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Zusammenfassung

Die vorliegende Arbeit untersucht das sogenannte \logische Allwis-

senheitsproblem" (Logical OmniscienceProblem) der epistemischenLogik

und schl�agt einen neuen Ansatz zur L�osung des Problems vor.

Die epistemische Logik, die urspr�unglich als eine Teildisziplin der

philosophischen Logik entwickelt wurde ([14]), �ndet heute Anwendung

in so unterschiedlichen Gebieten wie Philosophie, Sprachwissenschaft,

Wirtschaftswissenschaft und Informatik. In der Informatik und der

K�unstlichen Intelligenz ist die epistemische Logik einer der Hauptfor-
malismen zur Wissensrepr�asentation und zur Spezi�kation von Multia-

gentensystemen geworden.
Allerdings ist es eine sehr umstrittene Frage, ob die epistemische

Logik f�ur diese Anwendungen geeignet ist. Kritiker behaupten, da�
die epistemische Logik die Begri�e des Wissens und des Glaubens nicht
ad�aquat erfassen kann und folglich f�ur die Repr�asentation von Wissen
ungeeignet ist. Ihre Behauptung gr�undet sich auf der Tatsache, da� die

meisten Systeme der epistemischen Logik sehr starke Idealisierungen hin-
sichtlich der logischen F�ahigkeiten der epistemischen Subjekte (englisch:
agents) machen. Es wird z. B. angenommen, da� die epistemischen
Subjekte alle logischen Wahrheiten kennen, oder da� sie alle logischen
Konsequenzen einer Aussage kennen, wenn sie diese Aussage glauben.

Dieses Problem is als das \logische Allwissenheitsproblem" (Logical Om-
niscience Problem) bekannt.

Es gibt in der Literatur eine Reihe von Ans�atzen, dieses Problem
zu l�osen. Fast alle vorgeschlagenen L�osungen verfolgen die Strategie,
schw�achere modale Systeme zu betrachten. Ich werde zeigen, da� diese

L�osungen unbefriedigend sind: in dieser Weise kann logische Allwis-

senheit vermiedenwerden, aber viele Intuitionen �uber die Begri�e Glauben
und Wissen gehen verloren. Also k�onnen auch die schw�acheren epistemis-
chen Systeme die genannten Begri�e nicht ad�aquat erfassen.

Ein anderer L�osungsansatz wird vorgeschlagen. Ich werde argumen-

tieren, da� sich die Hauptprobleme der epistemischen Logik in einem
statischen Rahmen nicht l�osen lassen. Um diese Probleme zu l�osen,

m�ussen wir auch die Denkaktivit�aten der epistemischen Subjekte in Be-
tracht ziehen. Zur Modellierung von Wissen (und Glauben) brauchen wir
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eine dynamische epistemische Logik. Ich werde zeigen, da� Axiome der

epistemischen Logik die folgende Form haben mu�: wenn alle Pr�amissen

einer g�ultigen Schlu�regel gewu�t (geglaubt) werden und wenn das Sub-

jekt die notwendige Folgerung vollzieht, dann wei�t (glaubt) es auch die

Konklusion. Um diese Idee zu formalisieren, schlage ich vor, die epis-

temische Logik zu \dynamisieren", d.h., eine dynamische Komponente

in die Sprache einzuf�uhren. An einem Beispiel wird erl�autert, wie die

\Dynamisierung" der epistemischen Logik realisiert werden kann.

Die Arbeit ist eine erweiterte Fassung meiner Publikation [4]. Eine

Zusammenfassung dieser Diplomarbeit erscheint als [5].
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1 Introduction and Preliminaries

Epistemic logic, or the logic of the concepts of knowledge and belief, has

established as an autonomous branch of logic since the work of Hintikka

([14].) The subject has been studied extensively by philosophers, lin-

guists, economists, and, more recently, computer scientists. (For recent

reviews and extensive bibliographies on the subject, see e.g., [10], [11],

[8].) In computer science and arti�cial intelligence epistemic logic has

been used for analyzing distributed systems, for knowledge representa-

tion, or for the speci�cation of multi-agent systems.

However, it is a very controversial matter whether epistemic logic is

suitable for these purposes. Most systems of epistemic logic have been

developed in analogy to modal logic. This approach has clearly some
advantages. Many results and methods of modal logic can be transferred
to epistemic logic, notably the techniques of the possible worlds seman-
tics. There are, however, severe objections against the modal approach in

epistemic logic. The most serious problem of this approach is perhaps the
so-called \logical omniscience problem (LOP)." It can be described infor-
mally as follows. According to the standard approach, the agent should
be an ideal logician and reasoner in the following sense: she knows all
logical truths, can (actually) draw all consequences of a certain sentence

and can identify all logical equivalences of a given sentence. Such re-
quirements are clearly too strong for a real agent, human or non-human.
Thus, the standard systems cannot capture the notion of knowledge and
belief adequately. The problem of logical omniscience is a severe obstacle
for the applicability of epistemic logic. For that reason, many attempts

have been undertaken to solve this problem. The goal of my paper is to
assess how successful these attempts can be and then to propose another
solution to the LOP.

Before going on, let us state the problem more precisely. In the

paper I consider the concept of knowledge only, but the main arguments

apply to the concept of belief, too. By \modal epistemic logic" I mean,
as proposed by Wuttich in [25], those systems of epistemic logic which

are developed in the modal tradition. Let us assume a set Agt of n
agents. The language of modal epistemic logic is built up from a set At

of propositional letters using the usual Boolean connectives of negation
and implication and the operators Ki, each for one agent i. In the AI

community the systems S4n and S5n are most often considered as logics
of rational knowledge for the case of n agents. They consist of n copies
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of the modal systems S4 and S5, respectively. Formally:

De�nition 1 (The language of epistemic logic) Let At be a set of

atomic formulae and Agt = f1; : : : ; ng a set of agents. LE is the least set

such that

1. At � LE

2. If A 2 LE then :A 2 LE

3. If A 2 LE and B 2 LE then (A! B) 2 LE

4. If A 2 LE and i 2 Agt then KiA 2 LE

The intended interpretation of the formula KiA is that the agent i

knows that A. The other truth-functional connectives are de�ned as
usual. An objective formula is one that does not contain any knowl-
edge operator. We adopt the standard conventions concerning the use of
parentheses.

De�nition 2 (The logics S4n and S5n) Themodal epistemic logic S5n
(for the case of n agents) has the following axiom schemata:

PC. All theorems of the propositional calculus (PC).

