
Unbounded operators on Hilbert C∗-modules:
graph regular operators

Von der Fakultät für Mathematik und Informatik
der Universtät Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOKTOR der NATURWISSENSCHAFTEN
(Dr. rer. nat.)

im Fachgebiet

Mathematik

Vorgelegt

von Dipl.-Math. René Gebhardt
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1. Prof. Dr. Konrad Schmüdgen, Universität Leipzig

2. Prof. Dr. Evgenij V. Troitsky, Lomonossow-Universität Moskau

Die Verleihung des akademischen Grades erfolgt mit Bestehen der Vertei-
digung am 28.09.2016 mit dem Gesamtprädikat magna cum laude.
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Introduction

A theory of graph regular operators is developed in this thesis guided by the
case of commutative C∗-algebras and oriented towards Hilbert space theory. It is
applied to a fraction algebra that is related to the Weyl algebra, as well as to the
group C∗-algebra of the Heisenberg group and the Toeplitz algebra. Both the graph
regular and the more general orthogonally closed operators are new operator classes
that are considered on Hilbert C∗-modules the first time. There will be presented
a theory of graph regular operators concerning an (a, a∗, b)-transform developed
here, the bounded transform (also z-transform), the polar decomposition and the
functional calculus.

Essentially instead of densely defined operators are considered, that is the
operator’s domain has a trivial orthogonal complement. The adjoint is well-defined
in this case. An essentially defined operator t is graph regular if its graph G(t) is
orthogonally complemented and orthogonally closed if G(t)⊥⊥ = G(t).

As an analogon to the graph regular operators the association relation for con-
crete realised C∗-algebras is introduced and its correlation to the affiliation relation
is discussed. Thereby resolvent criteria for both relations are given. As a corollary
of this a Kato-Rellich theorem is deduced.

Hilbert C∗-modules are a well-established tool in the theory of C∗-algebras and
their applications. They have been invented by I. Kaplansky [Kap53] for commu-
tative C∗-algebras and by W. Paschke [Pas73] and M. Rieffel [Rie74] in the general
case. Standard textbooks are [Lan95] and [MT05].

Unbounded operators on Hilbert C∗-modules play an important role for the
study of noncompact quantum groups as S. L. Woronowicz has shown in [Wor91],
in KK-theory [BJ83], [Kuc97] where S. Baaj, P. Julg and D. Kucerovski have ap-
plied them and in noncommutative geometry [GVF01] done by H. Figueroa, J. M.
Gracia-Bondia and J. Varilly.

Regular operators form the most important class of unbounded operators on
Hilbert C∗-modules. They were invented by Baaj [Baa81], [BJ83] and extensively
studied by Woronowicz (and K. Napiórkowski) in a series of seminal papers [Wor91],
[WN92] and [Wor95]; without lose of generality (see [Pal99]) Woronowicz considered
only the case of operators on C∗-algebras itself and called them affiliated to the
algebra.

Unbounded operators on Hilbert C∗-modules are studied in [Hil89], [Kuc97],
[Pal99], [Kuc02], [Pie06], [FS10a], [FS10b], [KL12].

Only densely defined (closed) operators are considered in all of these funda-
mental works. This is correlated to the worse geometrical properties of Hilbert
C∗-modules compared to Hilbert spaces.

”
Useful“ classes of operators are gener-

ated by further assumption on the operators, this is expressed in the quality of
regularity. In this manner a closed operator t is called semi-regular, if D(t) and
D(t∗) are dense (Pal). If additionally the range of 1+t∗t is dense, t is called regular.

Checking the density of a right ideal in a C∗-algebra is already as hard as
computing all (irreducible) representations of this algebra and checking the corre-
sponding density in all Hilbert spaces of those representations (see [Dix77] Lemma
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2.9.4). (That was an occasion for Pal to investigate semi-regular operators.) Thus,
regularity of an operator is a strong postulation: On unital C∗-algebras exist only
bounded regular operators - the elements of the algebra itself.

The idea to quit the density of the operator’s domain can already be found
(for C∗-algebras explicitly) e.g. in the concepts of the symmetric algebra of quo-
tients and the local multiplier algebra (see [Ell76], [Ped78], [AM03]). The adjoint
is already well-defined, if the operator’s domain is essential, that is, it has a trivial
orthogonal complement. But from an operator point of view those concepts are
“unnatural”, since the domains are assumed to be two-sided ideals.

The origin of this thesis was the following question: Is it and how is it possible
to relate the function 1/x to the C∗-algebra C0(R)? Let me explain this problem
very shortly. The concept of affiliation enabled Woronowicz in [Wor91] to relate
all functions that are continuous on R via the bounded transform to the multiplier
algebra of C0(R), that is, Cb(R):

f 7→ zf :=
f√

1 + |f |2
∈ Cb(R) for f ∈ C(R).

Now, one can apply the theory of multiplier algebras to study those unbounded
operators. But for t(x) = 1/x is

zt(x) =
sgn(x)√
1 + x2

for x ∈ R \ {0},

hence zt can not be identified with some function in Cb(R). An easy way out
of this situation is to consider t as function on R \ {0} and come back to the
affiliation theory of Woronowicz. However, t is the inverse of the operator acting as
multiplication on C0(R) with the function x. But the latter is affiliated to C0(R)
and a theory that includes t and its inverse in one language seems to be useful. A
first idea was to consider another transform:

at(x) :=
1

1 + |t|2(x)
=

x2

1 + x2
, bt(x) :=

t(x)

1 + |t|2(x)
=

x

1 + x2
for x ∈ R \ {0}.

Now, at and bt can be identified with some functions in the multiplier algebra Cb(R)
and t can be recovered from the quotient bta

−1
t . This was the starting point for

this thesis.

If we consider 1/x as multiplication operator on C0(R), it is clear that its do-
main can not be dense. Hence, a study of (unbounded) operators on commutative
C∗-algebras seems to be a good guide already. Hilbert C∗-modules are generali-
sations of Hilbert spaces, hence a theory of (unbounded) operators on the Hilbert
C∗-modules should be oriented at the well-known theory of Hilbert spaces. In
particular, it should contain adjoints of operators.

A theory of operators avoiding those density criteria seems to be reasonable.

The purpose of this thesis was to study new examples of unbounded operators
on C∗-algebras and to find a class of (unbounded) operators relaxing the assump-
tions on regularity, such that there is still a “typical” operator theory one can work
with in applications. The graph regular operators on Hilbert C∗-modules achieve
this aim inasmuch as

α) they include the regular operators, but are in general not densely defined
anymore; their domain are essential, so an adjoint is given,

β) they can be characterized by certain triples of adjointable operators via
the so called (a, a∗, b)-transform,
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γ) a bounded transform is available,
δ) a regular operator can be associated to each graph regular one,
ε) the polar decomposition (with the restriction known from regular opera-

tors) is possible for those graph regular operators having an adjointable
bounded transform,

ϕ) a functional calculus is available.

Moreover several examples of graph regular operators are described that are
not regular.

ℵ) The graph regular operators on the C∗-algebra C0(X) of continuous func-
tions on a locally compact Hausdorff space vanishing at infinity can be
identified with those functions on X being continuous on an open and
dense subset of X such that the discontinuities are ”continuous poles”.
Note that this algebra is unital if X is compact.

i) On an unital (!) fraction algebra associated to the Weyl-algebra the posi-
tion and momentum operators are graph regular.

(ג On the group C∗-algebra of the Heisenberg group - in the basis {X,Y, Z}
the Lie-algebra is described by the commutation relations [X,Y ] = Z,
[X,Z] = 0, [Y,Z] = 0 - the inverse of Z is graph regular.

k) On the unital (!) Toeplitz algebra the Toeplitz operators with rational
symbol where the denominator has no zero in the open unit disc are graph
regular.

For concrete realised C∗-algebras the association and the affiliation relation are
discussed and compared. The following results are given:

A) Affiliated operators are associated.
B) If a C∗-algebra contains the compact operators, the associated operators

can be identified with the graph regular ones on the algebra. In particular,
the graph regular operators on the algebra of bounded operators can be
identified with the densely defined closed operators.

Γ) The multiplier algebra of a C∗-algebra consists precisely of the bounded
associated operators.

∆) Criteria for association and affiliation via resolvents.
E) A Kato-Rellich theorem for affiliated operators.

The text is organised as follows. Technical subtleties are still avoided; precise
definitions and further explanations will be given in the corresponding sections.

The first of either parts of this thesis addresses the idea of graph regularity in
three sightings each one given an own chapter.

Chapter 1 : The algebraic aspect of essential submodules is taken seriously
here while introducing unitary ∗-module spaces as a generalisation of Hilbert C∗-
modules. Thereby the algebraic arguments can be separated better from the topo-
logical ones; this thought is maintained until the transition to the second part. The
focus is on the orthogonality relation: essential submodules, orthogonal closure
(biorthogonal complement).

Chapter 2 : Another sighting consists in a development of an elementary the-
ory of essentially defined orthogonally closed operators (the graph coincides with
its biorthogonal complement). To each (orthogonal) projection corresponds an or-
thogonally closed submodule and vice versa. The essential core is introduced.

Chapter 3 : The third sighting deals with different types of regularity. The graph
regular operators are introduced; also weak and strong types are mentioned - the
latter one are just the regular operators in the context of Hilbert C∗-modules, so
we won’t give them a new name. All of them are orthogonally closed with further
properties to be gathered from the following table:
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D(t), D(t∗) R(1 + t∗t), R(1 + tt∗)

weak regular essential essential
graph regular essential dense

regular dense dense

In particular α) is respected. Projections and partial isometries are weakly regu-
lar. From the case C(X) we will gain a first insight to these regularities. A full
description of the sets of orthogonally closed, weakly regular, graph regular and
regular operators is given. Finally, we study graph regular operators in the general
case; the decision to study this type of regularity is justified by the results of the
second part and the achievement of β) already in this algebraic context. The term
“graph” regular stems from the observation that for an orthogonally closed oper-
ator t : E → F the ranges R(1 + t∗t) and R(1 + tt∗) are dense if and only if the
graph of t is orthogonally complemented: G(t)⊕ vG(t∗) = E ⊕ F .

In a transition chapter arguments for studying graph regularity on Hilbert C∗-
modules rather then on unitary ∗-module spaces are given. The existence of graph
regular operators depends on the existence of orthogonally complemented submod-
ules and we will see that on C[X] only trivial operators are graph regular.

The second part actually contains the study of graph regular operators on
Hilbert C∗-modules.

Chapter 4 : A careful investigation of operators on commutative C∗-algebras
shows where difficulties for a development of a general theory arises. The investi-
gation of C0(X) can be still considered as a sighting but it is also a preparation for
the functional calculus. We achieve ℵ) and show some phenomena of graph regular
operators (unknown for regular ones) that occur even in this simple situation.

An interjection shows that cum grano salis bounded graph regular operators
are already adjointable. Hence, graph regularity is addressed to unboundedness.
From the beginning the main interest was on unbounded operators, and the above
observation fits very nicely to this.

Chapter 5 : Graph regularity behaves well with adjointable operators with re-
spect to addition and composition. Closed quotients of adjointable operators are
graph regular, which gives a source for examples at hand. Indeed, the graph regu-
larity is verified this way in all three examples i), (ג and k).

Chapter 6 : For concrete realised C∗-algebras A ⊆ B(H) and closed operators T
on H the new association relation (TµA) is introduced generalising the affiliation
relation (TηA) - aim A). Association is the analogon of graph regularity on this
algebra (as affiliation is for regularity). It is deduced that the graph regular opera-
tors on the algebra of compact operators as well on the unital algebra of bounded
operators on a Hilbert space can be identified with the closed operators - aim B).
Further, a bounded operator is associated to A if and only if it belong to the corre-
sponding multiplier algebra M(A) - aim Γ). If 0 belongs to resolvent set of T , TµA
if and only if T−1 ∈ M(A). If λ is in the resolvent set of T , then TηA if and only
if (T − λ)−1 ∈ M(A) and (T − λ)−1A and (T ∗ − λ)−1A are dense in A. This is
∆). As application of ∆) one deduces E): For a self-adjoint TηA and a symmetric
operator S with T -bound less then 1 is (T + S)ηA, if S(T − λ)−1 ∈ M(A) for some
(any) λ in the resolvent set of T .

Chapter 7 : Here are the examples i), (ג and k) presented.
Chapter 8 : The bounded transform - aim γ) - assigns to each graph regular

operator an adjointable one on an in general smaller Hilbert C∗-module such that
one can associate a regular operator (on this Hilbert C∗-submodule) to this operator
- aim δ. The image of the set of regular operators from E into F under the
(injective) bounded transform maps onto Zd(E,F ), a certain subset of the algebra
L(E,F ) of adjointable operators. The inverse of this transform is enlarged to
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Z(E,F ) ⊆ L(E,F ). This extension maps into the set of graph regular operators,
but is not onto. In this sense some graph regular operators are said to have an
adjointable bounded transform.

Chapter 9 : A polar decomposition is possible for graph regular operators with
adjointable bounded transform if the closures of the ranges of the operator and its
adjoint are orthogonally closed - aim ε). This generalises the polar decomposition
known for regular operators in two directions. It applies even to graph regular
operators, but also to a larger class of regular ones.

Chapter 10 : A continuous functional calculus (with function in C0(C)u 1C) is
constructed for normal graph regular operators - aim φ).

Chapter 11 : Further counter examples are given to round out the theory devel-
oped so far. We study C∗-algebras constructed by matrices.

During my stipendiary scholarship at the International Max Planck Research
School at the Max Planck Institut for Mathematics in the Science in Leipzig, to-
gether with K. Schmüdgen I completed a paper [GS15]. We already presented large
parts of this thesis there, so it is necessary to clarify which content of this thesis is
not alone up to me.

All chapters are done and invented by myself, except for what I have quoted,
Lemma 90 and Theorem 95 in chapter 6, and chapter 7b) where the application of
Proposition 58 to prove graph regularity was my only input.

Finally, there are some remarks to make. The reader should be familiar with
C∗-algebras (and Hilbert C∗-modules), although everything will be defined and
quoted. Definitions that are in no way new, won’t be given a separate environment.
General notations are collected in an appended section.





Sightings
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Unitary ∗-module spaces
Algebraic essence of adjointability on Hilbert C∗-modules

After fixing some standard notations for Hilbert C∗-modules in the first section,
we prepare the first sighting in the second section with a discussion of essential sub-
modules and orthogonally closed ones. We characterize them for the commutative
C∗-algebra C0(X). The simple but central observation of this chapter is:

For a unique definition of an operator’s adjoint it is only neces-
sary to have an essential domain.

Since this enables us to define the adjoint without referring to some topology on
the space a possibility shows up to leave the sphere of Hilbert C∗-modules for a
moment; in the third section we study the more general unitary ∗-module spaces.

The adjoint was just a motivation for this chapter and will be investigated in
the next chapter where we start a general study of operators on unitary ∗-module.

a) Operators on Hilbert C∗-modules - Notions

The result of the following summary of Hilbert C∗-modules can be found in
[Lan95]. Initially, we present the definition of pre-Hilbert C∗-module over a C∗-
algebra A while fixing the notations: They are pairs (E, 〈., .〉) consisting of a right
A-module E, where E is also a vector space over C, and a mapping 〈., .〉 : E×E → A
- abusing the language this mapping is called an scalar product -, such that for
α, β, λ ∈ C, x, y, z ∈ E and a ∈ A

λ(xa) = (λx)a = x(λa) (connection of the vector space

and the module structure),

〈z, αx+ βy〉 = α 〈z, x〉+ β 〈z, y〉 (C-linearity of 〈., .〉 in the second entry),

〈x, ya〉 = 〈x, y〉 a (A-linearity of 〈., .〉 in the second entry),

〈x, y〉 = 〈y, x〉∗ (symmetry of 〈., .〉),
〈x, x〉 ≥ 0 (positivity of 〈., .〉),

〈x, x〉 = 0⇒ x = 0 (non-degeneracy of 〈., .〉).

Obviously, for α, β ∈ C, x, y, z ∈ E, a ∈ A is

〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 (C-antilinearity of 〈., .〉 in the first entry),

〈xa, y〉 = a∗ 〈x, y〉 (A-antilinearity of 〈., .〉 in the first entry).

A pre-Hilbert C∗-module (E, 〈., .〉) over A is a Hilbert C∗-module over A, if E
is complete in the norm ‖.‖E that is given by

‖x‖E := ‖ 〈x, x〉 ‖1/2A for x ∈ E.

For the sake of clarity the (pre)-Hilbert C∗-module (E, 〈., .〉) will be denoted
just by E or the symbol 〈., .〉 will be extended to 〈., .〉E , whenever this is sensible.

We have the inequality

‖ 〈x, y〉 ‖A ≤ ‖x‖E‖y‖E for x, y ∈ E,
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and the equality

‖x‖ = sup{‖ 〈x, y〉 ‖ : y ∈ E, ‖y‖ ≤ 1} for x ∈ E.
Important examples of Hilbert C∗-modules are the C∗-algebras itself:

Example 1. Each C∗-algebra A is a (right)-module over itself. Further, by
defining 〈., .〉 on A×A via

〈a, b〉 := a∗b for a, b ∈ A,
(E = A, 〈., .〉) becomes obviously a pre-Hilbert C∗-module. In fact, E is complete

with respect to ‖.‖E , since ‖a‖E = ‖ 〈a, a〉 ‖1/2A = ‖a∗a‖1/2A = ‖a‖A for a ∈ E by
the C∗-condition and (A, ‖.‖A) is complete.

The direct sum of two Hilbert A-modules is again complete, hence a Hilbert
A-module.

By an operator t from a Hilbert A-module E into a Hilbert A-module F we
mean a C-linear and A-linear mapping defined on a right A-submodule D(t) of E
which is called the domain of t. The symbol t : E → F always denotes an operator
from E into F . The C-linearity and A-linearity of t means that

t(λx) = λt(x) and t(xa) = t(x)a for λ ∈ C, x ∈ D(t), a ∈ A.
For an operator t : E → F , its null space N (t) := {x ∈ E|tx = 0} is a right
A-submodule of E, its range R(t) := {tx|x ∈ D(t)} is a right A-submodule of F
and its graph G(t) := {(x, tx)|x ∈ D(t)} is a right A-submodule of E ⊕ F . As in
the case of ordinary Hilbert space operators we say t is closed if G(t) is closed in
E ⊕ F and t is closable if there exists an operator s which is a closed extension of
t. In this case there exists a unique closed operator, denoted by t and called the
closure of t such that G(t) = G(t).

There are three important classes of operators on Hilbert C∗-modules so far:
adjointable, regular operators and semi-regular operators. Adjointable operators
are regular and both of them are invented as analogues of the bounded respec-
tively closed unbounded operators on Hilbert spaces. One should notice that by
their definitions these operators classes compensate the geometrical defect of Hilbert
C∗-modules (with respect to Hilbert spaces): Not all closed submodules are orthog-
onal complemented; this corresponds to the existence of closed proper submodules
having a trivial orthogonal complement.

We repeat from [Lan95] p. 8 and p. 96: An operator t : E → F is adjointable
if its domain is all of E and the adjoint’s domain is all of F . A closed operator t
is called regular if it domain is dense in E, the adjoint’s domain is dense in F and
the range of 1 + t∗t is dense in E.

Adjointable operators are bounded and regular. Examples for bounded opera-
tor t that are defined on the whole space such that the adjoint is not densely defined
are e.g. given in chapter 11.

The set L(E) of adjointable operators on a Hilbert C∗-module E becomes a
C∗-algebra with the operator norm.

Pal studied in [Pal99] semi-regular operators, that is, “regular” operators for
which the range of 1 + t∗t is not dense anymore. This thesis relaxes the definition
of regular operators in another direction. For graph regular operators we relax the
density of the operator’s domains but hang on the idea to have a dense range of
1 + t∗t.
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b) Essential submodules and adjointability

First, the orthogonality relation will be introduced together with definitions,
that are concerned with situations that can not appear in the Hilbert space case.
Thereafter the phenomena are exemplarily presented at the C∗-algebra C0(X).

Suppose that E is a Hilbert A-module. If x, y ∈ E and 〈x, y〉 = 0, we write
x⊥y. For a subset F of E, the set

F⊥ := {x ∈ E|∀y ∈ F : 〈x, y〉 = 0}
is called the orthogonal complement of F . A subset F of E is said to be essential
if F⊥ = {0}. A submodule F of E is called orthogonally closed if F = F⊥⊥ and
orthogonally complemented if F ⊕ F⊥ = E.

Example 2. For the C∗-algebra C0(X) of continuous functions on a locally
compact Hausdorff X space vanishing at infinity each closed ideal is of the form

IO := {f ∈ C0(X)|∀x ∈ X \O : f(x) = 0}
for some open subset O ⊆ X (see [GJ76]). The mapping O → IO is a bijection of
the open subsets of X onto the closed ideals of C0(X). For x ∈ X we have x ∈ O
if and only if there exists f ∈ IO with f(x) 6= 0. The following facts are easily
verified and will be proofed in Example 10:

• I⊥O = I(X\O)◦ .
• IO is essential in C0(X) if and only if O is dense in X.
• IO is orthogonally closed if and only if O coincides with the interior of its

closure.
• IO is orthogonally complemented if O is closed.

Now, we turn to the main observation of this chapter. Let E,F be Hilbert
A-modules and t : E → F be an operator. Let y ∈ F such that there exists a z ∈ E
with 〈tx, y〉 = 〈x, z〉 for all x ∈ D(t). In this case, z is unique if and only if D(t) has
a trivial orthogonal complement, that is, t is essentially defined. Hence, we have

Definition. Let t : E → F be an essentially defined operator. The adjoint t∗

of t is given by

D(t∗) := {y ∈ F |∃z ∈ E : ∀x ∈ D(t) : 〈tx, y〉 = 〈x, z〉},
t∗y := z for y ∈ D(t∗).

We have

〈tx, y〉 = 〈x, t∗y〉 for x ∈ D(t), y ∈ D(t∗),

and t∗ is the largest operator with this property.
Having this definition established, it appropriate to focus the reader’s attention

to the following point: The above definition of the adjoint operator is sensible, only
if the operator’s domain is essential; hence its density is no longer necessary, that
is, the Hilbert C∗-module’s topology plays a subordinate role. (A dense submodule
is still essential.) Therefore, it is advisable to leave the Hilbert C∗-module case
for a moment: To be able to clarify later where topological arguments enter, we
study an operator theory on a purely algebraic structure, the unitary ∗-module
spaces to be defined below. Indeed, we will see, that our objects of interest, the
graph regular operators, can already be characterized by a transform already in
this purely algebraic setup. The so called (a, a∗, b)-transform will also be useful in
the Hilbert C∗-module case later on.
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c) From Hilbert C∗-modules to unitary ∗-module spaces

But now the question is: To which extend do we want to generalize the Hilbert
C∗-modules? At hand is to exchange the C∗-algebra by a ∗-algebra. To this idea a
remarks can be made. In contrast to C∗-algebras which have only one appropriate
cone of positive elements, this is not true for ∗-algebras. Hence this ∗-algebra
should come with a associated cone. Secondly, we can weaken the conditions on
the mapping 〈., .〉, since the main theorem in the algebraic case is still valid if 〈., .〉
maps into a ∗-bimodule over the ∗-algebra - now we have already in mind, that
this ∗-bimodule comes with a cone. Let me now introduce precisely the structure
of unitary ∗-module spaces.

Let A be a ∗-algebra. A ∗-bimodule S over A is an A-bimodule S which is
also a vector space over C, where λ(sa) = (λs)a = s(λa) for λ ∈ C, s ∈ S, a ∈ A,
together with a mapping s 7→ s∗ on S called involution, that is,

(s∗)∗ = s for s ∈ S,
(as)∗ = s∗a∗, (sa)∗ = a∗s∗ for a ∈ A, s ∈ S,

(s+ t)∗ = s∗ + t∗ for s, t ∈ S,
(λs)∗ = αs∗ for λ ∈ C, s ∈ S.

Note that the involution on the ∗-algebra is denoted in the same way; since they
act on different sets, a single notation is still adequate. Clearly (asb)∗ = ((as)b)∗ =
b∗(as)∗ = b∗s∗a∗ for a, b ∈ A, s ∈ S. Let Sh := {s ∈ S|s = s∗} be the set of
hermitian elements of S. A cone of S is a set P ⊆ Sh, such that

P + P ⊆ P, λP ⊆ P for λ ∈ R+, P ∩ (−P) = {0}.
Together with a cone P the ∗-bimodule S becomes a ordered ∗-bimodule: The order
is given by s ≥ t for s, t ∈ S if s− t ∈ P.

Example 3. If A is a ∗-algebra, then A is in the obvious way a ∗-bimodule
over any sub-∗-algebra of A.

Example 4. If A is a ∗-algebra, then any ∗-ideal of A is in the obvious way a
∗-bimodule over A.

Definition. The triple (E, (S,P), 〈., .〉) is an unitary ∗-module space over the
∗-algebra A if E is a right A-module which is also a vector space over C - again
λ(xa) = (λx)a = x(λa) for λ ∈ C, x ∈ E and a ∈ A -, (S,P) is an ordered
∗-bimodule over A and 〈., .〉 : E × E → S is a mapping such that for α, β ∈ C,
x, y, z ∈ E and a ∈ A
〈z, αx+ βy〉 = α 〈z, x〉+ β 〈z, y〉 (C-linearity of 〈., .〉 in the second entry),

〈x, ya〉 = 〈x, y〉 a (A-linearity of 〈., .〉 in the second entry),

〈x, y〉 = 〈y, x〉∗ (symmetry of 〈., .〉),
〈x, x〉 ≥ 0 (positivity of 〈., .〉),

〈x, x〉 = 0⇒ x = 0 (non-degeneracy of 〈., .〉).

If it is convenient 〈., .〉 will be denote by 〈., .〉E to assure that it belongs to E;
abusing terminology, the map 〈., .〉 is called scalar product. Further, if no confusion
can arise (E, (S,P), 〈., .〉E) will be shortened up to E. A submodule of E is always
assumed to be also a subspace. This definition is a generalization of unitary spaces
(for S = A the complex numbers and P the non-negative reals).

We have the polarisation identity

4 〈x, y〉 =
∑3

n=0
in 〈x+ iny, x+ iny〉
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The set ∑
〈E,E〉 := {

∑n

i=1
〈xi, xi〉 |n ∈ N, x1, . . . , xn ∈ E}

is a cone of S contained in P. Moreover, it is even a pre-quadratic module, that is,
we have additionally

a∗
∑
〈E,E〉 a ⊆

∑
〈E,E〉 for a ∈ A.

This follows immediately from a∗ 〈x, x〉 a = 〈xa, xa〉 for a ∈ A, x ∈ E.
But, why do we not assume directly this set to be a cone? This would be

possible and recommendable, when dealing only with one unitary ∗-module space.
If more are involved, we will always assume that all scalar products map into the
same ordered ∗-module. This will assure the direct sum of those to be again an
unitary ∗-module space. Otherwise the direct sum can become degenerated, which
could be circumvented by assuming a compatibility for the different cones, say PE
and PF in the case of two spaces: PE ∩ (−PF ) = {0}, as one can read off from
Proposition 5 below. But we will have no need for this.

Assume (E, (S,P), 〈., .〉E) and (F, (S,P), 〈., .〉F ) are unitary ∗-module spaces
over the ∗-algebra A. Let E ⊕ F be the direct sum of the A-modules E and F .
Define the mapping 〈., .〉E⊕F : (E ⊕ F )× (E ⊕ F )→ S via

〈(e1, f1), (e2, f2)〉E⊕F := 〈e1, e2〉E + 〈f1, f2〉F for e1, e2 ∈ E, f1, f2 ∈ F.

Proposition 5. (E ⊕ F, (S,P), 〈., .〉E⊕F ) is an unitary ∗-module space over
A, where E ⊕ F is the direct sum of the modules E and F .

Proof. We will only prove the non-degeneracy of 〈., .〉E⊕F ., since the other
statements are quiet easy and less instructive. Assume 〈(x, y), (x, y)〉E⊕F = 0 for
x ∈ E, y ∈ F . Then 〈x, x〉E = −〈y, y〉F ∈ P ∩ (−P), so 〈x, x〉E = 0 and x = 0.
Analogously y = 0, so the assertion is shown. �

Before studying unitary ∗-modules and the operators on them in detail, we give
two important examples. The first

Example 6. A Hilbert C∗-module (E, 〈., .〉E) over A is indeed an unitary ∗-
module space over A, when we set (E, (S,P), 〈., .〉E) := (E, (A,A+), 〈., .〉E).

The second

Example 7. Unitary ∗-module spaces overA being of the form (E, (A,P), 〈., .〉),
that is, the ∗-algebra is at the same time the ∗-bimodule, so the scalar product maps
A×A into A, could be called unitary ∗-modules.

More special: The ∗-algebra itself could be considered as unitary ∗-module
space over itself, but not for all of them is

∑
〈A,A〉 indeed a cone. If we set

〈a, b〉 := a∗b for a, b ∈ A and if P is a cone for A with
∑
〈A,A〉 ⊆ P, then

(A, (A,P), 〈., .〉) is an unitary ∗-modules spaces over A. This is true e.g. for O∗-
algebras, see [Sch90] Lemma 2.6.2 (i).

For the rest of this section let E be an unitary ∗-module spaces over A. The
scalar product 〈., .〉 enables us to consider an orthogonality relation.

Definition. For a subset F ⊆ E let

F⊥ := {x ∈ E|∀y ∈ F : 〈x, y〉 = 0}

be the orthogonal complement of F in E. If 〈x, y〉 = 0 for some x, y ∈ E let x⊥y
and call x orthogonal to y.

Clearly, x⊥y if and only if y⊥x, since 〈x, y〉∗ = 〈y, x〉.
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Lemma 8. For F,G ⊆ E is

F ⊆ F⊥⊥, F ⊆ G =⇒ G⊥ ⊆ F⊥, F⊥ = F⊥⊥⊥.

Further, F⊥ is a submodule of E.

