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Chapter 1

Introduction

The World Wide Web is enormous and evergrowing. In one second on the
internet1

• 7411 tweets are sent,

• 751 Instagram photos are uploaded,

• 1179 tumblr posts are made,

• 39590 GB of internet traffic is transferred and

• 57256 Google searches are carried out.

Similarly, the Semantic Web is growing: there are over 2.5 billion Web pages
that have markup according to schema.org format,2 linked data is used
by big media sites such as BBC and New York Times. Google, Yahoo!,
Microsoft, Facebook and many other global players of the Web business
are developing large knowledge graphs, defining, structuring and linking
hundreds of millions of entitities. DBpedia [2] has grown from 103 million
triples (DBpedia 2.0) in 2007 to 9.5 billion triples in 2016 (DBpedia 2016-04).

1.1 Motivation

While substantial effort has already been invested into making Tim Berners-
Lee’s vision of a shift from the document-oriented web towards a Web
of interlinked data [5], there is still much work to be done. For example
only 7.79% of the datasets in the LOD Cloud link to more than ten other
datasets.3 Linking data is essential for the success of the semantic web.
However the task of linking knowledge bases can be tedious, especially
if large datasets are used. In some cases, expert knowledge is needed to
be successfull at this endeavour. Furthermore, knowledge bases underlie
constant changes (e.g. adding of new instances), which calls for a machine
backed linking process even more.
To address the aforementioned problems, we rely on previous efforts con-
densed in the LIMES [23] framework. This framework tackles the poten-
tially quadratic complexity of linking datasets by using set theory com-
bined with efficient planning algorithms. Therefore the approach of this

1Statistics taken from http://www.internetlivestats.com/one-second/
2http://www.dataversity.net/schema-org-fires-lit/
3http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/

#toc4

schema.org
http://www.internetlivestats.com/one-second/
http://www.dataversity.net/schema-org-fires-lit/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/#toc4
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/#toc4
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work solely has to deal with the problem of finding appropriate similar-
ity measures on properties of datasets to find links. We do this by using a
seasoned machine learning technique: decision trees. Supervised learning
techniques often require a great amount of training data. In our approach,
we tackle this training data problem by implementing an active learning
mechanism. By these means, we can lower the amount of user input by
deciding smartly which data should be labeled.

1.2 Structure

This work is structured as follows: We start by giving an overview of the
semantic web and decision trees in chapters 2 and 3. For each topic, we take
a look at the general idea that lies beneath it and continue by diving into
techniques used to implement this objective. Concurrently, we also give an
overview of the related work in the respective field. Chapter 4 describes our
implementation and how it makes use of the aforementioned concepts. The
subsequent chapter 5 is dedicated to the presentation of results. We eval-
uated our approach on nine datasets (synthetic and real-world) and com-
pared it with three state-of-the-art classifiers. Our approach outperforms
the state-of-the-art on four of the nine datasets by up to 30% in regards to
the F-Score, while still being time-efficient. However, the state of the art
still provides better results on average. Ultimately, we conclude and give a
prospect of future work.
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Chapter 2

Semantic Web

2.1 Vision

The World Wide Web we use today is a colossal amount of documents that
are primarily designed for human consumption. Although machines can
manipulate the data, they primarily regard these documents as streams
of characters. If machines just see character streams, only for humans the
string “bike” is known as a vehicle that can be used to transport a person
from A to B, usually with some amount of physical exercise as a byproduct.
The Semantic Web aims to overcome this restriction by introducing certain
standards on how information should be described. This makes it possible
to share information between systems and platforms and even infer im-
plicit facts. Obviously these standards have to be flexible and expandable
enough to incorporate future changes. To tackle these problems, the World
Wide Web Consortium4(W3C) developed a number of standards including
RDF(S), OWL and XML. While XML is already in wide usage on the Docu-
ment Web5 RDF(S) and OWL are dedicated ontology languages for usage in
the Semantic Web. An ontology is “an explicit specification of a conceptu-
alization” [8, p.1]. In our case this specification is a set of types, properties
and relationship types.

2.2 RDF & Ontologies

RDF is short for Resource Description Framework [16] and is a formal lan-
guage to describe structured data. In contrast to XML, which uses a tree-
structure, this language uses directed graphs. There are several reasons
for this: While trees are a good way of storing information of documents
in a strict hierarchical order, which can be easily searched and processed,
RDF was invented to describe relationships between resources. These do
not necessarily have a hierarchy. Another reason is that this language is
designed for decentralized structures like the WWW and therefore new in-
formation has to be easily added, which is much harder in tree structures
than in graphs.
An RDF graph consists of edges and nodes that have unambiguous identi-
fiers called URIs (Uniform Resource Identifiers). The usage of URIs is nec-
essary to avoid name clashes, which could lead to major inconsistencies in
ontologies. For example the string “Mercury” could either mean a chem-
ical element, a planet or a roman god, which are obviously very different
things. A small example for a RDF graph can be seen in Figure 2.1. As we

4http://www.w3.org
5We refer to the classical Web2.0 as Document Web

http://www.w3.org
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can see the nodes have names that resemble the structure of URLs (Uniform
Resource Locators). The reason for this, is that URIs are just a generaliza-
tion of URLs. Another important aspect is the representation of data values

http://example.org/DanielObraczka

http://example.org/BachelorThesis

http://example.org/isWriting

Figure 2.1: example RDF graph

as literals. Literals can either have a annotated data type (in this case they
are typed) or not (untyped), in which case they are treated as strings. Literals
can never have outgoing edges, which means statements about literals are
not permitted [11, pp.36-39].

2.2.1 Syntax

While the representation of relationships between resources as graphs is
clear for small examples, it becomes confusing quite fast. Moreover, it
would be very difficult to use this graphical representation for computa-
tional processing. The solution for this is to describe knowledge graphs as
triples of subject - predicate - object. There have been several proposals on
how to do this: one of the first was Tim Berners-Lee’s Notation 3 (N3) [4] in
1998. Since it also included more complex expressions, a subset of it called
N-Triples6 was devised, which was later expanded again to Turtle [3]. The
latter is the unofficial standard for RDF-Syntax since it is expressive enough
for most use cases, but very user-friendly [11, pp.40f].
If we want to translate Figure 2.1 into turtle it looks like this:

@prefix ex: <http://example.org/> .

ex:DanielObraczka ex:isWriting ex:BachelorThesis .

URIs are put into angle brackets and we used prefixes in this case to shorten
them. This is done by declaring prefixes similar to namespaces in XML.
So instead of writing http://example.org/ everywhere we define ex as a
contraction. RDF also has the possibility to declare datatypes or language of
literals, use multivalent relationships, blank nodes or lists and much more
we cannot describe here, but can be found in [11].