K. Ki(A! B)! (KiA! KiB)

T. KiA! A

4. KiA! KiKiA

5. :KiA! Ki:KiA

The rules of inference are:

MP. Modus ponens: if A and A! B are theorems then B is a theorem.

NEC. Necessitation: if A is a theorem then so is KiA.
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The logic S4n is obtained by dropping the axiom schema 5 from the

above axiomatization of S5n.

The notions of proof, of theoremhood etc. with respect to a system

S of modal epistemic logic is de�ned as usual. The symbol `S A is used

to denote the fact that A is a theorem of S. A formula A is said to be

an S-consequence from a set X of formulae, denoted X `S A, just in

case there are some B1; : : : ; Bm 2 X such that B1 ^ : : : ^ Bm ! A is a

theorem of S. If the system in consideration is clear from the context, we

can omit the index and write X ` A instead.

Axiom K says that an agent's knowledge is closed under modus po-

nens. Axiom T states that knowledge implies truth. (It follows that an

agent's knowledge is consistent.) The axioms 4 and 5 are called positive

and negative introspection axioms, respectively. They say that an agent
is aware of what she knows and what she does not know. It is generally
accepted that negative introspection is a more demanding condition than
positive introspection. Therefore many researchers argue that it is more
reasonable to adopt S4n as the logic of knowledge. In case one needs to

distinguish between knowledge and belief, one can drop the schema T or
replace it by the weaker axiom D, that is, the schema KiA ! :Ki:A.
The system obtained from S5n by replacing the schema T by the schema
D is known as KD45n and is considered by many researchers as the stan-
dard logic of rational belief. Besides these three systems sometimes other
systems are also considered. The minimal normal modal system, contain-

ing K as the only modal axiom, is called the system Kn, or just K in the
case of one agent.

It is well-known that the most common systems of modal epistemic
logic can be determined by suitable classes of Kripke models with n

accessibility relations. In particular, the accessibility relations of S5n-

models are equivalence relations, those of S4n-models are re
exive and

transitive, and KD45n-models are serial, transitive, and Euclidean (cf.
[2], [9], [12].)

The logical omniscience problem for modal epistemic logic can be

stated as follows. The following inference rules are valid for S5n and

related systems:

NEC. If A is a theorem then so is KiA

MON. If A! B is a theorem then so is KiA! KiB

CGR. If A$ B is a theorem then so is KiA$ KiB
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The three rules NEC,MON, CGR are called necessitation rule, monotony

rule, and congruence rule, respectively. They are provable when the

schema K and the necessitation rule are assumed, that is, in the minimal

modal system Kn already. An agent who is described by such a logic is

said to be logically omniscient, because she knows all logical truths (ac-

cording to NEC), she knows all logically consequences of a sentence that

she knows (according to MON), and she can identify all logical equiv-

alent sentences of a given sentence, according to CGR. Such an agent

cannot be a real one. No human agent has such reasoning capacities. We

cannot build arti�cial agents that possess the reasoning power described

by S5n and related systems. If we consider real agents and ask what

they actually know, we can check empirically that an agent's knowledge

is often not closed any logical law. Realistic agents may know a very
restricted set of logical laws. They know only some, but not all logi-
cal consequences of their knowledge. We cannot realistically expect an
agent's knowledge to be closed under even very elementary logical laws,

e.g., modus ponens. That is, even the axiom schema K is a strong ideal-
ization. Modal epistemic logics do not capture the notions of knowledge
and belief adequately.

If we agree that modal epistemic logics do not describe what agents
actually know, we can ask the question: what do they describe then?
Well, they are logics of a related, but di�erent concept. It is remarked by

several authors that the laws of these systems are much more acceptable
if the formula KiA is read \the agent i knows A implicitly" ([19], [7],)
\the agent i carries the information A" ([1],) or \the agent i possibly
knows A", instead of \agent i knows A". Modal epistemic logics should
be interpreted as logics of possible, or implicit knowledge, and not as

logics of actual, or explicit knowledge.
For reasoning about agents the concept of actual knowledge is much

more important than that of possible knowledge. In order to predict or

to explain an agent's actions we need to know what the agent actually
knows, and not what she possibly knows. For modeling realistic agents

we need other logics which are capable of capturing the concept of actual
knowledge. Such logic may not su�er from the LOP. In the next section

we shall discuss some common ways to solve this problem. After showing
that the strategy of weakening epistemic logic has many disadvantages I

shall propose an alternative approach to the problem. The intuitions of

my strategy will be explained in section 3. A formal system which can

cope with the problems of the traditional approaches will be developed in
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section 4 following the new strategy. The paper closes with a discussion

of related works, open problems and directions for future work.
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2 Strategies to Avoid Logical Omniscience

An obvious strategy to solve the logical omniscience problem is to weaken

epistemic logic. One denies the universal validity of the mentioned in-

ference rules NEC, MON, and CGR, or one of the essential axioms like

K. In fact, almost all attempts to solve the LOP have in common that

they consider systems that are weaker than the standard modal epis-

temic logics (cf. [3], [6], [7], [15], [19], [22], [23], [24], [25].) One can

construct systems that falsify either the inference rules or the axioms of

the standard modal systems. For example, modal systems which are not

normal can be used to describe an agent who does not know all logical

truths. If we use neighborhood semantics instead of Kripke semantics,

we can get weaker modal systems (the so-called classical systems) for
which neither the rule NEC nor the axiom schema K is valid, therefore
the agents' knowledge is not closed under logical consequence (cf. [2],
[23].) In this way, the original version of the LOP could be solved. But

here some care is needed: some systems solve the original version, but not
other versions of the LOP. If the monotony rule and/or the congruence
rule are valid for a system, or if an agent does not know all theorems of
classical lo gic, but knows all theorem of another (nontrivial) logic, then
the agent in this system must still be viewed as ideal: real agents simply

never achieve such reasoning capacities which can be described by such a
system. For example, the agent described by the minimal classical modal
system E (cf. [23], [2]) knows all logical equivalences of a sentence she
knows. An agent in Levesque's logic ([19]) does not know all truths of
classical logic, but she knows all theorems of a relevance logic. In the

same way, an agent in Ho Ngoc Duc's system ([3]) does not know all
classical theorems, but knows all theorems of a three-valued logic. Such
attempts cannot be considered satisfactory solutions to the LOP.

