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Abstract

Every year a higher life expectancy is reported for people living in industrial
countries. With increasing age, the risk of getting Alzheimer’s Disease in-
creases as well. Alzheimer’s Disease is a neurodegenerative disease that is
characterised by progressive deterioration of brain tissue. One of the first
regions in the brain to be affected is the hippocampus. A common method
to quantify the deterioration of the hippocampus is to measure its volume.
However, decreasing volume is no specific marker of Alzheimer’s Disease, but
can be caused by other diseases as well. Thus, the deformation has to be
observed in more detail, which can be done using shape analysis. A powerful
shape analysis technique is the approximation of the surface by means of
spherical harmonics. A process chain computing such an approximation is
explained in this thesis. Therefore, the data is triangulated, forming a closed
manifold. Afterwards, a homogeneous mapping of the surface to the unit
sphere is computed in two steps. First an initial spherical parametrisation
is computed, which is optimised afterwards to resemble the properties of the
initial surface. The optimisation is mandatory, to allow for inter-subject com-
parability. The optimised parametrisation defines a function on the sphere,
that can be approximated by spherical harmonics, a set of basis functions on
the unit sphere. This procedure results in a mathematical description of the
surface that can be analysed statistically. The method is applied to data of
Alzheimer’s Disease patients.
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“For the harmony of the world is made manifest
in Form and Number, and the heart and soul and
all poetry of Natural Philosophy are embodied in

the concept of mathematical beauty.”

- D’Arcy Thompson (“On Growth and Form”, 1917)
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Chapter 1

Introduction

1.1 Motivation and Objectives

If it were true that the whole world follows the concepts of mathematical
beauty (Thompson, 1917), that every object and every phenomenon can
be described by a set of functions, then even the most chaotic and most
extraordinary processes would have to follow some basic rules. So far, nobody
knows, whether there is a general concept behind everything. Nevertheless,
trying to understand processes is one of the driving forces of the evolution
of mankind.

In medicine, many diseases cause an ongoing change in the body. If this
change can be described and quantified mathematically, it would be a promis-
ing extension to the way diagnosis are made. One of these diseases that is
hard to diagnose from the outside or by laboratory tests is Alzheimer’s Dis-
ease, a disease that slowly destroys the human brain and that cannot be
cured, yet. If the decline can be quantified in early stages of the diseases,
the causes and the progress could be analysed more precisely, providing the
chance to find a treatment.

1.2 Thesis Overview

Thus, a program was implemented that aims for mathematical descriptions
of regions in the brain that are affected by AD. These descriptions are to
be used to find an early marker of the disease. To clarify the medical back-
ground, Chapter 2 gives an introduction to AD, its progress in the brain and
techniques to quantify the progress. Chapter 3 explains and compares differ-
ent approaches to analyse magnetic resonance (MR) images that have been

2
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used to find an early marker of AD. The solution proposed to find such a
marker is given in Chapter 4. The details on the implementation provided in
Chapter 5, explain a process consisting of seven steps that results in a math-
ematical description of the surface of the affected region in the brain. This
description can be used to analyse the structure statistically, which might
reveal an early marker of AD. The results of the work are summarised in
Chapter 6, and Chapter 7 draws a conclusion and explains the future work.



Chapter 2

Medical Background

2.1 Overview

Exactly 100 years ago, Alois Alzheimer described a disease that changed the
patients social and cognitive abilities completely. Ever since, scientists tried
to discover the causes and a distinct marker of this disease, called Alzheimer’s
Disease (AD). But even in times of sophisticated medical examination tech-
niques, these questions remain still unanswered. Answers might be found,
when making more extensive use of the conprehensive possibilities of these
techniques, e.g. a more precise analysis of MR images by means of shape
analysis.

In the following, the medical background of the thesis is explained, start-
ing with an introduction to dementia (Section 2.2) and to AD in particular
(Section 2.3). One of the first regions in the brain to be affected is the
hippocampus, a structure explained in Section 2.4. Shape analysis of the
hippocampus is one of the promising techniques to find a marker of early
AD. Thus, an introduction to the basic concepts of shape analysis is given
in Section 2.5.

2.2 Dementia

Dementia (from Latin demens, ‘out of one’s mind’) is a “decline of intel-
lectual function in comparison with the patient’s previous level of function”
(McKhann et al., 1984). This decline is usually associated with changes in
behaviour and impairment of social and professional activities.

“Dementia, in its contemporary usage, is an irreversible condition, and is

4
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(a) Healthy Brain (b) Mild AD (c) Severe AD

Figure 2.1: Different stages of Alzheimer’s disease: (a) A healthy brain,
showing no gaps inside the sulci (fissure in the surface of the brain). The lower
line marks the hippocampus. (b) Under AD, the brain starts to deteriorate,
enlargening the sulci and ventricles (cavity in the brain, filled with fluid).
(c) In the final stages, large cavities are visible in the brain tissue (American
Health Assistance Foundation, 2006).

not applied to states of mental deterioration that may be overcome, such
as delirium. The condition is generally caused by deterioration of brain
tissue, though it can occasionally be traced to deterioration of the circu-
latory system. Major characteristics include short- and long-term memory
loss, impaired judgement, slovenly appearance, and poor hygiene. Dementia
disrupts personal relationships and the ability to function occupationally”
(Heston and White, 1991).

“About 5–10 per cent of the population over 65 have some kind of cognitive
decline, which is considered to be abnormal for this age group” (Gauthier,
1996, p. 35).

2.3 Alzheimer’s Disease

The most common form of dementia among people older than 65 is Alzhei-
mer’s Disease (AD), which “is an irreversible, progressive brain disease that
slowly destroys memory and thinking skills, eventually even the ability to
carry out the simplest tasks” (Rodgers, 2002). The disease is characterised
by an ongoing deterioration of brain tissue, which is illustrated in Figure 2.1.
From the onset of symptoms, AD progresses from two to twenty, in average
seven, years and always ends in death. At present, the only way to accurately
diagnose AD, is to physically examine the brain of a probable AD sufferer
after the patient has died.
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Figure 2.2: The image shows the broadening of neurofibrillary tangles, which
are a marker for the deterioration of the brain (Braak and Braak, 2006).

2.3.1 Discovery

AD was firstly described in 1906, when Alois Alzheimer gave a lecture at
the 37th Conference of South-West German Psychiatrists in Tübingen, pre-
senting a new form of dementia, he had observed at the 51-year-old patient
Auguste D. She showed symptons of “progressive cognitive impairment, focal
symptoms, hallucinations, delusions, and psychosocial incompetence” (Mau-
rer et al., 1997). Necropsy revealed amyloid plaques, neurofibrillary tangles
and arteriosclerotic changes.

2.3.2 Causes

Although the disease was discovered nearly 100 years ago, its causes are not
yet fully understood. There is probably not a single factor causing AD, but
it is a complex, multifactorial process (Mann, 1997; Kamboh, 2004; George-
Hyslop and Petit, 2005). The most important risk factor is age.

The likelihood of developing AD increases exponentially after the sixth decade
of life (Brayne et al., 1995), such that “by age 85 more than 40% of survivors
may be affected” (Terry et al., 1994, p. 179).
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Due to declining birthrates and growing life expectations, the proportion of
US-citizens 65 years of age and older will increase from currently 12.4% to
18.2% in 2025 and is supposed to have reached 20.7% by 2050 (U.S. Bureau
of the Census). Figures for other industrial countries are similar. Thus, the
population in industrial countries will consist of more and more people with
a high risk of developing AD, which so far cannot be cured.

2.3.3 Diagnosis

A first step towards finding a treatment is diagnosing the disease as early
as possible. At present, AD can only be positively diagnosed by perform-
ing an autopsy, revealing the density and distribution of characteristic neu-
rofibrillary tangles (NFT) and amyloid plaques. “The diagnosis of ‘probable
Alzheimer’s disease’ depends on clinical criteria, that is, a characteristic his-
tory, compatible findings on physical and mental status examination, and
the exclusion of other disorders that mimic AD by appropriate information
from history, examination, and laboratory tests” (Terry et al., 1994, p. 9).
To define the disease’s severity, clinical instruments such as the Mini-Mental
State Examination (MMSE) (Folstein et al., 1975) and Clinical Dementia
Rating Scale (CDR) (Morris, 1993) are used. To improve sensitivity and
specificity of the antemortem diagnosis, further investigations are needed to
reveal more specific markers of AD.

Braak and Braak (1991) propose that the progress of AD can be divided into
several stages, as illustrated in Figure 2.2. Their “[...] criterion is based on
the distribution of NFT, which start in the transentorhinal area (Stage I),
spread to the entorhinal region (II), extend to the hippocampus proper (III),
increase in number there (IV), and involve the association neocortex (V) and
finally the primary cortex (VI). These stages are divided into the entorhinal
(I & II), limbic (III & IV), and neocortical (V & VI) phase, correspond-
ing, respectively, to cognitively normal, cognitively impaired, and dementia”
(Murayama and Saito, 2004). Magnetic resonance imaging (MRI) allows in
vivo assessment of the macroscopic effects of this pathology, namely changes
in shape of the affected brain structures.

2.3.4 Preclinical Detection

In the preclinical stage of AD the subjects exhibit no detectable cognitive
changes despite an ongoing, underlying disease process that can be fortified
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by pathologic evidence, i.e. neurofibrillary tangles and β-amyloid plaques,
(Price, 2003; Csernansky et al., 2005).

In the earliest stages, this pathology is located in the entorhinal cortex and
the hippocampus (Braak and Braak, 1991; Arnold et al., 1991). Increased
atrophy of these regions has been proven in several volumetric MRI stud-
ies (Csernansky et al., 2005; Chan et al., 2001; Convit et al., 1997), even in
patients with presymptomatic familial AD (Fox et al., 1996). Correlation be-
tween antemortem hippocampal volumes and both dementia severity and the
density of hippocampal neurofibrillary tangles at autopsy have been shown
(Jack et al., 2002; Csernansky et al., 2004). To assure specificity, distinctness
of early AD from both elderly and younger control subjects is needed. This
was verified by Csernansky et al. (2000) and Wang et al. (2003).

These results suggest that shape analysis of the hippocampus can be used to
detect AD in predementia stage.

Figure 2.3: Gross anatomy of the human brain (left) and the limbic system
(right) (American Health Assistance Foundation, 2006).

2.4 The Human Hippocampus

One of the first regions to be affected by AD is the hippocampus, which
is a part of the brain. It is situated inside the temporal lobe and belongs
to the limbic system. Formation of new memories and processing of spatial
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information are essentially influenced by the hippocampus. Its name derives
from the Greek word hippocampus, which means seahorse, referring to the
rolled shape, which resembles the appearance of the sea dwellers.

2.5 Shape Analysis of the Hippocampus

Volumetric changes of the hippocampus under AD have already been ob-
served successfully. Unfortunately, decreasing volume is not a specific marker
of AD, as this pathologie can be observed in other diseases such as Epilepsy
(Garcia-Finana et al., 2006), Schizophrenia (McDonald et al., 2006) and
Parkinsons’s disease (Bruck et al., 2004) as well. Thus, the structure of
the hippocampus has to be observed in more detail.

A promising approach of in-vivo investigation is shape analysis of the struc-
ture. Commonly, shape stands for the surface of an object or creature, an
outline or a contour. It is supposed to be “something distinguish from its
surroundings by its outline” (The American Heritage Dictionary of the En-
glish Language, 3rd Edition). A more mathematical definition of shape is
given in Appendix A.

As shape analysis is only concerned with an object’s surface and is indepen-
dent of size, it is well suited to investigate not only intra-subject changes,
but gives the opportunity to compare different subjects. To fulfill this task,
a mathematical description of the shape is needed, providing characteristical
paramters, that can be compared and analysed.

In the following chapter, five different approaches are explained, that can be
used, to quantify changes of the hippocampus.



Chapter 3

Related Work

3.1 Overview

Several methods have been proposed, that relate certain parameters to the
progress of AD. Section 2.3.4 shows that analysis of the structure of the brain
can be used diagnose AD. A short introduction to the different methods along
with their advantages and disadvantages is given in Section 3.2, while Section
3.3 compares the different methods.

3.2 Analysis of Volume and Shape

3.2.1 Manual Outline

Several techniques have been applied to give a mathematical description of
the structure of the hippocampus. A first intuitive approach towards evalu-
ation of MRI-structures is the measurement of volume, which might explain
global atrophy or dilation due to illness.

Currently, the gold standard in measuring volumetric changes is manual seg-
mentation of the hippocampus. For this purpose an expert rater outlines the
hippocampus’ boundary on each slice of the MR-scan manually. Counting the
voxels inside the border on each slice results in the approximate hippocampal
volume. This volume is normalised, i.e. divided by the intracranial volume,
to correct for individual differences in brain size (Lehericy et al., 1994; Con-
vit et al., 1997; Insausti et al., 1998; Jack et al., 2000; Laakso et al., 2000).
This method links only one parameter, volume loss, to the progress of AD,
providing an intuitive interpretation. Local changes over time can be inves-
tigated by comparing the deformation of the outlines of the same regions at

10
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Figure 3.1: A one-dimensional representation of a boundary shift between
a baseline scan, ibase(x), and a registered repeat scan, ireg(x): An estimate
of the shift, ∆ω, may be obtained as the area A divided by |I1 − I2| (the
intensity window) (Freeborough and Fox, 1997).

different timesteps (Laakso et al., 2000), but do not provide full insight into
deformation, since only two dimensions are used. Furthermore, this method
needs extensive time and human training, which still bears the risk of poor
intra-rater reproducibility and inter-rater reliability.

3.2.2 Comparison of Intensities

These problems are overcome by semiautomated segmentation using brain
boundary shift integrals (BBSI) or deformable shape models, measuring
changes over time.

The BBSI compares pixel intensities on the border of the region of inter-
est. Thus, correspondance of pixels to be compared has to be established
first. Using the BBSI as introduced by Freeborough and Fox (1997), manual
outline is performed only in the initial scan. Further intrasubject images
are normalised with respect to intensity distributions and rigidly registered
to this baseline scan to ensure correspondence. The boarder region of the
hippocampus is computed, using morphological operations. Finally, changes
in voxel intensities are added up throughout the boundary region, i.e. the
differences of intensities between the baseline and the follow-up image are
accumulated (Fox and Freeborough, 1997; Barnes et al., 2004).

