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Notations

— We set N := Z ∩ [1,∞), N∗ := N ∪ {0}, R+ := R ∩ [0,∞);

— The letter C denotes constants whose values are allowed to vary from line to line and also
within the same line. To emphasize that the constant C depends on the parameter δ, we
will write C = Cδ.

— With the notation α � C (0 < α � C) we mean α ≥ C (0 < α ≤ C) is sufficiently large
(sufficiently small);

— For U ⊂ Rn, Br(U) is the (open) r-tubular neighborhood of U , i.e.

Br(U) :=

®
x ∈ Rn

∣∣∣∣∣ dist(x, U) < r

´
.

B(p, r) denotes the ball of radius r centered in p;

— Ck(Ω)m is the class of functions defined on Ω ⊂ Rn with values in Rm which are continuous
together with their derivatives of order up to k. We denote by Ckc (Ω)m the subset of Ckc (Ω)m

whose elements have compact support. Lp(Ω)m and W k,p(Ω)m denote the Lebesgue and
Sobolev spaces of functions defined in Ω with values in Rm;

— Mb(Ω)m, with Ω ⊂ Rn, denotes the space of all measures on Ω with finite total variation;

— Hk is the k-dimensional Hausdorff measure, while Ln (or |·|) is the Lebesgue measure on
Rn;

— For a measure µ defined on Rn and A ⊂ Rn, µ A denotes the restriction of µ to A, i.e.
µ A(E) := µ(A ∩ E) for every subset E of Rn;

— |µ| denotes the total variation of the vector valued measure µ defined on Rn;

— |·| is the Euclidean norm on Rn: |v| :=
(
v2

1 + · · ·+ v2
n

) 1
2 ;

— If v ∈ Rn \ {0}, we set v̂ := v
|v| ;

— For a matrix A ∈ Rn×n, Asym denotes its symmetric part Asym := 1
2(A+AT );
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— Given v, w ∈ Rn, v · w (also denoted as 〈v, w〉) is the scalar product of them, i.e. v · w :=∑n
i=1 viwi and for two matrices A,B ∈ Rn×n, A : B :=

∑n
i,j=1A

i
jB

i
j ;

— ∇⊥ is the “orthogonal” gradient: that is, for f : R2 → R, ∇⊥f :=
Ä
− ∂f
∂x2

, ∂f∂x1

ä
.
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Introduction

In this thesis we study the energy functional introduced in [1] by the author and S. Luckhaus–
which is inspired by the ones introduced in [2] and [3]–able to describe low energy configurations
of a two dimensional lattice with dislocations in the context of nonlinear elasticity. It consists of
two terms: a nonlinear elastic energy outside the core of the dislocations and the core energy. Our
main result says, roughly speaking, that low energy configurations consist of piecewise constant
microrotations with small angle grain boundaries between them.
The plan of the the thesis is the following. In the first chapter, we begin recalling the physical
background from which the problems arises, that is the one of metal plasticity, reassuming the
basic notions of the theory of dislocations. We then give a review of the main results in the
literature which motivated the model we study. In particular, we discuss the models introduced
in [2], [3] and the Γ-convergence analysis given in [4] (see also [5] and [6]). The last section of the
first chapter deals with Geometric Rigidity (especially with the results in [21] and [23]), which is
a crucial ingredient in the proof of the main result. We also give a proof of a Geometric Rigidity
estimate in dimension ≥ 3, which is scaling invariant for every exponent p ∈ ( n

n−1 , 2]. For the
critical case p∗ = n

n−1 , we only obtain a weaker estimate which unfortunately misbehaves under
rescaling, and thus cannot be applied to our analysis (cf. Theorem 1.4.9 and the Remark 1.4.1).
In Chapter 2, we study the functional introduced in [1]. For ε > 0, L > 0, 0 < α� 1 sufficiently
small, τ > 0 and λ > 0, we consider the family of admissible strain fields A(ε), whose elements
A : Ω := [−L,L]→ R2×2 satisfy the following conditions:

(i) Regularity : A ∈ L1
loc(Ω)2×2 and A ∈ L2(Ω \Bλε(spt Curl(A)));

(ii) Boundary Condition: A ≡ R±α near x = ±L;

(iii) (First) Quantization of the Burgers vector : γ closed, Lipschitz, simple curve outside
Bλε(spt Curl(A)): ˆ

γ
A · tdH1 6= 0 ⇒

∣∣∣∣∣
ˆ
γ
A · tdH1

∣∣∣∣∣ ≥ τε.
Then, for an admissible field A and a compact subset S b Ω such that S ⊃ Bλε(spt(Curl(A)))
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we define the energy functional

Fε(A,S) :=

Elastic Energy︷ ︸︸ ︷
1

τ

ˆ
Ω\Bλε(S)

dist2(A,SO(2))dx

+
1

λ
|Bλε(S)|︸ ︷︷ ︸

Core Energy

,

(0.0.1)

and we set Fε(A,S) :=∞ if S does not contain Bλε(spt(Curl(A))).
An upper bound to the energy is given by the Read-Shockley Formula[18], which in our functional
analytic setting reads as

Theorem 0.0.1. There exists a constant C0 > 0 such that

lim
ε→0

inf
(A,S) admissible

1

ε
Fε(A,S) ≤ C0Lα (|log(α)|+ 1) . (0.0.2)

The proof is carried out by the construction of a small angle grain boundary, that is of an array
of edge dislocations, with adjusted boundary conditions. We call Egb(ε) := C0Lεα (|log(α)|+ 1)

the energy of a small angle grain boundary at scale ε > 0 and with misorientation angle α > 0,
where C0 is the constant in the right hand side of (0.0.2).
Our main result can then be stated as the compactness in the class of microrotations, in the
following sense: every sequence (Aj , Sj) of admissible pairs whose energy does not exceed the
one of a small angle grain boundary has a competitor (A′j , S

′
j) with “essentially the same energy”,

in the sense that Fε(A′j , S′j) ≤ CFε(Aj , Sj) for a universal constant C > 0. The fields A′j
of such a competing sequence admit a subsequence which converges strongly in L2(Ω) to a
piecewise constant matrix field A ∈ BV (Ω, SO(2)) (namely A(x) ∈ SO(2) for a.e. x ∈ Ω and
DA = DJA = (A+ −A−) ⊗ νAH1 SA), i.e. to a (generalized Cosserat) microrotation (which
can be seen as a generalization of the microrotations studied in [19]). This conclusion is achieved
through a density estimate, which in turn is obtained coupling the existence of a harmonic
competitor with the choice of an optimal foliation via a balls construction in the spirit of the one
used for the Ginzburg-Landau functional (cf. [20] and the references therein). More precisely

Theorem 0.0.2. There exists a constant C > 0 such that every sequence of admissible pair
{(Aj , Sj)} =

¶
(Aεj , Sεj )

©
, εj → 0, with Fεj (Aj , Sj) ≤ Egb(εj), there exists another sequence

(A′j , S
′
j) such that Fεj (A′j , S′j) ≤ CFεj (Aj , Sj) which, up to subsequence, converges strongly in

L2(Ω) to a microrotation A and∣∣∣A+ −A−
∣∣∣»|log (|A+ −A−|)|H1 SA ≤ Cµ,

where µ is the weak∗ limit of the measures

µj :=
1

τεj
dist2(A′j , SO(2))L2 Ω +

1

λεj
L2 S′j .

In particular
C−1Lεjα

»
|log(α)| ≤ Fεj (Aj , Sj).
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Theorem 0.0.2 is obtained directly from the following density estimate

Theorem 0.0.3. Let C > 0 and (Aj , Sj) = (Aεj , Sεj ) be a sequence of admissible pairs with
Fεj (Aj , Sj) ≤ CEgb(εj) and such that ∆Aj = 0 in Ω \ Bλεj (Sj). Then, up to a subsequence,
Aj → A ∈ BV (Ω, SO(2)) strongly in L2. Moreover, there exist constants C0 > 0, δ1 ∈ (0, 1) and
ω0 > 0 such that for every p ∈ Ω and every R > 0 there exists an R ∈ [R, 2R] such that

∣∣∣Curl(A)(B(p,R))
∣∣∣ ≤ CωÇµ(B(p, 3R))

R

å
µ(B(p, 3R)),

where ω : (0,∞)→ (0,∞) is the continuous function defined as

ω(t) :=

ω0 if t ≥ δ1,

(− log t)−
1
2 if t ≤ δ1.

The existence of a harmonic competitor is ensured by using the fact that the determinant is a
null Lagrangian, and then replacing the “ground field” ∇u given by the Hodge decomposition of
A (A = ∇u+ F , div(F ) = 0) by its harmonic extension, that is we have the

Proposition 0.0.4 (The Harmonic Competitor). There exists a constant C > 0, such that for
every ε > 0 and A ∈ A(ε) there exists another field A′ ∈ A(ε) which is harmonic outside Bλε(A)

and ∣∣∣∣A−A′∣∣∣∣L2(Ω) ≤ C ||dist(A,SO(2))||L2(Ω) .

Theorem 0.0.3 is then obtained via a balls construction, whose difficulty is due to the nonlinearity
in the elastic energy. Indeed, one is not allowed to expand continuously the covering of the
singular set as in the case of the Ginzburg-Landau functional, but is forced to use a discrete balls
construction, as done in [6] in a different setting. Since in our context it is impossible to avoid
the dislocations to collapse, we have to get rid of this obstruction via a particular foliation:

Lemma 0.0.5. Let AR := B(p,R) \ B(p, R2 ) ⊂ R2. There exist δ0 > 0 and C > 0 such that if
{B(xi, %i)}Ni=1 are balls in R2 satisfying

H1

(
AR ∩

N⋃
i=1

∂B(xi, %i)

)
≤ δ0R. (0.0.3)

Then there exists a Lipschitz function ϕ : AR → [0, 1] such that

1. ||∇ϕ||L∞(AR) ≤
C
R ;

2. ϕ ≡ 0 on ∂B(p,R) and ϕ ≡ 1 on ∂B(p, R2 );

3. If U := AR \
⋃N
i=1B(xi, %i),

ˆ
U

|x|2 |∇ϕ|2

dist2(x, ∂U)
dx ≤ C(1 +N). (0.0.4)
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The main obstruction in the construction of a foliation ϕ satisfying conditions (i) − (iii) of
Lemma 0.0.5 lies in the accumulation of balls at any “distance length scale” from U . In order to
overcome this difficulty, we defined in [1] a decision tree which tells how and where to modify
the natural radial foliation, through either a cut-off or setting the foliation to a constant (which
involves an ad-hoc covering argument), possible because of (0.0.3). Using 0.0.5 and Proposi-
tion 0.0.4 one can start the balls construction and obtain Theorem 0.0.3. The idea is to start
with a covering of Bλεj (Sj) with a family of disjoint balls B0 := {B(xi,0, %i,0)} which are ex-
panded until “there is only a small amount of singularities in the annuli”, that is one considers
the balls B(xi0 , %i,0), where

%i,0 := sup

®
% > 0

∣∣∣∣∣ ∣∣∣∇χ⋃B0

∣∣∣ (B(xi,0, 2%) \B(xi,0, %)) > δ0%

´
.

Then one needs another expansion (namely, an expansion of a factor of 30) in order to ensure the
possibility of being able to extract a disjoint subfamily containing most of the mass of a given
positive measure and a merging procedure in order to make the balls disjoint. That is, one can
construct a family of coverings {Bk}k≥0 as follows:

· · · Merge−−−−→ Bk = {B (xk,i, %k,i)}i∈Ik
Expand−−−−−→

¶
B
Ä
xk,i, %k,i

ä©
i∈Ik

Vitali−−−→
¶
B
Ä
xk,i, 6%k,i

ä©
i∈I′

k

30×−−→

30×−−→
¶
B
Ä
xk,i, 180%k,i

ä©
i∈I′

k

Merge−−−−→ Bk+1 = {B (xk+1,i, %k+1,i)}i∈Ik+1

Expand−−−−−→ · · · ,

By construction, one can always find disjoint subfamilies where the measures

τ
(j)
k :=

∑
j∈Ik

∣∣∣∣∣
 
Bk,j

CurlAεjdx

∣∣∣∣∣L2 Bk,j

concentrate. We then combine this construction with the observation∣∣∣∣∣
ˆ
ϕ>0

Curl(Aj)dx

∣∣∣∣∣ ≤ ∑
B(qi,ri)⊂{0<ϕ<1}

∣∣∣∣∣
ˆ
B(qi,ri)

Curl(Aj)dx

∣∣∣∣∣+
ˆ

0<ϕ<1
|x|
∣∣∣∇Aεj ,sym

∣∣∣ |∇ϕ| dx.
Lemma 0.0.5, Proposition 0.0.4 and a bootstrap argument give then Theorem 2.7.1. It is then
possible to give an estimate on the total variation of Curl(A) since the estimate in the “negative
norm” holds for every point and every radius. Then one can finally estimate the total variation
of the derivative DA in terms of |Curl(A)| since the geometric rigidity estimate in [23] gives that
A ∈ BV (Ω, SO(2)).
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Chapter 1

Calculus of Variations and Defects in Solids

1.1 Defects in Crystals

It is well known that a wide class of materials, like metals, exhibit a crystalline structure, that is
their atoms arrange themselves in patterns which are periodically repeated. Nevertheless, in real
materials this structure is never perfect because of the presence of defects, which determinine
important features of the material. We shall focus on dislocations, that are one dimensional
defects responsible for the plastic behaviour of the material. We know want to examine the
microscopic mechanism of plasticity, which can be explained through the (pattern) formation
and motion of dislocations. We first start with a simple Gedankenexperiment. Consider a
crystal C with a perfect cubic lattice structure, and suppose that a force is applied to the part of
the crystal above the plane ϕ (which we call the glide plane of the dislocation). At the first stage,
the bonds will break and reorganize as in Figure 1.1. If we let this force acting (assuming that it
is strong enough in order to break the bonds but not to cause the fracture of the crystal), what
we will see is the presence of an extra half plane q of atoms, which keeps moving on the glide
plane. With this picture in mind, we consider the next element crucial for the determination of

F

π

F

π

F

π

Figure 1.1: Motion of an edge dislocation along the glide plane π.

a dislocation, that is its Burgers vector. Consider a closed path in the undeformed lattice (like

1



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

in figure (1a)) surrounding the last atom in the half line like in figure (1c). The image of this
path in the deformed lattice will no longer be closed, and we call the (lattice) vector necessary in
order to make it closed the Burgers vector of the dislocation, see figure 1.2. We can then define
a dislocation as a pair (`,

⇀
b ), where ` = ∂q ∩ C and b is the Burgers vector. We say that a pair

(`,
⇀
b ) an edge dislocation if

⇀
b is orthogonal to ` and that it is a screw dislocation if it is parallel

to `. In general, dislocations need not to be edge or screw, but can be of mixed type.
Now that we have given a rough picture at the microscopic scale (i.e., the scale where one sees

(1)

(2)

(3)

(4)

(5)

(6)

(1)

(2)

(3)

(4)

(5)

(6)

⇀
b

Figure 1.2: The Burgers’ vector
⇀
b of an edge dislocation.

atoms but cannot recognize the particular patterns they form), we can start looking at a higher
scale, where one can recognize patterns of dislocations forming more complex structures. In the
previous discussion we have seen the motion of a dislocation in a “cold” regime, namely confined
to glide planes. We are actually more interested in the annealed context (Figure 1.3), where
dislocations can move in any direction. We consider then another simple experiment. First, we
take a thin bar of a metal, we bend it and then raise up the temperature, which will in particular
make a “crystallization”, that is it creates small angle grain boundaries. More precisely, a grain
boundary is an interface where two crystals of different orientation join. Although in Chapter
2 we shall consider only one parameter in the description of the grain boundary, a complete
analysis should take into account four different parameters (in three dimension even eight; cfr.
Gottstein):

— α, the angle giving the orientation difference between two different crystals,

— the grain boundary orientation angle, which defines the spatial orientation of the grain
boundary plane,

2



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

Bend

Heat up

Real Boundary

Figure 1.3: Formation of a grain boundary

— the two compontents of a two dimensional vector giving the relative translation of one grain
with respect to each other.

We now discuss more in detail the reason for which we are interested in particular in grain
boundaries. Considering that the distance between atoms in real crystals is extremely small (of
the order of Angström), several authors (in particular Kondo, Kröner, Bilby et al., [11],[12] and
[13]) discussed the possibility of a continuum description of the crystal which can still give a
useful prediction of phenomena at (spatial) scales higher that the atomistic one. It turned out
that a satisfactory approach is that of non-Riemannian Geometry, that is, to endow the region
delimiting the crystal with the so callad natural space structure, i.e, with the metric g(x)[v, w] :=

A(x)v · A(x)w (where A is the backstrain) and with the connection Γijk(x) := Aiβ(x)∂jA
β
k(x),

which is curvature free but has torsion. Such a connection is also called aWeitzenböck connection.
Being curvature free, it allows a distant parallelism, which is the feature which reminds of a
underlying lattice structure, since then one is able to produce a global vector field displacing the
primitive lattice vectors along themselves and each other. The torsion of this connection gives
the dislocation density tensor.
In this construction, one makes a priori the assumption that a displaced vector in the continuized

3



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

≈ ε
α

ε

Figure 1.4: Approximation of a (symmetric tilt) small angle grain boundary with a row of
dislocations.

crystal depends linearly on the starting vector and the displacement itself, making evindent the
possibility of using a parallel displacement, that is an appropriate connection. As pointed out by
Kondo, this assumption is reasonable in many applications, where the dislocation density is high
but does not exceed a certain threshold depending on the desired accuracy of measurations of
lengths (this is a consequence of what we call the Kondo’s uncertainty principle). This condition
is fulfilled in many applications but not, for example, in the case of grain boundaries.
This considerations contribute to make interesting the investigation of the continuum behavior of
grain boundaries (more precisely, of small angle symmetric tilt grain boundaries), and we expect,
at the mesoscopic scale, a picture different from the one predicted by the differential geometric
approach.

1.2 Mesoscopic Theory

In the papers [2] and [3], the authors introduced and studied a mesoscopic reference-free model
able to describe crystals with defects, starting from the assumption that the ground state lattice is

a simple Bravais lattice, that is a lattice of the form L(G) :=

®
Gz
∣∣∣∣∣z ∈ Zn

´
, where G ∈ GL+(n,R)

and n = 2, 3. Then, for any open set Ω ⊂ Rn and particles configurations X = {xi}i∈I , #I <∞,
they defined the Hamiltonian

Hλ(X,Ω) :=

ˆ
Ω

inf
(A,τ)∈A+(n,R)

hλ(x, (A, τ),X)dx, (1.2.1)

where A+(n,R) := GL(n,R)+ n Rn is the “positive” affine group, λ > 0 is a parameter giving
the finite range interaction and hλ is an energy density made up of three terms, which are taken
as follows:

4



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

(i) The first term gives the nonlinear elastic energy associated to the matrix A, i.e. is of the
form

F (A),

where F : GL+(n,R) is a function of class C2 satisfying the usual conditions of nonlinear
elasticity:

— F is frame indifferent, i.e. F (RA) = F (A) for every R ∈ SO(n);

— F is invariant with respect to positive changes of the lattice basis of the Bravais lattice
L(A), that is F (A) = F (AB) for every B ∈ SL(n,Z);

— F takes its minimum on the ground state lattice LG, i.e. F (A) = 0 if and only if
L(A) = L(G).

(ii) The second term measures locally how much the particle configuration differs from a perfect
lattice. More precisely, to each particle xi ∈ X is assigned an excess energy through a
periodic potential W (·,Lx(A, τ)), where

Lx(A, τ) :=

®
A(z − τ) + x

∣∣∣∣∣z ∈ Zn
´
,

whose periodicity is the one of the lattice Lx(A, τ). It is of the form

1

λn

∑
xi∈I

(W (xi,Lx(A, τ))− ϑ0)ϕλ,x(xi),

where ϕλ,x ∈ C∞(Rn) is a cut-off function whose support lies in the balls B(x, 2λ) and
ϑ0 > 0 is a constant. More precisely, besides other technical regularity conditions, the
potential W satisfies the growth condition

C−1 dist2(x,L(A, τ)) ≤W (y, (A, τ)) ≤ C dist2(y,L(A, τ)), ∀(A, τ) ∈ A+(n,R) and y ∈ Rn,

for some C > 1, and the periodicity condition

W (x, (A, τ)) = W (x, (AB, τ+Ab)) ∀(B, b) ∈ A+(n,Z), W (x, (A, τ)) = W (x−τ, (A, 0)).

(iii) The last term penalizes the presence in X ∩B(x, λ) of vacancies with respect to Lx(A, τ),
by measuring the difference between det(A)−1 and the empirical density of X in x:

ϑ1

Ñ
det(A)−1 − 1

Cϕλn

∑
xi∈X

ϕλ,x(xi)

é
,

where ϑ1 > 0 is a fixed constant and Cϕ is a normalizing constant.

5



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

The energy density is then define as the sum of these three terms:

hλ(x, (A, τ),X) := F (A) +
1

λn

∑
xi∈I

(W (xi,Lx(A, τ))− ϑ0)ϕλ,x(xi)+

+ ϑ1

Ñ
det(A)−1 − 1

Cϕλn

∑
xi∈X

ϕλ,x(xi)

é
.

