and the diagonals are exact.

Remark 4.16 Parts of this diagram are due to Gomi ([25]), but, as he – partially –
defined maps to different groups in the corners, he did not achieve the entire hexagon.
If G is a discrete group, this reduces to the diagram of Theorem 4.7. If G is

non-discrete and acting freely on M , such that the quotient space is a manifold, one
would like to compare equivariant differential cohomology with differential cohomology
of the quotient. In general, one can not expect, that Ĥn

G(M,Z) = Ĥn(M/G,Z) as(
Ωn−1(M)

)G is different from Ωn−1(M/G). To see this in a very explicit example,
take M = G, then, in degree n = 2, Ωn−1(M)G = Ω1(G)G = g∨, but Ωn−1(M/G) =
Ω1(pt) = 0.

Moreover, one can not expect, that the map Hn−1
G (M,C/Z)→ Ĥn

G(M,Z) is injective
as in the discrete case, because Hn−1(G• ×M,F1

nΩ∗) will not vanish in general. To
see this, take the following example for any positive dimensional Lie group G:

H2(G• ×M,F1
3 Ω∗) = ker

(
d+ ∂ : F1Ω1(G×M)→ Ω2(G×M)⊕ Ω1(G×G×M)

)
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If ω ∈ Ω1(G×M) has form degree one on G, then ∂ω = 0 means that for any g1, g2 ∈ G,
m ∈M and any vector field X = X1 +X2 +XM , decomposed into the tangent direction
of the first copy of G, the second copy of G and M , one has

0 = (∂ω)(g1, g2,m)[X]
= ω(g2,m)[X2]− ω(g1g2,m)[X1g2 + g1X2] + ω(g1, g2m)[X1] (4.9)

Taking X1 = 0 this implies, that actually ω = f ∈ C∞(M, g∨ ⊗ C). Moreover, taking
X2 = 0 in (4.9), we obtain Adg ◦ f = L∗gf for any g ∈ G. Finally, since dω = 0, one
has dMf = 0. Hence

H2(G• ×M,F1
3 Ω∗) = map(π0(M), g∨) 6= ∅.

Example 4.17 When constructing characteristic classes, the cohomology of the clas-
sifying space is highly interesting. Let G be a group and EG → BG the universal
bundle. Then for cohomology with any coefficient group one has

H∗(BG) = H∗(EG/G) = H∗G(EG) = H∗G(pt),

where pt is the manifold consisting of a single point. Hence our question is: What is
Ĥ∗G(pt,Z)?
In this case the hexagon becomes

Ωn−1(pt) Hn(G• × pt,F1
nΩ∗)

Hn−1(BG,C) Ĥn
G(pt,Z) Hn(BG,C).

Hn−1(BG,C/Z) Hn(BG,Z)

→
a

→
d+∂

→
→

→

→R

�
I→

→
−β

→
(4.10)

Hence Ĥn
G(pt,Z) = Hn

G(pt,Z) if n 6= 1 and, as H1(G• × pt,F1
1 Ω∗) = 0, we get

Ĥ1
G(pt) = H0

G(pt,C/Z) = C/Z if G is connected. Maybe one wonders whether this
C/Z yields some characteristic class like information. The answer is: Pulling back
an element of C/Z via the classifying map of some principal G bundle, just gives a
constant function on the base space.

In Section 3.1.2 we defined the Cartan complex

(d+ ι)n : Ωn
G(M)→ Ωn+1

G (M)

which calculates equivariant cohomology, where Ωn
G(M) =

(
(S∗(g∨)⊗ Ω∗(M))G

)n
. We

want to compare the group Hn(G• ×M,F1
nΩ∗) in the upper right corner of (4.8) with

the Cartan model.

Proposition 4.18 There is a natural isomorphism

Hn(G• ×M,F1
nΩ∗)→ ker(d+ ι)n�(d+ i)

(
n/2⊕
k=1

(
Sk(g∨)⊗ Ωn−1−2k(M)

)G)
.
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4 Equivariant differential cohomology

Proof. In Section 3.1.4 we defined a quasi-isomorphism

J : Ω∗(Gp ×M)→
p⊕
l=0

C l(G,S∗(g∨)⊗ Ω∗(M)).

Let

X l,k,m =
{

0 if k = 0 and m < n,

C l(G,Sk(g∨)⊗ Ωm(M) otherwise.

The double complex (X•,(2∗+∗), d+ ι+ d̄+ ῑ) is a subcomplex of C•(G,S∗(g∨)⊗Ω∗(M)):
One has to check, that the inclusion commutes with boundaries. By the way X is
defined, the only reason for which it is maybe not a subcomplex, could arise from
the maps which are turned into zero maps, as they map to the zero space. Thus, the
problem can only come from maps lowering indices, namely ι and ῑ, but these two raise
the second index, hence there image does not lie in one the spaces X l,0,m, with m < n.
From the definition of J one checks that

J (F1
nΩ∗(G• ×M)) ⊂ X•,∗,∗.

Moreover, J is the identity on those forms, which have vanishing degree on the group
part and

Hn−1
(
C•(G,S∗(g∨)⊗ Ω∗(M))�X•,2∗,∗

)
= Ωn−1(M)G�

d
(
Ωn−2(M)G

)
by integration over the first copy of G (compare Lemma 4.5). Hence, J and the inclusion
of the Cartan complex into Getzler’s resolution induce the following commutative
diagram with exact rows

Hn−1
G (M,C) (Ωn−1(M))G�

d
(
Ωn−2(M)G

) Hn(G• ×M,F1
nΩ∗) Hn

G(M,C) 0

Hn−1
G (M,C) (Ωn−1(M))G�

d
(
Ωn−2(M)G

) Hn(X∗,(2∗+∗)) Hn
G(M,C) 0

Hn−1
G (M,C) (Ωn−1(M))G�

d
(
Ωn−2(M)G

) ker(d+ ι)n�∼ Hn
G(M,C) 0

→

→ J∗ → id

→
d+∂

→

→ J∗

→

→

→ →
d+ι

→ →

→

→

→id

→
d+ι

→

→

→

→

where ker(d+ ι)n�∼ should denote the right-hand side of the assertion. By the five
lemma this diagram shows that there is the isomorphism as claimed.

The discussion of this section thus manifests in the following alteration of Theorem
4.15.
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4.1 The definition

Theorem 4.19 For any compact Lie group acting on a smooth manifold M , there is
the commutative diagram

(Ωn−1(M))G�
d
(
Ωn−2(M)G

) ker(d+ ι)n�(d+ i)
(⊕n/2

k=1 S
k(g∨)⊗ Ωn−1−2k(M)

)G

Hn−1
G (M,C) Ĥn

G(M,Z) Hn
G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)

→
a

→
d+ι

�
→

→

→R

�

I→

→
−β

→

(4.11)

whose top line, bottom line and diagonals are exact.

4.1.3 The new version for Lie groups
In the last section, the geometric refinement was done only with respect to the manifold.
In this section, we will give another solution, where one enriches the equivariant
cohomology by all closed Cartan forms.
Therefore we want to use the model for equivariant cohomology defined by Getzler,

which we introduced in Section 3.1.3. As noted there, this model is not a cochain
complex of simplicial modules, but only a simplicial homotopy cochain complex. To
proceed as in the previous Section and do a similar cone-construction, we first have to
investigate the algebraic structure of simplicial homotopy cochain complexes in more
detail.

Definition 4.20 A simplicial sheaf homotopy cochain complex of modules on a sim-
plicial manifold M• is a triple (F•,∗, f, s), where F•,∗ is a Z-graded simplicial sheaf
of modules on M•, which is bounded from below1, f is a map of simplicial sheaves,
which increases the Z-grading by one and s is a simplicial zero homotopy of f2, i.e., in
simplicial degree p, s = (si)i=0,...,p−1, where

si : σ−1
i F

p,q → Fp−1,q+1, i = 0, . . . , p− 1

are maps of sheaves, such that the simplicial relations of degeneracy maps hold, s
commutes with f and

sp ◦ ∂̃p+1 = −f2 :
(
σ−1
p

(
∂−1
p+1F

p,q
))

= Fp,q → Fp,q+1

si ◦ ∂̃j =
{
∂̃j ◦ si−1 if i < j

∂̃j−1 ◦ si if i > j + 1
sj ◦ ∂̃j = sj ◦ ∂̃j+1s0 ◦ ∂̃0 = 0.

A morphism of simplicial sheaf homotopy cochain complex is a map of the simplicial
sheaves, which respects the grading and commutes with both the ‘boundary map’ f
and the zero homotopy.

