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Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating
non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as
intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical
pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic
nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods.
The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR
signals; in addition, it provides a very useful tool for investigating elusive radicals and radical pairs.
While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed
analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical
frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding
the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy
of spin interactions, which increase the complexity of spin evolution. In this work, we propose to
analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP
magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical
pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state
case where anisotropic interactions play a significant role in CIDNP formation. In solids, features
arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations,
which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC
concept. This consideration allows one to find analytical expressions for a wide magnetic field range,
where several different mechanisms are operative; furthermore, the LAC description gives a way to
determine CIDNP sign rules. Thus, LCs/LACs provide a consistent description of CIDNP in both
liquids and solids with the prospect of exploiting it for the analysis of short-lived radicals and for
optimizing the polarization level. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945341]

I. INTRODUCTION

Chemically Induced Dynamic Nuclear Polarization
(CIDNP) is a method of creating non-equilibrium polarization
of nuclear spins by using chemical reactions, having radical
pair (RP) intermediates. The CIDNP effect can be explained
using the Radical Pair Model (RPM): polarization originates
from (i) electron spin-selective recombination of radical pairs
and (ii) the dependence of the singlet-triplet Inter-System
Crossing (ISC) rate in RPs on the state of magnetic nuclei.1

Thus, nuclear “spin sorting” takes place meaning that the
RP reactivity depends on its nuclear spin state. As a result,
the reaction product is enriched (or depleted) in particular
nuclear spin states, i.e., its nuclear spins become non-thermally
polarized. The CIDNP effect can be investigated by using
Nuclear Magnetic Resonance (NMR) methods. The gain from
CIDNP is twofold: first, it allows one to obtain considerable

a)Author to whom correspondence should be addressed. Electronic mail:
ivanov@tomo.nsc.ru. Tel.: +7(383)330-8868. Fax: +7(383)333-1399.

enhancement of NMR signals and second, CIDNP is a very
useful tool for investigating elusive radicals and radical pairs,
which are often beyond the reach of Electron Paramagnetic
Resonance (EPR) spectroscopy. Nuclear influence on the
electron spin evolution originates from electron-nuclear
interactions in RPs, i.e., from hyperfine interactions, playing
the key role in CIDNP formation. Accordingly, CIDNP
effects become pronounced only when the electron-nuclear
spin evolution has enough time to develop, i.e., when these
interactions (when measured in frequency units) are greater
than or comparable to the reciprocal of the RP lifetime.

While the mechanisms of the CIDNP effect in liquids are
well established and understood, CIDNP mechanisms in the
solid state are not yet fully clear. Differences between solid-
state (ss) and liquid-state (ls) CIDNP are due to the follow-
ing reasons. First, in solids RPs can be long-lived, since the
molecular mobility is restricted and the radicals cannot diffuse
apart. In this situation, all RPs would eventually recombine
independent of their nuclear spin state; consequently, the RP
recombination reaction would not work as a nuclear “spin
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sorting” mechanism; hence, enrichment of the product with
particular nuclear spin states is not possible. However, the same
problem also exists in the liquid state when rigid or flexible
biradicals are used: in this situation CIDNP can be formed
due to (i) nuclear spin relaxation in the paramagnetic state
(i.e., in an RP or biradical), (ii) the presence of an additional
spin-independent channel of RP decay (scavenging), or (iii)
by the S-T± mechanism (to be introduced below). The second
factor, which makes the two cases different, is the anisotropy
of electron-nuclear spin interactions in solids, which is aver-
aged out in liquids. It is important to note that such inter-
actions change the spin dynamics and open additional path-
ways for ISC in RPs. More generally, in magnetic resonance,
they give rise to new effects; striking examples of such kind
are electron spin echo envelope modulation,2 solid-effect,3,4

and cross-effect5–7 Dynamic Nuclear Polarization (DNP), and
EPR-detected NMR.8

Theoretical consideration of the effects of such
interactions is challenging, because additional couplings
render spin evolution more complex.9 Up to now, several
ss-CIDNP mechanisms have been proposed, which are termed
Differential Decay (DD),10 Differential Relaxation (DR),11–13

and Three-Spin Mixing (TSM).14,15 However, the complete
analysis of ss-CIDNP is still a challenging theoretical problem:
since polarization is formed due to the spin dynamics in
RPs, which undergo spin-selective recombination, CIDNP
represents a complex interplay between spin dynamics and
reaction dynamics. For this reason, analytical considerations
of ss-CIDNP are limited. Furthermore, there is until now
no general view on ss-CIDNP and ls-CIDNP: so far both
situations are treated rather separately, despite being just
two versions of the same general CIDNP technique. The
problem of theoretical consideration of ss-CIDNP is further
complicated by a rather limited number of systems, which
exhibit polarization: in contrast to liquids, where there
is a vast number of suitable experimental systems, in
solids CIDNP remains limited to photosynthetic reaction
centers16 and flavoproteins.17 Interestingly, however, all
natural photosynthetic reaction centers investigated have been
demonstrated to show the effect.18,19 Presently, flavoproteins
represent the only system, where both ls-CIDNP20–23 and
ss-CIDNP17,24 have been observed (even then, for slightly
different flavoproteins).

In this work we aim at bridging the existing gaps in
understanding CIDNP. Specifically, our goal is to find a
reasonably simple description of CIDNP, which is valid in
solids and in liquids, and to provide a general concept of
ss-CIDNP. In particular, we focus on the analytical treatment
of CIDNP and aim to derive ss-CIDNP sign rules. Finally, we
try to come up with a comprehensive description of CIDNP,
which is valid in liquids and in solids. Thus, we propose to
look at ss-CIDNP from a more general perspective, avoiding
the presentation of different special cases as separate CIDNP
mechanisms (i.e., DD, DR, and TSM). In this contribution we
only deal with coherent mechanisms of polarization transfer
but do not cover the less efficient relaxation based pathways,
also known as triplet mechanism of CIDNP.25

To reach the goals of our work we exploit the following
key idea: all features in the dependence of CIDNP on the

external magnetic field (no matter whether in solids or in
liquids) can be associated with particular crossings or avoided
crossings of the spin energy levels in RPs. Therefore, the
problem is reduced to mapping out Level Crossings (LCs) and
avoided crossings, also termed Level Anti-Crossings (LACs),
of an RP; their positions immediately yield the matching
conditions, i.e., the magnetic field where the corresponding
feature is found. When we know which particular levels have
an LC or an LAC, we can also determine the type of spin
mixing and derive CIDNP sign rules. In general, CIDNP
formed by the “spin sorting” mechanism originates from
(i) electron-spin selective recombination and (ii) different ISC
rates in different nuclear sub-ensembles, i.e., from competition
between such sub-ensembles. We demonstrate below that
due to LCs/LACs there is always a particular sub-ensemble,
which wins (or loses) in this competition resulting in CIDNP
formation. Additionally, as also shown below, LACs can
promote transfer of the electron spin order of an RP (e.g.,
singlet spin order) to nuclear spins. The reason why we use
this approach is that previously it has been demonstrated that
the description based on LACs is very useful for unraveling
the otherwise complex dynamics of nuclear spin systems with
non-thermal polarization.26–29 It is also known that in optical
nuclear polarization, a technique related to CIDNP, LACs play
an important role and determine the magnetic field strengths
where polarization can be transferred from electron spins to
nuclear spins.30–32 Recently, it has been demonstrated33–35 that
in solid-state DNP experiments under magic-angle spinning
(MAS), the electron-nuclear polarization transfer is also due
to LACs. Such LACs occur upon sample spinning allowing to
fulfill certain matching conditions for orientation-dependent
interactions. In fact, spin dynamics at such LACs provides
the dominant contribution in MAS-DNP experiments. The
concept of allowed and avoided crossings of levels is also well
known from optics,36,37 chemical kinetics (e.g., in electron
transfer reactions,38 proton transfer,39 and proton-coupled
electron transfer40) and photochemistry.41

In this work, we first test that our approach is valid;
the test study is done for ls-CIDNP, which is presently well
understood. We demonstrate here that all ls-CIDNP features
can be interpreted in terms of LCs and LACs. The same holds
for the solid-state case with its anisotropic interactions. In
solids, features arise usually from LACs (and almost never
from LCs), since the additional anisotropic couplings always
result in perturbations, which turn LCs into LACs. We interpret
the known CIDNP mechanisms in terms of the LAC concept
and formulate the sign rules for ss-CIDNP for various cases.
Besides this, kinetic traces of CIDNP are calculated revealing
contributions of different pathways in CIDNP formation.
Finally, we present a discussion of CIDNP mechanisms in
view of our present understanding.

II. THEORY

A. Reaction scheme

Calculations are performed for the RP reaction presented
in Scheme 1. We assume that a singlet RP is formed from
a singlet-excited precursor molecule as it is the case in
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SCHEME 1. Scheme of RP reactions, which give rise to CIDNP, as consid-
ered here. In this example, an RP is generated in the electronic singlet spin
state from a singlet-excited precursor, S1. The RP can undergo singlet-triplet
ISC; the singlet and triplet RPs recombine to products of the same multiplic-
ity, (Pr)S and (Pr)T, at rates kS and kT , respectively. The scavenging process
(spin-independent RP decay) is also shown; its rate is equal to ksc.

photosynthetic systems. The RP undergoes ISC between the
singlet and triplet states; here we consider only coherent
spin evolution and neglect relaxation-induced transitions. The
RP recombines from the singlet and triplet states at rates
kS and kT , respectively, to reaction products of the same
multiplicity. Generally, these rates are different: kS , kT .
We also consider spin-independent decay of RPs, i.e., RP
scavenging. In liquids, this can also be diffusional separation
of the RPs. The scavenging rate is denoted as ksc. Unless
otherwise stated, we consider an RP with one magnetic
spin-1/2 nucleus having a hyperfine coupling (HFC) with
the electron of radical 1. Denoting the radicals as “radical 1”
and “radical 2” is of importance because in some cases the
sign of CIDNP depends on the sign of the difference in
g-factors of the radicals; i.e., the polarization sign is different
depending on whether the nucleus is belonging to the radical
with smaller (or greater) g-factor.