A number of systems have been proposed which assume still more

restricted reasoning capacities of the agents. To construct such a system

we can postulate, for example, that the agent only knows some \obvious"
logical truths, but not necessarily the \more complicated" ones. We can

assume that the agent can draw all \obvious" consequences, but not any
arbitrary consequence of a certain sentence. We can do it by postulating

that the deduction mechanism of the agents is not complete, that is, it is
not powerful enough to allow the agents to draw all logical consequences

of their knowledge. The regularities of an agent's knowledge could be
formalized by a set of suitable axioms. The more axioms are postulated,
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the more rational is the agent. With the aid of weak epistemic logics

we can classify the agents according to their logical capacities. This

approach is pursued by Stelzner in his \parametrized epistemic logic"

([24],) or Konolige in his \deduction model"([17].) If the agent's inference

mechanism is kept very weak, then logical omniscience could be avoided.

Besides this axiomatic approach we can also pursue a more semantical

approach. One can show that logical omniscience can be avoided if one

allow \impossible possible worlds" in which the valuation of the sentences

of the language is arbitrary. In other words, the logical laws do not hold

in the \impossible possible worlds" ([23], [22]). Another solution is to

introduce a new operator of awareness into the language and to require

that belief include awareness ([7].) Because it is possible that the agent

is aware of some sentence but she is not aware of its logical consequences
or its equivalent sentences, the theorems and inference rules of modal
epistemic systems do not hold in general.

Although the deduction model, the approach with impossible possi-

ble worlds and the approach with the awareness operator solve the LOP
technically, they cannot be regarded satisfactory. New problems arise
in these approaches besides the old problems of the possible worlds ap-
proach. Here I shall not discuss these problems in details, nor shall I
try to improve any of these approaches. I shall rather present a more
fundamental criticism of the common strategy of all these approaches,

namely the strategy of weakening epistemic logic.
The discussion of the logical omniscience problem in the literature has

concentrated mainly on the issue: in which way can logical omniscience
be avoided. But the LOP has another aspect which is often overlooked
in the discussion: what is left if one restricts the reasoning capacities of

the agents, for example by denying the validity of the rules NEC, MON
and CGR or of the axiom schema K? Is there still a reasonable way to
describe an agent's knowledge if the regularities of the agent's knowledge

is too weak to be described by these axioms and rules?
An attempt to cope with this challenge is to postulate axioms which

describe the regularities of the agent's knowledge. Such axioms shall
express the intuitive idea that the agent is somehow rational, or logical.

The axioms are generally of the form: the belief set of the agent is closed
under a certain valid rule of inference of logic, i.e., if all premises of the

rule are known, then the conclusion is known. (This is also the general

form of a theorem of a standard epistemic logic.) In this way we can get

subsystems of the logic K which do not su�er from the LOP. Let us see
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how far such a strategy may take us. We consider a simple example of a

ultra-weak epistemic logic.

De�nition 3 Let L be the logic whose axioms consist of all theorems of

the propositional calculus (PC) and all instances of the schema K. The

only inference rule of L is modus ponens.

L is thus the system obtained from the smallest normal system K by

dropping the Necessitation rule (without any substitute!) L is a very

weak epistemic logic lying between PC and K. It describes an agent, or

more correctly, a class of agents who can only use modus ponens reliably:

whenever they know the premisses of modus ponens then they can infer

the conclusion (i.e., if KiA and Ki(A! B) then KiB.) It is not required

that such an agent know any other inference rule or axiom. It is clear
that the agent lacks logical omniscience.

It is possible to �nd an adequate semantics for L using impossible
possible worlds. However, we can also provide L with a simple truth-
functional semantics.

De�nition 4 An L-evaluation is a function V from the set LE of for-
mulae to the set f0; 1g of truth-values, which satis�es the following con-
ditions for arbitrary formulae:

� V (:A) = 1 if and only if V (A) = 0

� V (A! B) = 0 if and only if V (A) = 1 and V (B) = 0

� If V (KiA) = 1 and V (Ki(A! B)) = 1 then V (KiB) = 1

The �rst two clauses guarantee that all classical theorems are valid,
and the last one ensures the validity of the axiom schema K. It can be
seen easily that if a formula is provable in L then it has the value 1 under
all L-valuations. It turns out that the converse is also true, that is, the

system L is complete with respect to the given semantics.

Theorem 5 If V (A) = 1 for all L-valuations V then A is L-provable.

Proof (Sketch) If A is not a theorem of L, then :A is L-consistent.
Therefore :A is contained in a maximal L-consistent set X, by the stan-
dard Henkin argument. The valuation V de�ned by V(A)=1 i� A 2 X

for all A 2 LE satis�es the three conditions above, as we can check easily.

Thus, V is an L-valuation and V is a model of :A. By contraposition
we have the desired result.
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As the example of system L shows, the strategy of weakening epis-

temic logic allows us to consider agents who are very restricted in their

reasoning capacities. We can describe and classify them according to

their rationality. We would have a hierarchy of agents: some agents are

ideal, who are modelled by the logic K or its extensions, others are less

ideal and can be described by, e.g., the logic L. The agents described by

the intermediate systems between L and K are not as ignorant as those

of L, neither are they ideal reasoners as those of K.

The strategy of weakening epistemic logic solves the logical omni-

science problem. However, the disadvantages cannot be overlooked. First,

this approach is only suited to analyze static knowledge, that is, we can

at most describe the knowledge sets at one single time point. This is of

course not a de�ciency of these logics alone, but of most epistemic logics
developed up to now. Second, the categories of agents we describe and
classify by our logics are merely imaginary: they do not exist in reality.
It is very implausible to assume that there are agents who always think

in some �xed patterns which can be captured by one of our logics. Each
agent represents rather some mixture of several logics, at some time point
they can be described by one, at other time points by another, and still
at other by none of our logics at all. Third, given the information that an
agent's knowledge includes a set X of sentences, in reality we can never
infer reliably that the agent knows all sentences of the deductive closure

clS(X) of X with respect to a deductive system S, even if we suppose
S to be very weak (but not degenerate in the sense that clS(X) = X.)
This point has led many people to raise the question if epistemic logic is
possible at all, or do we have to leave the realm of logic when reasoning
about knowledge and belief ([16], [1].) Fourth, we have the feeling that

our logics are too weak. Surely, we want to avoid logical omniscience.
On the other hand, we are interested in having epistemic logics which
are strong enough to allow su�ciently many conclusions from a given

set of facts we know about the agent's propositional attitudes. We want
to have agents who do know at least a (su�ciently) large class of logical

truths, and can draw su�ciently many conclusions from their knowledge.
This is the dilemma on logical omniscience on the one side and logical

ignorance on the other side. That is why I ask the question before: what
is left from epistemic logic if we deny the validity of the axiom K or of

the congruence rule and stronger principles? What we need is something

between two extremes. Can we have some reasonable thing like that?

