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Chapter 1

Introduction

Thermal convection refers to a specific type of convection phenomena where temperature dif-
ferences drive a fluid flow. More precisely temperature variations induce an unstable fluid-
stratification which cause the transition of the fluid from a state of rest to a state of motion. It
may occur that the fluid flow undergoes many successive instabilities, which reduce progressively
the spatial coherence and the level of predictability of the details of motion. In this case the
flow is called turbulent. Few example of (turbulent) thermal convection are air circulation, solar
granulation, oceanic currents and convective flows in the earth’s mantle and stars. Transport
properties of turbulent convective flow are object of interest and investigation in many field
ranging from physical sciences like geophysics, astrophysics, meteorology and oceanography to
engineering and industrial applications. In this thesis we are interested in deriving mathemat-
ically rigorous bounds for the heat transport when the flow is turbulent. For this purpose,
consider a fluid enclosed between two rigid parallel and infinitely extended plates separated by a
vertical distance h and held at different temperatures T = Tbottom and T = Ttop at height 0 and
h respectively, with Tbottom > Ttop. This model of thermal convection goes under the name of
Rayleigh-Bénard convection. The differences in temperature inside the container, which cause
the expansion of the fluid of a material-specific factor α, are associated with density variations
on which differing gravitational forces1 per unit volume act and induce buoyancy forces. As a
result, the hot parcels of fluid rise and the cold (denser) parcels sink generating kinetic energy.
While the motion is favored by temperature gradients, it is opposed by the kinematic viscosity
of the fluid ν, which acts against the relative motion of fluid layers by inner friction, and by
the thermometric conductivity χ, that tends to remove the temperature differences. We remark
that the thermometric conductivity is defined as χ = κ

ρcp
where κ is the thermal conductivity, ρ

is the density and cp is the specific heat at constant pressure.
Already in his early experiments in 1916, Lord Rayleigh realized that when the nondimensional
number

Ra =
gα(Tbottom − Ttop)h3

νχ
. (1.1)

overcome a certain value, convection is activated. The number defined above is the Rayleigh
number and it expresses the relative strength of the driving mechanisms: temperature differ-
ences, thermal expansion and gravity . If the Rayleigh number is small, pure conduction is the
main transport mechanism; the fluid is at rest in the bulk with constant temperature gradi-
ent. Above an explicitly known critical Rayleigh number (Rac ∼ 1), the conduction state is
unstable and the global attractor consists of stationary convection rolls. As the Rayleigh num-
ber increases further, the stationary convection rolls become unstable and for sufficiently high
Rayleigh number (Ra � 1), the temperature field features boundary layer, from which plumes
detach. This stage is classified as turbulent.

1Proportional to the acceleration of gravity g.
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We introduce a second parameter, the Prandtl number

Pr =
ν

χ
(1.2)

which depends only on the properties of the fluid (and its absolute temperature). Its values,
which vary from very small number (e.g. 0.015 for mercury) to large and very large numbers
(e.g. 13.4 for seawater and 1024 for Earth’s mantle) naturally affects convection. We will now
see how the Rayleigh and the Prandtl number appear in the equation of motion determining the
intensity of the buoyancy and inertial force, respectively.
In a d−dimensional container we follow the evolution equations of the velocity vector field u(x, t),
the temperature scalar field T (x, t) and the pressure scalar field p(x, t) where we indicate with x
the d−dimensional spatial variable and with t the time variable. We specify with x′ the first d−1
horizontal components and with z the vertical component of the vector x. In the Boussinesq
approximation, where the variation of the density is neglected except insofar as it gives rise to
a gravitational force, u, T and p are governed by

∂tT + u · ∇T −∆T =0 for 0 < z < 1 , (1.3a)

1

Pr
(∂tu+ (u · ∇)u)−∆u+∇p =RaTez for 0 < z < 1 , (1.3b)

∇ · u =0 for 0 < z < 1 , (1.3c)

u =0 for z ∈ {0, 1} , (1.3d)

u =u0 for t = 0 , (1.3e)

T =1 for z = 0 , (1.3f)

T =0 for z = 1. (1.3g)

where ez is the upward unit normal vector. We refer to [1] for a detailed description of the
Boussinesq approximation. The temperature, which is set to be higher at the bottom plate than
at the top plate, diffuses (−∆T ) and is advected by the velocity (u·∇T ). The velocity field, which
satisfies the continuity equation in the constant-density form (∇ · u = 0) evolves according to
the Navier-Stokes equations with right-hand side given by the buoyancy force RaTez. This force
generates acceleration, which, in turn, is balanced by diffusion (−∆u). The pressure p appears
as a Lagrangian multiplier to enforce the divergence-free condition. The velocity field u satisfies
the no-slip boundary condition at both plates (z = 0 and z = 1) and periodicity in the horizontal
variables x′ ∈ [0, L)d−1 is imposed for all the functions. We notice that the pure conduction state
u = 0, T = 1 − z is a stationary solution of the system (1.3) in absence of convection and it is
stable for Ra < Rac ∼ 1. When Ra & 1, the conduction profile is unstable and, in this context,
one of the challenges of engineers and physicists is to measure the (convective) heat transport.
Besides the importance of the physical phenomena itself, understanding the effectiveness of
the heat transport when Pr and Ra vary, is fundamental for the industry, for example in the
construction of high-standard cooling devices on semiconductor or nuclear power plants. The
quantity of interest is the averaged upward heat flux, which measures the effectiveness in the
heat transport. An inspection of the advection-diffusion equation for the temperature shows
that the heat flux is given by uT −∇T . The appropriately non-dimensionalized measure of the
time-space average of the upward heat flux is given by the Nusselt number Nu defined through

Nu = lim sup
t0↑∞

1

t0

∫ t0

0

∫ 1

0

1

Ld−1

∫
[0,L)d−1

(uT −∇T ) · ezdx′dzdt,

where we consider the limit superior in order to avoid the case in which the limit does not exist.
We notice that the pure conduction state (u = 0, T = 1 − z) gives rise to Nu = 1. Since
convective fluid flow increases vertical heat transport beyond the purely conductive flux, it is
interesting to work in the regime of large Rayleigh number. Throughout the thesis we assume to
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work in the regime Ra� 1, where the spatial coherence of the flow pattern is lost and the fluid
flow becomes turbulent. When the flow is turbulent the Nusselt number Nu is thought to be a
function of the dimensionless parameters Ra and Pr and the aspect ratio Γ = L

h of the container;
one example of a ”similarity law” in fluid dynamics. The aspect ratio can be assimilated to the
artificial lateral periodicity L. This paper does not address the dependency on the aspect ratio:
We will focus on (upper and lower) bounds that are independent of the period length L, which
amounts to neglecting the (limiting) effects of the lateral boundary condition. Likewise, this
paper does not address the specifics of two-dimensional flows: Our analysis is in fact oblivious
to the dimension d, which in particular amounts to allowing for turbulent boundary layers.

There are classical heuristic arguments in favor of two (different) scaling laws for Nu in terms

of Ra and Pr: The scaling Nu ∼ Ra
1
3 was proposed in 1954 by Malkus [2] appealing to the

marginal stability argument (see Chapter 2 ) while Spiegel [3] in 1962 predicted the scaling

Nu ∼ Pr
1
2 Ra

1
2 for small Pr according to the Newton’s law. We now argue that the scaling laws

predicted by Malkus and Spiegel, respectively, can be simply deduced by rescaling the equations
in the limiting case when the viscosity term wins over the inertial term and vice versa. On the
one hand, if we assume that the inertial term is negligible (setting Pr =∞) the equation (1.3b)
reduces to 

∂tT + u · ∇T −∆T = 0 ,
−∆u+∇p = RaTez ,

∇ · u = 0 .

Rescaling this equation according to

x = Ra−
1
3 x̂, t = Ra−

2
3 t̂, u = Ra

1
3 û, p = Ra

2
3 p̂ and thus Nu = Ra

1
3 N̂u (1.4)

we end up with the parameter-free system
∂t̂T + û · ∇̂T − ∆̂T = 0 ,

−∆û+∇p̂ = Teẑ ,

∇̂ · û = 0 ,

which naturally lives in the half space. Since for the latter system, it is natural to expect that
the heat flux is universal, i.e. N̂u ∼ 1, we obtain Nu ∼ Ra

1
3 .

On the other hand, if we rewrite the system (1.3b) neglecting the diffusivity and the viscosity
term 

∂tT + u · ∇T = 0 ,
1
Pr (∂tu+ (u · ∇)u) +∇p = RaTez ,

∇ · u = 0 ,

and we rescale according to

t =
1

(PrRa)
1
2

t̂, u = (PrRa)
1
2 û, p = Ra p̂ and thus Nu = (PrRa)

1
2 N̂u (1.5)

we end up with the system 
∂t̂T + û · ∇T = 0 ,

∂t̂û+ (û · ∇)û+∇p̂ = Tez ,
∇ · û = 0 .

Imitating the previous argument we can conclude that Nu ∼ Pr
1
2 Ra

1
2 .

Many more scaling regimes for Nu in the Pr-Ra-plane have been proposed on experimental and
theoretical grounds in the physics literature. By means of mixing length theory, Kraichnan in [4]
not only reproduced the scalings of Malkus and Spiegel for big and very small Pr, respectively,
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but also suggested a third scaling Nu ∼ Pr−
1
4 Ra

1
2 for big Ra and moderately low Pr. A fairly

complete theory has been worked out in [5]. It is based on global balance laws (which we also
use in our rigorous treatment (see Section 3.2.2) on distinguishing the cases of the dissipation
dominantly taking place in the bulk or in the boundary layer) and on assumptions on the
structure of both the thermal and the viscous boundary layer (which becomes relevant for
Pr < ∞). However, these statements are more speculative when the viscous boundary layer is
turbulent rather than laminar.

Measurements on the Nusselt number are provided by the large-scale convection facility, Barrel
of Ilmenau (BoI) at the technical University of Ilmenau. In order to reach the regime of big
Rayleigh numbers, the close cylindrical container (7.15 m in diameter) has been constructed in
such a way that the material parameters (thermal expansion coefficient, kinematic viscosity and
thermometric conductivity) are compensated by the height of the container. Indeed the heating
plate and the free-hanging cooling plate can reach a (maximal) distance of 6.3 meters. In the
experiments at BoI the side-wall effects are not negligible and therefore the aspect ratio (which
can vary from 1 to 40) influences the heat flux and affects the measurements 2.
While most of the experiments aim at understanding how the global flow structure organizes
itself when varying the Rayleigh number , the variation of Prandtl number is more difficult. The
experiments at BoI are done using air (Pr = 0.7) at normal pressure which simulate the earth
atmosphere. Changing fluid in the container would be a big issue regarding the construction of
a (very large) cell that close tightly. In particular, low Prandtl number fluids such as mercury
and gallium are less accessible: the first requires high security level in the laboratory while the
latter has a very high cost. Nevertheless the variation of the Prandtl number can be performed
by means of direct numerical simulations, see e.g. [6].

1.1 Results

Despite the complexity of the phenomenon of Rayleigh-Bénard convection in the turbulent
regime, there are rigorous upper bounds of Nu in terms of Ra and Pr. In the case of Pr = ∞,
Constantin and Doering proved Nu . (ln Ra)

2
3 Ra

1
3 in their seminal 1999 paper [7]. They

obtained this bound by combining global balance laws with the maximum principle for the tem-
perature and a (logarithmically failing) maximal regularity estimate for the (quasi)-stationary
Stokes equations in L∞x . The heuristic argument of marginal stability of the boundary layer (c.f.
Chapter 2 ) has inspired the application of the background temperature field method (c.f. Section
2.1). This method, based on the decomposition of the temperature profile into a background
profile τ(z) and a fluctuation field θ(x, t), produces an upper bound on the Nusselt number each
time a profile τ satisfies the stability condition〈∫ 1

0

(
2
dτ

dz
uzθ + |∇θ|2

)
dz

〉
≥ 0 (1.6)

(where 〈·〉 is defined in Notation). Since we are interested in deriving the lowest upper bound
within the method , we study the following variational problem

Ñu := inf
τ :(0,1)→R,

τ(0)=1,τ(1)=0

{∫ 1

0

(
dτ

dz

)2

dz| τ satisfies (1.6)

}
.

the solution of which will give us the optimal upper bound

Nu . Ñu .

In 2006 Doering, Otto and Westdickenberg (née Reznikoff) [8] obtained the bound (with a

slightly improved power of the logarithm w.r.t [7]) Ñu . (ln Ra)
1
3 Ra

1
3 by proving the stability

2The mentioned experiments are realized by the group of Prof. Ronald de Puits
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of a logarithmic profile. With a refinement of the argument in [8], Otto and Seis obtained

Ñu . (ln Ra)
1
15 Ra

1
3 which improves further the logarithmic correction. In this thesis we show

that the upper bound Ñu . (ln Ra)
1
15 Ra

1
3 (Otto & Seis 2011 [9]) is optimal for the background

field method. This is shown by proving that (ln Ra)
1
15 Ra

1
3 is also a lower bound for the Nusselt

number associated to the background field method. In particular we establish the following
result

Theorem (Camilla Nobili and Felix Otto, [10]).
Suppose that a profile τ : (0, 1)→ R satisfies

∫ 1
0
dτ
dz dz = −1 and

Qτ [θ] :=

〈∫ 1

0

(
2
dτ

dz
uzθ + |∇θ|2

)
dz

〉
≥ 0 , (1.7)

for all (θ, uz) related by the fourth order boundary value problem

∆2uz = −Ra ∆x′θ with θ = uz = ∂zu
z = 0 at z = 0, 1.

Then
Ñu & (ln Ra)

1
15 Ra

1
3 .

In particular Ñu ∼ (ln Ra)
1
15 Ra

1
3 .

Nevertheless, the combination of the maximal regularity estimate for the Stokes equation in [7]

with the background field method in [8] yields the doubly logarithmic bound Nu . (ln ln Ra)
1
3 Ra

1
3

(c.f. [9]) which is, to our knowledge, optimal.
We finally observe that our lower bound on the background field method together with the (last)
optimal upper bound yields

Nu� Ñu ,

meaning that the background field method does not carry physical meaning.

In the case of Pr <∞, the lack of instantaneous slaving of the velocity field to the temperature
field increases the difficulty in bounding the convection term

〈∫
uzT dz

〉
(see Notations) in the

definition of the Nusselt number and the background field method turns out to be no longer
fruitful. In their 1996 paper [11], Doering & Constantin among other results gave an easy

argument for Nu . Ra
1
2 for all values of Pr. Besides [11], there is only one other rigorous result

for Pr <∞: Wang [12] proved by a perturbative argument that the Constantin & Doering 1999

bound Nu . (ln Ra)
2
3 Ra

1
3 persists for Pr � Ra (see Section 3.2.2 for an argument why this is

the classical scaling regime). In this case we establish the following upper bound

Theorem (Antoine Choffrut, Camilla Nobili and Felix Otto, [13]).
Provided the initial data satisfy T0 ∈ [0, 1],

∫
|u0|dx <∞ and for Ra� 1

Nu ≤ C

{
(ln Ra)

1
3 Ra

1
3 for Pr ≥ (ln Ra)

1
3 Ra

1
3 ,

(ln Ra)
1
2 Pr−

1
2 Ra

1
2 for Pr ≤ (ln Ra)

1
3 Ra

1
3 ,

(1.8)

where C depends only on the dimension d.

This result on the one hand implies that the Doering & Constantin 1996 bound Nu . Ra
1
2 is

suboptimal for Pr � 1 and, on the other hand, tells us that the Constantin & Doering 1999
bound Nu . (ln Ra)

2
3 Ra

1
3 (in its slightly improved form of Nu . (ln Ra)

1
3 Ra

1
3 ) persists in the

much larger regime Pr & (ln Ra)
1
3 Ra

1
3 and then crosses over to Nu . (ln Ra)

1
2 Pr−

1
2 Ra

1
2 , which

can be seen as an interpolation between the marginal stability bound and the Constantin &
Doering 1996 bound as Pr decreases from large Pr = (ln Ra)

1
3 Ra

1
3 to moderate Pr = 1. We

want to remark that like in Wang’s argument, ours treats the convective nonlinearity (u · ∇)u
in (1.3b) perturbatively. However, there is a difference: We perturb around the non-stationary
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Stokes equations and gain access to Ra-Pr-regimes where the effective Reynolds number Re is
allowed to be large. In fact we work with Leray’s solution and thus only appeal to the global
energy estimate on the level of the Navier-Stokes equations, whereas Wang’s regime is limited
by the use of the small-data regularity theory for the Navier-Stokes equations and thus Re� 1,
which in his analysis translates into Pr � Ra . Loosely speaking our analysis just requires
small Re in the thermal boundary layer, not in the entire container, for the (ln Ra)

1
3 Ra

1
3 scaling

to persist. This upper bound is based on a maximal regularity estimate in the interpolation

between the two norms of interest L1
(
dt dx′ 1

z(1−z) dz
)

and L∞z

(
L1
t,x′

)
. As we will explain in

Subsection 3.2.2 this estimates holds only under bandedness assumption (i.e. restriction to a
packet of wave numbers in Fourier space); this is the source of the logarithmic correction in the
bounds for the Nusselt number.

1.2 Summary

Here is a summary of the content of this thesis.

In the rest of this introductory chapter we recall a maximum principle for the temperature
equation and we derive some useful representations and bounds on the Nusselt number, directly
coming from the equations of motion. In Chapter 2 we consider the Rayleigh-Bénard convection
when the inertial force in the velocity equation is neglected, i.e. Pr = ∞. In Section 2.1 we
introduce the background field method for the temperature field. This method, capitalizing on
the instantaneous linear slaving of the velocity to the temperature field, reduces the problem of
finding upper bounds for the Nusselt number to solving a variational method: find background
profiles τ that satisfy the stability condition (2.34). For preparation, we analyze some stable
profiles and highlight the ”good” features (in terms of the upper bounds on Nusselt number).
In Section 2.2, assuming initially the container to be of infinite lateral size (amounting to real
wavelengths in Fourier space), we derive necessary condition on ξ = dτ

dz coming from the sta-
bility condition (2.34). Specifically, in Subsection 2.2.1, we analyze a reduced version of the
stability condition and we prove that a stable background profile must be increasing and grow
logarithmically. In Subsection 2.2.2 we go back to investigate the profiles τ that satisfy the orig-
inal stability condition and we show that ξ must be approximately positive (positive in average
approximately in the bulk), satisfy a logarithmic growth at the level of the antiderivative τ and
be approximative positive in the boundary layers . These results, stated in Lemma 1, Lemma 2
and Lemma 3 (Subsection 2.2.3), constitute the proof of the non optimality of the background
field method, Theorem 1. This is a joint work with Felix Otto, [10].

In Subsection 2.2.6 we recover the physical setting of a container with finite lateral size, amount-
ing to integer wavelengths. Here, although the proof of the logarithmic grow of τ requires a
different argument, we can deduce the same conclusion as in Proposition 1.

In Chapter 3 we consider the Rayleigh-Bénard convection reintroducing the inertial term in the
equation of the velocity allowing the Prandtl number to be finite. The velocity field, that evolves
according to the Navier-Stokes equation, is not instantaneously slaved to the temperature field
and therefore the background field method is no longer fruitful. For preparation, in Section
3.1 we show how to apply maximal regularity estimates to derive upper bounds on the Nusselt
number. In Theorem 2, Section 3.2, we state our result on the upper bound on the Nusselt
number at finite Prandtl number. The main ingredient for the proof of Theorem 2 is the
maximal regularity estimate for the non-stationary Stokes equation in the strip, Theorem 3.
The proof on a maximal regularity in the strip is, in turn, based on the maximal regularity
estimate in the upper half space stated in Proposition 3. This is a joint work with Antoine
Choffrut and Felix Otto, [13].
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1.3 Prerequisites

We start by recalling that the equation of the temperature

∂tT + u · ∇T −∆T = 0

satisfies the maximum principle

if T0 ∈ [0, 1] then ||T ||L∞ ≤ 1 , (1.9)

which furnishes us an a-priori bound on the temperature T .
Indeed one can show that for weak solutions of the Boussinesq system, i.e. u ∈ L∞t L2

x,∇u ∈ L2
tL

2
x

, T ∈ L∞t L
2
x and ∇T ∈ L2

tL
2
x, the maximum principle for the temperature holds. Indeed T

satisfies a level set energy inequality (see eq. A.1 with α = 1 in [14] observing that the solution
there has the same regularity as our T . The proof only uses that the velocity-field u is (weakly)
divergence-free). Applying the inequality to (T −1)+ = max{T −1, 0} and to T− = max{−T, 0}
we deduce that ||(T − 1)+||L2 and ||T−||L2 vanish for all time. Therefore we get that 0 ≤ T ≤ 1.
Exploiting the incompressibility condition (1.3c) we can rewrite the temperature equation (1.3a)
in the divergence form

∂tT +∇ · (uT −∇T ) = 0 . (1.10)

The vector uT − ∇T , called heat flux , sums up the two opposing contribution coming from
convection (uT ) and conduction (−∇T ). The Nusselt number is defined as the time and space-
average of the vertical heat flux

Nu =

〈∫ 1

0
(uzT − ∂zT ) dz

〉
, (1.11)

where

〈·〉 = lim sup
t0→∞

1

t0

∫ t0

0
〈·〉′ dt and 〈·〉′ = 1

Ld−1

∫
[0,L)d−1

· dx′.

The term
〈∫

uzT dz
〉

quantify the heat transported in the bulk by convection. Near the boundary
layer the term 〈uT 〉′ becomes smaller and smaller due to the boundary condition that enforce
this term to vanish at z = 0 and z = 1. Therefore close to the boundary the conduction term〈∫
∇T dz

〉
becomes larger. An important observation is that the Nusselt number is the same in

each horizontal layer at which we are measuring it, namely

Nu = 〈uzT − ∂zT 〉 ∀ z ∈ [0, 1]. (1.12)

Indeed, starting from the equation (1.10) and averaging in the horizontal direction and using
the periodic boundary condition in x′ we obtain

∂t〈T 〉′ + ∂z〈uzT − ∂zT 〉′ = 0.

Since, by the maximum principle for the temperature

oscz

{
1

t0

∫ t0

0
〈(uzT − ∂zT )〉′ dt

}
.

1

t0
,

we conclude that 〈uzT − ∂zT 〉 does not depend on z and therefore (1.12) holds.
Again from the temperature equation (1.3a) and the property (1.12) we obtain

Nu =

〈∫ 1

0
|∇T |2 dz

〉
. (1.13)
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Indeed, multiplying (1.3a) with T and averaging in x′ we have

0 = 〈∂tTT 〉′ + 〈∇ · (uT )T 〉′ + 〈−∆TT 〉′

=
1

2
∂t〈T 2〉′ + 1

2

〈
∇ · (uT 2)

〉′ − 〈∇ · (T∇T )〉′ +
〈
|∇T |2

〉′
=

1

2
∂t
〈
T 2
〉′

+
1

2
∂z
〈
uzT 2

〉′ − ∂z 〈T∂zT 〉′ + 〈|∇T |2〉′ .
Taking the vertical-space average, the time average and using the non-slip boundary condition
for uz in the expression above we obtain

1

2

∫ t0

0

∫ 1

0
∂t〈T 2〉′ dz dt−

∫ t0

0
〈∂zT 〉′|z=0

dt+

∫ t0

0

∫ 1

0
〈|∇T |2〉′ dz dt = 0.

Finally, we pass to the long-time limit of the expression above. Observing that, due to the
boundedness of T (see (1.9)), the first term of the left-hand side vanish, i.e.

lim sup
t0→∞

1

t0

∫ t0

0

∫ 1

0
∂t〈T 2〉′ dz dt = lim sup

t0→∞

1

t0

(
1

2

∫ 1

0
〈T 2〉′|t=t0 dz −

1

2

∫ 1

0
〈T 2〉′|t=0 dz

)
= 0 ,

(1.14)
we have 〈∫ 1

0
|∇T |2 dz

〉
= −〈∂zT |z=0〉 ,

which yields (1.13) once we observe that by the property (1.12), the Nusselt number can be
represented as Nu = 〈(uzT − ∂zT )〉′|z=0. From the Navier-Stokes equation (1.3b) we find the
energy inequality 〈∫ 1

0
|∇u|2 dz

〉
≤ Ra(Nu− 1) (1.15)

for Leray solutions. Indeed testing the Navier-Stokes equation (1.3b) with u, averaging in space,
integrating by part, using the no-slip boundary condition for u and finally averaging in time we
have

1

2

1

Pr

1

t0

∫ 1

0
〈|u|2〉′|t=t0 dz +

1

t0

∫ t0

0

∫ 1

0
〈|∇u|2〉′ dz dt

=
1

2

1

Pr

1

t0

∫ 1

0
〈|u|2〉′|t=0dz + Ra

1

t0

∫ t0

0

∫ 1

0
〈uzT 〉′ dz dt ,

which reduces to

1

t0

∫ t0

0

∫ 1

0
〈|∇u|2〉′ dz dt

≤ 1

2

1

Pr

1

t0

∫ 1

0
〈|u|2〉′|t=0dz + Ra

1

t0

∫ t0

0

∫ 1

0
〈uzT 〉′ dz dt .

Passing to the limit for big t0 we obtain〈∫ 1

0
|∇u|2 dz

〉
≤ Ra

〈∫ 1

0
uzT dz

〉
= Ra

(〈∫ 1

0
(uzT − ∂zT ) dz

〉
− 1

)
= Ra(Nu− 1) .

For the Stokes equation (2.1b), (1.15) holds with the equality sign.

12



Since the vertical heat flux does not depend on the variable z (see (1.12)) we can write

Nu =
1

δ

〈∫ δ

0
uzT − ∂zT dz

〉
≤ 1

δ

〈∫ δ

0
uzT dz

〉
+

1

δ
, (1.16)

where we have used the boundary condition for T . Furthermore, using the maximum principle
for the temperature (1.9) in the last inequality we obtain

Nu ≤ 1

δ

〈∫ δ

0
|uz| dz

〉
+

1

δ
. (1.17)

We conclude this subsection observing that two important properties of uz can be deduce by
the incompressibility condition (1.3c): from the combination of (1.3c) with the no-slip boundary
condition for uz (1.3d) we deduce that

∂zu
z = 0 at z = 0, 1. (1.18)

Furthermore averaging the equation (1.3c) in the horizontal direction and using the periodicity
of u′ in the horizontal direction we have

∂z〈uz〉′ = 0.

Using again the no-slip boundary condition for u we find that the horizontal average of uz

vanishes, i.e,
〈uz〉′ = 0 . (1.19)
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Chapter 2

Infinite Prandtl number convection

When the Prandtl number is very big, such as for Glycerin at 20℃ (Pr = 12000) and the
Earth’s mantle (Pr ≈ 1024), it is reasonable to consider the infinite-Prandtl-number limit of the
equations (1.3)

∂tT + u · ∇T −∆T = 0 for 0 < z < 1 , (2.1a)

−∆u+∇p = RaTez for 0 < z < 1 (2.1b)

∇ · u = 0 for 0 < z < 1 , (2.1c)

u = 0 for z ∈ {0, 1} , (2.1d)

T = 1 for z = 0 ,

T = 0 for z = 1 ,

where the inertial term does not appear since we set Pr = ∞. In this case the problem of
obtaining bounds for the Nusselt number is simplified by the instantaneous slaving of the velocity
to the temperature field, which provides a tight control on on the indefinite term

∫
〈uzT 〉′ dz in

the definition of the Nusselt number (1.11). When the inertia of the fluid is neglected, Malkus [2]

proposes the following heuristic argument in favor of the scaling Nu ∼ Ra
1
3 : with the observation

that Ra � 1, in a boundary layer (to be determined) thickness δ � h, the temperature drops
from 1 to its average 1

2 and the flow is suppressed. By definition of the Nusselt number in the
dimensionless variable (1.11), this yields Nu ∼ 1

2δ . So that the Nusselt number is linked to the
relative size of the (thermal) boundary layer. Here comes the crucial argument of a marginally
stable boundary layer : the actual size δ is expected to be proportional to the largest height h∗

of the container in which the pure conduction solution T = 1 − z, u = 0 is stable. A critical
Rayleigh number Ra∗ (critical in both the sense of linear and nonlinear stability) is associated
to h∗ via

Ra∗ =
gα(Th∗ − T0)(hh∗)3

νκ
and it is explicitly known. Since Ra∗ must be universal, then Ra∗ ∼ 1 and we obtain

1

2

gα(Tbottom − Ttop)(h)3

νκ
(h∗)3 ∼ 1.

Recalling the definition of the Rayleigh number we have 1
2Ra(h∗)3 ∼ 1 which implies δ ∼ Ra−

1
3 .

The combination with Nu ∼ 1
2δ yields the desired

Nu ∼ Ra
1
3 . (2.2)

Numerical simulations [15] and experiments [16] are in perfect agreement with this scaling. In
the next subsection we will introduce the background field method which shows striking similar
characteristics with the marginal stability method: If the profile is stable then it gives an upper
bound on the Nusselt number. In this sense the background field method can be viewed as a
rigorous implementation of the marginal stability argument.
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2.1 Prerequisite: Background field method

The background field method consists of decomposing the temperature field T into a steady
background field profile τ satisfying the driven boundary conditions

τ = 1 at z = 0 and τ = 0 at z = 1

and into temperature fluctuations θ, satisfying

θ = 0 at z ∈ {0, 1} .

Therefore the temperature T can be written as

T (x′, z, t) = τ(z) + θ(x′, z, t) .

Imposing the decomposition into (2.1a), one finds that the fluctuations evolve according to

∂tθ + u · ∇θ = −dτ
dz
uz + ∆θ +

d2τ

dz2
(2.3)

and the Nusselt number can be rewritten as

Nu
(1.13)

=

∫ 1

0

(
dτ

dz

)2

dz +

〈∫ 1

0
|∇θ|2 dz

〉
− 2

〈∫ 1

0

d2τ

dz2
θ dz

〉
. (2.4)

Testing equation (2.3) with θ and averaging in space we obtain

1

2

∫
〈∂tθ2〉′ dz = −

∫ 1

0

dτ

dz
〈uzθ〉′ dz −

∫ 1

0
〈|∇θ|2〉′ dz +

∫ 1

0

d2τ

dz2
〈θ〉′ dz , (2.5)

where we observed that 1
2

∫
〈∇(uθ2)〉′ dz vanishes due to the no-slip boundary condition for u and

the periodicity in the horizontal variables. Considering the long-time average of the expression
above, the first term vanishes due to the boundedness of θ and we are left with〈∫ 1

0

d2τ

dz2
θ dz

〉
=

〈∫ 1

0

dτ

dz
uzθ dz

〉
+

〈∫ 1

0
|∇θ|2 dz

〉
.

It is now easy to see that the Nusselt number representation (2.4) can be rewritten as

Nu =

∫ 1

0

(
dτ

dz

)2

dz −
〈∫ 1

0

(
2
dτ

dz
uzθ + |∇θ|2

)
dz

〉
, (2.6)

which turns out to be revealing. Indeed (2.6) suggests the following idea: if one can construct
a background field τ that satisfies

Qτ [θ] :=

〈∫ 1

0

(
2
dτ

dz
uzθ + |∇θ|2

)
dz

〉
≥ 0 , (2.7)

for every θ(x′, z, t) satisfying homogeneous boundary conditions (and uz defined through the
Stokes equation (2.1b), the incompressibility condition (2.1c) and homogeneous boundary con-
ditions (2.1d)), then the Dirichlet integral of τ(z) is an upper bound for the Nusselt number,
i.e.

Nu ≤
∫ 1

0

(
dτ

dz

)2

dz. (2.8)

The constraint (2.7) is referred to as a stability condition.
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We define the Nusselt number associated to the background field method

Ñu := inf
τ :(0,1)→R,

τ(0)=1,τ(1)=0

{∫ 1

0

(
dτ

dz

)2

dz| τ satisfies (2.7)

}
, (2.9)

which clearly bounds the Nusselt number from above,

Nu ≤ Ñu .

Therefore via the background field method the problem of finding an optimal (within the
method) upper bounds for the Nusselt number reduces to constructing a function τ that re-
alizes the infimum of the variational problem defined by (2.8) constrained to (2.7). For the rest
of the chapter we can think of functions which are independent on the time variable t. Eliminat-
ing the pressure from the Stokes equation (2.1b) via the incompressibility condition we deduce
the direct relationship between θ(x′, z) and uz(x′, z):{

∆2uz = −Ra∆x′θ for 0 < z < 1 ,
uz = ∂zu

z = 0 for z ∈ {0, 1} . (2.10)

The stability condition (2.7) can be rewritten explicitly as follows

Qτ [θ] = 2

∫ 1

0

dτ

dz
〈uzθ〉′ dz +

∫ 1

0
〈|∇x′θ|2〉′ dz +

∫ 1

0
〈|∂zθ|2〉′ dz ≥ 0, (2.11)

for all the functions θ(x′, z) that vanish at z ∈ {0, 1}, where the function uz(x′, z) is determined
by θ via the fourth-order boundary value problem (2.10). In terms of the horizontally Fourier-
transformed variables (see Notation) (F ′θ)(k′, z) and (F ′uz)(k′, z), the relation (2.10) is{ (

− d2

dz2
+ |k′|2

)2
F ′uz = Ra|k′|2F ′θ for 0 < z < 1 ,

F ′uz = d
dzF

′uz = 0 for z ∈ {0, 1}
(2.12)

and the constraint (2.7) is fulfilled if for every wavenumber k′ ∈ 2π
L Zd−1 \ {0}

Qτ [F ′θ] = 2

∫ 1

0

dτ

dz
Re[F ′uzF ′θ] dz +

∫ 1

0
|k′|2(F ′θ)2 dz +

∫ 1

0

(
d

dz
F ′θ
)2

dz ≥ 0, (2.13)

for all (complex valued) functions F ′θ(z), such that F ′θ(z) = 0 at z ∈ {0, 1} .

Examples of stable profiles

The construction of stable profiles has been a challenging problem in the past years. In this
subsection, in preparation for the next chapter we give some examples of stable profiles, high-
lighting their basic features. Each stable profile produces an upper bound for the Nusselt number
through the variational problem (2.8). The idea that the major temperature drop occurs in the
(thin) boundary layers, suggests the choice of a profile which is constant in the bulk, so that the
support of dτ

dz is concentrated near the boundaries where uz and θ vanish due to the boundary
conditions. In particular one can consider

τ(z) =


1− 1

2δz 0 ≤ z ≤ δ ,
1
2 δ ≤ z ≤ 1− δ ,
1
2δ (1− z) 1− δ ≤ z ≤ 1 ,

(2.14)

where δ is the boundary layer thickness. We first notice that the Dirichlet integral (2.8) is∫ 1
0 (dτdz )2 dz = 1

2δ and δ will tell how thick the boundary layer should be in order to ensure the
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stability of the profile. Constantin and Doering in [17] showed the stability of this profile. In
particular they showed that Qτ ≥ 0 once one chooses δ ∼ 1

Ra
2
5

. This yields the (suboptimal)

upper bound for Nusselt number

Nu ≤ 1

2δ
∼ Ra

2
5 ,

(For more details the reader may consult [17]). Before passing to the next example we want to
get some intuition on the term

∫
dτ
dz 〈u

zθ〉′ dz. Let us assume for the moment the model (2.1)
without the diffusion term in the temperature equation (2.1a) , i.e.

∂tT + u · ∇T = 0 for 0 < z < 1 , (2.15a)

−∆u+∇p = RaTez for 0 < z < 1 ,

∇ · u = 0 for 0 < z < 1 , (2.15b)

u = 0 for z ∈ {0, 1} , (2.15c)

T = 1 for z = 0 ,

T = 0 for z = 1 .

In this case T = τ(z), u = 0, p = p(z) = Ra
∫ z
0 τ(z′) dz′ is a stationary solution of the system

(2.15). Monitoring the growth in time of the perturbation θ = T − τ in the L2− norm, we find

1

2

d

dt

∫ 1

0
〈θ2〉′ dz =

∫ 1

0
〈θ∂tθ〉′ dz

=

∫ 1

0
〈θ∂tT 〉′ dz

(2.15a)
=

∫ 1

0
〈θ(−∇ · (uT ))〉′ dz

(2.15b)
=

∫ 1

0
〈θ(−∇ · (θu)− uz dτ

dz
)〉′ dz

(2.15c)
= −

∫ 1

0

dτ

dz
〈uzθ〉′ dz .

Therefore the term
∫
dτ
dz 〈u

zθ〉′ dz governs the growth of the finite (not just infinitesimal) per-
turbations of the stationary temperature field τ . For the full model (2.1) only the linear profile
(τ = 1 − z, u = 0) is a stationary solution. Again we compute the growth in time of the L2−
norm of the perturbation θ = T−τ where τ = 1−z. Using the homogeneous boundary condition
for θ and the fact that

−
∫ 1

0
〈|∇θ|2〉′ dz =

∫ 1

0
〈θ∆T 〉′ dz = −

∫ 1

0
〈∇θ∇T 〉′ dz = −

∫
〈|∇θ|2〉′ dz +

∫ 1

0
〈∂zθ〉′ dz

we find

1

2

d

dt

∫ 1

0

〈
θ2
〉′
dz

(2.5)
= −

∫ 1

0

dτ

dz
〈uzθ〉′ dz −

∫
〈|∇θ|2〉′ dz +

∫ 1

0

d2τ

dz2
〈θ〉′ dz

=

∫ 1

0
〈uzθ〉′ dz −

∫ 1

0
〈|∇θ|2〉′ dz −

∫ 1

0
〈∂zθ〉′ dz

=

∫ 1

0
〈uzθ〉′ dz −

∫ 1

0
〈|∇θ|2〉′ dz .

