
Formal Speci�cation and Veri�cation of

Knowledge

and its Application

Ralph Miarka

miarka@aix520.informatik.uni-leipzig.de

Leipzig University

Faculty for Mathematics and Computer Science

Institute for Computer Science

Master's Thesis

supervised by

Prof. Dr. Heinrich Herre, Leipzig University

and

Dr. Peter Hrandek, Siemens AG Austria

Leipzig, July 1998

Formale Wissensspezi�kation und -veri�kation

und deren Anwendung

Ralph Miarka

miarka@aix520.informatik.uni-leipzig.de

Universit�at Leipzig

Fakult�at f�ur Mathematik und Informatik

Institut f�ur Informatik

DIPLOMARBEIT

betreut von

Prof. Dr. Heinrich Herre, Universit�at Leipzig

und

Dr. Peter Hrandek, Siemens AG �Osterreich

Leipzig, Juli 1998

Abstract

Software must become more reliable. It is widely accepted that, if correctly ap-

plied, formal methods can improve the reliability of programs. Unfortunately,

formal methods have yet little impact on the practice. The aim of this work is

to investigate how methods, tools, and results of knowledge engineering can be

applied in speci�cation engineering.

We investigate the relationship between knowledge engineering and formal speci�-

cation. We compare aims, concepts, and problems of both disciplines of computer

science. In particular, we examine a theory of veri�cation originally developed for

the veri�cation of knowledge bases. Further, we look at a speci�cation tool de-

signed for the development of knowledge based systems, which in turn is a knowl-

edge representation system itself. Finally, we put this thesis into the context of

the Standard Siemens Development Methodology.

The results of this thesis are manyfold. First, we found that knowledge engineering

and formal speci�cation have much in common. Basically, both meet at the point

of representing facts and relationships in an abstract manner. Our comparison

leads to the view that many achievements of knowledge engineering should be

used in formal speci�cation.

Second, we extended the work on a theory of veri�cation of knowledge bases

by considering universal theories in general. Such extension allows to consider

formal speci�cations as well. Further, we extended the query language. In that

way, more complex sentences can be proved. The theory we adopted considers a

world description to be given explicitly. In that way the theory serves the purpose

of an early error detection, as suggested by [Jackson and Wing, 1996].

Third, the speci�cation and veri�cation example showed the practical applicabil-

ity of a knowledge engineering tool in formal speci�cation. Finally, the discussion

on the use of formal methods within the Standard Siemens Development Method-

ology related formal methods to the industry. We found that it is not too di�cult

to use formal methods within an existing development methodology. We also em-

phasised on the ability to outsource the process of creating a formal speci�cation

and the veri�cation and validation process.

The right use of formal methods can reduce software development costs. The right

use of results made in knowledge engineering can reduce development costs within

speci�cation engineering. This thesis provides some ideas as well as solutions to

this problem.

Zusammenfassung

Software mu� zuverl�assiger werden. Es ist allgemein anerkannt, da� formale

Methoden, sofern sie richtig angewandt werden, die Sicherheit und Stabilit�at

von Software verbessern k�onnen. Jedoch werden formale Methoden noch selten

f�ur industrielle Projekte genutzt. Das Ziel dieser Arbeit ist die Untersuchung,

ob und wie Methoden, Werkzeuge und Ergebnisse aus dem Bereich der Wis-

sensrepr�asentation auf das Gebiet der formalen Spezi�kation �ubertragen werden

k�onnen.

Zuerst vergleichen wir Ziele, Konzepte und Probleme der Wissenrepr�asentation

mit denen der formalen Spezi�kation. Danach untersuchen wir einige Eigen-

schaften von Spezi�kationen und Wissensbasen, wie zum Beispiel Konsistenz,

Vollst�andigkeit und Korrektheit. Weiterhin betrachten wir ein Werkzeug zur

Spezi�kation von wissensbasierten Systemen, welches selbst ein Wissensre-

pr�asentationssystem ist. Abschlie�end ordnen wir diese Arbeit in die Standard

Siemens Entwicklungsmethode (stdSEM) ein.

Die Ergebnisse dieser Arbeit sind vielf�altig. Erstens, Wissensrepr�asentation und

formale Spezi�kation haben viele Gemeinsamkeiten. Die wohl wichtigste ist, da�

beide Methoden sich mit der abstrakten Darstellung von Fakten und Beziehungen

besch�aftigen. Unser Vergleich f�uhrt zu der Ansicht, da� Ergebnisse der Wissens-

repr�asentation auch im Bereich der Spezi�kation genutzt werden k�onnen.

Zweitens, im Rahmen der Untersuchung von Eigenschaften von Spezi�kationen

ist es uns gelungen, eine Arbeit zur Veri�kation von Wissensbasen so zu erwei-

tern, da� sie auch f�ur die Veri�kation von Spezi�kationen genutzt werden kann.

Dabei stehen universale Theorien im Vordergrund unserer Betrachtungen. Die

entwickelte Theorie st�utzt sich auf eine explizit gegebene Weltbeschreibung. Da-

durch wird eher eine fr�uhzeitige Fehlererkennung erm�oglicht, wie sie von [Jackson

and Wing, 1996] gefordert wird.

Drittens konnten wir die Nutzbarkeit eines Werkzeuges der Wissensrepr�asentation

f�ur die Spezi�kation anhand eines Beispieles belegen. Schlie�lich zeigten wir, da�

formale Methoden in eine bestehende Entwicklungmethode eingebunden werden

k�onnen. Dar�uber hinaus belegten wir die M�oglichkeit, den Proze� der formalen

Spezi�kation und Veri�kation auszulagern und an andere Firmen zu �ubertragen.

Die richtige Nutzung formaler Methoden kann Kosten in der Softwareentwicklung

senken. Die richtige Nutzung der Ergebnisse der Wissensrepr�asentation kann Ko-

sten im Bereich der Entwicklung formaler Methoden reduzieren. Die vorliegende

Arbeit bietet Ideen und L�osungen f�ur dieses Problem.

Contents

List of Figures ix

List of Tables x

Preface xi

1 Introduction 1

1.1 Objective and Aims . 2

1.2 Results . 2

1.3 Outline of the Thesis . 3

2 Comparing Speci�cation & Knowledge Engineering 4

2.1 Introduction to Speci�cation Engineering 5

2.1.1 The Aim of Speci�cation Engineering 5

2.1.2 The Participants in Speci�cation Engineering 6

2.1.3 Properties of a Good Speci�cation 7

2.1.4 Fundamental Concepts in Speci�cation Engineering 8

2.1.5 Problems in Applying Speci�cation Engineering 8

2.1.6 Demands on Tools and Methods 9

2.1.7 A Lightweight Approach to Formal Speci�cation 10

2.2 Introduction to Knowledge Engineering 11

2.2.1 The Aim of Knowledge Engineering 11

2.2.2 The Participants in Knowledge Engineering 11

2.2.3 Knowledge Representation 12

2.2.4 Properties of a Good Knowledge Base 14

2.2.5 Fundamental Concepts in Knowledge Engineering 15

v

Contents vi

2.3 Di�erences and Similarities . 16

2.3.1 Di�erences . 16

2.3.2 Similarities . 17

2.4 Conclusion . 20

3 Verifying Static Properties of Speci�cations or Knowledge Bases 21

3.1 Preliminaries . 22

3.1.1 Syntax . 22

3.1.2 Notions from Model Theory 22

3.1.3 Notions from Proof Theory 26

3.2 Notions for a Theory of Veri�cation 29

3.2.1 Formal Conceptualisation 29

3.2.2 Forcing for Veri�cation . 31

3.3 Correctness and Soundness . 32

3.3.1 Correctness . 33

3.3.2 Soundness . 33

3.4 Consistency . 34

3.4.1 The Notion of Consistency 35

3.4.2 Special Cases of Inconsistency 36

3.5 Weak Completeness and Gaps . 37

3.5.1 Weak Completeness . 37

3.5.2 Gaps in Speci�cations . 38

3.6 Empirical Foundedness and Decisiveness 39

3.6.1 Empirical Foundedness . 40

3.6.2 Decisiveness . 40

3.7 Well-Informedness and Strong Completeness 41

3.7.1 Well-Informedness . 41

3.7.2 Strong Completeness . 42

3.7.3 Special Cases of Well-Informedness 43

3.8 Conclusion . 44

Contents vii

4 A Speci�cation and Veri�cation Case Study 46

4.1 DESIRE . 47

4.1.1 DESIRE - A Speci�cation Framework for Compositional

Systems . 47

4.1.2 Task Composition . 47

4.1.3 Information Exchange . 48

4.1.4 Task Control . 50

4.1.5 Task Delegation . 50

4.1.6 Knowledge Structures . 51

4.1.7 The DESIRE Development Environment 51

4.2 A Telecommunication Example - Informal Introduction 52

4.2.1 The Environment . 52

4.2.2 The Telephone . 52

4.2.3 The Customer . 53

4.2.4 The Exchange . 54

4.3 Detailed Speci�cation of the Telecommunication Example 54

4.3.1 Task Composition . 55

4.3.2 Information Types . 55

4.3.3 Information Exchange . 58

4.3.4 Knowledge Structures . 61

4.4 Verifying the Speci�cation of the Telecommunication Example . . 64

4.4.1 World Description, Input Models, and Goals 65

4.4.2 Verifying Empirical Foundedness 66

4.4.3 Reasoning Trees for the Users 67

4.4.4 Verifying Correctness and Soundness 68

4.4.5 Verifying Consistency . 69

4.4.6 Verifying Weak Completeness and Decisiveness 70

4.4.7 Verifying Well-Informedness and Strong Completeness . . . 71

4.5 Conclusion . 72

Contents viii

5 Results and Discussion 73

5.1 Results . 74

5.1.1 Relating Formal Methods and Knowledge Engineering . . . 74

5.1.2 On the Veri�cation of Formal Theories 75

5.1.3 Speci�cation and Veri�cation of a Multi-Agent-System . . 75

5.2 Discussion . 76

5.2.1 DESIRE and the Demands and Concepts of Formal Speci-

�cation . 76

5.2.2 Formal Speci�cation and Veri�cation within stdSEM . . . 79

5.2.3 Outsourcing of the Formal Speci�cation and Veri�cation

Process . 81

5.2.4 Current Alternatives to Formal Methods 83

5.2.5 A Discussion on DESIRE 84

5.2.6 Limitations . 85

6 Conclusion and Future Work 86

6.1 Summary and Conclusions . 87

6.2 Future Work . 89

Bibliography 90

Index of Symbols 99

Index 100

A The Telecommunication Example - Textual Speci�cation 103

B The Telecommunication Example - Reasoning Trace 120

C System Con�guration 133

List of Figures

2.1 Components of a Knowledge Representation System 13

2.2 An Outline of a Speci�cation Tool 19

3.1 Relationships between the Notions of Static Veri�cation 45

4.1 Links within a DESIRE Component 49

4.2 A Simple Telecommunication Network 53

4.3 Task Composition in Destool . 55

4.4 Specifying Information Types - the Information Type Editor . . . 56

4.5 Specifying Information Types - the Sort Editor 57

4.6 Information Exchange within Destool 58

4.7 Speci�cation of Link a within Destool 59

4.8 Speci�cation of Link b within Destool 60

4.9 The Knowledge Base of the Component Exchange within Destool 61

4.10 The Telecommunication Example within Destool 64

4.11 Reasoning Tree for KBU - Incoming Call 67

4.12 Reasoning Tree for KBU - Outgoing Call 68

5.1 The Software Development Process according to stdSEM 80

ix

List of Tables

2.1 The Essence of Speci�cation and Knowledge Engineering 19

3.1 Strong Kleene Truth Tables . 24

4.1 Derivation Extents within DESIRE 50

4.2 A Task Delegation Example . 50

4.3 Speci�cation of the Information Exchange between the Compo-

nents User and Exchange . 58

x

Preface

Pro�ciency in any art or science is not attained until its history is

known. Often a student and a designer �nds, after weary hours of

thought, that the problems over which he studied were considered

and mastered by others, years or centuries before, perhaps with better

results than his own. [Tyrell, 1911]

My motivation for this thesis is best expressed by the above quotation. It was

in 1994/95 that I was introduced to formal speci�cation methods. In my opin-

ion, such methods form the future of software development. Unfortunately, for-

mal methods are not a major topic of education at the University of Leipzig.

However, knowledge representation is heavily investigated by the working group

`Formal Concepts' lead by Prof. Heinrich Herre. While attending several lectures

on knowledge representation and formal reasoning, I realised that most of the

presented problems were similar to those of formal speci�cation and veri�cation

of software. Therefore, I decided to investigate this relationship in more detail.

Since February 1996 I was working several times for the Siemens AG Austria

as a member of the Department `Programming Environments, Databases, and

Scienti�c Systems' lead by Dr. Peter Hrandek. We both agree on the point that

new software development methods are needed. In particular formal veri�cation of

software forms a major part of interest, since software reliability must constantly

be improved. Therefore, the work on this thesis was done under supervision of

both Dr. Peter Hrandek and Prof. Heinrich Herre.

Acknowledgements

I am thankful to Prof. Heinrich Herre and to Dr. Peter Hrandek for supervising

my work. Both gave me a complete free hand to choose the path this thesis

should take. Further, I thank Jan Treur and Lourens van der Meij from the Vrije

Universiteit Amsterdam for their support when dealing with DESIRE.

I also thank Prof. John Derrick from the University of Kent at Canterbury, for the

chance to take part in a project on formal methods, and Prof. Andrew Frank for

xi

Preface xii

the possibility to attend the GeoPo'97 - an internal conference by the Department

of Geoinformation Systems, TU Vienna. In particular his hints on how to write

a thesis were very valuable.

I thank Ste�en and Thomas Bittner for the fruitful discussions on some parts of

this thesis. Further, I am thankful to Katja Brunsch, Dr. Sabine Timpf, and Hans-

J�urgen Kiesch for reading preliminary versions of this thesis and for improving

the English of this work.

Finally, I would like to thank my friends and, of course, my parents for their

continued support. Thank you all.

Ralph Miarka

Leipzig, July 1998

Chapter 1

Introduction

Software errors can be very expensive. Sometimes a company damages their im-

age, sometimes they lose much money but at other times, humans might lose their

lives. In July 1996, a software error was responsible for the loss of the European

Space Agency's Ariane 5, carrying satellites worth 500 million dollars [Easter-

brook, 1996; Welt, 1996]. It was earlier this year that Bill Gates demonstrated

Windows 98, Microsoft's new operating system, when it malfunctioned [Welt,

1998]. Although it seems that this was not as serious as the Ariane accident, one

has to consider that Windows 98 will run on about 90 percent of all personal

computers world wide.

It was against this background that J�urgen Kuri wrote in the German computer

magazine c't [ct, 1998, p. 3]:

Normalit�at kehrt ein in eine Branche, die sich lange etwas auf ihre Son-

derrolle zugute hielt. [...] Software und Hardware sind nichts Beson-

deres: Etwas Besonderes sind ihre Probleme und Fehler.

[Aber] wenn sie keinen Sonderstatus mehr hat, [dann] mu� sie sich

auch an den Standards messen lassen, die f�ur andere Bereiche gelten.

Die Ausrede, keine Software k�onne fehlerfrei sein, zieht nicht mehr.

Das gilt schlie�lich auch f�ur jedes komplexe technische System. Mehr

noch: In all diesen technischen Systemen steckt inzwischen Software,

die fehlerfrei zu funktionieren hat.

Windows CE in Waschmaschinen und Autos ist schlie�lich kein Spa�

mehr. Weder Hausfrau noch Hausmann akzeptieren, wenn der Voll-

waschgang abst�urzt. Die Anwender von Technik, und davon ist die

EDV inzwischen nur noch eine Facette, lassen sich nicht mehr mit

dummen Spr�uchen abspeisen.

In other words, software became part of our lives, like washing machines and cars.

Therefore, software has to meet the same standards as other technical devices,

hence software must become more reliable.

1

1.2. Results 2

1.1 Objective and Aims

It is widely accepted that, if correctly applied, formal methods can increase the

reliability of programs. Techniques of formal speci�cation and veri�cation have

been studied since the end of the 1960s. However, it seems that formal methods

have yet little impact on the practice. Suggested causes include lack of adequate

tools, lack of mathematical sophistication of the engineers, incompatibility with

current development techniques, high costs of application, as well as over-selling

by advocates.

As a consequence of these causes, a lightweight approach to formal methods was

proposed by [Jackson and Wing, 1996]. This approach emphasises on partiality,

e.g. partiality of language, partiality of modelling, partiality of analysis, and par-

tiality in composition. As another consequence, specialisation of the engineers

was demanded. [Wing, 1985] introduced the idea of speci�cation �rms and [East-

erbrook, 1996] suggested independent veri�cation and validation agents.

In our opinion, speci�cation engineering can get further impulses from other �elds

of computer science. In particular we believe that many problems and techniques

of knowledge engineering are similar to those in formal speci�cation. Hence, tools

and methods used in knowledge engineering could be applied in speci�cation

engineering.

The aim of this work is to investigate how tools, methods, and results of knowledge

engineering can be used for speci�cation engineering. Such knowledge transfer can

save much time in the development of formal speci�cation towards an accepted

and used method in software development. In that way this work will be a con-

tribution to the work on improving formal methods towards industrial use.

1.2 Results

The results of this thesis are diverse. First, we compare knowledge engineering and

speci�cation engineering as two branches of computer science that have much in

common. Basically, both �elds deal with the formal representation of knowledge

of a domain. We do not claim that this comparison will be complete but it might

start a discussion on the issue. Further, many tools and methods for knowledge

engineering were developed and applied, and today, knowledge engineering itself is

an industry. In our opinion, speci�cation engineering can bene�t from knowledge

engineering to become an industry itself.

In order to provide further evidence, we will extend the work by [Leemans et al.,

1993] and [Treur and Willems, 1994] on the veri�cation of knowledge bases. We

will abstract from knowledge bases and consider logical theories, which can also

be formal speci�cations. The main idea behind the introduced veri�cation method

1.3. Outline of the Thesis 3

is the consideration of a world description. This means, not all situations but all

possible or desired situations will be checked. In that way our theory serves the

purpose of an early error detection, as it is suggested by [Jackson and Wing,

1996].

Further, a speci�cation example will be given. For this we will use a speci�ca-

tion language designed for specifying knowledge based systems. Additionally, a

development environment exists, which can be considered as a knowledge repre-

sentation system. In this way, we show that it is possible to develop speci�cations

within knowledge representation systems. The speci�cation will also be veri�ed

according to the presented notions.

Finally, we will show that the suggested approach �ts well into stdSEM, the Stan-

dard Siemens Development Methodology [stdSEM, 1997], which in turn shows

that our approach could be used in practice. As a special case, we show that

it is possible to outsource the process of formal speci�cation and veri�cation.

This is closely related to the ideas of both speci�cation �rms and veri�cation and

validation agents.

1.3 Outline of the Thesis

The structure of this thesis is the following: In the next chapter we will compare

knowledge engineering and speci�cation engineering. We will show that both

disciplines of computer science are closely related, and we propose to investigate

formal speci�cation in the framework of knowledge engineering.

In chapter 3 we will investigate some notions of formal veri�cation, like consis-

tency, correctness, and decisiveness. The presented veri�cation method considers

a world description explicitly given as well as a set of goals that need to be veri�ed.

Previous work on this topic was especially related to the veri�cation of knowledge

bases. This will be generalised by considering arbitrary universal theories as well

as arbitrary quanti�er free formulas or existential formulas as goals.

In chapter 4 we will �rst introduce the speci�cation framework DESIRE and

its development environment Destool. Afterwards, we will introduce a simple

telecommunication world which will be speci�ed using DESIRE and Destool.

Finally, this speci�cation will be veri�ed according to the notions of veri�cation

that we introduce in chapter 3.

The results of this work will be summarised and discussed in chapter 5. There

we will also relate this work to stdSEM, the Standard Siemens Development

Methodology. Finally, in chapter 6, we are goint to make some concluding remarks

and we will present possible future research directions.

Chapter 2

Comparing Speci�cation &

Knowledge Engineering

In the late 1960s the notion of software engineering was �rst introduced. In the

classical sense, a team is responsible for building a software product using engi-

neering principles, including all technical and non-technical aspects [Sommerville,

1992]. Thus the notion of software engineering stands for a set of software building

methodologies.

Later, the idea of formal software speci�cation was established as a method for

improving software reliability. Unfortunately, only few researchers [Wing, 1985;

Easterbrook, 1996] seem to look at speci�cation as an independent process that

can be carried out by specialised �rms. Considering building a speci�cation to

be an engineering task leads to the notion of speci�cation engineering, a notion

that is hardly used today.

Knowledge engineering is a discipline of arti�cial intelligence which is under re-

search since the end of the 1950s. Up to now, knowledge engineering has gained

much recognition. For instance, companies used knowledge based systems to save

millions of dollars and the development of knowledge based systems became an

industry itself. Therefore, to be a knowledge engineer has long been an accepted

profession and many tools and guidelines to construct knowledge based systems,

e.g. expert systems, were developed and used.

In this chapter we will give a short introduction to speci�cation engineering and

knowledge engineering. We will show the aims, problems, and concepts of both

approaches. Further, we will introduce the participants of both engineering tasks,

as well as the properties of good representations. When comparing both notions

we will put special emphasis on the similarities. This will lead to the view that

many notions, methods, and tools of knowledge engineering can contribute to

speci�cation engineering.

4

2.1. Introduction to Speci�cation Engineering 5

2.1 Introduction to Speci�cation Engineering

Speci�cation engineering is the branch of software engineering that uses the prin-

ciples of formal methods to build speci�cations. It is characterised by the process

of building and evaluating a description of a problem, i.e. a speci�cation, with en-

gineering principles. Speci�cation engineering will be carried out by speci�cation

engineers. We will restrict ourself to software engineering, though speci�cation

engineering can also be applied to hardware development. In this section we will

describe why speci�cation engineering is needed and how it is performed. In doing

so, we will emphasise industrial needs. Finally, we will show some limitations of

today's approaches.

2.1.1 The Aim of Speci�cation Engineering

The �nal product of speci�cation engineering is an evaluated and accepted de-

scription of a problem, i.e. a speci�cation. A speci�cation should form an adequate

basis for the further program development. Thus it must give an exact description

of what the software should do. Then it is left to the programmer to decide how

to achieve the speci�ed goals. A speci�cation must also be understandable for

the customer, because it becomes part of the software documentation and most

often, it is the common ground for the contract between customer and supplier.

Formality is an important concept in speci�cation engineering. The question why

formal methods should be used is often discussed. Already the fact that a speci-

�cation must be an exact description of a problem might be reason enough but a

better argumentation that hits speci�cation engineering at the heart of its notion

is given by [Holloway, 1997]:

Software engineers strive to be true engineers; true engineers use ap-

propriate mathematics; therefore, software engineers should use ap-

propriate mathematics. Thus, given that formal methods is the math-

ematics of software, software engineers should use appropriate formal

methods.

This reasoning obviously holds for speci�cation engineers too, because we intro-

duced speci�cation engineering as a discipline of software engineering. Hence,

speci�cation engineers should use appropriate formal methods and the outcome

of their work will be a formal speci�cation.

2.1. Introduction to Speci�cation Engineering 6

2.1.2 The Participants in Speci�cation Engineering

In classical software engineering often only two players are identi�ed: the cus-

tomer, who is also the user, and the software engineer, who is also the program-

mer. We consider three participants:

1. the customer,

2. the programmer, and

3. the speci�cation engineer.

Actually the user of the software product is often an extra player, too, but we

assume that the customer is in contact with the end-user. In that way the user

does not form an active part in speci�cation engineering as we introduce it.

The Customer's Role

[Turski and Maibaum, 1987, p. 19] describe the ideal customer as:

: : : capable of, and willing to, analyse the application domain, write a

consistent and su�ciently complete descriptive theory of it and also

prove to his eternal satisfaction that this theory is a correct abstrac-

tion of the application domain.

In practice, however, such customers are rare. We assume the customer to possess

good knowledge of his domain of interest and to have an idea of what he wants

the system to achieve. Normally, this idea is provided by the customer in form of a

vague requirements speci�cation given in natural language. The �nal speci�cation

and its validation are products of cooperation between the speci�cation engineer

and the customer.

The Programmer's Role

The programmer is the user of the speci�cation. According to the formal descrip-

tion of the problem he writes a computer program. Usually, the programmer does

not have much knowledge about the application domain. His work will be judged

primarily with respect to the speci�cation. Normally, his communication partner

is the speci�cation engineer.

2.1. Introduction to Speci�cation Engineering 7

The Speci�er's Role

The speci�cation engineer is a specialist in representation. He has su�cient expe-

riences in applying di�erent speci�cation languages and tools to software projects.

The speci�er is the central contact to the customer and also to the programmer.

The speci�cation engineer is usually not a specialist in the domain at hand.

Therefore, it is his task to obtain the information needed to construct a for-

mal representation from the customer or from documents the customer provides.

[Easterbrook et al., 1998] report their experiences using speci�ers not familiar

with the application domain. The advantage is that the engineer does not share

the same assumptions with the customer. Therefore, the engineer will question

everything that is not made explicit or left to more than one interpretation. In

that way, many minor problems will be revealed, especially unstated assumptions

and inconsistent usage of terminology.

After constructing the speci�cation, the speci�er proves certain properties of the

speci�cation, like consistency and correctness. He might also be responsible for

creating a prototype that can be further validated. Note, this does not mean that

the speci�cation language itself should be executable. (We recommend to read

[Hayes and Jones, 1989] and [Fuchs, 1992] for a discussion on this issue.)

2.1.3 Properties of a Good Speci�cation

Speci�cations have to ful�l a set of characteristics to be valuable in the software

development process. [IEEE, 1984] identi�es the following general properties:

1. Unambiguity - each requirement stated in a speci�cation has only one in-

terpretation.

2. Completeness - all signi�cant requirements are included, and responses to

all possible inputs are de�ned.

3. Consistency - there are no requirements that contradict each other.

4. Modi�ability - structure and style of the speci�cation support changes to

be made completely and consistently.

Another property is veri�ability. In our view a speci�cation is veri�able, if it is

possible to reason formally about it1. Thus, veri�cation is a formal and inter-

nal view related to concepts like completeness and consistency. In this way it

corresponds to the generally accepted question:

1Note that there exists a second meaning of veri�ability, which is related to the correspon-

dence of the �nal program to its speci�cation.

2.1. Introduction to Speci�cation Engineering 8

`Are we building the product right?' [Boehm, 1981]

In contrast to veri�cation the notion of validation is used. Validation is an infor-

mal and external view, associated with the notion of satisfaction of the customer.

Validation is best characterised by the question:

`Are we building the right product?' [Boehm, 1981]

The process including both veri�cation and validation is called evaluation.

2.1.4 Fundamental Concepts in Speci�cation Engineering

Speci�cation engineering shares many fundamental concepts with other areas in

computer science. [Clarke and Wing, 1996] identify the following:

� Abstraction - process of removing details from a representation;

� Composition - of methods, speci�cations, models, theories and proofs;

� Decomposition - of global properties into local ones;

� Reusability - of models and theories; this can be compared with program

modules;

� Combination - of mathematical theories, to specify di�erent requirements

with di�erent, preferably better suited, languages, like it is investigated

within the �eld of viewpoint speci�cations, e.g. [Ainsworth et al., 1994] and

[Bowman et al., 1995];

� Data structures and algorithms - for e�cient formal reasoning.

The further development of these concepts will also lead to an improvement in

speci�cation engineering.

2.1.5 Problems in Applying Speci�cation Engineering

In speci�cation engineering we face many di�culties. The major problem is the

acceptance by the industry. [Clarke and Wing, 1996] identify three general prob-

lems that have to be solved:

1. Integration of methods. Though speci�cation engineering is a formal pro-

cess it has to be combined with informal methods, graphical representation

formalisms, and natural language. Further, the integration of tools, like

model checking tools and automated theorem provers has to be considered.

