
Uniei of Leipig
Faculty of Mathematics and Computer Science

Department of Computer Science

Master’s esis

Programming a remote
controllable real-time FM audio

synthesizer in Rust

Author
Andreas Linz

Supervisor
Prof. Dr. Mario Hlawitschka

Second Reader
Prof. Dr. Gerik Scheuermann

Submitted by Andreas Linz to the Department of Computer Science in partial ful-
filment of the requirements for the degree of
Master of Science — Computer Science
Leipzig, 8. Januar 2017
Version: v0.9.1-16-g6d4d939

To my mother.
We all hope that you’ll get well, soon.

Contents
Abstract V

1 Introduction 1
1.1 Scope of this Thesis . 2

2 User Interface 3
2.1 MIDI . 3

2.1.1 MIDI Protocol . 5
2.1.2 MIDI Pitch . 7
2.1.3 Timing Problems . 8

2.2 Open Sound Control . 9
2.2.1 OSC Data Types . 10
2.2.2 Comparison to MIDI . 11

3 Synthesizer Fundamentals 14
3.1 Oscillator . 14

3.1.1 Aliasing . 15
3.2 Waveforms . 17

3.2.1 Fourier Synthesis . 18
3.2.2 Bandlimited Waveforms 19

3.3 Non-linearity of hearing . 20
3.4 Envelope Generators . 22

4 Synthesis Techniques 26
4.1 Additive Synthesis . 26
4.2 Frequency Modulation (FM) Synthesis 28
4.3 Subtractive Synthesis . 33

5 Digital Filters 34
5.1 Linear Time-Invariant Systems . 35

5.1.1 Linearity and Time-Invariance 35
5.1.2 LTI filters . 36

5.2 Impulse Response . 37

I / 110

5.3 Frequency Response . 38
5.3.1 Magnitude- and Phase Response 39

5.4 Filter Classification . 40
5.5 FIR Filters . 43
5.6 IIR Filters . 45

5.6.1 Bilinear Transform . 48
5.6.2 Bilinear Transform Example 49

5.7 Implementation Structures for IIR Filters 51
5.8 Comparison FIR against IIR . 54

6 Oscillators and Waveform Synthesis 55
6.1 Generic Oscillator Structure . 56
6.2 Trivial Waveform Generation . 57
6.3 Quasi-Bandlimited Waveform Synthesis 59

6.3.1 BLITs . 60
6.3.2 BLIT-SWS . 64
6.3.3 BLEPs . 65

6.4 Ideal Bandlimited Waveform Synthesis 66
6.4.1 Wavetables . 67

6.5 Conclusion . 72

7 Implementation Details and Evaluation 75
7.1 Why Rust? . 75
7.2 Real-Time . 77
7.3 Latency . 78

7.3.1 System Latency . 79
7.4 Structure . 80
7.5 Control Input . 82

7.5.1 Lemur . 82
7.6 Wavetable Oscillator . 86
7.7 Filter . 90
7.8 Ring Buffer . 93
7.9 Audio Output . 94

8 Summary 98
8.1 Optimizations . 98
8.2 Conclusion . 99

Appendix 100
List of Figures . 100

List of Tables . 103

List of Listings 104
References . 105

Acknowledgements
I would like to express my appreciation to the following people for their their help
and support:

• My supervisor Prof. Dr. Mario Hlawitschka for his DSP lecture which orig-
inally sparked my interest in this topic, his advice and patience when the
finishing of this thesis was delayed.

• My family, especially my parents and sister, for their unconditional support
during this research and the rest of my academic career. Without your help,
I may have given up.

• Lucas, René, Marcus E., Mario L., Katharina, Florian, Carolin, Tobias S. and
Tobias J. (in no particular order) for many fruitful discussions, giving me
feedback and sometimes another perspective on the topic.

In addition, I would like to thank spreadshirt for giving me the flexibility in my
working schedule that was needed to finish this thesis. Moreover, finishing this
thesis would not have been possible without spreadshirt’s financial support.

Colophon
The following open-source tools were used to create this document:

• pandoc

• LATEX2𝜀, XƎLATEX and TikZ

• GNU make

• vim

IV / 110

https://www.spreadshirt.net/
https://pandoc.org
https://www.gnu.org/software/make
https://www.vim.org

Abstract

English
Software Audiosynthesizers have gained in popularity over the past 10 years and it
is impossible to imagine professional or home studios without them. This popular-
ity is mostly justified by the high computing power, which is available everywhere
on PCs and mobile devices and makes real-time audio synthesis usable. The aim
of this work is the detailed description of basic synthesizer components and the
investigation of suitable algorithms and techniques for their realization.
In the first part, input protocols are considered and the fundamental building

blocks of a synthiser are introduced. Subsequently, different synthesis techniques
are explained and the decision for the choice of the subtractive synthesis is ex-
plained.
The second part deals with signal processing topics of the individual synthesizer

components. The basics of digital filters are explained and FIR and IIR filters are
compared. Thereafter, the audio quality and efficiency of various waveform syn-
thesis methods is evaluated, i. a. band-limited impulse trains (BLIT) and waveta-
bles. Implementation details are explained in chapter 7 and the components of the
synthesizer application are evaluated.
It was found through the investigation of the synthesizer implementation that

the selected techniques and algorithms have high audio quality and low calculation
costs, in particular Rust has proven to be a very suitable choice for the development
of real-time applications.

German
Software Audiosynthesizer haben in den letzten 10 Jahren enorm an Popularität
gewonnen und sind in vielen Profi- und Heimstudios nicht mehr wegzudenken.
Diese Popularität ist durch die hohe Rechenleistung begründet, welche auf PCs und
mobilen Geräten überall zur Verügung steht und Echtzeitaudiosynthese nutzbar
macht. Das Ziel dieser Arbeit ist die ausührliche Beschreibung grundlegender
Synthesizerkomponenten und die Untersuchung geeigneter Algorithmen undTech-
niken ür deren Realisierung.

V / 110

Im ersten Teil der Arbeit werden Eingabeprotokolle betrachtet und die funda-
mentalen Bausteine eines Synthersizers eingeührt. Anschließend werden ver-
schiedene Synthesetechniken erläutert und die Entscheidung ür dieWahl der sub-
traktiven Synthese begründet.
Der zweite Teil beschäftigt sich mit der Signalverarbeitung innerhalb der einzel-

nen Synthesizerkomponenten. Die Grundlagen von digitalen Filtern werden er-
läutert und FIR mit IIR Filtern verglichen. Nachfolgend wird die Audioqualität
und Effizienz verschiedener Wellenformsynthesemethoden, u.a. bandbeschränkte
Impulsfolgen (BLIT) und Wavetables, evaluiert. Implementierungsdetails werden
im 7. Kapitel erläutert und die Komponenten des entwickelten Synthesizers aus-
gewertet.
Es zeigte sich durch Untersuchung der Synthesizerimplementation, dass die aus-

gewählten Techniken und Algorithmen eine hohe Audioqualität bei gleichzeitig
niedrigen Berechnungskosten haben, insbesondere Rust hat sich als sehr geeignete
Wahl ür die Entwicklung von Echtzeitanwendungen erwiesen.

Andreas Linz
U  L

Faculty of Mathematics and Computer Science—Computer Science
Programming a remote controllable real-time FM audio synthesizer in Rust

8. Januar 2017

1 Introduction

Electronic musical synthesizers have a long history that started in 1906 with the

Telharmonium [Roa96, p. 83], a very large device with rotating tone generators that

emitted pure sinusoidal waves. It took nearly 50 years until the first experiments

with digital sound synthesis weremade in 1957 at Bell Telephone Laboratorieswith

the development of Music I and II programs by Max V. Mathews [Roa96, p. 88].

Another 20 years later, in the late 70s, the first real-time FM synthesizers became

commercially available, e.g. the Fairlight CMI in 1979. The first affordable digital

hardware FM synthesizer, Yamaha’s DX7, was introduced in 1983 and caused the

decline of analog synthesizers because digital hardware became cheaper from year

to year. Due to increasing computing power, real-time synthesis wasmade possible

on general purpose computers in the early 2000s without the need for special DSP

processors or other expensive audio hardware. Since then, a large number of vastly

different software synthesizers was developed, both commercial as well as free or

open source projects.

Despite the huge amount of computing power that is recently available even on

commodity hardware, the development is still a challenging task because musi-

cians expect an nearly instantaneous response from their instrument and dropped

audio frames cause click soundwhich couldmake awhole recording useless. There-

fore, audio software must make very efficient use of processing and power while

1 / 110

1 Introduction

achieving the best possible amount of audio quality.

The set of problems that arise when developing a software synthesizer is quite

large. It includes timing and synchronization problems that occur because the

short time windows in which computations are required to finish. Another class

of problems are sound artifacts like aliasing which must be avoided by choosing

appropriate algorithms.

Audio software is usually implemented in programming languages with manual

memorymanagment (unmanaged languages) like C or C++ for which a great num-

ber of frameworks already exist. Rust, on the other hand, is a promising new

programming language that claims to be thread-safe, guarantees memory safety

(unlike C and C++) and has little runtime cost because a garbage collector is not

required. This makes Rust a great candidate for the development of modern audio

software. But, due to the language’s ecosystem still being in its early days, a lot of

libraries had to be implemented from scratch.

The aim of this thesis is to evaluate available methods and algorithms for the use

in a real-time polyphonic FM synthesizer and to implement a prototype that can

be played with conventional audio controller hardware. Every piece of code that

was implemented for this thesis is being open sourced, see chapter 7 for details.

1.1 Scope of this Thesis

It’s not required for the reader to have any prior knowledge of soft- and hardware

tools used in music production environments. However, a basic knowledge of

signal processing and some familiarity with computer programming is beneficial

to grasp the presented concepts.

2 / 110

2 User Interface

Interaction with the software synthesizer is done through its user interface. The

user interface serves three senses, which are sight, touch and hearing. This sec-

tion concentrates on the first two, the visual and the haptic component. However,

a synthesizer can be played solely through haptic controls and audio feedback.

Visual indicators for the synthesizer’s parameters, e.g. through a display, are con-

venient, but not necessary for the playing musician.

The application supports the two most common musical control signal protocols,

MIDI and Open Sound Control (OSC). Adding MIDI support is highly beneficial,

because it enables the synthesizer to be played with any—of the vast amount of

available—MIDI hardware controllers (fig. 2.1 shows an example of such a device).

On the other hand, Open Sound Control software like liine’s Lemur [Lii16] pro-

vides an editor to create or customize a software defined controller for a multi-

touch device like a smartphone or tablet.

2.1 MIDI

The Musical Instrument Digital Interface (MIDI) specification stipulates a hard-

ware interconnection scheme and amethod for data communication [Roa96, p. 972],

3 / 110

https://liine.net/de/products/lemur/

2 User Interface

Figure 2.1: Edirol PCR-300 MIDI controller keyboard

but only the protocol specification is of interest for this work. Most modern MIDI

hardware is connected via USB anyway. The MIDI 1.0 Specification [Ass14] pro-

vides a high level description of the MIDI protocol:

eMusical Instrument Digital Interface (MIDI) protocol provides a stan-

dardized and efficient means of conveying musical performance infor-

mation as electronic data. MIDI information is transmied in “MIDI

messages”, which can be thought of as instructions which tell a music

synthesizer how to play a piece of music. [Ass14, p. 1]

Transmitting control data is the purpose of the MIDI protocol, and not, like it is

sometimes confused, to transmit audio data1. Control data can be thought of as

the press of a key, turning a knob, or an instruction to change the clock speed of a

song.

The work on the MIDI specification began in 1981 by a consortium of Japanese
1It is possible to transmit audio data over MIDI by using System Exclusive (SysEx) messages, but
this can not be done in real-time and is often used to replace or update samples or wavetables
in hardware synthesizers.

4 / 110

2 User Interface

and American synthesizer manufacturers, the MIDI Manufacturers Association

(MMA). In August 1983, the version 1.0 was published [Roa96, p. 974]. This year,

2016, theMMA establishedTheMIDI Association (TMA).The TMA should support

the global community of MIDI users and establish midi.org [Ass16] as a central

source for information about MIDI. MIDI is used in nearly every music electronic

device, like synthesizers, samplers, digital audio effects, and music software, due

to its simple protocol structure and long time of existence.

2.1.1 MIDI Protocol

The MIDI protocol specifies a standard transmission rate of 31 250 bit s−1. This

may seem like an unusual choice for the transmission rate, but it was derived by

dividing the common clock frequency of 1MHz by 32 [Roa96, p. 976]. It uses an

8b/10b encoding, i.e. 8 bit of data are transmitted as a 10 bit word. A data byte

is enclosed by a start and stop bit which in turn results in the 10 bit encoding.

Asynchronous serial communication is used to transfer MIDI messages, thus the

start and stop bit.

A MIDI message is composed of a status byte which is followed by up to two2 data

bytes. Both types are differentiated by their most significant bit (MSB), 1 for status-

and 0 for data bytes. Consequently, the usable payload size is reduced to 7 bit, in

other words, values can range from 0 to 127.

The structure of a MIDI status byte is as follows 0TTTCCCC , where T denotes the

three message type bits and C the remaining four bits that indicate the channel

2System Exclusive (SysEx) messages can be made up of more than two data-bytes, in fact they are
build by a sequence of data bytes followed by an End of Exclusive (EOX) message to mark the
end of the stream. This type of message does not contain any musical control data, in general
it is used to upload binary data, like firmware updates or samples, to a MIDI device.

5 / 110

https://www.midi.org/

2 User Interface

MIDI Message

System Message

System Exclusive
Message

F0

System Common
Message

F1-F7

System Real-Time
Message

F8-FF
F0-FF

Channel Message

Channel Voice
Message

8x-Ex

Channel Mode
MessageBx

Data1: 79
-7F

8x-
Ex

Figure 2.2: Classification of MIDI messages.

number. Hence, there are sixteen different channels addressable. MIDI channels

allow to route different logical streams over one physical MIDI connection, e.g. to

reach a different, daisy-chained MIDI device or to control different timbres of a

multitimbral synthesizer.

MIDI messages are divided in two categories, channel and system messages. Only

the latter contain musical control information and therefore are of interest for this

thesis. Figure 2.2 illustrates the classification, status byte values are shown as

edge labels where x illustrates don’t care. Channel Mode Messages define the in-

strument’s response to Voice Messages [Ass14, p. 36], i.e. listen on all channels

(omni mode), or switch between mono- and polyphonic mode (multiple simulta-

neous voices).

6 / 110

2 User Interface

Table 2.1: Types of MIDI Voice Messages.
Type Status Data1 Data2 Description
Note-Off 8x Key # Velocity Key released.
Note-On 9x Key # Velocity Key press from a

triggering device.
Polyphonic Key Pressure Ax Key # Pressure Aftertouch event.
Control Change Bx Ctrl. # Value Move of a controller

other than a key (e.g.
Knob, Slider).

Program Change Cx Program # — Instruction to load
specified preset.

Channel Pressure Dx Pressure — Aftertouch event.
Pitch Bend Ex MSB LSB Altering pitch (14-

bit resolution).

2.1.2 MIDI Pitch

Table 2.1 gives an overview of the types on voice messages. Corresponding Note-

On and Off messages do not necessarily follow one after another, therefore, to

relate associated messages, pitch information is contained in the Note-Off as well.

Pitch is encoded as a 7 bit value in note messages, hence there is a range of 128

pitches or about 10 octaves. MIDI’s pitch representation was designed with an

chromatic western music scale in mind. A chromatic scale has 12 pitches per octave

with one semitone difference between each pitch, that is a ratio of 21/12 between

successive notes. An interval of one octave is equivalent to a doubling or halving

(in the negative case) in frequency. Instruments inwestern music are usually equal-

tempered, i.e. all semitones have the same size. MIDI pitches are considered to be

equal-tempered and range from C0 (c in the lowest octave) to a G10 (g in the 10th

octave). Middle C, pitch number 60 (C5), is used as reference.

7 / 110

2 User Interface

𝑓 = 𝑓tune ⋅ 2(𝑝 − 𝑝ref) /12

𝑝 = 𝑝ref + 12 ⋅ log2(𝑓/𝑓tune)
(2.1)

Equation (2.1) shows how to calculate the frequency 𝑓 for a givenMIDI pitch 𝑝, and
vice versa, where 𝑓tune is the tuning frequency and 𝑝ref is the reference pitch num-

ber. Musical instruments are commonly tuned to the Concert A, the note A above

middle C orMIDI pitch 69. The default tuning of Concert A is 440Hz [Com75]. The

following example shows how to calculate the frequency for middle C by using the

Concert A tuned to 440Hz as reference pitch in eq. (2.1):

𝑓 = 440Hz ⋅ 2(60−69)/12

= 440Hz ⋅ 2−9/12

≈ 261.626Hz

2.1.3 Timing Problems

Playing two or more notes a the same time, i.e. playing a chord, can lead to timing

problems because of MIDI’s low bandwidth.

𝑡Note-On = 3 ⋅ (31 250 bit s−1/10 bit)−1

= 0.000 96 s = 0.96ms

The time to transmit a single note-on event 𝑡Note-On takes ≈ 1ms, this means that

the last transmitted note of an 𝑛-key chord arrives with 𝑛 ⋅ 0.96ms delay, e.g. the

last note of a pentachord (5 keys) will be received 5 ⋅ 0.96ms = 4.8ms later than

8 / 110

2 User Interface

the first one. This may result in a comb filter3 like distortion of the synthesized

chord sound.

2.2 Open Sound Control

The UC Berkeley Center for New Music and Audio Technology (CNMAT) originally

developed, and continues to research, Open Sound Control. In 2002, OSC’s 1.0

specification was released. It provides the following definition [Wri02]:

Open Sound Control (OSC) is an open, transport-independent, message-

based protocol developed for communication among computers, sound

synthesizers, and other multimedia devices.

The protocol is not limited to being used with audio or multimedia devices, how-

ever, it is often used as a high-speed network replacement for MIDI. Referring to

OSC as a message format is more accurate, since error-handling, synchronization

or negotiation methods are not specified. Therefore, OSC can be compared to for-

mats like JSON or XML. A draft of the OSC 1.1 specification was published in a

2009 paper [FS09] only adding minor, backward compatible changes. UDP is often

used as the transport layer to avoid the time required to establish a connection

by TCP’s three-way handshake. A connection less transport is sufficient because

OSC sender and receiver are almost always in physical proximity and connected

through the same LAN.

3A comb filter adds a delayed copy of the signal to itself causing addition or subtraction in the
signal. The filters frequency response shows regularly spaced notches, might resemble the
shape of a comb.

