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Abstract

This thesis is concerned with two problems in the Calculus of Variations touching on
two central aspects of Materials Science: the structure of solid matter and its dynamic
behavior.

The problem pertaining to the first aspect is the analysis of the rigidity properties of
possibly branched microstructures formed by shape memory alloys undergoing cubic-to-
tetragonal transformations. On the basis of a variational model in the framework of
linearized elasticity, we derive a non-convex and non-discrete valued differential inclusion
describing the local volume fractions of such structures. Our main result shows the
inclusion to be rigid without additional regularity assumptions and provides a list of all
possible solutions. We give constructions ensuring that the various types of solutions
indeed arise from the variational model and quantitatively describe their rigidity via
H-measures.

Our contribution to the second aspect is a conditional result on the convergence of the
Allen-Cahn Equations to multi-phase mean curvature flow, which is a popular model for
grain growth in polychrystalline metals. The proof relies on the gradient flow structure of
both models and borrows ideas from certain convergence proofs for minimizing movement
schemes.
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Chapter 1

Introduction

Being the study of the properties and design of materials, the structure of solid matter
is of close to ubiquitous concern in Materials Science. In metals, the most well-known
and fundamental one certainly is their crystal structure: Their atoms tend to (locally)
fill space in a periodic manner.

What happens in certain materials called shape memory alloys that have multiple “dif-
ferent” but equally preferred ways of doing so is the focus of the first part of this thesis.
Such materials can combine their different lattices to new structures on larger but still
microscopically small length scales, which has rather surprising consequences for their
macroscopic behaviour. We will study these microstructures in terms of what in mathe-
matics is called rigidity in the first part of the thesis.

In the second part, we instead consider materials that do have a unique crystal structure
up to rotation but where the rotations might be different in different regions within the
material called grains. We discuss the so-called mean curvature flow as a mathematical
model for their motion under heat treatment. Under certain assumptions, we prove that
mean curvature flow can be approximated with the Allen-Cahn Equations that themselves
arise as a model for the dynamics of certain defects in the crystal lattice of an alloy.

As the two problems of rigidity of shape memory alloys and convergence of the Allen-
Cahn Equations are mathematically not immediately interdependent, we give essentially
separate introductions for them starting with the former.

1.1 Shape memory alloys

1.1.1 The shape memory effect and microstructure

Shape memory alloys are a subclass of materials undergoing martensitic phase trans-
formations, which are diffusionless solid-solid transformations of the material’s crystal
lattice, see Bhattacharya [11]. This means that the phase change is characterized by
a uniform movement of a large number of atoms changing the structure of the crystal.
More specifically, in the case of martensitic transformations the lattice loses symmetry

1
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when it is cooled below a critical temperature or when being subjected to critical stresses.
In certain ferromagnetic shape memory alloys the transformation can also be triggered
by applying magnetic fields [56].

This results in multiple lower symmetry phases named martensite phases relative to the
parent phase called austenite phase, see Figure 1.1 for a sketch of such a transformation.
A more detailed description of the crystallographic foundations and indeed much of what
is described in the following can be found in the book by Bhattacharya [11]. The most
widely used application of martensitic phase transformations is the hardening of steel,
where the transformation occurs when steel is quenched, i.e., rapidly cooled down, from
sufficiently high temperatures, see [49, Chapter 9.2.3].

Further examples of materials undergoing such transformations are the previously men-
tioned shape memory alloys, in which the transformation leads to the surprising epony-
mous shape memory effect: Seemingly plastic, i.e., irreversible, deformations the material
is subjected to below the critical temperature are reversed when reheating it. We invite
the reader to watch this effect occuring, for example in the video [86].

Apart from serving as an excellent party trick, there are several applications of shape
memory alloys ranging from medicine, e.g., stents in heart patients, to the use in the
aerospace and automobile industry, although some of these exploit effects related to the
shape memory effect (such as superelasticity). For a recent overview see Jani, Leary,
Subic and Gibson [56].

In broad terms, the explanation for the so-called shape memory effect, see also Figure [11,
Figure 1.6], is that when cooling the material below the critical temperature it transforms
to microstructures of martensite variants while not changing its overall shape. Deforming
the material then changes the microstructures, but not the neighbor relations between
atoms. Thus the material recovers its shape when it transforms back to austenite upon
heating.

Consequently, the material has to satisfy certain conditions in order to exhibit the shape
memory effect, see [11, Chapter 9]: First, in order for the material to accurately recover
its shape there has to be a single austenite phase. In practice, this means that the
austenite in most shape memory alloys is cubic, although less symmetry is in theory
possible. Secondly, the property of being able to form microstructures which do not
change the shape of the material is called “self-accommodation”. For cubic austenite,
this is equivalent to the phase transformation being volume-preserving, see Bhattacharya
[12]. Closely connected is also the requirement that the martensite variants have to be
sufficiently compatible for microstructures to exist, see Subsection 1.1.3 for more details.

Thus we see that microstructures of the crystal lattice are crucial for understanding the
properties of shape memory alloys. In alloys undergoing cubic-to-tetragonal transforma-
tions, see Figure 1.1, with which we will exclusively work in this thesis, one frequently
observes the following types of microstructures:

1. Twins: Fine-scale laminates of martensite variants, see the lower right corner of
Figure 1.2a and both sides of the interface at the center of Figure 1.2b.

2. Habit planes: Almost sharp interfaces between austenite, and a twin of two marten-
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Figure 1.1: A sketch of the cubic-to-tetragonal transformation. The left-hand
side represents the cubic austenite phase, while the right-hand side represents
the martensite variants that are elongated in the direction of one of the axes of
the cube and shortened in the other two. Adapted from [11, Figure 4.5].

site variants, where the twin refines as it approaches the interface, see Figure 1.2a.

3. Second-order laminates, or twins within a twin: Essentially sharp interfaces be-
tween two different refining twins, see Figure 1.2b.

4. Crossing second-order laminates: Two crossing interfaces between twins and pure
phases, see Figure 1.2c.

5. Wedges: Materials whose lattice parameters satisfy a certain relation can form a
wedge of two martensite twins surrounded by austenite, see Figure 1.2d.

More complicated transformations lead to an even richer class of structures as described
in Bhattacharya’s book [11].

Not apparent from the two-dimensional pictures, but all the more surprising is that at
least in Microstructures 1, 2 and 5 all observed interfaces are aligned parallel to only
finitely many different hyperplanes relative to the crystal orientation. In the mathemat-
ical jargon, this is an instance of “rigidity”: a (usually geometric) object is significantly
more restricted than is immediately apparent. Thus one is led to expect that there should
be rigidity statements about mathematical models of shape memory alloys restricting the
alignment of interfaces. This is the type of problem we will be investigating for a good
part of this thesis.

1.1.2 Contributions of the mathematical community

Modeling

The first use of energy minimization in the modeling of martensitic phase transforma-
tions has been made by Khatchaturyan, Roitburd and Shatalov [60–62, 99, 100] on the
basis of linearized elasticity. This allowed to predict certain large scale features of the
microstructure such as the orientation of interfaces between phases. Note, however, that
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a) b)

c) d)

Figure 1.2: a) Optical micrograph of a habit plane with austenite on the right-
hand side and twinned martensite on the left-hand side in a Cu-Al-Ni alloy
undergoing cubic-to-orthorhombic transformations, by courtesy of C. Chu and
R.D. James. b) Optical micrograph of a second-order laminate in a Cu-Al-Ni
alloy, by courtesy of C. Chu and R.D. James. c) Optical micrograph of two
crossing second-order laminates in an Indium-Thallium crystal. The bottom
region is in the austenite phase. All other regions show twinned martensite
variants with the twinning in the left-hand side one being almost parallel to the
surface of the sample. Reprinted from [9], with permission from Elsevier. d)
Optical micrograph of a wedge in a Cu-Al-Ni alloy, by courtesy of C. Chu and
R.D. James.

their model is still nonlinear in spite of being based on linearized elasticity due to the
presence of multiple phases, for a clearer view of this see our version of the model in
1.1.3. Therefore, it is more commonly referred to as geometrically linear.

Variational models based on nonlinear elasticity go back to Ball and James [6, 7]. They
formulated a model in which the microstructures correspond to minimizing sequences of
energy functionals vanishing on

K =
⋃
i

SO(3)Ui

for finitely many suitable symmetric matrices Ui. In their theory, the orientation of inter-
faces arise from a kinematic compatibility condition known as rank-one connectedness,
see [11, Chapter 2.5]. For cubic-to-tetragonal transformations Ball and James prove in
an ansatz-free way that the fineness of the martensite twins in a habit plane is due only
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certain mixtures of martensite variants being compatible with austenite. Their approach
is closely related to the phenomenological (or crystallographic) theory of martensite inde-
pendently introduced by Wechsler, Lieberman and Read [115] and Bowles and MacKenzie
[14, 81]. In fact, the variational model can be used to deduce the phenomenological the-
ory.

A comparison of the nonlinear and the geometrically linear theories can be found in an
article by Bhattacharya [10]. Briefly summarized, it is argued that the linear theory is
at times easier to handle (which makes the problems in this thesis tractable), especially
when stresses are involved. However, it performs badly on thin domains and does not
offer significant advantages when dealing with stress-free microstructures. What is more,
it does not necessarily describe such microstructures accurately: For example, the linear
theory does not allow for the wedge microstructure, see Figure 1.2d, in cubic-to-tetragonal
transformations while the non-linear theory does accurately predict it for certain lattice
parameters. Formal derivations of the geometrically linear theory from the nonlinear
one have been given by Kohn [68] and Ball and James [7]. A rigorous derivation via
Γ-convergence has been given by Schmidt [107] with the limiting energy in general taking
a more complicated form than the usually used piecewise quadratic energy densities.

Rigidity in the nonlinear theory

The interpretation of microstructure as minimizing sequences naturally leads to analyzing
the differential inclusions

Du ∈ K =
m⋃
i=1

SO(3)Ui,

sometimes called the m-well problem, or variants thereof such as looking for sequences
uk such that dist(Duk, K) → 0 in measure. In fact, the statements of Ball and James
are phrased in this way [6, 7]. A detailed discussion of these problems which includes the
theory of Young measures has been provided by Müller [91].

A common theme in the general theory of differential inclusions is that of rigidity versus
flexibility, with the most famous example being the case of isometric embeddings of a S2

into R3: The famous Nash-Kuiper theorem [73, 94] shows such embeddings to be very
flexible by constructing an abundance of very irregular C1-isometric embeddings using a
technique that is now known as convex integration. On the other hand, the embeddings
become rigid by requiring additional regularity since if the embedding is smooth enough
then e.g. [111, Theorem 12 of Chapter 12] implies that it is simply the composition of a
translation and a rotation.

A very similar phenomenon happens for martensitic phase transformations: In two space
dimensions, Müller and Šverák [92] used convex integration to construct solutions with
a complex arrangement of phases of the differential inclusion Du ∈ SO(2)A ∪ SO(2)B
with det(A) = det(B) = 1, for which one would naively only expect laminar solutions.
Later, Conti, Dolzmann and Kirchheim [33] extended their result to three dimensions
and the case of cubic-to-tetragonal transformations. This indicates that the differential
inclusions of the nonlinear theory in themselves are too flexible to be accurate models.
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However, Dolzmann and Müller [37] also noted that if the inclusion Du ∈ SO(2)A ∪
SO(2)B is augmented with the information that the set {Du ∈ SO(2)A} has finite
perimeter, then Du is in fact laminar, i.e., the inclusion then is rigid. Also this result
holds in the case of cubic-to-tetragonal transformations as shown by Kirchheim [64].
Here the finite perimeter can be thought of as resulting from penalizing surface area
between phases, which commonly is included in models, and which Kitavtsev, Luckhaus
and Rüland [65, 66] rigorously derived from an atomistic model in two dimensions. There
has been a series of generalizations of the rigidity statements including stresses [34, 77,
78], culminating in the papers by Conti and Chermisi [30] and Jerrard and Lorent [57].
However, these are more in the spirit of the geometric rigidity theorem due to Friesecke,
James and Müller [44] since they rely on the perimeter being too small for lamination
and as such do not give insight into the rigidity of twins.

Rigidity in the geometrically linear theory

The differential inclusion arising from stress-free configurations in the geometrically linear
setting is

1

2
(Du+DuT ) ∈ {e1, e2, e3},

where ei for i = 1, 2, 3 are the linearized strains corresponding to the cubic-to-tetragonal
transformation, see (1.4). In contrast to the situation in the non-linear theory, this
inclusion is rigid in the sense that all solutions are laminates even without further regu-
larizations as proven by Dolzmann and Müller [37]. Quantifying this result Capella and
Otto [24, 25] proved that laminates are stable in the sense that if the energy (1.1) (includ-
ing an interfacial penalization) is small then the geometric structure of the configuration
is close to a laminate. Additionally, there is either only austenite or only mixtures of
martensite present. Capella and Otto also noted that for sequences with bounded energy
such a result cannot hold due to a well-known branching construction of habit planes
(Figure 1.2a) given by Kohn and Müller [69, 70].

Therein, Kohn and Müller used a simplified scalar version of the geometrically linear
model with surface energy to get information about the fine-scale properties of the mi-
crostructures. It was previously assumed that the fine twins are exactly parallel, which as
Kohn and Müller pointed out does not lead to the optimal energy for a habit plane. The
main idea is that compatibility of austenite with a mixture of martensites only requires a
fine mixture close to the interface so that the interfacial energy coarsens the twins away
from the interface. Kohn and Müller also conjectured that the minimizers exhibit this
so-called branching, which Conti [32] affirmatively answered by proving minimizers of the
Kohn-Müller functional to be asymptotically self-similar. An extension of the branch-
ing construction to the vector-valued geometrically linear setting has been provided by
Capella and Otto [25], while a construction in the nonlinear setting is due to Conti and
Chan [26].

In view of the results by Kohn and Müller, and Capella and Otto it is natural to consider
sequences with bounded energy in order to analyze the rigidity of branching microstruc-
tures.
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Some related problems

So far, we mostly discussed the literature describing the microstructure of single crystals
undergoing cubic-to-tetragonal transformations. However, the variational framework can
be used to address related problems, for which we highlight a few contributions as an
exhaustive overview is outside the scope of this introduction:

Microstructures occurring in other transformations can of course also be analyzed with
the presented tools. An overview can of course be found in the book by Bhattacharya [11].
Very similar in spirit to the results by Capella and Otto are a number of works by Rüland
[103, 104] concerning the rigidity of cubic-to-orthorhombic transformations (involving six
different martensite variants) in the geometrically linear theory. Also there, the expected
stress-free microstructures are stable (under additional assumptions) but, in contrast to
the tetragonal case, surface energy is required to prevent stress-free convex integration
solutions. For the much more complicated cubic-to-monoclinic-I transformations with
its twelve martensite variants, Chenchiah and Schlömerkemper [29] proved the existence
of certain non-laminate microstructures in the geometrically linear case without surface
energy.

As such, the approach of Chenchiah and Schlöemerkemper is more in the spirit of the
theory of polycrystals, where one postulates that the surface energy can be neglected on
the basis of a separation of scales between the microstructure and an individual grain,
see Bhattacharya and Kohn [13]. As rabbit holes for the interested reader we suggest
once again Bhattacharya’s book [11, Chapter 13] for an overview, as well as the paper
by Bhattacharya and Kohn for a more detailed exposition.

Another problem is determining the shape of energy-minimizing inclusions of martensite
with given volume in a matrix of austenite, for which scaling laws have been obtained by
Kohn, Knüpfer and Otto [67] for cubic-to-tetragonal transformations in the geometrically
linear setting.

Finally, given that the second part of the thesis concerns the dynamics of grain bound-
aries, we mention that there currently seems to be no consensus as to how the dynamics
of shape memory alloys should be modeled. A brief description of the various approaches
can be found in the book by Bhattacharya [11, Chapter 1.4].

1.1.3 Definition of the energy

In order to analyze the rigidity properties of branched microstructures we choose the
geometrically linear setting, since the quantitative rigidity of twins is well understood
due to the results by Capella and Otto [24, 25]. In fact, we continue to work with the
same already non-dimensionalized functional, namely

Eη(u, χ) := Eelast(u, χ) + Einter,η(u, χ), (1.1)
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where

Eelast,η(u, χ) := η−
2
3

ˆ
Ω

∣∣∣∣∣e(u)−
3∑
i=0

χiei

∣∣∣∣∣
2

dL3, (1.2)

Einter,η(u, χ) := η
1
3

3∑
i=1

|Dχi|(Ω). (1.3)

Here Ω ⊂ R3 is a bounded Lipschitz domain, u : Ω → R3 is the displacement and
e(u) = 1

2

(
Du+DuT

)
denotes the strain. Furthermore, the partition into the phases is

given by χi : Ω → {0, 1} for i = 0, . . . , 3 with
∑3

i=0 χi = 1 and the strains associated to
the phases are given by

e0 := 0, e1 :=

−2 0 0
0 1 0
0 0 1

 , e2 :=

1 0 0
0 −2 0
0 0 1

 , e3 :=

1 0 0
0 1 0
0 0 −2

 . (1.4)

In particular, we assume the reference configuration to be in the austenite state. The
condition of the material being a shape memory alloy is encoded in the fact that tr(ei) = 0
for i = 1, 2, 3 as this corresponds to the transformation being volume-preserving, see
Subsection 1.1.1.

For the sake of completeness we explicitly state that the model incorporates the constraint

−
ˆ

Ω

χ0 dx = c

for some c ∈ [0, 1], i.e., the global volume fraction of austenite is prescribed. This justifies
the choice of the austenite strain and the martensite strains being global minimizers of
the elastic energy density. However, we will not stress this point outside of Chapter
2, where we will have to assume χ0 ≡ 0. Further simplifying choices are using equal
isotropic elastic moduli with vanishing second Lamé constant and penalizing interfaces
by the total variation of Dχi. Of course, as such it is unlikely that the model can give
quantitatively correct predictions. Bhattacharya for example argues that assuming equal
elastic moduli is not reasonable [10, Page 238].

We still expect our analysis to give relevant insight as we will for the most part prove
compactness properties of generic sequences uη ∈ W 1,2(Ω;R3) and partitions χη such
that

lim sup
η→0

Eη(uη, χη) <∞.

This regime is the appropriate one to analyze branching microstructures: On the one
hand, (generalizations of) the Kohn-Müller branching construction of habit planes have
bounded energy. On the other hand, the stability result of Capella and Otto [24] rules
out branching by ensuring that in a strong topology there is either almost exclusively
austenite or the configuration is close to a laminate. In other words, the branching
construction implies that the stability result is sharp with respect to the energy regime
as pointed out by Capella and Otto in their paper.
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Compatibility properties of the stress-free strains

It is well known, see [11, Chapter 11.1], that for A, B ∈ R3×3 and n ∈ S2 the following
two statements are equivalent:

• There exists a continuous function u : R3 → R3 with

e(u)(x) =

{
A if x · n > 0,

B if x · n < 0,
(1.5)

see Figure 1.3a.

• The two strains are (symmetrically) rank-one connected in the sense that there
exists a ∈ R3 such that

A−B =
1

2
(a⊗ n+ n⊗ a) := a� n.

Note that the condition is symmetric in a and n thus every rank-one connection generi-
cally gives rise to two possible normals. Additionally, as rank-one connectedness is also
symmetric in A and B this allows for the construction of laminates.

A B

n

a)

e0

e1

e3 e2

K
C

b)

Figure 1.3: a) Geometry of an interface parallel to the plane {x ·n = 0} in a lam-
inate joining the strains A and B. b) Sketch relating the martensite strains with
the cone C (dotted) of symmetrized rank-one matrices in the two-dimensional
strain space S. Note that C is a union of three lines parallel to the edges of the
triangle K.

In order to present the result of applying the rank-one connectedness condition to the
case of cubic-to-tetragonal transformations notice that

e0, . . . e3 ∈ S :=
{
e ∈ R3×3 : e diagonal, tr e = 0

}
.

Here, we call the two-dimensional space S strain space. It can be shown, either by direct
computation or an application of [29, Lemma 3.1], that all rank-one directions in S are
multiples of e2 − e1, e3 − e2 and e1 − e3. This means that they are parallel to one of the
sides of the equilateral triangle

K :=
3⋃
i=1

{λei+1 + 1− λei−1 : λ ∈ [0, 1]} (1.6)
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spanned by e1, e2 and e3 shown in Figure 1.3b. In particular, the martensite strains are
mutually compatible but austenite is only compatible to certain convex combinations of
martensites which turn out to be 1

3
ei + 2

3
ej for i, j = 1, 2, 3 with i 6= j.

1.1.4 The contributions of the thesis

As discussed above, we will work with generic sequences uη ∈ W 1,2(Ω;R3) and partitions
χη such that

lim sup
η→0

Eη(uη, χη) <∞,

where the energy was defined in Section 1.1.3.

Chapter 2: Macroscopic rigidity

The contributions of this chapter are based on a preprint published by the author [109].

First, we study the rigidity of branching microstructures due to “macroscopic” effects in
the sense that we only look at the limiting volume fractions χi,η

∗
⇀ θi in L∞ after passage

to a subsequence, which completely determines the limiting strain e(uη) ⇀ e(u) in L2.
Unfortunately, we have to work under the constraint of no austenite being present, i.e.,
we have to assume that θ0 ≡ 0. This simplifying assumption does rule out habit planes,
see Figure 1.2a, but a look at Figure 1.2b suggests that we can still hope for an interesting
result. Furthermore, the responsible mechanism for macroscopic rigidity is the rank-one
connectedness of the average strains e(uη) ⇀ e(u) in L2 (encoded in the decomposition
provided by Lemma 2.9), which cannot distinguish between pure phases and mixtures.

Similarly to the result of Capella and Otto [24], our main result of this chapter, Theorem
2.1, is local in the sense that for Ω = B1 (0) we can classify the function θ on a smaller
ball Br (0) of universal radius 0 < r < 1. As the characterization of each of the four
possible cases is a bit lengthy, we postpone a detailed discussion to Subsection 2.1.2. An
important point is that we deduce all interfaces between different mixtures of martensites
to be hypersurfaces whose normals are as predicted by the rank-one connectedness of
the average strains on either side. In this respect our theorem improves on previously
available ones, as they either explicitly assume the correct alignment of a habit plane,
see e.g. Kohn and Müller [70], or require other ad-hoc assumptions: For example, Ball
and James [6, Theorem 3] show habit planes to be flat under the condition that the set
formed by the austenite phase is taken is topologically well-behaved.

The broad strategy of our proof is to first ensure that in the limit the displacement
satisfies the non-convex differential inclusion

e(u) ∈ K

encoding that locally at most two variants are involved, see Definition 1.6 and Figure 1.3,
and then to classify all solutions. We strongly stress the point that we do not need to
assume any additional regularity in order to do so. In particular, the differential inclusion
is rigid in the sense that it does not allow for convex integration solutions with extremely
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intricate geometric structure. To our knowledge this is the first instance of a rigidity
result for a non-discrete differential inclusion in the framework of linearized elasticity.

The main idea is that “discontinuity” of e(u) and the differential inclusion e(u) ∈ K
balance each other: If e(u) /∈ VMO, see Definition 2.14, a blow-up argument making
use of measures describing the distribution of values e(u) ∈ K, similar in spirit to Young
measures, proves that the strain is independent of one direction. If e(u) ∈ VMO the
differential inclusion gives us less information, but we can still prove that only two marten-
site variants are involved by using an approximation argument. Finally, we classify all
solutions which are independent of one direction.

Chapter 3: Constructions

This chapter is devoted to constructing the various structures we found in Chapter 2 as
limits of finite-energy sequences. However, we will not give full constructions. Rather,
we make sure that the three mechanisms for changes in volume fraction we will identify
in Subsection 2.1.1 can be suitably combined in “building blocks” with which the con-
figurations in Theorem 2.1 can be recovered. To this end we have to solve two boundary
value problems forcing us to make use of branching. The main issue here is that we have
to extend the classical branching constructions in two ways: First, we have to branch in
two linearly independent directions. Secondly, we have to be able to change volume frac-
tions along the branching twins. For the Kohn-Müller functional this has already been
dealt with by Conti [32, Lemma 2.3] and, for the same functional, Kohn, Mesiats and
Müller [71] observed a microstructure “interpolating” between two pure phases without
branching.

Chapter 4: Microscopic rigidity

Our final contribution is an analysis of the rigidity due to the microscopic geometry
of the structures. In our case we expect the microstructures to be laminar away from
macroscopic interfaces as the experimental and theoretical evidence, see e.g. Figure 1.2,
suggests. In order to study the rigidity inherent in the geometric aspects of the mi-
crostructures we use Tartar’s H-measures [113], independently defined by Gerard [48],
as they are well-suited to detect the essentially one-dimensional oscillations of fine twin-
ning. What is more, their transport property [113, Section 3], which describes how a
linear PDE for the sequence restricts the transport of oscillations, make them a natural
tool to analyze rigidity properties. A nice feature of this approach is the tractability
and conceptual clarity of the computations, which allows us to at least partially include
austenite in this chapter in contrast to the preceding ones.

The use of tools measuring failure of strong compactness in the analysis of microstructure
has a long tradition, although Young measures seem to be more prevalent. For an intro-
duction to the theory of Young measures and their application in this context see Müller
[91]. However, Kohn [68] used H-measures to calculate the quasiconvex envelope of a
two-well energy in the geometrically linear theory and building on his work Smyshlyaev
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and Willis [110] and Govindjee, Hall and Mielke [50] analyzed the three-well and the
n-well case, respectively. Additionally, H-measures have been used by Heinz and Mielke
[51] to study the existence of solutions to a rate-independent model for dynamics in a
two-well phase transformation.

The main result of this chapter will be two ansatz-free estimates, Theorems 4.11 and 4.12,
which roughly say that the macroscopic interfaces form a set of Hausdorff dimension at
most 3 − 2

3
. More precisely, in the austenite-free structures captured by Theorem 2.1

that involve all three martensite variants, the characteristic function of twins lies in the
Besov-space B

2/3
1,∞, see Definition 4.8. This fractal regularity also naturally appears in

Proposition 4.4 as the dimension of the set on which the blow-ups do not converge to
a single twin. Furthermore, we can effortlessly apply the same techniques to prove an
essentially local lower bound for the energy density close to a habit plane, see Lemma
4.13.

1.1.5 Some notation

Finally, we fix notation that will be used throughout Chapters 2-4.

The rank-one connections between the martensite strains are

e2 − e1 = 6 ν+
3 � ν−3

e3 − e2 = 6 ν+
1 � ν−1 ,

e1 − e3 = 6 ν+
2 � ν−2 ,

(1.7)

where the possible normals are given by

ν+
1 :=

1√
2

(011), ν−1 :=
1√
2

(011),

ν+
2 :=

1√
2

(101), ν−2 :=
1√
2

(101),

ν+
3 :=

1√
2

(110), ν−3 :=
1√
2

(110).

Here, we use crystallographic notation, meaning we define 1 := −1. In addition, we use
round brackets “( )” for dual vectors, i.e., normals of planes, while square brackets “[ ]”
are used for primal vectors, i.e., directions in real space.

These normals can be visualized as the surface diagonals of a cube with side lengths 1√
2
,

see Figure 1.4a. We group them into three pairs according to which surface of the cube
they lie in, i.e., according to the relation νi · Ei = 0, where Ei is the standard i-th basis
vector of R3: Let

N1 := {ν+
1 , ν

−
1 },

N2 := {ν+
2 , ν

−
2 },

N3 := {ν+
3 , ν

−
3 }.
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E3

ν−3

ν+
3

a)

E1

E2

E3

dν2

ν3

ν1 p

b)

Figure 1.4: a) Sketch relating the normals ν+
3 , ν

−
3 ∈ N3 of the gray planes and E3.

Primal vectors are shown as dashed, dual vectors as continuous lines. The picture
does not attempt to accurately capture the lengths. b) Sketch showing the
linearly dependent normals ν+

1 , ν+
2 and ν−3 3 spanning the gray plane. The point

p indicates the intersection of the affine span of the space diagonal [111] ∈ D,
see definition (1.8), with the span of the normals.

Note that this grouping is also appears in equations (1.7). We will also frequently want
to talk about the set of all possible twin and habit plane normals, which we will refer to
by N := N1 ∪N2 ∪N3.

Throughout Chapters 2–4 we make use of cyclical indices 1, 2 and 3 corresponding to
martensite variants whenever it is convenient. We explicitly exclude the index 0 indicating
austenite from this convention as we will always use the symbol “0” for it.

Remark 1.1. An essential combinatorial property is that for any νi ∈ Ni, νi+1 ∈ Ni+1

with i ∈ {1, 2, 3} there exists exactly one νi−1 ∈ Ni−1 such that {νi, νi+1, νi−1} is linearly
dependent: Indeed, the linear relation is given by νj · d = 0 for a space diagonal

d ∈ D := {[111], [111], [111], [111]} (1.8)

of the unit cube, see Figure 1.4b. We will prove in Step 1 of the Proof of Proposition
2.22 that they form 120° angles. Additionally, for every ν ∈ N there exist precisely two
d ∈ D such that ν · d = 0 and for ν ∈ Ni and ν̃ ∈ Ni+1 there exists a single d ∈ D such
that ν · d = ν̃ · d = 0. In contrast, for each d ∈ D we have ν+

i · d = 0 and ν−i · d 6= 0 or
vice versa.

Additionally, we will also set

πν(x) := ν · x and H(α, ν) :=
{
x ∈ R3 : x · ν = α

}
for ν ∈ N to be the projection onto span(ν), respectively the plane normal to ν containing
αν for α ∈ R.

Furthermore, we use the notation A . B if there exists a universal constant C > 0 such
that A ≤ CB. In proofs, such constants may grow from line to line in proofs. In a similar
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a) b)

c)

Figure 1.5: a) Sketch of a single crystal, as opposed to b) a polycrystal. c)
Polycrystalline structure in recrystallized aluminum, with permission of Springer
according to the original copyright notice for [49, Chapter 1, Page 6, Figure 1.1a].

vein, radii r > r̃ may shrink, where r̃ > 0 is a universal lower radius that stays fixed
throughout a proof and whose numerical value we will typically choose at the end of the
argument.

1.2 Multi-phase mean curvature flow

This part of the thesis is based on the collaboration with Tim Laux [75].

1.2.1 Polycrystals and grain growth

The ability of a material to form multiple phases is by far not the only mechanism
for the formation of microstructure. One of the more or less tacit assumptions of the
previous discussion was that we considered a single crystal (in the austenite phase),
meaning that the atoms fill space in a periodic structure, see Figure 1.5a. However,
when casting, say, a cylinder block for a car motor there is no reason why the metal
should globally solidify in such a uniform way. Instead, even if there exists a unique
crystal structure preferred by the material it will develop with different rotated versions
at different locations. Consequently, the material forms so-called grains of single crystals
and the resulting overall structure is called a polycrystal, see Figure 1.5. While grains can
in principle be big enough to be visible by the naked eye, in most cases at least optical
microscopes or even electron microscopes are required to view them, see Gottstein [49,
Chapter 1].

The most important consequence of the polycrystalline structure is its influence on the
strength of the material, more specifically its yield stress, which is the smallest amount
of stress necessary for plastic deformation, see Gottstein [49, Chapter 6.2]. Imagine for
example a metal spring being pulled on from both sides. Of course, it is elongated
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Figure 1.6: Dislocations pile-up at a grain boundary in stainless steel [116], by
permission of the Royal Society.

and returns to its original shape after letting go, if the force was not too strong. In
this case we say that the deformation is elastic. Otherwise the deformation becomes
partially irreversible, since it creates and moves so-called dislocations, line defects in the
crystal lattice, and as a consequence changes the neighbor relations of the atoms in the
crystal. Such deformations are called plastic. Typically, the movement of dislocations is
strongly restricted by the crystal structure, so that they cannot cross grain boundaries
due to the change of crystal orientation, see Gottstein [49, Chapter 6.6] and Figure 1.6
for an experimental picture. Therefore, smaller grain sizes with their higher density of
grain boundaries give stronger materials, again we refer to Gottstein [49, Chapter 6.6].
However, a higher strength is not always desirable as it usually entails a more brittle
material.

1.2.2 Models for boundary motion

Mean curvature flow

There are a number of ways to influence the grain sizes in a piece of metal, one of which
is grain growth during a form of heat treatment called annealing. Let us describe the
mechanism in the simplified two-dimensional situation shown in Figure 1.7: Two grains
G1 and G2 are separated by a grain boundary B of thickness h, whose mid-curve c locally
behaves like an arc-segment of radius r = 1/|κ|, where κ is the curvature of the mid-
curve. The heating allows atoms to detach from the grains into the grain boundary in
a probabilistic manner. Provided that the boundary layer stays of roughly the same
thickness atoms will re-attach to the grains at the same rate. Under the assumption that
the corresponding probabilities p1 and p2 are proportional to the length of the common
boundaries ∂G1 ∩ ∂B and ∂G2 ∩ ∂B we get

p1 − p2 ≈
h

r
= h|κ|.

Therefore, the grain boundary will move towards the center of curvature in the convex
grain G2 with speed proportional to |κ|, which is essentially mean curvature flow for
curves in R2.
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1
|κ|

c

h

B

G1

G2

Figure 1.7: Curved grain boundary B of width h between two grains G1 and
G2. The mid-curve c has curvature κ.

Admittedly, this “derivation”, which is the authors interpretation of the arguments used
by Mullins [93] and his contemporaries, is very rough and has a number of problems.
Especially the central assumption that the probabilities are proportional to the length
of the boundaries is an oversimplification since they should also depend on the relative
relationship of the two crystal orientations and the direction of the grain boundary. We
should have also been more precise about the constant of proportionality: In the full
multi-phase case, the system of equations is typically written as

Vij = µijσijHij, (1.9)

where Vij is the speed in the normal direction of the grain boundary Σij between the i-th
and the j-th grain, µij is its mobility, σij is the surface tension, Hij is the mean curvature
of Σij and the sign convention is such that convex grains shrink. Furthermore, the above
equations also need to be complemented with the well-known Herring angle conditions∑

i,j

σijνij = 0

at the intersection of three boundaries with interior normals νij, which require the three
grain boundaries to be in equilibrium at their intersection, see Herring [52].

Despite these shortcomings, the argument above immediately tells us that mean curvature
flow decreases lengths of curves in R2 or, in the three-dimensional case the area of surfaces,
and that this property is intimately linked to the modeling application. In fact, mean
curvature flow can formally be interpreted as a gradient flow of the area functional

E(Σ) :=
1

2

∑
1≤i,j≤P

σij

ˆ
H2 (Σij) . (1.10)

This means that it possesses a dissipation mechanism that is encoded in a “Riemannian
metric” on the infinite dimensional state-space with respect to which area decreases as
fast as possible, see Garcke [45, Section 2.3] for the specifics in the two-phase case.
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Figure 1.8: Sketch of two antiphase domains with an antiphase boundary in
between. The white and black circles correspond to two different elements in an
alloy.

−1 1

Figure 1.9: Plot of the double-well potential W (u) = (u2 − 1)2.

The Allen-Cahn Equation

In view of these difficulties, the origin of the Allen-Cahn equation

∂tuε = ∆uε −
1

ε2
∂uW (uε) (1.11)

for an order parameter uε : R3 → R, a free energy density W : R→ R and ε > 0 is much
more modest. Allen and Cahn [1] introduced them to describe the dynamics of antiphase
boundaries, which are a geometrically simpler type of defect found in alloys: The atoms
are arranged in a single lattice, but across an antiphase boundary the different species of
atoms switch their positions in the lattice, see Figure 1.8.

The long-range order parameter uε(x, t) describes the distribution of variants near x at
time t with u = 1 and u = −1 corresponding to perfectly ordered states. As ordered
states are energetically preferred the free energy density has strict local minima at u =
−1 and u = 1 and assuming that the transition is second-order allows them to choose
W (−1) = W (1) = 0 as global minimizers. A typical example of such a function is the
double-well potential W (u) = (u2 − 1)2, see Figure 1.9. For the dynamics, Allen and
Cahn then postulated equation (1.11) as what in modern jargon we call the (with the
factor 1

ε
accelerated) L2-gradient flow of the energy

Eε(uε) =

ˆ
ε

2
|∇uε|2 +

1

ε
W (uε) dx. (1.12)
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Mean curvature flow as the limit of the Allen-Cahn Equation

The main point of interest in the following will be convergence of the Allen-Cahn Equa-
tions to mean curvature flow, which also justifies their popular use as a phase field
approximation of mean curvature flow for numerical computations. Already Allen and
Cahn realized that for ε → 0 their model should approximate mean curvature flow. In
fact, one of their main motivations was to find a problem for which it is possible to
experimentally probe the dependence of Equation (1.9) on surface energy.

Loosely speaking, if the energy Eε is small at some time t, then for the most part we
will have uε(x, t) ≈ 1 or uε(x, t) ≈ −1. At a transition between the two states the two
contributions to the energy compete and, under the assumption that both are of the same
order, one can see that ε has the interpretation of being the thickness of an interface. For
this reason the limit ε → 0 is also sometimes called a sharp interface limit. To see why
the mean curvature should play a role in the limiting dynamics observe that level-sets of
u should be roughly parallel to the interface Σ, so that ∇u will point into the direction of
the normal ν to the interface. Therefore it is not surprising that ∆uε = div∇uε involves
the mean curvature H = (divΣ ν), where divΣ is the divergence operator on the interface.
For a precise definition with a slightly different, more invariant convention of H see [4,
Definitions 7.27 and 7.32], although we will only refer to it through explicitly spelled out
tangential divergences and thus do not really need to burden us with such matters.

1.2.3 Contributions of the mathematical community

Overview of the available literature

There has been quite some effort in the mathematical community to get a more detailed,
rigorous understanding of the convergence, and especially in the two phase case with
great success:

Rubinstein, Sternberg and Keller [102] constructed formal asymptotic expansions of solu-
tions to the Allen-Cahn Equation whose sharp interface limits move by mean-curvature.
Compactness of the functions uε was obtained by Bronsard and Kohn [20], who also rigor-
ously confirmed the formal insights in the case of radial solutions with a single transition
and well-prepared initial data. Short-time convergence results are due to De Mottoni and
Schatzman [36], via rigorous asymptotic expansion. Independently, Chen [27] proved the
same result with comparison techniques resulting from the parabolic character of mean
curvature flow.

However, both arguments break down once singularities develop. As we already saw that
(locally) concave grains eat into convex ones, it is entirely believable that entire phases
could vanish and indeed this is generic behavior. For a detailed survey of the singularities
in two-phase mean curvature flow refer to Colding, Minicozzi and Pedersen [31].

To circumvent the problem of developing singularities, two different notions of weak so-
lutions to mean curvature flow based on different mechanisms have been used. First,
viscosity solutions rely on the level-set formulation [95] and the well-known compari-
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son principle. Convergence towards viscosity solutions was proved by Evans, Soner and
Souganidis [41] under the condition that the limiting solution does not “fatten”, i.e., as
long as the relevant level-set uniquely defines a co-dimension one interface. Additionally,
Barles, Soner and Souganidis [8] ruled out such a behavior for initial conditions that are
mean-convex or star shaped.

Secondly, by transferring Huisken’s monotonicity formula [53] to the diffuse interface case
Ilmanen [54] obtained convergence to Brakke’s notion of varifold solutions [15]. Being
characterized by an inequality bounding the local increase of mass, Brakke flow is more
in the spirit of the gradient flow interpretation of mean curvature flow and in principle
allows for generalization to multiple phases.

Unfortunately, Ilmanen does make use of the comparison principle and thus his argument
seems to not carry over to the multi-phase case. There is a formal derivation of the evo-
lution of a triple junction in the three-phase case starting from the Allen-Cahn Equations
due to Bronsard and Reitich [21] for which they also rigorously proved short-time exis-
tence. In particular, they derived the Herring angle condition which in their case states
requires three interfaces to meet with 120°-angles. Nevertheless, the results presented in
this thesis, to the best of our knowledge, give the first rigorous long-time convergence
statements in the physically more relevant multi-phase case.

Even the present knowledge of multi-phase mean curvature in itself is still rather limited.
The long-time behavior of a single triple junction in the plane was first analyzed by
Mantegazza, Novaga and Tortorelli [82]. A generalization to the case of two triple junction
has recently been obtained by Mantegazza, Novaga, Pluda and Schulze [83]. A short-time
existence result providing a way of “restarting” the flow of a network after a topological
change at a singular time, such as the vanishing of a phase, has been given by Ilmanen,
Neves and Schulze [55] under certain assumptions. Furthermore, Kim and Tonegawa
[63] generalized Brakke’s construction [15] to the multi-phase case. A key point of their
construction is that it does not exhibit the spontaneous catastrophic loss of mass possible
in Brakke flow.

Literature relevant to the presented approach

Similarly to the varifold approach, our proof crucially relies on the gradient flow structure
of both the Allen-Cahn Equation and mean curvature flow. However, it is much more
guided by the static Γ-convergence analysis of the sequence of functionals (1.12) than the
previously cited works with the exception of the paper by Bronsard and Kohn [20].

Providing what can be considered the archetypical example of Γ-convergence, Modica
and Mortola [88], Modica [87] and Sternberg [112] proved that the functionals (1.12) in
the scalar two-phase case Γ-converge to a multiple of the perimeter functional. A general
scheme for extracting sequences of local minimizers close to local minimizers of Γ-limits
has been developed by Kohn and Sternberg [72] centering around the present example.
A result we will later rely on is due to Luckhaus and Modica [79]: Using a well-known
argument of Reshetnyak [96], they prove that for recovery sequences the first variation
of the energies (1.12) converge to that of the perimeter functional, which is given by the
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mean curvature. The case of two wells in the vector-setting was dealt with by Sternberg
[112] and Fonseca and Tartar [43]. Finally, the Γ-convergence result in the multi-phase
case due to Baldo [5] is of central importance to our argument as it provides or suggests
many of the underlying compactness arguments.

Of course the Γ-limit of a sequence of energies might give a hint as to how associated
gradient flows behave. However, rigorous statements also need to address the dissipation
mechanism, i.e., the metric, of a gradient flow. A general extension of the static Γ-
convergence framework suggesting how to handle the interplay with the dissipation has
been given by Sandier and Serfaty [105]. As Serfaty [108] observed this notion does
yield a convergence result in the two-phase case in dimensions d ≤ 3 by results of Röger
and Schätzle [98] on the Willmore functional and Mugnai and Röger [89] on the action
functional of the Allen-Cahn Equation.

In contrast, we approach the problem more from the angle of several convergence proofs
for implicit time-discretizations related to De Giorgi’s minimizing movements scheme
[35]. In particular, we borrow the idea of assuming

ˆ T

0

Eε(uε) dt→
ˆ T

0

E(Σ) dt

from Luckhaus and Sturzenhecker [80], as well as the limiting distributional formulation
of mean curvature flow.

In their paper, they proved convergence of a time-discretization scheme that was proposed
by Almgren, Taylor and Wang [2]. With a similar approach, Otto and Laux, with the
latter of whom the author collaborated for the present result, were recently able to obtain
conditional convergence of the thresholding scheme due to Merriman, Bence and Osher
[84, 85] in its multi-phase version. Also this discretization has an interpretation as a
minimizing movements scheme, which enabled Esedoğlu and Otto [39] to generalize the
original thresholding scheme to the multi-phase setting.

Finally we remark that minimizing movements are not limited to mean curvature flow,
but have also proven useful in many applications including the Stefan Problem [80] and
its anisotropic variant [46], Mullins-Sekerka Flow [97] and its multi-phase variant [19],
volume-preserving mean curvature flow [76, 90], the evolution of martensitic phase tran-
sitions [38] and Fokker-Planck equations [58].

1.2.4 Main results

Obtained in collaboration with Tim Laux [75], our main result of this part, Theorem
5.2, establishes that periodic solutions to the Allen-Cahn Equation (1.11) converge to a
distributional formulation of multi-phase mean curvature flow, see Definition (5.1), for
a general class of potentials and any space dimension. As already mentioned, like the
results of Luckhaus and Sturzenhecker [80] and Otto and Laux [74], ours is conditional
in the sense that for some finite time horizon T we assumeˆ T

0

Eε(uε) dt→
ˆ T

0

E(χ) dt,
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where E(χ) is the limiting optimal partition energy given by equation (1.10) or, equiva-
lently, equation (5.7).

We will later prove that this condition is equivalent to Eε(uε)→ E(χ) for almost all times,
see Lemma 5.16, so we essentially assume the trajectories uε(t) to be recovery sequences

in the Γ-convergence Eε
Γ→ E for almost all times. Another natural interpretation is

that the diffuse interface measure ε
2
|∇uε|2 + 1

ε
W (uε) dx does not lose mass in the limit.

Although being a natural assumption, it is not guaranteed by the a priori estimates
coming from the energy-dissipation equality (5.22). Furthermore, its verification is non-
trivial and even fails for certain initial data, see [22] for an example of higher multiplicity
interfaces in the limit of the volume-preserving Allen-Cahn Equation.

Further results are Theorems 5.4 and 5.5 which provide mostly straightforward extensions
of our argument to the case of the forced Allen-Cahn Equation and to several volume
constraints.

The main idea of our proof is to multiply the Allen-Cahn Equation

∂tuε = ∆uε −
1

ε2
∂uW (uε)

with ε (ξ · ∇)uε, integrate in space and time and pass to the limit ε ↓ 0. To this end we
extend the above mentioned argument of Luckhaus and Modica [79] to the multi-phase
case and obtain the curvature-termˆ

Σ

H ξ · ν =

ˆ
∇ · ξ − (ν · ∇ξ)νdH2dt

from the right-hand side. The more delicate part, and the core of our contribution, is
how to pass to the limit in the velocity-term

´
Σ
V ξ · ν. The difficulty is that one has to

pass to the limit in a product of weakly converging terms, the normal and the velocity.
We overcome this difficulty by “freezing” the normal and introducing an appropriate
approximation (5.57), see (5.77) for the multi-phase version, of the tilt-excess. After
doing so it turns out that the new nonlinearity with the frozen normal can be written as
a derivative of a compact quantity. The technique of freezing the normal was used before
in [74], where the authors introduce an approximation of the energy-excess.

To work with the tilt-excess instead of the energy-excess seems very natural to us in this
particular problem and might be interesting in other cases too. The only extra difficulty
is that one has to understand the limiting behavior of the non-linear approximate excess
(5.57). However, our problem seems to be somewhat simpler than the one in [74] as we
do not have to work on multiple time scales.





Chapter 2

Branching microstructures in shape
memory alloys: Rigidity due to
macroscopic compatibility

The goal of this chapter is to locally classify all possible weak limits χη
∗
⇀ θ in L∞

and e(uη) ⇀ e(u) in L2 of generic sequences uη ∈ W 1,2(B1 (0);R3) and partitions χη ∈
BV (B1 (0); {0, 1}4) with bounded energy

lim sup
η→0

Eη(uη, χη) <∞

under the constraint χ1,η ≡ 0 of no austenite being present.

The structure of this chapter is as follows: In Section 2.1 we state and discuss our main
theorem in detail. We pay particular attention to what information it provides about
the microstructures. We then proceed to break down its proof into several main steps in
Section 2.2 and give an in-depth explanation of all necessary auxiliary results. Finally,
we give their proofs in Section 2.3.

2.1 The main rigidity theorem

Let us start with stating the theorem. Note that any sequence with asymptotically
bounded energy has subsequences such that uη ⇀ u in W 1,2 and χη

∗
⇀ θ in L∞.

Theorem 2.1. There exists a universal radius r > 0 such that the following holds: Let
(uη, χη) be a sequence of displacements and partitions such that Eη(uη, χη) < C for some
0 < C <∞ and such that χ0,η ≡ 0, i.e., there is no austenite present.

Then, for any subsequence along which they exist, the weak limits

uη ⇀ u in W 1,2, χη
∗
⇀ θ in L∞

23
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satisfy

e(u) ≡
3∑
i=1

θiei and e(u) ∈ K =
3⋃
i=1

{λei+1 + (1− λ)ei−1 : λ ∈ [0, 1]},

see Figure 2.1, for almost all x ∈ B1 (0).

Furthermore, on the smaller ball Br (0) all solutions to this differential inclusion are two-
variant configurations, planar second-order laminates, planar checkerboards or planar
triple intersections, according to Definitions 2.3-2.7 below.

The first part of the conclusion states that the volume fractions θi for i = 1, 2, 3 act
as barycentric coordinates for the triangle in strain space with vertices e1, e2 and e3.
In terms of these, the differential inclusion e(u) ∈ K boils down to locally only two
martensite variants being present.

e1

e3 e2

K

Figure 2.1: Sketch of K.

In plain words, the classification of solutions states that

1. only two martensite variants are involved, see Definition 2.3,

2. or the volume fractions θ only depend on one direction and look like a second order
laminate, see Definition 2.5,

3. or they are independent of one direction and look like a checkerboard of up to two
second-order laminates crossing, see Definition 2.6,

4. or they are independent of one direction and macroscopically look like three second-
order laminates crossing in an axis, see 2.7.