2.1. Introduction to Speci�cation Engineering 9

2. Integration with the software development process. Speci�cation engineer-

ing is an approach within software engineering. Especially when using for-

mal methods `Thou shalt not abandon thy traditional development meth-

ods', as [Bowen and Hinchey, 1995b] point out. Instead, formal methods

should complement methods already used. [NASA, 1995] describe when

and how to use formal methods in a project. Further, it is worth exploring

how results from speci�cation engineering can be used in later phases of the

development process, like in the testing phase.

3. Education and technology transfer. [Holloway and Butler, 1996] identify a

`build it and they will come' expectation on the part of the formal methods

developers but as in other areas, the success of a method depends on the

practitioners. Therefore, it is necessary to train students and engineers,

and to establish links between industry and universities. In that way, tools

and methods, experiences and problems, as well as educated sta� can be

exchanged.

2.1.6 Demands on Tools and Methods

[Bowen and Stavridou, 1993] identify two further reasons for the low acceptance of

formal methods: �rst, formal speci�cation is time consuming and second, highly

cost-intensive. A related problem is that these costs can hardly be predicted,

because no generally accepted cost models exist [Craigen et al., 1993]. Further, the

notations used in formal speci�cation rely much on mathematics and formal logic;

notations, the customer is usually not familiar with. Therefore, the speci�cation

cannot be used as a communication medium.

To overcome the introduced problems, [Clarke and Wing, 1996] demand the fol-

lowing criteria for tools and methods used in speci�cation engineering:

� Early payback - bene�ts as soon as formal methods are used;

� Incremental gain for incremental e�ort;

� Multiple use - of tools, methods, and experiences in di�erent projects;

� Integrated use - of tools and methods within the applied software develop-

ment methodology;

� Ease of use - of tools, like compilers in programming;

� E�ciency - especially time e�ciency of the tools;

� Ease of learning - of notations and tools;

2.1. Introduction to Speci�cation Engineering 10

� Error detection oriented - �nding errors is more desirable than certifying

correctness;

� Focused analysis - focused on special aspects of the system;

� Evolutionary development - allowing partial speci�cation and selected ver-

i�cation.

2.1.7 A Lightweight Approach to Formal Speci�cation

In order to ful�l some of the demanded properties and therefore, to make formal

speci�cation more attractive for the industry, a lightweight approach to formal

methods was introduced by [Jackson and Wing, 1996]. They suggest:

1. Partiality in language. Speci�cation languages are often considered as gen-

eral mathematical notations. Unfortunately, this generality is reached at the

expense of clarity and analysis. Thus it makes some speci�cation languages

unsuitable for practical use.

2. Partiality in modelling. It is important to realise that a complete formali-

sation of a problem is infeasible. Therefore, it is necessary to decide on the

parts that merit the costs of formal speci�cation.

3. Partial analysis. No su�ciently expressive speci�cation language can be

decidable and therefore, a sound and complete veri�cation is impossible.

Since most speci�cations contain errors, one has to ask for the properties

that should be veri�ed. Consequently one should concentrate on detecting

errors reliably early in the development process.

4. Partiality in composition. Often a single partial speci�cation is not su�cient

for a large system. The idea is to construct a speci�cation of interlocking

partial speci�cations. Unfortunately, the mechanism for proving properties

of partial speci�cations, like consistency, is understood for only some spec-

i�cation languages [Boiten et al., 1997].

Recently, a paper describing the experiences of the lightweight application of

formal methods was published by [Easterbrook et al., 1998]. They present three

case studies of the successful application of formal methods at NASA. The studies

concern the speci�cation, veri�cation, and validation of fault protection software

for the International Space Station and the Cassine deep space mission.

2.2. Introduction to Knowledge Engineering 11

2.2 Introduction to Knowledge Engineering

[Russel and Norvig, 1995] de�ne knowledge engineering as the process of build-

ing a knowledge base. [Fensel and van Harmelen, 1994] extend this by de�ning

knowledge engineering as the branch of software engineering which deals with the

construction of knowledge based systems. We will explicitly include the process of

veri�cation and validation of knowledge bases to these de�nitions. Knowledge en-

gineering is carried out by knowledge engineers. In this section we will introduce

the principles of knowledge engineering, its notions and its methods.

2.2.1 The Aim of Knowledge Engineering

Basically, there are two main approaches: the functionally orientated view and the

modelling view. Whereas the �rst is related to the way of how human reasoning

can be represented in a computer, the second deals with the problem of modelling

systems in the world. In this way, `the content of a knowledge base refers to an

objective reality instead of an agent's }mind}' and `knowledge is much more

related to the classical notion of truth intended as correspondence to the real

world, and less dependent on the particular way an intelligent agent pursues its

goals' [Guarino, 1995].

We consider both views relevant but it must be possible to represent them sep-

arately. Actually, this is most often done. In knowledge representation systems

the knowledge base and the inference mechanism are distinguished: one to hold

the facts and rules of the world, and the other to model the reasoning process.

In this thesis we will mainly concentrate on the modelling view.

2.2.2 The Participants in Knowledge Engineering

In knowledge engineering we primarily distinguish three participants:

1. the user,

2. the expert, and

3. the knowledge engineer.

The User's Role

The user of a knowledge engineering product is usually untrained or at least

not a specialist in the domain. He needs the expert knowledge occasionally but

cannot consult the expert. Therefore, the user needs the knowledge based system

to obtain the information he wants. It is also important that the reasons for

suggested decisions are clearly presented.

2.2. Introduction to Knowledge Engineering 12

The Expert's Role

Experts are the specialists in their domain. They have special capabilities to solve

problems even if there does not exist a single solution to it. Experts use heuristic

knowledge and experiences and have a good general knowledge.

Unfortunately, experts are often unconscious about the reasons why they did

something or not. Further, many experts are not trained in using representation

tools, so that knowledge acquisition often becomes tricky.

The Knowledge Engineer's Role

A knowledge engineer is someone who investigates a particular domain, deter-

mines what concepts are important in that domain, and creates a formal repre-

sentation of the objects and relations in the domain.

Often, the knowledge engineer is trained in representation but is not an expert

in the domain in question [Russel and Norvig, 1995]. It is his task to elicit the

required knowledge from the expert, to structure it, and to create the formal

representation. Finally, the knowledge engineer is responsible for veri�cation and

validation of the knowledge base.

2.2.3 Knowledge Representation

Knowledge representation is a mapping of parts of the world in a computer-

tractable form. Each individual representation is called a sentence and sentences

are expressed in a language called a knowledge representation language. Knowl-

edge based systems are used to store knowledge, to reason about it, and to make

it accessible. The process of obtaining the knowledge is called knowledge acqui-

sition.

Knowledge Representation Systems

Knowledge representation systems, also called knowledge based systems, are de-

signed to represent knowledge and to infer new facts from given data. [Dignum

and van de Riet, 1991] de�ne a knowledge based system as follows:

A knowledge based system is a system that maintains a source of

information (the knowledge base) in a way such that a user can com-

municate with the system as if he communicates with another user

having access to that information.

2.2. Introduction to Knowledge Engineering 13

User Interface KBMS

Knowledge Base

Inference Rules

Dictionary

User

Figure 2.1: Components of a Knowledge Representation System

This is a very general de�nition. Unfortunately, it does not give an idea about the

components of a knowledge based system. Therefore, �gure 2.1 gives an overview

of the components of a knowledge based system. In addition we will shortly

describe each of those now:

� The user interface. Ideally it contains both a natural language interface and

a graphical interface. In that way the user can easily communicate with the

system but is also able to obtain an abstract overview of some parts of the

knowledge given in the system.

� The knowledge base management system. The KBMS manages all the other

components. We distinguish the following activities: on the one hand, it han-

dles the queries of the user interface, and on the other hand, it handles the

updates on the knowledge base. This also includes the process of managing

the integrity of the knowledge base, the inference rules, and the dictionary.

� The dictionary. The elements of the language to describe the knowledge,

like words and symbols, are given in the dictionary. This is similar to the

notion of a signature of a formal language.

� The inference rules. They determine which inferences can be made by using

the knowledge base. Often they are integrated in the system in such a way

that they cannot be changed. If the knowledge is represented in �rst-order

logic, the inference rules might contain the Modus Ponens but also rules

from the resolution calculus.

� The knowledge base. This is, of course, the most important part of the

knowledge based system. A knowledge base is a set of statements that

describe facts and rules that hold in the actual world, as well as a set of

constraints that must hold in all possible worlds. This corresponds to what

[Russel and Norvig, 1995] call general knowledge about the domain and a

description of the speci�c problem instances.

2.2. Introduction to Knowledge Engineering 14

Knowledge Acquisition

Knowledge acquisition is the process of gathering the knowledge required in the

knowledge based system. According to the way the knowledge is collected, [Horn,

1990] distinguishes four forms of knowledge acquisition:

1. The knowledge engineer collects the knowledge from the expert.

2. The expert is capable of inserting the knowledge by himself.

3. An inference algorithm extracts new knowledge from already present data.

4. A text analysing program extracts the knowledge from documents.

In the �rst case, the knowledge engineer will usually interview the expert. One

problem, for instance, is that the knowledge engineer has to understand the

expert's terminology. We already mentioned the problems of the second case,

when we introduced the expert's role in knowledge engineering. The last two

cases belong to the group of automated knowledge acquisition. We believe that

these approaches are promising but not yet applicable. Nevertheless, the collected

knowledge has to be expressed in a suitable language.

Knowledge Representation Languages

In order to express the knowledge in a computer-tractable form, we need a knowl-

edge representation language with a well de�ned syntax and semantics, i.e. a for-

mal language. [Russel and Norvig, 1995, p. 158] consider such a language to be a

logic, because most of the principles of logic apply at this general level to formal

languages.

A good knowledge representation language should combine the advantages of

both formal and natural language. First, it should be as expressive and concise

as natural language, so that everything can be said, and second, it should be as

unambiguous and context insensitive as a formal language, so that everything

is interpreted in only one way. Finally, the knowledge representation language

should be e�cient in the sense that there exists an inference procedure that can

derive new information from the given knowledge within a reasonable time.

2.2.4 Properties of a Good Knowledge Base

A good knowledge base has to possess some properties, formal and informal

ones. First of all, it must be unambiguous, clear, and correct [Russel and Norvig,

1995]. Further, the knowledge should be presented in a exible and modular way,

so that it can easily be changed. It must be processible and transferable, such

2.2. Introduction to Knowledge Engineering 15

that facts can be derived and communicated to the user. Ideally, it supports the

representation of uncertain knowledge [Friedrich et al., 1990].

Additionally, we would like the knowledge base to be consistent and complete.

Other properties are introduced by [Treur and Willems, 1994]: empirical found-

edness and well-informedness. A knowledge base is empirically founded if it is

able to give always the right answer to a question, and it is well-informed if it

does not contain superuous information, like redundant or subsumed rules.

2.2.5 Fundamental Concepts in Knowledge Engineering

Knowledge engineering is based on fundamental concepts of many areas in com-

puter science and other sciences, like psychology, philosophy, and linguistics. Such

concepts are:

� Abstraction - from unnecessary details;

� Composition - of tasks, knowledge bases, as well as veri�cation methods;

� Decomposition - of tasks and knowledge;

� Reusability - of knowledge and therefore knowledge bases, in that way

`knowledge can in principle acquire a value per se' [Guarino, 1995];

� Data structures and algorithms - for knowledge representation and inference

procedures;

� Integration - of achievements of other sciences, like philosophy and linguis-

tics.

The further development of these concepts will also lead to an improvement of

knowledge engineering. Further, these concepts are not only valuable to knowl-

edge engineering. Psychology, linguistics, and philosophy can in turn pro�t from

investigations on these concepts as well.

We just presented a brief introduction to knowledge engineering. We mentioned

aims, participants, and concepts of knowledge engineering. Further, we introduced

a general framework of a knowledge representation system, as well as properties

of knowledge bases. The interested reader might have noticed some similarities to

speci�cation engineering. We provided these information in order to give the nec-

essary background for the comparison of knowledge and speci�cation engineering

which will be drawn in the next section.

2.3. Di�erences and Similarities 16

2.3 Di�erences and Similarities

Sometimes, knowledge engineering is compared to software engineering. Here

many di�erences can be found. We will take another route and compare knowl-

edge engineering with speci�cation engineering. While reading the last two sec-

tions, the reader might have noticed that both disciplines have much in common.

However, we will �rst look at some di�erences between both approaches.

2.3.1 Di�erences

The main di�erence between the two approaches lies in their goals. While speci�-

cation engineering is concerned with the development of a formal representation

of an arti�cial system, i.e. a program, knowledge engineering deals with the for-

mal development of a system that represents a part of the real world and reasons

about it.

Therefore, the validation processes of the systems di�er. Speci�cations have to be

validated against the idea of a customer, whereas a knowledge base is validated

against the real world, actually against an idea of the real world. On the other

hand, programs become part of the world, and therefore, knowledge about a pro-

gram is also knowledge about the world. Thus, a speci�cation is in fact validated

against a possible future world.

Further, knowledge engineering includes the development of an appropriate user

interface, an inference engine, and a knowledge base. Speci�cation engineering

only develops speci�cations. There are, however, notable exceptions to this rule.

The speci�cation language }Larch}, for instance, was designed with tool support

in mind [Jackson and Wing, 1996]. Such tools are user interfaces and automated

theorem provers. In general, a theorem prover is the implementation of an infer-

ence relation, i.e. it is an inference engine. Therefore, the view on speci�cation

engineering can to be extended in order to capture the development of appropriate

tools as well.

The participants in knowledge engineering and speci�cation engineering are surely

di�erent. On the one hand, we have programmers, customers, and speci�ers and

on the other hand, there are users, experts, and knowledge engineers. Of course,

the user is not a programmer, and the expert will hardly buy the knowledge based

systems.

A speci�cation is traditionally a description of the I/O behaviour of a system,

without considering how this behaviour can be realised. In contrast, in knowledge

engineering one is much concerned with the processing of knowledge. [Fensel and

van Harmelen, 1994] identi�ed this as another distinguishing property of both

approaches.

2.3. Di�erences and Similarities 17

2.3.2 Similarities

After presenting some di�erences between knowledge engineering and speci�ca-

tion engineering, we will now turn to the similarities. The reader will see that

some di�erences are not as strict as they appear to be, and some other di�erences

should preferably be overcome.

The }What} and }How} Problem

First, we discuss the argument given by [Fensel and van Harmelen, 1994]. The

problem they address is called the }What} and }How} problem in speci�cation

engineering. [Sannella, 1988] writes:

}high-level speci�cations} are descriptions of what is required. This is

contrasted with }programs} which suggest how the desired result is

to be computed.

In knowledge engineering both cases are represented separately. On the one hand,

there is the knowledge base that only includes the knowledge about what is true,
and on the other hand, the inference procedure �gures out how to turn the facts

into solutions to problems. In speci�cation engineering there does not exist an

inference procedure but there certainly exists a proof theory of the speci�cation

language. By implementing this proof theory, we have an inference procedure.

Such implementations are automated theorem provers, tools which are often ap-

plied in speci�cation engineering. Hence, we could show that both approaches

deal with the }What} and }How} problem.

Similarities of the Representation

Another sign of evidence for the similarity of knowledge engineering and speci�-

cation engineering is the similarity of the representation languages used. First of

all, �rst-order logic is often applied in both disciplines. Further, declarative pro-

gramming languages, e.g. functional languages like Miranda [Turner, 1986], or

logic languages like PROLOG [Kowalski, 1979; Bratko, 1990] are used preferably.

[Fuchs, 1992] argues in favour of such languages for formal speci�cation and [Hu,

1987] introduces such languages for the development of knowledge based systems.

In fact, because both activities deal with the representation of problems, it is very

natural to use the same languages.

Turning to purely theoretical aspects of knowledge engineering and speci�cation,

we �nd that both basically deal with formal logic, its model theory and its proof

theory. From a theoretical point of view, a knowledge base is a formal theory

2.3. Di�erences and Similarities 18

[Goltz and Herre, 1990] and a speci�cation is one, too [Turski and Maibaum,

1987]. The possibility to infer new facts from knowledge bases and speci�cations,

and thus the possibility to verify them, depends on the proof theory of the applied

logic.

The Properties and Problems

Knowledge bases and speci�cations share many properties. Both should be un-

ambiguous, complete, consistent, modular, and veri�able. Further, clarity and

reusability of the representations as well as expressiveness of the language are

desired properties. Both knowledge engineering and speci�cation engineering use

abstraction, composition, decomposition, and combination of mathematical the-

ories, like di�erent formal logics, as fundamental concepts. Improvements made

on these concepts are directly bene�cial to both approaches.

Another fundamental problem in both disciplines is that of explicit and implicit

knowledge, denoted as explicit and implicit requirements in speci�cation engi-

neering. With implicit knowledge we do not mean the information that can be

derived by the inference mechanism or by a computer program. It is the knowl-

edge that an expert or a customer is unconscious about. These are assumptions

not shared with the engineer and hence not included into the representation of

the problem. To detect and to remove implicit knowledge from a representation

is a very important task.

Tools

As we said earlier, knowledge engineering includes the development of an appro-

priate user interface, an inference engine, and a knowledge base. Speci�cation

engineering only develops speci�cations. Though this has been mainly true up

to the present speci�cation engineering should face the problem of tool develop-

ment harder. Here we propose the development of suitable user interfaces and

proof tools, to ful�l the demands of `ease of use' and `ease of learning'. We could

imagine, a general speci�cation tool looks like those given in �gure 2.2.

This picture is closely related to a another commonly accepted depiction of a

knowledge representation system. If one incorporates the data dictionary into the

formal speci�cation tool and states the inference rules of the proof tool explicitly,

then this representation resembles the knowledge based system given in �gure

2.1.

Similarities of the Participants

The user and the programmer are the users of the products they get, i.e. a spec-

i�cation or a knowledge base. Though user and programmer might give some

2.3. Di�erences and Similarities 19

User Interface

PROOF
TOOL

FORMAL
SPECIFICATION

User

Figure 2.2: An Outline of a Speci�cation Tool

comments, e.g. on the user interface or on the e�ciency, they are usually not

involved in the process of making decisions about the functionality of a system.

Both user and programmer have usually not enough domain knowledge to do so.

Second, the expert and the customer are the domain experts. Both expect the sys-

tem to behave in a certain way. They de�ne the requirements and constraints on

the system and validate the �nal product. Finally, the engineers have to capture

the ideas of the expert and the customer. They create a formal representation of

these ideas and verify it.

Summary

In analogy to the table presented by [Russel and Norvig, 1995, p. 219] we will

summarise knowledge engineering and speci�cation engineering as activities that

essentially consist of the following four steps:

(1) Choosing a representation formalism

(2) Building a theory

(3) Deciding on a proof theory

(4) Inferring facts

Table 2.1: The Essence of Speci�cation and Knowledge Engineering

The key point of both activities is to write down a description of a problem and

then to use the de�nition of the language to derive consequences. In both cases

the engineer only has to decide what objects and relations are worth representing,

and which relations hold among which objects.

2.4. Conclusion 20

2.4 Conclusion

`Early payback', `ease of use', and `ease of learning' are some of the demands

on speci�cation engineering. In order to ful�l these demands we certainly need

speci�cation tools and therefore, we have to extent the view on speci�cation

engineering. Speci�cation engineering should not only deal with the construction

of speci�cations but also with the construction of speci�cation and veri�cation

tools. Unfortunately, building new tools is always an expensive task.

Therefore, and as a conclusion of this chapter, we propose to investigate notions,

methods, and tools from knowledge engineering for their applicability in speci�-

cation engineering. We believe that achievements made in knowledge engineering

can be bene�cial to speci�cation engineering. Applying formal methods to knowl-

edge engineering has been proved successful [Fensel and van Harmelen, 1994]. We

shall now investigate the other direction.

Chapter 3

Verifying Static Properties of

Speci�cations or Knowledge

Bases

In chapter 2 we identi�ed composition and decomposition as fundamental con-

cepts in speci�cation and knowledge engineering. The idea is to construct spec-

i�cations or knowledge bases of interlocking parts, e.g. partial speci�cations or

knowledge bases. For example, [Abadi and Lamport, 1993] examine how to com-

pose speci�cations and [Brazier et al., 1995] investigate how to use the composi-

tion principle for structuring knowledge based systems.

Once a speci�cation or knowledge base is decomposed, it is also possible to de-

compose the proofs for them. [Engelfriet et al., 1997], [Cornelissen et al., 1997],

and [Jonker and Treur, 1998] introduced the compositional veri�cation method

as a framework for verifying composed systems. The idea is to prove the prop-

erties of interest for a higher level on the basis of assumptions at the lower level

that guarantee these properties. This procedure will be applied until primitive

components are reached, which can then be veri�ed by using other techniques.

We will investigate properties of primitive components. Our work will be based

on [Treur and Willems, 1994] but extends their study in two ways: �rst, we study

not only knowledge bases but universal theories in general. Hence, this work can

also be used for verifying formal speci�cations. Second, we will use a set of goals

which will be given explicitly. This set of goals does not only contain literals but

also quanti�er-free sentences or even more complex sentences.

First, we will give a short overview of necessary background, like notions from

model and proof theory. Afterwards, we will introduce notions closer related to

our approach, e.g. the notion of a world description. Further, we will introduce

the notion of forcing, which is essential for the theory we will develop. Finally,

we are going to formally de�ne several properties a logic theory should ful�l.

21

3.1. Preliminaries 22

3.1 Preliminaries

We assume familiarity with the �rst-order predicate calculus and the standard

notions of set theory. For an introduction, we recommend to read [Chang and

Keisler, 1990], [Goltz and Herre, 1990], or [Rothmaler, 1995].

3.1.1 Syntax

A signature, denoted by �, is a set of symbols for relations, functions, and con-

stants. L(�) is the �rst-order language based on �. If � is not speci�ed we write

simply L. Atoms At(�) and literals Lit(�) are de�ned in the usual way. Atoms

and literals are called ground if they do not contain any variables. We distinguish

three subsets of atoms: input atoms InAt(�), internal atoms InternalAt(�), and

output atoms OutAt(�). The sets of input atoms and internal atoms as well as

internal atoms and output atoms are distinct, which must not hold for the sets

of input atoms and output atoms. A similar distinction is used for literals.

Formulas can be constructed from atoms, logical connectives, like : , ^, _, !,

and the quanti�ers 8 and 9. A formula containing no free variables is called a

sentence. Formulas of the form L1 ^ : : : ^ Ln ! L, where L1; : : : ;Ln ;L are

literals, are called program formulas. A formula is said to be open if it contains

no quanti�ers. Open formulas can be considered as universal prenex sentences.

A universal theory is a set of open formulas. The existential closure of an open

formula F is denoted by 9(F) and is called an existential sentence. A �1(Q)-

sentence is of the form 9 xF (x), where F (x) is a conjunction of literals.

For later use we adopt the following abbreviations. For a set S of program for-

mulas, let PF (S) be the set of all program formulas of the language L(S), KL(S)

the set of conjunctions of literals of S , and Ex (S) the set of all prenex existential

formulas (including the set KL(S)) whose quanti�er free part belongs to KL(S).

3.1.2 Notions from Model Theory

Herbrand Universe and Herbrand Base

Let S be a universal theory, i.e. a set of open formulas, and �(S) its signature.

Then U (S), the Herbrand universe of S , is the set of all ground terms con-

structible from the function or constant symbols of S , i.e. the set of all variable-
free terms of �(S). Without loss of generality, we can assume that there always

exists a constant symbol in �, i.e. U (S) is never empty. For example, if

S = 8 x 8 y p(a; f (x); g(y ; b)); with �(S) = fp; f ; g ; a; bg;

3.1. Preliminaries 23

x and y are variables, then

U (S) = fa; b; f (a); g(a; a); g(a; b); f (f (a)); : : :g:

The Herbrand base B(S) of a universal theory S is the set of all ground atoms

of the signature of S . For example, if

S = p(a; g(x)) ^ q(f (x ; b)); with �(S) = fp; q ; f ; g ; a; bg;

x and y are variables, then

B(S) = fp(a; a); p(a; b); p(g(a); b); q(f (g(a); g(g(b)))); : : :g:

Herbrand Structure and Herbrand Interpretation

A structure A is a pair (A; IA) consisting of a set A, called universe, and an

interpretation function IA. A structure A = (A; IA) is called Herbrand structure

for S , if

1. A = U (S),

2. IA(a) = a for all constants, and

3. IA(f (t1; : : : ; tn)) = f (IA(t1); : : : ; I
A(tn)) for all function symbols f and

terms ti .

Obviously, a H-interpretation I assigns its syntactical representation, i.e. its

name, without any evaluation to the constant symbols and function symbols.

It follows from above that a H-interpretation I of an universal theory S is a

subset of B(S), i.e. I � B(S). Let I be the union I1 [: I0 of two disjunctive

sets I1; I0 � B(S), where I1 is the truth set and I0 is the false set of I (where

: I0 = f: ' j ' 2 I0g). If I1 [I0 = B(S), then I is a 2-valued interpretation, else

I is a 3-valued interpretation, where atoms occurring in Iu = B(S)� (I1[I0) are
evaluated as unknown.

I is also used as a truth assignment I : B(S)! f0; 1; ug, de�ning for a 2 B(S),

I (a) = x i� a 2 Ix , x 2 f0; 1; ug. The truth of a sentence can be expressed by

using the strong Kleene truth tables (see table 3.1).

3.1. Preliminaries 24

p : p

1 0

0 1

u u

p^q 1 0 u

1 1 0 u

0 0 0 0

u u 0 u

p_q 1 0 u

1 1 1 1

0 1 0 u

u 1 u u

p!q 1 0 u

1 1 0 u

0 1 1 1

u 1 u u

Table 3.1: Strong Kleene Truth Tables

Truth Ordering and Knowledge Ordering

Usually, two partial orderings for the set f0; 1; ug of truth values are distinguished.

The truth ordering <t de�ned as 0 <t u <t 1 is used to evaluate the truth values

of sentences and the knowledge ordering <k de�ned as u <k 0; u <k 1 is used to

compare interpretations and models.

The partial knowledge ordering <k can be extended to 3-value interpretations by

de�ning I �k I
0 i� I (a) �k I

0(a) for every atom a 2 B(S). Then, �k reduces to

the set inclusion relation for interpretations, because I �k I
0 i� I � I 0 [Witteveen,

1992]. Instead of I �k I
0 we will also write I � I 0.

Herbrand-Model

A structure A is a model for S if every formula A in S is true in A. We de�ne

Mod(S) to be the class of all models of S . A Herbrand model, for short H-model,

for S is one for which the universe equals U (S). HMod(S) denotes the set of

all Herbrand models of S . It holds that HMod(S) � Mod(S). Herbrand models

can be represented by subsets I � B(S), where I is the H-interpretation and it

holds that I (A) = 1 for every formula A 2 S . We call a H-model complete, if the

H-interpretation I is a 2-valued interpretation. If I is a 3-valued H-interpretation,

it is called a partial H-model.

The Truth Relation

Given an interpretation I , the partial evaluation valI associated with I is de�ned

as

valI (') =

8><
>:

1 if ' 2 I

0 if : ' 2 I

u else

valI (: ') =

8><
>:

1 if : ' 2 I

0 if ' 2 I

u else

for ' 2 B(S) and (w.r.t. the truth-order)

3.1. Preliminaries 25

valI (' ^) = minfvalI ('); valI ()g,

valI (' _) = maxfvalI ('); valI ()g,

valI ('!) = maxfvalI (: '); valI ()g,

valI (9 x'(x)) = maxfvalI ('(x=t) : t 2 U (S)g,

valI (8 x'(x)) = minfvalI ('(x=t) : t 2 U (S)g.

We use the following transformation laws for negated formulas:

: ('!) = ' ^ : ,

: (' ^) = : ' _ : ,

: (' _) = : ' ^ : ,

: (: ') = ',

: 8 x'(x) = 9 x: '(x),

: 9 x'(x) = 8 x: '(x).