Spin-correlated RPs1,42 can be generated in liquid phase,
for instance, by using photo-excitation to create a singlet
excited molecule or triplet excited molecule. Upon bond
cleavage a pair of radicals can be formed, which has exactly
the same spin state as the RP precursor due to the fact that the
electron spin (in most cases) is conserved in the elementary
event of a chemical reaction. An alternative way to form a spin-
correlated RP is given by (i) creating a photo-excited molecule
in its singlet or triplet state and (ii) subsequent quenching of
the excited molecule by means of electron or H-transfer.
This method is used, for instance, in applications of CIDNP to
biologically relevant molecules.43 In both cases the RP inherits
the spin state of the precursor molecules. In this work, when
discussing ls-CIDNP, we deal only with “geminate” RPs,
i.e., RPs born in the same elementary chemical event. Such
RPs can recombine (in most cases from the electron singlet
state) or avoid recombination due to diffusional separation
of the radicals. Radicals escaping recombination can react in
the solvent bulk with radicals coming from other RPs. Such
bulk recombination can also give rise to CIDNP and strongly
affects the time dependence of polarization.44,45 However, for
the sake of simplicity and clarity, this contribution to the
overall polarization is not considered here.

ls-CIDNP can also be formed in biradicals, formed in a
particular spin state after photo-excitation. A typical example
is given by flexible biradicals formed after photo-excitation
of cyclic ketones.46–49 Spin-selective recombination of such

biradicals gives rise to pronounced CIDNP. In this case, the
radical centers cannot separate by diffusion; also electron-
electron interaction is significant. However, spin interaction
tensors are completely averaged to their isotropic parts, i.e.,
the spin Hamiltonian of the RP is the Hamiltonian valid
for isotropic liquids. In some matrices, namely, in those
pertaining molecular mobility in the solid phase, ss-CIDNP
can be formed. Previous studies50–52 show that such ss-CIDNP
behaves qualitatively similar to ls-CIDNP, i.e., due to the
residual molecular mobility only isotropic spin interactions
are responsible for CIDNP formation. There are also literature
examples of CIDNP with rigid biradicals.53,54

In solids, spin-correlated RPs can be formed by
intramolecular electron transfer after photo-excitation. A
striking example is given by RPs formed in photosynthetic
reaction centers.16 In flavo-proteins (mutated in order to
remove a cysteine residue next to the chromophore), it
is also possible to form a spin-correlated RP. Such RPs
recombine, generally speaking, from both singlet and triplet
states, giving rise to strong ss-CIDNP. Because of the
rigid environment, molecular mobility is strongly restricted;
therefore, anisotropic spin interactions come into play and
affect the evolution of the RP.

It is also important to emphasize that CIDNP formation
is often accompanied by magnetic field effects on chemical
reactions. For instance, the yield of the reaction product
originating from RPs recombining from their singlet state
depends on the rate of singlet-triplet conversion. In turn, the
conversion rate depends on the external magnetic field. By
monitoring the reaction yield as a function of the external
magnetic field strength one can measure so-called MARY
(Magnetically Affected Reaction Yield) curves, which exhibit
features corresponding to LCs and LACs in the RP under
investigation. Theoretical analysis of such curves allows one
to probe magnetic interactions in short-lived RPs. There is a
close similarity between MARY curves and CIDNP magnetic
field dependences: both phenomena indirectly probe the RP
spin dynamics, the difference is only in the observable, which
is either the reaction yield (in MARY) or spin polarization
of the diamagnetic reaction product (in CIDNP). The relation
between CIDNP and MARY is discussed below, as well as
the role of LCs and LACs therein.

B. LCs and LACs

Before going into detail of the theoretical treatment we
would like to explain what are an LC and an LAC. Both cases
are schematically described in Scheme 2.

In order to introduce the concepts of LCs and LACs, we
split the RP spin Hamiltonian Ĥ into two terms, its main part
Ĥ0 and a perturbation V̂

Ĥ = Ĥ0 + V̂ . (1)

Let us now assume that at a certain magnetic field strength,
BLC, there is a crossing of two energy levels of Ĥ0.
Specifically, we mean that the solution of the eigen-problem
of Ĥ0 is known

Ĥ0|ϕi⟩ = Ei |ϕi⟩ (2)
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SCHEME 2. Left: Level Crossing (LC); right: Level Anti-Crossing (LAC).
Here we assume that at some magnetic field strength, BLC, two energy levels
of the main Hamiltonian Ĥ0 cross, corresponding to spin states |ϕ1⟩ and |ϕ2⟩.
If there is no coupling matrix element V12= 0, the LC will not be perturbed.
If the RP preparation is such that it generates a coherence ρ12 between the
states, this coherence stops evolving at the LC point. In the discussion of LC
effects, we take into account the fact that levels are lifetime broadened, i.e.,
they have finite width, as schematically shown in the left plot. If the matrix
element V12 is non-zero the LC turns into an LAC: the crossing is avoided
(the minimal splitting is 2V12). At the LAC region the eigen-states of the full
Hamiltonian are no longer |ϕ1⟩ and |ϕ2⟩, but their linear combinations |ψ1⟩
and |ψ2⟩. See text for further explanation.

and that E1 (BLC) = E2 (BLC). If the corresponding matrix
element of the perturbation, V12 = ⟨ϕ1

�
V̂
�
ϕ2⟩, is zero the

energies, E1 and E2, and wave-functions, |ϕ1⟩ and |ϕ2⟩, stay
unperturbed, see Scheme 2 (left). Such LCs can be important
for CIDNP for the following reason. When an RP is generated
in a particular electron spin state, see explanation above, not
only the populations of different states, given by the diagonal
matrix elements of the RP density matrix ρii, are different
from each other but there are also spin coherences formed,
given by the off-diagonal matrix elements ρi j. The reason for
this is that the initial RP state is not necessarily an eigen-state
of its spin Hamiltonian. A typical example is given by an RP
formed in the electron singlet state at high magnetic fields,1

i.e., when the eigen-states of the Hamiltonian are not the
singlet-triplet states but the Zeeman states, [αα,α β, βα, β β]
(hereafter, the spin-up and spin-down states are denoted by α
and β, respectively). In this situation, the RP density matrix
at t = 0 is equal to ρ (t = 0) = |S⟩ ⟨S|. In the Zeeman basis
its elements are ρi j = ⟨i |ρ| j⟩; after re-calculating the density
matrix in this basis (eigen-basis of the Hamiltonian) we obtain
the following non-zero elements:

ραβ,αβ = ρβα,βα =
1
2
, ραβ,βα = ρβα,αβ = −

1
2
. (3)

Thus, non-zero off-diagonal elements (coherences) are
formed, i.e., a singlet-born RP is formed in a coherent
superposition of true eigen-states of the Hamiltonian.
One should note that in this case the diagonal elements
(populations) of the electronic eigen-states αβ and βα are
equal to each other; consequently, spin evolution of the RP
is due to the coherences between these states, termed Zero-
Quantum Coherences (ZQCs). Indeed, the time dependence
of each element of the density matrix is as follows:

ρi j(t) = ρi j (t = 0) exp
(
− i
}

�
Ei − E j

�
t
)
. (4)

Thus, the eigen-state populations do not evolve at all,
whereas the coherences oscillate at the frequency given by

the difference in energies of the corresponding states. In an
RP, the evolution of the ραβ,βα and ρβα,αβ coherences, i.e.,
ZQCs, is responsible for singlet-triplet mixing. Indeed, the
singlet state population changes with time in the following
way:

ρSS (t) = ⟨S |ρ (t)| S⟩ = 1 + cos (∆Et/~)
2

, (5)

where ∆E =
�
Eαβ − Eβα

�
. Hence, the singlet-state population

oscillates at a frequency ∆E/~ between 1 and 0, i.e., coherent
singlet-triplet transitions are occurring. The coherent evolution
is thus driven by the ZQCs.

When there is an LC (this happens when there is
a matching of the difference in the electronic Zeeman
interactions and hyperfine interactions with nuclear spins, see
below) the frequency ∆E/~ becomes zero and ISC is turned
off in a particular nuclear spin ensemble. As a consequence of
nuclear spin sorting, this results in a peak in the CIDNP field
dependence. Below, we demonstrate how this effect reveals
itself in CIDNP.

When V12 , 0, we obtain a different kind of behavior: the
levels never cross, i.e., the LC is “avoided” and turns into an
LAC, see Scheme 2 (right). Thus, instead of the LC point,
we obtain an LAC region; the minimal splitting between the
levels becomes equal to 2V12, when V11 = V22 = 0 the splitting
is minimal exactly at B = BLC (otherwise, it can shift from
BLC but the minimal splitting is always 2V12). What is very
important is that LACs have a strong effect on the type of spin
mixing and on the spin mixing efficiency. This is because at an
LAC the eigen-states of the full Hamiltonian, Ĥ , differ from
those of Ĥ0. Specifically, for the given pair of levels having
an LAC, the new eigen-states are

|ψ1⟩ = cos θ |ϕ1⟩ + sin θ |ϕ2⟩ ,
|ψ2⟩ = − sin θ |ϕ1⟩ + cos θ |ϕ2⟩ . (6)

At the center of the LAC region the “mixing angle” is
θ = ±π/4 so that the true eigen-states differ drastically from
the pure |ϕ1⟩ and |ϕ2⟩ states: as the states become mixed,
the spin evolution of the RP changes. Below we demonstrate
LC/LAC effects in ls-CIDNP and then show how LCs turn into
LACs in the ss-CIDNP case and modify the spin evolution.

