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Introduction

A mathematical object has symmetries if it can be moved around in such a way that, after all
changes have been done, it looks about the same. Given a family of objects, our comprehension
of it often improves drastically by studying those objects, inside the family, which have
symmetries. Two interesting questions are that of how well- or badly-behaved is the structure
representing all symmetries of a given object, and how can the knowledge on symmetries
improve our understanding of the objects that we set up to study in the first place.

The central objects of study in this thesis are metric measure spaces. These are metric
spaces which are endowed with a reference measure and enriched with basic topological,
geometric and measure theoretical properties. The objective of the first part of the work is to
study the existence of a differential structure on symmetry groups of metric measure spaces.
The second part is concerned with the analysis of the induced geometry of spaces admitting
non-trivial symmetries. We make this statements more precise in the remainder.

We analyze in §1 the group of isomorphisms (measure-preserving isometries) and the group
of isometries; two noteworthy automorphism groups of a metric measure space. We consider a
class of metric measure spaces in which tangent cones are well behaved. Within this class we
provide in Theorem A a characterization of spaces whose automorphism groups are—possibly
0-dimensional—smooth manifolds, namely Lie groups.

In §1.1 we study those spaces, inside the class described earlier, for which automorphism
groups contain small subgroups. Therein we reinterpret the “size” of a subgroup, which is
by definition intrinsically connected to the distance, in a measure-theoretic fashion. More
precisely we interpret this “size” in terms of a certain relative measure of fixed point sets. Since
Gleason and Yamabe [Gle52,Yam53] showed that a locally compact topological group G is a
Lie group if and only if G does not contain small subgroups, we deduce the identification of
spaces explained in the previous paragraph.

The result is used in Theorem B in §1.2 to show that automorphism groups are smooth in
spaces with good optimal transport properties. Examples of spaces that satisfy these transport
properties are Riemannian manifolds, Alexandrov spaces of curvature bounded below, limits
of weighted Riemannian manifolds with a uniform lower bound on the Ricci curvature, and
all their Finsler counterparts. This compliments classical results of Myers-Steenrod [MS39],
Fukaya-Yamaguchi [FY94], Cheeger-Colding-Naber [CC00, CN12], and Deng-Hou [DH02].
Most notably, in some situations spaces satisfying generalized notions of Ricci curvature lower
bounds enjoy these properties as well.
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Curvature-dimension conditions, which developed from work of Lott-Sturm-Villani [LV09,
Stu06a, Stu06b], define notions of lower Ricci curvature bounds for metric measure spaces.
Roughly stated, these conditions require the convexity of an entropy functional on the space of
probability measures associated to an m.m. space; different choices of entropy and different
types of convexity describe alternative versions of the conditions.

Theorem (1.2.9, 1.2.10, 1.2.11). Essentially non-branching spaces with well-behaved
tangents that satisfy a finite dimensional curvature-dimension condition have a smooth
isomorphism group and a smooth isometry group.

In particular, metric measure spaces that fit into the assumptions of the theorem above are
finite dimensional RCD∗ spaces and, granted they have well-behaved tangents, their Finsler
counterparts: strong CD spaces; strong CD∗ spaces; and essentially non-branching MCP spaces.
We end the first chapter by illustrating that the assumption of the theorem on geodesics
essentially not branching is necessary; we construct a finite dimensional highly branching MCP
space with well-behaved tangents but with a non-smooth group of symmetries.

Next we turn our focus towards submetries, a metric analogue of Riemannian submersions.
In [O’N66,BGP92] O’Neill and Burago-Gromov-Perelman showed that lower sectional curvature
bounds are preserved—possibly in a synthetic manner—under such maps. However, examples of
Riemannian submersions that do not preserve lower bounds on the Ricci curvature tensor have
been constructed by Pro and Wilhelm in [PW14]. On the other hand, by looking at a weighted,
and eventually, a synthetic interpretation of Ricci curvature Lott and Lott-Villani [Lot03,LV09]
achieved positive partial results in this direction. The purpose of §2 is to show the corresponding
curvature stability results in full generality for synthetic lower Ricci curvature bounds.

Theorem E. Curvature-dimension conditions are preserved by metric measure submetries
with bounded leaves.

Metric measure submetries are particular submetries that respect the structure of the spaces
that we study; they are in correspondence with a special type of foliations called bounded
metric measure foliations. In Theorem C we show that a quotient space, induced by such a
foliation, inherits from the original space its synthetic Ricci curvature bounds. To prove this
claim, in §2.1 we construct an isometry between the 2-Wasserstein space on the quotient space
onto a subset of the 2-Wasserstein space in the original space. After showing a corresponding
isometry of Sobolev spaces, the result follows.

We conclude in §2.2 by showing in Theorem D that quotient maps which are induced
by isomorphic actions of compact groups are metric measure submetries; hence curvature-
dimension conditions are stable under such quotient maps. As a consequence of Theorems C,
D, E we obtain new constructions of examples of MCP, CD, CD∗, and RCD∗ spaces.

We now take the opportunity to say that results drawn from the first chapter were presented
in [Sos16]. The results of the second chapter come from collaborative work with Galaz-García,
Kell, and Mondino, during which [GGKMS17] was assembled.

We will begin by explaining our terminology, and stating background results in §1
2
.
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Chapter 1
2

(Some basics you might want to
know) Before you go on

We explain our notation and develop basic concepts and results to make the text accessible.
We intend to give a self-contained yet not superfluous presentation.

Metric measure spaces

The objects of our study are metric measure spaces which we write sometimes in short as m.m.
space. A metric measure space, (X, d,m), is a triple where

(X, d) is a complete, separable metric space and,

m 6= 0 is a non-negative Borel measure finite on every bounded set.

A pointed metric measure space, (X, d,m, x), is a m.m. space together with a base point
x ∈ X. In the text a geodesics is a map, γ: [0, 1]→ X, such that:

d(γr, γs) = (r − s)d(γ0, γ1) for all 0 ≤ s ≤ r ≤ 1

where γt := γ(t). We write Geo(X) for the space of all geodesics on X endowed with topology
of uniform convergence. A metric space is called a geodesic space if for every given pair
of points x, y ∈ (X, d) there exists a geodesic that joins x and y. For t ∈ [0, 1] define the
evaluation map, et : Geo(X) → X, as et(γ) := γt for γ ∈ Geo(X). The restriction map,
restts: Geo(X)→ Geo(X), is defined as restts(γ) := γ ◦ f ts for s, t ∈ [0, 1], γ ∈ Geo(X) and
the real function f ts(x) := (t− s)x+ s.

Two m.m. spaces (X1, d1,m1), (X2, d2,m2) are isomorphic if there exists an isometry

f : supp(m1)→ X2 such that

(f)#m1 = m2.
(1

2
.1)
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We use the word isometry to make reference to usual metric isometries. In contrast, we
refer to maps satisfying (1

2
.1) as measure-preserving isometries or isomorphisms. Particularly,

we note that an isometry is defined on the whole space X1 and does not necessarily satisfy
(1

2
.1). By definition (X, d,m) is always isomorphic to (supp(m), d,m). This induces a

canonical equivalence class of isometric metric measure spaces where only the Support of
the measure is relevant. In this work we assume that

supp(m) = X,

which is a natural restriction in the class of isomorphisms of m.m. spaces. We write ISOm(X)
and ISO(X) to denote the group of isomorphisms of (X, d,m), and the group of isometries of
(X, d,m) respectively. As usual the group operation is given by the composition of functions.
We endow the groups ISO(X) and ISOm(X) with the compact-open topology making them
topological groups, see [KN63] pp.46. We write in the remainder G∈ {ISO(X), ISOm(X)} to
denote one of these two groups.

Remark 1
2
.2 (Topology on ISOm(X)). We explain and motivate our choice of topology

on ISOm(X). For locally compact metric spaces it’s natural to endow ISO(X) with the
compact-open topology since the structure under study is of pure metric nature. In
addition, in this context, the rigidity of the isometries assures that pointwise convergence
implies convergence w.r.t. the compact-open topology.1 Alternatively, on m.m. spaces
there is additional structure of interest, namely, the measure structure. However, as
we explain below, the rigidity of the measure-preserving isometries guarantee that a
reasonable choice of topology on ISOm(X) coincides with the compact-open topology.

We first observe that a topology that only considers the measure structure is too coarse
for our purposes because it doesn’t see metric properties. A logical way to proceed would
be to couple a measure-wise and a metric-wise topology. However, the weakest metric
convergence, the pointwise convergence, coincides with the compact-open convergence. On
the other hand, in Lemma 1.1.1 we show that the compact-open convergence of a sequence
of measure-preserving isometries, (fn), implies the weak convergence of the pushforward
measures (fn)#(m) in a locally compact m.m. space.

We will study group actions on sequences of pointed metric spaces. In this framework
the pointed Gromov-Hausdorff (pGH) and pointed equivariant Gromov-Hausdorff convergence
(peGH) provide canonical types of convergence. We present a quick remainder of these
concepts and refer to [DBI01,Fuk86,FY92,Har16] for more details.

Let us first denote the set of isometry classes of compact metric measure spaces byMc.
We also consider triples (X, d,H), where (X, d) is a compact metric space and H ≤ ISO(X)
is a closed subgroup and say that two triples are equivalent if they are equivariantly isomorphic
up to automorphisms of the groups. We denote the equivalence classes of these triples by
Mc

eq.

Next we define ε-approximations.

Definition 1
2
.3. Let (X, dX), (Y, dY ) ∈ Mc be metric spaces. A Gromov-Hausdorff

1Rigorously we would have to justify the use of sequences to compare topologies. This can be done
because ISO(X) is second-countable which can be concluded from the fact that X is a locally compact
metric space. Consult for instance [KN63] pp.46.
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ε-approximation is a function f : X → Y such that, for all p, q ∈ X it holds that
|dX(p, q)− dY (f(p), f(q))| ≤ ε and an ε-neighborhood of f(X) covers all of Y.

Let (X, dX ,HX), (Y, dY ,HG) ∈Mc
eq. An equivariant Gromov-Hausdorff ε-approximation

is a triple of functions (f, ϕ, ψ) where f : X → Y , ϕ : HX → HY and ψ : HY → HX such
that

• f is a Gromov-Hausdorff ε-approximation;

• if hX ∈ HX , and x ∈ X, then d(f(hXx), ϕ(hX)f(x)) < ε; and

• if hY ∈ HY and x ∈ X, then d(f(ψ(hY )x), hY f(x)) < ε.

The distances are defined as follow.

Definition 1
2
.4 ((equivariant) Gromov-Hausdorff distance). The Gromov-Hausdorff dis-

tance dGH between two compact metric spaces (X, dx) and (Y, dY ) is defined as the infimum
of all ε’s such that there are Gromov-Hausdorff ε-approximations from X → Y and from
Y → X.

The equivariant Gromov-Hausdorff distance between two (X, dx,HX) and (Y, dY ,HY )
is defined as the infimum of all ε’s such that there exist equivariant Gromov-Hausdorff
ε-approximations from X → Y and from Y → X.

GH-convergence for non-compact proper pointed spaces can also be defined requiring the
approximations to preserve the base point. In this case we say that (X, dX , x) converges in the
pointed Gromov-Hausdorff topology to (Y, dX , y) if (B̄r(x), dX)

GH−→ (B̄r(y), dY ) for all radius
r, under the extra requirement that f(x) = y for all Gromov-Hausdorff ε-approximations. We
will not need to define a GH-convergence for non-compact spaces, however we will need to
keep track of base points. For this purpose we callMc

eq,p the set of equivalence classes of
quadruples (M, d,H, x), for (M, d,H) ∈ Mc

eq and x ∈ M , under the equivalence given by
equivariant isomorphisms (up to group automorphisms) that fix the base point. The pointed
eGH-convergence is then defined in terms of eGH ε-approximations that fix base points.

In [FY92, Proposition 3.6] the following useful property is proved. Let X = {(Xn, dn,Hn, xn)}n∈N
⊂Mc

eq,p be a sequence for which the corresponding sequence of underlying metric spaces GH-
converge to (Y, dY , y), then there exist a closed subgroup HY ≤ ISO(Y ) and a subsequence
of X which converges in the pointed eGH-topology to (Y, dY , y,HY ).

Lastly let us remark that in the framework of m.m. spaces the ad hoc convergence is
given by the pointed measured Gromov-Hausdorff convergence. This convergence couples,
in an appropriate fashion, the pGH-convergence with the weak convergence of pushforward
measures. However, we do not go in depth since we do not directly deal with these types of
sequences nor topology. A good reference for this topic is [GMS13].

Any pGH-limit of a sequence of scaled spaces, (X, 1
ri
d, x)

pGH→ (Y ∞, d∞, x∞) for ri → 0,
is called a (metric) GH-tangent cone of X at x.2 We denote the set of all tangent cones of

2The canonical concept of a tangent spaces, in the class of m.m. spaces, are m.m. spaces that appear
as measured pGH-limits of rescalings of the metric and measure. Nonetheless we consider simply metric
tangent cones since this suffices for our purposes.
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X at x by Tan(X, x):= {(X∞, d∞, x∞) is a pGH-limit as above}. In general, tangent cones
need not exist nor be unique.3 We call the set of points of X with unique tangent cones the
regular set R of X. Specifically,

R :=
{
x ∈ X ‖ there exist a unique (Y ∞x , dY

∞
x , yY

∞
x ) ∈ Tan(X, x)

}
. (1

2
.5)

Note that the limit space Y ∞x might depend on the point x ∈ X. The collection of spaces, up to
isometry, that appear as tangents of the regular set R is written as Tan(R):= ∪x∈RTan(X, x).
For fixed ε, δ > 0 the set (R)ε,δ is defined as the set of points x ∈ X such that there exists
(Y ∞, d∞, y∞) ∈ Tan(R) for which

dGH(Bs(x), BY∞

s (y∞)) ≤ s ε ∀ 0 < s < δ, (1
2
.6)

where BY∞
s (y∞) ⊂ (Y ∞, d∞, y∞) is the metric ball of radius s around y∞. The ε-regular

set Rε is the set Rε := ∪δ(R)ε,δ. We make the next observations to understand the relations
between these sets.

• In general Rε,δ 6⊂ R for some ε, δ; and then

• In general Rε 6⊂ R for some ε;

• In general R 6⊂ Rε,δ for some ε, δ; although

• for every x ∈ R and ε > 0 there exist δε such that x ∈ Rε,δε ;

• R = ∩ε>0Rε;

We say that (X, d,m) has m-almost everywhere unique tangents if

m(X \ R) = 0.

It follows from the observations made above that for every ε > 0 the measure m(X \ Rε) = 0
if X has m-almost everywhere unique tangents.

Sobolev spaces in m.m. spaces

Sobolev spaces in m.m. spaces can be defined in several ways, see for instance the re-
view [Hei07] and references therein. However, under mild regularity assumptions on the m.m.
space, which we later specify, they turn out to be equivalent (for results in this direction
see [Che99,AGS14a,AGS13,Kel15,Kel14]). We present a simple approach which suffices for
our purposes, always having in mind that the spaces that we will study are sufficiently regular
for all approaches to be equivalent.

3A rather wild example of the non-uniqueness of tangent cones was shown by Chen and Rossi in [CR14].
Therein they constructed a metric space that has any other compact metric space as a tangent cone at all
points!
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Given a metric space (X, d), we denote with LIP(X, d) the space of Lipschitz functions,
i.e. the space of those functions f : X → R such that

sup
x,y∈X,x6=y

|f(x)− f(y)|
d(x, y)

<∞.

Recall that the left hand side is called the Lipschitz constant of f . The upper asymptotic
Lipschitz constant Lipf : X → R ∪ {+∞} of a function f : X → R is defined as follows:

Lip f(x) = lim sup
r→0

sup
y∈Br(x)

|f(y)− f(x)|
r

. (1
2
.7)

An easy observation is that Lip f(x) ≤ L if f is Lipschitz continuous with Lipschitz constant
at most L. If (X, d) is a geodesic space then the converse statement is also valid. We will
write LipY when we want to stress the dependence on the domain Y of the functions.