Proof. If x ∈ F , then x⊥y for all y ∈ F⊥, so x ∈ F⊥⊥. Now assume F ⊆ G. If
x ∈ G⊥, then x⊥y for all y ∈ G. In particular, x⊥y for all y ∈ F , so x ∈ F⊥. From
these statements it follows F⊥ ⊆ F⊥⊥⊥ ⊆ F⊥, so equality holds. To show that F⊥

is a submodule, let x, y ∈ F⊥, a ∈ A, α ∈ C. Then 〈z, x+ αy〉 = 〈z, x〉+α 〈z, y〉 = 0
for all z ∈ F , so x+ αy ∈ F⊥, and 〈z, xa〉 = 〈z, x〉 a = 0, so xa ∈ F⊥. �

It is easy to see, that E⊥ = {0} and {0}⊥ = E.
For subsets F,G ∈ E let F + G := {f + g|f ∈ F, g ∈ G}. If F ⊆ G⊥ let

F ⊕G := F +G. Since F ⊆ G⊥ implies G ⊆ G⊥⊥ ⊆ F⊥, it is F ⊕G = G⊕ F . In
particular, F ⊆ (F⊥)⊥, so it is justified to write F ⊕ F⊥.

Definition. A submodule F of E is called essential if F⊥ = {0}. F is called
orthogonally closed if F = F⊥⊥ and orthogonally complemented if F ⊕ F⊥ = E.

In the next lines these concepts will be discussed to some detail. By Lemma 8,
F⊥ is always orthogonally closed and every proper essential submodule F of E is
not orthogonally closed, since F⊥ = {0} implies F ( E = F⊥⊥.

In the following example a construction of submodules that are not orthogonally
complemented is given using proper essential submodules.

Example 9. Let G′ ( G be an essential submodule of a unitary ∗-module space
G and put E := G⊕G′. Further let F := {(x, x)|x ∈ G}. Then (x1, x2) ∈ G⊕G′
is orthogonal to F if and only if 〈x1 + x2, x〉 = 〈(x1, x2), (x, x)〉 = 0 for all x ∈ G′.
Since G′ is an essential submodule of G this is equivalent to x1 = −x2 ∈ G′, that is,
F⊥ = {(x,−x)|x ∈ G′}. Clearly, F⊕F⊥ = G′⊕G′ 6= E. Moreover (x1, x2) ∈ G⊕G′
is orthogonal to F⊥ if and only if 〈x1 − x2, x〉 = 〈(x1, x2), (x,−x)〉 = 0 for all
x ∈ G′. Again, since G′ is an essential submodule, x1 = x2 ∈ G′, so F⊥⊥ = F .
Finally, this gives

F⊥⊥ ⊕ F⊥ 6= E.

Now, we show how orthogonality acts in the commutative case of continuous
function on a locally compact Hausdorff space.

Example 10. Let X be a locally compact Hausdorff space X. Let C be the
∗-algebra C(X) or Cb(X) or C0(X). The involution on C is just given by the
pointwise complex conjugate.

Let C≥ be the set of pointwise non-negative functions of C. Clearly C≥ is a
cone. Via Example 7, we can consider C as unitary ∗-module space over itself. For
a subset O of X let

IO := {f ∈ C|∀x ∈ X \O : f(x) = 0}.

Since X \O = X \O◦ and IO consists only of continuous functions, without lose of
generality O can assumed to be open: IO = IO◦ . For an open set O we have x ∈ O
if and only if there exists an f ∈ IO with f(x) 6= 0, since X is locally compact
Hausdorff. This implies that the mapping O → IO is injective on the set of open
subsets of X, and that IO ⊆ IO′ if and only if O ⊆ O′ for open sets O,O′. In
particular I∅ = {0} and IX = C.

Next we prove

I⊥O = I(X\O)◦ .(⊥)
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If f ∈ IO and g ∈ I(X\O)◦ = IX\O, then f ≡ 0 on X \ O and g ≡ 0 on O, hence

〈f, g〉 = fg = 0. So I(X\O)◦ ⊆ I⊥O . Now, let g⊥IO. If x ∈ O, then there exists

f ∈ IO with f(x) 6= 0, so f(x)g(x) = 〈f, g〉 (x) = 0, so g(x) = 0. Therefore,
g ∈ IX\O = I(X\O)◦ . This proves (⊥).

In particular, this implies that if O is open, then:

• IO is essential if and only if O is dense,
• IO is orthogonally closed if and only if O coincides with the interior of its

closure: (X \ (X \O)◦)◦ = (X \ (X \O))◦ = O
◦

implies I⊥⊥O = IO◦ ,
Finally is proven, that for open O:

• IO is orthogonally complemented if O is closed.

Assume O is open and closed. If f ∈ C, let fO be the function on X that coincides
with f on O and is 0 on X \O. Since f is continuous and O is open and closed, fO is
continuous. Clearly fO ∈ IO. Similarly, fX\O := f − fO ∈ IX\O = I(X\O)◦ = I⊥O .

Therefore, f ∈ IO ⊕ I⊥O , so IO is orthogonally complemented. To the contrary
assume now IO⊕I⊥O = C for some open set O. To prove that X \O is open, assume
x ∈ X \O. Since X is locally compact, there is a function f ∈ C with f(x) 6= 0. By
assumption, f = fO + fX\O for some fO ∈ IO and fX\O ∈ I⊥O = I(X\O)◦ . Since
x ∈ X \O, fO(x) = 0, so fX\O(x) 6= 0. Since fX\O is continuous, it does not vanish
in some neighbourhood of x. Hence this neighbourhood is contained in the interior
of X \O; so does x.

The next few results are concerned with sums and intersections of submodules.
Some ideas for the proof are taken from [MM70].

Lemma 11. Let (Fi)i∈I be a family of subsets of E. Then(⋂
i∈I

Fi

)⊥
⊇ span{F⊥i |i ∈ I}⊥⊥, (span{Fi|i ∈ I})⊥ =

⋂
i∈I

F⊥i .

If further all Fi are orthogonally closed, then so is
⋂
i∈I Fi and⋂

i∈I
Fi = (span{F⊥i |i ∈ I})⊥.

Proof. It is easy to see that span{F⊥i |i ∈ I} ⊆
(⋂

i∈I Fi
)⊥

. Since the latter
is orthogonally closed, the first statement is established.

Now, (span{Fi|i ∈ I})⊥ ⊆
⋂
i∈I F

⊥
i is again directly proven. Therefore

(span{Fi|i ∈ I})⊥⊥ ⊇

(⋂
i∈I

F⊥i

)⊥
⊇ (span{F⊥⊥i |i ∈ I})⊥⊥ ⊇ (span{Fi|i ∈ I})⊥⊥,

hence equality holds and (span{Fi|i ∈ I})⊥ =
(⋂

i∈I F
⊥
i

)⊥⊥
follows. It remains to

show that
⋂
i∈I F

⊥
i is already orthogonally closed: For all i ∈ I is

⋂
i∈I F

⊥
i ⊆ F⊥i ,

so (
⋂
i∈I F

⊥
i )⊥⊥ ⊆ F⊥i since F⊥i is orthogonally closed. Therefore (

⋂
i∈I F

⊥
i )⊥⊥ ⊆⋂

i∈I F
⊥
i .

The last assertion follows from the second: Replace Fi by F⊥i , taking F⊥⊥i = Fi
into account. �

Lemma 12. Let F be a subset of E. Then F ⊕ F⊥ is essential.

Proof. By Lemma 11 (F ⊕ F⊥)⊥ = F⊥ ∩ F⊥⊥, so any element in this set is
orthogonal to itself, hence it is zero. �
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Proposition 13. Let F ⊆ G be submodules of E. Then

(1) (F ⊕ F⊥) ∩ (G⊕G⊥) = F ⊕G⊥ ⊕ (F⊥ ∩G).
(2) If G is orthogonally closed, then (F ⊕F⊥)∩(G⊕G⊥) = F ⊕G⊕(F ⊕G)⊥

is essential.
(3) If F⊥ ∩G = {0}, then F⊥ ∩ (G⊕G⊥) = G⊥.

Proof. (1): Assume that x = f + f⊥ = g + g⊥ with f ∈ F , f⊥ ∈ F⊥,
g ∈ G, g⊥ ∈ G⊥. Then f − g = g⊥ − f⊥ ∈ G ∩ F⊥, since G⊥ ⊆ F⊥. So
x = f + g⊥ + (f⊥ − g⊥) ∈ F ⊕ G ⊕ (F⊥ ∩ G). This shows one inclusion. To
the contrary assume x = f + g⊥ + h with f ∈ F , g⊥ ∈ G⊥, h ∈ F⊥ ∩ G. Then
x = f + (g⊥ + h) ∈ F ⊕ F⊥ and x = g⊥ + (f + h) ∈ G⊥ ⊕G, so equality is shown.

(2): Since G = G⊥⊥, it is (F⊥ ∩G) = (F ⊕G⊥)⊥ by Lemma 11. With (1) and
Lemma 12 the assertion follows.

(3): Follows from (1) when intersected with F⊥ and inserting F⊥∩G = {0}. �
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2. Operators on unitary ∗-module spaces
Basic theory

Our second sighting is a look at an operator theory on unitary ∗-module spaces,
that is, on the algebraic kernel of Hilbert C∗-modules as it is suitable for our aims.
We study essentially defined operators and their adjoints (Theorem 15), introduce
and study orthogonally closed operators (Theorem 17 and Proposition 18), projec-
tions (Proposition 22) and the essential core (Proposition 24).

In the sequel, the mappings u, v : E ⊕ F → F ⊕ E are defined via

u(x, y) := (y, x), v(x, y) := (y,−x) (x ∈ E, y ∈ F ).

This mappings are unitary, which is justified by the following

Lemma 14. If G ⊆ E ⊕ F , then uG⊥ = (uG)⊥ and vG⊥ = (vG)⊥.

Proof. Let (x, y) ∈ G⊥ and (r, s) ∈ G, then

〈u(x, y), u(r, s)〉 = 〈(y, x), (s, r)〉 = 〈(x, y), (r, s)〉 = 0,

so uG⊥ ⊆ (uG)⊥. Conversely, if (x, y) ∈ (uG)⊥ and (r, s) ∈ G, then

〈u(x, y), (r, s)〉 = 〈(y, x), r, s〉 = 〈(x, y), (s, r)〉 = 〈(x, y), u(r, s)〉 = 0,

so u(x, y) ∈ G⊥ and finally (x, y) ∈ uG⊥. Analogously, vG⊥ = (vG)⊥. �

In this chapter, we let E, F and G be unitary ∗-module spaces over A.

An operator t from E to F is a C-linear and A-linear map t defined on a sub-
module D(t) ⊆ E, which is called the domain: t(λxa) = λt(xa) = t(λx)a for all
λ ∈ C, x ∈ D(t), a ∈ A. For short tx is the image of x. Let N (t) := {x ∈ E|tx = 0}
the null space of t, which is a submodule of E, R(t) := {tx|x ∈ D(t)} the range of
t, which is a submodule of F and G(t) := {(x, tx)|x ∈ D(t)} ⊆ E ⊕ F the graph of
t, which is a submodule of E ⊕ F . An operator t is a restriction of the operator s
or s is an extension of t, denoted t ⊆ s, if D(t) ⊆ D(s) and tx = sx for x ∈ D(t). If
D ⊆ D(t), then t �D denotes the restriction of t to the domain D.

Now, a first group of important definitions is given.

Definition. An operator t : E → F is called orthogonally closed if G(t) is
orthogonally closed, that is, G(t)⊥⊥ = G(t). t is called orthogonally closable if
G(t)⊥⊥ = G(s) for some (orthogonally closed) operator s.

Definition. An operator t from E into F is called essentially defined if D(t)
is an essential submodule of E.

Definition. For an essentially defined operator t from E to F let

D(t∗) := {y ∈ F |∃z ∈ E : ∀x ∈ D(t) : 〈tx, y〉F = 〈x, z〉E},
t∗y := z.

We call t∗ the adjoint of t.
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Since D(t) is an essential submodule z is unique and t∗y is well-defined. It is
easy to see that t∗ is indeed an operator from F into E (linearity in C and A) with
the property

〈tx, y〉 = 〈x, t∗y〉 (x ∈ D(t), y ∈ D(t∗)).

As in the case of unitary spaces, D(t∗) can reduce to {0}. For later use, we also
give at this point

Definition. Two operators t : E → F and s : F → E are called formally
adjoint to each other if

〈tx, y〉 = 〈x, sy〉 (x ∈ D(t), y ∈ D(s)).

Neither t nor s is assumed to be essentially defined. But if t is, then s is a
restriction of t∗. On the other hand if t is essentially defined but t∗ is not, then t
and t∗ are formally adjoint to each other; of course t is not the adjoint of t∗ in this
case, since the latter is not essentially defined.

Theorem 15. Let t : E → F be essentially defined. Then G(t∗) = vG(t)⊥. In
particular t∗ is orthogonally closed.

Proof. Let (y, t∗y) ∈ G(t∗). Then 〈(y, t∗y), v(x, tx)〉 = 〈y, tx〉 − 〈t∗y, x〉 = 0
for x ∈ D(t) , so (y, t∗y) ∈ (vG(t))⊥. Conversely, let (y, z) ∈ (vG(t))⊥. For x ∈ D(t)
is 〈tx, y〉 − 〈x, z〉 = 〈v(x, tx), (y, z)〉 = 0, so y ∈ D(t∗) and z = t∗y. �

Corollary 16. Let t : E → F be essentially defined. Then G(t) ⊕ vG(t∗) is
an essential submodule of E ⊕ F .

Proof. This is just Theorem 15 combined with Lemma 12. �

Theorem 17. Let t be an essentially defined operator from E into F . Then
D(t∗) is essential if and only if t is orthogonally closable.

In this case, t ⊆ t∗∗ and t is orthogonally closed if and only if t = t∗∗; more
precisely, G(t)⊥⊥ = G(t∗∗). Further, t∗ = t∗∗∗.

Proof. Let D(t∗) be an essential submodule of F . Then t∗ has an adjoint
and by applying Theorem 15 twice (to t and t∗) is G(t∗∗) = vG(t∗)⊥ = G(t)⊥⊥,
therefore t ⊆ t∗∗. That is t is orthogonally closable and essentially defined. Clearly
G(t)⊥⊥ = G(t) if and only if t = t∗∗. Using once again Theorem 15 it follows
G(t∗∗∗) = vG(t∗∗)⊥ = vG(t)⊥⊥⊥ = vG(t)⊥ = G(t∗).

Now let G(t)⊥⊥ = G(s) for some (essentially defined) operator s. Assume
z ∈ D(t∗)⊥. Then 〈(−z, 0), (y, t∗y)〉 = −〈z, y〉 + 〈0, t∗y〉 = 0 for all y ∈ D(t∗), so
(z, 0) ∈ vG(t∗)⊥ = G(t)⊥⊥ = G(s), so z = 0, since s is an operator. �

Let

C′o(E,F ) := {t : E → F |D(t),D(t∗) are essential},
Co(E,F ) := {t : E → F |D(t),D(t∗) are essential,G(t) is orthogonally closed}.

By Theorem 17 C′o(E,F ) (resp. Co(E,F )) is the set of orthogonally closable
(resp. closed) operators that are essentially defined. Let C′o(E) := C′o(E,E),
Co(E) := Co(E,E). The operator t∗∗ can be seen as the orthogonal closure of
the orthogonally closable operator t.

The operators behaving best when one is concerned with the adjoint will be
defined in the next

Definition. An operator t ∈ Co(E,F ) is called adjointable if D(t) = E and
D(t∗) = F .
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The set of adjointable operators from E into F by is denoted by L(E,F ); set
L(E) := L(E,E).

Proposition 18. Let t : E → F be essentially defined. Then

(1) N (t∗) = R(t)⊥,
(2) If t is orthogonally closable, then N (t∗∗) is orthogonally closed,
(3) If t is injective and R(t) essential, then t∗ is injective and (t∗)−1 = (t−1)∗,
(4) If t is injective and orthogonally closable, then t−1 is orthogonally closable

if and only if t∗∗ is injective. In this case G(t−1)⊥⊥ = G((t∗∗)−1). If further
R(t) is essential, then (t−1)∗∗ = (t∗∗)−1.

Proof. (1): This follows from 〈tx, y〉 = 〈x, t∗y〉 for x ∈ D(t) and y ∈ D(t∗),
because D(t) is an essential submodule.

(2): From (1) we conclude N (t∗∗)⊥⊥ = R(t∗)⊥⊥⊥ = R(t∗)⊥ = N (t∗∗).
(3): Since R(t) is an essential submodule, t−1 is essentially dense defined and

(t−1)∗ exists. Further, G((t−1)∗) = vG(t−1)⊥ = v(wG(t))⊥ = wvG(t)⊥ = wG(t∗).
Therefore wG(t∗) is graph of an operator, so t∗ is invertible and (t∗)−1 = (t−1)∗.

(4): By Theorem 17, it is wG(t∗∗) = wG(t)⊥⊥ = (wG(t))⊥⊥ = G(t−1)⊥⊥.
So, (0, x) ∈ G(t−1)⊥⊥ if and only if (x, 0) ∈ G(t∗∗) if and only if x ∈ N (t∗∗) for
x ∈ E. Therefore, t−1 is orthogonally closable if and only if G(t−1)⊥⊥ is graph of
an operator if and only if N (t∗∗) is trivial; it is G(t−1)⊥⊥ = wG(t∗∗) = G((t∗∗)−1).
If additionally t has essential range, then t−1 is essentially defined. By Theorem 17,
G((t−1)∗∗) = G(t−1)⊥⊥, so finally (t−1)∗∗ = (t∗∗)−1 is proven. �

There are some basic results concerning the adjoints of the sum and the product
of operators. The following statement prepares this and is interesting on its own.

Lemma 19. Let r ∈ C′o(E,F ) with D(r∗) = F and R(r) essential. Further, let
D ⊆ D(t) be essential. Then R(r �D) is still essential.

Proof. Let x ∈ F with 〈x, ry〉 = 0 for all y ∈ D. Then 〈r∗x, y〉 = 0 for all
y ∈ D. Since D⊥ = {0}, r∗x = 0. That is, x ∈ N (r∗) = R(r)⊥ = {0}. �

Proposition 20. Let t, t1, t2 be essentially defined operators from E into F
and s an essentially defined operator from F into G. Then

(1) t1 ⊆ t2 implies t∗1 ⊇ t∗2.
(2) If t1 + t2 is essentially defined, then (t1 + t2)∗ ⊇ t∗1 + t∗2.
(3) If D(t1) ⊆ D(t2) and D(t∗2) = F , then t1 + t2 is essentially defined and

(t1 + t2)∗ = t∗1 + t∗2.
(4) If st is essentially defined, then (st)∗ ⊇ t∗s∗.
(5) If R(t) ⊆ D(s) and D(s∗) = G, then st is essentially defined and it is

(st)∗ = t∗s∗.
(6) If t is injective with D(s) ⊆ R(t) and D((t−1)∗) = F , then st is essentially

defined and (st)∗ = t∗s∗.

Proof. (1): Follows from Theorem 15, since ⊥ reverses the inclusion.
(2): If x ∈ D(t1 + t2) and y ∈ D(t∗1 + t∗2), then

〈(t1 + t2)x, y〉 = 〈t1x, y〉+ 〈t2x, y〉 = 〈x, t∗1y〉+ 〈x, t∗2y〉 = 〈x, (t∗1 + t∗2)y〉 ,

so y ∈ D((t1 + t2)∗) and (t1 + t2)∗ ⊇ t∗1 + t∗2.
(3): By the assumptions, t1 + t2 is essentially defined on D(t1). Further, t∗1 + t∗2

is defined on D(t∗1). By (2) it is enough to prove D((t1 + t2)∗) ⊆ D(t∗1 + t∗2) = D(t∗1),
so let y ∈ D((t1 + t2)∗) ⊆ F and x ∈ D(t1). Then y ∈ D(t∗1), since

〈t1x, y〉 = 〈(t1 + t2)x, y〉 − 〈t2x, y〉 = 〈x, (t1 + t2)∗y − t∗2y〉 .
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(4): If x ∈ D(st) and y ∈ D(t∗s∗), then 〈stx, y〉 = 〈tx, s∗y〉 = 〈x, t∗s∗y〉, so
y ∈ D((st)∗) and (st)∗ ⊇ t∗s∗.

(5): By the assumptions, st is essentially defined on D(t). By (4) it is enough
to prove D((st)∗) ⊆ D(t∗s∗), so let z ∈ D((st)∗) ⊆ G and x ∈ D(st) = D(t). Then
s∗z ∈ D(t∗), since 〈tx, s∗z〉 = 〈stx, z〉 = 〈x, (st)∗z〉. Hence z ∈ D(t∗s∗).

(6): By Lemma 19, D(st) = t−1D(s) is essential. By (4) it is enough to
prove D((st)∗) ⊆ D(t∗s∗), so let z ∈ D((st)∗) and y ∈ D(s) ⊆ R(t). It follows
〈sy, z〉 =

〈
(st)t−1y, z

〉
=
〈
t−1y, (st)∗z

〉
=
〈
y, (t−1)∗(st)∗z

〉
. Therefore, z ∈ D(s∗)

and s∗z = (t−1)∗(st)∗z = (t∗)−1(st)∗z ∈ D(t∗). Hence, z ∈ D(t∗s∗). �

Corollary 21. Let t ∈ C′o(E,F ). Then:

(1) If s ∈ L(E,F ), then t+ s ∈ C′o(E,F ).
(2) If s ∈ L(F,G) is injective with s−1 ∈ L(G,F ), then st ∈ C′o(E,G).
(3) If s ∈ L(G,E) is injective with s−1 ∈ L(E,G), then ts ∈ C′o(G,F ).

All statements remain true if C′o is replaced by Co.

Proof. (1): Clearly, t + s is essentially defined and (t + s)∗ = t∗ + s∗ by
Proposition 20 (3), since s is adjointable. Now, t∗ + s∗ is essentially defined, too.
Hence, t+s is orthogonally closable by Theorem 17. We compute (t+s)∗∗ = t∗∗+s,
again using Proposition 20 (3). So, t+ s is orthogonally closed if t is.

(2): Clearly, st is essentially defined and (st)∗ = t∗s∗ by Proposition 20 (5),
since s is adjointable. By Proposition 20 (6), t∗s∗ is essentially defined, since s−1 is
adjointable. So, st is orthogonally closable by Theorem 17; (t∗s∗)∗ = st∗∗, implying
that st is orthogonally closed if t is.

(3): This is similar ly proven to (2).
The last statement can easily be read off from the proofs of (1)-(3). �

Before introducing and characterizing the class of projections, we define sym-
metric and self-adjoint operators.

Definition. An operator t : E → E is called symmetric if 〈tx, x〉 = 〈x, tx〉 for
all x ∈ D(t).

If t is essentially defined, this is equivalent to t ⊆ t∗.

Definition. An operator t ∈ Co(E) is called self-adjoint if t = t∗.

As usual: If t ⊆ s are both self-adjoint, then s = s∗ ⊆ t∗ = t, so t = s.
The simplest class of self-adjoint operators are the projections. It has to be

emphasised that they will not be defined on the whole space, but its domain is
still the direct sum of its kernel and range. By Proposition 18 (2) the kernel is
orthogonally closed, but not orthogonally complemented in general. In fact the
projection will be defined on the whole space only in the latter case.

Definition. p ∈ Co(E) is called (orthogonal) projection if p = p2 = p∗.

The following gives a characterisation of projections in form of a bijection onto
the set of orthogonally closed submodules.

Proposition 22. For a submodule G ⊆ E, define an operator pG on E via

D(pG) := G⊕G⊥, pG(x+ y) := x (x ∈ G, y ∈ G⊥).

Then pG is essentially defined with pG = p2G ⊆ p∗G = pG⊥⊥ . In particular pG = p∗G
is a projection if and only if G is orthogonally closed.

If p is a projection, then R(p) is orthogonally closed and p = pR(p).
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Proof. Further p := pG is essentially defined by Lemma 12, since E is an-
isotropic. Clearly p = p2. From

〈p(x+ y), x′ + y′〉 = 〈x, x′〉 = 〈x+ y, x′〉 (x, x′ ∈ G, y, y′ ∈ G⊥)

it follows that D(p) ⊆ D(p∗). Now let z ∈ D(p∗), that is, there exists w ∈ E with

〈x, z〉 = 〈p(x+ y), z〉 = 〈x+ y, w〉 (x ∈ G, y ∈ G⊥).

Equivalently 〈x, z − w〉 = 〈y, w〉 for all x ∈ G and y ∈ G⊥; both sides are zero.
Therefore this is equivalent to z − w ∈ G⊥ and w ∈ G⊥⊥, that is, z ∈ G⊥ ⊕G⊥⊥.
Since w = p∗(z), p∗ is given by

D(p∗) := G⊥⊥ ⊕G⊥, p∗(x+ y) := x (x ∈ G⊥⊥, y ∈ G⊥).

So, the first half is proven. Now assume p = p2 = p∗ and let G := R(p). For
x = p(y) ∈ G is x ∈ R(p) ⊆ D(p) and p(x) = p2(y) = p(y) = x. For x ∈ G⊥

〈x, p(y)〉 = 0 = 〈0, y〉 (y ∈ D(p)).

So x ∈ D(p∗) = D(p) and p(x) = p∗(x) = 0. Further R(p) = N (1 − p): If
x = p(y) ∈ R(p), then (1− p)x = 0. Conversely, x = p(x) for x ∈ N (1− p). Hence,

G = R(p) = N (1− p) = N (1− p∗) = R(1− p)⊥.

That is G = G⊥⊥. Finally, pG ⊆ p, so pG = p since p and pG are self-adjoint. �

The idea behind the concept of an operator’s core is to recover the original
operator from a restriction. If this is possible, the restriction’s domain is a core.

Definition. If t is an operator from E into F , then a submodule D ⊆ E is
called essential core for t if G(t �D)⊥ = G(t)⊥.

Clearly, this definition fulfils the above requirements on D to be a core, since
G(t) ⊆ G(t)⊥⊥ = G(t �D)⊥⊥ in this case. On the other side, as long as t is not
orthogonally closed, there will only be a possibility of computing its orthogonal
closure.

Note, D ⊆ D(t) is an essential core if and only if G(t �D)⊥ ⊆ G(t)⊥, since
obviously G(t �D) ⊆ G(t). In other words, this is true if and only if G(t �D) +G(t)⊥

is a orthogonal sum G(t �D)⊕ G(t)⊥. If D ⊆ D(t) is essential, then (t �D)∗ = t∗ is
equivalent to D being an essential core for t, since G(s∗) = vG(s)⊥ for any essentially
defined operator s. So, t ⊆ (t �D)∗∗ if t is orthogonally closable.

Example 23. Let b ∈ L(E,F ) and D ⊆ E be an essential submodule. Then
D is an essential core for b, since (b �D)∗ ⊇ b∗. But b∗ is everywhere defined, so
equality holds.

Proposition 24. Let t ∈ Co(E,F ) and D ⊆ D(t) be a submodule. If D is an
essential core for t, then D is an essential submodule and

(t �D)
∗

= t∗, t ⊆ (t �D)
∗∗

= t∗∗.

If t is orthogonally closed, then t = (t �D)
∗∗

.

Proof. Define pE : E ⊕ F → E via pE(x, y) := x for x ∈ E, y ∈ F . Then
it is easy to see that p∗E : E → E ⊕ F is given by p∗E(x) = (x, 0) for x ∈ E, so
pE ∈ L(E ⊕ F,E). Now, using Proposition 20 (5) in the second equation, using
Proposition 22 in the third equation and G(t �D)⊥⊥ = G(t)⊥⊥ = G(t∗∗) in the forth
equation, it is

D⊥ = R(pEpG(t�D))
⊥ = N (p∗G(t�D)p

∗
E) = N (pG(t�D)⊥⊥p

∗
E) = N (pG(t∗∗)p

∗
E).

But N (pG(t∗∗)p
∗
E) = {0}: Assume x ∈ D(pG(t∗∗)p

∗
E), then (x, 0) ∈ G(t∗∗) ⊕ vG(t∗),

so there exists u ∈ D(t∗∗), v ∈ D(t∗) with x = u+ t∗v, 0 = t∗∗u−v. If pG(t∗∗)p
∗
Ex =
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pG(t∗∗)(x, 0) = (u, t∗∗u) = (0, 0), then u = 0, so v = 0 and x = 0. This shows that
D is essential. The other statements are easy now. �

For later use we finally give

Definition. An essentially defined operator t : E → E is called normal if
t∗t = tt∗. If additionally t is orthogonally closable, then t is called essentially
self-adjoint if t∗ = t∗∗.
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3. Graph regularity
Pragmatism between weak and (strong) regularity

After discussing different types of regularity of operators in the first section, we
study the situation on C0(X) carefully in the second one. A pragmatic choice, that
will finally be justified by the theory developed in part two of this thesis, is graph
regularity. The third section is concerned with the theory of graph regularity on
an algebraic level; this is our last sighting and substantiate the decision to separate
the topological arguments from the algebraic ones.

a) Types of regularity

In which sense is it possible to denote an essentially defined orthogonally closed
operator t regular? We have an adjoint t∗, so it is a good idea to focus on the
domains of t and t∗ and the ranges of 1 + t∗t and 1 + tt∗, as it was done in
the Hilbert C∗-module case: for semi-regular operators the domains of t and t∗

are assumed to be dense, for regular operators additionally the ranges of 1 + t∗t
and 1 + tt∗ are also assumed to be dense. This definitions could also be used in
the situation for unitary ∗-module spaces. Following this line, combined with the
concept of essential submodules, there are two further types of regularity for an
(already) essentially defined orthogonally closed operator t:

(w) t is weakly regular, if additionally the ranges of 1 + t∗t and 1 + tt∗ are
essential,

(gr) t is graph regular, if additionally the ranges of 1+t∗t and 1+tt∗ are dense.

We have:

regular =⇒ graph regular =⇒ weakly regular
⇓

semi-regular

From the case C(X) we will learn, that non of the implications in the first line is
invertible in general. But (essentially defined) orthogonally closed operators are
already weakly regular in this situation.

b) The case C(X)

The commutative ∗-algebra C(X) teases us with the existence of all types of
regularity. We compute Co(C(X)) and show that all operators in this class are
weakly regular; we compute the graph regular and the regular operators on C(X).
As one could expect, no theory is needed to study these ∗-algebra. We use a few
times the preceding section, but only to enlarge the text not any more. Further,
some examples of operators are given to show some phenomena. But since the
important ones are also valid in the C∗-algebra case C0(X), we will study those
latter in chapter four.

