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oder unveröffentlichten Schriften entnommen wurden, und alle Angaben, die auf mündlichen
Auskünften beruhen, als solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen
bereitgestellten Materialien oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den 26.03.08



iv



CV and Relevant Publications

Curriculum Vitae

seit 06/03 wissenschaftlicher Mitarbeiter am Institut für Informatik der

Universität Leipzig

09/02–12/02 3-monatiges Praktikum an der Universität von New South

Wales in Sydney (Knowledge Systems Group, Artificial In-

telligence Laboratory), betreut durch Professor Norman Foo

10/98–04/03 Informatik-Studium an der Universität Leipzig,

Diplomarbeit: A 3-Valued Approach to Disbelief

1998 Abitur am Friedrich-Ludwig-Jahn-Gymnasium Rathenow

Publications

• R. Booth and A. Nittka. Reconstructing an agent’s epistemic state from observations

about its beliefs and non-beliefs. Journal of Logic and Computation, 2008. ([13])

• A. Nittka and R. Booth. A method for reasoning about other agents’ beliefs from

observations. Texts in Logic and Games, 2008. ([75])

• A. Nittka and R. Booth. A method for reasoning about other agents’ beliefs from

observations. In Formal Models of Belief Change in Rational Agents, number 07351

in Dagstuhl Seminar Proceedings, 2007. ([74])

• A. Nittka. Reasoning about an agent based on its revision history with missing inputs.

In Proceedings of JELIA’06, pages 373–385, 2006. ([73])

• R. Booth and A. Nittka. Beyond the rational explanation. In Belief Change in

Rational Agents: Perspectives from Artificial Intelligence, Philosophy, and Economics,

number 05321 in Dagstuhl Seminar Proceedings, 2005. ([11])

• R. Booth and A. Nittka. Reconstructing an agent’s epistemic state from observations.

In Proceedings of IJCAI’05, pages 394–399, 2005. ([12])

v



vi



Abstract

Belief revision traditionally deals — from a first person perspective — with the question of

what an agent should believe given an initial state and a revision input. This question is

approached in two main ways: (i) formulating general properties a belief revision operator

should satisfy and (ii) constructing specific revision operators. Reasoning about what another

agent does in fact believe during a sequence of revisions is equally important as agents are

not alone in the world and have to interact successfully with each other. This third person

perspective, which we look at in this thesis, has received much less attention so far.

In order to allow for a focused investigation, we assume the observed agent to employ a

particular framework for iterated non-prioritised revision, i.e., a framework that allows for

dealing with sequences of revision inputs that are not necessarily accepted by the agent. One

important component of the agent’s epistemic state is its core belief — a formula determining

which revision inputs are accepted and which are not, a belief the agent commits to at all

times.

The task is to draw conclusions about the agent based on an observation. This observation

contains information about which revision inputs the agent received and what it believed and

did not believe upon receiving them. We are particularly interested in conclusions concerning

whether inputs are accepted or rejected, i.e., conclusions about the agent’s core belief, and

its unrecorded beliefs. The general method will be to construct a potential initial epistemic

state of the agent and progress the inputs recorded in the observation starting in that state in

order to generate hypotheses about the beliefs. We call a state an explanation if it verifies the

information contained in the observation. There are generally many possible explanations.

In order to select one explanation, we will present and justify a set of preference criteria. It

turns out that there is a unique logically weakest core belief that can be used for explaining

an observation. A second criterion expresses the preference of explanations that minimise

the beliefs attributed to the agent.

We introduce the assumed belief revision framework and show that any epistemic state

defines a rational consequence relation — a relation with particular closure properties. In the

current setting it can be interpreted as containing information of the form “If the agent were
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to receive and accept the revision input ϕ it would believe θ.” It turns out that an observation

can be translated into a partial description of such a relation and that we can make use of

existing work on completing partial information about a rational consequence relation in

order to construct an explanation. This is done by an iterative refinement of the assumed

core belief. The explanation thus obtained, which we call the rational explanation, is optimal

with respect to the preference criteria mentioned before. However, still not all conclusions we

draw based on the rational explanation of an observation need to be correct and we present

a way for distinguishing them. The idea is to modify the original observation such that

the new one contradicts a conclusion. An explanation for the modified observation would

consequently be a counterexample to the conclusion. We can use the rational explanation

construction to find such an explanation or prove that no such explanation exists.

In the first part of the work, we assume that the observation is complete in the sense that

all revision inputs received during the time of observation are indeed recorded and their

logical content is completely known. These assumptions are essential to the optimality of

the rational explanation. So far, this prevents us from dealing with cases where revision

inputs are missed by the observer or where they are not all completely understood, which

will be the case in most realistic settings. The second part of the thesis investigates what can

be said in such cases. We model unknown logical content by allowing the formulae recorded in

the observation to contain unknown subformulae which are instantiated by new propositional

formulae. We can then use (variants of) the original rational explanation algorithm to reason

about the agent. Again, we are able to prove the existence of a unique weakest core belief

yielding safe conclusions as to which revision inputs must be rejected by the agent. Missing

revision inputs can be dealt with by assuming the observation to contain additional entries

where the revision inputs are formulae whose logical content is completely unknown. As we

may not be informed about the positions or number of the additional inputs, further care

needs to be taken when reasoning about the agent. We sketch algorithms for a number of

cases differing in the detail of information available to the observer.

In the third part of the thesis, we look at the application of the methods in slightly different

settings. Reasoning about different observations starting in the same state, which has ap-

plications in accessing expert knowledge or reasoning about software agents, is particularly

interesting. We also consider variants of the belief revision framework that do not prioritise

new over older revision inputs.

Computational complexity does not play a major role in this thesis but we are able to give

a number of complexity results for the main decision problems we are interested in.
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Chapter 1

Introduction

1.1 Motivation

One of the overall goals of AI research is designing autonomous intelligent agents that are

capable of acting successfully in dynamic environments. These environments may be artificial

or even natural. In any case, it is very likely that they are “inhabited” by more than one

agent. So, an agent will in general have to interact with (some of) the others. On the

one hand, the agent — if it does not want to be purely reactive — needs a model of its

environment in order to make informed choices of actions that change it in a way that brings

the agent closer to achieving its goal. On the other, it also needs to model the other agents,

making successful interaction more likely.

Much research has been done on formalising and reasoning about the effects of actions on

an environment. Research on an agent’s view of the world usually focuses on a first person

perspective. How should the agent adapt its beliefs about the world in the light of new

information? However, reasoning about other agents’ beliefs or background knowledge is

just as important. This work is intended to contribute to this latter question.

We will adopt a much narrower perspective than reasoning about other agents in their

full complexity which includes goals, intentions, (higher order) beliefs, preferences, etc. and

restrict our attention to their (propositional) beliefs about the world. We will also forget

about the dynamic environment and assume a static world. That is, we will work in a very

traditional belief revision setting. But rather than answering the question of how an agent

should rationally change its beliefs in the light of new information, we address the question

of what we can say about an agent we observe in a belief change process.

In [18], the authors use observable actions to draw conclusions about other agents’ mental

attitudes. We argue that the beliefs of an agent manifest themselves not only in its actions.

1



2 CHAPTER 1. INTRODUCTION

They can also be observed more directly, e.g. in communication.1 So indirectly we have

access to parts of other agents’ belief revision processes. Information they receive is their

revision input, responses to that information are a partial description of their beliefs after the

revision. From this information we may want to reason about the observed agent. Consider

the following three scenarios.

• We are directly communicating with another agent, i.e., we are the source of revision

inputs for that agent. The feedback provided by the agent will not reflect its entire set

of beliefs. To get a more complete picture we may want to infer what else was believed

by the agent, what its background knowledge might be. This scenario is related to user

modelling.

• We observe a dialogue between two or more agents. Beliefs one agent expresses are

revision inputs for the others. Due to noise, private messages etc., we might not have

access to the entire dialogue — possibly missing some inputs completely. So we may

have to cope with partial information about the revision inputs.2 As we might have to

deal with the observed agents later, forming a picture of them will be useful.

• By observing an expert reasoning in one or more cases we try to get access to the

background knowledge. Assuming the expert to receive a sequence of facts concerning

a particular case, beliefs resulting from the revision process might reveal knowledge the

expert cannot state explicitly. If we manage to deal with such a case we also contribute

to the field of knowledge acquisition.

The common element in all those scenarios is that given information about the revision

process of another agent we3 are interested in a more complete picture of the observed

agent. Was a particular input definitely accepted or rejected by the agent? What did it

believe at a certain point during the observation? What is its background knowledge, i.e.,

which general rules does the agent believe to hold? What will be the impact of a further

input? Answers to these and similar questions might improve future interaction or enhance

our own knowledge of the world.

The information at our disposal for reasoning about another agent will be of a particular

form. We will not investigate how observations made in the real world can be transformed

into that form although this is clearly an important problem. We are given a (possibly

1There may be further ways for beliefs to be observed, but this question is not the central one in our work.

2This is of course possible in the first case, as well. The communication might take place in several sessions

and we do not know which inputs the agent received in between.

3In this context “we” is always equivalent to “the observing agent”, as this work is intended to investigate

what it can conclude about the other agent.
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incomplete) sequence of (partially known) revision inputs that were received by the agent.

Further we are given information on what the agent believed and did not believe after having

received each input. All this (propositional) information constitutes an observation4 of the

agent. First, we will investigate observations which are complete with respect to the revision

inputs received by the agent. That is, we assume to know exactly which inputs were received

during the time of observation. The results obtained for this case will then be used for dealing

with the more general one.

Our general approach to reasoning about an agent based on observations will be as follows.

We assume the agent to employ a particular belief revision framework for incorporating

revision inputs. It is clear that the question of drawing conclusions about another agent

based on an observation is interesting independently of which revision framework that agent

really uses. However, assuming a particular one allows for a more focused investigation. We

will then try to find an initial state of the agent that best explains the observation. The

notion of best in this context will be defined later. By initial state we mean the agent’s

epistemic state at the time the observation started. As we do not know the true initial state

we will select a reasonable one. This state explains the observation if it yields the beliefs

and non-beliefs recorded in the observation given the revision inputs received by the agent.

Usually, there will be many explaining states. This initial state represents the background

knowledge of the agent and will allow us to reason about beliefs of the agent not recorded

in the observation.5

Many approaches for reasoning about action, belief revision, etc. assume the initial belief

state to be given and deal with the case of progression through sequences of actions/revision

inputs. They say little or nothing about the case where it is not known. In particular with

respect to the belief revision literature this work is intended to be a step towards filling this

gap.

1.2 Context

Our work has contact points with a large number of research areas and of course it draws

on a number of existing results. In this section, we briefly want to relate our work to these.

We will start by giving an overview of the work in belief revision that is relevant to our

approach. Then we will point out relevant work on conditional beliefs. Finally, we will

4This term as we use it will be made precise in Section 2.3.

5So our approach has similarities to regressing a known sequence of actions starting from some partially

known states to arrive at a possible initial state and then progressing them starting in that state in order to

get more information about the partially known states.
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mention a number of research areas that deal with related questions. For now, we assume

familiarity with notation from set theory and propositional logic, which we will nevertheless

recall in Section 1.3.1.

1.2.1 belief revision

Our work is tightly connected to belief revision as the investigations started out as an attempt

to take a third person perspective and to reason about an agent that revises its beliefs.

Note that we are not interested in characterising or constructing yet another belief revision

operator. Given a set of propositional beliefs K which is closed under logical consequence

Cn and a new piece of information ϕ which is supposed to be incorporated into the beliefs,

the question is what should happen in case K is inconsistent with ϕ. Which beliefs should

be given up, which should persist? In particular, [1, 31] set off investigations for describing

principled ways for answering those questions. As one part of what is now known as the

AGM-framework for belief revision, the authors propose a set of postulates that should be

satisfied by any revision operation. These postulates basically only relate the beliefs before

and after the revision. We give the six basic and two supplementary postulates they suggest

for a belief revision operator u. + denotes the expansion operator which simply adds the

formula and closes the resulting set under logical consequence (K + ϕ = Cn(K ∪ {ϕ})).

closure K u ϕ is a belief set

success ϕ ∈ K u ϕ
inclusion K u ϕ ⊆ Cn(K ∪ {ϕ})

preservation If ¬ϕ /∈ K then Cn(K ∪ {ϕ}) ⊆ K u ϕ
consistency K u ϕ is inconsistent if and only if ϕ is inconsistent

equivalence If ϕ ≡ ψ then K u ϕ = K u ψ

superexpansion K u (ϕ ∧ ψ) ⊆ (K u ϕ) + ψ

subexpansion If ¬ψ /∈ K u ϕ then (K u ϕ) + ψ ⊆ K u (ϕ ∧ ψ)

Several formalisms have been proposed for characterising the set of all revision operations

satisfying the postulates and constructing actual belief revision operators. Essential for our

work is Grove’s notion of a “System of Spheres” [36], which basically is a total preorder

on — or ranking of — possible worlds (truth assignments). The preorder states for every

pair of worlds whether they are considered to be equally plausible or which of the two is

considered more plausible than the other. The preorder can also be interpreted as assigning

a rank to each world, the ranks being linearly ordered. Worlds having the same rank are

considered equally plausible, worlds with lower rank are considered more likely than worlds

with higher ranks. The state of an agent in this setting is not given by its set of beliefs but

by this ordering. The belief set K corresponds to whatever is true in all worlds with minimal
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rank. The belief set resulting from the revision by ϕ is now determined by the ranking. It

corresponds to what is true in all minimal worlds satisfying ϕ.6 In case K is consistent with

ϕ there are ϕ-worlds in the lowest rank. If K is inconsistent with ϕ, then the most plausible

ϕ-worlds have a higher rank. The richer structure allows the result of revision to be different

although the belief set is the same. In fact, it has been shown in [36] that any AGM revision

function can be captured by a system of spheres, which is employed as described above, and

vice versa.

Example 1.1. Consider the propositional language generated from the variables p, q and

r. We will use both ¬p and p to denote the negation of p. There are eight possible worlds:

p q r, p q r, p q r, p q r, p q r, p q r, p q r, p q r. Assume p q r, p q r, p q r and p q r are considered

equally plausible and more plausible than p q r and p q r which in turn are more plausible

than p q r and p q r. This is illustrated in the leftmost table below. The logical consequences

of p are precisely the formulae true in all minimal worlds, so these make up the belief set.

When revising by p ↔ q, we look for the minimal worlds consistent with this formula7 and

there are two such worlds in the lowest rank. That is, in this case the beliefs would be

Cn({p ∧ q}) after revision. When revising by ¬p ∧ r, there are no worlds satisfying that

formula in the lowest rank. There is only one minimal world satisfying ¬p∧ r: p q r. So the

beliefs after revision by ¬p ∧ r would be the consequences of ¬p ∧ q ∧ r.

p q r, p q r

p q r, p q r

p q r, p q r, p q r, p q r

K = Cn({p})

p q r, p q r

p q r, p q r

p q r, p q r , p q r, p q r

K u (p↔ q)

p q r, p q r

p q r, p q r

p q r, p q r, p q r, p q r

K u (¬p ∧ r)

If the initial ranking looked slightly different, then revision by ¬p ∧ r would have a different

outcome. In this case q would not be believed.

p q r

p q r, p q r, p q r

p q r, p q r, p q r, p q r

K = Cn({p})

p q r

p q r, p q r, p q r

p q r, p q r, p q r, p q r

K u (¬p ∧ r)

As the lowest rank determines the beliefs, the AGM postulates tell us what the lowest rank

should look like after the revision. They leave open what happens to the remaining ranks.

However, this is an essential point if the revision process is to be iterated. Following the

principle of minimal change, [15] suggests to leave the ranking completely unchanged, except

for moving the minimal ϕ-worlds into a new lowest rank when revising by ϕ. [21] shows

6Considering a finitely generated language, as we do, they are guaranteed to exist.

7In the tables we have emphasised all worlds consistent with the revision input.
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that this leads to counterintuitive results and proposes a set of further postulates describing

the desired effect of a revision step on the entire ranking. A refinement ([9, 45]) of these

postulates claims that a revision operator should modify the ranking as follows. When

revising by ϕ, the relative order among ϕ-worlds and among ¬ϕ-worlds should persist but

ϕ-worlds should be preferred to ¬ϕ-worlds that had the same rank before the revision.

In [67], Nayak proposes to split the entire ranking into one for the ϕ-worlds and one for

the ¬ϕ-worlds and move the ϕ-ranking below the ¬ϕ-one. As a result every ϕ-world is now

preferred over any ¬ϕ-world. [77] suggests to move the ϕ-worlds below ¬ϕ-worlds in each

rank separately. [10] presents a framework subsuming these two as special cases.

Example 1.2. The following tables are to illustrate the different approaches. We use the

ordering used in Example 1.1 and revise it by q ∧ r. Note that the lowest rank after revision

is the same in all approaches. But further revision steps may lead to different beliefs.

“natural revision” [15]: select all minimal q ∧ r-worlds and place them into a new lowest

rank.

p q r, p q r

p q r, p q r

p q r, p q r, p q r, p q r

p q r, p q r

p q r, p q r

p q r, p q r, p q r, p q r

p q r, p q r

p q r, p q r

p q r, p q r, p q r

p q r

“lexicographic revision” [67]: split the entire ranking into one for the q ∧ r-worlds and one

for the ¬(q ∧ r)-worlds, move the former ranking below the latter one.

p q r, p q r

p q r, p q r

p q r, p q r, p q r, p q r

p q r, p q r

p q r p q r

p q r p q r, p q r, p q r

p q r, p q r

p q r

p q r, p q r, p q r

p q r

p q r

p q r, p q r

p q r

p q r, p q r, p q r

p q r

p q r

[77]: split each rank into q ∧ r-worlds and ¬(q ∧ r)-worlds, then move the former ones below

the latter ones in each rank separately.

p q r, p q r

p q r, p q r

p q r, p q r, p q r, p q r

p q r, p q r

p q r p q r

p q r p q r, p q r, p q r

p q r, p q r

p q r

p q r

p q r, p q r, p q r

p q r

p q r, p q r

p q r

p q r

p q r, p q r, p q r

p q r
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Obviously, when observing an agent over time, we will need to use a framework supporting

iterated revision. The AGM postulates have not only been criticised for being restricted to

one revision step. For example, the success postulate, which states that the revision input

must be among the resulting beliefs, has found opposition as it is not clear why the new

information should always be accepted. Indeed, there are many cases where an input should

be rejected. This has led to investigations concerning so-called non-prioritised revision, i.e.,

revision in which the input does not automatically have priority over the old beliefs (see,

e.g., [39, 40, 60, 64]). In defence of the postulate, it can be said that it should hold once

the decision has been made that the input is to be incorporated into the beliefs. However,

we cannot expect to have this information for the observed agent. That is, we will need a

revision framework that supports not only iterated but also non-prioritised revision. We will

describe the framework we assume the observed agent to employ in detail in Section 2.2. It

will turn out to be a non-prioritised version of Nayak’s lexicographic revision.

1.2.2 conditionals

Interrelations between conditional beliefs, belief revision, default reasoning and other forms

of non-monotonic inference have been studied extensively (see, e.g., [7, 47, 53, 55, 61]). By

ϕ ⇒ θ we denote a conditional assertion. Its meaning is that if ϕ holds then normally θ

holds as well, and a set of such assertions can be interpreted as an inference (or consequence)

relation. The question is which properties such a relation should satisfy in order to be

reasonable. As one of several proposals, the authors of [54] give a list of properties to

describe a class of inference relations they call rational.8

reflexivity θ ⇒ θ

left logical equivalence θ ⇒ φ and θ ≡ ψ implies ψ ⇒ φ

right weakening θ ⇒ φ and φ |= ψ implies θ ⇒ ψ

and θ ⇒ φ and θ ⇒ ψ implies θ ⇒ φ ∧ ψ
or θ ⇒ φ and ψ ⇒ φ implies θ ∨ ψ ⇒ φ

cautious monotonicity θ ⇒ φ and θ ⇒ ψ implies θ ∧ φ⇒ ψ

rational monotonicity θ ⇒ φ and θ 6⇒ ¬ψ implies θ ∧ ψ ⇒ φ

The first result that is particularly important for our work is that total preorders on worlds

exactly characterise rational consequence relations [54].9 Now, an important question is

8Our notation for conditionals neglects the distinction between syntax and semantic. Each line is to be

read as a universally quantified closure property.

9θ ⇒ φ holds with respect to a given total preorder on worlds if and only if all minimal θ-worlds are also

φ-worlds. Every total preorder gives rise to a rational consequence relation and for every rational consequence

relation there is a corresponding total preorder on worlds.
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which assertions should follow from a set of assertions; and the authors of [54] answer this

question by constructing a preferred rational consequence relation which extends that set.

In other words, given a partial description of the total preorder on worlds, their rational

closure construction completes that information.10 We will not describe the construction

here but give a detailed account of its extension to negative conditionals [14] in Section 2.5.

This extension also allows for incorporating information of the form ϕ 6⇒ θ (it is not the case

that if ϕ then normally θ).

We make use of the correspondence of belief revision and conditionals via total preorders

on worlds as follows. We will show that the belief revision framework which we assume

the observed agent to employ allows to translate the observation about the agent’s revision

history into a partial description of a rational consequence relation. This relation will then

be completed using the results from [14] and reinterpreted as the agent’s initial state. Given

this state we can then draw further conclusions about the agent.

1.2.3 further areas

As mentioned in the motivation, one of the main issues of AI research is reasoning about

dynamic domains. This involves the question of how to represent the state of the world and

the effects of actions on that world and how to reason about them. For doing so, a number of

formalisms have been proposed, e.g. situation calculus [63, 85], fluent calculus [90, 91], event

calculus [52], and the action language A [33]. However, it is obvious that it is also necessary

to reason about the agents involved. The actions taken by an agent will generally depend on

its goals and its beliefs about the world. So all the formalisms we mentioned were extended

to allow for expressing beliefs and belief change of agents (see, e.g., [41, 43, 44, 56, 62, 88]),

but specific methods for reasoning about the revision history of an observed agent are not

discussed. In [86], Sandewall also identifies chronicle completion, i.e., completion of partial

information about an evolving world, as one of the important reasoning tasks for dynamical

systems. This is what we attempt in this thesis (interpreting the beliefs of an agent as the

dynamic system).

Reasoning about other agents is not new. For example, much work has been done on inter-

preting observed actions of agents (as opposed to their beliefs) in order to identify the plans

they follow. Possible applications of plan ascription [2, 51] and plan recognition [48, 49, 87]

include inferring the goals of an agent or predicting its next action.

10The underlying idea is as follows. The total preorder on worlds represents their respective plausibility

and the rational closure construction attempts to make every world as plausible as the given set of conditional

assertions allows.
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We stated before that our general method will be to identify an initial state of the agent that

best explains the observation. One area whose main aim is to find explanations is abduction

[80]. Generally, there is a background theory and an observation that cannot be accounted

for by the theory alone. So the task is to identify possible explanations (see, e.g., [78] for

an overview of abductive methods). Normally, a set of abducibles to select from is given.

Clearly, the mere fact of being an explanation is not enough — the interest is in best or at

least good explanations (see [81] for an account on properties of preference relations). There

are also approaches to abduction that employ belief revision [16, 95]. Causal reasoning goes

a step further. Here, the aim is to identify the actual causes for an observation [37, 38]. Our

work differs from these approaches for identifying explanations. The observations we start

off with are different, a background theory is not given — only general properties satisfied

by it — and the explanation we come up with is not a fact (literal) but a more complex

structure.

1.3 Preliminaries

1.3.1 notation

The observed agent this thesis is focused on will be denoted by A. We will restrict our

attention completely to propositional logic. So, L will usually be used to denote a propo-

sitional language constructed from a finite set of propositional variables p, q, r, . . . , the con-

nectives ∧,∨,¬,→,↔ and the symbols ⊥ for some contradiction and > for some tautology.

α, β, θ, λ, µ, ϕ, φ, ψ (often with subscript) will denote propositional formulae, i.e., particular

elements of L. Later, χ will be used as placeholder for an unknown formula.

σ and ρ are used to denote sequences of formulae, () being the empty sequence. The function ·
in σ · ρ and σ · ϕ denotes sequence concatenation and appending a formula to a sequence,

respectively. In fact, · will be used to denote concatenation of any type of sequences and

corresponding elements. ` is the classical entailment relation between a set of formulae and

a formula, where we abbreviate {α} ` β by α ` β for singleton sets. Cn(S) denotes the set

of all logical consequences of a set of formulae S, i.e., Cn(S) = {β | S ` β}. Again Cn(α)

abbreviates Cn({α}) for singleton sets. ≡ is the relation of logical equivalence between

formulae.

In some of the proofs we will use the relation |= between a truth assignment m and a formula

ϕ evaluated to true by m. Given a subset P of the propositional variables in our language,

m ∼P m′ denotes that two truth assignments m and m′ agree on all variables except those

contained in P , which may be evaluated differently by m and m′. If P is a singleton set we
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will write ∼p instead of ∼{p}. All revision operations ∗ introduced will be left associative

and consequently K ∗ ϕ1 ∗ ϕ2 is intended to mean (K ∗ ϕ1) ∗ ϕ2. As is common, we will

sometimes abbreviate “if and only if” by “iff”.

Computational complexity will only play a marginal role in this thesis. Here we will only

name the most important concepts we use and refer the reader to [32, 76, 94] for more detail.

P is the class of decision problems that can be decided by a deterministic Turing machine

(TM) in polynomial time (in the size of the input) and NP the class of problems that can

be decided by a non-deterministic TM in polynomial time. coX is the class of problems

whose complements are in X. EXPTIME contains those problems that can be decided in

exponential time by a deterministic TM. The polynomial hierarchy allows for a more fine-

grained distinction between (a number of) problems in this class. It uses the idea of oracles.

Intuitively, the decision procedure can solve problems of a given class instantaneously. A

problem is in PNP if it can be decided in polynomial time querying an NP -oracle, e.g., by

a polynomial number of satisfiability tests. The polynomial hierarchy is defined as follows.

∆P
0 = P , ΣP

0 = P and ΠP
0 = P . ∆P

n+1 = PΣP
n , ΣP

n+1 = NPΣP
n and ΠP

n+1 = coNPΣP
n . A

problem M is X-hard for a complexity class X if every problem M ′ in X can be reduced to

M in polynomial time (M ′ ≤p M). M ′ ≤p M iff there is a total function g — computable

in polynomial time — such that x ∈ M ′ ↔ g(x) ∈ M . That is, via g a decision procedure

for M can be applied for deciding M ′. M is X-complete if it is in X and X-hard.

1.3.2 structure of this thesis

In the remainder of this chapter, we will present the simplifying assumptions we make for

our investigation. Chapter 2 will introduce the assumed agent model as well as the formal

definition of an observation. It further contains the central results for the case where all

revision inputs received by A during the time of observation are completely known, i.e., in

particular the method for calculating the best explaining initial state and its properties. We

indicate what we can conclude about the observed agent using this explanation and propose

a method for verifying those conclusions. These results were in large parts obtained in joint

work with Richard Booth and published in [11, 12, 13]. Chapter 3 uses these results to

deal with the case where the observation is allowed to be more partial. In particular, some

inputs may not have been recorded in the observation and the logical content of parts of

the observation may only be partially known. We show how this lack of information can

be represented and dealt with. Parts of these results were published in [73, 75]. Chapter 4

illustrates the applicability of the results for slight modifications of the setting in which the

reasoning is done, as well as for variants of A’s assumed belief revision framework. Chapter

5 briefly discusses some pieces of related work before we conclude and indicate possibilities
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of future continuations of this work. An appendix contains all proofs, a section on aspects of

computational complexity and a compilation of the algorithms (in pseudo-code), which are

only verbally described in the main text.

1.3.3 simplifying assumptions

We make several simplifying assumptions which will naturally limit the applicability of the

methods developed in this work but at the same time allow for a focused analysis of the

problem we approach.

We restrict ourselves to propositional logic, and all components of an observation o, which is

the starting point of our investigation, are already provided in a propositional logic generated

from a finite set of variables. That is, we assume that revision inputs, beliefs and non-beliefs

are directly observed as propositional formulae. We disregard the question of how sensory

data representing the actual physical input received by the observed agent is transformed

into the needed format. Agents are assumed to be sincere, i.e., they are not deceptive about

their beliefs, but the information may be partial. In other words, we assume that the function

mapping the actual physical observation, recorded communication, etc. into an observation

o ensures that these requirements are met.

As mentioned above, we assume a static world in the sense that the revision inputs and the

information about the agent’s beliefs refer to the same world. [30] argues that it suffices that

the description of the world is static, i.e., that the evaluation of the propositions describing

the world does not change. This allows for handling dynamic worlds in a belief revision

setting using, e.g., time-stamped variables. As the focus of our work is a different one, we

will not distinguish between these notions.

It is essential for our investigation that the revision inputs were received over time. [24]

argues that in case of a static world the order of the revision inputs should not matter (in

contrast to what is implied by the success postulate), but rather all input should be merged.

This merging can be done according to different priority criteria, and the recency of an

input is just one possible one. A central point of our work is to exploit having intermediate

steps at our disposal — we explicitly need and use the information about when an input

was received. The observed agent A itself may only be interested in the final picture of the

world. We in contrast want to extract information about the agent from the process of its

arriving there. A will be assumed to employ a particular belief revision framework which

will be described in detail in Section 2.2. It equates recency with reliability of information —

concepts like (preferences for) sources, competence, context, etc. are completely disregarded.

This is to simplify the investigation, not because we think it to be the only possible and
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correct revision framework. In Chapter 4, we will show that some of the results for this very

restricted framework can be used in more flexible ones.

The formal results will be given for one observed agent. We will briefly sketch the multi-

agent case in Section 4.1. Basically, it can be handled by constructing one observation for

each agent. These observations may or may not have been constructed independently of one

another. One example of them being related is dialogue settings — beliefs expressed by one

agent are the revision inputs for the others.

We consider the observations to be short term in the sense that learning, modification of the

background knowledge, change of revision strategy etc. do not take place. The only thing

that happens during the time of observation is that the agent incorporates the revision inputs.

With respect to the third scenario (reasoning about an expert’s background knowledge), if

we observe the expert reasoning about several cases, the expert starts in the same initial

state in each case. That is, the different cases are treated independently and we assume that

the expert does not learn from case to case.

We do not investigate strategies for extracting as much information as possible. The observ-

ing agent simply uses the information provided to reason along the way, being passive in

that sense. That is, our focus is not on the elicitation of information about other agents; the

question of optimising the reasoning process by providing the expert with interesting cases

or putting agents in a setting where observations yield the most precise results is another

interesting topic which we do not pursue.

For real world applications many of these assumptions have to be dropped or weakened.

Many of the issues we disregarded will have to be taken into account. But for the moment

we try to keep the number of free variables low in order to give more precise formal results.

Further, even in this very restricted setting we will able to draw interesting conclusions.

Also, we will show (in particular in Section 2.8) that even if these assumptions are correct,

there are very strict limitations to what we can safely conclude about the observed agent.



Chapter 2

The Rational Explanation

2.1 The function f

In this section, we will introduce the function f . It will be used for the definition of the

belief revision framework we assume the observed agent to employ. The properties of f play

a central role for the results presented in this thesis. They will be used in many of the proofs

which is why we collect them in a separate section.

The argument of f is a non-empty sequence of formulae and it returns a single formula. For

readability we omit the outer parentheses of the sequence and write f (βk, . . . , β1) instead of

f ((βk, . . . , β1)). The reversed order of subscripts in the definition just indicates that formulae

later in the sequence take priority over those before. The order of formulae in a sequence σ

is not changed when passed to f (σ) as an argument.

Definition 2.1.

f (βk, . . . , β1) =


β1 , k = 1

βk ∧ f (βk−1, . . . , β1) , k > 1 and βk ∧ f (βk−1, . . . , β1) 6` ⊥

f (βk−1, . . . , β1) , otherwise

First note that f (σ) returns the conjunction of a subset of the formulae contained in

σ = (βk, . . . , β1) . A first important property is that the resulting formula is inconsistent

exactly in those cases where the last element β1 of its argument sequence was inconsistent.

In all other cases the result is consistent — even if {β1, . . . , βk} is an inconsistent set of for-

mulae. It is easy to see that Cn(f (σ)) = Cn({β1, . . . , βk}) in case the latter set is consistent.

f can thus be seen as a particular form of reasoning from an inconsistent knowledge base

(see, e.g., [4, 5, 27, 84]).

13
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Proposition 2.2. f (βk, . . . , β1) ≡ ⊥ if and only if β1 ≡ ⊥.

The next proposition illustrates how f (σ) operates on the sequence σ. It takes the last

element (even if it is inconsistent) of the sequence and then goes backwards through σ, adding

a formula as a new conjunct if this can be done consistently. If a formula is inconsistent with

what has been collected so far then it is simply left out.

Proposition 2.3. For all formulae β, βi and all sequences σ and σ′:

(i) f (β · σ) = f (β, f (σ)), implying

(ii) f (βk, . . . , β1) = f (βk, f (βk−1, f (. . . , f (β1) . . . ))) and

(iii) f (σ · σ′) = f (σ · f (σ′)).

This procedure basically corresponds to linear base revision [70], which we denote here by ∗L.1

(α1, . . . , αm)∗Lα is equivalent to f (α1, . . . , αm, α). However, the mode of the calculation has

a subtle difference. Whereas f (α1, . . . , αm, α) starts off with α and adds from (α1, . . . , αm)

whatever can be added consistently, ∗L starts with αm proceeding as follows. A formula

is added in case its addition does not make ¬α inferable. Finally, α is added to the set

thus constructed. But this means that the formula revised by is always believed, which

corresponds to prioritised revision. We will later use f in a way that allows us to model

non-prioritised revision — simply by not placing α in the last position of the sequence.

Proposition 2.4 expresses that f is syntax-independent. We can substitute any formula in

a sequence by a logically equivalent one and f will return an equivalent formula for that

sequence. This property will often be used implicitly without reference to the proposition.

Proposition 2.4. If β ≡ β′ then f (α, β) ≡ f (α, β′) and f (β, α) ≡ f (β′, α).

Example 2.5. We want to calculate f (r, p, p→ q,¬q). By Proposition 2.3 this is equivalent

to f (r, f (p, f (p→ q, f (¬q)))). f (¬q) = ¬q corresponding to the first case in definition 2.1.

f (p→ q, f (¬q)) = (p → q) ∧ ¬q ≡ ¬p ∧ ¬q as this is consistent, which requires the second

case of that definition to be applied. So, up to now f (r, f (p, f (p→ q, f (¬q)))) reduces to

f (r, f (p,¬p ∧ ¬q)). However, p is inconsistent with ¬p ∧ ¬q, so it is left out (case 3) and

we finally arrive at f (r,¬p ∧ ¬q) = r ∧ ¬p ∧ ¬q.

Proposition 2.6. f (βk, . . . , β1) ` βi or f (βk, . . . , β1) ` ¬βi for all 1 ≤ i ≤ k.

Proposition 2.6 tells us that for any formula βi appearing in the sequence, βi itself or its

negation ¬βi is entailed by the resulting formula. So f (σ) cannot be agnostic about any

element of σ. Proposition 2.7 expresses that extending a sequence by a formula β that is

already entailed has no immediate impact.

1It is thus the special case of preferred subtheories [19] where all ranked sets of formulae are singletons.
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Proposition 2.7. For consistent α: If α ` β then f (α, β) ≡ f (α).

For tautologies and contradictions there is a much more general result. They can be inserted

(or deleted) anywhere in the proper prefix of an argument sequence without any impact.

Even if the argument sequence is extended at the end in an arbitrary way, the formula

constructed will be equivalent. The restriction that the tautology generally may not be

inserted or deleted at the very end is due to the treatment of contradictions in the last

position. Appending a tautology will turn the resulting formula consistent, appending a

contradiction will turn it inconsistent.

Proposition 2.8. For all sequences of formulae σ, ρ1 and ρ2 (ρ2 being non-empty) we have

f (ρ1 · > · ρ2 · σ) ≡ f (ρ1 · ρ2 · σ) and f (ρ1 · ⊥ · ρ2 · σ) ≡ f (ρ1 · ρ2 · σ).

A similar result exists also for the case that some formula β is inconsistent with the last

element of the sequence. The presence or absence of β in a proper prefix of that sequence

has no impact on the formula constructed.

Proposition 2.9. If α ` ¬β then f (ρ · β · σ · α) ≡ f (ρ · σ · α) for all sequences ρ, σ.

Proposition 2.10 tells us that if the formulae collected from a sequence do not contradict a

formula α then α can be inserted anywhere in the sequence. The results are all logically

equivalent. It is not possible to conclude that in these cases the added formula has no

impact whatsoever — when considering a further formula added to the sequence, presence

and position of α do indeed matter!

Proposition 2.10. If f (σ1 · σ2) 6` ¬α then f (σ1 · α · σ2) ≡ f (σ1 · σ2) ∧ α.

Example 2.11. As f (p ∧ q) ` q, f (p ∧ q, q) ≡ f (p ∧ q) = p∧ q, but f (p ∧ q, q,¬p) = q ∧¬p
and f (p ∧ q,¬p) = ¬p are not equivalent.

f (p, q) 6` ¬r, so f (r, p, q) ≡ f (p, r, q) ≡ f (p, q, r) ≡ p ∧ q ∧ r, but f (p, q,¬r, r), f (p, q, r,¬r)
and f (p, q,¬r) ∧ r are all logically different.

The first part of this example shows that appending a formula already entailed is not com-

pletely without effect as might be carelessly concluded from Proposition 2.7. The second

part illustrates that similar care is necessary when applying Proposition 2.10.

The next proposition applies Proposition 2.10, showing that the formula not contradicting

f (σ) cannot only be inserted into the sequence but also be conjoined with its last element.

The limitation illustrated in the above example still applies, of course. For further modifi-

cations of the sequence, the equivalence need not carry over.
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Proposition 2.12. If f (σ · α) 6` ¬β then f (σ · α ∧ β) ≡ f (σ · α) ∧ β

Proposition 2.13 shows the impact of transforming the first element of a sequence into an

implication for the case that the antecedent or its negation is entailed by what is collected

from the remainder of the sequence. In the first case the transformation has no impact, i.e.,

an equivalent formula is returned. In the second, the modified formula could simply have

been omitted.

Proposition 2.13. (i) If f (σ) ` α then f (α→ β · σ) ≡ f (β · σ)

(ii) If f (σ) ` ¬α then f (α→ β · σ) ≡ f (σ)

Example 2.14. (i) f (r, p) = r ∧ p ≡ (p→ r) ∧ p = f (p→ r, p).

(ii) f (¬p→ r, p) = (¬p→ r) ∧ p ≡ p = f (p)

The last property of f which we want to present relates a sequence of formulae to any of its

prefixes, given that a common formula is appended to both of them.

Proposition 2.15. Either f (σ · ρ · α) ` ¬f (σ · α) or f (σ · ρ · α) ` f (σ · α)

2.2 A’s assumed Belief Revision Framework

We already mentioned that we will assume the observed agent A to employ a particular belief

revision framework. As we deal with sequences of revisions it will obviously need to allow

for iterated revision. Further, we should not assume that all inputs received will be believed

by the agent. Some inputs may contradict strong beliefs or knowledge of the agent and will

hence be rejected. We cannot require an agent to accept a revision input like “Manchester

is the home of the Beatles”. Also, we cannot expect to be provided with the information

whether a particular input is accepted or rejected by A. Consequently, the framework also

needs to allow for non-prioritised revision, i.e., revision not satisfying the success postulate.

In Section 1.2, we recalled total preorders on worlds as a possible representation of an agent’s

epistemic state and some corresponding revision operators. In this work we will assume A
to employ a revision framework that is a special instance of a family of frameworks — whose

underlying structure is also total preorders on worlds — that was studied in [8]. However,

we will not reason about the preorders directly but work with a syntactic representation

suggested there. We will establish the link between the two at the end of this section.

An agent’s epistemic state [ρ,N] is made up of two components: (i) a sequence ρ of formulae

and (ii) a single formula N. N stands for the agent’s set of core beliefs — the beliefs of

the agent it considers “untouchable”. We will see that one main effect of the core belief is
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that revision inputs contradicting it will not be accepted into the belief set of the agent and

hence that non-prioritised revision is possible. ρ represents the sequence of revision inputs

the agent has received thus far, so it can be interpreted as the record of the agent’s revision

history.2 Revision by a formula is carried out by simply appending it to ρ. The agent’s full

set of beliefs Bel([ρ,N]) in the state [ρ,N] is then determined by a particular calculation on

ρ and N using the function f which we introduced in the previous section.

Definition 2.16. Given an epistemic state [ρ,N] and a formula ϕ, the revision operator ∗
is defined by

[ρ,N] ∗ ϕ = [ρ · ϕ,N]

This way, iterated revision is handled quite naturally by the framework. All revision steps

are simply recorded and the problem of what the agent is to believe after each revision step,

in particular whether the input just received is accepted, i.e., is believed, is deferred to the

calculation of the beliefs in an epistemic state.

Definition 2.17. The set of beliefs Bel([ρ,N]) in the epistemic state [ρ,N] is

Bel([ρ,N]) = Cn(f (ρ · N)).

So in order to calculate its set of beliefs, the agent starts with its core belief N and then goes

backwards through ρ, adding a formula as an additional conjunct if the resulting formula is

consistent. The belief set of the agent then is the set of logical consequences of the formula

thus constructed. Note that we do not prohibit the core belief N to be inconsistent in which

case the belief set of the agent is inconsistent. From the definition and Proposition 2.2 it

follows immediately that Bel([ρ,N]) is inconsistent if and only if N is inconsistent.

While f basically corresponds to linear base revision ∗L [70], ∗ is slightly different. Our belief

revision operation places the input ϕ in the last but one and not in the last position. Thus,

[ρ,N]∗ϕ corresponds to ρ·ϕ∗LN or equivalently to ρ∗Lf (ϕ,N). The core belief is always more

important than the latest revision input ϕ. Consequently, in terms of linear base revision,

the core belief can be interpreted as an input received after every regular revision input. Note

also that the latest revision input, provided it is consistent with the core belief, is always

considered to be more important than any revision input received before. This means that

the belief revision framework we assume A to employ equates recency with importance. The

following example illustrates the revision process and the calculation of the agent’s beliefs.

2We believe the interpretation of ρ as revision history to be not as important. Essential for our work is

the fact that the epistemic state is another way of looking at a total preorder on worlds which in turn is one

representation for conditionals. In the first part of this thesis, we will propose a way to construct a state A
may have had immediately before the observation started. This state will obviously not contain the agent’s

true revision history, but one whose future behaviour is as close to the true one as possible.



18 CHAPTER 2. THE RATIONAL EXPLANATION

Example 2.18. Consider the epistemic state [(),¬p] of an agent. Its beliefs in this state

are Cn(f (¬p)) = Cn(¬p). If q is received as a new input then the resulting epistemic state

is [(),¬p] ∗ q = [(q),¬p]. The corresponding beliefs are Cn(f (q,¬p)) = Cn(q ∧ ¬p).

A further input q → p changes the epistemic state to [(q, q → p),¬p]. q cannot be consistently

added as f (q, q → p,¬p) = (q → p) ∧ ¬p , so now the agent believes the logical consequences

of ¬q ∧ ¬p.

The revision input p changes the epistemic state to [(q, q → p, p),¬p] but the beliefs remain

unchanged, as p contradicts the core belief.

Upon receiving a revision input ϕ, it is believed by the agent if and only if it is consistent

with the core belief N (provided N is consistent). This is the direct effect of the core belief

and the reason why the assumed belief framework is one for non-prioritised revision. But the

example also illustrates an indirect effect of N. After receiving q, the agent believed q, but

after then receiving q → p it believed ¬q — in the light of the core belief ¬p, the belief in q

cannot be maintained. So, although revision inputs may not contradict each other directly,

they may in presence of the core belief. In other words, the core belief not only blocks some

inputs from being introduced into the belief set, but it also accounts for interaction between

different inputs.

Definition 2.19. Given a sequence of revision inputs (ϕ1, . . . , ϕn) the belief trace

(Bel[σ,N]
0 , Bel

[σ,N]
1 , . . . , Bel

[σ,N]
n ) of an epistemic state [σ,N] is the sequence of formulae

Bel
[σ,N]
0 = f (σ · N) and Bel[σ,N]

i = f (σ · (ϕ1, . . . , ϕi,N)), 1 ≤ i ≤ n.

This definition will allow us to talk about the evolution of the agent’s beliefs. The belief

trace characterises the beliefs of an agent at every point of the revision process starting in

its initial state [σ,N]. We will abbreviate Bel[σ,N]
i by Belσi , provided N is fixed. Also, we

will refer to the belief trace of the “agent” rather than the “epistemic state”. Note that

Belσi is not the set of beliefs of the agent after the ith revision step but a formula uniquely

determining those beliefs, i.e., Bel([σ,N] ∗ϕ1 ∗ · · · ∗ϕi) = Cn(Belσi ). The agent’s belief trace

in example 2.18 is (¬p, q ∧ p,¬q ∧ ¬p,¬q ∧ ¬p).

An interesting property — and possibly one of the drawbacks — of the assumed framework

is the following one. It expresses that the agent will always be clear about the status of a

revision input it once received. The input itself or its negation will be believed at any point

in the future. A will never forget about an input. It may, however, forget about some logical

consequences of inputs.

Proposition 2.20. Bel([(ϕ1, . . . , ϕn),N]) ` ϕi or Bel([(ϕ1, . . . , ϕn),N]) ` ¬ϕi for all

1 ≤ i ≤ n .
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Example 2.21. Consider the epistemic state [(p ∧ q),>]. Clearly, A’s beliefs are Cn(p∧ q)
in this state. After revising by ¬p, the state is [(p ∧ q,¬p),>] and the agent’s beliefs are

Cn(¬p), so it ceased to believe q. However, the negation ¬p ∨ ¬q of the first input p ∧ q is

in the belief set.

Proposition 2.22. If Bel([ρ,N]) ` ϕ then Bel([ρ,N] ∗ ϕ) = Bel([ρ,N]).

This proposition tells us that revising by a formula the agent already believes has no im-

mediate impact on the belief set. This does not mean that the input has no effect. As it is

included into the agent’s epistemic state, it may make implicit beliefs explicit and thereby

strengthen them against elimination from the belief set.

Example 2.23. Given the epistemic state [(p ∧ q),>] of an agent, its belief set is Cn(p∧q).
Proposition 2.22 tells us that after revising by p the belief set remains unchanged. The belief

state after a further revision step with input ¬q is [p ∧ q, p,¬q,>] and the corresponding

belief set is Cn(p ∧ ¬q). However, if the agent had not received p, the final state would be

[p ∧ q,¬q,>], the corresponding belief set being Cn(¬q), so in this case p is not believed.

Proposition 2.10 which is used in the proof allows us to go even a step further. With respect

to the agent’s beliefs immediately after revising by a formula ϕ, it plays no role at all where

ϕ is inserted in the sequence of its received formulae — provided that ϕ is consistent with its

current beliefs. However, for further revision steps it plays an essential role which priority

(which is reflected by the position within the sequence) each formula has.

In case the revision input is a tautology, Proposition 2.8 tells us that not only the beliefs

after receiving it are the same but also that the beliefs after any sequence of further inputs

will be the same. That is, a tautology has no impact. Applicability of that proposition is

guaranteed, as the last element of the sequence passed to f for calculating the belief set is

the core belief, so the revision input > is placed in a proper prefix of that sequence.

A very important property of the framework is that A’s beliefs after several revision steps

starting in an initial state can equivalently be expressed as the beliefs after a single revision on

the same initial state. Note that this can be interpreted — in the spirit of [24] — as merging

the revision inputs received over time into a single one and then revising by the resulting

formula. In our framework the merging and revising is done using the same method. Note

that this property talks only about the beliefs. The resulting epistemic states will generally

be different.

Proposition 2.24. Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕi) = Bel([ρ,N] ∗ f (ϕ1, . . . , ϕi,N))

Example 2.25. Bel([(),¬p] ∗ q ∗ q → p ∗ p ∗ q ∧ r) = Bel([(q, q → p, p, q ∧ r),¬p]) which is

equivalent to Cn(¬p∧ q ∧ r). Bel([(),¬p] ∗ f (q, q → p, p, q ∧ r,¬p)) = Bel([(¬p ∧ q ∧ r),¬p])
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yielding the same set of beliefs. However, if we consider a further input ¬r w.r.t. the resulting

epistemic states, the belief sets differ. Bel([(q, q → p, p, q ∧ r),¬p] ∗ ¬r) = Cn(¬p ∧ ¬r ∧ ¬q)
while Bel([(¬p ∧ q ∧ r),¬p] ∗ ¬r) = Cn(¬p ∧ ¬r). In connection with Proposition 2.41, we

will give a hint as to why the equivalence does not carry over when considering a further

revision step. The epistemic states after a sequence of revision steps and the corresponding

single revision are generally different.

One characteristic property of the agent model is the following variant of the rule “Recal-

citrance” from [68] which is closely related to the property given in Proposition 2.20. This

variant is suggested in [8] and states that if the agent believes an input ϕ1, then it does so

wholeheartedly, in that the only way it can be dislodged from the belief set by a succeeding

input ϕ2 is if that input contradicts it given the core beliefs N. We have already seen this

happening in Example 2.18. Proposition 2.24 entails that ϕ2 might also be the result of a

series of revision inputs, i.e., ϕ1 is believed until several succeeding inputs contradict it in

the light of N.

Proposition 2.26. If N 6` (ϕ2 → ¬ϕ1) then Bel([ρ,N] ∗ ϕ1 ∗ ϕ2) ` ϕ1

If we are not given the epistemic state of the agent, we cannot say anything about the

revision history. We can prove no general property of the interaction of inputs received.

This is because any input may have been received at any point in time. The following

proposition tells us that no matter what the revision history ρ of the agent has been up to

now, there is another revision history σ that will yield exactly the same revision behaviour

from now on. But σ has a particular characteristic — up to now the agent has received

inputs becoming logically increasingly stronger. In other words, each input logically entails

its predecessor, i.e., the revision history σ is a logical chain. So, with respect to the agent’s

future revision behaviour we can act as if its past inputs were in the form of a logical chain.

The proposition deals only with a single revision step, but from Proposition 2.24 we know

that the beliefs after any sequence of revision steps can be characterised by a single revision.

Proposition 2.27. For any epistemic state [ρ,N], there exists an epistemic state [σ,N], such

that σ is a logical chain and for all ϕ:

Bel([ρ,N] ∗ ϕ) = Bel([σ,N] ∗ ϕ)

To give an example, the epistemic state [(p ∨ q, q, p ∧ q),>] will yield the same beliefs given

any sequence of future revision inputs as [(p, q),>]. Note that (p ∨ q, q, p ∧ q) is a logical

chain whereas (p, q) is not. For the remainder of this thesis, Proposition 2.24 is of extreme

importance as it allows us to view a sequence of revisions as a set of single revision steps in
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the same initial state. We exploit this property of the belief revision framework for reasoning

about the agent. Proposition 2.27 is of technical importance for a number of proofs as it

allows us to restrict our attention to epistemic states [ρ,N] where ρ is a logical chain.

[ρ,N], ∗ and total preorders on worlds We have now described the belief revision

framework the observed agent A is assumed to employ. As mentioned before, the epistemic

state consisting of a core belief and a sequence of formulae can be seen as a syntactic repre-

sentation for a total preorder on worlds. In the remainder of this section, we will illustrate

this connection in more detail. We will make extensive use of results presented in [8].

First, we want to position the framework with respect to the AGM-postulates which we gave

in Section 1.2. An epistemic state [ρ,N] with an inconsistent core belief is not interesting as

then the beliefs will be inconsistent for all sequences of revision inputs that may be received

by A. So assume N to be consistent. When restricting our attention to revision inputs

which are consistent with the agent’s core belief N, we can show that all AGM-postulates

are satisfied by ∗. By Definitions 2.17 and 2.16 closure is trivial. To see that success holds

recall that an input is accepted if and only if it is consistent with the core belief. If the input

is inconsistent with the current belief set then inclusion is trivial, otherwise Proposition 2.10

yields that revision amounts to adding the revision input and closing the beliefs under logical

consequence. Hence, inclusion and preservation are satisfied. Under the current assumptions

the revision input cannot be inconsistent and as the core belief is consistent the belief set

will always be consistent — yielding consistency. Proposition 2.4 yields equivalence and a

variant of Proposition 2.12 can be used to prove that superexpansion and subexpansion hold

as well.

If the revision input ϕ is inconsistent with N then Proposition 2.9 yields that we can act as

if that input has not been received at all. Assuming [ρ,N] to be the agent’s epistemic state,

let α = N, β = ϕ and σ be any sequence of revision inputs received after ϕ. In particular,

after having received such a formula ϕ the belief set remains unchanged.

This method of using an AGM-revision operator in case the revision input is consistent with

the core beliefs and leaving the belief set unchanged otherwise is what [8] calls a regular

revision operator. And for each such operator there is a corresponding total preorder on

worlds. Minimal worlds in that preorder correspond to the belief set and minimal ϕ-worlds

(ϕ being consistent with the core beliefs) to the beliefs after revision by ϕ.

Note that ∗ is a core-invariant revision operator (Definition 2 in [8]), i.e., core beliefs before

and after any revision are exactly the same. Together with the general property of core

beliefs being a subset of the agent’s belief set, this yields that the total preorder always

strictly prefers worlds satisfying the core beliefs over worlds that do not (Proposition 1 in
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[8]). As revision inputs contradicting the core N are always rejected, we basically deal with

a total preorder that contains all N-worlds but no ¬N-world.

We showed in Proposition 2.26 that ∗ satisfies the property (C5’) from [8]. Proposition 5 in

that paper yields that in this case ∗ also satisfies the Darwiche and Pearl (DP) postulates

(C3) and (C4) which state that if ψ is believed (¬ψ is not believed) after revision by ϕ then ψ

is believed (¬ψ is not believed) after first revising by ψ and then revising by ϕ. The first two

DP postulates cannot be satisfied in general. However, ∗ satisfies the following two variants

(C1’) and (C2’) suggested in [8].3 The following list contains the properties in terms of our

assumed belief revision framework.

(C1’) If N 6` ¬ϕ and ϕ ` ψ then Bel([ρ,N] ∗ ψ ∗ ϕ) = Bel([ρ,N] ∗ ϕ)

(C2’) If N 6` ¬ϕ and ϕ ` ¬ψ then Bel([ρ,N] ∗ ψ ∗ ϕ) = Bel([ρ,N] ∗ ϕ)

(C3) If Bel([ρ,N] ∗ ϕ) ` ψ then Bel([ρ,N] ∗ ψ ∗ ϕ) ` ψ
(C4) If Bel([ρ,N] ∗ ϕ) 6` ¬ψ then Bel([ρ,N] ∗ ψ ∗ ϕ) 6` ¬ψ
(C5’) If N 6` (ϕ2 → ¬ϕ1) then Bel([ρ,N] ∗ ϕ1 ∗ ϕ2) ` ϕ1

Given these properties Propositions 3 and 4 from [8] allow us to make the following statements

about how the total preorder on worlds corresponding to an epistemic state [ρ,N] changes

upon revising it by a formula ϕ. We already argued that only N-worlds are present in the

preorder and that if ϕ is not consistent with N then nothing changes. So let N ∧ ϕ be

consistent. The order among ϕ-worlds remains untouched. The order among ¬ϕ-worlds

remains unchanged, as well. However, after the revision every ϕ-worlds will be strictly

preferred to any ¬ϕ-world. In other words, modulo the treatment of inputs contradicting

the core belief which do not change the preorder at all, the assumed revision operation

corresponds to Nayak’s lexicographic revision [67] which we illustrated in Section 1.2.

Viewing the total preorder on worlds as a ranking of these worlds, iterated revision will refine

the ranking, splitting up ranks and thus yielding more and more pairs of worlds where one is

strictly more plausible than the other. Note that this is another way to illustrate Proposition

2.20. The splitting up of ranks of worlds cannot be undone in this framework. Worlds that

were once placed into different ranks will never again meet in the same one, no matter what

revision inputs will be received. So, the agent can never again be agnostic about the status

of an input ϕ once received. As the input ϕ splits every rank into ϕ- and ¬ϕ-worlds, the

lowest rank will henceforth contain either only ϕ-worlds or only ¬ϕ-worlds.

The epistemic state [(),N] corresponds to the total preorder which contains only N-worlds

and all of them are equally plausible, i.e., they are all in the lowest rank. The belief set

3The key to the proof, which looks very much like that for Proposition 2.9, is that since N 6` ¬ϕ and

ϕ ` (¬)ψ we have that f ((ψ,ϕ) · N) = f (ϕ · N) = ϕ ∧ N.
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Bel([(),N] ∗ ϕ) is Cn(N ∧ ϕ) if ϕ is consistent with N and Cn(N) if it is not. So all N-

worlds must be equally plausible as otherwise the beliefs after revision would be stronger for

some input ϕ. This gives us a method for transforming a state [(ϕ1, . . . , ϕn),N] into a total

preorder on worlds. We simply start with the preorder for [(),N] and revise it with ϕ1 using

the procedure described above. The resulting preorder is then revised by ϕ2 and so on.

If a formula ϕ is already believed, which means that all minimal worlds satisfy ϕ, revision

by that formula does not modify the lowest rank of worlds. This corresponds to Proposition

2.22. However, the other ranks may change, i.e., although the belief set is not affected by

the revision, the epistemic state may well be. Analogously, a single revision may suffice to

get the same lowest rank as after a sequence of revisions and hence yield the same beliefs

(Proposition 2.24), but in general it is not possible to get the same resulting total preorder

on worlds. This is easy to see when viewing the preorder as a ranking of worlds. A single

revision step can only double the number of (non-empty) ranks, two revision steps however

may quadruple that number.

In the framework we use, ρ can be interpreted as the actual revision sequence bringing A from

the preorder where there is only one rank containing all N-worlds to its current one. However,

there are many (infinitely many, to be precise) revision sequences doing that. The result in

Proposition 2.27 can be illustrated as follows. Assume [ρ,N] is a state whose corresponding

total preorder on worlds has n ranks (as we assume a finite language there can only be a

finite number of ranks). The agent could have arrived at the same preorder (in retrospect)

by starting in the epistemic state [(),N] first revising by a formula that corresponds exactly

to the worlds contained in the lowest n− 1 ranks,4 then by one corresponding to the lowest

n − 2 ranks and so on. Due to the subset relation among sets of worlds, the corresponding

formulae will become increasingly stronger. In the end, the agent’s revision history will be

a logical chain and the preorder on worlds will be the same as for ρ. Hence, future revisions

will have exactly the same effect.

The same method can be used for finding an epistemic state [σ,N] for any total preorder on

worlds. N is the formula corresponding to all worlds present in the preorder. Then [σ,N]

is constructed starting in [(),N] proceeding as described above. Note that each epistemic

state [ρ,N] gives rise to a unique total preorder on worlds but that the converse never holds.

When we talk about two epistemic states having the same (future) belief revision behaviour

this is what is meant. They give rise to the same total preorder on worlds which in turn

completely determines the beliefs for any sequence of revision inputs.

