
Universität Leipzig
Fakultät für Mathematik und Informatik

Institut für Informatik

EAGLE

Learning of Link Specifications using Genetic

Programming

Bachelor thesis

Leipzig, August 2012 Klaus Lyko
Bachelor of Science Informatik

Matrikel-Nummer 9512094

Betreuer Prof. Dr. Ing. habil. Klaus-Peter Fähnrich
Betriebliche Informationssysteme, Institut für Informatik
Universität Leipzig

Contents

1 Introduction 2
1.1 Motivation . 3
1.2 Approach . 4
1.3 Structure . 6

2 State of the art 7
2.1 Link Discovery . 7
2.2 Machine Learning and Genetic Programming 8
2.3 Learning Link Specifications 10

3 Genetic Programming for Link Specification 13
3.1 Link Discovery . 13
3.2 Designing Link Specifications as Trees 15
3.3 Genetic Structure of Link Specifications 15
3.4 Evolution of a population . 17
3.5 Fitness . 20
3.6 Computation of most informative link candidates 20
3.7 Genetic Operators . 21

3.7.1 Reproduction . 22
3.7.2 Mutation . 22
3.7.3 Crossover . 22

4 Implementation 24
4.1 LIMES . 24

4.1.1 LIMES Link Specification language 24
4.2 Realization using GP . 25

4.2.1 Preliminaries . 25
4.2.2 Genotype . 26
4.2.3 Evolution . 28

4.3 SAIM - Graphical user interface 30

5 Evaluation 31
5.1 Experimental Setup . 31

5.1.1 Datasets . 32
5.1.2 Parameters . 33
5.1.3 Quality Measures . 34

5.2 Experimental Results . 34
5.2.1 Baseline Experiments 35
5.2.2 Accuracy batch vs. active learning 36
5.2.3 Comparison with other approaches 40

5.3 Discussion . 42

6 Conclusion and Future Work 44

Bibliography 46

7 Kurzzusammenfassung 52

A Appendix 53
A.1 Images . 53
A.2 Tables . 58

List of Figures 65

List of Tables 67

Abstract

On the way to the Linked Data Web, efficient and semi-automatic ap-
proaches for generating links between several data sources are needed.
Many common Link Discovery frameworks require a user to specify a
link specification, before starting the linking process. While time-efficient
approaches for executing those link specification have been developed
over the last years, the discovery of accurate link specifications remains a
non-trivial problem. In this thesis, we present EAGLE, a machine-learning
approach for link specifications. The overall goal behind EAGLE is to limit
the labeling effort for the user, while generating highly accurate link speci-
fications. To achieve this goal, we rely on the algorithms implemented in
the LIMES framework and enhance it with both batch and active learning
mechanisms based on genetic programming techniques. We compare both
batch and active learning and evaluate our approach on several real world
datasets from different domains. We show that we can discover link speci-
fications with f-measures comparable to other approaches while relying
on a smaller number of labeled instances and requiring significantly less
execution time.

1

1 Introduction

The Web is arguably the largest digital source of knowledge on the planet.
Yet, for intelligent software agents the usage of the Web is limited. Most
of the information is only available in an unstructured fashion as HTML
documents. To harness the big amount of data available for more sophis-
ticated question answering and search methods the Web of documents
has to be transformed into a Web of Data. Following the Semantic Web
Initiative of the World Wide Web Consortium (W3C)1 a large amount of
data is now also available in a machine readable fashion, mostly in the
RDF2 format. As information can be interpreted by machines it is pos-
sible to answer questions not by retrieving a list of documents based on
keyword-based search techniques, but by interlinking several relevant data
sources to form a satisfactory and complete answer as possible. To do that
we not only need data sources which provide structured data, informa-
tion and knowledge but also links between the facts of several knowledge
bases.

1 http://www.w3.org/2001/sw/

2 http://www.w3.org/RDF/

2

http://www.w3.org/2001/sw/
http://www.w3.org/RDF/

1 Introduction

1.1 Motivation

Those methods are part the Linked Data paradigm. The ultimate goal of
its practices is the realization of the vision of the Semantic Web3 through
the transition of the document-orientated web into a Web of interlinked
Data [3].The Web of Data is steadily growing, yet the amount of statements
which are links between knowledge bases remains low. While there are
more than 30 billion number of triples in the Web of Linked Data, less than
4% of them are statements interlinking datasets4. Determining additional
links manually has several drawbacks. The size of some knowledge bases
(DBpedia5 for instance) makes this a long and impractical process. Users
may have to have expert knowledge about the domain at hand. Further-
more, links have to be maintained as knowledge bases underlie changes,
new instances are added, others are changed, or deleted, and also the un-
derlying ontologies are subject to modifications. So, a machine supported
linking process is needed to face these drawbacks. Trying to discover links
between datasets in the Web of Data remains a challenge for Computer
Science, because two main problems have to be addressed:
1. The Complexity of the link discovery process per se: a priori the com-
plexity of linking two datasets with n respectively m instances is O(nm).
For large real-world matching tasks this quadratic complexity becomes
unpractical soon.
2. The selection of an appropriate similarity space and link specification.
The configuration of Link discovery frameworks is usually done manually,
often by simply guessing which properties to compare using which mea-
surement. Yet, given the large amount of properties of instances and the
amount of available measures to compute the similarity of two properties

3 The term and its vision was advocated by Tim Berners-Lee [4]
4 http://www4.wiwiss.fu-berlin.de/lodcloud/

5 http://dbpedia.org

3

http://www4.wiwiss.fu-berlin.de/lodcloud/
http://dbpedia.org

1 Introduction

at hand, this manual process also becomes unpractical fast. Furthermore,
the link specification requires a domain specific knowledge of the given
knowledge bases.

1.2 Approach

To address the first task, the foundation of this work is the universal link
discovery framework LIMES [29, 30]. The original LIMES approach uses
the triangle inequality to calculate approximations of the distances between
instances to address the quadratic complexity issue of link discovery and
thereby presupposed that the datasets are in a metric space [29]. The
newer LIMES version efficiently deals with numeric values and complex
configurations, thereby can handle the diversity of data types in the Web of
Data and outperforms the state-of-the-art SILK framework [28]. To address
the second great challenge in Link Discovery - finding appropriate and
precise Link Specifications - we enhance the instance matching framework
LIMES with machine-learning mechanisms utilizing Genetic Programming
techniques to semi-automatically discover link specification for LIMES.
From the user’s perspective, a semi-automatic approach to generate link
specifications has to limit the burden for users by

1. reducing the time to detect a link specification (time efficiency),

2. generating precise link specifications, that only generate a small
amount of false positive links while discovering as many links as
possible (precision and recall) and

3. providing the user with a readable and modifiable specification that
utilizes the whole space of available measures and operates to gener-
ate such link specifications of arbitrary complexity.

4

1 Introduction

In this thesis we present EAGLE, a supervised machine learning approach
for link specifications, that abides the three criteria above. One of the main
drawbacks of supervised machine learning approaches is that they usually
require a large amount of training data in oder to generate results of high
accuracy. Yet the generation of labeled training data can be a difficult and
expensive process with respect to both time and knowledge required to do
so. EAGLE surmounts this problem by implementing an active learning
approach [39]. Therewith, we are able to minimize the amount of training
data necessary to compute precise link specifications, by allowing the inter-
active annotation of highly informative training data.
By combining this active learning mechanisms with genetic programming
we are able to use the full spectrum of available similarity measures (i.e.,
Levenshtein, Jaccard for strings) for comparing property values and sup-
port manifold means for combining these measures. Our algorithm is able
to compute link specifications of arbitrary complexity.
We evaluate our approach on six datasets (both synthetic and real-world
datasets) and show that we can calculate precise link specifications while
minimizing the work for users by applying an active learning mechanism
and still ensure a comparable small time complexity.
Note that some of the results presented herein were already published and
presented at the 9th Extended Semantic Web Conference 2012 6, this thesis
will contain further insights and will evaluate the approach on additional
datasets [32].

6 http://2012.eswc-conferences.org/

5

http://2012.eswc-conferences.org/

1 Introduction

1.3 Structure

The rest of this thesis is organized as follows: First we discuss state of
the art approaches in related research areas, such as Machine Learning,
Genetic Programming and Link Discovery, in section 2. Thereafter, section
3 introduces the formal groundwork used, while section 4 gives insight
into the implementation of EAGLE. The evaluation of our approach is
presented and discussed in section 5. Ultimately we conclude and give an
outline, and present future research in section 6.

6

2 State of the art

2.1 Link Discovery

Linking is the process of establishing links between resources which are
somehow related. In the domain of Linked Data it means the process of gen-
erating typed links between entities (e.g. classes, properties or instances)
of knowledge bases. The most common goal is to mark instances (e.g. via
owl:sameAs links) of the two knowledge bases that represent the same real
world entity. Over the last years, several approaches have been developed
to address the time complexity of link discovery. Some of these approaches
focus on particular domains of applications. For example, the approach im-
plemented in RKB knowledge base (RKB-CRS) [15] focuses on computing
links between universities and conferences while GNAT [37] discovers links
between music data sets. Further simple or domain-specific approaches
can be found in [10, 35, 17, 40, 36]. In addition, domain-independent ap-
proaches have been developed, that aim to facilitate link discovery all
across the Web. For example, RDF-AI [38] implements a five-step approach
that comprises the preprocessing, matching, fusion, interlinking and post-
processing of data sets. SILK [18] is a time-optimized tool for link discovery.
It implements a multi-dimensional blocking approach that is guaranteed to
be lossless thanks to the overlapping blocks it generates. Another lossless
Link Discovery framework is LIMES [28], which addresses the scalability

7

2 State of the art

problem by implementing time-efficient similarity computation approaches
for different data types and combining those using set theory. Note that
the task of discovering links between knowledge bases is closely related
with record linkage [42, 14, 6, 20].