Of course, unbounded operators on the commutative ∗-algebra C(X) show up
to be multiplication operators, as one would anticipate. For this reason, we study
this operator class first and in detail. We use the following notation, that is inspired
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by [KL12] Section 6: For a function m : X → C set

reg(m) :={x ∈ X|m is continuous in a neighborhood of x},
regb(m) := {x ∈ ∂reg(m)|∃U open, m̃ : U → C continuous

with x ∈ U ⊆ reg(m), m̃ ≡ m on U ∩ reg(m)
}
,

reg∞(m) :=
{
x ∈ ∂reg(m)|∃U open, m̃ : U → C continuous

with x ∈ U ⊆ reg(m), m̃ ≡ m on U ∩ reg(m), m̃(x) =∞
}
,

sing-suppr(m) :=∂reg(m) \ (regb(m) ∪ reg∞(m)).

Clearly, reg(m) is the largest open set on which m is continuous. Further,

reg(m) ∪ regb(m) is the largest open set contained in reg(m) on which m re-
stricted to reg(m) has an (indeed unique) continuous C-valued extension. Finally,

reg(m)∪regb(m)∪reg∞(m) is the largest open set contained in reg(m) on which

m restricted to reg(m) has a (unique) continuous C-valued extension. For reasons
of clarity and comprehensibility: We have the disjoint union

X = reg(m) ∪ regb(m) ∪ reg∞(m) ∪ sing-suppr(m)︸ ︷︷ ︸
∂reg(m)

∪ (X \ reg(m))︸ ︷︷ ︸
(X\reg(m))◦

.

Speaking a little bit vague in this paragraph: X \ reg(m) could be called singular
support of m: a set where every open subset contains points of discontinuity. This
suggested the notation for the residual singular support sing-suppr(m) of m: a set
where every neighbourhood of any of its points contains a point of discontinuity,
but also an open subset of continuous points. On the other hand m is regular on
reg(m), regb(m) and reg∞(m) in the sense that m is already continuous, has a
locally bounded continuous extension or could be extended when allowing (contin-
uous) poles, respectively. At the end of this section some examples are given.

Summary: To an arbitrary function m on X a multiplication operator tm is
associated and the first task is to describe an equivalence relation for those func-
tions giving the same operator (Lemma 28). Then we show, that tm is essentially
defined if and only if reg(m) is dense in X. In this case, tm is orthogonally closed
and its adjoint is tm (Theorem 29). Preparing the discussion on regularity we
compute R(1 + t∗mtm) and show that D(t∗mtm) is a core for tm (Proposition 32).
The main theorem for this commutative case states: All essentially defined or-
thogonally closed operators are in fact multiplication operators (Theorem 34). We
characterise the (essentially defined) orthogonally closed operators - all of them
are weakly regular -, the graph regular and regular operators (Corollary 35) and
projections(Proposition 36). Finally, some functions are discussed, to explain some
subtleties and varieties occurring; the most notable is also valid for the C∗-situation,
so we state it later as Example 69.

Theory

To simplify notations, it is useful to associate to each function m : X → C a
function m̂ : X → C defined via

m̂(x) =

{
m(x) , x ∈ X \ regb(m)

m̃(x) , x ∈ regb(m)
,

where m̃ is one of those function appearing in the definition of regb(m); in fact, two
different of those functions will have the same value at x, since x is in the boundary
of reg(m) and these two continuous functions coincide on this set. Hence, m̂ is
well-defined.
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The following relation is needed to characterize those functions which define
the same operators. For m, m̃ : X → C we write

m ' m̃ :⇔ reg(m) = reg(m̃) and m ≡ m̃ on reg(m) ∩ reg(m̃).

In Lemma 25 (1) it will be shown that ' is indeed an equivalence relation; in (3)
we proof m̂ ' m.

Lemma 25.
(1) ' is an equivalence relation on the set of functions from X to C.
(2) Let m1,m2 : X → C. If m1 ' m2, then

reg∞(m1) = reg∞(m2), sing-suppr(m1) = sing-suppr(m2).

(3) Let m : X → C. It is m̂ ' m. Further, reg(m̂) = reg(m)∪ regb∞(m) and
regb∞(m̂) = ∅.

Proof. We use several times that the intersection of open and dense sets is
again (open and) dense.

(1): Obviously, ' is reflexive and symmetric, so it remains to show the transi-

tivity of '. Let m1 ' m2 and m2 ' m3. Clearly, reg(m1) = reg(m2) = reg(m3)
and arguing as above reg(m1)∩ reg(m2)∩ reg(m3) is open and dense in the latter
set. By continuity of m1 and m3 on reg(m1) ∩ reg(m3) these functions coincides
on this set, since they do on reg(m1) ∩ reg(m2) ∩ reg(m3). This shows m1 ' m3.

(2): From R := reg(m1) = reg(m2) we conclude that reg(m1) ∩ reg(m2) is
dense R. Since m1 and m2 are equal and continuous on this set, any x in R is
in reg(m1) ∪ regb(m1) if and only if it is in reg(m2) ∪ regb(m2). By the same
argument any x in R is in reg(m1) ∪ regb(m1) ∪ reg∞(m1) if and only if it is in
reg(m2) ∪ regb(m2) ∪ reg∞(m2). This proves both reg∞(m1) = reg∞(m2) and
sing-suppr(m1) = sing-suppr(m2).

(3): Clearly, m̂ is continuous on reg(m) ∪ regb(m), so the latter is contained

in reg(m̂). Since m and m̂ coincide on the open set X \ reg(m), we even have

reg(m̂) ⊆ reg(m); in particular is reg(m) = reg(m̂), and since m and m̂ are
equal on reg(m) ∩ reg(m̂) = reg(m), it follows m ' m̂. With (1) the proof is
done if reg(m̂) ⊆ reg(m) ∪ regb(m) is shown. Let x ∈ reg(m̂) and let m̃ be the
restriction of m̂ to the open set reg(m̂). Then either x is already in reg(m) or
in ∂reg(m), since the closures of reg(m) and reg(m̂) are identical. In the latter
case m̃ serves for a function fulfilling the assumptions on x to be in regb(m), since
reg(m) ⊆ reg(m̂). �

In particular, changing m on reg∞∞(m) ∪ sing-suppr(m) does not change any

of the sets: reg(m), regb(m), reg∞(m), sing-suppr(m) and X \ reg(m).

Proposition 26. Let m,m′ : X → C be given and assume m ≡ m′ on some
open and dense set O ⊆ X. Then m ≡ m′. That is, the equivalence class of m is
already given by defining m on an open and dense subset of X.

Proof. Since reg(m) ∩ reg(m′) is open and O is open and dense, the in-
tersection of these sets is dense in reg(m) ∩ reg(m′). The functions m and m′

coincide on O ∩ reg(m) ∩ reg(m′) and are continuous there, hence m ≡ m′ on
reg(m) ∩ reg(m′). Since m ≡ m′ on O ∩ reg(m) and m is continuous there, the
same is true for m′. That is, O ∩ reg(m) ⊆ reg(m′), since O ∩ reg(m) is open.

So reg(m) = O ∩ reg(m) ⊆ reg(m′), since O ∩ reg(m) is dense in reg(m). Anal-

ogously is reg(m′) ⊆ reg(m). that is m ' m′. �

Now, we define the multiplication operators tm associated to m : X → C. Note

first, for a function h : X → C is ĥ ∈ E = C(X) if ĥ is continuous everywhere, that

is, X = reg(ĥ) = reg(h) ∪ regb∞(h).
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Definition. For a function m : X → C let

D(tm) := {f ∈ E|m̂f ∈ E}, tmf := m̂f (f ∈ D(tm)).

We check that tm is indeed an operator on E: For α ∈ C and f ∈ D(tm) we

clearly have αf ∈ D(tm). Let f ∈ D(tm) and g ∈ A = C(X). Since both m̂fg and
(mfg)∧ are at least continuous on the dense set reg(mf) and coincide there, they

coincide on X, because m̂fg is continuous on all of X; (tmf)g = tm(fg) follows.

Now, let f, g ∈ D(tm). Since both m̂f + m̂g and (m(f + g))∧ are at least continu-
ous on the dense set reg(mf) ∩ reg(mg) and coincide there, they coincide on X,

because m̂f + m̂g is continuous on all of X. Hence, tm(f + g) = tmf + tmg.

The following argument will be used several times in the preceding, so it is
given an own lemma.

Lemma 27. Let m, f : X → C, x ∈ X and assume f is continuous at x with
f(x) 6= 0. Then x ∈ reg(m) if and only if x ∈ reg(mf).

Proof. Since f(x) 6= 0, there is an open set Uf containing x such that f(x′) 6=
0 for all x′ ∈ Uf . By definition, x /∈ reg(m) if for any neighbourhood U of x, there
is an x′ ∈ U such that m is discontinuous at x′. Looking only for neighbourhoods
contained in Uf , the latter holds if and only if for any neighbourhood U of x, there
is an x′ ∈ U such that mf is discontinuous at x′. This means x /∈ reg(mf). �

We describe the action of tm and show that tm depends only on the equivalence
class of m.

Lemma 28. Let m : X → C be given. Then

D(tm) = {f ∈ E|f ≡ 0 on X \ reg(m̂), ∂reg(m̂) ⊆ reg(m̂f)},
(tmf)(x) = m̂(x)f(x) (f ∈ D(tm), x ∈ X \ reg∞(m)).

For x ∈ X, there is an f ∈ D(tm) with f(x) 6= 0 if and only if x ∈ reg(m̂).
If m̃ : X → C, then tm = tm̃ if and only if m ' m̃. In particular, tm = tm̂.

Proof. D(tm) consists exactly of those f ∈ E with reg(m̂f) = X. Clearly,

reg(m̂) ⊆ reg(m̂f) for all f ∈ E, so D(tm) is the set of f ∈ E with X \ reg(m̂) ⊆
reg(m̂f).

So, if f ∈ E with f ≡ 0 on X \ reg(m̂), then mf ≡ 0 on this set is implying

continuity of mf on the open set X \ reg(m̂), hence the latter is contained in

reg(m̂f). If additionally ∂reg(m̂) ⊆ reg(m̂f) is true, then f ∈ D(tm) is shown.
Now assume f ∈ D(tm); in particular reg(mf) is dense in X. As noted above,

it is ∂reg(m̂) ⊆ reg(m̂f). Assume x is contained in the open set X \ reg(m̂) and

f(x) 6= 0. Hence, there is an open set U , contained in X \ reg(m̂) such that f

does not vanish at some point in U . Since reg(m̂) = reg(m), U is also contained
in X \ reg(m). By Lemma 27, it follows that U is even contained in X \ reg(mf),
since f is not zero at any point of U . Finally, this gives a contradiction to the
density of reg(mf) in X. Hence f(x) = 0 and the description of D(tm) is proven.

For f ∈ D(tm), reg(m) ∪ regb(m) = reg(m̂) is a subset of reg(m̂f) and

tmf ≡ m̂f on this set. It remains to prove tmf ≡ m̂f on the sets X \ reg(m) and
sing-suppr(m), and since f ≡ 0 there, as we have seen above, it must be shown

that m̂f ≡ 0 on these sets. This will be done indirectly by proving: If x ∈ X and
f ∈ D(tm) with f(x) = 0 and (tmf)(x) 6= 0, then x ∈ reg∞(m). Indeed, from
the given assumptions it follows, that there is an open neighbourhood U of x with

m̂f(y) 6= 0 for all y ∈ U . Letting m̃ : U → C be the function m̂f/f on U we clearly
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have, that m̃ is continuous, since m̂f does not vanish at any point of U , coincides

with m on U ∩ reg(m), and m̃(x) = ∞, since f(x) = 0 and m̂f(x) 6= 0. Hence
x ∈ reg∞(m).

If x ∈ reg(m̂), there is a function f : X → C with (compact) support in reg(m̂)
and f(x) 6= 0, since X is locally compact Hausdorff. Clearly, this f is in D(tm),
since m̂f is continuous everywhere. On the other side, if x /∈ reg(m̂), then f(x) = 0
for all f ∈ D(tm) by the above representation of D(tm).

Using this, next we prove the equivalence of tm = tm̃ and m ' m̃. First, we
assume tm = tm̃. By the above,

x ∈ reg(m̂)⇔ ∃f ∈ D(tm) : f(x) 6= 0⇔ ∃f ∈ D(tm̃) : f(x) 6= 0⇔ x ∈ reg( ˆ̃m).

So, reg(m̂) = reg( ˆ̃m), which implies reg(m) = reg(m̂) = reg( ˆ̃m) = reg(m̃). For
x ∈ reg(m) ∩ reg(m̃), we have choose f ∈ D(tm) with f(x) 6= 0: m(x)f(x) =

m̂f(x) = ̂̃mf(x) = m̃(x)f(x), hence m(x) = m̃(x). Thus m ' m̃.

Now assume m ' m̃. To show tm ⊆ tm̃, we let f ∈ D(tm). It is m̂f ≡ mf ≡ m̃f
on reg(m) ∩ reg(m̃), and the latter set is dense in reg(m̂), since m ' m̃. On the

other side f ≡ 0 on X \ reg(m̂), since f ∈ D(tm). Hence m̂f ≡ 0 ≡ m̃f on

X \ reg(m̂). That is m̂f ≡ m̃f on an open and dense set. Since m̂f is continuous

every where reg(m̃f) = X and ̂̃mf ≡ m̂f on X, hence f ∈ D(tm̃) and tm̃f = tmf .
Since ' is a symmetric relation, the inverse inclusion is also proven, so tm = tm̃. �

Hence, by Proposition 26 and Lemma 28 the operator tm is already uniquely
defined by m if we describe m on an open and dense subset of X. It is for example
enough to define m : R → C by m(x) = 1/x not caring about the definition at 0.
This will be done in some cases.

Having understand the action of tm, we will check now when the domain of tm
is essential and compute the adjoint in this case. Note that all of the sets reg(m),
regb(m), reg∞(m) and sing-suppr(m) remain unchanged if m is replaced by its

complex conjugate function m; it is m̂ = m̂.

Theorem 29. Let m : X → C. The operator tm is essentially defined if and
only if reg(m) is dense in X. In this case, we have t∗m = tm and tm ∈ Co(E).

Proof. Assume reg(m) is dense in X and let g⊥D(tm). For all x ∈ reg(m),

there is an f ∈ D(tm) with f(x) 6= 0 by Lemma 28. From g(x)f(x) = 〈g, f〉 (x) = 0,
we conclude g(x) = 0. By density of reg(m) and continuity of g, it follows g = 0.
That is, D(tm) is essential. Now suppose reg(m) is not dense. Since X is locally
compact Hausdorff, there is a non-zero function g on X that vanishes outside of
(X \ reg(m))◦. Then 〈f, g〉 (x) = f(x)g(x) = 0 for all f ∈ D(tm) and x ∈ X by
Lemma 28. Hence, D(tm) is not essential.

If reg(m) is dense, we will show t∗m = tm: Let f ∈ D(tm) and g ∈ D(tm). For
x ∈ reg(m̂) = reg(m̂) we derive

〈tmf, g〉 (x) = (tmf)(x)g(x) = m̂(x)f(x)g(x) = f(x) m̂(x)g(x)

= f(x)(tmg)(x) = 〈f, tmg〉 (x).

Since reg(m) is dense, reg(m̂) is dense as well. By continuity of 〈tmf, g〉 and
〈f, tmg〉, we conclude 〈tmf, g〉 = 〈f, tmg〉. Thus tm ⊆ t∗m. If f ∈ D(t∗m), there

exists h ∈ E such that m̂g(x)f(x) = 〈tmg, f〉 = 〈g, h〉 = g(x)h(x) for all g ∈ D(tm),
x ∈ X. If x ∈ reg(m), there is a g ∈ D(tm) with g(x) 6= 0, so h ≡ mf on reg(m).

Since reg(m) is dense and h is continuous, we get m̂f = h ∈ E, hence f ∈ D(tm).
Finally, from reg(m) = reg(m) and the previous it is easily concluded that

t∗∗m = (tm)∗ = tm ∈ Co(E). �
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The following two lemmas are concerned with sums, products and inverses of
multiplication operators.

Lemma 30. Let m,n : X → C be two functions.

(1) It is tm + tn ⊆ tm+n and tmtn ⊆ tmn.
(2) If reg(m) and reg(n) are dense in X, then tm + tn, tmtn ∈ C′o(E) and

(tm + tn)∗∗ = tm+n, (tmtn)∗∗ = tmn.

Proof. We only show the statements about the product, since the proof for
the sum is very similar and less involved.

(1): If f ∈ D(tmtn), then reg(nf) and reg(mn̂f) are dense and open in X,

so their intersection is also dense. It is reg(nf) ∩ reg(mn̂f) ⊆ reg(mnf) and

mnf ≡ mn̂f on the latter one. Hence [(mn)f ]∧ = [mn̂f ]∧ ∈ E, that is, f ∈ D(tmn)
and tmtnf = tmnf .

(2): Firstly, we show that D(tmtn) is essential: Assume that g⊥D(tmtn) and
x ∈ reg(n) ∩ reg(m). Since the latter set is open and X is locally compact Haus-
dorff, there exists f ∈ E with (compact) support in this set and f(x) 6= 0; clearly

nf ∈ E and mnf ∈ E, hence f ∈ D(tmtn). But then f(x)g(x) = 〈f, g〉 (x) = 0, so
g(x) = 0. Since reg(n) ∩ reg(m) is dense, g = 0 by continuity of g. That is, tmtn
is essentially defined; analogously tntm is. Therefore, (tmtn)∗ ⊇ t∗nt

∗
m = tntm is

also essentially defined, that is, tmtn is orthogonally closable. Moreover, (tmtn)∗ ⊇
t∗mn = tmn follows from (1).

Secondly, we show D((tmtn)∗) ⊆ D(tmn), which implies the last assertion:
(tmtn)∗∗ = t∗mn = tmn. If f ∈ D((tmtn)∗), there is an g ∈ E such that 〈f, tmtnh〉 =
〈g, h〉 for all h ∈ D(tmtn). Arguing as above, for x ∈ reg(n) ∩ reg(m), there exists
h ∈ D(tmtn) with h(x) 6= 0, so fmn ≡ g on the open and dense set reg(m)∩reg(n).

Therefore, m̂nf = g ∈ E and f ∈ D(tmn). �

Lemma 31. Let m : X → C be a function.

(1) tm is injective if and only if {x ∈ reg(m)|m(x) 6= 0} is dense in reg(m).
(2) If tm is injective an m does not vanish at any point, then t−1m = t1/m.
(3) R(tm) is essential if and only if reg(m) is dense in X and tm is injective.

Proof. (1): Set N := {x ∈ reg(m)|m(x) = 0}. Assume that N contains a
nonempty open set U . Since X is locally compact Hausdorff, there is a non-zero
function f ∈ E with (compact) support in U . Hence mf = 0 and f ∈ D(tm):
tmf = 0. So tm is not injective.

On the other hand, assume f ∈ D(tm) with tmf = 0. For x ∈ reg(m) is
m(x)f(x) = (tmf)(x) = 0. So f ≡ 0 on reg(m) \ N . If the latter is dense in

reg(m), then f ≡ 0 on reg(m) by continuity of f . Finally, f ≡ 0 on X \ reg(m)
by Lemma 28, since f ∈ D(tm). That is f = 0.

(2): For f ∈ D(t1/m) let g := t1/mf = (f/m)∧. It is m(f/m)∧ ≡ f on the
dense set reg(m/f), hence m̂g = f ∈ E. That is, g ∈ D(tm) and f = tmg ∈ R(tm)
with t−1m f = g = t1/mf . Now let f ∈ D(t−1m ). There exists g ∈ D(tm) with

f = tmg = (mg)∧. It is 1
mf ≡ g on the dense set reg(mg), hence (f/m)∧ = g ∈ E.

That is f ∈ D(t1/m). This proves t−1m = t1/m.
(3): If reg(m) is dense in X, then tm is essentially defined and t∗m = tm by

Theorem 29. R(tm)⊥ = N (t∗m) = N (tm) is trivial if and only if tm is injective, and
the latter is true if and only if tm is injective, which can be read off from (1).

Now assume reg(m) is not dense. By Lemma 28, the range of tm contains

only functions that vanishes (at least) on the non-empty open set X \ reg(m̂).
Again, since X is locally compact Hausdorff, it follows that such a set cannot be
essential. �
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We now have a look at the operator 1 + t∗mtm.

Proposition 32. Let m : X → C be a function with reg(m) dense in X.

(1) tm is normal and t∗mtm is essentially self-adjoint.
(2) R(1 + t∗mtm) = {g ∈ E|∀x ∈ sing-suppr(m) : g(x) = 0}; in particular,
R(1 + t∗mtm) is essential.

(3) D(t∗mtm) is an essential core for tm.

Proof. By Theorem 29, tm ∈ Co(E) and t∗m = tm, and by Lemma 28, tm = tm̂.
So, without lose of generality we assume m = m̂.

(1): Using Lemma 30 (2), it is (t∗mtm)∗ = (tmtm)∗∗∗ = t∗|m|2 = t|m|2 , and the

latter is self-adjoint, so t∗mtm is essentially self-adjoint.

Let f ∈ D(tmtm), that is, m̂f ∈ E and [mm̂f ]∧ ∈ E. Since f is continuous on
X and

[mm̂f ]∧(x) = |m(x)|2f(x) = [mm̂f ]∧(x) (x ∈ reg(m)),

[mm̂f ]∧ = [mm̂f ]∧ ∈ E, since reg(m) is dense in X. To show m̂f ∈ E, set

h(x) :=

m̂f
(
|̂m|2f

)2
/
∣∣∣|̂m|2f ∣∣∣2 , for x ∈ X with |̂m|2f(x) 6= 0,

0 , for x ∈ X with |̂m|2f(x) = 0
.

It is easy to check, that h is continuous at x ∈ X if |̂m|2f(x) 6= 0 and h = mf on

reg(m). If h is continuous on all of X, then m̂f ∈ E is proven. Aiming this, it is

clearly enough to show that |̂m|2f(x) = 0 implies m̂f(x) = 0: From m̂f ∈ D(tm) it

always follows m̂f(x) = 0 for x ∈ X \ reg(m) = X \ reg(m) by Lemma 28. But if

x ∈ reg(m), then 0 = |̂m|2f(x) = |m(x)|2f(x), so m(x) = 0 or f(x) = 0. In both

cases m̂f(x) = m(x)f(x) = 0.
(2): Let x ∈ sing-suppr(m) = sing-suppr(m) and f ∈ D(t∗mtm) ⊆ D(tm). By

Lemma 28, f(x) = 0, (tmf)(x) = 0 and (tmtmf)(x) = 0, so ((1 + t∗mtm)f)(x) =
0. One inclusion is shown therefore. Conversely, let g ∈ E with g(x) = 0 for
all x ∈ sing-suppr(m). Further, the functions [1/(1 + |m|2)]∧, [m/(1 + |m|2)]∧

and [|m|2/(1 + |m|2)]∧ are easily seen to be bounded and continuous on reg(m) ∪
reg∞∞(m). Therefore, setting f := [g/(1 + |m|2)]∧, it is again easy to see that,

f ∈ E, m̂f =

[
gm

1 + |m|2

]∧
∈ E, [mm̂f ]∧ =

[
g|m|2

1 + |m|2

]∧
∈ E,

by using continuity of g and g �sing-suppr(m)≡ 0. That is, f ∈ D(t∗mtm) and by (1 +
t∗mtm)f �reg(m)= g �reg(m) and continuity of those functions, it is g ∈ R(1 + t∗mtm).

(3): We have to show G(tm �D(t∗mtm))
⊥ ⊆ G(tm)⊥.

If (g, h)⊥(f, tmf) for each f ∈ D(t∗mtm). For x ∈ reg(m), there exists f ∈
E \ {0} with f(x) 6= 0 and (compact) support in reg(m). Then f ∈ D(t∗mtm) and

0 = 〈(g, h), (f, tmf)〉 (x) = g(x)f(x) + h(x)m(x)f(x),

hence g(x) +m(x)h(x) = 0. This inverses to 〈(g, h), (f, tmf)〉 ≡ 0 on the dense set
reg(m), hence (g, h)⊥G(tm). �

In general t∗mtm ( t|m|2 . Let m : [0, 1] → C be given via m(x) := ei/x for
x 6= 0. Then sing-suppr(m) = {0}, so D(t∗mtm) 6= E by Lemma 28, but t|m|2 is
the identity on C(X).
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Example 33. If m : X → C, then in general D(tm) 6= D(tm). To see this let
X := [0, 1] and m, f : X → C be given via

m(x) :=

{
ei/x/x , x 6= 0

0 , x = 0
, f(x) :=

{
e−i/xx , x 6= 0

0 , x = 0
.

Then reg(m) = (0, 1] and limx→0 f(x) = 0, so f ∈ C(X). Further, (mf)(x) = 1

for x ∈ (0, 1], so m̂f = 1 on X and f ∈ D(tm). But (mf)(x) = e−2i/x for x ∈ (0, 1],

so reg(m̂f) = (0, 1] and f /∈ D(tm).

Now, we are able to state the main theorem: All essentially defined and or-
thogonally closable operators t on E are in fact multiplication operators.

Theorem 34. If t ∈ Co(E), there is a function m : X → C such that t = tm.
We have

atm = t 1
1+|m|2

and btm = t m
1+|m|2

.

Proof. Let t ∈ Co(E). We abbreviate D := D(t) and D∗ := D(t∗). We set

O := ∪f∈DOf , O∗ := ∪f∈D∗Of with Of := {x ∈ X|f(x) 6= 0}.
Since Of is open for each continuous function f , O and O∗ are open, too. Further,
since D and D∗ are essential, O and O∗ are dense in X. Hence O′ := O ∩ O∗ is
also dense. For x ∈ X, we have

g(x)(tf)(x) = 〈g, tf〉 (x) = 〈t∗g, f〉 (x) = (t∗g)(x)f(x) for f ∈ D, g ∈ D∗.
If x ∈ O′, there are f ∈ D with f(x) 6= 0 and g ∈ D∗ with g(x) 6= 0 such that

m(x) := (tf)(x)/f(x) = (t∗g)(x)/g(x).

In particular, this shows that m(x) is independent of the particular f and g chosen
and that m is continuous on O′. Let f ∈ D and x ∈ O′. Then, there is a g ∈ D∗
such that g(x) 6= 0, so (tf)(x) = m(x)f(x). Similarly, (t∗g)(x) = m(x)g(x) for
g ∈ D∗ and x ∈ O′.

We extend m arbitrarily to a function defined on the whole set X. It follows

that m̂f ∈ E for f ∈ D and m̂g ∈ E for g ∈ D∗. We then have f ∈ D(tm), tmf = tf
for f ∈ D and g ∈ D(tm) and tmg = t∗g for g ∈ D∗. Thus t ⊆ tm and t∗ ⊆ tm.
Hence tm = (tm)∗ ⊆ t∗∗ = t ⊆ tm, that is, tm = t.

With Lemma 30 we compute

atm = (1 + tmtm)−1 ⊆ (1 + t|m|2)−1 = (t1+|m|2)−1 = t 1
1+|m|2

,

hence equality holds, since atm is defined on all of E. Further,

btm = tmatm = tmt 1
1+|m|2

⊆ t m
1+|m|2

,

and again equality holds, since btm is defined on all of E. �

We can characterise the weakly and graph regular operators now.

Corollary 35. Each t ∈ Co(C(X)) is already weakly regular.

(1) The operator t = tm is graph regular if and only if sing-suppr(m) is
empty.

(2) The operator t = tm is regular if and only if reg(m̂) = X.

Proof. The first statement follows from Theorem 34 and Proposition 32.
(1): For this statement we use additionally sing-suppr(m) = sing-suppr(m).
(2): From Lemma 28 it follows that the domains of tm and t∗m = tm are dense

if and only if sing-suppr(m)∪ reg∞(m) = sing-suppr(m)∪ reg∞(m) is empty, or

equivalently reg(m̂) = reg(m̂) = X. Hence, the assertion follows from (1) now. �
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Examples

Finally we will have a look at several classes and concrete examples to under-
stand the phenomena that arises.

We start by computing the projections.

Proposition 36. Let m = m̂. Then tm ∈ Co(E) is a projection if and only
if there is an open set O that coincides with the interior of its closure such that
m ≡ 1 on O and m ≡ 0 on X \ O; it is reg(m) = O ∪ (X \ O).

Proof. At first, let us check that indeed m = m̂, that is, regb(m) is empty.
For x ∈ regb(m), there is an open set U containing x, and a continuous function
m̃ : U → C that coincides with m on U∩reg(m). But it is not possible to have non-
empty intersections of U with O and X \O at the same time, since this contradicts

the continuity of m. So U is contained in O, hence in O◦ = O, or it is contained in
X \ O, hence in (X \ O)◦ = X \ O. In both cases is x ∈ reg(m); a contradiction.

Let tm = tm = t2m and assume m = m̂. Then tm = tm = t∗mtm ⊆ t|m|2 . For

x ∈ reg(m) ⊆ reg(|m|2) there exists f ∈ D(tm) with f(x) 6= 0. It follows

m(x)f(x) = (tmf)(x) = (t|m|2f)(x) = |m(x)|2f(x),

so m(x) = |m(x)|2, hence m(x) = 0 or m(x) = 1. Let

O := {x ∈ reg(m)|m(x) = 1},

and since m is continuous on reg(m), O is open in reg(m). Further, reg(m) is
open in X, so is O. It remains to prove that this set is equal to the interior of its

closure. So let x ∈ O◦ ⊆ reg(m)
◦
. Setting m̃ ≡ 1 on the open set O◦ we have

m ≡ m̃ on O◦ ∩ reg(m) = O, so x ∈ reg(m̂) = reg(m), hence x ∈ O as m̂(x) = 1.

Now assume there is an open set O that coincides with O◦ and a function
m : X → C such that m ≡ 1 on O, m ≡ 0 on X \ O and reg(m) = O ∪ (X \ O).

Finally, let f ∈ E. We have

mm̂f ≡ m2f ≡ mf ≡ mf on reg(m).

In particular, f ∈ D(t2m) if and only if f ∈ D(tm) if and only if f ∈ D(tm) = D(t∗m),
and t2m = tm = t∗m. �

Some examples are discussed finally.

Corollary 37. Let m : X → C be bounded with reg(m) dense in X. Then
tm is graph regular if and only if reg(m) = X.

Proof. Since m is bounded reg∞(m) is empty in any case. Hence, the state-
ment follows directly from Corollary 35. �

The next one shows, that the domain of a multiplication operator can be trivial,
even though the function is continuous on a dense set - the irrational numbers.

