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Notations

— Weset N:=ZN|[l,00), N*:=NU{0}, R :=RnN[0,00);

— The letter C denotes constants whose values are allowed to vary from line to line and also
within the same line. To emphasize that the constant C' depends on the parameter §, we
will write C' = Cs.

— With the notation o > C (0 < a < C) we mean o > C' (0 < a < C) is sufficiently large
(sufficiently small);

— For U C R"™, B,(U) is the (open) r-tubular neighborhood of U, i.e.

B, (U) := {x eR"

dist(z,U) < r} .

B(p,r) denotes the ball of radius r centered in p;

— CF(Q)™ is the class of functions defined on Q C R™ with values in R™ which are continuous
together with their derivatives of order up to k. We denote by C¥(€2)™ the subset of C¥(2)™
whose elements have compact support. LP(2)™ and W¥*P(Q)™ denote the Lebesgue and

Sobolev spaces of functions defined in 2 with values in R™;
— Myp(2)™, with Q C R™, denotes the space of all measures on 2 with finite total variation;

— HP* is the k-dimensional Hausdorff measure, while £ (or |-|) is the Lebesgue measure on
R"™;

— For a measure p defined on R™ and A C R™, uL A denotes the restriction of p to A, i.e.
wlL A(E) :== p(AN E) for every subset E of R™;

— |p| denotes the total variation of the vector valued measure p defined on R™;

N|=

— || is the Euclidean norm on R™: |v] := (v} 4 -+ +v2)2;

— If v € R™\ {0}, we set U := 4;

[v]

— For a matrix A € R™*™ A%™ denotes its symmetric part A%™ = %(A + AT);
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— Given v,w € R", v - w (also denoted as (v, w)) is the scalar product of them, i.e. v-w :=

S viw; and for two matrices A, B € R"*" A: B := Yiic1 AéB;.;

— V- is the “orthogonal” gradient: that is, for f: R? - R, V1 f := (—ﬂ ﬁ)

Oxo’ Ox1

iii



Introduction

In this thesis we study the energy functional introduced in [I] by the author and S. Luckhaus—
which is inspired by the ones introduced in [2] and [3]-able to describe low energy configurations
of a two dimensional lattice with dislocations in the context of nonlinear elasticity. It consists of
two terms: a nonlinear elastic energy outside the core of the dislocations and the core energy. Our
main result says, roughly speaking, that low energy configurations consist of piecewise constant
microrotations with small angle grain boundaries between them.

The plan of the the thesis is the following. In the first chapter, we begin recalling the physical
background from which the problems arises, that is the one of metal plasticity, reassuming the
basic notions of the theory of dislocations. We then give a review of the main results in the
literature which motivated the model we study. In particular, we discuss the models introduced
in [2], [3] and the I'-convergence analysis given in [4] (see also [5] and [6]). The last section of the
first chapter deals with Geometric Rigidity (especially with the results in [2I] and [23]), which is
a crucial ingredient in the proof of the main result. We also give a proof of a Geometric Rigidity
estimate in dimension > 3, which is scaling invariant for every exponent p € (;"y,2]. For the

- we only obtain a weaker estimate which unfortunately misbehaves under

critical case p* = 75,
rescaling, and thus cannot be applied to our analysis (cf. Theorem and the Remark .
In Chapter 2, we study the functional introduced in [I]. For e > 0, L > 0, 0 < o < 1 sufficiently
small, 7 > 0 and A > 0, we consider the family of admissible strain fields A(e), whose elements
A:Q:=[—-L, L] — R?>*? gatisfy the following conditions:

(i) Regularity: A € LL .(©2)?*2? and A € L*(Q\ By(spt Curl(A)));
(ii) Boundary Condition: A = Ry, near x = +1L;

(iii) (First) Quantization of the Burgers vector: ~ closed, Lipschitz, simple curve outside

B (spt Curl(A)):
/ A-tdH!
g

Then, for an admissible field A and a compact subset S €  such that S D Bjy.(spt(Curl(A)))

/A-thHéO = > Te.
Y

v



CONTENTS

we define the energy functional

Elastic Energy

1
Fo(A,S) == / dist?(A, SO(2))dx
Q\B)\E(S)

T

(0.0.1)

1
+ X | Bxe(S)],

——
Core Energy

and we set F¢(A, S) := 0o if S does not contain Bj.(spt(Curl(A))).
An upper bound to the energy is given by the Read-Shockley Formula[I8|, which in our functional

analytic setting reads as

Theorem 0.0.1. There exists a constant Cy > 0 such that

1
! It sinie 27 <A 9) = Cola (]l 1). 0.0.2
%(A,S) bedmissible & «(A,5) < CoLa([log(a)| + 1) ( )

The proof is carried out by the construction of a small angle grain boundary, that is of an array
of edge dislocations, with adjusted boundary conditions. We call Eg,(¢) := CoLea ([log(a)| + 1)
the energy of a small angle grain boundary at scale € > 0 and with misorientation angle a > 0,
where Cj is the constant in the right hand side of .

Our main result can then be stated as the compactness in the class of microrotations, in the
following sense: every sequence (A;,S;) of admissible pairs whose energy does not exceed the
one of a small angle grain boundary has a competitor (A;-, S;) with “essentially the same energy”,
in the sense that F.(A},5%) < CF.(Aj,S;) for a universal constant C' > 0. The fields A
of such a competing sequence admit a subsequence which converges strongly in L?(Q) to a
piecewise constant matrix field A € BV (Q,50(2)) (namely A(z) € SO(2) for a.e. z €  and
DA =D7A = (A" — A7) @ vaH'L S4), i.e. to a (generalized Cosserat) microrotation (which
can be seen as a generalization of the microrotations studied in [19]). This conclusion is achieved
through a density estimate, which in turn is obtained coupling the existence of a harmonic
competitor with the choice of an optimal foliation via a balls construction in the spirit of the one

used for the Ginzburg-Landau functional (cf. [20] and the references therein). More precisely

Theorem 0.0.2. There exists a constant C' > 0 such that every sequence of admissible pair
{(4;,9)} = {(AE].,SEJ.)}, gj — 0, with F;(Aj,S;) < Egles), there exists another sequence
(A%, 87%) such that Fe (A}, S;) < CFc;(Aj,S;) which, up to subsequence, converges strongly in
L?(2) to a microrotation A and

AT = A7| /llog (14T — A-DIH' L 84 < Cp,
where p 1s the weak™ limit of the measures

i = =N dist®(A}, SO(2)) L7 L Q + =

L2 8.
TEj /\Ej J

In particular

C~'Lejon/|log(a)| < F, (45, 5)).
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Theorem [0.0.2] is obtained directly from the following density estimate

Theorem 0.0.3. Let C' > 0 and (Aj;,S;) = (Ae;,S;) be a sequence of admissible pairs with
Fe;(Aj,Sj) < CEg(ej) and such that AA; = 0 in Q\ By, (Sj). Then, up to a subsequence,
Aj — A € BV(Q,50(2)) strongly in L. Moreover, there exist constants Co > 0, 61 € (0,1) and
wo > 0 such that for every p € Q and every R > 0 there exists an R € [R,2R] such that

Curt(a) B0, )| < Cor (MG (35,31,

where w : (0,00) — (0,00) is the continuous function defined as

{WO ift > oy,
w(t) =
(—logt)"2 ift < é.

=

The existence of a harmonic competitor is ensured by using the fact that the determinant is a
null Lagrangian, and then replacing the “ground field” Vu given by the Hodge decomposition of
A (A=Vu+ F, div(F) = 0) by its harmonic extension, that is we have the

Proposition 0.0.4 (The Harmonic Competitor). There ezists a constant C > 0, such that for
every € > 0 and A € A(e) there exists another field A’ € A(e) which is harmonic outside By:(A)
and

|[A = A|[ 20y < Clldist(A4, SO2))|| 2(q) -

Theorem [0.0.3]is then obtained via a balls construction, whose difficulty is due to the nonlinearity
in the elastic energy. Indeed, one is not allowed to expand continuously the covering of the
singular set as in the case of the Ginzburg-Landau functional, but is forced to use a discrete balls
construction, as done in [0] in a different setting. Since in our context it is impossible to avoid

the dislocations to collapse, we have to get rid of this obstruction via a particular foliation:
Lemma 0.0.5. Let Ag := B(p,R) \ B(p, &) C R%. There exist 6o > 0 and C > 0 such that if

{B(z, Qi)}f\il are balls in R? satisfying

H! <AR N 6 aB({L‘@, Qz)> < dR. (0.0.3)

=1

Then there exists a Lipschitz function ¢ : Ar — [0,1] such that

1Vl o) < G5

2. ¢=0ondB(p,R) and ¢ =1 on 0B(p, &);

8. IfU := A \UX., B(=;, 0:),

/mﬂvﬁxn<cu+Ny (0.0.4)
y dist?(z,0U) ~
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The main obstruction in the construction of a foliation ¢ satisfying conditions (i) — (iit) of
Lemma lies in the accumulation of balls at any “distance length scale” from U. In order to
overcome this difficulty, we defined in [I] a decision tree which tells how and where to modify
the natural radial foliation, through either a cut-off or setting the foliation to a constant (which
involves an ad-hoc covering argument), possible because of . Using and Proposi-
tion one can start the balls construction and obtain Theorem [0.0.3] The idea is to start
with a covering of B, (S;) with a family of disjoint balls By := {B(i0,0i,0)} which are ex-
panded until “there is only a small amount of singularities in the annuli”, that is one considers
the balls B(ziy,9;), where

0;0 := Sup {Q > 0’ ‘VXUBO (B(xi0,20) \ B(ip,0)) > 509} :

Then one needs another expansion (namely, an expansion of a factor of 30) in order to ensure the
possibility of being able to extract a disjoint subfamily containing most of the mass of a given
positive measure and a merging procedure in order to make the balls disjoint. That is, one can

construct a family of coverings {By};~ as follows:

L Meree, gy = {B (ki 0k,i) }ieq, s (B (mk’i7?k’i)}ielk — (B (mk’i’@k’i)}id;“ -

30x Merge

— {B (x;m', 180@’“2)}261,’6 2% Expand

Bii1 = {B (Trt1is Ok t14) Yiep, o

By construction, one can always find disjoint subfamilies where the measures

.

JEly

Curl A.,dz| £* L By ;

By,

concentrate. We then combine this construction with the observation
<

B(gi,ri)c{0<p<1} |/ Blairi)

/ @] [V Az, qym| V] da.
0<p<1

+

/ Curl(4;)dx
>0

Lemma [0.0.5] Proposition [0.0.4] and a bootstrap argument give then Theorem [2.7.1] It is then
possible to give an estimate on the total variation of Curl(A) since the estimate in the “negative
norm” holds for every point and every radius. Then one can finally estimate the total variation

of the derivative DA in terms of |Curl(A)| since the geometric rigidity estimate in |23] gives that
A e BV (Q,50(2)).
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Optimal

Harmonic Competitor

(Proposition [2.5.1)

Foliation

(Lemma

Balls Construction
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Density Estimate

(Theorem [2.7.1))
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Rigidity
(123])

Lemma 2. 7.2

| A is a Microrotation |

Figure 1: Compactness in the class of Microrotations and Lower Bound.
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Chapter 1

Calculus of Variations and Defects in Solids

1.1 DEFECTS IN CRYSTALS

It is well known that a wide class of materials, like metals, exhibit a crystalline structure, that is
their atoms arrange themselves in patterns which are periodically repeated. Nevertheless, in real
materials this structure is never perfect because of the presence of defects, which determinine
important features of the material. We shall focus on dislocations, that are one dimensional
defects responsible for the plastic behaviour of the material. We know want to examine the
microscopic mechanism of plasticity, which can be explained through the (pattern) formation
and motion of dislocations. We first start with a simple Gedankenexperiment. Consider a
crystal C with a perfect cubic lattice structure, and suppose that a force is applied to the part of
the crystal above the plane ¢ (which we call the glide plane of the dislocation). At the first stage,
the bonds will break and reorganize as in Figure If we let this force acting (assuming that it
is strong enough in order to break the bonds but not to cause the fracture of the crystal), what
we will see is the presence of an extra half plane ¢ of atoms, which keeps moving on the glide

plane. With this picture in mind, we consider the next element crucial for the determination of

r F F
> — —
d \ 4
s s s

Figure 1.1: Motion of an edge dislocation along the glide plane 7.

a dislocation, that is its Burgers vector. Consider a closed path in the undeformed lattice (like
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in figure (la)) surrounding the last atom in the half line like in figure (1c). The image of this
path in the deformed lattice will no longer be closed, and we call the (lattice) vector necessary in
order to make it closed the Burgers vector of the dislocation, see figure [[.2] We can then define
a dislocation as a pair (£, b) where ¢ = ¢ N C and b is the Burgers vector. We say that a pair
(e, b) an edge dislocation if b is orthogonal to ¢ and that it is a screw dislocation if it is parallel
to £. In general, dislocations need not to be edge or screw, but can be of mixed type.

Now that we have given a rough picture at the microscopic scale (i.e., the scale where one sees

RN

Figure 1.2: The Burgers’ vector b of an edge dislocation.

atoms but cannot recognize the particular patterns they form), we can start looking at a higher
scale, where one can recognize patterns of dislocations forming more complex structures. In the
previous discussion we have seen the motion of a dislocation in a “cold” regime, namely confined
to glide planes. We are actually more interested in the annealed context (Figure , where
dislocations can move in any direction. We consider then another simple experiment. First, we
take a thin bar of a metal, we bend it and then raise up the temperature, which will in particular
make a “crystallization”, that is it creates small angle grain boundaries. More precisely, a grain
boundary is an interface where two crystals of different orientation join. Although in Chapter
2 we shall consider only one parameter in the description of the grain boundary, a complete
analysis should take into account four different parameters (in three dimension even eight; cfr.
Gottstein):

— «, the angle giving the orientation difference between two different crystals,

— the grain boundary orientation angle, which defines the spatial orientation of the grain

boundary plane,
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Real Boundary

Figure 1.3: Formation of a grain boundary

— the two compontents of a two dimensional vector giving the relative translation of one grain

with respect to each other.

We now discuss more in detail the reason for which we are interested in particular in grain
boundaries. Considering that the distance between atoms in real crystals is extremely small (of
the order of Angstrom), several authors (in particular Kondo, Kréner, Bilby et al., [I1],[12] and
[13]) discussed the possibility of a continuum description of the crystal which can still give a
useful prediction of phenomena at (spatial) scales higher that the atomistic one. It turned out
that a satisfactory approach is that of non-Riemannian Geometry, that is, to endow the region
delimiting the crystal with the so callad natural space structure, i.e, with the metric g(z)[v, w] :=
A(z)v - A(x)w (where A is the backstrain) and with the connection I‘;k(:n) = A%(m)ajAf(x),
which is curvature free but has torsion. Such a connection is also called a Weitzenbdck connection.
Being curvature free, it allows a distant parallelism, which is the feature which reminds of a
underlying lattice structure, since then one is able to produce a global vector field displacing the
primitive lattice vectors along themselves and each other. The torsion of this connection gives
the dislocation density tensor.

In this construction, one makes a priori the assumption that a displaced vector in the continuized

3
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Figure 1.4: Approximation of a (symmetric tilt) small angle grain boundary with a row of

dislocations.

crystal depends linearly on the starting vector and the displacement itself, making evindent the
possibility of using a parallel displacement, that is an appropriate connection. As pointed out by
Kondo, this assumption is reasonable in many applications, where the dislocation density is high
but does not exceed a certain threshold depending on the desired accuracy of measurations of
lengths (this is a consequence of what we call the Kondo’s uncertainty principle). This condition
is fulfilled in many applications but not, for example, in the case of grain boundaries.

This considerations contribute to make interesting the investigation of the continuum behavior of
grain boundaries (more precisely, of small angle symmetric tilt grain boundaries), and we expect,
at the mesoscopic scale, a picture different from the one predicted by the differential geometric

approach.

1.2 MEgsoscoriCc THEORY

In the papers [2] and [3], the authors introduced and studied a mesoscopic reference-free model

able to describe crystals with defects, starting from the assumption that the ground state lattice is
a simple Bravais lattice, that is a lattice of the form £(G) := {gz z € Z”}, where G € GL™(n,R)

and n = 2,3. Then, for any open set 2 C R" and particles configurations X = {z;},c;, #I < oo,
they defined the Hamiltonian

H Q) = inf h A d 1.2.1
Q= [t (e (A7), X)de, (1.2,

where AT (n,R) := GL(n,R)™ x R™ is the “positive” affine group, A > 0 is a parameter giving
the finite range interaction and h) is an energy density made up of three terms, which are taken

as follows:
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(i) The first term gives the nonlinear elastic energy associated to the matrix A, i.e. is of the

form

F(A),
where F' : GL(n,R) is a function of class C? satisfying the usual conditions of nonlinear
elasticity:
— F'is frame indifferent, i.e. F(RA) = F(A) for every R € SO(n);

— Fis invariant with respect to positive changes of the lattice basis of the Bravais lattice
L(A), that is F(A) = F(AB) for every B € SL(n,Z);

— F takes its minimum on the ground state lattice L, i.e. F(A) = 0 if and only if
L(A) = L(G).