An agent may receive an enormous number of revision inputs which is reflected in the length

4Interpreting a world as a conjunction of literals, the formula corresponding to a set of worlds is equivalent

to the disjunction of the corresponding conjunctions.
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of the sequence ρ of its epistemic state [ρ,N]. Obviously, we are unable to deal with infinite

sequences in the current setting, but we still can say something about the convergence

towards an infinite sequence. The above considerations about the interpretation of the

revision framework in terms of a total preorder on worlds have several implications. As each

revision input potentially refines the order, assuming a finite language, at some point the

agent’s epistemic state may be represented by a total order on worlds which means that from

that point on the lowest rank will contain a single world — either the one the agent already

believes or the most plausible one consistent with the last accepted revision input.

The agent’s beliefs need not converge towards a belief held for all times, as can be easily seen

from a sequence of revision inputs like ρ = (p,¬p, p,¬p, . . . ) the core belief entailing neither

p nor ¬p. The beliefs need not even repeat themselves periodically, as the inputs p and ¬p in

this example might take turns in a non-periodic way. So, even considering a language with

only one propositional variable, the evolution of beliefs of the agent can be non-trivial.

In the remainder of Chapter 2 and in Chapter 3, we will assume that the observed agent A
employs the framework presented in this section for representing its epistemic state and for

revising and calculating its beliefs. In Chapter 4, we will also look at some slightly different

frameworks which we will introduce then.

2.3 Observations and their explanations

After having described the observed agent’s assumed belief revision framework, we now turn

to the specific information we receive about a particular agent A— some observation o on its

belief revision behaviour. In this section, we want to define this term precisely and formally

describe when an initial epistemic state explains o. We will use the term initial state to

talk about the agent’s state immediately before the observation started, not the state at the

beginning of its life. An observation contains information about revision inputs A received,

what it believed and did not believe upon receiving them. We will not deal with the question

of how such an observation is obtained. Our motivating scenarios illustrated some settings

in which information about revision inputs, beliefs and non-beliefs may be available, but

we will not investigate how sensory data, communication protocols, case data, etc. can be

transformed into the required format.

Definition 2.28. An observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 is a sequence of triples

(ϕi, θi, Di), where for all 1 ≤ i ≤ n: ϕi, θi, and all δ ∈ Di (Di is finite) are elements of a

finitely generated propositional language.

We will denote the sequence of all revision inputs (ϕ1, . . . , ϕn) by ι and a prefix (ϕ1, . . . , ϕi)

of length i of that sequence by ιi.
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The definition of the syntax of an observation is not really useful without a meaning attached

to it. The intuitive interpretation of an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 is as

follows. After having received the revision inputs ϕ1 up to ϕi starting in some initial epistemic

state, A believed at least θi but did not believe any element of Di. We assume that during

the time of the observation A received exactly the revision inputs recorded in o, in particular

we assume that no input was received between ϕi and ϕi+1, the observation being correct

and complete in that sense.5 For the θi and Di we assume the observation to be correct but

possibly partial, i.e., the agent did indeed believe θi and did not believe any δ ∈ Di, but

there may be formulae ψ for which nothing is known. In this case we have both θi 6` ψ and

ψ 6` δ for any δ ∈ Di. Note that complete ignorance about what the agent believed after a

certain revision step can be represented by θi = > and complete ignorance about what was

not believed by Di = ∅.

As the agent’s beliefs are closed under logical consequence (see Definition 2.17), we know

that any element of Cn(θi) belongs to its beliefs after having received the first i revision

inputs recorded in the observation. We will refer to the elements of Di as non-beliefs6 as

these formulae do not belong to the agent’s belief set. Note that any δ′ such that δ′ ` δ for

some δ ∈ Di implicitly belongs to the non-beliefs as well. It is not possible to encode the

non-beliefs from Di as a single (propositional) formula. This fact is familiar from modal logic

(¬�ϕ1 ∧ ¬�ϕ2 cannot generally be rewritten to some ¬�ϕ). A may believe neither p nor

¬p. Further, not believing p and q is different from not believing p ∧ q or p ∨ q. Hence, the

formulae not believed by the agent after a revision step are recorded as a set Di of formulae.

The observation does not necessarily give away explicitly whether a revision input was actu-

ally accepted into A’s belief set or not. If θi ` ϕi then the revision input ϕi must have been

accepted. As the beliefs recorded in o are correct, θi must be consistent with the agent’s core

belief N. Hence, ϕi is also consistent with N and consequently must have been accepted. If

θi ` ¬ϕi or ϕi ` δ for some δ ∈ Di then it must have been rejected as otherwise it would

have to be believed, contradicting the information in o. But if none of these conditions hold,

it is not obvious whether an input has been accepted or rejected. Often, neither of these

two cases can be excluded. One of the aims of our investigation is to draw more precise

conclusions with respect to this question. Recall that the question of whether a revision

input is accepted or rejected by the agent depends on its core belief only.

A given observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 covers only a certain length of time

5We will relax this assumption in Chapter 3.

6We use the term non-belief rather than disbelief as for us the latter is attached to a stronger notion.

While a formula θ may simply not be entailed by the agent’s beliefs, a disbelief in θ implies that the agent

actively rejects θ to be among its beliefs. The observation does not express which of the two cases applies, so

we settle for the more neutral term.
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of the agent’s revision history. In particular, the agent will have received inputs before

the observation started. In other words, when the observation started, A already was in

some epistemic state [ρ,N]. We will give the formal conditions for an initial state to explain

an observation o. The intuitive interpretation of o is formally captured by the system of

relations in the second condition of the definition.

Definition 2.29. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉. Then [ρ,N] explains o (or is an

explanation for o) if and only if the following two conditions hold.

1. N 6` ⊥

2. for all i such that 1 ≤ i ≤ n:

Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕi) ` θi and

∀δ ∈ Di : Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕi) 6` δ

We say N is an o-acceptable core iff [ρ,N] explains o for some ρ.

For us an explanation of a given observation o is an epistemic state that verifies the infor-

mation in o and has a consistent core belief. It is (conceptually) easy to check whether an

epistemic state [ρ,N] is an explanation for o. It suffices to confirm that the conditions in

Definition 2.29 are satisfied, i.e., that N is consistent and for all i f (ρ · (ϕ1, . . . , ϕi,N)) ` θi
and f (ρ · (ϕ1, . . . , ϕi,N)) 6` δ for any δ ∈ Di.

Example 2.30. (i) [ρ,N] = [(p→ q), r] explains 〈(p, q, ∅), (q, r, ∅)〉 because f (p→ q, p, r)

and f (p→ q, p, q, r) are equivalent to p ∧ q ∧ r which entails q and r.

(ii) [(p→ q),>] does not explain 〈(p, q, ∅), (q, r, ∅)〉 because f (p→ q, p, q,>) ≡ p ∧ q 6` r.

(iii) [(p→ q),>] does not explain 〈(p,>, {q})〉 because f (p→ q, p,>) ≡ p ∧ q ` q.

The following proposition informs us about the computational complexity of that test.

Proposition 2.31. The decision problem of whether [ρ,N] explains an observation o is ∆P
2 -

complete.

A state with an inconsistent core belief satisfies the second condition in Definition 2.29 if

and only if Di = ∅ for all i, so there are observations that could be explained by such a state.

However, we do not consider claiming the agent to be inconsistent worthy of being called an

explanation.

Example 2.32. Consider the observation o = 〈(p, p, ∅), (q, q, ∅)〉. Intuitively, it expresses

that after A received p and q, it did indeed believe those formulae, but tells us nothing about

what is not believed. The following epistemic states are (a very small selection of the)

explanations for o: [(), p ∧ q], [(p ∧ q),>], [(r, s),¬p ∨ ¬q], [(),>].
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This illustrates that generally there are many different explanations, even with different

o-acceptable cores, for a single observation o. For the observation in Example 2.32 any

epistemic state [ρ,N] such that N 6` ¬p and N 6` ¬q is an explanation. Recall that an

epistemic state defines a total preorder on worlds, which uniquely determines the agent’s

beliefs through a sequence of revisions. In general, there will be many such preorders that

give rise to explaining states. Moreover, there are infinitely many epistemic states [ρ,N]

representing the same total preorder on worlds. Hence we know that whenever there is one

explanation for o, there are infinitely many.

So, a first criterion for distinguishing different epistemic states is whether they are or are

not an explanation for an observation. The general method for reasoning about an observed

agent will be to select one explanation [ρ,N] and use it to draw conclusions.7 N determines

which formulae we predict to be accepted and rejected by the agent, and the belief trace

(Definition 2.19) allows us to complete the information on beliefs and non-beliefs during the

time of observation — even for an arbitrary sequence of revision inputs starting in the initial

state. Let us look at the implications of choosing one of the possible explanations in Example

2.32. There are implications, because the epistemic state of an agent completely determines

its future beliefs, i.e., what it will believe after an arbitrary sequence of revisions.

Selecting [(), p ∧ q] as the explanation implies the claim that the agent believed p and q even

before receiving them as inputs. A further claim is that A will never accept a revision input

entailing ¬p∨¬q. The explanation [(p ∧ q),>] shares the first claim that the revision inputs

did not change the belief set but does not assume the agent to reject any revision inputs.

[(r, s),¬p ∨ ¬q] implies that A believed r ∧ s before the recorded inputs were received, kept

believing that formula and that A cannot simultaneously believe both p and q.

The aim now is further to distinguish between better and worse explanations, i.e., potential

initial epistemic states. Here it is less clear what the criteria should be. Basically, it depends

on what the explanations are used for. If we choose an epistemic state [ρ,N] as the explana-

tion for an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 then we can answer the following

questions.

• Which of the revision inputs recorded in o were accepted and which were rejected?

Will the agent accept some other revision input ϕ? Here we would check whether the

formulae in question are consistent with the assumed core belief. If so, we conclude

they are accepted, if not, our conclusion is that they were rejected.

7It is a non-trivial task to find even one explanation for an observation. So we consider this to be a

good first step. As we will see, reasoning about all explanations is possible in some cases. Quantitative

considerations, such as investigating properties of the majority of explanations, are problematic and we will

carry out no investigations in that direction.
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• What did the agent believe immediately before the observation started? The answer

to this question obviously is Bel([ρ,N]), i.e., Cn(Bel[ρ,N]
0 ).

• What did the agent believe after the ith revision step? Here we just need to calculate

Bel([ρ,N] ∗ ϕ1 ∗ . . . ∗ ϕi) or equivalently Cn(Bel[ρ,N]
i ). Note that this question is not

without justification, as not all beliefs are recorded in the observation. So in particular

we might be interested in what else the agent believed, apart from θi.

• There is the question of future beliefs. What will the agent believe after receiving one

or more further inputs ψ1, . . . , ψj? The answer is Bel([ρ · (ϕ1, . . . , ϕn),N]∗ψ1∗ . . .∗ψj).
Using the notion of a belief trace we would use (ϕ1, . . . , ϕn, ψ1, . . . , ψj) as the sequence

of revision inputs.

• Similarly, we might wonder what the agent’s evolution of beliefs would have been when

receiving a totally different sequence of revision inputs. In this case, we would look at

the belief trace for A’s assumed initial state using that sequence.8

The quality of these answers depends on how close our explanation [ρ,N] gets to the actual

initial epistemic state of the agent. Depending on our choice of [ρ,N] the conclusions we

draw about A’s belief revision behaviour can vary greatly. Naturally, we would like to draw

conclusions we can support using the observation. In example 2.32, a possible explanation

was [(r, s),¬p ∨ ¬q]. If we were asked what the agent will believe after receiving the revi-

sion input p ∧ q, we would have to answer Cn(r ∧ s ∧ ¬p ∧ q). We would be wrong with

respect to all but the variable p, if we are informed that after a further revision by p ∧ q,
A believed p ∧ q and did not believe r or s, that is, if the observation was extended to

〈(p, p, ∅), (q, q, ∅), (p ∧ q, p ∧ q, {r, s})〉 .

Nothing in the original observation told us anything about r or s. Nothing indicated that p

and q could not be believed simultaneously by the agent. So there is insufficient justification

for choosing [(r, s),¬p ∨ ¬q] as the explanation. Note that we would not have been wrong

with respect to the extension of the observation had we chosen [(),>].

The following proposition tells us that if we have an explanation for some observation o

then we can immediately construct one for any subobservation of o, i.e., for any o′ such that

o = o1 · o′ · o2. More precisely, any o-acceptable core is also o′-acceptable. As a special case

we get that the same explanation can be used for any prefix of o.

8This problem is interesting, e.g., in the expert scenario. We may have observed the expert reasoning in

one case and want to predict what she might conclude in another one. We will discuss this scenario in Section

4.2.
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Proposition 2.33. If [ρ,N] is an explanation for o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 then

[ρ · (ϕ1, . . . , ϕj−1),N] explains o′ = 〈(ϕj , θj , Dj), . . . , (ϕj+k, θj+k, Dj+k)〉, 1 ≤ j + k ≤ n.

The contraposition then tells us that if N is not o′-acceptable, it cannot be o-acceptable. In

particular, if N is not 〈(ϕi, θi, Di)〉-acceptable for some i, it cannot be o-acceptable.

The essence of the remainder of this chapter is to give and justify criteria for comparing

epistemic states as well as to give a method for calculating an epistemic state that is best

with respect to these criteria. As we saw in the answers to the possible questions concerning

an observed agent, the core belief and the belief trace play an important role, determining

the conclusions we draw about A. So, the criteria for comparing epistemic states will focus

on these two aspects.

2.4 The weakest core belief

Given an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉, finding an o-acceptable core is not

trivial. Appendix B contains an example illustrating that a given observation o may have

extremely few o-acceptable core beliefs. Also, there are very simple examples showing that

almost nothing can be said about the o-acceptability of a formula given the status of its

subformulae, i.e., whether they are o-acceptable or not.

Example 2.34. Each cell in the following tables contains an observation o. A row heading

λ(+), where λ ∈ {p, q}, indicates that the formula λ is o-acceptable, λ(−) that it is not

o-acceptable. Column headings give the same information with respect to the formulae con-

structed from those in the row headings. Taking the last column of the middle row in the

second table as an example (o = 〈(¬q,¬q, ∅)〉), p is o-acceptable but q and p∧ q are not. The

case p(−), q(+) is essentially the same as p(+), q(−). We just need to interchange p and q

to get the corresponding examples.

¬p(+) ¬p(−)

p(−) 〈(p,>, {p})〉 〈(q,>, {q})〉
p(+) 〈(q, q, ∅)〉 〈(p, p, ∅)〉

p ∧ q(+) p ∧ q(−)

p(−) q(−) 〈(¬p,>, {¬p}), (¬q,>, {¬q})〉 〈(¬p,¬p, ∅), (¬q,¬q, ∅)〉
p(+) q(−) 〈(¬p,>, {¬p})〉 〈(¬q,¬q, ∅)〉
p(+) q(+) 〈(r, r, ∅)〉 〈(p↔ ¬q, p↔ ¬q, ∅)〉

p ∨ q(+) p ∨ q(−)

p(−) q(−) 〈(¬p,¬p, ∅), (¬q,¬q, ∅)〉 〈(r,>, {r})〉
p(+) q(−) 〈(¬q,¬q, ∅)〉 〈(¬p,>, {¬p})〉
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In the last table, the row for p(+), q(+) is missing. The reason is that in this case we have

a general result which is one of the key results for the work presented. It states that the

disjunction of any two o-acceptable cores will also be o-acceptable.

Proposition 2.35. If N1 and N2 are o-acceptable then so is N1 ∨ N2.

One consequence of this proposition is that in case at least one o-acceptable core exists,

there is a logically weakest o-acceptable core belief. It can be retrieved using the following

function mapping observations to formulae. Recall that we consider a finite language. This

entails that there are only finitely many logically different formulae. So although there may

be an infinite number of o-acceptable cores, there will be a formula that is equivalent to their

disjunction.

Definition 2.36.

N∨(o) =


∨
{N | N is o-acceptable} if an o-acceptable core exists

⊥ otherwise

By this definition N∨(o) is inconsistent if and only if there is no o-acceptable core. So, we

can read off whether an o-acceptable core exists. It is easy to see that any o-acceptable

core entails N∨(o), and by Proposition 2.35, N∨(o) is indeed o-acceptable, provided an o-

acceptable core exists at all. But why is this particular core so interesting? Recall that a core

belief of an agent A is a belief it will commit to at all times. Coming up with a belief that

is entailed by any possible core belief keeps us on the safe side with respect to conclusions

about the agent’s core belief. A will never accept an input contradicting the core belief, i.e.,

the weaker the core belief, the fewer formulae we will claim to be rejected. We are cautious

and formulae we claim to be rejected will be rejected by any possible o-acceptable core.

Proposition 2.37. The function N∨(·) satisfies the following properties of a function N(·)
mapping observations to formulae, for any observations o, o′:

(Acceptability) If an o-acceptable core exists then N(o) is o-acceptable.

(Consistency) If N(o) 6≡ ⊥ then there is an o-acceptable core.

(Right Monotony) N(o · o′) ` N(o)

(Left Monotony) N(o′ · o) ` N(o)

Acceptability and Consistency are minimal requirements we would expect to be satisfied by

any function that calculates the core belief to be used for explaining an observation. They

basically state that we are returned an o-acceptable core if there exists one and that if we are

returned a consistent formula it is indeed o-acceptable. Left Monotony and Right Monotony

express that we draw only safe conclusions about the core belief — conclusions that cannot
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be defeated by extensions of the observation. If Right Monotony was violated, it would be

possible to get N as core for o and N′ as core for o · o′ with N′ 6` N. But by Proposition

2.33 N′ is also o-acceptable and hence N ∨ N′ is o-acceptable. This means that we would

have attributed the agent a core belief that is stronger than necessary which is undesirable

as argued above. An analogous argument exists for the violation of Left Monotony. Hence,

we claim that these two properties should also be satisfied by a function yielding good o-

acceptable cores.

Proposition 2.38. Let N(·) be any function which returns a formula given any observation

o. Then the following are equivalent:

(i) N(·) satisfies Acceptability, Consistency and Right Monotony.

(ii) N(·) satisfies Acceptability, Consistency and Left Monotony.

(iii) N(o) ≡ N∨(o) for all observations o.

This proposition tells us that in the presence of Acceptability and Consistency, the properties

Left Monotony and Right Monotony turn out to be equivalent. More importantly, it shows

that N∨(·) is uniquely characterised by those properties — any function satisfying these

desirable properties will turn out to be equivalent to N∨(·).

This is a good time to comment on the assumption we made about the observations we

receive. We required that the agent did not receive any inputs between ϕi and ϕi+1, i.e., be-

tween neighbouring revision inputs in the observation. Left Monotony and Right Monotony

express that conclusions we draw about the core belief of an agent do not become invalid

when the observation is extended at the ends, i.e., when we get additional information about

what the agent received right before or right after receiving the revision inputs recorded in

the original observation. Such a property cannot be found when inserting some new observa-

tion somewhere in the original one. In these cases, acceptable cores may have to be logically

stronger, but they also may become weaker!

Example 2.39. Consider o = 〈(p, p, ∅), (q,¬p, ∅)〉 for which N∨(o) = q → ¬p. If the core

belief did not entail q → ¬p, p could not be blocked from being introduced into the belief set

and hence ¬p could not be believed consistently (see Proposition 2.26). If we now assume

the additional input ¬p (with no further information) between the inputs on record, we have

o′ = 〈(p, p, ∅), (¬p,>, ∅), (q,¬p, ∅)〉 and N∨(o′) = >.

This example shows that intermediate inputs may explain effects we had to attribute to the

core belief, in this case that p must be blocked. Relaxing the assumption means losing the

property of drawing safe conclusions, which is why we imposed it for the current chapter.

We will investigate the case where information about the inputs received is incomplete in

the next chapter.
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When choosing a particular epistemic state [ρ,N] for explaining an observation o, we propose

to use N ≡ N∨(o) as the core belief. It is entailed by any o-acceptable core which ensures

that any formula we predict A to reject will indeed be rejected. Using any other o-acceptable

core, this would not be the case.

2.5 Conditional beliefs and rational closure

As Example 2.32 indicated, generally there are many possible explanations [ρ,N] for an

observation o. Whereas the last section dealt with identifying a best o-acceptable core belief

N, this section will talk about ρ. In order to identify a suitable sequence, we will make use of

work dealing with conditionals. As noted before, the epistemic state of an agent corresponds

to a total preorder on worlds which in turn has been shown to define a rational consequence

relation. We will formally prove this property of the revision framework now and show a way

for translating an observation into a partial description of a rational consequence relation.

Completing this information allows us to come up with a potential initial state of the agent.

Definition 2.40. ϕ⇒[ρ,N] θ is a conditional belief (satisfied) in the epistemic state [ρ,N] if

and only if N ` ¬ϕ or Bel([ρ,N] ∗ ϕ) ` θ.

The intuition behind a conditional belief ϕ ⇒ θ in the current setting is as follows. If

the agent were to receive a revision input ϕ and accept it, then it would believe θ (as well).

With this interpretation of a conditional belief in mind, the second condition for a conditional

belief to hold in an epistemic state is clear. The first one is justified by arguing that as the

input ϕ will not be accepted since it contradicts the core belief, we need not care what

the agent would believe after accepting it. The following result tells us that our assumed

revision framework gives rise to a rational consequence relation whose properties we recalled

in Section 1.2.2.

Proposition 2.41. ⇒[ρ,N] is a rational consequence relation.

Recall Proposition 2.24 which stated that as far as beliefs go, any sequence of revision steps

with inputs ϕ1, . . . , ϕi can be interpreted as a single revision by f (ϕ1, . . . , ϕi,N) where N

is the agent’s core belief. In other words, the agent’s beliefs, in particular also the future

ones, are completely characterised by A’s core belief and the conditional beliefs in its initial

epistemic state. However, the epistemic state [ρ · ϕ1, . . . , ϕi,N] resulting from a sequence

of revisions in a state [ρ,N] will generally be different from the one resulting from a single

revision by f (ϕ1, . . . , ϕi,N). This can also be seen from their respective conditional beliefs.
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Consider [(),>], ϕ1 = p, ϕ2 = q. The beliefs after the sequence of revisions and the corre-

sponding single revision by f (p, q,>) = p ∧ q are both represented by p ∧ q. But whereas

¬q ⇒[(p,q),>] p we have ¬q 6⇒[(p∧q),>] p.

We can now combine the above results: If the agent’s core belief N is known, an observa-

tion o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 can be transformed into a partial description of the

agent’s conditional beliefs in its state just before the observation started. We can read off

conditionals that should be satisfied, the set of which we will denote with CN(o), and condi-

tionals that should not be satisfied, the set of which we will denote with NN(o). Recall that

ιi denotes (ϕ1, . . . , ϕi) and ι the sequence of all revision inputs recorded in o.

Definition 2.42. Given an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief

N, we define

CN(o) = {f (ιi · N)⇒ θi | i = 1, . . . , n} and

NN(o) = {f (ιi · N)⇒ δ | i = 1, . . . , n ∧ δ ∈ Di}.

In the following we will call conditionals that should be satisfied (elements of CN(o)) positive

conditionals and those that should not be satisfied (elements of NN(o)) negative conditionals.

Note that for consistent N the antecedents f (ιi · N) = f (ϕ1, . . . , ϕi,N) of the conditionals

thus defined are always accepted by the agent. This is because they are consistent with N by

definition. This means that the positive conditionals will all meet the non-trivial condition

in Definition 2.40. Hence, if we find an epistemic state satisfying all the positive conditionals,

the θi will indeed be believed, and if none of the negative ones is satisfied, no δ ∈ Di will

be believed after the corresponding revision. The case of an inconsistent core belief N is not

interesting as then N is not o-acceptable for any observation o and hence we need not find a

sequence, anyway.

In the proofs of results we will present in the following, we sometimes need to refer to

particular conditionals. Each record (ϕi, θi, Di) in an observation gives rise to one positive

and a set of negative conditionals, all of which share the same antecedent f (ιi · N). Often it

will be convenient to refer to all conditionals such a record gave rise to at the same time. To

do so, we will use the number i — the position of that record in the observation — calling

it index. This term will also be used with a different meaning in Section 4.6.

Definition 2.43. Given an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉, a core belief N

and a conditional f (ιi · N)⇒ µ, we call the number i the index of that conditional.

We call IC = {i | i is index of a conditional λ⇒ µ in C} the index set of a set of conditionals

C constructed from an observation.
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Having an observation and a core belief, Definition 2.42 allows us to construct a partial

description of the agent’s conditional beliefs in its epistemic state. We also know that the

core belief and the set of all conditional beliefs in the initial state completely determine

the agent’s beliefs following any sequence of revision inputs. Any epistemic state defines a

rational consequence relation. So, our job is now to complete the partial description in a

reasonable way in order to arrive at a full description of a rational consequence relation.

2.5.1 the rational closure construction

A method for completing a set of conditionals to get a rational consequence relation, taking

into account both positive and negative information as is necessary in our case, is the rational

closure construction presented in [14] (extending the case of positive-only information studied

in [54]). We will use this method to construct the sequence ρ needed to complete the agent’s

initial epistemic state (recall that N is assumed to be given). In this section, we will illustrate

the rational closure construction. In the next one, we will present results justifying that the

sequence ρ thus constructed can be considered better than any other sequence. We deviate

slightly from the notation used in [14].

Definition 2.44. Given a set of conditionals C = {λi ⇒ µi | i = 1, . . . , l} we denote by

C̃ = {λi → µi | i = 1, . . . , l} the set of material counterparts of all the conditionals in C.

A conditional λ⇒ µ is p-exceptional for a set of formulae U if and only if U ` ¬λ. λ⇒ µ

is n-exceptional for U if and only if U ∪ {λ} ` µ.

Before providing the technical details, we want to give an intuition on what the construction

will be about. We will do so with respect to our specific setting. The rational closure

construction does not require the positive and negative conditionals to be of the particular

form Definition 2.42 yields.

Assume we have constructed a suitable sequence ρ, given an observation o and a consistent

core belief N; an inconsistent core is not interesting as it is not o-acceptable. So we have the

initial state [ρ,N] we were looking for. One way to think of U — one of the sets from the

rational closure construction — is as the set of formulae collected from ρ when constructing

A’s belief set after revising [ρ,N] by f (ιi · N) (or equivalently after iterated revision by

ϕ1, . . . , ϕi). First of all, U must be consistent with f (ιi · N). Otherwise, U is not the correct

set of formulae (f (ρ · f (ιi · N)) entails f (ιi · N) and is consistent as N is). In other words,

f (ιi · N) ⇒ θi must not be p-exceptional for U . Secondly, U must entail f (ιi · N) → θi, as

otherwise θi will not be believed after the revision and hence the assumed initial state would

not explain o. This is where the material counterparts of the conditionals come into play.

Thirdly, U ∪ {f (ιi · N)} must not entail any δ ∈ Di, as otherwise we would be violating the
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negative information in the observation, again causing the assumed state not to explain o.

This last condition amounts to demanding that f (ιi · N)⇒ δ must not be n-exceptional for

U .

Note that one such U will have to satisfy these conditions for all conditionals with the same

index at the same time. Otherwise [ρ,N] cannot be an explanation for o. It should be clear

that in general there is not a single set U satisfying all these conditions for the conditionals

with all indexes. So we construct different sets Ui, each (successfully) dealing with different

indexes. In fact we start off with one set U0 that tries to deal with all. For some indexes

U0 may meet all the conditions, so those do not have to be considered further. The next

one, U1, tries to deal with all those indexes for which U0 was not successful, and so on until

the conditions for all indexes have been met by some Ui. So, one could also think of U as a

representation of those positive conditionals that still have to be satisfied while making sure

that no negative conditional with the same index is satisfied.

Turning to the formal definition, assume we are given a set C of positive conditionals and a

set N of negative ones. The sequence ρR(C,N ) corresponding to the rational closure of C and

N is determined as follows. We define two decreasing sets of conditionals C0 ⊇ C1 ⊇ · · · ⊇ Cm
and N0 ⊇ N1 ⊇ · · · ⊇ Nm and a decreasing set of formulae U0 ⊇ U1 ⊇ · · · ⊇ Um — the Ui
will be defined via a least fixpoint (lfp) construction.9

Definition 2.45. Let C be a set of positive conditionals and N a set of negative condi-

tionals. Then the sequence ρR(C,N ) corresponding to the rational closure of C and N is

ρR(C,N ) = (
∧
Um,

∧
Um−1, . . . ,

∧
U0) where

∧
∅ = > and

1. C0 = C and N0 = N

2. Ui = C̃i ∪ lfp ({¬λ | λ⇒ µ ∈ Ni and λ⇒ µ is n-exceptional for Ui})

3. Ci+1 is the set of conditionals in Ci that are p-exceptional for Ui and

Ni+1 is the set of conditionals in Ni that are n-exceptional for Ui

4. m is minimal such that Cm = Cm+1 and Nm = Nm+1

C0 and N0 contain all conditionals that need to be considered. According to condition 2,10

Ui is initialised with C̃i — the set of material counterparts of the positive conditionals that

still need to be satisfied. Then we go through all the negative conditionals in Ni. If there

9The definition captures exactly the algorithm given in [14]. However, it is a reformulation as it deals

directly with formulae. It also hides the construction of the Ui using the least fixpoint notation.

10Ui is the smallest set which contains C̃i and which is closed under the following condition: If λ⇒ χ is in

Ni and λ⇒ χ is n-exceptional for Ui then ¬λ ∈ Ui.
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is a conditional λ⇒ µ that is n-exceptional for Ui, which means that adding λ to Ui would

cause µ to become inferable, its negated antecedent ¬λ is added to Ui. The addition of this

¬λ may cause other negative conditionals in Ni to become n-exceptional, so we then need

to check Ni for conditionals that are n-exceptional for the set thus obtained. This process

— the least fixpoint construction for finding Ui — stops if no further negated antecedents of

negative conditionals have to be added. In other words, Ui is the smallest set containing C̃i
and being closed under the condition that if λ⇒ µ ∈ Ni is n-exceptional for Ui then ¬λ ∈ Ui.
It is obvious that we can define a total order on the negative conditionals n-exceptional for

Ui corresponding to the order in which they become exceptional.11

In our setting, where C and N are not arbitrary sets of conditionals, the following can be

observed. If one conditional with index j is exceptional, then all conditionals with that

index will be exceptional as well. All conditionals with the same index j share the same

antecedent f (ιj · N). If a positive conditional f (ιj · N) ⇒ θj is p-exceptional for Ui then

Ui ` ¬f (ιj · N) and hence adding f (ιj · N) to Ui makes any formula inferable, in particular

the consequent δ of any negative conditional f (ιj · N) ⇒ δ which has the same index. So

any negative conditional with the same index will be n-exceptional for Ui. If a negative

conditional f (ιj · N)⇒ δ is n-exceptional for Ui then ¬f (ιj · N) is added to Ui (condition 2

in Definition 2.45) which causes any conditional with that same antecedent (and hence all

conditionals with the same index) to become exceptional for the modified Ui. This implies

that in our setting we can equivalently define a total order on the indexes which represents

the order in which the negative conditionals became exceptional for Ui. Again, this order

need not be unique and we will later use ≺e to denote a suitable one.

Returning to the construction, Ci+1 and Ni+1 then contain the conditionals that still need

to be considered and we can stop if these sets do not change with respect to Ci and Ni. This

is expressed in condition 4. We will sometimes refer to the conditionals in Cm and Nm as

ultimately exceptional as they would continue to be propagated to the next level if we did

not stop.

If N = ∅ in the above process then the process simplifies to the one given in, e.g., [12, 28]

which handles the case of positive conditionals only.

Writing αi for
∧
Ui, the rational closure of C and N is then the relation ⇒R given by

λ⇒R µ if and only if either αm ` ¬λ or
[
αj ∧ λ ` µ where j is minimal such that αj 6` ¬λ

]
.

Since αm a · · · a α0 it is easy to check that in fact this second disjunct is equivalent to

f (αm, . . . , α0, λ) ` µ. As is shown in [14],⇒R satisfies all the conditionals in C and and none

of the ones in N . That is λ ⇒R µ for all positive conditionals (λ ⇒ µ) ∈ C, while λ 6⇒R µ

for all negative conditionals (λ⇒ µ) ∈ N .

11We want to remark that generally there is no unique order.
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Definition 2.46. For o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief N we call

ρR(CN(o),NN(o)) the rational prefix of o with respect to N, and will denote it by ρR(o,N).

We will now go through a complex example which illustrates the calculation of the rational

prefix of an observation with respect to a given core belief. First the sets of positive and

negative conditionals are constructed and then the rational closure is applied to them.

Example 2.47. Let o = 〈(p, s, ∅), (q, t, {s}), (r,>, {¬(p ∧ q), u})〉. o states that the agent

after receiving p believes s, after then receiving q believes t but ceases to believe s. Having

received the final input r, we are only informed that the agent does not believe ¬(p∧ q) or u.

Using the core belief > this translates into the following sets of conditionals.

C0 = CN(o) = {f (ι1 · >)⇒ s, f (ι2 · >)⇒ t, f (ι3 · >)⇒ >}
= {f (p,>)⇒ s, f (p, q,>)⇒ t, f (p, q, r,>)⇒ >}
= {p⇒ s, p ∧ q ⇒ t, p ∧ q ∧ r ⇒ >}

N0 = NN(o) = {f (ι2 · >)⇒ s, f (ι3 · >)⇒ ¬(p ∧ q), f (ι3 · >)⇒ u}
= {f (p, q,>)⇒ s, f (p, q, r,>)⇒ ¬(p ∧ q), f (p, q, r,>)⇒ u}
= {p ∧ q ⇒ s, p ∧ q ∧ r ⇒ ¬(p ∧ q), p ∧ q ∧ r ⇒ u}

C̃0 = {p→ s, p ∧ q → t, p ∧ q ∧ r → >}. The negative conditionals p ∧ q ∧ r ⇒ ¬(p ∧ q) and

p ∧ q ∧ r ⇒ u are not n-exceptional for this set as C̃0 ∪ {p ∧ q ∧ r} does not entail ¬(p ∧ q)
or u. However, p ∧ q ⇒ s is n-exceptional for C̃0. If p ∧ q is added then s becomes inferable.

So in order to arrive at the final U0, ¬(p ∧ q) must be added to C̃0.

To see if we have reached a fixpoint, we have to check that no other negative conditionals

are n-exceptional for the set constructed so far. But we see that adding ¬(p ∧ q) made

p ∧ q ∧ r ⇒ ¬(p ∧ q) n-exceptional, which it was not before, so now ¬(p ∧ q ∧ r) has also

to be added. We see that first the negative conditional f (ι2 · >) ⇒ s with index 2 became

n-exceptional and then the conditional f (ι3 · >)⇒ ¬(p∧q) with index 3. Due to the addition

of ¬(p ∧ q ∧ r), the negative conditional p ∧ q ∧ r ⇒ u with index 3 automatically became

n-exceptional. Adding ¬(p∧ q∧ r) again to what is to become U0 is not necessary as it would

leave the set unchanged. The index set of the negative conditionals which are exceptional for

U0 can hence be totally ordered via 2 ≺e 3.

We have now reached a fixpoint, as there are no further negative conditionals.

U0 = {p→ s, p ∧ q → t, p ∧ q ∧ r → >,¬(p ∧ q),¬(p ∧ q ∧ r)}.

Of the positive conditionals in C0 only p ⇒ s is not p-exceptional for U0 and all negative

conditionals in N0 are n-exceptional for U0. So we have

C1 = {p ∧ q ⇒ t, p ∧ q ∧ r ⇒ >}
N1 = {p ∧ q ⇒ s, p ∧ q ∧ r ⇒ ¬(p ∧ q), p ∧ q ∧ r ⇒ u}.



38 CHAPTER 2. THE RATIONAL EXPLANATION

This time U1 = C̃1 = {p ∧ q → t, p ∧ q ∧ r → >} as adding p ∧ q does not make s inferable

anymore, and since ¬(p ∧ q) need not be added, p ∧ q ∧ r ⇒ ¬(p ∧ q) or p ∧ q ∧ r ⇒ u do

not become n-exceptional either. Further, none of the positive conditionals is p-exceptional

for U1, so C2 = ∅ = C3, N2 = ∅ = N3 and hence U2 = ∅ = U3. Making use of logical

equivalences, we get

ρR(o,N) = (>, p ∧ q → t, p→ (s ∧ ¬q)) .

f (ρR(o,N) · (p,>)) ≡ p ∧ s ∧ ¬q which indeed entails s. f (ρR(o,N) · (p, q,>)) ≡ p ∧ q ∧ t
which entails t and does not entail s. f (ρR(o,N) · (p, q, r,>)) ≡ p∧ q ∧ r ∧ t which entails >
and entails neither ¬(p∧ q) nor u. So all positive conditionals are indeed satisfied and none

of the negative ones is.

2.5.2 properties of the rational prefix

In this section, we will collect properties of the rational prefix. In particular, we will show

that it helps determine whether a particular core belief is o-acceptable for an observation o.

We will also provide justifications for the claim that the rational prefix is the best sequence

to use for explaining an observation. The first result merely confirms that the rational prefix

is indeed a logical chain.

Proposition 2.48. ρR(C,N ) = (
∧
Um,

∧
Um−1, . . . ,

∧
U0) is a logical chain, that is,∧

Ui `
∧
Ui+1 for 0 ≤ i ≤ m− 1.

We already know that an inconsistent core belief cannot be o-acceptable (Definition 2.29).

The next two results provide a necessary and sufficient condition for a consistent core belief

N to be o-acceptable. All we have to do is calculate the rational prefix of o with respect to

N. If the weakest element of the sequence calculated is a tautology then N is o-acceptable.

If it is not a tautology then N is not o-acceptable, i.e., there is no sequence ρ such that [ρ,N]

explains o.

Proposition 2.49. Given o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief N 6≡ ⊥ let

ρR(o,N) = (
∧
Um,

∧
Um−1, . . . ,

∧
U0) be the rational prefix of o with respect to N.

If
∧
Um ≡ > then [ρR(o,N),N] explains o.

Proposition 2.50. Given o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief N 6≡ ⊥ let

ρR(o,N) = (
∧
Um,

∧
Um−1, . . . ,

∧
U0) be the rational prefix of o with respect to N.

If
∧
Um 6≡ > then N is not o-acceptable.
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So, one application of the rational prefix construction is for deciding whether there is some

explanation using a particular core belief. Proposition 2.49 moreover says that in case N is o-

acceptable the epistemic state [ρR(o,N),N] in fact explains o. That is, given any o-acceptable

core, the rational prefix will yield a possible sequence that will complete the explanation for

o. Proposition 2.51 tells us that using an inconsistent core belief N the rational prefix for

any observation is always (>).

Proposition 2.51. Given o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief N ≡ ⊥. Then

ρR(o,N) = (>).

The following result tells us that from the point of view of computational complexity, checking

the o-acceptability of a core belief is not harder than testing whether some epistemic state

explains o. The proof yields that testing the o-acceptability of a core using the rational

closure construction is computationally optimal.

Proposition 2.52. The decision problem of whether a given core belief N is o-acceptable is

∆P
2 -complete.

We will now go on to argue that the rational prefix will also yield the best explanation for

o — with respect to intuitive criteria — when using a particular o-acceptable core N. We

consider an explanation better than another if it yields weaker beliefs. Assume that one

explanation is telling us that the agent believes p, another that it believes p ∧ q and yet

another that the agent believes p∧¬q. Further assume that the agent’s true initial epistemic

state is among those explanations. Which should we choose? We believe it to be reasonable

to choose the first explanation. There is no guarantee that it is the correct one, but at least

we are correct in concluding that the agent believes p. Conclusions that A believes q or ¬q
could well be wrong. It will turn out that — when fixing a core belief — the beliefs the

rational prefix assigns to the agent’s initial state are entailed by the beliefs assigned to that

state by any explanation.

We will now make this more formal. The observation o to be explained is given and some o-

acceptable core belief is fixed (the best core belief has been dealt with in Section 2.4). In the

following definition we will capture our notion of one sequence being better than another. We

will not only compare the agent’s beliefs in the initial state but possibly continue with later

beliefs if the two sequences yield equivalent initial beliefs. The sequences will be compared

using the belief traces they give rise to. A belief trace is strictly preferred to another if the

two contain equivalent beliefs up to some point and then the first one contains a strictly

weaker belief. It is more cautious about the beliefs it predicts an agent to hold.
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Definition 2.53. Given an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and two possible

belief traces (β0, . . . , βn) and (γ0, . . . , γn), we define (β0, . . . , βn) ≤lex (γ0, . . . , γn) iff, for all

i = 0, . . . , n,

βj ≡ γj for all j < i implies γi ` βi.

Given two epistemic states [ρ,N] and [σ,N] sharing the same core belief N,

ρ �1 σ iff (Belρ0, . . . , Bel
ρ
n) ≤lex (Belσ0 , . . . , Bel

σ
n),

ρ �2 σ iff for all λ: Bel([σ,N] ∗ ϕ1 ∗ · · · ∗ ϕn ∗ λ) ` Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕn ∗ λ).

�1 expresses giving preference to a sequence that yields weak beliefs early in the belief trace.

ρ is preferred to σ if the initial beliefs Bel([ρ,N]) are logically weaker than Bel([σ,N]). In

case they happen to be equivalent, ρ is preferred if the beliefs after having received the first

revision input recorded in the observation are logically weaker than those yielded by σ. And

so on. ρ and σ are considered equally preferred by �1 if both yield the same beliefs initially

and throughout the sequence of revisions recorded in the observation.

�2 expresses giving preference to weak beliefs after any additional revision step. So ρ is

preferred to σ if no matter which input is received after the ones recorded in the observation,

ρ will yield a logically weaker (at most equivalent) belief than σ. As a sequence of revisions

can be transformed into a single revision in the assumed framework, this is equivalent to ρ

yielding a weaker belief after any sequence of further revision inputs.

Example 2.54. Consider the observation o = 〈(p, q, ∅), (p∧¬q,>, ∅)〉. > is an o-acceptable

core and ρ1 = (q ∧ r), ρ2 = (q ∧ s), ρ3 = (p ∧ ¬q ∧ r, p → q) and ρ4 = (p → q) are all

sequences such that [ρi,>] explains o. The corresponding belief traces are:

(Belρi
0 , Belρi

1 , Belρi
2 )

for ρ1 : (q ∧ r, p ∧ q ∧ r, p ∧ ¬q)
for ρ2 : (q ∧ s, p ∧ q ∧ s, p ∧ ¬q)
for ρ3 : (p→ q, p ∧ q, p ∧ ¬q ∧ r)
for ρ4 : (p→ q, p ∧ q, p ∧ ¬q)

ρ1 and ρ2 are incomparable with respect to �1 as neither q ∧ r ` q ∧ s nor q ∧ s ` q ∧ r.
Both are less preferred than ρ3 and ρ4 as q ` p → q. ρ4 �1 ρ3 because the belief traces

contain equivalent formulae except for the last element and p ∧ ¬q ∧ r ` p ∧ ¬q. In fact, ρ4

is (equivalent to) the rational prefix for o with respect to the core belief >.

The last two propositions of this section clarify the relation between the rational prefix

and other possible sequences explaining the observation o assuming a common o-acceptable

core belief. They provide the justification for considering the rational prefix to be the best

sequence.
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Proposition 2.55. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation and N be an

o-acceptable core.

If [σ,N] explains o then ρR(o,N) �1 σ.

With respect to �1, ρR(o,N) is a best element among all sequences σ such that [σ,N] explains

the observation. Given that core belief, no other sequence yields weaker beliefs early in

the belief trace. However, there will be several sequences yielding exactly the same beliefs

throughout the belief trace.12 Consequently, �1 will have several minimal elements. The next

proposition tells us that with respect to �2 the rational prefix is a best one among those

minimal elements. The rational prefix will lead to beliefs that are not logically stronger

(compared to the beliefs yielded by any other �1-minimal sequence) no matter what further

inputs may be received after those recorded in the given observation.

Proposition 2.56. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation and N be an

o-acceptable core.

If [σ,N] explains o and σ �1 ρR(o,N) then ρR(o,N) �2 σ.

Note that the criteria for comparing sequences assume the same core belief to be used.

However, when trying to compare an arbitrary explanation for o with the agent’s actual

initial state, they might be useless as there is no guarantee that the assumed core belief and

the actual one are equivalent. In case they are, the rational prefix will predict correct initial

beliefs, i.e., every formula entailed by BelρR(o,N)
0 will indeed be believed by the agent. But it

will generally be the case that not all the agent’s initial beliefs will be entailed. This means

that Proposition 2.55 is no help in ensuring that predicted beliefs BelρR(o,N)
i from later points

in the belief trace are really held by the agent. Similarly, Proposition 2.56 cannot be applied

to guarantee that conclusions about beliefs held after future revision steps are safe. In this

sense, the optimality criterion of the rational prefix being the �2-best among the �1-minimal

sequences is quite weak. We will elaborate on this point in Section 2.8.

2.6 The rational explanation algorithm

We claim that for explaining an observation o the core belief N∨(o) should be used. It is the

weakest possible core belief. Any o-acceptable core entails it, i.e., no matter what the agent’s

real core belief is, any formula we predict to be rejected by the agent will indeed be rejected.

No other o-acceptable core is safe in this sense. Further, no matter how the observation

12In fact, there are infinitely many sequences giving rise to the same total preorder on worlds and hence to

equivalent epistemic states.
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may be extended at both ends, conclusions about which formulae will be rejected need not

be withdrawn (Left Monotony and Right Monotony). Assuming the agent to have N∨(o)

as core belief, we can construct conditional beliefs held in its initial epistemic state from o,

obtaining a partial description of the rational consequence relation describing that state. We

then use the rational prefix construction to calculate the sequence needed to complete the

epistemic state that explains o.

This sequence has nice properties, as well. Compared to any other sequence ρ such that

[ρ,N∨(o)] explains o, it yields the weakest beliefs starting where the observation o started;

and if the two sequences yield equal beliefs for the entire time of the observation, then

ρR(o,N∨(o)) will yield equivalent or weaker beliefs for any further revision input. So, the

message of the last two sections is: If o has an explanation then [ρR(o,N∨(o)),N∨(o)] is the

best explanation for o.

Definition 2.57. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation s.t. there is an

o-acceptable core belief. Then we call [ρR(o,N∨(o)),N∨(o)] the rational explanation for o.

The problem is that in order to calculate the conditional beliefs of A, we already have to

know the core belief, so we have to know N∨(o). Up to now, we have not given a feasible way

to construct N∨(o) — in order to take the disjunction of all o-acceptable cores, we would have

to know those. Of course we could test any potential core belief (Propositions 2.49 and 2.50)

but proceeding this way seems unreasonable. In this section we will introduce an algorithm

that uses a more systematic way to calculate the rational explanation in case there is an

o-acceptable core or tell us that o cannot be explained. In order to prove the correctness

of this algorithm, some further results are useful. We start by recalling some notation and

properties.

The rational closure was defined for arbitrary sets of positive and negative conditionals.

However, in our setting all of them have a particular form due to their construction from the

observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉. Positive conditionals, i.e., those going into Cj
in the rational prefix construction, have the form f (ιi · N)⇒ θi. Negative conditionals, i.e.,

those going into Nj , have the form f (ιi · N)⇒ δ for some δ ∈ Di. The antecedents f (ιi · N)

of both the positive and the negative conditionals are the same if they are constructed from

the same prefix 〈(ϕ1, θ1, D1), . . . , (ϕi, θi, Di)〉 of o. Conditionals with an antecedent f (ιi · N)

are called conditionals with index i.

In the rational prefix construction, conditionals may be exceptional for a set of formulae

U . For positive conditionals f (ιi · N) ⇒ θi this is the case if U ` ¬f (ιi · N), for a negative

conditional f (ιi · N) ⇒ δ if U ∪ {f (ιi · N)} ` δ, so in particular if U ` ¬f (ιi · N). Now, in

the rational prefix construction there are conditionals that satisfy a special property. The
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conditionals in Cm and Nm are exceptional for every Uj including Um. We will call them

ultimately exceptional conditionals, as they would remain exceptional even if we continued

constructing further levels m+ l.

We showed in Proposition 2.50 that if ultimately exceptional conditionals exist, that is,

Um 6≡ >,13 then the core belief used is not o-acceptable. For finding an o-acceptable core,

we will iteratively strengthen it. We will show that if N, which is not o-acceptable, is not

strengthened in a certain way then the resulting formula N′ cannot be o-acceptable, either.

Intuitively this is because the conditionals with indexes that have not been dealt with by

strengthening the core will remain ultimately exceptional.

Before we present the formal result we will give a necessary and sufficient condition for

the existence of ultimately exceptional conditionals. Basically, it reflects the least fixpoint

construction of the Ui in the calculation of the rational prefix.

Proposition 2.58. Given an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core

belief N. Ultimately exceptional conditionals in the rational prefix construction of o with

respect to N exist if and only if there are subsets IC 6= ∅ and IN of {1, . . . , n} and a total

order ≺e on IN such that

1.
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

j∈IN
¬f (ιj · N) `

∧
i∈IC
¬f (ιi · N)

2. ∀j ∈ IN∃δ ∈ Dj :
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

k∈IN∧k≺ej

¬f (ιk · N) ∧ f (ιj · N) ` δ

Recall that if one conditional with index i is n-exceptional for Uj and hence ¬f (ιi · N) is added

to Uj then automatically all conditionals with index i — positive and negative — become

exceptional as then Uj ` ¬f (ιi · N) and Uj ∪ {f (ιi · N)} entails any formula. Further, for

every index k ∈ {1, . . . , n} there is a positive conditional. This is because in o there is a

formula θk for every k. However, there need not be a negative conditional for every k as Dk

may be empty. So if IC and IN denote the index sets of positive and negative ultimately

exceptional conditionals, this implies IN ⊆ IC and using the first condition in Proposition

2.58 in fact we get ∧
i∈IC

(f (ιi · N)→ θi) ∧
∧
j∈IN

¬f (ιj · N) ≡
∧
i∈IC

¬f (ιi · N)

This is because ¬f (ιi · N) ` f (ιi · N) → θi for all i and
∧
i∈IC
¬f (ιi · N) `

∧
j∈IN

¬f (ιj · N) as

IN ⊆ IC . Consequently, αm =
∧
Um turns out to be equivalent to

∧
i∈IC
¬f (ιi · N). Hence, if

αm 6≡ > then there must have been ultimately exceptional conditionals (assume there were

13An exception exists in case N ≡ ⊥ (c.f. Proposition 2.51). We will return to this special case later.
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none, which means there were neither positive nor negative exceptional conditionals, then∧
Um =

∧
∅ ≡ >). The following proposition tells us that the only case where it looks as if

there were none although Cm 6= ∅ is when the core belief is inconsistent.

Proposition 2.59. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation and

ρR(o,N) = (αm, . . . , α0) the rational prefix for o using some core N.

Then αm ≡ > and Cm 6= ∅ implies N ≡ ⊥.

We now come to one of the central results of this section. It yields the key idea for the

rational explanation algorithm whose power will lie in calculating N∨(o). The rational prefix

of o with respect to N∨(o) will then complete the rational explanation which we propose to

be the best explanation for o.

Proposition 2.60. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉, N a core belief and

ρR(o,N) = (αm, . . . , α0).

If N′ ` N and N′ 6` αm then N′ cannot be o-acceptable.

Assume that some formula N was used to calculate the rational prefix ρR(o,N) of o and N′

entails N. Then N′ must entail the weakest element αm of ρR(o,N) if it is to be o-acceptable.

This tells us how to modify N if the rational prefix construction was not successful (αm 6≡ >)

and hence N is not o-acceptable. We can try again with N∧αm. Propositions 2.49 and 2.51

tell us that αm ≡ > and hence N∧αm ≡ N if N is o-acceptable or N is inconsistent. In both

cases we can stop as we have found a suitable core or it cannot be strengthened further and

is not acceptable by definition.

Obviously, N∨(o) entails > and by Proposition 2.60 it must entail αm of the rational prefix

of o with respect to >. If αm is a tautology then we are done, otherwise N∨(o) must entail

the weakest element α′m of the rational prefix of o with respect to αm. Consequently, N∨(o)

entails αm ∧ α′m. And so on. With this idea we immediately get the following algorithm.

Algorithm 1: calculation of the rational explanation
Input: observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉
Output: the rational explanation for o

N⇐ >
repeat

ρ⇐ ρR(o,N) /* ρ = (αm, . . . , α0) */

N⇐ N ∧ αm
until αm ≡ >
return [ρ,N] if N 6≡ ⊥, “no explanation” otherwise
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The following two propositions ensure that the algorithm does what it is supposed to do —

terminate and return the rational explanation if o can be explained.

Proposition 2.61. For all observations o Algorithm 1 terminates.

Proposition 2.62. Given as input an observation o, Algorithm 1 outputs the rational ex-

planation [ρR(o,N∨(o)),N∨(o)] for o, if an explanation for o exists. If no explanation exists

it outputs “no explanation”.

Note that Proposition 2.60 does not restrict the core belief N. That is, we are not forced

to start with >, we could also use some other formula ψ. Any o-acceptable core belief N′

entailing ψ will have to entail the weakest element αm of the rational prefix of o with respect

to ψ. And if αm is not a tautology then N′ will also have to entail the weakest element of the

rational prefix of o with respect to ψ ∧ αm. Obviously, when we run the algorithm starting

with ψ and not with >, we will not necessarily get N∨(o) as that core need not entail ψ and

hence Proposition 2.60 is not applicable. However, we will get the weakest o-acceptable core

belief entailing ψ or find out that there is no such core. In Section 2.8, we will see that this

is a useful variation of the algorithm.

We want to conclude this section with a complex example illustrating the rational explanation

algorithm and what its result lets us conclude about the observed agent.

Example 2.63. Let o = 〈(p, s, ∅), (q,>, {s}), (r,¬q, ∅)〉. o expresses that after receiving p

the agent believes s, but after then receiving q ceases to believe s. Finally, after receiving r it

believes ¬q. Starting with N = > as Algorithm 1 tells us to, this translates into the following

sets of positive and negative conditionals:

C0 = CN(o) = {f (p,>)⇒ s, f (p, q,>)⇒ >, f (p, q, r,>)⇒ ¬q}
= {p⇒ s, p ∧ q ⇒ >, p ∧ q ∧ r ⇒ ¬q}

N0 = NN(o) = {f (p, q,>)⇒ s}
= {p ∧ q ⇒ s}

So, C̃0 = {p → s, p ∧ q → >, p ∧ q ∧ r → ¬q} and p ∧ q ⇒ s is n-exceptional for that set

as {p → s, p ∧ q} ` s. Hence the negated antecedent ¬(p ∧ q) needs to be added and so

U0 = {p→ s, p ∧ q → >, p ∧ q ∧ r → ¬q,¬(p ∧ q)}.

Of the positive conditionals only p ⇒ s is not p-exceptional for U0, as ¬(p ∧ q) ` ¬(p ∧ q)
and p ∧ q ∧ r → ¬q ` ¬(p ∧ q ∧ r). p ∧ q ⇒ s is n-exceptional for U0 as {p → s, p ∧ q} ` s,
so C1 = {p ∧ q ⇒ >, p ∧ q ∧ r ⇒ ¬q} and N1 = {p ∧ q ⇒ s}.

This time U1 = C̃1 = {p ∧ q → >, p ∧ q ∧ r → ¬q} as adding p ∧ q does not make s inferable,

anymore. Only p ∧ q ∧ r ⇒ ¬q is exceptional for U1. As indicated above, p ∧ q ∧ r ⇒ ¬q is
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in a sense exceptional for itself because p ∧ q ∧ r is inconsistent with p ∧ q ∧ r → ¬q. So we

have C2 = {p ∧ q ∧ r ⇒ ¬q} = C3, N2 = ∅ = N3 and U2 = {p ∧ q ∧ r → ¬q} = U3. Here, the

rational prefix calculation stops as the sets do not change and we get

ρR(o,N) = (p ∧ q ∧ r → ¬q , p ∧ q ∧ r → ¬q , (p→ s) ∧ (p ∧ q ∧ r → ¬q) ∧ ¬(p ∧ q)).

Using logical equivalences this is the same as (p ∧ q → ¬r , p ∧ q → ¬r , p → (s ∧ ¬q)).
αm = α2 = p ∧ q ∧ ¬r ≡ ¬p ∨ ¬q ∨ ¬r is not a tautology, so we need to modify the core to

N = ¬p ∨ ¬q ∨ ¬r. Hence, we get the following sets of conditionals for the second iteration.

C0 = CN(o) = {f (p,¬p ∨ ¬q ∨ ¬r)⇒ s, f (p, q,¬p ∨ ¬q ∨ ¬r)⇒ >,
f (p, q, r,¬p ∨ ¬q ∨ ¬r)⇒ ¬q}

= {p ∧ (¬q ∨ ¬r)⇒ s, p ∧ q ∧ ¬r ⇒ >,¬p ∧ q ∧ r ⇒ ¬q}
N0 = NN(o) = {f (p, q,¬p ∨ ¬q ∨ ¬r)⇒ s}

= {p ∧ q ∧ ¬r ⇒ s}

p∧ q∧¬r ⇒ s is n-exceptional for C̃0 as {p∧ (¬q∨¬r)→ s, p∧ q∧¬r} ` s and consequently

U0 = {p∧(¬q∨¬r)→ s, p∧q∧¬r → >,¬p∧q∧r → ¬q,¬(p∧q∧¬r)}. Only p∧(¬q∨¬r)⇒ s

is not p-exceptional for U0, so we get

C1 = {p ∧ q ∧ ¬r ⇒ >,¬p ∧ q ∧ r ⇒ ¬q}
N1 = {p ∧ q ∧ ¬r ⇒ s}

Note that this time p ∧ q ∧ ¬r ⇒ s is not n-exceptional for C̃1 and consequently

U1 = {p ∧ q ∧ ¬r → >,¬p ∧ q ∧ r → ¬q}. Only ¬p ∧ q ∧ r ⇒ ¬q is p-exceptional for

U1 (in fact again the material counterpart of this conditional is inconsistent with its own

antecedent), so we get

C2 = C3 = {¬p ∧ q ∧ r ⇒ ¬q}
N2 = N3 = ∅
U2 = U3 = {¬p ∧ q ∧ r → ¬q}

Again α2 ≡ p∨¬q ∨¬r 6≡ >, so the core belief has to be adapted once more. Conjoining the

old one with α2 leads to a core that is equivalent to N = ¬q ∨ ¬r, so in the third iteration

the conditionals look as follows

C0 = CN(o) = {f (p,¬q ∨ ¬r)⇒ s, f (p, q,¬q ∨ ¬r)⇒ >, f (p, q, r,¬q ∨ ¬r)⇒ ¬q}
= {p ∧ (¬q ∨ ¬r)⇒ s, p ∧ q ∧ ¬r ⇒ >, p ∧ ¬q ∧ r ⇒ ¬q}

N0 = NN(o) = {f (p, q,¬q ∨ ¬r)⇒ s}
= {p ∧ q ∧ ¬r ⇒ s}

C̃0 = {p ∧ (¬q ∨ ¬r) → s, p ∧ q ∧ ¬r → >, p ∧ ¬q ∧ r → ¬q}, the last two implications being

tautologies. p∧q∧¬r ⇒ s is n-exceptional for that set as {p ∧ (¬q ∨ ¬r)→ s, p ∧ q ∧ ¬r} ` s .