(1.2.2)

The main results of [2] are of analytical-topological nature. The authors proved that low energy
atomic configurations (satisfying an additional hard-core constraint) are characterized by a large
set of low energy density, called grains. Moreover, each grain carries a natural fiber bundle
structure, which we now describe more in details. First, given an admissible atoms configurations
we look at a bounded subset ‹Ω of the trivial bundle Ω×A+(n,R), which can be chosen in such a
way (see Theorem 4.4 of [2]) that for each (x, g) ∈ ‹Ω a large percentage of points X∩B(x, λ) are
close to one and only one element of Lx(g), and there exists a unique (modulo A+(,Z)) simple
Bravais lattice Lx(g) “optimally fitted” with X ∩B(x, λ). Now, consider the map ([2], Theorem
4.5)

Argmin(x) := {x} × [g]x,

where g is a local minimum of hλ(x, ·,X) (which exists and is unique modulo A+(n,Z), by the
choice of ‹Ω), and [g]x is the equivalence class of g modulo generation of the same simple Bravais
lattice, that is

[(A, τ)]x :=

®
(AB, x−AB(B−1τ + b))

∣∣∣∣∣(B, b) ∈ A+(n,Z)

´
.

Then it is possible to prove that for each (x0, g0) ∈ Argmin(x0) and every U ⊂ πΩ
‹Ω open, simply

connected neighborhood, there exits an open neighborhood V ⊂ A+(n,R) and a diffeomorphism
Γ = Γg0 = (Ag0 , τg0) : U → V (1) of class C1 such that

Γ(x0) = g0, (x,Γ(x)) ∈ Argmin(x) ∀x ∈ U. (1.2.3)

Moreover, there exists a constant C = C(g) (dependent also of other parameters which define‹Ω) such that

λ ||∇Ag0 ||L∞(U) +
∣∣∣∣∣∣∇τg0 −A−1

g0

∣∣∣∣∣∣
L∞(U)

≤ C

λ
.

If we start from the representative g1 instead of g0, and we pick a different neighborhood U ′, we
will end up with a different map Γ′ = Γg1 : U ′ → V ′, but such that for every connected open
subset U ′′ ⊂ U ∩ U ′

Γ−1(x) ◦ Γ′(x) ≡ Γg0,g1 ∈ A+(n,Z). (1.2.4)

We now discuss how the authors used this results in order to give a notion of generalized dis-
locations, and how to detect them through a particular G-covering as follows (which gives in

(1)This is the starting point of the analysis in Chapter 2. Indeed, the matrix fields A in [1] should be interpreted
locally as the ∇τ in [2] and [3].
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particular a fibre bundle structure, with a trivial connection though). Firstly, consider

P :=
⋃
x∈ω̃

Argmin(x),

where ω̃ is the projection of ‹Ω on Ω. It is possible to show that P is a C1 manifold embedded in
Ω×A+(n,R). The discrete affine group A+(n,Z) (with product rule (A, a)(B, b) = (AB,B−1a+

b)) acts on P (freely, transitively and properly discontinuously) on the right via

(x, [(A, τ)]x) · (B, b) :=
Ä
x,
îÄ
AB, x = AB(B1τ + b)

äó
x

ä
.

The projection π from P onto the orbit space P/A+(n,Z) :=

®
p ·A+(n,Z)

∣∣∣∣∣p ∈ P
´

(where

p ·A+(n,Z) :=

®
p · g

∣∣∣∣∣g ∈ A+(n,Z)

´
) gives a normal covering space

p : P → P/A+(n,Z).

It is also possible to show that P/A+(n,Z) is homeomorphic to ω̃. Now, for every x0 ∈ ω̃, we
pick an element [g]x0 ∈ Argmin(x0). Let now [γ] ∈ π1(ω̃, x0) be an element of the fundamental
group of ω̃ based at x0, and consider a representative γ ∈ [γ] (here, [γ] is as usual the equivalence
modulo homotopy of loops). Since p defines a normal covering space (with deck transformations
given simply by right multiplication), we can find an element h = h([g]x0

, γ) ∈ A+(n,Z) such
that

γ̃[g]x0
(0) = γ̃[g]x0

· h,

where γ̃[g]x0
is the unique (horizontal) lift of γ such that γ̃[g]x0

(0) = [g]x0 . Moreover, using (1.2.4),
one can show that

h ([g]x0 · z, γ) = z−1h ([g]x0 , γ) z, ∀z ∈ A+(n,Z),

and, for every curve γ′ ∈ [γ] there exists a z ∈ A+(n,Z) for which

h
(
[g]x0 , γ

′) = z−1h ([g]x0 , γ) .

In particular, we end up with a well defined homomorphism

Ψ : π1(ω̃, x0) −→ A+(n,Z)/ ∼
[γ] 7−→ [h([g]x0 , γ)]∼

,

where [g]x0 ∈ Argmin(x0). The map Ψ is independent of the particular base point in the
connected component Cx0 of ω̃ which contains x0. As a corollary, one can see that the image
of the fundamental group of Cx0 through Ψ is trivial, Ψ (π1(Cx0 , x0)) = {[(Id, 0)]∼} if and only
if for every U b Cx0 and ever g ∈ Argmin(x0) there exists a function Γ : U → A+(n,R) as
in the discussion before. We can rephrase this saying that the obstruction to the definition of
global approximate Lagrangian coordinates on the whole connected component Cx0 is encoded

7
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by the holonomy representation map Ψ. We can then say that [γ] ∈ π1(ω̃, x0) links a generalized
dislocation if

Ψ([γ]) = [(Id, bγ)]∼ ,

for some bγ ∈ Zn \ {0}. The Burgers vector at the base point x0 of [γ] is then the projection on
Rn of the difference between the map Γ obtained in the discussion before at the ending points
of γ (which is well defined, that is independent of the particular representative of [γ]):

bΩ,x0([γ]) := πRn (Γ(γ(1))− Γ(γ(0))) .

Another approach to detect dislocations would be to consider the “meso-scale” system of local
inverse deformations {(Uα, τα)}α∈A (in the sense of [10]), where the τα are the translational
components of the affine maps Γα obtained in (1.2.3), and then study the associated connection
d (∇τ)−1∇τ together with the holonomy group it generates. This approach is discussed more in
detail in [3].

1.3 Γ-Convergence approach of Leoni, Garroni and Ponsiglione

In this section we discuss the Γ-convergence results proved in [4] in the context of linear elasticity
(see also [5], [6] and [7], [8], [9] for the analysis of a related phase field model). The functional
we shall study in Chapter 2 is similar to the one they study, although we are interest in different
limit scales and we do not make any dislocation density assumption. The authors considered
a two dimensional section of a crystal with dislocations, represented by an open and bounded
subset Ω of R2 with Lipschitz boundary. They then considered the set of Burgers vectors S :=

{b1, · · · , bs} ⊂ R2 and its Z-linear combinations S := SpanZ(S), assuming S = R2, and the three
parameters

— ε, the lattice parameter;

— %ε, the radius of the core surrounding a dislocation;

— Nε, the number of dislocations in Ω.

Such parameters should satisfy the conditions

— limε→0
%ε
εs =∞ for all s ∈ (0, 1) (i.e., the hard core region contains most of the self energy);

— limε→0Nε%
2
ε = 0 (that is, the area of the hard core region tends to zero);

The class of admissible dislocations is then defined as the class of all vector valued Radon measures
µ ∈M (Ω)2 of the form

µ =
M∑
i=1

ξiδxi ,

8
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where δx denotes the Dirac δ concentrated at x, xi ∈ S,M ∈ N, B(xi, %ε) ⊂ Ω and |xi − xj | ≥ 2%ε

for all i 6= j. For notational simplicity, Ωr(µ) denotes the “drilled” domain

Ωr(µ) := Ω \
⋃

xi∈spt(µ)

B(xi, r).

Finally, the class of admissible strains ASε(µ) with respect to the admissible dislocation µ is given
by all those matrix fields β ∈ L2(Ω)2×2 which are identically 0 in Ωε(µ), whose distributional
Curl vanishes in Ωε(µ) and

ˆ
∂B(xi,ε)

β · tdH1 = ξi,

ˆ
Ωε(µ)

Ä
β − βT

ä
dx = 0 ∀i = 1, · · · ,M,

where t(x) is the tangent vector to B(xi, ε) at the point x, and the integrand β · t is defined in
the sense of traces (see also Section 1 in Chapter 2). The elastic energy of a pair (µ, β), with
µ ∈ Xε and β ∈ ASε(µ) is given by

Eε(µ, β) :=

ˆ
Ωε(β)

W (β)dx =

ˆ
Ω
W (β)dx,

where W is of the form
W (A) :=

1

2
CA : A,

where C is the linear elasticity tensor, which is assumed to satisfy the growth bounds

C−1 |Asym|2 ≤ CA : A ≤ C |Asym|2 ∀A ∈ R2×2,

for some constant C > 0. They then consider three different energetic regimes, depending on
the number of dislocations Nε:

— The subcritical (dilute) regime, where Nε � |log(ε)|. In this case

Fdilute
ε (µ, β) :=


1

Nε|log(ε)|Eε(µ, β), if µ ∈ Xε, β ∈ ASε(µ),

∞ otherwise;

— The critical regime, where Nε = |log(ε)|. Then the rescaling is of order |log(ε)|2:

Fε(µ, β) :=


1

|log(ε)|2Eε(µ, β), if µ ∈ Xε, β ∈ ASε(µ),

∞ otherwise;

— The supercritical regime, where Nε � |log(ε)|. In this case

F super
ε (µ, β) :=


1
N2
ε
Eε(µ, β), if µ ∈ Xε, β ∈ ASε(µ),

∞ otherwise;

9
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The definition of the Γ-limits of these sequences rely on the relaxation of a particular cell problem.
More precisely, let ASε,1(ξ) be the family of stress fields satisfying β ∈ L2(B(0, 1) \B(0, ε))2×2,
Curlβ = 0 in B(0, 1) \B(0, ε) ˆ

∂B(0,ε)
β · tdH1 = ξ,

and define, for ξ ∈ R2, the function

ψε(ξ) :=
1

|log(ε)|
min

β∈ASε,1(ξ)

ˆ
B(0,1)\

.

In [4] the authors proved that the functions ϕε converge pointwise to a function ϕ : R2 → R,
and they also gave an explicit formula for it. They finally define the density ϕ : R2 → [0,∞) as
the relaxation

ϕ(ξ) := inf

{
N∑
i=1

λiψ(ξi)

∣∣∣∣∣ N∑
i=1

λiξi = ξ,N ∈ N, λi ≥ 0, ξi ∈ S
}
.

We can then summarize the main results of [4] as

Theorem 1.3.1. (a) Critical Regime. Define the functional F :M(Ω,R2)× L2(Ω)2×2 → R as

F(µ, β) :=


´

ΩW (β)dx+
´

Ω ϕ
(

dµ
d|µ|

)
d |µ| , if µ ∈ H−1(Ω)2, Curlβ = µ,

∞ otherwise.

Then the following holds:

— (Compactness) Let εn → 0 and {(µn, βn)} be a sequence in M(Ω)2 × L2(Ω)2×2 such
that Fεn(µn, βn) ≤ E for every n, for some positive constant E > 0. There, up to a
subsequence, there exists a measure µ ∈ H−1(Ω)2 and β ∈ L2(Ω)2×2 with Curlβ = µ

and
1

|log(εn)|
µn −⇀∗ µ inM(Ω)2, (1.3.1)

1

|log(εn)|
βn ⇀ β in L2(Ω)2×2; (1.3.2)

— (Γ-convergence) The functionals Fε Γ-converge to F as ε → 0 with respect to the con-
vergence of µn and βn as above. More precisely one has the Γ− lim inf inequality:

For (µ, β) ∈ (M(Ω)2 ∩H−1(Ω)2)× L2(Ω)2×2 with Curlβ = µ and for every sequence
(µn, βn) satisfying (1.3.1) and (1.3.2), we have

lim inf
ε→0

Fε(µε, βε) ≥ F(µ, β),

and the Γ− lim sup inequality:

For (µ, β) ∈ (M(Ω)2 ∩H−1(Ω)2)× L2(Ω)2×2 with Curlβ = µ there exists a recovery
sequence (µn, βn) satisfying (1.3.1) and (1.3.2) such that

lim sup
ε→0

Fε(µε, βε) ≤ F(µ, β);

10
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(b) Subcritical Regime. Let Nε →∞ in such a way that Nε
|log(ε)| → 0, and define the functional

Fdilute(µ, β) :=


´

ΩW (β)dx+
´

Ω ϕ
(

dµ
d|µ|

)
d |µ| , if µ ∈ H−1(Ω)2, Curlβ = 0,

∞ otherwise.

Then

— (Compactness) Let εn → 0 and {(µn, βn)} be a sequence in M(Ω)2 × L2(Ω)2×2 such
that Fdilute

εn (µn, βn) ≤ E for every n, for some positive constant E > 0. There exists a
µ ∈M(Ω)2 and β ∈ L2(Ω)2×2 with Curlβ = 0 such that, up to a subsequence,

1

Nεn

µn −⇀∗ µ inM(Ω)2, (1.3.3)

1

(Nεn |log(εn)|)
1
2

βn ⇀ β in L2(Ω)2×2; (1.3.4)

— (Γ-convergence) The functionals Fdilute
ε Γ-converge to F as ε → 0 with respect to the

convergence of µn and βn as above. More precisely one has the Γ− lim inf inequality:

For (µ, β) ∈ (M(Ω)2 ∩H−1(Ω)2)× L2(Ω)2×2 with Curlβ = 0 and for every sequence
(µn, βn) satisfying (1.3.3) and (1.3.4), we have

lim inf
ε→0

Fdilute
ε (µε, βε) ≥ Fdilute(µ, β),

and the Γ− lim sup inequality:

For (µ, β) ∈ (M(Ω)2 ∩H−1(Ω)2)× L2(Ω)2×2 with Curlβ = 0 there exists a recovery
sequence (µn, βn) satisfying (1.3.3) and (1.3.4) such that

lim sup
ε→0

Fdilute
ε (µε, βε) ≤ Fdilute(µ, β);

(c) Supercritical Regime. Let Nε →∞ in such a way that Nε
|log(ε)| →∞, and define the functional

F super(βsym) :=


´

ΩW (βsym)dx, if βsym ∈ L2(Ω)2×2,

∞ otherwise.

Then

— (Compactness) Let εn → 0 and {(µn, βn)} be a sequence in M(Ω)2 × L2(Ω)2×2 such
that F super

εn (µn, βn) ≤ E for every n, for some positive constant E > 0. There exists a
βsym ∈ L2(Ω)2×2 such that, up to a subsequence,

1

Nεn

βsym
n ⇀ βsym in L2(Ω)2×2; (1.3.5)

— (Γ-convergence) The functionals F super
ε Γ-converge to Fdilute as ε → 0 with respect to

the convergence of βsym
n as above. More precisely one has the Γ− lim inf inequality:

11
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For every symmetric matrix field βsym × L2(Ω)2×2 and for every sequence (µn, βn)

satisfying (1.3.5), we have

lim inf
ε→0

F super
ε (µε, βε) ≥ F super(µ, β),

and the Γ− lim sup inequality:

Given a symmetric matrix field βsym × L2(Ω)2×2, there exists a recovery sequence
(µn, βn) satisfying (1.3.5) such that

lim sup
ε→0

F super
ε (µε, βε) ≤ F super(µ, β).

1.4 Geometric Rigidity and its role in plasticity

In the study on linear elasticity models, Korn’s inequality plays a crucial role. We can state it
as follows (see [22] and the references therein):

Theorem 1.4.1. Let Ω ⊂ Rn be an open, bounded connected Lipschitz domain. There exists a
constant C = C(Ω) > 0, depending only on the domain Ω, such that for every u ∈ W 1,2(Ω)n

there exists a skew-symmetric matrix S ∈ Rn×n (i.e. ST = −S) such that

||∇u− S||L2(Ω)n×n ≤ C
∣∣∣∣∣
∣∣∣∣∣∇u+ (∇u)T

2

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)n×n

.

That it, Korn’s inequality says that the gradient of a Sobolev function can be estimated, after
removing a constant antisymmetric matrix, by its symmetric part. The nonlinear counterpart
of Korn’s inequality is often called geometric rigidity. We give here a short review of the most
important geometric rigidity estimates. The prototype of geometric rigidity estimate is Lioville’s
theorem, which we can state in modern terms ( [21]) as follows:

u ∈W 1,2(Ω)n, ∇u(x) ∈ SO(n) for a.e. x ∈ Ω =⇒ u is an affine map,

where Ω ⊂ Rn is an open, connected set. Indeed, since ∇u ∈ SO(n) a.e., ∇u = cof(∇u). But the
Piola’s identity gives div (cof(∇u)) ≡ 0, hence u is harmonic in Ω (hence, smooth). Then ∇u is
harmonic itself, and hence constant, since it has constant norm. A natural question is whether or
not Liouville’s theorem is “stable”, in the sense that if a gradient is close to the orthogonal group
in average, is it close to a single rotation in average? A first answer in this direction was given by
John ( [14], [15]). He considered vector fields u ∈ C1(Q)n defined on a cube Q = Q(x, L) ⊂ Rn,
and the strain matrix

eu(x) :=
1

2

Ä
∇u(x)∇u(x)T − Id

ä
,

and the maximum strain
ε(u) := sup

x∈Q
|u(x)| .

A vector field u is said to be δ-quasiisometric if ε(u) ≤ δ. In [14], the author proved the following

12
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Theorem 1.4.2. There exists a δ = δ(n) > 0 and a constant C = C(n) > 0 such that for any
δ-quasiisometry u ∈ C1(Q) there exists a rotation R and a vector c ∈ Rn such that

—
∣∣∣ |u(x)−u(y)|
|x−y| − 1

∣∣∣ ≤ Cε(u) for all x, y ∈ Q;

— |u(x)−Rx− c| ≤ CLε(u) for all x ∈ Q;

—
ffl
Q |∇u−R| dx ≤ Cnε(u).

Then, in [15] he proved the Lp-version of the statement:

Theorem 1.4.3. Let p > 1. There exists δ = δ(n, p) > 0 and C = C(n, p) > 0 such that for any
δ-quasiisometry u ∈ C1(Q) there exists a rotation R and a vector c ∈ Rn such that

—
∣∣∣ |u(x)−u(y)|
|x−y| − 1

∣∣∣ ≤ C ||eu||Lp(Q) provided p > n and x, y ∈ Q are such that |x− y| ≥ L
2 ;

— |u(x)−Rx− c| ≤ CL ||eu||Lp(Q) provided p > n and x ∈ Q;

— ||∇f −R||Lp(Q) ≤ C ||eu||Lp(Q).

John’s result was then improved by Kohn in [16], without assuming any a priori pointwise
hypotheses on u:

Theorem 1.4.4. Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain, and let p ≥ 1, with p 6= n.
There exist positive constants C1 = C1(Ω, p), C2 = C2(Ω) such that for every bi-Lipschitzian map
u : Ω→ Rn there exist a rigid motion γ and R ∈ SO(n) satisfying

(i) if 1 ≤ p < n, then

||u− γ||Lq(Ω)n + ||u− γ||Lp(∂Ω)n ≤ C1 ||e(u)||Lp(Ω) ,

with q = np
n−p , and “nonlinear elastic strain” e(u) is defined as

e(u) := (λn − 1)+ + (λ2 · · ·λn − 1)+ + |det(Gu)− 1| ,

where Gu(x) :=
»
∇u(x)T∇u and λ1, · · · , λn are its eigenvalues;

(ii) if p > n, then
||u− γ||L∞(Ω)n ≤ C1 ||e(u)||Lp(Ω) ;

(iii) if ẽ(u) :=
∣∣∣∣G2

u − Id
∣∣∣∣, then
||∇u−R||2L2(Ω)n×n ≤ C2 ||e(u) + ẽ(u)||L1(Ω) .

The fundamental improvement was then achieved by Friesecke, James and Müller (see [21]).
They indeed proved a geometric rigidity inequality without imposing any smallness of the elastic
energy or invertibility assumptions on the fields:
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Theorem 1.4.5. Let Ω ⊂ Rn be a bounded Lipschitz domain, n ≥ 2, and let 1 < p <∞. There
exists a constant C = C(p,Ω) such that for every u ∈W 1,2(Ω) there exists a rotation R ∈ SO(n)

such that
||∇u−R||Lp(Ω)n×n ≤ C ||dist(∇u, SO(n))||Lp(Ω)n×n .

We now need to recall the notion of weak-Lp spaces. A real-valued function f from a measure
space (X,µ) is in Lp,∞(X,µ) or (Lpw(X,µ)) if

||f ||Lp,∞(X,µ) := sup
t>0

tµ

Ç®
x ∈ X

∣∣∣∣∣ |f(x)| > t

´å 1
p

<∞.

Is easy to check that ||·||Lp,∞ (X,µ) is only a quasi-norm, that is the triangle inequality holds
just in the weak form

||f + g||Lp,∞(X,µ) ≤ Cp
Ä
||f ||Lp,∞(X,µ) + ||g||Lp,∞(X,µ)

ä
.