1This means, there is an Integer k such that each Fp,q = 0 if q < k.
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4 Equivariant differential cohomology

Definition + Proposition 4.21 Let w : (F•,∗, f, s)→ (F̃•,∗, f̃ , s̃) be a morphism of
simplicial homotopy cochain complex. The cone of w is the simplicial sheaf homotopy
cochain complex

Cone(w) :=
((
F•,k+1 ⊕ F̃•,k

)
k∈N

,

(
−f −w
0 f̃

)
,

(
s 0
0 s̃

))
.

Proof. The only point, which is worth to check, is the relation between the ‘boundary
map’ and the homotopy:

−
(
−f −w
0 f̃

)2

= −
(
f2 fw − wf̃
0 f̃2

)
=
(
−f2 0

0 −f̃2

)

=
(
s∂ + ∂s 0

0 s̃∂ + ∂s̃

)
=
(
s 0
0 s̃

)
∂ + ∂

(
s 0
0 s̃

)
.

We are now going to define the cohomology of a simplicial sheaf homotopy cochain
complex (F•,∗, f, s) using a Čech model. Let U• be a simplicial cover of the simplicial
manifold M•. This defines for each q a resolution of the simplicial sheaf F•,q (compare
Section 3.1.1)

Č•,q,∗(U•,F•,k)

with Čech boundary map δ. The properties of the simplicial cover imply, that ∂ and s
restrict to the Čech groups. Hence, on the total complex of this triple graded collection
of modules, we have a boundary map ⊕

p+q+r=n
Čp,q,r, ∂ + s+ (−1)pf + (−1)p+qδ

 ,
where ∂ and s are the alternating sums over the maps ∂̃i and si respectively.

Thus we can define Ȟ(U•, (F•,∗, f, s)) to be the cohomology of this cochain com-
plex. As for classical Čech cohomology, refinements of the simplicial cover induce
homomorphisms of the associated cohomology theories. Thus we define

Ȟ(M•, (F•,∗, f, s)) = lim
U•

Ȟ(U•, (F•,∗, f, s))

to be the limit over all refinements of open covers.
If the simplicial sheaf homotopy cochain complex (F•,∗, f, s) = (F•,∗, d, 0) actually

is a cochain complex of simplicial sheaves, the total complex of the Čech resolution
of both types (compare Section 3.1.1) coincides, and hence the cohomology defined
here, coincides with the simplicial sheaf cohomology. Moreover, if the sheaves of
(F•,∗, f, s) are fine, then the Čech direction contracts by the standard argument and
the cohomology of (F•,∗, f, s) is the cohomology of the total complex (⊕p+q=nFp,q(Gp×
M), (−1)pf + s+ ∂).
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4.1 The definition

Now, turn to our specific case, i.e., we would like to find a simplicial sheaf homotopy
cochain complex C• = C•,∗ consisting of fine sheaves, such that its global sections are
given by C•(G,S∗(g∨)⊗ Ω∗(M)).
The map π : G• ×M → {e}• ×M, (g1, . . . , gp,m) 7→ (g1 . . . gpm) is a morphism of

simplicial manifolds. S∗(g∨)⊗Λ∗T∨M is a bundle over M , with left action of G on M ,
the induced action on the cotangent bundle and coadjoint action on the polynomial,
whose global sections are S∗(g∨)⊗ Ω∗(M). We can interpret this bundle as simplicial
bundle on the simplicial manifold {e}•×M , with all face and degeneracy maps being the
identity. The global sections of the pullback bundle π∗(S∗(g∨)⊗ Λ∗T∨M) in simplicial
level p are Cp(G,S∗(g∨)⊗ Ω∗(M)), thus take for U ⊂ Gp ×M open

Cp(U) := Γ(U, (π∗(S∗(g∨)⊗ Λ∗T∨M)p).

This is a sheaf of C∞(Gp ×M)-modules, hence fine (see Lemma 2.29). The morphism
between the simplicial levels ∂̃i : ∂−1

i Cp → Cp+1 and σ̃i : σ−1
i Cp → Cp−1 are given by

pullback along the simplicial bundle maps.
The map d+ ι : C•,l → C•,l+1 increases the second grading and is clearly a map of

sheaves, as booth operations are local. The maps d̄ and ῑ operate between different
simplicial levels: On global sections d̄ is the alternating sum of the maps ∂̃i, while ῑ

ῑ : Ck(G,Sl(g∨)⊗ Ωm(M))→ Ck−1(G,Sl+1(g∨)⊗ Ωm(M))

is given by the formula ῑ = ∑k−1
i=0 (−1)iῑi, where each ῑi is the map of sheaves

ῑi : σ−1
i C

k → Ck−1

(ῑif)(g1, . . . , gk−1|X) = d

dt

∣∣∣∣
t=0

f(g1, . . . , gi, exp(tXi), gi+1, . . . , gk−1|X),

with Xi = Ad(gi+1 . . . gk−1)X.
From the discussion of the maps d+ ι, ῑ and d̄ in Section 3.1.3 one obtains that

(C•,∗, d+ ι, ῑ)

is a simplicial sheaf homotopy cochain complex.
C•,0 is the simplicial sheaf of smooth functions, in which the simplicial sheaf Z injects.

This induces a map of simplicial sheaf homotopy cochain complexes

(Z, 0, 0)→ (C•,∗, d+ ι, ῑ) ,

where Z is located in degree zero. With respect to this injection, we define

DC(n)G•×M = Cone(Z⊕ C•,≥n → C•,∗, (z, ω) 7→ ω − z)[−1].

Definition 4.22 Let G be a Lie group acting on a smooth manifold M. The full G-
equivariant differential cohomology of M is defined to be the cohomology of simplicial
sheaf homotopy cochain complexes DC(n):

ĤnG(M) := Hn(G• ×M,DC(n)G•×M ).
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4 Equivariant differential cohomology

Theorem 4.23 If G is a compact group, one has the following hexagon

Ωn−1
G (M)�(d+ ι) Ωn

G(M)cl

Hn−1
G (M,C) ĤnG(M,Z) Hn

G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)

→
a

→
d+ι

→
→

→

→R

�
I

↪→
→

→
−β

→

(4.12)

where the line along top, the one along the bottom and the diagonals are exact.

Proof. This follows by the same arguments as in the last section, and the fact, that
for compact Lie groups, the Getzler resolution contracts to the Cartan complex (see
Section 3.1.3).

Example 4.24 Let M = pt be a point, then the hexagon (4.12) reduces in even
degrees to

0 (Sn(g∨))G

0 Ĥ2n
G (pt,Z) H2n(BG,C)

Hn−1(BG,C/Z) H2n(BG,Z)

→
a

→
d+ι

→
→

→

→R

�
I

↪→
→

→
−β

→

and in odd degrees to

(Sn(g∨))G 0

H2n(BG,C) Ĥ2n+1
G (pt,Z) 0

H2n(BG,C/Z) H2n+1(BG,Z)

→
a

→
d+ι

→
→

→

→R

�
I

↪→
→

→
−β

→

Hence

ĤnG(pt,Z) =
{
Hn(BG,Z) if n is even
Hn−1(BG,C/Z) if n is odd.

The contravariant functor ĤG assigning an abelian group to the G-manifold M is
not homotopy invariant, but its deviation from homotopy invariance is measured by
the homotopy formula.

Lemma 4.25 Let it : M → [0, 1]×M be the inclusion determined by t ∈ [0, 1] and let
G act trivially on the interval. Let ω ∈ (S∗(g∨)⊗ Ω∗([0, 1]×M))n)G

(dM + ι)
(∫

[0,1]×M/M
ω

)
= i∗1ω − i∗0ω +

∫
[0,1]×M/M

(dM + ι)ω
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Proof. Going to local coordinates (using a partition of unity), this is the derivative of
the integral by the lower bound, the upper bound and the interior derivative.

Proposition 4.26 If x̂ ∈ ĤnG([0, 1]×M,Z), then

i∗1x̂− i∗0x̂ = a

(∫
[0,1]×M/M

R(x̂)
)
,

where we have kept the notions of the previous lemma.

Proof. As equivariant integral cohomology is homotopy invariant, there is a class
y ∈ Hn(M,Z), such that p∗My = I(x̂). As I is surjective, choose a lift ŷ ∈ ĤnG(×M ;Z)
with I(ŷ) = y. Thus I(p∗M ŷ − x̂) = 0 and hence x̂ = p∗M ŷ + a(ω) for some ω ∈
(S∗(g∨)⊗ Ω∗([0, 1]×M))n−1)G. Therefore (d+ ι)ω = R(a(ω)) = R(x̂)−R(p∗M ŷ). We
can write ω = dt ∧ α+ β, where dt corresponds to the interval and α, β are forms on
p∗MTM On the one hand

i∗1x̂− i∗0x̂ = a (i∗1ω − i∗0ω) = a (i∗1β − i∗0β) .