Therefore this time we cannot infer that the term
∫
dτ
dz 〈u

zθ〉′ dz governs the stability of the
stationary profile τ = 1−z. Nevertheless the computation above suggests the following intuition:
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τ(z) is stable if the hot (lighter) fluid is on the top of the heavy (colder) fluid. Indeed, in the
next section, we will show that the condition

dτ

dz
≥ 0 , (2.16)

in the bulk, is necessary for the stability of a background profile τ . To validate this physical
intuition we consider a linearly increasing profile τ = az + b with a > 0. We want to show that
in the bulk this profile satisfies∫ 1

0
a〈uzθ〉′ dz ≥ 1

Ra

∫ 1

0
a〈|∇uz|2〉′ dz . (2.17)

Notice that this would immediately imply the stability for the profile τ since the other two
terms in (2.11) are positive. For this purpose, after Fourier transforming the equations (2.12)
we compute

Re

∫ 1

0
F ′uzF ′θ dz (2.12)

= Re
1

Ra

1

|k′|2

∫ 1

0
F ′uz

(
− d2

dz2
+ |k′|2

)2

F ′uz dz

= Re
1

Ra

1

|k′|2

∫ 1

0
F ′uz

(
d4

dz4
− 2|k′|2 d

2

dz2
+ |k′|4

)
F ′uz dz

=
1

Ra

(
1

|k′|2

∫ 1

0

∣∣∣∣ d2dz2F ′uz
∣∣∣∣2 + 2

∫ 1

0

∣∣∣∣ ddzF ′uz
∣∣∣∣2 dz + |k′|2

∫ 1

0
|F ′uz|2 dz

)

≥ 1

Ra

(∫ 1

0

∣∣∣∣ ddzF ′uz
∣∣∣∣2 dz + |k′|2

∫ 1

0
|F ′uz|2 dz

)
,

which implies (2.17). Since the profile τ = az + b with a > 0 does not satisfy the boundary
conditions, we need to modify it in such a way that the stable linear part occupy a big part of
the bulk. Indeed, we can show that the profile

τ(z) =


1−

(
1−δ
δ

)
z 0 ≤ z ≤ δ ,

z δ ≤ z ≤ 1− δ ,(
1−δ
δ

)
(1− z) 1− δ ≤ z ≤ 1,

(2.18)

is stable, provided that the boundary layer thickness δ is small enough. Starting from the
stability condition (2.11) , inserting the Ansatz (2.18) for τ and recalling the estimate (2.17) we
have

Qτ [θ] ≥∫ 1

0
〈uzθ〉′ dz − 2

δ

(∫ δ

0
〈uzθ 〉′dz +

∫ 1

1−δ
〈uzθ〉′ dz

)
+

∫ 1

0
〈|∇θ|2〉′ dz

(2.17)

≥
∫ 1

0
〈|∇uz|2〉′ dz − 2

δ

(∫ δ

0
〈uzθ〉′ dz +

∫ 1

1−δ
〈uzθ〉′ dz

)
+

∫ 1

0
〈|∇θ|2〉′ dz .

Applying the Cauchy-Schwartz estimate, the Poincare’ estimate in z and the Young estimate
we find

2

δ

∫ δ

0
〈uzθ〉′ dz ≤ 2

δ

∫ δ

0
〈|θ||uz|〉′ dz

≤ 2

δ

(∫ δ

0
〈|θ|2〉′ dz

) 1
2
(∫ δ

0
〈|uz|2〉′ dz

) 1
2

≤ 2δ

(∫ δ

0
〈|∇θ|2〉′ dz

) 1
2
(∫ δ

0
〈|∇uz|2〉′ dz

) 1
2

≤
∫ 1

0
〈|∇θ|2〉′ dz + 4δ2

∫ 1

0
〈|∇uz|2〉′ dz
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and similarly
2

δ

∫ 1

1−δ
〈uzθ〉′ dz ≤

∫ 1

0
〈|∇θ|2〉′ dz + 4δ2

∫ 1

0
〈|∇uz|2〉′ dz . (2.19)

Combining the last three estimates together we obtain

Qτ [θ] ≥
(

1

Ra
− 4δ2

)∫ 1

0
〈|∇uz|2〉′ dz .

The biggest δ for which the quadratic form Qτ [θ] is positive is δ ∼ Ra−
1
2 and this choice gives

us the upper bound on the Nusselt number

Nu .
2

δ
∼ Ra

1
2 .

Therefore the ”good” linearly increasing part in the bulk can compensate the ”bad” decreasing
part in the boundary layers only provided that the boundary layers are very thin (δ ∼ Ra−

1
2 ).

In conclusion, the argument above provides (again) a sub-optimal upper bound which does not
reproduce the physical scaling. Doering, Otto & Reznikoff in [8] showed that, in order to reduce
the effect of the ”bad” boundary layers and (at the same time) keep the function increasing
in the bulk without loosing stability, one can choose a logarithmic profile (being it steep close
to the boundary layers and slowly grows away from them). It is easy to see that the profile
τ(z) = a ln(z + b) is stable in the bulk, namely one can prove that∫ 1

0

1

z + b
〈uzθ〉′ dz ≥ 1

2

1

Ra

∫ 1

0

1

z + b
〈|∇uz|2〉′ dz. (2.20)

The argument is the following: After changing variable our goal is to prove∫
I

1

z
〈uzθ〉′ dz ≥ 1

2

1

Ra

∫
I

1

z
〈|∇uz|2〉′ dz , (2.21)

where I = (b, 1 + b). In the (horizontally) Fourier transformed variables estimate (2.21) can be
restated as

Re

∫
I

1

z
F ′uzF ′θ dz ≥ 1

2

1

Ra

∫
I

1

z

(
|k′|2|F ′uz|2 +

∣∣∣∣ ddzF ′uz
∣∣∣∣2
)
dz , (2.22)

which by (2.12) turns into

Re
1

Ra

(
|k′|2

∫
I

1

z
|F ′uz|2 dz − 2

∫
I

1

z
F ′uz d

2

dz2
F ′uz dz +

1

|k′|2

∫
I

1

z
F ′uz d

4

dz4
F ′uz dz

)
≥ 1

2

1

Ra

∫
I

1

z

(
|k′|2|F ′uz|2 +

∣∣∣∣ ddzF ′uz
∣∣∣∣2
)
dz. (2.23)

Let us call g := 1
zF
′uz and observe that d2

dz2
F ′uz = 2 d

dzg+ z d2

dz2
g , d4

dz4
F ′uz = 4 d3

dz3
g+ z d4

dz4
g and

using the boundary conditions g = d
dzg = 0 at z = {b, 1− b} we can rewrite the last two terms

of the left-hand side of (2.23) as

−2

∫
I

1

z
F ′uz d

2

dz2
F ′uz dz = 2

∫
I
z

(
d

dz
g

)2

dz and∫
I

1

z
F ′uz d

4

dz4
F ′uz dz =

∫
I
z

(
d2

dz2
g

)2

dz.

Again, by the homogeneous boundary condition for g we can rewrite the second term of the
right-hand side as ∫

I

1

z

∣∣∣∣ ddzF ′uz
∣∣∣∣2 dz =

∫
I

1

z
g2 dz +

∫
I
z

(
d

dz
g

)2

dz.
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Therefore (2.23) can be rewritten as

1

Ra

(
|k′|2

∫
I
zg2 dz + 2

∫
z

(
d

dz
g

)2

dz +
1

|k′|2

∫
I
z

(
d2

dz2
g

)2

dz

)

≥ 1

2

1

Ra

(
|k′|2

∫
I
zg2 dz +

∫
I

1

z
g2 dz +

∫
I
z

(
d

dz
g

)2

dz

)
.

Absorbing the first and last terms of the right-hand side in the left-hand side and dropping out
the term

∫
z(dgdz )2 dz in the right-hand side we are left to prove

|k′|2
∫
I
zg2 dz +

1

|k′|2

∫
I
z

(
d2

dz2
g

)2

dz ≥ 1

2

∫
I

1

z
g2 dz . (2.24)

Setting h := 1
zg, noticing that

∫
I z
(
d2

dz2
g
)2

dz =
∫
z3
(
d2

dz2
h
)2

dz and applying the Young

inequality (since k′ is arbitrary) we are left to prove the following inequality(∫
I
z3h2 dz

∫
I
z3
(
d2

dz2
h

)2

dz

) 1
2

≥
∫
I
zh2 dz. (2.25)

By the Hardy’s inequality applied to the second term of the left-hand side, i.e.
∫
I z

3
(
d2

dz2
h
)2

dz ≥∫
I z
(
d
dzh
)2
dz 1, the estimate (2.25) follows immediately. Indeed

∫
zh2 dz =

∫
I

1

2

(
d

dz
z2
)
h2 dz = −

∫
z2h

d

dz
h dz ≤

(∫
z3h2 dz

∫
z

(
d

dz
h

)2

dz

) 1
2

. (2.26)

Estimate (2.20) is proved by setting b = 0. The logarithmic profile is therefore stable in the
bulk, and in order to fulfill the boundary conditions, τ can be chosen of the form

τ(z) =


1− z

δ 0 ≤ z ≤ δ ,
1
2 + λ(δ) ln

(
z

(1−z)

)
δ ≤ z ≤ 1− δ ,

(1−z)
δ 1− δ ≤ z ≤ 1 ,

(2.27)

where λ(δ) = 1
2 ln( 1−δ

δ )
. In [8], the authors show that the stability of the profile is preserved if

δ ∼
(

1
Ra ln(Ra)

) 1
3
. Since

∫ 1
0 (dτdz )2 dz ∼ 2

δ , by (2.8) we immediately obtain the upper bound

Nu . (ln Ra)
1
3 Ra

1
3 ,

which successfully reproduces the physical scaling suggested by Malkus (2.2). (For more details
the reader may consult [8])

1The Hardy inequality states that for g = 0 at ∂I we have∫
I

zαg2 dz ≤ C(α)

∫
I

zα+2

(
d

dz
g

)2

dz

for α 6= −1.
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2.2 Result: Lower bound for the background field method

Joint work with Felix Otto, [10].

With the rescaling

x = Ra−
1
3 x̂, t = Ra−

2
3 t̂, u = Ra

1
3 û, p = Ra

2
3 p̂

and setting H := Ra
1
3 the equations (2.1) turn into

∂t̂T + û · ∇̂T − ∆̂T = 0 for 0 < ẑ < H ,

−∆̂û+ ∇̂p̂ = Teẑ for 0 < ẑ < H ,

∇̂ · û = 0 for 0 < ẑ < H ,

û = 0 for ẑ ∈ {0, H} ,
T = 1 for ẑ = 0 ,

T = 0 for ẑ = H.

From now on we will omit theˆfor the rescaled quantities and we will work with the following
system

∂tT + u · ∇T −∆T = 0 for 0 < z < H , (2.29a)

−∆u+∇p = Tez for 0 < z < H , (2.29b)

∇ · u = 0 for 0 < z < H , (2.29c)

u = 0 for z ∈ {0, H} , (2.29d)

T = 1 for z = 0 , (2.29e)

T = 0 for z = H. (2.29f)

In this rescaling the turbulent regime is when H � 1. This is a condition that we will assume
in the rest of the section.

Only in this section, in order to simplify the notations, we relabel the vertical component of the
velocity as

w = uz i.e. w = u · ez .
The starting point of this section is the stability condition in the Fourier-transformed variable
F ′w(z), F ′θ(z): for every wavenumber k′ ∈ 2π

L Zd−1 \ {0}

Qτ [F ′θ] = 2

∫ H

0

dτ

dz
Re[F ′wF ′θ] dz +

∫ H

0
|k′|2(F ′θ)2 dz +

∫ H

0

(
d

dz
F ′θ
)2

dz ≥ 0, (2.30)

for all F ′θ(z) related to F ′w(z) through the fourth-order boundary value problem{
∆2uz = −∆x′θ for 0 < z < H ,
uz = ∂zu

z = 0 for z ∈ {0, H} , (2.31)

such that F ′θ = 0 at z ∈ {0, H} . It is convenient to introduce the slope ξ := dτ
dz of the

background temperature profile. Using the equation (2.12) we can eliminate θ from the stability
condition, obtaining∫ H

0
ξF ′w

(
− d2

dz2
+ |k′|2

)2

F ′w dz +

∫ H

0
|k′|−2

∣∣∣∣∣ ddz
(
− d2

dz2
+ |k′|2

)2

F ′w

∣∣∣∣∣
2

dz

+

∫ H

0

∣∣∣∣∣
(
− d2

dz2
+ |k′|2

)2

F ′w

∣∣∣∣∣
2

dz ≥ 0 ,

(2.32)
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for all k′ ∈ 2π
L Zd−1\{0} and all (complex valued) functions F ′w(z) satisfying the three boundary

conditions

F ′w =
d

dz
F ′w =

(
− d2

dz2
+ |k′|2

)2

F ′w = 0 for z ∈ {0, H}. (2.33)

We denote with Sd,L the class of all the background profiles that satisfy the stability condition
(2.32) parametrized by the dimension of the space d in which the container lies and by the
lateral size of the container L. We observe that in (2.32) only the modulus of the wavelength
k′ appears. This means that the class SL,d is independent of the dimension parameter d, i.e.
SL,d = SL. Therefore the analysis that follows is the same in every dimension. Furthermore,
since the background profile τ is stable for arbitrary horizontal length L, we may assume that
our background profile τ belongs to the intersection of all these classes, i.e τ ∈ ∩L<∞SL. We
will therefore say that ξ satisfies the stability condition if

∫ H

0
ξF ′w

(
− d2

dz2
+ k′2

)2

F ′w dz +

∫ H

0
k′−2

∣∣∣∣∣ ddz
(
− d2

dz2
+ k′2

)2

F ′w

∣∣∣∣∣
2

dz

+

∫ H

0

∣∣∣∣∣
(
− d2

dz2
+ k′2

)2

F ′w

∣∣∣∣∣
2

dz ≥ 0 ,

(2.34)

holds true for all k′ ∈ R and all (complex valued) functions F ′w(z) satisfying the three boundary
conditions (2.33). The condition k′ ∈ R, which amounts to consider a container of infinite length,
turns out to simplify the analysis that follows. In Subsection 2.2.6 we recover the physical setting
of a container with finite lateral size, by setting k′ ∈ 2π

L Z \ {0}.
In the rest of the paper, in order to simplify the notations, we will omit the symbol F ′ for the
horizontal Fourier transform.

2.2.1 Reduced stability condition

Let us first observe that the stability condition (2.34)&(2.33) is invariant under the following
transformation

z = Lẑ and thus k′ =
1

L
k̂′, H = LĤ and ξ = L−4ξ̂ . (2.35)

Hence in the bulk (z � 1 and H − z ≥ 1) we expect that the first term in (2.34) dominates.
This motivates to consider the reduced stability condition∫ H

0
ξw

(
− d2

dz2
+ k′2

)2

w dz ≥ 0 , (2.36)

for all k′ ∈ R and all (complex valued) functions w(z) with the three boundary conditions
(2.33). In the following proposition we characterize the profiles that satisfy the reduced stability
condition (2.36).

Proposition 1. Let τ : (0, H) → R satisfy the reduced stability condition, i.e. for all k′ ∈ R
and for all w(z) satisfying (2.33), the condition (2.36) holds . Then

-
ξ ≥ 0 , (2.37)

- ∫ 1

1/e
ξdz .

1

lnH

∫ H

1
ξ dz . (2.38)

The proof of these two statements is based on the inspection of the limits k′ ↑ ∞ and k′ ↓ 0.
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Proof.
Argument for (2.37):
Letting k′ ↑ ∞, (2.36) reduces to ∫ H

0
ξ|w|2 dz ≥ 0

for all compactly supported w, from which we infer (2.37).
Argument for (2.38):
Letting k′ ↓ 0, (2.36) reduces to ∫ H

0
ξw

d4

dz4
w̄dz ≥ 0 , (2.39)

for all functions w(z) satisfying the three boundary conditions

w =
dw

dz
=
d4w

dz4
= 0 for z ∈ {0, H} . (2.40)

In fact, besides Subsection 2.2.5.3, we will work with w compactly supported in z ∈ (0, H),
so that the boundary condition (2.40) are trivially satisfied. Focusing on the lower half of the
container, i.e restricting to z ∈

(
0, H2

)
, we make the following Ansatz

w = z2ŵ ,

where ŵ(z) is a real function with compact support in (0, H).
The merit of this Ansatz is that in the new variable ŵ, the multiplier in (2.39) can be written
in the scale-invariant form

φ = w
d4

dz4
w̄ = ŵz2

d4

dz4
z2ŵ = ŵ

(
z
d

dz
+ 2

)(
z
d

dz
+ 1

)
z
d

dz

(
z
d

dz
− 1

)
ŵ . (2.41)

Note that the fourth-order polynomial in z d
dz appearing on the right hand side of (2.41) may be

inferred, without lengthy calculations, from the fact that z2 d4

dz4
z2 annihilates { 1

z2
, 1z , 1, z}. This

suggests to introduce the new variables

s = ln z and ξ = z−1ξ̂, (2.42)

for which the stability condition turns into∫ lnH

−∞
ξ̂ φ ds ≥ 0 where φ = ŵ

(
d

ds
+ 2

)(
d

ds
+ 1

)
d

ds

(
d

ds
− 1

)
ŵ , (2.43)

for all functions ŵ with compact support in z ∈ (0, H). Here it comes the heuristic argument:
For H � 1, we can think of test functions ŵ that vary slowly in the logarithmic variable s. For
these ŵ we have

φ = ŵ

(
d

ds
+ 2

)(
d

ds
+ 1

)
d

ds

(
d

ds
− 1

)
ŵ ≈ −2ŵ

d

ds
ŵ = − d

ds
ŵ2 , (2.44)

which particular implies

0 ≤
∫ lnH

−∞
ξ̂ φ ds ≈ −

∫ lnH

−∞
ξ̂
d

ds
ŵ2 ds =

∫ lnH

−∞

dξ̂

ds
ŵ2 ds ,

for all ŵ(s) with compact support in (−∞, lnH). Thus it follows that, approximately on large
s−scales,

dξ̂

ds
≥ 0 .
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We expect that this implies that for any 1� S1 ≤ lnH:∫ 0

−1
ξ̂ds .

1

S1

∫ S1

0
ξ̂ ds , (2.45)

which in the original variables (2.42), for S1 = ln H
2 turns into (2.38). We now prove that (2.39)

and (2.37) imply (2.45).
Argument for (2.45):
We start by noticing that because of translation invariance in s, (2.43) can be reformulated as
follows: For any function ŵ(s) supported in s ≤ 0, and any s′ ≤ lnH we have∫ ∞

−∞
ξ̂(s′′)φ(s′′ − s′) ds′′ =

∫ ∞
−∞

ξ̂(s+ s′)φ(s) ds ≥ 0, (2.46)

where the multiplier φ is defined as in (2.43):

φ = w
d4

dz4
w̄ = ŵ

(
d

ds
+ 2

)(
d

ds
+ 1

)
d

ds

(
d

ds
− 1

)
ŵ.

We note that (2.45) follows from (2.46) once for given S1 we construct

- a family F = {ws′}s′ of smooth functions ws′ parameterized by s′ ∈ R and compactly
supported in z ∈ (0, 1) (i. e. s ∈ (−∞, 0]) and

- a probability measure ρ(ds′) = ρ(s′) ds′ supported in s′ ∈ (−∞, lnH],

such that the corresponding convex combination of multipliers {φs′}s′ shifted by s′, i. e.

φ1(s
′′) :=

∫ ∞
−∞

φs′(s
′′ − s′) ρ(s′)ds′ , (2.47)

satisfies

φ1(s
′′) ≤


−1 for − 1 ≤ s′′ ≤ 0,
C
S1

for 0 ≤ s′′ ≤ S1,
0 else,

(2.48)

for a (possibly large) universal constant C. Indeed, using (2.46), (2.48) in conjunction with the
positivity (2.37) of the profile ξ̂ we have

0 ≤
∫ ∞
−∞

ξ̂φ1ds
′′ ≤ −

∫ 0

−1
ξ̂ds′′ +

C

S1

∫ S1

0
ξ̂ds′′,

which implies (2.45) .

We first address the form of the family F. The heuristic observation (2.44) motivates the change
of variables

s = λŝ with λ ≥ 1, (2.49)

our “(logarithmic) length scale”, to be chosen sufficiently large. We fix a smooth, compactly
supported “mask” ŵ0(ŝ); it will be convenient to restrict its support to ŝ ∈ (−1, 0], say

|ŵ0|2 > 0 in

(
−1

2
, 0

)
and ŵ0 = 0 else , (2.50)

and, in order to justify the language of “mollification by convolution” we think of the normal-
ization

∫
ŵ2
0dŝ = 1. By mask we mean that in (2.46) we choose

ŵ(λŝ) = λ−1/2ŵ0(ŝ). (2.51)
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With this change of variables, the multiplier can be rewritten as follows

φ = ŵ

(
d

ds
+ 2

)(
d

ds
+ 1

)
d

ds

(
d

ds
− 1

)
ŵ

=
1

λ
ŵ0

(
1

λ

d

dŝ
+ 2

)(
1

λ

d

dŝ
+ 1

)
1

λ

d

dŝ

(
1

λ

d

dŝ
− 1

)
ŵ0

= ŵ0

(
1

λ5
d4

dŝ4
+

2

λ4
d3

dŝ3
− 1

λ3
d2

dŝ2
− 2

λ2
d

dŝ

)
ŵ0 ,

and reordering the terms we have

φ = − 2

λ2
ŵ0

d

dŝ
ŵ0 −

1

λ3
ŵ0

d2

dŝ2
ŵ0 +

2

λ4
ŵ0

d3

dŝ3
ŵ0 +

1

λ5
ŵ0

d4

dŝ4
ŵ0 . (2.52)

Heuristically, for λ � 1 the multiplier φ can be approximated by the first term on the right
hand side

φ(s) ≈ − 1

λ2
d

dŝ
ŵ2
0

( s
λ

)
.

Inserting this approximation in the definition (2.47) of φ1 we have

φ1(s
′′) =

∫ ∞
−∞

φ(s′′ − s′)ρ(s′)ds′ =

∫ ∞
−∞

φ(s)ρ(s′′ − s)ds

≈
∫ (
− 1

λ2
d

dŝ
ŵ2
0

( s
λ

))
ρ(s′′ − s)ds = −

∫
d

ds

(
1

λ
ŵ2
0

( s
λ

))
ρ(s′′ − s)ds

=

∫ (
1

λ
ŵ2
0

( s
λ

)) d

ds
(ρ(s′′ − s))ds = −

∫ (
1

λ
ŵ2
0

( s
λ

))( dρ
ds′

)
(s′′ − s)ds .

For λ smaller than the characteristic scale on which ρ varies, we may think 1
λ ŵ

2
0

(
s
λ

)
≈ δ0(s), in

view of our normalization. This yields

φ1 ≈ −
dρ

ds′
(2.53)

which, in view of (2.48) suggests that ρ should have the form

ρ(s′) =

{
s′ + 1 for − 1 ≤ s′ ≤ 0

1− s′

S1
for 0 ≤ s′ ≤ S1

(2.54)

Now we will go through this heuristic argument assessing the error terms. Expanding ρ in a
Taylor series around s′′

ρ(s′′ − s) ≈ ρ(s′′)− dρ

ds′
(s′′)s+

1

2

d2ρ

ds′2
(s′′)s2 ,

we can write

φ1(s
′′) =

∫ ∞
−∞

φ(s)ρ(s′′ − s)ds

≈ ρ(s′′)

∫ ∞
−∞

φds− dρ

ds′
(s′′)

∫ ∞
−∞

sφ ds+
1

2

d2ρ

ds′2
(s′′)

∫ ∞
−∞

s2φds

We now note that the first term in (2.52), i.e − 2
λ2
ŵ0

dŵ0
dŝ = − 1

λ2
dŵ2

0
dŝ gives the leading order

contribution to the first and the second moment, thus∫ ∞
−∞

sφ ds ≈
∫ ∞
−∞

s

(
− 1

λ2
dŵ2

0

dŝ

)
ds =

∫ ∞
−∞

ŝ

(
−dŵ

2
0

dŝ

)
dŝ =

∫ ∞
−∞

ŵ2
0 dŝ = 1 (2.55)
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and ∫ ∞
−∞

s2φds ≈
∫ ∞
−∞

s2
(
− 1

λ2
dŵ2

0

dŝ

)
ds = −λ

∫ ∞
−∞

ŝ2
(
dŵ2

0

dŝ

)
dŝ = λ

∫ ∞
−∞

2̂sŵ2
0 dŝ , (2.56)

while the second term in (2.52) gives the leading-order contribution to the zeroth moment of
the multiplier φ: ∫ ∞

−∞
φds ≈

∫ ∞
−∞

(
− 1

λ3
ŵ0
d2ŵ0

dŝ2

)
ds =

1

λ2

∫ ∞
−∞

(
dŵ0

dŝ

)2

dŝ . (2.57)

Hence we obtain the following specification of (2.53)

φ1(s
′′) =

∫ ∞
−∞

ρ(s′′ − s)φ(s)ds

≈ 1

λ2
ρ(s′′)

∫ ∞
−∞

(
dŵ0

dŝ

)2

dŝ− dρ

ds′
(s′′) + λ

d2ρ

ds′2
(s′′)

∫ ∞
−∞

(−ŝ)ŵ2
0 dŝ .

(2.58)

Our goal is to specify the choice (2.54) of ρ such that (2.48) is satisfied. This show a dilemma:
On the one hand, in the ”plateau-region” s′′ ∼ S1, we would need λ2 � S1 so that the first term
in (2.58) does not destroy the desired 1

S1
−behavior. On the other hand in the ”foot-region”

s′′ ∈ [0, 1], we would need λ . 1 so that the last term does not destroy the effect of the middle
term. This suggests that λ should be chosen to be small in the foot regions and large on the
plateau region. Therefore it is natural to choose

λ = s′ , (2.59)

and make the mask ŵ depend on s′ when we translate by s′:∫
φs′(s

′′ − s′)ρ(s′)ds′.

Now (2.52) assumes the form

φs′ = − 2

(s′)2
ŵ0

d

dŝ
ŵ0 −

1

(s′)3
ŵ0

d2

dŝ2
ŵ0 +

2

(s′)4
ŵ0

d3

dŝ3
ŵ0 +

1

(s′)5
ŵ0

d4

dŝ4
ŵ0 . (2.60)

Note that with the choice (2.59) and s = s′′ − s′, (2.49) turns into the nonlinear change of
variables between s′ and ŝ

ŝ =
s′′ − s′

s′
=
s′′

s′
− 1⇒ s′ =

s′′

1 + ŝ
. (2.61)

We consider this as a change of variables between s′ and ŝ (with s′′ as a parameter); Thanks
to the support restriction (2.50) on ŵ0, it is invertible in the relevant range ŝ ∈ [−1

2 , 0]:
d
dŝ = − s′′

(1+ŝ)2
d
ds′ = − (s′)2

s′′
d
ds′ and ds′ = s′′

(1+ŝ)2
dŝ. From (2.47) and (2.60) we thus get the

first representation

φ1(s
′′) = − 1

s′′

∫ ∞
−∞

dŵ2
0

dŝ
ρ dŝ− 1

(s′′)2

∫ ∞
−∞

(1 + ŝ) ŵ0
d2ŵ0

dŝ2
ρ dŝ

+
2

(s′′)3

∫ ∞
−∞

(1 + ŝ)2 ŵ0
d3ŵ0

dŝ3
ρ dŝ+

1

(s′′)4

∫ ∞
−∞

(1 + ŝ)3 ŵ0
d4ŵ0

dŝ4
ρ dŝ.
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An approximation argument in ŵ0 below necessitates a second representation that involves ŵ0

only up to second derivatives. For this purpose, we rewrite (2.60) in terms of the three quadratic

quantities ŵ2
0, (dŵ0

dŝ )2, and (d
2ŵ0
dŝ2

)2:

φs′ = − 1

(s′)2
dŵ2

0

dŝ
+

1

(s′)3

[(
dŵ0

dŝ

)2

− 1

2

d2ŵ2
0

dŝ2

]
+

1

(s′)4

[
−3

d

dŝ

(
dŵ0

dŝ

)2

+
d3ŵ2

0

dŝ3

]

+
1

(s′)5

[(
d2ŵ0

dŝ2

)2

− 2
d2

dŝ2

(
dŵ0

dŝ

)2

+
1

2

d4ŵ2
0

dŝ4

]

=

(
− 1

(s′)2
d

dŝ
− 1

2

1

(s′)3
d2

dŝ2
+

1

(s′)4
d3

dŝ3
+

1

2

1

(s′)5
d4

dŝ4

)
ŵ2
0

+

(
1

(s′)3
− 3

1

(s′)4
d

dŝ
− 2

1

(s′)5
d2

dŝ2

)(
dŵ0

dŝ

)2

+
1

(s′)5

(
d2ŵ0

dŝ2

)2

. (2.62)

Now in this formula, using the change (2.61), we want to substitute the derivations 1
(s′)m

dn

dŝn by

linear combinations of derivations of the form 1
(s′′)m−k

dk

ds′k
(1 + ŝ)m−n−k for k = 0, · · · , n. The

reason why this can be done is explained in the Appendix 2.2.7. The formulas (2.265), (2.266)
& (2.267) allow to rewrite (2.62) as follows

φs′ =
1

s′′

(
d

ds′
− 1

2

d2

ds′2
1

(1 + ŝ)
− d3

ds′3
1

(1 + ŝ)2
+

1

2

d4

ds′4
1

(1 + ŝ)3

)
ŵ2
0

+

[(
1

(s′′)3
+

6

(s′′)4
− 12

(s′′)5

)
(1 + ŝ)3 +

(
3

(s′′)3
− 8

(s′′)4

)
d

ds′
(1 + ŝ)2

− 2

(s′′)3
d2

ds′2
(1 + ŝ)

](
dŵ0

dŝ

)2

+
1

(s′′)5
(1 + ŝ)5

(
d2ŵ0

dŝ2

)2

.

The advantage of this form is that integrations by part in s′ become easy, so that we obtain

φ1 =
1

s′′

∫ ∞
−∞

ŵ2
0

(
− dρ
ds′
− 1

2

1

1 + ŝ

d2ρ

ds′2
+

1

(1 + ŝ)2
d3ρ

ds′3
+

1

2

1

(1 + ŝ)3
d4ρ

ds′4

)
ds′

+

(
1

(s′′)3
+

6

(s′′)4
− 12

(s′′)5

)∫ ∞
−∞

(1 + ŝ)3
(
dŵ0

dŝ

)2

ρ ds′

−
(

3

(s′′)3
− 8

(s′′)4

)∫ ∞
−∞

(1 + ŝ)2
(
dŵ0

dŝ

)2 dρ

ds′
ds′

− 2

(s′′)3

∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2 d2ρ

ds′2
ds′

+
1

(s′′)5

∫ ∞
−∞

(1 + ŝ)5
(
d2ŵ0

dŝ2

)2

ρ ds′ .

Finally, using the substitution ds′

s′′ = dŝ
(1+ŝ)2

, the last formula turns into the desired second
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representation

φ1 =

∫ ∞
−∞

ŵ2
0

(
− 1

(1 + ŝ)2
dρ

ds′
− 1

2

1

(1 + ŝ)3
d2ρ

ds′2
+

1

(1 + ŝ)4
d3ρ

ds′3
+

1

2

1

(1 + ŝ)5
d4ρ

ds′4

)
dŝ

+

(
1

(s′′)2
+

6

(s′′)3
− 12

(s′′)4

)∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2

ρ dŝ

−
(

3

(s′′)2
− 8

(s′′)3

)∫ ∞
−∞

(
dŵ0

dŝ

)2 dρ

ds′
dŝ

− 2

(s′′)2

∫ ∞
−∞

1

1 + ŝ

(
dŵ0

dŝ

)2 d2ρ

ds′2
dŝ

+
1

(s′′)4

∫ ∞
−∞

(1 + ŝ)3
(
d2ŵ0

dŝ2

)2

ρ dŝ . (2.63)

From this representation we learn the following: If we assume that ρ(s′) varies on large length
scales only, so that

- dρ
ds′ ,

d2ρ
ds′2 , · · · � ρ

- d2ρ
ds′2 , d

3ρ
ds′3 , · · · �

dρ
ds′

then for s′′ � 1, we obtain to leading order from the above

φ1 ≈ −
∫ ∞
−∞

1

(1 + ŝ)2
ŵ2
0

dρ

ds′
dŝ+

1

(s′′)2

∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2

ρ dŝ . (2.64)

If ρ(s′) varies slowly even on a logarithmic scale (so that e. g. s′ dρds′ is negligible with respect to
ρ), the above further reduces to

φ1 ≈ −
dρ(s′′)

ds′

∫ ∞
−∞

1

(1 + ŝ)2
ŵ2
0 dŝ+

ρ(s′′)

(s′′)2

∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2

dŝ . (2.65)

This is the specification of (2.58): We see that the first, negative, right-hand-side term of (2.65)
dominates the second positive term provided

dρ

ds′
� 1

(s′)2
.

This is satisfied if ρ is of the form

ρ(s′) = 1− S0
s′ − S0

for some S0 � 1 to be chosen later; indeed

dρ

ds′
=

S0
(s′ − S0)2

≈ S0
(s′)2

� 1

(s′)2
for s′ � S0 � 1 .

This motivates the following Ansatz for ρ in the range 1 � s′ � S1: We fix a smooth mask
ρ0(ŝ

′) such that

ρ0 = 0 for ŝ′ ≤ 0,
dρ0
dŝ′

> 0 for 0 < ŝ′ ≤ 2, ρ0 = 1− 1

ŝ′
for 2 ≤ ŝ′ . (2.66)

For S0 � 1, we consider the rescaled version

ρ(S0(ŝ
′ + 1)) = ρ0(ŝ

′), i. e. the change of variables s′ = S0(ŝ
′ + 1) . (2.67)
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It is convenient to rescale s′′ accordingly:

s′′ = S0ŝ
′′. (2.68)

With this new rescaling, (2.63) turns into

φ1 = − 1

S0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)2
dρ0
dŝ′

dŝ− 1

2S2
0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)3
d2ρ0
dŝ′2

dŝ

+
1

S3
0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)4
d3ρ0
dŝ′3

dŝ+
1

2S4
0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)5
d4ρ0
dŝ′4

dŝ

+

(
1

S2
0

1

(ŝ′′)2
+

1

S3
0

6

(ŝ′′)3
− 1

S4
0

12

(ŝ′′)4

)∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2

ρ0 dŝ

−
(

1

S4
0

3

(ŝ′′)3
− 1

S5
0

8

(ŝ′′)4

)∫ ∞
−∞

(
dŵ0

dŝ

)2 dρ0
dŝ′

dŝ

− 1

S5
0

2

(ŝ′′)3

∫ ∞
−∞

1

1 + ŝ

(
dŵ0

dŝ

)2 d2ρ0
dŝ′2

dŝ

+
1

S4
0

1

(ŝ′′)4

∫ ∞
−∞

(1 + ŝ)3
(
d2ŵ0

dŝ2

)2

ρ0 dŝ . (2.69)

Since in the integrals in formula (2.63), the argument of ρ was given by s = s′′

1+ŝ , c. f. (2.61), it
follows from (2.67) and (2.68) that the argument of ρ0 is given by

ŝ′ =
ŝ′′

1 + ŝ
− 1 . (2.70)

Thus (2.69) just depends on ŝ′′, not on S0. Hence the above representation makes the dependence
of φ1 on S0 explicit. Our reduced goal is now to show that the constructions of w (c. f. (2.51)
and (2.59)) and ρ (c. f. (2.66) and (2.67)) yield the bound

φ∗1(s
′′) :=

∫
φs′(s

′′ − s′)ρ(s′) ds′

{
= 0 for all s′′ ≤ 1

2S0 ,

< 0 for s′′ > 1
2S0 ,

(2.71)

for S0 � 1. Note that the measure ρ in the definition of φ∗1 is not (yet) a probability measure and
therefore the multiplier φ∗1 is not admissible. At the end of the proof we show how to construct an
admissible multiplier and how to pass from the reduced goal (2.71) to the desired bound (2.48).
In order to establish (2.71) it is convenient to distinguish three regions (note that if s′′ ∈ (∞, S0

2 ]
all the integrals in (2.69) vanish because the supports of ŵ0 and ρ0 do not intersect, see below):
The range of large s′′:

s′′ ≥ 3S0 or equivalently ŝ′′ ≥ 3. (2.72)

Note that because of our support condition (2.50) on ŵ0, all integrals in (2.69) are supported

in ŝ ∈ [−1
2 , 0]. Together with our range (2.72), this yields for the argument ŝ′

(2.70)
= ŝ′′

1+ŝ − 1 of

ρ0 and its derivatives: ŝ′ ≥ 2. Because of dρ0
dŝ′ = 1

(ŝ′)2 for ŝ′ ≥ 2, c. f. our Ansatz (2.66), the first

integral in (2.69) reduces to∫ ∞
−∞

ŵ2
0

(1 + ŝ)2
dρ0
dŝ′

dŝ =

∫ ∞
−∞

ŵ2
0

(1 + ŝ)2
1

( ŝ′′

1+ŝ − 1)2
dŝ

=

∫ ∞
−∞

ŵ2
0

(ŝ′′ − (1 + ŝ))2
dŝ ≈ 1

(ŝ′′)2

∫ ∞
−∞

ŵ2
0 dŝ , (2.73)
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for ŝ′′ � 1, whereas all the other integrals in (2.69) are O( 1
(s′′)2 ) or smaller in ŝ′′ � 1 or

have prefactors 1
(ŝ′′)2 or smaller. Since only the term in (2.69) coming from integral (2.73) has

prefactor 1
S0

while all the other terms have prefactors 1
S2
0

or smaller (for S0 � 1), the first term

in (2.69) uniformly dominates all other terms:

φ∗1 ≈ −
1

S0

∫ ∞
−∞

ŵ2
0

(ŝ′′ − (1 + ŝ))2
dŝ uniformly in ŝ′′ ≥ 3 for S0 � 1 . (2.74)

In conclusion, in the range ŝ′′ ≥ 3 we have

φ∗1 ∼ −
1

S0

1

(ŝ′′)2
< 0 for S0 � 1 . (2.75)

The range of intermediate s′′:

s′′ ∈
[

3

4
S0, 3S0

]
or equivalently ŝ′′ ∈

[
3

4
, 3

]
. (2.76)

Again, we consider the first integral in (2.69). Now we use that
ŵ2

0
(1+ŝ)2

≥ 0 is strictly positive in

ŝ ∈
(
−1

2 , 0
)
, c. f. (2.50), and that dρ0

dŝ′ ≥ 0 is strictly positive in ŝ′ > 0, c. f. (2.66), that is, in
ŝ < ŝ′′ − 1, c. f. (2.70). We note that the two ŝ−intervals (−1

2 , 0) and (−∞, ŝ′′ − 1) intersect
for ŝ′′ > 1

2 . Hence by continuity of the first integral in (2.69) in its parameter ŝ′′, there exists a
universal constant C such that∫ ∞

−∞

ŵ2
0

(1 + ŝ)2
dρ0
dŝ′

dŝ ≥ 1

C
for ŝ′′ ∈

[
3

4
, 3

]
.