(ii) The second term measures locally how much the particle configuration differs from a perfect
lattice. More precisely, to each particle x; € X is assigned an excess energy through a

periodic potential W (-, £;(A, 7)), where
z € Z"} ,

whose periodicity is the one of the lattice £;(A, 7). It is of the form

Lo(A,T) = {A(z )t

% Z (W (zi, Lz(A, 7)) — Do) ora(@i),

x; €1

where ¢y, € C*(R") is a cut-off function whose support lies in the balls B(x,2)) and
Yo > 0 is a constant. More precisely, besides other technical regularity conditions, the

potential W satisfies the growth condition
C~dist?(z, L(A, 7)) < W(y, (A, 7)) < Cdist*(y, L(A, T)), V(A,7) € AT(n,R) and y € R",
for some C' > 1, and the periodicity condition

Wz, (A, 7)) = W(z, (AB,7+Ab)) Y(B,b) € A*(n,Z),  Wi(z,(A,71)) = W(z—r,(A,0)).

(iii) The last term penalizes the presence in X N B(x, \) of vacancies with respect to L,(A, 7),

by measuring the difference between det(A)~! and the empirical density of X in z:

01 (det(A)—l - C:An > w,m(wi)> :

r,€X

where 91 > 0 is a fixed constant and C, is a normalizing constant.
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The energy density is then define as the sum of these three terms:

1

h)\(l‘, (AvT)v:{) = F(A) + V Z (W(xla ‘CQS(A’T)) - 790) @A,x(xi)+
e 1 (1.2.2)
+ Y4 (det(A)_l — Co xlze:% @A7$($i)> .

The main results of [2] are of analytical-topological nature. The authors proved that low energy
atomic configurations (satisfying an additional hard-core constraint) are characterized by a large
set of low energy density, called grains. Moreover, each grain carries a natural fiber bundle
structure, which we now describe more in details. First, given an admissible atoms configurations
we look at a bounded subset  of the trivial bundle  x A* (n,R), which can be chosen in such a
way (see Theorem 4.4 of [2]) that for each (z,g) € € a large percentage of points X N B(z, ) are
close to one and only one element of £,(g), and there exists a unique (modulo A*(,Z)) simple
Bravais lattice £,(g) “optimally fitted” with X N B(z, A). Now, consider the map ([2], Theorem
4.5)

Argmin(z) := {z} X [g].,

where g is a local minimum of hy(z, -, X) (which exists and is unique modulo A" (n, Z), by the
choice of 5), and [g], is the equivalence class of g modulo generation of the same simple Bravais
lattice, that is

(4, 7))z = {(AB, v — AB(B 1 + b))'(B, b) € A*(n, Z)} .

Then it is possible to prove that for each (zg, gp) € Argmin(xg) and every U C 7795 open, simply
connected neighborhood, there exits an open neighborhood V' C A% (n,R) and a diffeomorphism
I'=Ty = (Agy,7g) : U — of class C! such that

I'(zo) = go, (z,T'(z)) € Argmin(z) Vx e U. (1.2.3)

Moreover, there exists a constant C' = C(g) (dependent also of other parameters which define

Q) such that
C

MIVAg ey + [[V700 = A3 ) < 5

g0

If we start from the representative g; instead of gg, and we pick a different neighborhood U’, we
will end up with a different map I'" = T'y, : U" — V’, but such that for every connected open
subset U" c UNU’

I Yz)oT'(z) =Ty 4 € AT(n,Z). (1.2.4)

We now discuss how the authors used this results in order to give a notion of generalized dis-

locations, and how to detect them through a particular G-covering as follows (which gives in

(W This is the starting point of the analysis in Chapter 2. Indeed, the matrix fields A in [I] should be interpreted
locally as the V7 in [2] and [3].
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particular a fibre bundle structure, with a trivial connection though). Firstly, consider

P = U Argmin(z),
T€W
where @ is the projection of Qon Q. It is possible to show that P is a C! manifold embedded in

Q' x AT(n,R). The discrete affine group A (n,Z) (with product rule (A, a)(B,b) = (AB, B~ la+

b)) acts on P (freely, transitively and properly discontinuously) on the right via

(z,[(A,7)],) - (B,b) == (2, [(AB,» = AB(B'r + b))}m) .

The projection 7 from P onto the orbit space P/A*(n,Z) := {p-A“‘(n,Z)

pE P} (where
p-At(n,Z) = {p . g‘g € At (n, Z)}) gives a normal covering space

p: P — P/AT(n,7Z).

It is also possible to show that P/A*(n,Z) is homeomorphic to @. Now, for every zy € @, we
pick an element [g]z, € Argmin(zg). Let now [y] € 71 (@, xo) be an element of the fundamental
group of @ based at x(, and consider a representative v € [y] (here, [7] is as usual the equivalence
modulo homotopy of loops). Since p defines a normal covering space (with deck transformations
given simply by right multiplication), we can find an element h = h([g],, ,7) € A" (n,Z) such
that
Viglao (0) = Viglay = P

where Jy), is the unique (horizontal) lift of 5 such that i), (0) = [g]s,- Moreover, using (1.2.4)),

B zQ
one can show that

h(lgleo - 2,7) = 27 'h([glao.7) 2 V2 € AT(n,Z),

and, for every curve 7' € [7] there exists a z € A% (n,Z) for which

h ([9)z0:7") = 27 2 ([9]20, ) -

In particular, we end up with a well defined homomorphism

v Wl(aj,xo) — A+(n7Z)/N
M = [((glaes V)]

where [g]z, € Argmin(zg). The map V¥ is independent of the particular base point in the
connected component Cy, of w which contains . As a corollary, one can see that the image
of the fundamental group of C,, through ¥ is trivial, ¥ (71 (Cy,, zo)) = {[(Id,0)]~} if and only
if for every U € Cy, and ever g € Argmin(zg) there exists a function T : U — AT (n,R) as
in the discussion before. We can rephrase this saying that the obstruction to the definition of

global approximate Lagrangian coordinates on the whole connected component C, is encoded

7
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by the holonomy representation map ¥. We can then say that [y] € m1 (@, z¢) links a generalized

dislocation if
() = [(d, by)] .,

for some b, € Z" \ {0}. The Burgers vector at the base point xq of [y] is then the projection on
R™ of the difference between the map I' obtained in the discussion before at the ending points

of v (which is well defined, that is independent of the particular representative of [v]):

b, ([7]) := mrn (L(7(1)) = T'(7(0))) -

Another approach to detect dislocations would be to consider the “meso-scale” system of local

inverse deformations {(Ua, 7o)} (in the sense of [10]), where the 7, are the translational

acA
components of the affine maps I'y obtained in (1.2.3]), and then study the associated connection

d (VT)fl V7 together with the holonomy group it generates. This approach is discussed more in
detail in [3].

1.3 TI'-CONVERGENCE APPROACH OF LEONI, GARRONI AND PONSIGLIONE

In this section we discuss the I'-convergence results proved in [4] in the context of linear elasticity
(see also [0], [6] and [7], [8], [9] for the analysis of a related phase field model). The functional
we shall study in Chapter 2 is similar to the one they study, although we are interest in different
limit scales and we do not make any dislocation density assumption. The authors considered
a two dimensional section of a crystal with dislocations, represented by an open and bounded
subset € of R? with Lipschitz boundary. They then considered the set of Burgers vectors S :=
{by,--+ ,bs} C R? and its Z-linear combinations S := Spany(S), assuming S = R?, and the three

parameters
— ¢, the lattice parameter;
— 0¢, the radius of the core surrounding a dislocation;
— Ng, the number of dislocations in €.
Such parameters should satisfy the conditions
— lim. ;0 % = oo for all s € (0,1) (i.e., the hard core region contains most of the self energy);
— lim._,0 N:0? = 0 (that is, the area of the hard core region tends to zero);

The class of admissible dislocations is then defined as the class of all vector valued Radon measures
1€ M ()% of the form

M
p=> &ba,,
=1
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where 0, denotes the Dirac § concentrated at z, x; € S, M € N, B(z;, 0.) C Q and |z; — x| > 20,
for all i # j. For notational simplicity, Q,(u) denotes the “drilled” domain

Q- (p) =02\ U B(z;,r).

z; Espt(p)

Finally, the class of admissible strains AS(u) with respect to the admissible dislocation p is given
by all those matrix fields 3 € L%(Q)?*? which are identically 0 in Q(u), whose distributional
Curl vanishes in Q(p) and

[ peani—g [ (p-pT)ae=0  vi-teen
OB(z;,e) Qe (1)

where t(z) is the tangent vector to B(z;,€) at the point x, and the integrand (3 - ¢ is defined in
the sense of traces (see also Section 1 in Chapter 2). The elastic energy of a pair (u, ), with
p € Xe and € AS:(u) is given by

&mm:Q@WWM=AWmm

where W is of the form )
W(A) = §CA DA,

where C is the linear elasticity tensor, which is assumed to satisfy the growth bounds
CTHAY2 <CA: A< C|AY™)? VA e R

for some constant C' > 0. They then consider three different energetic regimes, depending on

the number of dislocations N;:

— The subcritical (dilute) regime, where N, < |log(e)|. In this case

Wg(a”E€(:u’7 5)7 1f % € Xs; 5 S AS€(N)7

s otherwise;

ﬁmmm:{

— The critical regime, where N, = |log(¢)|. Then the rescaling is of order |log(e)|?:

1 i
J_-_s('u”@) — |10g(6)|2Ea('u7 ﬁ)a 1f M S XE7 /8 S AS&‘(,“’))

00 otherwise;

— The supercritical regime, where N, > |log(¢)|. In this case

NL§E<€<,U7B)7 if we Xe, B e ASE(M)a

o0 otherwise;

QWWﬂF{
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The definition of the I'-limits of these sequences rely on the relaxation of a particular cell problem.
More precisely, let AS. 1(€) be the family of stress fields satisfying 8 € L*(B(0,1) \ B(0,¢))?*?,
Curl =01in B(0,1) \ B(0,¢)

B-tdH! =¢,
0B(0,¢)

and define, for ¢ € R?, the function

1 .
Vel®) = Toa @l peld® o) /B(O,l)\ '

In [4] the authors proved that the functions . converge pointwise to a function ¢ : R? — R,
and they also gave an explicit formula for it. They finally define the density ¢ : R? — [0, c0) as

the relaxation

N N
@(£) := inf {Z A& Y Ni& =& N eN N > 0,6 € S} :
1=1 =1

We can then summarize the main results of [4] as
Theorem 1.3.1. (a) Critical Regime. Define the functional F : M(Q,R?) x L}(Q)**? - R as

JoW Bz + fo o (51) dlul, if pe H-HQ), Curl = p,

00 otherwise.

F(u, B) = {

Then the following holds:

— (Compactness) Let ¢, — 0 and {(jtn, Bn)} be a sequence in M(2)? x L?(2)%*2 such
that Fe, (tin, Bn) < E for every n, for some positive constant E > 0. There, up to a
subsequence, there exists a measure p € H=1(Q)? and B € L?(2)**? with Curl 8 =

and
— N ) 2
llog(en)\”" = i M(Q)%, (1.3.1)
1 L p200)\2X2.
’10g(8n)|6n B in L)% (1.3.2)

— (T-convergence) The functionals F. I'-converge to F as € — 0 with respect to the con-

vergence of un and B, as above. More precisely one has the I' — lim inf inequality:

For (1, B) € (M(2)2Nn H1(Q)2) x L2(2)2*2 with Curl B = p and for every sequence
(tn, Br) satisfying (1.3.1)) and (1.3.2), we have

hminf}—s(ﬂaa ﬁs) > -7:(/‘, ﬂ),
e—0
and the I' — lim sup inequality:

For (1, B) € (M(Q2)2Nn H1(Q)?) x L*(2)2*2 with Curl B = p there exists a recovery
sequence (fin, Br) satisfying (1.3.1)) and (1.3.2) such that

lim sup Fe (e, Be) < F(u, B);

e—0

10
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(b) Subcritical Regime. Let N — oo in such a way that |10g( N~ 0, and define the functional

JoW(B)dz + [, (d—“) dlp|, ifpue H Q)2 CurlB =0,

00 otherwise.

fdilute(u’ 5) — {

Then

— (Compactness) Let e, — 0 and {(pin, Bn)} be a sequence in M(Q)? x L2(2)**? such
that fgjl“te(un, Bn) < E for every n, for some positive constant E > 0. There exists a
€ M(Q)? and B € L?(Q)**2 with Curl 3 = 0 such that, up to a subsequence,

1
fhn — p i M(Q)?, (1.3.3)
N, T

1
(N-,, [log(e,))2

— (T-convergence) The functionals ]-'gil“te I'-converge to F as € — 0 with respect to the

Bn — B in L2(Q)2*, (1.3.4)

convergence of t, and B, as above. More precisely one has the I' — lim inf inequality:

For (u,8) € (M(2)2 N H1(Q)?) x L?(Q2)?*2 with Curl B = 0 and for every sequence
(tn, Br) satisfying (1.3.3)) and (1.3.4), we have

lim iélf ]'—gdilme(ﬂsa Be) > ]:dilme(:ua B),
e—

and the I' — lim sup inequality:

For (1, B) € (M(2)2Nn H~1(Q)?) x L?(2)?*2 with Curl B = 0 there exists a recovery
sequence (i, Br) satisfying (1.3.3)) and (1.3.4) such that

lim sup F2Me(p.., B) < Fhluie(y, B):;

e—0

(¢) Supercritical Regime. Let N — oo in such a way that — 00, and define the functional

\10&’;(6)\

fQ ﬁsym z, Z‘fﬁsym c LZ(Q)QXZ’

00 otherwise.

Fsuper(ﬁsym) — {

Then

— (Compactness) Let e, — 0 and {(in, Bn)} be a sequence in M(Q)? x L2(2)**2 such
that F2"P" (un, Bn) < E for every n, for some positive constant 2 > 0. There exists a
BY™ € L2(Q)%2*2 such that, up to a subsequence,

1
Niﬁiym N Bsym in ﬁQ(Q)2X2; (135)
En

— (T'-convergence) The functionals FE*P" T'-converge to Flilute 45 ¢ — 0 with respect to

the convergence of B:¥™ as above. More precisely one has the I' — lim inf inequality:

11



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

For every symmetric matriz field 859™ x L%(Q)?*? and for every sequence (i, Bn)

satisfying (1.3.5), we have

lim inf F27 (e, ) = F*70(u, B),

and the I' — lim sup inequality:

Given a symmetric matriz field 3Y™ x L?(Q)2*2, there exists a recovery sequence

(tns Bn) satisfying (L.3.5) such that

lim sup F2"7 (1., ) < F* (1, B).

e—0
1.4 GEOMETRIC RIGIDITY AND ITS ROLE IN PLASTICITY

In the study on linear elasticity models, Korn’s inequality plays a crucial role. We can state it

as follows (see [22] and the references therein):

Theorem 1.4.1. Let © C R" be an open, bounded connected Lipschitz domain. There exists a
constant C = C(Q) > 0, depending only on the domain Q, such that for every u € WH2(Q)"

there exists a skew-symmetric matriz S € R™¥" (i.e. ST = —S) such that

Vu + (Vu)"

IVu = S| 12 (qynxn <CH 5

L2 (Q)nxn

That it, Korn’s inequality says that the gradient of a Sobolev function can be estimated, after
removing a constant antisymmetric matrix, by its symmetric part. The nonlinear counterpart
of Korn’s inequality is often called geometric rigidity. We give here a short review of the most
important geometric rigidity estimates. The prototype of geometric rigidity estimate is Lioville’s

theorem, which we can state in modern terms ( [21]) as follows:
ue Wh2(Q)", Vu(z) € SO(n) for a.e. z € Q = u is an affine map,

where 2 C R™ is an open, connected set. Indeed, since Vu € SO(n) a.e., Vu = cof(Vu). But the
Piola’s identity gives div (cof(Vu)) = 0, hence u is harmonic in © (hence, smooth). Then Vu is
harmonic itself, and hence constant, since it has constant norm. A natural question is whether or
not Liouville’s theorem is “stable”, in the sense that if a gradient is close to the orthogonal group
in average, is it close to a single rotation in average? A first answer in this direction was given by
John ( [14], [15]). He considered vector fields u € C1(Q)™ defined on a cube @ = Q(z, L) C R",
and the strain matriz

(Vu(x)Vu(x)T - Id) ,

ey(x) =

N

and the mazimum strain

e(u) := sup |u(z)|.
zEQ

A vector field u is said to be d-quasiisometric if e(u) < 6. In [14], the author proved the following

12
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Theorem 1.4.2. There exists a § = §(n) > 0 and a constant C = C(n) > 0 such that for any

§-quasiisometry u € C1(Q) there exists a rotation R and a vector ¢ € R™ such that

- % _ 1‘ < Ce(u) for all z,y € Q;
— |u(z) — Rz — ¢| < CLe(u) for all x € Q;
— fo|Vu— R|dz < Cpe(u).