Comparing this list of configurations to the microstructures in Figure 1.2 we see the last
entry does not correspond to any of the microstructures shown. Indeed, we are unaware
of them being mentioned in the presently available literature. One possible explanation is
that planar triple intersections are an artifact of the linear theory: It is not clear whether
a similar construction would be energy-minimizing in the non-linear theory in the sense of
Ball and James [6], i.e., if they can be constructed with vanishing elastic energy. Another
explanation could be that its very rigid geometry, see Definition 2.7, leads to it being
unlikely to develop during the inherently dynamic process of microstructure formation.
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Furthermore, we see that the theorem of course captures neither wedges (which are known
to be missing in the geometrically linearized theory anyway [10]) nor habit planes due to
austenite being absent. Unfortunately, an extension of the theorem including austenite
does not seem tractable with the methods used here: The central step allowing to classify
all solutions of the differential inclusion is to that most configurations are independent of
some direction. And even those that do depend on all three variables have a direction in
which they vary only very mildly. However, with austenite being present this property is
lost, as the following example shows:

Lemma 2.2. There exist solutions u : R3 → R3 of the differential inclusion e(u) ∈ K∪{0}
such that e(u) has a fully three dimensional structure.

We will give the construction in Subsection 2.1.3.

Note that Theorem 2.1 strongly restricts the geometric structure of the strain, even if the
four cases exhibit varying degrees of rigidity. Therefore, we can interpret it as a rigidity
statement for the differential inclusion e(u) ∈ K. For example, it can be used to prove
that u(x) ≡ e ∈ K is the only solution of the boundary value problem{

e(u) ∈ K in B1 (0),

u(x) ≡ ex on ∂B1 (0)

with affine boundary data, for which convex integration constructions would give a stag-
gering amount of solutions with complicated geometric structures. This can be seen by
transporting the decomposition into one-dimensional functions of Definitions 2.3-2.7 to
the boundary using the fact that they are unique up to affine functions, see [24, Lemma
5].

2.1.1 Inferring the microscopic behavior

In order to properly interpret the various cases Theorem 2.1 provides, we first need a clear
idea of precisely what information the local volume fractions contain. In principle, they
have the same downside of using Young measures to describe microstructures: They do
not retain information about the microscopic geometric properties of the microstructures.
In fact, the Young measures generated by finite energy sequences are determined by the
volume fractions and are given by the expression

∑3
i=1 θiδei , since the Young measures

concentrate on the matrices e1, e2 and e3, which span a non-degenerate triangle.

As every rank-one connection has two possible normals, see equations (1.7), giving rise
to two different twins, we cannot infer from the volume fractions which twin is used.
Consequently, what looks like a homogeneous limit could in principle be generated by a
patchwork of different twins. In fact, Figure 2.2 shows an experimental picture of such a
situation.

Additionally, without knowing which twin is present the interpretation of changes in
volume fractions is further complicated by the fact there are at least three mechanisms
which could be responsible:
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Figure 2.2: Experimental picture of a two-variant microstructure in a Cu-Al-Ni
alloy, by courtesy of R.D. James and C. Chu.

1. If there is only one twin throughout B1 (0) then the volume fractions can vary freely
in the direction of lamination because there are no restrictions on the thickness of
martensite layers in twins apart from the very mild control coming from the interface
energy.

2. If there is only one twin, the volume fractions may, perhaps somewhat surprisingly,
vary perpendicularly to the direction of lamination in a W 1,2-regular manner, see
Proposition 3.2. As mentioned in Subsection 1.1.4, constructions exhibiting this
behavior have been given by Conti [32, Lemma 3.1] and Kohn, Mesiats and Müller
[71] for the scalar Kohn-Müller model.

3. There is a jump in volume fractions across a habit plane or a second-order twin.
As such a behavior costs energy, one would expect that it cannot happen too often.
However, without assuming the sequence to be minimizing is some sense we can
only prove, roughly speaking, that the corresponding set of interfaces has at most
Hausdorff-dimension 3− 2

3
in Chapter 4.

2.1.2 Description of the limiting configurations

In the following we describe all types of configurations we can obtain as weak limits. We
start with those in which globally only two martensite variants are involved.

Definition 2.3. We say that the configuration e(u) ∈ K is a two-variant configuration
on Br (0) with r > 0 if there exists i ∈ {1, 2, 3} such that

θi(x) ≡ 0,

θi+1(x) ≡ fν+
i

(
ν+
i · x

)
+ fν−i

(
ν−i · x

)
+ λxi + 1,

θi−1(x) ≡ −fν+
i

(
ν+
i · x

)
− fν−i

(
ν−i · x

)
− λxi,

for all x ∈ Br (0), for some λ ∈ R and measurable functions fν for ν ∈ Ni. For a
definition of the normals ν see Subsection 1.1.5.

An experimental picture of a two-variant configuration can be found in Figure 2.2, but
be warned that comparing it with Figure 2.3a is not entirely straightforward: The former
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a)

ei−1

ei+1 ei

b)

Figure 2.3: a) Cross-section through a two-variant configuration. The configu-
ration may be affine in the direction perpendicular to the cross-section. b) Color
code indicating the volume fractions of martensite variants with pure blue, green
and red corresponding to pure phases.

fully resolves a microstructure with mostly constant overall volume fraction. In contrast,
the latter only keeps track of the local volume fractions indicated by mix of pure red
and blue, and indicates how they can vary in space. Their deceptively similar overall
geometric structure is due to the rank-one connections for the microscopic and macro-
scopic interfaces coinciding. This is also the reason why we cannot infer the microscopic
structure from the limiting volume fractions. We can only say that the affine change in
xi should be due to Mechanism 2 from Subsection 2.1.1.

In the context of the other structures appearing in Theorem 2.1, two-variant configura-
tions are best interpreted as their building blocks, since said structures typically consist
of patches where only two martensite variants are involved. In the following, we will
see that on these patches the microstructures are usually much more rigid than those
in Figure 2.3a. This is a result of the non-local nature of kinematic compatibility when
gluing two two-variant configurations together to obtain a more complicated one.

Apart from two-variant configurations, all others will only depend on two variables. We
will call such configurations planar.

Definition 2.4. A configuration is planar with respect to d ∈ {[111], [111], [111], [111]}
on a ball Br (0) with r > 0 if the following holds: There exist measurable functions fνi
only depending on x · νi and affine functions gj with ∂dgj = 0 such that

θ1 = fν2 − fν3 + g1,

θ2 = − fν1 + fν3 + g2,

θ3 = fν1 − fν2 + g3

(2.1)

on Br (0). Here νi is the unique normal νi ∈ Ni with νi · d = 0, see Figure 1.4b.

There will be three cases of planar configurations, which at least in terms of their volume
fractions look like one of the following: single second-order laminates, “checkerboard”
structures of two second order laminates crossing, and three single interfaces of second
order laminates crossing.
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The first two cases are closely related to each other, the first one being almost contained
in the second. However, the first case has slightly more flexibility away from macroscopic
interfaces. Despite the caveat discussed in Subsection 2.1.1, we will name them planar
second-order laminates.

Definition 2.5. A configuration is a planar second-order laminate on a ball Br (0) for
r > 0 if there exists an index i ∈ {1, 2, 3} and ν ∈ Ni such that

θi−1(x) = (1− ax · ν − b)χAc(x · ν),

θi(x) = ax · ν + b,

θi+1(x) = (1− ax · ν + b)χA(x · ν)

with A ⊂ R measurable and a, b ∈ R such that 0 ≤ θi ≤ 1 for almost all x ∈ Br (0).

A sketch of a planar second-order laminate can be found in Figure 2.4, along with a
matching experimental picture of a Cu-Al-Ni alloy, which, admittedly, undergoes a cubic-
to-orthorhombic transformation.

a)

ei

ei−1 ei+1

b) c)

Figure 2.4: a) Cross-section of a planar second-order laminate arranged in such
a way that it is constant in the direction perpendicular to plane of the paper.
b) Color code for the mixtures involved at one of the interfaces in the center of
Subfigure 2.4a. The set {x · ν ∈ A} is shown as mostly green. c) Second-order
laminate in a Cu-Al-Ni alloy, by courtesy of C. Chu and R.D. James. The fine
twins correspond to mixtures of pure blue and green and, respectively, blue and
red in Subfigure 2.4a.

Indeed, such configurations can be interpreted and constructed as limits of finite-energy
sequences as follows, using Figure 2.4 as a guide: For simplicity let us assume that A
is a finite union of intervals, and that i = 1. Then on the interior of {x · ν ∈ A}
the configuration will be generated by twins of variants 1 and 2, while on the interior
of {x · ν ∈ Ac}, it will be generated by twins of variants 1 and 3. At interfaces, a
branching construction on both sides will be necessary to join these twins in a second-
order laminate. In order to realize the affine change in the direction of ν we will need to
combine Mechanisms 1 and 2 of Subsection 2.1.1 because ν is neither a possible direction
of lamination between variants 1 and 2 or variants 1 and 3, nor is it normal to one of
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a)

ei

ei−1 ei+1

b) c)

Figure 2.5: a) Sketch of a planar checkerboard that is independent of the di-
rection perpendicular to the cross-section. b) Color code showing the involved
mixtures. The set {x · νi+1 ∈ Ac} ∩ {x · νi−1 ∈ Bc}, colored in blue, corresponds
to pure martensite. The set {x ·νi+1 ∈ A}∩{x ·νi−1 ∈ Bc} is shown in turquoise
and {x·νi+1 ∈ Ac}∩{x·νi−1 ∈ B} is drawn as purple. c) Checkerboard structure
in an Indium-Thallium crystal, although the bottom region is in the austenite
phase. An interpretation of this structure in terms of the differential inclusion
e(u) ∈ K∪{e0} can be found in Figure 2.8b. Reprinted from [9], with permission
from Elsevier.

them. The corresponding detailed construction is a bit more involved and can be found
in Chapter 3.

The second case consists of configurations in which two second-order laminates cross. In
contrast to the first case, the strains are required to be constant away from macroscopic
interfaces leading to only four different involved macroscopic strains.

Definition 2.6. We will say that a configuration is a planar checkerboard on Br (0) for
r > 0 if it is planar and there exists i ∈ {1, 2, 3} such that

θi(x) =− aχA(x · νi+1)− bχB(x · νi−1) + 1,

θi+1(x) = bχB(x · νi−1),

θi−1(x) = aχA(x · νi+1)

with A,B ⊂ R measurable, a, b ≥ 0 such that a+ b = 1 and νj ∈ Nj for j ∈ {1, 2, 3} \ {i}
on Br (0).

For a sketch of such configurations as well as an experimental picture, see Figure 2.5.

Again, we briefly discuss the construction of such limiting strains. On {x · νi+1 ∈ Ac} ∩
{x ·ν3 ∈ Bc} there is of course only the martensite variant i present. On all other patches
there will be twinning and the macroscopic interfaces require branching constructions
unless the interface and the twinning normal coincide, which can only happen if both
strains lie on the same edge of K. In particular, on {x · νi+1 ∈ A, x · νi−1 ∈ B} there has
to be branching towards all interfaces, i.e., the structure has to branch in two linearly
independent directions. Also this construction is given in detail in Chapter 3.

Lastly, we remark on the case of three crossing second-order laminates.
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1 2
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a)

ei

ei−1 ei+1
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b)
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c)

Figure 2.6: a) Sketch of a planar triple intersection that is independent of the
direction perpendicular to the cross-section. The numbers relate the different
subfigures to each other. b) Color code indicating the mixtures involved at the
center of the structure. c) Sketch indicating a possible choice for the microscopic
twins where parallel lines represent equal normals, but neither their volume
fractions nor the necessary branching.

Definition 2.7. A configuration is called a planar triple intersection on Br (0) for r > 0
if it is planar and we have

θ1(x) = (ax · ν̃2 + b2)χK2
c(x · ν̃2) + (ax · ν̃3 + b3)χK3(x · ν̃3),

θ2(x) = (ax · ν̃1 + b1)χK1(x · ν̃1) + (ax · ν̃3 + b3)χK3
c(x · ν̃3),

θ3(x) = (ax · ν̃1 + b1)χK1
c(x · ν̃1) + (ax · ν̃2 + b2)χK2(x · ν̃2)

for almost all x ∈ Br (0). Here ν̃i = ±νi for i = 1, 2, 3 are oriented such that they are
linearly dependent by virtue of ν̃1 + ν̃2 + ν̃3 = 0, see Remark 1.1. Furthermore, we have
either

Ki = (−∞, x0 · ν̃i] for i = 1, 2, 3

or

Ki = [x0 · ν̃i,∞) for i = 1, 2, 3

for some x0 ∈ Br (0) and a, bi ∈ R for i = 1, 2, 3 such that
∑3

i=1 bi = 1.

A sketch of a planar triple intersection can be found in Figure 2.6.
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There are a number of possible choices of microscopic twins for constructing triple sec-
tions. We will only describe the simplest one here, which is depicted in Figure 2.6c.
Going around the central axis the macroscopic interfaces alternate between being a re-
sult of Mechanism 1 from Subsection 2.1.1, namely varying the relative thickness of layers
in a twin, and Mechanism 3, i.e., branching, otherwise. Similarly to the case of second-
order laminates, the affine changes require a combination of Mechanisms 1 and 2 on the
individual patches in Figure 2.6c, so that in both cases we need the same construction
in Chapter 3. There we do have the restriction of only branching towards a single inter-
face, but these constructions can straightforwardly be used to construct interfaces due to
Mechanism 1, such as the one separating Patches 2 and 3, by a “cut and paste” approach.

2.1.3 Construction of a fully three-dimensional structure in the
presence of austenite

Here we flesh out the previously announced example in Lemma 2.2. The idea is to
construct planar checkerboards on hyperplanes H(c, ν) for some normal ν ∈ N and
c ∈ R that include austenite and between which we can switch as c varies, see Figure 2.8.

Proof of Lemma 2.2. Recall ν+
1 = 1√

2
(011), ν−1 = 1√

2
(011) from Subsection 1.1.5 and let

ν3 := ν+
3 = 1√

2
(110). It is clear that {ν+

1 , ν
−
1 , ν3} is a basis of R3, see also Figure 2.7. Let

χ+
1 , χ

−
1 , χ3 : R → {0, 1} be measurable characteristic functions. We define the volume

fractions to be

θ1 :=
1

3
χ3(x · ν3),

θ2 := 1− 1

3
χ+

1 (x · ν+
1 )− 1

3
χ−1 (x · ν−1 )− 1

3
χ3(x · ν3),

θ3 :=
1

3
χ+

1 (x · ν+
1 ) +

1

3
χ−1 (x · ν−1 ),

which clearly satisfy 0 ≤ θi ≤ 1 for i = 1, 2, 3 and θ1 + θ2 + θ3 ≡ 1. As {ν+
1 , ν

−
1 , ν3}

constitutes a basis of R3, the structure is indeed fully three-dimensional.

Straightforward case distinctions ensure that θi = 0 for some i = 1, 2, 3 or θi = 1
3

for all

i = 1, 2, 3 almost everywhere. Setting G :=
∑3

i=1 θiei we see that this implies G ∈ K∪{0}
almost everywhere. A sketch of cross-sections through G on H(c, ν−1 ) both with χ−1 (c) = 0
and χ−1 (c) = 1 is given in Figure 2.8.

Finally, in order to identify G as the symmetric gradient of a displacement we set

u1 := F3(x · ν3),

u2 := x2 − F+
1 (x · ν+

1 )− F−1 (x · ν−1 )− F3(x · ν3),

u3 := F+
1 (x · ν+

1 )− F−1 (x · ν−1 ),

for functions F+
1 , F

−
1 , F3 : R→ R such that

(F+
1 )′ =

√
2

3
χ+

1 , (F−1 )′ =

√
2

3
χ−1 and (F3)′ =

√
2

3
χ3.
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E1

E2

E3

ν3

ν+
1

ν−1

Figure 2.7: Sketch showing the basis {ν+
1 , ν

−
1 , ν3} and a plane with normal ν−1 ,

parallel to which the cross-sections of Figure 2.8 are chosen.

a) The left-hand side shows a cross-section with x·ν−1 = c such that χ−1 (c) = 0. (Be warned that
the angles between interfaces are not accurate in the picture because we have ν−1 ·ν

+
1 , ν

−
1 ·ν3 6= 0.)

The involved strains are marked on the right-hand side.

b) On the left-hand side there is a cross-section with x · ν−1 = c depicted such that χ−1 (c) = 1.
Again, the right-hand side indicates the involved strains.

Figure 2.8
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The identity e(u) ≡ G is straightforward to check.

2.2 Outline of the proof

We will give the ideas behind each individual part of the proof of our main theorem
in its own subsection. The contents of each are organized by increasing detail, so that
the reader may skip to the next subsection once they are satisfied with the explanations
given. However, we will first prove Theorem 2.1 itself here to provide a road map to the
following subsections.

Throughout the chapter the number r denotes a generic, universal radius that in proofs
may decrease from line to line.

Proof of Theorem 2.1. We first use Lemma 2.8 to see that the limiting differential inclu-
sion e(u) ∈ K in fact holds. Next, we apply Lemma 2.9 to deduce the existence of six
one-dimensional functions fν ∈ L∞ only depending on x · ν for ν ∈ N and three affine
functions gi for i = 1, 2, 3 such that

e(u)11 = f(101) + f(101) − f(110) − f(110) + g1,

e(u)22 = −f(011) − f(011) + f(110) + f(110) + g2,

e(u)33 = f(011) + f(011) − f(101) − f(101) + g3

on some smaller ball Br (0).

If fν ∈ VMO(−r, r) for all ν ∈ N , then Proposition 2.18 implies that the solution of the
differential inclusion is a two-variant configuration. If fν /∈ VMO(−r, r) for some ν ∈ Ni

and i ∈ {1, 2, 3} we can use Proposition 2.13 to deduce that the configuration is planar
or involves only two variants. Furthermore, if it is not a two-variant configuration, then
there exists a plane H(α, ν) for some α ∈ (−r, r) with the following property: It holds
that

θi|H(α,ν) = bχB (2.2)

for some 0 < b < 1 and a Borel-measurable subset B ⊂ {x · ν = α} ∩ Br (0) of non-zero
H2-measure. This is measure-theoretically meaningful since H(α, ν) is not normal to
directions involved in the decomposition of θj, see Lemma 2.11.

We are thus left with classifying planar configurations. If additionally one of the one-
dimensional functions fνj for j ∈ {1, 2, 3} \ {i} is affine, we can apply Lemma 2.21 using
the additional information (2.2) to see that the configuration is a planar second-order
laminate or a planar checkerboard. Otherwise an application of Proposition 2.22 yields
that the configuration is a planar triple intersection.

2.2.1 The differential inclusion

We first mention that the inclusion e(u) ∈ K holds.
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Lemma 2.8. Let (uη, χη) be a sequence of displacements and partitions such that

lim sup
η→0

Eη(uη, χη) <∞

for some 0 < C <∞. Then for any subsequence for which the weak limits

uη ⇀ u in W 1,2, χη
∗
⇀ θ in L∞

exist, they satisfy

e(u) ≡
3∑
i=1

θiei, θ ∈ K̃ and e(u) ∈ K

for almost all x ∈ B1 (0).

We will need a much more precise version of this argument later in Chapter 4. Therefore,
rather than providing the same argument twice, we refer the reader to Corollary 4.5 for
the full proof and only provide an outline here:

The statement e(u) ≡
∑3

i=1 θiei is an immediate consequence of the elastic energy vanish-
ing in the limit and the proof of the non-convex inclusion relies on the rescaling properties
of the energy. We will set

rx̂ = x, û(x̂) = ru(x), χ̂(x̂) = χ(x), rη̂ = η,

where η needs to be re-scaled as well due to it playing the role of a length scale, to obtain

Eη̂(û, χ̂) = r−3+ 2
3Eη(u, χ).

The right-hand side consequently behaves better than just taking averages, which allows
us to locally apply the result by Capella and Otto [24] to get the statement.

2.2.2 Decomposing the strain

Next, we link the convex differential inclusion

e(u) ∈ S = {e ∈ R3×3 : e diagonal, tr e = 0}

to a decomposition of the strain into simpler objects, namely functions of only one vari-
able and affine functions. Already Dolzmann and Müller [37] used the interplay of this
decomposition with the non-convex inclusion e(u) ∈ {e1, e2, e3} to get their rigidity result.

Lemma 2.9. There exists a universal r > 0 with the following property: Let a displace-
ment u ∈ W 1,2(B1 (0)) be such that e(u) ∈ K a.e., where K ⊂ S is a compact set. Then
there exist

1. a function fν ∈ L∞([−r, r]) for each ν ∈ N which will take ν · x as its argument
and
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2. affine functions g1, g2, g3

such that we have

e(u)11 = f(101) + f(101) − f(110) − f(110) + g1,

e(u)22 = −f(011) − f(011) + f(110) + f(110) + g2,

e(u)33 = f(011) + f(011) − f(101) − f(101) + g3

(2.3)

on Br (0).

Here we abuse notation by dropping 1√
2

when referring to the one-dimensional functions,
e.g., we write f(011) instead of f 1√

2
(011). Furthermore, we will at times not distinguish

between fν and fν(ν · x) as long as the context clearly determines which we mean.

Throughout the chapter, we only use the fact that the inclusion e(u)(x) ∈ K a.e. involves a
differential through decomposition (2.3). Therefore, we can easily transfer all the relevant
information to the volume fractions θ via the relation

e(u)ii =
3∑
j=1

θjej = −2θi + θi+1 + θi−1 = 1− 3θi

for all i = 1, 2, 3. In fact, most of the arguments in the following subsections become
much more transparent if we re-formulate the differential inclusion in terms of the volume
fractions as θ(x) ∈ K̃ a.e. with

K̃ :=

{
θ̂ ∈ R3 : 0 ≤ θ̂i ≤ 1 for i = 1, 2, 3,

3∑
i=1

θ̂i = 1, θ̂i = 0 for some i = 1, 2, 3

}
.

(2.4)

The only (marginally) new aspect of Lemma 2.9 compared to the previously known ver-
sions [37, Lemma 3.2] and [24, Proposition 1] is the statement fν ∈ L∞ for all ν ∈ N . We
will thus only highlight the required changes to the proof of Capella and Otto [24, Propo-
sition 1]. Essentially, the strategy here is to integrate the Saint-Venant compatibility con-
ditions for linearized strains, which in our situation take the form of six two-dimensional
wave equations, see Lemma 2.12. Thus it is not surprising that the decomposition is in
fact equivalent to e(u)11 0 0

0 e(u)22 0
0 0 e(u)33


being a symmetric gradient, which reassures us in our approach of only appealing to the
differential information through equations (2.3).

A central part of the proof of Lemma 2.9 is uniqueness up to affine functions of the
decomposition [24, Lemma 3.8]. We can apply this result to characterize two-variant
configurations as the only ones with θi ≡ 0 for some i = 1, 2, 3, i.e., as the only ones that
indeed only combine two variants.
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E1
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E3

ν−3
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1

ν+
2

Figure 2.9: Sketch indicating that θ2 has traces on hyperplanes with normal ν+
2

since its decomposition only involves continuous functions and the normals ν±i
for i = 1, 3. As usual we do not keep track of the lengths of the drawn vectors.

Corollary 2.10. There exists a universal radius r > 0 with the following property: If
for i ∈ {1, 2, 3} we have θi ≡ 0 in the setting of Theorem 2.1, then the solution of the
differential inclusion is a two-variant configuration on Br (0) according to Definition 2.3.

Another very useful consequence of the decomposition (2.3) is that such functions have
traces on hyperplanes as long as none of the individual one-dimensional functions are
necessarily constant on them. See Figure 2.9 for the geometry in a typical application.

Lemma 2.11. Let F : Rn → C for a closed convex set C ⊂ Rm satisfy the decomposition

F (x) ≡
P∑
i=1

fi(x · νi) (2.5)

with locally integrable functions fi : R → Rm and directions νi ∈ Sn−1 for i = 1, . . . , P .
Let furthermore V ⊂ Rn be a k-dimensional subspace such that νi /∈ V ⊥ for all indices
i = 1, . . . , P .

Then the decomposition (2.5) defines a locally integrable restriction F |V : V → C and

Fδ(x) :=

ˆ
Bδ(x)

F (y) dLn(y)→ F (x)

for Hk-almost all x ∈ V .

Finally, we give the wave equations constituting the Saint-Venant compatibility condi-
tions. Also these we will require in Chapter 4 in a stronger version given in Lemma 4.2,
and thus we here only show how to obtain the present statement from the stronger one.

Lemma 2.12. If e(u) ∈ S, the diagonal elements of the strain satisfy the following wave
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equations:

∂[111]∂[111]θ1 = 0,

∂[111]∂[111]θ1 = 0,

∂[111]∂[111]θ2 = 0,

∂[111]∂[111]θ2 = 0,

∂[111]∂[111]θ3 = 0,

∂[111]∂[111]θ3 = 0.

(2.6)

Proof. We briefly indicate how to deduce this version from Lemma 4.2 at the example of
the first equation. Due to said lemma we have

∂[111]∂[111]u1,η = div hη

for vector fields hη : B1 (0) → R3 such that hη → 0 as η → 0 in L2
loc. Consequently,

differentiating the limiting equation in the first coordinate direction in the sense of dis-
tributions proves the first equation.

2.2.3 Planarity in the case of non-trivial blow-ups

While the statements in the previous subsections either rely on rather soft arguments
or were previously known, we now come to the main ideas of the chapter. As K̃, see
definition (2.4), is a connected set, there are no restrictions on varying single points
continuously in K̃. However, the crucial insight is that two different points θ̃, θ̄ ∈ K̃ with
θ̃1 = θ̄1 > 0 are much more constrained.

To exploit this rigidity, we first for simplicity assume the decomposition

θ1(x) = f2(x2)− f3(x3) + 1,

θ2(x) = −f1(x1) + f3(x3),

θ3(x) = f1(x1)− f2(x2).

Furthermore, suppose that f1 is a BV -function with a jump discontinuity of size δf1 at
x1 = 0 and that the other functions are continuous. Thus the blow-up of θ at some
point (0, x′) ∈ B1 (0) takes two values θ̃, θ̄, both of which satisfy θ̃1 = θ̄1 = θ1(0, x′). A
look at Figure 2.10 hopefully convinces the reader that θ1(0, x′) can take at most two
values, which furthermore are independent of x′. As it is a sum of two one-dimensional
functions some straightforward combinatorics imply that one of the two functions must
be constant. Consequently θ only depends on two directions.

This can be adapted to our more complex decomposition (2.3), even without any a priori
regularity of the one-dimensional functions. To do so we need to come up with a topology
for the blow-ups which respects the non-convex inclusion e(u) ∈ K, and a quantification
of discontinuity for fν which ensures that its blow-up is non-constant.
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e1

e3 e2

√
2 δf1

θ1

0

1

Figure 2.10: Illustration of the argument for two-valuedness of θ1 near x1 = 0.
The length of the dotted line has to be

√
2 δf1, where δf1 > 0 is the size of the

jump of f1 at zero. Consequently, the function θ1 can only take the two values

0 or 1−
√

3
2
δf1.

In order to keep the non-convexity we consider the push-forwards

f 7→
ˆ
B1(0)

f(θ(x+ εy)) dy for f ∈ C0(R3)

for x ∈ R3 and ε → 0. This approach is very similar in spirit to using Young-measures,
but without a further localization in the variable y. Positing that fν does not have a
constant blow-up along some sequence then means that fν does not converge strongly
to a constant on average, i.e., it does not converge to its average on average. If one
allows the midpoints x of the blow-ups to depend on ε, we see that this is equivalent to
fν /∈ VMO according to Definition 2.14 given below.

The resulting statement is:

Proposition 2.13. There exists a universal radius r > 0 with the following property:
Let e(u) ∈ K on B1 (0). Furthermore, let the decomposition in Lemma 2.9 hold in B1 (0)
and let fν /∈ VMO([−r, r]) for some ν ∈ Ni with i ∈ {1, 2, 3}. Then on Br (0) the
configuration is planar with respect to some d ∈ {[111], [111], [111], [111]} with d · ν = 0
or we have θi ≡ 0, i.e., a two-variant configuration.

Furthermore, if θi 6≡ 0 there exists α ∈ (−r, r) such that θi|{x·ν=α} = bχB for some
0 < b < 1 and a Borel-measurable set B ⊂ H(α, ν) ∩Br (0) of non-zero H2-measure.

Note that the second part is measure-theoretically meaningful by Lemma 2.11, see in
particular Figure 2.9.

For the convenience of the reader, we provide a definition of the space VMO(U) for an
open domain U ⊂ Rn for n ∈ N, which is modeled after the one given by Sarason [106]
in the whole space case.

Definition 2.14. Let U ⊂ Rn with n ∈ N be an open domain and let f ∈ L1(U). We
say that the function f is of bounded mean oscillation, or f ∈ BMO(U), if we have

sup
x∈U,0<r<1

−
ˆ
Br(x)∩U

∣∣∣∣f(y)−−
ˆ
Br(x)∩U

f(z) dz

∣∣∣∣ dy <∞.
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If we additionally have

lim
r→0

sup
x∈U
−
ˆ
Br(x)∩U

∣∣∣∣f(y)−−
ˆ
Br(x)∩U

f(z) dz

∣∣∣∣ dy = 0,

then f is of vanishing mean oscillation, in which case we write f ∈ VMO(U).

It can be shown that at least for sufficiently nice sets U the space VMO is the BMO-
closure of the continuous functions on U and as such it serves as a substitute for C(U)
in our setting. Functions of vanishing mean oscillation need not be continuous, although
they do share some properties with continuous functions, such as the “mean value theo-
rem”, see Lemma 2.19. We stress that the uniformity of the convergence in x is crucial
and cannot be omitted without changing the space, as can be proven by considering a
function consisting of very thin spikes of height one clustering at some point.

There is another slightly more subtle issue in the proof of Proposition 2.13: As already
explained, our argument works by looking at a single plane at which we blow-up. Con-
sequently, we can only distinguish the two cases θi ≡ 0 and θi 6≡ 0 on said hyperplane.
Therefore we need a way of transporting the information θi ≡ 0 from the hyperplane to
an open ball. Given our combinatorics this turns out to be the 3D analog of the question:
“If F (x, y) = f(x) + g(y) is constant on the diagonal, is it constant on an non-empty
open set?” Looking at the function F (x, y) = x−y one might think that the argument is
doomed since F vanishes on the diagonal but clearly does not do us the favor of vanishing
on a non-empty open set.

However, the fact that 0 is an extremal value for θ1 saves us: If F is constant on the
diagonal of a square and achieves its minimum there, then it has to be constant on
the entire square, see also Figure 2.11a. For later use we already state this fact in its
perturbed form.

Lemma 2.15. Let f, g ∈ L∞(0, 1) such that f(x1) + g(x2) ≥ c for almost all x ∈ (0, 1)2

and some constant c ∈ R. Let ε ≥ 0 and let one of the following two statements be true:

1. The sum satisfies f(x1) + g(x2) ≤ c+ ε almost everywhere in (0, 1)2.

2. The sum satisfies f(t) + g(t) ≤ c+ ε for almost all t ∈ (0, 1).

Then for ess inf h := − ess sup−h for functions h ∈ L∞ it holds that

3. We have f ≤ ess inf f + ε, g ≤ ess inf g+ ε and c ≤ ess inf f + ess inf g ≤ c+ ε for
almost every x1, x2 ∈ (0, 1).

If ε = 0, then all three statements are equivalent.

This statement can be lifted to three-dimensional domains. It states that in order to
deduce that θi is constant and extremal, it is enough to know that the extremal value
is attained on a suitable line, which we will parametrize by l(t) := x0 +

√
2tEi. Here,

Ei is the i-th standard basis vector of R3 and the restriction of θi to the image of l is
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Figure 2.11: a) The information f(x1) + g(x2) = c along the dashed diagonal
can be transported to the whole gray square provided f(x1) + g(x2) ≥ c.
b) Sketch of the polyhedron P with normals ν±i for i = 2, 3, which is the maximal
set to which we can propagate the information θ1 ≡ 0 or θ1 ≡ 1 on the dashed
line l(I).

defined by Lemma 2.11. It will later be important that we have a precise description of
the maximal set to which the information θi = 0 can be transported, which turns out to
be the polyhedron

P :=
⋂

ν∈Ni+1∪Ni−1

{x ∈ R3 : ν · x = ν · l(I)},

see Figure 2.11b. The general strategy of the proof is described in Figure 2.12.

There is also a generalization of the one-dimensional functions being almost constant in
two dimensions: In three dimensions, the one-dimensional functions are close to being
affine on P in the sense that the inequality (2.9) holds. (Lemma 2.20 ensures that then
there exist affine functions which are close.) As we only need this part of the statement in
approximation arguments we may additionally assume that the one-dimensional functions
are continuous to avoid technicalities.

The resulting statement is the following:

Lemma 2.16. There exists a radius 0 < r < 1 with the following property: Let θ satisfy
decomposition (2.3) on B1 (0) and let 0 ≤ θi ≤ 1 for all i = 1, 2, 3. Let I ⊂ R be a closed
interval, let x0 ∈ R3 and let l(t) := x0 +

√
2tEi ∈ Br (0) for t ∈ I and some i ∈ {1, 2, 3}.

Additionally, let ν ∈ Ni. We define the polyhedron P to be

P :=
⋂

ν∈Ni+1∪Ni−1

{x ∈ R3 : ν · x ∈ ν · l(I)},

see also Figure 2.11.
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E1
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E3

l̃(Ĩ)
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Figure 2.12: a) First, we transport the information {θ1 ≈ 0} from the dashed
line l(I) to the gray plane H(0, (011)) ∩ P using the two-dimensional result.
b) In a second step, we use {θ1 ≈ 0} along another dashed line l̃(Ĩ) parallel to
E1 to propagate the information to H(α, (011)) ∩ P for all α ∈ R.

For ε > 0 assume that either

θi ◦ l(t) ≤ ε for almost all t ∈ I or 1− θi ◦ l(t) ≤ ε for almost all t ∈ I. (2.7)

Then for almost all x ∈ P ⊂ B1 (0) we have

0 ≤ θi(x) ≤ 6ε or, respectively, 1− 6ε ≤ θi(x) ≤ 1. (2.8)

Furthermore, if additionally the one-dimensional functions fν are continuous for every
ν ∈ Ni+1 ∪Ni−1, then they are almost affine in the sense that∣∣∣fν(s+ h+ h̃) + fν(s)− fν(s+ h)− fν(s+ h̃)

∣∣∣ ≤ 24ε (2.9)

for all (s, h, h̃) ∈ R× (0,∞)2 with s, s+ h, s+ h̃, s+ h+ h̃ ∈ ν · l(I).

There is yet another minor subtlety of measure theoretic nature. We already mentioned
that we require the midpoints of the blow-ups to be dependent on its radius. It is thus
entirely possible that the radii vanish much faster than the midpoints converge. This
means we cannot use Lebesgue point theory in an entirely straightforward manner to
prove that the blow-ups of fν̃ converge to their point values almost everywhere. We deal
with this issue by exploiting density of continuous functions in Lp in a straightforward
manner.

Lemma 2.17. Let f ∈ Lp(Rn) for some dimension n ∈ N and 1 ≤ p < ∞. For τ > 0
and y, z ∈ Rn we have

lim
τ,|z|→0

ˆ
Rn
−
ˆ
B1(0)

|f(x+ z + τy)− f(x)|p dy dx = 0.
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Figure 2.13: Sketch of how e(u)(x) lies in K. At the boundary of θ−1
1 (0) the

strain needs to take the two values e2 and e3.

2.2.4 The case fν ∈ VMO for all ν ∈ N

Having simplified the case where one of the one-dimensional functions is not of vanishing
mean oscillation, we now turn to the case where all of them lie in VMO. The statement
we will need to prove here is the following:

Proposition 2.18. There exists a universal radius r > 0 with the following property:
Let e(u) ∈ K almost everywhere, and let the decomposition (2.3) of Lemma 2.9 hold
throughout B1 (0). Furthermore, let fν ∈ VMO([−r, r]) for all ν ∈ N . Then on Br (0)
the e(u) is a two-variant configuration in the sense of Definition 2.3.

To fix ideas, let us first illustrate the argument in the case of continuous functions in the
whole space:

By the mean value theorem the case e(u) ∈ {e1, e2, e3} is trivial, so let us suppose that
there is a point x such that e(u)(x) lies strictly between two pure martensite strains. We
may as well suppose θ1(0) = 0 and 0 < θ2(0), θ3(0) < 1, see Figure 2.13. By continuity,
the set {θ1 = 0} has non-empty interior, and, by the decomposition (2.3), any connected
component of it should be a polyhedron P whose faces have normals lying in N2 ∪ N3,
see Figure 2.14a. Additionally, continuity implies that

e(u) ≡ e2 or e(u) ≡ e2 on each face.

Unfortunately, on a face with normal in Ni for i = 2, 3 only θi will later be a well-defined
function due to Lemmas 2.9 and 2.11 after dropping continuity. Therefore on such a face
we can only use the above information in the form

θi ≡ 0 or θi ≡ 1.

Using Lemma 2.16 we get a polyhedron Q that transports this information back inside
P , see Figure 2.14b. The goal is then to show that we can reach x in order to get a
contradiction to e(u)(x) lying strictly between e2 and e3, which we will achieve by using
the face of P closest to x.
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Figure 2.14: a) Sketch of a connected component P of θ−1
1 (0) with normals ν+

2 ,
ν−3 and ν+

3 . On the red face we get the information θ2 ≡ 0 or θ2 ≡ 1. In
particular, we get it along the line l, which is parallel to E2. b) Sketch of the
polyhedron Q that transports the information θ2 ≡ 0 or θ2 ≡ 1 along l to the
inside of P .

In order to turn this string of arguments into a proof in the case fν ∈ VMO for all
ν ∈ N the key insight is that non-convex inclusions and approximation by convolutions
interact very nicely for VMO-functions. As has been pointed out to us by Radu Ignat,
this elementary, if maybe a bit surprising fact has previously been used to in the degree
theory for VMO-functions, see Brezis and Nirenberg [17, Inequality (7)], who attribute
it to L. Boutet de Monvel and O. Gabber. For the convenience of the reader, we include
the statement and present a proof later.

Lemma 2.19 (L. Boutet de Monvel and O. Gabber). Let f ∈ VMO(U) with f ∈ K
almost everywhere for some open set U ⊂ Rn and a compact set K ⊂ Rd, where we
have n, d ∈ N. Let fδ(x) := −́

Bδ(x)
f(y) dy. Then fδ is continuous and we have that

dist(fδ, K)→ 0 locally uniformly in U .

Unfortunately, formalizing the set {θ1,δ ≈ 0} in such a way that connected components
are polyhedra is a bit tricky. We do get that they contain polyhedra on which the one-
dimensional functions are close to affine ones, see Lemmas 2.16 and 2.20. However, we
do not immediately get the other inclusion: As the directions in the decomposition are
linearly dependent, one of the one-dimensional functions deviating too much from their
affine replacement does not translate into θ1 deviating too much from zero.

We side-step this issue by first working on hyperplanes H(α, (011)). In that case, the
decomposition of θ1 simplifies to two one-dimensional functions and thus we do get that
connected components of {θ1,δ ≈ 0} ∩ H(α, (011)) are parallelograms. The goal is then
to prove that at least some of them, let us call them Rδ, do not shrink away in the limit
δ → 0. Making use of Lemma 2.16 we can go back to a full dimensional ball and get
that the set {θ1 = 0} has non-empty interior. This allows the argument for continuous
functions to be generalized to VMO-functions.
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lyδ zδ

Figure 2.15: Sketch of the parallelogram Rδ. Along the dashed part of the line
l, which intersects ∂Rδ at yδ and xδ, the volume fraction θ2,δ is almost affine. At
x we have c ≤ θ2,δ(x) ≤ 1− c for some c > 0.

In order to prove that Rδ does not get too small we choose it such that we are in the
situation depicted in Figure 2.15. We will show that θ2,δ(yδ) ≈ 0, θ2,δ(zδ) ≈ 1 or vice
versa. Together with the fact that θ2 ◦ l is close to an affine function in a strong topology
by the following Lemma 2.20, the function θ2 would not have vanishing mean oscillation
if Rδ shrank away, i.e., if |yδ − zδ| → 0.

Lemma 2.20. There exists a number C > 0 with the following property: Let g ∈
L∞([0, 1]) and

ε := sup
t,t+h,t+h̃,t+h+h̃∈[0,1]

|g(t+ h+ h̃)− g(t+ h)− g(t+ h̃) + g(t)|.

Then there exists an affine function g̃ such that

||g − g̃||∞ ≤ C
(
||g||

1
2∞ε

1
2 + ε

)
.

This is closely related to the so-called Hyers-Ulam-Rassias stability of additive functions,
on which there is a large body of literature determining rates for the closeness to linear
functions, see e.g. Jung [59]. As such, this statement may well be already present in
the literature. However, as far as we can see, the corresponding community seems to be
mostly concerned with the whole space case.

2.2.5 Classification of planar configurations

It remains to exploit the two-dimensionality that was the result of Proposition 2.13. It
allowed us to reduce the complexity of the decomposition (2.3) to three one-dimensional
functions with linearly dependent normals and three affine functions. We first deal with
the easier case where one of the one-dimensional functions is affine and can be absorbed
into the affine ones.

Lemma 2.21. There exists a universal number r > 0 with the following property:

Let e(u) ∈ K almost everywhere. Let the configuration be planar with respect to the
direction d ∈ {[111], [111], [111], [111]} and let it not be a two-variant configuration in
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Br (0). Furthermore assume for i, j ∈ {1, 2, 3} with i 6= j that the function fνj is affine
and that

θi|H(α,νi) = bχB (2.10)

for some α ∈ (−r, r), a Borel-measurable set B ⊂ H(α, νi) of non-zero H2-measure and
0 < b < 1.

Then the configuration is a planar second-order laminate or a planar checkerboard on
Br (0).

While the preceding lemma is mostly an issue of efficient book-keeping to reap the rewards
of previous work, we now have to make a last effort to prove the rather strong rigidity
properties of planar triple intersections:

Proposition 2.22. There exists a universal radius r > 0 with the following property:

Let e(u) ∈ K almost everywhere and let the configuration be planar with respect to the
direction d ∈ {[111], [111], [111], [111]}. Furthermore let all fνi for i = 1, 2, 3 be non-affine
on B r

2
(0) and let |θ−1

i (0) ∩ Br (0)| > 0 and |θ−1
j (0) ∩ Br (0)| > 0 for i, j ∈ {1, 2, 3} with

i 6= j.

Then the configuration is a planar triple intersection on Br (0).

The idea is to prove that the sets θ−1
i (0) for i = 1, 2, 3 take the form

θ−1
i (0) = π−1

i+1(Ji+1) ∩ π−1
i−1(Ji−1),

where Jj ⊂ R and πj(x) := νj · x for j = 1, 2, 3, i.e., they are product sets in suitable
coordinates. Expressing the condition

⋃3
i=1 θ

−1
i (0) = B1 (0) in terms of these sets allows

us to apply Lemma 2.23 below to conclude that Jj is an interval for j = 1, 2, 3. The
actual representation of the strain is then straightforward to obtain.

Lemma 2.23. There exists a universal radius 0 < r < 1
2

such that the following holds:
Let ν1, ν2, ν3 ⊂ S1 be linearly dependent by virtue of ν1 + ν2 + ν3 = 0. Let πi(x) := x · νi
for x ∈ R2 and i = 1, 2, 3. Let J1, J2, J3 ⊂ [−1, 1] be measurable such that

1. we have ∣∣Br (0) ∩
(
π−1

1 (J1) ∩ π−1
2 (J2) ∩ π−1

3 (J3)
) ∣∣ = 0,∣∣Br (0) ∩

(
π−1

1 (J1
c) ∩ π−1

2 (J2
c) ∩ π−1

3 (J3
c)
) ∣∣ = 0,

(2.11)

2. and the two sets J1 and J2 neither have zero nor full measure, i.e., it holds that

0 <
∣∣∣J1 ∩

[
−r

2
,
r

2

]∣∣∣ , ∣∣∣J2 ∩
[
−r

2
,
r

2

]∣∣∣ < 2r. (2.12)

Then there exist a point x0 ∈ R such that x · νi ∈ (−r, r) for all i = 1, 2, 3 and, up to sets
of L1-measure zero, either

Ji ∩ [−r, r] = [−r, x0 · νi] for i = 1, 2, 3

or
Ji ∩ [−r, r] = [−x0 · νi, r] for i = 1, 2, 3.
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Figure 2.16: Sketches illustrating the proof of Lemma 2.23. The arrows in
the middle indicate the three linearly dependent directions ν1, ν2 and ν3. a)
The set π−1

3 (J3) (hatched) may only intersect π−1
1 (J1

c) ∩ π−1
2 (J2

c) (red) and its
complement may only intersect π−1

1 (J1) ∩ π−1
2 (J2) (blue). b) The line π−1

3 (s)
intersects both a subset of π−1

1 (J1) ∩ π−1
2 (J2) (blue) and a subset of π−1

1 (J1
c) ∩

π−1
2 (J2

c) (red).

To illustrate the proof let us first assume that J1 and J2 are intervals of matching “ori-
entations”, e.g., we have J1 = J2 = [−r, 0], in which case Figure 2.16a suggests that also
J3 = [−r, 0].

If they are not intervals of matching “orientations”, we will see that, locally and up to
symmetry, more of J1 lies below, for example, the value 0 than above, while the opposite
holds for J2. The corresponding parts of J1 and J2 are shown in Figure 2.16b. One then
needs to prove that sufficiently many lines π−1

3 (s) for parameters s close to 0 intersect
the “surface” of π−1

1 (J1) ∩ π−1
2 (J2), see Lemma 2.24 below. As a result less than half

the parameters around 0 are contained in J3. The same argument for the complements
ensures that also less than half of them are not contained in J3, which cannot be true.

To link intersecting lines to the “surface area” we use that our sets are of product struc-
ture, i.e., they can be thought of as unions of parallelograms, and that the intersecting
lines are not parallel to one of the sides of said parallelograms. In the following and
final lemma, we measure-theoretically ensure the line π−1

3 (s) intersects a product set
π−1

1 (K1) ∩ π−1
2 (K2) by asking

ˆ
{x·ν3=s}

χK1(x · ν1)χK2(x · ν2) dH1(x) > 0.

Lemma 2.24. Let ν1, ν2, ν3 ⊂ S1 with ν1 + ν2 + ν3 = 0. Let K1, K2 ⊂ R be measurable
with |K1|, |K2| > 0. Then the set

M :=

{
s ∈ R :

ˆ
{x·ν3=s}

χK1(x · ν1)χK2(x · ν2) dH1(x) > 0

}

is measurable and satisfies |M | ≥ |K1|+ |K2|.
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2.3 Proofs

2.3.1 Decomposing the strain

Proof of Lemma 2.9. The proof is essentially a translation of the proofs of Capella and
Otto [24, Lemma 4 and Proposition 1] into our setting. To this end, we use the “dictio-
nary”

e(u)11 ←→ χ1,

e(u)22 ←→ χ2,

e(u)33 ←→ χ3,

0←→ χ0,

where the left-hand side shows our objects and the right-hand side shows the correspond-
ing ones of Capella and Otto. The two main changes are the following:

1. In our case all relevant second mixed derivatives vanish (see Lemma 2.12), instead
of being controlled by the energy. Furthermore, whenever Capella and Otto refer to
their “austenitic result”, we just have to use the fact that e(u)11+e(u)22+e(u)33 ≡ 0.

2. We need to check at every step that boundedness of all involved functions is pre-
served.

We will briefly indicate how boundedness of all functions is ensured. The functions in
[24, Lemma 4] are constructed by averaging in certain directions. This clearly preserves
boundedness. The proof of [24, Proposition 1] works by applying pointwise linear op-
erations to all functions, which again preserves boundedness, and by identifying certain
functions as being affine, which are also bounded on the unit ball.

Proof of Corollary 2.10. By symmetry we can assume i = 1. Applying [24, Lemma 5] to
θ1 we see that the functions f(101), f(101), f(110) and f(110) are affine on some ball Br (0)
with a universal radius r > 0. Thus the decomposition reduces to

θ1 ≡ 0,

θ2 = f(011) + f(011) + g2(x),

θ3 = −f(011) − f(011) + g3(x)

on Br (0). As the vectors (011) and (011) form a basis of the plane H(0, E1), we can
absorb the parts of g2 depending on x2 and x3 into f(011) and f(011). Due to θ1+θ2+θ3 = 1
we have

g2(x) + g3(x) ≡ 1

and the decomposition simplifies to

θ1 ≡ 0,

θ2 = f(011) + f(011) + λx1 + 1,

θ3 = −f(011) − f(011) − λx1

for some λ ∈ R.
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Proof of Lemma 2.11. Let

φ(t) :=

ˆ
{x1=t}

1

Ln(B1 (0))
χB1(0)(t, x

′) dLn−1(x′) and φδ(t) :=
1

δ
φ

(
t

δ

)
.

For x ∈ V and δ > 0 we have that

P∑
i=1

φδ ∗ fi(x · νi) = −
ˆ
Bδ(x)

F (y) dLn(y) ∈ C,

since B1 (0) is invariant under rotation and C is convex. By standard statements about
convolutions and sequences converging in L1 we get a subsequence in δ, which we will
not relabel, and a measurable set T ⊂ R such that φδ ∗ fi(t)→ fi(t) for all i = 1, . . . , P
and all t ∈ T with L(R \ T ) = 0. Let ν̃ ∈ V ∩ B1 (0) \ {0} be the orthogonal projection
of νi onto V for all i = 1, . . . , n. A simple calculation implies that

Lk ({x ∈ V : x · νi ∈ R \ T}) = Lk ({x ∈ V : x · ν̃i ∈ R \ T}) = 0.