We use the upper asymptotic Lipschitz constant to define the Cheeger energy of a function
f : X → R by

Ch2(f) :=
1

2
inf

{
lim inf
n→∞

∫
X

Lip fn(x)2dm
∥∥ {fn}n∈N ⊂ Lip(X), fn

L2

→ f

}
. (1

2
.8)

The quantity Ch2(f) should be tought of as an “L2-norm of the gradient of f ”. The
domain of the Cheeger energy is D(Ch2) := {f ‖ Ch2(f) <∞}. One can show that for any
f ∈ D(Ch) there exists a unique function |∇f |2 ∈ L2(X, d,m) that minimizes equation (1

2
.8),

i.e. 2 Ch2(f) :=
∫
X
|∇f |22dm. We call |∇f |2 the minimal weak upper gradient or minimal

relaxed slope of f ; this object acts as an m-almost everywhere “norm of the gradient”.4 It is
the best notion that one expects for first order derivatives in a general setting.5

It follows from the definition that Ch2 is convex and lower semicontinuous with respect to
convergence in L2(m). In particular, it induces a complete norm defined by

‖f‖W 1,2 =
(
‖f‖2

L2 + 2 Ch2(f)
) 1

2

on the space
W 1,2(X, d,m) = W 1,2(m) = L2(m) ∩D(Ch2).

We call the Banach space (W 1,2(m), ‖·‖W 1,2) the Sobolev space of (X, d,m). In the remainder,
and only when working with more than one m.m. space, to stress the dependence on the space
under consideration we write ChY2 for the Cheeger energy of functions on (Y, d, n).

By definition we have that |∇f |2 ≤ Lip f for f ∈ LIP(X, d). We emphasize that there
exist spaces where the equality is not achieved for some Lipschitz function. However, the
following was shown by Cheeger.

4As a word of warning, keep in mind that the different names for |∇f |2 come from different approaches
to its definition, so in general the concepts with these names do not coincide. However, as already stated,
these approaches are equivalent under weak assumptions which are fulfilled in our setting.

5As a matter of fact, the norm of the differential is a better analogy. For instance check the last
comment of pp. 5 in [Gig15]. Compare also with [Che99] where, among other things, a notion of an
actual differential is constructed.
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Theorem 1
2
.9 ( [Che99]). Let (M, d,m) be a m.m. space satisfy a doubling condition and

admitting a weak local 1-1 Poincaré inequality.6 Then:

• The upper asymptotic Lipschitz constant and the minimal relaxed slope agree m-a.e.
for every locally Lipschitz function in W 1,2(m); and

• Lipschitz functions are dense in W 1,2(m).

Let us also recall that W 1,2(X, d,m) is not a Hilbert space in general, example in the
case of Finsler manifolds which are not Riemannian manifolds. An m.m. space is said to be
infinitesimally Hilbertian if W 1,2(X, d,m) is a Hilbert space, see [AGS14a,AGS14b,Gig15].
The infinitesimally Hilbertian condition is equivalent to the validity of the parallelogram rule
for the Cheeger energy,

Ch2(f + g) + Ch2(f − g) = 2
(

Ch2(f) + Ch2(g)
)
, ∀f, g ∈ W 1,2(m). (1

2
.10)

Optimal transport theory

In order to state curvature conditions for m.m. spaces let us begin by giving a rapid review
of optimal transport theory. We present concepts and results without giving proofs. Two
references to comprehensive works in which all material (up to the last definition) is contained,
and to which we refer to for proofs, are [Vil09, AG13]. Definition 1

2
.15 comes originally

from [RS14].

Let P(X) be the space of probability measures on (X, d) and write P2(X) ⊂ P(X) for
the subspace of measures with finite second moments. We also write Pac(M) := {µ ∈
P(M) : µ Î m} for the subset of absolutely continuous measures with respect to m and
define Pac2 (M) := P2(M) ∩ Pac(M). For µ0, µ1 ∈ P2(X) the 2-Wasserstein distance is
defined as

W2(µ0, µ1)2 := min
σ∈Adm(µ0,µ1)

∫
X×X

d(x, y)2dσ(x, y). (1
2
.11)

The minimum taken over the set of admissible couplings between µ0 and µ1, Adm(µ0, µ1) ⊂
P(X ×X), defined as all measures σ ∈ P(X ×X) with first and second marginals equal to
µ0 and µ1 respectively. (P2(X),W2) is a complete separable metric space which is geodesic if
(X, d) is geodesic.

Measures in Adm(◦, ◦) are called couplings or plans. Minimizers in (1
2
.11) are referred

to as optimal couplings/plans and we denote the space of all optimal couplings between the
measures µ0, µ1 ∈ P(X) as OptAdm(µ0, µ1). If there exists a measurable function T : X → X
such that the measure σ = (I, T )#µ0 is an optimal plan we call σ an optimal map. It is a
fundamental result in optimal transport that under weak assumptions on the cost function,
which are fulfilled in our setting, the minimum in (1

2
.11) is achieved. However, optimal maps

rarely exist.

It is useful to give a geodesic interpretation of these concepts which we now discuss. Given
µ0, µ1 ∈ P2(X) the set OptGeo(µ0, µ1)⊂ P(Geo(X)) is defined as the set of all measures π

6This is valid even under weaker assumptions, however this will be enough for us.
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such that the pushforward (e0, e1)#π ∈ OptAdm(µ0, µ1). A measure π ∈ OptGeo(µ0, µ1) is
called an optimal geodesic plan and if there exists a measurable function TG : X → Geo(X)
such that π = (TG)]m we call the measure π an optimal geodesic map. Any geodesic
{µt}t∈[0,1] ⊂ (P2(M),W2) can be lifted to a measure π ∈ P(Geo(M)) in the sense that
(et)] π = µt for all t ∈ [0, 1]. Thus, the set OptAdm(µ0, µ1) is non-empty for any µ0, µ1 ∈
P2(M) if (M, d) is a geodesic space.

It is convenient to use as well the dual formulation of the optimal transport problem so let
us explain it. First we give the next

Definition 1
2
.12 (c2-transform, c2-concave function, c2-superdifferential ). Let ψ : X →

R ∪ {±∞} be any function. Its c2-transform ψc2 is defined as

ψc2 : X → R ∪ {±∞}
x 7→ ψc2(x) := inf

y∈X

(
d2(x, y)− ψ(y)

)
.

(1
2
.13)

We say that ψ is c2-concave if there exists φ : X → R ∪ {−∞} such that ψ = φc2.
The c2-superdifferential of a c2-concave function ϕ is defined as the set

∂c2ϕ := {(x, y) ∈ X ×X |ϕ(x) + ϕcp(y) = d2(x, y)}.

The dual formulation of the optimal transport problem (1
2
.11), rather than seeking for

minimizers in Adm(◦, ◦), proposes to maximize pairs of functions.

W2(µ0, µ1)2 = sup
(φ,ψ)

∫
X

φ dµ0 +

∫
X

ψ dµ1, (1
2
.14)

the supremum taken over all the pairs (φ, ψ) with φ ∈ L1(µ0), ψ ∈ L1(µ1) such that

φ(x) + ψ(y) ≤ d2(x, y), ∀x, y ∈ X.

It is known that the supremum in the dual problem (1
2
.14) is always attained by a maximizing

couples of the form (φ, φc2) for some c2-concave function φ, called c2-Kantorovich potential.

The optimal solutions to the original and dual statements are related in the following
manner. Let π ∈ OptAdm(µ0, µ1) be an optimal coupling, then there exists a c2-Kantorovich
potential φ such that

φ(x) + φc2(y) = d(x, y)2, for π-a.e. (x, y).

In this case we say that (φ, φc2) is a dual solution corresponding to π.

Lastly, we need to define one more concept of relevance in what follows. A set Γ ⊂ Geo(X)
is called non-branching if for any γ1, γ2 ∈ Γ the existence of a t ∈ (0, 1) such that γ1

t = γ2
t

implies that γ1 = γ2. Moreover, we say that a measure Π ∈ P(Geo(X)) is concentrated on a
set of non-branching geodesics if there exists a non-branching Borel set Γ ⊂ Geo(X) such
that Π(Γ) = 1.

Definition 1
2
.15. A metric measure space (X, d,m) is essentially non-branching if for

every µ0, µ1 ∈ Pac(X) any π ∈ OptAdm(µ0, µ1) is concentrated on a set of non-branching
geodesics.
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Curvature-dimension conditions

Curvature-dimension type conditions use optimal mass transport theory to define a notion of
lower Ricci curvature bounds for metric measure spaces. Roughly stated, these conditions
require the convexity of an entropy functional on the space of probability measures associated
to an m.m. space; different choices of entropy and different types of convexity describe
alternative non-equivalent versions of the condition. These notions are variations of an original
condition introduced independently by Lott and Villani and by Sturm in [LV09, Stu06a, Stu06b].
Important contributors to these developments were made by L. Ambrosio, K. Bacher, M. Erbar,
K. Kuwada, N. Gigli, A. Mondino, T. Rajala, G. Savaré, and K.T. Sturm. For a historical
recount one can consult for example the introductions to [MN14,EKS15] and references therein.

To formulate these curvature properties we start by introducing the following distortion
coefficients. Let (K,N) ∈ R× [0,∞), we set for (t, θ) ∈ [0, 1]× (0,∞)

σ
(t)
K,N(θ) :=



∞, if Kθ2 ≥ Nπ2,

sin(tθ
√
K/N)

sin(θ
√
K/N)

if 0 < Kθ2 < Nπ2,

t if Kθ2 < 0 and N = 0, or if Kθ2 = 0,

sinh(tθ
√
−K/N)

sinh(θ
√
−K/N)

if Kθ2 ≤ 0 and N > 0,

(1
2
.16)

and for (K,N) ∈ R× [1,∞) and (t, θ) ∈ [0, 1]× (0,∞) we write

τ
(t)
K,N(θ) := t1/Nσ

(t)
K,N−1(θ)(N−1)/N . (1

2
.17)

We also require the definition of the Shannon relative entropy functional Entm : P(M)→
[−∞,+∞].

Entm(µ) :=

{∫
M
ρ log ρ dm, if µ = ρm and (ρ log ρ)+ ∈ L1(m)

+∞ otherwise,
(1

2
.18)

where (f)+ denotes the positive part of a real valued function, and 0 log(0) := 0.

Definition 1
2
.19 (Curvature-dimension conditions). Let (M, d,m) be a metric measure

space and fix (K,N) ∈ R× [1,∞). We say that (M, d,m) satisfies the

• CD(K,∞)-condition if for each pair of measures µ0, µ1 ∈ Pac2 (M) there exists a
W2-geodesic {µt}t∈[0,1] along which Entm is K-convex, i.e.

Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1)− K

2
t(1− t)W2(µ0, µ1)2, (1

2
.20)

holds for all t ∈ [0, 1]
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• CD(K,N)-condition if for each pair of measures µ0 = ρ0m, µ1 = ρ1m ∈ Pac2 (M)
there exists a W2-geodesic {µt = ρtm}t∈[0,1] ⊂ Pac2 (M) such that∫

M

ρ
1− 1

N′
t dm ≥

∫
M×M

[
τ

(1−t)
K,N ′

(
d(x, y)

)
ρ0(x)−

1
N′ + τ

(t)
K,N ′

(
d(x, y)

)
ρ1(y)−

1
N′
]
dπ(x, y)

(1
2
.21)

holds for all t ∈ [0, 1] and N ′ ∈ [N,∞). Where π is the optimal coupling induced by
{µt}t∈[0,1].

• CD∗(K,N)-condition if for each pair of measures µ0 = ρ0m, µ1 = ρ1m ∈ Pac2 (M)
there exists a W2-geodesic {µt = ρtm}t∈[0,1] ⊂ Pac2 (M) such that∫

M

ρ
1− 1

N′
t dm ≥

∫
M×M

[
σ

(1−t)
K,N ′

(
d(x, y)

)
ρ0(x)−

1
N′ + σ

(t)
K,N ′

(
d(x, y)

)
ρ1(y)−

1
N′
]
dπ(x, y)

(1
2
.22)

holds for all t ∈ [0, 1] and N ′ ∈ [N,∞). Where π is the optimal coupling induced by
{µt}t∈[0,1].

• MCP(K,N)-condition if for each x ∈M and µ0 = ρ0m ∈ Pac2 (M), writing µ1 = δx,
there exists a W2-geodesic {µt}t∈[0,1] ⊂ P2(M) such that∫

M

ρ
1− 1

N′
t dm ≥

∫
M

τ
(1−t)
K,N ′

(
d(x, y)

)
ρ0(x)1− 1

N′ dm(y), (1
2
.23)

holds for all t ∈ [0, 1] and N ′ ∈ [N,∞). Where we write µt = ρtm+µst with µst ⊥ m.

We also say that (M, d,m) satisfies the strong CD(K,∞)-condition if (1
2
.20) holds for every

W2-geodesic between any given pair µ0, µ1 ∈ P ac
2 (M). The strong CD∗(K,N)-condition,

and the strong CD(K,N)-condition are defined in an analogous manner.

One more curvature condition we consider is the Riemannian curvature-dimension condition.
Recall that the concept of infinitesimally Hilbertianity was defined in (1

2
.10).

Definition 1
2
.24 (RCD(K,∞) and RCD∗(K,N) conditions). Let (M, d,m) be a m.m.

space and fix (K,N) ∈ R× [1,∞). We say that (M, d,m) satisfies the:

• RCD(K,∞)-condition if it is infinitesimally Hilbertian and it satisfies the CD(K,∞)-
condition.

• RCD∗(K,N)-condition if it is infinitesimally Hilbertian and satisfies the CD∗(K,N)-
condition.
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We now enunciate some properties that spaces satisfying curvature-dimension conditions
enjoy. Let K ∈ R, and N ∈ [1,+∞).

The curvature conditions just defined are closed under pointed measured Gromov-Hausdorff
convergence, limit spaces satisfying the same condition with the same parameters that the
members of the sequences. Furthermore, the CD, CD∗, and RCD∗ conditions are compatible
with the smooth counterpart: an N -dimensional smooth Riemannian manifold (M, g) has a
lower Ricci curvature bound K if and only if the associated metric measure space (M, dg, d volg)
satisfies any of those curvature-dimension conditions with the same parameters. On the other
hand, the curvature-dimension conditions are not always equivalent. However, there is an
inclusion relation between them:

RCD∗-spaces ( CD∗-spaces ( CD-spaces ( MCP-spaces,

where all the inclusions are proper and the parameters K,N might vary. In [CM16] it was
recently shown that the conditions CD(K,N) and CD∗(K,N) are equivalent in essentially
non-branching spaces with finite total measure. On the other hand, this statement is not
necessarily true if the essentially non-branching condition is dropped [Raj13]. Additionally, the
next inclusions are valid as well: CD(K,N < ∞) ⊂ CD(K,∞) and (writing CD to denote
any of the curvature conditions defined for finite N) CD(K,N) ⊂ CD(K ′, N ′) where K ≥ K ′

and N ≤ N ′.

Closed and bounded sets in CD(K,N)-spaces are compact [Stu06b, Corollary 2.4] (a metric
space with this property is called proper). In particular, the completeness and separability of
m.m. spaces imply that CD(K,N)-spaces are locally compact, and geodesic metric spaces.

The next theorem guarantees the existence of optimal maps in m.m. spaces that satisfy a
curvature-dimension type condition where not too many geodesics branch, recall Definition
1
2
.15 of the essentially non-branching condition.

Theorem 1
2
.25 (Existence of optimal maps. Cavalleti-Gigli-Kell-Mondino-Rajala-Sturm

[GRS15, CM17,Kel17]). Let K ∈ R, N ∈ [1,∞) and (X, d,m) be an essentially non-
branching MCP(K,N) space. Then, for every µ0(Î m), µ1 ∈ P2(X), there exist a unique
optimal geodesic plan π ∈ OptGeo(µ0, µ1). Furthermore, such π is given by a map. In
particular, there exists Γ ⊂ Geo(X) with π(Γ) = 1 such that the map et : Γ → X is
injective for all t ∈ [0, 1).
More generally the same property holds for essentially non-branching geodesic spaces with
qualitatively non-degenerate measure m.

