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Abstract

Palladium and palladium-rich compounds are well known to take up hydrogen and form interstitial

hydrides. Hydrogen is preferred to occupy [Pd6] octahedral voids in binary MPd3 (M : metal atom)

compounds which show often a rearrangement from one superstructure of the cubic closed packing

(ccp) to another. A possible hydride formation and the incorporated hydrogen amount is a�ected by

electronic and geometric aspects of the metal atom M. Main group elements with an electronegativ-

ity similar to and an atomic radius greater than palladium promote hydride formation. Therefore,

SnPd3H0.14, PbPd3H0.13 and BiPd3H0.2 absorb less hydrogen than for example the known TlPd3H. In

situ methods, like neutron powder di�raction, thermal analysis and hydrogen sorption experiments,

enable us to follow these solid-gas reactions. The hydrogen position and its occupation can be de-

termined during the whole hydrogenation process based in situ neutron powder di�raction data. In

addition, intermediates that are invisible to ex situ methods are characterized. During the hydrogena-

tion of MgPd3, �rstly [Pd6] and [MgPd5] and then [Mg2Pd4] octahedral sites are occupied by hydrogen.

A hydrogen induced rearrangement from double hexagonal closed packing (dhcp) to ccp is observed

during the hydrogenation of BiPd3. A neglible hydrogen amount is su�cient for the direct change of

structures without intermediates. Similarly, MgPd2 shows a considerable volume expansion with only

low occupied interstices during �rst-time hydrogenation. MgPd2 is the only Co2Si-type palladium-rich

compound which takes up hydrogen. MgPd2H releases hydrogen at hydrogen pressure and increas-

ing temperatures forming MgPd2H0.2 before the decomposition to cubic MgPd3Hx and MgH2 takes

place. The reaction enthalpy for the hydride formation of MgPd2H0.9 is -37.3 kJ (mol H2)-1 resulting

in hydrogenations at mild conditions.

Further palladium-containing compounds were synthesized and investigated regarding their hydro-

genation properties. However, the binary Pd2Zn, PdCd, PdHg, Pd2Sn, Pd13Pb9, Pd5Pb3, Pd3As,

PdSb, Pd5Sb2, Pd8Sb3, Pd20Sb7, Pd5Bi2, Pd17Se15 and Pd4Se as well as the ternary compounds

Pd5CdSe, Pd5HgSe, Pd5CdAs, Pd5InAs, Pd5TlAs, Pd5InP and Pd3Bi2Se2 do not absorb a signi�-

cant amount of hydrogen. The increase in valence electron concentration (VEC ) by the insertion of

electron-rich semimetals in palladium-rich compounds hinders a hydrogenation of them. In addition,

their structures include often voids with an ordered distribution. Pd5InSe as precursor shows a hy-

drogen uptake. At high temperatures it decomposes to palladium selenides and InPd3, the latter is

subsequently hydrogenated. Pd11Bi2Se2 is related to W type and also does not show a reaction with

hydrogen. Therefore, this compound attracts interests in catalysis. Pd11Bi2Se2 as catalyst material

shows a high selectivity to ethylene in the semi-hydrogenation of acetylene with a small conversion.

Besides palladium-rich compounds, the Laves phase CaRh2 takes up hydrogen and forms cubic

α-CaRh2H0.05 and orthorhombic β-CaRh2H3.9. γ-CaRh2H3.2 is formed during the dehydrogenation.

The Laves phase hydrides are intermediates during the kinetically controlled decompostion into the

perovskite-type hydride CaRhH3 and rhodium with a small crystallite size. CaRhH3 is not accessible

through direct synthesis of rhodium and calcium hydride.

These results shed light into the hydrogenation processess of palladium-rich and calcium-rhodium

compounds and show the potential of in situ studies. The abscense of hydride formation in electron-

richer compounds shows the possibility for application in hydrogenation catalysis.
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Zusammenfassung

Palladium und palladiumreiche Verbindungen sind dafür bekannt, dass sie Wassersto� aufnehmen

und interstitielle Hydride bilden. Wassersto� besetzt bevorzugt [Pd6]-Oktaederlücken in MPd3-

Verbindungen (M : Metall), die häu�g von einer Überstruktur der kubisch dichtesten Packung (ccp) in

eine andere umgelagert werden. Eine mögliche Hydridbildung und der eingelagerte Wassersto�gehalt

werden durch elektronische und geometrische Aspekte des Metals M beein�usst. Hauptgruppenele-

mente mit einer ähnlichen Elektronegativität und einem gröÿerem Atomradius als Palladium fördern

eine Hydridbildung. SnPd3H0.14, PbPd3H0.13 und BiPd3H0.2 absorbieren deshalb weniger Wassersto�

als zum Beispiel das bekannte TlPd3H. In situ-Methoden, wie Neutronenpulverbeugung, thermis-

che Analyse und Wassersto�sorptionsexperimente, ermöglichen es, solche Feststo�-Gas-Reaktionen

zu untersuchen. Die Wassersto�position und dessen Besetzung kann während des gesamten Hy-

drierungsprozesses basierend auf in situ-Neutronenpulverbeugungsdaten bestimmt werden. Zusät-

zlich können Intermediate, die für ex situ-Methoden nicht detektierbar sind, charkterisiert werden.

Während der Hydrierung von MgPd3 werden zuerst [Pd6]- und [MgPd5]- und erst dann [Mg2Pd4]-

Oktaederlücken von Wassersto� besetzt. Bei der Hydrierung von BiPd3 �ndet eine wassersto�nd-

uzierte Umlagerung von der doppelt-hexagonalen-dichtesten Packung (dhcp) zur kubisch-dichtesten

Packung statt. Ein sehr geringer Wassersto�gehalt reicht dabei aus, um die direkte Veränderung der

Strukturen zu ermöglichen, ohne Intermediate zu bilden. Ähnlich dazu ist MgPd2, das trotz geringer

Wassersto�besetzung eine beachtliche Volumenzunahme während der ersten Hydrierung zeigt. MgPd2
ist das einzige der im Co2Si-Typ kristallisierenden palladiumreichen Verbindungen, das Wassersto�

aufnimmt. Unter Wassersto�druck bei steigenden Temperaturen gibt MgPd2H Wassersto� ab und

bildet MgPd2H0.2, bevor es sich zum kubischen MgPd3Hx und MgH2 zersetzt. Die Reaktionsenthalpie

für die Hydridbildung beträgt -37.3 kJ (mol H2)-1, das in einer Hydrierung unter milden Bedigungen

resultiert.

Weitere palladiumenthaltene Verbindungen wurden synthetisiert und auf deren Hydriereigenschaften

getested. Die binären Verbindungen Pd2Zn, PdCd, PdHg, Pd2Sn, Pd13Pb9, Pd5Pb3, Pd3As, PdSb,

Pd5Sb2, Pd8Sb3, Pd20Sb7, Pd5Bi2, Pd17Se15 und Pd4Se sowie die tenären Verbindungen Pd5CdSe,

Pd5HgSe, Pd5CdAs, Pd5InAs, Pd5TlAs, Pd5InP and Pd3Bi2Se2 zeigen jedoch keine signi�kante

Wassersto�absorption. Die Erhöhung der Valenzelektronenkonzentration (VEC ) durch Einbringen

von elektronenreichen Halbmetallen in palladiumreiche Verbindungen hemmt eine Wassersto�auf-

nahme. Zusätlich enthalten deren Strukturen häu�g Lücken mit geordneter Verteilung. Pd5InSe als

Vorläuferverbindung zeigt eine Wassersto�aufnahme. Es zersetzt sich bei hohen Temperaturen zu

Palladiumseleniden und InPd3, das anschlieÿend hydriert wird. Pd11Bi2Se2 ist mit dem W-Typ ver-

wandt und nimmt keinen Wassersto� auf. Deshalb ist diese Verbindung interessant für die Katalyse.

Pd11Bi2Se2 als Katalysatormaterial zeigt bei der Semihydrierung von Acetylen eine hohe Selektivität

zu Ethylen, bei einem geringem Umsatz.

Neben den palladiumreichen Hydriden, nimmt auch die Laves-Phase CaRh2 Wassersto� auf und

bildet kubisches α-CaRh2H0.05 und orthorhombisches β-CaRh2H3.9. Während der Dehydrierung wird

γ-CaRh2H3.2 gebildet. Die Laves-Phasen-Hydride sind Zwischenprodukte bei der kinetisch gesteuerten

Zersetzung zu dem Perowskit-Typ-Hydrid CaRhH3 und Rhodium mit sehr kleiner Kristallitgröÿe.

CaRhH3 ist nicht über die Direktsynthese von Rhodium und Calciumhydrid zugänglich.

Diese Ergebnisse beleuchten Hydrierungprozesse von palladiumreichen und Calcium-Rhodium-Ver-

bindungen und zeigen das Potential von in situ-Studien. Elektronenreichere Verbindungen, die keine

Hydride bilden, zeigen die Möglichkeit als Anwendung in der katalytischen Hydrierung.
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Part I.

Overview

10



This work is a publication based thesis. This �rst part gives an overview of intermetallic and palladium-

rich compounds and an introduction to metal hydrides. Furthermore, used methods and materials are

described and results within the publications are summarized and discussed.

The second part includes all publications within this thesis, beginning with a review about palladium

and palladium-rich hydrides [1] followed by articles about the in situ neutron powder di�raction

method including the hydrogenation of MgPd3 [2] and further in situ studies of BiPd3 [3] and MgPd2
[4]. This is followed by publications of the hydrogenation properties of binary and ternary palladium-

rich compounds [5], [6] and in particular Pd11Bi2Se2 [7]. At the end of this part, an article describing

the access to the perovskite CaRhH3 via hydrogenation of the Laves phase CaRh2 [8] is presented.

The third part contains further, not yet published results within this thesis as hydrogen sorption

experiments of MgPd2, calculations and neutron powder di�raction ofMPd3 compounds and catalytic

experiments of Pd11Bi2Se2.
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1. Introduction

In 1766 Henry Cavendish was the �rst who investigated properties of hydrogen and found out that

�only three metallic substances, namely, zinc, iron and tin [...] generate in�ammable air [(hydrogen),

note from the autor] by solution in acids; and those only by solution in the diluted vitriolic acid

[(sulphuric acid), note from the autor], or spirit of salt [(hydrochloric acid), note from the autor]�

(Henry Cavendish in [9], p. 144). Hydrogen is known to be the most abundant chemical element

in the universe. Hydrogen is known to be in the liquid or solid state at low temperatures, however,

diverse calculations predict transitions from molecular hydrogen to metallic hydrogen under high

pressures [10�13]. It was discovered that this metallic hydrogen might be a component of the planets

Jupiter and Saturn [14, 15]. Ranga Dias and Isaac Silvera reported recently that they have

observed metallic hydrogen in laboratory [16] which is highly controversial [17].

From another point of view compounds of metals like palladium and solved hydrogen will behave

metallic. Thomas Graham discovered in 1866 that �palladium has taken up a large volume of

[hydrogen, note from the autor] gas [...] 1 vol. palladium held 526 vols. hydrogen� (Thomas Graham

in [18], p. 426). After this discovery further hydrogen containing compounds, designated as hydrides,

have been studied and palladium as catalyst became also of growing interest. In 2010 Richard F.

Heck, Ei-ichi Negishi and Akira Suzuki were even awarded with the Nobel Prize in Chemistry

for their work on �Palladium-catalyzed Cross Coupling in Organic Synthesis� [19].

However, the research of new materials with useful properties for application represent a di�cult

challenge in solid state chemistry. Three di�erent strategies can be a solution approach for solid state

research. The easiest way are so-called �shake and bake�, �stone baking� or hard chemistry. Solid

substances are thermally treated to create new compounds or structures. Solid state chemistry was

based on this method up to the middle of the 20th century. Another strategy for new, and also

metastable materials is �chimie douce� (soft chemistry) that describes reactions under mild conditions

[20] to make kinetic stabilized materials accessible. Some known representatives are synthesis by sol-

gel processes [21,22] or topotactic reactions to modify precursor materials and retain structural motifs

[23, 24]. The way to get new functional materials is similar for both, synthesis at high temperatures

and soft chemistry. New compounds are synthesized and afterwards their structures characterized to

optimize the reaction conditions. Thus, the synthesis is systematically improved with the goal to get

phase pure compounds within this process. The third strategy is linked to another part of the process.

By unraveling reactions pathways with in situ methods, intermediates can be investigated that are

not stable at ambient conditions. Furthermore, the gained knowledge about the reaction pathway can

also be used for synthesis improvements.

In this work all three strategies are taken into account to form palladium-rich intermetallic com-

pounds and hydrides of noble metals with metallic to covalent bonding behavior.

1.1. Intermetallics and palladium-rich compounds

Chemical compounds containing only metals, which could have a phase width and crystallize mainly

in ordered structures that are di�erent from the metal structures, are referred to as intermetallic com-

pounds (intermetallics) in this work. The importance of intermetallic compounds has been recognized

12



1.1. Intermetallics and palladium-rich compounds

since the Bronze Age about 4000 years ago. It was found that bronze is harder and melts at lower

temperatures compared to cupper. A high tin bronze (20-50 wt-% tin) mirror that was made in the

Han dynasty about the �rst years before Christ [25] is a still preserved example. Nowadays, inter-

metallics are important for application like magnets (e. g. SmCo5 [26�28]), turbines (high temperature

and �re as well as oxidation resistant materials, e. g. TiAl [29]) and metal hydride batteries (e. g.

LaNi5 [30, 31]). Some platinum containing intermetallics are used in catalysis, e. g. for fuel cells ap-

plications [32]. Additional, intermetallic palladium-rich compounds are also interesting for catalysis,

e. g. PbPd3 for direct synthesis of methyl methacrylate from methacrolein, methanol and oxygen [33].

In the following, palladium-rich intermetallics or compounds are understood as compounds containing
2/3 or more palladium which results in MPd≥2 in the case of binary compounds. Main group element

representatives of them are shown in Table 1.1.1. In the case of MPd3 compounds, IUPACs rule for

nomenclature is not apllied in this work. Instead, MPd3 compounds are named in the same order as

their structure types, e. g., AuCu3 type or ZrAl3 type.

Most of these compounds are available through high temperatures and long annealing times (hard

chemistry). However, soft chemistry is also of importance to get ordered metastable compounds,

e. g. MgPd2 [45] and AlPd5 [48] by iodine catalyzed synthesis. Typically, small amounts of iodine

are added to solid state reaction mixtures. Iodine lowers the activation barrier of the reaction of

metals with palladium by forming gasous metal iodides resulting in lower reaction temperatures and

annealing time. In some cases, the iodine catalyzed method is a transport reaction through formed

Table 1.1.1.: Overview of known ordered binary palladium-rich (de�nition see text above) compounds

with main group elements of stoichiometric compositions.

period group 1 group 2 group 13 group 14 group 15 group 16

2 LiPd2 [34],

LiPd7 [35]

BePd2 [36],

BePd3 [36]

Pd2B [37],

Pd5B2 [38],

Pd3B [39],

Pd5B [40],

Pd16B3 [41],

Pd6B [42]

Pd2N [43] Pd2O [44]

3 MgPd2 [45],

MgPd3

[45, 46]

Pd2Al [47],

Pd3Al [48],

Pd5Al [48]

Pd2Si [49],

Pd3Si [50],

Pd9Si2 [51]

Pd7P3 [52],

Pd3P [53],

Pd6P [54],

Pd15P2 [55]

Pd16S7 [56],

Pd3S [57],

Pd4S [58]

4 CaPd2 [59],

CaPd5 [60]

Pd2Ga [61],

Pd7Ga3 [61],

Pd5Ga2 [62],

Pd13Ga5 [63]

Pd2Ge [64],

Pd21Ge8 [65],

Pd25Ge9 [66],

Pd5Ge [67]

Pd2As

[68,69],

Pd5As2 [70],

Pd3As

paper,

Pd5As [71]

Pd34Se11

[72],

Pd7Se2 [72],

Pd4Se [58]

5 SrPd2 [59],

SrPd5 [73]

Pd2In [74],

InPd3 [75,76]

Pd2Sn [77],

SnPd3 [78]

Pd2Sb [69],

Pd5Sb2 [79],

Pd8Sb3

[80, 81],

Pd20Sb7 [82]

Pd9Te4 [83],

Pd5Te2 [84],

Pd8Te3 [84],

Pd20Te7 [82],

Pd13Te3 [85]

6 BaPd2 [59],

BaPd5 [86]

Pd2Tl [87],

TlPd3 [88,89]

PbPd3 [78] Pd5Bi2 [90],

Pd8Bi3 [90],

BiPd3 [87]
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1. Introduction

gaseous complexes [91,92]. Further incidental bene�ts of this method are phase purity or single crystal

growing [48,61,93]. Additional soft chemistry methods, which play no role in this work, are syntheses

from organometallic compounds to get new intermetallics with nano-sized particles by wet chemical

or electrochemical methods [94], e. g. the formation of nanoscale BiPd3 [95].

Palladium-rich intermetallics mainly show metallic behavior and the electronic states below the

Fermi level are often dominated by Pd-d states [96, 97]). Multi centered metal-metal bonds were

calculated, e. g. in InPd3 [98], and charge transfer from metal to palladium is not unusual in these

systems [96�98]. Paramagnetic to negligible paramagnetic behavior is usually observed for palladium-

rich intermetallics [99, 100] as well as palladium itself. Another property of some palladium-rich

intermetallics that is essential for this work, is their hydrogenation behavior. New or known palladium-

rich compounds, which are possible candidates for hydride formation or catalysts for hydrogenation

reactions, were investigated for this thesis.

1.2. Hydrogen and hydrides

Hydrogen occurs at ambient conditions as the diatomic molecule H2 in gaseous state. Special proper-

ties of hydrogen are its high di�usivity (D12 = 0.668 cm2 s-1 in air at ambient conditions [101]), high

thermal conductivity (κ = 0.1844 W m-1 K-1 at 300 K [102]) and small density (ρ = 0.08988 g l-1 [103]).

A considerable gravimetric energy density attracts hydrogen as application for energy storage e. g.

in pressure tanks [104]. Hydrogen has a medium electronegativity (χ = 2.2 after Allred and Ro-

chow [105]) and, therefore, is well known either as reducing or oxidizing agent. The more commonly

used reductive properties of hydrogen are applied for hydrogenation reactions in organic chemistry,

e. g. hydrogenation of alkenes or alkynes [106,107], as well as for synthesis of pure metals from oxides,

e. g., nickel from NiO [108, 109] or iron from Fe2O3 [110]. Furthermore, hydrogen can also be used

to form intermetallics by reducing base metals oxides in a coupled reaction with noble metals like

platinum [111].

More interesting for this work is the oxidative character of hydrogen to form metal hydrides. They

are typically prepared by solid gas reactions of hydrogen with a less electronegative metal or inter-

metallic compound. In rare cases solution methods for hydride synthesis are used, e. g. CuHx from

cupper sulfate and hypophosphorous acid in aqueous solution [112]. Metal hydrides can roughly be

ordered by their bonding situations in the range of ionic via covalent to metallic. Therefore, hydrogen

takes an oxidation state between -1 and 0. The series of the hydrides of europium with increasing

amount of palladium are a textbook example for the di�erent bonding situations [113]. The range of

ionic towards covalent to metallic hydrogen bonds are observed in the sequence EuH2 - Eu2PdH4 -

EuPdH3 - EuPd2Hx - PdHy (Fig. 1.2.1) and, thus, the composition changes from stoichiometric to

nonstoichiometric [113]. The reported hydrides in this work are located in the area between metallic

and covalent bonding characters.

1.2.1. Interstitial hydrides

Interstitial hydrides are compounds with hydrogen incorporated typically in tetrahedral or octahedral

voids and mainly metallic bonding character. Palladium hydride was the �rst known representative.

As mentioned in the beginning of Chapter 1, the hydrogen uptake of palladium was �rstly reported

by Thomas Graham in 1866 [18]. Since then palladium hydride was investigated regarding its phase

diagram [114], di�usion of hydrogen [115], superconductivity [116], magnetism [117], isotope e�ects

of hydrogen [114, 118], electronic structure [119] and applications [19, 120]. PdHx crystallizes in a

defect NaCl type structure [121] with a miscibility gap (hydrogen occupation of 0.02 to 0.6 at room

14



1.2. Hydrogen and hydrides

Figure 1.2.1.: Crystal structures of the hydrides in the system Eu-Pd, hydrogen bonding behavior

ranges from ionic (left) to metallic (right) [113]. Only one representative H-site of the

Laves-phase hydride EuPd2Hx is shown.

temperature) resulting in an α-phase and a β-phase di�ering only by their hydrogen amount [114].

A large quantity of known palladium-rich disordered compounds form hydrides. The solubility of a

metal in palladium can be quite negligible as in LixPd1-x (x ≤ 0.04) or up to complete solid solutions

as for all eight metals surrounding palladium in the periodic table of the elements and iron [122].

It should be noted that with increasing unit cell volume, Pd1-xM x dissolves more hydrogen in the

α-phase than palladium [114]. However, only rhodium as minor metal enables a higher dissolvability

of hydrogen in the β-phase [123] compared to palladium.

Moreover, ordered palladium-rich intermetallic compounds are forming hydrides as well for example

the Laves phases hydrides SrPd2H [124] and EuPd2Hx (x = 0.1, 1.5, 2.1) [113]. There is no intermetallic

precursor compound available for CaPd3Hx crystallizing in �lled TiNi3 type [125]. Further MPd3
(M = Mg [46,126], In [127], Tl [88], Y [128], Mn [129], Ce [130]) compounds are forming hydrides that

are related to the cubic closed packing (ccp). A rearrangement from one to another superstructure

of ccp is often observed in these systems. Hydrogen occupies preferably [Pd6] octahedral voids. The

number of [Pd6] voids increases in the series TiAl3 type - ZrAl3 type - AuCu3 type from 0 to 1

per formula unit that might be the driving force [131], e. g., for the rearrangement of InPd3 from

TiAl3 or ZrAl3 type to AuCu3 type during hydrogenation [75]. On the one hand, InPd3 [127] and

TlPd3 [88] form hydrides and, on the other hand, for aluminum or gallium no hydrides were found,

yet [76]. The size of the metal M seems to have a strongly in�uence on hydride formation, but why

are no palladium-rich hydrides with the contiguous metals like lead, tin or bismuth reported? To shed

more light on the phenomena of hydrogenation of palladium-rich intermetallics, additional compounds

were investigated regarding their hydrogenation properties within this thesis. A more comprehensive

overview of the behaviors and properties of palladium hydride and palladium-rich disordered and

ordered hydrides as stated above is given in the review in Chapter 8, [1].

1.2.2. Covalent and complex hydrides

Late main group elements with an electronegativity similar to hydrogen tends to form covalent hy-

drides, e. g., solid alane (AlH3 crystallizing in FeF3 type [132]) and gaseous stannane (SnH4). A

special kind of covalent hydrides are complex hydrides with hydrogen ligands bound covalently to a

transition metal which is stabilized by a less electronegative metal as cation. Ternary compounds

typically consists of mono- or bivalent cations An+, and a hydrido complex [T yHz]nx- that takes up

n valence electrons per cation resulting in the general formula AxT yHz. A common structure type of

these complex hydrides is the K2PtCl6 type. The transition metal is coordinated octahedrally by six

hydrogen atoms forming hydrido complexes, e. g., [FeIIH6]4- [133,134] or [PtIVH6]2- [135]. Complexes
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1. Introduction

of rhodium as transition metal crystallize either in Na3RhH6 type containing [RhIIIH6]3- hydrido com-

plexes [135, 136] or in defect K2PtCl6 type containing [RhIH6·5/6]4- units their anion site is occupied

by only 5/6 with hydrogen. [137,138].

The transition from covalent to metallic hydrides is smooth as well as to ionic hydrides. Therefore,

compounds exsist which can not be classi�ed either one or the other. As an example, Li3RhH4 is

no typical 16 valence electron complex, because weak Rh-Rh bonds (d = 3.865 Å) between square

planar [RhH4]3- units were observed [139]. MgRhH1-x, as another example, also contains weak Rh-Rh

interactions (d = 2.980 Å) between tetrameric [Rh4H4] units with strong Rh-H bonds (d = 1.708 Å)

[140, 141]. The hypothetical higher homologue CaRhH was attempted to be calculated by density

functional theory (DFT) methods, however, no convergence within the model of MgRhH was achieved

[141]. Despite that, the question arises, whether a hydride of the compostion CaRhHx exsist and how

it is accessible.

1.2.3. Ionic hydrides

Ionic bonds are formed in salt-like alkaline or alkaline earth hydrides, though, the ionic character

decreases in series from barium to beryllium hydride. The ionic hydrogen radii of ionic hydrides

depend strongly on the polarizing e�ect of the metal cation, they increase with number of period e.

g. from LiH to CsH [142].

The bonding character in lanthanide hydrides depends on the composition that changes with pres-

sure and temperature [143]. The hydrides undergo a transition from LnH2 (Ln3+(H-)2e-) to LnH3

and show covalent-metallic behaviors. In contrast, the exceptions YbH2 and EuH2 are primary

ionic [142, 144, 145]. These hydrides scarcely play a role for this work, but they are listed for com-

pleteness.
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2. Methods and Materials

This chapter deals with synthesis and characterization by determination of crystal structures as well

as physical properties of the investigated compounds. Besides the descriptions of used methods and

devices, their limitations are presented in some cases.

2.1. Synthesis

The palladium-rich compounds were synthesized from elements in sealed quartz glass ampules (about

100 mm length, 10 mm inside diameter and 0.5 mm wall thickness) under vacuum or argon atmosphere.

Elements that are not stable in air were weighed in an argon �lled glove box. The reaction mixtures

were typically melted and annealed subsequently for a long time at temperatures just below melting

points. The more similar the elements in electronegativity and radii compared to palladium the more

annealing time is required for ordering. To reduce this annealing time and to increase the reactivity

of the mixtures, a few crystals of iodine were added as mineralizing agent. During vacuum application

or just before sealing the ampules with oxy-hydrogen �ame, the sublimation of iodine was prevented

by cooling the lower end of the ampules with liquid nitrogen. Mixtures containing elements that react

with quartz glass, e. g. alkaline earth metals, were placed inside a niobium tube closed on one side

and welded under reduced pressure argon atmosphere.

For ex situ hydrogenation experiments the intermetallic compounds were placed inside of Inconel

(Böhler L718, nickel chromium alloy) crucibles and transferred into an autoclave made from the same

alloy. The autoclaves were �ushed several times with hydrogen or deuterium gas and the required

starting pressures (0.1 MPa ≤ p ≤ 30 MPa) of hydrogen or deuterium were adjusted. The autoclaves

were placed inside a vertical tube furnaces and heated up to 823 K.

2.2. Elemental analysis

The purity of samples was checked by chemical analysis with energy dispersive X-ray spectroscopy

(EDX) performed by an EDX INCA SYSTEM from Oxford Instruments mounted on a Zeiss LEO

1530 scanning electron microscope (SEM) with a working distance of 15 mm. A few particles of the

samples were sprinkled on conductive carbon adhesive tabs (PLANO) and vaporized with carbon

to improve the conductivity on the surface. The samples were placed in the sample chamber and

subsequently vacuum was applied. Electrons of the tungsten hot cathode are accelerated with an

acceleration voltage of 20 kV and focused with electromagnetic lenses on the sample surface. Ions in

energetically excited states are formed by ejecting electrons from the inner shell during the interaction

with the accelerated focused electrons. Thereby generated `holes' are �lled by electrons from outer

shells resulting in emitted X-ray quanta. Consequently characteristic X-ray spectra and integration

of the intensity of emission lines enable a quantitative chemical analysis with about 5 % uncertainty.

This method is suitable for the determination of compositions of samples containing elements with

greater atomic numbers (Z ≥ 11) like the synthesized intermetallic compounds within this thesis.

However, hydrogen or deuterium can not be detected with this method.
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2. Methods and Materials

Table 2.2.1.: Hydrogen content of hydrides within this thesis and di�culties regarding gas-hot extrac-

tion elemental analysis

compound theoretical hydrogen content di�culties

MgPd2H 0.42 weight-% release hydrogen at ambient conditions

MgPd3H 0.29 weight-%

SnPd3H0.1 0.023 weight-%

PbPd3H0.13 0.025 weight-%

BiPd3H0.19 0.036 weight-%

CaRh2H3.9 1.574 weight-% release hydrogen at ambient conditions

CaRhH3 + Rh 1.215 weight-% release hydrogen at ambient conditions

For the determination of hydrogen contents an elemental analysis (elementar vario EL, Elementar

Analysensysteme GmbH) using the carrier gas-hot extraction method in triplicate repetition can be

used, though, the detection limit for standard weight (≈ 20 mg) are by approxximately 0.1 wt-%.

Therefore, this method is not suitable because the hydrogen content of some hydrides within this

thesis is too small or the hydrides are not stable at ambient conditions and release hydrogen (see

Table 2.2.1).

2.3. Di�raction

Di�raction is the most important method for structure determination and likewise for crystalline solid

state characterization. X-ray, synchrotron, electron or neutron radiation is used for structural analysis.

Single crystal X-ray di�raction and X-ray and neutron powder di�raction performed ex as well as in

situ are used in this work as described below.

2.3.1. Single crystal X-ray di�raction

Single crystals of hydrides are hardly available, but the formation of single crystals of palladium-rich

compounds is possible. The presence of gaseous reactants through required temperatures or the usage

of mineralizing agents like iodine, promotes the formation of large single crystals. Crystals were �xed

with nail polish on the top of a glass thread and adjusted in a STOE IDPS-I di�ractometer with

Ag-Kα1 radiation (λ = 0.56085 Å, graphite monochromator). The crystal surfaces were measured

by an integrated camera and optimized with X-Shape [146]. A numerical absorption correction was

necessary due to absorption problems of the used heavy elements, and carried out with X-Red [147].

The structure was solved by direct methods and subsequently re�ned with ShelX [148]. The quality

of the re�nement is de�ned by residual factors (R values). The mean deviation between observed (F 0)

and calculated structure amplitude (F c) results in R1 value and in consideration of a weighting factor

w including minimum sums of squares of the errors results in wR2 value (Eq. (1)) [149].

R1 =

∑
hkl ||F 0| − |F c||∑

hkl |F 0|
wR2 =

√∑
hkl w(F 0

2 − F c
2)2∑

hkl w(F 0
2)2

w =
1

σ2(|F 0|)
(1)
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2.3. Di�raction

Figure 2.3.1.: Rietveld re�nement of the crystal structure of tetragonal BiPd3D0.19(1) (anti-Ba2ZnF6-

type, I 4/mmm, a = 4.0452(2) Å, c = 16.6158(8) Å, RBragg = 0.055) based on neutron

powder di�raction (λ = 1.79725(2) Å, E9, HZB Berlin, Rp = 0.032, Rwp = 0.041,

χ2 = 2.4).

2.3.2. X-ray and neutron powder di�raction

The formation of suitable large single crystals of metal hydrides is usually not possible. Powder

di�raction is most commonly used and for the analysis of hydrides indispensable. Crystal structures

of palladium-rich compounds and of the metal atoms in hydrides are determined by X-ray pow-

der di�raction (XRPD). For �at sample measurements, powders were �xed on Kapton® foils with

Apiezon® grease, placed on a �at sample holder and clamped on a G670 di�ractometer with Guinier

geometry and CuKα1 or MoKα1 radiation. Capillary samples were measured on a STOE STADI P

di�ractometer with a CuKα1 radiation.

The detection of hydrogen atoms of hydrides is practically impossible with X-ray di�raction, be-

cause of the low number of electrons compared to the heavy atoms. For localizing hydrogen or other

light atoms like lithium or oxygen, neutron powder di�raction is used. In contrast to X-ray di�rac-

tion, neutrons are scattered at nuclei and penetrate deeper into samples due to about four orders of

magnitudes smaller absorption coe�cients for most elements. Samples sizes are larger compared to

X-ray di�raction because of smaller scattering cross sections and weaker neutron sources [150]. Fur-

ther advantages of neutron di�raction are the possibility to determine and re�ne magnetic structures

as well as to di�erentiate neighboring atoms of the periodic table, e. g., sodium, magnesium and

aluminum. For hydrogen determination in crystalline compounds, deuterium was used due to the less

bound incoherent scattering length (bi = 4.04(3) fm) compared to hydrogen (bi = 25.274(9) fm) [151].

The isotpe e�ect of hydrogen with regards to crystal structures is negligible. However, unit cells of

deuterides are typically smaller compared to hydrides because deuterium atoms has the doubled mass,

and thus an apparent smaller size due to vibrational isotope e�ects [114].

Samples for neutron di�raction experiments were placed in vanadium cylinders that barely scatter

neutrons coherently, and sealed with indium wire in the case of air sensitive samples. Neutron di�rac-

tion data were collected at the high-�ux di�ractometer D20 at Institut Laue-Langevin (ILL, Grenoble,

France) in high resolution mode (120° take-o� angle, Ge (115) monochromator, λ ≈ 1.88 Å) [152], at

the �ne resolution powder di�ractometer E9 (FIREPOD) at Helmholtz-Zentrum Berlin (HZB, Berlin,

Germany) in default mode (111.7° take-o� angle, Ge (115) monochromator, λ = 1.79725(2) Å) [153]

or at high-resolution powder di�ractometer for thermal neutrons (HRPT) at Paul Scherrer Institut
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2. Methods and Materials

(PSI, Viligen, Switzerland) in high intensity mode (120° take-o� angle, Ge (335) monochromator,

λ = 1.494 Å) [154].

The crystal structures were re�ned by the Rietveld method [155, 156] using the programs Fullprof

[157] or Topas [158]. One representative result of an Rietveld re�nement is shown in Fig. 2.3.1. Cif-

�les of known structures were imported from the data bases Pearson's Crystal Data (PCD) [159] and

Inorganic Crystal Structure Database (ICSD) [160]. The re�ection shapes were modeled with a pseudo-

Voigt-function by Fullprof or semi-empiric fundamental parameter approach by Topas. The quality

of a model compared to measured data is expressed by R values for powder di�raction re�nements

comparable to for single crystal di�raction. The commonly used χ2 value is calculated by the ratio

of the weighted pro�le R value (Rwp) to the expected R value (Rexp) squared [161]. The weighting

includes the errors of observed intensities squared ( 1
σ2[yi(obs)]

) similar to single crystal di�raction,

however, the intensities (yi) over all data points (i) are used. The number of data points (n) is far

grater than the varied parameters (p), thus p can be ignored (Eq. (2)).

