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The effect of soot on the catalytic properties of a diesel particulate filter coated with a 

catalyst for the selective catalytic reduction of NOx with ammonia (SDPF) was studied 

by means of model-gas experiments. After loading of the SDPF with model soot from 0 

to 10 g l-1, the NH3 storage as well as the catalytic DeNOx behavior of the standard SCR 

reaction was investigated. The model soot present in the filter was shown to have an 

NH3 storage capacity. The soot deposit inside the SDPF filter wall lead to a decreased 

NO conversion in SCR experiments of up to 20 %. The NH3 breakthrough was found to 

be shifted towards earlier time-on-stream during NH3 adsorption on soot loaded SDPF 

samples. Both effects could be attributed to a diffusive mass transport limitation of the 

gas species through the soot to reach at the chemically active sites inside SDPF filter 

wall. The self-diffusion coefficient of NH3 probe molecules within a soot layer could be 

measured using Pulsed Field Gradient-NMR technique. The unit collector model is 

capable of describing the backpressure upon soot loading with a depth filtered (inside 

filter wall) soot amount of 1 g l-1 and 0.36 g l-1, respectively, for both SDPF types under 

investigation. Based on Scanning Electron Microscopy (SEM) investigation a 1-D 

microscopic soot filter wall-model was set up. The model implies soot as diffusion 

barrier for mass transport. It was calibrated based on experimental observations and 

allows to conclude on the distribution of the soot within the filter wall. Thus, a high 

soot-coverage of the porous filter wall close to the inlet channel, a slightly covered 

middle part and a soot free zone close to the outlet explains the observed reduction in 

NO conversion as well as the NH3 breakthrough at earlier time-on-stream during NH3 

adsorption experiments for SDPF samples loaded with soot. A modelled homogeneous 

soot distribution (0.6 µm soot layer on top of washcoat) within the whole SDPF was 

shown to result in NO conversion drop up to 45 %. 
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1 Introduction	and	Objectives	

In 2009 the German federal government accepted the European regulation for the 

reduction of CO2 emitted by passenger cars. The main goal is the achievement of a 

maximum CO2 emission of 95 g km�� until 2020. Due to the higher fuel efficiency of the 

diesel engine compared to the gasoline engine, diesel-technology became indispensable 

for the car manufacturers to reach their CO2 fleet emission goals. The appropriate 

manufacturers marketing strategy combined with a positive technological development 

of the diesel engines regarding driving comfort, dynamics and fuel consumption led to a 

high costumers acceptance over the past years, resulting nowadays in a share of 33 % of 

diesel engine cars in the passenger car sector in Germany. In the truck and transportation 

sector the diesel engine is since the year dot the powertrain of choice due to its fuel 

efficiency and possibility to fulfill the special demands for transportation vehicle. 

The main drawback of a diesel engine is the elevated amount of particulate matter and 

NOx emissions compared to a gasoline engine. This results from a higher temperature 

regime and an overstoichiometric availability of oxygen under which the diesel fuel is 

burned. Changes in the in-engine combustion process merely either lead to low NOx and 

high particle production or vice versa, which is known as the NOx-particle trade-off. 

Although recent improvements in the combustion process due to improved diesel 

injection strategies as well as exhaust gas recirculation (EGR) resulted in lower engine-

out NOx levels, a combined exhaust gas aftertreatment system for the abatement of 

particulate matter and NOx is absolutely essential to fulfill current emission legislations 

(see Fig.	 1). For the particulate reduction the diesel particulate filter (DPF) has been 

developed. It features a very high filtration efficiency (close to 100 % of the particulate 

mass emitted). Nevertheless, from time to time the collected soot-particles need to be 

removed by so called regeneration, which is a heat induced oxidation of the carbon. 

Driven by immense effort of the catalyst scientific community the selective catalytic 

reduction (SCR) of NOx could be established in vehicle application for the NOx abatement. 

The SCR active catalyst combined with a system for the injection of a NOx reducing agent 

into the exhaust gas were positioned within the exhaust branch. Thereby, ammonia (NH3) 

is used as the reducing agent. As it is toxic and due to technical challenges, an aqueous 

urea solution, called AdBlue®, has been chosen to provide the NH3 on road. Both, the DPF 
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and the NH3-SCR are nowadays the state-of-the-art exhaust gas aftertreatment technology 

for passenger cars and trucks. 

For the fulfillment of more and more stringent emission legislation, especially in the 

passenger car sector, technical and economic demands have forced the development of 

new technologies and strategies for emission reduction. As a conventional SCR system, 

which is positioned downstream the engine, has problems to achieve enough temperature 

for high NOx conversion rates, the combination of the SCR-catalyst on the DPF (component 

called SDPF) could be located close to the engine for improved thermal management. 

Otherwise the application of only one component for abatement of both harmful species 

(NOx and particulates) has its advantage in lower costs and weight. As in the combined 

system the soot filtration is realized in close vicinity to the active sites for the catalytic 

DeNOx reaction, a negative interaction of both functionalities is highly probable. To fully 

benefit from the whole potential of the SDPF included in a vehicles exhaust gas 

aftertreatment system, a fundamental understanding of the physico-chemical 

mechanisms inside the SDPF is indispensable. Only a scientifically correct adoption of the 

onboard control strategies will ensure low emission levels of harmful species to protect 

the environment. 

In this work the influence of soot on the NH3-SCR DeNOx reaction inside the porous filter 

wall of an SDPF is investigated in detail. On one hand, NH3 storage is the fundamental 

process responsible for the reduction of NOx. On the other hand, a change in the NH3 

adsorption behavior will result in a changed NH3 slip at the outlet of the SCR-catalyst, 

which is to be avoided due to its toxicity. 

So, one aim of this work is to study the NH3 adsorption process on a soot loaded SDPF. 

Another aim is a comprehensive study on the soot induced changes in the SDPFs NOx 

conversion. In order to realize investigations on soot loaded filter samples, a soot loading 

apparatus based on a model soot-generator was set up and is reported here. A 

contribution of the soot itself to the SDPFs NH3 storage capacity as well as an interaction 

of the soot to the SCR-DeNOx reaction is studied. The fundamental microscopic processes 

inside the filter wall are explained by means of a physico-chemical model. An 

implementation of a chemical model in the unit collector cell model is, to the best of our 

knowledge, reported the first time in literature to explain the processes inside the SDPF. 

Hereby the soot is implemented as a diffusion barrier for the gas transport to the 
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catalytically active sites. The diffusive barrier was approved by means of pulsed field 

gradient nuclear magnetic resonance (PFG-NMR) studies. Finally, the results are 

evaluated regarding their practical relevance for real vehicle application. 

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

EGR

SCR
DPF

EU VI
EU V

EU IV

 EU III Engine
 EU VI Engine

 

 
P

M
 /

 m
g 

km
-1

NO
x
 / mg km

-1

EU III

 

Fig.	1	Engine-out emission trade-off for particulate matter vs. NOx (black line). The red and blue 
arrows indicate the exhaust gas aftertreatment by means of the particulate filter and the SCR-
DeNOx to fulfill current European emission legislation (depicted as rectangles).	
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2 Literature	Overview	

2.1 Exhaust	Gas	Aftertreatment	for	Diesel	Engines	

2.1.1 Challenges	and	Emission	Legislation	

In 1992 the European Union established the emission legislation for passenger cars and 

heavy duty vehicle [2]. Thus, the manufacturers were forced to develop exhaust gas 

aftertreatment techniques to ensure low emission of harmful pollutants in Europe. 

Compared to gasoline engines, the raw exhaust of diesel engines contains less pollutants 

and much more oxygen (see Fig.	2) [3,4]. The main pollutants are carbon monoxide (CO), 

partially oxidized hydrocarbons (HC), particulate matter (PM or soot) and nitric oxides. 

CO, HC and PM are the result of an incomplete combustion of the fuel. Whereas the nitric 

oxides are formed at peak temperatures of 1300 K within the combustion chamber. The 

NOx-formation in detail is described by the extended ZELDOVICH-mechanism [5,6]. 

Although the sulfur content of the diesel fuel is restricted [7], sulfur dioxide (SO2) is a 

result of its oxidization during combustion. 

The European Environment Agency analyzed the emissions data of all the 28 member 

states between 1990 and 2014 [8]. Thereby, in 2014, 39 % of all the NOx released in the 

environment were caused by the road transportation sector with an equal share between 

passenger cars and the heavy duty vehicles (including buses). Furthermore 13 % of all the 

particulate matter were emitted by vehicles. 

The health risks of combustion engine emissions are widely discussed in literature. 

Carbon monoxide is a respiratory poison to human bodies. Even low doses cause 

headaches and the impairment of the manual coordination when breathed in [9]. 

Hydrocarbons are in debate to support cancer formation [10]. Nitric oxides are known to 

cause cellular damages on mammalian cells. Its cytotoxicity originates from the formation 

of peroxynitrite out of NO, which reacts with DNA or proteins and thus supports several 

diseases [11,12]. Furthermore NO2 and SO2 could cause acid rain, which is harmful for 

humans and the environment [13]. Particulate matter emission from vehicles are in the 

focus as a health risk for the formation of allergies, airway inflammation, 

cardiopulmonary disease and even lung cancer [14,15]. Engine out particles consists of 

inorganic and organic constituents. Therefrom especially the polycyclic aromatic 

hydrocarbons (PAH) are known to damage human DNA, causing several serious diseases 
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[16]. Due to the individual health risks of each component discussed above, in 2012 the 

International Agency for Research on Cancer classified the exhaust gases from diesel 

engines to be carcinogenic to humans [17,18]. This emphasizes the importance of an 

ongoing development in the field of exhaust gas aftertreatment to ensure low emissions. 

 

 

 

Fig.	2	Typical raw exhaust gas composition (number in volume percent) of a diesel engine a) and 
a gasoline engine b) [4]. Original illustration based on [5]. 

However the operation conditions for diesel and for gasoline vehicles differ [4]. One 

measure for the process of the combustion is the air-fuel equivalence ratio λ (2.1). An 

excess of oxygen during combustion is called »lean« (λ>1), an excess of fuel is called »fat« 

(λ<1). 
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Regulated by the throttle valve a gasoline engine is usually operated at λ=1 [5]. The state-

of-the-art aftertreatment component is a three-way catalytic converter, which oxidizes 

HC and CO while reducing NOx over Platinum-Palladium (Pt-Pd) active sites [19,20]. In 

diesel engines on the other hand, the fuel is injected and burned under oxygen excess, 

usually at λ>2. Despite this oxygen rich condition HC, CO and PM are being formed. This 

is caused by local inhomogeneities in the cylinder-mixture between λ=0 and λ=8. The 

elevated temperature regime and oxygen partial pressure during diesel combustion 

(compared to gasoline) favor the NOx formation [3]. Nevertheless, the exhaust gas 

recirculation (EGR), patented already in the 1972, offers an in-engine technique to reduce 

the raw emission of NOx and is nowadays the standard for new diesel passenger cars. 

Thereby, raw exhaust gas recirculates in the cylinder and lowers the flame temperature 

and oxygen concentration [21]. The drawback is an increased PM emission, due to the 

reduced oxygen concentration. The so-called PM-NOx trade-off describes the principle, 

that an increased temperature leads to less PM but favors the NOx formation and vice 

versa (see Fig.	1) [3]. Changing the combustion condition cannot simultaneously result in 

reduction of both, PM and NOx. Also, HC and CO cannot be fully avoided by means of in-

engine methods. Consequently, an exhaust gas aftertreatment system is essential for 

diesel engines. 

Besides the regulations for CO2 abatement [22,23], the European Union defines the 

emission standards for light and heavy duty vehicles [4,24,25]. To ensure improving air 

quality as well as an ongoing development in the exhaust gas aftertreatment sector, the 

emission levels are decreased in regular intervals. At introduction of the Euro 1 standard 

in 2012, the emission levels were the same for gasoline and diesel engines. Recent 

emission standards for diesel engines are more stringent in CO standards but allow higher 

NOx emissions. Tab.	2.1 gives the development of the European emission standards for 

diesel passenger cars. While gasoline engines were excluded from PM emission standards 

until Euro 4, the introduction of the Euro 5 level ensures low particulate emission of 

0.005 mg km-1 for both (gasoline and diesel). Since in 2014 the current Euro 6 standard 

was approached, especially the manufacturers of diesel engines phase the very 

challenging goal of 80 mg km-1 NOx as well as a limit for the number of emitted particles. 

These goals could not be fulfilled with pure in-engine techniques to prevent emissions. An 
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exhaust gas aftertreatment system is absolutely essential. Until 2017 the emissions are 

tested over predefined driving cycles (e.g. the New European Driving Cycle (NEDC) or the 

Worldwide harmonized light vehicle test procedure (WLTP) [26]. Between 2017 and 

2021 the Real Driving Emission Test (RDE) will be introduced for emission legislation. 

This test procedure will ensure vehicle emissions in real operation, outside a laboratory 

testing setup [27]. Recently huge discrepancies between the emission test results of the 

emission legislation test in the laboratory and the RDE test results culminated in a crisis 

for diesel engines. It was revealed by West Virginia University in 2014, which published 

RDE test results [28]. 

Tab.	2.1:  Emission standards for diesel passenger cars in Europe. The table is based on [29]. 

Tier Date CO / 

g km�� 

HC / 

g km�� 

HC+NOx / 

g km�� 

NOx / 

g km�� 

PM / 

g km�� 

PN / 

# km�� 

Euro 1 1992 2.72 - 0.97 - 0.1400 - 

Euro 2 1996 1.00 - 0.70 - 0.0800 - 

Euro 3 2000 0.64 - 0.56 0.50 0.0500 - 

Euro 4 2005 0.50 - 0.30 0.25 0.0250 - 

Euro 5 2009 0.50 - 0.23 0.18 0.0050 - 

Euro 6 2014 0.50 - 0.17 0.08 0.0045 6 ⋅ 10�� 

 

Fig.	3 shows the development of the number of new registered cars in Germany over the 

last decade. In 2015 diesel engine cars have a market share of 48.0 %, while 50.2	% of all 

new registered vehicles have a gasoline engine. Although the German government forces 

the development of electric powertrain vehicles, their market share in 2015 merely is 

0.48 % for pure electric cars and 1.05 % for hybrid cars. In future their market will 

certainly grow and they will play a major role in the transportation sector. But over the 

last decade until now, the market is still dominated by fuel burning engines. Even after 

the diesel scandal became known to the public in 2015, the number of new registered 

diesel cars in Germany increased from 122558 (May 2015) to 132758 (May 2016), which 

is a plus of 8.3 % [30]. So, diesel engine cars have still a positive awareness of the 

costumers and they are very important for the manufacturers to reach their fleet CO2 

emission goals. A change in the transportation sector towards electric engines will be a 
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slow process. Hence the research on the field of the exhaust gas aftertreatment for diesel 

engines is very important to ensure low emission under all testing conditions to ensure a 

clear environment. 
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Fig.	3	Statistics of the number of new registered passenger cars in Germany from 2005 to 2015 in 
terms of powertrain technology. Left: Diesel and gasoline engines, right: alternative powertrain 
technologies. The illustration is based on data from the Kraftfahrt-Bundesamt [31].	

2.1.2 Components	and	Principles	

Within this subchapter the Diesel Oxidation Catalyst (DOC) and the NOx Storage Catalyst 

(NSC) are briefly described. As the main focus of this work are studies on SCR coated DPFs, 

the principles of the selective catalytic reduction of NOx, the soot filtration in DPF and its 

combination, the SDPF, will be described in extra chapters. All these five above mentioned 

exhaust gas aftertreatment components characterize the state-of-the-art principles 

applied for abatement of diesel engine emissions [3]. 

2.1.2.1 Diesel	Oxidation	Catalyst	

Today an oxidation catalyst is incorporated in the aftertreatment system of almost all 

vehicles [4,32]. It consists of a flow-through monolith with 400 to 800 cpsi (cells per 

square inch). The walls are washcoated with a material providing high surface area e.g. 

Al2O3, which carries the catalytically active particles [4]. Due to the lean engine operation 

of a diesel engine, compared to the stoichiometric operated gasoline engine, it emits much 

less HC and CO. A DOC is able to abate nearly all of the raw CO (R 1) and HC (R 2) emissions 

[3]. In contrast to the Three-Way-Catalysts (TWC) used for gasoline engines, a reduction 

of NOx is not possible due to the higher volume fraction of O2 in the diesel exhaust gas [4]. 

The excess of oxygen even leads to an oxidation of NO to NO2 (R 3), which is beneficial for 
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downstream aftertreatment systems like SCR-catalysts (see chapter 2.2) or DPF (see 

chapter 2.3). 

ij + 0.5j� → ij� (R 1) 

4iopq + (4r + s)j� → 4rij� + 2sp�j (R 2) 

uj + 0.5j� → uj� (R 3) 

The common choice for the catalyst are platinum particles with diameters of 5 to 20 nm 

[4,33,34], offering light-off temperatures relevant for automotive purpose. Nevertheless, 

their drawback is the sintering ongoing with a loss in catalytic activity by thermal ageing 

[35]. The use of bimetallic Pt/Pd DOCs offers several advantages. Palladium is much 

cheaper than Platinum and significantly stabilizes against sintering associated with much 

higher activity after the thermal ageing [36,37] 

2.1.2.2 NOx	Storage	Catalyst		

As NOx Storage Catalysts are potent NOx adsorbers even at room temperature [38], they 

offer high potential for abatement of NOx emissions during engine cold-start. Next to Pt or 

Rd catalyst particles [39,40], a further storage component e.g. alkali metals or earth 

alkaline metals are washcoated on the monolith (compare Fig.	4). This component is able 

to adsorb NOx as a nitrate. Barium as storage component is present as BaCOin the CO2 

rich atmosphere of the exhaust [41,42]. During lean engine operation, NOx are stored as 

BaNO at the outer shell of the BaCO particles. In regular intervals the NSC has to be 

regenerated. During fat engine operation condition the present reducing agents e.g. HC, 

CO and H2 release the stored NOx from the BaCO followed by their reduction over the Pt-

catalyst. Compared to NH3-SCR, the NSC is a simple technique for NOx abatement, as no 

additional reducing agent has to be provided by a tank. Nevertheless, due to the Pt/Rd 

particles, it is expensive. A further problem, similar to DOCs, is the deactivating due to 

catalyst ageing or poisoning by SO2 [43]. If barium sulfate has formed at the surface of a 

Barium particle, it is no longer active for NOx storage. 
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Fig.	4	Pt and BaCO3 particles on the catalytic surface of a NSC: a) illustrates the principle of NOx 
storage during lean engine operation, b) shows the regeneration of the storage catalyst. The 
illustration originates from [3]. 

2.2 Selective	Catalytic	Reduction	of	Nitric	Oxides	

An effective way to reduce NOx from gas phase is the selective catalytic reduction (SCR) 

of NO and NO2 to N2 [4]. One measure for the performance of an SCR system is the light-

off temperature (T50), which characterizes the lowest temperature at which the catalyst 

shows 50 % NOx conversion. As reducing agent for this heterogeneous catalytic reaction 

hydrogen (H2), hydrocarbons (HC), ethanol and ammonia (NH3) are widely discussed in 

literature. Metal-ion exchanged zeolites e.g. Pd/ZSM-5 or Co/ZSM-5 in combination with 

HC as reducing agent showed NO conversion of up to 70 % at temperatures above 600 °K 

as well as high selectivities towards the N2O formation. Similar results were also found 

for HC-SCR on other metal/zeolite combinations [44,45], making them not suitable for the 

demands of the automotive industry, where high NOx conversion rates (close to unity), 

low N2O formation and early light-off (below 450 K) is mandatory. Also ethanol-SCR over 

Ag/Al�O catalysts could not fulfill the requirements of automotive application, as the 

light-off is at 520 K or above [46,47]. With the current state of technology, NH3 is used as 

reducing agent. Since 2004 the first trucks were equipped with NH3-SCR technology. The 

NH3 is usually generated in situ. An aqueous solution of urea (32.5 %, named »AdBlue®«) 

is injected in the hot exhaust and decomposes by hydrolysis (R 4) [48]. Although an 

additional tank for AdBlue has to be installed in the car, its advantage is the safety issue, 

as there is no need for the transportation of compressed NH3. The acidic catalysts for SCR 

are washcoated on flow-through monoliths. They are characterized by high NH3 

adsorption capacity [49,50]. The reduction of NO with NH3 (R 5) is described by the so 

called »Standard SCR reaction« [51]. At NO2-to-NOx ratio, γ =  Y(y@z)Y(y@{) , of 0.5, NOx are 

converted to N2 by the so-called »Fast SCR reaction« (R 6), which is about ten times faster 
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than (R 5) [52,53]. Both have a NH3-to-NOx stoichiometry of α =  Y(y|})Y(y@{) = 1. As the DOC 

oxidizes NO to NO2, adjusting the NO2-to-NOx ratio by DOC towards 0.5 will increase the 

SCR performance of the whole exhaust gas aftertreatment system. At γ > 0.5 the »NO2 

SCR reaction« (R 7) becomes important. It is much slower than the standard SCR reaction 

and with α =  �, NH3 is overconsumed. The NO2-SCR reaction occurs according to a 

mechanism wherein surface nitrates are first formed by NO2 disproportionation, followed 

by their catalytic reduction to nitrogen by ammonia [54]. 

(p�u)ij(up�) + p�j → 2up  +  ij� (R 4) 

4uj + 4up + j� ↔ 4u� + 6p�j (R 5) 

uj�  +  uj + 2up ↔ 2u� + 3p�j (R 6) 

3uj� + 4up ↔ 3.5u� + 6p�j (R 7) 

2.2.1 State-of-the-art	Catalysts	

Vanadium-, tungsten-, titanium-oxides (VWT) were the first catalysts used for NH3-SCR 

[55]. Drawbacks are the toxicity of vanadium, the high oxidation rate of SO� to SO, 

hydrothermal instability and the limited temperature window (500 K to 700 K) of 

appropriate NOx conversion performance as well as low storage capacity for NH3 [53,56–

58]. 

Although new catalyst-concepts, like vanadium and cerium on MnO�-TiO� [59] or 

amorphous MnOx catalysts [60,61] showed improved light-off at 400 K or even lower, 

VWT- and oxide-catalysts were not able to assert on the market for passenger car diesel 

engine aftertreatment. The second generation of SCR-catalysts focuses on metal-ion 

exchanged zeolites. Medium pore-size zeolites e.g. ZSM-5, Beta or Y could be proven as 

good candidates for catalytic application [53,62]. Primarily Cu-ZSM-5 [56] and Fe ZSM-5 

[58,63–65] became famous (in following abbreviated as Cu-zeolite or Fe-zeolite). They 

show very good conversion in a broad temperature window and durability towards H2O 

and SO2 poisoning [63]. Among others Cavataio et al. [66] reported a better light-off 

behavior for the Cu-ZSM-5, while the Fe ZSM-5 has better NOx conversion in high 

temperature regime. After ageing for 64 h at 670 °C (to represent roughly 120 k mi on a 

diesel vehicle with a regenerating soot filter), it was obvious that vanadium-based SCR 

was not an option [60], due to the dramatic decrease in NOx conversion performance 
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(compare Fig.	5). Furthermore Cu-zeolites show higher NH3 storage capacity compared 

to Fe-zeolites, which is beneficial for the DeNOx reaction [49]. Many preparation methods 

for Cu-zeolites are reported and compared in literature. Park et al. [62] found the optimal 

DeNOx performance for ion-exchange rates of 4 wt.-% Cu into the ZSM-5 zeolite. 

Consequently Cu or Fe exchanged into the Beta- or ZSM-5-zeolite framework have 

promising properties for application and are currently introduced into the market [4]. 

Metkar et al. even proved the combined Fe/Cu-zeolite catalysts to have higher NOx 

conversion activity over broader temperature range compared to the individual Fe- or Cu-

zeolite catalysts [52,67].  
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Fig.	 5	 NOx conversion of Cu, Fe and Vanadium based SCR formulations as a function of 
temperature. 350 ppm NO, 350 ppm NH3, 14 % O2, 5 % H2O, 5 % CO and N2 balance at GHSV 
30.000 h-1. Original illustration, based on [60,66]. 

Next to the experimental studies, many theoretical work on the field of modelling were 

published over the last decade. Sjövall et al. [50,51,68–71] presented a detailed kinetic 

model description of the NH3-SCR over Cu-ZSM-5. Thereby, NH3 adsorption seems to be 

the key for good catalytic properties. Three storage sites were distinguished: NH3 

adsorption at 1) the exchanged Cu-ions, 2) Brönsted acid sites from Si/Al zeolite 

framework and 3) weakly bound storage sites [50,51]. 

As shown by Nova et al. [72,73] another obstacle of NH3-SCR over Fe-zeolites as well as 

VWT catalysts is the inhibition of the Standard and Fast SCR reaction rate by excess NH3. 

They found a kinetic description for this phenomenon but it seems not to be significant 

for their analyzed copper zeolite catalyst [49]. For higher temperatures, different side 
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reactions are conceivable e.g. the oxidation of NH3 by O2 or NO2 forming N2, NO or even 

N2O. Nevertheless, especially for the Fe-zeolite a very high selectivity (up to 100 %) for 

the reduction of NOx to N2 and only negligible amounts of formed N2O were observed [65]. 

The main drawback of Cu- and Fe-zeolites is their hydrothermal stability [53,57,65]. A 

decrease of NH3 storage capacity is reported to be associated with a dramatic loss in NOx 

conversion performance as well as a decreased selectivity towards N2 formation. 