2.2.2 RDFS

So far we have explicated how RDF can be used to make statements about
single resources. But we also want to represent classes with similar charac-
teristics. This is were RDF Schema (RDFS) comes into play. It is a part of
the W3C Recommendation for RDF and provides the basic elements for the
description of (lightweight) ontologies. If we want to say something is an
instance of a class we use the rdf:type predicate. E.g.:

6https://www.w3.org/TR/n-triples/ This link points to the latest version, the
original was proposed in 2004

https://www.w3.org/TR/n-triples/
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ex:DanielObraczka rdf:type ex:Student .

tells us that ex:DanielObraczka belongs to a class ex:Student. To know
that ex:Student is a class and not just another entity we use another pre-
defined URI:

ex:Student rdf:type rdfs:Class .

Since some classes have also very similar characteristics, it is possible to
declare class hierarchies. For example if we want to say that every student
is also a person:

ex:Student rdfs:subClassOf ex:Person .

Of course we not only want to make statements about classes, but also
about properties. For this we use rdf:Property. For example:

ex:isWriting rdf:type rdf:Property .

Similar to subclasses it is also possible to declare subproperties:

ex:isWritingSuccessfully rdf:subPropertyOf ex:isWriting .

Another important aspect for ontology engineering is the ability to restrict
the types of resources a property can be used with. E.g. we don’t want
triples like

ex:DanielObraczka ex:isWriting ex:Car .

in our knowledge base. To ensure the right usage of properties we use rdfs
:domain to restrict the possible types of subjects and rdfs:range to do the
same for objects.

ex:isWriting rdfs:domain ex:Person .
ex:isWriting rdfs:range ex:Document .

So for our example we also have to declare that

ex:BachelorThesis rdfs:subClassOf ex:Document .

We have now discussed the basic tools RDFS gives us to model knowledge
bases. Of course there is a vast number of expressive possibilities, like open
lists, statements about statements (reification) etc. we could not touch in
this work [11, pp.66-86]. Since RDFS lacks certain expressions such as e.g.
negation OWL 7 is used for more complex ontologies.

2.3 Link Discovery

Ensuing, we will have a look at link discovery. We start by defining the
problem and continue with the presentation of a few frameworks that try
to tackle it.

2.3.1 Definitions

The link discovery problem, which shows a certain similarity to the record
linkage problem,8 is difficult to model formally, since it is an ill-defined
problem [1]. In general, link discovery frameworks aim to compute the set

7https://www.w3.org/TR/owl-ref/
8“Record linkage is the process of identifying pairs of records that refer to the same

thing” [39]

https://www.w3.org/TR/owl-ref/
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M = (s, t) ∈ S × T : R(s, t) where S and T are sets of RDF resources and R
is a binary relation.

Definition 1 (Link Discovery) “Given two sets S (source) and T (target) of en-
tities, compute the setM of pairs of instances (s, t) ∈ S × T such that R(s, t)”
[25, p.4].

Usually the following applies: The set S is a subset of the instances con-
tained in the knowledge base KS . This applies similarly to T and KT . Note,
that neither S and T , nor KS and KT , have to be necessarily disjoint. The
question whether R(s, t) holds for s ∈ S, t ∈ T is carried out by comparing
their properties via a (complex) similarity measure σ. If the value of σ(s, t)
is bigger or equal to a threshold θ, two instances s ∈ S and t ∈ T are con-
sidered to be linked via R. The details of this similarity condition and sets
S and T are usually defined in a link specification [25].

Definition 2 (Link Specification) “A link specification consists of three parts:
(1) two sets of restrictions RS

1 ... RS
m resp. RT

1 ... RT
k that specify the sets S resp.

T , (2) a specification of a complex similarity metric σ via the combination of several
atomic similarity measures σ1, ..., σn and (3) a set of thresholds τ1, ..., τn such that
τi is the threshold for σi” [24, p.3].

Since we are dealing with RDF resources, a restriction R is typically a log-
ical predicate stating the rdf:type of the elements of the set they de-
scribe, for example R(x) ↔ (x rdf:type someClass) or restricting the
elements of the set to those with a certain property, e.g. R(x) ↔ (∃y :
x someProperty y). Each s ∈ S resp. t ∈ T must abide by each of the
restrictions RS

1 ... RS
m resp. RT

1 ... RT
k . A complex similarity measure σ

can be obtained by combining σ1, ..., σn with certain operators, in this work
restricted to AND, OR and MINUS [24]
The height h of a link specification is defined as follows: If the link specifi-
cation is an atomic similarity measure h = 0. If two complex metrics σ1, σ2
are combined with an operator h = max(|σ1|, |σ2|) + 1, with |σ| being the
height of σ.

Definition 3 (Link Discovery as Classification) “Given the set S × T of pos-
sible matches, the goal of link discovery is to find a classifier C : S×T → {−1,+1}
such that C maps non-matches to the class −1 and matches to +1” [24, p.4].

For this work we assume that classifiers operate in an n-dimensional
similarity space S, with n being the number of similarity metrics σi(s, t)
where s ∈ S, t ∈ T . Each classifier can be modeled through a specific func-
tion F , that returns +1 iff it holds and -1 else. The function F is constructed
in the same manner as a link specification in 2. Therefore the classification
function is

F(s, t) =

{
+1 if σ(s, t) >= θ

−1 else
(2.1)

where σ(s, t) is the complex similarity metric with the threshold θ and s, t ∈
S × T .

2.3.2 Frameworks

Several frameworks have been devised to tackle this problem. KnoFuss [28]
is a knowledge fusion architecture that is based on research on problem-
solving methods. The fusion process has methods for subtasks that can be
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combined. Depending on the domain and task the best method is selected.
SILK [38] provides a declarative language for specifiying link conditions
and due to the fact, that it accesses data sources through the SPARQL 9

protocol it can be employed in distributed environments without the need
to replicate datasets locally. Furthermore, it increases performance and re-
duces network load by implementing a number of various caching, index-
ing and entity pre-selection methods. The distributed instance matching
system Zhishi.links [29] applies a distributed framework to process seman-
tic resources and index them. For calculating similarities between two re-
sources it utilizes scalable matching strategies. Our approach is embedded
in the LIMES (Link Discovery for Metric Spaces) [23] framework. It is a loss-
less and time-efficient approach exploiting the triangle inequality of metric
spaces to ignore large numbers of instance pairs, that cannot satisfy a given
link specification.
An in-depth comparison and overview of current link discovery frame-
works can be found in [22].

2.3.3 Machine Learning

In the following, we will give a brief overview of some machine learning
approaches for the link discovery problem. Machine learning is the study
of computer programs that automatically improve their performance us-
ing experience [21]. Due to the restricted nature of this work we will limit
ourselves to the part of this field that is relevant to our approach. A gen-
eral overview an be found in [21, 17]. As we have seen in Definition 3 link
discovery is a binary classification problem and therefore can be tackled
with long-standing machine learning approaches such as support vector
machines [37, 36], artificial neural networks [10], genetic programming [15]
etc.
Most approaches use supervised techniques, this means a labeled user in-
put is necessary. There are mainly two different kinds of supervised learn-
ing approaches: active and batch. The first is an interactive process where
the learning algorithm selects a number of instances that are presented to an
oracle (e.g. a human user) for labeling, and this way increases its training
data size iteratively. The latter takes an initial amount of instances which
are the only input used throughout the whole learning process.
There are several implementations of machine learning algorithms for link
discovery. EAGLE [25] utilizes genetic programming, EUCLID [26] is an un-
supervised learning algorithm, WOMBAT [35] uses an upward refinement
operator to traverse the space of link specifications. There have also been ef-
forts to combine unsupervised learning techniques and genetic algorithms
such as [27].
Ensuing, we will explicate how decision tree learning can be used for our
problem.

