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ii

Bibliographische Daten

Generalizations and interpretations of Incipient Infinite Cluster measure on planar

lattices and slabs

(Verallgemeinerungen und Interpretationen von Incipient-Infinite-Cluster-Maßen auf

planaren Gittern und Platten)

Basu, Deepan

Universität Leipzig, Dissertation, 2017

118 Seiten, 22 Abbildungen, 53 Referenzen



“If people do not believe that mathematics is simple, it is only because they do not realize

how complicated life is.”

(John von Neumann)



UNIVERSITÄT LEIPZIG
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collection in Chapter 5.
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Symbols

N Set of natural numbers (including the origin)

Zd d-dimensional square lattice

p Probability parameter

θ(p) Percolation probability of origin

pc Critical probability

Sk,d d-dimensional slab Z2 × {0, 1, . . . , k}d−2

∂ Interior boundary of a set

τu Translation by a vertex u

Pp Bernoulli bond percolation measure with parameter p

Ω Set of all possible configurations

A ◦B Disjoint occurrence of two events A and B

B(n) [−n, n]2.

L(n), R(n) Left and right boundary of B(n)

T (n), D(n) Top and bottom boundary of B(n)

x↔ y x is connected to y by an open path

x
Z←→ y x is connected to y by an open path entirely inside Z

SC(n) Crossing collection

BB(n) Backbone of a horizontal open crossing of B(n)

P (n) Set of pivotal edges for horizontal open crossing of B(n)

ν IIC measure

ν2, ν3, ν4 Specific multiple armed IIC measures

A For A ⊂ Z2, A× {0, 1, . . . , k}d−2

ασ(r) P [Origin is connected to ∂B(r) by multiple arms in the order σ]

B(m,n) [0,m)× [0, n)

L(m,n) {0} × [0, n)

R(m,n) {m− 1} × [0, n)

C∗, c∗ Constants depending on k, d and pc(Sk,d)
B′(n) B(n)

Q(v, n) Set of vertices having graph distance exactly n from v
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Chapter 1

Introduction

Percolation has not only been a rich source of open problems which charms us with

the beauty and apparent simplicity, but it also has a well-established origin in applied

mathematics. The earliest treatment of percolation as a mathematical object date back

to 1950s. Needless to say that much progress has since been made and the mathematics

has developed; in the process it has built a reputation for being both difficult and

important. For a person with some idea about elementary probability theory and real

analysis, it is fairly easy to ask a number of questions about percolation. That these

turn out to be surprisingly difficult to answer, gives the perception of how rich the study

of percolation is.

1.1 Bernoulli Percolation

We begin by introducing Bernoulli bond percolation, one of the simplest yet content-wise

rich models of percolation. For x ∈ Zd, we write xi as the i-th co-ordinate of x. The

graph theoretic distance between two points x and y is defined as

δ(x, y) =
d∑
i=1

|xi − yi| (1.1)

and two vertices x and y are called neighbors if δ(x, y) = 1. Let us denote this graph

as Ld = (Zd,Ed) where Ed is the set of edges between neighboring vertices. The bond

percolation model on Zd is defined as the following. Given any p ∈ [0, 1], any edge

e ∈ Ed is open with probability p and closed with probability 1 − p, independent of all

other edges. The sample space is chosen to be Ω = Πe∈Ed{0, 1}, elements of which are

configurations indicated by ω = (ω(e) : e ∈ Ed). ω(e) = 0 indicates the edge e is closed

in configuration ω and ω(e) = 1 indicates it being open. We take the σ-field F to be

1
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the one generated by the finite dimensional cylinders. Finally the probability measure

is defined as the product measure:

Pp = Πe∈Edµe

where µe(ω(e) = 1) = p = 1− µe(ω(e) = 0).

We say two vertices a and b are connected if there exist vertices x1, . . . xn such that

a = x1, b = xn, xi is neighbor to xi+1 for all i ∈ {1, 2 . . . n − 1} and all of these

edges between the neighbors are open and denote this by a ↔ b. The cluster C(x)

containing a vertex x is defined as the set of all vertices which are connected to x and

let us write C = C(O), the cluster of origin. The percolation probability is defined

as θ(p) = Pp(|C| = ∞). (Similarly we can define similar quantities for Bernoulli site

percolation where each site v ∈ Zd is open or closed instead and the connectivity a↔ b

is defined by a series of neighboring open vertices instead of edges. For the sake of

simplicity, we choose to deal with bond percolation, although the results we state hold

true for site percolation as well.)

This quantity θ(p) is non-deceasing in p and it is well known (see [G99], for example),

that for d ≥ 2, there exists a critical value pc(d) ∈ (0, 1) such that θ(p) = 0 if p < pc(d)

and θ(p) > 0 if p > pc(d). (For d = 1, it is not hard to figure out pc = 1 and this makes

most questions asked trivial for 1-dimension.) These two regimes are called sub-critical

and super-critical, respectively.

We will narrow down our focus on critical Bernoulli percolation instead, although some

of the results we prove would also hold true for other percolation models such as finite-

dependent percolation at criticality. One of the primary justifications of focusing on

criticality is that most of the questions posed in sub-critical and super-critical regime are

better-understood (for example the asymptotics of cluster size or two point connections)

but this is not true for all dimensions at criticality.

One of the immediate questions asked is whether θ(pc) = 0 or not. For critical bond

percolation on Z2, it is known that there is almost surely no infinite cluster at criticality

[H60, K80]. The proof vitally uses planarity, robbing the strategy of potentially being

used in other dimensions. Also for d ≥ 11, this has been shown to be true in [FH15]

(which was improved from d ≥ 19, proved in [HS90]) by lace expansion technique under

the existence of a triangle condition which is not true for d ≤ 6. The commonly shared

belief is that θ(pc) = 0 holds true for any dimension and there would exist a general

proof, but this currently eludes everyone.
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We should highlight that critical planar percolation is better understood than its non-

planar counterparts in general (although for sufficiently high dimension, critical per-

colation is understood well-enough using specific high-dimensional tools). Of course,

two of the obvious aides are planarity and duality. For starters, we precisely know the

critical threshold for some models. For example, for bond percolation on Z2 and site

percolation on triangular lattice, pc = 1
2 and for bond percolation on triangular and

hexagonal lattices, pc = 2 sin(π/18) and pc = 1 − 2 sin(π/18) respectively (see [G99]).

(For critical thresholds of other planar lattices such as “Bow-tie” lattice, see [SZ06].)

But the two other important tools present in the study of critical planar percolation are

Russo-Seymour-Welsh Theorem and Quasi-multiplicativity.

Russo-Seymour-Welsh theorem states that in spite of absence of an infinite open cluster

at criticality, there exists a non-vanishing probability for both the existence and absence

of open clusters spanning arbitrarily large boxes [R78, SW78, R81, K82]. This is also

known as the box-crossing theorem. Recently this theorem has been extended to some

other planar models. To name a few, this has been proved for continuum percolation

on R2 [R90], Voronoi percolation [BR06, T14] and most notably for FK-percolation

[DCHN11, DCST17]. Such a result is not proved in other dimensions, and in fact, if

the dimension is sufficiently high, it is proved in [A97] that these crossing probabilities

tend to 1 as we take larger and larger boxes. Quasi-multiplicativity states that up to a

universal multiplicative constant, the probability of an open crossing of an annulus can

be decomposed into product of probabilities of open crossings of two sub-annuli that

constitute it.

1.2 Incipient Infinite Cluster

For planar critical percolation, although there is almost surely no infinite cluster, there

exist open clusters spanning arbitrarily large boxes [R78, SW78]. Aizenman [A97]

posited that local patterns around vertices of large spanning clusters appear with fre-

quencies given by a probability measure on occupancy configurations. This measure

would inherit properties of critical percolation, but would be supported on configura-

tions with an infinite open cluster at the origin. Informally, we can imagine this as the

“birth” of the infinite cluster at criticality. One may call such a measure an incipient

infinite cluster (IIC) measure.

Kesten [K86a] gave a first mathematically rigorous construction of such an IIC measure

by conditioning on an open path from the origin to the boundary of a large box at critical

percolation and increasing the size of the box to infinity. The resulting probability

measure is supported on the configurations with an infinite open cluster at the origin.
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He also described an alternative way of defining this measure by first conditioning on the

event that the open cluster containing origin is infinite for p > pc and then looking at the

limit as p↘ pc, and showed that the two limits are the same. These two interpretations

already demonstrate the potential robustness of IIC measure.

Járai [J03] proved that Kesten’s IIC measure indeed describes frequency of local patterns

around a typical point in large crossing clusters. For example, if one chooses a vertex

uniformly at random in a large crossing cluster, or for example k-th largest open cluster,

then asymptotically, the occupancy configuration around this vertex has the law given

by the IIC measure. Even if we change the conditional event as one particular vertex

being in the crossing collection, as long as it is far away from the boundary, the limit as

we take larger and larger boxes, will be the same IIC-measure as well. Thus, he unified

several natural definitions of the IIC measure in the paper (see [J03, Theorems 1-4]).

It is quite natural to probe into how IIC “looks like”. Kesten first showed that the

size of IIC inside B(n) = [−n, n]2 is comparable to n2α(n), where α(n) is the one-arm

connectivity, i.e. the probability of origin being connected to the boundary of B(n). This

implies that IIC is very thin, for example, compared with infinite clusters in supercritical

phase. Later Kesten [K86b] also showed that although Z2 was recurrent, simple random

walk on IIC is sub-diffusive (and later a stronger quenched version of this result was

proved by Damron, Hanson and Sosoe in [DHS14]). This is characteristically different

from simple random walk on supercritical clusters in Z2, which behaves “like” Z2 and

expectedly, do not exhibit this property. (See [B04] for this result on Zd in general.)

Van der Hofstad and Járai [HJ04, Corollary 4.2] first showed that for sufficiently high

dimension, we can make sense of IIC by conditioning an open arm from the origin to a

point and letting that point go to infinity. The crucial assumption is certain bounds on

this connectivity probability (see [HJ04, (4.23),(4.24)]), which holds true for all d ≥ d0

for some d0 > 6. (This version of IIC measure was also shown to exist for spread

out percolation model in d > 6 for big enough parameter in [HJ04], and in [HHS02],

Hofstad, Hollander and Slade constructed IIC for spread-out oriented percolation above

4+1 dimension as well.) They also conjecture in this paper that IIC measure exists in

Kesten’s sense and this matches with their established measure.

Later Heydenreich, Van der Hofstad and Hulshof showed in [HHH14a, Theorem 1.2] that

under additional hypothesis, namely that the limit lim
n→∞

n2αd(n) exists (where αd(n)

is the one-arm connectivity at criticality in Zd), Kesten’s IIC measure exists and is

same with the one introduced in [HJ04]. Currently the best known result is αd(n) is

comparable to 1/n2 for high dimension (see [KN11, Theorem 1]), and given this, they

showed existence of IIC in Kesten’s sense, but only by taking the limit along an increasing

subsequence, paying the cost for weaker asymptotics.
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It was shown (for example in [B14]), as speculated by physicists, that IIC in high di-

mension is a 4-dimensional object. It is also well-understood, for example how simple

random walk behaves on IIC in high dimension (see [HHH14b, Theorem 0, Theorem

1.6]). But this particular result is not true for d ≤ 6 and more importantly the tools

presented in aforementioned papers cannot work for this regime. Thus showing the ex-

istence of Kesten’s IIC on Zd for 3 ≤ d ≤ 6 remains an open problem with very limited

tools to attack.

As another direction of generalizing IIC measure, in [DS11], the so-called multiple-armed

IIC measures on planar lattices were introduced, which are supported on configurations

with several disjoint infinite open clusters meeting in a small neighborhood of the origin

instead of one single open arm. In this paper, some of these measures were also explained

as the local configurations around typical points from some sets significant to invasion

percolation. For example, it was shown that the configuration around a typical point

in the invasion cluster is explained by one-arm IIC measure, whereas that for the set of

outlets is explained by a certain four-arm IIC measure. These measures have since come

up in studying several objects, most notably, Chang-Long Yao proved CLT for multiple-

armed IIC measure of winding angle in [Y13] and scaling limit of certain multiple armed

IIC for site percolation on planar triangular lattice in [Y16].

The existence of some of the multiple armed IIC measure was theorized already before,

and in fact [J03, Remark after Theorem 1] conjectured that such measures would describe

local picture around typical points from sets significant to planar critical percolation as

well. This will serve as the motivation of one of our results.

1.3 Our Contribution

Our contributions are twofold. Firstly we will prove what Járai conjectured, i.e. specific

multiple armed IIC measures indeed describe the configuration around typical point

from some sets significant for planar critical percolation. Secondly, we will prove the

existence of IIC measure and extend its interpretation again as local limits of typical

points in a giant crossing cluster on slabs in Zd, i.e., on graphs Sk,d = Z2 × {0, . . . k}d−2

(d ≥ 2, k ≥ 0). We describe these results in detail in subsections 1.3.1 and 1.3.2.

1.3.1 Multiple-arm IIC as Local limits

Let us call B(n) = [−n, n]2 and ∂B(n) = B(n)\B(n−1) as its interior boundary. For a

vertex v ∈ Z2 and a set of vertices X ⊂ Z2, we denote v ←→ X as the event that there
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exists x ∈ X such that v ↔ x. Kesten proved that, ∀ cylinder event E, the limit

ν(E) = lim
n→∞

Ppc(E|O ↔ ∂B(n))

is well-defined, and by Kolmogorov’s extension theorem, ν extends uniquely to a proba-

bility measure on configurations of edges, called Kesten’s incipient infinite cluster mea-

sure. (Kolmogorov’s extension theorem holds since the compatibility for events depend-

ing on finitely many edges hold true, and this can be checked immediately.) Járai [J03]

proved that this measure is the specific measure around a typical point of crossing col-

lection. More precisely, if one chooses a vertex uniformly at random in a large crossing

collection or fix a vertex from it far from the boundary, then the occupancy configuration

around this vertex has the law given by the IIC measure.

Let the left boundary of the square B(n) be called L(n) = {−n} × [−n, n] and the

right one be called R(n) = {n} × [−n, n]. Járai made sense of IIC measure as the local

configuration picture around a point of crossing collection

SC(n) = {v ∈ B(n) : L(n)↔ v ↔ R(n) inside B(n)},

which is far away from the boundary. For u ∈ Z2, let us define translation τu acting

on Ω by τuω(< x, y >) = ω(< x − u, y − u >) where < x, y >∈ E2, and on events by

τuA = {τuω : ω ∈ A}. Let us also call P := Ppc . [J03, Theorem 2] states that, for any

cylinder event E, any function h(n) satisfying h(n) ≤ n but lim
n→∞

h(n) = ∞, and any

sequence of vertices vn,

lim
n→∞

|vn|≤n−h(n)

P
[
τvnE | vn ∈ SC(n)

]
= ν(E).

The “random” version of this theorem [J03, Theorem 1] states that, if In is a uniformly

chosen point from the crossing collection SC(n), for any cylinder event E,

lim
n→∞

P
[
τInE | SC(n) 6= φ

]
= ν(E).

(Although we slightly abuse the notation and still call this measure P.)

Let us now define the “Special Sets” we are interested in. These sets carry certain

significance in presence of an open horizontal crossing.

• Backbone: We define the backbone BB(n) as the set of vertices in B(n) which

are connected to L(n) and R(n) by two disjoint paths, both being inside B(n). In

Figure 1.1, backbone vertices lie on red, blue, and green edges but not on black

edges (although vertices on black edges are in crossing collection).
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• Lowest crossing: If there exists an open path from L(n) to R(n) inside B(n),

there would exist a unique “lowest” such crossing (since we can define a partial

relation in the set of left-right crossings characterized by the inclusion of the area

‘under’ the crossing inside B(n)). Let us call the set of edges on this path γmin as

LC(n). In Figure 1.1, green and red edges constitute lowest crossing.

• Set of pivotals: An edge e is said to be pivotal (for the crossing event LR(n) =

{There exists an open path from L(n) to R(n) inside B(n)}) in a given configura-

tion ω if exactly one of ω or ω
′

:= {ω′(f) = ω(f) iff f 6= e} lies in LR(n), i.e.

switching that edge e in configuration ω from open to closed or vice versa affects

the existence of an open horizontal crossing of B(n). We denote by P (n), the set

of pivotal edges. In Figure 1.1, green edges are pivotal.

Figure 1.1: Edge sets for crossing

Note that the dual graph of L2 is given by L2∗ = {(1
2 ,

1
2)+x : x ∈ Z2} which is isomorphic

to L2 itself. Each edge e of the original graph intersects with a unique edge e∗ in the dual

graph and it is called as the dual edge of the edge e. We declare any edge in the dual

graph open or closed corresponding to the status of its dual edge and call such open (or

closed) paths in the dual graph as dual open (or dual closed, respectively) path. Also,

for a set X ⊂ Z2, we call X∗ as the set of edges dual to all the edges in the original

graph with both vertices on X.

Let us call the top and bottom part of ∂B(n) as T (n) = [−n, n] × {n} and D(n) =

[−n, n] × {−n}. We note two things. Firstly, for every edge e on the lowest crossing

γmin, e∗ is connected to some edge of D∗(n) by a dual closed path comprised of edges

inside B∗(n) (actually inside U∗(ω), where U(ω) is the area enclosed by γmin(ω)) and two

disjoint open connections to L(n) and R(n) from its two vertices inside B(n). Secondly,

if e is a pivotal edge in horizontal crossing of B(n), then one endpoint of e is connected

to L(n) and the other to R(n) by open paths in B(n) as well as two endpoints of e∗
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being connected to some edge in D∗(n) and T ∗(n) by two disjoint dual closed paths.

Thus 2 open paths in L2 and 2 closed paths in L2∗ originate from e in alternate manner.

We will introduce some specific “multiple-arm” IIC measures now as the eligible candi-

dates to describe the configurations around these sets. The existence of our 3 candidate

measures we are about to define is already proved by virtue of [DS11, Theorem 1.6,

Remark 7].

• Let us denote by O ↔2 ∂B(n), the event that the origin is connected to ∂B(n) by

two disjoint open paths. For every cylinder event E, we define

ν2(E) = lim
n→∞

P
[
E | O ↔2 ∂B(n)

]
.

• Let us call e0 = ((0, 0), (1, 0)) and denote by e0 ↔3 ∂B(n), the event that two

endpoints of e0 are connected to ∂B(n) by two disjoint open paths, e∗0 is connected

by a dual closed path inside B(n)∗ to some edge in ∂B(n)∗ and e0 is open. For

every cylinder event E ⊂ {ω(e0) = 1}, we define

ν3(E) = lim
n→∞

P
[
E | e0 ↔3 ∂B(n)

]
.

• Let us denote by e0 ↔4 ∂B(n), the event that two endpoints of e0 are connected

to ∂B(n) by two disjoint open paths and two endpoints of e∗0 are connected by two

disjoint dual closed paths inside B(n)∗ to some edges in ∂B(n)∗. Notice that this

event is independent of {ω(e0) = 1}. For every cylinder event E independent of

{ω(e0) = 1}, we define

ν4(E) = lim
n→∞

P[E | e0 ↔4 ∂B(n)].

In Z2 any edge e is of the form (v, v+ ex) or (v, v+ ey) where ex and ey are unit vectors

in positive direction of X or Y axis. We associate this vertex v with e and call as v(e).

For an edge e, also let ρe be the rotation that maps e− v(e) to e0 := ((0, 0), (1, 0)). Now

we define τe as the operator on configurations such that for any edge f ,

τe(ω)(f) = ω(ρe(f − v(e))).

We state our theorems for each of the three sets– backbone, lowest crossing, and pivotals

for both “local” and “random” versions.

Theorem 1.1. Let there be sequences vn of vertices and en of edges such that their

distance from the boundary is at least h(n)(≤ n) where lim
n→∞

h(n) =∞.

(a) For any cylinder event E,

lim
n→∞

P
[
τvnE | vn ∈ BB(n)

]
= ν2(E).



Introduction 9

(b) For any cylinder event E ⊂ {ω(e0) = 1},

lim
n→∞

P
[
τenE | en ∈ LC(n)

]
= ν3(E).

(c) For any cylinder event E independent of ω(e0),

lim
n→∞

P
[
τenE | en ∈ P (n)

]
= ν4(E).

Theorem 1.2. Let In2, In3 and In4 be chosen uniformly from the sets BB(n), LC(n)

and P (n) respectively.

(a) For any cylinder event E,

lim
n→∞

P
[
τIn,2E | BB(n) 6= φ

]
= ν2(E).

(b) For any cylinder event E ⊂ {ω(e0) = 1},

lim
n→∞

P
[
τIn,3E | LC(n) 6= φ

]
= ν3(E).

(c) For any cylinder event E independent of ω(e0),

lim
n→∞

P
[
τIn,4E | P (n) 6= φ

]
= ν4(E).

With the present tools, Theorem 1.1(a) and Theorem 1.2(a) can be proved by replicating

the proof of [J03, Theorem 1-2] with very little changes, as predicted by Járai himself.

But to approach these results for the sets LC(n) and P (n), we need different tools.

The proofs of Theorems 1.1 and 1.2 are similar in a sense that both rely on a certain

decoupling argument. In Theorem 1.2 one first shows that the uniformly chosen point

stays far away from the boundary of B(n) with probability close to 1 (In Theorem 1.1

this is automatic by the assumption). Then, one shows that again with high probability,

there exists an open circuit with 1 or 2 (for case(b) and case(c), respectively) defects.

This circuit allows to decouple the local configuration around the given point (inside

the circuit) from the rest of the configuration (outside the circuit, respectively). The

conclusion then easily follows.

The heart of Járai’s proof consists of the idea of decoupling a local neighborhood using

an open circuit. Several technical issues, which arise since we are dealing with circuits

with defects instead, thus need to be addressed. Perhaps the most conceptual difference

between the proofs of Theorem 1.2 and Theorem 1.1 is that the former requires the

tightness of the respective families (backbone, lowest crossing or pivotals) additionally.
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1.3.2 IIC on Slabs

The slabs Sk,d garner attention primarily for two reasons. The first being that they serve

as a natural extension of planar lattices, although proving results faces challenges such

as lack of planarity and duality. The second is that the limiting results as k grows, mimic

those of Zd. For example it is known that pc(Sk,d) → pc(d) as k → ∞. So, although

their global behavior is quasi-planar, locally it represents Zd. It was a recent result

where Duminil-Copin, Sidoravicius, and Tassion [DCST16] proved that θ(pc(Sk,d)) = 0.

They used a certain technique of “glueing” open connections that made it amenable to

planar treatment. This provided us with a much needed tool to approach the standard

questions about critical percolation in slabs which are satisfactorily answered in planar

models.

Our main objective, as we have highlighted, is to establish existence of IIC-measure on

slabs and interpreting it as a local limit. θ(pc(Sk,d)) = 0 naturally makes the existence of

IIC in slabs a non-trivial question. (Otherwise the conditional event would be an event

with non-vanishing probability and it will yield the existence of IIC directly.) We will

prove that both interpretations of Kesten’s construction of the IIC work and coincide

for slabs. The first measure defined by conditioning on an open path from the origin to

the boundary of a large box at criticality and letting the size of the box run to infinity,

exist and is equal to the second measure, where we condition on the open cluster of

origin being infinite for supercritical p and let p↘ pc(Sk,d). The resulting IIC measure,

as before, will be supported on the configurations with an infinite open cluster at the

origin.

For A ⊂ Z2, let us define A := A×{0, 1, . . . , k}d−2. We define B(n), ∂B(n), v ↔ x, and

v ←→ X as before. We prove existence of IIC in the following sense of Kesten:

Theorem 1.3. Let d ≥ 2 and k ≥ 0 be integers. For any v ∈ Sk,d and any event E that

depends on the state of finitely many edges of Sk,d, the following two limits

lim
n→∞

Ppc
[
E | v ←→ ∂B(n)

]
and lim

p↘pc
Pp [E | |C(v)| =∞] , (1.2)

exist and are equal.

The case k = 0 is naturally Kesten’s result we have already mentioned (see [K86a,

Theorem (3)]). By Kolmogorov’s extension theorem, this measure (let us call this νv)

extends uniquely to this Kesten’s IIC measure on configurations of edges.

In fact, Theorem 1.3 will be a consequence of a more general result. We prove in

Theorem 4.1 (in Chapter 4) that the two limits in (1.2) exist and are equal for any

infinite connected bounded degrees graph satisfying the following two assumptions:
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(A1) uniqueness of the infinite open cluster,

(A2) quasi-multiplicativity of crossing probabilities.

Assumption (A1) is true for a wide set of sufficiently regular amenable graphs which

include Zd and Sk,d (see e.g. [BS96]). Thus, we prove Theorem 1.3 by verifying (A2) for

slabs. (See Section 4.2.2 for further discussions about validity of the assumption (A2)

on other lattices.)

Let us recall that after Kesten’s construction of IIC-measure, Járai showed that the

measure could describe local occupancy configuration around a uniformly chosen point

of some specific giant clusters, notably the crossing cluster (conditioned on the existence

of having one) and the largest cluster ([J03, Theorems 1 and 3]) or around a point of

the crossing cluster far away from the boundary ([J03, Theorem 2]). After establishing

the existence of IIC-measure on slabs, it naturally begs the question whether this holds

for slabs too. We will prove that we can indeed make sense of IIC measure as local limit

of large crossing cluster in certain ways Járai did.

Let L(n) = {−n} × [−n, n] and R(n) = {n} × [−n, n] be left and right boundaries of

∂B(n) and

SC(n) =

{
v ∈ B(n) : R(n)

B(n)←→ v
B(n)←→ L(n)

}
be called the crossing collection. We say that a vertex v ∈ Sk,d has the ‘level’ j ∈
{0, 1, . . . , k}d−2 if last d − 2 co-ordinates of v is given by j. For some vertex in the

plane u ∈ Z2, and some level j, let us denote by uj the vertex in Sk,d whose first

2 co-ordinates are given by u, and last d − 2 of them by j ∈ {0, 1, . . . , k}d−2. For

u = (u1, u2) ∈ Z2, let us define uS = (u1, u2, 0, . . . , 0) ∈ Sk,d and translation τu acting

on Ω by τuω(< x, y >) = ω(< x−uS , y−uS >), and on events by τuA = {τuω : ω ∈ A}.
Let us denote P = Ppc(Sk,d) from now on. We will prove that:

Theorem 1.4. Let h(n) ≤ n be a function such that lim
n→∞

h(n) =∞ and E be any event

depending on the state of finitely many edges of Sk,d. Then for any sequence of vertices

vn ∈ Z2, and any fixed level j ∈ {0, 1, . . . , k}d−2,

lim
n→∞

|vn|≤n−h(n)

P[τvnE|vjn ∈ SC(n)] = ν(0,0)j (E).

The next natural question to ponder about is if we can make sense of the ‘uniform’

or ‘global’ variant of theorem 5.1. However, to prove this we need a certain tightness

result of the crossing cluster SC(n) (similar to [J03, Theorem 8(ii)]), which is currently

missing. This result states that with high-probability, |SC(n)| is at least bigger than

some multiplicative factor times its expectation, whenever it is non-empty, i.e.
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Conjecture 1.5.

lim
ε→0

inf
n≥1

P[ε ≤ |SC(n)|
E[|SC(n)|] |SC(n) 6= φ] = 1.

Let In indicate a vertex chosen uniformly at random from the crossing cluster SC(n),

when it is known to be non-empty. Here we abuse the notation and still call this measure

as P, and for v = (v1, v2, . . . vd) ∈ Sk,d, let us define τv = τ(v1,v2). The natural candidate

for the limiting measure here is the average measure over every level j ‘above’ the origin.

We show that this is indeed the case.

Theorem 1.6. If Conjecture 1.5 holds, then

lim
n→∞

P[τInE|SC(n) 6= φ] =
1

(k + 1)d−2

∑
j∈{0,1,...,k}d−2

ν(0,0)j (E).

As we have mentioned, RSW theorem and quasi-multiplicativity are two important tools

for critical planar percolation and the former specifically was also crucial component for

Kesten’s IIC construction. We will also prove these two results which will help us

circumvent lack of planarity and other tools.

Let us recall that Russo-Seymour-Welsh theorem states that the probability that an

open path connects the left and right sides of a rectangle is bounded away from 0 and

1 by constants that only depend on the aspect ratio of the rectangle. We will prove

that the probability of crossing a “rectangular box” in Sk,d is bounded from below by a

positive constant which only depends on the aspect ratio of the rectangle and the slab

parameters k and d, but does not depend on the size of the rectangular box.

Let us define a rectangle and its left and right boundary regions by

B(m,n) = [0,m)× [0, n), L(m,n) = {0} × [0, n), R(m,n) = {m− 1} × [0, n).

Consider the crossing event

LR(m,n) =
{
L(m,n) is connected to R(m,n) by an open path in B(m,n)

}
.

Let us state the RSW theorem for slabs:

Theorem 1.7. For any ρ ∈ (0,∞), there exists a constant cρ = cρ(k, d) > 0 such that

lim inf
n→∞

P [LR(bρnc, n)] ≥ cρ. (1.3)

We reiterate that to combat the obstacles (to connect open paths) created by lack of

planarity we will adapt a certain technique for “glueing” open paths from [DCST16].

Although this proof can be extended for other models such as finite-range percolation, for
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simplicity we will be content working with slabs Sk,d alone. For the sake of completion,

we also state, the high-probability variant of RSW theorem, which states that if the

crossing probability in the easy direction of a rectangular box of fixed aspect ratio goes

to 1 as the size increases, so must happen for the difficult direction of a rectangular box

with arbitrarily large aspect ratios. Let us call p(m,n) = P[LR(m,n)].

Corollary 1.8 (High-Probability version of RSW Theorem).

lim
n→∞

p(bρnc, n) = 1 for some ρ ∈ (0, 1)⇒ lim
n→∞

p(bκnc, n) = 1 for all κ > 0. (1.4)

Another natural question to ask in the context of RSW theorem is whether for every

ρ > 0, lim supn→∞ p(bρnc, n) < 1. This was shown to be true very recently by Newman,

Tassion and Wu in [NTW15, Theorem 3.1] for percolation on slabs. They also obtained

independently and with different proofs the results of Theorem 1.7 and Corollary 1.8

(See [NTW15, Theorems 3.1 and 3.17]).