Appropriate NH3 Temperature Programmed Desorption (TPD) experiments on 

hydrothermally aged Cu-Beta zeolites were performed by Wilken et al. [57]. The results 

are exemplarily depicted in Fig.	 6. They observed the deactivation of acid sites for 

strongly bound NH3 (shift of peak-maximum towards lower temperatures for the NH3 

released during temperature ramp up at times > 60 min). Also, the amount of weakly 

bound NH3 (released during flushing, minute 35 to minute 60) is reduced, resulting in a 

decrease of the overall NH3 storage capacity (inset). These negative phenomena could be 

attributed to the destruction of zeolite structure (decreased surface area and pore 

volume) and the agglomeration of active Cu phase [74,75]. 
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Fig.	 6	NH3 concentration as a function of the time-on-stream for Temperature Programmed 
Desorption (TPD) experiments on hydrothermally aged Cu-Beta zeolites (Ageing: 3h at 773 K, 
973 K, 1073 K and 1173 K in 8 % O2, 5 %CO2 and 5 % H2O, Adsorption at 423 K, temperature 
ramp: 10 K min-1 up to 773 K.	The inset shows the loss of NH3 storage capacity with ongoing 
hydrothermal ageing. The illustration originates from [57]. 
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2.2.2 Novel	Catalysts	

The key to overcome the stability issues towards hydrothermal ageing of Cu- or Fe-

exchanged ZSM-5- or Beta-zeolites seems to be a change in the zeolite system. Very 

recently many studies on small pore size zeolites with the chabazite framework topology 

e.g. CU-SSZ-13 [76,77], CU-SAPO-34 [78–80] or Cu-CHA [52] were published. CU-SSZ-13 

and CU-SAPO-34 show superior SCR performance, both before and after high-

temperature hydrothermal treatment compared to medium pore size zeolites CU-ZSM-5. 

Even after hydrothermal ageing, a wide temperature operation window with nearly 

100 % NOx conversion between 450 K and 750 K has been reported [81]. 

Compared to Cu- or Fe-ZSM-5-zeolites, for which the NOx reduction strongly depends on 

the NO2-to-NOx feed ratio (SCR performance optimal at 0.5), for Cu-CHA the enhancement 

in the NOx reduction activity by NO2 is not nearly as significant [52]. Furthermore a higher 

NH3 storage capacity and better light-off at low temperatures of Cu-CHA compared to Fe-

ZSM-5 is reported [52]. This features Cu-CHA for a broader range of operation conditions. 

The Cu-SSZ-13 was proven to combine a preferable light-off performance (T50 < 400 K, 

even better as Cu-ZSM-5) with the high temperature DeNOx performance of the Fe-ZSM-

5 (compare Fig.	5) [76,77]. This wide temperature window for operation as well as high 

thermal stability supporting the CU-SSZ-13 as a potential candidate for future application. 

The thermal stability of CU-SSZ-13 against hydrothermal ageing was examined by Kwak 

et al. [76]. Exemplary results of their work are given in Fig.	7. As Cu-ZSM, Cu-Beta and Cu-

Y show decreased NOx conversion after hydrothermal ageing, the CU-SSZ-13 remains its 

high DeNOx performance. The SCR of NOx to N2 over CU-SSZ-13 is characterized by very 

high selectivity (close to unity) and nearly no N2O formation even after hydrothermal 

ageing, while Cu-ZSM-5 or Cu-Y show increased N2O release after hydrothermal ageing 

[76,77,82]. 
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Fig.	7	NOx conversion as a function of the temperature (feed: 175 ppm NO, 175 ppm NO2, 350 ppm 
NH3, 14 % O2, 10 % H2O in balance N2) for different Cu-zeolites. Left: for fresh catalysts, right: after 
hydrothermal ageing (10 % H2O in air at 1073 K for 16 h). Original Illustration based on [76]. 

2.3 Diesel	Particulate	Filters	

To reduce the particulate matter, originating from the combustion process of a diesel 

engine, the state of the art technology is the so called diesel particulate filter (DPF) [3]. 

The honeycomb monolithic structures consist of parallel channels, whereas inlet and 

outlet channels are alternatively plugged (compare Fig.	8). This structure forces the gas 

flow to go through to porous filter wall. During gas transport, particles stick to the porous 

wall, causing soot filtration. Appropriate filters are named »wall flow filters«. 

 

Fig.	8	Honeycomb wall flow diesel particulate filter. The arrows indicate the gas flux through the 
porous channel walls. The illustration originates from [83].	

Nevertheless, an increasing mass of filtered soot leads to elevated backpressure, which 

has to be avoid due to higher fuel consumption and a decreasing engine efficiency [84]. 
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Hence soot removal is necessary in regular intervals. A controlled rise in the exhaust gas 

temperature up to 873 K [85,86] together with the oxygen excess in diesel exhaust gas 

results in burn off the flammable soot components (called »active regeneration«). The 

combustion of the total accumulated soot amount (up to 10 g l-1, gram per liter filter 

volume) within the filter causes extreme temperature conditions till 1300 K, putting high 

requirements on the thermal stability of the filter material [87]. To avoid this scenario, 

several approaches are discussed in literature. One way is to reduce the light off 

temperature by promoting an oxidation catalyst e.g. CeO2 on the filter [4,88,89], reducing 

the soot combustion temperature by more than 150 K. Another option is the oxidation of 

the soot particles (carbon) by means of the radical NO2 as reducing agent [90]. Thus, an 

oxidation catalyst like Pt is utilized in the filter, continuously oxidizing NO to NO2 [91]. As 

shown in Fig.	9, NO2 assisted soot oxidation runs at significantly lower temperature (> 

500 K) compared to O2 assisted combustion of soot (> 700 K). Hence a continuous 

regeneration (»passive regeneration« or continuous regeneration trap (CRT)) by NO2 

could be achieved. Furthermore modelling of the particulate filter helps to adopt the 

regeneration strategy for car application [92]. Next to soot particles, also lubricant 

derived ash components continuously plug the DPF. As they are not removable by means 

of oxidation, they remain in the filter, reducing its lifetime [93]. 
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Fig.	9	Soot-oxidation rate as a function of the temperature for Printex®U model soot oxidized with 
O2 (black curve) and NO2 (red curve). Original illustration based on [90].	
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2.3.1 Soot	Particles	

2.3.1.1 Origin	of	the	Soot	Particles	

The nucleation of soot primary particles is considered as the least well understood step 

in the soot formation process [94]. Many soot precursors are discussed in literature [95], 

e.g. acetylene, polyacetylene, benzene and polycyclic aromatic hydrocarbons (PAH). 

Nevertheless, the fundamental process for the formation of soot particles is the formation 

of PAHs inside the combustion chamber [96,97]. They arise from fuel constituents via 

several reaction pathways [5] e.g. from acetylene. By collision with other PAHs or by 

agglomeration of further HCs, a PAH grows to a so called »soot-nucleus«. These soot-

nuclei agglomerate to spherical particles, called »primary particles« For typical diesel 

soot, their diameter ranges from 5 nm to 20 nm [98]. The primary particles further 

agglomerate, resulting in fractal structures consisting of soot chains or clusters that are 

typically 50 to 150 nm in diameter (»soot particle«). A measure for the shape of the soot 

particles is the fractal dimension [99]. It describes the deviation of the soot particles shape 

to a perfect spherical particle. In the combustion chamber a temperature-window of 

1600 K < T < 1900 K at HCs excess (λ < 0.5) is mentioned to be promoting for the soot-

formation [5]. 

The inhomogeneous mixture within the cylinder of direct injection engines e.g. diesel is a 

promotion factor for the formation of large particulates. Nevertheless, during gasoline 

combustion, particles are also emerging. Harris et al. [100] compared the particle size 

distribution between different combustion engine technologies. In Fig.	10 two exemplary 

distributions are shown. While the promoting effects in a diesel engine lead to mean 

particle sizes between 60 nm and 120 nm (for the engine soot under their study) having 

a symmetric size distribution on logarithmic scale. This variety is due to different engine 

operation conditions e.g. EGR rate. Particles arising within a gasoline engine are 

significantly smaller with the majority emitted at 10 nm to 25 nm size. The mean particle 

size based on mass is in the range of 40 nm to 80 nm. 
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Fig.	10	Normalized particle number as a function of particle size. The data originates from [100]. 
The particle size distribution of a typical diesel engine soot is compared to a typical gasoline 
engine soot.	

2.3.1.2 Model	Soot	and	Engine	Soot	

Main characteristics of a bunch of soot particles are the particle size distribution, specified 

by the mean particle size, and the chemical composition. Latter is analyzed in terms of the 

share between EC (elemental carbon) and OC (organic carbon). Soot particles consist of a 

core of graphitic or graphene like structures [101] with some organic constituents 

attached to the primary particulates surface. The chemical composition is known to 

determine the oxidation behavior [90]. Earlier soot oxidation was found for higher OC 

rate. Engine soot changes in composition and size by means of the engine operation mode, 

fuel composition or engine milage [96,102]. Consequently its oxidation behavior is not 

constant, e.g. idle soot is more reactive than full load soot [90]. Also, lubricant derived 

components could attach to the soot particles, changing their chemical composition 

depending on engine operation point. 

To overcome the stability issues of engine soot, several kinds of model soot are suggested 

in literature [96,103,104]. Spark discharge soot (GfG) [105] and Printex®U (graphite 

powder) represent the higher and lower reactivity limits toward oxidation. Engine soot 

was found to be in between [106]. A further possibility to produce highly stable model 

soot is a commercial soot-generator utilizing propane or liquid fuels as source for soot 

particles [104]. Quenching the diffusion flame by N2 leads to zones of HC excess, 

promoting soot particle generation. The controllable quenching and gas flow allow a wide 
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range of parameters being adjusted, producing stable model soot in terms of mean 

particle sizes between 26 µm and 340 µm as well as EC contents between 20 and 99 % 

(rest is OC) [104,107]. For diesel engine out soot a EC rate between 60% and 80 % 

[96,108] is reported. Nevertheless, experimental results were more reproducible for the 

oxidation of the model flame soot than for the oxidation of diesel soot, and the flame soot 

was recommended as good model for diesel soot in oxidation studies [103,109]. 

Nowadays the application of a DOC upstream the particulate filter in the exhaust branch 

is standard. As the DOC converts most of the HCs attached to the soot particles, the soot 

collected within the DPF shows a high ratio of EC (> 90 %), which is the same for model 

soot from a propane burner [109]. 

2.3.2 Material	Properties	and	Pressure-Drop	

The channel wall thickness of typical monolithic wall flow DPFs ranges from 300 µm to 

400 µm [3] with cell densities between 90 cpsi and 300 cpsi. The porous walls consist of 

silicon carbide or cordierite, utilizing porosities between 45.1 % and 49.1 % at median 

pore sizes of 11.8 µm to 26.6 µm [110] (example shown in Fig.	11 c)). Also other ceramic 

filters e.g. sintered powders, fibers or open celled foams consisting of aluminum titanate 

or silicon nitride were considered as potential diesel particulate filters [111]. Another 

class are the metal supported flow-through particulate traps [112]. Nevertheless, their 

properties in terms of filtration efficiency, thermal stability, durability etc. are far behind 

those from wall flow monoliths made of silicon carbide or cordierite. This explains why 

they have only negligible market share but are still used in some niche applications. 

The basic principle of any kind of diesel filter is the separation of the soot particles, carried 

by the gas flow, on a collective surface. The separation involves passing the gas stream 

through a porous barrier, which retains the particles. Depending on the type of this 

barrier in principle two filter mechanisms could be distinguished (compare Fig.	11 a) and 

b)). In case the mean diameter of the collected particles is smaller compared to the mean 

pore size of the filter media, the collection mode is called deep bed filtration. In case of 

particles, smaller than the mean pores of filter media, the filtration is referred to as surface 

filtration or »cake filtration« [92]. Ceramic wall flow monoliths used as diesel particulate 

filters work with a combination of both filter mechanisms. If the filter is clean, on first 

stage of loading soot particles are collected by means of depth filtration inside the porous 

wall. As the depth filtration capacity is saturated, the surface pores close to the inlet 
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channel are plugged [113,114]. A cake layer consisting of filtered soot particles forms 

within the inlet channel. In ongoing soot loading the particles in the cake layer itself act 

as elemental collectors. Particles with small diameter are collected within the soot layer 

by means of deep bed filtration, large particles are filtered on the cake layer surface. 

Typically the cake layer thickness within the inlet channel reaches 30 to 60 µm until a 

regeneration is required due to elevated backpressure. 

  

Fig.	11	Schematic representation of the filter mechanisms inside a particulate filter: a) depth 
filtration within the porous wall and b) cake filtration as distinct layer in the inlet channel. In 
c), a SEM picture of a channel cross section of a soot loaded DPF, presented by Bensaid et al. 
[113], is given.	

 

For the depth filtration three main processes of aerosol deposition could be distinguished 

(see Fig.	12) [115,116]. A massive particle approaching the filter structure will not exactly 

follow the air stream lines around the obstacle. Due to its inertia, it follows a straighter 

path, ending up on the filter media. The higher the particle mass, the greater will be the 

deviation of the velocity vector compared to the gas flow direction. This process is called 

»inertial impaction«. Small particles (negligible inertia) follow the stream lines even at 

high gas velocities around the obstacles. If the distance between the streamline and the 

obstacle surface is smaller than the particle radius, it will stick to the filter media. This is 

called »interception«. The smallest particles in the gas stream collide with the gas 

molecules. This changes their direction of motion, compared to the gas stream lines, 

following random paths. This kind of motion in close proximity to a filter medium leads 

to a contact. A concentration gradient between the bulk of the flow and the flow near the 

obstacle establishes, increasing the »Brownian motion« towards the obstacle. The smaller 

the particles, the more efficient is this kind of filtration. Quantitatively it could be 

described by means of the Peclet number [92]. 

a) b)
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Fig.	12	Schematic representation of the three aerosol deposition modes occurring during depth 

filtration: a) Inertial Impaction, b) Interception and c) Brownian motion. The illustration is based 

on [115].	

Combining both major filter mechanisms, deep bed filtration and surface filtration, as well 

as the buildup of the soot cake layer in progression of the soot loading, itself acting as an 

efficient filter for particulate removal, the diesel particulate filters nowadays are very 

efficient. Many reports on filtration efficiency are presented in literature [117–119]. 

Studying 40 different DPFs (differing in porosity, mean pore width etc.), in [117] the total 

particle number filtration efficiencies of >98 % over a particle size range of 20−300 nm 

are reported. As engine soot always shows a distinct particle size distribution (compare 

Fig.	10), the filtration efficiency for each separate particle size is hard to distinguish. Yang 

et al. [98] reported on evaluation of single particle size filtration efficiencies using dry 

ammonia sulfate particles with size varying from 30 to 615 nm. Filter under study was a 

SiC filter (NGK Insulators Ltd.) with 42 % porosity, wall thickness of 360 µm and 

volumetric mean pore width of 9 µm. As shown in Fig.	13, during the initial stage of filter 

loading (deep bed filtration) they observed best filtration (close to 100 %) for the largest 

particles with 455 and 615 nm. Also, the smallest particles between 30 and 40 nm 

revealed very good filtration performance > 90 %. Particles larger than 80 nm and smaller 

than 200 nm initially were filtered worse with efficiencies below 70 %. Nevertheless, after 

8 min under their experimental condition of loading (unfortunately mass flow not 

mentioned) the filtration mode changed from deep bed filtration to cake filtration, 

revealing filtration efficiencies for all particle sizes under study close to 100 % for the rest 

of the loading time. The particulate penetration depth inside the porous filter wall (in 

distance to the inlet channel) was determined to be about 80 µm. 

a) b) c)
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Fig.	13	DPF filtration efficiency as a function of loading time for different particle sizes (laboratory 
generated dry ammonia sulfate particles). Data originates from [98] (for further experimental 
details, the reader is advised to this article).	

Next to the filtration efficiency also the backpressure of the DPF depends on the filtration 

mode [98,120–122]. In Fig.	14 (left) the backpressure as a function of loaded soot mass 

is depicted. At initial stage (indicated with 1) of the loading process, the clean DPF reveals 

a certain backpressure as it is a flow barrier for the gas stream. Typical values are in the 

range of 0.5 to 2 kPa. Calculatory analysis on the dependencies of the filter backpressure 

from material parameters e.g. porosity, narrowness of the pore size distribution as well 

as median pore width were carried out, among others, by Merkel et al. [121]. They found 

a higher porosity (> 50 %) and a narrow particle size distribution around 12 µm to result 

in low filter backpressure. Nevertheless, if the porosity is too high, the material stability 

could not be guaranteed. At stage 2 (Fig.	14 left) of the deep bed filtration, the walls of the 

porous filter material close to the inlet channel are covered with soot. This results in 

increasing backpressure with increasing soot mass. At stage 3, soot is plugging the necks 

of the surface pores, characterized by a steep slope of the backpressure curve. When all 

the surface pores are blocked, the deep bed filtration is saturated and filtration mode 

changes to surface filtration establishing a cake layer on top of the porous wall inside the 

inlet channel. This fourth stage of loading is featured by a less steep linear growth of the 

filter backpressure. Typical values for the deep bed filtered soot amount ranges from 0.2 

to 1 g l-1 (compare Fig.	14 right). The deep bed filtration process on DPF was already 

studied in detail. Sanui et al. [114] reported on a soot penetration depth of 40 µm based 
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on SEM measurements on DPF (porosity 50 %, mean pore size 15 µm). Soot distribution 

studies by means of VP-SEM (variable Pressure-SEM) and UV (ultraviolet) microscope 

technique done by Yapaulo et al. [123] revealed the bulk of the particles to be deposited 

close to surface with penetration depths up to 100 µm. Nevertheless, as the filtration 

efficiency is less than 100 % during deep bed filtration (compare Fig.	13), a small amount 

of particles slipped through the porous wall, penetrating deeper zones. Furthermore, they 

investigated the influence of filtration velocity (4 m s-1 and 8 m s-1). A higher filtration 

velocity results in higher soot mass loaded within the porous wall, whereas the 

penetration depths remain nearly the same. 

The main contribution of the filter backpressure is based on deep bed filtered soot within 

the porous wall. That is why, among others, Koltsakis et al. [120] suggested a special 

layered DPF design, based on a theoretical filter model calculation. The implementation 

of a thin »stop layer« in the inlet channel on top of the porous wall with mean pore width 

of 4 µm and a porosity of 50 % will decrease the mass of deep bed filtered soot from 1 g l-

1 to 0.3 g l-1. Associated with the faster overcome of the deep bed filtration in wall, the 

filtration efficiency will be maximized and the backpressure could be significantly 

reduced. The resulting backpressure as a function of the soot loading in given in Fig.	14 

(right).  
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Fig.	14 Left: Filter backpressure as a function of the soot loading. The domains characterized by 
numbers (1…4) explain the conceptual model of DPF filling depicted in the middle [121]. Right: Filter 
backpressure as a function of the soot loading for an SDPF without and with a further stop-layer 
inside the filter channel towards the porous wall (55 % porosity and mean pore width of 14 µm). 
Further details and original illustration is given in [120]. The dashes lines indicate the transition 
from depth filtration to cake layer filtration. 

 

1.

2.

3.

4.



2 Literature Overview  31

 

 

Much effort has been done on the field of modelling and calculating the filter backpressure 

evolving during soot loading [124–127]. Haralampous et al. [125] presented a detailed 

description of the individual backpressure contributions. The contraction of the gas at the 

inlet channels (eq. (2.3)), the soot deposited as cake layer in the inlet channels (eq. (2.4)), 

the porous filter wall (eq. (2.5)), the channels themselves (eq. (2.6)) and the gas expansion 

at the outlet channels (eq. (2.7)) represent individual flow resistances, increasing the 

overall filter backpressure, as given in eq. (2.2). The channel cross section as calculatory 

domain, the above equations refer to as, is schematically illustrated in Fig.	15 (left). 

p� −  p� =  ∆p�>Y?S(�?!>Y +  ∆p�>>?  +  ∆p�(++ +  ∆p�c(YY*+ +  ∆p��/(Y#!>Y (2.2) 

∆p�>Y?S(�?!>Y =  �1.1 −  0.4 (D − 2w)�
2(D + w�)�� RTm= �

2p�M'N�(D − 2w)� (2.3) 

∆p#>>? =  RTM'p� � μDm=2k/+A"� ln � DD − 2w� +  βDwm= �
A"�(D − 2w) (2.4) 

∆p�(++ =  μv�k�H ⋅ w# =  RTM'p� �μw�m=k�HA# � (2.5) 

∆p�c(YY*+ =  a�μRTLm= �
3M'N � 1p�D� −  1p�(D − 2w)�� (2.6) 

∆p*�/(Y#!>Y =  �1 −  D�
2(D + w�)�� RTm= �

2p�M'N�D� (2.7) 

Equation (2.5) represents the well-known »Darcy’s Law« for description of the flow 

resistance of a permeable medium [92], involving the mediums permeability �. Darcy 

suggested this description of the pressure drop in 1856, studying the water flow-through 

packed beds of sand. 

For calculation of the permeability � several approaches are discussed in literature, 

among others, by Pulkrabek et al. [128] or Konstandopoulos et al. [129]. Latter suggested 

the following set of equations (eq. (2.8) to eq. (2.12)) for calculation of the soot layer 

permeability k/+. Nevertheless, as given here, it could also be applied on the porous filter 

wall to determine its permeability k�H.	

k�H =  f(ϵ�H)d�,�H�SCF�H (2.8) 
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f(ϵ�H) =  29 �2 − 95 (1 − ϵ�H)� � − ϵ�H − 15 (1 − ϵ�H)��1 − ϵ�H  
(2.9) 

d/,�H = 23 ϵ�H1 − ϵ�H d�,�H  (2.10) 

SCF�H = 1 + Kn�H �1.257 + 0.4e� �.��Y���  (2.11) 

Kn�H = 2 λ d/,�H  (2.12) 

λ = ν�πMW
2 R T   (2.13) 

Depending on filter wall porosity ϵ�H and mean pore width d/,�H, the wall permeability 

k�H could be calculated. The calculation involves the Kuwabara function f(ϵ�H), the 

Knudsen number Kn�H, the mean free path λ as well as the Stokes-Cunningham factor 

SCF�H. Details are given in [93]. 

k�H ranges from 1.8 ⋅ 10��m2 to 1.2 ⋅ 10��� m2 [124,125]. The same result was found by 

Wirojsakunchai et al. evaluating the permeability of different filter substrates. They 

report on values of k�H =  1.10 ⋅ 10�� m� to 3.96 ⋅ 10�� m� for porosities between 

45.1 % and 49.1 % and median pore sizes ranging from 11.8 µm to 26.6 µm [110]. 

Replacing d/,�H by the diameter of the aggregated soot particle (daggregate) in eq. (2.10) and 

(2.12) as well as replacing d�,�H by the primary particles diameter (dprimary) in eq. (2.8) 

and (2.10), values for the soot layer permeability k/+.could be calculated. Depending on 

the soot layer porosity ¡¢£, values of k/+ between 10��� m2 and 10�� m2 are reported 

[129]. The soot layer features soot densities ρ/+ between 70 kg m-3 [130] and 120 kg m-3 

[93]. Comparing with graphite (density of 2300 kg m-3), its porosity could be determined 

to be in the range of 90 % < ϵ/+< 100 %. 

Nevertheless, the backpressure description by Haralampous et al. [125] (as given above) 

does not take the soot mass deposited within the porous filter wall and its evolution 

during loading time into account. Serrano et al. [126] and Konstandopoulos et al. [129] 

presented a »Unit Collector Cell« model. The wall is assumed to be a dense packageing of 

collector cells (illustrated in Fig.	 15 left). These spheres consist of a spherical unit 
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collector (consisting of solid wall material with radius d�H), which is surrounded by void, 

so that the experimentally determined wall porosity ϵ�H and mean pore width d/,�H are 

represented. This configuration with radius d�*++,� is called collector cell, schematically 

presented in Fig.	16 a). When soot is trapped inside the wall during loading, it distributes 

around the collector unit, resulting in its increased diameter d�,�, which is given by eq. 

(2.14). Soot particles themselves are not spherical, having a certain fractal dimension 

[99]. To account for irregular deposition of aggregated particles around the unit collector 

in the wall, the shape factor χ (ranging from 0 to 1, higher values indicate more spherical 

particle arrangement) was multiplied with the density of the soot in the porous substrate 

ρ#,�. A schematic is given in Fig.	16 b) and c). Consequently, the decreased porosity of the 

soot loaded wall has to be calculated with eq. (2.15). As there is less void available for the 

gas flow, the permeability k� of the soot loaded porous wall decreases with increasing 

amount of wall-soot (eq. (2.16)), which leads to an elevated backpressure. When the 

saturation coefficient ϕ approaches to 1, the collector unit is saturated with soot (eq. 

(2.18)) and the filter mechanism will change to cake filtration. Thereby, the percolation 

factor ψ defines the onset of pore bridging [126]. As there may be parts of the wall, filled 

up with soot and other parts, which are soot free, the overall permeability k�,* of the soot 

loaded wall is calculated by means of eq. (2.19). Using Darcy’s law (eq. (2.5)) the 

backpressure contribution of the soot loaded wall could be evaluated. 

 

Fig.	15	Left: Schematic representation of a cross section of a filter wall channel (grey area). The 
black area indicates the soot deposited as cake layer inside the channel. Right: Schematic 
representation of a pair of inlet/outlet channels. The arrows indicate the gas flow-through the 
porous wall. On the right a zoom of the soot loaded wall is depicted, representing the 
arrangement of the unit collectors as representation of the porous filter wall.	

 

soot

wall

D w

ws

v

vw

cake layer

wall w/soot

wall w/o soot

gas

porous wall

diesel particulate filter



2 Literature Overview  34

 

 

 

Fig.	16	Different states of the collector unit cell during soot loading process: a) represents the 
initial state of a clean collector unit, b) describes the case of irregular growth around the collector 
unit with low soot mass, leading to low shape factor and c) saturated cell with high shape factor. 
The schematic is based on Serrano et al. [126].	

 

d�,� = 2 �d�,�H
8 + 3m#BCDD4πχρ#,��

� �   (2.14) 

ϵ� = 1 − d�,�
d�*++,�  (2.15) 

k� =  f(ϵ�)d�,��SCF�  (2.16) 

ϕ = d�,� − d�,�H
(ψd�*++,�) − d�,�H  (2.17) 

m#,#(?BCDD = 34 π ��ψd�*++,�2 � − �d�,�H2 �� ρ#,� (2.18) 

k�,* =  � 1k�H + 1k����  (2.19) 

Due to the shape factor, the soot density within the porous filter wall ρ#,� is reported to 

be smaller than the soot density in the cake layer ρ/+. Values between 8  kg m-3 and 

14 kg m-3 were determined in [124] by means of calculation. Furthermore a filtration 

model, based on the unit collector cell model was presented by Konstantopoulos et al. 