Consequently, U0 = {p ∧ (¬q ∨ ¬r) → s, p ∧ q ∧ ¬r → >, p ∧ ¬q ∧ r → ¬q,¬(p ∧ q ∧ ¬r)}.
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p ∧ q ∧ ¬r ⇒ > is p-exceptional for U0 as we had to add the negated antecedent of the only

negative conditional. However, the other positive conditionals are not p-exceptional for U0

so we get C1 = {p ∧ q ∧ ¬r ⇒ >}, N1 = {p ∧ q ∧ ¬r ⇒ s}. C̃1 amounts to {>} and none

of the remaining two conditionals is exceptional for that set. Hence we get U1 = {>} and

C2 = C3 = ∅, N2 = N3 = ∅ and U2 = U3 = ∅.

As a consequence, we get ρR(o,N) = (>,>, (p ∧ (¬q ∨ ¬r) → s) ∧ ¬(p ∧ q ∧ ¬r)). As

this means α2 = >, no further iteration is necessary and the rational explanation for o is

[(>,>, (p ∧ (¬q ∨ ¬r)→ s) ∧ ¬(p ∧ q ∧ ¬r)),¬q ∨ ¬r].

((¬q ∨ ¬r) ∧ (p → s ∧ ¬q), p ∧ ¬q ∧ s, p ∧ q ∧ ¬r, p ∧ ¬q ∧ r ∧ s) is the belief trace according

to this explanation. The core belief must entail ¬q∨¬r as otherwise due to Proposition 2.26

A would have to believe q after receiving r but the observation tells us the opposite. Further,

nothing indicates that N would have to be stronger than that. Initially, the agent also believes

p → s ∧ ¬q. The belief in p → s is clear as after hearing p the agent believes s and p alone

does not entail s. The belief in p → ¬q is more subtle and is best explained when looking

at the beliefs after the first revision input was received. The beliefs in p and s are clear, but

why should A commit to ¬q? If it did not then q would be consistent with the current beliefs

and revision by q would turn out to be an expansion of the belief set. However, o tells us

that A ceases to believe s, so it cannot be an expansion by q — this also explains the belief

in p→ ¬q in the initial state. The belief in r, ¬q and p in the final state are quite intuitive;

r has just been received, the observation requires ¬q to be believed and there is no reason

why A should suddenly reject p. s is believed again, as the apparent reason not to believe s,

namely q, is gone.

Due to the nature of the calculation, the rational prefix in this example contains two tautolo-

gies. For deciding if an explanation was found, the first one is essential (Propositions 2.49

and 2.50). For calculating the belief trace etc. they are irrelevant and could be eliminated

from the sequence (Proposition 2.8). In the following we will often omit the tautologies from

the rational prefix. This will sometimes lead to explanations of the form [(),N] which means

that the rational prefix contained only tautologies.

In Appendix B, we will summarise some results concerning the computational complex-

ity of problems related to observations and their explanations. At this point it suffices

to say that Algorithm 1 is not efficient. The construction of the rational prefix needs a

polynomial number of satisfiability tests. However, the main source for its complexity is

the loop in which the core belief is strengthened until it is o-acceptable. There is a sim-

ple example showing that the algorithm may need an exponential number of iterations:

o = 〈(p1,>, ∅), . . . , (pn,>, ∅), (pn+1,
∧

1≤i≤n
¬pi, ∅)〉.
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2.7 Observations of length one and two

Before we conclude this chapter, we want to illustrate the special case of observations in

which only one or two revision inputs received by A are recorded. It would be unfair to say

that such observations are always less informative than longer ones14, but the information

they can carry is inherently limited. This is because the (positive and negative) conditional

beliefs they are translated into all have the same antecedent (at most two different ones if

two revision inputs are recorded). Consequently they can only talk about a very restricted

part of the rational consequence relation defined by the agent’s initial state.

First consider o = 〈(ϕ, θ, ∅)〉, assuming θ to be consistent. What can we say about an agent

if the only information we have is that after receiving ϕ it believes θ? It must have believed

ϕ → θ before receiving the recorded input. If its initial beliefs are inconsistent with ϕ this

is trivially the case. Otherwise, revision by ϕ (when considering only the belief set) is an

expansion, that is, the original beliefs together with the new input are closed under logical

consequence. If ϕ → θ was not among the original beliefs, adding ϕ could not make θ

inferable. In case ϕ∧ θ is inconsistent, ϕ must have been rejected by A, as otherwise θ could

not be consistently believed. But then the revision cannot have had an effect on the beliefs

and θ must have been believed initially.

If there is information about non-beliefs, i.e., o = 〈(ϕ, θ,D)〉 with D 6= ∅, we may have more

specific information about whether ϕ was accepted. As above ϕ ∧ θ must be consistent but

further it must not entail any element of D. Whenever ϕ∧θ ` δ for some δ ∈ D, the revision

input must have been rejected (N ` ¬ϕ). However, this does not guarantee that o has an

explanation as possibly also ¬ϕ∧ θ ` δ′ for some δ′ ∈ D. o = 〈(p, p↔ q, {q,¬q})〉 illustrates

that. It is possible that an agent believes p ↔ q while believing neither q nor ¬q — it just

needs to be agnostic about p as well. But once p is received as a revision input, A cannot

be agnostic about it any longer (Proposition 2.20). So o cannot have an explanation. Also

for the case that D 6= ∅ it still applies that ϕ→ θ must be believed initially and θ in case ϕ

is rejected.

For convenience we require ⊥ ∈ D for the following statement. This assumption only ex-

presses that the agent’s beliefs are to be consistent. This is the case whenever its core belief

is consistent — the only case we are interested in. [(ϕ→ θ),>] explains o = 〈(ϕ, θ,D)〉 if

and only if ϕ∧ θ 6` δ for all δ ∈ D. [(θ),¬ϕ] explains o = 〈(ϕ, θ,D)〉 if and only if ¬ϕ∧ θ 6` δ
for all δ ∈ D. o has no explanation if those two do not work. The given explanations exactly

mirror the conclusions illustrated above and the rational explanation is equivalent to one of

the two, preferring the first one if it is an explanation.

14〈(p,>, ∅), (p,>, ∅), . . . 〉 is almost completely useless. It only tells us that the agent received an input p.
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Example 2.64. The following table contains a number of example observations of length

one. The explaining epistemic state is equivalent to the rational explanation which is in turn

equivalent to one of the two states we gave in the above statement. The belief trace indicates

which beliefs we ascribe to the agent before the observation started and after it received the

revision input. In the last four cases the agent cannot have accepted the input and hence its

beliefs must have remained unchanged. For the last but one observation 〈(p, q, {p∧ q})〉, e.g.,

we could also have used [q,¬p] as epistemic state. It is equivalent to the one given because

¬p→ q and q are equivalent in the presence of the core belief ¬p.

observation rational explanation belief trace

〈(p, p, ∅)〉 [(),>] (>, p)
〈(p, q, ∅)〉 [(p→ q),>] (p→ q, p ∧ q)
〈(p,¬p, ∅)〉 [(),¬p] (¬p,¬p)
〈(p,>, {p})〉 [(),¬p] (¬p,¬p)
〈(p, q, {p ∧ q})〉 [(¬p→ q),¬p] (¬p ∧ q,¬p ∧ q)
〈(p, p↔ q, {q})〉 [(p↔ q),¬p] (¬p ∧ ¬q,¬p ∧ ¬q)

If the observation has more than one recorded revision input it does not suffice to look

at each record individually. The reason is once more the revision framework’s property

expressed in Proposition 2.20. Once an input ϕ was received, at any point in the future, A
will believe either ϕ or its negation. This means that for later inputs it does not suffice to

check whether ϕi ∧ θi 6` δ for all δ ∈ Di.
∧

1≤j≤i
(¬)ϕj ∧ θi 6` δ must be tested with respect to

this criterion. In case it is violated, the core belief needs to make sure that this combination

of (negated) revision inputs cannot be believed and hence needs to entail ¬
∧

1≤j≤i
(¬)ϕj .

Such an adaptation of the core belief will in general have an impact on other entries of the

observation.

For observations with two recorded revision inputs, we will only illustrate the case where

no information about non-beliefs is given. That is, we consider observations of the form

o = 〈(ϕ1, θ1, ∅), (ϕ2, θ2, ∅)〉. As in the above case, ϕi will have to be rejected (N ` ¬ϕi) if

ϕi∧θi is inconsistent, but due to Proposition 2.20 we know that after receiving ϕ2, the agent

must also believe either ϕ1 or ¬ϕ1. So we can also test whether ϕ1 ∧ϕ2 ∧ θ2 is consistent. If

not, then A cannot commit to ϕ1 and ϕ2 at the same time which implies that the core belief

must entail ¬ϕ1 ∨ ¬ϕ2 (Proposition 2.26). This will have an impact on the first recorded

input as well, as ϕ1 ∧ (¬ϕ1 ∨ ¬ϕ2) entails ¬ϕ2. So in case ϕ1 ∧ ¬ϕ2 ∧ θ1 is inconsistent, ϕ1

must have been rejected after all.

Example 2.65. The next table contains some example observations of length two. For each

one we give an epistemic state corresponding to the rational explanation and the belief trace
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assigned to the observed agent. In the last observation, the non-belief in r ∧ s allows us to

conclude that the last revision input r cannot have been accepted as we know that the agent

believes s in the end. Hence, the beliefs before and after receiving r must be the same. As

a consequence p cannot have been accepted either as the agent does not believe p ∧ s after

receiving r. The core belief must entail ¬p∧¬r and the beliefs remain unchanged throughout

the observation. Note that ¬p ∧ ¬r → q ∧ s and q ∧ s are equivalent in the presence of the

core belief ¬p∧¬r. Consequently, (q∧s) could have been used as sequence in the explanation

as well.

observation rational explanation

belief trace

〈(p, p, ∅), (r, s, ∅)〉 [(p ∧ r → s),>]

(p ∧ r → s, p ∧ (r → s), p ∧ r ∧ s)
〈(p,>, {p}), (r, s, ∅)〉 [(¬p ∧ r → s),¬p]

(¬p ∧ (r → s),¬p ∧ (r → s),¬p ∧ r ∧ s)
〈(p,>, ∅), (r, s, {r ∧ p})〉 [(¬p ∧ r → s),¬p ∨ ¬r]

(¬r ∨ (¬p ∧ s), p ∧ ¬r,¬p ∧ r ∧ s)
〈(p, p, ∅), (r, s, {r ∧ p, r ∧ s})〉 [(p ∧ ¬r → s),¬r]

(¬r ∧ (p→ s), p ∧ ¬r ∧ s, p ∧ ¬r ∧ s)
〈(p, q, ∅), (r, s, {p ∧ s, r ∧ s})〉 [(¬p ∧ ¬r → q ∧ s),¬p ∧ ¬r]

(¬p ∧ ¬r ∧ q ∧ s,¬p ∧ ¬r ∧ q ∧ s,¬p ∧ ¬r ∧ q ∧ s)

2.8 Concluding remarks

In this chapter, we suggested a particular agent framework to model the observed agent —

describing the epistemic state of A, the way it revises its state and extracts its belief set.

We formalised the observation o to be made of A and the conditions for a potential initial

epistemic state [ρ,N] to be an explanation for that observation, in which case the core belief

N is called o-acceptable. The assumed revision framework allows viewing an initial state as

a rational consequence relation and transforming the observation into a partial description

of that relation. Using the rational closure we are able to construct an explanation for o if

one exists. Such an explanation allows us to draw conclusions about the agent. The core

belief determines which revision inputs are predicted to be rejected by A and which are

predicted to be accepted. The belief trace allows conclusions about the agent’s beliefs before

the observation o started, about what the agent believed apart from what is recorded in o

and what it may believe after receiving further revision inputs.

Each observation could have been generated from a vast number of different initial epistemic

states, i.e., agents may be very different from one another and may still give rise to the
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same observation. This means that there cannot be an algorithm that will always return the

right explanation. It will not be possible to guarantee the correct core belief, correct initial,

final beliefs, etc. — compromises will have to be made. We suggested one which singles

out one particular explanation and uses that for reasoning about A. In the following, we

will illustrate what the rational explanation can and cannot do and propose a method for

identifying conclusions that have a particularly strong support.

One of our main results is the existence of an optimal o-acceptable core N∨(o), one that is

entailed by any o-acceptable core. This means N∨(o) yields safe conclusions about the core

beliefs of the observed agent in the sense that each revision input predicted to be rejected

by the agent will indeed be rejected. Formulae predicted to be accepted may in fact be

rejected by A as its core belief could be stronger than N∨(o). We then went on to show

that the rational closure yields a suitable way for calculating an optimal ρ given N. Here

optimality is equated with yielding weak beliefs starting at the beginning of the observation.

These results were accumulated into an algorithm that calculates the optimal core and the

corresponding sequence for a given observation if an explaining initial epistemic state exists

or tells us that no explanation exists otherwise.

As for many optimisation problems, e.g., scheduling or planning tasks, the quality of the

solution and the conclusions we can draw from it depend heavily on the quality of the data

and the validity of the assumptions made. Choosing a certain road based on an old map

may turn out to be far from optimal if you suddenly find yourself at the wrong end of a one

way street. Seven minutes for changing trains may suffice only under the assumption that

the first train actually is on time. If this assumption turns out to be wrong, the conclusion

that one will make the appointment might be useless if not harmful. In our case, we clearly

stated the assumptions made about the given observation as well as the agent’s being ruled

by the assumed framework. The optimality result for the core belief N∨ depends on those.

The optimality of ρ and therefore the conclusions about A′s further beliefs also depend on

its actually employing the assumed core belief. That is, if we cannot be sure of the agent’s

actual core belief then most of what we can say about the agent’s belief trace based on the

rational explanation is merely justified guesses but not safe bets.

Example 2.66. (i) Let o = 〈(>, p, ∅), (¬p,>, ∅), (r ↔ ¬p, r ∨ p, ∅)〉. o expresses that after

receiving a tautology the agent believes p which is equivalent to enforcing an initial belief in

p. The agent then receives the input ¬p, but we get no further information about beliefs or

non-beliefs. Finally, after hearing that r holds if and only if ¬p holds, the agent believes r∨p.

The rational explanation for o is [(p),>] and the corresponding belief trace is (p, p,¬p, r∧¬p).

If the agent’s actual initial belief state was [(), p], i.e., in particular the core belief was stronger

than concluded, the belief trace in truth is (p, p, p,¬r ∧ p). So except for the beliefs before
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the observation started and after receiving the tautology all conclusions we draw about A′s
beliefs are wrong! Note also that in this example the two belief traces are incomparable with

respect to ≤lex. This relation, which we used for defining the optimality of the sequence in

epistemic states, guarantees comparability only if the same core belief is used.

(ii) Let o = 〈(p, p, ∅), (q, q, ∅), (r ↔ p,>, ∅)〉. All this observation obviously implies is that

three revision inputs were received and that the first two are accepted by the agent. This lack

of information is reflected in the rational explanation for o which is [(),>]. The corresponding

belief trace is (>, p, p ∧ q, p ∧ q ∧ r). If the agent’s actual initial belief state was [(), q → ¬p],
the belief trace in truth is (q → ¬p, p ∧ ¬q, q ∧ ¬p, q ∧ ¬p ∧ ¬r). Again, for large parts the

conclusions we draw about the agent’s beliefs based on the rational explanation are wrong.

This strong dependence on the core belief can be easily explained. As mentioned before there

are two main effects due to the core belief. First, it causes revision inputs to be rejected

immediately in case they are inconsistent with the core. This is why the conclusions based on

the rational explanation are off the mark in case (i) in the above example. Secondly, the core

also accounts for interactions between revision inputs. An earlier input is eliminated from

the belief set in the light of the core and some later inputs — an effect which is related to

Proposition 2.26 and is illustrated in case (ii). For one choice of the core belief, after having

received the input ϕi+j , the agent may still believe the input ϕi received earlier, while for

another core it may believe ¬ϕi.

Even if we got the core belief right and hence the agent really employs N∨(o), conclusions

based on the rational explanation of o should not be used without care. The optimality

result for the rational prefix does not exclude mistakes. This becomes clear when taking

a close look at the criterion given in Definition 2.53. Formulae entailed by the elements of

the belief trace are guaranteed to be believed by the agent only up to one step beyond the

point where calculated beliefs and the agent’s actual ones first fail to be equivalent. This

can easily be the case already for the initial beliefs. This shows that the criterion given in

Definition 2.53 may be suitable to define a notion of optimality, but it is much too weak to

ensure safe conclusions about beliefs throughout the belief trace.

Consider o = 〈(p, q, ∅), (r,>, ∅)〉 for which the rational explanation is [(p→ q),>], the cor-

responding belief trace being (p→ q, p ∧ q, p ∧ q ∧ r). We would conclude the agent to keep

believing in q. If the agent’s real initial epistemic state was [(¬q,¬r ∧ q),>] then the real

belief trace would be (¬r∧q, p∧¬r∧q, r∧¬q). Although the correct core was calculated, we

would be wrong about q whose negation is in fact believed after having received the input r.

Is there anything we can do in order to verify conclusions we draw about A? In other

words, is there a way to turn the rather academic optimality criteria for explanations of
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an observation into a tool for drawing safe conclusions? As mentioned before, formulae

predicted to be rejected (using N∨(o)) must indeed have been rejected. But what about

formulae consistent with N∨(o) — are they necessarily accepted by A? And what about

beliefs and non-beliefs extracted from the belief trace which we calculated from the rational

explanation of an observation? Can we rely on any of them? In the following we will suggest

notions of safety and present a method we call hypothetical reasoning which allows to test

whether a conclusion is safe.

2.8.1 hypothetical reasoning

We will start with a very strong notion of safety and later sketch weaker ones. Note that

throughout this section we assume the observation o to have an explanation. We further

assume implicitly that the rational explanation of o actually allows us to draw the conclusion

we then test.

Definition 2.67. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation made of an agent

A. We call the following statements safe if and only if the given condition is satisfied:

• “A rejects the revision input ϕ”: N ` ¬ϕ for every o-acceptable N

• “A accepts the revision input ϕ”: N 6` ¬ϕ for every o-acceptable N

• “A believes θ after receiving the sequence of revision inputs (ψ1, . . . , ψi) in its initial

epistemic state”: Bel([ρ,N] ∗ ψ1 ∗ · · · ∗ ψi) ` θ for every explanation [ρ,N] of o

• “A does not believe θ after receiving the sequence of revision inputs (ψ1, . . . , ψi) in its

initial epistemic state”: Bel([ρ,N] ∗ ψ1 ∗ · · · ∗ ψi) 6` θ for every explanation [ρ,N] of o

Note that these statements cover the answers to all the possible questions we collected at

the end of Section 2.3 and also do not place any restrictions on ϕ, θ and the ψi. We call such

a statement safe if and only if it is correct for any possible explanation of the observation

and thus in particular for the agent’s real initial epistemic state. The rational explanation

can now be seen as one (but not as the exclusive) way of generating conjectures about A
which then need to be verified. This verification is done via hypothetical reasoning by which

we mean modifying the given observation o with respect to the conjecture and running the

rational explanation construction on the modified observation o′. The modification is done

in a way such that an explanation for o′ will also be an explanation for o and would further

be a counterexample to the conjecture. That is, finding an explanation for o′ would prove

the conjecture to be wrong, not finding one would prove it correct. Proposition 2.33 already
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told us that any explanation for the observation o1 · o2 · o3 can be adapted to explain the

observation o2. We will now give a proposition that expresses the same for a different way

of extending an observation o2.

Proposition 2.68.

Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and o′ = 〈(ϕ1, θ
′
1, D

′
1), . . . , (ϕn, θ′n, D

′
n)〉 such that for

all 1 ≤ i ≤ n we have θ′i ` θi and D′i ⊇ Di. If [ρ,N] explains o′ then it also explains o. In

particular, any o′-acceptable core is o-acceptable.

o and o′ contain the same sequence of revision inputs, the beliefs recorded in o′ are all

equivalent or logically stronger compared to those in o and all non-beliefs recorded in o′

also appear in o. In other words, information about beliefs and non-beliefs in o′ is more

specific than in o. This proposition immediately follows from Definition 2.29 and entails

that N∨(o′) ` N∨(o) as any o-acceptable core entails N∨(o). So, extending the observation

in the above sense can only make the minimal core belief stronger.15 Together with Left

Monotony and Right Monotony we get that we can take an observation o, strengthen the

beliefs and non-beliefs in o according to Proposition 2.68, append further observations o1

and o3 to the front and the end to get an observation o′. And any explanation for o′ will

also explain o. This is what we will make use of for confirming or refuting conjectures we

have about an agent.

If we want to check whether we can safely conclude that an agent rejects the revision input

ϕ, we simply need to calculate the rational explanation of the observation o. If N∨(o) 6` ¬ϕ
then we already have a counterexample. If N∨(o) ` ¬ϕ then we know that every o-acceptable

core entails N∨(o) and hence also ¬ϕ, in which case the conclusion is safe.

If we want to check whether we can safely conclude that an agent accepts the revision input

ϕ, we can check whether o′ = o · (ϕ,¬ϕ, ∅) has an explanation. The appended observation

forces N∨(o′) to entail ¬ϕ and hence to reject that input. It does not have any other effect. If

there is an o′-acceptable core N, the conclusion is not safe as N is also o-acceptable (as argued

above). If there is no o′-acceptable core then every o-acceptable core is consistent with ϕ

(otherwise it would also be o′-acceptable which is easy to see) and hence the conclusion is

safe. Of course, this presupposes that o can be explained at all.

Example 2.69. Given o = 〈(p, p, ∅), (q, q, ∅)〉 we might wonder if the agent necessarily ac-

cepts a possible input p ∧ q. However, [(),¬p ∨ ¬q] is an explanation for the observation

15A similar property does not hold if beliefs and non-beliefs are modified otherwise. Consider 〈(p,¬p, ∅)〉
or 〈(p,>, {p})〉 which requires the core belief to entail ¬p. If these observations are modified to 〈(p,¬p∨q, ∅)〉
or 〈(p,>, ∅)〉, i.e., beliefs or non-beliefs are in a sense retracted from the observation, then > becomes an

acceptable core.
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o′ = 〈(p, p, ∅), (q, q, ∅), (p∧ q,¬p∨¬q, ∅)〉 and hence also for o. As a consequence the conclu-

sion that p ∧ q will be accepted is not safe.

Given o = 〈(p, p, ∅), (q, q, {¬p})〉 the same conclusion is safe as there is no explanation

for o′ = 〈(p, p, ∅), (q, q, {¬p}), (p ∧ q,¬p ∨ ¬q, ∅)〉. Consequently, every o-acceptable core

is consistent with p ∧ q.

This covers the first two cases from Definition 2.67. The last two cases are slightly more com-

plicated as they do not require ψi to coincide with the corresponding ϕi from the observation.

We will first deal with the simple cases where (ψ1, . . . , ψi) is a prefix of ι = (ϕ1, . . . , ϕn) or

vice versa. If (ψ1, . . . , ψi) is a prefix of ι then the question is whether θ must/cannot be

believed after receiving the ith revision input. We can check whether θ must necessarily

be believed after receiving the first i inputs by adding θ to Di to get o′. We thus get an

observation expressing the same as o but additionally that θ is not among the beliefs at that

point during the observation. If there is an o′-acceptable core then it is possible that θ is

not believed and hence that conclusion was not safe. If there is no o′-acceptable core then θ

must necessarily be believed at that point.

We can check whether θ cannot be among the beliefs after receiving the first i inputs by

strengthening θi in o to θi ∧ θ to get o′. The observation thus obtained contains the same

information but additionally that θ is among the beliefs at that point during the observation.

If there is an o′-acceptable core then it is possible that θ is believed and hence that conclusion

was not safe. If there is no o′-acceptable core then θ really cannot be believed at that point,

as otherwise an explanation would have been found.

If ι is a prefix of (ψ1, . . . , ψi), i.e. the latter sequence corresponds to (ϕ1, . . . , ϕn, ψn+1, . . . , ψi),

the beliefs after some further revision inputs are considered. Here we first extend o to

o · (ψn+1,>, ∅), . . . , (ψi,>, ∅). From the definition of an explanation it is easy to see that

an epistemic state explains either both or none of the two. Now θ can be added to Di = ∅
or θi = > as above in order to see whether θ must or cannot be believed after the agent’s

receiving the sequence of revision inputs (ψ1, . . . , ψi) in its initial epistemic state.

Example 2.70. Consider o = 〈(p, p, ∅), (q, q, {¬p,¬r})〉, that is, A accepts both inputs and

does not believe ¬p or ¬r after receiving q. The rational explanation [(),>] may lead us to the

conclusion that after receiving p the agent did not believe ¬q, but is this safe? We test whether

there is an explanation for o′ = 〈(p, p ∧ ¬q, ∅), (q, q, {¬p,¬r})〉 and indeed [(p→ ¬q),>]

explains o′, so not all explanations lead to this conclusion and it is not safe.

The rational explanation predicts that after a further input r, p will still be believed. We can

verify this by testing whether o′ = 〈(p, p, ∅), (q, q, {¬p,¬r}), (r,>, {p})〉 has an explanation.

However, there is no o′-acceptable core, so this conclusion is indeed safe.



56 CHAPTER 2. THE RATIONAL EXPLANATION

For the special case that i = 0, i.e., the agents initial beliefs are to be considered, the original

observation must be modified in a slightly different way. Instead of appending new records

to the end, (ϕ0, θ0, D0) = (>,>, ∅) is appended to the front of o. Receiving a tautology

leaves everything unchanged (Proposition 2.8). Thus we get an observation containing an

entry for the initial beliefs and can modify θ0 and D0 as described above in order to verify

conjectures about beliefs and non-beliefs of the agent before the actual observation started.

If (ψ1, . . . , ψi) and (ϕ1, . . . , ϕn) are not in any prefix relation as assumed up to this point,

this means we are interested in the agent’s beliefs after some sequence of revision inputs

completely different from that recorded in o — but starting in the same initial epistemic state.

Modifying o in a way described above is now impossible, intuitively because assumptions

made about the observation would be violated. Instead, we will consider two observations:

o and o′ = 〈(ψ1,>, ∅), . . . , (ψi,>, ∅)〉. Note that any epistemic state explains that particular

o′. The trick is now to modify o′ as described above, that is, replace in o′ the entry (ψi,>, ∅)
by (ψi, θ, ∅) or (ψi,>, {θ}) and test whether there is an epistemic state explaining both o

and the modified o′. Up to now we have not described how it is possible to find a single

explanation for two observations. We will illustrate this in Section 4.2. At this point, it

suffices to know that it can be done.

As mentioned at the beginning of this section, the notion of safety where all explanations

have to verify the conclusion is a very strong one. By slightly modifying the conditions in

Definition 2.67 we can get weaker notions of safety. Instead of requiring the conjecture to

be verified by every explaining epistemic state, it might be enough that it is true for every

explanation [ρ,N] where (i) N entails some specific formula ψ, (ii) N does not entail some

formula ψ, or (iii) N is equivalent to some ψ. These variants make sense only if we are

sure that the additional condition on the core belief is indeed met by the observed agent’s

real core belief.16 We want to emphasise that being a conclusion is a necessary condition

for a conclusion to be safe. In particular, there must be an explanation for the original

observation such that the core belief satisfies the given property (entailing or not entailing a

given formula).

For (i) we only need to initialise the core belief in the rational explanation construction with

ψ rather than >. Proposition 2.60 and and a slight variant of the proof for Proposition 2.62

ensure that then the weakest acceptable core which entails ψ is calculated. o′ is constructed

as above — in a way such that an explanation would be a counterexample to the conjecture.

16In the next section we will argue how very unlikely it is to construct the agent’s real core belief from a

given observation. But there are scenarios where such information may indeed be available. For example,

some software agent from the same series and consequently distributed with the same initial configuration

could have been observed accepting or not accepting some revision input.
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If there is an o′-acceptable core entailing ψ, the conjecture is wrong, otherwise it must be

correct.

For (ii) we calculate the rational explanation [ρ,N] for the modified observation o′. If N 6` ψ,

then we have a counterexample and the conjecture was wrong. Otherwise, any o′-acceptable

core must necessarily entail ψ (or o′ has no explanation at all). For (iii) we only need to

check whether ψ is o′-acceptable. If so we have a counterexample, if not the conjecture must

be correct.

Example 2.71. (i) Consider o = 〈(¬q,¬q, ∅)〉 and assume we know the agent’s core belief

must entail p → q. The conjecture we want to verify is that A believes ¬p after receiving

¬q. We run the adapted rational explanation algorithm (initialising the core with p→ q) on

o′ = 〈(¬q,¬q, {¬p})〉. However, we are then informed that this observation does not have

an explanation. This means that given that the core belief entails p → q, any explanation

predicts a belief in ¬p. In this example this can easily be checked. As the recorded belief in

¬q is correct and the core belief is held at every point in time, ¬p is entailed by the two.

(ii) Consider o = 〈(p,>, ∅), (q,>, {¬r}), (r,>, ∅)〉 and assume we know that A’s core be-

lief does not entail ¬r ∨ ¬p. The rational explanation [(),>] suggests that after receiving

r, the agent does not believe ¬p. We test this by calculating the rational explanation for

o′ = 〈(p,>, ∅), (q,>, {¬r}), (r,¬p, ∅)〉 which is [(),¬q ∨ ¬p]. So there is indeed an explana-

tion for o whose core belief does not entail ¬r ∨¬p and which does in fact predict a belief in

¬p after the agent’s receiving r. Consequently, our conjecture was wrong.

Leaving the question of safe conclusions, we want to remark two things. Firstly, the rational

explanation algorithm can be seen as applying hypothetical reasoning itself. It starts by

conjecturing the core belief of the agent to be a tautology and checks whether this leads

to a contradiction. If so, the core belief is adapted accordingly, i.e., a new conjecture is

formed and tested. Secondly, Propositions 2.33 and 2.68 also allow for some algorithmic

optimisation when extending a given observation o in the specified ways.17 If the rational

explanation for o has already been calculated, we do not need to start from scratch for o′.

We can start by initialising the core belief with N∨(o) rather than >. The correctness of this

method follows from Proposition 2.60 using a slight variant of the proof of Proposition 2.62.

For the case that the observation is not extended by appending further entries to the front

of o, we need not even recalculate all the positive and negative conditionals in the first run

17This can be useful for hypothetical reasoning, but also if additional information about the agent is

received and the observation can thus be refined. Additional here means that the information in the original

observation is correct but some beliefs turned out to be logically stronger than initially given, we are informed

about further formulae not being believed at some points during the observation, or earlier or later revision

inputs become known. The assumption that no input was received between the ones recorded is still essential!
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(provided they are still at our disposal from the rational explanation calculation for o). As

the core belief (N∨(o)) is the same and the revision inputs were not changed, the antecedents

of the conditional beliefs will be the same as well. So if a belief was modified, i.e., θ′i 6≡ θi,

we simply use f (ιi · N∨(o)) ⇒ θ′i instead of f (ιi · N∨(o)) ⇒ θi. As we are dealing with

rational consequence relations it does not matter whether we use both λ⇒ µ1 and λ⇒ µ2

or λ ⇒ µ1 ∧ µ2. So, if we want to express that after receiving ϕi, the agent believed ψ in

addition to θi, we could also simply add the positive conditional f (ιi · N∨(o)) ⇒ ψ. If a

non-belief δ was added to Di, we just add f (ιi · N∨(o))⇒ δ to the negative conditionals.

2.8.2 impossibility results

It may be nice to be able to verify conclusions drawn from the rational explanation (or

conjectures obtained otherwise), but can we ever be sure to have the correct core belief

in order to apply the optimality results we gave for the rational prefix? The answer to

this question is almost exclusively negative. Even if we know that the agent’s core belief

comprises only variables that appear in the observation o, there usually is more than one

o-acceptable core.

In a different context which we will deal with in the next chapter, Sébastien Konieczny18

suggested the additional assumption that the last belief θn recorded in the observation

o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 is in fact complete, i.e., the agent’s beliefs at that point

are Cn(θn). This assumption gives us an upper bound on the actual core belief N as then

θn ` N must hold.

We can use the methodology described above in order to narrow down the actual core belief.

Starting off with calculating the rational explanation [ρ,N] of o, we check which beliefs this

implies after receiving the last input. These are represented by f (ρ · ι · N). Clearly, this

formula entails θn, which completely characterises the agent’s beliefs at that point, but if

the two are not equivalent then f (ρ · ι · N) must be logically stronger and is not believed

by the agent. So, we add f (ρ · ι · N) to Dn and rerun the rational explanation algorithm.

And so on, until recorded beliefs and those implied by the explanation coincide. This will

give an improved lower bound for the core belief of the agent, but it still cannot guarantee

uniqueness of the core.

Consider the observation o = 〈(p, q, ∅), (p ∧ r, s, ∅), (¬p,¬p, ∅)〉. N∨(o) = > but, e.g., p → q

or p ∧ r → ¬q are also o-acceptable. Note that ¬p entails these formulae. In this example,

there is no information gain by the assumption that ¬p is the only formula believed after

18Personal communication.
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receiving it. It is inconsistent with all the other recorded revision inputs, so it cannot help in

determining which further interactions the real core belief causes among those earlier inputs.

Going yet a step further, even if we assumed that every θi completely characterises the

beliefs of the agent after receiving ϕi, we would not be guaranteed to get the real core belief.

Consider o = 〈(p, p, ∅), (q, p∧q, ∅), (r, p∧q∧r, ∅)〉 for which [(),>] is the rational explanation.

However, p is also o-acceptable, so the conclusion that an input ¬p will be accepted by the

agent may turn out to be wrong. All this should not come as a surprise: as long as there

are several o-acceptable cores, we cannot be sure that N∨(o) — or any other core found by

some alternative method — is the right one.

We have assumed finite observations so far, in fact we defined them to be finite. We cannot

deal with an infinite one as it might give rise to infinite sets of conditionals so that the rational

prefix construction might not terminate. But we can investigate the convergence behaviour of

the rational explanations for observations oi = 〈(ϕ1, θ1, D1), . . . , (ϕi, θi, Di)〉 from a sequence

of prefixes (o1, o2, . . . ) of an infinite observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn), . . . 〉. Note

that the Di are still assumed to be finite. o might be the result of continuous observation of

an agent — reasoning about A while further extending o.

We already stated that the beliefs of the agent need not converge, but the question is whether

the rational explanation converges towards the actual initial epistemic state [ρ,N] of the

agent, yielding the correct core belief and a sequence behaving exactly like ρ. By Right

Monotony we know that N∨(oi) ` N∨(oi−1) for all i which means that using the rational

explanation construction we get closer and closer to the core that gave rise to o. However, it

is not clear whether N will have been found at some point. And even if it has, is there an i

such that N∨(oi) ≡ N and the observer also knows that the right core belief has been found?

If the language we are dealing with is finite and fixed then there is hope, otherwise it might

happen that a unique core has been found, i.e., hypothetical reasoning tells us that N∨(oi)

cannot be strengthened using any formula made up of variables that have appeared so far,

and oi+1 contains a new variable, again enlarging the set of oi+1-acceptable cores.

But even if the language is fixed, finite and known, an infinite observation is not guaranteed

to narrow down the set of acceptable cores. It is possible that from some point on the

observation is not informative any longer, that is, it gives rise to positive and negative

conditional beliefs that are already entailed by ⇒[ρR(oi,N∨(oi)),N∨(oi)] of some prefix oi of the

observation o and these do not suffice to eliminate all but one core belief. As a trivial example

consider 〈(p, p, ∅), (¬p,¬p, ∅), (p, p, ∅), . . . 〉 but the language containing another variable q. As

that one never appears in the infinite observation, we cannot be sure that the agent’s core

belief does not talk about q. For example, it may very well be q or p↔ q.
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We can guarantee to find the correct core belief if the language is fixed, finite and known

and for every i such that N∨(oi) is not the only oi-acceptable core, there is a j such that

N∨(oi) 6` N∨(oi+j). This trivial condition simply states that as long as we have not found

a unique core (which can in principle be checked as there are only finitely many), we will

eventually get further information — in the form of conditional beliefs not known up to

that point — which further narrows down the weakest core belief. Determining whether the

rational prefix then correctly represents the sequence ρ in the agent’s actual initial epistemic

state [ρ,N] coincides with the question whether the observation allows only a single rational

consequence relation. Hypothetical reasoning is a possible tool for answering that question.



Chapter 3

Beyond the Rational Explanation

3.1 Introductory notes

In the last chapter we developed an algorithm that constructs a best potential initial epis-

temic state that explains an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 on an agent’s

revision history. We assumed the agent to be employing a particular framework for carrying

out revision and calculating its beliefs. Having calculated an initial epistemic state, we are

able to draw conclusions about beliefs other than those recorded in the observation as well

as future beliefs. This is possible because in this framework the agent’s future beliefs after

a sequence of revisions are completely determined by its initial state. The current chapter

is devoted to the application of the rational explanation in slightly more general settings.

One essential assumption for the results presented in Chapter 2 to hold was that the ob-

servation was correct and complete in the sense that exactly the inputs ϕi recorded were

received by the agent. So the agent did indeed receive the input ϕi and it did not receive

any inputs between ϕi and ϕi+1. This is a very strong assumption as it basically claims that

the observer kept its eye on the agent at all times (during the observation) and was capable

of registering the exact revision inputs received by the agent.

In some cases this assumption might even be justified. If, for example, the observer itself is

the sole source of the revision inputs, it is in control of what inputs the agent A receives.

However, if the communication channel is noisy, it still might not be sure about the logical

content actually received by A. The following example illustrates a case where the logical

content of an input is not understood but where reasoning about the observed agent should

still be possible.

Example 3.1. Imagine, we observe a dialogue where an agent A receives exactly two inputs.

We cannot understand the first input. However, the agent explicitly acknowledges that input,
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from which we can infer that it is believed by A. After receiving a further input p the agent

believes q and the negation of the first input — we can understand logical connectives and

recognise the first input.

This cannot be dealt with using previous results as there is an unknown revision input. How-

ever, we should be able to infer that A believed ¬p after receiving the first input. This is

because the assumed belief revision framework satisfies (most of) the AGM postulates [1].

In particular, if the input is consistent with the current beliefs they all have to survive the

revision process (cf. the “Vacuity” or preservation postulate from AGM) which is clearly not

the case here.

There are many factors preventing the available information from meeting the strict re-

quirements of the last chapter. Agents may leave the scene for a while, use a language not

completely known to the observer, or exchange secret messages. The observing agent may

be temporarily distracted, otherwise prevented from continuously observing, or incapable of

precisely recording every piece of available information.

In this chapter, we want to investigate what we can say about A if the assumption of knowing

the exact revision inputs is relaxed. We will consider two related but distinct scenarios. First,

we will investigate the case where the logical content of the revision inputs received is only

partially known,1 i.e., the observation is still assumed to contain an entry 〈(ϕ, θ,D)〉 for every

input received. Then we will go on to the case where not all revision inputs are recorded

in the observation. It should be clear that the less complete and reliable the information in

the observation is, the less informative the conclusions about the agent will be. In fact, we

will provide formal results only for the core belief that can be assigned to the agent. For

reasoning about the beliefs and non-beliefs during the time of observation we propose to use

hypothetical reasoning.

3.2 Dealing with unknown logical content

3.2.1 modelling unknown logical content

Throughout Section 3.2, we will keep the assumption that the observation contains an entry

for every single revision input received by the agent. However, the information about the

exact input may be partial. We will model this by allowing formulae appearing in the

1In fact, we allow this to be the case for all components of an observation: revision inputs, beliefs and

non-beliefs. Note that such a scenario has similarities to the situation of a non-native speaker. She might

not know the meaning of all words but has a good knowledge of the grammar of the language. This allows

for extracting information from the context of unknown words.
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observation to contain unknown subformulae which are represented by n placeholders χj .

λ(χ1, . . . , χn)[(χi/φ)i] denotes the result of replacing in λ every occurrence of χi by φi.

Definition 3.2. Let L be a propositional language and χ1, . . . , χn be placeholders not be-

longing to L.

An object λ(χ1, . . . , χn) possibly containing χ1, . . . , χn is called a parametrised formula based

on L iff λ(χ1, . . . , χn)[(χi/φ)i] ∈ L whenever φ ∈ L.

o = 〈(ϕ1, θ1, D1), . . . , (ϕl, θl, Dl)〉 is a parametrised observation based on L iff all ϕi, θi,

δ ∈ Di are parametrised formulae based on L.

We denote by L(o) the smallest language L a parametrised observation o is based on.

To put it differently, a parametrised formula based on L is a formula from L in which some

subformulae have been replaced by placeholders χi. So in order to model (even more) partial

knowledge, formally an observation does not really contain formulae ϕi, θi and δ ∈ Di but

parametrised formulae ϕi(χ1, . . . , χn), θi(χ1, . . . , χn) and δ(χ1, . . . , χn) that become formulae

if all χj are properly instantiated. We will often write λ rather than λ(χ1, . . . , χn) to denote a

parametrised formula in order to ease reading. Hence, we deal with parametrised observations

rather than observations like in the last chapter. Note that this is more general than having

partial knowledge about the inputs only. We allow unknown subformulae in the beliefs and

non-beliefs of the agent as well.

The parametrised observation corresponding to Example 3.1 is 〈(χ, χ, ∅), (p, q ∧ ¬χ, ∅)〉 . We

want to emphasise that this is not a normal observation as we do not know which formula

is represented by χ. The example already illustrates how we can express formally that the

logical content of a revision input is completely unknown. In this case the corresponding

entry for the revision input in the observation simply is a placeholder χj . It also shows that

unknown subformulae can be referred to several times by using them more than once in the

observation. This makes sense, for example, in scenarios where parts of the language are

unknown to the observing agent. The meaning of an utterance might not be understood,

but one might be able to recognise it when it appears again later.

Let o be a parametrised observation, i.e., o contains parametrised formulae that contain the

unknown subformulae χi, 1 ≤ i ≤ n. o[χ1/φ1, . . . , χn/φn] and equivalently o[(χi/φi)i] denote

the observation o with every occurrence of the placeholder χi substituted by a formula φi.

Abusing notation we will write that o has an explanation, meaning that there exist instan-

tiations φ1, . . . , φn for the unknown subformulae such that o[(χi/φi)i] has an explanation;

similarly that N is o-acceptable if N is o[(χi/φi)i]-acceptable. We will sometimes need to re-

fer to two observations constructed from one parametrised observation o where all unknown
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subformulae except for χi were substituted by the same formula. The first being o[(χi/φi)i]

the second may be denoted by o[χi/φ′i, (χj/φj)j 6=i].

We still assume correctness of the information contained in the parametrised observation o,

i.e., we assume the existence of instantiations φi of all unknown subformulae χi such that the

observation o[(χi/φi)i] is a correct observation in the sense of the last chapter. The agent

indeed received exactly the inputs recorded and beliefs and non-beliefs are correct if partial.

Note that this implies that we are not yet able to deal with missing inputs. These will

be considered in Section 3.3. One important technical restriction is that the instantiations

of unknown subformulae χi must not contain unknown subformulae χj themselves, i.e.,

the instantiations must be elements of the underlying language — however, not necessarily

elements of L(o). Generally, this should not be a conceptual restriction as we can replace an

unknown subformula about which we have some further knowledge by an object encoding

that knowledge. The following example is to illustrate this point.

Example 3.3. Imagine, we want to express that the first three revision inputs are unknown

but we know that the third one entails the first two. We represent the first input by χ1 and

the second one by χ2. However, we use χ1 ∧ χ2 ∧ χ3 for representing the third input (rather

than just χ3). χ1 ∧χ2 makes sure that the first two inputs are entailed, χ3 is the placeholder

for whatever else might be entailed by the third input. Also, whenever we need to refer to the

third input, we use χ1 ∧ χ2 ∧ χ3.

Proposition 3.4. Let L be a propositional language and φ ∈ L. Let I be a set of natural

numbers, for each i ∈ I let λi(χ) be a parametrised formula based on L, αi = λi(χ)[χ/φ],

and α′i = λi(χ)[χ/x] where x 6∈ L, i.e., the propositional variable x is not contained in any

λi(χ) or φ. Then for all finite S ⊆ I∧
i∈S

αi ` ⊥ if and only if (x↔ φ) ∧
∧
i∈S

α′i ` ⊥.

This proposition expresses that, provided x and φ are assigned the same truth value, i.e.,

x ↔ φ is satisfied, it does not matter whether the unknown subformula is replaced by

φ or the new variable x. Of course, this is not a deep result, but it contains the idea

of how to deal with the unknown subformulae contained in the observation: We replace

the unknown subformulae by new variables, i.e., variables that do not yet appear in the

parametrised observation. That way, we get an observation that can be handled using the

rational explanation construction.

3.2.2 finding an acceptable core belief

In the following sections, we will present results on what can be said about an agent’s core

belief given a parametrised observation o. Once again, if an explanation exists at all, we
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can give a unique weakest core belief which is entailed by any acceptable core belief N.

This may be surprising as there are many different possible instantiations for the unknown

subformulae. But this will also allow us to choose them such that any o-acceptable core

entails N. If we knew the instantiations of the unknown subformulae we could simply use

the rational explanation algorithm, as in that case a parametrised observation could be

transformed into a regular one. As we do not know them, we have to guess. The trick is to

extend the language and treat every χi as a new propositional variable xi.

The next proposition formalises that given there is some instantiation for the unknown

subformulae such that the resulting observation has an explanation, we can also replace one

of them by a new variable and still know that there is an explanation. This immediately

generalises to all unknown subformulae in Proposition 3.6 — with an important implication:

If some explanation exists for o, i.e., there is some instantiation of the χi such that the

resulting observation can be explained, then we can also assume all the χi to be new variables

and an explanation still exists. Consequently, we can start off with instantiating all χi by

new variables xi and use the rational explanation construction. If this fails, i.e., we are

returned an inconsistent core belief, then no explanation can exist using any instantiation of

the unknown subformulae for that observation.

Proposition 3.5. If [ρ,N] explains o[(χi/φi)i] and x is a propositional variable not appearing

in o, N, ρ or any φi then [ρ,N ∧ (x↔ φi)] explains o[χi/x, (χj/φj)j 6=i].

Proposition 3.6. If [ρ,N] explains o[(χi/φi)i] and x1, . . . , xn are propositional variables not

appearing in o, N, ρ or any φi then

[
ρ,N ∧

∧
1≤i≤n

(xi ↔ φi)

]
explains o[(χi/xi)i].

As can be seen from these propositions, an epistemic state explains a parametrised obser-

vation with respect to a given instantiation of the unknown subformulae, i.e., in a sense

the instantiation is part of the explanation. So, when comparing explanations in terms of a

preference relation, this cannot be done (completely) independently of what we assume the

unknown subformulae to be. We will study this problem more deeply in Section 3.2.5.

Example 3.7. (i) Consider the parametrised observation o = 〈(χ, χ, ∅), (p, q∧¬χ, ∅)〉 captur-

ing Example 3.1. Instantiating χ with ¬q we get o[χ/¬q] = 〈(¬q,¬q, ∅), (p, q, ∅)〉. [(), p→ q]

explains o[χ/¬q]. The corresponding belief trace is (p→ q,¬q ∧ ¬p, p ∧ q).

The observation constructed according to Proposition 3.5, where χ is replaced by a new

variable x, is o[χ/x] = 〈(x, x, ∅), (p, q ∧ ¬x, ∅)〉. [(), (p→ q) ∧ (x↔ ¬q)] explains o[χ/x], the

corresponding belief trace being ((p→ q) ∧ (x↔ ¬q), x ∧ ¬q ∧ ¬p, p ∧ q ∧ ¬x).

The rational explanation for o[χ/x] is [(p ∧ ¬x→ q), p→ ¬x], the corresponding belief trace

being (p→ (¬x ∧ q), x ∧ ¬p, p ∧ q ∧ ¬x).
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(ii) Note that all the belief traces in the first part of this example indicate that after receiving

the unknown input the agent believes ¬p. In order to test whether this is necessarily the case,

we investigate the parametrised observation o′ = 〈(χ, χ, {¬p}), (p, q∧¬χ, ∅)〉. According to the

hypothetical reasoning methodology, ¬p was added to the non-beliefs. Applying the rational

explanation algorithm to o′[χ/x] yields that there is no explanation. Proposition 3.6 now tells

us that there cannot be an explanation for o′ — no matter how χ is instantiated. That is,

if the parametrised observation correctly captures the information about the agent, it must

believe ¬p after receiving the first input. We were able to draw the conclusion we indicated

in Example 3.1.

As already illustrated by the example, Proposition 3.6 does not claim to give the weakest

possible core for o[(χi/xi)i]. It just proves there is an o[(χi/xi)i]-acceptable core in case

there is one for some instantiation of the χi. By Proposition 2.62, we can use the rational

explanation algorithm to get the best explanation for o[(χi/xi)i]. The core belief calculated

will in general be weaker than the one given in Proposition 3.6. But it may still contain

(some of) the additional variables xi. We will now go on to show that it is possible to

eliminate these variables from the core belief by choosing different instantiations of the

unknown subformulae.

3.2.3 finding the best core belief

Up to now we have not assumed any particular (normal) form for the formulae we are dealing

with. The unknown subformulae were allowed to appear arbitrarily deep in the parametrised

formulae, but for some of the proofs it will be helpful to assume the formulae to have a

particular structure. Obviously, any formula can be transformed into conjunctive normal

form (CNF). So without loss of generality we can assume that the additional variables xi
appear as literals in the clauses of a formula in CNF that is equivalent to λ[(χi/xi)i]. The

following result simply confirms that if the χi are replaced by xi ∧ ψ instead of xi for some

arbitrary ψ, logically it does not matter whether this substitution is carried out on λ itself

or whether the xi are replaced in the corresponding CNF, the result not being in CNF, of

course.

Proposition 3.8. Let λ(χ1, . . . , χn) be a parametrised formula based on L, ψ a formula and

x1, . . . , xn 6∈ L be n propositional variables not appearing in λ.

If λ[(χi/xi)i] ≡ α = ϕ ∧
∧

1≤j≤l
(θj ∨

∨
p∈Pj

xp ∨
∨

q∈Nj

¬xq)

for a natural number l, appropriate ϕ, θj ∈ L and subsets Pj , Nj of {1, . . . , n}, 1 ≤ j ≤ l,

then λ[(χi/xi ∧ ψ)i] ≡ α[(xi/xi ∧ ψ)i] = ϕ ∧
∧

1≤j≤l
(θj ∨

∨
p∈Pj

(xp ∧ ψ) ∨
∨

q∈Nj

¬(xq ∧ ψ)).



3.2. DEALING WITH UNKNOWN LOGICAL CONTENT 67

Example 3.9. Consider the parametrised formula λ = p ∧ (χ1 → χ2 ∧ q).

λ[(χi/xi)i] = p∧ (x1 → x2∧q) is equivalent to the CNF p∧ (¬x1∨x2)∧ (¬x1∨q). This latter

formula corresponds to α in Proposition 3.8. ϕ represents the clauses that do not contain xi,

l is the number of clauses containing new variables, Pj is the set of indexes of new variables

that appear positively in the jth such clause, Nj the set of indexes of new variables that ap-

pear as negative literals. Matching the elements of α there with our formula, we get ϕ = p,

l = 2 (as there are two clauses containing new variables), θ1 = ⊥, P1 = {2}, N1 = {1} for

the second clause ¬x1 ∨ x2, and θ2 = q, P1 = ∅, N2 = {1} for the third clause ¬x1 ∨ q. The

proposition now states that, e.g., λ[(χi/xi ∧ r)i] = p ∧ (x1 ∧ r → x2 ∧ r ∧ q) is equivalent to

p ∧ (¬(x1 ∧ r) ∨ (x2 ∧ r)) ∧ (¬(x1 ∧ r) ∨ q).

The next result contains the main step towards eliminating the additional variables from the

core. It formalises that it suffices to keep the part of the core that talks about the language

L the parametrised observation is based on. The rest can be absorbed into the unknown

subformulae and be pushed into the revision history of the agent. For later use think of σ as

any sequence of revision inputs ιk(o) the agent has received during the observation, where the

unknown subformulae were instantiated by new variables. σ′ is the same sequence, except

that any unknown subformula was replaced by the conjunction of the corresponding new

variable and the part of the core belief that also talks about the new variables.

Proposition 3.10. Let L be a finitely generated propositional language.

Let x1, . . . , xn 6∈ L be additional propositional variables.

Let N ∧ ψ be a formula such that N ∈ L and Cn(N) = Cn(N ∧ ψ) ∩ L.

Let σ = (αm, . . . , α1) be a sequence of formulae with

αi ≡ ϕi ∧
∧

1≤j≤li
(θij ∨

∨
p∈Pij

xp ∨
∨

q∈Nij

¬xq) such that ϕi, θij ∈ L

Let σ′ = (α′m, . . . , α
′
1) with α′i = αi[(xk/xk ∧ ψ)k], that is,

α′i ≡ ϕi ∧
∧

1≤j≤li
(θij ∨

∨
p∈Pij

(xp ∧ ψ) ∨
∨

q∈Nij

¬(xq ∧ ψ))

Then f (σ · N ∧ ψ) ≡ f (ψ · σ′ · N).

Abusing notation, we could also write f (σ[(χi/xi)i] · N ∧ ψ) ≡ f (ψ · σ[(χi/xi ∧ ψ)i] · N) when

taking a sequence σ of parametrised formulae based on L and keeping the assumptions about

N, ψ and the additional variables xi. The core belief is weakened and the instantiations of the

unknown subformulae are strengthened accordingly. The ψ appended to the front ensures

the equivalence in case the xi ∧ ψ did not do the job, yet.

This result can now be used to show that for a parametrised observation there is indeed

an explanation where the core belief does not contain the additional variables we used for

instantiating the unknown subformulae. The idea is to replace χi by xi, then calculate the
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rational explanation and finally use Proposition 3.10 to weaken the core belief such that it

does not talk about the additional variables.

Proposition 3.11. If [ρ,N] explains o[(χi/xi)i] then there exist N′ and ψ such that N′ does

not contain any xi and [ρ · ψ,N′] explains o[(χi/xi ∧ ψ)i].

We can even go one step further. Let N′ be the core belief returned when applying the

rational explanation algorithm to o[(χi/xi)i] and ϕ ∈ L(o) be any formula entailed by N′.

Then any o[(χi/φi)i]-acceptable core will entail ϕ. That is, Cn(N′)∩L (which is independent

of the instantiations φi of χi) is a safe conclusion about the core belief no matter what the

instantiations of the unknown subformulae really are. Any formula inconsistent with that

set will be rejected by the agent.

Proposition 3.12. Let [ρ,N] be an explanation for o[(χi/φi)i] and [ρ′,N′] be the rational

explanation for o[(χi/xi)i], where xi are additional propositional variables not appearing in

any φi, N or the language L = L(o). Further let N′′ such that Cn(N′′) = Cn(N′) ∩ L.

Then N ` N′′.

As a consequence, analogously to the observations considered in the last chapter, we can again

prove the existence of a logically weakest core that explains a (parametrised) observation.

Naturally this core does not work with all instantiations of the unknown subformulae but

only for some. The above results tell us how to construct that core and yield one possible

choice for the χi.

Proposition 3.13. Let [ρ,N] be the rational explanation for o[(χi/xi)i] and N′ such that

Cn(N′) = Cn(N) ∩ L(o).

Then N′ is the unique weakest o-acceptable core.

Example 3.14. Consider again the formalisation o = 〈(χ, χ, ∅), (p, q ∧ ¬χ, ∅)〉 of Example

3.1. We saw that the rational explanation for o[χ/x] is [(p ∧ ¬x→ q), p→ ¬x]. o is based

on the language L constructed from the variables p and q. Cn(p→ ¬x) ∩ L = Cn(>). Any

core belief will trivially entail a tautology. To see that there really is an explanation using

that core belief, note that o[χ/¬p] = 〈(¬p,¬p, ∅), (p, q ∧ p, ∅)〉 is explained by [(p→ q),>].

However, these are not the observation and explanation that are used in the proof of the

general result. Here we gave an example that does not even contain additional variables.

This is not always possible as we will show in the next section. We can always eliminate

the additional variables from the core belief (Proposition 3.13) but not necessarily from the

instantiations of the unknown subformulae and the revision history.
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Although it is not quite as fundamental as Proposition 2.35, the next result shows that an

analogous property also holds for parametrised observations. If there are two cores that

explain an observation, possibly using different instantiations for the unknown subformulae,

then we also find instantiations such that the disjunction of those cores yields an explanation.

Proposition 3.15. If N1 is o1-acceptable for o1 = o[(χi/φ1
i )i] and N2 is o2-acceptable for

o2 = o[(χi/φ2
i )i] then there are formulae φ′1, . . . , φ

′
n such that N1 ∨ N2 is o′-acceptable for

o′ = o[(χi/φ′i)i].

3.2.4 the impact of extending the language

All the results used for proving the existence of a(n optimal) o-acceptable core belief depend

on the possibility of extending the language L(o). The unknown subformulae appearing

in o were instantiated by formulae containing additional variables xi not appearing in L(o).

Proposition 3.6 yields a necessary condition for an explanation for o to exist, which is possible

only if the observation o′ = o[(χi/xi)] has an explanation. This can be checked using the

rational explanation construction. Whether we accept this as a sufficient condition, as well,

depends on the point of view.

Obviously, if there is an o′-acceptable core, then we will indeed find an explanation for o′.

In this sense the condition might appear to be sufficient. But o′ and hence most probably

its explanation contain propositional variables that did not belong to L = L(o). That is, for

explaining o we used more than the language o informs us about. But does that guarantee

that the χi might also be instantiated with elements of L and the resulting observation still

has an explanation? We will show that the answer to this question is negative, and in this

sense the existence of an o′-acceptable core is not sufficient. In other words, although o′

may have an explanation, there may be none when restricting the instantiations of the χi to

elements of L.

Example 3.16. Consider o = 〈(q, q, ∅), (p, p∧q∧r, ∅), (¬q,¬q, ∅), (χ,>, ∅), (p, p∧q∧¬r, ∅)〉.
This parametrised observation contains one unknown subformula χ which appears only once.

It represents a revision input that is completely unknown. All known revision inputs are

accepted. After receiving the first p, the agent additionally believes q ∧ r and after receiving

the second one it believes q ∧ ¬r.

[(p ∧ q → r),>] explains o[χ/p→ (q ∧ ¬r)], i.e., instantiating the unknown subformula with

p → (q ∧ ¬r) there is quite a simple explanation. Given that the core belief is to be >,

p ∧ χ must entail q as otherwise f (χ, p,>) 6` q and hence ¬q would be admitted into the

belief set, but the observation requires that after receiving the second p the agent believes

q. This requires χ ` p → q. Further χ must entail more than just p → q. Assume it did
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not. Then the positive conditional corresponding to the agent’s receiving the first p would be

f (q, p,>) ⇒ p ∧ q ∧ r, i.e., p ∧ q ⇒ p ∧ q ∧ r. The conditional corresponding to receiving

the second p would be f (q, p,¬q, p→ q, p,>) ⇒ p ∧ q ∧ ¬r, i.e., p ∧ q ⇒ p ∧ q ∧ ¬r. As

our framework defines a rational consequence relation (Proposition 2.41), this entails the

conditional p ∧ q ⇒ ⊥. However, A believes ⊥ if and only if the core belief is inconsistent,

which it is not — contradiction, so χ must indeed entail more than just p→ q. For the above

explanation we chose p→ ¬r.