Let us introduce some notations before stating quasi-multiplicativity Lemma 1.9 for

slabs. We define the annulus in slabs as An(m,n) = B(n) \B(m− 1) for integers

m ≤ n. For x, y ∈ Sk,d and non-empty sets X,Y, Z ⊂ Sk,d, we write

• x Z←→ y if there is a nearest neighbor path of open edges with all its vertices in Z.

• x Z←→ Y if there exists y ∈ Y such that x
Z←→ y.

• X Z←→ Y in Z if there exists x ∈ X such that x
Z←→ Y .

Lemma 1.9 (Quasi-multiplicativity). Fix d ≥ 2, k ≥ 0 and δ ∈ (0, 1− pc(Sk,d)). There

exists c > 0 such that for any p ∈ [pc, pc + δ], integer m > 0, any finite connected

Z ⊂ Sk,d such that Z ⊇ An(m, 3m), and any X ⊂ Z ∩B′(m) and Y ⊂ Z \B′(3m),

Pp[X
Z←→ Y ] ≥ c · Pp[X Z←→ ∂B′(2m)] · Pp[Y Z←→ ∂B′(2m)]. (1.5)

Notice that this is a stronger variant of the general quasi-multiplicativity lemma, whose

planar version we are familiar with (albeit for one open arm). Apart from being uni-

formly true in [pc, pc + δ], its vital advantage lies in doing away with the ‘shape’ of the

region and the only requirement being reasonable amount of space between the regions

which are being connected, to split one long path into two.

As we discussed after the statement of Theorem 1.3 and will do so in details in Chapter 4,

quasi-multiplicativity in the sense of (1.5) is one of the two prerequisite conditions for

IIC to make sense of in Bernoulli percolation on a general graph. We expect that quasi-

multiplicativity holds on Zd if and only if d < 6. (We explain our intuition for believing

this in details in Section 4.2.2.)
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Let us sketch the outline of the proof of Theorem 1.3, which broadly follows the general

scheme proposed by Kesten in [K86a] by attempting to decouple the configuration near v

from infinity on multiple scales. Kesten’s decoupling argument is based on the existence

of an infinite collection of open circuits around v in disjoint annuli and utilizes two of

their properties:

(a) Each path from v to infinity intersects every such circuit.

(b) By conditioning on the innermost open circuit in an annulus, the occupancy con-

figuration in the region not surrounded by the circuit is still an independent Bernoulli

percolation.

This approach explicitly uses planarity and thus cannot work in slabs. Instead, we take

up the following strategy (assume for the ease of calculation that v ∈ {(0, 0)}). We

define S(m) := ∂B(m).

• We identify a sufficiently fast growing sequence Ni such that given v ←→ S(n),

the probability that there is a unique open cluster in An(Ni, Ni+1) which connects

S(Ni) to S(Ni+1) (in percolation jargon, a unique crossing cluster) is asymptoti-

cally close to 1.

• Next, let an annulus An(Ni, Ni+1) contain a unique crossing cluster. We explore

all the open clusters in this annulus that intersect the interior boundary S(Ni),

call their union Ci, and let Di be the subset of S(Ni+1 + 1) of vertices connected

by an open edge to Ci.

• Then, the configuration outside Ci is distributed as the original independent per-

colation and every vertex from Di is connected by an edge to the same (crossing)

cluster from Ci. Thus, v ←→ S(n) if and only if

(a) v is connected to Di (this event only depends on the edges intersecting B(Ni)∪
Ci),

(b) Di is connected to S(n) outside Ci (this only depends on the edges outside

Ci).

• This enables us to factorize Pp[E, v ←→ S(n)] into sum over products of crossing

probabilities Pp[E, v
B(Ni)∪Ci←→ Di, Di = Di, Ci = Ci] and Pp[Di

B(n)\Ci←→ S(n)].

The rest of the proof is essentially the same as that of Kesten [K86a]. We re-

peat the described factorization on several scales, obtaining an approximation of

Pp[E|v ←→ S(n)] in terms of products of positive matrices Mi of such probabilities

of annulus-crossing probabilities (where the rows and columns are over choices of

2-tuples (Ci,Di) and (Ci+1,Di+1)).
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• Finally, we use Lemma 1.9 to prove that the matrix operators are uniformly con-

tracting, i.e.
(Mi)j,k(Mi)j′,k′
(Mi)j′,k(Mi)j,k′

is bounded from both above and below uniformly in

variables j, j′, k, k′, and i, where (Mi)j,k is the element of Mi situated at j-th

row and k-th column. This is analogous to [K86a, Lemma (23)], thus the rest of

the proof is same as in [K86a, pages 377-378], namely an application of Hopf’s

contraction property.

The outline of proving Theorems 1.4 and 1.6 is again a convenient adaptation of Járai’s

scheme, similar to how we approached Theorems 1.1 and 1.2 as well. One key change,

is that instead of existence of open circuits, we exploit lack of percolation in slabs at

criticality, and thus work with “shells” instead for decoupling events. Along the way

we prove several useful properties of crossing collection, e.g moment bounds for crossing

collection and bounds on one-arm connectivity apart from conjecturing the tightness

result. (See Lemmas 5.4 and 5.5.)

It would be interesting to ponder over whether we can also make sense of IIC-measure

in slabs as [J03, Theorem 3], i.e. by choosing a point randomly from the largest cluster

in the box. For this we would require a result akin to [J03, Proposition 1] which states

that the difference between the size of the largest and the second largest open cluster

should diverge with probability 1 as we increase the size. This variant of Theorem 1.1,

as well as Conjecture 1.5 seem hard to prove with the current set of tools we possess.

1.4 Organization of the thesis

We will prove the results related to multiple armed IIC in plane, e.g. Theorems 1.1,

1.2 and related tightness results in Chapter 2. Our aim in Chapter 3 will be to prove

RSW Theorem 1.7 and its high-probability variant Corollary 1.8 alongwith some as-

sociated results. In subsequent Chapter 4 we prove Theorem 1.3 for general graphs

whenever they satisfy uniqueness of the infinite open cluster and quasi-multiplicativity

Lemma 1.9, followed by proving that the slabs satisfy the later condition (and the for-

mer one trivially). This proves the existence and coincidence of both the definitions

of Kesten’s IIC-measure in slabs. Finally in Chapter 5, we prove Theorem 1.4 first.

Then we prove moment bound for crossing collection which, along with our tightness

conjecture 1.5, constitute the proof of Theorem 1.6.

Before moving on to the subsequent chapters, let us recall some common definitions and

tools for percolation in Section 1.5 that we will use quite frequently.
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1.5 Definitions and Tools in Percolation

Let us establish a partial order ≺ on elements of Ω as follows. ω ≺ ω′ if for every edge

e ∈ Ed, ω(e) ≤ ω′(e), i.e. ω′ can be obtained from ω by opening a number of edges

that were closed in ω. An event A in F is called increasing if for any two configurations

ω ≺ ω′, ω ∈ A implies ω′ ∈ A. Some common increasing events are existence of an

open crossing in an rectangle, existence of an open circuit in an annuli or existence of

k many disjoint open crossings in a rectangle. Intuitively, existence of one increasing

event would typically imply an abundance of open edges, that might “encourage” any

other increasing event, giving us the impression that they are positively correlated. The

next inequality, commonly known as FKG inequality, is a formalization of this intuition.

Lemma 1.10 (FKG inequality). Let A and B be two increasing events. Then

Pp[A ∩B] ≥ Pp[A]Pp[B].

Next, we are going to present Reimer’s inequality which is a complementary correlation-

type inequality for general events. Let A be an event that depends on finitely many edges

{e1, e2, . . . , em}. Let us define, for K ⊂ {1, 2, . . . ,m}, the cylinder event generated by ω

on K as

C(ω,K) = {ω′ : ∀i ∈ K, {ω′(ei) = ω(ei)}.

For two events A,B depending on finitely many edges {e1, e2, . . . , em}, let us denote

their disjoint occurrence as A ◦B, which is defined as

A ◦B = {ω : ∃K ⊂ {1, 2, . . . ,m} such that C(ω,K) ⊂ A and C(ω,Kc) ⊂ B},

where Kc = {1, 2, . . . ,m} \K. For such “disjoint” occurrence, it is intuitive that condi-

tioned on existence of one event, occurrence of the other requires more specific configu-

rations in general. This is formalized as Reimer’s inequality, which states

Lemma 1.11 (Reimer’s inequality). Let A and B be two events depending on finitely

many edges. Then

Pp[A ◦B] ≤ Pp[A]Pp[B].

Precisely this inequality for A and B, both being increasing events in addition was

proved by van den Berg and Kesten in [BK85] and commonly known as BK inequality.

We can reformulate Lemma 1.11 in general where the probability of each edge being

open is independent but not necessarily the same, but since we would not need this, we

do not go into the details.



Chapter 2

Incipient Infinite clusters at

Planar lattices

2.1 Introduction

For percolation on Z2 at criticality, it is known that there is almost surely no infinite

cluster [H60, K80] and at the same time there exist open clusters spanning arbitrarily

large boxes [R78, SW78]. Aizenman [A97] posited that local patterns around vertices

of large spanning clusters appear with frequencies given by a probability measure on

occupancy configurations. Although this measure would inherit properties of critical

percolation, it would be supported on configurations with an infinite open cluster at the

origin. One may call such a measure an incipient infinite cluster measure.

Kesten [K86a] gave a first mathematically rigorous construction of an incipient infinite

cluster (IIC) by conditioning on an open path from the origin to the boundary of a large

box at critical percolation and increasing the size of the box to infinity. The resulting

probability measure is supported on the configurations with an infinite open cluster

at the origin. Later, Járai [J03] proved that Kesten’s IIC measure indeed describes

frequency of local patterns in large crossing clusters. More precisely, if one chooses a

vertex uniformly at random in a large crossing cluster, then the occupancy configuration

around this vertex has the law given by the IIC measure. In the same paper, he verified

that several other natural definitions of the IIC coincide with the one introduced by

Kesten.

Later in [DS11, Theorem 1.6], a stronger variant of IIC measure was proved, where the

conditioning event was more generalized. Instead of the origin, a small neighborhood

around origin was connected to the boundary of a large box by several disjoint clusters.

17
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To be more precise, this connection can be described as a finite series of arms, each of

which might be either open or dual closed, described by a specific σ ∈ {open, closed}k

for some k ∈ N . The resulting multiple-arm IIC measure is characterized solely by σ.

Our main objective in this chapter is to prove that some specific multiple-arm IIC mea-

sures, whose existence was validated by [DS11], also describe frequency of local patterns

around some special sets. For example, we would prove that the local configuration

around a point chosen uniformly from the “backbone” (the set of points which have

disjoint paths to right and left side inside the large box) is described by the IIC measure

where the conditioning event is that the origin is connected to the boundary of a big

box by two disjoint open arms. The local configuration around an edge chosen randomly

from the ‘lowest’ left-right crossing and set of pivotal edges for left-right crossing are

shown to follow certain 3-arm and 4-arm IIC measures.

2.2 Notation and result

We recall the independent Bernoulli bond percolation measure on Z2. Given any p ∈
[0, 1], any edge e ∈ E2 is open with probability p and closed with probability 1 − p,

independent of all other edges. The sample space is Ω = Πe∈E2{0, 1}, elements of which

are configurations indicated by ω = (ω(e) : e ∈ E2). We define ω(e) = 1 if the edge e is

open in configuration ω and ω(e) = 0 if e is closed. We take the σ-field F to be the one

generated by the finite dimensional cylinders. Finally the probability measure is defined

as the product measure:

Pp =
∏
e∈Ed

µe ,

where µe(ω(e) = 1) = p = 1− µe(ω(e) = 0). For x, y ∈ Z2 and X,Y ⊂ Z2, we write

• x↔ y if there exist vertices x1, x2, . . . xn such that a = x1, b = xn, xi is neighbour

to xi+1 for all i ∈ {1, 2 . . . n− 1} and all these edges between neighbours are open.

• x↔ Y if there exists y ∈ Y such that x↔ y.

• X ↔ Y if there exists x ∈ X such that x↔ Y .

The cluster C(x) containing a vertex x is defined as C(x) = {y : x ↔ y}, the set of all

vertices which are connected to x. The critical threshold is defined as

pc = inf {p : Pp[C(O) is infinite] > 0} ,

where O is the origin. Let us also call B(n) = [−n, n]2 and ∂B(n) as the inner boundary

of B(n), i.e. B(n) \B(n− 1).
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Kesten [K86a, Theorem 3] proved that, for all cylinder event E, the limit

ν(E) = lim
n→∞

Ppc(E|O ↔ ∂B(n))

is well-defined, and by Kolmogorov’s extension theorem, ν extends uniquely to a proba-

bility measure on configurations of edges, called Kesten’s incipient infinite cluster mea-

sure. (Kolmogorov’s extension theorem holds since the compatibility for events de-

pending on finitely many edges hold true, and this can be checked immediately.) In

supercritical regime, i.e. for p > pc, existence of the measure νp(E) = Pp(E|O ↔ ∞)

is trivial since Pp[0 ↔ ∞] > 0. Kesten [K86a, Theorem 3] showed that lim
p↘pc

νp = ν,

providing another interpretation of IIC measure. Both of these definitions are quite

intuitive, and the fact that they coincide makes this measure quite robust.

Let the left and right part of the interior boundary ∂B(n) be called L(n) = {−n}×[−n, n]

and R(n) = {n} × [−n, n] respectively. Járai [J03] made sense of IIC measure as the

local configuration picture around a point of crossing collection, defined as

SC(n) = {v ∈ B(n) : L(n)↔ v ↔ R(n) inside B(n)},

which is far away from the boundary. For u ∈ Z2 and e =< x, y >∈ E2, let us define

translation τu acting on Ω by τuω(< x, y >) = ω(< x − u, y − u >), and on events by

τuA = {τuω : ω ∈ A}. Let us also denote Ppc by P, since we will only focus on the

critical phase from now on.

[J03, Theorem 2] states that, for any cylinder event E, any function h(n) satisfying

h(n) ≤ n but lim
n→∞

h(n) =∞, and for any sequence of vertices vn ∈ B(n− h(n)),

lim
n→∞

vn∈B(n−h(n))

P[τvnE |vn ∈ SC(n)] = ν(E).

The “random” version of this theorem [J03, Theorem 1] states that, if In is a uniformly

chosen point from the crossing collection SC(n), for any cylinder event E,

lim
n→∞

P[τInE |SC(n) 6= φ] = ν(E).

(By calling this measure P, we abuse the notation slightly here.) We define the cross-

ing event LR(n) = {There exists an open path from L(n) to R(n) inside B(n)}. Let us

now finally define the exceptional point sets whose typical local picture we are interested

in understanding.

• Backbone: We define the backbone BB(n) as the set of vertices in B(n) which

are connected to L(n) and R(n) by two disjoint paths, both being inside B(n).

• Lowest Crossing: For every configuration ω in the event LR(n), we can make

sense of the unique ‘lowest’ crossing. We do this by defining a partial relation in
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the set of open horizontal crossings in ω characterized by the inclusion of the area

enclosed under it inside B(n), and this will have a unique minimal element which

we name γmin(ω). Let us call the set of edges on this path γmin as LC(n).

• Set of Pivotal edges: An edge e is said to be pivotal for LR(n) in a given

configuration ω if exactly one of ω or ω′ = {ω′(f) = ω(f) iff f 6= e} lies in LR(n),

i.e. switching that edge e from open to closed or vice versa in ω alters the existence

of an open horizontal crossing of B(n). We denote by P (n), the set of pivotal edges.

The dual graph of L2 is given by L2∗ = {(1
2 ,

1
2) + x : x ∈ Z2} which is isomorphic to L2

itself. Each edge e of the original graph intersects with a unique edge in the dual graph

and it is called as the dual edge of the edge e. We declare any edge in the dual graph

open or closed corresponding to the status of its dual edge and call such open (or closed)

paths in the dual graph as dual open (or dual closed, respectively) path. Also, for a set

X ⊂ Z2, we call X∗ as the set of edges dual to all the edges in the original graph with

both vertices on X.

Let us call the top and bottom part of ∂B(n) as T (n) = [−n, n] × {n} and D(n) =

[−n, n] × {−n}. We note two things. Firstly, for every edge e on the lowest crossing

γmin, e∗ is connected to some edge of D∗(n) by a dual closed path comprised of edges

inside B∗(n) (actually inside U∗(ω), where U(ω) is the area enclosed by γmin(ω)) and two

disjoint open connections to L(n) and R(n) from its two vertices inside B(n). Secondly,

if e is a pivotal edge in horizontal crossing of B(n), then one endpoint of e is connected

to L(n) and the other to R(n) by open paths in B(n) as well as two endpoints of e∗

being connected to some edge in D∗(n) and T ∗(n) by two disjoint dual closed paths.

Thus 2 open paths in L2 and 2 closed paths in L2∗ originate from e in alternate manner.

We will introduce some specific “multiple-arm” IIC measures now as the eligible candi-

dates to describe the configurations around these sets. The existence of our 3 candidate

measures we are about to define is already proved (see [DS11, Theorem 1.6 and Remark

7]).

• Let us denote by O ↔2 ∂B(n), the event that the origin is connected to ∂B(n) by

two disjoint open paths. For every cylinder event E, we define

ν2(E) = lim
n→∞

P
[
E | O ↔2 ∂B(n)

]
.

• Let us call e0 = ((0, 0), (1, 0)) and denote by e0 ↔3 ∂B(n), the event that two

endpoints of e0 are connected to ∂B(n) by two disjoint open paths, e∗0 is connected

by a dual closed path inside B(n)∗ to some edge in ∂B(n)∗ and e0 is open. For

every cylinder event E ⊂ {ω(e0) = 1}, we define
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ν3(E) = lim
n→∞

P
[
E | e0 ↔3 ∂B(n)

]
.

• Let us denote by e0 ↔4 ∂B(n), the event that two endpoints of e0 are connected

to ∂B(n) by two disjoint open paths and two endpoints of e∗0 are connected by two

disjoint dual closed paths inside B(n)∗ to some edges in ∂B(n)∗. Notice that this

event is independent of {ω(e0) = 1}. For every cylinder event E independent of

{ω(e0) = 1}, we define

ν4(E) = lim
n→∞

P
[
E | e0 ↔4 ∂B(n)

]
.

In Z2, any edge e is of the form < x, y > where y = x+ (0, 1) or y = x+ (1, 0). For an

edge e, also let ρe be the rotation that maps < (0, 0), (1, 0) > to e0 =< (0, 0), (1, 0)) >

for the former case and keeps the edge intact for the later one. We define τe as the shift

operator on configurations such that for any edge f , τe(ω)(f) = ω(ρe(f − x)). Now we

state our main results.

Theorem 2.1. Let there be sequences vn of vertices and en of edges such that their

distance from the boundary is at least h(n)(≤ n) where lim
n→∞

h(n) =∞.

(a) For any cylinder event E,

lim
n→∞

P
[
τvnE | vn ∈ BB(n)

]
= ν2(E).

(b) For any cylinder event E ⊂ {ω(e0) = 1},

lim
n→∞

P
[
τenE | en ∈ LC(n)

]
= ν3(E).

(c) For any cylinder event E independent of ω(e0),

lim
n→∞

P
[
τenE | en ∈ P (n)

]
= ν4(E).

Theorem 2.2. Let In2, In3 and In4 be chosen uniformly from the sets BB(n), LC(n)

and P (n) respectively.

(a) For any cylinder event E,

lim
n→∞

P
[
τIn,2E | BB(n) 6= φ

]
= ν2(E).

(b) For any cylinder event E ⊂ {ω(e0) = 1},

lim
n→∞

P
[
τIn,3E | LC(n) 6= φ

]
= ν3(E).

(c) For any cylinder event E independent of ω(e0),

lim
n→∞

P
[
τIn,4E | P (n) 6= φ

]
= ν4(E).



Incipient Infinite clusters at Planar lattices 22

Remark 2.3. We restrict ourselves to critical bond percolation on Z2 here, but the results

can be extended to site percolation and in fact can be generalized for large class C of

planar periodic graphs with invariance under reflections and rotation by some fixed angle
2π
k for some k ≥ 3. This is due to the fact that the main ingredient of the proof is Russo-

Seymour-Welsh theorem (see Theorem 2.4 below), which holds in such generality (see

[R78],[SW78],[R81], and [K82], for example).

To prove these results, we will by and large follow the outline of strategy from [J03].

But first, we will require standard tools like Russo-Seymour-Welsh Theorem and quasi-

multiplicativity along with several arm-estimates and tightness-results which we provide

in Section 2.3. Most of the results come from existing literature, and we prove the other

ones as required. One of our results worth highlighting for its novelty is the Lemma

2.10(c), the tightness of pivotals.

2.3 Tools and Arm estimates

It is interesting to notice that, at p = pc (for Bernoulli bond percolation on Z2, we

actually know the precise value pc = 1
2 [K80, Theorem 1]), even if there is no infinite

cluster, the probability that an open cluster spans from left to right side of a box of any

fixed aspect ratio (but of any size) is uniformly bounded away from 0 and 1. This result,

famously known as Russo-Seymour-Welsh theorem, describes that at critical percolation,

there exists giant connected clusters at each scale with non-zero probability.

Let the left and right segment of the interior boundary of the rectangle B(m,n) =

[−m,m]× [−n, n] be denoted by L(m,n) = {−m}× [−n, n] and R(m,n) = {m}× [−n, n]

respectively. We define the horizontal crossing event

LR(m,n) = {L(m,n) is connected to R(m,n) by an open path in B(m,n)} ,

and we denote the crossing probability as p(m,n) = P [LR(m,n)] .

Theorem 2.4 (RSW Theorem). For any ρ ∈ (0,∞), there exists cρ > 0 such that

1− cρ ≥ lim sup
n→∞

p(bρnc, n) ≥ lim inf
n→∞

p(bρnc, n) ≥ cρ. (2.1)

Remark 2.5. This theorem was first proved for critical Bernoulli percolation on planar

lattices in [R78, SW78] and recently has been extended to some other planar models,

notably to continuum percolation on R2 [R90], the FK-percolation [DCHN11, DCST17]

and Voronoi percolation [BR06, T14]. We will in fact prove a part of this result for

2-dimensional slabs, in Chapter 3. The full result for slabs was proved independently as

well by Newman, Tassion and Wu in [NTW15, Theorem 3.1].
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Another important result, that we will repeatedly use throughout is quasi-multiplicativity

lemma. It demonstrates that the probability of crossing a big annulus is comparable

with the product of crossing probabilities for 2 smaller annuli that compose the big-

ger one. Thus at criticality, there exists constants C1 ≤ C2 such that the fraction
P[B(l)↔∂B(n)]

P[B(l)↔∂B(m)]P[B(m)↔∂B(n)] ∈ [C1, C2] uniformly for any l ≤ m ≤ n. (By independence,

one can take C2 = 1.)

This does not only hold true for one open crossing but also for any general sequence σ

consisting of a series of open and dual closed paths in a specific order. For k ∈ N, and

σ ∈ {open, closed}k, let k1 ≤ k be the number of ‘open’ entries and k2 = k − k1 are the

number of closed entries of σ. For k ≤ l < n, we denote B(l) ↔σ ∂B(n) for the event

that there exists k1 open paths between B(l) and ∂B(n) inside An(l, n) = B(n)\B(l−1)

and k2 dual closed paths connecting one edge of B∗(l) to one edge of ∂B(n)∗ using only

edges of An(l, n)∗ such that the relative counterclockwise arrangement of them is given

by σ. We also define

ασ(r,R) := P [B(r)↔σ ∂B(R)] ,

where R ≥ r ≥ |σ|. For simplicity we will call ασ(|σ|, n) as ασ(n).

Lemma 2.6 (Quasi-multiplicativity). [N08, Proposition 16] There exists constant

Qσ > 0 only depending on |σ| such that

Qσασ(R) > ασ(r,R)ασ(r) >
ασ(R)

Qσ
whenever |σ| < r < R. (2.2)

Kesten [K87, Lemma 6] proved this result for σ = {open, closed, open, closed} for a

general set of periodic graphs which include C (see Remark 2.3), and Nolin extended

this result for any σ. (Although he proves it for site percolation on triangular lattices,

his proof of quasi-multiplicativity does not rely crucially on specifics of that model.) We

can define such arm-events in case of half and quarter plane by defining α+
σ (r,R) as the

same event but all |σ| arms being restricted in B(R)\B(r)∩(Z×Z+) and α++
σ (r,R), the

restricted region being B(R)\B(r)∩(Z+×Z+). Since they satisfy certain RSW theorem

estimates in [K87, (2.15)] by virtue of having the same critical point as of percolation on

Z2 ([GM90]), quasi-multiplicativity property holds true for them as well. (The argument

is laid out in [K87, Page 112, Penultimate Paragraph].)

2.3.1 Arm Estimates

From the existing literature, here we gather some estimates of ασ(r,R), for some specific

sequences σ that we will later require. Before that let us define the following alternating

sequences:
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σA2j = {open, closed, open, . . . , closed}, |σA2j | = 2j,

σA2j−1 = {open, closed, open, . . . , open}, |σA2j−1| = 2j − 1,

for j ∈ N, i.e. σA2j (σA2j−1, respectively) implies j open paths and j (j − 1, respectively)

dual closed paths alternately. We define αj(r,R) := ασAj
(r,R) for j ∈ N and α∗(r,R) =

α{closed}(r,R). Similarly, α+
j (r,R), α++

j (r,R), α+
∗ (r,R) and α++

∗ (r,R) are defined. Let

us also specifically define σ3 = {closed, open, closed}.

For two functions f and g defined on N2, we denote f(r,R) = O(g(r,R)) if there exists

an universal constant C > 0 such that f(r,R) < Cg(r,R) ∀R ≥ r ≥ 1. We also denote

f(r,R) � g(r,R) when f(r,R) = O(g(r,R)) and g(r,R) = O(f(r,R)).

Lemma 2.7. [Arm Probabilities] For any integers R ≥ 4r ≥ 4,

(i) (r/R) = O(α3(r,R)), [DHS14, (16)]

(ii) α5(r,R) � (r/R)2, [KSZ98, Lemma 5]

(iii) α3
+(r,R) � (r/R)2 � ασ3

+(r,R), [W07, First exercise sheet]

and there exists δ ∈ (0, 1/2) such that

(iv) max(α1(r,R), α∗(r,R)) = O((r/R)δ), [G99, (11.90)]

(v) (r/R)2−δ = O(α4(r,R)), [GPS10, (2.6)]

(vi) α2
++(r,R) = O((r/R)1+ δ

2 ). [GPS10, (4.13)]

Remark 2.8. For (i), the result in [DHS14] is slightly stronger, but we will not need the

stronger form. For (iii), we cite an exercise sheet in [W07], which might feel improper,

but we do so since the proof is similar to that of (ii) done by [KSZ98] and not central to

our results. For (iv), [G99, 11.90] gives us the partial result that α1(r,R) = O((r/R)δ)

for some δ ∈ (0, 1). The bound for α∗ can be found in a similar way, utilizing two facts.

Firstly, a dual closed path from ∂B(r) to ∂B(R) implies the absence of open circuits

in concentric annuli in B(R)\B(r). Secondly, the probability of an open circuit in each

annulus is bounded away from 1. This proves (iv), possibly for a smaller value of δ.

2.3.2 Expectation Estimates and Tightness Results

To prove results for crossing collection SC(n), Járai needed results on how big |SC(n)|
typically is. [J03, Theorem 8(i)] and [J03, Theorem 8(ii)] provided him with expectation

estimates and tightness results which were crucial for his proof. Similarly for us, two

crucial ingredients to prove Theorems 2.1-2.3 would be estimates of expected sizes and

tightness results for the sets BB(n), LC(n) and P (n). Most of these results are already

well-known in existing literature. The key novel result we want to emphasise on here is

the tightness of pivotals, which is more challenging to prove.

The following Lemmas 2.9 and 2.10 have the equivalent statements posed in [J03, The-

orem 8(i)] and [J03, Theorem 8(ii)], respectively. Let us call αB(n) := α{open,open}(n).
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Lemma 2.9. [Expectation Estimates]

(a) E[|BB(n)|] � n2αB(n).

(b) E[|LC(n)|] � n2α3(n), [[MZ05],[DHS15, (12)]].

(c) E[|P (n)|] � n2α4(n), [[GPS10, Equation 7.3]].

Proof. (a): We prove Lemma 2.9(a) by following the proof of [J03, Theorem 8(i)] for

the sake of completeness, since this is short and would provide the readers with a quick

glimpse of how such estimates are proved typically.

We define v +B(n) as the square of sidelength 2n with centre at v. Similarly we define

An(v,N,M) = {v+B(M)}\{v+B(N −1)} for N ≤M . For any v = (v1, v2) ∈ B(n/2)

we define the following events:

X(v) = {There is an open horizontal crossing in [−n, n]× [v2 − n/4, v2 + n/4]},
A(v) = {There is an open circuit in An(v, n/4, n/2)},
Y (v) = τv{0↔{open,open} ∂B(n/2)}. (2.3)

By RSW theorem, P[X(v)] > c4 and P[Y (v)] > c4
3, implying for each v ∈ B(n/2),

P[v ∈ BB(n)] ≥ P[X(v) ∩ Y (v) ∩A(v)] ≥ P[X(v)]P[A(v)]P[Y (v)]

≥ c4c3
4αB(n/2) ≥ c αB(n).

We used FKG in the second step and quasi-multiplicativity in the last step. Summing

over all such v gives us

E[|BB(n)|] ≥
∑

v∈B(n/2)

P[v ∈ BB(n)] ≥ cn2αB(n).

For the other side, we classify each vertex by how close is it from either L(n) or R(n)

and observe

E[|BB(n)|] =
∑

v∈B(n)

P[v ∈ BB(n)] ≤ 2n

n∑
r=0

αB(r)α1(r, n) ≤ Cn
n∑
r=0

α1(r, n)αB(n)

αB(r, n)

≤ C ′nαB(n)

n∑
r=0

(r/n)δ

r/n
≤ C ′n2−δαB(n)

n∑
r=0

rδ−1 ≤ C ′′n2αB(n).