Additionally in [RS14, Corollary 1.2] it is shown that RCD(K,∞)-spaces are essentially non-
branching. Hence RCD(K,∞)-spaces are strong CD(K,∞)-spaces and RCD∗(K,N)-spaces
are strong CD∗(K,N)-spaces [GRS15, Theorem 1.2].

As a matter of fact an m.m. space satisfies strong CD(K,N) if and only if it is essentially
non-branching and satisfies CD(K,N), [RS14, Theorem 1.1] and [CM17, Corollary 5.3]. The
analogous statement is valid for, strong CD∗(K,N)-spaces.

Infinitesimal behavior of RCD∗-spaces is rather well understood.

Theorem 1
2
.26 (m-a.e. Euclidean tangents in RCD∗(K,N)-spaces. Mondino-Naber (2014)

[MN14], Gigli-Mondino-Rajala (2013) [GMR15]). Let K,N ∈ R, N ≥ 1 and (X, d,m) be
an RCD∗(K,N) space. Then X has m-a.e. Euclidean (metric) tangents.
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Remark 1
2
.27. In section §1.2 we will work with Ohta’s definition of the MCP(K,N)-

condition. This definition of the MCP-condition is alternative to the one previously given
in Definition 1

2
.23. Both conditions impose restrictions on the contraction properties

of arbitrary measures to final δ-measures, but implemented in a different way. Ohta’s
definition is implied by 1

2
.23, and in essentially non-branching spaces they are equivalent

[CM16, Lemma 6.11., Proposition 9.1.]. Accordingly, we will always refer to Definition
1
2
.23 when considering essentially non-branching spaces, and to this definition otherwise

(that is, in §1.2).

We simply enunciate the condition for the specific parameters that we will consider.

Definition 1
2
.28 (MCP(2, 3)-condition). An m.m. space, (X, d,m), has the (2, 3)-measure

contraction property, MCP(2, 3), if for every point x ∈ X and a measurable set A ⊂ X
with 0 < m(A) < ∞ and A ⊂ Bπ(x) there exists a probability measure π ∈ P(Geo(X))
such that (e0)#π = δx, (e1)#π = m(A)−1m|A, and

(et)#

(
t
sin2(t l(γ))

sin2(l(γ))
m(A)dπ(γ)

)
≤ dm t ∈ [0, 1]. (1

2
.29)

Ohta’s condition is as well stable with respect to pointed measured GH-convergence
[Oht14].

Lie Groups

We recall the following useful classical result.

Theorem 1
2
.30 (van Dantzig and van der Waerden (1928) [vDvdW28]). Let (X, d) be a

connected, locally compact metric space. Then ISO(X) is locally compact with respect to
the compact-open topology. Furthermore if X is compact, then ISO(X) is compact.

Let H be a topological group, and denote by H0 the identity component of H, that is, the
largest connected set containing the identity element I. The following is the definition we
adopt for Lie groups.

Definition 1
2
.31. We say that H is a Lie group if and only if H/H0 is discrete and the

identity component H0 is a Lie group in the usual smooth sense. In particular, we also
consider discrete groups as 0-dimensional Lie groups.

In Remark 1
2
.35 we discuss the cardinality of H/H0. In short we conclude that in the worst cases

H is a disjoint union of countably many copies of a smooth Lie group which do not accumulate.
Next we define a property of topological groups that proved to be rather characteristic, as can
be seen in the remarkable theorem that follows.

Definition 1
2
.32 (No small subgroups). A topological group has H has the no small

subgroup property if there exists a neighborhood of the identity with no non-trivial
subgroup.
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Theorem 1
2
.33 (Gleason (1952) [Gle52], Yamabe (1953) [Yam53]). Let H be a locally

compact, topological group. Then H is a Lie group if and only if it has the no small
subgroups property.

Remark 1
2
.34. In [Yam53] Yamabe generalizes Gleason’s theorem to the infinite dimensional

case, however, H is assumed to be connected. We present an argument due to a very
friendly yet shy Russian mathematician, which shows that non-connected groups can be
considered as well.

An equivalent way of stating Theorem 1
2
.33 is: Assuming the same hypothesis, then

there exists an open subgroup H′ < H such that for every neighborhood of the identity
U ⊂ H there exists a normal subgroup (U ⊃)K�H that makes H′/K a Lie Group [Tao14].
If H has the no small subgroup property the only small normal subgroup is I itself, thus
making H′ a Lie group which by definition means that H′/H0 is discrete. However, this
implies that H/H0 is discrete since H/H′ is also discrete and H/H′ = (H/H0)

/
(H′/H0).

Remark 1
2
.35. We make another observation regarding the cardinality of H/H0. In

principle the given definition of a Lie group does not exclude the possibility of the group
of components being uncountable, fortunately, we can also discard this behavior. Assume
that H is a second-countable Lie group. By definition H/H0 is discrete which is equivalent
to H0 being open. In turn, this implies that the quotient map is open and it follows that
H/H0 is second-countable since by assumption H is second-countable. A second-countable
space is separable, and discrete separable spaces are countable. Finally, we recall that
ISO(X) is second-countable for a locally compact, connected metric space.

Foliations, submetries, group actions

Let (X, d,m) be a geodesic metric measure space.

Metric foliations, submetries

Definition 1
2
.36 (Foliation, metric foliation). A partition F of a metric space (X, d) into

closed subsets, called leaves, is called a foliation. In case that every leaf is bounded we say
that the foliation is bounded.

A foliation F of a metric space for which

dH(F,G) = d(x,G), for all F,G ∈ F and x ∈ F , (1
2
.37)

it’s called a metric foliation. (Where dH is the Hausdorff distance between subsets of X.)
In case that each leaf is bounded we call it a bounded metric foliation.

That is, a metric foliation F is a foliation of a metric space for which the distance from a
point x ∈ F ∈ F to a leaf G ∈ F is independent of the choice of point in the leaf F .

Remark 1
2
.38. Riemannian foliations induce metric foliations in the sense above (see

[Wal92]).

16



Given a foliation F on a metric space X, the space X∗ = X/ ∼ is the set of equivalence
classes under the equivalence relation

x ∼ y if and only if Fx = Fy,

where Fx denotes the leaf containing x. That is, X∗ is the leaf space of the foliation. Space
to which, making a slight abuse of language, we will also refer to as the quotient or the
orbit space. We denote the projection onto the quotient by p : X → X∗ and elements of
X∗ with p(x) = x∗ ∈ X∗. Note that for every x∗ ∈ X∗ there is a canonical associated leaf
Fx∗ ∈ F , namely, the unique leaf such that p(Fx∗) = x∗; we can then write the foliation as
F = {Fx∗}x∗∈M∗ .

Another notion of that we will study is that of a submetry, which generalizes to metric
spaces the concept of Riemannian submersions.

Definition 1
2
.39 (Submetry). A map f : X → Y between metric spaces is called submetry

if, for all x ∈ X and r > 0,
f(Br(x)) = Br(f(x)).

We prove in Proposition 2.2.6 that the concepts of metric foliation and submetry are
equivalent in the sense that the projection map is a submetry and that the fibers induce a
foliation of X.

Group actions

Under weak assumptions, the orbits of an action of a group H on a space X define a foliation.

Definition 1
2
.40 (Group action). Let H be a compact Lie group. We say that a map

H × X → X, (g, x) 7→ gx is an action by isomorphisms of (X, d,m) if the following
properties are satisfied:

• (gh)x = g (hx) for all x ∈ X and all g, h ∈ H;

• Ix = x, for all x ∈ X, where I is the identity element of the group H;

• for every fixed x ∈ X, the map ?x : H→ X given by g 7→ gx is continuous;

• for every fixed g ∈ H, the map τg : X → X given by x 7→ τg(x) := gx is an
isomorphism of m.m. spaces, i.e. τg is an isometry and moreover (τg)]m = m.

Moreover, the action is called effective if the intersection of all isotropy subgroups of the
action is trivial. The set H(x) = {y ∈ X ‖ y = gx for some g ∈ H} for an x ∈ X is called
the orbit of x.

It follows from the assumptions made on the action that the set of orbits H = {H(x)}x∈X
defines a bounded metric foliation. Correspondingly, we denote the space of orbits by
X∗ := X/H and write p : X → X∗ for the projection onto the orbit space. Elements of X∗

will be denoted by x∗ = p(x) = p({gx | g ∈ H}).
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We say that a Borel measure µ is invariant under the action of H if µ(τg(B)) = µ(B) for
any g ∈ H and any Borel set B ⊂ X. Note that µ being invariant is equivalent to g]µ = µ for
every g ∈ H since H acts by isomorphisms of m.m. spaces.

Let F a metric foliation of (X, d,m) be an m.m. space (either induced by a group action
or of a more general kind). We now endow the orbit space X∗ with a metric measure structure.
Set the following distance on X∗:

d∗(x∗, y∗) := inf
x′∈Fx∗

dH(x′,Fy∗) = inf
x′∈Fx∗ ,y′∈Fy∗

d(x′, y′) = dH(Fx∗ ,Fy∗), (1
2
.41)

for x∗, y∗ ∈ X∗.7 Condition (1
2
.37) implies that the quotient distance d∗ is well-defined. By

definition of d∗ and the completeness of (X, d) it follows that the metric space (X∗, d∗) is
complete as well. While the continuity of p and separability of (X, d) implies that (X∗, d∗)
is separable. Additionally, the quotient (X∗, d∗) is a geodesic or proper space granted that
(X, d) is geodesic or proper respectively.
We use the pushforward under the quotient map p of m to define a measure m∗ on the quotient
space X∗:

m∗ := p]m. (1
2
.42)

We call m∗ the quotient measure. Because m is a non-negative σ-finite Borel measure and
leaves are bounded we conclude that m∗ is a non-negative σ-finite Borel measure over the
complete and separable metric space (X∗, d∗). Explicitly, the quotient space (X∗, d∗,m∗) is a
metric measure space.

We conclude with the following version of a Disintegration Theorem of measure that will
become important for our work.

Theorem 1
2
.43 (Disintegration Theorem of Pachl). Let F be a bounded metric foliation

of (X, d,m) and denote the quotient m.m. space by (X∗, d∗,m∗). Then there exist an m∗-
essentially unique disintegration of m over m∗ consistent with the quotient map p : X → X∗.
Specifically, the following is satisfied:

There exist an m∗-almost everywhere unique family of probability measures {mx∗}x∗∈X∗ ⊂
P(X), called conditional measures or elements of the disintegration, such that:

• mx∗ is concentrated on p−1(x∗) ⊂ X;

• the assignment x∗ 7→ mx∗(B) ∈ P(X) is measurable for any Borel set B ⊂ X;

• m(B) =
∫
X∗

mx∗(B)dm∗(x∗) for any Borel set B ⊂ X.

In particular, for any measurable function f : X → R it holds that∫
X

f(x)dm(x) =

∫
X∗

∫
p−1(x∗)

f(x)dmx∗(x)dm∗(x∗)

This version, which has been fitted to our setting, comes from Pachl’s Disintegration
Theorem which can be found in [Fre00, Theorem 452I].

7Keep in mind that, in case the foliation arises from a group action, orbits and leaves coincide
Fx = H(x) = p−1(x∗) for every x ∈ X.
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Chapter 1

Symmetry groups of metric measure
spaces

M.m. spaces with smooth isomorphism groups

The purpose of the first part of this chapter is to prove Main Theorem A below; the second
section will focus on examples and applications of the theorem.

In the reminder we let G ∈ {ISO(X), ISOm(X)} and endow both groups with the compact-
open topology. Recall that by a metric measure space we mean a complete, separable metric
space endowed with a non-negative Borel measure which is finite on bounded sets and such
that supp(m) = X. The precise meaning of well-behaved tangents can be found in Definition
1.1.4.

Theorem A (M.m. spaces with smooth G). Let (X, d,m) be a locally compact m.m.
space where every closed ball coincides with the closure of its respective open ball. Assume
that X has well-behaved tangents. Then G is a Lie Group if and only if

(a) There exist a point x ∈ X and constants 0 < s, and 0 < FIX < m(Bs(x)), such that
for every (I 6=)g ∈ G

m(Fix(g) ∩Bs(x)) < FIX.

Moreover ISOm(X) is a Lie group granted that ISO(X) is so as well.

Let us make some observations about Theorem A.

To the best of the author’s knowledge the approach of studying the group of isomorphisms
(measure-preserving maps) of a metric measure space is a new one. This point of view was
consider as well in [GSR16], where Guijarro-Santos-Rodríguez showed that ISOm(X) is smooth
for RCD∗-spaces. In §1.2 Basic Examples we show that, in general, is not true that ISOm(X)
is a Lie group granted that ISO(X) is also a Lie group nor the reversed statement. This is a
motivation to consider the groups ISO(X) and ISOm(X) separately in Theorem A.
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Given that tangent cones don’t behave too wildly, the conclusion of the theorem is valid
even when considering m.m. spaces whose tangent cones fail to be Euclidean. Such situation
arises, for example, when tangent cones are normed spaces or Carnot groups1 with a uniform
positive bound on the size of their subgroups of isometries. Accordingly, we are able to study
spaces with different geometries in addition to Riemannian ones.

From a theorem of van Danzig and van der Waerden [vDvdW28] and Lemma 1.1.1 we
conclude that ISO(X) and ISOm(X) are compact if X is compact.

In the second part we study examples of metric measure spaces that satisfy condition (a).
We confirm classical theorems asserting that the following spaces have a smooth isometry
group ISO(X). Observe that in the majority of these examples the automorphism groups
ISO(X) and ISOm(X) coincide.

Weighted Riemannian manifolds [MS39], and

Finsler manifolds with either the Holmes-Thompson or Busemann volume measure
[DH02].

Alexandrov spaces with curvature bounded below with the Hausdorff measure [FY94].

Additionally, we extend these results to a larger class of spaces characterized by having good
optimal transport properties, see Definition 1.2.3 of the good transport behavior.

Theorem B (Spaces with good transport behavior). Let (X, d,m) be a locally compact,
length metric measure space. Assume that X has good optimal transport behavior. Then
condition (a) is satisfied.
In particular, if X has well-behaved tangent cones then G is a Lie group.

Corollary (Corollaries 1.2.9, 1.2.10, 1.2.11). The group of isometries and the group of
isomorphisms are smooth for the next classes of spaces. Let K ∈ R and N ∈ [1,∞).

RCD∗(K,N)-spaces;

Strong CD(K,N)-spaces and strong CD∗(K,N)-spaces with well-behaved tangents;

Essentially non-branching MCP(K,N)-spaces with well-behaved tangents

A class of Busemann-Kell concave spaces defined by Kell [Kel16], which are a Finsler
version of Alexandrov spaces of non-negative curvature.

The CD, CD∗, and MCP conditions allow for non-Riemannian geometries which include, but
are not restricted to, Finsler manifolds. For example, any corank 1 Carnot group of dimension
(k + 1) equipped with a left-invariant measure is an essentially non-branching MCP-space with
unique non-Euclidean tangents by Rizzi [Riz16]; it follows that their automorphism groups are
Lie groups.

1 A Carnot group is nilpotent stratified Lie group equipped with a left-invariant subFinsler distance
with the first stratum as horizontal distribution. These groups have a simple metric characterization:
they are those locally compact, geodesic homogeneous metric spaces that admit dilatations [LD15].
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Examples of RCD∗-spaces are Alexandrov and Ricci limit spaces with the Hausdorff measure,
generalized cone constructions over RCD∗-spaces, and limits of weighted manifolds with a
uniform lower bound on the Bakry-Emery Ricci tensor [Pet11,LV09,Stu06a,Stu06b,Ket15].
However, it is not known whether the class of RCD∗-spaces is strictly bigger than that of
weighted Ricci limit spaces. Additionally, in §2 we show that quotients of RCD∗-spaces arising
from isomorphic group actions and metric measure bounded foliations are also RCD∗-spaces.
A last class of examples of RCD∗-spaces is presented by orbifolds and orbispaces with lower
bounds on Ricci curvature as shown in [GGKMS17].