Next, consider o′ = o·〈(p∧r, q, ∅)〉. L = L(o) = L(o′) contains only the propositional variables

p, q and r. [(p ∧ q → r), p→ q] explains o′[χ/p→ ¬r], so there is an explanation that is re-

stricted to L. Note that the core belief is not a tautology. [(p ∧ x→ ¬r, p ∧ q → (¬x ∧ r)),>]

explains o′[χ/x ∧ (p → q)]. So there is an explanation where the core belief is a tautology,

but it is not restricted to L. We would have found a similar explanation by calculating the

rational explanation for o′[χ/x] and then applying Proposition 3.13 for ridding the core belief

of x (the proof indicating how to instantiate χ instead). We will now show that there is no

explanation restricted to L where the core belief is a tautology. Assume there is, then χ must

entail p → q and something else as argued above. Further χ must be consistent with p ∧ r.
If it was not we would have f (χ, p, p ∧ r) = p∧ r 6` q, so ¬q would be admitted into the belief

set, contradicting the information in o′ that q is believed after receiving p ∧ r. Basically we

need f (q, p,¬q, χ, p) ≡ p ∧ q ∧ χ 6≡ p ∧ q as otherwise we will have the same contradicting

conditionals p ∧ q ⇒ p ∧ q ∧ r and p ∧ q ⇒ p ∧ q ∧ ¬r as above.

Hence we look for a formula ψ ∈ L such that ψ ` p→ q, ψ 6` ¬p∨¬r implying p∧q∧ψ 6` ¬r,
p∧q∧ψ 6` r (otherwise f (q, p,¬q, ψ, p) ≡ p∧q∧ψ ` r but ¬r must be believed after receiving

the second p) and p ∧ q ∧ ψ 6≡ p ∧ q. Obviously such a formula cannot exist. To be different

from p ∧ q, p ∧ q ∧ ψ would have to talk about r but the above restrictions do not allow that.

Consequently, there is no instantiation of ψ from L such that > is an acceptable core.

Now, consider o′′ = o′ · o>, where o> = 〈(ϕ1, ϕ1, ∅), . . . , (ϕn, ϕn, ∅)〉 such that ϕi varies over

all semantically different formulae from L. Basically, o> requires that an o′′-acceptable core

belief must be consistent with any formula containing only p, q, r, as any such formula must

be believed upon receiving it. It is easily checked that [(p ∧ x→ ¬r, p ∧ q → (¬x ∧ r)),>] also

explains o′′[χ/x ∧ (p → q)]. However, there cannot be an explanation that is restricted to

L. Due to (the contraposition of) Proposition 2.33, > is the only core in question, as any

other formula ϕ ∈ L would be in conflict with (¬ϕ,¬ϕ, ∅) which is an element of o′′. But we

showed above that there is no instantiation of χ from L such that > is an acceptable core.

There is an important lesson to be learned from this example. From the rational explanation

for o[(χi/xi)i] (yielding an optimal core belief via Proposition 3.13) we can generally say

nothing about possible explanations where the instantiations of the χi are from L = L(o).
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There may be one with the same optimal core, there may be one but the core might have to

be logically stronger than the optimal one, there may be no such explanation at all.

Note that Proposition 3.6 makes no assumption about the language of the instantiations

φi of the unknown subformulae. They may or may not belong to L. They may contain

arbitrarily (but finitely) many propositional variables not belonging to L. However, that

proposition has an interesting implication. It says that in case o[(χi/φi)i] has an explanation

then so does o[(χi/xi)i], but o[(χi/xi)i] contains only variables from L and n additional

variables xi. As that observation has an explanation, the rational explanation construction

will return one. However, that construction uses only formulae that are already present in

the observation. Consequently, it does not invent new variables. So, no matter how many

variables not appearing in L were contained in the φi, n additional variables suffice for finding

an explanation for the parametrised observation o. This yields an upper bound on additional

variables needed.

To understand why the number of additional variables matters, it is useful to recall that a

rational consequence relation, which is another way of looking at the initial epistemic state

we are after, can be represented by a total preorder on worlds [54] (see also Section 1.2).

An additional variable x potentially doubles the number of available worlds, there may be

one x- and one ¬x-variant of a former world now. Depending on our way of dealing with

core beliefs, some of them may be irrelevant, e.g., the core belief p → x eliminates worlds

in which p and ¬x hold. Having several copies of the worlds corresponding to L allows for

more structure among them. This explains why there may be an explanation when allowing

an extra variable while there is none when restricting ourselves to L.

We can give a necessary and sufficient condition for the existence of an explanation for o

which is restricted to L(o). Unfortunately, it does not give rise to an efficient way of actually

calculating such an explanation. This is because it is not obvious how to strengthen the core

yielded by the rational explanation construction so that the necessary equivalence emerges

and it will still be o-acceptable.

Proposition 3.17. Let o be a parametrised observation based on L. An explanation of

o restricted to L exists if and only if N ∧
∧

1≤i≤n
xi ↔ φi is o[(χi/xi)i]-acceptable for some

N, φi ∈ L and xi 6∈ L.

N ∧
∧

1≤i≤n
xi ↔ φi will of course entail the core belief N′ of the rational explanation of

o[(χi/xi)i]. But it is not guaranteed that N′ can be strengthened such that every additional

variable xi can be assumed to behave exactly as some formulae from L(o). This is why in

the above example there is an explanation for o′′ but none that is restricted to L(o′′).
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3.2.5 comparing explanations

The main criterion for comparing explanations should be the quality of the conclusions they

allow us to draw. This is why we argued in favour of using the weakest core belief N∨(o) for

observations o and respectively (abusing notation) N∨(o′[(χi/xi)i]) ∩ L(o′) for parametrised

observations o′. It guarantees safe conclusions with respect to the agent’s real core belief.

In Section 2.8 we showed that assuming the wrong core belief — in our case this would be a

core belief that is weaker than the actual one — greatly affects the quality of the conclusions

about the agent’s other beliefs. And even if the core is correct, the rational prefix does

not necessarily yield safe conclusions with respect to the beliefs of the agent during the

observation.

These problems are obviously inherited by the current extension to partial information about

the logical content of the formulae in an observation. They cannot be expected to become

less when not even knowing what inputs the agent really received or when information about

the beliefs and non-beliefs becomes even more vague. We want to give a series of examples

illustrating the difficulty of defining a suitable preference relation among explanations in

this setting. Much depends not only on the core belief but also on the instantiation of the

unknown subformulae. If the latter is equivalent for the two explanations in question, we

can use the criteria introduced in the last chapter, yielding that the rational explanation is

the best we can do. So the question is what happens if they may vary.

To put it differently, rather than looking for the best explanation of an observation, which we

investigated in the last chapter, we are looking for the optimal instantiation of the unknown

subformulae. Having that we could simply apply the results already presented.

Example 3.18. Consider o = 〈(p, p, ∅), (χ,>, ∅), (q,¬p ∧ r, ∅)〉. This parametrised observa-

tion tells us that the first revision input p is accepted. Then the agent received an input we

know nothing about, neither its logical content nor what was believed or not believed after

receiving it. Finally, after receiving q the agent believes ¬p ∧ r.

It is easy to see that it is possible to explain o using > as core belief. To do so χ must entail

q → ¬p, as otherwise the first input p would still be believed after receiving q which is not the

case according to o. So let us assume that the unknown input was in fact q → ¬p. This defines

an observation to which we can apply the rational explanation yielding [q ∧ ¬p→ r,>]. In

particular, we would conclude that the agent initially believed q ∧ ¬p→ r.

This is not necessarily the case, as A may have received q → (¬p ∧ r) instead of q → ¬p.

For this instantiation of χ the rational explanation would be [(),>]. The corresponding belief

traces would be (q ∧ ¬p → r, p, p ∧ ¬q, q ∧ ¬p ∧ r) for the instantiation of χ given first and

(>, p, p ∧ ¬q, q ∧ ¬p ∧ r) for the second one.
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In this example, we would clearly favour the second instantiation of the unknown sub-

formula over the first one. It yields weaker beliefs at every point of the observation.2

In fact there cannot be a better explanation for o. Looking at the rational explanation

[(q ∧ x ∧ ¬p→ r),¬x ∨ ¬q ∨ ¬p] for o[χ/x] this explanation might have been found by push-

ing whatever possible from both the core belief and the rational prefix into the instantiation

of χ which here makes the additional variable x redundant.

Proposition 3.13 tells us which part of the core N can be absorbed by the unknown subfor-

mulae: Cn(N) \L(o). It is the part that talks about the additional variables and was shown

to be the non-essential part of the core belief.3 Writing ψ for that part of the core, the proofs

use xi ∧ ψ as the instantiation of the unknown subformulae. The following example shows

that this instantiation does not yield an optimal belief trace, indicating that it is not trivial

to find an optimal instantiation for the χi. It does not even require an optimisation with

respect to the rational prefix as that is the empty sequence, anyway.

Example 3.19. Consider o = 〈(p, p, ∅), (χ1,>, ∅), (q,¬p, ∅), (r, r, ∅), (χ2,>, ∅), (s,¬r, ∅)〉. p
is believed upon receiving it, then there is an input we have no information about and after

receiving a further input q the negation of p is believed. Then the same happens again with r,

another unknown input and s. The rational explanation for o[χ1/x1, χ2/x2] is [(),N] where

N = (¬p∨¬x1 ∨¬q)∧ (¬r ∨¬x2 ∨¬s). Note that Cn(N)∩L(o) = Cn(>), so the entire core

can be pushed into the intermediate inputs. Denoting ¬p∨¬x1∨¬q by ψ1 and ¬r∨¬x2∨¬s
by ψ2, the belief trace using the rational explanation [(),>] of o[χ1/x1 ∧ N, χ2/x2 ∧ N] is

(>, p, p ∧ x1 ∧ ¬q ∧ ψ2, ¬p ∧ x1 ∧ q ∧ ψ2, ¬p ∧ x1 ∧ q ∧ ψ2 ∧ r, ¬p ∧ x1 ∧ q ∧ r ∧ x2 ∧ ¬s,
¬p ∧ x1 ∧ q ∧ ¬r ∧ x2 ∧ s).

If instead we do not put the entire core N into all unknown subformulae but only the rel-

evant part, we would get o[χ1/x1 ∧ ψ1, χ2/x2 ∧ ψ2] as observation. The rational expla-

nation is again [(),>] and the corresponding belief trace (>, p, p ∧ x1 ∧ ¬q, ¬p ∧ x1 ∧ q,
¬p ∧ x1 ∧ q ∧ r, ¬p ∧ x1 ∧ q ∧ r ∧ x2 ∧ ¬s, ¬p ∧ x1 ∧ q ∧ ¬r ∧ x2 ∧ s). The beliefs are logi-

cally weaker (at most equivalent) at every point of the observation. The belief traces of this

example will be recalled in a table below for better comparison.

2Example 3.20 contains a parametrised observation illustrating that this is not always possible.

3As N is believed by the agent at every single point in time, the entire core could actually be conjoined with

every single input the agent ever received. The belief trace would not change. This makes it quite simple to

absorb any part of the core into the unknown subformulae. For (sub)formulae from ρ in the agent’s assumed

initial epistemic state [ρ,N], the case is more complicated. Different formulae from ρ might be chosen at

different points of the observation. So not all the formulae chosen when the unknown input χi instantiated

by the new variable xi was received can be absorbed into that input.

In short, it is quite obvious what can be pushed down into the unknown subformulae in order to make the

core belief as weak as possible, but it is not obvious what can be pushed up from ρ in order to optimise the

belief trace, which is what the rational prefix is about.
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N contains both additional variables x1 and x2. If the xi are replaced by xi ∧ N, the agent

is assumed to learn something about the second unknown input already when receiving the

first one. If the xi are replaced by xi∧ψi instead, the agent is assumed to get information as

late as possible. That way a preferable belief trace is achieved. For o in this example, it is

quite obvious how to instantiate the unknown subformulae (which turn out to be unknown

revision inputs) in order to get an optimal belief trace. In the general case, however, the

χi may appear several times in the recorded revision inputs as well as in the beliefs and

non-beliefs. Hence, it is not clear for arbitrary parametrised observations how to arrive at

an optimal instantiation of the χi.

When using additional variables, we should not really be interested in all the beliefs contained

in the belief trace. As we cannot say which other variables, if any, the agent has heard about,

we should look only at beliefs from the language L(o). Note that for the core belief we have

already done so by showing that we can restrict the core to that language and still get an

explanation. In the following table we compare the belief traces from the above example and

the belief trace for the rational explanation for o[χ1/x1, χ2/x2] when restricted to L(o).4

ι o[χ1/x1 ∧ N, χ2/x2 ∧ N] o[χ1/x1 ∧ ψ1, χ2/x2 ∧ ψ2] o[(χi/xi)i]|L(o)

> > >
p p p p

χ1 p ∧ x1 ∧ ¬q ∧ ψ2 p ∧ x1 ∧ ¬q p ∧ ¬q
q ¬p ∧ x1 ∧ q ∧ ψ2 ¬p ∧ x1 ∧ q ¬p ∧ q
r ¬p ∧ x1 ∧ q ∧ ψ2 ∧ r ¬p ∧ x1 ∧ q ∧ r ¬p ∧ q ∧ r
χ2 ¬p ∧ x1 ∧ q ∧ r ∧ x2 ∧ ¬s ¬p ∧ x1 ∧ q ∧ r ∧ x2 ∧ ¬s ¬p ∧ q ∧ r ∧ ¬s
s ¬p ∧ x1 ∧ q ∧ ¬r ∧ x2 ∧ s ¬p ∧ x1 ∧ q ∧ ¬r ∧ x2 ∧ s ¬p ∧ q ∧ ¬r ∧ s

Strengthening the instantiations xi for χi using the entire core belief is slightly worse than

strengthening them by what is really necessary (ψi). However, restricting the elements of

the belief trace to L(o) yields exactly those elements, we are interested in. It is an open but,

as we will argue, not very interesting question whether this is generally the case.

We conjecture that in fact we need not look for some optimal instantiation of the χi but we

just have to use new variables xi, calculate the rational explanation for o[(χi/xi)i] and restrict

our conclusions to L(o). The rationale is that no matter what the χi really are, the xi yield

a good approximation of the interactions that might be caused by the unknown subformulae

(see Proposition 3.4). Using hypothetical reasoning we can verify the conclusions drawn.

4The rational explanation of o[χ1/q → ¬p, χ2/s→ ¬r] would yield exactly that belief trace. So this instan-

tiation of the unknown subformulae would yield an optimal belief trace without introducing new variables.

However, such instantiations cannot always be found (cf. Example 3.16).
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Recall Section 2.8 where we illustrated that even if we have the correct core belief, conclusions

about further beliefs of the agent might be completely wrong because the rational prefix is

not close enough to the agent’s actual sequence of revision inputs prior to the observation.

In the current setting, the problem is even more severe. Even if we have the correct core and

the right sequence, the conclusions based on the assumption of some particular instantiation

may still be quite wrong.

Example 3.20. Consider o = 〈(¬p ∧ q,¬p ∧ q, ∅), (χ,>, ∅), (q ↔ r, q ↔ r, ∅)〉. The rational

explanation for o[χ/x] is [(),>] yielding as belief trace (>,¬p ∧ q,¬p ∧ q,¬p ∧ q ∧ r) when

restricting it to L(o). We would also get this explanation and belief trace if χ is instantiated

by >.

Now assume A’s initial belief state was indeed [(),>] but the completely unknown input was

in fact p, so the real belief trace was (>,¬p ∧ q, p, p ∧ (q ↔ r)). Hence, the conclusion that

¬p ∧ q was believed at all times during the observation and that finally r was believed was

not safe.

The underlying problem is similar to that of choosing the weakest core belief. There we

assume that the agent accepts as many inputs as possible and when calculating the belief

set from its current epistemic state [ρ,N] adds as many important formulae from ρ as it can,

rejecting one only if it is absolutely necessary. The same thing happens for the instantiation

xi of χi. The rational explanation tries to minimise the impact of the unknown subformulae

to what is absolutely necessary. In the example, it is possible to assume that the first input

¬p ∧ q remains consistent with all following inputs.

It is debatable whether such an assumption is indeed natural or justified. A negative in-

terpretation would be to defer correcting mistakes until it has to be done, to keep stick-

ing to the wrong story until it cannot be kept up anymore. Consider the observation

o = 〈(¬p,¬p, ∅), (χ,>, ∅), (p ↔ q1, p ↔ q1, ∅), . . . , (p ↔ qn, p ↔ qn, ∅), (r, q1 ∧ · · · ∧ qn, ∅)〉.
The rational explanation for o[χ/x] yields that a change of mind with respect to ¬p (and

consequently for all ¬qi as ¬p is assumed to be believed until that point) comes only at the

last moment caused by the agent receiving r and that ¬r is believed just before. But it

is also possible that the unknown input was p. This can be interpreted as correcting the

small mistake of believing ¬p made early on and after that everything goes smoothly. Note

that in this case only the value of p changes whereas the above explanation would cause the

value of all variables to change at some point. Should the latter explanation not therefore

be preferred?

The flaw in this line of argument is that in order to assume that the mistake is corrected

earlier, it has to be recognised as a mistake. If in the example, the last piece of information
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in the observation was missing, nothing would tell us that a change in mind must have

occurred. Even if it is present, nothing indicates that the unknown input must have been p.

In this sense both explanations are equally (im)plausible.5

3.2.6 summary

In this section we showed that the calculation of an optimal core belief is still possible

when assuming the existence of unknown subformulae in the observation. We motivated this

scenario by claiming that it is possible that the logical content of the revision inputs is not

completely known. The proposed method for dealing with such parametrised observations

was to instantiate the unknown subformulae χi with new variables and apply the rational

explanation construction to the observation thus obtained. From this explanation we can

safely conclude which beliefs must belong to the agents core belief no matter what the real

instantiation of the χi was.

We showed that although we can construct a core belief from L(o) this does not guarantee

that o can be entirely explained without extending the language. Some of the unknown

subformulae may have to be instantiated by formulae containing variables not appearing

in o. We claim that it is not useful to look for an optimal instantiation of the unknown

subformulae. The conclusions heavily depend on the choice of the instantiation of the χi and

even if we had the correct one, Section 2.8 showed that the conclusions drawn from the belief

trace implied by our explanation are of limited use. Instead we argue that the χi should be

instantiated with xi and the belief trace for the corresponding rational explanation restricted

to L(o). This allows to draw correct conclusions about the actual core belief of the agent,

which must entail the one calculated that way. Further, we can use hypothetical reasoning

to verify conclusions about other beliefs and non-beliefs implied by the explanation thus

obtained.

Once more, the additional assumption that the belief corresponding to the last revision

input in the (parametrised) observation is complete need not help. It might not even convey

additional information about the language of the agent’s epistemic state or of the unknown

subformulae. Consider 〈(p ∧ χ,>, ∅), (¬p,¬p, ∅)〉. This might not be a very interesting

observation but it illustrates the point. As ¬p is inconsistent with the first input, χ could

be instantiated with any formula and still ¬p would completely characterise the agent’s final

beliefs.

5o = 〈(¬p,¬p, ∅), (χ,>, ∅), (p ↔ q1, p ↔ q1, ∅), . . . , (p ↔ qn, p ↔ qn, ∅), (r, q1 ∧ · · · ∧ qn, ∅)〉 provides only

very weak information, so it should not be surprising that most hypotheses based on the rational explanation

turn out to be not safe.



3.3. INTERMEDIATE INPUTS 77

3.3 Intermediate inputs

3.3.1 why consider intermediate inputs

Up to now, we assumed the (parametrised) observation o to contain an entry (ϕ, θ,D) for

every revision input received by A, even if some of the formulae are only partially known.

As mentioned before, this corresponds to the assumption of having an eye on the agent at

all times during the observation. In this section, we want to investigate the case where

this assumption is dropped. That is, we will allow for intermediate inputs between those

recorded in o. In real applications this will be the norm rather than an exceptional case.

The observing agent can never be sure which sensory data A might turn into revision inputs.

Further, continuous surveillance is next to impossible. A or the observing agent may leave

the scene for a time, and if the observing agent is the source of information then o might

have been gathered over several sessions between which A may have received further input.

Using our notation for observations, an intermediate input is one we have no information

about, i.e., we do not know what the revision input is or what is believed or not believed

after receiving it. Hence, we can represent it by 〈(χ,>, ∅)〉; χ again represents an unknown

formula. Note that this is different from 〈(χ, χ, ∅)〉 as here the input would be required to

be accepted by A. In other words, the agent’s core belief would have to be consistent with

the instantiation of χ.

Consider the following observation without intermediate inputs: o = 〈(p, q, ∅), (p,¬q, ∅)〉.
There is no o-acceptable core. Assuming a single intermediate input 〈(χ,>, ∅)〉, there are

three positions where it could have been received; (i) before the first p, (ii) in between the

two p, and (iii) after the second p. Options (i) and (iii) do not really make sense. Inputs that

may have been received before the observation started are already contained in the initial

epistemic state, hence they are already represented in the rational prefix.6 Inputs assumed to

be received after the time of the observation o cannot help explaining it, as Right Monotony

tells us that an explanation for the extended observation (with intermediate inputs assumed

after o) must already be one for the prefix o. So in this example, there is only one reasonable

position for the intermediate input. When we consider o′ = 〈(p, q, ∅), (χ,>, ∅), (p,¬q, ∅)〉,
instantiating the unknown formula χ with p→ ¬q, the core belief > is o′-acceptable. That is,

while o does not have an explanation, assuming an intermediate input allows the observation

to be explained.

In the general case we do not know how many intermediate inputs were received at which

points in a given (parametrised) observation o. However, if number and positions are fixed

6In that sense, the rational prefix can be interpreted as the sequence of intermediate inputs received before

the observation started.
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then we can use the results from the last section in order to calculate the weakest possi-

ble core belief. To represent the intermediate inputs we simply have to introduce further

unknown subformulae not contained in o as generally nothing is known about the relation

between recorded inputs and the intermediate ones. For example, assume we have the partial

observation o = 〈(p, q ∧ χ1, ∅), (r,¬q, ∅), (p, q, {χ1})〉 and the information that exactly two

intermediate inputs have been received immediately after r. In order to reason about A, we

consider the partial observation o′ = 〈(p, q∧χ1, ∅), (r,¬q, ∅), (χ2,>, ∅), (χ3,>, ∅), (p, q, {χ1})〉
which now contains an entry for every input received. Hence, intermediate inputs and partial

information about inputs are related but distinct cases. There is an essential difference be-

tween knowing there was (not) an input, possibly being ignorant of the exact logical content,

and not knowing whether there was an input at all.

The most important result for this section is Proposition 2.33, a direct lemma of which is:

If N is not o-acceptable, then N is not o′ · o · o′′-acceptable for any observations o′ and o′′. So

if we know for some part o of the whole observation that during that time no intermediate

input was received, then the core explaining the entire observation must also explain o.

Left Monotony and Right Monotony imply that any o′ · o · o′′-acceptable core entails N∨(o).

In particular any 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉-acceptable core entails
∧
N∨(〈(ϕi, θi, Di)〉).

This states that the core belief must block a revision input that contradicts the information

about beliefs and non-beliefs after its having been received. Note that this is the part that

can be read off the observation directly (cf. Section 2.7).

This directly implies that intermediate inputs cannot replace the core belief for explaining

an observation. For example, 〈(p,¬p, ∅)〉 or 〈(p,>, {p})〉 can only be explained using core

beliefs (also recall our above remark that intermediate inputs before or after an observation

do not make sense). However, as mentioned above, not all observations can be explained with

core beliefs only. In order to explain 〈(p, q, ∅), (p,¬q, ∅)〉 intermediate inputs are necessary.

So core beliefs cannot replace intermediate inputs. The two concepts are complementary

either.7

3.3.2 number and positions of intermediate inputs matter

The following example is to illustrate that generally we cannot change the number and

positions of intermediate inputs without an impact on the weakest explaining core. This

means that it is highly relevant to our conclusions about A how many intermediate inputs

7There are still observations that cannot be explained when using both concepts. 〈(p,>, {p,¬p})〉 and

〈(p,>, ∅), (q,>, {p,¬p})〉 are two examples. The reason is Proposition 2.20. In the assumed revision framework

it is impossible that a revision input is ignored or forgotten. Using a different framework for modelling the

observed agent, such observations might have an explanation.
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we assume at which points during the observation. Note the similarity to Example 3.19.

There we assumed the observation to contain two revision inputs about which nothing was

known, here these are interpreted as two possible intermediate inputs.

Example 3.21. Consider o = 〈(p, p, ∅), (q,¬p, ∅), (r, r, ∅), (s,¬r, ∅)〉. If there was no inter-

mediate input at all then the weakest o-acceptable core is (q → ¬p) ∧ (s→ ¬r).

Assuming one intermediate input to have been received, there are three sensible positions to

place it. Putting the intermediate input q → ¬p at the second position in the observation

yielding o′ = 〈(p, p, ∅), (q → ¬p,>, ∅), (q,¬p, ∅), (r, r, ∅), (s,¬r, ∅)〉 the weakest o′-acceptable

core is s→ ¬r. Putting any intermediate input at the third position, due to Left Monotony

and Right Monotony the weakest explaining core still needs to entail (q → ¬p) ∧ (s → ¬r).
Finally, assuming the agent to have received the input s → ¬r before receiving s, the core

belief q → ¬p explains the resulting observation.

If we think that two intermediate inputs may have been received at arbitrary positions then

[(),>] explains o′′ = 〈(p, p, ∅), (q → ¬p,>, ∅), (q,¬p, ∅), (r, r, ∅), (s→ ¬r,>, ∅), (s,¬r, ∅)〉.

Example 3.22. Let o1 and o2 be the following two observations: o1 = 〈(p, p, ∅)(q, q, ∅)〉
and o2 = 〈(r,¬p, ∅), (s,¬q, ∅), (p ∧ r ∧ t,¬q, ∅), (q ∧ s ∧ ¬t, p, ∅)〉. [(),>] is an explanation

for o = o1 · 〈(p → ¬r,>, ∅), (q → ¬s,>, ∅)〉 · o2, i.e., when assuming those two consecutive

intermediate inputs between o1 and o2 then > is an acceptable core belief.

Now, Proposition 3.13 allows us to calculate the weakest possible core when using a single

intermediate input by calculating the rational explanation [ρ,N] for o′ = o1 · 〈(x,>, ∅)〉 · o2

and then choose N′ such that Cn(N′) = Cn(N)∩L(o1 · o2). However, N∨(o′) is equivalent to

(¬p∨¬q ∨¬r∨¬s∨¬t)∧ (¬x∨¬q ∨¬r∨¬s)∧ (¬x∨¬p∨¬q ∨¬r). Hence, no matter what

single intermediate input is chosen, any acceptable core must entail ¬p ∨ ¬q ∨ ¬r ∨ ¬s ∨ ¬t
and so > will never work.

Example 3.22 shows that it is not generally possible to join consecutive intermediate inputs

into a single one without effect on the core belief.8 This might already have been guessed

from our above remark that the rational prefix is in a sense a sequence of intermediate inputs

received before the observation o started. If joining consecutive intermediate inputs into a

single one were possible, there would always be a sequence ρ of length one such that [ρ,N∨(o)]

explains o.

8In fact, if we extend o2 by 〈(p ∧ q ∧ r ∧ s ∧ t, p ∧ q ∧ r ∧ s ∧ t, ∅)〉 we will get the same explanation when

using the two intermediate inputs. However, there is no explanation at all when using a single intermediate

input.
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3.3.3 formal results

In this section, we want to indicate what can be said about the agent’s core belief depending

on how much information we have concerning possible intermediate inputs. Naturally, the

more specific our knowledge concerning number and positions, the more informative our

conclusions can be. We will start with the case where we have no information at all, which

means that any number of intermediate inputs may have been received at any time.

Any number of intermediate inputs at any time The following proposition merely

looks complicated, the intuition is quite simple. Consider o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉.
No matter how many intermediate inputs were received at any point during the observation,

exactly one intermediate input between any two inputs ϕi and ϕi+1 suffices to explain the

observation. In the proposition this input is chosen to be the conjunction of the core belief

together with the known inputs from the observation and the intermediate ones collected up

to ϕi+1.

Proposition 3.23. Let o = 〈(ϕ1, θ1, D1), (ψ11,>, ∅), . . . , (ψ1m1 ,>, ∅),
(ϕ2, θ2, D2), (ψ21,>, ∅), . . . , (ψ2m2 ,>, ∅),
. . . ,

(ϕn−1, θn−1, Dn−1), (ψ(n−1)1,>, ∅), . . . , (ψ(n−1)mn−1
,>, ∅),

(ϕn, θn, Dn)〉
and ι′i(o) = (ϕ1, ψ11, . . . , ψ1m1 , ϕ2, . . . , ψ(i−1)mi−1

, ϕi) denote the prefix of ι(o) with ϕi being

the last element.

If [ρ,N] explains o, then it also explains

o′ = 〈(ϕ1, θ1, D1), (f (ι′2(o) · N) ,>, ∅),
(ϕ2, θ2, D2), (f (ι′3(o) · N) ,>, ∅),
. . . ,

(ϕn−1, θn−1, Dn−1), (f (ι′n(o) · N) ,>, ∅),
(ϕn, θn, Dn)〉.

Note that this result does not contradict the claim that generally two consecutive interme-

diate inputs cannot be joined into a single one. That claim assumed that apart from those

two inputs nothing else is changed. The proposition assumes that intermediate inputs are

allowed at any position. So the number of intermediate inputs might in fact increase. Ap-

plying this result to Example 3.22, the effect of the two intermediate inputs, which cannot

be combined into a single one, can be simulated by putting one intermediate input before

the first element of o2 and another between the first and the second one.

This proposition gives us a simple method to calculate the weakest possible core explaining

an observation o when allowing any number of intermediate inputs at any position. As it
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says that one intermediate input between any two known inputs suffices, we can put an entry

〈(xi,>, ∅)〉 with a new variable xi between the entries 〈(ϕi, θi, Di)〉 and 〈(ϕi+1, θi+1, Di+1)〉.
We apply the rational explanation construction to the observation thus obtained and get a

core belief N. The weakest core belief will then be N′ such that Cn(N′) = Cn(N) ∩ L(o).

To see this, let N′′ be an o′′-acceptable core where o′′ is an observation obtained from o by

placing some arbitrary number of intermediate inputs at any position in o. Proposition 3.23

yields that N′′ is also acceptable for an observation where exactly one intermediate input

was placed between any two elements in o and Proposition 3.12 yields that N′′ ` N′.

We know for certain that this core belief N′ must entail N∨(〈(ϕi, θi, Di)〉) for any entry in

o (Left Monotony and Right Monotony). The question is whether a core entailing exactly

these formulae will always explain an observation for some instantiation of the intermediate

inputs. If this was the case then we could never say anything about the core belief except for

what can trivially be read off the observation (often this will be the case, anyway). However,

the following example proves the existence of observations where the weakest explaining core

is indeed stronger than
∧
N∨(〈(ϕi, θi, Di)〉).

Example 3.24. Consider 〈(p,>, ∅), (q,>, {p ∧ q,¬p ∧ q})〉. For both individual entries in

the observation, > is the optimal core belief. Due to Proposition 2.20 p or ¬p will be believed

by the agent after it received q — no matter which intermediate inputs were received at any

time during the observation. However, if q is accepted, the agent will hence believe p ∧ q or

¬p ∧ q which the observation does not allow. Consequently, q must not be accepted by the

agent and any core belief explaining this observation must entail ¬q. So the core belief >
cannot explain the observation even when allowing intermediate inputs.

This gives us an idea what we can say about the agent’s core belief in case we put no

restrictions on the number and positions of intermediate inputs. What happens if we have

further information about the positions or the number of intermediate inputs? The following

proposition implies that we should always assume the maximal number of intermediate

inputs. It says that an additional intermediate input, which we instantiate with a new

variable for calculating the weakest possible core belief, can only make the core logically

weaker. This means that assuming another intermediate input could potentially weaken the

explaining core belief.

Proposition 3.25. If x 6∈ L(o1 · o2) and Cn(N) = Cn(N∨(o1 · 〈(x,>, ∅)〉 · o2)) ∩ L(o1 · o2)

then N∨(o1 · o2) ` N.

Fixed positions of the intermediate inputs Now assume we know the positions where

intermediate inputs may have occurred. This is imaginable, for example, in scenarios where

the observing agent gathers o in several sessions, but does not know if A receives further
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inputs between those sessions. How many intermediate inputs should be assumed at each of

those points? We cannot allow an arbitrary number as this is computationally infeasible, so

it would be helpful to have an upper bound which we could then use according to Proposition

3.25. We claim that it suffices to assume j intermediate inputs at a particular position in o,

where j is the number of revision inputs recorded in o following that position, i.e., ignoring

possible intermediate inputs appearing later. To be more precise, having and observation o

with arbitrarily many intermediate inputs at some position, an o-acceptable core will also

be acceptable for the observation where we assume j intermediate inputs at that position.

If this claim is correct, we can introduce into o one entry (χi,>, ∅) for every intermediate

input. Thus we get a parametrised observation containing an entry for every revision in-

put received. We can then construct a weakest acceptable core belief by instantiating each

χi by xi, calculating the rational explanation of the observation thus obtained and then

eliminating the additional variables from the core belief. For example, given an observation

o = 〈(ϕ1, θ1, D1), . . . , (ϕ5, θ5, D5)〉 and the information that intermediate inputs have been

received only after ϕ2 and ϕ4, we can calculate the weakest possible core starting with

o′ = 〈(ϕ1, θ1, D1), (ϕ2, θ2, D2), (x1,>, ∅), (x2,>, ∅), (x3,>, ∅), (ϕ3, θ3, D3), (ϕ4, θ4, D4),

(x4,>, ∅), (ϕ5, θ5, D5)〉 and eliminating the xi from N∨(o′). Again, all xi are propositional

variables not contained in L(o). The claim follows almost immediately from the following

proposition.

Proposition 3.26. Let ρ = (ϕ1, . . . , ϕn) and σ = (ψ1, . . . , ψm). Then there exists a

σ′ = (ψ′1, . . . , ψ
′
n) such that f (σ · (ϕ1, . . . , ϕi,N)) ≡ f (σ′ · (ϕ1, . . . , ϕi,N)) for all 1 ≤ i ≤ n.

Note that this result is not trivial, as m can be (much) greater than n and in this case we have

to find a shorter sequence yielding equivalent formulae for all 1 ≤ i ≤ n. This proposition

tells us that we can replace one block of intermediate inputs σ by one of the proposed

length and be guaranteed an equivalent formula being constructed in the calculation for

each recorded revision input ϕi coming later in the observation.9 Applying Proposition 3.6

then tells us that we can replace the unknown intermediate inputs with new variables and

be guaranteed that an explanation is found, if one exists at all.

Note also that more intermediate inputs have to be assumed when reasoning hypothetically

about future revision inputs. In this case the assumed block of intermediate inputs has to

yield equivalent results for more than just the recorded revision inputs. For each future input

an additional intermediate input (per block) is needed. However, the proposition only yields

9Some care has to be taken when considering the general case, where several blocks of intermediate inputs

exist. Then ρ in the proposition may contain more elements than just the recorded revision inputs; it also

contains intermediate ones. And thus we have to find a sequence σ′ not of length n but j ≤ n where j is the

number of recorded inputs.
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an upper bound. It is possible that a smaller number of intermediate inputs suffices. We

currently investigate this question.

Fixed number of intermediate inputs If we are given a maximal (or exact) number n of

intermediate inputs we can draw conclusions about the core belief of the agent using the fol-

lowing method. Due to Proposition 3.25 we should indeed assume n intermediate inputs. So

let o = 〈(ϕ1, θ1, D1), . . . , (ϕm, θm, Dm)〉 be the observation containing only recorded inputs.

If n > m−2 and there are no restrictions with respect to where the intermediate inputs may

have occurred then we can apply Proposition 3.23. In this case we have enough intermediate

inputs at our disposal to assume one between any two recorded inputs, which allows us to

calculate the weakest acceptable core belief. Otherwise, there are not enough intermediate

inputs or they are not allowed at every position in o, so that result is not applicable. In this

case, we create the set of all possible observations o′ where n intermediate inputs have been

inserted in o: O′ = {o1 · 〈(x1,>, ∅)〉 ·o2 · . . . · 〈(xn,>, ∅)〉 ·on+1 | o = o1 · . . . ·on+1}.10 If we have

information about the positions of the intermediate inputs we can also take this into account

when constructing O′. oj may be empty, so consecutive intermediate inputs are explicitly

allowed. Now any possible core belief will entail
∨
{N | Cn(N) = Cn(N∨(o′))∩L(o), o′ ∈ O′}.

Note that this formula need not be an o′-acceptable core, i.e., it may not really explain the

observation using n intermediate inputs as the following example illustrates.

Example 3.27. Consider the observation o = 〈(p, p, ∅), (q,¬p, ∅), (r, r, ∅), (s,¬r, ∅)〉 from

Example 3.21. Assuming exactly one intermediate input using the above method we ob-

tain (s→ ¬r) ∨ ((q → ¬p) ∧ (s→ ¬r)) ∨ (q → ¬p) ≡ (q → ¬p) ∨ (s→ ¬r) as the formula

entailed by all possible core beliefs.

However, if there is only one intermediate input then either 〈(p, p, ∅), (q,¬p, ∅)〉 or

o = 〈(r, r, ∅), (s,¬r, ∅)〉 will be a subobservation and by Left Monotony/Right Monotony the

core belief must consequently either entail N∨(〈(p, p, ∅), (q,¬p, ∅)〉) = q → ¬p or

N∨(〈(r, r, ∅), (s,¬r, ∅)〉) = s → ¬r. (q → ¬p) ∨ (s → ¬r) entails neither, so it cannot be

an acceptable core belief.

Note that reasoning only with N′′ =
∨
{N | Cn(N) = Cn(N∨(o′)) ∩ L(o), o′ ∈ O′} leaves us

with very weak (but safe) information about the agent’s core belief. Any formula inconsistent

with N′′ will be rejected — but again not every formula consistent with N′′ is necessarily

accepted by the agent. (q → ¬p) ∨ (s → ¬r) is consistent with both p ∧ q and r ∧ s.
However, we saw that at least one of the two must be inconsistent with the agent’s core

belief. As a consequence reasoning about an agent while not knowing the positions of possible

10Applying proposition 3.26, we can further restrict this set as there need not be more intermediate inputs

at one position than there are recorded inputs following that position.
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intermediate inputs will require a large computational effort. All the observations in O′ and

their respective explanations may have to be taken into account. Conclusions about beliefs

and non-beliefs can only be safe if they are safe for every observation in O′.

3.3.4 summary

In this section, we investigated the case where the assumption that the observation contains

an entry for every input received is dropped. We have shown that some observations can be

explained only when assuming that intermediate inputs have occurred. These are revision

inputs received by A that have not been recorded in the observation. First, we investigated

the case that number and positions of the intermediate inputs were fixed. In this case, the

problem can be reduced to partially known inputs, so that the results of Section 3.2 apply.

Then we sketched procedures for drawing conclusions about what A’s core belief must entail

if this information is not available to the observing agent. In principle, we have to consider all

possible observations obtained from allowing intermediate inputs at all positions compatible

with the information about A.

One of the key methods for dealing with unknown logical content and unknown inputs in

this chapter was extending the language L(o) — o being a parametrised observation possibly

missing some inputs. In addition to the problems of choosing an explanation for a regular

observation, which we investigated in Chapter 2, here we have to take into account that the

unknown subformulae could be instantiated with arbitrary formulae. As it is not feasible to

consider all possible instantiations, we proposed to replace each unknown subformula by a

new variable, calculate the rational explanation of the observation thus obtained and reason

about the core belief and the belief trace restricted to L(o). Hypotheses formed based on

this method can be tested using hypothetical reasoning.

Extending the language has side effects. Example 3.16 can also be adapted to show that

adding variables not contained in L(o) can lead to an explanation of the observation that

would not exist if the intermediate input was restricted to that language. It is open whether

there is a feasible way to construct an explanation which is restricted to L(o).

Example 3.21 indicated that allowing more intermediate inputs can lead to weaker explaining

core beliefs. When comparing different solutions it is not obvious how to trade off between

a weak core belief and few intermediate inputs. The decision will have to be based on the

application setting. However, our claim is that if intermediate inputs have to be allowed,

we should always assume the maximal number. This will yield the weakest core, keeping us

on the safe side as to conclusions about which formulae are rejected by the observed agent.

The number of intermediate inputs should be limited only if there is sufficient reason.



Chapter 4

Some Variations and Extensions

In Chapters 2 and 3, we introduced a belief revision framework an observed agent is assumed

to employ and presented results on what can be said about A based on a given (parametrised)

observation possibly missing entries for some of the inputs received. In this chapter, we want

to apply the results obtained there in slightly different settings. The first sections will assume

the same belief revision framework. However, they will deal with reasoning (i) about several

agents at once, (ii) about a single agent taking into account several observations, (iii) about

oneself and (iv) using extended versions of observations. The last two sections introduce two

slight variations of the belief revision framework and investigate how the previous result can

be applied to draw conclusions about agents employing those.

4.1 The multi-agent case

In general, the observing agent will share the environment with more than one agent. When

reasoning about m other agents rather than a single one, we propose to apply the methods

illustrated so far for each agent individually. That is, instead of one there are m observa-

tions which may or may not have been obtained independently. As the exact structure and

relations of the different observations heavily depend on the application setting, we will not

start a detailed discussion of this case. However, we will illustrate one example where the

observations are related: a very simplistic dialogue setting.

If two agents are communicating, beliefs A1 expresses can be seen as revision inputs A2

receives. Consider the dialogue A1 : p, A2 : q, A1 : ¬p. The next table depicts the same

dialogue in terms of which revision inputs are received by which agent.

agent inputs received
A1: q

A2: p ¬p

85
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The two observations o1 = 〈(>, p, ∅), (q,¬p, ∅)〉 and o2 = 〈(p, q, ∅), (¬p,>, ∅)〉 formalise the

dialogue. As it started with an utterance by A1, this can be seen as a belief not triggered

by any input or equivalently by a tautologous one. A1’s expressing p is the first input A2

receives and it must have believed q upon receiving p as otherwise this could not have been

A2’s reply. And so on.

The rational explanation for o1 is [(q → ¬p, p ∧ ¬q),>] and for o2 it is [(p→ q),>]. The

results of Chapter 2 now allow us to reason about each agent individually. There is not

much we can safely conclude about the two agents, the major insight being that A1 believed

¬q initially but accepted the input q upon receiving it. More interesting, because we dealt

with individual agents before, is what these explanations mean for the interaction between

the two agents. How could the dialogue go on? Will they agree at some point? Is that

dependent on which beliefs they openly express?1

For the sake of argument assume that the agents’ initial epistemic states were indeed equiv-

alent with what the rational explanation algorithm calculated. The first thing to note is

that both agents will accept and believe whatever the other agent tells. This is because the

core beliefs are tautologies and consequently there is no prejudice against any formula. The

following table depicts the dialogue and includes the complete information about the initial

epistemic state as revision inputs are appended to the sequence ρi in the state [ρi,N] of Ai.
Note that the core belief is irrelevant here, as it is tautologous for both agents.

agent initial ρi inputs received

A1: q → ¬p, p ∧ ¬q q

A2: p→ q p ¬p

A2’s beliefs at this point of the dialogue are Cn(¬p) and A1’s beliefs are Cn(q ∧ ¬p). Note,

that we still assume that agents are sincere, that is, they will only express beliefs they hold.2

The reader is invited to confirm that nothing A2 will say in the future is going to change A1’s

mind. A2 can possibly expand its beliefs by q in case A1 expresses the belief in a formula

entailing ¬p → q. q has been (temporarily) forgotten by A2 as the reason p for its being

believed is gone. So basically, the two agents have already reached an agreement.

To see that this need not always be the case, assume that the agent’s initial epistemic states

are in fact [(q → ¬p, p ∧ ¬q),>] and [(p↔ q),>]. Only the epistemic state of A2 is slightly

modified, containing an equivalence rather than an implication. These initial states are

compatible with the above dialogue. Here are three possible continuations of the dialogue:

1This line of investigation may be a bit off-topic with respect to the thesis but it also illustrates an

interesting point of future research.

2The assumed belief revision framework cannot deal with non-beliefs as revision inputs.
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agent initial ρi inputs received

A1: q → ¬p, p ∧ ¬q q ¬q q . . .

A2: p↔ q p ¬p p ¬p

A1: q → ¬p, p ∧ ¬q q ¬q . . .

A2: p↔ q p ¬p ¬q ∧ p

A1: q → ¬p, p ∧ ¬q q ¬p ∧ ¬q
A2: p↔ q p ¬p . . .

In the first case, the two agents could go on forever; changing their mind, saying the same

things over and over again. This is because A1 prefers believing p ↔ ¬q unless being told

otherwise and A2 may never do so. In the second case, both their belief sets would be

Cn(¬q ∧ p) and in the third one Cn(¬p ∧ ¬q). Because both agents believe whatever the

other says, the agent revealing its entire beliefs first will “win”. This will be different if the

core beliefs are not tautologies.

A belief expressed by an agent may be based on a formula it is not very sure about (as it

appears very early in the sequence and consequently has a low priority). However, the agent

receiving that belief as input treats it as the most important revision input so far. Note

that in case the second agent now simply repeats the formula just received, it suddenly gets

a high priority even for the first agent. Weak beliefs may get amplified by the dialogue.

Unfortunately, this property is more realistic than desirable.

4.2 Observations with respect to the same initial state

One of the motivating scenarios for our work was accessing expert knowledge. An observation

o as used up to now represents one sequence of revision inputs received by one agent. In the

expert scenario o is interpreted as the expert A reasoning about one single case based on

information received over time. Of course, it is very unlikely that all the expert’s knowledge

manifests itself in one single case. So observing A reasoning about a (large) number of

cases seems necessary. If we assume that the expert does not learn from case to case but

is independently applying its knowledge to each of them, then all observations must be

explainable by the same initial epistemic state. However, this can be easily dealt with in our

framework. We just have to adapt the rational explanation algorithm by processing the union

of all the positive conditionals and the union of all the negative conditionals calculated from

all the observations rather than those from a single observation. Each observation translates

into conditional beliefs in the (same) initial epistemic state (Proposition 2.24, Definition
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2.42), so many observations simply translate into even more conditional beliefs in the same

state.

The assumption that the expert does not learn from case to case is debatable. However, we

believe it to be a good enough approximation. Faced with a large number of standard cases,

reflections about the correctness of the background knowledge are not necessary. A learning

process, i.e., actually changing the background knowledge, is likely to occur if the expert is

faced with many exceptional cases — few or even a single one may not immediately trigger

changes.

The expert scenario is not the only one where several observations with respect to the same

state make sense. Think of a population of agents starting in the same state. For example,

we might be interested in the background knowledge encoded in a software agent. We make

several copies of that agent and place it in different settings. That is, each of the identical

agents receives different revision inputs. Different observations with respect to the same

initial epistemic state are thus obtained. Those can be processed as described above. It goes

without saying that all the observations considered in this section can be parametrised ones

and that intermediate inputs may have to be taken into account.

So, assuming we are given n observations oi with respect to the same initial state and

a core belief N, we define the sets of positive and negative conditionals CN(o) and NN(o)

by CN(o) =
⋃

1≤i≤n
CN(oi) and NN(o) =

⋃
1≤i≤n

NN(oi) where all CN(oi) and NN(oi) are as in

Definition 2.42. The rational explanation algorithm just needs to be adapted accordingly.

In this scenario, one further limitation concerning the correctness of the belief trace applies.

Given a single observation, the antecedents f (ϕ1, . . . , ϕi,N) of the corresponding conditionals

are calculated from a single sequence (ϕ1, . . . , ϕn) of inputs. So if we consider any two

conditionals, one antecedent is constructed from a prefix of the sequence of inputs the other

conditional is constructed from. This is a property needed to relate those antecedents using

Proposition 2.15. This result in turn is used for showing that the rational prefix is preferable

to other sequences with respect to �1 and �2 (Propositions 2.55 and 2.56). As a consequence,

these results do not automatically carry over to the current setting. We do not consider this

very problematic, as these are very weak criteria, anyway.

All other results also hold for this less restricted form of antecedents of conditionals obtained

from several observations. The proofs do not depend on the particular structure of the

antecedents. This also means that the more observations with respect to the same initial

state we have the better the chances for calculating the right core. This is because more

conditional beliefs are actually given and not inferred. Hypothetical reasoning is also still

possible. Note that the question of A given an alternative sequence of revision inputs is

particularly interesting. This question allows conclusion about what the expert would have
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thought given a different case or how an agent would have reasoned being placed in a different

situation.

From the point of view of computational complexity, it does not matter whether we consider

a single or several observations. Testing whether an epistemic state explains a set of obser-

vations and testing whether a core belief is acceptable for all observations in a set are also

∆P
2 -complete.

Finally, we want to remark that allowing many observations allows us to represent of any

information about a conditional belief base in this framework. Positive conditionals ϕ ⇒ θ

translate into the observation 〈(ϕ, θ, ∅)〉 and negative conditionals ϕ ⇒ δ into 〈(ϕ,>, {δ})〉.
As a consequence, by using this translation we can recover the full power of the rational

closure [14, 54] as we do not restrict the antecedents to the particular structure. The in-

terpretation of the difference between the rational closure of the conditionals obtained from

these observations (using the core belief >) and the rational explanation for this set of ob-

servations (which may return a different core and hence modify the conditionals) is an open

question.

4.3 Self-observations

The motivation of our work was to reason about an observed agent. However, we may

wonder whether reasoning about oneself in this setting makes sense. At first sight the

answer is negative. It is much more efficient with respect to both space and computational

cost to simply store ones epistemic state [ρ,N] rather than keep an observation in order to

reason about earlier beliefs. It is true that for very long revision histories, an observation

starting at some later point may take up less space, but the conclusions based on it will be

much less reliable than those taken from an equally big suffix of ρ. From Proposition 2.3

and Definition 2.1 it follows immediately that f (σp · σs) ` f (σs). That is, conclusions about

beliefs based on the suffix of a sequence are undebatable — for non-beliefs this is different

of course. Further, an agent should be able to remember its own core belief. So compared

to keeping an observation, simply forgetting early revision inputs is the better alternative.

But we may keep observations of ourselves in order to keep track of what other agents may

conclude about us. This is reasonable in settings where we want to keep certain beliefs secret

from others. Before making a response we check whether this would give away more than we

want. It may also make sense when we want another agent to know θ but we cannot tell it

directly. In this case, we look for a response that allows the other agent to infer θ based on

its observation of us. Again, the observation (even if it is about us) is used to reason about

other agents.
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Of course there are a number of assumptions. The observation we keep of ourselves must

correspond to the one the other agent makes of us. It must employ the same methodology

for reasoning given the observation. This is a very problematic point. Will the other agent

act based on a conclusion that was not verified using hypothetical reasoning? In this case,

we will have to be even more careful. In a sense, the other agent must be neither smarter

than us (and thus be able to draw conclusions we cannot come up with) nor must it be less

smart (and thus possibly draw correct conclusions but for the wrong reason). Basically, all

the assumptions we made so far must be applied in a reverse direction. The other agent

must assume us to employ the revision framework from Section 2.2 and so on.

It should be clear that it does not suffice to keep one self-observation. We will need one

for every other agent (we are interested in). This is because not all agents have access to

the same information about us. Again, they may leave the scene for a while (at different

times) and consequently do not record all revision inputs received by us and beliefs and

non-beliefs we express. The self-observing agent A should not forget, though, that others

tend to become suspicious if coming up with a response takes more time than expected.

4.4 Infinite observations

In Section 2.8.2, we briefly considered observations of infinite length to illustrate that even

they cannot guarantee that the correct core belief can be identified. Here, we want to

illustrate how observations which are infinite even with respect to beliefs and non-beliefs

can be dealt with. We assume them to be correct and complete with respect to the revision

inputs recorded, i.e., the observation contains exactly those inputs actually received by A
and we do not allow intermediate inputs. Also we do not allow unknown subformulae.

Note that a belief θ can be interpreted as the conjunction of a finite set of beliefs, i.e.,

θ =
∧
B where B is a finite set of formulae with

∧
∅ = >. In this sense an observation can

be equivalently given as follows o = 〈(ϕ1, B1, D1), . . . (ϕn, Bn, Dn)〉 where each Bi and Di is

a finite set of formulae. The assumed revision framework requires the revision inputs to be

single formulae.

Now assume that o is an observation (possibly of infinite length) where all Bi and Di are

allowed to be infinite sets. Of course, formulae are still assumed to be finite objects. Left

Monotony, Right Monotony and Proposition 2.68 can again be used to reason about o. The

first two say that making an observation longer (at the ends) can only cause the weakest

acceptable core to get stronger, the last one yields the same result for making the information

about beliefs and non-beliefs more specific by adding (non-)beliefs. As B ⊆ B′ implies∧
B′ `

∧
B, we can use Proposition 2.68 also when talking about sets of beliefs.
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The idea for handling an infinite observation o = 〈(ϕ1, B1, D1), . . . (ϕn, Bn, Dn), . . . 〉 is now

straightforward. As in Section 2.8.2, we consider an infinite sequence (o1, o2, . . . ) of finite

observations that approaches o. If we pose the following restrictions on that sequence, we

can use any observation oi in order to draw conclusions about the observed agent’s core

belief N. By Left Monotony, Right Monotony and Proposition 2.68, any formula entailed by

N∨(oi) will be entailed by N.

• If o = 〈(ϕ1, B1, D1), . . . (ϕn, Bn, Dn)〉 has finite length then, for appropriate Bi
j and Di

j ,

oi = 〈(ϕ1, B
i
1, D

i
1), . . . (ϕn, Bi

n, D
i
n)〉. Otherwise o = 〈(ϕ1, B1, D1), . . . (ϕn, Bn, Dn), . . . 〉

and oi = 〈(ϕ1, B
i
1, D

i
1), . . . (ϕn, Bi

i , D
i
i)〉, for appropriate Bi

j and Di
j .

• If Bj is finite then Bi
j = Bj for all oi; analogously for finite Dj .

• If Bj is infinite then Bi
j is finite and Bk

j ⊂ Bi
j ⊂ Bj for all k < i; analogously for

infinite Dj .

We remark that this is only one suitable set of conditions for (o1, o2, . . . ) that ensures ap-

plicability of the propositions. The first condition requires that we use all revision inputs in

case the infinite observation o has finite length and that we keep adding revision inputs at

the end otherwise. The second condition says that finite sets of beliefs and non-beliefs from

o are to be used unchanged in all oi. That is, if there is only finite information we use it

completely in every step. The last condition expresses that for every oi+1, the information

concerning infinite sets of beliefs or non-beliefs is more specific than that in oi. New formu-

lae are added at each step. Note that L(oi) is finite although L(o) may be infinite. As a

consequence, each oi is an observation that can be dealt with according to Chapter 2. As o

is infinite we cannot expect to find an actual explanation for it. We can only approximate

the core belief of A and reach it in the limit as N∨(oi+1) ` N∨(oi) for all i.

4.5 Graded observations

Observations as considered up to now were assumed to be correct. In particular, we required

that the recorded beliefs and non-beliefs reflect the agent’s true set of beliefs at each point

in time during the observation. They are all equally reliable because they are certain.

In personal communication, Didier Dubois suggested incorporating reliability/confidence

information into an observation. This would allow us to draw sceptical conclusions when

only considering the most reliable information and more credulous ones when also considering

the less reliable information. As the beliefs and non-beliefs recorded in the observation may
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have been obtained more or less indirectly, attaching reliability degrees to the individual

formulae is a sensible thing to do.

In this section, we will illustrate one possible way of reasoning from such observations. We

will keep the assumption that the recorded revision inputs are correct. That is, we restrict

ourselves to reliability information for beliefs and non-beliefs. For convenience we use the

notation introduced in the last section and assume beliefs to be given as sets rather than

as single formulae. This allows us to attach to a reliability label to every belief and every

non-belief.

Reliability information can be interpreted and used in many ways. One fundamental question

is whether less reliable information is to be interpreted as alternative to more reliable one

or as additional information. Depending on the answer, explanations and conclusions drawn

have to be interpreted differently. In the first case it is possible to express that a belief in

p is very likely but there is a small chance that the agent actually believed ¬p. But this

also means that we basically deal with several observations that may contain contradicting

information and there is generally no single epistemic state explaining all of them — there

may not even be a single acceptable core belief. Recall that the belief set of an agent

is inconsistent if and only if its core belief is. So there cannot be an explanation where A
believes p and ¬p while having a consistent core. Reasoning about the agent would then have

to be done by considering what is believed according to all belief traces constructed from the

explanations of observations with a certain degree of reliability. In order to draw non-trivial

conclusions it is necessary to construct from an observation containing reliability information

a set of observations that can be handled using the rational explanation methodology. This

is a difficult task as it is not obvious which beliefs and non-beliefs to leave out in which

observation. Recall that we do not construct several observations with respect to the same

initial epistemic state but observations that will have different explanations. That is, if

we leave out too much the conclusions we will draw will be extremely weak. The general

method will probably be to look for maximally consistent subsets of beliefs incorporating

the reliability information for choosing which formulae to leave out.

Here we will consider only the second interpretation and assume less reliable information to

be additional to the more reliable one. That is, we want to express that A believes θ with

a high reliability and that with less certainty it also believes θ′. For simplicity, we consider

reliability to be represented by natural numbers, 0 representing the highest reliability. Now,

each belief and non-belief is labelled with a number. That is, instead of formulae θ, the sets

of beliefs Bi in an observation o contain pairs of the form (θ, k). Analogously, the sets of non-

beliefs Di in o contain pairs of the form (δ, k). We will call such an o a graded observation. We

assume that the labels are comparable, i.e., that k represents the same degree of reliability
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everywhere in o. When reasoning about A we now also specify a threshold t indicating that

we do not want to consider formulae whose label is greater than t but consider all formulae

whose label is less or equal to t. The greater t the more formulae are taken into account

and by Proposition 2.68 we know that the weakest acceptable core belief can only become

stronger.

It is important to note that this notion of reliability and safe conclusions with respect to

hypothetical reasoning are not identical. Using 0 as threshold does not mean that the

conclusions drawn are safe. However, the two notions are not unrelated. Let o1 be an

observation obtained from a graded observation o by using a threshold t1 and o2 using

threshold t2 such that t1 < t2. This means o2 may contain information that is less reliable.

From Proposition 2.68 it follows that any explanation for o2 also explains o1. This entails

that a conclusion that is not safe for o2 is also not safe for o1. This is because any explanation

found as a counterexample to the conjecture for o2 would be one for o1 as well. The revision

inputs in o1 and o2 are the same and hence the belief traces yielded by that explanation

are equivalent. Only the beliefs and non-beliefs recorded in the two observations differ.