We used quasi-multiplicativity and Lemma 2.7(i),(iv) in third and fourth steps respec-

tively. This completes the proof of Lemma 2.9(a).

Before stating the tightness Lemma 2.10, we need to mention that both of these lemmas

will be used to prove Theorem 2.2 but only Lemma 2.9 will be required for Theorem 2.1.
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Lemma 2.10. [Tightness result]

(a) lim
ε→0

inf
n≥1

P
[
ε ≤ |BB(n)|

E[|BB(n)|] ≤ 1
ε |BB(n) 6= φ

]
= 1.

(b) lim
ε→0

lim inf
n≥1

P
[
ε ≤ |LC(n)|

E[|LC(n)|] ≤ 1
ε |LC(n) 6= φ

]
= 1, [DHS15, Lemma 24].

(c) lim
ε→0

inf
n≥1

P
[
ε ≤ |P (n)|

E[|P (n)|] ≤ 1
ε |P (n) 6= φ

]
= 1.

Remark 2.11. Notice that proving one side of the tightness result is immediate once we

know expectation estimates. For example, for lowest crossing, by Markov inequality,

P[
|LC(n)|

E[|LC(n)|] ≥
1

ε
|LC(n) 6= φ] =

1

P[LC(n) 6= φ]
P[
|LC(n)|

E[|LC(n)|] ≥
1

ε
]

≤ ε

P[LC(n) 6= φ]
. (2.4)

We know that P[BB(n) 6= φ] = P[LC(n) 6= φ] = P[∃ a horizontal crossing of B(n)] > c

for some constant c > 0. Thus RHS of (2.4) goes to 0 uniformly in n as ε→ 0, and same

holds for BB(n). For P (n), this will hold true similarly once we know P[P (n) 6= φ] > C1

uniformly in n.

The other bound for backbone can be proved by practically following the proof of [J03,

Theorem 8(ii)]. Since the proof is quite long and the only change required is re-defining

one set, (Y (m), to be precise, for having 2 disjoint connections instead of 1 to the lowest

crossing path) we choose not to present it here.

As referred earlier, [DHS15, Lemma 24] in fact prove the difficult lower bound for lowest

crossing, namely:

lim
ε→0

lim sup
n≥1

P [0 ≤ |LC(n)| ≤ εE[|LC(n)|]] = 0.

Therefore we only present the proof for pivotals here.

Tightness of Pivotals

As we described earlier, for the upper bound we need to prove that,

P[P (n) 6= φ] > C1 > 0, (2.5)

uniformly in n for some C1 > 0. To prove (2.5), observe that the event LR(n)\{LR(n)◦
LR(n)} is exactly {P (n) 6= φ,LR(n)}. (Recall that ◦ means disjoint occurrence.) This

is because by Menger’s theorem [M27], if it is possible to disconnect L(n) from R(n) by

closing one edge, there cannot be more than one horizontal crossings that share some

edge and vice versa. Let us call pn = P[LR(n)]. We have

P[P (n) 6= φ,LR(n)] = P[LR(n) \ {LR(n) ◦ LR(n)}] ≥ pn(1− pn) ≥ C1, (2.6)

where we use BK inequality in the second step, and RSW Theorem 2.4 that says pn is

bounded away from 0 and 1 uniformly in n in the last step. (Similarly we can find a

lower bound for non-existence of left right crossing instead as well.) This completes the

proof for the upper bound.
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Proving the lower bound is more challenging, and in fact this will be the key ingredient

to prove Theorem 2.2 (c). To explain the statement heuristically, we have to show that

when a pivotal edge exists, it is very likely that many of them (i.e. asymptotic to their

mean value) exists. Our strategy will be to show that in a square around any pivotal,

there will be many pivotals with high probability. To have that space completely inside

B(n), it is convenient if we can ensure that pivotals are likely to be away from the

boundary. This will be the first step of our proof. Let us call, for any set S ⊂ Z2 of

vertices, the edges with at least one vertex inside S as E(S).

Lemma 2.12 (Boundary Lemma). Given ε > 0, we can find α > 0 small enough

such that

P[E(An(b(1− α)nc, n)) ∩ P (n) 6= φ] < ε.

This lemma will also find its use separately for the proof of Theorem 2.2(c). We prove

this first before describing other components.

a) Proof of Boundary Lemma: Let us define k0 as the integer such that 1
2k0
≥

dαne > 1
2k0+1 , and call r = d n

2k0
e ≥ dαne. We focus on dividing An(n − r(n), n) into

two type of rectangles. First we take care of the four corner squares. Let us take one of

them, say C = [n− r, n]× [n− r, n]. If there exists any pivotal edge in E(C) then there

exists one open arm from C to L(n) and one dual closed path to D∗(n), both inside

B(n). So, by Lemma 2.7(vi),

P[P (n) ∩ E(C) 6= φ] ≤ α2
++(2r, 2n) ≤ (r/n)1+ δ

2 < (2α)1+ δ
2 . (2.7)

d n
2j−2e

2n

d n
2j
e

r

S ′

d n
2j−1e

Figure 2.1: Pivotal edge close to boundary
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We divide the rest of the boundary region in eight symmetric parts now, and choose

one of them, say S = [n − r, n] × [0, n − r]. We further divide S into sub-rectangles

Sj = [n−r, n]× [n−dn/2j−1e, n−dn/2je] for j = 1, 2, . . . , k0 and observe that each such

sub-rectangle Sj can be covered by 2k0−j distinct squares of dimension r × r. If there

exists a pivotal edge in such a component square S′ centered at v′ of dimension r × r
in, say Sj , then there are three alternating arms to the boundary of the half-annulus

[v′ +B(n/2j) ∩B(n)] \ S′,and then two alternating arms from [n− dn/2j−2e, n]× [n−
dn/2j−2e, n] to left and bottom side of B(n), both lying inside B(n) (See Figure 2.1).

This yields

P[E(S) ∩ P (n) 6= φ] ≤
k0∑
j=1

P[E(Sk) ∩ P (n) 6= φ]

≤
k0∑
j=1

2k0−jα3
+(r, dn/2je)α2

++(dn/2j−2e, 2n) (2.8)

[Lemma2.7(iii),(vi)]

≤
k0∑
j=1

C2k0−j(2j−k0)2(1/2j−1)1+δ/2 =

k0∑
j=1

C

2k0−1
2−(j−1)δ/2 ≤ C ′α.

Thus by (2.7) and (2.8) and rotation invariance of the lattice, we get

P[P (n) ∩ E(An(b(1− α)nc, n)) 6= φ] ≤ 8C ′α+ 4(2α)1+ δ
2 .

Given ε > 0, we can make the RHS of the above less than ε by choosing a suitable α (We

can find a large constant C such that α = ε
C works, for example.) and this completes

our proof.

b) Simplification: Let us recall that by LR(n) we denote the existence of a horizontal

open crossing of B(n). Given ε > 0, we will find θ > 0 such that the following equations

hold:
P[0 < |P (n)| < θn2α4(n) |P (n) 6= φ,LR(n)] < ε, (2.9)

P[0 < |P (n)| < θn2α4(n) |P (n) 6= φ,LR(n)c] < ε, (2.10)

and this will complete the proof of Lemma 2.10(c), since Lemma 2.9(c) already tells

us that E[|P (n)|] � n2α4(n). Notice that by (2.6) and similar adaptation of it, the

probability of both events {|P (n)| 6= φ,LR(n)} and {|P (n)| 6= φ,LR(n)c} are bounded

from below uniformly in n. Let us call the minimum of such bounds as ce.

We will first prove (2.9) and it will be immediate how one little modification would prove

(2.10). Let us call A(n) = {P (n) 6= φ,LR(n)}. Let us first eliminate the pivotal edges

close to the boundary using Lemma 2.12. Given ε > 0, we choose α such that

P[P (n) ⊂ E(B(b(1− α)nc))] ≥ 1− ε

2ce
, (2.11)
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and call the event as Gn. For any configuration where both a horizontal crossing and

pivotal edges for it exist, we notice two things. Firstly every pivotal edge must be open

and secondly we can order the pivotal edges from first to last by the order in which

any open horizontal crossing traverses through them from left to right. Let us denote

the first pivotal edge by ef . ef is naturally connected to R(n) by an open path and

to L(n) by two open paths. These three paths are disjoint and inside B(n). Also, ef
∗

is connected to T ∗(n) by a dual closed path, and let us call the leftmost path as Γt.

Similarly let us call the leftmost path from B∗(n) to the other end of ef
∗ as Γb. We will

show later that the event Hn where the paths Γt and Γb are well-separated (which will

be made rigorous later) has probability at least 1− ε
4ce

. This would imply that

P[0 < |P (n)| < θn2α4(n) |A(n)] ≤ P[0 < |P (n)| < θn2α4(n), Gn, Hn |A(n)] + 3ε/4.

(2.12)

We will now decompose the RHS of the above conditioning on ef , Γt and Γb in the

following way

P[0 < |P (n)| < θn2α4(n), Gn, Hn |A(n)]

=
∑
e

∑
γt,γb

P[0 < |P (n)| < θn2α4(n), Gn, Hn |A(n), ef = e,Γt = γt,Γb = γb]

·P[ef = e,Γt = γt,Γb = γb |A(n)].

Thus proving (2.9) reduces to proving that, uniformly in all permissible e, γt, and γb,

P[0 < |P (n)| < θn2α4(n), Gn, Hn |A(n), ef = e,Γt = γt,Γb = γb] < ε/4. (2.13)

Notice that under the above condition, B(n) is divided into two parts by γt ∪ γb which

are connected through e. Let us call the part containing R(n) as K. Let us denote γt and

the part of T ∗(n) lying right of it together as T ∗(K). Similarly for γb and part of D∗(n)

right of it is denoted as D∗(K). Conditioned on the event {ef = e,Γt = γt,Γb = γb},
any other pivotal edge f must satisfy the following conditions:

• f must be open and in K.

• f is connected to e and R(n) by two edge disjoint open paths, both inside K.

• f∗ is connected to T ∗(K) and D∗(K) by two edge disjoint dual closed paths, both

inside K∗.

Let us call the set of such edges as Y (n) and observe that once ef , Γt and Γb are fixed,

the event mentioned in (2.13) can be reinterpreted as

P[0 < |P (n)| < θn2α4(n), Gn, Hn |A(n), ef = e,Γt = γt,Γb = γb]

= P[|Y (n)| < θn2α4(n)− 1, G′n |e
K↔ R(n)],
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where G′(n) is the event that there exists no pivotal in E(K∩An((1−α)n, n)) and {e K↔
R(n)} indicates the existence of an open path from e to R(n) inside K. The event Hn

vanishes since the chosen γb and γt are deterministic paths which are “well-separated”.

Thus it would suffice for us to prove, uniformly over any e ∈ E(B(b(1− α)nc)) and any

such ‘permissible’ shape K,

P[|Y (n)| < θn2α4(n), G′n |e
K↔ R(n)] < ε/4. (2.14)

Γt

Γb

ef

S0
Y (n)

K

Figure 2.2: Conditioning on first pivotal

For any edge e, we define v(e) as its left vertex if e is horizontal, or its bottom vertex

if e is vertical. Since e ∈ E(B(b(1− α)nc)), the square S0 centered around v(e) of side

length 2bαnc lies entirely inside B(n). We intend to show that with high probability

there exists at least θn2α4(n) pivotals inside S0 ∩ K. We will split this square into

disjoint annuli Ai = An(v(e), dαn
2i
e, d αn

2i−1 e) for i = 1, 2, . . . , k. This k will be chosen

later.

The heuristic argument which we will make rigorous later is that the probability of having

so many pivotals in each annulus (from a certain fraction of the annuli) is bounded from

below uniformly and such events are independent. This will bound the probability from

above exponentially in k, and by choosing k large enough we can prove (2.14). There

are two main challenges. Firstly we need some space between Γt and Γb to position

certain “boxes” which will potentially contain pivotals, and that is why we needed them

to be ‘well-separated’ in the first place. Secondly the existence of a long open connection

e
K↔ R(n) robs the annuli of their independence. Let us first address the well separation

issue and rigorously define the event Hn.
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c) Well-separation of Boundaries: We say that K is well behaved, or equivalently

Γt and Γb are β0 well separated, if Γb and Γt have distance at least dβiαn
2i
e inside Ai ∩K

for fractions {βi = β0

2
3i
δ
}1≤i≤k. As mentioned before, we call this event as Hn = Hn(β0, k)

and will show P[Hn] can be made high enough by choosing β0 small, irrespective of how

big k is.

If Γt and Γb has distance ≤ bβiαn
2i
c inside Ai, it implies that there exists a vertex v ∈ Ai

such that there exists six arms in the annulus An(v, bβiαn
2i
c, dαn

2i
e) in the order σ6 =

{open, open, closed, open, open, closed}. Let us call this event az Zi(v). With Lemma 2.7

(ii),(iv) and Reimer’s inequality, it is immediate that ασ6(m,n) = O((m/n)2+δ) for some

δ ∈ (0, 1/2]. Thus if we cover the whole box B(n) by squares of sidelength dβiαn
2i+1 e, such a

six-arm event in annulus will be present with such a square completely inside the smaller

square. This yields

P[
⋃

v∈B(n)

Zi(v) occurs] ≤ O(
n

dβiαn
2i
e
)2ασ6(d3βiαn

2i+1
e, d αn

2i−1
e) (2.15)

≤ C
22i

α2β2
i

(
βi
2

)2+δ ≤ C ′ 2
2iβi

δ

α2
.

We will choose the fraction β0 < 1/2 later. Using explicit form of βi gives

P[Hc
n] ≤ P[

⋃
i≥1

⋃
v∈B(n)

Zi(v) occurs] ≤
∑

1≤i≤k
C ′

βδ0
α22i

≤ C ′β0
δ

α2
. (2.16)

Given ε, we have chosen α first to satisfy (2.11) and then by choosing β0 small, we make

the RHS < ε
4ce

as promised before, and this does not depend on how big the value of k

we pick.

d) Construction of ‘good’ annulli: To prove (2.14), we will decouple the long arm

event e
K↔ R(n) into several independent events localized on disjoint annuli. For this we

target to construct two circuits inside each Ani = Ai ∩K slightly apart. By condition

on innermost and outermost circuits as such, the conditioned event will be reduced

to the existence of disjointed open connections between two such circuits in several

annuli. Since existence of such circuits have probability uniformly bounded from below,

it is intuitively clear that with high probability, we will get a certain fraction of ‘good’

annuli.

The obvious glitch is that we cannot get a complete circuit naturally inside Ani which

we will later address by replacing them with suitable open arcs. Another subtle nuance

is that had the distance of Γb and Γt been ≥ dβαn
2i
e in Ani uniformly for some β, we

could have positioned a box of length � dβαn
2i
e comfortably inside these circuits and

attempted to show that such a box has many pivotals. (This could not be proved since
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the RHS in (2.16) would have blown up in such a case.) But since βi is also changing,

such a strategy is not universal. Thus, we will categorize the annuli into two groups.

We call an annulus Ai of ‘Type-A’ if the distance between γb and γt inside Ani is

≥ dβ0αn
2i
e. Otherwise the distance lies between bβ0αn

2i
c and dβiαn

2i
e and we call the

annulus of ‘Type-B’. Also, for some space constraints, we will work only with every

third annuli Di = A3i−2. Now we describe our definition of ‘good’ annuli for each of the

two types.

Type-A For the Type-A annuli, we do the following. We sample independently a config-

uration ω′ on edges of Di and then superimpose these two configuration in ω′′ as

ω′′(e) = ω(e) if e ∈ E(K) and ω′′(e) = ω′(e) if e /∈ E(K). Let us call the corre-

sponding probability measures as P′ and P′′. If there are open circuits in ω′ in each

sub annuli Din
i = An(v(e), b αn

23i−3 c, b 5αn
23i−1 c) and Dex

i = An(v(e), b 7αn
23i−1 c, b αn

23i−2 c),
inside configuration ω′′ it would create open paths Oini and Ooui in both of the

aforementioned two sub-annuli Din
i , D

ex
i connecting γt with γb, along with (possi-

bly) a series of open paths joining γt (or γb) with itself strictly inside those two

sub-annuli.

γt

γb

Din
i

Dex
i

Dm
i

Oin
iOou

i

T ′i

Fi

e

Figure 2.3: Good annuli of Type A

Any two such circuits create, in ω′′, a closed area Fi inside K ∩Di such that

– its boundary constitutes of Oini , segments of γt inside K ∩Di joined possibly

by open paths inside Dex
i (remnants of edges of the open circuit), Ooui and

then again segments of γb inside K ∩Di joined possibly by open paths inside

Dex
i (again, remnants of the circuit),
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– for any open connection from e to R(n) inside K, the path must first cross

Oini , then through Fi to Ooui .

Let us call this Type-A annuli ‘good’ if there exists such a region Fi. We have, for

any Type A annuli Di,

P[Di is good] = P′′[Di is good] ≥ P′[∃ open circuits in both Din
i and Dex

i ] ≥ cc,
(2.17)

for some universal constant cc > 0. The first equality comes from the fact that

the ’goodness’ of Di is good only depends on the edges inside K ∩ Di. Given

a deterministic K, we can find a box Ti inside the middle sub-annulus Dm
i =

An(v(e), d 5αn
23i−1 e, d 7αn

23i−1 e) and K, of sidelength ηi = b β0αn
23i−2 c such that it does not

intersect γt or γb. (We can deterministically decide on such a box given K, such

that it would surely be inside Fi irrespective of the positions of open circuits.) We

will try to show, for ‘good’ annuli of Type-A, that there are possibly many pivotals

in the square T ′i concentric with Ti but with sidelength bηi/2c (See Figure 2.3).

Type-B For a Type-B annuli, let the distance between γt and γb inside Di ∩ K be Li ∈
[d βiαn

23i−2 e, dβ0αn
2i
e]. Let us assume for the sake of simplicity, Li is divisible by 4. We

take a vi ∈ K ∩Di for which the boundary of vi + B(Li/2) just touches both γb

and γt (In presence of multiple such boxes, we follow some pre determined order).

We resample here the edges of the annulus An(vi, Li/2, Li) independently again

in a configuration ω′ (with measure P′) and stitch ω and ω′ into ω′′ together as

before (with measure P′′), depending on whether they are from K or not.

A3i−2 A3i−1

Ti

γb

γt

Oou
i

Oin
i

A3i

T ′i

Figure 2.4: Good annuli of Type B
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If there is an open circuit in An(vi, Li/2, Li) in ω′, it would similarly create a

closed area Fi inside this annulus whose boundaries would consist of parts of the

open circuit, and segments of γt and γb inside An(vi, Li/2, Li) including two open

segments Oini and Ooui of the circuit, such that any path from e to R(n) would

have to first pass through Oini , then through Fi to Ooui . We call Di ‘good’ if there

exists such an area inside vi +B(Li) (which have vi +B(Li/2) completely inside).

For any Type-B annuli Di,

P[Di is good] = P′′[Di is good] ≥ P′[∃ open circuit in An(vi, Li/2, Li)] ≥ c′c,
(2.18)

for a universal constant c′c. Notice that vi + B(Li) may not be completely inside

Di, but since β0 < 1/2, this box vi+B(Li) is disjoint from previous and successive

annuli Di−1 and Di+1 (this was the precise reason for considering every third

annulus instead of all). Also at least one of the four quarters of this box (let us

call it Ti) must be inside Di, and let us take T ′i as the square concentric with Ti

but with sidelength Li/4. We will try to show, in this case, that there are possibly

many pivotals inside T ′i (see Figure 2.4).

This shows that each annuli is ‘good’, irrespective of its type, with probability at least

c0 = cc ∧ c′c (by (2.17) and (2.18)). Let us take annuli Di for i = 1, 2, . . . , k for some k

we will choose later. By independence, we can choose k0 large enough such that

P[At least
c0

2
fraction of annuli are ‘good’] ≥ 1− ε

8
, (2.19)

for any k ≥ k0. Since this event (let us call it In) is increasing, and so is e
K↔ R(n), by

FKG inequality we have

P[|Y (n)| < θn2α4(n), G′n |e
K↔ R(n)] −P[|Y (n)| < θn2α4(n), G′n, In |e

K↔ R(n)]

≤ P[Icn |e
K↔ R(n)] ≤ P[Icn] < ε

8 . (2.20)

Thus with (2.14) and (2.20) at our disposal, the problem is reduced to prove the following

P[|Y (n)| < θn2α4(n), G′n, In |e
K↔ R(n)] <

ε

8
. (2.21)

e) Decoupling: For Type-A ‘good’ annuli Di, let us take the innermost such open

path Oini in Din
i ∩K and a collection of outermost open paths in Din

i ∩K, including Ooui

and possibly other open paths joining γb or γt with itself and call this ordered collection

as Ci. For Type-B ‘good’ annuli Di let us take the outermost of such open paths in

An(vi, Li/2, Li)∩K including Oini , Ooui and other open paths joining γb or γt with itself

and call this Ci. Notice that for a deterministic collection of paths Ci, the event Ci = Ci

does not depend on what happens inside Fi (which is determined by Ci). Let us denote

the random set S ⊂ {1, 2, . . . k} such that Di is ‘good’ iff i ∈ S. (We know that under
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In, |S| ≥ c0k
2 .)

P[|Y (n)| < θn2α4(n), G′n, In |e
K↔ R(n)]

=
∑
S

∑
i∈S

∑
Ci

P[|Y (n)| < θn2α4(n), G′n, In | e
K↔ R(n), S = S, Ci = Ci ∀i ∈ S]

·P[S = S, Ci = Ci ∀i ∈ S | e K↔ R(n)].

Notice that we need to prove now, uniformly over any choice of S and collection Ci for

i ∈ S,

P[|Y (n)| < θn2α4(n), G′n, In | e
K↔ R(n),S = S, Ci = Ci ∀i ∈ S] <

ε

8
. (2.22)

If there is an edge from Y (n) inside T ′i (in either case), it is open and must have two

disjoint open arms to Oini and Ooui inside Fi, and two disjoint dual closed paths to γt

and γb inside F ∗i . Let us call such edges as Y ′i and observe that this event {e ∈ Y ′i }
depends only on edges inside Fi. Let us denote the event that Oini is connected by an

open path in Fi to Ooui as Oini
Fi↔ Ooui . We break down the long connection e

K↔ R(n) as

P[|Y (n)| < θn2α4(n), G′n, In | e
K↔ R(n), S = S, Ci = Ci ∀i ∈ S]

≤ P[|Y ′(i)| < θn2α4(n) ∀i ∈ S | e K↔ R(n), S = S, Ci = Ci ∀i ∈ S]

= P[|Y ′(i)| < θn2α4(n) ∀i ∈ S | Oini
Fi↔ Ooui ∀i ∈ S]

=
∏
i∈S

P[|Y ′(i)| < θn2α4(n) | Oini
Fi↔ Ooui ]. (2.23)

In the second step we reduce the conditioned event to only the relevant part for our

event {|Y ′(i)| < θn2α4(n) ∀i ∈ S} and in the third step we break the event into several

conditioned events on different annuli. We need to prove that for all i and for any

permissible shape Fi,

P[|Y ′(i)| ≥ θn2α4(n) |Oini
Fi↔ Ooui ] > c, (2.24)

for some universal constant c, possibly dependent on β0. Then we will have

∏
i∈S

P[|Y ′(i)| < θn2α4(n) |Oini
Fi↔ Ooui ] ≤ (1− c)|S| ≤ (1− c)

c0k
2 . (2.25)

By choosing large enough k in the final step, we can make the RHS less than ε
8 . By

(2.22) and (2.23), it suffices to prove only (2.24) now, which says that uniformly over

any ‘permissible’ shape of Fi, the number of pivotals inside the box T ′i is large with

probability uniformly bounded from below.

f) Many Pivotals for ‘good’ Boxes: We will prove this in two steps. First we will

prove that

P[|Y ′(i)| ≥ E[Y ′(i)]/2 |Oini
Fi↔ Ooui ] > c, (2.26)
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and then we will prove that we can choose a θ small enough such that min
1≤i≤k

E[|Y ′(i)|] ≥
2θn2α4(n). To prove (2.26), we will use Paley-Zygmund inequality which states

P[|Y ′(i)| ≥ 1/2E[Y ′(i)] |Oini
Fi↔ Ooui ] ≥ (E[|Y ′(i)| |Oini

Fi↔ Ooui ])2

4E[|Y ′(i)|2 |Oini
Fi↔ Ooui ]

.

As the second moment method requires, we will need to find suitable lower bound for

E[|Y ′(i)| |Oini
Fi↔ Ooui ] and upper bound for E[|Y ′(i)|2 |Oini

Fi↔ Ooui ]. We will do this

separately depending on the type of the ‘good’ annuli.

Type A : For any edge e ∈ E(T ′i ), it needs to have four alternating arms inside Fi, two

disjoint open arms to Oini and Ooui , and two disjoint dual closed ones to segments

of γt and γb that make up the boundary of Fi, avoiding other open segments

from Ci. Notice that from any edge in T ′i , the distance to either of γt, γb, O
in
i

or Ooui lies in
[
b β0αn

23i−1 c, d αn
23i−3 e

]
. Also the lengths of the segments Oini and Ooui

are bounded from below by b β0αn
23i−1 c by separation of γt and γb. Similarly the

size of ‘permissible’ segments of γt and γb inside Di is at least the width of Dm
i ,

i.e. b αn
23i−2 c. By delicate use of arm separation techniques akin to [DS11, Proof

of Lemma 2], these restrictions enforce the existence of a constant cu (possibly

depending on β0) uniformly over the shape of Fi such that for every e ∈ E(T ′i ),

P[e ∈ Y ′(i)] ≥ cuα4(d αn
23i−3

e).

Summing over all edges of E(T ′i ), we get E[|Y ′(i)|] ≥ Cu(b β0αn
23i−1 c)2α4(d αn

23i−3 e).

Let us define mi = b β0αn
23i−1 c. If two edges ex, ey are both from Y ′(i), there must

be four arms in v(ex) + B(|ex − ey|/2), v(ey) + B(|ex − ey|/2) and An(v(ex) +

v(ey)/2, |ex − ey|,mi). Using this we get

E[|Y ′(i)|2] ≤
∑

ex,ey∈E(T ′i )

P[ex, ey ∈ Y ′(i)]

≤
∑

ex,ey∈E(T ′i )

(α4(|ex − ey|/2))2α4(|ex − ey|,mi)

≤
∑

ex∈E(T ′i )

mi∑
l=1

∑
ey :|ey−ex|=l

(α4(l/2))2α4(l,mi)

≤ Cm3
iα4(mi)

2
mi∑
l=1

1/α4(l,mi)

≤ Cm3
iα4(mi)

2
mi∑
l=1

(mi/l)
δ ≤ C ′m4

iα4(mi)
2. (2.27)

In the fourth step we have used the bound |{ey : |ey − ex| = l}| ≤ Cmi and quasi-

multiplicativity Lemma 2.6. Finally in the fifth step we have used Lemma 2.7(v).
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Thus using Paley-Zygmund inequality we get

P[|Y ′(i)| ≥ E[Y ′(i)]/2 |Oini
Fi↔ Ooui ] ≥ C ′′α4(d αn

23i−3 e)2

P[Oini
Fi↔ Ooui ]α4(b β0αn

23i−1 c)2
(2.28)

≥ O(1)α4(bβ0αn

23i−1
c, d αn

23i−3
e)2 ≥ cβ0 .

The last step comes from the fact that for any fraction κ, we can find an universal

constant cκ such that α4(κn, n) > cκ. (This is immediate by constructing four

disjoint tunnels in the annuli and having one arm through each of them.)

Type B : The argument is similar in a certain sense. Distance of T ′i from either of γt, γb,

Oini or Ooui lies between Li/4 and 3Li. Thus here by repeating the same argument,

we have E[|Y ′(i)|] ≥ C ′uL
2
iα4(3Li) and E[|Y ′(i)|2] ≤ C ′L4

iα4(Li/4)2. Similarly by

using Paley-Zygmund inequality we get

P[|Y ′(i)| ≥ E[Y ′(i)]/2 |Oini
Fi↔ Ooui ] ≥ O(1)

P[Oini
Fi↔ Ooui ]

≥ co.

We now choose c = cβ0 ∧ co in (2.26). Now we are left to choose a θ small enough such

that min
i≤k

E[|Y ′(i)|] ≥ 2θn2α4(n). Notice that

min
i≤k

E[|Y ′(i)|] ≥ C min
i≤k

[(Li)
2α4(3Li)]∧ [(mi)

2α4(d αn
23i−3

e)] ≥ C(
bβkαn
23k−2

c)2α4(n). (2.29)

We recall how we choose variables step by step. Given ε we first choose α to satisfy

(2.11). Then we set the relation βj = β0

2
3j
δ

for 1 ≤ j ≤ k and later choose small β0

satisfying RHS of (2.16) < ε
4ce

. Then we choose k large enough to satisfy both (2.19)

and (2.25) (recall that c in (2.25) will depend on β0). Finally we choose θ < C/2( βkα
22k−1 )2

and by (2.29) this completes our proof of (2.9).

For proving (2.10), all pivotal edges will be closed and we have to condition on the

first closed pivotal edge from top to bottom and then the ‘topmost’ open crossings from

this edge to R(n) and L(n). We will change the circuits from open to dual closed and

FKG will work in the analogous equation to (2.20) because both conditioned event and

presence of dual closed circuits are decreasing. Since the rest of the proof is identical,

we do not repeat it.

Remark 2.13. In fact, to prove Lemma 2.7(ii), it is shown in [KSZ98, Lemma] that

the probability of having some vertex in B(n) being σA5 connected to the boundary

∂B(n) is uniformly positive, and it is possible to prove a stronger result than P[P (n) 6=
φ,LR(n)] > ce- in the form that P[|P (n)| ≥ c log n] ≥ c for some constant c > 0.
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2.4 Proof of Theorems

With the current set of tools present, Theorem 2.1(a) and 2.2(a) can be proved by

replicating the proof of [J03, Theorem 1-2] mutatis mutandis. (As a side-note, even to

prove the existence of 2-arm IIC, Kesten’s strategy in [K86a] is good enough, and we

do not require the delicate treatment meted out in [DS11].) The only concern is that,

for the analogous statement of [J03, (2.20)], it is required that E[|BB(n)|]/n → ∞ as

n→∞. This holds true, since Lemma 2.7(i),(iv) and Reimer’s inequality imply

c/n ≤ α3(n) ≤ αB(n)α∗(n) ≤ CαB(n)n−δ,

thus making E[|BB(n)|]/n � nαB(n) ≥ C ′nδ, which serves our purpose.