A formula ' is true in an interpretation I , denoted I �3 ', i� valI (') = 1.

Moreover we use: ' holds in I , ' is a consequence of I , ' follows from I , ' is

satis�ed in I , I satis�es ', or �nally, I is a model of '.

Given a set of formula F , we call A a model of F i� A is a model of each ' in

F , and we use the notion A �3 F . Often the truth relation is also de�ned in a

set theoretic way: given a formula ', then A �3 ' i� Mod3(A) � Mod3(f'g), and

given a set of formula F , then A �3 F i�Mod3(A) � Mod3(F). We omit the index

for complete models, e.g. for a 2-valued model A and a formula ' we write A � '

if ' holds in a 2-valued model A.

We write S �H F if every Herbrand model of S is a model of F , i.e. HMod(S) �
Mod(F). If S is a universal theory and F is an existential sentence then it holds:

S � F i� S �H F .

Re�nement of Partial Models

While dealing with partial models it is often useful to consider re�nements of such

models. A model re�nes another one if it possesses the same or more knowledge,

i.e. if it holds M (a) �k N (a) for all atoms a. As we already mentioned, we will

write M � N (or N � M) instead. Re�nement is a partial ordering, because �k

is one.

Lemma 3.1.1 (Re�nement)

Let M1 and M2 be two arbitrary partial models w.r.t. a signature � and ' a

formula. Then it holds:

M1 � M2 , 8' 2 L(�) M1 �3 ') M2 �3 ':

3.1. Preliminaries 26

Proof

(!) We haveM1 � M2 andM1 �3 ' by assumption, thenM1 �3 ' i�Mod3(M1) �

Mod3(f'g). Because M1 � M2, it holds M1 � M2 and therefore, Mod3(M2) �

Mod3(M1). Because � is transitive, it holdsMod3(M2) � Mod3(f'g), hence M2 �3

'.

() By contradiction. Suppose M1 � M2, then M1 * M2 and therefore,

Mod3(M2) * Mod3(M1). Hence there exists a formula ' such that M1 �3 '

but not M2 �3 '. This contradicts the assumption that for all ' it holds

M1 �3 ') M2 �3 '. 2

Given a set of models V it is sometimes useful to consider the set P(V) of partial

models that can be re�ned to a model in V .

Example 3.1.1

In the following example, x : � denotes the truth assigment of � to x , where
� 2 f1; 0; ug, e.g. p : 0 means that p is false. Consider V = fN1;N2g, where N1 =

hp : 0; q : 1i and N2 = hp : 1; q : 0i. Then P(V) = fM1;M2;M3;M4;M5;M6;M7g,

where M1 = hp : 0; q : 1i, M2 = hp : 1; q : 0i, M3 = hp : 0; q : ui, M4 =

hp : u; q : 1i, M5 = hp : 1; q : ui, M6 = hp : u; q : 0i, and M7 = hp : u; q : ui.

It is easy to see that every model Mi can be re�ned to either N1 or N2.

Conservativity and Monotonicity

Given a universal theory S and a set of partial models X both of signature �,

we de�ne the following properties:

1. conservativity w.r.t. X :

For any partial model M 2 X and sentence ' it holds:

M �3 ') M [S �3 ':

2. monotonicity w.r.t. X :

For any two partial models M1;M2 2 X and sentence ' such that M1 � M2

it holds:

M1 [S �3 ') M2 [S �3 ':

3.1.3 Notions from Proof Theory

Given is a calculus C with an appropriated concept of proof. X `
C
F denotes

that a formula F is derivable from a set of formulas X in C. A calculus will be

de�ned as a triple

C = (S;Q;`
C
);

where

3.1. Preliminaries 27

1. S is a collection of sets of formulas, i.e. S � Pow(L(�)), called the domain

of C. From now on we assume that
S
S contains only universal sentences.

2. Q, the range of C, is the set of formulas representing goals to be proved (or

refuted). We suppose Q = Q
0
[(9)Q

0
, where Q

0
is a set of open formulas,

and we refer to the elements of Q as query formulas or as goals.

3. Lastly, `
C
is the derivability relation, also called inference relation.

One may regard a calculus as a subsystem of a logic L = (S ;`
L
;�L) given by the

set S of formulas, by a derivability relation `
L
, and by a truth relation �L. The

calculi we consider can be regarded as subsystems of classical logic, CL.

Conservativity and Monotonicity

For later use, we need the inference relation ` to possess two properties, conser-

vativity and monotonicity. This will be de�ned for a universal theory S and a set

of partial models X both of signature � in the following way:

1. conservativity w.r.t. X :

For any partial model M 2 X and sentence ' it holds:

M �3 ') M [S ` ':

2. monotonicity w.r.t. X :

For any two partial models M1;M2 2 X and sentence ' such that M1 � M2

it holds:

M1 [S ` ') M2 [S ` ':

Constructive Calculi

In veri�cation we are not only interested in the fact that a formula F follows from

a theory S but also that F is derivable from S within an appropriate calculus.

In order to compute F , a calculus is only appropriate if it is constructive. [Herre

and Pearce, 1992] investigate constructive properties of di�erent calculi, like SLD-

resolution, SI-resolution, and Forward Chaining. [Herre, 1993a] extends this work

by investigating constructive proofs for �2-sentences, i.e. for sentences of the form

8 �x 9 yG(�x ; y).

A calculus C = (S;Q;`
C
) is Herbrand-correct (H-correct), if for every S 2 S and

F 2 Q it holds: if S `
C
F then S �H F . If C is correct w.r.t. classical logic then

C is H-correct. The converse is not true [Herre, 1993a].

3.1. Preliminaries 28

We will now turn to the notions of c-correctness and c-completeness for a calculus

as they were presented by [Herre and Pearce, 1992] and [Herre, 1993a]. Here, `c'

in c-correctness and c-completeness stands for `constructive'. Let C = (S;Q;`
C
)

be a calculus. It is assumed that
S
S contains only universal sentences, and `

C
is

correct for classical logic or H-correct.

De�nition 3.1.1

1. C is called c-correct if for every theory S 2 S and formula F 2 (9)Q
0
, where

F := 9 xG(x), the following holds: if S `
C
F then there is a substitution �

such that S `
C
G� and S �C G�.

2. C is called c-complete over a logic L if for every theory S 2 S and quanti�er

free sentence Q 2 Q
0
satisfying S �L Q the condition S `

C
Q is satis�ed.

3. C is called strongly c-complete over a logic L if for every theory S 2 S, and

open formula F 2 Q it holds: if S �L F then S `
C
F .

4. C is said to be weakly c-complete over a logic L if for every theory S 2 S,
quanti�er free formula F 2 Q

0
satisfying S �L F there is an open formula

G such that S `
C
G with a substitution � satisfying F = G�.

According to [Herre and Pearce, 1992] there are calculi C = (S;Q;`
C
) satisfying

the following conditions:

1. S contains every set of universal sentences, and Q = �1, and

2. C is c-correct and c-complete.

The Calculus of Forward Chaining

Now we will introduce the calculus of Forward Chaining, C(FC). It is a simple

calculus containing only a few rules and therefore, it plays an important role

in the �eld of expert systems. Forward chaining is de�ned for sets of program

formulas, i.e. for formulas having the form

L1 ^ : : : ^ Ln ! L;

where the Li and L are literals. The calculus of Forward Chaining, C(FC), is

based on the following rules:

(substitution)
D

D�
, if D 2 KL(S) [PF (S); � a substitution;

(conjunction)
E D

E ^ D
, if E ;D 2 KL(S);

3.2. Notions for a Theory of Veri�cation 29

(modus ponens)
K K ! L

L
, if K 2 KL(S); K ! L 2 PF (S);

(9-rule)
F (x=t)

9 xF (x)
, if F 2 Ex (S); t a term.

Furthermore, contraction and commuting of literals in formulas from KL(S) are

admitted. Then for a formula F we write S `
FC

F if there is a proof for F from

the initial set of program formulas S . The relation `
FC

can be semantically char-

acterised by the relation �3. Therefore, `FC is also monotonic and conservative.

The calculus C(FC) is c-correct and c-complete over the logic L = (S ;`
FC
;�3)

[Herre and Pearce, 1992].

3.2 Notions for a Theory of Veri�cation

In chapter 2 we mentioned that veri�cation is a formal and internal view related

to concepts like completeness and consistency. Though it might be possible to

check these properties for all possible worlds, it is surely not feasible. Therefore,

[Preece et al., 1992], [Treur and Willems, 1994], and [Yue, 1987] relate speci�ca-

tions or knowledge bases to a world description that is explicitly given. Usually,

such description will be a sample set of situations that should, or should not be

provable. In that way veri�cation will be a process of checking the correspondence

of the speci�cation to its world description.

3.2.1 Formal Conceptualisation

As mentioned above, the approach taken here depends on a description of the

world. Such a description will be given by a set of situation models, each de-

scribing a possible or typical situation in the world. It is assumed that relevant

properties and interrelations of a part of the real world are described by the world

description.

The process of creating the world description is a crucial step. First, the whole

process of veri�cation depends on it. Second, situations can be given in many

di�erent ways. For example, it is possible to give a set of axioms that serve as

constraints for the situations. In this case, a world description is the set of all

possible situations that ful�l these constraints. The problem we face here, is the

problem of obtaining the set of constraints independent from the knowledge base

or speci�cation. It is possible that the knowledge base or the speci�cation and the

world description have the same biases and mistakes. However, in order to de�ne

the notions involved in veri�cation it is su�cient to abstract from the process of

creating the world description and to assume that the set of situations is given.

3.2. Notions for a Theory of Veri�cation 30

An actual situation is described as a Herbrand model N , where N is a truth

assignment to the atoms in a signature �, i.e. a mapping:

N : At(�) ! f0; 1g:

A domain or world description is the set W of complete situation models, i.e. a

set of Herbrand structures based on a certain signature �.

Because it is not always possible or desired to describe a situation completely,

we also use partial Herbrand models. A partial model M w.r.t. a signature �

allows to assign u as a truth assignment to atoms that are unknown, i.e. M is a

mapping:

M : At(�) ! f0; 1; ug:

A complete model is a partial model that has no unknown atoms. When we refer

to models, we mean partial models, otherwise we will denote complete models

explicitly. From now on we will use N for complete models and M for partial

models.

With partiality it is easy to de�ne input and output models. An input model

w.r.t. a signature � is a truth assignment that assigns u to all atoms outside

InAt(�). An output model can be de�ned similarly. For any (partial) model M ,

In(M) denotes the input model that copies the input truth-assignment of M
but assigns u to all other atoms. Similarly the output model Out(M) copies the

output truth-assignments but assigns u to all other atoms.

In(X)(a) =

(
X (a); a 2 InAt(�)
u; a 62 InAt(�)

Out(X)(a) =

(
X (a); a 2 OutAt(�)
u; a 62 OutAt(�)

Connected to the world descriptionW are the sets In(W) and Out(W) as the sets

of input models respectively output models that are associated to the situations

in W . Now we state some simple but essential properties of input models. All

three lemmata can be proved by the de�nition of re�nement.

Lemma 3.2.1

For any partial model M it holds In(M) � M .

Lemma 3.2.2

For any two partial modelsM1,M2 such thatM1 � M2 it holds In(M1) � In(M2).

Lemma 3.2.3

For any world description W and operator P (as de�ned on page 26) it holds

P(In(W)) = In(P(W)).

3.2. Notions for a Theory of Veri�cation 31

In the work by [Treur and Willems, 1994] only literals are considered as goals. In

order to extend this view and to allow arbitrary quanti�er-free sentences or even

more complex sentences we need a set of formulas representing goals or queries .

Following the de�nition of a calculus, we use the set Q, Q = Q
0
[(9)Q

0
, where

Q
0
is a set of open formulas, as the set containing the goals that need to be

proved.

In chapter 2 we argued that knowledge bases and speci�cations are both logical

theories. Because the work presented in this chapter shall not be restricted to

knowledge bases or formal speci�cations, we will basically consider sets of open

formulas S � L(�), i.e. universal theories.

3.2.2 Forcing for Veri�cation

The notion of forcing is essential to the theory of veri�cation. Forcing ensures

that a goal holds in all possible situations that follow from a partial situation

according to the world description. In a way, this sets a standard for the theory,

determining what goals should be derivable given some partial model.

De�nition 3.2.1 (Forcing)

Let W be a domain description w.r.t. a signature �, M 2 P(W) is a partial

model, and ' 2 Q a sentence. The model M forces ' within W if ' holds in

every complete re�nement N 2 W with M � N . We will use the notation j�W
that is de�ned by:

M j�W ' , 8N 2W [M � N) N � ']:

Example 3.2.1

For example, let p and q be input atoms and r a goal to be proved. Given

is the world description W = fN1;N2;N3g, where N1 = hp : 1; q : 1; r : 1i,
N2 = hp : 0; q : 1; r : 1i, and N3 = hp : 1; q : 0; r : 0i, as well as a situation

M = hp : u; q : 1; r : ui. It holds that M j�W r , because M � N1 and M � N2,

and N1 � r and N2 � r . Because N3 is not a re�nement of M we know that r
holds in all complete re�nements of M , hence r is forced by M .

In order to deal with forcing, we need to show that some properties hold for the

forcing relation. In general, we want the properties of forcing, inference, and truth

to be closely related. Therefore, we will show that conservativity and monotonicity

also hold for forcing. Actually, monotonicity of forcing might be seen as the reason

for demanding monotonicity of the inference relation and of the truth relation.

Lemma 3.2.4

LetW be a world description. For a set of partial models P(W) w.r.t. a signature

� it holds:

3.3. Correctness and Soundness 32

1. For any model M 2 P(W) and sentence ' it holds

M �3 ') M j�W ':

2. For any two models M1;M2 2 P(W) and sentence ' such that M1 � M2 it

holds

M1 j�W ') M2 j�W ':

Proof

(1.) holds by de�nition of re�nement;

(2.) if N � M2 then N � M1 which with M1 j�W ' implies N � ' for arbitrary

N 2W , hence M2 j�W '. 2

From the above lemma and the lemma 3.2.2, which says that M1 � M2 implies

In(M1) � In(M2), the more specialised corollary follows:

Corollary 3.2.5

1. For any model M 2 P(W) and sentence ' it holds:

In(M) �3 ') In(M) j�W ':

2. For any models M 2 P(W) and N 2W , and output sentence ' such that

M � N it holds:

In(M) j�W ') In(N) j�W ':

Lemma 3.2.6

For any complete model N 2W and sentence ' it holds:

In(N) j�W ') N � ':

Proof

The de�nition of forcing proves the lemma, because N is the only re�nement of

In(N). 2

3.3 Correctness and Soundness

The �rst notions we will investigate are correctness and soundness. Both notions

are related to the correspondence of the theory to the world description. We will

show these notions to be equivalent under some circumstances.

3.3. Correctness and Soundness 33

3.3.1 Correctness

A theory is called to be correct if it holds in the world. Here, we are dealing

with world descriptions, and therefore, we call a theory correct if it holds in

every situation determined by the world description. Because of the compositional

framework we consider, input information for every situation have to be given.

This view leads to the following de�nition of correctness:

De�nition 3.3.1 (Correctness)

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory. S is correct w.r.t. W if for all goals ' 2 Q it holds:

8N 2W In(N) [S �3 ') N � ':

3.3.2 Soundness

Closely related to the notion of correctness is the notion of soundness. While

correctness demands a goal to be true in a situation, soundness is related to the

forcing relation. We distinguish two kinds of soundness, according to the possible

situations.

The �rst kind of soundness will be called weak soundness. It is called weak,

because we only consider complete situation models.

De�nition 3.3.2 (Weak Soundness)

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory. S is weakly sound w.r.t. W if for all goals ' 2 Q it holds:

8N 2W In(N) [S �3 ') In(N) j�W ':

By lemma 3.2.6 we know that In(N) j�W ' implies N � '. Therefore, the

following lemma holds:

Lemma 3.3.1

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory. If S is weakly sound w.r.t. W , then S is correct w.r.t. W .

Because we often deal with partial situations, it is desired to ensure soundness in

such cases, too. For this reason, we introduce the notion of strong soundness.

De�nition 3.3.3 (Strong Soundness)

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory. S is strongly sound w.r.t. W if for all goals ' 2 Q it holds:

8M 2 P(W) In(M) [S �3 ') In(M) j�W ':

3.4. Consistency 34

The next lemma follows from the fact that W � P(W). By this fact we know

that if S is strongly sound w.r.t. W , then weak soundness holds for all situations

N 2W , hence S is weakly sound w.r.t. W .

Lemma 3.3.2

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory. If S is strongly sound w.r.t. W , then S is weakly sound w.r.t. W .

The presented de�nitions gradually re�ne from the truth relation, over the forcing

relation to the use of partial models. Strong soundness seems to be the strongest

de�nition, because it checks all possible partial models and it uses the forcing

relation. In fact, the notions of correctness, weak soundness, and strong soundness

are equivalent, because the truth relation �3 is monotonic.

Theorem 3.3.1

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory, then it is equivalent:

1. S is strongly sound w.r.t. W

2. S is weakly sound w.r.t. W

3. S is correct w.r.t. W

Proof

(1 ! 2). By lemma 3.3.2 (strong completeness implies weak completeness).

(2 ! 3). By lemma 3.3.1 (weak completeness implies correctness).

(3 ! 1). Given a partial model M 2 P(W) such that In(M) [S �3 '. Consider

an arbitrary complete re�nement N 2W such that In(M) � N . By lemma 3.2.2

it holds In(In(M)) � In(N), and In(In(M)) = In(M) implies In(M) � In(N).

From In(M) [S �3 ' and by monotonicity we can conclude In(N) [S �3 ',

and by correctness this implies N � '. Because N was taken arbitrary, it follows

that for all models N 2W , it holds In(M) � N) N � ', and by de�nition of

forcing it holds In(M) j�W '. 2

3.4 Consistency

We turn now to the notion of consistency. Though consistency was thoroughly

studied in logic, it is not entirely clear what it means to say that a speci�cation

or knowledge base is consistent. In this section we study the notion of consistency

in more detail. We will start by presenting a general de�nition of consistency and

a derivation of it. Afterwards, we will present some special cases of inconsistency

for theories consisting of program formulas.

3.4. Consistency 35

3.4.1 The Notion of Consistency

Consistency is a notion that stands for the absence of contradictory information.

Classically, a logical theory is called to be consistent, i� there exists a model

satisfying the theory. In other words, a logical theory T is consistent i� there is

no formula A such that T � A and T � : A at the same time. This de�nition

also covers T itself, because any formula A 2 T satis�es T � A, thus if both

A 2 T and : A 2 T hold, then the set T is inconsistent.

In practice, this de�nition is often too restricted and therefore, consistency is

de�ned as a property with respect to a set of situations. Often a situation leading

to inconsistency does not occur and therefore, we regard such a theory to be

consistent w.r.t. this situation. For example, a simple theory contains only the

sentences a) b and a) : b. This theory is inconsistent if we consider every

possible situation but in the case that a will never be established, we call this

theory consistent.

De�nition 3.4.1 (Consistency)

Let X be any set of models. A universal theory S is called consistent w.r.t. X if

there is no model M 2 X and formula ' 2 Q such that

M [S �3 ' and M [S �3 : ':

The advantage of this view is the restriction of the domain that needs to be

checked. This leads to more e�ciency in consistency checking. Of course, problems

arise if the same theory will be reused in a domain with di�erent situations. In

such cases, consistency has to be proved again.

We will now relate the above de�nition to the world description.

Lemma 3.4.1

If a universal theory S is weakly sound w.r.t. a world description W , then it is

also consistent w.r.t. In(W).

Proof

Suppose S is weakly sound w.r.t. W and not consistent w.r.t. In(W). Then there

exists a model M 2 In(W) such that M [S �3 ' and M [S �3 : ' hold. Now

In(W) = fIn(N) j N 2 W g, hence there must exist a complete model N 2 W

such that In(N) [S �3 ' and In(N) [S �3 : '. By weak soundness we get

In(N) j�W ' and In(N) j�W : ' and by lemma 3.2.6 we have N � ' and

N � : '. This contradicts the property of N being a model, hence S must be

consistent w.r.t. In(W). 2

3.4. Consistency 36

Ambivalence

[Preece et al., 1992] identify inconsistency as a special case of what they call

ambivalence. Ambivalence is de�ned as follows:

A knowledge base K is ambivalent i� for some permissible environ-

ment, we can infer an impermissible set of hypotheses.

This means, given some situation and a logical theory, it is possible to infer

goals that exclude each other. It is easy to see that inconsistency is a special

case of ambivalence. The set of goals that contains a goal and its negation is

always impermissible. Thus, if a theory is inconsistent, then it is ambivalent. The

reverse must not hold. For example, take the theory that contains student(x))

undergrad(x) and student(x)) postgrad(x). Now this theory is consistent, but

given the impermissible set fpostgrad(x); undergrad(x)g of goals, it is ambivalent.

3.4.2 Special Cases of Inconsistency

Let us assume that a theory S contains only program formulas, i.e. formulas of

the form

L1 ^ : : : ^ Ln ! L;

where Li and L are literals. Each such formula is also called rule, or production

rule. If i = 0 then L is called a fact.

We will introduce some special cases of inconsistency as they might arise in

systems using production rules. Production rule systems are commonly used in

expert systems and speci�cation, e.g. [Reichgelt, 1991, pp. 80{114] and [F�utty,

1997], as well as [Leemans et al., 1993] and [Preece et al., 1992]. The examples

we will present were taken from the two last named papers.

Contradiction

1. Contradicting fact, e.g. P(a) and : P(a).

2. Contradicting rule-pair, e.g.

P(x) ^ Q(x)! R(x) and P(x) ^ Q(x)! : R(x).

3. Contradicting chains of inference, e.g.

P(x)! Q(x)! : : :! R(x) and P(x)! O(x)! : : :! : R(x).

3.5. Weak Completeness and Gaps 37

Self-contradicting rules

1. Self-contradicting rule, e.g. P(a) ^ Q(a)! : P(a).

2. Self-contradicting chain of inference, e.g.

P(a)! Q(a) and Q(x)! : P(x).

If P(a) holds, we can infer : P(a).

Self-contradicting antecedents

1. Self-contradicting antecedents, e.g. P(x) ^ Q(x) ^ : P(x)! R(x).

2. Self-contradicting antecedents in chains, e.g.

: P(x)! Q(x); Q(x) ^ P(x)! R(x).

As a special case consider the following example: P ^ Q ! O ; P ^ R ! : O .

Given a situation in which P ;: Q , and R are true simultaneously, then the

example is inconsistent. Assuming that there is no such situation, then these

rules can coexists in a speci�cation or knowledge base.

3.5 Weak Completeness and Gaps

There can be many reasons for incomplete speci�cations or knowledge bases. We

distinguish three causes for incompleteness: �rstly, the engineer simply forgets to

include information; secondly, the engineer does not want to decide on an issue;

and thirdly, the engineer does not know how to decide on an issue. As a result,

speci�cations or knowledge bases often contain gaps.

Veri�cation of completeness checks whether true facts in the world (given by the

world description) are a consequence of the speci�cation or knowledge base. In

[Leemans et al., 1993] three di�erent types of completeness are distinguished,

weak-completeness, decisiveness (section 3.6.2), and strong completeness (section

3.7.2).

3.5.1 Weak Completeness

A theory is weakly complete, e.g. it contains gaps, if for a given input model

a conclusion holds which is not a consequence of the theory. Basically, weak

completeness can be de�ned as a relation between forcing and truth.

3.5. Weak Completeness and Gaps 38

De�nition 3.5.1 (Weak Completeness)

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory. S is weakly complete w.r.t. W if for all goals ' 2 Q it holds:

8N 2W In(N) j�W ') In(N) [S �3 ':

Weak completeness is the reverse notion of weak soundness. Both notions show

the relation of forcing and truth most clearly. The di�erence is the direction of the

implication. In the following sections we will also de�ne the notions of decisive-

ness (section 3.6.2) and strong completeness (section 3.7.2). Unfortunately, the

three notions of completeness are not equivalent but we will show under which

additional assumptions this is the case. However, �rst we turn to some special

kinds of weak completeness.

3.5.2 Gaps in Speci�cations

Again, we will assume that a theory S contains only program formulas and we

will call such formulas rules, or facts if there are no literals in the antecedent of

a rule. Further, we assume the signature of S to be given explicitly.

[Leemans et al., 1993] identify �ve cases for indicating gaps, i.e. incomplete in-

formation: unnecessary literals, illegal literals, dead-ends, unreachable rules, un-

reachable literals. [Preece et al., 1992] also deal with these notions, though they

put them into two di�erent groups called redundancy and de�ciency. We will deal

with redundancy as a special case of well-informedness later (section 3.7).

Unnecessary literals

A literal in the signature is unnecessary if it is not part of any antecedent or

consequent of any rule. There is one exception: if the unused literal is part of

the input and output signature of the speci�cation, then it is still necessary, be-

cause it probably passes its information on to the output. Detecting unnecessary

literals can be compared to the warning message `de�ned but not used' in some

programming languages, like Pascal.

Illegal literals

A literal is illegal if it occurs in the speci�cation but not in its signature. We

strengthen this de�nition for two special cases: �rst, a literal is illegal, if it is part

of the antecedent of a rule and not in the input signature or internal signature;

and second, it is illegal, if it is part of the consequence of a rule and not in the

output signature or internal signature. In both cases, the illegal literal might be in

3.6. Empirical Foundedness and Decisiveness 39

a signature but not in the necessary one. Detecting illegal literals can be compared

to the warning message `variable not declared' in some programming languages,

like Pascal. As a side-e�ect of detecting illegal literals misspelled literals might

be found, and in this way a kind of a syntax check is performed as well.

Dead-ends

A dead-end, i.e. a rule with unusable consequent, occurs if a literal appears only in

the consequent of a rule but is not declared to be an output literal. For example,

if the theory S w.r.t. a signature � contains the rules P(x)! Q(X) and R(x)!

O(x), with P(x);R(x) 2 InLit(�), O(x) 2 OutLit(�) but Q(x) 62 OutLit(�).

In such case, Q(x) is called a dead-end, if there is no further rule that contains

Q(x) in its antecedent.

Unreachable rules

A rule is unreachable if one of its conditions is not in the consequence of any

other rule, and if it is not an input literal. This means, the rule will never be

used in an inference. Now there are two reasons for that: �rst, there is a missing

rule to conclude the condition needed; or second, this rule might be redundant, if

its consequences are not needed anymore. Detecting unreachable rules does not

depend on any input models w.r.t. �.

Unreachable literals

A literal is unreachable if it is only part of the consequence of an unreachable rule.

Checking for unreachable literals could be merged into the check for unreachable

rules, because every unreachable literal is part of an unreachable rule but not

vice versa. The di�erence to an unreachable rule is that a literal might still be

reachable through another rule. For example, consider a theory containing only

two rules P(x) ! R(x) and Q(x) ! R(x), with P(x) 2 InLit(�), R(x) 2
OutLit(�), and Q(x) 62 InLit(�). The second rule is unreachable but R(x) is

still reachable via rule one, therefore, R(x) is a reachable literal, although it is

the consequence of an unreachable rule.

3.6 Empirical Foundedness and Decisiveness

On the whole, the veri�cation method discussed in this chapter checks whether

or not the speci�cation �ts the domain description, or, in other words, whether

or not the right conclusions can always be drawn.

3.6. Empirical Foundedness and Decisiveness 40

3.6.1 Empirical Foundedness

In order to perform these checks, it is important to know whether the world

description used is detailed enough. It simply might be the case that the domain

description is underspeci�ed and therefore, no speci�cation can be found that

derives the right conclusions. This problem will be captured by the notion of

empirical foundedness of the world description.