Hence also in this range the first term in (2.69) dominates all other terms:

φ∗1 ≈ −
1

S0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)2
dρ0
dŝ′

dŝ uniformly in ŝ′′ ∈
[

3

4
, 3

]
for S0 � 1 , (2.77)

and we can conclude that in the range s′′ ∈
[
3
4S0, 3S0

]
we have

φ∗1 ≈ −
1

S0

1

C
< 0 for S0 � 1 . (2.78)

Note that the above discussion on supports also yields that φ1 is supported in ŝ′′ ∈
[
1
2 ,∞

)
.

The range of small s′′:

s′′ ∈
(

1

2
S0,

3

4
S0

)
or equivalently ŝ′′ ∈

(
1

2
,
3

4

)
. (2.79)

We’d like φ1 to be strictly negative in this range for S0 � 1. Here, we encounter the second
difficulty: No matter how large λ = s′ in (2.52) is, the behavior of φs′ near the left edge −1

2
of its support

[
−1

2 , 0
]

(and also at its right edge 0, but there we don’t care) is dominated by

the 1
λ5
ŵ0

d4ŵ0
dŝ4

-term and thus automatically is strictly positive. Taking the ρ(s′) ds′-average of
the shifted φs′(s

′′ − s′) does not alter this behavior as long as ρ is non-negative in [S0,∞), c. f.
(2.66): φ∗1 is strictly positive near the left edge S0

2 of its support. The way out for this problem
is to give give up smoothness of ŵ0 near the left −1

2 of its support
[
−1

2 , 0
]
. In fact, we shall first

assume that ŵ0 satisfies in addition

ŵ0 =
1

2

(
ŝ+

1

2

)2

for ŝ ∈
[
−1

2
,−1

4

]
. (2.80)
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This means that ŵ0 has a bounded but discontinuous second derivative (it is in H2,∞). This is
the main reason why we expressed φ∗1 only in terms of up to second derivatives of ŵ0. We argue
that the so defined φ1 is, as desired, strictly negative on s′′ ∈ (12S0,

3
4S0] for all S0. Indeed, in

view of (2.60) and (2.59), the assumption (2.80) implies

φs′ = − 1

(s′)2

(
s

s′
+

1

2

)3

− 1

2

1

(s′)3

(
s

s′
+

1

2

)2

< 0 for s ∈
(
−s
′

2
,−s

′

4

]
. (2.81)

In view of (2.66) & (2.67), ρ ≥ 0 is strictly positive for s′ ∈ (S0,∞). On the other hand, it
follows from (2.81) that s′ 7→ φs′(s

′′ − s′) is strictly negative for s′′ − s′ ∈ (− s′

2 ,−
s′

4 ], that is,
for s′ ∈ [43s

′′, 2s′′) (and supported in s′ ∈ [s′′, 2s′′]). Hence, by (2.47), φ∗1 is strictly negative for
S0 ∈ [43s

′′, 2s′′), that is, for s′′ ∈ (12S0,
3
4S0], for any value of S0 > 0. Now we approximate ŵ0

with a sequence of functions ŵν0 in H2,2 and we call φ∗,ν1 the associated multiplier. Since φ∗1
involves ŵ0 only up to second derivatives (c. f. (2.69)) then φ∗,ν1 converge locally and uniformly
in ŝ′′ to φ∗1. We conclude that for s′′ ∈

(
1
2S0,

3
4S0
)

φ∗1 < 0 for S0 � 1 . (2.82)

Finally we fix a sufficiently large but universal S0, so that (2.82) together with (2.75) and (2.78)
imply (2.71).

In order to conclude the proof we need to make the measure ρ, defined in (2.66) & (2.67), decay
in the region S1

2 ≤ s
′ ≤ S1. In this way the multiplier

φ1(s
′′) :=

∫ ∞
−∞

φs′(s
′′ − s′)ρ(s′)ρ

(
s′

S1

)
ds′ , (2.83)

where η is a smooth cut-off equal to one for s′ ≤ S1
2 and equal to zero for s′ ≥ S1, is admissible.

It is easy to see that φ1(s
′′) satisfies

φ1(s
′′) .

1

S1
(2.84)

in the region S1
4 ≤ s

′′ ≤ S1. Putting together (2.71) and (2.84) we obtain (2.48), after shifting.

2.2.2 Original stability condition: main theorem

In this section we go back to the original stability condition (2.34) and we establish the following
result

Theorem 1. Assume that ξ satisfy
∫ H
0 ξ dz = −1 and〈∫ H

0

(
2ξ w θ + |∇θ|2

)
dz

〉
≥ 0 , (2.85)

holds for all (θ, w) that satisfy{
∆2w = −∆x′θ for 0 < z < H ,

w = dw
dz = θ = 0 for z = 0, H .

(2.86)

Then
∫ H
0 ξ2 dz & (lnH)

1
15 . In particular

Ñu & (lnH)
1
15 , (2.87)

where Ñu is defined in (2.9).
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This result has two direct consequences: On the one hand if we combine (2.87) with the upper

bound Ñu . (lnH)
1
15 (c.f. Otto & Seis [9]) we obtain

Ñu ∼ (lnH)
1
15 .

On the other hand, (2.87) together with the upper bound Nu . (ln lnH)
1
3 (Otto & Seis [9]),

implies

Nu . (ln lnH)
1
3 � (lnH)

1
15 . Ñu ,

which tells us that the Nusselt number associated to the background field method, Ñu, does not
carry a physical meaning.

2.2.3 Characterization of stable profiles

In this section we enunciate the lemmas that will be the main ingredients for the proof of
Theorem 1. Recalling that by (2.42) ξ̂ = zξ and s = ln z, we state the first lemma:

Lemma 1.
There exists a φ0, which will play the role of a convolution kernel, with the properties

φ0(s) ≥ 0,

∫ ∞
−∞

φ0(s) ds = 1, suppφ0(z) ⊂
(

1

4
,
3

4

)
, (2.88)

such that, for all s′ ≤ lnH ∫ ∞
−∞

ξ̂(s+ s′)φ0(s) ds ≥ −C exp(−3s′) , (2.89)

and C denotes a universal constant.

This lemma tells us that under the stability condition (2.34) we can infer that ξ̂ = zξ is nearly
positive on average in the logarithmic variable s = ln z for 1 � s ≤ lnH. The right-hand side
term of (2.89) estimates the deviation from the average positivity in the bulk. Much of the effort
of this construction will consist in designing the kernel in such a way that it is both non-negative
and compactly supported. Non-negativity of φ0(s) and its fast decay for s ↓ −∞ and support
in s ≤ 0 will be crucial in Subsection 2.2.5.2, where we will work with the convolution (2.90).
Let us define the convolution

ξ̂0(s
′) :=

∫ ∞
−∞

ξ̂(s+ s′)φ0(s) ds . (2.90)

that, in virtue of Lemma 1, is approximately positive in the bulk. In Section 2.2.1 we proved
that if a profile τ satisfies the reduced stability condition (2.36) then it grows logarithmically in
the bulk. When ξ satisfies the weaker stability condition (2.34) we want to prove an analogous
result for ξ̂0 defined in (2.90).

Lemma 2. Let τ : (0, H) → R satisfy the original stability condition (2.34) and consider ξ̂0
defined in (2.90). Then for S1 ≥ C we have∫ 0

−1
ξ̂0 ds ≤ C

(
1

S1

∫ S1

0
ξ̂0 ds+ 1

)
, (2.91)

where C denotes a (possibly large) generic universal constant.

The approximate non-negativity of ξ̂0 is lost in the boundary layer s � −1. However, we can
show that ξ̂0 cannot be too negative in the boundary layer provided ξ̂0 is sufficiently small in
the transition region |s| . 1.
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Lemma 3. Let τ : (0, H) → R satisfy the original stability condition (2.34) and consider ξ̂0
defined in (2.90). Then for all S2 ≥ C and ε ≤ 1 there exists a specific universal constant C2

(with C2 < C), such that we have∫ −1
−S2

ξ̂0 ds ≥ −C2

(
1

ε

∫ 0

−1
ξ̂0 ds

)
− C

(
1

ε
+

∫ −S2+1

−S2

|ξ̂0| ds+ ε exp(5S2)

)
, (2.92)

where C denotes a (possibly large) generic universal constant.

2.2.4 Proof of the main theorem

Let us recall that by assumption we have∫ H

0
ξ(z)dz = τ(H)− τ(0) = −1 (2.93)

(see Subsection 3.2.6 for notations). Without loss of generality we can assume∫ H

0
ξ2dz . Ñu . (lnH)

1
15 , (2.94)

otherwise there is nothing to show. The proof of Theorem 1 consists of two steps:
Step1:
We claim that

∫ H
0 ξ(z)dz = −1 translates (by the up-down symmetry) into∫ lnH

−∞
ξ̂0 ds

′ . −1

2
. (2.95)

Argument for (2.95):
Let us introduce the change of variable

z =
ẑ

k
, (2.96)

where k > 0, and the logarithmic variables

s = ln ẑ and s′ = − ln k . (2.97)

We note that by definition (2.90) of the convolution ξ̂0, by definitions (2.96) & (2.97) of the
variables ẑ, s and s′, by definition (2.42) of ξ̂ we have∫ lnH

−∞
ξ̂0 ds

′ (2.90)
=

∫ lnH

−∞

∫ ∞
−∞

ξ̂(s+ s′)φ0(s) ds ds
′

(2.96)&(2.97)
=

∫ ∞
1
H

∫ 1

0
ξ̂

(
ẑ

k

)
φ0(ẑ)

dẑ

ẑ

dk

k

(2.42)
=

∫ 1

0

∫ ∞
1
H

ξ

(
ẑ

k

)
dk

k2
φ0(ẑ) dẑ

=

∫ 1

0

∫ Hẑ

0
ξ(z)

dz

ẑ
φ0(ẑ) dẑ

=

∫ H

0
ξ(z)

∫ 1

z
H

1

ẑ
φ0(ẑ) dẑ dz .

In view of this identity and the up-down symmetry (i. e. the symmetry of the problem under

z  H − z), (2.95) will follow if we show that
∫ H
0 ξ(z) dz = −1 implies∫ H

0
ξ(z)

(∫ 1

z
H

1

ẑ
φ0(ẑ) dẑ +

∫ 1

1− z
H

1

ẑ
φ0(ẑ) dẑ

)
dz . −1 , (2.98)
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using the normalization ∫ 1

0

1

ẑ
φ0(ẑ) dẑ =

∫ 0

−∞
φ0(s) ds = 1 . (2.99)

As a further consequence of the up-down symmetry, we may assume that φ0(ẑ) is even w. r. t.
ẑ = 1

2 , that is,
φ0(1− ẑ) = φ0(ẑ) . (2.100)

Indeed, in order to have this symmetry for φ0, the distribution of w under the law ρ(dw)
from Subsection 2.2.5.1 has to be invariant under this symmetry transformation so that also

the distribution φ0 of φ = w
(
− d2

dẑ2
+ 1
)2
w under ρ(dw) (c. f. (2.129)) is invariant under this

symmetry transformation. In view of the Ansatz (2.131), this follows from the fact that ŵ0(ˆ̂z)
is even w. r. t. ˆ̂z = 0 and that ρ0(ẑ

′) is even w. r. t. ẑ′ = 1
2 , c. f. (2.139).

Argument for (2.98):
We argue that

∫ H

0
ξ(z)

(
1−

∫ 1

z
H

1

ẑ
φ0(ẑ) dẑ −

∫
1− z

H

1

ẑ
φ0(ẑ) dẑ

)
dz & −Ñu

1
3

H
2
3

. (2.101)

Indeed, Claim (2.101) together with (2.93) and (2.94) imply (2.98) in the regime of H � 1.
Argument for (2.101):
Let us reformulate (2.101) as ∫ H

0
ξ(z)ρ(z)dz & −Ñu

1
3

H
2
3

, (2.102)

where we introduced

ρ(z) := ρ0

( z
H

)
with ρ0 (ẑ) := 1−

∫ 1

ẑ

1

ẑ′
φ0(ẑ

′) dẑ′ −
∫ 1

1−ẑ

1

ẑ′
φ0(ẑ

′) dẑ′ . (2.103)

We notice that in view of the normalization (2.99), since φ0(ẑ) is compactly supported in (0, 1),
so is ρ0(ẑ). Moreover, the symmetry (2.100) of φ0(ẑ) implies that

dρ0
dẑ

(ẑ) =

(
1

ẑ
− 1

1− ẑ

)
φ0(ẑ)

{
≥ 0 for ẑ ≤ 1

2 ,

≤ 0 for ẑ ≥ 1
2 ,

so that
ρ0(ẑ) ≥ 0 , (2.104)

and
ρ0(ẑ) ≤ 1 , (2.105)

following from φ0(ẑ) ≥ 0. Hence (2.102) is yet another way of expressing approximate non-
negativity of ξ, this time far away from the boundary layers. The idea to establish (2.101) is
now to construct an even mollification kernel φ(z) of length scale `� H such that

-

(ξ ∗ φ)(z) & − 1

`4
for z ∈ (`,H − `), (2.106)

- ∫ H

0
(φ ∗ ρ− ρ)2dz .

`4

H3
for `� H. (2.107)
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We first argue how (2.106) and (2.107) imply (2.101). Indeed by the evenness of φ we have the
representation ∫ ∞

−∞
ξρdz =

∫ ∞
−∞

ξ ∗ φρdz −
∫ ∞
−∞

ξ(ρ ∗ φ− ρ) dz ,

from which, since ρ ≥ 0 (from (2.104)), we get∫ ∞
−∞

ξρdz ≥ inf
z∈suppρ

(ξ ∗ φ)(z)

∫ ∞
−∞

ρdz −
(∫ ∞
−∞

ξ2dz

∫ ∞
−∞

(ρ ∗ φ− ρ)2dz

) 1
2

.

Using (2.106) and (2.107) together with (2.94) and
∫ H
0 ρ dz . H (from (2.105)) we obtain the

estimate ∫ ∞
−∞

ξρdz & −H
`4
−
(

Ñu
`4

H3

) 1
2

.

The balancing choice of ` = H
5
12

Ñu
1
12

turns this estimate into (2.101). We now turn to the construc-

tion of the mollification kernel φ. We select a (nonvanishing) smooth and even w0(ẑ) compactly
supported in ẑ ∈ [−1, 1] and consider the corresponding multiplier

φ0 = w0

(
− d2

dẑ2
+ 1

)2

w0 .

Notice that
∫ H
0 φ0(z)dẑ =

∫∞
−∞

((
d2w0
dẑ2

)2
+
(
dw0
dẑ

)2
+ w2

0

)
dẑ > 0 . By multiplying w0 with a

positive constant, we thus may assume that∫ ∞
−∞

φ0 dẑ = 1.

We rescale the mask φ0 by ` so as to preserve its integral

`φ(`ẑ) = φ0(ẑ) , (2.108)

and note that

φ = w

(
− d2

dẑ2
+

1

`2

)2

w , (2.109)

provided w is the following rescaling of w0:

1

`
3
2

w(`ẑ) = w0(ẑ) . (2.110)

For any translation z′ ∈ (`,H − `), the translated test function z 7→ w(z − z′) is compactly
supported in z ∈ (0, H) and thus we may apply the stability condition (2.34) with k = 1

` .
Because of (2.109), this yields (2.106):∫ H

0
ξ(z)φ(z − z′) dz

≥ −
∫ H

0

`2( d

dz

(
− d2

dz2
+

1

`2

)2

w

)2

+

((
− d2

dz2
+

1

`2

)2

w

)2
 (z − z′) dz

(2.110)
= − 1

`4

∫ 1

−1

( d

dẑ

(
− d2

dẑ2
+ 1

)2

w0

)2

+

((
− d2

dẑ2
+ 1

)2

w0

)2
 dẑ ∼ − 1

`4
.
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We now turn to (2.107). From the representation

(ρ ∗ φ− ρ)(z′)
(2.108)

=

∫ ∞
−∞

(ρ(z′ − z)− ρ(z′))φ(z) dz

φ is even
=

1

2

∫ ∞
−∞

(ρ(z′ + z) + ρ(z′ − z)− 2ρ(z′))φ(z) dz ,

we obtain the inequality

|(ρ ∗ φ− ρ)(z′)| ≤ 1

2
sup

∣∣∣∣d2ρdz2
∣∣∣∣ ∫ ∞
−∞

z2|φ(z)| dz

(2.103),(2.108)
=

1

H2
sup

∣∣∣∣d2ρ0dẑ2

∣∣∣∣ `2 ∫ ∞
−∞

ẑ2|φ0(ẑ)| dẑ, ,

that yields (2.107) after integration in z′ ∈ [0, H].
Step2:
We start by noticing that

Ñu
(2.94)

&
∫ H

0
ξ2dz

(2.42)
=

∫ lnH

−∞
exp(−s)ξ̂2 ds

(2.90)

&
∫ lnH

−∞
exp(−s)ξ̂20 ds , (2.111)

where in the last inequality we used the (weighted) Young’s inequality for convolution and the
property (2.88) of the convolution kernel φ0. We claim that∫ lnH

−∞
exp(−s)ξ̂20ds ≥ ln

1
15 H . (2.112)

Argument for (2.112): By (2.42) and the rescaling z = Lẑ, zξ = L−3(ẑξ̂) we can write

s = S0 + ŝ and ξ̂ = exp(−3S0)
ˆ̂
ξ , (2.113)

where ŝ = ln ẑ and, S0 = lnL and
ˆ̂
ξ = ẑξ̂. In particular

ξ̂0 = exp(−3S0)
ˆ̂
ξ0 .

Let us rewrite the approximate logarithmic growth (2.91) in the new variables ŝ and
ˆ̂
ξ: For

S1 ≥ C we have ∫ 0

−1

ˆ̂
ξ0 dŝ ≤ C1

(
1

S1

∫ S1

0

ˆ̂
ξ0dŝ+ 1

)
. (2.114)

By the definition (2.113) we can generalize (2.114) for all S0∫ S0

S0−1
exp(3S0)ξ̂0 ds ≤ C1

(
1

S1

∫ S0+S1

S0

exp(3S0)ξ̂0 ds+ 1

)
. (2.115)

Dividing the above inequality by exp(3S0) we obtain∫ S0

S0−1
ξ̂0 ds ≤ C1

(
1

S1

∫ S0+S1

S0

ξ̂0 ds+ exp(−3S0)

)
, (2.116)

and turning it around we have, for S1 ≥ C and for all S0∫ S0+S1

S0

ξ̂0 ds ≥
S1
C1

∫ S0

S0−1
ξ̂0 ds− S1 exp(−3S0) . (2.117)
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We now apply a similar argument to Lemma 3. Like above we obtain from (2.92): For S2 ≥ C,
ε ≤ 1 and all S0 we have∫ S0−1

S0−S2

ξ̂0 ds ≥ −C2

(
1

ε

∫ S0

S0−1
ξ̂0 ds

)
(2.118)

− C

(
1

ε
exp(−3S0) +

∫ S0−S2+1

S0−S2

|ξ̂0| ds+ ε exp(5S2 − 3S0)

)
.

Above we choose ε = C1C2
S1

, where C1 and C2 are the universal constants appearing in (2.117)
and (2.118). Therefore, for S2 ≥ C and for all S0 we have∫ S0−1

S0−S2

ξ̂0 ds ≥ −S1
C1

∫ S0

S0−1
ξ̂0 ds

− C

(
S1
C1C2

exp(−3S0) +

∫ S0−S2+1

S0−S2

|ξ̂0| ds+
C1C2

S1
exp(5S2 − 3S0)

)
.

We now integrate ξ̂0 between S0 − S2 and S0 + S1∫ S0+S1

S0−S2

ξ̂0 ds =

∫ S0

S0−S2

ξ̂0 ds+

∫ S0

S0−1
ξ̂0 ds+

∫ S0+S1

S0

ξ̂0 ds

and apply (2.118), (2.89) and (2.117), respectively to the three terms of the right hand side,
obtaining:∫ S0+S1

S0−S2

ξ̂0 ds ≥ −S1
C1

∫ S0

S0−1
ξ̂0 ds−

CS1
C1C2

exp(−3S0)

− C

∫ S0−S2+1

S0−S2

|ξ̂0| ds−
CC1C2

S1
exp(5S2 − 3S0)

− C

∫ S0

S0−1
exp(−3s) ds+

S1
C1

∫ S0

S0−1
ξ̂0 ds− S1 exp(−3S0)

≥ −C
(
S1 exp(−3S0) +

∫ S0−S2+1

S0−S2

|ξ̂0| ds+
1

S1
exp(5S2 − 3S0)

)
− C exp(−3S0)− S1 exp(−3S0)

≥ −C
(
S1 exp(−3S0) +

∫ S0−S2+1

S0−S2

|ξ̂0| ds+
1

S1
exp(5S2 − 3S0)

)
,

which we rewrite with S− := S0 − S2 and S+ := S0 + S1 as∫ S+

S−

ξ̂0 ds ≥ −C
(

(S+ − S0) exp(−3S0) +

∫ S−+1

S−

|ξ̂0| ds+
1

(S+ − S0)
exp(2S0 − 5S−)

)
.

(2.119)
In the regime S− � S+ we can choose S0 in order to balance the first and the last right hand
side term in (2.119), which is achieved for S+ − S0 = exp(52(S0 − S−)). Thus in particular
S+− S0 ≈ S+− S− � S0− S− so that the balance is achieved for S+− S− ≈ exp(52(S0− S−)) .
Hence (2.119) turns into∫ S+

S−

ξ̂0 ds ≥ −C
(

(S+ − S−)−
1
5 exp(−3S−) +

∫ S−+1

S−

|ξ̂0| ds
)
, (2.120)

and in case of |S−| � S+ it simplifies to∫ S+

S−

ξ̂0 ds ≥ −C
(

(S+)−
1
5 exp(−3S−) +

∫ S−+1

S−

|ξ̂0| ds
)
. (2.121)
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In (2.121) we choose S+ = lnH∫ lnH

S−

ξ̂0 ds ≥ −C
(

(lnH)−
1
5 exp(−3S−) +

∫ S−+1

S−

|ξ̂0| ds
)
, (2.122)

and we combine this last inequality with (2.95)

1
(2.95)

. −
∫ lnH

−∞
ξ̂0(s) ds

= −
∫ S−

−∞
ξ̂0(s) ds −

∫ lnH

S−

ξ̂0(s) ds

(2.122)

≤
(∫ S−

−∞
exp(−s)ξ̂20(s)ds

) 1
2
(∫ S−

−∞
exp(s) ds

) 1
2

+C
(

2(lnH)−
1
5 exp(−3S−)

)
+ C

(∫ S−+1

S−

exp(−s)ξ̂20ds
) 1

2
(∫ S−+1

S−

exp(s) ds

) 1
2

,

where we applied twice the Cauchy-Schwarz’ inequality in the form∫
ξ̂0ds =

∫
exp

(
−s

2

)
exp

(s
2

)
ξ̂0 ds ≤

(∫ (
exp

(
−s

2

)
ξ̂0

)2
ds

) 1
2
(∫

exp
(s

2

)2
ds

) 1
2

.

(2.123)
Using (2.112) in the previous estimate we obtain

1 .
(

Ñu exp(S−)
) 1

2
+ C

(
(lnH)−

1
5 exp(−3S−)

)
+ C

(
Ñu exp(S−)

) 1
2

≤ C
(

(Ñu exp(S−))
1
2 + (lnH)−

1
5 exp(−3S−)

)
. (2.124)

Balancing the two terms on the right-hand side of (2.124), we get the (optimal) condition on
S−:

(Ñu)
3
7 (lnH)

6
35 = exp(−3S−).

This allows us to conclude that

1 .
(

Ñu(lnH)−
1
15

) 3
7
,

1 .
(

Ñu(lnH)−
1
15

) 3
7
,

which yields

Ñu & (lnH)
1
15

where, with the symbol & we denote the inequality ≥ up to universal constants.

2.2.5 Proofs of technical lemmas

In this section we will give the detailed proofs of the lemmas stated in Subsection 2.2.3.

2.2.5.1 Approximate positivity in the bulk: Proof of Lemma 1

We are going to show that even under the weaker condition (2.34), ξ = dτ
dz is ”positive on average

approximately in the bulk” (i. e. for 1� z and 1� H − z). As in Section 2.2.1, we will express
this in terms of ξ̂ = zξ and argue that ξ̂ is not too negative on average in the logarithmic variable
s = ln z for 1 � s ≤ lnH. The average is expressed in terms of a smooth ”convolution kernel”

38



φ0(s) with the properties (2.88), c. f. Subsection 2.2.3. As stated in Lemma 1 we will construct
such a φ0 so that for all s′ ≤ lnH∫ ∞

−∞
ξ̂(s+ s′)φ0(s)ds ≥ −C exp(−3s′) , (2.125)

where C denotes a universal constant and the r. h. s. term estimates in which sense we have
approximate positivity in the bulk. In order to infer non-negativity, we can no longer let k ↑ ∞
in (2.34) (as in the proof of Proposition 1), since the two last terms would blow up. To quantify
this qualitative observation, we restrict to k > 0 and recall the change of variable (2.96) so that
(2.34) turns into

∫ kH

0
ξ̂

(
ẑ

k

)
w

(
− d2

dẑ2
+ 1

)2

w̄
dẑ

ẑ

+ k3
∫ kH

0

∣∣∣∣∣ ddẑ
(
− d2

dẑ2
+ 1

)2

w

∣∣∣∣∣
2

dẑ + k3
∫ kH

0

∣∣∣∣∣
(
− d2

dẑ2
+ 1

)2

w

∣∣∣∣∣
2

dẑ ≥ 0 . (2.126)

We shall restrict ourselves to k with kH ≥ 1 and real functions w(ẑ) compactly supported in
ẑ ∈ (0, 1] so that the boundary conditions (2.33) are automatically satisfied. In particular, an

integration by parts (based on ( d
2

dz2
+ 1)4 = d8

dz8
− 4 d6

dz6
+ 6 d4

dz4
− 4 d2

dz2
+ 1) in the two last terms

of (2.126), yielding

∫ kH

0

∣∣∣∣∣ ddẑ
(
− d2

dẑ2
+ 1

)2

w

∣∣∣∣∣
2

dẑ +

∫ kH

0

∣∣∣∣∣
(
− d2

dẑ2
+ 1

)2

w

∣∣∣∣∣
2

dẑ

=

∫ ∞
0

[(
d5w

dẑ5

)2

+ 5

(
d4w

dẑ4

)2

+ 10

(
d3w

dẑ3

)2

+ 10

(
d2w

dẑ2

)2

+ 5

(
dw

dẑ

)2

+ w2

]
dẑ , (2.127)

shows that there are no fortuitous cancellations: Provided the multiplier φ := w(− d2

dẑ2
+ 1)2w of

ξ̂ is non-negligible in the sense of
∫∞
0 φ dẑ

ẑ = O(1), the two last terms of (2.126) are at least of

O(k3). Hence we are forced to work with k � 1 and thus, as expected, with z = ẑ
k � 1. With

the logarithmic variables (2.97), the first term in (2.126) can be rewritten as follows∫ kH

0
ξ̂

(
ẑ

k

)
w

(
− d2

dẑ2
+ 1

)2

w̄
dẑ

ẑ
=

∫ ∞
−∞

ξ̂(s+ s′)w

(
− d2

dẑ2
+ 1

)2

w ds .

In view of this and (2.127), the stability condition (2.126) turns into: For all s′ ≤ lnH we have∫ ∞
−∞

ξ̂(s+ s′)w

(
− d2

dẑ2
+ 1

)2

w ds ≥ − exp(−3s′)

∫ 1

0

[(
d5w

dẑ5

)2

+ · · ·+ w2

]
dẑ . (2.128)

Let us consider the left hand side in (2.128) in more detail. In order to derive a result of the
type of (2.125), it would be convenient to have a smooth compactly supported w such that the

multiplier φ = w(− d2

dẑ2
+ 1)2w is non-negative. Although we don’t have an argument, we believe

that such a w does not exist.
Instead, we will construct

− a family F of smooth functions w supported in ẑ ∈ (0, 1]

− and a probability measure ρ(dw) on F,
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such that the convex combination

φ0(ẑ) :=

∫
F
φ(ẑ) ρ(dw) where φ := w

(
− d2

dẑ2
+ 1

)2

w , (2.129)

is non-negative (and non-trivial) — and thus satisfies (2.88) after normalization and is supported
in [14 ,

3
4 ]. Roughly speaking, the reason why this can be achieved is the following: For any (non-

trivial) smooth, compactly supported w we have

− φ = w
(
− d2

dẑ2
+ 1
)2
w is positive on average:

∫ 1

0
φdẑ =

∫ 1

0

[(
d2w

dẑ2

)2

+ 2

(
dw

dẑ

)2

+ w2

]
dẑ .

− φ = w d4w
dz4

+ · · ·+w2 is positive near the edge of the support of w (incidentally this would

not be true for the positive second order operator − d2

dẑ2
+ 1).

Before becoming much more specific let us address the error term stemming from the right hand
side of (2.128) for our construction, that is∫

F

∫ 1

0

[(
d5w

dẑ5

)2

+ · · ·+ w2

]
dẑ ρ(dw) . (2.130)

The functions in our family F will be of the form

w`,ẑ′(ẑ) :=
(√

`
)3
w0

(
ẑ − ẑ′

`

)
, (2.131)

that is, translations and rescalings of a “mask” w0. The mask w0 is some compactly supported
smooth function that we fix now, say

w0(ˆ̂z) :=

{
1√
C0

exp
(
− 1

(1−ˆ̂z2)2

)
for ˆ̂z ∈ (−1, 1)

0 else

}
, (2.132)

and the normalization constant C0 chosen such that∫ (
dw0

dˆ̂z2

)2

dˆ̂z = 1 , (2.133)

Provided

` ≤ 1

4
and ẑ′ ∈

(
1

4
,
3

4

)
, (2.134)

then w`,ẑ′ is, as desired, uniformly compactly supported in ẑ ∈ (0, 1]. If we choose the length
scale to be bounded away from zero, i. e.

` ≥ 1

C
, (2.135)

then the error term (2.130) is clearly finite, so that (2.89) follows from (2.128) via integration
with respect to ρ(dw) of (2.128).

It thus remains to construct a probability measure in ` and ẑ′ with (2.134) & (2.135) such
that (2.129) is non-negative (and non-trivial). Note that w`,ẑ′ in (2.131) is scaled such that the
corresponding multipliers satisfy

φ`,ẑ′(ẑ) =

(
1

`
w0

d4

dˆ̂z4
w0 − 2`w0

d2

dˆ̂z2
w0 + `3w2

0

)(
ẑ − ẑ′

`

)
, (2.136)
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and w0 is normalized in (2.133) in such a way that
∫ 1
0 w0

d4

dˆ̂z4
w0 dˆ̂z = 1. Hence for all ẑ′ ∈ (14 ,

3
4)

we have the convergence as ` ↓ 0

φ`,ẑ′(ẑ) ⇀ δ(ẑ′ − ẑ) when tested against smooth functions of ẑ′ . (2.137)

On the other hand we note the following: Writing w0 = exp(I) with I = − 1
(1−ˆ̂z2)2

, we have

d2w0

dˆ̂z2
=

1√
C0

[(
dI

dˆ̂z

)2

+
d2I

dˆ̂z2

]
exp(I),

d4w0

dˆ̂z4
=

1√
C0

[(
dI

dˆ̂z

)4

+ 6

(
dI

dˆ̂z

)2 d2I

dˆ̂z2
+ 3

(
d2I

dˆ̂z2

)2

+ 4
dI

dˆ̂z

d3I

dˆ̂z3
+
d4I

dˆ̂z4

]
exp(I) .

Since near the edges {−1, 1} of the support [−1, 1] of w0, i. e. for 1 − |ˆ̂z| � 1,
(
dI
dˆ̂z

)4
� 1

dominates the other terms thanks to the quadratic blow up of I near the edges, we have, according
to (2.136)

φ`,ẑ′(ẑ) ≈
1

C0

1

`

(
d

dˆ̂z
I

(
ẑ − ẑ′

l

))4

exp

(
2I

(
ẑ − ẑ′

l

))
.

Hence in particular for ` = 1
4 and ẑ′ = 1

2 , w 1
4
, 1
2

and thus φ 1
4
, 1
2

are supported in [14 ,
3
4 ], φ 1

4
, 1
2

is

positive near the edges of the support (and thus bounded away from zero at some small distance
of the edges of the support), and trivially bounded away from −∞ in the support. The universal
constants δ0 > 0, δ1 > 0, and 0 < C1 <∞ are to quantify this:

φ 1
4
, 1
2


= 0 for ẑ 6∈ (14 ,

3
4)

> 0 for ẑ ∈ (14 ,
1
4 + δ0] ∪ [34 − δ0,

3
4)

> δ1 for ẑ ∈ [14 + δ0,
1
4 + 3δ0] ∪ [34 − 3δ0,

3
4 − δ0]

> −C1 for ẑ ∈ [14 + 3δ0,
3
4 − 3δ0]

 . (2.138)

We now choose a universal smooth ρ0(ẑ
′) with

ρ0 =

{
0 for ẑ′ 6∈ (14 + 2δ0,

3
4 − 2δ0)

2C1 for ẑ′ ∈ [14 + 3δ0,
3
4 − 3δ0]

}
. (2.139)

Since ρ0 is smooth in ẑ′ we have according to (2.137)∫ ∞
−∞

φ`,ẑ′(ẑ)ρ0(ẑ
′) dẑ′ → ρ0(ẑ) uniformly in ẑ as ` ↓ 0 .

In view of the properties (2.139), there exists (a possibly small) `0 > 0 such that

∫ ∞
−∞

φ`0,ẑ′(ẑ)ρ0(ẑ
′) dẑ′


= 0 for ẑ 6∈ (14 + δ0,

3
4 − δ0)

≥ −δ1 for ẑ ∈ [14 + δ0,
3
4 − δ0]

≥ C1 for ẑ ∈ [14 + 3δ0,
3
4 − 3δ0]

 . (2.140)

In view of (2.138), the properties (2.140) just ensure that

φ0(ẑ) := φ 1
4
, 1
2
(ẑ) +

∫ ∞
−∞

φ`0,ẑ′(ẑ)ρ0(ẑ
′) dẑ′

{
= 0 for ẑ 6∈ (14 ,

3
4)

> 0 for ẑ ∈ (14 ,
3
4)

}
defines a φ0 that is strictly positive in its support and that is of the form (2.129) (after a
gratuitous normalization to obtain a probability measure).
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2.2.5.2 Approximate logarithmic growth: Proof of Lemma 2

In this subsection, we return to the approximate logarithmic growth of τ worked out in case of
the reduced stability condition in Section 2.2.1. Compared to Section 2.2.1, we have to work
with the mollified version ξ̂0 of ξ̂, cf. (2.90), since only for the former we have approximate
positivity in the bulk according to Subsection 2.2.5.1. As stated in Lemma 2, we shall show that
for S1 ≥ C we have ∫ 0

−1
ξ̂0 ds ≤ C

(
1

S1

∫ S1

0
ξ̂0 ds+ 1

)
, (2.141)

where 0 < C <∞ denotes a (possibly large) generic universal constant.

We start the proof recalling

- The starting point for Subsection 2.2.5.1, that is (2.128), which we rewrite as∫ ∞
−∞

ξ̂(s+ s′ + s′′)w

(
− d2

dẑ2
+ 1

)2

w ds

≥ − exp(−3s′ − 3s′′)

∫ 1

0

((
d5w

dẑ5

)2

+ · · ·+ w2

)
dẑ ,

for all s′ ≤ lnH, s′′ ≤ 0 and all smooth w compactly supported in ẑ ∈ (0, 1].

- The outcome of Subsection 2.2.5.1, that is (2.125), which we rewrite as

ξ̂0(s
′) =

∫ ∞
−∞

ξ̂(s′ + s′′)φ0(s
′′) ds′′ ≥ −C exp(−3s′) (2.142)

for all s′ ≤ lnH.

Since the kernel φ0(s
′′) is non-negative and compactly supported in s′′ ∈ (−∞, 0], we obtain by

testing the inequality in (1) with φ0(s
′′) ds′′:∫ ∞

−∞
ξ̂0(s

′′)φ(s′′ − s′) ds′′ =

∫ ∞
−∞

ξ̂0(s+ s′)φ(s) ds (2.143)

≥ −C exp(−3s′)

∫ 1

0

[(
d5w

dẑ5

)2

+ · · ·+ w2

]
dẑ ,

where we continue to use the abbreviation φ for the multiplier corresponding to the generic w:

φ = w

(
− d2

dẑ2
+ 1

)2

w .

The structure of the argument is similar to the one for (2.38) in Subsection 2.2.1. We seek

- a family F = {ws′}s′ of smooth functions ws′ parametrized by s′ ∈ R and compactly
supported in ẑ ∈ (0, 1], that is s ∈ (−∞, 0], and

- a probability measure ρ(ds′) supported in s′ ∈ (−∞, lnH],

such that the corresponding convex combination of multipliers shifted by s′, i. e.

φ1(s
′′) :=

∫ ∞
−∞

φs′(s
′′ − s′) ρ(ds′), where φs′ := ws′

(
− d2

dẑ2
+ 1

)2

ws′ , (2.144)

is close to 
−1 for −1 ≤ s′′ ≤ 0
1
S1

for 0 ≤ s′′ ≤ S1
0 else

 .
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In fact, we just need the upper bound

φ1(s
′′) ≤


−1 for −1 ≤ s′′ ≤ 0
C1
S1

for 0 ≤ s′′ ≤ S1
0 else

 , (2.145)

where C1(≤ S1) is some universal constant whose value we want to remember momentarily, and
a much weaker lower bound of the form

φ1(s
′′) ≥ −C

{
exp(6s′′) for s′′ ≤ 0

1 for s′′ ≥ 0

}
, (2.146)

where the exponential rate 6 could be replaced by any rate larger than 3. Furthermore, we need
that the functions ws′ do not degenerate too much such that the error term on the r. h. s. of
(2.143) stays under control:∫ ∞

−∞
exp(−3s′)

∫ 1

0

[(
d5ws′

dẑ5

)2

+ · · ·+ w2
s′

]
dẑ ρ(ds′) ≤ C . (2.147)

For both (2.146) and (2.147) we need that ρ decays sufficiently fast for s′ ↓ −∞.
It is almost obvious how (2.145), (2.146) & (2.147) allow to pass from (2.143) to (2.141) by
substituting w with ws′ and integrating in ρ(ds′). We just need to show how (2.145) & (2.146)
yield ∫ ∞

−∞
ξ̂0φ1 ds

′′ ≤ −
∫ 0

−1
ξ̂0 ds

′′ +
C1

S1

∫ S1

0
ξ̂0 ds

′′ + C .