Conversely, a safe conclusion for o1 is also safe for o2. If we found an explanation contradicting

the conjecture with respect to o2 it would be a counterexample for o1 as well, but by the

definition of a safe conclusion such an explanation does not exist. The following example

also illustrates that conclusions that are safe when also using less reliable information need

not be safe when using only more reliable information. This is what we would expect. The

additional information may rule out possibilities — but not reliably.

Example 4.1. Consider o = 〈(p, {(¬q, 0), (r, 1)}, ∅), (q, {(q, 0), (s, 2)}, {(p, 1)})〉. This grad-

ed observation expresses that the observed agent received the revision inputs p and then q.

We are certain that after receiving p it believed ¬q and less certain that it also believed r.

q must have been believed upon receiving it as revision input but p may not be among the

beliefs. Further, there is remote possibility that s is also believed.

Now let t1 = 0 and t2 = 1, so o1 = 〈(p,¬q, ∅), (q, q, ∅)〉 as we consider only formulae whose

label is 0 and o2 = 〈(p,¬q ∧ r, ∅), (q, q, {p})〉 ignoring formulae whose label is greater than 1.

The rational explanation for o1 is [(p→ ¬q),>] and for o2 it is [(p→ r), p→ ¬q].

From the rational explanation for o1 we can hypothesise that p→ ¬q is believed initially and

this conclusion can be verified using hypothetical reasoning. It is also safe for o2. Note that

this formula has to be entailed by any core belief acceptable for o2.

From the rational explanation for o2 we can hypothesise that the revision input p is in

fact accepted. This conclusion cannot be verified. In fact, the agent’s initial state may

be [(s, r ∧ ¬q),¬p]. So this conclusion is not safe for o1 either.
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Note that using o2 it is safe to conclude that p is not believed after having received q, as it

is impossible that the agent both believes and does not believe a formula at the same time.

But this conclusion is not safe for o1, the rational explanation for o1 being a counterexample.

Here the agent keeps believing p.

4.6 Revision using priority information

Whereas the last section dealt with the reliability of beliefs and non-beliefs recorded in the

observation, this section is about the reliability of the revision inputs. The interpretation of

an epistemic state [ρ,N] and the revision function ∗ we used up to this point equate recency

of a revision input with reliability. With the exception of the core belief, which is more

important than any input ever received, inputs received later take precedence over inputs

received earlier because they are appended to the end of the sequence ρ. However, this

temporal interpretation is not inherent to our framework — more precisely to the method

we assume the agent to use for calculating its beliefs in a given state. All the function f

assumes is that there is a total order on a set of formulae. This set is processed starting with

the most important one (the core belief) and then proceeding with the next most important

one and so on.

That is, in fact it is (almost) irrelevant when in the past the formula was received, all that

matters is its position in the sequence representing the total order. The agent still receives

formulae in a certain temporal order which has to be captured in the observation o and which

has to be taken into account when reasoning about the agent’s beliefs at a particular point

in time. After all, formulae that have not yet been received cannot be used for calculating

the set of beliefs. However, the above considerations imply that we do not have to commit

ourselves to a revision framework that assigns the highest priority to the formula received

most recently.

Keeping the representation of an agent fixed, we can easily imagine revision frameworks where

additional information allows to specify where in the sequence ρ the new input ϕ is to be

inserted in order to arrive at the resulting epistemic state. If this additional information gets

recorded in the observation as well and can be interpreted without ambiguity, the methods

presented in Chapters 2 and 3 still allow us to reason about an observed agent. What we

vaguely call additional information may include information about the source, its reliability

(with respect to the topic of ϕ), supporting arguments etc.

To illustrate our point, we will present a very simple extension of the revision framework

assumed up to now and show how the results presented before can be used to reason about an

agent employing this extended framework. The epistemic state [ρ,N] of an agent is defined
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as before. The revision input comes with an index indicating at which point in the sequence

the new formula is to be inserted.3 Lower indexes mean higher priority, i.e., the index 1

corresponds to appending the formula to the end of the sequence. If necessary, the sequence

is extended with a number of tautologies in order to allow insertion at the correct position.

That is, an index i says that revision input ϕ has to be the ith element from the back of the

modified ρ.

Definition 4.2. Let [(ϕ1, . . . , ϕn),N] be an epistemic state, ϕ a formula, k > 0 and λj ≡ >
for all j > 0. Then

[(ϕ1, . . . , ϕn),N] ∗I (ϕ, k) =



[(ϕ1, . . . , ϕn, ϕ),N] , k = 1

[(ϕ1, . . . , ϕn−1, ϕ, ϕn),N] , k = 2

[(ϕ1, . . . , ϕn−k+1, ϕ, ϕn−k+2, . . . , ϕn),N] , 2 < k ≤ n

[(ϕ,ϕ1, . . . , ϕn),N] , k = n+ 1

[(ϕ, λk−n−1, . . . , λ1, ϕ1, . . . , ϕn),N] , k > n+ 1

As before Bel([ρ,N]) = Cn(f (ρ · N)).

If the chosen index is always 1 then ∗I coincides with the revision operator ∗ we considered

before. We assume that the index is given directly. Determining it can be seen as a pre-

processing step the agent carries out before the actual revision takes place. For example,

the index could be the value of a function mapping the current epistemic state, the revision

input, and the additional information indicated above to a natural number.

Note that even if two revision inputs have the same index, the one received later demotes

the one received earlier. This is because the framework cannot capture that two individual

formulae have the same priority — the conjunction of two formulae is not the same as two

separate ones. Also a revision input with a low index may have been pushed down over time

so that a later input with higher index might in the end have a higher priority. This shows

that the index of a formula is not an absolute measure for its reliability. There is still some

temporal interpretation involved. The following example illustrates revision in the current

framework.

Example 4.3.

[(p, p→ q),>] ∗I (¬q, 2) = [(p,¬q, p→ q),>]

[(p,¬q, p→ q),>] ∗I (r ∨ q, 6) = [(r ∨ q,>,>, p,¬q, p→ q),>]

[(r ∨ q,>,>, p,¬q, p→ q),>] ∗I (s, 1) = [(r ∨ q,>,>, p,¬q, p→ q, s),>]

3In this section, the meaning of the word index is slightly different to that in the context of the ratio-

nal prefix construction. There it corresponded to the point in time in the observation that gave rise to a

conditional, i.e., f (ϕ1, . . . , ϕi,N)⇒ θi (respectively f (ϕ1, . . . , ϕi,N)⇒ δ) has the index i.
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For simplicity we further assume that the index is given in the observation as well. That

is, instead of the revision inputs ϕ an observation will contain entries of the form (ϕ, k).

The observation 〈((p, 2), q, ∅)〉 expresses that after the agent A received p, placing it in the

last but one position in the sequence ρ of its epistemic state [ρ,N], A believed q. We also

assume that the observation is complete in the sense that for the time of the observation

there is a an entry for every revision input received by A. We cannot directly apply the

rational explanation construction as it assumes the revision operator to be ∗ and not ∗I .
This means that the observation cannot easily be translated into conditional beliefs in the

initial epistemic state as some of the elements of ρ (which we do not know) might have to

appear in the antecedents of the conditionals. How can we approach this problem?

We will make use of the ideas developed in the previous chapter, intermediate inputs in

particular. We divide the sequence ρ of the initial epistemic state into two subsequences.

The first one is the (largest) prefix that is not affected by the revision steps recorded in the

observation o simply because the formulae in this prefix are less important than any revision

input from o. This prefix ρp will again be calculated using the rational prefix construction.

The second one ρs is the suffix of ρ in which the revision inputs recorded in o get inserted —

the resulting suffix being ρis after the ith revision input. The formulae contained in ρs will

be treated like intermediate inputs although they are not intermediate inputs in the sense of

Section 3.3.

Proposition 4.4. Let (ϕi, ki), 1 ≤ i ≤ n, be a set of n revision inputs with corresponding

indexes. Further let N be a core belief and ρp, ρs and ρis, 1 ≤ i ≤ n, sequences such that

[ρp · ρs,N] ∗I (ϕ1, k1) ∗I . . . ∗I (ϕi, ki) =
[
ρp · ρis,N

]
for all 1 ≤ i ≤ n.

Then Bel([ρp · ρs,N] ∗I (ϕ1, k1) ∗I . . . ∗I (ϕi, ki)) = Bel([ρp,N] ∗I (f
(
ρis · N

)
, 1)) for all

1 ≤ i ≤ n .

[ρ,N] is the initial epistemic state. The revision inputs ϕi are received in the order induced

by the subscript i and they are inserted into the sequence of the current epistemic state

according to the index ki. Note that the ρis are uniquely determined by ρs and the revision

inputs ϕ1, . . . , ϕi and their respective indexes k1, . . . , ki. As noted above, a prefix ρp of ρ

may not be affected by the sequence of revisions. Changes occur only in the suffix ρs. The

above proposition now tells us that if we know ρs, then, from the point of view of the agent’s

beliefs, the sequence of revisions can again be translated into a set of single revision steps

with respect to the same state — using the original revision function ∗. This allows us to

translate an observation into conditional beliefs in the state [ρp,N] and consequently we can

use the rational explanation construction to calculate a state satisfying the conditionals.

However, ρs is unknown to the observing agent — it contains a number of unknown formulae.

We use the intermediate inputs idea and instantiate them with new variables. The question
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is: How long do we have to assume ρs to be so that Proposition 4.4 is applicable, i.e., that

only ρs is affected by the revision steps? Basically, we have to make sure that no revision

step makes it necessary to extend ρs by tautologies (cf. Definition 4.2). We could simply

use the greatest index kj of any revision input appearing in the observation. This would

mean that ρs has the length kj and Proposition 4.4 would be trivially applicable. However,

it would also mean to introduce kj new variables and from previous remarks it should be

clear that this should be avoided if possible. As each new variable doubles the number of

worlds, their number should be kept low. Can we do better?

Each revision input recorded in o increases the length of the suffix by one. After insert-

ing the (i − 1)th revision input the length is at least (i − 1). Consequently, if ki − i ≤ 0

then the ith revision input ϕi with index ki can be inserted without an extension with

tautologies being necessary — in other words without affecting ρp, which is necessary for

Proposition 4.4 being applicable. If the difference is bigger, then ρs must have been accord-

ingly longer.4 This yields max
1≤i≤n

{ki − i} as the minimal length for ρs given an observation

o = 〈((ϕ1, k1), θ1, D1), . . . , ((ϕn, kn), θn, Dn)〉.

Example 4.5. Consider the initial epistemic state [(α1, α2, α3, α4, α5, α6),N] and the obser-

vation o = 〈((ϕ1, 2), θ1, D1), ((ϕ2, 4), θ2, D2), ((ϕ3, 1), θ3, D3), ((ϕ4, 6), θ4, D4)〉.

max
1≤i≤n

{ki − i} = max{2 − 1, 4 − 2, 1 − 3, 6 − 4} = 2. The epistemic state resulting from the

revision steps recorded in o is [(α1, α2, α3, α4, ϕ4, ϕ2, α5, ϕ1, α6, ϕ3),N] and indeed only the

suffix (α5, α6) of length 2 has been affected by the revision, the prefix (α1, α2, α3, α4) remained

unchanged.

All we have to do now is redefine the set of positive and negative conditionals given a core

N and an observation o = 〈((ϕ1, k1), θ1, D1), . . . , ((ϕn, kn), θn, Dn)〉. Let k = max
1≤i≤n

{ki − i},
that is, we will assume the suffix of the initial epistemic state to contain k unknown formulae

which we instantiate with x1, . . . , xk according to the intermediate inputs idea. Hence we set

ρs = (x1, . . . , xk). Further we define ρis such that
[
ρis,N

]
= [ρs,N] ∗I (ϕ1, k1) ∗I . . . ∗I (ϕi, ki)

for all 1 ≤ i ≤ n and thereby get CN(o) = {f
(
ρis · N

)
⇒ θi | 1 ≤ i ≤ n} as the set of positive

conditional beliefs and NN(o) = {f
(
ρis · N

)
⇒ δ | 1 ≤ i ≤ n ∧ δ ∈ Di} as the set of negative

4In fact it need not. But then the entire sequence ρ of the agent’s epistemic state [ρ,N] is affected by

the insertion of revision inputs and that only the trivial prefix, i.e., the empty sequence ρp = (), remains

unchanged. For such ρ it is easy to see that for all i

Bel([ρ,N] ∗I (ϕ1, k1) ∗I . . . ∗I (ϕi, ki)) = Bel([(>, . . . ,>) · ρ,N] ∗I (ϕ1, k1) ∗I . . . ∗I (ϕi, ki)).

This is because the relative position of the elements of ρ and the ϕi is not affected by the tautologies

appended before ρ and these tautologies have no semantic impact on the formula collected by f . Hence, we

can safely assume ρs to be long enough for Proposition 4.4 to be applicable. Some of the unknown formulae

may simply be tautologies.
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conditionals. Using these definitions for the conditionals, Algorithm 1 can be used except

that the returned epistemic state must be [ρ · ρs,N] instead of [ρ,N]. Again, this is because

we fixed the suffix of the initial epistemic state using intermediate inputs. From this initial

epistemic state we can calculate the belief trace and calculate potential beliefs (in L(o)) at

each point in time.

Although the results from Chapter 3 concerning the weakest core belief for parametrised

observations cannot be applied directly to the current setting, the conclusions we draw about

the core belief are correct. This is because in both cases the observation is translated into

a set of conditional beliefs in the initial epistemic state. All the components (formulae from

the observation, possibly some unknown formulae from ρs) are fixed. That is, the proofs

showing the correct calculation of the only varying element, which is the core belief, would

look very much the same. As in the concluding remarks to Section 3.2, we claim that hopes

for the correctness of the belief trace should not be too high. They depend on knowing the

correct core to begin with and we already argued that this is not likely. Further, the true

instantiation of the elements of ρs is unknown, so we cannot be sure whether the revision

inputs recorded in o are believed — even if we had the correct core.

Example 4.6. Consider the observation o = 〈((p, 1), q, ∅), ((¬q, 3),¬q, ∅), ((r, 2), q, ∅)〉. Af-

ter revising by p which is considered very important by the agent, it believes q. The agent

then accepts the less prioritised input ¬q, but changes its mind again after learning r. We

are looking for an epistemic state [ρp · ρs,N] explaining this observation. First we have to

determine the length of ρs such that ρp is not changed by the recorded revisions. The length

is max{1−1, 3−2, 2−3} which is 1. That is, we assume ρs = (χ) to be a sequence containing

one unknown input which we will instantiate with the new variable x. The epistemic state

after all the revision steps recorded in o would then be [ρp · (¬q, x, r, p),N]. Using Proposition

4.4 we can transform this observation into a set of conditional beliefs held by the agent in

the initial epistemic state [ρp,N] — assuming it to use the revision framework of Chapter 2.

As there is no information about non-beliefs of the agent, there will only be positive condi-

tionals. f (x, p,N)⇒ q corresponds to the first entry in o, f (¬q, x, p,N)⇒ ¬q to the second

and f (¬q, x, r, p,N)⇒ q to the third. We want to remark that these conditionals can also be

interpreted as being obtained from several observations with respect to the same initial state.

We now apply the rational explanation construction, starting with N = >.

C0 = {f (x, p,>)⇒ q, f (¬q, x, p,>)⇒ ¬q, f (¬q, x, r, p,>)⇒ q}
= {x ∧ p⇒ q,¬q ∧ x ∧ p⇒ ¬q,¬q ∧ x ∧ r ∧ p⇒ q}

The last two conditionals are p-exceptional for U0 = C̃0 as ¬q ∧ x ∧ p is inconsistent with

x∧p→ q and ¬q∧x∧r∧p is inconsistent with ¬q∧x∧r∧p→ q. The calculation continues

as follows.



4.6. REVISION USING PRIORITY INFORMATION 99

C1 = {¬q ∧ x ∧ p⇒ ¬q,¬q ∧ x ∧ r ∧ p⇒ q}
C2 = {¬q ∧ x ∧ r ∧ p⇒ q} = C3

As
∧
U2 = ¬p ∨ ¬r ∨ ¬x ∨ q is not a tautology, we have not found an explanation yet and

will continue with the modified core belief N = ¬p ∨ ¬r ∨ ¬x ∨ q. This leads to the following

calculation.

C0 = {f (x, p,N)⇒ q, f (¬q, x, p,N)⇒ ¬q, f (¬q, x, r, p,N)⇒ q}
= {x ∧ p ∧ (¬r ∨ q)⇒ q,¬q ∧ x ∧ p ∧ ¬r ⇒ ¬q, x ∧ r ∧ p ∧ q ⇒ q}

C1 = {¬q ∧ x ∧ p ∧ ¬r ⇒ ¬q}
C2 = ∅ = C3

This tells us that the core belief N = ¬p ∨ ¬r ∨ ¬x ∨ q works. Cn(N) ∩L(o) = Cn(>) so the

entire core belief can be absorbed into the instantiation of the unknown input, that is we use

x∧N instead of x. Note that the material counterparts of the last two conditionals in C1 are

tautologies and that the material counterpart of the first one is equivalent to x∧ p∧¬r → q.

Using all these simplifications we get ρp = (x ∧ N ∧ p ∧ ¬r → q), ρs = (x ∧ N) and o is thus

explained by

[(x ∧ N ∧ p ∧ ¬r → q, x ∧ N),>].

We will confirm this by calculating the belief trace. First note that x∧N entails ¬p∨¬r∨ q.
So the beliefs in this assumed initial state are Cn(x ∧ (p → q)). After having received the

first recorded revision input the epistemic state is [(x ∧ N ∧ p ∧ ¬r → q, x ∧ N),>] ∗I (p, 1) =

[(x ∧ N ∧ p ∧ ¬r → q, x ∧ N, p),>], the beliefs in this state being Cn(p ∧ x ∧ q). A’s epis-

temic state after the next revision step is [(x ∧ N ∧ p ∧ ¬r → q,¬q, x ∧ N, p),>]. Its beliefs

are now Cn(p ∧ x ∧ ¬q ∧ ¬r). The epistemic state after having received the final input is

[(x ∧ N ∧ p ∧ ¬r → q,¬q, x ∧ N, r, p),>] and the beliefs are Cn(p∧ r∧x∧ q). The belief trace

— restricted to L(o) which is what we care about — consequently is

(p→ q, p ∧ q, p ∧ ¬q ∧ ¬r, p ∧ q ∧ r).

Finally, we will illustrate two cases for hypothetical reasoning. The belief trace indicates that

p was believed upon having been received. To see if this is necessarily the case we try to find

an explanation for the modified observation o′ = 〈((p, 1), q, {p}), ((¬q, 3),¬q, ∅), ((r, 2), q, ∅)〉.
We will simply give an explaining epistemic state: [(q, r → q),¬p]. It is not the one calculated

by our algorithm. The existence of an explanation o′ indicates that it is possible that the agent

did not believe p upon receiving it.

A second conclusion we draw is that before receiving the final input r, the agent believes

¬r. To see if this is necessarily the case we try to find an explanation for the observation

o′ = 〈((p, 1), q, ∅), ((¬q, 3),¬q, {¬r}), ((r, 2), q, ∅)〉. However, there is none. After a number

of iterations of strengthening the potential core belief, an inconsistent one is constructed. The
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intuitive reason that there cannot be an explanation is that r must have made a difference as

the agent changes its mind with respect to q. However, if r was consistent with the beliefs then

revising by r would have been a simple expansion of the belief set. In this case it would not

have mattered which priority r has (Proposition 2.10); it could have been inserted anywhere

in the sequence. So in order to cause the change from believing ¬q to believing q, the agent

must have believed ¬r before receiving it.

Going one step further, we could also imagine a revision framework where reordering or

deleting formulae from the epistemic state [σ,N] are possible. This is reasonable if we think

of A as having several sources and the position where a revision input is inserted into σ

depends on a preference among those sources, possibly corresponding to their reliability. If

A learns that one of its sources was always completely unreliable, it might want to delete

(or mark as deleted) all inputs received by that source — in which case the actual epistemic

state would have to be richer, of course. The meta-information about the source of a formula

would have to be recorded, as well. Similarly, if the agent learns that its preference relation

among sources does not correctly capture their reliability, A might decide to reorder the

elements of σ according to its new preferences. In order to deal with these cases, we have to

make sure that all changes take place in ρs, in which case the conditional beliefs needed for

the rational explanation algorithm can still be calculated.

Again, the conditions for the optimality of the rational prefix are not satisfied and hypothet-

ical reasoning about A’s beliefs at each point in time is the best we can do. However, the

real core belief will entail the one calculated.

We assumed that the indexes of each revision input were given. Having to reason about

where the agent may have put the formula leads to a combinatorial explosion and virtually

no useful cautious conclusions. We would have to calculate what is implied by all the core

beliefs for every possible instantiation of indexes or do hypothetical reasoning with respect

to all possible explanations. A similar problem exists if only the relative positions are given,

i.e., information like the first input being less important than the second one but more

important than the third one etc. The space of possible observations would be smaller than

if no information was given, but still very large. We do admit that information about the

indexes of the revision inputs will be available only in very few realistic settings.

4.7 Core belief revision

In [8], Booth not only investigates revision by regular inputs but also allows the core belief

itself to be revised. He suggests a slightly different representation of the epistemic state of
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an agent and a separate function for core belief revision. The agent’s epistemic state [ρ, ρN]

consists of two sequences. ρ is analogous to the sequence in the framework we considered in

the previous chapters. The second sequence ρN records the inputs of core revision. Regular

revision inputs are appended to ρ as before, core revision inputs are appended to ρN. In

order to distinguish the two cases we use two revision functions ∗ for regular revision and

∗N for core belief revision. We want to emphasise that the subscript N in ρN and ∗N, which

we use in this section, is not in any way related to a particular formula. It only indicates

that the sequence is one of core revision inputs and that the revision is core revision. We use

the same representation for an epistemic state but calculate the beliefs in a slightly different

way, allowing beliefs to be inconsistent.

Definition 4.7. The epistemic state [ρ, ρN] of an agent consists of two finite sequences

of formulae ρ and ρN. Given an epistemic state and a formula ϕ, the regular revision

operator ∗ is defined by [ρ, ρN] ∗ ϕ = [ρ · ϕ, ρN]. The core belief revision operator ∗N is

defined by [ρ, ρN] ∗N ϕ = [ρ, ρN · ϕ]. The set of beliefs Bel([ρ, ρN]) in the epistemic state is

Bel([ρ, ρN]) = Cn(f (ρ · ρN)).

Note that beliefs of an agent are inconsistent if and only if the last element of ρN is a

contradiction. This is the case if the last core belief revision input was inconsistent.5 As a

consequence, revising the core beliefs by any consistent formula will cause the agent’s beliefs

to be consistent again. The original framework from Section 2.2 is a special case of this one.

It does not allow the revision function ∗N to be used and assumes ρN to be a sequence of

length one.6 And if we disallow inconsistent core belief revision inputs, this framework can

be seen as a special case of the one sketched in the last section. We map [ρ, ρN] to [ρ · ρN,>],

[ρ, ρN] ∗N ϕ to [ρ · ρN,>] ∗I (ϕ, 1) and [ρ, ρN] ∗ ϕ to [ρ · ρN,>] ∗I (ϕ, i) where i is the length

of ρN plus one. In order to determine i, we have to know the length of the original ρN and

increase this number with every core belief revision step. We will later use this mapping in

order to reason about an agent employing the current revision framework.

Returning to our main topic of reasoning about an observed agent, let us now assume the

agent to function according to the above definition. Further, we assume the observation

to contain the information whether a revision input was a regular one or a core revision

input. That is, an observation is of the form o = 〈((ϕ1, ∗1), θ1, D1), . . . , ((ϕn, ∗n), θn, Dn)〉,
where each ∗i is either ∗ or ∗N. An epistemic state [ρ, ρN] explains o if for all 1 ≤ i ≤ n,

Bel([ρ, ρN] ∗1 ϕ1 ∗2 . . . ∗i ϕi) entails θi and entails no δ ∈ Di.

5The original framework in [8] causes beliefs — core beliefs and regular ones — to be consistent at all

times. Basically, it defines the beliefs to be Bel([ρ, ρN]) = Cn(f (ρ · ρN · >)).

6More precisely, it assumes the core is given as a single formula. This is possible also by setting N = f (ρN)

for a non-empty sequence of core revision inputs ρN.
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In the current setting we have to take special care of inconsistent core revision inputs. We

always allowed the agent to have an inconsistent core belief, but whenever the rational

explanation algorithm calculated one, we considered this not to be an explanation. Here

we have to proceed differently. If we are actually informed that the observed agent received

an inconsistent core revision input then we can safely use this information. The current

framework yields that in this case the agent’s beliefs will be inconsistent until the next

consistent core revision input is received. Note that this means that there cannot be non-

beliefs during that period.

Example 4.8. Consider the observation o = 〈((p, ∗), q, ∅), ((⊥, ∗N),¬q, ∅), ((r, ∗),>, {¬q})〉.
o expresses that after receiving the regular revision input p, the agent believes q. It then

receives an inconsistent core revision input upon which ¬q is believed. After finally receiving

the regular input r, the agent does not believe ¬q any longer.

This observation cannot have an explanation. Assuming the agent’s initial epistemic state

being [ρ, ρN], the final epistemic state after having received the three recorded inputs would be

[ρ · (p, r), ρN · ⊥]. The beliefs in this state are obviously inconsistent as the last element of

the sequence ρ · (p, r) · ρN · ⊥ is inconsistent. Hence it is not possible that ¬q is not believed.

This illustrates that before looking for an explanation of an observation, we can check whether

the observation contains a non-empty set of non-beliefs for a point in time where the beliefs

are known to be inconsistent. The following proposition formalises which observations can

be excluded from further consideration because they cannot have an explanation for this

trivial reason.

Proposition 4.9. Let o = 〈((ϕ1, ∗1), θ1, D1), . . . , ((ϕn, ∗n), θn, Dn)〉 where each ∗i is either

∗ or ∗N. o cannot have an explanation if the following condition is satisfied:

There are k, l with k ≤ l such that ∗k = ∗N, ϕk ≡ ⊥, Dl 6= ∅ and for all k ≤ i ≤ l, ϕi ≡ ⊥
or ∗i = ∗.

The condition states that there is an inconsistent core revision input and there is no consistent

core revision input recorded up to a point where there is information about the agent’s not

believing a certain formula. This is not a necessary condition as there are observations not

satisfying this condition that still have no explanation.7 For the remainder of this section,

we consider only observations o that cannot be eliminated due to this proposition.

As noted above, for using the above mapping there must not be inconsistent core revision

inputs. The reason is that the mapping turns core revision inputs into regular ones. Due

7To see this we can use any observation from Chapter 2 that does not have an explanation, e.g.

〈((p, ∗),>, {p,¬p})〉. Upon receiving p as revision input either p or ¬p has to be believed.
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to the index 1 they get high priority but there still is the more important tautologous super

core belief. Proposition 2.7 yields that this tautology does not have any impact in case the

latest core revision input is consistent. After an inconsistent core revision input we know

the agent’s beliefs to be inconsistent, however using the mapping the beliefs will always be

consistent due to the tautologous super core. The following proposition tells us that we can

safely eliminate the inconsistent core revision inputs by slightly modifying the observation.

o and o′ differ in that the entry for the inconsistent core revision input ϕi is eliminated and

the beliefs after the regular revision inputs ϕi+1, . . . , ϕj are replaced by tautologies. That

way we get an observation o′ to which we can apply the mapping and which has exactly the

same explanations as o.

Proposition 4.10. Let ∗k ∈ {∗, ∗N} for all 1 ≤ k ≤ n. [ρ, ρN] explains

o = 〈((ϕ1, ∗1), θ1, D1), . . . , ((ϕi−1, ∗i−1), θi−1, Di−1),

((⊥, ∗N), θi, ∅),
((ϕi+1, ∗), θi+1, ∅), . . . , ((ϕj , ∗), θj , ∅),
((ϕj+1, ∗N), θj+1, Dj+1),

((ϕj+2, ∗j+2), θj+2, Dj+2), . . . , ((ϕn, ∗n), θn, Dn)〉

if and only if it explains

o′ = 〈((ϕ1, ∗1), θ1, D1), . . . , ((ϕi−1, ∗i−1), θi−1, Di−1),

((ϕi+1, ∗),>, ∅), . . . , ((ϕj , ∗),>, ∅),
((ϕj+1, ∗N), θj+1, Dj+1),

((ϕj+2, ∗j+2), θj+2, Dj+2), . . . , ((ϕn, ∗n), θn, Dn)〉

First note that, as far as the inconsistent core revision input ϕi under consideration is

concerned, o does not satisfy the condition in Proposition 4.9. All sets of recorded non-

beliefs between ϕi and the following core revision input ϕj+1 are empty. The idea of the

transformation from o to o′ is as follows. We can act as if the inconsistent input has not been

received. For the time where the agent’s beliefs are inconsistent we know they are. Once a

consistent core revision input (ϕj+1) is received ϕi is irrelevant. This is due to Proposition

2.8 which states that inserting a contradiction anywhere but the last position has no impact.

However, just leaving ϕi is not enough because the beliefs recorded between the agent’s

receiving ϕi and ϕj+1 could be caused by the belief set being inconsistent. They may have

no connection with the regular revision input. That is, in fact we have no information about

what the agent really believes after having received the regular inputs, which can be modelled

by setting all θk, i < k ≤ j, to be tautologies.

We will now go on to illustrate how to continue with an observation o that has not been

eliminated as not explainable by Proposition 4.9 and which has been modified according to
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Proposition 4.10 such that it does not contain any inconsistent core revision input. Recall

that the agent’s initial epistemic state is [ρ, ρN]. If we knew ρN we could easily translate

the observation o into conditional beliefs in the epistemic state [ρ,>] (in the original inter-

pretation). This is possible due to the above-mentioned translation into revisions using ∗I .
The antecedents of these conditionals would have the form f (σ1 · ρN · σ2) where σ1 is the

sequence of regular revision inputs and σ2 the sequence of core revision inputs from a prefix

of o. Note that ρ is the prefix of ρ ·ρN which is not affected by the revision steps. Again, the

problem is we do not know ρN and we will have to guess it. This is where the intermediate

inputs idea is helpful again. We will try out several possible sequences, each containing a

different number of unknown formulae, which will again be instantiated by new variables.

We start by assuming ρN to be the empty sequence.

Having calculated the conditional beliefs from o using the assumed ρN, the rational expla-

nation construction will return an epistemic state [ρ,N]. Note that in the current setting it

is not sufficient that N is consistent. As there really is no super core belief and all interac-

tion between core revision and regular inputs must be explained by ρ and ρN, we need that

Cn(N) ∩ L(o) = Cn(>). This will ensure that all impact the super core belief has can be

absorbed by the new variables (Proposition 3.11).

In the first run where we assumed ρN = (), if the returned core is a tautology then we are done.

If it is not this could mean that not all the interactions between regular revision inputs could

be handled by the core revision inputs recorded in o.8 This hints at ρN containing at least one

formula. Next we try if a sequence of length one works. We use the intermediate input idea

and instantiate the unknown formula with a new variable and calculate the corresponding

conditionals. The rational explanation construction will again yield an epistemic state [ρ′,N′].

So if Cn(N′)∩L(o) ≡ Cn(>) then we are done, otherwise we will have to extend ρN by another

new variable. And so on.

The question is whether we can stop this iteration at one point, i.e., whether there is an

assumed length of ρN that allows to explain an observation no matter how long the true ρN

really is. Proposition 3.26 gives the answer. Interpreted to the current setting it says that

ρN need not be longer than the number of core belief revision inputs recorded in o plus 1.

Intuitively, the extra formula is necessary for the super core belief to be included in ρN. ρ in

that proposition is the sequence of core belief revision inputs received during the observation,

σ is the actual sequence ρN and σ′ a sequence of the claimed length which yields equivalent

formulae before processing the regular revision inputs.

8It could also mean that there are problems with the interaction between core belief inputs. Consider

o = 〈((p, ∗N), p, ∅), ((q, ∗N),¬p, ∅)〉. From our original investigations it is clear that o can only be explained

using a super core belief that is not a tautology. As p ∧ q, the conjunction of the two latest core revision

inputs, is consistent, ¬p cannot consistently believed after receiving q. Hence, o does not have an explanation.
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Example 4.11. Consider o = 〈((p, ∗), p ∧ q, ∅), ((r, ∗N),>, {p}), ((r ∧ p, ∗),>, {r ∧ p}),
((⊥, ∗N),>, ∅), ((r, ∗),¬r, ∅), ((s, ∗N), r∧p, ∅)〉. After receiving the regular input p, the agent

believes p ∧ q. After receiving the core revision input r, it ceases to believe p. The regular

revision input r ∧ p does not cause this formula to be believed. The agent then receives an

inconsistent core revision input and afterwards a regular one. Finally, the core revision input

s leads to the belief in r ∧ p.

There is an inconsistent core revision input, so we check whether this observation cannot

have an explanation due to Proposition 4.9. This is not the case because all recorded non-

beliefs following that input and preceding the next consistent core revision input are empty.

We now modify o according to Proposition 4.10, deleting the inconsistent core revision input

and weakening the following beliefs to be tautologies. The resulting observation is

o′ = 〈((p, ∗), p ∧ q, ∅), ((r, ∗N),>, {p}), ((r ∧ p, ∗),>, {r ∧ p}), ((r, ∗),>, ∅), ((s, ∗N), r ∧ p, ∅)〉.

Note that if we had not weakened the belief recorded for the regular revision input r and left it

unchanged (¬r) then the resulting observation could not have an explanation! This is because

the epistemic state after receiving that input would be [ρ · (p, r ∧ p, r), ρN · r] and in this state

r would be believed independent of what the initial epistemic state [ρ, ρN] is. ¬r could not be

consistently believed.

Before illustrating the construction of an explanation for o and o′ we want show that there

is one: [ρ, ρN] where ρ = (p → q) and ρN = (r → (¬p ∧ ¬s)). The following table shows

the evolution of the epistemic state for the revision steps recorded in o and gives a formula

characterising the beliefs of the agent. Recall that the beliefs are calculated using f going

backwards through the concatenation of ρ and ρN.

rev. epistemic state beliefs

[(p→ q), (r → (¬p ∧ ¬s))] (¬p ∨ q) ∧ (¬r ∨ ¬p) ∧ (¬r ∨ ¬s)
∗p [(p→ q, p), (r → (¬p ∧ ¬s))] p ∧ q ∧ ¬r
∗Nr [(p→ q, p), (r → (¬p ∧ ¬s), r)] r ∧ ¬p ∧ ¬s
∗r ∧ p [(p→ q, p, r ∧ p), (r → (¬p ∧ ¬s), r)] r ∧ ¬p ∧ ¬s
∗N⊥ [(p→ q, p, r ∧ p), (r → (¬p ∧ ¬s), r,⊥)] ⊥
∗r [(p→ q, p, r ∧ p, r), (r → (¬p ∧ ¬s), r,⊥)] ⊥
∗Ns [(p→ q, p, r ∧ p, r), (r → (¬p ∧ ¬s), r,⊥, s)] s ∧ r ∧ p ∧ q

There cannot be an explanation [ρ, ρN] with an empty sequence ρN. This can already be seen

from the first two revision steps. ρN being empty the resulting epistemic state is [ρ · p, (r)].
It is easy to see that r ∧ p is believed in this state, as p cannot be kept out of the belief set.

But the observation tells us that p is not believed. Consequently ρN must have a length of

at least one. So let us assume there is exactly one unknown formula in that sequence. As

always, we instantiate this unknown formula with a new variable x. The positive and negative
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conditional beliefs with respect to the epistemic state [ρ,>] which we can now construct from

o′ are as follows.

C0 = {f (p, x,>)⇒ p ∧ q, f (p, x, r,>)⇒ >, f (p, r ∧ p, x, r,>)⇒ >,
f (p, r ∧ p, r, x, r,>)⇒ >, f (p, r ∧ p, r, x, r, s,>)⇒ r ∧ p}

= {p ∧ x⇒ p ∧ q, p ∧ x ∧ r ⇒ >, p ∧ x ∧ r ⇒ >,
p ∧ x ∧ r ⇒ >, p ∧ x ∧ r ∧ s⇒ r ∧ p}

N0 = {f (p, x, r,>)⇒ p, f (p, r ∧ p, x, r,>)⇒ r ∧ p}
= {p ∧ x ∧ r ⇒ p, p ∧ x ∧ r ⇒ r ∧ p}

Of all those conditionals only the first positive conditional f (p, x,>)⇒ p∧q is not ultimately

exceptional.
∧
Um ≡ ¬p ∨ ¬x ∨ ¬r so we strengthen the old core > with this formula and

recalculate the conditionals using the new core belief N = ¬p ∨ ¬x ∨ ¬r.

C0 = {f (p, x,N)⇒ p ∧ q, f (p, x, r,N)⇒ >, f (p, r ∧ p, x, r,N)⇒ >,
f (p, r ∧ p, r, x, r,N)⇒ >, f (p, r ∧ p, r, x, r, s,N)⇒ r ∧ p}

= {p ∧ x ∧ ¬r ⇒ p ∧ q,¬p ∧ x ∧ r ⇒ >,¬p ∧ x ∧ r ⇒ >,
¬p ∧ x ∧ r ⇒ >,¬p ∧ x ∧ r ∧ s⇒ r ∧ p}

N0 = {f (p, x, r,N)⇒ p, f (p, r ∧ p, x, r,N)⇒ r ∧ p}
= {¬p ∧ x ∧ r ⇒ p,¬p ∧ x ∧ r ⇒ r ∧ p}

This time only the last positive conditional ¬p ∧ x ∧ r ∧ s⇒ r ∧ p is ultimately exceptional.

Strengthening the old core with ¬p ∧ x ∧ r ∧ s → r ∧ p leads to a new core belief which is

equivalent to (¬p∨¬x∨¬r)∧(¬x∨¬r∨¬s). Using this core belief none of the conditionals is

exceptional even in the first iteration and the rational prefix is equivalent to (p∧x∧¬r → q).

We see that Cn((¬p ∨ ¬x ∨ ¬r) ∧ (¬x ∨ ¬r ∨ ¬s)) ∩ L(o) = Cn(>) which tells us that we

have indeed found an explanation when assuming the initial core belief sequence to have

length one. Absorbing the entire (super) core belief into the unknown formula, i.e., using

x ∧ (¬p ∨ ¬x ∨ ¬r) ∧ (¬x ∨ ¬r ∨ ¬s), we get the following explanation for both o and o′.

[(p ∧ x ∧ ¬r → q), (x ∧ (¬p ∨ ¬r) ∧ (¬r ∨ ¬s))]

Restricted to L(o) and including the inconsistent core revision input from o, the belief trace

of the agent is as follows.

((r → ¬s) ∧ (p→ ¬r ∧ q), p ∧ ¬r ∧ q, r ∧ ¬s ∧ ¬p, r ∧ ¬s ∧ ¬p,⊥,⊥, s ∧ r ∧ p)

Now that we have a method for calculating an explanation for an observation in the current

setting, what can we actually say about the agent? Our answer is again: Whatever hypo-

thetical reasoning allows us the conclude safely. Having constructed an explanation we can

make predictions about beliefs, non-beliefs and (regular) inputs being accepted or rejected

and then test these hypotheses by modifying the original observation accordingly. This also
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indicates that we might start by assuming ρN to be as long as possible. By proceeding this

way no explanations are missed. If an explanation exists for a shorter sequence of core beliefs

the remaining unknown formulae might just be tautologies.

We want to remark that the agent’s initial epistemic state might in fact be [ρ, ρN · ⊥] which

means that its belief set is inconsistent until it receives the first consistent core revision

input recorded in the observation. The methodology sketched above cannot deal with this

case immediately, intuitively because no successful calculation returns a contradiction or a

sequence containing one. However, if we do not find an explanation for a given observation

o, we might then try finding one for 〈((⊥, ∗N),>, ∅)〉 ·o. This modified observation expresses,

that the latest core revision input, which is inconsistent, was received just before the obser-

vation started. Due to Proposition 2.8, ρN can be assumed to have a consistent last element,

as inserting a contradiction in any proper prefix of a sequence has no impact. That is, if

[ρ, ρN] explains the modified observation 〈((⊥, ∗N),>, ∅)〉 · o (in which case we will find an

explanation as well), then [ρ, ρN · ⊥] will explain o.

If the observation does not specify what type of revision an input triggered, we have to make

guesses. The assumption in the main part of this thesis was that there are only regular

revision inputs. This assumption manifested itself in the choice of belief revision framework

used. In the previous section we allowed inputs to be placed at any point in the sequence

and argued that if we have no information, we will have to go through all possibilities.

The framework in this section limits the possibilities, as any input can only be placed at

two different positions. However, this still leaves the search space quite large. In order

to compare different explanations — which then have to include which type of revision a

formula triggered — we would have to specify further preference criteria. They could include

minimising the number of core belief revision steps, a short initial sequence of core beliefs ρN,

preferences as to the position of core belief revisions, etc. With respect to the last criterion

it is particularly controversial whether to prefer early or late core belief revisions. But we

will not continue this line of investigation here.

We want to conclude this chapter with a general remark concerning hypothetical reasoning

in the context of extending the original framework from Chapter 2. That is, we are refer-

ring to parametrised observations, intermediate inputs and the belief revision frameworks

introduced in this chapter. Having drawn conclusion based on the observation o, these are

tested by constructing a new observation o′ such that an explanation for o′ would be a coun-

terexample to the conclusion. We want to emphasise that the potential explanation for o′

has to be constructed making sure that all assumptions are correctly dealt with. That is,

this explanation must be constructed as if we did not know about o. In particular, results

from o need not automatically carry over. We want to give only one example. Assume o
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is an observation where intermediate inputs may have occurred and we know the positions

where they have occurred. We have the result that for explaining o, we need only assume j

intermediate inputs at each position (j being the number of recorded inputs following that

position). If we now want to draw conclusions about the agents beliefs after further inputs

have been received then hypothetical reasoning tells us to extend o by these inputs in order

to get o′. Note that now, there are more than j recorded inputs in o′ after the positions

indicated in the original observation. That is, we have to add further intermediate inputs

into o′.



Chapter 5

Related Work

We are not aware of work that investigates reasoning about the evolution of an observed

agent’s beliefs matching our setting. In this chapter we want to relate our work to a selection

of papers dealing with similar topics or using similar ideas. We will start with a number of

papers that are placed in action setting before turning to papers on modal logic approaches

to beliefs. The last papers we mention are only remotely related to our work.

5.1 Reasoning about other agents based on their actions

Modeling agents as qualitative decision makers [18] is very close in spirit to our

work, but it is placed in an action setting. The authors propose a framework that allows to

talk about agents independently of their actual implementation. They stress the importance

of being capable of modelling other agents without having access to their internal structure.

They assume that an agent’s behaviour can be explained in terms of its mental state which

is defined by beliefs, preferences and a decision criterion. Beliefs describe which worlds the

agent thinks most likely to be the true one, the preferences describe which outcomes of

actions it finds how desirable, and the decision criterion is used to choose an action. This

structure is influenced by decision and game theory literature.

The authors suggest that reasoning about another agent is possible by interpreting its actions.

In particular, they consider the belief ascription problem. In the simple (static) case, this

is determining what an agent believes given its preferences, decision criterion and a single

action performed by the agent. Assuming rationality of the agent, the action must have

been such that it maximises the outcome with respect to the decision criterion according

to its beliefs about the world. In this sense ascribed beliefs have to be an explanation for

the observed action, which is analogous to our notion of an epistemic state explaining an

observation.

109
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In the complex (dynamic) case sequences of actions are considered. This involves investigat-

ing the relation between the agent’s mental states at different points in time, in particular

the dynamics of its beliefs. The authors give conditions under which the belief ascription

problem can be solved by translating it into a set of ascriptions in the static case. Whereas

[18] focuses on the presentation of the general framework, we provide a set of actual methods

for reasoning about another agent.

5.2 Reasoning about the evolution of a dynamic world

There are a number of papers investigating the question of how the world evolved given

(partial) information about each point in time. In this section, we will mention some of

them. Even when abstracting from the difference of static vs. dynamic world, our work still

does not have the same focus. Whereas those papers basically allow arbitrary changes at

each point in time or allow different actions to occur, the observation in our case precisely

tells us what happened. The observer knows which revision input was received at each point

in time.

Belief extrapolation (or how to reason about observations and unpredicted

change) [22] This is a paper that deals with completing information about beliefs over

time and presents belief extrapolation operators. The starting point is a scenario 〈ϕ1, . . . , ϕN 〉
representing that ϕi holds in a possibly changing world at time point i. Such a scenario is a

partial description of how the world has evolved. Assuming that fluents (literals) tend not

to change, i.e., that the world is inertial, the operator tries to identify preferred trajectories

of models 〈m1, . . . ,mN 〉 such that mi |= ϕi.

The authors present several strategies for minimising change: counting all changes of fluents,

counting changes per fluent, set inclusion of changing fluents, different penalties for changes

of different fluents, temporal considerations like changes occurring as late as possible, etc.

Each strategy gives rise to a preference relation among trajectories. Choosing one preference

relation, the result of the extrapolation is a sequence of formulae representing for each

point what is true according to all preferred trajectories explaining a scenario. Static laws

relating different fluents are not explicitly treated, but the authors point out that these laws

can simply be conjoined with every formula given in a scenario.1 A preference relation is

called inertial if all static trajectories, i.e., those where all models are identical and thus no

change occurs, are equally preferred and preferred to any non-static trajectory. The rationale

behind choosing an inertial preference relation is that as long as we can assume the world

1The paper does not investigate the case where the static laws are not known. In this case the operators

assume that there are none.
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not to have changed, we should do so. The authors present properties of and connections

between the different preference relations and the extrapolation operators they give rise to

and position extrapolation with respect to belief revision and update. Computational aspects

are considered as well.

There are some essential differences between belief extrapolation and our approach. Once

more, the work in [22] is focused on a first person perspective and describes what an agent

should believe at each point in time rather than reasoning about what the agent does be-

lieve. The second important difference is that both approaches minimise very different

things. For the sake of illustrating this, let us for now forget that we assumed the world to

be static and only the agent’s beliefs about it to change. Note that one possible interpre-

tation of the formulae in a scenario 〈ϕ1, . . . , ϕN 〉 is as the beliefs recorded in an observa-

tion. Given the scenario 〈p, q, r〉, an extrapolation operator based on an inertial preference

relation will conclude that p ∧ q ∧ r held at every point in time. This is because the con-

junction of all the formulae is consistent and it can thus be assumed that nothing changed

at all. We will now look at some potential translations from a scenario 〈ϕ1, . . . , ϕN 〉 to

observations in our setting: (i) 〈(ϕ1,>, ∅), . . . , (ϕN ,>, ∅)〉, (ii) 〈(ϕ1, ϕ1, ∅), . . . , (ϕN , ϕN , ∅)〉,
(iii) 〈(χ1, ϕ1, ∅), . . . , (χN , ϕN , ∅)〉, and (iv) 〈(>, ϕ1, ∅), . . . , (>, ϕN , ∅)〉. The rational explana-

tion for any observation of the form (i) and (ii) will be [(),>]. This is because the material

counterparts for all positive conditionals will be tautologies. The belief trace for the example

scenario will thus be (>, p, p ∧ q, p ∧ q ∧ r). So with respect to these translations we do not

conclude that p ∧ q ∧ r is believed at every point in time. The translation according to (iii)

will yield a similar belief trace. Our approach tries to minimise the beliefs we assign to the

agent and not the changes, in particular when considering hypothetical reasoning.2 As the

agent may consider ¬p more plausible than p etc. we cannot conclude that it believed p be-

fore being informed about it. In this sense belief extrapolation is credulous, using the inertia

assumption in order to come up with strong beliefs. The rational explanation (in particular

in combination with hypothetical reasoning) is a (very) sceptical approach. Although the

world considered may be static, the agent’s information about it may be highly unreliable

and hence the agent’s beliefs may change often and dramatically.

Note that for the given example the translation according to (iv) 〈(>, p, ∅), (>, q, ∅), (>, r, ∅)〉
will yield exactly the same conclusion (via the corresponding belief trace) as the belief ex-

trapolation operator. However, the inputs > in fact force us to conclude that the agent’s

belief set did not change at all and every belief must have been already present in the ini-

tial state. (iv) will fail whenever
∧
ϕi is inconsistent, that is, in all interesting cases. The

2Then we could not even conclude that p is still believed after receiving q. The core belief may in fact be

q ↔ ¬p.
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resulting observation will not have an explanation at all as the core belief is forced to be

inconsistent.

A third essential difference is that (in its original form) the extrapolation operator does not

incorporate the information that a change occurred or why it may have occurred. Given a

scenario, a priori any fluent may have changed at any time and the operator tries to minimise

these changes according to the preference criterion. This is because the only information

available to the extrapolation operator is the scenario, which only contains a partial de-

scription of the world at every point but no information about what happened, or whether

anything happened at all. For our work, we assume to be provided with richer information.

The revision input ϕi can be considered to be a possible cause for θi to be believed. This

input, which has indeed been received, may have caused the change in mind. But conversely,

nothing but the recorded inputs may have triggered a change (when assuming that no inter-

mediate inputs have occurred). The observation 〈(p, p∧¬q, ∅), (p, p∧ q, ∅)〉 does not have an

explanation. However, the scenario 〈p∧¬q, p∧ q〉 does — in principle any fluent may change

at any point in time.

The authors of [22] indicate how explicit information about change can be incorporated

into their approach. They suggest mixed scenarios where each formula is labelled indicating

whether it denotes an actual description of the state of the world or an expected change caused

by an update. Then not all possible trajectories are considered but only those which fit the

expected changes recorded in the mixed scenario. These trajectories are then compared

with respect to the unexpected changes. This still does not cause the two approaches to

collapse into the same method. The rational explanation of an observation is about making

all changes expected ones. All these differences indicate that generally a translation yielding

exactly the same conclusions is not possible in either direction. The task, methodology and

assumptions of the two approaches are just too different.

[22] presents a number of possible extrapolation operators based on different preference

relations for minimising change. We single out one possible explanation — our sugges-

tion is to use it for generating hypotheses that can be tested via hypothetical reason-

ing. If asked which extrapolation operator is most similar to our approach, the answer

would probably have to be the one obtained from chronological minimisation. This op-

erator tries to delay changes as much as possible. The nature of our assumed belief re-

vision framework is analogous. As long as a revision input can simply be added to the

current beliefs, this is what is done. Once a change is necessary, the cardinality of liter-

als that change their value is not relevant. To see this, recall the example given at the

very end of Section 3.2.5 (the unknown input in the second position has been eliminated):

o = 〈(¬p,¬p, ∅), (p ↔ q1, p ↔ q1, ∅), . . . , (p ↔ qn, p ↔ qn, ∅), (r, q1 ∧ · · · ∧ qn, ∅)〉. Retrospec-
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tively, it might have been better if the agent had changed from believing ¬p to believing

p after having received p ↔ q1. Then the agent’s view of the world — or rather what we

assume to have been the agent’s beliefs based on the rational explanation of o — would not

have to have changed so dramatically.3

We already noted that a tautologous revision input forces the belief set to remain un-

changed. This indicates how we could define an operator similar to chronological (and

anti-chronological) minimisation using the rational explanation. We translate a scenario

〈θ1, . . . , θN 〉 into an observation o = 〈(>, θ1, ∅), . . . , (>, θN , ∅)〉 and check whether o can be

explained. If so, there is a static trajectory for the scenario. Otherwise we allow changes

which are modelled by intermediate inputs, preferring explanations for an observation where

as few intermediate inputs have been assumed as late in o as possible (as early for the anti-

chronological case). However, it is not the case that we will get the same conclusions as the

extrapolation operator yields. Considering the example scenario 〈a, a∨c, b,¬a∨¬b,¬c〉 from

[22], we see that there cannot be a static trajectory as a, b and ¬a∨¬b cannot be consistently

believed. Consequently, at least one change must have occurred. Indeed one suffices, as the

observation 〈(>, a, ∅), (>, a ∨ c, ∅), (>, b, ∅), (¬a ∨ ¬b,>, ∅), (>,¬a ∨ ¬b, ∅), (>,¬c, ∅)〉 has an

explanation. Here we gave a particular intermediate input (¬a ∨ ¬b) rather than reasoning

using an unknown formula. The rational explanation yields that a∧ b was believed from the

beginning but ¬c was believed only after the intermediate input was received. Before that,

the observation gives no indication that c cannot have been believed and again our frame-

work tries to minimise the beliefs assigned to the observed agent rather than the number of

changes.

Preferred History Semantics for Iterated Updates [6] The authors of [6] also con-

sider a sequence σ of consistent formulae partially describing an evolving world. Their aim

is to sharpen the information about the last time point, i.e., what should an agent believe

having observed the world developing in a certain way, and thereby give an alternative se-

mantics for update. The idea is again to identify trajectories of models explaining σ and the

result [σ] is the set of formulae true in the end points of all preferred trajectories. However,

the notion of an explaining trajectory is slightly different. Unlike in [22], where scenario and

trajectory had the same length, one model can be used for several time steps and there may

even be models not used at all. Of course, trajectories with this last property will not be

among the preferred ones.

The authors now assume that the agent has a preference relation over trajectories which is

irreflexive, transitive, has no infinite descending chain and satisfies the following property: If

3Note that the agent may in fact have changed its mind about p already at that early point. Only, the

observation does not indicate that.
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one trajectory can be obtained from another by simply deleting one or more models and both

explain σ then the shorter trajectory must be preferred. In fact, the authors do not consider

one particular preference relation but present properties satisfied by any such operator and

provide a representation result.

Most of the differences we pointed out with respect to [22] also apply here. Additionally,

note that we put the focus on the initial beliefs (and the core belief) rather than the ones

at the very end. The reason is that if we do not have the correct core belief then not even

the beliefs with respect to the recorded revision inputs will be reliable (Proposition 2.20).

Of course, our intention is to say something about every point in time.

Using Ranking Functions to Determine Plausible Action Histories [42] The topic

of [42] is also the identification of the most plausible evolution of the world. However, the

setting is different from [22] and [6]. The authors assume that a transition system is given,

i.e., it is known which actions change the world in what way and changes do not happen

arbitrarily. They consider an alternating sequence of actions and observations (about what

holds at the current point in time), each action being followed by an observation. Now,

given ranking functions expressing how likely each action and each observation is at each

point in time, the task is to find the most plausible action sequence. It is not the case that

the observations are reliable. This is unlike our framework where we assume the agent to

really believe θi, here indeed the information may be incorrect. Resolving resulting conflicts

is done by minimisation using the given ranking functions. This may lead to information

about the world being rejected or to reconsidering the action sequence.

Not every change needs to be equally likely at each point in time. This can be encoded in

the ranking. Having identified the most plausible action history, the beliefs at each step are

implicitly completed if the initial situation is known. The authors do not investigate the

case where the transition system is incorrect or incomplete. They note that fallible actions

can be modelled by allowing non-deterministic actions.

This paper may also be seen as an action analogon to our approach. The difference in the

setting is that we know which actions were performed (revisions by a known formula), but

we do not know the exact effect that an action had on the beliefs. Recorded beliefs are

reliable and are thus a guide to identifying the effect of the revision.

BReLS: A System for the Integration of Knowledge Bases [58] presents a unified

framework for integrating information with different levels of (source) reliability taking into

account the time at which this information holds. Again, the default assumption is that the

world does not change. It is possible to specify penalties for changes of a literal, also for

particular time points. The authors now define the notion of preferred models in terms of the
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smallest Hamming distance to models of formulae with the same reliability and extend this

to the case for successive time points. Again this yields a preference relation on trajectories,

which are as close to the formulae specified in the knowledge base as possible4 in order to

minimise change. The notation allows to capture particular instances of revision, update

and merging. By looking at what is true in all preferred models at a certain point in time,

it is possible to draw conclusions beyond what is explicitly given.

As in most papers considered in this chapter, it is not possible to specify what is not to be

believed at a given point in time. Also it is not straightforward how to model an observation

in that framework. The authors suggest to model revision by giving the new formula a

higher priority than the beliefs held (both referring to the same point in time). However, the

beliefs recorded in the observation are definitely held whereas the inputs, although definitely

received, may in fact have been rejected. So the system does not seem to be designed to

model iterated non-prioritised revision.

It is possible to write down that at time t the formula θt should hold and that if possible

also the input ϕt should be believed. But it seems impossible to specify that ϕt has to be

the actual reason for a change of the beliefs from t − 1 to t. These changes are completely

determined by the minimisation strategy and thus queries about beliefs at a certain point in

time are usually not related to the results expected in our framework.

5.3 Modal logic approaches

Often, modal logic is used for representing beliefs, knowledge and similar notions (even) in

multi-agent settings. Expressing beliefs of one agent about beliefs of another etc. is possible

in a natural way via nesting the different modal operators. However, we were not able to

find papers whose focus was on reasoning about beliefs of another agent in a belief revision

setting. So although our framework is quite restricted regarding which information about an

observed agent can be represented, we believe to have made advances with respect to what

we can conclude about that agent.

Belief reconstruction in cooperative dialogues [23] In [23], the authors deal with

the question of determining agents’ beliefs through a sequence of speech acts. The new

beliefs should depend on the old ones and the input received. Old beliefs should persist if

possible. The key point of the motivation is that an input should not always be accepted.

4In this respect, this work differs greatly from the approaches mentioned so far, including ours. Information

about a point in time may be contradictory and the preferred model tries to satisfy as many of the formulae

as possible taking their reliability into account. The others either do not allow contradictory information to

begin with or conclude that there is no explanation.
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In particular it should be rejected if the speaker is incompetent with respect to the content

of the utterance.

Having a setting of a human-machine dialogue in mind, the authors present a multi-modal

framework as well as functions and axioms for modelling notions of subject, scope and

competence. One such axiom expresses that if an agent is competent on the topic of a

formula ϕ, which does not contain modal operators, and it also believes that formula to

hold then ϕ does indeed hold. An axiom for preservation expresses that if the scope of a

speech act does not touch the topic of some formula then that formula remains true after

the speech act is carried out in case it was true before. This additional machinery is used

to put restrictions on models. Together with the laws governing the revision process, this

allows to calculate the beliefs after a speech act has been performed.

The paper has a traditional first person perspective of the agent — determining what it

should believe upon receiving some new information and progressing the beliefs given the

initial state. The assumed revision framework is more sophisticated than the one we use.

However, the paper does not deal with reasoning about the other agent retrospectively, what

prior beliefs it may have held. Competence etc. are fixed and given for all parties involved.

In analogy to the motivation of our work, it would be interesting to actually infer information

about the competence of an agent, static laws (beliefs that cannot be changed by revision),

former beliefs etc. given a dialogue and information about the evolution of the beliefs of

agents involved in it. Consequently, the title suggests a connection to our work that turns

out to be superficial.

Mutual enrichment through nested belief change [83] describes a (modal) frame-

work for representing nested beliefs of a set of agents as well as the dynamics of these beliefs.

The intention is to capture agents’ beliefs and their beliefs about other agents’ beliefs in a

dialogue setting. The framework also incorporates agents’ preferences about which source

(agent) is more reliable than another as well as the nested case, i.e., beliefs about other

agents’ preferences.