9a RDF query language
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Chapter 3

Decision Trees

Decision trees are a commonly used method for data mining and machine
learning. The learning of a tree is done by a process called recursive par-
titioning, where a source set is split into subsets based on the value of an
impurity function. We will first have a look at the general concept, goals
and implementations, and then consider each step in the learning process
in detail.

3.1 General Concept

Decision tree learning is a form of supervised learning. Each instance in the
training data is labeled with a class. We use this data to find patterns, that
help us put unseen (therefore also unlabeled data) into the right class. We
will restrict our analysis in this work to classification trees, which means we
have a number of classes we want to sort data into. Apart from classifica-
tion trees there are also regression trees, which try the same with continous
values instead of discrete classes.10

The first step of building a tree is dividing the training data into 2 or more
sub-samples that do not overlap. This is done by choosing an attribute
of the data as splitting attribute. Each instance in the root of the tree, i.e.
the original data, is sent into a node depending on its splitting attribute
value. The most important part of this process is the choice of the split-
ting attribute, where the goal is to pick an attribute, that will partition the
training data into subsets where all the class variables have the same value.
The value of the splitting attribute on which the data gets divided follows
the same idea. This process is repeated recursively on each node until the
stop condition is reached: all nodes have been either split or are leaves [40,
pp.99ff.].

3.1.1 Goals

Limiting the size of the tree generated is one of the core goals with the
leaves classifying instances most accurately (this is called leaf purity). The
reason for preferring smaller trees is that on the one hand smaller trees are
easier to interpret and on the other hand the leaves hold more information,
since they hold more instances. Building a tree that is both small and has
a high leaf purity is generally a difficult task, since these two goals often
contradict each other and finding an optimal tree is often impossible given
the vast solution space [32, p.20]. As shown in [13] constructing optimal
binary decision trees is even NP-complete.

10A notable implementation of this can be found in CART [6]
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3.1.2 Implementations

Naturally over the years there have been several approaches tackling this
problem. A pioneering work in decision tree learning has been the ID3 al-
gorithm from Ross Quinlan [31], which he later modified and improved
to create the popular C4.5 algorithm [32]. Another notable implementa-
tion has been done by Leo Breiman, Jerome Friedman, Richard Olsen and
Charles Stone with CART, which stands for Classification And Regression
Trees [6]. Decision trees have also been used in connection with other ma-
chine learning techniques, for example to initialize a neural network [41],
with genetic algorithms [30] and simulated annealing [7].
In the following we will take a look at all the steps that have to be taken to
result in a good tree. We will mainly focus on the method used by C4.5 and
its successors.

3.2 Splitting a Node

The goal of a node split is to increase the purity of the subsets compared
to the purity of the original set. The ideal case for this is if the subsets all
have the same value for the class attribute, making them completely pure
leaves. Each attribute of the data set is a split attribute candidate. There
is a difference however between numerical and nominal attributes. The
splits on nominal attributes are n-ary and are of the form: “is x = ci?”
with ci ∈ {c1, ..., cn} being a value of the n possible values for this attribute.
Numerical attributes produce binary splits since the test is: is “x <= c?”
with c being the value on which the split attribute will be split [40, p.99,193].
Let’s have a look at a classic example to clarify.11 In Table 3.1 you can find
data which is used to determine if one should or shouldn’t play tennis (this
is the class variable), depending on the weather conditions.

Outlook Temperature Humidity Windy Play
sunny 85 85 FALSE no
sunny 80 90 TRUE no

overcast 83 86 FALSE yes
rainy 70 96 FALSE yes
rainy 68 80 FALSE yes
rainy 65 70 TRUE no

overcast 64 65 TRUE yes
sunny 72 95 FALSE no
sunny 69 70 FALSE yes
rainy 75 80 FALSE yes
sunny 75 70 TRUE yes

overcast 72 90 TRUE yes
overcast 81 75 FALSE yes

rainy 71 91 TRUE no

Table 3.1: Weather data

11This example is taken from [32]
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outlook

yes
yes
no
no
no

sunny

yes
yes
yes
yes
yes

overcast

yes
yes
yes
no
no

rainy

(a): outlook

temperature

yes
yes
no
no

hot

yes
yes
yes
yes
no
no

mild

yes
yes
yes
no

cool

(b): temperature

humidity

yes
yes
yes
no
no
no
no

high

yes
yes
yes
yes
yes
yes
no

normal

(c): humidity

windy

yes
yes
yes
yes
yes
yes
no
no

false

yes
yes
yes
no
no
no

true

(d): windy

Figure 3.1: tree stumps for weather data

Since we have four attributes we have four choices for the first split. The
result can be seen in Figure 3.1. Picking the best split means choosing the
split that produces the purest child nodes. There are different measures for
purity. We will have a look at the ones used in C4.5: information gain and
gain ratio. Other notable purity measures are the gini index which is used
in CART [6] and chi-square used by Hart [9] and Mingers [19] [20]. An
overview and comparison of measures can be found in [18].

3.3 Measures of Purity

3.3.1 Information Gain

This measure is based on the change of entropy after splitting, which is mea-
sured in bits. Entropy measures the average amount of information that is
needed to decide if a new instance belongs to a class c. So before looking
at the formula let us point out the fact, that this measure should be zero if
all the instances in a node belong to the same class, and reach a maximum
if the instances are equally divided over the classes. The entropy function
satisfies these properties:

entropy(p1, p2, ..., pn) =

n∑
i=0

−pi log pi (3.1)

Since the arguments p1, ..., pn are fractions that add up to one, the minus
sign in the formula is needed to make sure the resulting entropy is posi-
tive. If we take for example the left leaf of the outlook node Figure 3.1a the
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information is:

info([2, 3]) = entropy(2/5, 3/5) = −2/5× log 2/5− 3/5× log 3/5 =
0.971 bits

The parameter is the number of instances for each class, which is two for
yes and three for no. For the other leaves of this node we get:

info([4, 0]) = 0.0 bits
info([3, 2]) = 0.971 bits

To calculate the average information value of these we have to take into
account how many instances go down each branch.

info([2, 3], [4, 0], [3, 2]) = (5/14)×0.971+(4/14)×0+(5/14)×0.971 = 0.693
bits

The result tells us the amount of information that is necessary to determine
the class of a new instance if we have the tree structure from Figure 3.1a. To
calculate the information gain we have to determine the information of the
root node T and subtract the information of the child nodes T1, ..., Tn. The
formula we used to calculate info([2, 3], [4, 0], [3, 2]) is

infox(T ) =

n∑
i=0

|Ti|
|T |
× info(Ti) (3.2)

where |T | denotes the number of instances in this node. So if we split the
node T on attribute x our information gain is

gain(x) = info(T )− infox(T ) (3.3)