Indeed, we write ∫ ∞
−∞

ξ̂0φ1 ds
′′ +

∫ 0

−1
ξ̂0 ds

′′ − C1

S1

∫ S1

0
ξ̂0 ds

′′

=

∫ ∞
−∞

(−ξ̂0)


−1 for −1 ≤ s′′ ≤ 0
C1
S1

for 0 ≤ s′′ ≤ S1
0 else

− φ1
 ds′′

(2.145),(2.142)

≤ C

∫ ∞
−∞

exp(−3s′′)


−1 for −1 ≤ s′′ ≤ 0
C1
S1

for 0 ≤ s′′ ≤ S1
0 else

− φ1
 ds′′

(2.146)

≤ C

∫ ∞
−∞

exp(−3s′′)

{
exp(6s′′) for s′′ ≤ 0

1 for s′′ ≥ 0

}
ds′′ ≤ C .

Imitating the argument given in Section 2.2.1 for the reduced stability condition, we introduce
the rescaled logarithmic variable ŝ and also rescale the amplitude of ŵs′ :

s = λ ŝ and ŵs′ =
1√
λ
ŵ0 . (2.148)

The choice of the normalization of ŵs′ will become apparent in (2.151) below. In (2.154) below,
we shall choose λ > 0 as a function of s′, so that ŵs′ indeed depends on s′. At this stage, we
just assume that the mask ŵ0, that we assumed to be fixed, satisfies

ŵ0 is supported in ŝ ∈
[
−1

2
, 0

]
and nonvanishing in

(
−1

2
, 0

)
, (2.149)

(why we restrict the support to this interval will become apparent in (2.156)), so that ŵs′

is indeed supported in s ∈ (−∞, 0]. We note that (2.148) implies that the multiplier φs′ =

ŵs′(
d
ds + 2)( dds + 1) dds(

d
ds − 1)ŵs′ = ŵs′

(
−2 d

ds −
d2

ds2
+ 2 d3

ds3
+ d4

ds4

)
ŵs′ is of the following form:

φs′ = − 2

λ2
ŵ0
dŵ0

dŝ
− 1

λ3
ŵ0
dŵ0

dŝ2
+

2

λ4
ŵ0
dŵ0

dŝ3
+

1

λ5
ŵ0
dŵ0

dŝ4
, (2.150)
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a form that highlights the desired dominance of the term − 2
λ2
ŵ0

dŵ0
dŝ = − 1

λ2
dŵ2

0
dŝ for λ � 1.

In (2.148), we normalized ŵs′ in such a way that the first moment of the multiplier φs′ is
independent of λ to leading order in λ� 1:∫ ∞

−∞
sφs′ ds ≈

∫ ∞
−∞

s

(
− 1

λ2
dŵ2

0

dŝ

)
ds =

∫ ∞
−∞

ŝ

(
−dŵ

2
0

dŝ

)
dŝ =

∫ ∞
−∞

w2
0 dŝ . (2.151)

It is the second term in (2.150) that gives the leading order contribution to the zeroth moment
of the multiplier φs′ : ∫ ∞

−∞
φs′ ds ≈

1

λ2

∫ ∞
−∞

(
dŵ0

dŝ

)2

dŝ . (2.152)

Let us now motivate why we need to choose λ to be s′-dependent. Note that for an s′-independent
λ, φ1 is just the convolution of φs′ and ρ. Hence for λ � 1 and a ρ(s′) that varies sufficiently
slowly on scale λ we would obtain from (2.151) & (2.152)

φ1(s
′′) =

∫ ∞
−∞

φs′(s
′′ − s′)ρ(s′) ds′

≈ − dρ
ds′

(s′′)

∫ ∞
−∞

w2
0 dŝ+

1

λ2
ρ(s′′)

∫ ∞
−∞

(
dŵ0

dŝ

)2

dŝ . (2.153)

Hence in order to obtain a φ1(s
′′) ∼ −1 over an s′′-interval of length of the order 1 followed by

φ1(s
′′) . 1

S1
, the first term on the r. h. s. of (2.153) suggests to choose ρ(s′) as a function that

increases from 0 to 1 over an s′-interval of order 1 followed by a decrease from 1 to 0 over an
s′-interval of length of order S1. Now for S1 � 1, a dilemma becomes apparent:

- On the one hand, in order for ρ to vary slowly on the scale λ, we need λ . 1.

- On the other hand, in order for the second term on the r. h. s. of (2.153) not to destroy
φ1(s

′′) . 1
S1

, we need λ2 & S1.

This argument shows that we have to choose λ to be an increasing function of s′. The simplest
choice turns out to be

λ = s′ , (2.154)

for s′ � 1 (in order to avoid negative values, for the time we think of ρ as being supported in
s′ ∈ (0,∞); later, we shall modify (2.154)). From (2.150) and (2.154) we obtain

φs′(s) = − 1

(s′)2

(
dŵ2

0

dŝ

)( s
s′

)
− 1

(s′)3

(
ŵ0
d2ŵ0

dŝ2

)( s
s′

)
+

2

(s′)4

(
ŵ0
d3ŵ0

dŝ3

)( s
s′

)
+

1

(s′)5

(
ŵ0
d4ŵ0

dŝ4

)( s
s′

)
.

(2.155)
However, (2.154) in turn means that φ1 is no longer a simple convolution of φs′ and ρ, c. f.
(2.144). Because of (2.149), the following change of variables

s′′ − s′

λ
=
s′′ − s′

s′
=
s′′

s′
− 1 = ŝ ⇐⇒ s′ =

s′′

1 + ŝ
, (2.156)

where s′′ is considered as a parameter is invertible with d
dŝ = − s′′

(1+ŝ)2
d
ds′ = − (s′)2

s′′
d
ds′ and ds′ =

s′′

(1+ŝ)2
dŝ. We thus get the first representation

φ1(s
′′) = −

∫ ∞
−∞

1

(1 + ŝ)2
ŵ2
0

dρ

ds′
dŝ− 1

(s′′)2

∫ ∞
−∞

(1 + ŝ) ŵ0
d2ŵ0

dŝ2
ρ dŝ (2.157)

+
2

(s′′)3

∫ ∞
−∞

(1 + ŝ)2 ŵ0
d3ŵ0

dŝ3
ρ dŝ+

1

(s′′)4

∫ ∞
−∞

(1 + ŝ)3 ŵ0
d4ŵ0

dŝ4
ρ dŝ ,

which will be used only at the end of the proof.
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Arguing as in Subsection 2.2.1 (see (2.62)) we get the second representation (c.f. (2.63))

φ1 =

∫ ∞
−∞

ŵ2
0

(
− 1

(1 + ŝ)2
dρ

ds′
+

1

2

1

(1 + ŝ)3
d2ρ

ds′2
+

1

(1 + ŝ)4
d3ρ

ds′3
− 1

2

1

(1 + ŝ)5
d4ρ

ds′4

)
dŝ

+

(
1

(s′′)2
+

6

(s′′)3
− 12

(s′′)4

)∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2

ρ dŝ

−
(

3

(s′′)2
− 8

(s′′)3

)∫ ∞
−∞

(
dŵ0

dŝ

)2 dρ

ds′
dŝ

− 2

(s′′)2

∫ ∞
−∞

1

1 + ŝ

(
dŵ0

dŝ

)2 d2ρ

ds′2
dŝ

+
1

(s′′)4

∫ ∞
−∞

(1 + ŝ)3
(
d2ŵ0

dŝ2

)2

ρ dŝ . (2.158)

From this representation we learn the following: If ρ(s′) varies on large length scales only (so
that e. g. dρ

ds′ is negligible w. r. t. ρ) and for s′′ � 1, we obtain to leading order from the above

φ1 ≈ −
∫ ∞
−∞

1

(1 + ŝ)2
ŵ2
0

dρ

ds′
dŝ+

1

(s′′)2

∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2

ρ dŝ

+
1

(s′′)4

∫ ∞
−∞

(1 + ŝ)3
(
d2ŵ0

dŝ2

)2

ρ dŝ .

If ρ(s′) varies slowly even on a logarithmic scale (so that e. g. s′ dρds′ is negligible w. r. t. ρ), the
above further reduces to

φ1 ≈ −
dρ(s′′)

ds′

∫ ∞
−∞

1

(1 + ŝ)2
ŵ2
0 dŝ+

ρ(s′′)

(s′′)2

∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2

dŝ .

As in Subsection (2.2.1) (see argument below (2.65)) we notice that the first, negative, term r.
h. s. of (2.159) dominates the second positive term provided

dρ

ds′
� 1

(s′)2
.

This motivates the following Ansatz for ρ in the range 1 � s′ � S1: We fix a smooth mask
ρ0(ŝ

′) such

ρ0 = 0 for ŝ′ ≤ 0,
dρ0
dŝ′

> 0 for 0 < ŝ′ ≤ 2, ρ0 = 1− 1

ŝ′
for 2 ≤ ŝ′ . (2.159)

For S0 � 1, we consider the rescaled version

ρ(S0(ŝ
′ + 1)) = ρ0(ŝ

′), i. e. the change of variables s′ = S0(ŝ
′ + 1) . (2.160)

As in the argument for (2.38) (Section 2.2.1) with the rescaling of s′′

s′′ = S0ŝ
′′ , (2.161)

(2.158) turns into
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φ1 = − 1

S0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)2
dρ0
dŝ′

dŝ− 1

2S2
0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)3
d2ρ0
dŝ′2

dŝ

+
1

S3
0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)4
d3ρ0
dŝ′3

dŝ+
1

2S4
0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)5
d4ρ0
dŝ′4

dŝ

+

(
1

S2
0

1

(ŝ′′)2
+

1

S3
0

6

(ŝ′′)3
− 1

S4
0

12

(ŝ′′)4

)∫ ∞
−∞

(1 + ŝ)

(
dŵ0

dŝ

)2

ρ0 dŝ

−
(

1

S4
0

3

(ŝ′′)3
− 1

S5
0

8

(ŝ′′)4

)∫ ∞
−∞

(
dŵ0

dŝ

)2 dρ0
dŝ′

dŝ

− 1

S5
0

2

(ŝ′′)3

∫ ∞
−∞

1

1 + ŝ

(
dŵ0

dŝ

)2 d2ρ0
dŝ′2

dŝ

+
1

S4
0

1

(s′′)4

∫ ∞
−∞

(1 + ŝ)3
(
d2ŵ0

dŝ2

)2

ρ0 dŝ . (2.162)

Since in the integrals in formula (2.158), the argument of ρ was given by s = s′′

1+ŝ , c. f. (2.156),
it follows from (2.159) and (2.161) that the argument of ρ0 is given by

ŝ′ =
ŝ′′

1 + ŝ
− 1 . (2.163)

Thus (2.162) just depends on ŝ′′, not on S0.

As for the proof of (2.48) in Section 2.2.1, our reduced goal is now to show that the constructions
of w (c. f. (2.149) and (2.154)) and ρ (c. f. (2.159) and (2.160)) yield the bound

φ∗1(s
′′) :=

∫
φs′(s

′′ − s′)ρ(s′)

{
= 0 for all s′′ ≤ 1

2S0 ,

< 0 for s′′ > 1
2S0 ,

(2.164)

for S0 � 1. As in Section 2.2.1, we distinguish the regions of small, intermediate and large s′′

Arguing as for (2.72) and (2.76) , it is easy to deduce that in the range s′′ ≥ 3S0 (small s′′)
and s′′ ∈

[
3
4S0, 3S0

]
(intermediate s′′), φ1 (see (2.162)) is strictly negative for S0 � 1: indeed

in Section 2.2.1 we proved

φ∗1 ≈ −
1

S0

∫ ∞
−∞

ŵ2
0

(ŝ′′ − (1 + ŝ))2
dŝ uniformly in ŝ′′ ≥ 3 for S0 � 1 (2.165)

and

φ∗1 ≈ −
1

S0

∫ ∞
−∞

ŵ2
0

(1 + ŝ)2
dρ0
dŝ′

dŝ uniformly in ŝ′′ ∈
[

3

4
, 3

]
for S0 � 1 . (2.166)

Noting that for s′′ ∈ (∞, S0
2 ] all the integrals in (2.162) are vanishing because the supports of ŵ

and ρ0 do not intersect, we are left to study the region of small s′′, i.e. s′′ ∈
(
S0
2 ,

3
4S0
)
. Also in

the range of small s′′

s′′ ∈
(

1

2
S0,

3

4
S0

)
or equivalently ŝ′′ ∈

(
1

2
,
3

4

)
.

we would like φ∗1 to be strictly negative for S0 � 1. But here (exactly as in (2.79)), no matter
how large λ = s′ in (2.150) is, the behavior of φs′ near the left edge −1

2 of its support [−1
2 , 0]

(and also at its right edge 0, but there we don’t care) is dominated by the 1
λ5
ŵ0

d4ŵ0
dŝ4

-term and
thus automatically is strictly positive. Taking the ρ(s′) ds′-average of the shifted φs′(s

′′−s′) does
not alter this behavior as long as ρ is compactly supported in [S0,∞), c. f. (2.159): φ1 is strictly
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positive near the left edge S0
2 of its support. In Section 2.2.1, we solved this problem by giving up

smoothness of ŵ0 near the left −1
2 of its support [−1

2 , 0] and eventually using an approximation
argument in H2,2 (in (2.162) φ1 is expressed in derivatives of ŵ0 up to second order). In this
case, this (approximation) argument does no longer work because we need to asses the error
term (2.147), which involves higher derivatives of ŵ0. The way out to this dilemma will take
the remainder of this section and it consists of three steps (the first one is the same as is (2.79)
and we report it just for the sake of clarity).

- In the first stage, we give up smoothness of ŵ0 near the left −1
2 of its support [−1

2 , 0]. In
fact, we shall first assume that ŵ0 satisfies in addition

ŵ0 =
1

2

(
ŝ+

1

2

)2

for ŝ ∈
[
−1

2
,−1

4

]
. (2.167)

This means that ŵ0 has a bounded but discontinuous second derivative. It will be easy
to see that the so defined φ∗1 is, as desired, strictly negative on s′′ ∈ (S0

2 ,
3
4S0] for all S0.

Once this is done, we fix a sufficiently large but universal S0 such that

− φ∗1(s′′) ∈


[ 1C

1
(s′′)2 , C

1
(s′′)2 ] for S0 ≤ s′′

(0, C] for 1
2S0 < s′′ ≤ S0

{0} for s′′ ≤ 1
2S0

 , (2.168)

for some generic universal constant C. In Subsection 2.2.1 the choice of (2.167) allows us
to show (2.71), which implies (2.48). In this case instead the choice of (2.167) is clearly
not admissible because we need to control the error term (2.147). In two further steps we
show how to solve this issue.

- In the second stage, we modify the definition (2.160) of ρ(s′) by adding a small-amplitude
and fast-decaying (exponential) tail for s′ ↓ −∞. More precisely, we make the Ansatz

ρ̃ = ρ+ δρ with δρ = ε exp

(
s′

S2

)
η0

(
s′

S0

)
, (2.169)

where η0 is the mask of a smooth cut-off function η0(ŝ
′) with

η0 = 1 for ŝ′ ≤ 2 and η0 = 0 for ŝ′ ≥ 3 . (2.170)

Here 0 < S2 � 1 is some small length scale and ε � 1 is some small amplitude to be
chosen below. Recall that S0 is the universal constant fixed in the first stage. Since ρ̃ is
no longer supported on s′ ∈ [S0,∞) but is positive on the entire line, we need to extend
our definition of the function ŵs′ from s′ ≥ S0 to all s′. In view of (2.148) we just have to
extend the definition (2.154) of the rescaling parameter λ(s′) to

λ =

{
s′ for s′ ≥ S0
S0 for s′ ≤ S0

}
. (2.171)

We will show that we can first choose a universal 0 < S2 � 1 and then a universal
0 < ε� 1 such that we obtain for φ̃∗1(s

′′) :=
∫∞
−∞ φλ(s′)(s

′′ − s′)ρ̃(s′) ds′ =
∫∞
−∞ φλ(s′)(s

′′ −
s′)ρ(s′) ds′ +

∫∞
−∞ φλ(s′)(s

′′ − s′)δρ(s′) ds′ =: φ∗1(s
′′) + δφ∗1(s

′′) the following estimates

− φ̃∗1(s′′) ∈


[ 1C

1
(s′′)2 , C

1
(s′′)2 ] for S0 ≤ s′′

[ 1C , C] for 1
2S0 < s′′ ≤ S0

[ 1C exp( s
′′

S2
), C exp( s

′′

S2
)] for s′′ ≤ 1

2S0

 , (2.172)

for some generic universal constant C. The gain with respect to φ∗1 is that φ̃∗1 is strictly
negative also for s′′ ≤ 1

2S0 which will allow us to pass to the third stage.
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- In a third stage, we smoothen out ŵ0: We define a sequence of smooth functions {wα0 }α↓0
which approximate ŵ0 in such a way that the corresponding φ̃∗1 still satisfies (2.172).

We start with the first stage, that is, our non-smooth Ansatz (2.167). In view of (2.150) and
(2.171), this implies

φs′ = − 1

(s′)2

(
s

s′
+

1

2

)3

− 1

2

1

(s′)3

(
s

s′
+

1

2

)2

< 0 for s ∈
(
−s
′

2
,−s

′

4

]
. (2.173)

We now consider φ∗1(s
′′) =

∫∞
−∞ φs′(s

′′−s′)ρ(s′) ds′. In view of (2.159) & (2.160), ρ ≥ 0 is strictly
positive for s′ ∈ (S0,∞). On the other hand, it follows from (2.173) that s′ 7→ φs′(s

′′ − s′) is
strictly negative for s′′ − s′ ∈ (− s′

2 ,−
s′

4 ], that is, for s′ ∈ [43s
′′, 2s′′) (and supported in s′ ∈

[s′′, 2s′′]). Hence φ∗1 is strictly negative for S0 ∈ [43s
′′, 2s′′), that is, for s′′ ∈ (12S0,

3
4S0], as

desired. This holds for any value of S0 > 0. In conjunction with (2.165) and (2.166) this implies
(2.168).

We now turn to the second stage, i. e. the effect of the modification ρ̃(s′) of ρ(s′). Consider the
perturbation δφ∗1(s

′′) of the multiplier φ∗1(s
′′):

δφ∗1(s
′′) =

∫ ∞
−∞

φλ(s′)(s
′′ − s′)δρ(s′) ds′

(2.171)
= ε

∫ ∞
−∞

φλ(s′)(s
′′ − s′) exp

(
s′

S2

)
η0

(
s′

S0

)
ds′ .

(2.174)
In order to show that the unperturbed (2.168) upgrades to (2.172), it is enough to establish

− 1

ε
δφ∗1(s

′′) ∈


{0} for 3S0 ≤ s′′

[−C,C] for S0 ≤ s′′ ≤ 3S0
[ 1C , C] for 1

2S0 ≤ s′′ ≤ S0
[ 1C exp( s

′′

S2
), C exp( s

′′

S2
)] for s′′ ≤ 1

2S0

 , (2.175)

for some sufficiently small but fixed S2, where C denotes a universal constant. Indeed, choosing
ε� 1, we see from φ̃∗1 = φ∗1 + δφ∗1 that (2.175) upgrades (2.168) to (2.172).

We start with the large s′′, i. e. s′′ ≥ 3S0 and consider the integral 1
εδφ

∗
1(s
′′) =

∫∞
−∞ φλ(s′)(s

′′ −
s′) exp(− s′

S2
)η0(

s′

S0
) ds′. Because of our choice (2.170) of η0, the second factor exp(− s′

S2
)η0(

s′

S0
)

is thus supported in s′ ∈ (−∞, 3S0]. We note that in view of our choice (2.171) of the scaling
factor λ, ŵs′(s) and thus φλ(s′)(s) is supported in s ∈ (−1

2S0, 0) for s′ ≤ S0 and s ∈ (−1
2s
′, 0)

for s′ ≥ S0. Hence (s′, s′′) 7→ φλ(s′)(s
′′ − s′) is supported in s′′ ∈ (s′ − 1

2S0, s
′) for s′ ≤ S0

and s′′ ∈ (12s
′, s′) for s′ ≥ S0, or — equivalently — in s′ ∈ (s′′, s′′ + 1

2S0) for s′′ ≤ S0
2 and in

s′ ∈ (s′′, 2s′′) for s′′ ≥ S0
2 . Since s′′ ≥ 3S0, we are in the latter case and φλ(s′)(s

′′−s′) is supported

in s′ ∈ (s′′, 2s′′) ⊂ [3S0,∞). Hence both factors exp(− s′

S2
)η0(

s′

S0
) and φλ(s′)(s

′′−s′) = φs′(s
′′−s′)

have disjoint support in s′ and thus the integral (2.174) in s′ vanishes. This establishes the first
line in (2.175).

We now turn to the very small s′′, i. e. s′′ ≤ S0
2 . By the above, s′ 7→ φλ(s′)(s

′′ − s′) is supported

in s′ ∈ (s′′, s′′ + S0
2 ) ⊂ (−∞, S0], we have in this s′-range for the cut-off function η0(

s′

S0
) = 1.

Moreover, in this range we have φλ(s′) = φS0 . Hence the definition (2.174) simplifies to

1

ε
δφ∗1(s

′′) =

∫ ∞
−∞

φS0(s′′ − s′) exp

(
s′

S2

)
ds′ = exp

(
s′′

S2

)∫ ∞
−∞

φS0(s) exp

(
− s

S2

)
ds . (2.176)

We note that by (2.173) we have

φS0 is strictly negative for s ∈
(
−S0

2
,−S0

4

)
and supported in s ∈

[
−S0

2
, 0

]
.
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On the last integral, we can now use Laplace’s method for S2 � 1. We thus have

−
∫ ∞
−∞

φS0 exp

(
− s

S2

)
ds

≈ −
∫ −S0

4

−∞
φS0 exp

(
− s

S2

)
ds

(2.173)
=

∫ −S0
4

−S0
2

(
1

S2
0

(
s

S0
+

1

2

)3

+
1

2S3
0

(
s

S0
+

1

2

)2
)

exp

(
− s

S2

)
ds

≈
∫ ∞
−S0

2

1

2S3
0

(
s

S0
+

1

2

)2

exp

(
− s

S2

)
ds

=
1

S2
0

∫ ∞
− 1

2

1

2

(
ŝ+

1

2

)2

exp

(
−S0
S2
ŝ

)
dŝ

= exp

(
1

2

S0
S2

)
S3
2

S5
0

.

Plugging this into (2.176) yields

− 1

ε
δφ∗1(s

′′) ≈ S3
2

S5
0

exp

(
1

2

S0
S2

)
exp

(
s′′

S2

)
uniformly in s′′ ≤ S0

2
for S2 � 1 . (2.177)

We now treat the intermediary small values S0
2 ≤ s′′ ≤ S0. This time, the function s′ 7→

φλ(s′)(s
′′ − s′) is supported in s′ ∈ [s′′, 2s′′] ⊂ (−∞, 2S0], so that also in this s′-range we have

for the cut-off function η0(
s′

S0
) = 1. Hence the representation simplifies to

1

ε
δφ∗1(s

′′) =

∫ ∞
−∞

φλ(s′)(s
′′ − s′) exp

(
s′

S2

)
ds′ .

On this integral, we can again use Laplace’s method for S2 � 1: By (2.173) we have for the
continuous function (s′, s′′) 7→ φλ(s′)(s

′′ − s′)

φλ(s′)(s
′′ − s′)

{
< 0 for s′ ∈ (32s

′′, 2s′′)
= 0 for s′ 6∈ (s′′, 2s′′)

}
.

Hence we obtain

1

ε
δφ∗1(s

′′) < 0 uniformly in s′′ ∈
[
S0
2
, S0

]
for S2 � 1 . (2.178)

We finally address the remaining intermediary range, that is, S0 ≤ s′′ ≤ 3S0. We clearly have
by continuity of (s′, s′′) 7→ φλ(s′)(s

′′ − s′) and η0(ŝ
′):

1

ε
δφ∗1(s

′′) =

∫ ∞
−∞

φλ(s′)(s
′′ − s) exp

(
s′

S2

)
η0

(
s′

S0

)
ds′

(2.179)

is uniformly bounded for s′′ ∈ [S0, 3S0]. Estimate (2.175) now follows from (2.177), (2.178) &
(2.179) for a choice of sufficiently small S2.

We now turn to the third stage. We approximate ŵ0, which is non-smooth at the left edge of its
support, c. f. (2.167), by a sequence of smooth ŵα0 in such a way that the corresponding φλ(s′)
and φαλ(s′) are close in L1. More precisely, we select a smooth function F (w) with

F (w) = 0 for w ≤ 0 and F (w) = w for w ≥ 1 .
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For a small parameter 0 < α� 1 we now define ŵα0 (ŝ) via

ŵα0 := α2F

(
ŵ0

α2

)
(2.167)

= α2F

(
(ŝ+ 1

2)2

2α2

)
for ŝ ∈

[
−1

2
,−1

4

]
;

for ŝ 6∈ [−1
2 ,−

1
4 ], ŵα0 is set equal to ŵ0. Clearly, the so defined ŵα0 is smooth on the whole line.

Following (2.148), we consider the corresponding ŵα = 1√
λ
ŵα0 in the variables s = λŝ and its

multiplier that analogously to (2.155) is given by

φαλ(s′) = − 2

(λ(s′))2
ŵα0

dŵα0
dŝ
− 1

(λ(s′))3
ŵα0

d2ŵα0
dŝ2

+
2

(λ(s′))4
ŵα0

d3ŵα0
dŝ3

+
1

(λ(s′))5
ŵα0

d4ŵα0
dŝ4

. (2.180)

We want to show that the convex combination of multipliers

φ̃∗,α1 (s′′) =

∫ ∞
−∞

φαλ(s′)(s
′′ − s′)ρ̃(s′) ds′ ,

still satisfies (2.172), that is

− φ̃∗,α1 (s′′) ∈


[ 1C

1
(s′′)2 , C

1
(s′′)2 ] for S0 ≤ s′′

[ 1C , C] for 1
2S0 < s′′ ≤ S0

[ 1C exp( s
′′

S2
), C exp( s

′′

S2
)] for s′′ ≤ 1

2S0

 , (2.181)

for some choice of 0 < α � 1 and a generic universal constant. For this purpose we consider
the difference of the combination of multipliers, that is, δφ∗,α1 = φ̃∗,α1 − φ̃∗1 and show that it is
sufficiently small. For this purpose, we first observe that∣∣(ŵα0 )2 − ŵ2

0

∣∣ ≤ Cα4, (2.182)∣∣∣∣ŵα0 dŵα0dŝ − ŵ0
dŵ0

dŝ

∣∣∣∣ ≤ Cα3, (2.183)∣∣∣∣ŵα0 d2ŵα0dŝ2
− ŵ0

d2ŵ0

dŝ2

∣∣∣∣ ≤ Cα2, (2.184)∣∣∣∣ŵα0 d3ŵα0dŝ3
− ŵ0

d3ŵ0

dŝ3

∣∣∣∣ ≤ Cα, (2.185)∣∣∣∣ŵα0 d4ŵα0dŝ4
− ŵ0

d4ŵ0

dŝ4

∣∣∣∣ ≤ C, (2.186)

which follows from the fact that

all these differences are supported on the interval ŝ ∈
[
−1

2
,−1

2
+
√

2α

]
, (2.187)

and that on this interval, the two terms forming the difference are by themselves of the claimed
size.

We first treat the case of large s′′-values, that is, of s′′ ≥ 3S0. In this case, s′ 7→ φλ(s′)(s
′′ − s′)

and s′ 7→ φαλ(s′)(s
′′ − s′) are supported in s′ ∈ (s′′, 2s′′). In particular, s′ ≥ S0 so that λ

(2.171)
= s′.

Hence, by (2.157), we obtain the representation

δφ∗,α1 (s′′) = −
∫ ∞
−∞

1

(1 + ŝ)2
((ŵα0 )2 − ŵ2

0)
dρ̄

ds′
dŝ

− 1

(s′′)2

∫ ∞
−∞

(1 + ŝ)

(
ŵα0

d2ŵα0
dŝ2

− ŵ0
d2ŵ0

dŝ2

)
ρ̄ dŝ

+
2

(s′′)3

∫ ∞
−∞

(1 + ŝ)2
(
ŵα0

d2ŵα0
dŝ3

− ŵ0
d3ŵ0

dŝ3

)
ρ̄ dŝ

+
1

(s′′)4

∫ ∞
−∞

(1 + ŝ)3
(
ŵα0

d2ŵα0
dŝ4

− ŵ0
d4ŵ0

dŝ4

)
ρ̄ dŝ .
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In particular, we also have s′ ≥ 3S0 so that ρ̃(s′)
(2.169)

= ρ(s′)
(2.159)

= 1− 1
s′
S0
−1

= 1− S0
s′−S0

, and thus

dρ̃
ds′ = S0

(s′−S0)2
. In terms of the variable ŝ given by s′ = s′′

1+ŝ , this translates into ρ̃ = 1− S0(1+ŝ)
s′′−S0(1+ŝ)

and dρ̃
ds′ = S0(1+ŝ)2

(s′′−S0(1+ŝ))2
. Hence the above representation specifies to

δφ∗,α1 (s′′) = −
∫ ∞
−∞

(
(ŵα0 )2 − ŵ2

0

) S0
(s′′ − S0(1 + ŝ))2

dŝ

− 1

(s′′)2

∫ ∞
−∞

(1 + ŝ)

(
ŵα0

d2ŵα0
dŝ2

− ŵ0
d2ŵ0

dŝ2

)(
1− S0(1 + ŝ)

s′′ − S0(1 + ŝ)

)
dŝ

+
2

(s′′)3

∫ ∞
−∞

(1 + ŝ)2
(
ŵα0

d3ŵα0
dŝ3

− ŵ0
d3ŵ0

dŝ3

)(
1− S0(1 + ŝ)

s′′ − S0(1 + ŝ)

)
dŝ

+
1

(s′′)4

∫ ∞
−∞

(1 + ŝ)3
(
ŵα0

d4ŵα0
dŝ4

− ŵ0
d4ŵ0

dŝ4

)(
1− S0(1 + ŝ)

s′′ − S0(1 + ŝ)

)
dŝ .

Using (2.187) and inserting the estimates (2.182), (2.184), (2.185), and (2.186) we obtain

|δφ∗,α1 | ≤ Cα

(
α4

(s′′)2
+

α2

(s′′)2
+

α

(s′′)3
+

1

(s′′)4

)
≤ C

α

(s′′)2
for s′′ ≥ 3S0. (2.188)

We now address the small s′′-values, that is, s′′ ≤ S0
2 . In this case, s′ 7→ φλ(s′)(s

′′ − s′) and

s′ 7→ φαλ(s′)(s
′′ − s′) are supported in s′ ∈ [s′′, s′′ + S0

2 ]. In particular, s′ ≤ S0 so that λ
(2.171)

= S0.

Hence, by (2.150) and (2.144) we obtain the representation

δφ∗,α1 (s′′) = − 2

S2
0

∫ ∞
−∞

(
ŵα0

dŵα0
dŝ
− ŵα0

dŵα0
dŝ

)
ρ̃ dŝ

− 1

S3
0

∫ ∞
−∞

(
ŵα0

d2ŵα0
dŝ2

− ŵ0
d2ŵ0

dŝ2

)
ρ̃ dŝ

+
2

S4
0

∫ ∞
−∞

(
ŵα0

d3ŵα0
dŝ3

− ŵ0
d3ŵ0

dŝ3

)
ρ̃ dŝ

+
1

S5
0

∫ ∞
−∞

(
ŵα0

d4ŵα0
dŝ4

− ŵ0
d4ŵ0

dŝ4

)
ρ̃ dŝ .

Moreover, s′ ≤ 2S0 implies ρ(s′) = 0, η0(
s′

S0
) = 1 and thus ρ̃(s′) = ε exp( s

′

S2
). In terms of ŝ given

by s′ = s′′−S0ŝ, this translates into ρ̃(s′) = exp( s
′′

S2
) exp(−S0

S2
ŝ). Hence the above representation

specifies to

δφ∗,α1 (s′′) = −
2 exp( s

′′

S2
)

S2
0

∫ ∞
−∞

(
ŵα0

dŵα0
dŝ
− ŵ0

dŵ0

dŝ

)
exp

(
−S0
S2
ŝ

)
dŝ

−
exp( s

′′

S2
)

S3
0

∫ ∞
−∞

(
ŵα0

d2ŵα0
dŝ2

− ŵ0
d2ŵ0

dŝ2

)
exp

(
−S0
S2
ŝ

)
dŝ

+
2 exp( s

′′

S2
)

S4
0

∫ ∞
−∞

(
ŵα0

d3ŵα0
dŝ3

− ŵ0
d3ŵ0

dŝ3

)
exp

(
−S0
S2
ŝ

)
dŝ

+
exp( s

′′

S2
)

S4
0

∫ ∞
−∞

(
ŵα0

d4ŵα0
dŝ4

− ŵ0
d4ŵ0

dŝ4

)
exp

(
−S0
S2
ŝ

)
dŝ .

Inserting the estimates (2.183),(2.184), (2.185), and (2.186) we obtain

|δφ∗,α1 | ≤ Cα exp

(
s′′

S2

)
(α3 + α2 + α1 + 1) ≤ Cα exp

(
s′′

S2

)
for s′′ ≤ S0

2
. (2.189)
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We finally address the intermediate values of s′′, that is, S0
2 ≤ s′′ ≤ 3S0. Splitting the ds′-

integrals into s′ ∈ [S0,∞) and s′ ∈ (−∞, S0] in order to treat λ
(2.171)

= max{s′, S0}, we obtain

δφ∗,α1 (s′′) = − 2

s′′

∫ s′′
S0
−1

−∞

(
ŵα0

dŵα0
dŝ
− ŵ0

dŵ0

dŝ

)
ρ̃ dŝ

− 1

(s′′)2

∫ s′′
S0
−1

−∞
(1 + ŝ)

(
ŵα0

d2ŵα0
dŝ2

− ŵ0
d2ŵ0

dŝ2

)
ρ̃ dŝ

+
2

(s′′)3

∫ s′′
S0
−1

−∞
(1 + ŝ)2

(
ŵα0

d3ŵα0
dŝ3

− ŵ0
d3ŵ0

dŝ3

)
ρ̃ dŝ

+
1

(s′′)4

∫ s′′
S0
−1

−∞
(1 + ŝ)3

(
ŵα0

d4ŵα0
dŝ4

− ŵ0
d4ŵ0

dŝ4

)
ρ̃ dŝ

− 2

S2
0

∫ ∞
s′′
S0
−1

(
ŵα0

dŵα0
dŝ
− ŵ0

dŵ0

dŝ

)
ρ̃ dŝ

− 1

S3
0

∫ ∞
s′′
S0
−1

(
ŵα0

d2ŵα0
dŝ2

− ŵ0
d2ŵ0

dŝ2

)
ρ̃ dŝ

+
2

S4
0

∫ ∞
s′′
S0
−1

(
ŵα0

d3ŵα0
dŝ3

− ŵ0
d3ŵ0

dŝ3

)
ρ̃ dŝ

+
1

S5
0

∫ ∞
s′′
S0
−1

(
ŵα0

d4ŵα0
dŝ4

− ŵ0
d4ŵ0

dŝ4

)
ρ̃ dŝ .

Since |ρ̃| ≤ 1 and since | 1s′′ | ≤
2
S0

, we obtain from inserting the estimates (2.183),(2.184), (2.185),
and (2.186):

|δφ∗,α1 | ≤ Cα(α3 + α2 + α1 + 1) ≤ Cα for s′′ ∈
[
S0
2
, 2S0

]
. (2.190)

Now (2.188), (2.189) and (2.190) show that one may pass from (2.172) to (2.181) by choosing a
sufficiently small α > 0.

As in Section 2.2.1, in order to prove (2.181) we need to cut-off the measure ρ (defined in
(2.159)&(2.160)) in the region S1

2 ≤ s′ ≤ S1 so that (2.83) is an admissible multiplier.By the
argument given at the end of the proof of (2.48), it is clear that the multiplication of the measure
ρ by η affects only the region of big s′′ (specifically s′′ ≥ S1

4 ). Thus, appealing to the argument
at the end of the proof of Proposition 1 the proof of (2.181) is concluded.

2.2.5.3 Approximate positivity in the boundary layers: Proof of Lemma 3

The approximate non-negativity of ξ̂0, cf. (2.90), is lost in the boundary layer s � −1, cf.
(2.89). However, in this subsection we show that ξ̂0 cannot be too negative in the boundary
layer provided ξ̂0 it is sufficiently small in the transition region |s| . 1. For all S2 ≥ C and ε ≤ 1
we have ∫ −1

−S2

ξ̂0ds ≥ −C
(

1

ε

∫ 0

−1
ξ̂0ds+

1

ε
+

∫ −S2+1

−S2

|ξ̂0|ds+ ε exp(5S2)

)
, (2.191)

where C <∞ denotes a (possibly large) generic constant. With the rescaling

s  s+ S0, ξ̂  exp(−3S0)ξ̂ and thus also ξ̂0  exp(−3S0)ξ̂0 ,

it is enough to show for all S0 ≥ C and S1 ≥ S0 + 3
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∫ −S0−1

−S1

ξ̂0 ds ≥ −C
(1

ε

∫ −S0

−S0−1
ξ̂0 ds+

1

ε
exp(5S0) +

∫ −S1+1

−S1

|ξ̂0| ds+ ε exp(5S1)
)
, (2.192)

where we indicate S1 = S2 + S0 .

