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Preface

Introduction

A famous theorem by van der Waerden [Wae28] asserts that if you color the natural num-
bers with, say, five different colors, then you can always find arbitrarily long sequences of
numbers that have the same color and that form an arithmetic progression; the same is
true for any other count of colors.

Since coloring the natural numbers is the same as partitioning them, N = C1⊎C2⊎· · ·⊎Cr,
one also says that arithmetic progressions are partition regular : no matter how you divide
the natural numbers, one of the parts will contain arithmetic progressions of arbitrary
length. The branch of mathematics concerned with the study of partition regularity is
called Ramsey theory.

Van der Waerden’s theorem appears o be a beautiful statement from Ramsey theory that
only requires elementary mathematics to be understood and proven. While this is indeed
the case, there is a different point of view based on ultrafilters, strange objects from point-
set topology whose very existence is linked to the axiom of choice and hence somewhat
mysterious.

It turns out that partition regular properties correspond to ultrafilters with special prop-
erties. Furthermore, the existence of an ultrafilter corresponding to van der Waerden’s
theorem, and hence the theorem itself, can be proven by exploiting a semigroup structure
on the space of ultrafilters.

A remarkable generalization of van der Waerden’s theorem is Szemerédi’s theorem [Sze75],
[GT07], which is much deeper and asserts that every subset of natural numbers with positive
density contains arithmetic progressions of arbitrary length. The density of a set A ⊆ N is
defined as the limes superior of the ratios |A ∩ [1, N ]|/N as N → ∞. It is easy to see that
in any partition N = C1 ⊎C2 ⊎ · · · ⊎Cr, one of the parts must have positive density, so this
is indeed a generalization.

The aim of this diploma thesis is to give an interpretation of Szemerédi’s theorem in
terms of ultrafilters as well. Namely, while van der Waerden’s theorem is equivalent to
the existence of a single ultrafilter with special properties, we will show that Szemerédi’s
theorem is equivalent to the existence of not just one, but of many such ultrafilters. In
fact, we will define a measure on the space of ultrafilters βN and deduce that, with respect
to this measure, almost all ultrafilters must have the special properties needed for van der
Waerden’s theorem.

This novel interpretation does not necessarily yield a proof of Szemerédi’s theorem, how-
ever. In particular, we will show that the ultrafilter proof of van der Waerden’s theorem is
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far too weak to imply Szemerédi’s theorem. The reason is that the set of special ultrafilters
exhibited by the argument has measure zero, even though it is infinite.

About this text

When writing this thesis, I have tried to keep the material as accessible as possible; ev-
erything is explained and motivated thoroughly. In proofs, I have strived for both clarity
and detail, although that makes them somewhat lengthy on paper. They can be skipped
on first reading.

The text is largely self-contained, the only prerequisite is familiarity with basic point-
set topology and measure theory, for example as presented in Jänich [Jän05] and the
first chapters of Elstrodt [Els05]. At one point, however, we will make use of the Riesz
representation theorem, which is discussed in the more advanced parts of the mentioned
book by Elstrodt.

Chapter overview

Here a synopsis of the individual chapters of this diploma thesis.

Chapter 1 introduces the space of ultrafilters βN and its topological properties. We also
explain limits along ultrafilters.

Chapter 2 recalls the relevant notions from Ramsey theory and gives a proof that all
partition regular properties correspond to ultrafilters.

Chapter 3 defines the addition of ultrafilters, which turns the space of ultrafilters βN
into a left topological semigroup. The notation A − p for ultrafilter shifts is also
introduced. We will study idempotent ultrafilters p = p + p and prove Hindman’s
theorem about IP-sets. Finally, we will collect information about the ideals of the
semigroup βN to the point that we can give a proof of van der Waerden’s theorem.

Chapter 4 introduces a family of counting measures on the space of ultrafilters βN. As
an application, we will reproduce Beiglböck’s proof [Bei11] of Jin’s theorem about
the size of sets of differences A − B. Finally, we give and prove the interpretation
of Szemerédi’s theorem in terms of counting measures and ultrafilters. Also, we will
argue that the proof of van der Waerden’s theorem from the previous chapter cannot
imply Szemerédi’s theorem.

The material for the first three chapters is taken mainly from Hindman and Strauss [HS98]
and Bergelson [Ber03].
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1 The space of ultrafilters βN

1.1 Missing natural numbers?

We begin with the definition of ultrafilters.

Definition 1.1.1 (Ultrafilter).

Let X be any set. A nonempty collection p of subsets of X, p ⊆ 2X , is called
an ultrafilter on X if it satisfies the following properties:

1) p ̸∋ ∅.

2) If p ∋ A and A ⊆ B, then p ∋ B.

3) If p ∋ A and p ∋ B, then p ∋ A ∩B.

4) Either p ∋ A or p ∋ Ac for all sets A. (We write Ac = X \ A for the
complement.)

We denote the set of ultrafilters on X with βX1.

We are mainly interested in ultrafilters over the natural numbers, so we usually takeX = N.
Occasionally, we will be interested in other discrete sets like X = N× N as well.

The intuition behind ultrafilters is that they behave like “the missing elements” of the
set X. Well, it is probably news to you there might be anything missing from X, but
if you look at the four properties above and flip the membership symbol from “p ∋” to
“p ∈”, you will suddenly notice that these properties are a reasonable axiomatization of
set membership. For instance, the third property would read

If p ∈ A and p ∈ B, then p ∈ A ∩B,

which is just the definition of set intersection. In a sense, we are adding new elements,
or “points”, to the set X. These new points p are specified by the collection of sets
p = {A,B, . . . } in which they are “contained” in. We will make this intuition rigorous in
Section 1.2, when we study the space of ultrafilters βX.

In this light, our first examples of ultrafilters are the so called principal ultrafilters

x̃ = {A ⊆ X : x ∈ A},

which simply correspond to the original points of X. Ultrafilters that are not of this form
are the interesting “new” points, they are called non-principal ultrafilters.

1Actually, βX is the standard notation for the Stone-Čech compactification, which coincides with the
set of ultrafilters if X is a discrete topological space. See Definition 1.3.5.
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Of course, the question is whether there exist any non-principal ultrafilters at all. The
answer is “yes”; we will construct non-principal ultrafilters shortly using Zorn’s lemma.
But note that their existence is independent of the ZF axioms of set theory, so we really
need to use the Axiom of Choice here; see also Schechter [Sch96]. This has the unfortunate
consequence that we cannot enumerate the collection of sets defining an ultrafilter in a
meaningful, algorithmic way. Hence, ultrafilters will remain somewhat mysterious objects.

But before constructing ultrafilters, let us define the related notion of filter, which corre-
sponds not to a single point, but to a set of points.

Definition 1.1.2 (Filter).

Let X be a set. A filter F on X is a nonempty collection of subsets of X that
fulfills the properties 1–3 from the definition of ultrafilters, but not necessarily
the condition 4.

This time, imagine replacing “F ∋” with “F ⊆” and observe that the conditions 1–3 are a
reasonable axiomatization of the notion of subset. In this light, condition 4 singles out the
subsets with just one element, i.e. the points.

Let us give some examples of filters. Like before, the principal filters are the ones that
come from ordinary subsets F of the set X:

F̃ = {A ⊆ X : F ⊆ A}.

Similarly, the filters that are not of this form are called non-principal filters. The simplest
example is the Fréchet filter, which consists of those sets whose complement is finite

F = {A ⊆ X : Ac is a finite set},

or in the case of X = N

F = {A ⊆ N : {n, n+ 1, . . . } ⊆ A for some n ∈ N}.

This is indeed a filter, and non-principal one because the intersection of all of its sets is
empty, which cannot happen for principal filters.

Back to ultrafilter construction. In a sense, condition 4 from the ultrafilter definition is
also a condition of maximality. Clearly, a filter F cannot contain both a set A and its
complement Ac, because then we would have F ∋ A ∩ Ac = ∅, in violation of property 1.
But it may well be that a filter contains neither. In contrast, ultrafilters must be large
(“ultra”) and always contain one of them. We will show that any filter can be extended to
an ultrafilter.
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Lemma 1.1.3 (Extending filters to ultrafilters).

Let F be a filter on the set X. Then, there exists an ultrafilter p that contains
all the sets from F and many more, i.e. F ⊆ p.

In our interpretation, this lemma says that “every set F contains a point p”. Applying it
to the Fréchet filter shows the existence of non-principal ultrafilters.

Corollary 1.1.4 (Existence of non-principal ultrafilters).

There exist non-principal ultrafilters p. Moreover, every non-principal ultrafil-
ter extends the Fréchet filter.

Proof. As the previous lemma says, there exists an ultrafilter p extending the Fréchet
filter. Since the intersection of all sets A ∈ p is empty, it cannot be principal.

Now, note that only principal ultrafilter p may contain finite sets. Hence, given any set A
whose complement Ac is finite, a non-principal ultrafilter p must contain the set A but not
the set Ac. This means that p extends the Fréchet filter. �

For reasons of economy, we now prove a generalization of the lemma above that involves a
predicate on sets ϕ. Setting ϕ(A) = “A is nonempty” will recover the original statement.

Lemma 1.1.5 (Ultrafilter construction).

Let X be a set and F be a filter on X. Furthermore, let ϕ : 2X → {true, false}
be a predicate on subsets of X that has the following properties.

1) ϕ(A) for all A ∈ F .

2) If ϕ(A) and A ⊆ B, then ϕ(B).

3) If ϕ(A) and A = A1 ⊎A2 a disjoint union, then ϕ(A1) or ϕ(A2) or both.

In other words, the predicate cannot be “destroyed” by partitioning a set2.

Then, there exists an ultrafilter p with F ⊆ p and ϕ(A) for all A ∈ p.

Proof. Consider all filters G ⊇ F whose member sets A ∈ G all have the property ϕ(A).
By Zorn’s lemma, there exists a filter p among these which is maximal with respect to
inclusion. We want to show that this is an ultrafilter.

Assume that there were a set A such that neither A itself nor its complement Ac are
members of p. We show that in this case, it is possible to extend the filter p by one of
these sets, in contradiction to maximality.

2The set {A ⊆ X : ϕ(A)} is sometimes called a superfilter .
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Figure 1: The predicate ϕ being false on the shaded regions A ∩ B and Ac ∩ C implies that
it is also false on the intersection B ∩ C.

Let p[A] denote the filter “generated” by the filter p and the set A, i.e. the collection

p[A] = p ∪ {S ⊆ X : there exists B ∈ p with A ∩B ⊆ S}

Likewise for p[Ac]. It is easy to check that these collections are indeed filters. In particular,
since neither the set A nor its complement Ac are members of the filter p, none of the
intersections A ∩ B and Ac ∩ B with B ∈ p can be empty. Hence, neither collection
contains the empty set.

We have to prove that all members sets of at least one of these filters satisfy the predicate
ϕ. Thanks to requirement 2, it is enough to show that

either ∀B ∈ p. ϕ(A ∩B) or ∀C ∈ p. ϕ(Ac ∩ C) or both.

In words: the set A or the set Ac should only have “good” intersections with all the
members of the filter p.

Assume that this is not true, i.e. that there are counterexamples B and C such that the
statements ϕ(A ∩ B) and ϕ(Ac ∩ C) are false, see Figure 1. Due to requirement 2 again,
the statements ϕ(A∩B ∩C) and ϕ(Ac ∩C ∩B) must also be false. But the contrapositive
of requirement 3 tells us that

ϕ((A ∩B ∩ C) ⊎ (Ac ∩ C ∩B)) = ϕ(B ∩ C) = false

as well, in contradiction to B ∩ C ∈ p and ϕ(B ∩ C) = true.

In other words, at least one of the filters p[A] or p[Ac] extends the filter p, even though the
latter was supposed to be maximal. �

In the end, we want to use ultrafilters on the natural numbers to prove statements about
the natural numbers themselves. The passage from ultrafilters back to natural numbers
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can be captured in the following simple observation, whose value lies in the mental image
it provokes: If a set A contains a “non-principal point” p ∋ A, then it also contains an
ordinary point n ∈ A, n ∈ N.

Proposition 1.1.6 (Permanence principle).

Let A be a set of natural numbers. For any ultrafilter p on the natural numbers
N, we have

A ∈ p =⇒ A ∋ n for some natural number n ∈ N

Moreover, if the ultrafilter p is non-principal, then this can be strenghened to

A ∈ p =⇒ For any number m ∈ N, there exists a number n ∈ N
such that n > m and A ∋ n.

Proof. Ultrafilters do not contain the empty set. Non-principal ultrafilters are contained
in the Fréchet filter. �

Let us close this section with a lemma that we will use in the next section to make the
intuition of ultrafilters as points rigorous.

Proposition 1.1.7 (Ultrafilters behave like points).

For any ultrafilter p on some setX and any sets A,B ⊆ X, we have the following
equivalences:

1. p ∋ Ac ⇐⇒ not p ∋ A

2. p ∋ A ∩B ⇐⇒ p ∋ A and p ∋ B

3. p ∋ A ∪B ⇐⇒ p ∋ A or p ∋ B

Proof.

1. By definition, one of A and Ac must be a member of p, but since A ∩ Ac = ∅ ̸∈ p,
only one of them can be.

2. The implication from right to left holds by definition. The other direction follows
trivially from A ∩B ⊆ A and A ∩B ⊆ B.

3. De Morgans’ law reduces this to the first two cases:

p ∋ A ∪B ⇐⇒ p ∋ (Ac ∩Bc)c

⇐⇒ not (p ∋ Ac and p ∋ Bc) ⇐⇒ p ∋ A or p ∋ B. �
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1.2 Topology of βN

We now want to make rigorous our intuition of ultrafilters as points and of filters as sets
of points.

For simplicity, the following discussion will be about ultrafilters on the set of natural
numbers N. It also applies to Z, N× N and other discrete sets.3

To interpret ultrafilters as points, we can simply decree that they are the points of the
space of ultrafilters βN. The ordinary natural numbers N can be viewed as points of βN
as well, by thinking of them as principal ultrafilters. In other words, there is an inclusion
N↪→βN.

But now, there are two possible notions of sets of points: on one hand, we have arbitrary
subsets of βN, in the sense of set theoretical collections of points. On the other hand,
we want to think of the filters as being the subsets of the space βN. The solution to
this dilemma is to introduce a topology on the space βN. Arbitrary sets will remain
arbitrary, but the filters will correspond to topologically meaningful sets; we will see that
they correspond to the closed sets of the space βN.

Furthermore, it will turn out that the space βN is a compact topological space, unlike the
natural numbers N themselves. So, in a sense, there were points missing from N, namely
those that correspond to limit points, without whom N cannot be compact.

At the end of this section, we will give short summary of the topology and illustrate it with
a picture.

To define the topology of the space βN, we first define the closure of a set of natural
numbers.