2.2 Machine Learning and Genetic Programming

Because of the variety and complexity of learning systems and the broad
concept of learning itself any attempt to give a precise and unambiguous
definition of learning is doomed to failure. Instead we will give a practical
definition for Machine Learning:
Machine Learning is a sub field of Artificial Intelligence concerned with
the study of algorithms that automatically improve their performance with
experience. [24, 27]
Machine learning algorithms have been successfully applied to a variety of
problems. Most notably in the area of Data Mining and natural language
processing.
Link Discovery can be viewed as a classification problem with only two
predefined classes: matches and non-matches. Given a set of pairs of enti-
ties from two knowledge bases the goal is to decide whether or not they
represent the same real-world entity and therefore should be classified as a
match. Thus this problem can be tackled as a binary classification problem
using well established machine learning approaches for classification prob-
lems, such as support vector machines, artificial neural networks [19, 9, 31].
The topic of machine learning can be classified by many dimensions. In-
stead of giving an complete overview we will only address those topics
related to our approach. A review and historical overview of what Machine
Learning includes, can be found in [2, 26, 27]. Most Machine Learning ap-

8

2 State of the art

proaches for the efficient computation of link specification use supervised
techniques[12]. That means, they require labeled training data. Based on
how this training data is generated we further discern active and batch
learning approaches. For batch learning approaches the training data is
generated only once previously to the start of the actual learning process.
The selection of instances for this training data is the result of an arbitrary
process, and not part of the learning algorithm. Whereas, active learning is
an interactive process divided into multiple steps. Each step the learning
algorithm itself decides upon which set of instances he discerns as most
informative. These data is then presented to an oracle (e.g. a human being)
for labeling, thus the learner increases its set of training data for the next
learning step.
Most recently also unsupervised learning approaches for Link Specifica-
tions have been developed [34, 33]. These approaches have the benefit that
they do not require any user feedback, as they only use inherent features
under certain assumptions of the problem to measure the quality of link
specifications. Although initial results appear promising, most recent stud-
ies suggest that applying these techniques on real world datasets is more
difficult. Results show that there is yet no consistent parametrization of
these algorithms and future research is required [33].
Many branches of Machine Learning, Artificial Intelligence or in general
problem solving are based on, and motivated by the observation of biolog-
ical processes and natural phenomena. Evolutionary Computing (EC) is
a research area within computer science, that draws its inspiration from
the process of biological evolution. Its origins dates back before the break-
through of computers. The basic principles where developed and intro-
duced in the 1960s separately in the USA by Fogel, Owens, and Wash under
the name evolutionary programming, while J.H Holland called the approach
genetic algorithms and Rechenberg and Schwefel developed evolution strate-
gies in Germany. These approaches where unified under the concept of EC

9

2 State of the art

in the 1990s[13]. Koza introduced with his work about genetic program-
ming the fourth sub area of EC[22].

Despite its long history all algorithms in the field of EC follow the same
underlying idea. For the specific problem a number of example solutions
are randomly created, forming a population of individuals within the same
environment of limited resources. As in nature a competition over surviv-
ing between the individuals is applied, so as to only the fittest individuals
survive as a seed for the next generation. So any EC algorithm has its
specific fitness measure denoting the performance of an individual with
respect to the specific problem at hand. Despite survival of the fittest a set
of new individuals is created each generation by applying reproduction
and mutation to the population. Reproduction means recombining the
genetic code of two or more so-called parent solutions to form an offspring
of new candidates. Those candidates also compete based on their fitness
value with the rest of the population to form the next generation.

The difference between evolutionary algorithms (EA) and genetic program-
ming (GP) is that the chromosomes(solutions) of individuals of GP can
be of arbitrary length, as individuals are represented as program trees,
whereas EA represent the solutions as fixed-length Strings over a specific
alphabet (most often 0, 1).

2.3 Learning Link Specifications

To the best of our knowledge, the problem of discovering accurate link
specifications has only been addressed in very recent literature by a small
number of approaches: The SILK framework [18] now implements a batch

10

2 State of the art

learning approach to discovery link specifications based on genetic pro-
gramming which is similar to the approach presented in [7]. The algorithm
implemented by SILK also treats link specifications as trees but relies on a
large amount of annotated data to discover high-accuracy link specifica-
tions. The RAVEN algorithm [31] on the other hand is an active learning
approach that treats the discovery of specifications as a classification prob-
lem. It discovers link specifications by first finding class and property
mappings between knowledge bases automatically. RAVEN then uses
these mappings to compute linear and boolean classifiers that can be used
as link specifications. A related approach that aims to detect discrimina-
tive properties for linking is that presented by [41]. In addition to these
approaches, several machine-learning approaches have been developed to
learn classifiers for record linkage. For example, machine-learning frame-
works such as FEBRL [8] and MARLIN [5] rely on models such as Support
Vector Machines [19, 9], decision trees [43] and rule mining [1] to detect
classifiers for record linkage. Our approach, EAGLE, goes beyond previ-
ous work in three main ways. First, we implemented an active learning
approach. Thus, it does not require the large amount of training data re-
quired by batch learning approaches such as FEBRL, MARLIN and SILK.
Furthermore, it allows to use the full spectrum of operations implemented
in LIMES. Thus, it is not limited to linear and boolean classifiers such as
those generated by FeBRL and RAVEN. Finally, it can detect property and
class mappings automatically [31]. Thus, it does not need to be seeded to
converge efficiently like previous approaches [18].
To the best of our knowledge the deduplication method presented in [12]
which is a further development of previously batch learnings approaches[7,
11] is most closely related to our active learning mechanism. It also com-
bines active learning with means of genetic programming and suggests,
that by using these mechanisms less human labeling effort is required,
while ensuring good results nonetheless. In contrast to our approach Fre-

11

2 State of the art

itas et al. use a reinforcement learning technique, where only if a majority
voting of a committee of the evolved individuals is not sufficient to predict
the classification of a pair of instances, they are presented to an oracle for
manual labeling [12]. In contrast we not only support a wider range of
measures to compute the similarity of certain data fields (properties), but
we also can compute combinations of these atomic measures of arbitrary
complexity using both boolean and linear operators to combine atomic
measures.

12

3 Genetic Programming for Link
Specification

In the following section we introduce the formalization and notation used
for EAGLE. After defining the Link Discovery Problem, we introduce the
grammar used by LIMES for link specifications and show how it can be
represented by trees. Thus, enabling us to model the discovery of links as a
GP problem. We will specify how the various genetic operators effect these
link specification trees and finally, we present the active learning model
that underlies our work.

3.1 Link Discovery

The link discovery problem is similar to the record linkage problem and
is also known as record linkage, object matching, duplicate detection[21].
In general the goal is to discover pairs (s, t) ∈ T × S related via a relation
R given two sets of entities S, T. Such a relation could be the owl:sameAs1

predicate for instance.

Definition 1 (Link Discovery) Given two sets S (source) and T (target) of
entities, compute the setM of pairs of instances (s, t) ∈ S× T such that R(s, t).

1 http://www.w3.org/TR/owl-ref/#sameAs-def

13

http://www.w3.org/TR/owl-ref/#sameAs-def

3 Genetic Programming for Link Specification

In most cases the sets S and T are subsets of the instances contained in two
knowledge bases KT and KS, which may or may not be disjoint. We try to
discover links between instances s ∈ S and t ∈ T using a complex similarity
measure σ which is based on a comparison of their properties via certain
(atomic) similarity measures. The two entities s and t are then considered
to by linked via R if σ(s, t) ≥ θ.[30]. Typically both a specification of
the two sets S and T and of this similarity condition is defined by a Link
Specification.

Definition 2 (Link Specification) A link specification consists of three parts:
(1) two sets of restrictionsRS

1 ... RS
m resp. RT

1 ... RT
k that specify the sets S resp.

T,
(2) a specification of a complex similarity metric σ via the combination of several
atomic similarity measures σ1, ..., σn and
(3) a set of thresholds θ1, ..., θn such that θi is the threshold for σi.

A restriction R is in general a logical predicate. Each s ∈ S must comply
with each of the restrictions RS

1 ... RS
m, and each r ∈ R with each of the

restrictionsRT
1 ... RS

m respectively. A typical restriction states the rdf:type

of the elements of the set they describe, i. e. that the elements must be
instances of a specific class: R(x)↔ x rdf:type someClass. Furthermore
they can describe features the elements must have, e.g. they have a certain
property: R(x) ↔ (∃y : x someProperty y). Each similarity σi is used
to compare pairs of property values of instances s and t. We will not
consider all possible pairs of properties of s and t for the atomic similarity
measures σi, but only those pairs of a property mapping done previously.
As presented in [28] we can compute the class and property mappings of
two knowledge bases efficiently without burden the user with additional
work or expert knowledge about the linking task.