9 / 110

2 User Interface

Table 2.2: Overview of OSC 1.0 and 1.1 data types.
Tag Description 1.0 Required 1.1 Required
i 32 bit two’s complement integer ✔ ✔
f IEEE 754 single precision (32 bit) ✔ ✔
s null-terminated sequence of ASCII charac-

ters
✔ ✔

b binary blob with size information ✔ ✔
t OSC-timetag in NTP format ✔

T/F boolean values: true, false ✔
N Nil ✔
I Infinitum (1.0)/Impulse(1.1) used as event

trigger
✔

d IEEE 754 double precision (64 bit)
h 64 bit big-endian two’s complement integer
S alternate string type
c ASCII character
r RGBA color (8 bit per channel)
m 4 B MIDI message (from MSB to LSB): port,

status, data1, data2
[,] Array delimiters

2.2.1 OSC Data Types

An overview of the predefined data types for both, OSC 1.0 and 1.1, is shown in

table 2.2. The byte order of OSC’s integer, float and timetags is big-endian. OSC’s

unit of transmission is called OSC Packet. The EBNF grammar for OSC packets

is described by fig. 2.4. Fields of an OSC packet have to be aligned to multiples

of 4-byte and are zero-padded, thus the size of such a packet is also a multiple of

four. The packets contents can either be an OSC Message or OSC Bundle. An OSC

message starts with an address paern followed by zero or more arguments to be

applied to the OSC Method matched by the pattern. Address pattern can contain

basic regular expression with single-/multi-character ?/* wildcards, range [A-Z]

10 / 110

2 User Interface

/

oscillator/

1/

freq phase

2/

…

filter/

mode cutoff resonance

Figure 2.3: OSC Address Space example.

and list matches {foo, bar}, hence multiple OSC Methods can be triggered with a

single OSCMessage. An OSC Receiver’s4 address space forms a tree structure with

branch nodes called OSC Containers and leaves are named OSC Methods. Methods

are italicized in the tree structure example of fig. 2.3. The address of an OSC

method starts with a /, followed by any container name along the path in order

from the root of the tree, joined by forward slashes / and the method’s name, e.g.

/oscillator/1/phase.

2.2.2 Comparison to MIDI

Both protocols provide a number of benefits and limitations in comparison to each

other. The following list shows them for OSC compared to MIDI:

+ OSC’s data-types allow a much higher resolution for control values. They

also provide symbolic types like booleans orNil to represent an empty value.

+ The definition of custom data-types is allowed, therefore OSC applications
4The term OSC Receiver and OSC Server is interchangeable. This also applies to OSC Sender and
OSC Client. OSC applications often act as server and receiver, hence no clear distinction be-
tween those roles can be made.

11 / 110

2 User Interface

Figure 2.4: Grammar of an OSC packet described as EBNF (ISO14977 syntax [Int96,
p. 14]).

packet = size, content ;
size = (* 4-byte aligned packet content field length *) ;
content = message | bundle ;
message = address, ",", { type-tag }, { argument } ;
address = "/", osc-string - ("'" | "#" | "*" | "," | "/" |

"?" | "[" | "]" | "{" | "}") ;
osc-string = { ASCII }, "0" ;
type-tag = "i" | "f" | "s" | "b" | "h" | "t" | "d" | "S" |

"c" | "r" | "m" | "T" | "F" | "N" | "I" |
"{", {type-tag}, "}" ;

argument = (* binary representation of the argument *) ;
bundle = "#bundle", OSC-timetag , { bundle-element } ;
bundle-element = size, content ;

must be made robust against unknown ones.

+ The bandwidth is orders of magnitudes larger than MIDI’s, but it depends on

the type of network used. A common choice are ad-hoc Wi-Fi connections

between OSC receiver and sender because the player (sender) and the in-

strument (receiver) are in local proximity to each other. This, in turn, results

in an acceptable network latency in the single digit millisecond range.

+ Control events can be send simultaneously as an OSC bundle, e.g. note

events of a chord.

+ Events can be timed with an resolution of ≈ 200 picoseconds [Wri02].

+ OSC can be used to tunnel MIDI messages over a network connection.

− There is no standard for discovering OSC devices in a network, thus ad-

dresses must be configured manually which is cumbersome.

12 / 110

2 User Interface

− Unlike MIDI, there is no standard namespace for interfacing with an OSC

device, although, a proposal for a standard exists [Ehr13].

− The number of applications that support OSC is very limited.

13 / 110

3 Synthesizer Fundamentals

This chapter outlines the fundamental elements of a synthesizer and briefly de-

scribes the fundamental methods of sound generation.

3.1 Oscillator

Oscillators are the fundamental building blocks of a synthesizer’s sound generation

engine. They serve the purpose of emitting a periodic waveform. An oscillator is

controlled through its frequency and amplitude parameters. In the context of a

synthesizer there are additional controls for starting phase, the point at which the

waveforms begins, and type of waveform to emit.

The amplitude parameter sets the peak amplitude for the signal, i.e. the absolute

value of the waveforms highest amplitude. Frequency is usually specified as num-

ber of waveform cycles per second (Hz) but in the software implementation stored

as phase increment (angular frequency) for each sample step. The software oscil-

lators output is a sequence of samples at equidistant intervals 𝑇 . Let 𝑓𝑠 = 1/𝑇
be the sample rate and 𝑓 the frequency in Hz (𝑠−1), then the phase increment 𝜔 is

calculated like this:

14 / 110

3 Synthesizer Fundamentals

0 π

2
π 3 π

2

2 π

-1.0

-0.5

0.0

0.5

1.0

Time

A
m

p
li
tu

d
e

Figure 3.1: Two sinusoids with angular frequencies 𝜔1 = 𝜋/2, 𝜔2 = 3/2𝜋 sam-
pled in intervals of 𝑇 = 𝜋/2. Both sinusoids produce the same sampled
signal due to aliasing.

𝜔 = 2𝜋 𝑓
𝑓𝑠

(3.1)

The oscillators highest frequency is limited to 𝑓𝑠/2 or 𝜔 = 𝜋, which is called

Nyquist frequency. In general, the (Nyquist-Shannon) sampling-theorem states that

a signal can be exactly reconstructed from its digitization if its entire frequency

spectrum lies below the Nyquist frequency [Ben08, p. 244]. In other words, it

ensures that there are at least two sample points for any period of a frequency

component contained in the sampled signal.

3.1.1 Aliasing

Figure 3.1 shows two sinusoids with frequencies 𝜔1 = 𝜋/2 and 𝜔2 = 3/2𝜋 that

are sampled at sample rate 𝜔𝑠 = 𝜋/2. Clearly, 𝜔2 is above the Nyquist fre-

quency 𝜔Ny = 𝜋, thus 𝜔2 is foldover at 𝜔Ny which results in a frequency of 𝜔2

15 / 110

3 Synthesizer Fundamentals

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

fNy

f [Hz]

M
a
g
n
it

u
d
e

non-aliased aliased

Figure 3.2: Spectra for waveforms sampled at a) 𝑓Ny = 30 and b) 𝑓Ny = 10 which
is 1/3 of the highest frequency contained, hence foldover (aliasing)
occurs.

mod 𝜔Ny = 𝜋/2 that is equal to 𝜔1, therefore 𝜔2 is an alias of 𝜔1, so both signals

are indistinguishable after the sampling process. This effect is called aliasing or

foldover and is an inevitable result of sampling or sample rate conversion, hence

signal components with frequencies above Nyquist must be removed or reduced

before fed into the sampling process. The effect of foldover in the frequency spec-

trum is shown in fig. 3.2.

The alias 𝑓𝑎 for a frequency 𝑓 and a sampling frequency 𝑓𝑠 can be calculated as

shown in eq. (3.2)1, where 𝑁 = ⌊𝑓/𝑓𝑠⌋

𝑓𝑎 =
⎧{
⎨{⎩

|𝑁 𝑓𝑠 − 𝑓| if 𝑁 is even

|(𝑁 + 1)𝑓𝑠 − 𝑓| otherwise
(3.2)

1Dashow presented a method for generating non-harmonic spectra using foldover frequencies
[Das78, p. 82].

16 / 110

3 Synthesizer Fundamentals

0
π

2
π 3 π

2

2 π

-1

0

1

t

f(
t
)

a)

0
π

2
π 3 π

2

2 π

-1

0

1

t

f(
t
)

b)

0
π

2
π 3 π

2

2 π

-1

0

1

t

f(
t
)

c)

0
π

2
π 3 π

2

2 π

-1

0

1

t

f(
t
)

d)

Figure 3.3: Common (non bandlimited) waveforms supported by most synthesiz-
ers: a) sine wave, b) triangle wave, c) ramp/sawtooth, d) square wave.

3.2 Waveforms

Synthesis techniques like subtractive synthesis require a source signal with rich

harmonic content, hence providing only sine wave oscillators is not sufficient.

Oscillator waveforms typically used in subtractive synthesis are triangle, sawtooth

and square wave the so called trivial or geometric waveforms [Pek14, p. 5] because

of their well-defined shape consisting of piece-wise linear or constant segments.

Non bandlimited versions of those waveforms are shown in fig. 3.3. To prevent

aliasing artifacts caused by discontinuities in the waveform (square and sawtooth)

or its slope (triangle) it is required to create bandlimited versions of those wave-

forms.

17 / 110

3 Synthesizer Fundamentals

3.2.1 Fourier Synthesis

Fourier synthesis is used to create bandlimited versions of those complex wave-

forms. It uses the properties of Fourier series representation of arbitrary but peri-

odic waveforms [Loy11, p. 103]:

Any periodic vibration, […], can be built up from sinusoids whose fre-

quencies are integer multiplies of a fundamental frequency, by choosing

the proper amplitudes and phases.

Thismeans that any periodicwaveform can be constructed by specifying the power

of each its harmonics, where a harmonic is an integer multiple of the waveforms

fundamental frequency. The Fourier series is defined as (eq. (3.3))

𝑓(𝑡) = 𝑎0/2 +
∞

∑
𝑘=1

𝑎𝑘 cos(2𝜋𝑘𝑡 + 𝜙𝑘) +
∞

∑
𝑘=1

𝑏𝑘 sin(2𝜋𝑘𝑡 + 𝜙𝑘) (3.3)

where 𝑎𝑘 and 𝑏𝑘 are coefficients for the strength of the k-th harmonic. The harmon-

ics phase is specified 𝜙𝑘 and 𝜔𝑘 = 2𝜋𝑘 sets its angular frequency. By substituting2

eulers equation (eq. (3.4))

𝑒𝑖𝜙 = cos(𝜙) + 𝑖 sin(𝜙) (3.4)

into eq. (3.3) it can be written in complex form:

𝑓(𝑡) =
∞

∑
𝑘=−∞

𝑐𝑛𝑒𝑖 2𝜋 𝑘 𝑡+𝜙𝑘 (3.5)

2Eulers identities: cos = (𝑒𝑖𝜙 + 𝑒−𝑖𝜙)/2 and sin = (𝑒𝑖𝜙 + 𝑒−𝑖𝜙)/(2𝑖).

18 / 110

3 Synthesizer Fundamentals

.

The summation range has changed for the complex Fourier series eq. (3.5) to −∞
and ∞, thus there are now negative frequencies. To retrieve a real-valued signal

from the complex Fourier series it is required to take the conjugate transpose of

each value, i.e. to specify the coefficients 𝑐𝑘 as pairs with a −𝑐𝑘 for each positive

coefficient.

The complex coefficients 𝑐𝑘 can be converted from the 𝑎𝑘, 𝑏𝑘’s with the following

equation:

𝑐±𝑘 = 1/2 (𝑎𝑘 ± 𝑖 𝑏𝑘) (3.6)

3.2.2 Bandlimited Waveforms

Bandlimited sawtooth, triangle and square waveforms can be created by means of

Fourier synthesis. Sawtooth, in contrast to square and triangle waves, contains

odd and even harmonics which makes them a great source signal because of their

rich harmonic content. Square and triangle waves consist solely of odd harmonic

partials. The complex Fourier series for sawtooth, triangle and square waves is

shown in eq. (3.7), eq. (3.8) and eq. (3.9) where the sum is zero for 𝑛 = 0. The num-

ber of harmonics contained in the waveform is determined by summation limits

and fig. 3.4 illustrates evaluated Fourier series for sawtooth (a) and square wave

(b) at increasing numbers of harmonics partials.

𝑥saw(𝑡) =
∞

∑
𝑛=−∞, 𝑛≠0

−1𝑛 𝑒−𝑖 2𝜋 𝑛 𝑡

𝑛𝜋 (3.7)

19 / 110

3 Synthesizer Fundamentals

𝑥square(𝑡) = 2
∞

∑
𝑛=−∞, 𝑛≠0

𝑒−𝑖 2𝜋 (2𝑛−1) 𝑡

𝑛𝜋 (3.8)

𝑥triangle(𝑡) = 4
∞

∑
𝑛=−∞, 𝑛≠0

𝑒−𝑖 2𝜋 (2𝑛−1) 𝑡

(𝑛𝜋)2 (3.9)

3.3 Non-linearity of hearing

The intensity of a sound is perceived logarithmically by human hearing [WDJ97,

p. 27]. Therefore, the ratio between two sound intensities is important and not the

difference as in the case of linear perceived phenomenons. The ratio of two phys-

ical quantities, e.g. signal amplitudes, is measured in dB (decibel), a dimensionless

logarithmic unit. Distinction should be made between the ratio of signal energy

which is expressed by

10 log10 (𝑎
𝑏) (3.10)

and the ratio of signal power eq. (3.11).

20 log10 (𝑎
𝑏) (3.11)

with 𝑎, 𝑏 ∈ ℝ. The difference in the scaling factors is based on the definition of

signal energy where the square of the signals amplitude is taken, see eq. (3.12).

∫
∞

−∞
|𝑥(𝑡)|2 𝑑𝑡 (3.12)

20 / 110

3 Synthesizer Fundamentals

2 4 8 16

-π 0 π

-1.0

-0.5

0.0

0.5

1.0

-π 0 π

Time

A
m

p
li
tu

d
e

a)

2 4 8 16

-π 0 π

-1.0

-0.5

0.0

0.5

1.0

-π 0 π

Time

A
m

p
li
tu

d
e

b)

Figure 3.4: One cycle of bandlimited a) sawtooth and b) square waveforms with
increasing number of harmonics.

21 / 110

3 Synthesizer Fundamentals

0-20-40-60-80

1.

0.1

0.01

0.001

0.0001

dB

R
a
t
io

Figure 3.5: Relationship between dB and corresponding amplitude ratios on a log-
arithmically scaled y-axis.

Figure 3.5 illustrates the relationship between dB levels (x-axis) and corresponding

amplitude ratios on a logarithmically scaled y-axis. The pressure levels audible by

human ears range from 0.00002 Nm−2 to 200 Nm−2 [WDJ97, p. 26], which is seven

orders of magnitude larger than the audibility threshold and clearly shows that

logarithmic scale is better suited than a linear one to represent sound level ratios.

3.4 Envelope Generators

The sound produced by an musical instrument is usually not static and changes

in amplitude or spectral content over time. To simulate these time-varying wave-

forms a function of time, the envelope generator, is used to controls parameters of

an oscillator or other parts of a synthesizer’s sound engine, e.g. the cutoff of a fre-

quency filter. In fig. 3.6 the time-varying behavior of sounds produced by musical

22 / 110

3 Synthesizer Fundamentals

Figure 3.6: Waveform plot of sampled C4 note played on a piano [13].

instruments is illustrated by an example of waveform plot of a C4 note played on

piano.

There are various types of envelope generators that range from simple two stage

models, for fading the sound in and out, to ones which have an arbitrary number of

stages and envelope shapes. A commonly used model with a reasonable amount

of controllable parameters is the so called ADSR envelope, which stands for the

four different stages of the envelope which are Aack, Decay, Sustain and Release.

Because of the non-linearity of human hearing, as discussed in section 3.3, it is not

sufficient to linearly ramp values between those four stages because this would

not yield a smooth change in perceived loudness.

Puckette proposes three different amplitude envelope transfer functions [Puc06,

23 / 110

3 Synthesizer Fundamentals

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

102 (x-1)

x
4

Figure 3.7: Three amplitude envelope transfer functions for input values in the
range of [0, 1] as proposed by [Puc06, p. 94].

p. 94] (see fig. 3.7) where 102(𝑥−1) converts from dB to linear and the quartic curve

𝑥4 approximates the exponential dB curve while being computationally less ex-

pensive and reaching true zero at 𝑥 = 0.

An ADSR generator’s output is fully determined by five parameters, that are the

output level and duration of the attack stage, decay duration, sustain level and du-

ration of release. Figure 3.8 shows the output and stages for an envelope generator

with exponential transfer function. The generator will start the output on an event

like a key press and will reside in the sustain stage as long as the key is still pressed.

If the key is released the generator will switch to the release stage independent of

its state at the time of the event.

24 / 110

3 Synthesizer Fundamentals

●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
●● ●●
● ●●●
●●● ●
●● ●●
● ●●●
●●● ●
●● ●●
● ●●●
●●● ●
●● ●●
● ●●●
●●● ●
●● ●●
● ●●●
● ●●●
● ●●●
● ●●●
● ●●●
● ●●●
● ●●●
● ●●●
● ●●●
● ●●●
●● ●●
●●● ●
●●●●
●●●●
● ●●●
●● ●●
●●●●
●●●●
●● ●●
●●●●
●●●●
●● ●●
●●●●
● ●●●
●●●●
●●●●
●●● ●
●●●●
●●● ●
●●●●
●●● ●
●●●●
●●●●
●●●●
●●●●
● ●● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
●●

0
0
.5

1
1
.5

2
0

0
.51

t
[s
]

f(t)

A
tt

a
ck

AttackLevel

A
tt

a
ck

D
ec

a
y

Sustain

R
el

ea
se

Fi
gu

re
3.8

:A
n
A
D
SR

en
ve
lo
pe

w
ith

eq
ua
ld
ur
at
io
n
of

0.5
sf
or

ea
ch

st
ag
e
an
d
att

ac
k
an
d
su
st
ai
n
le
ve
ls
of

1
an
d
0.5

.

25 / 110

4 Synthesis Techniques

Since the invention of the first electrical organ in 1894 [Roa96, p. 83], the Telhar-

monium built by Thaddeus Cahill, a lot of different synthesizing techniques have

been developed. Those techniques can be roughly divided into two broad cate-

gories, techniques for mimicking the sound of traditional instruments, like

• Karplus-Strong synthesis [KS83], a simple technique for simulating plucked-

string or drum sounds

• physical modeling synthesis which uses a mathematical model of an instru-

ment to generate sounds

or techniques for generating arbitrary sounds, possibly not reproducible by a phys-

ical instrument, likeAdditive, Subtractive and FM synthesis. Developing a physical

simulation of a traditional instrument is not the aim of this thesis, therefore the

latter techniques will be described in this section.