Multiplying both sides of (2.128) by φ0(s
′) (see definition (2.88)) and integrating in (−∞,∞),

we deduce∫ ∞
−∞

ξ̂0 φds ≥ −C


∫ 1

0

[
d

dẑ

(
− d2

dẑ2
+ 1

)2

w

]2
+

[(
− d2

dẑ2
+ 1

)2

w

]2
dẑ,

 , (2.193)

for any smooth w, supported in ẑ ∈ [0, 1] and satisfying the boundary conditions w = dw
dẑ =(

− d2

dẑ2
+ 1
)2
w = 0 at ẑ = 0, where as before we use the abbreviation

φ := w

(
− d2

dẑ2
+ 1

)2

w (2.194)

for the multiplier. This time, w will not be compactly supported in ẑ ∈ (0, 1] so that the
boundary conditions matters. Using the fact that the function ẑ sinh ẑ satisfies these boundary
conditions, we enforce them for w by the Ansatz

w = (ẑ sinh ẑ)ŵ with ŵ = const for ẑ � 1 . (2.195)

As in the previous subsections, it is more telling to express (2.193) in terms of the s-variable.
Appealing to the estimates

(∂4ẑ − 2∂2ẑ + 1)ẑ sinh ẑ (2.196)

= ẑ−2
(
ẑ−1 sinh ẑ (∂s − 2)(∂s − 1) + 4 cosh ẑ(∂s − 1) + 4ẑ sinh ẑ

)
× (∂s + 1)∂s .

and

∂ẑ(∂
4
ẑ − 2∂2ẑ + 1)ẑ sinh ẑ

= ẑ−3
(
ẑ−1 sinh ẑ (∂s − 3)(∂s − 2)(∂s − 1) + 5 cosh ẑ(∂s − 2)(∂s − 1)

+8ẑ sinh ẑ(∂s − 1) + 4ẑ2 cosh ẑ
)
× (∂s + 1)∂s . (2.197)

(their proves are reported in Appendix to Subsection 2.2.5.3 (see (2.196) and (2.270))) we obtain∫ ∞
−∞

ξ̂0φds ≥ −C
∫ ∞
−∞

exp(−5s)

[(
d5ŵ

ds5

)2

+ · · ·+
(
dŵ

ds

)2
]
ds , (2.198)

where according to the formula

ẑ sinh ẑ

(
− d2

dẑ2
+ 1

)2

ẑ sinh ẑ (2.199)

=

(
d

ds
+ 1

)
d

ds

(
sinh ẑ

ẑ

)2( d

ds
+ 1

)
d

ds
− 2

(
d

ds
+ 1

)
d

ds
,

(the argument for the formula above is given at the end of this section, see (2.221)), the multiplier
is given by

φ = ŵ

(
d

ds
+ 1

)
d

ds

[(
sinh ẑ

ẑ

)2( d

ds
+ 1

)
d

ds
− 2

]
ŵ . (2.200)
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We now make the following Ansatz for ŵ:

ŵ =
1√
ε
ŵ0 +

√
εŵ1 , (2.201)

with the constraints

ŵ0 =

{
1 for s ≤ −S0 − 1
0 for s ≥ −S0

}
, ŵ1 =

{
const for s ≤ −S1

0 for s ≥ −S0 − 1

}
, (2.202)

so that (2.195) is satisfied. We don’t want to specify the value of the constant appearing in the
definition of w since it will not appear in the future estimates. The merit of the Ansatz (2.201)
is that, because dŵ0

ds and dŵ1
ds have disjoint support, the multiplier φ, cf. (2.200), splits into three

parts

φ =
1

ε
φ0 + φ01 + εφ1 , (2.203)

where

φ0 := ŵ0

(
d

ds
+ 1

)
d

ds

[(
sinh ẑ

ẑ

)2( d

ds
+ 1

)
d

ds
− 2

]
ŵ0,

φ01 := ŵ0

(
d

ds
+ 1

)
d

ds

[(
sinh ẑ

ẑ

)2( d

ds
+ 1

)
d

ds
− 2

]
ŵ1, (2.204)

φ1 := ŵ1

(
d

ds
+ 1

)
d

ds

[(
sinh ẑ

ẑ

)2( d

ds
+ 1

)
d

ds
− 2

]
ŵ1 .

As a related side effect of the disjoint support of the functions dŵ0
ds and dŵ1

ds , the error term in
(2.198) splits into two parts:∫ ∞

−∞
exp(−5s)

[(
d5ŵ

ds5

)2

+ · · ·+
(
dŵ

ds

)2
]
ds

=
1

ε

∫ ∞
−∞

exp(−5s)

[(
d5ŵ0

ds5

)2

+ · · ·+
(
dŵ0

ds

)2
]
ds (2.205)

+ ε

∫ ∞
−∞

exp(−5s)

[(
d5ŵ1

ds5

)2

+ · · ·+
(
dŵ1

ds

)2
]
ds . (2.206)

Hence in the sequel, we will have to consider five terms:

- Three multiplier terms: 1
ε

∫∞
−∞ ξ̂0φ0 ds,

∫∞
−∞ ξ̂0φ01 ds, and ε

∫∞
−∞ ξ̂0φ1 ds.

- Two error terms: the ŵ0-error term (2.205) and the ŵ1-error term (2.206).

Below, we will construct ŵ1 such that the mixed expression φ01, cf. (2.204), in the multiplier φ
gives rise to the left-hand side of (2.192). Before, we address the multiplier and the error term
that only involve ŵ0. Clearly, ŵ0 can be chosen to satisfy S0-independent bounds:

sup
s∈R
|ŵ0|, · · · sup

s∈R

∣∣∣∣d5ŵ0

ds5

∣∣∣∣ ≤ C .

Hence in view of (2.202), we obtain for the ŵ0-error term (2.205)

1

ε

∫ ∞
−∞

exp(−5s)

[(
d5ŵ0

ds5

)2

+ · · ·+
(
dŵ0

ds

)2
]
ds ≤ C

1

ε
exp(5S0). (2.207)
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Moreover, in view of (2.202), we obtain

|φ0| ≤


0 for s ≤ −S0 − 1 ,
C0 for −S0 − 1 ≤ s ≤ −S0 ,
0 for s ≥ −S0 ,

(2.208)

where we momentarily want to remember the value of the universal constant C0. From (2.208)
we have ∫ −S0

−S0−1
ξ̂0(φ0 − C0) ds =

∫ −S0

−S0−1
(−ξ̂0)(−φ0 + C0) ds

(2.208)&(2.89)

≤ C

∫ −S0

−S0−1
exp(−3s)(−φ0 + C0) ds

(2.208)

≤ 2CC0

∫ −S0

−S0−1
exp(−3s) ds

≤ C exp(3S0) , (2.209)

so that for the φ0-multiplier term we obtain

1

ε

∫ ∞
−∞

ξ̂0φ0 ds
(2.208)

=
1

ε

∫ −S0

−S0−1
ξ̂0φ0 ds

≤ 1

ε

(
C0

∫ −S0

−S0−1
ξ̂0 ds+ C exp(3S0)

)
≤ C

1

ε

(
max

{∫ −S0

−S0−1
ξ̂0 ds, 0

}
+ exp(3S0)

)
. (2.210)

We now specify ŵ1 with the goal that φ01, cf. (2.204), gives rise to the l. h. s. of (2.192). This
motivates the construction of a universal function ŵ2 with the property that(

d

ds
+ 1

)
d

ds

[(
sinh ẑ

ẑ

)2( d

ds
+ 1

)
d

ds
− 2

]
ŵ2 = 1 for s ≤ −C , (2.211)

which will be carried out below in such a way that

|ŵ2|
|s|+ 1

,

∣∣∣∣dŵ2

ds

∣∣∣∣ , · · · ∣∣∣∣d5ŵ2

ds5

∣∣∣∣ ≤ C . (2.212)

Equipped with ŵ2, we now make the Ansatz

ŵ1(s) = η(s+ S1)η(−(s+ S0 + 1))ŵ2(s) + (1− η(s+ S1))ŵ2(−S1) , (2.213)

where η is a universal cut-off function with

η(s) =

{
0 for s ≤ 0 ,

1 for s ≥ 1 ,
(2.214)

so that (2.202) is satisfied. The main merit of Ansatz (2.213) & (2.214) is that it makes use of
(2.211) which for S0 ≥ C due to (2.204) yields

φ01 =


0 for s ≤ −S1 ,
1 for − S1 + 1 ≤ s ≤ −S0 − S2 ,
0 for s ≥ −S0 − 1 .

(2.215)
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Furthermore, the estimates (2.212) turn into

|φ01|,
|ŵ1|
S1

,

∣∣∣∣dŵ1

ds

∣∣∣∣ , · · · , ∣∣∣∣d5ŵ1

ds5

∣∣∣∣ ≤ C . (2.216)

In particular, we obtain for the φ01-multiplier term∫∞
−∞ ξ̂0φ01 ds (2.217)

(2.215)
=

∫ −S0−1

−S1

ξ̂0 ds+

∫ −S1+1

−S1

ξ̂0(φ01 − 1) ds+

∫ −S0−1

−S0−2
ξ̂0(φ01 − 1) ds

(2.216)

≤
∫ −S0−1

−S1

ξ̂0 ds+ C

∫ −S1+1

−S1

|ξ̂0| ds+ C exp(3S0) ,

where for
∫ −S0−1
−S0−2 ξ̂0(φ01 − 1) ds, we have used the same argument as leading to (2.209).

Because of φ1 = ŵ1φ01 another consequence of (2.216) and (2.215) is

|φ1| ≤


0 for s ≤ −S1 ,
CS1 for −S1 ≤ s ≤ −S0 − 1 ,
0 for s ≥ −S0 − 1 .

By the same argument as leading to (2.210), this implies for the φ1-multiplier term

ε

∫ ∞
−∞

ξ̂0φ1 ds ≤ CεS1

(
max

{∫ −S0−1

−S1

ξ̂0ds, 0

}
+ exp(3S1)

)
. (2.218)

We finally address the ŵ1-error term (2.206). It follows from (2.202) and (2.216) that

ε

∫ ∞
−∞

exp(−5s)

[(
d5ŵ1

ds5

)2

+ · · ·+
(
dŵ1

ds

)2
]
ds ≤ Cε exp(5S1) . (2.219)

We now collect the five estimates (2.207), (2.210), (2.217), (2.218), and (2.219). Via (2.203) and
(2.206) we obtain from (2.198) that

−
∫ −S0−1

−S1

ξ̂0 ds

≤ C
1

ε
exp(5S0) + C

1

ε

(
max

{∫ −S0

−S0−1
ξ̂0 ds, 0

}
+ exp(3S0)

)
+ C

(∫ −S1+1

−S1

|ξ̂0| ds+ exp(3S0)

)
+ CεS1

(
max

{∫ −S0−1

−S1

ξ̂0ds, 0

}
+ exp(3S1)

)
+ Cε exp(5S1)

S1≥S0≥0,ε≤1
≤ C

1

ε

(
max

{∫ −S0

−S0−1
ξ̂0 ds, 0

}
+ exp(5S0)

)
+ C

∫ −S1+1

−S1

|ξ̂0| ds+ CεS1 max

{∫ −S0−1

−S1

ξ̂0ds, 0

}
+ Cε exp(5S1) ,

which implies

−
∫ −S0−1

−S1

ξ̂0 ds ≤ C
1

ε

(∫ −S0

−S0−1
ξ̂0 ds+ exp(5S0)

)
+ C

∫ −S1+1

−S1

|ξ̂0| ds+ CεS1 max

{∫ −S0−1

−S1

ξ̂0ds, 0

}
+ Cε exp(5S1) ,(2.220)
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thanks to the (2.142). We now distinguish two cases: when
∫ −S0−1
−S1

ξ̂0 ds ≥ 0, then the estimate
(2.192) is trivially true by the positivity of the terms on its right-hand side; indeed by the

approximate positivity estimate (2.125) we have
∫ −S0

−S0−1 ξ̂0 ds+C0 exp(3S0) ≥ 0 and in particular∫ −S0

−S0−1 ξ̂0 ds+ exp(5S0) ≥ 0. When
∫ −S0−1
−S1

ξ̂0 ds < 0 then we run the argument above and from
(2.220) we obtain (2.192).

We will now derive the operator-valued formula

ẑ sinh ẑ

(
− d2

dẑ2
+ 1

)2

ẑ sinh ẑ (2.221)

=

(
d

ds
+ 1

)
d

ds

(
sinh ẑ

ẑ

)2( d

ds
+ 1

)
d

ds
− 2

(
d

ds
+ 1

)
d

ds
,

that is a non-homogeneous generalization of ẑ2 d4

dẑ4
ẑ2 = ( dds+2)( dds+1) dds(

d
ds−1) (cf. (2.41)). The

fairly simple structure of this formula is not a surprise: Since the functions sinh ẑ and ẑ sinh ẑ
are in the kernel of (− d2

dẑ2
+ 1)2, the functions 1 and ẑ−1 are in the kernel of (− d2

dẑ2
+ 1)2ẑ sinh ẑ.

In s coordinates, these functions are 1 and exp(−s), respectively. This explains the right factor
( dds + 1) dds on the r. h. s. of (2.221). On the other hand, the adjoint of the l. h. s. of (2.221)

with respect to the measure dẑ
ẑ = ds is given by ẑ sinh ẑ(− d2

dẑ2
+ 1)2 sinh ẑ and thus has a kernel

containing 1 and ẑ = exp(s). Hence the adjoint of the r. h. s. of (2.221) w. r. t. ds has to contain
the right factor ( dds − 1) dds , which means that the operator itself should contain the left factor

( dds + 1) dds .

We claim that the formula (2.221) can be split into the two formulas(
d2

dẑ2
− 1

)
ẑ sinh ẑ =

(
sinh ẑ

ẑ

d

ds
+ 2 cosh ẑ

)(
d

ds
+ 1

)
, (2.222)

ẑ sinh ẑ

(
d2

dẑ2
− 1

)
=

d

ds

[(
d

ds
+ 1

)
sinh ẑ

ẑ
− 2 cosh ẑ

]
. (2.223)

Indeed, the composition of (2.222) and (2.223) yields

ẑ sinh ẑ

(
− d2

dẑ2
+ 1

)2

ẑ sinh ẑ

=
d

ds

(
d

ds
+ 1

)(
sinh ẑ

ẑ

)2 d

ds

(
d

ds
+ 1

)
−2

d

ds
cosh ẑ

sinh ẑ

ẑ

d

ds

(
d

ds
+ 1

)
+ 2

d

ds

(
d

ds
+ 1

)
cosh ẑ

sinh ẑ

ẑ

(
d

ds
+ 1

)
−4

d

ds
(cosh ẑ)2

(
d

ds
+ 1

)
=

d

ds

(
d

ds
+ 1

)(
sinh ẑ

ẑ

)2 d

ds

(
d

ds
+ 1

)
+2

d

ds

[(
d

ds
cosh ẑ

sinh ẑ

ẑ

)
+ cosh ẑ

sinh ẑ

ẑ
− 2(cosh ẑ)2

](
d

ds
+ 1

)
, (2.224)

where
(
d
ds cosh ẑ sinh ẑẑ

)
denotes the multiplication with the s-derivative of the function cosh ẑ sinh ẑẑ .

This implies (2.221) since because of(
d

ds
cosh ẑ

sinh ẑ

ẑ

)
= ẑ

(
d

dẑ
cosh ẑ

sinh ẑ

ẑ

)
= (sinh ẑ)2 + (cosh ẑ)2 − cosh ẑ

sinh ẑ

ẑ
,

the factor in the last term of (2.224) simplifies to(
d

ds
cosh ẑ

sinh ẑ

ẑ

)
+ cosh ẑ

sinh ẑ

ẑ
− 2(cosh ẑ)2 = (sinh ẑ)2 − (cosh ẑ)2 = −1 .
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We now turn to the argument for (2.222) and (2.223). We first note that (2.222) and (2.223)
reduce to (

d2

dẑ2
− 1

)
ẑ exp ẑ =

(
exp ẑ

ẑ

d

ds
+ 2 exp ẑ

)(
d

ds
+ 1

)
(2.225)

=

(
exp ẑ

d

dẑ
+ 2 exp ẑ

)(
ẑ
d

dẑ
+ 1

)
= exp ẑ

(
d

dẑ
+ 2

)
d

dẑ
ẑ and (2.226)

ẑ exp ẑ

(
d2

dẑ2
− 1

)
=

d

ds

[(
d

ds
+ 1

)
exp ẑ

ẑ
− 2 exp ẑ

]
(2.227)

= ẑ
d

dẑ

[(
ẑ
d

dẑ
+ 1

)
exp ẑ

ẑ
− 2 exp ẑ

]
= ẑ

d

dẑ

(
d

dẑ
− 2

)
exp ẑ . (2.228)

Indeed, replacing ẑ by −ẑ in (2.225), using the invariance of d
ds = ẑ d

dẑ under this change
of variables, and adding both identities yields (2.222). Likewise, (2.227) yields (2.223). The
identities (2.226) and (2.228) can easily be checked using the commutator relation d

dẑ exp ẑ =

exp ẑ
(
d
dẑ + 1

)
on their left hand sides:(

d2

dẑ2
− 1

)
exp ẑ = exp ẑ

[(
d

dẑ
+ 1

)2

− 1

]
= exp ẑ

(
d

dẑ
+ 2

)
d

dẑ
and

exp ẑ

(
d2

dẑ2
− 1

)
=

[(
d

dẑ
− 1

)2

− 1

]
exp ẑ =

d

dẑ

(
d

dẑ
− 2

)
exp ẑ .

We will now turn to the construction of the function ŵ2 with (2.211) and (2.212).
We start by reducing (2.211) to a second-order problem with bounded right-hand side: It is
enough to construct a universal smooth v̂2 with[

d

ds

(
sinh ẑ

ẑ

)2( d

ds
+ 1

)
− 2

]
v̂2 = 1 for s ≤ −S0 (2.229)

and

|v̂2|,
∣∣∣∣dv̂2ds

∣∣∣∣ , · · · , ∣∣∣∣d4v̂2ds4

∣∣∣∣ ≤ C for all s . (2.230)

Indeed, consider the anti derivative ŵ2(s) :=
∫ s
0 v̂2ds

′. Since dŵ2
ds = v̂2, the estimates (2.230)

turn into the estimates (2.212). Moreover, (2.229) yields[(
sinh ẑ

ẑ

)2 d

ds

(
d

ds
+ 1

)
− 2

]
ŵ2 = s+ const for s ≤ −S0 ,

for some constant of integration. Applying d
ds

(
d
ds + 1

)
to the last identity yields (2.211).

We now extend (2.229) to a problem on the entire line with nearly constant coefficients. Note

that the coefficient
(
sinh ẑ
ẑ

)2
is an entire, even function in ẑ with value 1 at ẑ = 0. Hence for

every S0 � 1, we may write (
sinh ẑ

ẑ

)2

= 1− a for all s ≤ −S0 ,
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where

sup
s∈R
|a|, sup

s∈R

∣∣∣∣dads
∣∣∣∣ , · · · , sup

s∈R

∣∣∣∣d3ads3
∣∣∣∣ ≤ C exp(−2S0) . (2.231)

We will thus construct a universal smooth v̂2(s) with[
d

ds
(1− a)

(
d

ds
+ 1

)
− 2

]
v̂2 = 1 for all s (2.232)

and

sup
s∈R
|v̂2|, sup

s∈R

∣∣∣∣dv̂2ds
∣∣∣∣ , · · · , sup

s∈R

∣∣∣∣d4v̂2ds4

∣∣∣∣ <∞ . (2.233)

We finally reformulate (2.232) as a fixed point problem. Note that since d
ds(

d
ds + 1) − 2 =

( dds − 1)( dds + 2), the bounded solution of
[
d
ds(

d
ds + 1)− 2

]
v̂ = f̂ for some bounded continuous

f̂ is given by

v̂(s) = −
∫ s

−∞
exp(2(s′ − s))

∫ ∞
s′

exp(s′ − s′′)f̂(s′′) ds′′ ds′

= −1

3

∫ ∞
−∞

exp(3 min{s, s′′} − 2s− s′′)f̂(s′′) ds′′

= : (T f̂)(s) , (2.234)

defining an operator T . From its above representation with the Lipschitz-continuous kernel
exp(3 min{s, s′′} − 2s − s′′) we read off that T is a bounded operator from C0 (the space of
bounded continuous functions endowed with the sup norm) into C1 and by the solution property
of T thus also into C2. Note that (2.232) can be reformulated as[

d

ds

(
d

ds
+ 1

)
− 2

]
v̂2

= 1 +
d

ds
a

(
d

ds
+ 1

)
v̂2

= 1 +

[(
d2

ds2
+

d

ds

)
a− d

ds

da

ds

]
v̂2

= 1 +

[(
d

ds

(
d

ds
+ 1

)
− 2

)
a− d

ds

da

ds
+ 2a

]
v̂2 . (2.235)

An application of the translation-invariant operator T (formally) yields

v̂2 = T 1 +

(
a− d

ds
T
da

ds
+ 2T a

)
v̂2 . (2.236)

We view this equation as a fixed-point equation for v̂2 in the Banach space C0. As men-
tioned above, T and even the composition d

ds T are bounded operators (in C0). In view of

(2.231), the multiplication with a and with da
ds are operators with C0-operator norm estimated

by C exp(−2S0). Hence for sufficiently large S0, the operator a − d
ds T

da
ds + 2T a has norm

strictly less than one. Thus the contraction mapping theorem ensures the existence of a solution
of (2.236), that is, a C2-solution v̂2 of (2.232) with sups∈R |v̂2|, sups∈R |dv̂2ds |, sups∈R |d

2v̂2
ds2
| <∞.

Finally, we obtain the rest of (2.233) from (2.231) by a booth-strap argument.
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2.2.6 Finite lateral size

In Section 2.2 we assumed the stability condition to hold for all k′ ∈ R (see (2.34)). In this
subsection we go back to work with a container of finite lateral size, assuming k′ ∈ 2π

L Z \ {0}.
Therefore we can no longer pass to the limit k′ → 0 to infer the approximate logarithmic growth
for τ (2.38) (see Proposition 1). In this case we show that Proposition 1 is still valid provided
the height H and the lateral size L of the container satisfy a certain relation.

Proposition 2. Let τ ∈ (0, H) → R satisfy the reduced stability condition, i.e. for all k′ ∈
2π
L Z \ {0} and for all w(z) satisfying (2.33), the condition (2.36) holds. If H � L, then we have

-
ξ ≥ 0 , (2.237)

- ∫ 1

1/e
ξ dz .

1

lnH

∫ H

1
ξ dz . (2.238)

Proof of Proposition 2. The starting point is the reduced stability condition (2.36). Since the
argument for (2.237) remains the same as the one for (2.37) in Proposition 1, we start directly
with the proof of (2.238).
Argument for (2.238):
In order to infer the logarithmic growth we can no longer let k′ → 0 (that would contradict the
fact that L is finite). Therefore we need to expand the multiplier in its three terms:

φ := w

(
− d4

dz2
+ k′2

)2

w = w

(
d4

dz4
− 2k′2

d2

dz2
+ k′4

)
w. (2.239)

Therefore the reduced stability condition can be rewritten as∫ H

0
ξw

(
− d2

dz2
+ k′2

)2

w dz (2.240)

=

∫ H

0
ξw

d4

dz4
w dz − 2k′2

∫ H

0
ξw

d2

dz2
w dz + k′4

∫ H

0
w2 dz ≥ 0

Focusing on the lower half of the container, i.e. let us think of z ∈
(
0, H2

)
, we make the following

Ansatz
w = z2ŵ ,

where ŵ(z) is a real function with compact support in (0, H).
The merit of this Ansatz is that in the new variable ŵ, the multiplier in (2.240) can be written
in the scale invariant form

φ = w

(
d4

dz4
− 2k′2

d2

dz2
+ k′4

)
w

= ŵ

(
z
d

dz
+ 2

)(
z
d

dz
+ 1

)(
z
d

dz

)(
z
d

dz
− 1

)
ŵ

− 2k′2ŵz

(
z
d

dz

)(
z
d

dz
+ 1

)
zŵ + k′4z4|ŵ|2 .

This suggests the introduction of the new variables

s = ln z and ξ = z−1ξ̂, (2.241)

for which the stability condition turns into∫ lnH

−∞
ξ̂ φ ds ≥ 0 (2.242)
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where

φ = ŵ

(
d

ds
+ 2

)(
d

ds
+ 1

)(
d

ds

)(
d

ds
− 1

)
ŵ

−2k′2ŵ exp(s)

(
d

ds

)(
d

ds
+ 1

)
exp(s)ŵ + k′4 exp(4s)ŵ2 .

for all functions ŵ with compact support in z ∈ (0, H). Here it comes the following heuristic
argument: For H � 1, we can think at test functions ŵ that vary slowly in the logarithmic
variables s. For these ŵ we have

φ = ŵ

(
d

ds
+ 2

)(
d

ds
+ 1

)(
d

ds

)(
d

ds
− 1

)
ŵ (2.243)

−2k′2ŵ exp(s)

(
d

ds

)(
d

ds
+ 1

)
exp(s)ŵ + k′4 exp(4s)ŵ2 .

≈ −2ŵ
d

ds
ŵ − 2k′2 exp(s)ŵ

d

ds
ŵ exp(s) + k′4 exp(4s)ŵ2 (2.244)

= − d

ds
ŵ2 − k′2 d

ds
(exp(s)ŵ)2 + k′4 exp(4s)ŵ2 , (2.245)

and this in particular implies

0 ≤
∫ lnH

−∞
ξ̂ φ ds

≈
∫ lnH

−∞
ξ̂

(
− d

ds
ŵ2 − k′2 d

ds
(exp(s)ŵ)2

)
ds+ k′4

∫ lnH

−∞
ξ̂ exp(4s)ŵ2 ds

=

∫ lnH

−∞

dξ̂

ds

(
ŵ2 + k′2(exp(s)ŵ)2

)
+ k′4

∫ lnH

−∞
ξ̂ exp(4s)ŵ2 ds

=

∫ lnH

−∞

(
(1 + k′2 exp(2s))

dξ̂

ds
+ k′4 exp(4s)ξ̂

)
ŵ2 ds ,

for all ŵ(s) with compact support in (−∞, lnH). Thus it follows that

dξ̂

ds
≥ − k′4 exp(4s)

(1 + k′2 exp(2s))
ξ̂ ≥ −k′4 exp(4s)ξ̂ ,

approximately on large s−scales.
This means that

ξ̂ & exp
(
−k′4 exp(4s)

)
.

The assumption H � L implies k′ exp(s)� 1 and therefore we have

ξ̂ ≥ exp(−1). (2.246)

We can rewrite the last inequality in the original variables z and ξ

ξ &
1

z
,

which, recalling that ξ := dτ
dz and integrating in z, yields

τ & ln(z).

We expect that (2.246) implies that for any 1� S1 ≤ lnH:∫ 0

−1
ξ̂ds .

1

S1

∫ S1

0
ξ̂ ds , (2.247)
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which in the original variables (2.241), for S1 = ln H
2 turns into∫ 1

1/e
ξdz .

1

lnH

∫ H

1
ξ dz .

a behavior that corresponds to logarithmic growth on the level of the antiderivative τ of ξ. We
now prove that (2.240) and (2.237) imply (2.247).
Argument for (2.238):
Let us rewrite the multiplier φ defined in (2.239) as follow:

φ = ŵ

(
d

ds
+ 2

)(
d

ds
+ 1

)(
d

ds

)(
d

ds
− 1

)
ŵ

−2k′2 exp(2s)ŵ

(
d2

ds2
+ 4

d

ds
+ 2

)
ŵ + k′4 exp(4s)|ŵ|2 .

We observe that the operator(
d

ds
+ 2

)(
d

ds
+ 1

)(
d

ds

)(
z
d

ds
− 1

)
− 2k′2 exp(2s)

(
d2

ds2
+ 4

d

ds
+ 2

)
+ k′4 exp(4s) ,

is not translation invariant so that we cannot extend the integral (2.242) to the whole space R.
Therefore we define a new multiplier ψ : R→ R

ψs′(s) = ŵs′(s)

[(
d

ds
+ 2

)(
d

ds
+ 1

)(
d

ds

)(
d

ds
− 1

)
−2k′2 exp(2s)

(
d2

ds2
+ 4

d

ds
+ 2

)
+ k′4 exp(4s)

]
ŵs′(s),

where ŵs′ is the translation of the function ŵ of a parameter s′. so that we can write∫ ∞
−∞

ξ̂(s)ψs′(s) ds ≥ 0. (2.248)

We note that (2.247) follows from (2.248) once for given S1 we construct

• a family F = {ws′}s′ of smooth functions ws′ parameterized by s′ ∈ R and compactly
supported in z ∈ (0, 1) (i. e. s ∈ (−∞, 0]) and

• a probability measure ρ(ds′) supported in s′ ∈ (−∞, lnH],

such that the corresponding convex combination of multipliers {ψs′}s′ i. e.

ψ1(s) :=

∫ ∞
−∞

ψs′(s) ρ(s′)ds′ ,

satisfies

ψ1(s) ≤


−1 for − 1 ≤ s ≤ 0,
C
S1

for 0 ≤ s ≤ S1,
0 else,

(2.249)

for a (possibly large) universal constant C. Indeed, using (2.249) and the positivity (2.37) of
the profile we have

0 ≤
∫ ∞
−∞

ξ̂ ψ1 ds ≤ −
∫ 0

−1
ξ̂ ds+

C

S1

∫ S1

0
ξ̂ ds,

which implies ∫ 0

−1
ξ̂ds ≤ C

S1

∫ S1

0
ξ̂ds.
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We first address the form of the family F. We consider the change of variables

s = λŝ with λ ≥ 1,

and fix a smooth “mask” ŵ0(ŝ) compactly supported in

supp ŵ0 ⊂
[
−1

2
, 0

]
(2.250)

and normalized, i.e.
∫
ŵ2
0 dŝ = 1. We choose

ŵ(λŝ) = λ−1/2ŵ0(ŝ). (2.251)

With this change of variables, the multiplier can be estimated as follows

φ = ŵ

[(
d

ds
+ 2

)(
d

ds
+ 1

)
d

ds

(
d

ds
− 1

)
−2k′2 exp(2s)

(
d2

ds2
+ 4

d

ds
+ 2

)
+ k′4 exp(4s)

]
ŵ

=
1

λ
ŵ0

[(
1

λ

d

dŝ
+ 2

)(
1

λ

d

dŝ
+ 1

)
1

λ

d

dŝ

(
1

λ

d

dŝ
− 1

)
(2.252)

−2k′2 exp(2λŝ)

(
1

λ2
d2

dŝ2
+ 4

1

λ

d

dŝ
+ 2

)
+ k′4 exp(4λŝ)

]
ŵ0

= ŵ0

[(
1

λ5
d4

dŝ4
+

2

λ4
d3

dŝ3
− 1

λ3
d2

dŝ2
− 2

λ2
d

dŝ

)
(2.253)

−2k′2 exp(2λŝ)

(
1

λ3
d2

dŝ2
+ 4

1

λ2
d

dŝ
+ 2

1

λ

)
+ k′4 exp(4λŝ)

]
ŵ0

(2.254)

and reordering the terms we have

φ = − 2

λ2
ŵ0

d

dŝ
ŵ0 −

1

λ3
ŵ0

d2

dŝ2
ŵ0 +

2

λ4
ŵ0

d3

dŝ3
ŵ0 +

1

λ5
ŵ0

d4

dŝ4
ŵ0 (2.255)

−2k′2 exp(2λŝ)

(
2

1

λ
ŵ2
0 + 4

1

λ2
ŵ0

d

dŝ
ŵ0 +

1

λ3
ŵ0

d2

dŝ2
ŵ0

)
+
k′4

λ
exp(4λŝ)ŵ2

0 =

1

λ

(
−4k′2 exp(2λŝ) + k′4 exp(4λŝ)

)
ŵ2
0 −

1

λ2
(2 + 8k′2 exp(2λŝ))ŵ0

d

dŝ
ŵ0

− 1

λ3
(1 + 2k′2 exp(2λŝ))ŵ0

d2

dŝ2
ŵ0 +

2

λ4
ŵ0

d3

dŝ3
ŵ0 + +

1

λ5
ŵ0

d4

dŝ4
ŵ0 .

We now consider the translation of the mask w0(ŝ) in the parameter s′ ∈ (−∞, lnH), namely,

w0,s′ = w0(ŝ− s′) ,

and we define the multiplier

ψλ,s′(s) =
1

λ

(
−4k′2 exp(2λŝ) + k′4 exp(4λŝ)

)
ŵ2
0(ŝ− s′)

− 1

λ2
(2 + 8k′2 exp(2λs))ŵ0(ŝ− s′)

d

dŝ
ŵ0(ŝ− s′)

− 1

λ3
(1 + 2k′2 exp(2λs))ŵ0(ŝ− s′)

d2

dŝ2
ŵ0(ŝ− s′)

+
2

λ4
ŵ0(ŝ− s′)

d3

dŝ3
ŵ0(ŝ− s′)

+
1

λ5
ŵ0(ŝ− s′)

d4

dŝ4
ŵ0(ŝ− s′) .

63



We choose λ = s′ (the motivation can be found in the argument for (2.59), Subsection 2.2.1)
obtaining

ψs′(s) =
1

s′
(
−4k′2 exp(2s′ŝ) + k′4 exp(4s′ŝ)

)
ŵ2
0(ŝ− s′)

− 1

s′2
(2 + 8k′2 exp(2s′ŝ))ŵ0(ŝ− s′)

d

dŝ
ŵ0(ŝ− s′)

− 1

s′3
(1 + 2k′2 exp(2s′ŝ))ŵ0(ŝ− s′)

d2

dŝ2
ŵ0(ŝ− s′)

+
2

s′4
ŵ0(ŝ− s′)

d3

dŝ3
ŵ0(ŝ− s′)

+
1

s′5
ŵ0(ŝ− s′)

d4

dŝ4
ŵ0(ŝ− s′) .

We can now write

ψ1(s) =

∫
ψs′(s)ρ(s′) ds′

=

∫
1

s′
(
−4k′2 exp(2s′ŝ) + k′4 exp(4s′ŝ)

)
ŵ2
0(ŝ− s′)ρ(s′) ds′

−
∫

1

s′2
(2 + 8k′2 exp(2s′ŝ))ŵ0(ŝ− s′)

d

dŝ
ŵ0(ŝ− s′)ρ(s′) ds′

−
∫

1

s′3
(1 + 2k′2 exp(2s′ŝ))ŵ0(ŝ− s′)

d2

dŝ2
ŵ0(ŝ− s′)ρ(s′) ds′

+

∫
2

s′4
ŵ0(ŝ− s′)

d3

dŝ3
ŵ0(ŝ− s′)ρ(s′) ds′

+

∫
1

s′5
ŵ0(ŝ− s′)

d4

dŝ4
ŵ0(ŝ− s′)ρ(s′) ds′

Since λ = s′ then we have s = s′ŝ and define the variable ŝ′′ as follows

ŝ′′ =
s− s′

s′
=
s

s′
− 1⇒ s′ =

s

1 + ŝ′′
, (2.256)

which is invertible with ds′ = − s
(1+s̃)2

dŝ′′. Note that, in particular, ŝ = ŝ′′ + 1. We thus get the
representation

ψ1(s) =

∫
φs′(s)ρ(s′) ds′

=
(
−4k′2 exp(2s) + k′4 exp(4s)

) ∫ 1

(1 + ŝ′′)
ŵ2
0(ŝ′′)ρ(s′) dŝ′′

−(2 + 8k′2 exp(2s))
1

s

∫
ŵ0(ŝ

′′)
d

dŝ′′
ŵ0(ŝ

′′)ρ(s′) dŝ′′

−(1 + 2k′2 exp(2s))
1

s2

∫
(1 + ŝ′′)ŵ0(ŝ

′′)
d2

dŝ′′2
ŵ0(ŝ

′′)ρ(s′) dŝ′′

+
2

s3

∫
(1 + ŝ′′)2ŵ0(ŝ

′′)
d3

dŝ′′3
ŵ0(ŝ

′′)ρ(s′) dŝ′′

+
1

s4

∫
(1 + ŝ′′)3ŵ0(ŝ

′′)
d4

dŝ′′4
ŵ0(ŝ

′′)ρ(s′) dŝ′′ .
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We rewrite (2.256) in terms of the three quadratic quantities ŵ2
0, (dŵ0

dŝ )2, and (d
2ŵ0
dŝ2

)2:

ψs′ =
1

s′
(k′4 exp(4s)− 4k′2 exp(2s))ŵ2

0 −
1

(s′)2
(2 + 8k′2 exp(2s))

dŵ2
0

dŝ

+
1

(s′)3
(1 + 2k′2 exp(2s))

[(
dŵ0

dŝ

)2

− 1

2

d2ŵ2
0

dŝ2

]

+
1

(s′)4

[
−3

d

dŝ

(
dŵ0

dŝ

)2

+
d3ŵ2

0

dŝ3

]

+
1

(s′)5

[(
d2ŵ0

dŝ2

)2

− 2
d2

dŝ2

(
dŵ0

dŝ

)2

+
1

2

d4ŵ2
0

dŝ4

]

=

(
1

s′
(k′4 exp(4s)− 4k′2 exp(2s))− 1

(s′)2
(2 + 8k′2 exp(2s))

d

dŝ

−1

2

1

(s′)3
(1 + 2k′2 exp(2s))

d2

dŝ2
+

1

(s′)4
d3

dŝ3
+

1

2

1

(s′)5
d4

dŝ4

)
ŵ2
0

+

(
1

(s′)3
(1 + 2k′2 exp(2s))− 3

1

(s′)4
d

dŝ
− 2

1

(s′)5
d2

dŝ2

)(
dŵ0

dŝ

)2

+
1

(s′)5

(
d2ŵ0

dŝ2

)2

. (2.257)

Now in this formula, using the change of variables s′ = s
1+ŝ′′ (between s′ and ŝ′′, with s as a

parameter), we want to substitute the derivations 1
(s′)m

dn

dŝ′′n by linear combinations of derivations

of the form 1
(s)m−k

dk

ds′k
(1 + ŝ′′)m−n−k for k = 0, · · · , n. The formulas

1

(s′)n+1

dn

dŝ′′n
= (−1)n

1

s

dn

ds′n
1

(1 + ŝ′′)n−1
, (2.258)

1

(s′)4
d

dŝ′′
= − 1

(s)3
d

ds′
(1 + ŝ′′)2 − 2

(s)4
(1 + ŝ′′)3 , (2.259)

and

1

(s′)5
d2

dŝ′′2
=

1

(s)3
d2

ds′2
(1 + ŝ′′) +

4

(s)4
d

ds′
(1 + ŝ′′)2 +

6

(s)5
(1 + ŝ′′)3. (2.260)

which are proved in Appendix 2.2.7, allow us to rewrite (2.257) as follows

ψs′ =
1

s

[
(k′4 exp(4s)− 4k′2 exp(2s))(1 + ŝ′′) + (2 + 8k′2 exp(2s))

d

ds′

−1

2
(1 + 2k′2 exp(2s))

d2

ds′2
1

(1 + ŝ′′)
− d3

ds′3
1

(1 + ŝ′′)2
+

1

2

d4

ds′4
1

(1 + ŝ)3

]
ŵ2
0

+

[(
1 + 2k′2 exp(2s)

s3
+

6

s4
− 12

s5

)
(1 + ŝ′′)3 +

(
3

s3
− 8

s4

)
d

ds′
(1 + ŝ′′)2

− 2

s3
d2

ds′2
(1 + ŝ′′)

](
dŵ0

dŝ′′

)2

+
1

s5
(1 + ŝ′′)5

(
d2ŵ0

dŝ′′2

)2

.
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The advantage of this form is that integrations by part in s′ become easy, so that we obtain

ψ1 =
1

s

∫ ∞
−∞

ŵ2
0

[
(k′4 exp(4s)− 4k′2 exp(2s))(1 + ŝ′′)ρ− (2 + 8k′2 exp(2s))

dρ

ds′

−1

2
(1 + 2k′2 exp(2s))

1

1 + ŝ′′
d2ρ

ds′2
+

1

(1 + ŝ′′)2
d3ρ

ds′3
+

1

2

1

(1 + ŝ′′)3
d4ρ

ds′4

]
ds′

+

(
1 + 2k′2 exp(2s)

s3
+

6

s4
− 12

s5

)∫ ∞
−∞

(1 + ŝ′′)3
(
dŵ0

dŝ′′

)2

ρ ds′

−
(

3

s3
− 8

s4

)∫ ∞
−∞

(1 + ŝ′′)2
(
dŵ0

dŝ′′

)2 dρ

ds′
ds′

− 2

s3

∫ ∞
−∞

(1 + ŝ′′)

(
dŵ0

dŝ′′

)2 d2ρ

ds′2
ds′

+
1

s5

∫ ∞
−∞

(1 + ŝ′′)5
(
d2ŵ0

dŝ′′2

)2

ρ ds′ .