Definition 1.2.1 (Closure of a set of natural numbers in βN).

Let A ⊆ N be a set of natural numbers. Its closure A in βN is defined to be
the set of all ultrafilters p that it belongs to:

p ∈ A :⇐⇒ p ∋ A.

In other words, our intuition that the ultrafilter p is a “point of A” is now manifest in the
fact that p is a point of the closure A.

Note that we reserve the notation “A” for the closure of sets of natural numbers A ⊆ N.
The topological closure of arbitrary sets X ⊆ βN will be denoted with “cl(X)”. We will
justify that A = cl(A) shortly.

3When the set carries a non-trivial topology that needs to be taken into account, the Stone-Čech com-
pactification (Definition 1.3.5) is more appropriate.
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In a very confusing move, we now define the closures of sets of natural numbers to be the
basic open sets of our topology.

Definition 1.2.2 (Topology of βN).

A set of the form A is called a basic open set . A set of ultrafilters U ⊆ βN is
called open if and only if it is a union of basic open sets,

U =
∪
α∈A

Aα for some collection of sets Aα ⊆ N.

We just defined these closures to be open; but are they not supposed to be closed? The
solution to this conundrum is that they are both, they are both closed and open, they are
clopen. This might be unfamiliar to you if you are used to the topology of the real numbers
where the open and the closed sets are quite distinct; but even there, two special sets are
clopen, namely the whole space and the empty set. Well, here we have a topological space
where many interesting sets are clopen.

The following proposition justifies that sets of the form A are both open and closed, and
that our definition of “open set” adheres to the axioms of topology.

Proposition 1.2.3 (Closure commutes with boolean algebra).

For any sets A,B ⊆ N, the following equalities hold in βN:

1. Ac = A
c

2. A ∩B = A ∩B

3. A ∪B = A ∪B

Proof. All these equalities follow directly from Proposition 1.1.7 “Ultrafilters behave like
points”, which has been stated in such a way that we now only have to flip the “∈” symbol
forth and back. Here the reasoning for the first equality; the others are entirely similar:

p ∈ Ac ⇐⇒ p ∋ Ac ⇐⇒ not (p ∋ A) ⇐⇒ not (p ∈ A) ⇐⇒ p ∈ A
c
. �

We still have to justify that the “closure” A is indeed equal to the smallest closed set cl(A)
of ultrafilters that contains the set A ⊆ N.
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Lemma 1.2.4 (Closure is topological closure).

For every set of natural numbers A ⊆ N, we have A = cl(A).

Proof. Without loss of generality, we can write the closure as an intersection of basic
open (closed) sets cl(A) =

∩
α∈ABα. But the ultrafilter axioms show that A ⊆ Bα implies

A ⊆ Bα and the intersection must be equal to its smallest member A. �

Having defined the topology on βN, we can now state the correspondence between filters
and closed sets.

Proposition 1.2.5 (Correspondence of closed sets and filters).

The nonempty closed sets F ⊆ βN are in one-to-one correspondence with the
filters F on N. Moreover, the subset relation F ⊆ G corresponds to filter
inclusion F ⊇ G.

In particular, a filter F corresponds to the intersection F of all the sets that
we used to define it as a collection,

F =
∩
A∈F

A.

Proof. With this intuition in mind, let us introduce two maps c and f that map a filter
to its closed set and vice-versa:

c(F) =
∩
A∈F

A

f(F ) = {A ⊆ N : F ⊆ A}

Since arbitrary intersections of closed sets are closed, the set c(F) is indeed a closed set.
Likewise, since closure commutes with boolean algebra, f(F ) is indeed a filter. It is also
obvious that these two maps interchange subset relation and filter inclusion.

Note that every ultrafilter p is a member of the set c(p); this is obvious from the definition
of closure. Since every filter F can be extended to an ultrafilter p ⊇ F , we have p ∈ c(p) ⊆
c(F), so that the closed set c(F) is, in fact, nonempty.

It remains to be shown that these maps are inverse to each other.

Let us consider the case F
?
= c(f(F )) first. From the definition of set intersection, it is

obvious that F ⊆ c(f(F )). But since the closures A form a basis of our topology, every
closed set F can be written as an intersection F =

∩
A∈AA = c(A) for some collection

A (which, however, is not necessarily a filter). This means A ⊆ f(F ), which implies
F = c(A) ⊇ c(f(F )), and we are done.
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Now the case F ?
= f(c(F)). Once again, it is obvious that F ⊆ f(c(F)). If we can show that

c is injective in the sense that F ⊂ F ′ for some other filter F ′ implies c(F) ̸= c(F ′), then
we can apply the previous case to the closed set F = c(F) and conclude from injectivity
that

F = c(f(F )) =⇒ c(F) = c(f(c(F))) =⇒ F = f(c(F)).

Alright then, let us prove that the map c is injective. Intuitively, we have to show that
c(F ′) is a strictly smaller set than c(F), so we have to construct an ultrafilter p which is a
member of the latter, but not of the former closed set. Since F ′ is a larger filter than F ,
we can find a set B with B ∈ F ′ but B ̸∈ F . Now, the idea is that the closed set c(F) has
nonempty intersection with the complement B

c
whereas the closed set c(F ′) must be fully

contained in the closure B. To show that, and to conclude the proof, all we have to do is
to construct an ultrafilter p ∈ c(F) ∩B

c
.

Of course, to construct the ultrafilter p, we apply the ultrafilter construction lemma (1.1.5)
to the filter F , using the predicate “ϕ(A) = A ∩ Bc is nonempty”. As we will see in a
moment, this will have the effect that p contains both the filter F and the set Bc. The
most important condition to verify is that this predicate is true for all sets A ∈ F . But if
that were not the case, that is if one set A ∈ F fulfilled “A∩Bc is empty”, then we would
have A ⊆ B which would imply B ∈ F in contradiction to our choice of B. The other
conditions are easy.

Now, all that remains is to check that indeed p ∈ c(F) ∩ B
c
. Since p is an extension of

F , we know that p ∈ c(p) ⊆ c(F). Also, p must be contained in either B or B
c
, but since

ϕ(B) = false, we have p ∈ B
c
as desired. �

The fact that the closed sets corresponding to filters are nonempty is closely related to the
fact that our space βN is compact.

Proposition 1.2.6 (Compactness of βN).

The space of ultrafilters βN is a compact topological space.

Remember that compactness means that all open covers have finite subcovers and that the
space is Hausdorff. To prove the proposition, let us reformulate the first criterion.

Definition 1.2.7 (Finite intersection property).

A topological space X has the finite intersection property if, for every arbitrary
collection of closed sets {Cα ⊆ X : α ∈ A}, the following equivalence holds:

∩
α∈A

Cα is empty ⇐⇒ there exists a finite set I ⊆ A
such that

∩
α∈I Cα is empty .
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Take complements to see that the finite intersection property is equivalent to the usual
property concerning open covers.

Proof (Compactness of βN). First, we show that the space βN is Hausdorff. To
see this, consider two ultrafilters p ̸= q. Since they are different, there must be a set A
such that A ∈ p but A ̸∈ q. This means p ∈ A and q ∈ A

c
and we have separated them by

disjoint open sets.

Now, we want to convince ourselves that the space βN has the finite intersection property.

One direction of the finite intersection property is trivial, so let us assume that we are
given an intersection C =

∩
α∈ACα such that no finite intersection of closed sets Cα is

empty. We need to show that the whole intersection is nonempty.

Since we are dealing with intersections only, without loss of generality we can assume that
all the sets Cα are actually basic closed sets Aα with Aα ⊆ N. Now, the point is that the
intersection of these sets is given by a filter: we have C = c(F) where the filter

F = {B ∈ N : B ⊇ Aα1 ∩Aα2 ∩ · · · ∩Aαn for some sets Aαi with αi ∈ A}

consists of all supersets of finite intersections of the sets Aα. Since we assumed that none
of these were empty, we have F ̸∋ ∅ and the collection F is indeed a filter. But we know
that this filter corresponds to a nonempty closed set C = c(F) by the previous Proposition
1.2.5. �

It is time to give a summary of the topology of βN, illustrated by Figure 2.

.

.βN

.N

.A .basic open set
.F.filter, closed set

Figure 2: Illustration of the space of ultrafilters βN. Basic open sets A must contain natural
numbers while closed sets F need not.

The open sets, in particular the basic open sets of the form A, always contain ordinary
numbers. They will be important because they allow us to transport properties of ultrafil-
ters back to the natural numbers. This is another way to look at the permanence principle
1.1.6. Also note that sets containing only principal ultrafilters are automatically open.
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The closed sets, on the other hand, do not necessarily contain natural numbers. Instead,
they correspond to filters, i.e. arbitrary intersections of basic open sets. The Fréchet filter
corresponds to the closed set of non-principal ultrafilters βN \ N.

The fact that filters correspond to nonempty closed sets is closely related to the fact that
the space βN is compact. Namely, the finite intersection property mimics the way filters
behave: any finite intersection of sets in the filter is again in the filter and thus nonempty,
which already implies that the intersection of all of its sets is nonempty as well. We cannot
expect such an intersection to contain any “old” numbers from N though, that is too much
to ask. For instance, the Fréchet filter corresponds to the intersection of sets {n, n+ 1, . . . }
which would have to contain an “infinite natural number”4.

1.3 Limits along ultrafilters

Many mathematicians encounter ultrafilters for the first time when they hear about Ty-
chonoff’s theorem, which belongs to point-set topology and states that arbitrary, even infi-
nite products of compact topological spaces are again compact. This fundamental property
of compactness is usually proven with ultrafilters, which are used to generalize sequences
and their convergence.

In that spirit, we are now going to define limits along ultrafilters. The basic idea is the
following: imagine a sequence (yn)

∞
n=1 of elements in a compact topological space Y , for

instance Y = [0, 1]. In general, this sequence will not have a well-defined limit limn→∞ yn,
most likely because it oscillates wildly or does other strange things. But since the space
Y is compact, we know at least that the sequence must have one or more limit points, i.e.
points y ∈ Y that it comes close to infinitely often. Now, the idea is that ultrafilters allow
us to attribute a well-defined limit to the sequence anyway, by arbitrarily but consistently
choosing one of these limits points, as Figure 3 visualizes.

In the following, we shall interpret sequences (yn)
∞
n=1 as functions f : N → Y, f(n) = yn

because this will give a more convenient notation.

Definition 1.3.1 (Limit along an ultrafilter).

Let p ∈ βN be an ultrafilter on the natural numbers and let f : N → Y be a
sequence of elements in a compact topological space Y . Then, we define the
limit of the sequence f(n) along the ultrafilter p to be the unique point

y =: lim
n→p

f(n) ∈ Y

4In this light, it is not surprising that ultrafilters feature prominently in the construction of Nonstandard
Analysis, which deals with infinite and infinitesimal numbers. See also Robinson [Rob96].
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.y1

.y3

.y5

.y2

.y4

.pick this limit point

Figure 3: In a compact space Y , every sequence will have one or more limit points. An
ultrafilter limit picks one of them.

which fulfills the condition

For every open neighborhood U ∋ y, we have f−1(U) ∈ p.

In other words, the sets of indices f−1(U) = {n ∈ N : f(n) ∈ U} of sequence
elements that are mapped into the open neighborhood U are required to be
members of the ultrafilter p.

For a principal ultrafilter p, this simply reduces to picking one member of the sequence,
while for a non-principal ultrafilter p, this amounts to picking a limit point, because all the
member sets of the ultrafilter are infinite.

The definition comes with a proof obligation, namely we have to show that such a limit y
actually exists and that it is unique. The compactness of the space Y is crucial for this.

Proof (Limits along ultrafilters are well-defined).

Existence. The sequence f : N → Y gives to rise to a map of ultrafilters p 7→ f̃(p) defined
as

f̃(p) ∋ A :⇐⇒ p ∋ f−1(A).

Since the inverse on sets f−1 preserves boolean operations, the collection f̃(p) is indeed an
ultrafilter.

Now, choose the limit point y to be some member of the intersection of all closed sets in
the ultrafilter f̃(p),

y ∈
∩

{A ⊆ Y : f̃(p) ∋ A,A closed }

This intersection is nonempty because Y , being compact, has the finite intersection prop-
erty.
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It remains to check that the point y fulfills the defining condition for limits along ultrafilters,
which the same as showing that the ultrafilter f̃(p) contains every open neighborhood of
y. But if an open neighborhood U ∋ y were not a member of the ultrafilter f̃(p), then its
complement U c would be both a closed set and a member of f̃(p), which contradicts the
construction of our point y.

Uniqueness. This follows from the fact that Y is Hausdorff. Namely, any two possible
limit points y and y′ can be separated by disjoint open neighborhoods Uy and Uy′ , but the
ultrafilter f̃(p) can only contain one of these neighborhoods as their intersection is empty.
�

The traditional approach for choosing limit points would be to pass to a subsequence. For
instance, in functional analysis, it is not uncommon to consider a sequence in some compact
space, like the unit ball of a Hilbert space in the weak topology, and then choose a con-
vergent subsequence to get a limit point. However, this procedure can become very messy,
especially when one has to repeat it. Limits along ultrafilters offer a clean alternative; in
a sense, an ultrafilter has already picked all suitable subsequences “in advance”.

The two approaches are not incompatible, though; it is always possible to turn subsequences
into ultrafilters, as the following lemma demonstrates.

Lemma 1.3.2 (Ultrafilters from subsequences).

Let Y be a compact space and let f : N → Y be a sequence. Furthermore, as-
sume that a subsequence (f(nj))

∞
j=1 converges. Then, there exists an ultrafilter

p ∈ βN that gives rise to the same limit for this particular sequence

lim
n→p

f(n) = lim
j→∞

f(nj).

Proof. Any non-principal ultrafilter p taken from the set of indices A = {n1, n2, . . . } ⊆ βN
will do the trick. After all, for any open neighborhood U of the limit along the subsequence,
we have

{nk, nk+1, . . . } ⊆ f−1(U)

for some index k ∈ N. But the set on the left-hand side is a member of p. �

Conversely, if we know that an ultrafilter belongs to a particular subsequence or set of
indices, we may conclude that the ultrafilter limit only depends on the elements belonging
to the subsequence.
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Lemma 1.3.3 (Restriction to a subset of indices).

Let p be an ultrafilter contained in a particular basic open set A ∋ p. Then,
for any sequence f : N → Y in a compact space Y , we have

lim
n→p

f(n) ∈ cl(f(A)).

In other words, the limit is determined only by the sequence elements with
indices from the set A ⊆ N.

Proof. If the limit did not lie in the closure cl(f(A)), then it would be contained in an
open set U ⊆ Y that does not intersect f(A). But then, we would have f−1(U) ⊆ Ac ̸∈ p,
a contradiction to the definition of the ultrafilter limit. �

We still have to clarify what is meant by picking a limit point “consistently”. It simply
means that the limit along ultrafilter commutes with continuous functions, as we would
expect of any well-behaved notion of “limit”. Also, all the usual rules for calculating with
limits retain their validity. Here just a sample.

