
UNIVERSITÄT LEIPZIG

Fakultät für Mathematik und Informatik

Institut für Informatik

A 3-Valued Approach to Disbelief

Diplomarbeit (englisch)

Leipzig, 19.3.03 vorgelegt von

Alexander Nittka

geb. am 13. September 1977

Studiengang Informatik

CONTENTS i

Contents

1 Introduction and theoretical background 1

1.1 Belief Revision . 1

1.2 Motivation . 3

1.3 Goals of this work . 5

1.4 Structure of this work . 6

1.5 Logics of Disbelief . 6

1.6 Many-valued Logics . 7

2 The language of disbelief and basics of its logic 9

2.1 Syntax of the language . 9

2.2 Remarks on desirable properties of the logic 9

2.3 Truth Tables for the classical connectives 12

2.4 Laws of the classical connectives . 13

2.5 Restrictions to the connective bar . 15

2.6 Truth assignment and valuation . 16

3 Tableau proofs in the logic of disbelief 20

3.1 Atomic tableaux and de�nitions . 20

3.2 Soundness and completeness . 25

3.3 Remarks . 27

3.4 Truthfunctional completeness . 31

4 Implementations of the logic 32

4.1 General notes . 32

4.2 First approach . 33

4.3 Second approach � Tableau . 36

5 Towards an axiomatization 42

5.1 Equivalence relation �L . 42

5.2 A metalogic for inference . 46

5.3 Nonsatis�ability . 48

5.4 Tautologies . 52

5.5 Inference rules . 52

CONTENTS ii

6 Belief revision and argumentation framework 56

6.1 Introduction . 56

6.2 Vreeswijk's Abstract Argumentation System 58

6.3 The AAS for belief revision . 64

6.4 Unique extension of the system . 67

6.5 Correspondence between BelBase (�) and the premises 70

7 Conclusion and future work 73

A Notes on notation 80

B Soundness of the inference rules 82

C Examples for the tableau implementation 84

1 INTRODUCTION AND THEORETICAL BACKGROUND 1

1 Introduction and theoretical background

Before we can motivate the topic of our thesis, we need to sketch the general setting.

Arti�cial intelligence, AI for short, is one branch of applied computer science. Simply

put, it is concerned with modelling intelligent behaviour on machines � computers and

robots in particular. Besides problem solving, planning, learning, reasoning etc. the

representation of knowledge is one aspect of AI.

How should information, rules etc. be encoded so that (correct) conclusions can be

drawn automatically? In order to model intelligent behaviour, this question must be

answered � if not in general, then at least within a certain scope. One question follows

directly. How can this be achieved in a way that modi�cations can be made?

1.1 Belief Revision

The core aspect of belief revision is the investigation of how a rational agent should

modify its beliefs or knowledge � generally called the epistemic state � in the light of

new information. There are several approaches to that question and they are based on

di�erent assumptions about how the knowledge of the agent is represented, what it is

about, etc.

As our work is merely motivated by a belief revision framework, it will su�ce to

present some of the basic ideas of belief revision without examining them in detail.

The two main approaches to belief revision are foundationalism and coherentism.

Whereas the former distinguishes a particular set of beliefs as the basic beliefs from which

all others can be derived, the latter does not. So in the foundationalist approach a belief

is justi�ed if it can in some way be derived from the basic beliefs which are self-justifying.

In the coherentist one it is the relationship to (all) other beliefs which determines whether

a belief is justi�ed.

This has a direct in�uence on whether revision is done on a belief base or a belief set.

A belief set is understood to be a set of propositions closed under consequence, i.e. if K

is a belief set and ' follows from K then ' 2 K. A belief base, on the other hand, is not

necessarily closed under consequence. It just is a set of propositions.

The epistemic state of an agent could be represented in terms of a belief set or a belief

base. If the latter is the case, the knowledge of the agent would still be seen as everything

that can be derived from the belief base. It should be clear that di�erent belief bases can

1 INTRODUCTION AND THEORETICAL BACKGROUND 2

lead to the same set of believed propositions.

Common assumptions are that the epistemic state of an agent is consistent, i.e. that it

does not allow a contradiction to be derived, and that after incorporating new information

the epistemic state remains consistent. It should be clear that new information could

contradict current beliefs. This means that some old or the new information must be

modi�ed or discarded in order to ensure a consistent state. The attempt to keep the loss

of information as small as possible is known as information economy and it is a further

main aspect of many of the revision approaches.

If the new information happens to be consistent with the current beliefs it su�ces

to insert it. This simple operation is known as expansion. If the new information '

contradicts the current knowledge, however, a more complicated mechanism has to be

used. One of the standard approaches is to remove the contradicting part from the

epistemic state, i.e. contract :', and then expand with '. The Levi identity formalizes

this by stating that revision is the composed operation of �rst contracting by the negation

and then expanding.

Here contraction is an intermediate step for revision and often contraction is seen as

having this purpose only. In the next section we will argue against this notion.

As the modelling of expansion seems obvious, the various belief revision approaches

deal with the question of how to model contraction in a rational way. The question is

how to decide which beliefs should be eliminated. If, for example, the belief set contains

f'; '! g, and is to be contracted, one of the two propositions has to be removed,

otherwise could still be inferred. A choice between ' and ' ! must be made. So

one of the central points of all belief revision frameworks is how to make choices of that

kind.

Probably the most fundamental results are the AGM rationality postulates for belief

revision. They constitute properties that rational contraction and revision operations

should satisfy. These postulates or criticism concerning them and resulting suggestions

for modi�cations often are the starting point for belief revision approaches.

There are also subtle di�erences in the notion of what is represented in the knowledge

of an agent and therefore of what the new information represents. Generally, belief revision

is viewed in the light of an agent receiving information about a static world. The goal is

that after each revision step the agent's representation of the world is more correct than

before. New contradicting information means that previous assumptions about the world

1 INTRODUCTION AND THEORETICAL BACKGROUND 3

were wrong and have to be revised.

A di�erent notion � termed belief update � assumes the world to be dynamic. That

is, contradicting information represents changes that have occured in the world. So while

belief revision tries to decide which beliefs should be contracted to allow a new one to

be consistently inserted, belief update tries to determine what changes in the world have

caused the new observation.

1.2 Motivation

Consider the following belief revision framework [1]1. The epistemic state of an agent is

represented by a sequence of propositions � = ('1; :::; 'n) of a language. For now, let

that language be the usual propositional language Lp, consisting of propositional letters

and being closed under the classical connectives. � could be interpreted as the sequence

of inputs the agent received, considering later propositions more reliable. The belief set

Bel (�) corresponding to this epistemic state is calculated iteratively, starting with the

set of tautologies and beginning at the back of the sequence adding one formula at a time

� if this can be done consistently.

In other words, propositions from the sequence that would produce an inconsistent

belief set are simply left out. It is obvious that the sequence could also be interpreted as

a linear ordering regarding importance of the propositions.

De�nition 1.1.

Beli (�)
def
=

8>>><
>>>:

CnLp (;) ; i = 0

BTi
def
=CnLp (Beli�1 (�) [f'n+1�ig) ; 0 < i � n and? =2 BTi

Beli�1 (�) ; otherwise

Bel (�)
def
= lim

i
Beli (�)

Remark 1. Bel (�) = Beln (�)

The equation in Remark 1 follows immediately from the de�nition of Bel. As there

are no further proposition left in � after n steps of the calculation, Beli would not change

any more.
1Notation and de�nitions are our own. If they do not correctly re�ect the intentions of the originators

of the framework, we are to blame.

1 INTRODUCTION AND THEORETICAL BACKGROUND 4

Revision

Revision, i.e. the consistent incorporation of information, of � by a proposition is

realized by appending it to the sequence.

De�nition 1.2. ('1; : : : ; 'n) �
def
= ('1; : : : ; 'n;)

Example 2. � �1 = (a;:a):

Bel ((a;:a)) = CnLp (f:ag)

Bel ((a;:a) � a) = CnLp (fag)

At �rst a is left out, because adding it to the belief set would con�ict with :a which

has higher priority. After the revision, :a is left out, because the new information

con�icting with it has higher priority.

� �2 = (a; a! b;:b):

Bel ((a; a! b;:b)) = CnLp (fa! b;:bg)

Bel ((a; a! b;:b) � c) = CnLp (fa! b;:b; cg)

Together with the implication, a would create an inconsistency. Consequently, it

is left out. Revision with c has no modifying impact on the previous belief set, as

that proposition does not interact with anything earlier in the sequence, so it is just

added.

� �3 = (a; a! b;:b):

Bel ((a; a! b;:b)) = CnLp (fa! b;:bg)

Bel ((a; a! b;:b) � a) = CnLp (fa;:bg)

First a is left out as in the previous example, but after revision the implication is

neglected as now it is the weakest link in the chain .

Contraction

Example 3. An agent A whose current beliefs consist of f'g only, learns from another

agent B that f:'; g hold and accordingly changes its belief state to f:'; g. Afterwards

a more reliable source informs A that information obtained from B cannot be trusted.

It would be rational to expect that agent A now revises his beliefs to the old state.

Without a contraction operation, however, there is no possibility of getting rid of other

than revising by : . But the result of this would not be the old belief state. This should

1 INTRODUCTION AND THEORETICAL BACKGROUND 5

illustrate that contraction must be viewed as a separate operation and not just as an

intermediate step for revision.

So, how can contraction of a proposition be modelled in our belief revision frame-

work? One way of achieving it would be to remove all propositions that imply from the

sequence.

Example 4. ('; '! ;)� = ('!)

This is not satisfactory, because information might be lost if the contraction turns out

to have been unjusti�ed. In the example the information that ' was once part of the

knowledge has disappeared. So the question is not just how to achieve contraction but

also how to be able to undo contraction if necessary.

Of course, the agent could store a sequence of all prior sequences in order to regain

information, but the resulting belief revision procedure would be very complicated. In

addition, this method bears the risk of wasting a lot of memory.

We do not consider the contraction of by the introduction of : to be a desir-

able approach, either. There is an essential di�erence between removing knowledge and

replacing it by its opposite, as could be seen in Example 3.

It would be nice to be able to just block from being introduced into the belief set.

Therefore, we suggest to enrich the usual language of propositional logic Lp by a means

to denote disbeliefs which create an inconsistency without implying the negation.

1.3 Goals of this work

If we had that language and the corresponding logic, we could achieve contraction of a

proposition ' in terms of revision by the disbelief in '. That is, we would not modify the

belief revision framework, but use it with a di�erent underlying logic which allows us to

express both, revision and contraction, by a single operation.

The main goal of this work is to present a language that is capable of achieving the

above mentioned and to develop a logic based on this language. We will prove soundness

and completeness of the logic using a semantic approach. Although we will not provide

an axiomatization of a deductive system, we give some results obtained in the attempt to

�nd one.

We will also present a Prolog implementation of the logic developed. It will be based

on the semantic approach. This implementation will allow to test properties of the logic

1 INTRODUCTION AND THEORETICAL BACKGROUND 6

as well as mechanisms of the belief revision framework.

Viewing things from di�erent angles often allows deeper insight into the mechanisms

that lie behind them. That is why we will investigate the belief revision framework

introduced above from the perspective of an argumentation framework.

We hope that this work will contribute to the research �eld of knowledge representation

and especially to the relatively young research in rejection and disbelief.

1.4 Structure of this work

The remainder of the thesis is structured as follows:

In this section, we continue to introduce some the main �elds of research our paper

touches brie�y. Section 2 introduces the extended language and lists desirable properties

of the logic. Soundness and completeness of the proof theory are shown in Section 3.

Section 4 provides information about the two implementation approaches. In Section 5

we continue to illustrate properties of the logic of disbelief and take some steps towards

its axiomatization . A transformation of the belief revision framework introduced in the

motivation into an argumentation framework is given in Section 6. Section 7 concludes

with a summary of the results and with aspects of further work.

1.5 Logics of Disbelief

Many logics have been developed in order to increase the expressibility of classical propo-

sitional logic which does not su�ce for some purposes, or to capture decidable fragments

of �rst or second order logic which in many cases are too general. Logics have been de-

vised to capture notions of modalities like "it is known", "it is necessary", "it is possible",

or notions of time. Other logics have been developed in order to be able to talk about

objects and their relationships, to reason about points or regions in space, to reason about

actions, etc.

Usually these logics are based on the idea that a set of propositions is assumed to be

true and that the question is what can be inferred from them, i.e. what else is true if

some premises hold. The question of what is not believed to hold and of inferring from

that what else should be rejected is mostly neglected or reduced to classical negation.

Like contraction in belief revision, rejection in logic has seldom been seen as a primitive

concept.

1 INTRODUCTION AND THEORETICAL BACKGROUND 7

However, there are some approaches which attempt to overcome this shortcoming.

They usually expand the formalism by a set of propositions dual to the classical ap-

proaches. Besides a set of propositions that are assumed to be true, i.e. believed, they

consider another one with propositions that are disbelieved or rejected. A consequence

relation is then de�ned which does not only handle inferences from the set of beliefs but

also inferences from the set of disbeliefs or even from both sets. This can result in new

beliefs and new disbeliefs.

In some cases the two sets are only connected via a notion of inconsistency, i.e. in-

ference is done separately on every set and then a consistency condition is checked � for

example, that no proposition is included in both sets. In other cases, the consequence

relation considers both sets, i.e. there is interaction between beliefs and disbeliefs.

Another issue that motivated the consideration of disbeliefs was the desire to model

contraction explicitly. To illustrate this we want to adopt an example given in [2].

Example 5. An ignorant agent revises its belief base with a! b, then contracts b, then

revises with a. If the revision framework does not allow the explicit representation of

disbeliefs there is only one possible result � the agent's belief set contains fa; a! bg. As

b was not in the belief set when the contraction was executed, nothing changed and then

the contraction was forgotten.

If contraction was modelled in terms of disbeliefs denoted b for the disbelief in b, other

beliefs sets would be possible. Depending on the order on the propositions,
�
b; a! b

	

and
�
a; b
	
would be acceptable outcomes of the above revision sequence as well.

1.6 Many-valued Logics

Considerations about logics with more than two truth values go back at least to Aristotle

who discussed how to evaluate propositions talking about the future. The answer to this

is closely related to the philosophical question of whether future events are already deter-

mined. One possible but not inescapable way of dealing logically with nondeterminism is

to discard the principle of the excluded middle and interpret a third value as "possible"

or "unde�ned".

The works of Lukasiewicz and Post in the 1920s stand at the beginning of many-

valued logics as a separate research area. Important early results were the axiomatization

of Lukasiewicz' three-valued logic and its expansion to a truth functional complete logic.

1 INTRODUCTION AND THEORETICAL BACKGROUND 8

However, numerous other logics have been devised and investigated.

In general, many-valued logics are similar to classical propositional logic in that they

obey the principle of truth functionality, i.e. the value of a proposition is uniquely deter-

mined by the value of its components. There is no standard interpretation for the truth

values, but usually there are values 0 and 1 that correspond to true and false in standard

propositional logic. If reduced to these two values, most many-valued logics behave like

the classical one. The interpretation of the truth values depends on the domain for which

the logic is used.

In many cases the truth values are a �nite or in�nite set of rational or real numbers

in the interval [0; 1] and the connectives are de�ned in terms of mathematical functions

usually including the minimum and maximum of a set.

Many-valued logics are applied in linguistics, logic, philosophy, hardware design, and

mathematics. Probably most successful in application is the theory of fuzzy sets and

the resulting fuzzy logic, which is often used for reasoning with uncertainty, i.e. vague

information.

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 9

2 The language of disbelief and basics of its logic

2.1 Syntax of the language

We extend the language of propositional logic Lp by introducing the unary connective

bar, which denotes the disbelief in the proposition below it, i.e. ' denotes the disbelief

in '.

De�nition 2.1. A set L is a language of disbelief if it is the smallest set satisfying the

following properties.

(i) The propositional letters a; a1; a2; : : : ; b; b1; : : : are elements of L.

(ii) If ' 2 L and 2 L, then (' ^) 2 L, (' _) 2 L, ('!) 2 L, (:') 2 L and

' 2 L.

Example 6.

� (a ^ b),
�
a _ b

�
, (a! b) are elements of L.

� (a ^ _b), (a!b), (a (:^) b) are not elements of L.

In the remainder of this paper, we will often simplify notation by omitting parentheses

if doing so does not cause ambiguity.

Remark 7. In contrast to the logics introduced in [2], we allow the nesting of the disbelief

bar. The language considered in this paper is restricted to elements ' and ', where ' is

a classical proposition. As seen in Example 6, our language contains sentences of a more

general structure.

It is possible to think of the connective bar as a second type of negation. However, it

will be seen that its behavior makes the logic a lot more complicated.

De�nition 2.2. Let L be a language of disbelief. An element ' of L is called a disbelief

if its main connective is the unary connective bar. Otherwise it is called a belief. All

elements of L are called propositions.

2.2 Remarks on desirable properties of the logic

We want to keep as many properties of classical logic as possible. That is why we do

not want any proposition of the form ' ^ :' to have a model. That is, any superset of

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 10

{'; :'} is inconsistent. The same should hold for a proposition and the disbelief in it,

i.e. ' ^ ' and therefore {'; '} is not to be satis�able. This corresponds to the intuition

that believing and disbelieving in the same thing at the same time is inconsistent.

In order to be able to express agnosticism, we want our framework to have models for

propositions that denote the disbelief in a proposition and at the same time the disbelief

in its negation. That is, in contrast to :' ^ ::', ' ^ :' should be consistent and

therefore should have a model. The intuitive reading is that information concerning ' is

rejected. If that was not possible, disbelief would break down to something very similar

to classical negation.

In order to capture this notion with models satisfying a set of propositions includ-

ing disbeliefs, we propose to use a three-valued logic with the values true denoted by 1

(proposition believed), false denoted by 0 (negation of proposition believed), unde�ned

denoted by u.

We want to back up this proposal with the following example. Consider the proposition

' ^ :' and a two-valued logic, i.e. one in which every propositional variable is assigned

either 0 or 1. As required above, the proposition should have a model, i.e. there should

be an assignment that evaluates it to 1. For now, we further assume that an intuitive

conjunction is evaluated to 1 if and only if all its conjuncts are evaluated to 1 as well.

This assumption is all the more natural because we consider a two-valued logic. Since

' ^ :' is to be true ' and :' must take the value 1. Now it becomes obvious that any

assignment to ' causes a problem. Assigning 1 to ' results in trying to satisfy {'; '},

which we demanded not to be possible. The same problem arises with the assignment

of 0 to ', which is equivalent to assigning 1 to :'. Now we would be forced to satisfy

{:'; :'}. Consequently, a third value appears necessary which ' has to take if ' ^ :'

is to be evaluated to true.