On the other hand

a

(∫
[0,1]×M/M

R(x̂)
)

= a

(∫
[0,1]×M/M

R(x̂)− p∗MR(ŷ)
)
,

and, as fiber integrals over basic forms vanish,

= a

(∫
[0,1]×M/M

(d+ ι)ω
)

= a

(∫
[0,1]×M/M

(dM + ι)ω
)

+ a

(∫
[0,1]×M/M

d[0,1]ω

)

= a

(∫
[0,1]×M/M

(dM + ι)dt ∧ α
)

+ a

(∫
[0,1]×M/M

d[0,1]β

)

= a

(
(i∗0 − i∗1)dt ∧ α+ (dM + ι)

(∫
[0,1]×M/M

dt ∧ α
))

+ a ((i∗1 − i∗0)β)
= a (i∗1β − i∗0β) .

In the last step we use that a vanishes on exact forms.

To compare our definition with the construction in the last section, we define a
subsheaf F1

nC•,∗ ⊂ C•,∗. In the bundle S∗(g∨)⊗ Λ∗(T∨M), we have the subbundle

S≥1(g∨)⊗ Λ<n(T∨M) +
(
S∗(g∨)⊗ Λ∗(T∨M)

)≥n
.
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4 Equivariant differential cohomology

F1
nC•,∗ is defined to be the sheaf of sections of (the pullback to the simplicial manifold

of) this bundle. As one checks immediately

F1
nC0,n−1(M) =

n/2⊕
k=1

Sk(g∨)⊗ Ωn−1−2k(M)

 ,
i.e., the space, whose G-invariant part is known from Proposition 4.18.

Lemma 4.27 The image of F1
nΩ•,∗ under the Getzler map J : Ω•,∗ → C•,∗, defined in

section 3.1.4, lies in F1
nC•,∗.

Proof. Let U ⊂ Gp ×M an open set and ω ∈ F1
nΩp,k(U). If k ≥ n there is nothing to

show. Let k < n. The projection of the image of J (ω) to C•,∗(U)/F1
nC•,∗(U) is the

part of J (ω) whose polynomial degree is zero. This is zero, since the form degree of ω
on the G part is positive (by the condition k < n) and hence ω is mapped to zero in
the quotient and hence to a positive degree polynomial.

Let DC(1, n) = Cone(Z⊕F1
nC•,∗ → C•,∗, (z, ω, η) 7→ ω + η − z)[−1]

Lemma 4.28 The map of chain complexes of simplicial sheaves

J∗ : D(n)G•×M → DC(1, n)G•×M

induces an isomorphism Ĥ∗G(M,Z)→ H∗(G• ×M,DC(1, n))

Proof. The same arguments as given above show, that H∗(G• ×M,DC(1, n)) sits in
the same hexagon (4.11), as Ĥ∗G(M,Z) and the induced maps on all corners is the
identity.

We have an inclusion DC(n)→ DC(1, n), which, composted with the isomorphism
of Lemma 4.28, induces a map

f : Ĥ∗G(M,Z)→ Ĥ∗G(M,Z).

Theorem 4.29 f is an isomorphism in degree 0,1 and 2 and surjective in higher
degrees.

Proof. This again follows from the hexagons, which coincide in degree 0, 1, 2. In
higher degrees, the sequence along the bottom is the same and along the top one has
surjections.

Remark 4.30 Michael Luis Ortiz discusses an idea of a definition of equivariant
differential cohomology in [40, p.7-9]. He gives a recipe what to do for general Lie
groups, but does not make things precise. In particular he talks about differential
forms on M ×G EG. As you will have noted, giving them a precise meaning, in which
one can compare them with integral cohomology and the Cartan model is one of the
major lines in this thesis and found its final answer in this section.
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4.2 Equivariant differential characteristic classes

On the other hand, there is a definition of Deligne cohomology for orbifolds by
Ernesto Lupercio and Bernardo Uribe in [33]. This includes the ‘action orbifold’ of G
on M with objects M and morphisms G×M , whose nerve is our simplicial manifold
G• ×M . Translating his definition to our language, one gets the complex

Cone
(
Z⊕ Γ

(
·, (∂∗1)•Λ≥nT∨M

)∗
→ Γ

(
·, (∂∗1)•Λ∗T∨M

)
, (z, ω) 7→ ω − z

)
[−1],

of cochain complexes of simplicial sheaves on G• ×M , where Γ(·, E) denotes the sheaf
of local sections of the bundle E. This yields (for G compact) the hexagon:

(Ωn−1(M))G�
d
(
Ωn−2(M)G

) Ωn
cl(M,C)G

(Ωn−1
cl (M))G�

d
(
Ωn−2(M)G

) Ĥn
G(M,Z) (Ωn

cl(M))G�
d
(
Ωn−1(M)G

)

Hn−1
G (M,Cone(Z→ Ω∗(·)G)) Hn

G(M,Z)

→
a

→d

→
→

→

→R

�
I

↪→

→

→
−β

→

In the case of finite groups, one has H∗G(M,C) = Ωn
cl(M)G/dΩn−1(M)G, thus this is

the same as we had before. In the case of positive dimensional Lie groups it is even
less satisfactory then the definition of Gomi, as there is not even equivariant complex
cohomology at the left and the right end.

4.2 Equivariant differential characteristic classes
Let us restrict to compact groups G acting on the manifold and on vector bundles.
As rank n vector bundles admit a hermitian metric, they are in one to one correspon-
dence with principal U(n) bundles. Thus any characteristic form for vector bundles
corresponds to an invariant polynomial P ∈ I∗(U(n)) by Corollary 3.2.3. The from
from Section 3.2 that invariant polynomials give an important class of equivariant
differential forms by ω(∇) = P (R∇ + µ∇). Moreover, if ω is integral, then there is an
integral equivariant characteristic class cω coinciding with the class of ω in complex
cohomology.
Definition 4.31 A differential refinement of ω associates to every G-equivariant vector
bundle with connection (E,∇) on M a class ω̂(∇) ∈ ĤG(M ;Z) such that

R(ω̂(∇)) = ω(∇), I(ω(∇)) = cω(E)

and for every map f : M →M ′, we have f∗ω̂(∇) = ω̂(f∗∇).
As the intersection of the kernels

ker(R) ∩ ker(I) = Hn−1
G (M,C)�Hn−1

G (M,Z)
is in general non-trivial, the differentially refined class ω̂(∇) can contain finer infor-
mation than the pair (ω(∇), cω(E)). Thus it is a priori not clear that for a given
equivariant characteristic form, there is only one equivariant differential characteristic
class.
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4 Equivariant differential cohomology

Theorem 4.32 An integral equivariant characteristic form admits a unique equivariant
differential extension.

The line of arguments of this section is (almost) the following: As Ĥ2n
U(n)(pt,Z) =

Hn(BU(n),Z), we would like to define a map of simplicial manifolds G•×M → NU(n)
classifying our bundle and pull back the universal class together with a corresponding
connection. Now we can compare this connection with the one defined on our bundle
and change the differential characteristic class according to this.

Lemma 4.33 Let ∇ and ∇′ are two connections on the same bundle, then

ω̂(∇)− ω̂(∇′) = a(ω̃(∇,∇′))

Proof. Let ∇t denote the convex combination of ∇ and ∇′. Then by Proposition 4.26

ω̂(∇)− ω̂(∇′) = i∗1ω̂(∇t)− i∗0ω̂(∇t)

= a

(∫
[0,1]×M/M

R(ω̂(∇t))
)

= a

(∫
[0,1]×M/M

ω(∇t)
)

= a(ω̃(∇,∇′)).

This Lemma implies, in particular, that we are done, if we have defined the refined for
hermitian bundles with hermitian connection, since any connection can by symmetrized
(compare [9, Section 2.5]).

Let π : E →M be a G-equivariant hermitian vector bundle with hermitian connection
∇ and B be the associated principal U(n)-bundle (with respect to some metric)
furnished with the associated principal connection ϑ. Given a trivializing cover U =
{Uα}, trivializations ϕα : π−1Uα → Uα×G and transition functions gαβ : Uα∩Uβ → G,
we obtain a diagram of simplicial manifolds similar to (3.4):

G• ×B (NGB)π−1U NŪ(n)

G• ×M (NGM)U NU(n)

→ π

→

ī
→
φ̄

→ →

→

i
→

φ

Proposition 4.34 The map i induces an isomorphism

i∗ : ĤnG(M,Z)→ Hn((NGM)U , i∗DC(n))
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4.2 Equivariant differential characteristic classes

and isomorphisms between all corners of the hexagons (4.12) with the corresponding
corners of

Hn((NGM)U , i∗Cone(C∗,≥n → C∗,∗)[−1]) Hn((NGM)U , i∗C∗,≥n)

Hn−1
G (M,C) Hn((NGM)U , i∗DC(n)) Hn

G(M,C).