χ2 =

(
Rwp

Rexp

)2

Rwp =

√∑
i wi[yi(obs)− yi(calc)]2∑

i wi[yi(obs)]
2

Rexp =

√
n− p∑

i wi[yi(obs)]
2

(2)

In situ powder di�raction

Reaction pathways and mechanisms of many organic syntheses are known. However, following solid-

gas reactions are often technically challenging due to hard conditions, but the knowledge of reaction

pathways is very helpful for synthesis planning and improvement. In situ di�raction is a very suitable

method to follow solid-gas reactions, detect metastable intermediates and understand the reaction

pathways. In situ, the Latin word for �on site�, means time-resolved hydrogenation reactions on the

di�ractometer with changes of external parameters, e. g. temperature and hydrogen pressure. Gas

pressure cells for XRPD and neutron di�raction were constructed and investigated [2, 162, 163]. A

quartz capillary can be attached to a gas supply system by glueing it into a �tting of a Swagelok

connection. The temperature of the capillary can be varied by a resistivity heater. This setup enables

hydrogen pressures up to 10 MPa at 700 K during an XRPD experiment (Huber G670, MoKα1

radiation) [162]. For the analysis of the measured in situ XRPD data attention was paid to poor

statistics because a capillary rotation is not possible in this setup. Thus, in situ XRPD were used

to folllow hydrogenations with regards to formation of intermediates, lattice parameter trends and as

preliminary studies for in situ neutron powder di�raction experiments, e. g. Fig. 2.3.2.

For in situ powder di�raction, a leuco-sapphire single crystal cell was used [163]. The big advantage

of this sample cell is a well de�ned di�raction background with no re�ection peaks from the single

crystal. This is achieved by a special orientation of the single crystal towards the beam. In addition, the

optical transparency allows heating by a contactless laser system. The cell is attached to a gas supply

system. This setup allows simultaneously temperature and hydrogen gas pressure control during the

neutron di�raction experiment. However, the cell is limited at high temperatures. Mechanical failure

is likely at temperatures above 700 K [2]. Further information and the detailed design of the cell are

described in Chapter 9, [2].

In situ di�raction experiments are a key element of this thesis. The hydrogenations of MgPd3
(see [2] in Chapter 9), BiPd3 (see [3] in Chapter 10), MgPd2 (see [4] in Chapter 11), CaRh2 (see [8] in

Chapter 15) were investigated by this method. The hydrogen position and amount at any step of these

reactions can be determined and intermediates that are invisible to ex situ di�raction were detected

and characterized. In situ neutron powder di�raction experiments were conducted at di�ractometer

D20 (ILL, Grenoble) under various deuterium pressures (isotopic purity, 99.8 %) with a typically time

resolution of 2 min per pattern.
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2.4. Thermal analysis

Figure 2.3.2.: In situ XRPD di�raction data of the hydrogenation of CaRh2 at various temperatures

and 5.0 MPa hydrogen pressure. It shows the reaction of CaRh2 (bottom) via CaRh2Hx

(middle) to CaRhH3 and rhodium (top). The re�ections of the second phase rhodium

are marked with asterisks. The region around 12° is excluded due to re�ections from

the heating element. The results of this study were used to �nd the optimal conditions

for later in situ neutron powder di�raction experiments.

2.4. Thermal analysis

In situ di�erential scanning calorimetry (DSC) was used to monitor hydrogenation reactions. It was

performed on a Q1000 DSC (TA Instruments) equipped with a gas pressure chamber. 10-40 mg

of powdered samples or reaction mixtures were put in aluminum crucibles which were closed with

aluminum lids. Samples which are sensitive to air were handled in an argon �lled glove box and

crucibles were crimped to be sealed against air but not to hydrogen. The crucibles were placed inside

the pressure chamber which was �ushed several times with hydrogen gas before �lling it to the desired

hydrogen gas pressure (0.1 MPa ≤ p(H2) ≤ 7.0 MPa). The samples were heated at a typical rate

of 10 K min-1 up to 703 K and a few runs can be performed to check the possible reversibility of

reactions. The reaction of samples with hydrogen but also phase transitions were detected through

di�erences in heat �ow (Q̇, see Eq. (3), where κ is the thermal conductivity factor, A the surface area,

∆ T the di�erence in temperature and d the thickness of the material) between the sample crucible

and an empty reference crucible. The heat �ow per gram as function of temperature was plotted for

graphic evaluation. The onset points of measured peaks were determined as reaction temperatures

with the software Universal Analysis [164]. This method is convenient in combination with X-ray

powder di�raction to investigate hydrogenation reactions. Furthermore, metastable intermediates can

be detected and reaction temperatures determined, therefore this method is an essential part of in

situ investigation of hydrides.

Q̇ =
dQ

dt
≈ ∆ Q

∆ t
=

κ A ∆ T

d
(3)
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Phase transitions, melting or decomposition points of intermetallics were determined by di�erential

thermal analysis (DTA) with incorporated thermogravimetric analysis (TGA) in helium atmosphere

on a Netzsch F1 Jupiter device. 20-50 mg sample were put in a sintered alumina crucible which was

placed together with an empty reference crucible on sample holders with integrated thermocouples

and coupled scale. The sample compartment was closed and �ushed a few minutes with helium until

the sample was heated at small gas �ow with a typically heating rate of 10 K min-1.

2.5. Volumetric and gravimetric analysis

The hydrogen analysis by gravimetric and volumetric sorption measurements are more suitable for

the hydrides of this thesis than the determination by elemental analysis. However, hydrides with a

hydrogen amount below 0.1 wt-% are not suitable (see Table 2.2.1). Hydrogen sorption experiments

have the advantage to analyze metastable intermediate hydrides. Volumetric sorption experiments

are proved as the method of choice for isothermal measurements and gravimetric experiments were

used for isobaric conditions. Furthermore, reaction enthalpies and entropies can be determined on the

basis of sorption isotherms.

Samples for hydrogenation sorption experiments (about 200 mg) were activated at 393 K and

under applied vacuum to remove sorbed impurities like oxygen before starting the measurement. For

volumetric sorption experiments, the remaining volume of the measuring cell excluding the sample

was determined with helium gas (Air Products, 99.9992 %) at the measuring temperature. The

experiments were executed with the Quantachrome volumetric sorption analyzer AUTOSORB-iQ and

the temperature was controlled with a Julabo F12-ED thermostat. The cell was evacuated before

the sorption experiment with hydrogen gas (Air Products, 99.9992 %) started. The equilibrium was

reached when the �nal value of the pressure did not change more than 0.3 % within 300 s. The output

of these experiments are loading of hydrogen per gram of activated intermetallic based on a function of

the detected absolute pressure at a constant temperature. Further details of the volumetric sorption

method are described in the experimental part of the respective publication (see [8] in Chapter 15).

Gravimetric sorption experiments were executed with a Rubotherm magnetic suspension balance

IsoSORP (type E10). For isobaric conditions the temperature was controlled by the device and the

hydrogen pressure was kept constant by manual pressure regulation. The buoyancy of the sample was

also measured for corrections.

Additional, the hydrogen amount can roughly be determined by weighing large size of samples

before and after hydrogenation. The size of di�erence in mass will be about twice as big, if deuterium

is used for hydrogenation instead of hydrogen.

2.6. Electronic structure by �rst principles calculations

Density functional theory (DFT) calculations were performed with the Vienna Ab-initio Simulation

Package (VASP) [165�167], using projector augmented wave (PAW) pseudopotentials [168, 169] and

the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [170]. Further details of the cal-

culation methods are described in the experimental parts of the respective publications (see [4] in

Section 11.6 and [7] in Section 14.4.5).
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2.7. Molar volume increments of hydrogen atoms

2.7. Molar volume increments of hydrogen atoms

The volume increments of hydrogen in hydrides are di�erent depending on their bonding situation and

due to the extraordinary polarizability of hydrogen atoms. The volume increment of hydrogen can be

calculated from the unit cell volume of the hydrides (Eq. (4)). For the calculations, ionic increments

of metal cations are used from the table after Biltz [171] and atomic increments are taken from [142],

calculated from elemental structures or the hydrogen free intermetallics.

V (H) =
V unit cell NA −

∑
atom[V (atom) multiplicity(atom)]

multiplicity(H)
(4)

2.8. Magnetism

The magnetism of selected compounds was investigated by temperature dependent magnetic suscepti-

bility measurements. The sample was placed in a gelatin capsule and inserted in a MPMS 7XL SQUID

magnetometer (QUANTUM DESIGN). The measurement was executed with applied magnetic �elds

of 0.01, 0.02 and 0.05 T and temperatures from 2 to 330 K. The diamagentic contribution of the sam-

ple holder was corrected with the program package DAVE [172]. The reciprocal molar suszeptibility

(χM-1) was plotted against the temperature (T ) and the magnetic parameters (Curie temperature

θC and Curie constant C ) were calculated by a linear regression according to the Curie-Weiss-law

(Eq. (5)) in the case of paramagnetic samples. In addition, the e�ective magnetic moment (µe�) is

calculated from the Curie constant.

χM
-1 =

1

C
T − θC

C
µe� =

√
3 kB C

µ0 NA
(5)

2.9. Chemical stability

The stability of hydrides against air was investigated by additional X-ray di�raction after storing time

in air for days to months. The stability of compounds against organic solvents, water and acids or

rather their solubility was tested in micro test tubes. Additional XRPD was carried out on poorly

soluble compounds to exclude that they react with the liquids.

2.10. Catalytical experiments

Catalytical invesigations were perfomed on Pd11Bi2Se2, which is a phase pure sample without contam-

inants from the synthesis, e. g. no iodine additives were used, and which does not form hydrides. The

catalysis of the semi-hydrogenation of acetylene was tested. Catalytic experiments were conducted

in a plug �ow reactor consisting of a quartz glass tube (7 mm inner diameter, 300 mm length) and

a sintered glass frit as catalyst bed with the �ow conditons of 14 ml min-1 helium gas, 20 ml min-1

ethen, 1.4 ml min-1 acetylene and 2 ml min-1 hydrogen gas. This yields in a total �ow of 0.5 % C2H2,

5 % H2 and 50 % C2H4. A pill of the catalysator material (≈ 0.6 g) was transferred into the reactor.

The temperature during the catalysis was 473 K. The conversion of acetylene and the selectivity to

ethylene were calculated (Eq. (6)) and plotted against time.

XC2H2 =
cfeed − cx
cfeed

SC2H4 =
cC2H4

cC2H4 + cC2H6 + cC4Hx

(6)
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3. Hydrogenation of binary palladium-rich

compounds

This chapter deals with the hydrogenation properties of binary palladium-rich compounds. In the

beginning, hydrides of MPd3 compounds are described focusing on the diversity of their structures.

Special attention is given to their derivation from close packings and the investigation of hydrogenation

pathways by in situ methods. Afterwards, the hydrogenation behavior of MPd2 compounds of the

Co2Si type structure is discussed. Special emphasis is put on the hydrogenation process of MgPd2. At

the end of this chapter, further binary palladium-rich and other palladium containing compounds, that

were tested for hydrogenation, are taken into account. An overview of ternary ordered palladium-rich

hydrides are given in Section 8.6 (review [1]).

Compounds MPd3 (M = Mg [46, 126], In [127], Tl [88], Y [128], Mn [129], Ce [130]) and MPd2
(M = Sr [124], Eu [113]) are known to form hydrides, whereas MPd2 (M = Al, Ga, In), Pd3Al,

Pd13Ga5, Pd5In3 [76], and Pd5As do not show a signi�cant hydrogen uptake. This work reports on

further compounds whose hydrogenation behavior is investigated (Table 3.0.1).

The Laves phase EuPd2 with 2.1 hydrogen atoms per formula unit absorbs the most hydrogen

[113]. Hydrogen occupies tetrahedral interstices. The majority of the reported ternary palladium-

rich hydrides crystallize in stacking variants of the cubic closed packing (ccp). MgPd3 crystallizing

in ZrAl3 type has the second highest hydrogen uptake [2]. In contrast to Laves phase hydrides,

hydrogen occupies [Pd6] and in speci�c cases [MPd5] (M = Mg, Mn) as well as [Mg2Pd4] octahedral

voids (Fig. 3.0.1). Solely palladium consisting octahedral sites are preferred to the other interstices.

Binding states at low energies were calculated to be dominated almost exclusively by palladium and

hydrogen through hydrogen uptake. The increase of the number of [Pd6] octahedral sites from TiAl3

Table 3.0.1.: Section of the periodic table's main group elements of palladium containing compounds

that were observed to form hydrides (green from literature, blue from own work) or show

no signi�cant hydrogen uptake (red from literature, orange from own work).

period group 2 group 13 group 14 group 15 group 16

3 MgPd2D0.97 [4],

MgPd3D1.18 [2],

MgPd3D0.67 [46]

Pd2Al [76],

Pd3Al [76]

Pd3P0.8D0.15 [173],

Pd6PD0.26 [54],

Pd15P2D0.46 [174]

4 CaPd3Hx [125] Pd2Ga [76],

Pd13Ga5 [76]

Pd3As [5],

Pd5As [71]

Pd17Se15 [5],

Pd4Se [5]

5 SrPd2H [124] Pd2In [76],

InPd3D0.89 [127]

Pd2Sn [5],

SnPd3D0.138(7)

PdSb [5],

Pd5Sb2 [5],

Pd8Sb3 [5],

Pd20Sb7 [5]

6 TlPd3H [88] Pd13Pb9 [5],

Pd5Pb3 [5],

PbPd3D0.13 [3]

Pd5Bi2 [5],

BiPd3D0.23 [3]
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Figure 3.0.1.: Structures of palladium-rich hydrides with hydrogen occupying [Pd6] (orange polyhedra)

and [MPd5] (yellow polyhedra) octahedral sites. BiPd3 and CaPd3Hx (no intermetallic

starting material known, [125]) are related to double hexagonal closed packing (dhcp,

La type, purple background, [3]); MPd3 and MPd3Hx (M = Mg [46, 126], Y [128],

Ce [130], Mn [129], In [127], Tl [88], Sn, Pb [3], Bi [3]) are related to ccp (Cu type,

turquoise background, [75]) and rearrange from TiAl3 or ZrAl3 type to AuCu3 type

trough a gliding mechanism of plane B' shifted by 1/2 in 110 direction [75]; MgPd2 and

MgPd2Hx are related to AlB2 type (pink background, [4]).

type or ZrAl3 type to AuCu3 type and the preference of Pd-H bonding reveals the thermodynamic

driving force of the rearrangement between these ccp related MPd3 compounds [126,131].

The interatomic Pd-H distances range from 1.94 - 2.11 Å for [Pd6] and 1.84 - 2.11 Å for [MPd5] sites

(Table 3.0.2), which are in agreement to 2.017 Å of PdD0.66 [175]. As the M atoms are usually not in

the �rst coordinations sphere, the M -H distances are markedly larger than 3 Å, except for M = Mg,

Mn (d(M -H) = 1.56 -2.27 Å) that are involved in the octahedral surrounding. The minimum H-H

distances are about 4 Å for corner sharing, hydrogen-centered octahedra. That corresponds to the

lattice parameters a of the hydrides. For edge sharing octahedra the minimum H-H distances are

about 3 Å. In the case of CaPd3Hx (d(H-H) = 2.45 Å), its HPd6 octahedra are face sharing. The

M -Pd and Pd-Pd distances of the hydrides are all in same range as those observed in the intermetallic

starting materials and, therefore, in the order of interatomic distances of pure palladium.

The amount of hydrogen atoms occupying these octahedral interstices depends on geometric and

even more on electronic aspects of the element M. Thallium and indium or lead and tin have the

same number of valence electrons, but in each case the larger atom by means of atomic or metallic

radii allows a higher hydrogen incorporation inMPd3 compounds. Another example for the geometric

in�uence are manganese and lead (as elementM ) that are similar in electronegativities, though MnPd3
absorbs considerably more hydrogen than PbPd3. However, the geometric factors do not describe the

whole phenomenon, as e. g., manganese and tin are of similar atomic radius, but SnPd3 absorbs

only negligible amounts of hydrogen. Looking now at the valence electrons, M of group 13 (In,
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3. Hydrogenation of binary palladium-rich compounds

Table 3.0.2.: Interatomic distances of intermetallics and their hydrides
compound structure type d(Pd-H) / Å d(M -H) / Å d(H-H) / Å d(M -Pd) / Å d(Pd-Pd) / Å

MgPd2 [a] [4] Co2Si 2.573 - 2.871 2.682 - 2.941
MgPd2D0.86

[a] [4] MgPd2H0.9 1.837 - 2.106 2.271 3.083 2.708 - 2.886 2.812 - 2.987
MgPd3 [46] ZrAl3 2.702 - 2.837 2.768 - 2.776
MgPd3D1.18

[a] [2] MgPd3H0.9 1.994 - 2.112 1.757 - 2.08 2.819 2.657 - 3.015 2.819 - 2.904
MgPd3D0.67 [46] anti-perovskite 1.991 3.449 3.982 2.816 2.816
CaPd3Hx [125] anti-BaMnO3 2.028 - 2.088 [b] 3.598 [b] 2.445 [b] 2.931 - 3.016 2.802 - 3.060
InPd3 [76] ZrAl3 2.721 - 2.877 2.783 - 2.876
InPd3 [76] TiAl3 2.775 - 2.899 2.775 - 2.899
InPd3D0.89 [127] anti-perovskite 2.011 3.484 4.023 2.844 2.844
TlPd3 [88] ZrAl3 2.796 - 2.904 2.777 - 2.904
TlPd3 [89] TiAl3 2.795 - 2.932 2.795 - 2.932
TlPd3H≈0.2

[c] [88] anti-Ba2ZnF6 2.017 - 2.057 3.531 4.114 2.757 - 2.909 2.747 - 2.909
TlPd3H [88] anti-perovskite 2.032 3.519 4.063 2.873 2.873
SnPd3 [a] [5] AuCu3 2.813 2.813
SnPd3H≈0.1

[a] [5] anti-perovskite 1.990 3.448 3.981 2.815 2.815
PbPd3 [a] [3] AuCu3 2.853 2.853
PbPd3D0.13

[a] [3] anti-perovskite 2.020 3.499 4.040 2.857 2.857
BiPd3 [a] [3] BiPd3 2.716 - 3.041 2.485 - 3.252
BiPd3D0.23

[a] [3] anti-Ba2ZnF6 2.000 - 2.024 3.606 4.047 2.819 - 2.985 2.845 - 2.957
YPd3 [176] AuCu3 2.881 2.881
YPd3H0.3 [176] anti-perovskite 2.040 3.533 4.080 2.885 2.885
CePd3 [130] AuCu3 2.917 2.917
CePd3H [130] anti-perovskite 2.068 3.581 4.135 2.924 2.924
MnPd3 [d] [129] ZrAl3 2.757 2.752 - 2.763
MnPd3D0.61

[d] [129] MnPd3H0.6 1.900 - 1.976 1.952 2.798 2.711 - 2.866 2.769 - 2.806
MnPd3D0.7

[d] [177] anti-perovskite 1.963 3.400 3.926 2.776 2.776

[a] part of this thesis
[b] distances calculated by assuming occupation of [Pd6] octahedral sites (Wycko� position 4f: 2/3, 1/3, 1/8) by hydrogen.
[c] distances determined by re�nement of data �5-phase mixture, 730 �, 12 h, 7.5% H2/Ar, 1bar� of [88]
[d] metal atoms are slightly disordered (0.077 - 0.156 Pd on Mn site and 0.026 - 0.052 Mn on Pd sites) [129,177]

Tl) results in a higher hydrogen uptake compared to M of group 14 (Sn, Pb). By contrast, BiPd3
absorbs almost twice as much hydrogen as SnPd3 or PbPd3. A general trend based on valence electron

concentration can therefore not be identi�ed. The electronegativities of the elements M seem to a�ect

the hydrogenation properties more than geometry. Electronegativities of M similar to palladium

promote a hydrogen uptake. Thus, the electronic and the geometric aspects were associated by

a structure map (Fig. 8.6.4 of Section 8.6.2 in [1]). However, this map does not apply to transition

metals, e. g. zirconium is very similar in electronegativity and atomic radius to magnesium, but ZrPd3
does not take up hydrogen in contrast to MgPd3 (see Section 3.1.5). Quantum-mechanical calculation

show the hydrogenation to be exergonic for MgPd3, weak exergonic for ScPd3 and endergonic for

ZrPd3 Chapter 16.

A series of bonding properties as for the hydrides of the system Eu-Pd (Section 1.2) can be estab-

lished also for hydrides of the system Mg-Pd. The magnesium amount and, therefore, the valence elec-

tron concentration (VEC, after Schubert [178]) decreases in the series MgH2 - Mg2PdH4 - MgPd2H

- MgPd3H - PdH. The hydrogen atoms in MgH2 have besides ionic already strong covalent bond-

ing characters [179, 180]. Calculations of Mg2PdH4 [180, 181] in the well known Mg2NiH4 type [182]

yields a complex hydride. It is a typical 18 valence electron complex. The compound was not found

experimentally yet, but a cubic Mg2PdH4 (a = 12.047 Å, structure only indexed) was observed by

decomposition of Mg4Pd at 9 MPa hydrogen pressure and temperatures of 650 K with MgH2 as side

product [183]. A closer look on the hydrogen bonding behavior in the systemMg-Pd results in the order

MgH2 - Mg2PdH4 - PdH - MgPd2H - MgPd3H, though the number of hydrogen per palladium atoms

and the interatomic Pd-Pd decrease whereas the minimum H-H distances increases (Table 3.0.3). The

Pd-Pd distances of Mg2PdH4 are larger than 4 Å [181]. That makes Pd-Pd interactions very unlikely,

and their Pd-H bonding is of covalent nature. In contrast, metallic Pd-Pd and Pd-H interactions
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3.1. MPd3 compounds

Table 3.0.3.: Comparison of properties with regard to bonding behavior of the hydrides in the system

Mg-Pd based on ab initio calculations [4, 97,131,179�181,184�186]

.
compound MgH2 Mg2PdH4 PdH MgPd2H MgPd3H

structure type rutile Mg2NiH4 NaCl MgPd2H anti-

perovskite

VEC after Schubert 1.33 1.14 0.50 0.75 0.60

VEC [a] 1.33 2.57 5.5 5.75 6.6

NEF / states eV-1 atom-1 - - 0.06 [184,185] 0.23 [4] 0.59 [97]

Eg / eV 3.8 [179,180] 1.72 [180] - - -

d(Pd-Pd) / Å - ≥ 4.35 [181] 2.88 [185] -

2.96 [186]

2.85 - 3.01 [4] 2.78 [131] -

2.84 [97]

d(H-Pd) / Å - 1.70 -

1.76 [180,181]

2.04 [185] -

2.09 [186]

1.86 - 2.15 [4] 1.97 [131] -

2.01 [97]

dmin(H-H) / Å - 2.42 [181] 2.88 [185] 3.10 [4] 3.93 [131]

V (H) / cm3 mol-1 8.28 [b] 8.18 [181] [b] 1.33 [185] -

2.01 [186] [b]
1.86 [4] [c] 1.46 [97] -

1.63 [131] [c]

[a] each Pd atom introduces ten valence electrons for VEC calculation

[b] calculated with V (Mg2+) = 2.0 cm3 mol-1 and V (Pd) = 8.9 cm3 mol-1 [142]

[c] calculated by di�erence between volume of hydride and intermetallic compound (see Section 2.7)

are observed for the palladium-rich representatives. Additionally, the density of states (DOS) at the

Fermi level (N EF) increases from PdH via MgPd2H to MgPd3H. That indicates an improvement of

the electrical conductivity. For MgPd3H0.5 in ZrAl3 type with fully occupied [Pd6] octahedral sites,

an even greater DOS at the Fermi level (N EF = 0.64 states eV-1 atom-1) was calculated [97]. MgH2

and Mg2PdH4 show a band gap (E g) of 3.8 [180, 181] and 1.72 eV [180], respectively. The trend of

the bonding behavior of hydrogen is also supported by the calculation of molar volume increments

(V (H) [142]), with the exception of PdH, which di�ers strongly by the di�erent calculations. For the

calculation of the molar volume of the H atoms of MgPd2H and MgPd3H, the volume increment of

the ion Mg2+ (V (Mg2+)) can not be used, because Mg atoms show mainly metallic behavior. The

calculated value obtained from the elemental structure of magnesium can also not be used, because

the volume increment of Mg is too large resulting in negative values for V (H). Therefore, the molar

volume of the H atoms was calculated by the di�erence of the unit cell volume between the hydrides

(MgPd2H and MgPd3H) and the hydrogen free intermetallics (MgPd2 and MgPd3). Alternatively,

the volume increment of a Mg atom in the intermetallics can be calculated and used subsequently

for the calculation of V (H). The former values do not di�er signi�cantly to the latter. The greater

the molar volume of the hydrogen atoms, the more ionic is the bonding. Lower values indicate more

metallic bonding character.

3.1. MPd3 compounds

Most structures of the MPd3 compounds are related to the ccp (Fig. 3.0.1). Firstly, MgPd3, MnPd3
crystallizing in ZrAl3 type, and forming hydrides in �lled ZrAl3 as well as AuCu3 type, are discussed,

followed by InPd3 and TlPd3 crystallizing in ZrAl3 and TiAl3 type. Afterwards, hydrides of palladium-

rich compounds of the AuCu3 type and / or with transition metals are described, followed by BiPd3
and CaPd3H with relations to dhcp. Finally, Pd3As that does not form a hydride, is listed for

completeness.
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3. Hydrogenation of binary palladium-rich compounds

3.1.1. MgPd3

MgPd3 crystallizes in tetragonal ZrAl3 type structure [45] and incorporates hydrogen in [Pd6] as well

as in [MgPd5] and [Mg2Pd4] octahedral voids [126]. The structures of these metastable tetragonal

α-MgPd3Hx phases and the occupation by hydrogen of these various octahedral sites were determined

by sequential Rietveld re�nement based on in situ neutron powder di�raction at isothermal conditions

(see Chapter 9, [2]). During the isothermal hydrogenation (297 K, 1.0 MPa deuterium pressure), at

�rst, [Pd6] and [MgPd5] octahedral sites were occupied by about one half and one quarter, respectively

(Fig. 3.1.1). This hydrogen uptake results in a characteristic volume expansion. Lattice parameter

a expands more than c caused by the occupation of [MgPd5] octahedral sites that are edge sharing

within a-b plane. The size of [Mg2Pd4] octahedral voids increases with the lattice expansion and a

noticeable occcupation (site occupancy factor SOF(D) > 2 σ(SOF)) begins only when Mg-D distances

became larger than 1.96(3) Å. However, the SOF of hydrogen on [Mg2Pd4] octahedral sites are always

less than one quarter under hydrogen pressures up to 1.0 MPa. At higher temperatures (T ≈ 550 K)

under 0.5 MPa hydrogen pressure MgPd3Hx rearranges to the AuCu3 type with hydrogen occupying

only [Pd6] octahedral sites [126]. This transition can be formally understood as a gliding of the

atomic layers B' by 1/2 in [110] direction resulting in the layers A' (Fig. 3.0.1). This transition is

irreversible [46]. The formed β-MgPd3Hx is more stable than α-MgPd3Hx due to stronger Pd-H

interactions [97]. As a result another MgPd3 polymorph crystallizing in AuCu3 type, called β-MgPd3,

can be formed by dehydrogenation of the cubic β-MgPd3Hx.

Figure 3.1.1.: In situ neutron powder di�raction data of the hydrogenation of tetragonal MgPd3 at

297 K taken on di�ractometer D20 (ILL, Grenoble, λ = 1.86786(3)Å) in a leuco-sapphire

single crystal cell. The site occupancy factors (SOF ) of the deuterium atoms were re�ned

based on di�raction data of each frame (6 min data collection time).
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3.1. MPd3 compounds

Table 3.1.1.: Degree of disorder in mostly ordered MnPd3 compound and its hydrides. Site occupancy

factors (SOF) of the minority component is shown.

compound structure type SOF(Pd) at Mn site SOF(Mn) at Pd site literature

MnPd3 ZrAl3 0.156 0.052 [129]

MnPd3D0.61 MnPd3H0.6 0.141 0.047 [129]

MnPd3D0.7 anti-perovskite 0.077 0.026 [177]

3.1.2. MnPd3

The hydrides of MnPd3 were among the �rst known, mostly ordered, palladium-rich hydrides. Mostly

ordered means, that Mn and Pd atoms are occupying separate crystallographic sites, though with a

slight mixed occupation of about 15 % (Table 3.1.1). This phenomenon is caused by the similarities in

size and electronegativity of Mn and Pd atoms and leads to a relatively large phase width from MnPd3
up to Mn1.2Pd2.8 for the tetragonal structure [187]. In the interest of clarity, MnPd3 compounds with

a high degree of atomic order are labeled as ordered in the following. Disordered MnPd3 crystallizes in

Cu type. By annealing at temperatures below 800 K it changes to ZrAl3 type [188]. Both phases can

take up hydrogen [129]. The disordered phase (Cu type) absorbs hydrogen with a subsequent formation

of ordered AuCu3 type. This transition is reversible by removing incorporated hydrogen [189]. The

disordered MnPd3 can take up less hydrogen in comparison to the ordered hydrides (�lled ZrAl3 and

AuCu3 type) [129,177,189].

The magnetic properties of MnPd3 are especially interesting, because Pd atoms are determined to

have no ordered magnetic moment [188] on the one hand. On the other hand, magnetic moments on

Mn atoms were found to be 7.3 µB in disordered cubic Pd0.75Mn0.25 [190, 191] (corrected by [192]),

5.2 µB in tetragonal MnPd3 [188], 4.8 µB at 4 K in tetragonal MnPd3D0.53 [193] and 4.1 µB at 1.5 K

in tetragonal MnPd3D0.6 [177]. The magnetic moments of the disordered Mn atoms at Pd sites agree

with them on the Mn sites [188]. The tetragonal structures show a collinear antiferromagnetic ordering

of the type +−−+ [188,193].

3.1.3. InPd3

InPd3 crystallizes in ZrAl3 type and TiAl3 type. During the hydrogenation both tetragonal structures

rearrange to the cubic AuCu3 type. For the TiAl3 type the same gliding mechanism can be utilized

as for ZrAl3 type, however, only one B' layer per unit cell is gliding during hydrogenation [75, 76]

(Fig. 3.0.1). A deuterium amount of 0.89 per formula unit was determined for cubic InPd3 [127].

Interestingly, no hydrogen uptake of the tetragonal structures, especially of ZrAl3 type containing

[Pd6] octahedral voids, was observed by neutron di�raction. Only a very small exothermic peak at

about 350 K of in situ DSC indicates a hydrogen uptake [76]. InPd3Hx can alternatively be formed

by decomposition at hydrogen pressure and subsequent hydrogenation of the tetragonal compounds

Pd5InSe and Pd8In2Se (see Chapter 4 and Chapter 12, [5]).
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3. Hydrogenation of binary palladium-rich compounds

3.1.4. TlPd3

There are also two tetragonal modi�cation of TlPd3, ZrAl3 and TiAl3 type, are known [89, 194]. In

contrast to InPd3, α-TlPd3 (ZrAl3 type) takes up hydrogen, before it rearranges to cubic AuCu3
type. This two step reaction was also observed by in situ DSC sharing two broad exothermic signals.

The hydrogenation of TlPd3 in TiAl3 type was not investigated, yet. In cubic TlPd3H, the [Pd6]

octahedral site is fully occupied by hydrogen. This is currently the only known hydride of MPd3
compounds, that forms a fully occupied anti-perovskite type structure. As an alternative synthesis of

this hydride, the reduction under hydrogen pressure of TlPd3O4 is reported [88].

3.1.5. AuCu3 type and transition metal compounds

The binary compounds YPd3 and CePd3 crystallize in AuCu3 type structure. The pre-existing [Pd6]

octahedral voids are occupied by hydrogen during hydrogenation and the unit cell expands by 0.4 % for

YPd3H0.3 and 0.7 % for CePd3Hx. A �lled AuCu3 type, better described as defect anti-perovskite is

formed. Further isotypic compounds were investigated towards their hydrogenation properties. SnPd3
and PbPd3 as candidates showed similar volume expansions of 0.4 % and 0.6 % after hydrogenation.

The composition of SnPd3D0.138(7) (see Chapter 16) and PbPd3D0.13(1) (see [3] inChapter 10) was

re�ned based on ex situ neutron powder di�raction data. The hydrogenation reaction of PbPd3 and

SnPd3 is not detectable with in situ DSC under the tested conditions, because of slow kinetics and

only a small hydrogen uptake (see [5] in Chapter 12).

Further palladium-rich compounds TPd3 (T = Sc, Zr, V, Nb, Fe) were tested regarding their

hydrogenation behavior [195]. FePd3, crystallizing in ordered AuCu3 type or disordered Cu type,

was found to be the only one, which can take up hydrogen. It was also previously reported that the

level of order a�ects the hydrogen uptake. A signi�cantly higher hydrogen absorption is observed by

compounds with a higher level of order [196]. ScPd3 crystallizing in AuCu3 type and ZrPd3, VPd3
and NbPd3 crystallizing in TiNi3 type did not show any reaction towards hydrogen [195]. The TiNi3
structure is related to the double hexagonal closed packing (dhcp, La type, [3] in Chapter 10) and

contains [Pd6] octahedral voids, that are most likely occupied by hydrogen in the case of CaPd3Hx

(see Section 3.1.7), but did not get experimentally veri�ed, yet. We proposed a structure map that

associates the electronegativities and the atomic radii of the minor elements with the incorporated

hydrogen amount in MPd3Hx (Fig. 8.6.4 of Section 8.6.2 in [1]). This structure map does not hold for

transition metals. Although magnesium, scandium and zirconium are very similar in electronegativity

and atomic radius, MgPd3 takes up a considerably higher amount of hydrogen compared to ScPd3
and ZrPd3, that absorbs only a little hydrogen to zero. Quantum-mechanical calculations support

this Chapter 16. ScPd3H and ZrPd3H are less stable than MgPd3.

3.1.6. BiPd3

Orthorhombic BiPd3 is di�erent from the other MPd3 compounds. It crystallizes in its own structure

type [87, 194] derived from double hexagonal closed packing (dhcp, La type) and forms ZrAl3 type

during hydrogenation (see [3] in Chapter 10). BiPd3 has the highest valence electron concentration

(VEC = 1.25 after Schubert [178]) of MPd3 compounds. The coordination spheres of the atoms

are not only cuboctahedra like for ccp related MPd3, but also disheptahedra, which is also called

anticuboctahedron. In situ investigations of BiPd3 shows a weak, broad and irreversible exother-

mic DSC-signal at 580 K (5.0 MPa hydrogen pressure) and a structure transition to the ZrAl3 type

with hydrogen occupying [Pd6] octahedral sites based on neutron powder di�raction. For example,

BiPd3D0.19(1) (defect anti-BaZnF6 type) was re�ned (see Fig. 2.3.1 in Section 2.3.2). The rearrange-
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3.1. MPd3 compounds

Figure 3.1.2.: Crystal structure of orthorhombic BiPd3 (related to dhcp) and its reversible hydrogen

induced rearrangement to BiPd3H0.2 (related to ccp).

ment from dhcp (ABAC,A . . . ) to ccp (ABC,A . . . ) can be described by gliding mechanism of the

hexagonal layers (Fig. 3.1.2). However, a short range di�usion of the metal atoms is more likely,

because of slow kinetics and high required temperatures (T > 550 K).