It seems to be a reasonable demand that :' be a logical consequence of ', i.e. that

an assignment of 1 to ' implies an assignment of 1 to :'. This would correspond to the

intuition that if ' is believed its negation cannot be believed, so it is disbelieved. Using

substitution, contraposition, and elimination of double negation, we get the following

implications:

� ' implies :'

� :' implies '

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 11

� ::' implies :'

� :' implies '

Thinking back to the motivation, we did not just want to be able to model con-

traction, but also to undo it again if necessary. It is not enough to have blockers that

keep propositions from being introduced into the belief set, we also need blockers for the

blockers.

It is natural that if ' is a blocker for ', ' should be the one for '.

Example 8.

�0 = (: : :)

�1 = (: : :) � ' ^ :'

�2 = (: : : ; ' ^ :') � ' ^ :'

�2 =
�
: : : ; ' ^ :'; ' ^ :'

�

Now consider Example 8 . It sketches parts of a possible development in the belief

revision framework. Obviously, the underlying logic is a logic of disbelief.

We have an initial belief state �0. Then ' and its negation are simultaneously con-

tracted by introducing their corresponding disbeliefs. This could have been done in two

separate revision steps as well. ' as well as its negation are now blocked from being

introduced into the belief set, i.e. an assignment of the truth value u to ' is forced.

Then this contraction of information about ' is undone by blocking it via ' ^ :'2.

Intuitively, whatever the value of ' was in �0, it should be the same as induced by �2.

However, this is not the case. Believing ' con�icts with :'. That is because ' implies

:' which is inconsistent with :'. Likewise, :' con�icts with ', as :' implies '. In

consequence, ' is still restricted to the value u, which is counterintuitive. This undesirable

property is caused by the fact that the implication "' implies :'" creates interaction

between propositions and the blockers of their blockers. Thereby, we have shown that

the demand for :' to be a logical consequence of ' is not reasonable considering our

purposes. Interaction should be restricted to propositions and disbeliefs one order higher.
2Note that ' ^ :' would not necessarily achieve the same, as this would demand only one of the two

blockers to be removed.

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 12

Demanding, in contrast, that if ' is assigned 1, :' is to be assigned u, solves the

problem only partially. This would mean that the intuitively rational proposition :'^'

would not be satis�able, which is just as counterintuitive.

The implication "if ' is assigned 1, then :' is assigned 1 as well" is not desirable,

either. Consider
�
'!

�
^ . This proposition obviously implies :'. Certainly, if was

true, ' should not be, but jumping to the conclusion that its negation must hold is too

strong a demand � assigning u to ' intuitively is just as right.

The way out of this dilemma is to refrain from restricting ' to one single value if one

value is given for '. This breaks the principle of extensionality. The value of a proposition

is no longer determined by the value assigned to the propositional variables it contains.

The disbelief operator is not truth functional.

2.3 Truth Tables for the classical connectives

As noted above, our logic will be a three-valued one. So we have to extend the truth

tables for all the connectives to the third value unde�ned. Again, we will give an intuitive

justi�cation for our choice rather than a strictly formal one.

Interpreting u as: there is no information about the value, it might be true, it might

be false, it might be neither; we arrive at the following de�nitions for the connectives.

The truth value of a conjunction ' ^ should be the same as in the classical case

when the only values involved are 0 and 1. If ' is 0, the conjunction can only be 0 too.

Even if, later on, the value of turns out to be true, this does not change anything. If '

is 1, the value of the conjunction depends heavily on . For 0 and 1, the case is clear, as

mentioned above; but what if is u? We think that in this case the conjunction should

be evaluated to u as well. Depending on the future value of , it can change to 0 or 1, so

it is unde�ned until the value is known. These considerations are symmetric, of course.

Similar considerations apply to the disjunction ' _ . If ' is 1, the disjunction is

evaluated to 1 too. If ' it is 0, however, its value depends on only. And in case of

being u, the value of the disjunction should be unde�ned as well, since a future value of

 might make it true or false.

By intuitive considerations, we have thus arrived at Lukasiewicz's de�nitions for weak

conjunction and disjunction of a three-valued logic. The negation is quite obvious, as

well. Using similar argumentation as above, the value of a negated u remains unde�ned.

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 13

' ^ 0 u 1

0 0 0 0

u 0 u u

1 0 u 1

' :'

0 1

u u

1 0

' _ 0 u 1

0 0 u 1

u u u 1

1 1 1 1

'! 0 u 1

0 1 1 1

u u 1 1

1 0 u 1

'$ 0 u 1

0 1 u 0

u u 1 u

1 0 u 1

Table 1: Truth Tables for classical connectives

The de�nition for the implication '! is not quite as straightforward, though. If it

is de�ned in terms of negation and disjunction, as in the classical case, its value would be

u given that ' and are evaluated to u. Intuitively, that makes perfect sense, because,

depending on the future values of the propositions, the implication could take any value.

If we do that, however, there will be no tautologies in our logic, which can easily be

seen by assigning u to every propositional variable and disbelief � which would cause every

proposition to be evaluated to u. Therefore, we use a separate de�nition for implication.

It di�ers from the intuitively right one in that it evaluates the implication not to u but to

1 if ' and are assigned u. This means that implication and disjunction are no longer

interde�nable via negation.

We further de�ne '$ as ('!) ^ (! '). This corresponds to the notion that

two propositions are equivalent if they are evaluated to the same value under all truth

assignments.

Table 1 summarizes our de�nition of the classical connectives.

Remark 9. We are aware of the fact that the implication as we de�ned it has semantical

shortcomings. When using the logic in an application, though, it will always be possible

to fall back on negation and disjunction to capture the other notion of implication.

2.4 Laws of the classical connectives

Using the above de�nitions, many of the properties of the connectives still hold. Two of

the rules that do not hold any more are ' ^ :' = ? and ' _ :' = >. They basically

represent the principle of the excluded middle, so it is not surprising that we cannot use

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 14

them any longer as we explicitly allow a third value.

The following rules can be used to transform propositions syntactically without chang-

ing their truth value. Consequently, these rules can be used to characterize the equivalence

relation between propositions later on.

Proposition 2.3. The following equations hold.

Associativity (' ^) ^ � = ' ^ (^ �) (' _) _ � = ' _ (_ �)

Commutativity ' ^ = ^ ' ' _ = _ '

Distributivity (' _) ^ � = ' ^ � _ ^ � (' ^) _ � = (' _ �) ^ (_ �)

Absorption ' ^ (' _) = ' ' _ (' ^) = '

Idempotency ' ^ ' = ' ' _ ' = '

de Morgan : (' ^) = :' _ : : (' _) = :' ^ :

Double negation ::' = '

Laws for ? and > ' ^ > = ' ' _ > = >

' ^ ? = ? ' _ ? = '

Proof. We show the validity of two of these equations by calculating the truth value of

the proposition given assignments of their atomic components. In order to save space, we

write all values of � in one row.

' � (' _) ^ � ' ^ � _ ^ � : (' ^) :' _ :

0 0 0u1 000 000 1 1

0 u 0u1 0uu 0uu 1 1

0 1 0u1 0u1 0u1 1 1

u 0 0u1 0uu 0uu 1 1

u u 0u1 0uu 0uu u u

u 1 0u1 0u1 0u1 u u

1 0 0u1 0u1 0u1 1 1

1 u 0u1 0u1 0u1 u u

1 1 0u1 0u1 0u1 0 0

The rest of the equations can be veri�ed analogously using truth tables.

Using the de Morgan rules, conjunction and disjunction are interde�nable. So we

would not restrict the expressibility of our language by omitting either conjunction or

disjunction.

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 15

'

0 u 1

0 a b c

' u d e f

1 g h i

Table 2: Possible constellations of a proposition and the disbelief in it

2.5 Restrictions to the connective bar

In Section 2.2, we have seen that determining the value of a disbelief ' by the value

assigned to ' does not work, but still a proposition and the disbelief in it are not in-

dependent of each other. What then is their relationship - which constellations of truth

assignments should be possible?

Table 2 shows all the combinations between a proposition and the disbelief in it. It is

clear that the combination i must not be allowed because belief in a proposition and, at

the same time, disbelief in it would contradict the purpose of the disbelief framework. In

fact, it was our starting point in Section 2.2 that this combination was to be inconsistent.

Combinations c and g should be allowed as they correspond to our intuition. Combi-

nations d and f must be allowed, in order not to cause the counterintuitive results of the

implications discussed in the context of Example 8.

The combinations b, e and h should be allowed as well. Whenever we have no de�nite

information about one side, all should be possible for the other.

Combination a is a di�cult case, though. We propose not to allow it. On the one

hand, allowing it would mean that there is no distinction between assigning 0 or u to

a disbelief. On the other, not allowing it would mean that :' ^ ::' implies that ' is

assigned u which corresponds to the intuition, because the proposition reads: it is not the

case that ' is disbelieved (evaluation of ' to true is favoured) and it is not the case that

:' is disbelieved (evaluation of ' to false is favoured), so an assignment to u is the only

reasonable compromise.

Remark 10. The table for ' and :' can be constructed from this one by substituting :'

for ' and then interchanging the left and the right column, thereby undoing the negation

of '.

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 16

'

0 u 1

0 - + +

' u + + +

1 + + -

'

0 u 1

0 + + -

:' u + + +

1 - + +

Table 3: Valid constellations for a proposition and the disbelief in it

Table 3 shows the possible constellations of ' and ' � "+" denoting allowed, "-"

denoting not allowed.

Remark 11. Note that ' and ' are independent of each other. All constellations between

the two are possible as u can be assigned to '.

2.6 Truth assignment and valuation

There have been several approaches to a de�nition of truth assignment and valuation.

One of the goals was to keep the structure of the models as simple as possible. Obviously

it will not work to assign values to the propositional letters alone, since the connective

"disbelief" is not truth functional.

One approach was based on the idea of simplifying all propositions via de Morgan-like

rules. There would have been a de�nition that ' ^ is equivalent to ' _ and ' _ to

' ^ . This would have allowed a simpli�cation to atomic disbeliefs. These rules would

have been sound as the propositions would allow the same truth values for ' ^ and

' _ etc. given assignments to ' and 3. There is no justi�ed simpli�cation for the

disbelief in an implication, however, which is why this approach was abandoned.

The approach we �nally chose combines an assignment with a consistency condition.

De�nition 2.4. Let L be a language of disbelief. A truth assignment A is a function that

assigns a unique truth value A (�) ; A (') 2 f0; u; 1g to each propositional letter � 2 L

and to each disbelief ' 2 L.

Let A be a truth assignment. A truth valuation VA is a function that assigns a unique

truth value VA (') to each proposition ' 2 L, such that VA () = A () for all proposi-

tional letters and disbeliefs and the value of a compound proposition is determined in
3But only when using the combinations de�ned in Table 3. Other constellations would not have had

this property.

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 17

accordance with the truth tables (Table 1) from section 2.3.

Proposition 2.5. Applying De�nintion 2.4, a truth valuation VA is uniquely determined

by the truth assignment A, i.e. there are no V 1
A and V 2

A such that V 1
A (') 6= V 2

A (') for any

'.

Proof. Assume there is a truth assignment A that gives rise to two truth valuations V 1
A

and V 2
A such that V 1

A (') 6= V 2
A (') for a particular '. By induction on the structure of ',

we continue this argument, ending in a contradiction and thereby proving the proposition.

� ' is a propositional letter. V 1
A (') 6= V 2

A ('). Consequently A (') = v1 and

A (') = v2 and v1 6= v2. A is not a truth assignment.

� ' is a disbelief. V 1
A (') 6= V 2

A ('). Consequently A (') = v1 and A (') = v2 and

v1 6= v2. A is not a truth assignment.

These two are the initial cases that end an induction and, as can easily be seen, they

contradict the assumption that A is a truth assignment.

� ' is syntactically equivalent to : . V 1
A (:) 6= V 2

A (:). Consequently

V 1
A () 6= V 2

A (). Inductively apply the proof.

� ' is syntactically equivalent to '1 Æ '2, where Æ 2 f^;_;!g.

V 1
A ('1 Æ '2) 6= V 2

A ('1 Æ '2). Consequently V 1
A ('1) 6= V 2

A ('1) or V 1
A ('2) 6= V 2

A ('2).

Inductively apply the proof.

Example 12. (i) A (a) = 1; A (a) = 1 is a truth assignment, but it contradicts our notion

of disbelief.

(ii) A
�
a! b

�
= 1; A (a) = u;A (b) = u like (i).

(iii) A (a) = 1; A (a ^ a) = u is a truth assignment, but our intention demands that

"equivalent" formulae should be evaluated to the same truth value.

Example 12 illustrates that De�nition 2.4 is not yet su�cient. It is shown that some

truth assignments � and the truth valuations they give rise to � satisfy the de�nition but

are still inconsistent with respect to the intuition we are trying to capture. This is due

to the fact that the de�nition considers the truth tables for the classical connectives, but

the value restrictions that come with the disbelief bar are not yet taken care of.

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 18

Example 12 (ii) makes clear why dealing with the value restrictions at the level of

de�ning the truth assignment is very hard. In order to realize that the assignment is in

some way inconsistent, the value for compound propositions has to be calculated.

Example 12 (iii) causes an additional dilemma. Usually equivalence of propositions is

de�ned in terms of truth valuations, but now we need equivalence in order to de�ne truth

valuations. Tableau proofs introduced in Section 3 will provide a tool for determining

which propositions are equivalent.

Our suggestion for dealing with these problems is to calculate the truth valuations of

all possible truth assignments. We can then check which truth assignments give rise to

truth valuations containing inconsistencies shown above and leave those out of further

consideration.

De�nition 2.6. A truth valuation VA as de�ned in de�nition 2.4 is valid if there is no

proposition ' such that one of the following holds:

(1) VA (') = 1 and VA (') = 1

(2) VA (') = 0 and VA (') = 0

(3) VA (') = 1 and VA (:') = 0

(4) VA (') = 0 and VA (:') = 1

(5) �L ' and VA
�

�
6= VA (')

A truth assignment A is valid only if it gives rise to a valid truth valuation.

(1-4) make sure that a valid truth valuation is in accordance with the restrictions

outlined in Section 2.5, (5) captures our intuition that "equivalent" propositions should

be treated in the same way. Note that using equivalence for the de�nition of truth

valuations leads to a somewhat circular de�nition of both. However, as will be seen later,

this circle is broken by the use of tableaux.

Remark 13. There is no valid truth assignment such that V
�
>
�
= 1: Follows immedi-

ately from De�nition 2.6 (property 1).

Remark 13 shows that disbelieving in a tautology is not consistently possible in our

framework. We think this to be a nice property. A similar one holds for contradictions:

V
�
?
�
= 0 is not permitted.

The distinction between truth assignment and valid truth assignment is essential. Only

valid truth assignments give rise to what we want to be models of a proposition. Nonvalid

2 THE LANGUAGE OF DISBELIEF AND BASICS OF ITS LOGIC 19

truth assignments have an inconsistency built in and are therefore of no interest. In the

remainder we will consider only valid truth assignments and omit the word valid.

We de�ne the consequence relation between a set of propositions and a proposition in

accordance with the classical notion.

De�nition 2.7. Let � be a set of propositions. We say that ' is a consequence of �,

denoted � j= ', if for any truth valuation V ,

8 (2 � ^ V () = 1) implies V (') = 1.

We also de�ne equivalence in the traditional way.

De�nition 2.8. Two propositions ' and are equivalent, ' �L , if and only if for all

truth assignments A: VA (') = VA ().

Proposition 2.9. If the proposition does not contain the disbelief operator, ' 6� for

any '.

Proof. (Sketch) It su�ces to show the existence of a truth assignment that leads to an

evaluation of and ' to di�erent truth values.

As does not contain a disbelief bar, its value is determined by the assignment to the

propositional letters alone. As a starting point, we chose the assignment that assigns the

value u to every propositional letter and disbelief. Further, we we leave the assignment

�xed for the propositional letters, i.e. the value of is not going to change during the

following considerations.

If the value of is 1 or 0, we already have the desired assignment. So the only case

that remains to be considered is when takes the value u. And depending on the value

of ', the desired assignment can be constructed by chosing ' to be 1 or 0.

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 20

3 Tableau proofs in the logic of disbelief

Axiomatizations for many-valued logics are often di�cult. Semantic characterizations of

the relations that are of interest are usually easier to �nd. The same holds for soundness

and completeness proofs, in many cases.

The main aspect and a source of complexity of our disbelief logic lies in the compat-

ibility of several truth assignments to ' and ', e.g. the possibility of believing :' and

at the same time not committing to disbelief in ' (evaluating ' to u), as well as in the

nesting of the disbelief bar. However, the speci�cations made in Sections 2.3, 2.5 can be

captured elegantly with tableaux and a model-checking framework using tableau rules,

which we want to present in the following. De�nitions, lemmas and theorems 3.1 - 3.8 are

adapted from [9].

3.1 Atomic tableaux and de�nitions

First we explain our notation. An atomic tableau is a tree with a root entry ' : v0 and

n leaves with the entries c1 : : : cn. In our case, n will be 1, 2 or 3. Every ci is a possibly

empty list of signed propositions (i1 : vi1 ; :::; in : vin). '; i1; :::; in are propositions

of a language of disbelief and v0; :::; vin are members of f0; u; 1; < 1; > 0g which represent

value restrictions. <1 and >0 are abbreviations for f0; ug and fu; 1g as will become clear

from the rules (t1) and (t2) in Figure 2.

' : 1 ' : u ' : 0 ' :< 1 ' :> 0

(r1) (r2) (r3) (r4) (r5)

Figure 1: Valid roots of a tableau

Figure 1 shows which entries are allowed at the root of a tableau.

' :< 1

' : 0

uuuuuuuuu
' : u

IIIIIIIII

' :> 0

' : u

uuuuuuuuu
' : 1

IIIIIIIII

(t1) (t2)

Figure 2: Abbreviations

The atomic tableaux (t1) and (t2) in Figure 2 de�ne the meaning of the abbreviations.

If ' is restricted to a value less than 1, it can take the values 0 or u. The case of a restriction

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 21

to a value greater than 0 is analogous.

:' : 1

' : 0

:' : u

' : u

:' : 0

' : 1

(t3) (t4) (t5)

' ^ : 1

' : 1; : 1

' ^ : u

' : u; : u

rrrrrrrrrr
' : u; : 1 ' : 1; : u

KKKKKKKKKK

' ^ : 0

' : 0

�������
 : 0

???????

(t6) (t7) (t8)

' _ : 1

' : 1

�������
 : 1

???????