A further improvement was proposed by Ezekiel et al. (2004), taking tissue
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classification and a modified bias field correction into account. Like the
manual outline, BSI is a promising, easy to interpret marker of the progress
of AD and moreover eliminates the problems of the former method. However,
there are a couple of limitations. Firstly, BBSI needs manual classification
of voxels belonging to brain tissue, which are used for normalisation. This
limits the ability to compare different raters and laboratories. Secondly,
effects of between-scan differences in voxel intensity may bias the results, as
well as, mis-registration and nonlinear changes, which lead to under-report
of changes.

Another approach using differences in intensities was taken by Chen et al.
(2004, Principal Component Analysis (PCA)), who plotted intensities of cor-
responding voxels from two scans in a two dimensional graph and analysed
it statistically to find outliers, that are voxels that changed tissue affiliation.
PCA achieves very good results in detecting small volumetric changes and
moreover, is robust with respect to intensity shifts. Nevertheless, this shape
description technique reflects only global changes and lacks information about
particular locations.

Improving the ideas of BBSI and an earlier approach, which used digital
subtraction of serially aquired coregistered MR scans, Freeborough and Fox
(1998) proposed that fluid registration in combination with the comparison
of intensities may permit better localisation of structural change (see also
Kubicki et al., 2002).

3.2.3 Transformation Fields

Along with the estimation of differences in voxel intensities, elastic- or visco-
elastic registration (Wollny and Kruggel, 2002) was also used to analyse the
deformation fields resulting from the registration.

Assuming that an atrophic brain holds the physical properties of a fluid, i.e.
gradual and continuous structural changes, a subset of nonlinear warping
techniques was proposed to model changes of the brain over time (Chris-
tensen et al., 1996; Freeborough and Fox, 1998). Fluid registration results
in a transformation vector field describing three-dimensional voxel displace-
ments, which encode voxel-level compression or expansion. Due to its high
dimensionality, the resulting matrix is hard to analyse.

Different techniques have been used to find characteristic parameters. Firstly,
the volumetric change can be evaluated by integrating the Jacobian determi-
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nant derived from the deformation field over the structure of interest (Crum
et al., 2001; Janssen et al., 2005). Secondly, the high dimensionality of the
result can be reduced by calculating the complete set of eigenvectors of a
pooled covariance matrix from the transformation vector fields. A linear
combination of a subset of eigenvectors serves as discriminator between pa-
tients and control group (Csernansky et al., 1998; Tepest et al., 2003). A
standard technique is to use a colour overlay on the region of interest to
visualise volumetric changes, which provides a good overview of the results.

All these methods compute a fast and even more important a deterministic
result. However, details in the baseline segmentation will be propagated
forward to the repeat scan, keeping wrongly labeled voxels. Susceptibility to
significant topological changes and noisy or artifactual images, and sensitivity
to the initial position are further weak points of this approach.

3.2.4 Skeletal Descriptions

Pizer et al. (1999) described a technique to model object surfaces using a
skeletal representation. Applying this technique to shape analysis, a model
medial shape description (M-Rep) derived from a set of training datasets is
fitted to the objects to be investigated. Thus, each skeleton consists of the
same number of components, differing just in lengths and angles. These two
features are used to analyse changes statistically (Golland et al., 1999; Joshi
et al., 2002; Gerig et al., 2003; Styner et al., 2004). A similar approach was
chosen by Narr et al. (2004) and Thompson et al. (2004), who derive the
individual skeletons from the objects’ surface meshes. Comparability of the
different skeletons is provided using anatomical mesh modeling methods.

As the parameters are very intuitive, the interpretation of both methods is
straightforward. However, like in the analysis of vector fields, changes are
only described locally. Holistic analysis requires a large set of skeletal com-
pounds, where coherence can only be analysed if all the different features are
combined in a large model. Moreover, skeletonisation schemes are known to
be unstable and sensitive to boundary noise. A solution to this problem was
proposed by (Styner and Gerig, 2000), who combined M-Reps and spherical
harmonic descriptions.

3.2.5 Spherical Harmonics

A complementary representation is given by the use of spherical harmonics
(spharms), which provides a parametric boundary description. With this
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method the surface of an object of spherical topology is approximated using
a set of orthonormal functions defined on the unit sphere. Using a linear
combination of these basis functions, any function on the sphere can be
approximated. The more functions are used, the finer details can be repre-
sented. (Brechbühler et al., 1995; Quicken et al., 2000; Gerig et al., 2001;
Shen et al., 2003)

Advantages of this approach are the small number of parameters that are
needed to describe a complicated surface, and the fact that the level of detail
can be increased easily by taking additional parameters into account. Thus,
the representation can focus at major and subtle changes at the same time.
Unfortunatelly, these parameters are hard to interpret and do not provide a
simple image for human vision.

3.3 Comparison of the Different Methods

The big advantage of the first four methods is the fact that they stick close
to human vision and can therefore be interpreted easily. Unfortunately, these
straightforward approaches have a number of limitations. Although, volume
measurement via manual outline achieves good results, it can hardly be gen-
erally applied as it is very time consuming. Moreover, volumetric changes
are no unique marker of AD, but can also be caused by other diseases or
nutrition. Just like the comparison of intensities, volumetric analysis ne-
glects a big part of the information provided by form, i.e. changes in shape.
This drawback is overcome by the analysis of deformation fields, which also
provide a fast and deterministic result. However, in order to calculate defor-
mations or intensity differences, the images have to be registered beforehand,
including all associated difficulties. Besides, deformation fields have to cope
with their high dimensionality. The most promising techniques to analyse
shape are descriptions using skeletons or spharms, which use complementary
approaches. While the former is more concerned with changes at a certain
shape position, the parametric description of the latter focuses on global
changes. Thus, skeletons are suited very well, if a certain part of an object
is to be investigated, while interaction of the whole surface can be described
easily using spharms. Another advantage of spharms is the easily achieved
change of level of detail, just by taking more parameters into account. The
major disadvantage of spharms is the interpretation of the parameters, which
are beyond human experience.

As is summarised in Table 3.1, all of these methods imply advantages and
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disadvantages. Thus, no method can be considered to be optimal. The goal
of this work is to analyse the changes of the human hippocampus during the
progress of AD. Thus, spharms were chosen, as they reflect holistic changes
of the hippocampus, which are supposed to discriminate the deformations
under AD from those of other diseases best.
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Table 3.1: Comparison of the described analysis methods with respect to desired (green) and undesired
(red) properties. X denotes, that the method holds the property, and (X) states, that the
property is partly given, depending on the used procedure, e.g. BBSI, Skeletal Descriptiona
and Spherical Harmonics are time consuming, if manual outlines have to be drawn first.



Chapter 4

Proposed Solution

Spharms are a powerful surface description technique. They provide a holistic
approximation of the surface, that can be represented easily on different
levels of details. Thus, information concerning major and subtle changes are
captured by the same description.

In the following work the analysis of changes of the hippocampi under AD will
be accomplished using statistical analysis of the coefficients of the spharms
series expansion. Although these parameters are hard to interpret it is a
promising approach, since all the variety of holistic shape change is covered
by a few numbers.

The analytic procedure consists of seven steps:

1. Preprocessing of the data: The hippocampal outlines are extracted
from MRI scans. Thus, the patients have to be scanned, and an expert
rater has to outline the hippocampi in each dataset. The outlines are
refined using spline interpolation.

2. Triangulation of coplanar slices: Shape analysis needs the surfaces
of the hippocampi. Therefor, the outlines are triangulated, forming a
manifold surface mesh.

3. Computation of a mesh-hierarchy: Quicken et al. (2000) proposed
a multi-level parametrisation approach, to map surfaces on the unit
sphere. Thus, the surfaces have to be provided at different levels of
detail.

4. Spherical parametrisation gives an initial mapping from the mesh
in Cartesian space to the unit sphere.
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5. Spherical optimisation is used to receive a uniform distribution of
the mesh on the unit sphere, which is mandatory to ensure a homoge-
neous representation of the surface.

6. Spherical harmonics representation is used to approximate the
surface function on the unit sphere.

7. Statistical analysis of the coefficients of the spharms series expansion.

The first six steps are explained in the following chapter. Due to temporal
restrictions, the spherical optimisation could not be finished. Thus, a statis-
tical analysis of the coefficients is not possible, as the coefficients would be
biased.



Chapter 5

Implementation

5.1 Triangulation of Point Clouds

5.1.1 Overview

Commonly, shape analysis needs an outline shape, which is a contour or
a surface (Section 2.5). However, manually segmented data consists only
of single points. Thus, the data points P in Cartesian space have to be
triangulated, i.e. a set of triangles has to be found forming the convex hull
of P , with all points from P being among the vertices of the triangulation.
Moreover, the triangles have to form a closed manifold, i.e. a surface without
‘holes’, on which every point has a neighbourhood, which resembles Euclidean
space.

Many algorithms have been proposed in the field of surface reconstruction.
Some of the most popular methods have been implemented in open-source
software. Four of these programs have been applied to the given data. Sec-
tion 5.1.2 summarises the results of the tested open-source triangulation pro-
grams.

As none of these techniques created satisfying meshes, Section 5.1.3 provides
an overview over the results of the research, concerned with triangulation of
planar slices. The implemented method is explained in Section 5.1.4.

5.1.2 Open-Source Software

A large variety of triangulation algorithms have been implemented and are
available as open-source software. Owen (2006) gives an overview over “Tri-
angle Mesh Generation Software” on his hompage, classifying the programs

19
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(a) Delaunay triangu-
lation

(b) PowerCrust
(c) Valid triangula-
tion

Figure 5.1: Reconstruction of the hippocampal surface from a point cloud:
(a) The program using Delaunay triangulation generates invalid triangles
(green) and omits points (arrows). (b) The power crust algorithm introduces
additional points. (c) A triangulation computed by the algorithm explained
in Section 5.1.4

according to availability, supported platform, the applied method, and several
other features. A second collection is given by Schneiders (2006), describing
the basic idea of the different programs in one sentence, and linking to their
homepage.

Suitable programs were selected according to the following criteria:

• The program has to run under Linux.

• The resulting surface has to be a (orientable) closed manifold.

• All given points have to be used as vertices.

• No additional points are allowed to be inserted. (This feature was in
some programs hard to verify beforehand.)

Several programs were chosen for testing, amongst others

• “Alpha Shapes” by N. Akkiraju et al., using alpha shapes,

• “PowerCrust” by Amenta et al. (2001), based on the Power Crust al-
gorithm,

• ‘Tight Cocone” by Dey and Goswami (2003), using Delaunay triangu-
lation, and
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• an inhouse-tool from the “Max-Planck-Institute of Human Cognitive
and Brain Sciences”.

Most programs failed at computing a valid triangulation, which is mainly
caused by the fact, that they require more or less equally distant points. The
data was obtained by manual outline of the structure, given by magnetic res-
onance imaging (MRI), and spline interpolation. Thus, the points on each
plane are very dense, whereas points on different planes exhibit great dis-
tances. Problems, that occured during triangulation are displayed in Figure
5.1. The first triangulation contains holes (marked by arrows) and invalid
triangles (colored in green), a common problem, when applying Delaunay
triangulation to noisy or inhomogeneous data. The second image shows a
triangulation introducing new vertices, which falsifies the data. Although
the in-house tool produced a valid triangulation, it could not be used, as the
triangles were poorly conditioned, causing frequent self-intersections in the
simplification process explained in Section 5.2. As none of the investigated
programs was able to construct satisfying surfaces, a new algorithm had to
be implemented.

5.1.3 Triangulation of Planar Slices

Extensive research has been undertaken in the field of 3D-surface reconstruc-
tion, including the special case of triangulation of planar contours (Meyers
et al., 1992), as present in the given data. Ekoule et al. (1991) gives a good
summary of the different techniques used to triangulate planar slices. Later
research in this field focuses mainly on more complicated problems, like the
triangulation of slices with several unconnected outlines.

Solutions to the triangulation problem can be divided into two groups: op-
timal and heuristic approaches. While optimal solutions provide the best
triangulation, heuristic methods are computationally less expensive. For the
following work, a heuristic approach was chosen, using a local decision crite-
rion.

The first approach is based on the idea of Christiansen and Sederberg (1978),
where triangle strips connecting two slices are created iteratively. First, two
start vertices, one on each slice, are chosen, with minimal distance. These
vertices are now considered to be the end vertices of the triangulation. In
each iteration the shortest edge between an end vertex and the neighbour of
the other end vertex is used to form a new triangle (compare Figure 5.2 (c),
(d)). This procedure is continued, until the start vertices are reached.
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Figure 5.2: Example of links provided by Christiansen’s algorithm. (a) Cor-
rect results for two contours having a similar shape. (b) Incorrect results
for two dissimilar contours. (Ekoule et al., 1991) (c) Selection of the closest
vertex. (d) Final triangulation.

Ekoule et al. (1991) had shown that the triangulation might result in non-
manifold surfaces, if the two slices have dissimilar shape (Figure 5.2 (b)).
Nevertheless, this method was implemented, as a visual analysis of some
data sets revealed only tolerable differences in successive slices. The appli-
cation of the implemented algorithm showed that self-intersecting surfaces
occured in the present data as well. In one third of the data sets, some of the
successive slices showed big differences in shape, size and the position of the
centre of mass. Ekoule et al. (1991) proposed to overcome this problem by
transforming each contour into a convex one. Afterwards the contour with
fewer points was selected, and each of its points was linked to the closest
point on the other slice.

This method overcame some of the previous problems, but was still not able
to triangulate two slices correctly, that diverged strongly in size and the po-
sition of the centre of mass (Figure 5.3(a)). As most of the problems occured
when points were linked to the opposite side of the succeeding slice, the next
step was to align the centres of mass along one axis. Though this technique
computed correct manifold meshes, the program needed further improve-
ment, as distorted triangles emerged due to the translation of the slices.
Distortions had already shown to cause problems in further computations,
when using the meshes of the in-house tool.