We conclude the chapter by illustrating that, on the other hand, not all curvature-dimension
conditions are sufficiently restrictive to guarantee smooth isomorphism groups.

Proposition 1.0.1. There exists an MCP(2, 3)-space for which neither ISOm(X) nor
ISO(X) are Lie groups.

1.1 Proof of main result

We begin by showing that G fulfills the assumptions of Theorem 1
2
.30, which states that

a topological group is not a Lie group if and only if that group contains small subgroups.
Thereon, in Propositions 1.1.2 and 1.1.8, we study those m.m. spaces with well-behaved
tangents for which G contains small subgroups and reinterpret the “small size” of a subgroup
H ≤ G (related intrinsically to the distance d since G is endowed with the compact-open
topology) in a measure-theoretic fashion. From there it will be rather simple to conclude
Theorem A.

Lemma 1.1.1. Let (X, d,m) be a connected, locally compact m.m. space. Then ISOm(X)
is a locally compact closed subgroup of ISO(X) with respect to the compact-open topology.

Proof. We show that ISOm(X) is closed. The local compactness of ISOm(X) follows
from the fact that ISOm(X) is a closed subgroup of a locally compact group. Let
(fn)n∈N ⊂ ISOm(X) be a converging sequence w.r.t. the compact-open topology with
limit f := limn→∞ fn. It is easy to see that f is an isometry. Thus, to finish the proof, it
remains to check that (f)#m = m. This follows from the regularity of the measure, as we
argue below.

Indeed, since the measures (fn)#m = m are all equal, they trivially converge weakly to
m. On the other hand we will show that the pushforward of m under fn weakly converges
to the measure (f)#m. Therefore, (f)#m = m by uniqueness of the limit. By using the
definition of the pushforward and the continuity of g ◦ fn, it is enough to verify that for
every bounded continuous function with bounded support, g : X → R, it holds that

lim
n→∞

∫
X

g ◦ fn dm =

∫
X

g ◦ f dm,

to show that (fn)#m
w→ (f)#m. After the following observation it will be clear that this

last equality holds.

Assume that g is as above. We can construct an m-integrable function, G, such that
|g ◦ fn(x)| ≤ G(x) for all x ∈ X and make use of the dominated convergence theorem.
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Take for example the multiple of the characteristic function G := kg χ|Br(y), where kg is a
bound on g and r ∈ R and y ∈ X are such that ∪n∈N supp(g ◦ fn) ⊂ Br(y). The existence
of such a pair {r, y} is guaranteed because g has bounded support, and because fn → f
converges uniformly in compact subsets. The integrability of G follows from m being finite
on bounded sets.

The next two propositions contain the key ideas used in the proof of the main result. First
let us see that we can generate small subgroups from the existence of automorphisms with
large fixed point sets.

Proposition 1.1.2. Let (X, d,m) be a locally compact m.m. space where every closed
ball coincides with the closure of the open ball. Then G has the small subgroups property if
for every x ∈ X, 0 < s, and 0 < ξ′ < 1 there exists a non-trivial subgroup Λ = Λx,s,ξ′ ⊂ G
such that for every g ∈ Λ

m(X \ Fix(g) ∩Bs(x)) ≤ ξ′ m(Bs(x)).

Proof. We give a sequence {ξN}N∈N ⊂ (0, 1) which generates, according to the hypothesis,
a sequence of non-trivial subgroups {Λx,N,ξN}N∈N ≤ G such that ΛN ⊂ UN(3 I) for every
N ∈ N, where {UN}N∈N ⊂ G is a local basis of the compact-open topology at I. Thus
proving the existence of small subgroups of G.

Accordingly we fix x ∈ X, N ∈ N, and define

ξ′N := m(BN(x))−1 inf
y∈BN (x)

{m(B1/N(y) ∩BN(x))}.

We claim that 0 < ξ′N . Indeed, choose a converging sequence2 ym → y∞ ∈ BN(x) such
that lim infm→∞m(BN(x))−1m(B1/N(ym) ∩BN(x))) = ξ′N .3 Since the measure m has full
support there exists a small ball, Bτ (y∞), with m(Bτ (y∞) ∩BN(x)) > 0 which is a lower
bound of m(B1/N (ym) ∩BN (x)) for large enough m, hence, validating the claim. We take
0 < ξN < ξ′N and write ΛN := Λx,N,ξN for the non-trivial subgroup given by the hypothesis
for the triple (x,N, ξN). By construction we verify that

m(X \ Fix(f) ∩BN(x)) < m(B1/N(y) ∩BN(x)) (1.1.3)

for every y ∈ BN(x) and f ∈ ΛN .

Observe now that if d(z, g(z)) > 2 t then Bt(z) ∩ BR(x) ⊂ X \ Fix(g) ∩ BR(x) for
g ∈ G, z ∈ X, and numbers t, R ∈ R+. Therefore, we conclude from (1.1.3) that for every
y ∈ BN(x) and f ∈ ΛN we have that d(y, f(y)) ≤ 2/N . Hence ΛN is contained in the
neighborhood of the identity:

UN :=
{
g ∈ G ‖ d(y, g(y)) < 3/N for every y ∈ BN(x)

}
.

Accordingly, the proof is complete considering that the choice of N was arbitrary.
2Using a subsequence if necessary.
3The existence of such subsequence is guaranteed from the fact that locally compact, complete metric

spaces for which the closure of open balls coincides with closed balls are proper.
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To show that the reverse statement to the previous Proposition 1.1.2 is ture, we first give
a couple of definitions.

We define, for r > 0, x ∈ X, and a subgroup Λ ≤ G:

DΛ(r, x) := sup
g∈Λ

sup
y∈B r

2
(x)

d(y, g(y)).

For fixed Λ, the function DΛ(r, x) is continuous in r and x as long as every closed ball in X
is the closure of its respective open ball [CC00]. This holds true when X is a length space, for
example.

Recall that we denote all pGH-tangent cones of X at y by Tan(X, y), that the regular
set is defined R ⊂ X as all points of X that have a unique tangent cone, and that we
write Tan(R) = ∪y∈RTan(X, y). We say that X has m-almost everywhere unique tangents if
m(X \ R) = 0. Details can be found in the Introductory §1

2
.

Definition 1.1.4 (Well-behaved tangents). We say that a m.m. space has well-behaved
tangents if it has m-almost everywhere unique tangents, the set of spaces appearing as
tangents Tan(R) is compact and there exist a constant 0 < ko such that

DH∞(y∞, 1) > ko, for all (I 6=)H∞ ≤ ISO(Y ∞), (Y ∞, dY∞ , y
∞) ∈ Tan(R). (1.1.5)

Remark 1.1.6. The definition of well-behaved tangents is fairly general and will allow
us to study a wide range of types of metrics. Metric measure spaces with a unique
space appearing m-almost everywhere as tangent cone have well-behaved tangents, this is
the case of smooth manifolds and spaces of curvature bounded above and below. More
examples are presented by m.m. spaces for which Tan(R) is any finite union of Euclidean
spaces, normed spaces, and Carnot groups with a uniform positive bound on the size of
the subgroups of isometries.

A result of relevance in this direction is due to Le Donne [LD11].

Theorem 1.1.7 (Le Donne [LD11]). Geodesic spaces with a doubling measure that have
m-a.e. unique tangents have m-a.e. Carnot groups as tangents.

In the coming proposition we do not assume a fully supported measure.

Proposition 1.1.8. Let (X, d,m) be a m.m. space where every closed ball coincides with
the closure of the open ball and such that m 6= 0. Assume that X has well-behaved tangents.

If G has the small subgroups property, then for every x ∈ X, 0 < s, and 0 < ξ < 1
there exists a non-trivial subgroup Λ = Λx,s,ξ ⊂ G such that for every g ∈ Λ

m(Fix(g) ∩Bs(x)) ≥ ξ m(Bs(x)). (1.1.9)

Proof. We assume that m(Bs(x)) > 0 since the inequality above trivially holds true
otherwise. Let 0 < ko be the size constant given by the well-behaved tangents property of
X. We argue by contradiction. The strategy is the following: assuming that inequality
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(1.1.9) doesn’t hold we will find for every ε > 0 a quadruple (δε, rε, xε,Λε) ∈ (R+)2×X×2G

with the following properties:

• 0 < rε ≤ δε;

• xε ∈ (R)ε,δε ;

• Λε ≤ G is a subgroup;

• DΛε(rε, xε) =
rε ko

2
.

(1.1.10)

The existence of such a family of quadruples would lead to a contradiction thus, would
prove the proposition. Indeed, observe that if for every ε > 0 there exists a quadruple
as above, then for a sequence εn → 0 there exists a subsequence εn (denoted in the same
way) such that the scaled spaces below converge, in the eGH-sense, to(

Brε(xε),
1

rε
d,Λε

)
eGH−−→ (B1(y∞) ⊂ Y ∞, dY∞ ,Λ∞) ,

where Y ∞ ⊂ Tan(R), and Λ∞ ≤ ISO(Y ∞) is a non-trivial subgroup satisfyingDΛ∞(1, y∞) =
ko
2
.4 This creates the contradiction since, by hypothesis, X has well-behaved tangents

which implies that every non-trivial H subgroup of ISO(Y ∞) satisfies DH(1, y∞) > ko
2
.

We proceed to construct a family of quadruples satisfying conditions (1.1.10).

Suppose that (1.1.9) does not hold. That is, there exist x ∈ X, 0 < s, and 0 < ξ < 1
such that for every non-trivial subgroup K ⊂ G there exists an f ∈ K where

(Fix(f) ∩Bs(x)) < ξ m(Bs(x)). (1.1.11)

Note that necessarilyf 6= I. Let ε > 0 and choose small enough δε ∈ R so that 0 < δε < s,
and

ξ m(Bs(x)) < m((R)ε,δε ∩Bs(x)). (1.1.12)

The m-almost everywhere unique tangents of X, together with the continuity from below of
the measure and the fact that R ⊂ (R)ε = ∪δ>0(R)ε,δ make possible the choice of such a δε.
Indeed, since for δ′ ≤ δ′′ it holds that (R)ε,δ′′ ⊂ (R)ε,δ′ we can write (R)ε = ∪n∈N(R)ε,1/n
as a countable union of sets. Now just notice that

m(Bs(x)) = m(Bs(x) ∩Rε) = m(Bs(x) ∩ (∪n∈N(R)ε,1/n))

= lim
n→∞

m(∪j≤n(Bs(x) ∩ (R)ε,1/j))

= lim
n→∞

m(Bs(x) ∩ (R)ε,1/n).

Choose n ∈ N sufficiently big and take δε < min{s, 1/n}.
4In more detail, the definition of the sets (R)ε,δε and compactness of Tan(R) imply that there exist a

subsequence ε′n for which (Brε′n
(xε),

1
rε′n

d)
GH−−→ (B1(y∞) ⊂ Y∞, dY∞) for some (Y∞, dy∞ , y

∞) ∈ Tan(R).

Then [FY92, Proposition 3.6] guarantees the existence of another subsequence for which the claimed
convergence holds. The last claim made (stating that DΛ∞(1, y∞) = ko

2 ) is justified by the continuity of
D :Mc

eq,p → R : (Xn, dn,Λn, xn) 7→ DΛn(1, xn) under (pointed) eGH-convergence, which follows straight
from the definitions. For more details on equivariant GH-convergence see Definition 1

2 .4 and the discussion
that follows.
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Inequalities (1.1.11) and (1.1.12) imply that for every non-trivial K ≤ G there exist
f( 6= I) ∈ K such that the set Bs(x) ∩ (R)ε,δε \ Fix(f) is not empty.

In view of the small subgroups property of G, we can find a non-trivial small subgroup

Λε ⊂ Uε :=

{
g ∈ G ‖ sup

y∈B2s(x)

d(y, g(y)) <
δε ko

2

}
=
{
g ∈ G ‖ g(y) ∈ Bδε ko/2(y) for all y ∈ B2s(x)

}
In particular, there exist g(6= I) ∈ Λε and xε ∈ Bs(x) such that

xε ∈ Bs(x) ∩ (R)ε,δε \ Fix(g) and

0 < d(xε, g(xε)) <
δε ko

2
.

Denote by θ = θ(xε) := 2/ko d(xε, g(xε)) < δε. By construction it follows that

ko
2
θ ≤DΛε(θ, xε)

DΛε(δε, xε) ≤ DΛε(4s, x) <
ko
2
δε.

Finally, the continuity of DΛε(◦, xε) and the intermediate value theorem imply that there
exists rε ∈ R that satisfies DΛε(rε, xε) = ko

2
rε for some θ ≤ rε < δε. Hence we have shown

that for every ε > 0 there exists a quadruple (δε, rε, xε,Λε) satisfying (1.1.10).

We prove now the main theorem.

Main Theorem A. Being the groups of isometries and of measure-preserving isometries
locally compact spaces (Theorem 1

2
.30, and Lemma 1.1.1) we can rely on Gleason and

Yamabe’s characterization of Lie groups. That is to say, G ∈ {ISO(X), ISOm(X)} is a
Lie group if and only if G does not have the small subgroup property. Note that the
contrapositive statements to Propositions 1.1.2 and 1.1.8 show that G not having the
small subgroups property is equivalent to:

(a′) There exist x ∈ X, 0 < s, 0 < ξ < 1 such that for every non-trivial subgroup
Λ ⊂ ISO(X) there exists an isometry g ∈ Λ with

m(Fix(g) ∩Bs(x)) < ξ m(Bs(x)).

It is clear that (a) implies (a′). The implication in the other direction follows after observing
that the existence of an isomorphism I 6= g ∈ G withm(Fix(g)∩Bs(x)) ≥ ξ m(Bs(x)) =: Fix
implies that the measure of the fixed point set of every element in the subgroup generated
by g, 〈g〉 6= I, is greater than or equal to Fix. This proves the first part of the theorem.

Finally, note that granted that ISO(X) has the no small subgroup property, then
ISOm(X) has the same property since they both are endowed with the compact-open
topology. This last argument together with the local compactness of ISOm(X) show that
ISOm(X) is a Lie group if ISO(X) is a Lie group.
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Figure 1.2.1: Hawaiian earring H and branching spaces.

1.2 Examples and application to synthetic Ricci cur-
vature

We present examples of spaces that satisfy the assumptions of Main Theorem A. We start
with basic examples of spaces whose automorphism group G is not a Lie group to develop
intuition about the relationship between G not being a Lie group, G having small subgroups,
and the branching of geodesics inside X.

From there in Lemma 1.2.5 and Theorem B we show that having good optimal transport
properties guarantees that condition (a) will be satisfied. Afterwards we enunciate in Corollaries
1.2.9, 1.2.10, 1.2.11 which spaces, satisfying a curvature-dimension condition, enjoy these
transport properties and therefore have smooth automorphism groups.

We conclude the chapter with the construction of a first Example 1.2.15 of an MCP-space,
for which for which neither ISO(X) nor ISOm(X) are Lie groups. Hence not all curvature-
dimension conditions are restrictive enough to guarantee that automorphism groups are Lie
groups.

Basic examples

Example 1.2.1 (Spaces with non-smooth G).
Non-smooth ISOm(X) and non-smooth ISO(X). Denote the circle of radius r by Sr.
The Hawaiian earring, H, is the space we obtain after gluing the circles {S 1

n2
‖n ∈ N} by

identifying one point of every circle, see Figure 1.2.1. Endow H with the arc-length distance
dH and the 1-dimensional Hausdorff measure H1. This makes (H, dH,H1) a compact,
geodesic metric measure space with finite measure. Observe that ISO(H) = ISOm(H) =
Π∞{±1} where the compact-open topology coincides with the product topology. Hence
ISO(X) is totally disconnected but not discrete. By definition, ISO(X) is not a Lie group
since ISO(X)/ISO(X)0 is not discrete.