Hn−1
G (M,C/Z) Hn

G(M,Z)

→
a

→
d+ι

→
→

→

→R

�
I

↪→

→

→
−β

→

Proof. Recall that ‖i‖ : ‖(NGM)U‖ → ‖G•×M‖ is a homotopy equivalence. The short
exact sequence of simplicial sheaves

0→ Cone(Z→ C•,∗)→ DC(n)G•×M → C•,≥n → 0

and the map i induce the following diagram with exact rows

0 Hn−1
G (M,C/Z) ĤnG(M,Z) Ωn

G(M)cl Hn−1
G (M,C/Z)

0 Hn−1
G (M,C/Z) Hn((NGM)U , i∗DC(n)) Hn((NGM)U , i∗C∗,≥n) Hn−1

G (M,C/Z).

→

→ =

→

→ =

→

→ i∗
→

→ i∗ → =

→ → → →

Thus, by the five lemma, it is sufficient to show, that

i∗ : Ωn
G(M)cl → Hn((NGM)U , i∗C∗,≥n)

is an isomorphism. Observe that

Hn((NGM)U , i∗C∗,≥n) = ker
(
d+ ι : C0,n

(∐
Uα
)
→ C0,n+1

(∐
Uα
))
∩

ker

∂ : C0,n
(∐

Uα
)
→ C1,n

 ∐
α1,α2,β1,β2

U (1)
α1α2 ∩ U

(1)
β1β2

 .
Let (ωα) ∈ C0,n (∐Uα). The definition of the map ∂

m ∈ Uβ2

U
(1)
α1α2 ∩ U

(1)
β1β2
3 (g,m)

gm ∈ Uα1

7→ →∂0

7→ →
∂1

implies that ∂(ωα) = 0 is equivalent to

∂∗0ωβ|U(1)
αβ

= ∂∗1ωα|U(1)
αβ

.

Moreover, since e× (Uα ∩ Uβ) ⊂ ∂∗1Uα ∩ ∂∗0Uβ = U
(1)
αβ , this equation implies that (ωα)

is the restriction of a global section ω ∈ C0,n(M), which is by the same equation
G-invariant. Hence ω ∈ ker(d+ ι) = Ωn

G(M)cl. This proves the first claim.
The claim about the hexagon follows by the same argument, because the ‘de Rham’

sequence along the top is exact.
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4 Equivariant differential cohomology

We have defined a connection ϑ̄ on NU(n) → NU(n) in Section 3.2.3. Moreover,
the isomorphism I∗(U(n))→ H∗(U(n),C) implies, that there is a polynomial P and a
universal class cP ∈ Hn(BU(n),Z) = Ĥ2n

U(n)(pt,Z) corresponding to ωP .

Definition + Proposition 4.35 The differential refinement is given by the formula

ω̂(∇) = (i∗)−1(φ∗cP + a(ω̃P (i∗ϑ, φ̄∗ϑ0))).

This definition is independent of the chosen cover and trivializations and defines the
differential refinement of the integral characteristic form ωP .

Proof. We will prove the independence of the cover in three steps:
Step 1: Let U ′ = {U ′β} be a refinement of the cover U , i.e., for any β, there is some

α(β), such that U ′β ⊂ Uα(β); let ϕ′β = ϕα(β)|U ′
β
. The inclusion of the refinement yields

a commutative diagram

G• ×B (NGB)π−1U ′ NŪ(n)

G• ×B (NGB)π−1U NŪ(n)

G• ×M (NGM)U ′ NU(n)

G• ×M (NGM)U NU(n)
→

→ ī′ →
φ̄′

→

→

→

→ ī →
φ̄

→

→ i′ →
φ′

→

→

→
i

→
φ

→

from which the independence of the cover follows, because the direct pullback is same
as the one factorized over the coarser cover.
Step 2: Take one cover U = {Uα}, with two different families of trivialization maps

ϕα, ϕ
′
α : π−1Uα → Uα ×G.

Then there is a family of maps ψα : Uα → G, such that ψα(π(b)) · ϕα(b) = ϕ′α(b) for
any b ∈ π−1Uα and any α.
The difference of the two definitions is

φ∗cP + a(ω̃P (i∗ϑ, φ̄∗ϑ0))− φ′∗cP − a(ω̃P (i∗ϑ, φ̄′∗ϑ0))
= φ∗cP − φ′∗cP − a(ω̃P (φ̄∗ϑ0, φ̄′

∗
ϑ0))

First assume each Uα is contractible, then there is a homotopy ψ̃α : [0, 1] × Uα → G
such that i∗1ψ̃α = ψα and i∗0ψ̃α maps any point to e ∈ G. These homotopies induce a
homotopy

φ̃ : [0, 1]× (NGB)π−1U ′ → NU(n)
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4.2 Equivariant differential characteristic classes

between φ̃0 = φ and φ̃1 = φ′ and one can calculate
φ∗cP − φ′∗cP = i∗0φ̃

∗cP − i∗1φ̃∗cP

= a

(∫
[0,1]

R(φ̃∗cP )
)

= a

(∫
[0,1]

φ̃∗R(cP )
)

= a

(∫
[0,1]

φ̃∗
∫

∆
P (ϑ0)

)

= a

(∫
[0,1]

∫
∆
P (φ̃∗ϑ0)

)
= a(ω̃P (φ̄∗ϑ0, φ̄′

∗
ϑ0)).

In the last step, we use that ω̃P is independent of the path between the connections.
The case of non contractible Uα follows by Step 1.
Step 3: Let (U , (ϕα)), (U ′, (ϕ′β)) be two different covers with trivializations. Let
Ũ = {Uα∩U ′β|α, β} be the common refinement on which there are two different families
of trivializations are introduced by ϕ and ϕ′. Now the statement follows from the
previous steps.
Next, we check the properties of the differential refinement:

I(ω̂(∇)) = I((i∗)−1(‖φ‖∗cP )) = cω(B)
and

R(ω̂(∇)) = R((i∗)−1(‖φ‖∗cP ) + a(ω̃(i∗ϑ, φ̄∗ϑ0))
= R((i∗)−1(‖φ‖∗cP )) + (d+ ι)ω̃(i∗ϑ, φ̄∗ϑ0)
= (i∗)−1(ω(φ̄∗ϑ0) + ω(i∗ϑ)− ω(φ̄∗ϑ0))
= ω(∇).

Let (F, f) : (B,M)→ (B′,M ′) be a pullback. As a trivialization of (B′,M ′) induces
a trivialization of (B,M), one has a commutative diagram

G• ×B (NGB)π−1f−1U NŪ(n)

G• ×B′ (NGB
′)π−1U NŪ(n)

G• ×M (NGM)f−1U NU(n)

G• ×M ′ (NGM
′)U NU(n)

→

→

→ →

→

→

→

→ →

→

→

→ →
→

→

→ →

→

which clearly implies the pullback property.
The refinement is unique, since we used for our definition only properties the

differential refinement necessarily has, namely the pullback-property and Lemma
4.33.
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4 Equivariant differential cohomology

4.3 Examples for equivariant differential cohomology
4.3.1 The Hopf bundle

As a first example, we want to discuss the equivariant differential cohomology of the
Hopf action of S1 on S3. This is defined in the following way: The complex numbers
act on C2 by scalar multiplication. Restricting to elements of unit length, this is a free
action of S1 on S3, with quotient S2.
To calculate the equivariant differential cohomology groups, we will need some

knowledge about S1-invariant differential forms on S3. On zero-forms, there is no
difficulty

Ω0(S3)S1 = C∞(S3)S1 ∼= C∞(S2).

Lemma 4.36 The projection map q : S3 → S2 and contraction with the fundamental
vector field of 1 ∈ R = s1 induce a split short exact sequence

0→ Ω1(S2) q∗→ Ω1(S3)S1 ι(1])−→ Ω0(S3)S1 → 0,

as 1] is S1-invariant.

Proof. Let ω0 denote the form dual to 1] (with respect to the standard scalar product
in C2). Then C∞(S3)S1 3 f 7→ fω0 defines a split. Moreover, this proves exactness
at the right end. Injectivity on the left end is clear. Now if we think of S3 → S2 as
S1-bundle, exactness in the middle is the fact that basic forms are exactly invariant
forms which vanish on fundamental vector fields.

Let ω ∈ Ω2(S3)S1 . The 1-form ι(1])ω is again horizontal and invariant and the same
is true for the 2-form ω − ω0 ∧ ι(1])ω, hence

Ω2(S3)S1 ∼=
(
ω0 ∧ q∗Ω1(S2)

)
⊕ q∗Ω2(S2) ∼=

(
ω0 ∧ q∗Ω1(S2)

)
⊕
(
q∗C∞(S2,C)dvolS2

)
.