14

3 Genetic Programming for Link Specification

3.2 Designing Link Specifications as Trees

As stated before our definition of a link specification is based on a spec-
ification of so called atomic similarity measures. A similarity measure is a
function m that specifies the similarity between two entities s ∈ S and t ∈ T:
m : S× T → [0, 1], whereas values closer to 0 indicate lesser similarities.
We call such a measure atomic if it relies on just one similarity measure σ

to compute the similarity of a pair (s, t) ∈ S× T. For examples a trigrams
measure for strings, or a euclidean distance for numeric values. A simi-
larity measure m is either a atomic similarity measure or the combination
of two similarity measures m1 and m2 via a metric operator such as OR,
AND or a linear combination ADD. We call a link specification atomic if
it compares the pairs (s, t) ∈ S× T by using a atomic similarity measure
and threshold θ, thus returning only those pairs that satisfy the condition
σ(s, t) ≥ θ . A link specification is either an atomic links specification
or a combination of two link specifications via operators, such as AND
(the intersections of the results of two specifications), OR (the union of the
results), XOR (symmetric difference).

Each link specification that abides by the grammar specified above can be
consistently transformed into a tree that contains the central constructs
shown in Figures 3.1, 3.2, 3.3 and 3.4.

3.3 Genetic Structure of Link Specifications

As we have formalized link specifications as trees, we can use Genetic
Programming (GP) to solve the problem of finding the most appropriate
complex link specification for a given pair of knowledge bases. Given a
problem, the basic idea behind genetic programming [23, 22] is to generate

15

3 Genetic Programming for Link Specification

m

σ

Figure 3.1: Atomic measure

m

metricOp

m1 m2

Figure 3.2: Complex measure

spec

m θ

Figure 3.3: Atomic specification

spec

specOp

spec1 spec2 θ

Figure 3.4: Complex specification

increasingly better solutions of the given problem by applying a number
of genetic operators to the current population. In the following, we will
denote the population at time t by gt. Genetic operators simulate natural
selection mechanisms such as mutation and reproduction to enable the
creation of individuals that best abide by a given fitness function. One of
the key problems of genetic programming is that it is a non-deterministic
procedure. In addition, it usually requires a large training data set to
detect accurate solutions. We propose the combination of GP and active
learning [39]. Our intuition is that by merging these approaches, we can
infuse some determinism in the GP procedure by allowing it to select
the most informative data for the population. Thus, we can improve the
convergence of GP approaches while reducing the labeling effort necessary
to use them. In the following, we present our implementation of the
different GP operators on link specifications and how we combine GP and
active learning.

Algorithm 1 depicts the basic work flow of our approach. Based on the
specification of both knowledge bases KS and KT we will get both sets on
entities, with all defined properties and according to the preprocessing op-

16

3 Genetic Programming for Link Specification

Algorithm 1 EAGLE
Require: Specification of the two knowledge bases KS and KT

Get set S and set T of instances as specified in KS respectively KT.
Get property mapping (KS, KT)
Get reference mapping by asking user to label n random pairs (s, t) ∈
S× T
repeat

Evolve population(population,size) generations times.
Compute n most informative link candidates and ask user to label
them.

until stop condition reached

erations. Note, that we require the specification of a property mapping (KS,
KT), as this will significantly reduce the computation complexity, ad we
will only compare property pairs defined by it. Thus, preventing that the
evolutionary process will produce programs comparing properties, who
will most likely not benefit the linking process, but requiring computation
time nonetheless. We can semi-automatically compute property mappings
using efficient stable marriage algorithms [28]. By default we convert every
string property to lowercase values.

3.4 Evolution of a population

Evolution is the primary process which enables GP to solve problems and
drives the development of efficient solutions for a given problem. At the
beginning of our computation the population is empty and must be built
by individuals generated randomly. This is carried out by generating ran-
dom trees whose nodes are filled with functions or terminals as required.
The difference between functions and terminals is, that functions are inner
nodes of the program trees, nodes with a specified number of children.

17

3 Genetic Programming for Link Specification

Whereas, terminals represent leaves of the program trees. That are func-
tions without parameters (child nodes in the program tree). For this paper,
we defined the operators (functions and terminals) in the genotype for
the problem to generate link specifications as follows: all metricOp and
specOp were set to be functions. Terminal symbols were thresholds and
property pairs. Note that these operators can be extended at will. In addi-
tion, all operators were mapped to certain constraints so as to ensure that
EAGLE only generates valid program trees. For example, the operator that
compares numeric properties only accepts terminals representing numeric
properties from the knowledge bases as defined by a property mapping
defined beforehand.

Algorithm 2 Evolves a population
if population is empty then

create size random individuals
end if
Compute fitness of population
Build new generation by applying genetic operators to population
return population

Let gt be the population at the iteration t. To evolve a population to
the generation gt+1 we first determine the fitness of all individuals of
generation gt (see Section 3.5). These fitness values build the basis for
selecting individuals for the genetic operator reproduction. We use a
tournament setting between two selected individuals to decide which one
is copied to the next generation gt+1. On randomly selected individuals
the operator mutation is applied according with a probability called the
mutation rate. The mutation operator changes single nodes in the program
tree of the individuals. A mutation can affect an individual in three different
ways: First, it can alter the thresholds used by the individual. Second, a
mutation can alter the properties contained in the individual’s genome.

18

3 Genetic Programming for Link Specification

Finally, mutations can modify the measures included in the individuals (see
Figure 3.5). The third genetic operator, crossover, operates on two parent
individuals and builds a new offspring by swapping two random subtrees
of the parent genotypes. Figure 3.6 exemplifies the functionality of the
crossover operator.

(a) spec

AND

spec

m

trigrams

0.8

0.9 spec

m

Jaccard

0.5

−→ (b) spec

OR

spec

m

trigrams

0.8

0.9 spec

m

Jaccard

0.5

Figure 3.5: Mutation example. Mutation changes boolean operator.

(a) spec

AND

spec

m

trigrams

0.8

0.9 spec

m

Jaccard

0.5

−→ (b) spec

AND

spec

m

Jaccard

0.5

0.9 spec

m

Jaccard

0.5

Figure 3.6: Crossover example. Consider we have two individuals with
a program tree like in (a). A crossover operation can replace subtrees to
produce an offspring like (b).

The individuals selected to build the population of gt+1 are the n fittest
from the union of the set of newly created individuals and gt. Note
that we iteratively generate new populations of potential fitter individu-
als.

19

3 Genetic Programming for Link Specification

3.5 Fitness

The aim of the fitness function is to approximate how well a solution
(i.e., a link specification) solves the problem at hand. In the supervised
machine learning setting, this is equivalent to computing how well a link
specification maps the training data at hand. To determine the fitness of an
individual we first build the link specification that is described by the tree
at hand. Given the set of available training data O = {(xi, yi) ∈ S× T},
we then run the specification by using the sets S(O) = {s ∈ S : ∃t ∈ T :
(s, t) ∈ O} and T(O) = {t ∈ T : ∃s ∈ S : (s, t) ∈ O}. The result of this
process is a mappingM that is then evaluated against O by the means of
the standard F-measure defined as

2PR
P + R

where P =
|M∩O|
|M| and R =

|M∩O|
|O| . (3.1)

Note that by running the linking on S(O) and T(O), we can significantly
reduce EAGLE’s runtime.

3.6 Computation of most informative link

candidates

The main idea behind applying a active learning method is the reduced
amount of labeling effort required. As we ask the user to label only a
specific number of highly informative training data, rather then a randomly
selected. Thus we hope that our active learning solution will converge
faster (and thereby presenting the user lesser data to label) to find the
best possible solution for the Link Discovery process. Finding these most
informative pieces of information is usually carried out by measuring the

20

3 Genetic Programming for Link Specification

amount of information that the labeling of a training data item would bear.
Given the setting of EAGLE in which several possible solutions co-exist, we
opted for applying the idea of active learning by committees as explicated
in [25]. The idea here is to consistently entertain a finite and incomplete set
of solutions to the problem at hand. The most informative link candidates
are then considered to be the pairs (s, t) ∈ S× T upon which the different
solutions disagree the most. In our case, these are the link candidates that
maximize the disagreement function δ((s, t)):

δ((s, t)) = (n− |{Mt
i : (s, t) ∈ Mi}|)(n− |{Mt

i : (s, t) /∈ Mi}|), (3.2)

where Mi are the mappings generated by the population gt. The pairs
(s, t) that lead to the highest disagreement score are presented to the
user, who provides the system with the correct labels. This training
set is finally updated and used to compute the next generations of so-
lutions.

3.7 Genetic Operators

Our randomly created population of link specifications is transformed
into a population of fitter individuals by applying a number of genetic
operators to individuals selected according to their fitness value. There are
three basic genetic operators:
Reproduction: An individual is copied to the next generation without any
changes.
Mutation: An individual is changed by random modification.
Crossover: The program trees of two individuals are recombined into a
new individual.

21

3 Genetic Programming for Link Specification

3.7.1 Reproduction

To preserve good individuals throughout the evolutionary process, the
genetic operator reproduction is assigned to individuals based on there
fitness value. Here we use a tournament setting between two randomly
selected individuals of the population gt of generation t. The individual
with the better (lower) fitness value will be copied unchanged to the next
generation gt+1. Individuals are selected for the tournament randomly
according to a reproduction probability preproduction. Furthermore, note
that we always preserve the single most fittest individual for the next
generation.