Finally, in this subsection we discuss the magnetic field
range, in which LC/LAC effects are operative. At first glance,
LC has a “zero” width, i.e., it occurs at a single point.
However, one should bear in mind that due to the finite RP
lifetime the energy levels are broadened (as follows from
the time uncertainty principle). For this reason, the LC point
is spread and the LC “width” is determined by the inverse
RP lifetime. This point is addressed below in detail. The
LAC “width” is given by the field range where the matrix
element V12 is greater than or comparable to the splitting of
the corresponding levels of Ĥ0. In this range the states ϕ1
and ϕ2 are mixed considerably, see Eq. (6), and the RP spin
evolution is altered. However, when the RP decay rate becomes
comparable to V12 the LAC becomes lifetime broadened, just
as well as an LC does.

One should also note that the situation of a pure LC is,
probably, never met in practice because any small perturbation
would turn this LC into an LAC. However, when the LC
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“width” is greater than the width of such an LAC region, it is
legitimate to talk about a pure LC effect.

We can also deduce the characteristic time scale, on
which the LC/LAC effects become pronounced. LCs are
of importance when the lifetime broadening of energy levels
matches their splitting. LAC effects become pronounced when
the mixing term, V12, is (at least) comparable to the reciprocal
of the RP lifetime.

Thus, LCs/LACs selectively slow down or promote
specific spin mixing. In turn, this either affects nuclear “spin
sorting” or induces specific nuclear spin flips; both effects
result in CIDNP formation.

C. Calculation method

To perform calculations of CIDNP we solve numerically
the stochastic Liouville equation for the spin density matrix
of the RP. In this equation we take into account coherent spin
evolution in the RP, which is described by the Hamiltonian
Ĥ , see below, and also RP reactivity. We assume that the RP
reacts to form a polarized product from its singlet and triplet
states at rates kS and kT , respectively; generally, kS , kT . In
addition, we assume a reaction channel, which leads to RP
decay independent of its spin state. This decay channel can
be considered as RP scavenging, which occurs due to side-
reactions of radicals. In parallel to the nuclear-spin dependent
ISC there is another pathway induced by spin-orbit coupling.
As a consequence, the RP can change its spin multiplicity
without involvement of the nuclear spin. This pathway is of
particular importance when heavy atom nuclei are present in
radicals;47 for the sake of simplicity, it is neglected in the
present description.

When ls-CIDNP is considered the “scavenging” channel
mainly corresponds to diffusional separation of RPs. For
simplicity, this additional decay is characterized by a rate
ksc (in the case of diffusion such a treatment may be an
oversimplification, but here we do not treat such details); the
scavenging time is defined as 1/ksc.

The stochastic Liouville equation for the RP density
matrix is as follows (when the energies are expressed as
angular frequencies, i.e., ~ = 1):

dρ
dt
= −i

�
Ĥ , ρ

�
− kS

2
�
P̂S, ρ

	
− kT

2
�
P̂T , ρ

	
− ksc ρ (7)

The coherent dynamics is accounted for by the commutator
term; spin-selective reactions are described by the anti-
commutator terms with P̂S and P̂T being the projection
operators on the RP singlet and triplet states, respectively;
the additional reaction channel is considered as a mono-
exponential decay at a rate ksc. The initial condition for
this equation is ρ (t = 0) = ρ0; the ρ0 matrix describes a
singlet-born or triplet-born RP, i.e., ρ0 = zP̂S or ρ0 = zP̂T

(with z being a coefficient providing correct normalization,
Tr {ρ0} = 1). This normalization is used throughout the paper.
For the sake of clarity, we always assume here that the RP
is singlet-born. The stochastic Liouville equation is solved
numerically to calculate CIDNP.

One should note that the trace of ρ is equal to unity only
at t = 0 because RPs decay with time, as described by the last

three terms in Eq. (7). Normalization of the trace is possible
when the RP along with all reaction products are taken into
account, i.e., the product of the singlet-state and triplet-state
reactions, as well as the product of “scavenging”: the sum of
the traces of the corresponding density matrix is indeed equal
to 1 at any instant of time. In general, consideration of all the
pathways is of importance in CIDNP. For instance, in liquids
RPs, which avoid spin-selective recombination, carry strong
polarization that is equal in size but opposite in sign to CIDNP
formed after recombination of the geminate RP. Consideration
of this polarization is very important for quantitative analysis
of the CIDNP time dependence.44,45

Polarization of the reaction product is calculated as
follows:

P = ⟨Iz⟩ = ⟨Iz⟩S + ⟨Iz⟩T . (8)

Thus, as we assume Tr {ρ0} = 1, the calculated CIDNP is
always polarization per one RP that has reacted. Hereafter,
for simplicity, we ignore polarization of the products of
“scavenging.” However, we can differentiate CIDNP of the
singlet reaction product, ⟨Iz⟩S, and of the triplet reaction
product, ⟨Iz⟩T , and calculate separately the two contributions
to polarization,

⟨Iz⟩S(t) = Tr



Îz · kS

t
0

P̂Sρ (τ) dτ


,

⟨Iz⟩T(t) = Tr



Îz · kT

t
0

P̂T ρ (τ) dτ


.

(9)

As usual, polarization is given by the expectation value of
the Îz spin operator; the rate of polarization formation via
the two channels is given by the density matrices kSP̂Sρ (τ)
and kT P̂T ρ (τ). For calculating the steady-state polarization
we perform integration from τ = 0 to ∞; when the CIDNP
kinetics is of interest, the upper limit for integration is set to t.

To solve the stochastic Liouville equation we use the
following procedure. The general solution of this equation is
written as follows:

ρ (t) = exp (−ksct) exp
(
−iĤt − kS

2
P̂St − kT

2
P̂Tt

)
× ρ (0) exp

(
iĤt − kS

2
P̂St − kT

2
P̂Tt

)
= exp (−ksct) exp

�
−Â+t

�
ρ (0) exp

�
−Â−t

�
. (10)

To calculate the matrix exponentials we first diagonalize each
of the matrices Â±

Â± = ±iĤ +
kS
2

P̂S +
kT
2

P̂T (11)

and obtain their eigen-values, L±i , and matrices of eigen-
vectors, T̂±

Λ̂
± =

�
T̂±

	−1
Â±T̂±, where Λ±i j = δi jL

±
i , (12)

with δi j being the Kronecker delta. This allows us to calculate
the matrix exponents in Eq. (10) and to perform integration
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over time. As a result we obtain
t

0

ρi j (τ) dτ =


T+ikT
+
lk ρlm (0)T−mnT

−
jn

×
1 − exp

��
ksc + Λ

+
kk
+ Λ−nn

�
t
�

ksc + Λ
+
kk
+ Λ−nn

. (13)

Integration from 0 to ∞ gives the following result:
∞

0

ρi j (t) dt =


T+ikT
+
lk ρlm (0)T−mnT

−
jn

1
ksc + Λ

+
kk
+ Λ−nn

.

(14)

After that the numerical solution is reduced to linear algebraic
operations with matrices: we multiply the density matrix with
the elements given by Eq. (14) with P̂S (or P̂T) and Îz and
take the trace to obtain CIDNP. This solution method avoids
numerical integration over time. The method can be used to
calculate both steady-state and time-dependent CIDNP.

When results for different cases are presented we start
with a CIDNP field dependence and then show the RP energy
levels highlighting the relevant LCs/LACs. Energy levels
are always shown for manifolds of selected electron-nuclear
spin states where the LCs/LACs are occurring. Thus, we
present numerical results and then interpret them in terms of
LCs/LACs to get physical insight into the underlying spin
evolution. In some cases, namely, for ss-CIDNP we also show
an energy level diagram corresponding to the situation where a
specific LAC is encountered in order to give a clear description
of the spin dynamics.

In our calculations, we assume magnetic parameters,
which are typical for organic radicals. Specifically, differences
in the g-factors of RP partners are of the order of 10−3; HFC
constants are of the order of 1 mT (which is typical for
protons); electronic spin-spin interactions are varied in the
range from 0 to 100 mT. The reaction rates are varied up to
values of about 1 ns−1.

III. RESULTS

First, we consider ls-CIDNP, which is well understood
by now, to demonstrate the validity of our approach. Then we
perform a similar LC/LAC analysis in the solid-state case.

A. Liquid-state CIDNP

In the case where only isotropic spin interactions are
present, we just reproduce well-known results in order to
demonstrate that they can be interpreted using the level-
crossing analysis. Once anisotropic interactions come into
play we discuss different CIDNP mechanisms. Description
of each mechanism starts with the energy level diagram and
discussion of relevant LCs and LACs, continues with the
calculation of the CIDNP field dependence and ends with a
derivation of CIDNP sign rules.

Let us describe the role of LCs and LACs in the ls-case;
we do so separately for the two cases of zero and non-zero
electron-electron exchange coupling. In the case of an isotropic

liquid the dipolar coupling of the electron spins is averaged out
to zero; hence, it is always omitted in this subsection. Likewise,
in the exchange coupling we take only its isotropic part, Jex.