Proposition 1.3.4 (The usual limit rules apply to ultrafilter limits).

Let X be a compact topological space and let f : N → X be a sequence. Then,
the following statements hold:

1. Let h : X → Y be a continuous function into another compact space Y .
Then, we may interchange limits

lim
n→p

h(f(n)) = h( lim
n→p

f(n)).

2. Let g : N → X ′ be a sequence in another compact space X ′. Then, we
may interchange limits and pairs

lim
n→p

(f(n), g(n)) =

(
lim
n→p

f(n), lim
n→p

g(n)

)
.

3. Assume that X = [0, 1] is a compact interval of real numbers and let
g : N → X be another sequence. Then, we can interchange limits and
summation

lim
n→p

(f(n) + g(n)) = lim
n→p

f(n) + lim
n→p

g(n).

Proving these rules directly would be rather tedious, not to mention that there are many
more of them. It is much more efficient to recast the notion of ultrafilter limit in terms
of a universal property, giving rise to the so-called Stone-Čech compactification. The rules
then follow from a simple uniqueness argument.
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Definition 1.3.5 (Stone-Čech compactification).

The Stone-Čech compactification βX of a topological space X is a compact
topological space together with a continuous map ι : X → βX subject to the
following universal property: any map f : X → Y into another compact space
Y factors uniquely through a map βf : βX → Y , as the following diagram
indicates

.

.βX

.X .Y

.ι

.f

.∃!βf

It is a standard exercise to show that the Stone-Čech compactification is actually unique
up to homeomorphisms.

As our choice of notation suggests, the space of ultrafilters βN is indeed the Stone-Čech
compactification of the natural numbers N. This is true for every discrete space X, but
not for general topological spaces. In the latter case, there exist different ultrafilters that
cannot be distinguished by any continuous function f . An extreme example would be a
compact space X, because then we already have βX = X.

Proof (βN is the Stone-Čech compactification of N).

Existence. Of course, the map ι is the standard embedding and the map βf is given by
the limit along ultrafilters:

βf(p) := lim
n→p

f(n).

We have to show that it is continuous. To that end, let U be any open neighborhood of a
point βf(p) in the target space Y .

First, let us construct a smaller open neighborhood V ∋ βf(p) with the property that
its closure is contained in the original one, clV ⊆ U . Doing that is a standard exercise
in point-set topology: use the compactness of the space Y to construct two disjoint open
sets V and W , i.e. V ∩ W = ∅, that separate the point βf(p) ∈ V from the closed set
U c ⊆ W . The set V will have the desired property since the set W c is closed and hence
V ⊆ clV ⊆ W c ⊆ U .

Now, consider the basic open set f−1(V ). By definition of the ultrafilter limit, this is a
basic open neighborhood of the ultrafilter p. But Lemma 1.3.3 about restrictions to subsets
of indices implies that it is mapped into the open set U ,

βf(f−1(V )) ⊆ cl(f(f−1(V ))) = cl(V ) ⊆ U.

This proves that the map βf is continuous.
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Uniqueness. Let g : βN → Y be another continuous map that makes the diagram commute.
We have to show that

g(p) = lim
n→p

f(n).

Since the map g is continuous, we know that the preimage of any open neighborhood U of
the point g(p) contains a basic open set, g−1(U) ⊇ A ∋ p. But our maps f and g agree on
the natural numbers, so A ⊆ f−1(U) ∈ p. In other words, the point g(p) fulfills the very
definition of the limit in question. �

Now, this universal property easily gives the rules for calculating with ultrafilter limits.

Proof (of Proposition 1.3.4, Rules for calculating with ultrafilter limits).

1. Consider the diagram

.

.βN

.N .X .Y

.

.f .h

.βf

.β(h ◦ f)

Uniqueness of the rightmost diagonal arrow implies that β(h ◦ f) = h ◦ βf , which is
just another way of writing the equation

lim
n→p

h(f(n)) = h( lim
n→p

f(n)).

2. The product of continuous functions βf × βg makes the diagram

.

.βN

.N .X ×X ′
.f × g

.βf × βg

commute. But by uniqueness, this means that β(f × g) = βf × βg, which is again
merely another way of writing the equation to be proven.

3. Decompose the sum of maps f + g = h ◦ (f × g) as a pair of maps followed by the
continuous function h(x, x′) = x+ x′ and apply the two previous statements.

�

The Stone-Čech compactification also allows us to identify the Banach space of bounded
sequences ℓ∞(N) with a Banach space continuous functions, namely C(βN). We will make
use of this important fact when constructing measures on the space of ultrafilters βN in
Section 4.1.
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Theorem 1.3.6 (Bounded sequences as continuous functions on βN).

There is a canonical isomorphism of Banach spaces

ℓ∞(N) ∼−→ C(βN)

given by the ultrafilter limit

(fn)
∞
n=1 7→

(
p 7→ lim

n→p
fn

)
.

Proof. Any sequence f ∈ ℓ∞(N) bounded by |fn| ≤ C can be viewed as a function f :
N → [−C,C] into a compact interval. It lifts to a continuous function βf : βN → [−C,C]
which is given by the ultrafilter limit.

Conversely, since the Stone-Čech compactification βN is compact, any continuous function
g : βN → R must be bounded, |g(p)| ≤ C. The restriction to natural numbers gn := g|N(n)
gives rise to a bounded sequence.

Thanks to the rules for calculating with limits, this identification preserves vector space
operations. It is also easy to check that the Banach norms are, in fact, preserved. Hence,
we have an isomorphism of Banach spaces. �

2 Ramsey theory and ultrafilters

2.1 What is Ramsey theory?

Our interest in ultrafilters is actually motivated by an interest in Ramsey theory, a branch
of mathematics which we will now describe. It is named after the British mathematician
Frank P. Ramsey (1903-1930).

The following theorem is a prototypical example of a statement from Ramsey theory.

Theorem 2.1.1 (van der Waerden).

Consider the set of natural numbers N and imagine that we paint each number
with one of r different colors. In other words, consider a partition

N = C1 ⊎ C2 ⊎ · · · ⊎ Cr

where Ci is the subset of natural numbers painted with the i-th color. Then,
for any given length k, there exists at least one arithmetic progression

a, a+ b, . . . , a+ (k − 1)b with b > 0
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that is monochromatic, i.e. whose members all have the same color. Put dif-
ferently, for any length k, there is one color i such that the set Ci contains an
arithmetic progression of length k.

We already know that the set of natural numbers N contains arithmetic progressions
aplenty, but what van der Waerden’s theorem says is that no matter how we partition
this set into finitely many pieces, one of them will also contain an arithmetic progression.
This surprising phenomenon merits a proper name.

Definition 2.1.2 (Partition regularity).

Let G be a nonempty collection of sets that we deem interesting, for instance

G = {{a, a+ b, . . . , a+ (k − 1)b} : a, b ∈ N, b > 0}

the collection of arithmetic progressions of length k. Such a collection is called
partition regular if, for every partition

N = C1 ⊎ C2 ⊎ · · · ⊎ Cr, Ci ⊆ N,

at least one of the parts Ci still contains an interesting set G ∈ G, i.e. G ⊆ Ci.

To make language more convenient, we will often talk about the property “con-
tains an interesting set G ∈ G” being partition regular, instead of the collection
G being partition regular.

In other words, van der Waerden’s theorem asserts that the property “contains an arith-
metic progression of length k” is partition regular.

In general, Ramsey theory is the study of partition regularity: take a mathematical object,
like N, or some graph, and divide it into finitely many parts. Then, provided that the
object in question is sufficiently large, one of the parts will always contain an interesting
substructure, in our case an arithmetic progression.

Usually, the reason for containing interesting substructures is that one of the parts is also
“large” in a suitable sense, so large that it cannot possibly miss the interesting substructure.
As we will see in Section 2.2, being a member of an ultrafilter is such a suitable notion of
largeness. What other notions of largeness can guarantee that a set of natural numbers
contains arithmetic progressions?

One example is the notion of a syndetic set.
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Definition 2.1.3 (Syndetic).

A set A of natural numbers is called syndetic if it has bounded gaps. This means
that there exists a size d ∈ N such that every interval [M,M + d] ⊆ N,M ∈ N
has nonempty intersection with the set A. Put differently, this implies that
adjacent elements from the set A are no more than a distance d away from each
other, as illustrated by Figure 4.

..A =

{
.1 .2 .3 .4 .7 .8 .9

.all gap sizes ≤ d

.. . . . . .

}

Figure 4: Illustration of a syndetic set. The rectangular blocks indicate natural numbers that
are contained in the set, while empty space indicates numbers that are absent from the set.
Being syndetic means that no gap may exceed a fixed size d.

As you can see, syndetic sets contain at least a fraction 1/d of all natural numbers, so it is
certainly appropriate to call them “large”. There is an equivalent definition of syndeticity
which, together with van der Waerden’s theorem, shows that syndetic sets also contain
arithmetic progressions.

Proposition 2.1.4 (Syndetic, alternate definition).

A set A ⊆ N is syndetic if and only if the set of natural numbers N can be
written as a union of finitely many shifts of A,

N =

k∪
i=1

(A− ni), for some n1, . . . , nk ∈ N.

Definition 2.1.5 (Shift).

Let A ⊆ N be a set of natural numbers. For a number n ∈ N, the shift A − n
is defined as the set A− n := {k ∈ N : k + n ∈ A}, or more suggestively

k ∈ A− n :⇐⇒ (k + n) ∈ A.

In other words, subtract n from the numbers in the set A and keep the non-
negative results.

Proof (Syndetic, alternate definition). If A ⊆ N is a syndetic set with maximal
distance d ∈ N, then the union

∪d
i=1(A− i) is clearly equal to N. On the other hand, for a

given collection of shifts (A−n1), . . . , (A−nk), we can simply choose d = max{n1, . . . nk}.
�
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Corollary 2.1.6 (Syndetic sets contain arithmetic progressions).

Let A ⊆ N be a syndetic set. Then, for every length k ∈ N, the set A contains
an arithmetic progression of length k.

Proof. A finite union of shifts A−ni covers the set N. Of course, van der Waerden’s theo-
rem applies not only to paritions but also to covers, so we obtain an arithmetic progression
of length k in one of the shifts Ci := A− ni. But we can simply add ni to each member of
the progression and obtain an arithmetic progression in the set A. �

Another notion of largeness for a set, perhaps the most natural one, is to contain a positive
fraction of all natural numbers, to have a positive density. The density of a set A is
determined by the ratios |A ∩ [1, N ]|/N as N → ∞. For example, the set A = 2N of even
numbers has density 1/2 and is large in this sense.

Unfortunately, these ratios do not converge in general, which leads to a variety of different
definitions of density. We will be concerned with the following variant, which no longer
requires the interval to begin at the number 1:

Definition 2.1.7 (Upper Banach density).

The upper Banach density of a set A ⊆ N of natural numbers is defined to be
the limes superior

d∗(A) := lim sup
N→∞

sup
M∈N

|A ∩ [M + 1,M +N ]|
N

taken over shifted intervals [M + 1,M +N ] whose length goes to infinity.

Is there any reason to expect that a set with positive upper Banach density contains
arithmetic progressions? Probably not, but a deep theorem first proven by Szeméredi,
previously conjectured by Erdős and Turán, asserts that this is nonetheless true.

Theorem 2.1.8 (Szemerédi).

Every set of natural numbers with positive upper Banach density contains arith-
metic progressions of every length.

This is a formidable generalization of van der Waerden’s theorem. To see that, note that
the upper Banach density is subadditive,

d∗(A ∪B) ≤ d∗(A) + d∗(B), for any A,B ⊆ N.

Thus, any partition of the natural numbers gives rise to the inequality

1 = d∗(N) = d∗(C1 ⊎ C2 ⊎ · · · ⊎ Cr) ≤ d∗(C1) + d∗(C2) · · ·+ d∗(Cr)
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which implies that at least one of the sets Ci must have positive upper Banach density and
hence contain arithmetic progressions of every length.

We will make no attempt to prove this theorem here; for that, you are referred to the
original proof by Szemerédi [Sze75] or the classical proof relying on ergodic theory by
Furstenberg [Fur81]. Instead, our goal is to extend the interpretation of van der Waerden’s
theorem in terms of ultrafilters, to be presented in Section 2.2, to Szemerédi’s theorem,
which will be done in Section 4.3.

2.2 Partition regular properties correspond to ultrafilters

We now want to explain the connection between partition regularity and ultrafilters.

The key insight is foreshadowed by the following trivial observation: the property “contains
the number 7” is partition regular. After all, if we partition the set N into finitely many
parts, one of them must contain the number 7. Unlike, say, an arithmetic progression, the
set {7} cannot be broken apart because it consists of just a single point.

But we have seen that the natural numbers are not the only points of N: the ultrafilters
also behave like “points”. Could it be that van der Waerden’s theorem holds because there
exists a “magical point” p such that any set containing this point automatically contains
an arithmetic progression?

This is indeed the case! Namely, we now show that every partition regular property is equiv-
alent to the existence of ultrafilters whose member sets all have the property in question.
One could quip: “Ramsey theory is just the search for funny ultrafilters.”

Theorem 2.2.1 (Equivalence of partition regularity and ultrafilters).

Let G be a collection of sets that we deem interesting. Then, the following are
equivalent:

• G is partition regular.

• There exists an ultrafilter p such that all member sets A ∈ p contain at
least one interesting set G ∈ G, i.e. G ⊆ A.

Proof. “⇐=”: The ultrafilter p is the “magical point” we were talking about. Namely,
consider a partition N = C1 ⊎ C2 ⊎ · · · ⊎ Cr and take the closure of this partition in the
space of ultrafilters βN. Since closure commutes with boolean operations, we have

βN = C1 ⊎ C2 ⊎ · · · ⊎ Cr = C1 ⊎ C2 ⊎ · · · ⊎ Cr.

Clearly, one of the parts Ci must contain the ultrafilter p, which is just another way of
saying that Ci ∈ p. By definition of the ultrafilter p, this implies that the set Ci contains
an interesting set G ∈ G, i.e. G ⊆ Ci. Hence, the collection G is partition regular.
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Figure 5: A partition N = C1 ⊎ C2 ⊎ · · · ⊎ Cr extends seamlessly to the space of ultrafilters
βN. Clearly, one of the parts must contain the ultrafilter p.

“=⇒”: Given a collection G which is partition regular, we have to construct an ultrafilter
p whose members sets all contain interesting subsets. Of course, we are going to use the
ultrafilter construction lemma (1.1.5) for that.