3.7.2 Mutation

Almost all nodes of the tree representing the link specification can be
subject to random changes. Those changes are called mutation. We have to
ensure that after mutating a specific node in the program tree, the resulting
tree with the mutated node is still a valid program tree. Therefore, each
specific node can only mutate into a limited set of other nodes, and each
terminal within a specified range of values respectively. The probability
of an individual to be selected for mutation is specified with the pmutation

parameter. For instance, a node representing a similarity measure between
string properties can only mutate into another similarity measure used for
string values. Figure 3.5 gives an example.

3.7.3 Crossover

As described above, crossover operates on two parent individuals and
builds a new offspring by swapping subtrees of the parent genotypes.

22

3 Genetic Programming for Link Specification

Individuals of the new population gt+1 of generation t + 1 are selected
randomly according to the probability pcrossover to be subject to crossover.

23

4 Implementation

4.1 LIMES

We use the lossless and time-efficient LIMES framework for link discovery.
LIMES (Link Discovery for metric spaces) is utilizing the triangle inequal-
ity in metric spaces to filter out large numbers of instance pairs, which
cannot suffice a given link specification [30]. Thereby minimizing the time
complexity of a link discovery task.

4.1.1 LIMES Link Specification language

Furthermore, LIMES provides an easy-to-use and highly flexible language
for link specifications. Besides several so called atomic similarity measures
m to compare the values of two property fields, such as the Levenshtein
distance, Cosine similarity or Trigrams measure for the comparison of
strings, and the Euclidean distance of numeric values, it is also possible
to combine multiple atomic measures with so-called operators. E.g. set-
constraint-operators to merge two given mappings, such as AND, MINUS,
XOR and OR. It is also possible to linear combine atomic measures with
the metric operator ADD. Furthermore all results are filtered according to
a similarity threshold θ.
Given two sets S (source) and T (target) of entities, let denote A ⊆ S× T

24

4 Implementation

and B ⊆ S× T two sets of pairs (s, t) ∈ S× T called mappings. The set-
constraint operators works on the mappings produced by atomic measures
or operators, and filters them according to the threshold θ: AND(A, B)
returns all pairs of instances (s, t) in the intersection A ∩ B of the two
source mappings. While OR(A, B) is the union A ∪ B, MINUS(A, B) the
difference A\B and XOR(A, B) denotes the difference A ∪ B\A ∩ B. Note
all pairs in the resulting merged mappings have to apply to σ(s, t) ≥
θ. The LIMES link specification language also supports other opera-
tors, such as MAX, MIN and MULT. But those are not generated by EA-
GLE.

4.2 Realization using GP

To define a good link specification a central task for us, is to specify such a
complex link specification, expressing how to combine properties of the
two knowledge bases. We will also call this a metric expression. Second
it is also necessary to specify a global threshold θ beyond which instance
pairs are considered to represent the same object, and therefore will be
linked. To enhance LIMES with features of genetic programming we use
the Java Genetic Algorithms Package JGAP.1 JGAP can be used both for
genetic algorithms and genetic programming.

4.2.1 Preliminaries

We assume all other necessary steps for link specification, such as defining
the two knowledge bases to be done in advance. Especially any prepro-
cessing step is done outside of our learning process. And furthermore,

1 http://jgap.sourceforge.net/

25

4 Implementation

MetricCommand

metric expression

acceptance threshold

Figure 4.1: Basic structure of chromosomes

we assume that there already exists a property mapping between the two
knowledge bases. Specifying which source property can be linked to which
target property, and of which type (string vs. number) both properties are.
This minimizes the computation complexity, as only reasonable combina-
tions of source and target properties can be part of any individual repre-
senting link specification, avoiding the comparison of properties which
most likely won’t benefit the finding of links.

4.2.2 Genotype

The genotype of each of our individuals consists of only one chromosome,
representing all the information on how to link instances s ∈ S and t ∈ T.
Figure 4.1 illustrates the basic setup of the GP programs2 we evolve. The
root of each program is a function3 called MetricCommand, which takes two
parameters, whereupon the first is a function defining the metric expression
- a complex link specification, and the second one a terminal4 representing
the global acceptance threshold.

2 We also call them individuals or example solutions.
3 All nodes in a GP tree are called commands or command nodes, which either represent a

function or a terminal.
4 A command without children and as such a leaf in the program tree.

26

4 Implementation

The left subtree of a MetricCommand builds the metric expression. The
inner nodes of this tree represent functions for similarity measures and
compositions of those, called operators. The leaves of this subtree are termi-
nals representing the properties of the two knowledge bases and thresholds
or coefficients for the specific similarity measure5. Instead of representing
the properties of a knowledge base individually by there names and evolv-
ing them separately, we take the property mapping done beforehand into
consideration. We model properties as property pairs. We assign each pair
of properties in the property mapping a specific number and represent it as
a number terminal in the program tree. Thereby, we can support mutation
of the properties by randomly selecting a new value within the bounds of
the allowed property pairs. Furthermore, we distinguish between number
and string properties, by a similar node only selecting pairs of number
properties out of the property mapping. This is done, because certain
atomic similarity measure only operate on numbers, such as the euclidean
metric.
For example, consider the following matching task: We want to match two
knowledge bases dubbed source and target with a Jaccard measure taking
the properties called name as input, and consider all pairs of instances with
a similarity above 0.8 as a match. The corresponding configuration file for
LIMES would consist of the following statements:

<METRIC>jaccard(source.name, target.name)</METRIC>

<ACCEPTANCE>

<THRESHOLD>0.8</THRESHOLD>

</ACCEPTANCE>

5 The thresholds of similarity measures are only considered if the command is part of
an operator, e.g. child of of a boolean AND operator. Otherwise, the global threshold -
the right child of the MetricCommand - is used for filtering pairs of instances.

27

4 Implementation

(a). Metric-
Command

Similarity-
Command

0 λ

0.8

(b). Metric-
Command

jaccard

source.name target.name λ

0.8

Figure 4.2: A GP program tree representing the expression jac-
card(source.name, target.name) using 0.8 acceptance threshold. Suppose 0 is
the index of the list of property matches, representing the pair source.name
and target.name ; λ is a random double value. This parameter is part of
the SimilarityCommand because it is possible that the same node will later
on be the child of an boolean operator, which combines two mappings,
and therefore needs local acceptance thresholds for its children, in case,
they are atomic similarity measures. The value of λ will only be part of an
execution of the SimilarityCommand in the latter case. Figure a illustrates
how both the similarity measure and properties are represented, while
Figure b shows the result if all functions are executed.

A genetic program representing such an execution plan is given in Fig-
ure 4.2. For each function and terminal we created own implementa-
tions of the JGAP GPCommand interface. Thus, we can support custom
mutations on the several parts of a link specification. Table 4.1 gives a
overview of the basic commands we defined to model a link specification.

4.2.3 Evolution

The evolutionary process is modeled using built in JGAP functionalities.
Both the creation of a initial population of individuals, as the steps to
evolve to further generations (selecting individuals for the genetic op-

28

4 Implementation

Nr. GP command children types values
1 MetricCommand 2 (4 . . . 8, 9) -
2 StringPropertyPair 0 - 1 . . . n
3 NumberPropertyPair 0 - 1 . . . m
4 StringMeasure 2 (2, 8) trigrams, jac-

card, cosine,
levensthein,
overlap

5 NumberMeasure 2 (3, 8) euclidean
6 AddMetric 4 ({4, 5}, {4, 5}, 8, 8) ADD
7 BooleanCommand 3 (4 . . . 7, 4 . . . 7, 8) AND, OR,

XOR, MINUS
8 Terminal 0 - [0 . . . 1)
9 Terminal 0 - [0 . . . 1)

Table 4.1: Custom GP commands with number and types of their chil-
dren nodes. Values mean of all possible mutations. Where m and n are
the boundaries defined by a property mapping. Types is a list with the
possible types the specific child. E.g. A StringMeasure command has two
child nodes. The first is a StringPropertyPair and the second a threshold
modeled via the terminal 8.

29

4 Implementation

erators reproduction, mutation and crossover) use predefined function-
alities of the JGAP library. But as a central step we defined our own
FitnessFunction, both for the Batch Learning and Active Learning process.

Figure 4.3: Screenshot of the SAIM graphical user interface for the LIMES
framework.

4.3 SAIM - Graphical user interface

A Web application for the LIMES framework and all learning algorithms
presented here is currently under development, we already published
a pre-alpha demo 6. Figure 4.3 shows the main user interface of SAIM
.
6 http://aksw.org/Projects/SAIM

30

5 Evaluation

We evaluate EAGLE on six datasets of different complexity and from dif-
ferent domains. In this section we first introduce the experimental setup
and the datasets we used, then we present and discuss the results of our
evaluation.

5.1 Experimental Setup

We evaluated our approach in six experiments. In our experiments, our
main goal was not only to show that we can discover link specifications
of different complexity with high accuracy. In addition, we also aimed to
study the effect of the population size and of active learning on the quality
of link specifications.