[124]. For Brownian motion as well as for interception, collector filter efficiencies are 

calculated, resulting in deposition of incoming particulates within the collector units. The 

increased diameter leads to increased filter efficiency for the next iteration time step. 

Inertial impaction was found to have no influence on the trapping of soot particulates 

[114]. 

dc0
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2.4 SCR-coated	Diesel	Particulate	Filter	

The increasing efficiency of diesel engines leads to a decrease of the exhaust-gas 

temperature and thus to more stringent requirements for the thermal design of the 

exhaust-gas branch. A combination of an NH3-SCR active catalyst (nowadays Cu-zeolite) 

with a DPF utilizes the DeNOx functionality together with PM abatement within one 

aftertreatment component. Next to an improved size and weight (compared to separate 

SCR-catalyst and DPF), the main advantage of the SDPF is the better thermal management, 

as it could be placed closer to the engine [131]. The washcoat is coated within the porous 

walls of a high porosity (> 50 %) DPF substrate [121], deceasing its porosity. This results 

in slightly increased backpressure compared to DPF without coating. Nevertheless, 

finding the right porosity and washcoat amount is always a compromise between 

mechanical stability, backpressure and achieved catalytic performance [120]. For the 

catalytically active component within the washcoat mostly a zeolite (Cu or Fe) is chosen, 

as the VWT catalysts have a worse resistance against the thermal stress during regular 

regeneration [131]. 

The drawback of such an integrated system is the overlap of functionalities. The 

interaction of soot particles and the catalyst for ammonia-based SCR of NOx is still 

controversially discussed in literature [132–134]. For instance, Schrade et al. [135] and 

Mihai et al. [136] observed only a slight decrease of the NOx conversion (up to 5 %) for 

the standard-SCR reaction in presence of engine soot in the SDPF (loaded on engine test-

bench). They explained this phenomenon by blocking of the active catalytic sites 

[135,136]. Cavataio et al. [137] also reported on a loss in NOx conversion (see Fig.	17 

right) for standard- and fast-SCR of soot loaded SDPF, but on much larger extent (up to 

20 %, using model-soot from soot-generator). They also explained the behavior by the 

blocking of active sites. Unfortunately, the amount of deep bed filtered soot (or a 

backpressure curve) is not given in [66,135,136]. Using a physical mixture of powdered 

SDPF and the commercial Printex®U soot, a similar situation (high loss in NOx conversion) 

was found from Tronconi et al. [138,139]. They presented comprehensive studies on the 

interaction between soot and the SCR DeNOx catalyst. The focus of their work was the role 

of NO2 within the SDPF reaction network in terms of the competing NO2-soot combustion 

vs. Fast- and NO2-SCR reaction. Thereby, at temperatures above 523 K NO2 is reduced by 

the oxidation of soot. This leads for fast-SCR to decreased NOx conversion as it shifted 

towards the slower standard SCR stoichiometry n(NO2)/n(NOx) < 0.5. On the other hand 
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in the presence of soot, the NO2 reduction by soot oxidation for the NO2-SCR results in 

higher conversions, as the n(NO2)/n(NOx) ratio is shifted towards 0.5, promoting the fast-

SCR reaction [135,138,139]. The results found by Schrade et al. for light-off experiments 

are given in Fig.	17 (left). Also the vice versa effect of a reduced passive soot oxidation (by 

NO2) when the fast SCR reaction is active, has been reported [140]. Nevertheless, in order 

to not deal with the cross reaction of NO2 in the reaction gas to soot, only standard SCR 

reaction was considered here to evaluate the physico-chemical influence of soot on the 

DeNOx behavior. 

Next to the soot-influence on the DeNOx properties, there are controversial results 

reported regarding the influence of soot on the NH3 storage capacity of SDPFs. While a 

decrease in the NH3 storage capacity was found upon soot loading [132,141], also elevated 

amount of stored NH3 were reported. Schrade et al. [135] found 0.1 g l�� to 0.2 g l�� more 

NH3 storage in the presence of soot, Mihai et al. [142] found an increase of 69 μ moly| 

and Tronconi et al. [138] reported 28 μ moly| g�(?�� more NH3 storage, if soot is present. 

An increased ammonia storage capacity was explained by additional acid sites for NH3 

adsorption provided by the soot itself [143].  

Despite the studies and results referred to above, there is still a lack of understanding of 

the microscopic processes governing the interaction of soot with the catalytic component 

in SPDFs. 
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Fig.	 17 Left: NO conversion as a function of temperature during standard SCR reaction 
(350 ppm NH3 and 350 ppm NO dosed with 5 vol.-% H2O and 14 vol.-% O2 in N2 during 
temperature was linearly ramped at 5 K min-1 from 400 K to 973 K) performed on SDPF 
samples with Cu-zeolite washcoat (soot free sample and soot loaded sample msoot = 10.3 g l-1). 
The illustration originates from [66]. Right: NOx conversion as a function of temperature for 
different NO2-to-NOx ratios (0.0, 0.5 and 1.0) as well as for different soot loadings (0 g l-1 and 
5 g l-1). Experimental conditions and original illustration given in [135].	
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2.5 Gas	Diffusion	through	Soot	

Only few reports take a mass transport limitations inside the porous wall of soot loaded 

filters [144,145] into consideration, although the necessity for the gas species to diffuse 

through the soot layer deposited on top of the washcoat is evident. According to Park et 

al. [145], the soot inside the wall has much more impact on the SCR reactions compared 

to the soot as cake layer in the inlet filter channel. They extended the concept of the Thiele 

modulus (normally used for description of diffusion inside the catalyst washcoat) on the 

soot layer inside the porous wall. Hence, an effectiveness factor was introduced, reducing 

the reaction rates in the presence of soot in the porous filter wall. As soot particles 

(primary particle size 5 to 20 nm) deposit as a porous medium (porosity ϵ/+, tortuosity τ� 

and pore width d/) with very small length scale, Knudsen diffusion was suggested as the 

relevant transport mechanism for the gas molecules through a soot layer [109,144,145]. 

The Knudsen diffusion for gas species k through a porous medium is calculated by means 

of equation (2.20): 

D� =  ϵ/+τ�
d/3 � 8 R Tπ MW�  (2.20) 

MW� represents the molecular weight of the gas molecules. 

Nevertheless, regarding the gas diffusivity through a soot deposit, there is still a lack of 

understanding. To the best of our knowledge, a measurement of the self-diffusion 

coefficient of probe gas molecules within soot has not been reported yet in literature. 
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3 Experimental	Section	

3.1 Materials	

3.1.1 Preparation	

The samples under study were two SDPFs, one SCR-catalyst (flow-through) and one NSC 

(flow-through). All are commercial products, supplied by the industrial partner (IAV 

GmbH). The SDPFs, consisting of a porous SiC wallflow filter with a Cu-containing zeolite 

washcoat as NH3-SCR active component. The specifications are given in Tab.	 3.1. To 

prepare the SDPF samples studied here, the full-size SDPF monolith was cut. The channels 

of the cut SDPF pieces were alternatingly plugged to restore the particulate filter layout 

(preparation conforms [66]). An example of a prepared sample is given in Fig.	18. The 

plugging was done by dipping the sample headfirst in an α-Al�O suspension (10 µm 

powder, 99.5 %, Sigma-Aldrich®, 1 g Al�O on 1 ml water), followed by stitching out the 

Al�O plug from every second channel. Finally, the sample was dried in an oven at 393 K 

for 1 h in ambient air. In prior tests, Al�O was proven to have no influence on any catalytic 

properties [4]. To avoid spatial distribution of soot in the axial channel direction, a short 

sample length was chosen: 60 mm for SDPF1 and 81 mm for SDPF2. The sample cross-

section was 10 times 10 channels at a cell density of 350 cpsi or 286 cpsi, respectively. By 

means of mercury intrusion porosimetry, the porosity of the filter wall of SDPF1 was 

determined to be 48.0 % and its mean pore width to be 26.6 µm. Unless otherwise stated, 

investigations performed on SDPF samples refer to SDPF1. 

Also a flow-through SCR-catalyst and a flow-through NOx storage catalyst (NSC) were 

analyzed. The sample lengths were 7.5 cm and 4.4 cm respectively (as provided by the 

industrial partner, IAV GmbH). As both have been flow-through substrates, the channels 

are not plugged at the ends. No filter effect is intended and the walls themselves are not 

porous. All specifications are given in Tab.	3.1. 
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Tab.	3.1:  Specifications of the samples used in this study. 

Filter	Parameter	 SDPF1	 SDPF2	 SCR-Catalyst	 NSC	

Type Wall flow Wall Flow Flow-through Flow-through 

Wall Material SiC SiC Cordierite Cordierite 

Length / cm 6.0 8.1 7.5 4.4 

Frontal area / cm2 1.69 2.26 2.10 1.45 

# Channels on front 100 100 121 80 

Cell density / cpsi 350 286 375 400 

Wall thickness / µm 300 300 150 100 

Material porosity / % 48.0 41.2 - - 

Mean pore size / µm 26.6 17.0 - - 

Catalytic coating Cu-zeolite Cu-zeolite Cu-zeolite Pt/Pd/Rh and 

Ba/Ce on Al�O 

Washcoat 

manufacturer 

Johnson 

Matthey 

- - BASF 

Substrate 

Manufacturer 

Corning - - - 

	

	

Fig.	 18	 Photographic picture of an SDPF sample prepared for soot loading and model gas 
measurements.	
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3.1.2 Dissolution	of	the	zeolite	from	the	SDPF		

In order to determine catalytic properties of the pure soot, the zeolite layer was removed 

from the SDPF sample before soot loading to obtain a bare soot filter. For that purpose, 

the SDPF sample was immersed in 1 M aqueous NaOH solution at a temperature of 353 K 

for 24 h, followed by washing the resulting SiC filter substrate (referred to as »bare filter 

substrate«) with distilled water and drying for 2 h at 423 K in an oven while flushing with 

ambient air. Then, the bare filter substrate was loaded with soot (see chapter 3.3.3) prior 

to model gas experiments. In preliminary experiments the bare filter substrates were 

proved to show no NH3 storage or NH3 DeNOx performance. 

3.2 Characterization	

3.2.1 Hg-Intrusion	on	SDPF	Sample	

Mercury (Hg) intrusion porosimetry has been used to determine the pore size distribution 

of the porous filter wall material. Prior to porosimetry investigation, a piece of the SDPF 

was coarse grained in a manner, that only the channels were destroyed but not the porous 

walls. The investigations were performed on a Porotec Instrument (Pascal 440 Series). 

Using the Porotec software, the mean macropore width was calculated applying the 

Washburn equation. Pores diameters ranging from 0.005 µm to 100 µm were analyzed. 

3.2.2 Scanning	Electron	Microscopy	of	SDPF	Sample	

Soot free and soot loaded SDPF samples were analyzed by means of scanning electron 

microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX) to examine 

the structure and the elemental distribution. Prior to investigation, the soot free SDPF 

sample was cut perpendicular to the channel axes to reveal the channels cross section. 

The thickness of the cut SDPF pieces was 2 mm. Then it was mounted on a sample holder. 

For investigation of the soot loaded SDPF sample, prior to soot loading (see chapter 3.3.3) 

the mid part (3 mm) of the sample was sawed out (compare Fig.	19). Afterwards it was 

accurately adjusted (channel on channel to restore filter layout) and wrapped in adhesive 

heavy-duty aluminum foil. After soot loading, the mid part was carefully removed and 

mounted on a SEM sample holder. Using a MED 010 device (Balzers) gold was vapor 

deposited on the sample. SEM measurements were performed on a LEO 1530 (Leo 

Electron Microscopy Ltd.) using an acceleration voltage of 5 kV and a working distance of 

10 mm. 
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To prepare a cut SDPF piece for SEM-EDX investigation, it was embedded in an epoxy 

resin, manually grinded and polished in a Dimple Grinder (Gatan, Pleasanton, CA, USA) 

using 0.05 µm Al2O3 suspension in water (Buehler, MasterPrep Polishing Suspension). 

After mounting on a holder, carbon was vapor deposited on the sample using a CED 030 

device (Balzers). SEM-EDX measurements were performed on a LEO 1530 (Leo Electron 

Microscopy Ltd.) applying a Link Pentafet EDX detector (Oxford Instruments) using an 

acceleration voltage of 20 kV and a working distance of 15 mm. The program Inca 4.06 

(Oxford Instruments) was used for the elemental analysis and mapping. 

 

Fig.	19	Photographic picture of an SDPF sample, as it was prepared for soot loading prior to SEM 
investigation.	

3.2.3 Pulsed	Field	Gradient	Nuclear	Magnetic	Resonance	on	Model	Soot	

The Pulse Field Gradient NMR (PFG-NMR) is a technique to measure molecular self-

diffusivities. Thereby, a specially designed sequence of radio frequency pulses (RF) and 

magnetic field gradient pulses are applied, leading to the formation of a spin-echo. Its 

intensity depends on the sequence parameters, the nuclei under study and the molecular 

self-diffusivity of the species carrying the nuclei [146]. The PFG-NMR technique is of non-

invasive nature as it only acts on the nuclear magnetic moment of the system under study. 

Two types of information are accessible by the NMR measurement: The amount of 

molecules (derived from signal intensity of the free induction decay, FID) and the 

molecular self-diffusivity (derived by means of PFG-NMR). A comprehensive introduction 

into PFG-NMR can be found in [147,148]. 



3 Experimental Section  42

 

 

In this study the measurements were carried out using the homebuilt PFG-NMR 

spectrometer FEGRIS 400 NT operating at a 1H resonance frequency of 400 MHz [149]. 

For all measurements, the 13-interval pulse sequence was applied [148,150]. The self-

diffusivities presented here are obtained by measuring the attenuation of the spin-echo 

signal S as a function of the amplitude of the applied field gradient. The amplitude was 

varied from 0.05 T m-1 to a maximum value of 20 T m-1. 

The samples for PFG-NMR were prepared as follows. Prior to measurement, the SDPF 

sample was soot loaded (see chapter 3.3.3) and cut (see chapter 3.2.2 and Fig. 19). About 

300 mg of the chopped SDPF sample (filter structure preserved) were introduced into an 

NMR tube. Then the tube was connected to a vacuum system. The sample was activated 

by keeping it under high vacuum at 673 K for 20 h. Subsequently, the test gas molecules, 

e.g. NH3, were adsorbed on the sample at 298 K using the computer-controlled adsorption 

setup explained in [146]. The soot loaded SDPF samples were saturated with NH3 at 

105 Pa. Upon loading with the test gas molecules, the tube was sealed and removed from 

the vacuum system before introducing in the PFG-NMR device. The measurements were 

performed with a diffusion time of td = 5 ms, 10 ms and 20 ms of the 13-interval pulse 

sequence. 

3.3 Soot	Loading	Apparatus	

During diesel combustion in an engine, next to the soot particles several other fuel or 

lubricant derived components could form, attaching to the soot. Furthermore the soot 

mass flow and properties (particle size distribution, OC-to-EC-ratio) strongly depend on 

the engine operation mode [109]. To have a defined and reproducible soot, which equals 

real diesel soot in its main properties and enables a fast DPF loading in the laboratory, a 

model soot is essential. Due to very good conformance to diesel engine soot, a propane 

burning soot-generator was strongly recommended for appropriate studies [104,109]. 

In this work, soot has been generated by a miniCAST (Combustion Aerosol Standard) soot-

generator (Model 5201 Type C) from Jing Ltd. The soot generation is realized by means of 

a diffusion flame with propane (purity > 99.5 %, Linde-Gas) as fuel. In the diffusion flame 

oxygen and the fuel gas could only react in the flame front. As the lighter hydrogen atoms 

(compared to carbon or hydrocarbon) faster diffuse to the flame front, the inner part of 

the flame is carbon rich. Oxygen excess leads to high particle formation rates within the 

inner zone. Flushing an inert gas (e.g. nitrogen) as quench gas into the upper part of the 
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diffusion flame stops a further oxidation of the particles, resulting in high particulate 

output [109,151]. A schematic illustration of the combustion chamber is given in Fig.	20. 

Hence, depending on fuel gas, air and quench gas composition, highly stable particulate 

mass flow with mean particle sizes between 26 µm and 340 µm could be produced. 

Thereby, the chemical composition (EC-to-OC-ratio) depends on the particulate size. 

Larger particles have a higher ratio of elemental carbon [109]. The particle size 

distribution with a mean particle size of 70 nm to 100 nm represent the particle size 

distribution of diesel engines. The chemical composition of propane burner soot was 

proven to be 90 % to 96 % EC [107], which is the same for soot filtered in DPF 

downstream a DOC (converts most of HCs attached to soot) [109]. Hence, the oxidation 

behavior of model soot with 85 nm in diameter is equal to diesel engine soot, making it to 

a highly representative replacement of diesel engine soot for laboratory studies. For the 

phenomenological investigation presented here, a stable soot is essential. 

 

Fig.	20	Schematics of the combustion chamber within the soot-generator.  

3.3.1 Set-up	

A soot loading apparatus was developed and built to bring a defined soot loading in an 

SDPF sample. A photographic picture of the apparatus is given in Fig.	21 on the left. The 

appropriate flow diagram in shown on the right. In this study, an SDPF sample holder as 

described by Bensaid et al. [113,152] was used. It allows the measurement of the pressure 

upstream (pup) and downstream (pdown) of the filter sample while loading with soot. The 

difference of pup and pdown is subsequently called backpressure ∆p. The backpressure was 
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measured by means of a 0 kPa – 500 kPa pressure sensor module (from Hygrosens). A 

self-written MATLAB® tool was used for data logging and plotting. Furthermore, it 

calculated (eq. (3.1)) in real time the soot loaded amount to monitor the loading status of 

the SDPF sample. The sample holder allowed maximum sample length of 24 cm and a 

maximum diameter of 22 mm. All pipes (stainless steel) were heated on 473 K to prevent 

condensation of water arising during combustion. The sample holder itself was heatable 

up to 973 K. Heating cords as well as HT43 temperature controllers from Hillesheim™ 

were used. 

The core unit of the soot loading apparatus is the miniCAST soot-generator (as explained 

above). It was supplied with propane, nitrogen and air. The miniCAST was controlled via 

its miniCAST control software enabling a variation of the fuel gas composition and hence 

of the soot particulate properties. Propane could be dosed in the range of 20 ml min-1 to 

80 ml min-1. Oxygen was variable in the range of 0 to 2 l min-1, which results in air-fuel 

equivalence ratios (¥) between 0 and 4.1. To adjust the size of the output particles, the 

propane could be diluted with up to 400 ml min-1 of N2 prior to combustion. Nevertheless, 

not every fuel gas composition ended up in stable combustion and soot production (see 

chapter 5.1). Additionally, up to 20 l min-1 air could be dosed into the exhaust gas for 

dilution purpose or to adjust the space velocity over the sample while soot loading. 

 
 

Fig.	21	Left: Photographic picture of the set up apparatus for soot loading of samples with: a) 
soot-generator, b) sample holder, c) differential pressure sensor and d) heat controller. Right: 
Flow diagram of the apparatus used for soot loading of the samples (MFC: Mass Flow 
Controller).	
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3.3.2 Soot	Characterization	

The miniCAST soot-generator allows a wide range of operation conditions due to a 

variation of the fuel gas composition (as given above). The combustion process is affected 

by the fuel gas composition. Hence, the properties of the output soot particulate flow 

depend on the fuel gas. Within this study a set of operation conditions (Tab.	 8.2, 

Appendix) was evaluated by means of particle size distribution and particulate mass flow 

to find a model soot, which equals real diesel engine soot in its main properties. 

3.3.2.1 Particle	Size	Distribution	

The particle size distribution was measured by a TSI Engine Exhaust Particle Sizer 

Spectrometer (EEPSTM) 3090. The principle of operation is briefly described in following. 

Prior to analyzation the particles within the gas stream are charged. The detection column 

consists of an array (32) of oppositely charged precision electrodes. The charged particles 

are attracted towards the electrodes. Due to its inertia, heavier particles hit a detector 

more downstream compared to lighter particles. This allows to distinguish particle sizes 

between 5.6nm and 560 nm into 32 fractions while counting the number of particle 

hitting each detector electrode. As the maximum detectable particle concentration per 

detector electrode (up to 1.7 × 10§ per cm3) was exceeded by the particle output of the 

miniCAST, a Rotating Disc Thermodiluter (Model 379020) of TSI with 3000-fold dilution 

was installed in between the miniCAST and the EEPS. An electric conductive tube (TSI) 

was used as connection between the devices to prevent particulate deposits on the inner 

surface of the tube.  

3.3.2.2 Particle	Mass	Flow	

The soot mass flow was determined by means of an AVL 483 Micro Soot Sensor (MSS). 

The soot particles in the measuring chamber become thermally stimulated by a 

modulated laser beam. Their periodic pulsation could be detected as acoustic wave, which 

is translated in a mass flow signal by the AVL software. As the maximum detectable soot 

mass flow (up to 50 mg m-3) was exceeded by the particle output of the miniCAST, a 

Rotating Disc Thermodiluter (Model 379020) of TSI with 33-fold dilution was installed in 

between the miniCAST and the MSS. 
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3.3.3 Soot	loading	procedure	for	the	Particulate	Filters	

Prior to soot loading, the sample was wrapped in heavy duty aluminum foil (compare Fig.	

18). After its positioning in the sample holder, the gap between the sample and the wall 

was filled with quartz wool and α-Al�O suspension (99.5 %, 10 μm powder, Sigma 

Aldrich Co.) to form a gastight seal after drying at room temperature for 60 min (see Fig.	

23 left). This technique was already proven in [4]. Preventing gas and soot to bypass the 

sample is essential to have a reproducible loading and to correctly determine the soot 

loaded amount in the filter. The cross section of the sample was chosen to be quadratic 

with a certain amount of parallel channels (see Tab.	3.1). None of the outer channel walls 

(in axial direction) were damaged to sustain the filter effect. Prior to soot loading, the 

SDPF sample was kept in the sample holder for 30 min at 473 K under air-flow until the 

temperature was constant within ± 2 K. Unless otherwise stated, the operation point used 

for the soot-generator was set to 60 ml min-1 propane mixed with 100 ml min-1 N2 and 

1.57 l min-1 air. The appropriate soot particles have a mean size of 80 nm. The soot mass 

flow was determined to be 42 mg h-1 at this operation point (see chapter 5.1). During soot 

loading (also performed at 473 K), a GHSV of 100.000 h-1 (volumetric gas flow of 

18.7 l min-1 over SDPF1 sample) was fixed to establish a gas velocity inside the filter, 

which is close to real car applications. In a very good approximation of a filtration 

efficiency of close to 100 % [98,119], the trapped soot mass could be calculated by 

integrating the soot mass flow over time (eq. (3.1)). The obtained soot mass loaded in the 

filter samples were validated against the carbon-balance from the sample regeneration in 

model gas (integrated carbon mass from CO and CO2 released during oxidation, eq. (3.2)). 

Both methods were in good agreement (see Fig.	61, Appendix). In the following, the soot 

mass loaded on the sample is abbreviated as msoot. Corresponding values are given in g 

soot per l of SDPF volume (in g l-1). Fig.	22 shows a soot loaded SDPF sample used in this 

work. On the left, the sample is shown immediately after the soot loading procedure, still 

mounted in the sample holder. On the right, the front end of the heavily loaded (msoot = 

10 g l��) SDPF sample was cut, revealing that every second channel (inlet channel) is filled 

with soot. 
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Fig.	22	Left: Photographic picture of a soot loaded sample immediately after termination of soot 
loading (still remained in the sample holder), Right: Soot loaded monolithic SDPF sample. For 
better visibility of the soot loading, the plugs at the top end were removed by cutting the sample.	

 

m#>>? = ¨ m= #>>?,@A dt V#(Q/+*�  (3.1) 

m#>>? =  ¨ ©(y(CO) +  y(CO�)) V= ⋅ MW�c!%.'(# ª dt V#(Q/+*«  (3.2) 

3.4 Catalytic	Characterization	using	Model	Gas	Experiments	

A bench flow reactor was used to study the catalytic properties of the samples. The model 

gas test bench, as described earlier [4,153], utilized a gas mixture of up to nine different 

components (e.g. NH3, NO, NO2, O2, water vapor). The samples, mounted in a steel reactor 

with a coating of amorphous silicon by SilcoTek (Bellefonte, PA, USA), is impinged with 

the model gas mix. The outlet concentrations are measured by means of a multigas 2030 

FTIR by mks instruments (Andover, MA, USA) and an OXY-FLEX-0 oxygen sensor by SST 

Sensing (Coatbridge, UK). The reactor was embedded in a tube furnace. 

Prior to investigation, the sample under study was equipped with thermocouples at the 

entry and the exit as well as another one 2 cm above the entry to measure gas 

temperature. After positioning the sample in the reactor (see Fig.	23 right), the gap to the 

reactor wall was filled with quartz wool. α-Al�O suspension (purity > 98 %, 10 μm 

powder, Sigma Aldrich Co.) was used as gastight seal. Preventing gas to bypass the catalyst 

sample is essential to correctly determine the NOx conversion or the NH3 slippage. 
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Fig.	23	Left: Photographic picture of an SDPF sample mounted in the sample holder for soot 
loading. Right: Photographic picture of a soot loaded SDPF sample, equipped with 
thermocouples, mounted in the reactor for investigation in model gas. In both cases the sample 
was stabilized in the tube by means of quartz wool, a ¬®¯° suspension was used as gastight 
seal.	

3.4.1 Pretreatment,	Regeneration	and	Hydrothermal	Ageing	

New samples (as cut from the full size SDPF), were degreened for 120 min in a furnace at 

923 K in ambient air. Soot removal (regeneration) was achieved by heating the soot 

loaded sample to 923 K (linear ramp of 10 K min-1) and holding this temperature for 

60 min in a gas-stream (GHSV = 40.000 h-1) containing 10 vol.-% O2 in N2. The 

regeneration procedure was performed after either the NH3-SCR or the TPD experiments. 