4.1 Additive Synthesis

Additive synthesis is one of the oldest sound synthesizing techniques. It uses sep-

arate sinusoidal oscillators to generate a complex sound from its partials. As the

name suggests, the output of each oscillator is added up to obtain the resulting

26 / 110

4 Synthesis Techniques

∿1

𝑓1 𝑎1

∿2

𝑓2 𝑎2

… ∿𝑛−1

𝑓𝑛−1𝑎𝑛−1

∿𝑛

𝑓𝑛 𝑎𝑛

+

𝑦𝑛

Figure 4.1: Basic structure of an additive synthesizer.

output signal. The basic structure of an additive synthesizer is shown in fig. 4.1,

where ∿𝑖 denotes a sinusoidal oscillator with frequency input 𝑓𝑖 and amplitude

input 𝑎𝑖.

An advantage of additive synthesis is its great versatility, because virtually any

sound can be synthesized, given a sufficient amount of oscillators. This comes

with two major downsides:

1. this method is computationally expensive.

2. it is hard to control because there are at least as twice as many parameters

as there are oscillators.

Additionally, to be able to simulate real or time-varying artificial sounds theremust

be functions that control those parameters over time, e.g. to reduce the amplitude

of higher frequency partials when the sound decays. The coefficients obtained by

Fourier analysis of a real sound (e.g. a sample of played key on a piano) can be used

as parameters to reconstruct this sound through additive synthesis, this process is

sometimes called Fourier recomposition [WDJ97, p. 88].

27 / 110

4 Synthesis Techniques

4.2 Frequency Modulation (FM) Synthesis

Frequency Modulation (FM) was originally used in telecommunications to encode

information on a carrier wave by modulating the waves instantaneous frequency,

e.g. for radio broadcast. In 1973, Chowning presented a new application of this

well-known process to control spectral components of an audio signal with great

simplicity [Cho73, p. 1]. Contrary to its well-understood use for radio transmis-

sion, both the carrier and themodulating frequency are inside the audio band. The

audio spectrum is formed by the carrier wave and side frequencies which are in-

troduced through frequency modulation. Modulation of the carrier wave is deter-

mined by two factors:

• the frequency of themodulating wave𝑚𝑓 sets rate at which the instantaneous

frequency of the carrier varies.

• the amount of modulation 𝑚𝑎 which is equal to the modulating waves am-

plitude.

If both the carrier as well as the modulator, are sinusoids then the instantaneous

frequency maybe be calculated as follows [Cho73, p. 2]:

𝑦(𝑡) = 𝐴 sin (𝑐𝑓𝑡 + 𝐼 sin(𝑚𝑓𝑡)) (4.1)

where 𝐴 is the peak amplitude, 𝑐𝑓 is the carrier wave’s frequency and 𝐼 = 𝑚𝑎/𝑚𝑓

is the ratio of modulation amount to modulation frequency also calledmodulation

index. A table of waveforms generated by different values of 𝑚𝑓 and 𝑚𝑎 is shown

in fig. 4.2.

For 𝐼 = 0 there is no modulation, but non-zero values will result in frequencies

28 / 110

4 Synthesis Techniques

am=1 am=2 am=4

fm=1

fm=2

fm=4

Figure 4.2: One cycle of a FM modulated sine wave for different modulation inten-
sities 𝑎𝑚 and modulator frequencies 𝑓𝑚.

occurring below and above the carrier frequency at intervals of the modulating

frequency. Chowning describes the relation of modulation index and occurrence

of side frequencies like this [Cho73, p. 2]:

e number of side frequencies which occur is related to the modulation

index in such a way that as 𝐼 increases from zero, energy is “stolen”

from the carrier and distributed among an increasing number of side

frequencies.

This behavior is shown in fig. 4.3 for different modulation indices by constant mod-

ulation and carrier frequency. Negative amplitudes for frequency components in-

dicate phase inversion1.

Specific carrier and modulation frequency ratios and modulation index values will
1− sin(𝜙) = sin(−𝜙)

29 / 110

4 Synthesis Techniques

●● c
f

-
1

-
0
.50

0
.51

F
re

q
u
en

cy

Amplitude

I=
0
.

●
●

●
●

●

●

●

●
●

●
●

c
f

-
1

-
0
.50

0
.51

F
re

q
u
en

cy

Amplitude

I=
0
.0

6
2
5

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

c
f
-

m
i
m

f
c

f
c

f
+

m
i
m

f

-
1

-
0
.50

0
.51

F
re

q
u
en

cy

Amplitude

I=
0
.2

5

●
●
●
●
●
●
●

●

●

●

●
●

●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●

c
f
-

m
i
m

f
c

f
c

f
+

m
i
m

f

-
1

-
0
.50

0
.51

F
re

q
u
en

cy

Amplitude

I=
0
.5

Fi
gu

re
4.3

:M
ag
ni
tu
de

sp
ec
tra

fo
rf
re
qu

en
cy

m
od
ul
at
ed

ca
rr
ie
rf
re
qu

en
cy

𝑐 𝑓
at
di
ffe

re
nt

m
od
ul
at
io
n
in
di
ce
s𝐼

an
d
co
n-

st
an
tm

od
ul
at
io
n
fre

qu
en
cy

𝑚
𝑓.

Ba
nd

w
id
th

in
cr
ea
se
ss

ym
m
et
ric

al
ly

ar
ou

nd
𝑐 𝑓

w
ith

𝐼.

30 / 110

4 Synthesis Techniques

produce sideband frequencies that fall into the negative spectrum. Those negative

frequency components will be reflected (aliased) around 0Hz. Reflected sideband

components will either increase or—if they are phase inverted—decrease the en-

ergy in the spectrum.

Harmonic spectra2 will be generated if the ratio of carrier and modulation fre-

quency is a rational number. Ratios that are irrational numbers, e.g. 1/
√

2, will
result in inharmonic spectra because the reflected sideband frequencies will fall

inbetween the positive frequency components.

Carrier and sideband component amplitudes can be determined analytically by

evaluating n-th order Bessel functions 𝐽𝑖 of the first kind with the modulation

index as argument. A quick estimation for the resulting bandwidth of different

modulation indices is shown in fig. 4.4 by evaluating Bessel functions 𝐽0 through

𝐽15 for those indices.

The most basic FM synthesizer algorithm consists of two operators (which are just

oscillators in FM terminology), a modulator and a carrier, where the modulators

output is summed with the carriers fundamental frequency. An FM algorithm is

described by how its operators are connected among each other. Figure 4.5 shows

the structure of the most basic FM algorithm, a simple pair of operators.

FM’s advantages lie in the simplicity of control, the small computational effort that

is required and the great amount of flexibility, resulting from arranging operators

in different algorithms. On the other hand, FM synthesis is likely to introduce un-

desirable aliasing of higher frequencies which should be taken into account when

implementing the algorithm.

2Overtones are an integer multiple of waves the fundamental frequency.

31 / 110

4 Synthesis Techniques

Figure 4.4: Bandwidth estimation for modulation indices 𝐼 ranging from 0 through
20 by evaluating Bessel functions 𝐽0 through 𝐽15 showing resulting
sideband frequencies 𝑠𝑓 and amplitudes 𝑠𝐴 [Cho73, p. 5].

32 / 110

4 Synthesis Techniques

∿

𝑓𝑚 𝑎𝑚

+ 𝑓𝑐

∿

𝐴(𝑛)

𝑦𝑛

Figure 4.5: Most basic FM algorithm, a pair of operators with one modulator and
carrier.

4.3 Subtractive Synthesis

Subtractive Synthesis is—like the name implies—the opposite of Additive Synthesis

and creates musical tones by removing parts of the frequency spectrum of a source

signal. A filter thereby amplifies or attenuates regions of the spectrum while the

source signal passes through. Spectrally rich signals like noise, sawtooth or square

waves are well suited for the use as sound sources. The following section intro-

duces filters by means of audio signal processing, describes commonly used filter

types in musical synthesizers and discusses FIR and IIR filters.

33 / 110

5 Digital Filters

Filter is a broad term that has many different and often very general definitions.

Such a general definition is given by Smith III in [Smi85]:

Any medium through which the music signal passes, whatever its form,

can be regarded as a filter.

Surprisingly, even “Terminology in Digital Signal Processing” [Rab+72] uses the

term without prior specification. In this thesis a more specific definition will be

used [PM07, p. 326]:

e linear time-invariant system, through its frequency response func-

tion, aenuates some frequency components of the input signal and am-

plifies other frequency components. us the system acts as a filter to the

input signal.

This is analog to the description given in section 4.3, despite the terms linear time-

invariant (LTI) system and frequency response function not having been explained.

34 / 110

5 Digital Filters

5.1 Linear Time-Invariant Systems

LTI systems are used as filters because “no new spectral components are intro-

duced” [Smi16] by them. The time-invariance property is not overly restrictive

because it also holds for filters that change slowly over time. This is a very conve-

nient property because, if musicians were not allowed to change parameters of a

subtractive synthesizer’s filter while playing, the result would be static and unin-

teresting sounds.

5.1.1 Linearity and Time-Invariance

A system is linear if the superposition principle eq. (5.1) holds.

𝐹[𝑎1𝑥1(𝑛) + 𝑎2𝑥2(𝑛)] = 𝑎1𝐹[𝑥1(𝑛)] + 𝑎2𝐹[𝑥2(𝑛)] (5.1)

In other words, the response of system 𝐹 applied to two (or more) stimuli 𝑥1,2 is

equal to the sum of responses of the system applied to each stimulus individually,

for any real valued scalars 𝑎1,2 and points in time 𝑛. This also shows the scaling

the property of linear systems, i.e. scaling of a systems input results in an identical

scaling of the response. A system is time invariant, if

𝐹[𝑥(𝑛 − 𝑘)] = 𝑦(𝑛 − 𝑘), (5.2)

for any time shift 𝑘. Thus, the response of the system applied to a stimulus delayed

by 𝑘 units of time is equal to the systems response delayed for the same amount.

Hence, if a system obeys both properties, linearity and time-invariance, then it is

35 / 110

5 Digital Filters

called an LTI system. Such a system is characterized completely by its impulse or

frequency response.

5.1.2 LTI filters

Linear time-invariant digital filters (systems), in the following simply called filters,

may be written as difference equation

𝑦[𝑛] =
𝑀

∑
𝑖=0

𝑏𝑖𝑥[𝑛 − 𝑖] −
𝑁

∑
𝑗=1

𝑎𝑗𝑦[𝑛 − 𝑗] (5.3)

where 𝑥 denotes the input signal1, 𝑦 the output signal, and the filter’s coefficients

are the constants 𝑎𝑗 and 𝑏𝑖. A signal therefore is a sequence of real numbers denoted

as a function of integer index 𝑥[𝑛] where 𝑛 denotes the n-th sample. Coefficients

𝑎𝑗, 𝑏𝑖 must be in ℝ to obtain a real valued filter that has a real valued output for any

given real valued input signal. Another requirement of the filter is to be causal,

i.e. it does not depend on future values and only uses past input and output values

to calculate its current output value, otherwise the filter can not be realized. A

filters order is the maximum sample delay used (max(𝑀, 𝑁) in eq. (5.3)) and in

general the higher a filters order the steeper its transition slope.

Another way of representing a digital filter is by its rational system- or transfer

function 𝐻(𝑧) in the z-domain as shown for a causal filter in eq. (5.4) where 𝑧 =
𝐴𝑒𝑖𝜙 is some complex exponential with amplitude𝐴 and phase 𝜙 that acts as time-

shift of 𝑗 samples. This z-domain representation will be required when designing

a digital IIR filters based on an analog prototype.

1The term sequence and signal will be used interchangeably.

36 / 110

5 Digital Filters

𝐻(𝑧) = 𝑌 (𝑧)
𝑋(𝑧) =

∑𝑀
𝑘=0 𝑏𝑘𝑧−𝑘

1 + ∑𝑁
𝑘=1 𝑎𝑘𝑧−𝑘

(5.4)

The z-domain representation of a discrete-time signal𝑥[𝑛] is defined as the bilateral
transform:

𝑋(𝑧) = 𝒵 {𝑥[𝑛]} =
∞

∑
𝑛=−∞

𝑥[𝑛]𝑧−𝑛. (5.5)

LTI filters can be divided into two types, first feedforward or finite impulse response

(FIR) filters which only use previous input values (𝑎𝑗s are zero) and second feed-

back or infinite impulse response (IIR) filters that also use previous output values

to calculate the present filter output 𝑦[𝑛].

5.2 Impulse Response

Another way of representing a LTI system in the time domain is its response to a

signal impulse, called the systems impulse response.

[A one-sample impulse] contains energy at all frequencies that can be

represented at the given sampling frequency. Hence, a general way of

characterizing a filter is to view its response to a one-sample pulse[…]

[Roa96, p. 400].

The hereby used input signal is the Kronecker delta function 𝛿(𝑛) eq. (5.6) which
is one if 𝑛 = 0 and zero otherwise.

37 / 110

5 Digital Filters

𝛿(𝑛) =
⎧{
⎨{⎩

1, 𝑛 = 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5.6)

Applying the LTI system on the impulse signal 𝛿(𝑛) yields the systems impulse

response denoted as ℎ[𝑛]. If the impulse response does not reach zero over time

the system is said to be unstable. Any LTI system is fully described by its impulse

response. Convolving an input signal 𝑥[𝑛] with the impulse response ℎ[𝑛] yields
the systems time-domain output for that signal [PM07, p. 73]:

𝑦[𝑛] = 𝑥 ∗ ℎ =
∞

∑
𝑘=−∞

𝑥[𝑘]ℎ[𝑛 − 𝑘] =
∞

∑
𝑘=−∞

𝑥[𝑛 − 𝑘]ℎ[𝑛] (5.7)

Clearly, convolution ∗ is a commutative operation. This property can be used to

optimize possible implementations [Pav13].

5.3 Frequency Response

Evaluating the systems transfer function eq. (5.4) on the unit circle, i.e. set 𝑧 to

𝑒𝑖𝜔𝑇 where 𝑇 is the sampling interval, yields the LTI systems frequency response

which is the frequency spectrum of the output divided by the frequency spectrum

of the input.

It is easy to show that evaluating the (bilateral) z-transform on the unit-circle will

find the spectrum because setting 𝑧 = 𝑒𝑖𝜔𝑇 in eq. (5.5) results in the definition of

the bilateral discrete-time Fourier transform:

38 / 110

5 Digital Filters

𝑋 (𝑒𝑖𝜔𝑇) =
∞

∑
𝑛=−∞

𝑥[𝑛]𝑒−𝑖𝜔𝑛𝑇 (5.8)

.

In the following only causal sequences are of interest, thus the unilateral versions

of z-transform and discrete-time Fourier transform are used in which the summa-

tion index starts at 𝑛 = 0. Also, the sampling index 𝑇 is set to 1 for simplicity.

Another way of obtaining an LTI systems frequency response is by applying the

Fourier transform on the systems impulse response ℎ(𝑧) [PM07, p. 301]:

𝐻(𝜔) =
∞

∑
𝑛=−∞

ℎ[𝑛]𝑒−𝑖𝜔𝑛 (5.9)

It is sufficient to evaluate the frequency response function only for 𝜔 ∈ [−𝜋, 𝜋)
because all frequencies are mapped into a single cycle of the unit circle and the

spectrum would repeat for additional cycles anyway2.

5.3.1 Magnitude- and Phase Response

The complex valued result of the frequency response function can be decomposed

into two real valued functions [Smi16] the systems magnitude response3 |𝐻(𝜔)|
and its phase response ∠𝐻(𝜔), where ∠ denotes the complex argument.

The magnitude response of a filter shows how frequencies are attenuated or am-

plified and the phase response specifies the phase-shift experienced by each fre-

quency. In general the frequency response is of more interest because it is better

2see aliasing section 3.1.1
3Sometimes improperly called amplitude response because amplitudes can be negative.

39 / 110

5 Digital Filters

suited for characterizing a filter but the phase response should not be completely

ignored.

Chamberlin states that “Poor phase response in a filter also means poor transient

response” and this effect will become worse with increasing filter order [Cha85,

p. 392], i.e. sharp changes in a waveform (transients) will be smoothed by a filter

with poor phase response. However, even a poor filter phase response is quite good

compared to the phase error introduced by the audio speaker while transforming

the signal from an electrical to an acoustical one [Cha85, p. 392].

5.4 Filter Classification

Filters of a musical synthesizer are classified by the magnitude curve of their fre-

quency response function |𝐻(𝜔)| which is the filter’s characteristic frequency re-

sponse curve. Exemplary frequency response curves for lowpass, highpass, band-

pass and notch (sometimes called bandreject or bandstop) filters are shown in

fig. 5.1.

Low- and highpass filters cut all frequencies below, respectively above of the cut-

off frequency 𝑓𝑐, while bandpass and notch filters let frequencies in a certain range

(frequency band) pass through or rejecting them. The width of the pass- or stop-

band is an additional property of those last two filter types and the difference be-

tween their high and low cutoff frequencies is called bandwidth. Correspondingly,

the center of the pass- or stopband—the point of maximum or minimum amplitude

in this band—is the fiter’s center frequency.

A filters cutoff frequency is commonly specified for the half-power point [Rab+72,

p. 8] where the filter reduces the signals energy to 1/
√

2 ≈ 0.707 or in terms of

40 / 110

5 Digital Filters

0 0.1 fc 1 2 5 10

-3

-12

-24

-36

-48

-60

Frequency

M
a
g
n
it

u
d
e
[d

B
]

Lowpass Highpass

0 0.1 fc 1 2 5 10

-3

-12

-24

-36

-48

-60

Frequency

M
a
g
n
it

u
d
e
[d

B
]

Bandpass Notch

Figure 5.1: Log-log plots for exemplary frequency response curves of four elemen-
tary filter types with 12 dB/octave roll-off where 𝑓𝑐 denotes the cutoff
frequency at the half-power point (−3 dB) shown as a dotted line.

41 / 110

5 Digital Filters

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Frequency [rad/sec]

M
a
g
n
it

u
d
e

bpass btrans bstop

apass

astop

Figure 5.2: Terminology for describing the frequency response of a low-pass filter.

signal power (1/
√

2)2 = 1/2 or −3 dB (see eq. (3.11)).