It is interesting to note that only a negligibly low hydrogen amount is su�cient for the change

of structures. Quantum chemical calculations of BiPd3 showed similarities in energy of BiPd3 type

(-20.631 eV formula unit-1) to ZrAl3 type (-20.633 eV formula unit-1) [197] which enables us to un-

derstand this phenomena. The rearrangement is accompanied by a volume expansion, whereby the

unit cell volume increases more at higher hydrogen pressures. This is a consequence of an increased

hydrogen amount incorporated by the intermetallic. The hydrogenation of BiPd3 is reversible at high

temperatures (T > 450 K) and applied vacuum with comparable slow kinetics.

3.1.7. CaPd3

The intermetallic compound CaPd3 does not exist, but the hydride CaPd3Hx is formed by the reaction

of the binary hydrides CaH2 and PdHx. It crystallizes in a �lled TiNi3 type and hydrogen is most-likely

occupying the [Pd6] octahedral sites [125]. CaPd3Hx is the only yet known TiNi3 type hydride.
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3. Hydrogenation of binary palladium-rich compounds

Figure 3.1.3.: Crystal structure of Pd3As with suitable hydrogen positions (H*) and their coordination

polyhedra at Wycko� positions 2a (0, 0, 0, dark green polyhedra), 2b (0, 0, 1/2, blue

tetrahedra), 2c (0, 1/2, 1/4, light green polyhedra) and 2d (0, 1/2, 3/4, yellow polyhedra).

3.1.8. Pd3As

Although Pd3As does not belong to intermetallics (see Section 1.1 for de�nition), its crystal structure

and hydrogenation properties were still determined (see [5] in Chapter 12). Pd3As crystallizes in Ni3P

type. Interesting for a possible hydrogen incorporation are several [Pd4] tetrahedral voids (Wycko�

positions 2a, b, c, d, see Fig. 3.1.3). The void at Wycko� position 2b (0, 0, 1/2) is solely surrounded

by four Pd atoms with a �-Pd distance of 1.788 Å. The remaining [Pd4] tetrahedral sites are slightly

larger (d(�-Pd) = 1.778 - 1.892 Å), but they are surrounded by additional four As atoms (d(�-

As) = 2.472 - 2.847 Å) forming a second tetrahedron. The distances between palladium and the

hypothetical hydrogen sites are comparable to those observed in Pd15P2D0.46 (d(D-Pd) = 1.515 -

1.953 Å) [174], however, no hydrogenation of Pd3As was observed [5].

3.2. Hydrogenation of MPd2 compounds of Co2Si type

Compounds of the composition MPd2 (M = Mg, Zn, Al, Ga, In, Sn) crystallize in the Co2Si type

which belongs to the anti-PbCl2 family. Both structures are not isotypic due to their di�rent axial

ratios [198, 199]. The M atom of these compounds is coordinated by ten palladium atoms. The

coordination polyhedron can be described as a distorted tetragonal prism that is capped on two

faces. However, it can be alternatively seen as a trigonal prism that is capped by four additional

palladium atoms in a plane, but the magnesium atom is not located in the center of the prism [45].

The latter demonstrates better the similarity to TiNiSi compounds, which contain corrugated layers

of capped trigonal prisms within ab plane (Fig. 3.2.1). Several TiNiSi type compounds like LnTSn

are known to incorporate hydrogen into [Ln3T ] tetrahedral interstices [200�202]. The unit cell of for

example TbNiSn [202] expands anistropically during the hydrogenation. The distorted tetrahedral

voids between the trigonal SnTb4Ni2 prisms are occupied by hydrogen. The HTb3Ni tetrahedra are

forming zigzag chains by edge-sharing in [010] direction (Fig. 3.2.1, bottom left). Therefore, the

angles between the edge-sharing prisms decrease from 104° to 100° and the tin atoms in the prisms

get o�-centered resulting in lattice parameter c increases whereby b decreases and a decreases slightly

(Fig. 3.2.1, left).

In contrast to TiNiSi compounds, MPd2 (M = Zn [4], Al [76], Ga [76], In [76], Sn [5]) do not show

a signi�cant hydrogen absorption. Only MgPd2 takes up hydrogen, though not in [Pd4] tetrahedral

voids, but in distorted [MgPd5] octahedral voids (see [4] in Chapter 11). The main reason for the

di�erent hydrogenation behaviors ofMPd2 compounds is of thermodynamic nature shown by ab initio

calculations. The hydrogenation of MgPd2 shows a similar anisotropically lattice expansion compared
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3.2. Hydrogenation of MPd2 compounds of Co2Si type

Figure 3.2.1.: Comparison of the structures of TbNiSn [203] (TiNiSi type, left) and MgPd2 [45] (Co2Si

type, right) and their hydrides [4, 202]. Intermetallics (top) with empty and hydrides

(bottom) with occupied distorted tetrahedral (light blue polyhedra) and octahedral sites

(yellow polyhedra) with viewing direction perpendicular to bc plane and currugated

layers of distorted trigonal SnTb4Ni2 (purple polyhedra) and MgPd6 (blue polyhedra)

prisms of the intermetallics (top middle) and their hydrides (bottom middle) with view-

ing direction perpendicular to ac plane (o�set by 1/2 in [010] direction of neighboring

layers).
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3. Hydrogenation of binary palladium-rich compounds

to TiNiSi compounds. However, hydrogen occupies the distorted octahedral voids along the edges

of the trigonal prism that are not linked. Therefore, the Mg-Pd distance around the hydrogen atom

increases and the angles between the edge-sharing prisms decrease from 96° to 84°(Fig. 3.2.1, right).

Thus, the lattice parameters c and a increase whereby b decreases. The HMgPd5 octahedra form also

zigzag chains by edge-sharing in [010] direction and they are additionally linked by corners (Fig. 3.2.1,

bottom right). The edge-sharing of HMgPd5 octahedra is also observed in α-MgPd3Hx [2, 126].

The hydrogenation pathway of MgPd2 was followed by in situ DSC (Fig. 3.2.2), in situ neutron

powder di�raction (see [4] in Chapter 11) as well as gravimetric and volumetric sorption experiments

(Chapter 17). The hydrogenation of MgPd2 takes place at a hydrogen pressure of several hundred

kPa and is reversible due to hydrogen release at applied vacuum. The hydrogen amount of the

hydride can be almost one, which means the distorted octahedral site is fully occupied. The compo-

sition MgPd2H0.97(1) was determined by in situ neutron di�raction (T = 308 K, p(H2) = 2.56 MPa),

MgPd2H1.0(1) by gravimetric analysis and MgPd2H0.87(4) by hydrogen sorption experiments. At the

beginning of the hydrogenation, octahedral interstisies are occupied by 20 to 30 % with a consider-

able volume expension resulting in lattice parameters that are similar to those of the hydride with

nearly fully occupied octahedral sites. A similar observation was made by the in situ hydrogenation

studies of BiPd3 (see Section 3.1.6). During the dehydrogenation under applied vacuum, the lattice

parameters of the compound do not reach those from the intermetallic starting material. This is an

indication of remaning hydrogen, although, sorption experiments did not con�rm this. Subsequent hy-

drogenations show an almost complete �lled octahedral site from the beginning of hydride formation.

This observation is in contrast to the �rst hydrogenation of the starting material and supports the

presumption of remainig hydrogen during dehydrogenation. MgPd2H≈1 releases hydrogen and forms

MgPd2H≈0.2 at about 413 K under isobaric conditions (2.5 MPa H2). This release is also reversible

by cooling. The hydrides MgPd2Hx can decompose irreversible at higher temperatures (T ≥ 641 K,

p(H2) = 2.5 MPa) into MgH2 and the anti-perovskite type hydride MgPd3Hx. The hydrogenation

properties of MgPd2 suggest a sorption enthalpy near to benchmark value of -38.9 kJ (mol H2)-1

at 298 K (Calculation of Gibbs energy with change of hydrogen sorption is solely standard entropy

of molecular hydrogen). Hydrogen sorption experiments at 283, 298 and 313 K result in a sorption

enthalpy of -37.3 kJ (mol H2)-1 and an entropy of -110.7 (mol H2)-1 K-1 (Chapter 17). A hysteresis

in pressure-composition (p-c) isotherm was observed, which is well known in intermetallic compound-

hydrogen systems [204]. The magnitude of enthalpy explains the hydrogen release at ambient and the

hydrogenation under mild conditions. In addition, the enthalpy is similar to the reaction enthalpy

of hydrogen with elemental palladium (-38.2 kJ (mol H2)-1) [205]. Furthermore, the results of the

sorption experiments are in accordance with those of the in situ DSC and neutron powder di�raction

experiments.

3.3. Further palladium-rich and palladium containing

compounds

During this work, Pd5Sb2 [206], Pd8Sb3 [81], Pd20Sb7 [82], Pd5Bi2 [90] and Pd4Se [207] were tested

for hydrogenation by in situ DSC under 5.0 MPa hydrogen pressure and temperatures up to 703 K

(see [5] in Chapter 12). None of them shows a signi�cant hydrogen uptake under the tested conditions,

however suitable interstices can be found in their structures (Fig. 3.3.1). All investigated compounds

with pnictogen (Pn = Sb, Bi) posses [PnPd3] tetrahedral voids with distances from atoms to the void

(d(A-�)≈ 1.7 to 1.9 Å) similar to those of MPd2Hx (M = Sr, Eu; d = 1.73 and 1,74 Å) [113,124].
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3.3. Further palladium-rich and palladium containing compounds

Figure 3.2.2.: In situ thermal analysis (DSC) of the hydrogenation of MgPd2 at 2.5 MPa hydrogen

pressure (starting pressure at 303 K, increasing during heating process up to 3.4 MPa).

The intensity of the reversible signal at 437 K decreases with the number of cycles due

to the irreversible decomposition at 641 K.

Furthermore, distorted [PnPd5] octahedral voids (d(Pd-�) ≈ 1.9 to 2.3 Å, d(Sb-�) ≈ 1.7 Å or d(Bi-

�) ≈ 2.0 Å) can be found in these structures. The short distances to the pentel atom inhibite a

hydrogen incorporation. The antimony containing structures with increasing palladium amount form

additional attractive voids. A [Pd4] tetrahedral void (d(Pd-�) ≈ 2.02 Å) that is capped by a trigonal

[Sb4] pyramid (d(Sb-�) ≈ 2.07 and 2.82Å (3x)) can be found in Pd8Sb3. An [Pd4] tetrahedral void

(d(Pd-�) ≈ 1.83 Å) that is capped by two antimony atoms (d(Sb-�) ≈ 2.6 Å) is observed in Pd20Sb7.

Pd4Se contains interesting interstices surrounded by strongly distorted cubes (d(Pd-�) ≈ 1.98 (2x)

and 2.43 Å (4x), d(Se-�) ≈ 2.67 Å) as well as twofold edge-capped tetrahedra (d(Pd-�) ≈ 1.78 Å,

d(Se-�) ≈ 2.82 Å (2x)).

Even if a formation of hydrides seems very unlikely, the palladium containing compounds PdCd

[208], PdHg [209], Pd5Pb3 [210], Pd13Pb9 [211], PdSb [212] and Pd17Se15 [213] were also investigated

on their reaction behavior towards hydrogen as they are easily available or gained as by-products

during other palladium-rich synthesis. As expected, none of them shows a reaction towards hydrogen.
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3. Hydrogenation of binary palladium-rich compounds

Figure 3.3.1.: Structures of palladium-rich compounds [a) Pd5Sb2, b) Pd20Sb7, c) Pd8Sb3, d) Pd5Bi2,

e) Pd4Se] with suitable voids [distorted [PnPd5] octahedra (yellow polyhedra: a)

at Wycko� position 12d (0.17 0.477 0.21), b) at 18f (0.83 0.16 0.413), c) at 36f

(0.347 0.854 0.19), d) at 4i (0.115 1/2 0.603)); [PnPd3] tetrahedra (blue polyhedra: a)

at 12d (0.105 0.263 0.426), b) at 18f (0.303 0.789 0.714), c) at 36f (0.85 0.72 0.28),

d) at 8j (0.105 0.24 0.44)); capped [Pd4] tetrahedra (green polyhedra: b) at 18f

(0.454 0.717 0.167), c) at 12c (0 0 0.109), e) at 2b (0 0 1/2)); and distorted cube (lilac

polyhedron: e) at 4d (1/2 0 0.904))] for potential hydrogen uptake (H*).
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4. Ternary palladium-rich intermetallics as

possible precursor for metal hydrides

In the search of further candidates for hydrogenation and to understand the in�uence of the electronic

phenomena, ternary palladium-rich compounds were investigated. The number of electrons and,

thus, the VEC were increased by substitution with semimetals like arsenic, selenium or phosphorous.

This chapter includes the hydrogenation properties of palladium-rich compounds of the Pt5TlAs type

structure, the new compound Pd11Bi2Se2 and the half-antiperovskite Pd3Bi2Se2. None of the tested

compounds can take up signi�cant amounts of hydrogen. Consequently, the insertion of electron-rich

semimetals like selenium and arsenic, and an increase in VEC relating thereto, inhibits a hydrogenation

of these compounds. Solely Pd5InSe forms a hydride, but only by decomposition into palladium

selenides and InPd3 that is subsequently hydrogenated.

Furthermore, the catalytic properties of Pd11Bi2Se2 for the semi-hydrogenation of acetylene to

ethylene are covered.

4.1. Pt5TlAs type compounds

The isotypic compounds Pd5CdSe, Pd5HgSe, Pd5CdAs, Pd5InAs, Pd5TlAs and Pd5InP do not show

any reaction towards hydrogen (see [5] in Chapter 12 and [6] in Chapter 13) despite the relation

of Pt5TlAs type structures to ccp [93]. These structures consit of alternating layers of face-sharing

MPd12 cuboctahedra and layers of selenium, arsenic or phosphorus atoms (Fig. 4.1.1, left). Hence,

only [MPd5] octahedral voids exist, which are less suitable for hydrogen incorporation (see Section 3.1).

A change of structure for Pd5CdSe, Pd5HgSe, Pd5CdAs, Pd5InAs, Pd5TlAs and Pd5InP was not

observed, however, Pd5InSe forms InPd3Hx during hydrogenation.

This hydride formation was indirectly proven by the investigation of thermal decompostion of

Pd5InSe by DTA and temperature-resolved XRPD (see [5] in Chapter 12). Pd5InSe reacts at 798 K

to Pd8In2Se and a liquid phase (2Pd + Se)(l) due to the eutectic (see Pd-Se phase diagram [214]).

The stacking sequence in Pd8In2Se is di�erent to Pt5TlAs isotypes with double layers of face linked

MPd12 cuboctahedra between the selenium layers (Fig. 4.1.1). Pd8In2Se decomposes further at 849 K

to InPd3 and an additional amount of (2Pd + Se)(l). This liquid phase can be indirectly evidenced

by crystallizing Pd34Se11, Pd7Se4 and Pd17Se15 due to quenching according to the Pd-Se phase dia-

gram [122]. Hysteresis for both reactions are observed upon cooling, where the reverse reaction from

InPd3 to Pd8In2Se takes place at 852 K and to Pd5InSe at 624 K. These reactions clarify the formation

of InPd3Hx from Pd5InSe or Pd8In2Se at moderate temperatures under hydrogen pressure.

4.2. Pd11Bi2Se2

Reaction mixtures with the molar ratio 5:1:1 of palladium to bismuth to selenium were investigated to

maximize the VEC in ternary palladium-rich systems with a metal and a semimetal. Phase analysis of

measured XRPD data show that the re�ections of most intensity match with the previously reported
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4. Ternary palladium-rich intermetallics as possible precursor for metal hydrides

Figure 4.1.1.: Reaction from Pd5InSe to Pd8In2Se to InPd3 by heating. One unit cell of each struc-

ture is displayed (orange cell edges). Blocks of selenium layers and adjacent Pd atoms

(2Pd + Se) are eluted (red boxes) in series from Pd5InSe to InPd3 and InPd12 cuboc-

tahedra (blue polyhedra) are stacked.

Pd3Bi0.6Se0.4 (BiF3 type) [215]. However, superstructure re�ections were observed, which cannot

be explained with this model. The formation of single crystals enabled the structure solution of

Pd11Bi2Se2 by single crystal X-ray di�raction (see [7] in Chapter 14). Samples with high phase

purity of this compound can be yielded by synthesis with stoichiometric amounts of the elements.

Pd11Bi2Se2 crystallizes in a 4 x 4 x 4 superstructure of the W type and is similar to the Li13In3
type. One crystallographic site of Li13In3 type (Wycko� position 8b) is empty in Pd11Bi2Se2 and, as a

consequence, the sourrounding atoms shift towards the void. Therefore, this compound is not isotypic

to Li13In3 type. Furthermore, Pd11Bi2Se2 is also a 2 x 2 x 2 superstructure of the BiF3 type which

was suggested for Pd3Bi0.6Se0.4. In contrast to Bi and Se atoms of Pd3Bi0.6Se0.4 forming a ccp with

statistical distribution, Bi and Se atoms of Pd11Bi2Se2 are ordered. The octahedral and tetrahedral

sites of these ccp of Bi and Se atoms are occupied by palladium, but in the case of Pd11Bi2Se2
only 5/8 of tetrahedral sites are occupied generating voids with an ordered distribution. The crystal

chemical formula (Pd3)[o]4(Pd1)[t]6(Pd2)[t]�[t]Bi2Se2 describes the structure in detail. Alternatively,

the structure can be described by the classical ABC notation of close-packed structures. The atoms

of Pd11Bi2Se2 are stacked as Aβ3/4γαBγα'β3/4Cα3/4βγAβγ'α3/4Bγ3/4αβCαβ'γ3/4 where the packing is

made by Bi and Se atoms (Roman letters). The octahedral voids (middle Greek letters) are occupied

by Pd3 atoms that are shifted to the upper or lower layer. The latter is marked with quote. The

tetrahedral voids (outer Greek letters) are either occupied by 1/4 Pd2 and 3/4 Pd1 atoms or only by
3/4 Pd1 atoms. This stacking is similar to them of the BiF3 type (AβγαBγαβCαβγ). Therefore

it is likely, that Pd11Bi2Se2 was mistaken for the proposed Pd3Bi0.6Se0.4 (BiF3 type) [215] and the

ordering in the crystal structure was overseen.

This compound is stable against air, water, many organic solvents and even concentrated hydrochlo-

ric acid. Furthermore, Pd11Bi2Se2 has a negligible e�ective magnetic moment of 0.01 µB per palladium

atom and is quite likely a poor metal, inferred by a pseudo-gap at the Fermi level in the density of

states. The region close to the Fermi level is dominated by almost �lled Pd 4d-states, which is also

known for other palladium-rich compounds. The hydrogenation properties of Pd11Bi2Se2 were tested
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4.2. Pd11Bi2Se2

Figure 4.2.1.: The ordered void (green polyhedra) in the structure of Pd11Bi2Se2 as a suitable hydrogen

position (H*).

by in situ DSC and afterwards XRPD. No hydrogen uptake was detected despite of the high propor-

tion of palladium and promising voids in the structure (Fig. 4.2.1). An assumed site for hydrogen

incorporation was the ordered interstice of the structure, which is tetrahedrally surrounded by palla-

dium atoms (d(�-Pd) = 1.974 Å) and additional surrounded by four Bi atoms (d(�-Bi) = 2.704 Å)

forming a second tetrahedron.

4.2.1. Catalytic investigations of the semi-hydrogenation of acetylen

Pd11Bi2Se2 is interesting for hydrogenation catalysis, because of the absence of hydride formation

under hydrogen pressure and heating. Therefore, catalytical investigation on the semi-hydrogenation

of acetylene to ethylene with Pd11Bi2Se2 as catalyst were executed Chapter 18. The catalysis at

437 K with Pd11Bi2Se2 is very selective to ethylene with 90 to 95 %, whereby the selectivity to ethane

is below 10 % and to C4Hx below 5 %. This high selectivity to ethylene is comparable with them

of PdZn (90 %) [216] and even higher as them of PdGa (75 %) [217] and Pd2Ga (74 %) [218] as

catalyst materials. However, the catalysis with Pd11Bi2Se2 has only a maximum conversion of 46 %

(after 24.5 h) which is much lower as those of the mentioned materials (> 85 %), [216�218] and

starts only after 7.5 h. X-ray photoelectron spectroscopy (XPS) measurements before and after the

catalytic investigation show that a bismuth oxide phase on the surface is reduced during the catalytic

experiment. The reduction of the bismuth oxide phase on the compound has a long duration, due to

low hydrogen di�usion processes. In comparison, the complete reduction of pure α-Bi2O3 by hydrogen

has a duration of 18 h at 523 K [219].
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4. Ternary palladium-rich intermetallics as possible precursor for metal hydrides

4.3. Half-antiperovskites

Pd3Bi2Se2 is not a palladium-rich compound, however, strongly distorted [BiPd5] octahedral voids

in its structure attract interest for hydrogenation investigations. Pd3Bi2Se2 crystallizes in Ni3Bi2S2
(parkerite) type [220], which is a 2 x 2 x 2 superstructure of the anti-perovskite type. Only half of

the Pd sites of a cubic anti-perovskite type are orderly occupied forming stair like layers of edge-

sharing square planar [PdBi4] units (Fig. 4.3.1). Thus, strongly distorted [BiPd5] octahedral voids are

formed, that are capped by two selenium atoms and edge-sharing within the layers. Although strongly

compressed octahedral interstices (d(Bi-Pd) = 3.059 Å, perpendicular to the layers [221]) make a

hydrogen uptake unlikely, an imaginable elongation by hydrogenation was a reason for investigating

the hydrogenation properties of Pd3Bi2Se2. However, no reaction of this half-antiperovskite towards

hydrogen was observed using in situ DSC and afterwards XRPD (see [5] in Chapter 12).

Figure 4.3.1.: Structure of the half-antiperovskite Pd3Bi2Se2 containing stair like layers of edge-sharing

square planar [PdBi4] units (light pink planes) and strongly distorted twofold capped

[BiPd5Se2] octahedral voids along the layers (green polyhedra), which are suitable hy-

drogen positions (H*). A cubic perovskite unit is highlighted with orange edges.
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5. Hydrides of the calcium-rhodium system

This chapter deals with ternary calcium-rhodium hydrides and the extension to representatives with

increasing rhodium content. The hydrogenation pathway of the Laves phase CaRh2 is discussed and

the related access to the perovskite CaRhH3 is shown.

Besides palladium containg hydrides, further noble metal containing hydrides are known. In contrast

to palladium, iridium, platinum or rhodium do not form binary hydrides. However, ternary hydrides,

especially complex transition metal hydrides are interesting, e. g., for catalysis [222], received attention

recently [223]. Hydrogen has a covalent bonding behavior in many noble metal hydrides, e. g., ternary

rhodium hydrides. A3RhH6 (A = Li [135], Na [136]) or M 2RhH5 (M = Ca [137], Sr [137], Eu [138])

form the 18 valence electron complexes [RhIIIH6]3- and [RhIH6·5/6]4-, respectively. The rhodium atom

is coordinated to six hydrogen atoms forming an isolated octahedron, but only 5/6 of the hydrogen

sites of [RhIH6·5/6]4- are occupied statistically. The hydrogen bonding behavior can be switched to be

more metallic with increasing content of the transition metal, as shown for ternary palladium hydrides.

Welf Bronger and Ludger Breil showed such as transition of hydrides in the Ca-Rh system with

the hydrides Ca2RhH5.5, Ca8Rh5H25 and Ca6Rh8H24 [224]. The RhH6 octahedra get connected with

increasing rhodium content and a maximum connection is reached in the perovskite type structure

(Fig. 5.0.1). However, no hydride CaRhHx was known, yet, despite of existing perovskite-type hy-

drides with other noble metals like CaNiH3 [225] or the defect perovskite-type hydride CaPdH2 [226].

CaRhHx is not accessible with rhodium and calcium hydride under hydrogen pressure [224]. Fur-

thermore, calculations of CaRhH in a distorted orthorhombic structure isotypic to MgRhH reached

no convergence [141]. However, CaRhH3 is accessible through the hydrogenation of the Laves phase

CaRh2 (see Chapter 15 in [8]).

In situ investigations show that the hydrogenation of the Laves phase CaRh2 results in three di�erent

hydride phases. Firstly, the cubic Laves phase α-CaRh2H0.05 (ZrCr2H3.08 type), then the orthorhombic

β-CaRh2H3.9 (own structure type) is formed and �nally, γ-CaRh2H3.2 (β-CaRh2H3.9 type) is observed

during the dehydrogenation of the β-phase. β-CaRh2H3.9 decomposes at 480 K under 5.0 MPa

hydrogen pressure to the perovskite-type CaRhH3 and nano-crystalline rhodium. This exothermic

reaction is kinetically controlled. A direct synthesis from α-CaRh2H0.05 to the perovskite-type hydride

and rhodium is kinetically hindered, and was only observed at 723 K.

The interatomic Rh-H distances of hydrides in the calcium-rhodium system are consistent with

each other and range from 1.55 - 1.91 Å. However the interatomic Rh-Rh-distances decrease with

increasing rhodium content. Ca2RhH5.5 has mostly covalent Rh-H bonds and long Rh-Rh distances

(d = 5.129 Å) [227] that makes interaction very unlikely. The other hydrides in the calcium rhodium

system contain shorter Rh-Rh distances (d(Rh-RH) < 3.65 Å) [8, 224] indicating a more metallic

bonding character. Furthermore, the VEC and the molar volume increment V (H) decrases in the

series CaH2 - Ca2RhH5.5 - Ca8Rh5H25 - Ca6Rh8H24 - CaRhH3 - β-CaRh2H3.9 - γ-CaRh2H3.2 from

1.33 to 0.84 and 7.58 to 2.78 cm3 mol-1, respectively. Thus, the hydrogen bonding character can be

a�ected by variation of the noble metal content as observed for the hydrides of the europium-palladium

and magnesium-palladium systems (see Section 1.2 and Chapter 3, respectively).
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5. Hydrides of the calcium-rhodium system

Figure 5.0.1.: Hydrides of the calcium rhodium system with RhH6 units (grey polyhedra) [8,224,227].

The level of corner connectivity (lcc) of RhH6 units increase with increasing rhodium

amount (from left to right: lccCa2RhH5.5=0, lccCa8Rh5H25 = 2.67, lccCa6Rh8H24 = 4,

lccCaRhH3 = lccβ-CaRh2H3.9 = 6). The RhH6 octahedra of β-CaRh2H3.9 are strongly

distorted (bottom, right)

5.1. Laves phase hydrides CaRh2Hx

During the hydrogenation and dehydrogenation of the Laves phase CaRh2 three phases are observed

(see [8] in Chapter 15). The cubic α-CaRh2H0.05 crytallizes in the ZrCr2H3.08 type structure. The

hydrogen content was estimated by the assumption that the volume expands by 5 % per incorporated

hydrogen atom [113]. The position of the hydrogen atom is not determined by neutron di�raction

due to the low hydrogen content, but the lattice parameter of α-CaRh2H0.05 (a = 7.5308(12) Å) is

signi�cant smaller than the benchmark value of 7.7 Å predicting a preferred occupation by hydrogen

of the 96g site [228]. This site has a [2+2] coordination to two calcium and two rhodium atoms which

form a tetrahedron. This hydrogen position is supported by the coordination surrounding of hydrogen

in the β-phase.

In the orthorhombic distorted structure of β-CaRh2H3.9 hydrogen occupies distorted tetrahedral

[Ca2Rh2] and trigonal bypyramidal [Ca3Rh2] voids. The formation of HA2M 2 tetrahedra is well

known for Laves phases, but trigonal bipyramids are more common in other hydrids, e. g., AlB2

related hydrides such as Be2ZrH1.5 [229] and ThNi2H2.6 [230]. Fig. 5.1.1 shows the structual relation

of the β-CaRh2H3.9 type to the cubic Laves phase. The Kagomé lattice of the β-phase is distorted

and the calcium atom chains are tilted against each other, but the similarity to cubic Laves phase

is clearly visible. The relation is also shown by group-subgroup relationship, however, not all of

the genarated hydrogen sites are occupied. In additon, some hydrogen atoms of the β-phase occupy
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5.2. Perovskite-type hydride CaRhH3

Figure 5.1.1.: Comparison of the structures of the cubic Laves phase CaRh2 and the orthorhombic

β-CaRh2H3.9 with regard to the Kagomé lattice. Hydrogen atoms are not pictured for

reason of clarity.

site which are not generated from symmetry reduction from the α-phase. These intermediate site is

surrounded by the distorted trigonal bipyramid and is located between two empty sites generated by

the group-subgroup relationship. The hydrogen amount determined by in situ neutron di�raction was

con�rmed by hydrogen sorption experiments yielding in the formula β-CaRh2H3.8(2). This content is

already reached under 0.1 MPa hydrogen pressure and is stable under applied vacuum.

During dehydrogenation from the β- to the α-phase, γ-CaRh2H3.2 was observed crystallizing in

β-CaRh2H3.9 type. Both phases di�er in lattice parameters, hydrogen content and a miscibility gap

between them is likely. This phase was not observed in the hydrogenation process and was only

detected by in situ neutron powder di�raction.

5.2. Perovskite-type hydride CaRhH3

The perovskite-structure is well known and attracts interest for many application. Solar cells [231,232]

superconductivity [233,234] and catalysis [235] are just a few examples of applications of compounds

with perovskite structure. CaRhH3 crystallizes in the cubic perovskite type and is formed by decom-

postion of β-CaRh2H3.9 at 500 K and 1.0 MPa hydrogen pressure (see [8] in Chapter 15). During the

formation, the hydrogen site is almost full occupied from the beginning, however, hydrogen is released

by increasing temperature, e. g., yielding CaRhD2.75(1) at 550 K. Elementary rhodium is formed with

a very small crystallite size as second phase during the decompostion of β-CaRh2H3.9. Estimation

of the crystallite sizes by Scherrer equation result in 2 nm for rhodium (determined on (111) re�ec-

tion) and 10 nm for CaRhD2.93(2) (determined on (200) re�ection). In contrast to the border case

MgRhH [141], CaRhH3 is suggested to be largely a metallic hydride based on molar volume increment

calculations and interatomic Rh-Rh distances (d = 3.6512(2)Å) [8].
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6. Conclusion

The compounds within this work were obtained by hard and soft chemistry. The intermetallic com-

pounds MPd≥2 (M = Mg, Zn, Sn, Pb, Bi) were mainly synthesized at high annealing temperatures,

however the use of mineralizing agents enabled milder conditions. MgPd3 absorbs hydrogen near am-

bient conditions. In contrast, BiPd3 needed high temperatures and pressures for hydride formation.

In addition, in situ investigations of the reaction pathways were done and unknown intermediates

characterized. They show the importance of such methods to understand and improve reactions. In

the case of BiPd3, it has been shown that a neglible hydrogen absorption is su�cient to change the

stacking sequence of hexagonal layers in closed packings. [Pd6] octahedra are formed as a suitable co-

ordination surrounding for hydrogen. No intermediates were observed during its hydrogenation. The

coordination surrounding also in�uences in the hydrogenation of MgPd3. The interstices of MgPd3
are not occupied simultaneously during its hydrogenation. First of all, [Pd6] and [MgPd5] octahedral

voids are occupied. The consequent volume expansion increases the [Mg2Pd4] voids which are sub-

sequently occupied by hydrogen. This shows the preference of metallic Pd-H, but the possibility of

Mg-H interactions as well. In contrast to MPd2 compounds (M = Zn, Sn), MgPd2 absorbs hydrogen.

These structures do not contain [Pd6], but strongly distorted [MPd5] octahedral voids. During the

hydrogenation of MgPd2 the unit cell volume increases anisotropically because HMgPd5 octahedra

are formed and its level of distortion decreases. The reaction enthalpy of this hydrogenation is similar

to the standard entropy of molecular hydrogen multiplied by the ambient temperature. Therefore,

MgPd2 absorbs hydrogen at mild and releases it at ambient conditions. MgPd2H also partially releases

hydrogen at hydrogen pressure and increasing temperatures forming MgPd2H0.2, before decompos-

ing into cubic MgPd3Hx and MgH2. The introduction of magnesium in such systems increases the

probability of a hydride formation. However, the stability of the hydrides decreases with increasing

magnesium content. This knowledge can be used in searching for further hydrides.

It is interesting to note that most structures of palladium-rich hydrides crystallize in variants of the

cubic closed packing (ccp). Furthermore, it was shown that the amount of absorbed hydrogen depends

on the metal atom which is not in the �rst coordination sphere of hydrogen. The uptake depends

more on electronic than geometric aspects of this metal atom. A hydrogen absorption is promoted

if the metal has a similar electronegativity to and a greater radius than palladium. Therefore, the

investigated hydrides SnPd3H0.14, PbPd3H0.13 and BiPd3H0.2 absorb less hydrogen than the known

TlPd3H. In addition, an increase of the valence electron concentration (VEC ) by introduction of

electron-rich semi-metals hinders a hydrogen absorption. The aforementioned compounds SnPd3 and

BiPd3 are just able to form hydrides. Thus, Pd11Bi2Se2 does not show a reaction towards hydrogen,

but it attracts interest in catalysis. Pd11Bi2Se2 exhibits a high selectivity to ethylene in the semi-

hydrogenation of acetylen. However, the conversion is low and the activity starts after a long time

due to a bismuth oxide layer on the surface.

Rhodium does not form a binary hydride in contrast to palladium. However, the Laves phase CaRh2
absorbs hydrogen and forms α-CaRh2H0.05, β-CaRh2H3.9 and γ-CaRh2H3.2 by hydrogen incorpora-

tion in tetrahedral [Ca2Rh2] and trigonal bipyramidal [Ca3Rh2] voids. The Laves phase hydrides

decompose kinetically controlled to the perovskite-type hydride CaRhH3 and nano-scaled rhodium.

The former is not accessible through direct synthesis of rhodium and calcium hydride. CaRhH3 does
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not form Rh-Rh bonds in contrast to the higher homologue MgPdH due to the increased ionic char-

acter of calcium. Thus, hydrides with metallic properties and covalent transition metal bonds are to

be expected by the introduction of magnesium.

This work presents with the aid of simple exemplary systems, palladium-rich and calcium-rhodium

hydrides that the use of magnesium or metals which are similar in electronegativity promote hydride

formation whereas an increase of VEC hinders it. The latter provides an opportunity for catalytic

materials.

45



7. Bibliography

[1] A. Götze, H. Kohlmann, Palladium hydride and hydrides of palladium-rich phases, in: Reference

Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 2017. doi:10.

1016/B978-0-12-409547-2.12204-8.

[2] A. Götze, H. Auer, R. Finger, T. C. Hansen, H. Kohlmann, A sapphire single-crystal cell for in

situ neutron powder di�raction of solid-gas reactions, Phys. B (2018) in pressdoi:10.1016/j.

physb.2017.11.024.

[3] A. Götze, T. C. Hansen, H. Kohlmann, The reversible hydrogenation of BiPd3 followed by in situ

methods and the crystal structure of PbPd3D0.13(1), J. Alloys Compd. 731 (2018) 1001�1008.

doi:10.1016/j.jallcom.2017.10.107.