As this straightforward approach does not work, a method is needed to de-
termine, whether two points are on the same side of the surface or not.
Commonly, the direction of a surface element is determined using its normal.
In the present case, the bisectors through each vertex are used as normals.
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(a) Incorrect edges (red) (b) Bisectors (c) Angle criterium

Figure 5.3: Application of the Angle Criterion: (a) Shortest edges between
the vertices. Incorrect links between opposite sides of the surface are marked
in red. (b) Bisetor of the outline. (c) Application of the angle criterium,
which enforces links between the same sides.

(a)
(b) Directions of the
crossproducts

(c) First iteration (d) Convex projection

Figure 5.4: Computation of a convex projection: (a) The right-hand rule for
convex (top) and concave (bottom) regions. (b) The cross product belonging
to each vertex. (c) The first iteration of the elimination of concave parts. As
can be seen, the inversion has not been fully excluded, yet. (d) Final state
of the elimination process.

The bisector through point p lies in the same plane as the outline and bisects
the outer angle between the two edges adjacent to p (Figure 5.3(b)). These
vectors are used to decide, whether two points are on the same side. If the
angle between the two bisectors is smaller than a defined bound, then the
vertices can be linked (Figure 5.3(c)).

Starting from these initial links, the triangle strip is generated by connecting
the remaining vertices. The three different configurations that can occur and
their trianglulations are illustrated in Figure 5.5.

5.1.4 Applied Triangulation Method

Combining all steps explained in the previous section, the algorithm consists
of the following five steps (Figure 5.6):
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Rearrangement of the outlines: The points of the preprocessed data
are ordered only with respect to slices, i.e. points belonging to one slice
are stored successively, whereas the slices can be in arbitrary order and the
points can be sorted either clockwise or counterclockwise. In this first step,
all slices are ordered according to increasing height levels (y-coordinate), and
the points are stored in clockwise order.

Convex projection of the outlines: The convex hull is created by first
eliminating all vertices, being located on concave parts of the outline, and
by inserting them afterwards into the convex outline (Figure 5.4).

Convexity is determined using the cross product of the two adjacent edges.
The cross product can be represented graphically, with respect to a right-
handed coordinate system. If the inner angle between the two edges is smaller
than 180◦, i.e. the region is convex, then the y-coordinate of the crossproduct
is positive, and the new vector points upwards (Figure 5.4(a) (top)), other-
wise negative and the vector points downwards (Figure 5.4(a) (bottom)).
Using this method, all vertices belonging to concave regions are eliminated
iteratively. An iterative approach is needed to detect inversions completely,
as their boundaries are convex (Figure 5.4(b)). The algorithm propagates
the new front, until the inversion is fully excluded (Figure 5.4(c) and 5.4(d)).
Afterwards, the excluded vertices are distributed equally on the straight line
between their convex neighbours.

Computation of bisectors: Starting from this convex hull, the bisectors
are computed, as described in the pevious section.

Connection of the closest vertices: The shortest edges are computed
for each pair of successive slices separately. In the outline with fewer vertices,
each vertex is linked to the closest vertex in the other outline, that does not
violate the angle criterion. The angle criterion ensures, that the bisectors of
two vertices enclose an angle, that is smaller than a predifined bound, e.g.
90◦ (Figure 5.4(d).

Figure 5.5: Triangulation of linking edges.
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(a) Two outlines (b) Orthographic projection

(c) Convex projection (d) Bisections

(e) Shortest edges (f) Final triangulation

Figure 5.6: Steps of the triangulation process: (a) Two successive outlines
of a hippocampus. (b) Orthographic projection of the two outlines, showing
the differences in shape. (c) Convex projection of the upper outline. (d)
Bisections of the outline. Each bisection divides the outer angle between two
neighbouring edges in the outline. (e) The shortest edges between the two
outlines. (f) The final triangulation of the two outlines.
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Triangulation of the surface: The links are triangulated as illustrated
in Figure 5.5.

This algorithm was applied to all present data sets. The triangulated meshes
of the left and right hippocampi (left and right) of six different patients are
depicted in Figure 6.3.

5.2 Surface Simplification

5.2.1 Overview

The triangular meshes of the hippocampi are to be described using spherical
harmonics (spharms). Besides, a spherical parametrisation of the surface
meshes is required. A solution to this problem was given by Brechbühler et al.
(1995), who solved the parametrisation problem by means of constrained
optimisation. Unfortunately, this approach is only applicable to quadrilateral
meshes consisting of no more than a few thousand vertices, as proven by
Quicken et al. (2000). Quicken et al. (2000) proposed a more stable algorithm
using multi-resolution meshes. As the implemented algorithm will follow this
approach, the meshes of the hippocampi have to be reduced iteratively first,
defining a mesh hierarchy.

Many concepts for polygonal surface simplification algorithms have been
proposed, mainly in the field of computer graphics (Heckbert and Garland,
1997). In general, these methods consist of two parts. First an algorithm
chooses the next vertex to be eliminated and secondly, a topological operator
is applied, which removes the chosen vertex and remeshes the affected patch.
If these two methods are applied alternatingly, the mesh can be reduced to
an arbitrary number of vertices.

In the following, the two methods required by the reduction algorithm, i.e.
the topological operator (Section 5.2.2) and the applied fairness criterion
(Section 5.2.3), are described. The final section explains how these two meth-
ods are used to reduce the surface mesh.

5.2.2 Topological Operator

A topological operator is a function modifying the topology, i.e. convergence,
connectedness, and continuity of a structure. In the following, topological
operators are methods to modify manifold meshes. They are used to delete
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or insert a vertex and to retriangulate the affected patch, so that the mesh
is a manifold again.

Figure 5.7: Vertex-Removal, Edge-Collapse and Half-Edge-Collapse

Kobbelt et al. (1998) compared three different topological operators called
vertex-removal, edge-collapse, and half-edge-collapse, which are visualised in
Figure 5.7. The vertex-removal operator deletes a single vertex and retri-
angulates its crown (Figure 5.7 - left). To guarantee a reasonable quality
of the retriangulated patch when using vertex-removal, local optimisation is
required. The collapse of two vertices into a single one is called edge-collapse
(Figure 5.7 - middle), where the position of the resulting vertex has to be
found using local optimisation. A special case of the second operator is the
half-edge-collapse, as the resulting vertex has the same position as either one
of the original vertices, depending on the direction of the half-edge.

Kobbelt et al. (1998) state that the underlying topological operator, on which
an algorithm is based, does not affect the results significantly. Thus, they
suggest to use the simplest one, i.e. half-edge-collapse, as it eliminates all
geometric degrees of freedom. In the following, this operator is used, as it
is easy to use and, what is even more important, does not introduce new
vertices. More important than the type of the operator is the decision of
where to apply it, to resolve a good mesh quality.

5.2.3 Fairness Criterion

This decision is made applying a fairness criterion, which assigns a predicate
to each contemplable half-edge. The half-edge with the best predicate, i.e.
least costs, is chosen for the next half-edge collapse. The criterion is described
in the following section.

As the topological operator affects the surface only locally, the fairness crite-
ria is based on local surface properties as well. “From differential geometry we



5.2 Surface Simplification 28

Figure 5.8: Local Distortion: (left) The original part of the mesh. (right-top)
The less distorted patch after merging the green edge. (right-bottom) The
more distorted patch after merging the purple edge.

know that the first and second fundamental form characterize the behavior of
a surface sufficiently well for most applications. Here, the first fundamental
form accounts for the local distortion within a parameterized surface, i.e. the
mapping of lengths and angles, while the second fundamental form provides
complete information about local curvature.” (Kobbelt et al., 1998) Trans-
ferring these concepts to the discrete setting of triangular meshes, Kobbelt
et al. (1998) propose the following two measures :

• Local Distortion: can be measured using the roundness of the triangle,
i.e. the ratio of the inner circle radius to the longest edge.

• Local Curvature: can be estimated by adding up the dihedral angles
between adjacent faces.

Quicken et al. (2000) modified the measurement of local curvature in order
to decrease computational costs:

• Local Curvature: can be estimated computing the reciprocal of the sum
of all angles between normals of adjacent faces in the affected patch.

Local Distortion

The goal of the measure for local distortion (croundj,k
) is to improve the con-

dition of the triangles after changing topology. The condition of a triangle
is supposed to be good, if it resembles an equilateral triangle (= ‘roundest’
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triangle), as these kinds of triangles cause less difficulties in the optimi-
sation process, e.g. less flipped triangles. Thus, in the reduction process
edge-merges are preferred that create ‘round’ triangles, when applying the
topological operator. Figure 5.8 shows the resulting patches of two different
merging directions of the same vertex. The resulting triangles in the lower
case are much more distorted than the ones in the upper case, which would
be penalised by the local distortion measure (Equation (5.1)).

croundj,k
=

∑

i∈∆j,k

max
(

‖~ai‖, ‖~bi‖, ‖~ci‖
)

· √s
√

(s− ‖~ai‖) (s− ‖~bi‖) (s− ‖~ci‖)
(5.1)

s =
1

2

(

‖~ai‖ + ‖~bi‖ + ‖~ci‖
)

,

where ~ai, ~bi and ~ci are the edges, forming triangle i. Equation (5.1) measures
the roundness of the triangles in ∆j,k, i.e. the set of triangles i, which re-
main in the affected patch after collapsing vertex j in vertex k (purple/green
triangles in Figure 5.8). The more distorted triangles emerge in the affected
patch after the collapse, the higher the costs for this operation, worsening
the predicate for the current half-edge get.

Local Curvature

Unlike distortion local curvature is measured before applying the operator,
as this measure is used to ensure outer fairness, i.e. characteristic shape
formations are to be preserved. As shown in Figure 5.9, two different surfaces
can result in identical simplified patches. Whereas the local curvature is
preserved in the upper case, i.e. both patches are planar, it changes in the
lower one. The measure for distortion would treat both of them equally, since
they give the same result after the topological operation. In order to keep
characteristical surface properties and increase the accuracy of the goal areas,
the upper one is to be preferred. Thus, the second measure preserving local
curvature was introduced, which penalises the merger of vertices belonging
to a patch of high curvature.

The curvature of a patch can be measured using Equation (5.2), which com-
putes the angles between the normals ~nj,l of adjacent faces l surrounding
vertex j. The parameter β > 1 controls the sensitivity of the measure.

ccurvj
=

lmax
∑

l=0

1
(

~nj,l · ~nj,(l+1)mod(lmax+1)

)

+ β
(5.2)
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Figure 5.9: Local Curvature: Different three-dimensional surface patches can
result in identical plain simplifications, despite having different surface areas
(Quicken et al., 2000).

Combination of the two Measures

Combining the measure for local distortion and curvature results in the cost
function (5.3) proposed by Quicken et al. (2000).

cj,k = croundj,k
+ α · ccurvj

(5.3)

When starting with well conditioned meshes, i.e. meshes consisting mainly
of ‘round’ triangles, this measure achieves good results, as was shown by
Kobbelt et al. (1998) and Quicken et al. (2000). In the present case, the
triangles of the reconstructed surface are distorted as can be seen in Figure
5.10(b), which shows a surface patch of an input data set (Figure 5.10(a)).

When applying the described simplifaction operations to the given data un-
wanted face formations emerged, as is visualised in Figure 5.11 (right, top).
After several reduction steps using Equation (5.3) as fairness criterion a fan-
fold structure, embracing the whole surface, occured. Figure 5.11 presents a
typical situation, in which this phenomenon arose. The fairness criterion is
computed for each half-edge, starting from the central vertex marked with
red. As the measure for local curvature is calculated before the application
of the topological operator, this part of the predicate is the same for all out-
going half-edges. Thus, the fact influencing the predicate is the condition of
the triangles emerging after the half-edge-collapse. ‘Best results’, in terms
of the fairness criterion, can be achieved when merging an edge connecting
two different layers, as it results in two triangles, the ones connecting the
two layers, which are much ‘rounder’ than the original ones in the mesh.



5.2 Surface Simplification 31

(a) Spline-interpolated
mesh

(b) Section of spline-interpola-
ted mesh

Figure 5.10: An example of a mesh of a hippocampus showing the poorly
conditioned triangles

Consequently, not the desired case as shown on the bottom of Figure 5.11
is chosen, but the one resulting in a fanfold structure. In order to prohibit
these collapses the measure defined in Equation (5.3) had to be modified.

Figure 5.11: Surface simplification of the given data: (top) If edges are
merged that link two slices, ‘round’ triangles emerge, and a fanfold structure
is created. (bottom) The fairness criterion of the desired case is worse, as
the condition of the triangles is worse.

Modifications

The following changes were tested:

• Local Curvature 1: Evaluation of the local curvature after the appli-
cation of the topological operator.
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• Local Curvature 2: Evaluation of the difference between the local cur-
vatures before and after the application of the topological operator.

• Additional Measure: The weighted length of the edge to be merged is
added to the cost function.

Local Curvature 1: Applying the topological operator before evaluating
the cost-function for local curvature achieved the desired effect, but at the
same time eliminated the positive effects of the previous measure, i.e. preser-
vation of characteristic shape formations and increase of accuracy of the goal
areas in the coarsest optimisation steps.

Local Curvature 2: As intended this function resulted in half-edge col-
lapses that preserved the given surface curvature in the affected patch. Simi-
lar to the previously described curvature measures this one caused the fairness
criteria to concentrate on certain regions. Thus, the mesh was not equally
simplified, but consisted in some regions of very large and in others of very
small triangles.

Additional Measure: Extending Equation (5.3) to

cj,k = croundj,k
+ α · ccurvj

+ γ · | ~ej,k|, (5.4)

where | ~ej,k| denotes the length of the half-edge to be merged, gives the best
results. The additional term ensures that short edges are preferred, resulting
in equally sized triangles in the beginning of the reduction process. At the
end the curvature measure became the guiding aspect of the process, which
was also desirable.