Then, in [I5] he proved the LP-version of the statement:

Theorem 1.4.3. Let p > 1. There exists § = d(n,p) > 0 and C = C(n,p) > 0 such that for any
S-quasiisometry u € C1(Q) there exists a rotation R and a vector ¢ € R™ such that
- ’\u(m —u()| _ 1‘ <C HeuHLp provided p > n and z,y € Q are such that |x — y| > %

lz— yl

— |u(@) = Rz — c| < CL|lew||p(q) provided p>n and z € Q;

— |IVf - RHLp(Q) < CH€UHLP(Q)

John’s result was then improved by Kohn in [I6], without assuming any a priori pointwise

hypotheses on u:

Theorem 1.4.4. Let Q C R™, n > 2, be a bounded Lipschitz domain, and let p > 1, with p # n.
There exist positive constants C1 = C1 (82, p), Co = C2(Q) such that for every bi-Lipschitzian map
u: Q — R™ there exist a rigid motion v and R € SO(n) satisfying

(i) if 1 <p <mn, then

w =l pagayr + 1= ooy < Crlle()] gy
with ¢ = n—p, and “nonlinear elastic strain” e(u) is defined as
(1) = O — 15 + (o= An — 1) + |det(Gu) — 1],
where Gy (x) := \/Vu(z)TVu and A\, -+ , N, are its eigenvalues;

(it) if p > n, then
[lu =l poo @y < Crlle()ll Loy s

(iii) if €(u) == ||G2 — Id||, then

IV — R|[72gpxn < Calle(u) + &(w)|| 1 q) -

The fundamental improvement was then achieved by Friesecke, James and Miiller (see [21]).
They indeed proved a geometric rigidity inequality without imposing any smallness of the elastic

energy or invertibility assumptions on the fields:

13
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Theorem 1.4.5. Let 2 C R™ be a bounded Lipschitz domain, n > 2, and let 1 < p < oo. There
ezists a constant C = C(p,§)) such that for every u € WH2(Q) there exists a rotation R € SO(n)
such that

1V~ Rllsgayoen < CI1dist (T, SO (o

We now need to recall the notion of weak-LP spaces. A real-valued function f from a measure
space (X, p) is in LP>°(X, u) or (LE (X, p)) if

1
1l 0 = S0 ({x c X‘ @) > t}) <o

Is easy to check that ||-||; .0 (X, p) is only a quasi-norm, that is the triangle inequality holds

just in the weak form

1F + 9l oo (xS Co (I1F 1 poo (x40 + 19 oo (x1) -

We write LP>°(§2) for LP*°(Q, |-|), when Q@ C R™ and |-| is the Lebesgue measure. Conti, Dolz-

mann and Miiller proved in particular the following geometric rigidity estimate in weak-L? spaces:

Theorem 1.4.6. Let p € (1,00) and 2 C R"™ be a bounded connected domain. There ezists
a constant C' > 0 depending only on p,n and Q such that for every u € WH1(Q)" such that
dist(Vu, SO(n)) € LP>°(Q)"*™ there exists a rotation R € SO(n) such that

VU = R 1p.0o (ynxn < C|dist(Vu, SO(R))]| 1p.co (ynxn - (1.4.1)

We are going to apply Theorem in order to obtain its generalization (on convex domains)
in the case of incompatible fields, that is to tensor fields A which are not gradients. The idea
is to correct the field A to a gradient via a averaged homotopy operator, and then to estimate
the latter. In what follows, Z := ﬁ, while LP(U, A™) (W™P(U, A")) denotes the space of r-forms
on U whose coefficients are LP (W™P) functions. Moreover, recall that we can identify a tensor
field A € L'(Q)™*" with a vector of 1-forms of length n, that is with w := (wi)?zl, wh = A;-dxj,
and its Curl with dw (or, more precisely, with (*dw)b), given by

N R T AU

We recall the following

Definition 1.4.1. Let U C R™ be a starshaped domain with respect to the point y € U. The

linear homotopy operator at the point y is the operator

ky = ky, : Q"(U) = QY U),

)

defined as



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

where (w(z)Lv) [v1, - vp—1] := w(x) [v,v1, -+ ,Vp—1]. It is well known that the linear homotopy
operator satifies
W= kyri1dw + dky,w V€ Q7(T). (1.4.2)

In order to get more regularity, we consider the following averaged linear homotopy operator on
B := B(0,1), which coincides with the one introduced by Iwaniec and Lutoborski in [24], except

for the choice of the weight function:
T=T,:Q"(B) = Q" YB),
Tola) i= [ olo) (ko) (),
where ¢ € C°(B(0,2)) is a positive cut-off function, with ¢ =1 in B and
max {||l| oo (e » [Vl oo rmy | < 3.
Clearly, (1.4.2)) holds for T" as well:
w=Tdw + dTw. (1.4.3)

We recall that, as proved in [24], T satisfies (for smooth forms w) the pointwise bound
w
Tula)| < Coy [ 200, (1.4.4)
B |z —yl

Indeed, for w = wedz® € Q"(B) we have

rta) = [ avet) [ 07 (- esantto+ (- 0n)) as" L

We then make the substitution ®(y,t) := (tx—i— (1 —t)y,ﬁ) = (z(t,y),s(t)), ® : B(0,1) x
(0,1) — B(0,1) x (0,00) and we get

Tute) = ([ dsunte) o= zvei [ s )1 o e oo o) ) L=
- (/B dzw“(z)m /02 sH149)" Tp(z + sz/—\x)> dz®Le; =

jz — 2"
= (/ K'(z, 2 — z)wa(z)dz) dz®L e,
B

where )
. h. e -
K} (z,h) = <V;\€"Z> / "Y1 4+ 5)" T p(z — sh)ds,
0
and we noticed that, since ¢ has compact support, the integral from 0 to co actually reduces to
an integral over a finite interval. That is, we get (1.4.4). It also follows easily from ((1.4.4) that
T is a compact operator from LP(B,A") to LP(B,A"'). Moreover, by density, (1.4.3) extends

to every differential form w € WHP(B, A"), and to every differential form w € L'(B,A") whose

differential is a bounded Radon measure, dw € M;(B, A"*!). In what follows, we will also need

the Hardy-Littlewood inequality:

15
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Theorem 1.4.7. Let f,g : R" — [0,00) be two measurable functions vanishing at infinity, and

let f*,g* be their symmetric decreasing rearrangements. Then

/ fa)g(z)de < . FH(x)g* (z)da.

Using the homotopy operator, we get the following weak-LP geometric rigidity estimate for

incompatible fields:

Theorem 1.4.8. Let p* = p*(n) = 2=, and let U C R™ be an open, bounded and convex

n—1’

domain. There exists a constant C = C(n,U) > 0 such that for every A € LP (U) whose
Curl(A) is a vector measure on U with bounded total variation and whose support is contained
in U, i.e. sptCurl(A) € U, there exist a rotation R € SO(n) such that

1A = Rl| ey < C (|[dist(A, SO(m))| o o) + |Curl(A)] (1))

Proof. Take any measurable subset £ C U, and let > 0 be such that |B(0,7)| = |E|. Then,
using (1.4.4) and the Hardy-Littlewood inequality

/Edm(TW)(x)\sc/dx/dym:
_C’/dy!w !/‘ nl—
<c [ aylel | xE_x<y>Hﬁs
<C’/dy[w ]/ XBOT)‘ ’n T <
= [avtt) [(ar [ -

1
= Cr |l gy = C1EI7 [l oy

This gives immediately
| Twllpr @y < CU) @l

and thus, using (1.4.3), [|[A — TdA|| @) < ClIdA[| 1), which extends immediately by den-

sity in the case when dA is a vector measure with bounded total variation. Choosing F =

{m ceU||Tw(z)| > t}, fort >0

LE| </ Tw(z)| dz < C [E|* |[dA] (U).
E
Passing to the supremum over ¢ > 0, we find

ITAA|| Ly oy < C(U) [AA| (D). (14.5)

16
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Since U is convex and d(A—TdA) = d>T' A = 0, we can find a function g such that dg = A—TdA.
From the estimates proven, is possible to apply Theorem to g and find

ldg — Rl| p* e 1y < C'[|dist(dg, SOn))[| 1p* o0 (1) -
But
1dg = Rl pp*.c 1y = C||A = Rl| o 00 (1) = [TAA|| o+ 0 (1)

and

||dist(dg, SO(M))| o001y < [|dist(A, SOM))] L oo 0y + TAAN por.00 17y -

In particular,
1A = Rl e ey < C (Ildist (A4, SOm))|| e e gy + [Canl(A)] (1)) 0

We now give another estimate for LP norms. It requires an L*°-bound on the matrix field A,

which is natural in the context of the theory of elasticity.

Theorem 1.4.9. Let n > 3, p* = p*(n) := 25, p € [p*,2] and fir M > 0. There exists
a constant C' = C(n, M,p) > 0, depending only on the dimension n, the exponent p and the
constant M, such that for every A € L>®(B), with ||All,, < M and Curl(A) € M,(B,A?),
B := B(0,1), there exists a corresponding rotation R € SO(n) for which, if p > p*

/ A-RPdr < / dist?(4, SO(m))dz + [Curl( AP (B)). (1.4.6)
B B
while, if p = p*,

/ |A— RP" da gc/ dist?” (A, SO(n))dz+
B B (1.4.7)

+ C |Curl(A)|P" (B) {|log (|Curl(A)| (B))] + 1} .

Remark 1.4.1. The constant C' in ((1.4.7]) is not scaling invariant in the critical regime p = p*.

Thus, it cannot be used to extend the analysis in Chapter 2, Section 3, to any dimension.

Proof of Theorem[I.7.9. Without loss of generality, we can assume T'dA not identically constant.
Indeed, if T'dA is identically constant, from the identity TdA = A + dT' A, we see that dA = 0,
hence the result follows applying Theorem As in the proof of Theorem [1.4.8] applying
Theorem [1.4.5) (and using |a — b|P > 2'=7 |a|’ — [b|") we find a rotation R € SO(n) for which the

inequality
/ A~ RpPde <Gy / dist(4, SO(n))P dz + / TdA@)P dz) (1.4.8)
B B B

holds. We then just need to estimate the last term in the right hand side of (1.4.8)). For, fix a
A > 1 (to be chosen later), and define the integrals

I ::/ |TdA|P dz, IT ::/ |TdA|P dx.
|TdA|>A [TdA|<A

17
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We now give an estimate for I. Firstly, we recall that T is a bounded operator from LP(B,A")
into WP(B, A"1), whenever p € (1,00) (|24], Proposition 4.1). Moreover, TdA = dTA + A,
and VT = §1 + Sy, where 57 is a “weakly” singular operator which maps continuously L* into
itself, while Sy is a Calderén-Zygmund operator (see the proof of Proposition 4.1 in [24]). In
particular,

I TdAgp0 < Cn|[All < CnM,

where C,, > 0 is a constant depending only on the dimension. Now, we can write

I =AP7P AP |{|TdA| > A} +/ NPUTAA| > A} dA. (1.4.9)
A

=:I'

Clearly,
AP |{|TAA| > A}| < ||TAA||P". . < C|dA|(B)”".

Lp*oo —
We now take a Calderon-Zygmund decomposition of F(z) := |TdA(x)":

function g € L, with ||g||,, < 27"A? and disjoint cubes {Q;};-, such that, if b := 37>, Xo, F,

namely, we find a

F=g+b,

27MAP < fQj Fdxr < AP (Jensen = ‘fQj TdA(x)da:‘ < A) ,

Uj>1 Q| < 35 [ |TdAP da.
With such a decomposition, outside the cubes Q;, |TdA|P = |g(z)| < 27"AP < AP. Hence, using
the John-Nirenberg inequality and the elementary estimate

/ Ne M) < e *(1+z), Vg<landz>1,

we find that (provided p < 2)

I’:/OOAIHZ

A j>1

S/OOA“Z

A j>1

{x € Q,||Td4]| > )\}‘d)\ <

TdA(x) — ][ TdAdx

oF

> A=A
< cl/ P |Q;| | exp <—02> dX <
L e FdAllp (14.10)

n p 00
< 0127 (/ ’TdA‘p) 602 HTdA[‘\‘BMO <|TdAHBMO> / ML) <
AP Co Ca___p B

2
NITdAllBMO

2" | TdA| P Cs
< = P) BMO <
- ClAp (/ [TdA] ( Cy b ||TdA||BMOA B

1+A
< Chm (/|TdA|p) I

{xEQj >)\—A}’d)\§

18



CHAPTER 1. CALCULUS OF VARIATIONS AND DEFECTS IN SOLIDS

Hence, if we choose A big enough (depending only on n and M) in ((1.4.10)),
1
I'< 2/|TdA|p. (1.4.11)

Let us now estimate I1. If p > p*, we can write

/ ITdA[P dz = / |TdA[P dz + Z/ <
|TdA|<A 1<|TdA|<A j>0727771<|TdA|<27

<0{ApdAp )+ Y2 (T > 2 m}\}

7>0
<C ]dA]p* (B) [ AP + Z 21" -p) | <
Jj=0
< C(n,p, M) |dAP" (B),
which gives (1.4.6). In the case p = p*, we are going to make use of the increasing convex

function W, defined as the linear (convex) continuation of ¢ — ¥ for t > A:

{tp* if t <A,

U(t) := . .
p AP TN 4 (1 —p*)APT ift > AL

C1dA] (B)d jd4] ()
'(f )-

n—1
[z —y

u</ W(|TdA( )])d:):</

B

< [ £ (N8 ) anarma -
- faaai [ o (TR Jar <
< /B(O ) 1\ (W) dz = 0/02 doo™ 1w (W) — (1.4.12)

1
C(ldA|(B)A-T) =T ., CI|dA|(B .

Qn—l
p*
c / PR
C(|dA|(B o
< CldA[(B)" (1+\10g(!dA!( D) -

Combining together -, and m, we obtain ((1.4.7]). O]

Remark 1.4.2. The same conclusions can be obtained considering the operator defined by an

average on the sphere:
Tw(z) = / dH" () kyw(z).
Sn—1
The fundamental generalization of Theorem proved by Miiller, Scardia and Zeppieri in [23],

that is a scaling-invariant geometric rigidity estimate for incompatible matrix fields. Unfortu-

nately, such an estimate is valid only in dimension 2.
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Theorem 1.4.10. Let Q C R? be an open, bounded, simply connected Lipschitz subset. There
exists a constant C' = C(2) > 0 (which is scaling and translation invariant) such that for every

A € L?(2)2*2 whose Curl is a measure with bounded total variation there is a rotation R € SO(2)

for which the following estimate holds:

14~ Rllagqyees < C (I[dist(4, SO@)| 2 gpens + | Curl A] (1))
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Chapter 2

The First Mesoscopic Scale and Cosserat

Microrotations

2.1 THE FUNCTIONAL

In what follows
— Q:=[~L, L]? represents a section of a crystal, L > 0;
— & > 0 is the lattice parameter, i.e. the distance between atoms;
— 1> a > 0 is the (“small”) misorientation angle between two grains;

— ¢ > 0 is a parameter (much smaller than L): in an f-neighborhood of x = +L we are going

to impose the boundary conditions;

— X > 0is a parameter (independent of L, e, ) so that Ae gives what physicists call the core

radius;

— 7 > 0 is another parameter independent of all the others, which is defining the minimal

length of the Burgers’ vector, Te.