Label S T |S| × |T| Oracle size
Drugs Dailymed Drugbank 1.09× 106 1046

Movies DBpedia LinkedMDB 1.12× 106 1056
Publications I ACM DBLP 6.01× 106 2224
Publications II DBLP Google Scholar 168.11× 106 5347

Products I Abt Buy 1.18× 106 1097
Products II Amazon GoogleProducts 4.39× 106 1300

Table 5.1: Characteristics of the datasets used for evaluation. S stands for
source, T for target.

31

5 Evaluation

Label String attributes Number attributes
Drugs name -

Movies title, director -
Publications I title, authors, venue year
Publications II title, authors, venue year

Products I title, description, manufacturer price
Products II title, description, manufacturer price

Table 5.2: Characteristics of the datasets used for evaluation. Listing of all
attribute pairs. String attributes are preprocessed by transforming them
to lowercase strings. Number attributes as numbers

5.1.1 Datasets

For this purpose, we devised experiments whose characteristics with re-
spect to their size and the size of the reference mappings are shown in
Table 5.1 and 5.2. The goal of the first experiment, called Drugs, was to
measure how well we can detect a manually created LIMES specification.
For this purpose, we generated owl:sameAs link candidates between Drugs
in DailyMed and Drugbank by using their rdfs:label. The second ex-
periment, Movies, was carried out by using the results of a LATC1 link
specification. Here, we fetched the links generated by a link specification
that linked movies in DBpedia to movies in LinkedMDB [16], gathered the
rdfs:label of the movies as well as the rdfs:label of their directors in
the source and target knowledge bases and computed a specification that
aimed to reproduce the set of links at hand as exactly as possible. Note
that this specification is hard to reproduce as the experts who created this
link specification applied several transformations to the property values
before carrying out the similarity computation that led to the results at
hand.

Finally, in our remaining experiments (Publications I, Publication II, Prod-

1 http://lact-project.ec

32

http://lact-project.ec

5 Evaluation

ucts I and Products II), we used the datasets described in [20]. For all
datasets we manually generated a property mapping. As showed in [28]
we can compute a property mapping of two knowledge bases efficiently.
Thereby avoiding additional work or expert knowledge about the linking
task for the user. For all string properties we automatically assigned them to
the lowercase preprocessing function. Additional in the Movies experiment
we remove the braces in both the name and director properties on both the
DBPedia and LinkedMDB datasets Finally in case of the Publications I ex-
periment another aim was to compare our approach with other approaches
with respect to both runtime and F-measure.

5.1.2 Parameters

All experiments were carried out on one kernel of an AMD Opteron Quad-
Core processor (2GHz) with the followings settings: The mutation pmutation

and crossover pcrossover rates were set to 0.6. While preproduction was set
0.5, with preservation of the fittest individual each generation. As initial
experiments suggested that these values were sufficient to produce both
stable results and populations able to adapt to the given problem. Our
initial experiments also suggested that larger populations produce better
results with a higher likelihood, we want to verify this be setting the
population size 20 or 100. In all active learning experiments, we carried
out 10 inquiries per iteration cycle. In addition, we had the population
evolve for 50 generations between all inquiries. For the batch learners, we
set the number of generations to the according number of generations the
active learner performed to reach the same number of inquiries as the batch
learner at that stage. To generate the training data for the batch learner
we randomly select an according number of matches from the reference
mapping. Note that this setup is of a slightly disadvantage for active

33

5 Evaluation

learning as the batch learners then have most likely more positive examples
as training data and more iterations on the same amount of data to learn
the best possible specification. We used this setting as complementary for
the questions that can be asked by the active learning approach. During
our experiments, the Java Virtual Machine was allocated 1GB RAM. All
experiments were repeated 5 times.

5.1.3 Quality Measures

To evaluate the solutions produced be the link specification learner we
compute precision, recall and the F1 metric of the resulting mappings in
respect to the reference mappings. The precision P of a mapping m as result
of a link specification is the proportion of correctly identified links (true
positives) of all identified links (true positives plus false positives). The
recall R of a mapping produced by a link specification is the proportion
of correctly identified links of all the links between the knowledge bases
as defined in the reference mapping. The standard f-Measure F is the
harmonic mean of P and R: F = 2×P×R

P+R .

5.2 Experimental Results

In this section we present and discuss the results of our experiments. Three
main items will be of interest:

1. How many inquiries are sufficient to produce accurate and stable
mappings.

2. What influence has the population size to the experiments.

34

5 Evaluation

3. Compare the active and batch learning approach with respect to the
quality of the results and the size of training data needed to produce
them.

5.2.1 Baseline Experiments

To get a baseline for our experiments we run batch learning experiments
using both complete sets of instances S,T and using the complete reference
mapping O for each dataset as labeled training data. We run the experi-
ments with a population of 20 individuals over 100 generations using the
same parameters as for the other experiments. The best solution is then
selected to get the baseline for each dataset. As we use the full background
knowledge we can fairly say, that those F-measures are the best the learning
algorithms can theoretically achieve. Table 5.3 presents the results of our
baseline experiments for all datasets, the generation we first computed the
maximum and a link specification producing these results. Example link
specifications for all experiments computing mappings of these quality can
be found in the appendix.

35

5 Evaluation

Dataset F-measure Precision Recall Gen Figure

Drugs 99.9 % 100 % 99.8 % 100 A.1

Movies 97.5 % 97.9 % 97.2% 9 A.2

Publications I 97.0 % 96.2 % 97.9 % 15 A.3

Publications II 77.2 % 77.5 % 77.0 % 4 A.4

Products I 35.1 % 39.3 % 31.6 % 55 A.5

Products II 37.6 % 38.4 % 36.9 % 2 A.6

Table 5.3: Baseline experiments. Listing best f-measure, precision and

recall reached running a population of 20 individuals for 100 generations

using the full labeled reference data. Column Gen depicts the minimal gen-

eration the best result was first reached. The last column Figure names the

figure in the Appendix showing one possible links specification visualized

using the SAIM prototype.

As table 5.3 suggests we are able to compute high quality link specifica-
tion for the comparably more simpler datasets Drugs, Movies Publica-
tions I. The reference mapping of these datasets is an almost perfect 1:1
mapping between instance s ∈ S and t ∈ T. Therefore, the negative in-
fluence of maximizing the precision to the recall is bounded. The rest of
datasets (Publication II and both product datasets) are of more complex
nature. Here it is more likely that one s ∈ S is mapped to a number of
instances t ∈ T. Hence, the interaction of precision and recall tends to be
greater.

5.2.2 Accuracy batch vs. active learning

All comparable results of the batch and active learners are presented in the
following figures. In all figures, Batch stands for the batch learners while

36

5 Evaluation

AL stands for the active learners. The numbers in brackets are the sizes of
the populations used.
Will also included the results in more details in the A.2 section of the ap-
pendix.
The results of the Drugs experiment - figure 5.1 - show, that EAGLE can
easily detect simple link specifications. In this experiment 10 labeled
instance were already sufficient to generate link specifications equiva-
lent to the baseline of 99.9% F-measure. This holds for all runs. The
standard derivation lied around 0.1% for both active and batch learn-
ers.

10 20 30 40 50 60 70 80 90 100

labeling effort

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

m
e
a
n
 f

-s
co

re

Baseline Batch (20) Batch (100) AL (20) AL (100)

Figure 5.1: Results of the Movies experiment. Mean F-measures of five
runs of batch and active learner, both using population sizes of 20 and 100
individuals. Baseline is at 97.5% F-measure.

For the more complex Movies experiment 50 inquiries were required to
detect the best link specification with 94.1% F-measure. Here the advan-
tage of the active learners is obvious. The batch learner tend to diverge

37

5 Evaluation

significantly as shown by their standard derivation bars, while the active
learner not only perform better but they are also more stable.
The easiest real-world dataset at hand Publications I, which links bibli-
ographic items of ACM to those of DBLP, shows similar results. Again,
the batch learner tend to more unstable results. The results for the real-

10 20 30 40 50 60 70 80 90 100

labeling effort

0.994

0.995

0.996

0.997

0.998

0.999

1

m
e
a
n
 f

-s
co

re

Baseline Batch (20) Batch (100) AL (20) AL (100)

Figure 5.2: Results of the Drugs experiment. Mean F-Measure of five runs
of batch and active learner, both using population sizes of 20 and 100
individuals. Baseline is at 99.9% F-measure.

world dataset Publications II and Product I and II also suggest the main
advantage of the Active Learners. They tend to converge faster and with
higher probability to the best F-Measures. As shown in figure 5.5 already
30 questions to the oracle were sufficient for the active learners in the
Product I experiment to achieve F-Measures around 70% of the baseline.
Even better results shows the Products II experiment. After 50 inquiries
to the oracle both active learner achieve F-measure between 30% and 36%,
where the baseline is 37.6 %. In the Products II experiments 50 inquiries

38

5 Evaluation

10 20 30 40 50 60 70 80 90 100

labeling effort

0.6

0.7

0.8

0.9

1

1.1

m
e
a
n
 f

-s
co

re

Baseline Batch (20) Batch (100) AL (20) AL (100)

Figure 5.3: Results of the Publications I experiment. Mean F-measures of
five runs of batch and active learner, both using population sizes of 20
and 100 individuals. Baseline is at 97.0% F-measure.

were sufficient for the active learners to compute link specifications results
better then 30% F1-Measure which is only 6% beneath the baseline. The
observation, that the batch learner diverge more, holds not for all these
experiments. As the error bars in figures 5.4 and 5.5 suggest. Only the
Products II experiment shown in figure 5.6 supports this hypothesis. It
is obvious that our approach is easily able to compute easy link specifi-
cation as in the synthetic Drugs experiment or the real-world experiment
Publications I. But as was to be expected we have to sacrifice quality of the
link specification to more complex link problems, respectively the labeling
burden for users grows with the complexity at hand. Using the active
learning approach we are able to ease these effects.
Using different populations sizes does not appear to have an consistent
impact on the results. Note that using greater population sizes results in

39

5 Evaluation

10 20 30 40 50 60 70 80 90 100

labeling effort

−0.200

0.000

0.200

0.400

0.600

0.800

1.000

m
e
a
n
 f

-s
co

re

baseline Batch (20) Batch (100) AL (20) AL (100)

Figure 5.4: Results of the Publications II experiment. Mean F-measures
of five runs of batch and active learner, both using population sizes of 20
and 100 individuals. Baseline is at 77.2% F-measure.

greater run-times, as every generation the fitness value of more individuals
has to be computed. Using the moderate population size of 20 individuals
seams to sufficient in most cases as it offers a heterogeneous enough gene
pool for an adaptive evolutionary process.