But proofs for lowest crossing and pivotals indeed require new tools. We will prove The-

orem 2.1 in the next Section 2.4.1 followed by the proof of Theorem 2.2 in Section 2.4.2.2.

2.4.1 Local variant

Notice that unlike the conditioning event in Theorem 2.1(a), the events in 2.1(b),(c) has

the existence of a closed path in dual graph. Thus most of the events arising are not

increasing and it creates inconvenience since FKG inequality will not suffice alone. We

will circumnavigate this problem with Reimer’s inequality and a generalized version of

quasi-multiplicativity. We will first prove Theorem 2.1(c) in subsection 2.4.1.1 and sub-

sequently highlight the key alterations required for Theorem 2.1(b) in subsection 2.4.1.2,

which is comparatively easier.

2.4.1.1 Local limit for Pivotals

For any vertex in crossing collection, it is likely that there will be an open circuit in

an annulus around it if it is made thick enough. This was used crucially by Járai as

a key component of his proof. Naturally for pivotals this cannot be true, since there

are two dual closed paths around every pivotal that would prohibit existence of open

circuits around it. We will settle for open circuits with defects instead. Let a circuit

with k defects mean a circuit open at all but k many edges. We consider integers

1 << N << M << h(n)/8, and the choices of variables will be clearer later in the

proof. We define the event Fk = Fk(M,N) = { there is a circuit with k defects in

An(N,M)}.

On the event {e ∈ P (n)}, there cannot exist a circuit with k defects when k < 2. So

1{e ∈ P (n), τeF
c
2} = 1 implies every circuit with k defects around e must have k ≥ 3. By

Menger’s Theorem [M27], this implies that there must be at least 3 edge disjoint closed
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paths in An(N,M) in the dual graph. Let σ5 = {open, closed, open, closed, closed}. Let

Z(e,M, n) indicate the event that there are two open paths from v(e) + B(M) to left

and right boundary of B(n) and there exists two dual closed paths from v(e) + B(M)

to top and bottom boundary of B(n), all the arms being inside B(n) \ v(e) +B(M).

E[1{[e ∈ P (n), τeF
c
2 ]}]

≤ P[τe{e0 ↔σA4
∂B(N)}]P[τe{B(N)↔σ5 ∂B(M)}]P[Z(e,M, n)]

≤ CP(F c0 )P[τe{e0 ↔σA4
∂B(N)}P[τe{B(N)↔σA4

∂B(M)}P[Z(e,M, n)]

≤ C ′P(F c0 )P[τe{e0 ↔σA4
∂B(M)}P[Z(e,M, n)]

≤ C ′′P(F c0 )P[e ∈ P (n)] ≤ O((N/M)δ)P[e ∈ P (n)], (2.30)

where we used Reimer’s inequality, a stronger form of quasi-multiplicativity, and Lemma

2.7(iv) to glue connections. We choose M/N > N1(ε) large enough so that we can make

RHS of (2.30) < εP[e ∈ P (n)].

Let us define, when e is pivotal, Fe(Df1,f2) = {In An(v(e), N,M), Df1,f2 is the outermost

circuit with defects at f1 and f2} and so τeF2 becomes a disjoint union over Fe(Df1,f2)

over all permissible circuits Df1,f2 with two defects. Hence we can write

P(τeE|e ∈ P (n))
(2.30)

≤ ε+ P(τeE ∩ τeF2|e ∈ P (n))

≤ ε+
∑
Df1,f2

P(τeE ∩ Fe(Df1,f2) |e ∈ P (n))

≤ ε+ P(τeE|e ∈ P (n)). (2.31)

We will need the following result from [DS11] involving the measure ν4. Let Df1,f2

indicate a circuit D with all edges but f1 and f2 open. Let us indicate, by e↔4 Df1,f2 ,

that an edge e ‘inside’ Df1,f2 is connected to the two open arcs of Df1,f2 and there are

closed paths in a dual lattice from endpoints of e∗ to f1
∗ and f2

∗.

Lemma 2.14. [DS11, (7.15)] lim
N→∞

P(E|e0 ↔4 DN
f1,f2

) = ν4(E) ∀DN surrounding

B(N), for any two distinct edges f1, f2 ∈ DN and for any cylinder event E independent

of ω(e0).

Let us abuse the notation to write Df1,f2 = DN
f1,f2

. By Lemma 2.14 we know if N >

N3(ε, E) then

1

1 + ε
P(E, e0 ↔4 Df1,f2) ≤ ν4(E)P(e0 ↔4 Df1,f2) ≤ (1 + ε)P(E, e0 ↔4 Df1,f2). (2.32)

We will choose N large enough so that B(N) contains all edges on which the cylinder

event E depends. On the event {e ∈ P (n)}, all circuits around e must have at least two

defects and so it makes sense to define the ‘outermost’ circuit with two defects among all

others in the annulus An(v(e), N,M). On the event Fe(Df1,f2), {e ∈ P (n)} if and only
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if {e↔4 Df1,f2} and each arc of Df1,f2 is connected to exactly one of L(n) or R(n), and

each of f1
∗ and f2

∗ is connected by closed path in dual lattice to T ∗(n) and D∗(n). We

denote this later event by Df1,f2 ↔4 B(n). We write 1{τeE, e ∈ P (n), Fe(Df1,f2)} as

the product of 1{τeE, e↔4 Df1,f2} and 1{Fe(Df1,f2), Df1,f2 ↔4 B(n)}, so that the first

part only depends on the interior of Df1,f2 except e whereas the second part depends on

the edges on or in the exterior of Df1,f2 , making them independent. We use this fact to

decouple them and observe

P(τeE|e ∈ P (n))

(2.31)

≤ ε+
1

P(e ∈ P (n))

∑
Df1,f2

P(τeE,Fe(Df1,f2), e ∈ P (n))

≤ ε+
1

P(e ∈ P (n))

∑
Df1,f2

P(τeE, e↔4 Df1,f2)P(Fe(Df1,f2), Df1,f2 ↔4 B(n))

(2.32)

≤ ε+
(1 + ε)ν4(E)

P(e ∈ P (n))

∑
Df1,f2

P(τeΩ, e↔4 Df1,f2)P(Fe(Df1,f2), Df1,f2 ↔4 B(n))

≤ ε+
(1 + ε)ν4(E)

P(e ∈ P (n))

∑
Df1,f2

P(τeΩ, Fe(Df1,f2), e ∈ P (n))

≤ ε+ (1 + ε)ν4(E). (2.33)

Now given ε > 0, we have defined the variables in the following manner. First we have

chosen N > max(N3(ε, E), N3(ε,Ω)) (recall (2.32)), then we have made M/N > N1(ε)

such that RHS of (2.30) is < εP[e ∈ P (n)]. Then we have taken n large enough such

that h(n) > 8M . Similarly we can prove the lower bound

P(τeE|e ∈ P (n)) ≥ −ε+
1

(1 + ε)
ν4(E). (2.34)

Since these two inequalities hold true for any arbitrary ε > 0, this completes the proof.

2.4.1.2 Local limit for Lowest Crossing

Due to existence of 3 arms instead of 4, we will look at circuits with one defect instead.

Firstly we prove, analogous to (2.30), P[τeF
c
1 |e ∈ LC(n)] < ε. Then using the result

analogous to Lemma 2.14, we state, for any cylinder event E ⊂ {ω(e0) = 1},
1

1 + ε
P(E, e0 ↔3 Df ) ≤ ν3(E)P(e0 ↔3 Df ) ≤ (1 + ε)P(E, e0 ↔3 Df ), (2.35)

for N > N2(ε, E) and any circuit D = DN with one defect f surrounding B(N). (Note

that This is analogous to (2.32).) We make sense of {e0 ↔3 Df} by having two disjoint

open paths from both ends of e0 (which itself is open) to some vertex in D and a dual
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closed path from e∗0 to f∗. Similarly Df ↔3 B(n) is made sense of similarly by two

disjoint open connections from Df to R(n) and L(n), and one closed connection in the

dual graph from f∗ to D∗(n). The key decoupling strategy (2.33) remains exactly the

same.

2.4.2 Uniform variant

As before, we first deal with pivotals in Section 2.4.2.1 and then come to the lowest

crossing in Section 2.4.2.2.

2.4.2.1 Uniform limit for Pivotals

By Lemma 2.10(c), for fixed ε > 0 and conditioned on An, we can find x > 0 such that

the event Hn := {|P (n)| ≥ xE(|P (n)|)} has probability at least 1−C1ε. Recall that In,4

is chosen uniformly from P (n). Let us also define Gn = Gn(α) = {In,4 ∈ E((1− α)n)},
whose probability is proved to be close to 1 by Lemma 2.12, for small enough α. We

prove that all these events Gn, Hn and τIn,4F2 together are very likely when conditioned

by An := {P (n) 6= φ}, i.e.

Lemma 2.15. Given ε > 0, the quotient M/N can be chosen large enough and α small

enough such that

P(τIn,4E|An) ≤ 3ε+ P(τIn,4E ∩ τIn,4F2 ∩Hn ∩Gn(α)|An) ≤ 3ε+ P(τIn,4E|An). (2.36)

Proof. To integrate the boundary condition, for α small enough, we can make

P(Gcn(α)|An) ≤ P[Gcn(α)]

P[An]
≤ P[Gcn(α)]

C1

Lemma 2.12
≤ ε. (2.37)

We will now bound P(τIn,4F
c
2 ∩Hn ∩Gn|An).

P(τIn,4F
c
2 ∩Hn ∩Gn|An) ≤

∑
e∈E(n−r(n))

E(
1{e ∈ P (n), τeF

c
2 , Hn}

|P (n)| |An)

≤
∑

e∈E(n−r(n))

E(
1{e ∈ P (n), τeF

c
2 , Hn}

xEpc(|P (n)|) |An)

≤ 1

xEpc(|P (n)|)
∑

e∈E(n−r(n))

Epc(1{e ∈ P (n), τeF
c
2}|An).

(2.38)

From (2.38) and (2.30), we have

P(τIn,4F
c
2 ∩Hn ∩Gn|An) ≤ P(F c0 )

xP(An)

Lemma 2.7(iv)

≤ O((N/M)δ) < ε. (2.39)

We choose M/N > N2(ε) large enough so that we can make RHS of (2.39) < ε. Taking

all components together, we get
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P(τIn,4E|An)

≤ P(Hc
n|An) + P(Gcn(α)|An) + P(τIn,4E ∩Hn ∩Gn(α)|An)

(2.37)

≤ 2ε+ P(τIn,4F
c
2 ∩Hn ∩Gn(α)|An) + P(τIn,4E ∩ τIn,4F2 ∩Hn ∩Gn(α)|An)

≤ 3ε+ P(τIn,4E ∩ τIn,4F2 ∩Hn ∩Gn(α)|An) ≤ 3ε+ P(τIn,4E|An), (2.40)

and our proof of Lemma 2.15 is complete.

Let us decompose τeF2 over disjoint unions of Fe(Df1,f2), as we did in (2.31).

P(τIn,4E|An)
(2.40)

≤ 3ε+ P(τIn,4E ∩ τIn,4F2 ∩Hn ∩Gn|An)

≤ 3ε+
∑

e∈E(n−r(n))

∑
Df1,f2

E(
1{τeE, e ∈ P (n), Fe(Df1,f2), Hn}

|P (n)| |An)

≤ 3ε+ P(τIn,4E|An).

(2.41)

One difference with the proof of Theorem 2.1(c) is that we need to deal with the denom-

inator |P (n)| which depends on both of the sets of edges as well as on e. We will define

some set whose cardinality is close enough to |P (n)|, but only depends on ext(Df1,f2)

and ω(e). We define P 1(Df1,f2 , n) as the set of edges f from ext(Df1,f2) which satisfy:

a) There are dual closed paths C1 and C2 from f∗ to edges of T ∗(n) and D∗(n).

b) There is an open path O1 from f to L(n) or R(n).

c) There is an open path O2, disjoint from O1 from f to one arc of Df1,f2 .

d) The paths C1, C2, O1 and O2 are disjoint and lie completely ‘outside’ Df1,f2 .

This set is defined such that under {ω(e) = 1, e ∈ P (n), Fe(Df1,f2)}, ext(Df1,f2)∩P (n) =

P 1(Df1,f2 , n). With the same intention for {ω(e) = 0} instead, we define P 0(Df1,f2 , n)

as the set of edges f outside ext(Df1,f2) which satisfy:

a) There are open paths O1 and O2 from f to L(n) and R(n).

b) There is a dual closed path C1 from f∗ to edge of T ∗(n) or D∗(n).

c) There is a dual closed path C2, disjoint from C1, from f∗ to either f1
∗ or f2

∗.

d) The paths C1, C2, O1 and O2 are disjoint and lie completely outside Df1,f2 .

Now we define random variables:

XD,e,E = 1{τeE, e↔4 Df1,f2},

Y i
Df1,f2 ,n

=
1{Fe(Df1,f2), Df1,f2 ↔4 B(n), ω(e) = i, P i(Df1,f2 , n) 6= ∅}

|P i(Df1,f2 , n)| for i ∈ {0, 1}.
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Notice that, by virtue of the definition, XD,e,E is independent of either of the events

Y i
Df1,f2 ,n

(recall E is a cylinder event independent of ω(e)). For fixed ε,M we can define

N1(M, ε) such that

|E(B(M))| = O(1)M2 < (ε/2) · Cnδ ≤ (ε/2)E[|P (n)|], (2.42)

∀n > N1(M, ε) from Lemma 2.9(c).

Now given ε > 0, we define the variables in the following manner. First we choose

N > max(N3(ε, E), N3(ε,Ω)) (recall (2.32)), then we take M large enough such that

(2.39) holds by making M/N > N2(ε). We choose α small enough such that it satisfies

(2.37). Then we fix n > max(dM/αe, N1(M, ε)).

P(τIn,4E|An)

(2.41)

≤ 3ε+
1

P(An)

∑
e∈E(n−r(n))

∑
Df1,f2

E
(
1{τeE, e ∈ P (n), Fe(Df1,f2), Hn}

|P (n)|

)

≤ 3ε+
1

P(An)

∑
e∈E(n−r(n))

∑
Df1,f2

∑
i=0,1

E
(
XD,e,EY

i
Df1,f2 ,n

)
(2.32)

≤ 3ε+
(1 + ε)ν4(E)

P(An)

∑
e∈E(n−r(n))

∑
Df1,f2

∑
i=0,1

E
(
XD,e,ΩY

i
Df1,f2 ,n

)
≤ 4ε+

(1 + ε)ν4(E)

P(An)

∑
e∈E(n−r(n))

∑
Df1,f2

∑
i=0,1

E
(
XD,e,ΩY

i
Df1,f2 ,n

,1{Hn}
)

(2.42)

≤ 4ε+
(1 + ε)ν4(E)

P(An)

∑
e∈E(n−r(n))

∑
Df1,f2

∑
i=0,1

E
(
1{e ∈ P (n), Fe(Df1,f2), ω(e) = i}

(1− ε/2)|P (n)|

)

≤ 4ε+
(1 + ε)2ν4(E)

P(An)

∑
e∈E(n−r(n))

∑
Df1,f2

E
(
1{e ∈ P (n), Fe(Df1,f2)}

|P (n)|

)
≤ 4ε+ (1 + ε)2ν4(E). (2.43)

Similarly we can prove the lower bound

P(τIn,4E|An) ≥ −ε+
1

(1 + ε)2
ν4(E). (2.44)

We have proved thus, for any choice of ε > 0,

− ε+
1

(1 + ε)2
ν4(E) ≤ lim inf

n→∞
P(τIn,4E|An) ≤ lim sup

n→∞
P(τIn,4E|An) ≤ 4ε+ (1 + ε)2ν4(E).

This completes the proof.
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2.4.2.2 Uniform limit for Lowest Crossing

We again highlight below the key changes, in addition to what we did in Section 2.4.1.2.

• Since Lemma 2.10(b) is slightly weaker than Lemma 2.10(c), given ε > 0, we

would first find x and then integer N0 such that the event Hn = {|LC(n)| ≥
xE[|LC(n)|]} has probability > 1 − ε/2 for all n ≥ N0. We will choose N ≥
max(N0(ε), N1(E), N3(ε, E), N3(ε,Ω)) where N1 is the smallest integer such that

the cylinder event E depends only on the edges inside B(N1).

• We will show that P[Gcn |LC(n) 6= φ] can be made < ε, where Gn := {In,3 /∈ Ef},
Ef indicating edges with at least one vertex in An(n−r(n), n). This boudary r(n)

will be chosen suitably later. We do not have any lemma akin to Lemma 2.12.

But, in fact, we will not need such sophisticated bound, and Lemma 2.7 will suffice

to prove something similar.

P[Gcn |LC(n) 6= φ] ≤ ε/2 + P[Hn ∩Gcn |LC(n) 6= φ]

≤ ε/2 +
1

C1

∑
e∈Ef

E[
1[e ∈ LC(n)]

xE[|LC(n)|] ]

≤ ε/2 +
1

C1

∑
e∈Ef

E[
1[τe{0↔ ∂B(n)}]

xE[|LC(n)|] ]

= ε/2 +
1

C1

∑
e∈Ef

α1(n)

xE[|LC(n)|] ≤ ε/2 +
Cr(n)

xnδ
.

In the last step we use Lemma 2.7(i), (iv) and Lemma 2.9(b). We thus impose

r(n) = nδ/2.

• We would then prove the following result analogous to Lemma 2.15 which states,

given any ε, we can choose n and M/N to be large enough such that

P(τIn,4E |LC(n) 6= φ) ≤ 3ε+ P(τIn,4E ∩ τIn,4F1 ∩Hn ∩Gn |LC(n) 6= φ)

≤ 3ε+ P(τIn,4E |LC(n) 6= φ).

• Instead of P 1(Df1,f2 , n) and P 0(Df1,f2 , n), we define the set LC(Df , n) for the

circuit D with sole defect on f as the set of edges e′ from ext(Df ) which satisfies:

a) There is an open path O1 from e′ to L(n) or R(n).

b) There is an open path O2 from e′ to some edge of D other than f.

c) There is a dual closed path C1 from e′∗ to some edge of D(n)∗.

d) O1, O2, and C1 are disjoint.
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• We define, naturally Fe(Df ) = {Df is the outermost circuit in An(e,N,M)} and

Df ↔3 B(n) as the event that f∗ is connected by a dual closed path to D(n)∗ and

Df is connected by two open disjoint paths to L(n) and R(n). Finally we define

XDf ,e,E = 1{τeE, e↔3 Df}, YDf ,n =
1{Fe(Df ), Df ↔3 B(n)}

|LC(Df , n)| .

Notice that they are independent since they depend on disjoint set of edges.

• We choose again N1(M, ε) as done in (2.42) (since |P (n)| ≤ |LC(n)|, this choice of

N works) and ensure that 8M < r(n). The central argument in (2.43) remains the

same after we substitute all the pieces mentioned. This completes the proof.

Remark 2.16. Since we were very crude with this estimate, the bound on r(n) turned

out a bit stringent – we needed to impose that r(n) = o(nδ). But since this is enough for

our case, we do not strive to obtain a more sophisticated bound which can be obtained

with careful calculations.



Chapter 3

Russo-Seymour-Welsh-Theorem

in Slabs

3.1 Introduction

Russo-Seymour-Welsh theorem is one of the main tools in the study of planar percolation

models at criticality, which states that the probability that an open path connects the

left and right sides of a rectangle is bounded away from 0 and 1 by constants that only

depend on the aspect ratio of the rectangle. This theorem was first proved for critical

Bernoulli percolation on planar lattices in [R78, SW78, R81, K82] and recently has been

extended to some other planar models, perhaps most notably to the FK-percolation

[DCHN11, DCST17] and Voronoi percolation [BR06, T14].

In this chapter our main aim is to establish Russo-Seymour-Welsh theorem or commonly

known as box-crossing theorem for critical Bernoulli percolation on two dimensional slabs

in Zd, i.e. Sk,d := Z2 × {0, . . . , k}d−2 for d ≥ 3, k ≥ 0. We prove that the probability of

crossing a “rectangular box” is bounded from below by a positive constant which only

depends on the aspect ratio of the rectangle and the slab parameters k, d, but does not

depend on the size of the rectangular box. This is the main result of our paper [BS15].

As one can imagine, lack of planarity creates some obstacle to connecting paths which are

obvious and straightforward in plane. For this, we will introduce a certain technique for

“glueing” open paths which is inspired by a recent paper of Duminil-Copin, Sidoravicius,

and Tassion [DCST16] in which they use this crucially to prove θ(pc(Sk,d)) = 0 for any

k ≥ 0 and d ≥ 3. This proof can be extended for other models such as finite-range

percolation,but as we have highlighted, we work with solely slabs Sk,d for the sake of

simplicity.

46
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3.2 Notation and result

For integers k ≥ 0, d ≥ 3, we consider Bernoulli bond percolation on Sk,d with parameter

p ∈ [0, 1], and denote the corresponding measure by Pp. Let pc be the critical threshold

for percolation, i.e.,

pc = inf {p : Pp[open connected component of 0 in Sk,d is infinite] > 0} ,

and define the measure P = Ppc .

For a subset A of vertices of Z2, let

A = A× {0, . . . , k}d−2.

Define a rectangle and its left and right boundary regions by

B(m,n) = [0,m)× [0, n), L(m,n) = {0} × [0, n), R(m,n) = {m− 1} × [0, n).

Consider the crossing event

LR(m,n) = {L(m,n) is connected to R(m,n) by an open path in B(m,n)}

and the crossing probability p(m,n) = P [LR(m,n)] .

The main result of this chapter is the RSW theorem :

Theorem 3.1. For any ρ ∈ (0,∞),

lim inf
n→∞

p(bρnc, n) > 0. (3.1)

Next, we will state the high-probability variant of RSW theorem, which states that if

the crossing probability in the easy direction of a rectangular box of fixed aspect ratio

goes to 1 as the size increases, so must happen for the difficult direction of a rectangular

box with arbitrarily large aspect ratios, i.e :

Corollary 3.2 (High-Probability version of RSW Theorem).

lim
n→∞

p(bρnc, n) = 1 for some ρ ∈ (0, 1)⇒ lim
n→∞

p(bκnc, n) = 1 for all κ > 0. (3.2)

Remark 3.3. For ρ < 1, the result of Theorem 3.1 holds in any dimension d ≥ 2. We

believe that it also holds for ρ ≥ 1, but no such proof is currently known. If dimension

is sufficiently high, it is proved in [A97] that the crossing probabilities tend to 1 as

n → ∞. Unfortunately our method relies crucially on quasi-planarity of slabs. So it

sheds no insight about existence (or lack of it) of Theorem 3.1 for general values of d.
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Another question which arises in this context is whether lim supn→∞ p(bρnc, n) < 1 holds

for every ρ > 0. This was shown to be true very recently by Newman, Tassion and Wu

in [NTW15, Theorem 3.1] for percolation on slabs. They also obtained independently

and with different proofs the results of Theorem 3.1 and Corollary 3.2 (see [NTW15,

Theorems 3.1 and 3.17]).

We will prove Theorem 3.1 in Section 3.4 and Corollary 3.2 in Section 3.5. Finally in

Section 3.6 we provide some related results. But first in Section 3.3, we introduce the

new technique for glueing paths via local modifications from [DCST16]. This sort of

“surgery” would be used repeatedly throughout this chapter.

3.3 Surgery for Glueing paths

We describe one technique for glueing paths, inspired by [DCST16], which will be used

to adapt some arguments from planar percolation to slabs. We begin with a classical

combinatorial lemma about local modifications, see, e.g., [DCST16, Lemma 7].

Lemma 3.4. Let n ≥ 1 and p ∈ (0, 1). Let A,B ⊆ {0, 1}n and Pp a product measure

on {0, 1}n with parameter p, i.e.,

Pp[ω] =

n∏
i=1

pωi(1− p)1−ωi , ω ∈ {0, 1}n.

If there exists a relation R ⊂ A×B such that

(a) if (ω, ω′) ∈ R, there exists a set S ⊆ {1, . . . , n} such that |S| ≤ s and

ωi = ω′i, for all i /∈ S,

(b) for every ω ∈ A, the set Rω = {ω′ : (ω, ω′) ∈ R} has at least t ∈ N many elements,

then

Pp[A] ≤

(
2

min(p,1−p)

)s
·Pp[B]

t
.

If we get a function f : A→ B instead which satisfies the condition (a), needless to say

that it would satisfy the inequality with t = 1. We will often apply Lemma 3.4 in case

s is not bigger than the number of edges in [−3, 3]2 × {0, 1, . . . k}d−2 and p = pc(Sk,d) .

Therefore, we define

C∗ =

(
2

min(pc(Sk,d), 1− pc(Sk,d))

)d·72·kd−2

, c∗ =
1

1 + 3C∗
.
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Earlier we defined A as a subset of Sk,d for each A ⊂ Z2. In the proofs we will often use

the same notation A for A ⊂ Sk,d meaning

A = {z = (z1, . . . , zd) ∈ Sk,d : (z1, z2, x3, . . . , xd) ∈ A for some x3, . . . , xd }.

This way, for each A ⊂ Z2, A defined earlier is the same as A× {0}d−2 defined just

above.

For x, y ∈ Sk,d and X,Y, Z ⊂ Sk,d, we write

• x Z←→ y if there is a nearest neighbor path of open edges from x to y with all its

vertices in Z.

• x Z←→ Y if there exists y ∈ Y such that x
Z←→ y.

• X Z←→ Y in Z if there exists x ∈ X such that x
Z←→ Y .

If we do not mention Z, it is understood that Z = Sk,d and for X,Y, Z ⊂ Z2, we define

X
Z←→ Y := X

Z←→ Y . Let us also use B(m,n) = [0,m)× [0, n) and finally call

P := Ppc(Sk,d), the usual Bernoulli product measure at criticality.

The following lemma is essentially proven in [DCST16, Lemma 6].

Lemma 3.5. Let X1, X2, Y1, and Y2 be disjoint connected subsets of the interior vertex

boundary of [0,m)× [0, n) arranged in a counter-clockwise order. Then

P
[
X1

B(m,n)←→ X2

]
≥ c∗ · P

[
X1

B(m,n)←→ Y1, X2
B(m,n)←→ Y2

]
.

Proof. Let

X = {X1
B(m,n)←→ X2}, Ei = {Xi

B(m,n)←→ Yi}, for i = 1, 2.

It suffices to prove that P[E1 ∩ E2 ∩Xc] ≤ 3C∗ · P[X]. For i ∈ {1, 2}, consider events

Fi =
⋃

z∈X3−i

{Xi is connected to z + [−3, 3]2 in B(m,n)}.

We will prove first that

P[E1 ∩ E2 ∩ F c1 ∩ F c2 ] ≤ C∗ · P[X], (3.3)

and later that P[Fi ∩ Xc] ≤ C∗ · P[X], for i = 1, 2. These together will be sufficient,

since X ⊂ F1 ∩F2. To prove (3.3), we intend to use Lemma 3.4. Thus we will construct
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a suitable function f : E1 ∩ E2 ∩ F c1 ∩ F c2 → X. This tricky construction is already

elaborated in the proof of [DCST16, Lemma 6, Fact 2]. Nevertheless, we show it again

in this context as this is a key tool and some variant of it will be used repeatedly

throughout this chapter.

We fix an order ≺ on edges {e : |e| = 1} in Zd and enumerate all the vertices of Sk,d
arbitrarily. Define an order < on self-avoiding paths from X1 to Y1 in B(m,n) as follows.

If γ = (γ0, . . . , γn) and γ′ = (γ′0, . . . , γ
′
n′) are two such paths, then γ < γ′ if either of the

following holds :

• γ0 has a smaller number than γ′0.

• n < n′ and γ = (γ′0, . . . , γ
′
n).

• There exists k < min(n, n′) such that (γ0, . . . , γk) = (γ′0, . . . , γ
′
k), and the edge

{0, γk+1 − γk} ≺ {0, γ′k+1 − γ′k}.

Take ω ∈ E1 ∩ E2 ∩ F c1 ∩ F c2 . Let γmin(ω) be the minimal open self-avoiding path from

X1 to Y1 for the above defined order. We look at the set

U(ω) = {z : z ∈ γmin(ω), ∃y ∈ {z} such that y
B(m,n)←→ X2}

Since ω ∈ E2, U(ω) is non-empty. Also, since ω ∈ F c1 ∩ F c2 ⊂ Xc, for a vertex z ∈ U(ω),

{z} is connected to X2 by an open path not using any edges of γmin(ω) and the set

z + [−3, 3]2 × {0}d−2 is disjoint from X1 ∪X2.

We will choose any such z ∈ U(ω), and will locally modify the occupancy configuration

in its neighborhood Bz = z + [−3, 3]2 × {0}d−2 so that we get a function f : E1 ∩ E2 ∩
F c1 ∩ F c2 → E1 ∩X with the properties:

• (i) z ∈ γmin(f(ω)),

• (ii) z is a unique vertex on γmin(f(ω)) connected to X2 by an open path that does

not use edges of γmin(f(ω)),

• (iii) ωe = f(ω)e for all e /∈ Bz.

Given the altered configuration, we will first track the minimal path γmin and then spot

z as the unique vertex satisfying property (ii). The function f would thus satisfy the

conditions of Lemma 3.4 with s being the number of edges in [−3, 3]2 (by properties (ii)

and (iii)), and P[E1 ∩ E2 ∩ F c1 ∩ F c2 ] ≤ C∗ · P[E1 ∩X] ≤ C∗ · P[X] will be an immediate

consequence, completing the proof.

Coming back to the local modification, we do the following:
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• Mark the vertices by which γmin enters Bi
z := z + [−2, 2]2 × {0}d−2, the “inner”

neighborhood, for the first time by vi. Let us call the segment of γmin from

beginning till vi as γimin.