Thus for almost all x ∈ V we have that

−
ˆ
Bδ(x)

F (y) dLn(y)→ F |V (x) :=
P∑
i=1

fi(x · νi) ∈ C.

2.3.2 Planarity in the case of non-trivial blow-ups

Proof of Proposition 2.13. Step 1: Identification of a suitable plane to blow-up at.
By symmetry, we may assume ν = 1√

2
(011). We use two symbols for universal radii

throughout the proof. The radius r̃ > 0, which will be the radius referred to in the
statement of the proposition, will stay fixed throughout the proof and its value will be
chosen at the end of the proof. In contrast, the radius r > r̃ may decrease from line to
line.

As f(011) /∈ VMO([−r̃, r̃]), there exist sequences αk ∈ [−r̃, r̃] and δk > 0 such that

1.

lim
k→∞
−
ˆ

(αk−δk,αk+δk)

∣∣∣∣f(011)(s)−−
ˆ

(αk−δk,αk+δk)

f(011)(s̃) ds̃

∣∣∣∣ ds > 0, (2.13)

2. limk→∞ δk = 0,

3. limk→∞ αk = α ∈ [−r̃, r̃].

We parametrize the plane H
(
αk,

1√
2
(011)

)
at which we will blow-up by

Xk(β, γ) := αk
1√
2

(011) +

(
β − 1

2
αk

)
1√
2

[111] +

(
γ − 1

2
αk

)
1√
2

[111],
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where β, γ ∈ R such that (β, γ) ∈ Br (0). For r small enough we have Xk(β, γ) ∈ B1 (0).
It is straightforward to see that then we have the following relations

Xk(β, γ) · 1√
2

(011) = αk, (2.14)

Xk(β, γ) · 1√
2

(101) = β, (2.15)

Xk(β, γ) · 1√
2

(110) = γ, (2.16)

Xk(β, γ) · 1√
2

(011) = γ − β, (2.17)

Xk(β, γ) · 1√
2

(101) = αk − γ, (2.18)

Xk(β, γ) · 1√
2

(110) = β − αk. (2.19)

Note that they nicely capture the combinatorics we discussed in Remark 1.1: The ex-
pression Xk(β, γ) · ν+

1 depends on neither β nor γ, while Xk(β, γ) · ν−1 depends on both.
Furthermore, we see that Xk(β, γ) · ν±i for i = 2, 3 depend on precisely one of the two.
For a sketch relating H

(
αk,

1√
2
(011)

)
with the normals ν ∈ N see Figure 2.17a.

In the limit we get the uniform convergence

Xk(β, γ)→ X(β, γ) = α
1√
2

(011) +

(
β − 1

2
α

)
1√
2

[111] +

(
γ − 1

2
α

)
1√
2

[111] (2.20)

and the relations with the normals turn into

X(β, γ) · 1√
2

(011) = α, (2.21)

X(β, γ) · 1√
2

(101) = β, (2.22)

X(β, γ) · 1√
2

(110) = γ, (2.23)

X(β, γ) · 1√
2

(011) = γ − β, (2.24)

X(β, γ) · 1√
2

(101) = α− γ, (2.25)

X(β, γ) · 1√
2

(110) = β − α. (2.26)

For ν ∈ N we define the blow-ups to be

θ
(k)
i (β, γ; ξ) := θi(Xk(β, γ) + δkξ),

f (k)
ν (β, γ; ξ) := fν(Xk(β, γ) + δkξ),

g
(k)
i (β, γ; ξ) := gi(Xk(β, γ) + δkξ)
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ν−3

ν+
3ν−1

ν+
1

ν+
2ν−2

a)

E1

E2

E3
E1

ν+
1

b)

Figure 2.17: a) Sketch relating planes H(α̃, (011)) for α̃ ∈ R with all normals
ν ∈ N . b) Planes H(α̃, (011)) for α̃ ∈ R contain lines parallel to E1.

for ξ ∈ B1 (0) and i = 1, 2, 3.

Step 2: There exists a subsequence, which we will not relabel, such that for almost all
(β, γ) ∈ Br (0) we have

||f (k)
ν (β, γ; •)− fν ◦X(β, γ)||L1(B1(0)) → 0 for ν ∈ N \

{
1√
2

(011)

}
,

||g(k)
i (β, γ; •)− gi ◦X(β, γ)||L1(B1(0)) → 0 for i = 1, 2, 3,ˆ

B1(0)

ψ
((
−f (k)

(011), f
(k)
(011)

)
(β, γ; ξ)

)
dξ →

ˆ
B1(0)

ψ(f̂) dµ(f̂) for all ψ ∈ C(R2). (2.27)

Additionally, the probability measure µ on R2 is not a Dirac measure.
The combinatorics behind the first convergence can be found in Figure 2.17a.

For ν ∈ N \ { 1√
2
(011)} we have

ˆ
Br(0)

−
ˆ
B1(0)

∣∣f (k)
ν (β, γ; ξ)− fν ◦X(β, γ)

∣∣ dξ d(β, γ)

=

ˆ
Br(0)

−
ˆ
B1(0)

|fν (ν ·Xk(β, γ) + δkν · ξ)− fν(ν ·X(β, γ))| dξ d(β, γ)

.
ˆ
Br(0)

−
ˆ 1

−1

|fν(ν ·Xk(β, γ) + δks)− fν(ν ·X(β, γ))| ds d(β, γ).

As ν ·Xk(β, γ) and ν ·X(β, γ) depend on at least β or γ, see equations (2.15)-(2.19) and
(2.22)-(2.26), and we have the uniform convergence Xk → X, we can apply Lemma 2.17
to deduce that the integral in the last line vanishes in the limit. Passing to a subsequence,
we get strong convergence in ξ for almost all (β, γ) ∈ Br (0).

Also, for i = 1, 2, 3 we have g
(k)
i (β, γ; ξ)→ gi ◦X(β, γ) pointwise and in L1 by continuity

of affine functions.



2.3. PROOFS 51

Due to the fact that Xk(β, γ) · 1√
2
(011) = αk we see that f

(k)
(011) does not depend on β

and γ. Hence we may drop them in equation (2.27). As f(011) is a bounded function, the
sequence of push-forward measures defined by the left-hand side have uniformly bounded
supports. Consequently, there exists a limiting probability measure µ such that along a
subsequence we have

ˆ
B1(0)

ψ
((
−f (k)

(011), f
(k)
(011)

)
(ξ)
)

dξ →
ˆ
B1(0)

ψ(f̂) dµ(f̂)

for all ψ ∈ C(R2). Finally, if we had µ = δf̂ , then testing this convergence with the

function ψ(ĝ) = |ĝ2 − f̂2| we would see that

−
ˆ
B1(0)

∣∣∣∣f (k)
(011)(ξ)−−

ˆ
B1(0)

f
(k)
(011)(ζ) dζ

∣∣∣∣ dξ . −
ˆ
B1(0)

|f (k)
(011)(ξ)− f̂2| dξ → 0,

because in L1 the average is almost the constant closest to a function. However, this
would contradict the convergence to a strictly positive number (2.13) after undoing the
rescaling.

Step 3: For all (β, γ) as in Step 2 we have
ˆ
B1(0)

ψ
(
θ(k)(β, γ; ξ)

)
dξ →

ˆ
B1(0)

ψ
(

(θ1 ◦X, f̂ + (z2, z3))(β, γ)
)

dµ(f̂) (2.28)

for all ψ ∈ C0(R3) and where z2, z3 are defined by equations (2.30) and (2.31). The
measure µ̄ defined by the right-hand side is supported on K̃, see definition (2.4).

The previous calculations immediately give that θ
(k)
1 converges strongly in ξ to

θ1 ◦X(β, γ) =
(
f(101) + f(101) − f(110) − f(110) + g1

)
◦X(β, γ). (2.29)

Similarly, the blow-ups (θ
(k)
2 + f

(k)
(011))(β, γ; ξ) and (θ

(k)
3 − f

(k)
(011))(β, γ; ξ) converge strongly

to
z2(β, γ) :=

(
f(110) + f(110) − f(011) + g2

)
◦X(β, γ), (2.30)

resp.
z3(β, γ) :=

(
f(011) − f(101) − f(101) + g3

)
◦X(β, γ). (2.31)

As the required convergence (2.28) is induced by a topology, we only have to identify
the limit along subsequences, which may depend on β and γ, of arbitrary subsequences.
Thus we may extract a subsequence to obtain pointwise convergence a.e. of the sequences
θ

(k)
1 , (θ

(k)
2 +f

(k)
(011))(β, γ; ξ) and (θ

(k)
3 −f

(k)
(011))(β, γ; ξ). Applying both Egoroff’s and Lusin’s

Theorem, these convergences can be taken to be uniform and the limits to be continuous
on sets of almost full measure. Consequently we get that

ˆ
B1(0)

ψ
(
θ(k)(β, γ; ξ)

)
dξ →

ˆ
B1(0)

ψ
(

(θ1 ◦X, f̂ + (0, z2, z3))(β, γ)
)

dµ(f̂)

for all ψ ∈ C0(R3). Testing with ψ = dist(•, K̃) we see that the measure µ̄ has support
in K̃.
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e1

e3 e2
0

c

1

Figure 2.18: The dotted line {θ1 = c} for 0 < c ≤ 1 intersects K in the two
points ce1 + (1− c)e3 and ce1 + (1− c)e2.

Step 4: We have θ1◦X = bχB for some 0 < b < 1 and some measurable set B ⊂ R2 almost
everywhere. Furthermore, the shift (z2, z3)(β, γ) is constant on B almost everywhere.
Note that what we claim to prove in Step 4 is an empty statement if θ1 ◦X ≡ 0 a.e. in
Br (0). Let

B := {(β, γ) ∈ Br (0) : θ1 ◦X(β, γ) > 0 and the conclusion of Step 2 holds}.

Let Tz for z ∈ R2 be the translation operator acting on measures µ̃ on R2 via the
formula (Tzµ̃)(A) = µ̃(A − z). Due to the support of µ̄ lying in K̃ and K̃ ∩ {θ1 = c} =
{(c, 0, 1− c), (c, 1− c, 0)} for 0 < c ≤ 1, see Figure 2.18, we have for any (β, γ) ∈ B that

suppT−(z2,z3)(β,γ)µ ⊂ {(0, 1− θ1 ◦X(β, γ)) , (1− θ1 ◦X(β, γ), 0)} .

Thus we get that
µ = λδf̂ + (1− λ)δĝ

with 0 < λ < 1 and f̂ 6= ĝ since µ is not a Dirac measure by Step 2. Consequently, we
get

{f̂ , ĝ} − (z2, z3)(β, γ) = {(0, 1− θ1 ◦X(β, γ)) , (1− θ1 ◦X(β, γ), 0)} .

Both sets have the same diameter, which gives

2 (1− θ1 ◦X(β, γ)) = |f̂ − ĝ| > 0.

Consequently we have θ1 ◦ X(β, γ) < 1 a.e. Furthermore, as µ is independent of (β, γ)
also f̂ and ĝ are, which implies that θ1 ◦X is constant on B.

To see that (z2, z3) is constant on B note that the above implies

{f̂ , ĝ} − (z2, z3)(β, γ) = {f̂ , ĝ} − (z2, z3)(β̃, γ̃)

for (β, γ), (β̃, γ̃) ∈ B. As a non-empty set which is invariant under a single, non-vanishing
shift has to at least be countably infinite, we see that (z2, z3) has to be constant on B.

Step 5: If we have |B| = 0, i.e., θ1 ◦ X(β, γ) ≡ 0 for almost all |(β, γ)| < r, then the
solution u is a two-variant configuration.
As the plane H(α, (011)) contains plenty of lines parallel to E1, see Figure 2.17b, an



2.3. PROOFS 53

β

γ

Figure 2.19: Sketch of the set D × (r, r). We take differences of the constant
shifts (z2, z3) in γ and in β in order to isolate a single function fν by Remark
1.1 and prove that it is affine.

application of Lemma 2.16 ensures that θ1 ≡ 0 on Br (0). Corollary 2.10 then implies
that we are dealing with a two-variant configuration.

Step 6: If |B| > 0, then there exists d ∈ {[111], [111], [111], [111]} such that the configu-
ration is planar with respect to d.
By the decomposition of θ1 ◦ X(β, γ), see equation (2.29), and its interplay with the
coordinates X, see equations (2.21)-(2.26), we have

θ1 ◦X(β, γ) = f(101)(β) + f(101)(α− γ)− f(110)(γ)− f(110)(β − α) + λ1β + λ2γ + c

= F1(β) + F2(γ),

where λ1, λ2, c ∈ R and

F1(β) := f(101)(β)− f(110)(β − α) + λ1β,

F2(γ) := f(101)(α− γ)− f(110)(γ) + λ2γ + c.

As by Step 4 the function θ1 ◦ X(β, γ) takes at most two values almost everywhere we
have that either F1 is constant or F2 is constant almost everywhere.

We only deal with the case in which F2 is constant. The argument for the other one
works analogously. Consequently, we get a measurable set D ⊂ (−r, r) such that |D| > 0
and D × (−r, r) ⊂ B, see Figure 2.19.

We will follow the notation of Capella and Otto [24] in writing discrete derivatives of a
function φ(γ) as

∂hγφ(γ) := φ(γ + h)− φ(γ). (2.32)

We proved in Step 4 that the shift (z2, z3) is constant almost everywhere on B. Thus we
get for h ∈ (−r, r), β ∈ D and almost all γ ∈ (−r, r) that

0 = ∂hγ z2 ◦X(β, γ)
(2.30)
= ∂hγ

(
f(110) + f(110) − f(011) + g2

)
◦X(β, γ)

(2.23)−(2.26)
= ∂hγ

(
f(110)(γ) + f(110)(β − α)− f(011)(γ − β)

)
+ ∂hγg2 ◦X(β, γ)

= ∂hγ
(
f(110)(γ)− f(011)(γ − β)

)
+ ∂hγg2 ◦X(β, γ). (2.33)
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The fact that g2 is affine implies that ∂hγg2◦X is independent of β. Thus, “differentiating”

again under the constraint β, β̃ ∈ D we get

0 = ∂hγf(011)(γ − β)− ∂hγf(011)(γ − β̃).

Even though in general we have D 6= (−r, r), we can still apply [24, Lemma 7] due to
|D| > 0 to get

∂h∂h̃f(011)(t) = 0

for almost all t ∈ (−r, r) and shifts h, h̃ ∈ (−r, r). Consequently, the function f(011) is
affine, see e.g. Lemma 2.20. Referring back to equation (2.33) we see that also f(110) is
affine.

The upshot is that the decomposition for θ2 can be re-written as

θ2 = −f(011) + f(110) + g̃2 (2.34)

in Br (0) with the affine function g̃2 := f(110)−f(011)+g2. By equation (2.33) it furthermore
satisfies

∂γ g̃2 ◦X = 0 in Br (0).

In the standard basis of R3 this translates to

∂[111]g̃2 = 0 on Br

(
α√
2

(011)

)
,

since ∂γ corresponds to differentiating in the direction of [111] by equation (2.20). At
last we are in the position to choose r̃ := 1

2
r, so that we get

∂[111]g̃2 = 0 on Br̃ (0).

The analogue of (2.33) using z3 rather than z2 gives that f(101) is affine and that we may
find an affine function g̃3 with ∂[111]g̃3 = 0 such that

θ3 = f(011) − f(101) + g̃3 (2.35)

in Br (0).

The relation θ1 + θ2 + θ3 = 1 and the two vanishing derivatives ∂[111]θ2 = ∂[111]θ3 = 0
imply ∂[111]θ1 = 0. Therefore the affine function g̃1 := f(101) − f(110) + g1 satisfies

∂[111]g̃1 = ∂[111]θ1 = 0

on Br (0) as well and we get the decomposition

θ1 = f(101) − f(110) + g̃1. (2.36)

Equations (2.34)-(2.36) together with the affine function g̃i being independent of the
[111]-direction constitute planarity of the configuration, see Definition 2.4.
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Proof of Lemma 2.15. Without loss of generality, we may assume

ess inf
x1,x2∈[0,1]

f(x1) + g(x2) = c = 0.

Step 1: We have ess inf f + ess inf g ≥ 0.
Let δ > 0. We know that∣∣∣∣{t ∈ (0, 1) : f(t) < ess inf f +

δ

2

}∣∣∣∣ > 0

and ∣∣∣∣{t ∈ (0, 1) : g(t) < ess inf g +
δ

2

}∣∣∣∣ > 0.

Consequently, we have that∣∣{x ∈ (0, 1)2 : 0 ≤ f(x1) + g(x2) < ess inf f + ess inf g + δ
}∣∣ > 0.

As a result we know −δ ≤ ess inf f + ess inf g for all δ > 0, which implies the claim.

Step 2: Statement 1 implies statement 3.
For almost all x ∈ (0, 1)2 we know that

ε ≥ f(x1) + g(x2) ≥ ess inf f + g(x2) ≥ ess inf f + ess inf g ≥ 0.

In particular, we know
ess inf f + ess inf g ≤ ε.

By Fubini’s Theorem there exists an x2 ∈ (0, 1) such that we have

ε ≥ f(x1) + g(x2) ≥ ess inf f + g(x2) ≥ 0

for almost all x1 ∈ (0, 1). Thus we see

f(x1)− ess inf f = f(x1) + g(x2)− (ess inf f + g(x2)) ≤ ε.

A similar argument ensures g ≤ ess inf g + ε.

Step 3: Conclusion.
The proof for the implication “2 =⇒ 3 ” is very similar to Step 2. Lastly, if ε = 0, the
implications “3 =⇒ 1, 2” are trivial.

Proof of Lemma 2.16. The radius r > 0 is only required to ensure that P ⊂ B1 (0). We
may thus translate, re-scale and use the symmetries of the problem to only work in the
case i = 1, x0 = 0, I = (−1, 1). These additional assumptions imply

ν · l(I) =
√

2Ei · ν(−1, 1) = (−1, 1)

for ν ∈ N2 ∪N3 and, consequently, P =
⋂
ν∈N2∪N3

{x ∈ R3 : |ν · x| < 1}. Furthermore, we
only have to deal with the case θ1 ◦ l ≤ ε, as the other one can be dealt with by working
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with θ̃1 := 1− θ1. We remind the reader that Figure 2.12 depicts the general strategy of
the proof.

Step 1: Extend 0 ≤ θ1 ≤ ε to the plane H
(
0, 1

2
(011)

)
.

We parametrize the plane via

X(α, β) := α
1√
2

[111] + β
1√
2

[111].

By the decomposition into one-dimensional functions, see Lemma 2.9, and the existence
of traces, see Lemma 2.11, we have for almost all (α, β) ∈ (−1, 1)2 that

0 ≤ θ1 ◦X (α, β) = f(101)(−α)− f(110)(α) + f(101)(β)− f(110)(β) ≤ 1.

As X ·l(t) = t(1, 1) parametrizes the diagonal, the assumption (2.7) of θ1 almost achieving
its minimum along l and the two-dimensional statement Lemma 2.15 imply that for
almost all points α, β ∈ (−1, 1) we have

f(101)(−α)− f(110)(α) ≤ ess inf α̃
(
f(101)(−α̃)− f(110)(α̃)

)
+ ε,

f(101)(β)− f(110)(β) ≤ ess inf β̃

(
f(101)

(
β̃
)
− f(110)

(
β̃
))

+ ε.

Consequently, we have∣∣f(101)(−α)− f(110)(α)−
(
f(101)(−α̃)− f(110)(α̃)

)∣∣ ≤ ε,∣∣∣f(101)(β)− f(110)(β)−
(
f(101)(β̃)− f(110)(β̃)

)∣∣∣ ≤ ε

for all α, α̃, β, β̃ ∈ (−1, 1). These inequalities together with the assumption (2.7) imply
for almost all (α, β) ∈ (−1, 1)2 that

0 ≤ θ1 ◦X (α, β) ≤ 3ε.

Changing coordinates to y := 1
2

(α + β), z := 1
2

(α− β) we see that

0 ≤ θ1

(√
2(y, z,−z)

)
≤ 3ε

for almost all (y, z) ∈ R2 with y + z, y − z ∈ (−1, 1).

Step 2: Prove inequality (2.8) on a suitable subset of P .
Fubini’s theorem implies that for almost all z ∈ (−1, 1) we have

0 ≤ θ1

(√
2(y, z,−z)

)
≤ 3ε (2.37)

for almost all y ∈ R with y + z, y − z ∈ (−1, 1). Furthermore, this condition for y is
equivalent to y ∈ I(z) := (−1 + |z|, 1− |z|). We may thus repeat the above argument for
almost all z ∈ (−1, 1) with l̃(t) =

√
2tEi +

√
2(0, z,−z) and the plane H

(
2z, 1√

2
(011)

)
to

see that

0 ≤ θ1

(√
2(0, z,−z) + α

1√
2

[111] + β
1√
2

[111]

)
≤ 6ε
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√
2E1

−
√

2E1

−2ν−1

2ν+
1

2ν−1

−2ν+
1

E1

E2

E3

Figure 2.20: Sketch showing the extremal points of the polyhedron P .

for almost all α, β ∈ I(z). Due to measurability of θ1 another application of Fubini’s
theorem implies that we have the above inequality for almost all (z, α, β) ∈ R3 with
z ∈ (−1, 1) and α, β ∈ I(z).

The proof so far ensured that the argument of θ1 in this inequality lies in P . We now
need to prove that we did not miss significant parts.

Step 3: Prove that the estimate 0 ≤ θ1(x) ≤ 6ε holds for x ∈ P .
To this end, we exploit that P =

⋂
ν∈N2∪N3

{x ∈ R3 : |ν · x| ≤ 1} is a three-dimensional
polyhedron. A fundamental result in the theory of bounded, non-empty polyhedra, see
Brøndsted [18, Corollary 8.7 and Theorem 7.2], is that they can be represented as the
convex hull of their extremal points. Following Brøndsted [18, Chapter 1, §5], extremal
points x ∈ P are defined to leave P \{x} still convex, see also Figure 2.20. Thus, in order
to prove 0 ≤ θ1(x) ≤ 6ε holds for x ∈ P we only have to argue that the closure of the set

Q :=

{√
2(0, z,−z) + α

1√
2

[111] + β
1√
2

[111] : z ∈ (−1, 1) and α, β ∈ I(z)

}

contains all extremal points and is convex.

The extremal points can be computed in a straightforward manner by finding all inter-
sections of three of its two-dimensional faces still lying in P̄ . The resulting points are
±
√

2E1, ±2(011) = ±2ν+
1 and ±

√
2(011) = ±

√
2ν−1 , see Figure 2.20. These can be
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presented as

±
√

2e1 = ±
(

1√
2

[111]− 1√
2

[111]

)
, for z = 0, α = −β=± 1,

±
√

2(011) = ±
(

1√
2

[111] +
1√
2

[111]

)
, for z = 0, α = β =± 1,

±
√

2(011), for z = ±1, α = β = 0

and thus they lie in Q.

Furthermore, in order to see that Q is convex, we only have to prove

λI(z1) + (1− λ)I(z2) ⊂ I (λz1 + (1− λ)z2)

for all −1 ≤ z1, z2 ≤ 1. Indeed, by the triangle inequality we have

λI(z1) + (1− λ)I(z2)

= λ
(
− 1 + |z1|, 1− |z1|

)
+ (1− λ)

(
− 1 + |z2|, 1− |z2|

)
=
(
− 1 + λ|z1|+ (1− λ)|z2|, 1− λ|z1| − (1− λ)|z2|

)
⊂
(
− 1 + |λz1 + (1− λ)z2|, 1− |λz1 + (1− λ)z2|

)
= I (λz1 + (1− λ)z2) .

Step 4: Prove that fν is almost affine for ν ∈ N2 ∪ N3 if the one-dimensional functions
are continuous.
We will only deal with ν = 1√

2
(101). The advantage of working with continuous functions

is that we do not have to bother with sets of measure zero. Let (s, h, h̃) ∈ R3 be such
that s, s+ h, s+ h̃, s+ h+ h̃ ∈ (−1, 1). In order to exploit Remark 1.1 we set

x1 :=
√

2sE1,

x2 :=
√

2sE1 + h
1√
2

[111],

x3 :=
√

2sE1 + h̃
1√
2

[111],

x4 :=
√

2sE1 + h
1√
2

[111] + h̃
1√
2

[111].

To prove xj ∈ P for all j = 1, 2, 3, 4 we go through the cases:

• The facts x0 · ν = s and 1√
2
[111] · ν = 1√

2
[111] · ν = 1 clearly implies xj · ν ∈ (−1, 1)

for j = 1, 2, 3, 4.

• In contrast, for ν̃ = 1√
2
(101) we have x0 · ν̃ = −s and 1√

2
[111] · ν̃ = 1√

2
[111] · ν̃ = 0,

which still implies xj · ν̃ ∈ (−1, 1).

• For ν̃ ∈ N3 we have x0 · ν̃ = s and{
1√
2

[111] · ν, 1√
2

[111] · ν
}

= {0, 1},

which also implies xj · ν̃ ∈ (−1, 1).
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By Step 3 have
|θ1(x4) + θ1(x1)− θ1(x2)− θ1(x3)| ≤ 24ε.

Inserting the decomposition into the one-dimensional functions and making use of the
combinatorics above we see that∣∣∣f(101)(s+ h+ h̃) + f(101)(s)− f(101)(s+ h)− f(101)(s+ h̃)

∣∣∣ ≤ 24ε.

Proof of Lemma 2.17. Density of continuous functions with compact support in Lp im-
plies

lim
|h|→0

ˆ
Rn
|f(x+ h)− f(x)|p dx = 0.

For y ∈ B1 (0) setting h = z + τy we thus get

lim
|z|,τ→0

ˆ
Rn
|f(x+ z + τy)− f(x)|p dx = 0

uniformly in y. After integration in y we obtain the claim

lim
|z|,τ→0

ˆ
Rn
−
ˆ
B1(0)

|f(x+ z + τy)− f(x)|p dy dx = 0.

2.3.3 The case fν ∈ VMO for all ν ∈ N

Proof of Proposition 2.18. Throughout the proof let r̃ > 0 be a universal, fixed radius,
which we will choose later. We will denote generic radii with r > r̃. These may decrease
from line to line.

Applying the mean value theorem for VMO-functions, Lemma 2.19, we get that if θ ∈
{e1, e2, e3} almost everywhere on Br̃ (0), then it holds that θ ≡ ei for some i ∈ {1, 2, 3}
on Br̃ (0), which implies degeneracy by Corollary 2.10. Thus we may additionally assume
that on Br̃ (0), exploiting symmetry of the problem, that

|{x ∈ Br̃ (0) : θ1(x) = 0, 0 < θ2(x), θ3(x) < 1}| > 0. (2.38)

Step 1: Find a set A ⊂ Br̃ (0) with |A| > 0 and ε = ε(δ) % 0 as δ % 0 such that the
following hold:

• On A we have

θ1 = 0 and
η

2
< θ2, θ3 < 1− η

2
, (2.39)

θ1,δ < ε and
η

2
< θ2,δ, θ3,δ < 1− η

2
. (2.40)

• On Br (0) we have

θδ ⊂ K̃ε := K̃ +Bε (0) ∩ conv(K̃) on Br (0), (2.41)

where conv(K̃) denotes the convex hull, see Figure 2.21.
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e1

e3 e2

e(uδ)(0)

θ1

0
ε

1

Figure 2.21: Sketch of the strains taking the form e =
∑3

i=1 θiei for θ ∈ K̃ε. The
strain e(uδ)(0) =

∑3
i=1 θi,δei essentially lies strictly between e2 and e3.

We may furthermore assume

0 ∈ A (2.42)

to be a point of density one in the sense that |A∩Bκ(0)|
|Bκ(0)| → 1 as κ→ 0.

Recall that we defined θδ(x) = −́
Bδ(x)

θ(y)dy. As convolutions are convex operations we

obtain θδ ∈ conv(K̃) a.e. Another application of Lemma 2.19 gives the fuzzy inclusion
(2.41) with ε = ε(δ)→ 0 as δ → 0. The additional assumption (2.38) implies that there
exists η > 0 such that on Br̃ (0) we have

|{x ∈ Br̃ (0) : θ1(x) = 0, η < θ2(x), θ3(x) < 1− η}| > 0. (2.43)

Lebesgue point theory implies that θδ → θ pointwise almost everywhere. Using Egoroff’s
Theorem, we may upgrade this convergence to uniform convergence on some set

A ⊂ {x ∈ Br̃ (0) : θ1(x) = 0, η < θ2(x), θ3(x) < 1− η}

with |A| > 0 and such that all points in A have density one. Using both uniform
convergences above we get that for δ > 0 small enough we have

θ1,δ < ε,
η

2
< θ2,δ, θ3,δ < 1− η

2
on A

with ε = ε(δ)→ 0 as δ → 0.

To see that we may assume property (2.42), namely 0 ∈ A, let r̄ ≤ 1 be a universal
radius with which the conclusion of the proposition holds under the assumption that
we indeed have 0 ∈ A. We may then choose the radius r̃ = 1

4
r̄ in inequality (2.43) so

that A ⊂ B 1
4
r̄ (0). For any point x ∈ A we then clearly have B 1

2
(x) ⊂ B1 (0). Shifting

and rescaling said ball to B1 (0) and applying the conclusion in the new coordinates, we
see that the configuration only involves two variants on B 1

2
r̄ (x). Consequently, it is a

two-variant configuration on B 1
4
r̄ (0) ⊂ B 1

2
r̄ (x).

Step 2: On the plane H
(
0, 1√

2
(011)

)
we split up θ1 into two one-dimensional functions

and find maximal intervals on which they are essentially constant.
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Similarly to the proof of Proposition 2.13 we parametrize the plane H
(
0, 1√

2
(011)

)
via

Xk(β, γ) := β
1√
2

[111] + γ
1√
2

[111],

which gives the relations

X(β, γ) · 1√
2

(011) = 0, (2.44)

X(β, γ) · 1√
2

(101) = β, (2.45)

X(β, γ) · 1√
2

(110) = γ, (2.46)

X(β, γ) · 1√
2

(011) = γ − β, (2.47)

X(β, γ) · 1√
2

(101) = −γ, (2.48)

X(β, γ) · 1√
2

(110) = β. (2.49)

Absorbing the affine function g1 in decomposition (2.3) into the four one-dimensional
functions fν for ν ∈ N2 ∪N3 we may assume

θ1 = f(101) + f(101) − f(110) − f(110). (2.50)

As before, we exploit the combinatorial structure of the normals discussed in Remark
1.1 and sort these according to their dependence on β or γ on the plane H(0, (011)) by
defining

F1(β) := f(101)(β)− f(110)(β),

F2(γ) := f(101)(−γ)− f(110)(γ).

As a result of Lemma 2.15 we may shuffle around some constant so that we can assume

F1, F1 ≥ 0. (2.51)

The decomposition then turns into

θ1,δ ◦X(β, γ) = F1,δ(β) + F2,δ(γ)

after averaging.

Due to our assumption that 0 ∈ A and the fact that inequality (2.39) is an open condition,
continuity of θδ implies that there exists κ = κ(δ) > 0 such that

θ1,δ < ε and
η

2
< θ2,δ, θ3,δ < 1− η

2
on Bκ (0). (2.52)
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As θ1,δ is a sum of two one-dimensional functions that is small due to the first inequality
of (2.52) the individual terms are small by Lemma (2.15), i.e., we have

F1,δ(β)− min
[−κ,κ]

F1,δ ≤ ε on [−κ, κ],

F2,δ(γ)− min
[−κ,κ]

F2,δ ≤ ε on [−κ, κ],

where we used continuity to replace the essential infima. In particular, for the oscillations
on closed intervals I, defined as

oscI F1,δ := max
I
F1,δ − min

[−κ,κ]
F1,δ,

oscI F2,δ := max
I
F2,δ − min

[−κ,κ]
F2,δ,

we have that

0 ≤ osc[−κ,κ] F1,δ ≤ ε,

0 ≤ osc[−κ,κ] F2,δ ≤ ε.

By continuity of F1,δ and F2,δ the oscillations are continuous when varying the endpoints
of the involved intervals. Thus there exist unique maximal intervals

[−κ, κ] ⊂ Iδ1 ⊂ [−r, r] and [−κ, κ] ⊂ Iδ2 ⊂ [−r, r]

such that

oscIδ1 F1,δ ≤ ε and oscIδ2 F2,δ ≤ ε.

We would like to prove that [−r̃, r̃] ⊂ Iδ1 , I
δ
2 , but for the next couple of steps we will

be content with making sure they do not shrink away as δ → 0, see Figure 2.22 for an
outline of the argument. Note that we will drop the dependence of I1 and I2 on δ in the
following as long as we keep it fixed.

Step 3: Prove min{θ2,δ, θ3,δ} < ε on ∂ (I1 × I2) ∩ (−r, r)2.
For β ∈ ∂I1 ∩ (−r, r) we have

F1,δ(β)− min
[−κ,κ]

F1,δ = ε.

Together with (2.51) we obtain for γ ∈ I2 ∩ (−r, r) that

θ1,δ(β, γ) = F1,δ(β) + F2,δ(γ) = ε+ min
[−κ,κ]

F1,δ + F2,δ(γ) ≥ ε.

Swapping the roles of β and γ and using Step 1 and the definition of K̃ we thus see

min{θ2,δ, θ3,δ} < ε (2.53)

on the set ∂(I1 × I2) ∩ (−r, r)2.
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I1 × I2

l

l(0)

l(tmin)

l(tmax)

Figure 2.22: Sketch relating I1 × I2 and the line l(t) = t(1, 1). Step 3 ensures
that min(θ2,δ, θ3,δ) < ε on ∂(I2 × I3). In Step 4 we will show that θ2 is almost
affine along the dashed part of l, which we will exploit in Step 5 to argue that
θ2 ◦ l(tmin) ≈ 0 and θ2 ◦ l(tmin) ≈ 1 or vice versa due to θ2 ◦ l(0) 6≈ 0, 1. The
function θ2 being of vanishing mean oscillation allows us then to deduce that
tmax and tmin cannot get too close as δ → 0.

Step 4: The functions fν,δ ◦ X for ν ∈ N2 ∪ N3, θ2,δ ◦ X and θ3,δ ◦ X are almost affine
along l(t) := t(1, 1) as long as tδmin < t < tδmax.
Here tδmin < 0 < tδmax are the two parameters for which l intersects ∂(Iδ1 × Iδ2), see Figure
2.22. We again drop the superscripts in the notation of these objects as well as long as
we keep δ fixed.

For parameters β̄ ∈ arg min[−κ,κ] F1,δ and γ̄ ∈ arg min[−κ,κ] F2,δ we have

θ1,δ ◦X(β̄, γ̄) ≤ ε.

Consequently we have for any (β, γ) ∈ I1 × I2 and for a generic constant c > 0 which
may change from line to line that

0 ≤ θ1,δ ◦X(β, γ) ≤ θ1,δ ◦X(β̄, γ̄) + oscI1 F1,δ + oscI2 F2,δ ≤ cε. (2.54)

As we have that X ◦ l(t) =
√

2tE1 is parallel to E1 = [100] and l(t) ∈ I1 × I2 for
t ∈ [tmin, tmax] we can apply Lemma 2.16 to see that fν,δ is almost affine

∣∣fν,δ ◦X ◦ l(t+ h+ h̃) + fν,δ ◦X ◦ l(t)
− fν,δ ◦X ◦ l(t+ h)− fν,δ ◦X ◦ l(t+ h̃)

∣∣ < Cε

for t, h, h̃ ∈ R such that t, t+h, t+ h̃, t+h+ h̃ ∈ [tmin, tmax] and ν ∈ N2∪N3. Plugging
this into the decomposition (2.3) of θ2 and θ3 and observing that affine functions drop
out in second discrete derivatives and that f(011) and f(011) drop out as the line X ◦ l is
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parallel to E1, we obtain∣∣θ2,δ ◦X ◦ l(t+ h+ h̃) + θ2,δ ◦X ◦ l(t)
− θ2,δ ◦X ◦ l(t+ h)− θ2,δ ◦X ◦ l(t+ h̃)

∣∣ < Cε,∣∣θ3,δ ◦X ◦ l(t+ h+ h̃) + θ3,δ ◦X ◦ l(t)
− θ3,δ ◦X ◦ l(t+ h)− θ3,δ ◦X ◦ l(t+ h̃)

∣∣ < Cε,

(2.55)

for t, h, h̃ ∈ R such that t, t+ h, t+ h̃, t+ h+ h̃ ∈ [tmin, tmax].

Step 5: If δ > 0 is sufficiently small and we have −r < tmin < tmax < r, then

θ2,δ ◦X ◦ l(tmin) < ε and θ3,δ ◦X ◦ l(tmax) < ε

or
θ3,δ ◦X ◦ l(tmin) < ε and θ2,δ ◦X ◦ l(tmax) < ε.

By inequality (2.53) the statement θ3,δ ◦X ◦ l(tmax) < ε implies θ2,δ ◦X ◦ l(tmax) > 1− ε.
We also get the same implication at tmin.
Aiming for a contradiction we assume that

θ3,δ ◦X(l(tmin)) < ε,

θ3,δ ◦X(l(tmax)) < ε.
(2.56)

Recalling Step 3 we see that the only other undesirable case is θ2,δ ◦ X(l(tmin)) < ε,
θ2,δ ◦X(l(tmax)) < ε, which can be dealt with in the same manner.

In order to transport this information to the point l(0) we use that θ3,δ ◦ X is almost
affine along l(t), see (2.55), to get∣∣θ3,δ ◦X ◦ l(tmax)− θ3,δ ◦X ◦ l(0)− θ3,δ ◦X ◦ l(tmin + tmax) + θ3,δ ◦X ◦ l(tmin)

∣∣ < Cε.

with t := tmin, h := −tmin and h̃ := tmax.

Combining this inequality with θ3,δ ◦X ◦ l(tmin + tmax) ≥ 0 and the supposedly incorrect
assumption (2.56) we arrive at

θ3,δ ◦X ◦ l(0) < θ3,δ ◦X ◦ l(tmax) + θ2,δ ◦X ◦ l(tmin)− θ2,δ ◦X ◦ l(tmin + tmax) + Cε

≤ Cε

However, this is in contradiction to the strain lying strictly between two martensite strains
at 0 for small δ, see (2.52), which proves the claim.

Step 6: We do not have lim infδ→0 t
δ
max − tδmin = 0.

Towards a contradiction we assume that the difference does vanish in the limit. Let
gδ(s) :=

(
f(101),δ + f(101),δ

)
((1−s)tδmin+stδmax) for s ∈ [0, 1]. By Lemma 2.20 the sequence

gδ converges uniformly to an affine function g. As by Step 5 we know that the linear part
of g has to be nontrivial, recall that f(011),δ and f(011),δ drop out in the decomposition of
θ2 along X ◦ l, we get that

ˆ 1

0

∣∣∣∣g(s)−
ˆ 1

0

g(s̃) ds̃

∣∣∣∣ ds > 0.
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Undoing the rescaling we conclude that

lim
δ→0
−
ˆ tδmax

tδmin

∣∣∣∣∣(f(101),δ + f(101),δ

)
(t)−−

ˆ tδmax

tδmin

(
f(101),δ + f(101),δ

)
(t̃) dt̃

∣∣∣∣∣ dt > 0.

Due to Jensen’s inequality this implies

lim inf
δ→0

−
ˆ tδmax+δ

tδmin−δ

∣∣∣∣∣(f(101) + f(101)

)
(t)−−

ˆ tδmax+δ

tδmin−δ

(
f(101) + f(101)

)
(t̃) dt̃

∣∣∣∣∣ dt > 0.

However, this is a contradiction to our assumption that f(101), f(101) ∈ VMO since we

have tδmax − tδmin + 2δ → 0.

Step 7: The open set

{x ∈ Br (0) : x is a Lebesgue point of θ1 with θ1(x) = 0}o

has a connected component P such that 0 ∈ P . Furthermore, the set P satisfies

P ∩Br (0) =
⋂

ν∈N2∪N3

{ν · x ∈ Iν} ∩Br (0)

for open, non-empty intervals Iν ⊂ R, i.e., up to localization it is a polyhedron whose
faces’ normals are contained in N2 ∪N3.
By Step 6 and Lemma 2.16 we find a connected component P of the above set such that
0 ∈ P in the limit δ → 0. In the following, we will choose the precise representatives of
all involved functions, see Evans and Gariepy [42, Chapter 1.7.1], so that we can evaluate
θ1 in a pointwise manner.

By distributionally differentiating the condition

f(101) + f(101) − f(110) − f(110)

(2.50)
= θ1 ≡ 0

on P in two different directions d, d̃ ∈ D, see Subsection 1.1.5, and making use of Remark
1.1 we see that fν is locally affine on P for ν ∈ N2 ∪ N3. By connectedness of P , they
must be globally affine:

Let ν ∈ N2 ∪N3 and let G := {g : R3 → R : g is affine}. Let

Ug := {x ∈ P : fν(ν · y) ≡ g(y) for y ∈ Bκ (x) for some κ > 0}.

By construction, these sets are open. They are also disjoint because two affine functions
agreeing on a non-empty open set have to coincide globally. Finally, we have P =

⋃
g∈G Ug

by assumption. Therefore, there exists a single affine function g such that fν = g on P .
We may thus re-define fν for ν ∈ N2 ∪N3 to satisfy

fν ≡ 0 on P. (2.57)
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x0
κ

F

(101)

a)

x0

H(bδ, (101))

2c

b)

Figure 2.23: a) Inside Bκ (x0), the polyhedron P looks like a half-space with
boundary F and exterior normal ν+

2 . b) The dichotomy θ2,δ ≈ 0 or θ2,δ ≈ 1 on the
dashed line H(bδ, (101)) ∩ Bκ (x0) can be propagated to the gray neighborhood
of x0 as long as we have dist(x0, H(bδ, (101))) < c.

The image Iν := ν · P is open and connected, and thus an interval. It is also clearly
non-empty and by construction we have

P ⊂
⋂

ν∈N2∪N3

{ν · x ∈ Iν} ∩Br (0).

As it holds that fν̃ = 0 on
⋂
ν∈N2∪N3

{ν · x ∈ Iν} ∩ Br (0) for all ν̃ ∈ N2 ∪N3 we get the
other inclusion ⋂

ν∈N2∪N3

{ν · x ∈ Iν} ∩Br (0) ⊂ P,

which proves the claim.

Step 8: Let F be a face of P with normal ν ∈ Ni for i ∈ {2, 3} and F ∩Br (0) 6= ∅. Then
θi ≡ 0 or θi ≡ 1 on F .
The claim is meaningful by Lemma 2.11. In order to keep notation simple, we assume
that ν = 1√

2
(101) and that ν is the outer normal to P at F , i.e., we have P ⊂ {x · ν < b}

with {b} = ν · F . A two-dimensional sketch of this situation can be found in Figures
2.23a, while a less detailed three-dimensional one is shown in Figure 2.14a.

Furthermore, we only have to prove the dichotomy θ2 ≡ 0 or θ2 ≡ 1 locally on F , i.e., on
Bκ (x0) for all x0 ∈ F and some κ̃ = κ̃(x0) > 0 such that

Bκ̃ (x0) ∩H(b, ν) ⊂ F ∩Br (0) and Bκ̃ (x0) ∩ {x · ν < b} ⊂ P : (2.58)

By Lemma 2.11 and fν ∈ VMO for all ν ∈ N we have θi ◦ X ∈ VMO
(
F̃
)
, where

X : F̃ → F is an affine parametrization of F . An application of the mean value theorem
for VMO-functions, Lemma 2.19, gives the “global” statement on F due to connectedness
of F .

Let x0 ∈ F be such that there exists κ > 0 with the inclusions (2.58) being satisfied for
κ̃ = κ, where in the following κ may decrease from line to line in a universal manner.
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We can use the identities (2.57) to conclude f(101) ≡ 0 on B2κ (x0) ∩ {x · ν < b} ⊂ P and

fν ≡ 0 on B2κ (x0) for ν ∈ N2 ∪N3 \
{

1√
2
(101)

}
. Consequently, we get

f(101),δ (b− c) = 0 and fν,δ ≡ 0 on Bκ (x0) (2.59)

after averaging provided we have δ < c for a constant 0 < c < κ to be chosen later. In
particular, the latter together with the decomposition (2.50) implies

θ1,δ = f(101),δ. (2.60)

Therefore, we cannot have f(101) ≡ 0 on the larger set Bκ (x0)∩{x ·ν < b+c} as otherwise
we would get the contradiction

Bκ (x0) ∩ {x · ν < b+ c} ⊂ P ⊂ {x · ν < b}.

Written in terms of the approximation f(101),δ, recalling that ε = ε(δ)→ 0 as δ → 0, this
gives f(101),δ(bδ) ≥ ε for some bδ ∈ [b − c, b + c] ∩ [−r, r] and δ > 0 small enough. By
equation (2.59) and continuity we may additionally assume that f(101),δ(bδ) = ε which
due to equation (2.60) implies that

θ1,δ(x) = ε (2.61)

for all x ∈ H̃ := H
(
bδ,

1√
2
(101)

)
∩Bκ (x0), see Figure 2.23b.

Combining this with the inclusion θδ ∈ K̃ +Bε (0) we consequently get

min{θ2,δ(x), θ3,δ(x)} < ε

on H̃. Due to θ1 + θ2 + θ3 ≡ 1 we convert this into

min{θ2,δ(x), 1− θ2,δ(x)} < 2ε

for all x ∈ H̃. Continuity implies the dichotomy we have

either θ2,δ(x) < 2ε for x ∈ H̃ or θ2,δ(x) < 2ε for x ∈ H̃.

In order to propagate this information back to x0 let xδ := x0 +(bδ − b) 1√
2
(101). The line

l(t) := xδ +
√

2tE2 satisfies l(t) · 1√
2
(101) = bδ by x0 ∈ F ⊂ H

(
b, 1√

2
(101)

)
. We also have

l(t) ∈ Bκ (x0) for t ∈
[
−κ

2
, κ

2

]
provided we choose c ≤ κ

2
. Therefore, the above dichotomy

holds along l. Consequently, Lemma 2.16 implies that

min{θ2,δ(x), 1− θ2,δ(x)} < 12ε (2.62)

on Bκ (xδ). By definition of x0 and bδ we have |x0 − xδ| = |b − bδ| ≤ c. As a result, the
choice c ≤ κ

2
ensures that estimate (2.62) holds on Bκ̃ (x0) for κ̃ = κ − c. By Lemma

2.11 we see that in the limit δ → 0 we obtain θ2 ≡ 0 or θ2 ≡ 1 on Bκ̃ (x0) ∩ F , which
concludes Step 8.
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Step 9: Transport the information θi ≡ 0 or θi ≡ 1 on the face F closest to the origin
back into P .
Let Iν = (aν , bν) be the intervals obtained in Step 7. The proposition is proven once
we can show that aν ≥ −r̃ < r̃ ≤ bν for all ν ∈ N2 ∪ N3. Towards a contradiction we
assume otherwise. Furthermore, for the sake of concreteness we assume that b := b(101) =
minν∈N2∪N3{−aν , bν} < r̃, i.e., we assume the face F of P we considered in the previous
step to be the one closest to the origin. All other cases work the same.

For l(t) := b 1√
2
(101) +

√
2tE2 we know by Step 8 that

θ2 ◦ l(t) = 0

for almost all t ∈ J := l−1(F ∩ Br (0)). Lemma 2.16 implies that θ2 ≡ 0 on the convex
polyhedron

Q :=
⋂

ν∈N1∪N3

{x · ν = ν · l(t) for some t ∈ J} ,

see Figure 2.11b for a sketch relating P and Q in three dimensions. As any point of the
closure Q has positive density, we only have to prove 0 ∈ Q to get a contradiction to 0
being a point of density one of the set

{θ1 = 0, 0 < θ2, θ3 < 1},

see Step 1. Furthermore, we may suppose that b > 0 as that would imply 0 ∈ F , which
by F ⊂ Q trivially gives the statement.

Step 10: Prove 0 ∈ Q, i.e., we can transport θ2 = 0 or θ2 = 1 to the origin.
To this end, let xα :=

√
2α(101) for α > 0. In order to check xα ∈ Q we calculate

xα ·
1√
2

(011) =α,

xα ·
1√
2

(011) =− α,

xα ·
1√
2

(110) =α,

xα ·
1√
2

(110) =α.

Consequently, we have

xα ·
1√
2

(011) = l(t) · 1√
2

(011) and xα ·
1√
2

(110) = l(t) · 1√
2

(110)

⇐⇒ α =
1

2
b+ t

⇐⇒ t = α− 1

2
b.
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For the t ∈ R in the previous line we have indeed l(t) = b 1√
2
(111) +

√
2αE2 ∈ Br (0) and

l(t) ∈ F due to the first equivalence above and

a(011) < l(t) · 1√
2

(011)= −b+ α < b(011)

a(110) < l(t) · 1√
2

(110) = b− α < b(110)

due to a(011) ≤ −b < 0 ≤ b(011) and a(110) ≤ 0 < b ≤ b(110). This proves

xε ∈ {ν · x = ν · l(t) for some t ∈ J}

for ν = 1√
2
(110) and ν = 1√

2
(011).