1. Isotropic case, Jex = 0

First, for simplicity, we neglect the electron-electron
exchange coupling Jex. This means that the radicals do
not interact with each other, i.e., in the RP Hamiltonian
they are independent from each other. However, the absence
of such interaction does not mean that the radicals evolve
independently: due to the RP preparation in a spin-correlated
state there is a ZQC formed. As already mentioned, its
evolution is of great importance for CIDNP. When Jex = 0
the Hamiltonian of a three-spin system (two electrons and one
nucleus) at a magnetic field B0 can be written as (in ~ units)

Ĥ = g1µBB0Ŝ1z + g2µBB0Ŝ2z − gN µNB0Îz + a
(
Ŝ1 · Î

)
= ω1Ŝ1z + ω2Ŝ2z − ωN Îz + a

(
Ŝ1 · Î

)
. (15)

Here a is the isotropic HFC constant, g1,2 are the g-factors of
radicals 1 and 2; hereafter, we prefer to specify all Zeeman
interactions in angular frequency units, i.e., later in the text,
we use the notations: ωN = gN µNB0, ω1,2 = g1,2µBB0, and
∆ωe = (g1 − g2) µBB0 = ∆gµBB0 (with µB being the Bohr
magneton and µN being the nuclear magneton). Hereafter, the
electronic spin operators are denoted as Ŝ1 and Ŝ2; the nuclear
spin operator is denoted as Î; F̂ stands for the operator of
the total spin, i.e., F̂ = Ŝ1 + Ŝ2 + Î. To specify eigen-states of
the spin Hamiltonian we use the Zeeman basis of states (i.e.,
electron spins have well-defined projections and their states
are denoted as |α⟩ or |β⟩) or the singlet-triplet basis,

|T+⟩ = |αα⟩ , |T0⟩ = |αβ⟩ + |βα⟩
√

2
, |T−⟩ = |β β⟩ ,

|S⟩ = |αβ⟩ − |βα⟩
√

2
.

(16)

The nuclear spin states are characterized by the z-projection
of the nuclear spin; the nuclear spin-up and spin-down states
are denoted as |αN⟩ and |βN⟩, respectively.

In the case under consideration, there is a good correlation
between the LC/LAC positions and the features in the field
dependence of CIDNP, see Figures 1 and 2. The maximum
in the high-field CIDNP (at BLC = a/2β∆g) is due to an
LC between the αβαN and βααN levels, see Figure 1, the
low-field feature (at a field approximately equal to a) in
the field dependence is an effect of two LACs, occurring
at zero field in two different spin manifolds (Figure 2). In
Figure 1 one can see an additional LC between the αβαN

and αβ βN levels (at a field where the HFC term matches the
nuclear Zeeman term); however, this LC does not contribute to
ls-CIDNP because the coherence between the corresponding
states (differing by the projection of the nuclear spin) is zero.
In solids, however, this LC becomes important, see below.

The high-field LC affects CIDNP for the following reason.
When the RP is singlet-born, there are not only populations of
the αβαN and βααN levels but also the coherence between
them. After RP formation, this coherence starts to oscillate
resulting in S-T0 electronic transitions, i.e., singlet-triplet
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FIG. 1. Field dependence of the energy levels (a) of radical pair with one nu-
cleus (manifold of states characterized with zero z-projection of the electron
spin is shown) and CIDNP (b) at high fields. The feature in the CIDNP field
dependence corresponds to the crossing of the levels corresponding to states
|αβαN⟩ and |βααN⟩; another LC does not result in a feature in the field
dependence, see text for explanation. The relevant LC is highlighted. Parame-
ters used in calculation: g1= 2 and g2= 2.001 are the electronic g-factors; the
nucleus is a proton; a = 1 mT is the hyperfine interaction constant; exchange
coupling is zero; kS = kT = 0.01 ns−1, ksc = 0.02 ns−1 is the scavenging rate.
Here in (b) we show only polarization formed in the product of singlet-state
recombination; the calculated CIDNP is polarization per RP.

conversion in the RP.1 The frequency of the oscillations is
proportional to the splitting between the corresponding levels,
therefore, it is zero at the LC point. For this reason, a
particular channel of singlet-triplet conversion, corresponding
to a particular nuclear spin state (in our case, the αN state)
is turned off. Consequently, the RP reactivity in this nuclear
spin state becomes higher (for a singlet-born RP and kS > kT)
resulting in a feature in the CIDNP field dependence. At the
same time, the other LC does not lead to CIDNP formation
because the coherence is zero between the corresponding
states, αβαN and αβ βN , since these states have different
z-projections of the nuclear spin, i.e., they belong to different
nuclear spin ensembles, which are not mixed.

The sign of polarization, hereafter denoted as Γ, at high
fields is1,55

Γ = sgn (∆g) × sgn (a) × µ. (17)

Hereafter, µ is determined by the spin state of the RP precursor

µ =



1, T-precursor
−1, S-precursor

. (18)

Indeed, when the sign of ∆g and a is different, we obtain an
LC of the levels αβαN and βααN . This means that in the αN

FIG. 2. Field dependence of the energy levels (a) and (b) of radical pair
(RP) with one nucleus and CIDNP (c) at low magnetic fields. The feature
in CIDNP comes from the two overlapping LACs shown in the figure marked
with semi-circles; levels having LACs are shown by solid lines; the other
levels are shown by dashed lines. Parameters used in calculation: a = 1 mT is
the hyperfine interaction constant; exchange coupling is zero; kS = kT = 0.01
ns−1, ksc = 0.02 ns−1. In (a) and (b) we present the states characterized by
Fz =

1
2 and Fz =− 1

2 , respectively. Here in (c) we show only polarization
formed in the product of singlet-state recombination; the calculated CIDNP
is polarization per RP.

state S-T conversion is slowed down; therefore, in the case of
a singlet-born RP this state is enriched in the reaction product
and CIDNP is positive. Upon sign inversion of∆g or a the sign
of CIDNP changes, as well as when the RP is triplet-born (i.e.,
when µ changes sign). This simple consideration is consistent
with Eq. (17).

The LAC effect is different. At an LAC, there is efficient
mixing of the levels, which would tend to cross in the absence
of coupling, i.e., the eigen-states of the Hamiltonian change
significantly. In our simple example, the RP with only one
magnetic nucleus has an LAC at zero magnetic field. This
LAC occurs in radical 1. Indeed, in the absence of the
coupling term (namely, non-secular HFC), there is a crossing
of levels αβN and βαN of radical 1. The coupling term
mixes them making an LAC out of the LC and the new states
become a superposition of the old states. In the presence
of the second radical we obtain two LACs, i.e., the same
LAC is found for the α-state and β-state of the second
electron, namely, LACs between ααβN = T+βN and βααN

and between αβ βN and β βαN = T−αN (compare Figures 2(a)
and 2(b)). At t = 0 the T+βN and T−αN have zero population,
but the other two states, βααN and αβ βN , having singlet
character are populated. To explain in detail how these LACs
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work it is necessary to add into consideration also the states
αβαN and βαβN , which have singlet character and are
involved in spin mixing. The reason for this is that in a
singlet-born RP at t = 0 there is a coherence, specifically,
ZQC, between the states αβαN and βααN and also between
αβ βN and βαβN . In general, since the z-projection of all
three spins is conserved, spin mixing is occurring separately
in two ensembles, [T+βN ,α βαN , βααN] (all these states are
characterized by Fz =

1
2 ) and [T−αN ,α β βN , βα βN] (all these

states are characterized by Fz = − 1
2 ); in each ensemble there

is an interplay of the S ↔ T0 mixing (as described above) and
S ↔ T± mixing at LACs. At a non-zero field the coherences
of interest evolve at a different frequency because the spacing
between the corresponding pairs of levels is different: in
our example, it is smaller for αβαN and βααN (compare
Figures 2(a) and 2(b)). Consequently, the transitions to the
T+βN states become less efficient than the transitions to the
T−αN state and negative CIDNP is found in the case of a
singlet-born RP,1,56 see Figure 2(c).

To provide further insight into the RP spin dynamics we
calculate the reaction yield arising from the two ensembles
with Fz = ± 1

2 , see Figure 3. In both cases, there is a sharp
maximum of the yield at zero field, which originates from
an LC at zero field. These LCs are of great importance for

FIG. 3. Field dependence of the energy levels (a) and (b) of radical pair (RP)
with one nucleus and RP recombination yield (c) at low magnetic fields.
In (a) and (b) we present the states characterized by Fz =

1
2 and Fz =− 1

2 ,
respectively; LACs and LCs are marked by circles. Parameters used in the
calculation are the same as those in Figure 2. Here in (c) we show the reaction
yield for the Fz =

1
2 states (dashed line), Fz =− 1

2 states (dotted line) and the
total yield (solid line). Here the yield of singlet-state RP recombination (per
RP) is shown.

MARY spectroscopy, but they do not manifest themselves
in CIDNP because of the different observable. The reason
is that at zero magnetic field (i.e., in the absence of a field)
there is no preferred axis in space so that the spins cannot be
polarized along a particular direction. In addition, there is a
broad feature, which shows up only for the Fz =

1
2 ensemble

(for Fz = − 1
2 such a feature exists at a negative field, which

does not have a physical reality). Thus, the RP states with
positive Fz are more “reactive”; consequently, the reaction
product is enriched in the αN states of the nuclear spin.
The MARY spectrum exhibits at zero field a narrow feature,
originating from the LCs, and a broad feature, coming from
the LACs.