The concentrations of CO and CO2 released during oxidation were recorded by means of 

a FTIR (Fourier Transform Infrared Spectrometer). This data was used to calculate the 

amount of carbon deposited on the SDPF sample. 

Hydrothermal (HT) ageing was done by heating the SDPF sample up to 923 K in a furnace 

in ambient air and remaining at this temperature for several hours e.g. 18h or 39 h. After 

HT treatment, the sample was characterized in model gas. 

3.4.2 Temperature	Programmed	Desorption	of	NH3	

For characterizing the NH3 storage behavior over soot free and soot loaded samples, 

adsorption/desorption experiments were conducted. Prior to each experiment, the 

sample was heated to 873 K (10 K min-1) in flowing N2 (GHSV = 40.000 h-1) to remove 

adsorbed volatile organic compounds from the catalyst surface. After cooling to the 

adsorption-temperature of 423 K, 523 K or 623 K in N2, NH3 (200 ppm, 1000 ppm or 

3000 ppm) is added to the N2 feed gas until the inlet NH3 concentration equals the outlet 

NH3 concentration (compare, Fig.	34 part a)). Then, NH3 dosing is switched off, followed 
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by flushing with N2 to remove loosely bonded NH3 (part b) and a temperature-

programmed desorption (TPD) with a heating rate of 10 K min-1 (part c) to desorb the 

strongly bonded NH3. The space velocity GHSV = 40.000 h-1, 80.000 h-1 or 120.000 h-1 was 

kept constant during the whole experiment. The NH3 storage was calculated from the area 

under the curve of the desorbed NH3 volume fraction (in following referred to as 

concentration in ppm). It is given as mass of desorbed NH3 per SDPF volume (g l-1). The 

amount of adsorbed NH3 was calculated as the area between the inlet and the outlet NH3 

concentration during part a (adsorption). The equation is given in (3.3). Applying eq. (3.3) 

on part b and c yields the amount of desorbed NH3. 

my| =  ±¨(y(NH, in) −  y(NH, out)) V= ⋅ MWy|c!%.'(# dt± V#(Q/+*«  (3.3) 

3.4.3 Standard-SCR-Experiments	

The SCR activity of the samples before and after soot loading were investigated for their 

catalytic properties on the NH3-SCR of NO. The gas hourly space velocity (GHSV) was kept 

at 40.000 h-1 or 80.000 h-1. For a light-off curve, first 1000 ppm NH3 were dosed with 

5 vol.-% H2O and 10 vol.-% O2 in N2 at 423 K. When the NH3 saturation was reached (NH3 

inlet concentration equals NH3 outlet concentration), additionally 800 ppm NO were 

added to the feed gas, while the temperature was ramped from 423 K to 673 K at 2 K min-

1.  

3.4.4 NO	Adsorption	Experiments	on	NOx	Storage	Catalyst	

To characterize the NOx storage behavior of a soot free and soot loaded NSC sample, NO 

adsorption/regeneration experiments were conducted. Prior to the experiment, the 

sample was heated to the appropriate adsorption temperature (473 K, 523 K or 573 K) in 

a stream of 10 vol.-% O2 in N2 (GHSV = 40.000 h-1). Additionally, 1000 ppm propylene was 

dosed for 60 min to release all bound NOx from the NSC. For the adsorption experiment 

propylene was switched off and 200 ppm NO was dosed in a stream of 10 vol.-% O2 in N2 

for 60 min, followed by 10 min of flushing with 10 vol.-% O2 in N2 to release loosely bound 

NOx. For regeneration again 1000 ppm propylene was additionally dosed until the inlet 

concentration equals the outlet concentration. 
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4 Modelling	

4.1 Mathematical	Model	

To study the effect of soot deposited within the porous filter wall upon the SCR DeNOx 

behavior, the relation between the SCR catalyst location in the wall and the location of the 

in-wall soot deposits is of major importance. If, by depth filtration, the soot only 

penetrates inside the filter wall in close vicinity to the inlet channel and the SCR catalyst 

is (by washcoating technique) solely coated at the downstream portion of the filter wall, 

thus, no influence of soot on the SCR DeNOx is expected. In case of soot deposition on top 

of the SCR catalyst containing washcoat within the porous wall, an influence of the soot 

on the catalytic behavior is possible. To set up a model, representing the physico-chemical 

situation within the SDPF porous filter wall under study, SEM measurements were used 

for structural investigations. In SEM-EDX (Fig.	24	and	Tab.	4.1) two different structures 

are visible. The coarse grains belong to the SiC filter substrate while the washcoat 

containing the Cu-zeolite is represented by the fine grains. The Cu-zeolite is 

homogeneously distributed over the entire thickness of the porous filter wall. This feature 

was implemented in the model as described below (Fig.	26, middle part). An appropriate 

SEM image is given in the appendix (Fig.	59).  

 

Fig.	24	SEM picture of a cross section of the porous filter wall of SDPF1. The cut surface was sealed 
with epoxy resin and polished. The colored circles indicate the positions of the SEM-EDX 
measurements for element detection. The coarse grains (red circles) belong to the SiC filter 
substrate while the finely grained section (green circles) is the washcoat containing the Cu-zeolite. 
The corresponding analysis results are given in Tab.	4.1. 
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Tab.	4.1	Molar fractions of the elements detected via SEM-EDX in the cross section of the SDPFs 
porous filter wall (presented in Fig.	 24, full colored circles) for two representative positions. 
Additional positions (colored rings) were analyzed and show similar results (standard deviation 
given in the table). The C signals was caused by the sample preparation with epoxy resin.	

molar fraction / % SiC	 Zeolite	

C 56.51 ± 1.31 34.96 ± 4.18 
O 01.57 ± 0.91 42.09 ± 4.16 
Al 00.00 ± 0.10 04.10 ± 0.48 
Si 41.92 ± 0.48 18.26 ± 0.12 
Cu 00.00 ± 0.04 00.59 ± 0.00 

 

Next to the homogeneous distribution of the washcoat inside the wall, the SEM pictures 

reveal that there is no “stop-layer” on top of the inlet channel. The stop-layer SDPF 

configuration was already discussed in [120]. Thus, a permeable layer without catalytic 

activity and of a fine porosity located on top of the porous and washcoated wall of the 

filter substrate towards the inlet channel is absent in the studied samples. Such a stop-

layer would prevent the soot to penetrate inside the washcoated SDPF pores. 

 

	

Fig.	25	SEM images of the cross section of one porous SDPF1 filter wall. The sample was soot 
loaded with msoot = 7 g l-1, Left: cross section at 200 times magnification, Right: cross section at 
1500 times magnification revealing the soot layer on top of the washcoat inside the porous filter 
wall. The arrow indicates the assumed gas transport through the soot layer inside the wall.	

In Fig.	25 a SEM measurement of a cross section of the porous SDPF filter wall is depicted. 

The sample was soot loaded with msoot = 7 g l-1. The image with 200 times magnification 

(left side) clearly reveals the two possible locations for soot deposition [114,126,145]. 

When the wall is saturated and the surface pores are blocked [114], soot will form a cake 

layer in the inlet channel on top of the porous filter wall. In the initial stage of the loading 
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process, soot will be trapped inside the porous wall. There, soot deposits are formed, 

covering the Cu-zeolite containing washcoat (Fig.	25 right and Fig.	60, Appendix). To get 

to the active sites located in the washcoat, the reaction gas molecules have to diffuse 

through the porous soot deposits. The diffusive gas transport within the porous filter wall 

was implemented in the model as explained in the following. 

The SCR coated wall flow diesel particulate filter is modelled as a set of channel pairs (Fig.	

26 left). The unit collector model is used as calculatory domain to mimic the porous filter 

wall. The in-wall soot deposits are modelled as a layer covering the washcoat. For 

modelling purpose its thickness is called ds. To account for an inhomogeneous soot 

distribution throughout the filter wall, the simulation was done brickwise. Perpendicular 

to the direction of the gas flow the filter wall was divided into bricks (all of the same size, 

Fig.	26, middle part). Each brick represents a calculatory domain for which the system of 

differential equations (4.1) to (4.4) for mass conservation has been solved. Implementing 

soot layer with thicknesses ds,1…n (on top of the washcoat) of each brick, a soot distribution 

throughout the filter wall could be achieved. Each ds indicates, by the unit collector model, 

the amount of soot in this brick. As the geometric parameters of a unit collector cell (Fig.	

27) depend on the amount of soot inside, the prefactors on the right hand side of 

equations (4.1) to (4.3) are different among the bricks when a soot distribution is 

considered. For each gas species, the outlet concentration of each brick was set equal to 

the inlet concentration of the following brick in flow direction towards the outlet channel. 

For the first brick, the inlet concentration equals the concentration at the inlet channel. 

Iteratively for each gas species, the outlet concentration of the whole filter wall can thus 

be calculated. In this study, the wall is represented by 40 bricks, which provides a 

compromise between local resolution and calculation time. 
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Fig.	26	Schematic representation of a channel-pair model within a wall flow SDPF showing the 
location of soot deposition as a “cake” on the pore wall (left and middle part), a magnification of 
the pore wall section with the cake layer and the porous wall divided into several bricks with 
different soot layer-thickness ds,1, ds,2, …, ds,n along the direction of the gas flow (middle part) and 
a magnification of a section within a brick schematically displaying the porous filter wall 
consisting of unit collector cells with the washcoat and the in-wall filtered soot as well as the gas 
transport inside the filter wall (right part).	

To calculate the filter backpressure, the unit collector model after Serrano et al. [126] (see 

chapter 2.3.2) has been applied (Fig.	43). Next to the backpressure contribution by the 

cake layer inside the channel, Serrano’s model is able to describe the initial stage of 

filtering when the soot is trapped inside the porous wall. The wall is assumed to be a dense 

packaging of collector cells. These spheres consist of a spherical unit collector (wall 

material, diameter dc0) which is surrounded by void so that the experimentally 

determined wall porosity and mean pore width are represented (values given in Tab.	

3.1). This configuration with diameter dcell is called collector cell, schematically presented 

in Fig.	 27. When soot is trapped inside the porous wall during loading, it distributes 

around the collector unit, resulting in its diameter-increase. As there is less void available 

for the gas flow, the permeability of the porous wall decreases with increasing amount of 

wall-soot, which leads to an elevated backpressure. The geometric aspects of this wall 

filtration model allow the estimation of the soot layer-thickness ds covering the inner unit 

collector, on which the washcoat with a volume of Vwc is located. The soot density ρ#,� is 

obtained as a fit parameter, applying Serrano's model to the experimental backpressure 

curve. 

Under the assumption that all inlet channels have the same boundary conditions, i.e. no 

radial gradients, one pair of inlet/outlet channel is sufficient to describe the overall 

system. In this study, the mass conservation equations for the gas phase species (based 

on [68,154]) were applied on the unit collector model. The mass conservation equations 

washcoat	( c)

soot	(in	 all)

ds,1

ds
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were complemented by diffusive transport equations to account for the situation in SDPF. 

Thus, the concentration profiles at each brick of the porous wall could be calculated. 

dx',�dt =  V=n�*++VU>!% ´x!Y,� − x',�µ − β� A#VU>!% ´x',� − x#,�µ (4.1) 

dx[,�dt =  β� A#V#,+(R*S ´x',� − x#,�µ − A��V#,+(R*S
D*"",�d# ´x#,� − x��,�µ (4.2) 

dx��,�dt = A��V��
D*"",�d# ´x#,� − x��,�µ − ¶ s�Qr!(x��,�, θ)YS

!·�
 (4.3) 

dθ
dt = c!%.'(#Γ
 ¶ s
!r!(x��,�, θ)YS
!·�

 (4.4) 

Since the heat associated with NH3 SCR is very low a heat balance was not included [68]. 

Further, the SDPF sample was placed inside the heating zone and the measured 

temperatures were used for calculation. The concentration and mass flow gradient over 

the channel length have been neglected since the experimentally accessible values of NH3 

slip and NO conversion are average values over the channel length. The authors in [68] 

and [51] proved the applicability of a 0-D channel model for sufficiently small samples 

(studying short monolithic samples with length below 60 mm). 

The coefficients in eq. (4.1) to eq. (4.3) were chosen in accordance to the geometry of the 

unit collector model presented in Fig.	 27. For the sake of simplicity, no momentum 

balance was considered. In the calculation, four concentrations are involved: 1. x!Y,� the 

mole fraction of gas species k entering one brick (Fig.	26, middle part), 2. x',�, the mole 

fraction of the gas species k inside the void of the porous wall inside of one brick, 3. x#,�, 

the mole fraction of species k at the surface of the soot layer inside the porous wall of one 

brick and 4. x��,�, the mole fraction of species k at the washcoat within the brick. The term 

=̧
YBCDD¸¹º»¼ ´x!Y,� − x',�µ on the right hand side of eq. (4.1) is the source term for the gas 

concentration within the pores of the filter wall x',�. Thus, it assigns x',� with the 

appropriate concentration entering the brick under consideration of the volumetric flow 

rate V=  through the void volume n�*++VU>!% in the porous wall. n�*++ is the number of 

collector cells and VU>!% is the volume of the void per collector cell. The terms 

implementing the mass transfer coefficient β� in eq. (4.1) and (4.2) cause the convective 



4 Modelling  55

 

 

transport of species k from the gas stream (x',�) to the top of the soot layer within the 

porous wall (x#,�) or vice versa. For the calculation of β�, the description of [1] was 

followed, involving the calculation of the Sherwood number and the binary diffusion 

coefficient D6½. 

D6½ = 1.013 ⋅ 10��T�.¾¿À 1M6 + 1M½pÁ(∑ ν!)�/6 + (∑ ν!)�/½Ã�  
(4.5) 

According to the previous study of Park et al. [145], the negative impact of the soot deposit 

on the NO conversion was assumed here to have its nature in a mass transfer limitation. 

To account for this, Park applied the concept of the Thiele modulus (normally used for 

description of a diffusion inside the washcoat) to the soot inside the porous wall of the 

SDPF. Park et al. suggested the diffusion process through soot to be Knudsen diffusion. 

The reaction rates involved in SCR were reduced by an effectiveness factor, which is 

smaller than unity due to the gas diffusion through the soot deposit on top of the 

washcoat. Hence, Park reduced the reaction rates in presence of soot to take account for 

the observed effects. 

To account for mass transfer limitation by the soot, in this study the gas concentrations 

x#,� and x��,�, were introduced. Fick’s first law for diffusion (Jk…molar flux in mol m-2 s-1 

and ck…concentration in mol m-3)  

J� =  −D*"",�  �c�
�x  (4.6) 

was directly implemented in the governing equations for gas phase species transport eqs. 

(4.2) and (4.3) to take the diffusion through the in-wall soot layer into account. This 

results in a system of ordinary differential equations. Thereby, D*"",� indicates the 

effective diffusivity of gas species k through the soot layer. The terms on the right hand 

side of eq. (4.2) and eq. (4.3) implementing ÄÅÆÆ,Ç, thus, cause diffusive transport of the 

gas species from the surface of the soot layer to the washcoat or vice versa. The outer 

surface of the soot in the collector cell (area A#, volume V#,+(R*S) is assumed to be an 

accumulation zone for the species from the gas phase. Their diffusive gas flux through the 

soot-barrier is driven by the concentration gradient between the concentrations at the 

surfaces of the soot layer x#,� and at the washcoat x��,�, respectively. Only the gas species 

that diffuse through the soot-barrier (with thickness ds) take part in the chemical 
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reactions at the catalyst containing washcoat (area A��, volume V��). The summation-

terms on the right hand side of eq. (4.3) and eq. (4.4) implement the kinetic model (given 

in chapter 4.2) into the gas transport mechanism (eq. (4.1) to (4.3)) and the NH3 storage 

equation (4.4), respectively, in analogy to [68]). 

 

 

Fig.	27	Schematic representation of the model of a unit collector cell (see Fig.	26). The labels are 
model parameters e.g. the thickness of the in-wall soot layer (ds) as well as other geometric 
parameters. The white area represents the void space for the convective gas flow, the shaded area 
indicates the volume occupied by soot and the arrows indicate the diffusive gas flux to the 
washcoat.	

 

4.2 Kinetic	Model	

A kinetic model for NH3 storage and NO conversion was developed and validated against 

experimental data. The Arrhenius equation (4.7) is used to capture the temperature 

dependence of the reaction rate constant k!, where i indicates the number of the reactions 

given in Tab.	4.2. 

�! = A2exp �− E6,!RT � (4.7) 

E6,! represents the activation energy for reaction i, A! the pre-exponential factor of 

reaction i, R the gas constant und T the temperature. The reaction rates r2  were generally 

modelled as non-linear functions of the species mole fraction, the NH3 storage filling ratio 

θ and the kinetic rate parameters k. For the standard SCR reaction, the following 

inhibition factor (suggested by Koebel et al. [155]) was implemented: 
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G
 = 1 +  A
 exp �E6RT� θ
 (4.8) 

where j indicates each of the storage sites. As suggested by Sjövall et al. [50,51] or Gong 

et al. [154] for zeolite Cu-ZSM-5, a multiple adsorption site model for NH3 was 

implemented. In the investigated temperature range of 423 K to 873 K, two types of 

strong active sites for NH3 storage were evident from the experimental TPD results 

(chapter 5.2.1). Additionally, loosely bonded NH3, which is carried out from the sample by 

N2 feed gas immediately after NH3 dosing is switched off (part b in Fig. 34 (left) and 

discussed in [57]), was considered with an additional NH3 storage site. Thus, three storage 

sites (denoted as j = s1, s2, s3) for the zeolite were implemented in the kinetic model. The 

NH3 adsorption on the zeolite is considered by the dimensionless NH3 storage filling ratio 

θ
 in eq. (4.4), Γ
 stands for its storage capacity and c!%.'(# =  �H} Q>+��.� Q} indicates the molar 

concentration of an ideal gas. To account for an appropriate reaction mechanism for each 

gas species k or each storage site j in eqs. (4.3) and (4.4), the stoichiometric coefficients 

s�! and s
! were considered. The binding site s1 for adsorption and desorption of loosely 

bonded NH3 was considered to be not involved in further chemical reactions. Hence, the 

chemical reactions only take place at chemical binding sites s2 and s3. The overall kinetic 

model is able to account for NH3 adsorption/desorption phenomena, NH3 oxidation as 

well as NO conversion according to the standard SCR reaction [68] under soot free and 

soot loaded conditions. The effect of soot loading was accounted for by a diffusion barrier 

inside the mass balance eqs. (4.2) and (4.3). The contribution to NH3 storage by the soot 

itself was assumed to be small compared to the NH3 storage of the zeolite (see chapter 

5.1.1) and was, therefore, not implemented into the kinetic model. 

All kinetic parameters as well as a complete set of the mass conservation equations are 

given in the appendix (Tab.	8.1). The stoichiometric coefficients (s�! and s
!) have been 

chosen in accordance to the reactions given in Tab.	4.2. Thereby, the mole fractions were 

normalized to NH3. 
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Tab.	4.2	List of reactions implemented in the kinetic model.	

No.	 Reaction	and	Reaction	rate	 Description	

1 NH + s1 ↔ NH(s1) 

r� = k#�,(%#(1 − θ#�)x��,y|} − k#�,%*#θ#� 

NH3 adsorption and 
desorption at site s1 
(loosely bonded NH3 ) 

2 NH + s2 ↔ NH(s2) 

r� = k#�,(%#(1 − θ#�)x��,y|} − k#�,%*#θ#� 

NH3 adsorption and 
desorption at site s2 
(chemisorbed NH3 ) 

3 NH + s3 ↔ NH(s3) 

r = k#,(%#(1 − θ#)x��,y|} − k#,%*#θ# 

NH3 adsorption and 
desorption at site s3 
(chemisorbed NH3 ) 

4 4 NH(s2) + 4 NO + O� → 4 N� + 6 H�O + 4 s2 

r� = k#�,�?%��Èθ#�x��,y@x��,@zG#�,ÉYc!Ê  

Standard SCR reaction 
at active site s2  

5 G#�,ÉYc!Ê = 1 + A#�,ÉYc!Ê exp �E6,#�,ÉYc!ÊRT � θ#� 
Inhibition of the 
standard SCR reaction 
at active site s2 [155] 

6 4 NH(s3) + 4 NO + O� → 4 N� + 6 H�O + 4 s3 

r§ = k#,�?%��Èθ#x��,y@x��,@zG#,ÉYc!Ê  

Standard SCR reaction 
at active site s3 

7 G#,ÉYc!Ê = 1 + A#,ÉYc!Ê exp �E6,#,ÉYc!ÊRT � θ# 
Inhibition of the 
standard SCR reaction 
at active site s3 

8 2 NH(s2) + 32 O� →  N� + 3 H�O + 2 s2 

rË = k#�,y|@�!θ#�x��,@z 

NH3 oxidation reaction 
at active site s2 [68] 

9 2 NH(s3) + 32 O� →  N� + 3 H�O + 2 s3 

rÌ = k#,y|@�!θ#x��,@z 

NH3 oxidation reaction 
at active site s3 
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4.3 Model	Environment	and	Calibration	

The modelling and simulation environment MATLAB Simulink from The MathWorks® 

(Natick, MA, USA) has been used for model calculation. The kinetic model (Tab.	4.2) for 

the reactions, taking place in the washcoat, was applied on the geometric unit collector 

cell model (chapter 4.1). The set of mass conservation equations (4.1) to (4.4) constitute 

a stiff differential equation system. The differential equations were solved by means of 

the implicit »Rosenbrock« method, implemented in MATLAB Simulink [156]. 

Calibration of a model means the adjustment of the kinetic parameters (A! and E6,!) in a 

manner that the calculated reaction mechanism gives results, which are in good 

agreement with catalytic measurements for a given range of conditions (concentrations, 

space velocities, temperatures, etc.). Optimization is used to achieve this agreement [4]. 

In this study, the calibration of the kinetic model and fitting parameters e.g. the effective 

diffusivity was found, using a MATLAB tool called »GAIdent« provided by the industrial 

partner (IAV GmbH). Therein, a genetic algorithm (GA) is used for optimization. On initial 

stage, the GA choses sets of kinetic parameters by stochastics out of a predefined range. 

Using the particular parameter sets, model simulations are carried out. Each parameter 

set is assessed by means of the error function E, giving the discrepancy between model 

prediction fQ>%*+ and experimental results f*�/ (see equation (4.9). On second stage, the 

GA generates further parameter sets using selection, recombination and mutation 

processes to minimize the error function and hence to find the optimal model calibration. 

E =  ¨´f*�/ − fQ>%*+µ�dt (4.9) 

The kinetic model was calibrated against model gas experiments on NH3 oxidation, NH3 

adsorption/desorption and Standard SCR (experiments and range of conditions as 

described in chapter 3.4). All kinetic parameters, used in this study, are listed in Tab.	8.1. 
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5 Results	and	Discussion	

5.1 Model-Soot	

Varying the air-fuel equivalence ratio ¥ as well as diluting the fuel gas by N2, the miniCAST 

soot-generator allows a wide range of operation conditions. Aim of this subchapter is the 

choice of the soot specifications for further investigation. The mean particle size as a 

function of ¥ for the possible particle distributions is given in Fig.	28 (left). Diluting the 

fuel gas by N2 results in larger distances between the primary soot particles during 

combustion and soot particle formation. Hence, the agglomeration process is less 

effective, ending up with smaller soot particles. To analyze model soot with properties 

close to real diesel soot, a soot-generator operation point (OP) of ¥ = 1.07 (oxygen excess) 

and 100 ml N2 mix gas has been chosen for further investigation. The resulting soot has a 

mean particle size of 80 nm. Its particle size distribution is very similar to engine soot (see 

Fig.	28, right). In Fig.	29 the soot mass flow as a function of the mean particulate size is 

plotted. All the data for the analyzed OP are given in Tab.	8.2 (Appendix). Combining the 

EEPS data with the MSS data, the mean particle mass for each OP could be evaluated (Fig.	

29, inset). It shows an over-linear dependence on the particle size. Assuming the soot 

agglomerates to be spheres, the particle mass as a function of the particle size could be 

fitted by a cubic function. Thereby, the particle density Í¢ = (1305 ± 35) kg m-3could be 

revealed as the fit parameter. Comparing to the density of graphene (2260 kg m-3), it is 

obvious that the agglomerated particles are not spherical, having a fractal dimension as 

previously found in [99,157]. In previous studies on the chemical composition of propane 

burner soot [107,109], it was proven to consist of 90 wt.-% to 96 wt.-% EC, which is the 

same for soot filtered in DPF downstream a DOC (converts most of HCs attached to soot). 

Hence, the soot chosen for further investigation is a good model replacement for diesel 

soot. 
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Fig.	28 Left: Mean particle size is a function of the air-fuel equivalence ratio (Î) for operation 
points possible with the soot-generator analyzed with an EEPS device. The dotted lines indicate 
the range of mean particle sizes of diesel engine soot. Right: Normalized particle concentration 
as a function of the particle size for diesel engine soot [126] (black line) compared to soot from 
soot-generator (red line) at the operation point indicated on the right with a red circle.	
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Fig.	 29 Soot mass flow as a function of the mean particulate size for the soot-generator OP 
analyzed by means of an MSS device. The red circle indicates the OP chosen for further 
investigation. Inset: Average particle mass as a function of the mean particle size. The red line is a 
cubic fit (function given in the table). The density of the soot particulates is a fit parameter.	

5.1.1 NH3-Storage	Capacity	of	the	Model	Soot	

To study the interaction of NH3 with the soot trapped in a DPF (bare filter without zeolite 

coating, obtained by immersing the SDPF in NaOH-solution), TPD experiments on a DPF 

have been performed. In Fig.	30, the NH3 outlet concentration of TPD experiments with 

different soot loadings (soot free, msoot = 4 g l-1 and 10 g l-1) on the bare filter substrate are 

shown as a function of temperature. It is obvious, that the soot used in this study has the 
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potential to store NH3, which is attributed to acid sides on soot for NH3 adsorption [143]. 