My goal is to show that we can solve this dilemma. I shall now
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propose another strategy to solve the logical omniscience problem which

also solves the problem of logical ignorance. My strategy starts with

the observation that the laws of (classical) logic are not sentences about

the world, they do not tell us anything about what is the case in the

world. If we say that the epistemic agent knows the laws of logic, we do

not mean that she knows some facts about the world, but rather that

she is able to use these laws to draw conclusions from what she already

knows. The laws of logic are what the agent knows implicitly; she does

not need to possess them permanently. It su�ces if she can recall them

when she needs them in order to infer new information from her explicit

data base. At a given time the set of logical laws that the agent has in

her memory is restricted, and so is the set of logical consequences of all

what she knows explicitly. In this way we can achieve a good tradeo�
between logical omniscience and logical ignorance: the agent is surely not
omniscient with respect to her actual or explicit knowledge, but neither
is she logically ignorant. Our task is to �nd a suitable way to express

this idea formally.
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3 Dynamizing Epistemic Logic

Let us consider an inference rule, say R. It can be a valid inference

rule of classical logic, or some other (non-classical) logic, for example,

intuitionist logic, conditional logic or relevant logic. Assume that an

agent accepts R as valid and she can use R. What does it mean? In

the modal approach we formalize this idea by an axiom saying that the

knowledge set of the agent is closed under this rule, that is, if all premises

of the rule are known then the conclusion of R is also known. However,

as we noted above, it is only true of implicit knowledge. In the context

of explicit knowledge it must mean something di�erent. It means rather

that, if the agent knows all premises of the rule, and if she perform the

inference according to the rule R, then she will know the conclusion.
The agent does not know the conclusion automatically, but rather as
the result of some action, viz. the (mental) action of performing the
corresponding inference. If she does not perform this action, then we

cannot require her to know the conclusion, although this conclusion may
seem to be an obvious consequences of the sentences under consideration.
Especially, a logical axiom can be viewed as an inference rule without any
premises. We cannot require the agent to know all axioms automatically
and permanently, she must rather carry out some action before she can

acquire knowledge of a certain axiom. It is possible that the agent knows
all logical truths, but merely in principle. This knowledge is only implicit.
Factually she never knows them all at once explicitly.

For formalizing the reasoning actions it is natural to use (a form of)
dynamic logic (cf. [13], [9].) Thus, we can add a set of basic actions

to the language of epistemic logic. The set of formulae now includes
formulae like [Ri]KiA or hRiiKiA with the intended meaning: \always
after using rule R (or sometimes after using R) the agent i knows A".
The formalization of the idea that an agent accepts and is able to use an

inference rule is straightforward. For example, the idea that the agent i

accepts modus ponens can be formalized by the axiom: KiA ^Ki(A !

B)! hMPiiKiB. This axiom says no more than if agent i knows A and

she also knows that A implies B, then after a suitable inference step she
will know B.

As the axioms can be viewed as special inference rules we can intro-
duce an action corresponding to each agent and each axiom of the basis

logic, which describes the ability of the agent to use this axiom in her
reasoning. (In general, di�erent agents may have di�erent logics, so that
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the sets of basic actions are di�erent for di�erent agents. However, in the

paper I assume a set of homogeneous agents, for the sake of simplicity.)

By means of the familiar program connectives for dynamic logic (such

as composition or iteration) we can formalize the idea that the agent

may know the consequences of some sentence which she already knows

explicitly, provided that she performs the right reasoning steps. For ex-

ample, assume that the agent i knows the conjunction of A and A! B,

that is, Ki(A ^ (A ! B)). In all normal modal systems we can deduce

Ki(A ^ B). However, this inference is not sound for realistic agents.

There is no guarantee that the agent will know A ^ B automatically, as

the modal approach suggests. We can only say that if the agent reasons

correctly, then she will know A ^ B. In our concrete case, let CE, CI,

MP be the conjunction elimination rule, the conjunction introduction
rule, and modus ponens, respectively, and let the symbol \;" denote the
composition of actions. We write (CE;MP ;CI)i as an abbreviation for
CEi;MPi;CIi (\agent i performs CE, then MP , and then CI".) Then

our theorem must be: Ki(A ^ (A! B))! h(CE;MP ;CI)iiKi(A^B),
and not Ki(A ^ (A ! B)) ! Ki(A ^ B) as in the standard modal
approach.

In general, suppose that B follows from A in some basis logic (which
is accepted by the agent) and that the agent knows A. For explicit
knowledge we cannot assume that the agent automatically knows B. Let

a proof ofB fromA be given, where the axioms and inference rules used in
the proof are R1,...,Rn (in this order, where the same axiom or inference
rule may occur at di�erent places in the sequence.) Then, instead of the
monotonicity rule in the standard modal approach we have the axiom:
KiA! h(R1; : : : ;Rn)iiKiB. This axiom says that if the agent i performs

the sequence of actions corresponding to the rules from R1 to Rn (in this
order) then she may know B under the given circumstances. Whether
or not the agent can come to this conclusion depends crucially on her

logical ability. In this way we see that the logical omniscience problem
can be solved easily in a natural way: we can describe agents whose

knowledge may or may not be closed under logical laws. On the other
hand we can still say that the agent thinks rationally, that she is not

logically ignorant. Theoretically she may produce all logical truths, and
all logical consequences of her knowledge, but only if she is interested in

doing so, if she has enough time and memory, et cetera.

In the above argumentation we have made an implicit assumption.

We have assumed that all premises, once known by the agent, are still
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available after the agent performs a reasoning step. In the previous ex-

ample, if the agent forgets the premise A immediately after using modus

ponens, then she cannot apply the conjunction introduction rule to come

to the conclusion A^B. Thus, we have to postulate that the agent does

not forget what she previously knows after performing some reasoning

action. This assumption can be formalized using persistence axioms for

knowledge, for example, KiA! [Ri]KiA.

Are such persistence axioms reasonable? Only under two conditions.