De�nition 3.6.1 (Empirical Foundedness)

A domain description W w.r.t. a signature � is empirically founded if for every

goal ' 2 Q it holds:

8N 2W N � ') In(N) j�W ':

Not only do we want a world description to be empirically founded, we moreover

want the actual theory to perform this test. This is expressed by the notion of

decisiveness.

3.6.2 Decisiveness

A speci�cation is decisive, if each goal that is true in a model of the domain

can be inferred from the input. The notion of decisiveness was �rst presented by

[Treur, 1988] and applied to model-based diagnosis by [Herre, 1993b].

De�nition 3.6.2 (Decisiveness)

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory. S is decisive w.r.t. W if for all goals ' 2 Q it holds:

8N 2W N � ') In(N) [S �3 ':

If S is correct w.r.t. W then an equivalent de�nition is:

8N 2W In(N) [S �3 ' _ In(N) [S �3 : ':

Decisiveness is the reverse notion of correctness. Furthermore, decisiveness can

be considered as a kind of completeness. If a goal ' is true in a model N , and '

does not hold by the input literals of N and the theory S , then S is incomplete,

and probably a proposition needs to be added; or W is too large, which means,

it contains a counter example that may be deleted.

The de�nition of decisiveness parallels the de�nition of empirical foundedness.

Actually, the property that distinguishes decisiveness from weak completeness is

empirical foundedness.

3.7. Well-Informedness and Strong Completeness 41

Theorem 3.6.1

Let W be a domain description w.r.t. a signature �, and let S be a sound theory.

The following statements are equivalent:

1. S is decisive w.r.t. W .

2. S is weakly complete w.r.t. W and W is empirically founded.

Proof

(1! 2). Given is a domain descriptionW w.r.t. a signature �, a universal theory

S that is decisive, and a goal ' 2 Q. We need to prove weak completeness and

empirical foundedness separately.

First, we show weak completeness. Consider an arbitrary situation model N 2

W such that In(N) j�W '. Because, for any model N 2 W and goal ' it

holds In(N) j�W ') N � ', it follows N � ', and by decisiveness it follows

In(N) [S �3 '. Hence, S is weakly complete w.r.t. W .

Now, we show empirical foundedness. Consider an arbitrary situation model N 2
W such that N � '. By decisiveness it follows In(N)[S �3 ', and In(N) j�W '

by soundness of S . Hence, W is empirically founded.

(2! 1). Given is a empirically founded domain description W w.r.t. a signature

�, a universal theory S that is weakly complete w.r.t. W , and a goal ' 2 Q.

Consider an arbitrary situation model N 2 W such that N � '. Because W
is empirically founded it follows In(N) j�W ', and it follows In(N) [S �3 ',

because S is weakly complete. As N was chosen arbitrary, decisiveness is satis�ed.

2

3.7 Well-Informedness and

Strong Completeness

Naturally, a speci�cation or knowledge base should be as simple as possible.

It should not have too many input facts and not too many rules, because this

leads to unclear speci�cations or knowledge bases. For instance, a speci�cation

or knowledge base can contain superuous rules, like redundant or subsumed

rules. This does not naturally lead to incorrectness or non-decisiveness. On the

other hand, inadequate collections of rules or conditions may lead to undesired

behaviour.

3.7.1 Well-Informedness

The intuition behind well-informedness is that a goal must hold due to a (not

necessarily unique) smallest input which is necessary to force it. Unlike complete-

ness, well-informedness does not depend on a domain description. Rather it is an

3.7. Well-Informedness and Strong Completeness 42

inherent property of a theory, which is the reason for an arbitrary set of input

models in the following de�nition.

De�nition 3.7.1 (Well-informedness)

A universal theory S is well-informed w.r.t. a set of complete input models X , if

for any partial model M 2 P(X) any goal ' 2 Q is true for M [S if it is true in

all re�nements N in X of M . With other words, if for all M 2 P(X) it holds:

[8N 2 X M � N) N [S �3 ']) M [S �3 ':

As already argued, the idea of veri�cation is to compare the relations of con-

sequence and forcing. The forcing relation itself obeys a condition similar to

well-informedness:

Theorem 3.7.1

Let W be a domain description w.r.t. a signature �. For any partial model

M 2 P(In(W)) and any goal ' 2 Q that is forced by the model M is also

forced by all re�nements N 2W of M . With other words, for allM 2 P(In(W))

it holds:

[8N 2W M � N) N j�W ']) M j�W ':

Proof

Given is a domain descriptionW w.r.t. a signature �, a goal ' 2 Q, and a partial

model M 2 P(In(W)). Consider an arbitrary complete re�nement M � N with

N 2W . By the premise of the theorem it follows that In(N) j�W '. Because for

any model N 2W and goal ' it holds In(N) j�W ') N � ', it follows N � '.

As an arbitrary N was chosen it follows for all N 2 W that M � N) N � ',

which is the de�nition of forcing (M j�W ') and proves the theorem. 2

3.7.2 Strong Completeness

A property of well-informedness with respect to veri�cation is that it distinguishes

a stronger form of completeness from weak completeness.

De�nition 3.7.2 (Strong Completeness)

Let W be a domain description w.r.t. a signature �. A universal theory S is

strongly complete w.r.t. W if for all goals ' 2 Q it holds:

8M 2 P(In(W)) M j�W ') M [S �3 ':

Strong completeness is the reverse notion of strong soundness. As we already

mentioned, the notions of completeness are not equivalent. However, well-

informedness (along with monotonicity) is identi�ed as the property that dis-

tinguishes strong and weak completeness.

3.7. Well-Informedness and Strong Completeness 43

Theorem 3.7.2

Let W be a domain description w.r.t. a signature �, and let S be a universal

theory. If S is sound w.r.t. W , then the following notions are equivalent:

1. S is strongly complete w.r.t. W .

2. S is weakly complete w.r.t. W and well-informed w.r.t. In(W).

Proof

(1! 2). Given is a domain descriptionW w.r.t. a signature �, and a speci�cation

S that is strongly complete w.r.t. W . We need to prove weak completeness and

well informedness separately.

First, we show weak completeness. Because S is strongly complete, it holds for all

partial models M 2 P(In(W)) the completeness property. Because W � P(W)

it follows that completeness holds for all complete models N 2 In(W), hence S
is weakly complete.

Now, we show well informedness. Given a partial model M 2 P(In(W)) and a

goal ' 2 Q such that for all N 2W it holdsM � N) N [S �3 '. By soundness

it follows for all such N that N j�W ', and by theorem 3.7.1 also that M j�W '.

Finally, strong completeness implies M [S �3 ', hence S is well-informed.

(2! 1). Given is a domain descriptionW w.r.t. a signature �, a universal theory

S that is weakly complete w.r.t.W and well-informed w.r.t. In(W). Further, take

a model M 2 P(In(W)) and a goal ' 2 Q such that M j�W '. Consider an

arbitrary complete re�nement M � N with N 2 In(W). Now N = In(N 0)

for some N 0 2 W . By corollary 3.2.5 it follows N j�W '. Because S is weakly

complete it follows N [S �3 '. As N was chosen arbitrary it follows for all

N 2 In(W) that M � N) N [S �3 ', which implies M [S �3 ' by well-

informedness. Therefore, M j�W ' implies M [S �3 ', hence S is strongly

complete w.r.t. W . 2

3.7.3 Special Cases of Well-Informedness

There are several ways in which a theory might contain too much information. In

this subsection we assume that a theory S contains only program formulas where

each such formula is also called rule. The examples we are going to present can

be found in [Leemans et al., 1993] and [Preece et al., 1992].

Circularity

A set of program formulas has circles if it contains some set of rules such that

a loop could occur when the rules are applied. Basically, two kinds of circularity

can be distinguished:

3.8. Conclusion 44

1. Self-referent rules, e.g. simply P(x)! P(x) or P(a) ^ Q(x)! P(x). Note

that this rule could be useful, as it infers a general conclusion P(x) from a

speci�c instance P(a) and Q(x). Nevertheless, the engineer should be made

aware of this.

2. Self-referent chain of inferences, e.g. P(a)! Q(a) and Q(x)! P(x).

Redundancy

A set of program formulas in a universal theory are redundant if the same in-

ferences can be made, regardless of the presence or absence of the rules. For

example:

1. Redundancy in rule pairs, e.g. duplicate rules, like P(a) ^ Q(b) ! R(b)
and Q(b) ^ P(a)! R(b).

2. Redundancy in chained inference, e.g. P(x) ! Q(x) ! R(x) and P(x)!
R(x), where Q(x) is not part of the consequence of any other rule.

In the latter case, the second rule is an inference shortcut, possible included for

reasons of run-time e�ciency. Such shortcuts may be desirable in practice but

the designer should be aware of their existence.

Subsumedness

We say, a program formula subsumes another if it is more general than the other.

For example:

1. Subsumedness in rule pairs, e.g. P(a) ^ Q(x) ! R(a) is subsumed by

P(x)! R(x).

2. Subsumedness in chained inference, e.g P(x) ^ Q(x) ! O(x) ! R(x) is
subsumed by P(x)! R(x).

3.8 Conclusion

In the last sections we introduced several properties a logic theory, e.g. a formal

speci�cation or a knowledge base, should ful�l. Most of the introduced properties

were related to a world description. In contrast to the work by [Leemans et al.,

1993], we used a set of goals, containing sentences and existentially quanti�ed

sentences. Further, we did not use an inference relation but applied the truth

3.8. Conclusion 45

relation in the de�nitions. Unfortunately, due to the use of the truth relation it

is not directly possible to apply a proof tool to check the introduced properties.

However, the truth relation �3 can be approximated by the inference relation

`
FC
. Therefore, all the concepts introduced for �3 hold also for `

FC
. This means,

it possible to check all the presented properties with the help of a proof tool,

which is based on the calculus of Forward Chaining.

We will conclude this chapter by giving a pictorial representation of the relation-

ships between the notions of static veri�cation. In the last sections, we used the

truth relation for de�ning properties like correctness and completeness. Note that

in �gure 3.1 the inference relation `
FC

is used.
-

FC

m
onotonicity of

=N ϕ -FCU SIn(N) ϕ
-FCby monotonicity of

-FCIn(M) U S ϕ

-FCU S ϕN= ϕWN

=N
ϕ

= ϕWIn(N) = ϕWIn(M) = ϕWM

-FCU S ϕM

-
FC

m
onotonicity of

∋ P
(I

n(
W

))
M

-FCU S ϕN∀ N W

∋∀M P(In(W))∋ N M≥

-FCby monotonicity of

≥because M In(M)

≥because In(N) In(M) +

≥because N M +

=In(M) ϕ3

weak soundness

weak com
pleteness

conservativity

strong soundness

In(M
) =>

anddefinition of forcing

em
pir

ica
l fo

un
de

dn
es

s

lem
m

a
3.

2.
4

decisiveness

correctness

≥
N

be
ca

us
e

co
ro

lla
ry

 3
.2

.5

lem
m

a 3.2.1 +

lem
m

a 3.2.1 +
st

ro
ng

 c
om

pl
et

en
es

s
+

[]←

lem
m

a
3.

2.
6

well-informedness

and lemma 3.2.4corollary 3.2.5

Figure 3.1: Relationships between the Notions of Static Veri�cation - considerW

to be a world description, N 2 W and M 2 P(W) with M � N , ' 2 Q, and S
to be a universal theory

Chapter 4

A Speci�cation and Veri�cation

Case Study

In chapter 2 we proposed to use tools, methods, and results from knowledge

engineering for speci�cation engineering, and in chapter 3 we presented formally

several properties a speci�cation should ful�l. Now we are going to demonstrate

our ideas on a practical example.

First, we will introduce DESIRE, which stands for `framework for DEsign and

Speci�cation of Interacting REasoning modules'. DESIRE was developed by the

Arti�cial Intelligence Group at the Vrije Universiteit Amsterdam under the lead-

ership of Prof. Jan Treur. It was designed for the speci�cation of knowledge based

systems and is now used for the speci�cation of multi-agent systems. The frame-

work DESIRE is still under development.

The current design environment based on DESIRE contains a formal syntax,

graphical editors, an implementation generator, and an execution manager. In-

formation are stored in several knowledge bases, including some for signatures,

which are comparable to dictionaries. Therefore, the framework DESIRE corre-

sponds to a knowledge representation system as it was introduced in �gure 2.1.

Afterwards, we are going to construct a formal speci�cation of a simple telecom-

munication network. A similar example was used by [F�utty, 1997] in her diploma

thesis, which was also supervised by Dr. Peter Hrandek. Telecommunication ex-

amples are often used to demonstrate the applicability of formal methods. This

is mainly due to the fact that everyone uses telecommunication facilities. Fur-

ther, the telecommunication world is distributed and all the players in it are

independent of each other, hence it is a multi-agent system.

Finally, we will check whether the knowledge bases used in the speci�cation pos-

sess certain properties. This will be done according to the notions de�ned in

chapter 3. The result of this chapter will be a veri�ed speci�cation of a simple

telecommunication network.

46

4.1. DESIRE 47

4.1 DESIRE

DESIRE, which stands for `framework for DEsign and Speci�cation of Interacting

REasoning modules' is both a formal speci�cation framework and, together with

its development environment, a knowledge representation system. It was devel-

oped at the Vrije Universiteit Amsterdam, aiming at the speci�cation of compo-

sitional architectures for knowledge based reasoning systems [Treur and Wetter,

1993] and later applied to the speci�cation of multi-agent systems [Brazier et al.,

1997]. In order to support DESIRE, a graphical editor and an implementation

generator were incorporated into its development environment. For a comparison

of DESIRE with seven other formal speci�cation methods for complex reasoning

systems see the book by [Treur and Wetter, 1993]. For an extensive introduc-

tion to DESIRE, we recommend the course materials by [Brazier et al., 1996a],

[Brazier et al., 1996b], and [Brazier et al., 1997] used at the Vrije Universiteit

Amsterdam in the past years.

4.1.1 DESIRE - A Speci�cation Framework for

Compositional Systems

DESIRE supports the speci�cation of compositional systems by modelling and

speci�cation of knowledge of

� task (de)composition,

� information exchange,

� control (de)composition, e.g. sequencing of tasks,

� task delegation, and

� knowledge (de)composition.

In the following subsections we will discuss these types of knowledge in more

detail.

4.1.2 Task Composition

A commonly accepted approach to construct complex systems is the top-down

strategy. Here, a complex task will be decomposed until atomar tasks are reached.

A task hierarchy de�nes distinguishable subtasks of the task and the task-subtask

relations between them. It is possible to make the task hierarchy explicit, for

instance, by depicting it as a tree structure or as a box-in-box structure.

In DESIRE each task will be mapped onto one component. Within DESIRE

two types of components, i.e. tasks, can be distinguished: primitive components

4.1. DESIRE 48

and composed components. Whereas a primitive component is related to an

atomar task, the functionality of a composed component is determined by its

sub-components. Again, each of these components can either be primitive or

composed, and so on.

For each task the information required as input or produced as output has to be

speci�ed. This can be done by de�ning the input and output information type of a

component, also called the signature of a component. Information types can also

be composed. The signatures are de�ned in a predicate logic with a hierarchically

ordered sort structure, i.e. order-sorted predicate logic. Units of information are

represented by the ground atoms de�ned in the signature [Engelfriet and Treur,

1997].

Another important element of task decomposition that is emphasised in DESIRE

is the reective nature of tasks. This means, it is essential to distinguish between

object-level reasoning about a domain, and meta-level reasoning about the state

and goals of a system. This object-meta distinction between tasks can be speci�ed

explicitly as an object-meta relation [Brazier et al., 1994].

4.1.3 Information Exchange

Knowledge of information exchange de�nes which types of information can be

transferred between components and the information links by which this can be

achieved [Brazier et al., 1997]. Figure 4.1 shows the various types of links that

are possible within composed components:

� mediating links,

� private links, and

� task control links (upwards and downwards).

Mediating links and private links together are called information links. Basically,

an information link relates truth values of ground atoms of one component to

truth values of another component [Brazier et al., 1997]. It is possible to use

only partial truth tables for the transformation. All information links have to be

named. Furthermore, the information types a link connects and the roles they

play within a component also have to be speci�ed.

Mediating Links

Links interacting with the interface of the parent component are called mediating

links. Mediating links transfer information from the input interface of a parent

component to the input interface of its subcomponents, or to the output interface

4.1. DESIRE 49

subcomponent
A

subcomponent
B

mediating

private

task control

component
C

mediating

DTCL UTCL

UTCLDTCL

DTCL UTCL

mediating

parent component

Figure 4.1: Links within a DESIRE Component

of the parent component. They also transfer information from an output interface

of a subcomponent to the output interface of the parent component. In �gure 4.1

possible mediating links are depicted.

Private Links

Figure 4.1 also shows a private link. Private links transfer information from the

output interface of one of the subcomponents (A) to the input interface of one

of the subcomponents (B). It is possible to connect the input interface to the

output interface of just one component.

Task Control Links

Task control links carry the task control information a component needs. Each

component transfers to and receives from its subcomponents task control infor-

mation. Two di�erent types of task control links can be identi�ed: an Upward

Task Control Link (UTCL) and a Downward Task Control Link (DTCL). Apart

from the task control links within a component, there are two control links con-

nected to the component itself, a DTCL on its task control input and an UTCL

on its task control output.

In �gure 4.1 task control links (DTCL and UTCL) are shown between the sub-

components (A and B) of a component (C) and its task control, as well as from

the component's task control to its parent task control. Task control links are

built-in within DESIRE, this means, they do not have to be speci�ed explicitly.

4.1. DESIRE 50

4.1.4 Task Control

Task control knowledge de�nes temporal relations between tasks and information

transfer. It speci�es which tasks have to be activated under which conditions, as

well as the conditions for the information ow. Task control knowledge includes

di�erent kinds of knowledge. On the one hand, this is knowledge about task

activation, i.e. knowledge about when and how a task should be activated. On

the other hand, it also includes knowledge of the goals of a task and the extent

to which goals should be derived (see table 4.1).

extent to be derived

all p all possible targets

every every target

any any target

any new any target not previously derived

Table 4.1: Derivation Extents within DESIRE

The result of a task is determined by the evaluation of a component's success

and/or failure to derive its goals within the speci�ed extent. These results form

the precondition for another component activation. In DESIRE it is possible to

specify the activation of components and links as sequential or parallel processes.

4.1.5 Task Delegation

In a complex system di�erent participants, like users and/or autonomous systems,

interact with each other. This interaction is often needed to achieve the desired

system behaviour. For instance, a user can give information to the system. Task

delegation basically deals with the problem which task should be performed by

whom.

The process of task delegation is de�ned by a set of participants and a relation

between tasks and subsets of the set of participants, for an example see table 4.2:

task participant

World State Management System

World State Aquisition User

Monitor System

Table 4.2: A Task Delegation Example

4.1. DESIRE 51

4.1.6 Knowledge Structures

Knowledge of knowledge structures (knowledge (de)composition) includes the

speci�cation of types of knowledge that are needed for a task performance. This

contains knowledge of input and output information structures (see subsection

4.1.2), knowledge of internal knowledge bases for reasoning components, and

knowledge of other types of speci�cations externally represented, for instance,

a neural network, a database, a calculation module, or an algorithm.

The contents of a knowledge base consists of general facts and rules. A general

fact is a literal, i.e. an atom or a negated atom. A rule is built of a list of literals

as antecedent and a list of literals as consequent. If a rule contains variables, these

are assumed to be universally quanti�ed over the whole formula. Any statement

from many-sorted predicate logic can be transformed into a set of rules, which

are, in some sense, equivalent to the original statement [Brazier et al., 1997]. In

DESIRE chaining is used for inferring new information from general facts and

rules.

In DESIRE it is also possible to include alternative speci�cations, like a database

or an algorithm. The associated component is called a conventional component.

The only restriction on the communication between conventional components and

reasoning components is given by the input and output format DESIRE requires.

4.1.7 The DESIRE Development Environment

The framework DESIRE is supported by a software environment consisting of a

graphical editor, an implementation generator, and a general manager system.

A special feature of the graphical editor, called Destool, is that it supports the

speci�cation of complex systems by a hierarchical representation of components.

In that way it is possible to restrict the user's view of components to only one

level. All components are represented with their input and output interfaces. Fur-

thermore, information links are depicted as arrows. Information of a component

or link can be obtained by simply clicking on it. The implementation generator

and execution tools can be activated from within Destool.

An important part of the development environment is the implementation gen-

erator. First it checks the syntax of the speci�cation, carries out some semantic

checks, and, if no errors occurred, it creates a prototype by translating the DE-

SIRE speci�cation into PROLOG [Kowalski, 1979; Bratko, 1990]). This transla-

tion is supported by the declarative programming paradigm in both languages.

The generated prototype may be executed by the general manager system.

Actually, there exist two types of the general manager system. One (tgm) that

executes the prototype only in a terminal window, and another (xtgm) that in-

teracts with Destool to view the execution steps by highlighting the components

4.2. A Telecommunication Example - Informal Introduction 52

or links that are active. Both allow the user to interact with the manager. In that

way it is possible to debug the prototype by printing several kinds of information

about a component or link. Furthermore, a run trace is generated to keep track

of the execution steps.

4.2 A Telecommunication Example - Informal

Introduction

In this section we will introduce a simple example of a telephone world which

consists of a set of users and one exchange, i.e. a system that connects a group

of telephones and provides the necessary facilities for making calls.

Examples from telecommunications are often used to illustrate the application

of formal speci�cation, e.g. by [F�utty, 1997], by [Holyer, 1991, pp. 110{115], and

by [Kleuker, 1995]. This is, in our view, motivated by the following two facts:

�rst, everyone concerned is familiar with the domain, i.e. knows how to use a

telephone. Second, due to the fact that the telecommunication market is a fast

growing business place, the customer will choose only those providers who can

ensure the correct functioning of their systems.

The example we will present is far too simple to be a real world example in terms

of today's needs. However, because of its simplicity it gives a good introduction to

the use of methods and tools. In this section we will introduce our example infor-

mally, and in the next section we will present an example of a formal speci�cation

of the telephone world.

4.2.1 The Environment

We consider a simple telecommunication network. This network will consist of a

number of users and one exchange. In contrast to the example given by [F�utty,

1997], we will not consider an internal exchange as it is used within companies but

a simple external exchange to which the users are directly connected. In practice,

users are connected by at least two wires, where the wires are named `a' and `b'.

Figure 4.2 shows such a simple telecommunication network.

4.2.2 The Telephone

Nearly everyone living in an industrial society knows a telephone. However, be-

cause of the great variety of today's phones, we will shortly present the necessary

components of the phone we consider. The telephone used for this example is

fairly simple and consists of:

4.2. A Telecommunication Example - Informal Introduction 53

Exchange

Figure 4.2: A Simple Telecommunication Network

� a receiver, including a speaker and a microphone;

� a bell, which is within the phone;

� a number block, with keys signed with digits from 0 to 9.

After giving the components of the phone, we have to introduce the possible

actions associated with each component. First, it is possible to lift or to put

down the receiver. Further, one can listen to signals via the speaker and talk to

others via the microphone. In our speci�cation we will abstract from speaker and

microphone and just consider listening and talking. Second, the bell is able to

ring. Third, one can press and release the keys of the number block to dial a

number. Again, we consider only an abstract representation of this action. We

are only interested in the fact that a number was dialled.

4.2.3 The Customer

The customer is the operator of the phone, hence he will also be called user.

Initially, there are two possible tasks:

1. the customer wants to make a call; or

2. the customer receives a call.

In the latter case, the user hears the ringing of the telephone bell. Then the user

decides whether to take the call or not. If he takes the call, then he has to lift

the receiver and subsequently the user can talk with the caller.

The caller is the customer who makes a call. This task starts by lifting the receiver.

Afterwards, the user listens to the signal he receives. First, it might be the case

4.3. Detailed Speci�cation of the Telecommunication Example 54

that there is no signal. This indicates an error of the network or a malfunction of

the telephone. The user cannot know what happened but he has to put down the

receiver. If there is a signal, this might either be an engaged tone or a dialling

tone. An engaged tone is a repeated single note and a dialling tone is a continuous

sound, either purring or high pitched. In case the user hears an engaged tone, he

has to put down the receiver.

If the caller hears a dialling tone, then he dials a phone number. We consider the

number to be sent at once. Then the user listens to a second signal. In case there

is no signal or the signal is an engaged tone, he has to put down the receiver.

However, if the signal is a ringing tone, he has to wait for an answer.

In case there is no answer, he puts down the receiver. If there is an answer both

can talk with each other. The talk will be �nished if one of both customers puts

down the receiver, which in turn is a sign to the other customer to put down the

receiver, too. Finally, it is possible to put down the receiver at any time and to

�nish the task.

4.2.4 The Exchange

The telephone exchange connects the users. When a user lifts the receiver, the

exchange looks for a free outgoing line. If there are no lines, it sends an engaged

tone to the user, otherwise a dialling tone will be transmitted. Next, the caller

sends a phone number. Now the exchange will activate many switches to establish

a path to the called user. If there are at any point no lines available, an engaged

tone will be send to the caller. This is also the case, if the called user's receiver

is already lifted . If not, the exchange sends a signal to the bell of the called

user and a ringing tone to the caller. When the called user lifts his receiver, the

connection is established. At this time, the bell stops ringing and there will be

no ringing tone in the line anymore.

In practice, an exchange is far more complicated and usually more then one

exchange station is needed to establish a call. Here, we will abstract from a call

that is routed through the exchange station.

4.3 Detailed Speci�cation of the Telecommuni-

cation Example using DESIRE

In this section we will give the detailed speci�cation of the telecommunication

example. We developed the speci�cation using DESIRE and its development en-

vironment, including Destool. Both DESIRE and its development environment

were introduced in section 4.1. The complete textual speci�cation can be found

in appendix A.

4.3. Detailed Speci�cation of the Telecommunication Example 55

4.3.1 Task Composition

Basically, we distinguish two subtasks. One is called User and does what the

customer does, and the other is called Exchange and performs the tasks of an

exchange. Both User and Exchange are primitive components. Figure 4.3 shows

the components as they are created within Destool.

Figure 4.3: Task Composition in Destool

4.3.2 Information Types

We distinguish two basic types of information: pieces of information and actions.

The customer receives pieces of information and performs actions. The exchange

receives these actions and provides pieces of information, like signals.

We use User_In and User_Out, as well as Exchange_In and Exchange_Out,

as the object input, respectively output, information types. These information

types are composed and consist of the information types UserIT and SignalIT,

as well as InfoIT or ActionIT respectively. Further, each user has an ad-

ditional information type User_Internal for internal information, including

User_Input_Information representing a kind of mental state of a user. The

distinction between In, Out, and Internal information types was inuenced by

the ideas introduced in chapter 3.

4.3. Detailed Speci�cation of the Telecommunication Example 56

Composition of Information Types

Often information types are composed. This improves modularity and makes

speci�cation easier. For the speci�cation of the information types we used the con-

cepts of sorts, objects, relations, and functions. The information type

UserIT consists of the sort USER and includes the possible users as objects.

According to the possible signals that can be given by an exchange, we dis-

tinguish two sorts of the information type SignalIT: SIGNAL_ONE_SORT and

SIGNAL_TWO_SORT. SIGNAL_ONE_SORT is related to the signals that can occur

when the user lifts the receiver, and consists of the objects dialling_tone

and engaged_tone. The second sort consists of the objects ringing_tone and

engaged_tone and is related to the signals after a user dialled a number.

Figure 4.4: Specifying Information Types - the Information Type Editor

Figure 4.4 shows the speci�cation of the information type ActionIT within the

information type editor of Destool. ActionIT incorporates the information type

User_IT to use the sort USER, i.e. to be able to specify functions over USER.

Further, the sort ACTION_ELEMENT is given in ActionIT. Figure 4.5 shows the

speci�cation of the sort ACTION_ELEMENT within the sort editor. Possible actions

are: to lift the receiver, to put down the receiver, to wait, and to dial a phone

4.3. Detailed Speci�cation of the Telecommunication Example 57

number, where phone_number is a function that takes a USER and returns an

ACTION_ELEMENT.