' _ : u

' : u; : u

rrrrrrrrrr
' : u; : 0 ' : 0; : u

LLLLLLLLLL

' _ : 0

' : 0; : 0

(t9) (t10) (t11)

'! : 1

' : 0

yyyyyyyy
 : 1 ' : u; : u

KKKKKKKKKK

'! : u

' : 1; : u

uuuuuuuuu
' : u; : 0

IIIIIIIII

'! : 0

' : 1; : 0

(t12) (t13) (t14)

' : 1

' : u

�������
' : 0

777777

' : u

' : 0

�������
' : u ' : 1

=======

' : 0

' : u

�������
' : 1

777777

(t15) (t16) (t17)

Figure 3: Atomic tableaux for the connectives

The atomic tableaux in Figure 3 precisely encode the truth tables presented in Section

2.3 and the restrictions caused by the disbelief bar presented in Section 2.5. (t1-17)

represent the atomic tableaux.

The basic idea behind the tableau approach is to create a model � or to show that

no model exists. Starting with an initial goal, all possible paths of achieving this goal

are tried. Sometimes there is only one path, like in (t6). Sometimes there are di�erent

possibilities, like in (t9). In these cases all of the paths have to be investigated separately.

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 22

Arriving at an inconsistency on one path tells us that chosing it was not successful.

If none of the paths are successful, the initial goal cannot be achieved. A consistent path

that cannot be expanded further gives us a solution for the initial goal.

Now the notions of what a path is, of how we de�ne inconsistency, of when a path

cannot be expanded further have to be de�ned more formally.

De�nition 3.1. A �nite tableau is a binary tree, labelled with signed propositions called

entries, that satis�es the following inductive de�nition:

(i) All atomic tableaux are �nite tableaux.

(ii) If T is a �nite tableau, P a path on T; E an entry on P and T 0 is obtained from T

by adjoining the unique atomic tableau with root entry E at the end of the path P; then

T 0 is also a �nite tableau.

If T0; T1; :::; Tn; ::: is a sequence of �nite tableaux, such that, for each n � 0, Tn+1 is

constructed from Tn by an application of (ii), then T =
S
Tn is a tableau.

Remark 14. Some of the atomic tableaux are in fact not binary but ternary. This is

to represent the third value more naturally and improve readability. It should be clear,

though, that those can be easily transformed to be binary trees.

De�nition 3.2. Let T be a tableau, P a path on T and E an entry occuring on P:

(i) E has been reduced on P if all entries on one path through the atomic tableau with

root E occur on P:

(ii) P is contradictory 4 if

(1) for some proposition ',

' : 0 and ' : 1,

' : 0 and ' : u, or

' : u and ' : 1 are both entries on P , or

(2) for two propositions ' and with ' �L , ' : v1 and : v2 are entries on P

such that v1 6= v2.

(iii)P is �nished if it is contradictory or every entry on P is reduced on P:

(iv) T is �nished if every path through T is �nished.

(v) T is contradictory if every path through T is contradictory.

4We will sometimes say "the branch is closed" instead of "the branch is contradictory" and "open"

instead of "noncontradictory".

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 23

Remark 15. Condition (2) of De�nition 3.2 is an essential di�erence compared to a

normal tableau. See section 3.3 for an explanation that equivalence can be de�ned in

terms of tableau proofs in spite of this condition, which seems to make the de�nition

circular.

Example 16. � ' ^ (_ �) : 1

' : 1; _ � : 1

 _ � : 1 is not reduced on the only path P in this tableau, as not all entries of

a path through the atomic tableau with root entry _ � : 1 occur on P . So the

tableau is not �nished.

� ' ^ (_ �) : 1

' : 1; _ � : 1

 : 1

 _ � : 1 is reduced on the only path P in this tableau, as all entries of a path

through the atomic tableau with root entry _� : 1 occur on P . So this tableau is

�nished.

� ('1 ^ '2) ^ (_ �) : 1

'1 ^ '2 : 1; _ � : 1

 : 1

jjjjjjjjjjjjjjjjj
� : 1

RRRRRRRRRRRRRR

'1 : 1; '2 : 1

 _� : 1 is reduced in the tableau, as on every single path, we �nd all the entries of

a path through the atomic tableau with root entry _ � : 1. '1 ^ '2 : 1 is reduced

on the left path of the tableau, but not on the right one. Therefore the tableau is

not �nished.

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 24

� ' ^ :' : 1

' : 1;:' : 1

' : 0

This tableau is �nished, as all entries are reduced on all paths. Furthermore it is

contradictory, as its only path is contradictory. The path is contradictory, because

there are two entries that demand one and the same proposition to have di�erent

values.

� (' ^ :') _ : 1

' ^ :' : 1

lllllllllllll
 : 1

OOOOOOOOOOOO

' : 1;:' : 1

' : 0

This tableau is �nished but not contradictory, as it has a nonclosed branch.

De�nition 3.3. A tableau proof of a proposition ' is a contradictory tableau with root

entry ' :< 1. A proposition is tableau provable, written `t ', if it has a tableau proof.

A tableau refutation for a proposition ' is a contradictory tableau starting with ' :> 0.

A proposition is tableau refutable if it has a tableau refutation.

a! a :< 1

a! a : u

ggggggggggggggggggggggg
a! a : 0

PPPPPPPPPPPP

a : 1; a : u

oooooooooooo
a : u; a : 0

OOOOOOOOOOOO

a : 1; a : 0

Figure 4: Example Proof

Example 17. Figure 4 is a tableau proof for a! a.

It is clear that open branches in a �nished tableau represent possible models for the

propositions at the root of the tableau. Hence satis�ability of ' can be checked with a

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 25

tableau with root entry ' : 1. If all branches are closed it is not satis�able, if there is an

open branch, it is.

It can be shown, that the proof for a proposition is always �nite.

Theorem 3.4. There is a �nished �nite tableau T for each possible root entry ' :< 1.

Proof. In fact we prove that any �nished tableau with a root entry corresponding to

(r1) - (r3) is �nite. The theorem then follows, because corresponding to (t1) we can

combine the �nite �nished tableaux ' : 0 and ' : u with the root entry ' :< 1 to get a

�nished tableau that is still �nite.

We proceed by induction on the structure of the given proposition '. If ' is a proposi-

tional letter, then the tableau consisting of just the signed propositional letter is �nished.

Note that signed propositional letters are themselves atomic tableaux.

For the inductive case consider (t8) ' ^ : 0. By induction there are �nished �nite

tableaux T' and T with root entries ' : 0 and : 0 respectively. We form the desired

tableau with root entry ' ^ : 0 by beginning with the corresponding tableau (t8) and

then appending copies of T' and T below the entries ' : 0 and : 0 respectively. It is

immediate from the de�nition of a �nished tableau that this gives us the desired result.

Next consider (t6) ' ^ : 1. As before, we have �nished �nite tableaux T' and T .

We begin our desired tableau T with the appropriate atomic tableau (t6). To the end of

this tableau we add a copy of T' to get a tableau T 0 in which the only possible occurence

of an entry is that of : 1 in the original atomic tableau. We now add a copy of T to

the end of every noncontradictory path in T 0 to get our desired T .

The other cases are treated similarily.

3.2 Soundness and completeness

Theorem 3.5. (Soundness) If ' is tableau provable, then ' is valid, i.e. `t ' implies

j=L '.

Proof. Applying contraposition, suppose ' is not valid. By de�nition there is a truth

valuation V assigning 0 or u to '. We say that the valuation V agrees with a signed

proposition E, if

(1) E is ' : 1 and V (') = 1,

(2) E is ' : u and V (') = u, or

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 26

(3) E is ' : 0 and V (') = 0.

We show (Lemma 3.6) that if any valuation V agrees with the root node of a tableau,

then there is a path P in the tableau such that V agrees with every entry on P . As no

valuation can agree with any path on a contradictory tableau, there can be no tableau

proof for '.

Lemma 3.6. If V is a valuation that agrees with the root entry of a given tableau T , then

T has a path P every entry of which agrees with V .

Proof. We prove by induction that there is a sequence (Pn) such that, for every n, Pn is

contained in Pn+1 and Pn is a path through Tn such that V agrees with every entry on

Pn. The desired path P through T will then simply be the union of the Pn. The initial

case of the induction is easily seen to be true by the assumption that V agrees with the

root of T . It is easy to verify that the atomic tableaux precisely capture the truth tables

and value restrictions for the disbelief bar, so that V has to agree with one of the paths

the tableau branches into (otherwise it would not be a valid truth valuation).

For the induction step, suppose we have constructed a path Pn in Tn every entry of

which agrees with V . If we get Tn+1 from Tn without extending Pn, then we let Pn+1 = Pn.

If Pn is extended in Tn+1, then it is extended by adding to its end an atomic tableau with

root E for some entry E appearing on Pn. As it is known by induction that V agrees

with E, the same analysis as used in the initial case shows that V agrees with one ot the

extensions of Pn to a path Pn+1 in Tn+1.

Lemma 3.7. Let P be a noncontradictory path of a �nished tableau T . De�ne a truth

assignment A on all propositional letters a and disbeliefs '5 as follows:

If a : 1 is an entry on P then A (a)
def
=1.

If a : u is an entry on P then A (a)
def
=u.

If a : 0 is an entry on P then A (a)
def
=0.

If ' : 1 is an entry on P then A (')
def
=1.

If ' : u is an entry on P then A (')
def
=u.

If ' : 0 is an entry on P then A (')
def
=0.

For all other propositional letters and disbeliefs de�ne A (�)
def
=u.

5As all paths where disbeliefs in equivalent propositions are evaluated di�erently are closed, this truth

assignment will be valid.

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 27

Let VA be the valuation the truth assignment A gives rise to (De�nitions 2.4, 2.6),

then VA agrees with all entries of P .

Proof. We proceed by induction on the structure of propositions on P .

(i) If ' is a propositional letter occuring as (the proposition in) an entry, VA agrees

by de�nition.

(ii) If ' is a disbelief, likewise.

(iii) Suppose (' ^) : 1 occurs on the noncontradictory path P . Since T is �nished,

both ' : 1 and : 1 occur on P . By the induction hypothesis VA (') = VA () = 1 , and

so VA (' ^) = 1 as required.

The remaining connectives and truth values are treated likewise.

Theorem 3.8. (Completeness) If ' is valid, then ' is tableau provable, i.e. j=L ' implies

`t '. In fact, any contradictory tableau with root entry ' :< 1 is a proof of '.

Proof. Suppose that ' is valid and so V (') = 1 for every valuation V . Consider any

�nished tableau T with root ' :< 1. If T has a noncontradictory path P , there would be,

by Lemma 3.7, a valuation V that agrees with all its entries and so in particular with ' : u

or ' : 0. This would give us a valuation with V (') 6= 1 contradicting the the validity of

'. Thus every path on T is contradictory and T is a tableau proof of '.

3.3 Remarks

The equivalence between two sentences ' and can now be checked with a tableau

proof for ('!) ^ (! '). For all propositions that do not contain a disbelief bar,

condition (2) of De�nition 3.2(ii) does not come into play, so the tableau will work just

like a classical one. If there are entries containing disbeliefs that are assigned di�erent

values, this condition triggers other equivalence proofs with propositions that contain one

disbelief bar less. As propositions are �nite this procedure will terminate and determine

if equivalence holds or not.

As we are in a three-valued logic, there are propositions that are not satis�able without

being contradictions, i.e. they are never evaluated to 1 without always being false. A set

of propositions containing one of these does not have a model. We want to be able to

make a distinction between nonsatis�able propositions and contradictions as both play an

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 28

' :< 1

 1 : 1

...

 n : 1

Figure 5: Tableau from premises

important role in matters of equivalence and inference. We therefore introduce a symbol

denoting nonsatis�ability: ?w

Unlike contradictions, nonsatis�able propositions may behave di�erently under di�er-

ent truth assignments, i.e. although they never take the value 1, they may take the value

u at di�erent times.

Example 18. a^:a and a^a are both nonsatis�able as can be easily veri�ed, but under

the truth assignment A (a) = u A (a) = 0 the �rst is evaluated to u but the second to 0.

That is why we cannot write ' � ?w for a nonsatis�able proposition '. If we did,

equivalence would not be transitive any more. So we write ' `t ?w instead. Without

explicit de�nition, we assume that this symbol like > and ? is element of the language and

that it is element of Cn (�) whenever a nonsatis�able proposition is element of Cn (�).

The tableau scheme provides us with a notion of consequence/inference, as well. Figure

5 illustrates the basic idea. Instead of proving ' to be true under all truth assignments, it

is proved to be true under the assignments that make a set of premises true which captures

the de�nition of ' being a consequence of these premises. i are the propositions occuring

in �.

If the tableau in Figure 5 is contradictory, � `t ' holds, because it means that in any

open path of a �nished tableau for which 1 : 1; :::; n : 1 hold, ' : 1 has to hold as well.

Soundness and completeness results can be adapted to tableaux with premises.

Proposition 3.9. The deduction theorem

f'g j= if and only if j= '!

does not hold.

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 29

Proof. It su�ces to give a counterexample.

Consider ' ^ ('!) j= . Obviously, this holds. Whenever ' and ' ! are

evaluated to true, must be true as well. This follows directly from the de�nition of the

implication.

Under the assignment A (') = u, A () = 0, (' ^ ('!)) ! evaluates to u

showing that it is not a tautology. Consequently j= (' ^ ('!))! does not hold.

Proposition 3.10. If j= '! , then f'g j= holds.

Proof. Follows from the de�nition of implication. A necessary condition for '! being

a tautology is that whenever ' takes the truth value 1, so does . Which is what f'g j=

states.

There is an intuitive explanation why the deduction theorem does not hold. The left

hand side and the right hand side express di�erent things. While the left hand side only

demands that whenever ' is evaluated to 1, so is , the right hand side requires that the

value of always be greater than or equal to that of '. In a two-valued logic these two

amount to the same thing, but in a three-valued one, they do not.

Returning to the counterexample used for the proof of Proposition 3.9, the following

can be noted. If the conjunction is split up and the propositions are brought to the right

side as illustrated in Example 19, the resulting implication holds. This can be easily

veri�ed using truth tables.

Example 19.

f'; ('!)g j=

f'g j= ('!)!

j= '! (('!)!)

This principle cannot be used in general, however, as Example 20 illustrates.

Example 20.

�
' _ ; � _

	
j= ' _ �

�
� _

	
6j= (' _)! (' _ �)

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 30

The assignment A (') = 0; A (�) = 0; A
�

�
= 1; A () = u makes the �rst disjunction

true whithout satisfying the implication. So the consequence relation does not hold.

Taking � _ instead of '_ to the other side �rst does not lead to a valid consequence

either. The truth assignment leading to the invalidity is the one given above with the

values of and exchangend.

The essence of the above paragraphs is that we can use tautologies that are made up

of implications to derive inference rules, but that this will not give us all necessary rules.

A further investigation of the above relationship seems worthwile and will be necessary if

an axiomatization for the inference relation is to be found.

It was one of our conjectures that

' _ � > if and only if ' � > or � >;

i.e. that combining two nontautologies via disjunction cannot produce a tautology. How-

ever, this turned out not to be the case. One possible counterexample is

' _
��
 ^

�
! :'

�
.

This is a slight modi�cation of the tautology ' _ :' in the two-valued case, which of

course is not a tautology in our logic as an assignment of u to ' reveals. But actually

this is the only case for which the disjunction is not evaluated to true. So the idea is to

make sure that in this case one of the disjuncts is true without trivially letting it be a

tautology. Once more nonsatis�able propositions play an important role. Using one as

the premise in an implication does the trick. As the value of a nonsatis�able proposition

never is 1, the second disjunct will be true not only if ' is evaluated to 0 but also for the

truth value u.

The fact that there are nontrivial disjunctions, i.e. disjunctions that cannot be simpli-

�ed via ' _> � >, which are tautologies indicates that an axiomatization of tautologies

might be very hard, at least harder than if the above conjecture had held. It also illustrates

the importance of nonsatis�able propositions which are not contradictions.

Consequence in our three-valued logic is arguing across branches. Consider the fol-

lowing example: Given is the sentence :' _ '. The (partial) tableau it causes is shown

in Figure 6. It does not allow to draw a de�nite conclusion about ' as there are open

paths in which ' is assigned 0 but also one where it is assigned u. But it is obvious that

any branch where :' _ ' : 1 and ' : 1 occur will be closed.

So together with ' _ : 1, for example, it would be possible to infer that holds. In

3 TABLEAU PROOFS IN THE LOGIC OF DISBELIEF 31

:' _ ' : 1

:' : 1

qqqqqqqqqq
' : 1

UUUUUUUUUUUUUUUUUU

' : 0 ' : u

wwwwwwwww
' : 0

GGGGGGGGG

Figure 6: Tableau illustrating inference

the tableau framework, this is easy, but a syntactic axiomatization of inference must be

capable of dealing with such cases as well. An inference across the branches in Figure 6

allows the conclusion that ' cannot be evaluated to true, i.e. that it is nonsatis�able. We

think that this nonsatis�ability must be syntactically expressible in order to fully capture

the inference relation. We present our approach to that in Section 5.

3.4 Truthfunctional completeness

One property that is often of interest is whether all truth assignments can be forced by a

proposition. This property is known as truthfunctional completeness.

It was our conjecture that our logic is not truth functional. The intuitive explanation

is the following. The values true and false do not cause problems, as writing ' or :' does

the job, but in order to force ' to take the value u, ' and :' are needed. Obviously, this

would make it impossible to characterize the assignment A (') = u, A (') = u.

But there is a way of forcing ' to take the value u without having to use disbeliefs �

('! :') ^ (:'! '). This looks a bit awkward, but it works. The only assignment

that satis�es this proposition is A (') = u.

Of course ' could be a disbelief as well. This should illustrate that the logic of disbelief

allows every truth assignment to be expressed in terms of a proposition.

At this point the question might arise why disbeliefs are necessary at all. Apparently,

a! :a has the same e�ect as a. Both prevent a from taking the value 1. So why not en-

code every disbelief in this type of implication? But again, the problems arise when think-

ing of disbeliefs in disbeliefs. Using the above scheme a would be (a! :a)! : (a! :a).

This proposition does not have the desired property of being consistent with the evaluation

of a to neither 0 nor u. This notion of disbelief would imply a � a.

4 IMPLEMENTATIONS OF THE LOGIC 32

4 Implementations of the logic

4.1 General notes

We present two attempts to implement the logic and its application in the belief revision

framework as Prolog programs6. After brie�y presenting the �rst and illustrating why it

failed, we will go more into detail with the second.

The language of disbelief is transferred into Prolog via predicates. Valid propositional

letters are all strings that satisfy the Prolog predicate atomic(). In particular, a; b; c; : : :

can be used as propositional letters for which syntactic and semantic equivalence coincide.

That is, two propositional letters are considered identical if and only if they have the same

syntactic structure.