Our predicate will be the notion of partition regularity applied to any subset of the natural
numbers N:

ϕ(A) := “For every partition A = C1 ⊎ C2 ⊎ · · · ⊎ Cr,

one of the parts contains an interesting set G ⊆ Ci, G ∈ G.”

By assumption, ϕ(N) holds true, so our starting point will be the trivial filter F := {N}.
It is also easy to see that ϕ(A) fulfills the second requirement.

For the third requirement, we argue by contradiction. Let A = A1 ⊎A2 be a disjoint union
and assume that ϕ(A) holds true while both ϕ(A1) and ϕ(A2) are false. In other words,
there exist partitions

A1 = B1 ⊎B2 ⊎ · · · ⊎Br and A2 = C1 ⊎ C2 ⊎ · · · ⊎ Cr

such that none of the parts contain an interesting set. But clearly, this gives rise to a joint
partition

A = B1 ⊎B2 ⊎ · · · ⊎Br ⊎ C1 ⊎ C2 ⊎ · · · ⊎ Cr

such that none of the parts contain an interesting set, which would imply that ϕ(A) is
false, a contradiction.

Hence, our predicate fulfills all the requirements and there exists an ultrafilter p with the
property that ϕ(A) for all member sets A ∈ p. But clearly, the property ϕ(A) implies that
the set A contains an interesting subset, just consider the trivial partition A = A. �
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In other words, van der Waerden’s theorem can be thought of as a theorem about the
existence of an ultrafilter whose members all contain arithmetic progressions, instead of as
a theorem about partitions of the set N.

Note, however, that this ultrafilter is by no means unique: a single partition regular prop-
erty may have many different ultrafilters associated to it. Let us introduce a notation for
these ultrafilters in the case of arithmetic progressions.

Definition 2.2.2 (Progression-rich ultrafilters).

An ultrafilter p ∈ βN is called progression-rich if every member set A ∈ p
contains an arithmetic progression of length k ∈ N. The set of progression-rich
ultrafilters for a particular length k is denoted with

APk :=

{
p ∈ βN :

all A ∈ p contain at least

one arithmetic progression of length k

}
.

The set of progression-rich ultrafilters that feature every length is denoted with

AP∞ :=

∞∩
k=1

APk.

Thus, if the closure A of a set of natural numbers contains a progression-rich ultrafilter
p ∈ APk, then the set A is guaranteed to contain an arithmetic progression of length k. The
converse is not true, however: there may be sets of natural numbers which contain many
arithmetic progressions of length k but are not members of some ultrafilter p ∈ APk. That
is because containing an ultrafilter is a stronger property, it is also stable under partitions
A = A1 ⊎ A2. The situation is much better for the set AP∞, though; in the next section,
we will argue that a set contains arithmetic progressions of every length exactly when it is
a member of some ultrafilter p ∈ AP∞.

To conclude this section, we give a somewhat explicit description of the sets APk that
will become important when we prove van der Waerden’s theorem in Section 3.4. Also, it
will show that these sets are closed, which we will use when we link them to Szemerédi’s
theorem in Section 4.3. Note that, in conjunction with the finite intersection property, this
also implies that the set AP∞ is nonempty as long as all the sets APk are nonempty.

Proposition 2.2.3 (Sets of progression-rich ultrafilters as preimages).

Let βNk denote the k-fold product of the topological space βN with itself and
denote the diagonal map by

∆k : βN → βNk, x 7→ (x, x, . . . , x).
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Furthermore, consider the set of “arithmetic” tuples

ATk := {(a, a+ b, . . . , a+ (k − 1)b) : a, b ∈ N, b > 0} ⊆ Nk ⊂ βNk.

Then, the preimage of its closure in the space βNk is precisely the set of
progression-rich ultrafilters

APk = ∆−1
k (clβNk(ATk)) ⊆ βN.

In particular, the set of progression-rich ultrafilters is closed because it is the
preimage of a closed set under a continuous function.

Proof. Let p ∈ βN be an ultrafilter and p̃ = ∆k(p) = (p, p, . . . , p) its image.

By definition, a point p̃ is contained in the closure clβNk(ATk) if and only if every one of

its rectangular open neighborhoods B̃ = A1 × A2 × · · · × Ak intersects the set ATk. But
since p̃ is in the diagonal, we can restrict ourselves to quadratic neighborhoods of the form
B̃ = A × A × · · · × A where A = A1 ∩ A2 ∩ · · · ∩ Ak is a basic open neighborhood of the
ultrafilter p. Such a set B̃ intersects the set of arithmetic tuples ATk exactly if the set A
contains an arithmetic progression of length k.

To summarize, the point p̃ is contained in the closure clβNk(ATk) if and only if all basic

open neighborhoods A of the ultrafilter p contain an arithmetic progression of length k. �

2.3 Finitary statements

We have introduced partition regularity in terms of partitions of the infinite set N, but
Ramsey theory can also have a different, more “finitary” flavor. Let us now also take a
brief look at the finitary point of view and the interesting compactness argument that
translates between both views. In particular, it will allow us to characterize the ultrafilters
p ∈ AP∞ specifically in terms of their member sets.

Originally, van der Waerden proved the following statement.

Proposition 2.3.1 (van der Waerden, finitary version).

For each count r of colors and each length k, there exists a natural number
W (k, r), called the van der Waerden number , such that for every size N ≥
W (k, r), any coloring of the interval

[1, N ] = C1 ⊎ C2 ⊎ · · · ⊎ Cr

will contain a monochromatic arithmetic progression of length k.
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Here, the emphasis is on the size W (k, r) of the interval: if you choose it large enough,
then one of its parts will always contain an interesting substructure. It is an interesting
but difficult question to give good bounds for the numbers W (k, r), see the overview by
Green and Tao [GT07] for references to recent results.

It is clear that this version of van der Waerden’s theorem implies our previous version 2.1.1
that concern partitions of the infinite set N. But the converse is also true, as the following
argument shows.

Proof (van der Waerden, finitary version follows from infinitary version).

Assuming that every coloring of the set N with r colors will contain monochromatic arith-
metic progressions of length k, we have to show that the same is already true of a finite
interval [1,W (k, r)] with large enough size W (k, r) ∈ N.

We argue by contradiction: Let us assume that there exists a sequence of growing intervals
[1, Nn] and partitions [1, Nn] = Cn

1 ⊎ Cn
2 ⊎ · · · ⊎ Cn

r that do not contain a monochromatic
arithmetic progression of length k. We have to use this sequence to construct a partition
of the set of natural numbers N = C1 ⊎C2 ⊎ · · · ⊎Cr that does not contain monochromatic
arithmetic progressions either.

Each partition from the sequence can be represented by a function

cn : [1, Nn] → {1, . . . , r}, cn(k) = i if and only if k ∈ Cn
i

that labels each number k with its color i. To construct the global partition, choose an
arbitrary non-principal ultrafilter p and consider the function given by the ultrafilter limit

c : N → {1, . . . , r}, c(k) := lim
n→p

cn(k).

The limit exists because the target space {1, . . . , r} is compact and the values cn(k) are well-
defined as soon as the interval size Nn becomes large enough. Another way to interpret this
construction is that the space of partitions {1, . . . , r}N is compact and that our sequence
of partitions has a limit point.

It remains to be shown that the limit point c does not contain a monochromatic arithmetic
progression either. But this condition is essentially a collection of local properties. For
instance, consider the arithmetic progression {a, a + d, a + 2d} for some numbers a, d ∈
N, d > 0. Its elements have different colors if and only if

|c(a)− c(a+ d)|+ |c(a+ d)− c(a+ 2d)|+ |c(a+ 2d)− c(a)| ≥ 1.

But this inequality was true for the functions cn and is preserved in the ultrafilter limit.
Hence, the partition represented by the function c does not contain any monochromatic
arithmetic progression. �
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As an application, we can now prove that any set which contains arithmetic progressions
of every length must be a member of some ultrafilter p ∈ AP∞. Of course, this result is
conditional on the infinitary version of van der Waerden’s theorem, which we will prove
only much later in Section 3.4.

Proposition 2.3.2 (Ultrafilters describing long arithmetic progressions).

A set A of natural numbers contains arithmetic progressions of every length if
and only if its closure A contains an ultrafilter p ∈ AP∞.

Proof.

“⇐=”: This direction is immediate from the definition of the set AP∞ (Definition 2.2.2).

“=⇒”: Consider the predicate

ϕ(B) = “The set B contains arithmetic progressions of every length”.

We will show that it fulfills the conditions from the ultrafilter construction lemma (1.1.5).
To that end, choose F to be the principal filter on the set A, F = {F ⊆ N : A ⊆ F}.
It is clear that the predicate fulfills the first and second requirement. To prove the third
requirement, we have to show that for any set B with ϕ(B) and any partition B = B1⊎B2,
we have ϕ(B1) or ϕ(B2) as well.

Let k ∈ N be a length. By assumption, the set B contains an arithmetic progression P of
length K := W (k, 2). Of course, the partition B = B1⊎B2 induces a partition P = P1⊎P2

of the arithmetic progression. Since the collection of arithmetic progressions is invariant
under affine maps, we can apply the finitary version of van der Waerden’s theorem to the
progression P instead of the interval [1,W (k, 2)] and obtain that one of the sets P1 ⊆ B1

or P2 ⊆ B2 must contain an arithmetic progression of length k.

Hence, we have shown that for any length k, at least one of the sets B1 or B2 must contain
an arithmetic progressions this length. By the pigeonhole principle, this means that one of
the sets must contain arithmetic progressions for infinitely many lengths k, which already
implies that it contains them for all lengths k. In other words, we have ϕ(B1) or ϕ(B2) as
desired.

Now, the ultrafilter construction lemma yields an ultrafilter p with ϕ(B) for every B ∈ p,
i.e. p ∈ AP∞. But our choice of the filter F also gives A ∈ p as desired. �
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3 Algebra in βN

3.1 Addition of ultrafilters, limit version

As we have seen in Section 2.2, van der Waerden’s theorem is equivalent to the existence of
an ultrafilter whose member sets all contain arithmetic progressions. We now want to prove
van der Waerden’s theorem by constructing this ultrafilter directly, instead of deducing its
existence from an elementary, but intricate combinatorial proof.

Our trusted ultrafilter construction lemma (1.1.5) is no longer useful for this purpose.
Instead, we turn towards a fascinating algebraic structure on the space of ultrafilters,
namely addition of ultrafilters.

Definition 3.1.1 (Addition of ultrafilters, limit version).

The sum of two ultrafilters p, q ∈ βN is defined as the double limit

q + p :=

(
lim
m→q

lim
n→p

(m+ n)

)
∈ βN,

of the ordinary sum m + n of natural numbers m,n ∈ N. This limit is well-
defined because the topological space βN is compact.

Unfortunately, the addition of ultrafilters no longer has the same nice properties as the
addition of ordinary numbers that we are used to. For instance, it is not commutative, and
it is not even a continuous operation on the space βN. The main reason for that is that
the two ultrafilter limits cannot be interchanged,

lim
m→q

lim
n→p

̸= lim
n→p

lim
m→q

.

This is not very surprising: even ordinary limits cannot be interchanged at times, and
“forcing” a limit to exist in the ultrafilter sense does not ameliorate this tendency.

Hence, when performing calculations, we may only rely on the following rules.

Proposition 3.1.2 (Properties of the addition of ultrafilters).

Addition of ultrafilters is

1. left-continuous (“continuous in the left argument”), which means that the
map

ρp : βN → βN, ρp(q) = q + p

is continuous for every ultrafilter p ∈ βN. However, addition is not con-
tinuous in both arguments. Instead, only for ordinary numbers m ∈ N, we
can be assured that the map

λm : βN → βN, λm(p) = m+ p
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is continuous as well.

2. not commutative, but the natural numbers N lie in the center. In other
words, for every natural number m ∈ N, we have

p+m = m+ p for all p ∈ βN.

3. associative, i.e.

r + (q + p) = (r + q) + p for all p, q, r ∈ βN.

Proof.

1. Proving continuity is equivalent to checking that the functions commute with ultra-
filter limits. By definition of the sum, for any natural number m ∈ N, we have

lim
n→p

λm(n) = lim
n→p

(m+ n) =: m+ p = m+ lim
n→p

n = λm(p).

This proves the second claim. Using this, we obtain the first claim

ρp(q) = q + p := lim
m→q

lim
n→p

(m+ n) = lim
m→q

(m+ p) = lim
m→q

ρp(m).

2. Continuity allows us to use the commutativity of the natural numbers N. Namely,
thanks to the previous property, for any natural number m ∈ N, we have

p+m = lim
n→p

lim
m→m

(n+m) = lim
n→p

(n+m) = lim
n→p

(m+ n) = m+ lim
n→p

n = m+ p.

3. Use the previous properties to slide natural numbers past the limits:

r + (q + p) = lim
k→r

(k + lim
m→q

lim
n→p

(m+ n)) = lim
k→r

lim
m→q

lim
n→p

(k +m+ n)

= lim
k→r

( lim
m→q

lim
n→p

(k +m) + n) = (r + q) + p. �

We did not prove that commutativity really fails for non-principal ultrafilters, but we will
make no use of this fact. Consult Hindman and Strauss [HS98] for a proper proof.

In subsequent sections, we also want to consider slightly extended versions of ultrafilter
addition, like component-wise addition of tuples from the space βNk, or restrictions to
closed subsets thereof. Let us unify them under the term left topological semigroup.

32



Definition 3.1.3 (Left topological semigroup).

Let S be a topological space and (+) : S × S → S be a binary operation. The
pair (S,+) is called a left topological semigroup if the operation (+) is

1) associative, and

2) left-continuous (“continuous in the left argument”), which means that the
function

ρp : S → S, ρp(q) = q + p

is continuous in the argument q for any element p ∈ S.

In other words, (βN,+) is a left topological semigroup. Other examples of interest to us are
the space of tuples (βNk,+) with component-wise addition and left topological semigroups
(M,+) coming from subsets M ⊆ βNk with M +M ⊆ M .

Since our semigroup operations are not commutative, it might not be a good idea to denote
them with the symbol “+”; but the author thinks that the notation is justified because all
of our example are extensions of the addition of natural numbers.

Another interesting example of a left topological semigroup is the set of non-principal
ultrafilters βN \N. Remember that this set is closed, hence compact. But why is the sum
of two non-principal ultrafilters again non-principal? The following lemma will help us to
give a proof by clarifying the relationship between closure and ultrafilter addition.

Note that we use the standard notation for sumsets: A+B = {a+ b : a ∈ A, b ∈ B}.

Lemma 3.1.4 (Closure and addition in left topological semigroups).

Let S be a left topological semigroup and let A,B ⊆ S be two sets. Then, the
following statements are true.

1. (clA) +B ⊆ cl(A+B)

2. If the semigroup S is compact, then we have

(clA) + b = cl(A+ b)

for every element b ∈ B.