[4] A. Götze, N. Zapp, A. J. Peretzki, V. Pomjakushin, T. C. Hansen, H. Kohlmann, In situ

hydrogenation and crystal chemistry studies of Co2Si type compounds MgPd2 and Pd2Zn, Z.

Anorg. Allg. Chem. 644 (2018) 367�375. doi:10.1002/zaac.201700434.

[5] A. Götze, J. M. Sander, H. Kohlmann, Crystal structures and hydrogenation properties of

palladium-rich compounds with elements from groups 12-16, Z. Naturforsch. 71B (2016) 503�

508. doi:10.1515/znb-2016-0003.

[6] E. Y. Zakharova, S. M. Kazakov, A. Götze, H. Kohlmann, A. N. Kuznetsov, Ternary palladium-

indium-phosphorus and platinum-indium-phosphorus compounds based on the Cu3Au-type:

structure, bonding, and properties, J. Solid State Chem.

[7] A. Götze, S. Schmorl, A. N. Kuznetsov, H. Kohlmann, Vacancy ordering in Pd11Bi2Se2 - Crystal

structure and properties, J. Alloys Compd. 735 (2018) 1914�1920. doi:10.1016/j.jallcom.

2017.11.300.

[8] A. Götze, J. Möllmer, H. Kohlmann, From Laves phase CaRh2 to the perovskite CaRhH3 - in

situ investigation of hydrogenation intermediates CaRh2Hx, Inorg. Chem. (2018) submitted.

[9] H. Cavendish, XIX. Three papers, containing experiments on factitous air, Phil Trans. R. Soc.

London 56 (1766) 141�184. doi:10.1098/rstl.1766.0019.

[10] E. Wigner, H. B. Huntington, On the possibility of a metallic modi�cation of hydrogen, J. Chem.

Phys. 3 (1935) 764�770. doi:10.1063/1.1749590.

[11] J. McMinis, R. C. Clay, D. Lee, M. A. Morales, Molecular to atomic phase transition in hydrogen

under high pressure, Phys. Rev. Lett. 114 (2015) 105305. doi:10.1103/PhysRevLett.114.

105305.

[12] S. Azadi, B. Monserrat, W. M. C. Foulkes, R. J. Needs, Dissociation of high-pressure solid

molecular hydrogen: A quantum Monte Carlo and anharmonic vibrational study, Phys. Rev.

Lett. 112 (2014) 165501. doi:10.1103/PhysRevLett.112.165501.

46

http://dx.doi.org/10.1016/B978-0-12-409547-2.12204-8
http://dx.doi.org/10.1016/B978-0-12-409547-2.12204-8
http://dx.doi.org/10.1016/j.physb.2017.11.024
http://dx.doi.org/10.1016/j.physb.2017.11.024
http://dx.doi.org/10.1016/j.jallcom.2017.10.107
http://dx.doi.org/10.1002/zaac.201700434
http://dx.doi.org/10.1515/znb-2016-0003
http://dx.doi.org/10.1016/j.jallcom.2017.11.300
http://dx.doi.org/10.1016/j.jallcom.2017.11.300
http://dx.doi.org/10.1098/rstl.1766.0019
http://dx.doi.org/10.1063/1.1749590
http://dx.doi.org/10.1103/PhysRevLett.114.105305
http://dx.doi.org/10.1103/PhysRevLett.114.105305
http://dx.doi.org/10.1103/PhysRevLett.112.165501


7. Bibliography

[13] E. Brovman, Y. Kagan, A. Kholas, Structure of metallic hydrogen at zero pressure, J. Exp.

Theor. Phys. 34 (1972) 1300�1315.

[14] D. Saumon, W. B. Hubbard, G. Chabrier, H. M. van Horn, The role of the molecular-metallic

transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs, Astrophys. J. 391

(1992) 827�831. doi:10.1086/171391.

[15] W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, R. S. Freedman,

Liquid metallic hydrogen and the structure of brown dwarfs and giant planets, Phys. Plasmas 4

(1997) 2011�2015. doi:10.1063/1.872570.

[16] R. P. Dias, I. F. Silvera, Observation of the Wigner-Huntington transition to metallic hydrogen,

Science 355 (2017) 715�718. doi:10.1126/science.aal1579.

[17] D. Castelvecchi, Hydrogen yet to prove it's metal, Nature 542 (2017) 17. doi:10.1038/nature.

2017.21379.

[18] T. Graham, On the absorption and dialytic separation of gases by colloid septa, Philos. Trans.

R. Soc. London 156 (1866) 399�439. doi:10.1016/0016-0032(67)90260-8.

[19] The Nobel Prize in Chemistry 2010 - Advanced information.

URL http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/advanced.

html

[20] J. Livage, Chimie douce: from shake-and-bake processing to wet chemistry, New J. Chem. 25

(2001) 1. doi:10.1039/B009233I.

[21] C. J. Brinker, G. W. Scherer, Sol-Gel Science: the physics and chemistry of sol-gel processing,

Academic Press, 1990.

[22] J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides, Prog. Solid State

Chem. 18 (1988) 259 � 341. doi:10.1016/0079-6786(88)90005-2.

[23] R. Schöllhorn, Reversible topotactic redox reactions of solids by electron/ion transfer, Angew.

Chem. Int. Ed. Engl. 19 (1980) 983�1003. doi:10.1002/anie.198009831.

[24] U. Müller, Topotactic reactions, in: Symmetry Relationships between Crystal Structures, Oxford

University Press, Oxford, 2013. doi:10.1093/acprof:oso/9780199669950.003.0016.

[25] J. H. Westbrook, Intermetallic compounds: their past and promise, Metall. Trans. A 8 (1977)

1327�1360. doi:10.1007/BF02642848.

[26] K. Buschow, P. Naastepad, F. Westendorp, Preparation of SmCo5 permanent magnets, J. Appl.

Phys. 40 (1969) 4029�4032. doi:10.1063/1.1657138.

[27] E. Pina, F. Palomares, M. Garcia, F. Cebollada, A. De Hoyos, J. Romero, A. Hernando, J. Gon-

zalez, Coercivity in SmCo hard magnetic �lms for MEMS applications, J. Magn. Magn. Mater.

290 (2005) 1234�1236. doi:10.1016/j.jmmm.2004.11.410.

[28] H. Raisigel, O. Cugat, J. Delamare, Permanent magnet planar micro-generators, Sens. Actua-

tors, A 130 (2006) 438�444. doi:10.1016/j.sna.2005.10.007.

[29] N. S. Stolo�, C. T. Liu, S. C. Deevi, Emerging applications of intermetallics, Intermetallics 8

(2000) 1313 � 1320. doi:10.1016/S0966-9795(00)00077-7.

47

http://dx.doi.org/10.1086/171391
http://dx.doi.org/10.1063/1.872570
http://dx.doi.org/10.1126/science.aal1579
http://dx.doi.org/10.1038/nature.2017.21379
http://dx.doi.org/10.1038/nature.2017.21379
http://dx.doi.org/10.1016/0016-0032(67)90260-8
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/advanced.html
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/advanced.html
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/advanced.html
http://dx.doi.org/10.1039/B009233I
http://dx.doi.org/10.1016/0079-6786(88)90005-2
http://dx.doi.org/10.1002/anie.198009831
http://dx.doi.org/10.1093/acprof:oso/9780199669950.003.0016
http://dx.doi.org/10.1007/BF02642848
http://dx.doi.org/10.1063/1.1657138
http://dx.doi.org/10.1016/j.jmmm.2004.11.410
http://dx.doi.org/10.1016/j.sna.2005.10.007
http://dx.doi.org/10.1016/S0966-9795(00)00077-7


7. Bibliography

[30] H. Ewe, E. W. Justi, K. Stephan, Elektrochemische Speicherung und Oxidation von Wassersto�

mit der intermetallischen Verbindung LaNi5, Energy Convers. 13 (1973) 109 � 113. doi:10.

1016/0013-7480(73)90085-5.

[31] H. A. C. M. Bruning, J. H. N. Van Vocht, F. F. Westendorp, H. Zijlstra, Battery with hydrogen

absorbing material of the formula LnM5, US Patent 4216274 (1980).

URL https://www.google.com/patents/US4216274

[32] E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vázquez-Alvarez, . C. D.

Angelo, F. J. DiSalvo, H. D. Abruna, Electrocatalytic activity of ordered intermetallic phases

for fuel cell applications, J. Am. Chem. Soc. 126 (2004) 4043�4049. doi:10.1021/ja038497a.

[33] S. Yamamatsu, Shokubai 43 (2001) 549.

[34] O. Loebich, Jr., W. Wopersnow, Zur Struktur der intermetallischen Verbindung LiPd2, J. Less-

Common Met. 63 (1979) 83�88.

[35] O. Loebich, Jr., C. J. Raub, Das Zustandsdiagramm Lithium-Palladium und die magnetischen

Eigenschaften der Li-Pd-Legierungen, J. Less-Common Met. 55 (1977) 67�76.

[36] C. Wannek, B. Harbrecht, Iod-katalysierte Herstellung von intermetallischen Verbindungen der

Edelmetalle: Die Kristallstrukturen von BePd2 und BePd3, Z. Anorg. Allg. Chem. 628 (2002)

1597�1601. doi:10.1002/1521-3749(200207)628:7<1597::AID-ZAAC1597>3.0.CO;2-A.

[37] L. E. Tergenius, T. Lundström, The Crystal Structure of Pd2B, J. Solid State Chem. 31 (1980)

361�367. doi:10.1016/0022-4596(80)90100-0.

[38] M. Beck, M. Ellner, Mittemeijer E. J., Powder di�raction data for borides Pd3B and Pd5B2 and

the formation of an amorphous boride Pd2B, Powder Di�r. 16 (2001) 98�101. doi:10.1154/1.

1351156.

[39] R. V. Gumeniuk, H. Borrmann, A. Leithe Jasper, Re�nement of the crystal structures of trinickel

boron, Ni3B, and tripalladium boron, Pd3B, Z. Kristallogr. (New Cryst. Struct.) (2006) 221�

425doi:10.1524/ncrs.2006.221.14.425.

[40] M. Beck, M. Ellner, Mittemeijer E. J., The structure of the palladium rich boride Pd5B (Pd16B3),

Z. Kristallogr. 216 (2001) 591�594. doi:10.1524/zkri.216.11.591.22480.

[41] A. Leineweber, T. G. Berger, A. Udyansky, V. N. Bugaev, V. Duppel, The incommensurate

crystal structure of the Pd5B1-z phase; B ordering driven by elastic interaction between B

atoms, Z. Kristallogr. - Cryst. Mater. 229 (2014) 353�367. doi:10.1515/zkri-2013-1710.

[42] T. G. Berger, A. Leineweber, Mittemeijer E. J., C. Sarbu, V. Duppel, P. Fischer, On the

formation and crystal structure of the Pd6B, Z. Kristallogr. 221 (2006) 450�463. doi:10.1524/

zkri.2006.221.5-7.450.

[43] T. J. Prior, P. D. Battle, Facile synthesis of interstitial metal nitrides with the �lled β-manganese

structure, J. Solid State Chem. 31 (2003) 361�367. doi:10.1016/S0022-4596(02)00171-8.

[44] J. Kumar, R. Saxena, Formation of NaCl- and Cu2O-type oxides of platinum and palladium

on carbon and alumina support �lms, J. Less-Common Met. 147 (1989) 59�71. doi:10.1016/

0022-5088(89)90148-3.

48

http://dx.doi.org/10.1016/0013-7480(73)90085-5
http://dx.doi.org/10.1016/0013-7480(73)90085-5
https://www.google.com/patents/US4216274
https://www.google.com/patents/US4216274
https://www.google.com/patents/US4216274
http://dx.doi.org/10.1021/ja038497a
http://dx.doi.org/10.1002/1521-3749(200207)628:7<1597::AID-ZAAC1597>3.0.CO;2-A
http://dx.doi.org/10.1016/0022-4596(80)90100-0
http://dx.doi.org/10.1154/1.1351156
http://dx.doi.org/10.1154/1.1351156
http://dx.doi.org/10.1524/ncrs.2006.221.14.425
http://dx.doi.org/10.1524/zkri.216.11.591.22480
http://dx.doi.org/10.1515/zkri-2013-1710
http://dx.doi.org/10.1524/zkri.2006.221.5-7.450
http://dx.doi.org/10.1524/zkri.2006.221.5-7.450
http://dx.doi.org/10.1016/S0022-4596(02)00171-8
http://dx.doi.org/10.1016/0022-5088(89)90148-3
http://dx.doi.org/10.1016/0022-5088(89)90148-3


7. Bibliography

[45] C. Wannek, B. Harbrecht, Structure and thermal stability of the new intermetallics MgPd2,

MgPd3, and Mg3Pd5 and the kinetics of the iodine-catalyzed formation of MgPd2, J. Solid

State Chem. 159 (2001) 113�120. doi:10.1006/jssc.2001.9138.

[46] H. Kohlmann, G. Renaudin, K. Yvon, C. Wannek, B. Harbrecht, Hydrogen-induced atomic

rearrangement in MgPd3, J. Solid State Chem. 178 (2005) 1292�1300. doi:10.1016/j.jssc.

2005.02.001.

[47] L. E. Edshammar, Björnstjerna V., The crystal structure of Pd2Al, Acta Chem. Scand. 17 (1963)

1803.

[48] C. Wannek, B. Harbrecht, Iodine-promoted synthesis of structurally ordered AlPd5, Z. Anorg.

Allg. Chem. 633 (2007) 1397�1402. doi:10.1002/zaac.200700078.

[49] A. Nylund, Some notes on the palladium-silicon system, Acta Chem. Scand. 20 (1966) 2381�

2386.

[50] B. Aronsson, A. Nylund, The crystal structure of Pd3Si, Acta Chem. Scand. 14 (1960) 1011�

1018.

[51] Y. Andersson, The structural properties of Pd9Si2, Chem. Scr. 28 (1988) 125�127.

[52] T. Matkovi¢, K. Schubert, Kristallstruktur von Pd7P3, J. Less-Common Met. 55 (1977) 177�184.

doi:10.1016/0022-5088(77)90190-4.

[53] L. O. Gullman, X-ray di�raction and thermo-analytical investigation of the palladium-

phosphorus system, J. Less-Common Met. 11 (1966) 157�167. doi:10.1016/0022-5088(66)

90002-6.

[54] Y. Andersson, S. Rundqvist, R. Tellgren, J. O. Thomas, T. B. Flanagan, Neutron powder

di�raction investigation of pure and deuterated palladium phosphide Pd6P, Acta Crystallogr.

37B (1981) 1965�1972. doi:10.1107/S0567740881007784.

[55] Y. Andersson, The crystal structure of Pd15P2, Acta Chem. Scand. 31 (1977) 354�358.

[56] C. Romming, E. Rost, Crystal structure of the phase Pd32S14, Acta Chem. Scand. A 30 (1976)

425�428.

[57] E. Rost, E. Vestersjo, The crystal structure of the high temperature phase Pd3S, Acta Chem.

Scand. 22 (1968) 819�826.

[58] F. Grønvold, E. Røst, The crystal structures of Pd4Se and Pd4S, Acta Crystallogr. 15 (1962)

11�13. doi:10.1107/S0365110X62000031.

[59] E. A. Wood, V. B. Compton, Laves-phase compounds of alkaline earths and noble metals, Acta

Crystallogr. 11 (1958) 429�433. doi:10.1107/S0365110X58001134.

[60] J. Mejbar, M. Notin, A new CaCu5-structure in the (Ca, Pd) system, Scr. Metall. Mater. 24

(1990) 1697�1700. doi:10.1016/0956-716X(90)90531-K.

[61] C. Wannek, B. Harbrecht, Phase equlibria in the palladium-rich part of the gallium-palladium

system. The crystal structure of Ga3Pd7 and Ga1-xPd2+x, J. Alloys Compd. 316 (2001) 99�106.

doi:10.1016/S0925-8388(00)01511-5.

[62] K. Khala�, K. Schubert, Kristallstruktur von Pd5Ga2, J. Less-Common Met. 37 (1974) 129�140.

doi:10.1016/0022-5088(74)90014-9.

49

http://dx.doi.org/10.1006/jssc.2001.9138
http://dx.doi.org/10.1016/j.jssc.2005.02.001
http://dx.doi.org/10.1016/j.jssc.2005.02.001
http://dx.doi.org/10.1002/zaac.200700078
http://dx.doi.org/10.1016/0022-5088(77)90190-4
http://dx.doi.org/10.1016/0022-5088(66)90002-6
http://dx.doi.org/10.1016/0022-5088(66)90002-6
http://dx.doi.org/10.1107/S0567740881007784
http://dx.doi.org/10.1107/S0365110X62000031
http://dx.doi.org/10.1107/S0365110X58001134
http://dx.doi.org/10.1016/0956-716X(90)90531-K
http://dx.doi.org/10.1016/S0925-8388(00)01511-5
http://dx.doi.org/10.1016/0022-5088(74)90014-9


7. Bibliography

[63] C. Wannek, B. Harbrecht, Die Kristallstruktur von Ga5Pd13 � eine niedersymmetrische Ord-

nungsvariante der kubisch dichtesten Kugelpackung, Z. Anorg. Allg. Chem. 626 (2000) 1540�

1544. doi:10.1002/1521-3749(200007)626:7<1540::AID-ZAAC1540>3.0.CO;2-T.

[64] W. Wopersnow, K. Schubert, Nickel-palladium-germanium alloys, J. Less-Common Met. 52

(1977) 1�12. doi:10.1016/0022-5088(77)90230-2.

[65] T. Matkovi¢, W. Wopersnow, K. Schubert, Kristallstruktur von Pd21Ge8, J. Less-Common Met.

56 (1977) 69�75. doi:10.1016/0022-5088(77)90219-3.

[66] W. Wopersnow, K. Schubert, Kristallstruktur von Pd25Ge9, J. Less-Common Met. 41 (1975)

97�103. doi:10.1016/0022-5088(75)90097-1.

[67] T. Matkovi¢, K. Schubert, Kristallstruktur von Pd5As und Pd5Ge, J. Less-Common Met. 58

(1978) 1�6. doi:10.1016/0022-5088(78)90078-4.

[68] G. S. Saini, L. D. Calvert, R. D. Heyding, J. B. Taylor, Arsenides of the transition metals: VII.

The palladium�arsenic system, Can. J. Chem. 42 (1964) 620�629. doi:10.1139/v64-091.

[69] U. Baelz, K. Schubert, Kristallstruktur von Pd2As(r) und Pd2Sb, J. Less-Common Met. 19

(1969) 300�304. doi:10.1016/0022-5088(69)90111-8.

[70] G. S. Saini, L. D. Calvert, J. B. Taylor, Compounds of the type M5X2: Pd5As2, Ni5Si2, and

Ni5P2, Can. J. Chem. 42 (1964) 1511�1517. doi:10.1139/v64-233.

[71] H. Kohlmann, M. Vasseur, A. Sayede, G. Lefevre, J. M. Sander, S. Doyle, Crystal structure

and hydrogenation properties of Pd5As, J. Alloys Compd. 664 (2016) 256�265. doi:10.1016/

j.jallcom.2015.12.039.

[72] S. Sato, T. Takabatake, M. Ishikawa, Structures of superconducting palladium selenides, Pd7Se2
and Pd34Se11, Acta Crystallogr. C 45 (1989) 1�3. doi:10.1107/S0108270188009825.

[73] N. Harmsen, T. Heumann, Magnetische und röntgenographische Untersuchungen an der

Legierungsreihe SrAg5�SrPd5, Monatsh. Chem. 102 (1971) 1442�1454. doi:10.1007/

BF00917201.

[74] H. Kohlmann, C. Ritter, Re�nement of the crystal structures of palladium rich In-Pd compounds

by X-ray and neutron powder di�raction, Z. Naturforsch. 62B (2007) 929�934. doi:10.1515/

znb-2007-0709.

[75] H. Kohlmann, C. Ritter, Reaction pathways in the formation of intermetallic InPd3 polymorphs,

Z. Anorg. Allg. Chem. 635 (2009) 1573�1579. doi:10.1002/zaac.20090005.

[76] H. Kohlmann, Hydrogenation of palladium rich compounds of aluminium, gallium and indium,

J. Solid State Chem. 183 (2010) 367�372. doi:10.1016/j.jssc.2009.11.029.

[77] K. Page, C. S. Schade, J. Zhang, P. J. Chupas, K. W. Chapman, T. Pro�en, A. K. Cheetham,

R. Seshadri, Preparation and characterization of Pd2Sn nanoparticles, Mater. Res. Bull. 42

(2007) 1969�1975. doi:10.1016/j.materresbull.2007.05.010.

[78] M. Ellner, Zusammenhang zwischen strukturellen und thermodynamischen Eigenschaften bei

Phasen der Kupfer-Familie in T10-B4-Systemen, J. Less-Common Met. 78 (1981) 21�32. doi:

10.1016/0022-5088(81)90140-5.

50

http://dx.doi.org/10.1002/1521-3749(200007)626:7<1540::AID-ZAAC1540>3.0.CO;2-T
http://dx.doi.org/10.1016/0022-5088(77)90230-2
http://dx.doi.org/10.1016/0022-5088(77)90219-3
http://dx.doi.org/10.1016/0022-5088(75)90097-1
http://dx.doi.org/10.1016/0022-5088(78)90078-4
http://dx.doi.org/10.1139/v64-091
http://dx.doi.org/10.1016/0022-5088(69)90111-8
http://dx.doi.org/10.1139/v64-233
http://dx.doi.org/10.1016/j.jallcom.2015.12.039
http://dx.doi.org/10.1016/j.jallcom.2015.12.039
http://dx.doi.org/10.1107/S0108270188009825
http://dx.doi.org/10.1007/BF00917201
http://dx.doi.org/10.1007/BF00917201
http://dx.doi.org/10.1515/znb-2007-0709
http://dx.doi.org/10.1515/znb-2007-0709
http://dx.doi.org/10.1002/zaac.20090005
http://dx.doi.org/10.1016/j.jssc.2009.11.029
http://dx.doi.org/10.1016/j.materresbull.2007.05.010
http://dx.doi.org/10.1016/0022-5088(81)90140-5
http://dx.doi.org/10.1016/0022-5088(81)90140-5


7. Bibliography

[79] L. J. Cabri, T. T. Chen, Stibiopalladinite from the type locality, Am. Mineral. 61 (1976) 1249�

1254.

[80] W. Wopersnow, K. Schubert, Kristallstruktur von Pd8Sb3, J. Less-Common Met. 48 (1976)

79�87. doi:10.1016/0022-5088(76)90234-4.

[81] R. E. Marsh, The centrosymmetric-noncentrosymmetric ambiguity: some more examples, Acta

Crystallogr. A 50 (1994) 450�455. doi:10.1107/S0108767393012796.

[82] W. Wopersnow, K. Schubert, Kristallstruktur von Pd20Sb7 und Pd20Te7, J. Less-Common Met.

51 (1977) 35�44. doi:10.1016/0022-5088(77)90171-0.

[83] P. Matkovi¢, K. Schubert, Kristallstruktur von Pd9Te4, J. Less-Common Met. 58 (1978) 39�46.

doi:10.1016/0022-5088(78)90205-9.

[84] M. Janetzky, Palladiumreiche Telluride, Dissertation, Universität Marburg, Universität Marburg

(2008).

[85] M. Janetzky, B. Harbrecht, Crystal growth, structure and properties of the palladium-rich tel-

luride Pd13Te3, Z. Anorg. Allg. Chem. 632 (2006) 837�844. doi:10.1002/zaac.200500455.

[86] N. N. Zhuravlev, N. P. Esaulov, I. V. Rall, X-ray investigation of platinum-barium and

palladium-barium alloys in the region of Pt5Ba and Pd5Ba compositions, Sov. Phys. Crystallogr.

15 (1970) 315�316. doi:10.1007/BF00917201.

[87] S. Bhan, K. Schubert, Über die Struktur von Phasen mit Kupfer Unterstruktur in einigen T-B

Legierungen (T = Ni, Pd, Pt; B = Ga, In, Tl, Pb, Sb, Bi), J. Less-Common Met. 17 (1969)

73�90. doi:/10.1016/0022-5088(69)90038-1.

[88] N. Kurtzemann, H. Kohlmann, Crystal structure and formation of TlPd3 and its new hydride

TlPd3H, Z. Anorg. Allg. Chem. 636 (2010) 1032�1037. doi:10.1002/zaac.201000012.

[89] S. Bhan, T. Gödecke, P. K. Panday, K. Schubert, Über die Mischungen Palladium-Thallium

und Platin-Thallium, J. Less-Common Met. 16 (1968) 415�425. doi:10.1016/0022-5088(68)

90140-9.

[90] N. Sarah, K. Schubert, Kristallstruktur von Pd5Bi2, J. Less-Common Met. 63 (1979) 75�82.

doi:10.1016/0022-5088(79)90257-1.

[91] H. Schäfer, M. Trenkel, Der chemische Transport von Cu, Ag, Au, Ru, Rh, Pd, Os, Ir, Pt unter

Mitwirkung von Gaskomplexen. Al2Cl6, Fe2Cl6 oder Al2J6 als Komplexbildner, Z. Anorg. Allg.

Chem. 414 (1975) 137�150. doi:10.1002/zaac.19754140205.

[92] H.-B. Merker, H. Schäfer, B. Krebs, Neue PdxAly-Phasen und die Verbindung Pd5AlI2, Z.

Anorg. Allg. Chem. 462 (1980) 49�56. doi:10.1002/zaac.19804620106.

[93] A. Götze, P. Urban, O. Oeckler, H. Kohlmann, Synthesis and crystal structure of Pd5InSe, Z.

Naturforsch. 69B (2014) 417�422. doi:10.5560/znb.2014-3335.

[94] H. Bönnemann, R. M. Richards, Nanoscopic metal particles - Synthetic methods and potential

applications, European Journal of Inorganic Chemistry 2001 (2001) 2455�2480. doi:10.1002/

1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z.

51

http://dx.doi.org/10.1016/0022-5088(76)90234-4
http://dx.doi.org/10.1107/S0108767393012796
http://dx.doi.org/10.1016/0022-5088(77)90171-0
http://dx.doi.org/10.1016/0022-5088(78)90205-9
http://dx.doi.org/10.1002/zaac.200500455
http://dx.doi.org/10.1007/BF00917201
http://dx.doi.org//10.1016/0022-5088(69)90038-1
http://dx.doi.org/10.1002/zaac.201000012
http://dx.doi.org/10.1016/0022-5088(68)90140-9
http://dx.doi.org/10.1016/0022-5088(68)90140-9
http://dx.doi.org/10.1016/0022-5088(79)90257-1
http://dx.doi.org/10.1002/zaac.19754140205
http://dx.doi.org/10.1002/zaac.19804620106
http://dx.doi.org/10.5560/znb.2014-3335
http://dx.doi.org/10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z
http://dx.doi.org/10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z


7. Bibliography

[95] M. Heise, J.-H. Chang, R. Schönemann, T. Herrmannsdörfer, J. Wosnitza, M. Ruck, Full access

to nanoscale bismuth�palladium intermetallics by low-temperature syntheses, Chem. Mater. 26

(2014) 5640�5646. doi:10.1021/cm502315a.

[96] C. Koenig, Self consistent band structure of ordered ScPd3 and YPd3, Z. Phys. B: Condens.

Matter 50 (1983) 33�38. doi:10.1007/BF01307223.

[97] D.-H. Wu, H.-C. Wang, L.-T. Wei, R.-K. Pan, B.-Y. Tang, First-principles study of structural

stability and elastic properties of MgPd3 and its hydride, J. Magnesium Alloys 2 (2014) 165�174.

doi:10.1016/j.jma.2014.06.001.

[98] E. Y. Zakharova, S. M. Kazakov, A. A. Isaeva, A. M. Abakumov, G. van Tendeloo, A. N.

Kuznetsov, Pd5InSe and Pd8In2Se - New metal-rich homological selenides with 2D palladium-

indium fragments: synthesis, structure and bonding, J. Alloys Compd. 589 (2014) 48�55. doi:

10.1016/j.jallcom.2013.11.172.

[99] J. W. Cable, E. O. Wollan, W. C. Koehler, M. K. Wilkinson, Neutron di�raction investigations

of ferromagnetic palladium and iron group alloys, J. Appl. Phys. 33 (1962) 1340�1340. doi:

10.1063/1.1728719.

[100] A. Pandey, C. Mazumdar, R. Ranganathan, Magnetic behavior of binary intermetallic compound

YPd3, J. Alloys Compd. 476 (2009) 14�18. doi:10.1016/j.jallcom.2008.09.040.

[101] T. R. Marrero, E. A. Mason, Gaseous di�usion coe�cients, J. Phys. Chem. Ref. Data 1 (1972)

3�118. doi:10.1063/1.3253094.

[102] M. J. Assael, S. Mixafendi, W. A. Wakeham, The viscosity and thermal conductivity of normal

hydrogen in the limit of zero density, J. Phys. Chem. Ref. Data 15 (1986) 1315�1322. doi:

10.1063/1.555764.

[103] D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press,

Boca Raton, FL, 2005.

URL http://www.hbcpnetbase.com

[104] M. Felderho�, C. Weidenthaler, R. von Helmolt, U. Eberle, Hydrogen storage: the remaining

scienti�c and technological challenges, Phys. Chem. Chem. Phys. 9 (2007) 2643�2653. doi:

10.1039/B701563C.

[105] A. L. Allred, E. G. Rochow, A scale of electronegativity based on electrostatic force, J. Inorg.

Nucl. Chem. 5 (1958) 264�268. doi:10.1016/0022-1902(58)80003-2.

[106] A. N. R. Bos, K. R. Westerterp, Mechanism and kinetics of the selective hydrogenation of ethyne

and ethene, Chem. Eng. Process. 32 (1993) 1�7. doi:10.1016/0255-2701(93)87001-B.

[107] M. Baerns (Ed.), Basic Principles in Applied Catalysis, Springer Series in Chemical Physics,

volume 75, Springer, Berlin, Heidelberg, 2004. doi:10.1007/978-3-662-05981-4.

[108] J. T. Richardson, R. Scates, M. V. Twigg, X-ray di�raction study of nickel oxide reduction by

hydrogen, Appl. Catal., A 246 (2003) 137�150. doi:10.1016/S0926-860X(02)00669-5.

[109] K. V. Manukyan, A. G. Avetisyan, C. E. Shuck, H. A. Chatilyan, S. Rouvimov, S. L. Kharatyan,

A. S. Mukasyan, Nickel oxide reduction by hydrogen: kinetics and structural transformations,

J. Phys. Chem. C 119 (2015) 16131�16138. doi:10.1021/acs.jpcc.5b04313.

52

http://dx.doi.org/10.1021/cm502315a
http://dx.doi.org/10.1007/BF01307223
http://dx.doi.org/10.1016/j.jma.2014.06.001
http://dx.doi.org/10.1016/j.jallcom.2013.11.172
http://dx.doi.org/10.1016/j.jallcom.2013.11.172
http://dx.doi.org/10.1063/1.1728719
http://dx.doi.org/10.1063/1.1728719
http://dx.doi.org/10.1016/j.jallcom.2008.09.040
http://dx.doi.org/10.1063/1.3253094
http://dx.doi.org/10.1063/1.555764
http://dx.doi.org/10.1063/1.555764
http://www.hbcpnetbase.com
http://www.hbcpnetbase.com
http://dx.doi.org/10.1039/B701563C
http://dx.doi.org/10.1039/B701563C
http://dx.doi.org/10.1016/0022-1902(58)80003-2
http://dx.doi.org/10.1016/0255-2701(93)87001-B
http://dx.doi.org/10.1007/978-3-662-05981-4
http://dx.doi.org/10.1016/S0926-860X(02)00669-5
http://dx.doi.org/10.1021/acs.jpcc.5b04313


7. Bibliography

[110] F. Chen, Y. Mohassab, T. Jiang, H. Y. Sohn, Hydrogen reduction kinetics of hematite concen-

trate particles relevant to a novel �ash ironmaking process, Metall. Mater. Trans. B 46 (2015)

1133�1145. doi:10.1007/s11663-015-0332-z.

[111] H. Schulz, K. Ritapal, W. Bronger, W. Klemm, Über die Reaktion von Elementen der achten

Nebengruppe mit Oxiden unedler Metalle im Wassersto�strom, Z. Anorg. Allg. Chem. 357

(1968) 299�313. doi:10.1002/zaac.19683570418.

[112] C. A. Wurtz, Sur l' hydrure de cuivre, Ann. Chim 11 (1844) 250�252.

[113] H. Kohlmann, H. E. Fischer, K. Yvon, Europium palladium hydrides, Inorg. Chem. 40 (2001)

2608�2613. doi:10.1021/ic001225d.

[114] T. B. Flanagan, W. A. Oates, The palladium-hydrogen system, Annu. Rev. Mater. Sci. 21 (1991)

269�304.

[115] H. Wipf, Di�usion of hydrogen in metals, in: H. Wipf (Ed.), Hydrogen in Metals III, Vol. 73 of

Top. Appl. Phys., Springer, Berlin, Heidelberg, 1997, pp. 51�91. doi:10.1007/BFb0103401.

[116] T. Skoskiewicz, Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen

systems, Phys. Status Solidi A 11 (1972) K123�K126. doi:10.1002/pssa.2210110253.

[117] T. R. P. Gibb, Jr., J. MacMillan, R. J. Roy, The magnetic susceptibility of palladium hydride,

J. Phys. Chem. 70 (1966) 3024.

[118] R. Griessen, D. G. de Groot, E�ect of the anharmonicity and Debye-Waller factor on the super-

conductivity of PdHx and PdDx, Helv. Phys. Acta 55 (1982) 699�710.

[119] M. Gupta, L. Schlapbach, Electronic properties, in: L. Schlapbach (Ed.), Hydrogen in In-

termetallic Compounds I, Vol. 63 of Top. Appl. Phys., Springer, Berlin, 1988, pp. 139�217.

doi:10.1007/3540183337_12.

[120] B. M. Andreev, E. P. Magomedbekov, G. H. Sicking, Interaction of Hydrogen Isotopes with

Transition Metals and Intermetalic Compounds, Springer, Berlin, 1966.

[121] J. E. Worsham, Jr., M. K. Wilkinson, C. G. Shull, Neutron-di�raction observations on the

palladium-hydrogen and palladium-deuterium systems, J. Phys. Chem. Solids 3 (1957) 303�310.

doi:10.1016/0022-3697(57)90033-1.

[122] T. B. Massalski, H. Okamoto (Eds.), Binary alloy phase diagrams, ASM International, Materials

Park, Ohio, 1990.

[123] F. A. Lewis, The palladium-hydrogen system, part III: Alloy systems and hydrogen permeation,

Platinum Met. Rev. 26 (1982) 121�128.

[124] C. Stanitski, J. Tanaka, Ternary hydrides of calcium and strontium with palladium, J. Solid

State Chem. 4 (1972) 331�339. doi:10.1016/0022-4596(72)90145-4.

[125] E. Rönnebro, D. Noréus, M. Gupta, K. Kadir, B. Hauback, P. Lundqvist, The crystal

and electronic structure of CaPd3H, Mater. Res. Bull. 35 (2000) 315�323. doi:10.1016/

S0025-5408(00)00226-9.