Recursively de�ned, valid propositions P are:

P= a, b, c ... | nott(P) | bar(P) | imp(P,P) | con([P,P+]) | dis([P,P+]

As conjunction and disjunction are associative, we chose not to restrict the corre-

sponding predicates to be binary. Instead, we represented them by a unary predicate that

takes a list of a length greater than one as argument.

Example 21. The following are examples of how elements of the language of disbelief

are translated into the Prolog predicate notation.

� :a becomes nott(a)

� b becomes bar(b)

� a! b becomes imp(a,b)

� a ^ c becomes con([a,c])

� b _ a becomes dis([b,a])

� (a ^ b) ^ c becomes con([a,b,c])

� (a ^ (b! c)) _ :a _ c becomes dis([con([a,imp(b,bar(c))]),bar(dis([nott(a),c]))])

6Both programs are written for SWI-Prolog. They do not use any fancy features. One of the things

that might cause problems with other Prolog versions is the relation writeln which is used for showing

results to the user. Its occurences would have to be replaced by a corresponding predicate of the Prolog

used.

4 IMPLEMENTATIONS OF THE LOGIC 33

As in the framework we base our work on, revision is just appending a proposition to

the sequence, we did not implement revision itself but the identi�cation of the propositions

that make up the belief base. That is, we calculate the consistent subsequence from which

the belief set is built. The procedure which does this re�ects the de�nition given in Section

1.2.

Algorithm 4.1.

1. Base=;, Seq=Input Sequence

2. El=last element of Seq

3. TempBase=Base [El

4. if TempBase consistent then Base=TempBase

5. RemSeq = Seq without the last element

6. if RemSeq empty then goto 7, else Seq = RemSeq and goto 2

7. output TempBase

Starting at the end of the sequence, it is tested whether incorporating the current

proposition into the intermediate belief base creates an inconsistency. If so, the proposition

is discarded, otherwise it is included into the new intermediate belief base.

Of course, the Prolog version of this algorithm looks somewhat di�erent, but as both

approaches di�er in how the consistency calculation is done, we leave the details to the

respective sections.

4.2 First approach

The main idea of the �rst approach was to label all propositions with a number repre-

senting the values the proposition could possibly take. In fact this number represents

one of the subsets of the truth values f0; u; 1g. Using single numbers seemed easier than

labelling with sets.

We used the following mapping: 0={}=inconsistent, 1={0}, 2={u}, 3={1}, 4={0; u},

5={0; 1}, 6={u; 1}, 7={0; u; 1}.

The numbers are interpreted as value restrictions and these are propagated to the

subpropositions. As propositions can occur more than once, all their value restrictions

4 IMPLEMENTATIONS OF THE LOGIC 34

are then combined. As the numbers represent sets, the resulting label corresponds to the

intersection of the respective sets. So for example, the result of combining 4 and 5 leaves

1. Furthermore, information contained in the interaction between di�erent propositions

is used. This procedure continues until no further changes in the value restrictions occur.

Example 22. We assume that the propositions in the examples are the last ones in the

sequence, so we do not have to consider possible interactions with propositions that have

already been incorporated in the belief base.

� con([a,b]), i.e. a ^ b, is the last proposition of the sequence. Consequently, it is

labelled with 3. As a conjunction can be true only if all its components are true,

this value is propagated to a and b.

� dis([a,b]), i.e. a _ b, is the last proposition of the sequence. Consequently, it is

labelled with 3. As a disjunction can be true if any one of its components is true,

no de�nite information can be derived about a or b, so both of them are labelled

with 7.

� con([bar(a),dis([b,a])]), i.e. a ^ (b _ a), is the last proposition of the sequence, so a

and b _ a are labelled with 3. From the de�nition of disbelief it is clear that a can

now only take the truth values u and 0, so a is labelled with 4. As above, the value

restriction of each component of the disjunction is 7.

Obviously, we now have two di�erent labels for a: 4 and 7. These are combined to a

single label 4, which represents that a cannot be evaluated to true any more. Seeing

that the disjunction has to be satis�ed and one of its disjuncts cannot be satis�ed

any more, the program knows that the "reduced" disjunction must be satis�ed. In

this case, that is b which consequently is labelled with 3.

Now we have two labels for b � 7 and 3 � which are combined to 3. This concludes

the calculation.

The investigation of possible interactions between propositions was done using a set

of rules. Example 23 illustrates how this works. In the program, a labelled proposition

is represented by a list that contains the proposition and its label. The propagation of

value restrictions is done on a list of these lists.

4 IMPLEMENTATIONS OF THE LOGIC 35

Example 23.

(member([con(X0),1],List1),

member([Y0,Val0],List1),

isrestof(con(X0),Y0),

(Val0=2;Val0=3;Val0=6)),!

-> (getrest(c,X0,Y0,Z0),

dupup([Z0,1],List1,M1),

mtb([con(X0),1],M1,I2));List1=I2)

Assume the list contains a^ b^ c : 1 and c^ a : 6. The �rst line checks whether there

is a conjunction in the list that is evaluated to false. This will identify a ^ b ^ c : 1. The

next three lines try to �nd a proposition that is a part of this conjunction and that is

restricted to 2, 3 or 6. This will identify c ^ a : 6.

We now have a conjunction that is to be evaluated to false and a part of the conjunc-

tion that cannot be evaluated to false. This means that the remaining part of the �rst

conjunction must be false. This is realized in the next two lines. getrest calculates the

rest of the conjunction a ^ b ^ c when c^ a is removed. The result is b. And then the list

of value restrictions is updated (dupup) with the new information that b must be false.

The next predicate causes the initial conjunction to be moved to the back of the list.

This is done because the rule might be applicable to other conjunctions in the list. But

in each run, each rule can be applied only once. The cut forces the rule to be applied

in the �rst possible case, so the �rst conjunction is moved to give the other candidates a

chance.

The cut is necessary for the following reason. Assume one rule is applicable only once

and assume the next rule is not applicable at all. Since Prolog tries to satisfy as many

predicates as possible it will do backtracking and try another version of the �rst rule, but

since there is none and there is no undoing of the backtracking, it will now be assumed

that no rule was applicable. In this case, the value restrictions would not be propagated

correctly.

From the above explanation, it should become obvious how awkward this procedure

really is. The �rst intention was not to try out every single truth assignment, but rather

infer the right value restriction based on a set of rules. But the price for preventing this

brute force approach is high. The set of rules that would be necessary is very big and

4 IMPLEMENTATIONS OF THE LOGIC 36

complicated � and it is hard to be sure that it can handle every possible case correctly.

Example 24 illustrates a family of the problem cases.

Example 24. Consider the following entry: (a ^ a) _
�
b ^ b

�

The program does not infer that this disjunction cannot be satis�ed. In order to do

so, it would have to be capable of recognizing the conjunctions to be nonsatis�able. But

as it is not forced to try to label one with 3 � the value propagated to the conjunctions is

7 � it allows the disjunction in the belief base. There are two ways out of this problem:

syntactically recognizing nonsatis�ability or trying possible truth evaluations.

The �rst amounts to an axiomatization of nonsatis�able propositions which we have

not been able to give. The second is in opposition to the intention of this approach to

infer rather than to try out.

This is why work on this approach was abandoned. Rather than trying to �x the

problems by introducing satis�ability checks to the already quite complicated procedure,

it seemed reasonable to implement the tableau approach7.

4.3 Second approach � Tableau

The second program was written after the tableau idea had matured. Kernel of the

program is the implementation of the tableau procedures introduced in Section 3. As

they cannot deal with general conjunctions and disjunctions, i.e. those with more than

two components, they are normalized. In other words, while the user can omit parentheses

for the two connectives, the program reintroduces them.

The tableaux themselves are not implemented as trees. They are represented as lists

of complete paths. Therefore entries are stored more than once, but checking for clashes

within a list seemed easier than searching within a tree structure.

A tableau entry is a list consisting of a proposition, a truth value, and a �ag repre-

senting whether the entry has been reduced. A path is a list of entries and a tableau a

list of paths. There are three special entries � the strings �n, open, and closed. They are

used as tags for paths, as to speed up checks, if a path is �nished, open, or closed. That
7In fact, when work on the �rst implementation was started, the tableau idea had not been developed

yet. By the time the problems became pressing, work on the tableau de�nition presented in Section 3

had begun and was quite promising. So a reimplementation seemed more favourable.

4 IMPLEMENTATIONS OF THE LOGIC 37

is, once marked as closed, entries on the path are not reduced any more, as this would

not help in creating a consistent model.

When reducing an entry, the respective path is temporarily removed from the tableau.

The atomic tableau that belongs to the entry is identi�ed. If it branches, the path is

duplicated and one of the nodes is inserted into one copy. Finally, the entry is marked as

reduced and the new paths are reinserted into the tableau.

In each run, one entry of every path in the tableau is reduced. The program then

tests whether paths are closed and removes them from the tableau. Finished open paths

are also marked. In some cases, calculation is terminated when an open �nished path is

found.

The tableau kernel provides some basic predicates for the user:

� prove(P) returns "yes" if P is a tautology, "no" otherwise

� satisfiable(P) returns "yes" if P is satis�able, "no" otherwise

� notsatisfiable(P) returns "yes" if P is nonsatis�able, "no" otherwise

� eq(P;Q) returns "yes" if P and Q are equivalent, "no" otherwise

� isconsequenceof(P; [Q�]) returns "yes" if P is a consequence of the set of proposi-

tions

The �rst three can have the string show as second argument. In this case, an open

�nished path is returned as well. Since a tableau proof for a proposition is a closed

tableau, the open path then gives a model that causes the proposition not to be evaluated

to true. In the case of satis�ability a model of the proposition is produced. In the case of

nonsatis�ability, a model is produced as well � proving that there is one.

Algorithm 4.2.

prove(X):- prove(X,A,noshow).

prove(X,show):- prove(X,A,show).

prove(X,A,S):- normalizelist([[X,l]],Y),

maketab(Y,Z),

finishopenfail(Z,A),!,

(S=show -> write_ln(A);true),

closed(A).

4 IMPLEMENTATIONS OF THE LOGIC 38

All the above predicates are similar in appearance to the code shown in Algorithm

4.2. The proof procedure starts by normalizing the proposition. The main task here

is to transform all disjunctions and conjunctions to have exactly two components. The

resulting list is then turned into an initial tableau. The predicate �nishopenfail reduces

entries until one open �nished path is found or all paths are closed. The cut is necessary

to prevent backtracking. The last line then checks whether the resulting tableau was

closed or contained an open path.

Recall De�nition 3.2 of a closed path. The test whether there is a proposition that is

assigned two di�erent values is easily realized with a membership check. But to check the

other possibility � that there are two disbeliefs in equivalent propositions with di�erent

values � is a little more complicated.

Equivalence checks are expensive because they require a tableau proof for mutual im-

plication. If there are many disbeliefs in the propositions and if the complete equivalence

check was triggered after every reduction of an entry in the tableau, a lot of time would be

wasted on what was known before. That is why equivalence and nonequivalence results

are stored in dynamic predicates that could be interpreted as a database. And before the

tableau proof of equivalence is started, this database is searched, to see whether the check

was run before. This causes a considerable speedup.

Algorithm 4.3.

equivalent(X,X).

eq(X,Y):- equivalent(X,Y),!.

eq(X,Y):- (notequivalent(X,Y),!)->

fail;

((prove(con(imp(X,Y),imp(Y,X))),!) ->

(asserta(equivalent(X,Y)),

asserta(equivalent(Y,X)),

true);

(asserta(notequivalent(X,Y)),

asserta(notequivalent(Y,X)),

fail)

).

4 IMPLEMENTATIONS OF THE LOGIC 39

Notes on the revision part of the tableau implementation

In this implementation, there is a clearer separation between the identi�cation of the

belief base and the calculation of the (partial) belief set.

Algorithm 4.4. 8

dorevision(X,R):-belbase(X,R),

createbeliefset(R,S).

belbase(X,Y):-validlist(X),calculate(X,[],Y).

calculate([], Intermediate, Intermediate).

calculate([H|Rest], Intermediate,Y):-

calculate(Rest, Intermediate, Finalresult),

(satisfiablelist([H|Finalresult])->

Y=[H|Finalresult];

Y=Finalresult).

dorevision gets a list of propositions, identi�es the belief base and creates the belief

set. At �rst we are going to look at how the belief base is identi�ed. This is essentially

managed by the predicate calculate.

Its �rst argument is the initial sequence of propositions, the second is the intermediate

belief base, the last accumulates the result. calculate([], Intermediate, Intermediate).

de�nes that in case the sequence is empty, the resulting belief base is equivalent to the

intermediate one.

The �rst line in the de�nition for the nontrivial case causes a recursive call of calculate.

In every recursive step, the �rst element of the sequence is cut o�, so in the end the list

is empty and the initial case is triggered. Afterwards, one proposition after the other is

appended to the intermediate belief base and it is tested if this list is satis�able. If so,

the proposition is inserted into the intermediate belief base, otherwise the latter is left

unchanged. So in the end there is a consistent sequence of propositions.

satis�ablelist is based on the predicate satis�able. In fact the former creates the

conjunction of all the propositions in the list and then triggers the latter.
8The source code is slightly modi�ed in order to increase readability

4 IMPLEMENTATIONS OF THE LOGIC 40

The calculation of the belief set is more interesting than the identi�cation of the belief

base � which should be quite clear after the last section. In fact, only a partial belief set

is calculated as most of the proposition in the in�nite set do not provide information.

If :a is in the belief set, so is a! ' for any '. But knowing this does not help with

anything. It is our notion that the aim is to derive something about the subpropositions

contained in the belief base. If a _ b is in the belief base, information about which of the

two is true is far more valuable than the fact that any disjunction containing this one is

still true.

So the naive inference engine we implemented does nothing except expanding the

propositions in the belief base to all their subpropositions and checking whether these

are consequences of the base. As the belief base does not change during this procedure,

the �nished tableau of the belief base is calculated and reused for the individual checks,

rather than recalculating the entire tableau.

That is, not the predicate isconsequenceof, which has a list of propositions as argument,

is used, but a di�erent one that takes a tableau as argument, adds the proposition to be

tested to every nonclosed branch and then continues the reduction of entries.

The very naive way of just considering (all) the subpropositions has some shortcomings.

On the one hand some propositions may occur more than once � not necessarily in the

same syntactic structure. So some checks will be done twice ore even more. Checking the

entire set of subpropositions for duplicates will take much time, as equivalence checks are

involved. This is one point where performance could still be improved.

Disjunctions are another issue. Long disjunctions create many subdisjunctions � two

to the power of the number of disjuncts, to be exact. If one of the short subdisjunctions

turns out to be a consequence of the belief base, all of its longer versions will be in the

belief base, too. But as mentioned above a _ b is not interesting if we already know a.

This could be solved by sorting the subpropositions by length, i.e. by the complexity of

their structure, and test for each disjunction whether one of its disjuncts is already in the

belief base.

One interesting case where the inference "fails" is general resolution. If the proposi-

tions a_ b and c_:b are given, a_ c is not identi�ed as a consequence, simply because it

is not among the subpropositions of the two and therefore not tested. When it is asked

explicitly if a _ c is a consequence, the answer is of course a�rmative. A naive way to

overcome this problem is to create the big disjunction of all the disjunctions in the set of

4 IMPLEMENTATIONS OF THE LOGIC 41

base beliefs and consider its subpropositions, which then adds to the problems mentioned

above.

A number of examples illustrating aspects of the usage of the tableau implementation

are found in Appendix C.

Comparing the implementations in size reveals that the (kernel) tableau version is

smaller by far than the other one, which is mainly due to the fact that many inference rules

are necessary to �nd out what the tableau reveals by just trying out all the possibilities,

while they still miss to identify certain nonsatis�able propositions. The di�erence in size

is decreased by the part that does the inference.

5 TOWARDS AN AXIOMATIZATION 42

5 Towards an axiomatization

5.1 Equivalence relation �L

> denotes the tautology, i.e. a proposition that is evaluated to 1 by every truth valuation,

? the contradiction, which is always evaluated to 0. As we are in a three-valued logic,

though, there are propositions that are never evaluated to 1 without being contradictions.

However, this property cannot be used for de�ning equivalence.

The equivalence relation �L for the language of disbelief has many similarities to the

classical one �. A major di�erence is the set of tautologies. �L is a symmetric, transitive

and re�exive relation that satis�es the following properties. The rules for implication are

necessary as it is not de�nable in terms of disjunction and negation.

' �L ::'

:' �L : if and only if ' �L

'1 �L '2 and 1 �L 2 implies '1 ! 1 �L '2 ! 2

'! �L : ! :'

' _ > �L >

' ^ > �L '

' _ ? �L '

' ^ ? �L ?

'! > �L >

> ! ' �L '

? ! ' �L >

'! ? �L :'

:> �L ?

Furthermore, it satis�es idempotence, commutativity, associativity and distributivity

of conjunction and disjunction as well as the validity of the de Morgan laws. The above

equivalences directly follow from the properties of the classical connectives given in Section

2.4.

The case when the disbelief bar is involved as the main connective is more interesting.

The fundamental property that should hold in our logic is the following:

' �L if and only if ' �L

The essential de�nition for this property is De�nition 2.6 which characterizes valid

truth assignments. The right to left direction directly follows from the de�nition, as it

5 TOWARDS AN AXIOMATIZATION 43

states that disbeliefs in equivalent propositions have to behave alike, i.e. be equivalent.

The left to right direction is also ensured. To see that, let us examine the identi�cation

of a valid truth assignmnent which could be interpreted as an iterative construction �

iterative in the sense that we layer the propositions, starting with no disbelief bar at all

and then adding one at a time, after it is clear what happens with the propositions of

the previous layer. Formally, the language of disbelief could be constructed the following

way.

De�nition 5.1. Let CL (�) be the (syntactic) closure of � under the classical connectives.

L00 = fpropositional lettersg, L0 = CL (L00)

L0i = f'j' 2 Li�1g

Li = CL (L0i [Li�1)

Obviously, the language of disbelief L = L1. A truth assignment assigns values to the

elements of
S
L0i in such a way that the evaluation of the elements of L is consistent with

De�nition 2.6. We will now investigate a bit more in detail how valid truth assignments

develop.

We start with assigning values to the elements of L00, i.e. to the propositional letters.

It should be clear that any assignment of truth values v 2 f0; u; 1g to the propositional

letters is valid. Of course these are not complete truth assignments as the values for

disbeliefs are not yet considered, but they could be completed by assigning u to all the

disbeliefs, i.e. to the ' 2 L0i; i > 0. Obviously, all of the assignments are valid.

De�nition 5.2. A0
L0
i
is a function assigning truth values v 2 f0; u; 1g to the elements

of L0i.

A truth assignment AL0
i
=
S
A0
L0j
; j � i. That is, it is the collection of all the assign-

ments up to the ith layer.