We write Lp,∞(Ω) for Lp,∞(Ω, |·|), when Ω ⊂ Rn and |·| is the Lebesgue measure. Conti, Dolz-
mann and Müller proved in particular the following geometric rigidity estimate in weak-Lp spaces:

Theorem 1.4.6. Let p ∈ (1,∞) and Ω ⊂ Rn be a bounded connected domain. There exists
a constant C > 0 depending only on p, n and Ω such that for every u ∈ W 1,1(Ω)n such that
dist(∇u, SO(n)) ∈ Lp,∞(Ω)n×n there exists a rotation R ∈ SO(n) such that

||∇u−R||Lp,∞(Ω)n×n ≤ C ||dist(∇u, SO(n))||Lp,∞(Ω)n×n . (1.4.1)

We are going to apply Theorem 1.4.6 in order to obtain its generalization (on convex domains)
in the case of incompatible fields, that is to tensor fields A which are not gradients. The idea
is to correct the field A to a gradient via a averaged homotopy operator, and then to estimate
the latter. In what follows, x̂ := x

|x| , while L
p(U,Λr) (Wm,p(U,Λr)) denotes the space of r-forms

on U whose coefficients are Lp (Wm,p) functions. Moreover, recall that we can identify a tensor
field A ∈ L1(Ω)n×n with a vector of 1-forms of length n, that is with ω :=

(
ωi
)n
i=1, ω

i = Aijdx
j ,

and its Curl with dω (or, more precisely, with (?dω)[), given by

dωi =
∑
j<k

(
∂Aij
∂xk

− ∂Aik
∂xj

)
dxj ∧ dxk.

We recall the following

Definition 1.4.1. Let U ⊂ Rn be a starshaped domain with respect to the point y ∈ U . The
linear homotopy operator at the point y is the operator

ky = ky,r : Ωr(U)→ Ωr−1(U),

defined as

(kyω)(x) :=

ˆ 1

0
sr−1ω(sx+ (1− s)y) (x− y)ds,
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where (ω(x) v) [v1, · · · vn−1] := ω(x) [v, v1, · · · , vn−1]. It is well known that the linear homotopy
operator satifies

ω = ky,r+1dω + dky,rω ∀ω ∈ Ωr(U). (1.4.2)

In order to get more regularity, we consider the following averaged linear homotopy operator on
B := B(0, 1), which coincides with the one introduced by Iwaniec and Lutoborski in [24], except
for the choice of the weight function:

T = Tr : Ωr(B)→ Ωr−1(B),

Tω(x) :=

ˆ
B
ϕ(y) (kyω) (x)dy,

where ϕ ∈ C∞c (B(0, 2)) is a positive cut-off function, with ϕ ≡ 1 in B and

max
¶
||ϕ||L∞(Rn) , ||∇ϕ||L∞(Rn)

©
≤ 3.

Clearly, (1.4.2) holds for T as well:

ω = Tdω + dTω. (1.4.3)

We recall that, as proved in [24], T satisfies (for smooth forms ω) the pointwise bound

|Tω(x)| ≤ Cn,r
ˆ
B

|ω(y)|
|x− y|n−1 dy. (1.4.4)

Indeed, for ω = ωαdxα ∈ Ωr(B) we have

Tω(x) =

Çˆ
B

dyϕ(y)

ˆ 1

0
tr−1 〈x− y, ei〉ωα(tx+ (1− t)y)

å
dxα ei.

We then make the substitution Φ(y, t) :=
Ä
tx+ (1− t)y, t

1−t

ä
≡ (z(t, y), s(t)), Φ : B(0, 1) ×

(0, 1)→ B(0, 1)× (0,∞) and we get

Tω(x) =

Çˆ
B

dzωα(z) 〈x− z, ei〉
ˆ ∞

0
ds

sr−1

(1 + s)r−1
(1 + s)(1 + s)n−2ϕ (z + s(z − x))

å
dxα ei =

=

Çˆ
B

dzωα(z)
〈x− z, ei〉
|x− z|n

ˆ 2

0
sr−1(1 + s)n−rϕ(z + s’z − x)

å
dxα ei ≡

≡
Åˆ

B
Ki
r(z, x− z)ωα(z)dz

ã
dxα ei,

where

Ki
r(x, h) :=

〈h, ei〉
|h|n

ˆ 2

0
sr−1(1 + s)n−rϕ(x− sĥ)ds,

and we noticed that, since ϕ has compact support, the integral from 0 to ∞ actually reduces to
an integral over a finite interval. That is, we get (1.4.4). It also follows easily from (1.4.4) that
T is a compact operator from Lp(B,Λr) to Lp(B,Λr−1). Moreover, by density, (1.4.3) extends
to every differential form ω ∈ W 1,p(B,Λr), and to every differential form ω ∈ L1(B,Λr) whose
differential is a bounded Radon measure, dω ∈Mb(B,Λ

r+1). In what follows, we will also need
the Hardy-Littlewood inequality:
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Theorem 1.4.7. Let f, g : Rn → [0,∞) be two measurable functions vanishing at infinity, and
let f∗, g∗ be their symmetric decreasing rearrangements. Then

ˆ
Rn
f(x)g(x)dx ≤

ˆ
Rn
f∗(x)g∗(x)dx.

Using the homotopy operator, we get the following weak-Lp geometric rigidity estimate for
incompatible fields:

Theorem 1.4.8. Let p∗ = p∗(n) := n
n−1 , and let U ⊂ Rn be an open, bounded and convex

domain. There exists a constant C = C(n,U) > 0 such that for every A ∈ Lp
∗
(U) whose

Curl(A) is a vector measure on U with bounded total variation and whose support is contained
in U , i.e. spt Curl(A) b U , there exist a rotation R ∈ SO(n) such that

||A−R||Lp∗,∞(U) ≤ C
Ä
||dist(A,SO(n))||Lp∗,∞(U) + |Curl(A)| (U)

ä
.

Proof. Take any measurable subset E ⊂ U , and let r > 0 be such that |B(0, r)| = |E|. Then,
using (1.4.4) and the Hardy-Littlewood inequality

ˆ
E

dx |(Tω)(x)| ≤ C
ˆ
E

dx

ˆ
U

dy
|ω(y)|
|x− y|n−1 =

= C

ˆ
U

dy |ω(y)|
ˆ
E

dx

|x− y|n−1 ≤

≤ C
ˆ
U

dy |ω(y)|
ˆ
Rn
χE−x(y)

dy

|y|n−1 ≤

≤ C
ˆ
U

dy |ω(y)|
ˆ
Rn
χ
B(0,r)

dy

|y|n−1 ≤

= C

ˆ
U

dy |ω(y)|
ˆ r

0
dt

ˆ
∂B(0,t)

dy

tn−1
=

= Cr ||ω||L1(U) = C |E|
1
n ||ω||L1(U) .

This gives immediately
||Tω||L1(U) ≤ C(U) ||ω||L1(U) ,

and thus, using (1.4.3), ||A− TdA||L1(U) ≤ C ||dA||L1(U), which extends immediately by den-
sity in the case when dA is a vector measure with bounded total variation. Choosing E =®
x ∈ U

∣∣∣∣∣ |Tω(x)| > t

´
, for t > 0

t |E| ≤
ˆ
E
|Tω(x)| dx ≤ C |E|

1
n |dA| (U).

Passing to the supremum over t > 0, we find

||TdA||Lp∗,∞(U) ≤ C(U) |dA| (U). (1.4.5)

16
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Since U is convex and d(A−TdA) = d2TA = 0, we can find a function g such that dg = A−TdA.
From the estimates proven, is possible to apply Theorem 1.4.6 to g and find

||dg −R||Lp∗,∞(U) ≤ C ||dist(dg, SO(n))||Lp∗,∞(U) .

But
||dg −R||Lp∗,∞(U) ≥ C ||A−R||Lp∗,∞(U) − ||TdA||Lp∗,∞(U)

and
||dist(dg, SO(n))||Lp∗,∞(U) ≤ ||dist(A,SO(n))||Lp∗,∞(U) + ||TdA||Lp∗,∞(U) .

In particular,

||A−R||Lp∗,∞(U) ≤ C
Ä
||dist(A,SO(n))||Lp∗,∞(U) + |Curl(A)| (U)

ä
.

We now give another estimate for Lp norms. It requires an L∞-bound on the matrix field A,
which is natural in the context of the theory of elasticity.

Theorem 1.4.9. Let n ≥ 3, p∗ := p∗(n) := n
n−1 , p ∈ [p∗, 2] and fix M > 0. There exists

a constant C = C(n,M, p) > 0, depending only on the dimension n, the exponent p and the
constant M , such that for every A ∈ L∞(B), with ||A||∞ ≤ M and Curl(A) ∈ Mb(B,Λ

2),
B := B(0, 1), there exists a corresponding rotation R ∈ SO(n) for which, if p > p∗

ˆ
B
|A−R|p dx ≤ C

Åˆ
B

distp(A,SO(n))dx+ |Curl(A)|p
∗

(B)

ã
, (1.4.6)

while, if p = p∗,
ˆ
B
|A−R|p

∗
dx ≤C

ˆ
B

distp
∗
(A,SO(n))dx+

+ C |Curl(A)|p
∗

(B) {|log (|Curl(A)| (B))|+ 1} .
(1.4.7)

Remark 1.4.1. The constant C in (1.4.7) is not scaling invariant in the critical regime p = p∗.
Thus, it cannot be used to extend the analysis in Chapter 2, Section 3, to any dimension.

Proof of Theorem 1.4.9. Without loss of generality, we can assume TdA not identically constant.
Indeed, if TdA is identically constant, from the identity TdA = A + dTA, we see that dA = 0,
hence the result follows applying Theorem 1.4.5. As in the proof of Theorem 1.4.8, applying
Theorem 1.4.5 (and using |a− b|p ≥ 21−p |a|p− |b|p) we find a rotation R ∈ SO(n) for which the
inequality ˆ

B
|A−R|p dx ≤ Cn

Åˆ
B
|dist(A,SO(n))|p dx+

ˆ
B
|TdA(x)|p dx

ã
(1.4.8)

holds. We then just need to estimate the last term in the right hand side of (1.4.8). For, fix a
Λ > 1 (to be chosen later), and define the integrals

I :=

ˆ
|TdA|>Λ

|TdA|p dx, II :=

ˆ
|TdA|≤Λ

|TdA|p dx.

17



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

We now give an estimate for I. Firstly, we recall that T is a bounded operator from Lp(B,Λr)

into W 1,p(B,Λr+1), whenever p ∈ (1,∞) ([24], Proposition 4.1). Moreover, TdA = dTA + A,
and ∇T = S1 + S2, where S1 is a “weakly” singular operator which maps continuously L∞ into
itself, while S2 is a Calderón-Zygmund operator (see the proof of Proposition 4.1 in [24]). In
particular,

||TdA||BMO ≤ Cn ||A||∞ ≤ CnM,

where Cn > 0 is a constant depending only on the dimension. Now, we can write

I = Λp−p
∗
Λp
∗ |{|TdA| > Λ}|+

ˆ ∞
Λ

λp−1 |{|TdA| > λ}|dλ︸ ︷︷ ︸
=:I′

. (1.4.9)

Clearly,
Λp
∗ |{|TdA| > Λ}| ≤ ||TdA||p

∗

Lp∗,∞
≤ C |dA| (B)p

∗
.

We now take a Calderón-Zygmund decomposition of F (x) := |TdA(x)|p: namely, we find a
function g ∈ L∞, with ||g||∞ ≤ 2−nΛp and disjoint cubes {Qj}j≥1 such that, if b :=

∑
j≥1

χQjF ,
F = g + b,

2−nΛp <
ffl
Qj
Fdx ≤ Λp

(
Jensen ⇒

∣∣∣fflQj TdA(x)dx
∣∣∣ ≤ Λ

)
,∣∣∣⋃j≥1Qj

∣∣∣ < 2n

Λp

´
|TdA|p dx.

With such a decomposition, outside the cubes Qj , |TdA|p = |g(x)| ≤ 2−nΛp ≤ Λp. Hence, using
the John-Nirenberg inequality and the elementary estimate

ˆ ∞
x

λqe−λdλ ≤ e−x(1 + x), ∀q ≤ 1 and x ≥ 1,

we find that (provided p ≤ 2)

I ′ =

ˆ ∞
Λ

λp−1
∑
j≥1

∣∣∣∣∣
®
x ∈ Qj

∣∣∣∣∣ |TdA| > λ

´∣∣∣∣∣ dλ ≤
≤
ˆ ∞

Λ
λp−1

∑
j≥1

∣∣∣∣∣
{
x ∈ Qj

∣∣∣∣∣
∣∣∣∣∣TdA(x)−

 
Qj

TdAdx

∣∣∣∣∣ > λ− Λ

}∣∣∣∣∣ dλ ≤
≤ C1

ˆ ∞
Λ

λp−1

Ñ∑
j≥1

|Qj |

é
exp

Ç
−C2

λ− Λ

||TdA||BMO

å
dλ <

< C1
2n

Λp

Åˆ
|TdA|p

ã
e
C2

Λ
||TdA||BMO

Ç
||TdA||BMO

C2

åp ˆ ∞
C2

||TdA||BMO
Λ
λp−1e−λdλ ≤

≤ C1
2n

Λp

Åˆ
|TdA|p

ãÇ ||TdA||BMO
C2

åpÇ
1 +

C2

||TdA||BMO
Λ

å
≤

≤ Cn,M
Åˆ
|TdA|p

ã
1 + Λ

Λp
.

(1.4.10)
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Hence, if we choose Λ big enough (depending only on n and M) in (1.4.10),

I ′ ≤ 1

2

ˆ
|TdA|p . (1.4.11)

Let us now estimate II. If p > p∗, we can writeˆ
|TdA|≤Λ

|TdA|p dx =

ˆ
1<|TdA|≤Λ

|TdA|p dx+
∑
j≥0

ˆ
2−j−1<|TdA|≤2−j

≤

≤ C

Λp |dA|p
∗

(B) +
∑
j≥0

2−(j+1)p
∣∣∣¶|TdA| > 2−(j+1)

©∣∣∣ ≤
≤ C |dA|p

∗
(B)

Ñ
Λp +

∑
j≥0

2−j(p
∗−p)

é
≤

≤ C(n, p,M) |dA|p
∗

(B),

which gives (1.4.6). In the case p = p∗, we are going to make use of the increasing convex
function Ψ, defined as the linear (convex) continuation of t 7→ tp for t ≥ Λ:

Ψ(t) :=

t
p∗ if t ≤ Λ,

p∗Λp
∗−1t+ (1− p∗)Λp∗ if t ≥ Λ.

II ≤
ˆ
B

Ψ(|TdA(x)|)dx ≤
ˆ
B

Ψ

Ç 
B

C |dA| (B)d |dA| (y)

|x− y|n−1

å
≤

≤
ˆ
B

 
Ψ

Ç
C |dA| (B)

|x− y|n−1

å
d |dA| (y)dx =

=

 
B

d |dA| (y)

ˆ
B

Ψ

Ç
C |dA| (B)

|x− y|n−1

å
dx ≤

≤
ˆ
B(0,2)

Ψ

Ç
C |dA| (B)

|z|n−1

å
dz = C

ˆ 2

0
d%%n−1Ψ

Ç
C |dA| (B)

%n−1

å
=

=

ˆ C(|dA|(B)Λ−1)
1

n−1

0
%n−1

Ç
p∗Λp

∗−1C |dA| (B)

%n−1
+ (1− p∗)Λp∗

å
d%+

+ C

ˆ 2

C(|dA|(B)Λ−1)
1

n−1

|dA| (B)p
∗

%
d% ≤

≤ C |dA| (B)p
∗

(1 + |log (|dA| (B))|) .

(1.4.12)

Combining together (1.4.9), (1.4.11) and (1.4.12), we obtain (1.4.7).

Remark 1.4.2. The same conclusions can be obtained considering the operator defined by an
average on the sphere: ‹Tω(x) :=

ˆ
Sn−1

dHn−1(y)kyω(x).

The fundamental generalization of Theorem 1.4.5 proved by Müller, Scardia and Zeppieri in [23],
that is a scaling-invariant geometric rigidity estimate for incompatible matrix fields. Unfortu-
nately, such an estimate is valid only in dimension 2.
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Theorem 1.4.10. Let Ω ⊂ R2 be an open, bounded, simply connected Lipschitz subset. There
exists a constant C = C(Ω) > 0 (which is scaling and translation invariant) such that for every
A ∈ L2(Ω)2×2 whose Curl is a measure with bounded total variation there is a rotation R ∈ SO(2)

for which the following estimate holds:

||A−R||L2(Ω)2×2 ≤ C
Ä
||dist(A,SO(2)||L2(Ω)2×2 + |CurlA| (Ω)

ä
.
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Chapter 2

The First Mesoscopic Scale and Cosserat
Microrotations

2.1 The Functional

In what follows

— Ω := [−L,L]2 represents a section of a crystal, L > 0;

— ε > 0 is the lattice parameter, i.e. the distance between atoms;

— 1� α > 0 is the (“small”) misorientation angle between two grains;

— ` > 0 is a parameter (much smaller than L): in an `-neighborhood of x = ±L we are going
to impose the boundary conditions;

— λ > 0 is a parameter (independent of L, ε, α) so that λε gives what physicists call the core
radius;

— τ > 0 is another parameter independent of all the others, which is defining the minimal
length of the Burgers’ vector, τε.

We then restrict our attention to the following class of admissible strain fields, denoted by
A (ε, α, L, τ, λ, `) (to which we shall simply refer to as Aε, in the case when the other parameters
are clear from the context), which is defined as the family of matrix fields A : Ω→ R2×2 satisfying
the following conditions:

(Aε, i) A ∈ L1
loc(Ω)2×2 and A ∈ L2 (Ω \Bλε (spt CurlA))2×2.

(Aε, ii) (Boundary Condition) A ≡ Rα in [−L,−L+ `]× [−L,L] and A ≡ R−α in [L− `, L]×
[−L,L], where Rα is the counter-clockwise rotation through the angle α, that is

Rα =

[
cos(α) − sin(α)

sin(α) cos(α)

]
.

22
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(Aε, iii) (First Quantization of the Burgers’ vector) For every closed, Lipschitz simple curve
γ ⊂ Ω \Bλε(spt Curl(A)), either

ˆ
γ
A · tdH 1 = 0

or ∣∣∣∣∣
ˆ
γ
A · tdH 1

∣∣∣∣∣ ≥ τε.
We call an admissible core any compact subset of [−L+ `, L− `]× [−L,L], i.e. any element of
K([−L+`, L−`]×[−L,L]). The elastic energy of a pair (A,S) ∈ Aε×K([−L+`, L−`]×[−L,L])

is
Eel(A,S) :=

1

τ

ˆ
Ω\Bλε(S)

dist2(A,SO(2))dx,

while the core energy depends only on the core and is defined as

Ecore(S) :=
1

λ
|Bλε(S)| .

We define the set of admissible pairs

P (ε, α, L, τ, λ, `) := A (ε, α, L, τ, λ, `)×K([−L+ `, L− `]× [−L,L])

Whevener the constants α,L, τ, λ, ` are clear from the context, we shall simply write Pε for
P (ε, α, L, τ, λ, `). The (free) energy functional is defined on pairs (A,S) ∈ Pε as

Fε(A,S) :=

Eel(A,S) + Ecore(S) if spt(Curl(A)) ⊂ S,

+∞ otherwise.

We also define the relaxed energy on admissible fields as

Fε(A) := Fε(A, spt(Curl(A))).

For notational simplicity, for a set S we let Ωλε(S) := Ω \ Bλε(S), while for a matrix field A

Ωλε(A) := Ω \Bλε(spt(Curl(A))).
We say that a matrix field A is a microrotation if A ∈ BV (Ω)n×n (see the Appendix), A(x) ∈
SO(n) for every x ∈ Ω and DA = DJA, i.e.

DA(i) =
Ä
A(i),+ −A(i),−

ä
⊗ νAHn−1 SA, i = 1, · · · , n.

Recall that is well defined a trace for matrix fields whose Curl is square-integrable, in the following
sense. If U is a bounded Lipschitz domain in R2,

H(Curl, U)2×2 :=

®
A ∈ L2(U)2×2

∣∣∣∣∣Curl(A) ∈ L2 (U)

´
.

Then, the operator
γ : A ∈ H(Curl, U) 7−→ A · t ∈ H−

1
2 (∂U),
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is well defined and continuous (where t(x) is the tangent vector to ∂U at the point x), i.e. there
exists a constant C = C(U) > 0 such that∣∣∣∣ˆ

∂U
A · tdH1

∣∣∣∣ ≤ C ||A||H(Curl,U) .

Moreover, an approximation argument (see [27]) gives
ˆ
∂U
A · tdH1 =

ˆ
U

Curl(A)dx ∀A ∈ H (Curl,Ω)2×2 .

To every γ closed, Lipschitz, simple curve contained in Ω \ Bλε(spt Curl(A)) we associate its
Burgers’ vector defined as

⇀
b (γ) :=

ˆ
γ
A · tdH1.

Remark 2.1.1. Although we chose dist2(·, SO(2)) as the elastic energy density, all the results we
prove remain valid if we consider instead a function W : R2×2 → [0,∞) which satisfies the usual
assumptions of an elastic energy density in (two dimensional) nonlinear elasticity, that is

(i) W is continuous and of class C2 in a neighborhood of SO(2);

(ii) W (Id) = 0, i.e. the reference configuration is stress-free;

(iii) W (RA) = W (A) for every matrix A ∈ R2×2, i.e. W is frame indifferent,

together with the growth assumption

(iv) There exists a constant C > 1 such that C−1 dist2(A,SO(2)) ≤W (A) ≤ C dist2(A,SO(2)).

Condition (iv) is rather restrictive, but it is essential in order to apply the Geometric Rigidity
estimate of Müller, Scardia and Zeppieri (cf. [23]).