The basic performative (speech act) is tell which allows one agent to let another agent

know that it believes a propositional formula according to some source. Depending on

its preferences among sources, the receiver may now revise its beliefs or reject the input,

for example because it has contradicting information from more reliable sources. The two

performatives accept and deny further allow an agent to inform another agent that the content

of a speech act has been accepted or rejected. This can help the sender of a message to refine

its beliefs about the receiver’s beliefs and preferences among sources. In fact, in the setting

introduced, the receiver is forced to inform the sender whether the input has been accepted

or not.
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The authors now present a number of postulates that restrict the progression of (nested)

beliefs and preferences through a sequence of performatives. These state, for example, that

the beliefs of (and nested beliefs about) agents not involved in a performative do not change

or that the sender of a formula θ must revise its beliefs about the receiver believing ¬θ in

case the receiver accepted θ.

Like the framework introduced in [23], the one presented in [83] is more sophisticated than the

one we assume.5 Propositional formulae are labelled with a source. An agent’s preference

relation on sources allows it to reject inputs and recency is not the dominating criterion.

We can use a criterion like reliability only when considering a alternative belief revision

framework like the one illustrated in Section 4.6. Whereas our framework is inherently

restricted to the observer’s nested beliefs about the observed agent A, [83] handles the

(nested) beliefs of many agents simultaneously. However, the authors give no explicit method

for actually reasoning about other agents’ beliefs. It is not clear whether it is possible to

infer prior beliefs or preferences among sources when not given the initial situation. Also,

we do not assume that every performative (a revision input ϕ can be interpreted as a tell)

is acknowledged by accept or deny. In fact, whether a revision input is accepted or rejected

is one of the questions we want to answer. Of course, the explicit knowledge of whether

an input was in fact accepted or rejected makes things less ambiguous (if not easier). Note

that this information can be encoded in the observation. An accepted input can be made to

belong to the beliefs after revision, a rejected input to the non-beliefs.

Dynamic Epistemic Logic [93] The papers [23, 83] presented above and many other

publications utilise modal logics for representing and reasoning about agents’ beliefs. Of-

ten, the languages introduced allow to express the information contained in an observation.

Dynamic epistemic logic [93] is another example which also handles the dynamics of such

beliefs. Here, model checking is possible. That is, in case the initial state is given, it is

possible to test whether it satisfies a given formula by progressing the revision inputs and

checking whether the beliefs and non-beliefs calculated fit the ones expressed in the formula.

However, personal communication with Hans van Ditmarsch and Wiebe van der Hoek in-

dicates that generation of models is problematic. Further, if proof systems are given, they

allow us to check entailment but do not generate entailed formulae. Our approach can be

interpreted as doing just that. Given a formula (observation), we construct a model sat-

isfying that formula. Using this model, we can generate hypotheses as to what might and

might not be believed by the agent. Of course, not all formulae of dynamic epistemic logic

can be expressed as observations. In particular, we assume that all revision inputs, beliefs

and non-beliefs are objective formulae, i.e., they do not contain any modalities. But it seems

5More on disbeliefs can also be found, e.g., in [20, 72, 82].
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that, for a subclass of DEL-formulae and the revision operator corresponding to our assumed

belief revision framework, our methodology may in fact be used to construct a model for a

DEL-formula. Precise connections remain to be established.

5.4 Further related papers

In this section, we present some papers that are less closely related to our work. They

illustrate that similar ideas or methods appear in different settings.

Learning non-monotonic causal theories from narratives of actions [59] In [59],

the author investigates a method for learning the effects of actions from the observation

of a dynamic system. A narrative is the description of the initial situation together with

a sequence of actions that have been performed and a full description of the changes that

have occurred. Assuming a frame axiom, the fluents that have not changed can be inferred.

The task for the learner is now to produce from a set of narratives an action theory that

explains the changes recorded and that can be used for predicting the evolution of a system for

arbitrary action sequences. This is done using the paradigm of Inductive Logic Programming

[65]. The narratives are encoded as extended logic programs and the action effects will be

returned as rules of a particular structure. The author further describes issues related to

indirect effects of actions and concurrent actions.

This approach could be seen as an action analogon of our approach — given an observation,

identify the rules that govern the system. However, there are some differences. In our work

the immediate rules that govern the agent are fixed. The belief revision framework exactly

describes how revision inputs are dealt with. The actual effects of inputs on the belief set

are determined by the agent’s initial epistemic state. That is, we are not after the global

description of effects of “actions” but their effects with respect to some particular initial

state. As a consequence, observations with respect to different initial states are of no use

to us.6 We do not assume to be given a total description of the beliefs at every point and

in general we have no direct information about the initial state. However, we want to note

that our task does not trivialise if initial beliefs are provided. This would be the case if the

first element of the observation had the form (>, θ,D). In Section 2.8.2, we argued that

even if we are given a complete description of the agent’s beliefs at every point, we are not

guaranteed to identify its real initial state.

6A scenario where we know that a number of different agents has the same core belief we are after could

be an exception. We are then given observations with respect to different initial states and try to identify a

core belief that is acceptable for all of them.
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Regression with Respect to Sensing Actions and Partial States [92] Many for-

malisms for reasoning about action and change are focused on progressing a state description

through a sequence of known actions. One general problem where the inverse operation of

regression is applied is planning. Given an initial state s0 and a set of goal states, the task

is to come up with a sequence of actions which, started in s0, leads to one of the goal states.

Goals are often represented as a conjunction of literals and not arbitrary formulae. One pos-

sible approach is to identify immediate predecessor states of (goal) states using regression.

The two main alternatives are regression with respect to states, i.e., given a state and an

action find possible predecessor states, and regression with respect to formulae, i.e., given a

formula describing what holds in a state and an action find a formula describing what holds

in possible predecessor states. [92] presents a method for constructing conditional plans

including sensing actions. The approach works with partial state descriptions and uses the

sensing actions in order to identify the value of a fluent in case it is unknown but needed. The

agent thus has the capability of completing information about the current state whereas we

try to infer that information retrospectively. The connection of our work to planning is thus

marginal. We know the actions that have occurred as they are recorded in the observation.

However, what our approach does can be seen as a combination of progressing and regress-

ing actions through a sequence of states, completing the partial information provided by the

observation. It is not exclusively one or the other. This is because additional information

about one state can have an effect on both what could hold in earlier and later states.

A consistency-based approach for belief change [26] The approach to belief revision

described in [26] is interesting for our work in two respects. It allows for expressing that

the result of revision is not to entail a set of formulae analogous to the non-beliefs recorded

in an observation, and it is based on language extension. A belief change scenario is a

triple (K,R,C) where K is a set of formulae describing the agent’s current beliefs, R a set

of formulae that should be entailed by the result of revision, and C a set of formulae that

should not be entailed. The general idea is now to make the languages of K and R disjoint by

renaming the propositional variables in K obtaining a set K ′, taking the union of R and K ′

together with a maximal set of equivalences EQ such that the elements of C are not entailed.

The equivalences in EQ re-establish the connection between propositional variables and their

renamings. The instantiation of unknown subformulae by new variables uses a similar idea,

but there the equivalence is between a variable and a complex formula (Proposition 3.5).

Also, we do not make this equivalence explicit but reason without identifying the actual

formula by considering the core belief and the belief trace restricted to L(o).

The authors describe a class of operators based on this methodology. As there are generally

several maximal sets EQ, each yielding an extension, one may be interested in the beliefs in
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case a single extension is chosen or beliefs held in all extensions. The authors do not consider

the problem of determining predecessor belief sets, i.e., given R, C, and the resulting set

of beliefs K∗ what could K have looked like. This would be the question analogous to the

motivation of our work.



Chapter 6

Conclusion and Future Work

In contrast to the problem of designing an agent in the sense of specifying how it should

change its beliefs when receiving new information, this thesis investigated a method for

modelling an observed agent A in order to reason about its actual beliefs. That is, rather

than treating the agent in a first person perspective we adopt a third person one. Our

conclusions about A are based on an observation o about its belief revision behaviour. o

contains information about which belief revision inputs A received over a certain length of

time and a partial description of what it believed and did not believe upon receiving them.

Aucher [3] would classify our work as imperfect external modelling approach. The observer

(and modeller) is not involved in the situation1 and the knowledge about A is not complete.

We are interested in drawing conclusions about A’s unrecorded beliefs including possible

future beliefs as well as which revision inputs it may or may not accept. We assumed the

observed agent to employ a particular belief revision framework for iterated non-prioritised

revision. It is a very simplistic framework in the sense that it only allows for representing

propositional revision inputs and beliefs. Preferences, beliefs about other agents’ beliefs,

awareness of the observer etc. cannot be captured. These are assumed to be without impact

on the propositional beliefs and on the result of revising them. In other words, we assume

that A’s true epistemic state and revision framework can be projected to the simplified one

we are working with and that results we obtain carry over.

One important component of A’s epistemic state is its core belief N which is a formula

representing a belief A will not give up no matter what information it will ever receive.

In particular, revision inputs contradicting the core belief are rejected by the agent. When

1We only consider A’s propositional beliefs. It may have beliefs about the observer’s beliefs but these are

simply disregarded. The observer being the source of the revision inputs does not change the setting, as the

same inputs can be seen as coming from some arbitrary source. A’s assumed belief revision framework does

not distinguish different sources. So the modelling perspective is indeed external.

121
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considering only the belief set, this framework allows for reinterpreting a sequence of revisions

as a single revision in the agent’s initial epistemic state — provided the core belief is known.

This property was used to translate the observation into conditional beliefs in the agent’s

initial epistemic state. These are a partial description of the rational consequence relation

that the epistemic state of an agent describes. We then used existing results to complete this

relation which could immediately be used for completing the agent’s initial epistemic state.

As A’s core belief is generally unknown to the observer, one of the problems to be solved

was identifying acceptable ones.

We call an epistemic state an explanation for o if it gives rise to the beliefs and non-beliefs

recorded in o when revised using the given inputs. In general, o will have many different

explanations. We singled out a particular one which, with respect to certain criteria, min-

imises the beliefs we assign to the observed agent. One of the main results presented was

the algorithm that actually calculates this rational explanation by iteratively testing and re-

fining potential core beliefs. We proved that there is a unique weakest acceptable core belief

justifying conclusions about which revision inputs must be rejected by the agent. We also

showed that the beliefs and non-beliefs calculated from this explanation need not coincide

with the agent’s real ones and provided a tool for improving predictions. The key idea was

to modify the observation o according to some conjecture such that an explanation would

be a counterexample.

A number of assumptions were imposed in order to obtain these results. For the central ones

we assumed that the observer has perfect knowledge of the revision inputs received by the

agent, i.e, that every revision input received during the time of observation is contained in

o and that the logical content of every input is known. This does not mean that the inputs

are assumed to correspond to what is true in the real world — otherwise the union of the

recorded inputs would have to be consistent. Consequently, A’s beliefs at each point of time

need not be complete nor correct with respect to the real world. However, the observation

contains correct (partial) information about A’s beliefs.

We went on to consider observations with incomplete or missing revision inputs and even

more partial descriptions of beliefs and non-beliefs. Most importantly, this amounts to weak-

ening the assumption of having perfect knowledge about the revision inputs received by A.

Here the main tool was to allow formulae in the observation to contain unknown subformulae.

They allow the representation of unknown logical content and hence also the formalisation

of less specific information about the observed agent. The unknown subformulae were dealt

with by instantiating them with new variables. With this instantiation we obtained an ob-

servation in the original sense. It could thus be dealt with using the methodology introduced

before.
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Our work is focused on reasoning about one observed agent. We briefly illustrated the case of

reasoning about several agents. We also sketched approaches to other variations of the main

question, e.g., self-observations which can be used for reasoning about what other agents

can conclude about oneself, several observations with respect to the same initial state which

could be applied for reverse engineering software agents or accessing expert knowledge, as

well as reasoning about agents using variants of the assumed belief revision framework.

This thesis also contains results concerning the computational complexity of the general

problem as well as the main algorithm given. There are a number of open questions and

several directions for extending this work.

We assumed one particular belief revision framework. However, the literature offers a wide

variety of revision operators. The definition of an observation is very general and it would

be interesting whether similar results can be obtained when assuming the observed agent to

employ a different belief revision framework. In case this can be done, is there a framework

which allows us to draw good conclusions no matter which revision framework A is really

using? Is it possible to conclude from o which framework the agent is actually using? To

start with, it would be interesting to see what can be said when generating observations

using different frameworks and then reasoning about the agent using the methodology we

presented. A first step in this direction would be an implementation of the methods pre-

sented. Conceptually, this is not a difficult task as the ingredients of the methods presented

are simple formula manipulations and satisfiability tests. The pseudo-code for many of the

algorithms verbally described in the thesis is given in the appendix.

We conjecture that other belief revision frameworks based on total preorders on worlds can

be dealt with using a methodology similar to the one we presented. As mentioned before, one

essential step is translating a sequence of revisions (each leading to a new epistemic state)

into a set of revisions with respect to the same state. If this can be done, the observation can

be seen as containing information that talks about a single state. A second essential step is

the interpretation of the revision framework as a rational consequence relation. As long as

the framework selects exactly the minimal ϕ-worlds for constructing the beliefs after revision

by ϕ, this should be possible. Acceptance or rejection of an antecedent of a conditional is

not captured in the rational consequence relation. Hence, we had to present a method for

manipulating the conditionals by selecting a new core belief. We believe this to be the most

problematic part when trying to transfer the results to other frameworks. It is not obvious

that a systematic way exists for refining the conditionals until they correctly capture the

observation. For frameworks not based on total preorders on worlds investigations will

probably have to start from scratch, in which case we hope that this work at least provides

some hints for possible directions and interesting questions. We believe that research with
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our focus in a modal logic setting might be interesting. Multi-agent higher-order beliefs,

which are easily expressed there, could bring this work closer to actual applications.

So far, we have discussed hypothetical reasoning — our proposed method for verifying conclu-

sions drawn about A— only with respect to elementary conclusions, e.g. belief or non-belief

in a single formula. However, the formal results do not prevent us from making more than

one change in the original observation. Consider o = 〈(p,>, ∅), (q,>, ∅), (p ∨ q, p ∨ q, ∅)〉 .
The rational explanation [(),>] for o allows us to conclude that the agent believed p before

receiving p ∨ q. The belief in q at the same point can also be concluded. None of the two

conclusions is safe as the agent’s core belief may in fact be ¬p or ¬q. However, it is safe to

conclude that the agent must believe p or q at that point. It is impossible that A believes

neither. This can be verified by considering o′ = 〈(p,>, ∅), (q,>, ∅), (p∨q, p∨q, {p, q})〉 which

does not have an explanation. We conjecture that generally there will be few non-trivial el-

ementary conclusions that are safe. A more thorough investigation of that question would

be interesting, in particular with respect to identifying structured ways for coming up with

useful complex conclusions.

When dealing with unknown subformulae and intermediate inputs, we extended the language

L of the observation in order to find an explanation. We gave a necessary and sufficient

condition for an explanation restricted to L to exist. However, we could not provide a way

to construct one or even to decide if there is one. We argued that it is not necessary to look for

a concrete instantiation for the unknown subformulae. However, it may still be an interesting

problem in several ways. Is it possible to find an instantiation which belongs to L such that

o can be explained if we know there exists one — other than by testing all possible formulae

from L? In abduction, there is usually a limited set of possible explanations (abducibles)

which are generally literals. In our case the instantiations can be arbitrary formulae. Can

we objectively say that one is better than another? What if we have a set of candidate

instantiations; which should we choose? Of course, these questions also involve finding,

justifying and investigating reasonable preference relations.

A big field for possible future investigations is handling incorrect observations. With respect

to beliefs and non-beliefs we already sketched one solution when being provided with relia-

bility information. We believe revision inputs to be a trickier matter. Note that we assumed

a static world and that hence correct revision inputs would have to be jointly consistent.

This is not the incorrectness we are talking about here. We did not assume that the revision

inputs correctly describe the world but that they are the ones indeed received by A. But

what if the observation is incorrect in this sense? How to reason about A if we are not

sure which revision inputs it really received? Here again, unknown subformulae could be

a useful tool, but it is also necessary to investigate general questions about which input(s)
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to assume to be incorrect, how to compare explanations obtained from observations with

different incorrect inputs, etc.

We assumed that the observations are used in a passive way. A next step would be to

actually develop strategies for eliciting information about the observed agent, to extend the

methodology to allow goal directed observation. Which revision inputs should A be provided

with in order to gain as much information as possible? If we are allowed to ask questions

about beliefs and non-beliefs what should we ask? Which cases should an expert be provided

with in order to extract as much knowledge as possible?

In many settings, several agents will cooperate to achieve a common goal. So it makes sense

to consider the case where a group of agents observes an agent A and tries to form a common

picture of it. When intending to use the methodology introduced in this thesis, the main

problem that needs to be solved is how to integrate information from several observations.

We showed that several observations with respect to the same initial state can be dealt with,

but in the scenario sketched here, we have further restrictions. All the observations have to

be synchronised. The time periods of the observations may overlap so that in fact they are

not with respect to the same initial state to begin with. Agents may have observed different

inputs, beliefs, non-beliefs for the same point in time — the corresponding formulae may

even be contradicting. With respect to missing inputs, this approach could even be helpful.

One agent could have recorded inputs and beliefs another agent missed.

In Section 4.1, we briefly sketched that it may be interesting to reason about the dynamics

of a dialogue from observations of the agents involved. This will also be important when

actually using the conclusions drawn from observations for planning responses and coming

up with strategies for the interaction with other agents.

As a last point, we want to recall an open question given in Section 4.2. We showed that

being able to deal with many observations with respect to the same initial epistemic state,

we can represent any conditional information about a rational consequence relation as a set

of observations. The exact relationship of the rational closure of the conditionals and the

rational explanation for the set of observations still needs to be determined. Note that in

the rational explanation construction the conditionals may be modified by changing the core

belief. The belief revision framework provides information about how the conditionals came

into being, so that they can be modified in a structured way. It would be interesting to see

if something similar can be done in other settings where conditional information cannot be

completed in a satisfactory way.
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New Zealand and Université Paul Sabatier, Toulouse, France, 2008, submitted.

[4] S. Benferhat, D. Dubois, and H. Prade. Some syntactic approaches to the handling of

inconsistent knowledge bases: A comparative study part 1: The flat case. Studia Logica,

58(1):17–45, 1997.

[5] S. Benferhat, D. Dubois, and H. Prade. Some syntactic approaches to the handling

of inconsistent knowledge bases: a comparative study part 2: the prioritized case. In

E. Or lowska, editor, Logic at Work: Essays Dedicated to the Memory of Helen Rasiowa,

volume 24, pages 437–511. Physica-Verlag, 1999.

[6] S. Berger, D. Lehmann, and K. Schlechta. Preferred history semantics for iterated

updates. Journal of Logic and Computation, 9(6):817–833, 1999.

[7] R. Booth. The lexicographic closure as a revision process. Journal of Applied Non-

Classical Logics, 11(1-2):35–58, 2001.

[8] R. Booth. On the logic of iterated non-prioritised revision. In Conditionals, Information

and Inference – Selected papers from the Workshop on Conditionals, Information and

Inference, 2002, pages 86–107. Springer’s LNAI 3301, 2005.

[9] R. Booth and T. Meyer. Admissible and restrained revision. Journal of Artificial

Intelligence Research, 26:127–151, 2006.

[10] R. Booth, T. Meyer, and K. Wong. A bad day surfing is better than a good day working:

How to revise a total preorder. In Proceedings of KR’06, pages 230–238, 2006.

127



128 BIBLIOGRAPHY

[11] R. Booth and A. Nittka. Beyond the rational explanation. In Belief Change in Rational

Agents: Perspectives from Artificial Intelligence, Philosophy, and Economics, number

05321 in Dagstuhl Seminar Proceedings, 2005.

[12] R. Booth and A. Nittka. Reconstructing an agent’s epistemic state from observations.

In Proceedings of IJCAI’05, pages 394–399, 2005.

[13] R. Booth and A. Nittka. Reconstructing an agent’s epistemic state from observations

about its beliefs and non-beliefs. Journal of Logic and Computation, 2008.

[14] R. Booth and J. B. Paris. A note on the rational closure of knowledge bases with

both positive and negative knowledge. Journal of Logic, Language and Information,

7(2):165–190, 1998.

[15] C. Boutilier. Revision sequences and nested conditionals. In Proceedings of IJCAI’93,

pages 519–525, 1993.

[16] C. Boutilier and V. Becher. Abduction as belief revision. Artificial Intelligence, 77(1):43–

94, 1995.

[17] Craig Boutilier. Iterated revision and minimal change of conditional beliefs. Journal of

Philosophical Logic, 25(3):263–305, 1996.

[18] R. I. Brafman and M. Tennenholtz. Modeling agents as qualitative decision makers.

Artificial Intelligence, 94(1-2):217–268, 1997.

[19] G. Brewka. Preferred subtheories: An extended logical framework for default reasoning.

In Proceedings of IJCAI’89, pages 1043–1048, 1989.

[20] S. Chopra, J. Heidema, and T. Meyer. Some logics of belief and disbelief. In Proceedings

of NMR’02, pages 25–32, 2002.

[21] A. Darwiche and J. Pearl. On the logic of iterated belief revision. Artificial Intelligence,

89:1–29, 1997.

[22] F. Dupin de Saint-Cyr and J. Lang. Belief extrapolation (or how to reason about

observations and unpredicted change). In Proceedings of KR’02, pages 497–508, 2002.

[23] L. F. del Cerro, A. Herzig, D. Longin, and O. Rifi. Belief reconstruction in cooperative

dialogues. In Proceedings of AIMSA’98, pages 254–266. Springer’s LNCS 1480, 1998.

[24] J. P. Delgrande, D. Dubois, and J. Lang. Iterated revision as prioritized merging. In

Proceedings of KR’06, pages 210–220, 2006.



BIBLIOGRAPHY 129

[25] J. P. Delgrande, A. C. Nayak, and M. Pagnucco. Gricean belief change. Studia Logica,

79(1):97–113, 2005.

[26] J. P. Delgrande and T. Schaub. A consistency-based approach for belief change. Arti-

ficial Intelligence, 151(1-2):1–41, 2003.

[27] D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. Gabbay, C. J. Hogger,

and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic

Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages

439–513. Oxford University Press, Oxford, 1994.

[28] M. Freund. On the revision of preferences and rational inference processes. Artificial

Intelligence, 152(1):105–137, 2004.

[29] N. Friedman and J. Y. Halpern. Modeling belief in dynamic systems, part I: Founda-

tions. Artificial Intelligence, 95(2):257–316, 1997.

[30] N. Friedman and J. Y. Halpern. Modeling belief in dynamic systems, part II: Revision

and update. Journal of Artificial Intelligence Research, 10:117–167, 1999.

[31] P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT

Press, 1988.

[32] M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the Theory

of NP-Completeness. Freeman, San Francisco, 1979.

[33] M. Gelfond and V. Lifschitz. Representing action and change by logic programs. Journal

of Logic Programming, 17(2/3&4):301–321, 1993.

[34] M. L. Ginsberg. Counterfactuals. Artificial Intelligence, 30(1):35–79, 1986.

[35] M. Goldszmidt and J. Pearl. On the relation between rational closure and system Z. In

Proceedings of NMR’90, pages 130–140, 1990.

[36] A. Grove. Two modelings for theory change. Journal of Philosophical Logic, 17:157–170,

1988.

[37] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach -

part II: Explanations. In Proceedings of IJCAI’01, pages 27–34, 2001.

[38] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach:

Part 1: Causes. In Proceedings of UAI’01, pages 194–202, 2001.

[39] S. O. Hansson. A survey of non-prioiritized belief revision. Erkenntnis, 50:413–427,

1999.



130 BIBLIOGRAPHY
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Appendix A

Proofs

A.1 Proofs from Chapter 2

Proposition 2.2. f (βk, . . . , β1) ≡ ⊥ if and only if β1 ≡ ⊥.

Proof. Induction over the length of the sequence. f (β1) = β1 (Definition 2.1) is inconsistent

iff β1 is inconsistent. Assume f (βi, . . . , β1) ≡ ⊥. This is the case iff β1 ≡ ⊥ for any sequence

(βi, . . . , β1). By Proposition 2.3 f (βi+1, . . . , β1) = f (βi+1, f (βi, . . . , β1)). If β1 ≡ ⊥ then by

our assumption f (βi, . . . , β1) ≡ ⊥ and hence f (βi+1, . . . , β1) = f (βi, . . . , β1) is inconsistent

(by Definition 2.1). If β1 is consistent then so is f (βi, . . . , β1) using the assumption. If

βi+1 ∧ f (βi, . . . , β1) 6` ⊥ then by Definition 2.1 f (βi+1, . . . , β1) = βi+1 ∧ f (βi, . . . , β1) is

consistent, otherwise f (βi+1, . . . , β1) = f (βi, . . . , β1) is consistent, as f (βi, . . . , β1) is.

Proposition 2.3. For all formulae β, βi and all sequences σ and σ′:

(i) f (β · σ) = f (β, f (σ)), implying

(ii) f (βk, . . . , β1) = f (βk, f (βk−1, f (. . . , f (β1) . . . ))) and

(iii) f (σ · σ′) = f (σ · f (σ′)).

Proof. First note that f (f (σ)) = f (σ), as f (σ) is a single formula and thus falls under the

first case in Definition 2.1.

By Definition 2.1, f (β · σ) is β ∧ f (σ) if β ∧ f (σ) 6` ⊥, f (σ) otherwise. f (β, f (σ)) is

β ∧ f (f (σ)) = β ∧ f (σ) if β ∧ f (σ) 6` ⊥, f (f (σ)) = f (σ) otherwise. So the two are obviously

identical. (ii) and (iii) are proved by iteratively applying (i).

Proposition 2.4. If β ≡ β′ then f (α, β) ≡ f (α, β′) and f (β, α) ≡ f (β′, α).

Proof. By Proposition 2.3 f (α, β) = f (α, f (β)). f (β) = β ≡ β′ = f (β′) — in the second

case, we have f (λ, α) = f (λ, f (α)) for any λ — and obviously α ∧ β 6` ⊥ iff α ∧ β′ 6` ⊥.
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Proposition 2.6. f (βk, . . . , β1) ` βi or f (βk, . . . , β1) ` ¬βi for all 1 ≤ i ≤ k.

Proof. For inconsistent β1 this is immediate, as then by Proposition 2.2 f (βk, . . . , β1) ≡ ⊥ , so

consider consistent β1. f (βk, . . . , β1) = f ((βk, . . . , βi+1) · f (βi · f (βi−1, . . . , β1))) (by Propo-

sition 2.3). If βi ∧ f (βi−1, . . . , β1) 6` ⊥ then f (βi · f (βi−1, . . . , β1)) will be this formula

which clearly entails βi and hence f (βk, . . . , β1) ` βi. If βi ∧ f (βi−1, . . . , β1) ` ⊥ then

f (βi−1, . . . , β1) ` ¬βi and hence f (βk, . . . , β1) ` ¬βi.

Proposition 2.7. For consistent α: If α ` β then f (α, β) ≡ f (α).

Proof. If α is consistent then so is β. Hence f (α, β) = α ∧ β and as α ` β we know

α ∧ β ≡ α = f (α).

Proposition 2.8. For all sequences of formulae σ, ρ1 and ρ2 (ρ2 being non-empty) we have

f (ρ1 · > · ρ2 · σ) ≡ f (ρ1 · ρ2 · σ) and f (ρ1 · ⊥ · ρ2 · σ) ≡ f (ρ1 · ρ2 · σ).

Proof.

f (ρ1 · > · ρ2 · σ) ≡ f (ρ1 · f (> · f (ρ2 · σ))) Proposition 2.3

≡ f (ρ1 · f (ρ2 · σ)) ∀ψ : ψ ∧ > ≡ ψ

≡ f (ρ1 · ρ2 · σ) Proposition 2.3

f (ρ1 · ⊥ · ρ2 · σ) ≡ f (ρ1 · f (⊥ · f (ρ2 · σ))) Proposition 2.3

≡ f (ρ1 · f (ρ2 · σ)) ∀ψ : ψ ∧ ⊥ ` ⊥

≡ f (ρ1 · ρ2 · σ) Proposition 2.3

Proposition 2.9. If α ` ¬β then f (ρ · β · σ · α) ≡ f (ρ · σ · α) for all sequences ρ, σ.

Proof. f (ρ · β · σ · α) = f (ρ · f (β · σ · α)) and f (ρ · σ · α) = f (ρ · f (σ · α)) (Proposition 2.3),

so if we can show f (β · σ · α) = f (σ · α) we are done. By Definition 2.1 and α ` ¬β we know

f (σ · α) ` ¬β, so f (β · σ · α) = f (β · f (σ · α)) = f (σ · α).

Proposition 2.10. If f (σ1 · σ2) 6` ¬α then f (σ1 · α · σ2) ≡ f (σ1 · σ2) ∧ α.

Proof. By Proposition 2.3 we know that f (σ1 · α · σ2) = f (σ1 · f (α, f (σ2))) and that

f (σ1 · σ2) = f (σ1 · f (σ2)) . Hence both collect the same formulae from σ2. It follows from

f (σ1 · σ2) 6` ¬α that f (σ2) 6` ¬α and hence f (α, f (σ2)) = α ∧ f (σ2).
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So, if we can show that f (σ1 · α ∧ f (σ2)) and f (σ1 · f (σ2)) also collect the same formulae

from σ1, the proposition immediately follows. This is because the order of the elements in a

conjunction does not matter.

The argument that the same formulae from σ1 are chosen is an inductive one. Assume

both have so far collected the same elements from some suffix of σ1, their conjunction being

denoted by λ. If no element has been accepted so far then λ ≡ >. The next formula

to be considered is β. Assume f (σ1 · f (σ2)) rejects β, i.e., f (σ2) ∧ λ ` ¬β. This implies

α ∧ f (σ2) ∧ λ ` ¬β and hence f (σ1 · α ∧ f (σ2)) also rejects β. However, if f (σ1 · f (σ2))

accepts β, from f (σ1 · σ2) 6` ¬α we know f (σ2) ∧ λ ∧ β 6` ¬α and hence α ∧ f (σ2) ∧ λ 6` ¬β.

And so, f (σ1 · α ∧ f (σ2)) also accepts β.

Proposition 2.12. If f (σ · α) 6` ¬β then f (σ · α ∧ β) ≡ f (σ · α) ∧ β

Proof. As f (σ · α) 6` ¬β we know α 6` ¬β and hence f (α, β) = α∧β. Proposition 2.10 yields

that f (σ · (α, β)) ≡ f (σ · α) ∧ β. But f (σ · (α, β)) = f (σ · f (α, β)) = f (σ · α ∧ β).

Proposition 2.13. (i) If f (σ) ` α then f (α→ β · σ) ≡ f (β · σ)

(ii) If f (σ) ` ¬α then f (α→ β · σ) ≡ f (σ)

Proof. f (β · σ) = f (β · f (σ)). If f (σ) ` ¬β then f (σ) ` α ∧ ¬β, i.e., f (σ) ` ¬(α → β).

Hence f (β · σ) = f (σ) = f (α→ β · σ).

If f (σ) 6` ¬β then f (σ) 6` ¬(α → β). Consequently, f (β · σ) = β ∧ f (σ) and

f (α→ β · σ) = (α→ β)∧f (σ). As f (σ) ` α this is equivalent to (α→ β)∧f (σ)∧β ≡ f (σ)∧β
which proves (i).

If f (σ) ` ¬α then f (σ) 6` ¬(α→ β) and by Proposition 2.10 f (α→ β · σ) = f (σ)∧ (α→ β),

but this is equivalent to f (σ) as the implication is already entailed.

Proposition 2.15. Either f (σ · ρ · α) ` ¬f (σ · α) or f (σ · ρ · α) ` f (σ · α)

Proof. f (σ · ρ · α) ≡ f (σ · α · ρ · α) = f (σ · α · f (ρ · α)). The first equivalence is due to

Proposition 2.10. α will be entailed, so adding it somewhere in the sequence will have

no impact. The second is a consequence of Proposition 2.3. Now, either f (σ · α) ∧ f (ρ · α)

is consistent or it inconsistent. In the first case Proposition 2.10 tells us that

f (σ · α · f (ρ · α)) ≡ f (σ · α) ∧ f (ρ · α) ` f (σ · α), while in the second case we get

f (σ · α · f (ρ · α)) ` f (ρ · α) ` ¬f (σ · α).

Proposition 2.20. Bel([(ϕ1, . . . , ϕn),N]) ` ϕi or Bel([(ϕ1, . . . , ϕn),N]) ` ¬ϕi for all

1 ≤ i ≤ n .
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Proof. As Bel([(ϕ1, . . . , ϕn),N]) = Cn(f (ϕ1, . . . , ϕn,N)) this follows immediately from Prop-

osition 2.6.

Proposition 2.22. If Bel([ρ,N]) ` ϕ then Bel([ρ,N] ∗ ϕ) = Bel([ρ,N]).

Proof. This is obvious for inconsistent N, as then in both cases the belief set is inconsistent,

so consider consistent N. It suffices to show that f (ρ · (ϕ,N)) ≡ f (ρ · N). Bel([ρ,N]) ` ϕ
yields that f (ρ · N) ` ϕ. As N 6` ⊥, we know that f (ρ · N) 6` ¬ϕ. By Proposition 2.10

f (ρ · (ϕ,N)) ≡ f (ρ · N) ∧ ϕ ≡ f (ρ · N) (as the last formula already entails ϕ).

Proposition 2.24. Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕi) = Bel([ρ,N] ∗ f (ϕ1, . . . , ϕi,N))

Proof. Obvious for inconsistent N as then in both cases the beliefs are inconsistent. So

assume N 6` ⊥, in which case

Bel([ρ,N] ∗ ϕ1 ∗ · · · ∗ ϕi) = Bel([ρ · (ϕ1, . . . , ϕi),N]) Definition 2.16

= Cn(f (ρ · (ϕ1, . . . , ϕi,N))) Definition 2.17

= Cn(f (ρ · f (ϕ1, . . . , ϕi,N))) Proposition 2.3

= Cn(f (ρ · f (ϕ1, . . . , ϕi,N) · N)) Proposition 2.7

= Bel([ρ · f (ϕ1, . . . , ϕi,N) ,N]) Definition 2.17

= Bel([ρ,N] ∗ f (ϕ1, . . . , ϕi,N)) Definition 2.16.

Proposition 2.26. If N 6` (ϕ2 → ¬ϕ1) then Bel([ρ,N] ∗ ϕ1 ∗ ϕ2) ` ϕ1

Proof. Bel([ρ,N] ∗ ϕ1 ∗ ϕ2) = Cn(f (ρ · (ϕ1, ϕ2,N))). f (ρ · (ϕ1, ϕ2,N)) = f (ρ · f (ϕ1, ϕ2,N)).

Now, N 6` (ϕ2 → ¬ϕ1) so N 6` ¬ϕ2 and N ∧ ϕ2 6` ¬ϕ1. Hence f (ϕ1, ϕ2,N) = ϕ1 ∧ ϕ2 ∧ N
which is entailed by f (ρ · f (ϕ1, ϕ2,N)) by definition.

Proposition 2.27. For any epistemic state [ρ,N], there exists an epistemic state [σ,N], such

that σ is a logical chain and for all ϕ:

Bel([ρ,N] ∗ ϕ) = Bel([σ,N] ∗ ϕ)

Proof. Proposition 2.41 yields that [ρ,N] defines a rational consequence relation⇒[ρ,N]. The-

orem 1 in [28] tells us that for every rational consequence relation ⇒ there is a logical chain

that induces exactly the same relation. So we know that there is a logical chain σ for with

⇒[ρ,N]=⇒σ.
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⇒σ is defined by λ ⇒σ µ iff there is an element β in σ, such that β ∧ λ is consistent, but

β ∧ λ ∧ ¬µ is inconsistent (and hence β ∧ λ ` µ). It is easy to show that ⇒[σ,N]=⇒[ρ,N], i.e.,

using the logical chain instead of ρ in the epistemic state yields the same rational consequence

relation. This immediately yields Bel([ρ,N] ∗ ϕ) = Bel([σ,N] ∗ ϕ) (Definition 2.40).

If N ` ¬ϕ, then ϕ⇒[σ,N] µ and ϕ⇒[ρ,N] µ for all µ. So let N ∧ ϕ be consistent.

If ϕ ⇒[ρ,N] µ then N ∧ ϕ ⇒[ρ,N] µ (as f (ρ · (ϕ,N)) ≡ f (ρ · (N ∧ ϕ,N)) which means it does

not matter whether the epistemic state is revised by ϕ or by N ∧ ϕ). ⇒[ρ,N]=⇒σ implies

N ∧ ϕ ⇒σ µ and hence there is a β in σ such that β ∧ N ∧ ϕ is consistent and entails µ.

This means f (σ · (N ∧ ϕ,N)) ` µ (β will definitely be selected by f and all other elements

are either inconsistent with N ∧ ϕ or entailed by β as σ is a logical chain). But this means

N ∧ ϕ⇒[σ,N] µ which implies ϕ⇒[σ,N] µ (f (σ · (N ∧ ϕ,N)) ≡ f (σ · (ϕ,N)) same argument as

above).

Now, let ϕ ⇒[σ,N] µ. We know f (σ · (ϕ,N)) ≡ f (σ · (N ∧ ϕ,N)) ≡ f (σ · N ∧ ϕ). As σ is a

logical chain this is equivalent to β ∧ N ∧ ϕ where β is the logically strongest element of σ

consistent with N∧ϕ. From the conditional belief we now know that β∧N∧ϕ ` µ and hence

N ∧ ϕ ⇒σ µ which implies that N ∧ ϕ ⇒[ρ,N] µ. And as f (ρ · (ϕ,N)) ≡ f (ρ · (N ∧ ϕ,N)) we

get ϕ⇒[ρ,N] µ.

Proposition 2.31. The decision problem of whether [ρ,N] explains an observation o is ∆P
2 -

complete.

Proof. Given die observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉, with a polynomial number

of NP -oracle calls (satisfiability tests) we can calculate all f (ρ · (ϕ1, . . . , ϕi,N)). As f returns

the conjunction of a subset formulae from the argument sequence, the result is bounded by

the size of the input of the decision problem. Then a polynomial number of tests whether

the θi and δ are entailed suffice. Consequently the problem is in ∆P
2 .

Nebel shows in [70, 71] that the entailment problem for linear base revision whether

(α1, . . . , αm) ∗L α ` β is ∆P
2 -complete. The hardness-part of that proof uses a reduction

such that α is guaranteed to be consistent. This allows us to extend the reduction given there

(polynomially) to the question of whether [(α1, . . . , αm),>] is an explanation for 〈(α, β, ∅)〉.
As in this case (α1, . . . , αm) ∗L α ≡ f (α1, . . . , αm, α) ≡ f (α1, . . . , αm, α,>) we immediately

get that (α1, . . . , αm) ∗L α ` β if and only if [(α1, . . . , αm),>] explains 〈(α, β, ∅)〉. Conse-

quently, checking whether [ρ,N] is an explanation for o is also ∆P
2 -complete.

Proposition 2.33. If [ρ,N] is an explanation for o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 then

[ρ · (ϕ1, . . . , ϕj−1),N] explains o′ = 〈(ϕj , θj , Dj), . . . , (ϕj+k, θj+k, Dj+k)〉, 1 ≤ j + k ≤ n.
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Proof. Bel([ρ · (ϕ1, . . . , ϕj−1),N]∗ϕj∗. . .∗ϕj+k′) = Bel([ρ,N]∗ϕ1∗. . .∗ϕj+k′), i.e. the beliefs

after having received the input ϕj+k′ for any 1 ≤ k′ ≤ k are the same. So the proposition

follows immediately from Definition 2.29.

Proposition 2.35. If N1 and N2 are o-acceptable then so is N1 ∨ N2.

Proof. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation and N1 and N2 two o-ac-

ceptable cores, i.e., there are ρ1 = (β11, . . . , β1m1) and ρ2 = (β21, . . . , β2m2) such that [ρ1,N1]

and [ρ2,N2] explain o. It suffices to show that there is a ρ such that [ρ,N1 ∨ N2] explains o.

We will show that ρ = (¬N1 → β21, . . . ,¬N1 → β2m2 ,N1 → β11, . . . ,N1 → β1m1 ,N1) is such a

sequence. In fact, we will show that Bel([ρ,N1 ∨ N2]∗ϕ1∗. . .∗ϕi) = Bel([ρ1,N1]∗ϕ1∗. . .∗ϕi)
or Bel([ρ,N1 ∨ N2] ∗ ϕ1 ∗ . . . ∗ ϕi) = Bel([ρ2,N2] ∗ ϕ1 ∗ . . . ∗ ϕi) for all 1 ≤ i ≤ n. Then

the proposition immediately follows as [ρ1,N1] and [ρ2,N2] are explanations for o. Fixing

an i we will now show that either f (ρ · (ϕ1, . . . , ϕi,N1 ∨ N2)) ≡ f (ρ1 · (ϕ1, . . . , ϕi,N1)) or

f (ρ · (ϕ1, . . . , ϕi,N1 ∨ N2)) ≡ f (ρ2 · (ϕ1, . . . , ϕi,N2)).

In order to do so, we use the claim that f (N1, ϕ1, . . . , ϕi,N1 ∨ N2) ≡ f (ϕ1, . . . , ϕi,N1) or

both f (N1, ϕ1, . . . , ϕi,N1 ∨ N2) ` ¬N1 and f (N1, ϕ1, . . . , ϕi,N1 ∨ N2) ≡ f (ϕ1, . . . , ϕi,N2).

The N1 in the very front is the last element of ρ. So before considering the implications

which are constructed from the formulae in ρ1 and ρ2 we have collected a formula which is

equivalent to one that has been collected in the original cases.

Proposition 2.13 then tells us how to treat the implications in ρ with respect to the original

formulae in ρ1 and ρ2. In the first case where N1 is entailed all N1 → β1j are treated exactly

like the β1j from ρ1 and the ¬N1 → β2k from ρ2 can be ignored. As a consequence, we get

the same beliefs as for the epistemic state [ρ1,N1]. In the second case ¬N1 is entailed and

hence all N1 → β1j from ρ1 can be ignored and all ¬N1 → β2k are treated exactly like the

β2k from ρ2. Consequently, we get the same beliefs as for the epistemic state [ρ2,N2].

First assume f (N1, ϕ1, . . . , ϕi,N1 ∨ N2) ` N1 which entails f (ϕ1, . . . , ϕi,N1 ∨ N2) 6` ¬N1. By

Proposition 2.10 f (N1, ϕ1, . . . , ϕi,N1 ∨ N2) ≡ f (ϕ1, . . . , ϕi,N1,N1 ∨ N2) which is equivalent

to f (ϕ1, . . . , ϕi, f (N1,N1 ∨ N2)) and as N1 ` N1 ∨ N2 we can apply Proposition 2.7 to show

that this is equivalent to f (ϕ1, . . . , ϕi,N1) as claimed.

Now assume that f (N1, ϕ1, . . . , ϕi,N1 ∨ N2) 6` N1. Hence, f (N1, ϕ1, . . . , ϕi,N1 ∨ N2) ` ¬N1

and f (N1, ϕ1, . . . , ϕi,N1 ∨ N2) ≡ f (ϕ1, . . . , ϕi,N1 ∨ N2). If we are able to show that

f (ϕ1, . . . , ϕi,N1 ∨ N2) and f (ϕ1, . . . , ϕi,N2) collect the same elements from (ϕ1, . . . , ϕi) we

are done (let λ denote the conjunction of elements collected from that sequence, then

f (ϕ1, . . . , ϕi,N2) = λ∧N2 and f (ϕ1, . . . , ϕi,N1 ∨ N2) = λ∧ (N1∨N2) but as this entails ¬N1

it is equivalent to λ ∧ N2).
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To see that the two indeed collect the same elements from (ϕ1, . . . , ϕi), assume they have

collected the same elements from (ϕj+1, . . . , ϕi), their conjunction being denoted by λj+1.

Now they are considering ϕj . If f (ϕ1, . . . , ϕi,N2) accepts ϕj , i.e., λj+1∧N2∧ϕj is consistent,

then λj+1 ∧ (N1 ∨N2)∧ϕj is consistent and hence f (ϕ1, . . . , ϕi,N1 ∨ N2) accepts ϕj as well.

If f (ϕ1, . . . , ϕi,N2) rejects ϕj then λj+1∧N2 ` ¬ϕj so λj+1∧ϕj ` ¬N2 and as a consequence

λj+1 ∧ ϕj ∧ (N1 ∨ N2) ` N1. Hence, f (ϕ1, . . . , ϕi,N1 ∨ N2) must reject ϕj as well, since

f (ϕ1, . . . , ϕi,N1 ∨ N2) ` ¬N1.

Proposition 2.37. The function N∨(·) satisfies the following properties of a function N(·)
mapping observations to formulae, for any observations o, o′:

(Acceptability) If an o-acceptable core exists then N(o) is o-acceptable.

(Consistency) If N(o) 6≡ ⊥ then there is an o-acceptable core.

(Right Monotony) N(o · o′) ` N(o)

(Left Monotony) N(o′ · o) ` N(o)

Proof. Consistency follows directly from the Definition 2.36 of N∨(o) which can be consistent

only if an o-acceptable core exists. Acceptability follows from Definition 2.36 and Proposition

2.35 which states that the disjunction of two o-acceptable cores is again o-acceptable.

Left Monotony and Right Monotony follow from Proposition 2.33 which states that an o-

acceptable core is also acceptable for any sub-observation of o, and Definition 2.36 which

entails that any o-acceptable core entails N∨(o). In case there is no acceptable core for the

extended observation, N∨(·) will return ⊥ which entails any formula.

Proposition 2.38. Let N(·) be any function which returns a formula given any observation

o. Then the following are equivalent:

(i) N(·) satisfies Acceptability, Consistency and Right Monotony.

(ii) N(·) satisfies Acceptability, Consistency and Left Monotony.

(iii) N(o) ≡ N∨(o) for all observations o.

Proof. Proposition 2.37 immediately yields (iii)→(i) and (iii)→(ii), so it suffices to show

(i)→(iii) and (ii)→(iii).

Let N(·) satisfy Acceptability, Consistency and Right Monotony. Assume there is an obser-

vation o such that N(o) = ψ and N∨(o) = λ 6≡ ψ. Both λ and ψ must be consistent. If both

are inconsistent then λ 6≡ ψ is violated. Without loss of generality, assume only ψ is incon-

sistent. λ 6≡ ⊥ and the property Consistency of N∨(·) imply the existence of an o-acceptable

core, but ψ is not o-acceptable contradicting Acceptability of N(·), so ψ is consistent as well.

As any o-acceptable core entails N∨(o), we know ψ ` λ. But as λ 6≡ ψ, we get λ 6` ψ.
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Now consider o′ = o · (¬ψ,¬ψ, ∅). λ is o′-acceptable. It explains the prefix o and does not

prevent ¬ψ from being introduced into the belief set upon receiving it, which is the only

condition needed to satisfy the additional piece of observation (¬ψ,¬ψ, ∅). Hence, there is

an o′-acceptable core.

Due to Acceptability N(o′) must be consistent and due to Right Monotony N(o′) ` ψ.

Consequently, an agent with that core belief will not believe ¬ψ upon receiving it as a

revision input. Hence N(o′) is not 〈(¬ψ,¬ψ, ∅)〉-acceptable and by Proposition 2.33 N(o′) is

not o′-acceptable. As a consequence N(·) violates Acceptability, leading to a contradiction.

Hence, the assumed observation o for which N(·) and N∨(·) return different formulae does

not exist.

Now let N(·) satisfy Acceptability, Consistency and Left Monotony. Assume there is an

observation o such that N(o) = ψ and N∨(o) = λ 6≡ ψ. As above we have ψ ` λ and λ 6` ψ,

but we further have λ 6` ¬ψ (otherwise ψ ` ¬ψ, but ψ is consistent).

Consider o′ = 〈(¬ψ,¬ψ, ∅), (ψ,ψ, ∅)〉 · o. Due to Left Monotony N(o′) ` ψ. Consequently,

an agent with that core belief will not believe ¬ψ upon receiving it as a revision input (if

N(o′) is inconsistent it is not o′-acceptable, even if in this case ¬ψ is believed). Hence N(o′)

is not 〈(¬ψ,¬ψ, ∅)〉-acceptable and by Proposition 2.33 N(o′) is not o′-acceptable. We will

show that λ is o′-acceptable. This then tells us that there is an o′-acceptable core. However,

N(o′) is not o′-acceptable and hence N(·) violates Acceptability, leading to a contradiction.

So the assumed observation o for which N(·) and N∨(·) return different formulae does not

exist. We now need to show that λ is indeed o′-acceptable.

As this proof is a constructive one, we need to look into the observation we assumed

to exist. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be that observation and consequently

o′ = 〈(¬ψ,¬ψ, ∅), (ψ,ψ, ∅), (ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉. λ and ψ are both o-acceptable

so there exist sequences ρ1 = (β11, . . . , β1m1) and ρ2 = (β21, . . . , β2m2) such that [ρ1, λ]

and [ρ2, ψ] explain o. We will show that there is a sequence ρ such that [ρ, λ] explains o′.

ρ = (ψ → β21, . . . , ψ → β2m2 ,¬ψ → β11, . . . ,¬ψ → β1m1) is such a sequence.

Note that [σ, λ] explains the prefix 〈(¬ψ,¬ψ, ∅), (ψ,ψ, ∅)〉 of o′ using any sequence σ. This

is because that observation only requires ¬ψ and ψ to be believed upon receiving them,

but this is guaranteed as λ is consistent with both. We will show that for all the remain-

ing inputs ϕ1, . . . , ϕn, Bel([ρ, λ] ∗ ¬ψ ∗ ψ ∗ ϕ1 ∗ . . . ∗ ϕi) = Bel([ρ1, λ] ∗ ϕ1 ∗ . . . ∗ ϕi) or

Bel([ρ, λ] ∗ ¬ψ ∗ ψ ∗ ϕ1 ∗ . . . ∗ ϕi) = Bel([ρ2, ψ] ∗ ϕ1 ∗ . . . ∗ ϕi) which yields that [ρ, λ] indeed

explains o′. The argument is basically identical to that in the proof for Proposition 2.35.

f (¬ψ,ψ, ϕ1, . . . , ϕi, λ) ` ψ or f (¬ψ,ψ, ϕ1, . . . , ϕi, λ) ` ¬ψ because ψ is an element of

the sequence and hence it is either collected yielding the first case or it is rejected yield-

ing the second one (Proposition 2.6). For the first case, Proposition 2.10 tells us that
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f (¬ψ,ψ, ϕ1, . . . , ϕi, λ) ≡ f (¬ψ,ϕ1, . . . , ϕi, ψ, λ) , but as ψ ` λ which implies that

f (ψ, λ) ≡ ψ and f (¬ψ,ϕ1, . . . , ϕi, ψ, λ) ≡ f (¬ψ,ϕ1, . . . , ϕi, f (ψ, λ)) (Proposition 2.3), we

get f (¬ψ,ψ, ϕ1, . . . , ϕi, λ) ≡ f (¬ψ,ϕ1, . . . , ϕi, ψ). This definitely entails ψ, so the ¬ψ in the

beginning is irrelevant. Hence in this case f (¬ψ,ψ, ϕ1, . . . , ϕi, λ) ≡ f (ϕ1, . . . , ϕi, ψ).

In other words, before ρ is processed, a formula has been constructed that is equivalent to

that which has been collected before processing ρ2. Proposition 2.13 yields that the ¬ψ → β1j

can now be ignored when processing ρ and that the ψ → β2k are treated exactly like the β2k

in ρ2. Hence, in this case Bel([ρ, λ] ∗ ¬ψ ∗ ψ ∗ ϕ1 ∗ . . . ∗ ϕi) = Bel([ρ2, ψ] ∗ ϕ1 ∗ . . . ∗ ϕi) as

claimed.

In the second case (f (¬ψ,ψ, ϕ1, . . . , ϕi, λ) ` ¬ψ), we know f (ϕ1, . . . , ϕi, λ) ` ¬ψ (otherwise

the next formula ψ is accepted). But this means f (¬ψ,ψ, ϕ1, . . . , ϕi, λ) ≡ f (ϕ1, . . . , ϕi, λ),

i.e., before ρ is processed a formula has been constructed that is equivalent to that which

has been collected before processing ρ1. Proposition 2.13 yields that the ψ → β2j can now

be ignored when processing ρ and that the ¬ψ → β1k are treated exactly like the β1k in ρ1

and hence, Bel([ρ, λ] ∗ ¬ψ ∗ ψ ∗ ϕ1 ∗ . . . ∗ ϕi) = Bel([ρ1, λ] ∗ ϕ1 ∗ . . . ∗ ϕi).

Proposition 2.41. ⇒[ρ,N] is a rational consequence relation.

Proof. We need to show that the following conditions are satisfied by ⇒[ρ,N]. These con-

ditions are given in [54]. The notation we use is in line with that in [14]. Recall that

Bel([ρ,N] ∗ ϕ) = Cn(f (ρ · (ϕ,N))). For inconsistent N we have θ ⇒[ρ,N] φ for all θ and φ

so the conditions are all satisfied trivially. So we can assume N to be consistent. If N ` ¬θ
most of the conditions are trivially satisfied as in those cases θ ⇒[ρ,N] φ for any φ, so we give

the proofs only if they are non-trivial and assume N 6` ¬θ if not stated otherwise.

θ ⇒[ρ,N] θ: f (θ,N) = N ∧ θ already entails θ.

θ ⇒[ρ,N] φ and θ ≡ ψ implies ψ ⇒[ρ,N] φ: immediate from Proposition 2.4

θ ⇒[ρ,N] φ and φ |= ψ implies θ ⇒[ρ,N] ψ: immediate from closure of Cn(·).

θ ⇒[ρ,N] φ and θ ⇒[ρ,N] ψ implies θ ⇒[ρ,N] φ ∧ ψ: immediate from closure of Cn(·).

θ ⇒[ρ,N] φ and ψ ⇒[ρ,N] φ implies θ ∨ ψ ⇒[ρ,N] φ: This is trivial if N ` ¬θ as then

f (θ ∨ ψ,N) ≡ f (ψ,N) — analogously for N ` ¬ψ. Otherwise it basically follows from

λ ∧ θ ` φ and λ ∧ ψ ` φ which implies λ ∧ (θ ∨ ψ) ` φ. If f (ρ · (θ ∨ ψ,N)) collects ex-

actly the same formulae from ρ as both f (ρ · (θ,N)) and f (ρ · (ψ,N)) then we can use this

argument. However, if it collects the same formulae (their conjunction being λ) as both up to

a particular point and then accepts a formula α (without loss of generality) f (ρ · (θ,N)) does

not accept, we have λ∧θ∧N ` ¬α so λ∧α∧N ` ¬θ and hence λ∧(θ∨ψ)∧N∧α ≡ λ∧ψ∧N∧α.

Then it follows immediately that f (ρ · (θ ∨ ψ,N)) ≡ f (ρ · (ψ,N)).
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θ ⇒[ρ,N] φ and θ ⇒[ρ,N] ψ implies θ ∧ φ ⇒[ρ,N] ψ: In case N ` ¬θ then also N ` ¬(θ ∧ φ) .

Otherwise, θ ⇒[ρ,N] φ implies f (ρ · (θ,N)) 6` ¬φ and consequently by Proposition 2.10

f (ρ · (φ, θ,N)) = f (ρ · f (φ, θ,N)) ≡ f (ρ · (θ,N)) ∧ φ . We are done in case we can show

f (θ ∧ φ,N) ≡ f (φ, θ,N) . f (φ, θ,N) = θ ∧ φ ∧ N (N 6` ¬θ and f (θ,N) 6` ¬φ). Assume

f (θ ∧ φ,N) 6= θ ∧ φ ∧ N, i.e., N ` ¬(θ ∧ φ) and hence θ ∧ N = f (θ,N) ` ¬φ, contradiction.

θ ⇒[ρ,N] φ and θ 6⇒[ρ,N] ¬ψ implies θ ∧ ψ ⇒[ρ,N] φ: we have f (ρ · (θ,N)) 6` ¬ψ immediately

and hence analogously to the above argument f (ρ · (θ ∧ ψ,N)) ≡ f (ρ · (θ,N)) ∧ ψ which

entails φ.

Proposition 2.48. ρR(C,N ) = (
∧
Um,

∧
Um−1, . . . ,

∧
U0) is a logical chain, that is,∧

Ui `
∧
Ui+1 for 0 ≤ i ≤ m− 1.

Proof. This follows immediately from Ui ⊇ Ui+1. That this indeed holds can be seen from

the way Ci+1, Ni+1, and Ui+1 are calculated from Ci, Ni. and Ui. Condition 3 in Definition

2.45 immediately yields Ci ⊇ Ci+1 and Ni ⊇ Ni+1. As a consequence C̃i ⊇ C̃i+1. We will now

argue that in the least fixpoint construction any ¬λ that is added to Ui+1 will also be added

to Ui, yielding the desired inclusion. Assume λ ⇒ µ ∈ Ni+1 is n-exceptional for C̃i+1, then

it is also n-exceptional for C̃i but by Ni ⊇ Ni+1 the conditional also belongs to Ni. Hence,

¬λ is added to both Ui+1 and Ui. For an inductive argument assume that up to now every

¬λ′ that was added to Ui+1 has also been added to Ui. So any additional conditional that is

n-exceptional for Ui+1 must again be n-exceptional for Ui. Hence, the negated antecedent is

added to both, keeping the superset relation.

Proposition 2.49. Given o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief N 6≡ ⊥ let

ρR(o,N) = (
∧
Um,

∧
Um−1, . . . ,

∧
U0) be the rational prefix of o with respect to N.

If
∧
Um ≡ > then [ρR(o,N),N] explains o.

Proof. By Proposition 2.24 and Definition 2.17 it suffices to show that for all i we have

f (ρR(o,N) · f (ιi · N)) ` θi and f (ρR(o,N) · f (ιi · N)) 6` δ for all δ ∈ Di. As ρR(o,N) is a

logical chain (Proposition 2.48) we know f (ρR(o,N) · f (ιi · N)) ≡
∧
Uj ∧ f (ιi · N) where j is

minimal such that this formula is consistent. Such a j must exist. Firstly, N is consistent

and hence f (ιi · N) is consistent. Secondly, at least
∧
Um ≡ > is consistent with f (ιi · N).

Thirdly, adding as conjuncts the
∧
Uk with k > j does not change the logical content of the

formula as they are already entailed by
∧
Uj . We now need to show that

∧
Uj ∧ f (ιi · N)

entails θi and does not entail any δ ∈ Di.

f (ιi · N) ⇒ θi ∈ CN(o) and hence this conditional belongs to C0. As f (ιi · N) is inconsistent

with all
∧
Uk for k < j we know f (ιi · N) ⇒ θi is p-exceptional for all Uk, k < j. Hence
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f (ιi · N)→ θi ∈ C̃j and consequently
∧
Uj ` f (ιi · N)→ θi which yields that the conjunction

entails θi.