3. If the set A commutes with every element of the semigroup S, then we
have

(clA) + (clB) ⊆ cl(A+B).

For instance, the set A might be a set of natural numbers in the semigroup
S = βN.

Proof.
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1. Addition to the right ρb(a) = a + b is continuous. Hence, for every element b ∈ B,
the preimage ρ−1

b (cl(A+ b)) is closed. Since it contains the set A, it also contains the
closure clA, which means (clA) + b ⊆ cl(A+ b). Taking the union over all elements
b ∈ B gives the result.

2. Using the previous statement, we only have to show that the set (clA) + b is closed.
But the set clA is compact and addition to the right maps compact sets to compact
sets.

3. Remembering the first statement and using commutativity, we get

(clA) + (clB) ⊆ cl(A+ clB) ⊆ cl(clB +A)

⊆ cl(cl(B +A)) = cl(A+B). �

Proposition 3.1.5 (Sum of non-principal ultrafilters is non-principal).

Writing ∗N = βN \ N for the set of non-principal ultrafilters, we have

∗N+ ∗N = ∗N.

Proof. Let N≥k := {k, k+1, . . . } be the set of natural numbers greater or equal than the
number k. We have already seen that the set of non-principal ultrafilters is the intersection
of their closures, ∗N =

∩∞
k=1N≥k.

The main ingredient to the proof is the observation that for any numbers n, k ∈ N, we have

n+ N≥k ⊆ N≥k.

Hence, thanks to the previous lemma, we have

n+ ∗N = n+

∞∩
k=1

N≥k =

∞∩
k=1

n+ N≥k ⊆
∞∩
k=1

N≥k = ∗N,

which even implies βN+ ∗N ⊆ ∗N. �

3.2 Addition of ultrafilters, set membership version

While the definition of ultrafilter sums in terms of limits is easy to calculate with, it does
not give a good description of the ultrafilter p+q in terms of its member sets A ∈ p+q. To
that end, we want give an alternative description of ultrafilters sums, which is often used
as a definition. But first, let us introduce some handy notation.
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Definition 3.2.1 (Ultrafilter shift).

Let p ∈ βN be an ultrafilter and A ⊆ N be a set. We say that the ultrafilter
shift A− p is the set of natural numbers defined by

n ∈ A− p :⇐⇒ A− n ∈ p.

This notation for ultrafilter shifts is taken from Beiglböck [Bei11]. Remember that we can
regard ordinary numbers m ∈ N as principal ultrafilters via the equivalence B ∈ m ⇐⇒
m ∈ B. Then, the ultrafilter shift A−m will simply be the usual shift, see Definition 2.1.5.

Keep in mind that the shift A − p is a set of natural numbers, unlike the sumset A + p,
which would be a set of ultrafilters. To avoid ambiguity, we will never use the minus sign
to denote sets of ultrafilters. Fortunately, making a mistake with this rule is not a serious
issue; it is an easy exercise to deduce “A− p = A− p” from the next proposition.

In any case, with this notation, we can now describe the member sets of the sum of two
ultrafilters.

Proposition 3.2.2 (Addition of ultrafilters, set membership version).

The member sets of a sum q + p of two ultrafilters p, q ∈ βN are given by the
equivalence

A ∈ q + p ⇐⇒ A− p ∈ q.

The notation is very suggestive: simply “subtract” p from the right on both sides of the
member relation ∈. We will collect a few more rules like this in a moment and obtain a
small but efficient calculus for manipulating ultrafilter membership. Then, we can prove
many theorems by almost mechanically shifting ultrafilters back and forth the membership
sign ∈.

Note that these rules work best when using equivalences to reason about set membership
and avoiding the curly braces. For instance, we could equally have defined the ultrafilter
shift with the notation A−p := {n ∈ N : A−n ∈ p}, but in the author’s opinion, this form
is neither easy to decode mentally nor is it conductive to formal manipulation. Having
said that, curly braces can be handy at times, for instance for denoting preimages as in
the following proof; but it seems that they are best manipulated with just the trivial rule
{n : n ∈ A} = A.

Proof (Addition of ultrafilters, equivalence of the two definitions). Consider a
basic open set A ⊆ βN. Unraveling the definition of the ultrafilter limit twice, we obtain
the following expression with many curly braces:

A ∈ q + p ⇐⇒ lim
m→q

lim
n→p

(m+ n) ∈ A ⇐⇒ {m ∈ N : lim
n→p

(m+ n) ∈ A} ∈ q

⇐⇒ {n ∈ N : {m ∈ N : m+ n ∈ A} ∈ p} ∈ q.
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Since m+ n is always a natural number, we can simplify the inner set to

{m ∈ N : m+ n ∈ A} = {m ∈ N : m+ n ∈ A} = {m ∈ N : m ∈ A− n} = A− n.

Applying the definition of the ultrafilter shift gives

{n ∈ N : A− n ∈ p} = {n ∈ N : n ∈ A− p} = A− p.

and hence
A ∈ q + p ⇐⇒ A− p ∈ q

as desired. �

We now list and prove the syntactic rules for easy manipulation of ultrafilter sums and their
member sets. They are to be used in conjunction with the other rules, like the definition
of closure 1.2.1, the permanence principle 1.1.6 and the rules for boolean algebra 1.2.3.

Proposition 3.2.3 (Syntactic rules for ultrafilter sums and shifts).

Let A ⊆ N be a set of natural numbers, p, q, r ∈ βN be ultrafilters and n,m ∈ N
be natural numbers. Then, the following laws hold.

A ∈ q + p ⇐⇒ A− p ∈ q (Addition)

A ∈ p+ n ⇐⇒ A ∈ n+ p (Commutes with N)
(A− p)− q = A− (q + p)5 (Associativity)

(A ∩B)− p = (A− p) ∩ (B − p) (Shift of intersection)

(A ∪B)− p = (A− p) ∪ (B − p) (Shift of union)

Proof.

1. We have already shown this.

2. We already know this, but there is also a direct proof using the definition of the
ultrafilter shift:

A ∈ n+ p ⇐⇒ A− p ∈ n ⇐⇒ n ∈ A− p ⇐⇒ A− n ∈ p ⇐⇒ A ∈ p+ n.

3. For every n ∈ N, associativity tells us that

n ∈ (A− p)− q ⇐⇒ A− p ∈ n+ q ⇐⇒ A ∈ (n+ q) + p

⇐⇒ A ∈ n+ (q + p) ⇐⇒ n ∈ A− (q + p).

5The reversal of summands is due to non-commutativity and similar in appearance to the rule (gh)−1 =
h−1g−1 for groups.
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4. For all n ∈ N, Proposition 1.1.7 on ultrafilters behaving like points allows us to infer

n ∈ (A ∩B)− p ⇐⇒ (A ∩B) ∈ n+ p ⇐⇒ A ∈ n+ p and B ∈ n+ p

⇐⇒ (A− p) ∈ n and (B − p) ∈ n

⇐⇒ (A− p) ∩ (B − p) ∋ n.

5. Similar to the previous rule. �

One last remark on syntax and notation shall conclude this section. Namely, when defining
ultrafilter addition, we could equally well have chosen to take the right limit last instead
of the left limit, with the consequence that the role of the left and right argument would
have been switched and that we would now be talking about “right topological semigroups”.
This is the convention that some authors, like Bergelson [Ber03] adopt, while other authors,
like Hindman and Strauss [HS98], agree with our convention. It may seem that for reasons
of symmetry, one notation is as good as the other, and readers will have to suffer eternal
confusion unless mathematicians agree to arbitrarily prefer one direction over the other.
However, it appears that the symmetry of the situation is, in fact, broken by the minus sign
“−”. The author thinks that the notation A − p ∈ q ⇐⇒ A ∈ q + p should be preferred
over its mirror image “(−p) + A ∈ q ⇐⇒ A ∈ p + q” and this leads to the convention
adopted here.6

3.3 Idempotent ultrafilters

As we have seen in the previous section, the addition + of natural numbers can be extended
to the space of ultrafilters βN, but many of the known rules, like commutativity, are lost.
In general, analyzing the algebraic structure of the left topological semigroup (βN,+) is
a difficult task, in particular because the axiom of choice gives us only a cursory grasp of
its elements. And if you ask the wrong question, like how many elements of a certain kind
does it contain, you will soon run into foundational issues that are independent of the ZFC
axioms of set theory.

Hence, we can only ask and answer rather simple questions; one of the simplest questions
being whether there exist idempotent ultrafilters, i.e. elements p ∈ βN with the prop-
erty that p+p = p. Fortunately, these simple questions have nontrivial consequences when
translated into statements about partition regularity, which is the very beauty of the ultra-
filter approach. In particular, the existence of idempotent ultrafilters implies an interesting
theorem by Hindman (Corollary 3.3.5) about sets of finite sums and they also enable us to
prove van der Waerden’s theorem for the special case of k = 3 (Theorem 3.3.6).

6Note that this does not settle the question whether addition should be called “left continuous” (“con-
tinuous in its left argument”) or “right continuous” (“adding something to the right is continuous”), but
at least we would agree on the order of arguments.
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It is not difficult to prove that finite semigroups always contain idempotent elements, so it
is not surprising that this extends to the case of compact left topological semigroups like
βN or βNk, as we will now show.

Theorem 3.3.1 (Ellis. Existence of idempotent ultrafilters).

Let (M,+) be a compact left topological semigroup; for instance a closed set of
tuples M ⊆ βNk with M +M ⊆ M . Then, the semigroup M always contains
an idempotent element, i.e. an element p ∈ M with the property p+ p = p.

Proof. Consider the collection of the nonempty closed (and compact) subsets N ⊆ M
which also fulfill N + N ⊆ N . We want to apply Zorn’s lemma to obtain a set N which
is minimal with respect to inclusion. Clearly, the intersection

∩
αNα over any chain N1 ⊇

N2 . . . of sets from the collection is again in the collection. In particular, since the space
M is compact and has the finite intersection property, this intersection is nonempty. We
claim that our minimal set N contains the desired element p.

First, consider the set N + p for some arbitrary element p ∈ N . By continuity, this set is
compact. Associativity implies that (N + p) + (N + p) ⊆ N + p ⊆ N . But since the set N
was chosen to be minimal, we have

N = N + p.

In particular, there exists an element q ∈ N such that q + p = p. Now, consider the set of
all such elements

L := {q ∈ N : q + p = p}.

Associativity implies that L+ L ⊆ L because

q, q′ ∈ L =⇒ (q′ + q) + p = q′ + (q + p) = q′ + p = p =⇒ (q′ + q) ∈ L.

Furthermore, the set L is closed, because it is the preimage of the closed set {p} under the
continuous function q 7→ q + p.

Appealing to the minimality of our set N , we conclude that L = N . This means p ∈ L,
which implies p+ p = p as desired. �

In particular, applying Ellis’ theorem to the left topological semigroup βN \ N yields the
existence of non-principal idempotent ultrafilters.

Translated into Ramsey theory, such non-principal idempotent ultrafilters give rise to Hind-
man’s theorem, which says that the property of containing a set of finite sums is partition
regular. Let us define what that means.
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Definition 3.3.2 (Set of finite sums).

Let (nk)
∞
k=1 be an increasing sequence of natural numbers nk ∈ N. Its set of

finite sums FS((nk)
∞
k=1) consists of all the finite sums of the sequence elements

FS((nk)
∞
k=1) :=

{∑
k∈F

nk : F a finite subset of N

}
= {nk1 + nk2 + · · ·+ nkl : ki ∈ N, k1 < k2 < · · · < kl}

Sets containing sets of finite sums are called IP-sets; the abbreviation “IP” stands for
“IdemPotent”.

Definition 3.3.3 (IP-set).

An IP-set is a set A ⊆ N that contains a set of finite sums, FS((nk)
∞
k=1) ⊆ A.

Theorem 3.3.4 (Ultrafilters characterizing IP-sets).

A set A of natural numbers is an IP-set if and only if its closure A in the space
βN contains a non-principal idempotent ultrafilter.

Proof. “⇐=”: Let p ∈ A be an idempotent ultrafilter. Since p = p+ p, we have

A ∈ p ⇐⇒ A ∈ p+ p ⇐⇒ A− p ∈ p.

In particular, we also have
A ∩ (A− p) ∈ p.

By the permanence principle 1.1.6, there exists a natural number n1 ∈ N contained in this
intersection, i.e. n1 ∈ A and n1 ∈ A − p. The latter relation is equivalent to A − n1 ∈ p,
which implies

A ∩ (A− n1) ∈ p.

Repeating this procedure with the set A∩ (A−n1) and using the permanence principle to
choose a natural number n2 ∈ A with n2 > n1, we obtain

(A ∩ (A− n1)) ∩ [(A− n2) ∩ ((A− n1)− n2)] ∈ p.

This can be continued indefinitely and we obtain a sequence of natural numbers (n1 <
n2 < . . . ) such that

{n1, n2, n1 + n2, . . . } = FS((nk)
∞
k=1) ⊆ A

as desired.

It may be instructive to sketch a different, though weaker argument that uses idempotence
more directly. Namely, consider the ultrafilter limit of a finite tuple

lim
n1→p

lim
n2→p

lim
n3→p

(n1, n2, n3, n1 + n2, n1 + n2 + n3) = (p, p, p, p+ p, p+ p+ p).
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Due to idempotence, this is equal to the diagonal tuple (p, p, p, p, p). Similarly to the
characterization of progression-rich ultrafilter in Proposition 2.2.3, this implies that every
basic open neighborhood of the ultrafilter p must contain all elements of a finite tuple.

“=⇒”: Assume that the set A contains a set of finite sums FS((nk)
∞
k=1) ⊆ A and consider

the following subsets
Sl := FS((nk)

∞
k=l) ⊆ FS((nk)

∞
k=1) ⊆ A

which only contain sums of elements nk with indices starting from k ≥ l. By the finite
intersection property, the intersection of their closures

S :=

∞∩
l=1

Sl ⊆ A ∩ (βN \ N)

is nonempty. We claim that this is a semigroup, S + S = S. Then, by Ellis’ theorem, it
must contain the desired non-principal idempotent ultrafilter.

The key to showing that the set S is a semigroup is the following observation:

For every sum t ∈ Sl, there exists an index m ≥ l such that t+ Sm ⊆ Sl.

After all, the sum t has the form t = nk1 + nk2 + . . . + nkτ with a greatest index kτ , and
adding to that any sum that starts with the index m := kτ + 1 will again give a proper
sum from the set Sl.

Since t is an ordinary number and commutes with all ultrafilters, we can conclude that

t+ Sm ⊆ Sl =⇒ t+ Sm ⊆ Sl =⇒ t+ S ⊆ Sl.