Example 38 (Thomae’s function). Let X := R and m : R→ R given by

m(x) :=

{
1/q , if x is rational with x = p/q cancelled and q > 0

0 , if x is irrational
.

Hence m is continuous precisely at the irrational points. Therefore reg(m) is empty,
which implies D(tm) = {0}.

The next example gives a bounded function with only one point of discontinuity
(a jump) such that the corresponding operator is not graph regular.
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Example 39. Let X := R and m be the sign function. Then reg(m) = R\{0}
is dense, so tm ∈ Co(E). Since sing-suppr = {0}, tm is not graph regular, even
though m is bounded and there is only one point of discontinuity.

The following example shown, that sing-suppr can contain points of continuity.

Example 40. Let X := R2 and m : R2 → R be a function given by

m(x, y) :=


0 , x ≤ 0

x , x > 0, y ≥ 0

−x , x > 0, y < 0

.

Then reg(m)={(x, y) ∈ R2|x < 0∨y 6= 0}. Clearly {(x, 0)|x > 0}⊆sing-suppr(m).
But reg(m) ∪ reg∞(m) is open, so (0, 0) is also an element of sing-suppr(m),
even though m(xn, yn)→ 0 for all sequences (xn, yn)n∈N in R2 (not only reg(m))
converging to (0, 0).

The next example illustrates the difference of reg∞(m) and sing-suppr(m);
this can decide graph regularity by Corollary 35.

Example 41. Let X := R and define m1,m2 : R→ R by

m1(x) :=

{
1/x , x 6= 0

0 , x = 0
, m2(x) :=

{
1/x , x > 0

0 , x ≤ 0
.

Then reg(m1) = reg(m2) = R\{0}, reg∞(m1) = {0} and sing-suppr(m2) = {0}.
Therefore, tm1

, tm2
∈ Co(E) and tm1

is graph regular, but tm2
is not.

c) Graph regularity
Instead of studying 1 + t∗t for an essentially defined operator, we will consider

for a moment the more general case of the operator 1+st, where s and t are formally
adjoint to each other. So the result can be applied to 1+t∗t and as well as to 1+tt∗

(t may not coincide with t∗∗).

Lemma 42. Let t : E → F and s : F → E be formally adjoint to each other.
Then 1 + st is injective and positive. Further,

R(1 + st) = {x ∈ E|(x, 0) ∈ G(t)⊕ vG(s) ⊆ E ⊕ F},
R(1 + ts) = {y ∈ F |(0, y) ∈ G(t)⊕ vG(s) ⊆ E ⊕ F}.

In particular,

R(1 + st)⊕R(1 + ts) ⊆ G(t)⊕ vG(s) ⊆ E ⊕ F.

Proof. If x ∈ D(st), then

〈x, (1 + st)x〉 = 〈x, x+ stx〉 = 〈x, x〉+ 〈x, stx〉 = 〈x, x〉+ 〈tx, tx〉

is in P, so 1 +st is positive. If (1 +st)x = 0, then 〈x, x〉+ 〈tx, tx〉 = 0, so 〈x, x〉 = 0
and x = 0. This proves injectivity of 1 + st.

Now assume x ∈ R(1 + st). There exists y ∈ D(st) ⊆ D(t) with x = (1 + st)y.
Then (x, 0) = (y + sty, ty − ty) ∈ G(t) ⊕ vG(s) =: G. Let x ∈ E with (x, 0) ∈ G.
There are y ∈ D(t) and z ∈ D(s) with x = y + sy and 0 = ty − z, so ty ∈ D(s)
and x = (1 + st)z ∈ R(1 + st). This shows R(1 + st) ⊕ {0} ⊆ G. Analogously is
{0} ⊕R(1 + ts) ⊆ G and the last assertion follows, since G is a vector space. �

Lemma 43. Let t : E → F and s : F → E be formally adjoint to each other.
Then R(1 + st) ∩ D(st)⊥ = {0} and D(st) ∩R(1 + st)⊥ = {0}.
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Proof. Let z = (1 + st)u for some u ∈ D(st) be orthogonal to D(st). Then
〈u, u〉+〈tu, tu〉 = 〈(1 + st)u, u〉 = 0, hence 〈u, u〉 = 0, since P is a quadratic module.
Therefore u = 0 and z = 0. The second equation is similar. �

Lemma 44. Let t : E → F and s : F → E be formally adjoint to each other.
Then (1 + st)−1 is symmetric, and t(1 + st)−1 and s(1 + ts)−1 are formally adjoint
to each other. Moreover,

t(1 + st)−2 ⊆ (1 + ts)−1t(1 + st)−1,

and in particular,

D((1 + st)−2) ⊆ D(s(1 + ts)−1t(1 + st)−1) ⊆ D((1 + st)−1),

(1 + st)−1x− (1 + st)−2x = s(1 + ts)−1t(1 + st)−1x (x ∈ D((1 + st)−2)).

Proof. Clearly, (1+st)−1 is symmetric by Lemma 42. Now let x = (1+st)x0
for x0 ∈ D(st) and y = (1 + ts)y0 ∈ R(1 + ts) for y0 ∈ D(ts). Then〈
t(1 + st)−1x, y

〉
= 〈tx0, (1 + ts)y0〉 = 〈tx0, y0〉+ 〈tx0, tsy0〉
= 〈x0, sy0〉+ 〈stx0, sy0〉 = 〈(1 + st)x0, sy0〉 =

〈
x, s(1 + ts)−1y

〉
,

so s(1 + ts)−1 is formally adjoint to t(1 + st)−1.
Now let x ∈ D(t(1+st)−2), that is, x = (1+st)x0 = (1+st)2x1 ∈ D(t) for some

x0 ∈ D(st) and x1 ∈ D(stst). Then tx0 = t(1+st)x1 = (1+ ts)tx1 ∈ R(1+ ts), and
so x ∈ D((1 + ts)−1t(1 + st)−1) and (1 + ts)−1t(1 + st)−1x = tx1 = t(1 + st)−2x.

The last statements follows easily by applying s to the inclusion proved yet. �

The case s = t∗ will be considered now.

Corollary 45. If t : E → F is essentially defined and R(1 + t∗t) = E, then
t∗t is essentially defined.

Proof. Just apply the first equation of Lemma 43 where s = t∗ is a formal
adjoint of t. �

Corollary 46. If t is adjointable, then t is weakly regular.

Proof. D(t∗t) = E and D(tt∗) = F , so the second equation of Lemma 43
proves the claim. �

Two transform of t are introduced now, that in particular will be combined to
the (a, a∗, b)-transform of t (see Theorem 56). If t is essentially defined, we set

at := (1 + t∗t)−1, bt := t(1 + t∗t)−1.

Obviously bt = tat and D(at) = D(bt) = R(1 + t∗t), since R(at) = D(t∗t) ⊆ D(t).
This idea to consider this pair of operators is of course to use the invertibility of

at to compute t �D(t∗t)= bta
−1
t . Hence, if D(t∗t) is a core for t - for the commutative

case we have Proposition 32 -, then t can be recalculated from at and bt. This will
be done later in Theorem 56.

To begin with, we study at and bt in the case of an essentially defined and
orthogonally closable operator t. With the previous work, we have

Corollary 47. If t ∈ C′o(E,F ), then at and at∗ are symmetric, bt and bt∗ are
formal adjoints, and

btat ⊆ at∗bt, at − a2t ⊆ bt∗bt, at∗ − a2t∗ ⊆ bt∗∗bt∗ .

In particular, if t ∈ Co(E,F ), then bt∗at∗ ⊆ atbt∗ and at∗ − a2t∗ ⊆ btbt∗ .

Proof. This is just a corollary of Lemma 44 - we firstly insert t for t and t∗

for s, we secondly insert t∗ for t and t = t∗∗ for s. �
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We repeat now the definitions of weakly and graph regular operators, since
those concepts were only introduced before to have a view on some types of regu-
larity.

Definition. An operator t ∈ Co(E,F ) is called weakly regular if R(1 + t∗t)
and R(1 + tt∗) are essential.

Clearly t is weakly regular if and only if t∗ is.

Definition. An operator t ∈ Co(E,F ) is called graph regular if R(1+ t∗t) and
R(1 + tt∗) are dense.

The graph’s property of being orthogonally complemented in this case (see
Theorem 55) suggested this term.

Lemma 48. If t is weakly regular, then at, bt, at∗ , bt∗ are essentially defined:

at ⊆ a∗t , at∗ ⊆ a∗t∗ , bt ⊆ b∗t∗ , bt∗ ⊆ b∗t .
In particular at, bt, at∗ , bt∗ are orthogonally closable.

Proof. This is just a corollary of Corollary 47. �

The next example gives a first class of weakly regular operators behaving even
better. Thereafter, further classes of weakly regular operators will be discussed.

Example 49. Let t ∈ L(E,F ). Then t is weakly regular by Corollary 46.
Moreover at is self-adjoint, b∗t = bt∗ and at − a2t = b∗t bt by Corollary 47.

In fact, the range of 1+t∗t is in general not all of E for an adjointable operator;
a counter example can be given by using Theorem 59; indeed, there are a lot of.

Proposition 50. Let p : E → E be a projection. Then p is weakly regular,
1 + p∗p is self-adjoint and p = bpa

−1
p .

(1) If D(p) ( E then p is not graph regular.
(2) If D(p) = E then p is adjointable.

Proof. It is 1 + p∗p = 1 + p. Hence, for proving (1) and (2) it is enough to
show R(1 + p) = D(p): Let a ∈ D(p) and set b := a− p(a)/2. Then b ∈ D(p) and

a = a− p(a)/2 + p(a− p(a)/2) = (1 + p)b ∈ R(1 + p),

so D(p) ⊆ R(1 + p). Since the inverse inclusion is clear, equality holds. Finally,
1 + p is self-adjoint by Proposition 20 (3). From D(p) = R(1 + p) = D(ap) it also
follows bpa

−1
p = p. �

Example 51. Following Example 7, assume that A is an unitary ∗-module
space over itself. Let I be a proper essential right ideal of the ∗-algebra A and
consider E := I ⊕ A. Let

D(p) := I ⊕ I, p(a, b) :=
1

2
(a− b, b− a) (a, b ∈ I).

Then D(p) is an essential submodule and p = p2, p ⊆ p∗. Now let (a, b) ∈ D(p∗).
That is, there exists (c, d) ∈ I ⊕A such that for all (e, f) ∈ D(p) = I ⊕ I we have

1

2
((e− f)∗a+ (f − e)∗b) = p(e, f)∗(a, b) = (e, f)∗(c, d) = e∗c+ f∗d.

So e∗(a/2− b/2− c) = f∗(a/2− b/2 + d) for all e, f ∈ I, which implies 2c = a− b
and 2d = b− a, since I is an essential ideal of A. Now, a, c ∈ I implies b ∈ I and
even d ∈ I therefore. So D(p∗) ⊆ D(p), hence p = p∗.

By the way, the range of p is {(a,−a)|a ∈ I} and its kernel is {(a, a)|a ∈ I};
both are orthogonally closed. In fact, there is no projection with this range and
being defined on the whole space I ⊕ A.
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The concept of partial isometries is presented now. We will come back to them
in the second part when considering a more general polar decomposition.

Definition. An operator v : E → F is called a partial isometry if D(v) =
N (v) ⊕ N (v)⊥, N (v) and R(v) are orthogonally closed and 〈vx, vy〉 = 〈x, y〉 for
x, y ∈ N (v)⊥. N (v)⊥ is the initial space and R(v) is the final space of v.

That is, the restriction of an partial isometry to the orthogonal complement of
its kernel is an isometry between orthogonally closed submodules. Before carrying
about the weak regularity of partial isometries, the adjoint will be computed and
shown to be a partial isometry, too; it changes the roles of initial and final space.

Proposition 52. Let v : E → F be a partial isometry. Then v ∈ Co(E,F ).
Further v∗ is a partial isometry with initial space N (v∗)⊥ = R(v), final space
R(v∗) = N (v)⊥ and D(v∗) = R(v)⊥ ⊕R(v). Further,

v∗v = pR(v∗), vv∗ = pR(v), vv∗v = v, v∗vv∗ = v∗.

Proof. We prove R(v) ⊆ D(v∗) first: For an element z ∈ D(v) consider the
decomposition z = z‖ + z⊥ with z‖ ∈ N (v) and z⊥ ∈ N (v)⊥. For x, y ∈ D(v) is

〈vx, vy〉 =
〈
vx⊥, vy⊥

〉
=
〈
x⊥, y⊥

〉
=
〈
x⊥, y

〉
,

hence R(v) is contained in the domain of v∗ and v∗vx = x⊥. In particular, N (v)⊥

is contained in R(v∗).
Denote by w : E → F the restriction of v to N (v)⊥; clearly the range of w is

the range of v. The mapping w is injective, since 〈wx,wx〉 = 〈vx, vx〉 = 〈x, x〉 for
x ∈ N (v)⊥. Now we set

D(v′) := N (v∗)⊕R(v), v′(y‖ + y⊥) := w−1y⊥ (y‖ ∈ N (v∗), y⊥ ∈ R(v)).

We want to show that v′ ⊆ v∗. By the above, D(v′) ⊆ D(v∗), and for x ∈ N (v∗) is
already v′x = 0 = v∗x. On the other hand, for x ∈ D(v) we have shown v∗vx = x⊥;
further, x⊥ = w−1wx⊥ = w−1vx⊥ = w−1vx = v′vx. That is v′ ⊆ v∗.

Now we prove that v′ is also a partial isometry. The computation

〈v∗vx, v∗vy〉 =
〈
x⊥, y⊥

〉
=
〈
vx⊥, vy⊥

〉
= 〈vx, vy〉 (x, y ∈ D(v))

implies that 〈v∗x′, v∗y′〉 = 〈x′, y′〉 for x′, y′ ∈ R(v). Further is N (v′) = N (v∗),
since w−1 is injective, and N (v′)⊥ = N (v∗)⊥ = R(v)⊥⊥ = R(v). Hence D(v′) =
N (v′) ⊕ N (v′)⊥; in particular v′ is essentially defined, hence v is orthogonally
closable by v′ ⊆ v∗. Since v∗ is orthogonally closed, the kernel of v∗ and that one
of v′ is also orthogonally closed by Proposition 18 (2). Therefore, v′ is indeed a
partial isometry with initial space R(v) and final space N (v)⊥.

We already have v ⊆ v∗∗ ⊆ (v′)∗. D((v′)∗) ⊆ D(v) would prove orthogonal
closeness of v. So assume x ∈ D((v′)∗), that is, there exists y ∈ F such that
〈x, v′z〉 = 〈y, z〉 for all z ∈ D(v′). In particular, 0 = 〈x, 0〉 = 〈y, z〉 for all z ∈ N (v∗),
so y ∈ N (v∗)⊥ = R(v)⊥⊥ = R(v). Let y = vx̃ for some x̃ ∈ N (v)⊥. Then, we
also have 〈x, v′z〉 = 〈vx̃, z〉 for all z ∈ R(v). That is, 〈x, z̃〉 = 〈x, v′vz̃〉 = 〈vx̃, vz̃〉 =
〈x̃, z̃〉 for all z̃ ∈ N (v)⊥. Hence x− x̃ ∈ N (v)⊥⊥ = N (v), so x ∈ N (v)⊕N (v)⊥ =
D(v).

With N (v)⊥ = R(v∗) and N (v∗)⊥ = R(v) the representations of v∗v and vv∗

are easily computed; they imply vv∗v = v and v∗vv∗ = v∗. �

Proposition 53. Let v : E → F be a partial isometry. Then v is weakly
regular, 1 + v∗v is self-adjoint and bva

−1
v = v.

(1) If D(v) ( E, then v is not graph regular.
(2) If D(v) = E then v is adjointable.
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Proof. Starting with 1+v∗v = 1+pR(v∗), we getR(1+v∗v) = R(1+pR(v∗)) =
D(pR(v∗)) = D(v) - compare the proof of Proposition 50 -, and since 1 + pR(v∗) is
self-adjoint; now everything follows. �

Example 54. We use the same idea as in Example 51. Define

D(v) := I ⊕ I, v(a, b) :=
1

2
(a+ b,−a− b) (a, b ∈ I).

Then D(v) is an essential submodule of E and as it is easy to see:

• N (v) = R(v) = {(a,−a)|a ∈ I} is orthogonally closed.
• N (v)⊥ = {(a, a)|a ∈ I}, hence D(v) = N (v)⊕N (v)⊥.
• 〈v(a, a), v(a′, a′)〉 = 〈(a, a), (a′, a′)〉 for a, a′ ∈ I.

That is, v is a partial isometry. The adjoint is given by D(v∗) = D(v) and v∗(a, b) =
1
2 (a− b, a− b) for a, b ∈ I.

Finally, unitaries are considered. But as one would define an unitary operator
u : E → F to be in particular a partial isometry having no kernel - this would
be the definition of an isometry - we see that an unitary has to be defined on the
whole space: D(u) = N (u)⊕N (u)⊥ = {0}⊕{0}⊥ = E. Hence, unitaries as well as
isometries, are already adjointable, so there is nothing more to say about this here.

We finish at this point the discussion of weakly regular operators and start with
the main object of our interest: graph regular operators.

By Rgr(E,F ) we denote the set of graph regular operators from E into F that
are essentially defined; Rgr(E) := Rgr(E,E).

Theorem 55.
(1) For t ∈ C′o(E,F ) the following are equivalent:

(a) t ∈ Rgr(E,F ).
(b) G(t)⊕ vG(t∗) = E ⊕ F .
(c) R(1 + t∗t) = E and R(1 + tt∗) = F .

(2) If t ∈ Co(E,F ), then t is graph regular if and only if t∗ is.
(3) If t ∈ Rgr(E,F ), then D(t∗t) is a core for t.

Proof. (1a) ⇒ (1b) follows from vG(t∗) = G(t)⊥ by Proposition 15.
(1b) ⇒ (1a): Since G(t) ⊆ G(t)⊥⊥, (1b) clearly implies that G(t) = G(t)⊥⊥.

Hence, t is orthogonally closed and graph regular.
(1b) ⇔ (1c): This is an easy application of Lemma 42.
(2): This follows from t = t∗∗ with (for example) (1a) ⇔ (1c).
(3): We have 〈x, y〉 + 〈tx, ty〉 = 〈x, (1 + t∗t)y〉 for x ∈ D(t) and y ∈ D(t∗t), so

G(t �D(t∗t))
⊥ ∩ G(t) = {0}. With Proposition 13 (3) it follows

G(t)⊥ = G(t �D(t∗t))
⊥ ∩ (G(t)⊕ vG(t∗)) = G(t �D(t∗t))

⊥ ∩ E = G(t �D(t∗t))
⊥,

so D(t∗t) is a core for t. �

Now we define the (a, a∗, b)-transform, that will be a bijection from the graph
regular operators onto a set, that consists of triples of adjointable operators fulfilling
some relations. This set is given in the following

Definition. Let AB(E,F ) be the set of triples

(a, a∗, b) ∈ L(E)× L(F )× L(E,F )

with a, a∗ positive, N (a) = {0}, N (a∗) = {0} and

b∗b = a− a2, bb∗ = a∗ − a2∗, ab∗ = b∗a∗ (⇔ ba = a∗b).

We are ready to state now the theorem on the (a, a∗, b)-transform.
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Theorem 56. If t ∈ Rgr(E,F ), then (at, at∗ , bt) ∈ AB(E,F ), where

at := (1 + t∗t)−1, at∗ := (1 + tt∗)−1, bt := t(1 + t∗t)−1.

Further, N (bt) = N (t), bt∗ = b∗t and the projection onto the graph of t is given by

p =

(
at b∗t
bt 1− at∗

)
∈ L(E ⊕ F,E ⊕ F ).

If (a, a∗, b) ∈ AB(E,F ), then ta,a∗,b ∈ Rgr(E,F ), where

ta,a∗,b := (ba−1)∗∗ = (b∗a−1∗ )∗.

Further t∗a,a∗,b = ta∗,a,b∗ . Finally, t 7→ (at, at∗ , bt) is a bijection from Rgr(E,F )

onto AB(E,F ) with inverse (a, a∗, b) 7→ ta,a∗,b.

Proof. Since R(1 + t∗t) = E by the assumption t ∈ Rgr(E,F ), at is defined
on the whole of E. Therefore, since 1 + t∗t is positive and injective, at is positive
with trivial kernel. Further, bt is defined on E and similar bt∗ is defined on F . For
x := (1 + t∗t)x′ ∈ E and y := (1 + tt∗)y′ ∈ F , where x′ ∈ E, y′ ∈ F , we compute

〈btx, y〉 = 〈tx′, (1 + tt∗)y′〉 = 〈tx′, y′〉+ 〈tx′, tt∗y′〉 = 〈tx′, y′〉+ 〈t∗tx′, t∗y′〉
= 〈(1 + t∗t)x′, t∗y′〉 = 〈x, bt∗y〉 .

Hence bt = (bt∗)
∗ ∈ L(E,F ). From bt∗ = (bt)

∗ = (tat)
∗ we get bt∗bt ⊇ att

∗tat =
at(1 − at). Since at(1 − at) is defined on the whole of E, the latter yields bt∗bt =
at − a2t . Further, (1 + t∗t)t∗ = t∗(1 + tt∗) and R(a2t∗) = D(tt∗tt∗) ⊆ D(t∗tt∗) imply

bt∗at∗ = t∗a2t∗ = 1 �D(t∗t) t
∗a2t∗ = at(1 + t∗t)t∗a2t∗ = att

∗(1 + tt∗)a2t∗ = atbt∗ .

This proves (at, at∗ , bt) ∈ AB(E,F ). R(bt∗) ⊆ R(t∗), so N (t) ⊆ N (bt). Now
suppose btx = 0 for some x ∈ E. Then we have (at − a2t )x = b∗t btx = 0, so
x = atx ∈ D(t∗t) ⊆ D(t). Further, (1 + t∗t)x = x, so t∗tx = 0 and from 〈tx, tx〉 =
〈t∗tx, x〉 = 0 it follows x ∈ N (t). The statement concerning the projection is easily
verified.

Now assume (a, a∗, b) ∈ AB(E,F ) and set t := ba−1 and s := b∗a−1∗ . Since
D(t)⊥ = R(a)⊥ = N (a) = {0}, t is essentially defined. Similarly, s is essentially
defined. For x ∈ E, y ∈ F we have

〈t(ax), a∗y〉 = 〈bx, a∗y〉 = 〈a∗bx, y〉 = 〈bax, y〉 = 〈ax, b∗y〉 = 〈ax, s(a∗y)〉 ,
so t ⊆ s∗ and s ⊆ t∗. In particular, t ∈ C′o(E,F ).

Now we show that R(a) is a core for s∗. We have s∗ = a−1∗ b by Proposition
20. Thus we have to show that G(ba−1)⊥ ⊆ G(a−1∗ b)⊥. Assume (r, s) ∈ G(ba−1)⊥.
Then 〈(r, s), (ax, bx)〉 = 0 for all x ∈ E, so ar + b∗s = 0.

Further, a∗(br+ (1− a∗)s) = a∗br+ (a∗ − a2∗)s = bar+ bb∗s = b(ar+ b∗s) = 0.
Since a∗ is injective, this yields s = a∗s− br.

Now let x ∈ D(a−1∗ b). Then there exists a (unique) element z ∈ F with
bx = a∗z. Using the assumption b∗a∗z = ab∗z we obtain

b∗z = a−1b∗a∗z = a−1b∗bx = a−1(a− a2)x = (1− a)x.

We compute〈
(r, s), (x, a−1∗ bx)

〉
= 〈r, x〉+

〈
s, a−1∗ bx

〉
= 〈r, x〉+ 〈s, z〉

= 〈r, x〉+ 〈a∗s− br, z〉 = 〈r, x〉+ 〈s, a∗z〉 − 〈r, b∗z〉
= 〈r, x〉+ 〈s, bx〉 − 〈r, (1− a)x〉 = 〈b∗s, x〉+ 〈ar, x〉 = 0.

Hence (r, s)⊥G(a−1∗ b). This proves t∗∗ = s∗. Finally,

1 + t∗t∗∗ ⊇ 1 + t∗t = 1 + a−1b∗ba−1 = 1 + a−1(a− a2)a−1 = a−1,

1 + t∗∗t∗ ⊇ 1 + s∗s = 1 + a−1∗ bb∗a−1∗ = 1 + a−1∗ (a∗ − a2∗)a−1∗ = a−1∗ .
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Hence at∗∗ = a ∈ L(E) and at∗ = a∗ ∈ L(F ), so that t ∈ Rgr(E,F ). Furthermore
is bt∗∗ = t∗∗at∗∗ = t∗∗a ⊇ ta = b ∈ L(E,F ), so bt∗∗ = b. �

In particular, t∗t is self-adjoint for t ∈ Rgr(E,F ).

Corollary 57. Let t ∈ Rgr(E). Then t is normal if and only if at = at∗ . In
this case, bt is normal and the operators at and bt commute.

Proof. Since t ∈ Rgr(E), we have (at, at∗ , bt) ∈ AB(E) by Theorem 56, so

b∗t bt = at − a2t , btb
∗
t = at∗ − a2t∗ , btat = at∗bt.

Clearly, at = at∗ if and only if t∗t = tt∗. In this case, b∗t bt = btb
∗
t and btat = atbt. �

Proposition 58. If t ∈ Co(E,F ) is injective and has an essential range, then
t is graph regular if and only if t−1 is.

Proof. By Proposition 18 (4), t−1 ∈ Co(F,E), and from

G(t)⊕ vG(t∗) = u[G(t−1)⊕ vG((t∗)−1)] = u[G(t−1)⊕ vG((t−1)∗)]

the statement follows . �
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Transition
Orthogonal complementability and topology

In this section we prepare the step from graph regularity on unitary ∗-module
spaces to Hilbert C∗-modules, that is, the topology will be involved then. The
usefulness of graph regularity depends on the existence of ”enough” orthogonally
complemented submodules. But before continuing this argument we study the
graph regular operators on C[X], which gives an extreme example in this direction.

The ∗-algebra A = C[X] in several hermitian variables X = (X1, . . . , Xn)
(for some n ∈ N) is via Example 7 an unitary ∗-module space over itself, where
the sums of squares

∑
C[X]2 are indeed a quadratic module, which is denoted

by P. Its submodules are precisely the ideals of C[X]. It will be shown that
every operator on E having a non-trivial domain is in fact essentially defined and
orthogonally closable. All orthogonally closed operators (with non-trivial domain)
are multiplication operators with rational symbol. They are graph regular if and
only if the symbol is a constant.

For f, g ∈ C[X] the greatest common divisor is denoted by gcd(f, g). The
symbol f |g says that f divides g. Before stating the main theorem, the multipli-
cation operators will be defined. For f, g ∈ C[X] with gcd(f, g) = 1 and f 6= 0 let
tg/f : E → E be given via

D(tg/f ) := fC[X], tg/f (fh) := gh (h ∈ C[X]).

It is easily checked that tg/f is indeed an operator (linearity in C and A).

Theorem 59. Let t : E → E be an operator with D(t) 6= {0}. Then t ∈ C′o(E).
More precisely, there are m ∈ N, f1, . . . , fm ∈ E with

D(t) = f1A+ . . .+ fmA.

Setting f := f1/ gcd(f1, t(f1)) and g := t(f1)/ gcd(f1, t(f1)) it is

t ⊆ t∗∗ = tg/f and t∗ = tg/f .

The operator tg/f is graph regular if and only if f and g are constant.

Proof. Let t : C[X] → C[X] be an operator with D(t) 6= {0}. Since C[X]
has no zero-divisors, any non-trivial ideal is essential. Moreover by Hilbert’s basis
theorem (see [Lan02] Chapter IV Theorem 4.1), it is finitely generated, say

D(t) = f1C[X] + . . .+ fmC[X].

for some m ∈ N, f1, . . . , fm ∈ C[X]. The action of t is given then by

t(f1h1 + . . .+ fmhm) = g1h1 + . . .+ gmhm (h1, . . . , hm ∈ C[X]),

for some gi := t(fi) (i = 1, . . . ,m). By assumption, t is an operator, that is, if∑
i fihi = 0, then

∑
i gihi = 0. Hence, for j = 1, . . . ,m, from f1fj = fjf1 it follows

g1fj = t(f1fj) = t(fjf1) = gjf1. Therefore gfj/ gcd(fj , gj) = fgj/ gcd(fj , gj).
Obviously, gcd(f, g) = 1, so there is a non-zero α ∈ C with fj/ gcd(fj , gj) = αf



44

and gj/ gcd(fj , gj) = αg. In particular, g|gj and f |fj , so

fj =
fjgj gcd(fj , gj)

gj gcd(fj , gj)
=
αfgj
αg

= f
gj
g
∈ fC[X] (j = 1, . . . ,m).

This proves D(t) ⊆ fC[X]. If
∑
j fjhj = f

∑
j
fj
f hj ∈ D(t), then

t(f
∑

j

fj
f
hj) = t(

∑
j
fjhj) =

∑
j
gjhj = g

∑
j

gj
g
hj = g

∑
j

fj
f
hj ,

since fjg = fgj for all j = 1, . . . ,m. Hence t ⊆ tg/f .
The adjoint of t is computed now. Let h ∈ C[X] and k ∈ D(t) ⊆ fC[X], so there

is an l ∈ C[X] with k = fl. Then
〈
t(k), fh

〉
=
〈
gl, fh

〉
= glfh = 〈fl, gh〉 = 〈k, gh〉.

That is, fh ∈ D(t∗), t∗(fh) = gh, hence tf/g ⊆ t∗. Now suppose k ∈ D(t∗) is not

zero. Then there exists l ∈ C[X] with g1k = 〈g1, k〉 = 〈tf1, k〉 = 〈f1, l〉 = f1l. So
gk = fl. Since gcd(f, g) = 1, it is k|f , whence k ∈ fC[X]: D(t∗) = D(tf/g). Since

f 6= 0, the domain of t∗ is essential; in particular, t is orthogonally closable.
Applying the already proven to tg/f , it follows t∗∗ = t∗

g/f
= tg/f .

Next, the operator 1 + tg/f tg/f will be computed. It is D(tg/f tg/f ) = |f |2C[X]

and (1+tg/f tg/f )|f |2h = |f |2h+|g|2h = (|f |2+|g|2)h for h ∈ C[X]. Hence, the range

of 1 + tg/f tg/f is all of C[X] if and only if |f |2 + |g|2 is constant. Now, tg/f tg/f =

tg/f tg/f gives the assertion concerning the graph regularity by Theorem 55 (1). �

As Theorem 59 insinuate and the proof indeed justifies, one could also choose
f := fi/ gcd(fi, t(fi)) and g := t(fi)/ gcd(fi, t(fi)) for i 6= 1, since g1fj = gjf1.