The majority of the stored NH3 is released at temperatures around 780 K. Additionally, 

the amount of stored and desorbed NH3 linearly depends on the soot mass deposited. One 

gram of the studied model-soot could store 22.5 mg NH3 (see linear fit, Fig.	30). 
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Fig.	30	Left: NH3 outlet concentration as a function of temperature during TPD on an uncoated 
DPF (bare filter substrate) sample with no soot (soot free), msoot = 4 g l-1 and 10 g l-1. The numbers 
at the curves indicate the total amount of desorbed NH3 (Tadsorption = 423 K, 200 ppm NH3 in N2, 
GHSV = 40.000 h-1), Right: Calculated NH3 storage (mass of NH3 desorbed per filter volume) for 
the TPD experiments as a function of soot loading in the filter and a linear fit.	

5.1.2 Catalytic	Properties:	NH3-SCR	

Using a standard SCR experiment and an NO2 SCR experiment, the catalytic properties in 

terms of NH3 DeNOx of the model soot has been evaluated. The sample under study was a 

bare filter substrate loaded with msoot = 10 g l-1. For the standard SCR (Fig.	31, left), no 

NOx reduction was observed. As stated out by Mehring et al. [158], NO2 is essential for the 

SCR activity of soot as the catalyst. On the contrary, the NO2 SCR experiment showed good 

DeNOx performance of up to 37 % NOx conversion (Fig.	31, right). Without NH3 dosing 

(time-on-stream from 0 min to 10 min) about 100 ppm of the incoming NO2 is reduced to 

NO, which is due to the soot oxidation at a temperature of 523 K (CO and CO2 formation 

observed, not shown here). The stoichiometric ratio Ï =  ÐÑ},ÒÓ�ÐÑ},ÔÕÖÐ×Ø,ÒÓ�Ð×Ø,ÔÕÖ was determined to 

be 1.25, indicating an overlap of fast SCR (Ï=1) and NO2 SCR (Ï =  4 3� ) reaction. The same 

result was found by Mehring et al. [158], who gave a mechanistic explanation for the NOx 
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reduction over diesel soot. For the NO2 SCR experiment up to 6 ppm N2O formation was 

observed, indicating an incomplete NOx-to-N2 conversion with an N2O selectivity of 4 %. 
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Fig.	31	SCR experiments on bare filter substrates loaded with 10 g l-1.	Left: Concentration as a 
function of the time-on-stream for a stationary standard SCR experiment at 523 K (800 ppm NO 
permanently dosed, 1000 ppm NH3 partially dosed). Right: Concentration as a function of the 
time-on-stream for a stationary NO2 SCR experiment at 523 K (480 ppm NO2 permanently 
dosed, 700 ppm NH3 partially dosed). Both experiments were performed at GHSV of 40.000 h-1 
with 10 vol.-% O2 in N2 as feed gas.	

5.1.3 Gas	Diffusion	through	a	Soot	Layer	

The effective self-diffusivity Deff of NH3 probe molecules within the soot layer inside a soot 

loaded SDPF sample has been studied using PFG-NMR technique. Thereby, the signal 

intensities of the 1H free induction decay was measured. It reflects the total amount of 

protons of the NH3 molecules in the sample. Deff is obtained by analysis of the spin-echo 

diffusion attenuations S. The latter followed an exponential dependence on the square 

gradient intensities q, as given by 

S(q, tÙ) ~ exp(−Dq�tÙ) (5.1) 

where td is the diffusion time (or observation time) and Û = ÜÝÞ with the gyromagnetic 

ratio Ü, the gradient pulse amplitude g and duration Þ. The measurements on a soot loaded 

SDPF sample (msoot = 4 g l-1) have been performed with diffusion times of td = 5 ms, 10 ms 

and 20 ms of the 13-interval pulse sequence. The experimental data is given in Fig.	32. 

For each td, the spin-echo attenuation shows a monoexponential behavior, i.e. the 

diffusion can be described by single effective diffusivity. Thus, a value of D*"" = (2.5 ±
0.3) ⋅ 10�Ì	m2 s-1 was obtained. Any dependence on the observation time has not been 
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found. The coincidence of the slopes for different diffusion times reflects the normal 

(unrestricted) diffusion within the soot layer. 
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Fig.	32	Spin-echo diffusion attenuations for NH3 in soot within an SDPF as a function of the square 
gradient intensities q for diffusion times of 5 ms (circles), 10 ms (squares) and 20 ms (triangles). 
The solid lines show the linear fits with a slop corresponding to àáââ = (®. ã ± ä. °) ⋅ åä�æ m2 s-1.	

As opposed to the soot loaded SDPF sample, the NH3 stored in zeolite in the soot free SDPF 

sample shows no contribution to the observed PFG-NMR signal. Thus, the resulting Deff is 

assumed to originate purely from the diffusion process of the NH3 probe molecules within 

the highly porous soot layer. 

NH3 molecules in the system under study exist in the adsorbed (on surface) and in the 

gaseous phase. Both are in equilibrium with each other. The effective diffusivity in this 

case can be estimated using 

D*"" =  p#D# + p'D' (5.2) 

where Ds is the surface diffusivity and Dg the diffusivity of the gaseous phase in the pores 

[159]. The coefficients ps and pg are the respective relative weights. 

The diffusion on a heterogeneous surface was studied among others by Dvoyashkin et al. 

[160]. For n-heptane in Vycor porous glass and electrochemically etched porous silicon 

they found an increase in diffusivity with increasing surface coverage c. The porous soot 

(compare	 Fig.	60, Appendix) also has a highly heterogeneous surface. At low NH3 gas 

concentration most molecules are trapped on the surface and the contribution from the 
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gas phase to the molecular transport is relatively low due to notably low pg. Thus, the 

observed diffusion coefficient is mostly determined by transport in the adsorbed phase.  

For the model gas investigation described in chapter 3.4.2, the NH3 adsorption at 

concentrations of 200 ppm (partial pressure of 20 Pa) or 1000 ppm (partial pressure of 

100 Pa) at temperature of 423 K was studied. Within this work we assume the self-

diffusion observed by PFG-NMR to be the governing process limiting the mass transfer 

even for the transport regime (Fick’s first law implemented in the model). A fit of the filter 

wall model, presented in chapter 5.3.3, to the model gas experimental data yielded an 

effective diffusivity of D*"" = 1.9 ⋅ 10��H m2 s-1 for the gas diffusion through the soot. For 

the low NH3 concentrations applied during model gas experiments, adsorption of NH3 at 

the surface is very likely resulting in a low surface coverage. Thus, the effective diffusion 

process is limited by surface diffusion (p#D#) [160]. 

For PFG-NMR measurement performed within this work, the soot loaded SDPF was 

saturated with NH3 at 105 Pa. Hence, the contribution of the gas phase to the observed 

effective diffusivity should be considerably higher. In the PFG-NMR experiment on the 

soot loaded SDPF sample an effective diffusivity of D*"" = 2.5 ⋅ 10�Ì m2 s-1 at 298 K was 

observed. As reported by Valiullin et al. [159], Dg can be approximated by the Knudsen 

diffusion mechanism. Gas phase diffusion (p'D') is dominating the diffusion process 

during PFG-NMR measurement at this level of NH3 partial pressure. Thus, the value found 

by PFG-NMR can be considered as the upper limit for the effective diffusivity of NH3 within 

soot at given conditions. 

5.2 SDPF	Sample	

In the following chapter the NH3 storage behavior as well as the activity in SCR-DeNOx for 

standard SCR of soot free and soot loaded samples of SDPF1 is investigated. The SCR 

results are compared to those of SDPF2, having a different pore geometry (compare Tab.	

3.1 and Fig.	62, Appendix). 

5.2.1 NH3	Storage	Capacity	

In the following subchapter the results on the NH3 storage capacity of SDPF1 (see Tab.	

3.1) are presented. Prior to a comprehensive study on the NH3 storage behavior of soot 

free and soot loaded SDPF samples, the influence of H2O in the feed gas for the NH3 

adsorption/desorption experiments has been evaluated. In Fig.	 33 two 
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adsorption/desorption experiments are shown, the black curve with no H2O in the feed 

gas, the red curve with 5 vol.-% H2O dosed together with the 1000 ppm NH3 in N2. 

Applying eq. (3.3), the amounts of adsorbed NH3 were calculated and are given in the 

inset: 2.51 g l-1 (without water) and 2.34 g l-1 (with water). As indicated by the arrows, a 

slightly decreased amount of stored NH3 was found for the experiment when additionally, 

H2O was dosed. This could be explained by the co-adsorption of NH3 and H2O, competing 

for the same Cu-zeolitic storage sites [50]. As the effect is small (loss of 7 wt.-% under the 

conditions studied here) and to be not affected by side reactions of H2O to the soot, in the 

following study on the NH3 storage capacity it has been renounced on the H2O dosing. In 

a preliminary experiment (not shown here) it could be proven, that the used model gas 

apparatus allowed very high reproducibility. Two adsorption/desorption experiments 

performed in a row under the same conditions yielded a deviation of maximum 1.5 wt.-% 

in the amount of stored NH3. 
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Fig.	33	NH3 concentration as a function of time-on-stream during NH3 adsorption and desorption 
experiments of a soot free sample. First, 1000 ppm NH3 (black line) or 1000 ppm NH3 together 
with 5 vol.-% H2O (red line) were dosed for 60 min into the N2 feed at 523 K followed by N2 
flushing for 120 min. Finally, the temperature was raised with 10 K min-1 up to 873 K (GHSV = 
40.000 h-1). The arrows indicate the changes in the concentration profile due to water dosing. The 
inset table gives the amount of NH3 desorbed during flushing and temperature raise. 

The mechanism of NH3 storage in the Cu-zeolite (of soot free SDPF samples) has been 

studied by means of NH3 adsorption/desorption experiments at different adsorption 

temperatures (Tads = 423 K, 523 K and 623 K) as well as for different NH3 inlet 

concentration (200 ppm, 1000 ppm and 3000 ppm). The experimental results for the 
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TPDs with 200 ppm NH3 in the feed gas are given in Fig.	 34 (left). The 

adsorption/desorption of NH3 shows the typical behavior for multiple site adsorption as 

widely discussed in literature on kinetic modelling [50,51,68,135]. The higher the 

adsorption temperature, the more the rate of desorption exceeds the rate of adsorption. 

Thus, on the energetic landscape the amount of accessible zeolitic storage sites for NH3 

molecules with a bonding energy above the thermal energy decreases with increasing 

temperature. This could be observed by an NH3 breakthrough shifting towards earlier 

time-on-stream in the adsorption (part a). During desorption (temperature ramp) less 

NH3 is released when adsorbed at higher temperature. The picture on the right gives the 

appropriate TPD profiles. For the sample with adsorption at 423 K a NH3 desorption 

profile with two maxima is observed, representing the energy distribution of the bonding 

sites. The weaker bonding sites show a maximum desorption at 550	K while the stronger 

bonding sites desorb most at 695 K. For the experiment with adsorption at 523 K only the 

stronger adsorption sites were accessible. The TPD with adsorption at 623 K shows 

maximum desorption at 770 K. Thus, only the high energy edge of the strong sites 

contribute.	
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Fig.	34	Left: NH3 concentration as a function of time-on-stream during NH3 adsorption and 
desorption experiments of a soot free sample. At a) 200 ppm NH3 was dosed into the N2 feed at 
423 K, 523 K and 623 K respectively, b) N2 flushing and c) feed gas temperature raise with 
10 K min-1 up to 873 K (GHSV = 40.000 h-1). Right: NH3 concentration as a function of the 
temperature evaluated from desorption temperature ramp (part c, left picture).	

With the aim of a theoretical description of the temperature dependence of the NH3 

storage, the Dubinin-Astakhov (D-A) equation was applied. D-A is a physical model for 

microporous adsorption [161]. The theory is based on the earlier adsorption potential 

theory of Polanyi and Dubinin [162,163], suggesting that the governing adsorption 

process is the filling of micropore volume. With a diameter of 0.26 nm the NH3 molecule 
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is able to fill the three-dimensional channel system of the ZSM-5 zeolite, with a free 

channel diameter of 0.54 nm × 0.56 nm [164]. The potential theory of Polanyi for 

multilayer adsorption considers that the adsorption forces act at distances greatly 

exceeding the dimensions of a single molecule, so that they are not shielded by the first 

monolayer of the adsorbate. The D-A equation involves the adsorption potential A as 

given in eqn. (5.3). Thereby, q(p) represents the mass adsorbed at equilibrium pressure 

p, qH represents the maximum mass of adsorbed species, E56 gives the adsorption energy 

and n the heterogeneity parameter (or Astakhov exponent). The vapor pressure pH is 

taken as the reference state pressure. For NH3 at temperatures above 343 K, the vapor 

pressure is calculated using eqn. (5.4) according to [165]. 

q(p) = qH ⋅ exp �− � AE56�Y� =  qH ⋅ exp ç− © RTE56 ⋅ ln �pHp �ªYè (5.3) 

pH,y|(T) = 8.8138 ⋅ 10§ ⋅ e��¾H§.§¿ �é  kPa 
(5.4) 

Dubinin-Astakhov isotherms have been extensively used for the adsorption of gases and 

vapors [163,166,167], in lesser extent also for the adsorption of organic solutes from 

aqueous solution [161,168]. The Dubinin-Radushkevich (D-R) equation (heterogeneity 

parameter n=2 in eqn. (5.3)) represents a special case of the D-A equation. It applies only 

to solids with uniform micropores.  

The NH3 inlet concentration during the NH3 adsorption/desorption experiment could be 

translated into an equilibrium pressure by means of Dalton’s partial pressure law. Using 

eq. (3.3), the stored amount of NH3 for each experimentally studied combination of 

adsorption temperature and inlet concentration was evaluated and is depicted in Fig.	35. 

The higher the NH3 partial pressure, the more NH3 is stored for each temperature of 

adsorption. For partial pressures larger than 0.05 kPa the stored amount of NH3 saturates. 

The experimental data could be nicely fitted using the D-A adsorption equation. Although 

NH3 molecules are known to be chemically bonded to acid sites of the ZSM-5 zeolite [68], 

the general physical theory of micropore filling also describes the storage of NH3 

molecules in zeolite. The fit yields an adsorption energy E56 of 64.4 kJ mol-1 and a 

heterogeneity parameter of n=1.65. The Astakhov exponent less than 2 indicates a 

heterogeneous porosity of the ZSM-5 [166]. This could be due to Cu ions partially 

incorporated in the zeolite network, locally changing its pore size. 
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Fig.	 35	Left: Stored amount of NH3 as a function of the equilibrium pressure. The points are 
experimental data, evaluated from the desorption part (compare part b and part c in Fig.	34, left) 
of NH3 adsorption/desorption experiments performed at adsorption temperatures of 423 K, 
523 K or 623 K while 200 ppm, 1000 ppm or 3000 ppm NH3 was dosed in N2 during adsorption 
(GHSV = 40.000 h-1). The solid black lines are the result of a fit of the Dubinin-Astakhov equation 
(5.3) to the experimental data. The grey lines represent a 95 % confidence interval to the fitted 
lines. Right: The table gives the saturation vapor pressure for each adsorption temperature as well 
as the fit parameters V0, EDA and n including their standard error.	

5.2.1.1 Hydrothermal	Ageing	

The evolution of the NH3 storage capacity under thermal stress is a critical issue for the 

SCR zeolite in vehicle application. Soot removal by regeneration leads to temperatures up 

to 1100 K in the SDPF. In Fig.	36	(left) the NH3 TPD profiles of a fresh SDPF sample is 

compared to HT (hydrothermally) aged samples. An ageing of 18 h results in an extreme 

drop in the NH3 storage (amount of desorbed NH3), whereas an additional HT ageing of 

21 h has nearly no further influence on the desorption signal. The appropriate loss in NH3 

storage as a function of HT ageing time is given on the right. Most of the loss is already 

achieved at the first 20 h of ageing under the applied conditions. Hence, the loss in NH3 

storage saturates. A maximum loss of 16 % was observed. The effect of HT ageing of Cu-

zeolites (ZSM-5) as SCR-catalysts was already reported in [74,75]. The loss in NH3 storage 

was explained by the destruction of zeolite structure (decreased surface area and pore 

volume) and the agglomeration of active Cu phase. 

Studying the NH3 TPD profiles of HT aged SDPF samples in more detail, it could be 

revealed that HT ageing leads to a loss of the strong acid storage side. The appropriate 

graph is given in Fig.	37. Furthermore, the weak storage sites slightly increased their 
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amount of bound NH3 when HT aged. Similar results were observed by Wilken et al. [57]. 

According to the literature, the changes in the NH3 binding to the acid sites are the result 

of thermally induced structural changes of the zeolite. 
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Fig.	36 Left: Desorbed NH3 concentration as a function of the temperature for TPD experiments 
on SDPF samples with varying level of ageing. The appropriate adsorption/desorption 
experiments were performed at Tads = 523 K while dosing 1000 ppm NH3 in N2 at space velocity 
of 40.000 h-1(compare Fig.	34, left). The arrow indicates the shift of the desorption maxima. 
The hydrothermal (HT) ageing was performed in a furnace at 973 K under air flow. Right: Loss 
in NH3 storage as a function of the HT ageing time.	
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Fig.	37Left: NH3 concentration as a function of the time-on-stream for adsorption/desorption 
experiments performed on fresh (black) and hydrothermally aged (red) SDPF sample. 
(measurement conditions as in Fig.	34, left). The arrows indicate changes in the adsorption and 
desorption behavior. Right: NH3 concentration as a function of the temperature evaluated from 
desorption temperature ramp. The arrows indicate a decreased storage on the strong acid sites 
and a slight increase in the NH3 binding on the weaker bonding sites.	
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5.2.1.2 Soot	Loading	

The influence of soot on the NH3 storage behavior of SDPF samples has been studied by 

means of TPD experiments at different adsorption temperatures with different soot 

loadings. In Fig.	38, the NH3 concentration profile for a soot free and a soot loaded (msoot 

= 4 g l-1) SDPF sample from a TPD experiment is shown. The characteristics of the 

adsorption/desorption profile of the soot free sample has been discussed already in 

chapter 5.2.1. The sample with msoot = 4 g l-1, however, exhibits a completely different NH3 

adsorption profile. Already at the start of the NH3 dosing, NH3 slip is observed. The 

adsorption-breakthrough curve is flattened, indicating a decreased rate of NH3 adsorption 

in the early stages of the experiment. This features were also observed by Mihai et al. 

[142] or Millo et al. [169], but both authors could not give an explanation. The inflection 

point, notified by the arrow in Fig.	38, is typical for all the NH3 adsorption/desorption 

experiments on soot loaded SDPF samples performed in this study. During the heat ramp, 

the desorbed NH3 concentration shows two maxima (at 572 K and at 720 K) indicating 

basically two kinds of different adsorption sites in the Cu-zeolite. The results reveal a 

slightly increased amount of NH3 desorbed during the temperature ramp for the soot 

loaded case compared to the soot free case (values given in Fig.	 39). The same 

reproducible adsorption profile is also observed at higher temperatures and with 

different NH3 concentrations in feed gas (compare Fig.	63, in Appendix). For adsorption 

at 523 K the TPD profile shows only one maximum at 720 K. Desorption from the weaker 

storage sites are no longer observed. As an elevated adsorption temperature results in a 

decreased NH3 storage, the soot-induced change in the shape of the adsorption-curve 

occurs at an earlier time-on-stream compared to the NH3 adsorption at 423 K. 

Qualitatively, the breakthrough is affected in the same way, resulting in a flattened regime 

with an inflection point. Hence, the adsorption-temperature, implying the amount of 

accessible storage sites, has no influence on the shape of the adsorption curve. This gives 

hints to a non-chemical explanation for the changed NH3 breakthrough during adsorption. 
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Fig.	38	NH3 concentration as a function of time-on-stream during NH3 adsorption and desorption 
experiments of a soot free and a soot loaded (msoot = 4 g l-1) sample. At a) 200 ppm NH3 was dosed 
into the N2 feed at 423 K, b) N2 flushing and c) feed gas temperature raise with 10 K min-1 (GHSV 
= 40.000 h-1). 

 

The knowledge of the NH3 storage behavior for the soot loaded SDPF system is very 

important for automotive applications. Therefore, NH3 adsorption/desorption 

experiments were performed on SDPF samples with different soot loadings at adsorption 

temperatures of 423 K and 523 K, respectively. The NH3 outlet concentrations as a 

function of the temperature are shown in Fig.	39	(left and middle). The right graph gives 

a bar chart of the volume-based mass of stored NH3. For both soot loading cases (soot free 

and msoot = 4 g l-1) the sample that adsorbed at lower temperature reveals the higher NH3 

storage, which is due to the well known adsorption behavior of Cu-ZSM-5 zeolites 

described in Fig.	35 or in [50,51]. The temperature dependence of the NH3 storage of the 

zeolite has been proven to follow the Dubinin-Astakhov adsorption isotherms (chapter 

5.2.1). Additional soot trapped in the filter even leads to a slightly elevated NH3 storage 

capacity. These results are in very good agreement with those presented by Schrade et al. 

[135] (0.1 g l-1 to 0.2 g l-1 more NH3 stored, if soot is present), Mihai et al. [142] (69 µmol 

more NH3 stored, if soot is present in the SDPF sample; unfortunately no sample volume 

or weight given), Tronconi et al. [138] (28 µmol gcat-1 more NH3 stored, if soot is present) 

and Millo et al. [169] (only mentioning a slight increase if soot is present but no numbers 

are given). They mentioned also an increased NH3 storage of soot loaded SDPFs compared 



5 Results and Discussion  73

 

 

to the non-loaded case and soot loaded bare DPFs revealed a slight storage capacity. 

Nevertheless, the effect of an increase in NH3 storage, comparing a soot loaded SDPF 

sample to a soot free SDPF sample, is controversially discussed in literature. Tan et al. 

[141] found a decrease of the NH3 storage capacity, when soot is trapped inside the filter, 

while an explanation for this observation was not provided. According to the storage 

behavior of pure soot (Fig.	30), we suggest the overall NH3 storage of a soot loaded SDPF 

sample to be the sum of the stored amounts within the zeolite and the soot. This implies 

that although there is soot trapped inside the porous filter wall, located on top of the 

washcoat, all the zeolitic active sites are physically accessible for NH3 molecules on a large 

time scale. Beside the increased NH3-storage, the NH3-desorption signal of soot loaded 

samples slightly shifts to higher desorption temperature ( also found in [138,142]), which 

is due to the release of NH3 bound to the soot with a maximum desorption at 780 K (see 

Fig.	30).  
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Fig.	39	NH3 outlet concentration as a function of temperature during TPD on SDPF sample without 
soot (soot free) and with soot (msoot = 4 g l-1 and 10 g l-1). Left: Tads = 423 K, 200 ppm NH3 in N2, 
Middle: Tads = 523 K, 1000 ppm NH3 in N2, both at GHSV = 40.000 h-1. Right: Calculated NH3 storage 
(integrated curve area in gram NH3 per filter volume) for the TPD experiments depicted in the left 
and in the middle part. Error bars (+/- 0.075 g l-1) are also given, representing an uncertainty of 
2 ppm within the concentration measurement.	
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To study the NH3 uptake in more detail, NH3 adsorption/desorption experiments with 

different times of NH3 dosing (10 min, 20 min and 150 min) have been investigated. The 

TPD results are given in Fig.	40. The adsorption signal (left) reveals a decreased rate of 

adsorption for the soot loaded sample. The appropriate mass of chemisorbed NH3 as a 

function of time-on-stream during adsorption is depicted in Fig.	41. Hence, the adsorption 

rate is limited by the soot, for incomplete adsorption (NH3 dosing duration of 10 min and 

20 min) the msoot = 4 g l-1 sample reveals a smaller amount of NH3 stored compared to the 

soot free case. NH3 reaching the zeolite is initially bound to the stronger adsorption sites 

with maximum desorption at 700 K for the soot loaded sample. Only when the strong sites 

are nearly saturated (NH3 dosing duration > 10 min) the weak adsorption sites are filled. 

For the soot free sample both binding sites seem to fill up more simultaneously. This 

feature strongly suggests a reduced rate of NH3 reaching at the zeolite for the soot loaded 

sample compared to the soot free sample. The more time the NH3 molecules have for 

binding, the more likely is their adsorption at first stage at the stronger binding sites. For 

complete adsorption (inlet concentration equals outlet concentration) the decreased 

adsorption rate for the soot loaded sample is no longer an issue regarding the stored 

amount of NH3. Thus, the soot loaded sample ends up with a slightly higher NH3 amount 

stored, which could be attributed to the contribution of the soot itself to the storage. 
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Fig.	40	NH3 adsorption/desorption experiments for a soot free and a soot loaded msoot = 4 g l-1 
sample with different times of NH3 dosing (Tads = 423 K, 200 ppm NH3 in N2 at GHSV = 40.000 h-1). 
Left: NH3 outlet concentration as a function of time-on-stream for complete adsorption (150 min 
NH3 dosing until outlet concentrations equal inlet concentration). The green and the red line 
indicate shorter NH3 dosing durations of 10 min and 20 min respectively. Middle and right: NH3 
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outlet concentration as a function of temperature during temperature programmed desorption 
for adsorption/desorption experiments with NH3 dosing durations of 10 min (green), 20 min 
(red) and for complete adsorption (150 min, black). Results of the soot free sample are given in 
the middle, results of the msoot = 4 g l-1 sample are given in the right.	
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Fig.	41	Amount of chemisorbed NH3 as a function of the NH3 dosing duration for a soot free sample 
and a msoot = 4 g l-1 sample. The data is the result of integrating the curve area of Fig.	40 (middle 
and right) using eq. (3.3). 

5.2.2 Activity	of	SCR-DeNOx	

The amount of NH3 stored in zeolites containing transition metals like Cu- and vanadium-

impregnated tungsten/titanium mixed oxide catalysts (VWT catalysts) has consistently 

been reported in literature to be one of the key parameters defining the NOx conversion 

[170,171]. The NH3 adsorption/desorption experiments presented above support the 

strong influence of the soot deposited in an SDPF on the NH3 adsorption kinetics. 