Furthermore, we compute

xα ·
1√
2

(011) = l(t) · 1√
2

(011) and xα ·
1√
2

(110) = l(t) · 1√
2

(110)

⇐⇒ α =
1

2
b− t

⇐⇒ t =
1

2
b− α

and, again for the t ∈ R given by the previous line, we have l(t) = b 1√
2
(111)−

√
2αE2 ∈

Br (0). We also have l(t) ∈ F by the equivalence above and

a(110) < l(t) · 1√
2

(110) = b− α < b(110),

a(011) < l(t) · 1√
2

(011) = b− α < b(011),

where we used a(110) ≤ 0 < b ≤ b(110) and a(011) ≤ 0 < b ≤ b(011). We thus have
xε ∈ {ν · x = ν · l(t) for some t ∈ J} for ν = 1√

2
(011) and ν = 1

2
(110). As a result, we

have xα ∈ Q, which ensures 0 ∈ Q̄ and finally concludes the proof.

Proof of Lemma 2.19. The fact that fδ = −́
Bδ(0)

f(y) dy is continuous follows easily from

the observation that fδ is the convolution of f with 1
|Bδ(0)|χBδ(0).

As long as Bδ (x) ⊂ U , we have that

dist(fδ, K) = inf
f̂∈K
|fδ(x)− f̂ | = −

ˆ
Bδ(x)

inf
f̂∈K
|fδ(x)− f̂ | dy ≤ −

ˆ
Bδ(x)

|fδ(x)− f(y)| dy → 0

uniformly in x by definition of VMO.

Proof of Lemma 2.20. By convolution (and restriction to a slightly smaller interval) we
may suppose that g is continuous. Without loss of generality we may additionally assume
g(0) = 0. Recall ε := supt,t+h,t+h̃,t+h+h̃∈[0,1] |g(t+ h+ h̃)− g(t+ h)− g(t+ h̃) + g(t)|.
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By induction, we can prove that for xi ≥ 0 with 1 ≤ i ≤ n such that
∑n

i=1 xi ≤ 1 we
have ∣∣∣∣∣g

(
n∑
i=1

xi

)
−

n∑
i=1

g(xi)

∣∣∣∣∣ ≤ (n− 1)ε.

Indeed, the case n = 1 is trivial and the crucial part of the induction step is∣∣∣∣∣g
(
n−1∑
i=1

xi + xn

)
−

n−1∑
i=1

g(xi)− g(xn)

∣∣∣∣∣ ≤
∣∣∣∣∣g
(
n−1∑
i=1

xi

)
−

n−1∑
i=1

g(xi)

∣∣∣∣∣+ ε.

In particular, for x ∈ [0, 1] and n ∈ N such that nx ∈ [0, 1] we have that

|g (nx)− ng(x)| ≤ (n− 1) ε, (2.63)

which implies ∣∣∣∣g (x)− 1

n
g(nx)

∣∣∣∣ ≤ ε. (2.64)

Choosing |x| ≤ 1
2

and n =
⌊

1
x

⌋
in this inequality gives

|g(x)| ≤
⌊

1

x

⌋−1 ∣∣∣∣g(⌊1

x

⌋
x

)∣∣∣∣+ ε ≤ 2x||g||∞ + ε,

where we used
⌊

1
x

⌋
x ≥

(
1
x
− 1
)
x = 1− x ≥ 1

2
. For x, y ∈ [0, 1] with |x− y| ≤ 1

2
therefore

get
|g(x)− g(y)| ≤ |g(|x− y|)|+ ε ≤ 2|x− y| ||g||∞ + 2ε.

Plugging x = 1
m

, n = k into estimate (2.63) and x = 1
m

, n = m into estimate (2.64) for
numbers k,m ∈ N with k ≤ m gives∣∣∣∣g( km

)
− k

m
g(1)

∣∣∣∣ ≤ ∣∣∣∣g( km
)
− kg

(
1

m

)∣∣∣∣+

∣∣∣∣kg( 1

m

)
− k

m
g(1)

∣∣∣∣ ≤ (2k − 1)ε ≤ 2mε.

Additionally note that for x ∈ [0, 1] and N ∈ N we have∣∣∣∣x− 1

N
bNxc

∣∣∣∣ ≤ 1

N
.

Collecting all of the above, we have for N ≥ 2 and x ∈ [0, 1] that

|g(x)− xg(1)|

≤
∣∣∣∣g(x)− g

(
1

N
bNxc

)∣∣∣∣+

∣∣∣∣g( 1

N
bNxc

)
− 1

N
bNxc g(1)

∣∣∣∣+

∣∣∣∣ 1

N
bNxc − x

∣∣∣∣ |g(1)|

≤ 2

∣∣∣∣x− 1

N
bNxc

∣∣∣∣ ||g||∞ + 2ε+ 2Nε+

∣∣∣∣x− 1

N
bNxc

∣∣∣∣ ||g||∞
≤ 3

N
||g||∞ + 4Nε.
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If ||g||
1
2∞ε−

1
2 ≥ 2 we may choose N ∈ N with N ≥ 2 such that

||g||
1
2∞ε
− 1

2 ≤ N < ||g||
1
2∞ε
− 1

2 + 1

and g̃(x) := xg(1), which gives

||g − g̃||∞ . ||g||
1
2∞ε

1
2 + ε ≤ 3

2
||g||

1
2∞ε

1
2 .

If instead we have ||g||
1
2∞ε−

1
2 < 2 we set g̃ ≡ 0 and get

||g − g̃||∞ ≤ 2ε.

2.3.4 Classification of planar configurations

Proof of Lemma 2.21. Without loss of generality, we may assume that fν1 is affine and
that

θ2|H(α,ν2) = bχB, (2.65)

where B has non-vanishing measure. Absorbing fν1 into g2 and g3, as well as absorbing
g1 − 1 into fν2 and fν3 , which we can do because ∂dg1 = 0 and the remaining variables
are spanned by ν2 and ν3, we are left with

θ1(x) = fν2(x · ν2)− fν3(x · ν3) + 1,

θ2(x) = fν3(x · ν3) + g(x),

θ3(x) = − fν2(x · ν2) − g(x)

for an affine function g with ∂dg = 0. One of the two functions fν2 and fν3 cannot be
affine as otherwise we would be dealing with a two-variant configuration by Proposition
2.18. Therefore, there are two cases: Precisely one of the two remaining one-dimensional
functions is affine, or both are not.

Let us first deal with fν2(x) being affine. We cannot have |θ−1
3 (0)| > 0, because two affine

functions agreeing on a set of positive measure have to agree everywhere, which would
imply θ3 ≡ 0 and thus there would only be two martensite variants present. We thus
have |θ−1

1 (0)| > 0 and |θ−1
2 (0)| > 0. The same argument applied to the x · ν2-dependence

of θ1 and θ2 implies that fν2 is constant and g only depends on x ·ν3. Consequently, there
exist a, b ∈ R such that the decomposition simplifies to

θ1(x) = − fν3(x · ν3) + 1,

θ2(x) = fν3(x · ν3)− a x · ν3 − b,
θ3(x) = a x · ν3 + b.

For x ∈ Br (0) such that fν3(x) 6= 1 we must have θ2(x) = 0, which implies that

fν3(x · ν3) = χA(x · ν3) + (a x · ν3 + b)χAc(x · ν3)
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for some measurable set A ⊂ R. Plugging this into the decomposition gives

θ1(x) = (1− a x · ν3 − b)χAc(x · ν3),

θ2(x) = (1− a x · ν3 − b)χA(x · ν3),

θ3(x) = a x · ν3 + b,

i.e., the decomposition is a planar second-order laminate according to Definition 2.5. The
argument for fν3 being affine is the same.

Finally, let us work with the case that both functions are not affine. Using the two-
valuedness (2.65) on H(α, ν2), we may split up g(x) = g̃2(x ·ν2)+ g̃3(x ·ν3) into two affine
functions such that g̃2(α) = 0 and

fν3(x · ν3) + g̃3(x · ν3) = θ2(x) = bχB(x)

for x ∈ Br (0) with x · ν2 = α. Therefore χB captures the entire dependence on x · ν3 and
we abuse the notation in writing

θ1(x) = fν2(x · ν2)− fν3(x · ν3) + 1,

θ2(x) = bχB(x · ν3) + g̃2(x · ν2),

θ3(x) = − fν2(x · ν2) − g(x).

As fν3 is not affine, the set B has neither zero nor full measure. Choosing x such that
χB(x·ν3) = 0 we see that g̃2 ≥ 0. Thus it is an affine function which achieves its minimum
at g̃2(α) = 0, which in turn makes sure that g̃2 ≡ 0. Consequently, we can re-define the
functions on the right-hand side to get

θ1(x) = fν2(x · ν2)− bχB(x · ν3) + 1,

θ2(x) = bχB(x · ν3),

θ3(x) = − fν2(x · ν2) − g̃3(x · ν3).

For x such that x · ν3 ∈ B we see that

θ1(x) = 1− b, θ3(x) = 0 or θ1(x) = 0, θ3(x) = 1− b.

This implies fν2 = −(1 − b)χA for a measurable set A of neither zero nor full measure,
since fν2 is not affine. On the set {x · ν2 ∈ Ac} ∩ {x · ν3 ∈ B} of positive measure we
get that θ3(x) = 0 due to our assumption that 0 < b < 1, resulting in g̃3 ≡ 0. Hence the
decomposition can be written as

θ1(x) = −(1− b)χA(x · ν2)− bχB(x · ν3) + 1,

θ2(x) = bχB(x · ν3),

θ3(x) = (1− b)χA(x · ν2),

meaning the configuration is a planar checkerboard according to Definition 2.6.
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Proof of Proposition 2.22. We denote the fixed radius for which the assumptions of the
lemma hold by r̃, while r > r̃ is a generic radius that may decrease from line to line.

Step 1: Rewrite the problem in a two-dimensional domain and bring the decomposition
(2.3) into an appropriate form.
Using the specific form of the normals νi and the fact that they are linearly independent,
we can find orientations ν̃i = ±νi for i = 1, 2, 3 which satisfy ν̃1+ν̃2+ν̃3 = 0. Furthermore,
the strain e(u) only depends on directions in V := span(ν̃1, ν̃2, ν̃3). Thus we can rotate
the domain of definition such that V = R2 and treat e(u) as a function defined on
B1 (0) ⊂ R2. In the following we will abuse the notation by writing νi for the images of
ν̃i under this rotation.

The condition ν1 + ν2 + ν3 = 0 implies that

−ν1 · ν2 − ν1 · ν3 = 1,

−ν1 · ν2 − ν2 · ν3 = 1,

− ν1 · ν3 − ν2 · ν3 = 1,

which by elementary calculation gives νi · νj = −1
2

for i, j = 1, 2, 3 and i 6= j. Thus
{νi, νj} is a basis of R2 and the angle between the two vectors is universally bounded
away from zero. In fact, it is given by 120°, see Figure 2.16a.

Furthermore, we rewrite the decomposition (2.1) as

θ1(x) = f
(1)
2 (x · ν2) + f

(1)
3 (x · ν3),

θ2(x) = f
(2)
1 (x · ν1) + f

(2)
3 (x · ν3), (2.66)

θ3(x) = f
(3)
1 (x · ν1) + f

(3)
2 (x · ν2),

where f
(i)
k +f

(j)
k is affine almost everywhere for {i, j, k} = {1, 2, 3} and all one-dimensional

functions are non-constant in L∞(Br̃ (0)). We may do so since for all i = 1, 2, 3 the
functions gi only depend on variables in V for which any two of the three normals νj,
j = 1, 2, 3, form a basis.

Step 2: If
∣∣θ−1
i (0) ∩Br (0)

∣∣ > 0 for some i = 1, 2, 3 we re-define f
(i)
i+1 and f

(i)
i−1 to satisfy

f
(i)
i+1, f

(i)
i−1 ≥ 0 on [−r, r] and f

(i)
i+1 = f

(i)
i−1 = 0 on θ−1

i (0) ∩Br (0).
For almost all x ∈ θ−1

i (0) ∩B0 (r) we have

0 = f
(i)
i+1(x · νi+1) + f

(i)
i−1(x · νi−1)

≥ ess inf
[−r,r]

f
(i)
i+1 + f

(i)
i−1(x · νi−1)

≥ ess inf
[−r,r]

f
(i)
i+1 + ess inf

[−r,r]
f

(i)
i−1

≥ 0,

where in the last step we used Lemma 2.15 for large ε > 0. Fubini’s Theorem thus implies
f

(i)
i+1 = ess inf [−r,r] f

(i)
i+1 and f

(i)
i−1 = ess inf [−r,r] f

(i)
i−1 on sets of positive measure. Shuffling

around some constant, we may assume that ess inf f
(i)
i+1 = ess inf f

(i)
i−1 = 0.
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Step 3: There exist measurable sets Jj ⊂ R for j = 1, 2, 3 such that

θ−1
i (0) ∩Br (0) = π−1

i+1 (Ji+1) ∩ π−1
i−1 (Ji−1

c) ∩B0 (r)

up to null-sets and the two sets

Br (0) ∩
(
π−1

1 (J1) ∩ π−1
2 (J2) ∩ π−1

3 (J3)
)
,

Br (0) ∩
(
π−1

1 (J1
c) ∩ π−1

2 (J2
c) ∩ π−1

3 (J3
c)
)

have measure zero.
If
∣∣θ−1
i (0) ∩Br (0)

∣∣ > 0 we set

I
(i)
i+1 :=

(
f

(i)
i+1

)−1

(0) ∩ [−r, r], I(i)
i−1 :=

(
f

(i)
i−1

)−1

(0) ∩ [−r, r]. (2.67)

Otherwise we set I
(i)
i+1 = I

(i)
i−1 = ∅. In any case we have

θ−1
i (0) ∩ π−1

i+1([−r, r]) ∩ π−1
i−1([−r, r]) = π−1

i+1

(
I

(i)
i+1

)
∩ π−1

i−1

(
I

(i)
i−1

)
up to null-sets.

Claim 3.1: We have
∣∣∣I(i)
k ∩ I

(j)
k

∣∣∣ = 0 for {i, j, k} = {1, 2, 3}.
If |θ−1

i (0)| = 0 or |θ−1
j (0)| = 0 then there is nothing to prove. Otherwise we assume

towards a contradiction that ∣∣∣I(i)
k ∩ I

(j)
k

∣∣∣ > 0.

In that case the affine function f
(i)
k + f

(j)
k vanishes on a set of positive measure. Thus we

have f
(i)
k ≡ −f

(j)
k . Since both functions are non-negative on [−r, r] we get f

(i)
k ≡ f

(j)
k ≡ 0

on [−r, r]. However, this contradicts our assumption that they are non-constant. Thus
we have ∣∣∣I(i)

k ∩ I
(j)
k

∣∣∣ = 0,

which proves Claim 3.1.

Consequently we get, up to null-sets,

θ−1
i (0) ∩Br (0) ⊂ π−1

i+1

(
I

(i)
i+1

)
∩ π−1

i−1

((
I

(i+1)
i−1

)c)
,

which in terms of

Jj := I
(j−1)
j for j = 1, 2, 3 (2.68)

reads, up to null-sets,

θ−1
i (0) ∩Br (0) ⊂ π−1

i+1 (Ji+1) ∩ π−1
i−1 (Ji−1

c) .

Since the sets π−1
i+1 (Ji+1) ∩ π−1

i−1 (Ji−1
c) are pairwise disjoint for i = 1, 2, 3 and, again up

to null-sets, we have
⋃
i=1,2,3 θ

−1
i (0) ∩Br (0) = B0 (r) we get that

θ−1
i (0) ∩Br (0) = π−1

i+1 (Ji+1) ∩ π−1
i−1 (Ji−1

c) ∩Br (0)
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up to null-sets.

Some straightforward combinatorics ensure that

Br (0) \

( ⋃
i=1,2,3

π−1
i+1 (Ji+1) ∩ π−1

i−1 (Ji−1
c)

)
=Br (0) ∩

((
π−1

1 (J1) ∩ π−1
2 (J2) ∩ π−1

3 (J3)
)
∪
(
π−1

1 (J1
c) ∩ π−1

2 (J2
c) ∩ π−1

3 (J3
c)
))
.

Thus we have ∣∣Br (0) ∩
(
π−1

1 (J1) ∩ π−1
2 (J2) ∩ π−1

3 (J3)
)∣∣ = 0,∣∣Br (0) ∩ ∪

(
π−1

1 (J1
c) ∩ π−1

2 (J2
c) ∩ π−1

3 (J3
c)
)∣∣ = 0.

This finishes the proof of Step 3.

Step 4: The conclusion of the lemma holds.
We now make sure that we can apply Lemma 2.23. To this end, we choose r̃ small enough
such that we can use Lemma 2.23 after rescaling Br (0) to B1 (0).

By assumption there are i, j = 1, 2, 3 with i 6= j such that∣∣∣∣θ−1
i (0) ∩ π−1

i

([
− r̃

2
,
r̃

2

])
∩ π−1

j ([−r̃, r̃])
∣∣∣∣ > 0,∣∣∣∣θ−1

j (0) ∩ π−1
i

([
− r̃

2
,
r̃

2

])
∩ π−1

j ([−r̃, r̃])
∣∣∣∣ > 0.

By relabeling we may suppose i = 3 and j = 1. Consequently we get

|J1|, |J2
c|, |J2|, |J3

c| > 0.

As f
(3)
ν1 = 0 on J1 and f

(3)
ν1 6≡ 0 we must have |J1

c| > 0. The upshot is that we have
0 <

∣∣J1 ∩
[
− r̃

2
, r̃

2

]∣∣ < r̃ =
∣∣[− r̃

2
, r̃

2

]∣∣ and 0 <
∣∣J2 ∩

[
− r̃

2
, r̃

2

]∣∣ < r̃.

Lemma 2.23 implies that there exists a point x0 ∈ B1 (0) such that x0 · νi ∈ (−r̃, r̃) for
all i = 1, 2, 3, up to sets of measure zero, we have either

Ji ∩ [−r̃, r̃] = [−r̃, x0 · νi] for i = 1, 2, 3

or
Ji ∩ [−r̃, r̃] = [−x0 · νi, r̃] for i = 1, 2, 3.

Let Ki := Ji ∩ [−r̃, r̃]. Tracing back the definitions using (2.68), Claim 3.1 and (2.67),

we see that on Ki+1 we have f
(i)
i+1 = 0 and on [−r, r] \Ki−1 we have f

(i)
i−1 = 0. As a result

we can rewrite the decomposition (2.1) of θ on Br (0) to be

θ1(x) = f
(1)
2 (x · ν2)χK2

c(x · ν2) + f
(1)
3 (x · ν3)χK3(x · ν3),

θ2(x) = f
(2)
1 (x · ν1)χK1(x · ν1) + f

(2)
3 (x · ν3)χK3

c(x · ν3), (2.69)

θ3(x) = f
(3)
1 (x · ν1)χK1

c(x · ν1) + f
(3)
2 (x · ν2)χK2(x · ν2) .
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The condition that certain sums of the one-dimensional functions are affine turns into(
f

(i−1)
i χKc

i−1
+ f

(i+1)
i χKi+1

)
(t) = ait+ bi

for t ∈ (−r, r), ai, bi ∈ R and i = 1, 2, 3.

Due to
∑3

i=1 θ1 ≡ 1, summing the equations in the decomposition (2.69) gives

3∑
i=1

aix · νi + bi = 1

for all x ∈ Br (0). Comparing the coefficients of both polynomials we see that

3∑
i=1

bi = 1,
3∑
i=1

aiνi = 0.

Subtracting a1(ν1 + ν2 + ν3) = 0 from the second equation and remembering from Step
1 that ν2 and ν3 are linearly independent, we see that a := a1 = a2 = a3. We thus get

θ1(x) = (ax · ν2 + b2)χK2
c(x · ν2) + (ax · ν3 + b3)χK3(x · ν3),

θ2(x) = (ax · ν1 + b1)χK1(x · ν1) + (ax · ν3 + b3)χK3
c(x · ν3),

θ3(x) = (ax · ν1 + b1)χK1
c(x · ν1) + (ax · ν2 + b2)χK2(x · ν2)

with
∑3

i=1 bi = 1.

Proof of Lemma 2.23. Let r > 0 be small enough such that

π−1
i ([−r, r]) ∩ π−1

j ([−r, r]) ⊂ B1 (0)

for i, j = 1, 2, 3 with i 6= j. Let Ki := Ji ∩ [−r, r].
Claim 1: There exist a1, a2 ∈ (−r, r) such that, up to null-sets, either

K1 = [−r, a1] and K2 = [−r, a2]

or

K1 = [a1, r] and K2 = [a2, r].

Towards a contradiction we assume the negation of Claim 1.

Step 1.1: Up to symmetries of the problem, find Lebesgue points −r < p1 < p2 < r of
χK1 and −r < q1 < q2 < r of χK2 such that

χK1(p1) = χK2(q2) = 1 and χK1(p2) = χK2(q1) = 0.
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0 x · ν1−r 0 r

1

p1 p2

0 x · ν2−r 0 r

1

q1 q2

Figure 2.24: Graphs of χK1 and χK2 in the case that K1 and K2 are intervals
such that one of them has an endpoint at −r and the other one at r. In this case
we choose p1, p2 and q1, q2 on opposite sides of the respective other endpoint.

0 x · ν1−r 0 r

1

p̄1 p̄2 p̄3

0 x · ν2−r 0 r

1

q1 q2

Figure 2.25: Graphs of χK1 and χK2 in the case that K1 is not an interval with
one endpoint at −r or r. In this specific instance we choose p1 = p̄2 and p2 := p̄3.

The negation of Claim 1 implies that there exist Lebesgue points −r < p1 < p2 < r of
χK1 and −r < q1 < q2 < r of χK2 such that

χK1(p1) 6= χK1(p2),

χK2(q1) 6= χK2(q2),

χK1(p1) 6= χK2(q1),

χK1(p2) 6= χK2(q2) :

If, up to null-sets, both are intervals with one having an endpoint at −r and the other
one having an endpoint at r, then one may take, for δ > 0 small enough, p1 := a1 − δ,
p2 := a1 + δ, q1 := a2 − δ and q2 := a2 + δ, see Figure 2.24.

If K1 is not an interval with one endpoint at −r or r, see Figure 2.25, there exist three
Lebesgue points p̄1 < p̄2 < p̄3 such that θ1(p̄1) 6= θ1(p̄2) 6= θ1(p̄3). Since K2 has neither
full nor zero measure, there exist Lebesgue points q1 < q2 with χK2(q1) 6= χK2(q2). In the
case χK2(q1) 6= χK1(p̄1), set p1 := p̄1 and p2 := p̄2. Otherwise set p1 := p̄2 and p2 := p̄3.

If K2 is not an interval with one endpoint at −r or r, the same reasoning applies.

Furthermore, we may assume χK1(p1) = 1 because the statement of the lemma is clearly
invariant under replacing all sets by their complements. The above collection of unordered
inequalities then turns into χK1(p1) = χK2(q2) = 1 and χK1(p2) = χK2(q1) = 0.

Step 1.2: Find δ > 0 and s1, s2 ∈ (−r + δ, r − δ) such that for K<
1 := K1 ∩ (s1 − δ, s1),

K>
1 := K1 ∩ (s1, s1 + δ), K<

2 := K2 ∩ (s2 − δ, s2) and K>
2 := K2 ∩ (s2, s2 + δ) we have

|K<
1 | > |K>

1 | and |K>
2 | > |K<

2 |,

see Figure 2.26.
By the virtue of pi and qi being Lebesgue points, there exists δ̃ > 0 such that we have
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0 x · ν1

1
χK<

1
χK>

1

s1 − δ s1 s1 + δ
0 x · ν2

1
χK<

2
χK>

2

s2 − δ s2 s2 + δ

Figure 2.26: The sets K<
1 , K>

1 , K<
2 and K>

2 locally split up K1 and K2. The
irrelevant parts of the graphs of χK1 and χK2 are shown in gray.

pi ± 3δ̃, qi ± 3δ̃ ∈ [−r, r] and

−
ˆ p1+δ̃

p1−δ̃
χK1 dt,−

ˆ q2+δ̃

q2−δ̃
χK2 dt >

3

4
,

−
ˆ p2+δ̃

p2−δ̃
χK1 dt,−

ˆ q1+δ̃

q1−δ̃
χK2 dt <

1

4
.

Since the map s 7→ −́
s+δ̃

s−δ̃ χK1 dt is continuous, there exists

s̃1 := max

{
p1 ≤ s ≤ p2 : −

ˆ s+δ̃

s−δ̃
χK1 dt =

1

2

}
.

Let s1 := s̃1 + δ̃ and δ := 2δ̃. Then we have

|K1 ∩ (s1 − δ, s1)| = 1

2
> |K1 ∩ (s1, s1 + δ)|,

which with the notation K<
1 = K1 ∩ (s1 − δ, s1) and K>

1 = K1 ∩ (s1, s1 + δ) reads

|K<
1 | > |K>

1 |.

Using the same reasoning we can find s2 ∈ [−r+δ, r−δ] such that for K<
2 = K2∩(s1−δ, s1)

and K>
2 = K2 ∩ (s2, s2 + δ) we get

|K>
2 | > |K<

2 |.

Step 1.3: Derive the contradiction.
Let C1 := π−1

1 (s1 − δ, s1) ∩ π−1
2 (s2, s2 + δ) and C2 := π−1

1 (s1, s1 + δ) ∩ π−1
2 (s2 − δ, s2). In

Figure 2.16, which illustrates the strategy of the argument, the set C1 is colored blue,
while C2 is shown in red. From ν1 + ν2 + ν3 = 0 it follows that

x · ν1 + x · ν2 + x · ν3 = 0.

As a result π3(C1) = (−s1 − s2 − δ,−s1 − s2 + δ) = π3(C2). Let

M1 :=

{
s ∈ π3(C1) :

ˆ
x·ν3=s

χK<
1

(x · ν1)χK>
2

(x · ν2) dH1(x) > 0

}
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and

M2 :=

{
s ∈ π3(C1) :

ˆ
x·ν3=s

χ[s1,s1+δ]\K>
1

(x · ν1)χ[s2−δ,s2]\K<
2

(x · ν2) dH1(x) > 0

}
.

By Lemma 2.24 we have
|M1| ≥ |K<

1 |+ |K>
2 |

and
|M2| ≥ |[s1, s1 + δ] \K>

1 |+ |[s2 − δ, s2] \K<
2 | = 2δ − |K>

1 | − |K<
2 |.

Summing these two inequalities and using the strict inequalities of Step 1.2 we see that

|M1|+ |M2| ≥ 2δ + |K<
1 | − |K>

1 |+ |K>
2 | − |K<

2 | > 2δ = |π3(C1)|.

As we also have M1,M2 ⊂ π3(C1) we get that

|M1 ∩M2| > 0.

By assumption (2.11) and Fubini’s Theorem we have

ˆ
M1∩K3

ˆ
{x·ν3=s}

χK1(x·ν1)χK2(x·ν2) dH1(x) ds = |π−1
1 (K1)∩π−1

2 (K2)∩π−1
3 (M1∩K3)| = 0.

As the inner integral is positive on M1, we must have |M1 ∩K3| = 0. Similarly, we get
|M2 ∩K3

c| = 0. However, this would imply

0 < |M1 ∩M2| = |M1 ∩M2 ∩K3|+ |M1 ∩M2 ∩K3
c| = 0,

which clearly is a contradiction. We thus have either

K1 = [−r, a1] and K2 = [−r, a2]

or
K1 = [a1, r] and K2 = [a2, r]

up to sets of measure zero.

Claim 2: There exists x0 ∈ Br (0) with x0 · ν1 = a1 and x0 · ν2 = a2. Depending on the
“orientation” of K1 and K2 we either have J3 ∩ [−r, r] = [−r, x0 · ν3] or J3 ∩ [−r, r] =
[x0 · ν3, r] up to sets of measure zero.
Also here Figure 2.16a offers in illustration of the argument.

Assumption (2.12) immediately implies a1, a2 ∈
(
−1

2
r, 1

2
r
)
. As {ν1, ν2} is a basis of R2,

see Step 1 in the proof of Proposition 2.22, for r > 0 small enough there exists x0 ∈ B1 (0)
with x0 · ν1 = a1 and x0 · ν2 = a2. This ensures that J1 and J2 have the form advertised
in the statement of the Lemma.

Let us assume we are in the case

K1 = [−r, a1] and K2 = [−r, a2]
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up to sets of measure zero, the other case being similar. As before we get

ˆ
K3

ˆ
{x·ν3=s}

χ[−r,a1](x · ν1)χ[−r,a2](x · ν2) dH1(x) ds = |π−1
1 (K1)∩ π−1

2 (K2)∩ π−1
3 (K3)| = 0.

Due to x · ν3 = −x · ν1 − x · ν2 we see

ˆ
{x·ν3=s}

χ[−r,a1](x · ν1)χ[−r,a2](x · ν2) dH1(x) > 0

for s ∈ (−a1−a2, r). Therefore we get |J3∩[−r, r]∩[−a1−a2, r]| = |K3∩[−a1−a2, r]| = 0.
Similarly we can see |J3

c ∩ [−r, r] ∩ [−r,−a1 − a2]| = 0. As a result, we obtain

J3 ∩ [−r, r] = [−r,−a1 − a2]

up to sets of measure zero. Finally, the computation

x0 · ν3 = −x0 · ν1 − x0 · ν2 = −a1 − a2 ∈ (−r, r)

yields the desired statement for J3.

Proof of Lemma 2.24. Measurability of

M =

{
s ∈ R :

ˆ
{x·ν3=s}

χK1(x · ν1)χK2(x · ν2) dH1(x) > 0

}
is a consequence of Fubini’s theorem. By monotonicity of the Lebesgue measure it is
sufficient to prove the statement for bounded K1 and K2.

Step 1: If t1 is a point of density one of K1 and t2 is point of density one of K2, then
−t1 − t2 is a point of density one of M .
For convenience, we may assume t1 = t2 = 0. Let πi(x) := x ·νi for x ∈ R2 and i = 1, 2, 3.
Let Dε := π−1

1 (−ε, ε)∩π−1
2 (−ε, ε). As, in some transformed coordinates, sets of the form

π−1
1 (A) ∩ π−1

2 (B) are product sets, we can compute

1− 1

|Dε|
|π−1

1 (K1) ∩ π−1
2 (K2) ∩Dε| =

1

|Dε|
(
|Dε| −

∣∣π−1
1 (K1) ∩ π−1

2 (K2) ∩Dε

∣∣)
=

1

|Dε|
∣∣(π−1

1 (K1
c) ∩Dε

)
∪
(
π−1

2 (K2
c) ∩Dε

)∣∣
.

1

ε2
(ε|K1

c ∩ (−ε, ε)|+ ε|K2
c ∩ (−ε, ε)|)

=
1

ε
(|K1

c ∩ (−ε, ε)|+ |K2
c ∩ (−ε, ε)|).

If we take the limit ε→ 0 we see that

lim
ε→0

1− 1

|Dε|
|π−1

1 (K1) ∩ π−1
2 (K2) ∩Dε| = 0.
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Dε

εν1

εν2

a)

l

2cε

ν1

ν3 ν2

b)

Figure 2.27: a) Sketch of Dε = π−1
1 (−ε, ε) ∩ π−1

2 (−ε, ε). b) A significant part of
the line l := {x · ν2 = s} for s ∈ (−cε, cε) intersects Dε.

By scaling arguments there exist 0 < c < 1 and η > 0 such that for s ∈ (−cε, cε) we have

ˆ
{x·ν3=s}

χDε(x) dH1(x) ≥ ηε, (2.70)

see Figure 2.27. Let Sε :=
{
s ∈ (−cε, cε) :

´
{x·ν3=s} χK1(x · ν1)χK2(x · ν2) dH1(x) = 0

}
,

which implies that for s ∈ Sε we also have
ˆ
{x·ν3=s}

χK1∩(−ε,ε)(x · ν1)χK2∩(−ε,ε)(x · ν2) dH1(x) = 0.

As for such lines a locally significant part is missing from π−1
1 (K1) ∩ π−1

2 (K2) due to
inequality (2.70) we get

|π−1
1 (K1) ∩ π−1

2 (K2) ∩Dε| ≤ |Dε| − ηε|Sε|.

By algebraic manipulation of this inequality we see

|Sε|
2cε
≤ 1

2ηcε2

(
|Dε| − |π−1

1 (K1) ∩ π−1
2 (K2) ∩Dε|

)
. 1− 1

|Dε|
|π−1

1 (K1) ∩ π−1
2 (K2) ∩Dε|.

Since the right-hand side of this inequality vanishes in the limit ε → 0, we see that 0 is
a point of density one for M by definition of Sε.

Step 2: We have |M | ≥ |K1|+ |K2|.
The geometric situation in the following argument can be found in Figure 2.28. Let
K̃i ⊂ Ki for i = 1, 2 be the points of density one contained in the respective sets. By
Lebesgue point theory we have |Ki| = |K̃i| for i = 1, 2. Let t̃1 := inf K̃1 and t̃2 := sup K̃2.
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ν1

ν3 ν2

lM1

M2

p

Figure 2.28: Sketch of π−1
1 (K1) ∩ π−1

2 (K2) with the corner p := π−1
1 (inf K1) ∩

π−1
2 (supK2). Lines parallel to l := {x·ν2 = p·ν2} intersecting π−1

1 (K1)∩π−1
2 (K2)

are sorted into M1 if they lie on the left of l or into M2 if they lie on the right.

Since both sets are non-empty and bounded, we have t̃i ∈ R for i = 1, 2. Let n ∈ N. Let
t
(n)
1 ∈ K̃1 with 0 ≤ t

(n)
1 − t̃1 < 1

n
and let t

(n)
2 ∈ K̃2 with 0 ≤ t̃2 − t(n)

2 < 1
n
. Let

M
(n)
1 := M ∩ (−∞,−t̃1 −

1

n
− t(n)

2 )

and

M
(n)
2 := M ∩ (−t(n)

1 − t̃2 +
1

n
,∞).

Adding the conditions of closeness for t
(n)
i we see

t
(n)
1 − t̃1 + t̃2 − t(n)

2 <
2

n
,

which in turn implies

−t̃1 − t(n)
2 −

1

n
< −t(n)

1 − t̃2 +
1

n
.

Thus M
(n)
1 and M

(n)
2 are disjoint and we have

|M | ≥ |M (n)
1 |+ |M

(n)
2 |. (2.71)

As t
(n)
2 is a point of density one of K1 and K̃2 are points of density one of K2, we know

by Step 1 that the set

−t(n)
2 − K̃1 ∩ (t̃1 +

1

n
,∞)

consists of points of density one for M . We thus know that |M (n)
1 | ≥ |K̃1 ∩ (t̃1 + 1

n
,∞)|.

Similarly, we obtain |M (n)
2 | ≥ |K̃2 ∩ (−∞, t̃2 − 1

n
)|. Combining both inequalities with

inequality (2.71) we see

|M | ≥
∣∣∣∣K̃1 ∩

(
t̃1 +

1

n
,∞
)∣∣∣∣+

∣∣∣∣K̃2 ∩
(
−∞, t̃2 −

1

n

)∣∣∣∣ .
In the limit n→∞ we obtain

|M | ≥ |K̃1|+ |K̃2| = |K1|+ |K2|.



Chapter 3

Branching microstructures in shape
memory alloys: Constructions

3.1 Outline and setup

In this chapter we affirmatively answer the question whether there exist generating se-
quences for all types of configurations found in Theorem 2.1. However, rather than giving
full constructions for each we solve two boundary value problems as “building blocks”.

In Section 2.1.1 we saw that there are three mechanisms for varying the volume fractions,
namely measurable change in the direction of lamination, regular change normal to the
direction of lamination and discontinuous change across an interface in a second-order
laminate. As the detailed descriptions of the limiting configurations in Subsection 2.1.2
suggest, we only need to extend the previously available constructions [25, 67, 70] in two
ways:

1. To construct planar checkerboards, see Definition 2.6 and the following discussion,
we require a construction exhibiting simultaneous branching at two interfaces with
normals νi+1 ∈ Ni+1 and νi−1 ∈ Ni−1 for i ∈ {1, 2, 3} on the set

{θi = 0, 0 < θi+1, θi−1 < 0}.

As we will focus on this single patch, we can assume that θ is a constant volume
fraction. By choosing the twinning direction ν as ν ∈ Ni \{νi}, where νi is as in the
Definition 2.4 of planarity, we can restrict ourselves to the case that {ν, νi+1, νi−1}
is a basis of R3.

2. The construction of planar second-order laminates and planar triple intersections
combines all three mechanisms discussed above in a microstructure. However, it is
sufficient to branch at interfaces with the single normal ν ∈ Ni for some i ∈ {1, 2, 3}.
In each case the normal of the microscopic twin satisfies ν̃ ∈ Nj for j ∈ {1, 2, 3}\{i}.
A quick look at the definitions of the normals in Subsection 1.1.5 reveals the set
{ν, ν̃, Ej} to be a basis of R3, where Ej is the j-th standard basis vector.

83
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For the precise statements see Propositions 3.1 and 3.2. In principle, we could merge
both constructions as well, which however would entail unnecessary complexity.

To construct the building blocks, we focus on patches Ω where only a single twin is
required. Given a macroscopic displacement u with volume fractions θ such that e(u) =∑3

i=1 θiei we then construct sequences uη and χη with lim supη→0Eη(uη, χη) < ∞ such

that uη ⇀ u in W 1,2(Ω), χη
∗
⇀ θ in L∞(Ω). Most importantly, we also make sure that

uη = u on those parts of ∂Ω where we would need to glue constructions on different
patches together in order to obtain the configurations discussed in Chapter 2.

As we restricted our attention to single twins, we might as well choose to have the two
variants corresponding to e1 and e2 laminated in (110)-direction by the symmetries of
the model. Furthermore, we rotate the domain Ω such that the direction of lamination
coincides with E1. A convenient change of coordinates is given by the rotation

R :=

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 ,

since we have

R
1√
2

 1
−1
0

 = E1, R
1√
2

1
1
0

 = E2, RE3 = E3.

The transformed martensite strains can be calculated as

ē1 := RT e1R =

−1
2

3
2

0
3
2
−1

2
0

0 0 1

 , ē2 := RT e2R =

−1
2
−3

2
0

−3
2
−1

2
0

0 0 1

 , ē3 := RT e3R = e3

(3.1)

and the elastic energy turns into

Eelast,η(u, χ) := η−
2
3

ˆ
Ω

∣∣∣∣∣e(u)−
3∑
i=1

χiēi

∣∣∣∣∣
2

dL3.

In contrast, the interfacial energy is invariant under rotating the domain of definition.

As a single twin can only form two-variant configurations in the sense of 2.3 the above
calculations imply that locally the macroscopic strain generically takes the following form:
We have e(u) =

∑3
i=1 θiēi, where ēi are the transformed martensite strains given below

and

θ1(x) := f1(x1) + f2(x2) + λx3,

θ2(x) := 1− f1(x1)− f2(x2)− λx3,

θ3(x) ≡ 0.

By computing ∂i∂jθ1 = 0 for i, j ∈ {1, 2, 3} and i 6= j one can easily see that on the
convex domains Ω we will consider here this decomposition holds on the entire domain.
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3.2 Branching in two linearly independent directions

We first deal with simultaneous branching at interfaces with normals ν2, ν3 ∈ S2 and
constant volume fraction θ. As argued in Section 3.1 it is sufficient to consider the case
that {E1, ν2, ν3} is a basis of R3, where E1, ν2 and ν3 correspond to ν, νi+1 and νi−1 in
said discussion.

On a somewhat technical note, the construction does not actually require ν2 and ν3 to be
the images of some normals ν̃, ν̄ ∈ N under the rotation above and we will consequently
not enforce this condition. It would only be necessary to afterwards join constructions
on different patches at their boundaries. Therefore, it does not really bother us that the
constants in both Proposition 3.1 and Proposition 3.2 do depend the hyperplanes towards
which we branch. Namely, they blow up as the basis {E1, ν2, ν3} in Proposition 3.1 (and
{E1, ν2, E3} in Lemma 3.2) degenerates.

Proposition 3.1. Let ν2, ν3 ∈ S2 be as above. There exists a constant C > 0 with the
following properties:

For L1, L2, L3 > 0 let

Ω := {−L1 < x1 < L1} ∩ {−L2 < x · ν2 < L2} ∩ {−L3 < x · ν3 < L3},

see Figure 3.1.

For each θ ∈ R3 with 0 ≤ θ1, θ2 ≤ 1, θ3 = 0 and θ1 + θ2 = 1, any skew-symmetric matrix
S ∈ R3×3

skew and any constant c ∈ R3 let

u(x) :=
3∑
i=1

θiēix+ Sx+ c.

Then there exist partitions χη ∈ BV (Ω; {0, 1}3) with
∑3

i=1 χi,η ≡ 1 and displacements
uη ∈ W 1,2(Ω;R3) with the following properties:

1. χη
∗
⇀ θ in L∞,

2. uη ⇀ u in W 1,2 and uη = u on ∂Ω ∩ ({x · ν2 = ±L2} ∪ {x · ν3 = ±L3}),

3. lim supη→0Eη(uη, χη) ≤ CL1

(
L2L

1
3
3 + L

1
3
2L3

)
.

While the idea of using branching constructions in the theory of shape memory alloys goes
back to Kohn and Müller [69, 70], our construction is more inspired by the one given by
Knüpfer, Kohn and Otto [67]. However, the decomposition of the domain into cells more
closely follows the construction due to Capella and Otto [25]. The fundamental idea is
to correct the macroscopic displacement by microscopic ones defined on self-similar cells.

Proof. As we allow the constant in the estimate to depend on ν2 and ν3, we adjust our
definition of the symbol “.” to mean A . B if and only if A ≤ CB for a constant C > 0
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L2ν
∗
2

L3ν
∗
3

L1E
∗
1

Figure 3.1: Sketch of Ω. The displacements uη have the desired boundary values
on the gray parts of ∂Ω. The set {E∗1 , ν∗2 , ν∗3} is the dual basis to {E1, ν2, ν3}. For
simplicity, we chose an orthogonal coordinate frame. The dotted lines merely
help to properly visualize the location L1E

∗
1 .

that is independent of L1, L2 and L3. The obvious identity

e(u) =
3∑
i=1

θiēi

implies that the statement uη ⇀ u follows once all others have been established.

Step 1: Choose anti-symmetric contributions to the gradients that allow for twinning with
normal E1.
We require matrices G1, G2 ∈ R3 such that 1

2

(
GT

1 +G1

)
= ē1, 1

2

(
GT

2 +G2

)
= ē2 and

G2 −G1 = a⊗ E1 for some a ∈ R3. This is achieved by the choice

G1 := ē1 +

0 −3
2

0
3
2

0 0
0 0 0

 =

−1
2

0 0
3 −1

2
0

0 0 1

 , G2 := ē2 +

 0 3
2

0
−3

2
0 0

0 0 0

 =

−1
2

0 0
−3 −1

2
0

0 0 1


with a = 6E2. As it is sufficient to prove the lemma for a single choice of c ∈ R and
skew-symmetric matrix S, it will be convenient to choose c = 0 and

S :=

 0 −3
2
(θ1 − θ2) 0

3
2
(θ1 − θ2) 0 0

0 0 0

 ,

which gives

u(x) =

 −1
2

0 0
3(θ1 − θ2) −1

2
0

0 0 1

x.

As already mentioned, the strategy in the following is to view u as the macroscopic
displacement, construct microscopic displacements um,η and set uη = u + um,η. We will
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drop the dependence of um on η, as well as the dependence of χη on η as long as we keep
η fixed.

Step 2: Define the partition into phases and estimate the interfacial energy in the cell.
Let {E∗1 , ν∗2 , ν∗3} be be the dual basis of {E1, ν2, ν3}. In particular, we have for all x ∈ R3

that
x = (E1 · x)E∗1 + (ν2 · x)ν∗2 + (ν3 · x)ν∗3 . (3.2)

For a height h > 0 and widths w2, w3 > 0 satisfying the constraints

h ≤ w2, h ≤ w3 (3.3)

let
Z := {0 ≤ x1 ≤ h} ∩ {0 ≤ x · ν2 ≤ w2} ∩ {0 ≤ x · ν3 ≤ w3},

see Figure 3.3. The decomposition (3.2) implies

Z = Zbase + [0, h]E∗1 ,

where Zbase := {x1 = 0} ∩ {0 ≤ x · ν2 ≤ w2} ∩ {0 ≤ x · ν3 ≤ w3}.
We define χ1 to be

χ1 (x′ + tE∗1) :=

{
1 if gi(x

′) ≤ t
h
≤ hi(x

′) + 1
4
θ1 for some i = 1, . . . , 4,

0 else

for x′ ∈ Zbase and t ∈ [0, h], where gi for i = 1, . . . 4 are defined below. Furthermore, let
χ2 := 1− χ1 and χ3 :≡ 0. For x′ ∈ Zbase let

g1(x′) := 0,

g2(x′) :=
1

4
θ1 +

1

4
(1− θ1)

x′ · ν2

w2

x′ · ν3

w3

,

g3(x′) :=
1

2
+

1

2
(θ1 − 1)

(
1− x′ · ν2

w2

)(
1− x′ · ν3

w3

)
,

g4(x′) :=
3

4
θ1 +

1

2
(1− θ1)

(
x′ · ν2

w2

+
x′ · ν3

w3

)
+

1

4
(θ1 − 1)

x′ · ν2

w2

x′ · ν3

w3

.

(3.4)

Sketches of the construction can be found in Figures 3.2 and 3.3, which illustrate that
the definition is tailored to allow for self-similar refinement in two linearly independent
directions.

The definition of χ1 indeed provides four layers, since it is straightforward to check that
gi + 1

4
θ1 ≤ gi+1 and g4 + 1

4
θ1 ≤ 1: As the functions gi for i = 1, . . . , 4 are affine in

coordinate directions it is sufficient to consider the four cases

1. x′ · ν2 = x′ · ν3 = 0,

2. x′ · ν2 = w2, x′ · ν3 = 0,

3. x′ · ν2 = 0, x′ · ν3 = w3,
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θh

θ
2
h

h

0

x · E1

wi
x · νi

1
2
h

1+θ
2
h

θ
2
h

0

a)

1+θ1
2
h

θ1
2
h

h

θ1
4
h

2+θ1
4
h

1
4
h

1
2
h

3
4
h

h

0

x · E1

wi0
x · νi

b)

Figure 3.2: a) The sketch shows the set {χ1 = 1} in gray at the two faces of Z
with x · νi = 0 for i = 2, 3.
b) Depiction of {χ1 = 1} at the faces x · ν2 = w2 and x · ν3 = w3. In the interior
of the cell, see Figure 3.3 we parametrize the boundary of {χ1 = 1} by affine
interpolation in coordinate directions.

4. x′ · ν2 = w2, x′ · ν3 = w3.

Another simple consequence of the definition is that χ1 has the required average on lines
parallel to E∗1 , namely

−
ˆ h

0

χ1 (x′ + td) dt = θ1 (3.5)

for each x′ ∈ Zbase.
The interfaces can be parametrized up to constant shifts by maps π : Zbase → R3 with

pi : x′ 7→ x′ + hgi(x
′)E∗1

for i = 1, 2, 3, 4, which satisfy the rough estimate

det(Dpi)
TDpi . 1 + h4|Dgi|4
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ν∗2

E∗1
ν∗3

Zbase

Figure 3.3: Here, we indicate how the adjacent cells will later be arranged. The
loosely dashed lines help to visualize Zbase.

due to the determinant in two dimensions being a polynomial of degree two. The estimate
|Dgi| . w−1

2 + w−1
3 together with the constraints h ≤ w2, h ≤ w3, see (3.3), implies

det(Dpi)
TDpi . 1.

Consequently, the area formula gives

|Dχ|(Z) . H2(Zbase) . w2w3, (3.6)

where the constant in the last inequality is depends on the basis and blows up if b1 and
ν2 are close to being parallel.

Step 3: Define the microscopic displacement and estimate the elastic energy in the cell.
We ideally would want the matrix field G(x) := χ1(x)G1 + χ2(x)G2 to be a gradient,
which is of course not true in general. Instead, we define the microscopic displacement
to satisfy {

um(x′) = 0 on Zbase,

∂E∗1um(x) = −(Du−G(x))E∗1 on Z.
(3.7)

Simple computation exploiting 3χ1 − 3χ2 = −3 + 6χ1 yields

G(x)−Du =

 0 0 0
6(χ1 − θ1) 0 0

0 0 0

 , (3.8)

which together with (3.5) immediately implies

um(x′ + hE∗1) = 0, (3.9)

||um||∞ . h (3.10)

for x′ ∈ Zbase. Note that the identity (3.9) will later allow to stack the cells in E∗1 -
direction.

To conclude the step, we have to estimate

ˆ
Z

∣∣∣∣∣e(um + u)−
3∑
i=1

χiēi

∣∣∣∣∣
2

dx .
ˆ
Z

∣∣∣∣∣Dum +Du−
3∑
i=1

χiGi

∣∣∣∣∣
2

dx.



90 CHAPTER 3. SHAPE MEMORY ALLOYS: CONSTRUCTIONS

The microscopic displacement (3.7) is chosen to cancel the contribution of order one in
equality (3.8) via

(
Dum +Du−

∑3
i=1 χiGi

)
E∗1 = 0. Thus have

ˆ
Z

∣∣∣∣∣e(um + u)−
3∑
i=1

χiēi

∣∣∣∣∣
2

dx .
ˆ
Z

sup
j=2,3

∣∣(Dum +Du−G(x)) ν∗j
∣∣2 dx.