2.2 Upper Bound: the Read-Shockley Formula

Theorem 2.2.1. There exists a constant C0 > 0 such that

lim inf
ε↓0

inf
(A,S)∈Pε

1

ε
Fε(A,S) ≤ C0αL (|log(α)|+ 1) . (2.2.1)

Proof. Consider n ∈ N such that 1
α ∈ [2n, 2n+1). Without loss of generality, we can assume

ε ∈ L21−k 1
2N :=

®
L21−k

2z

∣∣∣∣∣z ∈ N
´
. Set r0 := ε

2 and N := L
2kr0
∈ 2N. Let rn := 2nr0 and

p1
n := (−rn, rn) , p2

n := (rn, rn) , p3
n := (rn,−rn) , p4

n := (−rn,−rn) for n = 0, · · · , n,

∆1
n := ∆

Ä
p1
n, p

1
n−1, p

4
n−1

ä
, ∆2

n := ∆
Ä
p1
n, p

4
n−1, p

4
n

ä
,

∆3
n := ∆

Ä
p2
n, p

3
n−1, p

3
n

ä
, ∆4

n := ∆
Ä
p2
n, p

2
n−1, p

3
n−1

ä
for n = 1, · · · , n,

where ∆(a, b, c) denotes the triangle whose vertices are a, b and c.
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id

id+
⇀
b id−

⇀
b

id

id+
⇀
b id−

⇀
b

Figure 2.1: The map v(1) (the striped triangles are the ones where we are interpolating).

Let Qn := [−rn, rn]2 and Q := [−rn, rn]2,
⇀
b := (ε, 0) and define (see Figure 2.1)

v(1) :=



id in
ÄÄ
Q \⋃i,n ∆i

n

ä
∩ {y < 0}

ä
∪ [−r0, r0]2 ,

id +
⇀
b in

Ä
Q \⋃i,n ∆i

n

ä
∩ {y > 0, x ≤ 0} ,

id−
⇀
b in

Ä
Q \⋃i,n ∆i

n

ä
∩ {y > 0, x > 0} ,

linear interpolation in
⋃
i,n ∆i

n.

It is readily seen that for p ∈ ∆i
n we have

R−α Rα

id

id

Figure 2.2: The map v(2) (as in Figure 2.1, the stripes denote the regions where we are interpo-
lating).

∣∣∣∇v(1)(p)− id
∣∣∣ ≤ C 1

2n
.

Now, we have to adjust the boundary condition. For, we consider the map v(2) : v(1) (Q) → R2

defined as follows (see Figure 2.2). For n = 1, · · · , n, define the points

q1
n := (rn − ε, rn), q2

n := (rn,−rn), q3
n := (0,−rn),

q4
n := (−rn,−rn), q5

n := (−rn + ε, rn), q6
n := (0, rn),
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and

q1
0 := (r0, r0), q2

0 := (r0,−r0), q3
0 := (0,−r0),

q4
0 := (−r0,−r0), q5

0 := (−r0, r0), q6
0 := (0, r0).

Then, for n = 0, · · · , n, consider the triangles‹∆1
n := ∆

Ä
q5
n, q

5
n−1, q

6
n−1

ä
, ‹∆2

n := ∆
Ä
q5
n−1, q

6
n, q

1
n−1

ä
, ‹∆3

n := ∆
Ä
q6
n, q

1
n−1, q

1
n

ä
,‹∆4

n := ∆
Ä
q2
n, q

2
n−1, q

3
n

ä
, ‹∆5

n := ∆
Ä
q2
n−1, q

3
n, q

4
n−1

ä
, ‹∆6

n := ∆
Ä
q3
n, q

4
n−1, q

4
n

ä
.

We then define v(2) : v(1)(Q)→ R2 as

v(2)(x) :=



R−αx if x ∈ ⋃nn=1

¶
v(1) (Qn \Qn−1) \⋃6

j=1
‹∆i
n

©
∩ {x < 0} ,

Rαx if x ∈ ⋃nn=1

¶
v(1) (Qn \Qn−1) \⋃6

j=1
‹∆i
n

©
∩ {x > 0} ,

x if x = (0,±rn) ,

linear interpolation otherwise.

It is easy to check that on each triangle we have

dist2
Ä
∇v(2), SO(2)

ä
≤ Cα2.

v(1) v(2)

Figure 2.3: Schematic representation of the grain boundary constructed.

Thus, if v := v(2) ◦ v(1) (see Figure 2.3), on each triangle ∆i
n,

dist2 (∇v,SO(2)) ≤ C 1

4n
+ α2.

This gives in particular
ˆ
Q\[−r0,r0]2

dist2 (∇v,SO(2)) dx ≤ C
Ä
ε2 |log(α)|+ ε2

ä
.
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The last step consists in gluing the maps constructed before. Namely, if S := [−rn, rn]× [−L,L]

we define the map u : Ω→ R2 as

u(x, y) :=



R−α

Ñ
x

y

é
if (x, y) ∈ (Ω \ S) ∩ {x < 0} ,

Rα

Ñ
x

y

é
if (x, y) ∈ (Ω \ S) ∩ {x > 0} ,

v (x, y + krn) if (x, y) ∈ Q+ k (0, rn) , k ∈
¶
−N

2 ,
N
2

©
.

Then, if Agb := ∇u,
F(Agb) ≤ Cεαh (|logα|+ 1) .

We say that Egb(ε) := C0εαL (|log(α)|+ 1) is the energy of a grain boundary with misorientation
angle α at the scale ε, where C0 > 0 is the constant from Theorem 2.2.1.

Remark 2.2.1. Although it not completely clear (at least, from the point of view of the Calculus
of Variations) why the upper bound should also be (roughly) optimal, it is clear that the lower
bound cannot be zero. Indeed, suppose it is. Then, because of the quantization of the core
energy, minimizing fields need to be curl-free, meaning that we can look for minimizing sequence

in the more restrictive class W 1,2
α (Ω) :=

®
u ∈W 1,2(Ω)

∣∣∣∣∣∇u ≡ R±α near x = ±`
´
. But then

inf
u∈W 1,2

α (Ω)
F(∇u) = min

u∈W 1,2
α (Ω)

F(∇u) = Cα,h > 0,

Indeed, the functional u ∈ W 1,2(Ω) 7→
´

Ω dist2(∇u,SO(2)(2))dx is lower semicontinous with
respect to the W 1,2-weak topology and is bounded from below. Then, the infimum is actually
a minimum. But it cannot be zero, otherwise Liouville’s Theorem would imply that the matrix
field ∇u is constant, which is not compatible with the boundary conditions.

2.3 Surgery Lemmata

This section is dedicated to two technical lemmas. They allow us to find fields with energy
comparable to a given one, but uniformly bounded and with |Curl| controlled by the core energy
(when seen as a measure). These two technical requirements are essentials in the harmonic
competitor lemma and in the balls construction.

Lemma 2.3.1. There exists a constant C > 0 such that for every pair (A,S) ∈ P (ε, α, L, `λ)

whose energy satisfies Fε(A,S) ≤ Egb(ε) there exists another pair (‹A, S̃) ∈ P
Ä
ε, α, L, `2 , λ

ä
s.t.

(i)
∣∣∣∣∣∣‹A∣∣∣∣∣∣

L∞(Ω)
≤ C;

(ii) Fε(‹A, S̃) ≤ CFε(A,S);

(iii) ‹A ∈ C∞ (Ω \Bλε(S̃)
)
.
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Proof. We will define the pair (‹A, S̃) by modifying it in several steps. Let ω := Bλε(S) and
define ‹A1 :=

id in ω,

A in Ω \ ω.

Clearly, spt Curl ‹A1 ⊆ ω =: S̃1, and by Vitali’s Lemma we can find an at most countable
collection of point (xj)j∈J ∈ S such that the balls Bλε(xj) are mutually disjoint and

ω =
⋃
x∈S

Bλε(x) ⊂
⋃
j∈J

B5λε(xj).

Thus ∣∣∣Bλε(S̃1)
∣∣∣ ≤ |Bλε (ω)| ≤

∣∣∣∣∣∣⋃j∈J B6λε(xj)

∣∣∣∣∣∣ ≤ Cλ∑j∈J |Bλε(xj)| ≤ Cλ,n |ω| ≤ CλFε(A,S).

Thus Fε(‹A1, S̃1) ≤ CλFε,S and
∣∣∣∣∣∣‹A1

∣∣∣∣∣∣
L∞(ω)

≤M . For notational simplicity, relabel ‹A1 as A and

S̃1 as S. Now we show that we can without loss of generality assume A to be smooth outside
Bλε(S). By the Hodge-Morrey decomposition, A = ∇u+ F , where u ∈W 1,2(Ω) and F ∈ L2(Ω)

has zero divergence in the sense of distributions. Moreover, Curl(F ) = 0 in Ωλε
2

(S), and hence is
harmonic (and, in particular, smooth) in Ωλε

2
(S). We then take a sequence uk ∈ C∞(Ω)∩W 1,2(Ω)

converging to u in W 1,2(Ω). Set Ak := ∇uk + F . Clearly Curl(Ak) = Curl(F ) = Curl(A) in Ω

for every k andˆ
Ω

dist2(Ak,SO(2))dx ≤ 2

Åˆ
Ω

dist2(A,SO(2))dx+

ˆ
Ω
|∇(uk − u)|2 dx

ã
≤ 3

ˆ
Ω

dist2(A,SO(2))dx,

provided k is chosen big enough. That is, we can without loss of generality assume A to be
smooth in Ωλε(S). Now, fix M > 1 and consider the set of points

R := RM :=

®
x ∈ Ω

∣∣∣∣∣∃r > 0 :
 
Br(x)

dist2(A,SO(2)) ≥M
´
,

and define

r(x) := rM (x) := inf

®
r > 0

∣∣∣∣∣
 
Br(x)

dist2(A,SO(2)) ≥M
´
.

Clearly, ||A||L∞(Ω\R) ≤M + 2
√
n. Let R1 := R ∩ {r(x) ≥ ε}, and define the new field‹A2 :=

id in B1,

A in Ω \B1,

where B1 :=
⋃
x∈R1

Br(x)(x). Then spt Curl ‹A2 ⊂ B1∪S. Set S̃2 := S∪R1. Using Vitali’s Lemma
as before, we find a collection of (at most countable) mutually disjoint ballsBj = Br(xj)(xj) whose
centers are in R1 and

R1 ⊂
⋃
j∈J

B5r(xj)(xj).
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Thus, since r(xj) =: rj ≥ ε for every j ∈ J ,

|Bλε(R1)| ≤
∑
j∈J

∣∣∣B(5+λ)rj (xj)
∣∣∣ ≤ Cλ∑

j

|Bj | ≤
Cλ
M

∑
j∈J

ˆ
Bj

dist2(A, SO(2)) ≤ Cλ
M
Fε(A,S).

As done before, relabel for simplicity ‹A2 as A and S̃2 as S, and redefine the set R and the function
r in function of this new pair (A,S). Then we reduced ourselves to the case when the potentially
bad points, i.e. the ones in R, have r(x) < ε. Consider first those which lie in Bλε (S), i.e. the
points in R2 := R ∩Bλε (S). Consider the field‹A3 :=

id in B2,

A in Ω \B2,

and the cores S̃3 := S ∪ R2, where B2 :=
⋃
x∈R2

Br(x)(x). Using a covering argument as before,
one can easily infer that

∣∣∣Bλε(S̃3)
∣∣∣ ≤ Cλ,nFε(A). Hence, relabeling ‹A3 as A and S̃3 as S (and

redefining R, r depending on the new field A) we are reduced to the case when R consists only
points lying outside the λε-neighborhood of S and with r(x) < ε. In this case we are not allowed
to merely cut off the fields, since we have no control of the singular set in terms of the covering
V :=

⋃
x∈RBr(x)(x) of R (we can always assume V to be open, i.e. r(x) > 0 for every x). We

then need to extend A in a Curl-free way. For, we first notice that using Vitali’s Lemma again,
we find

|V | ≤ C

M
Fε(A) ≤ CεLα |log(α)| ≤ λ

2
ε.

In particular, this means that every ball of radius λε must intersect the complement of V . We
then cover Ωλε(A) with (a finite number of) balls of such radius which overlap only finitely many
times (depening only on the dimension):

Ωλε(A) ⊂
⋃
j≥1

Bj , Bj := B (xj , λε) .

We only need to extend the field to those balls which are not intersecting the singular set (indeed,
in those balls which do intersect the singular set we can simply set the field to be a constant).
Following the proof of Whitney Lemma (see [25]), we define

%(x) :=
1

20
min {1, dist(x, C)} , C := Ωλε(A) \ V.

By Vitali’s Lemma, we find points {xk} ⊂ V such that

V =
⋃
k≥1

B (xk, 5%(xk)) ,

and the balls B (xk, %(xk)) are disjoint. One can then prove that the sets

Sx :=

®
xk

∣∣∣∣∣B (x, 10%(x)) ∩B (xk, 10%(xk)) 6= ∅
´
,
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have uniformly finite cardinality; more precisely, #Sx ≤ (129)2 =: C2 for all x ∈ V . Moreover,
if xk ∈ Sx, 1

3%(xk) ≤ %(x) ≤ 3%(xk). One can then prove that is possible to contruct a partition
of unity {ψk}k≥1 such that


∑
k≥1 ψk(x) ≡ 1,∑
k≥1∇ψk(x) ≡ 0, x ∈ U,

|∇ψk(x)| ≤ C
%(x) .

For each k choose a point sk ∈ C such that |xk − sk| = dist(xk, C). Since the balls Bj are simply
connected and A is Curl-free in Ωλε(A), we can find a function u ∈ C∞(Bj) such that A = ∇uj
in Bj . We can then consider the extension in Bj

uj(x) :=

uj if x ∈ Bj \ V,∑
k≥1 ψk(x) (uj(x) +A(sk) (x− sk)) if x ∈ Bj ∩ V.

It is then possible to show that Aj := uj ∈ C1(Bj) and ∇uj(x) = A(x) for all x ∈ Bj \ V .
Moreover, if x ∈ Bj ∩Bm, then ∇uj(x) = ∇um(x). Indeed, since ∇uj = ∇um in Bj ∩Bm, there
exists a constant cjm ∈ R2 such that uj = cjm + um in Bj ∩ Bm, and hence ∇uj(x) = ∇um(x)

since
∑
k≥1∇ψk(x) = 0 for every x ∈ V . In particular, the extension‹A(x) := Aj(x), if x ∈ Bj

is well defined and Curl-free. It is also easy to verify that |∇uj(x)| ≤ C2, for some constant C2 > 0

depending only on the dimension. Then, define ‹A to be the identity in a 2λε-neighborhood of
S, which we call S̃. This gives the desired field ‹A, since (arguing like in the discussion before)

|Bλε(S)| ≤ C2 |Bλε(spt CurlA)| ,

and ˆ
V

dist2(‹A, SO(2))dx ≤ C2

∑
j

|Bj | ≤
C

M
Fε(A,S).

Lemma 2.3.2. Let (A,S) ∈ P (ε, α, L, λ, `). Then there exists another pair (‹A, S̃) ∈ P
Ä
ε, α, L, λ, `2

ä
such that for a universal constant C > 0

(i) Fε
Ä‹A, S̃ä ≤ CFε(A,S);

(ii) Curl(‹A) ∈ L∞(Ω) and
∣∣∣Curl(‹A)

∣∣∣ ≤ Cµ2,ε(S̃), where

µ2,ε(S̃) :=
1

λε
L2 Bλε(S̃).

Proof. By Lemma 2.3.1, we can assume A to be smooth in Ωλε(A) and ||A||L∞(Ω) ≤ C. Consider
a λε-mollifer %λε, that is %λε ∈ C∞c (Rn, [0, 1]), spt(%λε) ⊂ B (0, λε) and

´
%λε = 1. Take a cut-off
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function ζ such that 

ζ ∈ C∞(Ω),

0 ≤ ζ ≤ 1,

ζ ≡ 1 in Bλε(S),

ζ ≡ 0 in Ω \B2λε(S),

||∇ζ||L∞(Ω) ≤
C0
λε .

Define the new matrix field ‹A := (1− ζ)A+ ζ (A ? %λε) .

Clearly,
∣∣∣∣∣∣‹A∣∣∣∣∣∣

L∞(Ω)
≤ ||A||L∞(Ω) ≤ C and

Curl(‹A) = (1− ζ) Curl(A) + (A ? %λε −A) · ∇⊥ζ + ζA ? ·∇⊥%λε,

where we used the notation v ? ·w :=
∑n
i=1 vi ? wi for Rn-valued functions v, w. In particular,

— in Bλε(S), ζ ≡ 1, hence Curl(‹A) = ζA ? ·∇⊥%λε, which in turn implies
∣∣∣Curl(‹A)

∣∣∣ ≤ C
λε ;

— in B2λε(S) \Bλε(S), Curl(A) = 0 and so Curl(‹A) = (A ? %λε −A) ·∇⊥ζ + ζA? ·∇⊥ζ. This
gives again

∣∣∣Curl(‹A)
∣∣∣ ≤ C

λε ;

— in Ω \B2λε(S), Curl(A) ≡ 0 and ζ ≡ 0, hence Curl(‹A) = 0.

From the discussion above, we have in particular that spt Curl(‹A) ⊂ B3λε(S) =: S̃. Thus, for
every E ⊂ Ω ∣∣∣Curl(‹A)

∣∣∣ (E) =

ˆ
E

∣∣∣Curl ‹A∣∣∣ dx =

ˆ
E∩spt Curl(Ã)

∣∣∣Curl ‹A∣∣∣ dx ≤
≤
∣∣∣∣∣∣Curl(‹A)

∣∣∣∣∣∣
L∞(Ω)

∣∣∣E ∩Bλε(spt Curl(‹A))
∣∣∣

≤ Cµ2,ε(‹A) [E] .

Moreover, a standard covering argument gives∣∣∣Bλε(S̃)
∣∣∣ ≤ C |Bλε(S)| ,

which leads also toˆ
Ω

dist2(‹A,SO(2))dx =

ˆ
Ω\B2λε

dist2(A,SO(2))dx+

ˆ
B2λε(S)

dist2(‹A, SO(2))dx

≤ Eel(A,S) + C |Bλε(S)| ≤ CFε(A,S).

2.4 Structure of Limit Fields I: BV estimate

We can start the analysis of the structure of limits of energy-minimizing tensor fields. The
following lemma gives a control on the BV norm of a function once a bound on its variance is
known.
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Lemma 2.4.1. Let u ∈ L1(Ω)m, Ω ⊂ Rn open. There exists a constant C = C(n) > 0 depending
only on the dimension n such that if for some positive measure µ on Rn

Varn (u;B (p, %)) :=

Ñˆ
B(p,%)

∣∣∣∣∣u−
 
B(p,%)

u

∣∣∣∣∣
n
n−1

dx

én−1
n

≤ µ (B (p, 2%)) (2.4.1)

holds for every p ∈ Ω and % > 0, then

|Du| (Ω) ≤ Cµ(Ω).

In particular, u ∈ BV (Ω) provided µ(Ω) <∞.

Proof. We can assume µ(Ω) < ∞, otherwise there is nothing to prove. Extend u to 0 outside
Ω and consider a tessellation of Rn with closed cubes of side δ > 0,

{
Q

(δ)
i

}
i≥1
≡ {Q (xi, δ)}i≥1,

whose side length is δ and whose interiors are pairwise disjoint. Define

uδ :=
∑
i≥1

χ
Q

(δ)
i

u
(δ)
i , u

(δ)
i :=

 
Q

(δ)
i

udx.

Clearly, uδ → u in L1(Ω). The divergence theorem gives for any test function ϕ ∈ C1
c (Ω) such

that ||ϕ||∞ ≤ 1

ˆ
Ω
uδ div(ϕ)dx =

∑
i≥1

uδi

ˆ
Q

(δ)
i

div(ϕ)dx =
∑

σij
(
u

(δ)
i − u

(δ)
j

)ˆ
∂Q

(δ)
i ∩∂Q

(δ)
j

ϕ · νdHn−1,

where the last sum is extended over all those i < j such that Hn−1
(
∂Q

(δ)
i ∩ ∂Q

(δ)
j

)
> 0, σij ∈

{1,−1} are constants giving the correct sign and ν denotes the outer unit normal. Taking the
absolute values, we find ∣∣∣∣ˆ

Ω
uδ div(ϕ)dx

∣∣∣∣ ≤∑∣∣∣uδi − uδj ∣∣∣Hn−1
(
∂Q

(δ)
i

)
.

Now, consider the balls B(δ)
i := B (xi, 2δ) which cover all the squares with an edge in common

with Q(δ)
i and use Hölder’s inequality in order to find

∣∣∣uδi − uδj ∣∣∣ ≤ 1∣∣∣Q(δ)
i

∣∣∣
ˆ
B

(δ)
i

∣∣∣∣∣u−
 
B

(δ)
i

udx

∣∣∣∣∣ dx 1∣∣∣Q(δ)
i

∣∣∣ Varn
(
u;B

(δ)
i

) ∣∣∣B(δ)
i

∣∣∣ 1
n ≤

≤ Cnδ1−n Varn
(
u;B

(δ)
i

)
.

Thus, since the balls Bδ
i overlap only finitely many times (depending on the dimension n), we

have from (2.4.1)∣∣∣∣ˆ
Ω
uδ div(ϕ)dx

∣∣∣∣ ≤ Cn∑ δn−1δ1−n Varn
(
u;B

(δ)
i

)
≤ Cn

∑
i≥1 : B(δ)

i ∩Ω6=∅

µ(2B
(δ)
i ) ≤ Cnµ(Ω).

Since the estimate is independent of δ > 0 and the test function ϕ, we can first take the limit as
δ ↓ 0 and then the supremum on ϕ in order to infer |Du| (Ω) ≤ Cnµ(Ω).
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Then, in order to conclude that a limit field is in BV , we just need to bound its variance. This
is an application of the geometric rigidity estimate for incompatible fields due to Müller, Scardia
and Zeppieri, which we recalled in Theorem 1.4.10.