Upon inversion of the HFC constant CIDNP changes the
sign. Thus, at low fields CIDNP obeys the following sign
rule:1,57

Γ = sgn (a) × µ. (19)

Features in CIDNP coming from the LC and LAC demonstrate
different behavior upon variation of the RP lifetime. The width
of the LC-derived features is sensitive to the RP lifetime,
equal to 1/ksc, the width of the LAC-derived feature has a
less pronounced dependence on ksc (see the supplementary
material,58 Figures 1S and 2S). In general, if coherent singlet-
triplet mixing in a certain spin ensemble is occurring at a
frequency ω and the RP lifetime is 1/ksc the contribution of
this ensemble to the overall reaction yield is proportional to

∞
0

cos(ωt)e−ksctdt =
1/ksc

1 + (ω/ksc)2
. (20)

Thus, each LC produces (on top of a smooth background)
a peak of the width ksc in the MARY curves and CIDNP
(except for the zero-field LC, which is manifest only in the
MARY curve). The dependence of the LC-derived feature on
the RP lifetime is very well-known in spin chemistry: the
field dependence of the RP recombination yield exhibits sharp
peaks originating from LCs.59–62 In our case the dependence
on relevant RP parameters is more complex, but the general
behavior is the same. The width of the feature coming from
an LAC is determined by the actual width of the LAC region
and does not depend strongly on ksc.

In the discussion of the LC-derived feature we would also
like to stress three more points.

First of all, one should note that in practice LCs are
rarely met because almost any perturbation, which mixes
the crossing levels, will turn the LC into an LAC. Such an
interaction could be, for instance, a residual electron-electron
coupling, which is, generally, non-zero and can manifest itself
once the solvent viscosity is high enough. In this situation,
one should compare the width of the corresponding LAC
region (almost independent of ksc, when V12 > ksc, kS, kT)
and the width of the LC-derived feature in the CIDNP field
dependence (strongly depending on ksc). When the latter is
considerably larger, the effects of the residual interactions can
be neglected and one can assume that CIDNP is due to a pure
LC effect. However, in the opposite case the LC consideration
must be revised and this additional coupling must be taken
into account.
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The second important point is that the LC-derived feature
is sensitive not only to ksc but also to the distribution of the
RP lifetimes. In this work we assume that the “scavenging”
process is described by a simple mono-exponential decay
of RPs; however, this is not true when the spin-correlated
RPs decay due to diffusional separation, which is typical
for ls-CIDNP. Previous MARY studies have revealed that
not only the width of LC-derived features is sensitive to
ksc but that their shape also reflects the distribution of RP
lifetimes.63 In supplementary material, we demonstrate that
similar effects are expected for ls-CIDNP: comparison of the
diffusional model and the exponential model show quite a
different behavior (the calculation of CIDNP is done using the
same method as described in Refs. 64 and 65). Notably, in the
case of diffusional motion of radicals the LC-derived feature
is sharp (formally, the derivative of the field dependence,
CIDNP(B), is not existing at this point), whereas for the
exponential model it is smooth, compare Figures 1 and 3S.

Third, one should note that any process (for instance,
spin relaxation) resulting in the decay of the S-T0 coherence
in an RP would lead to an analogous effect as a decreased
RP lifetime does. Such a behavior is well-understood in
the MARY case66–68 and it is expected for CIDNP as well.
However, a detailed discussion of spin relaxation effects69 is
beyond the scope of this work.

2. Isotropic case, Jex , 0

Now let us add the electron-electron interaction into
consideration. In this case the Hamiltonian for the spin system
is written as

Ĥ0=g1µBB0Ŝ1z + g2µBB0Ŝ2z − gN µNB0Îz + a
(
Ŝ1 · Î

)
− Jex


2
(
Ŝ1 · Ŝ2

)
+

1
2


. (21)

In the presence of exchange interaction between the electron
spins one more feature appears at a field where the electron
Zeeman interaction equals twice the exchange coupling,
2|Jex |.1 At this field, there is a crossing of the S and T±
levels: in the case of positive Jex we obtain the S-T+ crossing,
when Jex < 0 the levels, which cross, are S and T−. Non-
secular HFC is known to induce transitions, which conserve
the z-projection of the total spin, i.e., SαN ↔ T+βN and
S βN ↔ T−αN converting the corresponding LCs into LACs.
Since these transitions are selective with respect to the nuclear
spin state, CIDNP is formed at such LACs, see Figure 4.
The width of the feature coming from such an LAC depends
only slightly on the RP lifetime, 1/ksc (in the chosen range
of parameters, i.e., the coupling matrix element given by the
HFC term is large). Interestingly, the sign of polarization does
not depend on the sign of HFC: CIDNP is determined by the
type of the LAC, i.e., SαN ↔ T+βN or S βN ↔ T−αN . In the
former case (for the singlet RP precursor) we obtain negative
CIDNP, in the latter case nuclear polarization is positive.
Consequently, we arrive at the well-known sign rule for the
S-T± mechanism1

Γ = sgn (Jex) × µ. (22)

FIG. 4. Field dependence of the energy levels (a) and (b) and CIDNP
(c). The feature in the CIDNP field dependence corresponds to the LAC
at B0∼ 2 |J |. Parameters used in calculation: g1= 2 and g2= 2.001 are the
electronic g-factors; the nucleus is a proton; a = 1 mT; Jex =−5 mT is the
exchange electron-electron coupling; kS = kT = 0.01 ns−1, ksc = 0.01 ns−1

(dashed line), 0.001 ns−1 (solid line). In (a) and (b) we compare pairs of levels
with an LAC and LC; the corresponding states are indicated. Here in (c) we
show only polarization formed in the product of singlet-state recombination;
the calculated CIDNP is polarization per RP.

Thus, the polarization sign depends only on the spin
multiplicity of the precursor and on the sign of the exchange
coupling, Jex. One should note, that Jex is rarely constant
because of the molecular mobility; therefore, our results allow
only for a qualitative account of CIDNP in the presence of the
electron-electron exchange interaction. When Jex depends on
time, the calculation scheme has to be revised, as done, for
instance, by de Kanter et al.47 The RP spin dynamics also
changes: the RP spin system does not remain statically at the
relevant LAC atωe = 2|Jex | but passes through this LAC as Jex
changes with time. However, the behavior of CIDNP remains
qualitatively the same: polarization formation is an LAC effect
and the CIDNP sign is accounted for by Eq. (22). Moreover,
in many cases an effective average Jex value is introduced,
which is time-independent rendering the Hamiltonian time-
independent as well. Detailed discussion of the validity of
such an approximation is beyond the scope of this work and
is not discussed here.

Hence, we have demonstrated that in the ls case the
features in the CIDNP field dependence can be interpreted
in terms of LCs and LACs. Furthermore, by using the level
crossing description the sign rules for CIDNP can be derived,
which are fully consistent with the known rules. Now let
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us apply the same procedure to solid-state CIDNP, a case
where anisotropic interactions play a significant role and spin
dynamics becomes by far more complex. It is of interest
and importance to find out what interactions are essential
for CIDNP formation in the solid state and to interpret the
results in terms of LCs and LACs. In solids, we expect that
the features will mostly come from LACs, since anisotropic
couplings usually result in perturbations, which turn all LCs
into LACs.

B. Solid-state CIDNP

Thus, let us focus our attention on studying mechanisms
of CIDNP formation in solids in the presence of anisotropic
couplings. Here, we consider in detail the case of high
external magnetic fields. By high fields we mean that the
electron Zeeman interaction is much greater than both HFC
and the electron-electron coupling. Detailed considerations of
the more complex low-field case70 are beyond the scope of
the present work.

In solids, the RP Hamiltonian for a system of two electrons
and a spin-½ nucleus coupled to electron 1 is written as
follows:

Ĥ=g1,zzµBB0Ŝ1z + g2,zzµBB0Ŝ2z − gN µNB0Îz + Ŝ1AÎ

− Jex


2
(
Ŝ1 · Ŝ2

)
+

1
2


+ Ŝ1DŜ2. (23)

Here g1,zz and g2,zz are the zz-components of the
corresponding g-tensors (hereafter, for brevity we use short-
hand notations: g1 = g1,zz, g2 = g2,zz); A is the HFC tensor,
D is the electron-electron dipolar interaction tensor. At high
magnetic fields, the Hamiltonian can be simplified. First, in the
HFC tensor we keep only the secular part, Azz Ŝ1z Îz + aŜ1z Îz,
and the pseudo-secular part, Azx Ŝ1z Îx + Az y Ŝ1z Îy. The secular
HFC comprising the dipolar and scalar interactions is hereafter
written as AŜ1z Îz. The pseudo-secular HFC can be simplified
by rotating the frame so that the hyperfine field component in
the x y plane of the laboratory frame defines the new x axis.71

After such a rotation the pseudo-secular term becomes equal
to bŜ1z Îx with b =


A2
zx + A2

z y. In the dipolar and exchange

interaction we will keep only the secular part, Ŝ1z Ŝ2z, and
the non-secular part,

�
Ŝ1+Ŝ2− + Ŝ1−Ŝ2+

�
. Thus, the dipolar

terms containing only a single raising or lowering operator
are neglected, as well as the terms containing Ŝ1+Ŝ2+ and
Ŝ1−Ŝ2−. Specifically, the non-secular part of both interactions
combined together will be written as d

�
Ŝ1+Ŝ2− + Ŝ1−Ŝ2+

�
with

d = −2Jex − D and with D being the dipole-dipole interaction
strength. In Eq. (23) we exclude the anisotropic part of the
exchange coupling; when needed, this interaction can be added
as well; at high field, only the secular and non-secular parts of
the interaction tensor should be considered. In the high-field
approximation electronic spin mixing is possible only between
the singlet and T0 states, since the S-T± transitions become
energy forbidden. In this situation, the secular interaction
gives the same additive contribution to energies of all states
in the S-T0 manifold and can be omitted in the analysis of
high-field polarization.