Differentiating the representation

um(x′ + tE∗1) =

ˆ t

0

(G−Du)E∗1 dt̃ = 6
(∣∣{0 ≤ t̃ ≤ t : χ1(x′ + t̃E∗1) = 1}

∣∣− tθ1

)
and and using |∂ν∗j gi| .

h
wi

for i = 1, . . . , 4, see definitions (3.4), we get for j = 2, 3 that

||∂ν∗j um||L∞ .
h

wi
. (3.11)

Consequently, we get

ˆ
Z

∣∣∣∣∣e(um + u)−
3∑
i=1

χiēi

∣∣∣∣∣
2

dx . h3

(
w2

w3

+
w3

w2

)
. (3.12)

Step 4: Decompose Ω into cells.
In the following, we only focus on the single octant

Ω̃ := {0 ≤ x1 ≤ L1} ∩ {0 ≤ x · ν2 ≤ L2} ∩ {0 ≤ x · ν3 ≤ L3}

of Ω in order to avoid switching the orientations of the branching. On the remaining
parts of Ω the partition χ can be constructed by reflection at the planes {x · ν2 = 0} and
{x · ν3 = 0}, while the microscopic displacement still arises by integrating the expected
derivative in direction E∗1 as above. All estimates remain valid on the whole domain.

For β := 3
2

let w(1) ∈ R be such that for w(k) := 2−βkw(1) we have

∞∑
k=1

w(k) = 1. (3.13)

For N,K2, K3 ∈ N, which will later depend on η, we decompose Ω̃ into interior cells and
boundary cells, see Figure 3.4 for a sketch. The interior cells are given by

Zn,k2,k3 :=

{
n

2k2+k3N
L1 ≤ x1 ≤

n+ 1

2k2+k3N
L1

}
⋂
i=2,3

{
ki∑
k=1

w(k)Li ≤ x · bi ≤
ki+1∑
k=1

w(k)Li

}
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ν∗2

E∗1

ν∗3

Z0,0,0

Z0,1,0

Z1,1,0

Z2,0

Z2,1

Z2,2
Z1,0,1

Z0,2 Z1,2

Z3,1,1

Figure 3.4: Sketch of the cell decomposition for N = 1, K2 = K3 = 2. The
cells Z0,1,1, Z1,1,1, Z2,1,1 and Z3,1,1 have been drawn with dashed lines for better
visibility.

with n, k2, k3 ∈ N ∪ {0} such that 0 ≤ n < 2k2+k3N , 0 ≤ k2 < K2 and 0 ≤ k3 < K3. We
define the boundary cells to be

ZK2,k3 :=

{
K2∑
k=1

w(k)L2 ≤ x · ν2 ≤ L2

}
∩

{
k3∑
k=1

w(k)L3 ≤ x · ν3 ≤
k3+1∑
k=1

w(k)L3

}
,

Zk2,K3 :=

{
k2∑
k=1

w(k)L2 ≤ x · ν2 ≤
k2+1∑
k=1

w(k)L2

}
∩

{
K3∑
k=1

w(k)L3 ≤ x · ν3 ≤ L3

}
for k2 < K2 and k3 < K3, as well as

ZK2,K3 :=

{
K2∑
k=1

w(k)L2 ≤ x · ν2 ≤ L2

}
∩

{
K3∑
k=1

w(k)L3 ≤ x · ν3 ≤ L3

}
.

On an interior cell Zn,k2,k3 we choose χ1, χ2 and um to be the functions constructed in
Step 1 for h = (2k2+k3N)−1L1, w2 = w(k2 +1)L2 and w3 = w(k3 +1)L3, shifted to Zn,k2,k3 .
By self-similarity of the cells and the property (3.9) the function um is a W 1,2-function
on their union. We will check the constraints (3.3) later after choosing N .

On the boundary layer

Ω̃bl :=
⋃

0≤k2≤K2

Zk2,K3 ∪
⋃

0≤k3≤K3

ZK2,k3

we set χ1 ≡ 1 and extend um in a “piecewise linear” way such that um = 0 on Ω̄ ∩
({x · ν2 = L2} ∪ {x · ν3 = L3}). In particular, the displacement uη := u + um,η has the
correct boundary data.
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For estimating the interpolation on the cell ZK2,k3 for k3 < K3 we use our estimates
on the the adjacent layer of interior cells, i.e., we have the estimates of Step 1 with
h = (2K2+k3N)−1L1, w2 = w(K2)L2, w3 = w(k3 + 1)L3. Let

∂intZK2,k3 :=

{
x · ν2 :=

K2∑
k=1

w(k)L2

}
∩

{
k3∑
k=1

w(k)L3 ≤ x · ν3 ≤
k3+1∑
k=1

w(k)L3

}
be the interior part of the boundary, and let

∂extZK2,k3 := {x · ν2 := L2} ∩

{
k3∑
k=1

w(k)L3 ≤ x · ν3 ≤
k3+1∑
k=1

w(k)L3

}

be the exterior part. Furthermore, let w̃2 := L2 −
∑K2

k=1w(k)L2. As geometric series are
comparable to their biggest summand in the sense that

w(k̃) . 1−
k̃∑
k=1

w(k) =
∞∑

k=k̃+1

w(k) . w(k̃) (3.14)

we get w2 . w̃2 . w2.

We can parametrize ZK2,k3 via
x̃+ sν∗2

for x̃ ∈ ∂intZK2,k3 and s ∈ (L2 − w̃, L2) due to the decomposition (3.2) and define

um(x̃+ sν∗2) :=
L2 − s
w̃

um(x̃).

To estimate the contribution of the derivative in direction ν∗2 , we use estimate (3.10),
while the tangential contributions are controlled by estimate (3.8) for direction E∗1 and
estimate (3.11) for the direction ν∗3 . As a result, we get

||Dum||L∞(ZK2+1,k3
) .

h

w̃2

+ 1 +
h

w3

. (3.15)

The inequality w2 . w̃2 and the constraints h ≤ w2, w3 then imply that

||Dum||L∞(ZK2,k3
) . 1. (3.16)

Similarly, we get

||Dum||L∞(Zk2,K3
) . 1.

The contribution on the corner cells ZK2,K3 can be dealt with in more or less the same
manner. Here, one extends linearly in the planes {x · E1 = l} for l ∈ (−L1, L1). The
in-plane derivatives are estimated as the normal derivative above and the estimate for
the E∗1 derivative is the same. As a result we get

||Dum||L∞(ZK2,K3
) . 1.
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Step 5: Estimate the full energy.
A straightforward result of the previous estimates is

ˆ
Ω̃bl

|e(um + u)− χ1ē1|2 dx . L1L2L3

(
1−

K2∑
k=1

w(k)

)
+ L1L2L3

(
1−

K3∑
k=1

w(k)

)
(3.14)

. L1L2L3(w(K2) + w(K3)).

In the bulk we get from estimate (3.12) that

∑
n,k2,k3

ˆ
Zn,k2,k3

∣∣∣∣∣e(um + u)−
3∑
i=1

χiēi

∣∣∣∣∣
2

.
∑
n,k2,k3

(2k2+k3N)−3L3
1

(
w(k2 + 1)L2

w(k3 + 1)L3

+
w(k3 + 1)L3

w(k2 + 1)L2

)
.

(3.17)

Using that we have 0 ≤ n < 2k2+k3N and in the second step inserting the definition of
w(k) we see that the above equals

∑
k2,k3

(2k2+k3N)−2L3
1

(
w(k2 + 1)L2

w(k3 + 1)L3

+
w(k3 + 1)L3

w(k2 + 1)L2

)
=
∑
k2,k3

L3
1

N2

(
2−

7
2
k3− 1

2
k2
L3

L2

+ 2−
7
2
k2− 1

2
k3
L2

L3

)
.
L3

1

N2

(
L3

L2

+
L2

L3

)
.

(3.18)

We now recall estimate (3.6) of the interfacial energy in a cell and taking the area of
interfaces between cells and at the boundary layer into account, we see that

|Dχ|
(

Ω̃
)
.
∑
n,k2,k3

w(k2 + 1)w(k3 + 1)L2L3 + L1(L2 + L3)

. NL2L3

∑
k2,k3

2−
1
2
k2− 1

2
k3 + L1(L2 + L3)

. NL2L3 + L1(L2 + L3).

Taking note again of the dependences on η and using the remark at the beginning of Step
3 to justify passing from Ω̃ to Ω we get

Eη(uη, χη) = η−
2
3

(
L3

1

N2

(
L3

L2

+
L2

L3

)
+ L1L2L3(w(K2) + w(K3))

)
+ η

1
3 (NL2L3 + L1(L2 + L3)) .

(3.19)
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Optimization in N leads to the choice N ≈ L1

(
1
L2

2
+ 1

L2
3

) 1
3
η−

1
3 , which gives

Eη(uη, χη) =

(
L1

(
L3

L2

+
L2

L3

) 1
3

)
(L2L3)

2
3 + η−

2
3L1L2L3(w(K2) + w(K3))

+ η
1
3L1(L2 + L3).

(3.20)

The fact that χη
∗
⇀ θ is now a simple consequence of equation (3.5) and N → ∞ as

η → 0.

Turning to the constraints (3.3), the first one, namely h ≤ w2, reads

(2k2+k3N)−1L1 ≤ w(1) 2−
3
2

(k2+1)L2,

which is equivalent to

2
1
2
k2−k3

2
3
2L1

w(1)L2

≤ N.

Thus it will be satisfied by choosing K2 according to

2
K2
2

2
3
2L1

w(1)L2

≤ N . 2
K2
2

2
3
2L1

w(1)L2

.

For the following estimate allowing the omitted constants to depend on L1, L2 and L3,
we have as a result

w(K2) . 2−
3
2
K2 . N−3 . η. (3.21)

Thus its contribution in estimate (3.20) is of the lower order η
1
3 , so that the constant in

the final estimate nevertheless does not depend on L1, L2 and L3. Similarly, the constraint
h ≤ w3 can be satisfied with the estimate

w(K3) . η,

which also only contributes to lower order. As a result we have

lim sup
η→0

Eη(uη, χη) . L1L2L
1
3
3 + L1L

1
3
2L3.

3.3 Combining all mechanisms for varying the vol-

ume fractions

Finally, we turn to constructing a microstructure exhibiting all three mechanisms. We
choose the vectors E1, ν2 and E3 in the rotated coordinates to respectively correspond to
ν̃, ν and Ej in Section 3.1. As the proof is very similar to the one of Proposition 3.1, we
will not present all details, but only give the cell construction as well as the interpolation
at the boundary and the corresponding estimates.
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Proposition 3.2. Let ν2 ∈ S2 such that {E1, ν2, E3} is a basis of R3. Then there exists
a constant C > 0 with the following property:

Let
Ω := {−L1 ≤ x1 ≤ L1} ∩ {−L2 ≤ x · ν2 ≤ L2} ∩ {−L3 ≤ x3 ≤ L3}.

Let

θ1(x) := f1(x1) + f2(x2) + λx3,

θ2(x) := 1− f1(x1)− f2(x2)− λx3,

θ3(x) ≡ 0

(3.22)

for f1 ∈ L∞(Ω ·E1), f2 ∈ W 1,2(Ω ·E2) and λ ∈ R such that 0 ≤ θ1, θ2 ≤ 1. Furthermore,
let

u(x) := (ē2 + S) · x+ 6

F2(x2)
F1(x1)

0

+ 3λ

 x2x3

x1x3

−x1x2

+ c,

where F1 and F2 are primitives of f1 and f2 respectively, S ∈ R3×3
skew and c ∈ R3.

Then there exist χη ∈ BV (Ω) and uη ∈ W 1,2(Ω) such that χη
∗
⇀ θ in L∞, uη ⇀ u in

W 1,2, uη = u on ∂Ω and

lim sup
η→0

Eη(uη, χη) ≤ CL1L3

(
L

1
3
2 + L

2
3
2

(ˆ L2

−L2

|f ′2|2 dt

) 1
3

+ L2λ
2
3

)
.

Proof. As before, the symbol “.” denotes inequalities up to constants depending only
on ν2.

Without loss of generality, we will take S = 0. As a consequence, we have the straight-
forward identity

Du = ē2 + 6

 0 f2 0
f1 0 0
0 0 0

+ 3λ

 0 x3 x2

x3 0 x1

−x2 −x1 0

 . (3.23)

Another computation gives e(u) = θ1ē1 + θ2ē2: The diagonal entries agree since those of
ē1 and ē2 agree and we have θ1 + θ2 ≡ 1. Also the identity e(u)i3 = 0 = (θ1ē1 + θ2ē2)i3
for i = 1, 2 is easy to see. For the remaining component one computes

e(u)12 = −3

2
+ 3(f1 + f2 + λx3) = −3

2
+ 3θ1 = (θ1ē1 + θ2ē2)12

by definition (3.1). Thus we again have uη → u once all other properties have been
established.

Step 1: Construct χ on the cell such that

1. self-similar refinement is possible,

2. we have χ
∗
⇀ θ and
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3. such that the interfacial energy is controlled.

Let {E∗1 , ν∗2 , E∗3} be the dual basis to {E1, ν2, E3}. Once again, we get the decomposition

x = (E1 · x)E∗1 + (ν2 · x)ν∗2 + (E3 · x)E∗3 . (3.24)

Under the constraints

(1 + ||f ′2||2L2(−L2,L2) + λ2L2)h ≤ w2 and h ≤ 1 (3.25)

let Z := {0 ≤ x1 ≤ h} ∩ {0 ≤ x · ν2 ≤ w2} ∩ {−L3 ≤ x3 ≤ L3}. We retrieve the
decomposition Z = Zbase + [0, h]E∗1 , where

Zbase := {x1 = 0} ∩ {0 ≤ x · ν2 ≤ w2} ∩ {−L3 ≤ x3 ≤ L3}.

As we expect the height h to vanish uniformly in η, we approximate f1 by functions
f1,η which are constant on cells. By abuse of notation, we instead simply assume that
f1 itself is constant on Z. Similarly, a second approximation argument will allow us to
additionally assume f2 to be smooth with the estimate

||f2||L∞ ≤ η−1/6. (3.26)

Θ1,l+Θ1,u

2
h

Θ1,l

2
h

h

1
2
h

1+Θ1,u

2
h

Θ1,l

2
h

h

0

x · E1

w20
x · ν2

a) The sketch shows the set {χ1 = 1} in gray at a cross-section with x · E3 = c ∈ (−L3, L3).
For simplicity we used an orthogonal coordinate frame.

ν∗2

E∗1
E∗3

b) Here, we plotted three adjacent cells. The above cross-section corresponds to an affine
hyperplane spanned by E∗1 and ν∗2 .

Figure 3.5
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For x′ ∈ Zbase let

Θ1,l(x
′) := −

ˆ h
2

0

θ1(x′ + tE∗1) dt,

Θ1,u(x
′) := −

ˆ h

h
2

θ1(x′ + tE∗1) dt

and

g(x′) :=
1

2
Θ1,l(x

′) +
1

2
(1−Θ1,l(x

′))
x′ · ν2

w2

.

A sketch of the construction can be found in Figure 3.5. Again it is easy to check that
0 ≤ θ1 ≤ 1 implies 0 ≤ Θ1,l,Θ1,u ≤ 1, 0 ≤ g ≤ 1

2
and

0 ≤ 1

2
Θ1,l ≤ g ≤ g +

1

2
Θ1,u ≤ 1.

Consequently, for t ∈ (0, h) and x′ ∈ Zbase we can define

χ1(x′ + tE∗1) :=


1 if 0 ≤ t

h
≤ 1

2
Θ1,l(x

′),

1 if g(x′) ≤ t
h
≤ g(x′) + 1

2
Θ1,u(x

′),

0 else,

as well as χ2 := 1− χ1 and χ3 := 0.

In order to see that the construction allows for self-similar refinement as x · ν2 increases
we have to make sure that the values of χ1 agree on the common boundary of two
“horizontally” adjacent cells as in Figure 3.5b. Indeed, for x′ · ν2 = 0 we have

χ1(x′ + tE∗1) :=

{
1 if 0 ≤ t

h
≤ 1

2
Θ1,l(x

′) + 1
2
Θ1,u(x

′) = −́
h

0
θ1(x′ + t̃E∗1) dt̃,

0 else,
(3.27)

while for x′ · ν2 = w2 we have

χ1(x′ + tE∗1) :=


1 if 0 ≤ 2t

h
≤ −́

h
2

0
θ1(x′ + t̃E∗1) dt̃,

1 if 1 ≤ 2t
h
≤ 1 + −́

h
h
2
θ1(x′ + t̃E∗1) dt̃,

0 else.

(3.28)

Furthermore, averaging in direction E∗1 for x′ ∈ Zbase yields

−
ˆ h

0

χ1(x′ + tE∗1) dt =
1

2
Θ1,l(x

′) +
1

2
Θ1,u(x

′) = −
ˆ h

0

θ1(x′ + tE∗1) dt, (3.29)

which, implies χ
∗
⇀ θ after later establishing the rate

h ≤ Cη
1
3 (3.30)
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with C > 0 independent of η.

To estimate the interfacial energy, note that in this construction the interfaces are
parametrized by the maps

p1 : x′ 7→ x′ + h
1

2
Θ1,l(x

′)E∗1 ,

p2 : x′ 7→ x′ + hg(x′)E∗1 ,

p3 : x′ 7→ x′ + h

(
g(x′) +

1

2
Θ1,u(x

′)

)
E∗1 .

Similar considerations as before lead to

|Dχ1|(Z) .
ˆ
Zbase

√
1 + h4

(
|DΘ1,l|4 + |DΘ1,u|4 + w−4

2

)
dH2(x)

. H2(Zbase) + h2||f ′2||2L2(Z·E2)L3 + h2λ2H2(Zbase) +
h2

w2
2

H2(Zbase)

.

(
1 + h2λ2 +

h2

w2
2

)
w2L3 + h2||f ′2||2L2(Z·E2)L3

The constraints (1 + ||f ′2||L2(−L2,L2) + λ2L2)h ≤ w2 and h ≤ 1, see (3.25), consequently
implies

|Dχ1|(Z) . w2L3 + hw2L3 . w2L3. (3.31)

Step 2: Construct the microscopic displacement such that it can be refined self-similarly
and such that cells can be layered on top of each other in E1-direction. Furthermore,
estimate the elastic energy of the cell.
Let the approximate gradient field G : Ω→ R3×3 be defined as

G(x) := χ1(x)ē1 + χ2(x)ē2 + S(x)

for the skew-symmetric matrix

S(x) :=

 0 6f2 + 3λx3 − 3χ1(x) 3λx2

−6f2 − 3λx3 + 3χ1(x) 0 3λx1

−3λx2 −3λx1 0

 .

The skew-symmetric part is chosen such that the identity

G(x)−Du =

 0 0 0
6(χ1 − θ1) 0 0

0 0 0

 (3.32)

holds by virtue of χ1 + χ2 = 1, 3
2
χ1 − 3

2
χ2 = −3

2
+ 3χ1, identity (3.23) and definition

(3.22).

As before, we construct the microscopic displacement by solving{
um(x′) = 0 for x′ ∈ Zbase,

∂E∗1um(x) = (G(x)−Du)E∗1 for x ∈ Z.
(3.33)
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This definition also allows self-similar refinement of the microscopic displacements since
they agree on the mutual boundaries of horizontally adjacent cells by equations (3.27)
and (3.28). Clearly, we again have

um(x′ + hE∗1) = 0, for x′ ∈ Zbase (3.34)

||um||∞ . h, (3.35)

of which the first statement allows to layer the cells.

Using the definition (3.33) and E∗1 · E1 = 1 we see

um(x+ tE∗1) =

ˆ t

0

(G−Du)E∗1 dt̃

= 6

(
L
(
{0 ≤ t̃ ≤ t : χ1(x′ + t̃E∗1) = 1}

)
−
ˆ t

0

θ1(x′ + t̃E∗1) dt̃

)
.

Thus for directions d ∈ S2 with d · E1 = 0 one can similarly to estimate (3.11) find

|∂dum| . h
(
|f ′2|+ |λ|+ w−1

2

)
. (3.36)

After integrating we obtain

ˆ
Z

|∂dum|2 dx . h3L3

(ˆ Z·E2

0

|f ′2|2 dt+ w2λ
2

)
+ h3w−1

2 L3.

Remembering the argument inequality (3.12) of the previous proof we see

ˆ
Z

∣∣∣∣∣e(u+ um)−
3∑
i=1

χiēi

∣∣∣∣∣
2

dx . h3L3

(ˆ Z·E2

0

|f ′2|2 dt+ w2λ
2

)
+ h3w−1

2 L3. (3.37)

Step 3: The interpolation at the boundary.
In order to efficiently handle the boundary layer, we describe a boundary cell adjacent
to Z. Let

Zbl := {0 ≤ x1 ≤ h} ∩ {w2 ≤ x · ν2 ≤ w2 + w̃2} ∩ {−L3 ≤ x3 ≤ L3}

with w̃2 . w2 . w̃2. This is a reasonable assumption as for the decomposition of Ω
into cells we would choose w2 as terms in a geometric series, allows us to use (3.14).
Furthermore, let

∂intZ := {0 ≤ x1 ≤ h} ∩ {x · ν2 = w2} ∩ {−L3 ≤ x3 ≤ L3}

be the part of ∂Zbl touching Z and let

∂extZ := {0 ≤ x1 ≤ h} ∩ {x · ν2 = w2 + w̃2} ∩ {−L3 ≤ x3 ≤ L3}

be the opposite part of the boundary.
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We can parametrize Zbl as x̃ + sν∗2 for x̃ ∈ ∂intZbl and s ∈ (0, w̃2). Therefore, we can
define

um(x′ + sE2) := um(x′)

(
1− s

w̃2

)
and χ1(x′ + sE2) := 1. As a result we get

um ≡ 0 on ∂extZbl,

which ensures the correct boundary data for uη = u+ um,η.

To bound the derivatives in the boundary layer we use estimate (3.35) for the ν∗2 -direction,
identity (3.32) for the E∗1 -direction and, finally, the point-wise estimate (3.36) together
with the Lipschitz-bound (3.26) to get

||Dum||L∞ ≤
h

w̃2

+ 1 + h
(
η−1/6 + w−1

2

)
.

Combining the relations w2 . w̃2, h ≤ w2 and h ≤ Cη
1
3 , see inequalities (3.25) and

(3.30), gives
||Dum||L∞ ≤ 1.

In particular, the contribution of the elastic energy on the boundary layer again scales
with its volume. As in the previous proof one can then see that it only contributes to
lower order, since we only made the constraint (3.25) more stringent by a finite factor
compared to the previous one (3.3), see also the argument for (3.21). The fact that the
factor depends on ||f ′2||L2 and λ does not enter the final estimate as the dependence on
η is of lower order.

Step 4: Conclusion.
We will not decompose Ω in detail again, as it is very similar compared to and easier
than the corresponding step in the previous proof. For the following we only need the
interpretation of N as the horizontal number of coarsest cells. Furthermore, we will only
show how the contributions due to f ′2 and λ affect the estimates and we will only deal
with the contributions in the bulk as we just argued that the boundary layer will only
contribute to lower order.

The analogue of estimate (3.17) has, due to inequality (3.37), the additional contribution∑
n,k

(2kN)−3L3
1L3

(
||f ′2||2L2(Ω·E2) + 2−

3
2
kL2λ

2
)
.
L3

1

N2

(
||f ′2||2L2(Ω·E2) + L2λ

2
)
,

where we argue as for the estimate (3.18). As here the estimate of the surface energy in
a single cell (3.31) is the direct analogue of the one in the previous proof (3.6) estimating
the surface energy in the bulk carries over.

In total, we get the estimate

Eη(uη, χη) . η−
2
3

(
L3

1

N2
L3

(
L−1

2 +

ˆ
Ω·E2

|f ′2|2 dt+ L2λ
2

))
+ η

1
3NL2L3,
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which corresponds to inequality (3.19). Choosing N ≈ η−
1
3L1

(
L−1

2 +
´
Ω·E2

|f ′2|2 dt+L2λ2

L2

) 1
3

leads to the estimate

lim sup
η→0

Eη(uη, χη) . L1L3

(
L

1
3
2 + L

2
3
2

(ˆ
Ω·E2

|f ′2|2 dt

) 1
3

+ L2λ
2
3

)
.

Finally, we see that the constraints (3.25) and (3.30) which did not play a role in the

previous proof are satisfied: As there are N coarsest cells, we have h ≤ N−1 ≤ Cη
1
3 for

a constant C > 0 independent of η for all cells.





Chapter 4

Branching microstructures in shape
memory alloys: Quantitative aspects
via H-measures

In this chapter, we analyze the rigidity due to microscopic effects via the generated H-
measures. There are two main insights we gain:

1. We get a B
2/3
1,∞-estimate for the characteristic functions of the phases in planar

second-order laminates and planar checkerboards, see Theorems 4.11 and 4.12.

2. We get an (essentially) local lower bound for the limiting energy density close to
a habit plane almost for free, see Lemma 4.13, which says that the energy density
blows up at least like h−

2
3 .

It is interesting to note that all estimates only depend on the density of the limiting
energy measure with respect to Lebesgue measure. This is consistent with the energy
contribution of the boundary layers in the previous construction being of lower order.

We already mentioned in the introduction that the fractal Besov regularity in Theorems
4.11 and 4.12 mirrors the fractal dimension of the set on which we can apply the Capella-
Otto result [24] to see a single twin after blow-up, see Proposition 4.4 and its proof.
Further evidence of this is given by the fact that the minimal energy in a branched region
between two macroscopic interfaces with distance h̃ > 0 scales as h̃1/3, which can easily
be seen from the behavior of the energy under rescaling, see equations (4.10) and (4.11)
below: As a result it is not too challenging to construct configurations with macroscopic
interfaces clustering on fractal sets of Hausdorff-dimension d < 3− 2

3
.

The scaling h̃1/3 of the energy between two interfaces also nicely fits the lower bound h−2/3

for the energy close to a habit plane. Furthermore, the latter is the expected scaling for
(approximately) self-similar minimizers of the the Kohn-Müller functional, see Conti [32].

103
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Outline

We first set up the notation and define the H-measures in Section 4.1. To compute the
structure of the measures in Section 4.2 we turn to the localization principle of H-measures
[113, Theorem 1.6] and a variant of the kinematic compatibility equations in Lemma 2.12
for the displacement u as opposed to the strain e(u), see Lemma 4.2. We also already
prove that locally there can only be one direction of oscillation in Proposition 4.4, which
we take to mean that the microstructure will locally only consist of twins.

In Section 4.3, we prove the appropriate version of the transport property in Proposition
4.7, which is essentially a result of the kinematic compatibility equations of Lemma 4.2.
As such, however, they are of second order, and the transport property requires them to
be controlled in L2. Therefore, we only get the transport property for slightly regularized
versions of the sequence, and the rigidity of the limit is then a competition between the
control given by the transport property and the accuracy of the approximation given by
Lemma 4.6.

The announced statements are then proven in Section 4.4 by analyzing how this compe-
tition plays out.

The transport property and continuous change of the volume fraction along
a twin

Before we dive into the details of the chapter, we remark on whether the transport
property provides an ansatz-free estimate matching the regularity found in Proposition
3.2 of the continuous change of volume fraction along a twin. To obtain some estimate by
interpolating the transport property, namely Proposition 4.7, and the estimate of Lemma
4.6 is rather straightforward.

However, we will not be able to obtain a sharp one: In the construction, we saw that
the energy can accommodate for the change along the twin being W 1,2-regular, which,
unfortunately, is precisely the regularity which the transport property gives for the local
mass of the convolved H-measures. As a result, interpolation arguments will then of
course give estimates which are too weak.

Even worse, there are no additional assumptions we could reasonably impose to still get
a relevant statement: If we believe the estimate (3.36) to be more or less sharp, then
making the density of the elastic energy more integrable should improve the regularity of
the volume fractions in exactly the same way as it improves the estimate in the transport
property.

4.1 Preliminary considerations

As before, we only consider sequences (uη, χη) with

lim sup
η→0

Eη(uη, χη) <∞.



4.1. PRELIMINARY CONSIDERATIONS 105

In contrast, we will be able to deal with the greater generality of austenite being present
and the domain Ω merely having a Lipschitz boundary. A reminder of the precise defini-
tion of the energy can be found in Subsection 1.1.3.

In order to localize our results we will at times think of Eη, Eelast,η and Einter,η as finite
Radon measures on Ω, where we dropped the dependence on uη and χη. Furthermore,
passing to a subsequence we assume the existence of finite Radon measures Eelast and
Einter on Ω such that Eelast,η

∗
⇀ Eelast and Einter,η

∗
⇀ Einter as measures.

Furthermore, we take the opportunity to remind the reader that the weak∗ limits θi of
the functions χi relate to the limiting displacement via

∂iui = −3θi − θ0 + 1 (4.1)

for i = 1, 2, 3. This is a straightforward consequence of the computation

∂iui,η =
3∑
j=0

χj,η(ej)ii + oL2(η) = −2χi,η +
3∑

j=1,j 6=i

χj,η + oL2(η)

= −3χi,η − χ0,η + 1 + oL2(η),

(4.2)

where we used
∑3

i=0 χi,η = 1.

We also recall that the martensite indices 1, 2 and 3 will at times be used cyclically, and
that the austenite index 0 is explicitly excluded from this convention.

Definition of the H-measures

A straightforward application of Korn’s inequality ensures that after subtraction of a
skew-symmetric linear function Duη is bounded in L2(Ω). Thus, after subtracting con-
stants and passing to a subsequence we get the existence of u ∈ W 1,2(Ω,R3) such that
uη ⇀ u in W 1,2(Ω,R3).

As explained in the introduction to this chapter, we have to regularize the displacement
for the transport property to hold. To this end, we consider u

(δ)
η := ϕ

δη
1
3
∗ uη for δ > 0,

where ϕ is a smooth, radially symmetric convolution kernel supported on B1(0). A

weak-times-strong argument proves that for each δ > 0 we still have u
(δ)
η ⇀ u in W 1,2

loc .

By the existence theorem for H-measures [113, Theorem 1.1] we can extract a subsequence
such that for i, j, k = 1, 2, 3 the H-measures µi (Ej, Ek;ψ1ψ

∗
2 ⊗ a) of the pairs of sequences

∂jui,η − ∂jui and ∂kui,η − ∂kui exist as limits of

ˆ
R2

F (ψ1 (∂jui,η − ∂jui))F∗ (ψ2 (∂kui,η − ∂kui)) a
(
ξ

|ξ|

)
dξ

for ψ1, ψ2 : R3 → C and a : S2 → C. By linearity, we may reduce to the case that
ψ1, ψ2 and a take values in R. Note that we follow Tartar [113] in using the convention
Ff(ξ) =

´
R3 f(x)e−2πix·ξ dx.
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Furthermore, we may assume that the H-measures µ
(δ)
i (Ej, Ek; • ⊗ •) associated to the

sequences ∂ju
(δ)
i,η − ∂jui and ∂ku

(δ)
i,η − ∂kui for i, j, k = 1, 2, 3 exist along a subsequence for

a countable, dense subset of {δ > 0}. The following straightforward lemma ensures that
the convergence in fact extends to all δ > 0.

Lemma 4.1. If for i, j, k = 1, 2, 3 the H-measures µ
(δ)
i (Ej, Ek; • ⊗ •) exist for all param-

eters δ ∈ N ⊂ (0,∞) with N̄ = [0,∞), then they also for δ ∈ N̄ ∩ (0,∞).

For convenience, we will set µ
(0)
k := µk. As H-measures are bilinear in their generating

sequences, the H-measures µ
(δ)
k (v, w; • ⊗ •) for k = 1, 2, 3 and δ ≥ 0 associated to the

partial derivatives in all directions v, w ∈ R3 exist. In fact, we can think of µ
(δ)
k as

measure-valued bilinear forms on R3.

Proof of Lemma 4.1. For δ1, δ2 > 0 we have the estimate

∣∣∣∣∣∣ϕ
δ1η

1
3
− ϕ

δ2η
1
3

∣∣∣∣∣∣
L1(R3)

=

∣∣∣∣∣∣∣∣ϕ δ1
δ2

− ϕ1

∣∣∣∣∣∣∣∣
L1(R3)

.

∣∣∣∣1− δ1

δ2

∣∣∣∣ .
Thus for i, j, k = 1, 2, 3; ψ1, ψ2 ∈ Cc(Ω) and a ∈ C(S2) we have∣∣∣∣ ˆ

R3

F
(
ψ1

(
∂ju

(δ1)
i,η − ∂jui

))
F∗
(
ψ1

(
∂ku

(δ1)
i,η − ∂kui

))
a dξ

−
ˆ
R3

F
(
ψ1

(
∂ju

(δ2)
k,η − ∂jui

))
F∗
(
ψ1

(
∂ku

(δ2)
i,η − ∂kui

))
a dξ

∣∣∣∣
.||ψ1||∞||ψ2||∞||a||∞ sup

η,δ

(
||∇u(δ)

η ||L2

)
||∇u(δ1)

η −∇u(δ2)
η ||L2

.||ψ1||∞||ψ2||∞||a||∞
(

sup
η
||∇uη||L2

)2 ∣∣∣∣1− δ1

δ2

∣∣∣∣ .
As this implies convergence to zero as |δ1 − δ2| → 0 uniformly in η we see that the claim
holds.

4.2 Structure of the H-measures

We begin by noting that the displacements solve six inhomogeneous wave equations,
which result from an interplay between the integrability condition ∂igj = ∂jgi of a gradient
field g and the symmetric gradient almost being diagonal and trace-free. As we will
later want to have fully localized statements, we make sure the local dependence of the
inhomogeneities on the energy is reflected in the statement. Furthermore, take note that
this is the lemma we referred to for a proof of Lemma 2.12.
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Lemma 4.2. There exists a universal constant c > 0 with the following property: The
displacements u

(δ)
η satisfy the differential constraints

∂[111]∂[111]u
(δ)
1,η = div h

(δ)
1,η,

∂[111]∂[111]u
(δ)
1,η = div h

(δ)
2,η,

∂[111]∂[111]u
(δ)
2,η = div h

(δ)
3,η,

∂[111]∂[111]u
(δ)
2,η = div h

(δ)
4,η,

∂[111]∂[111]u
(δ)
3,η = div h

(δ)
5,η,

∂[111]∂[111]u
(δ)
3,η = div h

(δ)
6,η.

(4.3)

Here the vector fields h
(δ)
i,η : Ω→ R3 with i = 1, . . . , 6 satisfy the estimates

ˆ
Ω

ψ2|h(0)
i,η |2 dx ≤ cη

2
3Eelast,η(ψ

2) (4.4)

for all ψ ∈ Cc(Ω;R) and i = 1, . . . , 6, while for δ > 0 we have

h
(δ)
i,η = ϕ

δη
1
3
∗ h(0)

i,η

on {x ∈ Ω : dist(x, ∂Ω) > δη
1
3}. In particular, we have h

(δ)
i,η → 0 in L2

loc(Ω) for i = 1, . . . , 6
and δ ≥ 0.

The localization principle of H-measures states that linear differential constraints such as
those given above contain information about the support of the measures in the Fourier
variable. At least after having seen that these constraints imply the decomposition in
Lemma 2.9, it is not surprising that in this instance the H-measures are supported on the
directions ν ∈ N , see Subsection 1.1.5 for the definition. In particular, we get the same
combinatorics in both cases as can be seen by comparing Lemma 2.9 with Equation (4.6)
below.

Furthermore, the fact that H-measures are generated by gradients leads to yet another
reduction in complexity, see Equation (4.5). We also get an expression for the mass of the

H-measures µ
(0)
i in Equation (4.7), although some post-processing in the next proposition

will get rid of the austenitic contributions. Finally, inequality (4.8) is a result of µ
(δ)
i

involving a convolution.

Lemma 4.3. For δ ≥ 0 there exist non-negative measures σ
(δ)
i on Ω×S2 for i ∈ {1, 2, 3}

and measurable, non-negative functions A
(δ)
[ν] ∈ L∞(Ω) for ν ∈ N such that the following

hold: For all ψ ∈ Cc(Ω) and a ∈ C(S2) we have

µ
(δ)
i (v, w;ψ ⊗ a) = σ

(δ)
i (ψ ⊗ (v · ξ)(w · ξ)a) , (4.5)

σ
(δ)
i (ψ ⊗ a) =

ˆ
Ω

ψ(x)
∑

ν∈Ni−1∪Ni+1

A
(δ)
[ν] (x)δ[ν](a) dx, (4.6)
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where δ[ν] is defined in equation (4.9) below. Furthermore, we have∑
ν∈Ni+1∪Ni−1

A
(0)
[ν] ≡ 18 θi(1− θi)− 12 θ0θ1 + 2 θ0(1− θ0), (4.7)

σ
(δ)
i ≤ σi (4.8)

for δ > 0.

A note regarding the notation: It turns out that real-valuedness of the sequence results
in the H-measures only depending on directions but not on orientations in the Fourier
variable: They are linear combinations of the measures

δ[ν] :=
1

2

(
δ ν
|ν|

+ δ− ν
|ν|

)
(4.9)

for ν ∈ N . In case the reader is interested in such matters, it is therefore natural to refer
to the directions of oscillation as elements of the projective space RP 2 := (R3 \ {0}) /∼,
where v∼w if and only if there exists λ ∈ R such that v = λw. In this context we
interpret the square brackets as the corresponding projection [•] : R3 \ {0} → RP 2.

So far we only proved that oscillations are restricted to the six twinning directions. How-
ever, if we want to think of the microstructures as locally being twins, we should better
make sure that at almost all points in space there is oscillation in at most one direction.
This is the content of the following lemma, which provides the basis for giving the post-
poned proof of Lemma 2.8. As previously discussed in Chapter 2, it is a consequence
of the rigidity result by Capella and Otto [24] and the behavior of the energy under
rescaling: Setting

rx̂ = x, û(x̂) = ru(x), χ̂(x̂) = χ(x), rη̂ = η (4.10)

we obtain
Eη̂(û, χ̂) = r−3+ 2

3Eη(u, χ), (4.11)

which very naturally leads to the expected fractal dimension 3− 2/3 of the set of macro-
scopic interfaces.

Proposition 4.4. For ν, ν̃ ∈ N with ν 6= ν̃ we have(
A

(0)
[ν]A

(0)
[ν̃]

)
(y) = 0 (4.12)

in the sense of Lebesgue points for all y ∈ Ω \ S, where the set

S :=

{
y ∈ Ω : lim sup

r→0
r−3+ 2

3 (Eelast + Einter)
(
Br (y)

)
> 0

}
satisfies

dimH S ≤ 3− 2

3
.

Furthermore we have
θ0 ∈ {0, 1}

almost everywhere.
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As an easy consequence of this proposition, we can refine the statement of Lemma 4.3
and finally prove the differential inclusion of Chapter 2, namely Lemma 2.8.

Corollary 4.5. For each ν ∈ Ni with i ∈ {1, 2, 3} there exist χ[ν] : Ω→ {0, 1} measurable
such that

χ[ν]χ[ν̃] ≡ 0 for ν̃ ∈ N \ {ν}, (4.13)

A
(0)
[ν] ≡ 18 θi(1− θi)χ[ν], (4.14)∑

ν∈Ni+1∪Ni−1

χ[ν] ≡ χ{θi 6=0,1}χ{θ0=0}. (4.15)

Furthermore, if we have θ0 ≡ 0 then

min{θ1, θ2, θ3} ≡ 0,

i.e., we have (θ1, θ2, θ3) ∈ K̃ and e(u) ∈ K in the notation of Chapter 2.

Proof of Lemma 4.2. We first deal with the case δ = 0. Throughout the proof hη is a
generic sequence of vector fields satisfying the desired bound which can change from line
to line. By symmetry it is sufficient to prove the equations involving u1. We calculate

∂[111]∂[111] = −∂2
1 + ∂1∂2 + ∂1∂3 − ∂1∂2 + ∂2

2 + ∂2∂3 − ∂1∂3 + ∂2∂3 + ∂2
3

= −∂2
1 + ∂2

2 + ∂2
3 + 2∂2∂3

and, similarly,
∂[111]∂[111] = ∂2

1 − ∂2
2 − ∂2

3 + 2∂2∂3.

Recalling the strain space S = {e ∈ R3×3 : e diagonal, tr e = 0} defined in Subsection
1.1.3 we have for δ > 0 that

dist2

(
1

2
(Duη +DuTη ), S

)
≤

∣∣∣∣∣12 (Du+DuT
)
−

3∑
i=1

χiei

∣∣∣∣∣
2

.

Consequently, we get

(−∂2
1 + ∂2

2 + ∂2
3)u1,η = −∂2

1u1,η − ∂2∂1u2,η − ∂3∂1u3,η + div hη

= −∂1 trDuη + div hη

= div hη.

We also obtain

∂2∂3u1,η = −∂2∂1u3,η + div hη = ∂1∂3u2,η + div hη = −∂2∂3u1,η + div hη

and because the derivatives appear on both sides with opposite signs we have

∂2∂3u1,η = div hη.

For δ > 0 we only have to use that convolution and derivatives commute.
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Proof of Lemma 4.3. Step 1: Gradient H-measures.
Equation (4.5) is simply the characterization of gradient H-measures [113, Lemma 3.10
first part]. We will however briefly give the argument: As the generating sequence for

µ
(δ)
i is curl-free, the localization principle for H-measures [113, Theorem 1.6] implies

µ
(δ)
i (Ej, Ek; • ⊗ ξm•) = µ

(δ)
i (Em, Ek; • ⊗ ξj•)

for all i, j, k,m = 1, 2, 3. For all i, j, k = 1, 2, 3 we consequently have

µ
(δ)
i (Ej, Ek; • ⊗ •) =

3∑
m=1

µ
(δ)
i (Ej, Ek; • ⊗ ξ2

m•) =
3∑

m=1

µ
(δ)
i (Em, Ek; • ⊗ ξjξm•).

As the measure µ
(δ)
i is hermitian non-negative [113, Corollary 1.2] we see that

3∑
m=1

µ
(δ)
i (Em, Ek; • ⊗ ξjξm•) =

3∑
m=1

µ
(δ)
i (Ek, Em; •∗ ⊗ ξjξm•∗)∗

=
3∑

m=1

µ
(δ)
i (Em, Em; •∗ ⊗ ξjξk•∗)∗

=
3∑

m=1

µ
(δ)
i (Em, Em; • ⊗ ξjξk•)

= σ
(δ)
i (• ⊗ ξjξk•)

for σ
(δ)
i :=

∑3
m=1 µ

(δ)
i (Em, Em; • ⊗ •). In particular, the measure σ

(δ)
i is non-negative in

the sense that if ψ ∈ Cc(R3;R≥0) and a ∈ C(S2;R≥0) we have σ
(δ)
i (ψ ⊗ a) ≥ 0. Since

both sides of equation (4.5) are bilinear and they agree on a basis of R3 we must have
equality for all v, w ∈ R3.

Step 2: Structure of the Fourier variable part.
Combining the localization principle [113, Theorem 1.6] with the first equation of Lemma
4.2 we see that

µ
(δ)
1 ([111], Ej; • ⊗ ξ · [111]•) = 0

for all j = 1, 2, 3. Writing this in terms of σi and replacing • by ξj• this reads

σ
(δ)
1

(
• ⊗(ξ · [111])(ξ · [111])ξ2

j •
)

= 0.

Summation in j yields

σ
(δ)
1

(
• ⊗(ξ · [111])(ξ · [111]) •

)
= 0.

Using the second equation of Lemma 4.2 we instead get

σ
(δ)
1

(
• ⊗(ξ · [111])(ξ · [111]) •

)
= 0.



4.2. STRUCTURE OF THE H-MEASURES 111

In particular, for every ψ ∈ Cc(R3;R≥>0) we have

supp(σ
(δ)
1 (ψ ⊗ •))

⊂
(
{ξ · [111] = 0} ∪ {ξ · [111] = 0}

)
∩
(
{ξ · [111] = 0} ∪ {ξ · [111] = 0}

)
= ±N2 ∪ ±N3,

where the last step is a straightforward consequence of the definitions in Subsection 1.1.5.
Consequently, the measure supp(σ

(δ)
1 (ψ ⊗ •)) is a linear combination of Dirac measures

supported on the set ±N2∪±N3, where the coefficients are given by integrating ψ against
Radon measures on Ω.

Because for real valued functions f on R3 we have Ff(ξ) = Ff(−ξ), we see that the

measure σ
(δ)
1 (ψ⊗•) is invariant under reflection in ξ due to being non-negative and thus

real-valued. Hence there exist non-negative Radon measures ω
(δ)
1,[ν] on Ω for ν ∈ N2 ∪N3

such that

σ
(δ)
1 =

∑
ν∈N2∪N3

ω
(δ)
1,[ν] ⊗ δ[ν].

We can also relate the “cumulative” gradient H-measure σ
(δ)
i exclusively to the H-

measure µ1 associated to the corresponding diagonal entry e(u)11 of the strain: For
ψ ∈ Cc(Ω,R≥0) and a ∈ C(S2; [0, 1]) we see using 1

2
ν2 = ν2

1 for ν ∈ N2 ∪ N3 and the
characterization of gradient H-measures (4.5) that

1

2
σ1(ψ2 ⊗ a) =

1

2
σ1(ψ2 ⊗ ξ2a) = σ1(ψ2 ⊗ ξ2

1a) = µ1(E1, E1;ψ2 ⊗ a). (4.16)

Using similar arguments, we see that also for i = 2, 3 there exist Radon measures ω
(δ)
i,[ν]

on Ω for ν ∈ Ni+1 ∪Ni−1 such that

σ
(δ)
i =

∑
ν∈Ni+1∪Ni−1

ω
(δ)
i,[ν] ⊗ δ[ν] = 2µi(Ei, Ei; • ⊗ •).

Step 3: For {i, j, k} = {1, 2, 3} we have ω
(δ)
i,[ν] = ω

(δ)
j,[ν] for ν ∈ Nk. In particular, we may

write ω
(δ)
[ν] instead.

In order to keep the notation simple we will only deal with the case i = 1, j = 2 and
k = 3. All others work similarly. Let ν ∈ N3. Let ψ ∈ Cc(Ω) and let a ∈ C(S2; [0, 1])
be such that a(±ν) = 1 and a(±ν̃) = 0 for ν̃ ∈ N \ {ν}. As all limiting strains ei are
trace-free we get that

∂1u
(δ)
1 + ∂2u

(δ)
2 + ∂3u

(δ)
3 → 0 in L2.

Consequently, we get that

µ
(δ)
1 (E1, E1; |ψ|2 ⊗ a)

= lim
η→0

ˆ
R2

∣∣∣F (ψ (∂2u
(δ)
2,η + ∂3u

(δ)
3,η − (∂2u2 + ∂3u3)

))∣∣∣2 a( ξ

|ξ|

)
dξ.
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Expanding the square we see that all terms involving ∂3u
(δ)
3,η − ∂3u3 drop out since

lim
η→0

ˆ
R2

∣∣∣F (ψ (∂3u
(δ)
3,η − ∂3u3

))∣∣∣2 a( ξ

|ξ|

)
dξ = µ

(δ)
3

(
E3, E3; |ψ|2 ⊗ a

)
= σ

(δ)
3

(
|ψ|2 ⊗ ξ2

3a
)

= 0

due to suppσ3(ψ ⊗ •) ⊂ ±N1 ∪N2 and a(±ν̃) for ν̃ ∈ N \ {ν}. As a result we get

µ
(δ)
1 (E1, E1; |ψ|2 ⊗ a) = µ

(δ)
2 (E2, E2; |ψ|2 ⊗ a),

which using the choice of a localizing at ±ν and the representation (4.16) implies

1

2
ω

(δ)
1,[ν](•) =

1

2
ν

(δ)
1 (• ⊗ a) = µ

(δ)
1 (E1, E1; • ⊗ a) = µ

(δ)
2 (E2, E2; • ⊗ a) =

1

2
ω

(δ)
2,[ν](•).

Step 4: Absolute continuity of ω
(0)
[ν] for ν ∈ N and equation (4.6) for δ = 0.

Note that we will drop the superscript for the duration of this step. Furthermore, we
only deal with the case ν ∈ N2 ∪N3. The case ν ∈ N1 works the same.

Recalling the representation (4.16) and the definition of H-measures, as well as using
0 ≤ a ≤ 1 we obtain

1

2
σ1(ψ2 ⊗ a) = lim

η→0

ˆ 3

R
a|F(ψ∂1(u1,η − u1))|2 dξ ≤ lim

η→0

ˆ 3

R
|F(ψ∂1(u1,η − u1))|2 dξ

with equality for a ≡ 1. An application of Parseval’s theorem implies

1

2
σ1(ψ2 ⊗ a) ≤ lim

η→0

ˆ
Ω

|ψ∂1(u1,η − u1)|2 dx. (4.17)

Using equations (4.2) and (4.1) we can relate this limit to the limiting volume fraction
θi by observing

lim
η→0

ˆ
Ω

ψ2 (∂1u1,η − ∂1u1)2 dL3 = lim
η→0

ˆ
Ω

ψ2 (3χ1 + χ0 − 3θ1 − θ0)2 dL3.

Expanding the square and using the fact that χ0 and χ1 are characteristic functions of
disjoint sets we see that the right-hand side equals

lim
η→0

ˆ
Ω

ψ2
(
9χ1 − 6χ1(3θ1 + θ0) + χ0 − 2χ0(3θ1 + θ0) + (3θ1 + θ0)2

)
dL3

=

ˆ
Ω

ψ2 (9θ1(1− θ1)− 6θ0θ1 + θ0(1− θ0)) dL3.