Fisrt, the truth value ofA should not change over time. IfA becomes false

after i's inference using rule R then it is not reasonable to postulating

that i still knows A after the use of R. The persistence of A can be

achieved if we do not allow temporal indexicals to occur in A: the truth

values of objective sentences do not change over time. Second, the truth
value of A may not change through the agent's actions. This excludes
formulae such that :KiB: it is possible that agent i does not know B

now, but will know it as a result of her reasoning. In general, a formula in

which a knowledge operator occurs essentially negative (i.e., within the
scope of an oddnumber of the negation sign) is not a suitable candidate
for a persistent one. So, we may assume that persistent formulae are built
up from objective formulae, conjunction, disjunction, and the knowledge
operators only.

Let us now examine how the ability of the agents to introspect their

knowledge can be captured within our dynamic framework. Let PIi and
NIi be i's actions of positive and negative introspection, respectively.
Consider positive introspection �rst. Suppose that i knows A. Can we
infer that she will know after introspecting her knowledge that she knows
A? Not necessarily! We can assume that i will know that she previously

knows A, but to support the inference that after her introspection action
the agent knows that she knows A we need one more argument, namely
that i's knowledge ofA will not be changed through her reasoning actions.

We have argued previously that such a persistence axiom is reasonable
for a subclass of formulae. Thus, we have the following axiom of positive

introspection, which corresponds to the schema 4 in modal epistemic
logic: KiA! hPIiiKiKiA, provided that A is persistent.

The same argumentation can be used to show that the candidate
for the negative introspection axiom :KiA ! hNIiiKi:KiA is not ac-

ceptable. It can happen that after a reasoning step the agent knows

something what she did not know previously. If we extend the lan-

guage to include objective or absolute time, then a statement such as
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:K t
iA ! hNIiiK

t+1
i :K t

iA would be absolutely reasonable. However,

this issue will not be pursued further in the present paper.

In most cases we do not need to care about what course of actions the

agents just carried out; we are only interested in the result of the actions,

so to speak. We only need to know that a certain agent has carried out

some reasoning steps, and after that she gain certain new information.

In this case it is convenient to introduce an auxiliary action Fi with the

following intended reading: do any one of the atomic actions (we don't

know what action;) repeat the non-deterministic choice �nitely many

times (at least once, but we don't know how many times!) The action

Fi could be interpreted as a course of thought of the agent i. From the

viewpoint of dynamic logic: if the set of all atomic actions associated with

the agent i and her basis logic is a �nite set fr1i ; : : : ; r
n
i g, then Fi can be

viewed as (r1i [ r2i [ : : : [ rni )
+, where the symbols [ and + denote choice

and non-zero iteration, respectively. (In dynamic logic another form of
iteration is considered, viz. the one that allows for running a program

zero time, denoted by �. But one can easily extend dynamic logic to
include non-zero iteration as well.) The choice of the symbols Fi is not
accidental at all: in temporal logic its stands for the operator \Future".
It turns out that our auxiliary action behaves in the same manner as the
future operator of temporal logic: the operator hF i satis�es all the axioms
for the minimal temporal logic Kt4. It is no surprise at all: we know that

the minimal temporal logic can be embedded into dynamic logic, and
one way to do this is to take the iteration of an action to interpret the
future operator. The formal language in which our dynamic epistemic
logics are formulated is called LDE and will be de�ned in the following
section.
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4 Dynamic Epistemic Logic

De�nition 6 (The language of dynamic epistemic logic) LetAgt =

f1; : : : ; ng be a set of n agents and let LE be the language of epistemic

logic as de�ned in De�nition 1. LDE is the least set such that

1. LE � LDE

2. If A 2 LDE then :A 2 LDE

3. If A 2 LDE and B 2 LDE then (A! B) 2 LDE

4. If A 2 LDE then hFiiA 2 LDE

Conjunction, disjunction and the operator [Fi] dual to hFii are de-
�ned as usual. The formula hFiiA is read: \A is true after some course
of thought of i", [Fi]A means \A is true after any course of thought of i".
(We could think of hFii and [Fi] as the modalities \at some future times"

and \at all future times" of temporal logic, but now time is subjective
time, i.e., agent-dependent, generated by the agent's actions.) Note that
we do not allow the operator hFii to occur inside the scope of any knowl-
edge operator. The reason is that such expressions are indexicals: they
contain temporal indexicals like \next" or \later" implicitly. We want

to exclude indexical expressions from our language because they require
special treatment, which could be very involved and may obscure more
important points.

De�nition 7 The sublanguage L+
E of LE is the smallest set of formulae

from LE which contains all objective formulae and is closed under the
condition: if A;B 2 L+

E and i 2 Agt then f(A^B); (A_B);KiAg � L+
E.

Now we go on to de�ne an axiomatic system for reasoning about the
dynamics of knowledge along the lines described in the previous section.
We have three groups of axioms: the usual axioms of the propositional

calculus, axioms for temporal logic, and axioms governing the interaction

between knowledge and reasoning activities.

De�nition 8 (The system DES4n) The logic DES4n (Dynamic-Epistemic

S4n) has the following axiom schemata:

PC1. A! (B ! A)
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PC2. (A! (B ! C))! ((A! B)! (A! C))

PC3. (:B ! :A)! (A! B)

TL1. [Fi](A! B)! ([Fi]A! [Fi]B)

TL2. [Fi]A! [Fi][Fi]A

DE1. KiA ^Ki(A! B)! hFiiKiB

DE2. KiA! A

DE3. KiA! [Fi]KiA, provided that A 2 L+
E

DE4. hFiiKi(A! (B ! A))

DE5. hFiiKi((A! (B ! C))! ((A! B)! (A! C)))

DE6. hFiiKi((:B ! :A)! (A! B))

DE7. hFiiKi(KiA! A)

DE8. KiA! hFiiKiKiA, provided that A 2 L+
E

The rules of inference are:

R1. Modus ponens: if A and A! B are theorems then B is a theorem.

R2. Necessitation: if A is a theorem then so is [Fi]A.

In these axioms and rules, the index i ranges over the whole set Agt

of agents. The axioms PC1 { PC3 together with the rule R1 axioma-
tize completely the propositional calculus. Together with TL1, TL2 and
R2 they form a complete axiomatization of the minimal temporal logic
of transitive time. The axioms DE1 { DE7 describe the dynamics of

knowledge. Axiom DE1 says that the agents are capable of using modus

ponens. Axiom DE2 is the well-known schema T saying that knowledge
entails truth. Axiom DE3 says that agents do not forget what they know

when they are reasoning. Axioms DE4 { DE6 state that the agents are
able to use the axioms PC1 { PC3 of classical logic in their reasoning.

