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1 INTRODUCTION 

1.1 Why Research on Voice-Identity Processing in a Medical Context?  

The human voice is an important carrier of information as it conveys speech but also 

paralinguistic features like a speaker’s identity and affective information (Belin et al., 

2004; Kreiman and Sidtis, 2011). In everyday life, we can tell whether a person we speak 

to on the phone is familiar to us without effort. Listeners can determine vocal 

information such as the gender, approximate age, speaker size and even attractiveness, 

all of which individuate a speaker’s voice (Lass et al., 1976; Collins and Missing, 2003; 

Ives et al., 2005; von Kriegstein et al., 2006; Xu et al., 2013).  

Brain injury can lead to various deficits including communication impairment. Deficient 

speech as a linguistic entity has been well investigated in brain lesioned patients, e.g. the 

condition of aphasia. Aphasia includes impaired speech production and comprehension 

(Kertesz and McCabe, 1977; Brownsett et al., 2014). However, voice processing has not 

been studied as extensively until today, although it is of great relevance for human 

interaction on the non-linguistic level. The human voice can be considered an auditory 

equivalent to facial expression. Our brain is capable of extracting not only the meaning 

of speech, but also personal information about the speaker. For this reason, the term 

“auditory face” (Belin et al., 2004) has been established. Not only do we know whether a 

person is familiar to us or not, but we can also tell by their prosody if the speaker is 

furious, cheerful, nervous, sad or tired, etc. We can also determine if they are native or 

nonnative speakers and can tell which region of a country they are from. Their voice 

gives us hints on whether the speaker is young or old, male or female, and can even 

provide an idea of one’s health status (Kreiman and Sidtis, 2011). The human voice 

already plays a role very early in development. Neonates prefer their mother’s voice 

over others which indicates intrauterine familiarization with voices. This way, our voice 

has an influence on the early development of bonding mechanisms (DeCasper and Fifer, 

1980; Kisilevsky et al., 2003). For an overview of important paralinguistic features 

delivered through the human voice see table 1.  

Some kinds of judgments listeners make from hearing a voice: 
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Physical characteristics of the speaker 
Age 
Appearance (height, weight, attractiveness) 
Dental/oral/nasal status 
Health status, fatigue 
Identity 
Intoxication 
Race, ethnicity 
Sex 
Sexual orientation 
Smoker/non-smoker 
 
Psychological characteristics of the speaker 
Arousal 
Competence 
Emotional status/mood 
Intelligence 
Personality 
Psychiatric status 
Stress 
Truthfulness 
 
Social characteristics of the speaker 
Education 
Occupation 
Regional origin 
Role in conversational setting 
Social status 

Table 1: Judgments made from voice (Kreiman and Sidtis, 2011), page 2 

 

Previous clinical studies indicate that voice- identity processing can be affected through 

brain injury (Assal et al., 1976; Van Lancker and Canter, 1982; Neuner and 

Schweinberger, 2000; Lang et al., 2009; Hailstone et al., 2011). This deficit is called 

phonagnosia (van Lancker, 1982). Phonagnosia is defined as a deficit in voice-identity 

processing including the analysis of individuating acoustical voice features, the 

recognition of familiar voices and the association of semantic information to a 

recognized voice. Phonagnosia can be present after brain damage, i.e. acquired 

phonagnosia or as an inborn condition, i.e. developmental phonagnosia (Garrido et al., 

2009; Roswandowitz et al., 2014; Xu et al., 2015). Losing the ability to recognize the 

identity of people through their voice is irritating to those affected, but it is also 
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disruptive to their own environment, as it is our ability to read voices which forms an 

important component of human interaction. 

People with phonagnosia lack the ability to identify a speaker by their voice. Answering a 

phone call without knowing who is talking on the other end would be an everyday life 

experience for patients affected. Hearing voices in other rooms and not being able to 

identify them is another situation that is likely to occur. The prevalence of 

developmental phonagnosia ranges from 0.1-3% (Roswandowitz et al., 2014; Shilowich 

and Biederman, 2016) while in a study by Neuner and Schweinberger 13 out of 36 

patients after brain damage showed a voice recognition deficit (Neuner and 

Schweinberger, 2000). Therefore, it seems likely that phonagnosia is not a rare condition 

and is worth taking a systematical look at.  

In the following chapters I will provide an overview on the foundations of research on 

voice recognition.  

1.2 Theory of Voice Production 

To investigate voice recognition mechanisms, a crucial question to answer is: Which 

voice features make a human voice unique?  

According to the source filter theory (Fant, 1960), the human vocal tract comprises a 

sound source and a filter that contribute to the formation of individual voice quality. The 

source of the vocal sound is located in the larynx, the glottal folds. The vibration and 

movement of the glottal folds result in vocalization. When the glottal folds, at the end of 

the vibration, close completely, a voiced sound is produced whereas glottal folds in a 

paramedian position produce whispered speech. The glottal pulse rate (GPR), meaning 

the rate of vibration of the glottal folds during articulation, determines a speaker’s 

fundamental frequency (f0). High glottal pulse rates lead to higher, low glottal pulse 

rates to lower frequencies. The fundamental frequency is perceived by the listener as a 

speaker’s pitch. 

The vocal tract includes the supralaryngeal area ascending to mouth and tip of the nose 

and operates as a filter of the sound wave created by the glottal folds. Individual size 

and shape of a vocal tract determine the speaker’s formant frequencies. Formants are 



 
 

8 

defined as the spectral peaks of the sound spectrum of the human voice (Fant, 1960). 

Each spoken vowel and consonant has its own fundamental frequency spectrum; the 

formant with the lowest frequency is called the first formant (f1).  

 

 

Figure 1: The contribution of glottal fold and vocal tract parameters to the speech output (von Kriegstein 
et al., 2010). A) Anatomy of the vocal tract and location of vocal fold, sagittal section B) Different sounds 
determined by glottal fold parameters: Vibration of glottal folds results in lower voice (GPR 120 Hz) or 
higher voice (GPR 200 Hz), constricted vocal folds produce whispered speech (GPR 0 Hz). C) Blue lines 
represent formants (amplitude peaks at certain frequencies through the filtering in the vocal tract). 
Different glottal fold parameters do not influence formant position. D) Speech- and speaker-related vocal 
tract parameters influence formant position. Formant shifts are demonstrated with speech sounds /u/ and 
/a/ and with a shorter and longer vocal tract. Figure taken with kind permission from the Journal of 
Neuroscience (von Kriegstein et al., 2010). 

 

Different vocal tract lengths (VTL), along with the mass and the length of the vocal folds, 

add to individual voice quality. Males tend to have longer vocal folds than females that 

vibrate at lower frequencies and therefore result in a lower voice sound. Stiffness of the 

vocal folds causes higher vibration rates and, as in a string instrument with the strings 

tuned higher, it leads to a higher pitch. The average fundamental frequency (f0) is about 

115 Hz for men and 220 Hz for women (Kreiman and Sidtis, 2011). 
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Pitch (i.e. GPR) and Timbre (i.e. VTL) were identified to be relevant auditory cues to 

individuate a human voice in various studies (for review see Mathias and von Kriegstein, 

2014). GPR has been proven to be an important vocal cue for the discrimination and 

similarity judgment of unfamiliar speakers (Singh and Murry, 1978; Baumann and Belin, 

2010). In a study by Gaudrain and colleagues, VTL was found to be a consistent cue of 

voice quality when making discriminative judgments on a speaker whose GPR and VTL 

had been varied artificially (Gaudrain et al., 2009). Pitch (GPR) also appears to play an 

essential role in sex and gender discrimination (Skuk and Schweinberger, 2013). Further 

studies discovered that both GPR as well as VTL are required for recognizing the sex of a 

speaker (Smith and Patterson, 2005).  

One approach to investigate the influence of acoustical voice features to voice-identity 

processing is to systematically modify those features. For instance, modern software 

(STRAIGHT (A Kawahara et al., 1999)) allows for manipulation of GPR and VTL for 

experimental purposes. It facilitates the investigation of their influence on speaker 

recognition, for example, one voice’s GPR and VTL can be varied to an extent that the 

listener can no longer tell voices apart.  

Next to these two parameters, there are more aspects of voice production that have an 

impact on the voice quality perceived by the listener, like for example lip, tongue and 

jaw position. Individual speaking habits, intonation or accent, influence a speaker’s 

fundamental frequency (Mathias and von Kriegstein, 2014). A voice can sound breathy 

or whispery or hoarse. These voice qualities are caused by different glottal settings, a 

gradual closure of the vocal folds. However, these latter qualities remain difficult to 

assess objectively (Laver, 1980). Intriguingly, even though the human voice may vary in 

so many aspects, humans are still remarkably precise in correctly recognizing who is 

speaking.  

1.3 Models of Person Recognition 

How are voices processed on a cognitive and neuronal basis? A theoretical model of face 

recognition that was proposed in 1986 by Bruce and Young (Bruce and Young, 1986a) 

has strongly influenced current models of voice recognition. This face recognition model 

was first extended to voice recognition by Ellis et al. in 1997 (Ellis et al., 1997). According 
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to this model, voice and face information are processed in segregated pathways up to 

the level of person identity nodes (PINs). PINs provide access to multi-modal identity-

specific semantic codes of a person familiar to us. When person-specific knowledge is 

extracted from PINs, e.g. phonological codes can be activated to retrieve and produce 

someone’s name. A familiarity feeling for a known person is created on a modality 

specific level (face - and voice recognition units). 

In 2004, Belin and colleagues proposed a modified model for voice recognition based on 

the described face recognition model (Belin et al., 2004). Speech, vocal affect and voice 

identification are functionally dissociated pathways and follow basic structural encoding 

of auditory cues (see Fig. 2). These three pathways interact with the corresponding 

pathways of the face processing system but are generally segregated. Voice recognition 

units (VRUs) form the counterpart to face recognition units (FRUs). The modality specific 

information converges in Person Identity Nodes.  

 

Figure 2: Adapted model on voice and face recognition based on the original model by Bruce and Young: 
Voice processing mechanisms were adapted from the original model by Belin and colleagues (Belin et al., 
2004). Continuous arrows indicate modality-specific interactions, dashed arrows indicate bidirectional 
interactions. 

 



 
 

11 

Dysfunction at different stages results in distinct deficit patterns in voice-identity 

processing. Recent models imply that impairment at an early, perceptual analysis stage 

leads to apperceptive deficits. Dysfunction at a higher analysis level (i.e. VRU and PIN) 

causes associative deficits (i.e. in familiarity decision and semantic association) 

(Roswandowitz C, Maguinness C, v Kriegstein K., under rev.). Clinical and neuroimaging 

evidence from the past years has questioned the existence of modality-free PINs with 

different competences for each hemisphere (Gainotti, 2007). Other studies found 

evidence for early interaction of visual and auditory information areas during processing 

(Blank et al., 2011; Schall et al., 2013).  

However, neuronal representations of voice-identity processing have not been fully 

understood until today. In the following, I introduce the current state of the art in voice-

identity processing by reviewing neuroimaging and clinical studies.  

1.4 Neuronal Mechanisms of Voice-Identity Processing 

Belin and colleagues first characterized voice-selective areas in the human cortex (Belin 

et al., 2000) employing fMRI. Healthy participants listened to vocal versus non-vocal 

sounds in the MRI. In their study, the upper bank of the central part of the superior 

temporal sulcus (STS) showed bilateral voice-selective activation, although activation 

was stronger in the right hemisphere. The involvement of the right STG/S region in 

voice-identity recognition remained a consistent finding in subsequent studies using 

different designs (Shah et al., 2001; Belin and Zatorre, 2003; Kriegstein and Giraud, 

2004; Formisano et al., 2008; Mathias and von Kriegstein, 2014). Figure 3 shows 

repeatedly found voice-selective brain response along the right STG/S.  
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Figure 3: Voice- selective activation along the right superior temporal gyrus and sulcus as a common 
finding in fMRI studies (Belin et al., 2004; Kriegstein and Giraud, 2004). 

Belin and colleagues reported voice-sensitive brain response when participants passively 

listened to vocal as compared to non-vocal sounds, while other studies used different 

task designs. This localizer allows for an investigation of acoustical voice processing and 

evokes high brain responses. One drawback of this localizer is the passive listening 

design making it hard to control for an attentional bias during the experiment. Also, it is 

not specifically assessing voice-identity processing as the presented sounds included 

emotional as well as speech information. A later study by von Kriegstein et al. developed 

a new approach to locate brain areas sensitive to voice identity. They directed 

participants’ attention in the MRI either to vocal identity or speech information of a 

target sentence in an active listening task (von Kriegstein et al., 2003). Participants had 

to choose either the target voice or the verbal content while listening to the same 

auditory stimulus. In turn, this test design allows the investigation of brain areas which 

specifically respond to either voice-identity or speech information dependent on the 

task and irrespective of the auditory stimulus. Increased BOLD response was found in 

the right anterior STS when listeners focused on the voice-identity information in a 

target phrase, while verbal information elicited activation in the left posterior and 

middle temporal region. A follow-up study with the same task showed that activation in 

the posterior part of the right STS was stronger when unfamiliar voices had to be 

recognized while the anterior STS was responsive during both unfamiliar and familiar 

voice recognition (Kriegstein and Giraud, 2004). In the same vein, the authors reported 
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different functional connectivity patterns dependent on the voice familiarity. During 

unfamiliar voice recognition, the right posterior STS interacted with the mid- and 

anterior STS in the right hemisphere as well as the posterior and mid/anterior STS 

regions in the left hemisphere. During familiar voice recognition, the right anterior STS 

was functionally connected with prefrontal and amygdala/para-/hippocampal regions in 

the right hemisphere.  

Next to fMRI studies, voice-sensitive processing in the human brain was also evidenced 

by EEG and MEG investigations. These studies revealed voice-specific 

electrophysiological responses at a peak of around 200 ms in comparison to other 

sounds (Levy et al., 2003; Charest et al., 2009; Capilla et al., 2013; Schall et al., 2015). 

Furthermore, there is one neurostimulation study applying tDCS. Stimulation of the right 

posterior temporal lobe induced deficits in vocal sound detection in healthy participants 

(Bestelmeyer et al., 2011). 

Most current models on voice recognition are based on findings from studies in healthy 

participants. However, clinical evidence is crucial to test predictions made by 

investigations on healthy participants, because clinical evidence allows for causal 

interpretations on neuronal processes and behavior.  

1.5 Clinical Studies 

This chapter will provide an overview of clinical studies investigating voice processing 

(Van Lancker and Canter, 1982; Van Lancker and Kreiman, 1987; Van Lancker et al., 

1988, 1989; Peretz et al., 1994; Neuner and Schweinberger, 2000; Lang et al., 2009; 

Hailstone et al., 2010, 2011; Luzzi et al., 2017a). The aforementioned studies explored 

voice-identity processing by means of behavioral testing and were aimed at unraveling 

the neuroanatomical correlates of voice-identity processing deficits in brain injured 

patients.  

Van Lancker and Canter published the first study on famous face and voice recognition 

in 1982. They tested 21 left- and 9 right-brain damaged patients by showing them 

photographs and sound recordings of famous personalities (politicians and entertainers). 

All left-brain damaged patients were aphasic. Both face and voice recognition 

impairments were more frequent in the right-hemisphere group and showed a tendency 
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to co-occur. The most relevant finding was that there were also dissociations between 

face and voice recognition impairment as one patient with a right-hemipsheric lesion 

showed a selective impairment in familiar voice recognition (Van Lancker and Canter, 

1982). 

In 1989, van Lancker and colleagues (Van Lancker et al., 1989) further investigated voice-

identity processing in brain damaged patients by focusing on the dissociation between 

unfamiliar voice discrimination and familiar voice recognition (apperceptive vs. 

associative processing). 56 patients were included (25 left- and 24 right-hemisphere 

damaged, 5 bilateral). Patients were matched with 48 healthy controls. 43 patients 

obtained CT scans that were used to classify lesion sites within the hemispheres. The 

results showed a correlation of right parietal lobe damage with a poor performance in 

famous voice recognition, whereas unfamiliar speaker discrimination was impaired in 

right- and left-temporal lobe damaged patients. Also, they found four patients with 

temporal lobe lesion and preserved task performance. These patients had lesions 

exclusively in the left hemisphere indicating a higher relevance of the right hemisphere 

during unfamiliar voice discrimination. 

Van Lancker et al. used CT scans in their second study to classify lesion sites either to 

frontal, parietal, temporal and occipital and, if more lobes were affected, they used 

combined classifications (fronto-parietal etc.). Imaging technologies at that time did not 

allow for more detailed anatomical analysis.  

Studies by van Lancker et al. in brain damaged patients provide evidence that the right 

hemisphere is essential for speaker recognition. Moreover, they implied that associative 

voice-processing impairment occurs with right parietal lobe damage and apperceptive 

deficits are associated with temporal lobe damage in both hemispheres. 

A decade later, Neuner and Schweinberger tested 36 patients with brain lesions and 20 

healthy control subjects with a test battery that comprised tests for face, voice and 

name recognition. The aim was to detect the dissociation of impairments in the different 

modalities with an adaptive test design. Patients who showed difficulties in one of the 

modalities completed further experiments to investigate whether the deficit was 

modality-specific. These experiments consisted of corresponding objects to each 
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modality, e.g. voices corresponded with environmental sounds, faces corresponded with 

pictures of objects and names corresponded with written words (Neuner and 

Schweinberger, 2000). 1 out of 16 left-brain damaged and 4 out of 13 right-brain 

damaged patients presented selective voice recognition disorders. One of the right-

hemispheric patients showed additional famous face recognition impairment.  

This study was the first to describe selective voice recognition deficits (phonagnosia) in a 

large patient sample. By employing their corresponding auditory object recognition tests 

they excluded the possibility that voice recognition deficits were caused by a more 

global auditory deficit. Moreover, they confirmed van Lancker’s finding that a voice 

recognition disorder can occur without an additional voice discrimination deficit.  

In 2009, Lang et al. published a patient study on speaker-identity recognition in aphasic 

and non-aphasic stroke patients, hypothesizing that left-hemisphere damage might lead 

to aphasia but not necessarily to deficits in speaker identification (Lang et al., 2009). 

They postulated that right-hemisphere damage without aphasia, on the other hand, 

might result in selective voice recognition deficits. One task on familiar voice recognition 

was conducted with 20 patients (11 left- and 9 right-brain damaged) and 17 healthy 

controls. All patients had brain lesion due to ischemic stroke. Right-brain damaged 

patients obtained significantly lower scores on the voice recognition task than both left-

hemisphere patients and healthy controls. Left-hemisphere damaged patients and 

healthy controls did not differ significantly in their speaker identification performance. 

The study provides implications for a dissociation of voice-identity and speech 

processing deficits. However, language abilities were not tested in right-brain damaged 

patients, therefore a double-dissociation cannot be excluded.  

Another extensive study on voice recognition in patients was provided by Hailstone et al 

in 2011. This study employed voxel based morphometry (VBM) analysis of MRI scans. 

Patients with either Alzheimer’s disease (n= 22) or frontotemporal lobar degeneration 

(FTLD) (n=14) were tested on voice perception and recognition, and compared with 35 

healthy controls. In order to control for the specificity of deficits, tests of face and name 

recognition were included in the test battery. The authors hypothesized distinct profiles 

of voice recognition deficits in both dementia forms, with FTLD presenting more 

associative (i.e., semantic association to a voice) and Alzheimer’s more apperceptive 
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(i.e., acoustical voice analysis) impairment. They furthermore assumed that voice 

processing deficits would correspond to anterior temporal lobe atrophy. Perceptual 

impairments were present in both disease groups but FTLD patients exhibited more 

severe deficits in voice recognition than the Alzheimer’s group. Both disease groups 

revealed impairment in all other modalities tested, i.e. face and name recognition. This 

indicated a relative general person recognition deficit rather than a selective deficit in 

voice-identity processing. VBM analysis revealed that voice recognition as well as face- 

and name-recognition deficits (cross-modal recognition) were associated with grey 

matter volume loss in the right temporal pole. A specific region for voice deficits could 

not be shown. Also, as the study investigated a sample of patients with 

neurodegenerative disease (Alzheimer’s and FTLD), it was difficult to control for the 

impact of general cognitive deficits on the given task. Both patient groups had 

performed significantly worse on the neuropsychological assessment than the controls. 

The most recent patient study exploring voice- and face recognition deficits was 

published in 2017 (Luzzi et al., 2017a). The authors employed neuropsychological tests 

on face and voice naming and recognition in a sample of patients with either Alzheimer’s 

disease (n= 25) or semantic dementia (n= 13) and 34 healthy controls. The aim of the 

study was to examine differential impairment patterns for person recognition in both 

disease groups. While AD patients showed impaired performance on the naming tests, 

SD patients were significantly impaired in both naming and recognition of face and 

voice. PET scans of 12 SD patients showed strong correlations of face- and voice 

recognition and a reduced FDG (fluordeoxyglucose) uptake in the right temporal lobe. 

Luzzi et al. provided detailed neuropsychological assessment on both face and voice 

recognition. There was a strong correlation between reduced FDG uptake in PET and 

face- and voice recognition impairment in the right but not the left temporal lobe. PET 

was performed on a relatively small sample size (n= 12). Although correlations were 

stronger for voice recognition impairment than face recognition impairment, a voice-

specific region within the right temporal lobe could not be detected with this method. 

For an overview of results from the described clinical studies please see table 2. In 

summary, clinical studies on voice-identity processing provide strong evidence that the 

right hemisphere plays an essential role for voice-processing. Moreover, there are 
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indications for an involvement of the temporal lobe. Selective voice-identity processing 

impairment could not yet be associated with distinct brain areas as most studies 

described multi-modal person recognition deficits.  