Remark 25. AL0
0
= A0

L0
0

The truth assignments AL0i naturally extend to Li. Moreover, the value of an element

of Li is uniquely determined by AL0i . That is, an assignment A0
L0i+1

of a value to a disbelief

of a higher layer has no in�uence on the value, but only on the question whether the

combined assignment AL0i [A0
L0i+1

is valid. This is an essential point and we want to

illustrate it with a simple example.

5 TOWARDS AN AXIOMATIZATION 44

Example 26. Let us restrict the language to two propositional letters a and b.

So L00 = fa; bg, L0 = fa; b; a _ b; a ^ b; : : : g,

L01 =
�
a; b; a _ b; a ^ b; : : :

	
, L1 =

�
a; b; b _ a; a! b; a _ b ^ a ^ b; : : :

	
.

Now an assignment AL0
0
(a) = va, AL0

0
(b) = vb uniquely determines the values of all the

elements of L0, i.e. from the value of the propositional letters we can calculate the value

of their combinations via the classical connectives. For example AL0
0
(a) = 1 allows the

conclusion that the under that assignment the value of a _ b is 1, too. If we additionally

have A0
L0
1

(a) = 1, neiter the value of a nor that of a _ b would be di�erent but as this

combination is in con�ict with the value restrictions of Table 3 AL0
1
= AL0

0
[A0

L0
1

is an

invalid truth assignment.

The assignments AL0
0
allow us to determine which propositions, constructed of propo-

sitional letters and the classical connectives only, are equivalent. We only have to check

which of them behave alike under all the assignments AL0
0
. As the example illustrates,

possible assignments to disbeliefs have no in�uence on that.

In other words, even if we expand the truth assignment giving values to disbeliefs,

previously equivalent propositions stay equivalent and propositions that were not equiv-

alent cannot suddenly become so, because at least one assignment remains under which

the propositions behave di�erently � the one where all disbeliefs (of the higher layers) are

assigned u.

Continuing this line of thought provides a way to construct all valid truth assignments.

As mentioned above, all assignments AL0
0
are valid. Next, we create all assignments A0

L0
1

,

i.e. all combinations of assignments of the truth values to all elements in L01. As we have

an initial set of equivalent propositions in L0, we can throw away those assignments that

give di�erent values to equivalent propositions.

Now we can combine every single valid truth assignment AL0
0
with every single assign-

ment of the the remaining A0
L0
1

. Of these combinations, we throw away those which do

not meet the value restrictions of Table 3. This is easily checked, as the AL0
0
component

provides us with the value of the propositions in question. The remaining combinations

are the valid AL0
1
.

The next step is to expand the equivalence relation to L1. This is easily done by

checking which elements of L1 behave alike under all valid assignments AL0
1
. And so on...

5 TOWARDS AN AXIOMATIZATION 45

The following observations are essential:

� Two propositions which were not equivalent on a previous layer cannot become

so after introducing a new layer. This is immediate, because we already have at

least one valid truth assignment for the previous layer under which the propositions

behave di�erently. Of course, the assumption is that both propositions were already

de�ned on the previous layer, i.e. that they were elements of the fragment of the

language.

� Two propositions which were equivalent on a previous layer cannot become inequiv-

alent after introducing a new layer. This is because the value of the disbelief has no

in�uence on the value of the proposition. As illustrated above, it can only cause a

potential combined assignment to be invalid.

� A disbelief ' introduced at layer i cannot be equivalent with any element of the

language fragment Li�1. To see that, take an arbitrary valid truth assignment for

the level i�1. This uniquely de�nes the value for any element in Li�1, in particular

the one for . By the value restrictions in Table 3, ' can take at least two di�erent

truth values, i.e. there is at least one valid truth assignment for which the values of

' and di�er.

Coming back to our goal of showing that ' �L implies ' �L holds as well, we

can conclude from the last observation that ' and must have been introduced at the

same layer, i.e. that they are element of the same L0i. We now assume the two disbeliefs

to be equivalent but ' and not to be equivalent. The latter means that there is a valid

truth assignment ALi�1 that assigns di�erent truth values to the two. But by the value

restrictions of Table 3 for two di�erent truth values, there are di�ering sets of truth values

that the disbeliefs could take. So there are valid truth assignments that assign di�erent

truth values to the disbeliefs, contradicting the assumption.

Whether these properties su�ce to characterize equivalence remains to be investigated.

Proposition 5.3. There is no ' such that ' � >.

Proof. By the de�nition of the value restrictions in Table 3, independent of the value of

', ' can take the value u, i.e. there is a truth assignment evaluating the disbelief to u.

Consequently, ' cannot be a tautology.

5 TOWARDS AN AXIOMATIZATION 46

Proposition 5.4. There is no ' such that ' � ?.

Proof. By the de�nition of the value restrictions in Table 3, independent of the value of

', ' can take the value u, i.e. there is a truth assignment evaluating the disbelief to u.

Consequently, ' cannot be a contradiction.

5.2 A metalogic for inference

In Section 3.3 we gave a short explanation why the language of disbelief may not be rich

enough to allow to write down all the inference rules necessary to capture all valid infer-

ences. Again, nonsatis�ability played an important rule. In two-valued logic, nonsatis�-

ability is equivalent to contradiction, which can be captured syntactically by equivalence

de�nitions using the symbol ?.

Contradictory propositions are de�ned equivalent to this symbol. Then the equivalence

de�nitions can be used for simpli�cations and inference. This can in fact be transferred

to our logic, but just adding a symbol ?w is not enough to solve our problem with non-

satis�able propositions. They are not necessarily equivalent and may behave di�erently

given a truth assignment, as Example 27 illustrates.

Example 27. a ^ :a, b ^ :b; A (a) = 0; A (b) = u

Clearly, both conjunctions are nonsatis�able and have di�erent truth values given the

assignment. The �rst conjunction evaluates to 0, the second to u.

But it is not the pure nonsatis�ability alone that causes the problems. Satis�able

propositions which cause other propositions not to be able to take the value true or false

are just as important. The last example in Section 3.3 illustrates just that. There, we

considered the proposition :' _ '. This case may seem trivial, but there are examples

where neither :' nor ' need to be necessarily true to imply the nonsatis�ability of '. To

see this consider '! '.

Having this example in mind, it becomes clear that there is no upper bound to the

number of propositions that cause others not to be satis�able. The main idea is illustrated

in Example 28.

Example 28. a! b1; b1 ! b2; : : : ; bn ! a

Resolution-like inferences demand the capability of expressing the nonsatis�ability of

a proposition � be it because of the structure of the proposition itself or because a set of

5 TOWARDS AN AXIOMATIZATION 47

propositions implies it. Assume a _ b is in the belief set. Knowing a to be nonsatis�able

clearly allows the inference of b, but, as illustrated by Example 28, there is an in�nite

number of sets of propositions that cause a to be nonsatis�able.

It is not desirable to have a rule for every one of these sets. It would be more convenient

to have a rule like: If a_ b and a is nonsatis�able then b. Rules for :a and a are just not

enough, as Example 29 shows. Even though the two propositions are inconsistent with

the set presented, a is nonsatis�able.

Example 29.
�
'; a! '; a;:a

	

That is why we think a further extension of the language is necessary, or at least

helpful, to infer propositions that the tableau scheme would allow successfully. This

extension, however, will only be used by the inference mechanism and is not available to

the "user" of this logic. So it could be seen as a metalogic for inference. The extended

language will contain two further symbols + and - to denote that a proposition cannot be

evaluated to 1 and 0 respectively. Inference is then done on this extended language and

afterwards all nonstandard sentences are removed. More formally:

De�nition 5.5. Let L be the language of disbelief as in De�nition 2.1, L0
def
= fx+jx 2 Lg[

fx�jx 2 Lg.

L�is the language containing L and L0 and being closed under negation, conjunction,

disjunction and implication.

Remark 30. Expressions of the form x+or x�, x cannot contain a further + or �.

Truth assignment and truth valuation for L can be extended to L� in a straightforward

way. The only additional rules are

VA
�
'�
� def
=

8<
:

0; VA (') = 1

1; otherwise

and

VA
�
'+
� def
=

8<
:

0; VA (') = 0

1; otherwise

which corresponds to the intuition behind the symbols.

De�nition 5.6. Let `�be an inference relation on L�.

� `L ' if and only if ' 2 Cn�(�) \ L, where Cn�(�) = f j� `� g
9.

9We will simplify notation, writing ' ` instead of f'g ` .

5 TOWARDS AN AXIOMATIZATION 48

In fact we are only interested in the inference relation on our language of disbelief,

but we have problems to formulate rules restricted to that language, so what De�nition

5.6 expresses is the following. We do the inference in the extended language L� and then

take the intersection with our language of disbelief.

Our task is now to characterize `�such that `L=`t, in order to have an entailment

relation that is not dependent on the tableau. The idea is to do so by mutual simulation,

i.e. showing that any tableau rule can be expressed in terms of a set of inferences on L�

and that any inference on L� can be expressed by a tableau. Inference on L� can then

be interpreted as linearisation of argumentation across open branches in the tableau.

We have not fully solved this task, but wewill give some intermediate results.

5.3 Nonsatis�ability

If a proposition ' cannot be satis�ed, (' `� ?w), '� should follow from the empty set,

i.e. `� '� should hold, as '�is true whatever the evaluation of '.

This is a natural demand. The above '� could be interpreted as a new type of tau-

tologies that occurs in the extended language. These tautologies need to be axiomatized,

as well.

Some immediate properties are:

� `� '
� for all contradictions '

� `� '� for all tautologies '

� `� (' ^ :')� for all '

� `� (' ^ ')� for all '

� `� (' ^ ::')� for all '

It is our conjecture that these are the basic cases to which all nonsatis�able propo-

sitions can be reduced, but neither do we have a proof for it nor a counterexample. We

were not able to �nd an axiomatic or constructive characterization of (all) nonsatis�able

propositions, but we will give some of their properties.

Proposition 5.7. ' _ `� ?w if and only if ' `� ?w and `� ?w.

5 TOWARDS AN AXIOMATIZATION 49

Proof. ()) Assume ' _ is nonsatis�able, but either ' or is satis�able, i.e. there

is a truth assignment under which ' or are evaluated to true. By the de�nition of

disjunction, this would give us a model for ' _ contradicting the assumption.

(() Assume both ' and are nonsatis�able but ' _ has a model. That is, there

is a truth assignment under which the disjunction evaluates to true. By the de�nition of

disjunction, this assignment must be a model for ' or contradicting the assumption.

Proposition 5.7 suggests that some kind of disjunctive normal form would be helpful

for characterizing nonsatis�able propositions, as then only the disjuncts have to be tested

for nonsatis�ability.

Proposition 5.8. ' `� ?w implies ' ^ `� ?w for any .

Proof. Assume ' is nonsatis�able but ' ^ is satis�able. That is, there is a truth

assignment that evaluates the conjunction to true. By the de�nition of conjunction, this is

only possible if both conjuncts are evaluated to true which contradicts the assumption.

Proposition 5.9. If ' and do not share propositional letters, then

' ^ `� ?w if and only if ' `� ?w or `� ?w:

Proof. (() follows immediately from Proposition 5.8.

()) Assume ' ^ `� ?w, but ' 6`� ?w and 6`� ?w, i.e. ' and are satis�able.

Therefore the �nished tableau with the root entry ' : 1 has an open path P1, and the one

for : 1 an open path P2. If these two paths are appended, the resulting path cannot

contain a contradiction, as ' and do not share variables, so the tableau with the root

entry ' ^ : 1 has an open path as well, which contradicts our assumption that ' ^ is

nonsatis�able.

It follows that the only possibility for ' ^ to be nonsatis�able in spite of both '

and being satis�able is for the two conjuncts to share variables, i.e. to be in some way

related. This relationship is to be investigated further.

Proposition 5.10. '! `� ?w implies :' `� ?w.

Proof. Assume '! to be nonsatis�able and :' to be satis�able. The latter means that

there is a truth assignment evaluating :' to true. Consequently, the same assignment

evaluates ' to false. By the de�nition of implication, this assignment evaluates '! to

true contradicting the assumption.

5 TOWARDS AN AXIOMATIZATION 50

Proposition 5.11. '! `� ?w implies `� ?w.

Proof. Assume '! to be nonsatis�able and to be satis�able, that is, there is a truth

assignment evaluating to true. By the de�nition of implication, this truth assignment

evaluates '! to true, as well. This contradicts the assumption.

The simplest cases would be those where in addition to these properties ' is a tautology

or is a contradiction (or both). Then, however, the implication could be simpli�ed to

either ' or using the equivalence relation. In the more interesting case, the condition

is that whenever ' is evaluated to u, has to be evaluated to 0. Once more, the two are

not independent of each other.

Proposition 5.12. ' `� ?w if and only if ' �L >.

Proof. ()) Assume ' to be nonsatis�able and ' not to be a tautology. That is, there is

a truth assignment which evaluates ' to u or 0. By the value restrictions of Table 3, this

would allow an assignment of 1 to '.

(() Assume ' to be a tautology and ' to be satis�able. That is, there is a truth

assignment that evaluates the disbelief to true. By the value restrictions of Table 3, this

assignment cannot evaluate ' to true, which contradicts the assumption.

Proposition 5.13. '! `� ?w if and only if ' �L > and �L >.

Proof. ()) Assume '! to be nonsatis�able and ' 6�L > or 6�L >.

� ' 6�L >, i.e. there is at least one truth assignment that evaluates the proposition to

u or 0. By the value restrictions of Table 3, one of these truth assignments evaluates

 to u, as well. By the de�nition of implication, this assignment evaluates ' !

to true, contradicting the assumption.

� 6�L >, i.e. there is a truth assignment evaluating to 0 or u. By the value

restrictions of Table 3, there is a truth assignment evaluating to true, contradicting

the assumption, as this assignment satis�es '! .

(() Assume ' �L > and �L >. ' ! be satis�able, i.e. there is a truth

assignment evaluating the proposition to true. By the de�nition of implication, ' !

can be true only if one of the following holds:

5 TOWARDS AN AXIOMATIZATION 51

� The truth assignments evaluates ' to false, but this contradicts the assumption of

' being a tautology.

� The truth assignment evaluates to true, but this contradicts the assumption of

being a tautology (see Proposition 5.12).

� The truth assignment evaluates both ' and to u, but this contradicts the assump-

tion of ' being a tautology.

Proposition 5.14. '! `� ?w if and only if ' �L ? and �L ?.

Proof. ()) Assume '! to be nonsatis�able and ' 6�L ? or 6�L ?.

� ' 6�L ?, i.e. there is at least one truth assignment evaluating ' to u or 1. By the

value restrictions of Table 3, there is one evaluating ' to 0. By the de�nition of

implication, this will evaluate '! to 1, contradicting the assumption.

� 6�L ?, i.e. there is a truth assignment evaluating to u or 1. The latter would

already give us a model for ' ! which would contradict the assumption. So

only the case of an evaluation of to u remains to be considered. By the value

restrictions of Table 3, irrespective of the value of ', ' can be evaluated to u, i.e.

there is a truth assignment doing so. It should be clear that a corresponding truth

assignment can be constructed.

(() Assume ' �L ? and �L ?. ' ! be satis�able, i.e. there is a truth

assignment evaluating the proposition to true. By the de�nition of implication, ' !

can be true only if

� the truth assignment evaluates ' to false. By the value restrictions of Table 3, the

truth assignment then must evaluate ' to u or 1, contradicting the assumption of

' being a contradiction.

� the truth assignment evaluates to true, contradicting the assumption of being

a contradiction.

� the truth assignment evaluates both ' and to u, contradicting the assumption of

 being a contradiction.

These properties inspire some of the inference rules given in Section 5.5. Example 31

shows some nonsatis�able propositions.

5 TOWARDS AN AXIOMATIZATION 52

Example 31.

� ' ^ '

� ' ^ ^ (! :')

� >

� ' ^ ^ (' _)

5.4 Tautologies

Many of the tautologies we know from classical logic still hold in our logic of disbelief.

This was already implied in Section 5.1. There are some notable exceptions, however.

� ((' ^)! �) ! ('! (! �)) �L > still holds, but the reverse direction

('! (! �)) ! ((' ^)! �) 6�L >, which can be easily seen by the valua-

tion V (') = V () = u, V (�) = 0.

� (('!)! �)! (('!)! ('! �)) 6�L > using the same valuation.

� (:' _) ! ('!) �L > still holds, but the reverse direction

('!) ! (:' _) 6�L >, also evaluating ' and to u. This example illus-

trates once more that implication and disjunction are not interde�nable.

As remarked in Section 3.3, nonsatis�able propositions also play an important role.

All this means that an axiomatization of the tautologies in our logic will not simply be

an extension of the axioms used for classical logic.

5.5 Inference rules

In the following, we want to present some of the rules for the inference relation `�. In

fact it is a relation between a set of propositions and a proposition, � `� '. In order

to simplify notation in case � contains only one element, we write ' `� instead of

f'g `� .

Naturally, `� ' for all tautologies '. Further, we assume that all nonsatis�able

propositions ' are given and therefore `� '� holds. Consequently, for all propositions

 that cannot be evaluated to false, `� + holds. In the following, we will give rules of

5 TOWARDS AN AXIOMATIZATION 53

' :' '+ (:')� '� (:')+

0 1 0 0 1 1

u u 1 1 1 1

1 0 1 1 0 0

Table 4: Truth table for the language extension

`�and show that they correspond to the tableau introduced. ' and are propositions of

L, i.e. they do not contain further + or �.

' `� '

' ^ '� `� ?w

(:')+ `� '�and (:')�`� '+, so the two are equivalent. Table 4 illustrates this

equivalence, as well.

: ('�) `� ' and : ('+) `� :'

'� `� (' ^)�

' _ `� '� !

' _ `� � ! '

'� ! `� ' _

 � ! ' `� ' _

(' _)+ ^ :' `� +

(' _)+ ^ : `� '
+

(' _)+ `� '+ _ +

'+ _ + `� (' _)+

(' _)� `� '�, analogous for

('� _ �) ^ ' `�
�

('� _ �) ^ `� '
�

'+ ^ + `� (' ^)+

'� ^ � `� (' _)�

'! `� � ! '�

'! `� '+ ! +

('!)+ ^ ' `� +

('!)+ ^ : `� '�

('!)� `�
�

('!)� `� '
+

5 TOWARDS AN AXIOMATIZATION 54

('!)� `� '
� ! :

: ('!) `� '

: ('!) `� :

Furthermore, `� takes equivalence of propositions into account, satis�es modus po-

nens, contraposition, and so on. If � `� ' then � `� ' for any � � �.

Proposition 5.15. If � `� ' then � `� ' for any � � �.