Axiom DE7 says that agents potentially trust their knowledge: when
thinking about themselves, they think that what they know must be

true (as opposed to what they merely believe.) Finally, DE8 says that
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the agents are capable of positive introspection. Of course, only instances

of these schemata which are well-formed formulae are allowed.

The notions of a proof, a theorem, and a consistent formula or set

of formulae (with respect to the logic DES4n) are de�ned as usual. The

provability relation is denoted `DES4n, where the index may be omitted

if no confusion can occur. Moreover, we say that a formula A 2 LE

is PC-provable, in symbol `PC A, just in case A can be proved using

only instances of the schemata PC1 { PC3 (in the sublanguage LE) and

modus ponens.

Of course, we can postulate that the agents can use further simple

tautologies and inference rule in their reasoning. For example, we can

include axioms such thatKiA^KiB ! hFiiKi(A^B), or hFiiKi(A_:A).

However, this is not necessary at all, as the following theorem shows.
Instead of the necessitation rule and monotony rule in modal epistemic
logic we have now a theorem stating that the agents can know all classical
theorems and can draw all consequences of what they know, provided that

they perform the right reasoning.

Theorem 9 Let A, B be objective formulae. The following inference
rules are provable in DES4n:

R3. If `PC A then `DES4n hFiiKiA.

R4. If `PC A! B then `DES4n KiA! hFiiKiB.

Proof See the appendix.

Corollary 10 Assume that A, B are objective formulae. The following
formulae are theorems of DES4n:

1. KiB ! hFiiKi(A! B)

2. Ki(A ^B)! hFiiKiA

3. Ki(A ^B)! hFiiKiA ^ hFiiKiB

4. KiA! hFiiKi(A _B)

5. KiA _KiB ! hFiiKi(A _B)

6. Ki::A! hFiiKiA
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In fact, the above rules and theorems are provable for a larger class

of formulae, not only for objective ones. The following list comprises

some more provable formulae of DES4n. They say that if all premises of

a valid inference rule are known or will be known, then after some steps

of reasoning the agents will know the conclusion. We still assume that A

and B are objective. We still assume that A and B are objective. Their

proofs are found in the appendix.

Theorem 11 The following formulae are theorems of DES4n:

1. KiA ^ hFiiKi(A! B)! hFiiKiB

2. KiA ^KiB ! hFiiKi(A ^B)

3. KiA ^ hFiiKiB ! hFiiKi(A ^B)

4. Ki(A ^B)! hFii(KiA ^KiB)

It is obvious that DES4n solves the logical omniscience problem. Now
we de�ne a semantics for our dynamic epistemic logic. Our semantics is
a generalization of Kripke semantics for temporal logic. A subjective
temporal frame is a structure F = (S;R1; : : : ; Rn) where S is a non-
empty set, the set of states, and for each agent i 2 Agt, Ri is a binary

relation on S. We assume that each Ri is transitive. A valuation on the
frame F is a function V from S to the powerset of LDE. A model of
DES4n comprises a subjective temporal frame and a valuation such that
certain conditions are satis�ed. The intended interpretation is that S is
the set of possible states of the world at di�erent times, V (s) is the set

of all formulae that are true at s, and sRit means that agent i can reach
t from s through her reasoning.

De�nition 12 (Models for DES4n) A DES4n-model M consists of a

subjective temporal frame F and a valuation V such that the following
conditions are satis�ed:

1. For all A 2 LDE and s 2 S, :A 2 V (s) i� A 62 V (s).

2. For all A;B 2 LDE and s 2 S, (A ! B) 2 V (s) i� A 62 V (s) or

B 2 V (s).

3. For all A 2 LE, i 2 Agt and s 2 S, hFiiA 2 V (s) i� there is some

t 2 S such that sRit and A 2 V (t).
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4. For all A;B 2 LE, i 2 Agt and s 2 S, if KiA;Ki(A! B) 2 V (s)

then KiB 2 V (t) for some t 2 S such that sRit.

5. For all A 2 LE, i 2 Agt and s 2 S, if KiA 2 V (s) then A 2 V (s).

6. For all A 2 L+
E, i 2 Agt and s 2 S, if KiA 2 V (s) then KiA 2 V (t)

for all t 2 S such that sRit.

7. For allA;B;C 2 LE, i 2 Agt and s 2 S there are some t1; t2; t3; t4 2

S such that sRit1, sRit2, sRit3, sRit4 and

� Ki(A! (B ! A)) 2 V (t1)

� Ki((A! (B ! C))! ((A! B)! (A! C))) 2 V (t2)

� Ki((:B ! :A)! (A! B)) 2 V (t3).

� Ki(KiA! A) 2 V (t4)

8. For all A 2 L+
E, i 2 Agt and s 2 S, if KiA 2 V (s) then KiKiA 2

V (t) for some t 2 S such that sRit.

The requirements like A 2 LE or A 2 L+
E in the above conditions

ensure that, e.g. KiA 2 LDE. A formula A is said to be true at a state
s in a model M , in symbol M;s j= A, just in case A 2 V (s). It is said
to be DES4n-satis�able if and only if it is true at some state in some

DES4n-model. We say that A is true in M just in case A is true at all
states in M . A is valid (with respect to DES4n-models) i� it is true in
all DES4n-models.

Given a model M we can de�ne Inf(i; s) =def fA 2 LDE j KiA 2

V (s)g. We can interpret Inf(i; s) as agent i's explicit knowledge (or her
information state) at time s: it is the totality of all what this agent knows.

From the de�nition we see that if sRit then Inf(i; s) � Inf(i; t), that
is, an agent's knowledge always grows over this agent's time. Moreover,

we can see that Inf(i; s) needs not be closed under any logical law. It is
even possible that Inf(i; s) is empty, that is, agent i knows nothing. In a

modelM there can be some state s where Inf(i; s) is closed under logical
consequence, in other states it is closed under some weaker, possibly

incomplete deductive system, and in still other states it is not closed
under any logical rule, except for the trivial rules like A ` A. These

are properties of actual knowledge of any realistic agent. Although an

agent's knowledge is not deductively closed at a state, we cannot say
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that she is not rational: the agent is rational, because she can (at least

in principle) perform actions to close her knowledge under logical laws.

We cannot speak of \resource bounded rationality", but should rather

speak of \resource bounded reasoners".

The following theorem states that the logic DES4n is sound and com-

plete with respect to DES4n-models. In particular, all theorems of the

temporal logic Kt4, including all theorems of the propositional calculus,

are DES4n-valid.

Theorem 13 (Soundness and completeness) A formula A is a the-

orem of DES4n if and only if it is valid.