Choosing the sum t ∈ Sl arbitrarily and taking the intersection over all indices l, we obtain

∀l. Sl + S ⊆ Sl =⇒ ∀l. Sl + S ⊆ Sl =⇒ S + S ⊆ S

as desired. �

Translating this characterization of IP-sets into Ramsey theory, we obtain the following
theorem as a corollary.

Corollary 3.3.5 (Hindman).

Let N = C1⊎C2⊎· · ·⊎Cr be a partition of the natural numbers. Then, at least
one of the parts Ci is an IP-set, i.e. contains a set of the form FS((nk)

∞
k=1).

Amusingly, idempotent ultrafilters also enable us to prove a special case of van der Waer-
den’s theorem, namely for arithmetic progressions of length 3.
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Theorem 3.3.6 (van der Waerden, k = 3).

Let p be any idempotent ultrafilter. Then, every open neighborhood of the
ultrafilter 2p+ p contains an arithmetic progression of length k = 3.

Here, the multiplication of an ultrafilter by a natural number is defined as

2p := lim
n→p

2n.

In particular, this operations is continuous. Note that 2p ̸= p+ p in general!

Proof (van der Waerden, k = 3). Remembering the characterization of progression-
rich ultrafilters from Proposition 2.2.3, we have to show that the diagonal triple (2p +
p, 2p+ p, 2p+ p) ∈ βN3 is contained in the closure of the set of arithmetic triples

AT3 := {(a, a+ b, a+ 2b) : a, b ∈ N, b > 0} ⊆ βN3.

We will achieve this by expressing it as the ultrafilter limit of a sequence in the closure
clAT3. Namely, we claim that

(2p+ p, 2p+ p, 2p+ p)
?
= lim

a→2p
lim
b→p

lim
c→p

(a+ c, a+ b+ c, a+ 2b+ c) ∈ clAT3.

Evaluating the right-hand side with the rules 1.3.4 for calculating with ultrafilter limits
gives

r.h.s = lim
a→2p

lim
b→p

(lim
c→p

(a+ c), lim
c→p

(a+ b+ c), lim
c→p

(a+ 2b+ c))

= lim
a→2p

lim
b→p

(a+ p, a+ b+ p, a+ 2b+ p)

= lim
a→2p

(a+ p, a+ p+ p, a+ 2p+ p)

= (2p+ p, 2p+ p+ p, 2p+ 2p+ p).

We obtain the desired left-hand side by using that the ultrafilter p is idempotent and
simplifying p + p = p and 2p + 2p = 2(p + p) = p. Of course, the latter equation requires
justification:

2p+ 2p = lim
m→p

2m+ lim
n→p

2n = lim
m→p

lim
n→p

(2m+ 2n)

= lim
m→p

lim
n→p

2(m+ n) = 2 lim
m→p

lim
n→p

(m+ n) = 2(p+ p). �

3.4 Ideals and minimal ideals

We now want to prove van der Waerden’s theorem in full generality by exhibiting a
progression-rich ultrafilter. To that end, we will study the ideals of the left topological
semigroup βN and see that ultrafilters contained in the minimal left ideals are always
progression-rich.
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Definition 3.4.1 (Notions of ideals).

Consider a left topological semigroup (S,+), for example the space of ultrafilters
S = βN. A subset I ⊆ S is called

1. a left ideal if p+ I ⊆ I for every element p ∈ S.

2. a right ideal if I + p ⊆ I for every element p ∈ S.

3. a minimal left ideal if it is a left ideal and does not contain a proper subset
that is also a left ideal.

4. an ideal, or two-sided ideal, if it is both a left and a right ideal.

5. a minimal ideal if it is a two-sided ideal and does not contain a proper
subset that is also a two-sided ideal.

To keep things concrete, we will formulate the subsequent propositions about ideals for
the semigroup S = βN only, even though they are valid for any compact left topological
semigroup.

First, we present a collection of useful trivia about minimal left ideals. Being minimal,
they have a fairly simple structure. Note, however, that a semigroup may contain many
different minimal left ideals.

Proposition 3.4.2 (Trivia about minimal left ideals).

1. A left ideal L ⊆ βN is minimal if and only if it is generated by each of its
elements, i.e. if it has the form

L = βN+ p for each p ∈ L.

2. Minimal left ideals are compact.

3. Every left ideal L ⊆ βN contains at least one minimal left ideal.

4. Let L ⊆ βN be a minimal left ideal and consider any sum q + p ∈ L of
an element p ∈ L and some ultrafilter q ∈ βN. Then, there always exists
another ultrafilter t ∈ βN such that

t+ q + p = p.

Proof.

1. For each element p ∈ L, the set βN+ p is clearly a left ideal contained in L. If L is
minimal, then it must already be the whole of L.
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Conversely, consider any left ideal L′ contained in L. Again, the set βN+ p ⊆ L′ for
some p ∈ L′ is also a left ideal. But the assumption says that it is already equal to
L, hence L′ = L and the left ideal L must be minimal.

2. Sets of the form βN+ p are closed.

3. Apply Zorn’s lemma to the collection of closed left ideals contained in the set L. This
collection is nonempty because for any p ∈ L, the left ideal βN+ p ⊆ L is closed.

4. If the left ideal L is minimal, then p ∈ L = βN+ (q + p). �

For minimal two-sided ideals, the situation is much nicer: There is only one minimal two-
sided ideal.

Proposition 3.4.3 (The minimal two-sided ideal κ(βN)).

There exists exactly one minimal two-sided ideal, called κ(βN). In other words,
this ideal is contained in every other two-sided ideal.

Moreover, the set κ(βN) is the union of all minimal left ideals,

κ(βN) =
∪

p ∈ minimal left ideal

(βN+ p).

Proof. Let κ(βN) be the union of all minimal left ideals as the formula indicates. Clearly,
this set is a left ideal.

First, we have to show that it is also a right ideal. Let βN+ p ⊆ κ(βN) be a minimal left
ideal. We want to prove that for any ultrafilter q ∈ βN, the left ideal L := (βN+ p) + q is
also minimal. Let t + p + q ∈ L be an arbitrary element. By minimality of the left ideal
βN + p, there exists an ultrafilter s ∈ βN with s + t + p = p. But associativity implies
s + (t + p + q) = (p + q) and the left ideal L is generated by t + (p + q). In other words,
the left ideal L is generated by each of its elements, so it must be minimal.

Finally, we have to show that every two-sided ideal I ⊆ βN contains the set κ(βN), which
is the same as showing that the set I contains every minimal left ideal L. Since I is a
right ideal and L a left ideal, we have ∅ ̸= I + L ⊆ I ∩ L, so the intersection of the two is
definitely nonempty. But the intersection I ∩L ⊆ L is a left ideal and by minimality of L,
it must already be the whole of L. Hence, the left ideal L = I ∩L is contained in the ideal
I. �

We are now ready to prove van der Waerden’s theorem by showing that ultrafilters from
the minimal ideal κ(βN) are progression-rich.
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Theorem 3.4.4 (Ultrafilters in the minimal ideal are progression-rich).

Let p ∈ κ(βN) be an element of the minimal ideal. Then, the ultrafilter p is
progression-rich, p ∈ AP∞.

Proof. Remembering the characterization of progression-rich ultrafilters from Proposition
2.2.3, we have to show that for every natural number k, the diagonal tuple p̃ := ∆k(p) =
(p, p, . . . , p) ∈ βNk is contained in the closure M := clβNk ATk of the set of arithmetic
k-tuples

ATk = {(a, a+ b, . . . , a+ (k − 1)b) : a, b ∈ N, b > 0} ⊆ Nk ⊂ βNk.

First, note that the set ATk is a semigroup, ATk + ATk ⊆ ATk, and that we can also add
diagonal tuples of numbers without leaving it, ATk +∆k(N) ⊆ ATk. Since these sets lie in
the center of the semigroup βNk, Lemma 3.1.4 tells us that taking closures preserves these
relations. In other words, we obtain

M +M ⊆ M as well as p̃+M ⊆ M and M + p̃ ⊆ M.

Put differently, the set M + p̃ is a closed semigroup containing a two-sided ideal M .

By Ellis’ theorem 3.3.1 on the existence of idempotents, the compact left topological semi-
group M + p̃ contains an element q̃ + p̃ = (q1 + p, q2 + p, . . . , qk + p) with q̃ ∈ M and the
property

(q̃ + p̃) + (q̃ + p̃) = q̃ + p̃.

Since the ultrafilter p ∈ βN was assumed to be contained in a minimal left ideal of the
semigroup βN, there exists a tuple of ultrafilters t̃ = (t1, t2, . . . , tk) ∈ βNk such that

t̃+ q̃ + p̃ = p̃.

Now, if the tuple t̃ were an element of M , then we would be done already, because this
would imply t̃ + q̃ ∈ M and p̃ ∈ M + p̃ ⊆ M . Unfortunately, this is not the case, but
having chosen the element q̃+ p̃ to be idempotent allows us to perform a somewhat similar
argument.

Namely, we have

p̃+ (q̃ + p̃) = (t̃+ q̃ + p̃) + (q̃ + p̃) = (t̃+ q̃ + p̃) = p̃,

which implies p̃ ∈ p̃+M + p̃ ⊆ M . This completes the proof. �
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3.5 Syndetic sets and ultrafilters

As we have seen, all ultrafilters in the minimal ideal κ(βN) are progression-rich, i.e. their
member sets contain arithmetic progressions of every length. But the member sets are
even more special than this: We will now show that they are exactly the piecewise syndetic
sets.

Definition 3.5.1 (thick, piecewise syndetic).

A set of natural numbers is called

• thick if it contains arbitrarily large intervals.

• piecewise syndetic if it is equal to the intersection of a thick set and a
syndetic set.

Put differently, a piecewise syndetic set may contain arbitrarily large gaps, but there are
always larger and larger intervals on which the set does have bounded gaps as illustrated
by Figure 6.

..A =
{

.1 .2 .3 .. . .

.gap size ≤ d

.large interval

.. . . .. . .

.gap size ≤ d

.larger interval

.. . . . . . .
}

Figure 6: Piecewise syndetic sets always consist of eventually growing intervals that have
bounded gaps. The space between these intervals may be arbitrary, however.

Theorem 3.5.2 (Ultrafilters characterizing piecewise syndetic sets).

A set A of natural numbers is piecewise syndetic if and only if its closure A
contains an ultrafilter p ∈ κ(βN) in the minimal ideal.

Translated into Ramsey theory, this implies that the property of being piecewise syndetic
is partition regular.

It is also possible to characterize syndetic and thick sets in terms of ultrafilters in the
minimal ideal κ(βN). Of course, since neither of these properties is partition regular,
checking whether the closures contain a single ultrafilter is not enough. But we can look
for sets of ultrafilters and obtain the following statements, illustrated in Figure 7.

Proposition 3.5.3 (Ultrafilters characterizing thick sets).

A set A of natural numbers is thick if and only if its closure A contains at least
one minimal left ideal βN+ p ⊆ κ(βN).
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Proposition 3.5.4 (Ultrafilters characterizing syndetic sets).

A set A of natural numbers is syndetic if and only if its closure A has nonempty
intersection with every minimal left ideal βN+ p ⊆ κ(βN).

.

.βN

.N

.κ(βN)

.a thick set

.a syndetic set

Figure 7: Illustration of the ultrafilters characterizing syndetic and thick sets. The minimal
left ideals are indicated as horizontal lines inside the set κ(βN). Thick sets contain a whole
line while syndetic sets intersect every line.

We prove these statements and prepare the proof of the theorem by collecting several
alternative criteria for being syndetic, thick or piecewise syndetic in the following lemma.

Lemma 3.5.5 (Alternative criteria: thick, syndetic, piecewise syndetic).

A set A of natural numbers . . .

1. . . . is thick if and only if all finite intersections of shifts are nonempty,

N∩
n=1

(A− n) ̸= ∅ for all N ∈ N.

2. . . . is thick if and only if there exists an ultrafilter p ∈ βN such that
A− n ∈ p for all shifts n ∈ N.

3. . . . is thick if and only if its closure A contains a minimal left ideal, i.e.
βN+ p ⊆ A for some ultrafilter p ∈ βN.

4. . . . is syndetic if and only if its complement Ac is not thick.

5. . . . is syndetic if and only if the closure of its complement A
c
contains no

minimal left ideal.

6. . . . is syndetic if and only if its closure A has nonempty intersection with
every minimal left ideal.
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7. . . . is piecewise syndetic if and only if some finite union of shifts
∪N

n=1(A−
n) is thick.

8. . . . is piecewise syndetic if and only if there exists an ultrafilter p ∈ βN
such that the set A− p is syndetic.

Proof.

1. If the set A is thick, then it contains an interval [M + 1,M + N ] ⊆ A for each size
N ∈ N. Clearly, the mentioned intersection is nonempty because it contains at least
the number M .

Conversely, if a set A is not thick and only contains intervals up to a certain size N ,
then taking the intersection of N + 1 shifts is definitely empty.

2. Consider the infinite intersection of closed sets B =
∩∞

n=1A− n. The previous cri-
terion tells us that every finite intersection is nonempty. But as the space βN is
compact, the infinite intersection must be nonempty as well. In particular, it con-
tains an element p ∈ B, which is the ultrafilter we desire.

3. The previous criterion says that N + p ⊆ A. Taking the closure yields N+ p =
βN+ p ⊆ A. While βN+ p is a left ideal, it is not necessarily minimal, but we know
that it certainly contains a minimal right ideal.

4. Take complements:
∪N

n=1(A− n) = N ⇐⇒
∩N

n=1(A
c − n) = ∅.

5. Negate criterion 3 and apply it to criterion 4.

6. Another way of writing the previous criterion.

7. Assume that the set is an intersection A = S ∩ T of a thick set T and a syndetic set
S with

∪N
n=1(S − n) = N. Then, its union of shifts contains the set

N∪
n=1

(A− n) =

N∪
n=1

(S − n)∩ (T − n) ⊇
N∪

n=1

(
(S − n) ∩

(
N∩

n=1

(T − n)

))
=

N∩
n=1

(T − n).

But the intersection of shifts of a thick set is again a thick set.

Conversely, let A be a set such that a finite union of its shifts is thick. It is easy to
find a slightly larger thick set T such that

∩N
n=1(T − n) ⊆

∪N
n=1(A− n), for instance

by enlarging the intervals a bit. Then, the set S := A ∪ (N \ T ) fulfills the condition
A = S ∩ T and it is also syndetic because

N∪
n=1

(S − n) ⊆
N∪

n=1

(A− n) ∪
N∪

n=1

(N \ T − n) =

N∪
n=1

(A− n) ∪

(
N \

N∩
n=1

(T − n)

)
= N.
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8. Combine the previous criterion and criterion 2 to obtain that a set A is piecewise
syndetic if and only if

N∪
n=1

(A− n)− p = N.