We then restrict our attention to the following class of admissible strain fields, denoted by
A(e,a, L, 7, \,£) (to which we shall simply refer to as A., in the case when the other parameters
are clear from the context), which is defined as the family of matrix fields A : Q — R?*2 satisfying

the following conditions:

(A, 1) Ae LL ()22 and A € L2 (Q\ By (spt Curl 4))**2.

loc

(Ag, ii) (Boundary Condition) A= Ry in [-L,—L+{] x [-L,L]and A=R_, in [L — ¢, L] x

[—L, L], where R, is the counter-clockwise rotation through the angle «, that is

R, — [cos(a) —sin(a)] ‘

sin(a)  cos(a)
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CHAPTER 2. MICROROTATIONS AND MESOSCOPIC SCALE

(Ag, iii) (First Quantization of the Burgers’ vector) For every closed, Lipschitz simple curve
v C Q\ Bye(spt Curl(A)), either

/A-tdjflzo
vy

or

> TE.

/A'tdjfl
Y

We call an admissible core any compact subset of [-L + ¢, L — ] x [-L, L], i.e. any element of
K([-L+¢, L—{)x[—L, L]). The elastic energy of a pair (A, S) € A. x K([-L+¢,L—¥¢]x[—L, L])
is
Eu(A,S) = & / dist2(4, SO(2))dx,
Q\Bxe(S5)

T

while the core energy depends only on the core and is defined as
1
gcore(S) = X |B/\€(S)| .
We define the set of admissible pairs
Pe,a, Ly, M\ 0) = A(e, o, Ly, A\ €) x K([-L+ ¢, L —¥] x [-L, L])

Whevener the constants «, L, 7, A\, £ are clear from the context, we shall simply write P, for
P (e,a, L, 7, A\, £). The (free) energy functional is defined on pairs (4, S) € P- as

Eel(A, S) + Ecore(S) if spt(Curl(A)) C S,

+00 otherwise.

F(A,S) = {
We also define the relaxed energy on admissible fields as

Fe(A) := F.(A,spt(Curl(A))).

For notational simplicity, for a set S we let Q).(S5) := Q \ Bx:(S), while for a matrix field A
Me(A) :==Q\ Byo(spt(Curl(A4))).

We say that a matrix field A is a microrotation if A € BV (Q2)"*™ (see the Appendix), A(x) €
SO(n) for every x € Q and DA = D’A, i.e.

DAY = (AD+ — AT @uaH™ LS,  i=1,,n.

Recall that is well defined a trace for matrix fields whose Curl is square-integrable, in the following

sense. If U is a bounded Lipschitz domain in R?,

H(Curl,U)?*? .= {A € L*(U)**?| Curl(A) € L* (U)} .

Then, the operator
viAe HCulLU) — A-t € H2(dU),
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is well defined and continuous (where ¢(x) is the tangent vector to OU at the point z), i.e. there
exists a constant C'= C(U) > 0 such that

A - tdH!

| < ClAllcan -
ou

Moreover, an approximation argument (see [27]) gives
/ A-tdH! = / Curl(A)dz VA e H (Curl, Q)*2.
ou U

To every «y closed, Lipschitz, simple curve contained in Q \ B):(spt Curl(A)) we associate its

Burgers’ vector defined as

3(7) = /A-td’Hl.
g

Remark 2.1.1. Although we chose dist?(-, SO(2)) as the elastic energy density, all the results we
prove remain valid if we consider instead a function W : R?2*2 — [0, 0o) which satisfies the usual

assumptions of an elastic energy density in (two dimensional) nonlinear elasticity, that is
(i) W is continuous and of class C? in a neighborhood of SO(2);
(ii) W(Id) =0, i.e. the reference configuration is stress-free;
(iii) W(RA) = W(A) for every matrix A € R?*2 ie. W is frame indifferent,
together with the growth assumption
(iv) There exists a constant C' > 1 such that C~! dist?(4, SO(2)) < W (A) < C dist*(A4, SO(2)).
Condition (iv) is rather restrictive, but it is essential in order to apply the Geometric Rigidity

estimate of Miiller, Scardia and Zeppieri (cf. [23]).

2.2 UPPER BOUND: THE READ-SHOCKLEY FORMULA
Theorem 2.2.1. There exists a constant Cy > 0 such that

1
liminf inf -F.(A < L (|1 1). 2.2.1
1r§ién (A,IS%GPE g (A4, 8) < CoaL ([log(a)| +1) ( )

Proof. Consider @ € N such that é € [27,2""1). Without loss of generality, we can assume

1-k 1 ._ ) L2~k
ee L2 oN = {

z € N}' Set 79 := § and N := ﬁ € 2N. Let 1, := 2"ry and

2z
1. 2 . 3 . 4 . — =
Pn = (_TnaTn) y Pp = (TnaTn) y Pp = (T’I’La _Tn)v DPyn = (_Tnv _Tn) fOI‘ n = 07 ey N,
A71’L =A (p}’wp'}z—lapfrll—l) ) A?z =A (p’}wpi—lvpfrlz) )
Ai = A (pgup%—bpfz) ) Ai = A <p7217p721—17p%—1) fOI' n = 17 Tt 7ﬁ7

where A(a, b, c) denotes the triangle whose vertices are a, b and c.
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d+b | «d—b

id+ b |id—b

id

Figure 2.1: The map v (the striped triangles are the ones where we are interpolating).

Let Q= [—rpn,m)” and Q := [—rm, 7)%, b := (£,0) and define (see Figure [2.1)
id in ((Q\UinAL) N{y <0}) U [=ro,m)?,
a . Jid+b in (Q\UinAL) N{y > 0,2 <0},
v\ = N
id— b in (Q\UinAL)N{y>0,2>0},
linear interpolation in J;,, Al

It is readily seen that for p € A% we have

//////

id

Figure 2.2: The map v(?) (as in Figure the stripes denote the regions where we are interpo-
lating).

‘Vv(l)(p) — id’ < Czin.

Now, we have to adjust the boundary condition. For, we consider the map v : v(}) (Q) — R?
defined as follows (see Figure . For n =1,---,m, define the points

qfll = (Tn - 55Tn)7 q?L = (TTLa _rn)’ QE)L = (0) _Tn)v

Q;lz = (_Tm —Tn), q751 = (_Tn + E,T‘n), %61 = (O,T‘n),
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and
Qé = (7”0,’/“(]), Q(2) = (T07 _T0)7 Q[?)) = (01 _TO)a
qal = (_T07 _TO)a Q8 = (_7077”0)7 QS = (Oer)'
Then, for n =0, --- ,7, consider the triangles
A=A a1 d),  AL=A(G S aa), AL =A(dq1.a0),
Z'L}L =A <Q721v qq%—b qg) ) ZEL =A <q121_1,q131,q3_1> ) Z?L =A qqui—hqi) .
We then define v® : v(M(Q) — R? as
R_ox if 2 € UT_y {v® (Qn \ Qn-1) \ Uy AL} N {z < 0},
Rot if 2 € Uizt {0 (Qn\ Qu-1) \USZy A3} 0 { > 0},

v(2)(x) =
x if x = (0,£m,),

linear interpolation otherwise.

It is easy to check that on each triangle we have

dist? (Vo®),80(2)) < Ca®.

eY) . )

Figure 2.3: Schematic representation of the grain boundary constructed.

Thus, if v := v® o v (see Figure 7 on each triangle A?
dist? (Vv, SO(2)) < o 12
is v, <0 tan
This gives in particular

/Q\[ ° dist? (Vv,S0(2))dz < C (52 llog ()| + 52) .
—To,T0
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The last step consists in gluing the maps constructed before. Namely, if S := [—rz, 5] X [—L, L]
we define the map u : Q — R? as

R, <x> it (z,y) € (Q\ 8) N {z < 0},

u(z,y) = R. <:1:> if (z,y) € (Q\ S)N{z >0},

v,y +kry) if (2,y) €Q+k(0,rm), ke {-% 4},

Then, if Ag, := Vu,
F(Agp) < Ceah (Jlogal +1). O

We say that Egp,(e) := CoeaL (|log(ax)| + 1) is the energy of a grain boundary with misorientation
angle « at the scale e, where Cp > 0 is the constant from Theorem [2:2:T]

Remark 2.2.1. Although it not completely clear (at least, from the point of view of the Calculus
of Variations) why the upper bound should also be (roughly) optimal, it is clear that the lower
bound cannot be zero. Indeed, suppose it is. Then, because of the quantization of the core

energy, minimizing fields need to be curl-free, meaning that we can look for minimizing sequence

in the more restrictive class W12(Q) := {u € WH2(Q)|Vu = Riq near © = i@}. But then

inf  F(Vu)= min F(Vu)=Cqyp >0,
ueWi?(Q) ueWwi?(Q)

Indeed, the functional u € WH2(Q) — [, dist*(Vu,SO(2)(2))dz is lower semicontinous with
respect to the W12-weak topology and is bounded from below. Then, the infimum is actually
a minimum. But it cannot be zero, otherwise Liouville’s Theorem would imply that the matrix

field Vu is constant, which is not compatible with the boundary conditions.

2.3 SURGERY LEMMATA

This section is dedicated to two technical lemmas. They allow us to find fields with energy
comparable to a given one, but uniformly bounded and with |Curl| controlled by the core energy
(when seen as a measure). These two technical requirements are essentials in the harmonic

competitor lemma and in the balls construction.

Lemma 2.3.1. There exists a constant C' > 0 such that for every pair (A,S) € P (g, a, L, LX)
whose energy satisfies Fo(A,S) < Eg(¢) there exists another pair (;4v, §) ep (5,a,L ¢ )\) s.1.

X
9 ] <€
(i) F-(A,S) < CF.(A,S);
(iii) A€ C®(Q\ Br(S)).
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Proof. We will define the pair (Z, g) by modifying it in several steps. Let w := B).(S) and

define
~ id in w,
A =
A in Q\w.
Clearly, spt Curl A C w = Sy, and by Vitali’s Lemma we can find an at most countable

collection of point (z;),. ; € S such that the balls Bj.(x;) are mutually disjoint and

w = U By.(z) C U Bsae ().

z€eS JjeJ
Thus
|Bre(S1)| < IBre @) < | Borel))| < Cx Y- Boc(a))] < O |w] < CrF(4, S).
jeJ jeJ

Thus }"g(;fl, §1) < CyF.,s and HA}HLN(W) < M. For notational simplicity, relabel A7 as A and

S; as S. Now we show that we can without loss of generality assume A to be smooth outside
B):(S). By the Hodge-Morrey decomposition, A = Vu + F, where u € W12(Q) and F € L?*(Q)
has zero divergence in the sense of distributions. Moreover, Curl(F) = 0 in Q2 (5), and hence is
harmonic (and, in particular, smooth) in . (S). We then take a sequence u; € C*(Q)NW12(Q)
converging to v in W1H2(€). Set Ay, := Vuzk + F'. Clearly Curl(A4;) = Curl(F') = Curl(A) in Q

for every k and
/ dist? (A, SO(2))dz < 2 (/ dist?(A,SO(2))dx + / IV (ug — u)|? dx)
Q Q Q
<3 / dist2(A, SO(2))dz,
Q

provided k is chosen big enough. That is, we can without loss of generality assume A to be
smooth in Q).(S). Now, fix M > 1 and consider the set of points

R := Ry := {:cEQ

Ir>0: ][ dist?(4,S0(2)) > M} :
By ()

and define
r(z) :=ry(x) := inf {r > 0‘][ dist*(A,S0(2)) > M} )
r(z)

Clearly, [|Al| oo gy < M +2v/n. Let Ry := RN {r(z) > ¢}, and define the new field

_ id in By,
Ay =
A in Q) \ Bl,
where By := {Jzer, Br(z) (7). Then spt Curl Ay C B1US. Set Sy := SUR;. Using Vitali’s Lemma

as before, we find a collection of (at most countable) mutually disjoint balls B; = B,.(,,)(z;) whose

centers are in R; and

Ry C | Bsy(a;) ()
jeJ
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Thus, since r(x;) =: r; > € for every j € J,

C . C

[Bae(B1)| < [ B, (@) < CL Y IBjl < 57 20 / dist®(4,50(2)) < T2 F:(A, ).
jes J jeJ’ Bj

As done before, relabel for simplicity 2(2 as Aand S as S , and redefine the set R and the function

7 in function of this new pair (A4, S). Then we reduced ourselves to the case when the potentially

bad points, i.e. the ones in R, have r(z) < e. Consider first those which lie in B, (5), i.e. the
points in Ry := RN By (S). Consider the field

~ id in BQ,
A3 =
A in Q\ Bo,

and the cores S5 := S U Ry, where By := Uzer, Br() (z). Using a covering argument as before,
one can easily infer that ‘B)\E(gg,)’ < O\ nF:(A). Hence, relabeling As as A and Ss as S (and
redefining R, r depending on the new field A) we are reduced to the case when R consists only
points lying outside the Ae-neighborhood of S and with r(x) < e. In this case we are not allowed
to merely cut off the fields, since we have no control of the singular set in terms of the covering
V= Uzer Br2)(x) of R (we can always assume V' to be open, i.e. r(z) > 0 for every z). We
then need to extend A in a Curl-free way. For, we first notice that using Vitali’s Lemma again,
we find
| < %}‘E(A) < CeLa [log(a)| < gg.

In particular, this means that every ball of radius Ae must intersect the complement of V. We
then cover Q). (A) with (a finite number of) balls of such radius which overlap only finitely many

times (depening only on the dimension):

Q)\E(A) C U Bj, Bj = B(:Uj,)\é‘) .
Jj=1

We only need to extend the field to those balls which are not intersecting the singular set (indeed,
in those balls which do intersect the singular set we can simply set the field to be a constant).

Following the proof of Whitney Lemma (see [25]), we define

o(z) = % min {1, dist(2,C)},  Ci= Qu(A)\ V.

By Vitali’s Lemma, we find points {z;} C V such that

V= B(ax,50(xr)),
k>1

and the balls B (xy, o(xy)) are disjoint. One can then prove that the sets

S$ = {xk

B (2, 100(x)) N B (21, 100(z1)) # @} ,
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have uniformly finite cardinality; more precisely, #S, < (129)2 =: C; for all 2 € V. Moreover,
if 21, € Sy, 2o(2x) < o(z) < 3o(2x). One can then prove that is possible to contruct a partition
of unity {41}, such that

Sk Yr(z) =1,
>k>1 Vir(z) =0, x e U,

V()] < -

For each k choose a point s;, € C such that |z, — s;| = dist(z,C). Since the balls B; are simply
connected and A is Curl-free in Q.(A4), we can find a function u € C*°(B;) such that A = Vu;

in B;j. We can then consider the extension in B;

(@) = {“j it B\ V.
T e k(@) (us(@) + Alsy) (z — 1)) iz e BNV

It is then possible to show that A; := u; € C1(B;) and Vu;(z) = A(x) for all x € B; \ V.
Moreover, if x € Bj N By, then Vu;(z) = Vt,,(z). Indeed, since Vu; = Vu,y, in Bj N By, there
exists a constant cj,, € R? such that Uj = Cjm + Um in Bj N By, and hence Vi (x) = Vi, ()

since Y j>1 Vi (z) = 0 for every = € V. In particular, the extension

A(x) := Aj(x),if € B,

is well defined and Curl-free. It is also easy to verify that |V, (x)| < Cy, for some constant Cy > 0
depending only on the dimension. Then, define A to be the identity in a 2Ae-neighborhood of
S, which we call S. This gives the desired field Z, since (arguing like in the discussion before)

|Bxe(S)| < Co |Bye(spt Curl A)],

and

C

/Vdist2(Z, SO(2))dx < Oy ; |Bj| < 37 7<(4,9). O

Lemma 2.3.2. Let (A, S) € P (e,a, L, \,£). Then there exists another pair (Z, 5) epP (8, a, L, A, %)

such that for a universal constant C' > 0
(i) F- (A,S) < CF(A,S);
(ii) Curl(A) € L>®(Q) and ‘Curl(Z)‘ < Cug(S), where

S

pi2.2(S) : AgcQ L Bx.(S).

Proof. By Lemma we can assume A to be smooth in Q). (A4) and [|A| ey < C. Consider

a Ae-mollifer gy, that is px. € C° (R™,[0,1]), spt(oxe) C B(0,Ae) and [ o5 = 1. Take a cut-off
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function ¢ such that

¢ €C™(Q),

0<¢<1,

(=1 in By.(9),
(=0 in Q\ Bax:(5),
IVCI Lo () < 52

Define the new matrix field
A= (1O A+C(Axon).