In solids, CIDNP studies are usually performed under
magic angle spinning of the sample, which is a prerequisite for
high-resolution NMR detection. Upon spinning, the magnetic
interactions introduced here change with time. However, in
calculations of CIDNP the time dependence of the parameters
entering Eq. (23) can be safely neglected, since the typical
RP recombination rates are much greater than achievable
sample spinning frequencies. Thus, on the time scale of
RP recombination, the spin interactions can be treated as
time-independent.

In our numerical analysis we keep all terms in the general
Hamiltonian. The high-field case splits into two different
cases: (i) zero electron-electron coupling, corresponding to the
DD and DR mechanisms (ii) non-zero coupling, corresponding
to the TSM case.

1. DD/DR mechanisms

A calculated CIDNP field dependence for a typical set of
calculation parameters, along with the relevant energy levels,
is presented in Figure 5. In this case, there is a single LC
and a single LAC, each significantly affecting the RP spin
dynamics.

As follows from the energy level diagram shown in
Figure 5(a), we have the same LC as in the isotropic case
(matching of energies of the αβαN and βααN states) and
an LAC in addition. In the isotropic case, the corresponding
pair of levels has an LC coming from matching of the secular

FIG. 5. Field dependence of energy levels (a) and field dependence of CIDNP
(b). Parameters used in calculation: g1= 2 and g2= 2.001; the nucleus is a
proton; A= 1 mT; d = 0; kS = 2kT = 0.08 ns−1, b = 0.5 mT, ksc = 0.002 ns−1

(dashed line), ksc = 0 (solid line); the calculated CIDNP is polarization per
RP. In (a) the LAC is highlighted by a blue circle and LC is highlighted by a
red circle.
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HFC and nuclear Zeeman terms, see Figure 1, which has no
effect on CIDNP. However, in the anisotropic case the pseudo-
secular HFC mixes the αβαN and αβ βN states turning the
LC into an LAC and enabling nuclear spin flips αN ↔ βN ,
compare the behavior of these levels in Figures 1(a) and
5(a). Calculations shown in Figure 5 show that both LC and
LAC can contribute to CIDNP; however, the LC contribution
to CIDNP completely vanishes when ksc → 0 (at a very
small ksc this feature becomes very narrow). In contrast,
the LAC contribution is manifested even at ksc → 0 when
the recombination rates are different, kS , kT . As has been
discussed earlier, the difference in rates is a pre-requisite for
obtaining CIDNP from this mechanism: when kS = kT CIDNP
is zero. The RP lifetime also affects the CIDNP amplitude,
see Figure 5.

The LAC, which is formed when |ωN | = |A/2|, works
here even despite the fact that the anti-crossing levels start
with identical populations; furthermore, there is no coherence
between these states in a singlet-born RP. The reason for this is
that the LAC affects the S-T0 conversion rate in pairs of states
βαβN − αβ βN and βααN − αβαN by perturbing the αβαN

and αβ βN states. As a consequence the S-T0 conversion
via the channel βαβN − αβ βN also affects the αβαN state
and flips the nuclear spin. The coherence between a pair of
eigen-states oscillates at a frequency proportional to the energy
gap between the corresponding energy levels (see the energy
level diagram in Figure 6), such oscillations are responsible
for S-T0 conversion in the RP. The conversion is faster for the
nuclear spins in the βN-state (βαβN ↔ αβ βN), in addition,
the pseudo-secular HFC mixes αβ βN and αβαN and leads
to efficient nuclear spin transitions βN → αN . Consequently,
CIDNP with positive sign is formed. This effect requires a
non-zero ∆g-term: otherwise the situation is symmetric with
respect to the nuclear spin state and different coherences
evolve at the same frequency, see the energy level diagram
presented in Figure 6. Chemical reactions are also involved in
CIDNP formation, so that the difference in the recombination
rates is crucial: kS , kT . When the rates are the same the
RP just decays independent of the nuclear spin state and
since, in the absence of electron-electron coupling, the spin
evolution alone cannot polarize the nuclei, part of the job is

FIG. 6. RP energy levels at the BLAC field (see Figure 5): when |ωN | ≈ |A/2|
the energy levels αβαN and αββN closely approach each other. Here
∆g < 0, gN > 0, A > 0.

done by reactions. Another way to achieve non-zero CIDNP
is to look only at polarization formed in only one of the two
RP recombination channels. This is exactly the assumption of
the DR-mechanism.

2. Sign rules, DD/DR mechanisms

Assuming that CIDNP is due to state mixing at the LAC,
let us now derive the sign rule. Figure 6 shows the RP energy
levels. In this particular case, ∆g < 0, A > 0, gN > 0, the two
(central) states, αβ βN and αβαN , are nearly degenerate
and have an LAC (when gN and A have different signs
the LAC is occurring for the βαβN and βααN levels).
At the same time, the βαβN state is more remote from
the two central states than the βααN state, meaning that
the corresponding frequency evolves faster. Consequently,
the faster S-T0 conversion channel involves the βN → αN

nuclear spin flip, the CIDNP sign is “+” for S-precursor and
predominant singlet-state recombination.

Now let us see what happens upon inverting the sign of
relevant interactions. Inversion of ∆ωe makes the energy gap
between the βαβN state and the central states smaller than for
the βααN state causing a change in sign. Inversion of the sign
of A has the same effect. When gN and A have different signs
the nearly degenerate levels are the βαβN and βααN levels.
In this situation the analysis can be performed in a similar way
as previously. The result depends only on the relative signs of
∆g and A and does not depend on the signs of ωN and b (the
latter only converts the LC into an LAC but does not affect
the type of polarization). Summing everything up, we come
to the following sign rule:

Γ = sgn (∆g) × sgn (A) × µ × ψ, (24)

where

ψ =



1, kS > kT
−1, kS < kT

, for the DD-case, (25a)

ψ =



1, S-yield
−1, T-yield

, for the DR-case. (25b)

Further details concerning the behavior of CIDNP and energy
level diagrams for different signs of ∆g, A, and gN are
presented in the supplementary material, see Figure 4(S).58

3. TSM mechanism

Now let us turn on the electron-electron coupling and
assume that the “double matching” condition is fulfilled,
which is required in the TSM,9,14,15 specifically

|∆ωe| ≈ |ωN | ≈ |A|
2
. (26)

We also assume that kS = kT ; the discussion of how stringent
should be the requirement given by Eq. (26) is presented
below.

To perform the LAC analysis we split the Hamiltonian
into its main part and perturbation terms

Ĥ = Ĥ0 + Ĥee + Ĥb. (27)
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Here Ĥ0 is the main Hamiltonian, Ĥee = d
�
Ŝ1+Ŝ2− + Ŝ1−Ŝ2+

�

stands for the non-secular electron-electron coupling and Ĥb

is the pseudo-secular HFC term. The main Hamiltonian has
the following form:

Ĥ0 = g1µBB0Ŝ1z + g2µBB0Ŝ2z − gN µNB0Îz + AŜ1z Îz. (28)

The first condition |∆ωe| = |ωN | from Eq. (26) results in a
degeneracy of the energy levels corresponding to the states
|βααN⟩ and |αβ βN⟩. The second condition |ωN | = |A/2|
leads to the degeneracy of energy levels corresponding to
the |αβ βN⟩ and |αβαN⟩ states at a particular magnetic field
strength (see the discussion below). To account for CIDNP
effects we will take into account the perturbations and see
what happens with the energy levels.

The magnetic field dependence of CIDNP in the TSM
case is presented in Figure 7. In this field dependence there
are two peaks. The low-field one comes from S-T− mixing
by secular HFC, thus, it has exactly the same nature as that
presented in Figure 4. This peak is really a “low-field” feature
in the sense that it cannot be reproduced by considering S-T0
mixing only. Other low-field features are not discussed in this
work. The high-field peak arises from S-T0 mixing occurring
due to TSM, see the discussion below.

Let us now have look at the RP energy levels of the
system with Hamiltonian Ĥ0 at variable magnetic field, see
Figure 8, and at the energy level diagram corresponding
to the situation of “double matching,” as described by
Eq. (26), see Figure 9. When the double matching condition is
fulfilled three out of four levels in the S-T0 manifold become
degenerate, see Figure 9, where the energy level βααN has
the same energy as levels αβ βN and αβαN . The fourth state
is remote in energy; however, as we see below, it is also
involved in the spin dynamics. When a non-zero Ĥee is taken
into consideration, the degeneracy between the αβαN and
βααN levels is lifted, so that the LC turns into an LAC: the
new eigen-levels become split and the eigen-states become
different (this LAC is highlighted in Figure 8). In fact, the
behavior of levels corresponds to a triple LAC, i.e., to an
“avoided crossing” of three levels. When d > 0 the lower
state in energy is the SαN state, while the higher state is T0αN .
Although the other two levels are more remote in energy from
each other, the electron-electron coupling has an important

FIG. 7. Field dependence of CIDNP in TSM case. Parameters used in calcu-
lation: g1= 2 and g2= 2.0067; the nucleus is a proton; A= 1 mT; d = 0.5 mT;
b = 0.5 mT, kS = kT = 0.1 ns−1, ksc = 0.002 ns−1; the calculated CIDNP is
polarization per RP.