Altogether we proved

lim
η→0

ˆ
Ω

ψ2 (∂1u1,η − ∂1u1)2 dL3 =

ˆ
Ω

ψ2 (9θ1(1− θ1)− 6θ0θ1 + θ0(1− θ0)) dL3. (4.18)
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Using a to localize at the directions ±ν ∈ N2 ∪ N3 where σi may concentrate and com-
bining inequality (4.17) with the convergence (4.18) we see that ω[ν] must be absolutely
continuous w.r.t. the measure L3. When instead using a ≡ 1 the estimates turn into the
identity ∑

ν∈Ni+1∪Ni−1

A
(0)
[ν] ≡ 18 θi(1− θi)− 12 θ0θ1 + 2 θ0(1− θ0).

Step 5: We have σ
(δ)
i ≤ σi as measures for i = 1, 2, 3 and δ > 0. In particular, the

functions A
(δ)
[ν] ∈ L∞(Ω) exist such that equation (4.6) holds.

Let ψ ∈ Cc(Ω;R). First note that

ψϕ
δη

1
3
∗ ∇ (u1,η − u1)− ϕ

δη
1
3
∗ (ψ∇ (u1,η − u1))→ 0

in L2. Thus for a ∈ C(S2;R≥0) and j = 1, 2, 3 we can calculate, exploiting the fact∣∣∣∣∣∣F (ϕ
δη

1
3

)∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣ϕ

δη
1
3

∣∣∣∣∣∣
L1

= 1 along the way, that

µ
(δ)
1

(
Ej, Ej;ψ

2 ⊗ a
)

= lim
η→0

ˆ
a
∣∣∣F (ϕ

δη
1
3
∗ ψ∂j (u1,η − u1)

)∣∣∣2 dξ

= lim
η→0

ˆ
a
∣∣∣F (ϕ

δη
1
3

)∣∣∣2 |F(ψ∂j (u1,η − u1)|2 dξ

≤ lim
η→0

ˆ
a |F (ψ∂j (u1,η − u1))|2 dξ

≤ µ
(
Ej, Ej;ψ

2 ⊗ a
)
.

An application of the identity (4.16) yields

σ
(δ)
1

(
ψ2 ⊗ a

)
= 2µ

(δ)
1

(
Ej, Ej;ψ

2 ⊗ a
)
≤ 2µ1

(
Ej, Ej;ψ

2 ⊗ a
)

= σ1

(
ψ2 ⊗ a

)
.

Proof of Proposition 4.4. Let y ∈ Ω and r > 0 be such that Br (y) ⊂ Ω. By translation
invariance we can assume y = 0.

Step 1: Applying stability of twins after rescaling.
Setting x̂ := x

r
and η̂ := η

r
we re-scale the displacements and partitions to the unit ball:

Let û η
r

: B1 (0)→ R2 and χ̂ η
r

: B1 (0)→ {0, 1} be defined as

û η
r
(x) :=

1

r
uη (rx) , χ̂ η

r
(x) := χη (rx) .

The energy of the re-scaled functions is

Eη̂(ûη̂, χ̂η̂) = η̂−
2
3

ˆ
B1(0)

∣∣∣∣∣e(ûη̂)−
3∑
i=1

χ̂i,η̂ei

∣∣∣∣∣
2

dx̂+ η̂
1
3 |Dχ̂η̂|(B1 (0))

= r−3+ 2
3Eη(Br (0)).
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By the Capella-Otto rigidity theorem [24] there exists a universal radius 0 < s < 1 and
bounded functions f̂ν,η̂ : B1 (0)→ R depending only on x · ν with ν ∈ N such that

min

{
min

i=1,2,3;ν∈Ni

{∣∣∣∣∣∣e(ûη)− f̂ν,η̂ ei+1 − (1− f̂ν,η̂) ei−1

∣∣∣∣∣∣2
L2(Bs(0))

}
, ||e(ûη)||2L2(Bs(0))

}
.
(
r−3+ 2

3Eη(Br (0))
) 1

4
+ r−3+ 2

3Eη(Br (0)).

(4.19)

Just keeping the i-th and the i+1-th diagonal entries of the strain in the nested minimum
and the entire diagonal in ||e(ûη)||2 we see with (ei)jj = 1− 3δij for i, j ∈ {1, 2, 3} that

min

{
min

i=1,2,3;ν∈Ni

{
||∂iûi,η̂ − 1||2L2(Bs(0)) +

∣∣∣∣∣∣∂i+1ûi+1,η̂ + 3f̂ν,η̂ − 1
∣∣∣∣∣∣2
L2(Bs(0))

}
,

3∑
i=1

||∂iûi||2L2(Bs(0))

}

.
(
r−3+ 2

3Eη(Br (0))
) 1

4
+ r−3+ 2

3Eη(Br (0)).

Re-scaling back to Br (0) we get fν,η : Br (0)→ R bounded and depending only on x · ν
for each ν ∈ N with

min

{
min

i=1,2,3;ν∈Ni

{
r−3 ||∂iui,η − 1||2L2(Bsr(0)) + r−3 ||∂i+1ui+1,η − fν,η||2L2(Bsr(0))

}
,

3∑
i=1

r−3||∂iui||2L2(Bsr(0))

}

.
(
r−3+ 2

3Eη(Br (0))
) 1

4
+ r−3+ 2

3Eη(Br (0)).

(4.20)

Step 2: The H-measure mostly concentrates on the twinning direction in the sense that

min
i=1,2,3;ν∈Ni

 ∑
ν̃∈N\{ν}

−
ˆ
B sr

2
(0)

A
(0)
[ν̃] dx

 .
(
r−3+ 2

3E
(
Br (0)

)) 1
4

+ r−3+ 2
3E
(
Br (0)

)
,

where E
(
Br (0)

)
:= (Eelast + Einter)

(
Br (0)

)
.

As weak convergence of Radon measures is upper semi-continuous on compact sets we
may extract a subsequence such that

lim
η→0

Eη(Br (0)) ≤ E
(
Br (0)

)
.

After extracting yet another subsequence there exist fν : B1 (0)→ R for each ν ∈ N such
that

fν,η
∗
⇀ fν in L∞
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and we have

||∂i+1ui+1 − fν̄ ||2L2(Bsr(0)) ≤ lim inf
η→0

||∂i+1ui+1,η − fν̄,η||2L2(Bsr(0)). (4.21)

Let ν ∈ Ni for i ∈ {1, 2, 3}. Note that the localization principle for H-measures implies
that the support of any H-measure involving fν,η − fν as a factor is contained in {±ν}.
Thus for a cut-off function ψ ∈ Cc(Ω; [0, 1]) of B s

2
(0) in Bs (0) and a[ν] ∈ C(S2; [0, 1])

with a[ν](±ν) = 1 and a[ν](±ν̃) = 0 for ν̃ ∈ N \ {ν} we get

µi+1

(
Ei+1, Ei+1;ψ ⊗ (1− a[ν])

)
. lim inf

η→0
||∂i+1(ui+1,η − ui+1)− (fν,η − fν)||2L2(Bsr(0)).

(4.22)

Using the representation (4.6) of σi+1, identity (4.16), i.e.,

1

2
σi+1(• ⊗ •) = µi+1 (Ei+1, Ei+1; • ⊗ •) ,

and equations (4.22) and (4.21) we get∑
ν̃∈Ni∪Ni−1\{ν}

ˆ
Br(0)

ψA[ν̃] dx = σi+1(ψ ⊗ (1− a[ν]) . lim inf
η→0

||∂i+1ui+1,η − fν,η||2L2(Bsr(0)).

We plug this estimate into the inequality (4.20) along with the crude estimate∑
ν̃∈Ni+1∪Ni−1

ˆ
Br(0)

ψA[ν̃] dx = σi(ψ ⊗ 1)

. lim inf
η→0

min
{
||∂iui,η||2L2(Bsr(0)) , ||∂iui,η − 1||2L2(Bsr(0))

}
to see

min
i=1,2,3;ν∈Ni

 ∑
ν̃∈N\{ν}

−
ˆ
B sr

2
(0)

A
(0)
[ν̃] dx

 . lim
η→0

(
r−3+ 2

3Eη(Br (0))
) 1

4
+ r−3+ 2

3Eη(Br (0))

≤
(
r−3+ 2

3E
(
Br (0)

)) 1
4

+ r−3+ 2
3E
(
Br (0)

)
.

Step 3: Prove A
(0)
[ν]A

(0)
[ν̃] = 0 for ν 6= ν̃.

As a result of Step 2 we get for ν, ν̃ ∈ N with ν 6= ν̃ that

−
ˆ
B sr

2
(0)

A
(0)
[ν]A

(0)
[ν̃] dx .

(
r−3+ 2

3E
(
Br (0)

)) 1
4

+ r−3+ 2
3E
(
Br (0)

)
.

Reversing the translation to y = 0 we see that y is a Lebesgue point of the non-negative
function A

(0)
[ν]A

(0)
[ν̃] with

A
(0)
[ν]A

(0)
[ν̃] = 0 (4.23)
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as long as

y 6∈ S =

{
y ∈ Ω : lim sup

r→0
r−3+ 2

3 (Eelast + Einter)
(
Br (y)

)
> 0

}
.

By standard covering arguments one can see that dimH S ≤ 3 − 2
3
, which concludes the

proof of the first part of the statement.

Step 4: We have θ0 ∈ {0, 1} for almost all Lebesgue points of θ0.
The argument is very similar to Steps 1 and 3. Instead of using the result of Capella and
Otto in the form of estimate (4.19) apply it as

min

{ˆ
Bs(0)

|χ0,η| dx̂,
ˆ
Bs(0)

|χ0,η − 1| dx̂
}

. r−3+ 2
3Eη(Br (0)).

Re-scaling the left-hand side to Bsr (y), taking the limit η → 0 and using L3(S) = 0
we get the desired statement. Note that we can only get rid of the minimum in the
localization r → 0 if we a priori know y to be a Lebesgue point of θ0.

Proof of Corollary 4.5. Let χ[ν] := χ{A(0)}
[ν]

>0}. Equation (4.13), namely χ[ν]χ[ν̃] ≡ 0 for

ν 6= ν̃, is an immediate consequence of equation (4.12). To prove

A
(0)
[ν] = 18θi(1− θi)χ[ν],

which is equation (4.14), observe that

θj = 0 for j = 1, 2, 3 almost everywhere on the set {θ0 = 1} (4.24)

due to
∑3

i=0 θi ≡ 1 and 0 ≤ θi ≤ 1 for i = 0, . . . , 3. Therefore equation (4.7) turns into∑
ν∈Ni+1∪Ni−1

A
(0)
[ν] = 18θi(1− θi),

which implies (4.14) by equation (4.12).

This identity together with observation (4.24) implies both that χ[ν] ≡ 0 on {θ0 = 1} for
all ν ∈ N and that for almost every x ∈ {0 < θi < 1} there exists some ν ∈ Ni+1 ∪Ni−1

such that χ[ν](x) = 1. Consequently, we have equation (4.15), namely∑
ν∈Ni+1∪Ni−1

χ[ν] ≡ χ{θi 6=0,1}χ{θ0=0}.

To prove the last part we assume that θ0 ≡ 0. Then for almost all x ∈ Ω the statement
χ[ν](x) = 1 for ν ∈ Ni and i ∈ {1, 2, 3} implies χ[ν̃](x) = 0 for ν̃ ∈ Ni+1 ∪ Ni−1 by our
first insight during this proof. Therefore the above equation gives

χ{θi 6=0,1} =
∑

ν̃∈Ni+1∪Ni−1

χ[ν̃] = 0.
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4.3 The transport property and accuracy of the ap-

proximation

We first investigate how well the regularized H-measures represent the microstructure,
which will boil down to how much mass they retain by inequality (4.8) and the fact that
there can locally only be at most one direction of oscillation. The proof straightforwardly
uses the interfacial energy to control the difference between the sequence χη and its
convolution.

Lemma 4.6. There exist non-negative measurable functions τ
(δ)
i on Ω for i = 1, 2, 3 such

that

σ
(δ)
i = τ

(δ)
i

 ∑
ν∈Ni+1∪Ni−1

χ[ν]δ[ν]

L3 (4.25)

and

18 θi(1− θi)− 36δ
DEinter
DL3

≤ τ
(δ)
i ≤ 18 θi(1− θi) (4.26)

in L3-almost all points.

Finally, we come to the transport property itself. It controls how on a twin the mass of
the H-measures changes in directions normal to the direction of lamination. By equation
(4.7) this also restricts the volume fractions the behavior of the volume fractions. Note
that the transport property takes the form of a differential inequality associated to the
ill-posed ODE

f ′ = Cf
1
2

for f ≥ 0 and C > 0, which we will later exploit in Lemma 4.10.

Proposition 4.7. There exists a universal constant C > 0 with the following property:
For each δ > 0, i = 1, 2, 3 and ν ∈ Ni+1 ∪ Ni−1 let d ∈ R3 with d · ν = 0 and |d| = 1.

Then we have ∂d

(
τ

(δ)
i χ[ν]

)
∈ L2(Ω) with the estimate

∣∣∣∂d (τ (δ)
i χ[ν]

)∣∣∣ ≤ C
1

δ

(
τ

(δ)
i χ[ν]

) 1
2

(
DEelast
DL3

) 1
2

. (4.27)

Proof of Lemma 4.6. The existence of τ
(δ)
i such that equation (4.25) and the upper bound

in estimate (4.26) hold is a direct consequence of the inequality (4.8) and the identity
(4.12).

Step 1: Rewrite the difference 18θi(1− θi)− τ (δ)
i in terms of the partitions χη to exploit

the bound on the interfacial energy.
Let ψ ∈ C∞c (Ω) and computeˆ

Ω

τ
(δ)
i |ψ|2 dL3 (4.25)

= ν
(δ)
i (ψ ⊗ 1)

(4.16)
= 2µi(Ei, Ei; |ψ|2 ⊗ 1)

Def.
= lim

η→0
2

ˆ
Ω

|ψ|2
(
∂i

(
u

(δ)
i,η − ui

))2

dL3
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An application of the relations (4.2) and (4.1) gives

lim
η→0

2

ˆ
Ω

|ψ|2
(
∂i

(
u

(δ)
i,η − ui

))2

dL3 = lim
η→0

2

ˆ
Ω

|ψ|2
(

3χ
(δ)
i,η − 3θi + χ0,η − θ0

)2

dL3.

Note that the difference χ0,η − θ0 does not contribute in the limit due to

lim
η→0

ˆ
Ω

|χ0,η − θ0|2 dL3 = lim
η→0

ˆ
Ω

χ0,η − 2χ0,ηθ0 + θ2
0 dL3 =

ˆ
Ω

θ0(1− θ0) dL3 = 0,

where in the last step we used θ0 ∈ {0, 1} almost everywhere, see Proposition (4.4).
Consequently, we get

ˆ
Ω

τ
(δ)
i |ψ|2 dL3 = lim

η→0

ˆ
Ω

|ψ|2 18

((
χ

(δ)
i,η

)2

− θ2
i

)
dL3.

The result of this computation can be used to deduce

ˆ
Ω

|ψ|2
(

18θi(1− θi)− τ (δ)
i

)
dL3 = lim

η→0

ˆ
Ω

|ψ|2 18

(
θi −

(
χ

(δ)
i,η

)2
)

dL3

= lim
η→0

ˆ
Ω

|ψ|2 18

(
χi,η −

(
χ

(δ)
i,η

)2
)

dL3

= lim
η→0

ˆ
Ω

|ψ|2 18

(
χ2
i,η −

(
ϕ
δη

1
3
∗ χi,η

)2
)

dL3.

Step 2: We have

lim inf
η→0

ˆ
Ω

|χη − ϕδη 1
3
∗ χη||ψ|2 dL3 ≤ δEinter(|ψ|2).

This is a BV -version of the well-known estimate

||f − φδ ∗ f ||Lp .
1

δ
||Df ||Lp

for p ≥ 1. We provide the argument to ensure that it also holds in the localized version
we require.

For each η in the subsequence let χ
(n)
η be a smooth approximation of χη such that

1. χ
(n)
η → χη in L1(Ω),

2. |Dχ(n)
η | ∗⇀ |Dχη|

as n→∞. The existence follows from the usual density statement for BV functions [42,
Theorem 2 of Chapter 5.2], as convergence of the total mass and lower semi-continuity of
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the BV norm on open subsets implies weak convergence of the total variation measures.
We estimate ˆ

Ω

|χ(n)
η − ϕδη 1

3
∗ χ(n)

η ||ψ|2 dL3

=

ˆ
Ω

∣∣∣∣∣∣
ˆ
B
δη

1
3

(0)

ϕ
δη

1
3
(y)
(
χ(n)
η (x− y)− χ(n)

η (x)
)

dy

∣∣∣∣∣∣ |ψ|2(x) dx

≤
ˆ

Ω

ˆ
B
δη

1
3

(0)

ˆ 1

0

δη
1
3ϕ

δη
1
3
(y)|Dχ(n)

η |(x− ty)|ψ|2(x) dt dy dx

=

ˆ 1

0

ˆ
B
δη

1
3

(0)

ˆ
Ω

δη
1
3ϕ

δη
1
3
(y)|Dχ(n)

η |(x)|ψ|2(x+ ty) dx dy dt,

where in the last step we used suppψ ⊂⊂ Ω and η > 0 small enough when we shifted
the domain of integration. Letting n go to infinity we obtain the estimate

ˆ
Ω

|χη − ϕδη 1
3
∗ χη||ψ|2 dL3 ≤

ˆ 1

0

ˆ
B
δη

1
3

(0)

ˆ
Ω

δη
1
3ϕ

δη
1
3
(y)|ψ|2(x+ ty) d|Dχη|(x) dy dt.

As a result of the convergence |ψ|2(x+ty)→ |ψ|2(x) being uniform in x and the measures

η
1
3 |Dχη| having uniformly bounded mass we get

lim inf
η→0

ˆ
Ω

|χη − ϕδη 1
3
∗ χη||ψ|2 dL3

≤ lim
η→0

ˆ 1

0

ˆ
B
δη

1
3

(0)

ˆ
Ω

δη
1
3ϕ

δη
1
3
(y)|ψ|2(x+ ty) d|Dχη|(x) dy dt

= lim
η→0

ˆ
Ω

δη
1
3 |ψ|2(x) d|Dχη|(x)

= δEinter(|ψ|2).

Step 3: Conclusion.
Combining the results of Steps 1 and 2 we get

ˆ
Ω

|ψ|2
(

18θi(1− θ1)− τ (δ)
i

)
dL3 ≤ 36 δEinter(|ψ|2).

Using |ψ|2 we can approximate characteristic functions of balls Br (0) ⊂ Ω to obtain
ˆ
Br(0)

(
18 θi(1− θ1)− τ (δ)

i

)
dL3 ≤ 36 δEinter(Br (0)).

A differentiation theorem for Radon measures, see e.g. [42, Theorem 1, Chapter 1.6],
implies

18θi(1− θ1)− τ (δ)
i ≤ 36 δ

DEinter
DL3

.
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Proof of Proposition 4.7. Step 1: Set up the notation and post-process Lemma 4.2.
Let δ > 0. Let i ∈ {1, 2, 3}; v, w ∈ {[111], [111], [111], [111]} and h

(δ)
η ∈ L2(Ω;R3) for each

η > 0 be such that

∂v∂wu
(δ)
i,η = divϕ

δη
1
3
∗ h(0)

η (4.28)

is one of the equations in Lemma 4.2. We will use the abbreviation

Uη :=
(
u

(δ)
i,η − ϕδη 1

3
∗ ui
)

= ϕ
δη

1
3
∗ (ui,η − ui) . (4.29)

Because for all ṽ, w̃ ∈ R3 we have ∂ṽϕδη
1
3
∗ ui → ∂ṽui strongly in L2, the sequences ∂ṽUη,

∂w̃Uη of smooth functions still generate the H-measures µ
(δ)
i (ṽ, w̃; • ⊗ •). Additionally,

we drop the superscript of hη. The wave equation given above then reads

∂v∂wUη = divϕ
δη

1
3
∗ hη,

which gives
ˆ

Ω

|ψ|2|∂v∂wUη|2 dL3 ≤
ˆ

Ω

|ψ|2
∣∣∣Dϕ

δη
1
3
∗ hη

∣∣∣2 dL3.

Here the convolution on the right-hand side is understood to be componentwise. As ψ is
uniformly continuous and ϕ

δη
1
3

concentrates in the limit η → 0, we get

lim sup
η→0

ˆ
Ω

|ψ|2|∂v∂wUη|2 dL3 ≤ lim sup
η→0

ˆ
Ω

∣∣∣Dϕ
δη

1
3
∗ (ψhη)

∣∣∣2 dL3.

Young’s inequality, the scaling properties of
∣∣∣∣∣∣Dϕ

δη
1
3

∣∣∣∣∣∣
L1

and the bound (4.4) for hη imply

lim sup
η→0

ˆ
Ω

|ψ|2|∂v∂wUη|2 dL3 . lim sup
η→0

∣∣∣∣∣∣Dϕ
δη

1
3

∣∣∣∣∣∣2
L1

ˆ
Ω

ψ2|hη|2 dx

≤
||Dϕ||2L1

δ2
Eelast(ψ

2).

(4.30)

Step 2: Rewrite the distributional derivatives of µ
(δ)
i (v, v; • ⊗ •) using the differential

constraint (4.28).
Let ψ ∈ C∞c (Ω) and a ∈ C(S1; [0, 1]). As the derivatives of Uη still generate the H-

measures µ
(δ)
i we get

µ
(δ)
i (v, v; ∂w|ψ|2 ⊗ a) = lim

η→0
2 Re

ˆ
aF(ψ∂vUη)F∗(∂wψ∂vUη) dL3

= lim
η→0

2 Re

ˆ
aF(ψ∂vUη)F∗(∂w(ψ∂vUη)) dL3

− 2 Re

ˆ
aF(ψ∂vUη)F∗(ψ∂w∂vUη) dL3.
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The first term vanishes since we have that
ˆ
aF(ψ∂vUη)F∗(∂w(ψ∂vUη)) dL3 = 2πi

ˆ
ξ · wa|F(ψ∂vUη)|2 dL3(ξ)

is purely imaginary. Consequently, applying the Cauchy-Schwarz inequality to the second
term and using inequality (4.30) to estimate the second derivatives we see that∣∣∣µ(δ)

i (v, v; ∂w|ψ|2 ⊗ a)
∣∣∣ . 1

δ

(
µ

(δ)
i (v, v; |ψ|2 ⊗ a)

) 1
2 (
Eelast(ψ

2)
) 1

2 .

Step 3: Rewrite the result in terms of τ
(δ)
i χ[ν].

In terms of the measure σi the last estimate reads∣∣∣σ(δ)
i (∂w|ψ|2 ⊗ (ξ · v)2a)

∣∣∣ . 1

δ

(
σ

(δ)
i (|ψ|2 ⊗ (ξ · v)2a)

) 1
2 (
Eelast(ψ

2)
) 1

2 .

Using a to localize around ±ν for ν ∈ Ni+1 ∪Ni−1 with ν · v 6= 0 we get that∣∣∣∣ˆ
Ω

τ
(δ)
i χ[ν]∂w|ψ|2 dx

∣∣∣∣ . 1

δ

(ˆ
Ω

τ
(δ)
i χ[ν]|ψ|2 dx

) 1
2 (
Eelast(ψ

2)
) 1

2 .

A straightforward crawl through the combinatorics in Lemma 4.2 reveals that for each
ν ∈ Ni+1 ∪ Ni−1 we have either ν · v 6= 0, ν · w = 0 or ν · v = 0, ν · w 6= 0. Thus
we see that each equation in Lemma 4.2 pertaining to ui for i ∈ {1, 2, 3} allows us to

estimate the weak derivative ∂w(τ
(δ)
i χ[ν]) for one vector w ∈ {[111], [111], [111], [111]} with

w · ν = 0. Furthermore, each of the two equations gives us an estimate for two linearly
independent directions. Consequently we can estimate ∂d(τ

(δ)
i χ[ν]) for all directions lying

in the two-dimensional subspace {d̃ · ν = 0} to get∣∣∣∣ˆ
Ω

τ
(δ)
i χ[ν]∂d|ψ|2 dx

∣∣∣∣ . 1

δ

(ˆ
Ω

τ
(δ)
i χ[ν]|ψ|2 dx

) 1
2 (
Eelast(ψ

2)
) 1

2

for d ∈ S2 with d · ν = 0.

Step 4: Localize the estimate.
As the right-hand side can be estimated by ||ψ2||∞ we see that ∂dτ

(δ)
i χ[ν] defines a fi-

nite Radon measure on Ω. Given any Borel set B ⊂ Ω we use ψ2 to approximate its
characteristic function and the value of all involved measures on it, leading to

∣∣∣∂dτ (δ)
i χ[ν](B)

∣∣∣ ≤ C

δ

(ˆ
B

τ
(δ)
i χ[ν] dx

) 1
2

Eelast,η(B)
1
2

for some universal constant C > 0. As the right-hand side vanishes for L3 null sets, we
see that the derivatives are absolutely continuous with respect to L3. We then get the
estimate (4.27) in all Lebesgue points.



122 CHAPTER 4. SHAPE MEMORY ALLOYS: H-MEASURES

4.4 Applications of the transport property

4.4.1 Fractal Besov regularity of twins

As we saw the in the previous statements, only the density with respect to the Lebesgue
measure of the limiting energy plays a role in the estimates. Therefore, in the following
we will use the abbreviations ELelast := DEelast

DL3 , ELinter := DEinter
DL3 and

ELelast(U) :=

ˆ
U

ELelast dL3,

ELinter(U) :=

ˆ
U

ELinter dL3

(4.31)

for U ⊂ Ω. Furthermore, let Uh := U +Bh (0).

In order to properly state the results we give a definition of the relevant Besov space
B

2/3
1,∞.

Definition 4.8 ([114, Chapter 1.10.3]). For a function f : Ω→ R let

∂hdf(x,Ω) :=

{
f(x+ hd)− f(x) if x, x+ hd ∈ Ω,

0 otherwise.

The Besov space B
2/3
1,∞(Ω) can be defined as

B
2/3
1,∞(Ω) :=

{
f ∈ L1(Ω) : sup

0<h≤1,d∈S2

|h|−
2
3 ||∂hdf ||L1(Ω) <∞

}
.

Note that we will drop the dependence of the difference operator ∂hd on the domain
whenever it is clear that x, x+ hd ∈ Ω.

Turning to the statements, we first give the estimate with control only in the directions
appearing in the transport property. The main assumption of this statement is that there
are either no oscillations or at least a certain amount of them, which boils down to the
volume fractions of the martensite variants either being zero or bounded away from it.

Lemma 4.9. There exists a universal constant C > 0 with the following property:

Let i ∈ {1, 2, 3}. Let there exist ε > 0 such that 18θi(1 − θi) ≥ ε almost everywhere on
the set {0 < θi < 1}. Let U ⊂⊂ Ω be an open subset.

Then for ν ∈ Ni, d ∈ S2 with ν · d = 0 and 0 < h < dist(U, ∂Ω) we have

ˆ
U

|∂hdχ[ν]| dx ≤ Cε−1
(
ELinter(Uh)

) 2
3
(
ELelast(Uh)

) 1
3 h

2
3 ,

where ELelast and ELinter are given by definition (4.31).
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The proof relies on the following easy consequence of the differential inequality, which
we state separately to avoid redundant arguments. Note that it is optimized for quick
applicability in our setting and not for maximal generality.

Lemma 4.10. Let f : [0, 1] → [0, 1] be continuous with f(0) = 0. Furthermore, let it
satisfy the differential inequality

f ′ ≤ f
1
2 g

1
2

almost everywhere for an integrable function g : [0, 1]→ [0,∞).

Then we have the estimate

f(t) ≤ t2−
ˆ t

0

g(s) ds.

In order to upgrade the partial Besov estimate of Lemma 4.9 to a full one, we need some
additional assumptions. One option is that no pure phase is present, which covers the
cases of planar second-order laminates and most two-variant configurations we encoun-
tered in Chapter 1, see Definitions 2.5 and 2.3. However, note that this condition once
again excludes austenite being present.

Theorem 4.11. There exist universal constants c, C ≥ 1 with the following property:

Let (u, θ) be the limit of a finite energy sequence of displacements and partitions with

H-measures µ
(δ)
i . Furthermore, assume that θi < 1 for i = 0, . . . 3 almost everywhere on

Ω and let there exist ε ≥ 0 such that for all i = 1, 2, 3 we have 18θi(1− θi) ≥ ε on the set
{0 < θi < 1}.

Then we have that χ[ν] ∈ B2/3
1,∞(Ω) for all ν ∈ N with the estimate

ˆ
U

|∂hdχ[ν](x)| dx ≤ Cε−1
(
ELinter(Uch)

) 2
3
(
ELelast(Uch)

) 1
3 h

2
3

for all d ∈ S1, open sets U ⊂⊂ Ω and h < 1
c

dist(U, ∂Ω). For definitions of ELinter and
ELelast see equations (4.31).

We are thus left with dealing with planar checkerboards, for which we have to combine
the argument for the previous theorem with their specific structure.

Theorem 4.12. There exist universal constants c, C ≥ 1 with the following property:

Let (u, θ) be the limit of a finite energy sequence of displacements and partitions with

H-measures µ
(δ)
i .

Assume that e(u) is a planar checkerboard in the sense of Definition 2.6: There exists
i ∈ {1, 2, 3} such that

θi(x) =− aχA(x · νi+1)− bχB(x · νi−1) + 1,

θi+1(x) = bχB(x · νi−1),

θi−1(x) = aχA(x · νi+1)

(4.32)
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with νj ∈ Nj for j ∈ {1, 2, 3} \ {i}, measurable sets A,B ⊂ R and real numbers a, b ≥ 0
such that a+ b = 1. Let us furthermore suppose that a > 0 and b > 0.

Then we have that χ[ν] ∈ B2/3
1,∞(Ω) for all ν ∈ N with the estimate

ˆ
U

|∂hdχ[ν](x)| dx ≤ C

min(a, b)

(
ELinter(Uch)

) 2
3
(
ELelast(Uch)

) 1
3 h

2
3

for all d ∈ S1, open sets U ⊂⊂ Ω and h < 1
c

dist(U, ∂Ω). Furthermore, we have the same
estimate for the characteristic functions

χ{θ1=0, θ2=b, θ3=a}, χ{θ1=1−b, θ2=b, θ3=0}, χ{θ1=1−a, θ2=0, θ3=a} and χ{θ1=1, θ2=0, θ3=0}

of the sets on which θ is constant.

Proof of Lemma 4.9. For any function g : U → R let gh(x) := g(x + hd). We will use

the abbreviations τ := 18θi(1 − θi), τ (δ) := τ
(δ)
i and χ := χ[ν], and remind the reader of

the assumption τ > ε almost everywhere on the set {τ > 0}. Therefore, equation (4.15)
in Proposition 4.4 implies τ(x) > ε for almost all x ∈ Ω with χ(x) = 1. Consequently,
going through the cases χh(x)− χ(x) ∈ {−1, 0, 1} we see for all δ > 0 that

ˆ
U

|χh − χ| dx ≤
1

ε

ˆ
U

|(τχ)h − τχ| ((1− χ) + (1− χh)) dx

.
1

ε

ˆ
U

|((τ − τ (δ))χ)h|+ |(τ (δ) − τ)χ| dx

+
1

ε

ˆ
U

|(τ (δ)χ)h − τ (δ)χ| ((1− χ) + (1− χh)) dx.

(4.33)

Applying the transport property, Proposition 4.7, and Lemma 4.10 to the third term we
obtain ˆ

U

|(τ (δ)χ)h − τ (δ)χ| ((1− χ) + (1− χh)) dx

=

ˆ
U

|(τ (δ)χ)h|(1− χ) + |τ (δ)χ|(1− χh) dx

.
h2

δ2

ˆ
U

−
ˆ h

0

ELelast(x+ td) dt+−
ˆ h

0

ELelast(x+ h− td) dt dx.

To get rid of the inner integrals we use Young’s inequality in one dimension. Additionally,
we plug Lemma 4.6 into the first two terms on the right-hand side of the estimate (4.33)
we get

ˆ
U

|χh − χ| dx .
1

ε

(
δELinter(Uh) +

h2

δ2
ELelast(Uh)

)
.

Choosing δ := h
2
3

(
Eelast
Einter

) 1
3

if ELinter(Uh), E
L
elast(Uh) > 0 and δ → ∞ or δ → 0 otherwise

we see that ˆ
U

|χh − χ| dx .
1

ε

(
ELinter(Uh)

) 2
3
(
ELelast(Uh)

) 1
3 h

2
3 .
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Proof of Lemma 4.10. For t ∈ (0, 1] we only have to deal with the case that f(t) > 0.
Without loss of generality, we may assume that 0 = inf{s ∈ (0, t) : f(s) > 0}. In that

case we know f
1
2 ∈ W 1,1(0, t) with the pointwise a.e. estimate(

f
1
2

)′
≤ g

1
2 .

The fundamental theorem of calculus for Sobolev functions implies that

f
1
2 (t) = f

1
2 (t)− f

1
2 (0) ≤

ˆ t

0

g
1
2 (s) ds.

Squaring the inequality and applying Jensen’s inequality to the right-hand side we get
the desired statement

f(t) ≤ t2−
ˆ t

0

g(s) ds.

Proof of Theorem 4.11. Let ν ∈ Ni for some i = 1, 2, 3. We only have to prove the
estimate for ∂hνχ[ν] since the difference quotients in directions d with d·ν = 0 are controlled
by Lemma 4.9.

To this end we remind the reader of the set of space diagonals of the unit cube

D = {[111], [111], [111], [111]}

defined in Subsection 1.1.5. As explained in Remark 1.1 we have that d ·ν 6= 0 for exactly
two directions d1, d2 ∈ D and that d1 and d2 uniquely determine ν ∈ N . Additionally,
setting πi : R3 → R2 to be the projection dropping the i-th entry of a vector it can be
seen that πid1 = ±πid2 = ±πiν. Possibly replacing d1 by −d1 or d2 by −d2 we may
suppose that

πid1 = πid2 = πiν. (4.34)

By assumption there has to be some oscillation everywhere, i.e., we have∑
ν∈N

χ[ν] ≡ 1.

Using that ν is uniquely determined by the property d1 ·ν 6= 0 and d2 ·ν 6= 0 and applying
Lemma 4.9 for all other normals this implies

ˆ
U

|∂hd1
∂hd2
χ[ν]| dx .

1

ε

(
ELinter(Uch)

) 2
3
(
ELelast(Uch)

) 1
3 h

2
3

for h > 0 such that h < 1
c

dist(U, ∂Ω). As ∂Eiχ[ν] is controlled by Lemma 4.9 as well, we
get using the normalizations (4.34) that

ˆ
U

|∂hν ∂hνχν | dx .
1

ε

(
ELinter(Uch)

) 2
3
(
ELelast(Uch)

) 1
3 h

2
3 .
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Thus to conclude we merely have to ensure that |∂hdχ| ≤ |∂hd∂hdχ| for any measurable
characteristic function χ and d ∈ R3. For almost all x ∈ U we have ∂hdχ(x) ∈ {−1, 0, 1}
and

∂hd∂
h
dχ(x) = ∂hdχ(x+ hd)− ∂hdχ(x) = χ(x+ 2hd)− 2χ(x+ hd) + χ(x) ∈ {−2,−1, 0, 1, 2}.

In particular, we only have to ensure that ∂hd∂
h
dχ(x) = 0 implies ∂hdχ(x) = 0. Indeed, if

we have ∂hd∂
h
dχ(x) = 0 then straightforward combinatorics give

χ(x) = χ(x+ hd) = χ(x+ 2hd).

Proof of Theorem 4.12. By relabeling we may suppose i = 1. Furthermore, we abbreviate

Eh :=
(
ELinter(Uch)

) 2
3
(
ELelast(Uch)

) 1
3

for h < 1
c

dist(U, ∂Ω) and c ≥ 1 as in Theorem 4.11.

For ν ∈ N1∪N2\{ν2} there exist distinct d1, d2 ∈ D such that d1·ν2 = 0 and d1·ν, d2·ν 6= 0,
since by Remark 1.1 the directions d1 and d2 uniquely determine ν. Recall that by
equation (4.15) there has to be some oscillation on the set {θ3 > 0} = {θ3 = a}. More
specifically, we have

∑
ν∈N1∪N2

χ[ν] = χ{θ3=a}, which together with the fact that θ3 only
depends on x · ν2 implies

∂d1

∑
ν̃∈N1∪N2

χ[ν̃] = 0.

Taking a difference quotient in direction d2 gives

∂d1∂d2χ[ν] = 0.

Consequently, we can use the same arguments as in the proof of Theorem 4.11 to see thatˆ
U

|∂hνχ[ν](x)| dx ≤ C

min(a, b)
Ehh

2
3

for all ν ∈ N1 ∪ N2 \ {ν2}, d ∈ S2 and h < 1
c

dist(U, ∂Ω). The same argument repeated
for the set χ{χ2=b} tells us thatˆ

U

|∂hdχ[ν](x)| dx ≤ C

min(a, b)
Ehh

2
3

for all ν ∈ N1 ∪N3 \ {ν3}, d ∈ S2 and h < c dist(U, ∂Ω).

As span ({d ∈ R3 : d · ν3 = 0} ∪ {ν2}) = R3 by ν2 · ν3 6= 0, see Step 1 in the proof of
Proposition 2.22, we only have to proveˆ

U

|∂hν2
χ[ν3](x)| dx ≤ C

min(a, b)
Ehh

2
3

in order to get the Besov-estimate in all directions d ∈ S2. To this end, note that equation
(4.15) for i = 2 and i = 3 together with the fact that there can locally only be a single
direction of oscillation, see (4.13), implies∑

ν∈N1

χ[ν] = χ{θ1=0, θ2=b, θ3=a} = χB̃χÃ (4.35)
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for Ã := π−1
ν2

(A) and B̃ := π−1
ν3

(B). Therefore, we get the full Besov-estimateˆ
U

|∂hdχB̃χÃ| dx ≤
C

min(a, b)
Ehh

2
3

for all d ∈ S2 for the right-hand side. As χ{θ2=b} is independent of ν2 we obtainˆ
U

|∂hν2
χB̃(1− χÃ)| dx ≤ C

min(a, b)
Ehh

2
3 .

Using the fact that we already proved the full estimate for χ[ν] with ν ∈ N3 \ {ν3} and
exploiting the equality∑

ν∈N3

χ[ν] = χ{θ1=1−b, θ2=b, θ3=0} = χB̃(1− χÃ) (4.36)

we get the desired estimate for ∂hν2
χ[ν3].

The proof of the full estimate for χ[ν2] works similarly. Thus we proved the Besov estimate
for χ[ν] for all ν ∈ N .

Finally, we remark that the identity (4.35) also ensures that χ{θ1=0, θ2=b, θ3=a} satisfies the
Besov estimate, while the estimate for χ{θ1=1−b, θ2=b, θ3=0} is implied by (4.36). Estimating
the function χ{θ1=1−a, θ2=0, θ3=a} works again similarly and to ensure that χ{θ1=1, θ2=0, θ3=0}
is well-behaved we use

χ{θ1=1, θ2=0, θ3=0} ≡ 1− χ{θ1=0, θ2=b, θ3=a} − χ{θ1=1−b, θ2=b, θ3=0} − χ{θ1=1−a, θ2=0, θ3=a}.

4.4.2 Blow-up of the energy density close to a habit plane

Finally, we how to prove an essentially local lower bound on how the limiting energy
concentrates close to a macroscopic interface. For reasons of brevity we only state the
lemma in the case of a habit plane. However, a similar estimate is true on the both sides
of an interface between two martensite twins with essentially the same proof.

Lemma 4.13. There exists a universal constant C > 0 with the following property:

Let ν1 ∈ N1 and let Ω = {x′ ∈ B1 (0) : x · ν1 = 0}+ (−1, 1)ν1. Let (u, θ) be the limit of a

finite energy sequence of displacements and partitions with H-measures µ
(δ)
i for i = 1, 2, 3

and δ ≥ 0 on Ω.

Furthermore, let the volume fractions θ and the H-measures describe a habit plane at
x · ν1 = 0 joining austenite with the variants e1 and e2 twinned in direction ν3, see also
Figure 4.1: First, we have

θ0 ≡ χ(−1,0)(• · ν1),

θ1 ≡
1

3
χ(0,1)(• · ν1),

θ2 ≡
2

3
χ(0,1)(• · ν1),

θ3 ≡ 0,
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which is equivalent to

e(u) ≡ χ(−1,0)(• · ν1)e0 + χ(0,1)(• · ν1)

(
1

3
e1 +

2

3
e2

)
.

Secondly,there exist ν3 ∈ N3 such that

χ[ν3] ≡ χ(0,1)(• · ν1).

Then for any direction d ∈ S2 such that d · ν1 > 0 and d · ν3 = 0, any 0 < h small enough
and H2-almost all x′ ∈ R3 with x′ · ν1 = 0 and |x′| < 1 the energy densities satisfy the
lower bound (

ELinter
) 2

3 (x′ + hd)

(
−
ˆ h

0

ELelast(x
′ + sd) ds

) 1
3

≥ Ch−
2
3 .

ν1

ν̃1

e1

e3 e2

e0
1
3
e1 + 2

3
e2

Figure 4.1: The sketch on the left shows the support of the H-measures σ1 = σ2

on the cross-section Ω∩{x1 = 0} with ν̃1 ∈ N1\{ν1}. The blank area corresponds
to austenite, and the hatched area indicates twinning with normal ν3. The plot
on the right-hand side indicates the strains.

Proof of Lemma 4.13. For d, h and almost all x′ ∈ R3 as in the statement of the lemma
and δ > 0 we can apply Proposition 4.7 and Lemma 4.10 to get the upper bound

τ
(δ)
2 (x′ + hd) = τ

(δ)
2 χ[ν3](x

′ + hd) .
h2

δ2
−
ˆ h

0

ELelast(x
′ + sd) ds

since χ[ν3](−εd) = 0 for all 0 < ε < 1 by assumption. Lemma 4.6 gives us a corresponding
lower bound

18
2

3

(
1− 2

3

)
− 36δELinter(x

′ + hd) ≤ τ
(δ)
2 (x′ + hd).

Combining both we see

1 . δELinter(x
′ + hd) +

h2

δ2
−
ˆ h

0

ELelast(x
′ + sd) ds.

Choosing

δ = h
2
3

(
−́
h

0
ELelast(x

′ + sd) ds

ELinter(x
′ + hd)

) 1
3
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gives the statement

(
ELinter

) 1
3 (x′ + hd)

(
−
ˆ h

0

ELelast(x
′ + sd) ds

) 2
3

≥ Ch−
2
3

for a universal constant C > 0.





Chapter 5

Convergence of the Allen-Cahn
Equation to multi-phase mean
curvature flow

This chapter contains the convergence results obtained in collaboration with Tim Laux
[75]. Before we dive into the mathematics, let us briefly give an overview over the
structure of the chapter:

In Section 5.1 we introduce the notation and state our results, Theorems 5.2, 5.4 and 5.5.

Section 5.2 is devoted to proving compactness of the solutions together with bounds on
the normal velocities. We took care to be precise in this section but do not claim the
originality of the results. We use a general chain rule of Ambrosio and Dal Maso [3] to
identify the nonlinearities in the multi-phase case as derivatives. Furthermore, we repeat
the application of De Giorgi’s structure result from [74] to handle the excess.

In Section 5.3 we pass to the limit in the equation. As this is the core of this chapter,
we give a short overview over the idea of the proof first. We then present our extension
of the Reshetnyak argument by Luckhaus and Modica [79] in Proposition 5.19 to handle
the curvature-term and prove the convergence of the velocity-term in Proposition 5.23,
which is the main novelty. We conclude the section with the proof of the main result,
Theorem 5.2.

Finally, in Section 5.4 we apply our method to the cases when external forces are present
or several volume constraints are active, see Theorems 5.4 and 5.5.

131
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5.1 Main results

5.1.1 Setup

The Allen-Cahn Equation

∂tuε = ∆uε −
1

ε2
∂uW (uε) (5.1)

describes a system of fast reaction and slow diffusion and is the (by the factor 1
ε

acceler-
ated) L2-gradient flow of the Ginzburg-Landau Energy

Eε(uε) =

ˆ
ε

2
|∇uε|2 +

1

ε
W (uε) dx. (5.2)

For convenience we will work with periodic boundary conditions for u, i.e., on the flat
torus [0,Λ)d for some Λ > 0 and write

´
dx short for

´
[0,Λ)d

dx.

Here the (unknown) order parameter uε : Rd → RN is vector-valued and W : RN → [0,∞)
is a smooth multi-well potential with finitely many zeros at u = α1, . . . , αP ∈ RN . We
will furthermore impose polynomial growth and convexity of W at infinity:

1. There exist constants 0 < c < C <∞, R <∞ and an exponent p ≥ 2 such that

c|u|p ≤ W (u) ≤ C|u|p for |u| ≥ R (5.3)

and
|∂uW (u)| ≤ C|u|p−1 for |u| ≥ R. (5.4)

2. There exist smooth functions Wconv, Wpert : RN → [0,∞) such that

W = Wconv +Wpert, (5.5)

where the function Wconv is convex and Wpert has at most quadratic growth in the
sense that there exists a constant C̃ such that we have

sup
u∈RN

|∂2
uWpert(u)| ≤ C̃. (5.6)

These assumptions seem to be very natural to us: The classical two-well potential W (u) =
(u2− 1)2 for u ∈ R clearly has these properties and they are compatible with polynomial
potentials also in the case of systems.

By now it is a classical result due to Baldo [5] that these energies Γ-converge w.r.t. the
L1-topology to an optimal partition energy given by

E(χ) :=
1

2

∑
1≤i,j≤P

σij

ˆ
1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) , (5.7)
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for a partition χ1, . . . , χP : [0,Λ)d → {0, 1} satisfying the compatibility condition∑
1≤i≤P

χi = 1 a.e.

Note that for χi = 1Ωi we can also rewrite the limiting energy in terms of the interfaces
Σij := ∂∗Ωi ∩ ∂∗Ωj between the phases, where ∂∗ denotes the reduced boundary:

E(χ) =
1

2

∑
1≤i,j≤P

σijHd−1 (Σij) .

The link between uε and χ is given by

uε → u :=
∑

1≤j≤P

χiαi.

The constants σij are the geodesic distances with respect to the metric 2W (u)〈·, ·〉, i.e.,

σij = dW (αi, αj),

where the geodesic distance is defined as

dW (u, v) := inf

{ˆ 1

0

√
2W (γ)|γ̇| ds : γ ∈ C1([0, 1];RN) with γ(0) = u, γ(1) = v

}
.

(5.8)

The surface tensions satisfy the triangle inequality

σij ≤ σik + σkj for all i, j, k

and clearly
σii = 0, σij > 0 for i 6= j, and σij = σji.

It is an interesting and non-trivial question to find an appropriate potential W which
generates given surface tensions σ. In a recent paper, such potentials with multiple wells
have been constructed by Bretin and Masnou [16] for a related class of energies.

We will want to localize both the Ginzburg-Landau Energy and the optimal partition
energy. Given η ∈ C([0,Λ)d) let

Eε(η, uε) :=

ˆ
η

(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx,

E(η, χ) := E(η, u) :=
1

2

∑
1≤i,j≤P

σij

ˆ
η

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) .

For our result we will impose ˆ T

0

Eε(uε) dt→
ˆ T

0

E(χ) dt (5.9)

ruling out loss of surface area in the limit ε ↓ 0. Under this assumption we will establish
convergence towards the following distributional formulation of mean curvature flow, see
[74, 80].
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Definition 5.1 (Motion by mean curvature). Fix some finite time horizon T < ∞, a
P × P -matrix of surface tensions σ as above and initial data χ0 : [0,Λ)d → {0, 1}P with
E0 := E(χ0) <∞ and

∑
1≤i≤P χ

0
i = 1. We say that

χ ∈ C
(

[0, T ];L2([0,Λ)d; {0, 1}P )
)

with suptE(χ) <∞ and
∑

1≤i≤P χi = 1 moves by mean curvature if there exist densities
Vi ∈ L2(|∇| dt) with ˆ T

0

ˆ
V 2
i |∇χi| dt <∞ (5.10)

satisfying the following properties:

1. For all ξ ∈ C∞0 ((0, T )× [0,Λ)d,Rd)

∑
1≤i,j≤P

σij

ˆ T

0

ˆ
(Vi ξ · νi − (∇ · ξ − νi · ∇ξ νi))

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) dt

= 0, (5.11)

where νi is the inner normal of χi, i.e., the density of ∇χi with respect to |∇χi|.

2. The functions Vi are the normal velocities of the interfaces in the sense that

∂tχi = Vi|∇χi| dt distributionally in (0, T )× [0,Λ)d. (5.12)

3. The initial data is achieved in the space C([0, T ];L2([0,Λ)d)), i.e.,

χi(0) = χ0
i

in L2([0,Λ)d) for all 1 ≤ i ≤ P .

If the evolution is smooth one can integrate by parts and obtain the classical formulation
of multi-phase mean curvature flow consisting of the evolution law

Vij = Hij on Σij

together with Herring’s well-known angle condition∑
i,j

σijνij = 0 at triple junctions.

Comparing to the more general evolution law Vij = σijµijHij we see that in our case the
mobility µij of the interface Σij is given by µij = 1

σij
. How to generate general mobilities

seems not to be settled yet.
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5.1.2 Formulation of the results

Our main result is the following theorem.