[126] H. Kohlmann, N. Kurtzemann, R. Weihrich, T. Hansen, In situ neutron powder di�raction on

intermediate hydrides of MgPd3 in a novel sapphire gas pressure cell, Z. Anorg. Allg. Chem. 635

(2009) 2399�2405. doi:10.1002/zaac.200900336.

53

http://dx.doi.org/10.1007/s11663-015-0332-z
http://dx.doi.org/10.1002/zaac.19683570418
http://dx.doi.org/10.1021/ic001225d
http://dx.doi.org/10.1007/BFb0103401
http://dx.doi.org/10.1002/pssa.2210110253
http://dx.doi.org/10.1007/3540183337_12
http://dx.doi.org/10.1016/0022-3697(57)90033-1
http://dx.doi.org/10.1016/0022-4596(72)90145-4
http://dx.doi.org/10.1016/S0025-5408(00)00226-9
http://dx.doi.org/10.1016/S0025-5408(00)00226-9
http://dx.doi.org/10.1002/zaac.200900336


7. Bibliography

[127] H. Kohlmann, A. V. Skripov, A. V. Soloninin, T. J. Udovic, The anti-perovskite type hydride

InPd3H0.89, J. Solid State Chem. 183 (2010) 2461�2465. doi:10.1016/j.jssc.2010.08.015.

[128] S. Yamaguchi, M. Ohashi, T. Kajitani, K. Aoki, S. Ikeda, Distribution of hydrogen atoms in

YPd3Hx studied by neutron di�raction and inelastic neutron scattering, J. Alloys Compd. 253-

254 (1997) 308�312. doi:10.1016/S0925-8388(96)02945-3.

[129] P.-J. Ahlzén, Y. Andersson, R. Tellgren, D. Rodi¢, T. B. Flanagan, Y. Sakamoto, A neutron

powder di�raction study of Pd3MnDx, Z. Phys. Chem. (Muenchen, Ger.) 163 (1989) 213�218.

doi:10.1524/zpch.1989.163.Part_1.0213.

[130] H. Kohlmann, F. Müller, K. Stöwe, A. Zalga, H. P. Beck, Hydride formation in the intermetallic

compounds CePd3 and CeRh3, Z. Anorg. Allg. Chem. 635 (2009) 1407�1411. doi:10.1002/

zaac.200801356.

[131] N. Kunkel, J. Sander, N. Louis, Y. Pang, L. M. Dejon, F. Wagener, Y. N. Zang, A. Sayede,

M. Bauer, S. M., H. Kohlmann, Theoretical investigation of the hydrogenation induced atomic

rearrangements in palladium rich intermetallic compounds MPd3 (M = Mg, In, Tl), Eur. Phys.

J. 82B (2011) 1�6. doi:10.1140/epjb/e2011-10916-5.

[132] J. W. Turley, H. W. Rinn, Crystal structure of aluminum hydride, Inorg. Chem. 8 (1969) 18�22.

doi:10.1021/ic50071a005.

[133] New ternary and quaternary metal hydrides with K2PtCl6-type structures, author=Huang, B.

and Bonhomme, F. and Selvam, P. and Yvon, K. and Fischer, P., J. Less-Common Met. 171

(1991) 301�311. doi:10.1016/0022-5088(91)90152-T.

[134] J. J. Didisheim, P. Zolliker, K. Yvon, P. Fischer, J. Schefer, M. Gubelmann, A. F. Williams,

Dimagnesium iron (II) hydride, Mg2FeH6, containing octahedral FeH6
4- anions, Inorg. Chem.

23 (1984) 1953�1957. doi:10.1021/ic00181a032.

[135] W. Bronger, M. Gehlen, G. Au�ermann, Synthese und Struktur von Li3RhH6, einem ternären

Hydrid mit isolierten [RhH6]3--Oktaedern, Z. Anorg. Allg. Chem. 620 (1994) 1983�1985. doi:

10.1002/zaac.19946201124.

[136] W. Bronger, M. Gehlen, G. Au�ermann, Na3RhH6, Na3IrH6 und Li3IrH6, neue komplexe Hy-

dride mit isolierten [RhH6]3-- und [IrH6]3--Oktaedern, J. Alloys Compd. 176 (1991) 255�262.

doi:10.1016/0925-8388(91)90033-R.

[137] R. O. Moyer Jr., C. Stanitski, J. Tanaka, M. I. Kay, R. Kleinberg, Ternary hydrides of calcium

and strontium with iridium, rhodium and ruthenium, J. Solid State Chem. 3 (1971) 541�549.

doi:10.1016/0022-4596(71)90100-9.

[138] R. O. Moyer Jr., B. J. Burnim, R. Lindsay, Synthesis and structures of [Sr2-xEux]IrH5,

[Sr2-xEux]RhH5, [Ca2-xEux]IrH5, and Eu2RhH5, J. Solid State Chem. 121 (1996) 56�60. doi:

10.1006/jssc.1996.0008.

[139] W. Bronger, P. Müller, J. Kowalczyk, G. Au�ermann, Synthese und Struktur von Li3RhH4,

einem ternären Hydrid mit planaren [RhH4]3--Baueinheiten, J. Alloys Compd. 176 (1991) 263�

268. doi:10.1016/0925-8388(91)90034-S.

[140] F. Bonhomme, K. Yvon, P. Fischer, MgRhD1-x, a new interstitial deuteride containing square

planar [Rh4D4] rings with nearly linear Rh�D�Rh bridges, J. Alloys Compd. 186 (1992) 209�215.

doi:10.1016/0925-8388(92)90006-U.

54

http://dx.doi.org/10.1016/j.jssc.2010.08.015
http://dx.doi.org/10.1016/S0925-8388(96)02945-3
http://dx.doi.org/10.1524/zpch.1989.163.Part_1.0213
http://dx.doi.org/10.1002/zaac.200801356
http://dx.doi.org/10.1002/zaac.200801356
http://dx.doi.org/10.1140/epjb/e2011-10916-5
http://dx.doi.org/10.1021/ic50071a005
http://dx.doi.org/10.1016/0022-5088(91)90152-T
http://dx.doi.org/10.1021/ic00181a032
http://dx.doi.org/10.1002/zaac.19946201124
http://dx.doi.org/10.1002/zaac.19946201124
http://dx.doi.org/10.1016/0925-8388(91)90033-R
http://dx.doi.org/10.1016/0022-4596(71)90100-9
http://dx.doi.org/10.1006/jssc.1996.0008
http://dx.doi.org/10.1006/jssc.1996.0008
http://dx.doi.org/10.1016/0925-8388(91)90034-S
http://dx.doi.org/10.1016/0925-8388(92)90006-U


7. Bibliography

[141] J. N. Becker, J. Bauer, A. Giehr, P. I. Chu, N. Kunkel, M. Springborg, H. Kohlmann, Electronic

structure of ternary rhodium hydrides with lithium and magnesium, Inorg. Chem. 53 (2013)

1135�1143. doi:10.1021/ic402687p.

[142] W. Bronger, Die Raumchemie des Wassersto�s in Metallhydriden im Vergleich mit entsprechen-

den Fluoriden und Chloriden, Z. Anorg. Allg. Chem. 622 (1996) 9�16. doi:10.1002/zaac.

19966220103.

[143] M. Mintz, D. Hiershler, Z. Hadari, Systematic study of the hcp 
 fcc transitions in the heavier

LnH2-LnH3 systems, J. Less-Common Met. 48 (1976) 241�249. doi:10.1016/0022-5088(76)

90006-0.

[144] W. G. Bos, K. H. Gayer, The rare earth hydrides, J. Nucl. Mater. 18 (1966) 1�30. doi:

10.1016/0022-3115(66)90092-4.

[145] H. Kohlmann, Metal Hydrides, in: R. A. Meyers,(Ed.) Encyclopaedia of Physical Sciences and

Technology, vol. 9, 3rd ed, Academic Press, New York, 2002.

[146] X-Shape, Stoe & Cie GmbH, Darmstadt (Germany), 2005.

[147] X-Red32, Stoe & Cie GmbH, Darmstadt (Germany), 2005.

[148] G. M. Sheldrick, A short history of SHELX, Acta Crystallogr. A64 (2008) 112�122. doi:

10.1107/S2053229614024218.

[149] G. M. Sheldrick, SHELX-97 Manual, Universität Göttingen, 1997.

[150] L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër, P. Scardi, Rietveld re�nement guidelines,

J. Appl. Cryst. 32 (1999) 36�50. doi:10.1107/S0021889898009856.

[151] V. F. Sears, Neutron scattering lengths and cross sections, Neutron News 3 (1992) 26�37. doi:

10.1080/10448639208218770.

[152] T. C. Hansen, P. F. Henry, H. E. Fischer, J. Torregrossa, P. Convert, The D20 instrument at

the ILL: a versatile high-intensity two-axis neutron di�ractometer, Measurement Science and

Technology 19 (2008) 034001. doi:10.1088/0957-0233/19/3/034001.

[153] A. Franz, A. Hoser, E9: The �ne resolution powder di�ractometer (FIREPOD) at BER II,

Journal of large-scale research facilities JLSRF 3 (2017) A103. doi:10.17815/jlsrf-3-127.

[154] P. Fischer, G. Frey, M. Koch, M. Könnecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf,

R. Bürge, U. Greuter, S. Bondt, E. Berruyer, High-resolution powder di�ractometer HRPT for

thermal neutrons at SINQ, Phys. B 276-278 (2000) 146�147. doi:10.1016/S0921-4526(99)

01399-X.

[155] H. M. Rietveld, Line pro�les of neutron powder-di�raction peaks for structure re�nement, Acta

Crystallogr. 22 (1967) 151�152. doi:10.1107/S0365110X67000234.

[156] H. M. Rietveld, A pro�le re�nement method for nuclear and magnetic structures, J. Appl.

Crystallogr. 2 (1969) 65�71. doi:10.1107/S0021889869006558.

[157] J. Rodríguez-Carvajal, Fullprof: A program for rietveld re�nement and pattern matching anal-

ysis (2012).

[158] TOPAS, Bruker AXS.

URL www.bruker-axs.com

55

http://dx.doi.org/10.1021/ic402687p
http://dx.doi.org/10.1002/zaac.19966220103
http://dx.doi.org/10.1002/zaac.19966220103
http://dx.doi.org/10.1016/0022-5088(76)90006-0
http://dx.doi.org/10.1016/0022-5088(76)90006-0
http://dx.doi.org/10.1016/0022-3115(66)90092-4
http://dx.doi.org/10.1016/0022-3115(66)90092-4
http://dx.doi.org/10.1107/S2053229614024218
http://dx.doi.org/10.1107/S2053229614024218
http://dx.doi.org/10.1107/S0021889898009856
http://dx.doi.org/10.1080/10448639208218770
http://dx.doi.org/10.1080/10448639208218770
http://dx.doi.org/10.1088/0957-0233/19/3/034001
http://dx.doi.org/10.17815/jlsrf-3-127
http://dx.doi.org/10.1016/S0921-4526(99)01399-X
http://dx.doi.org/10.1016/S0921-4526(99)01399-X
http://dx.doi.org/10.1107/S0365110X67000234
http://dx.doi.org/10.1107/S0021889869006558
www.bruker-axs.com
www.bruker-axs.com


7. Bibliography

[159] Crystal Impact GbR, Pearson's crystal data (2007).

[160] FIZ Karlsruhe, Inorganic crystal structure database web (2018).

[161] R. A. Young, Introduction to the Rietveld method, in: The Rietveld Method, Oxford University

Press, Oxford, 1993, pp. 1�39.

[162] H. Auer, H. Kohlmann, In situ investigations on the formation and decomposition of KSiH3 and

CsSiH3, Z. Anorg. Allg. Chem. 643 (2017) 945�951. doi:10.1002/zaac.201700164.

[163] T. C. Hansen, H. Kohlmann, Chemical reactions followed by in situ neutron powder di�raction,

Z. Anorg. Allg. Chem. 640 (2014) 3044�3063. doi:10.1002/zaac.201400359.

[164] Universal Analysis 2000, TA Instruments.

[165] G. Kresse, J. Furthmüller, Vienna ab-initio simulation package (vasp).

URL http://vasp.at

[166] G. Kresse, J. Furthmüller, E�ciency of ab-initio total energy calculations for metals and

semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15�50. doi:

10.1016/0927-0256(96)00008-0.

[167] G. Kresse, J. Furthmüller, E�cient iterative schemes for ab initio total-energy calculations using

a plane-wave basis set, Phys. Rev. B 54 (1996) 11169�11186. doi:10.1103/PhysRevB.54.11169.

[168] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave

method, Phys. Rev. B 59 (1999) 1758�1775. doi:10.1103/PhysRevB.59.1758.

[169] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953�17979. doi:

10.1103/PhysRevB.50.17953.

[170] J. P. Perdew, J. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phy.

Rev. Lett. 77 (1996) 3865�3868. doi:10.1103/PhysRevLett.77.3865.

[171] W. Biltz, Raumchemie der festen Sto�e, L. Voss, Leipzig, 1934.

[172] R. T. Azuah, L. R. Kneller, Y. Qiu, P. L. Tregenna-Piggott, C. M. Brown, J. R. Copley, R. M.

Dimeo, DAVE: a comprehensive software suite for the reduction, visualization, and analysis of

low energy neutron spectroscopic data, J. Res. Natl. Inst. Stand. Technol. 114 (2009) 341�358.

[173] Y. Andersson, S. Rundqvist, R. Tellgren, J. O. Thomas, T. B. Flanagan, A neutron di�raction

investigation of deuterated Pd3P0.80, J. Solid State Chem. 32 (1980) 321�327. doi:10.1016/

S0022-4596(80)80026-0.

[174] Y. Andersson, S. Rundqvist, R. Tellgren, T. B. Flanagan, A neutron powder di�raction

investigation of deuterated Pd15P2, Z. Phys. Chem. (Muenchen, Ger.) 145 (1985) 43�49.

doi:10.1524/zpch.1985.145.1_2.043.

[175] A. C. Lawson, J. W. Conant, R. Robertson, R. K. Rohwer, V. A. Young, C. L. Talcott, Debye-

Waller factors of PdDx materials by neutron powder di�raction, J. Alloys Compd. 183 (1992)

174�180. doi:10.1016/0925-8388(92)90742-R.

[176] S. Yamaguchi, Z.-Q. Li, R.-T. Fu, Y. Kawazoe, Hydrogen site occupation in YPd3 with L12

structure, Phys. Rev. B 55 (1997) 14051�14054. doi:10.1103/PhysRevB.55.14051.

56

http://dx.doi.org/10.1002/zaac.201700164
http://dx.doi.org/10.1002/zaac.201400359
http://vasp.at
http://vasp.at
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1016/S0022-4596(80)80026-0
http://dx.doi.org/10.1016/S0022-4596(80)80026-0
http://dx.doi.org/10.1524/zpch.1985.145.1_2.043
http://dx.doi.org/10.1016/0925-8388(92)90742-R
http://dx.doi.org/10.1103/PhysRevB.55.14051


7. Bibliography

[177] P. Önnerud, Y. Andersson, R. Tellgren, P. Nordblad, F. Bourée, G. André, The crystal and

magnetic structures of ordered cubic Pd3MnD0.7, Solid State Commun. 101 (1997) 433�437.

doi:10.1016/S0038-1098(96)00607-2.

[178] K. Schubert, Kristallstrukturen zweikomponentiger Phasen, Springer, Berlin, Heidelberg, 1964.

doi:10.1007/978-3-642-94904-3.

[179] N. Novakovi¢, J. G. Novakovi¢, L. Matovi¢, M. Manasijevi¢, I. Radisavljevi¢, B. P. Mamula,

N. Ivanovi¢, Ab initio calculations of MgH2, MgH2: Ti and MgH2: Co compounds, Int. J.

Hydrogen Energy 35 (2010) 598�608. doi:10.1016/j.ijhydene.2009.11.003.

[180] U. Häussermann, H. Blomqvist, D. Noréus, Bonding and stability of the hydrogen storage ma-

terial Mg2NiH4, Inorg. Chem. 41 (2002) 3684�3692. doi:10.1021/ic0201046.

[181] P. Raybaud, F. Ropital, Process for the storage of hydrogen using a system that strikes a

balance between an alloy of magnesium and palladium and the corresponding hydride, US

Patent 7,547,432 (2009).

URL https://www.google.com/patents/US7547432B2

[182] R. Martínez-Coronado, M. Retuerto, B. Torres, M. J. Martínez-Lope, M. T. Fernández-Díaz,

J. A. Alonso, High-pressure synthesis, crystal structure and cyclability of the Mg2NiH4 hydride,

Int. J. Hydrogen Energy 38 (2013) 5738�5745. doi:10.1016/j.ijhydene.2013.02.108.

[183] Y. Goto, H. Kakuta, A. Kamegawa, H. Takamura, M. Okada, High-pressure synthesis of novel

hydride in Mg-M systems (M = Li, Pd), J. Alloys Compd. 404 (2005) 448�452. doi:10.1016/

j.jallcom.2005.02.096.

[184] M. Gupta, A. J. Freeman, Electronic structure and proton spin-lattice relaxation in PdH, Phys.

Rev. B 17 (1978) 3029�3039. doi:10.1103/PhysRevB.17.3029.

[185] A. C. Switendick, Electronic structure and total energy calculations for transition metal hydrides,

J. the Less-Common Met. 130 (1987) 249�259. doi:10.1016/0022-5088(87)90116-0.

[186] A. R. Williams, J. Kübler, C. D. Gelatt Jr., Cohesive properties of metallic compounds:

Augmented-spherical-wave calculations, Phys. Rev. B 19 (1979) 6094�6118. doi:10.1103/

PhysRevB.19.6094.

[187] K. Baba, Y. Niki, Y. Sakamoto, T. B. Flanagan, The phase transition in palladium-manganese

alloys with up to 33.3 at.% Mn, J. Alloys Compd. 179 (1992) 321�331. doi:10.1016/

0925-8388(92)90231-W.

[188] D. Rodic, P.-J. Ahlzén, Y. Andersson, T. R., B.-V. F., The crystal and magnetic structure of

tetragonal Pd3Mn, Solid State Commun. 78 (1991) 767 � 772. doi:10.1016/0038-1098(91)

90861-O.

[189] K. Baba, Y. Niki, Y. Sakamoto, T. B. Flanagan, A. Craft, Reversibile transitions between

ordered structures in the Pd3Mn-hydrogen system, Scr. Metall. 21 (1987) 1147�1151.

[190] D. K. Saha, K. Ohshima, M. Y. Wey, R. Miida, T. Kimoto, Structure and magnetism of fcc

Pd-Mn alloys, Phys. Rev. B 49 (1994) 15715. doi:10.1103/PhysRevB.49.15715.

[191] M. H. Rashid, D. J. Sellmyer, Spin-glass-like freezing in disordered MnPd3 and CrPd3 alloys, J.

Appl. Phys. 55 (1984) 1735�1737. doi:10.1063/1.333459.

57

http://dx.doi.org/10.1016/S0038-1098(96)00607-2
http://dx.doi.org/10.1007/978-3-642-94904-3
http://dx.doi.org/10.1016/j.ijhydene.2009.11.003
http://dx.doi.org/10.1021/ic0201046
https://www.google.com/patents/US7547432B2
https://www.google.com/patents/US7547432B2
https://www.google.com/patents/US7547432B2
http://dx.doi.org/10.1016/j.ijhydene.2013.02.108
http://dx.doi.org/10.1016/j.jallcom.2005.02.096
http://dx.doi.org/10.1016/j.jallcom.2005.02.096
http://dx.doi.org/10.1103/PhysRevB.17.3029
http://dx.doi.org/10.1016/0022-5088(87)90116-0
http://dx.doi.org/10.1103/PhysRevB.19.6094
http://dx.doi.org/10.1103/PhysRevB.19.6094
http://dx.doi.org/10.1016/0925-8388(92)90231-W
http://dx.doi.org/10.1016/0925-8388(92)90231-W
http://dx.doi.org/10.1016/0038-1098(91)90861-O
http://dx.doi.org/10.1016/0038-1098(91)90861-O
http://dx.doi.org/10.1103/PhysRevB.49.15715
http://dx.doi.org/10.1063/1.333459


7. Bibliography

[192] P. Önnerud, Y. Andersson, R. Tellgren, P. Nordblad, The magnetic structure of ordered cubic

Pd3Mn, J. Solid State Chem. 128 (1997) 109�114. doi:10.1006/jssc.1996.7181.

[193] D. Rodi¢, P. Ahlzén, Y. Andersson, R. Tellgren, The magnetic structure of Pd3MnD0.53, Solid

State Commun. 71 (1989) 623�626. doi:10.1016/0038-1098(89)90549-8.

[194] K. Schubert, S. Bhan, T. K. Biswas, K. Frank, P. K. Panday, Einige Strukturdaten intermet-

allischer Phasen, Naturwissenschaften 55 (1968) 542�543. doi:10.1007/BF00660131.

[195] S. C. Stevenson, Synthesis and hydrogenation of MPd3 compounds, Placement report, Univer-

sität Leipzig, Leipzig (2017).

[196] T. B. Flanagan, S. Majchrzak, B. Baranowski, A chemical reaction strongly dependent upon

the degree of order of an alloy: The absorption of hydrogen by Pd3Fe, Philos. Mag. 25 (1972)

257�262. doi:10.1080/14786437208229233.

[197] P. Mélix, Berechnungen zur Wassersto�einlagerung in MPd3-Verbindungen (M = Mg, Mn, In,

Sn, Tl, Pb, Bi), Placement report, Universität Leipzig, Leipzig (2015).

[198] W. Jeitschko, The crystal structure of MoCoB and related compounds, Acta Cryst. B24 (1968)

930�934. doi:10.1107/S0567740868003432.

[199] W. Jeitschko, R. O. Altmeyer, Rh2Sb with (anti-)PbCl2-type structure, Z. Naturforsch. 45B

(1990) 947�951. doi:10.1515/znb-1990-0705.

[200] B. Chevalier, Pasturel M., J.-L. Bobet, J. Etourneau, O. Isnard, J. Sanchez Marcos, J. Rodriguez

Fernandez, Magnetic ordering induced by the hydrogenation of the ternary stannide CeNiSn, J.

Magn. Magn. Mater. 272-276 (2004) 576�578. doi:10.1016/j.jmmm.2003.11.222.

[201] B. Chevalier, A. Wattiaux, J.-L. Bobet, The Doniach diagram and hydrogenation of the ternary

compounds CePdIn and CePdSn, J. Phys.: Condens. Matter 18 (2006) 1743�1755. doi:10.

1088/0953-8984/18/5/026.

[202] V. A. Yartys, R. V. Denys, O. Isnard, R. G. Delaplane, P. Svedlindh, K. H. J. Buschow, Crystal

and magnetic structure of TbNiSnD studied by neutron powder di�raction, J. Magn. Magn.

Mater. 311 (2007) 639�643. doi:10.1016/j.jmmm.2006.08.043.

[203] A. E. Dwight, Crystal structure of RENiSn and REPdSn (RE = rare earth) equiatomic com-

pounds, J. Less-Common Met. 93 (1983) 411�413. doi:10.1016/0022-5088(83)90195-9.

[204] J. Murray, M. Post, J. Taylor, Thermodynamics of LaNi5 + H2 by di�erential heat �ow calorime-

try: hysteresis and entropies, in: T. N. Veziroglu (Ed.), Metal-Hydrogen Systems, Pergamon,

Oxford, 1982, pp. 445�449.

[205] T. B. Flanagan, W. Luo, J. Clewley, Calorimetric enthalpies of absorption and desorption of

protium and deuterium by palladium, J. Less-Common Met. 172 (1991) 42�55. doi:10.1016/

0022-5088(91)90431-3.

[206] M. El-Boragy, S. Bhan, K. Schubert, Kristallstruktur von Pd5Sb2 und Ni5As2 und einigen

Varianten, J. Less-Common Met. 22 (1970) 445�458. doi:10.1016/0022-5088(70)90132-3.

[207] T. Takabatake, M. Ishikawa, J. L. Jorda, Superconductivity and phase relations in the Pd-Se

system, J. Less-Common Met. 134 (1987) 79�89.

58

http://dx.doi.org/10.1006/jssc.1996.7181
http://dx.doi.org/10.1016/0038-1098(89)90549-8
http://dx.doi.org/10.1007/BF00660131
http://dx.doi.org/10.1080/14786437208229233
http://dx.doi.org/10.1107/S0567740868003432
http://dx.doi.org/10.1515/znb-1990-0705
http://dx.doi.org/10.1016/j.jmmm.2003.11.222
http://dx.doi.org/10.1088/0953-8984/18/5/026
http://dx.doi.org/10.1088/0953-8984/18/5/026
http://dx.doi.org/10.1016/j.jmmm.2006.08.043
http://dx.doi.org/10.1016/0022-5088(83)90195-9
http://dx.doi.org/10.1016/0022-5088(91)90431-3
http://dx.doi.org/10.1016/0022-5088(91)90431-3
http://dx.doi.org/10.1016/0022-5088(70)90132-3


7. Bibliography

[208] J. P. Neumann, A. Mikula, Y. A. Chang, Phase stability investigations of the palladium-cadmium

system: Part II. structural studies, Metallurgical Transactions A 13 (1982) 1123�1126. doi:

10.1007/BF02645492.

[209] K. Terada, F. W. Cagle, The crystal structure of potarite (PdHg) with some comments on

allopalladium, Am. Mineral. 45 (1960) 1093�1097.

[210] M. Ellner, T. Godecke, K. Schubert, Phases in the mixture Pd-Pb, Z. Metallkd. 64 (1973)

566�568.

[211] H. W. Mayer, M. Ellner, K. Schubert, Crystal structure of Pd13Pb9. r, J. Less-Common Met.

71 (1980) P29�P38. doi:10.1016/0022-5088(80)90218-0.

[212] J. N. Pratt, K. M. Myles, J. B. Darby Jr, M. H. Mueller, X-Ray studies of palladium-

cadmium and palladium-antimony alloys, J. Less Common-Met. 14 (1968) 427�433. doi:

10.1016/0022-5088(68)90166-5.

[213] S. Geller, The crystal structure of Pd17Se15, Acta Crystallogr. 15 (1962) 713�721. doi:10.

1107/S0365110X62001929.

[214] H. Okamoto, The Pd-Se (palladium-selenium) system, J. Phase Equilib. 13 (1992) 69�72. doi:

10.1007/BF02645382.

[215] M. El-Boragy, M. Ellner, K. Schubert, On some metastable homeotypes of CuZn with Pd as

majority component, Z. Metallkd. 80 (1989) 197�200.

[216] H. Zhou, X. Yang, L. Li, X. Liu, Y. Huang, X. Pan, A. Wang, J. Li, T. Zhang, PdZn inter-

metallic nanostructure with Pd�Zn�Pd ensembles for highly active and chemoselective semi-

hydrogenation of acetylene, ACS Catal. 6 (2016) 1054�1061. doi:10.1021/acscatal.5b01933.

[217] M. Armbrüster, K. Konvir, M. Behrens, D. Teschner, Y. Grin, R. Schlögl, Pd-ga intermetal-

lic compounds as highly selective semihydrogenation catalysts, J. Am. Chem. Soc. 132 (2010)

14745�14747. doi:10.1021/ja106568t.

[218] A. Ota, M. Armbrüster, M. Behrens, D. Rosenthal, M. Friedrich, I. Kasatkin, F. Girgsdies,

W. Zhang, R. Wagner, R. Schlögl, Intermetallic compound Pd2Ga as a selective catalyst for the

semi-hydrogenation of acetylene: from model to high performance systems, J. Phys. Chem. C

115 (2011) 1368�1374. doi:10.1021/jp109226r.

[219] V. B. Chernogorenko, K. A. Lynchak, Production of bismuth powder by the reduction of bismuth

oxide with a mixture of molecular and atomic hydrogen, Powder Metall. Met. Ceram. 12 (1973)

360�362. doi:10.1007/BF00791258.

[220] R. Weihrich, S. Matar, I. Anusca, F. Pielnhofer, P. Peter, F. Bachhuber, V. Eyert, Palladium

site ordering and the occurrence of superconductivity in Bi2Pd3Se2-xSx, J. Solid State Chem.

184 (2011) 797 � 804. doi:10.1016/j.jssc.2011.01.037.

[221] S. Seidlmayer, F. Bachhuber, I. Anusca, J. Rothballer, M. Bräu, P. Peter, R. Weihrich,

Half antiperovskites: V. Systematics in ordering and group-subgroup-relations for Pb2Pd3Se2,

Bi2Pd3Se2, and Bi2Pd3S2, Z. Kristallogr. 225 (2010) 371�381. doi:10.1524/zkri.2010.1272.

[222] E. Larionov, H. Li, C. Mazet, Well-de�ned transition metal hydrides in catalytic isomerizations,

Chem. Commun. 50 (2014) 9816�9826. doi:10.1039/C4CC02399D.

59

http://dx.doi.org/10.1007/BF02645492
http://dx.doi.org/10.1007/BF02645492
http://dx.doi.org/10.1016/0022-5088(80)90218-0
http://dx.doi.org/10.1016/0022-5088(68)90166-5
http://dx.doi.org/10.1016/0022-5088(68)90166-5
http://dx.doi.org/10.1107/S0365110X62001929
http://dx.doi.org/10.1107/S0365110X62001929
http://dx.doi.org/10.1007/BF02645382
http://dx.doi.org/10.1007/BF02645382
http://dx.doi.org/10.1021/acscatal.5b01933
http://dx.doi.org/10.1021/ja106568t
http://dx.doi.org/10.1021/jp109226r
http://dx.doi.org/10.1007/BF00791258
http://dx.doi.org/10.1016/j.jssc.2011.01.037
http://dx.doi.org/10.1524/zkri.2010.1272
http://dx.doi.org/10.1039/C4CC02399D


7. Bibliography

[223] T. D. Humphries, D. A. Sheppard, C. E. Buckley, Recent advances in the 18-electron complex

transition metal hydrides of Ni, Fe, Co and Ru, Coord. Chem. Rev. 342 (2017) 19�33. doi:

10.1016/j.ccr.2017.04.001.

[224] W. Bronger, L. Breil, Calcium-Rhodium-Hydride�Synthese und Struktur, Z. Anorg. Allg.

Chem. 624 (1998) 1819�1822. doi:10.1002/(SICI)1521-3749(1998110)624:11<1819::

AID-ZAAC1819>3.0.CO;2-L.

[225] T. Sato, D. Noréus, H. Takeshita, U. Häussermann, Hydrides with the perovskite structure:

general bonding and stability considerations and the new representative CaNiH3, J. Solid State

Chem. 178 (2005) 3381�3388. doi:10.1016/j.jssc.2005.08.026.

[226] W. Bronger, K. Jansen, P. Müller, CaPdH2, ein ternäres Hydrid mit perowskitverwandter Struk-

tur, J. Less-Common Met. 161 (1990) 299�302. doi:10.1016/0022-5088(90)90040-Q.

[227] W. Bronger, K. Jansen, L. Breil, Ca2RhD5.4 �Strukturbestimmung über Neutronenbeu-

gungsexperimente, Z. Anorg. Allg. Chem. 624 (1998) 1477�1480. doi:10.1002/(SICI)

1521-3749(199809)624:9<1477::AID-ZAAC1477>3.0.CO;2-I.

[228] V. A. Somenkov, A. V. Irodova, Lattice structure and phase transition of hydrogen in inter-

metallic compounds, J. Less-Common Met. 101 (1984) 481�492.

[229] A. F. Andresen, K. Otnes, A. J. Maeland, Neutron scattering investigations of Be2ZrH1.5 and

Be2ZrD1.5, J. Less-Common Met. 89 (1983) 201�204. doi:10.1016/0022-5088(83)90267-9.

[230] A. F. Andresen, H. Fjellvåg, A. J. Maeland, Formation and crystal structure of ThNi2Dx, J.

Less-Common Met. 103 (1984) 27�31. doi:10.1016/0022-5088(84)90354-0.

[231] M. A. Green, A. Ho-Baillie, H. J. Snaith, The emergence of perovskite solar cells, Nat. Photonics

8 (2014) 506�514. doi:10.1038/nphoton.2014.134.

[232] M. Saliba, J.-P. Correa-Baena, M. Grätzel, A. Hagfeldt, A. Abate, Perovskite solar cells: from

the atomic level to �lm quality and device performance, Angew. Chem., Int. Ed. 57 (2018)

2554�2569. doi:10.1002/anie.201703226.

[233] B. Batlogg, Superconductivity in Ba(Pb,Bi)O3, Physica B+C 126 (1984) 275�279.

[234] R. Cava, B. Batlogg, J. Krajewski, R. Farrow, L. W. Rupp Jr., A. White, K. Short, W. Peck,

T. Kometani, Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite, Na-

ture 332 (1988) 814. doi:10.1038/332814a0.

[235] H. Tanaka, M. Misono, Advances in designing perovskite catalysts, Curr. Opin. Solid State

Mater. Sci. 5 (2001) 381�387.

60

http://dx.doi.org/10.1016/j.ccr.2017.04.001
http://dx.doi.org/10.1016/j.ccr.2017.04.001
http://dx.doi.org/10.1002/(SICI)1521-3749(1998110)624:11<1819::AID-ZAAC1819>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3749(1998110)624:11<1819::AID-ZAAC1819>3.0.CO;2-L
http://dx.doi.org/10.1016/j.jssc.2005.08.026
http://dx.doi.org/10.1016/0022-5088(90)90040-Q
http://dx.doi.org/10.1002/(SICI)1521-3749(199809)624:9<1477::AID-ZAAC1477>3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1521-3749(199809)624:9<1477::AID-ZAAC1477>3.0.CO;2-I
http://dx.doi.org/10.1016/0022-5088(83)90267-9
http://dx.doi.org/10.1016/0022-5088(84)90354-0
http://dx.doi.org/10.1038/nphoton.2014.134
http://dx.doi.org/10.1002/anie.201703226
http://dx.doi.org/10.1038/332814a0


Part II.

Publications within this thesis

61





8. Palladium Hydride and Hydrides of

Palladium-Rich Phases

André Götze, Holger Kohlmann

In: Reference Module in Chemistry, Molecular Science and Chemical Engineering, Elsevier 2017.

DOI: 10.1016/B978-0-12-409547-2.12204-8

Reprint with permission from Elsevier.

8.1. Authors' contributions

H. Kohlmann wrote the part �Palladium hydride�. The part �Ternary disordered palladium-rich

hydrides� was created by A. Götze and H. Kohlmann. �Ternary ordered palladium-rich hydrides

(MPd≥2)� was written by A. Götze.

8.2. Abstract

Synthesis, crystal structure, and properties of hydrides of palladium and its intermetallic compounds

are being reviewed. Focus is on crystal structure, phase diagram, interplay between hydrogen con-

tent and electronic or magnetic properties, di�usion and lattice gas behavior of hydrogen for palla-

dium hydrides, and on synthesis and crystal chemical interpretation of hydrogenation reactions for

palladium-rich compounds. Hydrogen embrittlement, heterogeneous catalysis, and isotope e�ects are

brie�y discussed. For palladium-rich compounds MPd3 (M = Mg, In, Tl, Bi, Mn) hydrogen in-

duced rearrangement between close-packed crystal structures and its crystallographic interpretation

are discussed in detail.