Further studies on voice recognition deficits were conducted in the psychiatric area of 

research, i.e. schizophrenia and Autism Spectrum Disorders. Schizophrenia research 

aimed to link possible voice identity recognition impairments to the formation of 

auditory hallucinations, and detected difficulties in recognition. Also, it appeared that 

tested patients relied on different vocal cues when identifying a voice (Alba-Ferrara et 

al., 2012; Chhabra et al., 2012). Autism Spectrum Disorders are characterized by deficits 

in communication and social interaction. Recent studies evidenced behavioral deficitis in 

voice-identity processing in ASD (Schelinski et al., 2016, n.d.). On the neuronal level, this 

behavioral deficit is reflected by reduced BOLD response in voice-sensitive brain regions 

along the STG/S (Gervais et al., 2004; Schelinski et al., 2016).  
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Authors Patients Methods Results 

Van Lancker and 
Canter  
(1982) 

21 Left- 
9 Right - 
hemisphere damaged 
patients 

Famous voice and face 
recognition 

Face and Voice 
recognition more 
impaired in right-
hemisphere group 

Van Lancker et al. 
(1989) 

23 Left- 
15 Right- hemisphere 
damaged patients 
48 healthy controls 

Famous voice 
recognition & 
unfamiliar voice 
discrimination (UVD) 

Famous voice 
recognition impaired in 
right-hemisphere 
patients, 
UVD in both sides 

Neuner and 
Schweinberger 
(2000) 

36 brain damaged  
patients 
20 healthy controls 

Famous names, voice 
and face recognition 
and unfamiliar face and 
voice discrimination 

1/16 L and 4/13 R 
showed specific  
Famous voice  
recognition impairment 

Lang et al. 
(2009) 

11 Left & 9 Right-
hemisphere damaged 
patients  
17 healthy controls 

Familiar voice  
recognition 

Famous voice 
recognition more 
impaired in right-brain 
damaged patients 

Hailstone et al. 
(2011) 

22 AD patients 

14 FTLD patients, 35 
healthy controls 

Famous voice, face and 
name recognition 
Unfamiliar voice  
discrimination 

Voice recognition  
impairments more 
severe in FTLD,  
association with right 
anterior temporal pole, 
no specific region for 
voice deficit 

Luzzi et al. 
(2017) 

13 SD, 25 AD patients,  
34 healthy controls 

Famous face and voice 
naming and recognition  

Naming deficits in AD & 
SD, face & voice  
recognition impaired in 
SD, correlation of face 
and voice recognition 
deficit and RTL atrophy, 
no specific region for 
voice deficit 

Table 2: Overview of patient studies on voice recognition. FVR: Famous voice recognition, UVD: Unfamiliar 
voice discrimination, AD= Alzheimer’s disease, FTLD: Frontotemporal lobar degeneration, SD= Semantic 
dementia, RTL = Right temporal lobe 
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2 RESEARCH QUESTION 

In consideration of the mentioned methodological shortcomings of the past studies, our 

aim was to design a patient study that would address these limitations. They mainly 

consisted in weak proof for modality-specific deficits and their neuronal representations.  

The aim of the present study was to assess selective voice-identity processing deficit in 

brain damaged-patients and its neuroanatomical representation. We developed a 

comprehensive behavioral test battery including tests on voice-identity processing as 

well as face recognition. The voice processing tests included tests on newly-learned 

voice recognition and familiar voice recognition. We also tested patients in their ability 

to process acoustical voice features relevant for identity recognition, i.e. vocal pitch and 

vocal timbre discrimination. Patients with unilateral brain lesions were chosen as a 

target disease group to ensure clearly defined lesion locations in structural MRI scans. 

We additionally conducted extensive neuropsychological assessment to eliminate a 

possible influence of cognitive impairment on behavioral test performance. The test 

battery was designed based on current cognitive models of voice recognition (Belin et 

al., 2004; von Kriegstein et al., 2006). To assess neuroanatomical correlates of voice 

processing deficits, Voxel-based Lesion Symptom Mapping (Bates et al., 2003a) was 

applied in a further analysis which is not part of the current dissertation work. 

By combining a large patient sample, a comprehensive behavioral test battery, and 

lesion analysis through VLSM we aimed for insight into neuronal mechanisms of human 

voice processing. For the behavioral data analysis, we hypothesized that voice 

recognition deficits were more likely to occur in patients with right-hemispheric lesions 

than with left-hemispheric lesions.  

According to the hypotheses we deducted the following research questions: 

1. Do voice recognition deficits occur more frequently in patients with lesion in the 

right hemisphere as compared to patients with lesion in the left hemisphere? 

2. Are voice-identity processing deficits modality-specific, or do they co-occur with 

face recognition deficits? 
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3 MATERIALS AND METHODS 

3.1 Subject Details 

Forty unilaterally left- and right- brain damaged patients participated in the study. All 

patients were recruited from the “Clinic for Cognitive Neurology” at the University 

Hospital of Leipzig. 11 patients were enrolled in the Clinic’s therapy program at the time 

of testing and 29 patients were selected from the Clinic’s database and invited via a 

written letter and a telephone conversation. Written consent was collected from all 

participants before the experiment. The study design was approved by the Ethics 

Committee of the University of Leipzig. 

Exclusion criteria were severe aphasia, severe cognitive impairment or subjective 

disability to follow test instructions. No patient was diagnosed with psychiatric disorders 

as dementia, schizophrenia, personality disorder or depression. 

Brain damage was caused by cerebral vascular incident (i.e. ischemia, intracerebral 

hemorrhage or subarachnoid hemorrhage) or tumor surgery. We did not include 

traumatic brain injury to avoid inaccuracy in lesion locations through diffuse axonal 

damage. We recruited 26 patients with ischemic, 5 with intracerebral hemorrhage and 6 

patients with subarachnoid hemorrhage. 3 tumor patients with benign low grade 

astrocytoma (1 oligoastrocytoma and 2 meningioma) after tumor excision were included 

into the study. All lesions were located unilaterally in either left (n=16) or right 

hemisphere (n=24) and varied in their location within the hemisphere. Time since onset 

ranged between 2 and 57 months at the time of testing. 33 patients had received 

structural brain MRI before their admission to the Clinic.  

All patients had hearing abilities allowing for normal speech and sound perception which 

we assessed via pure-tone audiometry (250 – 8000Hz) using a screening audiometry 

(MADSEN Micromate 304, GN Otometrics, Copenhagen, Denmark).  

3 patients were excluded from the analysis. One patient was excluded because of severe 

aphasia and one because of severe cognitive impairment. A third patient was excluded 

because her time since onset was only one month at the time of testing and she 

reported great difficulties understanding the test instructions. German was mother 
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tongue of all participants, except for one patient (32 years old) who had grown up in 

Russia, but had lived in Germany for 11 years at the time of testing and was fluent in 

German. 

14 patients were diagnosed with mild cognitive impairment after surgery or CVA. Mild 

aphasia was present in 4 patients. Brain damage was unilateral in all patients, but 

showed variation in location within the hemisphere. In 5 patients brain damage was 

subcortical only (R= 3, L= 2).  

All patients were right-handed. Handedness was assessed with the Edinburgh inventory 

(Oldfield, 1971).  

For detailed demographical data of the patient sample see table 3.  

 Patient Sample Right-Brain Damage Left-Brain Damage 

Sex 21 F/ 16 M 13 F/ 10 M 8 F/ 6 M 

Age Mean (± SD) (years) 47.51 (11.16) 46.96 (11.40) 48.43 (11.12) 

Age Range (years) 22-63 22-63 29-62 

Education (± SD) (years) 10.57 (1.01) 10.43 (1.04) 10.71 (.99) 

Time post-onset (±SD) (months) 24.44 (15.42) 27.14 (14.36) 20.21 (16.05) 

Time post- onset range (months) 2-57 7-54 2-57  

Table 3: Demographical data of the patient sample: Mean values of age, years of education and time post- 
onset are depicted. SD = +/ - 1 Standard deviation. 
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3.2 General Neuropsychological Assessment  

To control for cognitive deficits, we conducted a series of neuropsychological tests with 

each patient.  

3.2.1 TAP – “Test of Attentional Performance”  

TAP is a test battery that was developed to detect deficits in attentional functions (Fimm 

and A Zimmermann, 2001). Brain injured patients experience a variable range of deficits 

in their attentional performance. As attention is no longer considered a singular 

function, the TAP test battery comprises several subtests that cover different aspects of 

attentional performance (alertness, covert attention shift, visual scanning etc.). All 

stimuli are non-verbal and demand reaction through a simple key press. Reaction time 

and number of mistakes are considered.  

We conducted the “alertness” subtest with our patient sample. It assesses reaction time 

in two conditions: Intrinsic alertness (reaction time to a visual stimulus) and phasic 

alertness (critical stimulus preceded by a warning signal).  

Means for the group were calculated from the normative sample range that considered 

performance relative to a participant’s age. The normative sample contains an age range 

from 6 to 89 years (N = 1131) with an unknown survey period. 

3.2.2 Digit and Spatial Span 

Digit and spatial span (Härting et al., 2000) assess auditory and spatial working memory 

capacity. For the digit span condition, the participant is asked to recall increasing 

sequences of numbers that are being read out loud by the instructor. The spatial span 

consists of a board with 9 numbered blocks. Block numbers are hidden to the 

participant. The instructor tips an increasing sequence of numbers by touching a series 

of blocks and asks the patient to repeat the sequence by tipping each block he tipped 

before. We asked patients to repeat the digits and spatial cues in forward order in the 

first condition and in backward order in the second condition. The longest sequence a 

participant can repeat correctly is set as his digit and spatial span.  

The normative sample contains the age range from 15 to 74 years (N = 210), referring to 

a survey period from 1996 to 1997. The normative sample is grouped according to age 
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(seven age groups ranging from 15 to 74 years), gender and school education 

(‘Hauptschule’, ‘Realschule’ and ‘Gymnasium’).  

3.2.3 “Wortschatztest”- Test of German Vocabulary 

As a measure for verbal intelligence and language comprehension skills we applied the 

“Wortschatztest” (Schmidt and A Metzler, 1992). The test contains 42 German words. 

Each word appears in one line among 5 distractors (fictional German vocabulary) and 

the participant is asked to mark the target word (i.e. the “real” word) in each line. The 

words appear in an increasing order of difficulty. The normative sample contains the age 

range from 16 to 90 years (N = 573). The survey period is unknown.  

3.2.4 “Gesichter-Namen-Lerntest”- Face-Name Learning Test 

Associative learning capabilities were assessed with the “Gesichter- Namen- Lerntest” 

(Schuri and Benz, 2000). This test was designed for patients after brain injury that notice 

deficits in remembering names and faces after the incident. 8 black and white portrait 

photographs and corresponding names are presented to the patients for 10 seconds 

who are asked to repeat each name after presentation. All 8 names are disyllabic names. 

In the second block out of four, photographs are presented in different order and 

without the names. The patients’ task is to name as many photographs as possible. 

Blocks are repeated until the patient can name all 8 photographs correctly, or until the 

end of the 4th block. After 30 minutes the patient is asked to recall the names learned 

before. As a last step, all photographs are presented without names, and the task is 

again to name as many photographs as possible. Repetition after 30 minutes allows to 

test not only short term but also intermediate term memory skills. The normative 

sample contains the age range from 16 to 82 years (N = 76) with an unknown survey 

period. The normative sample is grouped into six age groups ranging from 15 - 29 to 70 - 

85, gender and level of school education (‘Hauptschule’, ‘Realschule’ and ‘Abitur’).  

3.3 Peripheral Hearing Assessment 

We assessed hearing threshold levels between 250 and 8000 Hz (American National 

Standards Institute, 2004) with a pure tone auditory screening instrument (MADSEN 

Micromate 304, GN Otometrics, Copenhagen, Denmark). Testing took place in a 

soundproof booth in the Clinic.  
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3.4 Questionnaire 

Each patient filled in a questionnaire to estimate the subjective person recognition 

abilities before and after brain injury. The questionnaire inquired person recognition in 

general, as well as recognition features (e.g. face, voice, clothing, haircut etc.) the 

participant might use for person recognition. Patients answered the questions on a scale 

from 1 to 5, with 1 as very good recognition abilities and 5 as severely affected 

recognition abilities.  

Our aim was to discover the relationship between a patient’s self-report and actual test 

performance (see supplementary material for the questionnaire). 

3.5 Behavioral Test Battery 

To investigate voice and face recognition mechanisms we employed a comprehensive 

behavioral test battery. All tests described in the following have been applied in a 

previous voice processing study conducted by Roswandowitz et al. in 2014. The 

following test descriptions (chapter 3.5.1- 3.5.4) are quoted from “Two Cases of selective 

developmental Voice-Recognition impairments”, Roswandowitz et al., Current Biology, 

2014 (Roswandowitz et al., 2014) .  

3.5.1 General Procedure 

All experiments were carried out on a desktop computer in a soundproof booth. Patients 

were comfortably seated facing a 21-inch monitor featuring the visual stimuli. Auditory 

stimuli were presented via Headphones (Sennheiser HD 280 pro, Wennebostel, 

Germany). The sound level was adjusted individually for each participant. Patients’ 

responses were recorded via keyboard. To ensure that all participants understood the 

tasks, the experimenter gave oral instructions, in addition to the written instructions 

prior to each test. 

3.5.2 Assessing Voice-Identity Processing Skills 

3.5.2.1 The Voice-Face and Voice-Name test: Voice Recognition using Unfamiliar Voices 

We assessed voice processing skills in two types of tasks; voice learning of unfamiliar 

voices and voice recognition of famous voices. In the following section both tasks are 
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described in detail. The voice-name and voice-face test were employed to investigate 

learning abilities of unfamiliar voices in our subjects.  

3.5.2.2 Stimuli and Presentation Software 

The auditory stimulus material was recorded from 14 German native speakers without 

regional dialect (eight female, age value and SD). All speakers were orally instructed to 

read sentences in a neutral manner and at a normal speech rate. Each of the six 

speakers read the same 26 five word declarative sentences (e.g., German: “Der Junge 

trägt einen Koffer.”, English: The boy carries a suitcase.), and 3 two word declarative 

sentences (e.g.,”Er sagt.”, He says.). In addition the speakers read 3 five word 

interrogative sentences (”Trägt der Junge einen Koffer?”, Does the boy carry a 

suitcase?). 

Each speaker read 41 declarative five-word sentences and 5 declarative two-word 

sentences, as well as 5 interrogative five-word sentences. This resulted in a total set of 

714 sentences. High quality auditory recordings were taken in a soundproof recording 

chamber with a condenser microphone (Rode NT 55 MP; USB Sound Interface: Fast 

Track MK2, M-Audio, US; 44,1 kHz sampling rate, 16 bit resolution) and the Audacity 

software (version 1.3.5. beta (http://audacity.sourceforge.net)). The stimuli were post-

processed using Audacity (version 1.3.5. beta (http://audacity.sourceforge.net) and 

Matlab (version 8.1, The MathWorks, Inc., MA, USA), and were normalized for peak 

amplitude using PRAAT (Boersma and Weenink, 2001). 

The visual stimuli comprised pictures of the speakers’ faces. Pictures were recorded with 

a digital video camera (Legria HF S10 HD-Camcorder, Canon Inc., Japan) and all taken 

under the same lighting conditions in front of a black background. The speakers’ faces 

on the pictures were visible from the chin to the hairline. All speakers had a neutral 

facial expression. No face contained salient visual features such as beards, piercings or 

glasses. The experiment was implemented in the Presentation software 

(Neurobehavioural Systems, Inc., CA, USA) and responses were recorded via keyboard.  

  



 
 

26 

 

3.5.2.3 Procedure 

Participants learned to associate six unfamiliar voices (three female, three male) with 

the speaker’s face and the speaker’s name respectively. Different speakers were used in 

the two tasks. The experiment lasted around 40 minutes. 

Both tests contained a ‘female voices’ and a ‘male voices’ block which were identical in 

structure. The running order of blocks was randomized. Both were divided into four 

phases of learning and into five testing phases. Within a block, none of the sentences 

was repeated. Voice-face and voice-name pairs were learned by presenting pairs 

simultaneously: patients listened to the voices while seeing face or name on the screen. 

During the first and second learning phase, two cycles each containing five subsequently 

presented five-word declarative sentences per speaker were presented; the running 

order of the speakers was randomized. In the third and fourth learning phase, only three 

sentences per speaker per cycle were introduced. The learning phases were separated 

by testing phases, assessing the voice-face and voice-name learning performance. The 

participants listened to an audio sample of one of the speakers and carried out a three-

alternative forced choice task, that is, they had to select either the correct face or the 

correct name associated with the voice at hand. In the first and the second testing phase 

they received feedback on their decision and the correct voice-face/voice-name pair was 

presented again. Each of the speakers contributed five sentences to the testing phase. 

During the third and the fourth testing phase, questions and two-word sentences were 

employed, respectively, to avoid prosody-driven identity processing. We calculated the 

learning performance as a mean percent correct over all five testing phases, for each 

block separately and averaged over both blocks. Participants received feedback in the 

first second blocks about correct and incorrect response and received correct voice-face 

pairing. It took approximately 40 minutes to complete one experiment. 

3.5.2.4 Voice Recognition using Famous Voices 

The test served to assess to what extent patients can recognize voices known from the 

media. We considered two mechanisms of familiar voice recognition, familiarity decision 

making and familiar voice naming (semantic association). 
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3.5.2.5 Stimuli and Presentation Software 

The auditory stimulus set contained voice samples of famous (n=40) and unfamiliar 

(n=20) German speakers. We extracted the voice samples from open access mp3 or wav 

files available on public radio and television websites. Each sample was five seconds 

long. The famous voice samples comprised voices from 21 media personalities, eight 

politicians, seven actors and four musicians (see table 4). In a pilot study, a group of 10 

individuals without voice recognition deficits rated the familiarity of a larger stimulus set 

(56 celebrities) on a scale from 0-5 (very unfamiliar-very familiar). Celebrities rated with 

an average of three or higher (n=40) were included into the famous voices stimulus set.  

The files were edited using the Audacity software (version 1.3.5. beta 

(http://audacity.sourceforge.net)) and peak amplitude was scaled using the PRAAT 

software (Boersma and Weenink, 2001). The semantic contents of the auditory samples 

provided no information about the famous persons' identity or profession. The 

experiment was implemented in Presentation software (Neurobehavioural Systems, Inc., 

CA, USA) and responses were recorded via keyboard. 

Marcel Reich-Ranicki Otto Walkes Till Schweiger 

Joachim Löw Helge Schneider Anne Will 

Günther Jauch Michael Mittermeier Alice Schwarzer 

Ulrich Wickert Franz Beckenbauer Verona Pooth 

Hellmuth Karasek Boris Becker Heidi Klum 

Harald Schmidt Michael Schumacher Anke Engelke 

Karl Lagerfeld Gerhard Schröder Barbara Schöneberger 

Alfred Biolek Helmuth Kohl Sarah Kuttner 

Thomas Gottschalk Guido Westerwelle Angela Merkel 

Jürgen von der Lippe Wolfgang Schäuble Ursula von der Leyen 

Oliver Pocher  Erich Honecker Claudia Roth 

Vicco von Buelow (Loriot) Herbert Grönemeyer Nena 

Harpe Kerkelingen Peter Maffay Nina Hagen 

Stefan Raab Udo Lindenberg Heike Makatsch 

Table 4: Names of the famous German personalities presented in the famous voice-recognition test (n = 
42). 



 
 

28 

3.5.2.6 Procedure 

Voice samples of the 42 famous and the 20 unfamiliar voice samples were presented in 

random order. After each sample, patients were asked on a written screen to categorize 

the voice as familiar or unfamiliar. If categorized as familiar, the task was to choose the 

speaker out of 3 photographs and associated names. A fourth option was a question 

mark symbol to provide the possibility that the patient recognized the voice as familiar 

but could not associate it with one of shown personalities. If the sound sample was 

categorized as unfamiliar, the next voice sample was presented.  

At the beginning of the experiment, patients were asked to estimate their weekly 

exposure to television and radio (in hours). One practice trial aimed to familiarize 

patients with the task. In the second part of the test, we assessed each patient’s 

familiarity with the identities of the famous voices they heard earlier and additional 

celebrities not being presented in the main test. Patients were shown each famous 

person’s written name and face (in a different order than in the main test). First, 

patients were asked to indicate whether the famous person is familiar or unfamiliar. If 

the person was familiar to them, three questions followed: (i) How often have you heard 

the voice? (ii) How good do you think you would recognize the person’s voice (iii) How 

good do you think you would recognize the person’s face? For question (i) patients rated 

on a scale from 1 (never) to 5 (very frequently). For question (ii) and (iii) the answer was 

given on a scale from 1 (not at all) to 4 (very good). The complete experiment took about 

45 minutes. 

 

Figure 4: Famous voice recognition task: A phrase sequence (5 s) was presented via earphones. Patients 
chose between familiar and unfamiliar voices. Familiar voices had to be assigned to the according 
personality shown in one of the photographs. Option 4 could be chosen if none of the three personalities 
could be assigned to the heard voice.  
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3.5.2.7 Analysis 

Based on their personal familiarity ratings obtained from the second part of the test, we 

individually re-classified all famous voices (n = 42) into famous and non-famous voice 

categories. Celebrities who were known to the patients and had been listened to at least 

sometimes (3 on the scale of question (i)) and were judged to be recognizable by voice 

information at least as bad (2 on the scale of question (ii)) were categorized as 

subjectively familiar persons. All other celebrities were categorized as unfamiliar for the 

individual patient. The non-famous voices (n = 20) were all classified as non-famous. This 

procedure allowed to determine whether the participants correctly or incorrectly 

categorized any subjective famous voice sample as familiar or unfamiliar in the first part 

of the test. 

By applying Detection theory (Macmillan and Creelman, 2004), we computed measures 

of sensitivity (d’) and response bias on a criterion (c). We analyzed the data regarding 

two different aspects; familiarity decision making and familiar voice naming. Our analysis 

was based on a two by two factorial design. Assessing the d’ and c value of the 

familiarity decision making rate, the analysis was based on the factor famous/ non-

famous voice stimuli and the factor familiar/ unfamiliar response. For each participant, 

the proportion of correctly identified famous voices as familiar (Hit) and non-famous 

voices classified as familiar (False alarm) were computed. With d’ we measured the 

sensitivity to differentiate between famous and non-famous voice stimuli. Patients’ 

decision rule about the division between familiar and unfamiliar response at a specific 

criterion was computed with the response bias c. 

In addition to applying detection theory to patients’ familiarity decisions, we also 

computed proportion of those familiar voices that were correctly identified by their 

names. Patients listened to one voice stimulus and then chose the according personality 

out of three possible personalities that appeared on the screen as photographs with 

names. One fourth option was a question mark that patients could choose if they had 

recognized the voice as familiar but could not associate the voice with any of the 

presented photographs. 
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3.5.3 Tests for investigating the Specificity of Voice Recognition Impairments 

To investigate whether potential voice processing impairment in patients was 

accompanied by a face recognition deficit (Van Lancker and Canter, 1982; Luzzi et al., 

2017b) or were specific to voices (Neuner and Schweinberger, 2000), we tested 

participants’ abilities in face processing.  