An ideal filter would have a sharp cut between the pass- and stopband that looks

like a rectangle in the frequency response but such a filter is not realizable because

it would be of infinite order. Hence, there is a transition between the pass- and

stopband called transition band. Figure 5.2 shows those bands and their respective

bandwidths 𝑏𝑝𝑎𝑠𝑠, 𝑏𝑡𝑟𝑎𝑛𝑠, 𝑏𝑠𝑡𝑜𝑝 as well as other constraints like pass- and stopband

𝑎𝑝𝑎𝑠𝑠 and 𝑎𝑠𝑡𝑜𝑝 that must be specified and taken into account when designing a

filter.

The steepness of the frequency response curve in the transition band is measured

in dB/octavewhere a larger value implies an increased steepness of the curve, e.g. a

roll-off of 12 dB/octave for a lowpass filter means that the amplitude is reduced by

12 dB for each doubling in frequency above 𝑓𝑐.

Depending on the curve of the phase reponse a filter is said to have zero phase

42 / 110

5 Digital Filters

0.05 0.10 0.50 1 5 10
-π

-
π

2

0

Frequency

P
h
a
se

[r
a
d
]

Figure 5.3: Non-linear phase response (∠𝐻(𝜔)) of a second-order Butterworth
lowpass filter.

if the phase-shift is constant over all frequencies, linear phase if there is a linear

relationship between phase-shift and frequency and non-linear phase otherwise.

The phase response for the lowpass filter used in fig. 5.1 is shown in fig. 5.3

5.5 FIR Filters

A FIR filter’s response to an impulse will die away after a finite period of time

[Roa96, p. 406], hence the name finite impulse response filter. The filter’s struc-

ture is simply the sum of delayed and weighted samples where the weights for

each delay are the coefficients 𝑎𝑗. As described in section 5.1.2, the filters order is

equal to the order of its transfer function polynomial, i.e. the total number of unit-

sample delays it uses. There are various methods for FIR filter design, e.g. window

design method, frequency sampling or equiripple method [PM07, p.664-690] and

constraint-based linear programming algorithms like METEOR [Ste+92].

The general equation for a finite impulse response filter is equal to eq. (5.3) when

43 / 110

5 Digital Filters

all recursive coefficients 𝑎𝑘 are zero:

𝑦[𝑛] =
𝑀

∑
𝑘=0

𝑏𝑘𝑥[𝑛 − 𝑖]. (5.10)

Thus, the denominator of a FIR filter’s transfer function is one, hence its polyno-

mial

𝐻(𝑧) =
𝑀

∑
𝑘=0

𝑏𝑘𝑧−𝑘 (5.11)

has only zeroes but no poles. This implies that FIR filters are always stable, i.e. a

bounded (finite) input always results in a bounded output. The transfer function

eq. (5.11) may be written in factored form where each complex zero 𝑞 of the poly-

nomial can be directly seen:

𝐻(𝑧) = (1 − 𝑞1 𝑧−1)(1 − 𝑞2 𝑧−1) ⋅ … ⋅ (1 − 𝑞𝑀 𝑧−1) (5.12)

There can be less than 𝑀 factors if some of them cancel out.

If 𝑧 has the value of one of these factors 𝑞 then the transfer function evaluates to

zero. The positions of the zeroes in the complex 𝑧-plane of a 12-th order lowpass

FIR filter are shown in fig. 5.4.

By the complex zero’s angle from the 𝑧-plane’s origin is determinedwhich frequen-

cies are effected from it and its distance to the unit circle, on which the frequency

response is evaluated, determines how large the attenuation is. Frequencies are

mapped on the unit circle counterclockwise starting from 0 at (1, 0) and going

to 𝜋, which translates to a frequency limit like the Nyquist frequency, at (−1, 0)

44 / 110

5 Digital Filters

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Re

I
m

Figure 5.4: Zeroes of 12-th order lowpass FIR filter with cutoff frequency 𝑓𝑐 = 𝜋/4.

where positive frequencies are carried out in the upper half of the unit circle and

negative frequencies in the lower half. It can also be seen that complex zeroes

𝑞 = 𝑎 + 𝑖 𝑏 come in pairs; if they are not laying on the some point; where one of

them is conjugate transposed 𝑞∗ = 𝑎 − 𝑖𝑏, so that the imaginary parts cancel each

other out to obtain a real valued filter response.

5.6 IIR Filters

Infinite Impulse Response filters additionally use previous output values to calcu-

late the recent result. Therefore, an IIR’s rational transfer function contains feed-

back coefficients 𝑎𝑘 eq. (5.4) and can be viewed as 𝐻(𝑧) = 𝐻1(𝑧)𝐻2(𝑧) [PM07,

45 / 110

5 Digital Filters

p. 583], where 𝐻1(𝑧) consists of the zeroes of 𝐻(𝑧) and

𝐻2(𝑧) = 1
1 + ∑𝑁

𝑘=0 𝑎𝑘𝑧−𝑘
(5.13)

consists of the poles of 𝐻(𝑧) [PM07, p. 583]. In contrast to FIR filters an impulse

fed into an IIR filter will cause an infinite response—numerical quantization error

ignored—because the transfer function will never truly reach zero due to the use

feedback values, therefore the name Infinite Impulse Response filter.

IIR filters can become unstable because they can have poles outside of the complex

plane’s origin, e.g. if there is a pole on the unit circle at frequency 𝜔𝑝 then 𝐻(𝑧)
would become ∞ when evaluated on the unit circle (𝑧 = 𝑒𝑖𝜔) for 𝜔𝑝.

An advantage of the use of feedback values is that IIR filters can achieve much

steeper transition band slopes than FIR filters of the same order, thus they are

more efficient in the number of arithmetic operations and memory required.

The effect of transfer function poles in the 𝑧-plane is the opposite of zeros, i.e. the
distance to the unit circle determines how much a frequency is amplified by the

pole. Musical synthesizers often allow the user to specify a resonance parameter

for the filter cutoff frequency, where a low resonance results in smooth transition

transition from the pass- to the transition band whereas a high value creates a peak

at the cutoff frequency as shown for different resonance values in the magnitude

response of a IIR second-order lowpass filter in fig. 5.5. Such a resonance parameter

is easy to realize for IIR filters.

IIR filters are very sensitive to numerical rounding error, where the sensitivity de-

pends on their order and implementation structure section 5.7. Therefore, second-

order systems, so called biquads, are used as building blocks for higher-order filters

46 / 110

5 Digital Filters

f c

1
2 6 0

-
6

-
1
2

-
1
8

-
2
4

F
re

q
u
en

cy

Magnitude[dB]

0
.5

1
2

4
8

Fi
gu

re
5.5

:M
ag
ni
tu
de

re
sp
on

se
of

a
re
cu
rs
iv
e
se
co
nd

-o
rd
er

lo
w
pa
ss

fil
te
rf
or

di
ffe

re
nt

re
so
na
nc
e
va
lu
es
.

47 / 110

5 Digital Filters

(order >= 4) because the filters sensitiviy to quantization increases with its or-

der [PM07, p. 132,589]. Filters of odd-order a constructed as separate biquad and

a single-order system whereas even-order filters are constructed solely from bi-

quads.

Analog IIR filter design has a long history and is therefore a well researched and

understood topic. There are a number of commonly used analog filters with dif-

ferent characteristics [PM07, p. 717pp]:

• Buerworth all-pole filters with monotonic frequency magnitude response

in both pass- and stopband.

• Chebyshev Type I all-pole filters with equiripple behavior in the passband

and monotonic characteristic in the stopband.

• Chebyshev Type II filters are like Type I except that they have monotonic

passband characteristic and equiripple stopband behavior.

• Elliptic Filters with equiripple behavior in both pass- and stopband.

The filter design technique used in this thesis is to take an analog prototype filter

and transform it into a discrete-time filter by using the Bilinear transform. Other

design techniques like approximation of derivates or design by impulse variance

have the limitation that they are only valid for a limited set of filter classes [PM07,

p. 712].

5.6.1 Bilinear Transform

The Bilinear transform, defined by eq. (5.14) for sampling interval 𝑇 , is used to

convert a transfer function of a continious-time LTI filter transfer function 𝐻𝑎(𝑠)
into a transfer function of a discrete-time LTI filter 𝐻(𝑧), where 𝐻𝑎(𝑠) defined in

48 / 110

5 Digital Filters

the 𝑠-domain with 𝑠 = 𝜎 + 𝑖Ω.

𝑠 = 2
𝑇 (1 − 𝑧−1

1 + 𝑧−1) (5.14)

A continuous time filter defined in the 𝑠-plane is stable if all of its poles are located
in the left-semi planewhich ismapped by the bilinear transform into the unit circle,

hence the transformed discrete-time filter is stable if all of its poles are located

inside the unit circle of the z-domain.

The frequency relationship of the bilinear transform is non-linear, thus continuous

time frequencies Ω ∈ [−∞, ∞] are mapped from the 𝑖Ω axis of the 𝑠-plane into
digital frequencies 𝜔 ∈ [−𝜋, 𝜋) on the unit-circle by the following transformation

(also called frequency warping)

𝜔 = 2
𝑇 arctan(Ω𝑇

2) , (5.15)

and the inverse transformation is given by

Ω = 2
𝑇 tan(𝜔𝑇

2) . (5.16)

5.6.2 Bilinear Transform Example

The following steps illustrate the general procedure of designing a filter using bi-

linear transform at the example of a second-order Butterworth lowpass filter with

cutoff frequency 𝑓𝑐 = 4000Hz for a sampling rate of 𝑓𝑠 = 48 kHz, hence sampling

interval 𝑇 = 1/𝑓𝑠:

49 / 110

5 Digital Filters

• Pre-warp the critical frequencies, in this case the filter’s cutoff frequency

𝜔𝑐 = 2𝜋𝑓𝑐rad s−1:

Ω𝑐 = 2
𝑇 tan(𝜔𝑐

𝑇
2) ≈ 2

𝑇 0.268rad s−1

• Set the critical frequency 𝜔𝑐 and apply the bilinear transformation eq. (5.14)

to obtain 𝐻(𝑧) from the analog transfer function 𝐻𝑎(𝑠):

𝐻𝑎(𝑠) = Ω2
𝑐

𝑠2 + 𝑠
√

2Ω𝑐 + Ω2𝑐
(5.17)

𝐻(𝑧) =
(2

𝑇 0.268)
2

(2
𝑇

1 − 𝑧−1

1 + 𝑧−1)
2

+ 2
𝑇

1 − 𝑧−1

1 + 𝑧−1
√

2 2
𝑇 0.268 + (2

𝑇 0.268)
2 (5.18)

=
(2

𝑇)
2

0.2682

(2
𝑇)

2
(1 − 𝑧−1

1 + 𝑧−1)
2

+ (2
𝑇)

2 1 − 𝑧−1

1 + 𝑧−1
√

2 ⋅ 0.268 + (2
𝑇)

2
0.2682

(5.19)

= 0.2682

(1 − 𝑧−1

1 + 𝑧−1)
2

+ 1 − 𝑧−1

1 + 𝑧−1 ⋅ 0.379 + 0.2682
(5.20)

= 0.0495(1 + 𝑧)2

0.4775 − 1.2795𝑧 + 𝑧2 ⋅ 𝑧−2

𝑧−2 (5.21)

= 0.0495 ⋅ 1 + 2𝑧−1 + 𝑧−2

1 − 1.2795𝑧−1 + 0.4775𝑧−2 (5.22)

• 𝐻(𝑧) is evaluated on the unit circle to check the magnitude frequency re-

sponse fig. 5.6 which shows the that the cutoff frequency lays exactly on the

half-power point

50 / 110

5 Digital Filters

47 94 188 375 750 1500 3000 6000 12000 24000

0

-12

-24

-36

-48

-60

-72

fc

Frequency [Hz]

M
a
g
n
it

u
d
e
[d

B
]

Figure 5.6: Magnitude frequency response of 𝐻(𝑧) eq. (5.22) showing cutoff fre-
quency 𝑓𝑐 at half-power point (dotted line).

• The pole-zero diagram fig. 5.7 of 𝐻(𝑧) shows that the pair of poles is located
inside the unit circle, hence the filter is real-valued and stable. Also, a pair

of zeros is located at the maximum frequency point which gives the lowpass

characteristic.

• Lastly, the filters difference equation eq. (5.3) can be derived directly from

𝐻(𝑧): 𝑦[𝑛] = 0.0495𝑥[𝑛] + 0.099𝑥[𝑛 − 1] + 0.0495𝑥[𝑛 − 2] + 1.2795𝑦[𝑛 −
1] − 0.4775𝑦[𝑛 − 2].

5.7 Implementation Structures for IIR Filters

An recursive LTI filter given as difference equation may be implemented as one

of four direct-form (DF) filter implementations. The direct-form is another way of

representing a filter, besides impulse response and difference equation, with the

benefit of directly representing its implementation structure.

51 / 110

5 Digital Filters

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re

I
m

Figure 5.7: Pole-zero diagram of 𝐻(𝑧) eq. (5.22) with pole and zero positions
marked as ×, respectively •.

52 / 110

5 Digital Filters

z−1

z−1

z−1

z−1

x[n] y[n]
b0

b1

b2

−a1

−a2

z−1

z−1

x[n] y[n]

−a1

−a2

b0

b1

b2

Figure 5.8: Direct-Form I and II implementation of a second-order filter with the
normalized (divided by 𝑎0) difference equation 𝑦[𝑛] = 𝑏0𝑥[𝑛]+𝑏1𝑥[𝑛−
1] + 𝑏2𝑥[𝑛 − 2] − 𝑎1𝑦[𝑛 − 1] − 𝑎2𝑦[𝑛 − 2] [Fou16].

The four direct-form structures are DF-I and DF-II, shown in fig. 5.8 where 𝑧−1

denotes a unit-sample delay, and their transposed counterparts. Transposed forms

can be obtained from their DF-I or DF-II forms by reversing the signal path direc-

tions, replacing sums with branch-points and vice versa. This operations does not

effect the filters transfer function.

The technical properties of all four forms are different, despite that they represent

the same transfer function. A DF-I implementation saves addition operations at

the cost of requiring twice as many delays (memory) as necessary while a DF-II

implementation saves memory by sharing delays at the cost of possible fixed-point

arithmetic overflow [Smi16]. Transposed forms, TDF-I and TDF-II, have enhanced

numerical robustness while obeying the same advantages and disadvantages of

their fundamental structure. An additional advantage of TDF-II structures is that

they perform well in applications where the filter parameters change in audio rate,

in other words as implementation for time-varying filters [Wis14].

53 / 110

5 Digital Filters

Table 5.1: Comparison of FIR against IIR filters.

FIR IIR
Impulse Response finite infinite

Magnitude response arbitrary responses are easy
to design, e.g. frequency
sampling technique [PM07,
p. 671]

often based on analog proto-
types, arbitrary responses are
hard to achieve

Stability always stable feedback coeffecients can
cause instability

Efficiency more memory and opera-
tions

less memory and operations

Linear phase always possible no technique available

5.8 Comparison FIR against IIR

A comparison between FIR and IIR filter design techniques is given by table 5.1. For

the synthesizer’s filter an IIR design was chosen because of two requirements, first

high computational efficiency to achieve short latencies, and an easy to implement

parameter for controlling filter resonance. Additionally, a Butterworth character-

istic was picked because the phase response of Elliptic filters is more nonlinear and

the equiripple behavior in pass- and/or stopband of Elliptic and Chebyshev char-

acteristics is unfavorable. It is not of great disadvantage for a musical synthesizers

filter that a Butterworth filter rolls of more slowly at the cutoff frequency, because

very sharp transition band steepness is not required.

54 / 110

6 Oscillators and Waveform

Synthesis

An oscillator is one of a synthesizer’s fundamental building blocks because it is

the source signal from which the desired sound is modeled from. Typically, one

or more oscillators are used as a signal source. Subtractive synthesizers require

spectrally rich source signals. Therefore, oscillators must be able to generate a

variety of waveforms other than pure sine, but at least the trivial ones listed in

section 3.2. Requirements for an oscillator’s waveform synthesis algorithm are to

generate periodic bandlimited signals, to avoid aliasing and to be computationally

efficient. The latter requirement originates from the number of times the oscillator

is called, this is at least once for each sample instant. Depending on the amount

of polyphony, i.e. the maximum number of parallel voices playable, they can even

be called multiple times for each sample.

Välimäki and Huovilainen (and others [Pek07, p. 28], [Ota15]) divide digital oscil-

lator algorithms into three classes in regard to the amount aliasing left[VH06]:

1. Ideal-bandlimited methods without harmonics above the Nyquist frequency,

e.g. additive or wavetable synthesis

2. Quasi-bandlimited methods with low aliasing, e.g. BLIT and BLEP methods

55 / 110

6 Oscillators and Waveform Synthesis

[Bra01]

3. Alias-supressing methods, e.g. oversampling and filtering trivial waveforms

A fourth class, so called ad-hoc methods, that uses non-linear processing tech-

niques is mentioned in more recent publications ([Ota15], [Pek07]). They are not

of interest for this research because this class of methods is developed for very

specific applications [Ota15, p. 26].

The aim of this chapter is to introduce the generic structure of a digital oscillator

and to evaluate quasi-bandlimited methods against (fully) bandlimited wavetable

synthesis.

6.1 Generic Oscillator Structure

A common structure that is used for awide variety of oscillators is shown in fig. 6.1.

It consists of a phase accumulator which adds a phase increment 𝜑 to itself each time

a clock signal 𝑡 arrives. The phase increment is given by the fundamental frequency

𝑓0 as 𝜙 = 2𝜋𝑓0/𝑓𝑠. Subsequently, an initial phase offset 𝜙0 ∈ [0, 2𝜋] is added to

the accumulators output. The phasor signal

𝜙[𝑡] = 𝜙𝑡 mod 2𝜋

= (𝜙[𝑡 − 1] + 𝜙) mod 2𝜋
(6.1)

for a discrete time variable 𝑡 wraps around on a full cycle. The second form shows

the recurrence relation for the phasor signal where 𝜙[𝑡] = 0, ∀𝑡 ≤ 0. It is conve-
nient to normalize 𝜙[𝑡] to a fraction of the waveform’s period

56 / 110

6 Oscillators and Waveform Synthesis

t phase accu.

𝑓0

+

𝜙0

wrap wave

𝐴

y
𝜙[𝑡]

Figure 6.1: Block diagram of a generic oscillator.

𝜑[𝑡] = 𝜙
2𝜋𝑡 (6.2)

with𝜑 ∈ [0, 1], e.g. to map the phasor to a wavetable lookup index. Thewave func-

tion maps the phasor signal to the desired wave shape and multiplies the output

signal with a given amplitude A.