Repeating the same argument leads to

Ω3(S3)S1 ∼= ω0 ∧ q∗Ω2(S2) ∼= ω0 ∧ q∗
(
C∞(S2,C)dvolS2

)
Proposition 4.37

Ĥk
S1(S3,Z) =



Z k = 0
C∞(S2,C)/Z k = 1
Z · dvolS2 ⊕Ω2(S2)�C · dvolS2 ⊕ C

∞(S2) k = 2

Ω2(S2)/Z ∼= C/Z⊕ ω0 ∧ q∗
(

Ω1(S2)�dC∞(S2,C)
)

k = 3

C k = 4
0 k ≥ 5
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4.3 Examples for equivariant differential cohomology

Moreover,

Ĥ3
S1(S3,Z) = C/Z · q∗ (dvolS2)⊕

(
ω0 ∧ q∗Ω1(S2)

)
∼= C/Z⊕ Ω1(S2),

and for any k ∈ N

Ĥ4+2k
S1 (S3,Z) = CdvolS3 ⊕q∗Ω1(S2)⊕ ω0 ∧ C∞(S2)

∼−→
d+ι(1)

CdvolS2 ⊕q∗dΩ1(S2)⊕ q∗C∞(S2),

and
Ĥ5+2k
S1 (S3,Z) = ω0 ∧ q∗Ω1(S2) ∼= Ω1(S2),

Proof. Most of the proof is an application of (4.8) and (4.11).

k = 0: (Ω−1(M))S�
d
(
Ω−2(M)S

) = 0, thus we have an isomorphism

Ĥ0
S1(S3,Z) I= H0

S1(S3,Z) = H0(S2,Z) = Z.

k = 1: The map a : C∞(S3,C)S1 → H1
S1(S3,Z) is a surjection, whose kernel is given

by H0(S2,Z), which injects as constant functions.

k = 2: In this case (4.11) looks like

(Ω1(S3))S1

�
d
(
Ω0(S3)S1

) Ω2
S1(S3)cl

H1(S3,C) = 0 Ĥ2
S1(S3,Z) H2(S3,C) = C.

0 = H1(S2,C/Z) H2(S2,Z) = Z

↪→
→
a

→
d+ι

→
→

→

→R

�
I→

→
−β

→

The map a is injective, as H1(S2,Z) = 0. From the discussion above, one has

(Ω1(S3))S1

�
d
(
Ω0(S3)S1) = Ω0(S3)S1

ω0 ⊕ q∗Ω1(S2)�dq∗Ω0(S2)

= q∗Ω0(S3)S1
ω0 ⊕ q∗

(
Ω1(S2)�dΩ0(S2)

)
.

Moreover ,

Ω2
S1(S3)cl = (Ω2(S3)S1 ⊕ Ω0(S3)S1)cl = (q∗Ω2(S2)⊕ ω0 ∧ q∗Ω1(S2)⊕ q∗C∞(S2))cl.

Let (q∗ω, ω0 ∧ q∗η, q∗f) be a triple in the right-hand side of the last equation, then,
to be closed, is equivalent to dω = 0, η = df and dη = 0, hence

Ω2
S1(S3)cl = q∗Ω2(S2)⊕ q∗C∞(S2).

85
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The map d+ ι becomes

d⊕ ι : q∗
(

Ω1(S2)�dΩ0(S2)
)
⊕ q∗Ω0(S3)S1

ω0 → q∗Ω2(S2)⊕ q∗C∞(S2),

where the quotient space C corresponds to subspace generated by the harmonic volume
form dvolS2 ∈ Ω2(S2).

k = 3: H3
S1(S3,Z) = H3(S2,Z) = 0. Hence a : Ω2(S3))S1

/dΩ1(S3)S1 → Ĥ3
S1(S3,Z) is

surjective.

(
Ω2(S3)

)S1

�
dΩ1(S3)S1 ∼= Ω2(S2)�dΩ1(S2)⊕ ω0 ∧ q∗

(
Ω1(S2)�dΩ0(S2)

)
∼= C⊕ ω0 ∧ q∗(dΩ1(S2)) ∼= Ω2(S2)

H2
S1(S3,Z) ∼= Z where 1 ∈ Z corresponds the volume form on S2.

k = 4: (4.8) reduces to

(Ω3(S3))S1

�
d
(
Ω2(S3)S1

) H4((S1)∗ × S3,F1
4 Ω∗)

Ĥ4
S1(S3,Z)

→
a

→
d+∂

→R

where a is surjective as H4
S1(S3,Z) = 0, R is injective as H3

S1(S3,C/Z) = 0 and d+ ∂
is an isomorphism as H3

S1(S3,C) = H4
S1(S3,C) = 0. Moreover as R ◦ a = d + ∂, a

must be injective and R must be surjective, thus

Ĥ4
S(M,Z) = (Ω3(M))S1

�
d
(
Ω2(M)S1).

Integrating over the sphere yields an isomorphism

∫
S3

: (Ω3(M))S1

�
d
(
Ω2(M)S1)→ C.

k ≥ 5: As the diagonal from the left top to the right bottom in (4.8) is exact and both
groups at the ends are zero, there is a zero in the middle.

The statements about full differential cohomology follow from the calculation of the
Cartan algebra. As the Lie algebra of S1 is one dimensional, any monomial carries the
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same information as its evaluation at 1. For the hexagon of full differential cohomology
in odd degree ≥ 3 we have

Ω2
S1(S3)�(d+ ι)Ω1

S1(S3) = q∗C∞(S2)⊕ Ω2(S3)S1

�(d+ ι)Ω1(S3)S1

= q∗C∞(S2)
ιω0 ∧ q∗C∞(S2) ⊕ ω0 ∧ q∗Ω1(S2)⊕ q∗Ω2(S3)S1

q∗dΩ1(S2)
= ω0 ∧ q∗Ω1(S2)⊕ Cq∗dvolS2

and

Ω4+2k
S1 (S3)�(d+ ι)Ω3+2k

S1 (S3)

= q∗C∞(S2)⊕ Ω2(S3)S1

�(d+ ι)(Ω1(S3)S1 ⊕ Ω3(S3)S1

= q∗C∞(S2)
ιω0 ∧ q∗C∞(S2) ⊕ ω0 ∧ q∗Ω1(S2)⊕ q∗Ω2(S3)S1

q∗dΩ1(S2) + ιΩ3(S3)S1

= ω0 ∧ q∗Ω1(S2)
∼= q∗Ω1(S2),

respectively for the upper left corner and

Ω3+2k
S1 (S3)cl =

(
ω0 ∧ q∗C∞(S2)⊕ q∗Ω1(S2)⊕ ω0 ∧ q∗Ω2(S2)

)
cl

= (ω0 ∧ q∗C∞(S2))ι=0 ⊕ (q∗Ω1(S2)⊕ ω0 ∧ q∗Ω2(S2))cl

= q∗Ω1(S2)

in the closed forms.
Finally, in even degree ≥ 4 one calculates for the closed forms

Ω4+2k
S1 (S3)cl = (q∗C∞(S2)⊕ ω0 ∧ q∗Ω1(S2))cl ⊕ q∗Ω2(S2)cl

= q∗C∞(S2)⊕ q∗Ω2(S2)
= q∗C∞(S2)⊕ q∗dΩ1(S2)⊕ Cq∗dvolS2

and for groups in the upper left corner

Ω3+2k
S1 (S3)�(d+ ι)Ω2+2k

S1 (S3) = Ω1(S3)S1 ⊕ Ω3(S3)S1

�(d+ ι)(Ω0(S3)S1 ⊕ Ω2(S3)S1)

= ω0 ∧ q∗C∞(S2)⊕ q∗Ω1(S2)⊕ ω0 ∧ Ω2(S2)
q∗dC∞(S2)⊕ (d+ ι)ω0 ∧ q∗Ω1(S2)

= ω0 ∧ q∗C∞(S2)⊕ q∗Ω1(S2)
q∗dC∞(S2) ⊕

⊕ω0 ∧ Ω2(S2)
ω0 ∧ dq∗Ω1(S2)

∼= q∗C∞(S2)⊕ q∗dΩ1(S2)⊕ Cq∗dvolS2 .
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It is maybe interesting to compare this to

Ĥk(S2,Z) =



Z k = 0
C∞(S2,C)/C∞(S2,Z) k = 1
Zdvol ⊕ Ω2(S2)/(Cdvol) k = 2
C/Z k = 3
0 k ≥ 4

Hence, we see that the additional terms are related to ω0 in equivariant differential
cohomology. Do these allow one to find a difference between the S1 spaces S3 and
S1 × S2?
The choice of a metric gives a canonical dual to the fundamental vector field of

1 ∈ s1, which further gives a canonical splitting, of the short exact sequence

0→ Ω1(S2) q∗→ Ω1(S3)S1 ι(1])→ Ω0(S3)S1 → 0.