The last example shows that even adjointable operators - polynomial symbol -
are not graph regular; another argument to leave the sphere of unitary ∗-module
spaces.

Hilbert space: One guarantee to have ”enough” orthogonally complemented
subspaces is its completeness, since for an unitary space not all (even closed) sub-
modules are of that kind any more. Now, the gap between unitary ∗-modules
spaces and Hilbert C∗-modules is much larger: It could be filled with pre-Hilbert
C∗-modules or unitary ∗-modules spaces over Banach-∗-algebras. For Hilbert C∗-
modules we do not expect such a vacant set of graph regular operators - and we
know that this is not the case, since there is the set of already regular operators.
That is, the main task is to uncover the gap between regular and graph regular
operators.

From now on we leave the unitary ∗-module spaces and specialise to Hilbert
C∗-modules (see Example 6).

At first, let me state a well-known relation of orthogonality and topology in
Hilbert C∗-modules. (We have in mind that for subsets in Hilbert C∗-modules the
adjective closed reads as complete.)

Lemma 60. If E is a Hilbert C∗-module and G ⊆ E, then G⊥ is closed. In
particular each orthogonally closed submodule is closed.

Proof. If (xn)n∈N is a sequence in G⊥ with xn → x ∈ E, then 〈x, y〉 =
lim
n→∞

〈xn, y〉 = 0, so x⊥G. �

With this simple observation, we will have a look at closed (closable) operators
and their adjoints now, and then study the operator 1 + t∗t. Assume E and F are
Hilbert A-modules.



45

As in the Hilbert space case, an operator t : E → F is closed if its graph is a
closed submodule of E⊕F . If G(t) is still a graph of an operator, t is called closable

and we denote by t the operator with G(t) = G(t); for each closed operator s that
extends t, we have G(t) ⊆ G(s). For a closed operator t a subset D of D(t) is called
core for t if t �D = t.

From Lemma 60 we deduce:

Corollary 61. Each orthogonally closed resp. closable operator t : E → F
is closed resp. closable. If t is closable, then

(1) G(t) ⊆ G(t) ⊆ G(t)⊥⊥.
(2) If t is essentially defined, then t∗ = t

∗
is closed.

(3) If t ∈ C′o(E,F ), then t ⊆ t ⊆ t∗∗.

Lemma 62. Let t : E → F be essentially defined. Then

(1) For x ∈ D(t∗t) is ‖x‖ ≤ ‖(1 + t∗t)x‖ and ‖tx‖ ≤ ‖(1 + t∗t)x‖.
(2) at and bt are bounded by 1.
(3) If t is closed, then 1 + t∗t is closed and R(1 + t∗t) is closed.
(4) If t is closable, then R(at) ⊆ D(t) and bt = tat. at is injective as well.
(5) If t is closed, then at and bt are closed.

Proof. (1): For x ∈ D(t∗t) are ‖x‖2 and ‖tx‖2 less or equal ‖ 〈x, (1+t∗t)x〉 ‖A.
With ‖ 〈x, (1 + t∗t)x〉 ‖A ≤ ‖(1 + t∗t)x‖‖x‖ ≤ ‖(1 + t∗t)x‖2 assertion (1) is proven.

(2): From ‖x‖ ≤ ‖(1 + t∗t)x‖ for x ∈ D(t∗t) it follows ‖at‖ ≤ 1. Now let
x ∈ D(t∗t). Then ‖bt(1 + t∗t)x‖ = ‖tx‖ ≤ ‖(1 + t∗t)x‖, that is, ‖bt‖ ≤ 1.

(3): Let (xn)n∈N a sequence in D(t∗t) with xn → x and (1 + t∗t)xn → y. Then
from (1) it follows that txn is a Cauchy-sequence, so it converges. Since t is closed,
txn → tx. Now, t∗ is closed and t∗txn → y − x, so tx ∈ D(t∗) and t∗tx = y − x.
Hence x ∈ D(t∗t) and (1 + t∗t)x = y. Let ((1 + t∗t)xn)n∈N be a sequence in
R(1 + t∗t) converging to y. Using (1) (xn)n∈N is a Cauchy-sequence and converges
to an x ∈ E. Since 1 + t∗t is closed x ∈ D(t∗t) and y = (1 + t∗t)x ∈ R(1 + t∗t).

(4): D(at) = D(at) = R(1 + t∗t) since at is bounded. Let x ∈ D(at). Then
there is a sequence (zn)n∈N in D(t∗t) ⊆ D(t) with (1 + t∗t)zn → x. Since at
is continuous, zn → atx. Since bt is continuous, tzn → btx. Since t is closable
atx ∈ D(t) and tatx = btx. Now bt = tat follows from D(at) = D(bt) = R(1 + t∗t).
From ‖x‖ ≤ ‖(1+ t∗t)x‖, for x ∈ D(t∗t), we conclude that the closure of at remains
injective.

(5): This follows from (3) using that at is closed as the inverse of the closed
operator 1 + t∗t: bt = tat = tat = bt. �

Another possibility to prove Theorem 55 (1a)⇒ (1c) can be given by using the
following lemma.

Lemma 63. If t : E → F is graph regular, then R(1 + t∗t) = E.

Proof. By Lemma 62 the range of 1 + t∗t is closed, since graph regular oper-
ators are orthogonally closed and in particular closed. The range of 1 + t∗t is dense
in E by the definition of graph regularity; hence it is all of E. �

Lemma 64. Let t : E → F be an essentially defined operator with R(1 + t∗t)
dense in E. Then D(t∗t) is an essential submodule of E.

Proof. Let x⊥D(t∗t). Since the range of 1 + t∗t is dense, there exists a
sequence (x′n)n∈N in D(t∗t) with x = lim(1+t∗t)x′n. Since at is bounded, x′n → atx.
By assumption, for y ∈ D(t∗t) is

〈atx, (1 + t∗t)y〉 = lim
n
〈x′n, (1 + t∗t)y〉 = lim

n
〈(1 + t∗t)x′n, y〉 = 〈x, y〉 = 0.
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Hence atx = 0, since R(1 + t∗t) is dense in E. Hence x = 0, as at is injective by
Lemma 62 (4). �

Lemma 65. Let t : E → F be bounded with D(t) = E. Then t∗ is bounded.

Proof. The norm of t∗ is given by

‖t∗‖ = sup
x∈D(t∗)
‖x‖≤1

‖t∗x‖ = sup
x∈D(t∗)
‖x‖≤1

sup
y∈E
‖y‖≤1

‖ 〈t∗x, y〉 ‖ = sup
x∈D(t∗)
‖x‖≤1

sup
y∈E
‖y‖≤1

‖ 〈x, ty〉 ‖ ≤ ‖t‖.

�

The next lemma is inspired by [Lan95] Lemma 9.1.

Lemma 66. Let t : E → F be an essentially defined operator with R(1 + t∗t)

dense in E. If R(t) ⊆ D(t∗), then D(t∗t) is dense in D(t).

Proof. Lemma 62 implies that at and bt = tat are bounded. We compute

b∗t ⊇ a∗t t
∗ ⊇ att

∗. By Lemma 65, b∗t = bt
∗

is bounded, so att
∗ is bounded as

well. Hence D(att∗) = D(t∗) and R(att∗) ⊆ D(t∗t), since D(att
∗) = D(t∗) and

R(att
∗) ⊆ D(t∗t).

Now suppose z ∈ D(t). Since R(t) ⊆ D(t∗), tz ∈ D(t∗) = D(att∗). For all
y ∈ R(1 + t∗t) = D(at) = D(bt) is〈

y, (att∗t+ at)z
〉

= 〈t∗bty, z〉+ 〈aty, z〉 = 〈(t∗t+ 1)aty, z〉 = 〈y, z〉 ,

since R(bt) ⊆ D(t∗). The density of R(1 + t∗t) implies z = (att∗t+ at)z ∈ D(t∗t).

That is, D(t) ⊆ D(t∗t), which is the assertion. �

Proof. Lemma 63 implies that at and bt = tat are defined on E. With , we
compute b∗t ⊇ a∗t t

∗ ⊇ att
∗. By Lemma 65, b∗t is bounded, so att

∗ is bounded as

well. Hence D(att∗) = D(t∗) and R(att∗) ⊆ D(t∗t), since D(att
∗) = D(t∗) and

R(att
∗) ⊆ D(t∗t).

Now suppose z ∈ D(t). Since R(t) ⊆ D(t∗), tz ∈ D(t∗) = D(att∗). It is〈
y, (att∗t+ at)z

〉
= 〈bty, tz〉+ 〈aty, z〉 = 〈(t∗t+ 1)aty, z〉 = 〈y, z〉 (y ∈ E),

since R(bt) ⊆ D(t∗). This implies z = (att∗t + at)z ∈ D(t∗t). Therefore D(t) ⊆
D(t∗t), which is the assertion. �

Assume t is essentially defined orthogonally closed (so t∗ is essentially defined)
and R(1 + t∗t) dense in E. In general, R(1 + tt∗) is not dense in F as we will see
later in Example 122. This is different to what is known about regular operators:
If t and t∗ are densely defined, t is orthogonally closed (t = t∗∗) with R(1 + t∗t)
dense in E, then R(1 + tt∗) is dense in F (see [Lan95] Corollary 9.61).

We finish our sighting at this point and start to study only graph regular
operators on Hilbert C∗-modules. Since the next chapter is again concerned with
the commutative case, but with the C∗-algebra C0(X) now, it could be thought
of as another sighting, since the computations in this case could be done directly
without referring to the theory developed so far.

1This corollary is false as noted in [Pal99] Remark 2.4 (ii). But if one strengthen the condition
of closeness of t to orthogonally closeness, the statement becomes true, since in this case t = t∗∗.



Graph regular operators on Hilbert
C∗-modules
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4. Commutative case: Operators on C0(X)
Phenomena

At first, in this chapter we study operators on C0(X) (Theorem 67 and The-
orem 68), the C∗-algebra of continuous functions on a locally compact Hausdorff
spaceX, for two reasons. Some examples will show us the difficulties and phenom-
ena that occur for orthogonally closed/graph regular operators - already in this
simple situation. On the other hand, since the computations on this C∗-algebra
are quite easy, we can anticipate the general theory of the absolute value and the
polar decomposition (Theorem 71), the bounded transform (Theorem 72).

Secondly, we transfer some of these results to unital commutative C∗-algebras
C with C0(X) ⊆ C ⊆ Cb(X) (Theorem 75). This is interesting in its own but also
needed for the functional calculus.

First, let us notice that all results that we know from the theory for operators
on C(X) are verbatim true except for the following point: A function h : X → C

is in C0(X) if and only if reg(h) = X and h ∈ F0(X), where we set

F0(X) := {h : X → C|h vanisches at infinity}.
Therefore, the characterisation of the operator’s domain has to be modified

slightly. All of the other statements and their proofs are verbatim true. We repeat
them (in a comprehensive form) in the next two theorems, and alter the statement
and proof of the characterisation of the operator’s domain in Theorem 67 (1).

Let E = C0(X). In the first group the statements for the multiplication oper-
ators are presented. The second one is concerned with Co(E).

Theorem 67. Let m : X → C be given. Then

(1) For x ∈ X, there is an f ∈ D(tm) with f(x) 6= 0 if and only if x ∈ reg(m̂).

D(tm) = {f ∈ E|f ≡ 0 on X \ reg(m̂), ∂reg(m̂) ⊆ reg(m̂f), m̂f ∈ F0(X)},
(tmf)(x) = m̂(x)f(x) (f ∈ D(tm), x ∈ X \ reg∞(m)).

If m̃ : X → C, then tm = tm̃ if and only if m ' m̃. In particular, tm = tm̂.
(2) The operator tm is essentially defined if and only if reg(m) is dense in X.

In this case, we have t∗m = tm and tm ∈ Co(E).
(3) Let n : X → C be another function.

(a) It is tm + tn ⊆ tm+n and tmtn ⊆ tmn.
(b) If reg(m) and reg(n) are dense in X, then tm+ tn, tmtn ∈ C′o(E) and

(tm + tn)∗∗ = tm+n, (tmtn)∗∗ = tmn.
(4) (a) tm is injective if and only if {x ∈ reg(m)|m(x) 6= 0} is dense in

reg(m).
(b) If tm is injective an m does not vanish at any point, then t−1m = t1/m.
(c) R(tm) is essential if and only if reg(m) is dense in X and tm is

injective.
(5) Let reg(m) be dense in X.

(a) tm is normal and t∗mtm is essentially self-adjoint.
(b) R(1 + t∗mtm) = {g ∈ E|∀x ∈ sing-suppr(m) : g(x) = 0}. In particu-

lar, R(1 + t∗mtm) is essential.
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(c) D(t∗mtm) is an essential core for tm.

Proof. By Definition, D(tm) consists of those f ∈ E for which reg(m̂f) = X

and m̂f ∈ F0(X). Since reg(m̂) ⊆ reg(m̂f) for f ∈ E, D(tm) is the set of all f ∈ E
such that X \ reg(m̂) ⊆ reg(m̂f) and m̂f ∈ F0(X).

Let f ∈ E with m̂f ∈ F0(X). Suppose that ∂reg(m̂) ⊆ reg(m̂f) and f ≡ 0

on X \ reg(m̂). In particular, mf ≡ 0 on X \ reg(m̂). Hence X \ reg(m̂) =

X \ reg(m̂) ∪ ∂reg(m̂) is contained in reg(m̂f). To show m̂f ∈ F0(X), let ε > 0.
Since m̂f ∈ F0(X), there exists a compact set K ⊆ X such that |m̂f | ≤ ε on X \K.

By continuity of m̂f on X, the same is true for this function, since m̂f and m̂f

coincide on the dense set X \ ∂reg(m). That is, m̂f ∈ F0(X), hence f ∈ D(tm).
We suppose now that f ∈ D(tm). In particular, reg(mf) is dense in X, hence

∂reg(m̂) ⊆ X = reg(m̂f). Assume that x ∈ X \ reg(m̂) and f(x) 6= 0. By the
continuity of f , there exists an open set U ⊆ X \ reg(m̂) such that f(y) 6= 0 for
y ∈ U . From Lemma 27 it follows that U is contained even in X\reg(m̂f). But this
contradicts the density of reg(mf) ⊆ reg(m̂f) in X, hence f(x) = 0. In particular,

m̂f coincides with m̂f on reg(m̂), and m̂f ≡ 0 on X \ reg(m̂). So, m̂f ∈ F0(X)
implies m̂f ∈ F0(X) and the description of D(tm) is proven. �

Theorem 68.
(1) If t ∈ Co(E), then there is a function m : X → C such that t = tm.
(2) Each t ∈ Co(C(X)) is already weakly regular.

(a) The operator t = tm is graph regular if and only if sing-suppr(m) is
empty. In this case,

atm = t 1
1+|m|2

and btm = t m
1+|m|2

.

(b) The operator t = tm is regular if and only if reg(m̂) = X.

We are able to discuss the operators on C0(X) now. First, a strange behaviour
of normal operators is presented, even if they are graph regular.

Example 69 (Continuing Example 33). We have seen that D(tm) 6= D(t∗m).
But since reg(m) = (0, 1] and 0 ∈ reg∞(m), tm is graph regular by Theorem 68.
By Theorem 67 tm is normal (as all operators on C0(X) are). Thus, even for graph
regular operators t the statements:

(1) t∗t = tt∗ (that is, t is normal).
(2) D(t) = D(t∗) and 〈tf, tf〉 = 〈t∗f, t∗f〉 for all f ∈ D(t).

are not equivalent! We only have (2) ⇒ (1) as the standard proof of the Hilbert
spaces case shows: By the polarisation identity, (2) implies

〈tf, tg〉 = 〈t∗f, t∗g〉 (f, g ∈ D(t) = D(t∗)).

Hence,

D(t∗t) = {f ∈ D(t)|∃g ∈ E : ∀h ∈ D(t) : 〈g, h〉 = 〈tg, th〉 = 〈t∗g, t∗h〉} = D(tt∗)

and t∗tf = g = tt∗f for f ∈ D(t∗t) = D(tt∗). That is, t∗t = tt∗.

We have already seen in Theorem 56 that in general the kernels of t and bt are
equal for a graph regular operator t; in particular, the biorthogonal complements
of its ranges are equal, too: R(t)⊥⊥ = N (t∗)⊥ = N (bt∗)

⊥ = R(b∗t )
⊥ = R(bt)

⊥⊥.
The following example shows that this is not true for the closures of the ranges.
Obviously, the range of bt = tat coincides with that one of t when restricted to
D(t∗t). Hence R(bt) ⊆ R(t). The other inclusion is false in general as the next
example shows.
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Example 70. Consider the operator tm on C0(R) with m(x) := 1/x on R \
{0} and m(0) arbitrary but not zero. R(tm) is all of C0(R): tm = (t1/m)−1 by
Theorem 67, and t1/m is densely defined since it is regular by Theorem 68. But

R(btm) consists precisely of those functions of C0(R) that vanishes at 0: This is
easily seen, since btm = t x

1+x2
. But for our purpose it is enough to state that any

function in the range of btm vanishes at 0 by Theorem 67 (1).

We define and study the absolute value of (unbounded) graph regular operators
below. Here, in the commutative case, we have a natural candidate for |tm|, namely
the self-adjoint operator t|m|, and we will see that both are the same. (For bounded
m this is easily checked.) At this point we do not want to state the definition of the
absolute value in the general case, but refer to Theorem 114. It characterises the
absolute value |tm|, which is also self-adjoint and graph regular, by its (a, a∗, b)-
transform: a|tm| = atm and b|tm| = |btm |. Since the absolute value is a continuous
function on the complex numbers, the graph regularity of m implies that one of |m|
via sing-suppr(|m|) ⊆ sing-suppr(m). From Theorem 34 it follows

at|m| = t 1
1+|m|2

= atm , bt|m| = t |m|
1+|m|2

= |btm |.

That is, |tm| and t|m| are equal, since their (a, a∗, b)-transforms coincide.
We will use the natural t|m| for the absolute value in the remaining section.

For a function m : X → C we let m = u|m| be its polar decomposition and
choose the phase u to be zero whenever m vanishes; in particular, this ensures
reg(u) to be dense if reg(m) is. By Lemma 30, we immediately obtain tm ⊇ tut|m|
and even a weak form of the polar decomposition for the corresponding operator:

tm = (tut|m|)
∗∗.

Indeed, a strong form of the polar composition is not available in general. If m is
bounded, there is no problem to prove

tm = tut|m|.

Theorem 71. Let m : X → C be a function such that tm is graph regular. It
is tm = tut|m| if and only if

reg∞(m) ∩ sing-suppr(u) = ∅,
that is, the phase u of m has to be continuous at points of infinity.

Proof. We prove this by constructing a function f : X → C that belongs to
the domain of tm but not to that one of t|m|, whenever there exists x ∈ reg∞(m)
not belonging to reg(û).

In this case, it is possible to choose a neighbourhood U of x such that m does
not vanish on any of its points. Since X is locally compact Hausdorff, there exists
a function h ∈ C0(X) and a compact neighbourhood V ⊆ U of x with h ≡ 1 on V
and h ≡ 0 outside of U . Indeed, the non-zero function g := h/m belongs to C0(X).

Further, m̂g = (mh/m)∧ = h, so g ∈ D(tm). But ̂|m|g = (|m|h/m)∧ = h/û on
V , where m, u and h do not vanish. So x ∈ sing-suppr(h/û), since h(x) 6= 0 and
x /∈ reg(û) (see Lemma 27). That is, g /∈ D(t|m|) and tm ) tut|m| is shown.

Now assume reg∞(m) ∩ sing-suppr(u) is empty, that is, reg∞(m) ⊆ reg(û).
We prove D(tm) ⊆ D(t|m|) and R(t|m|) ⊆ D(tu), from which tm = tut|m| follows,
since tm ⊇ tut|m| was already established. Since tm is graph regular, we have

X = reg(m̂)∪ reg∞(m). Moreover, since |.| is continuous, reg(m̂) ⊆ reg(|̂m|) and

reg∞(m) ⊆ reg∞(|m|). Actually equality holds for both cases, since reg(|̂m|) and

reg∞(|m|) are disjoint. Further, |̂m| = |m̂| on reg(m̂).
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Let f ∈ D(tm). Then f ≡ 0 on X \ reg(m̂) = X \ reg(|̂m|) by Theorem 67 (1).
Let x ∈ reg∞(m), so ⊆ reg(û) by assumption. In a neighbourhood U of x, where
m does not vanish and û is continuous, we compute (noting that û does not vanish
there as well)

|̂m|f = (mf/û)∧ = m̂f/û.

Therefore, |̂m|f is continuous on U and x ∈ reg(|m|f). That is, we have shown

∂reg(|̂m|) = reg(|̂m|f). At last, we show |̂m|f ∈ F0(X). By Theorem 67 (1),
m̂f ∈ F0(X), that is, for each ε > 0, there exists K ⊆ X compact with |m̂f | ≤ ε

on X \ K. On reg(m̂) is ||̂m|f | = ||m̂|f | = |m̂f |, and on reg∞(m) is f ≡ 0 by

Theorem 67 (1), so |̂m|f ≡ 0 there. Hence ||̂m|f | ≤ ε on X \ K as well. Using
Theorem 67 (1) again, we conclude f ∈ D(t|m|). �

Note that the polar decomposition tm = tut|m| is true for regular tm, since
reg∞(m) is empty in this case. This is related to the fact that tu is in general not
a partial isometry as we have defined them before although u is a phase, because
the range of tu can fail to be orthogonally closed (e.g. if u is the sign function on
R). But in the general (non-commutative) case this partial isometry will be needed
for the polar decomposition. Even for regular operators further assumptions are
needed (see Theorem 119) to construct this decomposition.

Having understood the polar decomposition so far, we study the bounded trans-
form now. Remember, its idea is to connect unboundedness with boundedness via
the mapping z : C→ C given by

z(x) := x(1 + |x|2)−1/2.

So we consider for m : X → C with graph regular operator tm the operator

z(tm) := tm((1 + |tm|2)−1)1/2.

In chapter 8 we will define the bounded transform of tm slightly different. But it

is also shown that z(t) := ta
1/2
t belongs to Co(C0(X)). Hence, we are allowed to

compute

z(tm) = z(tm)∗∗ = (tma
1/2
tm )∗∗ = (tmt

1/2
1

1+|m|2
)∗∗ = t m√

1+|m|2
,

where Theorem 67 (3b) was used. Whereas for a regular operator tm - m ∈ C(X)
- this transform is always an adjointable operator (see [Lan95] Theorem 10.4), for
graph regular ones z(tm) can fail to be defined on the hole space.

Theorem 72. If m : X → C is a function such that tm is graph regular, then

D(z(tm)) = {f ∈ C0(X)|f ≡ 0 on reg∞(m) ∩ sing-suppr(u)}.

In particular, z(tm) ∈ L(C0(X)) if and only if

reg∞(m) ∩ sing-suppr(u) = ∅.

Proof. We present only a sketch of proof, because the techniques are exactly
the same as in the proof of Theorem 71. We set n := m/

√
1 + |m|2.

It is reg(m̂) ⊆ reg(n̂). For x ∈ reg∞(m), we have two cases. The first:
x ∈ reg(û). One proves that this is the case, if and only if x ∈ reg(n̂). The
second: x ∈ sing-suppr(u). Here, one proves that this is the case, if and only if
x ∈ sing-suppr(n). We summarise this:

reg(n̂) = reg(m̂) ∪ (reg∞(m) ∩ reg(û)),

sing-suppr(n) = reg∞(m) ∩ sing-suppr(u).
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Since n is bounded one easily deduces the assertion using Theorem 67 (1). �

Example 73. The strong form of the polar decomposition is not valid for the
function m(x) := 1/x on X = R, since reg∞(m) ∩ sing-suppr(u) = {0}. The
function f : R → C given by f(x) := x for |x| ≤ 1 and f(x) := 1/x for |x| > 1
belongs to D(tm) but not to D(t|m|). For the same reason, z(tm) is not adjointable.

It is m(x)/
√

1 + |m(x)|2 = sgn(x)/
√

1 + x2, which can not be identified with some
function in Cb(R).

We finish the discussion of the commutative case by transferring the results to
unital commutative C∗-algebras C with

C0(X)∼ ⊆ C ⊆ Cb(X),

where X is not compact and C0(X)∼ denotes the unitisation of C0(X).
It is well known that in this case there exists an compact Hausdorff space Y

containing X as open and dense subset such that C is isometrically ∗-isomorphic to
C(Y ); the isomorphism from C(Y ) onto C is given by f 7→ ι(f) := f �X .2

We can apply the theory developed above to C(Y ) now. But first we generalise
the definition of multiplication operators acting on C now; in the preceding for the
function m : X → C the operator tm acts by definition on C0(X).

Definition. For a function m : X → C let

D(tCm) := {f ∈ C|m̂f ∈ C}, tmf := m̂f (f ∈ D(tm)).

Proposition 74. Let n : Y → C and m := n �X . Then

D(tCm) = {ι(f)|f ∈ D(tn)}, tmι(f) = ι(tnf) (f ∈ D(tn)).

Proof. Let g ∈ D(tm) ⊆ C, that is m̂g ∈ C(Y ). Hence there exists an unique
f ∈ C(Y ) with f �X= g and an unique h ∈ C(Y ) with h �X= m̂g. We have to

check that f ∈ D(tn) and h = t̂nf . But since nf ≡ mg on X and h is already

continuous on Y we deduce h = n̂f ∈ C(Y ).
It remains to prove {ι(f)|f ∈ D(tn)} ⊆ D(tm). Assume f ∈ D(tn) ⊆ C(Y ),

that is ι(f) = f �X∈ C and n̂f ∈ C(Y ). Then m · (f �X) = (nf) �X . Hence

m̂ · ι(f) ∈ C, since n̂f ∈ C(Y ). �

Hence we can not only identify operators on C(Y ) with operators on C but
also have a concrete description of the operators domain in C. Proposition 74 can
also be applied in the other direction. Remember that the operator tn on C(Y ) is
already uniquely given by the values of n : Y → C on an open and dense subset of
Y , for example X. That is, if m : X → C is given, let n : Y → C be any function
coinciding with m on X. Proposition 74 proves that we can identify tCm with tn.

Theorem 75. Let n : Y → C be a function and m := n �X . Then

(1) tCm ∈ Co(C) if and only if reg(m) is dense in X.
(2) tCm ∈ Rgr(C) if and only if reg(m) is dense in X and sing-suppr(n) = ∅.
(3) tCm ∈ R(C) if and only if m ∈ C.

If t := tCm ∈ Rgr(C), then

at = tC 1
1+|m|2

, bt = tC m
1+|m|2

.

Proof. From Proposition 74 it follows that tCm belongs to Co(C) resp. Rgr(C)
resp. R(C) if and only if tn belongs to Co(C(Y )) resp. Rgr(C(Y )) resp. R(C(Y )).
By Theorem 67 (2) and Theorem 68 (2) the latter conditions are equivalent to
reg(n) is dense in Y resp. reg(n) is dense in Y and sing-suppr(n) = ∅ resp.

2See [Kha09] Section 1.1 for example.
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reg(n) = Y . Since X is open and dense in Y the density of reg(m) in X is
equivalent to that one of reg(n) in Y . Finally, reg(n) = X if and only if n ∈ C(Y ),
that is m = n �X∈ C.

If t := tCm ∈ Rgr(C), then t is identified with tn, hence at and bt are identified
with atn and btn respectively. We have atn = t 1

1+|n|2
and btn = t n

1+|n|2
by The-

orem 68. Finally, the latter operators can be identified with tC 1
1+|m|2

and tC m
1+|m|2

respectively. That is the assertion. �
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Interjection
Unboundedness and graph regularity

We will see that cum grano salis the extension of the theory of regular operator
to the graph regular ones is addressed to unbounded operators. This reads inversely:
Each graph regular and bounded operators is already regular.

Proposition 76. Let t ∈ Co(E,F ) such that t and t∗ are bounded. Then t is
graph regular if and only if t is regular. In this case t ∈ L(E,F ).

Proof. Each regular operator is graph regular, hence it remains to prove: If
t is graph regular (so t∗ is graph regular) and both t and t∗ are bounded, then
D(t) = E and D(t∗) = F ; this would imply t ∈ L(E,F ).

Since t and t∗ are orthogonally closed they are closed, hence both D(t) and
D(t∗) are closed. This implies the closeness of D(t∗t) as well and as the range
of the adjointable operator at it is even orthogonally complemented by [Lan95]
Theorem 3.2. But R(at)

⊥ = N (at) is trivial, so the range of at is all of E. In
particular E = D(t∗t) ⊆ D(t). Analogously is D(t∗) = F . �

Let me emphasis that both t and t∗ are assumed to be bounded. Although no
counter example is known to me, the question if one can do without the boundedness
of t∗ (grano salis) remains open. But we know from Lemma 65 that t∗ is already
bounded provided that the bounded operator t is defined on all of E. Hence, we
have the following corollary of Proposition 76.

Corollary 77. Let t ∈ Co(E,F ) such that t is bounded and D(t) = E. Then
t is graph regular if and only if t ∈ L(E,F ).
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5. Relation to adjointable operators
Sources of graph regularity

Graph regularity behaves well with adjointable operators (Proposition 78); in
the same way as closed operators behaves well with bounded ones in Hilbert spaces.
Quotients of adjointable operators are graph regular, provides they are already
closed (Theorem 79 and Theorem 83). A class of closed quotients is given in Corol-
lary 82. We apply Theorem 83 in two cases. One of them prepares the bounded
transform, the other prepares the absolute value.

Let E,F,G,H be Hilbert A-modules.

Proposition 78. Let t ∈ Rgr(E,F ) and q ∈ L(E,F ). Suppose r ∈ L(G,E)
and s ∈ L(F,G) are invertible with r−1 ∈ L(E,G) and s−1 ∈ L(G,F ) as well.
Then the operators t+ q, tr and st are essentially defined and graph regular.