Therefore, in-wall soot is expected to also have an influence on the SCR activity of SDPFs. 

In the following subchapter the influence of the soot loading on NO conversion in standard 

SCR experiments is presented for both SCR coated particulate filters under investigation 

(see Tab.	3.1). As revealed by Hg-intrusion (see Fig.	62, Appendix), the pore geometry of 

both SDPF samples strongly deviates. Thereby, SDPF1 is characterized by a larger 

porosity of the filter wall of 48.0 % (compared to 41.2 % for SDPF2), a higher mean pore 

size of 26.6 µm (compared to 17.0 µm for SDPF2) and a slightly increased pore volume 

348 cm3 g-1 (compared to 319 cm3 g-1 for SDPF2). The appropriate backpressure 

measurements during soot loading are given in chapter 5.3.1. The amount of soot trapped 

by deep bed filtration inside the porous filter wall (msoot,wall) could be evaluated from 
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these curves. Thereby, the porous wall of SDPF1 trapped msoot,wall = 1 g l-1, while SDPF2 

has much less filtration capacity for in-wall soot of msoot,wall = 0.36 g l-1. 

As pointed out by Tronconi et al. [139] and Mehring et al. [158], there is no chemical 

reaction of the standard SCR gas mixture (NO, NH3, H2O and O2, no NO2) with the soot as 

long as the temperature is sufficiently low to prevent O2-based soot-combustion. 

According to [90], soot oxidation by O2 becomes significant for temperatures above 673 K. 

Thus, soot within this study should be not affected during the standard SCR experiments. 

Soot oxidation by NO2 already takes place at temperatures above 523 K. Since an influence 

of the soot loading on the NOx conversion resulting from NO2 assisted soot oxidation might 

be difficult to distinguish from that of diffusive mass transport, additional NO2 in the 

reaction gas mixture was not attempted in the present study. That is why standard SCR 

reaction was chosen here to study the physical influence of soot on the NO conversion. 

The formation of NO2 by NO oxidation over the SDPFs under study could be proven to be 

negligible. Fig.	42	(left) shows the results of the SCR experiment on a soot free SDPF1 

sample vs. the same sample loaded with msoot = 1 g l-1. Consequently, for the standard SCR 

experiment the soot loading of 1 g l-1 was chosen to make sure there is only soot deposited 

inside the porous wall and not on top as a cake layer (see chapter 5.3.1). The experiment 

shows a decrease in NO conversion for soot loaded sample (msoot = 1 g l-1 in-wall soot) 

compared to the soot free sample up to 20 %. The same extend of NO conversion drop 

was also reported in [137,138], both using model-soot for their investigation. On the other 

hand, the same standard SCR experiment performed on SDPF2 (Fig.	42, right) revealed a 

decrease in NO conversion of only up to 7 % for the sample loaded with 1 g l-1 soot. As 

known from the backpressure measurement during loading (see chapter 5.3.1) thereby 

only 0.36 g l-1 have been trapped inside the porous filter wall in close vicinity to the 

chemically active sites. Only a slight loss in NO conversion (up to 5 %), was also reported 

in [135,136] (both using engine soot). 
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Fig.	42	NO conversion as a function of the temperature (Light-off curves) for a soot free and a 
soot loaded (msoot = 1 g l-1) SDPF sample at ë(ì¯®) ë(ì¯í)⁄  = 0 in an SCR experiment 
(1000 ppm NH3 and 800 ppm NO were dosed with 5 vol.-% H2O and 10 vol.-% O2 in N2 while 
the temperature was ramped linearly from 423 K to 673 K at 2 K min-1.). Additionally the N2O 
selectivity (belonging to the right ordinate) is plotted. The left picture gives the results of SDPF1, 
the right picture belongs to SDPF2. 

 

In literature studies, mentioned above, the observed extend of the NO conversion loss as 

well as the studied soot is reported but no comments are given on the measured 

backpressure during loading (implying amount of in-wall soot). Thus, based on the 

literature reports, it is not possible to find the reasons for the deviation in the reported 

NO conversion losses. The choice of the soot (engine-soot, model-soot, Printex) for studies 

on soot loaded SDPF may play a role for the resulting NOx conversion, which is maybe due 

to differences in the physical (porosity, density, stickiness and thus penetration depths 

inside the filter wall) or the chemical (NH3 adsorption [143]) characteristics of the soot 

that is used. The model soot under study within this work shows higher fraction of EC to 

OC compared to real diesel soot [107]. Hence, reduced stickiness may leads to deeper 

penetration depth inside the porous filter wall. Nevertheless, the two filters studied here 

(SDPF1 and SDPF2) have different amounts of soot trapped inside the porous filter wall 

but were loaded with the same kind of model soot. This suggests the huge deviation in the 

soot impact (20 % NO conversion loss and 7 % NO conversion loss, respectively) to have 

its origin in the amount (and distribution) of the deep bed filtered soot. 

As the soot loaded SDPF1 sample only reveals soot inside the porous wall, the origin of 

the soot-induced change in the catalytic activity has to be attributed to this soot deposits, 

which could directly interact with the active sites of the zeolite. To address this, some 
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groups [135,137] argue with the blocking of active sites when the soot inside the wall is 

closely associated to the Cu-zeolite but without mentioning a chemical explanation. 

Especially Cavataio et al. [137] observed that after exposing the soot loaded sample to 

623 K the conversion reached in the non-loaded case could be partially recovered. This 

finding is explained by the combustion of the volatile organic fraction (VOF) of the soot at 

low temperatures, which was in close contact to the active sites. Nevertheless, this result 

could not be reproduced in our study although they were also using a soot-generator 

based on propane. Unfortunately, they did not mention the operation parameters for their 

soot-generator. As known from [107], slight changes in the propane to air ratio lead to 

huge differences in the resulting soot composition (amount of VOF stacking at the 

elemental carbon core). So, differences in the soot composition are possible. According to 

[107], the model soot used here, has a high EC ratio of about 95 % and hence nearly no 

VOC attached to the particles. On the other hand, due to the fact that soot loaded SDPF 

samples showed an increased storage capacity, the explanation of blocked active sites is 

not likely. Other researchers [144,145] explain the decreased NO conversion under soot 

loading by a physical mass transfer phenomenon. The soot trapped inside the porous filter 

acts as a diffusion barrier for the gas species reaching/leaving the catalyst. They also 

mentioned the soot in the porous wall to be the main reason for the observed NO 

conversion drop (cake-layer soot has no influence). 

The underlying mechanism of decreasing the NO conversion during SCR-reaction may 

correspond to the NH3 adsorption behavior (Fig.	38) and thus, the detailed understanding 

of processes leading to the observed adsorption kinetics may clarify the microscopic 

phenomena underlying the decrease of the SCR performance in presence of the soot. The 

appropriate tool for a microscopic study of the phenomena described here is a wall 

filtration model connected to a chemical model. The model results are presented in 

chapter 5.3. 

Furthermore, the N2O selectivity for soot free and soot loaded SDPF samples has been 

studied (see Fig.	42). For both samples (SDPF1 and SDPF2) the NO-to-N2 conversion by 

standard SCR is very selective. A N2O selectivity of maximum 3 % has been evaluated. The 

difference in N2O selectivity between a soot free and a soot loaded sample was up 0.5 %, 

which could be attributed to the uncertainty of the concentration measurement for the 

formed small N2O concentrations of up to 10 ppm. 
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5.3 Modelling	

5.3.1 Backpressure	

During the soot loading procedure of the SDPF samples the backpressure has been 

utilized as an indicator of the soot loading mode (i.e. deep bed or/and cake filtering 

[114,126]) as well as to estimate the density of soot trapped within the filter. Thus, the 

backpressure and the soot mass allow to characterize the loading state of the sample, as 

shown in Fig.	43. The transition from the deep bed filtration (part a) to the cake filtration 

(part b) [98,140] is evident by the change in the slope of the curve, indicated by the 

vertical line. For SDPF1 it takes place, when msoot,wall = 1 g l-1 soot is trapped inside the 

pores of the filter wall. For SDPF2 the transition in filtration mode is already achieved at 

a much lower mass of wall trapped soot msoot,wall = 0.36 g l-1. The applied soot masses used 

for our investigations (up to 10 g l-1) correspond to typical situations in a real operation 

[126]. In general the amount of soot filtered within the filter wall depends on the 

structural properties of the particulate filter as well as the conditions during soot loading 

(e.g. gas flux and velocity [123]). The influence of the soot loading on the backpressure of 

the DPF was already discussed and mathematically described in literature [99,125,172]. 

When the void in the porous wall and especially the surface pores close to the inlet 

channel fill up, the permeability of the porous wall decreases [126]. Afterwards the cake 

layer acts as a barrier for the gas flux having a certain permeability. This results in an 

increased backpressure with elevated soot loading due to the increased thickness of the 

cake layer. Fig.	43 shows the measured backpressure (black solid curve) for an SDPF1 

sample that is loaded with msoot = 7 g l-1 (during loading 1 g l-1 in-wall soot as well as 6 g l-

1 cake-layer soot is deposited). This experiment was used to determine parameters e.g. 

the soot density or the soot mass trapped inside the porous wall for validation of the unit 

collector model ([126] and chapter 2.3.2). Basically following the backpressure 

calculation presented in chapter 2.3.2, under usage of a percolation factor of 0.96, the 

calculated pressure drop (dotted lines in Fig.	 43) are in good agreement with the 

experimental data. Thereby, the model implements depth filtered soot within the wall 

only in close vicinity to the inlet channel (as shown by the blue line in Fig.	47, left). As 

mentioned above, the soot density within the filter is a fitting parameter of the 

backpressure model to the experimentally observed pressure drop. The soot density ρ#,� 

within the filter thereby is a fit parameter. Within this work ρ#,�	=	65.5 kg m-3 has been 
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achieved. This value is in good agreement with the value of 70 kg m-3 found by Toops et 

al. [130], who used engine exhaust for filter loading. The permeability of the soot cake has 

been calculated using eq. (2.8). Thereby, a value of k/+ = 3.9 ⋅ 10��� m2 was achieved 

assuming a collector unit diameter d�,/+ = 100 nm, which perfectly matches the soot 

permeability reported by Konstandopoulos et al. [129]. Similarly, the backpressure curve 

of SDPF2 loaded with a total amount of msoot = 4 g l-1 could be described using Serrano’s 

model. 
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Fig.	43	Backpressure as a function of soot loading during a soot loading of an SDPF1 sample up to 
msoot = 7 g l-1 and SDPF2 sample up to msoot = 4 g l-1 (loading temperature 473 K, GHSV = 40.000 h-

1). The vertical dashed lines indicates the transition of the filter mode from depth-filtration to 
cake-filtration at a soot loading inside the pores of the filter wall of msoot,wall = 1 g l-1 or msoot,wall = 
0.36 g l-1, respectively. The solid curves represent the measurements, while the dotted curves 
denote the result of the calculated backpressure according to the unit collector model (see Fig.	
27).	

5.3.2 Adsorption	of	NH3	on	soot	free	SDPF	samples	

In this subchapter the kinetic model for NH3 adsorption/desorption was adjusted to 

describe the experimental data on a soot free SDPF1 sample and validated against model 

gas experiments. The NH3 concentration from TPD experiments on a soot free SDPF1 

sample is presented along with the calculated results in Fig.	 44. The kinetic 

parametrization found within this work is given in Tab.	 8.2. Evidently, the three-site 

kinetic reaction model presented in chapter 4.2 describes the experimentally observed 

NH3 breakthrough very well. The two maxima in the desorption part starting at 300 min 

time-on-stream are reproduced by the model, thus supporting the multiple site NH3 

storage behavior of the zeolite-containing washcoat. Nevertheless, the calculated amount 
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of desorbed NH3 is slightly overestimated. As reported before [141,173], for NH3 

adsorption/desorption experiments the amount of NH3 adsorbed can be slightly higher 

than the amount of NH3 released during the temperature ramp of TPD experiments. Park 

et al. [173] refer to this phenomenon as »non-thermally reversible storage for ammonia«, 

whereas Tan et al. [141] explained it with systematic errors in the NH3 storage 

experiments. Since in this study no concentration drift over the time of the experiment 

was observed, systematic experimental errors can be excluded. Nevertheless, the 

adsorption part, which is the focus of the following model study on the soot influence on 

NH3 adsorption behavior, is very nicely represented by the kinetic model. 
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Fig.	44	NH3 concentration as a function of time-on-stream during NH3 adsorption and desorption 
experiment for a soot free SDPF1 sample. Experimental conditions as in Fig.	38. The solid curve 
indicates the model calculation, the dotted line is the result of the experiment. 

The dependence of the NH3 adsorption on the gas velocity yields crucial information for 

understanding the microscopic processes inside a soot loaded wall of SDPF. To assess the 

results at first the adsorption behavior for a soot free SDPF sample under different GHSV 

is studied. In Fig.	45 the results of a NH3 adsorption experiment for GHSV of 40 k h-1, 

80 k h-1 and 120 k h-1 is given. For a constant NH3 inlet concentration (here 200 ppm) an 

increase in GHSV results in a NH3 breakthrough at earlier time-on-stream. While for the 

experiment with 40 k h-1 the breakthrough was observed after 15 min of complete 

adsorption, for the 120 k h-1 experiment the breakthrough is achieved already at 2 min of 

NH3 dosing. The appropriate adsorption rate calculated from the inlet and the outlet 

concentration during adsorption is given on the right. The higher GHSV yields a higher 
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NH3 mass flow which could be completely adsorbed by the zeolite (not covered by soot). 

The relative amount of adsorbed NH3 ï is a calculatory parameter of the kinetic model, 

representing the filling ratio of the NH3 storage. Consequently, a filling level of  ï = 0.5 is 

achieved after 5 min on stream. The reduced GHSV of 40 k h-1 results in less NH3 to be 

provided for adsorption. Although, similarly, all the incoming NH3 is adsorbed, the lower 

incoming NH3 mass flow results in a delayed storage filling. A filling level of  ï = 0.5 is 

found only after 15 min of dosing. In the case of a soot free sample the NH3 uptake (rate 

of adsorption) only depends on the adsorption kinetics of the storage sites (eq. (4.4)) and 

thus, it strongly depends on the GHSV (Fig.	 45, right). Both, for the 40 k h-1 and the 

120 k h-1 experimental data on the NH3 adsorption the kinetic model was applied yielding 

very good agreement. Consequently, dependence of the NH3 adsorption on the GHSV for 

the soot free sample is very well implemented in the model. Thus, the kinetic model is an 

appropriate tool to study the influence of soot trapped inside the wall, which will be 

presented as follows. 
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Fig.	 45	 Left:	 NH3 concentration as a function of the time-on-stream for NH3 adsorption 
experiments at different GHSV of 40 k h-1, 80 k h-1 and 120 k h-1 (dotted lines). The inlet NH3 
concentration was 200 ppm dosed in N2 at 423 K adsorption temperature. The appropriate kinetic 
model calculations are depicted as solid lines. Right: Rate of adsorbed NH3 as a function of the 
time-on-stream during adsorption for the 40 k h-1 and 120 k h-1 experiment and appropriate 
calculations. Additionally, the NH3 storage filling ratio ï as a function of the time-on-stream is 
depicted for the kinetic model calculations.	
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5.3.3 Influence	of	in-wall	Soot	Distribution	on	the	Adsorption	of	NH3	

This subchapter deals with the effect of soot, distributed within the porous filter wall, on 

the NH3 adsorption behavior. In the presence of soot inside the filter wall, we assume the 

diffusive transport of NH3 through the porous soot layer to the zeolitic washcoat to be the 

governing process (compare Fig.	27). Consequently, diffusive mass transfer decreases the 

overall NH3 uptake rate of the SDPF, but the amount of NH3 adsorbed on the zeolite at 

saturation does not change in the presence of soot. Hence, the underlying kinetics of NH3 

adsorption of the active sites in the zeolite itself is not affected by the soot. The key 

parameter for the description of the transport process within soot loaded samples is the 

effective diffusivity D*"" of the gas molecules through the porous soot layer (eq. (4.2) and 

eq. (4.3)). In Fig.	46 (left) the maximum possible soot layer thickness (5.1 µm for SDPF1) 

resulting from a complete filling of all the unit collectors within the porous wall is depicted 

by the brown dashed line. Hence, the order of magnitude of soot layer thickness ds (µm 

range) is predefined by the geometry of the unit collector cell model (compare Fig.	27). It 

turns out, that D*"" determines the position of the inflection point in the adsorption branch 

of the TPD (see Fig.	46, right) under consideration of a fixed soot distribution throughout 

the filter wall. Variation of D*"" in the model until the experimentally observed and the 

calculated NH3 concentration profiles match, results in an effective diffusivity of D*"" =
1.9 ∙ 10��H m� s�� at 423 K for the gas species diffusion through the porous soot layer 

inside the wall to the washcoat. For the PFG-NMR measurement presented in chapter 

5.1.3 an effective self-diffusivity D*"" = 2.5 ∙ 10�Ì m� s�� at 298 K was found (see Fig.	32). 

The difference of these values seems to originate from a change in the diffusion process. 

For the sample measured with PFG-NMR (saturated with NH3 at 105 Pa) gas phase 

diffusion dominates the gas transport. The found diffusivity, thus, represents an upper 

limit. For the model gas experiments the low NH3 concentrations result in low surface 

coverage of the highly heterogeneous soot surface. Hence, we suppose the effective 

diffusivity is limited by surface diffusion. 

Studying the diffusion within activated carbon particles using cyclohexane as probe 

molecule, Furtado et al. [174] found an effective diffusivity of 3.6 ∙ 10��H m� s��. Although 

structural deviations between porous soot and activated carbon are obvious, this value is 

in good agreement with the diffusivity found here using the kinetic model. 

The soot agglomerated inside the porous wall may cause a limited mass flow of the NH3 

molecules to reach the zeolite-containing washcoat, thus, leading to the NH3 slip through 
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the wall. The underlying adsorption kinetics of the NH3 on the active sites in the zeolite 

itself is not affected by the soot. However, less NH3 molecules reach the adsorbent per unit 

time. The brickwise kinetic modelling allows to validate different soot distributions 

within the filter wall by means of the resulting NH3 adsorption or NO conversion. Each 

brick could be assigned with a certain soot mass resulting in a flow of NH3 either to the 

washcoat within the brick or slipping to the next brick downstream (schematically shown 

in Fig.	48, left). Applying the unit collector model, the soot mass per brick defines the soot 

layer thickness ds,n on top of the washcoat for each brick. Thus, the corresponding soot 

distributions with the restriction of the soot mass conservation (experimentally observed 

soot loading msoot,wall and soot density from the backpressure model, chapter 5.3.1) can be 

found to describe the experimental results on NH3 adsorption. As shown in Fig.	46 (right), 

even the simple model assumption of the homogeneous soot distribution (msoot,wall = 1 g l-

1) along the porous wall describes the experimentally observed NH3 slip behavior with an 

inflection point in the adsorption branch in a qualitative way (indicated with the point in 

Fig.	46, right). However, in the model calculation with the homogeneous soot distribution, 

half of the NH3 mass flow is found to slip right after starting the NH3 dosing. The same 

model shows a completely different behavior if no influence of soot is considered (see Fig.	

44). In case of NH3 slip at the SDPFs outlet observed during NH3 adsorption using the 

SDPF wall brick model presented here, a considerable part of NH3 entering a wall brick 

upstream slips to the downstream brick, as schematically shown in Fig.	48 (left). 

Obviously, the assumption of the homogeneous soot distribution along the porous wall is 

not sufficient to describe the observed NH3 adsorption behavior. The qualitative influence 

of the soot on NH3 slip behavior is, however, represented correctly.	
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Fig.	46 Left: Spatial distribution of the soot layer thickness covering the zeolite throughout the 
filter wall (divided into bricks). The top part indicated the inlet channel (cake layer possible), 
the bottom part is the outlet channel of the SDPF. The red line indicates the case when the 1 g l-

1 wall-trapped soot is evenly distributed (void volume of the unit collectors is filled up to 9.6 %). 
The brown dashed line represents the case, when all the collector cells are filled completely 
with soot (filling 100 %). Right: NH3 concentration as a function of time-on-stream during a NH3 
adsorption/desorption experiment (experimental conditions as in Fig.	38). The black dotted 
curve corresponds to the experiment on a sample with msoot,wall = 1 g l-1, the red curve is the 
result of a model calculation using the soot layer-thickness distribution given on the left. The 
large black dot indicates the inflection point in the adsorption branch. Increasing or decreasing 
contribution of the soot represented by Deff results in its shift, notified by the arrows. 
	

Experimental [114,123] as well as theoretical studies [98,122,175] showed that soot 

deposition within the porous wall of DPFs more likely occurs close to the wall surface of 

the inlet channel. Depending on particle size, some of the soot particles are carried by the 

gas stream into the porous filter wall, slightly covering the mid part of the porous wall. 

Soot depositions in the vicinity of the outlet channel are not very likely. Unfortunately, the 

exact soot distribution throughout the porous wall could not be determined by the 

experimental methods available in this work. 

Assuming the porous filter wall to be a homogeneous pore system, the filtration model 

reported in [124] was used to prove the soot distribution to be a monotonically 

decreasing function of the local coordinate from the inlet channel to the outlet channel 

(see Fig.	64, Appendix). Nevertheless, this filtration model in connection to the kinetic 

model was not able to describe the NH3 adsorption very well, which was may be due to 

simple model assumptions e.g. a single pore size of the porous wall. 
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Thus, the corresponding soot layer thickness distributions with the restriction of the soot 

mass conservation (experimentally observed msoot,wall = 1 g l-1 in-wall soot loading) and to 

be a monotonically decreasing function may be found to describe the experimental 

results. In Fig.	47 (left), three different soot profiles are presented. The corresponding 

TPD model calculation results are shown in Fig.	 47 (right). If the total soot mass is 

agglomerated close to the inlet channel (blue curve, called »surface distribution«), the 

resulting NH3 concentration profile is similar to that of the soot free case. Due to the high 

diffusion restriction, the active sites of these soot loaded bricks have a negligible 

contribution to the NH3 adsorption (over the observed time range). The appropriate NH3 

storage filling θ of the zeolite as a function of the time-on-stream during adsorption is 

given in Fig.	48 (right) for the soot distributions under study. Thereby, the time-evolution 

of θ is the same for the soot free case and the »surface distribution« until all the uncovered 

washcoat parts are saturated with NH3 until 20 min of dosing. For further time-on-stream 

the soot free sample fills up to θ = 0.94, while for the »surface distribution« the restricted 

NH3 mass flow to the soot covered washcoat parts results in smaller filling of θ = 0.89 after 

120 min of adsorption. A blocking of active sites by the soot is discussed by Schrade et al. 

[135] or Cavataio et al. [137]. For the studied time range of adsorption (120 min) this 

seems to be valid. Nevertheless, as shown in the model, the active sites are not blocked 

(NH3 adsorption not prevented by soot) but the mass transfer through the soot layer is 

extremely slowed down (diffusive barrier). Hence, the soot covered bricks do not 

noticeably contribute to the overall NH3 adsorption within 120 min of NH3 dosing. 
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Fig.	47 Left: Spatial soot layer thickness distributions within the filter wall (divided into bricks) 
of 1 g l-1 in-wall soot. Right: NH3 concentration as a function of time-on-stream during a NH3 
adsorption/ desorption experiment (experimental conditions as in Fig.	38). The dotted black 
curve indicates the experiment on a sample with msoot = 4 g l-1, the solid colored lines are the 
result of a model calculation under usage of the respective soot layer-thickness distribution 
given on the left. 
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Fig.	 48	 Left:	 Schematic representation of the NH3 mass flow distribution between two 
neighboring bricks. Within each brick a part of the incoming NH3 is adsorbed by the washcoat 
(WC), while the rest slips to the next brick in the direction of the gas flow. The thicker, light grey 
arrow indicates higher NH3 mass flow (e.g. by GHSV). Right: NH3 storage filling ratio ï (result of 
model calculation) as a function of time-on-stream for different soot distribution (see Fig.	47, 
left) under study. 

 

The black curve in Fig.	47 (right) presents the NH3 concentration calculated with high 

soot loading in the upper brick, slightly soot covered bricks below and no soot in the 

bottom bricks, which appears to be a realistic soot distribution as discussed in literature 
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[175]. The distribution is chosen here in the way that the resulting calculated NH3 

concentration profile matches the experimental TPD data. The distribution is termed as 

»fit distribution«. The time evolution of the calculated NH3 storage filling ratio θ equals 

the one of the soot free case up to 5 min of NH3 dosing, which is due to filling of the soot 

free bricks close to the outlet channel. At further time-on-stream the soot covered bricks 

fill up, resulting in decreased rate of NH3 reaching the washcoat and hence in a decreased 

θ. The same good agreement between the modelled and experimental NH3 adsorption 

behavior is, however, achieved by randomizing the previously found »fit distribution«, in 

a manner that the particular soot thicknesses of the bricks are kept unchanged but their 

local position within the porous filter wall is randomized (see the green line in Fig.	47, 

left). The obtained distribution fits the experimental results too, as shown in Fig.	 47 

(right). However, we believe these profiles do not present a realistic scenario and will not 

further be discussed here. Thus the »fit distribution«, explaining the experimental data, is 

not a bijective assignment but it is very likely due to the demanded boundary conditions 

e.g. mass conservation and monotonically decreasing soot layer thickness towards outlet 

channel. 

To check the model validity, other conditions for sample SDPF1, e.g., 523 K adsorption 

temperature and 1000 ppm NH3 inlet concentration, which are also relevant for 

automotive application, were applied. In Fig.	 63	 (see Appendix), an appropriate 

experiment and a model calculation is shown. The experimentally observed and 

calculated NH3 concentrations during the adsorption are given for a soot free and a soot 

loaded SDPF1 sample. The shape of the NH3 adsorption branch is very similar as for the 

adsorption at 423 K as discussed above. Despite only the stronger storage sites are 

accessible at adsorption temperature of 523 K (Fig.	 39), the inflection point in the 

adsorption branch of the soot loaded sample appears anyhow also under this 

experimental conditions. Hence, the NH3 breakthrough behavior during adsorption is not 

a feature of partial interaction of the soot to only one of the observed NH3 bonding sites. 