• Mark the vertices by which γmin leaves Bi
z for the last time by vo. Let us call the

segment of γmin from vo till end as γomin.

• Mark a path from z to X2 by β and mark the vertex by which β leaves Bi
z for the

last time by vβ.

• Find three neighboring vertices of z (say zi, zo and zβ) such that:

– There exist three self avoiding paths γi, γo and γβ, not using z or three afore-

mentioned neighbors of it, which connects vi to zi, vo to zo and vβ to zβ inside

Bi
z,

– (z, zo) ≺ (z, zβ).

• Close all edges of Bz except the edges with both vertices in Bz \ B′z which are in

γimin, γomin or β.

• Open all the edges in paths γi, γo, γβ and three edges (z, zi), (z, zo), (z, zβ) (while

keeping every other edges with both vertices in Bi
z closed).

⇒

Bz

z
zi

vi

vo

γmin

zβ

β

zo

Bi
z

vβ

Figure 3.1: Local Modification

In the new configuration z is connected to X1, X2 and Y1 (making the altered configu-

ration ω′ ∈ E1 ∩X) and γmin(ω′) matches with γimin(ω) from the starting point to vi,

then due to lack of choice leads to z, chooses (z, zo) over (z, zβ) and then again leads

to vo and finally matches with γomin(ω) again after vo. This takes care of property (i)

and existence of a connection from z to X2 without using edges of γmin, which is a part

of property (ii). The uniqueness of z satisfying property (ii) stems from the fact that

had there been another contender z′ ∈ γmin ∩ Bc
z (inside Bz, by our descriptions there
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cannot be another contender), at least one of the occupancy configurations in Bz or Bz′

would have been preserved in the initial configuration ω as well, contradicting ω ∈ Xc.

Property (iii) is obvious from our construction and this proves (3.3).

To prove P[Fi∩Xc] ≤ C∗ ·P[X], notice that for any ω ∈ Fi∩Xc, one can choose z ∈ X3−i

satisfying the requirement of Fi so that after modifying the occupancy configuration in

z + [−3, 3]2, one obtains a configuration in which z×{0}d−2 is the unique vertex of X3−i

which is connected to Xi in B(m,n) and by Lemma 3.4, we are done. We do not give

more details about the surgery since it is similar to the one we described and, in fact,

simpler. This completes our proof.

Remark 3.6. The choice of the size of neighborhood around z is chosen to be three in

the case of slabs so that for any choice of three points on the interior boundary of Bi
z,

we can find three disjoint paths from these three points to three neighbors of z inside

Bi
z. For other models like finite-range percolation, the same approach would work but

with a bigger neighborhood.

Lemma 3.5 and the FKG inequality imply the following corollary:

Corollary 3.7. Let X1, X2, Y1, Y2 be as in Lemma 3.5. Then

P
[
X1

B(m,n)←→ X2

]
≥ c∗ · P

[
X1

B(m,n)←→ Y1

]
P
[
X2

B(m,n)←→ Y2

]
.

Remark 3.8. We are primarily using rectangular blocks as the glueing areas, but this can

be generalized to quite general shapes. In fact, this can be generalized in the following

way :

P11

P12

P21

P22

P2

P1

Figure 3.2: Glueing for polygon-boxes

Let two simple polygons P1, P2 with vertices from Z2 have regions Pij (for i, j ∈ {1, 2}),
which are disjoint connected subset of the interior vertex boundary of Pi. For an event

A, the polygons P1, P2 are called “glueing-friendly” under the event A for regions Pij if

for any ω ∈ A, any two open paths γi connecting Pi1 to Pi2 in Pi (for i = 1, 2) necessarily
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have an intersection point z such that z + [−4, 4]2 ⊂ P1 ∩ P2, then

P[P11
P1∪P2←→ P22] ≥ c∗ · P[P11

P1←→ P12, P21
P2←→ P22, A] (3.4)

If the boundary of the polygon is regular enough, i.e. the polygons can be represented by

union of finitely many rectangles with both dimensions bigger than 6 (Let us call them

glueing-regular), the result mentioned above holds true with A = Ω (see Figure 3.2). The

core of the proofs is the surgery exactly similar to what we did while proving Lemma 3.5.

Another version of “glueing” is a tool to glue events with probability close to 1 to yield

a glued event of probability close to 1. This was used in [DCST16] and we would revisit

them in Section 3.5.

3.4 Proof of Theorem 3.1

Since the case k = 0 is classical (see e.g. [R81, SW78, K82].) and as some of the

“glueing” ideas used in the proof are unnecessary for k = 0 and easier for k ≥ 1, we

assume from now on without further mentioning that k ≥ 1. The theorem is proved in

3 steps:

• The result holds for all ρ ∈ (0, 1). This is well known. We give a proof in Propo-

sition 3.9.

• If the result holds for some ρ > 1, then it holds for all ρ > 1. This is a well known

fact in planar percolation. We prove the slab version in Proposition 3.10 using the

planar approach together with a novel technique for glueing paths from [DCST16]

(see Lemma 3.5).

• There exist c > 0 and C <∞ such that for all n ≥ 1, p(44n, 43n) ≥ c·p(43n, 44n)C .

This inequality is the crucial component and we prove it in Proposition 3.11 using

various “paths glueing” procedures.

3.4.1 Crossings of narrow rectangles

The following proposition is an adaptation to slabs of a well known fact about the

probabilities of crossing hypercubes of fixed aspect ratio in the easy direction. Its proof

is standard and does not require the “glueing” Lemma 3.5.
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Proposition 3.9. For any ρ ∈ (0, 1), (3.1) holds.

Proof. Let 0 < a < b be integers. It suffices to prove that lim infn→∞ p(an, bn) > 0. We

will prove a standard recursive inequality which states that for C = 2d b
b−ae + 1, every

p ∈ [0, 1] and n ≥ 1,

Pp [LR(2an, 2bn)] ≤ (C Pp [LR(an, bn)])2 . (3.5)

Let us denote, for v = (v1, v2) ∈ Z2, v + B(m,n) := [v1, v1 + m) × [v2, v2 + n), i.e the

rectangle of dimension m × n with left bottom corner v. Any open left-right crossing

of B(2an, 2bn) produces open left-right crossings of B(an, 2bn) and (an, 0) +B(an, 2bn)

giving Pp [LR(2an, 2bn)] ≤ Pp [LR(an, 2bn)]2. We will suitably cover B(an, 2bn) by C

B(an, 2bn)

bn

(b− a)n

Figure 3.3: Covering Boxes

many copies of B(an, bn) or its rotated version

B(bn, an) (see Figure 3.3) such that the existence

of an open left-right crossing of B(an, 2bn) indi-

cates that at least one of the copies is crossed

in the easy direction. Let us define the set

W = {0, b − a, 2(b − a), . . . , d b
b−ae(b − a)}. In-

deed, we see that any open left-right crossing of

B(an, 2bn) either crosses horizontally one of the

rectangles (0, kn) +B(an, bn), k ∈ W , or crosses

vertically one of the rectangles (0, kn) +B(bn, an),

k ∈ W \ {0}, and by union bound we have:

Pp [LR(an, 2bn)] ≤ C · Pp [LR(an, bn)].

By (3.5), for all p ∈ [0, 1], n ≥ 1, and s ≥ 0,

Pp [LR(2san, 2sbn)] ≤
(
C2 Pp [LR(an, bn)]

)2s
.

If lim infn→∞ p(an, bn) ≤ 1
2C2 , then there exists n ∈ N such that C2 p(an, bn) <

2/3. Since the crossing probability Pp [LR(an, bn)] is continuous in p, there also ex-

ists p > pc such that C2 Pp [LR(an, bn)] < 2/3. For this choice of parameters,

lim
s→∞

Pp [LR(2san, 2sbn)] equals 0, which is impossible, since for every p > pc, this limit

equals to 1 (see e.g. [G99, Theorem 8.97]). Thus,

lim inf
n→∞

p(an, bn) >
1

2(2d b
b−ae+ 1)2

> 0. (3.6)
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3.4.2 Crossings of wide rectangles

Proposition 3.10. If (3.1) holds for some ρ > 1, then it holds for all ρ > 1.

Proof. This is immediate from the following inequality, which relates the crossing prob-

ability of a long rectangle with that of a shorter one. For all m > n,

p(2m− n, n) ≥ 1

4
· c∗3 · p(m,n)4. (3.7)

(a)

(c)

(b)

(d)

Figure 3.4: (a) left-right crossing of B(m,n) and top-bottom crossing of a
[m− n,m)× [0, n) landing on the right half of the bottom, (b) path from L(m,n)
to [m− n

2 ,m)× {0} in B(m,n), (c) paths from L(2m−n, n) to [m− n
2 ,m)× {0}, and

from [m− n,m− n
2 )× {0} to R(2m − n, n) in B(2m − n, n), (d) left-right crossing of

the wide rectangle B(2m− n, n).

The inequality (3.7) follows from two applications of Corollary 3.7 illustrated on Fig-

ure 3.4.

3.4.3 Crossings of rectangles: short and long directions

The main contribution of this section is the following proposition, which relates the

crossing probability of a rectangle in the long direction with the one in the short. The

exact values of the aspect ratios do not matter as long as one of them is smalle than 1

and the other one is greater than 1. We thus choose them to be 43/44 and 44/43 for

the sake of ease in calculations.

Proposition 3.11. For all n ∈ N,

p(44n, 43n) ≥ c∗
21 · p(43n, 44n)198

10154
. (3.8)

Proof. Fix n ∈ N. We write

B = B(43n, 44n), L = L(43n, 44n), R = R(43n, 44n),
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and define

c = p(43n, 44n), c′ =
c∗

21 · c198

10154
.

We prove the proposition by considering several cases. The first two steps are inspired

by the ideas of Bollobás and Riordan from [BR06], and aimed at restricting possible

shapes of left-right crossings. Steps 3 and 4 contain preliminary estimates needed to

implement the main idea in Step 5.

(0, 0) (43n, 0)

(0, 44n)

(0, 42n)

Figure 3.5: Left-right crossing staying at least
2n away from the top of B(43n, 44n).

Step 1. We first consider the case when

there is a considerable probability that a

left-right crossing of B stays away from

the top or bottom boundary of B, see Fig-

ure 3.5. Assume that p(43n, 42n) ≥ c
100 .

Then by (3.7),

p(44n, 43n) ≥ p(44n, 42n)

≥ 1

4
c∗

3p(43n, 42n)4 ≥ c′,

which implies (3.8). Thus, we may assume

that

p(43n, 42n) <
c

100
. (3.9)

Step 2. Next, we consider the case when there is a considerable probability that a

left-right crossing of B starts sufficiently far away from the middle of L. Let

S = {0} × [20n, 24n) (3.10)

be the middle of L. Assume that

P
[
L \ S B←→ R

]
≥ c

10
.

Then, by reflectional symmetry,

P
[
{0} × [24n, 44n)

B←→ R
]
≥ c

20
.

By assumption (3.9),

P
[
{0} × [24n, 44n)

B←→ [0, 43n)× {2n}
]
≥ c

20
− c

100
≥ c

100
.

By rotational symmetry, the above display states that

P
[
{0} × [0, 43n)

B(42n,43n)←→ [22n, 42n)× {0}
]
≥ c

100
.

Similarly to the second application of Corollary 3.7 in the proof of (3.7), see Figure 3.6,

one gets
p(44n, 43n) ≥ c∗ ·

( c

100

)2
≥ c′,
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(0, 0) (43n, 0)

(0, 44n)

(0, 24n)

S
(0, 20n)

(0, 2n)

(0, 43n)

(0, 0) (20n, 0) (42n, 0)

(a) (b)

(0, 0)

(0, 43n)

(22n, 0) (44n, 0) (0, 0) (44n, 0)

(0, 43n)

(d)(c)

Figure 3.6: (a) part of L above S is connected to [0, 43n)× {2n} in B, (b) rotation
of (a) by π

2 , (c) L(44n, 43n) is connected to [22n, 42n)× {0} and [2n, 22n)× {0} is
connected to R(44n, 43n), (d) left-right crossing of B(44n, 43n).

which is precisely (3.8). Thus, we may assume, in addition to (3.9), that

P
[
L \ S B←→ R

]
<

c

10
. (3.11)

Step 3. Here we consider the case when there is a considerable probability that two

well-separated subsegments of L are connected. For integers a < b, let

Tab = [0, 43n)× [a, b) and T = [0, 43n)× Z.

Assume that for some a < b,

P
[
{0} × [0, 4n)

Tab←→ {0} × [8n, 12n)
]
≥ c∗ · c18

1014
.

Then, by repetitive use of Corollary 3.7, see Figure 3.7, for each m ≥ 1,

P
[
{0} × [0, 4n)

T←→ {0} × [4n(m+ 1), 4n(m+ 2))
]
≥ c∗

2m−1 · c18m

1014m
.

Note that if m = 11, then the event on the left hand side implies that there is a vertical

crossing of [0, 43n)× [4n, 48n). Thus,

p(44n, 43n) ≥ c∗
21 · c198

10154
= c′,
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(0, 0)

(0, 4n)

(0, 8n)

(0, 12n)

(0, 16n)

(0, 12n)

(0, 8n)

(0, 4n)

(0, 0) (0, 0)

(0, 4n)

(0, 12n)

(0, 16n)

(a) (b) (c)

Figure 3.7: Vertical extension of open paths.

which gives (3.8). Therefore, we may assume, in addition to (3.9) and (3.11), that

P
[
{0} × [0, 4n)

Tab←→ {0} × [8n, 12n)
]
<
c∗ · c18

1014
, for all a < b. (3.12)

Next, we derive several corollaries of assumption (3.12).

Corollary 3.12. Under the assumption (3.12), for all a < b,

P
[
{0} × [8n, 12n)

Tab←→ {43n− 1} × [0, 4n)
]
<

c9

107
. (3.13)

(0, 0)

(0, 4n)

(0, 8n)

(0, 12n)

(0, 0)

(0, 4n)

(0, 8n)

(0, 12n)

(0, 0)

(0, 4n)

(0, 8n)

(0, 12n)

(a) (b)

Figure 3.8: (a) illustration of the event in (3.13), (b) proof of Corollary 3.12.

Proof of Corollary 3.12. Using reflectional symmetry and Corollary 3.7,

P
[
{0} × [8n, 12n)

Tab←→ {43n− 1} × [0, 4n)
]2

= P
[
{0} × [8n, 12n)

Tab←→ {43n− 1} × [0, 4n)
]

· P
[
{0} × [0, 4n)

Tab←→ {43n− 1} × [8n, 12n)
]

≤ c∗−1 · P
[
{0} × [0, 4n)

Tab←→ {43n− 1} × [8n, 12n)
] (3.12)

<
c18

1014
.
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Corollary 3.13. Under the assumption (3.12), for all a < b,

P


there exist a simple path γ from {0} × [0, 4n) to {43n− 1} × [0, 4n)

and a path γ′ from {0} × [8n, 12n), both in Tab, such that

the distance between γ and γ′ is ≤ 2

 < 3 · c9

107
.

(3.14)

In particular,

P


there exist a simple path γ from {0} × [0, 4n) to {43n− 1} × [0, 4n)

and a path γ′ from {0} × [8n, 12n), both in T , such that

the distance between γ and γ′ is ≤ 2

 ≤ 3 · c9

107
.

(3.15)

(0, 0)

(0, 4n)

(0, 8n)

(0, 12n)

γ

γ′

Figure 3.9: An illustration of the event in (3.14).

Proof of Corollary 3.13. It suffices to prove (3.14), as (3.15) follows from (3.14) when

a→ −∞ and b→ +∞.

Denote the event in (3.14) by A. By the total probability formula,

P[A] ≤ P
[
{0} × [8n, 12n)

Tab←→ {0} × [0, 4n)
]

+ P
[
{0} × [8n, 12n)

Tab←→ {43n− 1} × [0, 4n)
]

+ P
[
A, {43n− 1} × [0, 4n)

Tab= {0} × [8n, 12n)
Tab= {0} × [0, 4n)

]
(3.12)

(3.13)

≤ c∗ · c18

1014
+
c9

107
+P
[
A, {43n− 1} × [0, 4n)

Tab= {0} × [8n, 12n)
Tab= {0} × [0, 4n)

]
Denote by A′ the event in the RHS. For a configuration ω, let P (ω) be the set of vertices,

which belong to at least one self-avoiding path from {0} × [0, 4n) to {43n− 1} × [0, 4n)

in Tab, one may call it a backbone. For ω ∈ A′, backbone is non-empty and, contains
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at least one point z(ω) such that z + [−2, 2]2 × {0}d−2 is connected to {0} × [8n, 12n)

although {z} is not. Expectedly, we now consider a local modification map f from A′

to the event

A′′ =

{
ω′′ :

there exists a unique z(ω′′) ∈ P (ω′′) connected to {0} × [8n, 12n)

by an open path contained in Tab \ P (ω′′) except for the vertex z(ω′′)

}

such that for all ω′ ∈ A′ and all e /∈ z(f(ω′)) + [−3, 3]2 × {0}d−2, f(ω′)e = ω′e. By

Lemma 3.4, P[A′] ≤ C∗ · P[A′′] ≤ c∗−1 · P[A′′].

A′′ ⊆
{
{0} × [0, 4n)

Tab←→ {0} × [8n, 12n)
}
,

implies that

P[A′] ≤ c∗−1 · P
[
{0} × [0, 4n)

Tab←→ {0} × [8n, 12n)
]
<

c18

1014
,

where the last inequality follows from the assumption (3.12). Putting the bounds to-

gether,

P[A] <
c∗ · c18

1014
+

c9

107
+

c18

1014
≤ 3 · c9

107
.

Corollary 3.14. Under the assumptions (3.11) and (3.12),

P


there exist a path γ′ from {0} × [0, 4n) in T

and a path γ′′ from {0} × [16n, 20n) in T , such that

the distance between γ′ and γ′′ is ≤ 4

 ≤ 12 · c8

107
. (3.16)

(0, 0)

(0, 4n)

(0, 20n)

(0, 16n)

γ′′

γ′

Figure 3.10: An illustration of the event in (3.16).
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Proof of Corollary 3.14. Denote the event in (3.16) by A. By assumption (3.11),

P
[
{0} × [8n, 12n)

T←→ {43n− 1} × [8n, 12n)
]
≥ c− 2

c

10
≥ c

2
.

The event above and the event A are increasing, thus :

P[A]
FKG
≤ 2

c
·P
[
A, {0} × [8n, 12n)

T←→ {43n− 1} × [8n, 12n)
] (3.15)

≤ 2

c
· 2 3 · c9

107
=

12 · c8

107
.

The last inequality is due to the fact that intersection of the two events implies that for

any path γ from {0} × [8n, 12n) to {43n− 1} × [8n, 12n) in T , the distance from γ to

γ′ ∪ γ′′ is ≤ 2.

Step 4. The aim of this step is to introduce a certain event of positive probability, see

Proposition 3.15. Our choice of this event will be clarified in Step 5.

Recall the definition of S from (3.10). For a configuration ω, let CS = CS(ω) be the set

of all z ∈ T connected to S by an open path in T . Let

f(ω) = P
[
{0} × [4n, 8n)

T\CS←→ {43n− 1} × Z
∣∣∣ CS] (ω),

g(ω) = P

[
there exists a path γ′ from {0} × [4n, 8n) in T , such that

the distance between γ′ and CS is ≤ 4

∣∣∣ CS] (ω).

We consider the following events:

A1 =
{
S

T←→ [0, 43n)× {2n}
}
, A2 =

{
w : f(ω) ≥ c2

10

}
, A3 =

{
w : g(ω) ≤ c4

1000

}
.

Proposition 3.15. Under the assumptions (3.9), (3.11), and (3.12),

P[A1 ∩A2 ∩A3] ≥ c4

103
.

Proof of Proposition 3.15. By assumptions (3.9) and (3.11),

P[A1] ≥ c− c

10
− c

100
≥ c

2
.

By the Markov inequality and (3.16),

P[Ac3] ≤ 1000

c4
· E[g] <

1000

c4
· 12 · c8

107
=

12 · c4

104
. (3.17)

To bound P[A1 ∩ A2] from below we use the Paley-Zygmund inequality, which states

that for non-negative random variable X states that P[X ≥ 1
2E[X]] ≥ 1

4
(E[X])2

E[X2]
. We
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intend to apply it to the measure P[·] = E
[
1·

1A1
P[A1]

]
so that we get

E
[
1
f(ω)≥ 1

2
·E[f(ω)·

1A1
P[A1]

]
· 1A1

P[A1]

]
≥ 1

4
·
(
E[f(ω) · 1A1

P[A1]
]

)2

. (3.18)

We have already defined the event A2 retroactively such that if we prove a suitable lower

bound of E[f(ω) · 1A1 ], it will simultaneously bound the LHS of (3.18) from above and

the RHS from below (by P[A1∩A2]
P[A1] and c4

100P[A1]2
respectively, if we prove the lower bound

to be c2/5, which we prove now).

E[f(ω) · 1A1 ]

= P
[
S

T←→ [0, 43n)× {2n}, {0} × [4n, 8n)
T\CS←→ {43n− 1} × Z

]
(3.16)

≥ P
[
S

T←→ [0, 43n)× {2n}, {0} × [4n, 8n)
T←→ {43n− 1} × Z

]
− 12 · c8

107

(FKG)

≥ P[A1] · P
[
{0} × [4n, 8n)

T←→ {43n− 1} × Z
]
− 12 · c8

107

≥ c

2

(
c− c

10

)
− 12 · c8

107
≥ c2

5
.

Now simplification yields

P[A1 ∩A2] ≥ c4

100
⇒ P[A1 ∩A2 ∩A3]

(3.17)

≥ c4

100
− 12 · c4

104
≥ c4

103
.

Step 5. We are ready to conclude. For a configuration ω, let Q(ω) be the set of vertices

from T , which are connected to S by an open path in [0, 43n)× [2n,∞).

(0,−4n)

(0,−20n)

(0,−16n)

(0, 0)

(0, 4n)

(0, 8n)

(0, 20n)

(0, 24n)

X

{x : x2 = 2n− 1
2}

Γ

Γ′

X′
V

Figure 3.11: An illustration of Γ, Γ′, and V for a configuration from the event
A1 ∩A2 ∩A3. Γ is the outer vertex boundary of the cluster of S in [0, 43n)× [2n,+∞),
Γ′ is its mirror reflection with respect to the hyperplane {x : x2 = 2n− 1

2}, and V is
the connected component of T \ (Γ ∪ Γ′) containing the origin.
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Let Γ(ω) be the outer vertex boundary of Q(ω), and Γ′(ω) the mirror reflection of Γ

with respect to the hyperplane {x : x2 = 2n− 1
2}.

We denote the connected component of T \ (Γ ∪ Γ′) which contains 0 by V , which is

finite for any ω ∈ A1. Let X = {0} × [4n, 8n), and X ′ = {0} × [−4n, 0). Note that

X ′ is the mirror reflection of X with respect to the hyperplane {x : x2 = 2n − 1
2}.

Moreover, if ω ∈ A2 ∩ A3, then both X and X ′ are contained in V . We consider an

auxiliary probability space Ω′ with configurations ω′ and the same probability measure

P on it, and compute :

P
[
Xis connected to X ′ in T by an open path in ω′

]
≥ P⊗ P

[
(ω, ω′) :

ω ∈ A1 ∩A2 ∩A3,

Xis connected to X ′ in V (ω) by an open path in ω′

]

(∗)
≥ C∗

−1 ·P⊗P


(ω, ω′) :

ω ∈ A1 ∩A2 ∩A3,

X is not connected to X ′ in V (ω) by an open path in ω′

Xis connected to Γ′(ω) in V (ω) by an open path in ω′,

X ′is connected to Γ(ω) in V (ω) by an open path in ω′,

there is no open path π in ω′ from X in V (ω)

so that the distance between π and Γ(ω) is ≤ 4,

there is no open path π′ in ω′ from X ′ in V (ω)

so that the distance between π′ and Γ′(ω) is ≤ 4



≥ C∗−1 ·Eω
[
1A1∩A2∩A3(ω) · Pω′

[
Both X and X ′ are connected to Γ′(ω) in V (ω),

each by an open path in ω′

]]

−C∗−1 ·Eω


1A1∩A2∩A3(ω) · Pω′



there is an open path π in ω′ from X in V (ω)

so that the distance between π and Γ(ω) is ≤ 4,

or

there is an open path π′ in ω′ from X ′ in V (ω)

so that the distance between π′ and Γ′(ω) is ≤ 4




− C∗−1 · P

[
Xis connected to X ′ in T by an open path in ω′

]
≥ C∗−1

[
Eω
[
1A1∩A2∩A3(ω) ·

[
f(ω)2 − 2g(ω)

]]
−P

[
Xis connected to X ′ in T in ω′

] ]
.

Every path from X to Γ′ in V and every path from X ′ to Γ have intersecting projections,

and all the contender ‘intersection points’ to locally modify upon are sufficiently far away

from the possibly ‘rough-boundary’ Γ ∪ Γ′ to allow for a local modification successfully.

This makes the shape V to be “glueing-friendly” under the event, and thus the inequality
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(∗) follows from Lemma 3.4 and Remark 3.8. The last inequality comes from the FKG

inequality and the definitions of event A1 and functions f and g.

By the definition of events A2 and A3 and Proposition 3.15,

P
[
X

T←→ X ′
]
≥ c∗ ·

(
c4

100
− 2 · c4

1000

)
· c

4

103
.

In particular, there exist a < b such that

P
[
X

Tab←→ X ′
]
≥ c∗ · c8

106
.

From this we conclude, as in the argument of Step 3, that p(44n, 43n) ≥ c′ (or simply

observe that the above inequality contradicts the assumption (3.12)). This completes

the proof of Proposition 3.11.

As we already mentioned, there was a recent improvement of this result. Newman,

Tassion and Wu [NTW15, Theorem 3.1] were successful in proving that p(bρnc, n) is

bounded away from both 0 and 1. They used a form of surgery that is slightly different

from us. They also showed that the existence of an open circuit in an annulus has

probability bounded away from 0 and 1 in all scales and were successful in glueing an

open path to an open circuit. Variants of this type of glueing will be described by us

later while proving the existence of IIC on slabs in Chapter 4.

3.5 RSW: High Probability Version

To prove Corollary 3.2, we would need to revisit our “glueing” techniques. We would

need to prove that glueing two crossing events of probability close to 1 yields a new

crossing event with probability close to 1 as well.

3.5.1 Glueing Revisited

We would state and prove, a result inspired from [DCST16, Fact 1, Fact 2] and similar

in spirit with [NTW15, Theorem 3.7] in the form as below:

Lemma 3.16. Let X1, X2, Y1, and Y2 be as in Lemma 3.5. For every ε > 0, ∃ δ > 0

such that if P
[
X1

B(m,n)←→ Y1

]
∧P

[
X2

B(m,n)←→ Y2

]
> 1− δ, then P

[
X1

B(m,n)←→ X2

]
> 1− ε.

Proof of Lemma 3.16. As before we define an order < on self-avoiding paths from

X1 to Y1 in B(m,n) and let γmin be the minimal open path among them. We de-

fine E1, E2, X, and the neighborhoods Bz, B
i
z for any point z ∈ Sk,d as done in the

proof of Lemma 3.5. Let us also define, for two vertices u = (u1, u2, . . . , ud) and v =



Russo-Seymour-Welsh-Theorem in Slabs 65

(v1, v2, . . . , vd) in Sk,d, the distance of their projection as dist2(u, v) = |u1−v1|∨|u2−v2|
and the distance of projection of two sets U, V ⊂ Sk,d as dist2(U, V ) = min

u∈U,v∈V
dist2(u, v).

Finally we define B1(z) = z + [−1, 1]2 × {0}d−2 and the set U(ω) (slightly different from

before):

U(ω) =

{
z ∈ γmin :

B1(z) is connected to X2 in B(m,n) by an open path

β such that dist2(β, γmin) = 1

}
,

for ω ∈ E1 ∩ E2 ∩ Xc (this path β is allowed to be singleton). We will split the event

J = E1 ∩E2 ∩Xc into J> = J ∩ {|U(ω)| > t} and J< = J ∩ {|U(ω)| ≤ t} for some large

integer t we will choose later. We will do two separate surgeries on these two sets.

For ω ∈ J<, we choose all such points z ∈ U(ω) and close every edge not in γmin with

at least one vertex in B1(z). This makes it impossible for X2 to be connected to Y2

anymore, giving us an“anti-gluing” map f : J< → E1 ∩ E2
c. Both minimality of γmin

and the set U(ω) is preserved, making us able to identify at most t many neighborhoods

where the surgery has been done. This gives :

P[E1 ∩ E2 ∩Xc ∩ {|U(ω)| ≤ t}] ≤ Ct∗P[E1 ∩ E2
c] ≤ Ct∗δ. (3.19)

For the sub-event J>, we will define a relation R ⊂ J>×X. The surgery is quite similar

to the one used in Lemma 3.5. The key difference is that instead of picking one point

of U(ω) and glueing immediately, we exploit the fact that all points of U(ω) are eligible

for the new connection to X2. We need to be cautious so that it is possibly to identify

correctly the neighborhood where the surgery has been done, and snce the relation would

satisfy |{ω′ : (ω, ω′) ∈ R}| > t for every ω ∈ J>, Lemma 3.4 would yield:

P[J ∩ {|U(ω)| > t}] ≤ C∗P[X]

t
≤ C∗

t
. (3.20)

Coming back to the surgery, for any z ∈ U(ω),

• Mark the vertex by which γmin enters “inner” neighborhood Bi
z for the first time

by vi and call the segment of γmin upto vi as γimin. Similarly we mark the vertex

by which γmin leaves it for the last time as vi and the segment of γmin from vo

onwards as γomin.

• Mark the vertex by which an open self-avoiding path β from X2 first enters Bi
z as

vβ.

• Find three neighboring vertices of z (say zi, zo and zβ) with (z, zo) ≺ (z, zβ),

following the guidelines:
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(a) If z = vi or z is a neighbor of vi, we take zi = vi.

(b) If z = vo or z is a neighbor of vo, we take zo = v0.

(c) Otherwise we take zi, zo, zβ distinct from vi, vo, vβ.