Proof. We denote by pE and pF the projections from E ⊕ F onto E and F ,
respectively. Clearly, t+q, tr and st are essentially defined and orthogonally closed
by Proposition 20. In particular, their graphs are closed. Since t is graph regular,
G(t) is orthogonally complemented, hence there is a projection p ∈ L(E ⊕ F ) with
R(p) = G(t). We obtain

G(t+ q) = {(x, tx+ qx)|x ∈ D(t)} = {(pEpv, pF pv + qpEpv)|v ∈ E ⊕ F}
= R((pE , pF + qpE)p),

G(tr) = {(r−1x, tx)|x ∈ D(t)} = {(r−1pEpv, pF pv)|v ∈ E ⊕ F}
= R((r−1pE , pF )p),

G(st) = {(x, stx)|x ∈ D(t)} = {(pEpv, spF pv)|v ∈ E ⊕ F}
= R((pE , spF )p).

Thus the closed subspaces G(t + q), G(tr), and G(st) are ranges of adjointable
operators, hence they are orthogonally complemented by [Lan95] Theorem 3.2. �

A large class of examples of unbounded graph regular operators can be obtained
by quotients of adjointable operators. Following some ideas developed in [Izu89] we
get the follows result.

Theorem 79. Let a ∈ L(G,E) and b ∈ L(G,F ). Suppose that N (a) ⊆ N (b)
and N (a∗) = {0}. If the operator t : E → F , which is defined by

D(t) := R(a), t(ax) := bx (x ∈ G),

is closed, then t ∈ Rgr(E,F ) and t∗ = (a∗)−1b∗.

Proof. Since N (a) ⊆ N (b) and R(a)⊥ = N (a∗) = {0}, t is well-defined and
essentially defined. Since the graph of t is {(ax, bx)|x ∈ G}, it is the range of the
adjointable operator q : G → E ⊕ F defined by q(x) := (ax, bx). By assumption
this range is closed, so [Lan95] Theorem 3.2 applies and evinces that this range is
orthogonally complemented, hence t is graph regular. The adjoint of t is computed
by Proposition 20 (6). �

Corollary 80. Let x ∈ L(F,E) and assume that N (x) = N (x∗) = {0}. Then
x−1 ∈ Rgr(F,E) and (x−1)∗ = (x∗)−1.



58

Proof. Since x−1 is closed, the assertion follows from Theorem 79 by letting
b be the identity on F .3 �

Corollary 81. If t ∈ Rgr(E,F ), then t∗t ∈ Rgr(E).

Proof. We have at ∈ L(E), since t is graph regular. But the kernel of the
self-adjoint operator at is trivial, so 1 + t∗t = a−1t is graph regular by Corollary 80.
Finally, Proposition 78 implies t∗t ∈ Rgr(E). �

Corollary 82. Let a ∈ L(E) and p, q ∈ C[X] be relatively prime. Assume
R(q(a)) is essential and N (q(a)) ⊆ N (p(a)). The operator t : E → E given by

D(t) := R(q(a)), t(q(a)x) := p(a)x (x ∈ E)

is graph regular.

Proof. In order to apply Theorem 79 we only have to check that t is closed.
Let (xn)n∈N be a sequence in E such that p(a)xn → xp ∈ E and q(a)xn → xq ∈ E.
Since p and q are relatively prime, there are polynomials p̃, q̃ ∈ C[X] such that
p̃p+ q̃q = 1. To show that (xn)n∈N converges we compute

xn = [p̃(a)p(a) + q̃(a)q(a)]xn → p̃(a)xp + q̃(a)xq =: xr ∈ E,

As a result xp = p(a)xr and xq = q(a)xr, which implies the closeness of t. �

Theorem 83. Let a ∈ L(G,E), b ∈ L(G,F ), a∗ ∈ L(H,F ) and b∗ ∈ L(H,E)
such that b∗a∗ = a∗b∗. If the kernels of a∗ and a∗∗ are trivial, then N (a) ⊆ N (b)
and N (a∗) ⊆ N (b∗). The operators t : E → F and t′ : F → E given by

D(t) := R(a), t(ax) := bx (x ∈ G),

D(t′) := R(a∗), t′(a∗y) := b∗y (y ∈ H),

are essentially defined, orthogonally closable and they satisfy (t′)∗∗ ⊆ t∗, t∗∗ ⊆ (t′)∗.
If in addition t and t′ are closed and ab∗ = b∗a

∗
∗, then t ∈ Rgr(E,F ) and t∗ = t′.

Proof. Suppose that a∗x = 0 for some x ∈ H. Then 0 = b∗a∗a = a∗b∗x,
hence b∗x = 0, since a∗ is injective; this shows N (a∗) ⊆ N (b∗). Analogously, the
injectivity of a∗∗ implies N (a) ⊆ N (b). Thus the operators t and t′ are well-defined.
Since the ranges of a and a∗ are essential, t and t′ are essentially defined.

Comparing (a∗)−1b∗a∗ = b∗ and t∗ = (a∗)−1b∗ (see Theorem 79), we get t′ ⊆ t∗.
Hence t∗ is essentially defined, since t′ is. Therefore, t is orthogonally closable.
Interchanging the roles of t and t′, we conclude that t ⊆ (t′)∗ and t′ is orthogonally
closable. Applying the involution to the relations t ⊆ (t′)∗ and t′ ⊆ t∗, we obtain
(t′)∗∗ ⊆ t∗ and t∗∗ ⊆ (t′)∗ which proves the first half.

Now additionally suppose that t and t′ are closed and ab∗ = b∗a
∗
∗. We could

directly conclude the graph regularity of t and t′ by Theorem 79, but this will follow
from the stronger statement t′ = t∗ which we prove now. Since t and t′ are closed,

G := G(t)⊕ vG(t′) = {(ax+ b∗y, bx− a∗y)|x ∈ E, y ∈ F}

is a closed submodule of E ⊕ F . We define q(x, y) := (ax + b∗y, bx − a∗y) for
(a, b) ∈ E ⊕ F . Then q ∈ L(E ⊕ F ) and R(q) = G. By [Lan95] Theorem 3.2, G is
orthogonally complemented. A simple calculation shows that

q∗(x′, y′) = (a∗x′ + b∗y′, b∗∗x
′ − a∗∗y′) for (x′, y′) ∈ E ⊕ F.

The kernel of q∗ is trivial: Suppose that q∗(x′, y′) = 0. Then a∗x′ + b∗y′ = 0 and
a∗∗y
′ − b∗∗x′ = 0 and we obtain

〈a∗x′, a∗x′〉+ 〈a∗∗y′, a∗∗y′〉 = −〈b∗y′, a∗x′〉+ 〈a∗∗y′, b∗∗x′〉 = 〈(−ab∗+b∗a∗∗)y′, x′〉 = 0.

3Corollary 80 is also a corollary to Proposition 58.
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Thus a∗x′ = 0 and a∗∗y
′ = 0, x′ = 0 and y′ = 0, since a∗ and a∗∗ are injective. That

is, N (q∗) = {0}. Hence, G⊥ = R(q)⊥ = N (q∗) = {0}. We conclude that G is all of
E ⊕ F , it is orthogonally complemented and essential. This proves t′ = t∗ and the
graph regularity of t and at the same time that one of t′ = t∗. �

In preparation for the (inverse of the) bounded transform we have

Example 84. Let z ∈ L(E,F ) with ‖z‖ ≤ 1. Consider Theorem 83 with

a := (1− z∗z)1/2, b := z, a∗ := (1− zz∗)1/2, b∗ := z∗.

Then b∗a∗ = a∗b∗ and ab∗ = b∗a
∗
∗. If N (1 − z∗z) = N (1 − zz∗) = {0}, then

N (a∗) = N (a∗∗) = {0} and an easy computation shows that t = z[(1 − z∗z)1/2]−1

and t′ = z∗[(1 − zz∗)1/2]−1 are closed: Let (xn)n∈N be a sequence in E with
axn → xa ∈ E and bxn → xb ∈ E. It follows

xn = (1− z∗z)xn + z∗zxn → (1− z∗z)1/2xa + z∗xb,

so t is closed by the continuity of a and b. Analogously t′ is closed. Hence, t and t′

are graph regular with t′ = t∗:

[z(1− z∗z)−1/2]∗ = z∗(1− zz∗)−1/2.

Another example prepares the absolute value for graph regular operators.

Example 85. Let c ∈ L(E) be positive, injective and of norm less or equal 1.
Setting

a = a∗ := c1/2, b = b∗ := (1− c)1/2,

we clearly have b∗a∗ = a∗b∗ and ab∗ = b∗a
∗
∗. The operator t = t′ = (1−c)1/2(c1/2)−1

is closed: Let (xn)n∈N be a sequence in E with axn → xa ∈ E and bxn → xb ∈ E.
It follows

xn = cxn + (1− c)xn → c1/2xa + (1− c)1/2xb,

hence t is closed, by the continuity of a and b. By Theorem 83 t = (1−c)1/2c−1/2 is
graph regular and self-adjoint. The domain of t is essential: D(t)⊥ = R(c1/2)⊥ =
N (c1/2) = {0}. Hence t ∈ Rgr(E).
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6. Concrete C∗-algebras
Association relation and affiliation relation

In two steps we connect the abstract case of general C∗-algebra (and Hilbert C∗-
modules over them) with the concrete situation of (non-degenerated) C∗-algebras
realised on Hilbert spaces. After investigating the possibility of extending an ho-
momorphism between the C∗-algebras L(E) and L(F ) of adjointable operators of
Hilbert C∗-modules E and F to the set of graph regular operators (Proposition 86),
we specialize to the case where E = A ⊆ B(H) is the algebra itself and F = H is
the corresponding Hilbert space on which the C∗-algebra is realized (Corollary 87).
We define and study the association relation (TµA) and relate it to the affiliation
relation (TηA) in Proposition 91. In Proposition 93 and Proposition 94 we give
criteria for TµA; in Theorem 95 an resolvent criterion for TηA is given. A number
of corollaries is given concerning addition and composition affiliated operators. The
most notable may be Theorem 100: The sum T +S considered in the Kato-Rellich
theorem (S is T -bounded) is affiliated with A if T is affiliated and S(T − λ)−1

belongs to M(A) for some λ ∈ ρ(T ).

Proposition 86. Suppose that t ∈ Rgr(E) and φ ∈ Hom(L(E),L(F )). Further
suppose that the kernels of φ(at) and φ(at∗) are trivial. Then there exists an
operator φ(t) ∈ Rgr(F ) such that φ(at)F is an essential core for φ(t) and

φ(t)(φ(at)x) = φ(bt)x (x ∈ F ).

Moreover, φ(t)∗ = φ(t∗), and aφ(t) = φ(at), aφ(t)∗ = φ(at∗) and bφ(t) = φ(bt).

Proof. Clearly, 0 ≤ φ(at) ≤ 1, 0 ≤ φ(at∗) ≤ 1, and

φ(bt)
∗φ(bt) = φ(at)− φ(at)

2, φ(bt)φ(bt)
∗ = φ(at∗)− φ(at∗)

2,

φ(at)φ(bt)
∗ = φ(bt)

∗φ(at∗),

since φ is a ∗-homomorphism. Hence (φ(at), φ(at∗), φ(bt)) ∈ AB(F ) and all state-
ments follow from Theorem 56. �

Clearly, L(H) = B(H). Further, M(A) can be identified with L(A) via a 7→ La
for a ∈ M(A), where La(b) := ab for b ∈ A (see [Lan95] Chapter 2).

Let us further note that Rgr(H) = C(H) for the Hilbert space H, since each
closed subspace of H is orthogonally complemented.

Corollary 87. Let A be a non-degenerated concrete C∗-algebra on H. Let
φ be the embedding of L(A) = M(A) into L(H) = B(H).

(1) For any T ∈ C(H) with aT , aT∗ , bT ∈ M(A) there exists a unique operator
t ∈ Rgr(A) such that φ(t) = T .

(2) If A contains the compact operators, then we have T := φ(t) ∈ C(H) and
aT , aT∗ , bT ∈ M(A) for t ∈ Rgr(A). In particular, Rgr(A) can be identified
with those T ∈ C(H) for which aT , aT∗ , bT ∈ M(A).

Proof. (1): Since C(H) = Rgr(H), we have (aT , aT∗ , bT ) ∈ AB(H) by The-
orem 56. By assumption, aT , aT∗ , and bT are elements of M(A). To show that
(aT , aT∗ , bT ) ∈ AB(A) it suffices to prove that aT and aT∗ are injective as opera-
tors on A; they are injective as operators on H. Assume that aTa = 0 for some
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a ∈ A. Then, aTaξ = 0 for ξ ∈ H. Hence aξ = 0 for all ξ ∈ H, so a = 0. Thus aT is
injective on A. Analogously, aT∗ is injective on A. Using once more Theorem 56,
it follows that there exists an operator t ∈ Rgr(A) such that at = aT , at∗ = aT∗ ,
bt = bT . Further, φ(t) = T , since

T (φ(at)ξ) = T (atξ) = TaT ξ = bT ξ = btξ = φ(bt)ξ = φ(t)(φ(at)ξ) (ξ ∈ H),

and R(φ(at)) = R(aT ) = D(T ∗T ) is a core for T .
(2): If t ∈ Rgr(A), then (at, at∗ , bt) ∈ AB(A). We show that the kernels of

φ(at) and φ(at∗) are trivial. Assume that φ(at)ξ = 0 for some nonzero vector ξ ∈ H.
Since A contains all compact operators, the rank one projection pξ onto C·ξ is in
A. Therefore, atpξ = φ(at)pξ = 0 which contradicts the injectivity of at as operator
on A. Hence at, analogously at∗ , is injective on H. Therefore, T ∈ Rgr(H) = C(H)
by Proposition 86. �

Example 88. From Corollary 87 it follows immediately that

Rgr(K(H)) = C(H) and Rgr(B(H)) = C(H),

since M(K(H)) = M(B(H)) = B(H).
On K(H) each essential submodule is dense, since each closed submodule is

orthogonally complemented (see [Mag97] or [Sch99]). Therefore, all graph regular
operators are regular. On the other hand, dense submodules (right ideals) of the
unital C∗-algebra B(H) are already all of B(H), so each regular operator on B(H)
is bounded by the closed graph theorem.

R(K(H)) = C(H) and R(B(H)) = B(H).

Throughout the remaining chapter we assume that the Hilbert A-module E is
the C∗-algebra A itself equipped with the A-valued scalar product 〈a, b〉 := a∗b,
a, b ∈ A, and that A is realized as a non-degenerate C∗-algebra on a Hilbert space
H. Then L(E) is the multiplier algebra M(A) = {x ∈ B(H) : xA ⊆ A,Ax ⊆ A}.

Corollary 87 gives rise to the following

Definition. An operator T ∈ C(H) is associated with A and we write TµA,
if aT , aT∗ , bT ∈ M(A). The set of associated operators with A is denoted by Aµ.

With this notion Corollary 87 (2) reads as: IfA contains the compact operators,
then each t ∈ Rgr(A) acting on the algebra can be identified with a TµA acting
on the Hilbert space and vice versa. For the rest of this chapter we study the
association relation µ - the counter part of graph regularity for concrete C∗-algebras;
by Corollary 87 (1) this is more particular case.

Note that T = T �D(T∗T ) = bTa
−1
T for each T ∈ C(H), and we always have that

aT and aT∗ are self-adjoint, bT∗ = b∗T and

bTaT = aT∗bT , aT − a2T = bT∗bT , aT∗ − a2T∗ = bT bT∗ ,

by Corollary 47 (with E = F = H).4

Let us repeat the concept of the affiliation relation η. From [Wor91] Example
4, that is, for a concrete (non-degenerated) C∗-algebra A ⊆ B(H), we get: An
operator T ∈ C(H) is affiliated to A, TηA, if and only if

zT := T (I + T ∗T )−1/2 ∈ M(A) and (I + T ∗T )−1/2A is dense in A.

By the second section in [Wor91] the affiliated operators are shown to be the
regular ones on the C∗-algebra by the graph criterion (see [Lan95] Theorem 9.3 and
Proposition 9.5).

4Since each closed subspace of a Hilbert space is orthogonally complemented, Co(H) =
R(H) = C(H). That is, aT , aT∗ and bT are defined on all of H.
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We use two auxiliary lemmas to study the relationship between the affiliation
and the association relation.

Lemma 89. Let s ∈ B(H) and x, y ∈ M(A). Suppose that xA and yA are dense
in A. If sx ∈ M(A) and s∗y ∈ M(A), then s ∈ M(A).

Proof. Let a ∈ A. Since xA is dense in A, there are elements an ∈ A, n ∈ N ,
such that xan → a in A. Hence sxan → sa in A. Since sx ∈ M(A) by assumption,
sxan ∈ A and so sa ∈ A. Replacing x by y and s by s∗ it follows that s∗a ∈ A.
Therefore, s ∈ M(A). �

Lemma 90. Let A be a C∗-algebra and x, y ∈ M(A). Suppose that λy ≥ xx∗

for some λ > 0. If xA is dense in A, so is yA. In particular, xA is dense in A if
and only if xx∗A is.

Proof. Assume to the contrary that yA 6= xA = A. Then the closure of (yA)∗

is a proper left ideal. Hence there exists a state ω of A that annihilates (yA)∗ (see
[Dix77] Lemma 2.9.4). Let πω be the GNS representation of A associated with the
state ω and let ϕω be the corresponding cyclic vector ϕω. We denote the extension
of πω to the multiplier algebra M(A) also by the symbol πω. Then

0 = ω((ya)∗) = 〈πω(a∗y)ϕω, ϕω〉 = 〈πω(y)ϕω, πω(a)ϕω〉(1)

for all a ∈ A, so that πω(y)ϕω = 0. Therefore,

|ω(xa)|2 = | 〈πω(a)ϕω, πω(x∗)ϕω〉 |2 ≤ ‖πω(a)ϕω‖2‖πω(x∗)ϕω‖2

= ‖πω(a)ϕω‖2 〈πω(xx∗)ϕω, ϕω〉 ≤ ‖πω(a)ϕω‖2λ 〈πω(y)ϕω, ϕω〉 = 0

for a ∈ A, that is, ω annihilates xA. Hence xA is not dense in A which is a
contradiction, since we assumed that xA = A.

Applying this to the case y = xx∗ we conclude that xx∗A is dense provided
that xA is dense. Since the converse implication is trivial, it follows that xx∗A is
dense if and only if xA is dense. �

Proposition 91. If TηA, then TµA. For TµA are equivalent:

(1) TηA,
(2) aTA = (I + T ∗T )−1A and aT∗A = (I + TT ∗)−1A are dense in A,

(3) a
1/2
T A = (I + T ∗T )−1/2A and a

1/2
T∗ A = (I + TT ∗)−1/2A are dense in A.

Proof. Let TηA. From aT = I − z∗T zT ∈ M(A), aT∗ = I − zT z∗T ∈ M(A) and

bT = zTa
1/2
T ∈ M(A) we deduce TµA.

Now let TµA, that is, aT , aT∗ , bT ∈ M(A). Clearly, (3) is equivalent to (2) by
Lemma 90. (1)⇒ (3): By [Wor91] Theorem 1.4 we also have T ∗ηA , so both density
conditions are fulfilled. (3) ⇒ (1): Using Lemma 89 with s = zT = T (I + T ∗T )1/2,

x = a
1/2
T ∈ M(A) and y = a

1/2
T∗ ∈ M(A), we get sx = zTa

1/2
T = bT ∈ M(A) and

s∗y = zT∗a
1/2
T∗ = bT∗ ∈ M(A). By (3) all assumption of Lemma 90 are fulfilled and

zT = s ∈ M(A) follows. Hence TηA. �

In Lemma 123 we give an example for an operator TµA fulfilling only one of
the density conditions and still is not affiliated.

The following proposition is the counter part of Proposition 76 in the concrete
situation.

Proposition 92. M(A) = {TµA|T ∈ B(H)}.

Proof. If T ∈ M(A), then I+T ∗T ∈ M(A), so aT ∈ M(A) and bT = TaT ∈ M(A),
hence TµA. Conversely, suppose that T is bounded. Then I+T ∗T is bounded and
aT ∈ M(A), hence a−1T = I + T ∗T ∈ M(A). Therefore, T = bTa

−1
T ∈ M(A). �
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It is natural to ask whether or not aT ∈ M(A) and bT ∈ M(A) already imply
that TµA, that is, aT∗ ∈ M(A). This is true if T ∈ C(H) is normal, since then
aT = aT∗ . Proposition 93 below contains an number of other sufficient conditions.
In Example Example 122 we will show that this is not true in general.

Proposition 93. Suppose that aT , bT ∈ M(A). Each of the following conditions
imply that aT∗ ∈ M(A) and so TµA.

(1) 0 ∈ ρ(T ).
(2) ‖aT∗‖ < 1, or equivalently, TT ∗ ≥ ε for some ε > 0.
(3) M(A)h is closed under strong convergence of monotone sequences.
(4) TT ∗ = qT ∗T for some q > 0.

Proof. Clearly, from (1) it follows that 0 ∈ ρ(T ∗) which in turn implies (2).
(2), (3): By aT , bT ∈ M(A) we have

aT∗ − an+1
T∗ = bT (I + . . .+ an−1T )b∗T ∈ M(A)h.

If (2) is fulfilled, then an+1
T∗ → 0 in M(A), hence aT∗ ∈ M(A). On the other side,

an+1
T∗ ∈ M(A)h is monotone decreasing and strongly converging. Hence, by assump-

tion (3) it follows aT∗ ∈ M(A), again. (4): This follows from the relations

aT∗ = (I + TT ∗)−1 = (I + qT ∗T )−1 = q−1(I + (q−1 − 1)aT )−1aT ∈ M(A).

Since ‖aT ‖ ≤ 1, ‖(q−1 − 1)aT ‖ ≤ (q − 1)/q < 1 for q ≥ 1, so I + (q−1 − 1)at is
indeed invertible in M(A). For q < 1, I + (q−1 − 1)aT ≥ I. Hence, I + (q−1 − 1)at
is invertible, again. �

The next two theorems are concerned with resolvents - the first one for the
association relation, the second for the affiliation relation.

Proposition 94. Suppose that T ∈ C(H) and 0 ∈ ρ(T ). Then TµA if and
only if T−1 ∈ M(A).

Proof. Since 0 ∈ ρ(T ), (T ∗)−1 = (T−1)∗ ∈ B(H). Simple computations show

I-aT = (I+T−1(T−1)∗)−1, I-aT∗ = (I+(T−1)∗T−1)−1, bT = (T−1)∗(I-aT ).

We conclude from these identities that T−1 ∈ M(A), so (T−1)∗ ∈ M(A), and this
implies aT , bT , aT∗ ∈ M(A), that is, TµA.

Conversely, suppose that TµA. We have bT∗ = (bT )∗ ∈ M(A) and aT∗ ∈ M(A).
Since 0 ∈ ρ(T ), ‖aT∗‖ < 1. Therefore, T−1 = bT∗(I − aT∗)−1 ∈ M(A). �

The following theorem appeared in [Sch05].

Theorem 95. Suppose T ∈ C(H) and λ ∈ ρ(T ). Then TηA if and only if
(T − λ)−1 ∈ M(A) and (T − λ)−1A and (T ∗ − λ)−1A are dense in A.

Proof. Since TηA is equivalent to (T − λ)ηA (see [Wor91] p. 412, Example
1), we can assume without restriction of generality that λ = 0. Then t−1 and (t∗)−1

are in B(H).
First we suppose that TηA. Set x := (I+(TT ∗)−1)−1 and s := T−1. Since TηA

implies T ∗ηA and z∗T = zT∗ (see [Wor91] Theorem 1.4), zT∗ = (zT )∗ ∈ M(A) follows.

Therefore, we obtain (I+TT ∗)−1 = I−zT z∗T ∈ M(A), hence (I+TT ∗)−1/2 ∈ M(A).
These relations imply that

sx = T−1(I + (TT ∗)−1)−1 = T ∗(TT ∗)−1(I + (TT ∗)−1)−1

= T ∗(I + TT ∗)−1 = zT∗(I + TT ∗)−1/2 ∈ M(A).

Since x := (I+(TT ∗)−1)−1 = I− (I+TT ∗)−1 ∈ M(A) and x−1 is also bounded, we
have x−1 ∈ M(A) and hence xA = A. Recall that sx ∈ M(A). Now we interchange
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the roles of T and T ∗ and set y := (I + (T ∗T )−1)−1. By an analogue reasoning as
above we derive s∗y ∈ M(A); further, y ∈ M(A) and yA = A. Hence the assumptions
of Lemma 89 are satisfied, so we obtain T−1 = s ∈ M(A).

Recall that (I + T ∗T )−1A is dense in A, because TηA. Therefore, since

(I+T ∗T )−1A = (T ∗T )−1(I+(T ∗T )−1)−1A ⊆ (T ∗T )−1A = T−1(T ∗)−1A ⊆ T−1A,

T−1A is dense in A. Replacing T by T ∗, it follows that (T ∗)−1A is dense in A.
This completes the proof of the only if part.

Conversely, let us assume that T−1 ∈ M(A) and that T−1A and (T ∗)−1A are
dense in A. Then

I − z∗T zT = (I + T ∗T )−1 = T−1(T−1)∗(I + T−1(T−1)∗)−1 ∈ M(A),

zT (I − z∗T zT )1/2 = T (I + T ∗T )−1 = (T−1)∗(I + T−1(T−1)∗)−1 ∈ M(A).

Therefore, setting x := (I−z∗T zT )1/2 and s := zT , we have x ∈ M(A) and sx ∈ M(A).
Since T has a bounded inverse, there exists ε ∈ (0, 1/4) such that T ∗T ≥ 2εI. Then
I+T ∗T ≤ 1

2εT
∗T+T ∗T ≤ 1

εT
∗T and hence (I+T ∗T )−1 ≥ εT−1(T−1)∗. Therefore,

since T−1A is dense in A by assumption, (I + T ∗T )−1A = (I − z∗T zT )A = x2A
is dense in A by Lemma 90. Since x ≥ 0, xA dense in A again by Lemma 90.
By the assumptions we can interchange the roles of T and T ∗. Then we obtain
y := (I − zT z

∗
T )1/2 ∈ M(A) and s∗y = z∗T y ∈ M(A). Further, (I + TT ∗)−1A =

(I − zT z
∗
T )A = y2A in A and hence yA are dense in A. Thus zT ∈ M(A) by

Lemma 89 and hence TηA. �

The operator T constructed in Lemma 123 will give a counter example again,
this time for the following: Although T−1 ∈ M(A), that is, TµA by Proposition 94,
and T−1A is dense in the algebra, T is not affiliated. It fails to fulfil the density of
(T ∗)−1A in A.

The preceding theorem has a number of interesting corollaries. All of them are
concerned with sums and product of affiliated operators. From [Wor91] Section 2,
Example 1-3 we know: If TηA, Q,V ∈ M(A) with V −1 ∈ M(A), then

(T +Q)ηA, TV ηA, V TηA.

Corollary 96. Suppose that T, SηA, λ ∈ ρ(T ) and κ ∈ ρ(S). Then we have
−λκ ∈ ρ(TS − λS − µT ) and (TS − λS − κT )ηA.

Proof. By some straightforward arguments one verifies that

(TS − λS − κT + λκ)−1 = (S − κ)−1(T − λ)−1,(2)

((TS − λS − κT )∗ + λκ)−1 = (T ∗ − λ)−1(S∗ − λ)−1.(3)

Hence −λκ ∈ ρ(TS − λS − κT ). From the only if part of Theorem 95 it follows
that the operators in (2) and in (3) belong to M(A) and that they map A densely
into A. Therefore, by the if part of Theorem 95, (TS − λS − κT )ηA. �

Proposition 97. Let T, S ∈ C(H). Suppose that λ ∈ ρ(T ), S(T−λ)−1 ∈ M(A)
and ‖S(T − λ)−1‖ < 1. Then (T + S)ηA.

Proof. By Theorem Theorem 95, (T − λ)−1 ∈ M(A) and (T − λ)−1A and
(T ∗−λ)−1A are dense in A. By the assumptions we have R := S(T −λ)−1 ∈ M(A)
and ‖R‖ < 1. Therefore (I + R)−1 is bounded and an element of M(A), since
I + R ∈ M(A). Further, since T − λ and I + R are bijective and (T + S − λ)ϕ =
(I +R)(T −λ)ϕ for ϕ ∈ D(T ) ⊆ D(S), the map T +S−λ : D(T )→ H is bijective.
Hence λ ∈ ρ(T + S) and (T + S − λ)−1 = (T − λ)−1(I + R)−1 ∈ M(A). Because
I+R is an invertible element of M(A), the density of (T −λ)−1A implies the density
of (T + S − λ)−1A in A. Finally, (T ∗ + S∗ − λ)−1 = (I + R∗)−1(T ∗ − λ)−1 maps
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A densely into A, since ‖R∗‖ < 1. Now applying again Theorem 95 we obtain
(T + S)ηA. �

Corollary 98. Suppose that T, SηA. If λ ∈ ρ(T ), ‖λ(T − λ)−1‖ < 1 and
0 ∈ ρ(S), then TSηA.

Proof. By Corollary 96 we have 0 ∈ ρ(TS − λS) and (TS − λS)ηA. Since
TηA and λ ∈ ρ(T ), it follows from Theorem 95 that (T − λ)−1 ∈ M(A). Therefore,

λS(TS − λS)−1 = λS((T − λ)S)−1 = λ(T − λ)−1 ∈ M(A).

Hence, since ‖λ(T − λ)−1‖ < 1 by assumption, Proposition 97 applies to the oper-
ators X := TS − λS and Y := λS and implies that X + Y = TSηA. �

Corollary 99. Suppose that TηA and λ, κ ∈ ρ(T ). For an operator S on H
we have S(T − λ)−1 ∈ M(A) if and only if S(T − κ)−1 ∈ M(A).

Proof. Since (T − λ)−1 ∈ M(A) and (T − κ)−1 ∈ M(A) by Theorem 95, the
assertion follows from the identities

S(T − λ)−1 − S(T − κ)−1 = (λ− κ)S(T − κ)−1(T − λ)−1

= (λ− κ)S(T − λ)−1(T − κ)−1.

�

Let T ∈ C(H) be self-adjoint, S ∈ C(H) be symmetric and T -bounded with
T -bound less then 1, that is, D(T ) ⊆ D(S) and for some 0 ≤ a < 1 and b > 0 it is

‖Sφ‖ ≤ a‖Tφ‖+ b‖φ‖ (φ ∈ H).