Finally, using the substitution ds′

s = − dŝ′′

(1+ŝ′′)2 , the last formula turns into the desired represen-
tation

ψ1 =

∫ ∞
−∞

ŵ2
0

[
(k′4 exp(4s)− 4k′2 exp(2s))

1

(1 + ŝ′′)
ρ− (2 + 8k′2 exp(2s))

1

(1 + ŝ′′)2
dρ

ds′

−1

2
(1 + 2k′2 exp(2s))

1

(1 + ŝ′′)3
d2ρ

ds′2
+

1

(1 + ŝ′′)4
d3ρ

ds′3
+

1

2

1

(1 + ŝ′′)5
d4ρ

ds′4

]
dŝ′′

+

(
(1 + 2k′2 exp(2s))

s2
+

6

s3
− 12

s4

)∫ ∞
−∞

(1 + ŝ′′)

(
dŵ0

dŝ′′

)2

ρ dŝ′′

−
(

3

s2
− 8

s3

)∫ ∞
−∞

(
dŵ0

dŝ′′

)2 dρ

ds′
dŝ′′

− 2

s2

∫ ∞
−∞

1

1 + ŝ′′

(
dŵ0

dŝ′′

)2 d2ρ

ds′2
dŝ′′

+
1

s4

∫ ∞
−∞

(1 + ŝ′′)3
(
d2ŵ0

dŝ′′2

)2

ρ dŝ′′ . (2.261)

From this representation we learn the following: If we assume that ρ(s′) varies only on large
length scales, so that

1. dρ
ds′ ,

d2ρ
ds′2 , · · · � ρ

2. d2ρ
ds′2 , d

3ρ
ds′3 , · · · �

dρ
ds′

then for s� 1, we obtain to leading order from the above

ψ1 ≈ (k′4 exp(4s)− 4k′2 exp(2s))

∫ ∞
−∞

1

(1 + ŝ′′)
ŵ2
0ρ dŝ

′′

−(2 + 8k′2 exp(2s))

∫ ∞
−∞

1

(1 + ŝ′′)2
ŵ2
0

dρ

ds′
dŝ′′

+
(1 + 2k′2 exp(2s))

s2

∫ ∞
−∞

(1 + ŝ′′)

(
dŵ0

dŝ′′

)2

ρ dŝ′′ .

If ρ(s′) varies slowly even on a logarithmic scale (so that e. g. s′ dρds′ is negligible with respect to

66



ρ), the above further reduces to

ψ1 ≈ (k′4 exp(4s)− 4k′2 exp(2s))ρ

∫ ∞
−∞

1

(1 + ŝ′′)
ŵ2
0 dŝ

′′

−(2 + 8k′2 exp(2s))
dρ

ds′

∫ ∞
−∞

1

(1 + ŝ′′)2
ŵ2
0 dŝ

′′

+
(1 + 2k′′2 exp(2s))

s2
ρ

∫ ∞
−∞

(1 + ŝ′′)

(
dŵ0

dŝ′′

)2

dŝ′′ . (2.262)

We observe that k′4 exp(4s) − 4s2 exp(2s) < 0, and that by the hypothesis H � L (which
translates into k′ exp(s) � 1), the second -negative- term on the right-hand side of (2.262)
dominates the third positive term provided

dρ

ds′
� 1

(s′)2
.

This is satisfied if ρ is of the form

ρ(s′) = 1− S0
s′ − S0

for S0 � 1

and motivates the choice of ρ in the range 1� s′ � S1: We fix a smooth mask ρ0(ŝ
′) such that

ρ0 = 0 for ŝ′ ≤ 0,
dρ0
dŝ′

> 0 for 0 < ŝ′ ≤ 2, ρ0 = 1− 1

ŝ′
for 2 ≤ ŝ′ . (2.263)

By the condition 0 < k′ exp(s)� 1 (coming from the assumption H � L), we have

−(2 + 8k′2 exp(2s)) . −2 , −1

2
(1 + 2k′2 exp(2s)) . −1

2
, (1 + 2k′2 exp(2s)) ≤ 3 ,

from which we deduce that

ψ1 . φ2 :=

∫ ∞
−∞

ŵ2
0

[
− 2

(1 + ŝ′′)2
dρ

ds′
− 1

2

1

(1 + ŝ′′)3
d2ρ

ds′2
+

1

(1 + ŝ′′)4
d3ρ

ds′3
+

1

2

1

(1 + ŝ′′)5
d4ρ

ds′4

]
dŝ′′

+

(
3

s2
+

6

s3
− 12

(s)4

)∫ ∞
−∞

(1 + ŝ′′)

(
dŵ0

dŝ′′

)2

ρ dŝ′′

−
(

3

s2
− 8

(s)3

)∫ ∞
−∞

(
dŵ0

dŝ′′

)2 dρ

ds′
dŝ′′

− 2

s2

∫ ∞
−∞

1

1 + ŝ′′

(
dŵ0

dŝ′′

)2 d2ρ

ds′2
dŝ′′

+
1

s4

∫ ∞
−∞

(1 + ŝ′′)3
(
d2ŵ0

dŝ′′2

)2

ρ dŝ′′ . (2.264)

The observation that the multiplier φ2 (φ2 ∼ φ1 up to constants) satisfies (2.71) (see Section
2.2.1), completes the proof of (2.38) in the case k′ ∈ 1

LZ \ {0}.
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2.2.7 Appendix

Appendix for Section 2.2.1 and Subsection 2.2.5.2

If p, p̃ denote generic polynomial of degree n, we have

1

(s′)m
dn

dŝn
=

1

(s′′)n
1

(s′)m−n
(1 + ŝ)n

dn

dŝn

=
1

(s′′)n
1

(s′)m−n
p((1 + ŝ)

d

dŝ
)

=
1

(s′′)n
1

(s′)m−n
p(−s′ d

ds′
)

=
1

(s′′)n
p̃(s′

d

ds′
)

1

(s′)m−n

=
1

(s′′)n

n∑
k=0

an
dk

ds′k
1

(s′)m−n−k

=

n∑
k=0

an
1

(s′′)m−k
dk

ds′k
(1 + ŝ)m−n−k.

It remains to determine the coefficients a0, · · · , an. We start with the case m = n + 1 (which
yields the shortest formula). To this purpose, we again use (1 + ŝ) ddŝ = −s′ dds′ , which we rewrite

as d
dŝ(1 + ŝ) = −(s′)2 d

ds′
1
s′ . The latter yields(

d

dŝ
(1 + ŝ)

)n
= (−1)n(s′)

(
s′
d

ds′

)n 1

s′
for every n ∈ N ,

that implies inductively

dn

dŝn
(1 + ŝ)n = (−1)n(s′)1+n

dn

ds′n
1

s′
for every n ∈ N ,

which we rewrite as (using again s′′ = s′(1 + ŝ))

1

(s′)n+1

dn

dŝn
= (−1)n

dn

ds′n
1

s′
1

(1 + ŝ)n
= (−1)n

1

s′′
dn

ds′n
1

(1 + ŝ)n−1
. (2.265)

In view of the first line on the r. h. s. of (2.62), we need the latter transformation formula for
n = 1, 2, 3, 4. In view of the second line, we also need:

1

(s′)4
d

dŝ

(2.265)
= − 1

s′′
1

(s′)2
d

ds′

= − 1

s′′
(
d

ds′
+

2

s′
)

1

(s′)2

= − 1

(s′′)3
d

ds′
(1 + ŝ)2 − 2

(s′′)4
(1 + ŝ)3 , (2.266)

1

(s′)5
d2

dŝ2
(2.265)

=
1

s′′
1

(s′)2
d2

ds′2
1

1 + ŝ

=
1

s′′

(
d2

ds′2
+ 4

d

ds′
1

s′
+ 6

1

(s′)2

)
1

(s′)2
1

1 + ŝ

=
1

(s′′)3
d2

ds′2
(1 + ŝ) +

4

(s′′)4
d

ds′
(1 + ŝ)2 +

6

(s′′)5
(1 + ŝ)3 . (2.267)

68



Appendix for Subsection 2.2.5.3

The starting point is

ẑ2(∂4ẑ − 2∂2ẑ + 1)ẑ sinh ẑ (2.268)

=
(
ẑ−1 sinh ẑ (∂s − 2)(∂s − 1) + 4 cosh ẑ(∂s − 1) + 4ẑ sinh ẑ

)
× (∂s + 1)∂s .

Motivation for formula (2.268): The factor (∂s + 1)∂s has to be there since ẑ−1 = e−s and 1 are
in the kernel of (∂4ẑ − 2∂2ẑ + 1)ẑ sinh ẑ, since sinh ẑ and ẑ sinh ẑ are in the kernel of ∂4ẑ − 2∂2ẑ + 1.
Note that for ẑ � 1,

ẑ−1 sinh ẑ = 1 +O(ẑ2), cosh ẑ = 1 +O(ẑ2), ẑ sinh ẑ = O(ẑ2) ,

so that for ẑ � 1, (2.268) collapses to

ẑ2∂4ẑ ẑ
2 = (∂s + 2)(∂s + 1)∂s(∂s − 1) . (2.269)

This identity is easily seen to be true because both differential operators are of fourth order and
are homogeneous of degree zero in ẑ, because the four functions ẑ−2 = e−2s, ẑ−1 = e−s, 1, and
ẑ = es are in the kernel of both differential operators, and because on ẑ2 = e2s, both operators
give 4!ẑ2 = 4!e2s.

We derive two formulas from (2.268):

(∂4ẑ − 2∂2ẑ + 1)ẑ sinh ẑ

= ẑ−2
(
ẑ−1 sinh ẑ (∂s − 2)(∂s − 1) + 4 cosh ẑ(∂s − 1) + 4ẑ sinh ẑ

)
×(∂s + 1)∂s .

and

∂ẑ(∂
4
ẑ − 2∂2ẑ + 1)ẑ sinh ẑ

= ẑ−3
(
ẑ−1 sinh ẑ (∂s − 3)(∂s − 2)(∂s − 1) + 5 cosh ẑ(∂s − 2)(∂s − 1)

+8ẑ sinh ẑ(∂s − 1) + 4ẑ2 cosh ẑ
)
× (∂s + 1)∂s . (2.270)

Let us give the argument for (2.268). Because of the transformation properties under ẑ  −ẑ,
it suffices to show

ẑ2(∂4ẑ − 2∂2ẑ + 1)ẑ exp(ẑ)

=
[
ẑ−1 exp(ẑ) (∂s + 2)(∂s − 1) + 4(exp(ẑ)− ẑ−1 exp(ẑ))(∂s − 1) + 4ẑ exp(ẑ)

]
×(∂s + 1)∂s ,

which we rearrange as

ẑ3(∂4ẑ − 2∂2ẑ + 1)ẑ exp(ẑ)

= exp(ẑ)
[
(∂s + 2)(∂s − 1) + 4(ẑ − 1)(∂s − 1) + 4ẑ2

]
(∂s + 1)∂s

= exp(ẑ)
[
(∂s − 2)(∂s − 1) + 4ẑ(∂s − 1) + 4ẑ2

]
(∂s + 1)∂s . (2.271)

We note that because of ∂ẑ exp(ẑ) = exp(ẑ)(∂ẑ + 1), we have

(∂4ẑ − 2∂2ẑ + 1) exp(ẑ) = exp(ẑ)
[
(∂ẑ + 1)4 − 2(∂ẑ + 1)2 + 1

]
= exp(ẑ)(∂4ẑ + 4∂3ẑ + 4∂2ẑ ) ,
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so that

ẑ2(∂4ẑ − 2∂2ẑ + 1)ẑ exp(ẑ) = exp(ẑ)
[
ẑ3∂4ẑ ẑ + 4ẑ(ẑ2∂3ẑ ẑ) + 4ẑ2(ẑ∂2ẑ ẑ)

]
.

Now (2.271) follows by inserting the formulas

ẑ∂2ẑ ẑ = (∂s + 1)∂s,

ẑ2∂3ẑ ẑ = (∂s + 1)∂s(∂s − 1),

ẑ3∂4ẑ ẑ = (∂s + 1)∂s(∂s − 1)(∂s − 2) . (2.272)

These formulas can easily seen to be true; let us address (2.272): Both sides are differential
operators of order 4 that are homogeneous of degree 0 in ẑ; the kernel of both operators is
spanned by the four functions ẑ−1 = e−s, 1, ẑ = es, and ẑ2 = e2s; On ẑ3 = e3s, both operators
yield 4!ẑ3 = 4!e3s.

Formula (2.196) is an immediate consequence of (2.268). Formula (2.270) follows from (2.196)
using the identities ∂ẑ = ẑ−1∂s and

∂ẑ ẑ
−3 sinh ẑ = ẑ−3(cosh ẑ − 3ẑ−1 sinh ẑ),

∂ẑ4ẑ
−2 cosh ẑ = ẑ−3(4ẑ sinh ẑ − 8 cosh ẑ),

∂ẑ4ẑ
−1 sinh ẑ = ẑ−3(4ẑ2 cosh ẑ − 4ẑ sinh ẑ) ,

which leads as desired to

∂ẑ(∂
4
ẑ − 2∂2ẑ + 1)ẑ sinh ẑ

= ẑ−3
[
(ẑ−1 sinh ẑ ((∂s − 2)(∂s − 1)∂s − 3(∂s − 2)(∂s − 1))

+ cosh ẑ (4(∂s − 1)∂s + (∂s − 2)(∂s − 1)− 8(∂s − 1))

+ẑ sinh ẑ (4∂s + 4(∂s − 1)− 4)

+ẑ2 cosh ẑ 4
]
× (∂s + 1)∂s .
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Chapter 3

Finite Prandtl number convection

Differently from the previous section, here we reintroduce the inertial term of the Navier-Stokes
equation allowing the Pr number to be finite. In the case of Pr <∞, the lack of instantaneous
slaving of the velocity field to the temperature field increases the difficulty in bounding the
convection term

〈∫
uzT dz

〉
in the definition of the Nusselt number and the background field

method turns out to be no longer fruitful.
The first rigorous bound on the Nusselt number for arbitrary Pr was obtained by Constantin
and Doering in [11], by the following argument: Using (1.16) and (1.19) we can write

Nu ≤ 1

δ

〈∫ δ

0
(T − 1)uz dz

〉
+

1

δ
.

Applying the Cauchy-Schwartz inequality and the Poincaré inequality we can bound the right-
hand side, obtaining

Nu ≤ δ
(〈∫ 1

0
|∇T |2 dz

〉〈∫ 1

0
|∇u|2 dz

〉) 1
2

+
1

δ
.

From the representation (1.13) and the the bound (1.15) we immediately get

Nu ≤ δ(NuRa(Nu− 1))
1
2 +

1

δ
.

The optimization in δ leads to the choice δ = (NuRa(Nu− 1)))−
1
4 which yields the bound

Nu ≤ Ra
1
2 .

We notice that this estimate is valid for all values of Pr and it is oblivious to replacing the no-slip
boundary conditions by a no-stress boundary condition (the incompressibility condition is not

used). In particular this result does not catch the scaling Nu ∼ Pr
1
2 Ra

1
2 for Pr� 1 and, as our

result implies (see Theorem 2), it is suboptimal for Pr � 1. The incompressibility condition
combined with the no-slip boundary condition yields (1.18). This suggest the idea to control the
Nusselt number with the second derivatives of uz and calls for a maximal regularity argument
for the equation

1

Pr
(∂tu+ (u · ∇)u)−∆u+∇p =RaTez for 0 < z < 1 ,

∇ · u =0 for 0 < z < 1 ,

u =0 for z ∈ {0, 1} ,
u =u0 for t = 0 ,

as we explain in what follows.
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3.1 Prerequisite: Maximal Regularity

Let us first explain the meaning of the term ”maximal regularity estimate ” in a simpler example.
Let us consider a function u ∈ C∞0 in Rd, in the L2−space we have

||∆u||L2 = ||∇2u||L2

where ∇2u =
∑d

i,j=1
∂2u

∂xi∂xj
. Indeed, by exchanging derivatives, we obtain∫

Rd
(∆u)2 dx = −

∫
Rd

∂u

∂xi

∂3u

∂xj∂xj∂xi
dx =

∫
Rd

∂2u

∂xi∂xj

∂2u

∂xi∂xj
dx =

∫
Rd
|∇2u|2 dx .

The Calderón-Zygmund theory [18]tells us that the estimate ||∇2u||Lp . C(d, p)||∆u||Lp is
true in every Lp spaces with 1 < p < ∞ but fails in the ”simpler” spaces L1 and L∞. In
L1 a counterexample is given by the fundamental solution of the Poisson equation in R2, i.e.
u(x1, x2) = (x21 − x22) log(x21 + x22). Indeed, in this case ||∆u||L1 = 1 (since −∆u = δ) but
||∇2u||L1 = ∞. By duality one can show that also the L∞−norm is non-admissible for the
Calderón-Zygmund theory. For the Stokes equation −∆u + ∇p = f it is well know that the
estimate ||∇2u||Lp + ||∇p||Lp . ||f ||Lp holds true for every Lp-norm with 1 < p < ∞ (see
for instance [19], Chapter IV ). The term ”maximal regularity ” comes from the fact that the
terms ∇2u and ∇p have the same (maximal) regularity as the right-hand side f . Although
the above estimate is not true in the L∞−norm, Constantin and Doering in [7] obtained a
maximal regularity estimate up to logarithmic corrections. We will consider the non-stationary
Stokes equation and show that a maximal regularity estimate in the interpolation between the
weighted−L1 and L∞ norm holds under bandedness assumptions (i.e. restriction to a packet of
wave numbers in Fourier space). 1

We now want to show how to derive upper bounds for the Nusselt number from a (logarithmically
failing) maximal regularity estimate. For preparation, we illustrate this idea in the simpler
situation of Pr =∞, following Constantin & Doering 1999 paper’s approach.
From the estimate (1.17) on the Nusselt number we can deduce the bound

Nu ≤ δ2
〈

sup
z
|∂2zuz|

〉
+

1

δ
,

where we could apply two times the Poincaré estimate in the vertical direction thanks to the
no-slip boundary condition for uz and the condition (1.18). Despite the fact that the L∞-norm
is a critical norm for the Calderón-Zygmund theory, Constantin and Doering [7] proved that,
up to logarithms, the following maximal regularity estimate holds〈

sup
z
|∂2zuz|

〉
.

〈
sup
z
|RaTez|

〉
.

By the maximum principle for the temperature (1.9) applied to the right-hand side term of the
last bound we have 〈

sup
z
|∂2zuz|

〉
. Ra .

Inserting this result back into the bound on Nusselt number, one obtains

Nu . δ2Ra +
1

δ
.

The minimum occurs for δ ∼ Ra−
1
3 and the resulting bound, up to logarithms is

Nu . Ra
1
3 .

1 The reason to consider the (interpolation of) the above norms will appear clear at the end the paragraph
Strategy, Subsection 3.2.2.
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We will now give a more rigorous argument for this bound (which differs from the one of
Constantin and Doering [7]) and aims at introducing the main tools and techniques that will
we apply to prove the upper bound at finite Prandtl number (see Section 3.2). Let us suppose
that u(x′, z), p(x′, z), f(x′, z) 2 satisfy the equation

−∆u+∇p = f for 0 < z < 1 , (3.2a)

∇ · u = 0 for 0 < z < 1 , (3.2b)

u = 0 for z ∈ {0, 1} , (3.2c)

where we denoted with f = RaTez. Let f be horizontally band-limited , i.e.

F ′f(k′, z) = 0 unless 1 ≤ R|k′| ≤ 4 ,

and let us suppose that, under this assumption , u satisfies the maximal regularity estimate

sup
0≤z≤1

〈|∇2u|〉′ . sup
0≤z≤1

〈|f |〉′. (3.3)

Then we have the bound
Nu . Ra

1
3 (ln Ra)

1
3 . (3.4)

We observe that the estimate (3.3) can be deduced with the same method applied to prove
Theorem 3, therefore we omit its proof. The argument for the bound (3.4) proceeds as follows:
Given r ∈ (0,∞),R ∈ (0,∞) and N ∈ N related by R = 2Nr, we introduce the operators
”projections” P<, P1, · · · ,PN , P> which decompose the Fourier space in three regions

F ′P< = χR|k|<1F ′f, F ′P> = χR|k|>4F ′f, F ′Pj = χ1<2j−1R|k|<4F ′f, (3.5)

were χI denotes the characteristic function of the set I. By construction P<+
∑N

j=1 Pj+P> = Id
and P<,Pj ,P> are symmetric with respect to 〈·〉′. Hence the convection term in (1.16) can be
written as the following sum

1

δ

∫ δ

0
〈Tuz〉′ dz =

1

δ

∫ δ

0
〈T (P<u)z〉′ dz +

N∑
j=1

1

δ

∫ δ

0
〈T (Pju)z〉′ dz +

1

δ

∫ δ

0
〈P>(T )uz〉′ dz. (3.6)

We start by bounding the term coming from the middle length scales: let us recall that Pju,
Pjp and PjT satisfy the Stokes equations

−∆Pju+∇Pjp = Pjf for 0 < z < 1 ,

∇ · Pju = 0 for 0 < z < 1 ,

Pju = 0 for z ∈ {0, 1} ,
2For simplicity of notations, here we may assume that the functions are independent on time.
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and that in this case we have the estimate (3.3). We have

|〈T (Pju)z〉′|
(1.9)

≤ 〈|(Pju)z|〉′

≤
∫ z

0

∫ z′

0
〈|∂2z (Pju)z|〉′ dz′′ dz′

≤ z2

2
sup

z′∈(0,1)
〈|∂2z (Pju)z|〉′

(3.3)

.
z2

2
sup

z′∈(0,1)
〈|Ra(PjT )ez|〉′

. z2Ra sup
z′∈(0,1)

〈|PjT |〉′

≤ z2Ra sup
z′
〈|PjT |2〉′

1
2

(1.9)

. z2Ra ,

thus
N∑
j=1

1

δ

∫ δ

0
〈T (Pju)z〉′ dz . N δ2 Ra . (3.8)

We now turn to the argument for the small length-scales:

1

δ

∫ δ

0
〈P>(T )uz〉′ dz .

1

δ

(∫ δ

0
〈(P>(T − 1)2)〉′ dz

∫ δ

0
〈(uz)2〉 dz

) 1
2

(3.114)

.
1

δ

(∫ 1

0
r2〈|∇′T |2〉 dz δ2

∫ 1

0
〈(∂zuz)2〉′ dz

) 1
2

≤ r

(∫ 1

0
〈|∇′T |2〉 dz

∫ 1

0
〈(∂zuz)2〉′ dz

) 1
2

, (3.9)

where we have used the Cauchy-Schwarz inequality, the bandedness condition (3.114) and the
Poincaré inequality. Finally we address the case of large length-scales:

1

δ

∫ δ

0
〈T (P<u)z〉′ dz .

1

δ

(∫ δ

0
〈(T − 1)2〉′ dz

∫ 1

0
〈(P<u)z〉′ dz

) 1
2

.
1

δ

(
δ2
∫ 1

0
〈(∂zT )2〉′ dz

∫ 1

0
δ2〈(∂z(P<u)z)2〉′ dz

) 1
2

.
1

δ

(
δ2
∫ 1

0
〈(∂zT )2〉′ dz

∫ 1

0
δ2〈(∇′ · (P<u)′)2〉′ dz

) 1
2

(3.116)

.
1

δ

(
δ2
∫ 1

0
〈(∂zT )2〉′ dz

∫ 1

0

δ2

R2
〈|u′|2〉′ dz

) 1
2

, (3.10)

where we have used the Cauchy-Schwarz inequality, the Poincaré inequality, the divergence free
equation and the bandedness condition (3.116). Now, using the estimates (3.8),(3.9) and (3.10)
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we can bound the Nusselt number as follows:

1

δ

〈∫ δ

0
Tuz dz

〉
=

1

δ

〈∫ δ

0
T (P<u)z dz

〉
+

N∑
j=1

1

δ

〈∫ δ

0
T (Pju)z dz

〉
+

1

δ

〈∫ δ

0
P>(T )uz dz

〉
(3.8)&(3.9)&(3.10)

.

(
r +

δ2

R

)(〈∫ 1

0
|∇T |2 dz

〉〈∫ 1

0
|∇u|2 dz

〉) 1
2

+Nδ2Ra +
1

δ

(1.13)&(1.15)

.

(
r +

δ2

R

)
NuRa

1
2 +Nδ2Ra +

1

δ
.

From the first term of the right-hand side we learn that r ∼ δ2

R and since, by construction
R = 2Nr, the optimal r and R are

r = 2−
N
2 δ R = 2

N
2 δ.

Therefore we obtain

Nu . 2−
N
2 δRa

1
2 Nu + NuRaδ2 +

1

δ
.

Finally we optimize in N ∈ N: on the one hand we want to absorb the first term of the right-

hand side in the left-hand side, so that we impose δRa
1
2 = 2

N
2 and, on the other hand, we

need the second and the third term of the right-hand side to be of the same size, therefore we

require δ3 ∼ 1
NRa . Putting these two conditions together we obtain N2

N
2 ∼ Ra

1
6 which implies

3 N ∼ ln Ra. In conclusion we have

Nu . (Ra ln Ra)
1
3 .

3.2 Result: Upper bounds on Nusselt number

Joint work with Antoine Choffrut and Felix Otto

3.2.1 Main theorem

As anticipated in the Section 1.1, for the system of equations (1.3) we will establish the following
result

Theorem 2 (Bounds on the Nusselt number).
Provided the initial data satisfy T0 ∈ [0, 1],

∫
|u0|dx <∞ and for Ra� 1

Nu ≤ C

{
(Ra ln Ra)

1
3 for Pr ≥ (Ra ln Ra)

1
3 ,(

Pr−1Ra ln Ra
) 1

2 for Pr ≤ (Ra ln Ra)
1
3 ,

(3.11)

where C depends only on the dimension d.

3.2.2 Maximal regularity in the strip

Strategy

We perturb the non-stationary Stokes equations, bringing only the nonlinear term to the right-
hand side

1

Pr
∂tu−∆u+∇p = RaTez −

1

Pr
(u · ∇)u. (3.12)

3Here we use that xα lnx = y ⇒ x ∼ yα ln−
1
α y
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Before going into details of the proof of Theorem 2 we want to argue why

Pr� Ra (3.13)

amounts to the classical perturbative regime for Navier-Stokes equations. The classical pertur-
bative argument goes as follows: One seeks a norm ||·|| in which the maximal regularity estimate
for the non-stationary Stokes equations (3.12) holds, yielding

||∇2u|| . ||RaTez −
1

Pr
(u · ∇)u||.

This norm has to be strong enough to control the convective nonlinearity in the sense of

||(u · ∇)u|| . ||∇2u||2.

In the application the norm should be also sufficiently weak so that (1.9) translates into

||RaTez|| . Ra.

The combination yields the estimate

||∇2u|| . Ra +
1

Pr
||∇2u||2,

which is nontrivial only when Pr� Ra. Our analysis does not attempt to buckle via the classical
perturbation argument but instead uses the dissipation bound (1.15) to estimate the convective
nonlinearity: By the Cauchy-Schwarz inequality, Hardy’s inequality and capitalizing once more
on the no-slip boundary condition we have〈∫ 1

0
|(u · ∇)u| dz

z

〉
.

〈∫ 1

0
|u|2dz

z2

〉 1
2
〈∫ 1

0
|∇u|2 dz

〉 1
2

.

〈∫ 1

0
|∇u|2dz

〉
, (3.14)

which, using (1.15), implies 〈∫ 1

0
|(u · ∇)u|dz

z

〉
. NuRa. (3.15)

It is this estimate that motivates the maximal regularity theory in the norm || · || =
〈∫∞

0 (·) dz
z

〉
.

In order to bound the right-hand side of (1.17) we split the solution to the Navier-Stokes equa-
tions u as

u = uCD + uNL + uIV ,

where uCD satisfies the non-stationary Stokes equations with the buoyancy force as right-hand
side 4 

1
Pr∂tuCD −∆uCD +∇pCD = RaTez for 0 < z < 1 ,

∇ · uCD = 0 for 0 < z < 1 ,
uCD = 0 for z ∈ {0, 1} ,
uCD = 0 for t = 0 ,

(3.16)

uNL satisfies the non-stationary Stokes equations with the nonlinear term as right-hand side 5
1
Pr∂tuNL −∆uNL +∇pNL = − 1

Pr(u · ∇)u for 0 < z < 1 ,
∇ · uNL = 0 for 0 < z < 1 .

uNL = 0 for z ∈ {0, 1} ,
uNL = 0 for t = 0

(3.17)

4The stationary version of this problem was already analyzed by Constantin and Doering in the seminal paper
of 1999. This motivates the subscript CD.

5The subscript NL stands for non-linear. Indeed only in this equation the non-linear term of the Navier-Stokes
equations is appearing as right-hand side.
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and uIV satisfies the non-stationary Stokes equations with zero forcing term and non-zero initial
values 6 

1
Pr∂tuIV −∆uIV +∇pIV = 0 for 0 < z < 1 ,

∇ · uIV = 0 for 0 < z < 1 ,
uIV = 0 for z = 0 ,
uIV = u0 for t = 0 .

(3.18)

Inserting the decomposition u = uCD+uNL+uIV into the bound (1.17) for the Nusselt number,
we have

Nu ≤ 1
δ

〈∫ δ
0 |u

z| dz
〉

+ 1
δ

≤
〈

supz∈(0,δ) |uzCD|
〉

+ δ
〈∫ δ

0 |∂
2
zu

z
NL| dz

〉
+ δ−

1
2

〈∫ δ
0 |u

z
IV |2 dz

〉 1
2

+ 1
δ

≤ δ2
(〈

supz∈(0,δ) |∂2zuzCD|
〉

+
〈∫ δ

0 |∂
2
zu

z
NL|

dz
z

〉)
+ δ−

1
2

〈∫ δ
0 |u

z
IV |2 dz

〉 1
2

+ 1
δ .

(3.19)

We notice that 〈∫ δ

0
|uzIV |2 dz

〉
= 0 . (3.20)

Indeed testing the equation (3.18) with uIV we find that∫ t0

0

∫
x′

∫
z
|∇uIV (x′, z, t)|2dzdx′dt ≤

∫
x′

∫
z
|u0(x′, z)|2dzdx′

and in turn by the Poincaré inequality and passing to limits we get〈∫ 1

0
|uIV |2 dz

〉
= 0,

which implies (3.20). On the one hand, for equation (3.16) we expect the following logarithmi-
cally failing maximal regularity bound〈

sup
z∈(0,1)

|∂2zuzCD|

〉
. Ra, (3.21)

just as for the case of Pr = ∞. On the other hand, the problem of bounding the term〈∫ 1
0 |∂

2
zu

z
NL|

dz
z

〉
in (3.19) requires new techniques. Nevertheless we expect〈∫ δ

0
|∂2zuzNL|

dz

z

〉
.

1

Pr

〈∫ 1

0
|(u · ∇)u|dz

z

〉
, (3.22)

up to logarithmic corrections. Using (3.15) we obtain〈∫ δ

0
|∂2zuzNL|

dz

z

〉
.

1

Pr
NuRa . (3.23)

Inserting (3.20), (3.21) and (3.23) into the bound (3.19) for the Nusselt number and ignoring
logarithmic correction factors, we get

Nu . δ2Ra(1 +
1

Pr
Nu) +

1

δ
.

After choosing δ ∼
(
Ra(1 + Nu

Pr )
)− 1

3 and applying Young’s inequality, we have

Nu ∼ Ra
1
3 +

(
Ra

Pr

) 1
2

,

6 The subscript IV stands for initial value.
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which implies, up to logarithms,

Nu .

{
Ra

1
3 for Pr ≥ Ra

1
3 ,

Pr−
1
2 Ra

1
2 for Pr ≤ Ra

1
3 .

(3.24)

We remark that in our analysis, the crucial no-slip boundary condition is both a blessing and
a curse, as we shall presently explain. The no-slip boundary condition is a blessing because,
via Hardy’s inequality, it gives us good control of the convective nonlinearity (u · ∇)u, in an

L1-type space with the weight 1
z(1−z) , in terms of the average viscous dissipation

〈∫ 1
0 |∇u|

2 dz
〉

(see (3.14)), which is the physically relevant quantity (and the only bound at hand for the Leray
solution) see (1.15). Hence a maximal regularity theory for the non-stationary Stokes equations
with respect to this norm is required. Since this norm is borderline for Calderón-Zygmund
estimates (both because the exponent and the weight are borderline), maximal regularity “fails
logarithmically” and can only be recovered under bandedness assumptions — this is the source
of the logarithm. It is in this maximal regularity theory where the curse of the no-slip boundary
condition appears: As opposed to the no-stress boundary condition in the half space, the no-slip
boundary condition does not allow for an extension by reflection to the whole space, and thereby
the use of simple kernels or Fourier methods also in the normal variable. The difficulty coming
from the the no-slip boundary condition in the non-stationary Stokes equations when deriving
maximal regularity estimates is of course well-known; many techniques have been developed
to derive Calderón-Zygmund estimates despite this difficulty. In the half space Solonnikov in
[20] has constructed a solution formula for (3.25) with zero initial data via the Oseen an Green
tensors. An easier and more compact representation of the solution to the problem (3.25) with
zero forcing term and non-zero initial value was later given by Ukai in [21] by using a different
method. Indeed he could write an explicit formula of the solution operator as a composition
of Riesz’ operators and solutions operator for the heat and Laplace’s equation. This formula is
an effective tool to get Lp − Lq (1 < q, p < ∞) estimates for the solution and its derivatives.
In the case of exterior domains, Maremonti and Solonnikov [22] derive Lp − Lq (1 < q, p < ∞)
estimates for (3.25), going through estimates for the extended solution in the half space and in
the whole space. In particular in the half space they propose a decomposition of (3.25) with
non-zero divergence equation. The book of Galdi [19] provides with a complete treatment of the
classical theory and results on the non-stationary Stokes equations and Navier-Stokes equations.

The new element here is that we need maximal regularity in the borderline space L1
(
dtdx′ 1

z(1−z)dz
)

,

and in L∞z (L1
t,x′) (the latter space coming from the original argument in 1999 paper of Constantin

& Doering and pertaining to the buoyancy term). As mentioned, these borderline Calderón-
Zygmund estimates can only hold under bandedness assumption.

Theorem 3 (Maximal regularity in the strip).
There exists R0 ∈ (0,∞) depending only on d and L such that the following holds. Let u, p, f
satisfy 

∂tu−∆u+∇p = f for 0 < z < 1 ,
∇ · u = 0 for 0 < z < 1 ,

u = 0 for z ∈ {0, 1} ,
u = 0 for t = 0 .

(3.25)

Assume f is horizontally band-limited , i.e.

F ′f(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 where R < R0. (3.26)

Then,

||(∂t − ∂2z )u′||(0,1) + ||∇′∇u′||(0,1) + ||∂tuz||(0,1) + ||∇2uz||(0,1) + ||∇p||(0,1) . ||f ||(0,1), (3.27)
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where || · ||(0,1) denotes the norm

||f ||(0,1) := ||f ||(R,(0,1)) = inf
f=f0+f1

{〈
sup

0<z<1
|f0|
〉

+

〈∫ 1

0
|f1|

dz

(1− z)z

〉}
, (3.28)

where f0 and f1 satisfy the bandedness assumption (3.26).

See Notations.
Our analysis offers two insights: It turns out that for the maximal regularity estimate for the
quantity of interest, namely the second vertical derivative ∂2zu

z of the vertical velocity component
uz = u·ez, bandedness only in the horizontal variable x′ is required. This is extremely convenient,
since the horizontal Fourier transform (or rather, series), with help of which bandedness is
expressed, is compatible with the lateral periodic boundary condition. The maximal regularity
appears to be naturally expressed in terms of the interpolation between the two norms of interest

L1
(
dtdx′ 1

z(1−z)dz
)

and L∞z (L1
t,x′). This way, one avoids the logarithm that is expect to be the

price of the borderline weight 1
z(1−z) . It is a pleasant coincidence that the norm L∞z (L1

t,x′) arises
for two unrelated reasons: It is needed to estimate the buoyancy term Tez driving the Navier-

Stokes equations and it is the natural partner of L1
(
dtdx′ 1

z(1−z)dz
)

in the maximal regularity

estimate. Aside from their application to this problem (see Section 3.2.5) all the estimates in
Theorem 3 might have an independent interest since they show the full extent of what one can
obtain under the horizontal bandedness assumption only.