Proof. Let T be the �nished tableau with premises �. � `� ' means that on every open

branch of T , ' : 1 holds.

As � � �, the tableau with premises � can be constructed from T by adding the

propositions � n � to its open branches. Clearly, after �nishing the resulting tableau,

' : 1 still holds on all the open branches.

Proposition 5.16. If � `� ' and � `� then � `� ' ^ .

Proof. Let T be the �nished tableau with premises �. � `� ' means that on every open

branch of T , ' : 1 holds. Analogously, on every open branch of T , : 1 holds.

Now, assume � `� ' ^ does not hold. This means that T contains an open branch

that is compatible with an evaluation of ' ^ to less than 1. This can be tested by

appending ' ^ :< 1 to every open branch of T . Finishing the resulting tableau reveals

that now all branches are closed. This is obvious from the atomic tableaux (t1), (t7), and

(t8) given in Section 3.1.

Consequently, ' ^ : 1 holds on all open branches of T which corresponds to � `�

' ^ , contradicting the assumption.

Cn� (S) is consistent if it does not contain ' and '� for any proposition ', otherwise

it is inconsistent (and therefore contains ?w).

The rule '� `� (' ^)� is not necessary for nonsatis�able propositions ', as they are

given already (see Proposition 5.8). However, if ' is not satis�able for some other reason,

e.g. because ' is in the set of propositions, being able to infer all other conjunctions

that are not satis�able any more might be helpful. By equivalence '+ � (:')�, the

same holds for '+ `� (' _)+. Furthermore, the rules for (' ^)� can be obtained by

reformulating those for (' _)�. Example 32 illustrates one case.

Example 32. (' ^)� `� (: (' ^))+ `� (:' _ :)+ `� (:')+ _ (:)+ `� '� _ �,

i.e. (' ^)� `� '� _ �.

5 TOWARDS AN AXIOMATIZATION 55

Other rules can be derived as well. For example, ' ! ' `� '� is a special case of

the rule
�
 �1 _

�
2

�
^ 1 `� �2 . As (('! ') ^ ') is not satis�able, `� (('! ') ^ ')�

holds, i.e. (('! ') ^ ')� is a tautology. Using the rule from Example 32, it follows that

`� ('! ')� _ '�.

('! ') `�
�
('! ')� _ '�

�
^ ('! '). This step is justi�ed by Proposition 5.16

and the fact that the �rst conjunct is a tautology which can be inferred from any set of

propositions. Now using the inference rule
�
 �1 _

�
2

�
^ 1 `� �2 , substituting 1 with

('! ') and 2 with ', we get
�
('! ')� _ '�

�
^ ('! ') `� '

�.

Analogous argumentations apply to

'! :' `� '�,

' `� '�,

:' `� (:')�,

' `� '�,

:' `� '+,

:' _ ' `� '
�,

:' `� '�,

' `� '+.

In fact, this pattern creates rules for all cases where a (�nite) set of propositions �

implies that another proposition ' cannot be evaluated to true. `� (
V

� ^ ')� and

substituting 1 with
V

� and 2 with ' lets this become obvious.

The question why the rule is (' _)+ ^ :' `� + and not (' _)+ `� :' ! +

might arise. There is one case for which the second version is not justi�ed. An evaluation

of ' to u and to 0 clearly satis�es the �rst part, but the implication will not be evaluated

to 1, so the more conservative �rst rule is necessary. There are more rules of the �rst

type. Similar examples exist for them.

The list of rules we have given might not be complete. Appendix B gives an elaborate

argumentation for the soundness of the rules. A complete axiomatization of the inference

relation is subject to future work.

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 56

6 Conversion of the belief revision framework into an

argumentation framework

6.1 Introduction

During the discussion of the belief revision framework [1] the question arose, whether the

framework could be translated into an argumentation framework and how it would look

like. In this section we want to answer this question partially.

The procedure that calculates the belief set from a given sequence can be divided into

two steps � identifying a belief base, i.e. the correct subset of propositions in the sequence,

and then applying the closure under consequence to that set. So the task of calculating

the belief set can be reformulated to the task: Given a sequence �=('1; : : : ; 'n), calculate

Cn (BelBase (�)).

In the following, we need the elements of � to satisfy the following property: 'i 6= 'j

for i 6= j. That is, propositions are not allowed to appear twice in the sequence. This

seems to be a strong restriction, but in fact every sequence can be transformed into one

with this property without a�ecting the belief base or the belief set the sequence produces.

This is done by keeping the latest appearance of the proposition and deleting the other

ones.

Example 33. (a; b; c; a _ b; b; d; c ^ d; d) becomes (a; c; a _ b; b; c ^ d; d)

The reason why this transformation leaves the belief base unchanged is that an earlier

appearance of the proposition in the sequence has no e�ect. In the process of calculation

the latest occurence has already been considered. If it was consistent then, it was included

and already is part of the belief base. If it was inconsistent then, it still is.

De�nition 6.1. Let � = ('1; : : : ; 'n) be a sequence of propositions.

pos� ('i)
def
= i

maxp� (f'1; : : : ; 'mg)
def
= maxi=1��� (pos� ('i)) ; maxp� (;)

def
= 0

Set (�)
def
= f'1; : : : ; 'ng

BelBase (�)
def
= B such that

(1) B � Set (�)

(2) ?w =2 Cn (B) and

(3) :9S(S � Set (�) ^ ?w =2 Cn (S) ^maxp� (S nB) > maxp� (B n S)):

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 57

pos gives the position of a proposition within a sequence. This is the reason why the

proposition should only appear once. If it did not, the number would not be unique and

the de�nition for the function would have to be more complicated. For the sequence in

Example 33 we have pos (a _ b) = 3, pos (d) = 6.

maxp calculates the positions of all the elements of a set of propositions in a se-

quence and returns the greatest number. For the sequence in Example 33 we have

maxp (fa; b; cg) = 4.

Set simply transforms a sequence into a set.

The �rst two conditions of the de�nition of BelBase are immediate. It has to be a

consistent subset of the propositions appearing in the sequence. The de�nition is for the

logic of disbelief. This is why the notion of inconsistency is not restricted to contradictions.

The third condition is more complicated so we will present it more in detail. It states

that B can only be the belief base if B beats all other candidate S except itself. S is a

candidate if it is a set that satis�es the �rst two conditions. B beats S if B contains a

proposition ' which is not an element of S and ' appears later in the sequence than any

 that is element of S but not of B.

Example 34.

� Consider � = (a; b;:a).

fa; b; cg does not satisfy condition 1, so it is not a candidate for being the belief

base.

fa;:ag does not satisfy condition 2, so it can be disregarded as well.

S1 = fbg, S2 = fa; bg, S3 = f:a; bg all satisfy the �rst two conditions.

S1 n S2 = ;, S2 n S1 = fag. Obviously, 0 = maxp� (;) < maxp� (fag) = 1, so S1 is

not a candidate.

S2 n S3 = fag, S3 n S2 = f:ag. 1 = maxp� (fag) < maxp� (f:ag) = 3, so, as

expected, S3 wins.

� One possibility to present the the mechanism in a simpli�ed way is not to compare

the candidates but sets of natural numbers. Numbers that correspond to the posi-

tion of the propositions in the sequence are substituted for the propositions. After

elimitating the common subset, the set with the greatest number wins. An empty

set loses agains any nonempty set.

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 58

The example should illustrate that a consistent superset will always beat the subset.

This means that as many propositions as possible are incorporated into the belief base.

Furthermore, later propositions have higher priority. If the common subset is disregarded,

of two consistent sets, the one that has the latest proposition wins.

So calculating BelBase (�) essentially means: identify the subset of propositions that

has a con�ict-free closure under inference and that incorporates those propositions as

late in the sequence as possible as well as a maximal number of them. This corresponds

to the selection procedure described in Section 1.2. That is, BelBase (�) is the set of

propositions from � which were accepted during the calculation of Bel (�).

We will show that this selection procedure can be translated into an argumentation

framework. We �rst introduce the parts of the argumentation framework that are neces-

sary for our purpose and then prove the correctness of our translation.

6.2 Vreeswijk's Abstract Argumentation System

The elements of a belief set could be seen as conclusions of reasoning processes. In the

belief set, the information about why the propositions are contained in it is lost, how-

ever. Argumentation frameworks can provide this information because they say something

about the interaction between propositions � which propositions support others, which

attack others.

The identi�cation of the belief base can be interpreted as such an argumentation pro-

cess: as these propositions are believed to be true and their conclusions are incompatible

with this proposition, it cannot be incorporated. The task now is to formalize this.

For this purpose, Vreeswijk's Abstract Argumentation System appealed to us. De�ni-

tions 6.2-6.13 are from [11].

De�nition 6.2. An abstract argumentation system is a triple (L;R;�) ; where L is a

language (containing an element ? representing a contradiction), R is a set of rules of

inference , and � is a re�exive and transitive order on arguments.

De�nition 6.3. Let L be a language.

1. A strict rule of inference is a formula of the form �1; : : : ; �n ! �, where �1; : : : ; �n

is a �nite, possibly empty, sequence in L and � is a member of L.

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 59

2. A defeasible rule of inference is a formula of the form �1; : : : ; �n) �, where

�1; : : : ; �n is a �nite, possibly empty, sequence in L and � is a member of L.

A rule of inference is a strict or a defeasible rule of inference.

Remark 35. ! and) must not be part of the language, i.e. inference rules cannot

be elements of the language. Of course, implication is allowed, but the arrows must be

distinguished. The arrow of the inference rules could be thought of as `.

De�nition 6.4. An argument Æ is

1. a member of L: Then prem (Æ) = fÆg, conc (Æ) = Æ, sent (Æ) = fÆg, sub (Æ) = fÆg.

2. a formula of the form Æ1; : : : ; Æn ! �, where Æ1; : : : ; Æn is a �nite, possibly empty,

sequence of arguments, such that conc (Æ1) = �1,. . . , conc (Æn) = �n for some rule

�1; : : : ; �n ! � in R, and � =2
S
sent (Æi) :

Then prem (Æ) =
S
prem (Æi) ; conc (Æ) = �; sent (Æ) =

S
sent (Æi) [f�g, sub (Æ) =S

sub (Æi) [fÆg .

3. a formula of the form Æ1; : : : ; Æn) �, where Æ1; : : : ; Æn is a �nite, possibly empty,

sequence of arguments, such that conc (Æ1) = �1,. . . , conc (Æn) = �n for some rule

�1; : : : ; �n) � in R, and � =2
S
sent (Æi) :

Then prem (Æ) =
S
prem (Æi) ; conc (Æ) = �; sent (Æ) =

S
sent (Æi) [f�g, sub (Æ) =S

sub (Æi) [fÆg .

So combining elements of the language and rules of inference into trees creates an

argument.

Example 36. Figure 7 shows arguments formed of an argumentation system with the

language fa; b; c; d; e;?g and the inference rules d) a; c; e! ?; a; b! c.

The set of premises of the �rst argument is fb; dg, its conclusion is c, the sentences

occuring are fd; a; b; cg, and its subarguments are given in Figure 8.

c

a

@@��������
b

^^>>>>>>>>

d

KS

?

c

??�������
e

__@@@@@@@

?

c

77oooooooooooooo e

__@@@@@@@

a

@@��������
b

^^>>>>>>>>

Figure 7: Argument examples

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 60

c

a

@@��������
b

^^>>>>>>>>

d

KS

a

d

KS
b d

Figure 8: Subarguments

a

c

77oooooooooooooo
b

^^>>>>>>>>

a

@@��������
b

OO

d

^^========

Figure 9: Not an argument

Example 37. The tree in Figure 9 does not constitute an argument. The sentence a

appears twice on one branch. This is not allowed by De�nition 6.4, which prevents a

sentence from being one of its own premises in an argument.

De�nition 6.5. An argument Æ is strict if Æ 2 L; or Æ1; : : : ; Æn ! Æ, where all Æi are strict

arguments.

Example 38. The left argument in Figure 10 is strict as all subarguments are strict. The

right is not strict as there is a subargument whose top rule is defeasible.

De�nition 6.6. Let L be a language and let P � L:

An argument is based on P if the premises of that argument constitute a subset of P ;

a set of arguments is based on P if all its members are based on P .

A member of L is based on P if it is the conclusion of an argument that is based on

P .

a

c

77oooooooooooooo
b

__>>>>>>>>

e

@@��������
d

^^========
c

OO

a

c

77oooooooooooooo
b

__>>>>>>>>

e

<D�������

�������
d

Zb=======

=======

c

OO

Figure 10: Strict and nonstrict argument

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 61

e

c

??��������
d

__>>>>>>>

a

OO

b

KS

e

c

??��������
d

__>>>>>>>

a

OO

e

c

??��������
d

__>>>>>>>

a

OO

c

OO

Figure 11: Arguments

?

c

??��������
d

__????????

d

b

@@��������
e

^^========

c

a

<D�������

�������
b

Zb>>>>>>>

>>>>>>>

�1 > �2 > �3

Figure 12: Compatibility

Example 39. While the left argument in Figure 11 is based on fa; bg, the middle one is

not. The right argument is not based on the set either, as it does not contain c. The fact

that a is element of the set and there is a rule a! c does not change the matter.

De�nition 6.7. An argument � is an underminer of a set of arguments �, if Æ < � for

some Æ 2 �. In this case, � is undermined by � .

De�nition 6.8. An argument Æ is in contradiction if conc (Æ) =?.

De�nition 6.9. A subset P of L is incompatible if there exists a strict argument in

contradiction that is based on P: A subset of L is compatible if it is not incompatible.

Compatibility naturally extends to arguments. Thus, a set of arguments � is compat-

ible if conc (�) is compatible.

De�nition 6.10. A base set is a �nite compatible subset of L.

Example 40. Consider Figure 12. �2 is an underminer of the set of arguments f�1; �3g,

as �2 > �3. �3 is not an underminer of the set of arguments f�1; �2g, as �3 < �1 and

�3 < �2.

The argument �1 is in contradiction, as its conclusion is ?.

The sets fc; dg, fc; b; eg are incompatible, as there exist strict arguments in contradic-

tion that are based on these sets.

The set fa; b; dg is not incompatible. There exists an argument in contradiction based

on the set, but it is not strict. However, the set of arguments f�2; �3g is incompatible, as

the set of their conclusions is incompatible.

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 62

The sets fc; dg, fc; b; eg are not base sets, as they are incompatible. The sets fb; cg,

fa; b; eg and ; are base sets.

Remark 41. If there exists a strict argument in contradiction based on the empty set,

then there are no base sets for the language.

De�nition 6.11. Let P be a base set and let Æ be an argument. A set of arguments �

is a defeater of Æ if it is incompatible with this argument and not undermined by it.

Example 42. Consider Figure 12 again. The argument �3 and the set of arguments f�2g

are incompatible, and as the set is not undermined by �3, it is a defeater of the argument.

The argument �2 and the set of arguments f�3g are incompatible, but as the set is

undermined by �2, it is not a defeater of the argument.

De�nition 6.12. Let P be a base set. An argument � is in force at level 1 on the basis

of P if it is based on P: Let n>1. An argument Æ is in force at level n on the basis of P ,

written P j�n Æ, if

1. The set P contains Æ; or

2. For some arguments Æ1; : : : ; Æn we have P j�n Æ1; : : : ; Æn and Æ1; : : : ; Æn ! Æ; or

3. For some arguments Æ1; : : : ; Æn we have P j�n Æ1; : : : ; Æn and Æ1; : : : ; Æn) Æ and no

set of arguments � that is in force at level n-1 on the basis of P is a defeater of Æ.

Remark 43. Notation is simpli�ed in the following way: Æ1; : : : ; Æn ! Æ denotes that the

argument Æ is composed of the arguments Æ1; : : : ; Æn via the rule �1; : : : ; �n ! �, with

conc (Æ1) = �1; : : : ; conc (Æn) = �n; conc (Æ) = �.

The set of rules should not include a set that would allow to infer ? from an empty

set of premises, e.g. ! ?, because otherwise the empty set would be a defeater for

all defeasible arguments as it cannot be undermined by any rule. This is, of course, a

reasonable demand. A logic should not be inherently inconsistent.

De�nition 6.13. The expression infon (P) denotes the set of arguments fÆ j P j�n Æg.

An argument Æ is ultimately undefeated if and only if, for some n � 1, we have

P j�n+k Æ, for every k � 1:

An argument Æ is provisionally undefeated if and only if, for every n � 1, we have

P j�n+k Æ, for some k � 1, and not P j�n+l Æ, for some l � 1.

An argument Æ is ultimately defeated if and only if, for some n � 1, the entailmant

P j�n+k Æ does no longer hold, for every k � 1:

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 63

Example 44. Consider the following simple argumentation system: L = fa; b; c; d;?g,

R = f) a;) b;) c;) d; (a; b! ?); (c; d! ?)g. Concerning the order on the argu-

ments, we have) a =) b and) c >) d. We let the base set P be the empty set.

Consequently, no arguments are in force at level 1. As the premises of the defeasible rules

are empty, we only have to check whether the previous level contains defeaters.

1. ;

2.) a;) b;) c;) d; (a; b! ?); (c; d! ?)

As there are no arguments in force at the �rst level, there cannot be defeaters, so

all defeasible rules are in force at the second level. The two strict arguments are in

force as well, as their premises are conclusions from arguments in force at the level.

3.) c

) a is not in force at this level, as the previous one now contains a defeater � the

set f) bg. They are incompatible and) a does not undermine the set, as it is not

stronger than any of the arguments contained in it.) b is not in force for the same

reason. Its defeater is f) ag.

For) c there is a potential defeater as well � f) dg, but the set is undermined,

because) c is stronger than) d, so) c remains undefeated.) d, in turn, is

defeated by f) cg.

For obvious reasons, the arguments with conclusion ? are not in force.

4.) a;) b;) c; (a; b! ?)

) d remains defeated by f) cg, and) c remains undefeated.

The defeaters for) a and) b were not among the arguments in force at the

previous level, so the two are in force again.

5.) c

The constellation at this level is the similar to that at level 3.) d remains defeated

and the defeaters for) a and) b have reappeared.

6.) a;) b;) c; (a; b! ?)

7. : : :

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 64

It is obvious that the sets of arguments in force continue to alternate.) c is ultimately

undefeated. Starting at level 2 it is in force at all levels.) d is ultimately defeated.

Starting at level 3 it is not in force at any level. Both) a and) b are provisionally

defeated. They keep disappearing and reappearing.

Example 44 is a particularily simple example to illustrate the dynamics of the process,

showing how arguments can be provisionally defeated etc. Convergence is not necessarily

reached so soon and alternation need not only comprise two steps.

6.3 The AAS for belief revision

We now de�ne the components of the argumentation system, so that the procedure given

in De�nition 6.12 identi�es the belief base. The basic idea is to make sure that the

propositions neglected in the original approach are the ones defeated in the argumentation

approach.