We used a standard (CFMT) and a novel face processing test. 

3.5.3.1 Face-Name Learning  

We developed a face-name learning test to assess participants’ abilities in associating 

faces with given names. The participants were exposed to six unfamiliar male faces in 4 

learning phases. A learning phase was always followed by a testing phase except for the 

“final test” that started automatically after testing phase 4. Each face appeared in 

different views for 6 times in the first learning phase and 2 times in the following 3 

learning phases. The name was shown together with the photograph. Participants were 

instructed to memorize the right combination of face and name. In the testing phase, we 

assessed how well the participants had associated face and name by asking the 

participants to choose the right name out of the 6 presented names after the 

appearance of one photograph. The first two learning phases were noise-free while 

learning phase 3 and 4 were added with increasing noise. 

3.5.3.2 Stimuli and Presentation Software 

The stimulus set consisted of six pictures of male faces comprising three British and 

three Spanish actors. The pictures were downloaded from freely accessible websites and 

edited with Adobe Photoshop CS4 (version 11.0.2; Adobe Systems, Inc., San Jose, CA, 

US). Thirty-eight versions of each picture were generated by adding different levels of 

Gaussian noise (e.g., 15%, 30%, 60%) yielding a total of 228 images. Original 

photographs were taken from different views with varying facial expressions and under 

changing lightning conditions. Thus face images varied in a natural extent. The 

experiment was implemented in the Presentation software (Neurobehavioural Systems, 

Inc., CA, USA). 
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3.5.3.3 Procedure 

The experiment was divided into four learning and five test blocks. During the learning 

phase, the participants were exposed to the six face-name associations (common 

German first names were chosen; e.g., Peter, Jan, Timo, Alex, Otto, Leon). During the 

first block, two sequences of five face-name pairings per person were shown. During the 

second block, three face-name pairings per person and during the third and fourth block 

two face-name parings per person were provided in randomized order. In the test 

blocks, the participants were asked to carry out a six-alternative forced choice task 

which assessed participants’ learning performance. The participants were presented 

with a picture of one of the learned individuals and were then prompted to select the 

target name. Five items per person were tested in each test block. To prevent ceiling 

performance in the second, third and fourth test blocks, images were presented with 

increasing noise levels. In the final test block, the images without additional noise were 

presented again. The participants were given feedback on both correct and incorrect 

responses. In addition, the correct combination of face and name was repeated after 

feedback during the first and the second test blocks. Response was recorded via 

keyboard. The experiment took approximately 30 minutes. 

3.5.3.4 Cambridge Face Memory Test (CFMT) 

Using the CFMT (Duchaine and Nakayama, 2006), we investigated the recognition 

abilities of six learned male faces. After having learned six male faces participants were 

asked to recognize one learned target face out of 3 presented faces. Face recognition 

was tested in three different test sections: same images, novel images and novel images 

added with Gaussian noise. There is a total of 72 items. We applied the upright version 

of the test. 

3.5.4 Tests for impairments in processing basic acoustic voice properties 

Voice as a complex acoustic construct is composed of temporal-spectral properties such 

as fundamental frequency (i.e., pitch) and spectral formant frequencies (i.e., voice 

timbre). These properties were characterized as having a major perceptual relevance to 

identifying familiar speakers (Lavner et al., n.d.; Smith et al., 2005; von Kriegstein et al., 

2006). The pitch and timbre tests served to investigate whether voice recognition 

impairments are associated with deficits in perceiving these basic acoustic properties.  
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3.5.4.1 Stimuli and presentation software 

The stimulus set consisted of five English vowels (/a/, /e/, /i/, /o/, /u/) resynthesized 

using the STRAIGHT software package (Kawahara et al., 2008) implemented in Matlab 

(version 7.7, The MathWorks, Inc., MA, USA). The original vowels were spoken by a male 

speaker (same material used in (Smith et al., 2005)). Prior to being resynthesized, the 

vowels were modified to be monotonic and 600 ms in duration. For the pitch-

discrimination task, all tokens of a given vowel were identical except for their 

fundamental frequency. F0 is the physical correlate of a speaker’s glottal-pulse rate 

(GPR), which determines their voice pitch. For the timbre-discrimination task, all tokens 

of a given vowel were identical except for their spectral envelopes, which were scaled 

proportionally up or down in log-frequency space from the original spectral envelope. 

Spectral envelope is the physical correlate of a speaker’s vocal-tract length (VTL), which 

is an aspect of vocal timbre that correlates very strongly with overall speaker size (Fitch, 

1997). Both tests were implemented in Python (version 2.7.3, http://python.org/) and 

responses were recorded via a keyboard. 

3.5.4.2 Procedure 

We used an adaptive-tracking procedure (Kaernbach, 1991) to measure the participants’ 

pitch and timbre just-noticeable differences (JNDs). During the pitch-discrimination test, 

participants listened to pairs of sequentially presented vowels differing only in their F0. 

One vowel per trial always had an F0 of 112 Hz, and the other was higher in F0 by an 

amount (ΔF0) defined in musical cents (1 semitone = 100 cents). The order of the stimuli 

was random on each trial, and participants reported which one was higher in pitch. The 

initial ΔF0 was 100 cents; this value decreased in steps of 10 cents following each correct 

response and increased in steps of 30 cents following each incorrect response. After four 

reversals (a switch from correct to incorrect response or vice versa within two 

consecutive trials), the up and down step sizes were changed to 6 and 2 cents, 

respectively, and the block of trials continued for a further 10 reversals. JND was 

estimated from a single run by taking mean of all ΔF0 values visited during the final 10 

reversals, and the participant’s overall JND was defined as the mean JND over five runs. 

Feedback about response accuracy followed each trial. At the beginning of the test, 
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participants were familiarized with the auditory stimuli by presenting them with two 

vowels at the extremes of the F0 range. The average test duration was 15 minutes. 

The timbre-discrimination test was identical to the pitch-discrimination test except that 

the stimuli on each trial differed in their spectral envelopes, and participants reported 

which vowel was spoken by the smaller speaker. One vowel on each trial had a spectral 

envelope equal to that of the original speaker, while other differed by ΔSER, defined in 

percent. Initial ΔSER was 12%; up and down step sizes were 3% and 1% for the first four 

reversals, and 0.6% and 0.2% for the remaining 10 reversals.  

3.6 Statistical Analysis 

Behavioral data were analyzed in IBM SPSS 22. We performed two different types of 

analyses. In a first step, we conducted a group comparison between right-and left-

hemisphere damaged patients. We calculated mean scores and standard deviations for 

each subtest for the entire patient group, left-hemisphere damaged patients and right-

hemisphere damaged patients. For each subtest, we conducted group comparisons 

between right-and left-hemispheric patients using independent sample t-tests.  

Pearson correlations were used to assess whether the test performance was influenced 

by demographic values (age, time since onset, education), hearing level, or 

neuropsychological performance. Moreover, we aimed to assess influence of acoustical 

vocal features on the voice processing performance. We therefore computed 

correlations between the voice recognition subtests and auditory processing (see 

supplementary material) with bivariate correlation analysis.  

In a second step of analysis, we derived a patient group consisting of patients that 

performed below the 25th percentile of the Median on the voice-learning tests (P25= 

50.31%). This group will be referred to as voice deficit patients (VD patients) in the 

following. For all tests, we compared test performance of the VD patient group to the 

remaining patient sample, i.e. other patient group (O patients) by employing the 

Welch`s Test. The Welch`s test was chosen due to unequal variances and unequal 

sample size of VD and O patients. We assessed the inequality of variances between 

these groups with the Levene’s test.  
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We computed performance differences within subjects with a one-way repeated 

measures ANOVA. We investigated performance differences on the voice-name and 

voice-face test within subjects to reveal whether voices were learned easier in 

combination with a face or a name. We were further interested whether performance in 

these tests was different between female and male voices (dependent variable gender). 

We analyzed structural MRI data with voxel lesion symptom mapping (VLSM) (Bates et 

al., 2003b). We performed VLSM to identify any systematic relationship between 

damaged voxels and behavioral measures by using VLSM 2.55 

(http://www.neuroling.arizona.edu/resources.html) implemented in Matlab (version 

8.2, The MathWorks, Inc., MA, USA). For details on the VLSM analysis please refer to the 

attached paper ‘Voice-identity recognition deficits are induced by lesions in the temporal 

and inferior parietal lobe’ in chapter 13 (Roswandowitz, C., Kappes, C., Obrig, H. von 

Kriegstein K., in prep.).  
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4 RESULTS 

4.1 Neuropsychological Data 

All patients performed above the cut-off value on the neuropsychological assessment. 

The cut-off value for the neuropsychological assessment was the 2nd percentile rank (PR) 

for each test. Results for neuropsychological tests are presented in Table 5.  

In the TAP (test of attentional performance) 1 patient performed below the 2nd 

percentile rank in the intrinsic attention condition but above the 2nd percentile rank in 

phasic attention condition. The mean value was 39.67 PR (SD= 28.41) for the intrinsic 

condition and 31.79 PR (SD= 24.70) for the phasic condition.  

For the digit and spatial span test we computed a composite score, i.e. mean of 

backward and forward condition for both subtests (“working memory score”). The mean 

working memory score for the entire group was 35.11 percentile rank (SD = 19,29). 1 

patient scored below the cut-off in “spatial span backward” but above cut-off on all 

other tasks. 

The mean score on the “Wortschatztest” was 53.02 percent (SD = 21,32). No patient 

performed below the cut-off. 

Two scores were taken into consideration for the “Gesichter-Namen-Lerntest”: 

Percentile rank for the sum of correctly learned names of the 4 testing phases and the 

percentile rank of cued recall of names after 30 minutes (free recall of names 

remembered) and a memory score. The mean cued recall was 76.43 percent (36.22). 

One patient scored below the 2nd percentile rank. 

Among all neuropsychological tests, all patients scored above the cut-off value in at least 

8 of the 10 subtests. We therefore did not exclude patients due to their 

neuropsychological performance. 

Next, we tested whether performances in the NPS different between the right- and left 

hemisphere damaged patient group. The group comparison revealed comparable 

performances in both patient groups. 

We calculated a composite score over all neuropsychological tests, i.e., mean percentile 

ranks of TAP, GNL, working memory and WST. There was no correlation between 
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neuropsychological performance and the performance on the person recognition test 

battery.  

Table 5 sums up neuropsychological performance of the patient sample. 

 

Test   (PR)  Mean (SD)  

 All Patients  RH  LH 

Vocabulary test (WST) 53.42 (21.46) 53.33 (18.84) 53.56 (25.99) 

    

Working memory    

Digit Span 30.39 (18.87) 34.42 (20.99) 23.78 (12.86) 

Spatial Span 39.89 (23.95) 44.63 (24.46) 32.11 (21.71) 

    

TAP    

intrinsic 39.67 (28.41) 39.62 (33.08) 39.77 (19.90) 

phasic 31.79 (24.70) 31.09 (29.12) 32.92 (16.21) 

    

Face-Name Learning (GNL)    

GNL cued recall 76.43 (36.22) 81.69 (32.95) 67.78 (40.83) 

GNL Sum D1-D4 56.81 (36.71) 64.83 (32.95) 43.64 (39.11) 

Table 5: Results of neuropsychological assessment for all patients, Right Hemisphere (RH) and Left 
Hemisphere (LH), SD= 1 standard deviation. 

4.2 Peripheral Hearing Assessment 

34 patients obtained mean hearing thresholds within the normal range of 0-26 dB (mean 

14.71 dB, SD = 7.39) on pure tone audiometry. 5 patients obtained levels above 26 dB. 

All of them were still within the range of mild hearing loss (< 40dB, (Pascolini and Smith, 

2009)). Individual adjustments of the sound volume before testing allowed for normal 

sound perception and assured unaffected performance in our tests. There was no 

correlation between hearing levels and behavioral test performance. No patient was 

excluded due to mild hearing loss. One patient is supplied with hearing aid but did not 

wear them during audiogram and testing sessions. When being asked about the sound 

perception, he reported unimpaired hearing of test sounds during the experiment. 
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4.3 Questionnaire 

A questionnaire assessing subjective person recognition skills was part of our 

comprehensive test-battery. 25 patients had neither noticed a difference between pre- 

and post-incident in their person recognition abilities in general, nor their voice and face 

recognition. The remaining 12 patients who reported generally decreased person 

recognition abilities (i.e. shift from very good to good, from good to sufficient or from 

sufficient to poor) were notably right-brain damaged (8R /4 L).  

 Person recognition Voice recognition Face recognition  

 Before  After Before After Before After 

Very good (n=37) 
RH (n= 23) 
LH (n=14) 

17 
9 
8 

14 
8 
6 

9 
5 
4 

5 
2 
3 

17 
11 
6 

8 
4 
4 

       

Good 
RH 
LH 

18 
13 
5 

11 
7 
4 

21 
13 
8 

18 
11 
7 

17 
11 
6 

18 
12 
6 

       

Sufficient 
RH 
LH 

1 
1 
0 

10 
7 
3 

7 
5 
2 

10 
7 
3 

3 
1 
2 

9 
6 
3 

       

Poor 
RH 
LH 

1 
0 
1 

2 
1 
1 

0 
0 
0 

4 
3 
1 

0 
0 
0 

2 
1 
1 

Table 6: Questionnaire results on subjective person recognition abilities. Number of patients who rated 
their abilities as very good, good, sufficient or poor, Before = time before lesion onset, After = time since 
lesion onset, RH= Right Hemisphere, LH= Left Hemisphere.  
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4.4 Behavioral Results 

4.4.1 Voice-Identity Processing Skills  

4.4.1.1 Voice Learning of Unfamiliar Voices 

All patients completed the two voice- earning tests: the voice-name test and the voice-

face test. All patients performed above chance level (33.33%). The Mean overall voice-

name learning performance was 55.90 % (SD = 11.52), the Mean overall voice-face 

performance was 63.71 % (SD = 11.10) and the patient sample reached a Mean overall 

voice-learning score of 59.80 % (SD = 9.75). Figure 6 shows overall performance and 

separate test performance for the respective unfamiliar voice-learning tests. Overall 

scores were calculated from the subtests: Overall Voice-Name = Mean Voice-Name 

female + Mean Voice-Name male, Overall Voice-Face = M Voice-Face female + M Voice-

Face male, Overall Voice learning = M Overall Voice-Name + M Overall Voice-Face.  

Male voices were learned easier than female voices in both tests (voice-name: p Wilks’ 

lamda = < 0.001, observed power: 1.0, voice-face p Wilks’ lamda = < .001, observed 

power: .953) which confirmed self-reports by the patients. The results show that 

patients also performed better on the voice-face than the voice-name tests (p Wilks’ 

lambda = < 0.001, observed power: .978). 

 

 

Figure 5: Performance on the voice-learning tasks for the entire patient sample. Voice-Name learning, 
Voice-Face learning, Overall Voice performance (%). Error bars represent 1 SD. 
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4.4.1.2 Voice Recognition using Famous Voices 

36 patients completed the “famous voice recognition test”. One patient did not 

participate in this test because her mother tongue was not German and we assumed 

that her exposure to German media in the past 11 years was not sufficient to be 

comparable to native German speakers.  

We calculated measures of sensitivity to distinguish between famous and non-famous 

voices (d’) and patients’ decision rule about the division between familiar and unfamiliar 

response (c). The mean d prime for the entire patient sample was 1.52 (SD = 1.30). The 

mean c value for all patients was -2.7 (SD = .59). On the subtest for naming (semantic 

association) the group Mean was 70.92 % (SD= 17.49). 

4.4.2 Processing Basic Acoustic Properties: Pitch and Timbre 

We determined patients’ GPR and VTL discrimination thresholds for the five vowels 

(a/e/i/o/u). The lower the threshold in JNDs (just noticeable differences in cents) the 

better the ability to discriminate vocal pitch sounds. Group Mean for JND on the Pitch 

test was 124.14 cent (SD= 63.40). On the timbre test, the group Mean for JND was 9.39 

(SD = 4.48) SER (spatial envelope ratio).  

4.4.3 Tests for investigating the Specificity of Voice Recognition Impairments 

4.4.3.1 Face Recognition Performance  

All patients performed above chance level on the Face-Name test. Mean score for the 

patient sample was 57.92 (SD = 19.67) on the Face-Name test.  

On the Cambridge Face Memory Test, the mean score of the entire patient group was 

67.20 % (SD = 14.27). The cut-off value for prosopagnosia would be 2 SD below the 

control mean of a previous study (Duchaine and Nakayama, 2006). 9 patients performed 

below this score and were consequently indicative of prosopagnosia. 8 out of these 9 

patients presented right-hemispheric damage.  
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4.4.4 Correlation between Acoustic Properties and Voice Learning  

We found positive correlations between the two measured basic acoustic properties (i.e. 

Pitch and Timbre) and the overall voice-learning performance of all participants. Better 

performance on the Pitch and Timbre task (lower JND) was correlated with better 

performance on the voice-learning tasks. Correlations are presented in in Figure 6 

(Overall voice_timbre: r= -.596**, p = < .01, voice_pitch r= .365*, p = .026). See 

supplemental material for details.  

 

 

Figure 6: Left: Correlation of Voice-Learning and Timbre as a basic auditory cue: r= -.596 **, p= < 0.01. 
Right: Correlation of Voice-Learning and Pitch as a basic auditory cue: r= .365*, p= .026 

 

4.5 Performance Comparison of Right-and Left- Hemispheric lesioned Patients  

According to our hypothesis, we expected patients with unilateral lesions in the right 

hemisphere to show lower performance on the voice and face tests than patients with 

unilateral lesions in the left hemisphere. This hypothesis could not be confirmed through 

statistical analysis in the given sample. Group differences in the performance between 

right- and left- hemisphere on the behavioral tests were not significant. However, there 

was a tendency for lower task performance in especially the voice-learning tests in the 

right-brain damaged group (p overall voice= .116, t overall voice= 1.61). A larger variance 

on the voice-learning tests in the right-brain damaged group supported the hypothesis 

that impaired voice recognition abilities cannot be explained through general right-

hemispheric damage but are likely due to lesions in specific subregions in the right 
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hemispheric areas. Figure 7 depicts performance of right- and left-hemisphere lesioned 

patients on the three voice-learning test modalities.  

 

Figure 7: Performance comparison of right- and left hemisphere lesioned patients on the voice-learning 
tests. Larger variance is present in RH compared to LH. Error bars represent +/ - 1 SD. 

 

4.6 Patients presenting Voice-Identity Processing Impairment  

To characterize the patterns of possible voice recognition deficits in this sample, we 

employed a second step of analysis. Here, we investigated a group of patients that 

scored below a cutoff value (25th percentile rank of the median) in the overall voice 

learning performance (Mean of voice-name and voice-face test = 59.71, Median= 58.34, 

25th Percentile= 50.45) This group is called VD patients (Voice Deficit). We compared VD 

patients to the remaining other patients of the sample (OP) to characterize the specific 

performance pattern in the VD patients, i.e. selective voice recognition deficits or 

general person recognition deficit by voice and face.  

VD patients comprised nine patients. One notable fact was that all VD patients had right- 

hemispheric damage which is in accordance with our hypothesis. Mean age was 47.00 

years (SD = 12.97) which did not differ significantly from the rest of the patient group. 

Mean recovery time of these 9 patients was 31.20 months (SD = 15.51). 
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In our person-recognition questionnaire, three patients in the VD group (RH) reported a 

decrease in their voice recognition abilities since brain injury. The remaining patients 

rated their abilities as either very good or good, before and after brain injury.  

We further confirmed our findings of weak performance on the voice tests by 

performing statistical group comparisons (p overall = 0.00, Voice-Name = 0.003; p Voice-

Face = 0.01) between VD and O patients on the voice-learning tasks.  

Table 7 and Figure 8 show results of VD and O patients on the voice-learning tests. 

 Mean (SD) 
VD patients 

Mean (SD) 
O patients 

p  
(Welch`s Test) 

Voice-Name 44.81 (4.90) 59.46 (10.75) < .001 

Voice-Face 51.40 (5.66) 67.43 (9.77) < .001 

Overall 
Voice-Learning 

48.11 (1,90) 63.45 (8.35) < .001 

Table 7: Voice-Learning Performance Comparison between VD patients and O patients. Significance level 
p= < 0.05.  

 

 

 

Figure 8: Group comparison of voice-learning performance for VD patients and O patients (p= <0.01) Error 
bars represent +/ - 1 SD. 
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We investigated mean differences between control modalities (e.g. face tests and 

neuropsychology) and voice tests to determine whether poor voice-learning 

performance of VD patients was a specific deficit. The distinction between the mean 

differences of the two test modalities was not significant due to the large variance 

within the patient groups (p = 0.9). For details see table 8. 

VD patients performed similar to O patients when distinguishing between familiar and 

unfamiliar voices (Mean d value VD: 1.82, SD = 1.88 Mean O: 1.42, SD= 1.11, p = 0.59). 

The response bias (c) for VD patients was -.193 (SD = .488). The mean c value for O 

patients was -.276 (SD = .596), p = .68) 

Beside the familiarity decision task, the test on familiar voice recognition comprised 

naming, i.e. semantic association to voices that had been recognized as familiar. While O 

patients named 72.85 % (SD = 14.83) of the familiar personalities correctly, VD patients 

obtained 64.17 % (SD = 24.77, p = .371).  

 

 

Figure 9: Performance of O and VD patients on the famous voice recognition test. On the left: Correct and 
incorrect naming in Mean [%]. Error bars represent +/- 1 SD. On the right: d’ and c values of VD patients 
and O patients on familiarity decision making.  

 

VD patients reached a mean score of 141.24 cent (SD = 21.29) on the pitch task (GPR). 

Thresholds for the single vowels ranged between 18.28 and 239.08 cent and the mean 

score for O patients was 122.32 cent (SD = 64.34). The task had been described as 
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difficult by several patients. The mean SER of VD patients was 12.06 SER (SD = 3.26) on 

the timbre task (VTL). 

VD patients reached a mean score of 53.19% (SD = 14.50) on the Face-Name test. The 

mean score of VD patients on the CFMT was 58.79% (SD: 19.05). For details see table 8.  