Clearly, ZHLOO < [|A][ poo (o < C and

Curl(A) = (1 — ¢) Curl(A) + (A x oxc — A) - VEC + CAx Vo,
where we used the notation v x -w := > ;| v; * w; for R"-valued functions v, w. In particular,

— in B).(5), ¢ =1, hence Curl(A ) CAx-V1tpy., which in turn implies ‘Curl A)’ < %;

— in Box(S) \ Bae(S), Curl(A) = 0 and so Curl(A) = (A gxe — A) - V¢ 4+ CA%-VE¢. This
gives again ‘Curl(g)‘ < )?;,
— in Q\ Byx(S), Curl(A) =0 and ¢ = 0, hence Curl(4) = 0.

From the discussion above, we have in particular that spt Curl(4) C Bsy.(S) =: S. Thus, for
every £ C Q

‘Curl(Z)‘ (B) = / ‘Curlg‘ dz = / B ‘CurlZ‘ dz <
E Enspt Curl(A)
< HCurl(Z)HLOO(Q) ’E N B (spt Curl(;lv))’
< Cpac(A) [E].
Moreover, a standard covering argument gives
‘B)\s ‘ < C|Bx(9)],

which leads also to

/ dist(A, SO(2))dz = / dist(A, SO(2))dz + / dist(A, SO(2))dz
Q O\ Baae Baxe ()

SEel(A75)+C|B)\8(S)| SO]:E(AWS’) O
2.4 STRUCTURE OF LiMIT FIELDS I: BV ESTIMATE

We can start the analysis of the structure of limits of energy-minimizing tensor fields. The
following lemma gives a control on the BV norm of a function once a bound on its variance is

known.
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Lemma 2.4.1. Letu € LY(Q)™, Q C R™ open. There exists a constant C = C(n) > 0 depending

only on the dimension n such that if for some positive measure p on R™

Var, (B (o) = | [ fu-f
B(p,0) B(p,0)

holds for every p € Q and o > 0, then
1Dul () < Cu(®).

n—1

dx> < 1 (B (p,20)) (2.4.1)

_n_
n—1

In particular, uw € BV (Q) provided p(2) < oo.

Proof. We can assume u(€)) < oo, otherwise there is nothing to prove. Extend u to 0 outside
2 and consider a tessellation of R with closed cubes of side § > 0, {Q§6)}i>1 ={Q (zi,6)};>1s
whose side length is § and whose interiors are pairwise disjoint. Define B
. (9) ) ._
Ug = ZXQ§5)ui , u; = ][(5) udzx.
i>1 Q;

Clearly, us — u in L'(Q). The divergence theorem gives for any test function ¢ € C}() such
that [[]], <1

i — S i — (! — W vdH !
/Qu(;dlv(c,o)das—z:uZ /an) div(p)dz ZO‘U (uZ u; )/a @ -vdH",

i>1 Qo

where the last sum is extended over all those i < j such that H"~! (3Q§5) N 3@;5)) >0, 045 €
{1,—1} are constants giving the correct sign and v denotes the outer unit normal. Taking the

absolute values, we find

‘/Qu(gdiv(cp)da: < Z

Now, consider the balls Bi(é) := B(=x;,2d) which cover all the squares with an edge in common

ul —uf| 1 (0Q1)) .

with Ql@ and use Holder’s inequality in order to find

u?—ug‘S‘Q})’/Bi(é) u—]éf)uda;

< C,8'"" Var, (u; B§5)> .

1
n

IN

dflfpl(é)‘ Var, (u; Bi(é)) 'Bi((s)

Thus, since the balls B overlap only finitely many times (depending on the dimension n), we
have from ([2.4.1))

<C, 25”_151_" Var, (u; Bi((s)) <C, Z ,u(ZBi(&)) < Cru().
i>1: BOno£0

/ ug div(p)dz
Q

Since the estimate is independent of 6 > 0 and the test function ¢, we can first take the limit as
9 J 0 and then the supremum on ¢ in order to infer [Du| (2) < Cyu(92). O
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Then, in order to conclude that a limit field is in BV, we just need to bound its variance. This
is an application of the geometric rigidity estimate for incompatible fields due to Miiller, Scardia
and Zeppieri, which we recalled in Theorem [1.4.10}

Proposition 2.4.2. There exists a constant C' > 0 such that if £; — 0 and (A4;,5;) € Pe; a,L
be such that F;(A;,S;) < Eg(cj). Then, there exists another sequence, still denoted by (A;, S;),
such that Fj(A;,S;) < CEgple;), Aj — A € BV(Q) in L*(Q) and A(x) € SO(2) for every
x € Q\ M, where M C Q is a set of Hausdorff dimension at most 1.

Proof. By Lemma we can always assume |Curl(A;)| < Cpugj, where pgj = pae; (4;).
Since [, |A;|°dz < O, there exists (up to passing to a subsequence) a matrix field A € L?(Q)
such that 4; — A in L*(Q). Pick then z € Q and ¢ > 0. By Theorem [1.4.10} there exists a

rotation R{m such that

][ ’AJ - R{),x
B(z,0)

where Tj := |Curl(4;)] X T. Thus, taking the lim sup and passing to a subsequence, we find

lim \/ ][ A — Rb.
j—o0

Now, up to another subsequence, R{,yx — R, € SO(2), by the lower semicontinuity of the L?

C(B(0,1

Yy < IO (5 (e5) + 11 (B, ).

|75 (32(93, 9) CT(B(;’ 20))

2
dy < C'limsup

j—00 0

norm,

/ |A = R,.|*dy < CT(B(z,20))>. (2.4.2)
B(z,0)

In particular, we see from (2.4.2)) that we can apply Lemma and conclude that A € BV (Q),
with |[DA|(2) < CT(Q) < Climinf;_, Tj(2) < oo . Consider now the following sets, for
d,¢ > 0:

M(;,C = {x S Q

Jo < § s.t. / |A - R,,|*dy > CQ2} .
B(z,0)
We can find points x; € M. such that, if B; := B(xj, o(x;)), then

M(S’C C U Bj.

j>1

In particular, CQJQ» < Cu(Bj)?. We define

MC::{J:EQ

E|Qi \l, 0 s.t. / ’A - Qgi,x|2 dy > CQ?} .
)

By,

By the definition of Hausdorff measure, we find

HY (M) < ﬁZT(Bj) +1< VAT (M) +1<C(T(Q) +1) < .
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Clearly, for every x € Q\ M.,

limsup][ |A—Qg7w|2dy <ec
0l0  JB(z,0)

By the arbitrariness of ¢ > 0, A(z) € SO(2) for every z € Q\ Ne>o0 M., that is A(z) belongs to
SO(2) for all points in €2, except for a set of Hausdorff dimension at most 1.

Now we have, in particular, A; = A and A(z) € SO(2) for almost every = € §2. Denote as R;(x)
the projection of Aj(x) on SO(2). Then A; = R; + (4; — R;). We know that A; — R; — 0 in
L*(Q) while, up to a subsequence, R; — A. But then R; — A (because the L? norms converge
to the norm of A), and thus 4; — A in L*(Q). O

Using a slicing argument and Proposition [2.4.2] we obtain the estimate pa(Q) > |[DA| () > CaL,
that is a (weak) lower bound to the energy. We are going to improve this result in a first
qualitative, and then quantitative way. By qualitative we mean that the limit field is actually
a microrotation, while the quantitative improvement is an estimate involving a power of the

1

logarithm of a~". These facts rely essentially on two basic tools: the existence of a harmonic

competitor and an “optimal foliation” lemma. We give here the proof of the first one.

2.5 THE HArRMONIC COMPETITOR

Proposition 2.5.1. Let Q@ C R"™ be open, and A € L®(Q)"*™ be a matriz field such that
|Alloe £ M, and let O C Q\ By.(spt Curl A) be an open, connected subset with Lipschitz
boundary. Then there exists a matriz field Ae L2(Q)™*™ which is harmonic in O and a constant

Cnm > 0 (depending only on the dimension n and M) such that

la-4]

LQ(O) S Cn7M ||d1St(A7 SO(”))HLQ(O) :

Proof. Let E := Hdist(A,SO(n))H%z(O). The Hodge decomposition of A gives a vector field
u € VVO1 2(Q)™ and a divergence-free (in the sense of distributions in ) matrix field F € L2(Q)"*"
such that

A=Vu+F.

As in the proof of Lemma we can assume A to be smooth in By (spt Curl A). Consider

the function uj € W12(0) defined as the harmonic extension of u in O:

Au,lZ =0 1in O,
u}b =u' on 00,

and let then A, = V(u},u? -, u") + F. Define G := OnN {det(A) > %}, and U(z) :=
VAAT x4 (1 — x)id, together with the vector fields R;(x) := [U(z)~! (Vu + F)]" and Ry, :=
[U(z)" " (Vup + F)] ' In what follows, we identify vector fields with their associated differential
1-forms. We first notice that

/det(A)dx:/det(Ah)de‘. (2.5.1)
o

o
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Indeed, since the determinant is a null Lagrangian, (2.5.1)) is equivalent to
n n . .
S d(up—u') A A ((1=65)du? + F7) =0,
=270 =2

which holds because of the Leibniz formula for forms, the fact that Curl F* = 0 in O and Stokes’
theorem (together with u} = u! on d0). Hence, we can write (notice that, since Ry, - - , R, are
orthonormal, for any vector field A we have AARao A~ ARy, = > 11 (A, R) Rk ARo A+ - - ARy, =
(A,R)RI A AR, = (A Ry)daz! A--- Ada)

/ det(A)dz = / det(Ay)dz = / (dub + FY) A (du? + F2) A+ A (du? + F7) =
(@) (@) O
:/ (Run A Ro A~ A Ry) det(U) = (2.5.2)
(@)
2/ (th,R1>det(U>dJ}+/ th/\Rg/\”-/\Rndet(U).
e o\G

On the other hand,

/ det(A)da = / (Ri, R det(U) + [ RuA- A Rydet(U). (2.5.3)
0 G o\G

Subtracting (2.5.2) from (2.5.3]), we obtain

0= / (Ry — Ry, By) det(U)dz + / (Ry— Bu) A Ro Ao A Rydet(U).  (2.5.4)
e o\G
Rewrite (2.5.4)) as

/ (Vu' = Vuj, Vul + F1) = — / (Vi =V}, (det(@)U2 —id) (Vu! + F)) da+
G el
+/ (R — Rip) ARy A -+ A Ry det(U),
O\G

and then add fO\G <Vu1 — Vu;ll, Vul + F1> on both sides. Since u}L is the harmonic extension
of u! and div(F') = 0, we have

/ |Vu! - Vu;llfdx = / (Vu' = Vuj, Vul + F1)ydo = I + I + I,
o o
where
I = / <Vu1 — Vu}, Vu' + F1> ;
O\G
I = — / (Vu' = Vuy, (det(U)U 2 —id) (Vu! + F1)),
G

13::/ (leth)/\Rz/\"'/\Rn.
o\G
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Now, because of the continuity of the determinant, there exists a dimensional constant ¢, > 0

such that {det(A) < 3} C {dist(4, SO(n)) > Cy}. Thus, since ||A4||,, < M,

/ (Vu' = Vuj, Vul + F') dz
O\G

SCn/ ’Vul—Vu,lL‘da:g
{dist(4,50(n))>Cy}

< Cn\/E\// |Vul — VU}L|2daz.
[0

Let us now estimate 5. Since the function f(U) := U~?det(U) is smooth on G, ||A]|,, < M
and f(id) = id, there exists a constant, depending only on n and M,C,, = C,,(M) > 0 such that

|f(U) —id| < Cp |U —id] = C,, dist(A, SO(n)).
Then

I < C’n/ V! = Vuh| [U2 det(U) - id| |[Vu! + F!| do <
G

< Cn\/E\// |Vul — Vu}llzdx.
o

Finally, let us estimate I3. Again because of the boundedness of A,

[I3] < Cn/ |R1 — Run| e < Cn\/ﬁ\// |Vul — vul11|2d$‘
o\G Cn o

Combining these estimates together, we find

/ ‘Vul — Vu,llrdx < Cn\/E\// |Vul — Vu}lfdx,
o) o

l.e.

/O Vut — V| dr < .

Applying the same procedure to each component, we find
/ |Vu — Vuy|*de < CE,
O
where uj, = (u}, -+ ,u}). Now we can define
U= upXo + uxXo\o;

and set A := Vi + F. Since Div(A) = A = 0 and Curl(4A) = 0 in O, from the identity

—~AL: +0;DivL' = =) 9 (akL;l — ajL;) ,
k=1

valid for any matrix field L € L' ()", we infer that AA =0 in O. O
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Remark 2.5.1. Combining together the lemmata and Proposition [2.5.1] we have that
for every (A, S) € P. such that F.(A,S) < Eg(e), we can find a competitor (4,5) € A. whose
energy can be estimated in terms of the original one, i.e. F.(A,S) < CF.(A,S), where C > 0 is

a universal constant, satisfying the following properties:
<
@ |4 <c.
(b) ]curl(;f)' < Clg.a,
(¢) AA=0in Qy(A).
That is, since we are interested in a lower bound to the energy, we can restrict our attention to

those pairs in P, satisfying (a), (b) and (c).
Remark 2.5.2. If A e A. N {G:||G||,, < M} and A is the matrix field given by Lemma m,

then the Burgers’ vectors relative to A still define a bounded functional from 1-cycles into R?,
and it can also be proved without employing the maximum principle. Indeed, if we identify A
with a vector of 1-forms, the Burgers’ vector
bg: Zl(Q,\s(A);]R) — R?
T — (T, A)

defines a bounded operator (where the space of 1-cycles is endowed with the mass norm). Indeed,
in Q\ B (Z), we can write A = duy, + F, where A = du+ F. Then, since T is a closed current,

(T, A) = (T,duy + F) = (T, F) = (T,du+ F) = (T, A) .

But (T, A)| < ||A]|,o M(T') < MM(T), hence the claim.

We shall need the following Lemma, which gives an expression for the Burgers’ vector in terms

of the gradient of the fields and the position of the points on the curve.

Lemma 2.5.2. Suppose v C R? is a closed, simple Lipschitz curve, and V is a C' vector field
defined in a neighborhood of v. Then

/ V(x)-t(z)dH! = - / VV (z)z - t(z)dH!,
g gl
where t(x) is the tangent vector of v at x.

Proof. Let v = {f(t)

t €0, 1)}, where f is a Lipschitz parametrization of v, and set xg :=
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f(0) = f(1). Then
1 .
[vetan = [ @ - vy wan = [ @5 - Vo o=
g gl
1

0
:/01 (/OtVV(f(s))f(s)ds> .f(t)dt:/o VV(f(s))f(s?./sl f(t)dtds =

IONTININS
7o) |f(s)]d

1 . 1
== [ VU@ s6as = = [ IV f

= —/VV(H?):E‘t((E)d/Hl. O
.

As an immediate application of Lemma we see that if v lies in a region where A is both
Curl and divergence free, then

3(7) =— (/ (z- VAL z" - VA}) -t(:c)d?-ll,/ (=2t VA3, z- VA3 ~t(m)d7—l1) =
vy Y

—/ ((_il x;)-(VA% VAg)>t(x)dH1.

2.6 THE FOLIATION LEMMA

(2.5.5)

We are left with the second fundamental tool, that is the foliation Lemma. In the proof, we will

need the following technical covering lemma:

Lemma 2.6.1. Let R > 0, 6 € (0,1), M > 10 and consider a family I = {xl}fil of points in
R™ whose subfamily J C I has the property that for each j € J there exists a k € N such that
(B (xi, (%) - 2) re \ B (xi,rk» NI =0, where r, := 6*R. Set

rj = max {5kR

M
k>0 and <B <:):i, (7 — 2> rk> \B(:J:Z',rk)) NnNIl= (b} .
Then there exists a subfamily J C J such that the balls {B (xi, <xi, (% — 1) 7'0)}@,67 are disjoint

and
ngJB <$j, (% - Z) Tj> C U~B (@, (% — %) Ti) )

ieJ
Proof. Let B := % — 2. Define inductively the family J as follows. Select a maximal family of

points Jy from {j eJ

rj = 5’“R} such that

B .
|z, — x| > ) (ri +15) Vi,j € Jo,

and set Jo := Jp. Suppose then that the family Ji. has been defined, k > 0, and select a maximal

family of points Ji41 from {j e Jirj = 5k+1R} such that

s 5
|z; — ] 25(7“1‘4-7“]‘) Vi, j € Jip U Jgt1,
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and then set jk_H = jk U Jx+1. The set J is given by
J = U Ty

~ are disjoint. Moreover, for every x; € J we can find an x; € J

Clearly, the balls {B (:L'Z', gri)}iej

such that r; = r; and

]a:i—xj\ < 7’Z‘+7'j) < Br;,

5
which means, by the definition of r;, that |x; — ;| < r;. Hence, ifx € B (xj, (% - %) rj>, jed,
then there exists an ¢ € J such that
M 5 M 1
|:B—;UZ-\§m—|—(§—1>m:<§—1>m. O

We are now in position to prove a key step, that is the lemma which gives the optimal foliation.