We note three self avoiding paths γi, γo and γβ, entirely in Bi
z, not using z or

its aforementioned three neighbors which connects vi to zi, vo to zo and vβ to zβ

respectively.

• Close all edges of Bz except the edges in Bz \B′z which are in γimin,γomin or β and

open all the edges in paths γi, γo, γβ and three edges (z, zi), (z, zo), (z, zβ).

The altered configuration ω′ is a configuration from E1∩X and given an ω′ in the range

of R, by the same argument, we are able to identify γmin and the unique vertex of it

which is connected to X2 without using the edges of γmin.

Given ε we first choose integer t large enough to make RHS of (3.20) < ε/3 and then

choose small δ < ε/6 such that, having known ε and t, we can make RHS of (3.19) < ε/3.

This gives us P[X] ≥ P[E1 ∩ E2]− P[J ] ≥ 1− 2δ − 2ε/3 ≥ 1− ε.

This argument also holds true for non-regular shape (Let us recall Remark 3.8). Al-

though the statement can be stated in a more generalized way, we choose to state it in

a way that would suffice for us:

Corollary 3.17. Let P1, P2 be two simple “glueing-regular” polygons with vertices from

Z2 having regions Pij (for i, j ∈ {1, 2}), which are disjoint connected subset of the

interior vertex boundary of Pi. If any open path γ1 connecting P11 to P12 in P1 must

intersect with any open path γ2 connecting P21 to P22 in P2, then for any ε > 0, there

exists δ > 0 such that

P[P11
P1←→ P12] ∧ P[P21

P2←→ P22] ≥ 1− δ ⇒ P[P11
P1∪P2←→ P22] ≥ 1− ε.

3.5.2 Proof of Corollary 3.2

One final requirement is the square root trick whose proof is elementary from FKG

inequality.

Lemma 3.18. (Square-root trick) Let E1, . . . ,Ek be increasing events, and E :=
k⋃
i=1

Ei.

Then

max
1≤i≤k

P[Ei] ≥ 1− (1− P[E])1/k.
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We would first prove that:

lim
n→∞

p(bθnc, n) = 1 for some θ > 1⇒ lim
n→∞

p(bκnc, n) = 1 for all κ > 0. (3.21)

By monotonicity p(bκnc, n) → 1 for all κ ≤ θ. For κ > θ, we would use the high-

probability glueing introduced in Lemma 3.16. The strategy would be exactly similar

to that in Proposition 3.10 (see Picture 3.4 again).

By Lemma 3.18, if the top-bottom crossing of the square has probability 1−δ, then with

probability 1−
√
δ the top is connected to the right half of bottom (making this event of

high-probability whenever the probability of top-bottom crossing is also high). Now by

using Corollary 3.17 twice, we can obtain p(b(2θ−1)nc, n)→ 1. By using the same trick

as many times as required and by virtue of monotonicity, one can prove p(bκnc, n)→ 1

for any κ.

Thus our proof reduces to proving lim
n→∞

p(bκnc, n) = 1 for some aspect ratio κ > 1 from

lim
n→∞

p(bρnc, n) = 1 for some aspect ratio ρ ∈ (0, 1). We will do this by glueing translated

copies of rectangles by ‘circuit-like’ structures (which exists with high probability as

well).

Let us define Km,n := B(n+1, n)\[(n−m2 , n−m2 ) +B(m,m+ 1)∪[n/2−1, n/2]×[0, n/2]].

n + 1

n/2 n/2

3n + 1

n

Kn,3n

3n

Figure 3.12: Key-hole Kn,3n

This “keyhole” shape is obtained by deleting edges

across [n/2−1, n/2]×[0, n/2] from the annulus (see

Figure 3.12). By Theorem 3.1 and (3.4), we can

glue the open paths in five constituent rectangular

boxes making up Kn,3n to get :

P
[
{3n/2} × [0, n]

Kn,3n←→ {1 + 3n/2} × [0, n]

]
> cK ,

(3.22)

for some cK ∈ (0, 1) and for all n. (This can also be

proved by using [NTW15, Corollary 3.2.1], by the

uniform lower bound of the probability of having a

circuit in an annulus.)

Now we cover the right side of B(dρne, n) in d1/φe
segments of length φn. For the simplicity of calculation, let us assume ρn/4 and φn/2

are integers. By Lemma 3.18, ∃yρ ∈ [0, n] such that

P
[
L(ρn, n)

B(ρn,n)←→ {n} × [yρ − φn/2, yρ + φn/2]

]
≥ 1− (1− p(ρn, n))1/φ).
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Let us denote concentric keyholes by Kk := (n − 3kφn/2, yρ − 3kφn/2) + K3k−1φn,3kφn

for k ∈ {0, 1, . . . , N = blog3
ρ

4φc} and K = (n − φn/2, yρ − φn/2) + Kφn,ρn/4. We can

choose φ small enough such that

P
[
{n} × [yρ − n/4, yρ − φn]

K←→ {n+ 1} × [yρ − n/4, yρ − φn]
]
> 1− ε. (3.23)

(Since presence of ‘broken circuit’ in each concentric keyhole Kk is independent of each

other, we choose N such that (1− cK)N < ε and choose φ := ρ
3N+2 .) Again, by glueing

the paths in the event {L(ρn, n)
B(ρn,n)←→ {n} × [yρ − φn/2, yρ + φn/2]} and loop event

mentioned in (3.23) (both of which has probability close to 1) we get the event

Eρ = {{L(ρn, n)
B(ρn,n)∪Aφ,n←→ {n+ 1} × [yρ − n/4, yρ − φn]}}

with probability going to 1 by virtue of Corollary 3.17 (see Figure 3.13 ).

y

B(ρn, n) B(ρn, n)

ρn/4

φn

K

Figure 3.13: Glueing via fat annulus

Finally inside (n+ 1, 0) +B(bρnc, n) we

have a path from right side to

{n+ 1} × [yρ − φn/2, yρ + φn/2] which by

symmetry has probability going to 1

as well. We finally glue this with

the open connection in Eρ, and ob-

tain, with probability going to 1, a left

right crossing of the rectanglular box

(0,−ρn/4) +B(2ρn+ 1, (1 + ρ/2)n), giv-

ing us lim
n→∞

p(n, 2ρ
1+ρ/2) = 1.

We proved that the crossing of the rect-

angular box of aspect ratio 2ρ
1+ρ/2 has high

probability if that is true also for the rectangular box of aspect ratio ρ. To prove this for

a rectangular box with aspect ratio κ > 1, we simply keep on repeating this procedure,

(this works since the sequence f(x), f(f(x)), . . . , fn(x) eventually crosses the value 1

irrespective of initial value x ∈ (0, 1) for f(x) = 2x
1+x/2) and by (3.21), that suffices.

R1
A1 R2

A2 R3 Rdκ(1+ρ/2)ρ e

B(dκne, n)

Adκ(1+ρ/2)ρ −1e

ρn

Figure 3.14: Glueing a series of boxes
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Another alternate method would be to put dκ(1+ρ/2)
ρ emany copies of B(bρnc, n) in series,

consecutive ones being 1 distance apart from each other and connected via “keyhole”

and then to glue them step by step. Instead of going into too much details, let us present

the idea by Figure 3.14.

3.6 Associated Results

In this section, we will describe two other corollaries which stems out from Theorem 3.1.

These two results are interesting in their own right. As we have stated, glueing paths in

slabs are faced with some challenges. Although we now know that RSW theorem holds

true, there are still quite a lot of questions that are not addressed, although the answers

to them in plane are quite straightforward. For example, for planar lattices, when we

know there is a top-bottom crossing and a left-right crossing in a rectangle, it instantly

gives us a cluster spanning each of the 4 sides of the rectangle. But existence of such a

cluster is not obvious in slabs. We will prove the existence of such a cluster as well with

probability bounded uniformly from below.

Similar to L(m,n) and R(m,n) let us also define T (m,n) , D(m,n) as top and bottom

surfaces of B(m,n). We introduce the event A4(m,n) of having an open cluster inside

B(m,n) connected to each of the four surfaces L(m,n), R(m,n), T (m,n) and D(m,n).

Corollary 3.19. For every ρ > 0, there exists xρ > 0 such that P[A4(bρnc, n)] ≥ cρ

∀n ∈ N.

Before we begin with the proof, let us highlight the key challenge of glueing a top-bottom

crossing with a left-right crossing into a cluster spanning all four sides. Since the proof

of this result relies on simple yet careful circumnavigation of the specific challenge, let

us describe at first the naive attempt of glueing which does not work.

Let us define TD(m,n) := {T (m,n)
B(m,n)←→ D(m,n)} and we take any configuration ω

from the event X(n, ρ) = LR(bρnc, n) ∩ TD(bρnc, n) ∩A4(bρnc, n)c. Let us look at the

minimal left-right path γl(ω) and the minimal top-bottom path (defined in a similar way)

γt(ω). If it happens that, for example, γl(ω)
B(bρnc,n)←→ T (bρnc, n), it will be challenging

to glue these two paths (at one of the points where their projections intersect). This is

due to the fact that the conventional “glueing” might alter γt significantly because the

path by which γl is connected to the top side might become the part of the new γt(ω
′).

Same thing will happen with γl if γt is connected to left side. This will create problems

because given a changed configuration, we would not be able to precisely point out at

which region the surgery has been done (see Figure 3.15).

Although our simplistic attempt fails, it provides an important fact– namely, for any

configuration in {γl(ω)
B(bρnc,n)←→ T (bρnc, n)}∩{γt(ω)

B(bρnc,n)= L(bρnc, n)}, we can do the
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γt(ω)

γl(ω)

γl(ω
′)

γt(ω
′)

⇒

Figure 3.15: Issues with direct glueing

glueing on γl. Although the γt might change, but γl would not (outside the small box

naturally, where the surgery has been done). Moreover, we can find the precise point

at which the surgery has been done by identifying the unique vertex from which there

is a path to D(bρnc, n)
(
since γl could not be connected to the bottom as well initially,

otherwise ω ∈ A4(bρnc, n)
)
. We will capitalize on this fact in the proof repeatedly.

Proof. By FKG inequality and RSW theorem, we have

P[LR(bρnc, n) ∩ TD(bρnc, n)] ≥ cρc1/ρ

As done previously, we will take a configuration from X(n, ρ) and after surgery the

changed configuration ω′ would be in A4 = A4(bρnc, n). We need some notations for

splitting up the event. We have already defined γl and γt as minimal left-right and top-

bottom path respectively. Similarly we would have γr and γb as the minimal right-left

and bottom-top paths. Our definition does not dictate that, for example, γt and γb

need be same or even intersect. Now both γt and γb can be connected to either with

L(bρnc, n) or R(bρnc, n) or neither of them. Similarly each of γl, γr might be connected

to either top side or bottom or none of them. We will split X(n, ρ) over 81 disjoint

sub-events Xij
kl when i, j ∈ {T,D,N} and k, l ∈ {L,R,N}. Here i, j, k, l indicates which

side is connected with γl, γr, γt and γb respectively other than the two sides they are

already connecting, N indicating with neither of the rest two sides. For example, the

sub-event XNT
LR indicates that γr, γt and γb are connected with top, left and right sides

respectively whereas γl is connected to neither top or bottom side. We will now group

these events suitably and will do surgeries accordingly.

We divide the cases in three groups depending on the value of, say i. The first case will

be where i = N . The cases i = T and i = D can be treated similarly by switching l and

k and hence without loss of generality we will only describe about i = T in Case 2.

Case 1: We divide this into two sub-cases depending on the value of k. One will be

when k 6= L and the other being k = L.
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Subcase (1a): If k 6= L, we would look at the set U(ω) where the projections

of γl and γt meet and pick a point z from the set. Let Bz := z + [−3, 3]2 × {0}d−2,

Bi
z := z + [−2, 2]2 × {0}d−2 and ≺ be the order on edges {e : |e| = 1} in Zd. We will do

the following:

• Mark the first entries to and last exits from Bi
z for γl and γt by vil , v

o
l , v

i
t and vot

respectively. Call the segments of γl from the beginning upto vil as γil and from vol

to the end as γol and similarly define γit and γot .

• If one of vil or vol lies in {z}, set vl = vil or vl = vol accordingly. (Notice that at

most one of these can occur).

• If one of vit or vot lies in {z}, set vt = vit or vt = vot accordingly. (Notice that at

most one of these can occur).

• Otherwise fix two vertices vl and vt in {z}, and one of the shortest paths ρ entirely

inside {z} connecting them (for d = 3, this is an unique line segment).

• Find two non intersecting open paths πl from vil to vol via vl and πt from vit to vot

via vt inside Bz, neither of them sharing any vertex with ρ (other than vl and vt,

respectively) such that:

– The edge el emerging from vl in πl satisfies el ≺ ρl where ρl is the first edge

emerging from vl in ρ.

– The edge et emerging from vt in πt satisfies et ≺ ρt where ρt is the first edge

emerging from vt in ρ.

• Close all the edges in Bz except those in Bz \Bi
z which are in γil , γ

o
l , γit or γot and

open all the edges in πl, πt and ρ.

The resultant configuration ω′ is in A4 and by the nature of the surgery γt(ω
′)

vl

vt

πl πt

vit

vot

vol

vil

el et

Figure 3.16: Glueing four arms

matches with γt(ω) and enters it through vit, then

follows πt upto vt, chooses the smaller edge et over

(vt, vl), continues in πt to vot and again matches

with γt(ω) after the last exit from Bz. Same holds

true for γl as well. Since the only possible new

connection to the left side has to occur after the

intersection of these two, minimality of γl is not

challenged and we can easily spot the “surgery-

box” as the point where γ′t(ω
′) and γ′l(ω

′) meet.

Subcase (1b): This case is similar, but there

is a subtle difference in the surgery done. Since

k = L, if we follow through as the previous case, the minimality of γl in the changed
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configuration would not go unchallenged as before. But γt would not face such a problem,

and after the same surgery (although the restrictions in the previous surgery can be

relaxed slightly, we do not state them for the sake of simplicity), we will be able to

detect the “surgery-box” as the unique vertex on γt which is connected to the left side

without using any of the edges of γt. The uniqueness is again implicit from the fact

that γt(ω) is not connected to the right side and the only connection comes through the

intersection point with the old γl, which we might not identify completely now.

Case 2: Case 1 can be generalized for any one of the four variables instead of i, and

hence without loss of generality, we will assume that none of the variable takes the value

N here along with the existing restriction i = T . Depending on whether l = R or l = L,

we again divide this into two sub-cases- each being akin to the respective sub-cases of

the previous case with γl and γb (instead of γt). The arguments remain exactly the

same.

After taking into account all the cases, we have

P[LR(bρnc, n) ∩ TD(bρnc, n) ∩A4(bρnc, n)c] ≤ 81C∗P[A4(bρnc, n)]

which finally yields P[A4(bρnc, n)] ≥ cρc1/ρ
(1+81C∗)

:= xρ.

The result above can be again generalized for some boundary segments instead of four

sides specifically, i.e. in the form :

Corollary 3.20. Let X1, X2, Y1, and Y2 be disjoint connected subsets on the four

boundary surfaces T (m,n), R(m,n), D(m,n) and L(m,n) of B(m,n) respectively. Then

P
[
∃ an open cluster inside B(m,n) connected to each X1, X2, Y1 and Y2

]
≥ 1

1 + 81C∗
· P
[
X1

B(m,n)←→ Y1, X2
B(m,n)←→ Y2

]
(3.24)

The following result provides a lower bound for a certain crossing probability of annulus.

For positive integers m ≤ n, let B′(n) = [−n, n]2×{0, . . . , k}d−2 be the box of side length

2n in Sk,d centered at 0, and S(n) be B′(n) \ B′(n − 1), the inner boundary of B′(n).

Also let An(m,n) = B′(n) \ B′(m − 1) be the annulus of side lengths 2m and 2n and

Z(m,n) = {S(m)←→ S(n)}.

Corollary 3.21. lim sup
n→∞

P[Zn,ρn] ≥ 1/
√
ρ for any ρ > 1.

Proof. We will prove the result for ρ = 2 since the proof for any other ρ will be identical.

Let us denote lim sup
n→∞

P[Zn,2n] by c0. For any m < n, we have
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P[

n
m
−1⋃

k=0

{z′k +B′(m) is connected by two disjoint paths to z′k +B′(n)}] ≥ p(2n, 2n) ≥ c,

where z′k = (n, 2km + m), since we know, by Theorem 3.1, p(n, n) ≥ c for some c > 0.

The left-hand side here can be bounded from above by d(n/m)eP[S(m) ←→ S(n)]2,

using union bound first and then by virtue of BK inequality and translation invariance

of P, which culminates to:

P[S(m)←→ S(n)] ≥
√
cm/n. (3.25)

Now we will bound this quantity from above by existence of open paths in each annulus

A(i) = B′(2im) \ B′(2i−1m) for i ∈ {1, 2, . . . blog2(n/m)c}. Fix any ε > 0, for m large

enough we have:

√
cm/n ≤ P[S(m)←→ S(n)] ≤

blog2(n/m)c∏
i=1

P[Z2i−1,2i ] ≤ (c0+ε)blog2(n/m)c ≤ (2m/n)log1/2(c0+ε).

Since this holds true for arbitrarily large n, we must have log1/2(c0 + ε) ≤ 1/2, otherwise

the reverse would hold true for large enough n. So c0 + ε ≥ 1/
√

2 for any choice of ε and

that completes our proof for ρ = 2.

Remark 3.22. Only two prerequisites yield us the Corollary 3.21. First one is that

lim sup
n→∞

P[Z(n, ρn)] < 1 holds for some ρ > 1 and second one is lim inf
n→∞

p(n, n) > 0 holds.

The dimension or quasi-planarity is not used in the following proof, and as a result,

when these results hold true (for any dimension), so does this corollary.

Moreover, we can do away with the assumption that lim inf
n→∞

p(n, n) > 0 since we know

lim inf
n→∞

p(bαnc, n) > 0 fo α < 1. If we substitute squares in the proof with rectangles

of aspect ratio α, we can prove the same result, only altering the other assumption to

lim sup
n→∞

P[Z(n, ραn)] < 1 for some α < 1 instead.



Chapter 4

Incipient Infinite Cluster and

Quasi-multiplicativity of

connections

4.1 Introduction

We have discussed in Chapter 2 that Kesten [K86a] gave a first mathematically rigorous

construction of an incipient infinite cluster (IIC) for Bernoulli critical percolation on Z2.

This was obtained in two ways. The first way was to condition on an open path from

the origin to the boundary of a large box at criticality and increasing the size of the

box to infinity. The second way was to condition on the origin being in an infinite open

cluster for supercritical percolation (say with parameter p) and letting p↘ pc, where pc

is the critical threshold for Z2. Both of these probability measures were shown to exist

and coincide. This measure (known as IIC measure) is supported on the configurations

with an infinite open cluster at the origin.

Later, versions of the incipient infinite cluster were shown to exist on Zd with sufficiently

high dimension [HJ04, HHH14a], but the tools used are completely different. In fact,

it is still an open problem to show the existence of either of the definitions of Kesten’s

IIC measure on Zd for d ≥ 3 (for a partial progress in high-dimensions see [HHH14a,

Theorem 1.2]).

In this chapter, we will first prove the existence of IIC measure on a general class

of infinite connected bounded degrees graphs whenever they satisfy two prerequisite

criteria. One of them is known to be true for Zd and Sk,d, and the other one is expected

to be true for low dimension d < 6. More importantly we will then prove that the slabs

74
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Sk,d = Z2 × {0, . . . , k}d−2 indeed satisfy the second criteria and thus Kesten’s IIC is

well-defined for slabs.

4.2 Notation and Results

Let G be an infinite connected bounded degrees graph with a vertex set V . Let ρ be the

graph metric on V , and define for v ∈ V and positive integers m ≤ n,

Q(v, n) = {x ∈ V : ρ(v, x) ≤ n}, S(v, n) = {x ∈ V : ρ(v, x) = n},

A(v,m, n) = Q(v, n) \Q(v,m− 1).

Consider Bernoulli bond percolation on G with parameter p ∈ [0, 1] and denote the

corresponding probability measure by Pp. The open cluster of v ∈ V is denoted by

C(v). Let pc be the critical threshold for percolation, i.e., for v ∈ V ,

pc = inf {p : Pp[|C(v)| =∞] > 0} .

For x, y ∈ V and X,Y, Z ⊂ V , we write x
Z←→ y if there is a nearest neighbour path of

open edges from x to y such that all its vertices are in Z, x
Z←→ Y if there exist y ∈ Y

such that x
Z←→ y and X

Z←→ Y , if there exist x ∈ X such that x
Z←→ Y . If Z = V ,

we omit Z from the notation. We use = instead of ←→ to denote complements of the

respective events.

We are interested in the existence and equality of the limits

lim
n→∞

Ppc [E | w ←→ S(w, n)] and lim
p↘pc

Pp [E | |C(w)| =∞] , (4.1)

where E is a cylinder event. The question is highly non-trivial if Ppc [|C(w)| =∞] = 0.

The seminal result of Kesten [K86a, Theorem (3)] states that if G is from a class of two

dimensional graphs, such as Z2, then the above two limits exist and have the same value

νG,w(E). By Kolmogorov’s extension theorem, νG,w extends uniquely to a probability

measure on configurations of edges, which is often called Kesten’s incipient infinite

cluster measure. It is immediate that νG,w[|C(w)| = ∞] = 1. Kesten’s argument is

based on the existence of an infinite collection of open circuits around w in disjoint

annuli and the properties that

(a) each path from w to infinity intersects every such circuit, and

(b) by conditioning on the innermost open circuit in an annulus, the occupancy con-

figuration in the region not surrounded by the circuit is still an independent Bernoulli

percolation.
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These properties are no longer valid when one considers higher dimensional lattices. A

partial progress, as we have mentioned earlier, has been recently made in sufficiently

high dimensions by Heydenreich, van der Hofstad and Hulshof [HHH14a, Theorem 1.2],

who showed using lace expansions the existence of the first limit in (4.1) under the

assumption that n2 Ppc [0 ←→ S(0, n)] converges. Concerning low dimensional lattices,

almost nothing is known there about critical and near critical percolation, and the

existence of Kesten’s IIC seems particularly hard to show. Several other constructions

of incipient infinite clusters are obtained by Járai [J03] for planar lattices and van der

Hofstad and Járai [HJ04] for high dimensional lattices.

The main result of this chapter is the existence and the equality of the two limits in

(4.1) for graphs satisfying two assumptions: (A1) uniqueness of the infinite open cluster

and (A2) quasi-multiplicativity of crossing probabilities. While (A1) is satisfied by many

amenable graphs, most notably Zd, (A2) can be expected only in low dimensional graphs.

For instance, we argue below that (A2) holds for Zd if and only if d < 6. In our second

result, we prove that (A2) is satisfied by slabs Sk,d (d ≥ 2, k ≥ 0), thus showing for these

graphs the existence and equality of the limits in (4.1). We now state the assumptions

and the main result, and then comment more on the assumptions.

(A1) (Uniqueness of the infinite open cluster) For any p ∈ [0, 1] there exists almost

surely at most one infinite open cluster.

(A2) (Quasi-multiplicativity of crossing probabilities) Let v ∈ V and δ > 0. There exists

c∗ > 0 such that for any p ∈ [pc, pc+δ], integer m > 0, a finite connected set Z ⊂ V
such that Z ⊇ A(v,m, 4m), and sets X ⊂ Z ∩Q(v,m) and Y ⊂ Z \Q(v, 4m),

Pp[X
Z←→ Y ] ≥ c∗ · Pp[X Z←→ S(v, 2m)] · Pp[Y Z←→ S(v, 2m)]. (4.2)

Theorem 4.1. Assume that the graph G satisfies the assumptions (A1) and (A2) for

some choice of v ∈ V and δ > 0. Then, for any cylinder event E, the two limits in (4.1)

exist and have the same value.

If the assumptions (A1) and (A2) are satisfied at p = pc, then the first limit in (4.1)

exists.

Before we discuss the strategy of the proof, let us comment on the assumptions.

4.2.1 Comments on (A1):

1. (A1) is satisfied by many sufficiently regular (e.g., vertex transitive) amenable

graphs, most notably lattices Zd and slabs Z2 × {0, . . . , k}d−2 (d ≥ 2, k ≥ 0), see,

e.g., [BS96].
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2. (A1) is equivalent to the assumption that for some δ > 0 there exists at most one

infinite open cluster for any fixed p ∈ [pc, pc+δ]. Indeed, if for a given p the infinite

open cluster is unique almost surely, then the same holds for any p′ > p, see, e.g.,

[HP99, S99].

3. For v ∈ V and m ≤ n, let E1(v,m, n) = {S(v,m)←→ S(v, n)} and E2(v,m, n) the

event that in the annulus A(v,m, n) there are at least two disjoint open crossing

clusters.

Assumption (A1) is equivalent to the following one, which will be used in the proof

of Theorem 4.1: For any v ∈ V , ε > 0 and m ∈ N, there exists n > 4m such that

sup
p∈[0,1]

Pp [E2(v,m, n)] < ε (4.3)

or, equivalently,

sup
p∈[0,1]

Pp [E2(v,m, n) | E1(v,m, n)] < ε. (4.4)

The equivalence of the claims (4.3) and (4.4) follows from the inequalities

Pp [E2(v,m, n)] ≤ Pp [E2(v,m, n) | E1(v,m, n)] ≤ Pp [E2(v,m, n)]
1
2 ,

where the second one is a consequence of the BK inequality.

It is elementary to see that (4.3) implies (A1). On the other hand, if (4.3) does

not hold, then there exist v0 ∈ V , ε0 > 0 and m0 ∈ N such that for all n > 4m0,

supp∈[0,1] Pp [E2(v0,m0, n)] ≥ ε0. The function Pp [E2(v0,m0, n)] is continuous in

p ∈ [0, 1] and monotone decreasing in n. Thus, there exists p0 ∈ [0, 1] such that

Pp0 [E2(v0,m0, n)] ≥ ε0 for all n > 4m0. By passing to the limit as n → ∞, we

conclude that for p = p0, with positive probability there exist at least two infinite

open clusters and (A1) does not hold.

4.2.2 Comments on (A2):

4. It follows from the Russo-Seymour-Welsh Theorem [R78, SW78] that (A2) holds

for two dimensional graphs, such as Z2, considered by Kesten in [K86a]. Russo-

Seymour-Welsh ideas have been recently extended to slabs in [NTW15, BS15],

after the absence of percolation at criticality in slabs was proved by Duminil-

Copin, Sidoravicius and Tassion [DCST16]. In Lemma 4.4 of the present paper

we prove that (A2) is fulfilled by slabs Z2 × {0, . . . , k}d−2 (d ≥ 2, k ≥ 0), thus

verifying the existence and equality of the limits (4.1) for slabs.

5. We believe that assumption (A2) holds for lattices Zd if d < 6, but does not hold

if d > 6. Dimension dc = 6 is called the upper critical dimension above which the
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percolation phase transition should be described by mean-field theory, see, e.g.,

[CC87]. This was rigorously confirmed in sufficiently high dimensions by Hara and

Slade [HS90, H08].

It is easy to see that the mean-field behavior excludes (A2). Indeed, it is believed

that above dc, the two point function decays as

Ppc [x←→ y] � (1 + ρ(x, y))2−d.

(Here f(z) � g(z) if for some c, cf(z) ≤ g(z) ≤ c−1f(z) for all z.) Hara [H08]

proved it rigorously in sufficiently high dimensions. Given this asymptotics, Aizen-

man showed in [A97, Theorem 4(2)] that for all m(n) ≤ n such that m(n)

n2/(d−4) →∞,

Ppc [S(0,m(n))←→ S(0, n)]→ 1, as n→∞,

and Kozma and Nachmias [KN11] that Ppc [0←→ S(0, n)] � n−2. Thus, the in-

equality

Ppc [0←→ S(0, n)] ≥ cPpc [0←→ S(0,m(n))]Ppc [S(0,m(n))←→ S(0, n)]

cannot hold for large n.

The situation below dc is much more subtle. With the exception of d = 2, where

planarity helps enormously, the (near-)critical behavior below dc is widely un-

known. Let us nevertheless give a few words about why we think (A2) should

hold below dc. It is believed that the number of clusters crossing any annulus

A(0,m, 2m) is bounded uniformly in m if d < dc and grows at p = pc like md−6

above dc, with log-correction for d = dc, and this dichotomy is intimately linked to

the transition at dc from the hyperscaling to the mean-field; see [C85, BCKS99].

Thus, it would be not unreasonable to expect that below dc,

Pp[∃! crossing cluster of A(0,m, 2m) | X Z←→ S(0, 2m), Y
Z←→ S(0,m)] ≥ c > 0,

which is enough to establish (A2). We are not able to prove it yet or give a simpler

sufficient condition for it. It would already be very nice if, for instance, (A2) was

derived from the assumption that Pp[∃! crossing cluster of A(0,m, 2m)] ≥ c, or

from the assumptions of [BCKS99].

4.2.3 Sketch of proof for Theorem 4.1

We finish the introduction with a brief description of the proof of Theorem 4.1. Our proof

follows the general scheme proposed by Kesten in [K86a] by attempting to decouple the
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configuration near w from infinity on multiple scales. The implementations are however

rather different.

• Using (4.4) we identify a sufficiently fast growing sequence Ni such that given

w ←→ S(w, n), the probability that the annulus A(w,Ni, Ni+1) ⊂ Q(w, n) con-

tains a unique crossing cluster is asymptotically close to 1; see (4.6).

• Next, let an annulus A(w,Ni, Ni+1) contain a unique crossing cluster. We explore

all the open clusters in this annulus that intersect the interior boundary S(w,Ni),

call their union Ci, and let Di be the subset of S(w,Ni+1 +1) of vertices connected

by an open edge to Ci; see (4.7).

• Then, the configuration outside Ci is distributed as the original independent per-

colation and every vertex from Di is connected by an edge to the same (crossing)

cluster from Ci. Thus, w ←→ S(w, n) if and only if

(a) w is connected to Di (this event only depends on the edges intersecting

S(w,Ni) ∪ Ci),

(b) Di is connected to S(w, n) outside Ci (this only depends on the edges outside

Ci).