Hence one can’t find a difference between S1×S2 with the left action of S1 on the first
factor and S3 by calculating equivariant differential cohomology. We can generalize
these arguments:

4.3.2 Free actions

Let the Lie group G act freely on the manifold M from the left. Does equivariant
differential cohomology groups make a difference between the G manifolds M and
G ×M/G? As equivariant cohomology does not make one, the question reduces to
differential forms.
To discuss this, we collect the following statements:

Definition 4.38 (Def. 13.5. of [43]) The action is proper , if the action map

G×M →M ×M, (g,m) 7→ (gm,m)

is proper, i.e., the pre-image of any compact set is compact.

Theorem 4.39 (Th. 13.8. of [43]) Suppose G acts properly on M . Then each orbit
G ·m is an embedded closed submanifold of M , with

Tm(G ·m) = {X]
M (m)|X ∈ g} = g]m.

Theorem 4.40 (Th. 13.10. of [43]) Suppose that G acts properly and freely on M ,
then the orbit space M/G is a manifold and the quotient map π : M → M/G is a
submersion.
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Suppose the action is free and proper, thus M/G is a manifold. The quotient map
always induce injections

q∗ : Ωn(M/G)→ Ωn(M)G

and
pr∗ : Ωn(M/G)→ Ωn(G×M/G)G.

These lead to two resolutions of Ω∗(M/G): The first one is given as the double complex

...
...

...
...

Ωn(M/G) Ωn(M)G
(
g∨ ⊗ Ωn−1(M)

)G (
S2(g∨)⊗ Ωn−2(M)

)G
. . .

Ωn+1(M/G) Ωn+1(M)G (g∨ ⊗ Ωn(M))G
(
S2(g∨)⊗ Ωn−1(M)

)G
. . .

...
...

...
...

→ → → →

→
q∗

→ d

→ι

→ d
→ι

→ d
→

→ d

→
q∗

→ d
→ι

→ d
→ι

→ d
→

→ d

whose total complex is the Cartan complex Ω∗G(M), while the total complex of the
second resolution is Ω∗G(G ×M/G). The question now is: Are these two complexes
equivalent on the level of cycles? This is clearly true for zero forms as the two maps

C∞(M)G q∗←− C∞(M/G) pr∗−→ C∞(G×M/G)G

are isomorphisms. For higher degrees let h be a G-invariant Riemannian metric on M .
Then the tangent bundle

TM = g] ⊕
(
g]
)⊥

splits with respect to h. Moreover dqm :
(
g]m

)⊥
→ Tq(m)(M/G) is an isomorphism for

any m ∈M . Thus we have the following lemma, what shows the equivalence in degree
one

Lemma 4.41 Let G act properly and freely on M , then

0→ Ω1(M/G) q∗→ Ω1(M)G ι→
(
g∨ ⊗ Ω0(M)

)G
→ 0

splits.

Proof. Restriction to
(
g]
)⊥
⊂ TM defines a map Ω1(M)G → Ω1(M/G) which is left

inverse of q∗. Thus it is a split.

For the higher degrees, recall the following relation between exterior algebras.
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Proposition 4.42 (Prop. 10 of [6, Ch.III, §7.7]) Let V,W be vector spaces. Then
there is a natural isomorphism of algebras

Λ∗(V )⊗ Λ∗(W )→ Λ∗(V ⊕W ),

from the graded tensor product of the exterior algebras to the exterior algebra of the
direct sum.

We will now restrict to the case, where the adjoint action of G on g is trivial. This
includes, in particular, the case of abelian Lie groups.
An element of Ω∗G(G× (M/G)) is an invariant section of

S∗(g∨)⊗ Λ∗
(
T∨
(
G×M�G

))
→ G×M�G,

what by the splitting of the cotangent space and Proposition 4.42 is a G-invariant
section of

S∗(g∨)⊗ Λ∗
(
pr∗1 T∨G

)
⊗ Λ∗

(
pr∗2 T∨M�G

)
→ G×M�G.

This is the same as a section of

S∗(g∨)⊗ Λ∗
(
g∨
)
⊗ Λ∗

(
pr∗2 T∨M�G

)
→M�G,

since the action of G on S∗(g∨) is trivial. Pulling this section back to M along the
quotient map yields a G-invariant section of

S∗(g∨)⊗ Λ∗
(
g∨
)
⊗ q∗Λ∗

(
T∨M�G

)
→M.

Composition with id⊗]⊗
(
dq

∣∣∣∣(g])⊥
)−1

turns this section to an G-invariant section of

S∗(g∨)⊗ Λ∗T∨M →M

and thus an element of Ω∗G(M), because X]
gm = g(g−1Xg)]m = g ·X]

m. As any of these
steps may be gone in the opposite direction, we have an isomorphism between Ω∗G(M)
and Ω∗G(G× (M/G)).

Thus for free proper actions of abelian groups, there is no difference between M and
G× (M/G) in equivariant differential cohomology. The most easy example for a free
proper action of a non-abelian Lie group on a manifold is the left multiplication of
S3 ⊂ H on S7 ⊂ H. We will leave this discussion to future research.

Let E → M be a G-equivariant vector bundle with free and proper G-action on the
base and the total space. Given a connection on ∇ on E, there is the question, whether
this connection is a pullback from the quotient bundle

E E := E�G

M M := M�G.

→
q̄

→ →

→
q
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Clearly, if the connection is a pullback, then every equivariant differential characteristic
class ĉ(∇) must lie in the image of

q̃∗ : Ĥ(M,Z)→ ĤG(M,Z),

where q̃ is the projection of the simplicial manifolds G•×M → {e}•×M̄ . In particular,
the connection must be G-invariant and the moment map must vanish (compare also
[9, Section 2.2]).

Now turn the question the other way around: Assume, the there is some collection of
equivariant differential characteristic classes for a connection on E →M , which all lie
in the image of q̃∗. Does this imply that connection descends to the quotient bundle?

We want to remark to following observations according to an answer of this question:
Let ∇ be a connection on the equivariant complex vector bundle E → M of rank n.
Then total equivariant Chern form is given by

R(ĉ(∇) = det
(

1 + 1
2πiR

∇ + µ∇
)
.

For any X ∈ g, this form induces a polynomial

PX(t) = det
(

1 + 1
2πiR

∇ + µ∇(tX)
)

= det
(

1 + 1
2πiR

∇ + tµ∇(X)
)

in t. If the total equivariant Chern form lies in the image of the quotient map, then
the degree of polynomial in t is zero.
In the case of R∇ = 0, tnPX(1

t ) is exactly the characteristic polynomial of µ∇(X)
and hence all eigenvalues of µ∇(X) are zero, if total equivariant Chern form lies in the
image of the quotient map. In general, this does not imply that µ∇(X) is zero, but if
there is a metric on E, we can say more.
Let h be a hermitian metric on E and ∇ be compatible with h. Then E is in

correspondence to a principal U(n)-bundle and, as the Lie algebra u(n) consists of
anti-hermitian matrices, the image of µ∇(X) at any point of M is anti-hermitian. The
Jordan normal form of an anti-hermitian matrix is diagonal, because the conjugate of
an anti-hermitian matrix by an unitary one is anti-hermitian,

(U∗AU)∗ = U∗A∗U = −U∗AU

and hence all 1’s’ in the first the upper diagonal must vanish. Since an invariant
connection descends, if and only if the moment map vanishes (compare [9, Problem
2.24]), we have proven the following Proposition.
Proposition 4.43 Let (E, h)→M be a G-equivariant hermitian vector bundle, such
that the G-action is free and proper, and let ∇ be a G-invariant hermitian connection
on E, such that the curvature R∇ vanishes, then ∇ descends to a connection on

E�G→
M�G,

if and only if the total Chern form vanishes.
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4.3.3 Conjugation action on S3
The manifold S3 ⊂ R4 has a group structure. Recall that one defines on the vector
space R4 a real (non-commutative) division algebra, the quaternions, with three
imaginary units i, j, k squaring to −1 and satisfying ij = −ji = k. Now the space
of unit quaternions is S3 and has an induced multiplication. On the other hand,
there is another description of the 3-sphere by the special unitary group of complex
2× 2-matrices

SU(2) =
{(

a −b̄
b ā

)∣∣∣∣∣a, b ∈ C, |a|2 + |b|2 = 1
}
.

The map (
a −b̄
b ā

)
7→ a+ jb ∈ S3 ⊂ H

defines a group isomorphism between the two descriptions.
We want to investigate the conjugation action of S3 on itself. Therefore note the

following well-known fact:

Lemma 4.44 Half the trace or the real part of the quaternion is an invariant surjective
mapping

1
2 tr : S3 → [−1, 1],

which induces an isomorphism of the quotient S
3
�SU(2)→ [−1, 1]. The isotropy group

of any point besides 1 and −1 is isomorphic to S1.