 

Test  VD patients 
(SD) 

O patients 
(SD) 

F Df1 p-value 

Neuropsychology 
(composite score) 

 50.02 
(12.65) 

47.20 
(14.65) 

.262 32 .590 

Voice Tests       

Voice-Learning  48.11 
(1.90) 

63.44 
(8.35) 

29.29 35 <0.001** 

Famous Voice 
Recognition 

      

   Familiarity  
   judgment (d`) 
 
   c 

 1.82 
(1.88) 
 
-.19 
(.488) 

1.43 
(1.11) 
 
-.30 
(.63) 

.554 
 
 
.195 

34 
 
 
34 

.591 
 
 
.618 

   Naming/ 
   Semantic 
   association (%) 

 64.17 
(24.77) 

72.85 
(14.83) 

1.558 34 .371 

Face tests  55,99 
(15.04) 

63.47 
(14.77) 

1.731 35 .215 

Acoustical voice 
tests 

      

   Pitch (cent)  141.23 
(63.89) 

118.64 
(63.41) 

.861 35 0.37 

   Timbre (SER)  12.05 
(3.25) 

8.47 
(4.52) 

4.736 33 0,019* 

Table 8: Group Comparison on all tests between VD and O patients, (SD) = 1 Standard Deviation, 
significance level p < 0.05 
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4.7 Single Case Reports 

To further investigate possible selective voice-identity processing deficits within the VD 

group, we correlated their overall voice-learning performance with the control 

modalities (neuropsychology and face tests). This allowed for a visual depiction of 

performance on the voice and control tests. Figure 10 plots the correlation between 

overall voice- learning performance and the control modalities for all patients from our 

sample. Here, we discovered that three patients from the VD group appeared to have a 

selective deficit in voice processing, i.e. low performance in voice-learning tests and high 

scores on the control tests.  

 

 

Figure 10: 3 patients with selective voice processing deficits. This figure plots interaction of overall voice-
learning and control modalities (face tests and neuropsychology). Light green: VD patients, dark green: O 
patients. 3 patients with high scores on control tests and low scores on voice-learning tasks are 
highlighted (red circle). 

 

Table 9 displays individual test results of VD patients as well as their lesion location. 3 

patients with voice-selective performance deficits are highlighted. We describe their 

individual impairment pattern along with their individual lesion location in the following. 

  



 
 

46 

Table 9: Individual results from VD patients on all behavioral tests and their lesion location, *) marks three 
patients with selective voice-learning deficits. aIG= anterior Insula gyrus, AnG= angular gyrus, CoI= Cortex 
of Insula, FFG= Fusiform Gyrus, Hipp= Hippocampus, iFG= inferior frontal gyrus, iPS= intraparietal sulcus, 
ITG= Inferior temporal gyrus, LOG= lateral occipital gyrus, mFG= midfrontal gyrus, MOG= midoccipital 
gyrus, OS= Orbital sulcus, pCI= posterior Cortex of Insula, peCS= precentral gyrus, pMTG= midtemporal 
gyrus, poCS= postcentral sulcus, POG= posterior occipital gyrus, posterior division, PS= parietal sulcus, 
Put= Putamen, RO= Rolandic operculum, RS= Rolando sulcus, SFG= superior frontal gyrus, SMG= superior 
marginal gyrus, STG= superior temporal gyrus, STP= superior temporal pole, STS= superior temporal 
sulcus, Thal= Thalamus. Anatomical location was defined using neuroanatomical atlases in MRicron 
(Rorden and Brett, 2000). 

Patient 1 2 3 * 4 5 6 7 8 * 9 * 

Hemis-
phere 

R R R R R R R R R 

Lesion 
Location 
 

Put 
pCI 
STG 
 

POG 
FFG 
ITG 
SFG 
Thal 
Hipp 
Put 

SMG 
STG 
MOG 
AnG 

sFG 
OS 
aIG 
Put 
mFG 
STG 
peCS 
RO 

PS 
mOG 
STG 
STS 
RS 
peCS 
poCS 
iFG 
Put 
AnG 

LOG 
AnG 
PS 
FFG 

STG 
STP 
iPS 
peCG 
AnG 
aIG 

pMTG CoI 
STG 
Put 

Test Mean         

Voice Tests [%]        

Voice-
Name 

51.12 40.00 40.00 46.67 52.23 47.78 43.34 38.89 43.33 

Voice-
Face 

47.33 58.67 56.00 46.67 45.34 51.34 48.67 62.00 53.33 

Overall 
Voice 

49.23 49.33 48.00 46.67 48.78 49.56 46.00 50.45 48.33 

Famous Voices         

c -.246 -.468 .453 .308 .082 -.777 .000 - -.877 

d’ .738 .593 .852 4.536 .618 1.325 5.152 - .809 

Naming 43.24 55.56 33.33 89.74 36.84 90.00 89.65 - 75.00 

Face Tests [%] 

Face-
Name 

53.33 30.67 41.33 48.00 49.33 44.67 74.67 68.67 68.00 

CFMT 59.72 34.72 69.44 43.06 40.28 55.56 54.17 93.06 79.17 

Overall 
Face 

56.53 32.70 55.39 45.53 44.80 50.12 64.42 80.87 73.58 

Auditory Tests 

Pitch 
[cent] 

216.44 156.56 31.04 76.84 143.31 211.20 163.10 186.60 86.06 

Timbre 
[SER] 

10.81 10.80 13.48 15.38 8.72 6.38 17.08 15.15 12.95 
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Patient 3 is a 58-year-old male patient after ischemic stroke 42 months prior to testing in 

the right temporal and parietal and occipital lobe. Precise lesion location was the 

superior marginal and superior temporal gyrus, the angular gyrus and mid occipital 

gyrus. On the questionnaire, he reported his voice recognition abilities had shifted from 

average to poor after brain injury, while his face recognition abilities had changed from 

very good to average. This patient performed below group mean on the voice-learning 

test (total score of 48.00 %) and below the entire group mean on the famous voice 

recognition task (sensitivity (d`): .852 and naming: 33.33%).  

His neuropsychological and face-learning scores were above average of VD patients 

(NPS; 73.31%, Face: 55.39 %). Patient 3 further performed above the group mean on the 

control tests for vocal pitch discrimination (Mean VD patients: 127.11 cents, Mean 

patient 3: 31.04 cent). For vocal timbre discrimination, his score was close to the 

average VD patients’ mean (Patient 3 mean: 13.48 SER, VD patients mean: 12.06 SER).  

Patient 8 is a 32-year-old female who was diagnosed with oligoastrocytoma in the right 

temporal lobe, specifically the right posterior division of the mid temporal gyrus. Tumor 

extraction had been performed 12 months before the experimental investigation. This 

patient is originally from Russia but has lived in Germany for 11 years and is fluent in 

German. She reported that since tumor extraction she has severe difficulties in 

recognizing familiar voices, e.g. her partner’s voice or familiar people’s voices on the 

phone if they do not mention their name. On the questionnaire, she rated her voice 

recognition abilities as poor after brain injury relative to good before tumor extraction, 

and noted a shift in face recognition from very good to good after tumor extraction.  

As mentioned above, this patient did not complete the famous voice recognition test 

due to her fewer contact to German media compared to the other patients. Her 

performance on the voice-learning task was assumed to not be affected by a language 

acquisition later in life as there is evidence that voice recognition is well preserved for a 

non-native language (Fleming et al., 2014). This patient was fluent in German and 

German was the spoken language with her partner and family at home. However, this 

patient performed below the 25th percentile on the voice-learning tasks whereas she 

performed above group mean on the face tests (Patient 8 mean: 80.87 %, Mean VD 

patients: 54.33% (SD = 15.13)). On the neuropsychological test battery, her performance 
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was comparable to the Group Mean for VD patients (Patient 8: 50.78 %, VD patients: 

50.02 %, SD: 14.02). 

She reported difficulties in performing the auditory control task for pitch and timbre, i.e. 

recognizing differences between two presented sounds as they sounded equal to her in 

all conditions. Her performance on this auditory test battery was below the mean of VD 

patients (patient 8: 186.6 cent, 15.15 SER, VD patients Mean: 141.24 cent (SD = 21.29), 

12.06 SER (SD = 3.26)).  

Patient 9 is a 57-year-old female patient who experienced ischemic stroke 13 months 

prior to the current investigation. Her lesion is located in the right hemisphere, along the 

insula cortex and the superior temporal gyrus, as well as the Putamen. Unlike the other 

2 described patients this patient had not noted any difficulty in recognizing familiar 

people by their face or voice. She rated her voice and face recognition abilities as good 

before and after brain damage on the questionnaire.  

Her overall performance on the voice-learning task was 48.33 %. This patient scored 

73.58 % (above Group Mean) on the face tests and 52.75% on the neuropsychological 

test battery (Mean VD patients: 50.02, SD = 14.02). On the auditory tests her 

performance was above Group Mean of VD patients (Pitch: 86.06 cents, Timbre: 12.95, 

for references see paragraph above). 

For an overview of the lesion locations of the three single cases please refer to Figure 

11.  

 

 

Figure 11: Lesion overlay of 3 patients with selective voice processing deficits. Red: Patient 3, SMG; STG, 
MOG, anG, blue: Patient 8, pMTG, violet: Patient 9, CoI, STG, Put (see Table 9 for details). 

  



 
 

49 

4.8 Outlook: Neuroanatomical Analysis using VLSM 

Next to the behavioral analysis, neuroanatomical correlates of voice recognition deficits 

were of great interest to our research. To this end, a voxel-based lesion symptom 

mapping (VLSM) analysis was conducted (Bates et al., 2003a). The analysis was based on 

the current patient sample and the collected behavioral data, yet extended to a larger 

sample size (n= 58). Results of the VLSM analysis are in preparation for publication 

(Roswandowitz, C., Kappes, C., Obrig, H. von Kriegstein, in prep.) and are attached to the 

current work in chapter 13. 

VLSM has successfully been applied across domains of cognition throughout the past 

decade, i.e. speech production and comprehension (Dronkers et al., 2004; Borovsky et 

al., 2007) as well as aphasia (Henseler et al., 2014). VLSM allows for a voxel-wise 

statistical correlation between continuous behavioral measures and corresponding brain 

lesions. Preselecting patients based on their lesion locations or symptom complexes as 

in other methods is not required in VLSM. All lesioned voxels and behavioral measures 

are considered in the analysis which results in precise information on connections 

between lesioned brain areas and deficits in certain tasks, e.g. voice-learning and 

processing tests. VLSM analyses run a general linear model comparing performances on 

every measure in patients considering lesion status of the respective voxel (0= intact, 1= 

lesioned).  

The conducted VLSM analysis revealed two key findings on brain regions associated with 

voice recognition impairment. First, voice recognition impairments were associated with 

lesions in the temporal and the right inferior parietal lobe. When controlled for face 

recognition deficits, the association for voice recognition deficits remained in the right 

temporal lobe only.  

The second finding is an association of lesions in the right inferior parietal lobe with 

voice recognition deficits if the voices had been learned together with a face. In 

contrast, deficient voice recognition after voices had been learned together with a name 

was associated with right temporal lobe lesions. This suggests that the inferior parietal 

lobe might be involved in multimodal person recognition when voices and faces are 

integrated. Key findings are depicted in Figure 12 and 13.  



 
 

50 

 

Figure 12: A. VLSM results for newly-learned voice recognition (composite score of voice-name and voice-
face test, n = 43 patients). B. VLSM results for newly-learned voice recognition controlled for face 
recognition (i.e. composite score of CFMT and face-name test, n = 40). C. VLSM results of the voice-name 
test (n = 58). D. Results of the voice-face test (n = 43). VLSM results that are controlled for hearing level 
and lesion size are overlaid as red surfaces on each image (except B as results of this analysis reached no 
significance). Analyses were restricted to the bilateral temporal lobe and the right inferior parietal lobe. All 
voxels shown exceeded the critical threshold for significance (p < 0.01 cluster-size corrected, 1000 
permutations) (Roswandowitz, C., Kappes, C., Obrig, H. von Kriegstein K., in prep.) 

 

Moreover, VLSM analysis discovered distinct brain regions for voice identity recognition 

of different familiarities. Deficits in recognizing newly learned voices were associated 

with right-hemisphere lesions while familiar voice recognition deficits were associated 

with lesions in the left hemisphere, specifically the posterior MTG.  
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Figure 13: Overview of lesions associated with voice-recognition deficits within the temporal (cyan map) 
and inferior parietal lobe (turquoise map) (Roswandowitz, C., Kappes, C., Obrig, H. von Kriegstein K., in 
prep.) 

 

Taken together, this study provides important insight into the neuronal mechanisms of 

voice identity recognition. It highlights the crucial role of the right temporal lobe in the 

recognition of voices as well as the involvement of the right inferior parietal lobe in voice 

identity recognition. 

For the complete article please see the attached paper ‘Voice-identity recognition 

deficits are induced by lesions in the temporal and inferior parietal lobe’ (in preparation) 

in chapter 13 (Roswandowitz, C., Kappes, C., Obrig, H. von Kriegstein K., in prep.). 
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5 DISCUSSION 

In this study, we systematically investigated voice-identity processing abilities in subjects 

with unilateral brain lesions. On the group level, the ability to recognize unfamiliar 

voices was comparable in patients having a lesion in the right hemisphere and patients 

with lesions in the left hemisphere. Statistical analysis did not reveal significant 

performance differences between right- and left hemispheric patients. This result 

contrasted previous traditional lesion studies on voice-identity processing that found 

voice-identity processing deficits in right brain-damaged patients as compared to left 

brain-damaged patients (Van Lancker and Canter, 1982; Van Lancker et al., 1989; 

Neuner and Schweinberger, 2000; Lang et al., 2009). 

However, when investigating voice-identity processing abilities on the single subject 

level, we identified three patients with a selective deficit in voice-identity processing. 

Intriguingly, lesion locations of these three patients were all restricted to the right 

hemisphere. More specifically, lesions were assigned to the right temporal lobe 

including the STG and MTG which are known to be voice-sensitive (Belin et al., 2000, 

2002; Kriegstein and Giraud, 2004; Formisano et al., 2008). Lesion location and 

impairment pattern in these three subjects supports earlier findings in brain damaged 

patients that described a predominant role of the right hemisphere in human voice-

identity processing (Van Lancker and Canter, 1982; Van Lancker et al., 1989; Neuner and 

Schweinberger, 2000; Lang et al., 2009).  

5.1 Voice-Identity Processing Deficits after Brain Damage 

Our test battery was designed to investigate voice-identity processing in combination 

with control tests assessing the specificity of a given voice-identity processing deficit. 

Although the comparison of voice-identity processing performances between right- and 

left hemisphere patient group did not reveal significant differences, there were 

tendencies for a weaker voice processing performance in the right hemispheric patients. 

We speculate that the following factors could explain comparable group performances: 

(i) large variance of behavioral data in the voice-identity tests and (ii) the rather small 

sample size for each hemisphere. Interestingly, in the extended group sample included 

in the VLSM analysis, the group comparison between patients having lesion in the right 
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and left hemisphere was significant for the newly-learned voice recognition tests. 

Further, the large variance in performance within the right-hemispheric sample suggests 

that rather specific subregions within the right hemisphere are involved in voice-identity 

processing than the complete right hemisphere. Even though results are limited to the 

single subject level, they still provide evidence for a selective voice-identity processing 

deficit which has been shown as a developmental and acquired deficit before (Neuner 

and Schweinberger, 2000; Roswandowitz et al., 2014). On the other hand, there were 

patients with combined face- and voice recognition deficits in our sample, a co-

occurrence that is in line with earlier clinical findings (Van Lancker and Canter, 1982).  

VD patients did not perform significantly weaker on the familiarity decision making or 

semantic association for the famous voice recognition task than O patients which partly 

differs from findings in earlier studies. Some studies found dissociations of familiar voice 

recognition and unfamiliar voice discrimination (Van Lancker and Canter, 1982; Van 

Lancker et al., 1989; Neuner and Schweinberger, 2000; Lang et al., 2009). Their results 

implied right-hemispheric dominance in familiar voice recognition impairment, whereas 

unfamiliar voice discrimination deficits were found in patients with bilateral lesions (Van 

Lancker et al., 1989). As our test series did not test for unfamiliar voice discrimination 

but for the recognition of newly- learned voices respective to famous voice recognition, 

these results are not exactly comparable. One explanation for the better performance 

on the famous voice recognition task respective to voice-learning might be a different 

neuronal representation of familiar and unfamiliar/newly-learned voices. It is possible 

that different neuronal processes accomplish the access to newly learned or familiar 

voices. Therefore, newly-learned voice-identity processing might be represented in 

different brain regions than familiar voice-identity processing (Kriegstein and Giraud, 

2004).  

Next to patients showing a selective deficit in voice-identity processing, there were also 

eight patients who were indicative of prosopagnosia as revealed by a standard screening 

tool for face-recognition deficits, i.e. CFMT. Prosopagnosia is a possible phenomenon 

after brain damage in patients with lesions in the right temporo-occipital region 

(Damasio et al., 1982; Lang et al., 2006). Lesion location of these eight patients was in 

the right hemisphere as well. Although voice and face recognition deficits tend to co-
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occur, voice-selective recognition can also occur after brain damage (Van Lancker et al., 

1989; Neuner and Schweinberger, 2000). 

5.2 Selective Voice-Identity Processing Deficits 

Patients presenting voice-identity processing deficits (VD patients) were nine patients 

with right-hemisphere damage after CVI or tumor surgery. Three VD patients presented 

selective voice processing deficits and it is essential to remark that these three patients 

had non- overlapping, right temporal lobe damage (see table 8 for details). Face 

recognition performance and neuropsychological measures were all intact.  

While two other VD patients presented very large lesions of parietal lobe and either 

occipital or frontal lobe, lesions of patients 1, 2 and 7 (see table 9) were smaller or 

exclusively subcortical. Besides their common lesion side, lesion locations in this group 

were thus heterogeneous. Patient 2 showed the weakest face-learning performance in 

combination with a voice processing deficit. His lesion included the fusiform gyrus which 

is a region being implicated in face-identity processing (McCarthy et al., 1997). Six 

patients were impaired in both voice- and face recognition suggesting a general deficit in 

person recognition.  

Up to date, clinical studies were not able to provide neuroanatomical correlates to 

specific voice processing impairments in patients. The study by Hailstone revealed 

associations between general person recognition impairment and damage in the right 

anterior temporal pole (Hailstone et al., 2011). The most recent study by Luzzi et al. 

found correlations of face and voice recognition deficits and right temporal lobe atrophy 

(Luzzi et al., 2017c). Here, we found 3 right hemisphere damaged patients with specific 

voice-identity processing impairment with non-overlapping temporal lobe lesions. 

Patient 8 had a lesion along the right MTG and presented very selective voice processing 

deficits. Lesions of patient 3 and 9 also mainly involved the temporal lobe and showed 

the same selective voice processing deficit. The lesion of patient 3 was located along the 

MTG and STG and extended to the angular gyrus and the mid occipital gyrus. The MTG 

and STG correspond to current ideas on neuronal correlates of voice processing in the 

human brain (Belin et al., 2000; Kriegstein and Giraud, 2004). Patient 9 presented a 

lesion along the cortex of insula and putamen with tangential points to the superior 
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temporal cortex. These findings are descriptive, therefore we cannot draw general 

conclusions. The three cases still underpin the great importance that has been ascribed 

to the right temporal lobe for voice recognition in healthy subjects (Belin et al., 2004; 

Kriegstein and Giraud, 2004). Beyond the findings in healthy subjects, VLSM analysis for 

this patient sample found neuroanatomical evidence for voice-selective areas along the 

superior temporal sulcus.  

5.3 Acoustical Features related to Voice-Identity Processing 

In the light of acoustical voice features that enable us to identify a person by voice, we 

gathered an important finding in this study: The ability to process basic acoustical voice 

features, i.e. pitch and timbre, and the ability to learn and recognize new voices showed 

a correlation. In line with earlier studies on acoustical voice processing (Singh and Murry, 

1978; Gaudrain et al., 2009; Baumann and Belin, 2010), our finding highlights the 

importance of these two features for voice-identity processing. In our sample, vocal 

timbre as compared to vocal pitch was the even more relevant voice individuating 

feature as it showed a strong correlation with the voice-learning task for the entire 

patient sample (r= -.596 **). Moreover, VD patients performed significantly weaker on 

the timbre task than O patients (p = .012). It could be suggested that the inability to 

perceive and analyze this auditory feature might be one reason contributing to weak 

performance on the voice-learning tasks.  

5.4 Subjective Perception of Voice Recognition Deficits after Brain Injury 

Two out of three patients with selective voice deficits showed a clinical deficit, i.e. had 

noted a decline in their personal voice and face recognition abilities after brain injury. 

This differs from an observation made by Neuner and Schweinberger where patients had 

not noted any decline of their person recognition abilities (Neuner and Schweinberger, 

2000). Considering their good performance on the face-learning tasks, the question 

whether their impaired voice recognition mechanisms contribute to a subjective 

impression of more global person recognition impairment can be raised. In a clinical 

context, future research could embark the ambivalence of subjective person recognition 

deficits stated by the patients, and the fact that not all patients with objective deficits on 

person recognition are aware of their impairment. Former studies, (Neuner and 
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Schweinberger, 2000) as well as our study, obtained mixed results on patients’ self-

estimation of an impairment. It remains difficult to evaluate the actual degree of every 

day difficulties based on self-reports in communication through either voice-, face-, or 

global person recognition deficits. Eight patients reported a decline in their person 

recognition abilities on the questionnaire without showing objective deficits in the test 

performance. When attempting to progress in clinical post-brain injury therapy, would 

patients with a subjective deficit receive treatment if their symptoms were not 

detectable in objective test measures? Apparently, testing modalities would need 

improvement towards a more sensitive and clinically applicable method to consider 

patients’ perception of their own impairment. In the long run, a categorization of person 

recognition impairment after brain injury and their impact amongst all post- brain 

damage deficits would be desirable. If patients were aware of their deficits and if 

screening for deficits was sensitive, it might become easier to eventually develop coping 

strategies to decrease insecurity in personal interaction.  

5.5 Implications for current Models of Person Recognition                               

How do our results assign to the different models of person recognition? The original 

model by Bruce and Young proposes entirely segregated pathways for each modality up 

to the level of modality-free PINS (Bruce and Young, 1986b). The voice-adapted model 

by Belin suggested functionally dissociated pathways for vocal features that follow basic 

structural encoding of auditory cues. The vocal pathways interact with the 

corresponding pathways of the face processing system but are generally segregated 

(Belin et al., 2004). Diverging from the established idea of PINS as the first multimodal 

level, recent data from neuroimaging studies propose interaction of visual and auditory 

information at a very early stage of processing (von Kriegstein et al., 2003; Blank et al., 

2011; Schall et al., 2013).  