For our outlook node the root had nine yes and five no instances, which
leads us to the information value of

info([9, 5]) = 0.94 bits

So if we split on outlook we get an information gain of

gain(outlook) = info([9, 5])− info([2, 3], [4, 0], [3, 2]) = 0.94−0.693 = 0.247
bits

If we calculate the information gain for the other attributes as well, we can
see that outlook is actually most promising, since it has the highest infor-
mation gain:

gain(temperature) = 0.029 bits
gain(humidity) = 0.152 bits
gain(windy) = 0.048 bits

The considerations we made here can also be found a bit more detailed
in [32, pp.20-22] and [40, pp.103ff]. Although this procedure gives quite
good results, it has a strong bias towards branches with a huge number of
child nodes. To counter this a different measure is used.
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3.3.2 Gain Ratio

Consider for example an attribute ID which gives every instance a unique
identification. If we split on this attribute every node will only contain one
case, so the nodes are necessarily pure and infox(T ) = 0. Splitting on
this attribute therefore would lead to a maximum information gain, so we
would always split on this. The resulting decision tree however would be
pretty useless for predicting unknown instances and would give no infor-
mation about the structure of the decision [40, p.104]. To counter this effect
a kind of normalization is used called gain ratio.

gain ratio(x) = gain(x)/split info(x) (3.4)

where split info(x) is defined as

split info(x) = −
n∑

i=1

|Ti|
|T |
× log

(
|Ti|
|T |

)
(3.5)

In contrast to the information gain, which measures information that is needed
for classification in that node, split info represents the potential informa-
tion that is generated by dividing a node into n child nodes. So in gain ratio
we have the information that is useful for classification, generated by the
split [32, p.23]. If we want to calculate the gain ratio for our outlook split,
we first have to calculate the split info:

−5/14× log (5/14)− 4/14× log (4/14)− 5/14× log (5/14) = 1.577bits

As we have already calculated before the information gain for outlook is
0.246, so the gain ratio is 0.246 / 1.577 = 0.156.
The gain ratio seems to be a good fix for our ID problem, however in some
cases it overcompensates and an attribute is chosen solely on the fact, that
it has a small value of intrinsic information. A good workaround for this
is to choose attributes that have at least an average information gain and
maximize gain ratio [40, pp.105ff].

3.4 Missing Values

Most real datasets have missing values. This can occur for a number of rea-
sons: malfunctioning equipment, participants in a study, that refuse to an-
swer a question etc. Most machine learning algorithms treat missing values
with the implicit assumption, that these don’t have any particular signifi-
cance. But there can be systematic reasons for the absence of these values,
that cannot be taken into account this way. In this case it might be fruitful to
see missing as another possible value [40, p.58]. Another simple approach
would be to use the most popular branch of the tree if a value is missing in
an instance.
A more refined approach is to fictitiously split an instance and send a part
of it down each branch until we reach the leaves. We use a numeric weight
between zero and one for this split, depending on the number of instances
going down that branch. All weights however must sum up to one. This
can be repeated at lower nodes. Finally, at the leaves, the different parts of
an instance have to be recombined using the weights. The information gain
and gain ratio can also work with partial instances [40, pp.194f].
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3.5 Pruning

Usually a tree contains unnecessary parts and may overfit the data. A tech-
nique to counter this and simplify the tree before using it is called pruning.
There are two different types of pruning we are going to look at: pre-pruning
(or forward pruning) and post-pruning (or backward pruning).

3.5.1 Pre-Pruning

This approach basically involves having a higher restriction for stopping
rules. Whereas normally construction of the tree is stopped, if all the leaves
are pure, or all the feature values are the same, in this case we terminate
sooner. In pre-pruning you stop if the number of instances falls below a
predefined threshold or if expanding the current node does not improve
impurity. While it is seems very attractive not to develop subtrees that are
going to get pruned afterwards, it is very difficult to find good stopping
rules: “Depending on the thresholding, the splitting was either stopped
to soon at some terminal nodes or continued too far in other parts of the
tree” [6, p.37]. This is why most decision tree builders prefer post-pruning,
although if runtime is of concern pre-pruning can be a feasible alternative
[40, p.195]

3.5.2 Post-Pruning

In contrast post-pruning takes place after the tree is fully developed. There
are two different approaches for this type of pruning: subtree replacement
and subtree raising.
We start with the more popular subtree replacement. The idea is to replace
a subtree with a leaf. Naturally this will decrease the accuracy of this tree on
the training set, but it might be beneficial for other data. In practice we work
from the leaves upwards to the root and on each node decide if we should
replace it with a leaf. If we have a look at Figure 3.2 we see how subtree
replacement works on example data concerning labour negotiations.12 The
node ’working hours/week’ in Figure 3.2a is pruned, by replacing it with
the leaf ’bad’ in Figure 3.2b.
Subtree raising is more complex. Instead of replacing a subtree with one of

its leaves, we replace a subtree with one of its subtrees, therefore “raising”
the latter. This is a potentially time-expensive operation and is generally
reserved for the most popular branch [40, p.196]. If we look in Figure 3.3 we
can see how the node ’B’ in Figure 3.3a is replaced with ’C’ in Figure 3.3b.
Note, that the instances in the leaves have to be reclassified, so the leaves
of ’C’ are marked with primes to highlight, that they are not the original
ones [40, pp.195f].

3.6 Error Rates

So how do we make the decision to either replace an internal node with a
leaf, or one of its subnodes? To achieve the best results we need a way to
estimate the error rate. Since the tree is fit precisely to the training data,

12This example is taken from [32]



Chapter 3. Decision Trees 14

wage increase

working hours/week

≤ 36

health plan contribution

> 36

bad

≤ 36

bad

none

good

half

bad

full

statutory holidays

> 2.5

good

> 10.0

wage increase

≤ 10.0

bad

≤ 4.0

good

> 4.0

(a): unpruned tree

wage increase

bad

≤ 2.5

statutory holidays

> 2.5

good

> 10.0

wage increase

≤ 10.0

bad

≤ 4.0

good

> 4.0

(b): pruned tree

Figure 3.2: subtree replacement

it is unreasonable to use the training set error as error estimate. A way to
avoid this problem is called reduced-error pruning and it consists of holding
back part of the training set to estimate the error rate. The obvious down-
side of this is that we have less training data while building the tree. C4.5
uses a different approach, making an error estimate on the training data
itself. While Quinlan concedes, that his heuristic has “questionable under-
pinning”, he also adds that the “estimates that it produces seem frequently
to yield acceptable results” [32, p.41]. The basic idea is to choose the ma-
jority class for all instances that reach a node and get a number of errors
E (misclassified instances) out of the total number of instances N. The next
step is assuming that the actual probability of errors at a node is q and a
Bernoulli process13 with parameter q is responsible for the N instances, of
which E instances are errors. What we do with this is a pessimistic error
estimate using the upper confidence limit. This goes as follows.14

13“In statistics, a succession of independent events that either succeed or fail is called a
Bernoulli process ” [40, p-150]