In the same manner we can show that an infinite branching tree and a line with
a countable number of segments crossing it, shown in Figure 1.2.1, have non-smooth
automorphism groups.

Observe as well that it’s not guaranteed that the relation ISO(X) ⇐⇒ ISOm(X) is
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valid nor an implication in any direction.

Non-smooth ISOm(X) but smooth ISO(X). Let (R, dE,mQ) be the m.m. space where
dE is the Euclidean distance and mQ =

∑
q∈Q δq is a sum of δ-measures supported on each

q ∈ Q. We have that ISOm(X) ∼= O(1)×Q 6∼= O(1)×R = ISO(X). Observe that ISOm(X)
is neither a locally compact group, nor a closed subgroup of ISO(X). In Theorem A the
implication to the right side is achieved relying on the regularity of the measure m.

Smooth ISOm(X) but non-smooth ISO(X). This situation is more drastic and it’s
easy to construct examples. For instance, let (Y, d,m) be the m.m. space that we
obtain after identifying a point of a space X with non-smooth ISO(X) with any point
of an homogeneous manifold (M, g) and setting the measure m = volg + n, where volg
is the Riemannian volume of (M, g) and n is a non-symmetric measure with support
supp(n) = X. In this case we have ISOm(Y ) is the subgroup group ISO(M) which fixes
the point where the gluing has been done, but ISO(X) ⊂ ISO(Y ) is not smooth.

Example 1.2.2 (Spaces with smooth G).

Riemannian manifolds equipped with a weighted volume measure, Finsler manifolds
endowed with either the Holmes-Thompson or Busemann volume measure, and Alexandrov
spaces of curvature bounded below with the Hausdorff measure satisfy condition (a) of
Theorem A, and thus G is a Lie group. This is a consequence of the non-branching of
geodesics in this spaces and the measure being absolutely continuous with respect to the
Hausdorff measure.

Generalized Ricci curvature and good transport behavior

The next definition is of central interest in this section.

Definition 1.2.3. [Good transport behavior] A metric measure space (M, d,m) has good
transport behavior GTB, if for all µ, ν ∈ P2(M) with µ Î m any optimal transport plan
between µ and ν is induced by a map.

The term good transport behavior was coined by Martin Kell in the writing of [GGKMS17]
where the property is used in the context of group actions on spaces with generalized Ricci
curvature bounds. As the next theorem recalls, a large class of spaces have good transport
behavior.

Theorem 1.2.4. [Cavalletti-Huesmann, Cavalletti-Mondino, Gigli-Rajala-Sturm, Kell
[CH13,CM17,GRS15,Kel17] The following spaces have GTBp:

• Essentially non-branching MCP(K,N)-spaces for K ∈ R, and N ∈ [1,∞). In
particular, this includes, essentially non-branching CD∗(K,N)-spaces, essentially
non-branching CD(K,N)-spaces, and RCD∗(K,N)-spaces.

• Essentially non-branching spaces with qualitatively non-degenerate measure m.

A space with GTB has favorable geometrical properties, see for instance the recent
developments in [GGKMS17,Kel17]. Intuitively the property tells us that in average geodesics
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don’t branch. It follows directly from the definition and the fact that the convex combination
of two optimal plans between the same initial and terminal measure is optimal that: optimal
dynamical plans are unique in spaces with GTB. This is a standard argument in optimal
transport theory. It also follows from the definition that: for every x ∈ X and m-a.e. y ∈ X
there exists a unique geodesic joining x to y.

Observe the similarity of the concept of GTB to that of essentially non-branching. This is
no coincidence, granted that the space satisfies a curvature-dimension-type condition, these
two concepts are equivalent see [Kel17] and [CM17,GRS15] for previous results.

We now see that having a good transport behavior is sufficient to guarantee that non-trivial
isometries have fixed-point sets of measure zero.

Lemma 1.2.5 (Zero measure of the fixed point set). Let (X, d,m) be a geodesic metric
measure space with GTB and let f 6= I be an isometry of X. Then m(Fix(f)) = 0.

Proof. We proceed by contradiction. Suppose that there exist I 6= f ∈ ISO(X), and a
set A ⊂ Fix(f) with positive measure. Let x ∈ X \ Fix(f) and define the probability
measures µ0 := m(A)−1m|A and µ1 := 1

2
(δx+ δf(x)). We denote by π ∈ OptGeo(µ0, µ1) the

unique geodesic plan between µ0 and µ1 given by the map T . Let Γ := T (A) ⊂ Geo(X)
and note that π is concentrated in Γ and that e0 is injective in the same set. Set:

Γ1 := {γ ∈ Γ | e1(γ) = x}
Γ2 := {γ ∈ Γ | e1(γ) = f(x)}
Ai := e0(Γi) i = 1, 2.

Γ1 (Γ2) is the subset of geodesics of Γ that end in x (f(x)) and Ai is the projection
of Γi onto the set A. We have that none of these sets are empty, that the measures
π (Γ \ (Γ1 ∪ Γ2)) = 0 = m (A \ (A1 ∪ A2)) and that A1 ∩ A2 = ∅. The last fact is a
consequence of the injectivity of e0. We define now the measure π′ ∈ P(Geo(X)) as

π′ := (f̂)#π|Γ1 + (f−1
∧

)#π|Γ2 , (1.2.6)

where the bijection of Geo(X), γ 7→ g ◦ γ, induced by some g ∈ ISO(X) is written as
ĝ : Geo(X)→ Geo(X). The measure π′ is a symmetric analog of π but π′ 6= π. Indeed,
note that π′(f̂(Γ1)) = 1/2 6= 0 = π(f̂(Γ1)) because f̂(Γ1) ∩ Γ1 = ∅ by construction.

We claim that π′ ∈ OptGeo(µ0, µ1) is also a dynamical plan. This would contradict
the hypothesis of the uniqueness of π and finish the proof of the lemma. We proceed to
verify the claim.

We need to show that π′ minimizes
∫

Geo(X)
l(γ)dρ. The minimum taken over all mea-

sures ρ ∈ P(Geo(X)) such that (ei)#ρ = µi for i = 0, 1. We check that the pushforwards
of π′ under the evaluation map are as above. For this we observe that for g ∈ ISO(X),
B ⊂ X, and t ∈ [0, 1]

ĝ ◦ e−1
t (B) = ĝ ({γ ∈ Geo(X) | et(γ) ∈ B})

= {γ ∈ Geo(X) | et(γ) ∈ g(B)} = e−1
t ◦ g(B),
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and that ĝ−1 = g−1
∧

. Next we compute the pushforward of π′ under et:

(et)#π
′ = (et ◦ f̂)#π|Γ1 + (et ◦ f−1

∧

)#π|Γ2

= (f)#(et)#π|Γ1 + (f−1)#(et)#π|Γ2 .

Then (e0)#π
′ = µ0 since f |A = I|A. As for the other pushforward we have that (e1)#π

′ =
(f)#(1

2
δx) + (f−1)#(1

2
δf(x)) = 1

2
(δx + δf(x)) = µ1. To finish we see that π′ ∈ OptGeo(µ0, µ1)

by showing that the value of
∫

Geo(X)
l(γ)dπ′ is the minimum of the functional.∫

Geo(X)

l2(γ)dπ′(γ) =

∫
Geo(X)

l2(γ)d
(

(f̂)#π|Γ1 + (f−1
∧

)#π|Γ2

)
(γ)

=

∫
Geo(X)

l2 ◦ f̂(γ) · χΓ1(γ)dπ(γ) + l2 ◦ f−1
∧

(γ) · χΓ2(γ)dπ(γ)

=

∫
Geo(X)

l2(γ) · (χΓ1 + χΓ2)(γ)dπ(γ) =

∫
Geo(X)

l2(γ)dπ(γ).

Remark 1.2.7. The hypothesis in Lemma 1.2.5 can be we weakened. We may require the
existence of the unique geodesic plan only for final measures satisfying µ1 Î m rather
than for an arbitrary µ1 ∈ P2(X). We can repeat the proof choosing as final measure

µ1 :=
1

2
(m(Br(x))−1m|Br(x) + m(f(Br(x)))−1m|f(Br(x)))

where Br(x) ⊂ X \ Fix(f) is a sufficiently small ball.
Congruently, we can require that X is essentially non-branching rather than X having
GTB.

Accordingly with the works of Gigli-Rajala-Sturm and Cavalleti-Mondino Theorem 1
2
.25 we

obtain the next

Corollary 1.2.8. Let (X, d,m) be an essentially non-branching MCP(K,N)-space and
f ∈ ISO(X). If m(Fix(f)) > 0 then f = I.

In particular, this holds true for RCD∗-spaces, essentially non-branching CD∗-spaces,
and essentially non-branching CD-spaces.

Since a locally compact, complete length space is a geodesic space we have proved the
following result, which provides a large class of examples of metric measure spaces that have
smooth automorphism groups.

Theorem B. Let (X, d,m) be a locally compact, length metric measure space. Assume
that X has GTB or that it is essentially non-branching. Then condition (a) is satisfied. In
particular, if X has well-behaved tangent cones then G is a Lie group.

Theorems 1.2.4 and B imply the next

Corollary 1.2.9 (Automorphisms of RCD∗(K,N)-spaces). Let K ∈ R, N ∈ [1,∞), and
(X, d,m) be an RCD∗(K,N)-space. Then the groups ISO(X) and ISOm(X) are Lie groups.
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More generally, we consider spaces satisfying different curvature-dimension conditions.
Recall that an m.m. space is essentially non-branching and satisfies the CD∗-condition if and
only if it satisfies the strong CD∗-condition. The corresponding statement for the CD-condition
is valid as well. (For a comment on this see the second paragraph after Theorem 1

2
.25 in §1

2
.)

Corollary 1.2.10 (Automorphisms of CD-, CD∗-, and MCP-spaces). Let K and N be as
above. The groups ISO(X) and ISOm(X) are Lie groups for essentially non-branching
(CD(K,N)-)CD∗(K,N)-spaces and essentially non-branching MCP(K,N)-spaces that have
well-behaved tangents.

Corollary 1.2.11 (Automorphisms of m.m. space with weak quantitative MCP). The
groups ISO(X) and ISOm(X) are Lie groups for essentially non-branching spaces with
qualitatively non-degenerate measure m that have well-behaved tangents.

Example 1.2.12 ((Finsler) Ricci limit spaces).

The compactness of the RCD∗-spaces in the pointed measured GH-topology and Corollary
1.2.9 assure that Ricci Limits, and (pointed) measured Gromov-Hausdroff limits of weighted
manifolds with lower bounds on the Bakry-Emery Ricci tensor have automorphism groups
that are smooth. By using strong results involving a certain type of connectedness of
the regular set of Ricci Limit spaces, this conclusion was reached in the non-collapsed
case by Cheeger-Colding [CC00] and in the collapsed case by Colding-Naber [CN12]. Our
approach takes into consideration as well the group of measure-preserving isometries and
measured limits of weighted manifolds.

Accordingly from Corollary 1.2.10 we conclude the corresponding result for spaces arising
as limits of Finsler manifolds with a uniform lower bound on the weighted Ricci curvature
(as the weighted trace of the flag curvature).

Corollary 1.2.10 brings up the following interesting, yet difficult-to-answer, question.

Question: Which m.m. spaces arise as tangents cones of MCP, CD∗, and CD spaces?

See Ketterer-Rajala [KR15] for a discussion in this direction in the case of MCP-spaces.

Example 1.2.13 (Busemann-Kell concave spaces). In [Kel16] Kell defines a Finsler version
of non-negative sectional curvature bounds for metric spaces by considering an analogous
formulation to Busemann’s non-positive curvature condition. In particular, Alexandrov
spaces of non-negative curvature, and normed spaces are examples of this type. Also in
[Kel16] it is shown that if the Hausdorff measure Hn of a complete Busemann-Kell concave
space (Y, d) is non-trivial, then the metric measure space (Y, d,Hn) is an MCP(K,n)-space.
Observe that n ∈ N and that tangent cones are unique if (Y, d) is finite dimensional. Since
complete Busemann-Kell concave spaces are non-branching it follows that the isometry
group is a Lie group for this class of spaces, granted that the measure Hn is not trivial.

To end the section we prove that not all curvature-dimension conditions are restrictive
enough to guarantee the smoothness of the automorphism groups.

Proposition 1.2.14. There exists an MCP(2, 3)-space for which neither ISOm(X) nor
ISO(X) are Lie groups.

Example 1.2.15 (The fancy necklace).
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Given n ∈ N, an n-necklace (N n, dn,mn) ⊂ R2 is a m.m. space with n diamond-shaped
figures, whose definition is inspired by a construction done by Ketterer and Rajala
in [KR15]. A fancy necklace (FN , dFN ,mFN ) is then a measured GH-limit of a sequence
of n-necklaces {(N n, dn,mn)}n∈N. We begin by defining inductively the sets N n ⊂ R2 and
then endowing them with a metric measure structure.

Given a sequence {(rn, xn)}n∈N ⊂ R2 (consistency conditions will be specified below),
for k ∈ N, we write Ik = [xk − 1

4
rk, xk + 1

4
rk] and the diamond-shaped sets:

Dk :=

{
(x, y) ∈ R2 ‖ |y| ≤ 1

9
(
1

4
rk − |x− xk|)

}
.

Set N 0 := [0, π/2]×{0} ⊂ R2. For n ∈ N, construct the n-necklace N n by replacing, in the
(n− 1)-necklace N n−1, the segment In × {0} ⊂ N n−1 with the diamond Dn. (See Figure
1.2.2.) To have a consistent construction we require that the sequence {(rn, xn)}n∈N ⊂ R2

satisfies:
0 < rn ≤ 1,

1

4
rn ≤ xn ≤

π

2
− 1

4
rn, and

Ik ∩ Ij = ∅ for k < j.
(1.2.16)

The first condition assures that we have the correct size and scaling of our figures, while
the second condition assures that different diamonds do not intersect.

We proceed now to give the n-necklace N n a metric measure structure. For n ∈ N∪{0},
endow N n with the distance, dn = dL∞ , induced from the L∞-norm in R2. To set a
measure on the n-necklace we start by defining mDn Î L2 on Dn by

dmDn

dL2
(x) :=

[
2

9
(
1

4
rn − |x− xn|)

]−1

cos2(x)χ|Dn(x) for n ∈ N,

and χ|A the characteristic function of the set A. Denote by Dn = ∪1≤k≤nDk the union of
all diamonds Dk ⊂ N n, by Ln := N n \ Dn its complement, and we write L0 := N 0. We
set on N n the measure mn defined as

dmn := dmDn + cos2(x) dH1|Ln , where

mDn :=
∑

1≤k≤n

mDk .

In words, the measure mn has a 2-dimensional contribution coming from Dn, which has
constant density for fixed x-coordinate, and a 1-dimensional contribution coming from Ln,
which is absolutely continuous w.r.t. the 1-dimensional Hausdorff measure. Finally, we
define the fancy necklace as the measured Gromov-Hausdorff limit (FN , dFN ,mFN ) :=
mGH- limn→∞(N n, dn,mn). Since in Lemma 1.2.17 we will show that n-necklaces satisfy
the MCP(2, 3)-condition, for all n ∈ N, the existence of the limit is guaranteed by the
compactness of MCP-spaces.

It will be convenient to fix some notation before presenting our next Lemma. Given a
sequence {(ri, xi)}n∈N consider the m-necklace (Nm, dm,mm) constructed from it. We will
call “projected (m− 1)-necklace”, denoted by (PNm−1

k , dm−1,m
′
m−1), the (m− 1)-necklace

constructed from the sequence {(ri, xi)}i 6=k for 1 ≤ k ≤ m. That is, PNm−1
k is the
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Figure 1.2.2: Fancy necklace FN .

necklace with (m− 1) diamonds obtained by removing the kth-diamond from Nm. The
x-coordinate of vertices of diamonds Dn will be denoted by x±n = xn ± 1/4 rn, and for
x ∈ N n and B ⊂ N n, we define the height as h(w,B) := H1(B ∩ {x = w}). Moreover,
we define the following set of geodesics,

Υ(B0, B1) :=
{
γ ∈ Geo(N n) ‖ γ is a line segment with γi ∈ Bi, i = 0, 1

}
.