5.2.3 Comparison with other approaches

As stated above, we chose the ACM-DBLP data set because it has been used
in previous work to compare the accuracy and learning curve of different
machine learning approaches for deduplication. As our results show (see
Table 5.4), we reach an accuracy comparable to that of the other approaches.
One of the main advantages of our approach is that it is considerably

40

5 Evaluation

10 20 30 40 50 60 70 80 90 100

labeling effort

−0.1

0

0.1

0.2

0.3

0.4

m
e
a
n
 f

-s
co

re

Baseline Batch (20) Batch (100) AL (20) AL (100)

Figure 5.5: Results of the Products I experiment. Mean F1-measures of
five runs of batch and active learner, both using population sizes of 20
and 100 individuals. Baseline is at 34.5% F1-measure.

more time-efficient that all other approaches. Especially, while we are
approximately 3 to 7 times faster than MARLIN, we are more than 14 times
faster than FeBRL on this data set.

EAGLE FEBRL MARLIN MARLIN
(SVM) (SVM) (AD-Tree)

F-Measure 97.2% 97.5% 97.6% 96.9%
Runtime 337s 4320s 2196s 1553s

Table 5.4: Comparison of best performances of different machine learning
approaches on Publications I (ACM-DBLP)

41

5 Evaluation

10 20 30 40 50 60 70 80 90 100

labeling effort

−0.1

0

0.1

0.2

0.3

0.4

0.5

m
e
a
n
 f

-s
co

re

Baseline Batch (20) Batch (100) AL (20) AL (100)

Figure 5.6: Results of the Products II experiment. Mean F-measures of
five runs of batch and active learner, both using population sizes of 20
and 100 individuals. Baseline is at 37.6% F-measure.

5.3 Discussion

We showed that we can effectively compute accurate link specification
using genetic programming techniques. Using an active learning approach
we’re able to alleviate the labeling effort for an oracle. Relying on the effi-
cient LIMES algorithms we support considerable fast run-times. Therefore,
it is possible to use the learning techniques of EAGLE for link specifications
in an interactive environment.
We only studied the effects of different population sizes. So far with no con-
clusive results, it seems that populations of 20 individuals are sufficient in
most cases. Maybe the effects of different population sizes is lessen, due to
the rather larger number of generations the evolutionary process is applied
each iteration. Also studying impact of different values for the probabilities

42

5 Evaluation

of the genetic operators mutation, crossover and reproductions should be
subject to future work and may change this observation.
Overall, note that genetic programming is a non-deterministic search
method. So, we cannot guarantee high quality results every time. For
rather simple linking problems we can easily compute accurate link spec-
ification using only a small number of training data, as the Drugs and
Publication I experiment suggest. If the problem at hand is of a more
complex nature, as for experiment Publication II and Products I and II,
where the reference data is not a 1:1 mapping and the data is more nois-
ier, we can compute link specification close to 70% of the baselines. But,
EAGLE either requires more training data or the quality of the computed
link specifications are subject to higher fluctuations. We only analyzed one
fitness measures, namely the F1 measure. For linking problems of different
complexity emphasizing either precision or recall using different β values
may lead to more satisfiable results.
Nonetheless, we showed that we can support the process of finding accu-
rate link specification using genetic programming without being dependent
of users with expert knowledge of the linking problem at hand. Further-
more, we are able to compete with other approaches, both with respect to
the quality of the link specifications as to run-times.

43

6 Conclusion and Future Work

In this work we presented EAGLE, an active learning approach for ge-
netic programming that can learn highly accurate link specifications. We
compared EAGLE with its batch learning counterpart. We showed that
by using active learning, we can tackle complex datasets with more ease
and generate solutions that are more stable (i.e., that display a smaller stan-
dard deviation over different runs). We also compared EAGLE with other
approaches such as FeBRL and MARLIN on the ACM-DBLP dataset. We
showed that we achieve a similar F-measure while requiring a significantly
smaller runtime. We also demonstrated that the runtime of our approach
makes it suitable for interactive scenarios.
For future work we will further explore how certain parameters like pop-
ulation size, number of generations and the probabilities of the genetic
operators interact and influence the computation of efficient link specifica-
tions.
During implementing the presented approach certain limits of the JGAP
library get obvious. In the current version we only support setting global
parameters for both mutation and crossover probabilities. Once an individ-
ual got selected for one of these genetic operators, the individual is subject
to a random change. Especially the change of thresholds to an arbitrary
value is not efficient in every case. Individuals with worser fitness values
may benefit more from drastic changes then those with better fitness values.
Moreover, adapting more specific mutation principles as used in [34] may

44

6 Conclusion and Future Work

further improve the performance of our approach.
Genetic programming is a nondeterministic approach and thus able to effi-
ciently adapt to complex learning tasks. But there are several drawbacks
to this. For instance, during evolution of a link specification it is possible
that we evolve redundant metric expressions, For example combining the
same measures over the same property pairs with different thresholds.
Such a link specification would be equivalent to an specification compar-
ing the properties only once using the stricter measure with respect to its
threshold. See figure A.7 for an example. Implementing tools to avoid
building redundant link specifications in the first place, or punish those
individuals while evolution, would save runtime as we avoid unnecessary
computation, while ensuring the same linking results.
Our active learning approach in particular could be improved. The most
influential part is the selection of the most informative link candidates pre-
sented to an oracle for labeling. We just used all individuals of a population
to compute them with no respect to their fitness. As described in [12] en-
hancing mechanisms with reinforcement learning techniques could result
in a more proper selection.
Furthermore, we intend to make the discovery of most suitable preprocess-
ing steps subject to an unsupervised learning process. Thereby, we will
be able to further automating the Link Discovery process. All these features
will then also be added to the SAIM web application.

45

Bibliography

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining asso-
ciation rules between sets of items in large databases. SIGMOD Rec.,
22:207–216, June 1993.

[2] J.R. Anderson, R.S. Michalski, R.S. Michalski, J.G. Carbonell, and T.M.
Mitchell. Machine Learning: An Artificial Intelligence Approach. Number
Vol. 1 in Machine Learning: An Artificial Intelligence Approach. M.
Kaufmann, 1985.

[3] Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo. Intro-
duction to linked data and its lifecycle on the web. In Axel Polleres,
Claudia dŠAmato, Marcelo Arenas, Siegfried Handschuh, Paula Kro-
ner, Sascha Ossowski, and Peter Patel-Schneider, editors, Reasoning
Web. Semantic Technologies for the Web of Data, volume 6848 of Lecture
Notes in Computer Science, pages 1–75. Springer Berlin / Heidelberg,
2011.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, 284(5):34–43, May 2001.

[5] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detec-
tion using learnable string similarity measures. In KDD, pages 39–48,
2003.

46

Bibliography

[6] Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv.,
41(1):1–41, 2008.

[7] Moisés G. Carvalho, Albero H. F. Laender, Marcos André Gonçalves,
and Altigran S. da Silva. Replica identification using genetic program-
ming. In Proceedings of the 2008 ACM symposium on Applied computing,
SAC ’08, pages 1801–1806, New York, NY, USA, 2008. ACM.

[8] Peter Christen. Febrl -: an open source data cleaning, deduplication
and record linkage system with a graphical user interface. In KDD ’08,
pages 1065–1068, 2008.

[9] Nello Cristianini and Elisa Ricci. Support vector machines. In Encyclo-
pedia of Algorithms. Cambridge University Press, 2008.

[10] Philippe Cudré-Mauroux, Parisa Haghani, Michael Jost, Karl Aberer,
and Hermann de Meer. idmesh: graph-based disambiguation of
linked data. In WWW, pages 591–600, 2009.

[11] Moisés G. de Carvalho, Marcos André Gonçalves, Alberto H. F. Laen-
der, and Altigran S. da Silva. Learning to deduplicate. In Proceedings
of the 6th ACM/IEEE-CS joint conference on Digital libraries, JCDL ’06,
pages 41–50, New York, NY, USA, 2006. ACM.