5.2.4 Computation of a Mesh-Hierarchy

If half-edge collapse is used to simplify the surface, an appropriate data struc-
ture, to store the hippocampus surfaces, is needed. Methods commonly used
in the collapse are deleting the faces bordering the edge and updating the
faces which shared the vertices at end points of the edge. These operations
illustrate, that easy access to adjacent elements is a basic data structure
requirement. Moreover, the data structure has to be flexible, providing func-
tionalities for reorganisation of the mesh.
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A suitable library is provided by the Harvard Graphics Archive Mesh Library,
which can be found at http://people.deas.harvard.edu/∼xgu/mesh. The
Mesh Library implements the half-edge structure and provides all required
surface operations.

The half-edge structure owes its name to the way edges are stored, i.e. each
edge consists of two half-edges of opposite direction. All vertices, half-
edges and faces are stored in doubly-linked lists. Each vertex, half-edge,
edge and face has access to all other elements adjacent to it. Thus, all
neighbourhood information can be accessed within constant time. For a
more detailed description of the structure see http://www.flipcode.com/

articles/article halfedge.shtml.

An advantage of the Mesh Library is that it already implements most func-
tions required by the simplification process. The reduction is enclosed by an
outer loop, counting the number of eliminated edges. In each iteration, the
half-edge with the lowest costs is chosen for reduction. The half-edge col-
lapse method is already implemented in the library. It eliminates the current
half-edge and retriangulates the affected patch. After the collapse, the cost
function has to be evaluated for all half-edges adjacent to the affected patch,
using equation (5.4). Edges in the affected patch are blocked, i.e. cannot be
collapsed, to ensure a valid insertion in the optimisation process. If the ratio
‘number of blocked to total number of half-edges’ exceeds a certain limit,
e.g. 50 %, all edges are unblocked and a new level is started. Thus, when
reinserting the collapsed edges, all half-edges of a single level can be inserted
at a time.

An example of the simplification process is given in Figure 6.4, exhibiting
the desired features creation of round triangles and preservation of shape.

5.3 Spherical Parametrisation

5.3.1 Overview

Spherical harmonics can be used to approximate functions of the sphere.
The hippocampus data consists of surface meshes with vertices in Cartesian
coordinates. In order to approximate these meshes, each vertex is to be as-
signed a parameter vector (θi, φi). For surfaces of spherical topology, the
unit sphere with polar coordinates is the natural parameter space. A homo-
geneous distribution of the parameter space is essential for the computation
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of the coefficients of the spharms. This parametrisation is a key problem,
affecting the results of the algorithm tremendously.

Figure 5.12: Hierarchical optimisation proposed by Quicken et al. (2000)

A good parametrisation is achieved in three steps, as is illustrated in Figure
5.12:

1. A bijective mapping of the surface to the unit sphere is computed,
guaranteeing that every point on the surface maps to exactly one point
on the sphere, and vice versa (Figure 5.12 - Step 1.). This procedure
is described in Section 5.3.2.

2. As this initial parametrisation does not succeed in a homogenous dis-
tribution, the values have to be optimised in a second step (Figure 5.12
- Steps 2.–4.). The optimisation is explained in Section 5.4, while Sec-
tion 5.2 describes the mesh hierarchy required to make the optimisation
more robust.

3. In order to receive comparable descriptions the spharm representations
need to be independent from (a) scaling, (b) rotation and (c) trans-
lation. These requirements are guaranteed by using (a) a mapping to
the unit sphere, (b) reorientation of the first order elipsoid and (c) by
neglecting the coefficients of order 0. A description can be found in
Section 5.5.4.
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5.3.2 Initial Parametrisation

The goal of the parametrisation is to find a bijective mapping of a surface
from cartesian space to the unit sphere parameterised by spherical coordi-
nates. If the surfaces to be analysed were convex, the parametrisation could
be simply obtained by projection, as shown in 2D in Figure 5.13(a). Unfor-
tunately, many structures in the brain are not convex, causing ambiguities in
the projection. Figure 5.13(b) demonstrates a case in which two points of the
surface would be assigned the same spherical coordinates. Brechbühler et al.
(1995) proposed an algorithm for the mapping that is analogue to heat con-
duction, compare Figure 5.13(c). Assuming that two points on the surface
are heated and cooled respectively, all other positions on the surface take a
temperature resembling their distance from these poles. Together with the
topology of the mesh, this gives a bijective mapping (compare Figure 5.14
and 5.15). Mathematically the values of the parameter vectors are obtained
by solving two Laplace’s equations with Dirichlet conditions, one for latitude
θ and the other one for longitude φ. In the discrete case, these equations
correspond to a system of linear equations Ax = b. The initialisation of the
two matrices (Aθ, Aφ) and the vectors (bθ, bφ) are explained in the following
paragraphs.

(a) Projection of a con-
vex outline.

(b) Projection of a non-
convex outline.

(c) Parametrisation
analogue to heat con-
duction.

Figure 5.13: Different projection techniques.

Set up of the Matrices

Before setting up the matrices, two vertices have to be chosen as coolest
and hottest point in the mesh. In order to ease the opimisation two points
furthest apart are chosen. Any other selection would have the same result,
but would need more iteration steps in the optimisation. These vertices are
assigned to the poles of the unit sphere.
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(a) latitude left/front
(b) latitude
right/front

(c) latitude left/back
(d) latitude
right/back

Figure 5.14: Latitudinal parametrisation of the right and left hippocampus
of the same subject, front- and backside.

.

Latitude θ: Subsequently a Laplace equation with Dirichlet conditions is
solved for θ:

∆θ = 0 except at the poles, where (5.5)

θnorth = 0 (5.6)

θsouth = π (5.7)

In the discrete case the Laplace operator is approximated using second order
finite differences, i.e. each latitude shall be equal to the mean of the latitudes
of its n neighbours Nbi:

θi =
1

n

∑

j∈Nbi

θj (5.8)

This equation can be rewritten as

nθi −
∑

j∈Nb∗i

θj = π if southpole ∈ Nbi (5.9)

nθi −
∑

j∈Nbi

θj = 0 otherwise (5.10)

where Nb∗i denotes Nbi without the southpole. Let nV be the number of
vertices in the mesh. Evaluating Equation (5.8) for all nV vertices except
for the poles results in nV − 2 linear equations. The pseudocode for the
initialisation is given in Algorithm 1 in Appendix D.

A sample distribution of a pair of hippocampi is given in Figure 5.14.
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(a) longitude
left/front

(b) longitude
right/front

(c) longitude
left/back

(d) longitude
right/back

Figure 5.15: Longitudinal parametrisation of the right and left hippocampus
of the same subject, front- and backside

.

Longitude φ: Unlike latitude, longitude is a cyclic parameter, which has
a discontinuous line connecting the two poles. Whenever crossing the line,
longitude has to be incremented or decremented by 2π, depending on the
direction of the crossing. At the poles φ has no sensible values. Taking this
into account, a date line is imposed and all values crossing it from west to
east are decremented, values propagated to the west are incremented. For
further computations, the poles and its linking edges are removed from the
net, resulting in a mesh topologically equivalent to a cylinder. Due to the
cyclic boundary condition, the system is singular. To overcome this, 2φ1 = 0
is arbitrarily set and added to the first equation and the Laplace equation

∆φ = 0 (5.11)

is solved. Minor modifications have to be applied to the matrix and vector
for latitude (compare Algorithm 2).

The longitudal parametrisation of a pair of hippocampi is visualised in 5.15.

Solving Laplace Equations

As stated in the last two paragraphs the systems of linear equations consist
of nV − 2 equations. Thus, a square matrix of dimension nV − 2 has to be
handled. As the number of non-zero matrix entries in each row equals the
number of neighbours of the according vertex, only a few values need to be
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(a) Longitude (b) Latitude (c) Spherical parametrisation

Figure 5.16: Initial parametrisation of a right hippocampus: (a) Longitude,
(b) Latitude and (c) the parametrisation on the unit sphere.

stored. This fact is crucial for further computations, as it provides the oppor-
tunity to get results at reasonable costs (time and memory), using software
packages implementing solvers for systems of sparse linear equations. Don-
garra (2004) and Eijkhout (1997) compared several freely available packages.

Tested packages had to provide the following functionalities:

• Compatibility to C/C++ Programs

• Support for sparse matrices

• Sufficient matrix operations

• Iterative solvers with included preconditioners

Two packages, meeting these requirements, were chosen for testing: Laspack
(implemented in C) and GMM++ (implemented in C++). Both packages
gave equivalent results. Laspack was chosen, as it is easy to use, well docu-
mented and written in C as the whole program implemented in the context
of this thesis.

5.4 Spherical Optimisation

5.4.1 Overview

The parametrisation computed so far is valid, but unfortunately results in
major distortions of the spherical mesh (Figure 5.16). Thus, the initial
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parametrisation has to be corrected. This step is necessary to obtain a ho-
mogeneous distribution of the parameterspace over the surface, which is im-
portant to represent the shape properly, as was shown by Brechbühler et al.
(1995). Two criteria are used to measure distortion: Firstly, every object
region must map to a region of proportional size, and secondly, the inner
angles must be proportional as well. In an optimisation process, these two
features have to be controlled.

Brechbühler et al. (1995) used constrained optimisation considering area
preservation and minimal distortion to optimise meshes consisting of quadri-
laterals. Thus, each quadrilateral on the surface is assigned a spherical
quadrilateral of proportional area on the unit sphere. As optimisation is
accomplished for all vertices at a time, the dimensionality of the problem
increases linearly with the number of vertices. For objects consisting of
several thousand vertices the optimisation becomes unstable. Moreover, it
is restricted to quadrilateral meshes, as this method, applied to triangular
meshes, leaves only two degrees of freedom for optimisation, which was shown
by Quicken et al. (2000). Furthermore, quadrilaterals meshes are supported
to a lesser extent by mesh-software compared to triangular meshes, which
would make the manipulation of the meshes far more challenging.

To overcome these limitations, two approaches following different concepts
were implemented. The first one was introduced by Quicken et al. (2000) us-
ing the concept of hierarchical optimisation, which optimises the parametri-
sation iteratively at increasing levels of detail in three steps:

• Simplification of the triangular mesh (Section 5.2).

• Iterative optimisation on each level of detail.

• Final optimisation on the finest level.

The second method is based on simulated annealing, which locates a good
approximation to the global minimum in a large search space, utilising the
probabilistic approach of this technique.

The following sections are structured as follows. Section 5.4.2 gives an intro-
duction to the basic concepts of optimisation. Three different optimisation
algorithms used in the following are explained in Section 5.4.3. As the opti-
misation processes make extensive use of spherical trigonometry, the formulas
used in the following are explained in Section 5.4.4. Finally, Section 5.4.5
and 5.4.6 explain the two methods used for optimisation, i.e. constrained
optimisation and simulated annealing respectively.
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5.4.2 Optimisation

Often results are influenced by many different, partly controversial parame-
ters, e.g. the quality of a medical operation depends on the experience of the
surgeon and his team, the equipment of the hospital, the time the patient can
be narcotised, the state of the patient, and many more factors. Naturally,
every patient wants the best treatment available, whereas it is impossible
that the best surgeon conducts all operations. Thus, a compromise has to be
found, guaranteeing sufficient treatment and keeping down costs at the same
time, while meeting certain prerequisites.

The aim of the optimisation process is to minimise a cost function. The
function depends on variables, which can be constrained to certain intervals
by equalities or inequalities. A visualisation of an optimisation problem in
one and two variables is given in Figure 5.17. Mathematically, this problem
can be stated as follows. Find x to

minimize f (x) (5.12)

subject to gi (x) ≥ 0 i = 1, . . . , m

hj (x) = 0 j = 1, . . . , p

where f , gi, and hj are general functions of the parameter x ∈ Rn (Papadim-
itriou and Steiglitz, 1982).

In the case of the operation f can be chosen as a combination of expected
quality of the operation and its costs, while the constraints limit duration of
the operation and the number of assistants and demand a certain method to
be used.

Classification

Depending on the type of the functions f , gi, and hj, the optimisation prob-
lems are classified. For each type special optimisation techniques are avail-
able, making use of the individual structure of the problem. Major subfields
used in the following are: Linear, quadratic, and non-linear programming.

The problem is considered to be linear, if f , gi, and hj are linear. The
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previous operation example can be formulated as:

f(expQuality, costs, nSurgeons) = 2 · costs− expQuality

g1(expQuality, costs, nSurgeons) : expQuality ≥ 4

g2(expQuality, costs, nSurgeons) : costs ≤ 62

g3(expQuality, costs, nSurgeons) : nSurgeons = 1

where expQuality is the expected quality of the operation, costs are the
costs caused by operation and aftercare, and nSurgeons is the number of
surgeons involved in the operation. In this case f is a linear combination of
the costs and the expected quality of the operation, in which costs are twice
as important as the expected quality. The quality is subtracted as it shall
be maximised, which is the same as minimising the negative. g1 demands a
minimum quality and g2 limits the costs, while g3 ensures, that only a single
surgeon takes part in the operation.

If a quality level qL, giving good recovery rates and keeping down costs at
the same time, was known, deviation from this value should be controlled as
given in 5.13

f(expQuality, costs, nSurgeons) = 2 · costs+ (qL− expQuality)2 (5.13)

As f includes a quadratic term, the program is referred to as quadratic pro-
gramming.

The general case in which both, objective function and constraints can con-
tain nonlinear parts, e.g. products of variables or trigonometric functions, is
referred to as nonlinear programming.

An introduction to combinatorial optimisation can be found in Papadimitriou
and Steiglitz (1982) and to nonlinear optimisation in Spellucci (1993).

Local and Global Optima

The aim of optimisation is to find the minimum of the function. Find-
ing a global minimum can be extremely difficult, whereas it is in general
comparatively easy to determine a solution of f(x) that is optimal in its
neighbourhood.