Theorem 5.2 (Laux, S.). Let W satisfy the growth conditions (5.3) and (5.4), as well
as the convexity at infinity (5.5). Let T <∞ be an arbitrary finite time horizon. Given a
sequence of initial data u0

ε : [0,Λ)d → RN approximating a partition χ0, in the sense that

u0
ε →

∑
1≤i≤P

χiαi a.e. and E0 := E(χ0) = lim
ε↓0

Eε(u
0
ε) <∞, (5.13)

there exists a subsequence ε ↓ 0 such that the solutions uε of (5.1) with initial datum u0
ε

converge to a time-dependent partition χ ∈ C([0, T ];L2([0,Λ)d; {0, 1}P )). If the conver-
gence assumption (5.9) holds, then χ moves by mean curvature according to Definition
5.1.

Remark 5.3. For any partition χ0 ∈ BV
(
[0,Λ)d; {0, 1}P

)
it is possible to choose u0

ε with
u0
ε →

∑
1≤i≤P χiαi in L1 and Eε(u

0
ε)→ E0(χ) by the Γ-convergence result [5].

Using some adjustments of our argument we can also deal with external forces and volume
constraints.

Theorem 5.4 (Laux, S.). Let W satisfy (5.3), (5.4) and (5.5) and let T < ∞ be an
arbitrary finite time horizon. Given a sequence of initial data u0

ε : [0,Λ)d → RN approx-
imating a partition χ0, in the sense of (5.13) and forces fε : [0, T ] × [0,Λ)d → RN such
that

sup
ε>0

ˆ T

0

ˆ
|fε|2 + |∂tfε|2 + |∇fε|2 dx dt <∞

there exists a subsequence ε ↓ 0 such that the solutions uε of{
∂tuε = ∆uε − 1

ε2
∂uW (uε) + 1

ε
fε in [0, T ]× [0,Λ)d,

uε = u0
ε on 0× [0,Λ)d

(5.14)

converge to a time-dependent partition χ ∈ C([0, T ];L2([0,Λ)d; {0, 1}P )). Furthermore,
the forces also have a limit fε → f in L2. If the convergence assumption (5.9) holds,
then χ moves by forced mean curvature according to Definition 5.1 with equation (5.11)
replaced by∑

1≤i,j≤P

σij

ˆ T

0

ˆ
(Vi ξ · νi − (∇ · ξ − νi · ∇ξ νi))

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) dt

=
∑

1≤i≤P

ˆ T

0

ˆ
(f · αi) (ξ · ∇)χi dt. (5.15)

Since we allow f to be only of classW 1,2, the right-hand side of (5.15) has to be interpreted
in the following distributional sense

ˆ T

0

ˆ
(f · αi) (ξ · ∇)χi dt = −

ˆ T

0

ˆ
(∇ · ξ) (f · αi)χi + ξ · ∇ (f · αi)χi dx dt.
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Our last main result concerns volume-preserving (multi-phase) mean curvature flow. The
(scalar) volume-preserving Allen-Cahn Equation was first introduced by Rubinstein and
Sternberg in [101] who identified the limiting motion law to be volume-preserving mean
curvature flow by matched asymptotic expansions. As in the case of (unconstrained)
mean curvature flow, this argument can be made rigorous as long as the limiting flow
stays smooth [28] as well as in the radially symmetric case [23].

We work in the more general case of P phases out of which P ′ ∈ {1, . . . , P − 1} volumes
are preserved; note that in case of P ′ = P−1 all volumes are preserved. For the following
theorem we assume that

−
ˆ
χ0
i dx > 0 for all i = 1, . . . , P ′ and

P ′∑
i=1

−
ˆ
χ0
i dx < 1, (5.16)

i.e., none of the constrained volume fractions vanishes, including the cumulative volume
fraction of the P − P ′ remaining phases.

Furthermore we additionally assume that the geometry of the wells ofW is non-degenerate
in the sense that

{αi − αP : i = 1, . . . , P − 1} is linearly independent. (5.17)

In particular, we have P ≤ N + 1. This assumption on the wells for example covers the
situation considered by Garcke, Nestler, Stinner and Wendler [47]. Let us w.l.o.g. assume
that αP = 0. We extend the set {α1, . . . , αP−1} to a basis {α1, . . . , αP−1, βP , . . . , βN} of
the state space RN such that αi · βj = 0 for i ≤ P − 1 and j ≥ P . We want to enforce
the following volume constraints:

d

dt

ˆ
α∗i (uε) dx = 0 for i = 1, . . . , P ′, (5.18)

where {α∗1, . . . , α∗P−1, β
∗
P , . . . , β

∗
N} denotes the dual basis of {α1, . . . , αP−1, βP , . . . , βN}.

The forces fε are now Lagrange multipliers λε ∈ RN , which are independent of x but
depend on u in a nonlocal fashion such that

λε ∈ span{α1, . . . , αP−1}
α∗i (λε) = 1

ε
−́ α∗i

(
∂uW (uε)

)
dx for i = 1, . . . , P ′ and

αi · λε = 0 for i = P ′ + 1, . . . , P − 1.

(5.19)

The second line of (5.19) enforces the constraints (5.18) while the third line ensures that
the system is not overly constrained. Note that this system can be solved by projecting

P ′∑
i=1

1

ε
−
ˆ
α∗i
(
∂uW (uε)

)
dx αi

onto the space span{α1, . . . , αP−1} ∩ {αP ′+1, . . . , αP−1}⊥.
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Theorem 5.5 (Laux, S.). Let P ′ < P denote the number of phases for which we enforce
a volume constraint and let W satisfy (5.3), (5.4), (5.5), (5.17) and w.l.o.g. let αP = 0.
Let χ0 be a partition satisfying (5.16) and let u0

ε : [0,Λ)d → R be a sequence of initial data
approximating χ0 in the sense of (5.13). For any arbitrary finite time horizon T < ∞
there exists a subsequence ε ↓ 0 such that the solutions uε of{

∂tuε = ∆uε − 1
ε2
∂uW (uε) + 1

ε
λε in [0, T ]× [0,Λ)d,

uε = u0
ε on 0× [0,Λ)d,

(5.20)

where λε is given by (5.19), converge to a time-dependent partition

χ ∈ C
(
[0, T ];L2

(
[0,Λ)d; {0, 1}P

))
with ˆ

χi(t, x) dx ≡
ˆ
χ0
i (x) dx for i = 1, . . . , P ′.

Furthermore, we have

sup
ε>0

ˆ T

0

|λε|2 dt <∞

and there is a limit λε ⇀ λ in L2((0, T );RN). If the convergence assumption (5.9) holds,
then χ solves the volume-preserving (multi-phase) mean curvature flow equation according
to Definition 5.1 with (5.11) replaced by∑

1≤i,j≤P

σij

ˆ T

0

ˆ
(Vi ξ · νi − (∇ · ξ − νi · ∇ξ νi))

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) dt

=
∑

1≤i≤P ′

ˆ T

0

λ · αi
ˆ

(ξ · ∇)χi dx dt. (5.21)

Throughout the chapter we will make use of the following notations: The symbol ∂t
denotes the time-derivative, ∇ the spatial gradient of a function defined on real space
Rd 3 x , ∂uW (u) denotes the gradient of W at a point u ∈ RN in state space. For the
local Lipschitz functions φi defined in (5.24) below, we will abuse the notation ∂u in the
sense given by the generalized chain rule below, see Lemma 5.13. We will write A . B
if there exists a generic constant C < ∞ depending only on d, N,Λ and W such that
A ≤ C B.

5.2 Compactness

5.2.1 Results

Before we turn to the actual compactness results, we specify the setting for the Allen-
Cahn Equation and make sure that solutions actually exist.

Although solutions to the Allen-Cahn Equation (5.1) are smooth, we choose the weak
setting for the following reasons:
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1. The parabolic character of both the Allen-Cahn Equation and mean curvature flow
is much more explicit.

2. It is the natural setting when including forces, which we will do later on in Section
5.4.

3. Once one accepts the function spaces involved, the necessary compactness proper-
ties for forced equations and equations with a volume constraint and how to deal
with initial conditions becomes very natural.

We will essentially view solutions as maps of [0, T ] into some function space, so that we
will need to deal with Banach space-valued Lp and Sobolev spaces. However, the material
covered in Chapter 5.9 of [40] is perfectly sufficient for our purposes.

Definition 5.6. We say that a function

uε ∈ C([0, T ];L2([0,Λ)d;RN)) ∩ L∞([0, T ];W 1,2([0,Λ)d;RN))

is a weak solution of the system of Allen-Cahn Equations (5.1) for ε > 0 with initial data
u0
ε ∈ W 1,2([0,Λ)d,RN) if

1. the energy stays bounded:
sup

0≤t≤T
Eε(uε(t)) <∞,

2. its weak time derivative satisfies

∂tuε ∈ L2([0, T ]× [0,Λ)d),

3. for a.e. t ∈ [0, T ] and ξ ∈ Lp([0, T ] × [0,Λ)d;RN) ∩W 1,2([0, T ] × [0,Λ)d;RN) we
have ˆ

∂tuε(t) · ξ +∇uε(t) : ∇ξ +
1

ε2
∂uW (uε(t)) · ξ dx = 0,

4. the initial conditions are achieved:

uε(0) = u0
ε.

Remark 5.7. Note that due to the growth condition (5.4) of ∂uW we know that

|∂uW (u)|
p
p−1 . |u|(p−1) p

p−1 = |u|p.

Combining this with boundedness of the energy and the growth condition (5.3) of W we

get ∂uW (u(t)) ∈ L
p
p−1 = Lp

′
for almost all times.

Also note that boundedness of the energy and the bound on the time derivative are
sufficient to have u ∈ C 1

2 ([0, T ];L2([0,Λ)d)), up to a set of measure zero in time, by the
embedding

W 1,2([0, T ];L2([0,Λ)d)) ↪→ C
1
2 ([0, T ];L2([0,Λ)d)).

See (5.45) for a short proof of a similar statement.
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We first take a brief moment to mention the (not very surprising) fact that the Allen-
Cahn Equation (5.1) in fact has global solutions. For the convenience of the reader we
later sketch a proof which relies on De Giorgi’s minimizing movements and thus carries
over to related settings. We point out that the long-time existence critically depends on
the gradient flow structure, as solutions to the reaction-diffusion equation

∂tu−∆u = u2

generically blow up in finite time.

Lemma 5.8. Let u0
ε : [0,Λ)d → RN be such that Eε(u

0
ε) <∞. Then there exists a weak

solution u : [0, T ] × [0,Λ)d → RN to the Allen-Cahn Equation (5.1) with initial data u0.
Furthermore, the solution satisfies the following energy dissipation identity

Eε(uε(T )) +

ˆ T

0

ˆ
ε |∂tuε|2 dx dt = Eε(uε(0)) (5.22)

and we have ∂i∂ju, ∂uW (u) ∈ L2([0, T ] × [0,Λ)d) for all 1 ≤ i, j ≤ d. In particular, we
can test the Allen-Cahn equations (5.1) with ∇u.

Remark 5.9. Here, the identity (5.22) plays the role of an a priori estimate, which makes
the whole machinery work. It can be formally derived by differentiating the energy along
the solution:

d

dt
Eε(uε) =

ˆ
ε∇uε : ∇∂tuε +

1

ε
∂uW (uε) · ∂tuε dx

=

ˆ
ε

(
−∆uε +

1

ε2
∂uW (uε)

)
· ∂tuε dx

(5.1)
= −

ˆ
ε|∂tuε|2 dx.

Remark 5.10. The structure of this estimate (the energy is bounded in time, while the
time-derivative is only L2-integrable) naturally leads to the mixed spaces we consider
here and is our main justification for working in the weak setting.

Remark 5.11. As the a priori estimate is a natural consequence of the gradient flow
structure we expect to have similar estimates in the case of forced equations and volume
constraints. In order to later deal with these more general equations we point out that
the proofs of the following statements (Proposition 5.12, Lemma 5.14, Proposition 5.15
and Lemma 5.16) only rely on the a priori estimate (5.22) and not on the Allen-Cahn
Equation (5.1) itself. To be more precise, they remain valid - with slightly different
quantitative estimates - for functions uε ∈ C([0, T ];L2([0,Λ)d;RN)) satisfying the bound

sup
ε>0

sup
0≤t≤T

Eε(uε(t)) +

ˆ T

0

ε|∂tuε|2 dt <∞. (5.23)

We now turn to the central question of compactness for the constructed solutions:
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• Proposition 5.12 ensures that there exists a time-dependent limiting partition,
whose motion we want to characterize later on.

• Lemma 5.14 upgrades the convergence of uε to
∑

i χiαi to strong convergence in
C
(
[0, T ];L2([0,Λ)d)

)
, in particular implying that the initial conditions are achieved.

• Proposition 5.15 states that the partition is regular enough in time to admit normal
velocities.

The existence of a limiting partition is essentially contained in the classical Γ-convergence
theorem by Baldo [5]. In particular, it is constructed by considering the limits of φi ◦ uε
with

φi(u) := dW (u, αi), where dW was defined in (5.8). (5.24)

The main difference is that we also want the partition to be well-behaved in time, which
we will make sure by exploiting that the control of ∂tuε and ∇uε is similar.

Proposition 5.12. Given initial data u0
ε →

∑
i χ

0
iαi with

Eε(u
0
ε)→ E(χ0) <∞,

for any sequence ε ↓ 0 there exists a subsequence, which we will not relabel, such that the
solutions uε of (5.1) converge:

uε → u a.e. in (0, T )× [0,Λ)d. (5.25)

Here the limit is given by u =
∑

i χiαi with a partition χ ∈ BV ((0, T )× [0,Λ)d; {0, 1}P ).
Furthermore we have

sup
0≤t≤T

E(χ) ≤ E0

and the compositions φi ◦uε are uniformly bounded in BV ((0, T )× [0,Λ)d) and converge:

φi ◦ uε → φi ◦ u in L1([0, T ]× [0,Λ)d). (5.26)

In the following lemma, we record some properties of the functions φ ◦ uε, such as the
estimates going back to Modica and Mortola by which one deduces BV -compactness of
these compositions. The main point is however that we will need more precise information
about φ ◦ uε than for the previously known Γ-convergence results, where one only needs
upper bounds for |∇(φ ◦ uε)|:
Because our proof works by multiplying the Allen-Cahn equation (5.1) with ε(ξ · ∇)u,
we will need to pass to the limit in non-linear quantities of uε, such as

´
η
√

2W (uε)∇uε.
For scalar equations one can easily identify the limit by applying the chain rule to see
that this non-linearity has the form ∇(φ◦uε) with the primitive φ(u) :=

´ u
α1

√
2W (ũ) dũ.

In the multi-phase case, unfortunately, the classical chain rule does not apply anymore:
Because there could be multiple geodesics between u and αi, the geodesic distances φi(u),
playing the roles of “primitives”, are only (locally) Lipschitz-continuous in general.
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Luckily, there is a chain rule for Lipschitz functions due to Ambrosio and Dal Maso [3].
The upshot is that given a Lipschitz function f and a function u there exists a bounded
function g(x, u), defined almost everywhere, such that

D(f ◦ u)(x) = g(x, u)Du(x)

and the dependence of g on u is local in x, but not pointwise. See Theorem 5.18 in the
proof of Lemma 5.13 for the precise formulation.

The following lemma mainly serves to fix and justify our somewhat abusive notation of
these differentials.

Lemma 5.13. Let u ∈ C([0, T ];L2([0,Λ)d;RN)) with

sup
0≤t≤T

Eε(u) +

ˆ T

0

ˆ
ε|∂tu|2 dx dt <∞

for some ε > 0. Then for all 1 ≤ i ≤ P there exists a map

∂uφi(u) : [0, T ]× [0,Λ)d → Lin(RN ;R)

such that the chain rule is valid with the pair ∂uφi(u) and (∂t,∇)u: For almost every
(t, x) ∈ [0, T ]× [0,Λ)d we have

∇ (φi ◦ u) = ∂uφi(u)∇u and ∂t (φi ◦ u) = ∂uφi(u)∂tu. (5.27)

Furthermore, we can control the modulus of ∂uφi(u) almost everywhere in time and space:

|∂uφi(u)| ≤
√

2W (u). (5.28)

Additionally, we have φi ◦ u ∈ L∞
(
[0, T ];W 1,1([0,Λ)d)

)
∩W 1,1([0, T ] × [0,Λ)d) with the

estimates

sup
0≤t≤T

ˆ
|φi ◦ u| dx . 1 + sup

0≤t≤T
εEε(u), (5.29)

sup
0≤t≤T

ˆ
|∇(φi ◦ u)| dx . sup

0≤t≤T
Eε(u), (5.30)

ˆ T

0

ˆ
|∂t(φi ◦ u)| dx dt . T sup

0≤t≤T
Eε(u) +

ˆ T

0

ˆ
ε|∂tu|2 dx dt. (5.31)

Next, we turn to the stronger compactness properties of uε. In the case of the Allen-Cahn
Equation without forces or constraints, it mainly serves to ensure that the initial data is
achieved. When including forces or constraints we will also need it in the proof of the
actual convergence.

Lemma 5.14. We have φi ◦ uε ∈ W 1,2([0, T ];L1([0,Λ)d)) with the estimate(ˆ T

0

(ˆ
|∂t(φi ◦ uε)| dx

)2

dt

) 1
2

. Eε(uε(0)). (5.32)

Furthermore, the sequence uε is pre-compact in C
(
[0, T ];L2([0,Λ)d;RN)

)
. In particular,

we get that χ achieves the initial data in C([0, T ];L2([0,Λ)d)).
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Note that the estimate (5.32) and the embedding W 1,2([0, T ]) ↪→ C
1
2 ([0, T ]), see (5.45)

for a short proof for Banach space-valued functions, imply the well-known 1
2
-Hölder con-

tinuity of the volumes of the phases.

The proof of this lemma makes the most detailed use of mixed spaces. Estimate (5.32)
is a time-integrated version of the BV -estimate in time (5.44). Uniform convergence
in time of φi ◦ uε then boils down to combining this estimate with the Arzelà-Ascoli
theorem. However, passing this convergence to uε is a little delicate because we have no
quantitative information about how quickly φi grows around αi. Consequently, we have
to make do with uε only converging in measure uniformly in time.

While the compactness statement, Proposition 5.12, did not rely on the convergence
assumption (5.9) we will need to assume it in the following, starting with the existence
of the normal velocities.

Proposition 5.15. In the situation of Proposition 5.12, given the convergence assump-
tion (5.9), for every 1 ≤ i ≤ P the measure ∂tχi is absolutely continuous w.r.t. |∇χi| dt
and the density Vi is square-integrable:

ˆ T

0

ˆ
V 2
i |∇χi| dt . E0. (5.33)

Furthermore, equation (5.12) holds.

While we previously localized the BV -estimate in time (5.44), for this statement we need
to localize it in space. Unfortunately, the argument is somewhat delicate as one first
proves ∂tχi � E(•, u) dt and then is forced to prove that ∂tχi is singular to the “wrong”
parts of the energy.

Finally, the following lemma shows that – up to a further subsequence – the convergence
assumption can be refined to pointwise a.e. in time and can be localized by a smooth
test function in space. We furthermore argue that our convergence assumption assures
equipartition of energy as ε ↓ 0.

Lemma 5.16. Given uε → u and the convergence assumption (5.9), by passing to a
further subsequence if necessary, we have

lim
ε↓0

Eε(uε) = E(u) for a.e. 0 ≤ t ≤ T (5.34)

and for any smooth test function ζ ∈ C∞([0,Λ)d) we have

E(ζ, u) = lim
ε↓0

Eε(ζ, uε) = lim
ε↓0

ˆ
ζε |∇uε|2 dx = lim

ε↓0

ˆ
ζ

2

ε
W (uε) dx

= lim
ε↓0

ˆ
ζ
√

2W (uε) |∇uε| dx

(5.35)

for a.e. 0 ≤ t ≤ T.
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A key ingredient for this lemma to work was already observed by Baldo, see Proposition
2.2 in [5]: the optimal partition energy (5.7) can be written as a (measure-theoretic)
supremum using the “primitives” φi defined in (5.24). We will use this fact in the following
form: Given κ > 0 there exists a scale r > 0 such that∑

B∈Br

{
E(ηB, u)− max

1≤i≤P

ˆ
ηB |∇ (φi ◦ u)|

}
≤ κE(u), (5.36)

where ηB is a cutoff for B in the ball 2B with the same center but with the double radius.
Furthermore, the covering Br is given by

Br := {Br(i) : i ∈ Lr} (5.37)

of [0,Λ)d, where Lr = [0,Λ)d ∩ r√
d
Zd is a regular grid of midpoints on [0,Λ)d. Let us

note that each summand in (5.36) is non-negative:

0 ≤ E(u, ηB)− max
1≤i≤P

ˆ
ηB |∇ (φi ◦ u)| .

Our statement differs from Baldo’s version [5, Proposition 2.2] where the localization is
done by sets instead of smooth cutoffs. To prove estimate (5.36) we start from identity
(2.5) in [5], which in our notation readsˆ

η |∇(φi ◦ u)| = 1

2

∑
k,l

|φi(αk)− φi(αl)|
ˆ
η

1

2
(|∇χk|+ |∇χl| − |∇(χk + χl)|) .

The prefactors satisfy |φi(αk)− φi(αl)| ≤ σkl with equality if i ∈ {k, l}. Our statement
(5.36) then follows from a general statement on BV -partitions, Lemma 5.17 below, which
ensures in particular that only two phases are relevant on a generic patch provided the
covering is fine enough.

Our covering (5.37) is the same as in Definition 5.1 in [74]. A nice feature is that by
construction, for each n ≥ 1 and each r > 0, the covering

{Bnr(i) : i ∈ Lr} is locally finite, (5.38)

in the sense that for each point in [0,Λ)d, the number of balls containing this point is
bounded by a constant c(d, n) which is independent of r.

We will later also apply this covering to exploit that BV -partitions generically only have a
single, essentially flat interface on small scales, where flatness is measured by the variation
of the normal, i.e., the tilt-excess mentioned in the introduction. This is ensured by the
following fact, which is a direct consequence of [74, Lemma 5.2 and Lemma 5.5].

Lemma 5.17. For every κ > 0 and χ : [0,Λ)d → {0, 1}P with
∑

1≤i≤P χi = 1, there
exists an r0 > 0 such that for all r ≤ r0 the following holds : There exist unit vectors
νB ∈ Sd−1 for all B ∈ Br such that∑

B∈Br

min
i 6=j

{ˆ
ηB |νi − νB|2 |∇χi|+

ˆ
ηB |νj + νB|2 |∇χj|+

∑
k/∈{i,j}

ˆ
ηB |∇χk|

}
. κE(χ). (5.39)
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Indeed, this lemma is trivial in the two-phase case, see [74, Lemma 5.2]. Thus each
normal may be approximated separately in the multi-phase case which may be upgraded
to our statement (5.39) by a direct application of [74, Lemma 5.5].

5.2.2 Proofs

Proof of Lemma 5.8. Step 1: Existence via minimizing movements.
Existence of solutions to the Allen-Cahn equations for fixed ε, say, w.l.o.g. ε = 1, can be
proven for example by De Giorgi’s minimizing movements scheme: For a fixed time-step
size h > 0 and n ∈ N we inductively set

un := arg min
u

{
E1(u) +

1

2h

ˆ ∣∣u− un−1
∣∣2 dx

}
.

Interpolating in a piecewise constant way and taking the limit h ↓ 0 we get solutions to
the Allen-Cahn Equation satisfying the a-priori estimate (5.22).

Step 2: We have ∂i∂ju, ∂uW (u) ∈ L2.
We provide a formal argument which can easily be turned into a rigorous proof by con-
sidering discrete difference quotients instead of their limits. Differentiating the equation
in the ith coordinate direction for 1 ≤ i ≤ d gives

∂t∂iu−∆∂iu = −∂2
uW (u)∂iu.

By multiplying the equation with ∂iu and integrating we find

1

2

ˆ
|∂iu(T )|2 dx+

ˆ T

0

ˆ
|∂i∇u|2 dx dt =

1

2

ˆ
|∂iu(0)|2 dx−

ˆ T

0

ˆ
∂iu ·∂2

uW (u)∂iu dx dt.

The second right-hand side term has two contributions, one from Wconv and one from
Wpert, see (5.5). The contribution due to Wconv is negative by convexity. The contribution
coming from Wpert is controlled by

ˆ T

0

ˆ
|∂iu|2 dx dt

because Wpert has bounded second derivative. Thus we get ∂i∂ju ∈ L2([0, T ] × [0,Λ)d).
As ∂tu is in the same space, a quick look at the PDE (5.1) reveals that ∂uW (u) is as
well.

Proof of Proposition 5.12. Plugging the a priori estimate (5.22) into the estimates (5.29),
(5.30) and (5.31) of Lemma 5.13 we see that

sup
ε

ˆ T

0

ˆ
|φ ◦ uε|+ |∇(φi ◦ uε)|+ |∂t(φi ◦ uε)| dx dt <∞.

By the Rellich compactness theorem, we thus find a subsequence ε ↓ 0 and a function
v : (0, T )× [0,Λ)d → R such that

φi(uε)→ v in L1([0, T ]× [0,Λ)d). (5.40)
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Step 1: The limit v takes the form
∑

j φi(αj)χj. Furthermore, the functions uε converge
to u :=

∑
j χjαj a.e.

The convergence of uε to
∑

j χjαj is a part of the classical Γ-limit result [5]. However, we
find the argument given by Fonseca and Tartar [43, Theorem 4.1], which can be adapted to
the multi-phase case, to be more convincing. In a nutshell, the Young measure generated
by uε is a convex combination of Dirac measures supported at the zeros of W . Thus the
Young measure generated by φi(uε) is a convex combination of Dirac measures as well.
However, we know that they converge strongly, i.e., to a single Dirac measure, which
implies that the convex combination was trivial.

Step 2: χi ∈ BV .
A similar claim is proven to be true in Proposition 2.2 in [5]. For the convenience of the
reader and later refinement we reproduce the proof.

Applying the Fleming-Rishel coarea formula in space and time we see for each 1 ≤ i ≤ P
that

||(∂t,∇)φi ◦ u||TV =

ˆ ∞
−∞
Hd (∂∗{(t, x) : φi ◦ u(t, x) ≤ s}) ds

≥
ˆ di

0

Hd (∂∗{(t, x) : φi ◦ u(t, x) ≤ s}) ds

=di||(∂t,∇)χi||TV ,

where we define di := min1≤j≤P,i6=j dW (αi, αj). Thus χi ∈ BV ([0, T ]× [0,Λ)d).

For the statement ||E(χ)||L∞([0,T ]) ≤ E0 we refer the reader the energy-dissipation equality
(5.22) and to the proof of the Γ− lim inf inequality in [5].

Finally, recalling Remark 5.11 we notice that the Allen-Cahn Equation only played into
the argument via the energy-dissipation estimate (5.22).

Proof of Lemma 5.13. Step 1: The chain rule holds if u additionally is bounded in space
and time.
In this case φi is in fact Lipschitz continuous on the image of u. By the following Theorem
5.18 due to Ambrosio and Dal Maso we know that the chain rule is valid for the pair
D(φi|Tt,x) and (∂t,∇)u, where Ṫt,x := span ({∂1u, . . . , ∂du, ∂tu}) and Tt,x := u(t, x) + Ṫt,x:

Theorem 5.18 (Ambrosio, Dal Maso [3]; Corollary 3.2). Let Ω ⊂ Rd be an open set.
Let p ∈ [1,∞], u ∈ W 1,p(Ω;RN), and let f : RN → Rk be a Lipschitz continuous function
such that f(0) = 0. Then v := f ◦u ∈ W 1,p(Ω;Rk). Furthermore, for almost every x ∈ Ω
the restriction of the function f to the affine space

T ux :=
{
y ∈ Rn : y = u(x) + (z ·D)u for some z ∈ Rd

}
is differentiable at u(x) and

Dv = D(f |Tux )(u)Du a.e. in Ω.

Let Π(t, x) be the orthogonal projection in RN onto the subspace Ṫt,x and let

∂uφi(u)(t, x)v := D
(
φi|Tt,x

)
(u(t, x))Π(t, x)v.
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Due the obvious fact that Π(t, x)∇u(t, x) = ∇u(t, x) the chain rule still holds for ∂uφi(u)
and (∂t,∇)u. Let (t, x) be a point such that φi|Tt,x is differentiable in u := u(t, x), let

v ∈ Ṫt,x and h > 0. Using the triangle inequality of d and comparing the length of
geodesics to straight lines we get

|φi(u+ hv)− φi(u)| ≤ dW (u+ hv, u) ≤
ˆ 1

0

√
2W (u+ thv)h|v| dt.

Continuity of W implies that we can pass to the limit h→ 0 after dividing by h to get∣∣Dφi|Tt,x(u)v
∣∣ ≤√2W (u)|v|,

which for all vectors of the form v = Π(t, x)ṽ for some ṽ ∈ RN gives

|∂uφi(u)| ≤
√

2W (u).

Step 2: The lemma holds for general functions u with bounded energy and controlled dis-
sipation.
The idea is to approximate u with bounded functions. Let M > 0 and let uM,j :=
sign(uj) (M ∧ |uj|) for all 1 ≤ j ≤ N be the componentwise truncation of u. We then
know that uM → u pointwise almost everywhere, which implies φi(uM) → φi(u) point-
wise almost everywhere. Next, we will strengthen this to L1-convergence by finding an
integrable dominating function.

By the triangle inequality for dW we get for all v ∈ RN that

φi(v) ≤ dW (αi, 0) + dW (0, v), (5.41)

so that it is sufficient to consider dW (0, v). By the growth condition (5.3) on W we see

dW (0, v) ≤
ˆ 1

0

√
2W (sv)|v| ds . |v|+ |v|

p
2

+1 . 1 + |v|p (5.42)

for all v ∈ RN . Thus we have

φi (uM) . 1 + |uM |p ≤ 1 + |u|p

and we only need to prove Lp-boundedness of u. This is a straightforward consequence
of the coercivity assumption (5.3) and boundedness of the energy, as for almost all times
0 ≤ t ≤ T we have

sup
0≤t≤T

ˆ
|u|p dx

(5.3)

. sup
0≤t≤T

ˆ
1 +W (u) dx . 1 + sup

0≤t≤T
εEε(u). (5.43)

Thus we can apply Lebesgue’s dominated convergence theorem to see that φi(uM) →
φi(u) in L1. Consequently, we have that

(∂t,∇)(φi ◦ uM)→ (∂t,∇)(φi ◦ u)
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as distributions.

Note that estimates (5.41), (5.42) and (5.43) imply the L1 estimate (5.29) we claimed to
hold in the statement of the lemma.

By an elementary property of weakly differentiable functions we have that

(∂t,∇)uM,j = (∂t,∇)uj a.e. on {uM,j = uj} .

As the sets {uM = u} are non-decreasing in M we see that

|{uM 6= u, (∂t,∇)uM 6= (∂t,∇)u}| → 0.

Because the definition of ∂uφi only depends on the values of the pre-composed function
and its derivatives, we see that ∂uφi(uM) eventually becomes stationary almost every-
where. We denote the limit by ∂uφi(u). Furthermore, we still have

|∂uφi(u)| ≤
√

2W (u) a.e.,

which proves (5.28). Finally, to check the chain rule all remains to be seen is that

∂uφ(uM)(∂t,∇)uM → ∂uφ(u)(∂t,∇)u

in L1. This follows by dominated convergence from the above pointwise convergences
and the following widely known application of Young’s inequality

|∂uφ(uM)∇uM | ≤
√

2W (uM) |∇uM | ≤
√

2W (u)|∇u| ≤ ε

2
|∇u|2 +

1

ε
W (u)

for the spatial gradient and, similarly,

|∂uφ(uM)∂tuM | ≤
ε

2
|∂tu|2 +

1

ε
W (u) (5.44)

as the right-hand side is integrable in space and time by assumption. Note that both
inequalities also imply

sup
0≤t≤T

ˆ
|∇φi ◦ u| dx . sup

0≤t≤T
Eε(u),

ˆ T

0

ˆ
|∂tφi ◦ u| dx dt . T sup

0≤t≤T
Eε(u) +

ˆ T

0

ˆ
ε|∂tu|2 dx dt,

which provides the bounds (5.30) and (5.31).

Proof of Lemma 5.14. Step 1: We have φi ◦ uε ∈ W 1,2([0, T ];L1([0,Λ)d)).
The fact that φi ◦ uε ∈ L2([0, T ];L1([0,Λ)d)) is an immediate consequence of estimate
(5.29) of Lemma 5.13. For the estimate on the derivative we localize the previous estimate
for ∂t(φi ◦ uε) in time. Let ζ ∈ L2([0, T ]) be non-negative. Using the chain rule (5.27),
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the Lipschitz estimate (5.28) and the Cauchy-Schwarz inequality in the spatial integral,
we obtain

ˆ T

0

ζ

ˆ
|∂t(φi ◦ uε)| dx dt ≤

ˆ T

0

ζ

ˆ √
2W (uε)|∂tuε| dx dt

≤
ˆ T

0

ζ

(
2

ˆ
1

ε
W (uε) dx

) 1
2
(ˆ

ε|∂tuε|2 dx

) 1
2

dt.

Applying the energy dissipation estimate (5.22) and the Cauchy-Schwarz inequality in
time we arrive at

ˆ T

0

ζ

ˆ
|∂t(φi ◦ uε)| dx dt . Eε(uε(0))

(ˆ T

0

ζ2 dt

) 1
2

.

Optimizing in ζ with ||ζ||L2 = 1 gives the L2
tL

1
x-estimate (5.32).

Step 2: The sequence φi ◦ uε is pre-compact in L∞([0, T ];L1([0,Λ)d)).
Due to a version of the Fundamental Theorem of Calculus for the Bochner integral, cf.
Chapter 5.9, Theorem 2 in [40], we know for almost every s, r ∈ [0, T ] with s ≤ r that

φi ◦ uε(r)− φi ◦ uε(s) =

ˆ r

s

∂t(φi ◦ uε)(t) dt.

Consequently, the Cauchy-Schwarz inequality gives

ˆ
|φi ◦ uε(r)− φi ◦ uε(s)| dx ≤

ˆ r

s

ˆ
|∂t(φi ◦ uε)(t)| dx dt . (r − s)

1
2

(
Eε(u

0
ε)
) 1

2 . (5.45)

By estimate (5.30) we also know that

ess sup
0≤t≤T

ˆ
|∇(φi ◦ uε)| dx . 1 + Eε(u

0
ε).

Since supεEε(u
0
ε) < ∞ we consequently know that (a modification of) φ ◦ uε is equi-

continuous in C([0, T ];L1([0,Λ)d)). Additionally, lower semi-continuity of the BV -norm
and the compact Sobolev embedding of W 1,1 into L1 implies that for all times t ∈ [0, T ]
the maps φi ◦uε(t) are pre-compact in L1([0,Λ)d). The Arzelà-Ascoli theorem then gives
the claim.

Step 3: The sequence uε converges to
∑

i χiαi in measure uniformly in time.
By dW (αi, αi) = 0 for all 1 ≤ i ≤ P and Step 2 we get

lim sup
ε→0

ess sup
0≤t≤T

P∑
i=1

ˆ
dW (αi, uε(t, x))χi dx

≤ lim
ε→0

ess sup
0≤t≤T

∑
i

ˆ
|dW (αi, uε(t, x))− dW (αi, u(t, x))| dx

= 0.
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For every δ > 0 and 1 ≤ i ≤ P we have by continuity of the map v 7→ dW (αi, v) that

min
{
dW (αi, v); v ∈ RN , |v − αi| ≥ δ

}
> 0.

As a result we get essentially uniform in time convergence in measure, i.e., for every δ > 0
we have

ess sup
0≤t≤T

∣∣∣∣∣
{∣∣∣∣∣uε −

P∑
i=1

χiαi

∣∣∣∣∣ ≥ δ

}∣∣∣∣∣→ 0. (5.46)

Since uε is continuous in time, we can replace the essential supremum by a “true” supre-
mum.

Step 4: The sequence u2
ε is equi-integrable uniformly in time.

If p > 2, then this follows immediately from the uniform Lp bound (5.43) of uε we
proved in Lemma 5.13 by an application of the Hölder inequality: For any measurable
set A ⊂ [0,Λ)d and any ε > 0 we have

sup
0≤t≤T

ˆ
A

u2
ε(t, x) dx ≤ sup

0≤t≤T
|A|

2
p′

(ˆ
|uε|p dx

) 2
p

. |A|
2
p′
(
1 + Eε(u

0
ε)
) 2
p . (5.47)

As Eε(u
0
ε) is bounded uniformly in ε, we get the statement.

If p = 2 we get some slightly better integrability from a Sobolev embedding: Let G(u) :=
(|u| −R)2

+, where R > 0 is the radius from the growth condition (5.3) of W . This function
is C1 with

∂uG(u) = 2 (|u| −R)+

u

|u|
and thus satisfies the same bounds as φi, see (5.42) and (5.28), namely

G(u) ≤ |u|2 and |∂uG(u)| . |u|1{|u|>R} .
√
W (u).

Consequently, we can use the same approximation argument as in Lemma 5.13 to see
that

sup
ε>0

sup
0≤t≤T

||G ◦ uε(t)||W 1,1 <∞.

The Sobolev embedding theorem can thus be applied to conclude

sup
ε>0

sup
0≤t≤T

||G ◦ uε(t)||
L

d
d−1

<∞.

Recalling the definition of G we see that this implies

sup
ε>0

sup
0≤t≤T

||uε(t)||
L

2 d
d−1

<∞,

from which we deduce the necessary equi-integrability of |uε|2 as before.

Step 5: The sequence uε converges in C([0, T ];L2([0,Λ)d)).
Essentially, we wish to exploit the fact that convergence in measure and equi-integrability
are equivalent to convergence in L1. However, since we want the convergence to be
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uniform in time and instead of L1 convergence we want L2 convergence in space, we
quickly reproduce the argument.

For any cut-off M > 0 we can split the integralˆ
|uε − u|2 dx =

ˆ
{|uε−u|≥M}

|uε − u|2 dx+

ˆ
{|uε−u|<M}

|uε − u|2 dx.

The first term on the right-hand side satisfies

sup
0≤t≤T

ˆ
{|uε−u|≥M}

|uε − u|2 dx . sup
0≤t≤T

ˆ
{|uε−u|≥M}

(|uε|2 + 1) dx→ 0 as ε→ 0

by applying uniform convergence in measure (5.46) and uniform equi-integrability (5.47).
For every δ > 0 the second term on the right-hand side can be estimated by

sup
0≤t≤T

ˆ
min

{
|uε − u|2,M2

}
dx ≤ sup

0≤t≤T
Λdδ2 + |{|uε − u| > δ}|M2 → Λdδ2, as ε→ 0.

Taking first ε→ 0 and then δ → 0 we have indeed

lim
ε→0

sup
0≤t≤T

ˆ
|uε − u|2 dx = 0.

Proof of Proposition 5.15. In order to construct the normal velocities Vi satisfying the
identity ∂tχi = Vi |∇χi| dt, we prove that the distributional time derivative ∂tχi is abso-
lutely continuous w.r.t. the perimeter |∇χi| dt. We will quantify this in order to get the
(optimal) L2-integrability of the normal velocities. The strategy is the following:

1. We prove the easier fact ∂t(φi ◦ u)� E(•, u) dt with square-integrable density.

2. We replace φi◦u with u, i.e., we prove ∂tu� E(•, u) dt, using a suitable localization
of Step 2 of the proof of Proposition 5.12, i.e., of the Fleming-Rishel coarea formula.

3. We prove that ∂tχi is singular to the “wrong” parts of E(•, u) dt in order to replace
the right-hand side with |∇χi| dt.

Step 1: For all 1 ≤ i ≤ P we have that ∂t(φi◦u) is absolutely continuous w.r.t. the energy
measure E(•, u) dt and the corresponding density is square-integrable w.r.t. E(•, u) dt.
We localize with a smooth test function ζ ∈ C∞0 ((0, T )× [0,Λ)d;R1+d) and use the chain
rule (5.13), the Lipschitz estimate (5.28) and the Cauchy-Schwarz inequality to obtain

ˆ T

0

ˆ
∂tφi(uε)ζ dx dt ≤

(ˆ T

0

ˆ
ε |∂tuε|2 dx dt

) 1
2
(ˆ T

0

ˆ
ζ2 2

ε
W (uε) dx dt

) 1
2

. (5.48)

By the convergence (5.26) of the composition and the equipartition and convergence of
energy (5.35) we can pass to the limit in this inequality and obtain

ˆ T

0

ˆ
φi(u)∂tζ dx dt ≤

(
lim inf
ε↓0

ˆ T

0

ˆ
ε |∂tuε|2 dx dt

) 1
2
(ˆ T

0

E(ζ2, u) dt

) 1
2

. (5.49)
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By equation (5.22) the first factor on the right-hand side is controlled by
√
E0. From this

we see that indeed |∂t(φi ◦ u)| � E(•, u) dt and by taking the supremum over the test
functions ζ we see that the density is square-integrable.

Step 2: We have di|∂tχi| ≤ |∂t(φi ◦ u)| where di := min1≤j≤P,i6=j dW (αi, αj).
Basically, we want to use the argument of Step 4 in the proof of Proposition 5.12 for the
partial derivative ∂tχi. This can be done by combining the slicing theorem, cf. Theorem
3.103 in [4], and with the previous argument at almost each point x ∈ [0,Λ)d, which leads
to

di|∂tχi|(U) ≤ |∂t(φi ◦ u)|(U)

for all open sets U ⊂ [0, T ]×[0,Λ)d. This implies that for all ξ ∈ Cc((0, T )×[0,Λ)d; [0,∞))
we have the inequality

di|∂tχi|(ξ) ≤ |∂t(φi ◦ u)|(ξ) :

Indeed, we can approximate ξ by constants on sets whose boundaries are negligible w.r.t.
the measures on both sides.

Step 3: We have that |(∂t,∇)χi| and 1
2

(|∇χj|d + |∇χk|d − |∇(χj + χk)|d) dt are singular
for all pairwise different 1 ≤ i, j, k ≤ P .
For a characteristic function χ : [0, T ] × [0,Λ)d → R we write |∇χ|d+1 for the total
variation in time and space of the partial spatial derivatives and |∇χ|d for the total
variation the spatial derivatives in space defined almost everywhere in time.

According to Theorem 4.17 in [4] one can decompose supp |(∂t,∇)χi| into the pairwise
disjoint sets Σ̃i,l := ∂∗Ω̃i ∩ ∂∗Ω̃l, 1 ≤ l ≤ P , which are the intersections of the reduced
boundaries in time and space. The exceptional sets are Hd-negligible and hence can be
ignored in all the derivatives |(∂t,∇)χm|, 1 ≤ m ≤ P . Thus we only have to prove that

1

2
(|∇χj|d + |∇χk|d − |∇(χj + χk)|d) dt

(
Σ̃il

)
= 0

for all 1 ≤ l ≤ P .

Since j, k 6= i and the interfaces are pairwise disjoint we have that

|(∂t,∇)χj|
(

Σ̃il

)
= 0 or |(∂t,∇)χk|

(
Σ̃il

)
= 0.

In the first case we have, since (∂t,∇)χj|Σ̃il = 0 in the sense of measures, that

1

2
(|∇χj|d+1 + |∇χk|d+1 − |∇(χj + χk)|d+1)

(
Σ̃il

)
=

1

2

(
|∇χk|d+1

(
Σ̃il

)
− |∇χk|d+1

(
Σ̃il

))
= 0.

The analogous argument gives the same result in the second case. Finally, a straightfor-
ward generalization of Theorem 3.103 in [4] to higher dimensional slicings implies

|∇χl|1+d = |∇χl|d dt,
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which proves the claim.

Step 4: We have |∂tχi| � |∇χi|d dt and the L2-estimate (5.33) holds for the density Vi.
Steps 1 and 2 imply that

|∂tχi| � |∂t(φi ◦ u)| � E(•, u) dt =
1

2

∑
1≤j,k≤P

σjk
1

2
(|∇χj|+ |∇χk| − |∇(χj + χk)|) dt.

As we have |∂tχi| ≤ |(∂t,∇)χi| as measures, we get from Step 3 that we may drop all
terms not involving the index i on the right-hand side of this estimate to get

|∂tχi| �
∑

1≤j≤P

σji
1

2
(|∇χj|+ |∇χi| − |∇(χj + χi)|) dt ≤ max

1≤j≤P
(σji)|∇χi| dt. (5.50)

In order to deduce the estimate (5.33) we combine Step 2 with the estimate

ˆ T

0

ˆ
|∂tφi(u)|ζ dx dt ≤

√
E0

(ˆ T

0

E(ζ2, u) dt

) 1
2

derived from (5.49) to get

ˆ T

0

ˆ
∂tχiζ dx dt .

√
E0

(ˆ T

0

E(ζ2, u) dt

) 1
2

.

We can now use ζ to localize only on the support of ∂tχi, which by estimate (5.50) gives

ˆ T

0

ˆ
∂tχiζ dx dt .

√
E0

(ˆ T

0

ˆ
ζ2|∇χi| dt

) 1
2

.

Written in terms of the density Vi of ∂tχi with respect to |∇χi| dt this is the estimate
(5.33) we claimed to hold: ˆ T

0

ˆ
V 2
i |∇χi| dt . E0.

We once more point out that we did not use the Allen-Cahn Equation (5.1) apart from
the energy-dissipation estimate (5.22).

Proof of Lemma 5.16. The proof is divided into three steps. While the first two steps
are already contained in [74], cf. Steps 1 and 3 in the proof of Lemma 2.8 there, the last
step is a generalization of a well-known argument, cf. [79, Lemma 1] to the multi-phase
case. The main difference is that we have to localize once more to use the structure of
the energy (5.36).

Step 1: Localization in time.
By the convergence of the time-integrated energies (5.9) and the lower semi-continuity
part of the Γ-convergence of Eε to E, cf. [5], we have
ˆ T

0

|Eε(uε)− E(χ)| dt =

ˆ T

0

(Eε(uε)− E(χ)) dt+ 2

ˆ T

0

(Eε(uε)− E(χ))− dt→ 0

(5.51)
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as ε → 0, which after passage to a subsequence clearly implies the localization in time
(5.34).

Step 2: Localization in space.
We claim that the convergence (5.34) of the energies implies

lim
ε↓0

Eε(ζ, uε) = E(ζ, u) for a.e. 0 ≤ t ≤ T and all ζ ∈ C∞([0,Λ)d). (5.52)

Indeed, if we assume that w.l.o.g. by linearity 0 ≤ ζ ≤ 1, using the lim inf-inequality of the
Γ-convergence on the domains {ζ > s} and the layer cake representation ζ =

´ 1

0
1{ζ>s} ds

we obtain the inequality

E(ζ, u) ≤ lim inf
ε↓0

Eε(ζ, uε).

The same argument for 0 ≤ 1 − ζ ≤ 1 instead of ζ, the linearity of the energy in ζ and
the convergence (5.34) derived in Step 1 yields the inverse inequality and thus (5.52).

Step 3: Equipartition of energy.
Now let us turn to (5.35). By lower semi-continuity and Young’s inequality for any cutoff
0 ≤ η ≤ 1 and any 1 ≤ i ≤ P we get

ˆ
η |∇ (φi ◦ u)| ≤ lim inf

ε↓0

ˆ
η |∇ (φi ◦ uε)| dx ≤ lim inf

ε↓0

ˆ
η
√

2W (uε) |∇uε| dx

≤ lim inf
ε↓0

Eε(η, uε)
(5.52)
= E(η, u).

We can now use a partition of unity subordinate to the covering (5.37) and choose the
index 1 ≤ i ≤ P such that the left- and right-hand side almost agree, see estimate (5.36).
An additional localization argument as in Step 2 yields

ˆ
ζ
√

2W (uε) |∇uε| dx→ E(ζ, u) (5.53)

for any ζ ∈ C([0,Λ)d; [0,∞)). Setting a2
ε := ζ ε

2
|∇uε|2 and b2

ε := ζ 1
ε
W (uε), we obtain

ˆ
ζ (aε − bε)2 dx = Eε(ζ, uε)−

ˆ
ζ
√

2W (uε) |∇uε| dx→ 0

by the convergences (5.53) and (5.34). Claim (5.35) then follows from the identity a2
ε −

b2
ε = (aε − bε)(aε + bε).

5.3 Convergence

In Section 5.2 we proved that the solutions uε of the Allen-Cahn Equation (5.1) are
pre-compact. In this section we pass to the limit in the Allen-Cahn Equation (5.1) and
prove that the limit moves by mean curvature. Since this section is the core of our
contribution, we give a short idea of the proof and then pass to the rigorous derivation in
the subsequent parts, first for the curvature-term, and afterwards for the velocity-term.
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5.3.1 Idea of the proof

To illustrate the idea of our proof we give a short overview in the simpler two-phase case.
In this setting the convergence of the curvature-term

lim
ε↓0

ˆ T

0

ˆ (
ε∆uε −

1

ε
W ′(uε)

)
ξ ·∇uε dx dt = σ

ˆ T

0

ˆ
∇ξ : (Id− ν ⊗ ν) |∇χ| dt (5.54)

is by the pointwise in time convergence of the energy (5.34) literally contained in [79]
and the only difficulty is to prove the convergence of the velocity-term

lim
ε↓0

ˆ T

0

ˆ
∂tuε ξ · ε∇uε dx dt = σ

ˆ T

0

ˆ
V ξ · ν |∇χ| dt. (5.55)

Since ∂tuε ⇀ V |∇χ| dt and ε∇uε ≈ ν only in a weak sense, we cannot directly pass
to the limit in the product. The general idea to work around this problem is to follow
the strategy of [74]: Thinking of the test vector field ξ as a localization, we “freeze” the
normal along the sequence to be the fixed direction ν∗ ∈ Sd−1 and estimate the error
w.r.t. an approximation of the tilt-excess

E := σ

ˆ T

0

ˆ
|ν − ν∗|2|∇χ| dt, (5.56)

which measures the (local) flatness of the reduced boundary ∂∗Ω of the limit phase
Ω = {χ = 1}. The main difference to the work [74] is that we measure the error w.r.t.
the tilt-excess E instead of the energy-excess

ˆ
|∇χ| −

ˆ
|∇χ∗| , where χ∗ is a half-space in direction ν∗.