Proposition 2.4.2. There exists a constant C > 0 such that if εj → 0 and (Aj , Sj) ∈ Pεj ,α,L
be such that Fj(Aj , Sj) ≤ Egb(εj). Then, there exists another sequence, still denoted by (Aj , Sj),
such that Fj(Aj , Sj) ≤ CEgb(εj), Aj → A ∈ BV (Ω) in L2(Ω) and A(x) ∈ SO(2) for every
x ∈ Ω \M, whereM⊂ Ω is a set of Hausdorff dimension at most 1.

Proof. By Lemma 2.3.2, we can always assume |Curl(Aj)| ≤ Cµ2,j , where µ2,j := µ2,εj (Aj).
Since

´
Ω |Aj |

2dx ≤ C, there exists (up to passing to a subsequence) a matrix field A ∈ L2(Ω)

such that Aj ⇀ A in L2(Ω). Pick then x ∈ Ω and % > 0. By Theorem 1.4.10, there exists a
rotation Rj%,x such that

 
B(x,%)

∣∣∣Aj −Rj%,x∣∣∣2 dy ≤ C(B(0, 1))

%2

Ä
Egb(εj) + |Tj |2 (B(x, %))

ä
,

where Tj := |Curl(Aj)|
∗−⇀ T . Thus, taking the lim sup and passing to a subsequence, we find

lim
j→∞

  ∣∣∣Aj −Rj%,x∣∣∣2 dy ≤ C lim sup
j→∞

|Tj | (B(x, %))

%2
≤ CT (B(x, 2%))

%2
.

Now, up to another subsequence, Rj%,x → R%,x ∈ SO(2), by the lower semicontinuity of the L2

norm, ˆ
B(x,%)

|A−R%,x|2 dy ≤ CT (B(x, 2%))2. (2.4.2)

In particular, we see from (2.4.2) that we can apply Lemma 2.4.1 and conclude that A ∈ BV (Ω),
with |DA| (Ω) ≤ CT (Ω) ≤ C lim infj→∞ Tj(Ω) < ∞ . Consider now the following sets, for
δ, c > 0:

Mδ,c :=

®
x ∈ Ω

∣∣∣∣∣∃% < δ s.t.
ˆ
B(x,%)

|A−R%,x|2 dy > c%2

´
.

We can find points xj ∈Mδ,c such that, if Bj := B(xj , %(xj)), then

Mδ,c ⊂
⋃
j≥1

Bj .

In particular, c%2
j ≤ Cµ(Bj)

2. We define

Mc :=

{
x ∈ Ω

∣∣∣∣∣∃%i ↓ 0 s.t.
ˆ
B%i (x)

|A−Q%i,x|
2 dy > c%2

i

}
.

By the definition of Hausdorff measure, we find

H1(Mc) ≤
√
c
∑
j

T (Bj) + 1 ≤
√
cT (Mc) + 1 ≤ C (T (Ω) + 1) <∞.
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Clearly, for every x ∈ Ω \Mc,

lim sup
%↓0

 
B(x,%)

|A−Q%,x|2 dy ≤ c.

By the arbitrariness of c > 0, A(x) ∈ SO(2) for every x ∈ Ω \⋂c>0Mc, that is A(x) belongs to
SO(2) for all points in Ω, except for a set of Hausdorff dimension at most 1.
Now we have, in particular, Aj ⇀ A and A(x) ∈ SO(2) for almost every x ∈ Ω. Denote as Rj(x)

the projection of Aj(x) on SO(2). Then Aj = Rj + (Aj − Rj). We know that Aj − Rj → 0 in
L2(Ω) while, up to a subsequence, Rj ⇀ A. But then Rj → A (because the L2 norms converge
to the norm of A), and thus Aj → A in L2(Ω).

Using a slicing argument and Proposition 2.4.2, we obtain the estimate µ2(Ω) ≥ |DA| (Ω) ≥ CαL,
that is a (weak) lower bound to the energy. We are going to improve this result in a first
qualitative, and then quantitative way. By qualitative we mean that the limit field is actually
a microrotation, while the quantitative improvement is an estimate involving a power of the
logarithm of α−1. These facts rely essentially on two basic tools: the existence of a harmonic
competitor and an “optimal foliation” lemma. We give here the proof of the first one.

2.5 The Harmonic Competitor

Proposition 2.5.1. Let Ω ⊂ Rn be open, and A ∈ L∞(Ω)n×n be a matrix field such that
||A||∞ ≤ M , and let O ⊂ Ω \ Bλε(spt CurlA) be an open, connected subset with Lipschitz
boundary. Then there exists a matrix field ‹A ∈ L2(Ω)n×n which is harmonic in O and a constant
Cn,M > 0 (depending only on the dimension n and M) such that∣∣∣∣∣∣A− ‹A∣∣∣∣∣∣

L2(O)
≤ Cn,M ||dist(A,SO(n))||L2(O) .

Proof. Let E := ||dist(A,SO(n))||2L2(O). The Hodge decomposition of A gives a vector field
u ∈W 1,2

0 (Ω)n and a divergence-free (in the sense of distributions in Ω) matrix field F ∈ L2(Ω)n×n

such that
A = ∇u+ F.

As in the proof of Lemma 2.3.1, we can assume A to be smooth in Bλε(spt CurlA). Consider
the function u1

h ∈W 1,2(O) defined as the harmonic extension of u in O:∆u1
h = 0 in O,

u1
h = u1 on ∂O,

and let then Ah := ∇(u1
h, u

2, · · · , un) + F . Define G := O ∩
¶

det(A) > 1
2

©
, and U(x) :=√

AATχG + (1−χG)id, together with the vector fields Ri(x) :=
[
U(x)−1 (∇u+ F )

]i and R1h :=[
U(x)−1 (∇uh + F )

]1. In what follows, we identify vector fields with their associated differential
1-forms. We first notice that ˆ

O
det(A)dx =

ˆ
O

det(Ah)dx. (2.5.1)
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Indeed, since the determinant is a null Lagrangian, (2.5.1) is equivalent to

n∑
i=2

ˆ
O

d
Ä
u1
h − u1

ä
∧

n∧
j=2

Ä
(1− δij)duj + F j

ä
= 0,

which holds because of the Leibniz formula for forms, the fact that CurlF i = 0 in O and Stokes’
theorem (together with u1

h = u1 on ∂O). Hence, we can write (notice that, since R1, · · · , Rn are
orthonormal, for any vector field A we have A∧R2∧· · ·∧Rn =

∑n
k=1 〈A, Rk〉Rk∧R2∧· · ·∧Rn =

〈A, R1〉R1 ∧ · · · ∧Rn = 〈A, R1〉 dx1 ∧ · · · ∧ dxn)
ˆ
O

det(A)dx =

ˆ
O

det(Ah)dx =

ˆ
O

Ä
du1

h + F 1
ä
∧
Ä
du2 + F 2

ä
∧ · · · ∧ (dun + Fn) =

=

ˆ
O

(R1h ∧R2 ∧ · · · ∧Rn) det(U) =

=

ˆ
G
〈R1h, R1〉det(U)dx+

ˆ
O\G

R1h ∧R2 ∧ · · · ∧Rn det(U).

(2.5.2)

On the other hand,
ˆ
O

det(A)dx =

ˆ
G
〈R1, R1〉det(U) +

ˆ
O\G

R1 ∧ · · · ∧Rn det(U). (2.5.3)

Subtracting (2.5.2) from (2.5.3), we obtain

0 =

ˆ
G
〈R1 −R1h, R1〉 det(U)dx+

ˆ
O\G

(R1 −R1h) ∧R2 ∧ · · · ∧Rn det(U). (2.5.4)

Rewrite (2.5.4) as
ˆ
G

¨
∇u1 −∇u1

h,∇u1 + F 1
∂

=−
ˆ
G

¨
∇u1 −∇u1

h,
Ä
det(U)U−2 − id

ä Ä
∇u1 + F 1

ä∂
dx+

+

ˆ
O\G

(R1 −R1h) ∧R2 ∧ · · · ∧Rn det(U),

and then add
´
O\G

〈
∇u1 −∇u1

h,∇u1 + F 1
〉
on both sides. Since u1

h is the harmonic extension
of u1 and div(F 1) = 0, we have

ˆ
O

∣∣∣∇u1 −∇u1
h

∣∣∣2 dx =

ˆ
O

¨
∇u1 −∇u1

h,∇u1 + F 1
∂

dx = I1 + I2 + I3,

where

I1 :=

ˆ
O\G

¨
∇u1 −∇u1

h,∇u1 + F 1
∂
,

I2 := −
ˆ
G

¨
∇u1 −∇u1

h,
Ä
det(U)U−2 − id

ä Ä
∇u1 + F 1

ä∂
,

I3 :=

ˆ
O\G

(R1 −R1h) ∧R2 ∧ · · · ∧Rn.
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Now, because of the continuity of the determinant, there exists a dimensional constant cn > 0

such that
¶

det(A) ≤ 1
2

©
⊂ {dist(A,SO(n)) ≥ Cn}. Thus, since ||A||∞ ≤M ,∣∣∣∣∣

ˆ
O\G

¨
∇u1 −∇u1

h,∇u1 + F 1
∂

dx

∣∣∣∣∣ ≤ Cn
ˆ
{dist(A,SO(n))≥Cn}

∣∣∣∇u1 −∇u1
h

∣∣∣ dx ≤
≤ Cn

√
E

 ˆ
O

∣∣∇u1 −∇u1
h

∣∣2 dx.

Let us now estimate I2. Since the function f(U) := U−2 det(U) is smooth on G, ||A||∞ ≤ M

and f(id) = id, there exists a constant, depending only on n and M ,Cn = Cn(M) > 0 such that

|f(U)− id| ≤ Cn |U − id| = Cn dist(A,SO(n)).

Then

|I2| ≤ Cn
ˆ
G

∣∣∣∇u1 −∇u1
h

∣∣∣ ∣∣∣U−2 det(U)− id
∣∣∣ ∣∣∣∇u1 + F 1

∣∣∣ dx ≤
≤ Cn

√
E

 ˆ
O

∣∣∇u1 −∇u1
h

∣∣2 dx.

Finally, let us estimate I3. Again because of the boundedness of A,

|I3| ≤ Cn
ˆ
O\G
|R1 −R1h|

cn
cn

dx ≤ Cn
√
E

 ˆ
O

∣∣∇u1 −∇u1
h

∣∣2 dx.

Combining these estimates together, we find
ˆ
O

∣∣∣∇u1 −∇u1
h

∣∣∣2 dx ≤ Cn
√
E

 ˆ
O

∣∣∇u1 −∇u1
h

∣∣2 dx,

i.e. ˆ
O

∣∣∣∇u1 −∇u1
h

∣∣∣2 dx ≤ CnE.

Applying the same procedure to each component, we find
ˆ
O
|∇u−∇uh|2 dx ≤ CnE,

where uh = (u1
h, · · · , unh). Now we can define

ũ := uhχO + uχΩ\O,

and set ‹A := ∇ũ+ F . Since Div(‹A) = ∆ũ = 0 and Curl(‹A) = 0 in O, from the identity

−∆Lij + ∂j DivLi = −
n∑
k=1

∂k
Ä
∂kL

i
j − ∂jLik

ä
,

valid for any matrix field L ∈ L1 (Ω)n×n, we infer that ∆‹A = 0 in O.
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Remark 2.5.1. Combining together the lemmata 2.3.1, 2.3.2 and Proposition 2.5.1, we have that
for every (A,S) ∈ Pε such that Fε(A,S) ≤ Egb(ε), we can find a competitor (‹A, S̃) ∈ Aε whose
energy can be estimated in terms of the original one, i.e. Fε(‹A, S̃) ≤ CFε(A,S), where C > 0 is
a universal constant, satisfying the following properties:

(a)
∣∣∣∣∣∣‹A∣∣∣∣∣∣

∞
≤ C,

(b)
∣∣∣Curl(‹A)

∣∣∣ ≤ Cµ2,A,

(c) ∆‹A = 0 in Ωλε(‹A).

That is, since we are interested in a lower bound to the energy, we can restrict our attention to
those pairs in Pε satisfying (a), (b) and (c).

Remark 2.5.2. If A ∈ Aε ∩ {G : ||G||∞ ≤M} and ‹A is the matrix field given by Lemma 2.5.1,
then the Burgers’ vectors relative to A still define a bounded functional from 1-cycles into R2,
and it can also be proved without employing the maximum principle. Indeed, if we identify ‹A
with a vector of 1-forms, the Burgers’ vector

⇀
b
Ã

: Z1(Ωλε(‹A);R) −→ R2

T 7−→
¨
T, ‹A∂

defines a bounded operator (where the space of 1-cycles is endowed with the mass norm). Indeed,
in Ω \Bλε(‹A), we can write ‹A = duh +F , where A = du+F . Then, since T is a closed current,¨

T, ‹A∂ = 〈T, duh + F 〉 = 〈T, F 〉 = 〈T, du+ F 〉 = 〈T,A〉 .

But |〈T,A〉| ≤ ||A||∞M(T ) ≤MM(T ), hence the claim.

We shall need the following Lemma, which gives an expression for the Burgers’ vector in terms
of the gradient of the fields and the position of the points on the curve.

Lemma 2.5.2. Suppose γ ⊂ R2 is a closed, simple Lipschitz curve, and V is a C1 vector field
defined in a neighborhood of γ. Then

ˆ
γ
V (x) · t(x)dH1 = −

ˆ
γ
∇V (x)x · t(x)dH1,

where t(x) is the tangent vector of γ at x.

Proof. Let γ =

®
f(t)

∣∣∣∣∣t ∈ [0, 1)

´
, where f is a Lipschitz parametrization of γ, and set x0 :=
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f(0) = f(1). Then
ˆ
γ
V · tdH1 =

ˆ
γ

(V (x)− V (x0)) · tdH1 =

ˆ 1

0
(V (f(t))− V (f(0))) · ḟ(t)dt =

=

ˆ 1

0

Çˆ t

0
∇V (f(s))ḟ(s)ds

å
· ḟ(t)dt =

ˆ 1

0
∇V (f(s))ḟ(s) ·

ˆ 1

s
ḟ(t)dtds =

= −
ˆ 1

0
∇V (f(s))ḟ(s) · f(s)ds = −

ˆ 1

0
∇V (f(s))f(s) · ḟ(s)∣∣∣ḟ(s)

∣∣∣
∣∣∣ḟ(s)

∣∣∣ ds =

= −
ˆ
γ
∇V (x)x · t(x)dH1.

As an immediate application of Lemma 2.5.2, we see that if γ lies in a region where A is both
Curl and divergence free, then

⇀
b (γ) = −

Çˆ
γ

Ä
x · ∇A1

1, x
⊥ · ∇A1

1

ä
· t(x)dH1,

ˆ
γ

Ä
−x⊥ · ∇A2

2, x · ∇A2
2

ä
· t(x)dH1

å
≡

≡ −
ˆ
γ

((
x x⊥

−x⊥ x

)
·
Ä
∇A1

1 ∇A2
2

ä)
t(x)dH1.

(2.5.5)

2.6 The Foliation Lemma

We are left with the second fundamental tool, that is the foliation Lemma. In the proof, we will
need the following technical covering lemma:

Lemma 2.6.1. Let R > 0, δ ∈ (0, 1), M > 10 and consider a family I = {xi}Ni=1 of points in
Rn whose subfamily J ⊂ I has the property that for each j ∈ J there exists a k ∈ N such thatÄ
B
Ä
xi,
Ä
M
2

ä
− 2
ä
rk \B (xi, rk)

ä
∩ I = ∅, where rk := δkR. Set

rj := max

®
δkR

∣∣∣∣∣k ≥ 0 and
Å
B

Å
xi,

Å
M

2
− 2

ã
rk

ã
\B (xi, rk)

ã
∩ I = ∅

´
.

Then there exists a subfamily J̃ ⊂ J such that the balls
¶
B
Ä
xi,
Ä
xi,
Ä
M
4 − 1

ä
ri
ää©

i∈J̃ are disjoint
and ⋃

j∈J
B

Å
xj ,

Å
M

8
− 5

4

ã
rj

ã
⊂
⋃
i∈J̃

B

Å
xi,

Å
M

8
− 1

4

ã
ri

ã
.

Proof. Let β := M
2 − 2. Define inductively the family J̃ as follows. Select a maximal family of

points J0 from
®
j ∈ J

∣∣∣∣∣rj = δkR

´
such that

|xi − xj | ≥
β

2
(ri + rj) ∀i, j ∈ J0,

and set J̃0 := J0. Suppose then that the family J̃k has been defined, k ≥ 0, and select a maximal

family of points Jk+1 from
®
j ∈ J

∣∣∣∣∣rj = δk+1R

´
such that

|xi − xj | ≥
β

2
(ri + rj) ∀i, j ∈ J̃k ∪ Jk+1,
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and then set J̃k+1 = J̃k ∪ Jk+1. The set J̃ is given by

J̃ :=
⋃
k≥0

J̃k.

Clearly, the balls
¶
B
Ä
xi,

β
2 ri
ä©

i∈J̃ are disjoint. Moreover, for every xj ∈ J we can find an xi ∈ J̃
such that ri = rj and

|xi − xj | <
β

2
(ri + rj) ≤ βri,

which means, by the definition of ri, that |xi − xj | ≤ ri. Hence, if x ∈ B
Ä
xj ,
Ä
M
8 −

5
4

ä
rj
ä
, j ∈ J ,

then there exists an i ∈ J̃ such that

|x− xi| ≤ ri +

Å
M

8
− 5

4

ã
ri =

Å
M

8
− 1

4

ã
ri.

We are now in position to prove a key step, that is the lemma which gives the optimal foliation.

Lemma 2.6.2. There exist δ0 ∈ (0, 1) and C > 0 such that if {B(xi, %i)}Ni=1 are balls in R2

satisfying

H1

(
A ∩

N⋃
i=1

∂B(xi, %i)

)
≤ δ0, A := B(0, 1) \B

Å
0,

1

2

ã
⊂ R2, (2.6.1)

then there exists a Lipschitz function ϕ : A → [0, 1] such that

(i) ||∇ϕ||L∞(A) ≤ C;

(ii) ϕ ≡ 0 on ∂B(0, 1) and ϕ ≡ 1 on ∂B
Ä
0, 1

2

ä
;

(iii) If U := A \⋃Ni=1B(xi, %i),

ˆ
U

|∇ϕ(x)|2

dist2(x, ∂U)
dx ≤ C (1 +N) . (2.6.2)

Proof. We shall modify in an appropriate way the natural radial foliation. First of all, define

δ1 := inf

{
r ≥ δ0

∣∣∣∣∣∂B
Å

0,
1

2
+ r

ã
∩

N⋃
i=1

B (xi, %i) = ∅
}
,

and

δ2 := inf

{
r ≥ δ0

∣∣∣∣∣∂B (0, 1− r) ∩
N⋃
i=1

B (xi, %i) = ∅
}
.

By a simple geometric argument, one can see that δ0 ≤ min {δ1, δ2} ≤ max {δ1, δ2} ≤ 3
2δ0. Define

then the function

ϕ0(x) :=


C(δ1, δ2) (1− δ2 − |x|) if |x| ∈ B (0, 1− δ2) \B

Ä
0, 1

2 + δ1

ä
,

0 if |x| ≥ 1− δ2,

1 if |x| ≤ 1
2 + δ1,
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where C (δ1, δ2) := 1
1
2
−δ1−δ2

(clearly ϕ0 is Lipschitz, with Lipschitz constant C(δ1, δ2) ≤ 1
1
2
−3δ0

and satisfies (ii)). We will then split the integral I in the left hand side of (2.6.2) in three terms:
one where, roughly speaking, we see enough space in order to interpolate the function with a
constant, another one where the balls accumulate (where we will use a covering argument) and
a last one where we are very close to the balls B (xi, %i) (of which we will get rid of simply by
using a “cutting-out” function, possible because of (2.6.1)).
In order to detect the regions where we have to modify the foliation, it is convenient to introduce
particular coverings and organize them in a graph. For, define the sets

Uk :=

®
x ∈ U

∣∣∣∣∣rk−1 < dist(x, {xi}Ni=1) ≤ rk
´
,

where rk := Mkr0 and r0 := c0
n , for some constants c0 > 0 and M > 2 to be chosen later, and

k ∈ {0, · · · ,K}, K :=
î

1
2 log(N)

ó
. Let I := {x1, · · · , xN} and for each k ∈ {0, · · · ,K} choose a

maximal family Ik of points in I whose reciprocal distances are ≥ rk. Notice that for each k the
balls {B (xi, 2rk)}i∈Ik are a cover of Uk. We then define the edge maps

Ek : Ik −→ Ik+1,

which have the property that, for xi ∈ Ik,

|Ek(xi)− xi| = min

®
|xj − xi|

∣∣∣∣∣xj ∈ Ik+1

´
.

Clearly, |Ek(xi)− xi| < rk+1; indeed, either xi ∈ Ik+1 (and in such a case Ek(xi) = xi) or
xi /∈ Ik+1. But then |xj − xi| < rk+1 for some j ∈ Ik+1 in order to not contradict the maximality
of Ik+1.
We can now define the directed graph (actually, the forest) G = (V,E) whose vertices are given
by

V :=

®
(xi, k)

∣∣∣∣∣xi ∈ Ik, k ∈ {0, · · · ,K}
´
,

and whose edges are

E :=

®
((xi, k), (Ek(xi), k + 1))

∣∣∣∣∣i ∈ Ik, k ∈ {0, · · · ,K − 1}
´
.