Our study design comprised voice and face recognition tests and one subtest on naming, 

i.e. semantic association. The semantic association task required associating a 

photograph with a name/face pair without active verbal production as part of the 

famous voice recognition test. Semantic association has been suggested to be processed 

in the left hemisphere involving interaction of specifically mid- and anterior superior 
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temporal sulcus and the fusiform gyrus (Blank et al., 2011). Our behavioral data showed 

a tendency for weaker performance in semantic association in the left hemisphere 

group, but we cannot make reliable assumptions about this modality as statistical 

analysis did not reveal significant group differences.  

The question whether PINs exist as supramodal junctions remains unanswered. 

Regarding behavioral results from the current patient sample, we can only conclude that 

on a single subject level selective voice processing impairment is more likely to occur in 

patients with right-hemispheric damage, specifically lesions in the temporal lobe. For 

these three patients, deficits of voice recognition are dissociated from face recognition 

and speech impairment (as they were non-aphasic). Our data support implications that 

voices of different familiarities are processed in distinct brain regions as VD patients did 

not show difficulties in famous voice recognition. However, according to our data, we 

cannot draw definite conclusions on vocal and facial pathways and their level of 

interaction.  

5.6 Shortcomings & Open Questions 

In summary, we need to mention certain limitations and open questions for future 

research when regarding the results from the current data. First of all, we did not 

conduct our behavioral test battery with a healthy control group because we focused on 

the group comparisons within the patient group. Further extensions of this study could 

comprise the testing of a respective matched control group that would allow for a 

definition of more accurate cut-off values for “weak” performers and provide more 

reliable proportions for the results of both left-and right hemisphere patients’ 

behavioral performance.  

Additionally, increasing the sample size would certainly sharpen the results by reducing 

the high variance in the data (as can be seen in the larger sample of the VLSM analysis). 

Instead of including patients with large lesion sites, behavioral analysis would be more 

comparable if the patients chosen for the sample had more limited or smaller lesions for 

exclusive behavioral data analysis. However, as patient recruitment for such a 

comprehensive test battery is already difficult, even stricter inclusion criteria would be 

another challenge to face and might reduce the sample size. 



 
 

58 

In total, the complete test battery took five hours of testing for each patient. We divided 

the sessions into two à 2.5 hours and took short breaks between each test. By 

randomizing the order of tests in each patient, we intended to rule out the effect of 

attention loss over time on the test performance. However, the length of testing was 

intense for patients and required long attention spans. Including a questionnaire on 

subjective well-being and concentration span after each testing session could be a 

possibility to take individual loss of attention into consideration. The data could be 

considered as a covariate in data analysis.  

Neuronal correlates of specific voice processing deficits could only be described in single 

subjects in the chosen method of data analysis. Imaging analysis as in VLSM as a further 

step of analysis allows for definite statements on correlations between behavioral 

deficits and neuronal correlates. This more elaborate analysis showed associations of 

right temporal lobe damage and voice-identity processing and confirms our findings 

from a single subject level (Roswandowitz, C., Kappes, C., Obrig, H., von Kriegstein K., in 

prep.).  
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5.7 Conclusion  

This study characterized voice recognition patterns in patients with unilateral brain 

lesions. We identified a group of patients evidencing deficits in voice-identity processing. 

Lesions were all located in the right hemisphere. While most patients had difficulties in 

voice and face-identity processing, three subjects presented a selective deficit in voice 

recognition. These three subjects had non-overlapping right temporal lobe lesions 

mainly locating in the STG and MTG. This finding supports earlier assumptions on 

neuronal correlates in healthy subjects (Belin et al., 2000; Kriegstein and Giraud, 2004). 

Further analysis through VLSM confirmed the important role of the right temporal lobe 

in human voice processing and implies an involvement of the inferior parietal lobe in 

multimodal person recognition, i.e. face-voice integration.  

Compared to earlier patient studies in this field, our study provided an exceptionally 

detailed and broad test series. Each patient was tested in two testing sessions and 

completed a complex test battery with multiple subtests on voice-identity processing of 

different familiarities and control tests (face tests, neuropsychology, audiometry). High 

resolution brain images were available and allowed for the detection of precise lesion 

location in patients with selective voice-identity processing deficits. In a clinical context, 

findings from the current study might support the need for a better understanding of 

post-stroke non-verbal communication disabilities and their eventual treatment 

concepts. 
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Hintergrund:  

Die menschliche Stimme wird in der Fachliteratur als “auditorisches Gesicht” bezeichnet 

(Belin et al., 2004), weil sie neben der Sprache auch Informationen zu Identität und 

Emotionen des Sprechers vermittelt, die wir in der alltäglichen Kommunikation mühelos 

wahrnehmen und verarbeiten. Zerebrale Pathologien, beispielsweise ischämische 

Hirninfarkte oder Hämorrhagien, können in der Folge verschiedene 

Kommunikationsdefizite verursachen. Ein bedeutsames Kommunikationsdefizit auf 

sprachlicher Ebene ist die Aphasie. Defizite der Stimmerkennung als eine Entität der 

nicht-sprachlichen Ebene werden durch den Begriff Phonagnosie definiert. Phonagnosie 

beschreibt ein Defizit der Stimmidentifizierung einschließlich der Analyse akustischer 

vokaler Signale, dem Wiedererkennen bekannter Stimmen und der semantischen 

Assoziation einer erkannten Stimme (Roswandowitz C, Maguinness C, von Kriegstein, in 

rev.). Klinische Studien wiesen die Existenz von Stimmerkennungsdefiziten als eine 

mögliche Folge zerebraler Läsionen nach (Van Lancker and Canter, 1982; Van Lancker et 

al., 1989; Neuner and Schweinberger, 2000; Lang et al., 2009; Hailstone et al., 2011). 

Hierbei wurden insbesondere Läsionen der rechten Hemisphäre als zugrundeliegende 
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neuronale Repräsentationen hervorgehoben, allerdings gelang bisher keine exakte 

Lokalisierung der betroffenen Hirnregionen bei isolierten Stimmerkennungsdefiziten. In 

funktionellen MRT-Studien an gesunden Probanden zeigten sich stimmspezifische Areale 

entlang des rechten superioren temporalen Gyrus und Sulcus (STG/S) (Belin et al., 2000; 

von Kriegstein et al., 2003; Kriegstein and Giraud, 2004). 

Zielsetzung: 

Ziel der vorliegenden Patientenstudie war es, mögliche isolierte 

Stimmerkennungsdefizite als Folge einer zerebralen Läsion nachzuweisen und zu 

charakterisieren. In einem zweiten Schritt widmete sich die Studie der Frage nach den 

neuronalen Korrelaten von Stimmerkennungsdefiziten. Wir stellten die Hypothesen auf, 

dass Stimmerkennungsdefizite (i) häufiger bei Patienten mit rechtshemisphärischen 

Läsionen und (ii) darüber hinaus als isoliertes Stimmerkennungsdefizit gegenüber 

kombinierten Defiziten von Stimm- und Gesichtserkennung auftreten können. Die 

Untersuchung von neuronalen Korrelaten dieser Defizite wurde in einer 

weiterführenden Analyse mittels Voxel-based lesion symptom mapping (VLSM) 

vorgenommen (Roswandowitz, C., Kappes, C., Obrig, H., von Kriegstein K., in prep.). 

Material und Methoden: 

40 Patienten der Tagesklinik für kognitive Neurologie der Universität Leipzig nahmen an 

der Studie teil. Alle Patienten wiesen unilaterale Hirnläsionen (n = 14 links, 24 rechts) 

auf, die entweder Folge eines cerebrovaskulären Ereignisses oder einer Tumorextraktion 

waren. Wir führten eine umfangreiche experimentelle Testreihe durch, die insbesondere 

der Stimmerkennung (Stimmlerntests und Tests zur Erkennung bekannter Stimmen) galt. 

Außerdem wurde die Kontrollmodalität der Gesichtererkennung und die Verarbeitung 

akustischer vokaler Signale (Pitch und Timbre) überprüft. Die individuelle 

Patientenwahrnehmung zur Stimm- und Gesichtererkennung erhoben wir in einem 

Fragebogen. Wir analysierten die Daten in IBM SPSS 22, für die Gruppenvergleiche 

wendeten wir sowohl parametrische als auch nicht-parametrische Tests, 

Varianzanalysen und bivariate Korrelationen an. In einem weiterführenden Teil der 

Studie wurden die behavioralen Daten und strukturelle MRTs anhand von Voxel-based 

lesion symptom mapping (VLSM) analysiert. 
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Ergebnisse:  

In der Datenanalyse fanden sich im Gruppenvergleich der Patienten mit rechts- bzw. 

linkshemisphärischen Läsionen keine signifikanten Unterschiede in den Tests zur 

Stimmerkennung. Allerdings wiesen 9 Patienten, deren Läsionen ausschließlich 

rechtshemisphärisch lokalisiert waren, Stimmererkennungsdefizite auf. Die Lokalisation 

der Läsionen innerhalb der rechten Heimsphäre war heterogen.  

Während sechs Patienten dieser Gruppe ein kombiniertes Defizit der Gesichter- und 

Stimmerkennung zeigten, fand sich bei drei Patienten ein isoliertes Defizit der 

Stimmerkennung. Wir charakterisieren in der vorliegenden Arbeit das spezifische 

Verhaltensmuster und die Lokalisation der Läsionen dieser drei Patienten, die alle eine 

Beteiligung des rechten Temporallappens aufwiesen. Im Hinblick auf grundlegende 

Mechanismen der Stimmverarbeitung konnte insbesondere Timbre als relevantes 

akustisches Stimmsignal zur Erkennung neu erlernter Stimmen identifiziert werden. In 

der weiterführenden Analyse mittels VLSM wurden Assoziationen von (i) selektiven 

Defiziten der Stimmerkennung mit Läsionen im rechten Temporallappen sowie (ii) der 

Stimm-Gesichter-Integration im rechten inferioren Parietallappen nachgewiesen. 

Schlussfolgerungen: 

Die vorliegende Studie hebt auf der Grundlage des untersuchten Patientenkollektivs die 

bedeutsame Rolle der rechten Hemisphäre bei der Stimmerkennung hervor. Wir 

identifizierten drei Patienten mit isolierten Stimmerkennungsdefiziten, deren Läsionen 

sich im rechten Temporallappen befanden. Dieses Ergebnis stützt bisherige Evidenz zur 

Stimmverarbeitung an gesunden Probanden (Belin et al., 2000; Kriegstein and Giraud, 

2004). Die weiterführende VLSM-Analyse, auf der Grundlage des vorliegenden 

Patientenkollektivs, charakterisiert spezifische Areale des rechten Temporallappens und 

inferioren Parietallappens als neuronale Korrelate defizitärer Stimmerkennung. In 

Erweiterung bisheriger klinischer Evidenz liefert die vorliegende Studie neue 

Erkenntnisse zu neuronalen Korrelaten von isolierten Stimmerkennungsdefiziten und 

Defiziten der Stimm-Gesichter-Integration (Roswandowitz, C., Kappes, C., Obrig, H. von 

Kriegstein K., in prep.). Im klinischen Kontext erlaubt die Studie einen weiteren Schritt 

zum besseren Verständnis von nonverbalen Kommunikationsdefiziten, insbesondere 

Stimmerkennungsschwierigkeiten, nach zerebralen Läsionen. 
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8 SUPPLEMENTARY MATERIAL 

8.1 Individual Demographical Data  

Subject Age Sex Education 
years  

Etiology Hemisphere Months 
since 
Onset 

2008 
2034 
2047 
2075 
2086 
2096 
2253 
2337 
2390 
2406 
2456 
2458 
2470 
2475 
2486 
2526 
2550 
2552 
2583 
2637 
2678 
2710 
2712 
2717 
2764 
2770 
2779 
2800 
2802 
2815 
2828 
2847 
2849 
2851 
2857 
2870 
2899 
2905 
2924 
2989 

50 
62 
22 
52 
50 
43 
58 
45 
57 
46 
56 
61 
54 
31 
63 
35 
56 
53 
49 
50 
29 
23 
57 
51 
31 
57 
47 
44 
49 
58 
29 
40 
55 
50 
48 
46 
32 
47 
58 
57 
 

f 
m 
f 
m 
m 
m 
m 
f 
m 
f 
m 
f 
f 
f 
m 
m 
f 
f 
m 
f 
m 
m 
f 
f 
f 
f 
f 
f 
f 
m 
m 
f 
m 
m 
m 
m 
f 
m 
f 
f 
 

12 
12 
10 
10 
12 
10 
12 
10 
10 
10 
10 
10 
10 
10 
12 
10 
10 
11 
10 
10 
12 
10 
10 
10 
10 
10 
10 
10 
12 
12 
10 
10 
10 
8 
10 
 
12 
10 
12 
10 

ICH 
ICH 
ICH 
isch 
ICH 
isch 
isch 
isch 
SAB 
SAB 
isch 
isch 
isch 
tumor 
isch 
isch 
ICH 
isch 
isch 
isch 
SAB 
isch 
isch 
ICH 
SAB 
isch. 
SAB 
isch 
isch 
isch 
isch 
isch 
Tumor 
SAB 
isch 
isch 
Tumor 
isch 
isch 
isch 

r 
l 
r 
l 
r 
r 
r 
r 
r 
r 
r 
r 
l 
l 
r 
r 
r 
l 
r 
r 
l 
r 
l 
r 
r 
l 
r 
l 
l 
l 
l 
l 
l 
r 
l 
l 
r 
r 
r 
r 
 

- 
57 
54 
47 
52 
48 
42 
39 
excluded 
40 
28 
33 
30 
31 
31 
31 
24 
25 
12 
35 
24 
14 
18 
20 
17 
11 
21 
2 
10 
9 
3 
excluded 
5 
14 
11 
excluded 
12 
7 
10 
13 

Table 10: Individual demographical data. *Isch= ischemic, ICH = intracerebral hemorrhage, SAB = 
subarachnoid hemorrhage  
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8.2 Questionnaire on Person Recognition 

Fragen zur Personenerkennung  

1. Wie gut erkennen Sie bekannte Personen wieder? 

vor dem Ereignis 

 

 

nach dem Ereignis 

 

 

2. Woran erkennen Sie Personen wieder? 

vor dem Ereignis       nach dem Ereignis 

☐Person intuitiv als Gesamtheit 

☐Gesicht 

☐Stimme 

☐Kleidung, Schmuck, Frisur, Brille 

☐Körperhaltung, Gang 

☐besondere Merkmale: Narbe, Hinken usw. 

☐andere Merkmale:       

  

1 
sehr gut 

2 
gut 

3 
weniger gut 

4 
schlecht 

5 
überhaupt nicht 

1 
sehr gut 

2 
gut 

3 
weniger gut 

4 
schlecht 

5 
überhaupt nicht 

☐Person intuitiv als Gesamtheit 

☐Gesicht 

☐Stimme 

☐Kleidung, Schmuck, Frisur, Brille 

☐Körperhaltung, Gang 

☐ besondere Merkmale: Narbe, Hinken 

usw. 

☐andere Merkmale:   
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3. Wenn Sie nur die Stimme einer Ihnen bekannten Person hören, wie gut würden 

Sie diese Person erkennen? 

vor dem Ereignis 

 

 

nach dem Ereignis 

 

 

 

4. Wenn Sie nur das Gesicht einer Ihnen bekannten Person sehen, wie gut würden 

Sie diese Person erkennen? 

 

vor dem Ereignis 

 

 

nach dem Ereignis 

 

 

  

1 
sehr gut 

2 
gut 

3 
weniger gut 

4 
schlecht 

5 
überhaupt nicht 

1 
sehr gut 

2 
gut 

3 
weniger gut 

4 
schlecht 

5 
überhaupt nicht 

1 
sehr gut 

2 
gut 

3 
weniger gut 

4 
schlecht 

5 
überhaupt nicht 

1 
sehr gut 

2 
gut 

3 
weniger gut 

4 
schlecht 

5 
überhaupt nicht 
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8.3 Behavioral Test Results 

NPS (%) 

(1 SD) 

Voice 

Learning 

(%) 

Face 

Learning 

(%) 

Famous 

Voices 

d` 

Famous 

Voices 

c 

Famous 

Voices 

Naming 

(%) 

Pitch 

(cent) 

Timbre 

(SER) 

47.95 

(14.02) 

59.71 

(9.88) 

61.65 

(14.99) 

1.52 

(1.30) 

-2.7 

(.59) 

70.92 

(17.49) 

124.14 

(63.40) 

9.39 

(4.48) 

Table 11: Performance for the entire patient sample on all behavioral tests. NPS= Neuropsychology.  
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8.4 Test Performance of VD and O Patients: Basic Acoustic Voice Properties 

 

Figure 14: Performance on auditory control tests for VD and O patients. Left: Mean Pitch (cent), Right: 
Mean Timbre (SER). Error bars represent +/- 1 SD. 

 

8.5 Test Performance of VD and O Patients: Control Modality Face Processing 

 

Figure 15: Performance of VD and O patients on the face control tests: Cambridge Face Memory Test 
(CFMT) and Face-Name test (%). Error bars represent +/ - 1 SD. 
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8.6 Correlations 

  NPS (PR) Overall 
voice-
learning  

d’  c value  Naming Face- 
learning 
 

Pitch  Timbre  

NPS (PR) Pearson 
Correlati
on 

1 0.113 -0.243 0.04 -0.14 0.049 -0.418 -0.175 

 Sig. (2-
tailed) 

 0.525 0.166 0.824 0.429 0.784 0.014 0.329 

 N 34 34 34 34 34 34 34 33 

Overall 
voice-
learning  

Pearson 
Correlati
on 

-0.001 1 -0.069 -0.134 0.232 0.321 -0.365* -0.545** 

 Sig. (2-
tailed) 

0.997  0.686 0.431 0.167 0.053 0.026 0.001 

 N 37 37 37 37 37 37 37 36 

d’  Pearson 
Correlati
on 

-.103 -0.102 1 0.396* 0.511** 0.144 0.147 -0.07 

 Sig. (2-
tailed) 

.549 0.553  0.017 0.001 0.403 0.392 0.69 

 N 36 36 36 36 36 36 36 35 

c value  Pearson 
Correlati
on 

-.041 -0.123 0.396* 1 -0.404 * -0.096 0.033 -0.012 

 Sig. (2-
tailed) 

.811 0.474 0.017  0.014 0.578 0.848 0.946 

 N 36 36 36 36 36 36 36 35 

Naming Pearson 
Correlati
on 

-.054 0.175 0.511** -0.404** 1 0.324 0.151 -0.135 

 Sig. (2-
tailed) 

.755 0.308 0.001 0.014  0.054 0.378 0.439 

 N 36 36 36 36 36 36 36 35 

Face- 
Learning  

Pearson 
Correlati
on 

0.15 0.321 0.096 -0.077 0.141 1 0.103 -0.061 

 Sig. (2-
tailed) 

0.376 0.053 0.57 0.652 0.406  0.545 0.722 

 N 37 37 37 37 37 37 37 36 

Pitch Pearson 
Correlati
on 

-0.177 -.365 * .111 .045 .030 .103 1 .494** 

 Sig. (2-
tailed) 

0.295 .026 .515 .790 .858 .545  .002 

 N 37 37 37 37 37 37 37 36 

Timbre  Pearson 
Correlati
on 

-0.046 -0.596** 0.059 0.031 -0.16 -0.043 0.591** 1 

 Sig. (2-
tailed) 

0.792 0 0.736 0.861 0.358 0.805 0  

 N 35 35 35 35 35 35 35 35 

Table 12: Correlations of all tests for the entire patient sample.
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Abstract 

Voice-identity recognition is an important skill for social interactions. It is by-and-large 

unknown how this skill is accomplished by the human brain. In the past decade a wealth of 

neuroimaging studies have shown that a central structure involved in voice-identity recognition 

is the right temporal lobe. However, neuropsychological case studies reported that voice-

identity recognition deficits in patients with brain lesions are associated with lesions in the right 

inferior parietal lobe. The aim of the present study was to work towards resolving the 

discrepancy between neuroimaging studies and patient lesion case reports to get a better 

understanding, which structures in the human brain are critical for voice-identity recognition. 

To do this we performed a voxel based lesion symptom mapping (VLSM) study on 58 patients 

with unilateral focal brain lesions. The study included a comprehensive behavioural test 

battery, neuropsychological assessment and high-resolution structural brain images. The VLSM 

analysis revealed three key findings. (i) We identified a strong association between lesions in 

the temporal and right inferior parietal lobe and voice-identity recognition deficits. (ii) Of these 

two structures, only the right temporal lobe remained significant when we controlled for face-

recognition performance indicating a high voice sensitivity of the right temporal lobe. (iii) The 

right inferior parietal lobe was particularly involved in tasks which required integration of voice 

and face information. The results imply that the right temporal lobe is an obligatory structure 

for voice-identity recognition, while the inferior parietal lobe is a facultative component of 

voice-identity recognition.  

 

Keywords: voice recognition, voxel-based lesion symptom mapping, temporal lobe, parietal 

lobe
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Introduction 

The ability to recognise the identity of other people is a key skill for successful human 

communication. Impairments in person recognition lead to psychosocial disabilities such as 

difficulties in communication, avoidance of social situations, and feelings of embarrassment and 

failure (Yardley et al., 2008; Fine, 2012). Deficits in recognising a person by voice can be 

acquired due to brain lesions or neurodegenerative diseases (e.g., Van Lancker and Canter, 

1982; Neuner and Schweinberger, 2000; Hailstone et al., 2011). They can also be symptoms of 

developmental and psychiatric disorders such as autism spectrum disorder and schizophrenia 

(e.g. Boucher et al., 1998; Garrido et al., 2009; Alba-Ferrara et al., 2012; Mou et al., 2013; 

Roswandowitz et al., 2014; Schelinski et al., 2016a; Schelinski et al., 2016b).  

A deficit in voice-identity processing has been first described in patients with brain lesions and 

has been termed phonagnosia (Van Lancker and Canter, 1982). The clinical case studies have 

shown that brain lesions can lead to relatively selective impairments in recognising familiar 

person by voice, i.e. voice-identity recognition. In these cases voice-identity recognition deficits 

were dissociated from intact face-identity recognition skills (Van Lancker and Canter, 1982; Van 

Lancker and Kreiman, 1987; Neuner and Schweinberger, 2000), from relatively intact language 

skills (Assal et al., 1976; Assal et al., 1981; Lang et al., 2009), and from intact perceptual voice 

analysis stages, i.e. discriminating whether voices are same or different (Van Lancker and 

Kreiman, 1987; Van Lancker et al., 1988; Van Lancker et al., 1989). A cognitive model of voice-

identity processing is shown in Fig. 1A. These findings suggested a dedicated neural substrate 

for voice-identity recognition that is not involved to the same extent in other person 

recognition, language perception skills or even the perceptual analysis of voice identity features 

before identity recognition takes place. A few studies report detailed lesion locations for 

acquired phonagnosia cases (Van Lancker et al., 1988; Van Lancker et al., 1989). Based on these 

studies, a prime candidate area for voice-identity recognition is the right inferior parietal lobe. 