By the Kato-Rellich theorem T + S is self-adjoint (see [RS75] Theorem X.12). We
proof

Theorem 100. Suppose that TηA is a self-adjoint operator and S is a sym-
metric T -bounded operator on H with T -bound less than 1. If S(T − λ)−1 ∈ M(A)
for some λ ∈ ρ(T ), then (T + S)ηA.

Proof. By Corollary 99 S(T − iκ)−1 ∈ M(A) for each κ > 0, since iκ ∈ ρ(T ).
We have

‖S(T − iκ)−1φ‖ ≤ a‖T (T − iκ)−1︸ ︷︷ ︸
‖.‖≤1

φ‖+ b‖ (T − iκ)−1︸ ︷︷ ︸
‖.‖≤1/κ

φ‖ ≤ (a+ b/κ)‖φ‖.

Hence ‖S(T − iκ)−1‖ < 1 for κ large enough. Applying Proposition 97 to such an
κ we conclude (T + S)ηA. �
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7. Examples
Graph regular operators that are not regular

In this chapter we study three examples:

a) position and momentum operator
b) the inverse of Z on the group C∗-algebra of the Heisenberg group
c) unbounded Toeplitz operators with rational symbol

We focus on presenting graph regular operators, that are not regular. In all three
cases we construct inverses or quotients of adjointable operators.

a) Position and momentum operators as graph regular operators on a
fraction algebra related to the Weyl algebra

Let P = −i ddt and Q = t be the momentum and position operators acting as

self-adjoint operators on the Hilbert space L2(R). They are regular as operators
on K(L2(R)) by Example 88. But we want to consider them on a more involved
C∗-algebra carrying a structure that is more related to this operators. Of course,
we want P and Q to be graph regular; they wont be regular anymore.

We construct a C∗-algebra as completion of a fraction algebra where the frac-
tions are generated by the resolvents

x := (Q− αiI)−1 and y := (P − βiI)−1

for some fix nonzero reals α and β. It is not difficult to verify that these operators
satisfy the commutation relations

x− x∗ = 2αix∗x = 2αixx∗, y − y∗ = 2βiy∗y = 2βiyy∗,(4)

xy − yx = −ixy2x = −iyx2y, xy∗ − y∗x = −ix(y∗)2x = −iy∗x2y∗.(5)

Let X be the unital ∗-subalgebra of B(L2(R)) generated by x and y.
From the equations (4) we deduce

x = x∗(1 + 2αix), x∗ = x(1− 2αix∗),

hence

xX = x∗(1 + 2αix)X ⊆ x∗X = x(1− 2αix∗)X ⊆ xX ; xX = x∗X .

Analogously is yX = y∗X . The equations (5) can be reorganized as

xy = yx(1− ixy) = (1− ixy)yx, xy∗ = y∗x(1− ixy∗) = (1− ixy∗)y∗x.(6)

We compute

xyX = yx(1− ixy)X ⊆ yxX = xy(1− iyx)X ⊆ xyX ; xyX = yxX .

From (6) and x∗x = xx∗ we deduce xX = Xx. A similar reasoning gives yX = Xy.
Putting all together it is (xyX )∗ = Xy∗x∗ = Xyx∗ = yXx∗ = yXx = yxX and

J0 := Xxy = xyX = yxX = Xyx,(7)

and J0 is a two-sided ∗-ideal of the ∗-algebra X .
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Since X is a ∗-subalgebra of B(L2(R)) its norm-closure X is a C∗-algebra. It
can be shown (see [GS15] Section 6.2) that these closure actually is the universal
C∗-algebra Xun of X ; it is the completion of X in the norm

‖a‖un := sup
π
‖π(a)‖, a ∈ X ,

where the supremum is taken over all ∗-representation of X .5

We show that I0 is an essential ideal of X : Let a ∈ X be such that a⊥J0. Then
a∗xy = 0 in L2(R). Since x and y are bijection, this implies a∗ = 0; a = 0.

Let I be the norm-closure of I0. The operator x∗y∗yx is an integral operator
on L2(R) with kernel

K(t, s) := (2|β|)−1(t+ αi)−1(s− αi)−1e−|β||t−s|.

Since K ∈ L2(R2), the operator x∗y∗yx = |yx|2 is compact, so are |yx| and hence
yx. Hence J0 ⊆ K(L2(R)) by (7) and therefore J = K(L2(R)).

Now we define two operators, denoted by q and p, on the C∗-algebra X by

q := αi+ x−1, D(q) := xX and p := βi+ y−1, D(p) := yX ,

that is, q(xa) = αixa+ a and p(ya) = βiya+ a, for a ∈ X .

Theorem 101. The operators q and p are essentially defined, graph regular
and self-adjoint on the C∗-algebra X .

Proof. We carry out the proof for q; a similar reasoning yields the assertions
for p. Since xX and x∗X contain the essential ideal J0, they are essential, too.
Therefore N (x) = R(x∗)⊥ and N (x∗) = R(x)⊥ are trivial and with Corollary 80
it follows that x−1 is graph regular. So q is graph regular too, by Proposition 78.

The first equation of (4) implies −αixx∗ + x = αixx∗ + x∗. As above one
proves xX ⊆ x∗X ⊆ xX , hence x and x∗ have equal ranges. Therefore, multiplying
the above equation from the left with x−1 and from the right with (x∗)−1 we get
−αi+ (x∗)−1 = αi+ x−1, so

q∗ = −αi+ (x−1)∗ = −αi+ (x∗)−1 = αi+ x−1 = q

is self-adjoint. �

The operators q and p are not regular on X , since neither xX nor yX is dense
in X , since X is unital. Note that the corresponding restrictions of q and p are
regular operators on the essential ideal I = K(L2(R)) of the C∗-algebra X .

5Also in [GS15] the structure of the C∗-algebra Xun is computed. Let Fx be the unital ∗-
subalgebra of X generated by x, that is, Fx is the commutative ∗-algebra of polynomials f(x, x∗)

in x and x∗ with complex coefficients. Likewise, Fy denotes the unital ∗-subalgebra of X generated
by y. Each element a ∈ X can be written as

a = f1(x, x∗) + g1(y, y∗) + yxb1 = f2(x, x∗) + g2(y, y∗) + xyb2,

where f1, g1, f2, g2 are polynomials with g1(0, 0) = f2(0, 0) = 0 and b1, b2 ∈ X . These triples

{f1, g1, b1} and {f2, g2, b2} are uniquely determined by a. Two circles are given by

Kα := {(z, 0) ∈ C2|z − z = 2αi|z|2}, Kβ := {(0, w) ∈ C2|w − w = 2βi|w|2}.

The irreducible ∗-representations of X are

πx,z(a) := f1(z, z) for (z, 0) ∈ Kα,

πy,w(a) := g2(w,w) for (0, w) ∈ Kβ , π0(a) := a ∈ B(L2(R)).

The closures of Fx and Fy are the commutative C∗-subalgebras C(Kα) and C(Kβ) of Xun,

respectively. The closure of xyX is K(L2(R)).
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b) A graph regular but not regular operator on the group C∗-algebra of
the Heisenberg group

Let H be the 3-dimensional Heisenberg group, that is, H is the Lie group whose
differential manifold is the vector space R3 and whose multiplication is given by

(x1, x2, x3)(x′1, x
′
2, x
′
3) := (x1 + x′1, x2 + x′2, x3 + x′3 +

1

2
(x1x

′
2 − x′1x2)).

The C∗-algebra C∗(H) of the Lie group H was described in [LT11]. We briefly
repeat this result.

First recall that C∗(H) is defined as the completion of L1(H) with respect to
the norm

‖f‖ = sup{‖πU (f)‖ : U unitary representation of H}.

where πU is the ∗-representation of L1(H) associated with U and given by

πU (f) :=

∫
R3

U(x1, x2, x3)f(x1, x2, x3)dx1dx2dx3, f ∈ L1(H).

The irreducible unitary representations of H consist of a series Uλ, λ ∈ R \ {0}, of
infinite dimensional representations acting on L2(R) and of a series Ua, a ∈ R2, of
one dimensional representations. For (x1, x2, x3) ∈ H, these representations act as

(Uλ(x1, x2, x3)ξ)(s) = e−2πiλ(x3+
1
2x1x2+sx2)ξ(s− x1), ξ ∈ L2(R), λ ∈ R \ {0},

Ua(x1, x2, x3) = e−2πi(a1x1+a2x2), a = (a1, a2) ∈ R2.

The Lie algebra of H has a basis {X,Y, Z} with commutation relations

[X,Y ] = Z, [X,Z] = [Y,Z] = 0

and we have dUλ(iZ) = 2πλI and dUa(iZ) = 0.

We determine the structure of C∗(H) in terms of operators fields: Let F be
the C∗-algebra of all operator fields F = (F (λ);λ ∈ R) satisfying the following
conditions:

(i) F (λ) is a compact operator on L2(R) for each λ ∈ R×,
(ii) F (0) ∈ C0(R2),
(iii) R× 3 λ→ F (λ) ∈ B(L2(R)) is norm continuous,
(iv) limλ→∞ ‖F (λ)‖ = 0.

Let η be a fixed function of the Schwartz space S(R) of norm one in L2(R). For
ξ ∈ L2(R), let Pξ denote the projection on the one dimensional subspace C · ξ.
Then for h ∈ C0(R2) and λ ∈ R× := R\{0}, the operator νλ(h) is defined by

νλ(h) :=

∫
R2

ĥ(x1, x2)Pη(λ;x1,x2)|λ|
−1dx1dx2,(8)

where ĥ denotes the Fourier transform of h and

η(λ;x1, x2)(s) := |λ|1/4e2πix1s η
(
|λ|1/2(s+ x2λ

−1)
)
, x1, x2, s ∈ R.

By Proposition 2.14 in [LT11], we have

lim
λ→0
‖νλ(h)‖ = ‖ĥ‖∞ for h ∈ C0(R2).(9)

Then, according to Theorem 2.16 in [LT11], the C∗-algebra C∗(H) is the C∗-
subalgebra of C∗(H) formed by all operator fields F ∈ F such that

lim
λ→0

‖F (λ)− νλ(F (0))‖ = 0,(10)
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where νλ : C0(R2)→ F is defined by (8), and for c ∈ C∗(H), we have the identities
F (c)(λ) = πUλ , λ ∈ R×, and F (c)(0)(a) = πUa(c), a ∈ R2.

It was proved in [WN92] that the Lie algebra generators X,Y, Z act as skew-
adjoint regular operators on the C∗-algebra C∗(H). We show

Theorem 102. (iZ)−1 is a graph regular self-adjoint operator on C∗(H).

Proof. Since iZ is self-adjoint and regular, we only have to show that the
range of iZ is essential, since then (iZ)−1 exists and is graph regular by Proposi-
tion 58. Clearly, iZ is self-adjoint, so is its inverse.

Assume G(λ) ∈ C∗(H) and G(λ) ∈ R(iZ)⊥. Since we have dUλ(iZ) = 2πλI
for λ ∈ R×, R(iZ) contains all vector fields F (λ) ∈ F of compact support contained
in R×. This implies that G(λ) = 0 on R×. Therefore, limλ→0 νλ(G(0)) = 0 by

(10) and hence Ĝ(0) = 0 by (9), so G(0) ∈ C0(R2) is zero. Thus G = 0 in C∗(H)
which proves that R(iZ) is essential. �

Note that (iZ)−1 is not regular, because dUa(iZ) = 0 for a ∈ R2 and hence
(iZ)−1 is not densely defined.

c) Unbounded Toeplitz operators

Let L2(T) be the Hilbert space of square integrable functions on the unit circle
T with scalar product given by

〈f, g〉 :=

∫ 1

0

f(e2πit)g(e2πit) dt f, g ∈ L2(T),

and let P denote the projection of L2(T) on the closed subspace H2(T) generated
by {zn := e2πitn|n ∈ N0}. For φ ∈ L∞(T) the Toeplitz operator Tφ is the bounded
operator on the Hilbert space H2(T) is defined by

Tφf := Pφf, f ∈ H2(T).

The C∗-algebra generated by the unilateral shift S := Tz is the Toeplitz algebra

T := {Tφ|φ ∈ C(T)}uK(H2(T)).

Our aim is to construct a class of examples of graph regular (unbounded)
Toeplitz operators on the C∗-algebra T . Let p, q ∈ C[z] be relatively prime polyno-
mials such that q has no zeros in the open unit disc D. Then the Toeplitz operator
with rational symbol p/q is defined by

D(Tp/q) := {f ∈ H2(T)|p
q
f ∈ H2(T)}, Tp/qf :=

p

q
f (f ∈ D(Tp/q)),

Since Tp/q is a multiplication operator, it is a closed densely defined operator on

the Hilbert space H2(T).

Theorem 103. Suppose that p, q are relatively prime polynomials such that q
has no zero in the open unit disc. Then the Toeplitz operator Tp/q is associated
with the Toeplitz algebra T . Further, Tp/q is affiliated with the Toeplitz algebra if
and only if in addition q has no zero on the unit circle.

Proof. Since q has no zero in D, we can write q as q(z) = α
∏n
j=1(z − αj),

where α, αj ∈ C and |αj | ≥ 1. Then S∗ − λI is injective for |λ| ≥ 1 and hence

N (q(S)∗) = N
(
α

n∏
j=1

(S∗ − αj)
)

= {0}.

Hence, R(q(S)) = N (q(S)∗)⊥ = H2(T), so q is an outer function (see e.g. [RR85]).
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Now we use an argument from [Sar08] Section 3. Since p and q are relatively
prime, we have |p|2 + |q|2 > 0 on the closed unit disc D. Therefore, by the Riezs-
Fejér Theorem, there exists a polynomial r ∈ C[z] such that r has no zero in D and
|p|2 + |q|2 = |r|2 on T. Let f := q/r and g := p/r. Then f and g are continuous
and in the unit ball of H∞(T), f is outer, |f |2 + |g|2 = 1 on T. Upon multiplying
r by some constant of modulus one we can assume that f(0) > 0.

From [Sar08] Proposition 5.3 it follows D(Tp/q) = fH2(T) and Tp/q = TgT
−1
f .

Moreover, T ∗p/q = (T−1f )∗T ∗g = T−1
f
Tg. Using these facts we compute

1 + T ∗p/qTp/q = 1 + T−1
f
TgTgTf = T−1

f
(TfTf + TgTg)T

−1
f = T−1

f
(T|f |2 + T|g|2)T−1f

= T−1
f
T−1f = (TfTf )−1,

1 + Tp/qT
∗
p/q = 1 + TgT

−1
f T−1

f
Tg = 1 + Tg(TfTf )−1Tg = 1 + Tg(1− TgTg)−1Tg

= 1 + (1− TgTg)−1TgTg = (1− TgTg)−1.
Hence aTp/q = TfTf and aT∗

p/q
= I − TgTg are in T . Further,

bTp/q = Tp/qaTp/q = TgT
−1
f TfTf = TgTf ∈ T .

Since aTp/q , aT∗p/q , bTp/q ∈ T , Tp/q is associated with the C∗-algebra T .

Suppose now q has a zero at some λ ∈ T. Then f has a zero at λ as well. For
z ∈ T let ωz be the character on T given by

ωz(Tφ +K) = φ(z) (φ ∈ C(T),K ∈ K(H2(T)).(11)

If Tφ +K ∈ T , then TfTf (Tφ +K) = T|f |2φ + K̃ for some K̃ ∈ K(H2(T)). Hence

ωλ(aTp/q (Tφ +K)) = ωλ(T|f |2φ + K̃) = |f(λ)|2φ(λ) = 0.

Therefore, aTp/qT is not dense in T and hence Tp/q is not affiliated with T .

On the other hand, if q has no zero on T, then p/q ∈ C(T) and hence Tp/q ∈ T ,
so in particular, Tp/q is affiliated with T . �

The simplest interesting example is the following.

Example 104. Set p(z) = 1 and q(z) = 1− z, so that p/q = 1/(1− z). Then,
by Theorem 103, T1/(1−z) associated with T , but T1/(1−z) is not affiliated with T .

In fact, T1/(1−z) = (I − S)−1.
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8. Bounded transform
The canonical regular operator associated

to a graph regular operator

In this chapter we generalize the bounded transform known from [Lan95] chap-
ter 10 or [Wor91] where it was called z-transform. More precisely: Let E and F
be Hilbert A-modules. We denote by Z(E,F ) the set of all z ∈ L(E,F ) such that
‖z‖ ≤ 1 and N (I − z∗z) = {0}; in particular the range of 1− z∗z is essential in E.
By Zd(E,F ) we denote those z ∈ Z(E,F ) for which the range of 1− z∗z is dense
in E. In Theorem 10.4 of [Lan95] the regular operators are mapped bijectively onto
Zd(E,F ) via the bounded transform

t 7→ zt := t(1 + t∗t)−1/2 with inverse tz := z(1− z∗z)−1/2.

It is zt∗ = z∗t and tz∗ = t∗z. The inverse of the bounded transform will be extended
to a mapping from Z(E,F ) into the set of graph regular operators (Theorem 106);
it will not be surjective anymore. We extend the bounded transform to the class of
graph regular operators (Theorem 108); its range will not be contained in Z(E,F ).
But we can consider the bounded transform as operator between the submodules
E′ = D(t∗t) and F ′ = D(tt∗) and there exists an regular operator t′ : E′ → F ′

with the same bounded transform. In this sense, t is an extension of t′ and t′ is
associated to t (Theorem 108). In Corollary 111, Theorem 112 and Corollary 113 we
clarify the relation between the bounded transform and its inverse by introducing
and characterizing the concept of the adjointable bounded transform.

In the following chapter we will prove that the bounded transform z|t| of the
absolute value of any t ∈ Rgr(E,F ) is adjointable (in the above sense!) (Corol-
lary 116).

Let E and F be two Hilbert A-modules.

Lemma 105. Let z ∈ L(E,F ) with ‖z‖ ≤ 1. Then N (I − z∗z) = {0} if and
only if N (I − zz∗) = {0}. In particular, z ∈ Z(E,F ) if and only if z∗ ∈ Z(F,E).

Proof. It suffices to show one direction, since z can be replaced by z∗: it
is ‖z‖ = ‖z∗‖. Assume that x ∈ N (I − zz∗) \ {0}. From ‖z∗x‖2 = 〈x, zz∗x〉 =
〈x, x〉 = ‖x‖2 we conclude z∗x 6= 0. But (I − z∗z)z∗x = z∗(I − zz∗)x = 0, so
z∗x ∈ N (I − z∗z) \ {0}. �

In [Lan95] Lemma 10.3 the analogous statement Zd(E,F ) was shown: Let
z ∈ L(E,F ) with ‖z‖ ≤ 1. Then R(I − z∗z) is dense in E if and only if R(I − zz∗)
is dense in F . In particular, z ∈ Zd(E,F ) if and only if z∗ ∈ Zd(F,E).

We turn to the first half of the bounded transform now - correctly, its inverse:
For z ∈ Z(E,F ) we define an operator tz : E → F by

tz := z((I − z∗z)1/2)−1.

Since N (I − z∗z) is trivial, (I − z∗z)1/2 is injective and the domain D(tz), which
coincides with R((I − z∗z)1/2), is essential by Proposition 18 (1).
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According to [Lan95] Theorem 10.4, the mapping z 7→ tz is a bijection from the
set Zd(E,F ) onto the set R(E,F ) of regular operators. For the extended mapping
acting on Z(E,F ) the situation is more subtle.

Theorem 106. The mapping z 7→ tz is injective from Z(E,F ) into Rgr(E,F ),
which respects the adjoint: t∗z = tz∗ . It is (I + t∗ztz)

−1 = I − z∗z and

z = tz((I + t∗ztz)
−1)1/2.(12)

The kernels and ranges of z and tz coincides respectively.

Proof. By Example 84 zt is graph regular and t∗z = tz∗ .
Finally, by Proposition 20(4), t∗z = ((I − z∗z)1/2)−1z∗, so that

t∗ztz = ((1− z∗z)1/2)−1z∗z((1− z∗z)1/2)−1

= ((1− z∗z)1/2)−1(1− z∗z)((1− z∗z)1/2)−1 − (((1− z∗z)1/2)−1)2

= 1− ((1− z∗z)1/2)−1((1− z∗z)1/2)−1 = 1− (1− z∗z)−1.

Therefore (1 + t∗ztz)
−1 = 1− z∗z. In particular tz((1 + t∗ztz)

−1)1/2 = z.
Let x ∈ E and assume that zx = 0. Then x = (1 − z∗z)x ∈ D(t∗ztz) ⊆ D(tz)

and hence (1 + t∗ztz)x = x. This implies 〈tzx, tzx〉 = 〈x, t∗ztzx〉 = 0, so x ∈ N (tz).
Conversely, let tzx = 0 for some x ∈ D(tz). Then (1+ t∗ztz)x = x, so (1−z∗z)x = x
and z∗zx = 0. So 〈zx, zx〉 = 〈x, z∗zx〉 = 0 and x ∈ N (z). That is N (z) = N (tz).

We deduce R(tz) ⊆ R(z) from the definition of tz. From equation (12) it
follows R(z) ⊆ R(tz); hence equality holds. �

The following example illustrates that the mapping z 7→ tz is not onto in general
(even in the commutative case).

Example 107. Consider the operator t := tm ∈ Co(C0(R)), where m(x) := 1/x
for x 6= 0. Then t is self-adjoint and graph regular by Theorem 67 and Theorem 68.

We show that t 6= tz for all z ∈ Z(A): If t = tz for some z ∈ Z(A), then z = ta
1/2
t

by Theorem 106. If the right-hand side is not defined on all of A this will be
a contradiction. We have at = t 1

1+|m|2
∈ L(Co(R)) by Theorem 68, so at acts

as multiplication with the function x2/(1 + x2). Taking into account that the

square root has to be a positive operator, a
1/2
t acts as multiplication with the

function |x|/
√

1 + x2. For any g ∈ C0(R) = D(a
1/2
t ) with g(0) 6= 0, the function

1
x
|x|g(x)√
1+x2

= sgn(x)g(x)√
1+x2

is continuous on R \ {0}, but has no continuous extension on

R. Therefore a
1/2
t g /∈ D(t), and this gives the argument for the above contradiction.

The second half of the bounded transform is more involved. We have already
seen in Example 107, that z 7→ tz is not onto and that this is related to the fact,
that for a graph regular operator t the range of ((1 + t∗t)−1)1/2 is not necessarily
contained in D(t).

We can not expect the bounded transform of an graph regular operator t to
act on the whole space, but it would be natural for this purpose to consider the

operator ta
1/2
t = t((1 + t∗t)−1)1/2. In fact, this operator belongs to Co(E,F ): The

essential range of a
1/2
t is contained in the domain of ta

1/2
t , whereas the latter one is

the adjoint of the essentially defined operator a
1/2
t t∗ by Proposition 20 (5), hence

it is orthogonally closed. Further, ta
1/2
t is bounded on R(a

1/2
t ) by 1, since

‖ta1/2t a
1/2
t x‖2 = ‖ 〈tatx, tatx〉 ‖ = ‖ 〈t∗tatx, atx〉 ‖ = ‖ 〈(1-at)x, atx〉 ‖

= ‖
〈

(1-at)a
1/2
t x, a

1/2
t x

〉
‖ ≤ ‖1-at‖‖a1/2t x‖2 ≤ ‖a1/2t x‖2 (x ∈ E).
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Since ta
1/2
t is closed, R(a

1/2
t ) = R(at) = D(t∗t) is contained in D(ta

1/2
t ). We define

the bounded transform by the restriction of ta
1/2
t to this domain.

Definition. For t ∈ Rgr(E,F ) let Et := D(t∗t). The bounded transform is
given by

zt := ta
1/2
t �Et .

Note that D(t∗t) is essential by Proposition 24, since it is a core for t by

Theorem 55 (3). Further, D(t∗t) = R(at) ⊆ R(a
1/2
t ) is clearly contained in D(zt),

hence zt is densely defined in Et. By definition Ft∗ = D(tt∗). Since the next
theorem deals with operators between E and F and between Et and Ft∗ we have to
choose two signs for the corresponding adjoint relation. For the first case - larger
spaces E and F - we take the asterix ∗ with six rays and for the second case -
smaller spaces Et and Ft∗ - the star ? with only five rays is chosen.

Theorem 108. The bounded transform zt of t ∈ Rgr(E,F ) is an element
of Zd(Et, Ft∗). The adjoints are respected via z?t = zt∗ . It is N (zt) = N (t),
R(zt) ⊆ R(t) and we have the representation

zt = a
1/2
t∗ t �Et .

We can compute t from zt back via t = (tzt)
∗∗, and via the (a, a∗, b)-transform with

at = (1− z?t zt)∗, at∗ = (1− ztz?t )∗, bt = zta
1/2
t .

Especially, t is an extension of the regular operator tzt ∈ R(Et, Ft∗).

Proof. From Theorem 56 we already know that t = a−1t∗ bt. By Theorem 56
we have atb

∗
t = b∗tat∗ . Hence ant b

∗
t = b∗ta

n
t∗ for n ∈ N0. Since the square root is

continuous on [0, 1], there exists a sequence (pn)n∈N of polynomials that converges
uniformly on [0, 1] to the square root. It is ‖at‖, ‖at∗‖ ≤ 1, so

a
1/2
t bt∗ = lim

n→∞
pn(at)bt∗ = lim

n→∞
bt∗pn(at∗) = bt∗a

1/2
t∗ .

Since a3/2a−1 ⊆ a1/2, hence a1/2a−1 ⊆ a−1a1/2. With the above it follows now

a
1/2
t∗ t = a

1/2
t∗ a

−1
t∗ bt ⊆ a−1t∗ a

1/2
t∗ bt = a−1t∗ bta

1/2
t = ta

1/2
t .(13)

This implies that a
1/2
t∗ t coincides with ta

1/2
t on D(t∗t) ⊆ D(t), since the latter

operator is bounded on Et.
With this representation of zt it is easily seen that zt maps Et into Ft∗ : From

[Lan95] Proposition 3.7 we get R(a
1/2
t∗ ) = R(at∗) = D(tt∗) = Ft∗ . In particular

the range of zt is contained in R(a
1/2
t∗ ). Hence zt can be considered as bounded

operator on Et mapping into Ft∗ . Analogously zt∗ : Ft∗ → Et.
We prove z?t = zt∗ . But first the adjoint z∗t of zt will be considered.

z∗t = (a
1/2
t∗ t �Et)

∗ ⊇ (a
1/2
t∗ t)

∗ ⊇ t∗a1/2t∗ ⊇ zt∗ .
Hence z∗t �Ft∗= zt∗ . Since zt∗ already maps into Et, this means in particular that
z?t is indeed given by zt∗ . Hence zt ∈ L(Et, Ft∗).

Next we prove the formulas for at, at∗ , and bt. First, with R(a
1/2
t∗ ) ⊆ Ft∗ and

for example equation (13) we note that

zt∗zt �D(t∗t) = t∗a
1/2
t∗ �Ft∗ a

1/2
t∗ t �D(t∗t)= t∗at∗t �D(t∗t)= 1− at �D(t∗t),

whence at = (1 − zt∗zt)∗∗ by Example 23. With at = a∗t the statement follows.

Analogously the formula for at∗ is proven. Clearly zta
1/2
t = ta

1/2
t �Et a

1/2
t = tat =

bt, since R(a
1/2
t ) ⊆ Et.
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The range of zt is contained in that one of t, as one can read off from the
definition of zt. We show that N (zt) = N (t). Let x ∈ N (t) ⊆ D(t∗t) ⊆ D(zt).

From equation (12) we deduce ztx = a
1/2
t∗ tx = 0, so x ∈ N (zt). Assume x ∈ N (zt)

now. Then (1 − at)x = zt∗ztx = 0, and x = atx ∈ D(t∗t) ⊆ D(t). We obtain
(1 + t∗t)x = x and t∗tx = 0. From 〈tx, tx〉 = 〈t∗tx, x〉 = 0 we get x ∈ N (t).
Together this proves N (zt) = N (t).

Using [Lan95] Proposition 3.7 again and the representation of at that was shown
above we get

R(1− zt∗zt) = R(at �D(t∗t)
) = R(at �R(at)

) ⊇ R(at �R(at))

= R(a2t ) = R(at) = D(t∗t) = Et.

That is zt ∈ Zd(Et, Ft∗). Hence tzt : Et → Ft∗ is a regular operator by [Lan95]
Theorem 10.4.

We prove now that (tzt)
∗∗ = t. First, tzt is an restriction of t: Since tzt is

regular, D(t?zttzt) = R(1 − z?t zt) = R(1 − zt∗zt) = R(at �Et) is a core for tzt . Let
x ∈ R(at �Et), that is x = aty for some y ∈ Et. In particular, x ∈ R(at) = D(t∗t) ⊆
D(t). Note that a

1/2
t �Et equals (at �Et)

1/2, since a
1/2
t �Et is a positive operator

which squares to at �Et . We compute

tx = taty = ta
1/2
t �Et a

1/2
t y = zta

1/2
t y = zt(at �Et)

−1/2(at �Et)
1/2a

1/2
t y

= zt(1− z?t zt)−1/2a
1/2
t �Et a

1/2
t y = tztaty = tztx.

That is, the restriction of tzt to its core D(t?zttzt) is contained in t. Since t : E → F
is closed (in the larger space), we get tzt ⊆ t.

Secondly, we prove that the range of a2t is a core for t. From

D(tzt) = R((1− z?t zt)1/2) = R(a
1/2
t �Et) = R(a

1/2
t �R(at)

) ⊇ R(a2t )

it will follow that t = (tzt)
∗∗, where we have used [Lan95] Proposition 3.7 again.

Assume that (x, tx)⊥G(t �R(a2t )
) for some x ∈ D(t). Then〈

(x, tx), (a2ty, ta
2
ty)
〉

=
〈
x, a2ty

〉
+
〈
tx, ta2ty

〉
= 〈atx, aty〉+ 〈tx, btaty〉

= 〈atx, aty〉+ 〈b∗t tx, aty〉
vanishes for all y ∈ E. Since the range of at is essential,

0 = (at + b∗t t)x = (at + 1− at)x = x.

So G(t) ∩ G(t �R(a2t )
)⊥ = {0} is shown. With Proposition 13 we finally get

G(t �R(a2t )
)⊥ = G(t �R(a2t )

)⊥ ∩ (G(t)⊕ G(t)⊥) = G(t)⊥,

since t is graph regular. �

Definition. For t ∈ Rgr(E,F ) we call tzt the regular operator associated to t.

The next example shows, that if E′ and F ′ are essential submodules of E and
F respectively, not all regular operators t : E′ → F ′ can be extended to a graph
regular operator from E into F . Again, the commutative case already inherits such
a situation.