Proof Soundness is quite straightforward: we have only to show that

all DES4n-axioms are valid and the application of the inference rules
leads from valid premises to valid consequences. We omit the details.
Completeness is shown in the appendix.
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5 Discussions

We have shown how to solve the logical omniscience problem of epistemic

logic while preserving the intuition that the agents are logical, rational

beings. Our strategy consists in taking the dynamic aspect of knowl-

edge into account. We have argued that the correct form of an axiom

for epistemic should be: if an agent knows all premisses of a valid in-

ference rule, and if she performs the right reasoning, then she will know

the conclusion as well. This intuitive idea has been captured formally

within an axiomatic system, and the calculus has been given an ade-

quate semantics. Our strategy can do justice to the intuition that the

agents are neither logically omniscient nor logically ignorant. They are

non-omniscient, because their actual (or explicit) knowledge at a single
time point needs not be closed under any law. It is even possible that
they do not know any logical truth at all at some of their information
states. On the other hand, they are non-ignorant, because they are ca-

pable of logical thinking. They can use their reasoning capacities to infer
new information from what they already know. Their rationality is not
restricted by any arti�cial, ad hoc postulate saying that their inference
mechanisms are incomplete. If an agent performs the correct inferences
and if she has enough time, then she might arrive at an ideal informa-

tion state where all logical consequences of her current beliefs have been
drawn. This ideal state can never been achieved by real agents, but this
is another matter.

To my knowledge, there exists no similar work in the literature which
pursues the strategy of dynamizing epistemic logic in order to solve the

dilemma of logical omniscience and logical ignorance. Most close to my
approach are perhaps works on \parametrized epistemic logic", proposed
e.g. by Stelzner ([24],) where knowledge is time (agent, context ...) de-
pendent. However, in his formal systems Stelzner does not consider the

concepts of knowledge and belief, but a related concept, the concept of

a (hypothetical) obligation to defend some sentence. The latter concept
is related to the former in the following way: in a rational discourse, if

an agent asserts some sentence, then she has the obligation to defend it
when it is challenged, because she has made public through her asser-

tion that she believes in the sentence. Stelzner investigates axioms to
describe agents in a rational discourse. These axioms say, for example,

that if an agent is obligated to defend A at t and B can be inferred from
A by one inference step, then the agent can be obligated to defend B at
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time t+ 1. (A time line isomorph to the natural numbers, generated by

the consecutive \moves" in the discourse, is assumed. The obligation to

defend B is only hypothetical, because it does not arise if B is not chal-

lenged.) With the aid of such axioms one can classify agents according

to their rationality. Stelzner's logic could be reinterpreted as formalizing

the concept of implicit, or possible knowledge, but not the concept of

explicit, or actual knowledge: a statement such as K t
i (A ^ B)! K t+1

i A

is perhaps more acceptable than the axiom K t
i (A ^B) ! K t

i (A), but it

is still a too strong requirements for the notion of actual knowledge. In

contrast, I have tried to show how the concept of actual knowledge can

be captured.

In the literature on belief revision some authors have considered

belief-changing actions. For example, Van Linder, van der Hoek and
Meyer ([20], [21]) have done some work to formalize the change of knowl-
edge through actions. However, they made very strong assumptions
about knowledge: their agents are logically omniscient. The actions they

consider lead from one deductively closed belief set to another. Thus,
their work should be read in terms of information dynamics, and not
knowledge dynamics.

We can develop variants of DES4n to describe di�erent sorts of agents.
For instance, we could modify the axiom system to formalize the concept
of belief. We can base epistemic logic on another, nonclassical logic. We

could also add some more axioms or drop some of the axioms of DES4n.
How to do it concretely depends crucially on our intended application.
At the moment we are working to integrate our dynamic epistemic logic
into a framework for reasoning about actions in multi-agent systems.

Another open issue is to �nd a way to incorporate indexical knowl-

edge in our framework. We have so far ignored this issue and exclude
indexical expressions from our language. However, for many applications
we must be able to treat indexical knowledge adequately. Some work has

been done on this issue, e.g. by Lesp�erance and Levesque ([18].) How-
ever, their and related works should be seen as dealing with indexical

information (or indexical possible knowledge), and not with genuine in-
dexical knowledge, for the reasons explained earlier. Thus, much work

still remains to be done.
So far our logic has been monotonic in two aspects. First, the conse-

quence operation of DES4n is monotonic. Second, the knowledge of the

agents always grows over time. A very interesting, still open problem

is to develop dynamic epistemic logics based on non-monotonic logic,
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where the agents can revise their knowledge when they �nds out that

their knowledge is inconsistent. We may expect to �nd interesting con-

nections with two other, very active �elds of AI research, viz. to non-

monotonic reasoning and to the logic of belief revision. This seems to be

a promising �eld of research and needs further investigations.
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A Formal Proofs

A.1 Proof of Theorem 9

First, note that [Fi]A ^ hFiiB ! hFii(A ^ B) and hFiihFiiA ! hFiiA

are DES4n-provable. Moreover, if A ! B is DES4n-theorem then so is

hFiiA! hFiiB. We shall make extensive use of these facts in our proof

without mentioning them explicitly. To shorten the proofs we assume

that all theorems and rules of PC and Kt4 have been derived, so we do

not have to write them down explicitly.

Consider rule R3. Let `PC A. We show `DES4n hFiiKiA by induction

on the length m of the proof of A. If m = 1 then A must be an instance

of one of the axiom schemata PC1{PC3. The claim follows from DE4{

DE6. If m > 1 then A must be obtained by applying modus ponens
from, say, B and B ! A, which are PC-provable in less than m steps.
So we assume that there is a PC-proof of A of lenghth m where in the
k-th and l-th lines we had proved B and B ! A. The PC-proof of A can
be extended to a DES4n-proof of KiA as follows:

(k) B Ass.

(l) B ! A Ass.
(m) A (k), (l), R1
(m+1) hFiiKiB Ind. Hyp., (k)
(m+2) [Fi]hFiiKiB (m+1), R2
(m+3) hFiiKi(B ! A) Ind. Hyp., (l)
(m+4) Ki(B ! A)! [Fi]Ki(B ! A) DE3

(m+5) hFii[Fi]Ki(B ! A) (m+3), (m+4)
(m+6) hFii(hFiiKiB ^ [Fi]Ki(B ! A)) (m+2), (m+5)
(m+7) hFiihFii(KiB ^Ki(B ! A)) (m+6)
(m+8) hFiihFiihFiiKiA (m+7), DE1
(m+9) hFiiKiA (m+8)

Rule R4 can now be proved as follows:
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(1) A! B Ass.