6.2 Trivial Waveform Generation

The trivial way for generating geometric waveforms is to sample them without

bandlimiting. A sawtooth wave can be expressed by a bipolar modular counter

𝑠𝑎𝑤(𝑡) = 2𝜑(𝑡) − 1 (6.3)

where

𝜑(𝑡) = 𝑓0𝑡 mod 1 (6.4)

is a phasor signal (modular counter) for a continuous time variable 𝑡 in seconds

[Pek14, p. 5]. An inverted sawtooth wave with a ramp that decreases from 1 to -1

57 / 110

6 Oscillators and Waveform Synthesis

can be obtained by

𝑠𝑎𝑤invert(𝑡) = 1 − 𝑠𝑎𝑤(𝑡). (6.5)

Both remaining waveforms, square and triangle, can be derived from sawtooth

waves. Rectangular waveforms can be produced by subtracting two sawtooth

waveforms with a proper phase shift [VH06, p. 22]

𝑟𝑒𝑐𝑡(𝑡) = 𝑠𝑎𝑤(𝑡) − 𝑠𝑎𝑤(𝑡 − 𝑝
𝑓0

) (6.6)

where 𝑝 ∈ (0, 1) is the duty cycle. Square waves are simply the symmetric case

of rectangular pulses with 50% pulse width. Another trivial way of generating a

rectangular pulse is by comparing the output 𝑥 of bipolar modular counter with

the pulse width 𝑝 as in the following closed form expression:

𝑟𝑒𝑐𝑡(𝑥) =

⎧{{{
⎨{{{⎩

1 𝑥 < 𝑝

0 𝑥 = 𝑝

1 𝑥 > 𝑝

(6.7)

By taking the absolute value of a sawtooth wave one gets a inverted triangle in the

range of zero to one, doubling and subtracting from one results in bipolar triangle

wave as shown in the first form of eq. (6.8). The second form shows that integrating

a square wave over time 𝑡 also results in a triangle wave which then needs to be

scaled to a normalized range from -1 to 1 [Pek14, p. 7], hence a (scaled) square

wave is the time derivate of a triangle waveform.

58 / 110

6 Oscillators and Waveform Synthesis

𝑡𝑟𝑖(𝑡) = 1 − 2|𝑠𝑎𝑤(𝑡)|

= 4𝑓0 ∫
𝑡

−∞
𝑠𝑞𝑟(𝜏)𝑑𝜏

(6.8)

A straightforward digital implementation of those trivial waveforms is constructed

by replacing the continuous-time phasor time signal with its discrete-time counter-

part [Pek14, p. 8]. Unfortunately, those naive digital implementations suffer from

severe aliasing distortion because the continous-time source signal of those geo-

metric waveforms is not bandlimited, hence it contains an infinte number of har-

monics as can be seen in their fourier-series representation (see eq. (3.7), eq. (3.8)

and eq. (3.9)). The spectral tilt, i.e. the attenuation of harmonic partials with in-

creasing frequency, is about 6 dB per octave for pulse and sawtooth waveforms

and 12 dB per octave for triangle waveforms [Pek14, p. 11]. The steeper spectral

tilt for triangle waveforms can be explained by their construction from pulse waves

via integration which corresponds to the application of a first-order lowpass filter.

Thus, a trivial triangle oscillator implementation can be sufficient if implemented

with two or more times oversampling depending on the amount of tolerable alias-

ing, especially for devices with very limited processing resources.

6.3 Quasi-Bandlimited Waveform Synthesis

Quasi-bandlimited oscillator algorithms allow a certain degree of aliasing to be

produced while making use of psychoacoustic effects likemasking. Auditory mask-

ing means how sensitivity for one sound is affected by the presence of another

sound which is largely dependend on the intensity and spectrum of the sound that

59 / 110

6 Oscillators and Waveform Synthesis

causes the masking [Gel10, p. 187], i.e. the human ear cannot differentiate between

two sounds with roughly the same frequency spectrum if the intensity difference

is large enough. Accordingly, the harmonics of a waveform can mask the aliasing

components in their spectral vicinity. The intensity of aliasing must be particu-

larly reduced in the range of 1 kHz to 5 kHz, because this is where human ears are

most sensitive [Gel10, fig. 11.1].

6.3.1 BLITs

In 1996 Stilson and Smith presented in their paper “Alias-free digital synthesis of

classic analog waveforms” [SS96] a method for synthesizing alias free geometric

waveforms by integrating a bandlimited impulse train (BLIT). Sawtooth, pulse and,

of course, triangle waveforms can be derived from a pulse train by integration

which is inherently a bandlimited operation. Hence, it is sufficient to show how

bandlimited impulse trains can be constructed by this method. The naive way of

discretizing an impulse train is by approximating each impulse with a unit-sample

pulse. The impulse trains period 𝑝 = 𝑓𝑠/𝑓 is rarely an integer, thus the locations

of the unit-sample pulses must be approximated to the nearest sample instant.

Figure 6.2 (b) clearly shows the irregular intervals between unit-sample pulses the

pitch-period jier which adds noise to the signal [SS96, p. 2].

The naive discretization approach suffers from aliasing just as the trivial waveform

generation method (see section 6.2) because it is also not-bandlimited. Hence, a

more sophisticated method is needed. The idea is to apply an ideal anti-aliasing

filter before sampling the impulse train. Figure 6.3 shows the frequency response

of an ideal anti-aliasing filter is a rectangle function in the frequency interval

(−𝑓𝑠/2, 𝑓𝑠/2) and a continuous-time impulse response that is a sinc function:

60 / 110

6 Oscillators and Waveform Synthesis

0
5

1
0

1
5

2
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T
im

e

Amplitude

(a
)

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0
5

1
0

1
5

2
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T
im

e

Amplitude

(b
)

Fi
gu

re
6.2

:(
a)

Im
pu

lse
tra

in
•w

ith
fre

qu
en
cy

𝑓
=

8.3
H
z
an
d
sa
m
pl
e
po

sit
io
ns

△
.(
b)

Th
e
ap
pr
ox
im

at
ed

un
it-
sa
m
pl
e

pu
lse

tra
in

w
ith

sa
m
pl
e
po

sit
io
ns

𝑝=
𝑓 𝑠

/𝑓
ro
un

de
d
to

th
e
ne
ar
es
ti
nt
eg
er
.

61 / 110

6 Oscillators and Waveform Synthesis

0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Time

A
m

p
li
tu

d
e

(a)

0-fNy fNy

0.0

0.2

0.4

0.6

0.8

1.0

Frequency

M
a
g
n
it

u
d
e

(b)

Figure 6.3: (a) Impulse response and (b) frequency response of an ideal anti-aliasing
(lowpass) filter where 𝑓𝑁𝑦 = 𝑓𝑠/2 is the frequency of the Nyquist limit.

ℎ(𝑡) = 𝑠𝑖𝑛𝑐(𝑓𝑠𝑡) = sin(𝜋𝑓𝑠𝑡)
𝜋𝑓𝑠𝑡 (6.9)

Applying the ideal filter ℎ(𝑡) to the unit-amplitude impulse train of period 𝑇1

𝑥(𝑡) =
∞

∑
𝑘=−∞

𝛿(𝑡 = 𝑘𝑇1) (6.10)

by means of convolution gives a bandlimited signal 𝑥𝑓(𝑡) = (𝑥 ∗ ℎ)(𝑡). Thus, 𝑥𝑓

can now be sampled without aliasing which gives

62 / 110

6 Oscillators and Waveform Synthesis

𝑦[𝑛] = 𝑥𝑓(𝑛𝑇𝑠) =
∞

∑
𝑘=−∞

sinc(𝑛 + 𝑘𝑝) (6.11)

where 𝑇𝑠 = 1/𝑓𝑠 is the sample period and 𝑝 = 𝑓𝑠/𝑓 as defined above. The ban-

dlimited discrete-time signal 𝑦[𝑛] can be interpreted as time-aliased sinc functions

[SS96, p. 5], i.e. every impulse is replaced with sinc response of the ideal filter.

Furthermore, Stilson and Smith provided a closed-form expression for the sampled

bandlimited impulse train:

𝑦[𝑛] = 𝑀
𝑃 sinc𝑀 (𝑀

𝑃 𝑛) (6.12)

where

sinc𝑀(𝑥) = sin(𝜋𝑥)
𝑀 sin (𝜋𝑥/𝑀) (6.13)

and 𝑀 is the number harmonics. It is convenient to relate the number of harmon-

ics 𝑀 to the period in samples 𝑝 as

𝑀 = 2⌊𝑃/2⌋ + 1 (6.14)

that is the largest odd integer smaller than the period [SS96, p. 6]. However, the

BLIT method cannot be implemented as is because the sinc function is infinitely

long.

63 / 110

6 Oscillators and Waveform Synthesis

6.3.2 BLIT-SWS

A realizable approximation that was proposed in the original paper by Stilson and

Smith is called Sum of Windowed Sincs (SWS) and will be discussed in more detail.

Since then, a lot more methods were developed but it is not in the scope of this

thesis to give an overview about all of them. For a very thorough analysis of

alternative methods refer to [Ota15] or [Pek14].

The difference between this realizable approach and the theoretical BLIT method

in the previous section is that a window is applied to the ideal filter’s impulse

response to make it finite. Hence, eq. (6.11) becomes

𝑦𝑤[𝑛] =
∞

∑
𝑘=−∞

𝑤(𝑛) sinc(𝑛 + 𝑘𝑝) (6.15)

where 𝑤(𝑛) is a window function. The choice of the window function determines

the attenuation of harmonics in the spectrum. This is advantageous for frequency

sweeps in contrast to exactly bandlimited methods where harmonics pop in and

out which can cause unwanted transients. Aliasing is reduced by increasing the

window length, in fact, a doubling in length approximately halves the transition

band where most of the aliasing occurs. Stilson and Smith used a blackman win-

dow that spanned 32 zero crossings1 of the sinc function [SS96, fig. 10] which

attenuated aliasing to about −90 dB for 80% of the spectrum. The paper also pro-

posed to use some oversampling to get a guard band in which the transition band

can be moved by using a appropriate window length, e.g. for a sampling rate of

48 kHz and a window length of 64 sinc zero crossings the transition band would

span 10% of the spectrum which gives a nearly alias-free frequency range up to

1The sinc function has zeros at 𝑛 ∗ 𝜋, 𝑛 ∈ ℤ

64 / 110

6 Oscillators and Waveform Synthesis

0.9 ⋅ 24 kHz = 21.6 kHz.

A disadvantage of BLIT-SWS method is that the CPU consumption is proportional

to the frequency because for each period a impulse must be inserted and replaced

by the impulse response of the windowed filter (sinc). Furthermore, the sinc is

centered on the impulse and must be mixed in several samples before the actual

impulse arrives, thus lookahead is required [Huo10, p. 20]. By controlling the win-

dow length a tradeoff between CPU usage and quality can be achieved. Another

feasible optimization is to tabulate the windowed sinc function and to retrieve its

values by the use of an interpolated table-lookup.

6.3.3 BLEPs

Brandt proposed in 2001 a method to synthesize hard synced oscillators without

aliasing called bandlimited step (BLEP) [Bra01], an extension of BLIT. Hard sync is

the phase synchronisation of two oscillators with frequencies 𝑓1, 𝑓2 where a slave

oscillator’s phase is reset with each period of 𝑓1. Clearly, this adds discontinu-

ities to the synthesized waveform which cause aliasing if the waveform is sampled

without bandlimiting. The method is not limited to hard-sync instead it can syn-

thesize bandlimited versions of arbitray waveforms with discontinuities, like the

geometric waveforms, if the derivates of the waveform are continuous across the

point of discontinuity [Bra01, p. 3].

The method improves BLIT in two ways, first it almost removes the lookahead to

the center of the impulse by using a minimum-phase impulse, and second, it re-

moves the integration at run-time by pre-integrating the bandlimited step. The

minimum-phase impulse is considered as a minimum phase FIR filter, i.e. all ze-

roes are located inside (|𝑧| < 1) the unit circle, with the impulse response of a

65 / 110

6 Oscillators and Waveform Synthesis

windowed sinc. Integrating the minimum-phase impulse results in a minimum-

phase bandlimited step (MinBLEP).

Waveforms are synthesized by producing their naive non-bandlimited shape and

mixing in a MinBLEP each time a discontinuity in the waveform occurs.

Advantages of MinBLEP in contrast to BLIT-SWS are that former method removes

numerical error and computational costs by avoiding the numerical integration

of the impulse train at run-time and the lookahead is reduced to several samples

of the bandlimited step. Also, the pre-integration step reduces aliasing by another

6dB over BLIT-SWS. However, the CPU usage is still proportional to the oscillators

frequency.

6.4 Ideal Bandlimited Waveform Synthesis

Ideal bandlimitedmethods generate waveformswith a finite number of harmonics.

The number of harmonics is limited by the highest harmonic frequency less than

the Nyquist limit, hence, the waveforms are completly alias-free. A multitude of

ideal bandlimited methods were developed, e.g. additive synthesis (section 4.1),

feedback delay loops (FDL) and discrete summation formulae (DSF). DSF’s are

solely using properties of trigonometric functions to synthesize the waveform and

are not considered for the synthesizer of this thesis because evaluating trigonomet-

ric functions is quite CPU intensive. Feedback Delay Loop’s are a relatively new

method (first published in 2009) and, unfortunately, are not taken into account

since I have discovered this method at a very late time of editing and the imple-

mentation effort is unclear2. Pure additive synthesis is the most CPU intensive of

2The interested reader can refer to [Moo76] for description of DSF and [Nam+09] for FDL.

66 / 110

6 Oscillators and Waveform Synthesis

those three because it requires to sum a sinusoidal oscillator for every harmonic

to be synthesized, therefore a wavetable based approach is evaluated which uses

lookup-tables containing bandlimited cycles of the waveform.

6.4.1 Wavetables

Wavetable oscillators can generate arbitrary static harmonic spectra. Nonetheless,

dynamic spectra can be generated by crossfading the output of two detuned or

different wavetable oscillators [Fre10, p. 41] or by applying a time-varying filter to

the output [Huo10, p. 37]. The basic idea behind wavetable oscillator’s is simple,

a single cycle of an arbitrary waveform is sampled and stored into an array of

memory locations and looped at different speeds to simulate playback at a different

pitch. The fundamental frequency 𝑓0 of a wavetable oscillator’s output signal is

given by

𝑓0 = 𝜑 𝑓𝑠
𝑁 (6.16)

where 𝑓𝑠 is the sample rate, 𝑁 the table length and 𝜑 the phase or table increment,

with a special case for 𝜑 = 1 called natural fundamental or 𝑓𝑛𝑎𝑡 [Fre10, p. 41].

Figure 6.4 shows the wavetable of a sine wave sampled at 24 equidistand points

with a natural fundamental 𝑓𝑛𝑎𝑡 = 48 kHz/24 = 2 kHz for a sample rate 𝑓𝑠 =
48 kHz.

The oscillators output signal loses clarity if the wavetable is played back with a

frequency that is lower than 𝑓𝑛𝑎𝑡, thus the wavetable should not be too short. The

oscillators table increment

67 / 110

6 Oscillators and Waveform Synthesis

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

0
π

2 π
3 π

2 2 π

n

f(
n
)

Figure 6.4: Wavetable for a single sine wave cycle sampled at 24 equidistant points.
The bottom x-axis shows the index of the sample in the wavetable and
the top shows angle in radians.

68 / 110

6 Oscillators and Waveform Synthesis

𝜑 = 𝑁 𝑓0
𝑁 (6.17)

is usually not an integer, thus the lookup index

𝑛 = 𝑡 𝜑 mod 𝑁 (6.18)

also has a fractional part. Therefore, some kind of interpolation is needed to map

the lookup index 𝑛 onto a integer valued table index. The accuracy of the ta-

ble lookup depends on two factors, the interpolation scheme that is used and the

stored waveform cycle’s length. Interpolation schemes may be evaluated by com-

paring the error of the interpolated output that is the difference between the ideal

waveform function’s value at some point and the interpolated value at the same

point. It is common practice to use a sinusoid as the ideal waveform because other

waveforms can be interpreted as superpositions of those. The error for zero- and

first-degree interpolation of a sine wavetable with length 𝑁 = 64 is shown in

fig. 6.5.

Polynominal interpolation schemes, which are the only ones considered here, are

determined by their order 𝑛, i.e. a n-th order polynomial passes through the 𝑛 + 1
nearest points in the wavetable. A zero-degree (or nearest-neighbour) interpola-

tion simply rounds the index to the next integer. A first-order (or linear) interpo-

lation uses a linear function to approximate the table output

𝑦𝑙𝑖𝑛(𝑛) = 𝑦[𝑛0] + (𝑦[𝑛0 + 1] − 𝑦[𝑛0])(𝑛 − 𝑛0) (6.19)

where 𝑛0 = ⌊𝑛⌋. Higher order interpolation schemes can be considered for sys-

69 / 110

6 Oscillators and Waveform Synthesis

0 10 20 30 40 50 60
-80

-60

-40

-20

0

n

S
N

R
[d

B
]

(a)

zero-degree interpolation (rounding)

linear interpolation

Figure 6.5: Error of zero-degree (nearest neighbour) and first-degree (linear) inter-
polation for a wavetable of 64 samples.

70 / 110

6 Oscillators and Waveform Synthesis

tems where memory is scarce, otherwise linear interpolation performs well for

𝑁 ≥ 64 samples. In fact, the root-mean square (RMS) lookup error decreases by

12 dB each time the table length doubles [Puc06, p. 44], hence the RMS error of a

linear interpolated wavetable with 64 samples length is ≈ −64 dB (fig. 6.5 shows

the non-RMS error which is ≈ −58.3 dB).

For sine, where the sole harmonic is also the fundamental, a single table is enough

but for the geometric waveforms more tables are required. Each of those tables

spans only frequencies in the vicinity of 𝑓𝑛𝑎𝑡 because pitch shifting the table by

a large factor (> 2𝑓𝑛𝑎𝑡) can introduce severe aliasing whereas shifting it to a low

frequency < 0.75𝑓𝑛𝑎𝑡 may result in a dull sound because too many harmonics are

missing. Hence, a table for each octave of the desired frequency range should be

used which is then selected a run time depending on the note to be played. A table

switch causes a sudden drop in spectral energy, as can be seen in fig. 7.7, which can

be perceived for slow frequency sweeps. This effect can be alleviated by increasing

the number of tables at the cost of memory.

It is convenient to design the waveforms spectra directly in the frequency domain

and convert it back into the time domain by using the inverse discrete-time fourier

transform that is eq. (6.21) from the transform pair given below where 𝜔 = 2𝜋𝑓 is

the angular frequency as usual.