Figure 4.5: Specifying Information Types - the Sort Editor

The information type InfoIT consists of the information types UserIT and

SignalIT, as well as the sort INFO_ELEMENT. This in turn consists of the ob-

ject bell, to indicate that the bell rings, and the functions signal1, signal2,

and connection_established. The �rst two functions inform the user about

the transmitted signals, and the latter if the connection to another user was

established.

Finally, UserIn and ExchangeOut have InfoIT as their sub-information type,

and UserOut and ExchangeIn have ActionIT as their sub-information type. Ad-

ditionally, the relations send and received over InfoIT respectively ActionIT

are de�ned according to the component.

4.3. Detailed Speci�cation of the Telecommunication Example 58

4.3.3 Information Exchange

In order to specify knowledge of information exchange between processes, we have

to give the relations between the output information type of one process and the

information type of another process. The relations according to our example are

shown in table 4.3, as well as in �gure 4.6.

information from process output to process input

link information information

type type

a User UserOut Exchange ExchangeIn

(ActionIT) (ActionIT)

b Exchange ExchangeOut User UserIn

(InfoIT) (InfoIT)

Table 4.3: Speci�cation of the Information Exchange between the Components

User and Exchange

Note that the �gure 4.6 represents less information than the table 4.3: the infor-

mation types are not shown in �gure 4.6.

Figure 4.6: Information Exchange within Destool

Link `a'

Figure 4.7 depicts the speci�cation of the information link from the user com-

ponent to the exchange component. Beside the fact that an information link

4.3. Detailed Speci�cation of the Telecommunication Example 59

forwards information, it is also possible to transform pieces of information. If the

user makes an action, then the exchange will receive it, and if the user does not

make an action, then this will also be received by the exchange.

Additionally, link a serves three further purposes. First, it provides an initial

information of the status of the bell. If it is not known that the bell of a user's

phone rings, then it is assumed that the bell of this user's phone does not ring.

Second, if the bell of a user's phone rings, then it is explicitly recognised by the

exchange. Finally, if a user lifts the receiver, then the exchange knows that the

user is now engaged. If the user does not lift the receiver, then it is assumed

that the user is not engaged. This gives also in initial information about the

engaged status of a user. Especially the information of the bell will be needed

when specifying the knowledge base of the exchange.

Figure 4.7: Speci�cation of Link a within Destool

4.3. Detailed Speci�cation of the Telecommunication Example 60

Link `b'

The speci�cation of link b, connecting the exchange with the user, is much simpler

than the speci�cation of link a. First, all positive information that are given by

the exchange will be transfered to the user, and second, all negative information

will be given to the user. The picture of the speci�cation within Destool is given

by �gure 4.8.

Figure 4.8: Speci�cation of Link b within Destool

Task Control

The speci�cation of the task control is fairly simple. All components and links

are made awoke after the entire process starts. The whole process stops if there

is nothing to do anymore, i.e. if all users put down their receivers.

4.3. Detailed Speci�cation of the Telecommunication Example 61

4.3.4 Knowledge Structures

Finally, we turn to one of the most important parts of the speci�cation, the

knowledge bases of the user component and the exchange component. Basically,

the knowledge base of a component determines the behaviour of that component.

We are most interested in the knowledge bases, since our theory of veri�cation is

limited to the static properties of a speci�cation.

The Knowledge Base of the Component `Exchange'

First, we will look at the speci�cation of the knowledge of the exchange compo-

nent. Figure 4.9 pictures the knowledge base of the exchange component as it is

given within Destool.

Figure 4.9: The Knowledge Base of the Component Exchange within Destool

4.3. Detailed Speci�cation of the Telecommunication Example 62

The �rst rule indicates that the exchange should send a dialling tone to the user

that lifts the receiver and has no ringing bell, i.e. was not called. Second, if the

exchange receives a phone number of a user and the other user is engaged, and

therefore, there is no bell ringing, then it sends an engaged tone to the caller.

Third, if the called user is not engaged, then send a signal to the bell of the called

user, as well as a ringing tone to the caller. Now, if there is a caller and the user

that was called lifts the receiver, a connection between both is established, which

will be noti�ed to both users. Finally, if the called user does not lift his receiver,

then this will also be transmitted to the caller.

There is a little trick here. If one user receives a bell signal, then the exchange

will be informed about this additionally via the information link a, and sets

bell(A:USER) to true. This in turn prevents the exchange for submitting an

engaged tone to the caller, if the called user lifts the receiver. In this way, we

modelled an exclusive or.

The Knowledge Base of the Component `User'

Now we turn to the speci�cation of the user. In contrast to the speci�cation of
the exchange component, the knowledge base of the user component is given as
textual speci�cation.

connection_wanted(user_1);

not take_call;

if received(bell)

and take_call

then send(receiver_lifted);

if received(bell)

and not take_call

then not send(receiver_lifted);

if talk(A:USER)

then send(receiver_put_down);

if received(signal1(engaged_tone))

then send(receiver_put_down);

if received(signal2(engaged_tone))

then send(receiver_put_down);

if connection_wanted(A:USER)

then send(receiver_lifted);

4.3. Detailed Speci�cation of the Telecommunication Example 63

if not received(signal1(X:SIGNAL_ONE_SORT))

then send(receiver_put_down);

if received(signal1(dialling_tone))

and connection_wanted(A:USER)

then send(phone_number(A:USER));

if not received(signal2(X:SIGNAL_TWO_SORT))

then send(receiver_put_down);

if received(signal2(ringing_tone))

then send(wait_a_moment);

if received(connection_established(A:USER))

then talk(A:USER);

if not received(connection_established(A:USER))

then send(receiver_put_down);

First, there is the fact connection_wanted(user_1), which states that this user

wants to make a call to another user named User_1. Second, if this user is called,

he will not take the call, i.e. will not lift the receiver. In order to take a call, the

not needs to be removed from this rule. Further, the receiver will be put down

after talking to another user, or if an engaged tone was received.

The next rule states that whenever a user wants to make a call, he has to lift the

receiver. Now, the user awaits a signal. If there is none, then just put down the

receiver. In case the �rst signal is a dialling tone, then submit the number of the

user the call should be made with, e.g. in our example this will be User_1.

Now, a second signal is expected. If there is none, then put down the receiver, and

if it is a ringing tone, then wait for an answer. If the other user lifts his receiver,

the connection will be established and both can talk. Otherwise, the caller will

put down the receiver.

The Entire System

Finally, a picture of the whole telecommunication example is given by �gure 4.10.

We use four users and one exchange station. User_2 is called by User_4 and will

not answer the phone call, and User_3 will call User_1 and receives an answer.

The textual speci�cation of this example can be found in appendix A.

4.4. Verifying the Speci�cation of the Telecommunication Example 64

Figure 4.10: The Telecommunication Example within Destool

4.4 Verifying the Speci�cation of the Telecom-

munication Example

Veri�cation is the process of proving that a speci�cation possesses certain prop-

erties. We are going to verify the speci�cation of the telecommunication example

using the notions introduced in chapter 3. However, we will not fully verify our

speci�cation formally. There are two major reasons for it: First, a complete for-

mal veri�cation is hardly to be done by hand. It is very time consuming and

spacious and therefore prone to errors. Second, we would probably miss the point

of demonstrating how to use the notions to verify a speci�cation.

The veri�cation will be done for a user component. Often we omit a complete

proof and present just some examples how such proofs would have to be per-

formed. Furthermore, for the sake of simplicity and clarity, we are going to use

abbreviations for the notions applied in the speci�cation example throughout this

4.4. Verifying the Speci�cation of the Telecommunication Example 65

veri�cation. Most of these abbreviations should be straightforward, with proba-

bly one exception, the use of . For example, we will use r(s1()) : 0 to denote

that there is no signal one at all, neither a dialling tone nor an engaged tone.

4.4.1 World Description, Input Models, and Goals

The veri�cation method we developed in chapter 3 is based on a world description,

i.e. a set of given situations, and a set of goals that should be veri�ed. Since we

often deal with input models, we will give the set of all complete input models

related to the world description explicitly.

The World Description for KBU

We mentioned earlier that the process of creating the world description is a crucial

task. For example, it might be the case that our world description has the same

biases as the speci�cation. It might also be the case that not all relevant situations

will be covered.

Our world description is relevant for the speci�cation of a user component and

consists of nine situations. Situations one to six are related to the process of mak-

ing a call and situations seven, eight, and nine consider the case of an incoming

call.

WU = fNU1 ; : : : ; NU8g, where

NU1 = hcw(A) : 1; r(s1(dt)) : 1; r(s2(rt)) : 1; r(ce(A)) : 1; talk(A) : 1;

s(rl) : 1; s(pn(A)) : 1; s(wam) : 1; s(rpd) : 1i,

NU2 = hcw(A) : 1; r(s1(dt)) : 1; r(s2(rt)) : 1; r(ce(A)) : 0;

s(rl) : 1; s(pn(A)) : 1; s(wam) : 1; s(rpd) : 1i,

NU3 = hcw(A) : 1; r(s1(dt)) : 1; r(s2(et)) : 1; s(rl) : 1; s(pn(A)) : 1; s(rpd) : 1i,

NU4 = hcw(A) : 1; r(s1(dt)) : 1; r(s2()) : 0; s(rl) : 1; s(pn(A)) : 1; s(rpd) : 1i,

NU5 = hcw(A) : 1; r(s1(et)) : 1; s(rl) : 1; s(rpd) : 1i,

NU6 = hcw(A) : 1; r(s1()) : 0; s(rl) : 1; s(rpd) : 1i,

NU7 = htc : 1; r(bell) : 1; r(ce(B)) : 1; talk(B) : 1; s(rl) : 1; s(rpd) : 1i,

NU8 = htc : 1; r(bell) : 1; r(ce(B)) : 0; s(rl) : 1; s(rpd) : 1i,

NU9 = htc : 0; r(bell) : 1; s(rl) : 0i.

For example, cw(A):1 stands for connection wanted(A) is true, s():1 denotes

that something was sent, and r():0 that something was not received.

4.4. Verifying the Speci�cation of the Telecommunication Example 66

The Input Models In(NU1
); : : : ; In(NU9

)

For any model NUi
, In(NUi

) denotes the input model that copies the input truth

assignment of NUi
but assigns u to all other atoms. For the sake of clarity we

omit the atoms which are assigned unknown, hence we only consider the complete

input models of WU .

In(WU) = fIn(NU1); : : : ; In(NU9)g, where

In(NU1) = hcw(A) : 1; r(s1(dt)) : 1; r(s2(rt)) : 1; r(ce(A)) : 1i,

In(NU2) = hcw(A) : 1; r(s1(dt)) : 1; r(s2(rt)) : 1; r(ce(A)) : 0i,

In(NU3) = hcw(A) : 1; r(s1(dt)) : 1; r(s2(et)) : 1i,

In(NU4) = hcw(A) : 1; r(s1(dt)) : 1; r(s2()) : 0i,

In(NU5) = hcw(A) : 1; r(s1(et)) : 1i,

In(NU6) = hcw(A) : 1; r(s1()) : 0i,

In(NU7) = htc : 1; r(bell) : 1; r(ce(B)) : 1i,

In(NU8) = htc : 1; r(bell) : 1; r(ce(B)) : 0i,

In(NU9) = htc : 0; r(bell) : 1i.

Goals for KBU

We will consider all output literals to be goals, as well as two extra goals: �rst,

whenever the receiver is lifted it has to be put down again, and second, we would

like to establish a talk to a user B, in other words:

Q
U
= fs(rl); s(pn(A)); s(wam); s(rpd); s(rl) ^ s(rpd); talk(B)g.

4.4.2 Verifying Empirical Foundedness

The idea of the underlying veri�cation method is to check whether the speci�ca-

tion in some sense �ts the world description. It is therefore important to know

whether the world description is detailed enough to make a speci�cation possible

at all. It might simply be the case that our world description is underspeci�ed

and that no speci�cation that always gives the right answer can be found. This

problem was addressed by the notion of empirical foundedness.

The world description WU is empirically founded if for every goal ' 2 Q
U
the

following holds:

8NUi
2WU NUi

� ') In(NUi
) j�WU

':

4.4. Verifying the Speci�cation of the Telecommunication Example 67

Lemma 4.4.1

The world description WU is empirically founded.

Proof

Outline: By the de�nition of forcing, we need to prove the truth of each re�nement

in WU of In(NUi
) for every NUi

. However, for each In(NUi
) there exists only one

re�nement in WU , namely NUi
itself. Hence, empirical foundedness holds. 2

4.4.3 Reasoning Trees for the Users

In order to visualise the reasoning process we will present the reasoning trees for

the user component. It is easy to realise that the speci�cation of a user component

could be further divided into two subcomponents, one responsible for taking a call

and the other for making a call. Therefore, we will present two reasoning trees,

where the arches are labelled with input information and nodes denote output

information.

Incoming Call

When the user receives a bell signal he can decide whether to take the call or

not. If the receiver is lifted, it will also be put down again. It might also be the

case that a talk is prevented if no connection is established.

s(rl)

 r(ce(B))

tc

r(bell)

talk(B) s(rpd)

r(ce(B))

s(rl)

tc

s(rpd)

Figure 4.11: Reasoning Tree for KBU - Incoming Call

4.4. Verifying the Speci�cation of the Telecommunication Example 68

Outgoing Call

In order to make a call, the user wants to establish a connection and therefore, he

has to lift the receiver. In case the user does not receive the appropriate signals or

no signals if they are expected, the receiver will be put down. This also happens

if the call is not answered. Otherwise, a talk can be made. Again, whenever the

receiver is lifted, it will be put down again.

 r(s2(_))

 r(s1(_))

 r(ce(A)) r(ce(A)) r(ce(A)) r(ce(A))

s(pn(A))s(rpd) s(rpd)

cw(A)

s(rl)

r(s2(rt))r(s2(et))

r(s1(dt))r(s1(et))

s(wam)s(rpd) s(rpd)

s(rpd)

s(rpd)

r(ce(A))

talk(A)

Figure 4.12: Reasoning Tree for KBU - Outgoing Call

4.4.4 Verifying Correctness and Soundness

The speci�cation of the user component is correct if it holds in the world, i.e. in

every situation determined by the world description. In other words, KBU is

correct w.r.t. the world description WU if for all goals ' 2 Q
U
it holds:

8NUi
2WU In(NUi

) [KBU `FC ') NUi
� ':

This means, for each input model In(NUi
) we have to infer by forward chaining

each possible goal using the knowledge base KBU . Then, for each goal that was

4.4. Verifying the Speci�cation of the Telecommunication Example 69

inferred we have to determine whether it holds in NUi
. If there is only one goal that

was inferred but does not hold, then KBU is not correct, otherwise correctness

w.r.t. WU holds.

Lemma 4.4.2

KBU is correct w.r.t. the world description WU .

Proof

Applying the above procedure will show the correctness of KBU w.r.t. WU . Here,

we only consider two examples:

First, we take NU1
. From In(NU1

) and KBU it is possible to infer the following

literals: fs(rl) : 1; s(pn(A)) : 1; s(wam) : 1; talk(A) : 1; s(rpd) : 1g. Therefore, all

possible conjunctions of these literals can also be inferred, hence s(rl) ^ s(rpd)

is inferable, too. Since each literal as well as s(rl) ^ s(rpd) hold in NU1
, we can

conclude that KBU is correct for NU1
w.r.t. WU .

Second, we take NU9
. From htc : 0; r(bell) : 1i we can only infer f: s(rl)g,

i.e. fs(rl) : 0g, which also holds by NU9
. Hence, KBU is also correct for NU9

w.r.t. WU .

In order to prove the correctness of KBU w.r.t. WU we have to show the correct-

ness of KBU for all NUi
2WU . 2

Because the inference relation `
FC

is monotonic it holds by theorem 3.3.1 that

KBU is sound w.r.t. WU .

4.4.5 Verifying Consistency

Consistency is a notion standing for the absence of contradictory information.

We introduced consistency as a property that depends on a given set of models.

In particular, we will consider the set of partial models that can be obtained from

the world description WU , i.e. P(WU). Then, KBU is consistent w.r.t. a set of

models P(WU) if there is no model M 2 P(WU) and no goal ' 2 Q
U
such that

M [KBU `FC ' and M [KBU `FC : ':

In section 3.4.2 we introduced several cases of inconsistency, like contradictions

in facts, rule-pairs, or chains of inference, as well as self-contradicting rules or

antecedents. It is easy to �nd that none of these special cases holds for our

speci�cation of a user component.

4.4. Verifying the Speci�cation of the Telecommunication Example 70

Lemma 4.4.3

KBU is consistent w.r.t. P(WU).

We will not formally prove consistency. Above, we presented the reasoning trees

of the user component. It is easy to realise that, given the world description WU ,

there is no situation possible in which a goal and its negation can be derived. Fur-

thermore, by lemma 3.4.1 we know that KBU is at least consistent w.r.t. In(WU),

because KBU is weakly complete w.r.t. WU .

4.4.6 Verifying Weak Completeness and Decisiveness

A speci�cation is weakly complete if it does not contain gaps, i.e. for a given

input model a conclusion that holds must also be inferable. Formally, KBU is

weakly complete w.r.t. the world description WU if for all goals ' 2 Q
U
it holds:

8NUi
2WU In(NUi

) j�WU
') In(NUi

) [KBU `FC ':

In section 3.5.2 we introduced several cases indicating gaps in a rule-based spec-

i�cation. These cases are: unnecessary literals, illegal literals, dead-end, unreach-

able rules, and unreachable literals. When inspecting the speci�cation of the user

component it is easy to �nd that none of these examples can be ful�lled.

Lemma 4.4.4

KBU is weakly complete w.r.t. the world description WU .

Proof

Outline: For each In(NUi
) there exists only one re�nement in WU , namely NUi

itself.Therefore, we only need to prove for all goals ' 2 Q
U
that the following

holds:

8NUi
2WU NUi

� ') In(NUi
) [KBU `FC ':

For example, for NU1
the following goals hold: fs(rl); s(pn(A)); s(wam); s(rpd);

talk(A); s(rl) ^ s(rpd)g. By the proof of lemma 4.4.2 we already know that each

goal can also be inferred from In(NU1
) and KBU . Therefore, KBU is weakly

complete for NU1
w.r.t WU . Since it is possible to show that KBU is weakly

complete for all NUi
, it is weakly complete w.r.t. WU . 2

Because KBU is sound, weakly complete, andWU is empirically founded, it holds

by theorem 3.6.1 that KBU is decisive w.r.t. the world description WU .

4.4. Verifying the Speci�cation of the Telecommunication Example 71

4.4.7 Verifying Well-Informedness and

Strong Completeness

Well-informedness shall insure that a speci�cation does not contain any super-

uous information. In section 3.7.1 we introduced well-informedness w.r.t. an

arbitrary set of complete input models. In order to show strong completeness it

is su�cient enough to consider well-informedness w.r.t. the set of complete input

models of the world description.

KBU is well-informed w.r.t. a set of complete input models In(WU), if for any

partial model M 2 P(In(WU)) any goal ' 2 Q
U
can be derived from the model

M if it can be derived from all re�nements R in In(WU) of M . With other words,

if for all M 2 P(In(WU)) it holds:

[8R 2 In(WU) M � R) R [KBU `FC ']) M [KBU `FC ':

The following algorithm on checking well-informedness is based on [Leemans

et al., 1993]. Let a set of complete input models In(WU) be given. Take a par-

tial model M 2 P(In(WU)). From this M take all complete re�nements within

In(WU), and for every re�nement determine what can be derived from it viaKBU .

Take from these derivations the greatest common information state, i.e. the con-

clusions that all re�nements agree on. This greatest common information state

must equal what can be derived from the partial modelM via KBU . If it is equal,

then well-informedness holds.

Lemma 4.4.5

KBU is not well-informed w.r.t. In(WU).

Proof

For M = htc : u; r(bell) : ui it holds M 2 P(In(WU)). The only possible re-

�nement of M in In(WU) is In(NU9
). Now In(NU9

) [KBU `FC : s(rl) but

M [KBU 0FC : s(rl). Hence, we found one M such that well-informedness does

not hold. 2

Circularity, redundancy, and subsumedness are special cases of well-informedness.

When looking for these special cases in the speci�cation of the user compo-

nent we could not �nd any. After further investigations we found that our

world description WU is not su�cient. It misses the cases that no bell rings

or that no call wants to be made. Therefore, we have to build an extended

world description W 0
U
, where W 0

U
is at least equal to WU [fNU10 ; NU11g, with

NU10 = htc : 1; r(bell) : 0i and NU11 = htc : 0; r(bell) : 0i. Now KBU is well-

informed w.r.t. fIn(NU7
); In(NU8

); In(NU9
); In(NU10

); In(NU11
)g, i.e. for the case

of an incoming call.

4.5. Conclusion 72

At this point we will not go further. The proof for well-informedness can hardly

be done by hand. Therefore, we will assume that KBU is well-informed w.r.t. a

world description W 00
U
, which is an extension of W 0

U
. Then the following holds:

KBU is sound and weakly complete w.r.t WU . Since KBU is not well-informed

w.r.t. In(WU), it it holds by theorem 3.7.2 that KBU is not strongly complete

w.r.t. WU . However, KBU is well-informed w.r.t. In(W 00
U
) and therefore, KBU is

strongly complete w.r.t. the world description W 00
U
.

4.5 Conclusion

DESIRE is a valuable speci�cation tool. It o�ers the possibility to model a prob-

lem within a graphical editor and allows the transformation towards an executable

speci�cation. However, we provided only a simple speci�cation. For example the

speci�cation of the user component only consists of twelve rules and two initial-

ising facts.

When verifying the speci�cation we found the notions introduced in chapter 3

useful. However, we also encountered the problem of creating a suitable world

description. Further, an automated veri�cation tool supporting our approach is

needed. It would be best if such veri�cation tools can be incorporated within the

DESIRE development environment.

Chapter 5

Results and Discussion

The last chapters were devoted to the investigation of knowledge engineering as a

source of information for speci�cation engineering. We looked at the relationship

of speci�cation and knowledge engineering, we extended a theory of veri�cation,

and �nally, we made a case study on the formal speci�cation and veri�cation of a

telecommunication network. Here, we will �rst summarise the results of the last

chapters and later, we are going to discuss these results, especially considering

the value of the framework DESIRE.

We found out that knowledge engineering and speci�cation engineering have much

in common. Therefore, it is possible to reuse principles from knowledge engineer-

ing. We also extended a work on the veri�cation of knowledge bases such that it

can be used for the veri�cation of formal speci�cations. Further, the complexity

of goals that can be proved could be increased. Finally, we performed a spec-

i�cation and veri�cation case study using DESIRE, a system designed for the

speci�cation of knowledge bases. DESIRE itself can also be regarded as a knowl-

edge representation system. Hence, we could show that tools and methods from

knowledge engineering can be applied in speci�cation engineering.

As a part of this chapter we will now investigate how DESIRE in particular sup-

ports speci�cation engineering. Therefore, we will face DESIRE with the demands

on tools, the concepts of formal methods, and the lightweight approach, as intro-

duced in chapter 2. We also identi�ed several problems in applying speci�cation

engineering. In order to overcome such problems, we have to show the ability to

integrate DESIRE with the software development process. We will look at this

issue by considering the Standard Siemens Development Methodology. Further-

more, since outsourcing is often used in practice, we will also show the possibility

to outsource the speci�cation and veri�cation process to specialised �rms.

We will end this chapter with a discussion on DESIRE, presenting what we found

to be weak areas of the tool. Finally, some limitations of this work will be named.

73

5.1. Results 74

5.1 Results

This thesis consists of three main parts: the discussion of the relationships be-

tween formal methods and knowledge engineering, the work on the veri�cation of

formal speci�cations and knowledge bases, and �nally, the case study on formal

speci�cation and veri�cation of a telecommunication example. We will now look

at the results of the last chapters and at its contributions.

5.1.1 Relating Formal Methods and

Knowledge Engineering

There is strong evidence that formal methods and knowledge engineering overlap

in many parts. Unfortunately, we found hardly any articles discussing this issue.

Therefore, this work seems to be a �rst attempt to summarise similarities and

di�erences between knowledge engineering and formal methods.

The main di�erence between the two approaches lies in their intension: a formal

speci�cation is an abstract representation of a program and as such it usually will

be re�ned to become a program. In contrast, knowledge engineering deals with

the representation of and reasoning about knowledge in an abstract way, without

changing the representation formalism later.

Formal speci�cation and knowledge representation meet at the point of repre-

senting facts and relationships in an abstract manner. From a theoretical point

of view, this representation is a logical theory. In chapter 2 we identi�ed four

basic activities common to knowledge engineering and speci�cation engineering:

(1) Choosing a representation formalism; (2) Building a theory; (3) Deciding on

a proof theory; and (4) Inferring facts. In particular the task of building a theory

is the key point of knowledge engineering and speci�cation engineering, as it was

also pointed out by [Turski and Maibaum, 1987] and [Goltz and Herre, 1990].

We also introduced the participants of speci�cation and knowledge engineering.

We identi�ed three participants in speci�cation engineering, i.e. the speci�er,

the programmer, and the customer. In this way we found that the speci�er and

the knowledge engineer, the programmer and the user, and the customer and the

expert have some similarities. For example, both speci�er and knowledge engineer

have to capture ideas and to create formal representations of it.

Our comparison is by no means complete. It is intended to give a introduction to

the relationships of both research �elds. We strongly believe that both research

areas of computer science can bene�t from each other. We especially emphasised

the possibilities to use knowledge engineering principles, as well as knowledge

representation systems, in speci�cation engineering.

5.1. Results 75

5.1.2 On the Veri�cation of Formal Theories

There is much consensus about the necessity to ascertain correctness of speci�ca-

tions and knowledge bases. However, correctness is often used in an intuitive way.

In doing so, the meaning of the attribute `correct' is, as [Turski and Maibaum,

1987, p. 1] point out, emotionally loaded. This means, correctness is good, lack

of it is bad. The main problem is that emotionally loaded terms are often used

in di�erent ways. Therefore, such terms have to be analysed more precisely.

Actually, there exist many notions for the veri�cation of speci�cations and knowl-

edge bases. [Preece et al., 1992] and [Treur and Willems, 1994] discuss some of

them. The work by [Leemans et al., 1993] and [Treur and Willems, 1994] was es-

pecially developed for verifying knowledge bases expressed in propositional logic.

Further, the authors restricted themselves to the derivation of literals.

We were able to extend this work in three ways: �rst, we not only considered

knowledge bases but universal theories. This improved the generality of our work.

Second, we used a set of goals, containing open formulas and existentially quan-

ti�ed open formulas. Therefore, we are able to verify more complex structures.

Finally, we developed our theory using the truth relation instead of the inference

relation. However, we did show that the 3-valued truth relation can be approxi-

mated by the inference relation of the calculus of Forward Chaining. This means,

it is possible to build a proof tool to check theories for the introduced properties.

As a result of chapter 2 we know that formal speci�cations and knowledge bases

are formal theories. Therefore, the results of chapter 3 can be used for the veri�-

cation of speci�cations and knowledge bases. In providing clear de�nitions of the

notions of veri�cation, we are laying foundations for the development of methods

and tools to verify formal speci�cations and knowledge bases.

5.1.3 Speci�cation and Veri�cation of a Multi-Agent-

System

In order to put this work into a practical context, we provided a case study of

formal speci�cation and veri�cation in chapter 4. We decided to use a simple

telecommunication example, because most people would be familiar with it.

In order to develop the speci�cation, we used DESIRE, a system originally devel-

oped for the speci�cation of knowledge based systems. Further, DESIRE together

with its supporting tools Destool and tgm can be considered as a knowledge rep-

resentation system as introduced by �gure 2.1. Therefore, we showed the ability

of a knowledge representation systems to be a valuable speci�cation tool. Finally,

we could demonstrate a veri�cation process using the notions of veri�cation in-

troduced in chapter 3.