(2) KiA Ass.

(3) hFiiKi(A! B) (1), R3

(4) [Fi]KiA DE3, (2)

(5) hFii(Ki(A! B) ^KiA) (3), (4)

(6) hFiihFiiKiB (5), DE1

(7) hFiiKiB (6)

(8) KiA! hFiiKiB (2), (7)

A.2 Proof of Theorem 11

1. KiA ^ hFiiKi(A! B)! hFiiKiB

(1) KiA Ass.
(2) hFiiKi(A! B) Ass.
(3) [Fi]KiA DE3, (1)
(4) hFii(Ki(A! B) ^KiA) (2), (3)
(5) hFiihFiiKiB (4), DE1

(6) hFiiKiB (5)

2. KiA ^KiB ! hFiiKi(A ^B)

(1) KiA Ass.

(2) KiB Ass.
(3) [Fi]KiA DE3, (1)
(4) [Fi]KiB DE3, (2)
(5) hFiiKi(A! (B ! (A ^ B))) R3
(6) hFii(KiA ^Ki(A! (B ! (A ^B)))) (3), (5)
(7) hFiiKi(B ! (A ^ B)) (6), DE1

(8) hFii(KiB ^Ki(B ! (A ^B))) (4), (7)
(9) hFiiKi(A ^ B) (8)

3. KiA ^ hFiiKiB ! hFiiKi(A ^B)

(1) KiA Ass.
(2) hFiiKiB Ass.

(3) [Fi]KiA DE3, (1)

(4) hFii(KiA ^KiB) (3), (2)
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4. Ki(A ^B)! hFii(KiA ^KiB)

(1) Ki(A ^B) Ass.

(2) hFiiKiA (1), R4

(3) hFii[Fi]KiA (2), DE3

(4) [Fi]Ki(A ^B) (1), DE3

(5) [Fi]hFiiKiB (4), R4

(6) hFii([Fi]KiA ^ hFiiKiB) (3), (5)

(7) hFiihFii(KiA ^KiB) (6)

(8) hFii(KiA ^KiB) (7)

A.3 Proof of Theorem 13

The completeness theorem follows directly from the following lemma.

Lemma 14 (Satis�ability lemma) Every consistent set of formulae is
satis�able.

Proof Assume that the set X is consistent. We show that it has a
model, i.e., that it is satis�able. We de�ne a model for X as follows. By
the standard Lindenbaum argument, X is contained in a maximal con-
sistent set. Let M be the following structure: M = ((S;R1; : : : ; Rn); V )
where

� S is the set of (DES4n-)maximal consistent sets of formulae.

� sRit if and only if hFiiA 2 s whenever A 2 t (if and only if A 2 t

whenever [Fi]A 2 s).

� V (s) = s

We show thatM is a DES4n-model. First, we show that (S;R1; : : : ; Rn)

is a transitive subjective temporal frame. Let i 2 f1; : : : ; ng. Assume

that sRit and tRiu, and let A 2 u. From tRiu we have hFiiA 2 t, there-

fore hFiihFiiA 2 s, because sRit. By axiom TL2 we can infer hFiiA 2 s,

hence sRiu, i.e., Ri is transitive.
Next, we prove that all conditions of De�nition 12 are satis�ed.

1. :A 2 V (s) i� A 62 V (s), because V (s) = s is maximally consistent.

2. (A! B) 2 V (s) i� A 62 V (s) or B 2 V (s), by maximal consistency

of V (s) = s.
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3. Assume that hFiiA 2 V (s). We show that there is some t such

that sRit and A 2 V (t). It su�ces to show that the set Y =

fAg[fB : [Fi]B 2 sg is consistent. Assume that Y is inconsistent.

In this case there must be someB1; : : : ; Bm such that [Fi]Bk 2 s and

:(A^B1^: : :^Bm) is provable. It follows that (B1^: : :^Bm)! :A

is provable. By the rule of necessation (R1) and the distribution

axiom (TL1), ([Fi]B1 ^ : : : ^ [Fi]Bm)! [Fi]:A is provable, so this

formula belongs to s. It follows that [Fi]:A 2 s, contradicting the

assumption that hFiiA 2 s. Thus, Y is consistent. Let t be any

maximal consistent extension of Y . Then sRit by de�nition of Ri,

and B 2 t.

Conversely, let us assume that there is some t 2 S such that sRit

and A 2 V (t). We show that hFiiA 2 V (s). But this is trivial, by
de�nition of Ri.

4. Now letKiA 2 V (s) and Ki(A! B) 2 V (s). We show that KiB 2

V (t) for some t such that sRit. By maximality of s all theorems
of DES4n belong to s, thus (KiA ^Ki(A ! B) ! hFiiKiB) 2 s.
But V (s) = s, so KiA 2 s and Ki(A ! B) 2 s. It follows that
hFiiKiB 2 s, therefore there must be some t such that sRit and
KiB 2 t, i.e., KiB 2 V (t).

5. Assume that KiA 2 V (s). As KiA! A is an axiom it must belong
to s, thus A 2 s, i.e., A 2 V (s).

6. Suppose that KiA 2 V (s) and sRit. We show that KiA 2 V (t). By
de�nition of V we have KiA 2 s. As KiA ! [Fi]KiA is an axiom
it must belong to s, thus [Fi]KiA 2 s. It follows by the de�nition

of Ri that KiA 2 t, therefore KiA 2 V (t).

7. Let s 2 S. As the axioms DE4{DE7 belong to V (s) = s there must
be some t1; t2; t3; t4 2 S such that sRit1, sRit2, sRit3, sRit4 and

� Ki(A! (B ! A)) 2 t1

� Ki((A! (B ! C))! ((A! B)! (A! C))) 2 t2

� Ki((:B ! :A)! (A! B)) 2 t3.

� Ki(KiA! A) 2 t4

The claim follows from the fact that V (tj) = tj for j = 1; : : : ; 4.
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8. Finally, assume that KiA 2 V (s), i.e., KiA 2 s. By maximality of

s, the axiom schema DE8 belongs to s, therefore hFiiKiKiA 2 s.

It follows that KiKiA 2 t, i.e., KiKiA 2 V (t) for some t 2 S such

that sRit.

Thus, the canonical modelM is a DES4n-model. If X is a consistent

set then all formulae of X are satis�ed at a state of the canonical model,

which is a maximal consistent extension of X, i.e., X has a model.
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