3.2.3 Proof of main theorem

Without loss of generality we will assume u0 = 0 since we have already seen that the contribution
of uIV to the Nusselt number is zero (see (3.20)).
Let us fix a smooth cut-off function ψ in Fourier space satisfying

ψ(k′) =

{
1 0 ≤ |k′| ≤ 7

2 ,

0 |k′| ≥ 4 .

Consider the function ζ(k′) = ψ(k′) − ψ(72k
′) and define ζj(k

′) = ζ(2−jk′). Notice that ζj is
supported in (2j , 2j+2). Imitating a Littlewood-Paley-type decomposition we define a smooth
equipartition in Fourier space by constructing three operators P<, Pj and P>, which act at the
level of Fourier space by multiplication by cut off functions that localize to small, intermediate
and large wavenumbers respectively:

F ′P<f = ζ<F ′f, F ′Pjf = ζjF ′f, F ′P>f = ζ>F ′f ,

where ζ< =
∑

j<j1
ζj and ζ> =

∑
j>j2

ζj with j1 < j2 to be determined. We notice that the
operator Pj : Lp → Lp for 1 ≤ p <∞ is bounded.
Inserting the decomposition into the bound for the Nusselt number (1.16) we get

Nu ≤ 1
δ

〈∫ δ
0 Tu

z dz
〉

+ 1
δ

= 1
δ

〈∫ δ
0 TP<u

z dz
〉

+
∑j2

j=j1
1
δ

〈∫ δ
0 TPju

z dz
〉

+ 1
δ

〈∫ δ
0 TP>u

z dz
〉

+ 1
δ .

(3.29)

At first, let us focus on the second term in (3.29) arising from the intermediate wavelengths. In
order to bound this term we will need the maximal regularity estimate stated in Theorem 3. For
this purpose, rewrite the Navier-Stokes equations in (1.3b) as non-stationary Stokes equations
with the nonlinear term and the buoyancy term in the right-hand side

1
Pr∂tPju−∆Pju+∇Pjp = RaPjTez − 1

PrPj(u · ∇)u for 0 < z < 1 ,
∇ · Pju = 0 for 0 < z < 1 ,

Pju = 0 for z ∈ {0, 1} ,
Pju = 0 for t = 0 .

(3.30)
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Observe that the application of the operator “horizontal filtering“, namely Pj , preserves the
no-slip boundary condition at z = 0, 1 and it commutes with ∂z and all the differential operators
that act in the vertical direction. Using the maximum principle for the temperature (1.9), the
Poincaré inequality in the z−variable and considering a generic decomposition of ∂2zPjuz =
h0 + h1 we have

1

δ

〈∫ δ

0
TPjuz dz

〉
≤ 1

δ

〈∫ δ

0
|Pjuz| dz

〉
≤ δ

〈∫ δ

0
|∂2zPjuz| dz

〉
≤ δ

(〈∫ δ

0
|h0| dz

〉
+

〈∫ δ

0
|h1| dz

〉)
≤ δ2

(〈
sup

0<z<1
|h0|
〉

+

〈∫ 1

0
|h1|

dz

z(1− z)

〉)
.

Passing to the infimum over all the possible decompositions of ∂2zPjuz we get

1

δ

〈∫ δ

0
TPjuz dz

〉
≤ δ2||∂2zPjuz||(0,1) .

We notice that Pju satisfies the linear Stokes equations (3.30) and for j > j1 it satisfies the
bandedness assumption provided

j1 & log2R
−1
0 . (3.31)

Therefore by the maximal regularity estimate (3.27) applied to Pju we have

||∂2zPjuz||(0,1) ≤
〈

sup
0<z<1

|RaPjTez|
〉

+

〈∫ 1

0

∣∣∣∣ 1

Pr
Pj(u · ∇)u

∣∣∣∣ dz

z(1− z)

〉
.

We observe that, by the smooth equipartition in Fourier space, we have

〈|RaPjTez|〉′ ≤ 〈|RaTez|〉′ . (3.32)

and , by the maximum principle (1.9), we obtain supz〈|RaTez|〉′ ≤ Ra. So that we find〈
sup

0<z<1
|RaPjTez|

〉
≤ Ra . (3.33)

For the nonlinear part we first observe that by the smooth partition of unity we have

〈|Pj(u · ∇)u|〉′ ≤ 〈|(u · ∇)u|〉′

so that 〈∫ 1

0
| 1

Pr
Pj(u · ∇)u| dz

z(1− z)

〉
≤
〈∫ 1

0

∣∣∣∣ 1

Pr
(u · ∇)u

∣∣∣∣ dz

z(1− z)

〉
.
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To estimate the nonlinear part we apply the Cauchy-Schwarz inequality and Hardy’s inequality〈∫ 1

0

∣∣∣∣ 1

Pr
(u · ∇)u

∣∣∣∣ dz

z(1− z)

〉
=

1

Pr

〈∫ 1

0
|(u · ∇)u|dz

z

〉
+

1

Pr

〈∫ 1

0
|(u · ∇)u| dz

1− z

〉
.

1

Pr

(〈∫ 1

0

1

z2
|u|2 dz

〉
+

〈∫ 1

0

1

(1− z)2
|u|2 dz

〉) 1
2
〈∫ 1

0
|∇u|2 dz

〉 1
2

.
1

Pr

〈∫ 1

0
|∂zu|2 dz

〉 1
2
〈∫ 1

0
|∇u|2 dz

〉 1
2

.
1

Pr

〈∫ 1

0
|∇u|2 dz

〉
(1.15)

≤ 1

Pr
Ra(Nu− 1) .

Summing up over all the intermediate wavelengths we obtain

j2∑
j=j1

1

δ

〈∫ δ

0
TPjuz dz

〉
. (j2 − j1)δ2

(
Ra +

1

Pr
Ra(Nu− 1)

)
. (3.34)

We now turn to the first term appearing on the right-hand side of (3.29), contribution of the large
wavelengths. By using the Cauchy-Schwarz inequality, the divergence-free condition, the hori-
zontal bandedness assumption in form of (3.116) and the Poincaré inequality in the z−variable,
we obtain

1

δ

〈∫ δ

0
TP<uz dz

〉
=

1

δ

〈∫ δ

0
(T − 1)P<uz dz

〉
(3.35)

.
1

δ

〈∫ δ

0
|T − 1|2 dz

〉 1
2
〈∫ δ

0
|P<uz|2 dz

〉 1
2

. δ
1

δ

〈∫ δ

0
|∂zT |2 dz

〉 1
2

δ

〈∫ δ

0
|∂zP<uz|2 dz

〉 1
2

. δ

〈∫ δ

0
|∇T |2dz

〉 1
2
〈∫ δ

0
|P<∇′ · u′|2 dz

〉 1
2

. δ

〈∫ δ

0
|∇T |2 dz

〉 1
2

2j1
〈∫ δ

0
|u′|2 dz

〉 1
2

. 2j1δ2
〈∫ 1

0
|∇T |2 dz

〉 1
2
〈∫ 1

0
|∇u|2dz

〉 1
2

(1.13)&(1.15)

. 2j1δ2Ra
1
2 Nu , (3.36)

where in (3.35) we used (1.19). Finally, we turn to the third term in (3.29), which represents
the contribution from the small wavelengths. In order to estimate this term we use the Cauchy-
Schwarz inequality, the Poincaré inequality in the z−variable and the horizontal bandedness
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assumption in form of (3.114) applied to T

1

δ

〈∫ δ

0
P>uzT dz

〉
≤ 1

δ

〈∫ δ

0
|P>T |2dz

〉 1
2
〈∫ δ

0
|uz|2 dz

〉
)
1
2

≤ 1

δ

1

2j2

〈∫ δ

0
|∇′T |2 dz

〉 1
2

δ

〈∫ δ

0
|∂zuz|2 dz

〉 1
2

≤ 1

2j2

〈∫ 1

0
|∇T |2dz

〉 1
2
〈∫ δ

0
|∇u|2dz

〉 1
2

(1.13)&(1.15)

.
1

2j2
Ra

1
2 Nu . (3.37)

Putting the three estimates (3.34),(3.36) and (3.37) together, we have the following bound on
the Nusselt number

Nu . (j2 − j1)δ2
(

Nu

Pr
+ 1

)
Ra +

(
δ22j1 +

1

2j2

)
Ra

1
2 Nu +

1

δ
.

In the last inequality we impose 2−j2 = 2j1δ2. In turn, observe that 2−j2 = 2−
(j2−j1)

2 δ and
therefore

Nu . (j2 − j1)δ2
(

Nu

Pr
+ 1

)
Ra + 2−

(j2−j1)
2 δRa

1
2 Nu +

1

δ
. (3.38)

Observe that, on the one hand, we want the second term of the right-hand side to be absorbed
in the left-hand side, therefore we impose

1 ∼ 2−
(j2−j1)

2 δRa
1
2

and, on the other hand, we require all the terms in the right-hand side to be of the same size

(j2 − j1)
(

Nu

Pr
+ 1

)
Ra ∼ 1

δ3
. (3.39)

From these two conditions we deduce

(j2 − j1)2
3
2
(j2−j1) ∼ Ra

1
2

(
Nu

Pr
+ 1

)−1
,

which is of the form x loga x ∼ y with x = a(j2−j1) and y = Ra
1
2

(
Nu
Pr + 1

)−1
for a > 1. This

implies that, asymptotically, x ∼ y
loga y

and therefore

j2 − j1 ∼ loga

(
Ra

1
2

(
Nu
Pr + 1

)−1
loga(Ra

1
2

(
Nu
Pr + 1

)−1
)

)
∼ ln Ra.

Inserting this back into (3.39), we are led to the natural choice of δ

δ =

((
Nu

Pr
+ 1

)
Ra ln Ra

)− 1
3

,

which give us the bound

Nu .

((
Nu

Pr
+ 1

)
Ra ln Ra

) 1
3

.
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Applying the triangle inequality 7

Nu . (Ra ln Ra)
1
3 +

((
Nu

Pr

)
Ra ln Ra

) 1
3

and Young’s inequality, we finally obtain

Nu . (Ra ln Ra)
1
3 +

(
Ra ln Ra

Pr

) 1
2

.

In conclusion we get the following bound on the Nusselt number

Nu .

{
(Ra ln Ra)

1
3 for Pr ≥ (Ra ln Ra)

1
3 ,(

Ra
Pr ln Ra

) 1
2 for Pr ≤ (Ra ln Ra)

1
3 .

3.2.4 Proof of the maximal regularity in the strip

From the strip to the half space

Let us consider the non-stationary Stokes equations
∂tu−∆u+∇p = f for 0 < z < 1 ,

∇ · u = 0 for 0 < z < 1 ,
u = 0 for z ∈ {0, 1} ,
u = 0 for t = 0 .

In order to prove the maximal regularity estimate in the strip we extend the problem (3.25) in
the half space. By symmetry, it is enough to consider for the moment the extension to the upper
half space.
Consider the localization (ũ, p̃) := (ηu, ηp) where

η(z) is a cut-off function for

[
0,

1

2

)
in [0, 1) . (3.40)

Extending (ũ, p̃) by zero they can be viewed as functions in the upper half space. The couple
(ũ, p̃) satisfies 

∂tũ−∆ũ+∇p̃ = f̃ for z > 0 ,
∇ · ũ = ρ̃ for z > 0 ,

ũ = 0 for z = 0 ,
ũ = 0 for t = 0 ,

(3.41)

where
f̃ := ηf − 2(∂zη)∂zu− (∂2zη)u+ (∂zη)pez, ρ̃ := (∂zη)uz . (3.42)

3.2.5 Maximal regularity in the upper half space

In the half space, taking advantages from the explicit representation of the solution via Green
functions, we prove the regularity estimates which will be crucial in the proof of Theorem 3.

7Note that for 0 < p < 1 we have

||f + g||p ≤ 2
1
p
−1

(||f ||p + ||g||p)
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Proposition 3 (Maximal regularity in the upper half space).
Consider the non-stationary Stokes equations in the upper half-space

∂tu−∆u+∇p = f for z > 0 ,
∇ · u = ρ for z > 0 ,

u = 0 for z = 0 ,
u = 0 for t = 0 .

(3.43)

Suppose that f and ρ are horizontally band-limited , i.e.

F ′f(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 where R ∈ (0,∞) , (3.44)

and
F ′ρ(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 where R ∈ (0,∞) . (3.45)

Then

||∂tuz||(0,∞) + ||∇2uz||(0,∞) + ||∇p||(0,∞) + ||(∂t − ∂2z )u′||(0,∞) + ||∇′∇u′||(0,∞)

. ||f ||(0,∞) + ||(−∆′)−
1
2∂tρ||(0,∞) + ||(−∆′)−

1
2∂2zρ||(0,∞) + ||∇ρ||(0,∞),

where || · ||(0,∞) denotes the norm

||f ||(0,∞) := ||f ||R;(0,∞) inf
f=f0+f1

{〈
sup

0<z<∞
|f0|
〉

+

〈∫ ∞
0
|f1|

dz

z

〉}
, (3.46)

where f0 and f1 satisfy the bandedness assumption (3.44).

The first ingredient to establish Proposition 3 is a suitable representation of the solution operator
(f = (f ′, fz), ρ)→ u = (u′, uz) of the Stokes equations with the no-slip boundary condition. In
the case of no-slip boundary condition the Laplace operator has to be factorized as ∆ = ∂2z+∆′ =

(∂z + (−∆′)
1
2 )(∂z − (−∆′)

1
2 ). In this way the solution operator to the Stokes equations with

the no-slip boundary condition (3.43) can be written as the fourfold composition of solution
operators to three more elementary boundary value problems:

• Backward fractional diffusion equation (3.47):{
(∂z − (−∆′)

1
2 )φ = ∇ · f − (∂t −∆)ρ for z > 0 ,
φ → 0 for z →∞.

(3.47)

• Heat equation (3.48): (∂t −∆)vz = (−∆′)
1
2 (fz − φ)−∇′ · f ′ + (∂t −∆)ρ for z > 0,

vz = 0 for z = 0 ,
vz = 0 for t = 0 .

(3.48)

• Forward fractional diffusion equation (3.49):{
(∂z + (−∆′)

1
2 )uz = vz for z > 0 ,
uz = 0 for z = 0 .

(3.49)

• Heat equation (3.50):
(∂t −∆)v′ = (1 +∇′(−∆′)−1∇′·)f ′ for z > 0 ,

v′ = 0 for z = 0 ,
v′ = 0 for t = 0 .

(3.50)

Finally set
u′ = v′ −∇′(−∆′)−1(ρ− ∂zuz) . (3.51)
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In order to prove the validity of the decomposition we need to argue that

(∂t −∆)u− f is irrotational ,

which reduces to prove that

(∂t −∆)u′ − f ′ is irrotational in x′

and
∂z((∂t −∆)u′ − f ′) = ∇′((∂t −∆)uz − fz) . (3.52)

Let us consider for simplicity ρ = 0. The first statement follows easily from the definition. Indeed
by definition (3.51) and equation (3.50),

(∂t −∆)u′ − f ′ = ∇′((−∆′)−1∇′ · f ′ + (−∆′)−1∂zu
z).

Let us now focus on (3.52), which by using (3.51) and (3.50) can be rewritten as

∂z∇′((−∆′)−1∇′ · f ′ + (−∆′)−1(∂t −∆)∂zu
z) = ∇′((∂t −∆)uz − fz) .

Because of the periodic boundary condition in the horizontal direction, the latter is equivalent
to

∂z(−∆′)((−∆′)−1∇′ · f ′ + (−∆′)−1(∂t −∆)∂zu
z) = (−∆′)((∂t −∆)uz − fz),

that, after factorizing ∆ = (∂z − (−∆′)
1
2 )(∂z + (−∆′)

1
2 ), turns into

(∂z − (−∆′)
1
2 )(∂t −∆)(∂z + (−∆′)

1
2 )uz = (−∆′)fz − ∂z∇′ · f ′ .

One can easily check that the identity holds true by applying (3.49), (3.48) and (3.47). The
no-slip boundary condition is trivially satisfied, indeed by (3.49) we have uz = 0 and ∂zu

z = 0.
The combination of (3.51) with ∂zu

z = 0 gives u′ = 0.
For each step of the decomposition of the Navier-Stokes equations we will derive maximal
regularity-type estimates. These are summed up in the following

Proposition 4.

1. Let φ, f, ρ satisfy the problem (3.47) and assume f, ρ are horizontally band-limited, i.e.

F ′f(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4

and
F ′ρ(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4.

Then,

||φ||(0,∞) . ||f ||(0,∞) + ||(−∆′)−
1
2∂tρ||(0,∞) + ||∇ρ||(0,∞) .

2. Let vz, f, φ, ρ satisfy the problem (3.48) and assume f, φ, ρ are horizontally band-limited,
i.e.

F ′f(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 ,

F ′φ(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4

and
F ′ρ(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 .

Then,

||∇vz||(0,∞) + ||(−∆)−
1
2 (∂t − ∂2z )vz||(0,∞)

. ||f ||(0,∞) + ||φ||(0,∞) + ||(−∆′)−
1
2∂tρ||(0,∞)

+ ||(−∆)−
1
2∂2zρ||(0,∞) + ||∇ρ||(0,∞) .

(3.53)
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3. Let uz, vz satisfy the problem (3.49) and assume vz is horizontally band-limited, i.e.

F ′vz(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 .

Then,

||∂tuz||(0,∞) + ||∇2uz||(0,∞) + ||(−∆′)−
1
2∂z(∂t − ∂2z )uz||(0,∞)

. ||∇vz||(0,∞) + ||(−∆′)−
1
2 (∂t − ∂2z )vz||(0,∞) .

(3.54)

4. Let v′, f ′, satisfy the problem (3.50) and assume f ′ is horizontally band-limited, i.e.

F ′f(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 .

Then,
||∇′∇v′||(0,∞) + ||(∂t − ∂2z )v′||(0,∞) . ||f ′||(0,∞) . (3.55)

Proof of Proposition 3

By an easy application of Proposition 4, we will now prove the maximal regularity estimate on
the upper half space.

Proof of Proposition 3.
From Proposition 4 we have the following bound for the vertical component of the velocity u

||∂tuz||(0,∞) + ||∇2uz||(0,∞) + ||(−∆′)−
1
2∂z(∂t − ∂2z )uz||(0,∞)

(3.54)

. ||∇vz||(0,∞) + ||(−∆′)−
1
2 (∂t − ∂2z )vz||(0,∞)

(3.53)

. ||f ||(0,∞) + ||φ||(0,∞) + ||(−∆′)−
1
2∂tρ||(0,∞) + ||(−∆)−

1
2∂2zρ||(0,∞) + ||∇ρ||(0,∞)

(1)

. ||f ||(0,∞) + ||(−∆′)
1
2∂tρ||(0,∞) + ||(−∆)−

1
2∂2zρ||(0,∞) + ||∇ρ||(0,∞) .

Instead for the horizontal components of the velocity u′ we have

||(∂t − ∂2z )u′||(0,∞) + ||∇′∇u′||(0,∞)

(3.51)

. ||(∂t − ∂2z )v′||(0,∞) + ||∇′∇v′||(0,∞)

+ ||(−∆′)−
1
2 (∂t − ∂2z )ρ||(0,∞) + ||∇ρ||(0,∞)

+ ||(−∆′)−
1
2∂z(∂t − ∂2z )uz||(0,∞) + ||∂z∇uz||(0,∞)

(3.53),(3.54),(3.55)

. ||f ||(0,∞) + ||(−∆′)−
1
2∂tρ||(0,∞) + ||(−∆)−

1
2∂2zρ||(0,∞) + ||∇ρ||(0,∞) .

Summing up we obtain

||∂tuz||(0,∞) + ||∇2uz||(0,∞) + ||(∂t − ∂2z )u′||(0,∞) + ||∇′∇u′||(0,∞)

. ||f ||(0,∞) + ||(−∆′)−
1
2∂tρ||(0,∞) + ||(−∆)−

1
2∂2zρ||(0,∞) + ||∇ρ||(0,∞) .

(3.56)

The bound for the ∇p follows by equations (3.43) and applying (3.56).
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Proof of Proposition 4

This section is devoted to the proof of Proposition 4, which rely on a series of lemmas (Lemma
4, Lemma 5 and Lemma 6) that we state here and prove in Section 3.2.5. The following lemmas
contain the basic maximal regularity estimates for the three auxiliary problems. These estimates,
together with the bandedness assumption in the form of (3.117), (3.118) and (3.119) will be the
main ingredients for the proof of Proposition 4.

Lemma 4.
Let u, f satisfy the problem{

(∂z − (−∆′)
1
2 )u = f for z > 0 ,
u → 0 for z →∞

(3.57)

and assume f to be horizontally band-limited, i.e.

F ′f(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 .

Then,
||∇u||(0,∞) . ||f ||(0,∞) . (3.58)

Lemma 5.
Let u, f, g = g(x′, t) satisfy the problem{

(∂z + (−∆′)
1
2 )u = f for z > 0 ,
u = g for z = 0

(3.59)

and define the constant extension g̃(x′, z, t) := g(x′, t). Assume f and g to be horizontally band-
limited, i.e.

F ′f(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4

and
F ′g(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 .

Then
||∇u||(0,∞) . ||f ||(0,∞) + ||∇′g̃||(0,∞) . (3.60)

Remark 1. Clearly if g = 0 in Lemma 5, then we have

||∇u||(0,∞) . ||f ||(0,∞) . (3.61)

Lemma 6.
Let u, f satisfy the problem 

(∂t −∆)u = f for z > 0 ,
u = 0 for z = 0 ,
u = 0 for t = 0

(3.62)

and assume f to be horizontally band-limited, i.e.

F ′f(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 .

Then,
||(∂t − ∂2z )u||(0,∞) + ||∇′∇u||(0,∞) . ||f ||(0,∞) . (3.63)

Now we are ready to prove Proposition 4.

Proof of Proposition 4.
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1. Subtracting the quantity (∂z − (−∆′)
1
2 )(fz + ∂zρ) from both sides of equation (3.47) and

then multiplying the new equation by (−∆)−
1
2 we get

(∂z − (−∆′)
1
2 )(−∆′)−

1
2 (φ− fz − ∂zρ)

= ∇′ · (−∆′)−
1
2 f ′ + fz − (−∆′)−

1
2∂tρ+ ∂zρ− (−∆′)

1
2 ρ .

From the basic estimate (3.58) we obtain

||∇′(−∆′)−
1
2 (φ− fz − ∂zρ)||(0,∞) . ||∇′ · (−∆′)−

1
2 f ′||(0,∞)

+ ||fz||(0,∞) + ||(−∆′)−
1
2∂tρ||(0,∞) + ||∂zρ||(0,∞) + ||(−∆′)

1
2 ρ||(0,∞) .

Thanks to the bandedness assumption in the form of (3.117) and (3.118) we have

||φ− fz − ∂zρ||(0,∞)

. ||f ′||(0,∞) + ||fz||(0,∞) + ||(−∆′)−
1
2∂tρ||(0,∞) + ||∂zρ||(0,∞) + ||∇′ρ||(0,∞)

and from this we obtain easily the desired estimate (1).

2. After multiplying the equation (3.48) by (−∆′)−
1
2 , the application of (3.63) to (−∆′)−

1
2 vz

yields

||(−∆′)−
1
2 (∂t − ∂2z )vz||(0,∞) + ||(−∆′)−

1
2∇′∇vz||(0,∞)

. ||fz||(0,∞) + ||φ||(0,∞) + ||∇′ · (−∆′)−
1
2 f ′||(0,∞)

+ ||(−∆′)−
1
2 (∂t − ∂2z )ρ||(0,∞) + ||(−∆′)

1
2 ρ||(0,∞) .

The estimate (3.53) follows after observing (3.118) and applying the triangle inequality to
the second to last term on the right-hand side.

3. We need to estimate the the three terms on the right-hand side of (3.54) separately. We
start with the term ∇2uz: since ||∇2uz||(0,∞) ≤ ||∇′∇uz||(0,∞)+ ||∂2zuz||(0,∞), we tackle the
term ∇′∇uz and ∂2zu

z separately. First multiply by ∇′ the equation (3.49). An application
of the estimate (3.61) to ∇′uz yields

||∇∇′uz||(0,∞) . ||∇′vz||(0,∞). (3.64)

Now multiplying the equation (3.49) by ∂2z

∂2zu
z = −(−∆′)

1
2∂zu

z + ∂zv
z = −∆′uz − (−∆′)

1
2 vz + ∂zv

z (3.65)

and using the bandedness assumption in the form (3.118) we have

||∂2zuz||(0,∞) ≤ ||∇′2uz||(0,∞) + ||∇vz||(0,∞)
(3.64)

≤ ||∇vz||(0,∞) .
(3.66)

The second term of (3.54), i.e. (−∆′)−
1
2∂z(∂t − ∂2z )uz, can be bounded in the following

way: We multiply the equation (3.49) by (−∆′)−
1
2 (∂t − ∂2z ){

(∂z + (−∆′)
1
2 )(−∆′)−

1
2 (∂t − ∂2z )uz = (−∆′)−

1
2 (∂t − ∂2z )vz for z > 0,

(−∆′)−
1
2 (∂t − ∂2z )uz = (−∆′)−

1
2∂zv

z for z = 0,

where we have used that at z = 0

(∂t − ∂2z )uz = −∂2zuz
(3.65)

= ∂zv
z.
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Applying (3.60) to (−∆′)−
1
2 (∂t − ∂2z )uz and using the bandedness assumption in the form

of (3.117),

||∇(−∆′)−
1
2 (∂t − ∂2z )uz||(0,∞) . ||(−∆′)−

1
2 (∂t − ∂2z )vz||(0,∞) + ||∂zvz||(0,∞) . (3.67)

Finally we can bound the last term of (3.54), i.e. ∂tu
z: We observe that ∂tu

z = (∂t −
∂2z )uz + ∂2zu

z thus

||∂tuz||(0,∞) ≤ ||(∂t − ∂2z )uz||(0,∞) + ||∂2zuz||(0,∞) . (3.68)

For the first term in the right-hand side of (3.68) we notice that

||(∂t − ∂2z )uz||(0,∞)

(3.117)

≤ ||(−∆′)−
1
2∇′(∂t − ∂2z )uz||(0,∞)

(3.67)

. ||(−∆′)−
1
2 (∂t − ∂2z )vz||(0,∞) + ||∂zvz||(0,∞)

. ||(−∆′)−
1
2 (∂t − ∂2z )vz||(0,∞) + ||∇vz||(0,∞) .

The second term on the right-hand side of (3.68) is bounded in (3.66). Thus we have the
following bound for ∂tu

||∂tuz||(0,∞) ≤ ||(−∆′)−
1
2 (∂t − ∂2z )vz||(0,∞) + ||∇vz||(0,∞) . (3.69)

Putting together all the above we obtain the desired estimate.

4. From the defining equation (3.50), the basic estimate (3.63) and the bandedness assump-
tion in form of (3.119), we get

||(∂t − ∂2z )v′||(0,∞) + ||∇′∇v′||(0,∞) . ||f ′||(0,∞) .

Proof of Theorem 3

Let u, p, f be the solutions of the non-stationary Stokes equations in the strip 0 < z < 1 (3.25).
Then ũ = ηu, p̃ = ηp (with η defined in (3.40) satisfy (3.41), namely

∂tũ−∆ũ+∇p̃ = f̃ for z > 0 ,
∇ · ũ = ρ̃ for z > 0 ,

ũ = 0 for z = 0 ,
ũ = 0 for t = 0 ,

where
f̃ := ηf − 2(∂zη)∂zu− (∂2zη)u+ (∂zη)pez, ρ̃ := (∂zη)uz . (3.70)

Since, by assumption f, ρ are horizontally band-limited , then also f̃ and ρ̃ satisfy the horizontal
bandedness assumption (3.44) and (3.45) respectively. We can therefore apply Proposition 3 to
the upper half space problem (3.41) and get

||(∂t − ∂2z )ũ′||(0,∞) + ||∇′∇ũ′||(0,∞) + ||∂tũz||(0,∞) + ||∇2ũz||(0,∞) + ||∇p̃||(0,∞)

. ||f̃ ||(0,∞) + ||(−∆′)−
1
2∂tρ̃||(0,∞) + ||(−∆′)−

1
2∂2z ρ̃||(0,∞) + ||∇ρ̃||(0,∞) .

By symmetry, we also have the same maximal regularity estimates in the lower half space.
Indeed, let ˜̃u, ˜̃p satisfy the equation

∂t ˜̃u−∆˜̃u+∇ ˜̃p =
˜̃
f for z < 1 ,

∇ · ˜̃u = ˜̃ρ for z < 1 ,
˜̃u = 0 for z = 1 ,
˜̃u = 0 for t = 0 ,

(3.71)
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where

˜̃
f := (1− η)f − 2(∂z(1− η))∂zu− (∂2z (1− η))u+ (∂z(1− η))pez, ˜̃ρ := (∂z(1− η))uz . (3.72)

Again by Proposition 4 we have

||(∂t − ∂2z )˜̃u′||(−∞,1) + ||∇′∇˜̃u′||(−∞,1) + ||∂t ˜̃uz||(−∞,1) + ||∇2 ˜̃uz||(−∞,1) + ||∇ ˜̃p||(−∞,1)

. || ˜̃f ||(−∞,1) + ||(−∆′)−
1
2∂t ˜̃ρ||(−∞,1) + ||(−∆′)−

1
2∂2z ˜̃ρ||(−∞,1) + ||∇ ˜̃ρ||(−∞,1),

where || · ||(−∞,1) is the analogue of (3.46) (see Notations). Since u = ũ + ˜̃u in the strip

[0, L)d−1 × (0, 1), by the triangle inequality and using the maximal regularity estimates above,
we get

||(∂t − ∂2z )u′||(0,1) + ||∇′∇u′||(0,1) + ||∂tuz||(0,1) + ||∇2uz||(0,1) + ||∇p||(0,1)
. ||(∂t − ∂2z )ũ′||(0,∞) + ||(∂t − ∂2z )˜̃u′||(−∞,1) + ||∇′∇ũ′||(0,∞) + ||∇′∇˜̃u′||(−∞,1)
+ ||∂tũz||(0,∞) + ||∂t ˜̃uz||(−∞,1) + ||∇2ũz||(0,∞) + ||∇2 ˜̃uz||(−∞,1)
+ ||∇p̃||(0,∞) + ||∇ ˜̃p||(−∞,1)

. ||f̃ ||(0,∞) + || ˜̃f ||(−∞,1) + ||(−∆′)−
1
2∂tρ̃||(0,∞) + ||(−∆′)−

1
2∂t ˜̃ρ||(−∞,1)

+ ||(−∆′)−
1
2∂2z ρ̃||(0,∞) + ||(−∆′)−

1
2∂2z ˜̃ρ||(−∞,1) + ||∇ρ̃||(0,∞) + ||∇ ˜̃ρ||(−∞,1) .

By the definitions of f̃ and
˜̃
f we get

||f̃ ||(0,∞) + || ˜̃f ||(−∞,1) . ||f ||(0,1) + ||∂zu||(0,1) + ||u||(0,1) + ||p||(0,1)

and similarly for ρ̃ and ˜̃ρ we have

||∇ρ̃||(0,∞) + ||∇ ˜̃ρ||(−∞,1) . ||∇u||(0,1) + ||u||(0,1)

||(−∆′)−
1
2∂tρ̃||(0,∞) + ||(−∆′)−

1
2∂t ˜̃ρ||(−∞,1) . ||(−∆′)−

1
2∂tu||(0,1)

and

||(−∆′)−
1
2∂2z ρ̃||(0,∞) + ||(−∆′)−

1
2∂2z ˜̃ρ||(−∞,1)

. ||(−∆′)−
1
2uz||(0,1) + ||(−∆′)−

1
2∂zu

z||(0,1) + ||(−∆′)−
1
2∂2zu

z||(0,1) .

Therefore, collecting the estimates, we have

||(∂t − ∂2z )u′||(0,1) + ||∇′∇u′||(0,1) + ||∂tuz||(0,1) + ||∇2uz||(0,1) + ||∇p||(0,1)
. ||f ||(0,1) + ||p||(0,1) + ||∇u||(0,1) + ||u||(0,1)
+ ||(−∆′)−

1
2∂tu||(0,1) + ||(−∆′)−

1
2uz||(0,1) + ||(−∆′)−

1
2∂zu

z||(0,1) + ||(−∆′)−
1
2∂2zu

z||(0,1) .

Incorporating the horizontal bandedness assumption we find

||∂zu||(0,1) ≤ R||∇′∂zu||(0,1) ,
||u||(0,1) ≤ R2||(∇′)2u||(0,1) ,
||p||(0,1) ≤ R||∇′p||(0,1),
||∇u||(0,1) ≤ R||∇′∇u||(0,1),

||(−∆′)−
1
2∂tu||(0,1) ≤ R||∂tu||(0,1) ,

||(−∆′)−
1
2uz||(0,1) ≤ R3||∇′2uz||(0,1) ,

||(−∆′)−
1
2∂zu

z||(0,1) ≤ R2||∇′∂zuz||(0,1) ,

||(−∆′)−
1
2∂2zu

z||(0,1) ≤ R||∂2zuz||(0,1) .

Thus, for R < R0 where R0 is sufficiently small, all the terms in the right-hand side, except f
can be absorbed into the left-hand side and the conclusion follows.
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Proof of main technical lemmas

Remark 2. In the proof of Lemma 4, Lemma 5 and Lemma 6 we will derive inequalities between
quantities where t is integrated between 0 and ∞. From the proof it is clear that the same
inequalities are true with t integrated between 0 and t0 with constants that are not depending on
t0. Therefore dividing by t0 and taking lim supt0→∞ (see (3.127)) we shall obtain the desired
estimates in terms of the interpolation norm (3.46).

Proof of Lemma 4.
In order to simplify the notations, in what follows we will omit the dependency of the functions
from the time variable. It is enough to show

||∇′u||(0,∞) . ||f ||(0,∞),

since, by equation (3.57) ∂zu = (−∆′)
1
2u + f . We claim that, in order to prove (3.2.5), it is

enough to show
sup
z
〈|∇′u|〉′ . sup

z
〈|f |〉′ (3.73)

and

||∇′u||(0,∞) .
∫
〈|f |〉′dz

z
. (3.74)

Indeed, by definition of the norm || · ||(0,∞) (see (3.46)) if we select an arbitrary decomposition
∇′u = ∇′u1 +∇′u2, where u1 and u2 are solutions of the problem (3.57) with right-hand sides
f1 and f2 respectively, we have

||∇′u||(0,∞) ≤ ||∇′u1||(0,∞) + sup
z
〈|∇′u2|〉′

≤
∫
〈|f1|〉′

dz

z
+ sup

z
〈|f2|〉′ .

Passing to the infimum over all the decompositions of f we obtain

||∇′u||(0,∞) . ||f ||(0,∞).

We recall that by Duhamel’s principle we have the following representation

u(x′, z) =

∫ ∞
z

ux′,z0(z)dz0, (3.75)

where uz0 is the harmonic extension of f(·, z0) onto {z < z0}, i.e. it solves the boundary value
problem {

(∂z − (−∆′)
1
2 )uz0 = 0 for z < z0 ,
uz0 = f for z = z0 .

(3.76)

Argument for (3.73):
Using the representation of the solution of (3.76) via the Poisson kernel, i.e.

uz0(x′, z) =

∫
z0 − z

(|x′ − y′|2 + (z0 − z)2)
d
2

f(x′, z0)dy
′

we obtain the following bounds

〈|∇′uz0(·, z)|〉′ .


〈|∇′f(·, z0)|〉′,

1
(z0−z) 〈|f(·, z0)|〉′,

1
(z0−z)2 〈|∇′(−∆′)−1f(·, z0)|〉′.

(3.77)
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By using the bandedness assumption in the form of (3.114) and (3.116), we have

〈|∇′uz0(·, z)|〉′ . min

{
1

R
,

R

(z0 − z)2

}
〈|f(·, z0)|〉′,

hence

〈|∇′u(·, z)|〉′ .
∫ ∞
z

min

{
1

R
,

R

(z0 − z)2

}
〈|f(·, z0)|〉′dz0

. sup
z0∈(0,∞)

〈|f(·, z0)|〉′
∫ ∞
z

min

{
1

R
,

R

(z0 − z)2

}
dz0

. sup
z0∈(0,∞)

〈|f(·, z0)|〉′,

which, passing to the supremum in z, implies (3.73).
From the above and applying Fubini’s rule, we also have∫ ∞

0
〈|∇′u(·, z)|〉′dz ≤

∫ ∞
0

∫ ∞
z

min

{
1

R
,

R

(z0 − z)2

}
〈|f(·, z0)|〉′dz0dz (3.78)

≤
∫ ∞
0

∫ z0

0
min

{
1

R
,

R

(z0 − z)2

}
dz〈|f(·, z0)|〉′dz0

.
∫ ∞
0
〈|f(·, z)|〉′dz .

Argument for (3.74):
Let us consider χ2H≤z≤4Hf where χ2H≤z≤4H is the characteristic function on the interval
[2H, 4H] and let uH be the solution to

(∂z − (−∆′)
1
2 )uH = χ2H≤z≤4Hf.

We claim

sup
z≤H
〈|∇′uH |〉′ ≤

∫ ∞
0
〈|χ2H≤z≤4Hf |〉′

dz

z
(3.79)

and ∫ ∞
H
〈|∇′uH |〉′

dz

z
≤
∫ ∞
0
〈|χ2H≤z≤4Hf |〉′

dz

z
. (3.80)

From estimate (3.79) and (3.80) the statement (3.74) easily follow. Indeed, choosing H = 2n−1

and summing up over the dyadic intervals, we have

||∇′u|| ≤
∑
n∈Z
||∇′u2n−1 ||(0,∞)

≤ sup
z≤2n−1

〈|∇′u2n−1 |〉′ +
∫ ∞
2n−1

〈|∇′u2n−1 |〉′
dz

z

≤
∑
n∈Z

∫ ∞
0
〈|χ2n≤z≤2n+1f |〉′

dz

z

=

∫ ∞
0
〈|f |〉′dz

z
.
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Argument for (3.79): Fix z ≤ H. Then, we have

〈|∇′uH |〉′
(3.77)

≤
∫ ∞
z

1

(z0 − z)
〈|χ2H≤z≤4Hf(·, z0)|〉′dz0

.
∫ 4H

2H

1

(z0 − z)
〈|χ2H≤z≤4Hf(·, z0)|〉′dz0

.
1

H

∫ 4H

2H
〈|χ2H≤z≤4Hf(·, z0)|〉′dz0

≤
∫ ∞
2H
〈|χ2H≤z≤4Hf(·, z0)|〉′

dz0
z0

≤
∫ ∞
0
〈|χ2H≤z≤4Hf(·, z0)|〉′

dz0
z0

.