• This allows to factorize Pp[E, w ←→ S(w, n)]; see (4.8). The rest of the proof is

essentially the same as that of Kesten [K86a]. We repeat the described factorization

on several scales, obtaining in (4.10) an approximation of Pp[E|w ←→ S(w, n)] in

terms of products of positive matrices.

• Finally, we use (A2) to prove that the matrix operators are uniformly contracting,

which is enough to conclude the proof; see (4.11) and the text below.

4.3 Proof of Theorem 4.1

We will prove the first claim of the theorem. The proof of the second one follows from

the proof below by replacing everywhere p by pc. The general outline of the proof is the

same as the original one of Kesten [K86a, Theorem (3)], but the choice of scales and the

decoupling are done differently.

First of all, it suffices to prove that for any w ∈ V and a cylinder event E,

Pp[E|w ←→ S(w, n)] converges to some νp(E) uniformly on [pc, pc + δ] for some δ > 0.

(4.5)



IIC and Quasi-multiplicativity 80

Indeed, (4.5) implies the existence of the first limit in (4.1) and that νp(E) is continuous.

Since for any p > pc, νp(E) = Pp[E | |C(w)| = ∞], the existence of the second limit in

(4.1) and its equality to the first one follows from the continuity of νp(E).

Actually, by the inclusion-exclusion formula, it suffices to prove (4.5) for all events E of

the form {edges e1, . . . , ek are open}. Although our proof could be implemented for any

cylinder event E, calculations are neater for increasing events.

Fix w ∈ V and an increasing event E. Also fix v ∈ V and δ > 0 for which the

assumption (A2) is satisfied. Consider a sequence of scales Ni such that Ni+1 > 4Ni

for all i, Q(v,N0) contains w and the states of its edges determine E. We will write

Bi = Q(v,Ni), Si = S(v,Ni) and Ai = A(v,Ni, Ni+1). Let Fi be the event that there

exists a unique open crossing cluster in Ai. Define

εi = sup
p∈[pc,pc+δ]

Pp [F ci | Si ←→ Si+1] .

By (4.4), we can choose the scales Ni so that εi → 0 as i→∞.

We first note that for n > Ni+1 +N0,

Pp[w ←→ S(w, n), F ci ] ≤ c−2
∗ εi · Pp[w ←→ S(w, n)], (4.6)

where c∗ is the constant in the assumption (A2). Indeed, by independence,

Pp[w ←→ S(w, n), F ci ] ≤ Pp[w ←→ Si] · Pp[Si ←→ Si+1, F
c
i ] · Pp[Si+1 ←→ S(w, n)]

≤ εi · Pp[w ←→ Si] · Pp[Si ←→ Si+1] · Pp[Si+1 ←→ S(w, n)]

≤ c−2
∗ εi · Pp [w ←→ S(w, n)] ,

where the last inequality follows from the assumption (A2).

We begin to describe the main decomposition step. Consider the random sets

Ci =

{
x ∈ Q(v,Ni+1) : x

Q(v,Ni+1)←→ Q(v,Ni)

}
,

Di = {x ∈ S(v,Ni+1 + 1) : ∃ y ∈ Ci, a neighbour of x, such that edge 〈x, y〉 is open} .
(4.7)

Note that Ci contains Q(v,Ni), the event {Ci = U} depends only on the states of

edges in Q(v,Ni+1) with at least one end-vertex in U , and either {Ci = U} ⊂ Fi or

{Ci = U} ∩ Fi = ∅. Also note that the event {Ci = U, Di = R} depends only on the

states of edges in Q(v,Ni+1 + 1) with at least one end-vertex in U .

For any U ⊂ Q(v,Ni+1) and R ⊂ S(v,Ni+1 + 1), consider the event

Fi(U,R) = {Ci = U, Di = R},
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and let Πi be the collection of all such pairs (U,R) that {Ci = U} ⊂ Fi and Fi(U,R) 6= ∅.

Then Fi = ∪(U,R)∈ΠiFi(U,R), and for all n > Ni+1 +N0,

Pp [E,w ←→ S(w, n), Fi] =
∑

(U,R)∈Πi

Pp [E,w ←→ S(w, n), Fi(U,R)]

=
∑

(U,R)∈Πi

Pp [E,w ←→ Si+1, Fi(U,R)] · Pp
[
R

Q(w,n)\U←→ S(w, n)

]
.

Together with (4.6), this gives the inequality

∣∣∣Pp [E,w ←→ S(w, n)]−
∑

(U,R)∈Πi

Pp [E,w ←→ Si+1, Fi(U,R)]·Pp
[
R

Q(w,n)\U←→ S(w, n)

] ∣∣∣
≤ c−2
∗ εi · Pp[w ←→ S(w, n)] ≤ c−2

∗ εi
Ppc [E]

· Pp[E,w ←→ S(w, n)], (4.8)

where the last step follows from the FKG inequality, since E is increasing. Define the

constant C∗ = (c2
∗ Ppc [E])−1 and for (U,R) ∈ Πi, let

u′p(U,R) = Pp [E,w ←→ Si+1, Fi(U,R)] ,

u′′p(U,R) = Pp [w ←→ Si+1, Fi(U,R)] ,

γp(U,R, n) = Pp
[
R

Q(w,n)\U←→ S(w, n)

]
.

In this notation, (4.8) becomes

(1− C∗εi) ≤

∑
(U,R)∈Πi

u′p(U,R) γp(U,R, n)

Pp [E,w ←→ S(w, n)]
≤ (1 + C∗εi) ,

and by replacing E above with the sure event, we also get

(1− C∗εi) ≤

∑
(U,R)∈Πi

u′′p(U,R) γp(U,R, n)

Pp [w ←→ S(w, n)]
≤ (1 + C∗εi) .

Now we iterate. Let (U,R) ∈ Πi. We can apply a similar reasoning as in (4.6) and (4.8)

to γp(U,R, n) and obtain that for any j > i+ 2 and n > Nj+1 +N0,

∣∣∣γp(U,R, n)−
∑

(U ′,R′)∈Πj

Pp
[
R

Bj+1\U←→ Sj+1, Fj−1, Fj(U
′, R′)

]
· γp(U ′, R′, n)

∣∣∣
≤ c−2
∗ (εj−1 + εj) · γp(U,R, n). (4.9)
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For j > i+ 2, (U,R) ∈ Πi and (U ′, R′) ∈ Πj , define

Mp(U,R; U ′, R′) = Pp
[
R

Bj+1\U←→ Sj+1, Fj−1, Fj(U
′, R′)

]
.

Then (4.9) becomes

(1− c−2
∗ (εj−1 + εj)) γp(U,R, n) ≤

∑
(U ′,R′)∈Πj

Mp(U,R; U ′, R′) γp(U
′, R′, n)

≤ (1 + c−2
∗ (εj−1 + εj)) γp(U,R, n).

Iterating further gives that for any ε > 0 and s ∈ N, there exist indices i1, . . . , is such

that ik+1 > ik + 2 and for all n > Nis+1 +N0,

e−ε Pp [E |w ←→ S(w, n)] ≤∑
u′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , Us, Rs) γp(Us, Rs, n)∑
u′′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , Us, Rs) γp(Us, Rs, n)

≤ eε Pp [E |w ←→ S(w, n)] , (4.10)

where the two sums are over (U1, R1) ∈ Πi1 , . . . , (Us, Rs) ∈ Πis .

We will prove that (A2) implies that there exists κ such that for all i, j > i+ 2, all pairs

(U1, R1), (U2, R2) ∈ Πi, (U ′1, R
′
1), (U ′2, R

′
2) ∈ Πj , and all p ∈ [pc, pc + δ],

Mp(U1, R1; U ′1, R
′
1)Mp(U2, R2; U ′2, R

′
2)

Mp(U1, R1; U ′2, R
′
2)Mp(U2, R2; U ′1, R

′
1)
≤ κ2. (4.11)

(This is an analogue of [K86a, Lemma (23)].) If so, then we can use Hopf’s contraction

property of multiplication by positive matrices as in [K86a, pages 377-378]1 to conclude

from (4.10) that there exists ξ ≤ 1, which depends on E, p, and the scales i1, . . . , is,

such that for all n > Nis+1 +N0,

e−ε

(
ξ −

(
κ− 1

κ+ 1

)s−1
)
≤ Pp [E |w ←→ S(w, n)] ≤ eε

(
ξ +

(
κ− 1

κ+ 1

)s−1
)
. (4.12)

It follows from (4.12) and the fact that ξ ≤ 1 that for any m,n > Nis+1 + N0 and

p ∈ [pc, pc + δ],

∣∣∣Pp [E |w ←→ S(w,m)]−Pp [E |w ←→ S(w, n)]
∣∣∣ ≤ (eε − e−ε)+(eε + e−ε

)(κ− 1

κ+ 1

)s−1

,

1There is a mathematical typo in the first inequality on [K86a, page 378] – osc(u′, u′′) is missing.
However, one can show using RSW techniques that the missing term there is bounded from above by
a constant independent of j1, and the remaining argument goes through. In our case, the situation is
simpler, since for our choice of u′ and u′′, osc(u′, u′′) ≤ 1.
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which implies (4.5).

It remains to prove (4.11). Let j > i+ 2. Consider the random sets

Xj =

{
x ∈ Aj−1 : x

Aj−1←→ Sj

}
,

Yj =

{
y ∈ S(v,Nj−1− 1) : ∃x ∈ Xj , a neighbour of y, such that 〈x, y〉 is open

}
.

Note that Xj contains Sj , the event {Xj = X} depends only on the states of edges in Aj−1

with at least one end-vertex in X, and either {Xj = X} ⊂ Fj−1 or {Xj = X}∩Fj−1 = ∅.
Also note that the event {Xj = X, Yj = Y } depends only on the states of edges in Bj

with at least one end-vertex in X. For any X ⊂ Aj−1 and Y ⊂ S(v,Nj−1 − 1), consider

the event

Gj(X,Y ) = {Xj = X, Yj = Y },

and let Γj be the collection of all such pairs (X,Y ) that {Xj = X} ⊂ Fj−1 and

Gj(X,Y ) 6= ∅. Then Fj−1 = ∪(X,Y )∈ΓjGj(X,Y ) and for any (U,R) ∈ Πi, (U ′, R′) ∈ Πj ,

Mp(U,R; U ′, R′) =
∑

(X,Y )∈Γj

Pp
[
R

Bj\(X∪U)←→ Y

]
· Pp

[
Gj(X,Y ), Fj(U

′, R′), Y ←→ R′
]
.

By the assumption (A2),

c∗ ≤
Pp
[
R

Bj\(X∪U)←→ Y

]
Pp
[
R

Q(v,2Ni+1)\U←→ S(v, 2Ni+1)

]
· Pp

[
S(v, 2Ni+1)

Bj\X←→ Y

] ≤ 1.

This easily implies (4.11) with κ = c−1
∗ . The proof of Theorem 4.1 is complete.

Remark 4.2. Instead of conditioning on the events {w ←→ S(w, n)}, one could instead

condition on the generalized event ensuring long connections and obtain the same limit

in the following way. Let Zn be any finite connected set containing Q(w, n) and fn be

one of the interior boundary edges of Zn. We will have, for any cylinder event E,

lim
n→∞

P[E|w Zn←→ fn] = νw[E], (4.13)

the same limits as in (4.1). We can also generalize this to a set of edges Yn instead of

one, and the set (or the edge) need not even be in the boundary. We will obtain the

same limits as in (4.1) as long as Yn ⊂ Zn \Q(w, n). This is immediate after observing

that Pp[E|w Zn←→ Yn] satisfies inequalities (4.12).
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4.4 Quasi-multiplicativity for slabs

In this section we prove that the assumption (A2) is fulfilled by slabs Sk,d for any d ≥ 2

and k ≥ 0 and for any δ > 0 such that pc + δ < 1, thus proving

Theorem 4.3. The two limits in (4.1) exist and coincide for Z2 × {0, . . . , k}d−2

(for any d ≥ 2, k ≥ 0).

Fix d ≥ 2 and k ≥ 0. For positive integers m ≤ n, let B′(n) = [−n, n]2 × {0, . . . , k}d−2

be the box of side length 2n in Sk,d centered at 0, ∂B′(n) = B′(n) \B′(n− 1) the inner

boundary of B′(n), and An(m,n) = B′(n) \ B′(m − 1) the annulus of side lengths 2m

and 2n. We will prove the following lemma.

Lemma 4.4. Let d ≥ 2 and k ≥ 0. Let δ > 0 such that pc + δ < 1. There exists c > 0

such that for any p ∈ [pc, pc + δ], integer m > 0, any finite connected Z ⊂ Sk,d such that

Z ⊇ An(m, 3m), and any X ⊂ Z ∩B′(m) and Y ⊂ Z \B′(3m),

Pp[X
Z←→ Y ] ≥ c · Pp[X Z←→ ∂B′(2m)] · Pp[Y Z←→ ∂B′(2m)]. (4.14)

To see that Lemma 4.4 implies (A2), note that it suffices to prove (4.2) for m ≥ m0 and

sufficiently large m0. One can choose m0 = m0(d, k) large enough so that A(0,m, 4m) ⊃
An(m, 3m). Thus, Lemma 4.4 implies (A2).

Before proving Lemma 4.4, we will state and prove an easier variant of it at the critical

regime p = pc. We denote Ppc by P.

Lemma 4.5. There exists c > 0 such that for any integers n/2 ≥ k ≥ 2m ≥ 4

P[∂B′(m)←→ ∂B′(n)] ≥ c · P[∂B′(m)←→ ∂B′(k)] · P[∂B′(k)←→ ∂B′(n)]. (4.15)

Let us recall Remark 3.8. For two “smooth” polygons P1, P2 with vertices from Z2

having regions Pij (for i, j ∈ {1, 2}), which are disjoint connected subset of the interior

vertex boundary of Pi, if any two open paths γi connecting Pi1 to Pi2 in Pi (for i = 1, 2)

necessarily have an intersection point z, then

P[P11
P1∪P2←→ P22] ≥ c∗ · P[P11

P1←→ P12]P[P21
P2←→ P22]. (4.16)

By “smooth” polygon, we mean simple polygon that can be represented as a finite union

of rectangles with both dimensions ≥ 6. Since Theorem 3.1 tells us that probability

of left-right crossing of a rectangular box is uniformly bounded from below by a non-

negative constant depending only on the aspect ratio of it, we can create long connections

in polygons with uniformly positive probability as well.
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Proof of lemma 4.5: Let us recall, for A ⊂ Z2, we defined A = A × {0, 1, . . . , k}d−2

and call the segment {k} × [0, k] of ∂B′(k) by Z(k). Symmetry dictates that

P[∂B′(u)
An(u,v)←→ Z(v)] ≥ P[∂B′(u)←→ ∂B′(v)]/8 for any integers u < v. Our aim is to

B′(n)

E1

E2

B′(m)

T (k)

Z(k)

B′(k)
B′(k + 1)

Figure 4.1: Quasimultiplicativity

glue two paths in {∂B′(m)
An(m,k)←→ Z(k)} and

{Z(k)
An(k,n)←→ ∂B′(n)} with the help of a open path

in a “tunnel” around Z(k) as we did in Figure 3.13.

The shape of this “tunnel” T (k) is given by the

union of following five rectangular boxes (See Fig-

ure 4.1 ):

• [k/2, 3k/4]× [−k/4, k]

• [k/2, 3k/2]× [−k/4, 0]

• [5k/4, 3k/2]× [−k/4, 3k/2]

• [3k/4, 3k/2]× [5k/4, 3k/2]

• [3k/4, k]× [k + 1, 3k/2]

We mark two “ends” of this tunnel

E1 = [k/2, 3k/4]× {k}, and E2 = [3k/4, k]× {k + 1}.

By repeated use of RSW theorem 3.1 and (4.16), we glue open paths in the aforemen-

tioned five constituent rectangular boxes, and obtain, for some cT > 0, P[E1
T (k)←→ E2] ≥

cT . Glueing this event with {∂B′(m)
An(m,k)←→ Z(k)} yields:

P[∂B′(m)
An(m,k)∪T (k)←→ E2] ≥ c∗cTP[∂B′(m)←→ ∂B′(k)]

8
.

The next step is glueing this modified event with the event {Z(k+ 1)
An(k+1,n)←→ ∂B′(n)}

to obtain

P[∂B′(m)
An(m,n)←→ ∂B′(n)] ≥ c∗

2cTP[∂B′(m)←→ ∂B′(k)]P[∂B′(k + 1)←→ ∂B′(n)]

64
.

This yields (4.15) with c = c∗2cT
64 .

Remark 4.6. Given any δ < 1−pc, this result will also hold true uniformly for p ∈ [pc, pc+

δ]. This happens since by monotonicity Pp[E1
T (k)←→ E2] ≥ Ppc [E1

T (k)←→ E2] ≥ cT and the

rest follows through with a slightly different constant c′∗ = 1
1+3C′∗

(Recall Section 3.3)

where

C ′∗ =

(
2

min(pc(Sk,d), 1− pc(Sk,d)− δ)

)d·72·(k+1)d−2

.
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We will furnish the proof of Lemma 4.4 now as promised. Its major improvement lies

in doing away with the ’shape’ of the region (the regions need not be rectangular, or

even “glueing-friendly” as mentioned in Remark 3.8) and the only requirement being

reasonable amount of space between the regions which are being connected, to split one

long path into two (albeit at the cost of a universal constant).

Proof of Lemma 4.4. Instead of (4.14), it suffices to prove that there exists c > 0

such that for any m > 0, any finite connected Z ⊂ Sk,d such that Z ⊇ An(m, 2m), and

any X ⊂ Z ∩Q(m) and Y ⊂ Z \Q(2m),

Pp[X
Z←→ Y ] ≥ c · Pp[X Z←→ B′(3m)] · Pp[B′(2m)

Z←→ Y ]. (4.17)

Indeed, for Z as in the statement of the lemma, by (4.17),

Pp[X
Z←→ B′(3m)] ≥ c · Pp[X Z←→ B′(2m)] · Pp[∂B′(

4

3
m)

Z←→ ∂B′(3m)],

and Pp[∂B′(4
3m)

Z←→ ∂B′(3m)] ≥ Ppc [∂B′(4
3m) ←→ ∂B′(3m)] ≥ c > 0, an immediate

corollary of RSW Theorem 3.1.

We proceed to prove (4.17). Let Em be the event that there exists an open circuit

(nearest neighbour path with the same start and end points) around B′(2m) contained

in An(2m, 3m). It is shown in [NTW15, Corollary 3.2.1] that Pp[Em] ≥ Ppc [Em] > c > 0

for some c > 0 independent of m. Thus, by the FKG inequality,

Pp[X
Z←→ B′(3m), Y

Z←→ B′(2m), Em] ≥ c · Pp[X Z←→ B′(3m)] · Pp[Y Z←→ B′(2m)].

Consider an arbitrary deterministic ordering of all circuits in Sk,d. We describe one of the

ordering following [NTW15, Definition before theorem 3.8] for the sake of completeness.

We first order the vertices and then classify the circuits on the basis of the minimal vertex

they contain. We interpret the circuit as a self avoiding path starting from that minimal

vertex, having the “smaller” edge out of two edges emanating from the minimal vertex

chosen as the first edge of the path, and we already know a way to order these self-

avoiding paths from Chapter 3. For a configuration in Em, let Γ be the minimal (with

respect to this ordering) open circuit around B′(2m) contained in An(2m, 3m).

Recall that for A ⊂ Sk,d, we defined A := {z ∈ Z2 : {z} ∩A 6= φ}. Note that

Pp[X
Z←→ B′(3m), Y

Z←→ B′(2m), Em] ≤ Pp[X
Z←→ Γ, Y

Z←→ Γ, Em].



IIC and Quasi-multiplicativity 87

Thus, to prove (4.17), it suffices to show that for some C <∞,

Pp[X
Z←→ Γ, Y

Z←→ Γ, E] ≤ C · Pp[X Z←→ Y ].

This will be achieved using local modification arguments similar to those in [NTW15].

In fact, for the above inequality to hold, it suffices to show that for some C <∞,

Pp[X
Z←→ Γ, Y

Z←→ Γ, E,X
Z= Y ] ≤ C · Pp[ Z←→ Y ]. (4.18)

We write the event in the left hand side of (4.18) as the union of three subevents

satisfying additionally

(a)X
Z= Γ , Y

Z= Γ, (b)X
Z= Γ , Y

Z←→ Γ, (c)X
Z←→ Γ , Y

Z= Γ.

It suffices to prove that the probability of each of the three sub-events can be bounded

from above by C · Pp[X ←→ Y in Z].

Case (a): We prove that for some C <∞,

Pp

[
X

Z←→ Γ, Y
Z←→ Γ, Em, X

Z= Y,

X
Z= Γ, Y

Z= Γ

]
≤ C · Pp[X Z←→ Γ

Z←→ Y ] ≤ C · Pp[X Z←→ Y ].

(4.19)

Denote by Ga the event on the left hand side.

We will again construct a map f : Ga → {X Z←→ Γ
Z←→ Y } to invoke Lemma 3.4. Let

us call a map f : Ga → {X ←→ Y in Z} D-good if

(1) For each ω ∈ Ga, ω and f(ω) differ in at most D edges,

(2) At most 2D many configurations ω can be mapped to the same configuration, i.e.,

for each ω ∈ Ga, |{ω′ ∈ Ga : f(ω′) = f(ω)}| ≤ 2D.

By Lemma 3.4, if we can construct a D-good map, the desired inequality is satisfied with

C = 2D

min(pc,1−pc−δ))D for p ∈ [pc, pc + δ]

Take a configuration ω ∈ Ga. Let U(ω) be the set of all points u ∈ Γ such that u is

connected to X in Z by an open self-avoiding path πu that from the first step on does

not visit {u}. Similarly, let V (ω) be the set of all points v ∈ Γ such that v is connected

to Y in Z by an open self-avoiding path πv that does not visit {v} after the first step.

Subcase (a1): Assume first that we can choose u ∈ U(ω) and v ∈ V (ω) such that

{u} = {v}. For such ω’s, the configuration f(ω) is defined as follows. We
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(a) close all the edges with an end-vertex in {u} except for the (unique) edge of πu,

the (unique) edge of πv, and the edges belonging to Γ,

(b) open all the edges in {u} that belong to one of the shortest paths ρ (unique line

segment if d = 3) between u and Γ in {u},

(c) open all the edges in {u} that belong to one of the shortest paths between v and

Γ ∪ ρ in {u}.

Notice that ω and f(ω) differ in at most 2d (k + 1)d−2 edges. Moreover, since u, v, and

Γ are all in different open clusters in ω, after connecting them by simple open paths

as in (b) and (c), no new open circuits are created. Thus, the set {u} can be uniquely

reconstructed in f(ω) as the unique set of the form {z} where X (and Y ) is connected

to Γ.

Subcase (a2): Assume next that U(ω)∩V (ω) = ∅. Choose u ∈ U(ω) and v ∈ V (ω).

Note that {u} is not connected to Y in Z and {v} is not connected to X in Z. The

configuration f(ω) is defined as follows. We

(a) close all the edges with an end-vertex in {u} ∪ {v} except for the edges of πu, πv,

and Γ,

(b) open all the edges in {u} that belong to one of the shortest paths between u and

Γ in {u},

(c) open all the edges in {v} that belong to one of the shortest paths between v and

Γ in {v}.

Notice that ω and f(ω) differ in at most 4d (k+1)d−2 edges. Step (a) of the construction

does not alter the paths πu and πv. Finally, since u, v, and Γ are all in different open

clusters in ω, after connecting u, v, and Γ by simple open paths as in (b) and (c), no

new open circuits are created. Thus, the set {u} ∪ {v} can be uniquely reconstructed in

f(ω) as the unique such set where X and Y are connected to Γ.

The constructed function f thus satisfies the condition stated with D = 4d (k + 1)d−2,

and the proof of (4.19) is complete.

Case (b): We prove that for some C <∞,

Pp

[
X

Z←→ Γ, Y
Z←→ Γ, E,X

Z= Y,

X
Z= Γ, Y

Z←→ Γ

]
≤ C · Pp[X Z←→ Γ

Z←→ Y ] ≤ C · Pp[X Z←→ Y ].

(4.20)
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Denote by Gb the event on the left hand side. As in Case (a), (4.20) will follow if we

construct a suitable D-good map f : Gb → {X Z←→ Y }.

Take a configuration ω ∈ Gb. Let U(ω) be the set of all points u ∈ Γ such that u is

connected to X in Z by an open self-avoiding path πu that does not visit {u} after the

first step.

Subcase (b1): We first assume that there exists u ∈ U(ω) such that Y is connected

to Γ in Z \ {u}. For such ω’s, we define f(ω) as follows. We

(a) close all the edges with an end-vertex in {u} except for the edges of πu and Γ,

(b) open all the edges in {u} that belong to one of the shortest paths between u and

Γ in {u}.

Notice that ω and f(ω) differ in at most 2d (k + 1)d−2 edges. Y is connected to Γ in

Z \ {u} in the configuration f(ω). Finally, since u and Γ are in different open clusters

in ω, after connecting u and Γ by a simple open path as in (b), no new open circuits are

created. Thus, the set {u} can be uniquely reconstructed in f(ω) as the unique such set

where X is connected to Γ.

Subcase (b2): Assume next that for any u ∈ U(ω), Y is not connected to Γ in

Z \ {u}. Take u ∈ U(ω). There exists v ∈ {u} such that v is connected to Y in Z by an

open self-avoiding path πv that from the first step on does not visit {v}. For such ω’s,

we define f(ω) exactly as in Subcase (a1). We

(a) close all the edges with an end-vertex in {u} except for the edges of πu, πv, and Γ,

(b) open all the edges in {u} that belong to one of the shortest paths ρ between u and

Γ in {u},

(c) open all the edges in {u} that belong to one of the shortest paths between v and

Γ ∪ ρ in {u}.

Notice that unlike in Subcase(a1), it is allowed here that v ∈ Γ, but this makes no

difference in the construction. Indeed, after closing edges as in (a1), Y remains connected

to Γ only if v ∈ Γ. Thus, after modifying ω according to (a1), either u, v, and Γ are

all in different open clusters or v ∈ Γ and the clusters of u and Γ are different. In both

cases, after connecting u, v, and Γ by simple open paths as in (b) and (c), no new open

circuits are created. Thus, the set {u} can be uniquely reconstructed in f(ω) as the

unique set of the form {z} where X (and Y ) is connected to Γ.
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The proof of (4.20) is complete, since the constructed function f satisfies the condition

stated with D = 2d (k + 1)d−2.

Since the proof of Case (c) is essentially the same as the proof of Case (b), we omit it.

Cases (a)-(c) imply (4.18). The proof of Lemma 4.4 is complete.

By independence, the complementary inequality also holds:

P[X
Z←→ Y ] ≤ P[X

Z←→ ∂B′(m)] · P[∂B′(m)
Z←→ Y ].

Obviously Lemma 4.5, the quasi-multiplicativity of square-boxes, is a special case of

Lemma 4.4.

Remark 4.7. (1) As a result of (4.13) and Theorem 4.3, we are able to apply a de-

coupling argument similar to the one used in the proof of Theorem 4.1 to extend

various results of Járai [J03] to slabs. For instance, we demonstrate in Chapter 5

that the local limit of the occupancy configurations around vertices in the bulk of

a crossing cluster of large box are given by the IIC measures.

(2) Using Lemma 4.4, one can show that the expected number of vertices of the IIC

in B′(n) is comparable to n2P[0←→ ∂B′(n)].

(3) In [DS11], the so-called multiple-armed IIC measures were introduced for planar

lattices, which are supported on configurations with several disjoint infinite open

clusters meeting in a neighbourhood of the origin. We have seen in Chapter 2

that these measures describe the local occupancy configurations around outlets of

the invasion percolation [DS11] and pivotals for open crossings of large boxes. It

would be interesting to construct multiple-armed IIC measures on slabs, but at

the moment it seems quite difficult with current set of tools present.



Chapter 5

IIC as local limits in Slabs

5.1 Introduction

We have described in Chapter 2 that after Kesten constructed IIC-measure for planar

percolation in [K86a], Járai showed that the measure could describe local occupancy

configuration around a point chosen uniformly from some specific giant clusters, notably

the crossing cluster (conditioned on the existence of having one) and the largest cluster

([J03, Theorems 1 and 3]) or around a point of the crossing cluster far away from the

boundary ([J03, Theorem 2]). We have already established the existence of IIC-measure

on slabs Sk,d = Z2 × {0, . . . , k}d−2 (for integers d ≥ 2 and k ≥ 0) in Kesten’s sense,

thus it naturally begs whether these results are true for slabs as well. In this chapter,

we prove that we can indeed make sense of IIC measure as local limit of a vertex, away

from the boundary, from the crossing collection. We also show that under a certain

assumption, occupancy configuration around a point chosen uniformly from the crossing

collection is also described by IIC measure.

5.2 Notation and Results

Let us call, as before, B′(n) = [−n, n]2 × {0, 1, . . . , k}d−2, S(n) = B′(n) \B′(n− 1) and

pc(Sk,d) is the critical threshold for percolation, i.e.,

pc(Sk,d) = inf {p : Pp[open connected component of 0 in Sk,d is infinite] > 0} .

We denote the independent Bernoulli bond percolation measure on Sk,d with parameter

pc(Sk,d) as P = Ppc(Sk,d). For x, y ∈ Sk,d and X,Y, Z ⊂ Sk,d, we write

• x Z←→ y if there is a nearest neighbour path of open edges from x to y with all its

vertices in Z.

91



IIC as local limits in Slabs 92

• x Z←→ Y if there exists y ∈ Y such that x
Z←→ y.

• X Z←→ Y in Z if there exists x ∈ X such that x
Z←→ Y .

If we do not mention Z, it is understood that Z = Sk,d. We showed in Theorem 4.3 that

for any v ∈ Sk,d and any event E that depends on the state of finitely many edges of

Sk,d, there exists the limit

νv[E] = lim
n→∞

P[E | v ←→ S(n)],

called Kesten’s incipient infinite cluster (IIC) measure.