Definition 5.1. An instance of an optimization problem is a pair
(F, c), where F is any set, the domain of feasible points; c is the cost function,
a mapping

c : F −→ R1.
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The problem is to find an f ∈ F for which

c(f) ≤ c(y) for all y ∈ F

Such a point f is called a globally optimal solution to the given instance, or,
when no confusion can arise, simply an optimal solution. (Papadimitriou
and Steiglitz, 1982)

Definition 5.2. Given an optimization problem with instances (F, c), a neigh-

borhood is a mapping
N : F −→ 2F

(Papadimitriou and Steiglitz, 1982)

Definition 5.3. Given an instance (F, c) of an optimisation problem and a
neighbourhood N , a feasible solution f ∈ F is called locally optimal with

respect to N (or simply locally optimal whenever N is understood by
context) if

c(f) ≤ c(g) for all g ∈ N(f)

(Papadimitriou and Steiglitz, 1982)

Figure 5.17 shows an example of a one-dimensional Euclidean optimisation
problem. If the neighbourhood is suitably small, the points A, B, and C are
local minima, while only B is also the global minimum.

Techniques

Depending on the cost function and the constraints, different techniques can
be applied. A further aspect influencing the choice of a method is the type
of the minimum searched for. Some methods are only capable of finding
the closest (local) minimum, whereas others detect the global minimum. If
a good start position close to the global minimum is known, or if only one
minimum exists, the first group of methods is preferred, as computational
costs are lower in general.

Many optimisation techinques need twice-differentiable functions, as in this
case the local minima can be found, where the gradient of the cost function
is zero (stationary points). In order to classify the type of the minimum,
the Hessian (second derivative matrix) is computed. If the matrix is posi-
tive definite, the point is a local minimum, if it is negative definite, a local
maximum, and if it is indefinite it is some kind of saddle point. Common
iterative methods used to find the stationary points, are Newton‘s method,
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(a) Local minima in 1D (b) Constrained optimisation in 2D

Figure 5.17: Different Euclidean optimisation problems: (a) A one-
dimensional optimisation problem with several minima. (b) A two-
dimensional optimisation problem with a single minimum and three con-
straints gi. The function values are colour-coded. Beige stands for low val-
ues, green for high values. Transparent regions indicate regions excluded by
the constraints.

line search and conjugate gradient. All three methods can be applied to
nonlinear optimisation problems.

As these techniques do not take constraints into account, a method is needed
to convert a constrained optimisation problem into an unconstrained one.
Lagrange-multipliers are such a method, transforming an optimisation prob-
lem in n variables into an unconstrained problem in n + 1 variables.

Definition 5.4. The function L : Rn ×Rm ×Rp → R

L (x, λ, µ) := f (x) −
m
∑

i=1

λigi(x) −
p
∑

j=1

µjhj(x)

is called the Lagrange funtion assigned to the nonlinear program. (Spel-
lucci, 1993)

Spellucci (1993) proves: If
(

x, λ, µ
)

is a saddle point of the Lagrange function,

i.e. L (x, λ, µ) ≤ L
(

x, λ, µ
)

≤ L
(

x, λ, µ
)

for all (x, λ, µ) ∈ Rn × Rm
+ × Rp,

then x is a solution to the nonlinear program. Thus, instead of optimising
the constrained program, the solutions to the Lagrange function can be used
to find local minima.
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If the derivatives of the cost function are not available different methods,
like hill climbing, simulated annealing or genetic algorithms, have to be used.
Simulated annealing will be explained in the next section.

5.4.3 Applied Optimisation Methods

In the following the three optimisation methods used in the algorithm are
explained.

Non-Linear Least-Squares Fitting -

The Levenberg-Marquardt Algorithm

The description is extracted from the GSL-Documentation (GNU Scientific
Library, Galassi et al., 2005).

The problem of multidimensional nonlinear least-squares fitting requires the
minimization of the squared residuals of n functions, fi, in p parameters, xi,

Φ(x) =
1

2
‖F (x)‖2 =

1

2

n
∑

i=1

fi(x1, ..., xp)
2

All algorithms proceed from an initial guess using the linearization,

ψ(p) = ‖F (x+ p)‖ ≈ ‖F (x) + Jp‖ (5.14)

where x is the initial point, p is the proposed step and J is the Jacobian
matrix Jij = dfi/dxj. Additional strategies are used to enlarge the region of
convergence. These include requiring a decrease in the norm ‖F‖ on each
step or using a trust region to avoid steps which fall outside the linear regime.

To perform a weighted least-squares fit of a nonlinear model Y (x, t) to data
(ti, yi) with independent gaussian errors σi, use function components of the
following form,

fi =
Y (x, ti) − yi

σi

(5.15)

Note that the model parameters are denoted by x in this chapter since the
non-linear least-squares algorithms are described geometrically (i.e. finding
the minimum of a surface). The independent variable of any data to be fitted
is denoted by t.
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With the definition above the Jacobian is

Jij =
1

σi

· dYi

dxj

, (5.16)

where Yi = Y (x, ti).

Interior Point Method

The following explanation of primal-dual nonlinear interior methods is ex-
tracted from Nocedal et al. (2005).

The problem under consideration will be written as

minx f(x) (5.17)

s.t. c(x) = 0 (5.18)

x ≥ 0, (5.19)

where f : Rn → R and c : Rn → Rm are twice continuously differentiable
functions. For conciseness we will refer to interior-point methods for nonlin-
ear programming as “nonlinear interior methods”. [. . . ]

We associate with the nonlinear program (5.17) the barrier problem

minx ϕµ(x) ≡ f(x) − µ

n
∑

i=1

ln xi (5.20)

s.t. c(x) = 0, (5.21)

where µ > 0 is the barrier parameter. As is well known, the KKT conditions
of the barrier problem (5.20) can be written as

▽f(x) − A(x)Ty − z = 0 (5.22)

Xz − µe = 0 (5.23)

c(x) = 0 (5.24)

together with
x ≥ 0, z ≥ 0. (5.25)

Here A(x) denotes the Jacobian matrix of the constraint functions c(x).
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Applying Newton’s method to (5.22), in the variables (x, y, z), gives the
primal-dual system




▽
2
xxL −A(x)T −I
Z 0 X

A(x) 0 0









∆x
∆y
∆z



 = −





▽f(x) − A(x)Ty − z
Xz − µe
c(x)



 , (5.26)

where L denotes the Lagrangian of the nonlinear program, that is,

L(x, y, z) = f(x) − yT c(x) − zTx. (5.27)

After the step ∆ = (∆x,∆y,∆z) has been determined, we compute primal
and dual steplengths, αp and αd, and define the new iterate (x+, y+, z+) as

x+ = x+ αp∆x, y+ = y + αp∆y, z+ = z + αp∆z. (5.28)

The steplength are computed in two stages. First we compute

αmax
x = maxα ∈ (0, 1] : x+ α∆x ≥ (1 − τ)x (5.29)

αmax
z = maxα ∈ (0, 1] : z + α∆z ≥ (1 − τ)z (5.30)

with τ ∈ (0, 1) (e.g. τ = 0.995). Next, we perform a backtracing line search
that computes the final steplengths

αp ∈ (0, α− xmax], αd ∈ (0, α− zmax], (5.31)

providing sufficient decrease of a merit function or ensuring acceptability by
a filter.

Simulated Annealing

From metallurgy it is well known, that annealing a substance, i.e. slowly
cooling a material, can relieve stresses and support the formation of a perfect
crystal lattice. The initial high temperature allows the atoms to wander
randomly through states of higher kinetic energy. As temperature cools
down, the configuration gets stiffer, allowing mainly changes towards states
of less energy. In this process the atoms organise themselves in an optimal
way, i.e. in a configuration with least kinetic energy. This is exactly, what is
to be achieved in optimisation.

In the early 1980’s Kirkpatrick et al. (1983) and Cerny (1985) invented the
Simulated Annealing (SA) algorithm indepently. It is a meta-heuristic al-
gorithm, simulating thermodynamic systems, which can be used to solve
combinatorial and continuous variable problems.
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By analogy to the physical process, SA starts at a certain initial state and
a high temperature. The goal is to minimise the energy function, measur-
ing deviation from the desired state. Therefore, a random walk through the
configuration space is taken. In the beginning, transitions to a neighbour-
ing parameter set occur almost randomly, indepent of the differences in the
energy level. The lower the temperature gets, the less likely are changes
towards configurations with a higher kinetic energy, enforcing a “downhill”
strategy. The transition probability from state i with energy Ei to state i+1
with energy Ei+1 can be given by a Boltzman distribution:

p =

{

e−
Ei+1−Ei

k·T if Ei+1 > Ei

1 if Ei+1 ≤ Ei

(5.32)

where T is the current temperature, and k is the Bolzmann constant. Other
distributions are possible. Thus, the probability of a transition to a state of
higher energy is proportional to the temperature and inversely proportional
to the energy difference. This slight probability of taking a step towards
a configuration of higher energy is what allows simulated annealing to fre-
quently get out of local minima and, hence, has a greater chance of finding
the global minimum.

5.4.4 Spherical Trigonometry

A short introduction to spherical trigonometry shall be given in the following,
as the optimisation methods explained will make extensive use of some of the
given interrelations.

So far, each vertex is given by a pair of spherical coordinates. Basic quantities
needed are the length of edges, inner angles and the area of the triangles on
the unit sphere. In order to compute inner angles the lengths of the edges
of the spherical triangles are needed, which can be computed using equation
5.33. Let p0 = (θ0, φ0) and p1 = (θ1, φ1) be the spherical coordinates of the
vertices of the edge, then the distance of the points is given by

|p0 − p1| = arccos (cos θ0 · cos θ1 + sin θ0 · sin θ1 · sin (φ0 − φ1)) (5.33)

Using the law of cosine, the inner angles can be computed from the three
edges a, b, and c.

cos a = cos b · cos c+ sin b · sin c · cosα (5.34)
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The analogue equation for edges is called cosine rule for sides:

cosα = − cos β · cos γ + sin β · sin γ · cos a (5.35)

The area of the triangle AT can be computed using the spherical excess ε.

AT = ε · R2 (5.36)

This can either be done according to equation 5.37 with inner angles

ε = α+ β + γ − π (5.37)

or by application of l’Huiliers equation (5.38), which utilises the edges

tan
ε

4
=

√

tan
s

2
· tan

s− a

2
· tan

s− b

2
· tan

s− c

2
(5.38)

s =
1

2
(a+ b+ c) (5.39)

Figure 5.18: A spherical triangle.

5.4.5 Global Approach - Constrained Optimisation

The aim of the spherical optimisation is to minimise distortions of areas of
triangles and their inner angles. The algorithm proposed by Quicken et al.
(2000) tries to minimise all distortions at a time on different levels of detail,
using constrained optimisation. The hierarchical structure is applied to make
the method more stable. Hence, a mesh hierarchy has to be established first,
which was explained in Section 5.2.

After computing the hierarchy, each of these levels has to be optimised suc-
cessively, starting with the coarsest. The optimisation criteria, cost function
and constraints, proposed by Brechbühler et al. (1995) are not applicable to
triangular meshes, as they leave too few degrees of freedom. Quicken et al.
(2000) changed the constraints to overcome this problem:
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1. The constraints for area preservation are dropped. Inequalities are only
established to forbid flipped faces.

2. The new objective function aims for area preservation and distortion
minimisation.

Thus, the cost function (5.40) consists of two terms. The first one measures
area preservation by summing the differences of relative areas of the spherical
triangle and the triangle in object space. The relative area of a polygon is
its area divided by the total area of the surface. The second term quantifies
distortion of triangles. Quicken et al. (2000) exploit the fact that their meshes
were formed from volumes, consisting of of equally shaped cubes. Hence, all
triangles are similar, i.e. are orthogonal isosceles triangles. These properties
are utilised to measure distortion. ai · bi is zero, if the edges are orthogonal
and the term after β is minimal, if both edges have same length.

minf

∑

i∈∆

[

(

Ai

4π
− A∗

i
P

i∈∆ A∗

i

)2

+ (5.40)

α

(

(

ai·bi

‖ai‖·‖bi‖

)2

+ β

∣

∣

∣

∣

‖ai‖·‖ai‖−‖bi‖·‖bi‖
‖ai‖·‖ai‖+‖bi‖·‖bi‖

∣

∣

∣

∣

) ]

,

where ai and bi are the edges of same length in the triangle, Ai is the area
of the spherical triangle and A∗

i is the area of the triangle in object space.

As the data to be analysed in this thesis consists of arbitrary triangles this
measure had to be modified. The basic idea of the modified approach was
to use spherical angles for optimisation instead of cartesian coordinates, as
both properties, area preservation and distortion of angles can be measured
easily. Moreover, derivatives of the cost function can be computed easily.

Objective Function

An objective function, which considers only inner angles, is used to optimise
general triangles:

minf

∑

i∈∆

(

Ai

4π
− A∗

i
∑

i∈∆A
∗
i

)2

+ (5.41)

λ

(

(

αi

σi

− α∗
i

π

)2

+

(

βi

σi

− β∗
i

π

)2

+

(

γi

σi

− γ∗i
π

)2
)

σi = αi + βi + γi (5.42)

Ai = αi + βi + γi − π (5.43)
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where ∆ denotes the triangles of the mesh, Ai and A∗
i are the areas of a

spherical and its corresponding triangle in object space, αi, α
∗
i , βi, β

∗
i , γi

and γ∗i denote the inner angles of the current triangles on the sphere and
in object space. Like the cost function by Quicken et al. (2000), equation
(5.41) penalises differences in relative face areas. The second term, which
prevents distorted triangles, was modified. Now, each relative inner angle on
the sphere has to have the same size as its counterpart in the surface mesh.
The linear combination is controlled by the parameter λ.

Constraints

Constraints are only established to ensure a valid triangulation, i.e. angles
are within the range (0, π), and edges must have the same length in both
adjacent triangles. Using the cosine rule for sides, this gives

cosαi,0 + cosβi,0 · cos γi,0

sin βi,0 · sin γi,0
− cosαi,1 + cosβi,1 · cos γi,1

sin βi,1 · sin γi,1
= 0 (5.44)

where 0 and 1 indicate, whether the variable belongs to the first or second
triangle. This requirement is established for all edges, resulting in nedges

constraints.

In a first implementation, further constraints were formulated to ensure that
all angles surrounding a vertex sum to 2π, i.e. the mesh covers the whole
surface of the unit sphere. This left too few degrees of freedom for the
optimiser to find a solution. Thus, the constraints for surface covering were
dropped, as they are implicitely included in the cost function. If a minimum
is found, the relative areas of the spherical triangles sum to 1, i.e. the whole
surface is covered, as do the planar ones, meaning, that the inner angles form
a valid triangulation on the unit sphere.