The set Υ(B0, B1) consists of Euclidean geodesics that go from B0 to B1. (Take into
consideration that there exist many non-Euclidean geodesics in (Nm, dm,mm).) Lastly,
for |y| ≤ rk/36 and k ∈ N define γk,y ∈ Geo(N n) as the geodesic obtained after gluing
Υ((x−k , 0), (xk, y)) with Υ((xk, y), (x+

k , 0)) and reparametrizing. The image of γk,y is the
union of a line segment going from the left vertex of Dk, (x−k , 0), to (xk, y) with its
reflection over {x = xk}. Define Mk as the set of all such geodesics for |y| ≤ rk/36.

We are ready to prove our next lemma.

Lemma 1.2.17. The m.m. space (FN , dFN ,mFN ) satisfies the MCP(2, 3)-condition.

Proof. The stability of theMCP-condition assures that it’s enough to show that (N n, dn,mn)
∈ MCP(2, 3) for every n ∈ N and every sequence {(xk, rk)}k∈N ⊂ R2 that satisfies (1.2.16).
Accordingly, we fix n ∈ N and such sequence. We proceed using key ideas from a proof
in [KR15].

Definition 1
2
.28 of the MCP condition requires that, for every z̃ = (x̃, ỹ) and A ⊂ N n

with 0 < mn(A) < ∞, we give a measure π ∈ P(Geo(N n)) such that (e0)#π = δz̃,
(e1)#π = mn(A)−1mn|A, and inequality 1

2
.29 is valid. Given z̃ and A we will choose a set

of geodesics Γ = Γz̃,A ⊂ Geo(N n) and define π as the optimal geodesic plan arising from
the lift of the induced to the optimal transport going along geodesics in Γ. However, we
reduce before the number of transports that we need to study.

To begin with, note that we can analyze separately the sets Ax′ = A ∩ {x = x′}
for a fixed x′. The simplification can be made because we will assure that the first
coordinate contributes to the dilatation of the measure nt := (et)#π a factor equal to t.
We will achieve this by picking geodesics with projection p1(γ(t)) = (1 − t) x̃ + t x′ for
(x′, y′) = z′ ∈ A. Therefore the analysis reduces to estimating separately the dilatation
of the sets Ax′ for every x′ ∈ p1(A). Accordingly, to verify the MCP(2, 3)-condition, it is
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enough to provide a set Γ ⊂ Geo(N n) such that e0(Γ) = z̃, e1(Γ) ∈ Ax′ , and

dnt
dmn

(γt) ≤
sin2(l(γ))

t sin2(t l(γ))

dn1

dmn

(γ1) for all t ∈ [0, 1], x′ ∈ p1(A), γ ∈ Γ. (1.2.18)

Claim 1. It’s sufficient to check that (Nm, dm,mm) ∈ MCP(2, 3) for m = 0, 1, 2.

Proof. First note that if z̃, z′ /∈ Dk for some k ∈ {1, ..., n} then we can choose Γ in a way
that makes the density of dnt

dmn
independent of y ∈ p2(Dk), that is, dnt

dmn
((x, y)) = dnt

dmn
((x, 0))

for (x, y) ∈ Dk. We can do this by choosing geodesics whose restriction to Dk is exactly
the set Mk. This choice of Γ grants that the analysis of the transport of the measure
inside (N n, dn,mn) is equivalent to the analysis of the transport of the measure inside
the projected (n− 1)-necklace (PN n−1

k , dn−1,m
′
n−1). Furthermore, observe that if n > 2

there exist at least (n − 2) such diamonds, Dki , for every z̃, z′ ∈ N n. Thus, for every
transport inside N n we can project at least (n− 2) times, reducing the task to checking
the MCP(2, 3)-condition in the m-necklaces, for m = 0, 1, 2. �

In [Stu06b] and [KR15] it is shown that the 0-necklace and 1-necklace satisfy the
MCP(2, 3)-condition, this covers the cases of m = 0, 1 so we move to m = 2.5 We assume,
because of symmetry, that x̃ ≤ x and fix z̃ ∈ N 2 and Ax′ ⊂ N 2. We conclude from
the preceding claim that the only situation left to check is that of x̃ ∈ D1 and x′ ∈ D2.
Let’s first explain intuitively the way we transport the measure in this case. We start by
expanding the measure uniformly from x̃ to a set Âx̂ with the same relative height as Ax′ .
Then we transport the measure from Âx̂ to x+

1 without changing the relative height of the
set At := et(Γ) with respect to D1 ∩ {x = γt}. We continue through L2 and expand again
keeping the heights ratio constant from x−2 to Ax′ . The image of a transporting geodesic
is the union of segments of straight lines described below, see Figure 1.2.2. In detail, to
define Γ first choose any set Âx̂ ⊂ D1 ∩ {x = x̂} such that

h(x̂, D1)

h(x̂, Âx̂)
=
h(x′, D2)

h(x′, Ax′)
, (1.2.19)

for x̂ = 1
5
( r1

4
+ 4(x̃− x1)) + x1. Write t̂ := x̂−x̃

x−x̃ , t1 :=
x+1 −x̃
x−x̃ , and t2 :=

x−2 −x̃
x−x̃ for the times at

which the x-coordinate of any geodesic γ ∈ Υ(x̃, Ax′) is equal to x̂, x+
1 , and x

−
2 . Geodesics

in Υ(x̃, D1 ∩ {x = x̂}) have the same length. Now define Γ as the set of all geodesics
satisfying the following: restt̂0(γ) ∈ Υ(x̂, Âx̂), restt1t̂ (γ) ∈ M1, restt2t1(γ) ∈ Υ(x+

1 , x
−
2 ), and

rest1t2(γ) ∈M2|Ax′ , where M
2|Ax′ is the subset of geodesics of M2 that cross through Ax′ .

We now estimate the density of the corresponding measure, for γ(t) = (xt, yt) we have
that

dnt
dm

(γt) =
1

t

h(xt, D1)

h(xt, At)
=

1

t2
h(xt, D1)

h(x̂, Âx̂)

h(x̂, D1)

h(x̂, D1)
=

1

t2
h(xt, D1)

h(x,D1)

dn1

dm
(γ1),

for 0 ≤ t ≤ t̂. The shape of the diamond D1 allows to estimate h(xt,D1)
h(x,D1)

≤
(

5
4
− t

4

)
. We

can bound the time when the geodesics reach x̂ by t̂ ≤ r1/5 ≤ 1/5, and the length of
the geodesics is necessarily l ≤ π/2. Moreover in [KR15] the estimate 5

4
− t

4
≤ t sin2(d)

sin2(t d)

5More precisely, the proof in [KR15] can be repeated verbatim by doing minor modifications.
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for all (t, d) ∈ [0, 1/5]× (0, π/2 + 1/4) is proved. Putting inequalities together we obtain
inequality (1.2.18) for t ∈ [0, t̂].

To finish, note that for t ∈ [t̂, 1], the relative density of nt is independent of the
y-coordinate. Thus, its density is equal to the one of the transport in the 0-necklace, which
is a MCP(2, 3)-space. This shows that inequality (1.2.18) is satisfied also for t ∈ [t̂, 1],
hence, in the complete interval t ∈ [0, 1].

Observe that the automorphism groups of (FN , dFN ,mFN ) are G = Π∞{±1}. This
proves Proposition 1.2.14 and confirms that the measure contraction property, without
extra assumptions, does not guarantee smoothness of the automorphism groups.
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Chapter 2

Quotients and Ricci curvature

Stability of synthetic Ricci curvature lower bounds

In Theorem C we prove the stability of curvature-dimension conditions under quotients maps
induced by metric measure foliations. We will see that metric measure foliations are particular
types of foliations which preserve the structure of m.m. spaces in an appropriate fashion. To
be precise in our statements let us first recall some notation.

We consider spaces satisfying a curvature-dimension condition with finite dimensional
parameter; since these spaces are geodesic and proper, there is no loss of generality by making
this assumption now.1 Let (X, d,m) be a geodesic proper m. m. space. A partition F of a
metric measure space into closed subsets, called leaves, is called a foliation. The quotient space
(X∗, d∗,m∗) is the space of leaves endowed with the quotient distance and measure. Given
that F is a metric foliation it follows that (X∗, d∗,m∗) is a geodesic proper m.m. space. The
quotient map p : X → X∗ maps points in X to their corresponding leaf. The Disintegration
Theorem 1

2
.43 guarantees a disintegration of the measure m over m∗ consistent with the

quotient map p which we write as {mx∗}x∗∈X∗ ⊂ P(X). We refer to the introductory §1
2
for

more details.

We define the central objects under study in this chapter.

Definition 2.0.1. [Bounded Metric Measure Foliation] A foliation F of (X, d,m) is called
a bounded metric measure foliation, b.m.m. foliation in short, if the next conditions are

1A more precise statement is the following. The aforementioned assumptions will be used when we
study the analysis of m.m. spaces in Subsection Isometry of Wasserstein spaces of §2.1. The results
achieved in that Subsection will be used in RCD∗-spaces of finite dimensional parameter, which are
geodesic and proper.
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satisfied:

Leaves of F are bounded;
dH(F,G) = d(x,G) for all F,G ∈ F and x ∈ F ; and (2.0.2)
W2(mx∗,my∗) = d∗(x∗, y∗) for m∗-a.e. x∗ ∈ X∗. (2.0.3)

Metric foliations of Alexandrov spaces of curvature bounded below, and Riemannian
foliations of Riemannian manifolds are examples of bounded metric measure foliations if leaves
are bounded and the spaces are endowed with the Hausdorff measure. Many more examples
of b.m.m. foliations arise from actions of compact Lie groups on m.m. spaces. As a matter
of fact, b.m.m. foliations are precisely the foliations which are induced by submetries with
bounded fibers that satisfy (2.0.3). We confirm these statements in Propositions 2.2.1 and
2.2.6.

In the remainder let F be a bounded metric measure foliation of the m.m. space (X, d,m).
From now on all considered foliations are to be understood of this particular kind, even in
the case in which we name them, for simplicity, just foliations. Furthermore, we say that a
m.m. space (X, d,m) satisfies a curvature-dimension condition if it satisfies, for K ∈ R and
N ∈ [1,∞), at least one of the following conditions: strong CD(K,N), strong CD(K,∞),
strong CD∗(K,N), RCD∗(K,N), or essentially non-branching MCP(K,N).

The main result of the chapter is the following.

Theorem C (Synthetic Ricci is stable under quotients). Assume that (X, d,m) satisfies
a curvature-dimension condition.
Then the quotient metric measure space (X∗, d∗,m∗) satisfies the same condition that
(X, d,m) with the same parameters.

This result is one of the principal achievements of collaborative research of Fernando
Galaz-García, Martin Kell, Andrea Mondino and the author, during which [GGKMS17] was
assembled. Compare in particular with Theorem 8.8 and Corollary 8.10 within the reference
and see Remark 2.0.4 below.

Additionally, from Proposition 2.2.1 and Proposition 2.2.6 we obtain the next results. A
bounded metric measure submetry is a submetry that satisfies condition (2.0.3), see Definition
2.2.4.

Theorem D (Synthetic Ricci is stable: group actions [GGKMS17, Theorems 3.7 and
6.2]). Let G be a compact Lie group that acts by isomorphisms on (X, d,m). Assume that
(X, d,m) satisfies a curvature-dimension condition.
Then the quotient metric measure space (X/G, d∗,m∗) satisfies the same condition that
(X, d,m) with the same parameters.

Theorem E (Synthetic Ricci is stable: bounded m.m. submetries). Curvature-dimension
conditions are preserved with the same parameters by bounded metric measure submetries.

Remark 2.0.1 (Applications). In [GGKMS17] results concerning geometric applications
of Theorems C and D are studied. We rapidly mention some of these results, despite
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the fact that the aim of this section is different, to illustrate the practicality of the
theorems themselves (precise statements are to be found in [GGKMS17]). Examples
are: a generalization of Kobayashi’s Classification Theorem of homogenous manifolds to
RCD∗(K,N)-spaces with essential infinitesimal dimension n < N ; a structure theorem for
RCD∗(K,N)-spaces admitting actions by large compact groups; and geometric rigidity
results for orbifolds such as Cheng’s Maximal Diameter and Maximal Volume rigidity
Theorems.

Remark 2.0.2 (Construction of new examples). As a consequence of Theorems C, D, E
we can enlarge the list of examples of RCD∗(K,N)-spaces to include quotients by isometric
group actions and foliations of Riemannian manifolds with Ricg ≥ Kg, and more generally,
of RCD∗(K,N)-spaces. The analogous remarks are also valid for CD, CD∗, and MCP
spaces.

Remark 2.0.3 (Extensions). In Definition 2.0.1 it is possible to consider more general
leaves, however, the measure m∗ might not be σ-finite nor unique. For this one may replace
{mx∗}x∗∈X∗ (which serves as a natural lift for the family of measures δx∗ ∈ P(X∗)) by a
family of measures {νx∗}x∗∈X∗ supported on the corresponding leaves such that Equation
(2.0.3) is satisfied, and whose naturally defined lifts preserve the entropy up to a fixed
constant. For instance, this can be done in a obvious manner when fundamental domains
of positive m-measure exist.

The same arguments that we present here show that the strong CDp(K,N)-condition
defined by Kell in [Kel13] is satisfied by quotient spaces of strong CDp(K,N)-spaces. Ad-
ditionally, granted that the group G is finite, also the intermediate p-Ricci lower curvature
bounds in terms of optimal transport introduced by Ketterer and Mondino in [KM16] are
preserved under quotients.

The isometry of Sobolev spaces shown in Proposition 2.1.8 can be extended to more
general m.m. spaces, for example infinite dimensional spaces. See the next Remark for
more on this direction.

Remark 2.0.4 (The RCD(K,∞) case). In this work we chose to present an alternative
version of Theorems 3.7, 6.2, 8.8 and Corollary 8.10 in [GGKMS17] (corresponding to
Theorems C and D here), the difference being that here we do not consider RCD(K,∞)-
spaces.

A reason for this choice lies in that the work regarding analysis in m.m. spaces is
simplified while retaining the fundamental idea: to show an isometric embedding of the
Sobolev space W 1,2(m∗) of the quotient space onto the Sobolev space W 1,2(m) of the
original space. This is because RCD(K,∞)-spaces don’t necessarily satisfy a doubling
or Poincaré condition, conditions which improve significantly analysis in m.m. spaces.
Moreover, we are able to maintain all other parts of the proof essentially the same (modulo
walking through the proof in a different manner). Another reason is that [GGKMS17] had
the purpose to show the aforementioned Sobolev embedding in a more general setting as
a result of interest by it’s own right; here our aim is different. One last argument, more
from the motivational point of view, is that our Theorems A and B do not show directly
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that RCD(K,∞)-spaces have smooth isomorphism groups, which was one of the initial
motivations to approach this problem.
Summarizing, we opted for a lighter version since there is no loss of ideas although we
might profit in clarity from a simpler, less general, exposition: we will be satisfied with
proving Theorem C.

2.1 Proof of Main Theorem C

The argument is divided as we explain now.

i Define and show useful properties of particular lifting maps of relevant objects on the
quotient space X∗ to the respective type of objects in the original space X.

ii Show invariance of Wasserstein geometry under lifts.

iii Show invariance of Sobolev spaces under lifts.

iv Conclude Theorem C.

