
 : a tool for syntax-based
intra-language alignment

Tariq Yousef & Chiara Palladino
University of Leipzig

Classical Philology Goes Digital
Potsdam

February 17, 2017

What is text alignment?

● Text alignment is the comparison of two or more parallel texts
● It tries to define correspondences/similarities and divergences/variants
● One of the most important tasks in Natural Language Processing: it can be

performed automatically through algorithmic and dynamic programming
methods

Intra-Language alignment: alignment of
texts in the same language

Cross-language alignment: alignment of
texts in different languages

● Cross-language alignment is difficult to perform automatically
● It still needs training data from manual alignment

Armenian-German aligned text, Alignment is done manually by Uta Koschmieder

CollateX (http://collatex.net/)

- A software for expressing textual
variance with a graph-based data
model

- It offers a preprocessing stage
(tokenization, normalization,
regularization) that is configurable
by the user according to issues in
language, orthography,
punctuation

- Uses graphs and tables as graphic
outputs

http://collatex.net/

Juxta Commons (http://juxtacommons.org/)

- A group of Softwares for
performing various
alignment tasks

- Enables users to see
changes in texts up to 20
versions

- Provides three
visualization outputs:
overlapping versions,
parallel panels, bar
histograms

http://juxtacommons.org/

The Versioning Machine
(http://v-machine.org/)

- The comparison is
visualized on text
panels

- Allows comparison of
diplomatic
transcriptions or
editions of the same
text

- Provides a user space
for annotations and
bibliographical
references, and an
image viewer for
manuscripts

http://v-machine.org/

eComparatio (www.ecomparatio.net)

- An ongoing project still at
the experimental stage

- Will allow comparison of
an arbitrary number of
texts in Classical
languages

- The visualization output
will be in different panels
with variations
highlighted

- Aims at the creation of an
apparatus of variants for
born-digital critical
editions

http://www.ecomparatio.net

iAligner
www.ialigner.com

https://github.com/OpenGreekAndLatin/ILA_python

http://ialigner.com/
https://github.com/OpenGreekAndLatin/ILA_python
https://github.com/OpenGreekAndLatin/ILA_python

A tool for automatic intra-language alignment

● Automatic: it is performed with algorithmic methods to reduce human

intervention in the mechanical process of comparison.

● Intra-language: works with texts in the same language.

● Pairwise or multiple: works with two texts or with an unlimited number of

multiple texts.

Algorithmic methods to produce alignment

The Needleman-Wunsch algorithm

- used in bioinformatics to align protein or nucleotide sequences.

- it uses Dynamic Programming to find the optimal alignment.

- divides a large problem into a series of smaller problems and uses the solutions to
the smaller problems to reconstruct a solution to the larger problem.

- uses a score function and similarity matrix to represent all possible combinations
of tokens and their resulting score.

The Needleman-Wunsch algorithm

- Aligning Bible Text John 1:1

NLT: In the beginning the Word already existed.

KJB: In the beginning was the Word

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓

the -4↓

beginning -6↓

was -8↓

the -10↓

Word -12↓

, -14↓

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 3↓

beginning -6↓ 1↓

was -8↓ -1↓

the -10↓ -3↓

Word -12↓ -5↓

, -14↓ -7↓

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 3↓ 10 ↘ 8 → 6 ↘ 4 → 2 → 0 → -2 →

beginning -6↓ 1↓ 8 ↓

was -8↓ -1↓ 6 ↓

the -10↓ -3↓ 4 ↓

Word -12↓ -5↓ 2 ↓

, -14↓ -7↓ 0 ↓

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 3↓ 10 ↘ 8 → 6 ↘ 4 → 2 → 0 → -2 →

beginning -6↓ 1↓ 8 ↓ 15 ↘ 13 → 11 → 9 → 7 → 5 →

was -8↓ -1↓ 6 ↓ 13 ↓

the -10↓ -3↓ 4 ↓ 11↓

Word -12↓ -5↓ 2 ↓ 9 ↓

, -14↓ -7↓ -0 ↓ 7 ↓

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 0↓ 10 ↘ 8 → 6 ↘ 4 → 2 → 0 → -2 →

beginning -6↓ -2↓ 8 ↓ 15 ↘ 13 → 11 → 9 → 7 → 5 →

was -8↓ -4↓ 6 ↓ 13 ↓ 11↓ 9→ 7→ 5→ 3→

the -10↓ -8↓ 4 ↓ 11↓ 18↘ 16→ 14→ 12→ 10→

Word -12↓ -10↓ 2 ↓ 9 ↓ 16↓ 23↘ 21→ 19→ 17→

, -14↓ -12↓ -0 ↓ 7 ↓ 14↓ 21↓ 19↓ 17↓ 15↓

New Living
Translation In the beginning the Word already existed .