5.2. Discussion 76

5.2 Discussion

In this section we will relate our work, and especially DESIRE, to the speci�cation

engineering process as it was introduced in section 2.1. Furthermore, we discuss

the approach of formal speci�cation and veri�cation in the context of the software

development method used at the Siemens AG Austria. Since outsourcing is a

commonly applied process in development, we will also look at the possibilities

to outsource the formal speci�cation and veri�cation process. Afterwards, we will

discuss two alternatives to formal methods which are currently used in practice,

tests and reviews. Some remarks on DESIRE and a discussion of the limitations

of this thesis will conclude this section.

5.2.1 DESIRE and the Demands and Concepts of Formal

Speci�cation

In section 2.1 we introduced the process of speci�cation engineering. We identi-

�ed several properties a good speci�cation has to ful�l. Further, we introduced

fundamental concepts, as well as demands on tools and methods, in order to

build good speci�cations. Finally, a lightweight approach to formal speci�cation

was introduced. Now, we show that the framework DESIRE is a valuable tool in

speci�cation engineering by relating it to the introduced concepts and demands.

Properties of a Speci�cation

DESIRE speci�cations are unambiguous, since DESIRE is a formal language.

Further, DESIRE speci�cations are easily modi�able. This is due to the composi-

tional framework of DESIRE. Changes within a component can be done without

changing the system, as long as the input and output signatures are not modi�ed.

In order to prove completeness and consistency of DESIRE speci�cations, it has

to be distinguished between static and dynamic properties. Static properties of

the components can be proved using the notions introduced in chapter 3. Notions

and methods for the veri�cation of the dynamics were introduced by [Treur and

Willems, 1995] and applied by [Cornelissen et al., 1997].

Fundamental Concepts

Abstraction is the process of removing details from a representation. Within the

framework DESIRE abstraction is especially supported by information hiding.

On the top level, only components and links, representing the information ow,

are depicted. In that way it is possible to capture a general overview of the

system. For more information it is possible to zoom into composed components,

5.2. Discussion 77

or to obtain signatures and targets from primitive components. In our opinion,

the pictorial view on DESIRE speci�cations is very clear.

The framework DESIRE is aimed at the speci�cation of compositional architec-

tures. Basically, the notion of a compositional architecture arises from a strong

relationship between the notions of declarative semantics and functional task

decomposition. The semantics of the whole system can be obtained as a composi-

tion of the semantics of each of the components, by means of generic, prede�ned

and standardised construction principles. Further, the functionality of a compo-

sitional architecture is determined by the functionalities of its components and

by the way these functionalities interact. Hence, the concepts of composition and

decomposition are natural approaches within DESIRE.

Further, combination of languages is also supported by DESIRE. Within DE-

SIRE it is possible to use so-called alternative speci�cations. For example, such

alternative speci�cations can be databases or any kind of algorithms written in

any programming language. The communication with the execution manager is

done via �les including input and output information in a prede�ned format. The

replacement of components with conventional components also allows a step by

step re�nement of the speci�cation towards an executable program.

While developing a DESIRE speci�cation a number of generic tasks can be iden-

ti�ed. A generic model can be used for a wide variety of more speci�c tasks

through re�nement and composition. For example, in chapter 4 the speci�cation

of a user component is in principle generic. We only had to adjust the behaviour

by providing additional information, like who should be called and should the

receiver be lifted if the bell rings. In that way reuse is possible, which in turn

reduces time, costs, and e�ort needed to design and maintain system designs.

Finally, we turn to data structures and algorithms. Unfortunately, we are not so

familiar with the internal development of DESIRE. Therefore, we do not know

whether new data structures and algorithms were used or not.

Demands on Tools and Methods

In section 2.1 we introduced several criteria for tools and methods to be valuable

in speci�cation engineering. Of course, DESIRE has to be measured against them.

� Early payback. We did not apply DESIRE in a real development process,

we just speci�ed a simple telecommunication example. Therefore, we are

not able to comment on this point. However, since formal methods help to

structure ideas, it can be assumed that they are always bene�cial as soon

as they are used.

5.2. Discussion 78

� Incremental gain for incremental e�ort. This might be the case, since it is

possible to specify systems at di�erent levels of detail. It is possible to simply

specify the components and the information exchange for demonstration

purpose but also to add signatures and knowledge bases in order to create

an executable prototype.

� Multiple use. Due to the compositional method and the speci�cation of

generic tasks, it is possible to reuse earlier speci�ed parts. However, in

general, DESIRE is best used for the speci�cation of multi-agent systems

which are usually distributed systems.

� Integrated use. The integration of DESIRE with a software development

method will be discussed in the next subsection.

� Ease of use and ease of learning. It is a bit di�cult to comment on this issue.

On the one hand, DESIRE is easy to use. It is very simple to construct the

pictorial representation of a system. On the other hand, to fully understand

the syntax and semantics of DESIRE is more di�cult. Unfortunately, the

documentation to DESIRE is not very good. There only exists a manual (in

Dutch) and a short description on how to use the development environment.

Further, there exists course material from the annually o�ered courses on

DESIRE which is handed out to each participant. In our opinion, it is quite

recommendable to attend such a course.

� E�ciency. This is probably a weak site of DESIRE. First, the prototype

created by DESIRE is in PROLOG, which is not an execution e�cient lan-

guage. Further, there are no veri�cation tools incorporated into the develop-

ment framework. However, syntax checking and limited semantic checking

(comparable to type-checking) is provided.

� Error detection oriented. DESIRE does not include a veri�cation tool. How-

ever, since it is possible to generate a prototype and to test it within the

DESIRE framework we would say that DESIRE is error detection oriented.

� Focused analysis. This is possible due to the debugger included in the exe-

cution manager. In that way it can be focused on special components while

executing the prototype. Further, it is possible to distinguish between static

and dynamic properties of the system. Thus, both properties can be veri�ed

independently.

� Evolutionary development. DESIRE strongly supports the development of

partial speci�cations, basically due to compositional character of DESIRE

speci�cations. Further, the veri�cation method presented in chapter 3 sup-

ports partial veri�cation of components. Therefore, the presented approach

is strongly recommendable for evolutionary development.

5.2. Discussion 79

A Lightweight Approach to Formal Speci�cation

In section 2.1 we also introduced a lightweight approach to formal speci�cation.

The key points were: partiality in language, partiality in modelling, partial anal-

ysis, and partiality in composition. Here, we are going to show that DESIRE and

the compositional veri�cation method �t well into this lightweight approach.

The language used in DESIRE is based on many-sorted 3-valued predicate logic of

�rst order. Modelling within this language is simple and fairly intuitive. Further,

only a production rule style is used to represent relationships, which serves clarity

and easy analysis. Therefore, DESIRE ful�ls the point of partiality in language.

On the other hand, the mathematical toolkit within DESIRE is fairly poor. This

makes specifying mathematical relationships a bit di�cult.

Partiality in modelling and partiality in analysis are well supported. Both follow

straight from the compositional framework of DESIRE. Once the interfaces are

speci�ed it is up to the modeller to decide which components should be speci-

�ed in more detail. Further, veri�cation can be limited to selected components.

Finally, partiality in composition also follows from the compositional framework.

Components can be speci�ed separately and later be composed using links. This

means, DESIRE is worth using in the scope of a lightweight approach to formal

speci�cation.

5.2.2 Formal Speci�cation and Veri�cation within

stdSEM

The Standard Siemens Development Methodology

The Standard Siemens Development Methodology, [stdSEM, 1997], de�nes a set

of activities that should be followed in order to develop a software product. In

particular stdSEM uses the waterfall approach of software development (see [Som-

merville, 1992]). Figure 5.1 displays the stages of the software development pro-

cess according to stdSEM.

Within the waterfall model there are a number of stages that follow each other in

sequence (the arrows downwards). In practice, however, the development stages

overlap and often information from one stage will be handed back to the previous

stage (the arrows upwards).

The advantage of the waterfall model is its simplicity. Each stage of the develop-

ment process can be de�ned independently and therefore, it is possible to de�ne

the outcome of each stage easily. The process of formal software speci�cation is

part of the de�nition phase.

5.2. Discussion 80

Initiation

Use

Completion

Realisation

Design

Definition

Figure 5.1: The Software Development Process according to stdSEM

The Phase \De�nition"

The goal of the de�nition phase is to collect, to develop, and to analyse the

requirements of the software product. It aims at getting well de�ned and vali-

dated requirements of the product. The authors of stdSEM strongly advise to

use methods and tools to support requirements engineering. Further, the goal of

the project has to be de�ned, as well as an evaluation of the feasibility has to be

created. Finally, the course of the project has to be set up.

The outcome of the de�nition phase are the following documents: requirement

speci�cation, functional speci�cation, several planning documents, and, if neces-

sary, an o�er to the customer. In addition to these documents, domain models,

interface speci�cations, as well as prototypes might be developed.

Prototyping

Prototyping is actually another software development method but it can also

be incorporated into other development methods. A prototype is a program for

user experiment. However, the object of prototyping is to establish the system

requirements. Later, the prototype is reimplemented to produce a production-

quality system. Normally, the prototype is thrown away or will be kept for reuse

in other projects.

Formal Methods and DESIRE within stdSEM

The approach of formal methods, as well as DESIRE, the framework for the

design and speci�cation of compositional architectures (see chapter 4), �t well

into stdSEM. Both can be used throughout the entire development process but

especially in the de�nition phase. DESIRE, in particular, can also be used for the

construction of prototypes.

5.2. Discussion 81

Formal speci�cations are precise and unambiguous. Thus, they remove areas of

doubt in speci�cation. The principle value of using formal methods is that it forces

an analysis of the system requirements at an early stage. The costs of speci�cation

increase, however, correcting errors at this stage is cheaper than modifying a

delivered system. Further, using formal methods increases the con�dence in a

system. It is not yet entirely clear, if formal methods increase or decrease the

costs of development.

The best place to use formal speci�cation methods within stdSEM is the de�-

nition phase, when the requirements are de�ned and validated. DESIRE can be

used for the functional speci�cation of a system. Due to the necessity to specify

input and output signatures within DESIRE, it is perfectly suited for interface

speci�cations. Finally, since an implementation generator is incorporated into

the DESIRE development environment, it can be considered as an executable

speci�cation language, well suited for prototyping.

Executable speci�cation languages, like DESIRE, are often proposed for the use

in prototyping. [Sommerville, 1992] recommends [Hekmatpour and Ince, 1988] for

further reading on this issue. Especially the framework DESIRE has the potential

to be a good prototyping tool. It o�ers an easy to use graphical editor for fast

design. We already argued that DESIRE supports compositional development, a

method frequently used in prototyping. Furthermore, in prototyping it is most

important to develop appropriate user interfaces. DESIRE allows to include such

speci�cations in form of conventional components. Finally, the execution trace

created by the execution manager is a good basis for further analysis.

Formal methods in general and DESIRE in particular can in principle be used

within the software development method used at the Siemens AG Austria. We

showed some ways of using these methods and tools. Of course, a study investi-

gating the impact of formal methods and DESIRE within stdSEM needs to be

carried out.

5.2.3 Outsourcing of the Formal Speci�cation and Veri�-

cation Process

According to the Collins English Dictionary [col, 1994], to outsource has two

meanings:

1. to subcontract (work) to another company; or

2. to buy in (components for a product) rather than manufacture them.

In the scope of this thesis, we will mainly consider formal methods with respect

to the �rst meaning. We already mentioned the work by [Easterbrook, 1996] and

5.2. Discussion 82

[Wing, 1985]. Both discuss the advantages and disadvantages of an independent

process of speci�cation and veri�cation.

In [NASA, 1989](as in [Easterbrook, 1996]) the process of independent veri�cation

and validation (IV& V) is characterised as follows:

[IV& V] is a process whereby the products of the software development

life cycle phases are independently reviewed, veri�ed, and validated

by an organization that is neither the developer nor the acquirer of

the software.

The main value of such view is the fresh perspective it o�ers on questions of

software safety and correctness. It is like a second opinion on a problem to coun-

terbalance that of the developer. In that way the bene�t is a signi�cantly reduced

risk of software errors. Further, since some errors are detected early in the soft-

ware development process, they are cheaper to �x.

In chapter 2 we identi�ed several reasons for the rare use of formal methods in

practice, like lack of training, lack of high-level speci�cation languages, and lack

of support tools. As a possible solution, [Wing, 1985] suggests:

Hiring trained specialists would be a feasible way of overcoming these

di�culties and increase the use of speci�cations in software develop-

ment. As these specialists gain recognition for their expertise, speci-

�cation �rms may arise ...

[Wing, 1985] compares speci�ers with lawyers and architects. The analogy to

lawyers is based on the use of a speci�cation as part of a contract, and the

analogy to architects is based on the use of a speci�cation as a design. Just as

law �rms and architectural �rms, speci�cation �rms can be specialised.

Once there exist specialised �rms for speci�cation, it is possible to outsource

the work of creating and proving formal speci�cations. This view corresponds to

partial outsourcing, where only speci�c and well-de�ned tasks are handed to a

subcontractor. In contrast, complete outsourcing might also be possible. Thus,

the entire software development process is given to a specialised �rm, which in

turn might hire other subcontractors.

For large companies, like Siemens AG Austria, it might even be advantageous to

have speci�cation groups within the company. For example, the American space

agency NASA, the National Aeronautics and Space Administration, has its own

formal methods program, which not only conducts research on formal methods

but also applies them to real world problems. Actually, many NASA projects

have been cited as successful applications of formal methods, e.g. [NASA, 1995].

5.2. Discussion 83

5.2.4 Current Alternatives to Formal Methods

There might still be some formal methods advocates arguing that there are no

alternatives to formal methods. However, since formal methods are not used fre-

quently in industry, there must exist other methods to ensure software quality.

Further, it is recognised that by the use of formal methods in the software devel-

opment process, traditional development methods should not be abandoned.

Tests

Formal veri�cation is not often used today. Therefore, testing is still the pre-

dominant technique of evaluation. Veri�cation and test are two complementary

notions. While veri�cation is successful, if it shows the absence of errors, testing

is successful, if it shows the presence of errors. An introduction to testing is given

by [Appelrath and Ludewig, 1992, pp. 223{235] as well as by [Sommerville, 1992,

pp. 373{387].

Testing should not be replaced by veri�cation. For example, [Bowen and Hinchey,

1995b] report that even though a formal speci�cation were proved to be correct,

testing still showed the presence of an error. This means that formal methods are

no guarantee of correctness. Formal methods can only increase the con�dence in

a system but errors can still exist. Hence, the ninth commandment by [Bowen

and Hinchey, 1995b] still holds, which says:

Thou shalt test, test, and test again.

However, as [Bowen and Hinchey, 1995b] point out, formal methods o�er another

alternative to traditional testing techniques, namely speci�cation-based testing.

The formal speci�cation might be used as a guide for determining functional tests

for the system. Further, the speci�cation itself can be used to derive expected

results of test data. Once more, formal methods showed its ability to be bene�cial

in the traditional development process.

Reviews

Another method to ensure software quality are reviews. A review involves a group

of people examining parts or all of a software system or its associated documen-

tation with the aim of �nding system problems. The conclusions of the review

are recorded and passed to whoever is responsible for correcting the discovered

problems. Reviews are not limited to speci�cations or code, all documents created

in a development process should be reviewed.

Reviews share a very important property with the independent veri�cation and

validation process [Easterbrook, 1996]. In both cases individuals not previously

5.2. Discussion 84

engaged in the development process have to investigate the documents. This fresh

perspective often leads to a more rigorous search for errors. Further, documents,

like speci�cations, might be interpreted in ways not originally in the mind of

the developer. In this way reviews can lead to more unambiguity of the docu-

ments. Reviews are necessary, since it is usually not su�cient to fully verify all

documentations.

Another advantage of reviews is their value for training purposes. They o�er a

good opportunity for designers to explain their design to other project members,

newcomers, or designers who must interface with the system. More information

on the review process can be found in [Sommerville, 1992, pp. 595{598].

5.2.5 A Discussion on DESIRE

The framework for Design and Speci�cation of Interacting Reasoning compo-

nents, DESIRE, is a speci�cation system providing a graphical user interface,

syntax and type checking facilities, an implementation generator, and an execu-

tion manager including a debugger. In our opinion, DESIRE is a very valuable

speci�cation tool. However, we also found some minor weaknesses.

First, we missed a veri�cation tool within the DESIRE software development

environment. This is especially disturbing, since it is mentioned in [Brazier et al.,

1997, p. 50] that there exists one. However, the environment includes a syntax and

semantics checker. In our opinion, at least better consistency checking facilities

need to be included.

Second, the graphical user interface is very valuable. However, from time to time

the user has to open so many editor windows that the clarity gets lost. In our

opinion, it should also be possible to write and edit the textual speci�cation

directly.

Finally, we turn to the user manual and the online help. Both are most concerned

with the use of Destool, the development environment. It is hardly possible to �nd

any hints on the syntax de�nition or on how to specify certain functionality, like

a closed world assumption. The user surely needs the course material [Brazier

et al., 1997] from Amsterdam for a better understanding. On the other hand,

for many editors default templates are available, which helps a lot in developing

speci�cations.

Fortunately, the framework DESIRE is still evolving. It strongly pro�ts from the

feedback that is generated by its use in several projects. As far as we know, it is

planned to develop a version of DESIRE for parallel platforms. Further, syntax

and semantic checking facilities will be improved. Finally, research results on the

reasoning process will also be incorporated.

5.2. Discussion 85

5.2.6 Limitations

This thesis gives a good overview of formal speci�cation and knowledge engi-

neering. It introduces a formal veri�cation theory and shows the applicability of

formal speci�cation and veri�cation. It also puts the presented approaches into

the context of a practical used development method. However, this thesis has also

some limitations which are mostly due to the complexity of each of the problems

we dealt with.

In chapter 2 we compared speci�cation engineering and knowledge engineering by

considering aims, methods, concepts, tools, and participants. Of course, the dis-

cussion is by no means complete. Each topic could be investigated in more detail,

especially the relationship of knowledge representation languages and speci�ca-

tion languages.

Then we developed a theory of veri�cation. This theory is limited to static prop-

erties of universal theories. Further, the work is restricted to universal theories,

Herbrand interpretations, and �1(Q)-sentences. Also we used a world description

which we considered to be given explicitly. The following problem arises: Under

which conditions has a �nite set W of Herbrand models an 8-axiomatizable the-

ory? What about this question if all models of W are assumed to be �nite?

In chapter 4 we presented a simple speci�cation example. This example is far too

primitive to be a real world case. We also did not develop an implementation

from this speci�cation. This means that DESIRE needs �rst to be evaluated on

more complex examples, preferably real world problems. Second, starting from the

speci�cation, code has to be developed. Ideally, this would be done like a scienti�c

experiment with control cases, where we can look at the results of developing the

same piece of code with and without formal methods.

During the work on the example speci�cation we also had the idea of developing

a generic task model for veri�cation within DESIRE. Since DESIRE possesses an

inference relation it should be possible to use it as a theorem prover. The question

is how such a generic task model should look like.

Finally, we provided a short investigation on the use of formal methods within

the Standard Siemens Development Methodology. We already noted that the in-

tegration of formal methods within traditional development methods is necessary

for their success. Therefore, an investigation only concentrating on the problem

of integrating formal methods into stdSEM has to be carried out.

Chapter 6

Conclusion and Future Work

Software development is a rather crucial and complex process. Therefore, soft-

ware errors were usually excused in the past. However, nowadays many technical

systems depend on the reliability of software, hence it must be possible to �nd

ways to ensure the correct functioning of programs. It is now widely accepted

that, if correctly applied, formal methods can improve software reliability.

Formal speci�cation and veri�cation methods are now on the edge of industrial

applicability. For example, [Clarke and Wing, 1996], [Craigen et al., 1993] [East-

erbrook et al., 1998], [Miller and Srivas, 1995], and [NASA, 1995] report the

successful use of formal speci�cation and veri�cation within industrial settings.

However, such examples are still exceptions rather than the rule in modern soft-

ware development. It is therefore necessary to investigate and to overcome the

impediments to industrial use of formal methods.

In order to establish formal methods in industry, tools and methods have to ful�l

certain criteria. For example, tools and methods should be easy to learn and easy

to use, tools should increase the e�ciency in development, it should be possible

to work error detection orientated, and an evolutionary development should be

possible. However, the development of tools and methods is a very expensive and

time consuming task. Therefore, it might be worthwhile to investigate existing

methods and tools from other disciplines in computer science.

This thesis o�ers a new perspective on speci�cation engineering. Speci�cation

engineering is the process of building and evaluating a description of a problem,

i.e. a speci�cation. Such problem description is a collection of knowledge about

a domain of interest, and therefore, speci�cation engineering deals with the col-

lection, representation, and evaluation of knowledge. This in turn is the task of

knowledge engineering, hence speci�cation engineering can be considered to be a

subtask of knowledge engineering. This conclusion leads to the view that meth-

ods and tools from knowledge engineering, as well as knowledge based systems

themselves, can be used for specifying programs.

86

6.1. Summary and Conclusions 87

6.1 Summary and Conclusions

Speci�cation engineering and knowledge engineering have much in common. Ba-

sically, both deal with the abstract representation of knowledge. On the one hand,

it is the knowledge about what a program should do, and on the other hand, it

is the knowledge about a domain of discourse. The outcome of both approaches

is a formal description, i.e. a speci�cation or a knowledge base respectively.

While developing speci�cations or knowledge bases both approaches face similar

problems, rely on similar concepts, and have similar demands on tools and meth-

ods. For example, we identi�ed the problem of knowledge acquisition, education,

and technology transfer. Further, common concepts used are those of abstraction,

composition, decomposition, and reusability. Finally, there are the demands on

tools and methods, which were already summarised on the last page.

Another important problem is the quality of the representation. We named the

following quality factors for speci�cations and knowledge bases: unambiguity,

completeness, consistency, and modi�ability. The process of evaluation, i.e. the

process of veri�cation and validation, shall ensure these properties.

We concentrated on veri�cation as a formal and internal view related to con-

cepts like completeness and consistency. Following the work by [Preece et al.,

1992], [Leemans et al., 1993], and [Treur and Willems, 1994] we introduced the

notions of correctness and soundness, consistency and ambivalence, weak and

strong completeness, decisiveness, and well-informedness. Originally, these no-

tions were introduced in the context of verifying knowledge bases. Due to the

generalisation towards the use of universal theories, we are also able to use these

notions for the veri�cation of formal speci�cations. Thus, we provided an example

of adjusting knowledge engineering methods for speci�cation engineering.

The presented theory on veri�cation strongly depends on a world description,

i.e. a set of situations that should or should not occur. We showed that empirical

foundedness is a desirable property of a world description. Additionally, we pro-

vided a set of goals that have to be veri�ed. The advantage of such an approach,

which was also propagated by [Yue, 1987], is the orientation towards an early er-

ror detection. However, since the whole veri�cation process depends on the world

description and on the goals both have to be chosen very carefully.

The notion of forcing was essential for the theory of veri�cation. Forcing en-

sures that a goal holds in all possible situation that follow from a particular par-

tial situation, i.e. it determines which goals should follow from a partial model.

Throughout the development of our theory we used the 3-valued truth relation

for de�ning the above properties. We also showed that this truth relation can

be approximated by an inference relation like forward chaining. In that way it is

possible to construct an automated theorem prover for checking knowledge bases

and formal speci�cations. This certainly improves the e�ciency of our approach.

6.1. Summary and Conclusions 88

Often, it is not feasible to prove all properties of theories formally. Therefore,

we introduced special cases in order to verify consistency, weak completeness,

and well-informedness. For example, a contradiction in rules shows inconsistency,

gaps indicate the violation of weak completeness, and circularity and redundancy

the breaking of well-informedness. [Leemans et al., 1993] introduced a proof tool

for verifying these special cases.

We, however, did not only look for such special cases but used the de�nitions

of the presented notions for a veri�cation process. In order to do so, we devel-

oped a speci�cation of a simple telecommunication network using the framework

DESIRE. Due to its structure, DESIRE together with its supporting tools, in-

cluding the graphical editor and the implementation generator, can be regarded

as a knowledge representation system. Therefore, the use of DESIRE as a speci-

�cation tool underpins our general idea.

To actually perform the veri�cation we introduced a set of situations we consid-

ered to be relevant. This world description was shown to be empirically founded.

Correctness and soundness, as well as weak completeness and decisiveness could

be veri�ed for the knowledge base of a user component. When verifying well-

informedness, we realised that our world description had to be extended. This,

however, showed that it is a crucial step to obtain an appropriate set of situations.

Earlier we demanded certain properties of tools and methods in order to be valu-

able in speci�cation engineering. We were able to show that DESIRE possesses

some of these properties. Hence, it was left to investigate the impact of for-

mal methods, and especially the possibility to use DESIRE within the Standard

Siemens Development Methodology (stdSEM). We realised, formal methods are

best applied within the de�nition phase of stdSEM and for prototyping. DESIRE,

in particular, turned out to be a valuable speci�cation and prototyping tool.

Further, we asked whether it was possible to outsource, i.e. to subcontract, the

work on formal speci�cation and veri�cation. We argued that outsourcing can be

very e�ective. Not only that specialisation increases e�ciency but often a fresh

perspective raises questions not previously asked by the developers. In particular,

larger companies should establish speci�cation and veri�cation groups within

their company.

In this thesis we argued much in favour of formal methods for the development

of software. However, we also pointed out that traditional development methods

should not be abandoned. For example, although formal methods are propagated

for developing reliable software, one should be aware that testing and reviews are

still necessary evaluation methods.

We showed that formal speci�cation and veri�cation can bene�t from achieve-

ments made in knowledge engineering. Therefore, we built a bridge between both

disciplines of computer science. However, we are aware that there still remains

much work on this issue.

6.2. Future Work 89

6.2 Future Work

This thesis can be a starting point for investigations in many directions. First,

further work has to be done on the relation of speci�cation and knowledge en-

gineering. Since [Guarino, 1995] related ontology and knowledge engineering, it

would also be possible to investigate the relationship of formal ontology and spec-

i�cation engineering. An introduction to the terminology of ontology engineering

is given by [Guarino and Giaretta, 1995].

The investigation of the veri�cation of knowledge bases and speci�cations was em-

bedded in a compositional speci�cation and veri�cation framework. We restricted

ourself to static properties of a component. In order to fully verify compositional

speci�cations, interactions of components, i.e. dynamic properties, have to be

considered as well. Some preliminary work on this issue was already done by

[Treur and Willems, 1995].

Another aspect of future work lies in the further development of DESIRE. First,

some more syntax and semantic checks could be incorporated, like a `de�ned

but not used' analysis. Second, a veri�cation tool should be incorporated into

the development environment. This would much help speci�cation developers

to evaluate their work. Furthermore, it might be possible to allow two kinds of

negation within a knowledge base. [Herre et al., 1995] propose to use partial logics

with two kinds of negation for knowledge representation. Finally, more published

case studies on the use of DESIRE are necessary. Ideally, such case studies will

be performed in industrial environments in order to provide more insight into the

value of DESIRE as a general speci�cation tool.

Finally, investigations on the relation of DESIRE to other formal speci�cation

methods, in particular the translation of DESIRE speci�cations into other spec-

i�cation languages, might be a topic of research. Translations from one speci-

�cation language into another play an important role in the �eld of viewpoint

speci�cations [Bowman et al., 1995]. For example, the compositional approach

within DESIRE seems to be comparable to schemas in the speci�cation language

Z [Spivey, 1992]. Further, DESIRE is designed for specifying parallel systems.

This suggests some relationship to CSP, a speci�cation language for concurrent

systems [Hoare, 1985].

There are two ways of constructing a software design. One way is to

make it so simple that there are no de�ciencies. And the other way is

to make it so complicated that there are no obvious de�ciencies.

[Hoare, 1981]

We hope that this work contributes to the �rst way.