But we can interchange the order of shifts (A−n)− p = (A− p)−n and obtain that
A− p is syndetic. �

With these preliminaries in place, the following lemma gives the key step to the character-
ization of piecewise syndetic sets.

Lemma 3.5.6 (Shift by element from minimal ideal is syndetic).

Let A be a set of natural numbers and assume that its closure A contains an
ultrafilter p ∈ κ(βN) from the minimal ideal. Then, the set A− p is syndetic.

Proof. Since the ultrafilter p is contained in a minimal left ideal, we know that for every
ultrafilter q ∈ N, there exists an ultrafilter rq ∈ βN such that

rq + q + p = p.

Since p ∈ A, this implies

rq + q + p ∈ A ⇐⇒ A ∈ rq + q + p ⇐⇒ (A− p)− q ∈ rq.

By the permanence principle, there exists a natural number nq ∈ N such that

(A− p)− q ∈ nq ⇐⇒ (A− p)− nq ∈ q

Taking the union over all ultrafilters q ∈ βN, we can cover the space βN with countably
many open sets ∪

n∈N
(A− p)− n = βN.

But since the space βN is compact, it can already be covered by finitely many such open
sets, and we obtain that A− p is syndetic,

N∪
n=1

((A− p)− n) = N.
�

We can now complete the proof of the theorem.

Proof (Ultrafilters characterizing piecewise syndetic sets).

“⇐=”: Consider a basic open set A and assume that it contains an ultrafilter p ∈ κ(βN).
Lemma 3.5.6 tells us that the ultrafilter shift A − p is syndetic and Lemma 3.5.5 tells us
that this means that A is piecewise syndetic.
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“=⇒”: Assume that the set A is piecewise syndetic, which means that we can write it as
an intersection A = T ∩ S of a thick set T and a syndetic set S.

Lemma 3.5.5 about alternative criteria for being thick or syndetic tells us that the closure
T contains a minimal ideal, while the closure S has nonempty intersection with every
minimal ideal. In particular, the closure S intersects the minimal ideal contained in the set
T . Hence, there exists an ultrafilter p ∈ κ(βN) contained in the intersection S ∩ T = A. �

4 Counting measures on βN

To interpret Szemerédi’s theorem in terms of ultrafilters, we need a notion of density on
the space of ultrafilters βN, which will be given by so-called “counting measures”. One
advantage of the space of ultrafilters over the set of natural numbers N is that we no longer
have to content ourselves with a subadditive set function like the upper Banach density,
instead we can now construct proper σ-additive measures.

If you are familiar with Haar measures for compact topological groups, you may notice
a certain similarity, but keep in mind that the compact space βN has neither a properly
continuous semigroup operation, nor are counting measures in any way unique.

4.1 Construction

The problem with defining the density of a set A ⊆ N was that, in general, the sequence
of fractions

αN =
|A ∩ [1, N ]|

N
=

1

N

N∑
k=1

1A(k) ∈ [0, 1]

does not converge for N → ∞. For instance, consider the set A consisting of all natural
numbers with an odd number of decimal digits: its sequence of fractions will eventually
oscillate between 1/11 and 10/11. When defining the upper Banach density, we “solved”
this problem by taking the limes superior, but this comes at a terrible price: the upper
Banach density is no longer additive, only subadditive.

Fortunately, ultrafilter limits can help us to restore additivity. We simply choose an ul-
trafilter p and declare the ultrafilter limit limN→p αN to denote the density of the set A.
Unlike the limes superior, ultrafilter limits are compatible with addition (Proposition 1.3.4)
and the resulting notion of density will be properly additive. Of course, the price we now
pay is that there is no unique choice for the ultrafilter p.

We cannot expect such a density to be σ-additive and a proper measure, however, because
the space of natural numbers N is countable and thus wholly unsuitable for playing the role
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of a measure space. But we have seen that the space of ultrafilters βN is more appropriate
in the context of Ramsey theory anyway (Section 2.2 ), so it is only natural to apply the
notion of density to sets of ultrafilters. Since βN is a compact topological space, we will
obtain proper measures, called “counting measures”, which we will now define.

Similarly to the upper Banach density, we allow the fractions to be taken over more general
intervals than just [1, N ].

Definition 4.1.1 (Counting measure on βN).

A measure µ on βN is called a counting measure if it is a Radon measure that
is given by an ultrafilter limit

µ(A) = lim
(N,M)→q

|A ∩ [M + 1,M +N ]|
N

for all A ⊆ N,

where the ultrafilter q ∈ β(N+ × N) fulfills two conditions:

1) The interval length N tends to infinity, i.e.

lim
(N,M)→q

1

N
= 0.

2) The purely technical requirement that either the interval starting points
are bounded lim(N,M)→q M = M0 < ∞, or there exists a set I = {(N1,M1),
(N2,M2) . . . } of disjoint M1 +N1 < M2, . . . and growing N1 < N2 < . . .
intervals such that the ultrafilter q is contained in the closure I.

Being a Radon measure is a regularity condition that allows us to calculate the measures of
arbitrary measurable sets in terms of the basic open sets, for which we have given a more
or less explicit formula. In particular, we obtain a formula for the measure of a closed set.

Proposition 4.1.2 (Measure of a filter).

Let F be a closed subset of βN, corresponding to a filter F = {A ⊆ N : F ⊆ A}.
Then, the measure of F can be calculated as

µ(F ) = inf
A∈F

µ(A)

Proof. Since µ is a Radon measure, the compact set F fulfills

µ(F ) = inf
U open, F⊆U

µ(U).

See Elstrodt [Els05] Chapter VIII, Corollary 1.2, page 314. But every open set is a union of
basic open sets and it is sufficient to take the infimum over all basic open sets as indicated.
�
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Given an ultrafilter q, one could probably show that the corresponding counting measure
is well-defined and uniquely determined. However, it is easier to construct these measures
from positive linear functionals. The following proposition will supply us with all the
counting measures we need.

Proposition 4.1.3 (Counting measure from upper Banach density).

Let A be a set of natural numbers with upper Banach density d∗(A). Then,
there exists a counting measure µ on βN with the property

µ(A) = d∗(A).

Proof. First, we construct the ultrafilter q used in the definition of counting measures.

It is clear from the definition of upper Banach density that there exists a sequence of
intervals Ij = [Mj + 1,Mj + Nj ] of unbounded length Nj → ∞ whose sequence of ratios
|A ∩ Ij |/Nj converges to d∗(A). Now, apply a variant of Lemma 1.3.2 about ultrafilters

and subsequences to see that any non-principal ultrafilter q ∈ {(N1,M1), (N2,M2), . . . } ⊆
β(N+ × N) will give

lim
(N,M)→q

(
|A ∩ [M + 1,M +N ]|

N
,
1

N

)
= (d∗(A), 0).

It is also clear that we can fulfill the second requirement on the ultrafilter q by first passing
to a subsequence of intervals if necessary.

Now, use such an ultrafilter q to define a positive linear functional I : ℓ∞(N) → R on the
space of bounded sequences as follows

I(f) := lim
(N,M)→q

1

N

∑
k∈[M+1,M+N ]

f(k).

The ultrafilter limit exists because the average of a bounded sequence f(k) is again bounded;
clearly we have |I(f)| ≤ ||f ||∞. Linearity and positivity are also obvious. Note that
characteristic functions 1B of sets B ⊆ N are also bounded sequences and that we have
I(1A) = d∗(A).

Remembering the correspondence ℓ∞(N) = C(βN) from Proposition 1.3.6, we can apply
Riesz’ representation theorem (Elstrodt [Els05], chapter VIII, theorem 2.5, page 335) to
this linear functional and obtain a Radon measure µ on the space of ultrafilters with the
property µ(B) = I(1B). This makes it clear that µ is a counting measure and that we
have µ(A) = I(1A) = d∗(A) as desired. �

As you would expect, counting measures are invariant under finite shifts.
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Proposition 4.1.4 (Shift invariance).

Counting measures are shift invariant, i.e. we have

µ(F ) = µ(F − 1) where F − 1 := {p ∈ βN : p+ 1 ∈ F}

for every measurable set of ultrafilters F ⊆ βN.

Proof. This is very much a consequence of the fact that the interval length tends to
infinity. After all, for a basic open set F = B with B ⊆ N, we have∣∣∣∣ |(B − 1) ∩ [M + 1,M +N ]|

N
− |B ∩ [M + 1,M +N ]|

N

∣∣∣∣ ≤ 2

N

and taking the ultrafilter limit (N,M) → q gives |µ(B)− µ(B − 1)| = 0 as desired.

To see that this equality extends to all measurable sets, note that we can define a new
measure µ′(F ) := µ(F −1) since shifting commutes with all σ-algebra operations. In other
words, µ′ and µ are Radon measures that coincide on all basic open sets; they must be
equal everywhere. �

To summarize, we have translated the notion of upper Banach density of a set of natural
numbers into a bona-fide measure on the space of ultrafilters βN.

4.2 Application: Sets of differences

Let us demonstrate the utility of the counting measures on βN by proving the following
theorem of Jin [Jin02].

Theorem 4.2.1 (Jin. Set of differences is piecewise syndetic).

Let A and B be two sets of natural numbers with positive upper Banach density.
Then, the set of differences7

A−B := {a− b : a ∈ A, b ∈ B} ∩ N

is piecewise syndetic.

Jin’s theorem provides a link between two notions of largeness: a subset of the natural
numbers can be large in the sense that it has positive density, or it can be large in the
sense that it is piecewise syndetic. As we will prove later (Proposition 4.3.5), these two
notions are not the same: a set can have high density while not being piecewise syndetic;
but the theorem demonstrates that they are not completely independent.

The proof presented here is due to Beiglböck [Bei11]. It proceeds by reducing the theorem
to the following easy special case.

7Actually, Jin has proved this for the set of sums A+B, but that is of negligible importance here.

52



Proposition 4.2.2 (Set of self-differences is syndetic.).

Let C be a set of natural numbers with positive upper Banach density. Then,
the set of “self”-differences C − C is syndetic.

Proof. Consider the shifted sets C − n for n ∈ N. The idea is that these sets intersect
each other very often. More precisely, we claim that we can choose a collection of shifts
{n1, n2, . . . , nk} whose size k is maximal among those collections who respect the condition
that the shifted sets (C − n1), (C − n2), . . . , (C − nk) should be mutually disjoint.

To see this, choose a counting measure µ such that µ(C) = d∗(C) > 0. By finite additivity
and shift invariance, we have

µ(C − n1 ⊎ C − n2 ⊎ · · · ⊎ C − nk) = k · µ(C) ≤ µ(βN) = 1.

Hence, the size of any collection of mutually disjoint shifted sets is bounded by k ≤ 1/µ(C).

Now, assume indeed that the shifts C − ni form a maximal collection of mutually disjoint
sets. This implies that every other shifted set C −m must intersect one of the C − ni, i.e.
(C −m) ∩ (C − ni) ̸= ∅ for one shift ni. Another way of writing this is m ∈ (C −C) + ni.
Taking the union over all m gives

k∪
i=1

((C − C) + nk) = N,

which means that C − C is syndetic. �

The key idea for proving the general case is to find a shift n such that the intersection
C = (A − n) ∩ B also has positive upper Banach density. Then, the theorem follows by
applying the special case to the set C. Unfortunately, this will not work if we only consider
natural numbers n ∈ N, but fortunately we can allow the shift to become an ultrafilter
n ∈ βN.

Lemma 4.2.3 (Intersection with shift by an ultrafilter).

Let A,B be two sets of natural numbers. Then, there exists an ultrafilter
p ∈ βN with

d∗((A− p) ∩B) ≥ d∗(A) · d∗(B).

Proof. Choose a counting measure µ on the space of ultrafilters such that µ(A) = d∗(A).
Furthermore, let In ⊆ N be a sequence of intervals of increasing length that realizes the
supremum in the definition of the upper Banach density of B, i.e. d∗(B) = limn→∞

|B∩In|
|In| .

Additionally, let 1X denote the characteristic function of a closure X ⊆ βN. For instance,
we can write

∫
βN 1A(p) dµ = µ(A) and limn→∞

1
|In|
∑

k∈In 1B(k) = d∗(B).
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Now, consider the following integral, which resembles the integral of a convolution of the
functions 1A and 1B: ∫

βN

1

|In|
∑
k∈In

1A(k + p)1B(k) dµ.

Since all functions are bounded and the space has finite measure, we can apply Fatou’s
lemma in the following form:∫

βN
lim sup
n→∞

1

|In|
∑
k∈In

1A(k + p)1B(k) dµ ≥ lim sup
n→∞

∫
βN

1

|In|
∑
k∈In

1A(k + p)1B(k) dµ.

For the left-hand side, we write the product of characteristic functions as

1A(k + p)1B(k) = 1A−p(k)1B(k) = 1(A−p)∩B(k)

and reason that for each p, the limes superior over these particular intervals In must be
smaller than the upper Banach density∫

βN
d∗((A− p) ∩B) dµ ≥

∫
βN

lim sup
n→∞

1

|In|
∑
k∈In

1(A−p)∩B(k) dµ = left-hand side.

For the right-hand side, we write the product as

1A(k + p)1B(k) = 1A(p+ k)1B(k) = 1A−k(p)1B(k)

and integrate over p, noting that µ is shift-invariant

right-hand side = lim sup
n→∞

1

|In|
∑
k∈In

1B(k)

∫
βN

1A−k(p) dµ

= lim sup
n→∞

1

|In|
∑
k∈In

1B(k)µ(A) = d∗(B)µ(A).

Putting both together and remembering that µ(A) = d(A), we obtain the inequality∫
βN

d∗((A− p) ∩B) dµ ≥ d∗(A) · d∗(B).

Since µ(βN) = 1, this is only possible if there exists at least one ultrafilter p for which

d∗((A− p) ∩B) ≥ d∗(A) · d∗(B). �
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Proof (Jin’s theorem). By the lemma, there is an ultrafilter p such that the set
C = (A− p)∩B has positive upper Banach density. Hence, the set of differences C −C is
syndetic.

Now, consider the ultrafilter shift (A−B)− p. We have

(A−B)− p ⊇ (A− p)−B ⊇ C − C

which implies that it is also syndetic. The first inclusion is justified by

n ∈ (A− p)−B ⇐⇒ ∃b ∈ B. n ∈ (A− p)− b ⇐⇒ ∃b ∈ B. A− b ∈ n+ p

=⇒ A−B ∈ n+ p ⇐⇒ n ∈ (A−B)− p.

But Lemma 3.5.5 about criteria for being piecewise syndetic tells us that the set A−B is
piecewise syndetic if there exists an ultrafilter such that the shift (A−B)− p is syndetic.
This completes the proof. �

4.3 Measuring progression-rich ultrafilters

We now present the link between Szemerédi’s theorem (2.1.8) and the size of the set of
progression-rich ultrafilters APk (2.2.2).