Let L be a language and �=('1; : : : 'n) ; with 'i 6= 'j for i 6= j, a sequence as above.

De�nition 6.14. R�
def
= f) 'i j 'i 2 �g[

fall instantiations of inference rules formulated as strict rulesg.

Note that we do not restrict ourselves to propositional logic or the logic of disbelief

introduced. That is, the results given in the following are of amore general nature. Of

course, we think of applying the results to these twologics.

The propositions from the sequence are added to the inference rules the logic provides

as defeasible arguments with empty premises. It is natural that these inference rules are

strict rules. As the logic does not prohibit inferences that lead to inconsistent sets, the

argumentation framework should not concern itself with this, either. Consistency will be

ensured by the defeasibility of the "premises".

Propositional logic and the logic of disbelief obviously have valid inference rules like

a ! a or a; b _ c ! a. These can be neglected because they cannot be used to form

arguments, as can be seen from De�nition 6.4. This is not a restriction, however, as these

rules do not enrich the possibilities. This can be seen in Figure 13. The same conclusion

can be inferred from a subset of the premises of rules like that.

It should be noted that there is an essential di�erence between the inference rules

a; b ! a and a ^ b ! a. In the �rst, the conclusion is syntactically equivalent to one of

the premises while in the second, premise and conclusion are completely di�erent.

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 65

b

a

66mmmmmmmmmmmmmmmmm
a! b

bbEEEEEEEEE

a

@@��������
b _ c

aaDDDDDDDD

b

a

@@��������
a! b

bbEEEEEEEEE

prem : fa; b _ c; a! bg prem : fa; a! bg

Figure 13: "Invalid" inference rule vs. valid ones

bKS b!L aKS aKS a

b

??��������
b!L a

ccGGGGGGGGG

KS KS

>OO ?w

a

==||||||||
a

``AAAAAAAA

KS

1 2 3 1 1 unde�ned

Figure 14: Arguments and their strength

De�nition 6.15. Let Arg be the set of all arguments created by R�. strength is a

function that assigns a natural number or undefined to every argument of Arg.

strength (Æ)
def
=

8>>>>>><
>>>>>>:

1; Æ = empty premise

i; Æ =) 'i

undefined; Æ 2 L

min�2sub(Æ)nfÆg (strenght (�)) ; otherwise

min (�) is de�ned such that it takes the the value undefined if one of the elements of

� is unde�ned.

De�nition 6.16. The order on arguments Æi is de�ned by

Æ1 � Æ2 if and only if strength (Æ1) � strength (Æ2)
10.

Remark 45. The strength of an argument is determined by its weakest "premise". It

should be noted that this de�nition does not allow to compare all possible arguments,

but as we will always let the base set P be empty, we actually only have arguments with

empty premises, i.e. all arguments start with defeasible rules of the form) 'i which we

will therefore call premises. The de�nition allows to compare all of these arguments.

10The �rst � denoting the order to be de�ned, the second the common order on natural numbers. We

think this de�nition to be so intuitive that the ambiguity in notation does not create confusion.

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 66

Example 46. Consider the sequence � = (b; b!L a; a), !L denoting implication. R�

would be f) b;) b!L a;) a; (b!L a; b! a) ; (a; a! ?w) ; : : : g. Figure 14 shows some

arguments with their respective strength. The strength of the rightmost argument is un-

de�ned because the strength of the subargument a is not de�ned.

We now choose (L;R;�) as follows: Let L be the language used in the belief revision

framework, i.e. propositional language or the language of disbelief. In the �rst case ?

coincides with the symbol denoting the contradiction, in the latter we chose ?w to be the

symbol for the contradictory conclusion. Further R and � are chosen as in De�nitions

6.14-6.16. Using this argumentation system, the above set BelBase of basic beliefs can be

identi�ed by calculating the limit of the inductive warrant (limn infon(P)) where the base

set P is empty. The result of the calculation will contain the "premises" that correspond

to the propositions of the sequence that are included in the belief base.

The proof for that will be given in the next two sections, but �rst a more complex

example.

Example 47. Consider the sequence � =
�
e; a _ b; b; c ^ c; b! d; d; e; e; a! c

�
. We will

illustrate the calculation of the belief base using the approach introduced in Section 1.2

and the inductive warrant of the argumentation system that is created by the sequence

and its implied set of rules and order on arguments.

� The calculation starts with the empty set. a! c and e are inserted as they do not

introduce an inconsistency. e is neglected, because it it is not compatible with e.

d and b ! d do not cause an inconsistency and are included. c ^ c is inconsistent

in itself, so it is left out. b cannot be included. Together with b ! d it implies d,

which is inconsistent with d, but the latter isalready included. a _ b is no problem,

however, just like e.

So the belief base is
�
a! c; e; d; b! d; a _ b; e

	

� As the base set is empty, no arguments are in force at level 1.

1. ;

2.
�
) e;) a _ b;) b;) b! d;) d;) e;) e;) a! c; : : :

	

) c^c is not in force as the empty set is a defeater of the argument. This means

that the argument is ultimately defeated, because the empty set is subset of

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 67

any set, so this defeater will appear at all levels. For all the others, the previous

level does not contain defeaters.

There are some further arguments in force at this level. These are strict con-

tinuations of the arguments given, e.g.
�
b! d; b

�
! d.

3.
�
) a _ b;) b! d;) d;) e;) a! c; : : :

	

) e is not in force as it is defeated by feg on the previous one.

) e is not in force as it is defeated by
�
e
	
on the previous one.

) b is not in force as it is defeated by
�
) b! d;) d

	
on the previous one.

4.
�
) e;) a _ b;) b! d;) d;) e;) a! c; : : :

	

) e and) b remain defeated as their defeaters are still among the arguments

in force at the previous level.) e reappears because its defeater was defeated

at the previous level.

5. The �fth level is like the 4th.

So the argumentation system identi�es the same proposition from the sequence.

We want to show that this works in general and not only in this example. Our �rst

task in doing this is to prove that the limit limn infon(P) exists, i.e. that (1) P = ;

has a unique extension. Then we have to prove that (2) the "premises" in this extension

correspond to the base beliefs in the above set BelBase (�).

6.4 Unique extension of the system

In order to prove (1), it is su�cient to show that on the basis of P there are no provisionally

defeated arguments (see Conjecture 4.5.6. in [11]). If there were provisionally defeated

arguments, it would not be clear which propositions from the sequence would appear in

the belief set.

The only arguments whose top rule is defeasible are the ones of the form) 'i, i.e.

the ones that encode the elements of the sequence. Simply put, an argument is defeated

provisionally because it is either based on (provisionally defeated) arguments of the above

form or it is one of that form itself. That is, several extensions could be interpreted as

several possible belief bases, but, as we know, the belief base is uniquely determined.

The basic idea of the main proof is to show that, assuming an argument) ' were

provisionally defeated, its defeater would have the argument itself among its premises.

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 68

It is then possible to transform the defeater with the purpose of removing the argument

from the premises which results in a defeater that contains only ultimately undefeated

arguments leading to a contradiction to the assumption.

Lemma 6.17. If an argument � : Æ1; : : : ; Æn ! Æ is provisionally defeated, then there is a

subargument Æi that is provisionally defeated.

Proof. Assume all subarguments Æ1; : : : ; Æn are ultimately undefeated, then the argument

� is ultimately undefeated as well (follows from De�nition 6.12), leading to a contradiction.

Assume any subargument Æj is ultimately defeated, then � is ultimately defeated as

well, leading to a contradiction.

Which shows, that there must be a subargument Æi that is provisionally defeated.

Lemma 6.18. An argument Æ1; : : : ; Æn ! Æ has the same strength as) ' if and only if

its weakest premise is) '.

Proof. Follows immediately from the de�nition of strength.

Lemma 6.19. Let Æ = Æ1; : : : ; Æn ! Æ and � be arguments.

If � [fÆg is a defeater of � then � [fÆ1; : : : ; Æng is a defeater of � .

Proof. Assume � [fÆg to be a defeater and � [fÆ1; : : : ; Æng not to be a defeater of � .

The latter means that either � undermines �[fÆ1; : : : ; Æng or � is not incompatible with

� [fÆ1; : : : ; Æng.

� � undermines � [fÆ1; : : : ; Æng. Either � undermines �, which contradicts the as-

sumption of �[fÆg being a defeater of � , or � undermines fÆ1; : : : ; Æng. This would

mean that � > Æi for some 0 < i < n. By Lemma 6.18, this would imply that � > Æ,

contradicting the assumption as well.

� � is not incompatible with � [fÆ1; : : : ; Æng. But clearly, the set ofarguments that

can be constructed by applying strict rules starting with the set � [fÆg [f�g is

asubset of the arguments constructed by starting with � [fÆ1; : : : ; Æng [f�g. If?w

is not among the conclusions of the latter, it cannot be amongthe conclusions of the

former. This contradicts the assumption that � [fÆg is a defeater of � .

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 69

De�nition 6.20. A set of arguments � is a minimal defeater of an argument � if � is a

defeater, but no subset of � is a defeater of � .

Proposition 6.21. Let (L;R;�) be de�ned as above and let P be the empty base set.

Then there is no provisionally defeated argument based on P .

Proof. From Lemma 6.17 immediately follows that it is su�cient to show that there are

no provisionally defeated arguments of the form) '.

Assume there is a nonempty set of provisionally defeated arguments of the form) '.

Let � be the strongest argument among them.

In the following, we consider all minimal defeaters of � . They can be partitioned into

three groups.

1. Defeaters containing ultimately undefeated arguments only.

2. Defeaters containing at least one ultimately defeated argument.

3. Defeaters containing no ultimately defeated argument and at least one provisionally

defeated argument.

There cannot be a defeater of the �rst type. This would lead to a contradiction with

the assumption that � is provisionally defeated.If there was one of the �rst type, � would

be ultimately defeated.Not all of the defeaters can be of the second type. If they were, �

would be ultimately undefeated, contradicting the assumption. In ourconsiderations we

can neglect the defeaters of the second type � starting ata particular level, they are not

among the defeaters of � any more.

So we can restrict our attention to the defeaters of the third type which obviously

have to exist. Let � be an arbitrary minimal defeater ofthe third type of � .

All the arguments in � are of equal orgreater strength than � . Otherwise, � would

undermine� and � would not be a defeater. In particular, allprovisionally defeated argu-

ments in � are of equal strength with� . They cannot be of greater strength. If there was

one, by Lemma6.17 and Lemma 6.18 there would exist a provisionallydefeated argument

of the form) ' with greater strengththan � which contradicts the assumption that � is

the strongestargument of that form.

Repeating the essential point: all provisionally defeated arguments in � are of equal

strength with � . That is, � is among the premises of all the provisionally defeated argu-

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 70

ments. Furthermore, � is the weakest premise of every provisionally defeated argument

in �.

With this knowledge, we can construct a defeater that contains only ultimately unde-

feated arguments leading to a contradiction with the assumption that � is provisionally

defeated. So, the set of provisionally defeated arguments is smaller. Then we apply the

proof to the next strongest argument in the now smaller set and continue doing so until

the set is empty. This leads to a contradiction to the assumption that there is a nonempty

set of provisionally defeated arguments of the form) '.

The construction of the defeater is based on the iterated application of Lemma 6.19.

An argument Æ = Æ1; : : : ; Æn ! Æ is broken down into its components if � 2 sub (Æi) for

some i. Æ is then removed from � and all Æi are added to �. The new � is still a defeater

for � . This is continued until there is no argument with a strict top rule left that has �

as a subargument.

Now all arguments in � n f�g are ultimately undefeated. If this was not the case,

by Lemma 6.17 a provisionally defeated argument �̂ of the form) ' with �̂ > � would

exist, which contradicts the assumption that � is the strongest of these arguments. Since

� [f�g = �, it is clear that � n f�g is incompatible with � . Consequently, � n f�g is a

defeater of � which contains only ultimately undefeated arguments, leading to the desired

contradiction.

6.5 Correspondence between BelBase (�) and the premises

In order to show (2) � that the "premises" in this extension correspond to the base beliefs

in the above set BelBase (�) � we introduce the following notation.

De�nition 6.22. Let � = ('1; : : : ; 'n).

resi (�)
def
= ('n�i; : : : ; 'n)

Ri
def
= f) 'j j 'j 2 resi (�)g [finference rules as strict rulesg

getf (X)
def
= f' j) ' 2 Xg

limn info
Ri
n (X) is the extension of the argumentation system (L;Ri;�) with the base

set X.

Let � be a sequence of sentences of L with de�nitions for pos; : : : as above. resi (�)

represents the tail part of � with length i + 1. (L;Ri;�) is the restriction of the ar-

gumentation system to the shortened sequence. Note, however, that all calculations of

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 71

pos; strength; : : : are still executed with respect to the entire sequence �. getf (X) is used

to extract the premises from a set, i.e. the propositions of the sequence. limn info
Ri
n (X)

is the limit of the inductive warrant of the argumentation system that is restricted to the

tail of the sequence.

Example 48. Consider the sequence � =
�
e; a _ b; b; c ^ c; b! d; d; e; e; a! c

�
.

res0 = (a! c), res1 =
�
e; a! c

�
, res5 =

�
c ^ c; b! d; d; e; e; a! c

�

R0 = f) a! c; strict rulesg, R5 =
�
) c ^ c;) b! d;) d;) e;) e;) a! c; : : :

	

getf
��
) c ^ c; b! d;) d; e _ c;) e

	�
=
�
c ^ c; d; e

	

From resn�1 (�) = � immediately follows BelBase(resn�1 (�)) = BelBase(�) and

getf
�
limm info

Rn�1
m (;)

�
= getf

�
limm info

R
m (;)

�
. This means that it su�ces to show

that BelBase(resi (�)) = getf
�
limm info

Ri
m (;)

�
, which we will do inductively.

Proposition 6.23. BelBase(resi (�)) = getf
�
limm info

Ri
m (;)

�
.

Proof. We �rst show that BelBase(res0 (�)) = getf
�
limm info

R0
m (;)

�
.

res0 (�) = ('n)

(a) If 'n is contradictory:

� BelBase(res0 (�)) = ;, as ?w 2 Cn (f'ng)

� getf
�
limm info

R0
m (;)

�
= ;, as) 'n is incompatible with ; and therefore ultimately

defeated

(b) If 'n is not contradictory:

� BelBase(res0 (�)) = f'ng

� getf
�
limm info

R0
m (;)

�
= f'ng (as) 'n is the only premise for all possible argu-

ments and is not contradictory)

From (a) and (b) follows BelBase(res0 (�)) = getf
�
limm info

R0
m (;)

�
.

Assume BelBase(resi (�)) = getf
�
limm info

Ri
m (;)

�
, we then show

BelBase(resi+1 (�)) = getf
�
limm info

Ri+1
m (;)

�
.

(a) ?w 2 Cn
��
'n�(i+1)

	
[BelBase(resi (�))

�

� BelBase(resi+1 (�)) = BelBase(resi (�))

6 BELIEF REVISION AND ARGUMENTATION FRAMEWORK 72

� As) 'n�(i+1) has lower rank than all other defeasible rules, it cannot contribute

to a defeat, but as it is incompatible with ultimately undefeated premises, it is

ultimately defeated.

So getf
�
limm info

Ri+1
m (;)

�
= getf

�
limm info

Ri
m (;)

�
.

(b) ?w =2 Cn
��
'n�(i+1)

	
[BelBase(resi (�))

�

� BelBase(resi+1 (�)) = BelBase(resi (�)) [
�
'n�(i+1)

	

� As) 'n�(i+1) is compatible with everything ultimately undefeated so far, it is not

defeated and therefore ultimately undefeated as well.

So getf
�
limm info

Ri+1
m (;)

�
= getf

�
limm info

Ri
m (;)

�
[
�
'n�(i+1)

	
.

From (a) and (b) follows BelBase(resi+1 (�)) = getf
�
limm info

Ri+1
m (;)

�
, which together

with BelBase(res0 (�)) = getf
�
limm info

R0
m (;)

�
implies

BelBase(�) = getf
�
limm info

R
m (;)

�
.

We have thereby shown that the identi�cation of the base beliefs can be done within an

argumentation framework. Belief revision would then be accomplished by adding another

defeasible rule of the form) ' with a strength greater than the previous ones. This

result does not provide any insight in the inference mechanism, though.

7 CONCLUSION AND FUTURE WORK 73

7 Conclusion and future work

Motivated by the desire to model contraction within a particular belief revision framework,

we have started to developed a full-blown logic of disbelief. That is, we allowed the nesting

of the disbelief connective. In our logic, this came for the price of a third truth value and

a quite complicated structure of models. We formulated desirable properties of the logic

and especially of the behaviour of the disbelief connective.

The modi�cation of the classical tableau approach allowed to achieve one of the major

results of the paper � the proof of soundness and completeness of the logic developed. We

showed that the language introduced might not be rich enough to arrive at an axioma-

tization of the logic. We proposed a further extension of the language and proved some

results obtained in the attempt to �nd an axiomatization.

We showed that the deduction theorem does not hold. This implies that an axiomati-

zation of equivalence and inference will not be a mere extension of the classical relations.

The implementation we developed during our research is brie�y presented. As it

directly implements the tableau approach, it allows to try out simple examples and to

test propositions, which would be much more time consuming if the truth tables had to

be developed by hand.

We proved that the belief revision framework can be embedded into an argumentation

framework. The translation illustrates how the propositions in the sequence defeat one

another during the calculation of the belief base.

Applied in the belief revision framework, our logic not only models contraction but

allows greater expressiveness, e.g. with propositions like ' ! formalizing that an

express disbelief in one proposition implies belief in another.

Remarks on "Some Logics of Belief and Disbelief" [2]

Although our notion of disbelief di�ers slightly from that implied by examples 2 and 3

in that paper, our framework is able to handle them as demanded there. The examples

are basically expressing that it should be possible to believe in disjunction '1 _ : : : _ 'n,

while disbelieving in each individual 'i. This problem is known as the lottery paradox �

while disbelieving that a particular ticket will win, it is believed that one will win. It is

easily seen that the (weak) disjunction as de�ned for our logic does not allow that, but

7 CONCLUSION AND FUTURE WORK 74

the strong one which can be de�ned in terms of implication and negation11 can meet this

demand. In our opinion, what is called disbelief in those examples is merely a strong

tendency towards negation.

Our logic does not have the property (D_) � if � ` � and � ` , then � ` � _ �

satis�ed by the logic GBD. This property was argued against in the paper, but we want

to note that this property does not necessarily force disbelief in tautologies.

Like the authors of [2], we think that agnosticism should be possible, i.e. that f';:'g

should be satis�able. By (D_), now ' _ :' holds as well, i.e. disbelief in a tautology.