Bibliography

Abadi, M. and Lamport, L. (1993). Composing Speci�cations. ACM Transactions

on Programming Languages and Systems, 15(1):73{132.

Ainsworth, M., Cruickshank, A. H., Wallis, P. J. L., and Groves, L. J. (1994).

Viewpoint speci�cation and Z. Information and Software Technology,

36(1):43{51.

Appelrath, H.-J. and Ludewig, J. (1992). Skriptum Informatik - eine konven-

tionelle Einf�uhrung. Teubner Verlag, Stuttgart, 2nd edition.

Boehm, B. W. (1981). Software Engineering Economics. Advances in Computing

Science and Technology. Prentice-Hall, Englewood Cli�s New Jersey.

Boiten, E., Derrick, J., Bowman, H., and Steen, M. (1997). Constructive

consistency checking for partial speci�cation in Z. Submitted for publi-

cation. Online available: http://alethea.ukc.ac.uk/Dept/Computing/

Research/NDS/consistency/cccfpsiZ.html (last access 30/04/1998).

Bowen, J. and Stavridou, V. (1993). The Industrial Take-up of Formal Meth-

ods in Safety-Critical and Other Areas: A Perspective. In Woodcock, J.

C. P. and Larsen, P. G., editors, FME'93: Industrial-Strength Formal Meth-

ods, Lecture Notes in Computer Science 670, pages 183{195. Formal Meth-

ods Europe, Springer-Verlag. Online available: ftp://ftp.comlab.ox.ac.

uk/pub/Documents/techpapers/Jonathan.Bowen/fme93.ps.Z (last access

27/05/1998).

Bowen, J. P. and Hinchey, M. G. (1995a). Seven More Myths of For-

mal Methods. IEEE Software, 12(4):34{41. Online available as Techni-

cal Report #PRG-TR-7-94: http://www.cl.cam.ac.uk/users/mgh1001/

TECHREPORTS/7myths.ps.Z (last access 14/07/1998).

Bowen, J. P. and Hinchey, M. G. (1995b). Ten Commandments of Formal Meth-

ods. IEEE Computer, 28(4):56{63. Online available as Technical Report

No. 350: http://www.cl.cam.ac.uk/users/mgh1001/TECHREPORTS/10cs.

ps.Z (last access 14/07/1998).

90

Bibliography 91

Bowman, H., Derrick, J., Linington, P., and Steen, M. (1995). FDTs

for ODP. Computer Standards and Interfaces, 17(5{6):457{479. On-

line available: http://alethea.ukc.ac.uk/Dept/Computing/Research/

NDS/consistency/fdtodp.html (last access 01/05/1998).

Bratko, I. (1990). PROLOG - Programming for Arti�cial Intelligence. Interna-

tional Computer Science Series. Addison-Wesley Publishing Company, Read-

ing, Massachusetts, 2nd edition.

Brazier, F. M. T., Treur, J., Wijngaards, N. J. E., and Willems, M. (1994). Tem-

poral semantics and speci�cation of complex tasks. Technical Report IR-375,

Arti�cial Intelligence Group, Department of Mathematics and Computer Sci-

ence, Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081 HV Amster-

dam, The Netherlands. Online available: http://www.cs.vu.nl/~wai/pub/

reports/IR-375.ps.Z (last access 01/06/1998).

Brazier, F. M. T., Treur, J., Wijngaards, N. J. E., and Willems, W. (1995).

Formal Speci�cation of Hierarchically (De)Composed Tasks. In Gaines, B. R.

and Musen, M., editors, Proc. of the 9th Ban� Knowledge Acquisition for
Knowledge Based Systems Workshop. University of Calgary. Online available:

http://www.cs.vu.nl/~wai/pub/1995/Brazier_etal02.ps.Z (last access

01/06/1998).

Brazier, F., Jonker, C., and Treur, J. (1996a). Design of Multi-Agent Systems
(Part 1). Arti�cial Intelligence Group, Department of Mathematics and

Computer Science, Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081

HV Amsterdam, The Netherlands.

Brazier, F., Jonker, C., and Treur, J. (1996b). Syllabus - Ontwerp van Ken-

nissystemen. Arti�cial Intelligence Group, Department of Mathematics and

Computer Science, Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081

HV Amsterdam, The Netherlands.

Brazier, F., Jonker, C., and Treur, J. (1997). Design of Intelligent Multi-Agent
Systems. Arti�cial Intelligence Group, Department of Mathematics and

Computer Science, Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081

HV Amsterdam, The Netherlands.

Chang, C. C. and Keisler, H. J. (1990). Model Theory, volume 73 of Studies in

Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 3rd

edition.

Clarke, E. M. and Wing, J. M. (1996). Formal Methods: State of the Art and

Future Directions. Technical Report CMU-CS-96-178, CMU Computer Sci-

ence. Online available: http://www.cs.cmu.edu/afs/cs/usr/wing/www/

Bibliography 92

mit/paper/paper.ps (last access 14/07/1998) and http://www.cs.cmu.

edu/Reports/1996.html (last access 14/07/1998).

Collins English Dictionary, 3rd Edition Updated (1994). Published by Harper-

Collins Publishers, PO Box, Glasgow G40NB. (ISBN 0 00 470678-1).

Cornelissen, F., Jonker, C. M., and Treur, J. (1997). Compositional Veri�-

cation of Knowledge-Based Systems: A Case Study for Diagnostic Rea-

soning. In Plaza, E. and Benjamins, R., editors, Proceedings of the 10th

European Workshop on Knowledge Acquisition, Modeling and Management

(EKAW-97), Lecture Notes in Arti�cial Intelligence 1319, pages 65{80.

Springer Verlag. Berlin. Online available: http://www.cs.vu.nl/~jonker/

Papers/ekaw97.ps (last access 03/06/1998) and http://www.cs.vu.nl/

~wai/Papers/ekaw97.ps (extended version) (last access 01/06/1998).

Craigen, D., Gerhart, S., and Ralston, T. (1993). An International Survey of

Industrial Applications of Formal Methods (Volume 1: Purpose, Approach,

Analysis and Conclusions, Volume 2: Case Studies). Technical Report NIST

GCR 93/626-V1 & NIST GCR 93-626-V2 (Order numbers: PB93-178556/AS

& PB93-178564/AS), Atomic Energy Control Board of Canada, U.S. Na-

tional Institute of Standards and Technology, and U.S. Naval Research Lab-

oratories, National Technical Information Service, 5285 Port Royal Road,

Spring�eld, VA 22161, USA. Online available: http://hissa.ncsl.nist.

gov/sw_develop/form_meth.html (last access 14/07/1998).

ct (1998). Editorial. c't - Magazin f�ur Computer Technik. Heft 10/98, p. 3, Verlag

Heinz Heise. Online available: http://www.heise.de/ct/98/10/003/ (last

access 13/06/1998).

Dignum, F. and van de Riet, R. P. (1991). Knowledge Base Modelling Based on

Linguistics and Founded in Logic. Data & Knowledge Engineering, 7:1{34.
Online available: ftp://ftp.cs.vu.nl/pub/lics/kbm_ling_logic.ps.gz

(last access 14/07/1998).

Easterbrook, S. (1996). The Role of Independent V & V in Upstream Soft-

ware Development Process. In Proceedings of the 2nd World Conference

on Integrated Design and Process Technology (IDPT), Austin, Texas. On-

line available as Technical Report #NASA-IVV-96-015: http://research.

ivv.nasa.gov/docs/techreports/1996/NASA-IVV-96-015.ps (last access

30/04/1998).

Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., and Hamil-

ton, D. (1998). Experiences Using Lightweight Formal Methods for Re-

quirements Modeling. IEEE Transactions on Software Engineering, 24(1).

Bibliography 93

Online available: http://eis.jpl.nasa.gov/quality/Formal_Methods/

document/ieee1-98.ps (last access 30/04/1998).

Engelfriet, J., Jonker, C. M., and Treur, J. (1997). Compositional Veri�cation

of Knowledge-Based Systems in Temporal Epistemic Logic. In Bossi, A.,

Marchiori, E., et al., editors, Proceedings of the ILPS97 Workshop on Veri-

�cation. Online available: http://www.dsi.unive.it/~bossi/ILPSWORKS/

jonker.ps.gz (last access 14/07/1998).

Engelfriet, J. and Treur, J. (1997). A Compositional Reasoning System for Exe-

cuting Nonmonotonic Theories of Reasoning. In Gabbay, D. M., Kruse, R.,

Nonnengart, A., and Ohlbach, H. J., editors, Qualitative and Quantitative

Practical Reasoning, Proceedings of the First International Joint Conference

on Qualitative and Quantitative Practical Reasoning, ECSQARU-FAPR'97,

Lecture Notes in Arti�cial Intelligence 1244, pages 252{266. Springer Ver-

lag. Online available: ftp://ftp.cs.vu.nl/pub/joeri/FAPR97.ps.Z (last

access 12/07/1998).

Fensel, D. and van Harmelen, F. (1994). A Comparison of Languages which

Operationalize and Formalise KADS Models of Expertise. The Knowledge

Engineering Review, 9:105{146. Online available: http://www.cs.vu.nl/

~frankh/abstracts/KER94.html (last access 14/07/1998).

Friedrich, G., Gottlob, G., and Stumptner, M. (1990). Wissensrepr�asentation,
chapter 2, pages 21{60, In [Gottlob et al., 1990].

Fuchs, N. E. (1992). Speci�cations Are (Preferably) Executable. IEE Soft-

ware Engineering Journal, 7(5):323{334. Online available: http://www.ifi.
unizh.ch/staff/fuchs/ (last access 14/07/1998).

F�utty, E. (1997). A Pseudo-Natural Language For Verifying Speci�cations of Al-

gorithms by Means of an Automaton. Diploma Thesis, Technical University

of Vienna, Institute for Computer Languages, Department of Formal Logic

Applications.

Goltz, H.-J. and Herre, H. (1990). Grundlagen der logischen Programmierung.

Akademie-Verlag, Berlin.

Gottlob, G., Fr�uhwirth, T., and Horn, W., editors (1990). Expertensysteme.
Springers Angewandte Informatik. Springer-Verlag, Wien - New York.

Gottwald, S. (1989). Mehrwertige Logik - Eine Einf�uhrung in Theorie und An-
wendungen. Akademie-Verlag, Berlin.

Bibliography 94

Guarino, N. (1995). Formal Ontology, Conceptual Analysis and Knowledge Rep-

resentation. International Journal of Human and Computer Studies, spe-

cial issue on The Role of Formal Ontology in the Information Technology,

43(5{6):625{640. Online available: http://www.ladseb.pd.cnr.it/Infor/

Ontology/Papers/OntologyPapers.html (last access 14/07/1998).

Guarino, N. and Giaretta, P. (1995). Ontologies and Knowledge Bases: To-

wards a Terminological Clari�cation. In Mars, N. J. I., editor, Towards

Very Large Knowledge Bases. IOS Press. Online available: http://www.

ladseb.pd.cnr.it/Infor/Ontology/Papers/OntologyPapers.html (last

access 03/05/1998).

Hayes, I. J. and Jones, C. B. (1989). Speci�cations are not (necessarily) exe-

cutable. IEE Software Engineering Journal, 4(6):330{338. Online available as

Technical Report: ftp://ftp.cs.man.ac.uk/pub/TR/UMCS-89-12-1.ps.Z

(last access 28/07/1998).

Hekmatpour, S. and Ince, D. (1988). Software Prototyping, Formal Methods and
VDM. Addison Wesley Publishing Company, Wokingham, England.

Herre, H. (1993a). Constructive Proof Systems. Report, Institute of Com-

puter Science, Leipzig University, Augustusplatz 10-11, 04109 Leipzig,

Germany. Online available: http://www.informatik.uni-leipzig.de/

~herre/deduct/cproofs.ps (last access 25/05/1998).

Herre, H. (1993b). Semantical Completeness of Model-Based Diagnosis. In EU-
ROVAV'93 - Proceedings of the European Symposium on the Validation and

Veri�cation of Knowledge Based Systems, pages 217{229. 24-25 March 1993,

Palma de Mallorca, Spain.

Herre, H., Jaspars, J., and Wagner, G. (1995). Partial Logics with Two Kinds of

Negation as a Foundation for Knowledge-Based Reasoning. Report No. 12,

Institute of Computer Science, Leipzig University, Augustusplatz 10-11,

04109 Leipzig, Germany.

Herre, H. and Pearce, D. (1992). Disjunctive Logic Programming, Constructivity

and Strong Negation. In [Pearce and Wagner, 1992], pages 391{410.

Hoare, C. (1985). Communicating Sequential Processes. Prentice-Hall Interna-

tional Series in Computer Science. Prentice-Hall International (UK) Ltd.

Hoare, C. A. R. (1981). The Emperor's Old Clothes. Quoted as in [Bowen and

Hinchey, 1995b].

Holloway, C. M. (1997). Why Engineers Should Consider Formal Methods. In

Proceedings of the 16th AIAA/IEEE Digital Avionics Systems Conference,

Bibliography 95

volume 1, pages 1.3{16 { 1.3.{22. Irvine CA. Online available: http://

shemesh.larc.nasa.gov/cMh/cmh-bio-publications.html/ (last access

14/07/1998).

Holloway, C. M. and Butler, R. W. (1996). Industrial Practice: Impediments to In-

dustrial Use of Formal Methods. IEEE Computer, 29(4):25{26. Online avail-

able: http://shemesh.larc.nasa.gov/cMh/cmh-bio-publications.html

(last access 14/07/1998).

Holyer, I. (1991). Functional Programming with Miranda. UCL Press, 2nd edition.

Horn, W. (1990). Knowledge Engineering, chapter 3, pages 73{89, In [Gottlob

et al., 1990].

Hu, D. (1987). Programmer's Reference Guide to Expert Systems. Howard W.

Sams & Company.

IEEE (1984). IEEE Guide to Software Requirements Speci�cation. ANSI / IEEE

Std 830, The Institute of Electrical and Electronics Engineers, Inc, 345 East

47th Street, New York, NY 10017, USA.

Jackson, D. and Wing, J. M. (1996). Lightweight formal methods. IEEE

Computer, 29(4):22{23. Online available: http://www.cs.cmu.edu/afs/

cs.cmu.edu/project/venari/www/ieee96-roundtable.html (last access

12/06/1998).

Jonker, C. M. and Treur, J. (1998). Compositional Veri�cation of Multi-Agent

Systems: A Formal Analysis of Pro-activeness and Reactiveness. In Lang-

maack, H., Pnueli, A., and De Roever, W. P., editors, Proceedings of the
International Symposium on Compositionality, COMPOS'97. Springer Ver-

lag. to appear. Online available: http://www.cs.vu.nl/~jonker/Papers/

compos97.ps (last access 14/03/1998).

Kleuker, S. (1995). A Gentle Introduction to Speci�cation Engineer-

ing using a Case Study in Telecommunications. In Mosses, P. D.,

Nielsen, M., and Schwartzbach, M. I., editors, International Joint Con-

ference on Theory and Practice of Software Development (TAPSOFT'95),
pages 636{650. Lecture Notes in Computer Science 915, Springer-Verlag.

Online available: http://theoretica.informatik.uni-oldenburg.de/

personal/Kleuker.Stephan.html (last access 26/04/1998).

Kowalski, R. (1979). Logic for Problem Solving. North-Holland, Amsterdam.

Leemans, P., Treur, J., and Willems, M. (1993). On the Veri�cation of Knowledge-

based Reasoning Modules. Technical Report IR 346, Department of Mathe-

matics and Computer Science, AI Group, Vrije Universiteit Amsterdam, De

Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands.

Bibliography 96

Miller, S. P. and Srivas, M. (1995). Formal Veri�cation of the AAMP5 Micro-

processor: A Case Study in the Industrial Use of Formal Methods. In WIFT

'95: Workshop on Industrial-Strength Formal Speci�cation Techniques, pages

2{16, Boca Raton, FL. Online available: http://www.csl.sri.com/aamp5.

html (last access 26/07/1998).

NASA (1989). Software Assurance Guidebook. Report SMAP-GB-A201, NASA

Goddard Space Flight Center.

NASA (1995). Formal Methods Specifcation and Veri�cation Guidebook for

Software and Computer Systems, Volume I: Planning and Technology In-

sertion. Report NASA-GB-002-95 (Release 1.0), National Aeronautics and

Space Administration, O�ce of Safety and Mission Assurance, Washington,

DC 20546, USA. Online available: http://eis.jpl.nasa.gov/quality/

Formal_Methods/ (last access 14/07/1998).

Pearce, D. and Wagner, G., editors (1992). Logics in AI - European Workshop

JELIA'92, Berlin, Germany, September 1992, Lecture Notes in Arti�cial

Intelligence 633. Springer Verlag, Berlin, Heidelberg.

Preece, A., Batarekh, A., and Shinghal, R. (1992). Verifying Rule-Based Sys-

tems. Technical report, Department of Computing Science, King's College,

University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK. Online avail-

able: ftp://ftp.csd.abdn.ac.uk/pub/apreece/KER92pt1.ps.Z (last ac-

cess 20/03/98).

Reichgelt, H. (1991). Knowledge Representation: An AI Perspective. Tutorial

Monographs in Cognitive Science. Ablex Publishing Corporation, Norwood,

New Jersey.

Rothmaler, P. (1995). Einf�uhrung in die Modelltheorie: Vorlesungen. Spektrum

Akademischer Verlag GmbH, Heidelberg, Berlin, Oxford.

Russel, S. and Norvig, P. (1995). Arti�cial Intelligence - A Modern Approach.

Prentice-Hall International, Inc.

Sannella, D. (1988). A Survey of Formal Software Development Methods.

Technical Report ECS-LFCS-88-56, Laboratory for Foundations of Com-

puter Science, Department of Computer Science, University of Edinburgh.

Online available: http://www.dcs.ed.ac.uk/home/dts/pub/SannellaDT.

html (last access 14/07/1998).

Sommerville, I. (1992). Software Engineering. Addison-Wesley Publishing Com-

pany, Wokingham, England, 4th edition.

Bibliography 97

Spivey, J. M. (1992). The Z Notation: A Reference Manual. Prentice-Hall Inter-

national Series in Computer Science. Prentice-Hall International (UK) Ltd.,

2nd edition. Online available: http://spivey.oriel.ox.ac.uk/~mike/

zrm/index.html(last access 26/07/1998).

stdSEM (1997). stdSEM. Siemens AG Austria. Draft Version.

Treur, J. (1988). Completeness and de�nability in diagnostic expert systems. In

Proceedings of ECAI-88, pages 619{624. Munich, Germany, Pitman Publish-

ing.

Treur, J. and Wetter, T., editors (1993). Formal Speci�cation of Complex Rea-

soning Systems. Ellis Horwood Workshop Series. Ellis Horwood Limited.

Treur, J. and Willems, M. (1994). A Logical Foundation for Veri�cation. In

Cohn, A. G., editor, ECAI 94. Proceedings of the Eleventh European Con-

ference on Arti�cial Intelligence, pages 745{749, Chichester. John Wiley &

Sons Ltd. Online available: http://www.cs.vu.nl/~wai/pub/1994/Treur_

Willems01.ps.Z (last access 01/06/1998).

Treur, J. and Willems, M. (1995). Formal Notions for Veri�cation of Dynamics

of Knowledge-Based Systems. In Proceedings of the European Symposium on

the Validation and Veri�cation of Knowledge-Based Systems, EUROVAV'95,
pages 189{199. Chambery. Online available: http://www.cs.vu.nl/~wai/

pub/1995/Treur_Willems01.ps.Z (last access 01/06/1998).

Turner, D. (1986). Functional programming as executable speci�cations. In

Hoare, C. A. R. and Shepherdson, J. C., editors, Mathematical Logic and
Programming Languages, pages 29{54. Prentice Hall.

Turski, W. M. and Maibaum, T. S. E. (1987). The Speci�cation of Computer Pro-

grams. International Computer Science Series. Addison-Wesley Publishing

Company, Reading, Mass.

Tyrell, H. (1911). Quotation online available: http://atb-www.larc.nasa.gov/

all-quotes-to-date.html (last access 15/07/1998).

Welt (1996). Am falschen Ende gespart. Ariane-Absturz: Programmierfehler

schuld am Milliarden-Debakel? DIE WELT, Ausgabe vom 5. Juli 1996, Axel

Springer Verlag, Berlin. Online available: http://www.welt.de/archiv/

1996/07/05/0705s104.htm (last access 13/06/1998).

Welt (1998). Das bitters�u�e L�acheln des Bill Gates. Panne bei der Premiere von

\Windows 98" in Chicago - Pl�otzlich st�urzte der Computer ab. DIE WELT,

Ausgabe vom 22. April 1998, Axel Springer Verlag, Berlin. Online avail-

able: http://www.welt.de/archiv/1998/04/22/0422vm02.htm (last access

13/06/1998).

Bibliography 98

Wing, J. M. (1985). Speci�cation Firms: A Vision for the Future. In Proceedings

of the Third International Workshop on Software Speci�cation and Design,

pages 241{243. Gloucester Hotel, London (UK).

Wing, J. M. (1995). Hints to Speci�ers. Technical Report CMU-CS-95-

118R, School of Computer Science, Carnegie Mellon University, Pittsburg,

PA 15213. Online available: http:/www.cs.cmu.edu/afs/cs.cmu.edu/

project/venari/papers/education/paper.ps (last access 12/06/1998).

Witteveen, C. (1992). Expanding Logic Programs. In [Pearce and Wagner, 1992],

pages 373{390.

Yue, K. (1987). What does it mean to say that a speci�cation is complete? In

Proceedings of the Fourth International Workshop on Software Speci�cation

and Design, pages 42{49. Monterey, California, USA.

Finally, we recommend the following URLs:

http://www.comlab.ox.ac.uk/archive/formal-methods.html,

which provides hyperlinks to many on-line repositories of information relevant to

formal methods, including some freely available tools, and

http://www.cs.vu.nl/vakgroepen/ai/projects/desire/,

the DESIRE homepage, including hyperlinks to on-line available publications.

Index of Symbols

A, 23

At(�), 22

InAt(�), 22

InternalAt(�), 22

OutAt(�), 22

B(S), 23
C, 26

C(FC), 28

Ex (S), 22
I , 23

IA, 23
I0, 23

I1, 23
Iu , 23

In(M), 30

KL(S), 22
L, 22
L(�), 22

Lit(�), 22
M , 30

Mod(S), 24
HMod(S), 24

N , 30

Out(M), 30

P , 26

PF (S), 22

Q, 27

Q
0
, 27

S, 27

U (S), 22
valI , 24

W , 30

�, 22

', 25

9, 22

9(F), 22

8, 22

!, 22, 24

^, 22, 24

_, 22, 24

: , 22, 24

�, 25

�, 25

�k , 24

<k , 24

<t , 24

`, 26

`
FC

, 29

�3, 25

�H , 25

j�W , 31

99

Index

9-rule, 29

abstraction, 8

ambivalence, 36

atom, 22

ground, 22

input, 22

internal, 22

output, 22

calculus, 26

constructive, 27

of Forward Chaining, 28

circularity, 43

completeness, 7, 37

strong, 42

weak, 37

composition, 8

compositional

veri�cation method, 21

conjunction, 28

conservativity

of �3, 26

of `, 27

consistency, 7, 34

consistent, 35

constructive

calculus, 27

complete, 28

correct, 28

contradiction, 36

correct, 33

correctness, 33

customer, 6

dead-end, 39

decisiveness, 40

decomposition, 8

de�nition phase, 80

derivable, 26

DESIRE, 47

Destool, 51

dictionary, 13

domain description, 30

empirical foundedness, 40

evaluation, 8, 24

expert, 11

extent, 50

forcing, 31

formal methods, 5

formula, 22

open, 22

program, 22

Forward Chaining

calculus of, 28

foundedness

empirical, 40

gap, 38

goal, 27, 31

Herbrand

base, 23

correct, 27

interpretation, 23

model, 24

structure, 23

universe, 22

inference

relation, 27

100

Index 101

rules, 13

interpretation, 23

2-valued, 23

3-valued, 23

H-, 23

Kleene, 23

knowledge, 11

acquisition, 12, 14

base, 13

base management system, 13

based system, 12

engineer, 11

engineering, 11

representation, 12

representation language, 14

representation system, 12

knowledge ordering, 24

partial, 24

language, 22

�rst-order, 22

lightweight approach, 10

link, 48

mediating, 48

private, 48

task control, 48

literal, 22

illegal, 38

unnecessary, 38

unreachable, 39

model, 24

complete, 30

H-, 24

input, 30

output, 30

partial, 30

modi�ability, 7

modus ponens, 29

monotonicity

of �3, 26

of `, 27

outsourcing, 81

partiality, 10

programmer, 6

prototype, 80

prototyping, 80

query, 27, 31

redundancy, 44

re�nement, 25

reusability, 8

review, 83

rule

unreachable, 39

sentence

existential, 22

signature, 22

situation, 30

software development process, 79

software engineering, 4

soundness, 33

strong, 33

weak, 33

speci�cation, 5

engineer, 6, 7

engineering, 5

stdSEM, 79

structure, 23

substitution, 28

subsumedness, 44

telephone, 52

customer, 53

exchange, 54

world, 52

test, 83

tgm, 51

theory

universal, 22

truth, 24

ordering, 24

table, 23

Index 102

unambiguity, 7

universe, 23

user, 11

user interface, 13

validation, 8

veri�ability, 7

veri�cation, 7, 29

waterfall model, 79

well-informedness, 41

world description, 29

xtgm, 51

Appendix A

The Telecommunication Example

Textual Speci�cation1

component TopLevel

task information

public task information

task control foci

tcf;

evaluation criteria

tcf;

private task information

components

User_2,

Exchange,

User_1,

User_3,

User_4;

information links

a_2,

b_2,

a_1,

b_1,

a_3,

b_3,

a_4,

b_4;

initial task information

1We would have liked to present the complete syntax de�nition of DESIRE in order to enable

the reader to understand the speci�cation more easily. Unfortunately, the publication of the

syntax de�nition is controlled by copyright. However, the syntax de�nition is part of the course

material on the design of multi-agent systems [Brazier et al., 1997], which is handed to each

participant of this course.