Under usage of the previously found »fit distribution« (Fig.	47, left, solid red curve), the 

model calculation of the NH3 slip behavior agrees with the experimental data, confirming 

the principle of soot as diffusion barrier. 

The NH3 adsorption/desorption experiments in Fig.	44 and Fig.	47 show that soot affects 

the NH3 adsorption behavior very much but the NH3 desorption profiles of soot free and 

soot loaded samples are much closer to each other. Both directions of molecule transport 
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are affected by the diffusive barrier, implemented as diffusive flux 
5Cññ,ò%ó ´x#,� − x��,�µ in 

eq. (4.2) and eq. (4.3). During NH3 adsorption the gas concentration at the soot layer 

surface x#,� is limited due to the given inlet concentration. During desorption the NH3 

concentration on the washcoat surface x��,�is relatively high, which leads to a high 

diffusive flux though the soot, thus sufficiently decreasing the rate limiting influence of its 

diffusive barrier. The value of the diffusive flux seems to be comparable to the rate of 

desorption of NH3 from the zeolitic washcoat in this experiment. That leads to a similar 

NH3-slip behavior of soot free and soot loaded samples during desorption under given 

conditions. Nevertheless, the shift of the maxima of the desorbed NH3 concentration 

towards higher time-on-stream, shown in Fig.	 39, is assigned with influence of the 

diffusive barrier. However, the model is capable of describing this effect as observed by 

the experiments. 
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Fig.	 49	 Left:	 NH3 concentration as a function of the time-on-stream for NH3 adsorption 
experiments at different GHSV of 40 k h-1, 80 k h-1 and 120 k h-1 for soot loaded msoot,wall = 1 g l-1 
SDPF1 sample (dotted lines). The experimental conditions are the same as in Fig.	 45. The 
appropriate kinetic model calculations are depicted as solid lines. Right: Rate of adsorbed NH3 as 
a function of the time-on-stream for the 40 k h-1and 120 k h-1 experiment and appropriate 
calculations. Additionally, the NH3 storage filling ratio ï as a function of the time-on-stream is 
depicted for the kinetic model calculations.	

Following the study of the dependence of the NH3 adsorption on the GHSV for a soot free 

sample (Fig.	45), the soot loaded sample is studied under the same conditions (Fig.	49). 

As typical for soot loaded sample, the NH3 breakthrough during adsorption was observed 

starting with dosing for all the GHSV under study (40 k h-1, 80 k h-1 and 120 k h-1). 
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Nevertheless, as an increase in GHSV (at same NH3 inlet concentration) yields an increase 

in the NH3 mass flow. As discussed above, the rate of NH3 uptake by the zeolite is limited 

by the diffusion rate of NH3 through soot. Hence, the slope of the NH3 breakthrough curve 

during adsorption becomes steeper with increasing GHSV. Both the 40 k h-1 and the 

120 k h-1 experiment have also been calculated under usage of the »fit distribution« 

discussed in Fig.	47. On the right of Fig.	49 the appropriate rate of NH3 adsorption was 

calculated from the experiment and by means of the kinetic model. Contrary to Fig.	45 

(soot free), the rate of adsorption on a soot loaded sample is nearly independent from the 

GHSV, which is to be expected from a mass transport barrier (we assume the soot to be). 

The slight differences in the adsorption rate as well as the NH3 storage filling ratio are the 

result of adsorption on the soot free parts of the porous wall. With start of NH3 dosing 

these bricks fill up with different adsorption rates depending on the GHSV (the higher the 

GHSV, the higher the adsorption rate). 

In the subchapter above a theoretical soot distribution has been found to describe the 

earlier NH3 breakthrough behavior, experimentally observed during NH3 adsorption 

experiments on soot loaded samples. Considering soot as diffusion barrier, the shape of 

the NH3 breakthrough curve was studied in detail. Thereby, the diffusivity of NH3 

molecules through the soot layer could be found as fit parameter to the kinetic model. 

5.3.4 Influence	of	in-wall	Soot	Distribution	on	the	SCR	DeNOx	Behavior	

In this subchapter the kinetic model was applied to study the NO conversion in a 

temperature programmed SCR reaction on soot free and soot loaded SDPF1 samples. In 

Fig.	50, the experimental and the calculated light off curves for the soot free and the soot 

loaded (1 g l-1) SDPF1 samples are shown. For the soot loaded case the same soot 

distribution as for the TPD experiments was considered (»fit distribution« in Fig.	47 , left). 

A good agreement was found for the calculated and the experimentally observed NO 

conversion for a soot free case (black lines), representing a good model calibration of the 

kinetic parameters. 

For the model description of temperature programmed SCR reactions on soot loaded 

samples, the temperature dependence of the diffusivity Deff(T) is very important. As the 

diffusion of the gas species through the soot layer was found to be the governing process 

(chapter 5.1.3), according to Dvoyashkin et al. [160] the following temperature 

dependence was applied: 
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D*""(T) =  DH ⋅ exp(− E(,5 RT⁄ ) (5.5) 

Thereby, the pre-exponential factor D0 was chosen in order to hold Deff(423 K) = 1.9 ∙
10��H m� s�� (found in chapter 5.3.3). An activation energy of Ea,D = 2.5 kJ mol-1 was found 

as fit parameter of the kinetic model in order to meet the temperature dependence of the 

experimentally observed NO conversion on soot loaded SDPF sample in the temperature 

range of 423 K to 673 K. As, to the best of our knowledge, the diffusion of gas molecules 

in a soot layer has not been reported in literature before, the activation energy found here 

as a fit parameter of the kinetic model could not be finally assessed. 

Nevertheless, without further optimization or assumptions, the model under usage of the 

»fit distribution« discussed above and the found temperature dependence of the 

diffusivity Deff(T) fits very well to the SCR experimental results for the sample with msoot 

= 1 g l-1 (see Fig.	43, SDPF1). This again supports the conclusion made above, i.e., that the 

underlying mechanism is the diffusion of reactants through the in-wall soot layer is the 

underlying mechanism limiting the NH3 adsorption and SCR reaction kinetics. 
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Fig.	50	NO conversion as a function of the temperature (Light-off curves) for a soot free and a soot 
loaded (msoot = 1 g l-1) SDPF1 sample at n(NO2)/n(NOx) = 0 in an SCR experiment. The dotted lines 
represent the experimental data (conditions as in Fig.	42, left). The solid lines are the calculated 
light-off curves for a soot free and a soot loaded (msoot,wall = 1 g l-1) sample. The activation energy 
for the temperature dependence of the diffusion coefficient (2.5 kJ mol-1) was found as fit 
parameter. 
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In following, the effect of a variation of the in-wall soot distribution by constant soot 

amount (msoot,wall = 1 g l-1 for SDPF1) on the SCR activity has been studied by means of the 

model. Under the boundary condition that a downstream brick only implements a soot 

amount which is equal or less than the appropriate soot amount within the brick above, 

possible soot loading regimes have been considered within this study. According to 

theoretical works on filtration models of e.g. [124,175], this way of distributing the soot 

within the wall is assumed to cover all the realistic loading regimes. Thereby, a soot 

distribution of all the soot in close vicinity to the inlet channel and a homogeneous soot 

distribution covering the entire catalyst represent the theoretical limiting cases of 

distributing 1 g l-1soot within the porous filter wall (Fig.	51, left). 

Implementing these possible soot distributions within the kinetic model, it turned out that 

explicitly the both limiting cases of soot distributions of 1 g l-1 in-wall soot lead to the 

lowest and the highest NO conversion, found within this work for SDPF1. The appropriate 

results are depicted in Fig.	 51 (right). For the solid blue distribution (»surface 

distribution«) all the soot is located close to the inlet channel inside the porous wall (only 

10 % soot penetration into porous wall). The NO reduction mainly occurs within the soot 

free part of the filter wall, which results in an overall NO conversion very similar to that 

of the non-loaded case (see dotted black line). The NO conversion is only up to 3 % lower 

compared to that of the soot free sample. The same result was found experimentally by 

Schrade et al. [135]. Nevertheless, they did not report on the soot distribution within the 

filter wall. Consequently, the study presented here suggests that all the soot inside the 

porous wall for the SDPF samples under study of Schrade et al. was covering only few of 

the active sites. This might be due to a special filter concept (stop-layer [120]) or a high 

VOF of the engine soot, making it sticky and promoting soot deposition inside the wall 

close to the inlet channel. The lowest calculated NO conversion (solid black line) is 

achieved when the soot loading of 1 g l-1 is equally distributed throughout the whole filter 

wall. As the entire catalyst inside the wall is then covered by soot at any position of the 

wall, the gas flux to the active sites is limited by the gas diffusion through the soot layer. 

Thus, the distribution of the soot within the porous filter wall strongly influences the 

maximum NO conversion. A difference in NO conversion of 45 % was observed just by 

different soot distributions. Tronconi et al. [138] reported on loss in NO conversion up to 

20 % investigating a physical mixture of soot (PrintexU) and powered catalyst. In the 

study of Tronconi et al., 5 mg of soot were mixed with 50 mg Cu-zeolite and 50 mg 
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powdered cordierite (4.8 wt.-% soot). In our work, msoot = 1 g l-1 loaded in an SDPF1 

sample resulted in 0.2 wt.-% soot. Obviously, the situation for a soot loaded filter wall is 

different compared to a physical mixture of soot and powdered SDPF. Hence, 24 times 

more soot is needed to cover the catalyst particles within the physical mixture and thus, 

to achieve a similar NO conversion loss of about 20 %. In Fig.	 51 (right) additional 

experimental NO conversion curves are shown for SDPF1 samples with msoot = 1 g l-1 and 

7 g l-1 (1 g l-1 soot in wall + 6 g l-1 soot in cake layer, see Fig.	 43). Both measured NO 

conversions are located in the range, defined by the calculatory minimal and maximal 

possible conversion. Accordingly the soot distributions for the samples used in the 

experiment have to be something in between the both extreme cases e.g. the »fit 

distribution« in Fig.	 47 (left), explaining the measured NO conversion of 1 g l-1 soot 

loading. Assuming that during the soot loading of the sample with 7 g l-1 (loading process 

lasts 7 times as long as for 1 g l-1), in-wall soot will be wafted closer to the outlet, shifting 

the soot distribution towards the extreme case for minimal NO conversion (Fig.	51, solid 

black line), the slight decrease towards lower conversion for the 7 g l-1 sample could be 

explained. 
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Fig.	51 Left: Spatial distributions of the soot layer thickness throughout the filter wall (divided 
into bricks) for the two cases revealing the minimal (solid black line) und the maximal possible 
(solid blue line) NO conversion in standard SCR experiments for the same amount (msoot,wall = 
1 g l-1) of soot trapped inside the filter wall. Right: NO conversion as a function of the 
temperature for standard SCR experiments on soot loaded (msoot = 1 g l-1 and 7 g l-1) SDPF 
samples (given as dashed grey lines, experimental conditions as in	Fig.	42). The two solid lines 
are the result of a model calculation under usage of the respective soot layer-thickness 
distribution given on the left for minimum and maximum NO conversion under soot loading. 
The dotted black line represents the calculated NO conversion for the sample without soot.	

 

All the experimental and model calculation results presented here, suggest that the 

difference of the NO conversion and of the NH3 adsorption/desorption profiles comparing 

the soot free to the soot loaded cases originate from a pure diffusion limitation 

phenomenon through soot inside the porous wall. Although soot is present, all active sites 

are accessible (compare Fig.	39). Therefore, the intrinsic kinetic rates of the chemical 

reactions at the active sites of the zeolite are not affected, but the rate of molecular 

transport towards the zeolite is reduced by the soot barrier on top of the washcoat. On 

the contrary, Park et al. [145] attributed the influence of soot on the DeNOx behavior in 

reduced kinetic reaction rates. Nevertheless, and in accordance with Park et al. the soot-

induced changes in the catalytic activity have a physical rather than a chemical origin as 

they result from a diffusion barrier presented by the soot. As shown in Fig.	51 (right, grey 

line) already a slight but homogeneous distribution of soot on top of the washcoat inside 

the porous wall material (Fig.	 51 left, grey line) leads to a dramatic loss of the SCR 

performance. Consequently, from the point of catalytic activity it is advisable to prevent 

soot penetration inside the washcoated filter wall. This could be realized by a “stop-layer” 

design described by Koltsakis et al. [120]. As the cake filtration provides approximately 
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perfect filtration, the target should be to reach the cake filtration regime as soon as 

possible, avoiding the deep bed filtration regime. Koltsakis et al. [120] showed that the 

stop-layer design notably reduces the duration to reach cake filtration. This almost 

completely avoids the formation of soot trapped inside the porous wall, which, as shown 

by the backpressure model, has the largest contribution to the filter backpressure. 

Furthermore in-wall filtered soot, which was proven here to have a negative influence on 

the catalytic activity, can thus be avoided. According to Mizutani et al. [84] the stop-layer 

leads to improved fuel economy (decreased backpressure) and a linear relation between 

pressure drop and soot loading (no deep bed filtration). This enables an easier on-board 

estimation of the soot amount loaded in the particulate filter for application. As shown in 

[114], a filter design without a stop-layer (as investigated here) leads to soot penetration 

depths inside the porous wall of about 40 µm (10 % of the wall thickness). However, there 

will still be a slight soot amount that passes the surface pores until these are plugged, 

distributing within the rest of the porous filter wall. According to the results of the 

presented study, even a thin soot layer (0.6 µm) slightly covering all of the catalyst (see	

Fig.	51, curve for minimum NO conversion), reducing the NO conversion for up to 45 %. 

In consequence our study strongly supports the layered SDPF design [120] or a 

washcoating concept where most of the washcoat is impregnated in the wall part close to 

the outlet channel. 

In the subchapter above different theoretical soot distributions have been studied by 

means of the kinetic model. Thus, the decrease in NO conversion under soot loading found 

by experiments in this work as well as reported in literature could be entirely explained. 

A temperature dependence of the diffusivity could be found as result of fitting the kinetic 

model to temperature programmed standard SCR experiments. 

5.3.4.1 Parameter	Study	on	the	Diffusion	Barrier	in	the	kinetic	Model	

Within this subchapter parameter dependencies of the diffusion barrier on the DeNOx 

behavior are discussed in detail. The theoretical considerations are thereby supported by 

proper model gas experiments. According to the mass conservation equations (4.2) and 

(4.3) the ratio of the effective diffusivity and the thickness of the soot barrier 
5Cññ%ó  is 

responsible for the restriction of the gas transport to the active sites and hence for a 

change in NH3 adsorption or NO conversion. Consequently, an increase in d# and a 
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decrease in D*"" lead to the same increase in mass transport limitation and vice versa. In 

the following, reasons for a changing d# or D*"" are discussed. 

At first, the model is validated under extreme loading conditions. In Fig.	52 (right) the 

result of a NH3 adsorption experiment for a SDPF1 sample with soot loading of msoot = 

25 g l-1 is shown. For vehicle application msoot = 10 g l-1 [126] is the upper limit for soot 

mass in the filter, which is due to avoid damage by the thermal stress during regeneration 

(up to 1300 K). That is why the scenario with msoot = 25 g l-1 is very unrealistic, 

nevertheless, the principle of the diffusive barrier should also hold. Indeed, an extreme 

shaping of the NH3 breakthrough curve for the soot loaded sample was observed. Right 

after dosing starts, nearly 150 ppm NH3 (out of 200 ppm NH3 dosed) slips through the 

filter without being adsorbed. Afterwards a flattened regime of NH3 outlet concentration 

is measured, indicating adsorption at very low NH3 adsorption rate until after 180 min of 

NH3 dosing the adsorption of the zeolite saturates (as inlet concentration equals outlet 

concentration; only 90 min for soot free SDPF sample in Fig.	 44). The experimentally 

observed NH3 adsorption curve is even flatter than a model calculation under usage of the 

soot distribution covering all zeolite over the porous wall thickness (red dashed line, msoot 

= 1 g l-1), which is the calculatory case, yielding the maximum loss in catalytic activity 

(discussed in Fig.	51). Consequently, the ratio 
5Cññ%ó  delivers values which are too large to 

fulfill the experimentally observed NH3 adsorption behavior under extreme high load 

condition. Nevertheless, two effects are conceivable to explain the experiment. On the one 

hand, during soot loading of the sample with 25 g l-1 (loading process lasts 25 times as 

long as for 1 g l-1), in-wall soot is very likely to be wafted closer to the outlet. At the inlet 

channel soot particles break away from the cake layer and deposit inside the porous filter 

wall. Hence, the in-wall soot mass msoot,wall increases. Under assumption of the soot 

density (ρ#,�	 =	65.5 kg m-3) to remain constant, the thickness of the soot depositions 

within the wall (ds) will increase. With constant ρ#,� also soot structure and thus the 

diffusivity will not change. Hence, the ratio 
5Cññ%ó  is determined by the soot layer thickness 

ds. Under usage of the kinetic model, a soot layer thickness distribution with msoot,wall = 

3 g l-1 was found (»high load distribution«, dark grey line in Fig.	 52), explaining the 

experimental NH3 adsorption profile very well. Comparing it to the »fit distribution« 

(msoot,wall = 1 g l-1), it is obvious that ds increased for each brick, resulting in increased mass 

transport limitation. Unfortunately, the process of a slight filling of the porous filter wall 
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during the whole soot loading time as a consequence of a slight wafting of soot 

particulates from the cake layer into the wall can not be observed by the backpressure 

measurement. In Fig.	65 (Appendix) the backpressure curve of the 25 g l-1 soot-loading is 

depicted. As the measured pressure at each time is a snapshot, also this curve yields the 

information of 1 g l-1 in-wall soot by the change in slope indicating transition from deep 

bed to cake filtration. In Fig.	53 the modelled NO conversion under usage of the soot 

distributions given in Fig.	 52 (left) is depicted. It is expected that the »high load 

distribution« (which explains the NH3 adsorption behavior) would lead to a maximum NO 

conversion of 53 % (at 673 K). The »fit distribution« (which explains the NH3 adsorption 

behavior and NO conversion for medium soot loadings up to msoot = 4 g l-1) yields a 

maximum of 81 %. Hence, additional 2 g l-1 of in-wall soot result in further conversion 

drop of 18 %. 
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Fig.	52	Left: Spatial soot layer thickness distributions within the filter wall (divided into bricks) 
of msoot,wall = 1 g l-1 (»fit distribution« and the distribution equally covering all the washcoat) and 
3 g l-1 (»high load distribution« ). Right: NH3 outlet concentration during adsorption as a function 
of time-on-stream (experimental conditions of the model gas experiment as in Fig.	 38). The 
dotted curve indicates the experiment with the sample with very high soot loading of msoot = 
25 g l-1, the solid lines and the dashed line are the result of a model calculation under usage of the 
respective soot layer-thickness distribution given on the left.	
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Fig.	53	NO conversion as a function of the temperature for kinetic model calculation of standard 
SCR for a soot free sample (dashed line) and under application of the soot distributions given in 
Fig.	52 (left).	

On the other hand, a likely scenario yielding a reduction of the ratio 
5Cññ%ó  is by reducing the 

effective diffusivity. As found by Yapaulo et al. [123] a higher gas velocity during soot 

loading results in higher soot mass deposited inside the porous wall. Thereby, the soot 

penetration depth has not been changed significantly. Hence, a densification of the soot 

deposits inside the porous wall is implied. As suggested by Park et al. [145], the Knudsen 

diffusion is the fundamental process for gas diffusion through a soot layer. According to 

eq. (2.20) a densification will lead to reduced soot porosity ϵ/+ and pore width dp 

connected with an increase in tortuosity τ� , thus a reduction in Knudsen diffusivity D� is 

achieved.  

In Fig.	54 (left) experimentally observed temperature dependence of the observed NO 

conversion rates is depicted. During soot loading (up to msoot = 4 g l-1) the GHSV of the 

exhaust from the soot-generator was varied. The case of 100 k h-1 represents the standard 

loading procedure used in this study, for the case of 48 k h-1 the dilution gas (10 l min-1) 

was switched off. The light off curve achieved at lower GHSV during soot loading clearly 

shows a higher NO conversion compared to the 100 k h-1 case. Up to 7 % increase in NO 

conversion was observed just by a variation of the soot loading GHSV in the range given 

above. According to Yapaulo et al. an increased gas velocity during loading results in more 

soot mass deposited inside the porous filter wall as a consequence of higher soot density. 

On the right side of Fig.	 54 a model calculation of the NO conversion is depicted for 
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different effective diffusivities under study. Thereby, the pre-exponential factor of the 

temperature dependence of the diffusivity (eq. (5.5) with Ea,D = 2.5 kJ mol-1) was varied in 

order to achieve an effective diffusivity in the range of 5 ⋅ 10�Ì m2 s-1 to 5 ⋅ 10��� m2 s-1 at 

423 K. The »fit distribution« was used as soot layer thickness distribution and kept 

constant for all the calculated light off curves, thus the diffusivity is the parameter 

changing the ratio 
5Cññ%ó . The dependency could be clearly observed: the lower the effective 

diffusivity, the lower the resulting NO conversion. Whereas Deff = 5 ⋅ 10�Ì m2 s-1 results 

only in a minor diffusive barrier and therefore in a NO conversion curve close to the soot 

free case (98 % maximum conversion), Deff = 5 ⋅ 10��� m2 s-1 (2 orders of magnitude 

lower) leads to a dramatic loss in NO conversion (maximum value of 64 %). Hence, 

effective diffusivities could be found, explaining the experimentally observed drop in NO 

conversion by the variation of the GHSV during soot loading (dashed lines). While Deff = 

2 ⋅ 10��H m2 s-1 at 423 K is the diffusivity explaining the NO conversion on the samples 

loaded at GHSV of 100 k h-1 (standard condition used for all other soot loading 

experiments and model calculations done in this work), the experimentally observed 

conversion for the sample loaded at 48 k h-1 could be described by the model under usage 

of a diffusivity of Deff = 4 ⋅ 10��H m2 s-1 at 423 K (2 times higher). Koltsakis et al. [176] 

found the soot density within the porous wall ρ#,� to vary from 25 to 100 kg m-3. Thereby, 

it depends (among others) on the flow velocity during loading. Referring the soot porosity 

on the density of graphene (2260 kg m-3), a soot porosity value of ϵ#,� = 1 − ôó,���§H �' Q� = 

0.97 was found for ρ#,� = 65.5 kg m-3 (soot density is a result of backpressure 

measurement, chapter 5.3.1, for soot loading at GHSV of 100 k h-1). According to the 

equation for Knudsen diffusion (2.20) the soot porosity alone could not explain a change 

in diffusivity by a factor of 2 as consequence of reduced soot density (due to reduced gas 

velocity during soot loading). Hence, a decrease in tortuosity τ� or an increase in the pore 

width dp of the soot layer could be possible explanations for the increased diffusivity and 

thus for the observed increase in NO conversion when gas velocity during soot loading is 

reduced. Otherwise this could also suggest that Knudsen diffusion is not the present 

diffusion process governing gas transport of gas molecules in the soot under study. 

Within this subchapter the meaning of the ratio 
5Cññ%ó  for the kinetic modelling of the NO 

conversion under soot loading has been emphasized. Experimental scenarios either 
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changing ds or Deff have been discussed. Nevertheless, a model based determination of one 

of the parameters always implies a fixing of the other parameter under certain error. 
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Fig.	 54 NO conversion as a function of the temperature. Left: Temperature programmed SCR 
experiment on a soot free SDPF1 (solid black line )sample and two SDPF1 samples with msoot = 
4 g l-1 (experimental conditions as in Fig.	42, left). During soot loading the GHSV of the exhaust 
from the soot-generator was varied: 48 k h-1 (dashed) and 100 k h-1 (dotted), all other soot loading 
conditions as described in chapter 3.3.3. Right: Model calculations of temperature programmed 
SCR under variation of the effective diffusion coefficient. The dashed lines indicate the model 
calculations representing the experimentally observed NO conversion on the right.	

5.3.4.2 Model	Results	for	SDPF	with	changed	Pore	Geometry	

To prove model validity, within this subchapter the kinetic model was applied on another 

SDPF sample (SDPF2). This sample reveals less pore volume (Fig.	62, Appendix) and a 

smaller pore width (mean pore size of 17 µm, Tab.	3.1) compared to SDPF1. In Fig.	42 

experimental as well as model calculations of the temperature dependence on the NO 

conversion is depicted. In the experiment on NO conversion a decrease up to 7 % was 

observed for the msoot = 1 g l-1 soot loaded SDPF2 sample. Thereby, an in-wall soot mass 

of msoot,wall = 0.36 g l-1 has been evaluated by means of backpressure measurement (Fig.	

43). On contrary for SDPF1 the conversion dropped by 20 % under msoot,wall = 1 g l-1 soot 

loading, strongly suggesting that the soot mass inside the porous wall has a major 

influence on the resulting catalytic activity. The unit collector model has been applied to 

the geometric parameters of SDPF2. As can be seen in Fig.	55 (left) the unit collector cells 

of the SDPF2 configuration are much smaller. While for SDPF1 a maximum soot layer 

thickness of ds = 5.1 µm was possible, for SDPF2 only a soot layer of 3.4 µm is possible to 
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cover the washcoat. Under the restriction of msoot,wall = 0.36 g l-1 a soot layer thickness 

distribution could be found, explaining the experimentally observed decrease in NO 

conversion for up to 7 % (given on the right). The found distribution features soot 

penetration depth inside the porous wall up to brick 6 (equals 15 % of the wall thickness). 

Thereby, most of the soot is distributed close to the inlet channel. The rest of the 

washcoated filter wall is not covered by soot. Hence, the large volume of the porous wall 

which is soot free (85 %) still enables good catalytic activity (similar to soot free case). 

Furthermore, the two theoretical soot distributions yielding the calculatory minimum and 

maximum in NO conversion are studied. When soot (msoot,wall = 0.36 g l-1) slightly covers 

the entire catalytic surface the minimal NO conversion results, which is up to 10 % less 

than the soot free case. On contrary for SDPF1 with msoot,wall = 1 g l-1 a drop of up to 40 % 

resulted as calculatory minimum case. For the »fit distribution« of SDPF1 a soot 

penetration down the filter wall up to 85 % was found (using the model), ongoing with a 

loss in SCR-catalytic activity leading to a decrease of up to 20 % of NO conversion. 