After a localization, De Giorgi’s Structure Theorem guarantees the smallness in both
cases, see Section 5 in [74]. Our approximation of the tilt-excess along the sequence is

Eε :=

ˆ T

0

ˆ
|νε − ν∗|2 ε |∇uε|2 dx dt, (5.57)

where νε = ∇uε
|∇uε| denotes the normal of the level sets of uε.

We will use the approximate tilt-excess to suppress oscillations of the direction of the
term ε∇uε on the left-hand side of (5.55) so that we can pass to the limit in the product.
We replace the normal νε by a constant direction ν∗ ∈ Sd−1 and control the difference

ˆ T

0

ˆ
∂tuε ξ · ε∇uε dx dt−

ˆ T

0

ˆ
∂tuε ξ · (ε |∇uε| ν∗) dx dt (5.58)

by the following combination of the excess and the initial energy

‖ξ‖∞
(

1

α
Eε + αEε(u

0
ε)

)
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for any (small) parameter α > 0 – an immediate consequence of Young’s inequality and
the energy-dissipation estimate (5.22). It is easy to check that by the equipartition of
energy (5.35) we can replace ε |∇uε| in the second integral in (5.58) by

√
2W (uε) up to

an error that vanishes as ε ↓ 0:
ˆ T

0

ˆ
∂tuε ξ · (ε |∇uε| ν∗) dx dt =

ˆ T

0

ˆ
∂tuε

√
2W (uε) ξ · ν∗ dx dt+ o(1). (5.59)

Identifying the nonlinear term

∂tuε
√

2W (uε) = ∂t (φ ◦ uε)

as the derivative of the compact quantity φ ◦ uε → φ ◦ u, where φ(u) =
´ u

0

√
2W (s) ds,

we can pass to the limit ε ↓ 0 and obtain
ˆ T

0

ˆ
∂t (φ ◦ uε) ξ · ν∗ dx dt→ σ

ˆ T

0

ˆ
V ξ · ν∗ |∇χ| dt.

As before, but now at the level of the limit, by Young’s inequality we can “un-freeze” the
normal, i.e., replace ν∗ by ν at the expense of

‖ξ‖∞
(

1

α
E + α

ˆ T

0

ˆ
V 2 |∇χ| dt

)
.

While in the case of [74] the convergence assumption trivially implies the convergence of
the (approximate) energy-excess, here we have to argue why we can pass to the limit in
our nonlinear excess Eε and connect it to E .

Using the trivial equality |ν − ν∗|2 = 2(1− ν · ν∗) and the convergence assumption (5.9)
this question reduces to

ˆ T

0

ˆ
ε |∇uε| ∇uε dx dt→

ˆ T

0

ˆ
∇ (φ ◦ u) dt. (5.60)

Now the argument is similar to the one before for the time derivative. Using again
the equipartition of energy (5.35) we can replace ε |∇uε| by

√
2W (uε). Identifying the

nonlinearity
√

2W (uε)∇uε = ∇ (φ ◦ uε) as a derivative yields the convergence of the
excess.

Thus we arrive at the right-hand side of (5.55) – up to an error that we can handle:
we localize on a scale r > 0 so that E → 0 as r ↓ 0, while the second error term stays
bounded by the L2-estimate (5.33). We then recover the motion law (5.11) by sending
α ↓ 0.

5.3.2 Convergence of the curvature-term

In the two-phase case, the convergence (5.54) of the curvature-term is contained in the
work of Luckhaus and Modica [79]. In our setting, the convergence does not follow
immediately from their work. We give an extension of this result by quantifying their
Reshetnyak-argument.



156 CHAPTER 5. CONVERGENCE OF THE ALLEN-CAHN EQUATION

Proposition 5.19. Given a sequence uε → u =
∑

i χiαi such that the energies converge
in the sense of

Eε(uε)→ E(u). (5.61)

Then also the first variations converge: for any ξ ∈ C∞([0,Λ)d,Rd) we have

lim
ε↓0

ˆ (
ε∆uε −

1

ε
∂uW (uε)

)
· (ξ · ∇)uε dx

=
1

2

∑
1≤i,j≤P

σij

ˆ
∇ξ : (Id− νi ⊗ νi)

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) . (5.62)

Furthermore we haveˆ (
ε∆uε −

1

ε
∂uW (uε)

)
· (ξ · ∇)uε dx . ‖∇ξ‖∞Eε(uε). (5.63)

Proof. Following the lines of [79] we can rewrite the left-hand side of (5.62) by integrating
the first term by parts and using the chain rule for the second term. With Einstein’s
summation convention and omitting the index ε we have

ˆ
(ε∂i∂iuk −

1

ε
∂kW ) ξj ∂juk dx

=

ˆ {
− ε ∂iuk ∂iξj ∂juk − ε ∂iuk ξj ∂i∂juk −

1

ε
∂j(W (u)) ξj

}
dx.

(5.64)

We can now rewrite the second term on the right-hand side and integrate by parts to see

−
ˆ
ε ∂iuk ξj ∂i∂juk dx = −

ˆ
ε ξj ∂j

{1

2
(∂iuk)

2
}

dx =

ˆ
(∇ · ξ) ε

2
|∇u|2 dx.

Plugging this into (5.64) the left-hand side of (5.62) is thus equal to
ˆ
∇ξ :

(
Id−NT

ε Nε

)
ε |∇uε|2 dx+

ˆ
(∇ · ξ)

(1

ε
W (uε)−

ε

2
|∇uε|2

)
dx,

where Nε := ∇uε
|∇uε| ∈ RN×d. From this we immediately obtain (5.63). By the equipartition

of energy (5.35) the second integral is negligible as ε → 0 and up to another error that
vanishes as ε→ 0 we can replace the first term by

ˆ
∇ξ :

(
Id−NT

ε Nε

)√
2W (uε) |∇uε| dx.

Again by the equipartition of energy (5.35) it is enough to prove the convergence of the
nonlinear termˆ

A : NT
ε Nε

√
2W (uε) |∇uε| dx→

∑
i,j

σij

ˆ
A : νi ⊗ νi

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|)

(5.65)
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for any smooth matrix field A : [0,Λ)d → Rd×d. By linearity we may assume w.l.o.g.
|A| ≤ 1.

We prove (5.65) using the following two claims:

Claim 1: We choose a majority phase by introducing the function φ = φi for some
arbitrary 1 ≤ i ≤ P on the left-hand side of (5.65). The corresponding estimate is

lim sup
ε→0

∣∣∣∣ˆ A : NT
ε Nε

√
2W (uε) |∇uε| dx−

ˆ
A : νε ⊗ νε |∇(φ ◦ uε)| dx

∣∣∣∣
. E(u, η)−

ˆ
η |∇φ(u)| ,

(5.66)

where νε := ∇φ(uε)
|∇φ(uε)| ∈ Rd denotes the normal to the level sets of φ(uε)

Claim 2: We quantify the Reshetnyak argument in [79]. Under the assumption (5.61) we
claim

lim sup
ε↓0

∣∣∣∣ˆ A : νε ⊗ νε |∇(φ ◦ uε)| dx−
ˆ
A : ν ⊗ ν |∇(φ ◦ u)|

∣∣∣∣
.

1

α

(
E(u, η)−

ˆ
η |∇(φ ◦ u)|

)
+ αE(u, η)

(5.67)

for any α ∈ (0, 1).

In both cases the main contribution to the errors is given by the “mild excess”

E(u, η)−
ˆ
η |∇φ(u)| , (5.68)

which measures the local difference of the multi-phase setting to the two-phase setting
on the support of the matrix field A approximated with a cut-off η.

Decomposing an arbitrary matrix field A via the partition of unity on scale r > 0 chosen
in the localization estimate (5.36) we see that in the limit r → 0 the convergence (5.65)
holds up to an error controlled by αE(u). Sending α→ 0 then gives the proposition.

Proof of Claim 1: Introducing a majority phase.
Two errors arise in (5.66): The first when replacing NT

ε Nε by νε ⊗ νε and the second
when replacing

√
2W (uε)|∇uε| by |∇(φ ◦ uε)|.

To handle the first error, we first replace the matrix Nε = ∇uε
|∇uε| by πuεNε, where

πu =

{
∂uφ
|∂uφ| ⊗

∂uφ
|∂uφ| if ∂uφ 6= 0

0 otherwise.

Note that we have πuπu = πu = πTu , i.e., multiplication with πu is an orthogonal projection
in matrix-space. We can even beef up the Pythagorean Theorem in this instance to read,
dropping subscripts for the moment,

NTN = (πN +N − πN)T (πN +N − πN) = (πN)T (πN) + (N − πN)T (N − πN),
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since we have
(πN)T (N − πN) = NTπ(N − πN) = 0.

Thus we can replace Nε by πuεNε in the estimate (5.66) up to the error
ˆ
η |(Id− πuε)Nε|2

√
2W (uε) |∇uε| dx =

ˆ
η
(
1− |πuεNε|2

)√
2W (uε) |∇uε| dx,

where we used the Pythagorean Theorem and the fact that |Nε|2 = 1.

In a second step we replace πuεNε by νε. To this end we use the chain rule of Ambrosio
and Dal Maso, or to be more specific Lemma 5.13, to see that πuεNε is a multiple of
∂uφ⊗ νε. As a result we get

(πuεNε)
T (πuεNε) = |πuεNε|2νε ⊗ νε.

Thus, since

|πuεNε| =
∣∣∣∣ ∂uφ|∂uφ|Nε

∣∣∣∣ ≤ 1,

the total error for replacing Nε by νε is bounded by
ˆ
η
(
1− |πuεNε|2

)√
2W (uε) |∇uε| dx ≤

ˆ
η

(
1−

∣∣∣∣ ∂uφ|∂uφ|Nε

∣∣∣∣)√2W (uε) |∇uε| dx.

(5.69)

Using the estimate (5.28), namely |∂uφ(u)| ≤
√

2W (u), we see that the integrand satisfies(
1−

∣∣∣∣ ∂uφ|∂uφ|Nε

∣∣∣∣)√2W (uε) |∇uε| ≤
√

2W (uε) |∇uε| − |∂uφ(uε)∇uε| .

Plugging this into (5.69) and using the Ambrosio-Dal Maso chain rule (5.27) again, we
see that the error is controlled by

Eε(uε, η)−
ˆ
η |∇(φ ◦ uε)| dx. (5.70)

Next, we turn to the second error, when substituting
√

2W (uε) |∇uε| by |∇(φ ◦ uε)| in

(5.66). As |∇(φ ◦uε)| ≤ |∂uφ||∇uε| ≤
√

2W (uε) |∇uε|, by Young’s inequality this second
error is estimated by
ˆ
η
∣∣∣√2W (uε) |∇uε| − |∇(φ ◦ uε)|

∣∣∣ dx =

ˆ
η
(√

2W (uε) |∇uε| − |∇(φ ◦ uε)|
)

dx.

Young’s inequality then implies that both errors can be estimated by the expression
(5.70).

By the convergence of the energies (5.61) and lower semi-continuity of the total variation
we can pass to the limit ε→ 0 in this estimate and obtain the upper bound

E(u, η)−
ˆ
η |∇(φ ◦ u)| .
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This finishes the proof of estimate (5.66).

Proof of Claim 2: A quantitative Reshetnyak-argument for φ ◦ u.
We could pass to the limit in the nonlinear expression

´
A : ν ⊗ ν |∇ (φ ◦ u)| by the

classical Reshetnyak argument if we knew that the mass
´
|∇ (φ ◦ u)| converged. In

our case we unfortunately do not know if the total variation for each φi ◦ u converges,
but we can make the error small by localizing. Thus we have to quantify the classical
Reshetnyak-argument [96], see also [79].

By Banach-Alaoglu and a disintegration result for measures we can find a measure µ on
[0,Λ)d and a family of probability measures {px}x∈[0,Λ)d on Sd−1 such that

ˆ
ζ(x, νε) |∇(φ ◦ uε)| dx→

¨
ζ(x, ν̃) dpx(ν̃) dµ(x) (5.71)

for all ζ ∈ C([0,Λ)d × Sd−1) – at least after passage to a subsequence. But since we will
identify the limit we may do so. In particular we have

ˆ
A : νε ⊗ νε |∇(φ ◦ uε)| dx→

ˆ
A(x) :

ˆ
ν̃ ⊗ ν̃ dpx(ν̃) dµ(x). (5.72)

Our aim is to prove that – up to the right-hand side of (5.67) – the right-hand side of
(5.72) is equal to ˆ

A : ν ⊗ ν |∇(φ ◦ u)| .

On the one hand, by the lower semi-continuity of the total variation and (5.71) with
ζ(x, ν) = η(x) ≥ 0

ˆ
η|∇(φ ◦ u)| ≤ lim inf

ε↓0

ˆ
η|∇(φ ◦ uε)| dx =

ˆ
η dµ, (5.73)

i.e., the measure |∇(φ ◦ u)| is dominated by µ. On the other hand, by the assumption
(5.61) the measure µ is dominated by the energy. Indeed, for any η ≥ 0 we have by
Young’s inequality

ˆ
η dµ = lim

ε↓0

ˆ
η |∇(φ ◦ uε)| dx ≤ lim inf

ε↓0
Eε(uε, η) = E(χ, η). (5.74)

Using |ν̃ ⊗ ν̃ − ν ⊗ ν| ≤ 2 |ν̃ − ν| and the relation (5.73) between the measures |∇(φ◦u)|
and µ we see∣∣∣∣ˆ A :

ˆ
ν̃ ⊗ ν̃ dpx(ν̃) dµ−

ˆ
A : ν ⊗ ν |∇(φ ◦ u)|

∣∣∣∣ .ˆ η ( dµ− |∇(φ ◦ u)|)

+

ˆ
η

ˆ
|ν − ν̃| dpx(ν̃) |∇(φ ◦ u)| .

By inequality (5.74) the first right-hand side term is estimated by the “mild excess”
(5.68).
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By using the inequality |ν− ν̃| . 1
α
|ν− ν̃|2 +α for any α > 0 we see that we are left with

proving ˆ
η

ˆ
|ν − ν̃|2 dpx(ν̃) |∇(φ ◦ u)| . E(χ, η)−

ˆ
η |∇(φ ◦ u)| . (5.75)

To this end we first make use of the uniform convexity of Sd−1 in the following way: We
have

ˆ
|ν − ν̃|2 dpx(ν̃) = 2− 2 ν ·

ˆ
ν̃ dpx =

∣∣∣∣ν − ˆ ν̃ dpx

∣∣∣∣2 + 1−
∣∣∣∣ˆ ν̃ dpx

∣∣∣∣2 .
Using |ν|2 = 1 we see 1−

∣∣´ ν̃ dpx
∣∣2 ≤ 2

∣∣ν − ´ ν̃ dpx
∣∣, which implies

ˆ
|ν − ν̃|2 dpx(ν̃) ≤ 4

∣∣∣∣ν − ˆ ν̃ dpx

∣∣∣∣ .
The loss of homogeneity in this estimate is a result of a uniformly convex smooth subman-
ifold locally deviating from its tangent plane to second order and as such is unavoidable.

The advantage of the right-hand side in this estimate is that it can be controlled by linear
expressions

ˆ
η

∣∣∣∣ν − ˆ ν̃ dpx

∣∣∣∣ |∇(φ ◦ u)| ≤ sup
ξ∈C∞([0,Λ)d;Rd):|ξ|≤η

ˆ
ξ ·
ˆ

(ν − ν̃) dpx(ν̃) |∇(φ ◦ u)| .

Consequently, they are accessible by testing the convergence (5.71) with ζ(x, ν̃) = ξ(x) · ν̃
for a smooth vector field ξ : [0,Λ)d → Rd so that distributional convergence of ∇(φ ◦ uε)
yields an equality for the linear term

ˆ
ξ · ν |∇(φ ◦ u)| =

ˆ
ξ · ∇(φ ◦ u) = lim

ε↓0

ˆ
ξ · ∇(φ ◦ uε) dx

= lim
ε↓0

ˆ
ξ · νε |∇(φ ◦ uε)| dx

(5.71)
=

ˆ
ξ ·
ˆ
ν̃ dpx(ν̃) dµ. (5.76)

This connection between the normal ν and the expectation
´
ν̃ dpx(ν̃) of the measures

px can be exploited by computing

ˆ
ξ ·
ˆ

(ν − ν̃) dpx(ν̃) |∇(φ ◦ u)| (5.76)
=

ˆ
ξ ·
ˆ
ν̃ dpx(ν̃) ( dµ− |∇(φ ◦ u)|)

(5.73)

≤ ‖ξ‖∞
(ˆ

η dµ−
ˆ
η |∇(φ ◦ u)|

)
.

Finally, notice that another application of (5.74) proves the claim (5.75).

Remark 5.20. The quantitative Reshetnyak argument (5.67) holds also for any other
Lipschitz continuous function f(x, ν̃) on Sd−1 instead of A(x) : ν̃ ⊗ ν̃.
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5.3.3 Convergence of the velocity-term

As in the proof of convergence in the two-phase case our main tool will be a suitable
tilt-excess. However, because ∇uε now describes the direction of change both in physical
space and in state space, some care needs to be taken in defining such an excess. It is
apparent that the limiting equation only sees the direction of change in physical space
explicitly. In contrast, the change of direction in state space only enters implicitly through
the surface tensions, which are the lengths of geodesics connecting the wells. It is therefore
natural to define an approximate tilt-excess which only fixes the change of direction in
physical space.

Definition 5.21. Let ν∗ ∈ Sd−1 and η ∈ C∞
(
[0, T ]× [0,Λ)d; [0, 1]

)
. For ε > 0 and a

function uε ∈ W 1,2([0, T ]×[0,Λ)d;Rn) the localized tilt-excess of the i-th phase, 1 ≤ i ≤ N ,
is given by

E iε(ν∗; η, uε) :=

ˆ T

0

ˆ
η

1

ε
|ε∇uε + ∂uφi(uε)⊗ ν∗|2 dx dt. (5.77)

In the limit ε = 0 and for a partition χi = 1Ωi ∈ BV
(
[0, T ]× [0,Λ)d; {0, 1}

)
with∑

i χi = 1 we define the tilt-excess for 1 ≤ i, j ≤ P , i 6= j, to be

E ij(ν∗; η, u) :=

ˆ T

0

ˆ
η |νi − ν∗|2 |∇χi| dt+

ˆ T

0

ˆ
η |νj + ν∗|2 |∇χj| dt

+
∑
k/∈{i,j}

ˆ T

0

ˆ
η |∇χk| dt,

(5.78)

where u =
∑

1≤i≤N αiχi and νi, as throughout the chapter, is the inner normal of Ωi.

Note that the limiting excess measures two things: Firstly, the last term measures whether
mostly the interface between the i-th and the j-th phase is present. Secondly, the first
two terms measure how close the interface is to being flat.

A subtle point in the definition is that χi falls when moving out of the corresponding
phase, while φi grows. Hence their differentials have opposite directions. We choose ν∗

to be the approximate inner normal of χi, which leads to the positive sign in E iε and the
second term in E ij and the negative one in the first term in E ij. For a similar reason
the limiting excesses are not symmetric in i and j. Instead we have E ij(ν∗; η, u) =
E ji(−ν∗; η, u).

We first make sure that we can use E ij(ν∗; η, χ) to asymptotically bound E iε(ν∗; η, uε).

Lemma 5.22. Let uε satisfy the a priori estimate (5.23) and the convergence assumption
(5.9). Then for every 1 ≤ i, j ≤ P , i 6= j, ν∗ ∈ Sd−1 and η ∈ C∞([0, T ] × [0,Λ)d; [0, 1])
we have

lim sup
ε→0

E iε(ν∗; η, uε) . E ij(ν∗; η, χ). (5.79)

Using this estimate, as in the two-phase case before, we prove (5.55) up to an error
controlled by the tilt-excess (5.78).
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Proposition 5.23. Given uε satisfying the a priori estimate (5.23) and the convergence
assumption (5.9), there exists a finite Radon measure µ on [0, T ]× [0,Λ)d, such that for
any 1 ≤ i, j ≤ P , i 6= j, any parameter α ∈ (0, 1), any direction ν∗ ∈ Sd−1 and any test
vector field ξ ∈ C∞0 ((0, T )× [0,Λ)d;Rd) we have

lim sup
ε↓0

∣∣∣∣∣
ˆ T

0

ˆ
ε(ξ · ∇)uε · ∂tuε dx dt

− σij
ˆ T

0

ˆ
ξ · νiVi

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) dt

∣∣∣∣∣
. ‖ξ‖∞

(
1

α
E ij(ν∗; η, u) + αµ(η)

)
.

(5.80)

Here η ∈ C∞([0, T ]× Rd) is a smooth cut-off for the support of ξ, i.e., η ≥ 0 and η ≡ 1
on supp ξ.

Proof of Lemma 5.22. Expanding the square and exploiting |∂uφ(uε)| ≤
√

2W (uε) we
see

E iε(ν∗; η, uε) ≤
ˆ T

0

ˆ
η

(
ε|∇uε|2 +

2

ε
W (uε) + 2(ν∗ · ∇)uε · ∂uφi(uε)

)
dx dt.

By the chain rule (5.27) we can rewrite the last term as

(ν∗ · ∇)uε · ∂uφi(uε) = ν∗ · ∇(φi ◦ uε).

Thus we see using the convergence assumption (5.9) and the convergence (5.26) of φi ◦uε
to φi ◦ u that

lim sup
ε→0

E iε(ν∗; η, uε) ≤ lim sup
ε→0

2

ˆ T

0

ˆ
η (eε(uε) + ν∗ · ∇(φi ◦ uε)) dx dt (5.81)

=2

ˆ T

0

E(η, u) dt+ 2

ˆ T

0

ˆ
η ν∗ · ∇(φi ◦ u) dt.

The second term can be rewritten as

ν∗ · ∇(φi ◦ u) = ν∗ ·
∑

1≤k≤P

σik∇χk ≤ σij ν
∗ · ∇χj +

∑
k/∈{i,j}

σik |∇χk| ,

while the first one can be estimated by

E(η, u) ≤ σij

ˆ
η |∇χj|+ C

∑
k/∈{i,j}

ˆ
η |∇χk|

for some constant C < ∞ only depending on maxij σij. Thus we can asymptotically
bound the excess by

lim sup
ε→0

E iε(ν∗; η, uε) ≤ σij

ˆ T

0

ˆ
η 2 (1 + νj · ν∗) |∇χj| dt+ C

∑
k/∈{i,j}

ˆ T

0

ˆ
η |∇χk| dt.
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Since 2 (1 + νj · ν∗) = |νj + ν∗|2 in particular (5.79) holds. Note that we symmetrized
the multi-phase excess (5.57) w.r.t. the two majority phases Ωi and Ωj which means we
added an extra (nonnegative) term.

Proof of Proposition 5.23. Step 1: Replacing ∇uε with ∂uφi(uε)⊗ ν∗.
Using the tilt-excess (5.77) and Young’s inequality we see∣∣∣∣ˆ T

0

ˆ
(ε(ξ · ∇)uε + ξ · ν∗∂uφi(uε)) · ∂tuε dx dt

∣∣∣∣
. ‖ξ‖∞

(
1

α
E iε(ν∗; η, uε) + α

ˆ T

0

ˆ
ηε|∂tuε|2 dx dt

)
.

(5.82)

By the energy-dissipation equality (5.22) the sequence ε|∂tuε|2 is bounded in L1 and
thus, along a subsequence, has a weak*-limit µ as Radon measures. In the limit we get,
applying Lemma 5.22 along the way,

lim sup
ε↓0

∣∣∣∣ˆ T

0

ˆ
(ε(ξ · ∇)uε + ξ · ν∗∂uφi(uε)) · ∂tuε dx dt

∣∣∣∣
. ‖ξ‖∞

(
1

α
E ij(ν∗; η, u) + αµ(η)

)
.

Step 2: Passing to the limit in the nonlinear term.
In the second term on the left-hand side of (5.82) we may now use the chain rule again
to see

−
ˆ T

0

ˆ
ξ · ν∗∂uφi(uε) · ∂tuε dx dt =−

ˆ T

0

ˆ
ξ · ν∗∂t (φi ◦ uε) dx dt

→ −
ˆ T

0

ˆ
ξ · ν∗∂t

(
φi ◦

∑
1≤k≤P

χkαk

)
dt.

Step 3: Rewriting the limit in terms of the interface between χi and χj.
We can rewrite this limit to read

−
ˆ T

0

ˆ
ξ · ν∗∂t

(
φi ◦

∑
1≤k≤P

χkαk

)
dt = −

ˆ T

0

ˆ
ξ · ν∗

∑
1≤k≤P

σik∂tχk

5.15
= −

ˆ T

0

ˆ
ξ · ν∗

∑
1≤k≤P

σikVk|∇χk| dt.

Thanks to the tilt-excess (5.78) we can now get rid of all terms except the j-th one: With
a little help from our friends Cauchy, Schwarz and Young we arrive at∣∣∣∣∣−

ˆ T

0

ˆ
ξ · ν∗

∑
1≤k≤P

σikVk|∇χk| dt+

ˆ T

0

ˆ
ξ · ν∗σijVj |∇χj| dt

∣∣∣∣∣
. ‖ξ‖∞

(
1

α
E ij(ν∗; η, u) + α

ˆ T

0

ˆ
η
∑

1≤k≤P

V 2
k |∇χk| dt

)
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for a smooth cut-off η for the support of ξ. Here, due to the L2-estimate Proposition
5.15, the right-hand side is an acceptable error term after redefining µ.

Hence we are left with a term only depending on the j-th phase which we can replace
with (minus) the according term for the i-th phase: Indeed, using

∑
k χk = 1 the error

in doing so is equal to

∣∣∣∣ˆ T

0

ˆ
ξ · ν∗σij (Vj |∇χj|+ Vi |∇χi|) dt

∣∣∣∣ =

∣∣∣∣∣∣
ˆ T

0

ˆ
ξ · ν∗σij∂t

1−
∑
k/∈{i,j}

χk

 dt

∣∣∣∣∣∣
.
ˆ T

0

ˆ
|ξ|

∑
k/∈{i,j}

|Vk| |∇χk| dt,

which by Young’s inequality is controlled by the same right-hand side as before.

Exploiting |ν∗ − νi| |Vi| . 1
α
|ν∗ − νi|2 + αV 2

i we now use the tilt-excess once again to
“un-freeze” the approximate normal ν∗ and eliminate other interfaces:∣∣∣∣ˆ T

0

ˆ
ξ · ν∗σijVi |∇χi| dt−

ˆ T

0

ˆ
ξ · νiσijVi

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) dt

∣∣∣∣
. ‖ξ‖∞

(
1

α
E ij(ν∗; η, u) + α

ˆ T

0

ˆ
η V 2

i |∇χi| dt
)
.

Retracing our steps we see that we arrived at the desired estimate.

We conclude this section with the proof of our main result.

Proof of Theorem 5.2. We found the limit u of the approximations uε in Proposition
5.12, verified the initial conditions in Lemma 5.14 and constructed the normal velocity
with the according L2-bounds in Proposition 5.15. We only have to prove the motion
law (5.11). Given a smooth test vector field ξ ∈ C∞0 ((0, T )× [0,Λ)d,Rd), by Lemma 5.8
we may multiply the Allen-Cahn Equation (5.1) by ε (ξ · ∇)uε and integrate w.r.t. space
and time:

ˆ T

0

ˆ
ε(ξ · ∇)uε · ∂tuε dx dt =

ˆ T

0

ˆ (
ε∆uε −

1

ε
∂uW (uε)

)
· (ξ · ∇)uε dx dt. (5.83)

By Proposition 5.19 the convergence of the energies (5.34) imply the convergence of the
first variations for a.e. t. Recall that by (5.63) and Lebesgue’s dominated convergence
the right-hand side of (5.83) converges:

lim
ε↓0

ˆ T

0

ˆ (
ε∆uε −

1

ε
∂uW (uε)

)
· (ξ · ∇)uε dx dt

=
∑
i,j

σij

ˆ T

0

ˆ
∇ξ : (Id− νi ⊗ νi)

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) dt.
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In order to prove the convergence of the left-hand side, we proceed similarly to [74].
We decompose ξ =

∑L
l=1

∑
B∈Br

ϕBψlξ with partitions of unity {ϕB}B underlying the
covering Br defined in (5.37) and {ψl}l underlying the uniform grid 0 = T1 < . . . < TL =
T . Using Proposition 5.23 with ϕBψlξ playing the role of ξ we obtain for any choice of
unit vectors ν∗B,l the estimate

lim sup
ε→0

∣∣∣∣∣
ˆ T

0

ˆ
ε(ξ · ∇)uε · ∂tuε dx dt

−
∑

1≤i,j≤P

σij

ˆ T

0

ˆ
Vi ξ · νi

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) dt

∣∣∣∣∣
. ‖ξ‖∞

(
1

α

(
L∑
l=1

∑
B∈Br

min
i,j

ˆ T

0

ˆ
ηB,l

∣∣νi − ν∗B,l∣∣2 |∇χi|+ ˆ ηB,l
∣∣νj + ν∗B,l

∣∣2 |∇χj|
+
∑
k/∈{i,j}

ˆ
ηB,l |∇χk| dt

)
+ α

ˆ T

0

ˆ L∑
l=1

∑
B∈Br

ηB,l dµ

)
,

where the cutoffs ηB,l have finite overlap. In particular, the last integrand is bounded.
Passing to the limit L → ∞ and using Lebesgue’s dominated convergence theorem for
the right-hand side we obtain

lim sup
ε→0

∣∣∣∣∣
ˆ T

0

ˆ
ε(ξ · ∇)uε · ∂tuε dx dt

−
∑

1≤i,j≤P

σij

ˆ T

0

ˆ
Vi ξ · νi

1

2
(|∇χi|+ |∇χj| − |∇(χi + χj)|) dt

∣∣∣∣∣
. ‖ξ‖∞

(
1

α

(ˆ T

0

∑
B∈Br

min
i,j

min
ν∗∈Sd−1

ˆ
ηB |νi − ν∗|2 |∇χi|+

ˆ
ηB |νj + ν∗|2 |∇χj|

+
∑
k/∈{i,j}

ˆ
ηB |∇χk| dt

)
+ αµ([0, T ]× [0,Λ)d)

)
,

where for a ball B the function ηB denotes a cutoff for B in 2B as in equation (5.36).
Using Lemma 5.17 we see that the first term vanishes as r → 0. Then taking α → 0 we
obtain the convergence of the velocity-term and thus verified the motion law (5.11).

5.4 Forces and volume constraints

The proofs in Section 5.2 and Section 5.3 stem from the a priori estimate (5.22) and the
convergence assumption (5.9). We mostly used the Allen-Cahn Equation (5.1) to prove
this a priori bound. Besides that we made use of it only at one other point, in the proof
of Theorem 5.2 in the form of (5.83) and the justification for testing the equation with
ε(ξ · ∇)uε.
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In this section we exploit this flexibility of our proof and apply it to the case when
external forces are present or when volume constraints are active, cf. Theorem 5.4 and
Theorem 5.5, respectively.

5.4.1 External forces

Since the forces fε in equation (5.14) come from an extra energy-term we do not expect
to have the same energy-dissipation equality as in the case above where fε ≡ 0. Indeed,
one can view (5.14) as the (again by the factor 1

ε
accelerated) L2-gradient flow of the

total energy

Eε(uε)−
ˆ
fε · u dx,

which is the sum of the “surface energy” Eε(uε) and the “bulk energy” −
´
fε · u dx.

Since the extra term is a compact perturbation in the static setting, these total energies
Γ-converge to

E(u)−
ˆ
f · u dx.

This energetic view-point seems also the most natural way to understand the scaling in
ε for the forces fε in equation (5.14). Under our assumption on the forces fε in Theorem
5.4 we can control this bulk energy and get an estimate on the “surface energy” Eε(uε)
and the dissipation, which is reminiscent of equality (5.22).

Lemma 5.24. Let uε solve the forced Allen-Cahn Equation (5.14). Then for ε � 1 we
have

Eε(uε(T )) +

ˆ T

0

ˆ
ε |∂tuε|2 dx dt

.
(
1 + eCεT

)(
1 + T + Eε(uε(0)) +

1

T
‖fε‖2

L2 + (1 + T )‖∂tfε‖2
L2

)
.

Here ε � 1 means that we assume ε ≤ 1
C

for some generic constant C. Note that the
exponential prefactor stays bounded as ε→ 0.

Proof of Lemma 5.24. We differentiate the energy Eε along the trajectory of t 7→ uε(t)
and integrate by parts

d

dt
Eε(uε) =

ˆ
ε∇uε : ∇∂tuε +

1

ε
∂uW (uε) · ∂tuε dx

=

ˆ
ε

(
−∆uε +

1

ε2
∂uW (uε)

)
· ∂tuε dx

(5.14)
= −

ˆ
ε|∂tuε|2 dx+

ˆ
fε · ∂tuε dx.

We integrate from 0 to T and obtain

Eε(uε(T )) +

ˆ T

0

ˆ
ε |∂tuε|2 dx dt = Eε(uε(0)) +

ˆ T

0

ˆ
fε · ∂tuε dx dt. (5.84)
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Now we want to integrate the right-hand side integral by parts. First note that by the
trace theorem for a.e. t we haveˆ

|fε(t)|2 dx .
1

T

ˆ T

0

ˆ
|fε|2 dx dt+ T

ˆ T

0

ˆ
|∂tfε|2 dx dt,

which we may assume w.l.o.g. for t = 0 and t = T so that by Young’s inequality∣∣∣∣ˆ T

0

ˆ
fε · ∂tuε dx dt

∣∣∣∣
≤
ˆ
|fε(T )| |uε(T )| dx+

ˆ
|fε(0)| |uε(0)| dx+

ˆ T

0

ˆ
|∂tfε| |uε| dx dt

.
ˆ
|uε(T )|2 dx+

ˆ
|uε(0)|2 dx+

ˆ T

0

ˆ
|uε|2 dx dt

+
1

T

ˆ T

0

ˆ
|fε|2 dx dt+ (1 + T )

ˆ T

0

ˆ
|∂tfε|2 dx dt.

By the coercivity assumption (5.3) on W at infinity we haveˆ
|uε|2 dx . 1 + εEε(uε).

Plugging these two observations into (5.84), for ε� 1 we can absorb the term εEε(uε(T ))
and obtain

Eε(uε(T )) +

ˆ T

0

ˆ
ε |∂tuε|2 dx dt .1 + T + Eε(uε(0)) + ε

ˆ T

0

Eε(uε) dt

+
1

T

ˆ T

0

ˆ
|fε|2 dx dt+ (1 + T )

ˆ T

0

ˆ
|∂tfε|2 dx dt

and a Grönwall argument yields the claim.

This estimate is indeed enough to apply our techniques to the case of (5.14).

Proof of Theorem 5.4. As noted in Remark 5.11, the a priori estimate, Lemma 5.24,
allows us to apply the statements in Section 5.2 so that in particular we can find a
convergent subsequence uε → u satisfying the initial conditions by Lemma 5.14, for
some u =

∑
i χiαi, and we can construct the normal velocities under the convergence

assumption (5.9). The bounds for fε allow us to extract a further subsequence such that
also the forces converge to some f ∈ H1((0, T )× [0,Λ)d;RN):

fε → f in L2 and ∇fε ⇀ ∇f in L2. (5.85)

If we formally differentiate the equation (5.14) and use ∇fε ∈ L2 we can show as in Step
2 of the proof of Lemma 5.8 that ∂i∂juε, ∂uW (uε) ∈ L2. Hence we are allowed to test the
equation for uε, here the forced Allen-Cahn Equation (5.14), with ε (ξ · ∇)uε to obtain

ˆ T

0

ˆ
ε(ξ ·∇)uε ·∂tuε dx dt =

ˆ T

0

ˆ (
ε∆uε −

1

ε
∂uW (uε)

)
·(ξ · ∇)uε+fε ·(ξ · ∇)uε dx dt.
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Integrating the last term by parts gives

ˆ T

0

ˆ
fε · (ξ · ∇)uε dx dt = −

ˆ T

0

ˆ
(∇ · ξ) fε · uε + (ξ · ∇) fε · uε dx dt.

Since uε → u =
∑

i χiαi in L2 and (5.85) we can pass to the limit ε→ 0 and obtain

−
ˆ T

0

ˆ
(∇ · ξ) f · u+ (ξ · ∇) f · u dx dt =

P∑
i=1

ˆ T

0

ˆ
(f · αi) (ξ · ∇)χi dt.

We can apply Proposition 5.19 to pass to the limit in the curvature-term. For the velocity-
term we may apply Proposition 5.23 and follow the lines of the proof of Theorem 5.2 for
the localization argument. We thus verified (5.15).

5.4.2 Volume constraints

Again, our starting point is an energy-dissipation estimate. As in the case of mean
curvature flow, the solution of the volume-preserving Allen-Cahn Equation (5.20) satisfies
the same energy-dissipation equation as the solution of the unconstrained Allen-Cahn
Equation (5.1).

Lemma 5.25. Let uε solve the volume-preserving Allen-Cahn Equation (5.20). Then

Eε(uε(T )) +

ˆ T

0

ˆ
ε |∂tuε|2 dx dt = Eε(uε(0)). (5.86)

Proof of Lemma 5.25. We follow the lines of the proof of Lemma 5.24 until (5.84) with
fε(x, t) replaced by λε(t). Since λε is independent of x for the second right-hand side
integral in (5.84) we have

ˆ T

0

ˆ
λε · ∂tuε dx dt =

ˆ T

0

λε ·
d

dt

ˆ
uε dx dt.

Developing the vector d
dt

´
uε dx in the basis {α1, . . . , αP−1, βP , . . . , βN}, see (5.17), and

using the orthogonality conditions λ · αi = λ · βj = 0, cf. (5.19), for i = P ′ + 1, . . . , P − 1
and j = P, . . . , N this is equal to

ˆ T

0

P ′∑
i=1

λε · αi
d

dt

ˆ
α∗i (uε) dx dt,

which vanishes identically by the constraint (5.18) and hence we obtain (5.86).

Proof of Theorem 5.5. Since we have the same energy-dissipation estimate, Lemma 5.25,
as in the unconstrained case, by Remark 5.11 we can apply the statements in Section 5.2
so that in particular we obtain a convergent subsequence uε → u as before and we can
construct the normal velocities under the convergence assumption (5.9).
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The Lagrange multiplier λε does not depend on the space variable x and hence the same
computation as in Step 2 in the proof of Lemma 5.8 yields ∂i∂juε, ∂uW (uε) ∈ L2. Thus
we may test our equation (5.20) with ε (ξ · ∇)uε to obtain

ˆ T

0

ˆ
ε(ξ · ∇)uε · ∂tuε dx dt

=

ˆ T

0

ˆ (
ε∆uε −

1

ε
∂uW (uε)

)
· (ξ · ∇)uε dx dt+

ˆ T

0

λε ·
ˆ

(∇ · ξ)uε dx dt.

We wish to pass to the limit in this weak formulation of (5.20).

By Proposition 5.19 we can pass to the limit in the first right-hand side term. Again,
with Proposition 5.23 and the localization argument in the proof of Theorem 5.2 we can
pass to the limit on the left-hand side. In order to pass to the limit in the second right-
hand side term we use Proposition 5.26 below, which provides control of λε in L2. After
passage to a further subsequence if necessary we have

λε ⇀ λ weakly in L2(0, T )

and since by Lemma 5.14ˆ
(∇ · ξ)uε dx→

ˆ
(∇ · ξ)u dx strongly in L2(0, T )

we can pass to the limit in the product. It is straightforward to see the volume preserva-
tion, cf. (5.96) below. This concludes the proof of the theorem.

Proposition 5.26 (Estimates on Lagrange multiplier). Let uε solve (5.20) and let λε be
the Lagrange multiplier given by (5.19). Then

lim sup
ε→0

ˆ T

0

|λε|2 dt . (1 + T ) (1 + E4
0),

where contrary to previous convention the constant C in the definition of . depends on
the initial volumes of the constrained phases as well.

Proof of Proposition 5.26. We extend the idea of the proof of Proposition 1.12 in [76]
to our case of multiple Lagrange multipliers. For some given smooth test vector field
ξ ∈ C∞0 ((0, T )× [0,Λ)d;Rd) we first multiply (5.20) by ε (ξ · ∇)uε, integrate in space and
take the square:(

λε ·
ˆ

(∇ · ξ)uε dx

)2

.

(ˆ (
ε∆uε −

1

ε
∂uW (uε)

)
· (ξ · ∇)uε dx

)2

+

(ˆ
ε(ξ · ∇)uε · ∂tuε dx

)2

.

With Cauchy-Schwarz we can estimate the second right-hand side term(ˆ
ε(ξ · ∇)uε · ∂tuε dx

)2

. ‖ξ‖2
∞

(
ε

ˆ
|∂tuε|2 dx

)
Eε(uε).
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For the first right-hand side term we use (5.63) to obtain(ˆ (
ε∆uε −

1

ε
∂uW (uε)

)
· (ξ · ∇)uε dx

)2

. ‖∇ξ‖2
∞Eε(uε)

2.

Since ∇ · ξ is orthogonal to constant functions we might subtract the average 〈uε〉 :=
−́ uε dx of uε on the left-hand side and obtain(

λε ·
ˆ

(∇ · ξ) (uε − 〈uε〉) dx

)2

. ‖∇ξ‖2
∞Eε(uε)

2 + ‖ξ‖2
∞

(
ε

ˆ
|∂tuε|2 dx

)
Eε(uε).

We integrate in time and apply the energy-dissipation estimate (5.86) on the right-hand
side:

ˆ T

0

(
λε ·
ˆ

(∇ · ξ) (uε − 〈uε〉) dx

)2

dt . sup
t
‖ξ‖2

W 1,∞ (1 + T )E2
0 . (5.87)

Loosely speaking to fix ideas, we want to find a test field ξ such that we can bound the
left-hand side from below by

´
|λε|2 dt while the right-hand side stays uniformly bounded.

However, we allow to preserve several volumes as opposed to [76] and thus we have to
use estimate (5.87) for several test fields ξ1, . . . , ξP ′ leading to

ˆ T

0

P ′∑
k=1

(
λε ·
ˆ

(∇ · ξk) (uε − 〈uε〉) dx

)2

dt .

(
P ′∑
k=1

sup
t
‖ξk‖2

W 1,∞

)
(1 + T )E2

0 . (5.88)

Now the left-hand side is the (time-integrated) squared norm of the image of the vector
λε ∈ Z under the matrix Mε given by the inner integral. Here, Z denotes the P ′-
dimensional subspace of the state space RN given by

Z := span{α1, . . . , αP−1} ∩ {αP ′+1, . . . , αP−1}⊥. (5.89)

Therefore, the task is to find suitable test fields ξk and to prove “uniform invertibility”
in time of Mε restricted to Z to get

P ′∑
k=1

(
λ · −
ˆ

(∇ · ξk) (uε − 〈uε〉) dx

)2

& |λ|2 for any λ ∈ Z, and (5.90)

‖ξk‖W 1,∞ . 1 + E0 for all k = 1, . . . , P ′ (5.91)

for sufficiently small ε > 0, which in view of (5.88) clearly implies the statement of the
proposition.

In order to find suitable test fields ξk we convolve the limit χ in space with a standard mol-
lifier ϕδ(x) = 1

δd
ϕ(x

δ
) on scale δ > 0 (to be chosen later). Then we let vk( · , t) : [0,Λ)d → R

for t ∈ (0, T ) denote the periodic solution of

∆vk = ϕδ ∗ (χk − 〈χk〉) . (5.92)
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Note that since the right-hand side has vanishing integral, this problem is well-posed up
to the addition of constants. We set ξk := ∇vk and first check estimate (5.90) using the
uniform compactness properties of uε. Afterwards, we show that the upper bound (5.91)
follows from basic elliptic estimates.

Step 1: Argument for the lower bound (5.90).
By Lemma 5.14 we have uε → u in C

(
[0, T ];L2

(
[0,Λ)d;RN

))
as ε→ 0. Thus we get

lim
ε→0
−
ˆ

(∇ · ξk) (uε − 〈uε〉) dx =−
ˆ

(ϕδ ∗ χk − 〈χk〉) (u− 〈u〉) dx (5.93)

uniformly in t. With help of the energy (5.7) we can get rid of the convolution on scale
δ uniformly in time as well:∣∣∣∣ˆ (ϕδ ∗ χk − χk) (u− 〈u〉) dx

∣∣∣∣ . ˆ |ϕδ ∗ χk − χk| dx ≤ δ

ˆ
|∇χk| . δ E(χ) ≤ δ E0.

(5.94)

In particular, we only have to prove (5.90) with ε = 0 and δ = 0 in (5.92), namely

P ′∑
k=1

(
λ · −
ˆ

(χk − 〈χk〉) (u− 〈u〉) dx

)2

& |λ|2 for any λ ∈ Z. (5.95)

Indeed, then (5.90) follows from the triangle inequality and (5.93)–(5.95) with the choice
δ := 1

CE0
, where the constant C <∞ only depends on the constants hidden in . and &

in (5.94) and (5.95), respectively.

To prove (5.95) we express λ in a “nice” basis {e1, . . . , eP ′} of Z such that ei ·αj = δij and
ei ·βk = 0 for i = 1, . . . , P ′, j = 1, . . . , P −1 and k = P, . . . , N . This can be done by using
the canonical isomorphism J : RN → (RN)∗, Ju := (v 7→ u · v) and setting ei := J−1α∗i .
We may now interpret the left-hand side of (5.95) as |Mλ|2 for the matrix

Mkl := el · −
ˆ

(χk − 〈χk〉) (u− 〈u〉) dx.

Since u =
∑P

i=1 χiαi we can compute the involved integrals

−
ˆ

(χk − 〈χk〉) (u− 〈u〉) dx

= −
ˆ

(χk − 〈χk〉)2 dxαk +
∑

1≤i≤P−1,i 6=k

−
ˆ

(χk − 〈χk〉) (χi − 〈χi〉) dxαi.

We note that the strong convergence uε → u in C2((0, T );L2([0,Λ)d)) in Lemma 5.14
implies

ˆ
χi dx =

ˆ
α∗i (u) dx = lim

ε→0

ˆ
α∗i (uε) dx

(5.18)
= const. for i = 1, . . . , P ′. (5.96)
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With the short-hand notation θi := 〈χi〉 ≡ 〈χ0
i 〉 for these constant volume fractions,

i = 1, . . . , P ′, and using the facts χiχk = 0 for i 6= k, χi ∈ {0, 1} a.e. we obtain

Mkl =el ·
( (
θk − θ2

k

)
αk −

∑
1≤i≤P ′,i 6=k

θiθkαi

)
= el ·

(
θkαk −

∑
1≤i≤P ′

θiθkαi

)
= δklθk − θlθk,

i.e., we have M = diag(θ) − θ ⊗ θ. In particular, the matrix M only depends on the
initial conditions through the volume fractions θi of the constrained phases and thus we
only have to check that M is invertible to get the estimate (5.95).

First, we note that on the space {θ}⊥ the matrix M has full rank: For λ with λ · θ = 0
we have

λ ·Mλ = λ · diag(θ)λ =
P ′∑
i=1

θi|λi|2
(5.16)

& |λ|2.

Now we only need to check that Mθ /∈ Im M
∣∣
θ⊥

= {a ∈ RP ′ : a · diag(θ)−1θ = 0}:

Mθ · diag(θ)−1θ = θT
(
Id− θ ⊗ diag(θ)−1θ

)
θ = |θ|2

(
1−

P ′∑
i=1

θi

) (5.16)
> 0.

Step 2: Argument for the estimate (5.91).
The upper bound (5.91) follows from basic elliptic regularity theory. We fix some expo-
nent q = q(d) > d, omit the index k and write χδ := ϕδ ∗χ for notational simplicity. The
Calderón-Zygmund inequality yields

ˆ
|∇ξ|q dx .

ˆ
|χδ − 〈χδ〉|q dx . 1.

Since the right-hand side is smooth, we can differentiate the equation (5.92) for v to get

∆ξ = ∇χδ

and we obtain again by Calderón-Zygmund(ˆ ∣∣∇2ξ
∣∣q dx

) 1
q

.

(ˆ
|∇χδ|q dx

) 1
q

.
ˆ
|∇ϕδ| dx .

1

δ
.

Since 〈ξ〉 = 0 we thus have by Poincaré’s inequality ‖ξ‖W 2,q . 1
δ

and since q > d Morrey’s
inequality yields

‖ξ‖W 1,∞ . 1 +
1

δ
∼ 1 + E0

by the choice δ = 1
CE0

, which is precisely our claim (5.91).
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