𝑋[𝑓] =
𝑁−1
∑
𝑛=0

𝑥[𝑛]𝑒−𝑖𝜔𝑛 (6.20)

𝑥[𝑛] = 1
𝑁

𝑁−1
∑
𝑓=0

𝑋[𝑓]𝑒𝑖𝜔𝑛 (6.21)

71 / 110

6 Oscillators and Waveform Synthesis

To get a real valued signal it must be ensured that 𝑋[𝑘] = 𝑋∗[𝑁 −𝑘], i.e. the spec-
trum is conjugate symmetric (mirrored), where 𝑁 is the table size. This process

is illustrated by fig. 6.6 and fig. 6.7 for wavetables of length 𝑁 = 128 where each

iteration doubles the number of harmonics.

6.5 Conclusion

A wavetable based approach was selected for the synthesizer’s oscillators because

of its simple implementation, high audio quality and great flexibility that allows to

easily support any arbitrary waveform. Nonetheless, a mixed approach that uses

BLEP based oscillators for geometric waveforms and wavetables for arbitray or

user defined spectras would be a desirable optimization.

72 / 110

6 Oscillators and Waveform Synthesis

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●● ●● ●● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●● ●● ●● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●●

●

●

●

●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●

●

●

●

●

●

●●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●● ●● ●
● ●

● ●
● ●

● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●● ●● ●● ●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●● ●● ●● ●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●● ●● ●● ●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●● ●● ●● ●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●● ●● ●● ●● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●● ●

● ●
● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●
●●●●●

●

●

●

●

●

●

●
●●●●●

●●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●● ●● ●
● ●

● ●● ●● ●

● ●

● ●● ●● ●

● ●

● ●● ●● ●

● ●

● ●● ●● ●

● ●

● ●● ●● ●

● ●
● ●● ●● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●
● ●● ●

● ●

● ●● ●
● ●

● ●

● ●● ●
● ●

● ●

● ●● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●●
●

●

●

●

●

●

●
●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●
● ●● ●

● ●● ●
● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●● ●

● ●● ●
● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●●
●

●

●

●

●

●

●
●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

Figure 6.6: Harmonic spectra and time domain representation for a sawtooth
waveform.

73 / 110

6 Oscillators and Waveform Synthesis

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●● ●● ●● ●● ●● ●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●● ●● ●● ●● ●● ●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●●

●

●

●

●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●● ●● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●● ●● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●● ●● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●● ●● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●●

●

●

●

●

●

●

●

●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●● ●● ●
● ●

● ●

● ●

● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●● ●● ●
● ●

● ●

● ●

● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●
● ●● ●● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

0 20 40 60 80 100 120
-1.0

-0.5

0.0

0.5

1.0

t

x
[t
]

●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

f [rad]

A
m

p
li
td

u
d
e

Figure 6.7: Harmonic spectra and time domain representation for a square
waveform.

74 / 110

7 Implementation Details and

Evaluation

The following chapter explains implementation details of the software synthesizer

that was developed in this thesis. It also evaluates the implementation with re-

spect to latency in section 7.3.1, aliasing behaviour of the wavetable oscillators in

section 7.6 and the time-varying behaviour of the multi-mode filter in section 7.7.

The decision to chose Rust as the implementation language is discussed in the first

section and the important terms real-time and latency are defined in Section 7.2

and section 7.3, followed by an overview of the synthesizer’s structure in sec-

tion 7.4. Thereafter, all components of the structure are described in section 7.5

to section 7.9.

The full source code of the synthesizer and its libraries is published as open source

software available in [Lin16e], [Lin16b], [Lin16d] and [Lin16c].

7.1 Why Rust?

Real time audio applicationsmust finish their signal processing in tight time bounds

to ensure that the sound card can output a continuous audio stream. Missing such a

75 / 110

7 Implementation Details and Evaluation

time limit will result in unpleasant sound glitches, and—in the worst case—renders

a whole song recording useless. Additionally, the time bounds must be as tight as

possible to reduce the latency (see section 7.3) between user input (playing a note)

and output of the calculated signal from the speaker. Therefore, memory-managed

languages like Java, Go or C# that use a garbage collector, which can produce non

deterministic program stops while examining the state of variable references, have

not received any further consideration. Interpreted languages like Python or Ruby

face the same problems as compiled managed languages by also having increased

runtime costs. Audio application development in those languages is still possible

but commonly requires to write the signal processing as C modules and interface

with them through the language’s foreign function interface (FFI) (e.g. pyo [Bél16]

uses this approach). Unmanaged languages like C and C++ offer the control over

memory that is needed to make reliable claims about the runtime behavior while

avoiding the overhead of an additional runtime environment. This comes with a

downside in memory safety and introduces a whole new class of possible bugs

compared to managed languages. Those bugs are very likely to cause undefined

behavior or to crash the program. Unfortunately, they are also very hard to debug.

One of themajor selling points of Rust is guaranteedmemory safetywithout garbage

collection and data race freedom while providing the same level of control over

memory as C/C++. These goals are achieved through a variety of concepts, like

ownership, lifetimes and borrowing, to know at compile when memory can be

safely freed, and to enforce that there is only a single mutable access to any vari-

able at any given time in the run of the program. Explaining these concepts is

outside the scope of this thesis and the official Rust Book [K+16] does a great job

doing this in detail, hence, this is left as an exercise for the interested reader.

The Max Planck Institute for Software Systems has started the RustBelt [Sof15]

76 / 110

https://en.wikipedia.org/wiki/Java_(programming_language)
https://golang.org
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://www.python.org/
https://www.ruby-lang.org/en/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://rust-lang.org
https://doc.rust-lang.org/book/ownership.html
http://plv.mpi-sws.org/

7 Implementation Details and Evaluation

research project in 2015 to develop formal foundations for the Rust programming

language. One of the main goals of the research group is to formally investigate if

the claims made about data-race freedom, memory and type safety actually hold1.

7.2 Real-Time

There are different forms of real-time computing in computer science but common

to all of them is that computations have to be finished in a predefined amount of

time and the shorter this time span is the faster those computations have to be. The

definition of real-time used in the context of this thesis is of Rabiner et al. [Rab+72,

p.2]:

A real-time process is one for which, on the average, the computing asso-

ciated with each sampling interval can be completed in a time less than

or equal to the sampling interval.

Based on this definition, the time to compute a single sample should not exceed

1/𝑓𝑠 = 20.833 μs for a common sampling rate of 𝑓𝑠 = 48 kHz. Nonetheless, sam-

ple calculation time should be much shorter than this limit to compensate for de-

lays introduced by the operating system, e.g. context switches caused by the pro-

cess scheduler. Multimedia applications can greatly benefit from a custom process

scheduler like Kolivas’s Brainfuck Scheduler or the more recent implementation

called Multiple eue Skiplist Schedule [Kol16] because those schedulers are op-

timized for process responsiveness on symmetric multiprocessing platforms like

desktops or laptops unlike the default Completely Fair Scheduler [Mol07] which

aims to maximizes for overall CPU utilization and must fit for a wide variety of
1As of the time of writing there is no evidence that the claims are untrue, therefore it’s assumed
that they actually hold.

77 / 110

7 Implementation Details and Evaluation

use cases.

7.3 Latency

The responsiveness of an electronic musical instrument is mainly determined by its

latency, i.e. the time delay between two causally connected events.

An instrument is the more responsive, the less latency between an input event

and the corresponding sound output it has. The latency is imperceptible for the

user if the delay between the input event and audio output stimuli is less than

24ms [Ade+03]. Furthermore, there is an even stronger latency limit of ≈ 2ms,

that is the temporal resolution of the human hearing, as shown by [FZ07, p. 294]

using psycho acoustic measurements. However, it is not realistic to use this as

an upper limit for the synthesizer’s system latency, considering that the sound

propagation delay from a speaker to a listener at a speed of sound 𝑣 = 343.2m s−1

at normal temperature2 and a common listening distance of 𝑑 = 2m is about

3 times larger than the temporal resolution 𝑑/𝑣 = 2m/343.2m s−1 = 5.82ms.

Therefore, achieving a system latency of less than 24ms is favorable.

The sum of two delayed audio signals can act like a comb filter [LB07, p. 1], such

that even very short latencies can cause spectral artifacts in applications that mon-

itor input signals. Fortunately, there is no input audio signal for this synthesizer,

thus only temporal issues must be taken into account.

2The normal temperature is defined by the National Institute of Standards and Technology (NIST)
as 20°𝐶 at 1 atm absolute pressure.

78 / 110

7 Implementation Details and Evaluation

7.3.1 System Latency

The overall latency of the synthesizer is the sum of different latency portions made

up a variety of components in the audio output chain. At first there is the control

input latency that is either that of the MIDI or OSC connection, where the OSC la-

tency greatly depends on the network connection’s physical layer, e.g. Bluetooth,

Wi-Fi or USB. Usually a Wi-Fi connection is used to connect an OSC client, like

a tablet running liine’s lemur or some other OSC capable controller application.

A USB connection is recommended to get reliable network latencies between an

OSC client and the synthesizer but an ad-hoc Wi-Fi connection that is exlusively

used for transporting OSC messages can also work well. Another latency portion

is introduced through the synthesizers and the audio backends output buffer. The

backend’s audio buffer size can be configured in most cases except for some back-

ends like PulseAudio which is not recommended for real-time use anyway. Lastly,

there is a propagation delay which can be neglected for usual listening distances

or is near zero if headphones are used.

Measuring the system latency is hard because an experimental setup is needed

that triggers the input device and starts a sound recording at the same time. Such

a setup is error prone because the time for triggering a piano key of the MIDI

keyboard and the input buffer of the sound card must be compensated. Summing

the input latency and delays introduced by the internal audio buffers gives a good

approximation without the errors of an experimental setup. The overall latency 𝑙
can be approximate by evaluating

𝑙 = 𝑙𝑖𝑛 + 𝑏𝑠𝑦𝑛 + 𝑏𝑜𝑢𝑡
𝑓𝑠

(7.1)

79 / 110

https://liine.net/de/products/lemur/

7 Implementation Details and Evaluation

where 𝑙𝑖𝑛 is the input latency, 𝑓𝑠 the sample rate and 𝑏𝑠𝑦𝑛, 𝑏𝑜𝑢𝑡 are the synthe-

sizer’s and sound card’s buffer sizes in samples. Given a sample rate of 48 kHz,

an input latency of 1.3ms and buffer sizes of 𝑏𝑠𝑦𝑛 = 512, 𝑏𝑜𝑢𝑡 = 256 inserted in

eq. (7.1) results in a system latency 𝑙 = 1.3ms+(512+256)⋅(48 kHz)−1 = 17.3ms

that is about ¾ of the 24ms limit and thus sufficiently small to be unperceivable.

Both buffer sizes were used without buffer underruns on the development ma-

chine, a HP elitebook 8460p equipped with an intel® i5-2520M running Arch Linux

kernel 4.8.15-2-ck-sandybridge and JACK2 [Dev16] as audio backend. The input

latency was measured by taking the average round-trip times of 100 ICMP echo re-

quests (ping) between an OSC client, an android tablet running liine’s Lemur OSC

app, connected through an ad-hoc Wi-Fi connection and the computer running

the synthesizer application.

7.4 Structure

The synthesizer’s structure consists of mainly three parts. In the first part, incom-

ing user input, as MIDI or OSC messages, is processed and transformed into user

events which are then send to the appropriate component addressed by the in-

put message. Signal generation takes place in the second part which also handles

user events, e.g. by triggering voices on a note input or modifying parameters of a

component like changing the filter’s cutoff frequency. Then the generated signal

is fed into a ring buffer (see section 7.8). Lastly, in the third part, the ring buffer is

read-out by a callback from an audio backend that writes the data into the sound

card’s audio buffer. The overall structure of the synthesizer is depicted in fig. 7.1.

80 / 110

7 Implementation Details and Evaluation

Co
nt
ro
l

In
pu

t

vo
ic
e 1

∿
fre

q

en
ve
lo
pe

A

vo
ic
e 2

∿
fre

q

en
ve
lo
pe

A

⋮ vo
ic
e 𝑛

−1

∿
fre

q

en
ve
lo
pe

A

vo
ic
e 𝑛

∿
fre

q

en
ve
lo
pe

A

+
M
ul
ti
m
od
e

Fi
lte

r
Ri
ng

Bu
ffe

r
O
ut
pu

t
D
ev
ic
e

Fi
gu

re
7.1

:S
tru

ct
ur
e
of

a
ba
sic

po
ly
ph

on
ic
su
bt
ra
ct
iv
e
sy
nt
he
siz

er
.

81 / 110

7 Implementation Details and Evaluation

7.5 Control Input

MIDI and OSC (see section 2.1 and section 2.2) protocol support is provided by

two libraries, portmidi-rs [Phi16] and rosc [Lin16c]. The first library, portmidi-rs, is

a safe Rust wrapper around the cross-platform real-time MIDI C library portmidi

[16a]. Theword safe in this contextmeans thatmemory-safety is guaranteed by the

fact that there are no unsafe operations for the use of portmidi-rs’ API necessary,

like e.g. pointer dereferencing. Furthermore, portmidi-rs was completly rewritten

[Lin16a] in order to follow Rust’s language idioms more strictly, i.e. a library user

does not have to drop unused objects explicitly, instead this is done implicitly when

the object goes out of scope.

At the time of writing, there was no Rust OSC library that fully supported the

OSC 1.0 specification and was also compatible with Rust 1.0 and later versions,

thus a new library had to be implemented, named rosc. The library achieves full

compatibility with the OSC 1.0 specification and features encoding and decoding

of OSC messages while being transport and platform indepent. OSC messages are

decoded from their byte array representation, e.g. received as payload of an UDP

packet, by pattern matching [Lin16c, ‘src/decoder.rs‘, lines 129-161] against the

corresponding variant of the algebraic Rust data type shown in listing 1.

7.5.1 Lemur

Amultitouch capable graphical user interface (GUI) for the synthesizer is provided

by the implemenation of a custom controller patch for liine’s Lemur application

[Lii16]. Lemur resembles the control surface of Jazzmutant’s Lemur, a multi touch

capable OSC control surface hardware device, but runs on Android or iOS devices

82 / 110

7 Implementation Details and Evaluation

pub enum OscType {
Int(i32),
Float(f32),
String(String),
Blob(Vec<u8>),
Time(u32, u32),
Long(i64),
Double(f64),
Char(char),
Color(OscColor),
Midi(OscMidiMessage),
Bool(bool),
Nil,
Inf,

}

Listing 1: Definition of OSC data types in [Lin16c, ‘src/types.rs‘].

instead. Control information is send as OSC Bundles which contain one or more

OSC Messages containing the actual control signal. The custom control interface

shown in fig. 7.2 to fig. 7.6 was implemented using Lemur’s control surface editor

and makes use of the integrated scripting language.

Figure 7.2 shows the piano grid of the control surface with 8 key rows of 12 keys

each. A row represents a single octave of a musical keyboard with black and white

keys where the lowest key is colored blue. The root key of the grid can be shifted

in a range from -3 to +3 octaves with the slider shown on the right. In contrast to

classical MIDI keyboards it is not possible to play notes with different velocities

because, Android and iOS devices lack pressure sensitivity sensors. Multi touch

support allows to play the synthesizer polyphonically by pressing multiple keys at

once.

There are four identical oscillator control sections with separate controls for each

oscillator’s envelope, phase, detune and transpose parameters and a list of wave-

83 / 110

7 Implementation Details and Evaluation

Figure 7.2: View of the piano panel

forms to choose from. Each oscillator can be transposed in a ± 3 octave range and

detuned in a by ± one seminote at a resolution of 1 cent [Lin16e, ‘src/dsp/wavetable.rs‘,

lines 357-372] which is a 100th of an equal tempered semitone. Also, the phase off-

set can be controlled in a range of 0° to 180°.

Figure 7.4 shows the FM control section where each oscillator section contains

a group of sliders to control the amount of frequency modulation applied to its

fundamental frequency, including feedback modulation, i.e. an oscillator is modu-

lating its own frequency. In the screenshot the frequency of the first oscillator is

modulated by the second which is itself modulated by the third oscillator.

The oscillator mixing panel shown in fig. 7.5 contains a slider for amplitude control

and a bipolar (zero at center position) slider to set the stereo panning for each

oscillator.

84 / 110

7 Implementation Details and Evaluation

Figure 7.3: View of the oscillator control panel showing the first of four control
panels

Figure 7.4: View of the FM control panel

85 / 110

7 Implementation Details and Evaluation

Figure 7.5: View of the mixer panel

Parameters of the multi-mode filter can be set in the filter control panel. It contains

a drop-down list for selecting the filter mode and a two dimensional control field

to set the filter’s cutoff frequency on its x-axis and the resonance control on its

y-axis.

7.6 Wavetable Oscillator

Thewavetable oscillator’s implementation follows closely the description that was

given in section 6.4.1, i.e. there are separate wavetables for each octave of the de-

sired frequency range, i.e. ongoing from a lowest frequency 𝑓𝐿 there is a new

wavetable that covers frequencies in

86 / 110

7 Implementation Details and Evaluation

Figure 7.6: View of the mixer panel

[𝑛 𝑓𝐿, (𝑛 + 1)𝑓𝐿] , 𝑛 ∈ ℕ ∧ 𝑛 𝑓𝐿 < ⌊𝑓𝑠/2⌋ − 1

where 𝑛 is the octave. A tables length and the number of harmonics contained in

its waveform gets halved each time 𝑛 increases until the waveform consists solely

of its fundamental in the highest wavetable.

Thewaveforms are generated by means of Fourier synthesis, i.e. an inverse Fourier

transform (IFT) is applied to the spectrum that was predefined for the desired

waveform. Section 7.6 shows how the spectrum of a inverse sawtooth wave is

defined where line 8 asserts that the spectrum is mirrored in order to obtain a real

valued signal from the IFT. By using a length 𝑙 = 2𝑛, 𝑛 ∈ ℕ for the initial spec-

trum table assures that each following table also has a length which is a power of

two because halving the table’s length corresponds to decrementing 𝑛 by 1. Those

87 / 110

7 Implementation Details and Evaluation

table lenghts are optimal for the inverse mixed-radix fast Fourier transform (FFT)

[Wel16] used in the implementation because it can make use of all symmetries in

the FFT algorithm. All wavetables are serialized to disk so they can be read from

a file [Lin16e, ‘src/dsp/wavetable.rs‘, lines 89-100] in subsequent application starts

to reduce its initialization time.
1 Waveform::Saw => {
2 for i in 1..harmonics {
3 let magnitude = (i as Float).recip();
4 spectrum[i] = Complex {
5 re: 1.0,
6 im: -1.0 * magnitude,
7 };
8 spectrum[table_size - i] = -spectrum[i];
9 }
10 }

Listing 2: Calculation of Fourier coefficients for sawtooth waveform definition in
the frequency domain [Lin16e, ‘src/dsp/waveform.rs‘, lines 163-172].