We write v ∼ w if either (v, w) ∈ E or (w, v) ∈ E. Notice that G is the disjoint union of
(directed) trees whose roots are the points (xi,K), xi ∈ IK . Given an edge e = (xi, k), we
denote by Te the subtree rooted at e. We also define the “pruned” tree at the vertex e as

T pr
e := Te \

⋃
e′∈V

Te′⊂Te, Te′ 6=Te
deg(e′)=2

Te′ \
{
e′
}
.

We then have the pruned forest

Gpr :=
⋃

xi∈IK

T pr
(xi,K) =: (V pr, Epr) .
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The vertices of degree 2 where we prune the tree are the ones which we will see to correspond to
empty annuli. To see this, notice that if an edge e = (xi, k) ∈ V , k ≤ K − 1, has degree 2 and
e′ = (xj , k

′) ∈ Te with k′ ≤ k − 1, then

(a) Ik−1 ∩B
(
xi,

rk
2

)
= {xi0} is a singleton. Indeed,

2 = deg(xi) = #E−1
k−1(xi) + 1.

But E−1
k−1(xi) ⊃ Ik−1 ∩ B

(
xi,

rk
2

)
(indeed, if xj ∈ B

(
xi,

rk
2

)
∩ Ik−1, then for every xi′ ∈

Ik \ {xi} we have |xj − xi′ | ≥ |xi − xi′ | − |xi − xj | > rk − rk
2 = rk

2 > |xj − xi|, that is
Ek−1(xj) = xi) which is always not empty. Otherwise, xi /∈ Ik−1 and for every xj ∈ Ik−1 we
have |xj − xi| > rk

2 > rk−1, i.e. {xi} ∪ Ik−1 would be a family whose points have reciprocal
distance is ≥ rk−1 and which strictly contains Ik−1, which was assumed to be a maximal
family. Hence,

1 = #E−1
k−1(xi) ≥ #Ik−1 ∩B

Å
xi,

rk
2

ã
≥ 1,

i.e. #Ik−1 ∩B
(
xi,

rk
2

)
= 1, say Ik−1 ∩B

(
xi,

rk
2

)
= {xi0};

(b) |xi − xi0 | < rk−1. This is clear, because of what we said at the point (a);

(c)
(
B
(
xi,

rk
2 − rk−1

)
\B (xi0 , rk−1)

)
∩ I = ∅. This is also a direct consequence of the previous

two points. In particular,Å
B

Å
xi0 ,

rk
2
− 2rk−1

ã
\B (xi0 , rk−1)

ã
∩ I = ∅;

(d) |xj − xi0 | < M
M−1rk−1 = rk

M−1 . Indeed, since e has degree 2, the only vertex at level k − 1

is precisely (xi0 , k − 1). Hence, if we set y0 := xj and define inductively yi+1 := Ek′+i(yi),
i = 0, · · · , k − k′ − 2, we have (since Ek−2(yk−k′−2) = xi0)

|xj − xi0 | ≤
k−k′−2∑
i=0

|yi+1 − yi| ≤ rk−1

k−k′−2∑
i=0

M−i ≤ rk−1
M

M − 1
<

rk
M − 1

.

Define then the family of points J as

J :=

®
xj ∈ I

∣∣∣∣∣∃xi ∈ I, k ∈ {1, · · · ,K − 1} such that (xj , k − 1) ∼ (xi, k) and deg((xi, k)) = 2

´
.

Lemma 2.6.1 gives a subfamily J̃ such that

—
¶
B
Ä
xi,
Ä
M
4 − 1

ä
ri
ä©

i∈J̃ are disjoint;

—
î
B
Ä
xi,
Ä
M
2 − 2

ä
ri
ä
\B (xi, ri)

ó
∩ I = ∅;

— Provided M
8 −

5
4 > 3,

⋃
j∈J

B (xj , 3rj) ⊂
⋃
j∈J̃

B

Å
xj ,

Å
M

8
− 1

4

ã
rj

ã
.
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Let now c1 := M
8 + 3

4 and c2 := M
4 − 2, and consider the Lipschitz function η : R+ → [0, 1]

η(t) :=


1 if t ∈ [0, c1],

1
c1−c2 t−

c2
c1−c2 if t ∈ [c1, c2],

0 if t ≥ c2,

whose Lipschitz constant is 1
c1−c2 . Define

ϕ1(x) :=
∑
j∈J̃

Ç
η

Ç
|x− xj |
rj

å
ϕ0,j +

Ç
1− η

Ç
|x− xj |
rj

åå
ϕ0(x)

å
,

where ϕ0,j =
ffl
B(xj ,c2rj)

ϕ0(y)dy. Since the balls defined by the family J̃ are disjoint, we easily
infer

||∇ϕ1||∞ ≤ ||∇ϕ0||∞ + max
j∈J̃

Ç∣∣η′∣∣∞ 1

rj

∣∣∣∣∣∣ϕ0 − ϕ0,j

∣∣∣∣∣∣
L∞(B(xj ,c2rj))

å
≤

≤ C(δ0,M).

Finally, consider the set I := ϕ1

Ä⋃N
i=1B (xi, 2%i + r0)

ä
. Then

L1 (I) ≤ Lip(ϕ1)
N∑
i=1

(4%i + 2r0) ≤ 1

2
,

provided we take δ0 ≤ 1
16 Lip(ϕ1) and c0 = 2δ0. Consider then the Lipschitz function ϕ : [0, 1]→

[0, 1] defined by
ψ′ :=

χ[0,1]\I
1− |I|

, ψ(0) = 0, ψ(1) = 1.

Define ϕ := ψ ◦ ϕ1. Clearly ϕ satisfies (i) and (ii). Let us prove it satisfies (iii). For, notice
first that if x /∈ ⋃N

i=1B (xi, 2%i), then d(x) := dist
Ä
x, {xi}Ni=1

ä
≥ 1

2 dist (x, ∂U). Set U ′ :=Ä
B(0, 1) \B

Ä
0, 1

2

ää
\⋃Ni=1B (xi, 2%i + r0) and U ′′ :=

⋃N
i=1B (xi, 2%i + r0)\⋃Ni=1B (xi, %i). Since

ϕ is constant on
⋃N
i=1B (xi, 2%i + r0)

ˆ
U

|∇ϕ|2

dist2(x, ∂U)
dx ≤ C

Çˆ
U ′

|∇ϕ|2

d2(x)
dx+

ˆ
U ′′

|∇ϕ|2

dist2(x, ∂U)
dx

å
=

= C

ˆ
U ′

|∇ϕ|2

d2(x)
dx ≤ C

ˆ
U ′∩
¶
d< 1√

N

© |∇ϕ|2
d2(x)

dx+N.

Write
U ′ ∩

®
d <

1√
N

´
= U ′1 ∪ U ′2,

U ′1 :=

Ç
U ′ ∩

®
d <

1√
N

´å
\
⋃
j∈J̃

B

Å
xj ,

Å
M

4
− 2

ã
rj

ã
,

U ′2 = U \ U ′1.
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Notice that Uk ∩ U ′1 ⊂
⋃
i : (xi,k)∈V pr B (xi, 2rk). Since any non-trivial tree T = (V,E) satisfies

#V ≤ 2#

®
v ∈ V

∣∣∣∣∣ deg(v) = 1

´
+ #

®
v ∈ V

∣∣∣∣∣ deg(v) = 2

´
and the total number of leaves in the forest is always ≤ N , we have

ˆ
U ′1

|∇ϕ|2

d2(x)
dx ≤

K∑
k=0

ˆ
Uk∩U ′1

|∇ϕ|2

d2(x)
dx ≤ C(δ0,M)

K∑
k=0

∑
i : (xi,k)∈V pr

1

r2
k−1

ˆ
B(xi,rk)

dx ≤

≤ C (δ0,M) #V pr ≤ C (δ0,M)N.

On the other hand ˆ
U ′2

|∇ϕ|2

d2(x)
dx ≤

∑
j∈J̃

ˆ
B(xj ,(M4 −3)rj)

|∇ϕ|2

d2(x)
dx ≤

≤ C (δ0,M) #J̃ ≤ C (δ0,M)N.

By a scaling argument we get the following

Corollary 2.6.3. Let A := B(p, 2R) \ B (p,R) ⊂ R2. There exist δ0 ∈ (0, 1) and C > 0 such
that if {B(xi, %i)}Ni=1 are balls satisfying

H1

(
A ∩

N⋃
i=1

∂B(xi, %i)

)
≤ δ0R, (2.6.3)

then there exists a Lipschitz function ϕ : A → [0, 1] such that

(i) ||∇ϕ||L∞(A) ≤
C
2R ;

(ii) ϕ ≡ 0 on ∂B(p, 2R) and ϕ ≡ 1 on ∂B (p,R);

(iii) If U := A \⋃Ni=1B(xi, %i), ˆ
U

|x|2 |∇ϕ(x)|2

dist2(x, ∂U)
dx ≤ C (1 +N) . (2.6.4)

Remark 2.6.1. The proof shows that the foliation ϕ constructed in Lemma 2.6.2 is constant on (a
neighborhood of) each ball (and in a neighborhood of the boundary of the annulus). Moreover,
due to the choice of δ1 and δ2, the superlevel sets {ϕ ≥ 1} = {ϕ = 1} and {ϕ > 0} contain all
the balls B (xi, %i) they intersect.

In the balls construction we shall need to choose, from a family of balls covering the support of
a measure µ, a well disjoint subfamily containing a relevant fraction of the total mass. This is
exactly the content of the following Lemma.

Lemma 2.6.4. Suppose
⋃
i∈I B(xi, 30%i) ⊂ B(0, R) ⊂ Rn and µ is a measure on Rn whose

support is contained in
⋃
i∈I B(xi, %i). Then there exists a subfamily of indices Ĩ ⊂ I and radii

Ri > 3%i such that the balls {B(xi, 2Ri)}i∈Ĩ are mutually disjoint, contained in B(0, R) and∑
i∈Ĩ

µ(B(xi, Ri)) ≥
1

2 · 13n
µ (B(0, R)) .
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Proof. Let Uk := BR(1−2k+1)\BR(1−2k). If xi ∈ Uk, then 3%i <
1
102−kR =: rk (sinceR

Ä
1− 2−(k+1)

ä
+

30%i ≤ |xi|+30%i < R) and if |k − k′| ≥ 2, xi ∈ Uk and xj ∈ Uk′ , then B (xi, rk)∩B (xj , rk′) = ∅.
Choose then a maximal family of indices Ik ⊂ Uk ∩ I such that |xi − xj | ≥ 1

3rk. Then⋃
i∈I

B (xi, %i) ⊂
⋃
k≥0

⋃
i∈Ik

B (xi, 2rk) .

Indeed, ⋃
i∈I

B (xi, %i) =
⋃
k≥0

⋃
i∈I
xi∈Uk

B (xi, %i) .

But
Vk :=

⋃
i∈I
xi∈Uk

B (xi, %i) ⊂
⋃
i∈Ik

B (xi, rk) .

For, if x ∈ B (xi, %i) for some xi ∈ Uk then either xi ∈ Ik (and in such a case there is nothing to
show) or xi /∈ Ik. But in the latter case |xi − x`| < 1

3rk in order to not contradict the maximality
of Ik. Hence xi ∈ B

Ä
x`,

2
3rk
ä
. Clearly, either

∑
k≥0

µ

Ñ ⋃
i∈I2k

B (xi, r2k)

é
≥ 1

2
µ(BR) or

∑
k≥0

µ

Ñ ⋃
i∈I2k+1

B (xi, r2k+1)

é
≥ 1

2
µ(BR).

(2.6.5)
If i, j ∈ Ik and |xi − xj | ≥ 4rk, then B

Ä
xi,

1
3rk
ä
⊂ B

Ä
xj ,

13
3 rk
ä
, which in turn implies that the

balls {B (xi, 2rk)}i∈Ik can intersect at most 13n− 1 times. Therefore Ik can be split in N := 13n

subsets Ik,j such that the balls B (xi, 2rk) are disjoint. Suppose that (2.6.5) holds for even indices
(the other case is completely analogous). For every k ≥ 0, choose a j(k) ∈ {1, · · · , N} in guise
that

µ

Ñ ⋃
i∈I2k,j(2k)

B (xi, r2k)

é
≥ 1

N
µ

Ñ ⋃
i∈I2k

B (xi, r2k)

é
.

Then, since the families I2k,j are disjoint,

1

2 · 13n
µ (BR(0)) ≤

∑
k≥0

∑
i∈I2k,j(2k)

µ (B (xi, r2k)) .

Define then the family of indices

Ĩ :=

®
i ∈ I

∣∣∣∣∣∃k ≥ 0 such that i ∈ I2k,j(2k)

´
,

and the corresponding radii

Ri := max

®
r2k

∣∣∣∣∣i ∈ I2k,j(2k)

´
,

which are > 0 for i ∈ Ĩ. Then
1

2 · 13n
µ (BR(0)) ≤

∑
k≥0

∑
i∈I2k,j(2k)

µ (B (xi, r2k)) =
∑
i∈Ĩ

µ (B (xi, Ri)) .
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2.7 Stucture of Limit Fields II: The Microrotations

We recall here an elementary geometric construction which is standard in the Vortex-Balls ar-
gument (for more details, we refer to [20] and the references therein and also to [6], where the
authors applied the balls construction in order to obtain a Γ-convergence result in the study of
systems of edge dislocations). First, recall that any two non-disjoint closed balls Bi = B (pi, ri),
i = 1, 2, can be merged in another ball, i.e. there exists a ball B whose radius is ≤ r1 + r2 and
which contains B1 ∪B2 (for, take B = B

Ä
r1p1+r2p2

r1+r2
, r1 + r2

ä
). Also, recall that any finite family

of closed balls {B (pi, ri)}i∈I can be covered by another family of closed balls {B (p′i, r
′
i)}i∈I′ ,

#I ′ ≤ #I, which are disjoint and
∑
i∈I′ r

′
i ≤

∑
i∈I ri. For, let m = 0 (which should be thought

as a counter) and define I0 := I and B0 :=
{
B0
i

}
, where B0

i := B (pi, ri). Let

Dm :=

®
i ∈ Im

∣∣∣∣∣∃i′ ∈ Im \ {i} : Bm
i ∩Bm

i′ 6= ∅
´
.

Pick an i ∈ Dm, and set Ji :=

®
i′ ∈ Im \ {i}

∣∣∣∣∣Bm
i ∩Bm

i′ 6= ∅
´
. Let Bm+1

1 be the balls obtained

by merging the ones in Ji ∪ {i}, and let Bm+1
2 , · · · , Bm+1

#Bm−#Ii−1 be the remaining ones. Define
then

Bm+1 :=
¶
Bm+1
i

©#Bm−#Ii−1

i=1
≡
¶
Bm+1
i

©
i∈Im+1

.

Define then Dm+1 and relabel m as m + 1. As long as Dm 6= ∅, repeat the procedure. After
finitely many steps we end up with a family of closed balls which are disjoint and whose sum of
the radii does not exceed the sum of the original ones.
Henceforth, we deal with competitors of minimizing sequences, that is for every εj ↓ 0 and every
pair (Aj , Sj) ∈ P (ε, α, L, λ, τ, `), we can find a competing sequence (A′j , S

′
j) ∈ P

Ä
ε, α, L, λ, τ, `2

ä
,

which we denote again (with an abuse of notation) by (Aj , Sj), which has the properties re-
assumed in Remark 2.5.1. In particular, each field Aj of such a competing sequence is har-
monic outside the singular set Bλε(Sj), and, up to a subsequence, Proposition 2.4.2 ensures
Aj → A ∈ BV (Ω) strongly in L2(Ω). Associated to this sequence, we define the measures

µ1,j :=
1

τεj
dist2(Aj , SO(2))L2 Ω, µ2,j :=

1

λεj
L2 Bλε(Sj), µj := µ1,j + µ2,j .

which, up to subsequences, converge weakly in the sense of measures to µ1, µ2 and µ respectively.
We combine together this property and the foliation Lemma 2.6.3 through a balls construction,
in order to obtain the following density estimate.

Theorem 2.7.1 (Pseudolinear 1-density estimate). Let (Aj , Sj) ∈ (εj , α, L, τ, λ, `) be a sequence
of admissible pairs such that Fεj (Aj , Sj) ≤ Egb(εj), and consider the competing sequence (A′j , S

′
j)

as in Remark 2.5.1, which (up to a subsequece) converges stronly in L2(Ω) to A ∈ BV (Ω). There
exist constants C0 > 0, δ1 ∈ (0, 1) and ω0 > 0 such that for every p ∈ Ω and every R > 0 there
exists an R ∈ [R, 2R] such that∣∣∣Curl(A)(B(p,R)

∣∣∣ ≤ CωÇµ (B(p, 3R))

R

å
µ (B(p,R)) , (2.7.1)
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where ω : (0,∞)→ (0,∞) is the continuous increasing function defined as

ω(t) :=

ω0 if t ≥ δ1,

(− log(t))−
1
2 if t < δ1.

(2.7.2)

Proof. We can assume µ(B(p,R)) > 0, otherwise there is nothing to prove. We relabel the
competing sequence (A′j , S

′
j) as (Aj , Sj). Let δ1 > 0 to be chosen later. If µ2 (B(p, 3R)) ≥ δ1R,

then by Remark 2.5.1 we have

µ(B(p, 3R)) ≥ C2δ1 |Curl(B(p,R))| .

If µ2(B(p, 3R)) < δ1R,

lim sup
m→∞

µ2,εm (B (p, 2R)) ≤ µ2 (B (p, 3R)) ≤ δ1R.

Hence, up to a subsequence, which we denote again by εm, we have that

|Bλεm (Sm) ∩B (p, 2R)| ≤ λεmδ1R, Sm := Sεm .

WriteBλεm(Sm) =
⋃
j∈JH,m Hj,m, whereHj,m are the (closed) connected components ofBλεm(Sm),

and consider only those ones which intersect B(p, R2 ), that is

J ′H,m :=

®
j ∈ JH,m

∣∣∣∣∣Hj,m ∩B
Å
p,
R

2

ã
6= ∅
´
.

Next, cover these components by disjoint balls B0 := {B (x0,i, %0,i)}i∈I0 ≡ {B0,i}i∈I0 such that∑
i∈I0 %0,i ≤

∑
j∈J ′H,m diam (()Hj,m) ≤ µ

λεm

∑
j∈J ′H,m |Hj,m| ≤ µ (B(p, 3R)). Now, we let these

balls grow. Namely, for any positive measure µ define

%µ(x) := sup

®
% > 0

∣∣∣∣∣µ (B (x, 2%) \B (x, %)) > δ0%

´
.

Set %0 := %∣∣∣∇χ⋃B0

∣∣∣ and %i,0 := %0(xi,0). We can then use Vitali in order to obtain a cover¶
B
Ä
xi,0, 6%i,0

ä©
i∈I′0

such that the balls B
Ä
xi,0, 2%0,i

ä
are disjoint. Then

6δ0

∑
i∈I′0

%i,0 = 6
∑
i∈I′0

ˆ
B(x,2%i,0)\B(x,%i,0)

∣∣∣∇χ⋃B0

∣∣∣ ≤ 6

ˆ ∣∣∣∇χ⋃B0

∣∣∣ ≤ 6
∑

%i,0.

Then, we expand again these balls by a factor of 30: that is, we consider
¶
B
Ä
xi,0, 180%i,0

ä©
i∈I′0

.

By a merging, we get a new family of balls (whose closures are pairwise disjoint) B1 := {B (xi,1, %i,1)}i∈I1
such that

∑
i∈I1 %1,i ≤ C0

∑
i∈I′0 %0,i, where C0 := 180

δ0
, which is in turn smaller than 1

2R, provided
δ1 was chosen small enough. We can then iterate this procedure in order to construct a family
of coverings {Bk}k≥0, which we can schematize as follows:

· · · Merge−−−−→ Bk = {B (xk,i, %k,i)}i∈Ik
Expand−−−−−→

¶
B
Ä
xk,i, %k,i

ä©
i∈Ik

Vitali−−−→
¶
B
Ä
xk,i, 6%k,i

ä©
i∈I′

k

30×−−→

30×−−→
¶
B
Ä
xk,i, 180%k,i

ä©
i∈I′

k

Merge−−−−→ Bk+1 = {B (xk+1,i, %k+1,i)}i∈Ik+1

Expand−−−−−→ · · · ,
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where %k,i := %∣∣∣∇χ⋃Bk ∣∣∣ (xk,i). Notice that
∑
i∈Ik+1

%k+1,i ≤ C0
∑
i∈Ik %k,i, i.e.

∑
i∈Ik %k,i ≤

Ck0
∑
i∈I0 %0,i. Moreover, by construction, each of the balls B

Ä
xk,i, 180%k,i

ä
is contained in pre-

cisely one of the B (xk+1,i, %k+1,i). That is, we have the inclusions

B (xk+1,i, %k+1,i) ⊃
⋃

j∈I′
k,i

B
Ä
xk,j , 180%k,j

ä
⊃

⋃
j∈I′

k,i

B
Ä
xk,j , 6%k,j

ä
⊃ spt (τk B (xk+1,i, %k+1,i)) ,

(2.7.3)
where τk is the measure defined by

τk :=
∑
i∈Ik

ak,jL2 Bk,j ,where ak,j :=

∣∣∣∣∣
 
Bk,j

CurlAεmdx

∣∣∣∣∣ .
By Lemma 2.6.4, for each i ∈ Ik+1 we find a subfamily I ′′k,i ⊂ I ′k,i and radii Rk,ν > 18%k,ν such
that 

B (xk,ν , 2Rk,ν) ⊂ B (xk+1,i, %k+1,i) ∀ν ∈ I ′′k,i,

B (xk,ν , 2Rk,ν) ∩B
(
xk,ν′ , 2Rk,ν′

)
= ∅ ∀ν 6= ν ′,∑

ν∈I′′
k,i
τk (B (xk,ν , Rk,ν)) ≥ 1

C2
τk (B (xk+1,i, %k+1,i)) , C2 := 2 · (13)2 .