Proof. The map is surjective, since it is continuous, 1,−1 ∈ S3 ⊂ H, and continuous
maps map connected sets to connected sets. As

tr(A−1BA) = tr(BAA−1) = tr(B),

the map is invariant. Applying this invariance, it suffices to show, that any orbit has a
representative of the form x+iy, Therefore let a, b, c, d ∈ R, with

√
a2 + b2 + c2 = d > 0.

We have to show that there exists g ∈ H, ḡg = 1, such that ai+ bj + ck = dḡig. We
write g = z + jw, with z, w ∈ C ⊂ H.

ḡig = (z̄ − jw)i(z + jw) = iz̄z + z̄kw − jiwz − jwkw = iz̄z + 2kwz − iw̄w

hence

a = d(|z|2 − |w|2), b = 2d=(zw), c = 2d<(zw), |z|2 + |w|2 = 1

from which follows

|z| =
√
d+ a√

2d
, |w| =

√
d− a√

2d
, ei arg(zw) = c+ ib√

d2 − a2
.

This defines the pair (z, w) up to an angle. This angle represents the S1-isotopy.
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4.3 Examples for equivariant differential cohomology

Another helpful picture of S3 is obtained from stereographic projection with projec-
tion point −1. In formulas this is expressed as

H ⊃ S3 3 x = x0 + ix1 + jx2 + kx3 7→
1

1 + x0
(x1, x2, x3) ∈ R3 ∪ {∞},

where 1 ∈ H is mapped to the 0 ∈ R3 and −1 to ∞. Taking sets of fixed real value in
H, then these are mapped to 2-sphere of Radius

√
1−x0
1+x0

.
The conjugation action acts transitive on each of these 2-spheres and leaves the

midpoint and ∞ fixed.

1

i

j

k This figure shows the stereo-
graphic projection of the 3-sphere
S3 \ {−1} to R3, filled with 2-
spheres. i, j and k are the imag-
inary units of the quaternions,
which span the tangent space at
0 ∈ R3.
The vector field in real direction,
discussed in the text, points out-
ward like the spines of a hedgehog,
perpendicular to the correspond-
ing 2-sphere and its length is the
radius of this 2-sphere.

Taking a map f ∈ C∞(S3)S3 . It is clear that the map does only depend on the real
value or, in the other picture, not on the point itself, but only on the 2-sphere, on
which the point is located. To be smooth, the function must depend smoothly on the
real value and the different direction must fit at 1 and −1. As the function has the
same value in any direction of 1, fitting smoothly means that all odd derivatives must
vanish. Thus

C∞(S3)S3 ∼=
{
f ∈ C∞([−1, 1])

∣∣∣∣∣dkfdtk (−1) = dkf

dtk
(1) = 0, for all odd k > 0

}
⊂ C∞([−1, 1],C)

Let ω ∈ Ω1(S3)S3 . Let v be a tangent vector on one of the two fixed points. Then there
exists g ∈ S3, s.t. g−1vg = −v, hence an invariant one form must be zero on the fixed
points. As the real part of the quaternion is invariant under conjugation, the vector field
pointing in this direction, projects to a invariant tangent field on S3, which vanishes
only at 1 and −1. In the R3 picture, this is the radial vector field pointing outward
everywhere. Let X now denote the normalization of this vector field on S3 \ {1,−1},
and ω0 the one form dual to X. Let ω1 = ω − (ι(X)ω)ω0, where ι is the contraction of
the form by the field. A priori this forms are only defined on S3 \ {1,−1}, but as ω is
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zero at 1 and −1, we can extend (ι(X)ω)ω0 and ω1 by zero to obtain a smooth form
on all of S3. Taking any slice of S3 with fixed real part in (−1, 1), this is isomorphic
to S2 and ω1 actually is a one form on each of these 2-spheres. The S1-isotropy found
above, acts non trivially on tangent vectors. Hence with the same argument as above
(Rotating the tangent vector to minus itself) one sees, that ω1 actually is zero. Thus
ω = (ι(X)ω)ω0. Let f be the integral of ι(X)ω ∈ C∞(S3)S3 ⊂ C∞([−1, 1]) over the
interval, then ω = df and f ′(1) = f ′(−1) = 0 as ω vanishes at the fixed points. Thus
we have shown

Ω1(S3)S3

�
dC∞(S3)S3 = 0.

Let ω ∈ Ω2(S3)S3 . Contracting with the radial field X as defined in the last paragraph
yields ι(X)ω = fω0, for some function f . As ι2 = 0, f = 0. Thus, restricting ω to
each of the level of fixed real part in the open interval, one obtains a multiple of the
volume form on S2. At the fixed points one gets a SO(3)-invariant 2-form on R3, since
the adjoint action on the Lie algebra of SU(2) is how one defines the double cover of
SU(2) → SO(3). But there is no non-zero skew-symmetric matrix commuting with
the whole SO(3). Thus ω must vanish on the fixed points. Moreover, as any invariant
1-form is exact,

Ω2(S3)S3

�
dΩ1(S3)S3 = Ω2(S3)S3

∼=
{
f ∈ C∞([−1, 1])

∣∣∣∣∣f(−1) = f(1) = 0, d
kf

dtk
(±1) = 0, k odd

}
.

A volume form on the manifold induces an isomorphism Ω3(S3) ∼= C∞(S3). Since the
standard volume is invariant, we get an isomorphism for invariant forms and functions.
Let X ∈ s3 ⊂ H. Then

X](m) = d

dt

∣∣∣∣
t=0

(1 + tX)m(1− tX) = Xm−mX.

Thus for ω ∈ Ω3(S3)S3

ι(X])ω(m) = ι(Xm−mX)ω(m) ω=Ad∗ ω= ι(Xm)ω(m)− ι(mX)Ad∗mω(m)
= ι(Xm)ω(m)− ι(m−1mXm)ω(m) = 0. (4.13)

Moreover, d vanishes on top forms, hence the Cartan differential on Ω3(S3)S3 is zero.
As S3 has empty boundary ∫

S3
: dΩ2(S3)S3 → C

is the zero map by Stokes theorem. Thus

Ω3(S3)S3

�
dΩ2(S3)S3 → C, ω 7→

∫
S3
ω.
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is a well defined injective homomorphism. From the calculation of the cohomology
below, we see, that it is surjective.
What is the classical equivariant cohomology of the conjugation action of S3 with

values in R ∈ {Z,C,C/Z}? Taking the simplicial manifold model for ES3 ×S3 S3 and
a cellular resolution with cell structure on S3 given by one zero cell, corresponding to
the neutral element of S3, and one three cell, then all simplicial maps are cellular and
we obtain the following double complex with the cellular resolution horizontally to the
right and the simplicial complex in vertical direction downwards (compare page 33).

S3 R 0 0 R 0 . . .

S3 × S3 R 0 0 R2 0 . . .

(S3)2 × S3 R 0 0 R3 0 . . .

(S3)3 × S3 R 0 0 R4 0 . . .

(S3)4 × S3 R 0 0 R5 0 . . .

...
...

...
...

...
...

→

→ 0

→

→

→

→

→

→

∂(0)

→
→

→

→ 1

→

→

→

→

→
→

∂(1)

→

→

→

→ 0

→

→

→

→

→
→ ∂(2)

→

→

→

→ 1

→

→

→
→

→

→ ∂(3)

→

→

→

→ 0

→
→

→

→

→

→

→

→

The R in the 0-column corresponds to the zero cell and the Rk in the 3-column
corresponds to the k 3-cells in (S3)×k. The 3-cells in S3×S3 are S3×{e} and {e}×S3

and in S3 × S3 × S3 are S3 × {e} × {e},{e} × S3 × {e} and {e} × {e} × S3. One
calculates directly for the conjugation action, that ∂(0) = 0 and ∂(1)(a, b) = (0, 0, b),
where the i-th entry corresponds to the i-th cell. Hence we obtain

Hk
S3(S3, R) =

{
R k = 0, 3, 4
0 k = 1, 2

and can interpret this geometrically: The third cohomology is generated by the 3-cell in
S3 and the fourth cohomology is generating by the ‘acting’ 3-cell S3 × {e} ⊂ S3 × S3.

Now the next proposition follows, in the main, by applying the hexagons (4.11) and
(4.12).
Proposition 4.45 For the conjugation action of the 3-sphere S3 = SU(2) on itself,
we have

Ĥn
S3(S3,Z) =



Z n = 0
C∞(S3)S3

/Z n = 1
0 n = 2
Ω2(S3)S3 ⊕ ZdvolS3 ⊂ Ω3(S3)S3

n = 3
C/Z⊕ Z n = 4
Hn
S3(S3,Z) n ≥ 5
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and

ĤnS3(S3,Z) =



Z n = 0
C∞(S3)S3

/Z n = 1
0 n = 2
Ω2(S3)S3 ⊕ ZdvolS3 ⊂ Ω3(S3)S3

n = 3
C/Z⊕ Z⊕ Ω1(S3)S1

/C∞(S3)S1
n = 4.