FIG. 8. Field dependence of energy levels in the TSM case; the relevant
LAC is indicated. Parameters used in calculation: g1= 2 and g2= 2.0067;
the nucleus is a proton; A= 1 mT; d = 0.5 mT; b = 0, kS = kT = 0.1 ns−1,
ksc = 0.002 ns−1. The notation (αββN )S means that the corresponding
state has S-character higher than 1/2; (αββN )T has higher T0-character; the
pseudo-secular HFC is omitted in the calculation to visualize the LAC more
clearly.

effect on them as well. Specifically, the lower level is no
longer exactly αβ βN but acquires singlet character higher
than 1/2 for the electron wave-function, likewise, the higher
level acquires T0-character higher than 1/2 for the electron
wave-function; the new states are denoted as (αβ βN)S and
(βαβN)T , respectively. If we take the pure αβ βN and βαβN
states (i.e., states far away from an LAC), both of them
will have exactly 1/2 of singlet character (and also 1/2 of T0
character). However, in our case this is not exactly true: one
of the two states has an admixture of singlet character equal
to

� 1
2 + δ

�
, with δ ∼ d

∆E
where ∆E is the splitting between

the two levels (equal to approximately 2∆ωe when the TSM
matching condition, Eq. (26) is imposed); likewise, for the
other state the singlet content is

� 1
2 − δ

�
.

When the RP is singlet-born the SαN state has a
population of 1

2 , the T0αN state has zero population, while the
other two states, (αβ βN)S and (βαβN)T , have populations of� 1

4 +
δ
2

�
and

� 1
4 −

δ
2

�
, respectively; here δ > 0 is reflecting the

higher S-character for (αβ βN)S and the higher T0-character

FIG. 9. Schematic representation of energies in the situation where the
double matching condition is fulfilled (corresponding to the LAC shown in
Figure 8).
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for (βαβN)T . Thus, the average population of the three nearly
degenerate states is equal to

� 1
4 +

δ
6

�
, which is higher than� 1

4 −
δ
4

�
being the population of the (βαβN)T state.

The outlined effect of the electron-electron coupling
alone does not produce CIDNP because there are no nuclear
spin flips occurring in the system. After taking into account
one more perturbation, Ĥb, transitions in the pairs of nearly
degenerate states αβ+βα√

2
αN and (αβ βN)S as well as αβ−βα√

2
αN

and (αβ βN)S occur, which mix the state populations flipping
the nuclear spin. As a consequence of this mixing, population
of the three nearly degenerate states is shared among them.
As a result, the RP nuclear state is predominantly αN and
the nuclear spins get polarized. Like in the S-T± crossing in
the isotropic case, the nucleus is polarized in the same way
even when the kS and kT rates are arbitrary (although the
actual CIDNP amplitude, certainly, depends on these rates).
In fact, the spin dynamics in TSM represents a high-field
analogue of the S-T± spin mixing (although it is operative
only in the presence of anisotropic interactions). Indeed,
CIDNP is formed due to the evolution of the spin-correlated
RP, while the chemical reaction is needed only to transfer this
polarization into the final diamagnetic state (which is probed
by NMR). Consequently, polarization can be generated even
when kS = kT and it does not depend on the sign of A,
as shown below. The similarity between the two cases is
even more salient in the case ∆ωe = 0, which is discussed
below. For the sake of simplicity, here we do not analyze
the dependence of CIDNP on δ; such an analysis has been
performed by numerical calculations in Ref. 9.

The TSM case in CIDNP bears some similarity to the
cross-effect DNP,5,6 which also requires a matching of energies
for a pair of levels, i.e., an LAC of levels αβαN and βαβN
(or αβ βN and βααN) occurring when |∆ωe| ≈ |ωN |. Upon
mixing at this LAC, all three spins “flip” and electron spin
polarization is transferred to the nucleus.7,72 However, the
second matching condition is not required in the cross-effect
DNP; a further difference between the two cases, CIDNP and
cross-effect DNP, comes from the fact that in CIDNP it is
required to transfer singlet spin order of the two electrons to
the nuclear spins, whereas in DNP electron spin magnetization
is transferred to the nuclei. Thus, in TSM-CIDNP not only the
degeneracy of the αβαN and βαβN (or αβ βN and βααN)
levels is required (i.e., the matching condition |∆ωe| ≈ |ωN |):
there should also be different mixing of these two states with
the other two states. This is provided by the non-zero secular
HFC, A , 0. Ideally, Eq. (26) should be fulfilled leading
to the triple LAC, see Figure 8. Without this asymmetry,
TSM-derived CIDNP is not formed, whereas in cross-effect
DNP the second matching condition is not required, moreover,
A can be zero.

Before going to the derivation of the CIDNP sign rules,
let us discuss how precisely the double matching condition,
see Eq. (26), should be fulfilled. In fact, this issue has
been investigated before in Ref. 9 by running numerical
calculations. Of course, matching between ∆ωe and A (or
ωN and A) can always be achieved by simply varying the
external magnetic field strength but the second condition,
∆ωe = ωN , imposes specific requirements on an RP. However,
in a disordered solid, where due to the g-tensor anisotropy

there is a distribution ofω1 andω2, it might be enough that this
requirement is fulfilled only for a fraction of all RPs. A similar
situation is typical for cross-effect DNP: only a fraction of all
molecular orientations of the paramagnetic polarizing agent
is responsible for the observed NMR signal enhancement.
Furthermore, Eq. (26) does not mean exact coincidence of the
three interactions: numerical calculations rather show9 that
the three terms, ∆ωe, ωN , and A, should be of the same order
of magnitude but that matching or near-matching just two of
them is not enough for CIDNP formation.

4. Sign rules, TSM mechanism

As previously, the LAC analysis enables relatively simple
assessment of CIDNP sign rules. We have already explained
that in the example considered above the CIDNP sign is
positive. Let us see what happens upon inversion of sign of
relevant interactions.

When the sign of d is inverted, the three nearly degenerate
lower states acquire predominantly T0-character, whereas
the higher state predominantly acquires S-character. As a
consequence, the CIDNP sign changes.

When the sign of ∆ωe changes, we obtain a different set
of nearly degenerate states: αβ βN , αβαN , βα βN , which are
higher in energy than the βααN state. When d is positive (as
in the previous case), these states have higher T0-character
but also higher content of the βN nuclear spin state. As a
consequence, CIDNP remains positive. When the sign of A is
varied, at positive d we have the same behavior as for inverting
the sign of ∆ωe: the three nearly degenerate states are αβ βN ,
αβαN , βα βN , which are higher in energy than the βααN

state. Consequently, they have predominantly T0-character
and the polarization stays positive. Sign inversion of gN again
changes the set of the three nearly degenerate states to βααN ,
βαβN , αβαN , which are higher in energy than the αβ βN
state. As a consequence, the three nearly degenerate states
have predominantly T0-character, i.e., a lower population, and
also higher content of the αN nuclear spin state. Thus, the
polarization sign changes. The pseudo-secular HFC causes
only mixing of the three nearly degenerate states. Thus,
the sign of CIDNP does not depend on the sign of b. The
energy level diagrams for the cases with different sign of the
relevant interactions are presented in supplementary material,
see Figure 5(S).58

Summarizing these considerations, we obtain the
following sign rules:

Γ = −sgn(d) × sgn(gN) × µ. (29)

Thus, LACs allow one to obtain the CIDNP sign rule in a
rather simple way. Now, with the knowledge that LACs do
the job in ss-CIDNP we can predict under what conditions
we obtain new LACs and different behavior of polarization.
Specifically, in the TSM case there can be one more LAC,
which occurs when a matching condition different from those
given in Eq. (26) is fulfilled

|d | = |ωN | . (30)

Previously, it was mentioned9 that the TSM-derived
polarization increases when this condition is fulfilled. Here
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we show that it indeed corresponds to an LAC in the RP spin
system. To make the analysis a bit simpler, let us show how
the energy levels are behaving in a situation where ∆ωe = 0,
such that the singlet-triplet basis is an eigen-basis of the main
Hamiltonian, in which the pseudo-secular HFC is omitted.
Such a simplification is done only for the sake of clarity, while
the conclusions obtained apply to the general Hamiltonian as
well.

5. TSM, case of ∆g = 0

Let us consider the TSM case assuming that ∆ωe = 0. In
this situation, we assume that gN > 0 and d > 0; then at a field
where |gN µNB| = |d | (here we put into the calculation a very
small secular HFC as compared to ωN and d) there is an LC
of the |S βN⟩ and |T0αN⟩ energy levels. The pseudo-secular
HFC lifts the degeneracy and mixes the two states. Thus, at
this field we obtain an LAC and a peak in the CIDNP field
dependence, see Figure 10, because for a singlet-born RP
nuclear transitions βN → αN become operative. Like in the
general TSM case, the CIDNP sign does not depend on the
reaction rates kS and kT . As mentioned above, the polarization
mechanism bears some similarity to the S-T± mechanism in
liquids; however, the difference is that the LAC is in the S-T0
manifold and that the perturbation, which mixes the levels, is
due to an anisotropic interaction.

Now let us obtain the sign rule for this type of spin
mixing, i.e., let us see what happens upon inversion of the
relevant spin interactions.

FIG. 10. Field dependence of energy levels (a) and CIDNP (b). Parameters
used in calculation: g1= g2= 2; the nucleus is a proton; A= 0, b = 0.1 mT,
d = 1 mT; kS = kT = 0.1 ns−1, ksc = 0.02 ns−1; the calculated CIDNP is
polarization per RP.

Upon inversion of the d sign, the pair of degenerate
levels becomes |SαN⟩ and |T0βN⟩. Then the pseudo-secular
HFC works in the same way as before, resulting in nuclear
spin flips αN → βN , and hence, in a negative CIDNP sign.
The same effect is produced by inversion of the sign of
gN . As previously, the result does not depend on the sign
of b. Summarizing this discussion, we obtain the sign rule,
which is the same as in the previously discussed case, see
Eq. (29).

Discussion of the case of ∆ωe = 0 is relevant when the
RP under study comprises radicals with strongly overlapping
EPR spectra, for instance, when the RP contains two identical
radicals.