But is ' _ :' still a tautology? In a two-valued logic it surely is, but looking at it

with a three-valued logic in mind: : : At least (D_) does not look as strange any more.

It is obvious that a logic satisfying (D_) cannot solve the lottery paradox as the two

express opposites. While the one demands that � _ is a consequence of
�
�;

	
, the

other demands
�
�; ; � _

	
to be consistent.

An intuition for the disbeliefs provided in [2] is that the beliefs are information acquired

by the agent itself and disbeliefs are information from a di�erent source about what does

not hold. The logic BD was said to be pitched at the right level, but we �nd the restriction

that

the worlds that the sources of an agent may regard as impossible have to

be worlds that the agent itself regards as possible

counterintuitive. It is not clear to us why not both agent and source should be allowed

to regard a certain world as impossible.

The approaches in [2] have a quite simple structure. They separate beliefs and dis-

beliefs into di�erent sets and connect them by a set of rules. As mentioned above, our

approach does not distinguish between the two. The price for that is having to allow a

third truth value and a more complex inference scheme. When trying to generalize the

logics in [2] by allowing the nesting of the disbelief bar, the structure of sets will become

more complicated and so will the rules necessary.

11' _s
def
=:' ! . The di�erence with respect to the weak disjunction is, that if both disjuncts are

evaluated to u, their disjunction is evaluated to 1.

7 CONCLUSION AND FUTURE WORK 75

Future work

There is much potential for future work. It is worthwhile to investigate the relationship

between our logic of disbelief and modal logic. There are modal logics that allow to

express the state of an agent's knowledge. Maybe a similar approach works for beliefs

and disbeliefs, i.e. modal operators could model the disbelief connective.

An investigation into the relationship between our disbelief approach and other existing

approaches would be of interest. As the latter are restricted to propositions and the

disbelief in those and do not allow a nesting of the disbelief bar up to now, it is the

question whether they can be embedded in our approach. Further, it is open if and how

they can be generalized to more complicated structures of disbelief.

It would be nice to �nd axiomatizations of the inference and equivalence relations, as

well as for nonsatis�able propositions and tautologies. This would make the picture of

our logic, which is dominated by semantic characterization up to now, more complete.

It might be interesting to investigate fragments of the logic. Possible candidates are

the restriction to classical propositions and disbeliefs in them, the restriction to classical

propositions and disbeliefs of higher order, i.e. allowing only purley classical propositions

or disbeliefs below a disbelief bar. Furthermore, certain connectives could be removed,

e.g. allowing only implication and negation or not allowing implication.

We have not attached a particular interpretation to the third truth value u in our logic

other than its not being true or false. Dunn/Belnap's 4-valued system provides a very

appealing notion for the two extra values � no information and contradicting information.

It might be interesting how to interpret a disbelief operator in this setting. In the light

of the belief revision framework introduced, this does not make sense, as the state of

contradicting information will not be arrived at, but for other applications this might

be di�erent. Again, the essential point will be how to de�ne the interaction between a

proposition and the disbelief in it.

The implementation could be optimized. For examples with a greater number of

propositions, it shows weaknesses in running time and memory problems. Right now,

branches are checked for clashes after every step of expansion. This is very expensive,

though, because it involves equivalence checks that require tableau proofs themselves. An

expansion step, on the other hand, is a simple procedure on lists. So doing the check for

clashes less frequently could speed up the program considerably. Also, reorganizing the

7 CONCLUSION AND FUTURE WORK 76

program so that intermediate results which are not needed any more are thrown away to

clear the stack could allow the program to handle more complicated examples.

Weak version of the logic

In the logic we have investigated so far, a set of propositions was inconsistent if its closure

under consequence forced an evaluation of one proposition to 1; as well as to u or 0 and

so on, i.e. to two di�erent truth values. A version of the logic might be considered, where

an inconsistency only occurs if a proposition is forced to take the values 1 and 0, so the

notion of inconsistency would be weaker.

However, the result is not very appealing, as it would mean that ' ^ ' would not be

inconsistent since there would be an open branch with evaluations of ' to 1 and u. This

would defeat the purpose of the logic. Therefore, we believe a further investigation not

to be fruitful.

REFERENCES 77

References

[1] Booth, R., personal communication, April-August 2002.

[2] Chopra, S., Heidema, J., Meyer,T., Some logics of belief and disbelief, in: Pro-

ceedings of the International Workshop on Non-Monotonic Reasoning, 2002.

[3] Foo, N., Pagnucco, M., personal communication, October & November 2002.

[4] Friedman, N., Halpern, J. Y., A knowledge-based framework for belief change: Part

II: Revision and update, in: Proceedings of the Fourth International Conference on

the Principles of Knowledge Representation and Reasoning (KR-94), pp. 190�200,

1994.

http://citeseer.nj.nec.com/friedman94knowledgebased.html

[5] Gärdenfors, P., Belief revision: An introduction, in Belief Revision, pp. 1-20,

Cambridge University Press, Gärdenfors (ed.).

[6] Gomolinska, A., Pearce, D., Disbelief Change in: Electronic Essays on the occasion

of the �ftieth birthday of Peter Gärdenfors, 2001

[7] Gottwald, S., Many-Valued Logic, The Stanford Encyclopedia of Philosophy (Win-

ter 2001 Edition), Edward N. Zalta (ed.).

http://plato.stanford.edu/archives/win2001/entries/logic-manyvalued/

[8] Gottwald, S., Mehrwertige Logik: Eine Einführung in Theorie und Anwendungen,

Akademie-Verlag Berlin, 1989.

[9] Nerode, A., Shore, R.A., Logic for Applications, 2nd Edition, Springer-Verlag

New York, 1997.

[10] Rose, K. H., XY-Pic User's Guide, Version 3.7.

[11] Vreeswijk, G.A.W., Abstract Argumentation Systems, in: Arti�cial Intelligence,

Vol. 90, pp. 225-279.

[12] Weinelt, J., Der Latex-Index: Eine Befehlsübersicht im Internet.

http://www.weinelt.de/latex/index.html

[13] Zhang, D., personal communication, January 2003.

LIST OF FIGURES 78

List of Figures

1 Valid roots of a tableau . 20

2 Abbreviations . 20

3 Atomic tableaux for the connectives . 21

4 Example Proof . 24

5 Tableau from premises . 28

6 Tableau illustrating inference . 31

7 Argument examples . 59

8 Subarguments . 60

9 Not an argument . 60

10 Strict and nonstrict argument . 60

11 Arguments . 61

12 Compatibility . 61

13 "Invalid" inference rule vs. valid ones . 65

14 Arguments and their strength . 65

LIST OF TABLES 79

List of Tables

1 Truth Tables for classical connectives . 13

2 Possible constellations of a proposition and the disbelief in it 15

3 Valid constellations for a proposition and the disbelief in it 16

4 Truth table for the language extension . 53

A NOTES ON NOTATION 80

A Notes on notation

� :; _; ^; ! connectives negation, disjunction, conjunction, implication. Their mean-

ing depends on the logic used and should be clear from the context.

� ! in Section 6 to denote strict rules, see De�nition 6.3

� ' connective bar to denote disbelief in a proposition '

� � equivalence, a subscript may indicate the underlying logic

� ? bottom, contradiction, proposition evaluated to 0 under all valuations

� ?w inconsistency, not evaluated to 1 by any valuation, in classical propositional

logic the same as ?, but not so in the logic of disbelief

� j= consequence relation between a set of propositions and a proposition, a subscript

may indicate the underlying logic

� ` entailment relation between a set of propositions and a proposition, a subscript

may indicate the underlying logic or method

� ; empty set

� * operator for revision of an epistemic state by new information

� -,+ as superscripts of a proposition denote its nonsatis�ability / the nonsatis�ability

of its negation

� � sequence

� '; �; propositions, sentences of propositional logic or logic of disbelief, depending

on the context

� � a set, usually of propositions

� 0; u; 1 truth values: false, unde�ned, true

� a; b; ::: propositional letters; in Section 6 also to denote arguments

� A truth assignment function, see De�nition 2.4

� AL0i , A
0
L0i

truth assignment function for language fragments, see Section 5.1

A NOTES ON NOTATION 81

� bar see '

� Bel Belief set, see Section 1.2

� CL (�) syntactic closure under classical connectives, see Section 5.1

� Cn (�) closure under consequence, a subscript may indicate the underlying logic

� E entry in a tableau

� limiX the limes of X for i approaching in�nity

� L language (without subscript: language of disbelief, see De�nition 2.1; otherwise

as indicated in the text)

� Li, L0i language fragments, see Section 5.1

� P in Section 3 (possibly with a subscript) to denote a path/branch in a tableau; in

Section 6 used to denote a subset of a language

� T (possibly with a subscript) tableau

� v (possibly with a subscript) denotes a truth value (in the context of tableaux also

<1 or >0, see Section 3.1)

� V truth valuation function, see De�nition 2.4, a subscript may indicate the truth

assignment function that gives rise to it

B SOUNDNESS OF THE INFERENCE RULES 82

B Soundness of the inference rules

By using truth tables and the de�nition of truth valuations for the extended language, it

can be easily seen that the rules from Section 5.5 are sensible. The remarks below show

that they are in correspondence with the tableau introduced in Section 3, as well12.

� ' `� ' trivially, on every open path where ' : 1 holds, ' : 1 holds

� ' ^ '� `� ?w: no open branch with ' : 1 and ' :< 1

� (:')+ `� '�: in an open branch (:')+ : 1 if :' : 1 or :' : u , so ' : 0 or ' : u,

i.e. '� : 1 holds

� (:')� `� '+: analogous

� : ('�) `� ': : ('�) : 1, if '� : 0 if and only if ' : 1

� : ('+) `� :': analogous

� '� `� (' ^)�: if '� : 1, (t6) will not have an open branch

� ' _ `� '� ! : by (t9) in any open branch where not ' : 1, : 1 holds

� ' _ `� � ! ': analogous

� '� ! `� ' _ : using the de�nition of a truth assignment for an open branch,

if there is no entry with ', it is assigned u, so '� is assigned 1, i.e. the implication

is true. Only if is assigned 1, so that there has to be an entry : 1 on the path,

then the disjunction is assigned 1 as well. If ' : 1 is an entry on the path, the

disjunction holds, too, and otherwise, the implication holds only if is evaluated

to true satisfying the disjunction.

� � ! ' `� ' _ : analogous

� (' _)+ ^ :' `� +: (t11) excluded, by (t9) - left branch excluded, in right one

 + holds, by (t10) - left branch excluded, in right one + holds

� (' _)+ ^ : `� '+: analogous
12In connection with tableaux, ' `� reads: in any open tableau branch where ' holds, holds as

well. '+holds if and only if ' : 1 or ' : u; a branch in which '+ holds can be open only if :' : 1 is not

an entry on that path, analogous for '�.

B SOUNDNESS OF THE INFERENCE RULES 83

� (' _)+ `� '+ _ +: (t11) excluded, by (t9),(t10), one of '+ and + holds in

every branch, so '+ _ + holds in every one

� '+ _ + `� (' _)+: analogous

� (' _)� `� '�: (t9) excluded, by (t10), (t11), (t1) '� holds in every branch

� (' _)� `� �: analogous

� ('� _ �)^ ' `�
�: in an open branch ' and '� cannot both hold, so � has to

be true if the disjunction is true

� ('� _ �) ^ `� '�: analogous

� '+ ^ + `� (' ^)+: obvious

� '� ^ � `� (' _)�: likewise

� ' ! `� � ! '�: by (t12), it is easily checked that the implication holds in

every branch

� '! `� '+ ! +: likewise

� ('!)+ ^ ' `� +: (t14) excluded, by (t13) - right branch excluded, in left one

 + holds, by (t12) - left and right branch excluded, in middle one + holds

� ('!)+ ^: `� '�: (t14) excluded, by (t13) - left branch excluded, in right one

'� holds, by (t12) - middle and right branch excluded, in left one '� holds

� ('!)� `�
�: (t12) excluded, by (t13), (t14) � in all open branches

� ('!)� `� '
+: (t12) excluded, by (t13), (t14) '+ in all open branches

� ('!)� `� '� ! : : (t12) excluded, by (t13) and (t14) implication holds in

every branch

� : ('!) `� ': by (t3),(t14)

� : ('!) `� : : by (t3),(t14)

C EXAMPLES FOR THE TABLEAU IMPLEMENTATION 84

C Examples for the tableau implementation

We present some simple examples to illustrate how the tableau implementation of the

logic can be used. In some cases, we only give a sample predicate to show its usage. In

others, we reproduce the output of the program, as well.

dr(X) is the abbreviated form of the predicate dorevision(X;R). Basically, its argu-

ment is the sequence from which the belief base and then a partial belief set is calculated.

� The �rst example is particularily simple. Here the sequence is � = (a).

dr([a]). The output of the program is:

The base belief set is: [a]

preparing the base set

starting inference

[polishing the belief set, [a]]

[a]

is the belief set created by the base belief set

[a]

The second, third and fourth line are only status information telling the user what

the program is currently doing. Information of this kind is notinteresting now, so

we will omit it, in the following.

� The second example is more interesting. The corresponding sequence is � = (a;:a).

dr([a, nott(a)]). Output:

Integration of a leads to inconsistency.

The base belief set is: [nott(a)]

[nott(a)]

is the belief set created by the base belief set

[nott(a)]

The �rst line tells the user that a could not be integrated into the belief base as this

would have introduced an inconsistency. But like in the �rst example the belief set

is not particularily interesting.

C EXAMPLES FOR THE TABLEAU IMPLEMENTATION 85

� dr([dis([a, b]), bar(b)]), i.e. � =
�
a _ b; b

�
. Output:

The base belief set is: [dis([a, b]), bar(b)]

[dis([a, b]), a, bar(b)]

is the belief set created by the base belief set

[dis([a, b]), bar(b)]

Here the belief set is more interesting. As mentioned in Section 4.3, the propositions

of the belief base are expanded to all its subpropositions which are then tested. Here

a is found to be a consequence of the belief base.

� dr([dis([a, b, c, d]), dis([a, b, con([nott(c), nott(d)])])]), i.e.

� = (a _ b _ c _ d; a _ b (:c ^ :d)). Output:

The base belief set is: [dis([a, b, c, d]),

dis([a, b, con([nott(c), nott(d)])])]

[dis([a, b, c, d]), dis([a, b, c]), dis([a, b, d]),

dis([a, b, con([nott(c), nott(d)])]), dis([a, b])]

is the belief set created by the base belief set

[dis([a, b, c, d]), dis([a, b, con([nott(c), nott(d)])])]

This example illustrates one of the possibilities of improving the program. a_ b _ c

and a_ b_d are mentioned in the belief set although it is more than clear that they

hold, because a _ b is contained as well. Leaving propositions like that out of the

belief base makes the output more readable � especially if the belief sets are bigger.

� dr([a, imp(a, dis([b, c])), bar(b), bar(c)]), i.e. � =
�
a; a! _c; b; c

�
. Output:

Integration of a leads to inconsistency.

� dr([a, bar(a), bar(nott(a)), bar(bar(a)), bar(bar(nott(a))), imp(a, bar(nott(a)))]),

i.e. � =
�
a; a;:a; a;:a; a! :a

�
. Output:

Integration of bar(nott(a)) leads to inconsistency.

Integration of bar(a) leads to inconsistency.

Integration of a leads to inconsistency.

The base belief set is: [bar(bar(a)), bar(bar(nott(a))),

imp(a, bar(nott(a)))]

C EXAMPLES FOR THE TABLEAU IMPLEMENTATION 86

Apart from the calculation of the belief base and partial belief set that are induced by

a given sequence, the tableau implementation can be used to check whether propositions

are tautologies, equivalent, satis�able, etc.

prove(X) checks whether a proposition X is a tautology.

� Is (a! b)! ((b! c)! (a! c)) a tautology?

prove(imp(imp(a, b),imp(imp(b, c), imp(a, c)))). The answer is

Yes

� prove(imp(a, b), show). Output:

[fin, open, [a, 1], [b, u], [imp(a, b), l], [imp(a, b), u]]

No

Of course, a ! b is not a tautology. The optional second argument show forces

the output of an open branch, i.e. of a noncontradictory assignment that evaluates

the proposition to a value other than 1. Entries of a branch can be open or �n to

indicate that the branch is open and �nished or entries of the form ['; value]. The

value l means less than 1, i.e. it corresponds to < 1 from the de�nition of atomic

tableaux.

� An example from Section 5.4: ((' ^)! �) ! ('! (! �)) is a tautology.

prove(imp(imp(con(a, b), c), imp(a, imp(b, c)))).

But the reverse implication ('! (! �))! ((' ^)! �)?

prove(imp(imp(a, imp(b, c)), imp(con(a, b), c)), show). Output:

[fin, open, [a, u], [b, u], [c, 0], [con(a, b), u],

[imp(a, imp(b, c)), 1], [imp(b, c), u], [imp(con(a, b), c), u],

[imp(imp(a, imp(b, c)), imp(con(a, b), c)),l],

[imp(imp(a, imp(b, c)), imp(con(a, b), c)), u]]

No

eq(X; Y) checks the equivalence of two propositions X and Y .

� eq(a, a).

C EXAMPLES FOR THE TABLEAU IMPLEMENTATION 87

� eq(a, nott(nott(a))).

� ::a � : (a! : (b! (c! b)))?

eq(nott(nott(a)), nott(imp(a, nott(imp(b, imp(c, b)))))). Output:

Yes

The predicate satisfiable(X) tests whether the proposition Xas a model.

� satis�able(con(a, bar(a))).

� satis�able(con(a, b), show). Output:

[fin, open, [a, 1], [b, 1], [con(a, b), 1]]

Yes

Again, an optional second argument show causes the program to output an open

branch � if there is one � representing a possible assignment.

� Does (a! (b! a))! (a ^ a) have a model?

satis�able(imp(imp(a, imp(b, a)), con(a, bar(a)))). Output:

No

The last example illustrates a weakness of the simple inference approach of just check-

ing the subpropositions. createbeliefset([con(dis(a; b); dis(c; bar(b)))]): triggers the con-

struction of the belief set of (a _ b) ^
�
c _ b

�
. The result given is

[con([dis([a, b]), dis([c, bar(b)])]), dis([a, b]), dis([c, bar(b)])]

However, it should be clear that this is an example of a general case of resolution. As

not both b and b can be true, the disjunction a_ c holds as well. Explicitly checking that

by using the predicate isconsequenceof(X; Y), where X is a proposition and Y a list of

propositions, con�rms this.

isconsequenceof(dis(a, c), [con(dis(a, b), dis(c, bar(b)))]).

But as a_ c is not among the subpropositions, it is not tested by the inference engine.