Both spectrograms shown in fig. 7.7 are calculated from frequency sweeps towhich

a Hannwindowwas applied and that were generated from the wavetable oscillator

as part of the unit test set. It can be seen that the aliasing amount does not exceed

−80 dB which makes it inaudible. Additionally, the frequency sweep visualizes the

use of separate tables and their decreasing number of harmonic content. The loss

of spectral energy at each table switch can be perceived in the frequency sweep

but it is not of great concern because the oscillators frequency is rather constant

when the synthesizer is played. However, this should be considered for effects

with pulsating pitch changes like a vibrato.

A spectrogram of a frequency sweep for a sinusoidal carrier and modulator with

increasing modulation amount is shown in section 7.6. The increasing amount

of harmonic content is clearly visible as well as the distortion that starts approx-

88 / 110

7 Implementation Details and Evaluation

Fi
gu

re
7.7

:S
pe
ct
ro
gr
am

of
af
re
qu

en
cy

sw
ee
p
fro

m
20
H
zt
o2

0k
H
zi
n
th
es
aw

to
ot
h
(u
pp

er
)a
nd

sq
ua
re
(lo

w
er
)w

av
et
ab
le
.

Th
e
x-
ax
is
de
no

te
st
im

e
in

se
co
nd

sw
he
re
as

th
e
y-
ax
is
re
pr
es
en
ts
fre

qu
en
ci
es

in
a
ra
ng

e
fro

m
0
to

24
kH

z.

89 / 110

7 Implementation Details and Evaluation

imately in the last quarter of the spectrogram and which is almost unavoidable

because it is hard to give a constraint for the modulation amount so that no dis-

tortion will occur.

7.7 Filter

The multi-mode biquad filter [Lin16e, ‘src/dsp/filter.rs‘] is a direct implementa-

tion of the filter design from Bristow-Johnson’s EQ Cookbook [Bri16]. Bristow-

Johnson’s filter is derived from an analog prototype using bilinear transform (see

section 5.6 and section 5.6.1) and is a stable and popular design which is also used

in the biquad implementation of the WebAudio API [16b] which got adopted by

chromium [16c] and firefox [16d] browsers.

Calculation of coefficients for the biquad filter is shown in listing 3 where w is the

cutoff frequency expressed as angular frequency3, q is the resonance parameter

and filter_type is an enum variant that is matched against the supported filter

types (line 11 in listing 3) to select the its zero coefficients corresponding to the

desired mode.

A spectrogram of a white noise filtered by the biquad implementation in lowpass

and bandpass mode with increasing filter cutoff and constant neutral filter reso-

nance is shown in fig. 7.9. The parameter sweep of the spectrograms is gener-

ated by the filter’s unit test to check the stability for time-varying parameters by

sweeping the cutoff parameter at audio rate with the result that there are no sound

artifacts visible and perceivable in the rendered audio, hence the implementation

is suitable as a time-varying filter.

3As usual, 𝑤 = (2𝜋𝑓𝑐)/𝑓𝑠 where 𝑓𝑐 is the cutoff frequency and 𝑓𝑠 is the sample rate in Hertz.

90 / 110

7 Implementation Details and Evaluation

Fi
gu

re
7.8

:S
pe
ct
ro
gr
am

of
a
fre

qu
en
cy

sw
ee
p
fo
rs
in
e
m
od
ul
at
or

an
d
ca
rr
ie
rw

ith
in
cr
ea
sin

g
m
od
ul
at
io
n
am

ou
nt
.

91 / 110

7 Implementation Details and Evaluation

Fi
gu

re
7.9

:S
pe
ct
ro
gr
am

of
aw

hi
te
no

ise
fil
te
re
d
by

al
ow

pa
ss
(u
pp

er
)a
nd

ba
nd

pa
ss
(lo

w
er
)b
iq
ua
d
w
ith

in
cr
ea
sin

g
fil
te
r

cu
to
ff
an
d
co
ns
ta
nt

ne
ut
ra
lfi

lte
rr
es
on

an
ce
.

92 / 110

7 Implementation Details and Evaluation

7.8 Ring Buffer

The ring buffer is used as a synchronization element between the signal generated

from the DSP section (the synthesizer’s oscillators and filter) and the audio back-

end. A ring buffer is a fixed size FIFO queuewith awrite and read index. In contrast

to a normal queue the index wraps around when it reaches the end of the queue

as if both ends of the queue were connected. Implementing such a buffer in Rust

proved to be more complicated than in traditional system languages like C because

Rust’s compiler assures exclusive write or read access to any data structure at any

time [K+16, 4.9 References and Borrowing] in order to achieve its memory safety

guarantees. Mutual exclusive access to the buffer by either a consumer (reader) or

producer (writer) view was ensured by wrapping the buffers underlying array in

a mutex [Lin16b, ‘src/lib.rs‘, line 148].

The ring buffer’s interface provides blocking and non-blocking read and write ac-

cess and, in contrast to common ring buffer implementations, protects for over-

and underflow by assuring that none of the read or write indexes is overtaking

the other. A buffer underflow means that the read pointer overtakes the write

pointer, e.g. if the producer is to slow, and an overflow is the exact opposite, i.e. the

reader cannot consume the data fast enough. The under- and overflow protection

is achieved by keeping track of the number free and filled slots (line 4 and 5 in

section 7.8). The synthesizer implementation uses the blocking interface which

allows the DSP thread to sleep if the whole buffer is filled. The implementation

of the blocking interface does not use a naive busy-wait loop, instead, it uses con-

ditional variables (Condvar in section 7.8) to signal either a consumer or producer

view when there are slots free or data is available to be read.

93 / 110

7 Implementation Details and Evaluation

1 pub struct SpscRb<T> {
2 buf: Arc<Mutex<Vec<T>>>,
3 inspector: Arc<Inspector>,
4 slots_free: Arc<Condvar>,
5 data_available: Arc<Condvar>,
6 }

Listing 4: [Lin16b, ‘src/lib.rs‘, lines 147-152]

It showed, by benchmarking the throughput of the ring buffer implementation,

that the use of synchronization primitives did not introduce a significant amount

of runtime overhead. In the benchmark 2 880 000 samples were pushed through

the buffer [Lin16b, ‘benches/bench.rs‘], which equates to one minute of audio data

at 48 kHz sampling rate, in 13 915 402 ns ≈ 14ms4 which is by several orders of

magnitude faster than the required throughput-rate of the synthesizer that is equal

to its sample rate. Hence, the ring buffer implementation is suitable for use in real-

time audio applications.

7.9 Audio Output

There is a variety of different audio backend APIs, e.g. CoreAudio for Apple’s ma-

cOS,WASAPI is one of the audio APIs for MicrosoftWindows and Linux has JACK,

ALSA, PulseAudio and others. Implementing a separate binding for each of those

C APIs is error prone and makes the portability of the code more difficult. There-

fore, it is convenient to use a wrapper that provides a cross-platform abstraction

for those audio backend APIs.

A popular choise which provides Windows, Mac and Linux support is portaudio

4The same machine was used for the benchmark as for the latency test in section 7.3.1.

94 / 110

7 Implementation Details and Evaluation

[Ben+16] and, with rust-portaudio, a Rust binding for this library was also avail-

able at the time of writing. Nonetheless, with rsoundio [Lin16d], a Rust binding

for libsoundio [Kel16a], another cross-platform library, was implemented. The de-

cision for using libsoundio was made because it provides support for PulseAudio,

has better error handling than portaudio (a more thorough comparison is provided

by [Kel16b]).

Sound data is send to the sound card by a callback function which had to be regis-

tered in libsoundio’s API. Libsoundio’s API required to register a callback function

before a sound stream could be opened, i.e. the callback was called each time the

sound card requested more data. The same rules that apply for signal handlers in

systems software apply to the callback function, the code should avoid memory

allocations, complex operations and every form of blocking IO to prevent under-

runs of the sound card buffer. In general, the callback function should only copy

data from the synthesizer’s internal ring buffer into the sound card’s buffer while

casting each samples into another float or integer type if necessary.

Registering a callback funtion in rsoundio translates to storing a pointer to a Rust

function into a C struct of libsoundio [Lin16d, ‘src/stream.rs‘, lines 173-185]. Unfor-

tunately, the execution of the callback function left the scope of the output stream

struct [Lin16d, ‘src/stream.rs‘] that stored a pointer to the callback and also caused

the structs memory to be freed automatically. This in turn caused a segmentation

fault when the callback function returned. Those types of segmentation faults at

runtime are hard to debug and preventing the output stream struct to be dropped at

all will likely cause a memory leak. A simple solution was to set a boolean marker

that prevented the struct from being freed in a callback context [Lin16d, commit

#1fcdde5] but otherwise allowed the struct to be dropped.

95 / 110

7 Implementation Details and Evaluation

Implementing a safe Rust wrapper for libsoundio has shown to be more compli-

cated than expected but the final implementation could be used successfully as an

audio backend for the synthesizer.

96 / 110

7 Implementation Details and Evaluation

1 fn coeffs(w: Float, q: Float, filter_type: FilterType)
2 -> ([Float; 2], [Float; 3]) {
3 let (sinw, cosw) = (Float::sin(w), Float::cos(w));
4 let (mut As, mut Bs) = ([0.; 2], [0.; 3]);
5 let alpha = sinw / (2.0 * q);
6

7 let a0 = 1. + alpha;
8 As[0] = -2. * cosw;
9 As[1] = 1. - alpha;
10

11 match filter_type {
12 FilterType::LP => {
13 Bs[0] = (1. - cosw) / 2.;
14 Bs[1] = 1. - cosw;
15 Bs[2] = (1. - cosw) / 2.;
16 }
17 FilterType::HP => {
18 Bs[0] = (1. + cosw) / 2.;
19 Bs[1] = -1. - cosw;
20 Bs[2] = (1. + cosw) / 2.;
21 }
22 FilterType::BP => {
23 Bs[0] = alpha;
24 Bs[1] = 0.;
25 Bs[2] = -alpha;
26 }
27 FilterType::Notch => {
28 Bs[0] = 1.;
29 Bs[1] = -2. * cosw;
30 Bs[2] = 1.;
31 }
32 }
33 // normalize by dividing through a0
34 for x in Bs.iter_mut().chain(As.iter_mut()) {
35 *x /= a0;
36 }
37 (As, Bs)
38 }

Listing 3: Calculation of the biquad filter’s coefficients [Lin16e, ‘src/dsp/filter.rs‘,
lines 47-78].

97 / 110

8 Summary

This work presented an overview of synthesis techniques and algorithms suitable

for the implementation of a polyphonic real-time audio synthesizer. The evalua-

tion of the synthesizer prototype showed that the chosen techniques achieved the

required amount of audio quality and are efficient enough so that the instrument

can be played with very low latency through MIDI and OSC controller hard- or

software. Also, Rust proved to be an excellent choice for the implementation of

real-time audio software, even though the language’s ecosystem still lacks mature

signal processing libraries.

8.1 Optimizations

It should be possible to compile the source code on platforms other than Linux,

but those were not tested, hence a cross platform build setup could be developed.

Moreover, commercial synthesizers usually provide a vast amount of modulation

options, e.g. nearly every parameter of the instrument can be controlled from low

frequency oscillators, envelope generators or integrated step sequencers, the pos-

sibilities are nearly endless. Adding an envelope generator to control the filter’s

cutoff frequency would greatly expand the range of sounds that can be created

98 / 110

8 Summary

with the synthesizer. A combination of different oscillator algorithms for specific

waveforms could improve the performance of the application, especially the sine

wave could be generated without the use of wavetables. Also, of great value would

be the addition of a variety of sound effects to the synthesizer’s audio chain, e.g. a

reverb effect, a delay or one of its special forms like phaser and flanger, bit reduc-

tion or a distortion effect. The set of possible extensions and improvements is as

large as the variety of sonic themes that can be produced, so the given ideas can

be seen as a starting point.

8.2 Conclusion

I underestimated the amount of work that comes with such a project, especially for

one with no previous experience in the development of signal processing software.

The closing sentence is a quote from my presentation of the master’s thesis:

Implementing an audio synthesizer is serious work, if done right.

99 / 110

Appendix

List of Figures

2.1 Edirol PCR-300 MIDI controller keyboard 4
2.2 Classification of MIDI messages. 6
2.3 OSC Address Space example. 11
2.4 Grammar of an OSC packet described as EBNF (ISO14977 syntax

[Int96, p. 14]). 12

3.1 Two sinusoids with angular frequencies 𝜔1 = 𝜋/2, 𝜔2 = 3/2𝜋
sampled in intervals of 𝑇 = 𝜋/2. Both sinusoids produce the same
sampled signal due to aliasing. 15

3.2 Spectra for waveforms sampled at a) 𝑓Ny = 30 and b) 𝑓Ny = 10
which is 1/3 of the highest frequency contained, hence foldover
(aliasing) occurs. 16

3.3 Common (non bandlimited) waveforms supported bymost synthe-
sizers: a) sine wave, b) triangle wave, c) ramp/sawtooth, d) square
wave. 17

3.4 One cycle of bandlimited a) sawtooth and b) square waveforms
with increasing number of harmonics. 21

3.5 Relationship between dB and corresponding amplitude ratios on a
logarithmically scaled y-axis. 22

3.6 Waveform plot of sampled C4 note played on a piano [13]. 23
3.7 Three amplitude envelope transfer functions for input values in the

range of [0, 1] as proposed by [Puc06, p. 94]. 24
3.8 An ADSR envelope with equal duration of 0.5s for each stage and

attack and sustain levels of 1 and 0.5. 25

4.1 Basic structure of an additive synthesizer. 27
4.2 One cycle of a FM modulated sine wave for different modulation

intensities 𝑎𝑚 and modulator frequencies 𝑓𝑚. 29

100 / 110

4.3 Magnitude spectra for frequencymodulated carrier frequency 𝑐𝑓 at
different modulation indices 𝐼 and constant modulation frequency
𝑚𝑓 . Bandwidth increases symmetrically around 𝑐𝑓 with 𝐼 30

4.4 Bandwidth estimation for modulation indices 𝐼 ranging from 0
through 20 by evaluating Bessel functions 𝐽0 through 𝐽15 showing
resulting sideband frequencies 𝑠𝑓 and amplitudes 𝑠𝐴 [Cho73, p. 5]. 32

4.5 Most basic FM algorithm, a pair of operators with one modulator
and carrier. 33

5.1 Log-log plots for exemplary frequency response curves of four el-
ementary filter types with 12 dB/octave roll-off where 𝑓𝑐 denotes
the cutoff frequency at the half-power point (−3 dB) shown as a
dotted line. 41

5.2 Terminology for describing the frequency response of a low-pass
filter. 42

5.3 Non-linear phase response (∠𝐻(𝜔)) of a second-order Butterworth
lowpass filter. 43

5.4 Zeroes of 12-th order lowpass FIR filter with cutoff frequency 𝑓𝑐 =
𝜋/4. 45

5.5 Magnitude response of a recursive second-order lowpass filter for
different resonance values. 47

5.6 Magnitude frequency response of 𝐻(𝑧) eq. (5.22) showing cutoff
frequency 𝑓𝑐 at half-power point (dotted line). 51

5.7 Pole-zero diagram of 𝐻(𝑧) eq. (5.22) with pole and zero positions
marked as ×, respectively •. 52

5.8 Direct-Form I and II implementation of a second-order filter with
the normalized (divided by 𝑎0) difference equation 𝑦[𝑛] = 𝑏0𝑥[𝑛]+
𝑏1𝑥[𝑛 − 1] + 𝑏2𝑥[𝑛 − 2] − 𝑎1𝑦[𝑛 − 1] − 𝑎2𝑦[𝑛 − 2] [Fou16]. . . . 53

6.1 Block diagram of a generic oscillator. 57
6.2 (a) Impulse train •with frequency 𝑓 = 8.3Hz and sample positions

△. (b) The approximated unit-sample pulse train with sample po-
sitions 𝑝 = 𝑓𝑠/𝑓 rounded to the nearest integer. 61

6.3 (a) Impulse response and (b) frequency response of an ideal anti-
aliasing (lowpass) filter where 𝑓𝑁𝑦 = 𝑓𝑠/2 is the frequency of the
Nyquist limit. 62

6.4 Wavetable for a single sine wave cycle sampled at 24 equidistant
points. The bottom x-axis shows the index of the sample in the
wavetable and the top shows angle in radians. 68

101 / 110

6.5 Error of zero-degree (nearest neighbour) and first-degree (linear)
interpolation for a wavetable of 64 samples. 70

6.6 Harmonic spectra and time domain representation for a sawtooth
waveform. 73

6.7 Harmonic spectra and time domain representation for a square
waveform. 74

7.1 Structure of a basic polyphonic subtractive synthesizer. 81
7.2 View of the piano panel . 84
7.3 View of the oscillator control panel showing the first of four control

panels . 85
7.4 View of the FM control panel . 85
7.5 View of the mixer panel . 86
7.6 View of the mixer panel . 87
7.7 Spectrogram of a frequency sweep from 20Hz to 20kHz in the saw-

tooth (upper) and square (lower) wavetable. The x-axis denotes
time in secondswhereas the y-axis represents frequencies in a range
from 0 to 24 kHz. 89

7.8 Spectrogram of a frequency sweep for sine modulator and carrier
with increasing modulation amount. 91

7.9 Spectrogram of a white noise filtered by a lowpass (upper) and
bandpass (lower) biquad with increasing filter cutoff and constant
neutral filter resonance. 92

102 / 110

List of Tables

2.1 Types of MIDI Voice Messages. 7
2.2 Overview of OSC 1.0 and 1.1 data types. 10

5.1 Comparison of FIR against IIR filters. 54

103 / 110

List of Listings

1 Definition of OSC data types in [Lin16c, ‘src/types.rs‘]. 83
2 Calculation of Fourier coefficients for sawtooth waveform defini-

tion in the frequency domain [Lin16e, ‘src/dsp/waveform.rs‘, lines
163-172]. 88

4 [Lin16b, ‘src/lib.rs‘, lines 147-152] 94
3 Calculation of the biquad filter’s coefficients [Lin16e, ‘src/dsp/filter.rs‘,

lines 47-78]. 97

104 / 110

References

[13] Piano Key C4. 2013. l: https://www.freesound.org/people/Goup_
1/sounds/176449/ (visited on 09/16/2016).

[16a] portmidi. 2016. l: http://portmedia.sourceforge.net/portmidi/
(visited on 12/23/2016).