Right hemispheric lesions in the inferior parietal lobe were coupled with impaired familiar 

voice-identity recognition (Van Lancker et al., 1988; Van Lancker et al., 1989) (Fig. 1B). 
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Figure 1. Model of voice-identity processing and overview of neuroanatomical representations of voice-identity 
recognition. 

 

A. Voice-identity processing is conceived as a multistage process, which comprises (i) perceptual voice-identity 
processing, (ii) voice-identity recognition (feeling of familiarity), and (iii) semantic associations to a recognised 
voice (Roswandowitz et al., under review-a). B. Divergent findings on the neural representation of voice-identity 
recognition. Lesion studies suggest the right inferior temporal lobe and neuroimaging studies the temporal lobe 
being crucially involved in voice-identity recognition.  

 

Current neuroanatomical models of voice-identity processing, however, do not prominently 

feature the inferior parietal lobe (Belin et al., 2004; Blank et al., 2014). In contrast, they 

postulate a central role of the temporal lobe for voice-identity recognition (Fig. 1B). The 

temporal lobe houses the so-called temporal voice areas (TVAs) that are located along the 

STG/S. Neuroimaging studies in healthy humans as well as non-human primates and dogs have 

found that these regions have a strong preference for voices (Belin et al., 2000; von Kriegstein 

and Giraud, 2006; Petkov et al., 2009; Perrodin et al., 2011; Andics et al., 2014; Pernet et al., 

2015; for review see Perrodin et al., 2015). Of these regions, especially right hemispheric 

superior temporal gyrus/ sulcus (STG/S) regions, extending to the middle temporal gyrus 

(MTG), are responsive to identity recognition of humans voices (Belin and Zatorre, 2003; von 

Kriegstein et al., 2003; von Kriegstein and Giraud, 2004; Formisano et al., 2008; for reviews see 

Belin et al., 2011; Mathias and von Kriegstein, 2014).  

For the perceptual voice-identity analysis, in contrast, neuroimaging and lesion studies 

consistently report the bilateral temporal lobe (Van Lancker and Kreiman, 1987; Van Lancker et 
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al., 1988; Van Lancker et al., 1989). Within the temporal lobe, neuroimaging studies found 

distinct sub-regions supporting either the perceptual voice-identity analysis, i.e. posterior 

STG/S, parts of Heschl’s gyrus and planum temporale (Belin et al., 2000; von Kriegstein et al., 

2006; Warren et al., 2006; Formisano et al., 2008; Bonte et al., 2014) or voice-identity 

recognition, i.e. mid to anterior STG/S (Belin and Zatorre, 2003; Andics et al., 2010). 

The central goal of the present study was to work towards resolving the discrepancy between 

on one hand the temporal lobe focus in current standard neuroanatomical voice-identity 

processing models and neuroimaging studies and on the other hand the consistent findings in 

lesion studies that the inferior parietal lobe is crucial for voice-identity recognition. To do this is 

important, because neuroimaging studies with neurotypical participants can give predictions 

about the potential role of brain regions for behaviour. However, only studies with temporary 

functional or acquired lesions can give the exquisitely valuable insight about the causal role of 

these regions for voice-identity recognition behaviour.  

In previous case studies on acquired phonagnosia, lesion mapping was based on overlay 

representations of lesions based on computer tomography (Van Lancker and Canter, 1982; Van 

Lancker and Kreiman, 1987; Van Lancker et al., 1988; Van Lancker et al., 1989; Neuner and 

Schweinberger, 2000). Since these studies were published, magnetic resonance imaging (MRI) 

with high spatial resolution has become available in addition to complex statistical analysis 

procedures such as voxel based morphometry (VBM, Ashburner and Friston, 2000) or voxel-

based lesion symptom mapping (VLSM, Bates et al., 2003).  

Here, we used VLSM on patients with acquired brain lesions to test whether lesions in parietal 

and/or temporal lobe are associated with selectively impaired voice-identity recognition 

abilities. The patient sample included patients with a unilateral brain lesion. Patients with 

severe aphasia or severe cognitive impairments were excluded. We tested the patients on a 

comprehensive behavioural test battery on voice-identity recognition. In this test battery, we 

evaluated the patients’ abilities to recognise newly learned unfamiliar and familiar voices as 

well as the abilities to process acoustic voice features, which are important for voice-identity 

recognition (vocal pitch, vocal timbre; Lavner et al., 2000; Gaudrain et al., 2009). To control for 
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visual person recognition, the test battery also included assessments of face-identity 

recognition abilities. All patients additionally took part in a neuropsychological assessment and 

a pure-tone audiometry. We used the behavioural scores to correlate them with the lesion data 

based on structural brain scans. Besides addressing our main research question, the test design 

also allowed to test whether recognition of voices with different amount of familiarity are 

represented in the same or different neuroanatomical structures. 

 

Materials and methods 

Participants 

We recruited 70 patients with unilateral lesions at the Clinic for Cognitive Neurology, 

University-Hospital Leipzig, Germany. Exclusion criteria were severe aphasia, moderate to 

severe cognitive impairment, and a diagnosis of psychiatric disorders such as dementia, 

schizophrenia, personality disorder or depression. All patients gave their written informed 

consent prior to testing. Data were collected in accordance with the Declaration of Helsinki and 

of the Ethics Committee of the University of Leipzig. All patients received payment for their 

participation. From the 70 patients, we excluded 12 patients from the analysis: For 11 patients, 

we stopped behavioural testing because the tasks were too demanding. For one patient, 

neuroimaging data could not be obtained. In total, we included 58 patients into the VLSM 

analysis (31 female, 57 right-handed, Oldfield, 1971) (Fig. 1, Table 1, Supplementary Table 1). 31 

patients had a lesion in the right hemisphere and 27 patients in the left hemisphere. Lesion 

types included ischemic stroke (n = 34), traumatic brain injury (n = 7), intracerebral bleeding (n 

= 6), subarachnoid haemorrhage (n = 6) and tumour excision (n = 4). 12 of the 58 patients had a 

mild to moderate aphasia (Supplementary Table 1). 35 of the patients had a diagnosis of mild 

and six patients of a moderate cognitive disorder (Supplementary Table 1). Irrespective of 

aphasia and cognitive disorder diagnoses, all patients had good verbal communication skills and 

all patients stated that experimental tasks were all feasible. An overview of the patient 

demographics and the results of the neuropsychological assessment can be found in Table 1. 

Individual patient characteristics are provided in Supplementary Table 1. 
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Experimental procedures 

General procedure 

The complete testing procedure included an audiogram, a neuropsychological assessment, a 

paper-based questionnaire, and a behavioural test battery (i.e. computer tests on voice- and 

face recognition). All computer tests were carried out on a desktop computer. Participants 

were comfortably seated facing a 21-inch monitor that displayed the visual stimuli. Auditory 

stimuli were presented via Headphones (Sennheiser HD 280 pro, Wennebostel, Germany). The 

sound level was individually adjusted to a comfortable sound pressure level for each 

participant. The participants’ responses were recorded via a keyboard. To ensure that all 

participants understood the tasks, the experimenter gave oral instructions in addition to 

written instructions prior to each test. The audiogram and the computer tests were carried out 

in a sound-attenuated chamber. Patients were tested in two or three sessions on separate days. 

Patients could request breaks, whenever they wanted. Experiment completion over the 

separate days including breaks took approximately 5 hours.  

Audiometry 

We assessed hearing levels via a pure-tone (250 – 8000Hz) screening audiometry (MADSEN 

Micromate 304, GN Otometrics, Copenhagen, Denmark).  

Neuropsychological assessment 

The neuropsychological assessment contained tests on attention (Alertness as a subtest of the 

Test of Attentional Performance (TAP) Version 2.2, Zimmermann and Fimm, 2009), on auditory 

and visual-spatial working memory (Digit and Spatial Span as subtests of the WMS-R, Härting et 

al., 2000), on verbal intelligence and language comprehension (German Vocabulary Test, 

‘Wortschatztest’ – 1st Edition, Schmidt and Metzler, 1992) and on associative learning abilities 

(‘Face-name learning’, GNL, Schuri and Benz, 2000). For each test, we transformed the raw test 

scores into age- and education-corrected percentile ranks based on task-specific normalised 

reference values obtained from healthy participants. Only for one of the scores (i.e. memory 

score of the face-name learning test) we report percent correct values because no normalised 

reference values were available (Table 1). 



87 
 

Questionnaire on person recognition 

We developed a paper-based questionnaire to assess abilities in everyday person-recognition 

situations. Participants were asked to rate their abilities on general person-recognition abilities 

and on voice and face recognition on a scale from 1 (excellent) to 5 (very poor). Further, we 

asked participants about the cues they use for person recognition (e.g., person as a whole, face, 

voice, clothing, or posture). 44 out of the 58 patients rated each questionnaire item once for 

the time before and once for the time after lesion onset. An English version of the 

questionnaire is available online:  

http://kriegstein.cbs.mpg.de/questionnaire /questionnaire_patients.pdf. The other 14 patients 

filled-in an older version of the questionnaire, in which they were asked to provide ratings for 

their abilities only after lesion onset.  

Behavioural test battery 

We used a behavioural test battery for assessing voice-identity recognition abilities. This test 

battery has been used in a previous study on healthy participants (Roswandowitz et al., 2014). 

Here, we conducted the same version except for an adaption of the famous voice test (see 

below). 

Newly-learned voice recognition: Voice-name and voice-face test 

In the voice-name and voice-face test participants learned and recognised previously unfamiliar 

voices. Unfamiliar voices were either associated with a written first name (voice-name test) or 

with the picture of the speaker’s face (voice-face test). 

Stimuli and presentation software 

The auditory stimuli were recorded from 14 native speakers of standard German (eight female, 

six male, age range = 21 - 32 years). We instructed all speakers to read the sentences with a 

normal speech rate and with an emotionally neutral intonation. Each speaker read 41 five-word 

declarative sentences (about 2 sec long), 5 two-word declarative sentences (about 0.7 sec 

long), and 5 five-word interrogative sentences (about 2 sec long). This resulted in a total set of 

714 sentences. High quality auditory recordings were taken in a soundproof recording chamber 

with a condenser microphone (Rode NT 55 MP; USB Sound Interface: Fast Track MK2, M-Audio, 

http://kriegstein.cbs.mpg.de/questionnaire%20/questionnaire_patients.pdf
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US; 44.1 kHz sampling rate, 16 bit resolution) and Audacity software (version 1.3.5. beta 

(http://audacity.sourceforge.net). They were recorded using Sound Studio 3 (Felt Tip Inc., NY, 

USA), post-processed using Audacity (version 1.3.5. beta (http://audacity.sourceforge.net) and 

Matlab (version 8.1, The MathWorks, Inc., MA, USA), and were normalized for peak amplitude 

using PRAAT (Boersma and Weenink, 2005). The visual stimuli comprised photographic images 

of the speakers’ faces. Images were recorded with a digital video camera (Legria HF S10 HD-

Camcorder, Canon Inc., Japan). They were all taken under the same lighting conditions in front 

of a black background. The speakers’ faces were visible from the chin to the hairline with a 

neutral expression. No face contained salient visual features such as beards, piercings or 

glasses. The test was implemented in Presentation software (Neurobehavioural Systems, Inc., 

CA, USA) and responses were recorded via keyboard.  

Procedure and analysis 

The procedure of the voice-name and the voice-face learning test were exactly the same, 

although different stimuli and different speakers were used in both tests. The tests contained a 

‘female-voices’ block and a ‘male-voices’ block, which were identical in structure. The blocks 

were structured into four learning and four interim-testing phases, presented in alternating 

order, plus an additional final testing phase. During learning, participants heard the five-word 

declarative sentences spoken by three speakers. Each sentence presentation was either 

accompanied by a name (voice-name test) or a face (voice-face test). Participants had the task 

to learn these associations. The learning phases differed in the number of sentences that were 

presented: ten sentences per speaker during the first and second learning phase and three 

sentences per speaker in the third and fourth learning phases. The presentation order of the 

speakers was randomized. During the interim-testing phases, the participants listened to the 

auditory stimuli and performed a three-alternative forced choice task in which they selected 

either the name (voice-name test) or the face (voice-face test) associated with the voice. In the 

first and the second testing phases, participants received feedback about their decision, and the 

correct voice-name/voice-face pair was presented again. Each interim-testing phase included 

five sentences per speaker. To avoid prosody-driven identity processing, we used different 

types of sentences for the testing phases: Five-word declarative sentences for the first and 
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second phase, five-word interrogative sentences in the third phase, and two-word declarative 

sentences in the fourth phase. Each test, i.e. voice-name and voice-face test, took 

approximately 40 minutes to complete. There was a break between both tests. 

As a measure of newly-learned voice-recognition performance, we calculated a mean percent 

correct score of the correct trials over all five testing phases of the female and male block, 

respectively for the voice-name and voice-face test. 

 

Familiar voice recognition: Famous voice test 

In the famous voice test, participants listened to samples of famous and non-famous voices and 

categorised them as belonging to either familiar or unfamiliar people (‘familiarity decision’). If 

they categorised a voice as familiar, participants were asked to associate semantic information 

to the speaker’s voice (‘semantic association’). 

Stimuli and presentation software 

The auditory stimulus set contained voice samples of famous (n = 42, see Supplementary 

methods, famous voice test) and non-famous (n = 20) German speakers. We extracted the voice 

samples from open-access high quality audio files available on public radio and television 

websites. Each sample was cut to five seconds duration. The famous voice samples comprised 

voices from 21 media personalities, eight politicians, seven actors and four musicians. In a pilot 

study, a group of 10 individuals without voice-recognition deficits rated the familiarity of a 

larger stimulus set (n = 56) on a scale from 0 (completely unfamiliar) to 5 (highly familiar). 

Samples rated with an average of three or higher (n = 42) were included in the final stimulus 

set. The files were edited using Audacity (version 1.3.5. beta (http://audacity.sourceforge.net)) 

and peak amplitude was scaled using PRAAT (Boersma and Weenink, 2005). The semantic 

content of the auditory samples provided no information about the celebrities' identity or 

profession. The test was implemented in Presentation software (Neurobehavioural Systems, 

Inc., CA, USA) and responses were recorded via keyboard. 
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Procedure and analysis 

At the beginning of the test, participants were asked to estimate their weekly exposure to 

television and radio (in hours). Subsequently, the famous and non-famous voice samples were 

presented. After each sound sample, participants were asked to categorize the voices as 

familiar or unfamiliar (i.e. familiarity decision). If on a given trial the voice sample was 

categorized as unfamiliar, the next voice sample was presented. If participants categorised the 

voice as familiar, irrespective of whether the voice was famous or non-famous, they afterwards 

performed a four-alternative forced choice task (‘semantic association’). A choice of three 

celebrities (name and face picture) and a question mark was presented on the screen. One of 

the three celebrities was the same identity as the voice sample. Participants were instructed to 

choose the question mark if they had thought that the voice sample was belonging to a 

different celebrity than the ones presented on the screen. Though, for each famous voice trials 

there was a matching voice-name/face pair. The response options differed from the previous 

test design (Roswandowitz et al., 2014), in which we asked participants to type in person-

specific knowledge in an open-response format. The reasoning behind the new task design was 

to avoid possible biases due to mild or moderate aphasia. 

Before starting the testing, one practice trial was introduced to familiarise participants with the 

task. 

At the end of the test, we assessed each participant’s familiarity with the celebrities’ identities. 

To do that, participants were presented with each famous person’s written name and face (in a 

different order than in the main test). In addition, we included 15 celebrities that had not been 

presented in the main test to get familiarity ratings that are, as much as possible, unbiased by 

the recognition performance. First, participants were asked to indicate whether the famous 

person was familiar or unfamiliar to them. If the person was rated as familiar, three questions 

followed: (i) How often have you heard the voice? (never/ rarely/ sometimes/ often/ very 

often) (ii) How good do you think you would recognise the person’s voice? (not at all/ poor/ 

good/ very good) (iii) How good do you think you would recognise the person’s face? (not at all/ 

poor/ good/ very good). The complete test took about 45 minutes with a break between the 
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voice-recognition test (i.e. 30 minutes) and the follow-up survey on celebrity familiarity (i.e. 15 

minutes).  

Based on their personal familiarity ratings obtained from the survey, we individually re-

classified all of the famous voices (n = 42) into famous and non-famous voice categories. The 

celebrities who (i) were known to the participants and (ii) had been at least sometimes listened 

to were categorised as subjectively familiar persons. All other celebrities were categorized as 

unfamiliar. The non-famous voices (n = 20) were all classified as non-famous. This procedure 

allowed us to determine whether the participants correctly or incorrectly categorized the voices 

of subjectively familiar celebrities. We analysed the data by applying detection theory 

(Macmillan and Creelman, 2004). We computed indices of sensitivity (d-prime, d’) of voice 

familiarity judgment assuming the yes-no decision model. Each famous voice sample correctly 

classified as familiar was considered a ‘hit’, and each famous voice sample classified as 

unfamiliar was considered a ‘false alarm’ (i.e. familiarity decision). 

In addition, we computed the proportion of those familiar voices that were correctly matched 

with the name and face of the respective celebrity (i.e. semantic association) and those that 

were not correctly matched or for which the question mark was chosen. 

 

Acoustic voice processing: Vocal-pitch and vocal-timbre test 

Using an adaptive tracking procedure (Kaernbach, 1991), we measured the individual threshold 

to discriminate between two subsequent vowels, modulated in pitch (vocal-pitch test) or 

timbre (vocal-timbre test). For details see Supplementary methods.   

 

Visual control tests 

CFMT 

With the CFMT (Duchaine and Nakayama, 2006), we investigated the ability to recognise 

unfamiliar faces. Participants first learned six male faces. They were then asked to recognise 

one of the learned faces out of three presented faces (one learned, two unfamiliar). The CFMT 

comprises three different test sections: same images, novel images, and novel images added 

with Gaussian noise. There was a total of 72 items. The test took approximately 15 minutes. 
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Face-name test 

In the face-name test, participants learned and recognised previously unfamiliar faces and their 

names. Six male faces were associated with a written first name. After learning, participants 

were presented with a novel picture of one of the faces and they were asked to select the 

corresponding name from six alternatives. For details see Supplementary methods.  

 

Imaging methods 

For 56 patients structural high-resolution MRI scans and for two patients CT scans were 

available. MRI scans were acquired on a 3 T Siemens MRI system (Siemens Trio® or Verio® 

system, Siemens Medical Systems, Erlangen, Germany) including 3D T1-weighted- (1mm3 

isotropic voxels), and FLAIR-images. The lesions were manually delineated in all three planes 

(axial, coronal, sagittal) on each slice of the T1-images using MRIcron (Rorden and Brett, 2000). 

The FLAIR-images served as a reference. Lesion delineation was performed by an experienced 

neurologist (HO). In addition, lesion delineation was checked by a second experienced 

neuroscientist with medical training (KVK). Both were blind to the individual patient’s 

performance in the behavioural test-battery. T1 images were then transformed into standard 

stereotactic space (MNI) using SPM8 (www.fil.ion.ucl.ac.uk/spm). The unified segmentation 

approach was applied (Ashburner and Friston, 2005) and the estimation of normalization 

parameters was restricted to healthy tissue using the predefined lesion mask (cost function 

masking, Brett et al., 2001).  

Voxel-based lesion symptom mapping analysis 

We performed voxel-based lesion symptom mapping (VLSM, Bates et al., 2003) to identify 

systematic relationships between lesioned brain regions and behavioural measures. We used 

VLSM 2.55 (http://www.neuroling.arizona.edu/resources.html) implemented in Matlab (version 

8.2, The MathWorks, Inc., MA, USA). For each behavioural test, the spatially normalised lesion 

maps and corresponding behavioural scores were used to create t-maps. On a voxel-by-voxel 

basis, the VLSM analyses run a general linear model comparing performances on every measure 

in patients with a lesion versus without a lesion in the respective voxel. Thus, lesion status of 

the voxel (0 = intact, 1 = lesioned) is the independent variable and the behavioural measures 
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the dependent variables. We applied several general linear models, i.e. with the behavioural 

measures of each test separately and with composite scores as dependent variables. To 

compute composite scores of measures with different units (i.e. percent correct scores of 

unfamiliar voice tests and d’ prime scores of the familiarity decision of the famous voice test), 

we z-transformed them (for more details see Results). For each general linear model, we 

calculated an additional analysis with hearing level (mean over both ears) and lesion volume as 

covariates to account for a possible influence of these factors. For the VLSM analyses, we 

included only voxels in which at least 3 patients had a lesion.  

Significance threshold 

Statistical maps were thresholded at voxelwise p < 0.01. They were then corrected for multiple 

comparisons based on cluster size with respect to 1000 permutations in which behavioural 

scores were randomly reassigned (Kimberg et al., 2007; Wilson et al., 2010). After permutation, 

clusters with a corrected p < 0.05 were considered significant. We applied the same significance 

threshold for whole brain and ROI analyses. For the behavioural analyses, we applied a 

significance threshold of p < 0.05 and applied Bonferroni-correction. 

Region of interest definition 

We created a ROI map including the bilateral temporal lobe and the right inferior parietal lobe 

to investigate brain structures associated with voice-identity processing. The ROI was based on 

atlases provided in FSL (Smith et al., 2004, http://www.fmrib.ox.ac.uk/fsl/fslview). We 

extracted probabilistic maps of the temporal lobes from the MNI Structural Atlas (Mazziotta et 

al., 2001) and for the right inferior parietal lobe from the Juelich Histological Atlas (Caspers et 

al., 2013). The inferior parietal lobe map contained the areas PF, PFm, and Pga. The resulting 

map covered parietal regions that have been previously associated with voice-identity 

recognition deficits i.e., the supramarginal gyrus (SMG), and the angular gyrus (Van Lancker et 

al., 1988). We extracted the maps from different atlases, because (i) the parietal lobe map of 

the MNI Structural atlas does not contain definitions of substructures and is relatively 

unspecific as it also includes regions that have not been reported to be critically involved in 

voice-identity processing (i.e., lateral occipital cortex, postcentral gyrus, postcentral gyrus, 

precuneus, cingulate gyrus), and (ii) a temporal lobe map is not provided in the Juelich 
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Histological atlas. Based on visual inspection, we chose a threshold of 10% to restrict maps to 

anatomically meaningful brain regions. The final ROI map was a union of the bilateral temporal 

lobe and the right inferior parietal lobe maps. 