The key observation is that the property of having positive measure is partition regular.
Namely, any partition A = A1 ⊎A2 ⊎ · · · ⊎Ar implies that

µ(A) = µ(A1) + µ(A2) + · · ·+ µ(Ar)

and if the closure A has positive measure, then one of the parts Ai must have positive
measure, too. By the ultrafilter construction lemma, this means that any set with positive
measure must contain an ultrafilter p whose basic open neighborhoods all have positive
measure.

But now, Szemerédi’s theorem tells us that each of these open neighborhoods contain an
arithmetic progression of length k. This means that the ultrafilter p is also progression-
rich, p ∈ APk. In other words, any set with positive measure not only contains a single
arithmetic progression, but a whole ultrafilter p that is “full of arithmetic progressions”.

Let us recast this observation above in terms of the following standard notion.

Definition 4.3.1 (Support of a measure (on βN)).

The support of a measure µ on βN is defined to be the set of points whose basic
open neighborhoods all have positive measure:

suppµ = {p ∈ βN : µ(A) > 0 for all p ∋ A}.
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Thus, we have just argued that any set with positive measure intersects the support of
µ, and that Szemerédi’s theorem implies that suppµ ⊆ APk. This looks like a strong
lower bound on the the size of APk, because we expect suppµ to be large. The following
proposition tells us how large.

Proposition 4.3.2 (Size of the support of a measure).

For any Radon measure µ on βN, we have µ(suppµ) = µ(βN).

Proof. Put differently, we expect that the complement (suppµ)c is a null set. But we
have argued above that every open set A with positive measure already intersects suppµ,
so every A that is contained in (suppµ)c must be a null set. The inner regularity of our
Radon measure now implies that

µ((suppµ)c) = sup
A⊆(suppµ)c

µ(A) = 0.
�

Taken together, these observations yield the following result.

Theorem 4.3.3 (Szemerédi’s theorem is equivalent to APk being large).

The following are equivalent:

• Szemerédi’s theorem: If d∗(A) > 0, then A contains an arithmetic pro-
gression of length k.

• The set of progression-rich ultrafilters has full measure: µ(APk) = µ(βN)
for any counting measure µ on βN.

Proof. “=⇒”: Assuming Szemerédi’s theorem, we have already argued that suppµ ⊆ APk.
But since µ(suppµ) = µ(βN), this implies µ(APk) = µ(βN) as desired.

“⇐=”: Let A ⊆ N be a set with positive upper Banach density. We choose a counting
measure on the space of ultrafilters such that µ(A) = d∗(A) > 0.

By assumption, µ(APk) = µ(βN), so its complement AP c
k must be a null set. But of

course, this makes it impossible for a set A with nonzero measure to be fully contained in
the complement. In other words, the closure A must intersect APk and hence, the set A
contains an arithmetic progression of length k. �

So, unlike van der Waerden’s theorem, for which the existence of a single ultrafilter p ∈ APk

was sufficient, any attempt to prove Szemerédi’s theorem requires us to “cough up“ a large
amount of progression-rich ultrafilters. That being said, we did identify more than one
progression-rich ultrafilter; namely, we showed that the minimal two-sided ideal κ(βN)
is contained in the set APk in Section 3.4. Might that be enough to imply Szemerédi’s
theorem? No, as the following result shows.
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Theorem 4.3.4 (The minimal two-sided ideal κ(βN) is a null set).

The smallest two-sided ideal κ(βN) in βN is a null set, i.e. µ(κ(βN)) = 0 for
any counting measure µ.

In particular, showing that κ(βN) ⊆ APk is not enough to prove Szemerédi’s theorem,
because that only implies the trivial lower bound 0 = µ(κ(βN)) ≤ µ(APk).

Proof. The subsequent proposition will construct sets A that are not piecewise syndetic,
but have arbitrarily high density < 1. Since a set is piecewise syndetic if and only if it
intersects κ(βN), these sets A will be contained in the complement κ(βN)c. Since they
have arbitrarily high density, we conclude

µ(κ(βN)c) = sup
A⊆κ(βN)c

µ(A) ≥ 1 = µ(βN).
�

Proposition 4.3.5 (Sets of high density that are not piecewise syndetic).

For every desired density α < 1, there exists a set A with counting measure
µ(A) ≥ α which is not piecewise syndetic.

Proof. First of all, we need to understand what it means for a set A of natural numbers
to not be piecewise syndetic. It means that no union of

∪d
k=1(A− k) may be thick, which

implies that all intervals fully contained in this union have length no larger than some
number l(d) ∈ N. In other words, we have the following equivalence:

• The set A is not piecewise syndetic.

• For every gap width d ∈ N, there exists an interval length l(d) such that every
intersection of the set A with an interval [M + 1,M + l(d)] ⊆ N contains a gap of
length greater or equal than d. An illustration is given in Figure 8.

..A =
{

.1 .2 .3 .. . .

.some gap has size ≥ d

.when looking at any interval of size ≥ l(d)

.. . . . . . .
}

Figure 8: A set A is not piecewise syndetic if and only if a gap of length at least d can be
found in each interval that has size at least l(d).

We now want to construct a set A with both this property and the property that |A ∩
[1, N ]|/N ≥ α for all interval lengths N ∈ N+. For simplicity, we begin with α = 1/2 and
later argue that we can also achieve higher densities.
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Note that counting measures can also involve intervals other than [1, N ], so this set A may
not be the one we actually want. But this is a harmless problem that we will deal with at
the very end.

To construct the set A, a “self-similar” or “fractal” process seems to be most suitable, since
fractals tend to have large gaps while also mainting a high density. Hence, consider the
following sequence of words An, made from two symbols “0” and “1”:

A0 = 1

A1 = 110

A2 = 1101100

A3 = 110110011011000

...

An+1 = AnAn0 for all n ≥ 1

Since each word is a prefix of the subsequent one, the set

A = {k ∈ N : the k-th symbol in the word An is equal to “1”

for sufficiently large n ∈ N}

is well-defined. In other words, we interpret the set A ⊆ N as an infinite sequence A ∈
{0, 1}N of the symbols 0 and 1 and construct it by a series of finite approximations An.

First, let us argue that the set A is not piecewise syndetic. To see that, note that the each
words An ends with exactly n zeroes, i.e. it has the form

An = Bn 000 . . . 0︸ ︷︷ ︸
n zeroes

for some word Bn that may contain the symbol “1”. This is immediately clear from
induction. But the recursive nature makes it also clear that the set A consists of blocks
made from the word An:

A = AnAn0AnAn00 . . . = Bn 000 . . . 0︸ ︷︷ ︸
n

Bn 000 . . . 0︸ ︷︷ ︸
n

0Bn 000 . . . 0︸ ︷︷ ︸
n

Bn 000 . . . 0︸ ︷︷ ︸
n

00 . . .

This means that the set A consists of blocks made from the word Bn interspersed by blocks
consisting of n or more zeroes. Hence, any interval of length l(n) ≥ length(Bn) + 2n will
contain a gap of length at least n. This proves that the set A is not piecewise syndetic.

Now, let us argue that the set A fulfills the density property |A ∩ [1, N ]|/N ≥ 1/2. To see
that, first note the following properties
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• The length length(An) of the word An is equal to

length(An) = 2n+1 − 1.

After all, we have the recursive equations length(A0) = 1 and length(An+1) = 2 ·
length(An) + 1.

• The number of times ones(An) that the symbol “1” appears in the word An is equal
to

ones(An) = 2n

because of the recursive equations ones(A0) = 1 and ones(An+1) = 2 · ones(An).

Hence, if the interval length N is exactly the length N = length(An) of a word, we have

|A ∩ [1, N ]|
N

=
ones(An)

length(An)
=

2n

2n+1 − 1
≥ 1

2
.

But if the interval length N is not exactly the length of a word, we can use the relation
An+1 = AnAn0 to split the interval into two parts and use induction, like this: assume
that for all interval sizes N ≤ length(An), we have shown that the density is ≥ 1/2. Now,
consider a size length(An) < N < length(An+1). We can use the induction hypothesis and
the self-similar shape to conclude that

|A ∩ [1, N ]|
N

=
1

N

(
|A ∩ [1, length(An)]|+ |A ∩ [length(An) + 1, N ]|

)
=

1

N

(
|A ∩ [1, length(An)]|+ |A ∩ [1, N − length(An)]|

)
≥ 1

N

(
1

2
length(An) +

1

2
(N − length(An))

)
=

1

2
.

This concludes the argument about the density.

To obtain densities α greater than 1/2, we have to start with the word A0 = 11 . . . 1
consisting of k ones instead of just a single symbol “1”. The argument showing that the
set A is not piecewise syndetic is left unchanged while the calculation of the density gives

length(An) = 2n(k + 1)− 1

ones(An) = 2nk

|A ∩ [1, N ]|
N

≥ ones(An)

length(An)
=

k

(k + 1)− 1
2n

≥ k

k + 1

which can be chosen arbitrarily close to 1.

Finally, we have to discuss what the density property |A ∩ [1, N ]|/N ≥ α means for the
measure µ(A). Clearly, the counting measure depends on the ultrafilter q associated to
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it. To obtain a lower bound for the measure µ(A), we consider a collection of intervals
I = {(N1,M1), (N2,M2), . . . } with q ∈ I and simply show that the set A has density at
least α on all of these intervals, |A∩ [Mi +1,Mi +Ni]|/Ni ≥ α. Then, the same inequality
must hold for the ultrafilter limit, see also Lemma 1.3.3.

To find a good collection of intervals I, we will make use of the second requirement on the
ultrafilter q in the definition of counting measures 4.1.1.

The first case is that the interval starting points are bounded, lim(N,M)→q M = M0 < ∞.

The definition of the limit implies that q ∈ {(N,M0) : N ∈ N+}. In other words, the
counting measure µ(A) only depends on the densities |A∩ [M0+1,M0+N ]|/N . But when
the interval length N becomes much larger than the fixed starting point M0, the difference
of densities ∣∣∣∣ |A ∩ [M0 + 1,M0 +N ]|

N
− |A ∩ [1, N ]|

N

∣∣∣∣ ≤ 2
M0

N

becomes negligible and we conclude µ(A) ≥ α.

In the other case, where the interval starting points are not bounded, the measure µ(A)
may, in fact, vanish because the set A contains arbitrarily large gaps and the intervals
from the collection I might fall exactly into these gaps. We cannot expect that one and
the same set A works for all counting measures!

We have to build a new set A′ that is not piecewise syndetic and fulfills µ(A′) ≥ α.
Fortunately, we have required that the ultrafilter q is contained in the closure I of a
sequence of disjoint and growing intervals. We simply fill each of these intervals with a
shift of the set An surrounded by two gaps of size n, i.e.

A′ =
∪
i∈N

([Mi + 1 + ni,Mi +Ni − ni] ∩ (Ani +Mi + ni)) .

Each gap size ni is chosen as the smallest integer such that length(An(i)) ≥ Ni. Because
of n/ length(An) → 0, these additional gaps have no impact on density and the set A′

will satisfy the density requirement. Furthermore, it is not difficult to check that this set
is again not piecewise syndetic because, except for some parts at the beginning, the set
will consist of blocks of An, respectively Bn, interspersed by gaps of size at least n. This
completes the proof. �
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List of Symbols

2X Powerset, set of subsets of the set X.

Ac Complement of the set A inside some ambient set X, Ac = X \ A. The
context should make it clear which set X is meant.

A ⊎B Union of two disjoint sets A and B, i.e. A ⊎ B = A ∪ B with the under-
standing that A ∩B = ∅.

[M,N ] Interval of natural numbers; [M,N ] = {M,M + 1, . . . , N − 1, N}.

d∗(A) Upper Banach density of the set A ⊆ N, see definition 2.1.7.

βN Space of ultrafilters; Stone-Čech compactification of the set N, see definition
1.3.5.

κ(βN) Minimal two-sided ideal of the left-topological semigroup βN, see definition
3.4.3.

APk Set of progression-rich ultrafilters featuring length k, see definition 2.2.2.

A Basic open set; closure of a set A ⊆ N in the Stone-Čech compactification
βN, see definition 1.2.1.

clX Closure of the set X in a topological space.

lim
n→p

f(n) Limit along the ultrafilter p, see definition 1.3.1.

A− p Ultrafilter shift, see definition 3.2.1.

A+B Sumset, A+B = {a+ b : a ∈ A, b ∈ B}.

62



Index

basic open set, 11

closure
of a set of natural numbers, 10
topological closure, 10

counting measure, 51
shift invariance, 53

Ellis’ theorem, 39

filter, 6
measure of a filter, 51
non-principal, 6
principal, 6

finite intersection property, 13

Hindman’s theorem, 41

ideal
left, right, two-sided, 43
minimal left ideal, 43
minimal two-sided ideal κ(βN), 43, 44,
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idempotent, 38, 39
IP-set, 40

Jin’s theorem, 53

left topological semigroup, 34
left-continuous, 32
limit along an ultrafilter, see ultrafilter limit

partition regular, 23
permanence principle, 9
piecewise syndetic, 46, 58

Ramsey theory, 22

set of finite sums, 40
shift of a set, 24
Stone-Čech compactification βX, 20

superfilter, 7
support of a measure, 57
syndetic, 24
Szemerédi’s theorem, 25, 57

thick, 46

ultrafilter, 5
non-principal, 5
principal, 5
progression-rich, 28, 45
set of ultrafilters βX, 5

ultrafilter addition, see ultrafilter sum
ultrafilter construction lemma, 7
ultrafilter limit, 17
ultrafilter limits

rules for calculation, 19
ultrafilter shift, 36
ultrafilter sum, 32, 36

syntactic rules, 37
upper Banach density, 25, 52, 58

van der Waerden number, 29
van der Waerden’s theorem, 22, 45

special case k = 3, 42
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Ich versichere, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der
angegebenen Quellen und Hilfsmittel angefertigt habe, insbesondere sind wörtliche oder
sinngemäße Zitate als solche gekennzeichnet. Mir ist bekannt, dass Zuwiderhandlung auch
nachträglich zur Aberkennung des Abschlusses führen kann.

Heinrich-Gregor Zirnstein

64


	Preface
	The space of ultrafilters βℕ
	Missing natural numbers?
	Topology of βℕ
	Limits along ultrafilters

	Ramsey theory and ultrafilters
	What is Ramsey theory?
	Partition regular properties correspond to ultrafilters
	Finitary statements

	Algebra in βℕ
	Addition of ultrafilters, limit version
	Addition of ultrafilters, set membership version
	Idempotent ultrafilters
	Ideals and minimal ideals
	Syndetic sets and ultrafilters

	Counting measures on βℕ
	Construction
	Application: Sets of differences
	Measuring progression-rich ultrafilters

	References
	List of Symbols
	Index
	Erklärung