[16b] WebAudio API. 2016. l: https://github.com/webaudio/web-audio-
api/commit/a6842f2f733911a8ac6b330a405eac19878adc15 (visited on
12/22/2016).

[16c] WebAudio biquad filter equation usage in Chromium. 2016. l: https:
//groups.google.com/a/chromium.org/forum/#!topic/chromium-
os-checkins/nchPbrqfC2w (visited on 12/22/2016).

[16d] WebAudio biquad filter equation usage in Firefox. 2016. l: https :
//bugzilla.mozilla.org/show_bug.cgi?id=1265395 (visited on
12/22/2016).

[Ade+03] Bernard D. Adelstein et al. “Sensitivity to Haptic-audio Asynchrony”.
In: Proceedings of the 5th International Conference on Multimodal In-
terfaces. ICMI ’03. Vancouver, British Columbia, Canada: ACM, 2003,
pp. 73–76. ibn: 1-58113-621-8. doi: 10.1145/958432.958448. l:
http://doi.acm.org/10.1145/958432.958448.

[Ass14] MIDI Manufacturers Association. “The Complete MIDI 1.0 Detailed
Specification”. In: Third Edition (2014). Document Version 4.2. The
specification and all related practices are described as of 1996., p. 334.

[Ass16] The MIDI Association. Midi.org. 2016. l: https://www.midi.org/
(visited on 07/22/2016).

[Bél16] Olivier Bélanger. pyo. 2016. l: https://github.com/belangeo (vis-
ited on 06/20/2016).

[Ben+16] Ross Benecia et al. portaudio. 2016. l: http://www.portaudio.com/
(visited on 12/24/2016).

[Ben08] David J. Benson. “Music: A mathematical offering”. In:eMathemat-
ical Intelligencer 30.1 (2008), pp. 76–77. in: 0343-6993. doi: 10.1007/
BF02985765.

[Bra01] Eli Brandt. Hard Sync witwith Aliasing. 2001.
[Bri16] Robert Bristow-Johnson. Cookbook formulae for audio equalizer bi-

quad filter coefficient. 2016. l: http://shepazu.github.io/Audio-
EQ-Cookbook/audio-eq-cookbook.html (visited on 10/09/2016).

105 / 110

https://www.freesound.org/people/Goup_1/sounds/176449/
https://www.freesound.org/people/Goup_1/sounds/176449/
http://portmedia.sourceforge.net/portmidi/
https://github.com/webaudio/web-audio-api/commit/a6842f2f733911a8ac6b330a405eac19878adc15
https://github.com/webaudio/web-audio-api/commit/a6842f2f733911a8ac6b330a405eac19878adc15
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-os-checkins/nchPbrqfC2w
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-os-checkins/nchPbrqfC2w
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-os-checkins/nchPbrqfC2w
https://bugzilla.mozilla.org/show_bug.cgi?id=1265395
https://bugzilla.mozilla.org/show_bug.cgi?id=1265395
http://dx.doi.org/10.1145/958432.958448
http://doi.acm.org/10.1145/958432.958448
https://www.midi.org/
https://github.com/belangeo
http://www.portaudio.com/
http://dx.doi.org/10.1007/BF02985765
http://dx.doi.org/10.1007/BF02985765
http://shepazu.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html
http://shepazu.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html

[Cha85] Hal Chamberlin.Musical applications of microprocessors. 2nd ed. 1985,
p. 802. ibn: 0810457687.

[Cho73] John M. Chowning.e Synthesis of Complex Audio Spectra by Means
of Frequency Modulation. 1973.

[Com75] ISO/TC 43 Acoustics Comittee.Acoustics – Standard Tuning Frequency
(Standard Musical Pitch). ISO. ISO, 1975. l: http://www.iso.org/
iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=
3601.

[Das78] James Dashow. “Three methods for the digital synthesis of Chordal
structureswith non‐harmonic partials∗”. In: Interface 7.2-3 (1978), pp. 69–
94. in: 0303-3902. doi: 10 . 1080 / 09298217808570251. l: http :
//www.tandfonline.com/doi/abs/10.1080/09298217808570251.

[Dev16] JACKDevelopers. JACKAudio Connection Kit. 2016. l: http://www.
jackaudio.org/ (visited on 12/22/2016).

[Ehr13] Fabian Ehrentraud. SynOSCopy. 2013. l: https : / / github . com /
fabb/SynOSCopy/wiki (visited on 07/25/2016).

[Fou16] Wikimedia Foundation.Digital Filters. 2016. l: https://en.wikipedia.
org/wiki/Digital_filter (visited on 01/10/2016).

[Fre10] Beat Frei. Digital Sound Generation. 2010, p. 85. l: http://www.
icst.net.

[FS09] Adrian Freed andAndy Schmeder. “Features and Future of Open Sound
Control version 1.1 for NIME”. In: NIME. Apr. 2009. l: http : / /
cnmat.berkeley.edu/node/7002.

[FZ07] H. Fastl and E. Zwicker. Psychoacoustics: Facts and Models. Springer
series in information sciences. Springer Berlin Heidelberg, 2007. ibn:
9783540688884. l: https://books.google.de/books?id=eGcfn9ddRhcC.

[Gel10] StanleyA. Gelfand.Hearing: An Introduction to Psychological and Phys-
iological Acoustics. Fifth Edit. Colchester, UK: InformaHealthcare, 2010,
p. 480. ibn: 978-1-4200-8865-6.

[Huo10] Antti Huovilainen. “Design of a Scalable Polyphony-MIDI Synthesizer
for a Low Cost DSP”. In: Science And Technology (2010).

[Int96] International Organization for Standardization, ed. ISO/IEC 14977:1996
Information Technology - Syntactic Metalanguage - Extended BNF. 1996.

[K+16] Steve Klabnik, Charol Nichols, et al.e Rust Programming Language.
2016. l: https://doc.rust-lang.org/book/ (visited on 06/20/2016).

106 / 110

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3601
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3601
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3601
http://dx.doi.org/10.1080/09298217808570251
http://www.tandfonline.com/doi/abs/10.1080/09298217808570251
http://www.tandfonline.com/doi/abs/10.1080/09298217808570251
http://www.jackaudio.org/
http://www.jackaudio.org/
https://github.com/fabb/SynOSCopy/wiki
https://github.com/fabb/SynOSCopy/wiki
https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Digital_filter
http://www.icst.net
http://www.icst.net
http://cnmat.berkeley.edu/node/7002
http://cnmat.berkeley.edu/node/7002
https://books.google.de/books?id=eGcfn9ddRhcC
https://doc.rust-lang.org/book/

[Kel16a] AndrewKelley. libsoundio. 2016. l: https://github.com/andrewrk/
libsoundio (visited on 12/22/2016).

[Kel16b] Andrew Kelley. libsoundio vs PortAudio. 2016. l: https://github.
com/andrewrk/libsoundio/wiki/libsoundio-vs-PortAudio (visited
on 12/24/2016).

[Kol16] Con Kolivas. Multiple eue Skiplist Scheduler Announcement. 2016.
l: https://lkml.org/lkml/2016/10/29/4 (visited on 12/20/2016).

[KS83] K Karplus and A Strong. “Digital Synthesis of Plucked String and
Drum Timbres”. In: Computer Music Journal 7.2 (1983), pp. 43–55.

[LB07] Michael Lester and Jon Boley. “The Effects of Latency on Live Sound
Monitoring”. In: Audio Engineering Society Convention 123. Oct. 2007.
l: http://www.aes.org/e-lib/browse.cfm?elib=14256.

[Lii16] Liine. Liine Lemur Controller. 2016. l: https : / / liine . net / en /
products/lemur/ (visited on 07/21/2016).

[Lin16a] Andreas Linz. portmidi-rs rewrite. 2016. l: https://github.com/
musitdev/portmidi-rs/pull/24/files (visited on 12/23/2016).

[Lin16b] Andreas Linz. rb. 2016. l: https : / / github . com / klingtnet / rb
(visited on 12/22/2016).

[Lin16c] Andreas Linz. rosc. 2016. l: https://github.com/klingtnet/rosc
(visited on 12/22/2016).

[Lin16d] Andreas Linz. rsoundio. 2016. l: https://github.com/klingtnet/
rsoundio (visited on 12/22/2016).

[Lin16e] Andreas Linz. yerbium. 2016. l: https://github.com/klingtnet/
ytterbium (visited on 12/22/2016).

[Loy11] Gareth Loy. Musimathics, Volume 2: e Mathematical Foundations of
Music. 2011.

[Mol07] IngoMolinar.Completely Fair Scheduler Announcement. 2007. l: https:
//lwn.net/Articles/230501/ (visited on 12/22/2016).

[Moo76] J. A. Moorer. “The Synthesis of Complex Audio Spectra by Means of
Discrete Summation Formulae”. In: Journal of the Audio Engineering
Society 24 (1976), p. 717. l: https://ccrma.stanford.edu/files/
papers/stanm5.pdf.

[Nam+09] Juhan Nam et al. “Alias-free Virtual Analog Oscillators Using a Feed-
back Delay Loop”. In: Proceedings of the 13th Int. Conference on Digital
Audio Effects (DAFx-10) (2009), pp. 1–6.

107 / 110

https://github.com/andrewrk/libsoundio
https://github.com/andrewrk/libsoundio
https://github.com/andrewrk/libsoundio/wiki/libsoundio-vs-PortAudio
https://github.com/andrewrk/libsoundio/wiki/libsoundio-vs-PortAudio
https://lkml.org/lkml/2016/10/29/4
http://www.aes.org/e-lib/browse.cfm?elib=14256
https://liine.net/en/products/lemur/
https://liine.net/en/products/lemur/
https://github.com/musitdev/portmidi-rs/pull/24/files
https://github.com/musitdev/portmidi-rs/pull/24/files
https://github.com/klingtnet/rb
https://github.com/klingtnet/rosc
https://github.com/klingtnet/rsoundio
https://github.com/klingtnet/rsoundio
https://github.com/klingtnet/ytterbium
https://github.com/klingtnet/ytterbium
https://lwn.net/Articles/230501/
https://lwn.net/Articles/230501/
https://ccrma.stanford.edu/files/papers/stanm5.pdf
https://ccrma.stanford.edu/files/papers/stanm5.pdf

[Ota15] Francisco J. Valencia Otalvar. “Aliasing and Harmonic Decay Control
of the Bandlimited StepMethod Using Psychoacoustic Models and the
Genetic Algorithm”. PhD thesis. University ofMiami, 2015, p. 256. l:
http://mue.music.miami.edu/wp- content/uploads/2012/11/
Fransisco-Thesis.pdf.

[Pav13] David Svoboda Pavel Karas. “Algorithms for Efficient Computation of
Convolution”. In:Design andArchitectures for Digital Signal Processing.
2013, pp. 179–208. ibn: 978-953-51-0874-0. doi: 10.5772/3456. l:
http://www.intechopen.com/books/design-and-architectures-
for-digital-signal-processing.

[Pek07] Jussi Pekonen. “Computationally Efficient Music Synthesis – Meth-
ods and Sound Design”. PhD thesis. Electrical and Communications
Engineering, 2007, pp. 1–92. l: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.100.8753%7B%5C&%7Drep=rep1%7B%
5C&%7Dtype=pdf.

[Pek14] Jussi Pekonen. “Filter-Based Oscillator Algorithms for Virtual Analog
Synthesis”. PhD thesis. Aalto University, 2014, p. 72. ibn: 9789526055886.
l: https://aaltodoc.aalto.fi/handle/123456789/12835.

[Phi16] Andreas Linz PhilippeDelrieu. portmidi-rs. 2016. l: https://github.
com/musitdev/portmidi-rs (visited on 07/22/2016).

[PM07] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing.
Pearson Prentice Hall, 2007, p. 1084. ibn: 0133737624.

[Puc06] Miller Puckette. “The Theory and Technique of Electronic Music”. In:
Puckee,M. (2006).eeory and Technique of ElectronicMusic.World,
11, 1–337. doi:10.1186/1471-2105-11-50World 11 (2006), pp. 1–337. in:
14712105. doi: 10.1186/1471-2105-11-50. l: http://www.amazon.
com/Theory-Technique-Electronic-Music/dp/9812700773.

[Rab+72] Lawrence R. Rabiner et al. “Terminology in Digital Signal Process-
ing”. In: IEEE Transactions on Audio and Electroacoustics 20.5 (1972),
pp. 322–337. in: 00189278. doi: 10.1109/TAU.1972.1162405.

[Roa96] Curtis Roads.eComputerMusic Tutorial. Cambridge, MA, USA:MIT
Press, 1996. ibn: 0262680823.

[Smi16] Julius Orion Smith III. Introduction to Digital Filters with Audio Appli-
cations. 2016. l: https://ccrma.stanford.edu/~jos/filters/
filters.html (visited on 01/10/2016).

108 / 110

http://mue.music.miami.edu/wp-content/uploads/2012/11/Fransisco-Thesis.pdf
http://mue.music.miami.edu/wp-content/uploads/2012/11/Fransisco-Thesis.pdf
http://dx.doi.org/10.5772/3456
http://www.intechopen.com/books/design-and-architectures-for-digital-signal-processing
http://www.intechopen.com/books/design-and-architectures-for-digital-signal-processing
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.8753%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.8753%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.8753%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://aaltodoc.aalto.fi/handle/123456789/12835
https://github.com/musitdev/portmidi-rs
https://github.com/musitdev/portmidi-rs
http://dx.doi.org/10.1186/1471-2105-11-50
http://www.amazon.com/Theory-Technique-Electronic-Music/dp/9812700773
http://www.amazon.com/Theory-Technique-Electronic-Music/dp/9812700773
http://dx.doi.org/10.1109/TAU.1972.1162405
https://ccrma.stanford.edu/~jos/filters/filters.html
https://ccrma.stanford.edu/~jos/filters/filters.html

[Smi85] Julius Orion Smith III. Introduction to Digital Filter eory. 1985. l:
https : / / ccrma . stanford . edu / papers / introduction - digital -
filter-theory.

[Sof15] Max Planck Institute for Software Systems (MPI-SWS). Rust Belt. 2015.
l: http://plv.mpi-sws.org/rustbelt/ (visited on 06/20/2016).

[SS96] Tim Stilson and Julius Smith. “Alias-free digital synthesis of classic
analog waveforms”. In: Proc. International Computer Music … (1996),
pp. 1–12. l: https://ccrma.stanford.edu/files/papers/stanm99.
pdf%7B%5C#%7Dpage=48.

[Ste+92] K Steiglitz et al. “Meteor”. In: 40.8 (1992), pp. 1901–1909.
[VH06] Vesa Välimäki andAnttiHuovilainen. “Oscillator and Filter Algorithms

for Virtual Analog Synthesis”. In: Computer Music Journal 30.2 (2006),
pp. 19–31. in: 0148-9267. doi: 10.1162/comj.2006.30.2.19.

[WDJ97] Alan West, Charles Dodge, and Thomas Jerse. Computer Music, Syn-
thesis, Composition, and Performance. Vol. 2. 1997, p. 475. ibn: 0028646827.
doi: 10.2307/3680102. l: http://www.jstor.org/stable/3680102?
origin=crossref.

[Wel16] Allen Welkie. RustFFT. 2016. l: https://github.com/awelkie/
RustFFT (visited on 12/22/2016).

[Wis14] Aaron Wishnick. “Time-Varying Filters for Musical Applications”. In:
DAFx 1 (2014), pp. 1–8.

[Wri02] Matthew Wright. “Open Sound Control 1.0 Specification”. In: (2002).
l: http://opensoundcontrol.org/spec-1_0.

109 / 110

https://ccrma.stanford.edu/papers/introduction-digital-filter-theory
https://ccrma.stanford.edu/papers/introduction-digital-filter-theory
http://plv.mpi-sws.org/rustbelt/
https://ccrma.stanford.edu/files/papers/stanm99.pdf%7B%5C#%7Dpage=48
https://ccrma.stanford.edu/files/papers/stanm99.pdf%7B%5C#%7Dpage=48
http://dx.doi.org/10.1162/comj.2006.30.2.19
http://dx.doi.org/10.2307/3680102
http://www.jstor.org/stable/3680102?origin=crossref
http://www.jstor.org/stable/3680102?origin=crossref
https://github.com/awelkie/RustFFT
https://github.com/awelkie/RustFFT
http://opensoundcontrol.org/spec-1_0

Erklärung (Statement of Originality)

I hereby declare, that this master’s thesis is original work performed by me, and
that all resources and references to other works that I used are properly and duly
cited. I am aware, that any kind of infringement can, even retroactively, entail the
revocation of my degree.

Ich versichere, dass ich die vorliegende Arbeit selbständig und nur unter Verwen-
dung der angegebenenQuellen undHilfsmittel angefertigt habe, insbesondere sind
wörtliche oder sinngemäße Zitate als solche gekennzeichnet. Mir ist bekannt, dass
Zuwiderhandlung auch nachträglich zur Aberkennung des Abschlusses üh-ren
kann.

Leipzig, 8. Januar 2017
Andreas Linz

110 / 110

	Abstract
	Introduction
	Scope of this Thesis

	User Interface
	MIDI
	MIDI Protocol
	MIDI Pitch
	Timing Problems

	Open Sound Control
	OSC Data Types
	Comparison to MIDI

	Synthesizer Fundamentals
	Oscillator
	Aliasing

	Waveforms
	Fourier Synthesis
	Bandlimited Waveforms

	Non-linearity of hearing
	Envelope Generators

	Synthesis Techniques
	Additive Synthesis
	Frequency Modulation (FM) Synthesis
	Subtractive Synthesis

	Digital Filters
	Linear Time-Invariant Systems
	Linearity and Time-Invariance
	LTI filters

	Impulse Response
	Frequency Response
	Magnitude- and Phase Response

	Filter Classification
	FIR Filters
	IIR Filters
	Bilinear Transform
	Bilinear Transform Example

	Implementation Structures for IIR Filters
	Comparison FIR against IIR

	Oscillators and Waveform Synthesis
	Generic Oscillator Structure
	Trivial Waveform Generation
	Quasi-Bandlimited Waveform Synthesis
	BLITs
	BLIT-SWS
	BLEPs

	Ideal Bandlimited Waveform Synthesis
	Wavetables

	Conclusion

	Implementation Details and Evaluation
	Why Rust?
	Real-Time
	Latency
	System Latency

	Structure
	Control Input
	Lemur

	Wavetable Oscillator
	Filter
	Ring Buffer
	Audio Output

	Summary
	Optimizations
	Conclusion

	Appendix
	List of Figures
	List of Tables

	List of Listings
	References