VLSM results reporting  

For the VLSM results, we report coordinates for the clusters’ centre of mass.  

For anatomical labelling we used three atlases provided by the FSL Anatomy Toolbox: (i) the 

Juelich Histological Atlas (Eickhoff et al., 2005) for sub-classification of the Heschl’s gyrus, (ii) 

the MNI Structural Atlas (Mazziotta et al., 2001) to classify the brain lobes, and (iii) the Harvard-

Oxford Cortical and Subcortical Structural Atlas (Desikan et al., 2006) for all other structures. 

 

Results 

Behavioural results 

Results on the behavioural test battery, neuropsychological assessment, and audiometry are 

displayed in Table 1. For all of the voice and face recognition tests, patients performed 

significantly above chance level (Table 1). We used Pearson correlations to assess whether the 

test performance was influenced by demographic variables (age, time since lesion onset, 

education, and lesion volume), hearing level, or neuropsychological status. No correlation 

reached significance after correcting for multiple comparisons (p < 0.05, after Bonferroni 

correction for 99 tests p < 0.0005). Correlation results at an uncorrected level are reported in 

Supplementary Results. 
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Table 1: Demographic details, neuropsychological, and behavioural measures. 

 n Mean SD Min Max 

Demographic details      

Age 58 47.95 11.59 22.00 68.00 

Time since onset [month] 58 46.02 51.51 2.00 273.00 

Education [years] 58 10.50 1.23 8.00 12.00 

Hearing level [dB] 58 18.11 8.45 3.34 39.17 

Neuropsychological tests      

Digit span [PR]  58 32.15 22.16 2.00 90 

Spatial Span [PR] 58 39.35 24.95 4.50 95 

TAP (alertness) [PR] 54 32.77 23.64 1.00 86 

German Vocabulary Test [PR] 54 54.51 20.61 8.10 91.90 

Face-name learning  53     

           cued + sum [PR]  61.34 34.36 0.00 100 

           memory [%]  87.56 22.04 3.00 120 

Behavioural test battery      

Newly-learned voice recognition      

     Newly-learned voice tests [%] 43 59.97 10.30 46.00 87.22 

     Voice-name test [%] 58 56.14 12.91 31.67 90.00 

     Voice-face test [%] 43 64.08 11.66 45.34 93.33 

Familiar voice recognition      

     Famous voice test [z] 57 0.00 0.73 -1.28 1.84 

     Familiarity judgment [d’] 57 1.11 0.84 -1.67 3.65 

     Semantic association [%] 57 69.60 18.81 25.00 100.00 

Acoustical voice processing      

     Vocal-pitch test [cent] 58 125.17 66.05 18.28 249.96 

     Vocal-timbre test [SER] 55 9.73 4.62 1.66 17.81 

Visual control tests      

     CFMT [%] 57 66.79 15.52 34.72 93.06 

     Face-name test [%] 43 60.54 19.15 20.67 96.67 
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The table displays mean values, standard deviations, minimum (Min) and maximum (Max) values on 

demographical, neuropsychological measures, and on each behavioural test respectively for all patients who 

completed the test (n). Hearing levels are averaged over both ears. PR = percentage rank, TAP = Test of attentional 

performance, SER = spatial envelop ratio. 

Comparing behavioural performance in patients with left and right sided lesions has a long 

tradition in voice-recognition research (Assal et al., 1981; Van Lancker and Kreiman, 1987; Van 

Lancker et al., 1989; Lang et al., 2009) and we therefore also compared voice-recognition 

performance in these two groups. First, we tested if both groups differed in their voice-

recognition performance over both familiarities (i.e. composite score of z-transformed means 

of the newly-learned (i.e. mean of voice-name and voice-face test) and of the familiar voice 

tests (i.e. mean of familiarity decision and semantic association of the famous voice test). This 

analysis revealed comparable group performance in patients having a right- and left-

hemispheric lesion (Z = 0.957, p = 0.339). Next, we separately compared group performances of 

the newly-learned and familiar voices. For the composite score of the newly-learned voice 

recognition tests, the group of patients with right-hemispheric lesions performed significantly 

worse than the group of patients with left-hemispheric lesions (composite score of voice-name 

and voice-face test: Z = -2.28, p = 0.022, Bonferroni correction for the two voice-recognition 

measures, i.e. composite score newly-learned voice recognition and composite score of famous 

voice test, p = 0.025). The familiar voice recognition performance was comparable in both 

lesion groups (composite score of familiarity decision and semantic association: Z = 1.08, p < 

0.303. For completeness, we also checked group differences for the other behavioural 

measures at an uncorrected level. Of these tests, only the voice-face test revealed a significant 

group difference, i.e. worse performance in patient group with right-hemispheric lesions 

compared to the left-hemispheric patient group (see Supplementary Table 2). 

Questionnaire results 

The results of the person-recognition questionnaire are reported in Supplementary results, and 

Supplementary Table 3,4. 
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VLSM results 

Lesion coverage 

Figure 2 displays the lesion overlay for all 58 patients (Fig. 2A). We checked whether lesions in 

the temporal lobe covered those parts that have been previously characterised as voice-

identity sensitive in neuroimaging studies. In the same vein, we also inspected lesion coverage 

in the inferior parietal lobe that has been previously described as causing voice-identity 

recognition impairments in patient case reports. 

To do that, we checked if the anatomical temporal lobe map (Fig. 2B) covered all reported 

voice-sensitive statistical maxima found in neuroimaging studies. This was the case for 59 of 60 

reported statistical maxima (Belin et al., 2000; Belin and Zatorre, 2003; von Kriegstein et al., 

2003; von Kriegstein and Giraud, 2004; von Kriegstein et al., 2005; Warren et al., 2006; Blank et 

al., 2011; Blank et al., 2014; Bonte et al., 2014; Roswandowitz et al., accepted). We further 

checked if areas with a-priori anatomical hypotheses within the temporal lobe map were 

covered by lesions in more than 3 patients. This was the case for all the voice-sensitive regions, 

i.e. bilateral STG, MTG, Heschl’s gyrus and planum temporale. Next, we checked if areas with a-

priori anatomical hypotheses of the right inferior parietal lobe map were covered by lesions in 

more than 3 patients (Fig. 2B). The angular and supramarginal gyrus were well covered (Fig. 

2C). For an overview of ROI structures that were not covered by lesions see Supplementary 

Table 4. 
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Figure 2. Lesion overlay and region of interest map. 

 

A. Lesion overlay map of all patients over the whole brain. Left hemisphere is left on coronal slice. Coloured areas 
are lesioned in at least one patient. Voxels lesioned in seven or more patients are depicted in yellow. Coordinates 
refer to MNI space. B. Region of interest map. Anatomical region of interest map covered the bilateral temporal 
lobe (i.e. cyan) and the right inferior parietal lobe (i.e. turquoise). C. Lesion overlay map of all patients within the 
region of interest map. Coloured areas are lesioned in at least three patients. Voxels lesioned in seven or more 
patients are depicted in yellow. 

 

Voice recognition 

First, we investigated which lesion locations were associated with deficient voice recognition 

irrespective of voice familiarity. To do that, we performed a VLSM analysis including the 

composite score of the z-transformed performance in newly-learned (voice-name and voice-

face test) and familiar voice recognition (familiarity decision and semantic association of the 

famous voice test) as the dependent variable. There was a statistical brain-behaviour 

association in a large right temporal lobe cluster with its centre of mass in the planum 

temporale extending to mid/posterior STG and the inferior parietal lobe i.e. the SMG (Fig. 3A, 

Table 2). Next, we tested whether our findings remained significant when we control for 
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individual hearing abilities and lesion volumes. When adding both factors as covariates into the 

analysis, a right temporal lobe cluster with its centre in the posterior STG remained significant 

(Fig. 3A, Table 2). Notably, this cluster again extended to the right inferior parietal lobe. 

Voice recognition controlled for face recognition 

We next tested whether the statistical brain-behaviour association for voice recognition in the 

right temporal and inferior parietal lobe was selective to vocal person recognition. To do that, 

we controlled for facial person-recognition abilities by entered the z-transformed composite 

score of the CFMT and face-name test performance as a covariate into the analysis. This allows 

the analysis of variance in voice recognition (predictor variable) while minimising face 

recognition deficits as a source of variance (covariate) (Baldo et al., 2013; Rogalsky et al., 2015; 

Binder et al., 2016). This analysis revealed a significant brain-behaviour association in the right 

temporal lobe (Fig. 3B). The cluster’s centre of mass was located in the planum temporale 

(Table 2). After adding hearing level and lesion volume as covariates, the same right temporal 

lobe cluster remained significant. There were no further significant clusters at a whole-brain 

level for any of the analyses. 

The results suggested that both the temporal and inferior parietal lobe were critical for voice 

recognition, but that the temporal lobe might be more specifically involved in voice recognition, 

while the inferior parietal lobe might be rather involved in multimodal person recognition that 

also involves faces. 

Voice recognition after voice-face and voice-name association 

To explicitly assess the role of facial information during voice recognition in the inferior parietal 

lobe, we separately looked at brain-behaviour associations for identity recognition of voices 

that were associated with faces (i.e. voice-face test) and voices that were associated with 

names (i.e. voice-name test). For the voice-face test, a lesion cluster associated with deficient 

performance was located in the right inferior parietal lobe (i.e. parietal operculum cortex, Fig. 

3C, Table 3) extending marginally into the temporal lobe. This cluster remained significant after 

adding hearing level and lesion volume into the analysis (Fig. 3C, Table 2). For the voice-name 

test, a lesion cluster associated with deficits in performance was located in the right temporal 

lobe (i.e. posterior MTG, Fig. 3D, Table 2) with a small extension into the inferior parietal lobe. 
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The effect in the temporal lobe remained significant after adding hearing level and lesion 

volume as covariates. Please note, although the significant peak clusters of both tests were 

located in distinct lobes, there was an overlap of lesions in the right temporal lobe (i.e. 

posterior STG) (controlled for hearing level and lesion volume). 

Figure 3. Lesions in the temporal and inferior parietal lobe associated with difficulties in voice recognition. 

 

 

A. VLSM results for the composite score of newly-learned and familiar voice recognition (n = 42). B. VLSM results 
for voice-recognition controlled for performance in face recognition (i.e., composite score of CFMT and face-name 
test, n = 40). C. VLSM results of the voice-face test (n = 43). D. Results of the voice-name test (n = 58). VLSM results 
that are controlled for hearing level and lesion size are overlaid as red surfaces on each image. Analyses were 
restricted to the bilateral temporal lobe and right inferior parietal lobe. All voxels shown exceeded the critical 
threshold for significance (p < 0.01 cluster-size corrected, 1000 permutations). 
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Table 2. Overview of lesion-cluster coordinates associated with voice recognition. 

 
Voice recognition   
(newly-learned and familiar voices) + HL and LV 

Region x y z Max T p n of 
voxels 

x y z Max 
T 

p n of 
voxels 

Right  
temporal lobe             
Planum  
temporale 

57 -34 16 3.96 0.005 12460       

Posterior STG       56 -37 13 3.51 0.004 15656 

 Voice recognition  
Face recognition controlled + HL and LV 

 

 x y z Max 
T 

p n of 
voxels 

x y z Max 
T 

p n of 
voxels 

Right  
temporal lobe             
Planum  
temporale 

59 -30 12 3.38 0.038 5442 59 -30 12 3.26 0.038 5442 

 Voice-face test + HL and LV  

 x y z Max 
T 

p n of 
voxels 

x y z Max 
T 

p n of 
voxels 

Right 
parietal lobe             
Parietal 
operculum 
cortex 

59 -33 32 3.36 0.003 6921 57 -34 28 3.30 0.013 8499 

 Voice-name test + HL and LV  

 x y z Max 
T 

p n of 
voxels 

x y z Max 
T 

p n of 
voxels 

Right  
temporal lobe             
posterior 
MTG 

62 -31 0 3.03 0.030 3532 60 -35 -1 3.73 0.023 8176 

Centre of mass coordinates are reported in MNI space (in mm). Anatomical labels according to the Harvard-Oxford 
Cortical and Subcortical Structural Atlas (Desikan et al., 2006) provided by the FSL Anatomy Toolbox (Smith et al., 
2004). Results are reported at p < 0.01 cluster-size corrected, 1000 permutations. STG = superior temporal gyrus, 
MTG = middle temporal gyrus, HL = hearing level, LV = lesion volume 
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Newly-learned and familiar voice recognition 

Lesion studies have shown that impaired identity processing of different voice familiarities are 

related to different brain lesions (Van Lancker and Kreiman, 1987; Van Lancker et al., 1988; Van 

Lancker et al., 1989; Hailstone et al., 2011). However, in those studies different test designs 

have been used, i.e. discrimination/matching tasks for unfamiliar voice-identity processing and 

recognition tasks for familiar voice-identity processing. We here tested whether also different 

lesion clusters are associated with impaired identity processing of voices having different 

familiarities when using the same test design, i.e. voice-recognition test. 

To assess lesion clusters associated with newly-learned voice recognition, we performed a 

VLSM analysis including the composite score of the voice-name and the voice-face test 

performance as the dependent variable. We found a significant brain-behaviour association in 

both the inferior parietal and temporal lobe of the right hemisphere (Fig. 4A, Table 3). In the 

right inferior parietal lobe, a cluster in the posterior SMG reached significance and in the right 

temporal lobe four clusters reached significance: the posterior STG, the posterior MTG, the 

planum temporale and Heschl’s gyrus. Lesion clusters in the temporal (i.e. posterior MTG) and 

inferior parietal lobe (i.e. posterior SMG) remained significant after controlling for hearing level 

and lesion volume (Fig. 4A, Table 3).  

Next, we assessed the brain-behaviour association for familiar voice recognition. We included 

the z-transformed composite score of familiarity decision and semantic association of the 

famous voice test as a dependent variable. There was a significant brain-behaviour association 

in the left temporal lobe, i.e. posterior MTG (Fig. 4B), Table 3). After adding hearing level and 

lesions volume as covariates no cluster remained significant. Further analyses with the separate 

measurements of the famous voice test (i.e. familiarity decision and semantic association) 

revealed no significant results (for a report at a more lenient threshold see Supplementary Fig. 

1, Supplementary Table 6). 
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Figure 4. Lesions associated with identity recognition of newly-learned and familiar voices.  

 

A. VLSM results for newly-learned voice recognition (composite score of voice-name and voice-face test, n = 43 
patients). VLSM results that are controlled for hearing level and lesion size are overlaid as red surfaces. B. VLSM 
results for familiar voice recognition (composite score of the familiarity decision and semantic association score of 
the famous voice test, n = 57 patients). All voxels shown exceeded the critical threshold for significance (p < 0.01 
cluster-size corrected, 1000 permutations). Analysis is restricted to the bilateral temporal lobe and the right 
inferior parietal lobe. 
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Table 3: Overview of lesion-cluster coordinates associated with newly-learned and familiar voice recognition.  

 

 
Newly-learned voice recognition  
(voice-name and voice-face test) 

+ HL and LV 

Region x y z Max T p n of 
voxels 

x y z Max T p n of 
voxels 

Right  
parietal lobe 

            

posterior 
SMG 

58 -37 32 3.25 0.002 1971 57 -39 36 3.02 0.031 2133 

Right  
temporal lobe 

            

posterior STG 62 -27 3 2.69 0.003 1116       
posterior 
MTG 

48 -37 -3 2.62 0.018 90 58 -31 -5 3.24 0.019 4087 

Planum  
temporale 

59 -17 8 2.77 0.023 59  
     

Heschl’s gyrus  
(Te 1.1, Te 
1.0) 

44 -23 10 2.50 0.036 17 
      

 
Familiar voice recognition   
(familiarity and semantic association) + HL and LV 

Region x y z Max 
T 

p n of 
voxels 

x y z Max 
T 

p n of 
voxels 

Left  
temporal lobe             
posterior MTG -55 -33 -8 2.99 0.04 4447 - - - - - - 
Centre of mass coordinates are reported in MNI space (in mm). Anatomical labels according to the Harvard-Oxford 
Cortical and Subcortical Structural Atlas (Desikan et al., 2006) provided by the FSL Anatomy Toolbox (Smith et al., 
2004). Results are reported at p < 0.01 cluster-size corrected, 1000 permutations. SMG = supramarginal gyrus, STG 
= superior temporal gyrus, MTG = middle temporal gyrus. HL = hearing level, LV = lesion volume 

 

Acoustical voice processing 

The analyses of the brain-behaviour association on acoustical voice processing (i.e. vocal-pitch 

and vocal-timbre test) revealed no significant results.  
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Discussion 

We here used voxel-based lesion symptom mapping to investigate the contribution of temporal 

and inferior parietal lobe lesions to difficulties in voice-identity recognition in patients with 

acquired brain lesions. There were two key findings. First, lesions in both the temporal and the 

right inferior parietal lobe were associated with voice-recognition impairments. However, if we 

controlled for face recognition difficulties, only lesions in the right temporal lobe were 

associated with impaired voice recognition. Second, lesions in the right inferior parietal lobe 

were particularly associated with difficulties in voice recognition, if the voices had been learned 

together with the corresponding face, but not to the same extend if they had been learned 

together with a name. For a schematic overview of the key brain-behaviour associations see 

Fig. 5. In addition, identity recognition of different voice familiarities was accomplished in 

distinct brain structures. Difficulties in recognising newly-learned voices were associated with 

lesions in the right hemisphere and difficulties with familiar voice recognition with left-

hemispheric lesions. The findings provide an important step forward in resolving the current 

discrepancy between neuroimaging and lesion findings, because they (i) qualify the 

contributions of the inferior parietal lobe in voice-identity recognition and causally confirm (ii) 

the crucial contributions of the right temporal lobe to successfully recognise voice identities. 

Figure 5. Overview of lesions associated with voice-recognition deficits within the temporal (cyan map) and inferior 
parietal lobe (turquoise map). 
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Selective voice recognition in the temporal lobe 

Our findings are in line with the numerous investigations on neurotypical participants that 

repeatedly showed voice sensitivity in the temporal lobe. These responses have been found for 

different test designs (e.g. vocal-sound listening, voice-identity recognition, and voice 

discrimination) and different voice familiarities (e.g. unfamiliar, newly-learned, and personally 

familiar voices) (Belin et al., 2000; Shah et al., 2001; von Kriegstein et al., 2003; von Kriegstein 

and Giraud, 2004; Warren et al., 2006; Bestelmeyer et al., 2011). Also, voice sensitivity in the 

temporal lobe is supported by different imaging methods such as fMRI (Belin et al., 2000; von 

Kriegstein et al., 2003), EEG (De Lucia et al., 2010), MEG (Renvall et al., 2012; Capilla et al., 

2013; Schall et al., 2015), as well as one neurostimulation study (Bestelmeyer et al., 2011). The 

importance of the temporal lobe is also highlighted in traditional lesions studies. There the 

temporal lobe was linked to the perceptual analysis of unfamiliar voices (Van Lancker et al., 

1988; Van Lancker et al., 1989).  

Here we advance previous neuroimaging as well as clinical findings, because we prove a causal 

contribution of the temporal lobe not only to the perceptual voice analysis, as previously 

shown, but also for the recognition of voice identities. Further, we precisely showed which 

lesioned sub-structures of the right temporal lobe cause reduced abilities in voice recognition 

and that these are relatively selective: They were independent from abilities for face 

recognition and they were present in patients with relatively intact language skills (Fig. 2B). 

Current neuroscientific models suggest that selective voice-identity processing, including 

perceptual voice analysis and voice-identity recognition, is processed in the core-voice system 

in the temporal lobe (Belin and Zatorre, 2003; von Kriegstein and Giraud, 2004; Warren et al., 

2006; Andics et al., 2010; Roswandowitz et al., under review). The semantic association to a 

recognised voice, however, in an extended system, which shares connections to the core-voice 

system (Hailstone et al., 2011; Gainotti, 2015; Roswandowitz et al., under review). Within the 

temporal lobe neuroimaging studies have found that posterior STG/STS and auditory regions 

are involved in the perceptual analysis of complex spectrotemporal voice features that 

accomplish voice-identity processing, while more anterior regions seem to represent voice 
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identity (Belin and Zatorre, 2003; von Kriegstein and Giraud, 2004; von Kriegstein et al., 2007; 

Andics et al., 2010).  

The lesion locations in the present study that lead to difficulties in selective voice-identity 

recognition are located in rather posterior STG/STS and auditory regions (planum temporale 

and Heschl’s gyrus) of the core-voice system.  

By using a comprehensive test battery and sophisticated analysis methods, a recent VBM study 

on voice-identity processing gave the first spatially precise indication that is it the anterior 

temporal lobe that crucially supports voice-identity recognition (Hailstone et al., 2011). 

However, lesions in the anterior medial temporal lobe were not exclusively linked to impaired 

voice-identity recognition; they were rather associated with multi-modal person recognition 

deficits (i.e. by voice, face, and name). This is consistent with previous reports of associative 

person-recognition deficits with anterior temporal lobe lesions in neurodegenerative disease 

(Gainotti et al., 2003; Gainotti et al., 2008; Hailstone et al., 2010). 

Also neuroimaging studies have assigned voice-identity representations to anterior regions of 

the temporal lobe, i.e. anterior STG/S (Belin and Zatorre, 2003; Andics et al., 2010). 

Importantly, those studies were not conclusive whether neural response in the anterior STG/S 

was selective to voice-identities or rather of multi-modal nature. Although selective voice-

identity processing in the anterior STS has been proven in monkeys (Perrodin et al., 2011), 

evidence in humans is missing to date. 