To reach the conclusion of the theorem we consider Wasserstein geodesics in the space of
probability measures on the quotient space and their lifts to Wasserstein geodesics on the
original space by using point ii. Since, by hypothesis, the condition of convexity of entropy
is valid for the lifted geodesics, we will obtain the curvature-dimension inequalities for the
Wasserstein geodesic on the quotient after showing that taking the Radon-Nikodym derivative
and lifting commutes with lifting measures and taking the Radon-Nikodym derivative. This is
roughly the way that we show the stability of the CD/CD∗/MCP conditions. Subsequently,
we extend the results to RCD∗-spaces by relaying on point iii.

Lifts

Our objective is to compare optimal transport and analysis on the quotient space against
corresponding notions in the original space. The first step is to define a way to lift objects of
interest from the quotient, to the analogous type of objects in the original space. It will suffice
to consider functions, measures and couplings.

In order to define lifting maps we begin by choosing certain optimal couplings between
elements of the disintegration {mx∗}x∗∈X∗ of the measure m. Accordingly, we choose for every
x∗, y∗ ∈ X∗ an optimal plan πx∗,y∗ for mx∗ and my∗ ,2 that is to say,

πx∗,y∗ ∈ OptAdm(mx∗ ,my∗).

2It’s important to say that this choice can be made in a measurable fashion; the following argument
substantiates. Let πx,y be an optimal coupling between mx∗ and my∗ for every (x, y) ∈ OD. Condition
(2.0.2) and the boundedness of leaves (in fact compactness since the space is proper by hypothesis)
guarantee that, for every x ∈ Fx∗ , we can find a y ∈ Fy∗ such that (x, y) ∈ OD. It follows by a
measurable selection argument that there exists a measurable assignment (x∗, y∗) 7→ (x′(x∗,y∗), y

′
(x∗,y∗)) ∈

OD ∩
(
Fx∗ × Fy∗

)
and that (x∗, y∗) 7→ π(x′

(x∗,y∗),y
′
(x∗,y∗))

(A) is measurable for every measurable set
A ∈ X ×X. We write πx∗,y∗ = π(x′

(x∗,y∗),y
′
(x∗,y∗))

.
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From the inclusion supp(πx∗,y∗) ⊂ supp(mx∗)× supp(my∗) and the definition of the quotient
distance d∗ it follows that for all x∗, y∗ ∈ X∗

W2(mx∗ ,my∗)
2 =

∫
Fx∗×Fy∗

d(w, z)2 dπx∗,y∗(w, z) ≥ d∗(x∗, y∗)2, (2.1.1)

which, in view of assumption (2.0.3), implies that πx∗,y∗ is concentrated on OD∩
(
Fx∗×Fy∗

)
.

Where we have written OD for the subset of pairs of points in X×X that achieve the distance
between leaves:

OD := {(x, y) ∈ X ×X | d(x, y) = d∗(x∗, y∗)}. (2.1.2)

Definition 2.1.3 (Lifting maps ΛF ,ΛM ,ΛΠ). Consider the following functions:

ΛF : {g | g : X∗ → R ∪ {−∞}} → {h | h : X → R ∪ {−∞}} (2.1.4)
f → f̂(x) := ΛF (f)(x) = f ◦ p (x);

ΛM : P(X∗) → P(X) (2.1.5)

µ → µ̂ := ΛM(µ) =

∫
X∗

mx∗ dµ(x∗);

ΛΠ : P(X∗)× P(X∗) → P(X)× P(X) (2.1.6)

π → π̂ := ΛΠ(π) :=

∫
X∗×X∗

πx∗,y∗ dπ(x∗, y∗).

We denote by convention, abusing the notation, the image of an element under any lift Λ∗

by placing a hat “ ˆ” over the element. For example, the images of a function g : X∗ → R,
a measure ν ∈ P(X∗), and a coupling ρ ∈ P(X∗)× P(X∗) will be denoted by f̂ , ν̂, and ρ̂
respectively. Moreover, since the risk of confusion is low, we will sometimes simply write Λ for
any of the functions just defined.

Below we see that the maps defined in 2.1.3 enjoy advantageous properties (including the
fact that they are actual lifts).

Lemma 2.1.1 (Properties of lifts ΛF , ΛM , and ΛΠ). Let f : X∗ → R ∪ {−∞},
µ, ν ∈ P(X∗), and π ∈ P(X∗) × P(X∗) and denote by f̂ , µ̂, ν̂, π̂ their respective
lifts. Then the following holds:

1. The function f̃ : X∗ → R : x∗ 7→ f̂(x), with x ∈ p−1(x∗), is well-defined and it
coincides with f .
Moreover, a c2-concave function φ = ψc2 is lifted to a c2-concave function such that
φ̂ = ψ̂c2.

2. The pushforward of a lifted measure coincides with such measure: p](ν̂) = ν.
Moreover, an absolutely continuous measure (with respect to m∗) µ = f m∗ is lifted
to an absolutely continuous (with respect to m) with Radon-Nikodym derivative
m-almost everywhere equal to f̂ .
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3. The pushforward of a lifted coupling coincides with such coupling: (p× p)](π̂) = π.
Moreover, the lift of π ∈ Adm(µ, ν) is an admissible coupling for the corresponding
lifted measures π̂ ∈ Adm(µ̂, ν̂).

Proof. 1.) The validity of the first part of 1. is clear by the definition of ΛF . To show the
second part we let ψ : X∗ → R ∪ {−∞} be a c2-concave function, i.e. such that φ = ψc2 .
Then

inf
y∈X

(
d(x, y)2 − ψ̂(y)

)
= inf

y∗∈X∗

(
d∗(x∗, y∗)2 − ψ(y∗)

)
= φ(x∗) = φ̂(x),

which shows that φ̂ is c2-concave and that φ̂ = ψ̂c2 .

2.) We verify the first part of the statement using the definition of ΛM and of the
pushforward. Indeed, for any measurable set A ∈ B(X∗) it holds that

p](ν̂)(A) =

∫
X∗

mx∗(p
−1(A))dν(x∗) =

∫
X∗
χA(x∗)dν(x∗) = ν(A).

For the second part of 2. we let µ ∈ Pac(X∗) be an absolutely continuous measure with
respect to m∗ and write µ = f m∗. We readily check that for f̂(x) := f(p(x)) and every
measurable set B it holds that

µ̂(B) =

∫
X∗

∫
B

dmx∗(x)dµ(x∗) =

∫
X∗

∫
B

f(x∗)dmx∗(x)dm∗(x∗) =∫
X∗

∫
B

f̂(x)dmx∗(x)dm∗(x∗) =

∫
B

f̂(x)dm(x).

(2.1.7)

The first equality is the definition of the lift Λµ (2.1.5), while the second and third are
given by the absolute continuity of µ and definition of f̂ respectively. The last equivalence
is just a consequence of the disintegration of the measure m. In particular we have showed
that the Radon-Nikodym derivative of µ̂ with respect to m is f̂ , i.e. µ̂ = f̂ m.

3.) The beginning of the statement is proved analogously to the begging of 2. Therefore
all that is left to check is that a coupling π ∈ Adm(µ, ν) between the measures µ and ν is
lifted to an admissible coupling between the lifts µ̂ and ν̂. We let A ∈ B(X∗) and compute

π̂(A×X) =

∫
X∗×X∗

πx∗,y∗(A×X)dπ(x∗, y∗) =∫
X∗×X∗

mx∗(A)dπ(x∗, y∗) =

∫
X∗

mx∗(A)dµ(x∗) = µ̂(A)

This computation shows that p1(π̂) = µ̂. The definitions of ΛΠ and of ΛM explain the
first and last equalities. After recalling that by construction πx∗,y∗ ∈ Adm(mx∗ ,my∗) and
that π ∈ Adm(µ, ν) it’s clear that the remaining equalities are valid. With a similar
computation the corresponding result for the second marginal is checked, hence, we obtain
that π̂ ∈ Adm(µ̂, ν̂).

40



Isometry of Wasserstein spaces

Proposition 2.1.8 (ΛM is an Isometry). A lift ΛM satisfying (2.1.5) is an isometric
embedding into its image that preserves absolutely continuous measures.
Specifically, for µ0, µ1 ∈ P(X∗), the map ΛM : P(X∗) ↪→ ΛM (P(X)) satisfies:

1. ΛM(Pac(X∗)) = Pac(X) ∩ ΛM(P(X∗));

2. ΛM(P2(X∗)) = P2(X) ∩ ΛM(P(X∗));

3. W2(µ̂0, µ̂1) = W2(µ0, µ1) whenever µ0, µ1 ∈ P2(X∗).

In particular, lifts of W2-geodesics in P2(X∗) are W2-geodesics in P2(X).

Proof. The first claim is included in point 2. of Lemma 2.1.1 so we move on to show that
Λµ(P2(X

∗)) ⊂ P2(X). Let µ0, µ1 ∈ P2(X
∗) and let π ∈ OptAdm(µ0, µ1) be an optimal

coupling between the pair. By construction the lift π̂ ∈ Adm(µ̂0, µ̂1) is an admissible
coupling for the lifted pair µ̂0, µ̂1 ∈ P(X), therefore, it holds that

W2(µ̂0, µ̂1)2 ≤
∫
X×X

d(x, y)2dπ̂(x, y)

=

∫
X∗×X∗

d∗(x∗, y∗)2dπ(x∗, y∗) = W2(µ0, µ1)2.

(2.1.9)

Where the first equality is verified using the definition of the lift π̂ and the fact that
supp(πx∗,y∗) ⊂ OD ∩ {p−1(x∗)× p−1(y∗)}. Using inequality (2.1.9) and the fact that the
leaves of the foliation are bounded we are able to show that the lifted measures µ̂i have
finite second moment, for i = 0, 1,(∫

X

d(x, y)2dµ̂i(x)

)1/2

≤ W2(µ̂i,my∗) +W2(my∗ , δy) ≤ W2(µi, δy∗) + max
y′∈p−1(y∗)

d(y′, y)

=

∫
X∗

d(x∗, y∗)2dµi(x
∗) + max

y′∈p−1(y∗)
d(y′, y) <∞.

This allows comparing Wasserstein distances between the original and the lifted pair
of measures. With this aim, we let (φ, ψ) be a dual solution to π ∈ OptAdm(µ0, µ1).
Specifically, let

φ(x∗) + ψ(y∗) ≤ d∗(x∗, y∗)2 for all x∗, y∗ ∈ X∗, (2.1.10)

and equality realized for π-almost every (x∗, y∗) ∈ X∗ ×X∗. It turns out that the lifted
pair (φ̂, ψ̂), defined in (2.1.4), is an admissible pair for the dual transport problem with
marginals (µ̂0, µ̂1). Indeed, the integrability of (φ̂, ψ̂) follows from the definition of the lift
Λµ and the integrability of (φ, ψ). Moreover, we are able to verify that

φ̂(x) + ψ̂(y) = φ(x∗) + ψ(y∗) ≤ d∗(x∗, y∗)2 ≤ d(x, y)2 for all x, y ∈ X.
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The right inequality is given by the definition of the quotient metric d∗. Therefore, we
have that the next inequality is satisfied

W2(µ̂0, µ̂0)2 ≥
∫
X

φ̂(x)dµ̂0(x) +

∫
X

ψ̂(y)dµ̂1(y)

=

∫
X∗
φ(x∗)dµ0(x∗) +

∫
X∗
ψ(y∗)dµ1(y∗) = W2(µ0, µ1)2.

(2.1.11)

Hence we conclude Claim 3. from inequalities (2.1.9) and (2.1.11).

As a matter of fact, we have also shown that optimal plans and dual solutions are preserved
by lifts since in this case the inequalities in (2.1.9) and (2.1.11) turn out, a posteriori, to be
equalities.

Corollary 2.1.12. Let µ0, µ1 ∈ P2(X∗). Then for every optimal coupling π ∈ OptAdm(µ0, µ1)
the lifted coupling π̂ defined in (2.1.6) is an optimal coupling of the lifted pair of mea-
sures π̂ ∈ OptAdm(µ̂0, µ̂1) for which d(x, y) = d∗(x∗, y∗) for π̂-almost every (x, y) ∈ X×X.

Furthermore, if (φ, ψ) is a dual solution corresponding to π then the lift (φ̂, ψ̂) is a
dual solution corresponding to π̂ for which ψ̂(x) + ψ̂(y) = d(x, y)2 for π̂-almost every
(x, y) ∈ X ×X.

The following corollary is also concluded.

Corollary 2.1.13. Let (X, d,m) be essentially non-branching. Then the quotient space
(X∗, d∗,m∗) is essentially non-branching.

Proof. Note that a branching geodesic in X∗ lifts to a family of branching geodesics in
X. Moreover, since absolutely continuous measures are lifted to absolutely continuous
measures and any optimal dynamical coupling onX∗ lifts to an optimal dynamical coupling
on X, we see that any γ ∈ OptGeo(µ0, µ1) between µi ∈ Pac2 (X∗), i = 0, 1, must be
concentrated on a set of non-branching geodesics.

Remark 2.1.2. A result in the direction of Proposition 2.1.8, in the case that the
foliation arises from a compact group action, had already been shown by Lott and Villani
in [LV09, Lemma 5.36]. In comparison to their work, in addition to considering general
bounded foliations, we have been more explicit in the construction of lifts of measures
and optimal plans. This allows us to show that the natural lifts of dual solutions are
dual solutions as well, Corollary 2.1.12. This information is necessary in the proof of
Theorem C which in comparison to [LV09, Lemma 5.36] drops the assumption on the
compactness of the space, considers general K ∈ R for finite N , and takes into account
the RCD∗-condition.

Isometry of Sobolev spaces

We prove that, under our assumptions, the Sobolev space W 1,2(m∗) on the quotient is
isomorphic to the closed subspace of W 1,2(m)-Sobolev functions on X which are constant on
each leaf up to null-measure sets.
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Proposition 2.1.14 (Embedding of W 1,2). Let (X, d,m) and (X∗, d∗,m∗) be locally
doubling m.m. spaces which admit a Poincaré inequality. Then,

1. The lift
ΛF : W 1,2(m∗)→ W 1,2(m) ∩ ΛF (W 1,2(m∗))

is an isometric embedding whose image is the set of functions in W 1,2(m) which
are mx∗-almost everywhere constant on m∗-almost every leaf. Moreover, ChX2 (f̂) =
ChX

∗

2 (f) holds for all f ∈ D(ChX
∗

2 ).

2. (X∗, d∗,m∗) is infinitesimally Hilbertian granted that (X, d,m) is so as well.

We prove first the following auxiliary lemma.

Lemma 2.1.3 (More properties of ΛF ). The following holds:

1. The upper asymptotic Lipschitz constant is preserved when lifting. That is, for all
functions f : X∗ → R and all x ∈ X it holds that

Lip f̂(x) = Lip f(x∗). (2.1.15)

In particular, this implies that Λ(LIP(X∗, d∗)) ⊂ LIP(X, d).

2. ΛF is an isometric embedding of L2(m∗) into L2(m), with image the convex closed
subset of mx∗-almost everywhere constant functions on m∗-almost every leaf.

Proof. Observe that for a function f : X → R and its lift f̂ : X → R the next identity is
valid

sup
y∈Br(x)

|f̂(y)− f̂(x)|
r

= sup
y∗∈Br(x∗)

|f(y∗)− f(x∗)|
r

. (2.1.16)

Indeed, by definition of quotient metric, we have that y∗ ∈ Br(x
∗) if y ∈ Br(x) and

moreover, if y∗ ∈ Br(x
∗) there exists a y ∈ Br(x) ∩ p−1(y∗). Then the definition of the

lifted function f̂ shows the validity of the above identity. The first part of the lemma
is shown directly using this last identity and the definition of the upper asymptotic
constant Lip f . Moreover, since (X, d) is geodesic (2.1.15) implies that Lipschitz functions
of (X∗, d∗) lift to Lipschitz functions in (X, d).