Lemma 2.6.2. There exist & € (0,1) and C > 0 such that if {B(xi,0;)}Y., are balls in R?
satisfying

1! (Am Q@B(azi, gi)> <d. A=B0.1)\B(0 %) CR?, (2.6.1)
then there exists a Lz’pschz’z; function ¢ : A — [0,1] such that
(1) [Vl poo(ay < C5
(ii) ¢ =0 on 9B(0,1) and ¢ =1 on 9B (0,3);
(i) If U := A\ UL, Blai, 01),
/U de <C(1+N). (2.6.2)

Proof. We shall modify in an appropriate way the natural radial foliation. First of all, define

8B<0*+7"> UB -1'2701 = }7

01 := inf {T > 4o

and

0o := Inf {T‘ > 4o

N
8B(0,1—T)OUB($Z',Q7;):®}.

i=1
By a simple geometric argument, one can see that dg < min {01, d2} < max{dy,d2} < %50. Define

then the function

C(01,02) (1 — 82— |z|) if |z] € B(0,1—382)\ B (0,3 +61),
wo(z) ' =<0 if |z| > 1 — 09,
1 if |z| < 3+ 61,
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where C (01, d2) := ﬁ (clearly ¢ is Lipschitz, with Lipschitz constant C(d1,d2) < %71350
and satisfies (ii)). We will then split the integral I in the left hand side of in three terms:
one where, roughly speaking, we see enough space in order to interpolate the function with a
constant, another one where the balls accumulate (where we will use a covering argument) and
a last one where we are very close to the balls B (x;, 0;) (of which we will get rid of simply by
using a “cutting-out” function, possible because of )

In order to detect the regions where we have to modify the foliation, it is convenient to introduce

particular coverings and organize them in a graph. For, define the sets

U, = {x € Ulrg—1 < dist(z, {x,}f\il) < Tk} )

where 71, := M¥rq and ry := %0, for some constants ¢y > 0 and M > 2 to be chosen later, and
kef{0,--- K}, K := [%log(N)]. Let I := {xy1,--- ,xzn} and for each k € {0,--- , K} choose a
maximal family I of points in I whose reciprocal distances are > 7. Notice that for each k the

balls {B (i, 2ry) };c;, are a cover of Ug. We then define the edge maps
Ey: Iy — Iy,

which have the property that, for x; € I,

|B(w) — 23] = min {m _

T € Ik—f—l} .

Clearly, |Ex(x;) — x;| < rgs1; indeed, either z; € Ixyq1 (and in such a case Ey(x;) = x;) or
x; ¢ 1. But then |z; — x;| < rpq; for some j € Iy in order to not contradict the maximality
of Ijy1.

We can now define the directed graph (actually, the forest) G = (V, E') whose vertices are given
by

V= {(azi,k)

fEiEIk, kE{O,"-,K}},
and whose edges are

E = {((1‘1,]?), (Ek(a:z),k + 1)) 1€ly, ke {0, s K — 1}} .

We write v ~ w if either (v,w) € E or (w,v) € E. Notice that G is the disjoint union of
(directed) trees whose roots are the points (z;, K), z; € Ix. Given an edge e = (x;, k), we
denote by T, the subtree rooted at e. We also define the “pruned” tree at the vertex e as

TP =T, \ U T\ {e}.

/

e'eV
Te/ CTe, Te’ #Te

deg(e’)=2
We then have the pruned forest
GP' = U T(TuK) =: (VP EPY).

x; €l
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The vertices of degree 2 where we prune the tree are the ones which we will see to correspond to
empty annuli. To see this, notice that if an edge e = (x;,k) € V, k < K — 1, has degree 2 and
¢ = (xj,k') € T, with k' < k — 1, then

(a) Tp—1 N B (xi, %) = {xi,} is a singleton. Indeed,
2 = deg(z;) = #E, 1 (w:) + 1.

But Ek__ll(mz) D Iy—1 N B (x4, "%) (indeed, if x; € B (x;, %) N Iy—1, then for every zy €
Iy \ {zi} we have |z —xy| > |z —2p| — |2; — 25| > rp — 5 = 5 > |z; — 2], that is
Ey_1(z;) = x;) which is always not empty. Otherwise, z; ¢ I;_; and for every z; € I_; we
have |x; — x| > 5% > 71, i.e. {x;} U I}—1 would be a family whose points have reciprocal
distance is > r,_1 and which strictly contains I;_1, which was assumed to be a maximal

family. Hence,
—1 Tk
1=#E,"(x;) > #Iy-1NB <-Ti7 5) >1,

Le. #Ip_1 N B (x5, %) =1, say L1 N B (x5, %) = {zi };
(b) |zi — miy| < rk—1. This is clear, because of what we said at the point (a);

(¢) (B (xi, % —rp—1) \ B (i, m%—1)) NI = 0. This is also a direct consequence of the previous

two points. In particular,
Tk
(B (xioa 5 - 27ak—l> \B ('rl'()??ﬂk’—l)) NnIl= ®7

(d) |zj — i < 755751 = 37%7. Indeed, since e has degree 2, the only vertex at level k — 1
is precisely (z;,,k —1). Hence, if we set yo := x; and define inductively yi+1 := E1i(yi),

i=0,---,k—k — 2, we have (since Ex_2(yp_r'—2) = Ti,)
k—k'—2 k—k'—2
. M Tk
|75 — @] < g [Yir1 — il <71 zz:;) M ST T S =1

Define then the family of points J as

J::{l‘jEI

dz; € 1, ke{l,---,K —1} such that (z;,k—1) ~ (2;,k) and deg((x;, k)) = 2} .

Lemma gives a subfamily J such that
— {B (mi, (% — 1) Ti)}z‘ef are disjoint;
— [B (l’i, (% — 2) ’I“i> \B (IL‘i,Ti)} NI= @;

— Provided % — % > 3,

U B (xj,3r;) C U B <a:j, (% — i) rj) .

jedJ jej
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Let now ¢ := % + % and ¢y 1= % — 2, and consider the Lipschitz function n : R — [0, 1]

1 ifte [O, 61],
n(t) = Cliczt -2, iftela, el
0 if t > C2,
whose Lipschitz constant is . Define

o s o))

JjeJ
where @) ; = fB( cars) ©o(y)dy. Since the balls defined by the family J are disjoint, we easily
) xj,Cam;

infer

1
< / _ — D . <
19611l < 11Vipolls, + e (In o o wo,gHLoo(B(Ijm)) <

< C(69, M).

Finally, consider the set Z := ¢y (UZJ\LI B (z,20; + 7’0)). Then

l\)\)—t

N
LY (T) < Lip(p1 Z 40; 4 2rg) <
=1

provided we take dg <
[0, 1] defined by

m and ¢y = 20p. Consider then the Lipschitz function ¢ : [0,1] —

X[0,1\T
1z}’
Define ¢ := 1) o ¢1. Clearly ¢ satisfies (i) and (ii). Let us prove it satisfies (iii). For, notice
first that if @ ¢ N, B (2i,20i), then d(x) := dist (:L',{azz}fil) > 2dist (z,0U). Set U’ :=

(B(O, 1)\ B (0, %)) \UN, B (24,20; + 7o) and U” := U, B (2i,20i +70) \UX.; B (2, 0;). Since
¢ is constant on N, B (v, 20i + 7o)

2 2 2
/ ' !2V<P\ de < C / |V2<P\ dx+/ _ \2V<p! de ) =
v dist*(z, 0U) v d?(x) yr dist*(x, 9U)

2 2
—c/ Vol ye < c Vol ge 4 v
v d*(z) vinfa<} d*(x)

W=

$(0) =0,  ¥(1)=1

Write
U’m{d<\/lﬁ}=U{UU£,
- (onlo< A s -0),
—U\U..
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Notice that Uy NU{ C Uy : (a,,k)ever B (i, 2r). Since any non-trivial tree T' = (V, E) satisfies

H#HV < 2# {v € Videg(v) = 1} +# {v € V|deg(v) = 2}

and the total number of leaves in the forest is always < N, we have

/ \Zw@dei/ \V;p\d < Cb0 M Z > 21/ dz <
vy d*(x) vy 4% (2) r B(zi,rk)

k=0 k=01¢: (z;,k)eVPr k-1

< C (60, M) #VP" < C (69, M) N

On the other hand
Vel / Vel
dz < dr <
/Ué d*(x) g; B(z;,(2-3)r,) &*()

< C (80, M) #J < C (80, M) N. O

By a scaling argument we get the following

Corollary 2.6.3. Let A := B(p,2R) \ B (p,R) C R2. There exist o € (0,1) and C > 0 such
that if { B(z;, gi)}fil are balls satisfying

H! (A N G OB (z;, gi)> < &R, (2.6.3)

=1

then there exists a Lipschitz function ¢ : A — [0,1] such that
(i) IVl ooy < 575
(ii) ¢ =0 on OB(p,2R) and p =1 on OB (p, R);

(iii) If U := A\ UX, B(zi, 0),

j2* |V ()

" dz<C(1+N). 2.6.4
UdistZ(ac,@U) z<CI+N) ( )

Remark 2.6.1. The proof shows that the foliation ¢ constructed in Lemma is constant on (a
neighborhood of) each ball (and in a neighborhood of the boundary of the annulus). Moreover,
due to the choice of d; and d2, the superlevel sets {¢ > 1} = {¢ =1} and {¢ > 0} contain all
the balls B (z;, 0;) they intersect.

In the balls construction we shall need to choose, from a family of balls covering the support of
a measure 4, a well disjoint subfamily containing a relevant fraction of the total mass. This is

exactly the content of the following Lemma.

Lemma 2.6.4. Suppose ;c; B(%i,300;) C B(0,R) C R" and p is a measure on R™ whose
support is contained in | J;c; B(xi, 0i). Then there exists a subfamily of indices I C I and radii
R; > 3p; such that the balls { B(z;, 2Ri)}ief are mutually disjoint, contained in B(0, R) and

1
(3] ’L - B 9 .
S (Bl Bi)) = 5 (BO, B))

icl

43



CHAPTER 2. MICROROTATIONS AND MESOSCOPIC SCALE

Proof. Let Uy, := BR(1—2k+1)\BR(1—2k)' If x; € Uy, then 3p; < %Q_kR =: 1 (since R (1 — 2_(k+1))—|—
300; < |z;|+300; < R) and if |k — k/| > 2, 2; € Uy and x; € Uy, then B (x4, m)NB (:C]',Tk/) = 0.
Choose then a maximal family of indices I, C Uy N I such that |z; — z;| > %rk. Then

UB @i,e) c J U B (@i 2r).

i€l k>04€l),
Indeed,
UB@i,e)=J U Bz a).
el k>0 i€l
xiEUk
But
Vk: = U B(:El’gl) - U B ($i,7"k) .
i€l i€l
:v¢€Uk

For, if © € B (x4, 0;) for some xz; € Uy, then either x; € I}, (and in such a case there is nothing to
show) or @; ¢ Ir. But in the latter case |z; — 4| < 37 in order to not contradict the maximality
of I;,. Hence x; € B (l‘g, %rk). Clearly, either

1 1

doul U Bira) | > §N(BR) or ol U B@irws) | > §M(BR)'
k>0 i€y, k>0 i€lp41

(2.6.5)
If i,j € I and |z; — ;| > 4ry, then B (:Ul', %rk) C B (J:j, %rk), which in turn implies that the
balls { B (z;,2rg) };c;, can intersect at most 13" —1 times. Therefore Iy can be split in N := 13"
subsets I}, j such that the balls B (z;, 2ry,) are disjoint. Suppose that ([2.6.5)) holds for even indices
(the other case is completely analogous). For every k > 0, choose a j(k) € {1,---, N} in guise

that
1
% ( U B(%‘ﬂbk)) = yH ( U B(ﬂﬁi,?”zk)) :
1€1oy j(2k) 1€y,

Then, since the families I ; are disjoint,

1
213"

HBrROY<Y Y w(Blanrw).

k>0 ie[zkyj(zk)

Define then the family of indices
I:= {2 € 1‘3/@ > ( such that i € I%j(zk)} ,

and the corresponding radii

R; := max {T% 1€ ng,j(Qk)} )
which are > 0 for i € I. Then
1
5 13:# (Br(0) < o> w(B(wira) =) n(B(xi,Ri)). -
k>0i€ly j(2r) il
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2.7 STUCTURE OF LIMIT FIELDS II: THE MICROROTATIONS

We recall here an elementary geometric construction which is standard in the Vortex-Balls ar-
gument (for more details, we refer to [20] and the references therein and also to [6], where the
authors applied the balls construction in order to obtain a I'-convergence result in the study of
systems of edge dislocations). First, recall that any two non-disjoint closed balls B; = B (p;, r;),
1 = 1,2, can be merged in another ball, i.e. there exists a ball B whose radius is < r; 4+ ro and
which contains By U By (for, take B = B (%, r+ 7'2)). Also, recall that any finite family
of closed balls {B (p;,7:)};c; can be covered by another family of closed balls {B (pj,7})}cp,
#I' < #I, which are disjoint and > ;e 7 < S ierri. For, let m = 0 (which should be thought
as a counter) and define Iy := I and By := {B?}, where BY := B (p;,r;). Let

D = {ie[m

3 € I \ {i} : BTOB?#@}.

Pick an i € Dy, and set J; := {i’ €I\ {i}

BM" N BY £ @}. Let B7"™ be the balls obtained

by merging the ones in J; U {i}, and let BQ”H, e 7B$l;’ri—#li—1 be the remaining ones. Define

then
Bty = {Bim—i_l}j&jmi#lﬁl = {Blmﬂ}ielmﬂ '

Define then D,,+1 and relabel m as m + 1. As long as Dy, # 0, repeat the procedure. After
finitely many steps we end up with a family of closed balls which are disjoint and whose sum of
the radii does not exceed the sum of the original ones.
Henceforth, we deal with competitors of minimizing sequences, that is for every €; | 0 and every
pair (4;,5;) € P (e, a, L, A, 7, £), we can find a competing sequence (A4}, S}) € P (E, a, L\, %),
which we denote again (with an abuse of notation) by (A;,S;), which has the properties re-
assumed in Remark In particular, each field A; of such a competing sequence is har-
monic outside the singular set B).(S;), and, up to a subsequence, Proposition ensures
Aj — A € BV(Q) strongly in L?(€). Associated to this sequence, we define the measures

1
pvs
which, up to subsequences, converge weakly in the sense of measures to u1, ps and u respectively.
We combine together this property and the foliation Lemma through a balls construction,

in order to obtain the following density estimate.

L.
Mg =T dist?(4;,80(2))L°LQ,  pagi=—L2LBx(S)), = pag + pzy.

Theorem 2.7.1 (Pseudolinear 1-density estimate). Let (A;,S;) € (g5, a, L, 7, X\, €) be a sequence
of admissible pairs such that F.,(Aj, Sj) < Eg(e;), and consider the competing sequence (A%, S%)
as in Remark which (up to a subsequece) converges stronly in L*(Q) to A € BV (S2). There
exist constants Cy > 0, 61 € (0,1) and wy > 0 such that for every p € Q and every R > 0 there
ezists an R € [R,2R] such that

‘Curl(A)(B(p, R)] < Cw (W) 1(B(p,R)), (2.7.1)
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where w : (0,00) — (0,00) is the continuous increasing function defined as

w(t) = {wo Fizon (2.7.2)

-

(—log(t)) 2 ift <.