King James
Bible In the beginning was the Word ,

The modification to the algorithm

The goal is to optimize the algorithm
by reducing the search space

compares a token W at the position i
in S1 with a range of tokens [i-k, i+k]
in S2 with length of 2k+1.

The resulting search space is
reduced from (n * m) to ([2k +1]* m) ,
where k < n/2

The modification to the algorithm

k = 14, n = 157, m = 134

Search space = m*n = 21038

after modification

(2k+1)*m = 3886

Multiple Sequence Alignment (In progress)

● Progressive alignment

builds up a final MSA by combining pairwise alignments beginning with the
most similar pair and progressing to the most distantly related, it requires two
stages:

- creating the guide tree (clustering)
- adding the sequences sequentially to the

growing MSA according to the guide tree

Multiple Sequence Alignment (In progress)

● Iterative alignment

The aim is to reduce the problem of a multiple alignment to an iteration of
pairwise alignments.

How to align your texts with iAligner: copy
your text on the editor

The text has to be parsed in sentences first

...Or upload it

Currently supports .txt and .csv files

Refinement criteria

● Ignore non-alphabetical: ignores symbols, such as
punctuation and numbers, anything that is not an alphabetical
character

● Case sensitive: if activated, detects variation across words
according to the case

● Ignore diacritics: ignores any type of diacritical character
(including punctuation marks)

● Levenshtein distance: applies a revised version of the
Levenshtein algorithm and increases the tolerance threshold
on the alignment of similar words.

The Levenshtein distance

The Levenshtein distance between two words is the minimum number of
single-character edits (i.e. insertions, deletions or substitutions) required to
change one word into the other. e.g

lev(George, Georg) = 1 Normalised Distance =1 - 1/6 = 0.833
lev(Prague, Prag) = 2 Normalised Distance =1 - 2/6 = 0.666
lev(Rome, Rom) = 1 Normalised Distance =1 - 1/4 = 0.75

Mathematically, the Levenshtein
distance between two strings { a,b}
 (of length |a| and |b| respectively)
 is given by leva,b(|a| , |b|)

Modified Levenshtein Distance

Levenshtein distance is not very helpful in our case, because it is binary and
there is no tolerance with errors produced by OCR or Transcription.

the distance between letters is not binary, but it is on scale. The cost of insertion
or deletion depends on:

- Letter position

- Letter type (vowel or consonant)

Modified Levenshtein Distance
Transliteration

Group elements Distance within group elements

Vowel letters 0.25

C K Q 0.3

S C 0.2

OCR

Group elements Distance within group elements

t l 0.25

v u 0.25

6 8 0.25

c e 0.25

b h 0.25

in m 0.25

o e 0.25

i l 0.25

i j 0.25

lev(George, Georg) = 0.25
Normalised Distance =1 - 0.25/6 = 0.958

lev(Prague, Prag) = 0.5
Normalised Distance =1 - 0.5/6 = 0.916

A Greek text with no refinement criteria

The same text with additional refinement criteria applied

Alignment output: a table-graph
iAligner displays all the nuances of variants according to a color-key:

- Completely aligned tokens (deep green)
- Tokens aligned by excluding case sensitivity or punctuation detection (light green)
- Gaps (yellow)
- Divergences (red)
- Tokens aligned by applying Levenshtein distance (blue-green)

What can you do
with iAligner?
Some case studies

Manuscript
alignment

Three manuscripts of Plato’s Crito
aligned (http://i-alignment.com/crito/)

http://i-alignment.com/crito/

OCR
output
alignment

Alignment of two OCR outputs from the Patrologia Graeca. The third column shows the overlapping
sections and offers the user the choice between two variants where the two texts diverge.

OCR
output
alignment Patrologia Latina: OCR output vs. correct version: http://www.i-alignment.com/pl/index.html

http://www.i-alignment.com/pl/index.html

OCR
output
alignment

Alignment of
editions

Three excerpted editions of Aeschylus’ Supplices aligned.
www.i-alignment.com/Aeschylus

http://i-alignment.com/Aeschylus/

Future work

● Import and export options

● Language dependent options for Latin, Greek, Arabic

● Handling crossings and transpositions

Thanks for the attention!

Contact:
Tariq Yousef (tariq.yousef@dh.uni-leipzig.de)

Chiara Palladino (chiarapalladino1@gmail.com)

mailto:tariq.yousef@dh.uni-leipzig.de
mailto:chiarapalladino1@gmail.com