Consequently, the soot penetration into the porous wall (covering the zeolite) is the 

crucial parameter to explain the observed effect of the soot loading on the SCR activity as 

well as the NH3 adsorption. 

The model assisted investigation presented here is thus giving the explanation for the 

deviation in NOx conversion of soot loaded samples from other literature reports. Schrade 

et al. [135] and Mihai et al. [136] observed a decrease in NO conversion up to 5 %, while 

Cavataio et al. [137] and Tronconi et al. [139]observed up to 20 % loss in catalytic activity 

for a soot loaded samples compared to the soot free case. All these studies did not mention 

the backpressure curves or the mass of in-wall soot for the SDPF samples under their 

investigation. That is why a quantitative evaluation of their results is not possible. 

Nevertheless, model assisted investigation on both SDPF samples presented here (SDPF1 

and SDPF2) strongly suggests, that the mass of in-wall soot and its penetration depth 

inside the porous wall seems to be the key to explain the huge deviation in the reported 

NO conversion values. 

Within this subchapter it could be proven, that a decreased pore width of the SDPF filter 

wall, ongoing with a decrease of the soot mass trapped inside the pores (msoot,wall), results 

in a less NO conversion drop. 
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Fig.	55	Left: Spatial soot layer thickness distributions within the filter wall (divided into bricks) 
of msoot,wall = 0.36 g l-1 explaining the NO conversion in a standard SCR experiment for SDPF2 
(»Distr. fit«). Additionally, the soot distribution revealing the minimum NO conversion in model 
calculation is depicted. The dashed line (ds = 3.4 µm) indicates the soot layer thickness for 
complete filling of the unit collectors for SDPF2. Right: NO conversion as a function of the 
temperature for standard SCR experiments (experimental conditions as in Fig.	42) on soot free 
and soot loaded (msoot,wall = 0.36 g l-1) SDPF2 samples (dashed lines). The appropriate model 
calculations under usage of the soot distributions given on the left are depicted as solid lines.	

5.3.5 Adaption	to	Flow-Through	Catalysts	

The effect of the soot, acting as diffusive barrier inside the porous filter wall, should be 

valid for any catalyst coated monoliths that are in contact with soot. To validate this, two 

flow-through catalysts have been studied. A commercial flow-through SCR-catalyst and a 

commercial NSC (specification given in Tab.	3.1) were slightly covered by soot. Thereby, 

the samples were kept in the exhaust gas stream of the soot-generator for 7.5 h (soot 

loading conditions as described in chapter 3.3.3). Compared to particulate filter samples, 

the flow-through catalysts reveal much less filtration efficiency (<< 1). For flow-through 

catalysts »Interception« and »Brownian motion« (see chapter 2.3.2 or [115]) are expected 

to be the dominating deposition modes concerning small particles. Larger particles will 

have a very poor deposition rate due to their inertia. The loaded amount of soot within 

the catalyst was achieved by balancing (eq. (3.2)) the measured CO and CO2 

concentrations during forced soot oxidation (regeneration) afterwards the model gas 

experiments on NH3 adsorption and NO conversion were finished. Compared to SDPF1 

studied above (msoot,wall = 1 g l-1) the loading of the SCR-catalyst msoot = 0.3 g l-1 and of the 

NSC msoot= 0.2 g l-1 are much smaller. 
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The results on NO and NO2 adsorption for the soot free and the soot loaded NSC are shown 

in Fig.	56. Corresponding results on NH3 adsorption on the SCR catalyst are depicted in 

Fig.	57 (right). Both types of adsorption experiments revealed the onset of the adsorbate 

gas breakthrough during dosing to be shifted towards an earlier time-on-stream under 

soot loading. Furthermore, the breakthrough curve is flattened when the catalyst is 

covered by soot. Thus, for both flow-through catalysts (adsorbing NH3 molecules or NO 

and NO2 molecules respectively) the adsorption behavior was observed to be influenced 

in the same manner as for NH3 on SDPF samples studied in chapter 5.3.3. Consequently, 

the principle of the soot acting as diffusive barrier for the gas transport to the active 

catalytic sites also holds for flow-through structured monoliths slightly covered with soot 

and is not a feature of NH3 molecules only. 
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Fig.	 56	 Adsorption experiments on a flow-through NSC (given in Tab. 3.1). NOx outlet 
concentration as a function of time-on-stream for soot free and soot loaded (msoot = 0.2 g	l-1) NSC. 
Experimental condition described in chapter 3.4.4 (Tads = 423 K). The arrows indicate the typical 
directions in which the adsorption curve shifts, when soot loaded.	

 

For the SCR-catalyst the kinetic model, described in chapter 4 was applied to the flow-

through structure. The model was adjusted and validated using model gas experiments 

on soot free samples. Both the NH3 breakthrough during adsorption (Fig.	57, right, black 

lines) as well as the NO conversion light off (Fig.	58, black lines) are explained well by the 

kinetic model. For the soot free sample, the NH3 breakthrough establishes after 22 min 

time-on-stream, whereas the soot loaded sample shows NH3 slip even after only 15 min 
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of NH3 dosing. For the NO conversion only a very minor influence of the soot loading is 

experimentally observed. The soot loaded SCR-catalyst shows 2 % reduction in catalytic 

activity. To consider the influence of soot, two soot distributions were studied (Fig.	57, 

left). A thin soot layer covering the entire catalytic surface (0.05 µm thick, green line) and 

a soot distribution with local clusters (parts of the catalytic surface that are not covered 

by soot, red line). Comparing the model results on NH3 adsorption for both distributions 

(Fig.	57, right), it can be seen that an entire soot covering of the catalyst yields a NH3 

breakthrough starting at the beginning of NH3 dosing, which is not in accordance to the 

experiment. The clustered distribution leads to a NH3 breakthrough after 15 min of full 

adsorption, representing the experimental results. Hence, a clustered distribution seems 

to be the more realistic scenario. Nevertheless, at 25 min time-on-stream and above the 

flattening of the calculated adsorption curves is much more evident compared to the 

experiment. The deviations might be a consequence of the deposition of very small soot 

particles (5 nm to 10 nm). These depositions may represent defective structures at the 

zeolite surface, which affect the molecular uptake rate of the zeolite as previously studied 

by Kontunov et al. [177]. A change in the zeolitic molecular uptake behavior under soot 

loading has not been implemented in the model, yet. Consequently, also the model 

calculation of the NO conversion of soot loaded SCR catalyst samples results in slight 

deviations to the experiment (Fig.	58). Nevertheless, the local distribution is more narrow 

to the experimental NO conversion under soot loading. 
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Fig.	57 Left: Soot distribution within the flow-through SCR-catalyst: soot layer thickness as a 
function of sample length for distribution locally covering the catalyst by clusters and a 
distribution covering the entire catalytic surface (msoot = 0.3 g l-1). Right: Adsorption experiment 
on a flow-through SCR catalyst (given in Tab. 3.1). NH3 outlet concentration during adsorption 
as a function of the time-on-stream for the SCR-catalyst in soot free and soot loaded (msoot = 
0.3 g	l-1) condition. Experiments performed at conditions as described in chapter 3.4.2 
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(200 ppm NH3 dosing in 40.000 h-1 GHSV, Tads = 423 K). The calculated curves are the result of 
a model calculation under usage of the soot distributions on the left.	
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Fig.	58 Experimentally and calculated NO conversion as a function of temperature under usage 
of the soot distributions given in Fig.	57 (left). The SCR experiments were performed under the 
conditions described in chapter 3.4.3 at GHSV of 40 k h-1.	

 

In case of NSC, the NOx breakthrough behavior is affected in the same manner as the NH3 

breakthrough of SDPF samples under soot loading. The principle of the diffusive barrier 

is supported by Vaclavik et al. [178]. With the aim of investigating transport limitation in 

double-layer systems consisting of oxidation (DOC) and Lean NOx Trap (LNT, NOx storage) 

catalysts, the authors introduced a thin inert Al2O3 layer as diffusion barrier. It was placed 

on top of the washcoated channels inside a LNT. By means of model gas exepriments on 

NO adsorption and C3H6 light-off, Vaclavik et al. have proven that transport limitation 

results from the diffusion barrier. The Al2O3 diffusion layer studied by Vaclavik et al. had 

a thickness of Þ = 108 µm. Its effective diffusivity was determined to be D*"" = 3.5 ∙
10�§ m� s�� at 473 K. Thus, the corresponding characteristic diffusion time (δ�/2D*"") 

results in 1.65 ms. For the soot layer studied here, a characteristic diffusion time of 

0.95 ms could be evaluated for SDPF1, assuming a soot layer thickness of 0.6 µm (Fig.	46, 

left). Thus, the timescales of both diffusion barriers are in the same order of magnitude. 

As the conditions of their model gas experiments on NOx adsorption are similar to those 

applied in this work, Vaclavik et al. similarly observed NOx breakthrough at earlier time-

on-stream during adsorbate supply, followed by a flattened breakthrough curve 

compared to the case without the Al2O3 diffusive barrier. 
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Within this subchapter, it was shown, that soot within the channels of flow-through 

catalysts provides a diffusion barrier, too. Next to the uptake of NH3 molecules, also the 

NO molecules uptake is hindered by the soot, validating the diffusion barrier as a general 

principle. 
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6 Conclusions	and	Outlook	

In recent years, a more stringent emission legislation for diesel engine vehicles combined 

with special demands on the packaging of the exhaust gas aftertreatment components has 

led the development of the diesel particulate filter coated with a catalyst for the selective 

catalytic reduction of NOx with NH3 (SDPF). The overlap of functionalities in one 

component, e.g. soot storage and NOx reduction, comes along with an influence of the 

trapped soot on the catalytic properties, which is still controversially discussed in 

literature. Thus, aim of this work was a fundamental understanding of the physico-

chemical interaction of soot on the NH3 adsorption and NOx conversion kinetics of SDPF 

samples. 

For that purpose, a soot loading apparatus was set up to provide defined and reproducible 

soot loading of SDPF samples. Based on model gas experiments on soot free and soot 

loaded samples (up to 25 g l-1 soot), the influence of soot on the SCR DeNOx behavior was 

studied. For the first time, a dramatic change in the NH3 slip behavior (NH3 breakthrough 

with onset of NH3 dosing) in the presence of soot within the SDPF was observed by means 

of NH3 adsorption/desorption experiments. A slightly increased NH3 storage amount was 

found for soot loaded SDPF samples compared to soot free samples. The effect could be 

attributed to the soot itself, exhibiting additional acid sites which lead to an increase of 

the entire NH3 storage capacity (22.5 mg of NH3 per gram of model soot trapped in the 

filter). Temperature programmed standard SCR experiments in the temperature range of 

423 K to 673 K revealed a decreased in NO conversion up to 20 % under soot loading. 

With the aim of setting up a model for model based analysis of the influence of soot inside 

the SDPF on its catalytic activity, SEM measurements were performed for structural 

investigation of the soot loaded porous filter wall of SDPF samples. Based on the 

experimental observation a microscopic filter wall model was set up, implementing gas 

transport within the porous filter wall and through the wall trapped soot (wall 

represented by unit collector model) and a kinetic model. The established 1-D SDPF wall 

model describes the experimental observations on NH3 breakthrough behavior and NO 

conversion drop very well. In this model, soot is implemented as a layer acting as physical 

diffusion barrier limiting the transport of the reactants to the washcoat surface (zeolite). 

This assumption is supported by the observation of a diffusion process of gas molecules 

through the wall trapped soot layer using PFG-NMR (unrestricted diffusion). The diffusion 
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through the soot strongly reduces the overall NH3 adsorption- and SCR reaction-rates as 

the availability of reactant molecules is reduced but has no direct influence on the 

intrinsic adsorption or reaction kinetics of the washcoat itself (bottleneck principle). The 

considerable NO conversion drop between 3 % and 20 % experimentally found for SDPFs 

upon soot loading could be explained by means of variations in the soot distribution 

within the porous filter wall (soot located close to the inlet channel only vs. entirely 

covering all the chemically active sites). According to the model results of the present 

study, even a thin soot layer (0.6 µm) homogeneously covering the entire catalyst surface 

may reduce the NO conversion by up to 45 %. As consequence, any soot penetration inside 

the washcoated filter wall should be prevented by the SDPF design to maintain high NOx 

conversion. Thus, a high backpressure will be avoided enabling improved fuel economy. 

As most of the soot is trapped inside the filter wall close to the inlet channel, a washcoating 

concept in which the washcoat is impregnated in the wall part close to the outlet channel 

is also advisable to prevent the soot to cover active sites reducing SCR DeNOx 

performance. The gained knowledge on the NH3 slip behavior under soot loading may be 

helpful for application to improve reducing agent exploitation and economic performance 

of the exhaust gas aftertreatment system. 
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8 Appendix	

8.1 Additional	Data	

 
Fig.	59	SEM images of the cross section of some SDPFs filter channels, left: cross section of the 
filter channels with 40 times magnification, right: porous filter wall cross section at 250 times 
magnification revealing the areas of the SiC filter material and the zeolite containing washcoat. 

 

 

 

 

Fig.	60 Left: SEM image of the cross section of a soot loaded SDPFs filter wall at 5.000 times 
magnification. Right SEM image of the soot deposit within the porous filter wall at 20.000 times 
magnification.  
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Tab.	8.1	List of the whole set of mass balance equations used in the kinetic model. The kinetic 
parameters (pre-exponential factors, activation energies and storage capacities) for each reaction 
are given in the bottom part of the table.	

Mass	Conservation	Equations	

	

NH3 

	 dx',y|}dt = 
=̧

YBCDD¸¹º»¼ ´x!Y,y|} − x',y|}µ − βy|} 6ó¸¹º»¼ ´x',y|} − x#,y|}µ  

dx#,y|}dt = βy|} 6ó¸ó,Dö÷Cø ´x',y|} − x#,y|}µ − 6�B¸ó,Dö÷Cø
5Cññ,ùú}%ó ´x#,y|} − x��,y|}µ  

dx��,y|}dt = 
A��V��

D*"",y|}d# ´x#,y|} − x��,y|}µ − k#�,(%#(1 − θ#�)x��,y|} + k#�,%*#θ#� 

−k#�,(%#(1 − θ#�)x��,y|} + k#�,%*#θ#� − k#,(%#(1 − θ#)x��,y|}+ k#,%*#θ# 

dθ#�dt = 
c!%.'(#Γ#� ´k#�,(%#(1 − θ#�)x��,y|} − k#�,%*#θ#�µ 

dθ#�dt = 
�»¼.ûöóüóz �k#�,(%#(1 − θ#�)x��,y|} − k#�,%*#θ#� − �óz,ýþ¼ý���óz��B,ù���B,�z

�óz,���»	 −
k#�,y|@�!θ#�x��,@z�  

dθ#dt = 
�»¼.ûöóüó} �k#,(%#(1 − θ#)x��,y|} − k#,%*#θ# − �ó},ýþ¼ý���ó}��B,ù���B,�z

�ó},���»	 −
k#,y|@�!θ#x��,@z�  

NO 

	 dx',y@dt = 
=̧

YBCDD¸¹º»¼ ´x!Y,y@ − x',y@µ − βy@ 6ó¸¹º»¼ ´x',y@ − x#,y@µ  

dx#,y@dt = βy@ 6ó¸ó,Dö÷Cø ´x',y@ − x#,y@µ − 6�B¸ó,Dö÷Cø
5Cññ,ù�%ó ´x#,y@ − x��,y@µ  

dx��,y@dt = 
A��V��

D*"",y@d# ´x#,y@ − x��,y@µ − k#�,�?%��Èθ#�x��,y@x��,@zG#�,ÉYc!Ê  

− k#,�?%��Èθ#x��,y@x��,@zG#,ÉYc!Ê  
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O2 

 

dx',@zdt = 
=̧

YBCDD¸¹º»¼ ´x!Y,@z − x',@zµ − β@z 6ó¸¹º»¼ ´x',@z − x#,@zµ  

dx#,@zdt = β@z 6ó¸ó,Dö÷Cø ´x',@z − x#,@zµ − 6�B¸ó,Dö÷Cø
5Cññ,�z%ó ´x#,@z − x��,@zµ  

dx��,@zdt = 
A��V��

D*"",@zd# ´x#,@z − x��,@zµ − 14 k#�,�?%��Èθ#�x��,y@x��,@zG#�,ÉYc!Ê  

− 14 k#,�?%��Èθ#x��,y@x��,@zG#,ÉYc!Ê − 34 k#�,y|@�!θ#�x��,@z 

− 34 k#,y|@�!θ#x��,@z 

 

 

Kinetic	Model	Parametrisation	of	Sample	SDPF1	

Pre-exponential	factor	¬
	/	s-1 Activation	energy	�¬	/	kJ	mol-1 

A#�,(%# = 1.1 ⋅ 10¿ E6,#�,(%# = 0 

A#�,%*# = 3.7 ⋅ 10H E6,#�,%*# = 0 

A#�,(%# = 2.8 ⋅ 10 E6,#�,(%# = 0 

A#�,%*# = 2.3 ⋅ 10¿ E6,#�,%*# = 76.7 

A#,(%# = 3.2 ⋅ 10� E6,#,(%# = 0 

A#,%*# = 1.1 ⋅ 10§ E6,#,%*# = 66.5 

A#�,�?%��È = 1.2 ⋅ 10�� E6,#�,�?%��È = 73.7 

A#�,ÉYc!Ê = 5.5 ⋅ 10¾ (no unit) E6,#�,ÉYc!Ê = 73.7 

A#�,y|@�! = 1.7 ⋅ 10§ E6,#�,y|@�! = 77.7 

A#,�?%��È = 6.8 ⋅ 10�� E6,#,�?%��È = 70.5 

A#,ÉYc!Ê = 1.0 ⋅ 10Ë (no unit) E6,#,ÉYc!Ê = 70.5 

A#,y|@�! = 2.9 ⋅ 10¾ E6,#,y|@�! = 72.3 

 	  	

NH3	storage	capacity	of	�	/	�� ��°
��	

Γ� = 1.37 ⋅ 10  	

Γ� = 3.03 ⋅ 10  	

Γ = 3.40 ⋅ 10  	
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Fig.	61	Comparison of methods for calculating the soot loaded mass of the SDPF: evaluated soot 
loading via carbon balance from FTIR signal (eq. (3.2)) as a function of the evaluated soot loading 
calculated via soot mass flow. The error bars indicate an uncertainty of 15 % for the evaluation 
via C balance, as the FTIR under usage only measures the CO2 concentration in vol.-% while the 
CO concentration could be measured in ppm. The grey line is a guide for the eye for an ideal 
accordance of both methods.	
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Fig.	62	Relative volume (Vrel) and volume intruded (Vint) as a function of pore width for the Hg-
intrusion profile and pore width distribution histogram of SDPF1 (black) and SDPF2 (grey). The 
intruded volumina up to 80 nm pore width is given as numbers (due to particle size Fig.	 28, 
smaller pores are unlikely to be filled with soot particles).	
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Fig.	63	NH3 concentration at the reactor outlet as a function of time-on-stream for NH3 adsorption 
and desorption experiments of a soot free and a soot loaded (msoot = 4 g l-1) SDPF sample. A stream 
of NH3 (1000 ppm) in N2 was led through the reactor at 523 K adsorption temperature until 80 
min on-stream (GHSV = 40.000 h-1). Then, a pure nitrogen flow was applied and after 200 min on-
stream the temperature was increased linearly until 873 K for NH3 desorption. The arrow in the 
insert indicates the inflection point for the soot loaded sample. 
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Fig.	64 Left: Spatial soot layer thickness distributions of msoot,wall = 1 g l-1. The black line is the 
»fit distribution« (explained in chapter 5.3.3), the grey lines gives a distribution using the 
filtration model proposed by Konstandopoulos et al. [124]. Right: NH3 concentration as a 
function of time-on-stream for model calculations of NH3 adsorption/desorption under usage 
of the soot distributions given on the left. The arrow indicates the position of the inflection point 
using the filtration model distribution.	
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Fig.	65	Backpressure as a function of soot loading (in g l-1) for SDPF1 sample at the high loading 
test with msoot = 25 g l-1. The dashes line gives the transition from deep bed to cake filtration at 
msoot, wall = 1 g l-1.	
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Fig.	 66 NH3 concentration as a function of time-on-stream for a NH3 adsorption/desorption 
experiment on the flow-through SCR-catalyst. The dotted lines are the experimental data, whereas 
the solid lines are the result of kinetic model calculation. The experimental conditions are 
described in chapter 3.4.2 (GHSV = 40 k h-1 and Tads = 423 K). 
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Tab.	8.2	Table of the soot-generator operation points tested in this study by means of particle size distribution and soot mass flow.	
 

C3H8	 Air	 �	 N2	

Mix	Gas	

N2	

Quench	Gas	

Dilution	

Air	

Mean	

Particle	Size	

Standard.	

Deviation	

Particle	

Concentration	

Soot	Mass	

Flow	

Standard	

Deviation	

 
ml min�� l min�� - ml min�� l min�� l min�� nm nm #/cm3 mg ℎ�� mg ℎ�� 

OP1 60 1.55 1.059 0 7 20 95.9 1.1 1.11E+08 124.1 1.8 
OP2 60 1.52 1.039 100 7 20 80.2 1.1 1.20E+08 67.9 1.6 

OP3 60 1.47 1.005 200 7 20 64.2 1.1 1.49E+08 34.6 0.5 
OP4 60 1.42 0.970 250 7 20 47.7 1.1 1.28E+08 13.5 0.2 

OP5 60 1.36 0.929 300 7 20 26.2 1.2 9.32E+07 1.1 0.0 
OP6 60 1.32 0.902 330 7 20 18.7 1.3 6.38E+07 0.2 0.0 
OP7 60 1..25 0.854 330 7 20 16.4 1.4 4.98E+07 0.1 0.0 

OP8 60 1.55 1.059 50 7 20 88.2 1.1 1.14E+08 70.9 3.0 
OP9 60 1.55 1-059 150 7 20 70.4 1.1 1.12E+08 27.1 0.4 

OP10 60 1.55 1.059 250 7 20 50.8 1.2 8.73E+07 5.8 0.1 
OP11 60 1.6 1.093 0 7 20 94.7 1.1 1.01E+08 88.6 1.7 
OP12 60 1.7 1.162 0 7 20 83.5 1.1 7.44E+07 40.8 1.2 

OP13 60 1.8 1.230 0 7 20 65.1 1.2 3.84E+07 5.4 0.3 
OP14 60 1.8 1.230 100 7 20 37.5 2.5 6.07E+06 0.0 0.0 

OP15 60 1.9 1.298 0 7 20 38.0 2.4 6.00E+06 0.2 0.0 
OP16 60 1.57 1.073 0 7 20 99.4 1.1 1.06E+08 107.8 1.6 

OP17	 60	 1.57	 1.073	 100	 7	 20	 79.6	 1.1	 1.08E+08	 42.2	 0.9	

OP18 60 1.57 1.073 200 7 20 61.2 1.2 9.58E+07 12.5 0.4 
OP19 60 1.57 1.073 300 7 20 34.3 1.3 4.24E+07 0.8 0.1 

OP20 60 1.59 1.087 0 7 20 95.8 1.1 1.04E+08 92.7 1.7 
OP21 60 1.59 1.087 100 7 20 75.5 1.1 1.00E+08 33.9 1.3 
OP22 60 1.59 1.087 200 7 20 56.9 1.2 8.23E+07 7.3 0.2 

OP23 60 1.59 1.087 300 7 20 28.5 1.4 3.15E+07 0.4 0.0 
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OP24 60 1.52 1.039 0 7 20 100.8 1.1 1.12E+08 134.9 2.3 

OP25 60 1.52 1.039 100 7 20 83.9 1.1 1.24E+08 66.2 1.5 
OP26 60 1.52 1.039 200 7 20 65.4 1.1 1.27E+08 22.8 0.3 
OP27 60 1.52 1.039 300 7 20 39.4 1.2 7.25E+07 2.3 0.1 

OP28 60 1.5 1.025 0 7 20 103.0 1.1 1.12E+08 148.2 3.9 
OP29 60 1.5 1.025 100 7 20 86.0 1.1 1.27E+08 78.6 2.2 

OP30 60 1.5 1.025 200 7 20 67.2 1.1 1.36E+08 29.4 0.6 
OP31 60 1.47 1.005 0 7 20 105.0 1.1 1.14E+08 173.1 3.1 
OP32 60 1.47 1.005 100 7 20 87.5 1.1 1.34E+08 87.5 1.8 

OP33 60 1.42 0.970 0 7 20 106.9 1.1 1.18E+08 194.4 4.1 
OP34 60 1.42 0.970 100 7 20 89.6 1.1 1.41E+08 105.2 1.7 

OP35 60 1.42 0.970 200 7 20 70.2 1.1 1.48E+08 40.2 1.7 
OP36 60 1.36 0.929 0 7 20 107.6 1.1 1.22E+08 211.1 3.5 

OP37 60 1.36 0.929 100 7 20 89.9 1.1 1.41E+08 111.1 1.7 
OP38 60 1.36 0.929 200 7 20 62.2 1.1 1.47E+08 28.2 0.5 
OP39 60 1.32 0.902 0 7 20 105.9 1.1 1.23E+08 207.7 3.0 

OP40 60 1.32 0.902 100 7 20 85.9 1.1 1.43E+08 106.9 1.7 
OP41 60 1.32 0.902 200 7 20 53.9 1.1 1.39E+08 17.1 0.3 

OP42 60 1.2 0.820 0 7 20 86.1 1.1 1.50E+08 150.1 3.9 
OP43 60 1.1 0.752 0 7 20 67.7 1.1 1.50E+08 57.8 2.0 
OP44 60 1 0.683 0 7 20 50.7 1.1 1.27E+08 12.6 0.3 

OP45 60 1.55 1.059 0 7 20 101.6 1.1 1.00E+08 124.1 1.8 
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