After the optimisation the new parametrisation has to be computed. There-
fore, the one vertex is assigned to the northpole. Starting from this vertex
all other positions are computed iteratively. Therefore, all vertices having
neighbours that are not inserted yet, are stored in a list. In each iteration
the first vertex of the list is rotated to the northpole and the parametrisation
for its neighbours is computed. Afterwards, the new vertices are inserted
into the list, and the old vertex is eliminated from the list. When the list is
empty, the parameters have been computed for all vertices.
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Implementation

The interior-point method explained in section 5.4.3 is used to optimise the
inner angles, as it is capable of handling large-scale nonlinear problems. The
basic idea of this approach is to achieve optimisation by going through the
middle of the solid defined by the problem, rather than around its surface.

The IPOPT-library, developed by Wächter and Biegler (2006), implements
the interior-point method and provides all functionalities to conduct the
optimisation. The library and its documentation can be found on https:

//projects.coin-or.org/Ipopt.

The following functions have to be specified for the optimiser:

• Objective function, f(xk)

• Gradient of the objective function, ▽f(xk)

• Constraint residuals, g(xk)

• Jacobian of the constraints, ▽g(xk)

• Hessian of the Lagrangian, σf ▽2 f(xk) +
∑m

i=1 λi ▽2 gi(xk)

The Lagrangian is given by f(x) + g(x)Tλ (see Lagrange function in section
5.4.2) and the Hessian of the Lagrangian by ▽2f(xk) +

∑m
i=1 λi ▽2 gi(xk).

The library needs to ask for the Hessian of the objective function and the
constraints separately. Thus, a factor σf was introduced, which can be set
to zero to get the Hessian of the constraints.

The implementation of the objective function and the constraints are a
straightforward realisation of equation (5.41) and (5.44) respectively. The
first one returns the error summed for all triangles, and the second one is a
vector of size nedges, giving the difference of edge lengths for each edge.

One reason to choose inner angles for optimisation, was the fact that first and
second derivatives reduce nicely. The cost function sums over all triangles,
considering only the inner angles of a single triangle in each summand. When
computing partial derivatives, all other variables are considered to be con-
stant. Thus, only the summand containing the angle has to be differentiated,
as all others drop out. The following examples illustrate this property.
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Let the angles αi, βi, and γi belong to the i’th triangle, relArea∗i be the
relative area of the i’th triangle in the mesh, and relα∗

i , relβ
∗
i , and relγ∗i be

the relative angles in the surface mesh. Then, the first and second derivative
of f with respect to αi are given by

∂f

∂αi

=
1

2π

(

αi + βi + γi − π

4π
− relArea∗i

)

− (5.45)

2λ

[

(βi + γi) ((αi + βi + γi) relα
∗
i − αi)

1

]

+

2λ

[

βi ((αi + βi + γi) relβ
∗
i − βi)

1

]

+

2λ

[

γi ((αi + βi + γi) relγ
∗
i − γi)

1

]

and

∂2f

∂α2
i

= 6λ
α2

i + β2
i + γ2

i

(αi + βi + γi)
4 + 2λ

1 + 2relα∗
i

(αi + βi + γi)
2 +

1

8π
− (5.46)

4λ
αi (2 + relα∗

i ) + βirelβ
∗
i + γirelγ

∗
i

(αi + βi + γi)
3

The derivatives of the constraints, which include the inner angles of two
triangles, e.g. for the edge adjacent to face i and j, are

∂g

∂αi

= − sinαi

sin βi · sin γi

(5.47)

∂g

∂βi

= − 1

tan γi

− cosαi + cos βi · cos γi

tanβi · sin βi · sin γi

∂g

∂γi

= − 1

tan βi

− cosαi + cos βi · cos γi

tan γi · sin βi · sin γi

These partial derivatives for m constraints in n angles are organised in the
Jacobian as follows

∇g(x) =







∂g0

∂α0

∂g0

∂β0

∂g0

∂γ0
. . . ∂g0

∂αn

∂g0

∂βn

∂g0

∂γn

...
. . .

...
∂gm

∂α0

∂gm

∂β0

∂gm

∂γ0
. . . ∂gm

∂αn

∂gm

∂βn

∂gm

∂γn






(5.48)
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Likewise, the Hessian of the Lagrangian is given by:

σf ▽2 f(x) +
m
∑

i=1

λi ▽2 gi(x) = (5.49)

σf









∂2f

∂α2
0

. . . ∂2f

∂α0γn

...
. . .

...
∂2f

∂α0γn
. . . ∂2f

∂γ2
n









+

m
∑

i=1

λi









∂2gi

∂α2
0

. . . ∂2gi

∂α0γn

...
. . .

...
∂2gi

∂α0γn
. . . ∂2gi

∂γ2
n









As each constraint includes only six angles, each row in the Jacobian has only
six non-zero entries, which can be determined according to equation (5.47).
IPOPT stores these matrices in a compressed mode, using only non-zero
entries. Thus, the matrix can be reduced from a m × n to a m × 6 system,
which is quite important, as several thousand faces, i.e. three times as many
angles, are to be handled. In the case of the Hessian, a further compression
can be achieved, since the matrices are symmetric. Thus, only the upper or
lower triangular matrix has to be stored.

The initialisation of the optimiser follows the instructions given in the tuto-
rial at http://www.coin-or.org/Ipopt/documentation/. Two parameters
were set:

• AddIpoptNumOption(nlp, “tol”, 1e-9); and

• AddIpoptStrOption(nlp, “mu strategy”, “adaptive”);

The first option specifies the convergence tolerance of the algorithm, and the
second one tells the optimiser to use an adaptive update strategy for the
barrier parameters.

The optimisation is invoked by a function call, providing the optimiser with
the required functions and options, and the initial point, i.e. the inner angles
from the initial parametrisation, as parameters.

Results of the optimisation process are given in Section 6.

5.4.6 Local Approach - Simulated Annealing

Simulated annealing (SA) is a heuristic method to solve complex optimisa-
tion problems in many variables. The constrained optimisation approach
explained in the last section uses the gradient of the cost function and the
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constraints, to conduct the walk through the configuration space. If such
information cannot be accessed, as the structure of the space is not well un-
derstood or not smooth, stochastic search techniques like SA have to be used.
The basic idea of SA is to take a random walk through the space of valid
configurations and choose the one with the lowest energy. Steps to a point of
higher energy can only be taken with a certain probability (Equation 5.32),
which depends on the energy differences and the state of the optimisation,
i.e. the temperature. See Section 5.4.3 for more details on SA.

The walk in the configuration space taken by SA can be influenced in two
ways: Firstly, an algorithm is needed, returning the next configuration, and
secondly, an energy function has to be specified, telling whether this new
parameter set is closer to the optimimum than the last one.

Step Function

The step function modifies the current configuration using a random step
in parameter space. Although an arbitrary number of parameters could be
modified, only a single vertex is chosen for optimisation, to ease controll.
This vertex is chosen randomly from all vertices, having both, adjacent faces
that are too small, and those, that are too large. This restriction was made
to accelerate convergence.

After choosing a vertex v, its surrounding patch, i.e. all triangles adjacent
to v, are projected onto the plane tangent to the unit sphere in v. The
projection is done to ease optimisation of the patch. Lambert azimuthal
equal-area projection was chosen as projection method, since it preserves
areas and directions from the central point.

The foreward transformation is given by

x = k′ cosφ sin (λ− λ0) (5.50)

y = k′ [cosφ1 sinφ− sinφ1 cosφ cos (λ− λ0)]

k′ =

√

1

2
[1 − sinφ1 sinφ+ cosφ1 cosφ cos (λ− λ0)],

where φ1 is the standard parallel and λ0 is the central longitude. The inverse
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Figure 5.19: Projected triangle patch.

formulas are

φ = arcsin

(

cos c sinφ1 +
y sin c cosφ1

ρ

)

(5.51)

λ = λ0 + arctan

(

x sin c

ρ cosφ1 cos c− y sinφ1 sin c

)

ρ =
√

x2 + y2

c = 2 arcsin

(

1

2
ρ

)

.

(Weisstein, 2004)

In 2D, a position of the central vertex has to be found that minimises distor-
tions in relative areas and angles around the vertex, which is an independent
optimisation problem inside SA. Again, optimisation requires a cost function,
given by

f(~x, ~y) =
∑

i∈∆











arccos
(

ei,0·ei,1

|ei,0|·|ei,1|

)

σ
− α∗

i





2

+ β

( 1
2
|ei,0 × ei,1|

s
− A∗

i

)2







σ =
∑

i∈∆

arccos

(

ei,0 · ei,1

|ei,0| · |ei,1|

)

; s =
∑

i∈∆

1

2
|ei,0 × ei,1|

where ∆ are the faces adjacent to the central vertex in clockwise order and
ei,0, and ei,1 are the two edges of each face adjacent to the vertex (compare
Figure 5.19 ). α∗

i and A∗
i denote relative angles and areas in the patch

in the mesh in object space (not on the sphere). The cost function sums
the distortion of each triangle, using squared differences in inner angles and
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relative areas. The linear combination is controlled by β, definining, which
aspect, optimal angles or areas, is more important.

The Levenberg-Marquardt algorithm, a method to minimise a sum of squares
of several, generally nonlinear functions, is used for optimisation. The algo-
rithm, also known as nonlinear least squares fit, requires a cost function and
its derivative to be specified by the user.

The optimised vertex is projected back onto the surface of the unit sphere.
This new configuration, with the parameters of one vertex modified, serves
as candidate for the next step.

Energy Function

Before taking the step, the energy function Ei has to be evaluated. Ei is
given by

Ei

(

~θ, ~φ
)

=
∑n

j=1

(

Aj

4π
− A∗

j
P

i∈∆ A∗

j

)2

, (5.52)

where Aj and A∗
j denote the area of the spherical triangle and its correspond-

ing mesh triangle. Spherical areas are computed using l’Huiliers equation
(5.38). The energy function aims only for area preservation and neglects dis-
tortion of angles, as this was already taken into account in the step function.

Implementation

The GNU Scientific Library (GSL) was used for optimisation. The GSL is
a numerical library for C and C++ programmers. It is free software under
the GNU General Public License and can be found at http://www.gnu.org/
software/gsl/. The library provides a wide range of mathematical routines
amongst others optimisation routines as Simulated Annealing and Nonlinear
Least-Squares Fitting. The functions are well documented and examples ease
the application.

As explained earlier, SA needs a step and a cost function. The methods
are declared in the GSL header and have to be specified by the user. Both
algorithms are a straightforward implementation of equation (5.52) for the
energy function and the procedure explained in the paragraph Step Function.
The same is true for the optimisation of the patch, using least-squares fitting
in 2D.
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5.5 Approximation Using Spherical Harmon-

ics

5.5.1 Overview

Now, that the surfaces can be represented on the sphere, spharms can be
used to approximate this function. Thus, a linear combination of spherical
harmonics basis functions is used to describe a complex surface. The coef-
ficients of the series expansion can be used for a statistical analysis of the
surface properties.

The theoretical background of the shape description using spharms is ex-
plained in Section 5.5.2. Section 5.5.3 provides information on the implemen-
tation, and Section 5.5.4 describes methods to resolve rotation independent
descriptors.

5.5.2 Theoretical Background

All the previous work has been done to allow for surface decriptions using
spherical harmonics. Spherical harmonics (spharms) are the angular portion
of the solution to Laplace’s equation in spherical coordinates where azimuthal
symmetry is not present and form an orthonormal set of basis functions on
the sphere. Thus, they can be used to approximate functions on the unit
sphere. For more information on the definition of spharms, see Appendix
B. Using a linear combination of these basis functions, any function on the
sphere can be approximated up to a predefined accuracy. The more basis
functions or harmonies are included, the more details can be depicted.

As spharms operate on the sphere, the mesh had to be projected onto the
unit sphere first (Section 5.3). Optimisation of the triangles was performed,
to ensure comparability and allow a uniform representation of the surface,
as shown in Section 5.4. So far a bijective mapping between the mesh on
the unit sphere and the one in Cartesian space is given. In order to apply
spharms, function values on the sphere are required, characterising the ob-
ject. Two approaches are possible: The first one uses the scalar distances of
the vertices to an object related center, whereas the second one defines vector
values on the sphere, giving the Cartesian coordinates of the vertices. The
advantage of the second approximation is that the series expansion can be
made independent from the position of the object in Cartesian space (Section
5.5.4). Thus, the second method was implemented. Thus, the function on
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the sphere is given by

f (θ, φ) =





x (θ, φ)
y (θ, φ)
z (θ, φ)



 . (5.53)

A further advantage of this function is the straightforward reconstruction of
the approximated surface. As the free parameters θ and φ run over whole
the sphere, e.g. θ = 0 . . . π, φ = 0 . . . 2π, the function runs over the whole
surface in object space.

f is approximated by spharms using

f (θ, φ) =

∞
∑

l=0

l
∑

m=−l

cml Y m
l (θ, φ) , (5.54)

where Y m
l denotes the spharm with parameters l,m and cml its associated

coefficient. Thus, a set of coefficients cml has to be found, fulfilling equation
(5.54). Formally, this is achieved by forming the inner product

cml = 〈f (θ, φ) , Y m
l 〉 =

∫ π

0

∫ 2π

0

f (θ, φ) Y m
l dφ sin θ dθ. (5.55)

Let nverts denote the number of vertices, ~vi the Cartesian coordinates of the
i′th vertex, and i be the index with 0 ≤ i < nverts. As the bijection of
the surface points to parameter space is a discrete function, the function
f (θ, φ) is also discrete, defined only for parameters associated with a vertex,
where it takes the value f (θi, φi) = ~vi. In order to evaluate the integral
(5.55), f needs to be defined on the intervals θ ∈ [0, π] and φ ∈ [0, 2π],
requiring an interpolation function inside the triangles. Several approaches
were compared by Praun and Hoppe (2003), stating that each function bears
disadvantages, and thus introduces further computational errors. Moreover,
it provides an artificial resolution, which has no basis on the given data. The
opposite extreme, the straightforward discretisation of the integral,

cml ≈ 4π

nverts

nverts−1
∑

i=0

viY
m
l (θi, φi) , (5.56)

does not give the required result, as the values of Y m
l evaluated at some

arbitrary sets of parameters (θi, φi), will in general not form an orthonormal
basis.