Example 109. Let E = C0(R), E′ = C0(R×) and m× : R× → C be the
sign function. Then tm× ∈ L(E′), since reg(m×) = R×. Assume there exists an
operator t ∈ Rgr(E) with t ⊇ tm× . Then there is a function m : R → C with
t = tm ⊇ tm× . The intersection reg(m) ∩R× is dense in R. For x ∈ reg(m) ∩R×
there exists fx ∈ E′ with fx(x) 6= 0 and compact support (not intersecting 0); it is

m(x)fx(x) = (tmfx)(x) = (tm×fx)(x) = m×(x)fx(x), hence m(x) = m×(x).
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This implies m̂ = m× on R×. Hence tm is not graph regular by Theorem 68, since
sing-suppr(m) = sing-suppr(m̂) = {0}.

Consider the bounded transform zt = ta
1/2
t �Et : Note that in general the range

of a
1/2
t is not contained in D(t). But as we have seen, the range of a

1/2
t �Et is

contained in D(t).

Example 110. For the graph regular operator tm with symbol given by the
function m(x) := 1/x on E = C0(R), we compute (using Theorem 68)

atm = t x2

1+x2
; a

1/2
tm = t |x|√

1+x2

,

since a
1/2
tm has to be positive. Let f ∈ E = D(a

1/2
tm ) be such that f ≡ 1 on a

neighbourhood U of 0. For x ∈ U \ {0} we have

g(x) :=
1

x
(a

1/2
tm f)(x) =

1

x

|x|√
1 + x2

=
sgn(x)√
1 + x2

,

hence 0 /∈ reg(ĝ) and a
1/2
tm f /∈ D(tm).

Corollary 111. Let z ∈ Z(E,F ). Then (ztz )
∗∗ = z.

Proof. By Theorem 106 tz ∈ Rgr(E,F ) and z = tza
1/2
tz ∈ L(E,F ). By

Theorem 108 it is ztz = tza
1/2
tz �Etz . It follows (ztz )

∗∗ = z by Example 23, since

Etz = D(t∗ztz) is essential. �

Theorem 112. Let t ∈ Rgr(E,F ) and assume z := z∗∗t ∈ L(E,F ). Then
z ∈ Z(E,F ) and t = tz.

Proof. We compute, using Theorem 108 and a
1/2
t∗ t = ta

1/2
t on R(at) ⊆ D(t)

(see equation (13))

z∗z = (ta
1/2
t �Et)

∗(ta
1/2
t �Et)

∗∗ ⊇ (a
1/2
t∗ t �Et)

∗ta
1/2
t �Et⊇ (a

1/2
t∗ t)

∗ta
1/2
t �Et

⊇ t∗a1/2t∗ ta
1/2
t �Et⊇ t∗a

1/2
t∗ ta

1/2
t �R(a

1/2
t )

= t∗tat �R(a
1/2
t )

= (1− at) �R(a
1/2
t )

.

Hence z∗z = 1 − at by Example 23. That is 1 − z∗z = at is injective, hence
z ∈ Z(E,F ).

By Theorem 106 tz ∈ Rgr(E,F ) and atz = 1− z∗z. In particular atz = at. We
prove btz = bt now and conclude then from Theorem 56 that t = tz:

btz = tzatz = z(1− z∗z)−1/2at = za
1/2
t ⊇ zta1/2t = ta

1/2
t �Et a

1/2
t = tat = bt.

So btz = bt, since bt ∈ L(E,F ). �

Corollary 113. Let t ∈ Rgr(E,F ). Equivalent are:

(1) t = tz for some z ∈ Z(E,F ).
(2) z∗∗t ∈ L(E,F ).

In this case is z = z∗∗t .

Proof. (1) ⇒ (2): Corollary 111. (2) ⇒ (1): Theorem 112. �

Definition. We say that t has an adjointable bounded transform if one of the
equivalent conditions of Corollary 113 is fulfilled for t.

By [Lan95] Theorem 10.4 regular operators have an adjointable bounded trans-
form.
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9. Absolute value and polar decomposition

Before a polar decomposition can be stated the absolute value for graph regular
operators has to be introduced. The absolute value of an graph regular operator is
defined and shown to be graph regular again (Theorem 114). We proof the existence

of the polar decomposition for an adjointable operator t in the case that R(t) and

R(t∗) are orthogonally closed (Theorem 118). The generalized concept of partial
isometries is essentially used her. As a corollary we derive the polar decomposition
for a graph regular operator tz having an adjointable bounded transform z if R(tz)

and R(t∗z) are orthogonally closed (Theorem 119).

Theorem 114. Suppose that t ∈ Rgr(E) and define

D(|t|) := R(a
1/2
t ), |t|(a1/2t x) := (1− at)1/2x (x ∈ E).

Then |t| ∈ Rgr(E) is self-adjoint and positive. It is |t|2 = t∗t, a|t| = at, and

b|t| = |bt|. Moreover R(|t|) = R(t∗t).

Proof. By Example 85 |t| = |t|∗ ∈ Rgr(E). Further, D(|t|2) ⊇ R(at) =
D(t∗t). It is |t|2at = 1 − at = t∗tat, so |t|2 ⊇ t∗t. Since t∗t is self-adjoint and
|t|2 = |t|∗|t| is symmetric, we obtain |t|2 = t∗t. Since at − a2t is positive,〈
|t|(a1/2t x), a

1/2
t x

〉
=
〈

(1− at)1/2, a1/2t x
〉

=
〈

(at − a2t )1/2x, x
〉
≥ 0 for x ∈ E,

so |t| is positive, too. Clearly, at = a|t|. Further,

b|t| = |t|at = |t|a1/2t a
1/2
t = (1− at)1/2a1/2t = (at − a2t )1/2 = (b∗t bt)

1/2 = |bt|.

Using [Lan95] Proposition 3.7, we finally get

R(|t|) = R((1− at)1/2) = R(1− at) = R(t∗t(1 + t∗t)−1) = R(t∗t).

�

Let us consider the relation of the absolute value and the bounded transform in
the case that the latter one is adjointable; we use this when transferring the polar
decomposition from adjointable operators to graph regular ones.

Lemma 115. If z ∈ Z(E,F ), then |z| ∈ Z(E) and |tz| = t|z|. Further, we have
N (z) = N (tz) = N (|z|) = N (|tz|).

Proof. Since 1 − z∗z = 1 − |z|2 and ‖|z|‖ = ‖z‖ ≤ 1, the first statement is
clear. Further, atz = (1 + t∗ztz)

−1 = 1− z∗z by Theorem 106, so

D(|tz|) = R(a
1/2
tz ) = R((1− z∗z)1/2) = R((1− |z|2)1/2) = D(t|z|),

|tz|a1/2tz = (1− atz )1/2 = (z∗z)1/2 = |z| = t|z|(1− |z|2)1/2,

that is, |tz| = t|z|. Since kernels of orthogonally closed operators are orthogonally

closed, we obtain N (z) = R(z∗)⊥ = R(tz∗)
⊥ = R(t∗z)

⊥ = N (tz) and analogously
N (|z|) = N (t|z|) = N (|tz|). Since N (z) = N (|z|), this completes the proof. �

Corollary 116. For t ∈ Rgr(E,F ) is z|t| = (z?t zt)
1/2 = |zt| and |t| = tz∗|t| . In

particular |t| has an adjointable bounded transform.
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Proof. Using Theorem 114 and Theorem 108 several times we conclude that

z|t|a
1/2
t = |t|at = b|t| = |bt| = (b∗t bt)

1/2 = (at − a2t )1/2

= (1− at)1/2a1/2t = (1− z?t zt)1/2a
1/2
t = |zt|a1/2t .

With D(|zt|) = D(zt) = D(z|t|) = Et = R(a
1/2
t ) this proves that |zt| = z|t| =

(1 − at)1/2 �Et . By Example 23 z∗|t| = (1 − at)1/2, since the latter operator is self-

adjoint. Hence z∗|t| ∈ Z(E) is self-adjoint. Hence tz∗|t| = |t| by Corollary 113. �

In contrast to the Hilbert space case the domainsD(t) andD(|t|) do not coincide
in general, even more, neither D(t) ⊆ D(|t|) nor D(t) ⊇ D(|t|) holds.

Example 117. Let E = C([0, 1]) and set m(x) := x−1ei/x on (0, 1]. Then,
by Corollary 35, the operator tm is graph regular, since we have reg(m) = (0, 1],
reg∞(m) = {0} and sing-suppr(m) = ∅. Further, |tm| = t|m|. Let f(x) := xe−i/x

for x ∈ (0, 1] and f(0) = 0. Then f ∈ D(tm), but f /∈ D(|tm|). The function
g(x) = x on [0, 1] is in D(|tm|), but not in D(tm).

This observation produces a problem when considering the polar decomposition
of a graph regular operator: We do not have the isometric mapping |t|x 7→ tx for
x ∈ D(|t|) = D(t). So in the first step we generalize the polar decomposition known
from [Lan95] p. 29-30 by using the generalized concept of partial isometries. In
the next step we transfer the result to those graph regular operator that admit an
adjointable bounded transform. This extends some results of [FS10a] p.381-383.

Theorem 118. Let t ∈ L(E,F ). Then there is a partial isometry v ∈ Co(E,F )

with initial space R(t∗) and final space R(t) such that t = v|t|, |t| = v∗t and

R(v) = R(t), R(v∗) = R(t∗), N (v) = N (t), and N (v∗) = N (t∗) if and only if R(t)

and R(t∗) are orthogonally closed.

Proof. The only if direction follows from the definition of partial isometries.
To prove the if part we assume that R(t) and R(t∗) are orthogonally closed.

Using [Lan95] Proposition 3.7 twice (for t and |t|) we get R(t∗) = R(t∗t) = R(|t|).
Define a mapping w : R(|t|) → R(t) by w(|t|x) := tx for x ∈ E. Then w is
well-defined and isometric, since 〈tx, tx〉 = 〈|t|x, |t|x〉 for x ∈ E. The continuous

extension of w to a mapping from R(|t|) onto R(t) is also an isometry which is
denoted again by w. We define v : E → F by

v(x+ y) := wx (x ∈ R(|t|), y ∈ N (t)).

First, we want to show v ∈ Co(E,F ). Clearly,

N (v) = N (t), N (v)⊥ = R(t∗)⊥⊥ = R(t∗) = R(|t|);

v is in particular essentially defined. Further, t = v|t| and R(v) = R(t). Let

v′(x+ y) := w−1x (x ∈ R(t), y ∈ N (t∗)).

As above, v′ is essentially defined, |t| = v′t, N (v′) = N (t∗) and R(v′) = R(t∗). It
is easily seen that v′ ⊆ v∗ and v ⊆ (v′)∗. Since v′ is essentially defined, so is v∗.
Hence v is orthogonally closable by Theorem 17.

We show that v∗ = v′. Let y ∈ D(v∗). Then there is an element z ∈ E such that〈
v(x+ x⊥), y

〉
=
〈
x+ x⊥, z

〉
for all x ∈ R(|t|) and x⊥ ∈ N (t). Choosing x = 0,

we conclude that z ∈ N (t)⊥ = R(|t|). Thus R(v∗) ⊆ R(v′). Putting now x⊥ = 0,
we get 〈tx′, y〉 = 〈v|t|x′, y〉 = 〈|t|x′, z〉 for all x′ ∈ E. Hence t∗y = |t|z = |t|v∗y
and N (v∗) ⊆ N (t∗) = N (v). All in all we have v′ ⊆ v∗, R(v∗) ⊆ R(v′) and
N (v∗) ⊆ N (v′). This clearly implies that v′ = v∗. Analogously, it is shown that
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v′∗ = v. Since v∗v is the projection onto the orthogonally closed submodule R(t∗)

and vv∗ the projection onto R(t), the assertion is proven. �

For the polar decomposition for graph regular operators we have to restrict the
statement to those operators having an adjointable bounded transform.

Theorem 119. Assume t ∈ Rgr(E,F ) has an adjointable bounded transform.

There exists a partial isometry v ∈ Co(E,F ) with initial space R(t∗) and final space

R(t), such that

t = v|t|, |t| = v∗t,

R(v) = R(t), R(v∗) = R(t∗), N (v) = N (t), and N (v∗) = N (t∗) if and only if R(t)

and R(t∗) are orthogonally closed.

Proof. The “only if” part follows from the definition of partial isometries.
By Corollary 113 there exists z ∈ Z(E,F ) with t = tz. With Theorem 106,

[Lan95] Proposition 3.7 and Lemma 115 it is

R(t∗z) = R(tz∗) = R(z∗) = R(|z|) = R(t|z|) = R(|tz|) and R(tz) = R(z).

Assume that R(t∗) = R(z∗) and R(t) = R(z) are orthogonally closed. By The-
orem 118, there is a partial isometry v ∈ Co(E,F ) with z = v|z|, |z| = v∗z and

R(v) = R(z), R(v∗) = R(z∗), N (v) = N (z) and N (v∗) = N (z∗). We have
1 − |z|2 = 1 − z∗z and D(t|z|) = R(1 − z∗z) = D(tz) by Theorem 106. With
Lemma 115 we compute

v|tz|(1− |z|2)1/2 = v|z| = z = tz(1− |z|2)1/2,

so v|tz| = tz. One proves v∗tz = |tz| in the same way. �

Regular operators have adjointable bounded transforms, hence Theorem 119
applies in this case. That is, Theorem 119 generalizes [FS10a] Theorem 3.1 in two
directions. First, it applies to a larger class of regular operators and secondly it
applies to graph regular operators as well.
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10. Functional calculus

Let A and B be C∗-algebras, where A is non-unital and B is unital. Clearly,
each ∗-homomorphism φ : A → B extends uniquely to a ∗-homomorphism of the
unitisation A∼ of A via φ(a+ α1A) := φ(a) + α1B for a ∈ A, α ∈ C.

Let ζ(z) := z for z ∈ C. Then tζ : C0(C) → C0(C) is regular by Theorem 68,
since reg(ζ) = C.

The unitisation C := C0(C)∼ of C0(C) is isomorphic to C(C), where C is the
one-point compactification.6. The operator tCζ is no longer regular but still graph

regular by Theorem 75, since reg(ζ) = C, reg∞(ζ) = {∞} and sing-suppr(ζ) = ∅
(where ζ also denotes any extension of ζ to C). We have

atCζ = tC1/(1+|ζ|2), btCζ = tCζ/(1+|ζ|2).

Theorem 120. Let E be a Hilbert A-module and t ∈ Rgr(E) be normal and
let ζ also denote the operator tCζ . Then there exists an unique ∗-homomorphism

φt : C0(C)∼ → L(E) with N (φt(aζ)) = {0} and φt(ζ) = t.

Proof. Let

D := {z ∈ C : |z| ≤ 1

2
}, F := {(z1, z2) ∈ [0, 1]×D : |z2|2 = z1 − z21} ⊆ [0, 1]×D.

Further let Fπ := {(0, 0)} and Fι := F \ Fπ. Since C is unital, we identify it with
L(C). By Corollary 57 aζ is self-adjoint, bζ is normal and they commute. Further,
their common spectrum σ(aζ , bζ) is contained in F . Analogues statements hold for
at and bt.

Uniqueness: Let φ : C ∼= L(C)→ L(E) with N (φ(aζ)) = {0} and φ(ζ) = t. By
Proposition 86 is

φ(aζ) = aφ(ζ) = at, φ(bζ) = bφ(ζ) = bt.

For f ∈ C(F ) is by functional calculus of bounded normal commuting operators

φ(f(aζ , bζ)) = f(φ(aζ), φ(bζ)) = f(at, bt).(∗)
Every function g + β ∈ C0(C)∼ = C is of the form f(a, b) for a function f ∈ C(F )
with f �Fπ≡ β, since

g(z) = g(aζ(z)
−1bζ(z)) = f(aζ , bζ)(z),

with

f(z1, z2) :=

{
g(z2/z1) + β , (z1, z2) ∈ Fι
β , (z1, z2) ∈ Fπ

.

To show that f is continuous on Fπ, assume (z1, z2)→ (0, 0). From |z2|2 = z1 − z21
it follows |z2/z1)| =

√
1/z1 − 1 → ∞ since z1 → 0. Therefore g(z2/z1) → 0, since

g vanishes at infinity. This proves the uniqueness assertion.
Existence: On the other side equation (∗) gives a ∗-homomorphism from C0(C)∼

into L(E). With f(z1, z2) := z1 inserted in equation (∗) it follows N (φ(aζ)) =
N (at), and the latter is trivial. Analogously φ(bζ) = bt. By Proposition 86 is
aφ(ζ) = φ(aζ) = at and bφ(ζ) = φ(bζ) = bt. With Theorem 56 we finally conclude
that φ(ζ) = t. �

6See [Kha09] Section 1.1.
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11. Special matrices of C∗-algebras
Counter examples

Several counter examples had already be given in the commutative case. Fur-
ther phenomena depend on non-commutativity, which can be brought into the
game when considering matrices with entries in (again commutative but also non-
commutative) C∗-algebras.

We use the following notation: Let A be a C∗-algebra. For subsets Aij ⊆ A
for i, j ∈ {1, 2} let(

A11 A22

A21 A22

)
:=

{(
a11 a12
a21 a22

)
|aij ∈ Aij for i, j ∈ {1, 2}

}
.

The following lemma describes a distinguished situation that we use below
several times. For a (non-degenerated) C∗-algebra A ⊆ B(H) and a closed two-
sided I of A we use the following sets of multipliers:

LM(A) := {X ∈ B(H)|XA ⊆ A}, RM(A) := {X ∈ B(H)|AX ⊆ A},
M(A) := LM(A) ∩ RM(A),

LM(A, I) := {X ∈ B(H)|XA ⊆ I}, RM(A, I) := {X ∈ B(H)|AX ⊆ I}.

If A is unital, then obviously

LM(A) = RM(A) = M(A) = A, LM(A, I) = RM(A, I) = I.

Lemma 121. Let I be a closed two-sided ideal of a C∗-algebra A and set

B :=

(
I I
I A

)
.

Then B is itself a C∗-algebra (with obvious addition, multiplication, adjoint
and norm). If I is non-degenerated on H, then B is non-degenerated as well and

LM(B) =

(
LM(I) LM(A, I)
LM(I) LM(A)

)
, M(B) =

(
M(I) LM(A, I) ∩ RM(I)

LM(I) ∩ RM(A, I) M(A)

)
.

If in particular A is unital, then

LM(B) =

(
LM(I) I
LM(I) A

)
, M(B) =

(
M(I) I
I A

)
.

Proof. Clearly, B is a C∗-algebra; we omit the details. If I is non-degenerated,
the same is clearly true for B ⊆ B(H ⊕ H). Now, we try to calculate the left-
multiplier of B. Let a ∈ B(H), that is, A = (aij)ij with aij ∈ B(H) for i, j ∈ {1, 2}.
For each b = (bij)ij ∈ B we compute(

a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11+a12b21 a11b12+a12b22
a21b11+a22b21 a21b12+a22b22

)
∈
(
I I
I A

)
we deduce: a11I, a21 ⊆ I, (set b21 = 0), a12A ⊆ I, a22A ⊆ A (set b12 = 0). That
is a11 ∈ LM(I), a12 ∈ LM(A, I), a21 ∈ LM(I), a22 ∈ LM(A). Hence one inclusion
for LM(B) is proven. The inverse inclusion is easily checked. The other statement
follow now directly. �
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We will use this result for two cases. Let A = C0(X)∼ and I = C0(X) for
some locally compact Hausdorff space X. Then A is unital. We let

B0 =

(
C0(X) C0(X)
C0(X) C0(X)

)
.

It is LM(C0(X)) = M(C0(X)) = Cb(X); with Lemma 121 it is

B =

(
C0(X) C0(X)
C0(X) C0(X)∼

)
,

LM(B) =

(
Cb(X) C0(X)
Cb(X) C0(X)∼

)
, M(B) =

(
Cb(X) C0(X)
C0(X) C0(X)∼

)
.

From this we can read off that all elements of the form(
∗ ∗
f ∗

)
∈ LM(B) with f ∈ Cb(X) \ C0(X)

act as operators on B such that the adjoint is only defined on B0.

In the next example we construct an operator t on B with at, bt adjointable
but at∗ is not.

Example 122. Let f, g ∈ C(R) be functions given by f(x) := x
√

1 + sin2(x)

and g(x) := x
√

1 + cos2(x). Then |f(x)|2 + |g(x)|2 = 3x2. Define t : A → A by

D(t) :=

{(
a b
c d

)
∈ B| fc, fd, gc ∈ C0(R), gd ∈ C0(R)∼

}
, t =

(
0 f
0 g

)
.

For the adjoint t∗ we obtain

D(t∗) :=

{(
a b
c d

)
∈ B| fa+ gc ∈ C0(R), fb+ gd ∈ C0(R)∼

}
, t =

(
0 0

f g

)
.

It is now easily verified that 1 + t∗t is surjective and

at =

(
1 0
0 1

1+|f |2+|g|2

)
∈ B, bt =

(
0 f

1+|f |2+|g|2

0 g
1+|f |2+|g|2

)
∈ B.

The operator at∗ is computed as

D(at∗) = B0, at∗ =
1

1 + |f |2 + |g|2

(
1 + |g|2 −fg
−gf 1 + |f |2

)
.

That is, at ∈ A and bt ∈ A are adjointable but at∗ /∈ M(A) is not adjointable, since

f(x)g(x)

1 + |f(x)|2 + |g(x)|2
=

x2

1 + 3x2

√
(1 + sin2(x))(1 + cos2(x))

does not vanish at infinity.

Now, we sate a result for a (non-degenerated) C∗-algebra B ⊆ B(H). The pos-
sibility of fulfilling the assumptions will be demonstrated thereafter in Example 124.
Compare this example with Proposition 91.

Lemma 123. Let x ∈ B(H) with trivial kernel and dense range in H. Assume
further, x ∈ M(B) ⊆ B(H) and xB is dense in B but x∗B is not dense in B.

Then TµB, but T is not affiliated with B; it is

T−1B is dense B, but (T ∗)−1B is not dense B,(R)

aTB is dense B, but aT∗B is not dense B.(A)
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Proof. Clearly, T := x−1 ∈ C(H) and T−1 ∈ M(B), hence TµB by Proposi-
tion 94. The statement (R) follows directly from the assumptions. Since I+(T ∗T )−1

is a bijective element of M(B), we compute

(I + T ∗T )−1B = (T ∗T )−1(I + (T ∗T )−1)−1B = (T ∗T )−1B = T−1(T ∗)−1B = xxB.
Analogously

(I + TT ∗)−1B = T−1(T ∗)−1B = x∗xB.
Hence aTB = xx∗B and aT∗B = x∗xB, so (A) follows from Lemma 90. �

Now we construct such a x ∈ B(H), where we chose H to be the Hilbert space
`2(N2). Further let A = B(H) and I = K(H). With Lemma 121 it is

B =

(
K(H) K(H)
K(H) B(H)

)
, M(B) =

(
B(H) K(H)
K(H) B(H)

)
.

Example 124. Let {ekl}k,l∈N be the standard orthonormal basis of H. Let
s ∈ B(H) be the shift operator given by sek,l = ek+1,l for k, l ∈ N; the adjoint
s∗ acts as s∗ek+1,l = ek,l for k, l ∈ N and s∗e1,l = 0 for l ∈ N. Let P be the
orthogonal projection onto N (s∗). Clearly, {e1,l}l∈N is an orthonormal basis of
PH. Further, let {λk,l}k,l∈N be a double sequence of positive numbers such that
limk,l→∞ λkl = 0. Define a self-adjoint compact operator on H by rek,l := λk,lek,l,
k, l ∈ N.

Let x ∈ B(H⊕H) be defined by the operator matrix

x :=

(
s r
0 s∗

)
∈ M(B).(14)

Since λkl > 0 for all k, l ∈ N, the compression Pr �PH of r to PH has trivial kernel
and dense range. Using this fact it is easily seen that N (x) = {0} and R(x) is
dense in H⊕H.

xA is dense in A: Let y be an element of A. Then y is given by

y :=

(
a b
c d

)
,

a, b, c ∈ K(H) and d ∈ B(H), and we have

xy =

(
sa+ rc sb+ rd
s∗c s∗d

)
.(15)

Since K(H) = s∗sK(H) ⊆ s∗K(H) ⊆ K(H), we have s∗K(H) = K(H). Similarly,
s∗B(H) = B(H). Let e := ek,l 〈en,m, .〉 be a rank one operator on H. If k > 1,
then sek−1,l 〈en,m, .〉 = e. If k = 1, then e ∈ N (s∗) ∩ K(H) and re/λ1,l = e. Hence
sK(H) + r(N (s∗) ∩ K(H)) is dense in K(H). Therefore, by (15), xB is dense in B.

x∗A is not dense in A: First we note that Ps = 0 and P is not compact, P is
not in the closure of rK(H) + sB(H). Therefore, since

x∗y =

(
s∗a s∗b

ra+ sc rb+ sd

)
,

it follows that the set x∗A is not dense in A.
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Abstract and open Questions

Let E and F be Hilbert C∗-modules over a C∗-algebra A. New classes of
(possibly unbounded) operators t : E → F are introduced and investigated - first
of all graph regular operators. Instead of the density of the domain D(t) we only
assume that t is essentially defined, that is, D(t)⊥ = {0}. Then t has a well-defined
adjoint. We call an essentially defined operator t graph regular if its graph G(t) is
orthogonally complemented in E ⊕ F and orthogonally closed if G(t)⊥⊥ = G(t). A
theory of these operators and related concepts is developed: polar decomposition,
functional calculus. Various characterizations of graph regular operators are given:
(a, a∗, b)-transform and bounded transform. A number of examples of graph reg-
ular operators are presented (E = C0(X), a fraction algebra related to the Weyl
algebra, Toeplitz algebra, Heisenberg group). A new characterization of affiliated
operators with a C∗-algebra in terms of resolvents is given as well as a Kato-Rellich
theorem for affiliated operators. The association relation is introduced and studied
as a counter part of graph regularity for concrete C∗-algebras.

A further development of the theory of orthogonally closed and graph regular
operators is possible e.g. concerning the spectrum of operators and the Cayley-
transform (theory of symmetric and self-adjoint operators). We have seen that
more examples of graph regular operators can easy be obtained via inverses and
quotients of adjointable operators.

Considering the bounded transform a question at hand is: Let t ∈ R(E,F )
(or R(E,F )) and E′, F ′ are Hilbert C∗-modules such that E ⊆ E′ and F ⊆ F ′

are essential. Is there a t′ ∈ Rgr(E′, F ′) such that t is the regular operator that is
associated with t′?

Another point is the following. For t ∈ Co(E,F ) it was shown (Lemma 42) that

R(1 + t∗t)⊕R(1 + tt∗) ⊆ G(t)⊕ vG(t∗) ⊆ E ⊕ F.
For weakly regular operators the left hand side is essential. But for each operator
G(t) ⊕ vG(t∗) is essential in any case (Corollary 16). Is every orthogonally closed
operator already weakly regular? It can be shown that this is true for finite linear
combinations of pairwise orthogonal projections. For operators on commutative
C∗-algebras we have seen that the answer is affirmative (Theorem 68).

Another open question is whether Corollary 87 (2) remains valid for arbitrary
C∗-algebras or not? This would connect graph regularity and association even
more. For example the results for graph regular operators could be transferred to
associated operators. E.g. it is unknown if (T +A)µA if TµA and A ∈ M(A). This
would also improve the resolvent criterion for this relation.

As it was already noted, it is unknown whether or not t∗ is bounded provided
t ∈ Co(E,F ) is bounded.
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Notations

Numbers:
N natural numbers; 0 ∈ N
R real numbers
R+ nonnegative real numbers
R× nonzero real numbers

C complex numbers: λ denotes the complex conjugate of λ ∈ C
C one-point compactification C ∪ {∞} of C

Function spaces:
C(X) continuous C-valued functions on X
Cb(X) continuous C-valued bounded functions on X
C0(X) continuous C-valued functions on X vanishing at infinity

Vector spaces:
If E is a vector space over C and (Fi)i∈I is a family of subsets of E, then

span{Fi|i ∈ I} denotes the C-linear span of this family, that is the set all elements
of the form

∑
i∈I λixi, where xi ∈ Fi, λi ∈ C for all i ∈ I and λi = 0 for almost all

indices i ∈ I.

Topology:
If X is a topological space and A ⊆ X is a subset, then A denotes the closure,

∂A the boundary and A◦ the interior of A.

∗-algebras:
If A is a ∗-algebra, Ah := {a ∈ A|a = a∗} denotes the set of hermitian elements

of A.

C∗-algebras:
If A is a C∗-algebra, A+ := {a ∈ A|a ≥ 0} denotes the set of positive elements

of A. If additionally A ⊆ B(H) is non-degenerately represented on a Hilbert space
H, M(A) := {x ∈ B(H)|xA,Ax ⊆ A} = {x ∈ B(H)|xA, x∗A ⊆ A} denotes the
multiplier algebra of A. The unitisation of the non-unital C∗-algebra A is denoted
by A∼.
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[Sch90] K. Schmüdgen, Unbounded operator algebras and representation theory, Akade-

mie-Verlag Berlin, 1990
[Wor91] S. L. Woronowicz, Unbounded elements affiliated with C∗-algebras and non-

compact quantum groups, Commun. Math. Phys. 136 (1991), 399-432
[WN92] S. L. Woronowicz, K. Napiórkowski, Operator theory in the C∗-algebra frame-

work, Reports on Math. Phys. 31 (1992), 353-371



94

Further literature that is concerned with (unbounded operators on)
Hilbert C∗-modules

The paper [FS10b] of M. Frank and K. Sharifi inspired me, espe-
cially Theorem 2.1 therein; trying to understand why density in
a biorthogonal complement is necessary brought the idea to me
that adjointability should be connected to essential domains. In
the same light the concept of generalized projections appeared.

Further inspiration was given to me by [Izu89], [Lan95],
[MM70], [MT05] and [Wor91].

[AM03] P. Ara, M. Mathieu, Local Multipliers of C∗-algebras, London, New York,
Springer, 2003

[Baa81] S. Baaj, Multiplicateurs non bornés, Thesis, Universite Pierre et Marie Curie
37 (1981), 1-44.
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[Sch05] K. Schmüdgen, Unbounded operators affiliated with C∗-algebras, Preprint, Leip-
zig, 2005
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