[12] J. de Freitas, G.L. Pappa, A.S. da Silva, M.A. Gonç andalves, E. Moura,
A. Veloso, A.H.F. Laender, and M.G. de Carvalho. Active learning
genetic programming for record deduplication. In Evolutionary Com-
putation (CEC), 2010 IEEE Congress on, pages 1 –8, july 2010.

[13] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing.
Springer, Berlin Heidelberg, 2007.

47

Bibliography

[14] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S.
Verykios. Duplicate record detection: A survey. IEEE Transactions on
Knowledge and Data Engineering, 19:1–16, 2007.

[15] Hugh Glaser, Ian C. Millard, Won-Kyung Sung, Seungwoo Lee, Pyung
Kim, and Beom-Jong You. Research on linked data and co-reference
resolution. Technical report, University of Southampton, 2009.

[16] Oktie Hassanzadeh and Mariano Consens. Linked movie data base.
In Christian Bizer, Tom Heath, Tim Berners-Lee, and Kingsley Idehen,
editors, Proceedings of the WWW2009 Worshop on Linked Data on the Web
(LDOW 2009), 2009.

[17] Aidan Hogan, Axel Polleres, Jürgen Umbrich, and Antoine Zimmer-
mann. Some entities are more equal than others: statistical methods
to consolidate linked data. In Workshop on New Forms of Reasoning for
the Semantic Web: Scalable & Dynamic (NeFoRS2010), 2010.

[18] R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking
for Link Discovery without losing Recall. In WebDB, 2011.

[19] S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support
vector machines with gaussian kernel. Neural Comput., 15:1667–1689,
July 2003.

[20] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Comparative evalu-
ation of entity resolution approaches with fever. Proc. VLDB Endow.,
2(2):1574–1577, 2009.

[21] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity
resolution approaches on real-world match problems. Proc. VLDB
Endow., 3:484–493, September 2010.

[22] John R. Koza. Genetic Programming. MIT Press, Cambridge MA, 1992.

48

Bibliography

[23] John R. Koza. Genetic programming, 1992.

[24] P. Langley. Elements of Machine Learning. M. Kaufmann, 1996.

[25] Ray Liere and Prasad Tadepalli. Active learning with committees
for text categorization. In In proceedings of the Fourteenth National
Conference on Artificial Intelligence, pages 591–596, 1997.

[26] R.S. Michalski, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell. Ma-
chine Learning: An Artificial Intelligence Approach. Number Vol. 2 in
Machine Learning: An Artificial Intelligence Approach. M. Kaufmann,
1986.

[27] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 2 edition,
1997.

[28] Axel-Cyrille Ngonga Ngomo. A Time-Efficient Hybrid Approach to
Link Discovery. In Sixth International Ontology Matching Workshop,
2011.

[29] Axel-Cyrille Ngonga Ngomo. A time-efficient hybrid approach for
link discovery. In ISWC’11 Workshop on Ontology Matching(OM-2011),
Bonn, Germany, 2011.

[30] Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES - A Time-
Efficient Approach for Large-Scale Link Discovery on the Web of
Data. In Proceedings of IJCAI, 2011.

[31] Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Kon-
rad Höffner. RAVEN – Active Learning of Link Specifications. In
Proceedings of OM@ISWC, 2011.

[32] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. Eagle: Efficient ac-
tive learning of link specifications using genetic programming. In
Proceedings of ESWC, 2012.

49

Bibliography

[33] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. Unsupervised learning
of link specifications: Deterministic vs. non-deterministic. Unpublished
manuscript, 2012.

[34] A. Nikolov, A D’Aquin, and E. Motta. Unsupervised learning of data
linking configurations. In Proceedings of ESWC, 2012.

[35] Andriy Nikolov, Victoria S. Uren, Enrico Motta, and Anne N. De
Roeck. Overcoming schema heterogeneity between linked semantic
repositories to improve coreference resolution. In ASWC, pages 332–
346, 2009.

[36] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Pal-
panasz, and Wolfgang Nejdl. Eliminating the redundancy in blocking-
based entity resolution methods. In JCDL, 2011.

[37] Yves Raimond, Christopher Sutton, and Mark Sandler. Automatic
interlinking of music datasets on the semantic web. In Proceedings of
the 1st Workshop about Linked Data on the Web, 2008.

[38] François Scharffe, Yanbin Liu, and Chuguang Zhou. Rdf-ai: an archi-
tecture for rdf datasets matching, fusion and interlink. In Proc. IJCAI
2009 workshop on Identity, reference, and knowledge representation (IR-KR),
Pasadena (CA US), 2009.

[39] Burr Settles. Active learning literature survey. Technical Report 1648,
University of Wisconsin-Madison, 2009.

[40] Jennifer Sleeman and Tim Finin. Computing foaf co-reference relations
with rules and machine learning. In Proceedings of the Third International
Workshop on Social Data on the Web, 2010.

50

Bibliography

[41] Dezhao Song and Jeff Heflin. Automatically generating data linkages
using a domain-independent candidate selection approach. In ISWC,
pages 649–664, 2011.

[42] William Winkler. Overview of record linkage and current research
directions. Technical report, Bureau of the Census - Research Report
Series, 2006.

[43] Yufei Yuan and Michael J. Shaw. Induction of fuzzy decision trees.
Fuzzy Sets Syst., 69:125–139, January 1995.

s

51

7 Kurzzusammenfassung

Um die Vision eines Linked Data Webs zu verwirklichen werden effiziente
halbautomatische Verfahren benötigt, um Links zwischen verschiedenen
Datenquellen zu generieren. Viele bekannte Link Discovery Frameworks
verlangen von einem Benutzer eine Linkspezifikation manuell zu erstellen,
bevor der eigentliche Vergleichsprozess zum Finden dieser Links gestartet
werden kann.
Zwar wurden jüngst zeit- und ressourcenschonende Werkzeuge zur Aus-
führung von Linking-Operationen entwickelt, aber die Generierung mög-
lichst präziser Linkspezifikationen ist weiterhin ein kompliziertes Unter-
fangen. Diese Arbeit präsentiert EAGLE - ein Werkzeug zum halbau-
tomatischen Lernen solcher Linkspezifikationen. EAGLE erweitert das
zeiteffiziente LIMES Framework um aktive Lernalgorithmen basierend auf
Methoden der Genetischen Programmierung. Ziel ist es den manuellen
Arbeitsaufwand während der Generierung präziser Linkspezifikationen
für Benutzer zu minimieren. Das heißt insbesondere, dass die Menge an
manuell annotierten Trainingsdaten minimiert werden soll. Dazu werden
Batch- als auch aktive Lernalgorithmen verglichen. Zur Evaluation wer-
den mehrere Datensätze unterschiedlichen Ursprungs und verschiedener
Komplexität herangezogen. Es wird gezeigt, dass EAGLE zeiteffizient Link-
spezifikationen vergleichbarer Genauigkeit bezüglich der F-Maße gerner-
ieren kann, während ein geringerer Umfang an Trainingsdaten für die
aktiven Lernalgorithmen benötigt wird.

52

A Appendix

A.1 Images

Figure A.1: Link Specification of the baseline of the Drugs experiment

linking Dailymed with Drugbank.

53

A Appendix

Figure A.2: Link Specification of the baseline of the Movies Experiment.

54

A Appendix

Figure A.3: Link Specification of the baseline of the Publications I experi-

ment linking DBLP with ACM.

Figure A.4: Link Specification of the baseline of the Publications II experi-

ment linking DBLP with Google Scholar.

55

A Appendix

Figure A.5: Link Specification of the baseline of the Products I experiment.

Figure A.6: Link Specification of the baseline of the Products II

experiment.

56

A Appendix

Figure A.7: Example of a redundant Link Specification and its equivalent

minimalization. Visualization was done with the SAIM prototype.

57

A Appendix

A.2 Tables

The following tables show the detailed results of all experiments. In all
table headers Batch stands for the batch learners while AL stands for the
active learners. The numbers in brackets are the sizes of the populations
used. The first row of each learner group contains the mean F-Measures
achieved by the learner. The rows std der contain the standard derivations
over all 5 runs. For the first 3 experiments (Drugs, Movies and Publication
I) we also included the mean runtimes in milliseconds in the row mean
dur.

58

A
A

ppendix

Ora-
cle

base-
line

AL (20) AL (100) Batch (20) Batch (100)

std
der

mean
dur

std
der

mean
dur

std
der

mean
dur

std
der

mean
dur

10 0.999 0.999 0.001 578 0.999 0.000 2206 0.999 0.001 632 0.998 0.001 2374

20 0.999 0.998 0.001 1044 0.998 0.001 4390 0.998 0.001 1069 0.999 0.001 4337

30 0.999 0.998 0.001 1715 0.998 0.001 6440 0.998 0.001 1408 0.999 0.001 6248

40 0.999 0.998 0.001 2595 0.998 0.001 8730 0.998 0.001 1797 0.997 0.001 8444

50 0.999 0.998 0.001 2852 0.998 0.001 11727 0.998 0.001 2169 0.999 0.001 10530

60 0.999 0.999 0.000 3502 0.998 0.001 12960 0.998 0.001 2523 0.998 0.001 11966

70 0.999 0.998 0.001 4722 0.998 0.001 16759 0.998 0.001 2758 0.999 0.000 15000

80 0.999 0.998 0.001 4885 0.998 0.001 19111 0.998 0.001 3383 0.998 0.001 17000

90 0.999 0.999 0.000 5899 0.998 0.001 22075 0.998 0.001 3614 0.998 0.001 18995

100 0.999 0.998 0.001 7090 0.999 0.000 25971 0.998 0.001 4323 0.998 0.001 21685

Table A.1: Results Drug experiment.