Now assume
∧
Uj ∧ f (ιi · N) ` δ for some δ ∈ Di. f (ιi · N) ⇒ δ ∈ NN(o) and hence it

belongs to C0. As f (ιi · N) is inconsistent with all
∧
Uk for k < j we know that f (ιi · N)⇒ δ

is n-exceptional for all Uk, k < j. Hence f (ιi · N) ⇒ δ ∈ Nj . Our assumption yields

that
∧
Uj ∧ f (ιi · N) ` δ, i.e., the conditional is n-exceptional for Uj , and by Definition 2.45

¬f (ιi · N) ∈ Uj contradicting
∧
Uj∧f (ιi · N) is consistent. Hence, the assumption was wrong

and such a δ does not exist.

Proposition 2.50. Given o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief N 6≡ ⊥ let

ρR(o,N) = (
∧
Um,

∧
Um−1, . . . ,

∧
U0) be the rational prefix of o with respect to N.

If
∧
Um 6≡ > then N is not o-acceptable.

Proof. We need to show two things. [ρR(o,N),N] is not an explanation and there is no ρ

such that [ρ,N] explains o.

Assume [ρR(o,N),N] explains o, that is, for all i we have f (ρR(o,N) · f (ιi · N)) ` θi and

f (ρR(o,N) · f (ιi · N)) 6` δ for all δ ∈ Di. As
∧
Um 6≡ > we know that Um 6= ∅. So

Cm 6= ∅ or Nm 6= ∅. First assume that Cm contained at least one non-trivial conditional

f (ιi · N)⇒ θi where f (ιi · N) 6` θi, i.e., the corresponding material counterpart f (ιi · N)→ θi

is not a tautology. As this conditional is in Cm it must have been p-exceptional for all Uj
(including Um as otherwise the rational prefix calculation would not have stopped). Hence

f (ρR(o,N) · f (ιi · N)) = f (ιi · N) 6` θi violating the condition for [ρR(o,N),N] to be an expla-

nation for o.

So Cm is either empty or contains only trivial conditionals, i.e., conditionals whose material

counterparts are tautologies. Hence C̃m = ∅ or it contains only tautologies. Logically, both

amounts to C̃m = ∅. Now, the least fixpoint construction of Um tells us that there must

be a conditional f (ιi · N) ⇒ δ in Nm that is n-exceptional for C̃m. If this was not the case,

then
∧
Um ≡ > which it is not. But if this conditional is n-exceptional for ∅ it follows that

f (ιi · N) ` δ. Consequently, f (ρR(o,N) · f (ιi · N)) ` δ violating the condition for [ρR(o,N),N]

to be an explanation for o. Hence, [ρR(o,N),N] does not explain o.

We now show that there is no ρ such that [ρ,N] explains o. Assume that Cm contains only

trivial conditionals, i.e., conditionals whose material counterparts are tautologies. As above,

we can then infer that Nm must contain a conditional f (ιi · N) → δ such that f (ιi · N) ` δ
and hence f (ρ · f (ιi · N)) ` δ for any sequence ρ. Hence in this case, no explanation can

exist.
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Assume there is a ρ = (βl, . . . , β0) such that [ρ,N] explains o. Proposition 2.27 yields that

then there is a logical chain with equivalent behaviour, as well. So we can assume that ρ

itself is a logical chain. And from the above considerations we can infer that Cm contains

non-trivial conditionals. Let I = {i | f (ιi · N)⇒ θi ∈ Cm and f (ιi · N) 6` θi} be the index set

of the non-trivial conditionals in Cm. Since [ρ,N] is an explanation for o, it must in particular

treat the conditionals f (ιi · N) ⇒ θi such that i ∈ I correctly. As ρ is a logical chain, we

know that for all i ∈ I there is a smallest si such that f (ρ · f (ιi · N)) = βsi ∧ f (ιi · N) is

consistent and βsi ∧ f (ιi · N) ` θi which implies βsi ` f (ιi · N) → θi. Among those si there

is obviously a smallest s and at least one corresponding conditional.

Wrapping this up, there is a conditional f (ιj · N) ⇒ θj ∈ Cm such that βs ∧ f (ιj · N) ` θj
and βs ∧ f (ιj · N) is consistent. As ρ is a logical chain we know βs ` βsi for all si. This

means βs ` f (ιi · N) → θi for all i ∈ I and hence βs `
∧
C̃m. We will now show that βs

also entails all the negated antecedents of the conditionals in Nm, i.e., βs ` ¬f (ιk · N) for all

f (ιk · N) ⇒ δ ∈ Nm. But this implies βs `
∧
Um and as f (ιj · N) ⇒ θj is p-exceptional for

Um, i.e., Um ` ¬f (ιj · N) we get a contradiction to βs ∧ f (ιj · N) being consistent. Hence,

[ρ,N] does not satisfy the conditional f (ιj · N)⇒ θj and cannot be an explanation for o.

We still have to show that βs ` ¬f (ιk · N) for all f (ιk · N) ⇒ δ ∈ Nm. We already know

βs `
∧
C̃m. We also know that there is a conditional f (ιk · N) ⇒ δ ∈ Nm such that∧

C̃m∧f (ιk · N) ` δ (otherwise the rational prefix construction would not have stopped). But

this means βs (and therefore βt, t < s) must not be consistent with f (ιk · N) as otherwise

[ρ,N] could not be an explanation for o. To see this, assume some βt, t ≤ s and t minimal,

was consistent with f (ιk · N). Then f (ρ · f (ιk · N)) = βt ∧ f (ιk · N) ` βs ∧ f (ιk · N) ` δ

contradicting the observation o.

So, βs `
∧
C̃m ∧ ¬f (ιk · N). We can now go on like in the fixpoint construction of Um,

showing that βs must entail the negated antecedents of any negative conditional in Nm and

therefore βs `
∧
Um as required.

Proposition 2.51. Given o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief N ≡ ⊥. Then

ρR(o,N) = (>).

Proof. If N ≡ ⊥ then the antecedent f (ιi · N) of any conditional in CN(o) or NN(o) is inconsis-

tent. This means that the material counterpart of every positive conditional f (ιi · N)⇒ θi is

a tautology and the negated antecedent ¬f (ιi · N) of any negative conditional f (ιi · N)⇒ δ

is a tautology, as well. So the conjunction of any subset of these will be a tautology, in

particular any
∧
Uj will be a tautology.

We now need to show that the calculation stops after the first iteration, i.e., C1 = C0 and

N1 = N0. We already showed that U0 contains only tautologies. C0 contains all positive
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conditionals, N0 contains all negative ones, so it suffices to show that all conditionals are

exceptional for U0 as then all of them go into the next level, yielding the desired equalities.

So let f (ιi · N) ⇒ θi be any positive conditional. U0 ` >, so U0 ` ¬f (ιi · N) and hence

f (ιi · N) ⇒ θi is p-exceptional for U0. Let f (ιi · N) ⇒ δ be any negative conditional. ⊥ ` λ
for any λ, so U0 ∪ {f (ιi · N)} ` δ and hence f (ιi · N)⇒ δ is n-exceptional for U0.

This proves C1 = C0 and N1 = N0 and hence the minimal m such that Cm+1 = Cm and

Nm+1 = Nm is 0. Consequently, ρR(o,N) = (
∧
U0) = (>).

Proposition 2.52. The decision problem of whether a given core belief N is o-acceptable is

∆P
2 -complete.

Proof. We will prove this by showing that slightly extending the rational prefix construc-

tion we get an algorithm with a polynomial number of NP -oracle calls deciding whether

N is o-acceptable and once more reducing the entailment problem for linear base revi-

sion to this problem. As input for the decision problem, we are given an observation

o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core belief N.

One satisfiability test tells us whether N is a contradiction, in which case it could not be o-

acceptable. A polynomial number of SAT -tests suffices to construct the antecedents f (ιi · N)

of all the positive and negative conditionals yielded by the observation and the core. The

size of these formulae is polynomially bounded by the size of the input, as f constructs a

conjunction of some of the formulae given. So the sets of conditionals C and N passed on

to the rational closure construction contain n +
n∑
j=1
|Dj | conditionals whose size is properly

bounded. The constructions of Ci+1 and Ni+1 are not problematic. For each conditional in Ci
and Ni one SAT -test decides the exceptionality for Ui and as the size of that set is properly

bounded, we are on the safe side. The possible sources of complexity in that construction

are the least fixpoint construction of the Ui and the number of iterations.

In each iteration one of the sets Ci or Ni has to contain at least one conditional less than Ci−1

or Ni−1, respectively, otherwise the process stops. As there is only a polynomial number

of conditionals there can only be a polynomial number of iterations. The construction of

Ui starts with the unproblematic initialisation of C̃i. In each iteration of the least fixpoint

construction the negated antecedent of one negative conditional may be added. The corre-

sponding conditional need not be checked again. So there are at most |Ni| iterations before

a fixpoint is found and in each iteration at most |N | conditionals have to be checked for

n-exceptionality which corresponds to that number of SAT -tests. The size of Ui keeps a

proper bound as it grows only linearly in each iteration.
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Hence, in each iteration of the rational closure construction a polynomial number of SAT -

tests suffices. To check o-acceptability of N we have to test whether
∧
Um ≡ > (Propositions

2.49 and 2.50), but this corresponds to testing whether both Cm and Nm are empty. If one

of them was not, the weakest formula of the rational prefix could not be a tautology (unless

N ≡ ⊥ which we tested before even starting). This concludes the proof of the decision

problem belonging to ∆P
2 .

Again, the ∆P
2 -hardness part of the proof that (α1, . . . , αm) ∗L α ` β is ∆P

2 -complete [70,

71] uses a reduction that guarantees that α is consistent. We extend this reduction to

the o-acceptability of a core belief. We claim that (α1, . . . , αm) ∗L α ` β if and only if

> is o-acceptable for o = 〈(¬β,>, ∅), (α1,>, ∅), . . . , (αm,>, ∅), (α, β, ∅)〉. Obviously, this

transformation is polynomial.

Assume (α1, . . . , αm) ∗L α ` β which is equivalent to f (α1, . . . , αm, α) ` β and thus also to

f (α1, . . . , αm, α,>) ` β (Proposition 2.7 and α is consistent). Consider the epistemic state

[(),>]. All Di are empty and the only relevant θi is θn = β; the others are trivially dealt with

as any formula entails >. f (¬β, α1, . . . , αm, α,>) is equivalent to f (¬β, f (α1, . . . , αm, α,>))

(Proposition 2.3), but as f (α1, . . . , αm, α,>) ` β this is equivalent to f (α1, . . . , αm, α,>)

which entails β as necessary. So [(),>] explains o and > is o-acceptable.

Now assume (α1, . . . , αm) ∗L α 6` β which is equivalent to f (α1, . . . , αm, α,>) 6` β as above.

In particular, this means β 6≡ > and ¬β 6≡ ⊥. Consider any epistemic state [ρ,>]. As above

only θn = β is relevant. f (ρ · (¬β, α1, . . . , αm, α,>)) ≡ f (ρ · f (¬β, f (α1, . . . , αm, α,>))).

f (α1, . . . , αm, α,>) does not entail β and is hence consistent with ¬β. As a consequence,

f (¬β, f (α1, . . . , αm, α,>)) = ¬β ∧ f (α1, . . . , αm, α,>) and thus f (ρ · (¬β, α1, . . . , αm, α,>))

entails ¬β and cannot consistently entail β as required. So, [ρ,>] does not explain o no

matter which sequence ρ is used and > is not o-acceptable — proving our claim.

Proposition 2.55. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation and N be an

o-acceptable core.

If [σ,N] explains o then ρR(o,N) �1 σ.

Proof. As N is an o-acceptable core we know that [ρR(o,N),N] is indeed an explanation for

o (Propositions 2.49 and 2.50). By Proposition 2.27 we can restrict our attention to logical

chains. To ease notation, let us denote ρR(o,N) in this proof by just ρR = (αm, . . . , α0),

σ = (βl, . . . , β0) such that [σ,N] explains o. Both sequences are logical chains. Again, we

abbreviate (ϕ1, . . . , ϕi) by ιi.

Also, let us introduce the following notation: Given any formula λ,
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rankρR(λ) =

min{k | λ ∧ αk is consistent}

∞ if no such k exists

Note that since αm ≡ > the second case applies only if λ ≡ ⊥). Analogously,

rankσ(λ) =

min{k | λ ∧ βk is consistent}

∞ if no such k exists

Recall that as ρR is a logical chain we have for any λ such that λ 6≡ ⊥, f (ρR · λ)) = λ ∧ αs
where s = rankρR(λ).

To show ρR �1 σ we must prove that for any i ∈ {0, . . . , n}, if BelρR
j ≡ Belσj for all j < i

then Belσi ` BelρR
i . So fix i ∈ {0, . . . , n} and assume BelρR

j ≡ Belσj for all j < i. We

have BelρR
i = f (ρR · ιi · N). By Proposition 2.3 this is the same as f (ρR · f (ιi · N)). As N is

consistent and consequently f (ιi · N) is consistent, we have f (ρR · f (ιi · N)) = f (ιi · N)∧ αs,
where s = rankρR(f (ιi · N)). What does αs look like? By the construction of ρR, we know

αs ≡
∧
k∈I
(
f (ιk · N)→ θk

)
∧
∧
k∈J

(
¬f (ιk · N)

)
, where

I = {k | 1 ≤ k ≤ n and rankρR(f (ιk · N)) ≥ s} and

J = {k ∈ I |
∧
i∈I

(
f (ιi · N)→ θi

)
∧
∧

k′≺ek

(
¬f (ιk′ · N)

)
∧ f (ιk · N) ` δ

for some negative conditional f (ιk · N)⇒ δ}.

≺e is a total order on the indexes, indicating in which order the corresponding negative

conditionals become exceptional in the least fixpoint calculation of the rational prefix con-

struction. In other words I is the index set of the positive conditionals that are p-exceptional

for Us−1 (some of them may still be for Us but not necessarily all) and J is the index set of

the negative conditionals that are n-exceptional for Us. Thus we have obtained

BelρR
i ≡ f (ιi · N) ∧

∧
k∈I

(
f (ιk · N)→ θk

)
∧
∧
k∈J

(
¬f (ιk · N)

)
Hence to show Belσi ` Bel

ρR
i we need

(a) Belσi ` f (ιi · N)

(b) Belσi `
(
f (ιk · N)→ θk

)
for all k ∈ I, equivalently

Belσi ∧ f(ιk · N) ` θk, for all k ∈ I

(c) Belσi ` ¬f (ιk · N), for all k ∈ J .

(a): Belσi = f (σ · ιi · N) = f (σ · f (ιi · N)) ` f (ιi · N)

(b): Let k ∈ I. Belσi ∧ f (ιk · N) ≡ βt ∧ f (ιi · N) ∧ f (ιk · N), t = rankσ(f (ιi · N)). If this

is inconsistent, we trivially get the desired conclusion. So suppose Belσi ∧ f (ιk · N) is
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consistent, which implies that f (ιi · N) ∧ f (ιk · N) is consistent. We have to consider

two cases i ≤ k and i > k.

i ≤ k Proposition 2.15 tells us that f (ιk · N) ` f (ιi · N) and as a consequence

βt ∧ f (ιi · N) ∧ f (ιk · N) ≡ βt ∧ f (ιk · N) . We claim that rankσ(f (ιk · N)) = t

which implies that βt ∧ f (ιk · N) ≡ Belσk ` θk — yielding the desired result.

To prove our claim assume rankσ(f (ιk · N)) = u < t. Then βu ∧ f (ιk · N) 6` ⊥,

as f (ιk · N) ` f (ιi · N) we know βu ∧ f (ιi · N) 6` ⊥ contradicting that f (ιi · N) is

inconsistent with all βu where u < t (definition of rank). u > t is not possible

as βt ∧ f (ιk · N) is consistent and rank yields the smallest possible index. This

proves our claim.

i > k Proposition 2.15 tells us that f (ιi · N) ` f (ιk · N) and by Proposition 2.12 we

know Belσi ∧ f (ιk · N) = f (σ · f (ιi · N)) ∧ f (ιk · N) ≡ f (σ · (f (ιi · N) ∧ f (ιk · N))).

If we could show f (σ · f (ιk · N)) ∧ f (ιi · N) is consistent then Proposition 2.10

would yield

Belσi ∧ f (ιk · N) ≡ f (σ · (f (ιi · N) ∧ f (ιk · N)))

≡ f (σ · f (ιk · N)) ∧ f (ιi · N) by Proposition 2.12

` f (σ · f (ιk · N)) = Belσk ,

and so, since Belσk ` θk because [σ,N] explains o, we would get the required

Belσi ∧ f (ιk · N) ` θk . To show f (σ · f (ιk · N)) ∧ f (ιi · N) is indeed consistent,

first note that, by the assumption that BelρR

k ≡ Bel
σ
k for all k < i, we have

f (σ · f (ιk · N)) ≡ f (ρR · f (ιk · N))

≡ f (ιk · N) ∧ αt

where t = rankρR(f (ιk · N)). Hence

f (σ · f (ιk · N)) ∧ f (ιi · N) ≡ f (ιk · N) ∧ αt ∧ f (ιi · N)

≡ αt ∧ f (ιi · N) .

Now since k ∈ I we know t ≥ s, hence αs ` αt. We know already that

αs ∧ f (ιi · N) is consistent. Thus it follows that αt ∧ f (ιi · N) is consistent and so

f (σ · f (ιk · N)) ∧ f (ιi · N) is consistent as required.

(c): We know by construction of the rational prefix that we can order the elements of J

using a total order ≺e. For any k ∈ J there is a negative conditional f (ιk · N) ⇒ δ

such that ∧
j∈I

(
f (ιj · N)→ θk

)
∧ (

∧
k′≺ek

¬f (ιk′ · N)) ∧ f (ιk · N) ` δ.
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We will prove Belσi ` ¬f (ιk · N) iteratively ordering the k according to ≺e. So assume

Belσi ` ¬f (ιk · N) for all k′ ≺e k.

Hence Belσi `
∧
j∈I

(
f (ιj · N)→ θk

)
∧
∧

k′≺ek

(
¬f (ιk · N)

)
. Now assume Belσi 6` ¬f (ιk · N),

i.e., f (ιi · N) ∧ f (ιk · N) is consistent.

Recall, BelρR
i = f (ιi · N)∧αs. As BelρR

i is consistent we know that BelρR
i 6` ¬f (ιi · N).

This implies i 6∈ J (cf. the structure of αs). Hence, we only need to consider the cases

i > k and i < k.

i > k rankρR(f (ιk · N)) = u > s as k ∈ J (since αs ` ¬f (ιk · N) for k ∈ J). Proposition

2.15 again tells us f (ιi · N) ` f (ιk · N) implying rankρR(f (ιk · N)) = u ≤ s. This

is because rankρR(f (ιi · N)) = s and hence αs must be consistent with f (ιk · N).

So this case is impossible, as well.

i < k Proposition 2.15 tells us that f (ιk · N) ` f (ιi · N). Belσi = βt ∧ f (ιi · N) with

t = rankσ(f (ιi · N)) .

We claim Belσk = βt ∧ f (ιk · N). Note for all u < t, βu ∧ f (ιi · N) is inconsis-

tent, hence for all u < t, βu ∧ f (ιk · N) is inconsistent (f (ιk · N) ` f (ιi · N)).

Further Belσi ∧ f (ιk · N) 6` ⊥, implying that βt ∧ f (ιi · N) ∧ f (ιk · N) 6` ⊥, hence

βt ∧ f (ιk · N) 6` ⊥ . Consequently rankσ(f (ιk · N)) = t, proving the claim.

So Belσk = βt ∧ f (ιk · N). This implies Belσk ` Belσi (f (ιk · N) ` f (ιi · N) and

Belσi = βt ∧ f (ιi · N)).

So we know that Belσk `
∧
j∈I

(
f (ιj · N) → θk

)
∧

∧
k′≺ek

(
¬f (ιk · N)

)
and also

Belσk ` f (ιk · N) . From the definition of J , we know that there exists a nega-

tive conditional f (ιk · N)⇒ δ such that∧
j∈I

(
f (ιj · N)→ θk

)
∧
∧
k′≺ek

(
¬f (ιk · N)

)
∧ f (ιk · N) ` δ.

So Belσk ` δ. Hence [σ,N] cannot be an explanation — contradiction — and

consequently Belσi ` ¬f (ιk · N).

Proposition 2.56. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation and N be an

o-acceptable core.

If [σ,N] explains o and σ �1 ρR(o,N) then ρR(o,N) �2 σ.

Proof. The proof is almost identical to the last part of Proposition 2.55. Again it suffices to

restrict the argument to logical chains. We use ρR = (αm, . . . , α0) to denote ρR(o,N). Let

[σ,N] be an explanation of o and suppose σ �1 ρR. We already know by Proposition 2.55 that
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also ρR �1 σ. Taking these two inequalities together means we must have Belσi ≡ Bel
ρR
i

for all i = 0, . . . , n. Now to show ρR �2 σ choose any formula λ. We have to show

Bel([σ,N]∗ϕ1∗· · ·∗ϕn∗λ) ` Bel([ρR,N]∗ϕ1∗· · ·∗ϕn∗λ), i.e., f (σ · ι · λ · N) ` f (ρR · ι · λ · N).

We know that f (ρR · ι · λ · N) = f (ρR · f (ι · λ · N)) = αs ∧ f (ι · λ · N), where

s = rankρR(f (ι · λ · N)) and

αs ≡
∧
k∈I
(
f (ιk · N)→ θk

)
∧
∧
k∈J

(
¬f (ιk · N)

)
, where

I = {k | 1 ≤ k ≤ n and rankρR(f (ιk · N)) ≥ s} and

J = {k ∈ I |
∧
i∈I

(
f (ιi · N)→ θi

)
∧
∧

k′≺ek

(
¬f (ιk′ · N)

)
∧ f (ιk · N) ` δ

for some negative conditional f (ιk · N)⇒ δ}.

So, again we have to prove

(a) f (σ · ι · λ · N) ` f (ι · λ · N)

(b) f (σ · ι · λ · N) `
(
f (ιk · N)→ θk

)
for all k ∈ I, equivalently

f (σ · ι · λ · N) ∧ f(ιk · N) ` θk, for all k ∈ I

(c) f (σ · ι · λ · N) ` ¬f (ιk · N), for all k ∈ J .

(a) and (b) are exactly as in the proof for Proposition 2.55. Note that for (b) only the case

corresponding to i > k is possible. In order to show (c) take an arbitrary k ∈ J .

If f (σ · ι · λ · N) ` ¬f (ιk · N) we are done. So assume f (σ · ι · λ · N) 6` ¬f (ιk · N). Hence

f (ι · λ · N) is consistent with f (ιk · N). Proposition 2.15 tells us that f (ι · λ · N) ` f (ιk · N).

Consequently f (ρR · ι · λ · N) ` f (ιk · N), but we already know f (ρR · ι · λ · N) ` ¬f (ιk · N)

as k ∈ J . So we get a contradiction as f (ρR · ι · λ · N) must be consistent (N is). So it is

impossible that f (σ · ι · λ · N) 6` ¬f (ιk · N). This concludes the proof.

Proposition 2.58. Given an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and a core

belief N. Ultimately exceptional conditionals in the rational prefix construction of o with

respect to N exist if and only if there are subsets IC 6= ∅ and IN of {1, . . . , n} and a total

order ≺e on IN such that

1.
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

j∈IN
¬f (ιj · N) `

∧
i∈IC
¬f (ιi · N)

2. ∀j ∈ IN∃δ ∈ Dj :
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

k∈IN∧k≺ej

¬f (ιk · N) ∧ f (ιj · N) ` δ

Proof. (i) If ultimately exceptional conditionals exist then these conditions are satisfied. Let

IC be the index set of the positive conditionals that are ultimately exceptional and IN that

of the negative ones. Note that
∧
i∈IC

(f (ιi · N) → θi) ∧
∧

j∈IN
¬f (ιj · N) is nothing but

∧
Um,



A.1. PROOFS FROM CHAPTER 2 153

as Um contains the material counterparts of the p-exceptional conditionals and the negated

antecedents of the n-exceptional ones.

The first condition simply expresses that any positive conditional with index i ∈ IC will

again be exceptional in the next step, which is true as they are all ultimately exceptional.

The second condition is another way of looking at the least fixpoint construction of Um. Let

≺e be the total order on the indexes expressing in which order the negative conditionals

become n-exceptional.
∧
i∈IC

(f (ιi · N) → θi) is nothing but
∧
C̃m, i.e., it represents the set

of formulae Um is initialised with. Adding the antecedent of one the ≺e-minimal negative

conditionals must have made the corresponding consequent δ inferable, as that conditional

was n-exceptional for C̃m. Consequently the negated antecedent was added to Um. k ≺e j
expresses that adding to C̃m the negated antecedents of the n-exceptional conditionals less

(with respect to ≺ e) sufficed to make a conditional with index j n-exceptional as well. If

the second condition did not hold, one of the conditionals in Nm could not be n-exceptional

for Um and hence not ultimately exceptional.

(ii) Let there be IC 6= ∅ and IN of {1, . . . , n} and a total order ≺e on IN such that the

conditions are satisfied. We will now show by induction that if the conditionals corresponding

to the index sets IC and IN belong to Ci and Ni then they are propagated to the Ci+1 and

Ni+1. If this is true then we are done, as C0 and N0 contain all conditionals, in particular

those corresponding to the given index sets.

So assume that all conditionals corresponding to the index sets IC and IN belong to

Ci and Ni. For the ≺e-minimal element j of IN the second condition translates to

∃δ ∈ Dj :
∧
i∈IC

(f (ιi · N) → θi) ∧ f (ιj · N) ` δ, or equivalently C̃ ∪ f (ιj · N) ` δ. So in

particular C̃i ∪ f (ιj · N) ` δ and hence ¬f (ιj · N) has to be added to Ui as otherwise the

second condition of the rational closure construction is violated (c.f. Definition 2.45). The

argument continues analogously for all the j ∈ IN in increasing order w.r.t. ≺e. That is,

the negated antecedents of all conditionals with index in IN are added to Ui and thus the

corresponding negative conditionals will be n-exceptional for Ui and are propagated to Ni+1.

As the first condition holds we have Ui `
∧
i∈IC
¬f (ιi · N) (all the positive conditionals corre-

sponding to IC belong to Ci and the material counterparts are hence entailed by C̃i) and as

just seen all the negated antecedents of conditionals corresponding to IN have been added

as well. But this means that all positive conditionals corresponding to C are p-exceptional

for Ui and are hence propagated to Ci+1. This proves the claim.

Proposition 2.59. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation and

ρR(o,N) = (αm, . . . , α0) the rational prefix for o using some core N.



154 APPENDIX A. PROOFS

Then αm ≡ > and Cm 6= ∅ implies N ≡ ⊥.

Proof. We showed that αm =
∧
Um ≡

∧
i∈I
¬f (ιi · N) where I is the index set of the ultimately

exceptional positive conditionals. So if Cm 6= ∅, then ¬f (ιi · N) must be a tautology for all

i ∈ I and f (ιi · N) ≡ ⊥. But this can be the case only if N ≡ ⊥.

Proposition 2.60. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉, N a core belief and

ρR(o,N) = (αm, . . . , α0).

If N′ ` N and N′ 6` αm then N′ cannot be o-acceptable.

Proof. We need not consider the uninteresting case where N is o-acceptable or inconsistent,

implying αm = >. So let N be consistent and not o-acceptable. Then αm =
∧
Um 6≡ >

(contraposition of Proposition 2.49) which implies that there were ultimately exceptional

conditionals (Cm 6= ∅ or Nm 6= ∅). Let IC and IN be the index sets of the ultimately

exceptional positive and negative conditionals and let ≺e be the order on IN in which the

corresponding conditionals became exceptional in the least fixpoint construction. So we

know ∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

j∈IN
¬f (ιj · N) `

∧
i∈IC
¬f (ιi · N) and

∀j ∈ IN∃δ ∈ Dj :
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

k∈IN∧k≺ej

¬f (ιk · N) ∧ f (ιj · N) ` δ.

We will need these entailments later in the proof and will refer back to them with (*). We

will now show that if N′ 6`
∧
i∈IC
¬f (ιi · N) (implying N′ to be consistent) there will again be

ultimately exceptional conditionals and as N′ 6≡ ⊥ the formula
∧
U ′m′ cannot be a tautology.

Hence N′ is not o-acceptable (Proposition 2.50).

So let N′ ` N, N′ 6`
∧
i∈IC
¬f (ιi · N) and J = {j | j ∈ IC ∧ N′ 6` ¬f (ιj · N)}, i.e., J is the set of

indexes of ultimately exceptional conditionals whose antecedents remain consistent with the

new core belief N′. We claim that∧
i∈J

(f (ιi · N′)→ θi) ∧
∧

j∈J∩IN
¬f (ιj · N′) `

∧
i∈J
¬f (ιi · N′) and

∀j ∈ J ∩ IN∃δ ∈ Dj :
∧
i∈J

(f (ιi · N′)→ θi) ∧
∧

k∈J∩IN∧k≺ej

¬f (ιk · N′) ∧ f (ιj · N′) ` δ

This means a conditional with an index j ∈ J will again be ultimately exceptional when

using N′ as the core belief. We know N′ ` N, so N′ ∧ N ≡ N′ and for j ∈ J we have

f (ιj · N′) 6` ¬N′, so using Proposition 2.12 we get f (ιj · N′) ≡ f (ιj · N′ ∧ N) ≡ f (ιj · N) ∧ N′.
The corresponding equivalence does not hold for f (ιj · N′), j 6∈ J . In this case we know

that f (ιj · N) ∧ N′ ` ⊥ so that
∧
j 6∈J

(f (ιj · N) ∧ N′ → θj) is a tautology. We start by proving∧
i∈J

(f (ιi · N′)→ θi) ∧
∧

j∈J∩IN
¬f (ιj · N′) `

∧
i∈J
¬f (ιi · N′).
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∧
i∈J

(f (ιi · N′)→ θi) ∧
∧

j∈J∩IN
¬f (ιj · N′)

≡
∧
i∈IC

(f (ιi · N) ∧ N′ → θi) ∧
∧

j∈J∩IN
¬f (ιj · N′)

≡N′ →
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

j∈J∩IN
¬f (ιj · N′)

` N′ →
∧
i∈IC

(f (ιi · N)→ θi) ∧ N′ →

(
N′ ∧

∧
j∈J∩IN

¬f (ιj · N′)

)
As N′ ` ¬f (ιi · N) for i ∈ IN \ J and f (ιj · N′) = f (ιj · N) for j ∈ J

` N′ →
∧
i∈IC

(f (ιi · N)→ θi) ∧ N′ →

( ∧
k∈IN \J

¬f (ιk · N) ∧
∧

j∈J∩IN
¬f (ιj · N)

)
≡N′ →

∧
i∈IC

(f (ιi · N)→ θi) ∧ N′ →
∧

j∈IN
¬f (ιj · N)

≡N′ →

( ∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

j∈IN
¬f (ιj · N)

)
using (*) and J ⊆ IC

` N′ →
(∧
i∈J
¬f (ιi · N)

)
≡
∧
i∈J
¬ (f (ιi · N) ∧ N′)

≡
∧
i∈J
¬f (ιi · N′)

∀j ∈ J ∩ IN∃δ ∈ Dj :
∧
i∈J

(f (ιi · N′)→ θi) ∧
∧

k∈J∩IN∧k≺ej

¬f (ιk · N′) ∧ f (ιj · N′) ` δ is proved

as follows. Let j ∈ J ∩ IN then

∧
i∈J

(f (ιi · N′)→ θi) ∧
∧

k∈J∩IN∧k≺ej

¬f (ιk · N′)∧ f (ιj · N′)

≡
∧
i∈IC

(f (ιi · N) ∧ N′ → θi) ∧
∧

k∈J∩IN∧k≺ej

¬f (ιk · N′)∧ f (ιj · N′)

≡N′ →
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

k∈J∩IN∧k≺ej

¬f (ιk · N′)∧ f (ιj · N′)

as f (ιi · N′) ≡ f (ιi · N) ∧ N′ for i ∈ J
≡ [N′ →

∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

k∈J∩IN∧k≺ej

¬f (ιk · N) ∧ f (ιj · N)] ∧ N′

`
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

k∈J∩IN∧k≺ej

¬f (ιk · N) ∧ f (ιj · N) ∧ N′

as N′ ` ¬f (ιi · N) for i ∈ IN \ J
`
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

k∈J∩IN∧k≺ej

¬f (ιk · N) ∧ f (ιj · N) ∧
∧

l∈IN \J
¬f (ιl · N)

`
∧
i∈IC

(f (ιi · N)→ θi) ∧
∧

k∈IN∧k≺ej

¬f (ιk · N) ∧ f (ιj · N)

Using (*) we know that there is a δ ∈ Dj such that the above formula entails δ which

concludes the proof.

Proposition 2.61. For all observations o Algorithm 1 terminates.
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Proof. The termination condition for the repeat loop is that αm from the rational prefix

construction ρR(o,N) = (αm, . . . , α0) must be a tautology. Proposition 2.51 yields that this

will definitely be the case if N is inconsistent. The contraposition of Proposition 2.50 yields

that if N is o-acceptable, then αm ≡ >, so in case during the iteration an o-acceptable core

has been constructed, the algorithm will terminate, as well.

So let N 6≡ ⊥ and αm 6≡ >, i.e., there will be another iteration. If we show that N 6` αm and

consequently N ∧ αm is strictly logically stronger, then this guarantees termination. This is

because the calculation of the conditional beliefs and the rational prefix construction do not

invent new propositional variables and as the language of o is finite, constructing strictly

stronger cores will either yield an acceptable core or N = ⊥ after finitely many iterations.

Assume N ` αm, but αm =
∧
Um. However, we argued that

∧
Um ≡

∧
i∈I
¬f (ιi · N) where

I is the index set of the ultimately exceptional positive conditionals which are collected in

Cm. Let f (ιi · N) ⇒ θi be one of these conditionals. So N ` ¬f (ιi · N) and as f (ιi · N) ` N
we have f (ιi · N) ` ¬f (ιi · N). Hence f (ιi · N) is inconsistent, but this is possible only if N is

inconsistent — contradiction, so N 6` αm

Proposition 2.62. Given as input an observation o, Algorithm 1 outputs the rational ex-

planation [ρR(o,N∨(o)),N∨(o)] for o, if an explanation for o exists. If no explanation exists

it outputs “no explanation”.

Proof. If o does not have an explanation, the algorithm will terminate with N ≡ ⊥ and hence

output “no explanation”. Assume N was consistent, then αm from ρR(o,N) = (αm, . . . , α0)

would have to be a tautology, but then we could apply Proposition 2.49 saying that N is

o-acceptable, contradicting that o has no explanation.

So assume o does have an explanation. We need to show two things. Firstly, if the algo-

rithm terminates with a consistent core N then its output [ρ,N] indeed matches the rational

explanation. Secondly, the algorithm indeed does terminate with a consistent core N.

So assume the algorithm terminates with a consistent core N. It suffices to show that

N ≡ N∨(o) as then ρR(o,N) is obviously equivalent to ρR(o,N∨(o)). N ` N∨(o) is trivial as

N is o-acceptable (Proposition 2.49) and any o-acceptable core entails N∨(o). So we need to

show N∨(o) ` N. As the algorithm terminated, it must have done so after k + 1 iterations

of calculating the rational prefix for the current core belief and calculating a new core belief

(in the last step the core does not change, as the old one is conjoined with a tautology). So

consider the sequence [ρ0,N0] , . . . , [ρk,Nk]. We need to show N∨(o) ` Nk as that is the core

in the output of the algorithm.

Note N∨(o) ` > so N∨(o) ` N0 as that is the core the algorithm starts off with. For the

inductive step let N∨(o) ` Ni and ρi = ρR(o,Ni) = (αm, . . . , α0). Now, Proposition 2.60 tells
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us that if N∨(o) does not entail αm then N∨(o) is not o-acceptable but N∨(o) actually is

o-acceptable. Hence N∨(o) must entail αm. Now, we have N∨(o) ` Ni and N∨(o) ` αm and

hence N∨(o) ` Ni+1 as Ni+1 = Ni ∧ αm.

This yields that N∨(o) indeed entails Nk as needed. We still need to show that the algorithm

indeed terminates with a consistent core. Assume it does not. As it always terminates

(Proposition 2.61), it will do so with an inconsistent core after k+1 iterations. So Nk ≡ ⊥. We

can now use the above argumentation that N∨(o) ` Ni for all i, so in particular N∨(o) ` Nk,
contradicting that N∨(o) is an o-acceptable core. Hence, the algorithm terminates with a

consistent core N.

A.2 Proofs from Chapter 3

Proposition 3.4. Let L be a propositional language and φ ∈ L. Let I be a set of natural

numbers, for each i ∈ I let λi(χ) be a parametrised formula based on L, αi = λi(χ)[χ/φ],

and α′i = λi(χ)[χ/x] where x 6∈ L, i.e., the propositional variable x is not contained in any

λi(χ) or φ. Then for all finite S ⊆ I∧
i∈S

αi ` ⊥ if and only if (x↔ φ) ∧
∧
i∈S

α′i ` ⊥.

Proof. If
∧
i∈S

αi 6` ⊥ then ∃m : m |=
∧
i∈S

αi. Note that x does not appear in
∧
i∈S

αi. Let

m′ ∼x m with m′ |= x if and only if m |= φ. Hence m′ |= (x↔ φ) and m′ |=
∧
i∈S

α′i.

If (x↔ φ)∧
∧
i∈S

α′i 6` ⊥ then ∃m : m |= (x↔ φ)∧
∧
i∈S

α′i. m |= x if and only if m |= φ. Hence

m |= α′i if and only if m |= αi. As a consequence m |=
∧
i∈S

αi.

Proposition 3.5. If [ρ,N] explains o[(χi/φi)i] and x is a propositional variable not appearing

in o, N, ρ or any φi then [ρ,N ∧ (x↔ φi)] explains o[χi/x, (χj/φj)j 6=i].

Proof. Let ιk(o) denote the sequence of the first k revision inputs from o. We will show

that for any parametrised formula λ possibly containing the unknown subformulae and not

containing the additional variable x

f (ρ · ιk(o[(χi/φi)i]) · N) `λ[(χi/φi)i] if and only if

f (ρ · ιk(o[χi/x, (χj/φj)j 6=i]) · N ∧ (x↔ φi)) `λ[χi/x, (χj/φj)j 6=i].

This immediately yields the desired result as this means the two correspond on any param-

etrised formula that can appear in the beliefs and non-beliefs recorded in the observation.
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First we will show that the two collect the same elements from ρ and from the corresponding

inputs in ιk(o[(χi/φi)i]) and ιk(o[χi/x, (χj/φj)j 6=i]). This is a simple induction over the

length of the sequence using Proposition 3.4. Note that any two corresponding formulae

from the two sequences behave like αi and α′i in that proposition — the two are equivalent

except for a different instantiation of χi.

The induction starts with proving N is accepted iff N ∧ (x ↔ φi) is accepted. This is the

case, as N does not contain x and we can apply Proposition 3.4 by taking α = N = α′ (N

is independent of χi). That way, if the core is consistent, the (x ↔ φi) necessary for the

proposition is introduced. Now assume the two have selected the corresponding elements up

to some point, then by Proposition 3.4 the one will accept αi if and only if the other accepts

α′i. Hence, the same elements are collected.

To see that both entail corresponding λs, we simply assume a further αj = ¬λ[(χi/φi)i] and

α′j = ¬λ[χi/x, (χj/φj)j 6=i] in Proposition 3.4 (ψ ` λ iff ψ ∧ ¬λ ` ⊥).

Proposition 3.6. If [ρ,N] explains o[(χi/φi)i] and x1, . . . , xn are propositional variables not

appearing in o, N, ρ or any φi then

[
ρ,N ∧

∧
1≤i≤n

(xi ↔ φi)

]
explains o[(χi/xi)i].

Proof. Apply proposition 3.5 n times each time replacing one χi by xi.

Proposition 3.8. Let λ(χ1, . . . , χn) be a parametrised formula based on L, ψ a formula and

x1, . . . , xn 6∈ L be n propositional variables not appearing in λ.

If λ[(χi/xi)i] ≡ α = ϕ ∧
∧

1≤j≤l
(θj ∨

∨
p∈Pj

xp ∨
∨

q∈Nj

¬xq)

for a natural number l, appropriate ϕ, θj ∈ L and subsets Pj , Nj of {1, . . . , n}, 1 ≤ j ≤ l,

then λ[(χi/xi ∧ ψ)i] ≡ α[(xi/xi ∧ ψ)i] = ϕ ∧
∧

1≤j≤l
(θj ∨

∨
p∈Pj

(xp ∧ ψ) ∨
∨

q∈Nj

¬(xq ∧ ψ)).

Proof. Note that α represents the CNF of the formula, where the clauses containing a vari-

able xi are explicitly represented. The proposition basically follows from the fact that any

equivalence transformation on λ[(χi/xi)i], so in particular those that lead to the CNF, can

also be carried out on λ[(χi/xi ∧ ψ)i].

Let λ[(χi/xi)i] ≡ α and let α′ denote α[(xi/xi ∧ ψ)i]. So assume λ[(χi/xi ∧ ψ)i] 6≡ α′, i.e.,

∃m such that (i) m |= λ[(χi/xi ∧ ψ)i] and m 6|= α′ or (ii) m 6|= λ[(χi/xi ∧ ψ)i] and m |= α′.

(i) Assume m |= ψ, then m |= xi∧ψ iff m |= xi, for all i. Hence m |= λ[(χi/xi)i], but m 6|= α

— contradiction to both being equivalent. So assume m 6|= ψ. Let m′ ∼{x1,...,xn} m such

that m′ |= ¬xi for all i. Then m′ |= λ[(χi/xi)i] but m 6|= α — contradiction to both being

equivalent. (ii) is proved analogously.
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Proposition 3.10. Let L be a finitely generated propositional language.

Let x1, . . . , xn 6∈ L be additional propositional variables.

Let N ∧ ψ be a formula such that N ∈ L and Cn(N) = Cn(N ∧ ψ) ∩ L.

Let σ = (αm, . . . , α1) be a sequence of formulae with

αi ≡ ϕi ∧
∧

1≤j≤li
(θij ∨

∨
p∈Pij

xp ∨
∨

q∈Nij

¬xq) such that ϕi, θij ∈ L

Let σ′ = (α′m, . . . , α
′
1) with α′i = αi[(xk/xk ∧ ψ)k], that is,

α′i ≡ ϕi ∧
∧

1≤j≤li
(θij ∨

∨
p∈Pij

(xp ∧ ψ) ∨
∨

q∈Nij

¬(xq ∧ ψ))

Then f (σ · N ∧ ψ) ≡ f (ψ · σ′ · N).

Proof. Due to Cn(N) = Cn(N ∧ ψ) ∩ L we can restrict ourselves to the case where N ∧ ψ is

consistent as otherwise the two are trivially equivalent.

We will show that for any C ⊆ {1, . . . ,m} we have N ∧ ψ ∧
∧
c∈C

αc ` ⊥ if and only if

N ∧
∧
c∈C

α′c ` ⊥. The proposition then follows from a simple induction over the length of σ

showing that both collect the corresponding elements from σ/σ′. Note that ψ ∧αj ≡ ψ ∧α′j
and ψ ∧ αj ` α′j . Adding ψ in f (ψ · σ′ · N) must be possible (otherwise f (σ · N ∧ ψ) would

have to be inconsistent which is not possible given N ∧ ψ is consistent) and make the two

formulae equivalent.

N ∧
∧
c∈C

α′c ` ⊥ implies N ∧ ψ ∧
∧
c∈C

αc ` ⊥ because ψ ∧ αj ` ψ ∧ α′j .

N ∧ ψ ∧
∧
c∈C

αc ` ⊥ implies N ∧
∧
c∈C

αc ` ¬ψ. We claim (and will later prove this claim) that

in this case N ∧
∧
c∈C

α′c ` ¬ψ. But then

N ∧
∧
c∈C

α′c ≡

N ∧
∧
c∈C

[
ϕc ∧

∧
1≤j≤lc

(θcj ∨
∨

p∈Pcj

(xp ∧ ψ) ∨
∨

q∈Ncj

¬(xq ∧ ψ))

]
≡

N ∧
∧
c∈C

[
ϕc ∧

∧
1≤j≤lc

(θcj ∨
∨

q∈Ncj

>)

]
.

Note that the last formula does not contain any xi and hence is an element of L. So

N ∧
∧
c∈C

[
ϕc ∧

∧
1≤j≤lc

(θcj ∨
∨

q∈Ncj

>)

]
` ¬ψ.

N ∧ ψ ` ¬
∧
c∈C

[
ϕc ∧

∧
1≤j≤lc

(θcj ∨
∨

q∈Ncj

>)

]
. But any θ ∈ L entailed by N ∧ ψ is already

entailed by N alone.

So N ` ¬
∧
c∈C

[
ϕc ∧

∧
1≤j≤lc

(θcj ∨
∨

q∈Ncj

>)

]
and hence N∧

∧
c∈C

[
ϕc ∧

∧
1≤j≤lc

(θcj ∨
∨

q∈Ncj

>)

]
` ⊥.

Using the above equivalences, this means N ∧
∧
c∈C

α′c ` ⊥ as needed, concluding this part of

the proof.
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We still need to prove the claim that N∧
∧
c∈C

αc ` ¬ψ implies N∧
∧
c∈C

α′c ` ¬ψ. Assume this

is not the case, that is there is an assignment m with m |= N∧
∧
c∈C

α′c and m |= ψ. Consider

an arbitrary α′c (c ∈ C). m |= ϕc ∧
∧

1≤j≤lc
(θcj ∨

∨
p∈Pcj

(xp ∧ ψ) ∨
∨

q∈Ncj

¬(xq ∧ ψ)). So m |= ϕc

further consider an arbitrary j : 1 ≤ j ≤ lc If m |=
∨

p∈Pcj

(xp ∧ ψ) then m |=
∨

p∈Pcj

xp and if

m |=
∨

q∈Ncj

¬(xq ∧ ψ)) then m |=
∨

q∈Ncj

¬xq. But this means m |= αc

So m |= αc for any c ∈ C and consequently m |= N ∧ ψ ∧
∧
c∈C

αc — contradiction.

Proposition 3.11. If [ρ,N] explains o[(χi/xi)i] then there exist N′ and ψ such that N′ does

not contain any xi and [ρ · ψ,N′] explains o[(χi/xi ∧ ψ)i].

Proof. Let L be the language the parametrised observation o is based on and xi 6∈ L for any

i. N′ and ψ such that N′ ∧ψ ≡ N and Cn(N′) = Cn(N′ ∧ψ)∩L can be constructed from N.

This is possible by transforming N into CNF, calculating the closure of all resolvents, which

is finite as L is finite. Then choose N′ such that it represents all clauses not containing any

xi and ψ to represent the rest. We can then apply Proposition 3.10 directly. Note that any

formula appearing in o[(χi/xi)i] can be written as α ≡ ϕ∧
∧

1≤j≤l(θj∨
∨
p∈Pj

xp∨
∨
q∈Nj

¬xq)
such that ϕ, θj ∈ L. This is because α is nothing but the conjunctive normal form of the

formula where the additional variables xi are explicitly represented. Proposition 3.8 further

yields that o[(χi/xi ∧ ψ)i] gives rise to the correct α′i that are used in 3.10.

By setting σ = ιj(o[(χi/xi)i]) and σ′ = ιj(o[(χi/xi ∧ ψ)i]) for all j, we get that for any

point in the observation both construct an equivalent formula before processing ρ, hence

the two initial epistemic states yield the same belief set at every step of the corresponding

observations.

Proposition 3.12. Let [ρ,N] be an explanation for o[(χi/φi)i] and [ρ′,N′] be the rational

explanation for o[(χi/xi)i], where xi are additional propositional variables not appearing in

any φi, N or the language L = L(o). Further let N′′ such that Cn(N′′) = Cn(N′) ∩ L.

Then N ` N′′.

Proof. Proposition 3.6 yields that
[
ρ,N ∧

∧
1≤i≤n xi ↔ φi

]
is an explanation for o[(χi/xi)i].

By Proposition 2.35 we get N ∧
∧

1≤i≤n xi ↔ φi ` N′ and hence N ∧
∧

1≤i≤n xi ↔ φi ` N′′.

Now assume N 6` N′′, i.e., there is an assignment m such that m |= N but m 6|= N′′. As

N′′ does not contain any xi we can construct an assignment m′ ∼{x1,...,xn} m such that

m′ |= N ∧
∧

1≤i≤n xi ↔ φi but m′ 6|= N′′ by setting m′ |= xi iff m |= φi. But this leads to a

contradiction to N ∧
∧

1≤i≤n xi ↔ φi ` N′′, so indeed N ` N′′.
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Proposition 3.13. Let [ρ,N] be the rational explanation for o[(χi/xi)i] and N′ such that

Cn(N′) = Cn(N) ∩ L(o).

Then N′ is the unique weakest o-acceptable core.

Proof. Proposition 3.12 yields that any o-acceptable core will entail N′ and (the proof of)

Proposition 3.11 tells us that N′ is indeed o-acceptable.

Proposition 3.15. If N1 is o1-acceptable for o1 = o[(χi/φ1
i )i] and N2 is o2-acceptable for

o2 = o[(χi/φ2
i )i] then there are formulae φ′1, . . . , φ

′
n such that N1 ∨ N2 is o′-acceptable for

o′ = o[(χi/φ′i)i].

Proof. Let L = L(o) and x1, . . . , xn 6∈ L be propositional variables not appearing in Nj
or φji , j ∈ {1, 2}, 1 ≤ i ≤ n. Proposition 3.6 yields that both N1 ∧

∧
1≤i≤n(xi ↔ φ1

i )

and N2 ∧
∧

1≤i≤n(xi ↔ φ2
i ) are o′′-acceptable with o′′ = o[(χi/xi)i]. Let ψj denote∧

1≤i≤n(xi ↔ φji ) . Proposition 2.35 yields that [ρ, (N1 ∧ ψ1) ∨ (N2 ∧ ψ2)] explains o′′ for

some ρ. The core can equivalently be written as (N1∨N2)∧ (N1∨ψ2)∧ (N2∨ψ1)∧ (ψ1∨ψ2).

Let ψ denote (N1∨ψ2)∧(N2∨ψ1)∧(ψ1∨ψ2). Hence we have (N1∨N2)∧ψ is o′′-acceptable. If

we can show that Cn((N1∨N2)∧ψ)∩L = Cn(N1∨N2) then we can apply Proposition 3.10 to

show that N1∨N2 is o′-acceptable for o′ = o[(χi/xi∧ψ)i]. By setting σ = ιj(o[(χi/xi)i]) and

σ′ = ιj(o[(χi/xi ∧ψ)i]) for all j, we get that for any point in the observation both construct

an equivalent formula before processing ρ, hence the two initial epistemic states yield the

same belief set at every step of the corresponding observations.

Let θ ∈ L. N1∨N2 ` θ implies (N1∨N2)∧ψ ` θ. So assume (N1∨N2)∧ψ ` θ and N1∨N2 6` θ.
This means ∃m : m |= N1 ∨ N2 but m 6|= θ. Without loss of generality assume m |= N1. Let

m′ ∼{x1,...,xn} m such that m′ |= xi if and only if m |= φ1
i . As a consequence m′ |= N1 and

m′ |=
∧

1≤i≤n(xi ↔ φ1
i ) and hence m′ |= (N1 ∨ N2) ∧ (N1 ∨ ψ2) ∧ (N2 ∨ ψ1) ∧ (ψ1 ∨ ψ2). In

other words, m′ |= (N1 ∨ N2) ∧ ψ and m′ 6|= θ, contradicting (N1 ∨ N2) ∧ ψ ` θ.

Proposition 3.17. Let o be a parametrised observation based on L. An explanation of

o restricted to L exists if and only if N ∧
∧

1≤i≤n
xi ↔ φi is o[(χi/xi)i]-acceptable for some

N, φi ∈ L and xi 6∈ L.

Proof. Assume there are instantiations φi ∈ L for the unknown subformulae χi in o such that

o[(χi/φi)i] has an explanation. Using the rational explanation construction on o[(χi/φi)i]

yields that in this case there must exist an explanation restricted to L, as that construc-

tion does not invent new variables and returns an explanation if one exists (Proposition

2.62). Let N be the corresponding core belief. Now, Proposition 3.6 immediately yields that

N ∧
∧

1≤i≤n
xi ↔ φi is o[(χi/xi)i]-acceptable.
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Now assume that N ∧
∧

1≤i≤n
xi ↔ φi is o[(χi/xi)i]-acceptable for some N, φi ∈ L and xi 6∈ L,

ρ being the rational prefix of o[(χi/xi)i] using that core belief. We can than use Proposition

3.4 to show that [ρ[(xi/φi)i],N] explains o[(χi/φi)i]. This is because we can think of ρ as

sequence equivalent to some ρ′[(χi/xi)i] and hence ρ[(xi/φi)i] ≡ ρ′[(χi/φi)i].

Proposition 3.23. Let o = 〈(ϕ1, θ1, D1), (ψ11,>, ∅), . . . , (ψ1m1 ,>, ∅),
(ϕ2, θ2, D2), (ψ21,>, ∅), . . . , (ψ2m2 ,>, ∅),
. . . ,

(ϕn−1, θn−1, Dn−1), (ψ(n−1)1,>, ∅), . . . , (ψ(n−1)mn−1
,>, ∅),

(ϕn, θn, Dn)〉
and ι′i(o) = (ϕ1, ψ11, . . . , ψ1m1 , ϕ2, . . . , ψ(i−1)mi−1

, ϕi) denote the prefix of ι(o) with ϕi being

the last element.

If [ρ,N] explains o, then it also explains

o′ = 〈(ϕ1, θ1, D1), (f (ι′2(o) · N) ,>, ∅),
(ϕ2, θ2, D2), (f (ι′3(o) · N) ,>, ∅),
. . . ,

(ϕn−1, θn−1, Dn−1), (f (ι′n(o) · N) ,>, ∅),
(ϕn, θn, Dn)〉.

Proof. It suffices to show that f
(
ϕ1, ψ11, . . . , ψ1m1 , ϕ2, . . . , ψ(i−1)mi−1

, ϕi,N
)

is equivalent to

f (ϕ1, f (ι′2(o) · N) , ϕ2, . . . , f (ι′i(o) · N) , ϕi,N). This implies that in both cases an equivalent

formula has been collected before processing ρ and hence the beliefs after receiving the ith

known input ϕi are the same in both cases.

By Proposition 2.3 f (ϕ1, f (ι′2(o) · N) , ϕ2, . . . , f (ι′i(o) · N) , ϕi,N) is equivalent to

f (ϕ1, f (ι′2(o) · N) , ϕ2, . . . , f (ι′i(o) · N) , f (ϕi,N)). Obviously, f (ι′i(o) · N) ` f (ϕi,N) so us-

ing Proposition 2.7 we get f (ϕ1, f (ι′2(o) · N) , ϕ2, . . . , f (ι′i(o) · N) , f (ϕi,N)) is equivalent to

f (ϕ1, f (ι′2(o) · N) , ϕ2, . . . , f (ι′i(o) · N)). Now, by the definition of ι′i(o) we know that

f
(
ϕ1, ψ11, . . . , ψ1m1 , ϕ2, . . . , ψ(i−1)mi−1

, ϕi,N
)

just the same as f (ι′i(o) · N), so if we can show

that f (ϕ1, f (ι′2(o) · N) , ϕ2, . . . , f (ι′i(o) · N)) is equivalent to f (ι′i(o) · N) we are done.

But this follows from the fact that each remaining formula is either already entailed by

f (ι′i(o) · N) or inconsistent with it. For the ϕj with j < i this is obvious. It appears in ι′i(o)

and hence is entailed or inconsistent (Proposition 2.6). For the f
(
ι′j(o) · N

)
, j < i, recall

the definition of ι′j(o). Clearly ι′j(o) is a prefix of ι′i(o), so either f (ι′i(o) · N) accepts all the

formulae accepted by f
(
ι′j(o) · N

)
in which case it is entailed by f (ι′i(o) · N), or f

(
ι′j(o) · N

)
accepts a formula f (ι′i(o) · N) rejects, in which case the two are inconsistent.

Proposition 3.25. If x 6∈ L(o1 · o2) and Cn(N) = Cn(N∨(o1 · 〈(x,>, ∅)〉 · o2)) ∩ L(o1 · o2)

then N∨(o1 · o2) ` N.



A.2. PROOFS FROM CHAPTER 3 163

Proof. N∨(o1 · o2) ≡ N∨(o1 · 〈(>,>, ∅)〉 · o2). The additional revision input > has no ef-

fect on the epistemic state whatsoever. By Proposition 3.5 N∨(o1 · 〈(>,>, ∅)〉 · o2) ∧ x is

o1 · 〈(x,>, ∅)〉 · o2 -acceptable and hence entails N∨(o1 · 〈(x,>, ∅)〉 · o2). So by Proposition

3.12 we know N∨(o1 · o2) ∧ x ` N, where Cn(N) = Cn(N∨(o1 · 〈(x,>, ∅)〉 · o2)). Applying

Proposition 3.4 we can show that every formula from L(o1 ·o2) that follows from N∨(o1 ·o2)∧x
is already entailed by N∨(o1 · o2).

Proposition 3.26. Let ρ = (ϕ1, . . . , ϕn) and σ = (ψ1, . . . , ψm). Then there exists a

σ′ = (ψ′1, . . . , ψ
′
n) such that f (σ · (ϕ1, . . . , ϕi,N)) ≡ f (σ′ · (ϕ1, . . . , ϕi,N)) for all 1 ≤ i ≤ n.

Proof. The proposition is trivial for n ≤ m. In this case we can simply set σ′ = σ ·(>, . . . ,>),

appending tautologies until σ′ has the right length. These tautologies have no impact on the

logical content of the formula constructed by f (Proposition 2.8).

Now assume m > n. Due to Proposition 2.3 it suffices to show f (σ · f (ϕ1, . . . , ϕi,N)) is

equivalent to f (σ′ · f (ϕ1, . . . , ϕi,N)). The proof of Proposition 2.27 tells us that for every

σ there is a logical chain behaving exactly as that sequence. We will now argue that a

logical chain of length at most n exists that behaves like σ at least for the required for-

mulae f (ϕ1, . . . , ϕi,N). Note that the above requirement translates into the observation

o = 〈(f (ϕ1) , f (σ · (ϕ1,N)) , ∅), . . . , (f (ϕ1, . . . , ϕn,N) , f (σ · f (ϕ1, . . . , ϕn,N)) , ∅)〉, i.e., all Di

are empty to start with. However, we interpret the f (σ · f (ϕ1, . . . , ϕn,N)) to be complete

characterisations of the beliefs. As there is a sequence σ giving rise to this observation, the

rational explanation construction must find one as well. Ultimately we will choose σ′ to be

the sequence calculated. We know the core belief N, so we can start the algorithm with the

correct instantiation of the core. The rational explanation of o (or rather the calculation

of ρR(o,N) the rational prefix of o with respect to N) need not yield the exact beliefs re-

quired. Assume there is an i such that λ = f (σ′ · f (ϕ1, . . . , ϕi,N)) is logically stronger than

f (σ · f (ϕ1, . . . , ϕi,N)) (which is possible only because f (σ′) is weaker than f (σ)). In that

case we simply add λ to Di and start again until the beliefs indicated in the observation are

exactly realised. This must be the case at some point since such a sequence exists.