Palladium hydride and the system Pd�H are the most studied metal hydride and metal�hydrogen

phase diagram, respectively. Disordered solid solutions of palladium with other metals have also been

extensively studied with respect to their behavior toward hydrogen. While these two aspects are

covered in the �rst two chapters, the third chapter focuses on the less well investigated ternary hy-

drides of ordered palladium-rich compounds. Hydrides of palladium and its intermetallic compounds

play an important role as model systems in condensed matter physics, for example, lattice gas, in-

terplay of hydrogen content on electronic and magnetic properties, hydrogen storage, embrittlement

of metallic materials and di�usion in metals, but they have also important application in catalysis

(hydrogenation), for gas puri�cation and isotope separation.

63



8. Palladium Hydride and Hydrides of Palladium-Rich Phases

8.3. Remarks on nomenclature

Chemical compounds of one or more metals with hydrogen (H) are called metal hydrides. Generally

H consists of the natural isotopic mixture of 99.985 % 1H (protium) + 0.015 % 2H (deuterium, D).

If not indicated otherwise, the term metal hydride is here also used as a collective name including

all isotopes, that is, protides, deuterides, and tritides. They are only di�erentiated explicitly in the

following text in cases where isotope e�ects are important, for example, di�usion or neutron scattering,

and in the naming of crystal structure types �rst determined on deuterides.

In chapters on intermetallic compounds of palladium, structural relationships, and thus crystal

structure types, are of particular importance for the understanding of hydrogenation reactions and

other properties. Many structure types are of one-to-three composition, like TiAl3 or AuCu3 types.

While those two, as most structure types and names of compounds, are in line with IUPAC's rules for

nomenclature based on electronegativity, some of the compounds of interest would have to be named

using a three-to-one formula like Pd3In and Pd3Bi. For the sake of clarity and ease of recognition of

structural relationships, however, in those cases IUPAC's rules are not followed; for example, they are

called InPd3 and BiPd3.

Many palladium-rich intermetallic compounds and their hydrides derive structurally from close-

packed structures, in which the hexagonal layers of close-packed atoms are usually named A, B, and

C. The sequence AB . . . stands for the hexagonal (hcp), ABC . . . for the cubic-close packing (ccp).

In older literature on ccp-related ordered superstructures, like TiAl3 type or ZrAl3 type, A and B are

often used in a di�erent way to denote the stacking sequence and are not hexagonal atomic layers. In

order to avoid confusion, those layers are named A' and B' in this text.

8.4. Palladium hydride

8.4.1. History

Thomas Graham was a Scottish chemist who did a great deal of work on gas di�usion and e�usion,

dialysis, and colloids. In a study called �On the Absorption and Dialytic Separation of Gases by Colloid

Septa� in 1866 (150 years before the publication of this article) he discovered that hydrogen not only

permeates through a palladium foil at 513�538 K, but also that palladium takes up considerable

amounts of hydrogen gas [1]. Palladium heated in vacuum gives o� hydrogen gas and after such an

activation treatment palladium is able to take in hydrogen again [1]. This can be achieved either by

reaction of palladium with hydrogen gas or electrochemically by using palladium wire as a cathode

in acidic aqueous solutions. The highest uptake occurs for spongy palladium, with 686 times its own

volume [1], or for palladium wire with 935 times its own volume [2]. The latter corresponds to a

composition PdH0.74. It further loses 25 % of its electrical conductivity and has a reduced tenacity

as compared to pristine palladium. Graham attributed the behavior to the porosity of palladium

metal and assumed hydrogen to enter in a liquid state [1,2]. Because of the peculiar behavior, which

was considered very unusual at that time, hydrogen was often regarded as vapor of a highly volatile

metal. Palladium hydride could thus be seen as an alloy of palladium with that metal [2]. Detailed

measurements like pressure�composition isotherms could later reveal composition and phase widths

of palladium hydride (see later). A real breakthrough was the solution of palladium hydride and

deuteride's crystal structure [3], after which the wealth of physical and chemical property data could

be understood and a reasonable picture of chemical bonding be established.
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Figure 8.4.1.: Phase diagram of the system palladium�hydrogen.

8.4.2. Phase diagram and preparation

The Pd�H(D) phase diagram is very well known [4]. At room temperature, there is an α-phase

PdHx with a narrow phase width of about 0 ≤ x ≤ 0.02 and a β-phase with a much wider range

of 0.6 ≤ x ≤ 1.0 exist (Fig. 8.4.1), both with a disordered arrangement of hydrogen (deuterium) in

octahedral voids of a cubic closest packing of palladium atoms. Thus, all three phases, palladium - α-

palladium hydride, and β-palladium - hydride exhibit the same topology of the palladium substructure,

that is, a cubic close packing, and di�er only by their respective hydrogen occupation. Palladium is

one of the rare examples where the crystal structure of the metal is retained upon hydrogenation

except for the unit cell expansion and �lling of interstitial sites by hydrogen.

At a critical temperature of 563 K and a critical pressure of 1.9 MPa for the hydride, and 556 K and

3.9 MPa for the deuteride, and a hydrogen content x = 0.257 for both, the miscibility gap vanishes

and one homogeneous phase 0 < x ≤ 1.0 exists (Fig. 8.4.1); that is, pressure�composition isotherms

lose their plateau above the critical temperature (Fig. 8.4.2). No critical point data for the system

palladium�tritium are available.

The hydrogenation of palladium in a hydrogen atmosphere (100 kPa) yields hydrides with ap-

proximate compositions of PdH0.6<x<0.7. In order to achieve higher hydrogen content, the chemi-

cal potential of hydrogen atoms needs to be enhanced, for example, by increase in H2 gas pressure(
µH,g = 1

2 (µ0
H2,g

+ RT ln pH2,g)
)
[6,7] or by RF discharge methods for enhanced dissociation of

H2 molecules in the gas phase [8]. The highest hydrogen contents reached so far are PdH0.96 and

PdH0.98 [7,9].

The real structure of β-phase samples seems to depend on their history. Samples made from hy-

drogenation of the α-phase di�er considerably with respect to their dislocation density from samples

made by hydrogenation of palladium above the critical conditions and subsequent cooling under pres-

sure. This is attributed to the abrupt volume change for the α�β-transition [4]. Con�nement, for

example in thin �lms, may lead to compressive stress of several GPa. This may be released through

various mechanisms, for example, discrete stress relaxation events, formation of dislocations, plastic

deformation or, if adhesion to the surface is not su�cient, �lm buckling [10].
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Figure 8.4.2.: Hydrogen pressure�composition isotherms of the Pd�H system (redrawn according to

Ref. [5]).

8.4.3. Crystal structures

In the days before X-ray di�raction, the elucidation of crystal structures was not possible, and re-

searchers could only speculate about the geometrical arrangement of atoms in solids. X-ray di�raction

revealed that the crystal structure of palladium (ccp) is retained upon hydrogen uptake and only the

unit cell expanded. There were still many speculations on the nature and position of the hydrogen

within the palladium because such a weak X-ray scatterer as hydrogen could not be located by X-ray

di�raction. For example, it was assumed that the properties of PdH would be close to silver (in

agreement with Grimm's hydrogen shift rule [11]), and similar lattice parameters of silver and PdH

were taken as an indication. Hydrogen poorer hydrides were then often interpreted as solid solutions

of such PdH (and here, although not explicitly stated, only molecules could have been meant) in Pd,

for example, (PdH)3Pd=PdH0.75 in analogy to ordered intermetallic compounds such as AuCu3 [12].

Another suggestion, later shown to be wrong, was that every eighth palladium atom forms tetrahedral

PdH4 complexes, Pd7*PdH4 [13], a belief still pursued [14] even after the crystal structure had been

determined unambiguously (see later). After the development of neutron scattering methods in the

1950s, the location of hydrogen (and even better deuterium) became possible. Due to the scattering

lengths being comparable to those of most metals (in the case of hydrogen, deuterium, and palla-

dium -3.74, 6.67, and 5.91 fm, respectively), hydrogen and deuterium atoms can easily be located

with neutron in contrast to X-ray di�raction. The �rst neutron di�raction investigation clari�ed all

these open questions and described the crystal structure of PdHx and PdDx in a defect NaCl type

structure; that is, hydrogen (deuterium) atoms are located in octahedral voids of the ccp of palladium

atoms, a model that is still accepted today [3]. The stoichiometric index x in PdHx and PdDx re�ects

the occupation parameter of hydrogen (deuterium) atoms, which are statistically distributed over the
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Figure 8.4.3.: Crystal structure of a cubic close packing of palladium (dark gray spheres) with possible

hydrogen (deuterium) positions in octahedral (small white spheres) and tetrahedral sites

(small yellow spheres). Polyhedra are shown only once for reasons of clarity. Partial

�lling of octahedral sites yields the accepted model for α and β palladium hydride

(deuteride). Filling of tetrahedral sites occurs only for specially prepared samples (see

text).

available octahedral sites (Fig. 8.4.3).

For a stoichiometric composition PdH, which has not yet been achieved (up to PdH0.98), a lattice

parameter of 409.0 pm for PdH and 408.4 pm for PdD was predicted by extrapolation [9]. Later,

di�erences were found between samples taken through the two-phase region (Fig. 8.4.1) and those

prepared above the critical point, which avoid the sudden volume changes connected to the for-

mer. The respective equations for lattice parameter versus hydrogen content x in PdHx are given

as a = (393.80(127) + 0.1498(165)x) and a = (395.34(87) + 0.1234(106)x) nm [15]. In the early

days of neutron di�raction, hydrogen (deuterium) in the a-phase could not be located due to their

low content. Modern neutron di�raction methods, however, allow the location and even the accurate

determination of hydrogen (deuterium) occupation and thermal parameters as a function of tempera-

ture and gas pressure; for example, α-PdD0.038(4) at 390 K and 0.3 MPa deuterium gas pressure [16].

Spectroscopic techniques such as nuclear magnetic resonance and inelastic neutron scattering con�rm

the established structure models for α and β palladium hydride and deuteride.

In addition to the defect NaCl type α and β phase of palladium hydride and deuteride, several other

phases with somewhat di�erent crystal structures were described. When loaded with deuterium above

the critical point, that is, avoiding the two-phase region in the preparation of palladium deuteride,

considerable occupation of tetrahedral (up to 3.3(3) % at 6.9 MPa) in addition to the regular octahedral

sites was found [17]. In this regard, it is interesting to note that other metal hydrides with occupation

of both tetrahedral and octahedral voids in a close packing, for example, in lanthanide hydrides, �ll the

former �rst and then the latter, that is, in reverse order. Discontinuous changes in physical properties

such as speci�c heat or electric conductivity at low temperature, known as the 50 K anomaly, suggested

a phase transition [18]. Neutron di�raction experiments revealed that palladium does not change its

topology, but that an ordering of hydrogen atoms causes the phase transition. Several ordered phases

seem to exist depending on hydrogen content. Ordering by placing one in four hydrogen atoms in

tetrahedral instead of octahedral sites yields a rhombohedral distortion (space group R3̄m) [19]. A

tetragonal phase was described in two di�erent models, γ-PdD0.67 at 50 K (space group I 41/amd)

with an ordered distribution of deuterium atoms [20] and PdD0.76 at 60�70 K, where deuterium orders
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in the fashion of a MoNi4 type structure, that is, every �fth position is vacant, corresponding to an

ideal composition of PdD0.8 (space group I 4/m) [21,22].

Deviations from the ideal crystal structure are observed on hydrogenation as well as on dehydrogena-

tion due to large changes in unit cell volume upon hydrogen uptake and release. Plastic deformations

manifest in dislocation density occur due to these strong volume e�ects. It is thus not surprising to

see di�erences between samples hydrogenated above the critical conditions and those driven through

the two-phase region of the phase diagram.

More recent studies could not con�rm the rhombohedral structure, but found PdD0.62 at 54 K

in the cubic space group Pm 3̄n with doubled lattice parameter with respect to disordered β-phase

palladium deuteride [23]. For higher deuterium content, the MoNi4 type ordering was con�rmed in

PdD0.77 at 70 K [24], while no ordering could be observed down to 20 K for even higher deuterium

content of PdD≥0.82 [25]. This might be due to the fact that the limiting composition for the latter

type of ordering is PdD0.8. Palladium hydride phases with superabundant vacancies are reported

when palladium was loaded at very high hydrogen gas pressures (5 GPa) around 1000 K and sub-

sequently cooled [26]. This yields separation into PdH and phases, for which a very high vacancy

concentration on the palladium sites is attributed, for example, Pd3�H4, as based on X-ray di�raction

and density measurements [26]. Since hydrogen is practically invisible to X-rays, these unusual phases

need con�rmation by independent methods.

For the investigation of the processes like hydrogen uptake and liberation by solids, in situ di�raction

techniques are very useful. They allow for real time studies of chemical reactions or phase transitions

as well as the characterization of materials under nonambient conditions [27,28]. This is particularly

Figure 8.4.4.: Neutron powder di�raction data of palladium deuteride at T = 446(4) K taken in situ

on D20 (ILL, Grenoble) at λ = 186.71(1) pm in a single crystal sapphire gas pressure cell

with a time resolution of 2 min, intensities on a logarithmic scale in false color (lowest

intensity, blue; highest intensity, red). The range 87° ≤ 2θ ≤ 95° (gray shaded area) is

excluded because of scattering from the sapphire single crystal.
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useful in the case of metal hydrides, where phases have to be mapped as a function of gas pressure

and temperature. Fig. 8.4.4 shows such a real-time study of the deuteration of palladium powder

at T = 446(4) K with a time resolution of 2 min by in situ neutron powder di�raction [29]. The

graphical representation clearly shows the simultaneous occurrence of two phases, that is, α and β

palladium deuteride at medium gas pressures as expected from the phase diagram.

At higher deuterium pressure and longer reaction time a is completely converted to β-phase deu-

teride. Rietveld analysis of the di�raction data allows for the extraction of structural data (lattice

parameters, deuterium occupation and thermal displacement parameters in this case) yielding com-

positions in the range 0.04 ≤ x ≤ 0.11 for the α-phase and 0.52 ≤ x ≤ 0.72 for the β-phase at

T = 446(4) K and deuterium gas pressures of up to 8.0 MPa. Static (not time-resolved) in situ stud-

ies revealed the occupation of tetrahedral voids in palladium (Fig. 8.4.3) when the two-phase region is

avoided during preparation [17]. Similar in situ neutron powder di�raction experiments (both static

and time-resolved) turned out to be very powerful for the investigation of reaction intermediates,

metastable phases, and the dependence of crystal structures on temperature and gas pressure [27,30-

32]. Further in situ techniques like X-ray di�raction [28] and thermal analysis [33,34] yield useful

additional data, completing the picture of solid�gas reactions involving hydrogen.

8.4.4. Physical properties

Given the large phase width of β-PdHx, its metallic properties and simple crystal structure, it serves as

an ideal test case for the in�uence of hydrogen incorporation into metals on their physical, chemical,

and bonding properties. In the following, a few key properties are only brie�y discussed, which

certainly does not re�ect the large body of knowledge in this �eld of research. The interested reader

is referred to the literature given at the end of this text.

Di�usion of hydrogen

Hydrogen di�usion in solids is faster than that of any other atom, and di�usion coe�cients D are often

in between those typical for liquids (D ≈ 10-9 m2 s-1) and those typical for solids (D ≈ 10-13 m2 s-1). In

simple metal�hydrogen systems, hydrogen in group V metals vanadium, niobium, and tantalum shows

the fastest di�usion, while in palladium this is about one order of magnitude slower [35]. Einstein

di�usion constants are 3.8*10-11 m2 s-1 and 5.5*10-11 m2 s-1 at 298 K for H and D, respectively, at

small hydrogen concentrations in the a-phase. Di�usion in the β-phase was found to be faster than in

the α-phase by a factor of 4.5 [4,36]. In the β-phase, jumps from octahedral to both octahedral and

tetrahedral sites (Fig. 8.4.3) exist [37]. The activation energy for hydrogen jumps was determined by

nuclear magnetic resonance to be 10 kJ mol-1 and calculated to be 14.5 kJ mol-1 [38]. These values

are also considerably higher than the respective ones for hydrogen in platinum, indicating a weaker

bonding in the latter as compared to hydrogen in palladium.

Electrical conductivity and superconductivity

There is an almost linear increase of electrical resisitivity with hydrogen content in palladium hydride

[12,39], but a sharp decrease for higher H content (> 0.7) with R/R0 down to 0.9 for the hydride and

1.1 for the deuteride when approaching stoichiometric composition [7]. Superconductivity is found

both in palladium hydride and deuteride with critical temperatures TC of 9 and 11.5 K, respectively.

The occurrence of superconductivity was explained by electron�phonon coupling involving hydrogen's

optic vibrations [40]. TC increases slightly with increasing hydrogen (deuterium) content, however,

with a �nal small decrease when approaching fully stoichiometric PdH and PdD [41].
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Magnetism

The paramagnetic susceptibility decreases nearly linearly with increasing hydrogen content in palla-

dium hydride and reaches diamagnetism at a composition of PdH0.66. While this decrease was �rst

used as an argument for the so-called protonic model, where electron donates its electron (leaving a

proton in an interstitial site behind) to �ll the d-band of the metal, it is probably due to the e�ect of

lattice expansion instead [42].

Isotope e�ects

Due to the doubled mass of deuterium in comparison to protium, isotope e�ects are often large. This

is the case, for example, for the solubility in the α-phase, which decreases in the order protium,

deuterium, and tritium (i. e., equilibrium pressures are smallest for protium and largest for tritium)

[4]. As expected, vibrational properties exhibit a pronounced isotope e�ect as well. The Einstein

temperatures for α-PdHx, α-PdDx, β-PdHx, β-PdDx are 801, 540, 685, and 460 K, with θH/θD of

1.49 for both α- and β-phase. The deviation from the expected value of
√
2 ≈ 1.41 is ascribed to

the anharmonicity of the vibration [4]. The critical temperature of superconductivity (see earlier)

interestingly shows an inverse isotope e�ect with 9 K for the hydride and 11.5 K for the deuteride [43].

The anharmonicity of the H(D)�Pd potential and the large vibrational amplitude were considered to

be the prime cause for this inverse isotope e�ect on the electron�phonon coupling and thus on TC

[44].

Electronic structure (and bonding properties)

The nature of hydrogen and the chemical bonding in palladium hydride has been under dispute for

some time. Hydrogen was �rst considered to be protonic because migration of hydrogen to the cathode

in an electric �eld was found; this, however, does not yield conclusive evidence, and is contradicted by

other physical properties such as electrical conductivity and, additionally, is counterintuitive consider-

ing electronegativity [45]. Quantum-mechanical calculations reveal a detailed picture of the electronic

structure in palladium hydride. It may serve as an archetypical example for electronic structure and

chemical bonding in metallic metal hydrides and thus exhibits characteristic features found in many

other metallic hydrides. This may be exempli�ed by comparing the calculated density of states (DOS)

of pure palladium with that of palladium hydride. Far below the Fermi level, EF, new electronic states

appear which are centered at about -7 eV for PdH. They can be attributed to metal�hydrogen bond-

ing and are formed by hybridization of H-s and Pd-s, Pd-p and Pd-d states [46]. d-states of pure

palladium are further �lled by introduction of hydrogen, and EF lies in an sp-dominated band with

low DOS. This results in decreased Pauli paramagnetism and decreased electronic contribution to the

speci�c heat. The beginning of the rather �at Pd-sp-band corresponds to the Fermi level of PdH0.7

[46]. Further �lling of hydrogen into octahedral voids and consequent up-shifting EF would not gain

much energy and is, thus, not favored. This is in agreement with the experimental �nding that higher

hydrogen contents need enhanced chemical potential of hydrogen, for example, by high partial pres-

sures of hydrogen gas. Another characteristic feature is the narrowing of metal d-bands due to the

volume expansion upon hydrogen uptake. Most of the above mentioned features could also be veri�ed

experimentally by ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS), soft X-ray emis-

sion spectroscopy (SXES), and low energy bremsstrahlung-isochromat spectroscopy (BIS) [46]. One

of the largest challenges in such investigations of metal hydrides are the necessary (ultrahigh) vacuum

conditions, which put severe limits due to concomitant hydrogen release.

Charge distribution on palladium hydride calculated by DFT methods and Bader charge analysis

resulted in H0.3-for an occupation of 3.7 % in an octahedral void, re�ecting the higher electronegativity
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of hydrogen. The Bader charge is also negative for hydrogen in niobium palladium alloys [47].

It should be emphasized that metal hydrides are extremely versatile with respect to chemical bond-

ing ranging from ionic to covalent and metallic; that is, palladium hydride represents only one of

several types of metal hydrides with respect to their electronic structure.

8.4.5. Application

The most prominent applications of palladium and its hydride are catalysis and gas separation. The

Nobel Prize in chemistry for the year 2010 was awarded to Ei-ichi Negishi, Akira Suzuki, and Richard

F. Heck for their scienti�c work on palladium catalysis in organic chemistry. Palladium catalyzed

reactions are very popular, especially in the pharmaceutical industry for the large scale production

of ibuprofen. Many such reactions, however, involve palladium(II) compounds instead of palladium

hydrides. Supported small palladium particles serve as hydrogenation catalysts in technical processes

like the large-scale production of hydrogen peroxide or pharmaceuticals. In the course of such hetero-

geneous catalytic reactions, hydrogen is dissociated on the surface and, in some cases, bulk palladium

hydride forms [48]. It was shown that hydrogen atoms have negative partial charge both on the surface

and in the bulk [49].

Palladium may be used to separate hydrogen from other gases by di�usion through a thin membrane.

It may also be used for the separation of hydrogen isotopes protium, deuterium and tritium in a kind

of chromatographic column, although more e�cient materials for this purpose are known [50].

8.5. Ternary disordered palladium-rich hydrides

Atomic disorder in intermetallic crystal structures is quite common, especially in case of similar

electronic properties and size of the di�erent metal atoms. Therefore mixed occupation (statistic dis-

tribution) of one or more crystallographic sites with one or more atom types can frequently be found.

This may yield complete solid solution series like in the system Pd1-xAgx (Cu type structure, ccp),

limited solubility as in LixPd1-x (x ≤ 0.04) due to larger di�erences in size, limiting crystal structures

and electronegativities, or to mutual occupation by only a few percent in otherwise ordered superstruc-

tures like in MnPd3. Therefore, instead of a strict categorization in ordered and disordered systems,

a distinction for the degree of disorder seems more appropriate in general. In case of palladium-rich

intermetallic compounds, however, there is some justi�cation to distinguish strictly. The vast ma-

jority of largely disordered structures are extended solid solutions in the Cu type (ccp) of palladium

itself. Palladium atoms are successively substituted by other metals on the only crystallographic site

within the crystal structure, which is the archetypical example for a solid solution. Other compounds,

often with composition MPd3, crystallize in ordered superstructures of a ccp, which allow an ordered

distribution of M and Pd atoms and mixed occupation on these crystallographic sites could not be

detected or is much less pronounced (usually > 90 % for the majority component on a site). Therefore,

this contribution distinguishes between disordered and ordered palladium-rich intermetallics, but it

should be emphasized that this is of course a simpli�cation as most solid intermetallics are disordered

to some extent (see earlier).

This article focuses on palladium-rich intermetallics with strong atomic disorder, of which solid

solutions based on Cu type palladium are an important subset. Ordered intermetallic compounds (in

the above mentioned sense) are presented in the following section. When both ordered and disordered

phases of one compound are known, the more detailed discussion of both will be found in the article

of ordered compounds.

71



8. Palladium Hydride and Hydrides of Palladium-Rich Phases

8.5.1. The variety of disordered palladium-rich intermetallics

The vast majority of disordered palladium-rich intermetallics are solid solutions in the Cu type (ccp)

(Table 1). Those elements surrounding palladium in the periodic system of the elements (PSE) have

solubility from 0 % to 100 % in palladium. With a few metals in the PSE, the related In or AuCu

types are realized, which are hard to distinguish from each other with standard X-ray di�raction.

For example, both In and AuCu type were suggested for In0.25Pd0.75 [51,52]. It is remarkable that

disordered compounds of palladium with half metals like germanium, arsenic, tellurium, and antimony

crystallize in W or NaTl type. That is caused by the increased valence electron concentration of the

compounds [53]. All mentioned W type disordered compounds are high temperature modi�cations.

The light atoms in PdH0.02, PdB0.16, PdC0.03, and PdO0.24 were not located unambiguously and

crystal structures are suggested to be either a solid solution of palladium with the nonmetal (Cu type)

or of a defect NaCl type [54�57]. In view of the strong chemical di�erences between the non-metals

and palladium, the latter seems more plausible. In the case of the hydrogen compound, this is simply

a representation of α-PdHx. Most alkaline and earth alkaline metals, as well as the elements with

a higher group number in the PSE, are immiscible with palladium probably due to large electronic

di�erences.

8.5.2. Selected palladium-rich solid solutions and their hydrogenation

properties

Solid solution with a disordered arrangement of atoms in Cu type (red in Table 8.5.1) usually retain

their crystal structure and incorporate hydrogen atoms in octahedral voids; that is, they form a defect

NaCl-type structure similar to palladium hydride with M and Pd atoms on one site and hydrogen

atoms and vacancies on the other crystallographic site. From the vast number of solid solutions with

palladium (Table 8.5.1), only a few will be discussed in some detail in order to show typical examples

as well as exceptions.

The system palladium�rhodium

Palladium and rhodium form a complete ccp type solid solution series, which is unique in view of its

hydrogenation properties. It seems to be the only one for which the hydrogen content increases with

increasing content of the substitutional metal, at least up to 10 atom-% of rhodium [60].

The system palladium�platinum

Palladium and platinum form a complete ccp type solid solution series. Hydrogenation leads to partial

segregation in palladium-rich and platinum richer hydride phases. Interestingly, upon hydrogenation,

the homogeneous solid solution Pd1-xPtx is reformed, that is, hydrogen induced segregation and

homogenization is reversible [61].

The system palladium�copper

Within palladium-group 11 systems, copper is of special interest because, in contrast to silver or gold,

substitution in palladium leads to shrinking of unit cell volumes. A distinction between geometric and

electronic factors is thus possible. Relative partial molar enthalpies of hydrogen absorption are found

to be a little less exothermic, and partial excess entropies of hydrogen absorption are smaller than for

pure palladium [54].
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Table 8.5.1.: Periodic table with binary palladium-rich solid solutions or disordered compounds from

Binary Alloy Phase Diagrams [58] and Pearson Crystal Database [59] (marked with *)

Red cells, Cu type; orange, In type; yellow, AuCu type; blue, W type; dark blue, NaTl type; green,

crystal structure not fully established (probably defect NaCl type); no color, no palladium-rich

solid solutions known yet or solubility is < 1.0 %. Elements with two colors crystallize in both

structure types.

The system palladium�silver

Solid solutions of silver in palladium are examples of equilibrium pressures decreasing with increasing

content of the substitutional metal, thus representing increasing temperature in p�c isotherms of

palladium hydride (Fig. 8.4.1).

The system palladium�gold

Pd0.81Au0.19 is one of the rare examples where hydrogenation leads to an ordering of the metal atoms

as derived from superstructure re�ections in X-ray and electron di�raction patterns (crystal structure

not solved yet) [62].

Conclusion on the hydrogenation behavior of palladium-rich solid solutions

The nature of the substitutional metal in palladium-rich solid solution has a distinct in�uence on

formation and hydrogen content of hydrides, which is, however, di�erent for a and b phases. Solid

solutions with unit cell volumes smaller than that of pure palladium dissolve less, and those with

larger unit cell volumes dissolve more hydrogen at low hydrogen pressures than pure palladium [4].

This results in hydrogen richer a phases and shorter plateaus in pressure�composition isotherms (rep-

resenting the coexistence of both α and β phase hydrides, see also Fig. 8.4.1) for solid solutions with
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larger unit cell volumes than pure palladium. Thus, those geometrical aspects, such as the size of the

void on the octahedral interstices, play an important role for the α phase hydrides. In most cases,

equilibrium pressures increase with increasing content of the substitutional metal, thus mimicking

increasing temperature in p-c isotherms of palladium hydride (Fig. 8.4.2). In some cases, the inverse

relationship holds true, for example, for the hydrogenation of Pd1-xAgx. For β phase hydrides, how-

ever, only rhodium as a substitutional element in palladium increases the hydrogen content, while for

all others hydrogen content is lower than in the β phase hydride of pure palladium. Critical temper-

atures of superconductivity sometimes exhibit two maxima, one with respect to the content of the

substitutional metal and another with respect to hydrogen content. Higher values for TC as compared

to unsubstituted palladium hydride are, for example, found for hydrides of Pd0.55Cu0.45 with 17 K

[60].

The order of palladium-rich intermetallic compounds of the same composition may have a profound

in�uence on hydrogenation properties. Samples of hydrogenated FePd3 with di�erent degrees of

crystallographic order show drastically di�erent properties. More than two orders of magnitude higher

hydrogen gas pressures are needed to attain the same electrical resistivity in disordered FePd3 as

compared to ordered FePd3 (AuCu3 type) [60]. The preferential occupation of crystallographic sites

with a high number of palladium neighbors in ordered intermetallics lead to the suggestion that the

local environment in hydrides of solid solutions is preferentially palladium-rich as well. A detailed

account of ordered intermetallic compounds rich in palladium and their reactivity toward hydrogen is

subject of the next chapter.

8.6. Ternary ordered palladium-rich hydrides (MPd≥2)

An ordered replacement of palladium by other metals M is concomitant to a reduction of space group

symmetry. This often leads to a splitting of crystallographic sites occupied by the metal atoms into

independent positions, thus allowing for an ordered arrangement of M and Pd atoms, and of hydrogen

�lled sites. Such a decoupling of octahedral sites also enables an ordered occupation by hydrogen. The

formation of di�erent octahedral sites like [Pd6], [MPd5], or [M 2Pd4] will in�uence the hydrogenation

properties. Such substitution of palladium by other metals may be used either to enhance hydrogen

uptake or to suppress it. The former is sought after for the formation of stable hydrides and the study

of metal�hydrogen interactions (see later). The latter on the other hand attracts interest in catalysis.

For example, a modi�cation of palladium as a common highly active catalyst for the hydrogenation

of acetylene to ethylene with other metals has been studied. Introducing gallium lowers the amount

of interstitial hydrogen in the catalyst due to a reduction of neighboring palladium sites, but at the

same time improves the selectivity of acetylene hydrogenation while maintaining high activity, which

is highly desirable [63�66]. Another example is PbPd3, used as a catalyst in an industrialized liquid

phase process for direct production of methyl methacrylate from methacrolein, methanol, and oxygen

[67]. As Lindlar catalyst (=Pd1-xPbx on calcium carbonate), the formation of β palladium hydride

has been shown to occur [48]. This article focuses on ternary palladium-rich hydrides (molar ratio Pd

to M ≥ 2) incipient with Laves phases, followed by ccp related MPd3 and the hexagonal CaPd3Hx.

The article closes with an account on hydrides of palladium-rich phosphorous compounds.
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8.6.1. Hydrides of Laves phases SrPd2 and EuPd2

Plenty of Laves phase hydrides are known since they are renowned for absorption of considerable

amount of hydrogen up to compositions of AM 2H7. Well known are, for example, the hydrides of

ZrV2 crystallizing in the cubic MgCu2 type, or in some distorted variants of it, with up to six hydrogen

atoms per formula unit [68,69]. Two palladium-rich Laves phases that form hydrides are known, SrPd2
and EuPd2 [70,71].

Synthesis

The cubic Laves phase hydrides could be synthesized by two routes. On the �rst route, the inter-

metallic compounds are synthesized from the elements by arc melting or annealing under vacuum

and subsequent hydrogenation of these intermetallics. EuPd2 decomposes at hydrogen pressures over

2 MPa or further heating over 400 K at 620 kPa hydrogen pressure to the perovskite EuPdH3 and

the binary hydride PdHx. On the second route, the hydrides were synthesized from palladium and

the binary hydride SrH2 or EuH2 under hydrogen pressure [70,71].

Crystal structures

SrPd2 and EuPd2 crystallize in the cubic MgCu2 type, better known as cubic Laves phases. Stron-

tium or europium atoms form a diamond-like structure with palladium tetrahedra in the tetrahedral

voids. Hydrogen probably occupies tetrahedral interstices, but the hydrogen positions were not yet

experimentally determined in these cases. The hydrogen uptake results in volume expansion which

is usually 5 % per hydrogen atom per formula unit on cubic Laves phase hydrides. Hence, formulae

EuPd2Hx (x = 0.1, 1.5, 2.1) were estimated [71]. The hydrogen content of SrPd2H was obtained by

pyrolysis and acid hydrolysis [70].

8.6.2. Ccp related palladium-rich hydrides MPd3Hx

The largest number of ordered palladium-rich hydrides belong to the composition MPd3Hx with the

metal atoms M and Pd together forming ccp related structures (M : Mg, In, Tl, Sn, Pb, Bi, Sc, Y, Mn,

Ce). These hydrides can be synthesized by hydrogenation of the intermetallic hydrogen free precursor

compounds. Some of them show a hydrogen induced rearrangement, which will be explained in detail

in this section after a short description of synthesis procedures.