Proof. We can assume u(B(p,R)) > 0, otherwise there is nothing to prove. We relabel the

competing sequence (A;, S;) as (A;,5;). Let 61 > 0 to be chosen later. If po (B(p,3R)) > 01R,

then by Remark 2.5.1] we have
1(B(p,3R)) > Ca6; |Curl(B(p, R))| -
If o (B(p,3R)) < 01 R,

limsup poe,, (B (p,2R)) < p2 (B (p,3R)) < 61 R.

m— 00

Hence, up to a subsequence, which we denote again by &,,, we have that

|Bie,, (Sm) N B (p,2R)| < AemdiR, S 1=

Em*

Write By, (Sm) = Ujey.,, Hjm, where Hj, are the (closed) connected components of By, (Sm),

and consider only those ones which intersect B(p, %), that is

JmnB(p, )#(ZJ}

Next, cover these components by disjoint balls By := {B (x0,, Qo»i)}ielo = {BO,i}ieIO such that

> iy 00 < ZjeJ;Lm diam(()Hj,m) > /\am de ’Hj,m| < u(B(p,3R)). Now, we let these
balls grow. Namely, for any positive measure u deﬁne

JJILI,m = {j € Jum

0,(z) :=sup {9 > 0’# (B(2,20)\ B(,0)) > 50@} :

Set 7y = E’ and g; o := Dp(i0). We can then use Vitali in order to obtain a cover

VX
U»so
{B (mi,o, 6@’0)}"616 such that the balls B (aci,o, 2@072-) are disjoint. Then

6602920—62/

le]l GI’ J? QQ'LO \B

‘VXUBO‘ < 6/‘VXUBO‘ <63 oip-

Then, we expand again these balls by a factor of 30: that is, we consider {B ($i,0, 180@-70)}1,6],.
0
By amerging, we get a new family of balls (whose closures are pairwise disjoint) By := {B (z;,1, 0i,1) },¢ I

such that >cr, 01 < Co > e 1, 0o,i» Where Co = 180 , which is in turn smaller than 1R provided

01 was chosen small enough. We can then iterate thls procedure in order to construct a family

of coverings {Bj};~q, which we can schematize as follows:

B (ki 0ni)}
{ Lk.is Qk,z icly,
30x Merge Expand

— {B <$k,i7 180@k,¢)}iel, — Bry1 = {B (T 1, Qk+1,¢)},-€]k+1 —

Expand

Vitali
— By = {B (Jfk is Ok Z)}ielk — L

30x

. Merge {B ($kza69k 2)}1'6[1; —
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where 9y ; : ‘(x/w) Notice that doichs, Qktli < Co Yier, Okis 1€ Dier, Oki <

=0

’VXU By,
C'(]f Y iel, 00,i- Moreover, by construction, each of the balls B (:U;m, 180@,{71) is contained in pre-
cisely one of the B (j41,, 0k+1,). That is, we have the inclusions

B (zre1 00415) O |J B (xk,ja 180§k,j) > | B (xlw‘,fi?k,j) D spt (1 L B (k41,45 Ok41,i)) 5
jeI;m. je],/m.
(2.7.3)

where 7. is the measure defined by

T = Z alwﬁz L By ;, where ay, ; 1=
i€ly,

Curl A, dx
By,j

By Lemma [2.6.4} for each i € I;+1 we find a subfamily I,’c’ﬂ- C Il/w‘ and radii Ry, > 18pj, such
that

B (xk1,2Rk,) C B (k41,05 Okt+1,4) Yv € I]’;Z.,
B (xk,zu 2Rk,l/) nB (‘Tk,l/U 2Rk,l/’) = (Z) Vv 7& V/, (274)

2over! Tk (B (#k0, Riw)) > 257k (B (Ty1s 0k114)), Co:i=2- (13)%.
Let
K := max {k >1

ng,i <R} + 1.

i€},

From the discussion above, we have that for a universal constant ¢ > 0 (namely, ¢y = log (Cp) ™)

K >c¢ylo (R) > ¢plo (R>
-ome Sier 00i) S\ uB(p,3R)) )"

Now that we constructed the family of coverings {Bk}fzo, we shall discuss how to combine it
with Lemma [2.6.2| and Proposition m Firstly, consider a ball B (g, r) and balls {B (g, ri)}ij\il
which satisfy the conditions of Corollary 2.6.3] Notice that since ¢ is constant on each ball
B (gi,r:), we have ¢ (Uf\il B (qi,n)) = {pi}'. Define ¢y := 0 and ¢, := 1, and re-label, if
necessary, the ; in such a way that 0 = g < 1 < 2 < -+ < 1 < ¢ = 1. Using the fact
that each connected component of 9 {¢ > h} is a closed, simple Lipschitz curve, and that clearly

{i < @ < it1} N Bxe(Se,,) = 0, we have that for each h € (p;, ©it1)

/ Ay, - tdH' = / Curl(A,,)dz = / Curl(A,)dx +/ Curl(Ap,)dx =
o{e>h} {e>h} {h<p<pit1} {p>pit1}

= / Curl(A,,)dz.
{ezpit1}

Thus, setting b; := f{90=90'} Curl(A,,)dz, we have

7

L

/ Curl(A,,)dz = Z b;.
{e2¢i}

j=i
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Integrate then for h € (0,1) in order to get

/ dh / A, - tdH! =
o{e>h}

B

Pit1
/ Curl(A,)dz =

Pi {‘P>h}
SO'L+1 Pi Zb —Z@zz
On the other hand, as a consequence of Lemma (2.5.2)) we have that, for h ¢ {gpi}iL:l,

gl Y !
/<9{<P>h}Am = /8{@>h} ((-CKL x) (V(Am)% V(Am)%)> t(z)dH.

In particular we see that

-1 ) - |
o 2O . 1 2 T .
; pib; /o dh /5{¢>h} ((—xL . ) (V(Am)i V(Am)2)> t(z)dH

Then, adding ZL;1 b; on both sides, we get

L 1 - 1
: 1 2 x )
Y (R T

Passing to the absolute values and using the Fleming-Rishel formula, we obtain
# [l VA [Vl da,
{0<p<1}

’/ Curl(A,,)dx / Curl(4,,)dz
{¢>0} B(qi;ri)
(2.7.5)

We can now apply (2.7.5)) to the balls Ek,y := B (2, Ry,,) obtained in (2.7.4) and the foliation
ap,(/’fi) given by Lemma [2.6.3 for every k > 0 and v € I};, i € Ix41 as in the discussion before.

@
Il
=)

I
Mh

@
Il
=)

B(gi,mi) C{0<p<1}

This gives
Z / “ Curl(A,,)dz| < Z Z Curl(A,,)dz| +
i, | {0 R S R (2.7.6)

k
2] [V A sym| [Veolt) | da.

Z/EI” /{0<§0(k)<1}
to both sides of (2.7.6). Now, for i € I, define the quantities

Ii(k) = U {gol(,kz) 1} (inner balls) ,

veli,
Agk) = {O < cp(k) < 1} (annuli) ,
veli,
T\’,Z(k) = U By, ; (remaining balls) ,

BriBrni\Unery {¢<k)>o}

211V Acsym| |Vl | o

vely, /{0<¢<’“)<1}
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were given by Lemma [2.6.4] we have

Since the balls {E/W}

1"
VEIk,Z.

7 (AM) = 7 (Bryn) — 7 (V) = 7 (RVY) < (1= e0) 7 (Bryn) — 7 (RYY) - (277)

where g := Cy ! = (2 (13)2>_1 < 1. We then add the term

Py = Z Curl(Ae,, )dz

By i

k k,

Bk,jCBk+1,i\ VEI]/{;/ ) {QPE/,'L) >0} J
i

to both sides of (2.7.6)), which gives, using (2.7.7)),

/ Curl(A.,)dz| < Ppi+ Y / Curl(A.,,)dw
By, very, {w(yki)>0}
< Z Z . Curl(A.,,)dx| + Pr; + Ji(k) < (2.7.8)
I/GI// k,j

ki By ;C {0<g0(ki><l}

<7 (A) + Pos+ T < (1= o) 7 (Brsa) + T
We then just need to sum up ([2.7.8)) for i € I in order to get
The1 (B (0,2R)) < (1 — o) 7 (B (p,2R)) + ¥, g™ .= Y 7. (2.7.9)
1€l 41

. . k k
Moreover, we notice that if we set ¢*) := > el ZVGIZ,Z- gpl(,’i)X w(k-)>0} and A .= Uier, -’41(' ),

then (since ¢*) is constant on J By)
IO = [ 1211V (A — ][99 = |
AR AN By

211V (Aeyp sm — id)] | Vo ®)| .

2| |V (Az,, sym — id)] \W(’“)\ _

/UBkH\U By,

Recall that, using a Whitney covering, one can prove the existence of a constant ¢ = ¢, > 0 such

that for every harmonic function u in an open set U C R"

/ |Vu\2dist2(m,8U)dx§cn/ u|? da. (2.7.10)
U U

Now, we sum (2.7.9) for k € {[&£] —1,--- , K — 1}. Using (2.7.10) and the fact that 7, (B (p,2R))
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is decreasing, we find

K K-1 K-1
57k (B(p,2R) < 3 mn (B(p,2R) < X ((1—c0)tro+ W) <
k=[£]-1 k=[5]-1
1 K K
< —(1—e0)¥ 70 (B(p2R)+ Y JW <
60 k=t (2.7.11)
1L 1 (uz o (BR(p, 2R))> vre (B(p.2R)) +

K-1
\// Ae,, sym 1d| Z Nk,
(p,2R) k=0

where ng ==Y ier, .| Zue],’c’ﬁi <(ZB<’“)C{0<¢(’“?<1} 1) + 1) is the total number of balls contained

(k) , which is decreasing by construction, i.e. ny < Ny, Ny

in the union of the annuli {0 < ¢y
being the number of connected components of Bye,, (Se,,) inside B (p,3R). Notice that ny < Ny

and

Brey (S2) 0B (0.2B)] _ iz, (B(p,2R))

No < C
0= ()\Em)z )\5m

B

log (“sm(B(p’QR))> ’ - CAusm (B (p,2R)) (M)

In particular, if we divide (2.7.11)) by V'K, we obtain
R \/log (tem(Blp2R))
+ He, (B (p,2R)) <

K (B (pv 2R))\/
< C)\Nm (B (pa QR)) )

where f, = pie,, + H2e,. Now, since |By.,, (Sm)NB(p,3R)| < AepdiR, we can find an
R(m) € [R,2R)] such that

(2.7.12)

K (B(p, 2R>) >

/ Curl 4,,,dz| .
B(p,R(m))

Up to a subsequence, we can always assume that R(m) — R € [R,2R]. Moreover, since
{Curl A, } quasi-converges to (Curl A, &), with £(2) < oo, we can also assume & (8B(p, R)) =0
(up to increasing the constant C'y in the right hand side of (2.7.12)) by a factor of 2). In particular,

we have

lim sup / Curl A, dx| > B dCurlA'.

m=oo |/ B(p,R(m)) B(p,R)
Taking the limit superior as m — oo in l 7 12)), we find

3R
/ d Curl(A ‘ ‘ p’ ”) < Cou (B(p, 3R)). (2.7.13)
B(p,R)

In particular, we can choose w as in 1 7.2|) and obtain . O
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Theorem is giving an estimate of the norm of Curl(A) on balls, while in order to obtain
informations about the derivative DA we would need (by virtue of Proposition an upper
bound on the total variation of Curl(A). The key observation in order to prove such an estimate
is that, by the definition of supremum limit, we are allowed to take a covering with balls of the

same radii.

Lemma 2.7.2. LetT be a vector valued Radon measure and p be a positive finite Radon measure,
both defined on R™. Suppose that there exists a constant Cy > 1 such that for every x € Q) and
every R >0

B
T (B(x, B))] < w (‘W) 4w (B(x, CoR)) (27.14)
where 8 € {1,--- ;n— 1} and w : (0,00) — (0,00) is an increasing function such that w(d) — 0

as 0 — 0. Then
(a) |T|(&2\ S) =0, where

p(B(z, 7))

S = {x € Q‘G*(x) > O} , O%(z) := O©p(p, ) := limsup RP

R10
(b) HAL S is o-finite.
(¢) |T) < Cp(wo®*)ul S, where C), > 0 is a constant depending only on the dimension.

In particular, if T'= DA for some A € BV(Q)", then DA = D/A = |A* — A7 | @ vaH" 1L Sy
and
g1 (‘A+ — A—D H LSy < Cp, (2.7.15)

where g(t) := tw(t).

Proof. From the definition of limit superior,

G, = {x IS Q‘@*(w) < S} C ﬂ U Gs,R.s,

s>0 R>0

where
p (B(z, Cop))

GsRrs = {:UEQ‘Qﬁ <s4+9 VQ<R}.
For any p-measurable set E, consider the r-tubular neighborhood U, = B, (ENGsprs). If
0 < min {R, CLO}, then we can find K = K(n) (depending only on the dimension n) disjoint
. o (k) — (k) —1.... i
families of balls balls By := {Bi }z‘elk = {B (xl ,g) }ielk’ k=1, , K whose union covers
ES’R’(; =FEnN Gs,R,& that is

K
Esrsc U UBY,  B®nBY =ovi#.
k=1icl,,
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Moreover, the choice of ¢ ensures

1 (B (@, Co@))
o

<s+0, Viel, ke{l,---K}

and

coB® c U,.
Let f:= dIT\ |f| =1 |T|-a.e., and ¢ € C.(£2). Then, using (2.7.14)),

T| (Es,r,s) ZZ /<k) )| <
k= 1Z€Ik 7,
SZZ{/(M |f—g0|d|T\+/(k) np(a:)—gp(xl(,’f)))d|T](:c)+
k=11i€l} B; B;

+ e (@) .7 (87))]) <

< K{/ |f =l d|T| + ( sup |p(z) —<p(y)\> T (Ur)}Jr
U, lz—y|<o

+ Cn |l w (6 + 8) u(Uy).
Define
) =/U |f—eld|T],  (II) :=< sup \w(w)—w(y)o 7| (Uy) -

lz—yl<e
As o — 0, we see that (IT) — 0, while if we consider a sequence of functions ¢ converging to f,
also (I) = 0. As G g is increasing in R, taking R — oo we can replace Es r s on the left hand
side with the union Fy s := Ur~o s r,s- Since this holds for every 6 > 0, we can let 6 — 0 and
recover By = E N {O* > s} on the left hand side. Finally, taking » — 0 and using the fact that

p is a Radon measure, we find that for every py-measurable set E
IT|(ENG;s) <w(s)u(ENGs). (2.7.16)
Since w(s) — 0 as s — 0, we have that
T2\ 5) =0,

ie. (a). Set S5 := {:U
HP LS is o-finite, thus (b) is proven.

Now, for every ¢ > 0, we can find a compact set H = H(() such that ©*|y is continuous and
T (2\ H) < (. For n >0, let ®*(n) > 0 be such that

O*(x) > 5}. Then clearly H?(S5) < Cp3u(R™) < oco. In particular,

z,y € H |z —y| <@*(n) = [07(x) - ©%(y)| <.

Consider a sequence {a;};»; such that (0,00) = Ui>1(as, ait1] and |a;+1 — a;| < ®*(n). For any

Borel set F, let
F,=FnN {x

0*(z) € (ai,aiﬂ]} .
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Let po := pL S. Using (2.7.16) with = F'N {m

0*(z) > ai},

TH(F) < C+ITI(FNH) <+ |ITHEFENH) <

i>1
<C+ YT <FﬁHm {x 0*(z) > a,} ﬂGaM) <
i>1

§C+anw(ai+1)uo(ﬂﬂf{)_C-i-C'nZ/ w(aip1)dpo <

i>1 i>1Y FiNH
g<+cnz/ )) dpio + Chn Z/ 1w (0%(2)) — w (aser)| dpo <

i>1 FﬂH i>1 Y FinH
<CHC Y [ w(© @) do + Cump(F 1 H) =

i>1 FﬂH

=(+Cn w (07(x)) dpo + Crnpo(F N H).
FNH

By the arbitrariness of (, n and the Borel set F', we infer that
IT] < Co (wo 0% LS,

i.e. (c). Now, suppose T = DA for some A € BV (Q2)™. Then from (c), we see that DA =
|A*T(z) — A= (2)| @ vaHP L (SN S4), where 3 :=n — 1. Our first claim is that

’A‘*‘(a:) - A_(a:)‘ < CO*(x)w (0 (x)) for H? —ae. x€SNSa4.

Let £ C R™ be a Borel set. For any ¢ > 0, we can find H = H({) compact such that ©*|g is
continuous and g (R™\ H) < (. Since S is rectifiable, we can assume without loss of generality
that the S-density of each x € SN H N E is 1, namely

lim HA(SNHNENB (x,0))
00 CBQ’B

=1,

where cg > 0 is a constant dependent only on $ > 0. From this and the definition of limit
superior, for every n > 0, k € Nand v € ENSc N H =: G¢, £ > 0, we can find a radius
or(z) < k™! such that, for a constant C = C(3) > 0,

(2.7.17)

0*(z) > M(B;:(Qz)eé 7)) _ n.

We then consider, for NV > 1, the fine cover of G¢

{cu — ) or(@)? <HP (Ge N B (x, 0n(x))) < C(1 +n)or(x)?,

Fy e {B@c, E)

ZEGG& kZN}

from which, by Vitali-Besicovitch Theorem, we can extract a disjoint family Fy = {B(xi, 0i)};51
such that

N(Gg\U]-"}V) =0.
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Then

/ w (0% (x)) dpu(z) < CC+/ w (0" (x)) dp(z) =
ENS;

G

=CC+ ) /B(MH)OG§ w (0*(x))du(z) <

7

<CC+ Y w (O (@) p (B (i, 0) NG) +

+ sup  |w (0%(2)) —w (0" (y))| | W(G) <
z,yeG
[z—y|<N~!