14Due to the restricted nature of this work we can only give a brief summary of the process
and cannot give an in-depth analysis of the statistical foundations of these calculations
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A

B

C

1 2

3

4 5

(a): unpruned tree

A

C

1’ 2’

4 5

(b): pruned tree

Figure 3.3: subtree raising

Let c be a confidence for which we find a confidence limit z using

Pr

[
f − q√

q(1− q)/N
> z

]
= c (3.6)

where N is the number of instances, f the observed error rate, which is
calculated as E/N, and q the true error rate. With the upper confidence limit
for q we can calculate a pessimistic error estimate for the error rate e at the
node

e =
f + z2

2N + z
√

f
N −

f2

N + z2

4N2

1 + z2

N

(3.7)

Since we want only the upper confidence limit a ’+’ is used before the
square root, instead of a ’±’ which normally is in this place. If we want
to find out if we should prune a node, we calculate the error estimates of
all leaves. The result is then combined taking into account the number of
instances in each leaf and using this as weights. If the error estimate of the
node is less than the combined error estimate of the children it is pruned [40,
pp.197f].
To see how all this is applied we will look at our labor negotiations exam-
ple. In Figure 3.4 we see a part of our unpruned tree from Figure 3.2a with
the number of instances added to each leaf. The default confidence level c
is set to 0.25 in C4.5, so our z is 0.69. On the lower left leaf we have E=2,
N=6, which gives us f =0.33. If we put this into Equation 3.7 we get e=0.47.
So instead of using the training set error rate of 33% we use the pessimistic
estimate of 0.47%. Considering we have two classes (bad and good) this is
really pessimistic, since it would be terrible to exceed an error rate of 50%.
But if we take a look at the next leaf to right, it is even worse. We have E=1
and N=2 so e=0.72. The third leaf has the same value for e as the first. Since
we have calculated all the leaves we now have to determine the combined
error estimate and take into account the number of instances they cover
(6:2:6), which gives us 0.51. The next step is calculating the error estimate
for the parent node ’health plan contribution’. It covers five bad and nine
good examples, so f =5/14. Plugged into our formula we get e=0.46. Since
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wage increase

> 2.5

working hours/week

≤ 36

health plan contribution

> 36

1 bad
1 good

≤ 36

4 bad
2 good

none

1 bad
1 good

half

4 bad
2 good

full

Figure 3.4: part of labor negotiation tree

this is less than the combined error of the leaves they get pruned. We go the
next node ’working hours/week’ and start with the left node. It has E=1,
N=2 and therefore e=0.72. For the right child we just calculated that e=0.46.
Combining them with the ratio 2:14 it gives us an error rate higher than the
error rate of the parent node so it will be pruned as well.

3.7 Further Refinements

The last non-commercial release of C4.5 was Release 8 and it incorporated
an MDL-based15 adjustment to information gain, if it’s used on numeric at-
tributes. This means if there are S candidate splits, log2(S)/N is subtracted
from information gain, with N being the number of instances at the node.
After subtraction the information gain may be negative. Since the tree stops
growing if there are no attributes with positive information gain this is not
only designed to prevent overfitting, but is also a form of pre-prunning [40,
p.201].

15“minimum description length principle” introduced in [33]
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Chapter 4

Approach

We will now have a look at how we can use J4.8, a Java reimplementation
of C4.5 [40, p.454], to learn link specifications. We start with an overview
and then delve into each step.

4.1 Overview

Algorithm 1: Overview
Require: - Specification of two knowledge bases KS and KT

- Mapping trainingMapping or LinkSpecification
defaultLS

Output: LinkSpecification learnedLS
Get set S and set T of instances as specified in KS respectively KT
repeat

if learnedLS is null then
if trainingMapping == null then

trainingMapping← execute(defaultLS)
end

end
else

Mapping m = execute(learnedLS −δ)
trainingMapping← user labels n link candidates (s, t) ∈m

end
if previouslyPresentedCandidates.size > 0 then

trainingMapping.union(previouslyPresentedCandidates)
end
previouslyPresentedCandidates.add(trainingMapping)
trainingData← createTrainingInstances(trainingMapping)
learnedLS← learn(trainingData)
checkIfThereWasABetterLSBefore(learnedLS)

until user termination;

Algorithm 1 gives an overview of the approach implemented. In the
first iteration, learnedLS is null. If a link specification was provided instead
of a trainingMapping , we execute it and use the result as trainingMapping.
All instance pairs with mapping values higher than a threshold κ get la-
beled as +1. In previouslyPresentedCandidates, which is null in the first itera-
tion, we save the instances labeled by the user. The createTrainingInstances
function parses the mapping into ARFF format, which is used by weka [12],
the framework where J4.8 is implemented. The result is our trainingData.
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This data is taken as input for the learn function, which builds a decision
tree. This tree is parsed into the learnedLS. If the user does not stop the
loop, another iteration begins. Since learnedLS is not null this time, we sub-
tract δ from all thresholds in learnedLS and execute the resulting link spec-
ification to obtain the mapping m. We take the n most informative link
candidates from m for user labeling and the labeled candidates become our
new trainingMapping. This time the size of previouslyPresentedCandidates is
bigger than 0, so we add these instances to our trainingMapping by using
a union operation. The remaining part of the algorithm is identical to the
first iteration. Additionally to the described active learning variant, where a
user is repeatedly asked to label data, there is also a batch learning variant,
where only the initial training mapping is used.
We will now have a closer look at all the functions, that are used in the al-
gorithm. To exemplify what the classifier does, we will use two knowledge
bases named person11 and person12 from the OAEI 2010 benchmark16. The
initial trainingMapping consists of 10 positive and 10 negative examples.

4.2 Creating Training Instances

We will start with the createTrainingInstances function. Our input is a map-
ping, consisting of instance pairs, that are labeled by the user as +1 or -1.
The output will be a set of instances, which will be referred to as training
Instances. An instance has two kinds of attributes: the class attribute (posi-
tive if labeled by the user as +1, negative otherwise) and what we will call a
measure attribute. Each instance has one class attribute and M ×PP measure
attributes, M being the measures that are permitted for a property pair PP .
A measure is used on the property pair and the result is the value of the
corresponding measure attribute. For each element in the trainingMapping
we create a training instance. This means we have used all similarity mea-
sures on all properties of a mapping pair and this was done for all mapping
pairs.
Applied to our persons example the training instances object looks like
this:17

@relation link

@attribute cosine(x.surname,y.surname) numeric
@attribute jaccard(x.surname,y.surname) numeric
@attribute jaro(x.surname,y.surname) numeric
[...]
@attribute cosine(x.has_address,y.has_address) numeric
@attribute jaccard(x.has_address,y.has_address) numeric
[...]
@attribute cosine(x.given_name,y.given_name) numeric
@attribute jaccard(x.given_name,y.given_name) numeric
[...]
@attribute match {positive,negative}

16http://oaei.ontologymatching.org/2010/im/ OWL Data Track - PR: Person1
17For better legibility http://www.okkam.org/ontology_person1.owl# has

been shortened to x, resp. http://www.okkam.org/ontology_person2.owl#
to y

http://oaei.ontologymatching.org/2010/im/


Chapter 4. Approach 19

@data
0,0,0.944444,0.166667,0,0.666667,0.5,[...]positive
0,0,0,0,0,0.666667,0.5,0.93088,0.734694,[...]negative
[...]