For the second point of the lemma we let f ∈ L2(m∗). Observe that every function f̃
that agrees m-almost everywhere with the lift f̂ is mx∗-almost everywhere constant on
m∗-almost every leaf. Otherwise there would exist a set of positive measure A∗ ⊂ X∗ and,
for every x∗ ∈ X∗, subsets Ax∗ ⊂ p−1(x∗) of positive mx∗-measure for which f̃ 6= f̂ which
contradicts the assumption. To conclude notice that by definition of the quotient measure
m∗ = p]m it holds that

‖f‖2
L2(m∗) =

∫
X∗
f 2(x∗)dm∗(x∗) =

∫
X

(f ◦ p)2(x)dm(x) = ‖f̂‖2
L2(m).
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We now show that ΛF is an isometric embedding.

Proposition 2.1.14. In [Che99] Cheeger showed that under the assumptions of Proposition
2.1.14 the upper asymptotic Lipschitz constant and the minimal relaxed slope agree m/m∗-
almost everywhere for every locally Lipschitz function in W 1,2(m)/W 1,2(m∗) respectively.
Specifically,

LipX
∗
g (x∗) = |∇X∗g|2(x∗) m∗-a.e. x∗ ∈ X, for every locally Lipschitz f ∈ W 1,2(m∗),

LipX h (x) = |∇Xh|2(x) m-a.e. x ∈ X, for every locally Lipschitz h ∈ W 1,2(m).

Let f ∈ W 1,q(m∗) ∩ LIP(X∗, d∗). From Claim 1. Lemma 2.1.3 we now that the upper
asymptotic Lipschitz constant is preserved by lifts, therefore

2 ChX
∗

2 (f) =

∫
X∗

LipX
∗
f (x∗)2dm∗(x∗) =

∫
X

LipX f̂ (x)2dm(x) = 2 ChX2 (f̂),

since Lipschitz functions in X∗ lift to Lipschitz functions in X (Claim 1. Lemma 2.1.3).
By Claim 2. Lemma 2.1.3 , we have ‖f‖L2(m∗) = ‖f̂‖L2(m) thus,

‖f‖2
W 1,2(m∗) = ‖f‖2

L2(m∗) + ChX
∗

2 (f) = ‖f̂‖2
L2(m) + ChX2 (f̂) = ‖f̂‖2

W 1,2(m).

Hence W 1,2(m∗) ∩ LIP(X∗, d∗) is isometric to the subspace of functions in W 1,2(m) ∩
LIP(X, d) which are constant on leaves since any such function is a lift of a function in
W 1,2(m∗) ∩ LIP(X∗, d∗). In view of Cheeger’s work [Che99], the assumptions also imply
that Lipschitz functions are dense inW 1,2(m) then the result is concluded using a standard
approximation argument.
The second part of the proposition follows directly using the parallelogram characterization
(1

2
.10) of the infinitesimal Hilbertian property.

In fact it is known that strong CD/CD∗(K,N)-spaces are locally doubling and Poincaré
spaces, for K ∈ R, N ∈ [1,∞), as shown in [BS10,Raj12].

Corollary 2.1.17. Suppose that (X, d,m) and (X∗, d∗,m∗) satisfy the CD/CD∗-condition
with possibly different parameters but for some finite N,N∗. Then the hypotheses of
Proposition 2.1.14 are fulfilled.

Stability

We prove that convexity of the entropy in Wasserstein spaces is stable under quotients.

Main Theorem C. The proof for the CD/CD∗(K,N)-condition with K ∈ R, N ∈ [1,∞],
is very similar and therefore we only write a proof for the strong CD(K,N) condition for
finite N . Moreover, observe that once proven that the quotient space inherits from the
original space the aforementioned conditions we can conclude that, for N <∞, (X∗, d∗,m∗)
is an RCD∗(K,N)-space granted that (X, d,m) satisfies RCD∗(K,N) condition. Indeed,
this follows from Corollary 2.1.17 and Proposition 2.1.14 which assure that infinitesimal
Hilbertianity passes on to the quotient space.
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Accordingly, let µ0, µ1 ∈ Pac2 (X∗) be measures on X∗ and denote by {µt}t∈[0,1] ∈ P(X∗)
a Wasserstein geodesic and by π ∈ OptAdm(µ0, µ1) an optimal coupling induced by
{µt}t∈[0,1].
The isometry ΛM : P2(X

∗) → P2(X) ∩ ΛM(P2(X
∗)) maps the geodesic {µt}t∈[0,1] 7→

{µ̂t}t∈[0,1]. In particular {µt}t∈[0,1] is a geodesic and µ̂t ∈ Pac2 (X) for every t ∈ [0, 1]. We
have that µ̂t Î m for every t ∈ [0, 1] since (X, d,m) satisfies the strong CD(K,N)-condition,
which in turn implies that µt Î m∗ for every t ∈ [0, 1]. Indeed, the property of being
absolutely continuous is preserved under the pushforward and furthermore, for every
t ∈ [0, 1], the quotient measure coincides with the pushforward of the lift p](µ̂t) = µt. We
write µt = ρtm

∗ and, we can assume that µ̂t = ρ̂tm
∗ from item 2. of Lemma 2.1.1. Lastly,

recall that the lift of π satisfies π̂ ∈ OptAdm(µ̂0, µ̂1), this was concluded in Corollary
2.1.12 and note that π̂ coincides with the coupling induced by the geodesic µ̂t = ρ̂tm

∗.

We can show that the required convexity of the entropy is satisfied along {µt}t∈[0,1],
because it holds that∫
X∗
ρ

1− 1
N′

t (x∗) dm∗(x∗) =

∫
X∗

∫
Fx∗

ρ̂
1− 1

N′
t (y) dmx∗(y) dm∗(x∗) =∫

X

ρ̂
1− 1

N′
t (y) dm(y)≥

∫
X×X

[
τ

(1−t)
K,N ′ (d(x, y))ρ̂

− 1
N′

0 (x) + τ
(t)
K,N ′(d(x, y))ρ̂

− 1
N′

1 (y)
]
dπ̂(x, y) =∫

X∗×X∗

[
τ

(1−t)
K,N ′ (d

∗(x∗, y∗))ρ
− 1
N′

0 (x∗) + τ
(t)
K,N ′(d

∗(x∗, y∗))ρ
− 1
N′

1 (y∗)
]
dπ(x∗, y∗) ,

for every t ∈ [0, 1] and N ′ ≥ N . Indeed, the Green Inequality in the middle is the
CD(K,N)-condition which is valid in (X, d,m) and, in the last equality we have used
that d(x, y) = d∗(x∗, y∗) for π̂-almost all (x, y) ∈ X ×X. We find the desired inequality
written in Purple on the sides.

Remark 2.1.4. An essentially non-branching m.m. space which satisfies MCP(K,N)
has unique Wasserstein geodesic starting from µ0 ∈ Pac2 (X, d,m) to an arbitrary measure
µ1 ∈ P2(X). Therefore, the verbatim argument above together with Corollary 2.1.13 proves
that if (X, d,m) is an essentially non-branching MCP(K,N)-space then also (X∗, d∗,m∗)
is essentially non-branching and satisfies the MCP(K,N)-condition.

As a matter of fact, note that the essential property needed for the proof is that the
curvature-dimension condition is satisfied along Wasserstein geodesics which have constant
densities along leaves.

2.2 Applications

Compact group actions

Assume that G is a compact Lie group acting effectively by isomorphisms on the m.m. space
(X, d,m). We show that there exists a natural way of lifting measures by pushing forward the
Haar measure of G onto X, which induces a bounded metric measure foliation. Accordingly,
synthetic Ricci bounds are inherited by the orbit space.
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Remark 2.2.1. The above conditions on G are met, for instance, when G is a compact
subgroup of the group of isomorphisms ISOm(X) of an RCD∗-space, or an essentially non-
branching CD/CD∗/MCP-space with well-behaved tangents. Indeed, this is the conclusion
of our Main Theorem A. In this direction, recall that the isotropy group Gp ≤ ISOm(X) of
a point p ∈ X is compact, and that ISOm(X) is compact if X is a compact m.m. space.

Proposition 2.2.1 (Group actions). Let G be a compact Lie group acting effectively by iso-
morphisms on (X, d,m). Then the induced foliation by the orbits G = {p−1(x∗)}x∗∈X∗=X/G
is a bounded metric measure foliation.

Proof.

The compactness of G and the continuity of the map ?x : G→ X guarantee the compactness
of the orbits G(x) for every x ∈ X. Whereas the definition of quotient metric, the
compactness of the orbits and the fact that G acts by isometries imply that G is a metric
foliation, i.e.

d(G(x), G(y)) = d∗(x∗, y∗) = d(x,G(y)).

Hence, it only remains to show the validity of equation (2.0.3) of Definition 2.0.1. For this,
we define measurable assignments3 (X∗ 3)x∗ 7→ νx∗ ∈ P(X) and (X∗ ×X∗ 3)(x∗, y∗) 7→
πx∗,y∗ ∈ P(X)× P(X) as follows,

νx∗ := (?x)]νG (2.2.2)
πx∗,y∗ := (?(x,y))]νG for some (x, y) ∈ OD ∩ p−1(x∗)× p−1(y∗). (2.2.3)

Where where ?(x,y) : G→ X ×X is the map g 7→ (gx, gy). Note that the measure πx,y is
concentrated on OD ∩ G((x, y)), and that πx,y = πgx,gy for every x, y ∈ OD, and g ∈ G,
thus πx∗,y∗ is well-defined for every x∗, y∗ ∈ X∗.

Using these definitions the validity of equation (2.0.3) can be concluded from the next
two Claims.

Claim 1. The conditional probability {mx∗}x∗∈X∗ coincides with {νx∗}x∗∈X∗ for m∗-
almost every x∗ ∈ X∗.

Claim 2. The measure πx∗.y∗ is an admissible coupling, i.e. πx∗.y∗ ∈ Adm(νx∗ , νy∗),
with supp(πx∗.y∗) ⊂ OD ∩ (p(x∗)× p(y∗)).

Indeed, if the Claims were true we could conclude from the properties of πx∗.y∗ that

W2(νx, νy)
2 ≤

∫
OD∩(p−1(x∗)×p−1(y∗))

d(w, z)2 dπx∗.y∗(w, z)

=

∫
OD∩(p−1(x∗)×p−1(y∗))

d∗(p(w), p(z))2 dπx∗.y∗(w, z)

= d∗(w∗, z∗) = d∗(x∗, y∗).

3Similar arguments to the one included in footnote 2 show that we can in fact consider measurable
assignments.
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Moreover, for any optimal coupling π̃x∗,y∗OptAdm(νx∗ , νy,
∗) it always holds that supp(π̃x∗,y∗) ⊂

p−1(x∗)× p−1(y∗). Therefore, by definition of the quotient metric d∗ it holds that

W2(νx∗ , νy∗)
2 =

∫
(p−1(x∗)×p−1(y∗))

d(w, z)2dπ̃x∗,y∗(w, z) ≥ d∗(x∗, y∗).

Hence, Claim 1. together with these last inequalities show that

W2(mx∗ ,my∗) = W2(νx∗ , νy∗) = d∗(x∗, y∗) (m∗ ×m∗)-almost everywhere.

Accordingly, we prove the Claims to conclude.

claim 1. By constriction νx∗ is the unique G-invariant probability measure with supp(νx∗) ⊂
p−1(x∗). The statement is concluded since G acts by measure-preserving isomorphisms
and m is G-invariant, thus the measure mx∗ is a G-invariant probability measure with
supp(mx∗) = supp(νx∗) for m∗-almost every x∗ ∈ X∗. �

claim 2. The statement about the support of πx∗,y∗ holds by construction. To finish we
show that for A ⊂ X measurable πx∗,y∗(A×X) = νx∗(A) for every x∗, y∗ ∈ X∗. The proof
for the other marginal is carried out identically. Let (x, y) ∈ OD ∩ (p−1(x∗)× p−1(x∗))
and A be as above, then

πx∗,y∗(A×X) =

∫
?−1
x,y(A×X)

dνG(g) =

∫
G

χ{g ‖ (gx,gy)∈A×X}(g)dνG(g) =∫
G

χ{g ‖ gx∈A}(g)dνG(g) = νx∗(A)

�

Remark 2.2.2. In the present situation, as we just saw, we can explicitly write the
elements of the disintegration of the measure m by pushing-forward the Haar measure to
G-invariant probability measures on X. Correspondingly, this implies that the lifts of mea-
sures on X∗ by ΛM defined in (2.1.5) are also G-invariant. Thus, writing PG(X) ⊂ P(X)
for the subspace of probability measures that are G-invariant, Proposition 2.1.8 reads as
follows:

Λ : P2(X∗) ↪→ P2(X) ∩ PG(X) is an isometric embedding which preserves absolutely
continuous measures. In particular, lifts of W2-geodesics in P2(X

∗) are G-invariant
W2-geodesics in P2(X).

From Proposition 2.2.1 and Main Theorem C we obtain the next

Theorem D (Synthetic Ricci is stable: group actions). Let G be a compact Lie group that
acts by isomorphisms on (X, d,m). Assume that (X, d,m) satisfies one of the following
conditions: strong CD(K,N), strong CD(K,∞), strong CD∗(K,N), RCD∗(K,N), or
essentially non-branching MCP(K,N)-condition.
Then the quotient metric measure space (X∗, d∗,m∗) satisfies the corresponding condition
for the same parameters.
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Remark 2.2.3 (Applications). The conclusion of Theorem D is particularly useful to un-
derstand the structure of RCD∗-spaces with symmetries, in particular of spaces admitting
an effective action by a large group. Indeed, this is due to the fact that low dimensional
RCD-spaces are well-understood [KL16]. This approach was followed in [GGKMS17, Sec-
tion 6], in particular see Theorems 6.7, 6.8, and 6.9.

Bounded metric measure submetries

More generally b.m.m. foliations are in correspondence with a particular type of submetries.

Definition 2.2.4 (bounded metric measure submetries). A map f : X → X∗ is called a
bounded metric measure submetry if the following conditions are satisfied.

i) fibers f−1(x∗) are bounded for every x∗ ∈ X∗;
ii) f(Br(x)) = Br(f(x)) for every 0 < r, and x ∈ X; and
iii) W2(mx∗,my∗) = d∗(x∗, y∗) for m∗-a.e. x∗ ∈ X∗. (2.2.5)

From this equivalence, which is a consequence of the next result, we conclude Theorem E.
We recall that a metric foliation (metric submetry) is a foliation (submetry) which satisfies
only condition ii) of Definition 2.0.1 (condition ii) Definition 2.2.4).

Proposition 2.2.6 (Metric foliations are submetries). There is a one-to-one correspon-
dence between metric foliations and submetries up to an isometry. Namely, the projection
p : X → X∗ of a metric foliation is a submetry and, given a submetry f : X → N ,
the foliation given by {f−1(y)}y∈N is a metric foliation for which there is an isometry
if : N → X∗ with

if ◦ f = p.

Proof. The fact that p : X → X∗ is a submetry follows directly from the definitions. Now
consider a submetry f : X → N . The continuity of f guarantees that Ff = {f−1(y)}y∈N
is a foliation so we just have to check the equidistance property. This follows from the
next observation. Let F,G ∈ F and suppose, for the sake of contradiction, that there
exists x ∈ F such that d(x,G) − 2ε ≥ r := d(F,G), for some ε > 0. Then there exist
x′ ∈ F, y′ ∈ G with d(x′, y′) < r + ε and the submetry assumption gives that

f(y′) ∈ Br+ε(f(x′)) = Br+ε(f(x)) = f(Br+ε(x)).

Therefore, there exists y ∈ G ∩ Br+ε(x), contradicting that d(x,G) ≥ r + 2ε. Next, by
noting that p : X → X∗ is by construction independent of the representative x ∈ F ∈ F ,
we see that the function if : N → X∗ given by if := p ◦ f−1 is a well defined isometry by
using the definition of the quotient metric.

Finally, suppose that there exists another submetry, g : X → Ñ , which induces the
same foliation of f, that is F = G = {g−1(z)}z∈Ñ . Then we have that i−1

f ◦ ig : Ñ → N is
an isometry and g = i−1

g ◦ if ◦ f . Thus, up to isometries, f is unique.
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