(2.7.4)

Let

K := max

k ≥ 1

∣∣∣∣∣ ∑
i∈Ik

%k,i < R

+ 1.

From the discussion above, we have that for a universal constant c0 > 0 (namely, c0 = log (C0)−1)

K ≥ c0 log

Ç
R∑

i∈I0 %0,i

å
≥ c0 log

Ç
R

µ(B(p, 3R))

å
.

Now that we constructed the family of coverings {Bk}Kk=0, we shall discuss how to combine it
with Lemma 2.6.2 and Proposition 2.5.1. Firstly, consider a ball B (q, r) and balls {B (qi, ri)}Ni=1

which satisfy the conditions of Corollary 2.6.3. Notice that since ϕ is constant on each ball
B (qi, ri), we have ϕ

Ä⋃N
i=1B (qi, ri)

ä
= {ϕi}L−1

i=1 . Define ϕ0 := 0 and ϕL := 1, and re-label, if
necessary, the ϕi in such a way that 0 = ϕ0 ≤ ϕ1 < ϕ2 < · · · < ϕL−1 ≤ ϕL = 1. Using the fact
that each connected component of ∂ {ϕ > h} is a closed, simple Lipschitz curve, and that clearly
{ϕi < ϕ < ϕi+1} ∩Bλε(Sεm) = ∅, we have that for each h ∈ (ϕi, ϕi+1)

ˆ
∂{ϕ>h}

Am · tdH1 =

ˆ
{ϕ>h}

Curl(Am)dx =

ˆ
{h<ϕ<ϕi+1}

Curl(Am)dx+

ˆ
{ϕ≥ϕi+1}

Curl(Am)dx =

=

ˆ
{ϕ≥ϕi+1}

Curl(Am)dx.

Thus, setting bi :=
´
{ϕ=ϕi}Curl(Am)dx, we have

ˆ
{ϕ≥ϕi}

Curl(Am)dx =
L∑
j=i

bi.
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Integrate then for h ∈ (0, 1) in order to get
ˆ 1

0
dh

ˆ
∂{ϕ>h}

Am · tdH1 =
L∑
i=0

ˆ ϕi+1

ϕi

ˆ
{ϕ>h}

Curl(Am)dx =

=
L∑
i=0

(ϕi+1 − ϕi)
L∑
j=i

bi =
L∑
i=1

ϕibi.

On the other hand, as a consequence of Lemma (2.5.2) we have that, for h /∈ {ϕi}Li=1,ˆ
∂{ϕ>h}

Am · tdH1 = −
ˆ
∂{ϕ>h}

((
x x⊥

−x⊥ x

)
·
Ä
∇(Am)1

1 ∇(Am)2
2

ä)
t(x)dH1.

In particular we see that

bL = −
L−1∑
i=1

ϕibi −
ˆ 1

0
dh

ˆ
∂{ϕ>h}

((
x x⊥

−x⊥ x

)
·
Ä
∇(Am)1

1 ∇(Am)2
2

ä)
t(x)dH1.

Then, adding
∑L−1
i=1 bi on both sides, we get

L∑
i=1

bi =
L−1∑
i=1

(1− ϕi) bi −
ˆ 1

0
dh

ˆ
∂{ϕ>h}

((
x x⊥

−x⊥ x

)
·
Ä
∇(Am)1

1 ∇(Am)2
2

ä)
t(x)dH1.

Passing to the absolute values and using the Fleming-Rishel formula, we obtain∣∣∣∣∣
ˆ
{ϕ>0}

Curl(Am)dx

∣∣∣∣∣ ≤ ∑
B(qi,ri)⊂{0<ϕ<1}

∣∣∣∣∣
ˆ
B(qi,ri)

Curl(Am)dx

∣∣∣∣∣+
ˆ
{0<ϕ<1}

|x| |∇Am,sym| |∇ϕ|dx.

(2.7.5)
We can now apply (2.7.5) to the balls ‹Bk,ν := B (xk,ν , Rk,ν) obtained in (2.7.4) and the foliation
ϕ

(k)
ν,i given by Lemma 2.6.3, for every k ≥ 0 and ν ∈ I ′′k,i, i ∈ Ik+1 as in the discussion before.

This gives

∑
ν∈I′′

k,i

∣∣∣∣∣∣
ˆ¶

ϕ
(k)
ν,i>0

©Curl(Am)dx

∣∣∣∣∣∣ ≤ ∑
ν∈I′′

k,i

∑
Bk,j⊂

¶
0<ϕ

(k)
ν,i<1

© ∣∣∣∣∣ˆBk,j Curl(Am)dx

∣∣∣∣∣+
+
∑
ν∈I′′

k,i

ˆ¶
0<ϕ

(k)
ν,i<1

© |x| |∇Am,sym|
∣∣∣∇ϕ(k)

ν,i

∣∣∣ dx.
(2.7.6)

to both sides of (2.7.6). Now, for i ∈ Ik+1, define the quantities

I(k)
i :=

⋃
ν∈I′′

k,i

{
ϕ

(k)
ν,i = 1

}
(inner balls) ,

A(k)
i :=

⋃
ν∈I′′

k,i

{
0 < ϕ

(k)
ν,i < 1

}
(annuli) ,

R(k)
i :=

⋃
Bk,j⊂Bk+1,i\

⋃
ν∈I′′

k,i

¶
ϕ

(k)
ν,i>0

©Bk,j (remaining balls) ,

J (k)
i :=

∑
ν∈I′′

k,i

ˆ¶
0<ϕ

(k)
ν,i<1

© |x| |∇Aε,sym|
∣∣∣∇ϕ(k)

ν,i

∣∣∣ dx.
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Since the balls
¶‹Bk,ν©ν∈I′′

k,i

were given by Lemma 2.6.4 we have

τk
(
A(k)
i

)
= τk (Bk+1,i)− τk

(
I(k)
i

)
− τk

(
R(k)
i

)
≤ (1− ε0) τk (Bk+1,i)− τk

(
R(k)
i

)
, (2.7.7)

where ε0 := C−1
2 =

Ä
2 (13)2

ä−1
< 1. We then add the term

Pk,i :=

∣∣∣∣∣∣∣∣∣
∑

Bk,j⊂Bk+1,i\
⋃
ν∈I′′

k,i

¶
ϕ

(k)
ν,i>0

©ˆBk,j Curl(Aεm)dx

∣∣∣∣∣∣∣∣∣
to both sides of (2.7.6), which gives, using (2.7.7),∣∣∣∣∣

ˆ
Bk+1,i

Curl(Aεm)dx

∣∣∣∣∣ ≤ Pk,i +
∑
ν∈I′′

k,i

∣∣∣∣∣∣
ˆ¶

ϕ
(k)
ν,i>0

©Curl(Aεm)dx

∣∣∣∣∣∣ ≤
≤

∑
ν∈I′′

k,i

∑
Bk,j⊂

¶
0<ϕ

(k)
ν,i<1

© ∣∣∣∣∣ˆBk,j Curl(Aεm)dx

∣∣∣∣∣+ Pk,i + J (k)
i ≤

≤ τk
(
A(k)
i

)
+ Pk,i + J (k)

i ≤ (1− ε0) τk (Bk+1,i) + J (k)
i .

(2.7.8)

We then just need to sum up (2.7.8) for i ∈ Ik+1 in order to get

τk+1 (B (p, 2R)) ≤ (1− ε0) τk (B (p, 2R)) + J (k), J (k) :=
∑

i∈Ik+1

J (k)
i . (2.7.9)

Moreover, we notice that if we set ϕ(k) :=
∑
i∈Ik+1

∑
ν∈I′′

k,i
ϕ

(k)
ν,i
χ¶

ϕ
(k)
ν,i>0

© andA(k) :=
⋃
i∈Ik+1

A(k)
i ,

then (since ϕ(k) is constant on
⋃Bk)

J (k) =

ˆ
A(k)

|x| |∇ (Aεm,sym − id)|
∣∣∣∇ϕ(k)

∣∣∣ =

ˆ
A(k)\

⋃
Bk
|x| |∇ (Aεm,sym − id)|

∣∣∣∇ϕ(k)
∣∣∣ =

=

ˆ⋃
Bk+1\

⋃
Bk
|x| |∇ (Aεm,sym − id)|

∣∣∣∇ϕ(k)
∣∣∣ .

Recall that, using a Whitney covering, one can prove the existence of a constant c = cn > 0 such
that for every harmonic function u in an open set U ⊂ Rn

ˆ
U
|∇u|2 dist2(x, ∂U)dx ≤ cn

ˆ
U
|u|2 dx. (2.7.10)

Now, we sum (2.7.9) for k ∈
¶î

K
2

ó
− 1, · · · ,K − 1

©
. Using (2.7.10) and the fact that τk (B (p, 2R))

49



CHAPTER 2. MICROROTATIONS AND MESOSCOPIC SCALE

is decreasing, we find

K

2
τK (B (p, 2R)) ≤

K−1∑
k=[K2 ]−1

τk+1 (B (p, 2R)) ≤
K−1∑

k=[K2 ]−1

Ä
(1− ε0)k τ0 + J (k)

ä
≤

≤ 1

ε0
(1− ε0)

K
3 τ0 (B (p, 2R)) +

K∑
k=1

J (k) ≤

≤ 1

ε0

Ç
µ2,εm (B (p, 2R))

R

åβ
µ2,εm (B (p, 2R)) +

+
c0

ε0

√ˆ
B(p,2R)

|Aεm,sym − id|2
Ã
K−1∑
k=0

nk,

(2.7.11)

where nk :=
∑
i∈Ik+1

∑
ν∈I′′

k,i

ÇÇ∑
B

(k)
j ⊂
¶

0<ϕ
(k)
ν,i<1

© 1

å
+ 1

å
is the total number of balls contained

in the union of the annuli
{

0 < ϕ
(k)
ν,i < 1

}
, which is decreasing by construction, i.e. nk ≤ N0, N0

being the number of connected components of Bλεm (Sεm) inside B (p, 3R). Notice that nk ≤ N0

and
N0 ≤ C

|Bλεm(Sεm) ∩B (p, 2R)|
(λεm)2 = C

µ2,εm (B(p, 2R))

λεm
.

In particular, if we divide (2.7.11) by
√
K, we obtain

τK (B (p, 2R))

Ã∣∣∣∣∣log

Ç
µεm(B (p, 2R))

R

å∣∣∣∣∣ ≤ Cλµεm (B (p, 2R))
(
µεm (B(p,2R))

R

)β…
log

(
µεm (B(p,2R))

R

) +

+ µεm (B (p, 2R)) ≤

≤ Cλµm (B (p, 2R)) ,

(2.7.12)

where µm := µ1,εm + µ2,εm . Now, since |Bλεm(Sm) ∩B (p, 3R)| ≤ λεmδ1R, we can find an
R(m) ∈ [R, 2R] such that

τK (B(p, 2R)) ≥
∣∣∣∣∣
ˆ
B(p,R(m))

CurlAmdx

∣∣∣∣∣ .
Up to a subsequence, we can always assume that R(m) → R ∈ [R, 2R]. Moreover, since
{CurlAεm} quasi-converges to (CurlA, ξ), with ξ(Ω) <∞, we can also assume ξ

Ä
∂B(p,R)

ä
= 0

(up to increasing the constant Cλ in the right hand side of (2.7.12) by a factor of 2). In particular,
we have

lim sup
m→∞

∣∣∣∣∣
ˆ
B(p,R(m))

CurlAmdx

∣∣∣∣∣ ≥
∣∣∣∣∣
ˆ
B(p,R)

d CurlA

∣∣∣∣∣ .
Taking the limit superior as m→∞ in (2.7.12), we find∣∣∣∣∣

ˆ
B(p,R)

d Curl(A)

∣∣∣∣∣
Ã∣∣∣∣∣log

Ç
µ(B (p, 3R))

R

å∣∣∣∣∣ ≤ C0µ (B(p, 3R)) . (2.7.13)

In particular, we can choose ω as in (2.7.2) and obtain (2.7.1).
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Theorem 2.7.1 is giving an estimate of the norm of Curl(A) on balls, while in order to obtain
informations about the derivative DA we would need (by virtue of Proposition A.3.1) an upper
bound on the total variation of Curl(A). The key observation in order to prove such an estimate
is that, by the definition of supremum limit, we are allowed to take a covering with balls of the
same radii.

Lemma 2.7.2. Let T be a vector valued Radon measure and µ be a positive finite Radon measure,
both defined on Rn. Suppose that there exists a constant C0 > 1 such that for every x ∈ Ω and
every R > 0

|T (B(x,R))| ≤ ω
Ç
µ (B(x,C0R))

Rβ

å
µ (B(x,C0R)) , (2.7.14)

where β ∈ {1, · · · , n− 1} and ω : (0,∞)→ (0,∞) is an increasing function such that ω(δ)→ 0

as δ → 0. Then

(a) |T | (Ω \ S) = 0, where

S :=

®
x ∈ Ω

∣∣∣∣∣Θ∗(x) > 0

´
, Θ∗(x) := Θ∗β(µ, x) := lim sup

R↓0

µ (B(x,R))

Rβ
.

(b) Hβ S is σ-finite.

(c) |T | ≤ Cn (ω ◦Θ∗)µ S, where Cn > 0 is a constant depending only on the dimension.

In particular, if T = DA for some A ∈ BV (Ω)n, then DA = DJA = |A+ −A−| ⊗ νAHn−1 SA

and
g−1

(∣∣∣A+ −A−
∣∣∣)Hn−1 SA ≤ Cµ, (2.7.15)

where g(t) := tω(t).

Proof. From the definition of limit superior,

Gs :=

®
x ∈ Ω

∣∣∣∣∣Θ∗(x) ≤ s
´
⊂
⋂
s>0

⋃
R>0

Gs,R,δ,

where

Gs,R,δ :=

®
x ∈ Ω

∣∣∣∣∣µ (B(x,C0%))

%β
< s+ δ ∀% < R

´
.

For any µ-measurable set E, consider the r-tubular neighborhood Ur = Br (E ∩Gs,R,δ). If
% < min

¶
R, r

C0

©
, then we can find K = K(n) (depending only on the dimension n) disjoint

families of balls balls Bk :=
{
B

(k)
i

}
i∈Ik
≡
{
B
(
x

(k)
i , %

)}
i∈Ik

, k = 1, · · · ,K whose union covers
Es,R,δ := E ∩Gs,R,δ, that is

Es,R,δ ⊂
K⋃
k=1

⋃
i∈Ik

B
(k)
i , B

(k)
i ∩B

(k)
j = ∅∀i 6= j.
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Moreover, the choice of % ensures

µ
(
B(x

(k)
i , C0%)

)
%β

< s+ δ, ∀i ∈ Ik, k ∈ {1, · · ·K}

and
C0B

(k)
i ⊂ Ur.

Let f := dT
d|T | , |f | = 1 |T |-a.e., and ϕ ∈ Cc(Ω). Then, using (2.7.14),

|T | (Es,R,δ) ≤
K∑
k=1

∑
i∈Ik

∣∣∣∣∣
ˆ
B

(k)
i

〈f,dT 〉
∣∣∣∣∣ ≤

≤
K∑
k=1

∑
i∈Ik

{ˆ
B

(k)
i

|f − ϕ| d |T |+
ˆ
B

(k)
i

∣∣∣ϕ(x)− ϕ
(
x

(k)
i

)∣∣∣ d |T | (x) +

+
∣∣∣〈ϕ (x(k)

i

)
, T
(
B

(k)
i

)〉∣∣∣} ≤
≤ K

{ˆ
Ur

|f − ϕ| d |T |+
(

sup
|x−y|<%

|ϕ(x)− ϕ(y)|
)
|T | (Ur)

}
+

+ Cn ||ϕ||∞ ω (δ + s)µ(Ur).

Define

(I) :=

ˆ
Ur

|f − ϕ|d |T | , (II) :=

(
sup
|x−y|<%

|ϕ(x)− ϕ(y)|
)
|T | (Ur) .

As %→ 0, we see that (II)→ 0, while if we consider a sequence of functions ϕ converging to f ,
also (I)→ 0. As Gs,R,δ is increasing in R, taking R→∞ we can replace Es,R,δ on the left hand
side with the union Es,δ :=

⋃
R>0Es,R,δ. Since this holds for every δ > 0, we can let δ → 0 and

recover Es = E ∩ {Θ∗ > s} on the left hand side. Finally, taking r → 0 and using the fact that
µ is a Radon measure, we find that for every µ-measurable set E

|T | (E ∩Gs) ≤ ω(s)µ (E ∩Gs) . (2.7.16)

Since ω(s)→ 0 as s→ 0, we have that

|T | (Ω \ S) = 0,

i.e. (a). Set Sδ :=

®
x

∣∣∣∣∣Θ∗(x) > δ

´
. Then clearly Hβ(Sδ) ≤ Cn

1
δµ(Rn) < ∞. In particular,

Hβ S is σ-finite, thus (b) is proven.
Now, for every ζ > 0, we can find a compact set H = H(ζ) such that Θ∗|H is continuous and
|T | (Ω \H) < ζ. For η > 0, let Φ∗(η) > 0 be such that

x, y ∈ H, |x− y| ≤ Φ∗(η) =⇒ |Θ∗(x)−Θ∗(y)| ≤ η.

Consider a sequence {ai}i≥1 such that (0,∞) =
⋃
i≥1(ai, ai+1] and |ai+1 − ai| < Φ∗(η). For any

Borel set F , let

Fi := F ∩
®
x

∣∣∣∣∣Θ∗(x) ∈ (ai, ai+1]

´
.
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Let µ0 := µ S. Using (2.7.16) with E = F ∩
®
x

∣∣∣∣∣Θ∗(x) > ai

´
,

|T | (F ) ≤ ζ + |T | (F ∩H) ≤ ζ +
∑
i≥1

|T | (Fi ∩H) ≤

≤ ζ +
∑
i≥1

|T |
Ç
F ∩H ∩

®
x

∣∣∣∣∣Θ∗(x) > ai

´
∩Gai+1

å
≤

≤ ζ + Cn
∑
i≥1

ω (ai+1)µ0(Fi ∩H) = ζ + Cn
∑
i≥1

ˆ
Fi∩H

ω (ai+1) dµ0 ≤

≤ ζ + Cn
∑
i≥1

ˆ
Fi∩H

ω (Θ∗(x)) dµ0 + Cn
∑
i≥1

ˆ
Fi∩H

|ω (Θ∗(x))− ω (ai+1)|dµ0 ≤

≤ ζ + Cn
∑
i≥1

ˆ
Fi∩H

ω (Θ∗(x)) dµ0 + Cnηµ0(F ∩H) =

= ζ + Cn

ˆ
F∩H

ω (Θ∗(x)) dµ0 + Cnηµ0(F ∩H).

By the arbitrariness of ζ, η and the Borel set F , we infer that

|T | ≤ Cn (ω ◦Θ∗)µ S,

i.e. (c). Now, suppose T = DA for some A ∈ BV (Ω)m. Then from (c), we see that DA =

|A+(x)−A−(x)| ⊗ νAHβ (S ∩ SA), where β := n− 1. Our first claim is that∣∣∣A+(x)−A−(x)
∣∣∣ ≤ CΘ∗(x)ω (Θ∗(x)) for Hβ − a.e. x ∈ S ∩ SA.

Let E ⊂ Rn be a Borel set. For any ζ > 0, we can find H = H(ζ) compact such that Θ∗|H is
continuous and µ (Rn \H) ≤ ζ. Since S is rectifiable, we can assume without loss of generality
that the β-density of each x ∈ S ∩H ∩ E is 1, namely

lim
%↓0

Hβ (S ∩H ∩ E ∩B (x, %))

cβ%β
= 1,

where cβ > 0 is a constant dependent only on β > 0. From this and the definition of limit
superior, for every η > 0, k ∈ N and x ∈ E ∩ Sξ ∩ H =: Gξ, ξ > 0, we can find a radius
%k(x) ≤ k−1 such that, for a constant C = C(β) > 0,C (1− η) %k(x)β ≤ Hβ

Ä
Gξ ∩B (x, %k(x))

ä
≤ C(1 + η)%k(x)β,

Θ∗(x) ≥ µ(B(x,%k(x)))
%k(x)β

− η.
(2.7.17)

We then consider, for N > 1, the fine cover of Gξ

FN :=

®
B (x, %k(x))

∣∣∣∣∣x ∈ Gξ, k ≥ N
´
.

from which, by Vitali-Besicovitch Theorem, we can extract a disjoint family F ′N = {B(xi, %i)}i≥1

such that
µ
Ä
Gξ \

⋃
F ′N
ä

= 0.
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Then ˆ
E∩Sξ

ω (Θ∗(x)) dµ(x) ≤ Cζ +

ˆ
G
ω (Θ∗(x)) dµ(x) =

= Cζ +
∑
i

ˆ
B(xi,%i)∩Gξ

ω (Θ∗(x)) dµ(x) ≤

≤ Cζ +
∑
i

ω (Θ∗(xi))µ
Ä
B (xi, %i) ∩G

ä
+

+

Ü
sup
x,y∈G

|x−y|≤N−1

|ω (Θ∗(x))− ω (Θ∗(y))|

ê
µ(G) ≤

≤ Cζ +
∑
i

ω (Θ∗(xi)) %
β
i (η + Θ∗(xi)) + oN (1) ≤

≤ Cζ +
∑
i

Θ∗(xi)ω (Θ∗(xi)) %
β
i + η

∑
i

ω (Θ∗(xi)) %
β
i + oN (1).