Striking a balance between these two extremes is finding a set of coefficients,
that form an orthonormal basis and minimise the approximation error at the
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given data points. Thus, coefficients cml have to be found that minimise the
error-term e in

f (θi, φi) =

lmax
∑

l=0

l
∑

m=−l

cml Y m
l (θi, φi) + ei. (5.57)

Truncating the sum by an upper bound lmax for l, as depicted in Equation
(5.57), allows computer based evaluation. The greater lmax, the more details
can be captured by the series expansion. In matrix notation, the following
system of linear equations is given

f = Y c+ e (5.58)

with

Y ∈ Cnverts×nharms, c ∈ Cnharms, f ∈ Rnverts and e ∈ (R+)nverts

where nharms = (lmax + 1)2,

Y =











Y 0
0 (θ0, φ0) Y −1

1 (θ0, φ0) · · · Y lmax

lmax
(θ0, φ0)

Y 0
0 (θ1, φ1) Y −1

1 (θ0, φ0) · · · Y lmax

lmax
(θ1, φ1)

...
...

. . .
...

Y 0
0 (θnV −1, φnV

) Y −1
1 (θnV

, φnV
) · · · Y lmax

lmax
(θnV

, φnV
)











,

c =
(

c00, c
−1
1 , c01, . . . , c

lmax

lmax

)T
, f = (f (θ0, φ0) , f (θ1, φ1) , . . . , f (θnV

, φnV
))T

and e = (e0, e1, . . . , enV
)T , nV = nverts.

As the system has far more equations (≈ 20.000) than unknown coefficients
(= number of harmonies, equivalent to the desired resolution), it is usually
overdetermined and cannot be solved, so that e is the zero vector. Thus,
a solution has to be found that minimises the Fröbenius-norm of the error
term e = Y c− f , which means finding a ĉ with

‖Y ĉ− f ‖F = min
c

‖Y c− f ‖F = min
c

‖e‖F = min
c

nV
∑

i=0

e2i (c). (5.59)

As indicated by the last term, this is a problem that can be solved using least
squares algorithms. The Fröbenius-norm is the squared norm of a vector v,
which is given by ‖v‖2 = vTv. Thus, equation (5.59) can be rewritten as

‖Y ĉ− f ‖F = ‖Y ĉ− f ‖2 (5.60)

= (Y ĉ− f)T (Y ĉ− f)

= (Y ĉ)T (Y ĉ) − fTY ĉ− (Y ĉ)T f + fTf.
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The two middle terms are equal, and the minimum is found at the zero of
the derivative with respect to ĉ,

2Y TY ĉ− 2Y Tf = 0. (5.61)

Therefor the minimising vector ĉ is a solution of the normal equation

Y TY ĉ = Y Tf (5.62)

If Y has full rank, Y TY is invertible and the unique solution to the minimi-
sation problem is given by

ĉ =
(

Y TY
)−1

Y Tf. (5.63)

The matrix Y + =
(

Y TY
)−1

Y T is called the pseudo inverse of Y . Several
methods to determine the pseudoinverse have been proposed:

• Straightforward computation of the pseudoinverse, which is often the
fastest but also the least stable method.

• QR decomposition is a good compromise, but is more difficult to im-
plement than the other two.

• Singular value decomposition (SVD) is the slowest, but also the most
robust method.

Due to its robustness and simplicity of implementation, SVD was chosen to
compute the pseudo inverse. For a complex matrix A, the singular value
decomposition is a decomposition into the form

A = U · Σ · V H (5.64)

where U and V are unitary matrices, V H is the conjugate transpose of V ,
and Σ is a diagonal matrix whose elements are the singular values of the
original matrix. If A is a complex matrix, then there always exists such a
decomposition with positive singular values (Golub and Van Loan 1996, pp.
70 and 73).

After the pseudo inverse has been computed, a simple matrix vector multi-
plication is needed to determine the coefficients ĉ. All surface information of
the hippocampus is now embedded in this small set of numbers, that can be
analysed statistically.
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5.5.3 Computation of the Coefficients

In order to compute the pseudo inverse Y +, Y has to be specified first. Y is
a nverts × nharms complex matrix, which is important to note, as the compu-
tation of the pseudo inverse is the most challenging part concerning memory.
Each row of Y stores the spharms evaluated at the parameters of the vertex,
associated to that row, i.e. yi = (Y 0

0 (θi, φi), Y
−1
1 (θi, φi), Y

0
1 (θi, φi), Y

1
1 (θi, φi), . . .),

where (θi, φi) are the parameters of vi. The set up of the required matrix Y
and vector f is given in Algorithm 3 in the appendix.

For matrix manipulation, the clapack - and cblas-libraries are used. Thus,
matrices have to be stored in an array of complex numbers in row- or column-
major order. Column-major order was chosen. Spharms are computed using
the GSL (Gnu Scientific Library, Galassi et al., 2005), and are afterwards
stored in the matrix.

The pseudo inverse is computed in three steps using matrix operations of the
clapack - and cblas-library. First the SVD of Y = U · Σ · V H is computed
using the cgesvd -routine of the cblas-library, which returns the three matrices
U , Σ and V H . Afterwards, Σ, which is a diagonal matrix, is inverted by
computing the reciprocals of the diagonal entries. In a last step, the three
matrices U , Σ−1 and V are multiplied using cblas cgemm (cblas), giving
Y + = U · Σ−1 · V . The conjugate transposed of V H is computed internally,
using the CblasConjTrans option.

In the final step, Y + and f are multiplied, giving the coefficients of the series
expansion.

5.5.4 Rotation Independent Descriptors

So far, the surface descriptions still depend on translation, rotation and scal-
ing of the original object. Brechbühler et al. (1995) proposed three methods
to overcome these dependencies.

Translation invariance can be achieved by ignoring c00, which adds a constant
term to each coordinate x, y and z independently, if

f(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T

is chosen as surface function.
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Any three real valued linear combinations of the first order harmonies Y −1
1 , Y 0

1 ,
and Y 1

1 , interpreted as Cartesian coordinates in the object space, will always
describe an ellipsoid. Rotation invariance is achieved by rotating this ellip-
soid to a standard position and applying this rotation to the coefficients.

Scaling invariance can be achieved by dividing all coefficients by the length
of the longest main axis of the ellipsoid.

These transformations have not been implemented yet.



Chapter 6

Realisation

The goal of this work was to implement a process chain allowing for shape
analysis of human hippocampi under Alzheimer’s Disease (AD) using spheri-
cal harmonics. The original intention was to use open-source software such as
FreeSurfer (spherical parametrisation; http://surfer.nmr.mgh.harvard.

edu) and the SpharmonicKit (spherical harmonic transforms; http://www.
cs.dartmouth.edu/∼geelong/sphere) to ease implementation. The version
of FreeSurfer, that was available in spring 2005, was not capable of handling
the given data, i.e. anatomical substructures of the brain. Thus, the spheri-
cal parametrisation had to be implemented from scratch, following the ideas
of Brechbühler et al. (1995). The spherical harmonics transformation, imple-
mented in the SpharmonicKit could not be applied, as it needs the function
on the sphere to be sampled at equally distant positions. Besides, an in-
terpolation function on the sphere is required, of which Praun and Hoppe
(2003) had already shown to cause errors. Moreover, interpolation provides
an artificial resolution having no basis on the given data.

Thus, the process chain illustrated in Figure 6.1 was implemented, which
consists of five major subproblems: triangulation of coplanar outlines, sim-
plification of triangular meshes, spherical parametrisation, spherical optimi-
sation and approximation of the function on the unit sphere by spherical
harmonics. Except for the optimisation all subproblems have been solved.
Due to temporal restrictions of the thesis, the optimisation algorithm could
not be finished. In order to analyse the coefficients of the spherical harmonics
series expansion statistically, all subprograms have to work correctly. Hence,
an evaluation of the present data cannot be accomplished.

In the following the results of the different subproblems are described.
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Figure 6.1: State of the implementation: Dark boxes indicate finished sub-
problems, light boxes need further improvement and white boxes have not
been implemented yet.
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Triangulation of Coplanar Outlines

The present data was taken from 35 patients, resulting in the outlines of
47 left and 47 right hippocampi (including follow up examinations). All
data sets were triangulated using the algorithm explained in section 5.1.3.
In 46 cases the new method, using convex outlines and bisectors, was able
to triangulate the surfaces correctly, as demonstrated by the example of six
hippocampi in Figure 6.3. The illustration reveals the great differences in the
shape of the hippocampi. Most problems were caused by the lower regions
(foldings) and the outlines on top (great deviations of the centres of mass).
Problems occured just in one dataset, which exhibits major foldings in the
hippocampus (Figure 6.2).

Figure 6.2: Different views of one hippocampus that could not be trian-
gulated correctly. The lower levels exhibit self-intersections (left), which
are caused by ambiguities in triangulation of the folded region (middle and
right). In the fold the upper outline is closer to the opposite side, causing
wrong links at the tips of the fold, where the angle criterion fails.

Simplification of Triangular Meshes

If constrained optimisation is used as optimisation method, a mesh hierarchy
has to be computed first to ease convergence towards the global minimum.
The triangulated surfaces consist in average of 10,000 vertices, 30,000 edges
and 20,000 faces. The reduction process from 30,000 to 2,000 edges takes
at most 90 seconds. Different stages of the reduction process of a mesh
consisting of 3325 edges are depicted in Figure 6.4. The parameters for the
fairness criterion were chosen as follows: α = 50, β = 1.01, ratio = 0.5 and
γ = 100.
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Figure 6.3: Triangular meshes of six hippocampus pairs. The top row shows
the right hippocampus of six different patients. The bottom row shows the
associated left hippocampi. As can be seen the hippocampi exhibit great
differences in shape.

Figure 6.4: Mesh simplification of a hippocampus. The top and bottom row
show the mesh from front and back at different levels of detail: (number of
edges from left to right) 3325, 2232, 1551, 1098, 804 and 594.



67

Spherical Parametrisation

The spherical parametrisation was computed for all hippocampi. Figure C.1
gives an example of the different illustrations using one hippocampus pair.
For each hippocampus three graphics are given: The two colormaps on the
mesh in Cartesian space show the distribution of latitude and longitude.
The third image shows the spherical mesh, where each vertex of the mesh
in Cartesian space is positioned at its spherical coordinates given by the
parametrisation. The parametrisations of six pairs of hippocampi (left and
right) are shown in Figure C.2. Figure C.3 illustrates the corresponding
spherical meshes of the twelve hippocampi.

The distribution of latitude and longitude is visualised in Figure C.2, which
reveals the major differences in the parametrisation of different hippocampi.
Latitude parameterises the hippocampus from top to bottom. The more
homogeneous the color of the whole hippocampus appears, the closer the
values are. Thus, many small triangles are concentrated on a small part of
the sphere, whereas few large triangles cover the big remaining part of the
sphere. The same is true for longitude, giving the parametrisation ‘around’
the sphere. The dateline is the line connecting the two poles, where the
parametrisation returns from 2π to 0. In Figure C.2 (c) and (g), this line is
indicated by the transition from black to white. As can be seen, the dateline
has no fix position, causing differences with regard to a rotation around the
y-axis (‘top to bottom’-axis).

Figure C.3 shows the spherical meshes of the hippocampi. All meshes are
rotated to the same position, to allow for the comparison of the different
parametrisations. The illustrations verify the impression received in the in-
dividual images for latitude and longitude. The parametrisations exhibit
large differences in the size of the triangles and the distribution of the trian-
gles. The clustering of small triangles occures at different positions. Thus,
the different parametrisations are not comparable.

Spherical Optimisation

To allow for smooth approximations and comparability, the parametrisations
have to be corrected, i.e. distortions of spherical angles and areas of triangles
have to be minimised. Two optimisation techniques were implemented and
tested: constrained optimisation and simulated annealing.

An example of the constrained optimisation process is given in Figure C.4.
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The example mesh consists of 1580 vertices. The optimisation process takes
57 iterations (< 1 min) and reduces the objective function from 4.6749943e-
03 to 3.5063960e-04. The parametrisation was only optimised with respect
to distortions of areas.

The triangles of the surface mesh have approximately same size. Thus, the
relative area of each triangle ought to be 1.0 after optimisation. In the initial
parametrisation (Figure C.4 (b) - blue curve) the relative areas range from
0.008 to 3.092, i.e. the smallest triangle takes only 1/125 of the desired area
and the largest triangle is three times as large as it ought to be. After the
optimisation (Figure C.4 (b) - pink curve) the relative areas oscillate around
1, ranging from 0.8 to 1.27. In image Figure C.4(d) the areas are sorted
according to relative areas. Before optimisation (blue) the values diverge
greatly from 1. After optimisation (pink) most triangles have a relative size
of 1, which was the aim of the optimisation process.

The optimisation process modefies the spherical angles of the mesh on the
sphere, giving a set of optimal angles. After the optimisation the new spher-
ical coordinates have to be computed from these angles. Already in this
small example, the reconstruction of the spherical mesh causes problems,
i.e. numerical errors become too large. This problem gets obvious when
the position of a new vertex is computed from two different adjacent faces,
and the parameters do not match. Thus, this approach cannot be used for
optimisation, but has to be modified, which will be discussed in Section 7.

The second optimisation method uses simulated annealing. Two examples
of the optimisation are given in Figure C.5 and C.7. The first mesh consists
of 36 and second of 217 vertices. In the first case, the energy decreased from
2.31 to 0.12 (< 1 min), and in the second, from 0.21 to 0.19 (< 2 min). For
each example, the surface mesh (a), the initial parametrisation (b), and the
optimised parametrisation (c) are shown.