The output we can see here is in ARFF format [40, pp.52-56]. First listed
is the name of the relation followed by all the attributes. Each line below
“@data” represents one instance with its commaseperated values. In our
example, the first pair from the trainingMapping is http://www.okkam.org
/oaie/person1-Person740 and http://www.okkam.org/oaie/person2

-Person741 and the cosine similarity between the values of the correspond-
ing surname properties “begic” and “begdic” is 0, which you can see in the
first value of the first line of the instance. Jaccard similarity between the
surnames is also 0, for Jaro it’s 0.944444 and so on. The last attribute is the
class attribute, so we can see this pair was labeled as +1.

4.3 Learning

These instances are used to produce a decision tree as was explained in chap-
ter 3. There are a number of options that can be provided by the user to
tweak the learning behaviour:

• training data size: the number of examples that have to be labeled by
the user during active learning

• use unpruned tree: disable pruning

• collapse tree: handles pruning based on classification error on the
training data (should be turned off for an unpruned tree)

• pruning confidence: the confidence level used for the pruning deci-
sion

• reduced error pruning: enables reduced error pruning (cannot be
used combined with pruning confidence)

• fold number: number of folds used for reduced error pruning

• subtree raising: perform subtree raising

• clean up: clean up after building the tree (saves memory)

• laplace smoothing: use laplace smoothing18 for predicted probabili-
ties

• mdl correction: use mdl correction for predicted probabilities

• seed: seed used for randomizing the data in case reduced-error prun-
ing is used

• max linkspec height: maximum height of the link specification

18This is a technique to ensure that attributes that occur zero times get a probability that is
a bit higher than zero. This is done to prevent a single zero value turning a whole equation
to zero. Most of the times 1 is added to all counts [40, p.93]
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4.4 Parsing the Decision Tree into a Metric

4.4.1 General procedure

A decision tree can be represented as logical formula in disjunctive normal
form [34]. We use this knowledge to build a metric, by using the AND, OR,
and MINUS operators. The parser starts at the root of the tree and tries to find
positive leaves via depth first search. All the nodes we have passed on our
way are combined as measures with an AND. We take the threshold of the
edge leading to the positive leaf as the threshold τ for our atomic measure.
We have a lower limit λ for any τ . In this work we set λ to 0.1. The reason
for this is, because below a certain threshold measures can take a long time
to execute and the results obtained don’t justify the time invested. On our
way traversing the tree towards positive leaves, we might come across an
edge labeled with “<= τ”. To represent this in our link specification, we
somehow must negate the measure from the node we came from. This is
done by taking the measure and connecting it with itself via a MINUS opera-
tor, once with τ as threshold and the other with λ. After we have done this
for all positive leaves each metric produced is combined via the OR opera-
tor.
It is important to note, that there are a few optimizations done while pars-
ing. On our way to positive leaves we often take paths multiple times, so we
can use this in combination with the distributive law to make trees smaller.
We will see this in an example later. We also ignore irrelevant subtrees: If
we pass an edge labeled with “<= 0” the subtree is replaced with a nega-
tive leaf. The reasoning is the same as setting a lower limit for τ . It is also
possible to provide a maximum height h for the link specification. If the
link specification is bigger than h the parser replaces the internal nodes at h
with their non-negated leaves that are near h. We refer to this as cutting the
link specification.
Formally the procedure can be seen in algorithm 2. The function nodeToMea-
sure parses an atomic tree, taking the threshold of the edge leading to the
positive leaf as τ for the metric, addRoot adds the root node of t with AND to
the metric given as second argument, addOR combines metrics with the OR
operator.
For a better understanding we will have a look at some trees and how they
are parsed to metrics.

4.4.2 Examples

The learned tree for the persons example can bee seen in Figure 4.1. This
is a trivial case, since we only have one node which becomes our measure.
Our metric therefore is cosine((x.given_name, y.given_name), 0.1).

We can see a more complex example in Figure 4.2 . The parser starts on
the node qgrams(name,name). Because the left child is a negative leaf we are
only interested in the right and obtain qgrams((x.name, y.name), 0.1). On
the next node, we find a positive leaf on the right and. We turn the node into
a metric and add it to our previous node using AND which would conclude
in AND(qgrams((x.name, y.name), 0.1),trigrams((x.name, y.name)0.2)).
But if we go further, we see that our current node has a subtree with a
threshold that is not <= 0 and leads to a positive leaf. So we first add
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Algorithm 2: parseTree
Require: decision tree t
Output: LinkSpecification ls
if isAtomic(t) then

return nodeToMeasure(t)
end
if t.leftThreshold > 0 then

leftMetric = parseTree(t.getLeftSubtree())
end
rightMetric = parseTree(t.getRightSubtree())
leftMetric = addRoot(t, leftMetric)
rightMetric = addRoot(t, rightMetric)
if leftMetric != null && rightMetric != null then

ls = addOR(leftMetric, rightMetric)
end
else if leftMetric != null then

ls = leftMetric
end
else if rightMetric != null then

ls = rightMetric
end
else

return null
end
return ls

cosine(given_name,given_name)

negative

<= 0

positive

> 0

Figure 4.1: Simple tree

this subtree to trigrams((x.name, y.name), 0.2) with an OR operator and
we also have to add the negation of trigrams((x.name, y.name), 0.2) to
jaccard((x.age, y.age), 0.2) using AND, since we passed the edge labeled
with “<= 0.2 to get to jaccard((x.age, y.age), 0.2). Now we can add OR
(trigrams(...),AND(jaccard(...),MINUS(trigrams(...)trigrams(...))))
to our first measure. Since there are no leaves left the parser terminates. The
result can be seen in Figure 4.3.

4.5 Check if there was a better link specification be-
fore

Because we want to give back the best link specification we learned, we
have to keep track of what we have already learned and how good it is.
This is implemented in the checkIfThereWasABetterLSBefore function seen
in algorithm 1. If we have a new link specification, we first check if we



Chapter 4. Approach 22

qgrams(name,name)

negative

<= 0.1

trigrams(name,name)

> 0.1

jaccard(age,age)

<= 0.2

positive

> 0.2

negative

<= 0.8

positive

> 0.8

Figure 4.2: Complex tree

AND

qgrams((x.name, y.name), 0.1) OR

trigrams((x.name, y.name), 0.2)AND

jaccard((x.age, y.age), 0.8)

MINUS

trigrams((x.name, y.name), 0.2)trigrams((x.name, y.name), 0.1)

Figure 4.3: Complex metric

have already seen it. If this is the case we increase its threshold by γ un-
til we get a link specification we have not seen yet. Setting γ = 0.05 has
proved to be reasonable. Before this was added, most of the times only the
threshold changed during active learning iterations. Because we want to
have good results with as little iterations as possible, manually raising the
threshold can be considered a shortcut. We calculate the PseudoFMeasure of
the mapping we get from executing the learned link specification and save
the results. For the batch learning variant we check all link specifications
with thresholds bigger or equal to our originally learned link specification,
because we only have one iteration.