Using (2.7.17), we find (setting g(s) := sω(s) and g̃ := g ◦Θ∗),∑
i

g̃(xi)%
β
i ≤

C

1− η
∑
i

g̃(xi)Hβ(Gξ ∩B (xi, %i)) ≤

≤
ˆ
S∩E

g̃(y)dHβ(y) +

Ü
sup
x,y∈G,

|x−y|≤N−1

|g̃(x)− g̃(y)|

ê
Hβ (Sξ) ≤

≤
ˆ
S∩E

g̃(y)dHβ(y) + oN (1)
µ(Rn)

ξ
.

and, since ω is bounded,

η
∑
i

ω (Θ∗(xi)) %
β ≤ Cη ||ω||∞

Hβ(Sξ)

1− η
.

That is,
ˆ
E∩Sξ

ω (Θ∗(x)) dµ(x) ≤ Cζ + oN (1)
1

ξ
+ Cη

||ω∞||
ξ(1− η)

+

ˆ
S∩E

g̃(x)dHβ(x). (2.7.18)

Then, in (2.7.18) we first let N →∞, then ζ → 0 and η → 0. By the arbitrariness of ξ > 0 and
the set E, we finally get

(ω ◦Θ∗)µ

®
x ∈ S

∣∣∣∣∣Θ1(S, x) = 1

´
≤ g̃Hβ

®
x ∈ S

∣∣∣∣∣Θ1(S, x) = 1

´
.

That is, since S is rectifiable,∣∣∣A+(x)−A−(x)
∣∣∣ ≤ CΘ∗(x)ω (Θ∗(x)) , for Hβ − a.e. x ∈ S. (2.7.19)

We rewrite (2.7.19) as

f
(∣∣∣A+(x)−A−(x)

∣∣∣) ≤ CΘ∗(x), for Hβ − a.e. x ∈ S. (2.7.20)
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where f := g−1. We proceed now with the proof of the second step. Let E ⊂ Rn Borel and
ξ > 0. We re-define Gξ as

Gξ := E ∩
®
x ∈ S

∣∣∣∣∣Θ1(S, x) = 1 and Θ∗(x) > ξ

´
.

For every η > 0 and k ∈ N, we can find a %k(x) ≤ k−1 such that

C (1− η) %k(x)β ≤ Hβ
Ä
Gξ ∩B (x, %k(x))

ä
≤ C(1 + η)%k(x)β,

Θ∗(x) ≤ µ(B(x,%k(x)))
%k(x)β

+ η,

A+(y)−A−(y) = A+(x)−A−(x), ∀y ∈ B (x, %k(x)) ∩Gξ,

f (|A+(x)−A−(x)|) ≤ CΘ∗(x) ∀x ∈ Gξ.

(2.7.21)

As before, for N > 1, we define the fine cover

FN :=

®
B (x, %k(x))

∣∣∣∣∣x ∈ Gξ, k ≥ N
´
,

from which we extract a disjoint family F ′N = {B (xi, %i)}i≥1 such that

Hβ
Ä
Gξ \

⋃
F ′N
ä

= 0.

We haveˆ
E∩Sξ

f
(∣∣∣A+(x)−A−(x)

∣∣∣) dHβ =

ˆ
Gξ

f
(∣∣∣A+(x)−A−(x)

∣∣∣)dHβ =

=
∑
i

ˆ
Gξ∩B(xi,%i)

f
(∣∣∣A+(x)−A−(x)

∣∣∣)dHβ =

=
∑
i

f
(∣∣∣A+(xi)−A−(xi)

∣∣∣)Hβ(Gξ ∩B (xi, %i)) ≤

≤ C (1 + η)
∑
i

Θ∗(xi)%
β
i ≤

≤ C (1 + η)
∑
i

(
µ (B(x, %i))

%βi
+ η

)
%βi ≤

≤ C (1 + η)µ
(
B 1
N

(Gξ)
)

+ Cη
1 + η

1− η
Hβ(Sξ).

As N →∞ and η → 0, by the arbitrariness of ξ > 0 and E we have

f
(∣∣∣A+ −A−

∣∣∣)Hβ S ≤ Cµ.

From Theorem 2.7.1, Lemma 2.7.2 and Proposition A.3.1 we immediately infer the following

Corollary 2.7.3. There exists a constant C > 0 such that for every sequence of pairs (Aj , Sj) ∈
P (εj , α, L, τ, λ, `), εj → 0 with Fεj (Aj , Sj) ≤ Egb(εj), there exists another sequence (A′j , S

′
j) ∈
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P
Ä
εj , α, L, τ, λ,

`
2

ä
such that Fεj (A′j , S′j) ≤ CFεj (A′j , S′j) which, up to a subsequence, converges

strongly in L2(Ω) to a microrotation A and∣∣∣A+ −A−
∣∣∣»|log(|A+ −A−|)|H1 SA ≤ Cµ,

where µ is the weak∗ limit of the measures

µj :=
1

τεj
dist2(A′j , SO(2))L2 Ω +

1

λεj
L2 S′j .

In particular,
CαLεj

»
|log(α)| ≤ Fεj (Aj , Sj).
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Appendix

A.1 A short review of Calderón-Zygmund Operators

We recall that a standard kernel is a function K : Rn × Rn \ Dn → R, where

Dn :=

®
(x, x) ∈ Rn × Rn

∣∣∣∣∣x ∈ Rn
´

is the diagonal, satisfying, for some constant C > 0, the following:

(i) |K(x, y)| ≤ C |x− y|−n, for every (x, y) ∈ Rn × Rn \ Dn;

(ii) |K(x, y1)−K(x, y2)| ≤ C |y1−y2|α

|x−y1||n+α| for every x, y1, y2 satisfying |y1 − y2| ≤ 1
2 |x− y1|;

(iii) |K(x1, y)−K(x2, y)| ≤ C |x1−x2|α

|x1−y|n+α for every x1, x2, y satisfying
∣∣∣x)1− x2

∣∣∣ ≤ 1
2 |x1 − y|,

for some α ∈ (0, 1]. It can be shown that conditions (ii) and (iii) are implied by the easier (but
weaker) conditions

(ii’) |∇xK(x, y)| ≤ C |x− y|−n−1;

(iii’) |∇yK(x, y)| ≤ C |x− y|−n−1.

A Calderón-Zygmund operator (of the “second generation”) is a bounded linear operator T :

L2(Rn)→ L2(Rn), i.e. for some C = C(T )

||Tf ||L2 ≤ C ||f ||L2 ,

and such that there exists a singular kernel K satisfying

Tf(y) =

ˆ
Rn
K(x, y)f(x)dx,

for every f ∈ L2(Rn) with compact support, and for every y ∈ Rn \ spt(f). We give now an
example of such an operator particularly relevant for the analysis in section 1.4.
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Example A.1.1. Let K : Rn × Rn \ Dn → R be a function satisfying, for some C > 0,

1. |K(x, y)| ≤ C |y|−n;

2. |∇xK(x, y)| ≤ C |y|−n−1 and |∇yK(x, y)| ≤ C |y|−n−1;

3. K(x, λy) = λ−nK(x, y) for every x, y and λ > 0;

4. ˆ
Sn−1

K(x, y)dHn−1 = 0, ∀x ∈ Rn.

Then it is possible to show that the operator

T : f ∈ L2(Rn) 7−→
ˆ
K(y, x− y)f(y)dy ∈ L2(Rn),

is a Calderón-Zygmund operator.

Calderón-Zygmund operator behave particularly well in Lp spaces, 1 < p < ∞, since in such
a case they are bounded operators (with operator norm depending on p). For p = 1, they are
bounded only weakly, that is the exists a constant such that

||Tf ||L1,∞(Rn) ≤ C ||f ||L1(Rn) .

Such operators also “almost” bounded in L∞, in the sense that they map L∞ into BMO, the
space of functions of bounded mean oscillation, which can often be used as a replacement for L∞

(as we did in the proof of Theorem 1.4.9):

Definition A.1.1. We say that a function f : Rn → R has bounded mean oscillation (f ∈
BMO(Rn)) provided

||f ||BMO := sup
Q

 
Q

∣∣∣∣∣f −
 
Q
fdx

∣∣∣∣∣ dx <∞,
where the supremum is taken over all the cubes Q in Rn.

Notice that ||·||BMO is a norm only on functions defined modulo constants. We also recall the fun-
damental John-Nirenberg inequality ([?]), which shows that any BMO function is exponentially
integrable:

Theorem A.1.1. There exist constant C1, C2 > 0, depending only on the dimension n, such
that for every f ∈ BMO(Rn), any cube Q ⊂ Rn and λ > 0 one has∣∣∣∣∣

®
x ∈ Q

∣∣∣∣∣
∣∣∣∣∣f(x)−

 
Q
f(y)dy

∣∣∣∣∣ > λ

´∣∣∣∣∣ ≤ C1 |Q| exp

Ç
−C2

λ

||f ||BMO

å
.

It is possible to show that Calderón-Zygmund operators are bounded from L∞(Rn) intoBMO(Rn),
i.e. there exists a constant C = C(T ) such that for every f ∈ L∞(Rn)

||Tf ||BMO ≤ C ||f ||∞ .
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A.2 A short review of BV functions

We start with the definition of countably rectifiable set. We say that a subset M ⊂ RN is count-
ably n-rectifiable if there exist (at most) countably many n-dimensional embedded submanifolds
{Mi}i≥1 of class C1 and M0 ⊂ RN with Hn(M0) = 0 such that

M ⊂M0 ∪
⋃
i≥1

Mi,

i.e. if M is contained, up to a Hn-negligible set, in the countable union of submanifolds. If,
moreover, the set is Hn-measurable and Hn(M) < ∞, we say that M is a rectifible set. When
M is n-countably rectifiable and also Hn-measurable, then it is possible to assume that at each
point x ∈Mi

Θn(Mi, x) := lim
r→0

Hn(Mi ∩B(x, r))

ωnrn
= 1,

where ωn is the Lebesgue measure of the unit ball of Rn, and

Θn(M \Mi, x) = 0.

A locally integrable function defined on an open set Ω ⊂ Rn, u : Ω → R, is said to belong
to BV (Ω) if its distributional gradient is a vector valued Radon measure, that is if there exist
measures Diu such that ˆ

Ω
ϕ · dDu = −

ˆ
Ω
udivϕdx,

for all ϕ ∈ C1
c (Ω)n, where Du = (D1u, · · · , Dnu). We recall that the following structure theorem

holds:

Theorem A.2.1. Let u ∈ BV (Ω). Then the gradient Du can be splitted as

Du = ∇udx+ (u+ − u−)n(x, Ju)Hn−1 Ju +DCu ≡ ‹Du+DJu,

where

∇u is the approximate differential of u, i.e.∇u(x) =
dDu

dLn
,

u−(x) := apliminfy→x u(y) := sup

®
t

∣∣∣∣∣Θn(Et(u), x) = 1

´
, Et(u) :=

®
x ∈ Ω

∣∣∣∣∣u(x) > t

´
,

u+(x) := aplimsupy→x u(y) := inf

®
t

∣∣∣∣∣Θn(Et(u), x) = 0

´
,

Su := singular set of u :=

®
x ∈ Ω

∣∣∣∣∣u−(x) < u+(x)

´
,

n(x, Ju) := inner normal to Su := lim
r→0

DχSu(B(x, r))

|DχSu | (B(x, r))
.

DCu is called the Cantor part of the derivative, DJu is the jump part, ‹Du := ∇uLn +DCu is
the diffuse part and Dau := ∇uLn is the absolutely continuous part. Dau, DJu and DCu are
mutually orthogonal. Moreover, the set Su is Hn−1-measurable and countably n− 1-rectifiable.
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For BV functions, the following chain rule holds:

Theorem A.2.2. Let u ∈ BV (Ω)m and f ∈ C1(Rm)p be a Lipschitz function satisfying f(0) = 0

if |Ω| =∞. Then v := f ◦ u belongs to BV (Ω)p‹Dv = ∇f(u)∇uLn +∇f(ũ)Dcu = ∇f(ũ)‹Du,
DJv = (f(u+)− f(u−))⊗ n(u, Su) Su,

where ũ(x) is the approximate limit of u at x, i.e. the unique vector z ∈ Rm (which exists for
any x ∈ Ω \ Su) such that

lim
r→0

 
B(x,r)

|u(y)− z|dy = 0.

A.3 Curl Bounds Gradient on SO(n)

Proposition A.3.1. There exists a dimensional constant C = C(n) > 0 such that for every
Ω ⊂ Rn open

|Curl(A)| ≥ C |DA| , ∀A ∈ BV (Ω, SO(n)) ,

where

BV (Ω,SO(n)) :=

®
A ∈ BV

Ä
Ω,Rn×n

ä∣∣∣∣∣A(x) ∈ SO(n) for Ln − a.e. x ∈ Ω

´
.

Here, Curl(A) is the vector Curl(A) =
(
Curl(A1), · · · ,Curl(An)

)
whose components are the

measure-valued 2-forms

Curl(Ai) =
Ä
DjA

i
k −DkA

i
j

ä
dxj ∧ dxk ≡ Curl(Ai)jkdx

j ∧ dxk ≡ Γijkdx
j ∧ dxk,

and

|Curl(A)| := 1

2

n∑
i,j,k=1

∣∣∣DjA
i
k −DkA

i
j

∣∣∣ .
Proof. We can assume A(x) ∈ SO(n) for every x ∈ Ω. We discuss separately the diffuse part‹DA = ∇ALn + DcA and the jump part DJA = (A+ −A−)⊗ νAHn−1 SA. Since A ∈ SO(n),
AνiA

ν
j = δij . Thus, by Theorem A.2.2,

0 = ‹Dk (δij) = ‹Dk

Ä
AνiA

ν
j

ä
= Aνi

‹DkA
ν
j +Aνj

‹DkA
ν
i ,

where, with an abuse of notation, we denoted by A its precise representative ‹A. That is, the
3-“tensor” L := AT∇A, whose components are Lijk = Aνi

‹DkA
ν
j , satisfies Lijk = −Ljik. A straight-

forward computation then gives

Aνµ
‹DkA

ν
j = Lµjk =

1

2

Ä
Aνj Γ̃νµk +AνkΓ̃νµj −AνµΓ̃νjk

ä
.

Multiplying by Aiµ an summing over µ the previous identity, we get‹DkA
i
j =

1

2
Aiµ
Ä
Aνj Γ̃νµk +AνkΓ̃νµj

ä
− 1

2
Γ̃ijk.
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In particular, ∣∣∣‹DA∣∣∣ ≤ C ∣∣∣Γ̃∣∣∣ .
For the jump part, we notice that

Curl(Ai)J =
Ä
Ai+ −Ai−

ä
· JjkνAHn−1 SAdxj ∧ dxk,

where Jjk is the linear operator defined by

(Jjkv)` :=


vj if ` = k,

−vk if ` = j,

0 otherwise.

Clearly, Jjkv · v = 0 for every j < k and the {Jjkv}1≤j<k≤n are linearly independent, for every
vector v ∈ Rn. Thus, {JjkνA(x)}1≤j<k≤n is a basis for the tangent space T (x) := νA(x)⊥. In
particular, there exists a dimensional constant C(n) such that for every open subset U ⊂ Ω

n∑
i,j,k=1

∣∣∣Curl(Ai)Jjk

∣∣∣ (U) ≥ C(n)
n∑
i=1

ˆ
SA∩U

∣∣∣πT ÄAi+ −Ai−ä∣∣∣ dHn−1.

But, since T (x) is an (n−1)-dimensional subspace and A ∈ SO(n), we have another dimensional
constant (denoted again by C(n)) such that

∣∣∣πT (Ai+ −Ai−)∣∣∣ ≥ C(n)
∣∣∣Ai+ −Ai−∣∣∣. That is

n∑
i,j,k=1

∣∣∣Curl(Ai)Jjk

∣∣∣ (U) ≥ C(n)
n∑
i=1

ˆ
SA∩U

∣∣∣Ai+ −Ai−∣∣∣ dHn−1 = C(n)
∣∣∣DJA

∣∣∣ (U).

A.4 Some technical Lemmas

A.4.1 Bound vertices in a tree by its vertices of degree 1 and 2

Lemma A.4.1. A non-trivial tree T = (V,E) satisfies

#T ≤ 2#

®
v ∈ V

∣∣∣∣∣ deg(v) = 1

´
+ #

®
v ∈ V

∣∣∣∣∣ deg(v) = 2

´
. (A.4.1)

Proof. We prove it by induction on n = #V . If n = 1 there is nothing to prove. Suppose now
that (A.4.1) holds when #V = n, and let us prove it when #V = n + 1. So, let T = (V,E)

be a tree with n + 1 vertices. Take a leaf ` ∈ V (which exists since T is a non-trivial tree) and
consider then the tree T ∗ := (V ∗, E∗), whose vertices are V ∗ := V \ {`} and whose edges are
given by E∗ := E \ {{`, `′}}, where `′ is the only neighbor of `. Consider then

Ni := #

®
v ∈ V

∣∣∣∣∣ deg(v) = i

´
, N∗i := #

®
v ∈ V ∗

∣∣∣∣∣ deg∗(v) = i

´
,

where deg∗(v) denotes the degree of v seen as a vertex of T ∗. Then we have the following

N∗1 =

N1 if deg(`′) = 2,

N1 − 1 if deg(`′) > 2,
N∗2 =


N2 − 1 if deg(`′) = 2,

N2 + 1 if deg(`′) = 3,

N2 if deg(`′) > 3.
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Then one can easily check, using the induction hyphothesis, that (A.4.1) holds also when #V =

n+ 1.

A.4.2 Whitney Covering and an estimate for harmonic functions

We recall now the Whitney covering Lemma (cf. [29] and [31])

Theorem A.4.2 (Whitney covering Lemma). Let Ω ⊂ Rn be an open and proper subset. There
exists a countable collection {Qj}j≥1, Qj = Q(xj , `j) of closed cubes such that

(i) Ω =
⋃
j≥1Qj and the Qj’s have disjoint interiors;

(ii) C1`j ≤ dist(Qj , ∂Ω) ≤ C`j, where C = C(n) > 1 is a dimensional constant;

(iii)
∑
j≥1

χ 9
8
Qj
≤ 12n.

Lemma A.4.3. There exists a dimensional constant C = C(n) > 0 such that for every Ω ⊂ Rn

open and proper and every u : Ω→ R harmonic,
ˆ

Ω
dist2(x, ∂Ω) |∇u|2 dx ≤ C

ˆ
Ω
|u|2 dx.

Proof. Let {Qj}j≥1 be a covering of Ω as in Theorem A.4.2. Then
ˆ

Ω
dist2(x, ∂Ω) |∇u|2 dx =

∑
j≥1

ˆ
Qj

dist2(x, ∂Ω) |∇u|2 dx ≤ C
∑
j≥1

`2j

ˆ
Qj

|∇u|2 dx ≤

≤ C
∑
j≥1

ˆ
9
8
Qj

|u|2 dx ≤ C
ˆ

Ω
|u|2 dx.

A.4.3 A lemma for vector valued measures

We recall that a sequence of vector valued measure (defined on a locally compact separable
metric space X; in our case, we can just take X = Rn with the usual Euclidean metric) {µj}j≥1

quasi-converges to (µ, ξ), µj
q−→ (µ, ξ), where µ is a vector valued measure and ξ is a positive

measure, if µj
∗−→ µ and |µj |

∗−→ ξ. Quasi-convergence is equivalent to the fact that µj(B)→ µ(B)

and |µj | (B) → ξ(B) for all relatively compact subsets B with ξ(∂B) = 0. It is then easy to
prove the following

Lemma A.4.4. Suppose that a sequence {µj}j≥1 of vector valued measures on X quasi-converges
to (µ, ξ), where ξ is a positive Radon measure. Then, if ξ(∂B(p,R)) = 0, for every sequence
Rj → R,

lim sup
j→∞

|µj(B(p,Rj))| ≥ |µ(B(p,R))| .

Proof. Since µj
q−→ (µ, ξ) and ξ(∂B(p,R)) = ∅,

|µ(B(p,R))| = lim
j→∞

|µj(B(p,R))| .
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Without loss of generality, we can assume Rj ↓ R. Then

lim sup
j→∞

|µj(B(p,R))| ≤ lim sup
j→∞

|µj(B(p,Rj) \B(p,R))|+ lim sup
j→∞

|µj(B(p,Rj))| .

We just have to prove lim supj |µj(B(p,Rj) \B(p,R))| = 0. Since Rj → R, for every ε > 0,
B(p,Rj) \B(p,R) ⊂ Aε,R := B(p, (1 + ε)R) \B(p, (1− ε)R), provided j is sufficiently large. In
particular, since |µj |

∗−→ ξ,

lim sup
j
|µj(B(p,Rj) \B(p,R))| ≤ lim sup

j
|µj | (Aε,R) ≤ ξ(Aε,R).

But ξ is a Radon measure, thus by the arbitrariness of ε we obtain

lim sup
j
|µj(B(p,Rj) \B(p,R))| ≤ ξ(∂B(p,R)) = 0.
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