Taking the supremum over all z proves (3.79).
Argument for (3.80): For z ≥ H we have∫ ∞

H
〈|∇′uH |〉′

dz

z
.

1

H

∫ ∞
0
〈|∇′uH |〉′dz

(3.78)

.
1

H

∫ ∞
0
〈|χ2H≤z≤4Hf |〉′dz

=
1

H

∫ 4H

2H
〈|χ2H≤z≤4Hf |〉′dz

.
∫ ∞
0
〈|χ2H≤z≤4Hf |〉′

dz

z
.

Proof of Lemma 5.
Let us first assume g = 0. It is enough to show

sup
z
〈|∇′u|〉′ . sup

z
〈|f |〉′ (3.81)

and ∫ ∞
0
〈|∇′u|〉′dz

z
.
∫ ∞
0
〈|f |〉′dz

z
. (3.82)

Recall that by Duhamel’s principle we have the following representation

u(z) =

∫ z

0
uz0(·, z)dz0, (3.83)

where uz0 is the harmonic extension of f(z0) onto {z > z0}, i.e. it solves the boundary value
problem {

(∂z + (−∆′)
1
2 )uz0 = 0 for z > z0 ,
uz0 = f for z = z0 .

(3.84)

From the Poisson’s kernel representation we learn that

〈|∇′uz0(·, z)|〉′ .

{
〈|∇′f(·, z0)|〉′ ,

1
(z−z0)2 〈|∇

′(−∆′)−1f(·, z0)|〉′ .

Using the bandedness assumption in the form of (3.114) and (3.116)

〈|∇′uz0(·, z)|〉′ . min

{
1

R
,

R

(z − z0)2

}
〈|f(·, z0)|〉′
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and observing (3.83), we obtain

〈|∇′u(·, z)|〉′ .
∫ z
0 min

{
1
R ,

R
(z−z0)2

}
〈|f(·, z0)|〉′dz0

≤ supz0〈|f(·, z0)|〉′
∫ z
0 min

{
1
R ,

R
(z−z0)2

}
dz0

. supz0〈|f(·, z0)|〉′ .

(3.85)

Estimate (3.81) follows from (3.85) by passing to the supremum in z.
From the above (3.85), multiplying by the weight 1

z and observing that z > z0 we have

〈|∇′u(·, z)|〉′ 1
z
.
∫ z

0
min

{
1

R
,

R

(z − z0)2

}
〈|f(·, z0)|〉′

dz0
z0

. (3.86)

After integrating in z ∈ (0,∞) and applying Young’s estimate we get (3.82). Let’s assume now

the general case, with g 6= 0. We want to prove (3.60). Recall that by definition g̃(x′, z) := g(x′)
and consider u− g̃. By construction it satisfies{

(∂z + (−∆′)−
1
2 )(u− g̃) = f − (−∆′)−

1
2 g for z > 0 ,

u− g̃ = 0 for z = 0 .

Using the first part of the proof of (3.61) and triangle inequality, we have

||∇u||(0,∞) . ||∇g̃||(0,∞) + ||f ||(0,∞) + ||(−∆′)
1
2 g̃||(0,∞) .

Therefore by the bandedness assumption in the form of (3.118) we can conclude (3.60).

Proof of Lemma 6.
We will show that, for the non-homogeneous heat equation with Dirichlet boundary condition

(∂t −∆)u = f for z > 0 ,
u = 0 for z = 0 ,
u = 0 for t = 0 ,

(3.87)

we have the following estimates〈∫
|(∂t − ∂2z )u(·, z, ·)| dz

z

〉
+

〈∫
|∇′2u(·, z, ·)|dz

z

〉
.

〈∫
|f(·, z, ·)|dz

z

〉
, (3.88)

〈
|∇′∂zu(·, z, ·)|z=0

〉
.

〈∫
|f(·, z, ·)|dz

z

〉
, (3.89)〈

sup
z
|∇′2u(·, z, ·)|

〉
.

〈
sup
z
|f(·, z, ·)|

〉
, (3.90)〈

sup
z
|∇′∂zu(·, z, ·)|

〉
.

〈
sup
z
|f(·, z, ·)|

〉
. (3.91)

In order to bound the off-diagonal components of the Hessian, we consider the decomposition

u = uN + uC , (3.92)

where uN solves 
(∂t −∆)uN = f for z > 0 ,

∂zuN = 0 for z = 0 ,
uN = 0 for t = 0 ,

(3.93)

and uC solves 
(∂t −∆)uC = 0 for z > 0 ,

∂zuC = ∂zu for z = 0 ,
uC = 0 for t = 0 .

(3.94)
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The splitting (3.92) is valid by the uniqueness of the Neumann problem. For the auxiliary
problems (3.93) and (3.94) we have the following bounds〈∫

|∇′∂zuN (·, z, ·)|dz
z

〉
.

〈∫
|f(·, z, ·)|dz

z

〉
, (3.95)

〈
sup
z
|∇′∂zuC(·, z, ·)|

〉
.
〈
|∇′∂zu(·, z, ·)|z=0

〉
. (3.96)

We claim that estimates (3.88), (3.89),(3.90), (3.91), (3.95) and (3.96) yield (3.63).
Let us first consider the bound for ∇′2. Consider u = u1 + u2, where u1 and u2 satisfy (3.87)
with right-hand side f1 and f2 respectively. We have

||∇′2u||(0,∞) .

〈
sup
z
|∇′2u1|

〉
+

〈∫
|∇′2u2|

dz

z

〉
(3.88)&(3.90)

.

〈
sup
z
|f1|
〉

+

〈∫
|f2|

dz

z

〉
,

which implies, upon taking infimum over all decompositions f = f1 + f2

||∇′2u||(0,∞) . ||f ||(0,∞). (3.97)

We now consider a further decomposition of u2 , i.e. u2 = u2C + u2N where u2C satisfies (3.94)
and u2N satisfies (3.93). Therefore u = u1 + u2C + u2N and we can bound the off-diagonal
components of the Hessian

||∇′∂zu||(0,∞) .

〈
sup
z
|∇′∂zu1|

〉
+

〈
sup
z
|∇′∂zu2C |

〉
+

〈∫
|∇′∂zu2N |

dz

z

〉
(3.89),(3.96),(3.95)&(3.91)

.

〈
sup
z
|f1|
〉

+

〈∫
|f2|

dz

z

〉
.

From the last inequality, passing to the infimum over all the possible decompositions of f we get

||∇′∂zu||(0,∞) . ||f ||(0,∞). (3.98)

On one hand estimate (3.97) and (3.98) imply

||∇∇′u||(0,∞) . ||∇′2u||(0,∞) + ||∇′∂zu||(0,∞) ,

on the other hand equation (3.62) and estimate (3.97) yield

||(∂t − ∂2z )u||(0,∞) . ||f ||(0,∞) .

Argument for (3.88)
Let u be a solution of problem of (3.87). Keeping in mind Remark (2) it is enough to show∫ ∞

0

∫ ∞
0
〈|∇′2u|〉′dz

z
dt .

∫ ∞
0

∫ ∞
0
〈|f |〉′dz

z
dt .

By the Duhamel’s principle we have

u(x′, z, t) =

∫ t

s=0
us(x

′, z, t)ds, (3.99)

where us is the solution to the homogeneous, initial value problem
(∂t −∆)us = 0 for z > 0, t > s ,

us = 0 for z = 0, t > s ,
us = f for z > 0, t = s .

(3.100)

95



Extending u and f to the whole space by odd reflection 8, we are left to study the problem{
(∂t −∆)us = 0 for z ∈ R, t > s ,

us = f for z ∈ R, t = s ,

the solution of which can be represented via heat kernel as

us(x
′, z, t) =

∫
R Γ(·, z − z̃, t− s) ∗x′ f(·, z̃, s)dz̃

=
∫∞
0 [Γ(·, z − z̃, t− s)− Γ(·, z + z̃, t− s)] ∗x′ f(·, z̃, s)dz̃ . (3.101)

The application of ∇′2 to the representation above yields

∇′2us(x′, z, t)

=

{∫∞
0

∫
Rd−1 ∇′Γd−1(x′ − x̃′, t− s) (Γ1(z − z̃, t− s)− Γ1(z + z̃, t− s))∇′f(x̃′, z̃, s)dx̃′dz̃ ,∫∞

0

∫
Rd−1 ∇′3Γd−1(x′ − x̃′, t− s) (Γ1(z − z̃, t− s)− Γ1(z + z̃, t− s)) (−∆′)−1∇′f(x̃′, z̃, s)dx̃′dz̃ .

Averaging in the horizontal direction we obtain, on the one hand

〈|∇′2us(·, z, t)|〉′

.
∫ ∞
0
〈|∇′Γd−1(·, t− s)|〉′|Γ1(z − z̃, t− s)− Γ1(z + z̃, t− s)|〈|∇′f(·, z̃, s)|〉′dz̃

(3.122)&(3.116)

.
∫ ∞
0

1

(t− s)
1
2

|Γ1(z − z̃, t− s)− Γ1(z + z̃, t− s)| 1
R
〈|f(·, z̃, s)|〉′dz̃

and, on the other hand

〈|∇′2us(·, z, t)|〉′

.
∫ ∞
0
〈|∇′3Γd−1(·, t− s)〉′|Γ1(z − z̃, t− s)− Γ1(z + z̃, t− s)|〈|(−∆′)−1∇′f(·, z̃, s)|〉′dz̃

(3.122)&(3.114)

.
∫ ∞
0
|Γ1(z − z̃, t− s)− Γ1(z + z̃, t− s)| 1

(t− s)
3
2

R〈|f(·, z̃, s)|〉′dz̃ .

Multiplying by the weight 1
z and integrating in z ∈ (0,∞) we get

∫ ∞
0
〈|∇′2us(·, t)|〉′

dz

z
.

(
sup
z̃

∫ ∞
0

Kt−s(z, z̃)dz

)
1

(t−s)
1
2

1
R

∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃ ,

R

(t−s)
3
2

∫∞
0 〈|f(x′, z̃, s)|〉′ dz̃z̃ ,

where we called Kt−s(z, z̃) = z̃
z |Γ1(z − z̃, t− s)− Γ1(z + z̃, t− s)|.

From Lemma 8 we infer

sup
z̃

∫ ∞
0

Kt−s(z, z̃)dz
(3.121)

.
∫
R
|Γ1(z, t− s)|dz + sup

z∈R
(z2|∂zΓ1(z, t− s)|)

(3.123)&(3.126)

. 1

and therefore we have

∫ ∞
0
〈|∇′2us(·, z, t)|〉′

dz

z
.


1

(t−s)
1
2

1
R

∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃ ,

1

(t−s)
3
2
R
∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃ .

8with abuse of notation we will call again u and f these extensions.
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Finally, inserting the previous estimate into the Duhamel formula (3.99) and integrating in time
we get ∫ ∞

0
〈|∇′2u(·, z, t)|〉′dz

z
dt

(3.99)

.
∫ ∞
0

∫ t

0
〈|∇′2us(·, z, t)|〉′

dz

z
dsdt

.
∫ ∞
0

∫ ∞
s

min

{
1

R(t− s)
1
2

,
R

(t− s)
3
2

}∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
dtds

.
∫ ∞
0

∫ ∞
s

min

{
1

R(t− s)
1
2

,
R

(t− s)
3
2

}
dt

∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
ds (3.102)

.
∫ ∞
0

∫ ∞
0

min

{
1

Rτ
1
2

,
R

τ
3
2

}
dτ

∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
ds, (3.103)

.
∫ ∞
0

∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
ds,

where in the second to last inequality we used∫ ∞
0

min

{
1

Rτ
1
2

,
R

τ
3
2

}
dτ . 1 . (3.104)

Argument for (3.89):
Let u be a solution of problem of (3.87). Recall that we need to prove∫ ∞

0
〈|∇′∂zu|z=0(·, z, t)|〉′dt .

∫ ∞
0

∫ ∞
0
〈|f(·, z, t)|〉′dtdz

z
. (3.105)

The solution of the equation (3.100) extended to the whole space by odd reflection can be
represented by (3.101) (see argument for (3.88)). Therefore

∇′∂zus(x′, z, t)|z=0

=

{
−2
∫
Rd−1

∫∞
0 Γd−1(x

′ − x̃′, t− s)∂zΓ1(z̃, t− s)∇′f(x̃′, z̃, s)dx̃′dz̃ ,

−2
∫
Rd−1

∫∞
0 ∇

′Γd−1(x
′ − x̃′, t− s)∂zΓ1(z̃, t− s)∇′(−∆′)−1∇′f(x̃′, z̃, s)dx̃′dz̃ .

Taking the horizontal average we get, on the one hand

〈|∇′∂zus(·, z, t)|z=0|〉′

.
∫ ∞
0
〈|Γd−1(·, t− s)|〉′|∂zΓ1(z̃, t− s)|〈|∇′f(·, z̃, s)|〉′dz̃

(3.122)

.
∫ ∞
0
|∂zΓ1(z̃, t− s)|〈|∇′f(·, z̃, s)|〉′dz̃

(3.116)

.
1

R

∫ ∞
0
|∂zΓ1(z̃, t− s)|〈|f(·, z̃, s)|〉′dz̃

.
1

R
sup
z̃
|z̃∂zΓ1(z̃, t− s)|

∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
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and on the other hand

〈|∇′∂zus(·, z, t)|z=0|〉′

.
∫ ∞
0
〈|(∇′)2Γd−1(·, t− s)|〉′|∂zΓ1(z̃, t− s)|〈|(−∆′)−1∇′f(·, z̃, s)|〉′dz̃

(3.122)

.
1

(t− s)

∫ ∞
0
|∂zΓ1(z̃, t− s)|〈|(−∆′)−1∇′f(·, z̃, s)|〉′dz̃

(3.114)

.
R

(t− s)

∫ ∞
0
|∂zΓ1(z̃, t− s)|〈|f(·, z̃, s)|〉′dz̃

.
R

(t− s)
sup
z̃
|z̃∂zΓ1(z̃, t− s)|

∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
.

Using the estimate (3.125) we get

〈|∇′∂zus(x′, z, t)|z=0|〉′ .

{
1

(t−s)1/2R
∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃ ,

R
(t−s)3/2

∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃ .

Finally, inserting into Duhamel’s formula and integrating in time we have∫ ∞
0
〈|∇′∂zu(·, z, t)|z=0〉′dt

(3.99)

.
∫ ∞
0

∫ t

0
〈|∇′∂zus(·, z, t)|z=0〉′dsdt

.
∫ ∞
0

∫ ∞
s

min{ 1

R(t− s)
1
2

,
R

(t− s)
3
2

}
∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
dtds

(3.102)&(3.103)

.
∫ ∞
0

∫ ∞
0
〈|f(x′, z, s)|〉′dz̃

z̃
ds.

Argument for (3.90):
Let u be the solution of problem (3.87). We recall that we want to prove

sup
z

∫ ∞
0
〈|∇′2u(·, z, t)|〉′dt . sup

z

∫ ∞
0
〈|f(·, z, t)|〉′dt . (3.106)

The solution of equation (3.100) extended to the whole space can be represented by (3.101) (see
argument for (3.88)). Therefore applying ∇′2 to (3.101) and considering the horizontal average
we have, on the one hand

〈|∇′2us(·, z, t)|〉′

.
∫
R
〈|∇′Γd−1(·, t− s)|〉′|Γ1(z − z̃, t− s)|〈|∇′f(·, z̃, s)|〉′dz̃

(3.122)&(3.116)

.
∫
R

1

(t− s)
1
2

|Γ1(z − z̃, t− s)|
1

R
〈|f(·, z̃, s)|〉′dz̃

and on the other hand

〈|∇′2us(·, z, t)|〉′

.
∫
R
〈|∇′3Γd−1(·, t− s)|〉′|Γ1(z − z̃, t− s)|〈|(−∆′)−1∇′f(·, z̃, s)|〉′dz̃

(3.122)&(3.114)

.
∫
R

1

(t− s)
3
2

|Γ1(z − z̃, t− s)|R〈|f(·, z̃, s)|〉′dz̃ .
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Inserting the above estimates in the Duhamel’s formula (3.99), we have∫ ∞
0

∫ t

0
〈|∇′2us(z, ·)|〉′dsdt

.
∫ ∞
0

∫ ∞
s

min

{
1

R(t− s)
1
2

,
R

(t− s)
3
2

}∫
R
|Γ1(z − z̃, t− s)|〈|f(·, z̃, s)|〉′dz̃dsdt

.
∫
R

(∫ ∞
0

min

{
1

Rτ
1
2

,
R

τ
3
2

}
|Γ1(z − z̃, τ)|dτ

)∫ ∞
0
〈|f(·, z̃, s)|〉′dsdz̃

. sup
z̃

∫ ∞
0
〈|f(·, z̃, s)|〉′ds

∫
R

∫ ∞
0

min

{
1

Rτ
1
2

,
R

τ
3
2

}
|Γ1(z − z̃, τ)|dτdz̃

(3.123)

. sup
z̃

∫ ∞
0
〈|f(·, z̃, s)|〉′ds

∫ ∞
0

min

{
1

Rτ
1
2

,
R

τ
3
2

}
dτ

∫
R
|Γ1(z − z̃, τ)|dz̃

(3.104)

. sup
z̃

∫ ∞
0
〈|f(·, z̃, s)|〉′ds .

Taking the supremum in z we obtain the desired estimate. Argument for (3.91):
Let u be the solution of problem (3.87). We claim

sup
z

∫ ∞
0
〈|∇′∂zu|〉′dt . sup

z

∫ ∞
0
〈|f |〉′dt . (3.107)

The solution of the equation (3.100) extended to the whole space can be represented by (see
argument for (3.88))

us(x
′, z, t) =

∫
R

Γ(·, z − z̃, t− s) ∗x′ f(·, z̃, s)dz̃ .

Applying ∇′∂z and considering the horizontal average we obtain, on the one hand

〈|∇′∂zus(·, z, t)|〉′

.
∫
R
〈|Γd−1(·, t− s)|〉′|∂zΓ1(z − z̃, t− s)|〈|∇′f(·, z̃, s)|〉′dz̃

(3.116)

.
∫
R
|∂zΓ1(z − z̃, t− s)|

1

R
〈|f(·, z̃, s)|〉′dz̃

and, on the other hand

〈|∇′∂zus(·, z, t)|〉′

.
∫
R
〈|∇′2Γd−1(·, t− s)|〉′|∂zΓ1(z − z̃, t− s)|〈|(−∆′)−1∇′f(·, z̃, s)|〉′dz̃

(3.114)

.
∫
R

1

(t− s)
|∂zΓ1(z − z̃, t− s)|R〈|f(·, z̃, s)|〉′dz̃ .
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Inserting the above estimates in the Duhamel’s formula (3.99), we have∫ ∞
0

∫ t

0
〈|∇′∂zus(z, ·)|〉′dsdt

.
∫ ∞
0

∫ ∞
s

min

{
1

R
,

R

(t− s)

}∫
R
|∂zΓ1(z − z̃, t− s)|〈|f(·, z̃, s)|〉′dz̃dtds

.
∫
R

(∫ ∞
0

min

{
1

R
,
R

τ

}
|∂zΓ1(z − z̃, τ)|dτ

)∫ ∞
0
〈|f(·, z̃, s)|〉′dsdz̃

. sup
z̃

∫ ∞
0
〈|f(·, z̃, s)|〉′ds

∫
R

∫ ∞
0

min

{
1

R
,
R

τ

}
|∂zΓ1(z − z̃, τ)|dτdz̃

(3.123)

. sup
z̃

∫ ∞
0
〈|f(·, z̃, s)|〉′ds

∫ ∞
0

min

{
1

Rτ
1
2

,
R

τ
3
2

}
dτ

(3.104)

. sup
z̃

∫ ∞
0
〈|f(·, z̃, s)|〉′ds .

Taking the supremum in z we obtain the desired estimate.
Argument for (3.95)
We recall that we want to show∫ ∞

0

∫ ∞
0
〈|∇′∂zuN |〉′

dz

z
dt .

∫ ∞
0

∫ ∞
0
〈|f |〉′dz

z
dt,

where uN be the solution to the non-homogeneous heat equation with Neumann boundary
conditions (3.93). By the Duhamel’s principle we have

uN (x′, z, t) =

∫ t

s=0
uNs(x

′, z, t)ds,

where uNs is solution to
(∂t −∆)uNs = 0 for z > 0, t > s ,

∂zuNs = 0 for z = 0, t > s ,
uNs = f for z > 0, t = s ,

is the solution of problem (3.87). Extending this equation to the whole space by even reflection
9, we are left to study the problem{

(∂t −∆)uNs = 0 for z ∈ R, t > s ,
uNs = f for t = s ,

the solution of which can be represented via heat kernel as

uNs(x
′, z, t) =

∫
R

Γ(·, z − z̃, t− s) ∗x′ f(·, z̃, s)dz̃

=

∫ ∞
0

[Γ(·, z̃ + z, t− s) + Γ(·, z̃ − z, t− s)] ∗x′ f(·, z̃, s)dz̃ .

Applying ∇′∂z to the representation above

∇′∂zuNs(x′, z, t)

=

{∫∞
0

∫
Rd−1 Γd−1(x′ − x̃′, t− s) (∂zΓ1(z̃ + z, t− s)− ∂zΓ1(z̃ − z, t− s))∇′f(x̃′, z̃, s)dx̃′dz̃ ,∫∞

0

∫
Rd−1 ∇′2Γd−1(x′ − x̃′, t− s) (∂zΓ1(z̃ + z, t− s)− ∂zΓ1(z̃ − z, t− s)) (−∆′)−1∇′f(x̃′, z̃, s)dx̃′dz̃

9With abuse of notation we will denote with uNs and f their even reflection
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and averaging in the horizontal direction we obtain, on the one hand

〈|∇′∂zuNs(·, z, t)|〉′

.
∫ ∞
0
〈|Γd−1(·, t− s)|〉′|∂zΓ1(z̃ + z, t− s)− ∂zΓ1(z̃ − z, t− s)|〈|∇′f(·, z̃, s)|〉′dz̃

(3.122)&(3.116)

.
1

R

∫ ∞
0
|∂zΓ1(z̃ + z, t− s)− ∂zΓ1(z̃ − z, t− s)|〈|f(·, z̃, s)|〉′dz̃

and, on the other hand

〈|∇′∂zuNs(·, z, t)|〉′

.
∫ ∞
0
〈|∇′2Γd−1(·, t− s)|〉′|∂zΓ1(z̃ + z, t− s)− ∂zΓ1(z̃ − z, t− s)|〈|(−∆′)−1∇′f(·, z̃, s)〉′dz̃

(3.122)&(3.114)

.
R

(t− s)

∫ ∞
0
|∂zΓ1(z̃ + z, t− s)− ∂zΓ1(z̃ − z, t− s)|〈|f(·, z̃, s)|〉′dz̃ .

Multiplying by the weight 1
z and integrating in z ∈ (0,∞) we get∫ ∞

0
〈|∇′∂zuNs(·, z, t)|〉′

dz

z
. sup

z̃

∫ ∞
0

Kt−s(z, z̃)dz

{
1
R

∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃ ,

1
(t−s)R

∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃ ,

where we called Kt−s(z, z̃) = z̃
z |∂zΓ1(z̃ − z, t− s)− ∂zΓ1(z + z̃, t− s)|.

Recalling

sup
z̃

∫ ∞
0

Kt−s(z, z̃)dz
(3.121)

.
∫
R
|∂zΓ1(z, t− s)|dz + sup

z∈R
(z2|∂2zΓ1(z, t− s)|)

and observing that, in this case∫
R
|∂zΓ1(z, t− s)|dz + sup

z∈R
(z2|∂zΓ1(z, t− s)|)

(3.123)&(3.126)

.
1

(t− s)
1
2

,

we can conclude that∫ ∞
0
〈|∇′∂zuNs(·, t)|〉′

dz

z
.


1

(t−s)
1
2

1
R

∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃

1

(t−s)
3
2
R
∫∞
0 〈|f(·, z̃, s)|〉′ dz̃z̃ .

Finally, inserting (3.99) and integrating in time we have∫ ∞
0

∫ ∞
0
〈|∇′∂zuNs(·, z, t)|〉′

dz

z
dt

(3.99)

.
∫ ∞
0

∫ ∞
0

∫ t

0
〈|∇′∂zuNs(·, z̃, t)|〉′

dz

z
dsdt

.
∫ ∞
s

∫ ∞
0

min{ 1

R(t− s)
1
2

,
R

(t− s)
3
2

}
∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
dsdt

(3.102)&(3.103)

.
∫ ∞
0

∫ ∞
0
〈|f(·, z̃, s)|〉′dz̃

z̃
ds .

Argument for (3.96):
Recall that we need to prove

sup
z

∫ ∞
0
|∇′∂zuC |dt . 〈|∇′∂zu|z=0〉′ .
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By equation (3.94), the even extension uC satisfies

(∂t −∆)uC = −[∂zuC ]δz=0 = −2∂zuCδz=0 = −2∂zu|z=0δz=0 (3.108)

and therefore we study the following problem on the whole space{
(∂t −∆)uC = −2∂zu|z=0δ for z ∈ R, t > 0 ,

uC = 0 for t = 0 .
(3.109)

By Duhamel’s principle

uC(x′, z, t) =

∫ t

s=0
uCs(x

′, z, t)ds, (3.110)

where uCs solves the initial value problem{
(∂t −∆)uCs = 0 for z ∈ R, t > s ,

uCs = −2∂zu|z=0δ for z ∈ R, t = s .
(3.111)

The solution of problem (3.111) can be represented via the heat kernel as

uCs(x
′, z, t) =

∫
Γ(z − z̃, t− s) ∗x′ (−2∂zu|z=0δ)(z̃, s)dz̃,

= −2Γ(z, t− s) ∗x′ ∂zu(z, s)|z=0 .

We apply ∇′∂z to the representation above

∇′∂zuCs(x′, z, t) =

∫
Rd−1

−2Γd−1(x
′ − x̃′, t− s)∂zΓ1(z, t− s)∇′∂zu(·, z, s)|z=0dx̃′

and then average in the horizontal direction,

〈|∇′∂zuCs(x′, z, t)|〉′

. 〈|Γd−1(x′, t− s)|〉′|∂zΓ1(z, t− s)|〈|∇′∂zu(·, z, s)|z=0|〉′
(3.122)

. |∂zΓ1(z, t− s)|〈|∇′∂zu(x̃′, z, s)|z=0|〉′ .

Inserting the previous estimate in the Duhamel formula 3.110 and integrating in time we get∫ ∞
0
〈|∇′∂zuC(x′, z, t)|〉′dt

≤
∫ ∞
0

∫ t

0
〈|∇′∂zuCs(x′, z, t)|〉′dsdt

.
∫ ∞
0

∫ ∞
s
|∂zΓ1(z, t− s)|dt〈|∇′∂zu(x̃′, z, s)|z=0|〉′ds

(3.124)

.
∫ ∞
0
〈|∇′∂zu(x̃′, z, s)|z=0|〉′ds . (3.112)

The estimate (3.96) follows immediately after passing to the supremum in (3.112).

3.2.6 Appendix

Prerequisites We start this section by proving some elementary bounds and equivalences,
coming directly from the definition of horizontal bandedness (3.128). These will turn to be
crucial in the proof of the main result.

Lemma 7.
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a) If
F ′r(k′, z, t) = 0 unless R|k′| ≥ 4 (3.113)

then
〈|r(·, z, t)|〉′ ≤ R〈|∇′r(·, z, t)|〉′ . (3.114)

In particular
||r||(0,∞) ≤ R||∇′r||(0,∞) .

b) If
F ′r(k′, z, t) = 0 unless R|k′| ≤ 1 (3.115)

then

〈|∇′r(·, z, t)|〉′ ≤ 1

R
〈|r(·, z, t)|〉′ . (3.116)

In particular

||∇′r||(0,∞) ≤
1

R
||r||(0,∞) .

c) If
F ′r(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4

then
||∇′(−∆′)−

1
2 r||(0,∞) ∼ ||r||(0,∞) , (3.117)

and
||(−∆′)

1
2 r||(0,∞) ∼ ||∇′r||(0,∞) . (3.118)

Remark 3. All the results stated in Lemma 7 are valid with the norm || · ||(0,∞) replaced with
|| · ||(0,1).

Remark 4. Notice that from (3.117) and (3.118), it follows

||∇′(−∆′)−1∇′ · r||(0,∞) . ||r||(0,∞) . (3.119)

Proof.

a) By rescaling we may assume R = 1.

Let φ ∈ S(Rd−1) be a Schwartz function such that

F ′φ(k′) =

{
0 for |k′| ≥ 1

1 for |k′| ≤ 1

and such that
∫
Rd−1 φ(x′)dx′ = 1.

We claim that, under assumption (3.113), there exists ψ ∈ L1(Rd−1) such that

(Id− φ∗′)r = ψ ∗′ ∇r . (3.120)

Since r = r − φ ∗ r, if we assume (3.120) the conclusion follows from Young’s inequality∫
Rd−1

|r(x′, z)|dx′ ≤
∫
Rd−1

|ψ(x′)|dx′
∫
Rd−1

|∇r(x′, z)|dx′ .
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Argument for (3.120):
Using the assumptions on φ and performing suitable change of variables, we find

r(x′, z)−
∫
φ(x′ − y′)r(y′, z)dy′

=

∫
φ(x′ − y′)(r(x′, z)− r(y′, z))dy′

=

∫
Rd−1

φ(x′ − y′)
∫ 1

0
(x′ − y′)∇′r(tx′ + (t− 1)(x′ − y′), z)dy′dt

=

∫ 1

0

∫
Rd−1

φ(ξ)∇′r(x′ + (t− 1)ξ, z) · ξdξdt

=

∫ 1

0

∫
Rd−1

φ

(
ŷ′ − x′

t

)
∇r(ŷ′, z) · ŷ

′ − x′

t
dt

1

td−1
dŷ′

=

∫
Rd−1

∇′r(ŷ′, z) ·
(∫ 1

0
φ

(
ŷ′ − x′

t

)
ŷ′ − x′

td
dt

)
dŷ′

=

∫
Rd−1

∇′r(ŷ′, z)ψ
(
ŷ′ − x′

t

)
dŷ′,

where

ψ(x′) =

∫ 1

0
φ

(
−x′

t

)
x′

td
dt .

We notice that ψ ∈ L1(Rd−1), in fact∫
Rd−1

|ψ(x′)|dx′ ≤
∫ 1

0

∫
Rd−1

∣∣∣∣φ(x′/t)
x′

td

∣∣∣∣ dx′dt =

∫
Rd−1

|φ(ξ)ξ|dξ .

b) In Fourier space we have

F ′∇′r(k′, z) = ik′F ′r(k′, z) = R−1F ′G(Rk′)F ′r(k′, z) = R−1F ′GR(k′)F ′r(k′, z),

where G is a Schwartz function and GR(x′) = R−dF ′G(x′/R). Since
∫
|GR|dx′ =

∫
|G|dx′

is independent of R, we may conclude by Young∫
|∇′r|dx′ ≤ 1

R

∫
|GR|dx′

∫
|r|dx′ . 1

R

∫
|r|dx′ .

Here we prove an elementary estimate that will be applied in the argument for (3.88) and (3.95),
Lemma 6

Lemma 8.
Let K = K(z) be a real function and define

K(z, z̃) =
z̃

z
|K(z̃ − z)−K(z + z̃)| .

Then

sup
z̃

∫ ∞
0

K(z, z̃)dz .
∫
R
|K(z)|dz + sup

z∈R
(z2|∂zK(z)|) . (3.121)
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Proof. Let us distinguish two regions: 1
2

∣∣ z̃
z

∣∣ < 1 and 1
2

∣∣ z̃
z

∣∣ > 1.
For |z| ≥ 1

2 |z̃| we have

sup
z̃

∫
|z|≥ 1

2
|z̃|
|K(z, z̃)|dz

≤ max
z̃

∫
|z|≥ 1

2
|z̃|
|K(z̃ − z)−K(z + z̃)|dz .

∫
|K(z)|dz .

While for the region |z| ≤ 1
2 |z̃| we have,

max
z̃
|z̃|
∫
|z|≤ 1

2
|z̃|

1

|z|
|K(z̃ − z)−K(z + z̃)|dz

= max
z̃
|z̃|
∫
|z|≤ 1

2
|z̃|

1

|z|

∣∣∣∣∫ 1

−1
K ′(z̃ + tz)zdt

∣∣∣∣ dz
≤ max

z̃
|z̃|
∫ 1

−1

1

t

∫
|z|≤ t

2
|z̃|
|K ′(z̃ + z)|dzdt

1
2
|z̃|≤|z̃+z|
≤ max

z̃

∫ 1

−1

1

t

∫
|z|≤ t

2
|z̃|

2|z̃ + z||K ′(z̃ + z)|dtdz

≤ max
z̃

∫ 1

−1

2

t
max
|z|≤ t

2
|z̃|

{
|z̃ + z||K ′(z̃ + z)|

}(∫
|z|≤ t

2
|z̃|
dz

)
dt

= max
z̃

∫ 1

−1

1

t
max
|z|≤ t

2
|z̃|
{|z̃ + z||K ′(z̃ + z)|}t|z̃|dt

= 2 max
z̃
|z̃| max
|z|≤ t

2
|z̃|
{|z̃ + z||K ′(z̃ + z)|}

1
2
|z̃|≤|z̃+z|
≤ 4 max

z̃
max
|z|≤ t

2
|z̃|
{|z + z̃|2|K ′(z̃ + z)|} .

In conclusion we have

max
z

∫
|K̄(z, z̃)|dz .

∫
|K(z)|dz + max

z
|z|2|K ′(z)| .

Heat kernel: elementary estimates In this section we recall the definition of the heat
kernel and some properties and estimates that we will use throughout the paper.
The function Γ : Rd × R→ R is defined as

Γ(x, t) =
1

td/2
exp

(
−|x|

2

4t

)
and we can rewrite it as

Γ(x, t) = Γ1(z, t)Γd−1(x
′, t) x′ ∈ Rd−1, z ∈ R,

where

Γ1(z, t) =
1

t1/2
exp

(
−z

2

4t

)
and

Γd−1(z, t) =
1

t(d−1)/2
exp

(
−|x

′|2

4t

)
.

Here we list the bounds on the derivatives of Γ that are used in Section 3.2.6, Lemma 6:
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1.

〈|(∇′)nΓd−1|〉′ ≈
1

t
n
2

. (3.122)

2. ∫
R
|∂nz Γ1|dz .

1

t
n
2

. (3.123)

3. ∫ ∞
0
|∂zΓ1(z, t)|dt =

∫ ∞
0

∣∣∣∣ 1

t̂3/2
exp

(
− 1

4t̂

)∣∣∣∣ dt̃ . 1 , (3.124)

where we have used the change of variable t̂ = t
z2

.

4.

sup
z∈R

(z|∂zΓ1(z, t)|) = sup
ξ

∣∣∣∣ 1

t
1
2

ξ2 exp−ξ
2

∣∣∣∣ . 1

t
1
2

, (3.125)

where we have used the change of variable ξ = z

t
1
2

.

5.
sup
z∈R

(
z2|∂zΓ1(z, t)|

)
= sup

ξ

∣∣∣ξ3 exp−ξ
2
∣∣∣ . 1 , (3.126)

where we have used the change of variable ξ = z

t
1
2

.
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Notations

The (d− 1)−dimensional torus:

We denote with [0, L)d−1 the (d− 1)−dimensional torus of lateral size L.
The spatial vector:

x = (x′, z) ∈ [0, L)d−1 × [0, 1] .

where L denotes the lateral horizontal cell-size.
Velocity vector:

u = u(x′, z, t) where u = (u′, uz)

uz := u · ez and u′ = (u · e1, · · · , u · ed−1)

where ez is the unit normal vector in the z− direction and e1, · · · , ed−1 are the unit normal
vectors in the x1, · · · , xd−1−directions respectively.
Gradient:

∇f =

(
∇x′
∂z

)
f

Laplacian:

∆f = ∆x′f + ∂2zf

The horizontal average:

〈·〉′ = 1

Ld−1

∫
[0,L)d−1

· dx′ .

Long-time and horizontal average:

〈·〉 = lim sup
t0→∞

1

t0

∫ t0

0
〈 · 〉′dt . (3.127)

Horizontal Fourier transform:

F ′f(k′, z) =
1

Ld−1

∫
[0,L)d−1

e−ik
′·x′f(x′, z)dx′ .

where k′ is the dual variable of x′.
Real part of an imaginary number :
Re stands for the real part of a complex number.
Complex conjugate :

F ′uz and F ′θ are the complex conjugates of the (complex valued) functions F ′uz and F ′θ.
Background profile:

τ =: [0, H]→ R such that τ(0) = 1 and τ(H) = 1

τ = τ(z) , ξ :=
dτ

dz
.
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Universal constant:
We call universal constant a constant C such that 0 < C < ∞ and it only depends on d.
Throughout the paper we will denote with . the inequality up to universal constants.
Convolution in the horizontal direction:

f ∗x′ g(x′) =

∫
[0,L)d−1

f(x′ − x̃′)g(x̃′)dx̃′ .

Convolution in the whole space:

f ∗ g(x) =

∫
R

∫
[0,L)d−1

f(x′ − x̃′, z − z̃)g(x̃′, z̃)dx̃′dz̃ .

Horizontally band-limited function:
A function g = g(x′, z, t) is called horizontally band-limited with bandwidth R if it satisfies the
bandedness assumption

F ′g(k′, z, t) = 0 unless 1 ≤ R|k′| ≤ 4 where R < R0. (3.128)

Interpolation norms:

||f ||(0,1) = ||f ||R;(0,1) = inf
f=f1+f2

{〈
sup
z∈(0,1)

|f1|

〉
+

〈∫
(0,1)
|f2|

dz

z(1− z)

〉}
,

||f ||(0,∞) = ||f ||R;(0,∞) = inf
f=f1+f2

{〈
sup

z∈(0,∞)
|f1|

〉
+

〈∫
(0,∞)

|f2|
dz

z

〉}
,

||f ||(−∞,1) = ||f ||R;(−∞,1) = inf
f=f1+f2

{〈
sup

z∈(−∞,1)
|f1|

〉
+

〈∫
(−∞,1)

|f2|
dz

1− z

〉}
.

where f0, f1 satisfy the bandedness assumption (3.128).
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