The parameters for the first optimisation were chosen as follows: β = 100, 000,
initial temperature 2000, damping factor 1.02, steps on each temperature
level 15, minimal temperature 0.5. Thus, the triangles are optimised with
regard to proportional areas, i.e. angles are neglected. The triangles of the
resulting parametrisation have equal size, but exhibit still major distortions
C.5(c). When considering preservation of angles and areas at the same time,
different parameters have to be chosen for SA and the optimisation of the
patch. Due to the large number of parameters and the resulting complexity
of the problem, this could not be tested yet.
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The same is true for the second optimisation of a simplified hippocampus
mesh. Here the parameters are chosen as follows: β = 100, 000, initial tem-
perature 2000, damping factor 1.02, steps on each temperature level 100,
minimal temperature 0.5. This parameter set is not optimal, as can be seen
in Figure C.8, showing the progress of the energy function. The energy de-
creases within six iteration from 0.21 to 0.19, and remains after 27 iterations
at approximately 0.185. This process confirms the visual impression of Fig-
ure C.7(c), showing mainly modifications at the poles, which appear during
the first optimisation steps. From iteration 27 to 418, the parametrisation
remains static. Thus, further testing of the parameters is needed to resolve
a more uniform parametrisation.

Figure C.6 and C.8 display the decrease of the energy function. In the first
case, the energy function reaches very quickly a low level. The areas of
the spherical triangles are compared in Figure C.9(a). As the low energy
indicates, the areas have approximately the same size after optimisation.
Figure C.9(b) illustrates the differences in areas of the second mesh. The
high energy and the large differences in triangular areas, indicate that the
optimisation was not successful. An improvement of the simulated annealing
optimisation can be achieved by modifying the parameters, which was not
possible due to temporal restrictions.

Approximation Using Spherical Harmonics

An example of the reconstruction of a mesh from the spherical harmon-
ics series expansion is given in Figure C.10 and C.11. Both images show
the reconstruction process, where the coefficients of the series expansion are
used up to different degrees. The first image shows the surfaces that are
resolved, if no optimisation is used in the approximation process. In the
second image, the parametrisation is optimised with respect to distortions
of triangular areas. As can be seen, the optimisation affects the reconstruc-
tion tremendously. With the optimisation, the surfaces are smoother than
without, which becomes obvious in the reconstructions of degree seven. The
optimised parametrisation results in a perfect reconstruction of the mesh
vertices, which can be seen in Figure C.11(f). The reconstruction can be fur-
ther improved by taking distortion of angles into account in the optimisation
process, as shown by Brechbühler et al. (1995).



Chapter 7

Conclusion

A process chain consisting of seven steps was explained and implemented to
approximate surface meshes by spherical harmonics. Several modifications
had to be made in order to cope with the given data, i.e. surfaces of human
hippocampi.

A new triangulation algorithm was presented to triangulate nonconvex copla-
nar slizes that exhibit major differences in the distance between single points.
The algorithm was able to compute valid surfaces, that include all given ver-
tices and have no holes. Currently, the algorithm is only based on a local
decision criterion. Thus, the surface properties are solely controlled locally.
Although, the algorithm gives good results, the surfaces might be further
improved by taking more holistic information like the skeleton of the surface
into account, to ensure that prominent features are directly connected, even
though other vertices might be closer.

In the second step, a surface simplification algorithm was presented that
was able to cope with the special structure of the data resolved from MR
images, i.e. surfaces composed of poorly conditioned triangles. Whether the
simplification is appropriate to improve the spherical optimisation could not
be tested yet, as the process chain is not finished and the optimisation is
mandatory.

The initial spherical parametrisation followed the ideas of Brechbühler et al.
(1995) and was directly applicable to the present data.

The major challenge of the whole process was the spherical optimisation.
Two different approaches were implemented and compared: constrained op-
timisation and simulated annealing. In the constrained optimisation, the
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inner angles of the spherical triangles were chosen as variables, as they char-
acterise both quantities that were to be controlled, i.e. distortion of the areas
of the triangles and distortion of their inner angles. Though the optimisa-
tion gave good results, it could not be used, as the new spherical coordinates
could not be computed from the angles due to numerical errors. Two differ-
ent improvements are possible. Either a numerically more stable approach is
chosen for the computation of the parameters, or the Cartesian coordinates
of the vertices on the sphere are used for optimisation. In the second case,
the improved parametrisation would be accessible directly after optimisa-
tion. The spherical parameters should not be used for optimisation, as the
parametrisation causes problems at the poles where discontinuities appear.
Thus, partial derivatives cannot be computed.

The simulated annealing gave good results for the small mesh, where the
influence of the parameters could be tested easily. The larger the meshes
got, the harder the estimation of the influence of a single parameter got.
Extensive testing is necessary to determine an optimal parameter set. More-
over, simulated annealing takes longer, as it makes no use of the information
given about the parameter space. Thus, it takes SA longer to find an optimal
configuration.

The implementation of the optimisation process became such complicated,
that it could not be realised within the temporal restrictions. A solution to
this problem remains part of future work.

In the last step, the mesh on the sphere was approximated by spherical
harmonics. The implementation was a straightforward realisation of the
explanation given by Brechbühler et al. (1995). As the optimisation has
not been finished yet, a statistical analysis of the data was not possible.

On the whole, the approximation of surfaces using spherical harmonics is
a very powerful technique, that poses many challenges in the implementa-
tion. If these difficulties can be solved a mathematical surface discription for
arbitrary objects is available, that might help gain further insight into the
deformation of objects. This remains subject of journal publications.
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(a) Parametrisation of the right hip-
pocampus.

(b) Parametrisation of the left hippocam-
pus.

(c) Mesh on the sphere of the right hip-
pocampus.

(d) Mesh on the sphere of the left hip-
pocampus.

Figure 1: Spherical parametrisation of the hippocampi of one patient. The
top row shows the latitudinal and longitudinal parametrisation of the (b) left
and (a) right hippocampus. Below the spherical parametrisations of the same
two hippocampi are given ((c) right hippocampus; (d) left hippocampus).



Appendix A

Definition of Shape

Definition A.1. Shape is all the geometrical information that remains when
location, scale and rotational effects are filtered out from an object. (Dryden
and Mardia, 1998)

In other words, the term shape is invariant to Euclidean transformations, as
shown in Figure A.1.

Figure A.1: Five exact copies of the same square under different Euclidian
transformations.
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Appendix B

Spherical Harmonics

Like Fourier transforms in 1D and 2D, spherical harmonics are a compact
representation of functions on the unit sphere by means of a set of orthogonal
basis functions. The spherical harmonics Y m

l (θ, φ) are the angular portion
of the solution to Laplace’s equation in spherical coordinates where azimutal
symmetry is not present.

The following explanation is extracted from Weisstein (2005). For a more
detailed explanation of the formulas see Byerly (1893) or Groemer (1996).

Spherical harmonics satisfy the spherical harmonic differential equation, which
is given by the angular part of Laplace’s equation in spherical coordinates.
Writing F = Φ(φ)Θ(θ) in this equation gives

Φ(φ)

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
Θ(θ)

sin2 θ

d2Φ(φ)

dφ2
+ l(l + 1)Θ(θ)Φ(φ) = 0. (B.1)

Multiplying by sin2 θ/(ΘΦ) gives
[

sin θ

Θ(θ)

d

dθ

(

sin θ
dΘ

dθ

)

+ l(l + 1) sin2 θ

]

+
1

Φ(φ)

d2Φ(φ)

dφ2
= 0. (B.2)

Using seperation of variables by equating the φ-dependent portion to a con-
stant gives

1

Φ(φ)

d2Φ(φ)

dφ2
= −m2, (B.3)

which has solutions
Φ(φ) = Ae−imφ +Beimφ. (B.4)

Combining the information gives the equation for the φ-dependent portion,
whose solution is

Θ(θ) = Pm
l (cos θ), (B.5)
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where m = −l,−(l − 1), . . . , l − 1, l and Pm
l (z) is an associated Legendre

polynomial. The spherical harmonics are then defined by combining Φ(φ)
and Θ(θ),

Y m
l (θ, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eimφ, (B.6)

where the normalisation is chosen such that

∫ 2π

0

∫ π

0

Y m
l (θ, φ)Y

m′

l′ (θ, φ) sin θdθdφ = (B.7)

∫ 2π

0

∫ 1

−1

Y m
l (θ, φ)Y

m′

l′ (θ, φ)d(cos θ)dφ =

δmm′δll′ (B.8)

(Arfken 1985, p. 681). Here, z denotes the complex conjugate and δmn is the
Kronecker delta. [...]

The spherical harmonics are sometimes seperated into their real and imagi-
nary parts,

Y ms
l (θ, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ) sin(mφ) (B.9)

Y mc
l (θ, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ) cos(mφ). (B.10)

The spherical harmonics obey

Y −l
l (θ, φ) =

1

2ll!

√

(2l + 1)!

4π
sinl θe−ilφ (B.11)

Y 0
l (θ, φ) =

2l + 1

4π
Pl(cos θ) (B.12)

Y −m
l (θ, φ) = (−1)mY

m

l (θ, φ), (B.13)

where Pl(x) is a Legendre polynomial.



Appendix C

Illustrations
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(a) Parametrisation of the right hip-
pocampus.

(b) Parametrisation of the left hippocam-
pus.

(c) Mesh on the sphere of the right hip-
pocampus.

(d) Mesh on the sphere of the left hip-
pocampus.

Figure C.1: Spherical parametrisation of the hippocampi of one patient. The
top row shows the latitudinal and longitudinal parametrisation of the (b) left
and (a) right hippocampus. Below the spherical parametrisations of the same
two hippocampi are given ((c) right hippocampus; (d) left hippocampus).
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(a) Latitude of right hippocampi.

(c) Longitude of right hippocampi.

(e) Latitude of left hippocampi.

(g) Longitude of left hippocampi.

Figure C.2: Spherical parametrisation of the six pairs of hippocampi.
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(a) Spherical parametrisation of the left hippocampi.

(b) Spherical parametrisation of the right hippocampi.

Figure C.3: Spherical parametrisation of the hippocampi decipted in Figure
C.2 (top row: hippocampus 1–3, bottom row: hippocampus 4–6).
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(a) Mesh in
Cartesian
space.

(b) Area of the spherical triangles before (blue) and af-
ter (pink) optimisation.

(c) Mesh on the sphere.
(d) Ordered areas of the spherical triangles before (blue)
and after (pink) optimisation.

Figure C.4: Optimisation of a hippocampus using constrained optimisation:
(a) The surface mesh in Cartesian space. (c) The initial (not optimised)
spherical mesh. The relative areas ( = area/surface area) of the spherical
triangles before (blue) and after (pink) optimisation are given in Figure (b).
Figure (d) shows the same plot, where the areas were ordered according to
size.



89

(a) Mesh in Cartesian
space.

(b) Initial parametrisa-
tion

(c) Optimised parametri-
sation

Figure C.5: Simulated annealing optimisation of a mesh consisting of 36
vertices (a). The initial parametrisation (b) shows great differences in the
sizes of the triangles. After the optimisation (c) the distortions of the areas
of the triangles are eliminated.

Figure C.6: Energy function of the simulated annealing process of the
parametrisation given in C.5(b)
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(a) Mesh in
Cartesian
space.

(b) Initial parametrisa-
tion

(c) Optimised parametri-
sation

Figure C.7: Simulated annealing optimisation of a mesh consisting of 217 ver-
tices (a). At the poles, the initial parametrisation (b) shows great differences
in the sizes of the triangles. After the optimisation (c) these distortions are
eliminated. Nevertheless, the triangles exhibit still distortions with respect
to triangular areas.

Figure C.8: Energy function of the simulated annealing process of the
parametrisation given in C.7(b).
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(a) Areas of the mesh shown in Figure C.5(a).

(b) Areas of the mesh shown in Figure C.7(a).

Figure C.9: The areas of the triangles before (blue) and after (pink) optimi-
sation.
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(a) Surface mesh of the re-
constructed object.

(b) Degree 1 (c) Degree 2

(d) Degree 3 (e) Degree 4 (f) Degree 7

Figure C.10: Reconstruction of the surface mesh shown in (a) using spherical
harmonics, before the parametrisation was optimised. Partial series with
coefficients up to degree (b) 1, (c) 2, (d) 3, (e) 4 and (f) 7 are used to
compute the surface.
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(a) Surface mesh of the re-
constructed object.

(b) Degree 1 (c) Degree 2

(d) Degree 3 (e) Degree 4 (f) Degree 7

Figure C.11: Reconstruction of the surface mesh shown in (a) using spherical
harmonics, after the parametrisation was optimised. Partial series with
coefficients up to degree (b) 1, (c) 2, (d) 3, (e) 4 and (f) 7 are used to
compute the surface.



Appendix D

Pseudocode

Algorithm 1 Set up Laplace equation for latitude (Brechbühler et al., 1995)

Set up matrix A:

for vertex = 1. . . n do

avertex,vertex := number of direct neighbours;
for the direct neighbors of vertex do

if neighbour is not a pol then

avertex,neighbour = −1;
end if

end for

end for

Set up vector b:

Set all entries of b to 0;
for the direct neighbours of south pole do

bneighbour := π
end for
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Algorithm 2 Set up Laplace equation for longitude (Brechbühler et al.,
1995)

Modify matrix A:

for both poles do

for the direct neighbors of pole do

aneighbour,neighbour = −1;
end for

end for

a0,0+ = 2;

Set up vector b:

for row = 1 . . . n do

brow := 0;
end for

previous := north pole;
here := 1;
maximum := 0.0;
while here ! = south pole do

for the direct neighbours of here do

if θneighbour > maximum then

maximum := θneighbour;
nextpos := position of neighbor;

end if

if neighbour == previous then

prevpos := position of neighbour
end if

end for

for the direct neighbours clockwise between prevpos and nextpos do

add 2π to bneighbour;
subtract 2π from bhere;

end for

previous := here;
here := neighbour of here indicated by nextpos;

end while
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Algorithm 3 Set up of f and Y

for i = 0 to nverts do

f [ i ] [ j ] = vi,j with j ∈ {x, y, z}
for l = 0 to orderharms do

for m = −l to l do

Y [ i ] [ l2 + l +m ] = Y m
l (θi, φi) ;

end for

end for

end for