< CC+ 3w (O (@) of (n+ 6" (@) +on(1) <

< OCH 30" (w)w (07 (wa)) o + 1w (0 (1)) o] + on (1),

(2

Using (2.7.17), we find (setting g(s) := sw(s) and g := g o ©%),

_ C
Z glzi)o] < ——

=12, Z?(%)’Hﬁ(GE N B (x4,0:)) <

< / GaH )+ | s 5 -] | HP(Se) <
SNE z,y€q,
|lz—y|<N~1

< [ g+ oN<1>“(H§”).

and, since w is bounded,

HO(Se)
1—n

nY_w (O () < Cnllwll

That is,

w (0% (x x ) ! [lwooll g(x Bz
[Emsg (©*(z))dp(r) < CC+ N(1)£+CU§(1_n)+/SmEQ( YAHP (z). (2.7.18)

Then, in ([2.7.18) we first let N — oo, then ( — 0 and  — 0. By the arbitrariness of £ > 0 and
the set E, we finally get

(wo®") pl {x € S’@l(S,x) = 1} <gH°L {m € S‘@l(S,x) = 1} .

That is, since S is rectifiable,

A% (2) = A (2)] < CO*(2)w (©7(x)),  for H —ae ze 8. (2.7.19)
We rewrite as
f(|at@) - a~@)|) <CO* (@),  for H'—ae z€S. (2.7.20)
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1

where f := g7". We proceed now with the proof of the second step. Let £ C R™ Borel and

§ > 0. We re-define G¢ as

ngzEﬂ{xES

©1(S,z) =1 and ©*(z) > f} :
For every n > 0 and k € N, we can find a g(x) < k=1 such that

C (1 —m) o)’ <H? (Gen Bz, 0k(2))) < C(L+m)er(2)’,
0" (z) < HEHEE + 0, (2.7.21)
AT(y) - A~ (y) =AM (@) - A~ (2), Wy € B(x, o)) NGe,

F(AT () — A= (2)|) < CO*(2) Vz € Ge.

As before, for N > 1, we define the fine cover

Fy e {B @ on@)

x € Gg, k‘ZN},

from which we extract a disjoint family Fy = {B (z, 0i) };,~, such that

1 (Ge\|UFxy) =0
We have
/m& f([At @) - A (@)]) an? = /G K (J4* (@) — 4= (@)]) 4’ =
- T(z) — A (z B _
> e (A - a)) o
= f (|4t @) - A=)

<C(+n) Y 0w <

) HP(Ge N B (i, 01) <

SC(1+H)Z<W+U> ;<

% )

1+ UPY:
<CQA+n)p (B% (GS)) + CUEH (Se)-
As N — oo and n — 0, by the arbitrariness of £ > 0 and E we have
f(’A*—A’DHBI_SgCu. 0
From Theorem Lemma and Proposition we immediately infer the following

Corollary 2.7.3. There exists a constant C > 0 such that for every sequence of pairs (A;, S;) €

P(ej,a, L, 7, A\ €), e — 0 with F.,(Aj,S;) < Egle;), there exists another sequence (A},S;-) €
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P (5j,a,L,7', A, %) such that Fe; (A}, S;) < CF. (AL, S}) which, up to a subsequence, converges

strongly in L?(Q2) to a microrotation A and

]A+ - A" Vllog(|A+ — A|)|H 'L 5S4 < Cp,

where w is the weak™ limit of the measures

R

i = = dist?(A},S0(2)) L L Q + 5‘52 LS,
J

TEj A

In particular,

CalLejy/|log(a)| < Fe, (4, 5;).
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Appendix

A.1 A SHORT REVIEW OF CALDERON-ZYGMUND OPERATORS

We recall that a standard kernel is a function K : R™ x R™\ D,, — R, where

D, = {(m,x) eR" xR"

:I:GR"}

is the diagonal, satisfying, for some constant C' > 0, the following:

(i) [K(z,y)| < Clz—y|[™", for every (z,y) € R" x R"™ \ Dy;

. . 1
|z_y1|\n+a\ for every ¥, Y1, Y2 Satlsfylng |y1 — y2| S 5 ‘.’E — y]-”

(ili) |K(z1,y) — K(z2,y)| < C% for every x1, z9,y satisfying ‘x)l — :@’ < ilz—yl,

for some a € (0,1]. It can be shown that conditions (ii) and (iii) are implied by the easier (but

weaker) conditions
(i) VoK (z,9)| < Cla -y
(i) VoK (z,y)| < Cle -y

A Calderon-Zygmund operator (of the “second generation”) is a bounded linear operator T :
L*(R"™) — L?(R"), i.e. for some C = C(T)

ITfll2 < CllIfllz2

and such that there exists a singular kernel K satisfying

Tf(y) = - K(z,y)f(z)dx,

for every f € L2(R"™) with compact support, and for every y € R" \ spt(f). We give now an

example of such an operator particularly relevant for the analysis in section [I.4]
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Ezample A.1.1. Let K : R™ x R"\ D,, — R be a function satisfying, for some C' > 0,
L |K(z,y)| < Cly|™;
2. [V, K (z,y)| < Cly|™" " and |V, K(z,y)| < Cly|™"
3. K(z,\y) = A""K(x,y) for every x,y and A > 0;
4.

K(z,y)dH" ' =0, Vo e R™.
S§n—1

Then it is possible to show that the operator

T:feL?R")— /K(:w: —y)f(y)dy € L*(R™),

is a Calderon-Zygmund operator.

Calder6n-Zygmund operator behave particularly well in LP spaces, 1 < p < oo, since in such
a case they are bounded operators (with operator norm depending on p). For p = 1, they are

bounded only weakly, that is the exists a constant such that

T fllproomny < C ISl 1 ey -

Such operators also “almost” bounded in L, in the sense that they map L into BMO, the
space of functions of bounded mean oscillation, which can often be used as a replacement for L>°

(as we did in the proof of Theorem |1.4.9)):

Definition A.1.1. We say that a function f : R™ — R has bounded mean oscillation (f €

BMO(R™)) provided
1 llBaro == Sup][ ‘f _][ fdx
QR JQ Q

where the supremum is taken over all the cubes @ in R".

dzr < oo,

Notice that ||-|| g5s0 is a norm only on functions defined modulo constants. We also recall the fun-
damental John-Nirenberg inequality ([?]), which shows that any BMO function is exponentially

integrable:

Theorem A.1.1. There exist constant C1,Cs > 0, depending only on the dimension n, such
that for every f € BMO(R™), any cube @ C R™ and A > 0 one has

g

It is possible to show that Calderén-Zygmund operators are bounded from L*°(R") into BMO(R"™),
i.e. there exists a constant C' = C(T') such that for every f € L>°(R")

{:c c Q' ‘f(w) —]é F(w)dy

A
< C1 Q| exp (—Cz> -

Il Bmo

Tl saro < Cllifllo -
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A.2 A SHORT REVIEW OF BV FUNCTIONS

We start with the definition of countably rectifiable set. We say that a subset M C RY is count-
ably n-rectifiable if there exist (at most) countably many n-dimensional embedded submanifolds
{M;};5, of class C! and My C RY with H"(My) = 0 such that

M cC MyuU | M;,
i>1
i.e. if M is contained, up to a H™-negligible set, in the countable union of submanifolds. If,
moreover, the set is H"-measurable and H" (M) < oo, we say that M is a rectifible set. When
M is n-countably rectifiable and also H"-measurable, then it is possible to assume that at each
point x € M;
O"(M;, z) = lim HYMNB(z,1)) _

r—0 wpr™

where w,, is the Lebesgue measure of the unit ball of R", and
0" (M \ M;,z)=0.

A locally integrable function defined on an open set @ C R, u : @ — R, is said to belong

to BV (Q) if its distributional gradient is a vector valued Radon measure, that is if there exist

/ p-dDu = —/ udivede,
Q Q

for all ¢ € CL(Q)", where Du = (D1u,--- , Dyu). We recall that the following structure theorem
holds:

measures D;u such that

Theorem A.2.1. Let u € BV (Q). Then the gradient Du can be splitted as
Du = Vudz + (uy —u_)n(z, J)H" ' J, + D = Du+ D’u,

where
dDu

Vu is the approzimate differential of u,i.e.Vu(x) = A

O"(Ey(u),z) = 1} , Eylu) = {x €Q

u(zx) > t} ,

u—(z) := apliminf, _, u(y) := sup {t

uy(z) := aplimsup,_,, u(y) := inf {t O"(Ey(u),z) = 0} ,

Sy 1= singular set of u := {x €N

u_(z) < u+<x>} |

DXg (B
n(x,Jy) := inner normal to S, = 711_I>r%) |DX§:|((B(Z;TZ§)

D€ is called the Cantor part of the derivative, D’ is the jump part, Du := VuLl" + D is
the diffuse part and D% := VuLl" is the absolutely continuous part. D%u, D’u and DCu are

mutually orthogonal. Moreover, the set S, is H" '-measurable and countably n — 1-rectifiable.
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For BV functions, the following chain rule holds:

Theorem A.2.2. Let u € BV (Q)™ and f € CY(R™)P be a Lipschitz function satisfying f(0) = 0
if | = 0c0. Then v := f owu belongs to BV (Q2)P

{Bv = Vf(u)VuLl® + V f(3@) D°u = V (%) Du,
D7y = (f(ut) — f(u™)) ®n(u, S,) L S,

where u(x) is the approximate limit of u at x, i.e. the unique vector z € R™ (which exists for
any x € Q\ Sy) such that

lim u(y) — z|dy = 0.
i f ) -

A.3 Curl BOUNDS GRADIENT ON SO(n)

Proposition A.3.1. There exists a dimensional constant C = C(n) > 0 such that for every
Q C R" open
|Curl(A)| > C |DAJ, VA € BV (Q,50(n)),

where
BV (©,50(n)) := {A € BV (Q,R"X") A(x) € SO(n) for L™ — a.e. x € Q} .

Here, Curl(A) is the vector Curl(A) = (Curl(Al),---,Curl(A™)) whose components are the

measure-valued 2-forms
Curl(A%) = (DjAf;‘f - DkAé») da? A da® = Curl(A%)da? A da® = F;kdxj A dz,

and

1 X2 ) )
mmmwziz\@%—m%y
i,7,k=1

Proof. We can assume A(x) € SO(n) for every = € . We discuss separately the diffuse part
DA = VAL + DA and the jump part D7A = (AT — A7) @ vaH" 1 S4. Since A € SO(n),

Ay AY = §;5. Thus, by Theorem
0= Dy (8:5) = Dy (AVAY) = AY DAY + AY DAY,
where, with an abuse of notation, we denoted by A its precise representative A. That is, the

3-“tensor” L := ATV A, whose components are Lé‘k = A,L’»’BkAJV-, satisfies L;k = —Lgk. A straight-
forward computation then gives
- 1 - - ~
v [ o VTV VT v
&pw%_pm_§Mﬂm+AJM— i)

Multiplying by AZ an summing over pu the previous identity, we get

. Al L v v 1
DiAj = 54, (AFT5 + ART) = ST

61



APPENDIX A. APPENDIX

In particular,
Ba| < Cff].
For the jump part, we notice that

Curl(A") = (A" — A7) - JjpwaH" 'L Sada? A da,

where Jj, is the linear operator defined by

v; if 6=k,
(Jirv) == v if €=,
0 otherwise.

Clearly, Jjpv - v = 0 for every j < k and the {Jjv}, <j<k<n A€ linearly independent, for every

vector v € R™. Thus, {Jjrva(z) is a basis for the tangent space T'(z) := va(z)*. In

}1§j<k§n
particular, there exists a dimensional constant C'(n) such that for every open subset U C Q2

znj |Curl(4')| (U) > C(n)i / o (AT — AT )| dHn
irj =1 i=179a0U

But, since T'(z) is an (n — 1)-dimensional subspace and A € SO(n), we have another dimensional

constant (denoted again by C(n)) such that ‘FT (AT — Ai_)’ > C(n) ‘AH — A"|. That is
> |curlahy)| @) = ¢ Z/ AT — AT an ™! = C(n) |D7 4| (U). 0
irj k=1 =179a0U
A.4 SOME TECHNICAL LEMMAS
A.4.1 Bound vertices in a tree by its vertices of degree 1 and 2
Lemma A.4.1. A non-trivial tree T = (V, E) satisfies
#T <24 {v € V]deg(v) = 1} +# {U € V]deg(v) = 2} . (A.4.1)

Proof. We prove it by induction on n = #V. If n = 1 there is nothing to prove. Suppose now
that holds when #V = n, and let us prove it when #V = n + 1. So, let T = (V, E)
be a tree with n + 1 vertices. Take a leaf £ € V' (which exists since T" is a non-trivial tree) and
consider then the tree T := (V*, E*), whose vertices are V* := V' \ {¢} and whose edges are
given by E* := E\ {{{,¢'}}, where ¢ is the only neighbor of ¢. Consider then

Ni::#{vev

deg(v) = z} , N/ = # {v eVv®

deg*(v) = } ,

where deg”(v) denotes the degree of v seen as a vertex of T*. Then we have the following
Ny —1 if deg(¢) =2,

N3 =4q Ny +1 if deg(¥) =3,
No if deg(ﬁ’) > 3.

Ni =

N if deg(f) =2,
Ny —1 if deg({) > 2,
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Then one can easily check, using the induction hyphothesis, that (A.4.1)) holds also when #V =
n+ 1. O

A.4.2 Whitney Covering and an estimate for harmonic functions

We recall now the Whitney covering Lemma (cf. [29] and [31])

Theorem A.4.2 (Whitney covering Lemma). Let Q C R™ be an open and proper subset. There
exists a countable collection {Q;} -, Q5 = Q(w;,¢;) of closed cubes such that

(i) = ;>1 Q; and the Q;’s have disjoint interiors;
(i) C1e; < dist(Q;,00Q) < Clj, where C = C(n) > 1 is a dimensional constant;
(iii) Sjo1Xog, < 12°.

Lemma A.4.3. There exists a dimensional constant C = C(n) > 0 such that for every Q C R™

open and proper and every u : 2 — R harmonic,
/distQ(x,aQ)qudx < c/ lul? dz.
Q Q

Proof. Let {Q;} i>1 be a covering of Q as in Theorem Then

/ dist?(x, 0Q) |Vu|* dz = Z/ dist?(z, 0Q) |Vu|* dz < C’Zﬁ?/ |Vul? dz <
Q Qj

j>1 j>1 Y

2 2
SC’Z/)QM dx§0/9|u| dz. O
3 Wj

Jj=>1
A.4.3 A lemma for vector valued measures

We recall that a sequence of vector valued measure (defined on a locally compact separable
metric space X; in our case, we can just take X = R" with the usual Euclidean metric) {4},
quasi-converges to (1, &), i 4y (1, €), where p is a vector valued measure and ¢ is a positive
measure, if fi; 5 pand | 15 % €. Quasi-convergence is equivalent to the fact that wi(B) = u(B)
and |p;] (B) — &(B) for all relatively compact subsets B with £(0B) = 0. It is then easy to

prove the following

Lemma A.4.4. Suppose that a sequence {j; }j21 of vector valued measures on X quasi-converges
to (u, &), where £ is a positive Radon measure. Then, if £(0B(p, R)) = 0, for every sequence
Rj — R,
lim sup |1 (B(p, R;))| = |u(B(p, R))| -
Jj—00
Proof. Since j1; % (1, €) and £(0B(p, R)) =0,
W(B(p. R))| = lmn |1, (B(p. ).
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Without loss of generality, we can assume R; | R. Then

limsup [ (B(p, R))| < limsup |u;(B(p, R;) \ B(p, R))| + limsup |u;(B(p, R;))|-

Jj—00 Jj—o0 Jj—00

We just have to prove limsup, [u;(B(p, R;) \ B(p, R))| = 0. Since R; — R, for every ¢ > 0,
B(p,R;) \ B(p,R) C Acr :== B(p,(1+¢)R) \ B(p, (1 — ¢)R), provided j is sufficiently large. In

particular, since || = &,

limsup |y (B(p, B;) \ B(p, R))| < limsup || (A ) < €(A- p)-
J J

But £ is a Radon measure, thus by the arbitrariness of £ we obtain

limjsup |1 (B(p, Rj) \ B(p, R))| < £(0B(p, R)) = 0. -
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