4.6 Most Informative Link Candidates

Since we want the labeling to be as effective as possible, we present the user
those link candidates that the algorithm is most unsure about. For this, we
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use a strategy similar to RAVEN [24].
As we know from 2, every link specification has a (complex) similarity mea-
sure σ with a threshold θ. If we execute a link specification, we check for
every pair (s, t) ∈ S × T if the value of σ(s, t) is bigger or equal to θ. By do-
ing this, we draw a boundary in the similarity space S with the pairs that
satisfy σ(s, t) >= θ considered +1 by our classifier, all others -1. The pairs
that are closest to this boundary are the ones the algorithm is most unsure
about and therefore the most informative if labeled.
Practically this is done as follows:

1. take our original link specification ls, subtract δ from all thresholds
and get a new link specification deltaLS

2. obtain delta mapping by executing deltaLS

3. calculate a compound measure φ for each pair in delta mapping

4. return n link candidates, that have not previously been shown to the
user and have the smallest φ

We have to subtract δ from ls because otherwise our mapping would not
contain pairs that are barely classified as non-matches, i.e. approaching the
boundary from below. Bear in mind, that for measures connected with
MINUS we have to add δ to the threshold that is not λ, since this complex
metric represents a negation of that measure. The compound measure used
can be seen in Equation 4.1, with n being the number of measures used
in deltaLS, σ1, ..., σn the atomic measures in deltaLS and τ1, ..., τn the corre-
sponding thresholds in ls.

n∑
i=1

|σi(s, t)− τi|2 (4.1)
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Chapter 5

Experiments and Results

In this chapter we will examine how well our approach is able to find good
link specifications. First we will explain our experimental setup and then
we will look at the two experiments we have conducted. The first exper-
iment tests our algorithm in the active and batch learning variant against
three other classifiers, the second inspects the effect user feedback has in
active learning iterations.

5.1 Experimental Setup

All experiments were carried out on nine benchmark datasets. Three were
synthetic datasets from OAEI 2010 benchmark19 and four were real-world
datasets from [14]. The two remaining datasets were Drugs and Movies
taken from [25]. All experiments were carried out on a 64-core 2.3 GHz
Server running Oracle Java 1.8.0_77 on Ubuntu 14.04.4 LTS, with each ex-
periment assigned 20 GB of RAM.

5.1.1 Measures

The measures we used were: Precision, Recall and F-measure. Precision is,
in our case, the number of correctly classified links (true positives) divided
by the number of all links (true positives and false positives) in a mapping.
Recall on the other hand is the number of true positives divided by the
number of all links between the knowledgebases (true positives plus false
negatives). F-measure describes the harmonic mean between precision and
recall: 2×P×R

P+R . Apart from the quality of the learned link specifications we
also measured the time each classifier needs to learn them.

5.1.2 Parameters

The termination criteria for WOMBAT was either finding a link specification
with F-measure of 1 or a refinement depth of 10, the coverage threshold
was set to 0.6 and the similarity measures used were jaccard, trigrams, cosine
and qgrams. EAGLE’s mutation and crossover rates were set to 0.6 and the
number of generations were set to 100, which means we used the same
parameters as in [25]. EUCLID’s parameters were set as presented in [26]:
grid size to 5, iterations to 100.
Our decision tree learning was set to our default values:

• collapseTree = true
19http://oaei.ontologymatching.org/2010/im/

http://oaei.ontologymatching.org/2010/im/
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• pruning confidence = 0.1

• subtree raising = true

• clean up = true

• laplace smoothing = true

• mdl correction = true

For max linkspec height we used two different values to determine the
effect of this technique, once it was set to 2, the other time it was turned off.

Table 5.1: Characteristics of the used datasets. S and T stand for Source resp.
Target, |perfect result| is the size of the perfect mapping.

Label Attributes |S| × |T| |perfect result|

Person1

given name
surname

street number
address
suburb

2.5× 105 5.0× 102

Person2

postcode
state

date of birth
age

phone number
social security number

2.4× 105 4.0× 102

Restaurants

name
street
city

phone
restaurant category

7.2× 104 1.1× 102

DBLP-ACM
title

authors
6.0× 106 2.2× 103

DBLP-Scholar
venue
year

1.7× 108 5.3× 103

Amazon-GP
name

description
4.4× 106 1.3× 103

Abt-Buy
manufacturer

price
1.2× 106 1.1× 103

Drugs name 1.1× 106 1.0× 103

Movies
title

director
1.1× 106 1.0× 103

5.2 Active & Batch Learning Experiment

In the first experiment, we tested our decision tree learning approach against
three other classifiers: EAGLE [25], EUCLID [26] (linear version) and WOM-
BAT [35] (simple version). We used a 10-fold crossvalidation to test our
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performance. For this the training data is partitioned into ten random sub-
samples (called folds), learning is performed on nine of them and the clas-
sifier is then tested on the tenth. For the active learning variant we used a
third of the training data for the initial iteration and a labeled feedback of
the same size for the next two iterations. The experiment was carried out
on 10 times on each dataset and the mean of the values was calculated.

5.3 Active & Batch Learning Experiment Results

The results of this experiment are represented graphically in Figure 5.1,
more detailed values concerning F-measure and time can be seen in Ta-
ble 5.2.1 and Table 5.2.2. We can see that our approach has the best F-
measure on six out of nine datasets (outperforming the other classifiers in
four cases), and the second best in two of the remaining three datasets, even
though on average WOMBAT and EAGLE deliver better results. Concerning
time-efficiency, our approach is also faster on six out of nine datasets and
only beat by EUCLID in three datasets. It is also evident, that in general cut-
ting of the link specification at height 2 returns the same (or even slightly
better) results while saving time: active learning is 44% and batch learning
47% faster if cut. If we take a look at Table 5.2.3 we can see, that our ap-
proach has a higher variance than the other classifiers, e.g. on average 97%
higher than WOMBAT. A high variance is undesired, because we want to
produce stable results.

5.4 User Feedback Experiment

The second experiment was used to determine the effect of user feedback
on the active learning variant. We used the same datasets as before, but
for each iteration gave the classifier 20 labeled examples. Compared to the
first experiment, this makes performance on big datasets harder because
the classifier gets a smaller share than before. Parameters were the same as
before, max linkspec height was set to 2. The experiment was run 5 times
and the mean values were taken.

5.5 User Feedback Experiment Results

The results are presented in Figure 5.2. We can see a steady increase in
F-measure on all datasets until a plateau is reached. Compared to the real-
world datasets, the synthetic ones have the steepest rise. In general recall
stays the same while precision gets better. In some cases (e.g. abtbuy and
amazongoogle) though a decrease in recall can be seen. These are also the
datasets with the worst F-measure value. Five out of nine datasets reach
F-Scores above 0.8 with 14 iterations. In summary, this means we can get
good link specifications with a reasonable amount of feedback iterations
(depending on the complexity of the underlying dataset).