103

Appendix A. The Telecommunication Example - Textual Speci�cation 104

extent all_p;

task control contents

knowledge base TopLevel_task_control

information types TopLevel_task_control_sig

contents

if start

then next_link_state(a_1, awake)

and next_link_state(b_1, awake)

and next_link_state(a_2, awake)

and next_link_state(b_2, awake)

and next_link_state(a_3, awake)

and next_link_state(b_3, awake)

and next_link_state(a_4, awake)

and next_link_state(b_4, awake)

and next_component_state(Exchange, awake)

and next_component_state(User_1, awake)

and next_component_state(User_2, awake)

and next_component_state(User_3, awake)

and next_component_state(User_4, awake);

end knowledge base /* TopLevel_task_control */

kernel information

public kernel information

knowledge structures

information type UserIT

sorts

USER

objects

user_1,

user_2,

user_3,

user_4: USER

end information type

information type SignalIT

sorts

SIGNAL_ONE_SORT,

SIGNAL_TWO_SORT

objects

dialling_tone,

engaged_tone: SIGNAL_ONE_SORT

Appendix A. The Telecommunication Example - Textual Speci�cation 105

ringing_tone,

engaged_tone: SIGNAL_TWO_SORT

end information type

information type InfoIT

information types

UserIT,

SignalIT;

sorts

INFO_ELEMENT

objects

bell: INFO_ELEMENT

functions

connection_established: USER -> INFO_ELEMENT;

signal1: SIGNAL_ONE_SORT -> INFO_ELEMENT;

signal2: SIGNAL_TWO_SORT -> INFO_ELEMENT;

end information type

information type ActionIT

information types

UserIT;

sorts

ACTION_ELEMENT

objects

receiver_lifted,

receiver_put_down,

wait_a_moment: ACTION_ELEMENT

functions

phone_number: USER -> ACTION_ELEMENT;

end information type

information type User_Input_Info

information types

UserIT;

relations

connection_wanted: USER ;

Appendix A. The Telecommunication Example - Textual Speci�cation 106

take_call;

end information type

information type User_In

information types

InfoIT;

relations

received: INFO_ELEMENT ;

end information type

information type User_Out

information types

ActionIT;

relations

send: ACTION_ELEMENT ;

end information type

information type User_Internal

information types

UserIT,

User_Input_Info;

relations

talk: USER ;

end information type

private kernel information

component User_2

task information

public task information

task control foci

tcf;

evaluation criteria

tcf;

private task information

initial task information

task control focus tcf;

extent all_p;

task control contents

standard

kernel information

public kernel information

Appendix A. The Telecommunication Example - Textual Speci�cation 107

public levels

level_1 , level_2;

public level chain

level_1 < level_2;

input interface

level level_1

information type User_In;

output interface

level level_1

information type User_Out;

private kernel information

initial kernel information

level level_2

target(tcf, X:OA, determine);

kernel contents

knowledge base User_2_local_kbs

information types

User_Internal,

User_Out,

User_In;

contents

/* connection_wanted(user_1); */

not take_call;

if received(bell)

and take_call

then send(receiver_lifted);

if received(bell)

and not take_call

then not send(receiver_lifted);

if talk(A:USER)

then send(receiver_put_down);

if received(signal1(engaged_tone))

then send(receiver_put_down);

if received(signal2(engaged_tone))

then send(receiver_put_down);

if connection_wanted(A:USER)

then send(receiver_lifted);

Appendix A. The Telecommunication Example - Textual Speci�cation 108

if not received(signal1(X:SIGNAL_ONE_SORT))

then send(receiver_put_down);

if received(signal1(dialling_tone))

and connection_wanted(A:USER)

then send(phone_number(A:USER));

if not received(signal2(X:SIGNAL_TWO_SORT))

then send(receiver_put_down);

if received(signal2(ringing_tone))

then send(wait_a_moment);

if received(connection_established(A:USER))

then talk(A:USER);

if not received(connection_established(A:USER))

then send(receiver_put_down);

end knowledge base /* User_2_local_kbs */

end component /* User_2 */

component Exchange

task information

public task information

task control foci

tcf;

evaluation criteria

tcf;

private task information

initial task information

task control focus tcf;

extent all_p;

task control contents

standard

kernel information

public kernel information

public levels

level_1 , level_2;

public level chain

level_1 < level_2;

input interface

level level_1

information type Exchange_In

information types

ActionIT;

relations

Appendix A. The Telecommunication Example - Textual Speci�cation 109

received: ACTION_ELEMENT * USER ;

engaged: USER ;

bell: USER ;

end information type

output interface

level level_1

information type Exchange_Out

information types

InfoIT;

relations

send: INFO_ELEMENT * USER ;

end information type

private kernel information

initial kernel information

level level_2

target(tcf, X:OA, determine);

kernel contents

knowledge base Exchange_local_kbs

information types

Exchange_Out,

Exchange_In;

contents

if received(receiver_lifted, A:USER)

and not bell(A:USER)

then send(signal1(dialling_tone), A:USER);

if received(phone_number(B:USER), A:USER)

and engaged(B:USER)

and not bell(B:USER)

then send(signal2(engaged_tone), A:USER);

if received(phone_number(B:USER), A:USER)

and not engaged(B:USER)

then send(signal2(ringing_tone), A:USER)

and send(bell, B:USER);

if received(phone_number(B:USER), A:USER)

and engaged(A:USER)

and bell(B:USER)

and received(receiver_lifted, B:USER)

Appendix A. The Telecommunication Example - Textual Speci�cation 110

then send(connection_established(A:USER), B:USER)

and send(connection_established(B:USER), A:USER);

if received(phone_number(B:USER), A:USER)

and engaged(A:USER)

and send(signal2(ringing_tone), A:USER)

and not received(receiver_lifted, B:USER)

then not send(connection_established(B:USER), A:USER);

end knowledge base /* Exchange_local_kbs */

end component /* Exchange */

component User_1

task information

public task information

task control foci

tcf;

evaluation criteria

tcf;

private task information

initial task information

task control focus tcf;

extent all_p;

task control contents

standard

kernel information

public kernel information

public levels

level_1 , level_2;

public level chain

level_1 < level_2;

input interface

level level_1

information type User_In;

output interface

level level_1

information type User_Out;

private kernel information

initial kernel information

level level_2

target(tcf, X:OA, determine);

kernel contents

knowledge base User_1_local_kbs

information types

User_Internal,

User_Out,

Appendix A. The Telecommunication Example - Textual Speci�cation 111

User_In;

contents

connection_wanted(user_3);

take_call;

if received(bell)

and take_call

then send(receiver_lifted);

if received(bell)

and not take_call

then not send(receiver_lifted);

if talk(A:USER)

then send(receiver_put_down);

if received(signal1(engaged_tone))

then send(receiver_put_down);

if received(signal2(engaged_tone))

then send(receiver_put_down);

if connection_wanted(A:USER)

then send(receiver_lifted);

if not received(signal1(X:SIGNAL_ONE_SORT))

then send(receiver_put_down);

if received(signal1(dialling_tone))

and connection_wanted(A:USER)

then send(phone_number(A:USER));

if not received(signal2(X:SIGNAL_TWO_SORT))

then send(receiver_put_down);

if received(signal2(ringing_tone))

then send(wait_a_moment);

if received(connection_established(A:USER))

then talk(A:USER);

if not received(connection_established(A:USER))

then send(receiver_put_down);

end knowledge base /* User_1_local_kbs */

end component /* User_1 */

Appendix A. The Telecommunication Example - Textual Speci�cation 112

component User_3

task information

public task information

task control foci

tcf;

evaluation criteria

tcf;

private task information

initial task information

task control focus tcf;

extent all_p;

task control contents

standard

kernel information

public kernel information

public levels

level_1 , level_2;

public level chain

level_1 < level_2;

input interface

level level_1

information type User_In;

output interface

level level_1

information type User_Out;

private kernel information

initial kernel information

level level_2

target(tcf, X:OA, determine);

kernel contents

knowledge base User_3_local_kbs

information types

User_Internal,

User_Out,

User_In;

contents

/* connection_wanted(user_2); */

take_call;

if received(bell)

and take_call

then send(receiver_lifted);

if received(bell)

Appendix A. The Telecommunication Example - Textual Speci�cation 113

and not take_call

then not send(receiver_lifted);

if talk(A:USER)

then send(receiver_put_down);

if received(signal1(engaged_tone))

then send(receiver_put_down);

if received(signal2(engaged_tone))

then send(receiver_put_down);

if connection_wanted(A:USER)

then send(receiver_lifted);

if not received(signal1(X:SIGNAL_ONE_SORT))

then send(receiver_put_down);

if received(signal1(dialling_tone))

and connection_wanted(A:USER)

then send(phone_number(A:USER));

if not received(signal2(X:SIGNAL_TWO_SORT))

then send(receiver_put_down);

if received(signal2(ringing_tone))

then send(wait_a_moment);

if received(connection_established(A:USER))

then talk(A:USER);

if not received(connection_established(A:USER))

then send(receiver_put_down);

end knowledge base /* User_3_local_kbs */

end component /* User_3 */

component User_4

task information

public task information

task control foci

tcf;

evaluation criteria

tcf;

private task information

initial task information

task control focus tcf;

Appendix A. The Telecommunication Example - Textual Speci�cation 114

extent all_p;

task control contents

standard

kernel information

public kernel information

public levels

level_1 , level_2;

public level chain

level_1 < level_2;

input interface

level level_1

information type User_In;

output interface

level level_1

information type User_Out;

private kernel information

initial kernel information

level level_2

target(tcf, X:OA, determine);

kernel contents

knowledge base User_4_local_kbs

information types

User_Internal,

User_Out,

User_In;

contents

connection_wanted(user_2);

take_call;

if received(bell)

and take_call

then send(receiver_lifted);

if received(bell)

and not take_call

then not send(receiver_lifted);

if talk(A:USER)

then send(receiver_put_down);

if received(signal1(engaged_tone))

then send(receiver_put_down);

if received(signal2(engaged_tone))

Appendix A. The Telecommunication Example - Textual Speci�cation 115

then send(receiver_put_down);

if connection_wanted(A:USER)

then send(receiver_lifted);

if not received(signal1(X:SIGNAL_ONE_SORT))

then send(receiver_put_down);

if received(signal1(dialling_tone))

and connection_wanted(A:USER)

then send(phone_number(A:USER));

if not received(signal2(X:SIGNAL_TWO_SORT))

then send(receiver_put_down);

if received(signal2(ringing_tone))

then send(wait_a_moment);

if received(connection_established(A:USER))

then talk(A:USER);

if not received(connection_established(A:USER))

then send(receiver_put_down);

end knowledge base /* User_4_local_kbs */

end component /* User_4 */

private link a_2 : epistemic - object

domain User_2

level level_2

co-domain Exchange

level level_1

sort links identity

object links identity

term links identity

atom links

(true(send(X:ACTION_ELEMENT)),received(X:ACTION_ELEMENT,user_2)):

<<true, true>>;

(false(send(X:ACTION_ELEMENT)),received(X:ACTION_ELEMENT,user_2)):

<<true, false>>;

(known(received(bell)), bell(user_2)) : <<false, false>>;

Appendix A. The Telecommunication Example - Textual Speci�cation 116

(true(received(bell)), bell(user_2)) : <<true, true>>;

(true(send(receiver_lifted)), engaged(user_2)) :

<<true, true>, <false, false>>;

end link /* a_2 */

private link b_2 : object - assumption

domain Exchange

level level_1

co-domain User_2

level level_2

sort links identity

object links identity

term links identity

atom links

(send(X:INFO_ELEMENT, user_2),

assumption(received(X:INFO_ELEMENT), pos)) :

<<true, true>>;

(send(X:INFO_ELEMENT, user_2),

assumption(received(X:INFO_ELEMENT), neg)) :

<<false, true>>;

end link /* b_2 */

private link a_1 : epistemic - object

domain User_1

level level_2

co-domain Exchange

level level_1

sort links identity

object links identity

term links identity

atom links

(true(send(X:ACTION_ELEMENT)),received(X:ACTION_ELEMENT,user_1)):

<<true, true>>;

(false(send(X:ACTION_ELEMENT)),received(X:ACTION_ELEMENT,user_1)):

<<true, false>>;

Appendix A. The Telecommunication Example - Textual Speci�cation 117

(known(received(bell)), bell(user_1)) : <<false, false>>;

(true(received(bell)), bell(user_1)) : <<true, true>>;

(true(send(receiver_lifted)), engaged(user_1)) :

<<true, true>, <false, false>>;

end link /* a_1 */

private link b_1 : object - assumption

domain Exchange

level level_1

co-domain User_1

level level_2

sort links identity

object links identity

term links identity

atom links

(send(X:INFO_ELEMENT, user_1),

assumption(received(X:INFO_ELEMENT), pos)) :

<<true, true>, <false, false>>;

(send(X:INFO_ELEMENT, user_1),

assumption(received(X:INFO_ELEMENT), neg)) :

<<false, true>>;

end link /* b_1 */

private link a_3 : epistemic - object

domain User_3

level level_2

co-domain Exchange

level level_1

sort links identity

object links identity

term links identity

atom links

(true(send(X:ACTION_ELEMENT)),received(X:ACTION_ELEMENT,user_3)):

<<true, true>>;

(false(send(X:ACTION_ELEMENT)),received(X:ACTION_ELEMENT,user_3)):

<<true, false>>;

Appendix A. The Telecommunication Example - Textual Speci�cation 118

(known(received(bell)), bell(user_3)) : <<false, false>>;

(true(received(bell)), bell(user_3)) : <<true, true>>;

(true(send(receiver_lifted)), engaged(user_3)) :

<<true, true>, <false, false>>;

end link /* a_3 */

private link b_3 : object - assumption

domain Exchange

level level_1

co-domain User_3

level level_2

sort links identity

object links identity

term links identity

atom links

(send(X:INFO_ELEMENT, user_3),

assumption(received(X:INFO_ELEMENT), pos)) :

<<true, true>, <false, false>>;

(send(X:INFO_ELEMENT, user_3),

assumption(received(X:INFO_ELEMENT), neg)) :

<<false, true>>;

end link /* b_3 */

private link a_4 : epistemic - object

domain User_4

level level_2

co-domain Exchange

level level_1

sort links identity

object links identity

term links identity

atom links

(true(send(X:ACTION_ELEMENT)),received(X:ACTION_ELEMENT,user_4)):

<<true, true>>;

(false(send(X:ACTION_ELEMENT)),received(X:ACTION_ELEMENT,user_4)):

<<true, false>>;

Appendix A. The Telecommunication Example - Textual Speci�cation 119

(known(received(bell)), bell(user_4)) : <<false, false>>;

(true(received(bell)), bell(user_4)) : <<true, true>>;

(true(send(receiver_lifted)), engaged(user_4)) :

<<true, true>, <false, false>>;

end link /* a_4 */

private link b_4 : object - assumption

domain Exchange

level level_1

co-domain User_4

level level_2

sort links identity

object links identity

term links identity

atom links

(send(X:INFO_ELEMENT, user_4),

assumption(received(X:INFO_ELEMENT), pos)) :

<<true, true>>;

(send(X:INFO_ELEMENT, user_4),

assumption(received(X:INFO_ELEMENT), neg)) :

<<false, true>>;

end link /* b_4 */

end component /* TopLevel */

Appendix B

The Telecommunication Example

Reasoning Trace

Evaluation mode:fail_contra

DESIRE General Manager System in prolog, version 2.92a (CVSDATE)

options: stack user update special_sorts

Read configuration from "/usr/local/ai/hd/lib/prolog/config.gm"

HD // Part version 1.26

desimpl.pl compiled into dbdefs, 0.25 sec, 87,096 bytes.

partial_evaluation(TopLevel,determine_all_output_atoms,all_p,succeeded)

partial_evaluation(TopLevel,determine_all_output_atoms,all_p,succeeded)

awake composed component "TopLevel" -> BUSY

TASK CONTROL STEP of "TopLevel"

UPDATING TASK CONTROL INPUT

ESTABLISHED previous_own_component_state(idle) by TCloop

ESTABLISHED not own_component_state(idle) by TCloop

ESTABLISHED start by TCloop

ACTIVATING TASK CONTROL KBS of "TopLevel"

120

Appendix B. The Telecommunication Example - Reasoning Trace 121

REASONING TopLevel (step,all-p)

target(X:OA,determine)

derived(next_link_state(a_1, awake)) by rule r41

derived(next_link_state(b_1, awake)) by rule r41

derived(next_link_state(a_2, awake)) by rule r41

derived(next_link_state(b_2, awake)) by rule r41

derived(next_link_state(a_3, awake)) by rule r41

derived(next_link_state(b_3, awake)) by rule r41

derived(next_link_state(a_4, awake)) by rule r41

derived(next_link_state(b_4, awake)) by rule r41

derived(next_component_state(Exchange, awake)) by rule r41

derived(next_component_state(User_1, awake)) by rule r41

derived(next_component_state(User_2, awake)) by rule r41

derived(next_component_state(User_3, awake)) by rule r41

derived(next_component_state(User_4, awake)) by rule r41

cannot be established stop

cannot be established not stop

main menu

continue :c

quit :q

debug :d

pr lastm :p

pr modx :m

output :o

pr file :f

stepping :s

enter choice:s

control menu

leap :l

spy modx :s

spy mod# :p

spy atom :a

unspy m :u

unspy at :n

leap tm. :t

quit :q

mainmenu :m

enter choice:l

LINK a_1

BUFFERED

Appendix B. The Telecommunication Example - Reasoning Trace 122

not bell(user_1)

not engaged(user_1)

LINK b_1

LINK a_2

BUFFERED

not bell(user_2)

not engaged(user_2)

LINK b_2

LINK a_3

BUFFERED

not bell(user_3)

not engaged(user_3)

LINK b_3

LINK a_4

BUFFERED

not bell(user_4)

not engaged(user_4)

LINK b_4

END TASK CONTROL STEP of "TopLevel"

TASK CONTROL STEP of "TopLevel"

UPDATING TASK CONTROL INPUT

ESTABLISHED not previous_own_component_state(idle) by TCloop

RETRACTED next_component_state(User_4, awake)

(revision)

RETRACTED next_component_state(User_3, awake)

(revision)

RETRACTED next_component_state(User_2, awake)

(revision)

RETRACTED next_component_state(User_1, awake)

(revision)

RETRACTED next_component_state(Exchange, awake)

(revision)

RETRACTED next_link_state(b_4, awake)

(revision)

Appendix B. The Telecommunication Example - Reasoning Trace 123

RETRACTED next_link_state(a_4, awake)

(revision)

RETRACTED next_link_state(b_3, awake)

(revision)

RETRACTED next_link_state(a_3, awake)

(revision)

RETRACTED next_link_state(b_2, awake)

(revision)

RETRACTED next_link_state(a_2, awake)

(revision)

RETRACTED next_link_state(b_1, awake)

(revision)

RETRACTED next_link_state(a_1, awake)

(revision)

ESTABLISHED not start by TCloop

ACTIVATING TASK CONTROL KBS of "TopLevel"

REASONING TopLevel (step,all-p)

target(X:OA,determine)

cannot be established stop

cannot be established not stop

END TASK CONTROL STEP of "TopLevel"

ACTIVATING "Exchange" (tcf,all-p)

UPDATING INTERFACE (of) Exchange

ESTABLISHED

not bell(user_1)

not engaged(user_1)

not bell(user_2)

not engaged(user_2)

not bell(user_3)

not engaged(user_3)

not bell(user_4)

not engaged(user_4)

REASONING Exchange (tcf,all-p)

target(X:OA,determine)

termination(Exchange, tcf, succeeded)

LINK b_1

Appendix B. The Telecommunication Example - Reasoning Trace 124

LINK b_2

LINK b_3

LINK b_4

ACTIVATING "User_1" (tcf,all-p)

REASONING User_1 (tcf,all-p)

target(X:OA,determine)

derived(connection_wanted(user_3)) by rule r60

derived(send(receiver_lifted)) by rule r67

termination(User_1, tcf, succeeded)

LINK a_1

BUFFERED

received(receiver_lifted, user_1)

engaged(user_1)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_2" (tcf,all-p)

REASONING User_2 (tcf,all-p)

target(X:OA,determine)

termination(User_2, tcf, succeeded)

LINK a_2

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_3" (tcf,all-p)

REASONING User_3 (tcf,all-p)

target(X:OA,determine)

termination(User_3, tcf, succeeded)

LINK a_3

Appendix B. The Telecommunication Example - Reasoning Trace 125

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_4" (tcf,all-p)

REASONING User_4 (tcf,all-p)

target(X:OA,determine)

derived(connection_wanted(user_2)) by rule r87

derived(send(receiver_lifted)) by rule r94

termination(User_4, tcf, succeeded)

LINK a_4

BUFFERED

received(receiver_lifted, user_4)

engaged(user_4)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "Exchange" (tcf,all-p)

UPDATING INTERFACE (of) Exchange

received(receiver_lifted, user_1)

engaged(user_1)

received(receiver_lifted, user_4)

engaged(user_4)

REASONING Exchange (tcf,all-p)

target(X:OA,determine)

derived(send(signal1(dialling_tone), user_4)) by rule r55

derived(send(signal1(dialling_tone), user_1)) by rule r55

termination(Exchange, tcf, succeeded)

LINK b_1

BUFFERED

assumption(received(signal1(dialling_tone)),pos) true

received(signal1(dialling_tone))

primitive component "User_1" -> BUSY

rescheduled awake link destination "User_1"

LINK b_2

LINK b_3

Appendix B. The Telecommunication Example - Reasoning Trace 126

LINK b_4

BUFFERED

assumption(received(signal1(dialling_tone)),pos) true

received(signal1(dialling_tone))

primitive component "User_4" -> BUSY

rescheduled awake link destination "User_4"

ACTIVATING "User_1" (tcf,all-p)

UPDATING INTERFACE (of) User_1

received(signal1(dialling_tone))

REASONING User_1 (tcf,all-p)

target(X:OA,determine)

derived(send(phone_number(user_3))) by rule r69

termination(User_1, tcf, succeeded)

LINK a_1

BUFFERED

received(phone_number(user_3), user_1)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_4" (tcf,all-p)

UPDATING INTERFACE (of) User_4

received(signal1(dialling_tone))

REASONING User_4 (tcf,all-p)

target(X:OA,determine)

derived(send(phone_number(user_2))) by rule r96

termination(User_4, tcf, succeeded)

LINK a_4

BUFFERED

received(phone_number(user_2), user_4)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "Exchange" (tcf,all-p)

UPDATING INTERFACE (of) Exchange

Appendix B. The Telecommunication Example - Reasoning Trace 127

received(phone_number(user_3), user_1)

received(phone_number(user_2), user_4)

REASONING Exchange (tcf,all-p)

target(X:OA,determine)

derived(send(signal2(ringing_tone), user_4)) by rule r57

derived(send(bell, user_2)) by rule r57

derived(send(signal2(ringing_tone), user_1)) by rule r57

derived(send(bell, user_3)) by rule r57

termination(Exchange, tcf, succeeded)

LINK b_1

BUFFERED

assumption(received(signal2(ringing_tone)),pos) true

received(signal2(ringing_tone))

primitive component "User_1" -> BUSY

rescheduled awake link destination "User_1"

LINK b_2

BUFFERED

assumption(received(bell),pos) true

received(bell)

primitive component "User_2" -> BUSY

rescheduled awake link destination "User_2"

LINK b_3

BUFFERED

assumption(received(bell),pos) true

received(bell)

primitive component "User_3" -> BUSY

rescheduled awake link destination "User_3"

LINK b_4

BUFFERED

assumption(received(signal2(ringing_tone)),pos) true

received(signal2(ringing_tone))

primitive component "User_4" -> BUSY

rescheduled awake link destination "User_4"

ACTIVATING "User_1" (tcf,all-p)

UPDATING INTERFACE (of) User_1

received(signal2(ringing_tone))

REASONING User_1 (tcf,all-p)

Appendix B. The Telecommunication Example - Reasoning Trace 128

target(X:OA,determine)

derived(send(wait_a_moment)) by rule r71

termination(User_1, tcf, succeeded)

LINK a_1

BUFFERED

received(wait_a_moment, user_1)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_2" (tcf,all-p)

UPDATING INTERFACE (of) User_2

received(bell)

REASONING User_2 (tcf,all-p)

target(X:OA,determine)

derived(not take_call) by rule r42

derived(not send(receiver_lifted)) by rule r44

termination(User_2, tcf, succeeded)

LINK a_2

BUFFERED

not received(receiver_lifted, user_2)

bell(user_2)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_3" (tcf,all-p)

UPDATING INTERFACE (of) User_3

received(bell)

REASONING User_3 (tcf,all-p)

target(X:OA,determine)

derived(take_call) by rule r74

derived(send(receiver_lifted)) by rule r75

termination(User_3, tcf, succeeded)

LINK a_3

BUFFERED

Appendix B. The Telecommunication Example - Reasoning Trace 129

received(receiver_lifted, user_3)

bell(user_3)

engaged(user_3)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_4" (tcf,all-p)

UPDATING INTERFACE (of) User_4

received(signal2(ringing_tone))

REASONING User_4 (tcf,all-p)

target(X:OA,determine)

derived(send(wait_a_moment)) by rule r98

termination(User_4, tcf, succeeded)

LINK a_4

BUFFERED

received(wait_a_moment, user_4)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "Exchange" (tcf,all-p)

UPDATING INTERFACE (of) Exchange

received(wait_a_moment, user_1)

not received(receiver_lifted, user_2)

bell(user_2)

received(receiver_lifted, user_3)

bell(user_3)

RETRACTED send(bell, user_3)

(revision)

RETRACTED send(signal2(ringing_tone), user_1)

(revision)

engaged(user_3)

received(wait_a_moment, user_4)

REASONING Exchange (tcf,all-p)

target(X:OA,determine)

derived(send(connection_established(user_1), user_3)) by rule r58

derived(send(connection_established(user_3), user_1)) by rule r58

derived(not send(connection_established(user_2), user_4))

by rule r59

termination(Exchange, tcf, succeeded)

Appendix B. The Telecommunication Example - Reasoning Trace 130

LINK b_1

BUFFERED

assumption(received(connection_established(user_3)),pos) true

received(connection_established(user_3))

primitive component "User_1" -> BUSY

rescheduled awake link destination "User_1"

LINK b_2

LINK b_3

BUFFERED

assumption(received(connection_established(user_1)),pos) true

received(connection_established(user_1))

primitive component "User_3" -> BUSY

rescheduled awake link destination "User_3"

LINK b_4

BUFFERED

assumption(received(connection_established(user_2)),neg) true

not received(connection_established(user_2))

primitive component "User_4" -> BUSY

rescheduled awake link destination "User_4"

ACTIVATING "User_1" (tcf,all-p)

UPDATING INTERFACE (of) User_1

received(connection_established(user_3))

REASONING User_1 (tcf,all-p)

target(X:OA,determine)

derived(talk(user_3)) by rule r72

derived(send(receiver_put_down)) by rule r64

termination(User_1, tcf, succeeded)

LINK a_1

BUFFERED

received(receiver_put_down, user_1)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_3" (tcf,all-p)

Appendix B. The Telecommunication Example - Reasoning Trace 131

UPDATING INTERFACE (of) User_3

received(connection_established(user_1))

REASONING User_3 (tcf,all-p)

target(X:OA,determine)

derived(talk(user_1)) by rule r85

derived(send(receiver_put_down)) by rule r77

termination(User_3, tcf, succeeded)

LINK a_3

BUFFERED

received(receiver_put_down, user_3)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "User_4" (tcf,all-p)

UPDATING INTERFACE (of) User_4

not received(connection_established(user_2))

REASONING User_4 (tcf,all-p)

target(X:OA,determine)

derived(send(receiver_put_down)) by rule r100

termination(User_4, tcf, succeeded)

LINK a_4

BUFFERED

received(receiver_put_down, user_4)

primitive component "Exchange" -> BUSY

rescheduled awake link destination "Exchange"

ACTIVATING "Exchange" (tcf,all-p)

UPDATING INTERFACE (of) Exchange

received(receiver_put_down, user_1)

received(receiver_put_down, user_3)

received(receiver_put_down, user_4)

REASONING Exchange (tcf,all-p)

target(X:OA,determine)

termination(Exchange, tcf, succeeded)

Appendix B. The Telecommunication Example - Reasoning Trace 132

LINK b_1

LINK b_2

LINK b_3

LINK b_4

awake composed component "TopLevel" -> NON BUSY

Nothing to do, exiting

Appendix C

System Con�guration

The speci�cation of the telecommunication network was developed using

� DESTOOL version 1.50,

� DESTOOL version 1.61,

� DESTOOL version 1.79, and �nally

� DESTOOL version 1.84

on an IBM-compatible PC with a 6x86 P150+ CPU and 64MB RAM running

� S.u.S.E. Linux 5.0 - Kernel 2.0.30 (www.suse.de),

� SWI-Prolog and xpce version 4.9.7. (Online available: http://swi.psy.

uva.nl/projects/xpce/home.html (last access 27/07/1998)), and

� gcc version 2.7.2.1.

The DESIRE software environment can be installed for non-commercial applica-

tions only. Please contact Lourens van der Meij <lourens@vlet.cs.vu.nl> for

more information.

This thesis was typeset using LATEX2", as it comes along with teTEX (version

0.4), and the oz.sty package (Online available: http://svrc.it.uq.edu.au/

Object-Z/pages/latex.html (last access 27/07/1998)).

Erkl�arung

Ich versichere, da� ich die vorliegende Arbeit selbst�andig und nur unter Verwen-

dung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Leipzig, 29. Juli 1998 Ralph Miarka