Now, what length can σ′ have? There are n positive conditionals. At each iteration of the

rational closure algorithm (Definition 2.45) at least one positive conditional must leave Ci.
If not, all positive conditionals are p-exceptional and will remain so which implies that N is

not o-acceptable which it is. But if one positive conditional leaves Ci at every iteration, there

can be at most n non-tautological
∧
Ui and the tautologies at the beginning of the sequence

can be omitted.

A note on the case, where ρ contains intermediate inputs as well, i.e., where we try to replace

an earlier block of intermediate inputs. Here we need the equivalence of σ and σ′ only for
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those appended formulae f (ϕ1, . . . , ϕi,N) where ϕi is a recorded input. It does not matter

how many intermediate inputs there are between ϕ1 and ϕi. This is because we are not

interested in the beliefs after an intermediate input has been received but only those after

recorded inputs. And as shown above those intermediate inputs can be replaced by a block

of correct length that allows construction of an equivalent formula. That is, we can assume

to have an equivalent formula before σ is processed even if later intermediate inputs are

already replaced.

Now, the implication constructed from a positive conditional belief where the input is an

intermediate one is a tautology as the corresponding θ is one. However, if only a tautology is

eliminated from Ci, then all the remaining conditionals must remain exceptional. So the only

way to ensure termination is that in every iteration of the rational closure construction at

least one non-trivial positive conditional, i.e., one arising from a recorded revision input, is

satisfied. Hence the we need only as many intermediate inputs as recorded inputs appearing

later and can ignore intermediate inputs coming afterwards.

A.3 Proofs from Chapter 4

Proposition 4.4. Let (ϕi, ki), 1 ≤ i ≤ n, be a set of n revision inputs with corresponding

indexes. Further let N be a core belief and ρp, ρs and ρis, 1 ≤ i ≤ n, sequences such that

[ρp · ρs,N] ∗I (ϕ1, k1) ∗I . . . ∗I (ϕi, ki) =
[
ρp · ρis,N

]
for all 1 ≤ i ≤ n.

Then Bel([ρp · ρs,N] ∗I (ϕ1, k1) ∗I . . . ∗I (ϕi, ki)) = Bel([ρp,N] ∗I (f
(
ρis · N

)
, 1)) for all

1 ≤ i ≤ n .

Proof.

Bel([ρp · ρs,N] ∗I (ϕ1, k1) ∗I . . . ∗I (ϕi, ki)) = Bel(
[
ρp · ρis,N

]
) above condition

= Cn(f
(
ρp · ρis · N

)
) Definition 4.2

= Cn(f
(
ρp · f

(
ρis · N

))
) Proposition 2.3

= Cn(f
(
ρp · f

(
ρis · N

)
· N
)
) Proposition 2.7

= Bel([ρp,N] ∗I (f
(
ρis · N

)
, 1)) Definition 4.2

Proposition 4.10. Let ∗k ∈ {∗, ∗N} for all 1 ≤ k ≤ n. [ρ, ρN] explains

o = 〈((ϕ1, ∗1), θ1, D1), . . . , ((ϕi−1, ∗i−1), θi−1, Di−1),

((⊥, ∗N), θi, ∅),
((ϕi+1, ∗), θi+1, ∅), . . . , ((ϕj , ∗), θj , ∅),
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((ϕj+1, ∗N), θj+1, Dj+1),

((ϕj+2, ∗j+2), θj+2, Dj+2), . . . , ((ϕn, ∗n), θn, Dn)〉

if and only if it explains

o′ = 〈((ϕ1, ∗1), θ1, D1), . . . , ((ϕi−1, ∗i−1), θi−1, Di−1),

((ϕi+1, ∗),>, ∅), . . . , ((ϕj , ∗),>, ∅),
((ϕj+1, ∗N), θj+1, Dj+1),

((ϕj+2, ∗j+2), θj+2, Dj+2), . . . , ((ϕn, ∗n), θn, Dn)〉

Proof. First note that if there is no core revision input following ϕi ≡ ⊥, i.e. j = n, then the

observation ends after the record for the input ϕj and all the entries in o beginning with that

of the inconsistent core revision input are modified in order to obtain o′. Both observations

record exactly the same revision inputs in the same order using the same revision function,

the only exception being the additional inconsistent core revision input in o.

We will now look at the epistemic state of the agent after an arbitrary number of revision

steps according to o and the corresponding revisions steps in o′. With respect to o, the agent

may have received the additional inconsistent core revision input ϕi. We will see that the

beliefs are either equivalent or irrelevant implying that the epistemic state explains one of

the two observations if and only if it also explains the other one. We distinguish three cases.

• The agent has not received the inconsistent core revision input ϕi. In this case the

resulting epistemic state is identical for both observations — [ρ · σ1, ρN · σ2], where σ1

is the sequence of regular revision inputs and σ2 the sequence of core revision inputs

received up to that point. As the epistemic states are identical, the beliefs will be the

exactly the same.

• With respect to o the agent has received the inconsistent core revision input ϕi but

not yet the next core revision input ϕj+1. That is, the agent’s epistemic state is

[ρ · σ1, ρN · σ2 · ⊥] with the above interpretation of the σi. With respect to o′ where ϕi
is not recorded the epistemic state would be [ρ · σ1, ρN · σ2].

Note that in this case, the conditions for the epistemic states explaining an observation

are trivially satisfied. The beliefs in the first epistemic state are inconsistent, that is

any formula is entailed. The beliefs in the second one are irrelevant as any formula

entails a tautology. The non-beliefs in this case are empty sets, so we need not worry

about formulae that are not to be entailed by the agent’s beliefs.

• With respect to o, the agent has received the inconsistent core revision input ϕi

but also the next core revision input ϕj+1. In this case the epistemic states are
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[ρ · σ1, ρN · σ2 · ⊥ · σ3] and [ρ · σ1, ρN · σ2 · σ3]. Here σ2 is the sequence of core revi-

sion inputs received before ϕi ≡ ⊥ and σ3 the non-empty sequence of core revision

inputs received after ϕi. Due to Proposition 2.8 the additional contradiction has no

impact on the beliefs as it is inserted in a proper prefix of the argument sequence

passed to f . That is, the belief sets will be equivalent.



Appendix B

A Note on Computational

Complexity

In this chapter we want to investigate a few complexity related issues concerning observations

and their explanations. We already gave two complexity results. Propositions 2.31 and 2.52

state that deciding whether an epistemic state [ρ,N] explains an observation o as well as

deciding o-acceptability of a core belief N are both ∆P
2 -complete. Some problems for which

complexity results might also be interesting are whether a given core belief N is the weakest

o-acceptable core (N ≡ N∨(o)) and whether an explanation for o exists at all.

Using the rational explanation algorithm, these problems can be decided. We claimed that

this algorithm may not be suitable for giving a complexity bound of these problems as it

may need an exponential number of iterations. This would yield that these problems are

in EXPTIME. We will first illustrate the example requiring so many iterations and then

develop more specific (but not necessarily tight) complexity bounds for those two problems.

B.1 Why the rational explanation may need exponentially

many iterations

Consider the observation o = 〈(p1,>, ∅), . . . , (pn,>, ∅), (pn+1, θ, ∅)〉 where θ =
∧

1≤i≤n+1
¬pi.

All pj , 1 ≤ j ≤ n+1, are distinct propositional variables. o does not give rise to any negative

conditionals as Di = ∅ for all i.

The material counterparts of positive conditionals with index smaller than n + 1 will be

tautologies, no matter what the core will look like. This is because the consequent of every

such conditional is a tautology. That is, in the rational prefix construction
∧
C̃i ≡ > in

167
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case f (ι · N) ⇒ θ /∈ C,
∧
C̃i ≡ f (ι · N) → θ otherwise. As there are no negative conditionals

we have Ui = C̃i. We will start by showing that whenever there are ultimately exceptional

conditionals when using some core belief N, then αm =
∧
Um ≡ ¬f (ι · N). That is, in the

rational explanation algorithm the core belief N will be strengthened by ¬f (ι · N).

Let there be ultimately exceptional conditionals when constructing the rational prefix of o

with respect to some consistent core N. Assume the conditional with index n + 1 is not

among the ultimately exceptional ones. This implies αm =
∧
Um ≡ >. But no conditional

can be exceptional for Um as f (ιi · N) is consistent whenever N is — contradiction. So the

conditional with index n + 1 is among the ultimately exceptional ones. Using the above

remark we get
∧
Um =

∧
C̃m ≡ f (ι · N) → θ. Due to the exceptionality of the conditional

we know f (ι · N)→ θ ` ¬f (ι · N) which implies f (ι · N)→ θ ≡ ¬f (ι · N) as claimed.

From the structure of the observation it is obvious that as long as f (ι · N) ` pi for a single

i the core belief N cannot be o-acceptable, i.e., as long as N 6≡ θ. The agent cannot con-

sistently believe both pi and ¬pi. In this case there are ultimately exceptional conditionals

implying that the core belief in the next iteration will be N∧¬f (ι · N). As N is constructed

from variables appearing in o and due to Proposition 2.6 we know that f (ι · N) must be a

conjunction of literals for each variable pi, 1 ≤ i ≤ n+ 1. Hence, ¬f (ι · N) will always be a

disjunction of the negated literals.

The question is how N and f (ι · N) will evolve when starting the rational explanation algo-

rithm with N0 = >. The following table intends to illustrate that for the case n = 3. We

will not formally prove for arbitrary n that the evolution will be analogous, but the exam-

ple should make plausible that this is indeed the case. j is the number of the iteration in

the rational explanation construction. Nj is the core belief used in that iteration. f (ι · Nj)
the antecedent of the only relevant conditional and ¬f (ι · Nj) its negation. For the sake of

readability we will use pi instead of ¬pi.

j Nj f (ι · Nj) ¬f (ι · Nj)
0 > p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

1 p1 ∨ p2 ∨ p3 ∨ p4 p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

2 p2 ∨ p3 ∨ p4 p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

3 N2 ∧ (p1 ∨ p2 ∨ p3 ∨ p4) p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

4 p3 ∨ p4 p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

5 N4 ∧ (p1 ∨ p2 ∨ p4) p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

6 N4 ∧ (p2 ∨ p4) p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

7 N6 ∧ (p1 ∨ p4) p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

8 p4 p1 ∧ p2 ∧ p3 ∧ p4 p1 ∨ p2 ∨ p3 ∨ p4

...
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In the last complete row it is finally settled that the core belief must entail ¬p4. Note that

this core does not restrict any of the variables with subscript lower than 4. After another 3

iterations it will be clear that also ¬p3 must be entailed and N12 will be ¬p3 ∧¬p4. N14 will

be ¬p2 ∧ ¬p3 ∧ ¬p4 and N15 finally ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4.

This also shows that of the many (logically different) formulae from a finitely generated

language, only very few may be o-acceptable. In this example, only formulae equivalent to

the conjunction of the negation of all propositional variables work. This illustrates that even

if we are not after N∨(o) but are willing to settle for any o-acceptable core, the problem is

not easy. For an actual implementation much thought will have to be put in for a heuristic

generating candidate core beliefs.

B.2 Deciding whether o has an explanation

From the complexity point of view, the “problem” of the rational explanation algorithm is

that it goes deterministically through all potential core beliefs. If we were able to guess a core

belief (in a proper way) and and then just test whether it is o-acceptable, we would have a

non-deterministic algorithm with one ∆P
2 -oracle call1 which yields that o has an explanation

if and only if an o-acceptable core belief can be guessed. If this were possible, the problem

would belong to ΣP
2 as the single oracle call can be simulated. The general problem with

guessing formulae is that they are potentially exponential in size. That is, simply guessing

an arbitrary formula cannot be used for deriving that complexity bound. In order to restrict

the guess we make use of the particular structure of our problem. This will allow us to

impose restrictions on the potential core beliefs such that the size of the formula can be

polynomially bounded.

Assume the agent’s real epistemic state is [ρ,N] (N being consistent) and it gave rise to an

observation o = {(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)}. Consequently o has an explanation and an

o-acceptable core. Which role does N play for that observation? The main (and arguably

only) purpose of N is to select the correct inputs ϕj when calculating f (ϕ1, ..., ϕi,N) for all

1 ≤ j ≤ i ≤ n.2 That is, N determines for which ϕj we have f (ιi · N) ` ϕj and for which

we have f (ιi · N) ` ¬ϕj . Formally, we can capture this impact of N for the observation as

follows.

1Recall that deciding o-acceptability of a given core belief is ∆P
2 -complete.

2The proof of Proposition B.3 reveals that the remaining beliefs at every point during the observation

caused by the core can be simulated by adding the core to the sequence of the epistemic state. That is, the

part of N irrelevant for the observation can be absorbed by ρ.



170 APPENDIX B. A NOTE ON COMPUTATIONAL COMPLEXITY

Definition B.1. Let o = {(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)} be an observation and N a core

belief. We then define for all 1 ≤ i ≤ n

Ai(o,N) = {j ∈ {1, . . . , i} | ϕj is accepted in the calculation of f (ιi · N)} and

Ri(o,N) = {j ∈ {1, . . . , i} | ϕj is rejected in the calculation of f (ιi · N)}.

We call AR(o,N) = ((A1(o,N), R1(o,N)), . . . , (An(o,N), Rn(o,N))) the AR-characteristic of

N with respect to o.

When core belief and observation are fixed, we will omit “(o,N)” and simply write Ai and Ri.

Given an observation o and a consistent core belief N, the corresponding AR-characteristic

will satisfy the following obvious properties for all 1 ≤ i ≤ n. The first two express that every

ϕj in question must have been accepted or rejected and none can have been both accepted

and rejected (c.f. Proposition 2.6). The last two say that accepted formulae must be believed

and that of rejected formulae the negation must be believed.

• Ai ∪Ri = {1, . . . , i}

• Ai ∩Ri = ∅

• f (ιi · N) `
∧
j∈Ai

ϕj

• f (ιi · N) `
∧
j∈Ri

¬ϕj

Given the first two properties, Ai can be constructed from Ri and vice versa. Instead of

guessing a potential core belief we will guess a potential AR-characteristic (or equivalently

only the Ai), construct a corresponding core belief and test whether it is o-acceptable. Note

that given an observation with n recorded revision inputs, the AR-characteristic contains

n pairs, each pair containing sets with at most n elements.3 We want to stress that not

every sequence of pairs satisfying the first two conditions is the AR-characteristic of some

core belief for some observation. Consider ((∅, {1}), ({1, 2}, ∅)). It expresses that the first

revision input recorded was immediately rejected when received. This implies N ` ¬ϕ1. But

then after receiving the second input, it is suddenly believed, so in particular N 6` ¬ϕ1. This

is clearly impossible. In the current context, this is not a relevant problem. An explanation

for o exists if and only if there is an AR-characteristic that works for some core belief. We

will now give a condition relating a core belief to its AR-characteristic. This will allow us to

construct a core belief from a potential AR-characteristic.

3In order for the first two conditions to be satisfied, the first pair contains exactly one number, the second

two, etc. So the AR-characteristic will contain exactly n(n+ 1)/2 numbers.
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Proposition B.2. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation and N a core

belief. Further let AR = ((A1, R1), . . . , (An, Rn)) be the AR-characteristic of N with respect

to o. Then for all 1 ≤ i ≤ n and for all l ∈ Ri

N `

( ∧
j∈Ai∧j>l

ϕj ∧
∧

k∈Ri∧k>l
¬ϕk

)
→ ¬ϕl.

Proof. (Sketch) We will show that if this condition is violated, then AR cannot be the

AR-characteristic of N with respect to o. Assume this condition is violated for some i

and some l, i.e. N 6`

( ∧
j∈Ai∧j>l

ϕj ∧
∧

k∈Ri∧k>l
¬ϕk

)
→ ¬ϕl. We consider the calculation

of f (ϕ1, . . . , ϕi,N) which is equivalent to f (ϕ1, . . . , ϕl, f (ϕl+1, . . . , ϕi,N)) (Proposition 2.3).

Now f (ϕl+1, . . . , ϕi,N) ≡ N ∧
∧

j∈Ai∧j>l
ϕj ∧

∧
k∈Ri∧k>l

¬ϕk, as the AR-characteristic tells us

which revision inputs are accepted and which are rejected. Due to the above assumption,

this formula does not entail ¬ϕl (α ` (β1 → β2) iff α1 ∧ β1 ` β2). But this means ϕl is

accepted contradicting l ∈ Ri!

This proposition informs us about a number of formulae that must be entailed by the core

belief. The next one expresses that these formulae suffice to construct a core with the

same AR-characteristic. This will allow us to construct an o-acceptable core from the AR-

characteristic of some (unknown) o-acceptable core.

Proposition B.3. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 be an observation, N an o-ac-

ceptable core and AR = ((A1, R1), . . . , (An, Rn)) the corresponding AR-characteristic. Let

ψil =

( ∧
j∈Ai∧j>l

ϕj ∧
∧

k∈Ri∧k>l
¬ϕk

)
→ ¬ϕl.

Then ψ =
∧
{ψil | 1 ≤ i ≤ n, l ∈ Ri} is o-acceptable. Further if N ≡ N∨(o) then N ≡ ψ.

Proof. (Sketch) By Proposition B.2 we immediately have N ` ψ. If we can show that ψ is

o-acceptable the second part is trivial as all o-acceptable cores entail N∨(o).

The proof of ψ being o-acceptable is based on the following idea. As N is o-acceptable

there is a sequence ρ such that [ρ,N] explains o. We will show for all 1 ≤ i ≤ n that

f (ιi · N) ≡ f (N · ιi · ψ) which yields that [ρ · N, ψ] also explains o as both have constructed

the same formula before processing ρ.

Let i be an arbitrary element of {1, . . . , n}. As N is o-acceptable it is consistent and hence ψ is

consistent (N ` ψ). So both f (ιi · N) and f (N · ιi · ψ) select the last element of the argument

sequence. Assume they both have selected the same elements from ιi down to l + 1. So

f (ϕl+1, . . . , ϕi,N) and f (ϕl+1, . . . , ϕi, ψ) both entail
∧

k∈Ai∧k>l
ϕk and

∧
k∈Ri∧k>l

¬ϕk. If f (ιi · N)

rejects ϕl then l ∈ Ri. Hence, ψ ` ψil, f (ϕl+1, . . . , ϕi, ψ) is inconsistent with ϕl and so it will
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also be rejected by f (N · ιi · ψ). If f (N · ιi · ψ) rejects ϕl then ψ ∧
∧

k∈Ai∧k>l
ϕk ∧

∧
k∈Ri∧k>l

¬ϕk

entails ¬ϕl and as N ` ψ also f (ϕl+1, . . . , ϕi,N) = N ∧
∧

k∈Ai∧k>l
ϕk ∧

∧
k∈Ri∧k>l

¬ϕk entails

¬ϕl. This means f (ιi · N) also rejects ϕl.

As both select the same elements from ιi and N ` ψ we know that f (ιi · ψ) is consistent with

N. Propositions 2.10 and 2.12 now yield that f (N · ιi · ψ) ≡ f (ιi · ψ)∧N ≡ f (ιi · ψ ∧ N). As

N ` ψ this is equivalent to f (ιi · N) as claimed.

Note that ψ is polynomial in the length of o. This is because there are n sets Ri and each

contains at most n numbers. Consequently there are at most n2 formulae ψil. Each ψil is an

implication from the conjunction of at most n − 1 formulae bounded by the length of o to

one such formula. We are now ready to give an improved complexity result for the decision

problem whether an observation o has an explanation.

Proposition B.4. Deciding whether an observation o has an explanation is in ΣP
2 .

Proof. It suffices to give a non-deterministic algorithm. We guess a potential AR-character-

istic. This can be done by guessing n bit sequences of length 1, . . . , n. The jth bit in the ith

bit sequence expresses whether j ∈ Ai. Then ψ can be constructed according to Proposition

B.3 which can be done deterministically in polynomial time. Finally we check o-acceptability

of ψ in polynomial time using NP -oracle calls (Proposition 2.52).

If o has an explanation then there is an o-acceptable core with a corresponding AR-character-

istic. This will be among the guesses and hence the algorithm returns true as an o-acceptable

core was constructed and tested (Proposition B.3). The algorithm returns true only if an

explanation exists as an o-acceptable core must have been constructed for the o-acceptability

test to succeed.

Currently it is open whether this problem is also ΣP
2 -hard.

B.3 Deciding whether N ≡ N∨(o)

Now that we have a proper methodology of guessing a potential core belief, it is relatively

easy to transfer the complexity result to the question of whether a given core belief is indeed

N∨(o). We will start with the simplified case where we know whether the given observation

can be explained at all or not.

Given an observation o which has no explanation (and hence N∨(o) = ⊥ by definition)

and a core N, deciding N∨(o) ≡ N is coNP -complete as that decision problem is simply an
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unsatisfiability test. Given an observation o which has an explanation and a core N, deciding

N∨(o) ≡ N is in ΠP
2 . We will show this by proving that the complement, deciding whether

N is not the weakest o-acceptable core, is in ΣP
2 .

N is not the weakest o-acceptable core belief if and only if (i) N is not o-acceptable or (ii)

there exists an o-acceptable core N′ and N′ 6` N (any o-acceptable core entails N∨(o)). (i)

is in ∆P
2 and (ii) can be tested as follows. We guess potential core beliefs by guessing

their AR-characteristic, construct the corresponding ψ, test if ψ is o-acceptable. If so we

check satisfiability of ψ ∧ ¬N. If this is satisfiable then ψ 6` N and hence N cannot be the

weakest core belief. In particular we can guess the real N∨(o) — by Proposition B.3 the

corresponding ψ is equivalent to N∨(o). Except for the guessing of N∨(o) all steps can be

done deterministically in polynomial time with NP -oracle calls.

But what if we do not know the status of o? Given an observation o and a core belief N,

deciding N∨(o) ≡ N is in ΠP
3 . It may be surprising that the lack of knowledge about the

o-acceptability of N should make such a difference. However, we could not find an algorithm

in a lower complexity class (which does not imply that none exists). Again, we will show

that the complement, deciding N∨(o) 6≡ N is in ΣP
3 .

N∨(o) 6≡ N if and only if (i) o has no explanation and N is satisfiable, (ii) o has an explanation

but N is not o-acceptable, or (iii) o has an explanation, N is o-acceptable and there is a core

N′ such that N′ 6` N (in particular N′ = N∨(o)). Note that a formula ϕ is consistent if and

only if 〈(>, ϕ, ∅)〉 has an explanation. So we can use this oracle also for checking satisfiability

of a formula.

A possible non-deterministic algorithm (with ΣP
2 -oracles) could start by checking whether

o has an explanation (one oracle call). If not then satisfiability of N (one oracle call) cor-

responds to the answer of the decision problem (this deals with case (i)). If o has an ex-

planation, we can simulate the test for o-acceptability of N as that is in ∆P
2 . If N is not

o-acceptable then N 6≡ N∨(o) (case (ii)). Up to this point non-determinism was not used. If

N is o-acceptable we guess all possible AR-characteristics and construct the corresponding

cores ψ (according to Proposition B.3). The answer to the decision problem is yes if one

guess yields an o-acceptable ψ for which ψ 6` N.

Again, hardness of the problems is still open.
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Appendix C

Algorithms

In this thesis, we have verbally described a number of procedures. Several functions have

also been given via definitions. In this chapter, we want to collect the pseudo-code of the

most important algorithms. We did not include this in the main text for a number of reasons.

Firstly, at the core of this work are the formal results. The algorithms are derived from these

results and presenting them in the main text could be distracting. Secondly, presenting them

all in one chapter should help possible implementers of the described methods. Here they

find a compact representation of what needs to be done for building a system that reasons

about an observed agent. Starting with this overview, they can refer to the main text for

clarifying descriptions of the methods. Conversely, the “academic” reader can refer to this

chapter for a compact representation of the methods described in the text. The notation

used in the algorithms requires little explanation. x⇐ y denotes that x is assigned the value

of y.

C.1 Basic functions

Once more, we will start with the basic operations of the assumed belief revision framework.

For f we will give an iterative and a recursive version. Recall that the argument sequence is

assumed to be non-empty.

Function f(α1, . . . , αm)

λ⇐ αm

i⇐ m− 1
while i ≥ 1 do

if λ ∧ αi 6` ⊥ then λ⇐ λ ∧ αi end
i⇐ i− 1

end
return λ

Function f(α1, . . . , αm)

switch case of m do
case m = 1 return α1

case m = 2
if α1 ∧ α2 ` ⊥ then return α2

else return α1 ∧ α2

end
otherwise return
f (α1, f (α2, . . . , αm))

end

175
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The following function is trivial, as the definition of the revision function is very simple. We

include the function for completeness and will not use it in what follows. Instead we use the

result of the function directly. For convenience, we extend this definition to revision by a

sequence σ = (ϕ1, . . . , ϕn) of formulae with the obvious meaning. The prefix notation may

look strange but should not confuse the reader.

Function ∗([ρ,N] , ϕ)

return [ρ · ϕ,N]

Function ∗([ρ,N] , σ)

return [ρ · σ,N]

Rather than the agent’s belief set, here Bel([ρ,N]) is intended to be the formula representing

that set. We use the same function name for the belief trace, but as the two functions are

of different type they can easily be distinguished. Whereas the beliefs are calculated from

an epistemic state, the belief trace needs an additional argument — a sequence of revision

inputs.

Function Bel([ρ,N])

return f (ρ · N)

Function Bel([ρ,N] , (ϕ1, . . . , ϕn))

α0 ⇐ Bel([ρ,N])
for i = 1 to n do αi ⇐ Bel([ρ · (ϕ1, . . . , ϕi),N]) end
return (α0, . . . , αn)

The functions presented so far allow us to check whether a given epistemic state explains an

observation.

Algorithm Does [ρ,N] explain o?

Input: o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 and [ρ,N]

if N ` ⊥ then answer ⇐ no else answer ⇐ yes end
(α0, . . . , αn)⇐ Bel([ρ,N] , (ϕ1, . . . , ϕn))
for i = 1 to n do

if αi 6` θi then answer ⇐ no end
foreach δ ∈ Di do

if αi ` δ then answer ⇐ no end
end

end
return answer

C.2 Rational closure

The following functions calculate the positive and negative conditionals given an observation

o and a core belief N. In the main text, we wrote CN(o) instead of C(o,N) and NN(o) instead

of N (o,N). For optimisations the conditionals could be labelled with their index. If several

observations are to be explained using the same state, the label would also have to indicate

which observation the conditional was obtained from.

Function C(〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉,N)
C ⇐ ∅
for i = 1 to n do C ⇐ C ∪ {f ((ϕ1, . . . , ϕi) · N)⇒ θi} end
return C



C.2. RATIONAL CLOSURE 177

Function N(〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉,N)
N ⇐ ∅
for i = 1 to n do

foreach δ ∈ Di do N ⇐ N ∪ {f ((ϕ1, . . . , ϕi) · N)⇒ δ} end
end
return N

Before turning to the rational closure, we first give some auxiliary functions. mat(C) returns

the material counterparts of the conditionals in C. In the main text they were denoted by

C̃. pex(U, C) returns the subset of conditionals of C that is p-exceptional for U . nex(U,N)

returns the subset of conditionals of N that is n-exceptional for U .

Function mat(C)
C̃ ⇐ ∅
foreach λ⇒ µ ∈ C do C̃ ⇐ C̃ ∪ {λ→ µ} end
return C̃

Function pex(U, C)
S ⇐ ∅
foreach λ⇒ µ ∈ C do

if U ` ¬λ then S ⇐ S ∪ {λ⇒ µ} end
end
return S

Function nex(U,N)

S ⇐ ∅
foreach λ⇒ µ ∈ N do

if U ∪ {λ} ` µ then S ⇐ S ∪ {λ⇒ µ} end
end
return S

As mentioned in the main text, the rational closure construction works for arbitrary sets of

positive and negative conditionals. The following reformulation of the algorithm given in

[14] is not yet optimised for dealing with conditionals obtained from an observation.1

Algorithm sequence ρR(C,N ) corresponding to the rational closure of C and N
Input: a set of positive conditionals C and a set of negative conditionals N
C0 ⇐ C
N0 ⇐ N
i⇐ 0
repeat

Ui ⇐ mat(Ci)

S ⇐ nex(Ui,Ni)

T ⇐ Ni

repeat
foreach λ⇒ µ ∈ S do Ui ⇐ Ui ∪ {¬λ} end
T ⇐ T \ S
S ⇐ nex(Ui, T)
/* only conditionals in T could have additionally become

n-exceptional by enlarging Ui */

until S = ∅
Ci+1 ⇐ pex(Ui, Ci)

Ni+1 ⇐ nex(Ui,Ni)

i⇐ i+ 1
until Ci = Ci−1 and Ni = Ni−1

return (
∧
Ui−1, . . . ,

∧
U0)

1For example, when calculating Ni+1 we could simply take all the negative conditionals that belonged to

S in the innermost repeat-loop. The negations of their antecedents were added to Ui. Further, T would only

have to to contain those negative conditionals whose index was not yet contained in S as conditionals with

the same index are either all exceptional or all not exceptional.
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C.3 Rational explanation

The following algorithm calculates the rational prefix ρR(o,N) of an observation o with

respect to a given core belief N. Abusing notation, we can extend this algorithm to a set

of observations O which started in the same initial state. Note that ρR(O,N) need not be

equivalent to the rational prefix of any observation contained in O.

Algorithm rational prefix ρR(o,N)

Input: o and N

C ⇐ C(o,N)
N ⇐ N (o,N)
return ρR(C,N )

Algorithm rational prefix ρR(O,N)

Input: set O of observations and N

C ⇐
⋃
{C(o,N) | o ∈ O}

N ⇐
⋃
{N (o,N) | o ∈ O}

return ρR(C,N )

This allows for testing whether a given core belief is o-acceptable for a given observation or

acceptable for a set of observations O starting in the same state.

Algorithm Is N o-acceptable?

Input: observation o and core N

answer ⇐ no
ρ⇐ ρR(o,N)
/* now ρ = (αm, . . . , α0) */

if αm ≡ > then answer ⇐ yes end
return answer

Algorithm Is N acceptable for O?

Input: set O of observations and core N

answer ⇐ no
ρ⇐ ρR(O,N)
/* now ρ = (αm, . . . , α0) */

if αm ≡ > then answer ⇐ yes end
return answer

In the following we will denote the rational explanation of an observation o by ratexp(o).

Abusing notation, we can also define the rational explanation of a set of observations O

starting in the same initial state which we will denote by ratexp(O). Again this need not

be the rational explanation for any observation in o.

Algorithm rational explanation of o

Input: observation o
Output: ratexp(o)

N⇐ >
repeat

ρ⇐ ρR(o,N) /* ρ = (αm, . . . , α0) */

N⇐ N ∧ αm

until αm ≡ >
return [ρ,N] if N 6≡ ⊥, “no explanation” otherwise

Algorithm rational explanation of O

Input: set O of observations
Output: ratexp(O)

N⇐ >
repeat

ρ⇐ ρR(O,N) /* ρ = (αm, . . . , α0) */

N⇐ N ∧ αm

until αm ≡ >
return [ρ,N] if N 6≡ ⊥, “no explanation” otherwise
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If additional information about the core belief is given, slight variants of the rational ex-

planation construction may be needed. If the core is known to entail a formula λ then N

is initialised with λ rather than with >. The result is an explanation using the weakest

acceptable core belief entailing λ. We will denote this explanation with ratexp`(O, λ). If

the core is known to be λ then we simply complete the explanation using the rational prefix

construction. This explanation will be denoted by ratexp≡(O, λ).

Algorithm explanation for O such that core entails λ

Input: set O of observations and λ
Output: ratexp`(O, λ)

N⇐ λ
repeat

ρ⇐ ρR(O,N) /* ρ = (αm, . . . , α0) */

N⇐ N ∧ αm

until αm ≡ >
return [ρ,N] if N 6≡ ⊥, “no such explanation” otherwise

Algorithm explanation for O such that core is λ

Input: set O of observations and N
Output: ratexp≡(O, λ)

ρ⇐ ρR(O,N) /* ρ = (αm, . . . , α0) */

return [ρ,N] if αm ≡ >, “no such explanation” otherwise

C.4 Conclusions about A and hypothetical reasoning

We now turn to conclusions we draw about an agent based on an observation, first basing

them on the rational explanation and later testing whether they are safe. Throughout this

section we assume the observation o to have the form o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉.
That is, ϕi denotes the ith revision input and θi the known beliefs after its having been

received etc.

conclusions based on the rational explanation

An important question is whether a particular revision input is accepted or rejected by the

agent. We give the general case for an arbitrary formula ϕ. If this formula is one of the

inputs recorded in o then we are told whether the agent accepted or rejected that input.

Algorithm Is ϕ accepted or rejected?

Input: o and ϕ

if o has no explanation then
answer ⇐ o has no explanation

else
[ρ,N]⇐ ratexp(o)
if N ` ¬ϕ then answer ⇐ ϕ is rejected else answer ⇐ ϕ is accepted end

end
return answer
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The following algorithms are slightly more complicated than they need to be. We present

them in this way in order to make explicit that conclusions about the beliefs of an agent at

a certain point during the observation o are based on the belief trace calculated from o.

Algorithm beliefs in initial state

Input: o

if o has no explanation then
answer ⇐ o has no explanation

else
[ρ,N]⇐ ratexp(o)
(α0, . . . , αn)⇐ Bel([ρ,N] , (ϕ1, . . . , ϕn))
answer ⇐ α0

end
return answer

Algorithm beliefs after receiving ϕi

Input: o and i

if o has no explanation then
answer ⇐ o has no explanation

else
[ρ,N]⇐ ratexp(o)
(α0, . . . , αn)⇐ Bel([ρ,N] , (ϕ1, . . . , ϕn))
answer ⇐ αi

end
return answer

Apart from the beliefs during o one might also be interested in beliefs after further revision

steps or after an alternative revision sequence starting in the same initial state. Note that

the first is a special case of the second algorithm.

Algorithm beliefs after a further revision sequence σ

Input: o and σ

if o has no explanation then
answer ⇐ o has no explanation

else
[ρ,N]⇐ ratexp(o)
answer ⇐ Bel([ρ · (ϕ1, . . . , ϕn) · σ,N])

end
return answer

Algorithm beliefs after an alternative revision sequence σ

Input: o and σ

if o has no explanation then
answer ⇐ o has no explanation

else
[ρ,N]⇐ ratexp(o)
answer ⇐ Bel([ρ · σ,N])

end
return answer

These questions can be answered using any explanation of o. It does not have to be the

rational explanation. This is only one possible way of generating these hypotheses. We gave

algorithms for the case where there is only one observation. It should be clear that the only

line that would need to be modified for drawing conclusions from multiple observations is

[ρ,N]⇐ ratexp(o). The algorithm then receives a set O of observations and uses ratexp(O)

instead of ratexp(o).
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conclusions that are safe with respect to all possible explanations

These conclusions might not be safe with respect to all possible explanations (and hence

with respect to the agent’s actual initial state). We will present the general case where a

set O of observations is given. O could be a singleton set {o} which corresponds to the case

mainly investigated in this thesis.

Note that we first have to test whether we can draw the conclusions at all. This is why the

rational explanation for O is calculated first. Possibly, this is already a counterexample. If

not then O is modified according to the hypothesis. We start with the question whether

a certain revision input ϕ is accepted or rejected by A. That formula might be one of the

recorded inputs.

Algorithm Is ϕ (necessarily) accepted?

Input: O and ϕ

if O has no explanation then
answer ⇐ O has no explanation

else
[ρ,N]⇐ ratexp(O)
if N 6` ¬ϕ then

O′ ⇐ O ∪ {〈(ϕ,>, {ϕ})〉}
if O′ has explanation then

answer ⇐ no
else

answer ⇐ yes
end

else
answer ⇐ no

end

end
return answer

Algorithm Is ϕ (necessarily) rejected?

Input: O and ϕ

if O has no explanation then
answer ⇐ O has no explanation

else
[ρ,N]⇐ ratexp(O)
if N ` ¬ϕ then

answer ⇐ yes
else

answer ⇐ no
end

end
return answer

Algorithm Was θ (necessarily) believed at point 0 ≤ i ≤ n during o?

Input: O, o ∈ O, i and θ

if O has no explanation then
answer ⇐ O has no explanation

else
[ρ,N]⇐ ratexp(O)
(α0, . . . , αn)⇐ Bel([ρ,N] , (ϕ1, . . . , ϕn))
if αi ` θ then

ϕ0 ⇐ >, θ0 ⇐ >, D0 ⇐ ∅
o′ ⇐ 〈(ϕ0, θ0, D0)〉 · o
Di ⇐ Di ∪ {θ}
/* o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉, ith entry in o′ modified */

if O ∪ {o′} has explanation then answer ⇐ no else answer ⇐ yes end
else

answer ⇐ no
end

end
return answer
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Algorithm Was δ (necessarily) not believed at point 0 ≤ i ≤ n during o?

Input: O, o ∈ O, i and δ

if O has no explanation then
answer ⇐ O has no explanation

else
[ρ,N]⇐ ratexp(O)
(α0, . . . , αn)⇐ Bel([ρ,N] , (ϕ1, . . . , ϕn))
if αi 6` δ then

ϕ0 ⇐ >, θ0 ⇐ >, D0 ⇐ ∅
o′ ⇐ 〈(ϕ0, θ0, D0)〉 · o
θi ⇐ θi ∧ δ
/* o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉, ith entry in o′ modified */

if O ∪ {o′} has explanation then answer ⇐ no else answer ⇐ yes end
else

answer ⇐ no
end

end
return answer

The next two tests deal with beliefs and non-beliefs held by the agent after an arbitrary

revision sequence σ starting in the initial state. Note that these subsume the above tests by

letting σ = (ϕ1, . . . , ϕi) .

Algorithm Would θ (necessarily) be believed after the revision sequence σ?

Input: O, σ = (ψ1, . . . , ψm) and θ

if O has no explanation then
answer ⇐ O has no explanation

else
[ρ,N]⇐ ratexp(O)
α⇐ Bel([ρ · σ,N])
if α ` θ then

o′ ⇐ 〈(ψ1,>, ∅), . . . , (ψm,>, {θ})〉
if O ∪ {o′} has explanation then answer ⇐ no else answer ⇐ yes end

else
answer ⇐ no

end

end
return answer

Algorithm Would δ (necessarily) be not believed after the revision sequence σ?

Input: O, σ = (ψ1, . . . , ψm) and δ

if O has no explanation then
answer ⇐ O has no explanation

else
[ρ,N]⇐ ratexp(O)
α⇐ Bel([ρ · σ,N])
if α 6` δ then

o′ ⇐ 〈(ψ1,>, ∅), . . . , (ψm, δ, ∅)〉
if O ∪ {o′} has explanation then answer ⇐ no else answer ⇐ yes end

else
answer ⇐ no

end

end
return answer
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weaker notions of safety

There are cases where the above notion of safety is too strong. For example, if further

information about the core belief is available, not all explanations need to be considered but

only those corresponding to the additional information. In the following we will only give

some examples. The other cases are analogous to the ones above. Note that σ is always an

alternative revision sequence, i.e., it starts in the same initial state as all observations in O.

(i) A’s core belief is known to entail λ.

Algorithm Would ϕ (necessarily) be accepted given N ` λ?

Input: O, ϕ, λ

if O has no explanation such that N ` λ then
answer ⇐ O has no such explanation

else
[ρ,N]⇐ ratexp`(O, λ)
if N 6` ¬ϕ then

O′ ⇐ O ∪ {〈(ϕ,>, {ϕ})〉}
if O′ has explanation such that N ` λ then answer ⇐ no else answer ⇐ yes end

else
answer ⇐ no

end

end
return answer

Algorithm Would δ (necessarily) be not believed after the revision sequence σ given N ` λ?

Input: O, σ = (ψ1, . . . , ψm), δ and λ

if O has no explanation such that N ` λ then
answer ⇐ O has no such explanation

else
[ρ,N]⇐ ratexp`(O, λ)
α⇐ Bel([ρ · σ,N])
if α 6` δ then

O′ ⇐ O ∪ 〈(ψ1,>, ∅), . . . , (ψm, δ, ∅)〉
if O′ has explanation such that N ` λ then answer ⇐ no else answer ⇐ yes end

else
answer ⇐ no

end

end
return answer

(ii) A’s core is known not to entail λ. Here we simply calculate rational explanation. If

N∨(O) — the core belief in ratexp(O) — does not entail λ then a counterexample is found.

Algorithm Would ϕ (necessarily) be rejected given N 6` λ?

Input: O, ϕ and λ

if O has no explanation or N∨(O) ` λ then
answer ⇐ O has no such explanation

else
[ρ,N]⇐ ratexp(O)
if N ` ¬ϕ then answer ⇐ yes else answer ⇐ no end

end
return answer
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Algorithm Would θ (necessarily) be believed after the revision sequence σ given N 6` λ?

Input: O, σ = (ψ1, . . . , ψm), θ and λ

if O has no explanation or N∨(O) ` λ then
answer ⇐ O has no such explanation

else
[ρ,N]⇐ ratexp(O)
α⇐ Bel([ρ · σ,N])
if α ` θ then

O′ ⇐ O ∪ {〈(ψ1,>, ∅), . . . , (ψm,>, {θ})〉}
if O′ has explanation such that N 6` λ then answer ⇐ no else answer ⇐ yes end

else
answer ⇐ no

end

end
return answer

(iii) A’s core is known to be λ. In this case we check O-acceptability of the given core.

Algorithm Would θ (necessarily) be believed after the revision sequence σ given core λ?

Input: O, σ = (ψ1, . . . , ψm), θ and λ

if λ is not O-acceptable then
answer ⇐ O has no such explanation

else
ρ⇐ ρR(O, λ)
α⇐ Bel([ρ · σ, λ])
if α ` θ then

o′ ⇐ 〈(ψ1,>, ∅), . . . , (ψm,>, {θ})〉
if λ is acceptable for O ∪ {o′} then answer ⇐ no else answer ⇐ yes end

else
answer ⇐ no

end

end
return answer

Algorithm Would δ (necessarily) be not believed after the revision sequence σ given core λ?

Input: O, σ = (ψ1, . . . , ψm), δ and λ

if λ is not O-acceptable then
answer ⇐ O has no such explanation

else
ρ⇐ ρR(O, λ)
α⇐ Bel([ρ · σ, λ])
if α 6` δ then

o′ ⇐ 〈(ψ1,>, ∅), . . . , (ψm, δ, ∅)〉
if λ is acceptable for O ∪ {o′} then answer ⇐ no else answer ⇐ yes end

else
answer ⇐ no

end

end
return answer

C.5 Parametrised observations

In the following, n will denote the number of unknown subformulae. m + 1 will be the

number of recorded revision inputs in o. So o = 〈(ϕ1, θ1, D1), . . . , (ϕm+1, θm+1, Dm+1)〉 will

be a parametrised observation containing the unknown subformulae χ1, . . . , χn. First we
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give a function that returns instantiations for the unknown subformulae. Then we use this

function to define the “rational” explanation for a parametrised observation o given unknown

subformulae χ1, . . . , χn. It will be denoted by ratexpp(o, (χ1, . . . , χn)).

Function varsub(o, (χ1, . . . , χn))

Input: parametrised observation o and sequence (χ1, . . . , χn) indicating placeholders
Output: instantiations (x1, . . . , xn) for placeholders

V ⇐ variables used in o ignoring placeholders
X ⇐ {x1, . . . , xn} such that V ∩ {x1, . . . , xn} = ∅
return (x1, . . . , xn)

Algorithm “rational” explanation for o

Input: parametrised observation o and sequence (χ1, . . . , χn) indicating placeholders
Output: ratexpp(o, (χ1, . . . , χn))

(x1, . . . , xn)⇐ varsub(o, (χ1, . . . , χn))
o′ ← o[(χi/xi)i]
[ρ,N]⇐ ratexp(o′)
return [ρ,N] if o′ has explanation; “no explanation” otherwise

Note that this is not the explanation with the weakest core belief. But restricting conclu-

sions to L(o) (which can be determined as we know the placeholders χ1, . . . , χn), using this

explanation yields the same results. One possibility for determining the weakest core is to

calculate all resolvents for the CNF of N and eliminating those clauses containing variables

outside L(o). The following algorithms assume that o has an explanation.

Algorithm N∨(o) for the parametrised observation o

Input: parametrised observation o and sequence (χ1, . . . , χn) indicating placeholders

[ρ,N]⇐ ratexpp(o, (χ1, . . . , χn))
N∨ ⇐ ψ such that Cn(ψ) = Cn(N) ∩ L(o)
return N∨

Algorithm belief trace for the parametrised observation o

Input: parametrised observation o, sequence (χ1, . . . , χn) indicating the placeholders

[ρ,N]⇐ ratexpp(o, (χ1, . . . , χn))
(x1, . . . , xn)⇐ varsub(o, (χ1, . . . , χn)) /* same instantiation as for ratexpp! */

(α0, . . . , αm)⇐ Bel([ρ,N] , ι[(χi/xi)i]) /* ι is sequence of revision inputs in o */

foreach αi do βi ← ψ such that Cn(ψ) = Cn(αi) ∩ L(o) end
return (β0, . . . , βm)

Note that the revision inputs in o may contain unknown subformulae. Consequently, the

rational explanation for o has to use the same instantiations xi for the unknown subformulae

χi. The above algorithm assumes that.

Hypothetical reasoning can be done just as in the original case. The modifications corre-

sponding to the conjecture should be made on the parametrised observation directly. This

will avoid unintended interactions with the instantiations of the unknown subformulae. When

reasoning based on a set of parametrised observations, one has to make sure that the same

placeholders are used in different observations only if they stand for the same unknown sub-

formulae. Otherwise the extension to sets of parametrised observations is straightforward.
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C.6 Intermediate inputs

The basic case, which we will use to deal with the others, is that we are given a parametrised

observation o = 〈(ϕ1, θ1, D1), . . . , (ϕm+1, θm+1, Dm+1)〉, a sequence (χ1, . . . , χn) indicating

what the unknown subformulae are and a sequence ((1, i1), . . . , (m, im)) indicating that after

ϕj there were ij intermediate inputs. Recall, that we should always assume the maximum

possible number. We will do so by inserting ij entries (χi1,>, ∅), . . . , (χiij ,>, ∅) after the

recorded revision input ϕj . Each χik is a new placeholder.

Algorithm explanation for o given the number of intermediate inputs for each position

Input: parametrised observation o, placeholders (χ1, . . . , χn) and numbers of intermediate
inputs at each position ((1, i1), . . . , (m, im))

Output: ratexpi(o, (χ1, . . . , χn), ((1, i1), . . . , (m, im)))

o′ ⇐ 〈(ϕ1, θi, D1)〉 /* o′ is parametrised observation incl. intermediate inputs */

σ ⇐ (χ1, . . . , χn) /* σ will contain the sequence of all unknown subformulae */

for j = 1 to m do
if ij > 0 then

o′ ⇐ o′ · 〈(χj
1,>, ∅), . . . , (χ

j
ij
,>, ∅)〉

σ ⇐ σ · (χj
1, . . . , χ

i
ij

)

end
o′ ⇐ o′ · 〈(ϕj+1, θj+1, Dj+1)〉

end
[ρ,N]⇐ ratexpp(o′, σ)
return [ρ,N] if o′ has explanation; “no explanation” otherwise

Allowing any number of intermediate inputs at any time, we saw that assuming exactly

one intermediate input between any two recorded ones suffices. When doing hypothetical

reasoning about beliefs after a further revision step, an additional intermediate input after

the last recorded one is necessary. However, the next algorithm ensures this because the

additional input in hypothetical reasoning is treated like a recorded one.

Algorithm explanation for o with intermediate inputs at any time

Input: parametrised observation o and placeholders (χ1, . . . , χn)

[ρ,N]⇐ ratexpi(o, (χ1, . . . , χn), ((1, 1), . . . , (m, 1)))
return [ρ,N] if o′ has explanation; “no explanation” otherwise

If the positions of the intermediate inputs are known, the only problem is how many in-

termediate inputs should be assumed at each position. When doing hypothetical reasoning

about a future input, an additional intermediate input has to be added to each position.

Again, this is implicit as in this case the length of the modified observation is increased by

one compared to the original observation. Recall that m+ 1 is the number of revision inputs

recorded in o.
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Algorithm explanation for o with intermediate inputs at given positions

Input: parametrised observation o, placeholders (χ1, . . . , χn) and P ⊆ {1, . . . ,m}
for j = 1 to m do

if j ∈ P then ij ⇐ m+ 1− j else ij ⇐ 0 end
end

[ρ,N]⇐ ratexpi(o, (χ1, . . . , χn), ((1, i1), . . . , (m, im)))
return [ρ,N] if o′ has explanation; “no explanation” otherwise

If only the number l of intermediate inputs received by A is known — and their positions are

not restricted — then the conclusions that can be drawn about the agent are least helpful.

This is because all possible placements of the intermediate inputs have to be considered.

Note however, that the number of intermediate inputs assumed at a certain position need

not be greater than the number of recorded inputs after that position (Proposition 3.26).

We will give only a construction of what A′s core belief must entail. The formula returned

need not be o-acceptable.

Algorithm formula entailed by core belief given l intermediate inputs

Input: parametrised observation o, placeholders (χ1, . . . , χn) and l

if l ≥ m then
[ρ,N]⇐ ratexpi(o, (χ1, . . . , χn), ((1, 1), . . . , (m, 1)))
if ∃ such an explanation then N∨ ⇐ ψ s.t. Cn(ψ) = Cn(N) ∩ L(o) end

else
S ⇐ {((1, i1), . . . , (m, im)) |

∑m
j=1 ij ≤ l ∧ ∀ij : ij ≤ m+ 1− j}

T ⇐ {N | [ρ,N] = ratexpi(o, (χ1, . . . , χn), σ) for some σ ∈ S}
T ′ ⇐ {ψ | Cn(ψ) = Cn(N) ∩ L(o) ∧ N ∈ T}
if T 6= ∅ then N∨ ⇐

∨
T ′ end

end
return N∨ if there were explanations; “no such formula” otherwise

C.7 Variations

In this section, we give a selection of algorithms that might be used when considering vari-

ations of the reasoning task. We restrict ourselves to the case where there are no unknown

subformulae. We do so not because the machinery is not powerful enough to deal with them

but for readability. Note that we still make use of unknown subformulae and intermediate

inputs for coming up with explanations.

graded observations

A graded observation has the form o = 〈(ϕ1, B1, D1), . . . , (ϕm+1, Bm+1, Dm+1)〉 where Bi and

Di are finite sets of pairs (λ, k) such that λ is a formula and k a natural number indicating the

reliability of λ. A regular observation is constructed with respect to a threshold t indicating

the reliability the information must have.
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Algorithm explanation for graded observation

Input: graded observation o, threshold t

o′ ⇐ 〈〉
for i = 1 to m+ 1 do

θ′i ⇐ >
D′i ⇐ ∅
foreach (θ, k) ∈ Bi do

if k ≤ t then θ′i ⇐ θ′i ∧ θ end
end
foreach (δ, k) ∈ Di do

if k ≤ t then D′i ⇐ D′i ∪ {δ} end
end
o′ ⇐ o′ · 〈(ϕi, θ

′
i, D

′
i)〉

end
[ρ,N]⇐ ratexp(o′)
return [ρ,N] if there is an explanation; “no explanation” otherwise

This algorithm extends naturally to sets of graded observations. When dealing with unknown

subformulae, o′ will be the parametrised observation containing the appropriate parts of o.

Hypothetical reasoning can be done just as in the original case, but recall that conclusions

need not be safe with respect to all information contained in o′.

revision inputs with priorities

In case priority information about the revision inputs is to be taken into account, we

need to modify the revision function. The explanation for an observation is then cal-

culated by simply applying the rational explanation algorithm using sets of conditionals

that are calculated in a slightly different way. Observations have the following form: o =

〈((ϕ1, k1), θ1, D1), . . . , ((ϕm+1, km+1), θm+1, Dm+1)〉. The ki indicate the position ϕi should

have after revision has taken place.

Function ∗I([(ϕ1, . . . , ϕj),N] , (ϕ, k))

i⇐ 1
σ ⇐ ()
m⇐ j
while i ≤ k do

if m ≥ 1 then
σ ⇐ ϕm · σ
m⇐ m− 1

else
σ ⇐ > · σ

end
i⇐ i+ 1

end
σ ⇐ ϕ · σ
if m ≥ 1 then

for i = 1 to m do
σ ⇐ ϕm · σ
m⇐ m− 1

end

end
return [σ,N]
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Function Cp(o,N, ρs)

σ ⇐ ρs

Cp ⇐ ∅
for i = 1 to m+ 1 do

[σ,N]⇐ ∗I([σ,N] , (ϕi, ki))
Cp ⇐ Cp ∪ {f (σ · N)⇒ θi}

end
return Cp

Function Np(o,N, ρs)

σ ⇐ ρs

Np ⇐ ∅
for i = 1 to m+ 1 do

[σ,N]⇐ ∗I([σ,N] , (ϕi, ki))
foreach δ ∈ Di do Np ⇐ Np ∪ {f (σ · N)⇒ δ} end

end
return Np

Algorithm explanation for o

Input: observation o with priority information about revision inputs

j ⇐ max{ki − i | 1 ≤ i ≤ m+ 1}
ρs ⇐ (x1, . . . , xj) such that {x1, . . . , xj} ∩ L(o) = ∅
[ρ,N]⇐ rational explanation for o using Cp(o,N, ρs) and Np(o,N, ρs)
return [ρ · ρs,N] if there is an explanation; “no explanation” otherwise

Here again, the explanation does not use the weakest possible core. The part of N not talking

about L(o) still has to be moved to the unknown subformulae.

Algorithm belief trace based on explanation of o

Input: observation o with priority information about revision inputs

[ρ,N]⇐ explanation of o
α0 ⇐ f (ρ · N)
β0 ⇐ ψ such that Cn(ψ) = Cn(α0) ∩ L(o)
for i = 1 to m+ 1 do

[ρ,N]⇐ ∗I([ρ,N] , (ϕi, ki))
αi ⇐ f (ρ · N)
βi ⇐ ψ such that Cn(ψ) = Cn(αi) ∩ L(o)

end
return (β0, . . . , βm+1) if there is an explanation; “no explanation” otherwise

core belief revision

Here, we consider observations of the following form where each ∗i is either ∗ or ∗N:

o = 〈((ϕ1, ∗1), θ1, D1), . . . , ((ϕm+1, ∗m+1), θm+1, Dm+1)〉.

Function rev([ρ, ρN],(ϕ, ◦))
ρ′ ⇐ ρ
ρ′N ⇐ ρN

switch case of ◦ do
case ◦ = ∗: ρ′ ⇐ ρ′ · ϕ
case ◦ = ∗N: ρ′N ⇐ ρ′N · ϕ

end
return [ρ′, ρ′N]

For reasoning about the agent we will give a way to calculate a possible belief trace given an

observation. In the main text we illustrated a way to find an epistemic state whose sequence

of revision inputs is as short as possible. Here, we initialise that sequence with a length

such that an explanation is calculated in case one exists at all. A first important test is

whether the observation contains non-beliefs for a point in time where the beliefs must be

inconsistent due to an inconsistent core belief.
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Algorithm Does o contain non-beliefs despite inconsistency?

Input: observation o indicating core and regular revision inputs

i⇐ 1
answer ⇐ o contains no impossible non-beliefs
while i ≤ m+ 1 do

if ∗i = ∗N and ϕi ≡ ⊥ then
repeat

if Di 6= ∅ then answer ⇐ o contains impossible non-beliefs end
i⇐ i+ 1

until ∗i = ∗N or i > n
else

i⇐ i+ 1
end

end
return answer

As the next step, we eliminate inconsistent core revision inputs that are recorded in o and

adapt the recorded beliefs.

Algorithm observation without inconsistent core revision inputs

Input: observation o indicating core and regular revision inputs

o′ ⇐ 〈〉
i⇐ 1
while i ≤ m+ 1 do

if ∗i = ∗N and ϕi ≡ ⊥ then
i⇐ i+ 1
while ∗i = ∗ and i ≤ m+ 1 do

o′ ⇐ o′ · 〈(ϕi,>, ∅)〉
i⇐ i+ 1

end

else
o′ ⇐ o′ · 〈(ϕi, θi, Di)〉
i⇐ i+ 1

end

end
return o′

For calculating an explaining epistemic state we apply the original rational explanation

construction using alternative definitions for the positive and negative conditionals.

Function Cc(o, ρN)

Cc ⇐ ∅
σ ⇐ ()
ρ′N ⇐ ρN

for i = 1 to m+ 1 do
[σ, ρ′N]⇐ rev([σ, ρN] , (ϕi, ∗i))
Cc ⇐ Cc ∪ {f (σ · ρ′N)⇒ θi}

end
return Cc

Function Nc(o, ρN)

Nc ⇐ ∅
σ ⇐ ()
ρ′N ⇐ ρN

for i = 1 to m+ 1 do
[σ, ρ′N]⇐ rev([σ, ρN] , (ϕi, ∗i))
foreach δ ∈ Di do Nc ⇐ Nc ∪ {f (σ · ρ′N)⇒ δ} end

end
return Nc

The last algorithm we present calculates the belief trace based on the proposed explanation

for an observation indicating which type of revision was triggered by an input. Note that the

elements of the belief trace are calculated with respect to all revision inputs recorded in o,

not just the consistent ones. As stated in the main text, it is possible that the beliefs in the

initial state are inconsistent. In this case, the rational explanation construction for o′ may
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not be successful. So if no explanation is returned for o we can look for one for 〈(⊥,>, ∅)〉·o.2

If there is no explanation for this observation then o cannot be explained at all.

Algorithm belief trace based on explanation of o

Input: observation o indicating core and regular revision inputs

if o does not contain non-beliefs despite inconsistency then
o′ ⇐ o without inconsistent core revision inputs
k ⇐ 1 + number of core revision inputs in o′

ρN ⇐ (x1, . . . , xk) such that {x1, . . . , xk} ∩ L(o) = ∅
[ρ,N]⇐ rational explanation of o′ using Cc(o′, ρN) and Nc(o′, ρN)
/* N is super core belief which is absorbed into the unknown subformulae,

here we will not make this construction explicit */

if explanation exists and L(o) ∩ Cn(N) = Cn(>) then
α0 ⇐ f (ρ · ρN · N)
β0 ⇐ ψ such that Cn(ψ) = Cn(α0) ∩ L(o)
for i = 1 to m+ 1 do

[ρ, ρN]⇐ rev([ρ, ρN] , (ϕi, ∗i))
if last element of ρN is inconsistent then

αi ⇐ ⊥
else

αi ⇐ f (ρ · ρN · N)
end
βi ⇐ ψ such that Cn(ψ) = Cn(αi) ∩ L(o)

end

end

end
return (β0, . . . , βm+1) if there is an explanation; “no explanation” otherwise

2The same algorithm can now be used. However, as the first revision input corresponds to the initial state,

β0 will have to be eliminated from the belief trace returned and β2 corresponds to the revision input ϕ1 from

o etc.