5.6 Experiments Summary

In Table 5.2.1 we can see that the simple datasets using real world data
(i.e. drugs and dbplinkedmdb) are no challenge for any of the classifiers
we tested, including our decision tree learning approach. This means we
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are able to compute high quality link specifications for simple datasets.
Looking at the synthetic datasets person1, person2 and restaurants we can
see that this is a slightly more difficult task, since they contain duplicate
records, deliberate differences etc. However, we can also get a F-measure
of at least 94% with the active learning variant. Nonetheless, the benefits of
decision tree learning can be seen on the real datasets scraped from the web
(dblpacm, amazongoogle, abtbuy). While the dblpacm task, which consists
of matching two well-structured bibliographic data sources who are at least
moderately under human supervision, is of low difficulty amazongoogle
and abtbuy are very messy datasets containing “duplicate publications, het-
erogeneous representations of author lists or venue names, misspellings,
and extraction errors” [14, p.487]. Especially on the abtbuy dataset we can
see that our approach performs much better than the other classifiers. The
various pruning strategies we looked at in section 3.5 give decision trees
some resistance to noise in the data, because the impact of outliers usually
gets pruned. This can also be seen in the fact, that ActiveC and BatchC per-
form much better than the uncut versions, because our cutting technique
can be seen as a pruning mechanism. The remarks we made in this section
can also be observed in Figure 5.2.
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Figure 5.1: Results of the active and batch learning experiment. DTLa stands for
the active and DTLb for the batch learning variant of decision tree learning
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Table 5.2: Detailled results of the active & batch learning experiment. Green cells
show the best value for each dataset. ActiveC and BatchC represent the cut version
of the corresponding learning variant.

5.2.1: F-Measure

Datset WOMBAT EUCLID EAGLE
Decision Tree Learning

Active Batch ActiveC BatchC

person1 1.0 0.98 0.99 0.94 0.82 0.94 0.82
person2 1.0 0.82 0.95 1.0 1.0 1.0 1.0

restaurants 0.99 0.95 0.95 0.96 0.96 0.96 0.96
dblpscholar 0.94 0.89 0.94 0.71 0.93 0.71 0.93

amazongoogle 0.75 0.71 0.73 0.71 0.37 0.78 0.47
dblpacm 0.97 0.97 0.97 0.77 0.99 0.77 0.99
abtbuy 0.56 0.0 0.55 0.61 0.47 0.73 0.58

dbplinkedmdb 0.98 0.98 0.98 0.99 0.98 0.98 0.98
drugs 0.99 0.99 0.99 0.99 0.99 0.99 0.99

average 0.91 0.81 0.89 0.85 0.83 0.87 0.86
5.2.2: Time

Datset WOMBAT EUCLID EAGLE
Decision Tree Learning

Active Batch ActiveC BatchC

person1 3.2× 104 4.0× 104 2.9× 104 5.3× 104 4.4× 103 4.9× 104 3.8× 103

person2 7.8× 103 8.3× 103 7.4× 103 1.1× 104 6.2× 102 9.2× 103 6.8× 102

restaurants 1.2× 103 3.0× 102 2.9× 103 1.4× 103 1.0× 102 1.8× 103 1.4× 102

dblpscholar 1.8× 105 3.7× 104 1.3× 106 1.6× 106 8.5× 104 2.1× 106 8.9× 104

amazongoogle 9.5× 104 2.3× 104 2.0× 106 1.8× 106 9.0× 105 1.7× 105 7.3× 105

dblpacm 6.4× 104 1.4× 104 5.5× 105 2.5× 105 4.2× 104 2.1× 105 4.3× 104

abtbuy 2.2× 104 5.2× 103 2.3× 105 1.1× 106 7.0× 105 7.5× 104 9.2× 104

dbplinkedmdb 1.4× 103 4.1× 102 5.6× 104 2.1× 103 3.3× 102 1.5× 103 3.3× 102

drugs 3.0× 102 1.9× 102 8.5× 103 7.2× 102 1.9× 102 5.5× 102 1.3× 102

average 4.5× 104 1.4× 104 4.6× 105 5.4× 105 1.9× 105 2.9× 105 1.1× 105

5.2.3: Variance of F-Measure

Datset WOMBAT EUCLID EAGLE
Decision Tree Learning

Active Batch ActiveC BatchC

person1 0.0 0.0 6.7× 10−5 4.7× 10−5 0.0 4.7× 10−5 0.0
person2 0.0 9.1× 10−4 7.5× 10−4 0.0 0.0 0.0 0.0

restaurants 2.0× 10−4 2.7× 10−6 0.0 1.1× 10−2 1.1× 10−2 1.1× 10−2 1.1× 10−2

dblpscholar 0.0 4.5× 10−5 2.5× 10−6 1.6× 10−2 1.1× 10−4 1.7× 10−2 1.1× 10−4

amazongoogle 2.1× 10−5 0.0 5.2× 10−5 1.1× 10−3 7.7× 10−3 9.2× 10−4 1.8× 10−2

dblpacm 0.0 2.9× 10−6 0.0 5.8× 10−3 7.2× 10−7 6.5× 10−3 7.2× 10−7

abtbuy 9.7× 10−4 - 6.1× 10−4 2.2× 10−2 8.3× 10−3 2.6× 10−3 6.4× 10−4

dbplinkedmdb 0.0 0.0 8.5× 10−6 1.6× 10−5 0.0 1.2× 10−5 0.0
drugs 0.0 0.0 0.0 0.0 0.0 0.0 0.0

average 1.3× 10−4 1.1× 10−4 1.7× 10−4 6.2× 10−3 3.0× 10−3 4.3× 10−3 3.3× 10−3
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Chapter 6

Conclusion and Future Work

In this work we presented an implementation that uses decision trees to
learn highly accurate link specifications. We compared our approach with
three state-of-the-art classifiers on nine datasets and showed, that our ap-
proach gives comparable results in a reasonable amount of time. It was
also shown, that we outperform the state-of-the-art on four datasets by up
to 30%, but are still behind slightly on average. The effect of user feedback
on the active learning variant was inspected pertaining to the number of
iterations needed to deliver good results. It was shown that we can get F-
Scores above 0.8 with most datasets after 14 iterations.
For future work, variance has to be lowered to return more stable results.
We have seen, that cutting the link specification rendered akin results to
uncut link specifications, while improving runtime. This knowledge can
be used for further improvements. For this purpose it would be recom-
mended to implement a version of J4.8, which is specifically designed for
the domain of link discovery. For example, cutting of the link specification
can be integrated into the tree building, as well as concerns pertaining to
the runtime of the link specification. This can be done through a compound
measure which combines these concerns with the purity measure.
Another interesting aspect could be the use of decision forests with multiple
trees using different purity measures. This way we could use a commitee-
based learning approach, where the most informative link candidates would
be those on which the different trees disagree most. The question for this
advance would be whether the creation of a forest would be too time-con-
suming.
In general this work has shown that decision trees are a viable approach for
link discovery. In future works, we will study ensemble learning for link
discovery.
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