59

A
A

ppendix

Ora-
cle

base-
line

AL (20) AL (100) Batch (20) Batch (100)

std
der

mean
dur

std
der

mean
dur

std
der

mean
dur

std
der

mean
dur

10 0.976 0.805 0.352 182 0.533 0.444 257 0.377 0.333 1846 0.466 0.463 1910

20 0.976 0.838 0.282 1729 0.834 0.194 2455 0.376 0.409 1658 0.704 0.373 2658

30 0.976 0.756 0.340 3146 0.865 0.178 5199 0.734 0.279 1666 0.544 0.371 2476

40 0.976 0.820 0.181 5237 0.921 0.030 8576 0.615 0.489 1835 0.729 0.359 3066

50 0.976 0.836 0.195 7971 0.941 0.038 13508 0.558 0.385 2423 0.320 0.378 3745

60 0.976 0.951 0.023 10467 0.829 0.185 19217 0.706 0.341 1845 0.576 0.394 4511

70 0.976 0.824 0.186 12453 0.934 0.035 26862 0.764 0.418 1962 0.842 0.245 4632

80 0.976 0.944 0.031 15850 0.910 0.114 34929 0.672 0.391 2085 0.446 0.379 4844

90 0.976 0.951 0.023 19411 0.947 0.033 44719 0.568 0.347 2120 0.696 0.378 5757

100 0.976 0.953 0.025 24443 0.944 0.031 55642 0.332 0.155 2428 0.697 0.263 6280

Table A.2: Results Movies experiment.

60

A
A

ppendix

Ora-
cle

base-
line

AL (20) AL (100) Batch (20) Batch (100)

std
der

mean
dur

std
der

mean
dur

std
der

mean
dur

std
der

mean
dur

10 0.972 0.855 0.139 4085 0.940 0.039 22675 0.816 0.213 3123 0.957 0.007 18452

20 0.972 0.860 0.174 12476 0.957 0.003 49108 0.959 0.016 10547 0.956 0.008 42828

30 0.972 0.939 0.029 29548 0.961 0.005 122050 0.921 0.025 8932 0.954 0.005 71798

40 0.972 0.937 0.022 33936 0.958 0.003 139713 0.931 0.033 17437 0.965 0.006 164930

50 0.972 0.941 0.029 66705 0.958 0.007 316386 0.951 0.025 21529 0.964 0.007 274164

60 0.972 0.953 0.025 86453 0.955 0.003 451691 0.943 0.028 23011 0.967 0.001 285193

70 0.972 0.950 0.022 211435 0.960 0.002 447795 0.947 0.033 52306 0.967 0.002 348586

80 0.972 0.954 0.005 261320 0.953 0.004 994446 0.948 0.023 58422 0.946 0.008 507449

90 0.972 0.942 0.043 456647 0.955 0.005 1053398 0.944 0.030 39483 0.951 0.014 374205

100 0.972 0.958 0.007 374837 0.961 0.003 1583122 0.951 0.017 194215 0.955 0.003 656968

Table A.3: Results Publications I experiment.

61

A
A

ppendix

Ora-
cle

base-
line

AL (20) AL (100) Batch (20) Batch (100)

std
der

std
der

std
der

std
der

10 0.772 0.381 0.347 0.297 0.274 0.029 0.029 0.335 0.276

20 0.772 0.514 0.307 0.297 0.278 0.267 0.029 0.229 0.204

30 0.772 0.442 0.220 0.432 0.133 0.343 0.029 0.228 0.220

40 0.772 0.473 0.311 0.467 0.258 0.206 0.029 0.444 0.276

50 0.772 0.552 0.333 0.697 0.087 0.217 0.029 0.093 0.095

60 0.772 0.500 0.305 0.572 0.293 0.150 0.029 0.283 0.301

70 0.772 0.607 0.157 0.625 0.103 0.250 0.029 0.402 0.245

80 0.772 0.558 0.311 0.626 0.157 0.112 0.029 0.257 0.188

90 0.772 0.504 0.297 0.695 0.152 0.271 0.029 0.307 0.347

100 0.772 0.523 0.111 0.752 0.030 0.181 0.029 0.242 0.234

Table A.4: Results Publications II experiment.

62

A
A

ppendix

Oracle
base-
line

AL (20) AL (100) Batch (20) Batch (100)

std der std der std der std der

10 0.345 0.186 0.098 0.055 0.026 0.034 0.019 0.111 0.114

20 0.345 0.294 0.069 0.204 0.079 0.055 0.073 0.091 0.125

30 0.345 0.268 0.063 0.249 0.073 0.034 0.029 0.114 0.097

40 0.345 0.251 0.070 0.198 0.075 0.087 0.074 0.170 0.131

50 0.345 0.237 0.070 0.274 0.056 0.076 0.069 0.092 0.134

60 0.345 0.259 0.072 0.236 0.065 0.124 0.068 0.068 0.035

70 0.345 0.258 0.074 0.233 0.067 0.138 0.102 0.081 0.032

80 0.345 0.252 0.070 0.207 0.060 0.108 0.025 0.066 0.039

90 0.345 0.252 0.070 0.204 0.072 0.130 0.040 0.136 0.064

100 0.345 0.251 0.069 0.164 0.017 0.126 0.039 0.115 0.007

Table A.5: Results Products I experiment.

63

A
A

ppendix

Oracle
base-
line

AL (20) AL (100) Batch (20) Batch (100)

std der std der std der std der

10 0.376 0.075 0.062 0.054 0.032 0.052 0.048 0.042 0.039

20 0.376 0.123 0.105 0.087 0.037 0.208 0.069 0.020 0.023

30 0.376 0.144 0.073 0.211 0.126 0.021 0.026 0.127 0.149

40 0.376 0.256 0.100 0.229 0.108 0.057 0.064 0.014 0.008

50 0.376 0.318 0.098 0.343 0.036 0.146 0.134 0.046 0.067

60 0.376 0.339 0.026 0.337 0.037 0.091 0.083 0.080 0.116

70 0.376 0.346 0.018 0.342 0.034 0.091 0.075 0.077 0.070

80 0.376 0.355 0.012 0.356 0.018 0.084 0.050 0.047 0.046

90 0.376 0.348 0.018 0.360 0.010 0.075 0.073 0.100 0.130

100 0.376 0.345 0.019 0.363 0.012 0.144 0.084 0.173 0.139

Table A.6: Results Products II experiment.

64

List of Figures

3.1 Atomic measure . 16
3.2 Complex measure . 16
3.3 Atomic specification . 16
3.4 Complex specification . 16
3.5 Mutation example . 19
3.6 Crossover example . 19

4.1 Basic structure of chromosomes 26
4.2 GP Implementation . 28
4.3 SAIM screenshot . 30

5.1 Results Movies experiment 37
5.2 Results Drugs experiment . 38
5.3 Results Publications I experiment 39
5.4 Results Publications II experiment 40
5.5 Results Products I experiment 41
5.6 Results Products II experiment 42

A.1 Baseline Drugs experiment . 53
A.2 Baseline Movies experiment 54
A.3 Baseline Publications I experiment 55
A.4 Baseline Publications II experiment 55
A.5 Baseline Product I experiment 56

65

List of Figures

A.6 Baseline Product II experiment 56
A.7 Redundant Link Specification 57

66

List of Tables

4.1 GP commands . 29

5.1 Datasets overview . 31
5.2 Datasets properties . 32
5.3 Results baseline . 36
5.4 Comparison with other approaches 41

A.1 Results Drug experiment . 59
A.2 Results Movies experiment 60
A.3 Results Publications I experiment 61
A.4 Results Publlications II experiment 62
A.5 Results Products I experiment 63
A.6 Results Products II experiment 64

67

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbstständig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe,

insbesondere sind wörtliche oder sinngemäße Zitate als solche
gekennzeichnet.

Mir ist bekannt, dass eine Zuwiderhandlung auch nachträglich zur
Aberkennung des Abschlusses führen kann.

Ort Datum Unterschrift

68

	Introduction
	Motivation
	Approach
	Structure

	State of the art
	Link Discovery
	Machine Learning and Genetic Programming
	Learning Link Specifications

	Genetic Programming for Link Specification
	Link Discovery
	Designing Link Specifications as Trees
	Genetic Structure of Link Specifications
	Evolution of a population
	Fitness
	Computation of most informative link candidates
	Genetic Operators
	Reproduction
	Mutation
	Crossover

	Implementation
	LIMES
	LIMES Link Specification language

	Realization using GP
	Preliminaries
	Genotype
	Evolution

	SAIM - Graphical user interface

	Evaluation
	Experimental Setup
	Datasets
	Parameters
	Quality Measures

	Experimental Results
	Baseline Experiments
	Accuracy batch vs. active learning
	Comparison with other approaches

	Discussion

	Conclusion and Future Work
	Bibliography
	Kurzzusammenfassung
	Appendix
	Images
	Tables

	List of Figures
	List of Tables