C. ss-CIDNP time dependence

Finally, we would like to emphasize that ss-CIDNP
exhibits a rather unusual time dependence. We performed
numerical calculations of ss-CIDNP for an RP with two
magnetic nuclei having HFCs of opposite sign: A1 = −A2.
CIDNP has been computed for different relative size of
kS, kT , ksc. In this situation, CIDNP driven by isotropic
mechanisms is expected to change its sign according to
Kaptein’s rule, see Eq. (17); in contrast, the TSM-derived
polarization does not depend on the sign of A. Thus, by
varying the RP reactivity parameters we can analyze the
interplay between the ls-CIDNP and ss-CIDNP mechanisms.

The calculated CIDNP time traces are presented in
Figure 11; these time traces demonstrate how different
mechanisms come into play.

When the recombination rates are taken unequal, kS , kT ,
polarization can be formed by the ls-mechanism, see
Figure 11(a). However, when ksc = 0 at long times CIDNP
drops to zero because at t → ∞ all RPs have decayed
independent of their nuclear spin state and, hence, polarization
cancels out. When ksc , 0, see Figure 11(b), this cancellation
is incomplete. This situation corresponds to ls-CIDNP: due to
diffusional separation of the partner radicals the steady-state
polarization is non-zero.

When the two mechanisms are working in a concerted
way, the CIDNP time traces change significantly. For instance,
see Figure 11(c), at short times CIDNP is consistent with
Kaptein’s rules, whereas at long times CIDNP of both nuclei
is of the same sign as the TSM contribution becomes dominant.

Finally, when kS = kT only the TSM contribution is
manifest and both nuclei have exactly the same CIDNP time
dependence, see Figure 11(d).

Thus, at different times, different mechanisms can become
dominant. Therefore, time-resolved ss-CIDNP potentially
provides much more information about the RP state than
its steady-state analogue.

We also expect that CIDNP can be affected by nuclear
spin relaxation in the RPs (relaxation in diamagnetic reaction
products is much slower and can be safely neglected). For
instance, relaxation, which tends to equilibrate the populations
of the αN and βN states in transient radicals can result in non-
zero steady state polarization even when b = 0 and ksc = 0.
However, consideration of such effects is not along the lines
of this contribution.
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FIG. 11. Time dependence of CIDNP in an RP with two nuclei calculated
for different kS/kT ratios. Parameters used in the calculation: g1= 2 and
g2= 2.0067; the nuclei are protons; A1= 1 mT (black triangles); A2=−1
mT (red circles). In (a) b1= b2= d = 0 and the RP reaction rates are kS
= 5kT = 0.5 ns−1, ksc = 0; in (b) b1= b2= d = 0 and kS = 5kT = 0.5 ns−1,
ksc = 0.02 ns−1; in (c) b1= b2= 1 mT, d = 0.5 mT, kS = 5kT = 0.5 ns−1,
ksc = 0.02 ns−1; d = 1 mT; in (d) b1= b2= 1 mT, d = 0.5 mT, kS = kT = 0.1
ns−1, ksc = 0.002 ns−1. The calculated CIDNP is polarization per RP.

D. ss-CIDNP field dependence

Discussion of ss-CIDNP and its field dependence is
usually limited to the high-field part of the full dependence,
i.e., to the case where only S-T0 spin mixing is operating.
In the corresponding field range the resulting polarization is
determined by the relative efficiency of different mechanisms,
i.e., by the conventional S-T0 mixing mechanism, which is
well-established in liquids and by the solid-state mechanisms
discussed above. At lower fields, when the T± levels closely
approach the singlet level, the additional S-T±mixing channels
come into play. One should note, however, that “lower fields”
can be quite high when the exchange coupling is strong;
such examples are known, for instance, for biradicals. This is
demonstrated, for instance, in Figure 7, where an additional
maximum appears, coming from S-T− mixing. At lower
magnetic fields, i.e., when the field is comparable to HFC,
additional features can appear. Here we do not analyze them
in detail and only mention that they can be assigned to specific
LACs in the RP spin system. Studies of the full ss-CIDNP
field dependence pave the way to precise characterization of
the magnetic parameters of RP; although the corresponding
analysis can be relatively complicated. However, as in other
cases discussed here, LACs can make such an analysis simpler.
We anticipate that the same holds for more complex cases, i.e.,

for multi-nuclear RPs. In this situation, not only the electrons
exhibit a more complex spin evolution but also the nuclei affect
each other: although direct nuclear-nuclear interaction is very
small compared, for instance, to HFC, due to coupling to the
electrons CIDNP of each nucleus is sensitive to the presence
of all other nuclei as well. In specific cases73,74 such effects
can lead to violation of Kaptein’s rules in ls-CIDNP, showing
that multi-nuclear RPs exhibit a complex behavior. This effect
can be further complicated in solids, but we expect that the
level crossing description, as proposed here, can simplify the
theoretical treatment.

IV. CONCLUSIONS AND OUTLOOK

In this work we analyzed features in the magnetic field
dependence of CIDNP in solids by using the idea that such
features can be correlated with LCs and LACs of the spin
energy of a radical pair. The validity of this concept was
tested for the well understood case of ls-CIDNP; after that,
we performed an analysis of ss-CIDNP.

We demonstrated that the ss-CIDNP features discussed
in a number of earlier publications, see Ref. 16 for an
overview, can indeed be attributed to spin mixing at particular
LACs. The LAC approach to CIDNP has a number of
advantages: field positions of the features and corresponding
“matching conditions” become clear from the LAC analysis.
Furthermore, elucidation of specific spin mixing pathways
(given by the corresponding LACs) provides a relatively
simple understanding of CIDNP; in particular, ss-CIDNP sign
rules become clear.

For these reasons, the LC/LAC analysis opens a way
to a general understanding of CIDNP in liquids and solids.
Indeed, in both cases polarization is formed by the interplay of
the reaction and spin dynamics; the efficiency of polarization
formation increases at specific LCs and LACs, which thus
define the magnetic field where different mechanisms come
into play. This description also allows us to look at CIDNP
from a more general perspective. Presently, each individual
case in ss-CIDNP is treated separately and has a separate
name (given by acronyms DD, DR, and TSM). However,
these different cases are just given by different types of spin
mixing in an RP, which, in turn, correspond to different LCs
or LACs. While ls-CIDNP is relatively simple (for instance,
the high-field CIDNP sign is described by a single rule, see
Eq. (12)), the ss-CIDNP case immediately becomes complex
due to anisotropic interactions and, consequently, due to a
larger number of LACs. Analysis of the full ss-CIDNP field
dependence would definitely reveal even further features,
which all correspond to different types of spin mixing. Hence,
it is not necessary to describe all types of mixing by different
mechanisms; instead, we suggest assigning features to LCs
and LACs and thus staying with a more general description.

While here we restricted our study to the theoretical
framework the obvious test of our approach is to run field-
dependent ss-CIDNP measurements over a wide magnetic
field range: up to now ss-CIDNP studies were limited to the
range of 1.4-17.6 T.75 Another promising option is given
by experiments on macroscopically oriented samples: in
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this case, by going to different orientations it is possible
to map out active LCs and LACs and determine their
contribution to polarization. A candidate system for such
studies is given by doped molecular single crystals such as
phenazine in anthracene76 or acridine in fluorene:77 although
similar systems are normally used to generate optical nuclear
polarization by a different mechanism (by transferring the
electron spin polarization from a transient triplet state),
also spin-correlated RPs in a triplet state can be formed,
i.e., CIDNP effects can be studied. Alternatively, ss-CIDNP
in membrane proteins oriented on a glass disk can be
studied.78 The utility of field-dependent ls-CIDNP studies
is known for many years, in solids, such studies can provide
new information about RPs and enable optimization of the
polarization process. The orientation dependence of CIDNP
can be exploited only in anisotropic media, i.e., in crystals,
liquids crystals, etc. In general, studying orientation dependent
effects in magnetic resonance is a valuable tool for probing
magnetic interactions and determining molecular parameters.
There is no doubt that studies of the magnetic field and
orientation dependence of ss-CIDNP can provide important
new insights in the mechanism of CIDNP formation and
structure of RPs in solids.

Our results can be utilized to optimize CIDNP
performance: by setting the external magnetic field strength
in order to match a particular LC/LAC one can achieve the
highest polarization. Additionally, our approach is helpful
for solving the inverse problem, i.e., for determining EPR
parameters of RPs by correlating features in the CIDNP
field dependence with particular LACs. In this way, one
can reveal the pathway of CIDNP formation (i.e., find out,
which particular LC or LAC is operative), determine spin
interactions in an RP (ideally, extract specific interactions
from the positions of different LCs and LACs) and probe the
RP reactivity (from broadening of the features in the CIDNP
field dependence). Such an approach is frequently used in
MARY-spectroscopy; likewise, it can provide new CIDNP
insights into the spin dynamics and reactivity of RPs. Thus,
our approach paves a way to an NMR based approach79 for
determining EPR parameters of elusive RPs, which are often
beyond the reach of conventional EPR spectroscopy.
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NOMENCLATURE
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DD Differential Decay
DNP Dynamic Nuclear Polarization
DR Differential Relaxation
EPR Electron Paramagnetic Resonance
HFC Hyperfine Coupling
ISC Inter-System Crossing

LAC Level Anti-Crossing
LC Level Crossing
ls liquid-state
MARY Magnetically Affected Reaction Yield
MAS Magic Angle Spinning
NMR Nuclear Magnetic Resonance
RP Radical Pair
RPM Radical Pair Mechanism
ss solid-state
TSM Three Spin Mixing
ZQC Zero-Quantum Coherence
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