Proof. For Ĥn
S3(S3,Z), the only open question is the case n = 4. There one obtains

a short exact sequence 0 → C/Z → Ĥ4
S3(S3,Z) → Z → 0 from the hexagon. This

sequence splits, because C/Z is an injective abelian group.
In the case of Ĥ4

S3(S3,Z) one has the following hexagon from (4.12):

C⊕ (s3)∨ ⊗ Ω1(S3)))S3

�d((s3)∨ ⊗ Ω0(S3)))S3) ((s3)∨ ⊗ Ω2(S3)))S3 ⊕ S2((s3)∨)⊗ Ω0(S3)))S3)cl

C Ĥ4
S3(S3,Z) C

C/Z Z

→
a

→
0⊕(d+ι)

→

→

→

→R

�

I

↪→

→

→0

→
(4.14)

As discussed above s3 = Ri+Rj +Rk ⊂ H and S3 acts transitive on the unit sphere
of this space. Moreover, the subgroup of S3, which leaves i ∈ s3 invariant, is exactly
S1 ⊂ C ⊂ H. Hence ((

s3
)∨
⊗ Ωk

(
S3
))S3

∼= Ωk
(
S3
)S1

(
ω : s3 → Ωk

(
S3
))
7→ ω(i)

and, since the first and second de Rham cohomology of S3 vanish, averaging over the
S1 implies that d : Ω1(S3)S1

/dC∞(S3)S1 → Ω2
cl(S3)S1 is an isomorphism.

Further, let

(ω, f) ∈
((

(s3)∨ ⊗ Ω2(S3)
)S3

⊕
(
S2((s3)∨)⊗ Ω0(S3)

)S3)
cl
,

i.e., dω = 0 and df = −ιω. Then ω = dη for one and only one

η ∈ (s3)∨ ⊗ Ω1(S3)))S3

�
d

(((
s3
)∨
⊗ Ω0

(
S3
))S3)

and df = −ιdη. On the other f is given by a symmetric 3 × 3 matrix of smooth
functions on S3 fii fij fik

fji fjj fjk
fki fkj fkk


and this matrix is determined, up to a constant matrix denoted by A, by the form η.
By the transitive action of S3 on the Lie algebra, it is clear, that the information of the
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matrix is contained in fii and fij . The conjugation by the element 1+k√
2 ∈ S

3 translates
the pair (i, j) to −(j, i). Hence fij = −Ad∗1+k√

2
fij . Thus the off-diagonal terms of the

symmetric matrix A must vanish and hence A must be a multiple of identity matrix.
Thus, we have described an isomorphism

C⊕ Ω1(S3)S1

�
C∞(S3)S1 →

((
(s3)∨ ⊗ Ω2(S3)

)S3

⊕
(
S2((s3)∨)⊗ Ω0(S3)

)S3)
cl

(A, η) 7→ (f, ω).

Applying this isomorphism, the hexagon (4.14) changes to

Ω1(S3)S1

�C∞(S3)S1 Ω1(S3)S1

�C∞(S3)S1 ⊕ C

Ĥ4
S3(S3,Z) C,

C/Z Z

↪→
→
a

↪→ →id

→
→R

�

I

↪→
→

→0

→

where again the top line, the bottom line and the diagonals are exact. The map a is
injective because the inclusion in the top line factors as R ◦ a.

4.3.4 Actions of finite cyclic groups on the circle

Let Cp = Z/pZ denote the cyclic group with p elements. There is an action of Cp on
any odd sphere S2n−1 ⊂ Cn, where a fixed generator acts by multiplication with e

1
p

2πi.
This diagonal action is also unitary on the infinite-dimensional separable Hilbert space
l2(N,C) and hence induces an action on the unit sphere S∞. The inclusions of Cns as
first coefficients induce equivariant inclusions

S1 → S3 → . . .→ S∞

The sum of the tangent bundle and the normal bundle of S1 ⊂ C is a complex line
bundle, TS1 ⊕N ∼= S1 × C, which we equip with the connection ∇, whose associated
parallel transport respects the decomposition in tangent and normal space. Hence, the
holonomy once around the circle equals 2π, thus is trivial. The sphere bundle (with
respect to the standard metric) of TS1 ⊕N is the trivial S1 bundle on S1 with the
S1-invariant connection. Now we have a pullback diagram of bundles with connection
with equivariant maps(

S1 × S1,∇
)

H = S3 ×S1 S1 S∞

S1 S3 S∞/S1.

→

→

→

→

→

→
f

→
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Moreover the first Chern class c1(S∞ → S∞/S1) ∈ H2(S∞/S1) = H2(BS1) is a
generator. Now for Ĥ2

Cp
(S3,Z) we have the diagram

Ĥ2
Cp

(S3,Z)

H1
Cp

(S3,C/Z) H2
Cp

(S3,Z).
→

I

↪→
→

→
−β

As first and second cohomology are torsion, the Bockstein is an isomorphism, given
by multiplication with p. As the connection on H is flat, ĉ1(H) actually is a class in
H1
Cp

(S3,C/Z). Let the cycle τ =
[
0, 1

p

]
⊂ R/Z ∼= S1 be a fundamental domain of the Cp

action on S1. Evaluation at f(τ) induces the isomorphism H1
Cp

(S3,C/Z)→
(

1
pZ
)
/Z

under which c1(H) is mapped to 1
p . Pulling back the class along f shows

ĉ1(TS1 ⊕N) = 1
p
∈ C/Z.

A finer analysis shows that the bundle S1 × S1 → S1, where Cp acts by multiplication
with e

q
p

2πi on the fiber and e
1
p

2πi on the base space, has first equivariant differential
Chern class q

p ∈ C/Z. One may interpret this as a measurement of holonomy along the
fundamental domain.

4.3.5 G-Representations
In this section, we want to investigate actions of Lie groups on Rn. This will lead to
some implication to equivariant immersions. Equivariant immersions will be subject of
further investigation. To generalize the well-known methods of characteristic classes
applied to immersion, one has, in particular, to define multiplicative structures in
equivariant differential cohomology and generalize the Whitney-Sum-Formula.

Let the Lie group G act smoothly on Rn with the standard metric. This induces an
action on the tangent bundle (TRn,∇) = (Rn × Rn, d) with the trivial connection. As
d2 is zero and the Lie derivative coincides with d, the curvature and the moment map
are zero

R∇ = 0, µ∇ = 0.

Hence for any equivariant differential characteristic class ĉ with corresponding invariant
polynomial P ∈ I∗(O(n)), one has

R(ĉ(Gy Rn)) = P (µ∇ +R∇) = P (0) ∈ Ω0
cl(Rn) = C.

Hence, if the degree of the characteristic class is non zero, I(c(Gy Rn)) ∈ Hn
G(Rn,Z) =

Hn
G(pt,Z) is a torsion element. Thus it is in the image of the Bockstein homomorphism

β : Hn
G(pt,C/Z)→ Hn

G(pt,Z) = Hn
G(Rn,Z).
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4.3 Examples for equivariant differential cohomology

Now let M be an Riemannian manifold and f : M → Rn an isometric immersion.
Then there is a normal bundle NM →M , such that

TM ⊕NM = f∗TRn.

Moreover, the Levi-Civita connection on M is compatible with the pullback connection
∇f of the trivial connection on Rn to TM ⊕NM .
Now one calculates

ĉ(TM ⊕NM,∇f ) = f∗(ĉ(Gy Rn))
∈ f∗(−β−1(I(ĉ(Gy Rn)))) + h∗Hn−1

G (pt,C) ⊂ ĤnG(M,Z),

where h : M → pt is the unique map.
A discussion of multiplicative structures on equivariant differential cohomology,

would – if a Whitney sum formula holds – enable one to turn the last equation into
conditions on ĉ(TM,∇). In particular if Hn−1

G (pt,C) vanishes, there is a unique class,
depending on the representation of G, to which ĉ(TM,∇) must be in relation to. If,
furthermore, the cohomology

H∗G(pt,Z) = H∗(BG,Z)

is torsion free, then the existence of an immersion would imply that ĉ(TM ⊕NM,∇f )
vanishes.

In the non equivariant case, there is, along the way described in the last paragraph,
a beautiful application of characteristic classes to give lower bounds to the minimal
codimension of an immersion. In the world of classical characteristic classes this can
be found, e.g., in [37, Theorem 4.8]). Differential characteristic classes apply for a
result, that conformal immersions have a stronger bound for the minimal codimension,
than smooth immersions (compare [35] and [14, §6] for the original work and [39] for a
partly strengthened version).
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