Synthesis

The ordering of the structures, especially for long-range order like ZrAl3 type, requires a long time

of annealing because atoms have a low mobility. The compounds with thallium or tin are produced

by typical solid state syntheses from elements in sealed silica tubes under inert gas atmosphere or

vacuum [72,73]. MPd3 (M : Mg, In, Pb, Bi) are synthesized from elements with small amounts

of iodine as mineralizing agent. Iodine can be removed by mild heating (sublimation) or dissolved

with half-saturated aqueous potassium iodide solution after grinding of samples [32,52,73,74]. CePd3
and YPd3 are prepared by arc melting [75,76], and MnPd3 by high frequency induction heating

[77,78]. Samples were often annealed at temperatures below the melting or decomposition point. All

compounds are stable in air. The intermetallic compounds were hydrogenated in autoclaves under

hydrogen or deuterium pressure (Table 8.6.1). TlPd3Hx could also be formed by reduction of TlPd3O4

in hydrogen gas atmosphere and InPd3Hx by the decomposition of Pd5InSe or Pd8In2Se under high

hydrogen pressure [72,73]. The grinding of MgPd3 in a mortar might yield in transformation to a

cubic solid solution (Cu type), that is, loss of atomic order [79].
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Table 8.6.1.: Ternary palladium-rich hydrides with metal structures related to the ccp. The change

of unit cell volume corresponds to the relative increase of the unit cell per formula unit

upon hydrogenation
Compound (struc-

ture type)

Hydride (structure type of metal

atoms without hydrogen)

Conditions of hydrogenation

(deuteriation)

Change of unit cell

volume/formula unit

MgPd3 [a] (ZrAl3) α-MgPd3D0.79 (ZrAl3) [79,80] 0.5 MPa D2 / 299 K + 5.8 %

MgPd3 [a] (ZrAl3) β-MgPd3Hx (AuCu3) [79] 0.61 MPa H2 / 750 K + 6.5 %

InPd3 (ZrAl3) InPd3D0.89 (AuCu3) [81] 4.5 MPa D2 / 523 K + 3.5 %

InPd3 (TiAl3) InPd3Hx (AuCu3) [34] 2.0 MPa H2 / 523 K + 3.9 %

TlPd3 [b] (ZrAl3) α-TlPd3Hx (ZrAl3) [72] 0.1 MPa 7.5 % H2/Ar / 1003 K + 0.6 %

TlPd3 [b] (ZrAl3) β-TlPd3H (AuCu3) [72] 0.1 MPa H2 / 773 K + 3.9 %

SnPd3 (AuCu3) SnPd3Hx (AuCu3) [73] 5.0 MPa H2 / 703 K + 0.4 %

PbPd3 (AuCu3) PbPd3Hx (AuCu3) [73] 5.0 MPa H2 / 703 K + 0.6 %

BiPd3 (BiPd3) BiPd3Hx (ZrAl3) [32]

YPd3 (AuCu3) YPd3H0.3 (AuCu3) [82,83] 5.0 MPa H2 / 300�773 K + 0.4 %

MnPd3 [a,c] (ZrAl3) MnPd3D0.61 [c] (ZrAl3) [77] 0.1 MPa D2 / 298 K + 3.5 %

MnPd3 [a,c] (ZrAl3) MnPd3D0.7 [c] (AuCu3) [77,84] 1.0 MPa D2 / 295 K + 2.1 %

CePd3 (AuCu3) CePd3Hx (AuCu3) [85] 16 MPa H2 / 299 K + 0.7 %

[a] Additional modi�cation in AuCu3 type, accessible only by hydrogenation�dehydrogenation. [79,86]

[b] Additional modi�cation in TiAl3 type structure, not yet investigated for hydrogenation properties. [72]

[c] The metal atoms of MnPd3 and MnPd3Hx are slightly disordered. [77,84]

Crystal structures

MPd3 (M = Mg, In, Tl, Sn, Pb, Sc, Y, Mn, Ce) crystallize in ordered superstructures derived

from ccp (Cu type) of palladium itself by ordered substitution of palladium by metal atoms M.

Dropping the F centering in a ccp leads to the well-known cubic AuCu3 type structure (Fig. 8.6.1,

bottom) with a splitting to two crystallographic positions in the multiplicity ratio 1:3. An in�nite

series of superstructures may be derived from the AuCu3 type by shifting half of the layers (denoted

A' in Fig. 8.6.1) by 1/2 [110], which is equivalent to exchanging M for Pd atoms and vice versa

(denoted B' in Fig. 8.6.1). A' and B' layers may now be stacked in various orders, for example,

A'B'A'B' . . . in the tetragonal TiAl3 type structure (twofold ccp superstructure, Fig. 8.6.1, top),

A'A'B'B'A'A'B'B' . . . in the tetragonal ZrAl3 type structure (fourfold ccp superstructure, Fig. 8.6.1,

middle), A'A'A'B'B'B'A'A'A'B'B'B' . . . in the Tl2PbPd9 type structure (sixfold ccp superstructure,

not shown here) and so on, while in the AuCu3 only A' layers are stacked according to A'A' . . . [53,79].

Even longer stacking sequences with four, seven, or even nine like layers (18-fold superstructure),

depending on annealing procedures and exact composition (x) were reported for phases Cu3-xPd1+x (-

0.16 ≤ x ≤ 0.20) [87�89]. Complete order cannot be achieved in all cases, for example, MnPd3 tends to

exhibit some degree of disorder with mixed occupation of Mn and Pd atoms on some crystallographic

sites [84]. All these superstructures contain octahedral voids suitable for hydrogen incorporation,

which are either completely surrounded by palladium atoms, [Pd6], by one M and �ve palladium

atoms [MPd5], or by two M and four palladium atoms [M 2Pd4]. The number of [Pd6] and [M 2Pd4]

increases in the series TiAl3 type, ZrAl3 type, Tl2PbPd9 type, . . . , AuCu3 type to a maximum of 1/4

and 3/4 of all octahedral voids in the latter, while that of [MPd5] decrease from 1/2 in TiAl3 type to

0 in the AuCu3 type.

Hydrogenation experiments show that most MPd3 compounds take up considerable amounts of

hydrogen to form hydrides MPd3Hx (x ≤ 1) with a strong preference for octahedral positions sur-

rounded exclusively by palladium, [Pd6], for the hydrogen atoms. AuCu3 type compounds (M = Sn,

Pb, Sc, Y, Ce) hereby keep their structure and incorporate hydrogen in the preferred [Pd6] octahedral

sites resulting in increased unit cell volumes. The positions of the hydrogen atoms were determined
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Figure 8.6.1.: Hydrogen induced rearrangement of intermetallic superstructures of MPd3 from TiAl3
type (top) and ZrAl3 type (middle) to AuCu3 type (bottom) during hydrogenation by

shifting half of the face diagonal of layer B' along [110] (marked by green arrows) [34].

Crystallographic unit cells are drawn in orange. The unit cell of ZrAl3 type is shifted by

one eighth in the c direction with respect to the other structures and the transparent

palladium atoms complete the unit cell. The octahedral voids (ov) of one section (gray

outline) of each structure type are shown [79].

by neutron di�raction on the deuterides and in some cases also by inelastic neutron scattering and

NMR spectroscopy [72,77,79�82,85]. The crystal structure of MPd3Hx may thus be described as a

cubic anti-perovskite type.

Hydrogen in ScPd3Hx is assumed to occupy the [Sc2Pd4] octahedral voids. However, it has only

been observed as a poorly crystalline secondary phase in samples of Mg0.65Sc0.35Dx [90].

MPd3 compounds crystallizing in ZrAl3 type (M = Mg, In, Tl, Mn) incorporate hydrogen at very

mild conditions; for M = Mg, Mn, even at room temperature and low hydrogen pressures (≤ 5 bar).

The hydrides MPd3Hx (x ≤ 1) are also of the cubic anti-perovskite type; that is, the MPd3 sub-

structure transforms to a AuCu3-like arrangement. The driving force of this reaction is the formation

of further [Pd6] octahedral sites (doubling) which hydrogen occupies preferentially. This strong ten-

dency of hydrogen to be coordinated maximally by palladium is also based on theoretical investigations

[80,91]. The palladium-rich compound with manganese reacts with the same rearrangement from the

tetragonal structure, which incorporates hydrogen only in [Pd6] and [MnPd5] octahedral sites, to the

cubic structure at higher pressures [92,93]. Anti-perovskite type TlPd3H shows the highest hydrogen
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content with fully occupied hydrogen positions (x = 1) [72].

Due to the relationship between ZrAl3 and AuCu3 type structure (Fig. 8.6.1) the above mentioned

structural rearrangement upon hydrogenation may formally be viewed as a shift of layers within the

structure by 1/2 [110]. While in the �rst place this is only a way to illustrate the structural relationships,

calculations show that hydrogen placed between layers A' and B' ([MPd5] and [M 2Pd4], Fig. 8.6.1)

indeed assists a gliding by 1/2 [110] by reducing its activation energy considerably [91]. In situ X-ray

and neutron di�raction for the hydrogenation has shown that before the rearrangement to the AuCu3
type takes place ZrAl3 type MgPd3 incorporates hydrogen. While [Pd6] sites are preferred, [MPd5]

and [M 2Pd4] voids are also occupied (Fig. 8.6.2), and may thus assist the proposed gliding operation.

Further hints, that gliding by 1/2 [110] may indeed take place during the reaction, at least in small

domains, are the very mild reaction conditions, under which a complete reconstruction of the crystal

structure seems hardly possible, and the fact that the structural transformation is irreversible (in

contrast to the hydrogen uptake into the ZrAl3 type structure). The ZrAl3 type can only be recovered

by complete removal of hydrogen (for In, Tl); however, in the cases of Mg and Mn even then the

AuCu3 type is retained. Thus, in the case of Mg, a hydrogenation�dehydrogenation cycle yielded a

new polymorph called β-MgPd3 in the AuCu3 type which could not be synthesized by other means

[79].

The hydrogenation of InPd3 is interesting because of its four polymorphs in the ZrAl3 type, the high

temperature modi�cation TiAl3 type, as well as in the solid solutions of the Cu and the In type [94].

InPd3 reacts in the same hydrogen induced rearrangement as MgPd3, MnPd3, and TlPd3; however,

hydrogen incorporation of tetragonal ZrAl3 type has not been observed yet. The modi�cation in the

TiAl3 type forms the same hydride as the one in ZrAl3 type. The same gliding-like mechanism as

discussed above may apply here, and calculations show the same lowering of its activation energy by

hydrogen incorporation [91].

The crystal structure of BiPd3 is also closely related to a close packing. The stacking sequence in

this case, however, is ABAC. . . for the close-packed layers (not to be confused with layers A' and B'

in Figs. 8.6.1 and 8.6.2, see comment above and remark on nomenclature at the beginning of this pub-

lication). This is known as double hexagonal close packing (dhcp), with lanthanum, praseodymium,

and neodymium being the structural aristotypes. BiPd3 itself shows a slight orthorhombic distortion

hereof [95]. Another closely related structure with ABAC packing for the metal atoms is CaPd3Hx,

with a hydrogen �lled TiNi3 type structure (see later). Upon hydrogenation, BiPd3 forms a hydride

BiPd3H≈0.2, with a ZrAl3 type for the BiPd3 partial structure, and hydrogen in octahedral [Pd6] voids

[32]. In order to transform the Bi/Pd substructure from its dhcp- like to a ZrAl3- like arrangement,

Figure 8.6.2.: Crystal structure of α-MgPd3D0.79 (�lled ZrAl3 type). The highest occupation of deu-

terium is on [Pd6] (light green polyhedra), followed by [MgPd5] (green polyhedra) and

least occupation is on [Mg2Pd4] octahedral voids (blue polyhedra) [80].
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the stacking sequence of close-packed layers has to change to ABC as in a ccp. In addition to the

hydrogen induced rearrangement described earlier, this system furthermore seems to exhibit another

type of hydrogen assisted gliding operation.

Symmetry relationship

The obvious relationship of the above mentioned ccp superstructures of the metal atoms can be

concisely depicted by a Bärnighausen symmetry tree illustrating the group�subgroup relationships

(Fig. 8.6.3) [96]. Almost all hydrides of MPd3 crystallize in the �lled AuCu3 type, that is, defect

cubic anti-perovskite type. The AuCu3 type is related to the ccp of palladium by a simple symmetry

reduction step (loss of F centering). The other relevant hettotypes are on two paths starting from

the AuCu type. On the right side two doublings of the c-axis by an isomorphic and a klassengleiche

transition yield in the ZrAl3 type, a fourfold ccp superstructure. The second path on the left hand

side yields the twofold superstructure of TiAl3 type by one doubling of the c-axis [94]. This structure

type does not form hydrides because of missing [Pd6] octahedral voids. Using these symmetry con-

siderations, all structures of MPd3 (M = Mg, In, Tl, Sn, Pb, Sc, Y, Mn, Ce) can be easily related

to each other, proving that they may all be described as ordered substitutional derivatives of a cubic

closest packing. The initially mentioned long-period structures of Tl2PbPd9 (sixfold ccp superstruc-

ture) and Cu3Pd (18-fold superstructure) may also be included by adding one or two isomorphic (also

called equivalent in older literature) symmetry reduction steps of index 3 (tripling the crystallographic

c-axis) to the TiAl3 type thus completing the picture.

Figure 8.6.3.: Group�subgroup relationship of binary palladium-rich ccp superstructures [94]. Free

positional parameters are idealized values converted from the aristotype Cu.
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Electronic structure

Calculations of the DOS of the tetragonal α-MgPd3 and α-MgPd3Hx as well as the cubic β-MgPd3
and β-MgPd3Hx suggest metallic properties for all four compounds. The bonding states of the un-

hydrogenated phases are very similar and dominated by Mg-s, Mg-p, and Pd-d states. However, the

cubic β-MgPd3 have a higher density of Mg-s and Pd-d states just above the Fermi level being slightly

less favorable than in α-MgPd3. The hydrogenation of both phases lowers the energy at the Fermi

levels and adds a strong H-s dominated bonding feature at lower energy, which is hybridized with Pd-d

state. This hybridization is more distinct in β-MgPd3Hx than in α-MgPd3Hx, implying a stronger

Pd�H interaction and a higher stability. The double number of [Pd6] octahedral sites in the AuCu3
type compared to ZrAl3 type shifts these low lying binding states slightly toward lower energy range

and contributes to the higher stability of β-MgPd3Hx as compared to α-MgPd3Hx [80,97].

Magnetism of MnPd3Dx

Manganese is the only paramagnetic atom of the metalsM discussed in this article. The tetragonal and

cubic modi�cations of MnPd3 have slightly lower magnetic moments as compared to their deuterides.

MnPd3 and MnPd3Dx crystallizing in ZrAl3 type show a collinear antiferromagnetism ordering in a

+ +−− sequence. The main di�erence between the magnetic structures is the inclination angle of the

magnetic moment with respect to the crystallographic c-axis (11° for MnPd3 and 55° for MnPd30.53D),

which is believed to originate from di�erences in manganese�manganese distances [98]. The magnetic

moment of manganese atoms is 4.8 µB in tetragonal MnPd3D0.53 and 4.1 µB in cubic MnPd3D0.67

[98,99]. The magnetism of cubic MnPd3D0.67 could be explained either by a noncolinear ferrimagnetic

structure and a commensurate conical magnetic structure, both models �tting the neutron di�raction

data equally well [99].

Hydrogen content of ccp related MPd3Hx

It is remarkable to note that the reactivity of palladium-rich intermetallic compounds strongly de-

pends on the crystal structure. The majority of phases with signi�cant hydrogen uptake exhibit ccp

superstructures, that is, are structurally related to the element palladium. However, not all ccp-like

palladium-rich compounds incorporate hydrogen, and those that do, do so to a widely varying extent

0 < x ≤ 1 in MPd3Hx. Electronic and geometric e�ects were found to be the main factors deter-

mining the hydrogen content x. The structure map shown in Fig. 8.6.4 illustrates this in�uence by

plotting the hydrogen content x of ccp related hydrides MPd3Hx as a function of electronegativity

and atomic radius. Metals M with electronegativity values similar to palladium show the highest

hydrogen amount. Furthermore, the atomic radius has also an in�uence on the hydrogen content

as seen for example comparing lead and manganese, which exhibit the same electronegativity, but

have large di�erences in radii. Very pronounced similarities in electronic and geometric properties

are apparently not preferable, because the solubility of these elements in palladium increases and the

ordering of atoms is impeded such as in MnPd3, with a sluggish order�disorder transition [84].

8.6.3. CaPd3Hx

CaPd3Hx is a special case because no intermetallic precursor compound is known yet. This hydride is

formed by reaction of the binary hydrides CaH2 and PdHx [101]. The metal atoms of CaPd3Hx form

the hexagonal TiNi3 type, to which BiPd3 is structurally related.
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Figure 8.6.4.: Structure map for ccp related hydrides MPd3Hx showing the hydrogen content x as a

function of electronegativity (EN by Allred and Rochow [100]) and atomic radius of M.

The colored areas are meant as a guide for the eye and exact boundaries are uncertain

as yet.

Synthesis

CaPd3Hx is synthesized by reaction of CaH2 and PdHx in a ratio 1:2.4. The ground mixture reacts

at 623 K under 0.5�0.8 MPa hydrogen pressure. Higher temperatures hydrogen pressures favor the

formation of CaPd2 and CaPdH2 [101].

Crystal structure

The metal atoms of CaPd3Hx crystallize in the hexagonal TiNi3 type structure (Fig. 8.6.5) with a

double hexagonal layered sequence of ABACABAC. . . . [Pd6] octahedra are alternately connected

by faces and edges, forming short strands. Calcium is located between these strands. Octahedral

voids are assumed to be fully occupied by hydrogen (Pd�H distances of 203�209 pm) [101]; however,

hydrogen content and positions are not yet determined experimentally.

8.6.4. Palladium-rich hydrides with phosphorous

Three palladium-rich compounds with phosphorous are known that incorporate hydrogen or deuterium

reversibly. The structures of these compounds are drastically di�erent from Laves or MPd3 phases.

Pd3P0.8, Pd6P, and Pd15P2 retain their crystal structure upon hydrogenation, except for an increase

of unit cell volume and incorporation of hydrogen atoms in interstitial sites.

Synthesis

Palladium-rich phosphides are synthesized in high frequency induction furnaces under low argon pres-

sure by �rst melting palladium and then adding phosphorous lumps, followed by multiple grinding

and melting steps [102]. Pd15P2 is synthesized with an excess of palladium to prohibit the formation
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Figure 8.6.5.: Crystal structure of CaPd3Hx (�lled TiNi3 type). Proposed hydrogen positions in [Pd6]

octahedral voids are shown in light green polyhedra [101].

of Pd6P. The compounds are deuterated at room temperature and deuterium pressures up to 700 kPa

[103�105].

Crystal structure

Pd3P1-x crystallizes in the Fe3C type (Pnma) with a homogeneity range (Fig. 8.6.6). The unit cell

volume of Pd3P0.8 increases upon deuteration. Deuterides Pd3P0.8D0.14 were formed at 200 kPa

and Pd3P0.8D0.15 at 500 kPa deuterium pressure and contain deuterium atoms close to a vacant

phosphorous site with a distorted square-pyramidal surrounding by palladium atoms [103].

Columns or triangular [Pd6] prisms running along crystallographic a direction are the dominating

structural feature in the crystal structure of Pd6P (Fig. 8.6.6). These columns are packed in the (b, c)

plane. This structure is very similar to the Re3B type (Cmcm). However, only every other triangular

prism is �lled with a phosphorous atom, and thus the orthorhombic symmetry is broken. The unit

cell volume increases with increasing hydrogen content. Pd6PD0.15, Pd6PD0.22, and Pd6PD0.26 were

formed at 200 kPa, 500 kPa, and 750 kPa deuterium pressures, respectively. Deuterium occupies some

of the distorted square-pyramidal sites, linking with the empty triangular [Pd6] prisms, and some of

the distorted octahedral sites linking four strands of triangular prisms [104].

The crystal structure of Pd15P2 (space group R3̄, Fig. 8.6.6) may be described as an almost cubic

closed packing of distorted palladium icosahedra (formed by Pd1 and Pd2) with Pd4 (0, 0, 1/2) in

the center. In the octahedral and tetrahedral holes of this packing, further palladium atoms (Pd3)

and the phosphorous atoms are located, respectively [106]. Upon deuteration at 500 kPa deuterium

pressure, the deuteride Pd15P2D0.46 was formed with an increased unit cell volume. Deuterium

occupies distorted tetrahedral [Pd4] voids in the crystal structure of Pd15P2 [105].

8.7. Concluding remarks

The hydrogen compounds of palladium and palladium-rich intermetallics may serve as archetypical

examples for metallic hydrides with variable hydrogen content. A very detailed understanding of

palladium hydride and the palladium�hydrogen phase diagram were attained in the past 150 years.

It has been a very important model system for many interesting e�ects in the solid such as di�usion

in metals, lattice gas behavior, or catalysis. A large number of palladium-rich solid solutions exist

that form hydrides. The hydrogen uptake depends strongly on geometric aspects, as the size of the

octahedral void in an α-phase hydride. In ordered palladium-rich intermetallic compounds we �nd a
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Figure 8.6.6.: Crystal structures of Pd3P0.8D0.15 (top left) with deuterium at distorted [Pd5] square-

pyramidal sites, of Pd6PD0.26 (bottom left) with deuterium at distorted [Pd6] octahedral

and distorted [Pd5] square-pyramidal sites and Pd15P2D0.46 (right) with deuterium at

distorted [Pd4] tetrahedral sites.

very subtle interplay between hydrogen�palladium interaction and atomic order between substituting

metal M and Pd atoms. It is generally deemed that hydrogen occupies preferential sites with a large

number of palladium neighbors. [Pd6] octahedral voids, like in palladium itself, are primarily the most

favored sites for hydrogen incorporation. Hydrogen-assisted gliding of atomic layers may be a possible

mechanism for the formation of hydrides of ccp related MPd3, most of which crystallize in a cubic

anti-perovskite structure with hydrogen in octahedral [Pd6] voids. The hydrogenation of these ordered

compounds depends in addition to geometric also on electronic aspects. New modi�cations of, for

example, MgPd3 and MnPd3 (AuCu3 type) could only be formed by hydrogenation and subsequent

dehydrogenation; that is, by exploiting the above mentioned mechanism upon hydride formation.

Furthermore, palladium-rich Laves phases, CaPd3Hx without an intermetallic precursor compound

and compounds with phosphorous also form hydrides. Ordered palladium-rich compounds, which do

not form hydrides, often attract interest in catalysis.
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9.2. Abstract

Solid-gas reactions play an important role in many technologically important processes from ore smelt-

ing to hydrogen storage and the synthesis of functional materials. In situ investigations are very useful

for unraveling basic steps of such reactions, rationalizing them and gaining control. For investigating

time-resolved solid-gas reactions, we have constructed a gas pressure cell for elastic neutron di�rac-

tion. By proper orientation of a single-crystal sapphire tube as sample holder, Bragg peaks from the

container material can be completely avoided, thus yielding high-quality powder di�raction data with

very clean di�raction background. This enables the extraction of high precision crystal structure data

as a function of gas pressure and temperature (laser heating) in time-resolved studies. The potential

of the gas pressure cell is demonstrated by in situ studies of the reaction of solids with hydrogen,

which yielded detailed models of the reaction pathways including high quality crystal structures of

reaction intermediates and products. These were used to predict successfully the existence of further

metal hydrides, to explain unusual bonding properties, and to optimize the synthesis of metastable

compounds.
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9.3. Introduction

The importance of solid-gas reactions in science and in everyday life can hardly be overrated. They

play a crucial role in many technologically important processes such as ore smelting (Fig. 9.3.1),

heterogeneous catalysis, combustion of solid fuels, and the synthesis of solid materials. Solid-gas

reactions are the basic step of gas storage, e. g. CO2 sequestration or hydrogen storage, of corrosion

of metals and alloys (Fig. 9.3.1) or their hardening procedures. They are thus key for the production,

use and wear of many functional materials. The study of such reactions is often technically demanding

due to the oftentimes harsh conditions and the di�culty to �nd suitable probes. This is probably

the reason, why despite being subject of research for many decades, only model systems are well

understood and a deeper knowledge of reaction mechanisms in solids allowing control over processes

is often lacking [1�4].

Figure 9.3.1.: Ironworks in Völklingen, Germany (UNESCO World Heritage Site since 1994), as an

example for two di�erent kinds of solid-gas reactions, iron ore smelting (reaction of

iron oxides with gaseous carbon monoxide; when operating ≤ 1986) and corrosion of

steel in air (after closing in 1986); By Lokilech - Own work, CC BY-SA 3.0, https:

//commons.wikimedia.org/w/index.php?curid=1331378, download August 8, 2017.
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9.4. Materials and methods

Neutron di�raction is ideally suited to serve as a probe for such reactions because of several reasons.

The gases most often used, e. g. H2, N2, O2, H2O, CO, CO2, contain light elements, which can often

be better located in crystal structures by neutron as compared to X-ray di�raction. Studying solid-

gas reactions by in situ methods allowing control over external parameters such as pressure and

temperature often requires bulky sample environment. This is easier to penetrate by neutrons than

by X-rays due to the smaller absorption coe�cients for most elements. Further, neutrons can probe

many properties of materials, e. g. crystal structure, di�usion, magnetism, vibrational properties, and

thus yield extensive information. In this contribution, we will focus on crystal structure evolvement

during solid-gas reactions by elastic neutron powder di�raction. Time-resolved in situ investigations

are very useful for unraveling basic steps of such reactions and understanding reaction pathways. This

is the key to rationalize them and gain better control over reactions and processes. The potential of in

situ neutron di�raction for the study of solid-gas reactions is intimately connected to the development

of high-�ux di�ractometers and has increased accordingly over the past decades [5�8]. Here, we will

brie�y describe a single-crystal based sapphire cell and show the potential and limitations of this piece

of sample environment for time-resolved in situ neutron powder di�raction.

9.4. Materials and methods

9.4.1. Chemical syntheses

MgPd3 was synthesized by solid-state reaction of the elements (3.1 % excess of magnesium powder,

99.8 %, abcr; palladium powder, 99.95 %, ≤ 150 µm, Goodfellow; 25 K h-1 to 868 K, held for 4.5 d,

quenched in air) in evacuated glass ampoules with iodine as mineralization agent (few crystals) [9].

The product was annealed for another 3 d at 868 K after regrinding and yielded α-MgPd3 with about

1 % of MgO as minor phase. SrGe was prepared from the elements in sealed tantalum ampoules [10].

9.4.2. A sapphire single-crystal cell for in situ neutron di�raction

In situ neutron di�raction for solid-gas reaction requires dedicated sample environment. It has to hold

the sample in place, give control over temperature and gas pressure, and allow neutron di�raction to

be carried out. Speci�cally, the sample environment should ful�ll the following requirements:

� chemical inertness (corrosion, hydrogen embrittlement)

� pressure stability

� temperature stability

� free optical access for the neutron beam

� low incoherent neutron scattering

� low neutron absorption

� low background

� no parasitic re�ections

High-strength alloys seem to be good candidates for the material of an in situ cell in view of tempera-

ture and pressure stability, and are often used [11�15]. For detailed structural investigations, however,

they show some disadvantages. Most severely, such materials as steel, Inconel, aluminum alloys etc.
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are polycrystalline and evidently di�ract the neutron beam, thus contributing to the di�raction pat-

tern. This may lead to overlap of re�ections from sample and container, especially for low-symmetry

compounds in the sample, disturbing the data analysis by Rietveld re�nement. Amorphous container

materials (e. g. the widely used silica for high-temperature di�raction) are not an ideal choice either,

because they produce a strong structured di�raction background. The degree of these problems of

course scales with the neutron scattering lengths in the materials of use. Therefore, zero-scattering

alloys such as Ti52Zr48 are suitable materials and are used for gas-pressure cells [16]. Due to hydrogen

embrittlement, unfortunately, it cannot be used when studying hydrogenation reactions. This prob-

lem can be solved by using an inner liner, preventing hydrogen contact to the alloy. However, either

pressure-temperature conditions are limited, e. g. in copper-coated vanadium cans [17] or the lining

material will again produce neutron re�ections.

The intrinsic �aws of amorphous and polycrystalline materials have prompted us to aim for another

concept. In a powder di�raction experiment, most often the detector operates in a plane and is of

limited height, i. e. measures only a thin slice of reciprocal space. Debye-Scherrer rings from a

polycrystalline container material will inevitably by measured by such a detector (Fig. 9.4.1, left).

In case of a single crystalline material, however, di�raction intensities are con�ned to small spots in

reciprocal space. Having a single-crystalline container material should therefore enable a mode of

operation where by proper orientation the detector in a powder di�raction experiment will measure

only reciprocal space between rows of di�raction spots and therefore not see the container material

(Fig. 9.4.1, right). A material available as large single crystals and ful�lling the above-mentioned

requirements is synthetic α-Al2O3, also known as leuco-sapphire, and is thus chosen. A 10 cm long

sapphire is machined to have a borehole of 6 mm inner diameter to hold the powder sample. A �ange

at the upper end of the single crystal in combination with an endcap machined from steel (Fig. 9.4.2)

allows hermetical sealing and realization of high gas pressures. The latter also provides a free optical

access of the neutron beam. Due to the design with separated endcaps, no further supports in the

di�raction plane are necessary, which might disturb the di�raction experiment by neutron absorption.

A similar design using a single-crystal sapphire cell was described before for inelastic scattering on

gas hydrates at low temperatures [18] and inspired our development. The use of leuco-sapphire has

Figure 9.4.1.: Di�raction patterns of a polycrystalline material (left) and a single crystal (right) with a

thin slice of reciprocal space mapped in a typical powder di�raction experiment marked

in green.
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Figure 9.4.2.: Schematic drawings of the machined single-crystal sapphire (left, measures in mm, crys-

tallographic c axis along cylinder axis or slightly inclined) and fully assembled cell

(right).

the further advantage of optical transparency, which makes visual control of the reaction progress

and heating by a laser possible. Neutron di�raction measurements of the empty cell and of reference

samples inside the cell show that the concept of avoiding Bragg re�ections from the container by using

a single crystal with proper orientation with respect to the di�ractometer works well. Di�raction data

are comparable in quality to ex situ data due to the absence of enhanced background or parasitic

re�ections. In some cases incoherent scattering in the vicinity of strong single-crystal re�ections of

the sapphire cannot be avoided completely and a few degrees in 2θ have to be excluded [7, 19, 20].

Typical operating conditions for the sapphire single-crystal cell for in situ investigations of solid-

gas reactions with hydrogen (deuterium) are T ≤ 700 K, pgas ≤ 16 MPa, and time resolution of

10 s ≤ ∆t ≤ 300 s. For avoiding mechanical failure of the �anges at the end of the container

(Fig. 9.4.2), seals have to be chosen according to their hardness and assembled carefully. Due to

thermal conductivity of sapphire and hydrogen gas, seals warm up, i. e. their temperature stability

is also a major concern. Depending on gas pressure and temperature suitable seals consist of indium,

lead or polymeric materials. For the latter O-rings of Viton GLT70 with 70 shore (15 mm outer

diameter, 2 mm thickness, operating temperature according to manufacturer 293 K ≤ T ≤ 493 K,

CKD-Dichtungstechnik, Germany [21]) and NBR �at seal with 65 shore (17 mm outer diameter, 9 mm

inner diameter, 2 mm thickness, operating temperature according to manufacturer 243 K≤ T ≤ 373 K,

IDT-Flachdichtungen, Germany [22]) were tested successfully. Leak rates are below 1 kPa h-1 at room

temperature for pressures up to 10 MPa. The tube attached to the upper steel cap (Fig. 9.4.2, right)

is connected to a gas delivery system. This and the laser heating can be controlled remotely while the

in situ experiment is running. It consists of two laser diode modules (LNT, 808 nm, 40 W each), 5 m

long glass �bres and divergent optics to widen the beam to an area of 6*20 mm2 at the sample inside

the sapphire single-crystal cell. For safety reasons, the cell is operated inside an enclosure made from

aluminum installed on the di�ractometer (D20, Institut Laue-Langevon, Grenoble, France). From

experience over eight years, an average lifetime of sapphire crystals is estimated to be more than �ve

in situ neutron di�raction experiments. Test measurements with the empty cell and reference samples

for hydrogenation have been described already [7, 19, 20]. Herein, we report on new application of

in situ neutron di�raction experiments of the sapphire single-crystal cell, probing its potential and

limits.
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9.5. Results and Discussion

9.5.1. Hydrogenation of palladium-rich intermetallic compounds

Compounds of palladium and palladium-rich intermetallics with hydrogen are archetypical examples

for metallic hydrides with variable hydrogen content. Ordered palladium-rich intermetallic compounds

show a very interesting interplay between hydrogen�palladium interactions and atomic order. InMPd3
(M = Mg [23], In [24,25], Tl [26], Sn, Pb [27], Bi [28]) hydrogen induces a rearrangement between

di�erent ordered variants of close packing of M and Pd atoms for which the maximization of the

number of octahedral [Pd6] voids plays an important role. These interstices are preferred by hydrogen

and provide the highest bonding energy in their hydrides MPd3Hx (in general x ≤ 1). For M = Mg

the crystal structure is retained when removing the hydrogen by gentle heating in vacuum [23]. This

concept provides a soft-chemical route (chimie douce) to new polymorphs of intermetallic compounds.

Some of the hydrides cannot be quenched to ambient conditions, i. e. in situ investigations are

mandatory for their investigation. As an example, we present here a study on the hydrogen uptake

of MgPd3, which crystallizes in the tetragonal ZrAl3 type structure (ordered variant of cubic close

packing, Fig. 9.5.1, top right), at room temperature. The crystal structure exhibits three suitable

interstitial sites for hydrogen (deuterium) atoms, each of them surrounded in a slightly distorted

octahedral arrangement by varying numbers of magnesium and palladium atoms, [Pd6], [MgPd5], and

[Mg2Pd4].

Deuterium uptake starts at room temperature when �ushing the cell with deuterium gas (1 MPa,

frame 1, Fig. 9.5.1). At this point, half of [Pd6] and one quarter of [MgPd5] are occupied while

[Mg2Pd4] are empty. During the isothermal deuteration up to frame 17 (corresponding to 112 min)

both lattice parameters increase (∆a = + 1.3 %, ∆c = + 0.9 %). The development of lattice

parameter a and the occupation of [MgPd5] are strongly correlated as evident from the very similar

dependence on time (Fig. 9.5.1). This is most probably caused by the structural arrangement of

[MgPd5] octahedra, which share edges and form sheets perpendicular to the crystallographic c axis

(Fig. 9.5.1, top right). A volume increase by deuterium occupation in these voids will therefore be

highly anisotropic and cause a larger increase in a than in c. This e�ect is less pronounced for [Pd6]

voids, which share edges with [Mg2Pd4] to form similar octahedral sheets. [Mg2Pd4] are unoccupied

in the beginning of the experiment, thus working as a bu�er and soothing the e�ect of deuterium

occupation in [Pd6] on the lattice parameter a. Only when the lattice and thus the size of [Mg2Pd4]

voids has increased considerably (after 1 h, frame ≥ 11), they are occupied by deuterium, however, at

low rates (≤ 1/4) during the whole experiment. The beginning of [Mg2Pd4] occupation seems to mark

the end of a short two-phase region. This suggests a small miscibility gap for hydrogen in α-MgPd3
near the composition α-MgPd3H, i. e. distinct hydride phases with and without [Mg2Pd4] occupation.

Further investigations will be necessary, however, to con�rm this hypothesis.