 

Integrative voice recognition in the right parietal lobe 

Our inferior parietal lobe finding is in line with the previous lesion literature showing that voice-

identity recognition impairments occur after right inferior parietal lobe lesions. In particular, 

the SMG and angular gyrus of the right inferior parietal lobe were involved in famous voice 

recognition tasks (Van Lancker et al., 1988; Van Lancker et al., 1989). In contrast to these 

traditional lesion studies, a recent VBM study associated lesions in the right angular gyrus with 

impaired perceptual voice-identity processing (i.e. unfamiliar speaker change detection task) 

(Hailstone et al., 2011). In the current study, we found lesions in the SMG being associated with 
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impaired identity recognition of newly-learned and familiar voices. Taken previous and current 

lesion findings together, the right SMG was repeatedly associated with voice-identity 

recognition whereas the angular gyrus was found for both perceptual and identity processing of 

voices. Based on the consistent finding in the SMG, we argue the SMG might be the most 

relevant sub-structure of the inferior parietal lobe to accomplish voice-identity recognition.  

Interestingly, our findings present several indications that the right inferior parietal lobe is 

predominantly involved in voice-identity recognition if it is tested via voice-face associations. 

First, the inferior parietal lobe association with voice recognition was reduced when we 

controlled for abilities in face recognition (Fig. 2B). Second, although the parietal lobe showed 

significant association with newly-learned voice recognition in general, this was mostly the case 

for the voice-face test, but not for the voice-name test (Fig. 3C/D). Previous lesion studies that 

found right inferior parietal lobe involvement tested patients on how well they associated 

face/name pairs to a recognised famous voice (Van Lancker et al., 1988; Van Lancker et al., 

1989). In the same vein, neuroimaging studies have shown that the right inferior parietal lobe 

and the adjacent posterior STG region are involved in the integration of person-related voice 

and face information (von Kriegstein and Giraud, 2006; for review see Campanella and Belin, 

2007; Ethofer et al., 2013; Watson et al., 2014). We therefore speculate that the inferior 

parietal lobe has something to do with associating a face (or potentially also other sensory 

information) to the voice. 

Voice recognition of familiar and newly-learned voices 

Within the temporal lobe voice-recognition deficits were associated with lesions in the 

posterior temporal lobe. However, different hemispheres were involved dependent on the 

voice familiarity. For newly-learned voices it was the right temporal lobe and for familiar voices 

it was the left temporal lobe that showed significant associations. Next to the temporal lobe, 

deficits in newly-learned voices were also associated with lesions in the right inferior parietal 

lobe. That we found distinct lesion clusters for voices of different familiarities is in line with 

traditional patient reports (Van Lancker and Kreiman, 1987; Van Lancker et al., 1988; Van 

Lancker et al., 1989). These studies used different test designs to assess voice-identity 

processing, i.e. discrimination tests for unfamiliar voices and recognition tests for familiar 
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voices and report the bilateral temporal lobe for unfamiliar voice discrimination and the right 

inferior parietal lobe for familiar voice recognition. In contrast, we here assessed the same test 

design to investigate voice-identity processing of different familiarities, i.e. voice-recognition 

tests. The different experimental approaches might explain why we found partly different 

lesion clusters.  

We identified a left-hemispheric lesion association for deficient familiar voice recognition. To 

our knowledge this has so far neither been reported in previous neuroimaging nor lesion 

studies. However, neuroimaging studies on voice-identity processing of different familiarities 

tend to also report left posterior temporal lobe clusters (Belin et al., 2000; von Kriegstein et al., 

2003; von Kriegstein and Giraud, 2004; Warren et al., 2006). The function of these regions is 

entirely unclear. On one hand they could represent perceptual processing specific to voices, on 

the other hand they could also have something to do with association of semantic information 

(Blank et al., 2014; Liebenthal et al., 2014; Vitali et al., 2015) or representation of names (Blank 

et al., 2014). 

In line with previous reports, we also found the right inferior parietal lobe involved in voice-

identity recognition (Van Lancker et al., 1988; Van Lancker et al., 1989). As Van Lancker et al. 

(1989), we argue that familiar voice recognition requires the matching of voice-individuating 

information to the incoming voice. Assuming voice-face associations in the inferior parietal 

lobe, we think that this multi-modal association might facilitate the recognition of voices that 

have been encountered before such as familiar and newly-learned voices. Here, we find the 

inferior parietal lobe mainly when voices, which were learned with a face, had to be recognised. 

In contrast, for unfamiliar voice-identity processing the inferior parietal lobe has rarely been 

reported. We think that this is reasonable as for voices that we hear for the first time 

individuating voice information such as the facial representation is unlikely to be available. 

In summary, our study made important steps towards resolving the discrepancy between 

neuroimaging and lesion reports on voice-identity recognition, because it shows that (i) the 

right temporal lobe is crucially involved in voice-identity recognition in general and that (ii) 

parietal lobe lesions likely lead to voice-identity recognition deficits only if the task requires 
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voice-face matching. This has important implications for current voice-identity processing 

models.  

First, it supports the central assumption that the temporal lobe is the key structure of the core-

voice system. Second, it also opens up two novel lines of research. First how can one integrate 

the specific nature of voice-face integration in the parietal lobe in person-recognition models? 

Second, in how far does the level of voice familiarity impacts already on the stage before the 

voice is recognised as familiar, i.e. during acoustical voice-identity processing? 
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13.2  Supplementary Material 

Supplementary Table 1. Individual details on each patient. 

Patient Age Sex MSO Education 
(yrs) 

Scan Lesion 
type 

Lesion 
site 

Lesion 
size (n of 

voxels) 

Aphasia Cognitive 
disorder 

1 66 f 157 10 MRT TBI l 43839 no mild 

2 36 f 151 12 MRT TBI r 9720 no no 

3 68 f 157 8 MRT ICB r 17606 no no 

4 40 m 273 10 MRT TBI r 5871 no mild 

5 63 m 148 10 MRT SAH r 2762 no no 

6 38 f 123 12 MRT Tumour l 39866 no no 

7 60 m 114 10 MRT Isch stroke l 20585385 no no 

8 63 m 80 10 MRT Isch stroke  r 133889 no no 

9 27 f 84 12 MRT TBI  r 15365 no no 

10 59 m 78 10 MRT Isch stroke l 115572 no no 

11 56 m 68 12 MRT Isch stroke l 84971 no no 

12 59 m 43 10 MRT Isch stroke  r 45890 no moderat 

13 29 f 30 12 MRT Isch stroke  l 39139 yes mild 

14 50 f  12 MRT ICB r 8612 no mild 

15 62 m 57 12 MRT ICB l 5122 no no 

16 22 f 54 10 MRT ICB r 73534 no moderat 

17 52 m 47 10 MRT Isch stroke l 8568 yes mild 

18 50 m 52 12 MRT ICB r 13150 no moderat 

19 43 m 48 10 MRT Isch stroke r 394740 no mild 

20 58 m 42 12 MRT Isch stroke r 17429 no mild 

21 49 m 109 8 MRT TBI r 23911 no no 

22 45 f 39 8 MRT Isch stroke r 4288 no mild 

23 46 f 40 10 MRT SAH r 663 no mild 

24 56 m 28 10 MRT Isch stroke r 277925 no mild 

25 61 f 33 10 MRT Isch stroke r 2930 no mild 

26 54 f 30 10 MRT Isch stroke l 50053 yes no 

27 31 f 31 10 MRT Tumour l 1367 no mild 
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28 63 m 31 12 MRT Isch stroke r 853 no mild 

29 35 m 31 10 MRT Isch stroke r 185803 no mild 

30 56 f 24 10 MRT Haem stroke r 48246 no moderat 

31 53 f 25 12 MRT Isch stroke l 17748 yes no 

32 49 m 12 10 MRT Isch stroke r 25582 no mild 

33 50 f 35 10 MRT Isch stroke r 1413840 no no 

34 29 m 24 12 MRT SAH l 39718035 yes mild 

35 23 m 14 10 MRT Isch stroke r 53287 no mild 

36 57 f 18 10 MRT Isch stroke l 2203 no mild 

37 51 f 20 10 MRT Aneurysma r 6402 no mild 

38 31 f 17 10 CT SAH r 45674 no mild 

39 57 f 11 10 MRT Isch stroke l 183 no mild 

40 44 f 2 10 MRT Isch stroke l 11345 no mild 

41 49 f 10 12 MRT Isch stroke l 27363 yes moderat 

42 58 m 9 12 MRT Isch stroke l 27345 yes moderat 

43 29 m 3 10 MRT Isch stroke l 47795 yes mild 

44 55 f 5 10 MRT Tumour l 9433 no mild 

45 50 m 14 8 MRT SAH r 16879 no no 

46 48 m 11 10 MRT Isch stroke l 9625 no mild 

47 32 f 12 12 MRT Tumour r 611 no mild 

48 47 m 7 10 MRT Isch stroke r 32559 no mild 

49 58 f 10 12 CT Isch stroke r 200503 no no 

50 57 f 13 10 MRT Isch stroke r 6161 no mild 

51 41 f 25 8 MRT Isch stroke l 10670985 no mild 

52 39 m 7 10 MRT Isch stroke l 9573210 yes mild 

53 58 f 53 10 MRT Isch stroke l 224655 no mild 

54 37 f 9 12 MRT TBI l 15806 yes no 

55 42 m 23 9 MRT Isch stroke r 57669270 no mild 

56 51 f 9 12 MRT SAH l 76287 yes mild 

57 44 m 12 12 MRT ICB l 15893 yes no 

58 45 f 11 12 MRT TBI l 47892 yes mild 
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MSO = months since onset, f = female, m = male, MRT = magnet resonance tomography, CT = computer 
tomography, TBI = Traumatic brain injury, SAH = Subarachnoid Hemorrhage, Haemorrhagic, ICB = Intracerebral 
Bleeding, isch stroke = ischaemic stroke, haem stroke = haemorrhagic stroke. 

 

Familiar voice recognition: Famous voice test 

Names of the famous Germans presented in the famous voice test (n = 42) 

Marcel Reich-Ranicki Otto Walkes Til Schweiger 
Joachim Löw Helge Schneider Anne Will 
Günther Jauch Michael Mittermeier Alice Schwarzer 
Ulrich Wickert Franz Beckenbauer Verona Pooth 
Hellmuth Karasek Boris Becker Heidi Klum 
Harald Schmidt Michael Schumacher Anke Engelke 
Karl Lagerfeld Gerhard Schröder Barbara Schöneberger 
Alfred Biolek Helmuth Kohl Sarah Kuttner 
Thomas Gottschalk Guido Westerwelle Angela Merkel 
Jürgen von der Lippe Wolfgang Schäuble Ursula von der Leyen 
Oliver Pocher   Erich Honecker Claudia Roth 
Vicco von Buelow (Loriot) Herbert Grönemeyer Nena 
Harpe Kerkelingen Peter Maffay Nina Hagen 
Stefan Raab Udo Lindenberg Heike Makatsch 

 

Acoustic voice processing: Vocal-pitch and vocal-timbre test 

Stimuli and presentation software 

The stimulus set consisted of five English vowels (/a/, /e/, /i/, /o/, /u/) resynthesised using the 

STRAIGHT software package (Kawahara et al., 2008) implemented in Matlab (version 7.7, The 

MathWorks, Inc., MA, USA). The original vowels were spoken by a male speaker and had a 

duration of 600 ms (same material used in Smith et al. (2005)). For the pitch-discrimination 

task, all tokens of a given vowel were identical except for their fundamental frequency. F0 is the 

physical correlate of a speaker’s glottal-pulse rate (GPR), which determines their voice pitch. 

For the timbre-discrimination task, all tokens of a given vowel were identical except for their 

spectral envelopes, which were scaled proportionally up or down in log-frequency space from 

the original spectral envelope. Spectral envelope is the physical correlate of a speaker’s vocal-

tract length (VTL), which is an aspect of vocal timbre that correlates with speaker size (Fitch and 
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Giedd, 1999). Both tests were implemented in Python (version 2.7.3, http://python.org/) and 

responses were recorded via a keyboard. 

 

Procedure and analysis 

We used an adaptive-tracking procedure (Kaernbach, 1991) to measure the participants’ pitch 

and timbre just-noticeable differences (JNDs). During the pitch-discrimination test, participants 

listened to pairs of sequentially presented vowels differing only in their F0. One vowel per trial 

always had an F0 of 112 Hz, and the other was higher in F0 by an amount (ΔF0) defined in 

musical cents (1 semitone = 100 cents). The order of the stimuli was random on each trial, and 

participants reported which one was higher in pitch. The initial ΔF0 was 100 cents; this value 

decreased in steps of 10 cents following each correct response and increased in steps of 30 

cents following each incorrect response. After four reversals (a switch from correct to incorrect 

response or vice versa within two consecutive trials), the up and down step sizes were changed 

to 6 and 2 cents, respectively, and the block of trials continued for a further 10 reversals. A JND 

was estimated for each single run by taking the mean of all ΔF0 values visited during the final 

10 reversals. The participant’s overall JND was defined as the mean JND over the five runs. 

Feedback about response accuracy followed each trial. At the beginning of the test, participants 

were familiarised with the auditory stimuli by presenting them with two vowels at the extremes 

of the F0 range. The average test duration was 15 minutes. 

The timbre-discrimination test and analysis procedure was identical to the pitch-discrimination 

test except that the stimuli on each trial differed in their spectral envelopes, and participants 

reported which vowel was spoken by the smaller speaker. One vowel on each trial had a 

spectral envelope equal to that of the original speaker, while the other differed by ΔSER, 

defined in percent. Initial ΔSER was 12%; up and down step sizes were 3% and 1% for the first 

four reversals, and 0.6% and 0.2% for the remaining 10 reversals.  
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Face-recognition tests 

Face-name test 

Stimuli and presentation software 

The stimulus set consisted of images of six male faces (three British and three Spanish actors 

who are not famous in Germany). The pictures were downloaded from freely accessible 

websites. The images were degraded by adding different levels of Gaussian noise to each pixel 

(e.g., 15%, 30%, 60%) using Adobe Photoshop CS4 (version 11.0.2; Adobe Systems, Inc., San 

Jose, CA, US). The complete stimulus set contains 228 images. Original photographs were taken 

from different views with varying facial expressions and under different lighting conditions. The 

test was implemented in the Presentation software (Neurobehavioural Systems, Inc., CA, USA) 

and responses were recorded via keyboard.  

Procedure and analysis 

The test was structured into four learning and four interim testing phases, presented in 

alternating order, plus an additional final testing phase. During the learning phases, participants 

were presented with a sequence of face-name pairs (Peter, Jan, Timo, Alex, Otto, Leon). 

Participants had the task to learn the face-name associations. The learning phases differed in 

the number of presented face-name pairs: 10 face-name pairs per person during the first 

learning phase, three face-name pairs per person during the second and two face-name pairs 

per person during the third and fourth learning phase. During the interim-testing and final 

testing phases, the participants were presented with a novel face image of one the learned 

identities together with the six names. Participants were asked to select the corresponding 

name for the face. Each testing phase contained five items per identity. During the second, 

third and fourth interim-testing phases, the face pictures were presented with increasing 

Gaussian noise levels (15%, 30% and 60% respectively) to minimize ceiling effects. During the 

final testing phase, again no noise was added to the face images. In the first and second interim 

testing phase, participants received feedback on their decision and the correct face-name pair 

was presented again. The whole test took approximately 30 minutes.  

As a measure of face-name recognition performance, we calculated the average percent 

correct over the five testing phases. 
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Supplementary results 

Supplementary Table 2. Comparison of behavioural test results for patients with left and right hemispheric lesions. 

Tests n RH patients n LH patients Statistics p value 

Voice recognition (newly-learned 

and familiar voices) [z] 
20 -0.11 (0.77) 22 0.06 (0.55) 0.96 0.339 

Newly-learned voice recognition       

     Newly-learned voice test [%] 23 57.33 (11.08) 20 63.00 (8.63) -2.29 0.022** 

     Voice-name test [%] 31 54.44 (12.22) 27 58.06 (13.63) -1.15 0.252 

     Voice-face test [%] 23 60.93 (12.53) 20 67.70 (9.63) -2.20 0.027* 

Familiar voice recognition       

     Famous voice test [z] 30 0.095 (0.76) 27 -0.11 (0.69) 1.08 0.303 

     Familiarity judgment d’ 30 1.22 (0.89) 27 0.98 (0.77) -1.24 0.215 

     Semantic association [%] 30 70.57 (19.94) 27 68.46 (17.78) -0.60 0.549 

Acoustical voice tests       

     Timbre test [SER] 30 10.40 (4.24) 25 8.92 (5.01 -1.00 0.319 

     Pitch test [cent] 31 116.16 (58.48) 27 135.52 (73.54) 1.25 0.269 

Visual control tests       

     CFMT [%] 31 64.11 (16.76) 26 69.98 (13.53) 2.06 0.157 

     Face-name test [%] 23 55.78 (15.84) 20 66.01 (21.47) 3.21 0.080 

The table displays mean (standard deviation) values on each behavioural test for patients with left and right 
hemispheric lesions. Statistical group differences for tests with normal distributed values were computed by 
ANOVA (i.e., familiar voice recognition, pitch test, CFMT, face-name test) and for tests without normal distributed 
values by a Mann-Whitney test (i.e., unfamiliar voice recognition, voice-name test, voice-face test, famous voice 
test, timbre test). Statistics for ANOVA analyses refer to F values and for Mann-Whitney test analysis to Z values. 
** indicates significant group differences at p < 0.05 after Bonferroni correction, *indicates significant group 
difference at p < 0.05 (uncorrected). 
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Correlation between neuropsychological and behavioural measures 

Of the 99 correlations we run, 89 were non-significant (p < 0.05, uncorrected). In turn, 11 

behavioural measures were significantly correlated at an uncorrected level with demographic 

or neuropsychological scores, i.e. voice-name test with age and hearing level; famous voice test 

(familiarity feeling, semantic association) with time since lesion onset and hearing level (only 

semantic association); vocal-pitch test with education, digit span, and German Vocabulary Test; 

CFMT with face-name learning (cued recall and memory score); and face-name test with time 

since lesion onset.  

 

Self-assessment on every-day person-recognition abilities after lesion onset 

Based on a Friedman test (at p < 0.001) abilities for voice, face, and general person recognition 

were worse after lesion onset as compared to the time before brain injury (Table S4). 13 

patients reported reduced abilities in person recognition after lesion onset. 11 patients 

reported decreased voice-recognition and 14 patients decreased face-recognition abilities after 

lesion onset. We checked if self-assessments after lesion onset and person-recognition 

performance of the behavioural test battery were correlated. There was a correlation between 

self-assessment of person recognition abilities and the ability to judge voice familiarity 

(‘familiarity decision’ of the famous voice test). There was also a correlation between the self-

assessment of voice recognition and the face-name test performance (at p < 0.01). Patients 

reported to rely on the same features to recognise a person before and after lesion onset 

(Table S5).  
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Supplementary Table 3. Self-assessment on person-recognition abilities in every-day situations. 

 Person recognition*  Voice recognition* Face recognition* 

 Pre  

(RBD/LBD)1 

Post Pre1 Post Pre1 Post 

Excellent 21 (10/11) 16 (8/8) 12 (5/7) 11 (3/8) 19 (10/9) 13 (4/9) 

Good 20 (12/9) 25 (13/12) 24 (13/11) 24 (13/11) 21 (12/9) 30 (17/13) 

Sufficient 1 (1/0) 12 (6/6) 8 (5/3) 18 (11/7) 4 1/3) 12 (8/4) 

Poor 2 (0/2) 5 (4/1) 0  5 (4/1) 0 3 (2/1) 

Not at all 0 0 0 0 0 0 

*Significantly worse self-assessment of person-, voice-, and face-recognition abilities before and after lesion onset 
(at p < 0.001, Friedman Test).  ^ RBD indicated significantly worse voice recognition abilities after lesion onset 
compared to LBD patients (One-way-anova, p = 0.37)).  

1 For the pre-assessment, 14 cases are missing because they did an older version of the questionnaire where only 
post-abilities were assessed.  

 

Supplementary Table 4. Self-assessment on features used for person recognition. 

Person-recognition features Pre1 Post 

Voice 0 2 

Face 13 15 

Voice and face 25 29 

others 6 12 

Features used for person recognition did not change significantly before and after lesion onset (at p < 0.05, 
Friedman Test). 

1 For the pre-assessment, 14 cases are missing because they did an older version of the questionnaire where only 
post-abilities were assessed.  
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Supplementary Table 5. Overview of brain structures lesioned in more than 3 patients within the ROI maps.  

 Covered Not-covered 

Bilateral temporal lobe map   

With a-priori anatomical  

hypothesis 

Bilateral STG, bilateral MTG, 

bilateral Heschl’s gyrus, bilateral 

planum temporale 

 

 

Without a-priori anatomical 

hypothesis 

 Very anterior/ medial right 

temporal pole, 

bilateral visual areas such as 

anterior inferior temporal gyrus, 

posterior temporal fusiform 

cortex, and temporal occipital 

fusiform cortex 

Right inferior parietal lobe map   

With a-priori anatomical  

hypothesis 

Angular gyrus, supramarginal 

gyrus 

 

 

Without a-priori anatomical 

hypothesis 

 Superior lateral occipital cortex 

and the postcentral gyrus 
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Supplementary Figure 1. Results of the sub-scores of the famous voice test. 

 

A. With familiarity decision associated lesion clusters were located in the right inferior parietal lobe (i.e. anterior 
SMG) and in left temporal lobe (i.e. left temporal). B. For semantic association, we observed a brain-behaviour 
association in two lesion clusters in the left temporal lobe (i.e. posterior MTG, posterior STG). Voxels shown 
exceeded a more lenient threshold for significance (p < 0.01 uncorrected, voxel size > 100). 
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Supplementary Table 6 Overview of lesion-cluster coordinates associated with the sub-scores of the famous voice 

test. 

 Familiarity decision + HL and LV  

 x y z Max 
T 

p n of 
voxels 

x y z Max 
T 

p n of 
voxels 

Right  
parietal lobe             

anterior SMG 64 -26 28 3.52 - 2370 - - - - - - 

Left 
temporal lobe 

Temporal pole -32 5 -37 2.83 - 154 - - - - - - 

 Semantic association + HL and LV  

 x y z Max 
T 

p n of 
voxels 

x y z Max 
T 

p n of 
voxels 

Left  
temporal lobe             

posterior MTG -55 -36 -10 3.35 - 6067 - - - - - - 

posterior STG -63 -37 10 2.58 - 123 - - - - - - 

Results of the familiarity decision and semantic association sub-score are reported at p < 0.01 uncorrected, voxel 
size > 100. SMG = supramarginal gyrus, STG = superior temporal gyrus.  MTG = middle temporal gyrus. HL = hearing 
level, LV = lesion volume. 
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