Recall that for A ⊂ Z2, we defined A := A×{0, 1, . . . , k}d−2. Let L(n) = {−n} × [−n, n]

and R(n) = {n} × [−n, n] be left and right boundaries of S(n) and

SC(n) = {v ∈ B′(n) : R(n)
B′(n)←→ v

B′(n)←→ L(n)}

be called the crossing collection. We say that a vertex v ∈ Sk,d has the ‘level’ j ∈
{0, 1, . . . , k}d−2 if last d − 2 co-ordinates of v is given by j. It is quite immediate that

the local pictures must be different when we look from 2 different levels j 6= j′. Thus

the only translations which make sense in slabs Sk,d are the translations in Z2. For some

vertex in the plane u ∈ Z2, and some level j, let us denote by uj the vertex in Sk,d whose

first 2 co-ordinates are given by u, and last d− 2 of them by j ∈ {0, 1, . . . , k}d−2.

For u = (u1, u2) ∈ Z2, let us define uS = (u1, u2, 0, . . . , 0) ∈ Sk,d and translation τu acting

on Ω by τuω(< x, y >) = ω(< x−uS , y−uS >), and on events by τuA = {τuω : ω ∈ A}.
We will prove that:

Theorem 5.1. Let h(n) ≤ n be a function such that lim
n→∞

h(n) =∞ and E be any event

depending on the state of finitely many edges of Sk,d. Then for any sequence of vertices

vn ∈ Z2, and any fixed level j ∈ {0, 1, . . . , k}d−2,

lim
n→∞

|vn|≤n−h(n)

P[τvnE|vjn ∈ SC(n)] = ν(0,0)j (E).

The next natural question to ponder about is if we can make sense of the ‘uniform’ or

‘global’ variant of theorem 5.1. To prove this, we need the tightness result of the cross-

ing collection (similar to [J03, Theorem 8(ii)]). This states that with high-probability,

|SC(n)| is at least bigger than some multiplicative factor times its expectation, whenever

it is non-empty, i.e.

Conjecture 5.2.

lim
ε→0

inf
n≥1

P[ε ≤ |SC(n)|
E[|SC(n)|] |SC(n) 6= φ] = 1.



IIC as local limits in Slabs 93

This seems difficult to prove, since both planarity and duality, which were vital in-

gredients in proving [J03, Theorem 8(ii)], are absent here. Additionally, glueing tools

apparently are not adequate enough to prove this. Nevertheless, assuming this conjec-

ture holds true, we can extend the ‘global’ variant as follows.

Let In indicate a vertex chosen uniformly at random from the crossing cluster SC(n),

when it is known to be non-empty. Here we abuse the notation and still call this measure

as P, and for v = (v1, v2, . . . vd) ∈ Sk,d, let us define τv = τ(v1,v2). The natural candidate

for the limiting measure here is the average measure over every level j ‘above’ the origin.

We show that this is indeed the case.

Theorem 5.3. If Conjecture 5.2 holds, then

lim
n→∞

P[τInE|SC(n) 6= φ] =
1

(k + 1)d−2

∑
j∈{0,1,...,k}d−2

ν(0,0)j (E).

We will prove Theorems 5.1 and 5.3 in Section 5.4. But before that let us first replicate

some tools for this setting in Section 5.3 which are known to be true for planar critical

percolation. Although the main purpose of the following results is helping to prove the

above-mentioned theorems, they highlight the similarity with planar critical percolation

as well.

5.3 Auxiliary properties of crossing collection in slabs

In this section, we will prove moment bounds on crossing collection and a slightly

stronger variant of quasi-multiplicativity lemma 4.4. But before presenting these re-

sults, we give an elementary bound on one-arm connectivity, i.e α(n) = P[0←→ S(n)].

5.3.1 One-arm connectivity bound

It is known that for site percolation on planar triangular lattices, α(n) � n−5/48+o(1)

in [LSW02, Theorem 1.1]. The exponent is expected to be same for other lattices as

well but not yet proved. The general result that can be proved is that for some small

η ∈ (0, 1/2) such that, n−η ≥ α(n) ≥ n−1/2 (see Lemma 2.7(i)). We will prove a similar

bound for slabs as well. We define α(m,n) = P[S(m)←→ S(n)] for integers m ≤ n.

Lemma 5.4 (One-arm connectivity). There exists η ∈ (0, 1/2] and constant C1 such

that for all integers m ≤ n,

(m/n)η ≥ α(m,n) ≥ C1

√
m/n.

Proof. The upper bound of α(m,n) has already proved in [NTW15, Corollary 3.2.3],

which is a direct consequence of RSW Theorem [NTW15, Theorem 3.1] in slabs. The

lower bound is given in (3.25), which states that P[S(m) ←→ S(n)] ≥
√
cm/n for

integers m < n.
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5.3.2 Moments of crossing collection

The quasi-multiplicativity of crossings in boxes (recall (4.15)) stated that there exists

c > 0 such that for any integers n/2 ≥ l ≥ 2m ≥ 4,

P[B′(m)←→ S(n)] ≥ c · P[B′(m)←→ S(l)] · P[B′(l)←→ S(n)]. (5.1)

Using (5.1), we will next state and prove that E[|SC(n)|k] � [n2α(n)]k holds for any

k ∈ N, giving us bounds for every finite moments of crossing collection. This result

is well-known and fairly easy to obtain in the plane. (see e.g [J03, Theorem 8(i)] and

[K86a, Theorem 8].)

Lemma 5.5. E[|SC(n)|t] � (n2α(n))t for all t ∈ N.

Proof. We will first prove for t = 1. This part closely follows that of [J03, Theorem

8(i)]. Nevertheless, we include this for the sake of completeness. Let us call, for u =

(u1, u2, . . . , ud) ∈ Sk,d, u+B′(N) = [u1−N, u1+N ]×[u2−N, u2+N ]×{0, 1, . . . , k}d−2, the

translated box centred around u. We extend the definitions naturally to u+An(N,M) :=

{u+B′(M)}\{u+B′(N)} and u+S(N) := u+ An(N −1, N). One side of the moment

bound is quite immediate, if we notice:

E[|SC(n)|] =
∑

v∈B′(n)

P[R(n)
B′(n)←→ v

B′(n)←→ L(n)]

≤
∑

v∈B′(n)

P[v ←→ v + S(n)] = (2n+ 1)2(k + 1)d−2α(n) ≤ Ck,dn2α(n).

For v = (v1, v2, . . . vd) ∈ B′(n/2), let H(v) := [−n, n]× [v2, v2 + n]. The top side of

square [−n, n]2 is denoted by T (n) = [−n, n] × {n}. By invoking (3.24), we are again

able to glue paths in Y (v) = {∃ an open horizontal crossing in H(v)} and X(v) :=

τv{0
B′(n/2)←→ T (n/2)} to obtain, for such v ∈ B′(n/2),

P[v ∈ SC(n)] ≥ c∗
27

P[X(v)]P[Y (v)]
RSW
≥ c∗c4P[v ←→ v + S(n/2)]

108
≥ c∗c4α(n/2)

108
.

If we sum over all such v ∈ B′(n/2), we get:

E[|SC(n)|] ≥
∑

v∈B′(n/2)

P[v ∈ SC(n)] ≥ C ′k,dn2α(n/2) ≥ C ′k,dn2α(n).

By Jensen’s inequality, we have, for any t > 1,

E[|SC(n)|t] ≥ [E[|SC(n)|]]t ≥ C(t)(n2α(n))t.

So for any t ∈ N, we have the lower bound. For the upper bound, let us work with t = 2

for the sake of simplicity (although this method works for any integer t).
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For a vertex v ∈ Sk,d, let us define the event A(v, l,m) := {v + S(l)
v+An(l,m)←→ v + S(m)}

and |v|2 := |v1| ∨ |v2|. We also call A(v,m) := A(v, 0,m).

E[|SC(n)|2]

=
∑

v,w∈B′(n)

P[v ∈ SC(n), w ∈ SC(n)]

≤
∑

v,w∈B′(n)

P[A(v, b |v − w|2
3

c) ∩A(w, b |v − w|2
3

c) ∩A(
v + w

2
, |v − w|2, n)]

=
∑

v,w∈B′(n)

P[A(0, b |v − w|2
3

c)]2P[A(0, |v − w|2, n)]. (5.2)

We use translation invariance of the model in the last step. Let us denote P[A(0,m, n)] by

α(m,n). By quasi-multiplicativity (5.1), we have α(m)α(m,n) � α(n). Since by RSW

Theorem 3.1, α(bm/2c,m) � α(bm/3c,m) � 1 for any m, we have α(m) � α(m/2) �
α(m/3). Using these facts and repeatedly using (5.1), we get

E[|SC(n)|2] ≤
∑

v,w∈B′(n)

α(
|v − w|2

3
)2α(|v − w|2, n)

≤ C[α(n)]2
∑

v,w∈B′(n)

1

α(|v − w|2, n)

= C[α(n)]2
∑

v∈B′(n)

n∑
k=1

∑
w:|v−w|2=k

1

α(k, n)

≤ C ′n2[α(n)]2
n∑
k=1

k

α(k, n)

In the last step we use the fact that number of vertices w which are exactly k away from

v is O(k), and then sum over all v. Now using Lemma 5.4, we get

E[|SC(n)|2] ≤ C ′′n5/2[α(n)]2
n∑
k=1

√
k ≤ C ′′′[n2α(n)]2,

which completes the proof.

5.3.3 Quasi-multiplicativity revisited

We will prove the following stronger form of quasi-multiplicativity Lemma 4.4, which

will help us to decouple configurations with a little more restriction than one-arm con-

nectivity:

Lemma 5.6. For any v ∈ B′(n− 2M) with n > 2M integers,

P[v ∈ SC(n)] � P[v ←→ v + S(M)] · P[R(n)←→ v + S(M)←→ L(n)].
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Proof. One side of the proof is immediate by independence. The proof of the other

side is similar to that of Lemma 4.4. We would, thus, present a brief sketch, highlight-

ing the necessary alterations, while heavily referring to the aforementioned lemma. We

call EM (v) := {There is an open circuit in v + An(M, 2M)}, and we know already by

[NTW15, Corollary 3.2.1] that P[EM (v)] = P[EM (0)] ≥ c for a constant c > 0 indepen-

dent of M . Thus,

P[v ←→ v + S(M)] · P[R(n)←→ v + S(M)←→ L(n)]

(Lemma 4.5)

≤ C

P[EM (v)]
P [v ←→ v + S(2M)] · P[R(n)←→ v + S(M)←→ L(n)] · P[EM (v)]

(FKG)

≤ C

c
P[v ←→ v + S(2M), EM (v), R(n)←→ v + S(M)←→ L(n)]. (5.3)

Let us denote the event on the right side as X. It suffices to prove that for some constant

C > 0, P[X] ≤ CP[v ∈ SC(n)].

For configurations in EM (v) (and thus also for X) we can make sense of minimal open

circuit in v + An(M, 2M) as done in [NTW15, Definition before theorem 3.8] (or as we

described in the proof of Lemma 4.4). We call it Γ as before, and define CΓ,n as the

vertices of B′(n) which are on or outside of Γ.
(
Recall that for A ⊂ Sk,d, we defined

A := {z : {z} ∩A 6= φ}.
)

Let us call :

X ′′ := X ∩ [{Γ CΓ,n←→ R(n)} ◦ {Γ CΓ,n←→ L(n)}],

where ◦ denoted the disjoint occurrence of those two specific events. We will separately

treat X ′′ and X ′ = X ∩X ′′c and show that P[X ′] ∨ P[X ′′] ≤ CP[v ∈ SC(n)].

Case 1: The key strategy is again, finding a D-good map f : X ′∩{v /∈ SC(n)} → {v ∈
SC(n)} to invoke Lemma 3.4. Let us define Y := X ′ ∩ {v /∈ SC(n)}, and recall that a

map is D-good if

(1) For each ω ∈ Y , ω and f(ω) differ in at most D edges,

(2) At most 2D many configurations ω can be mapped to the same configuration, i.e.,

for each ω ∈ Y , |{ω′ ∈ Y : f(ω′) = f(ω)}| ≤ 2D.

The desired inequality is satisfied with C = 2D

min(pc,1−pc))D + 1 if we can construct a

D-good map, and this would complete the proof.

Let us call the set of vertices in B′(n) which have two disjoint paths to R(n) and L(n)

as the “Backbone” and denote it by BB(n). If we take a configuration ω ∈ X ′, there

would be a vertex u(ω) ∈ CΓ,n \Γ that is connected to Γ without using any other vertex

of BB(n), and this would be unique, otherwise Γ will be connected to R(n) and L(n)

by two edge disjoint paths resulting in ω ∈ X ′′. We can now construct the D-good map
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exactly as done in the proof of Lemma 4.4 by subdividing in three parts and constructing

a map for each of them, the three parts being:

(a){v B′(n)= Γ}∩{u B′(n)= Γ}, (b){v B′(n)= Γ}∩{u B′(n)←→ Γ}, (c){v B′(n)←→ Γ}∩{u B′(n)= Γ}.

Then for each case the proofs are similar to that of Lemma 4.4. We locally modify to

glue v,Γ, and u together. The uniqueness of u is preserved under the map, which enables

us to identify the location of the surgery and hence, helps us to use Lemma 3.4.

Case 2: In this case we need two successive surgeries. Let N(v) denote the set of

neighbours of a vertex v ∈ Sk,d. We will construct two D-good maps

• f : X ′′ ∩ {v ∈ SC(n)}c → {v B′(n)←→ Γ
B′(n)←→ L(n), SΓ}

• f ′ : {v B′(n)←→ Γ
B′(n)←→ L(n), SΓ} ∩ {v ∈ SC(n)}c → {v ∈ SC(n)}

where SΓ is defined as:

SΓ := {∃v ∈ Γ such that for some v′ ∈ {v} ∪N(v), v′
CΓ,n←→ R(n)}

These two together imply P[X ′′] ≤ [ 2D

min(pc,1−pc)D + 1]2P[v ∈ SC(n)] and that completes

the proof. The construction of the first map is done exactly how we glue a path from

v to γ with a path from γ to L(n) and invoke (4.19) and (4.20). Since in X ′′ we have

two disjoint paths from γ to L(n) and R(n), and the surgery can only alter edges with

at least one vertex on γ, the range of the map must be inside SΓ.

If we take a configuration in Y = {v B′(n)←→ Γ
B′(n)←→ R(n), SΓ} ∩ {v ∈ SC(n)}c, it is

enforced that Γ
B′(n)= R(n) but there exists a vertex z connected to R(n) inside B′(n)

such that ∃z′ ∈ γ ∩ {{z} ∪N(z)}. If Γ
B′(n)= R(n), we open the edge ez = (z, z′). (The

edge had to be closed before, otherwise it violates the assumption.) If it happens that

z′ ∈ Γ, then the surgery is immediate, since this is the unique vertex by which Γ (which

is preserved since the open clusters of R(n) are different from the cluster of Γ and v)

will be connected to R(n) in the image as well. So without loss of generality, we can

assume z ∈ Γ and z′ ∈ Γ \ Γ.

Let us call U(ω) = {z ∈ Γ : z
CΓ,n←→ R(n)}. We separate the event Y into further sub-cases

and perform local modifications as required :

(a) ∃u ∈ U(ω) such that both v
B′(n)\{u}←→ Γ and Γ

B′(n)\{u}←→ L(n) hold.

(b) ∃u ∈ U(ω) such that v
B′(n)\{u}←→ Γ hold but Γ

B′(n)\{u}= L(n) does not.
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(c) ∃u ∈ U(ω) such that Γ
B′(n)\{u}←→ L(n) hold but v

B′(n)\{u}= Γ does not.

(d) @u ∈ U(ω) for which either Γ
B′(n)\{u}←→ L(n) or v

B′(n)\{u}= Γ hold.

While these cases are not mutually exclusive (case(b) and case(c) might hold simulta-

neously) they exhaust Y . Thus doing surgery on each of the cases suffices by the union

bound. The sub-case (a) can be dealt exactly like sub-case (b1) and all other three cases

can be dealt like sub-case (b2) in the proof of Lemma 4.4, the only notable difference

being that for case (d), we open up three paths one by one in {u} instead of two. This

completes the proof.

5.4 IIC as local limits

We will follow the scheme of Járai broadly, only suitably substituting circuits with

certain structures called ‘shells’ as it benefits us. Before starting with proofs, we recall

the following alternate definition of IIC-measure from Remark 4.2. Let Zn be any finite

connected set containing B′(n) and fn be one of its boundary edges, i.e. connecting

some xn ∈ Zn with some yn ∈ Zcn. We will have, for fixed level j ∈ {0, 1, . . . , k}d−2 and

some cylinder event E,

lim
n→∞

P[E|(0, 0)j
Zn←→ fn] = ν(0,0)j [E]. (5.4)

5.4.1 Proof of Theorem 5.1

We refer vj + B′(N) as v + B(N) for any vertex v ∈ Z2, (since the box does not

alter if the level j changes) and similarly denote vj + An(N,M) by v + An(N,M).

We denote by F (N,M, vn) the event that there exists an open path from vn + B′(N)

to vn + S(M) in vn + B′(M) and any two such open paths have at least one edge in

common (to establish non-existence of two disjoint such paths and have some sort of

‘uniqueness’ of the path). By suitably choosing M/N large enough, we would aim to

make P[F (N,M, vn) |vjn ∈ SC(n)] ≥ 1 − ε for any level j, vn ∈ B(n − h(n)) and any

ε > 0. We will choose these parameters 1 << N << M < h(n) < n suitably later.

For a connected set V ⊂ An(N,M) containing S(M) and g as one of its boundary edge,

let us redefine G(N,M)(V, g) as the event that

(a) g is open and connected to S(M) by two edge-disjoint open paths in V (or has an

end-vertex in S(M)),

(b) every other boundary edge of V is closed and connected to S(M) by an open path

in V .
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We call this shape V as ‘shell’ and g as its ‘orifice’. For any configuration in G(N,M)(V, g),

any path, by which S(M) is connected to S(N), must exit V by the orifice g. Let us

denote Ajn = {vjn ∈ SC(n)}, F ′(N,M, vn) := {vn + S(N)
vn+An(N,M)←→ vn + S(M)}, and

O(vn,M) = B(n) \ {vn + S(M)}. Notice that P[F ′(N,M, vn)] = P[F ′(N,M, (0, 0))] =

α(N,M) holds true by translation invariance, and conditioned on Ajn, F (N,M, vn)c

implies two disjoint connections from vn + S(N) to vn + S(M). Thus, we obtain

P[F (N,M, vn)c|Ajn]

≤ 1

P[Ajn]
P

 vn ←→ vn + S(N), there exist two disjoint open paths from

vn + S(N) to vn + S(M), R(n)
O(vn,M)←→ vn + S(M)

O(vn,M)←→ L(n)


(BK)

≤ P[vn ←→ vn + S(N)]P[F ′(N,M, vn)]2P[R(n)
O(vn,M)←→ vn + S(M)

O(vn,M)←→ L(n)]

P[Ajn]

(Lemma 4.5)

≤ CP[vn ←→ vn + S(M)]P[R(n)
O(vn,M)←→ vn + S(M)

O(vn,M)←→ L(n)]α(N,M)

P[Ajn]

(Lemma 5.6)

≤ C ′α(N,M)
(Lemma 5.4)

≤ C ′′(N/M)η. (5.5)

Now we choose M/N to be large enough so as to make RHS of (5.5) less than ε.

If the event F = F (N,M, vn) occurs, the non-existence of two edge-disjoint paths imply

there exists a ‘cut-edge’ by Menger’s theorem [M27]. We take the first cut-edge g which

any path travelling from vn + S(M) to vn + S(N) encounters. Thus under occurrence

of F , there exists unique (V, g) for which τvnG(V, g) = τvnG(N,M)(V, g) occurs , which

is measurable “within” vn + V (i.e with respect to the state of edges with at least one

end-vertex in τvnV ). Let us denote by V the all possible 2-tuples of (V, g)(ω) over all

ω ∈ F (N,M, (0, 0)) and define V ′(n) := B′(n)∩τvn{[B′(M)]c∪V }, the region “outside”

the inner boundary of V . We pick N to be large enough such that E depends only on

the edges of B(N) and for any v ∈ Z2, define the following variables

• X(vj , E) := 1[τvE, v
j τv{B

′(M)\V }←→ τvg],

• Y (V, n) := 1[τvnG(V, g), L(n)
V ′(n)←→ τvng

V ′(n)←→ R(n)].

Observe that X(vjn, E) and Y (V, n) are independent since latter depends on the edges

of V ′(n) and the former on the edges of τvn{B′(M) \ V }. We thus obtain

P[τvnE|Ajn] ≤ P[F c|Ajn] +
1

P[Ajn]

∑
(V,g)∈V

P[τvnE, τvnG(V, g), vjn ∈ SC(n)]

≤ ε+
1

P[Ajn]

∑
(V,g)∈V

E[X(vjn, E)]E[Y (V, n)]

= ε+
1

P[Ajn]

∑
(V,g)∈V

E[X(vjn, E)]E[Y (V, n)]

= ε+
1

P[Ajn]

∑
(V,g)∈V

E[X((0, 0)j , E)]E[Y (V, n)]
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Given ε > 0, we choose N to be large enough such that

P[E′|(0, 0)j
B′(M)\V←→ g] ∈ (

1

1 + ε
ν(0,0)j (E

′), (1 + ε)ν(0,0)j (E
′)), (5.6)

for any (V, g) ∈ V and for E′ being E or Ω. This holds by (5.4), where we choose

ZN = B′(M) \ V ⊃ B′(N). This yields

P[τvnE|Ajn] ≤ ε+
(1 + ε)ν(0,0)j (E)

P[Ajn]

∑
(V,g)∈V

E[X((0, 0)j ,Ω)]E[Y (V, n)]

= ε+
(1 + ε)ν(0,0)j (E)

P[Ajn]

∑
(V,g)∈V

E[X(vjn,Ω)]E[Y (V, n)]

= ε+
(1 + ε)ν(0,0)j (E)

P[Ajn]

∑
(V,g)∈V

P[τvnΩ, G(V, g), v ∈ SC(n)]

≤ ε+ (1 + ε)ν(0,0)j (E). (5.7)

Similarly by working the other way we have :

P[τvnE|Ajn] ≥ −ε+
1

1 + ε
ν(0,0)j (E). (5.8)

So given ε > 0, first we choose N large enough to “include” E and satisfy (5.6), then

we choose M/N to be large enough to control RHS of (5.5), and finally choose n large

enough such that h(n) > 2M holds. (We need to have vn +B′(2M) lying entirely inside

B′(n), and this is the only reason we need to take vertices ‘away’ from boundary.) This

completes the proof of Theorem 5.1, since (5.7) and (5.8) holds for arbitrary ε > 0.

5.4.2 Proof of Theorem 5.3

Let us recall the tightness conjecture 5.2 which insists that given ε, we can find small

x(ε) such that for the event Hn = Hn(x) = {|SC(n)| > xE[|SC(n)|]},

P[Hc
n|SC(n) 6= φ] > 1− ε. (5.9)

For u = (u1, u2, . . . , ud) ∈ Sk,d, we denote F (N,M, (u1, u2)) and F ′(N,M, (u1, u2)) by

F (N,M, u) and F ′(N,M, u) respectively. We write:

P[τInF
c, Hn|SC(n) 6= φ] =

1

P[SC(n) 6= φ]

∑
u∈B′(n)

E
[
1[u ∈ SC(n), τuF

c], Hn

|SC(n)|

]
(5.5)

≤ 1

P[SC(n) 6= φ]xE|SC(n)|
∑

u∈B′(n)

P[u ∈ SC(n)]P[F ′]

=
P[F ′]

xP[SC(n) 6= φ]
≤ P[F ′]

xc1
≤ ε. (5.10)
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In the last step we choose M/N to be large enough to make P[F ′] < xc1ε. We will

show that the vertices close to the boundary contribute negligibly, and this will give

us necessary space to make use of the strategy used in the proof of Theorem 5.1. For

some suitable function f(n) (that we will choose later) let us define Gn = Gfn = {In ∈
B′(n− f(n))}.

P[Gcn, Hn|SC(n) 6= φ] ≤
∑

u∈An(n−f(n),n)

E
[
1[u ∈ SC(n), Hn]

|SC(n)| |SC(n) 6= φ

]

≤
∑

u∈An(n−f(n),n)

E
[
1[u ∈ SC(n), Hn]

xE[|SC(n)|] |SC(n) 6= φ

]

≤
∑

u∈An(n−f(n),n)

Cα(n/2)

xE[|SC(n)|] ≤
C ′nf(n)α(n)

xE[|SC(n)|] ≤ ε. (5.11)

In the last step, we choose n large enough and f(n) = o(n) to make C′nf(n)α(n)
xE[|SC(n)|] < ε.

If we combine this boundary adjustment, the existence of unique connections in thick

annuli and the tightness result, we get, for a cylinder event E:

P[τInE|SC(n) 6= φ]

≤ 3ε+
1

P[SC(n) 6= φ]

∑
u∈B′(n−f(n))

∑
(V,g)∈V

E
[
1[τuE, u ∈ SC(n), τuG(V, g)]

|SC(n)| : Hn

]

≤ 3ε+
1

P[SC(n) 6= φ]

∑
u∈B′(n−f(n))

∑
(V,g)∈V

E
[
1[τuE, u ∈ SC(n), τuG(V, g)]

|SC(n)|

]
≤ 3ε+ P[τInE|SC(n) 6= φ]. (5.12)

As before, we would decouple the event 1[τuE, u ∈ SC(n), τuG(V, g)] in two parts as

1[τuE, u
τu{B′(M)\V }←→ τug] · 1[τuG(V, g), L(n)

Vu(n)←→ τug
Vu(n)←→ R(n)],

where Vu(n) = B′(n) ∩ τu{[B′(M)]c ∪ V }. To deal with the denominator |SC(n)|, we

define (following [J03, (2.24)])

Wn(V ) = {w ∈ Vu(n) : w ∈ SC(n)}.
For this quantity we naturally have

|Wn(V )| ≤ |SC(n)| ≤ |Wn(V )|+ C ′M2 ≤ (1 + ε)|Wn(V )|, (5.13)

by choosing n large enough so that C′M2

n ≤ ε/2, since |SC(n)| ≥ n. Using Wn(V ) makes

it easy to split since Wn(V ) depends on edges of Vu(n). We define :
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X(u,E) = 1[τuE, u
τu{B′(M)\V }←→ τug],

Y (V, n) =
1[τuG(V, g), L(n)

Vu(n)←→ τug
Vu(n)←→ R(n)]

|Wn(V )| ,

with the understanding of Y = 0 when it is of the form 0/0. Let us call the summand

under expectation in third line of (5.12) as E(u,E, V, n), we have

E(u,E, V, n) ≤ E[X(u,E)]E[Y (V, n)] ≤ (1 + ε)E(u,E, V, n) (5.14)

for any event E depending only on the edges of B(N). We choose N again large enough

to ‘contain’ E as well as following (5.6), M/N to be large enough for (5.10) to hold,

f(n) > 2M to make use of Lemma 5.6 and finally n to be large enough for (5.11) and

(5.13) to hold. Let us denote square B2(m) = [−m,m]2. We obtain

P[τInE|SC(n) 6= φ]

≤ 3ε+
1

P[SC(n) 6= φ]

∑
u∈B′(n−f(n))

∑
(V,g)∈V

E(u,E, V, n)

(5.14)

≤ 3ε+
1

P[SC(n) 6= φ]

∑
u∈B′(n−f(n))

∑
(V,g)∈V

E[X(u,E)]E[Y (V, n)]

= 3ε+
1

P[SC(n) 6= φ]

∑
v∈B2(n−f(n))

∑
(V,g)∈V

∑
j∈{0,1,...k}d−2

E[X(vj , E)]E[Y (V, n)]

(5.6)

≤ 3ε+
(1 + ε)

P[SC(n) 6= φ]

∑
v∈B2(n−f(n))

∑
(V,g)∈V

∑
j∈{0,1,...k}d−2

ν(0,0)j (E)E[X(vj ,Ω)]E[Y (V, n)]

(5.14)

≤ 3ε+
(1 + ε)2

P[SC(n) 6= φ]

∑
v∈B2(n−f(n))

∑
j∈{0,1,...k}d−2

ν(0,0)j (E)
∑

(V,g)∈V

E(vj ,Ω, V, n)

≤ 3ε+ (1 + ε)2 1

(k + 1)d−2

∑
j∈{0,1,...k}d−2

ν(0,0)j (E)

In the last step, we use the fact that by symmetry, for any fixed level j ∈ {0, 1, . . . k}d−2,

(k + 1)d
∑

v∈B2(n−f(n))

∑
(V,g)∈V

E(vj ,Ω, V, n) =
∑

u∈B′(n−f(n))

∑
(V,g)∈V

E(u,Ω, V, n).

Similarly, for the other side, we obtain

P[τInE|SC(n) 6= φ] ≥ −3ε+
1

(1 + ε)2(k + 1)d−2

∑
j∈{0,1,...k}d−2

ν(0,0)j (E).

This completes the proof.

Remark 5.7. The other side of tightness result, i.e. the size of the crossing collection

cannot be too big compared to its expected size, follows from the moment bounds and
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the Markov inequality. We emphasised on the difficult bound since that is required for

our result.

It is not hard to observe that by simple manipulations of (5.10) and (5.11), we do not

need the tightness conjecture in the strong form we posed earlier (and believe to be

true). Instead proving something weaker akin to P[0 < |SC(n)| < [E[|SC(n)|]]1−δ]→ 0

as n→∞ for some small δ < η2/2 (recall η from Lemma 5.4) would also suffice.

Also, it is possible to prove the tightness result for other clusters, e.g. the largest cluster

using certain glueing tricks we used. However, for crossing collection, the key strategy

lies in retaining the long path while applying the glueing trick cleverly, and due to lack

of any immediate alternative this looks quite challenging.

5.5 Discussions

Apart from the tightness conjecture, it would be also interesting to see whether we can

also make sense of IIC-measure in slabs as [J03, Theorem 3], i.e by choosing a point

randomly from the largest cluster in the box. For this we will require a result akin to

[J03, Proposition 1] which states that the difference between the size of the largest and

the second largest open cluster should diverge with probability 1 as we increase the size.

Both of these seem hard to prove with the current tools we have.
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