In order to probe the pressure dependence of deuterium occupation, it was �rst decreased to 0.1 MPa

(frames 18 to 21) and then the cell was evacuated (≈ 10 Pa, frames 22 to 35). Lattice parameters and

deuterium content decrease only slightly (Fig. 9.5.1). The change to lower pressures is accompanied by

a considerable decrease in re�ection width. The broad re�ections at higher pressure (1 MPa deuterium)

indicate a wider distribution of phases, most probably di�ering in deuterium content, which suggests

that the sample is not at thermodynamic equilibrium. By reducing the pressure, fractions with

higher deuterium content apparently quickly release some deuterium. This e�ect is reversible as

proven by broadening of re�ections, increasing lattice parameters and deuterium content upon raising

the pressure again to 1 MPa (frames ≥ 36, Fig. 9.5.1). Strain by incorporated hydrogen may also

contribute somewhat to re�ection width, however, it cannot explain the marked di�erences between
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Figure 9.5.1.: In situ neutron powder di�raction data (top, left; intensities in false colors, each frame

6 min data collection time) of the deuteration of MgPd3 (�lled ZrAl3 type; top right)

taken on di�ractometer D20 at λ = 1.86786(3) Åin a sapphire single-crystal cell with

NBR �at seal (see chapter 2.2) at T = 297(1) K under various deuterium pressures

(middle, left, frames 22�35: vacuum); lattice parameters (bottom, left), free positional

parameters (middle right, see Table 9.5.1) and site occupation factors (SOF) of deu-

terium atoms (bottom right, SOF(D3) �xed to zero for frames 1 to 9) determined by

sequential Rietveld re�nement [31].
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Table 9.5.1.: Crystal structure parameters of α-MgPd3D1.18(9) at 1 MPa deuterium gas pressure and

room temperature (I 4/mmm, �lled ZrAl3 type, a = 3.9873(4) Å, c = 16.073(2) Å, frame

39).

atom Wycko� position x y z SOF B iso / Å2

Mg1 4e 0 0 0.1093(9) 1 0.9(2)

Pd1 4c 0 1/2 0 1 0.86(9)

Pd2 4d 0 1/2 1/4 1 B iso(Pd1)

Pd3 4e 0 0 0.3686(11) 1 B iso(Pd1)

D1 2b 0 0 1/2 0.95(5) 3.1(2)

D2 4e 0 0 0.2386(13) 0.68(4) B iso(D1)

D3 2a 0 0 0 0.06(5) B iso(D1)

two states with very similar overall deuterium content. The maximum deuterium concentration is

reached at the last frame of this experiment according to the formula α-MgPd3D1.18(9) (Table 9.5.1)

with full occupation of [Pd6] voids (within three e.s.u.s). The free positional parameter z of Pd3

stays nearly constant through the whole in situ experiment. However, z (Mg1) decreases during the

deuteration (vice-versa during applying vacuum) and z (D2) increases on the �rst deuteration and stays

nearly constant afterwards. These changes in z parameters result in growing Mg1-D2-distances within

the [MgPd5] octahedral void (from 1.4(2) Å at frame 1 to 2.06(2) Å at frame 17). The stretching of

Mg-D distances conforms to those observed before (1.901(8)-2.29(2) Å) [19] and is primarily due to

the increasing deuterium uptake in [MgPd5] octahedral voids.

The tetragonal α-MgPd3Hx phases described here are metastable intermediates of the hydrogenation

reaction of ZrAl3 type α-MgPd3 to cubic β-MgPd3Hx with an anti-perovskite like structure [23]. Their

characterization by in situ methods yields structural details needed for accurate modelling of total

energies, which are indispensable for the evaluation of di�erent reaction mechanisms such as hydrogen

assisted gliding [30].

9.5.2. Hydrogenation of Zintl phases

The hydrogenation of Zintl phases leads to the formation of di�erent types of hydrides, i. e. interstitial

hydrides, where hydrogen is coordinated by the cationic partial structure or polyanionic hydrides, with

hydrogen binding to the polyanion [31]. For the system SrGe-H2(D2) three phases are known. The

hydrogen-rich γ-SrGeH>1 shows features of both types with hydride anions tetrahedrally surrounded

by four strontium atoms (interstitial type) and hydrogen covalently bound to germanium polyanions

(polyanionic type) [10]. Two hydrogen poor hydrides, α- and β-SrGeH>1, are of the interstitial type

without Ge-H bonds, and cannot be quenched to ambient conditions [32]. Thus, in situ investigations

are necessary for determination of their crystal structures, hydrogen content and hydrogen uptake and

release. The reaction of SrGe at 4�5 MPa deuterium pressure and temperatures 300 K ≤ T ≤ 620 K

was followed by in situ neutron powder di�raction with 1 min data collection time per pattern.

Fig. 9.5.2 shows a section of the 2θ range that represents the main changes during the reaction. There

are four distinct phases formed during the heating and cooling cycle. The deuterium content of all

phases was evaluated for all patterns by serial Rietveld re�nement (FullProf [29]) using the crystal

structure models described earlier [10,32].

Due to their metastable character, in situ di�raction was required to discover and characterize the

interstitial hydrides α- and β-SrGeHx. This study proves that α-, β-, and γ-hydrides of SrGe are three

distinct phases, each with a more or less pronounced phase width with respect to hydrogen content.
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Figure 9.5.2.: In situ neutron powder di�raction (ILL, D20, λ = 1.86832(7) Å) of the reaction of

SrGe to γ-SrGeDx (1.10(1) ≤ x ≤ 1.233(7)) at 5.0 MPa deuterium pressure in a

sapphire single-crystal cell with lead seal, the subsequent decomposition and refor-

mation under 4.0 MPa deuterium pressure showing the additional phases α-SrGeDx

(0.23(1) ≤ x ≤ 0.30(2)) and β-SrGeDx (0.67(5) ≤ x ≤ 0.75(8)).

Vacancies on hydrogen positions may be compensated for by π-bonding within the polyanionic chains

[10,32]. This underlines the rich crystal chemistry of hydrides of Zintl phases with a variety of bonding

situations, crystal structures and hydrogen contents. It further demonstrates the potential of in situ

studies for these otherwise inaccessible reaction intermediates.

9.5.3. Further solid-gas reactions

The sapphire single-crystal cell described here has been used for in situ neutron powder di�raction

studies on further systems. Zintl phases SrGa2, KSi and CsSi show a single-step reaction to their

hydrides SrGa2H2, KSiH3 and CsSiH3 without any noticeable phase width with respect to hydrogen

content [33,34], in contrast to SrGe (see above). Various binary and ternary nitrides, imides and

amides are formed by hydrogenation-dehydrogenation in the light-weight hydrogen storage material

Li3N-MgH2[35]. Hydrogen-induced amorphization is observed for Dy5Pd2 [36] and SmCo5 [37]. The

latter is a crucial part of the widely used hydrogenation-disproportionation-desorption-recombination

(HDDR) process for the production of strong permanent magnetic materials. For binary and ternary

97



9. A Sapphire Single-Crystal Cell for In Situ Neutron Powder Di�raction of Solid-Gas Reactions

intermetallic lithium aluminum compounds, the formation of lithium hydride is frequently observed,

e. g. LiAl + x/2 H2 = Li1-xAl + x LiH [38] and for the half-Heusler compound LiAlSi according to

LiAlSi + 1/2 H2 = LiH + Al + Si [39]. A wealth of structural data on α- and β-palladium hydride at

various temperature-pressure conditions have been extracted from a single in situ neutron di�raction

experiment [20].

9.6. Conclusion

The sapphire single-crystal cell has proven its usefulness and provides access to high-quality di�raction

data and thus to accurate crystal structure information. Real-time in situ neutron powder di�rac-

tion of solid-gas reactions, where di�raction intensity is measured as a function of scattering angle,

gas pressure, temperature and time, can e�ciently be performed. The cell material has a negligible

contribution to the di�raction background and the typically achievable time resolution in the order

of a minute is well suited to many solid-gas reactions. The main di�erence to other cell designs is

the use of a single crystal as sample holder, which for a proper orientation does not contribute to

the di�raction pattern, because the detector does not pick up the single crystal re�ections. It is thus

powder di�raction in a single crystal! Its main limitation at present is the danger of mechanical failure

at temperatures above 700 K. The weak point is the end of the sapphire tube where the steel caps with

the seals are attached (Fig. 9.4.2). New cell designs are currently being explored in order to avoid

these problems and to extend the capabilities to higher temperatures. The sapphire single-crystal

cell has been applied to the study of reaction pathways of hydrogenation and dehydrogenation reac-

tions. Their understanding has contributed to the characterization of otherwise inaccessible metastable

compounds, processes of hydrogen uptake and release in hydrogen storage materials and unraveling

reaction pathways in industrial processes such as HDDR. With often hundreds of data sets collected

in a single in situ di�raction experiment, a wealth of structural information is gathered. This is par-

ticularly useful as it often characterizes functional materials at non-ambient, close to their operational

conditions.
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10.2. Abstract

The hydrogenation properties of binary palladium-rich intermetallic compounds MPd3 (M = Pb,

Bi) were studied by X-ray powder di�raction and by in situ thermal analysis (DSC) under hydrogen

pressure. Ex situ neutron powder di�raction reveals deuterium �lled [Pd6] octahedral voids in a cubic

anti-perovskite type structure for PbPd3D0.13(1) (Pm 3̄m, a = 404.033(6) pm, deuterium occupation

= 0.13(1)) and in a ZrAl3 type for BiPd3D0.19(1) and BiPd3D0.23(1) (I 4/mmm, a = 404.72(1) pm,

c = 1662.64(6) pm, z (Bi) = 0.1320(1), z (Pd3) = 0.3797(2), deuterium occupation = 0.46(1)). In situ

neutron di�raction (using deuterium) reveals full reversibility of the hydrogenation and dehydrogena-

tion reaction for BiPd3 without intermediate phases and variable hydrogen content in the hydride.

The relation of the crystal structures of BiPd3 (akin to double-hexagonal close packing) and its hy-

dride with �lled ZrAl3 type (ordered superstructure of cubic close packing) is discussed in view of a

possible reaction mechanism.
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10.3. Introduction

Metal hydrides can be roughly divided according to their bonding situation ranging from ionic to

covalent and metallic. Palladium hydrides cover a realm from covalent semiconducting complex hy-

drides [1�4] to typical interstitial hydrides like palladium hydride itself. 1866 Graham observed that

palladium can take up considerable amounts of hydrogen [5,6]. Since then, palladium hydride has

been studied extensively concerning the Pd-H phase diagram, physical properties, crystal and elec-

tronic structures [7�12]. Several palladium-rich intermetallic compounds, in which metal atoms M

substitute for palladium, e. g. MPd3 (M = Mg [13,14], In [15], Tl [16], Y [17], Mn [18], Ce [19]), form

hydrides as well. The hydrogenation of these intermetallics results in general in a rearrangement from

one superstructure of the cubic close packing (ccp) to another ccp superstructure, e. g. from ZrAl3
type or TiAl3 type to AuCu3 type [20]. The formation of HPd6 octahedra with considerable Pd-H

bond energy was shown to be the driving force behind these reactions [13,14]. In the series TiAl3 type

� ZrAl3 type � Tl2PbPd9 type � AuCu3 type the number of available [Pd6] octahedral sites for occupa-

tion by hydrogen increases, thus, favouring the latter structures for hydride formation. The hydrogen

amount in MPd3Hx seems to be correlated to electronic and geometric aspects of the metal atom M.

The maximum hydrogen content is found for atomic radii around 165�170 pm and an electronegativity

(Allred and Rochow [21]) of 1.4 [22]. SnPd3 [23], PbPd3 [23] and BiPd3 [24,25] are good candidates to

check the limits of hydride formation in ternary palladium-rich compounds, and thus the potential of

predictions of hydrogen content based on electronic and geometric aspects because the substitutional

metal atoms M have a high electronegativity and relatively large atomic radii. SnPd3 and PbPd3
crystallize in the AuCu3 type (space group type Pm 3̄m), a ccp superstructure, by contrast to BiPd3
that crystallizes in a superstructure of the double-hexagonal close packing (dhcp, BiPd3 type, space

Figure 10.3.1.: Hydrides of palladium-rich compounds MPd≥2 with M being a main group element

(MgPd3Hx [13,14], CaPd3Hx [28], SrPd2Hx [29], InPd3Hx [15], TlPd3Hx [16], SnPd3Hx

[25], Pd3P0.8Hx [30], Pd6PHx [31], Pd15P2Hx [32]). The hydrides marked with asterisks

are characterized in this work.
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group type Pmma) [22]. Furthermore, the possible extension of palladium-rich hydrides to group 15

elements (Fig. 10.3.1) gives motivation to investigate hydrogenation properties of BiPd3, which is the

most palladium-rich compound in the Bi-Pd system. In comparison to MPd3 (M = Mg, In, Tl, Mn),

BiPd3 has a di�erent structural relation of the starting compound to the �nal hydride found in the

course of this study. Therefore, it was of interest to look for possible intermediates, which might give

insight into mechanisms of metal hydride formation. This was done by in situ thermal analysis data,

which often gives hints to possible intermediates and conditions of the hydrogenation process [26], and

in situ neutron powder di�raction, by which reaction pathways may be explored in real time studies

including full structural information [27].

10.4. Note on nomenclature

Hydrogen consists of the natural isotopic mixture of 99.985 % 1H (protium) + 0.015 % 2H (deuterium,

D). If not indicated otherwise, the term metal hydride is used as a collective name including all isotopes,

i. e., protides, deuterides, and tritides. They are only di�erentiated explicitly in the following text in

cases where isotope e�ects are important, e. g. neutron di�raction experiments, and in the naming of

crystal structure types �rst determined on deuterides.

Structural relationships and thus crystal structure types are of particular importance for the un-

derstanding of hydrogenation reactions of palladium-rich compounds. Many are of one-to-three com-

position, like the ZrAl3 or AuCu3 types. While those two, as most structure types and names of

compounds, are in line with IUPAC's rules for nomenclature based on the position in the periodic

table of the elements, some of the compounds of interest would have to be named using a three-to-one

formula like Pd3Pb and Pd3Bi. For the sake of clarity and ease of recognition of structural rela-

tionships, however, in those cases IUPAC's rules are not followed, i. e. they are called PbPd3 and

BiPd3.

Many palladium-rich intermetallic compounds and their hydrides derive structurally from close-

packed structures, in which the hexagonal layers of close-packed atoms are usually named A, B and

C. The sequence AB . . . stands for the hexagonal (hcp), ABC . . . stands for the cubic close packing

(ccp). Literature on ccp related ordered superstructures like TiAl3 type or ZrAl3 type, however,

sometimes uses A and B in a di�erent way to denote the stacking sequence of MM'3 double layers

instead of hexagonal atomic layers. In order to avoid confusion, those MM'3 double layers are named

A' and B' in this text.

10.5. Experimental details

10.5.1. Synthesis of intermetallic compounds

The binary compoundsMPd3 (M = Pb, Bi) were synthesized from the elements with small amounts of

iodine as mineralizing agent. Stoichiometric amounts of elements palladium powder (99.9 %, ≤ 60 µm,

chemPUR and 99.95 %, ≤ 150 µm, Goodfellow), lead powder (99.95 %, -100 mesh, Alfa Aesar) and

freshly ground bismuth shots (metal basis > 99 % checked with EDX) were placed in annealed silica

glass ampoules under argon atmosphere. PbPd3 was annealed at 1148 K for 4 h (200 K h-1 heating

rate) and afterwards at 703 K for 35 h and BiPd3 at 773 K for 7 d (30 K h-1 heating rate). All samples

were quenched in water after annealing. The products were ground in air and iodine was dissolved in

half-saturated aqueous potassium iodide solution.
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Table 10.5.1.: Ex situ hydrogenation/deuteration conditions and di�ractometer for XRPD and NPD

data collection of MPd3Dx (M = Pb, Bi).

Compound Conditions Di�ractometer

PbPd3D0.13(1) 5.0(2) MPa D2/723(2) K/25 h D20, ILL Grenoble

BiPd3D0.19(1) 7.0(2) MPa D2/773(2) K/100 h E9, HZB, Berlin

BiPd3D0.23(1) 12.0(2) MPa D2/593(2) K/2 h D20, ILL, Grenoble

BiPd3Hx 20.0(2) MPa H2/773(2) K/48 h Huber G670

All binary intermetallic compounds and the powdered bismuth shots were checked by chemical

analysis performed by an EDX INCA SYSTEM from Oxford Instruments mounted on a Zeiss LEO

1530 scanning electron microscope with an acceleration voltage of 20 kV and a working distance of

15 mm.

10.5.2. Hydrogenation

The powdered intermetallic samples were placed in hydrogen resistant Inconel (Böhler L718, nickel

chromium alloy) crucibles in an autoclave made from the same alloy, charged with hydrogen (≥ 99.9 %,

Air Liquide) or deuterium (99.8 %, Air Liquide) and heated in a vertical tube furnace (Table 10.5.1).

BiPd3 samples for in situ investigations were placed in single crystal sapphire cell with a lead seal and

charged with deuterium pressure or set under vacuum. These samples were heated with a contactless

laser heating system.

10.5.3. X-ray powder di�raction (XRPD) and neutron powder di�raction

(NPD)

Laboratory XRPD data were collected using a Huber G670 di�ractometer with Guinier geometry at

T = 297(2) K with either CuKα1 or MoKα1 radiation. Neutron powder di�raction measurements

(NPD) were carried out at the Institut Laue-Langevin in Grenoble, France at the high-�ux powder

di�ractometer D20 in high-resolution mode in the range 3° ≤ 2θ ≤ 150° and a total data collection

time of 25 min (https://doi.org/10.5291/ILL-DATA.5-21-1096, https://doi.org/10.5291/ILL-DATA.5-

22-734) and at Helmholtz-Zentrum Berlin, Germany at the E9 di�ractometer with a total data col-

lection time of 8 h. Samples were enclosed in thin-walled vanadium cylinders (6 mm outer diameter).

Although the intensities are represented in arbitrary units (normalized data), care has been taken to

treat errors correctly. In situ neutron powder di�raction were also taken at di�ractometer D20 under

5.2(1) MPa deuterium pressure (isotopic purity, 99.8 %) with a time resolution of 2 min per pattern.

The sample was placed inside a single crystal sapphire based gas pressure cell especially designed for in

situ neutron powder di�raction and heated by a contactless laser heating system [27]. A gas pressure

controller regulated deuterium gas pressure or vacuum. The wavelengths were determined from mea-

surements of silicon standard (NIST640b). Crystal structures were re�ned using the program FullProf

[33]. Further details of the crystal structure investigations may be obtained from FIZ Karlsruhe, 76344

Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@�z-karlsruhe.de), on

quoting the deposition numbers CSD-432976, -432977, and -432978.

10.5.4. In situ thermal analysis (DSC)

Di�erential scanning calorimetry (DSC) was performed in situ under a starting hydrogen pressure

of 5.0 MPa and temperatures up to 703 K on a Q1000 DSC (TA Instruments) equipped with a gas
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pressure chamber. About 20 mg of the powdered intermetallics were put in aluminium crucibles,

which were closed with an aluminium lid. These were placed inside the pressure chamber, which was

then purged several times with hydrogen gas before �lling it to the desired hydrogen gas pressure.

The samples were heated at a rate of 10 K min-1, held at the �nal temperature for 2 h and cooled

back to 300 K. Two runs were performed in order to check for reversibility of thermal e�ects before

the hydrogen pressure was released, the sample taken out and structural characterization undertaken

by XRPD.

10.6. Results and discussions

Samples MPd3 (M = Pb, Bi) showed best crystallinity and phase purity, when using iodine as miner-

alizing agent. Based on chemical analysis of the powders, the empirical formulae Pb0.97(11)Pd3.03(11)
and Bi0.97(5)Pd3.03(5) were determined, averaged from at least 15 energy dispersive X-ray (EDX)

spectra on di�erent particles of each sample. Samples were single phase according to X-ray powder

di�raction (PbPd3: Pm 3̄m, a = 403.451(9) pm; BiPd3: Pmma, a = 939.04(4) pm, b = 574.14(4) pm,

c = 496.63(8) pm, see supplement, Figs. 10.9.1 to 10.9.2), except larger samples of PbPd3 used

for deuterated samples for neutron di�raction. These contained 5 weight-% of the secondary phase

Pd5Pb3. The hydrogenation of these compounds was studied by in situ di�erential scanning calorime-

try (DSC) under 5.0 MPa hydrogen gas pressure. PbPd3 did not show any thermal signal under these

conditions. The �rst cycle of BiPd3 showed a weak, broad exothermic signal at 580(1) K suggesting

a possible reaction with hydrogen (Fig. 10.6.1). X-ray powder di�raction (XRPD) of BiPd3 after

the hydrogenation in the DSC experiment showed a pattern, which is di�erent from that of the

parent compound. It could be indexed to a tetragonal body-centered cell with a = 404.55(1) pm,

c = 1661.98(5) pm suggesting a ZrAl3-type structure. The structure model could be con�rmed by Ri-

etveld re�nement, which yields a good agreement between observed and calculated powder di�raction

intensities (Fig. 10.6.2). The unit cell volume of BidPd3 increases during the rearrangement to the

tetragonal structure by 1.6 % (5.0 MPa in DSC) and 2.1 % (20.0(2) MPa in an autoclave synthesis, see

supplement, Fig. 10.9.3), respectively. No further thermal signals were recorded upon cooling and in

Figure 10.6.1.: In situ di�erential scanning calorimetry (DSC) of the hydrogenation of BiPd3 at

5.0 MPa hydrogen pressure (starting pressure at 303 K, increasing to 7.0 MPa at

the maximum temperature), showing an exothermic signal upon the �rst heating cycle

(blue curve).
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Figure 10.6.2.: Rietveld re�nement of the crystal structure of tetragonal BiPd3Hx in the �lled ZrAl3
type after hydrogenation in a DSC experiment based on X-ray powder di�raction

at 297(2) K (CuKα1 radiation, λ = 154.059 pm, I 4/mmm, a = 404.55(1) pm,

c = 1661.98(5) pm, Rwp = 0.027, χ2 = 1.25).

the second cycle; that is the hydrogenation reaction was not reversible under the applied conditions.

In spite of the absence of observable thermal e�ects for PbPd3, the cell volume increases by 0.6 %,

as determined by X-ray powder di�raction. In contrast to BiPd3, however, the structure type of the

parent compound (AuCu3 type in this case), is retained upon hydrogenation [34]. Thus, we expect

the existence of a hydride PbPd3 in a stu�ed AuCu3 type structure with presumably small hydrogen

content.

The hydrogenation products of PbPd3 and BiPd3 crystallize in hydrogen �lled variants of the AuCu3
type and the ZrAl3 type structure, respectively (Figs. 10.6.2 to 10.6.4 and 10.9.3 to 10.9.5). Both

structure types may be regarded as ordered superstructures of a cubic close packing (ccp). They

are members of a series formed by stacking palladium layers and mixed M /palladium layers (MM'3

double layers, see Note on nomenclature) in an alternate fashion. The latter appears in two di�erent

kinds, named A' and B', and may be easily transformed into each other by exchanging M and Pd

atoms in the mixed M /palladium layers. For the AuCu3 type, only A' -type layers occur, whereas

in the ZrAl3 type, a sequence of A'A'B'B' yields a fourfold ccp superstructure (Fig. 10.6.4) [13,35].

In many cases, hydrogenation leads to a rearrangement of a ZrAl3 type to a AuCu3 type in MPd3
compounds, e. g. for M = Mg [19], In [35], Tl [16].

Ex situ neutron powder di�raction experiments on PbPd3D0.13(1), BiPd3D0.19(1) and BiPd3D0.23(1)

were carried out in order to locate hydrogen (deuterium) atoms. Deuterides instead of hydrides were

used in order to avoid high background due to the large incoherent scattering of 1H. They were prepared

by deuteration in autoclaves at 5.0(2) MPa deuterium gas pressure and temperatures up to 723(1) K.

For the deuteride of PbPd3 deuterium was found to occupy exclusively octahedral voids surrounded

by six palladium atoms, [Pd6], as shown by di�erence Fourier synthesis. The good correspondence

between measured and calculated di�raction data supports this structural model (Fig. 10.6.3 and Ta-

ble 10.6.1). The complete crystal structure thus corresponds to the cubic anti-perovskite type like,

for example, in InPd3Hx[15]. The metal atoms of BiPd3Dx crystallize in the ZrAl3 type like in α-

MgPd3Dx (see Table 10.6.2) [19]. Two Fourier maxima for BiPd3D0.23(1) correspond to the [Pd6]

octahedral site which is preferred also in PbPd3D0.13(1) and to the [Bi2Pd4] octahedral site. Re�ne-

ment of occupation parameters shows that only [Pd6] octahedral sites are occupied, in agreement with
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Figure 10.6.3.: Rietveld re�nement of the crystal structure of cubic PbPd3H0.13(1) at 298(2) K based

on neutron powder di�raction (λ = 186.78(5) pm, Pm 3̄m, a = 404.033(6) pm,

Rwp = 0.047, χ2 = 1.25); re�nement results are summarized in Table 10.6.1.

crystal chemical arguments (Bi-D distance). For all three deuterides the octahedral [Pd6] voids are

not fully occupied by deuterium and re�ned occupation factors lead to compositions of PbPd3D0.13(1),

BiPd3D0.19(1) and BiPd3D0.23(1). Full occupation of [Pd6] octahedral voids with hydrogen would lead

to compositions of PbPd3H and BiPd3H0.5. The distribution of deuterium atoms is assumed to be

statistical, since no sign for an ordering can be found.

The deuterium atoms in the cubic structure are surrounded by six equidistant palladium atoms,

lead atoms by twelve palladium atoms forming a cuboctahedron. The palladium atoms have got

Figure 10.6.4.: Crystal structures of BiPd3D0.23(1) (left) and PbPd3D0.13(1) (right) with one [DPd6]

octahedron for each structure shown (green).
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Table 10.6.1.: Re�ned crystal structures of cubic PbPd3D0.13(1) and residual values of the re�ne-

ment based on neutron powder di�raction (D20, Institut Laue Langevin, Grenoble)

at 298(2) K.

atom Pb Pd D

Wycko� site 1a 3c 1b

x 0 1/2 1/2

y 0 1/2 1/2

z 0 0 1/2

B iso/10-4 pm2 0.36(2) 0.46(2) 2.9(3)

occupation 1 1 0.13(1)

space group Pm 3̄m, a = 404.033(6) pm.

Rp = 0.036, Rwp = 0.047, RBragg = 0.013, χ2 = 3.6.

Table 10.6.2.: Re�ned crystal structures of tetragonal BiPd3D0.23(1) at 298(2) K and 12.0(2) MPa

deuterium pressure in a sapphire cell and residual values of the re�nement based on

neutron di�raction on D20 (Institut Laue Langevin, Grenoble).

atom Bi Pd1 Pd2 Pd3 D

Wycko� site 4e 4c 4d 4e 2b

x 0 0 0 0 0

y 0 1/2 1/2 0 0

z 0.1320(1) 0 1/4 0.3797(2) 1/2

B iso/10-4 pm2 1.05(4) 1.00(7) 1.24(7) 1.06(5) 2.8(3)

occupation 1 1 1 1 0.46(1)

space group I 4/mmm, a = 404.72(1) pm, c = 1662.64(6) pm.

Rp = 0.0656, Rwp = 0.0887, RBragg = 0.077, χ2 = 4.5.

[12 + 2] coordination to four lead atoms and eight palladium atoms and are also located in the center

of cuboctahedra. The two opposite Pd4 squares of this polyhedron are centered by one deuterium

atom each. The polyhedra of BiPd3Dx are comparable to those in the deuteride of PbPd3, but the

lower symmetry manifests itself in a small compression of the DPd6 octahedra and cuboctahedra of

the Bi and Pd atoms along crystallographic c. Again, the D atoms centering the square faces of the

cuboctahedra around Pd1 and Pd3 complement the palladium surrounding to [12 + 2] and [12 + 1],

respectively.

The interatomic D-Pd distances of the three deuterides (see Table 10.6.3) are comparable to those

in α-MgPd3D0.79 (from 197(2) to 199.9(1) pm) [14], β-MgPd3D0.67 (199.10(1) pm) [13] or InPd3D0.89

(201.13 pm) [15]. In contrast to α-MgPd3Dx, where [Pd6], [MgPd5] and [Mg2Pd4] voids are occupied

by deuterium, BiPd3Dx incorporates deuterium only in the former; that is, it avoids those sites with

Bi neighbors. D-Pd distances depend on the amount of deuterium in the structure i. e. BiPd3D0.19(1)

with less deuterium exhibits a decreased unit cell volume and therefore shorter D-Pd distances as

compared to BiPd3D0.23(1) (Table 10.6.3). The interatomic metal-metal distances are comparable to

those of the hydrogen free intermetallics (d(Pb-Pd) = 285.3(1) pm [23], d(Bi-Pd) = 284.5�288.2 pm

[25], d(Pd-Pd) = 281.1�289.9 pm) [22].

In contrast to PbPd3, which retains its structural topology upon hydrogenation, in case of BiPd3,

a rearrangement from the BiPd3 to the ZrAl3 type occurs. In order to follow this reaction and check

for possible intermediates, it was studied by in situ neutron powder di�raction. In order to get high
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Table 10.6.3.: Interatomic distances (< 300 pm) in cubic PbPd3D0.13(1), tetragonal BiPd3D0.19(1) and

tetragonal BiPd3D0.23(1) in pm.

distance D-Pd M -Pd Pd-Pd

PbPd3D0.13(1) 6 x 202.016(3) 12 x 285.694(3) 8 x 285.694(3)

BiPd3D0.19(1) 2 x 198.7(3) 4 x 282.1(2) (Pd2) 4 x 283.5(2) (Pd1-Pd3)

4 x 202.26(1) 4 x 286.74(2) (Pd3) 4 x 286.04(1) (Pd1-Pd1), (Pd2-Pd2)

4 x 298.0(2) (Pd1) 4 x 296.4(2) (Pd2-Pd3)

BiPd3D0.23(1) 2 x 200.0(3) 4 x 281.9(2) (Pd2) 4 x 284.5(2) (Pd1-Pd3)

4 x 202.363(6) 4 x 286.84(2) (Pd3) 4 x 286.184(6) (Pd1-Pd1), (Pd2-Pd2)

4 x 298.5(2) (Pd1) 4 x 295.7(2) (Pd2-Pd3)

quality data, a single-crystal sapphire cell was used. It consists of a sample holder made of leuco-

sapphire attached to a gas delivery system and equipped with contactless laser heating. Its main

advantage as compared to other in situ sample cells, is the low background due to the absence of

Bragg peaks from the container material, when oriented appropriately [14,27,36].

An in situ deuteration experiment was performed on BiPd3 at 5.2(1) MPa deuterium pressure with

two minutes data collection time per pattern. Due to technical problems with laser heating the maxi-

mum temperature was restricted to 553(2) K and interruptions in heating occurred. The deuteration

of BiPd3 started after 2 h at 553(2) K, but did not complete even after 17 h (Fig. 10.6.5). No interme-

diates were formed during the reaction with deuterium. Rietveld re�nements of the crystal structures

of the starting material BiPd3 and the product BiPd3Dx using the formerly derived structure models

([25], Table 10.6.2) were carried out based in the neutron powder di�raction patterns collected in situ.

For this isothermal section of the experiment, sequential re�nements yield a maximum phase content

of 66 % and an increase of deuterium occupation in BiPd3Dx up to 0.15(2) (Figs. 10.6.6 and 10.9.6).

This value is comparable to BiPd3D0.19(1) (prepared at 7.0(2) MPa deuterium pressure, E9, BerII,

Berlin) and BiPd3D0.23(1) (prepared at 12.0(2) MPa deuterium pressure, see above) from ex situ mea-

surements. Though, the lattice parameters and the unit cell volume stay nearly constant indicating

an ideal size of the octahedral void for deuterium occupation. Both, the rearrangement of the metal

atoms from the BiPd3 to the ZrAl3 type and the incorporation of hydrogen (deuterium) are rather

slow (Figs. 10.6.5, 10.6.6 and 10.9.6). It is quite remarkable that the ZrAl3 type deuteride formed

at �rst (around 700 min, Fig. 10.6.6) contains very little deuterium (few percent occupation). This

may indicate both BiPd3 and ZrAl3 type to be very similar in energy for BiPd3. The phase fraction

f of the deuteride as a function of time t may be described empirically by a square root function

typical for solid gas reactions f = 0.0278(2) ∗
√
t/min− 563(15) + 0.07(3), (graphical representation

see supplement, Fig. 10.9.6).

The reversibility of the hydrogenation and the thermal stability of the hydride were checked in a

second in situ experiment by decomposition of BiPd3D0.23(1). This deuteride is stable in air and the

application of vacuum at room temperature for 15 min results in the formation of BiPd3D0.20(1). The

back formation of BiPd3 begins at about 400 K (Fig. 10.6.7) with slow decrease of the deuterium

amount (Fig. 10.6.8). The volume increase of the unit cell during the decomposition is caused by the

nearly linear rise of temperature. After 170 min at about 550 K, the heating rate decreases and the

unit cell shrinks due to deuterium release. The phase fraction of the deuteride decreases down to 48 %

(see supplement, Fig. 10.9.7) and the deuteration level converges to zero. The size of the octahedral

site decreases during the decomposition in contrast to the nearly constant size during the deuteration

(d(D-Pd) = 201�203(1) pm). The hydrogenation of BiPd3 is fully reversible without the formation of

any intermediates and with slow kinetics, as determined by both in situ experiments.
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Figure 10.6.5.: In situ neutron powder di�raction data of the deuteration of BiPd3 taken on di�rac-

tometer D20 at λ = 186.78(5) pm in a single crystal sapphire cell under 5.2(1) MPa

deuterium pressure and various temperature conditions. Intensities are in false colors.

The temperature drops to 338(2) and 458(2) K are caused by the uncontrolled shut-

down of the laser heating. The most intensive re�ections of BiPd3 are marked with

asterisks and of BiPd3Dx with �lled circles.

Figure 10.6.6.: Deuterium occupation and unit cell volume of BiPd3Dx as a function of time from Ri-

etveld re�nements based on neutron powder di�raction data at 553(3) K and deuterium

pressure of 5.2(1) MPa. Error bars represent one estimated standard uncertainty and

the number of data points is reduced for reasons of clarity. The amount of deuterium

levels out at x = 0.15(2).
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Figure 10.6.7.: Decomposition of BiPd3D0.20(1) followed by in situ neutron powder di�raction data

taken on di�ractometer D20 at λ = 186.62(2) pm in a single crystal sapphire cell

under vacuum and various temperature conditions. Intensities are in false colors. The

most intensive re�ections of BiPd3Dx are marked with �lled circles and those of BiPd3
with asterisks.

Figure 10.6.8.: Deuterium occupation (starting at x = 0.19(1)) and unit cell volume of BiPd3Dx as

a function of time during decomposition from Rietveld re�nements based on neutron

powder di�raction under vacuum. Error bars represent one estimated standard uncer-

tainty and the number of data points is reduced for reasons of clarity.
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The hydride of BiPd3 does not seem to have a closer structural relationship to BiPd3. The crystal

structure of BiPd3 rather shows close ties to a double-hexagonal close packing (dhcp, La type) and

to the TiNi3 type. This can be proven by crystallographic group-subgroup relationships (Fig. 10.6.9)

[37]. A translationsgleiche transition from the aristotype La and a klassengleiche transition with

axes rotation result in space group Pmma. A further doubling of the new b axis �nally yields the

BiPd3 type. The free positional atomic parameters of the BiPd3 type [25] di�er only little from the

idealized values converted from the aristotype La. The second path on the right hand side results in

the TiNi3 type by an isomorphic transition with doubling of a and b axes. This may be described as

a fourfold ordered superstructure of the dhcp (La type), which corresponds to metal atom positions

in CaPd3Hx[28].

In contrast to BiPd3, the �lled ZrAl3 type of BiPd3Hx is related to ccp (Cu type) [35]. A mechanism

of this hydrogenation might either be a short-range di�usion of the metal atoms at these high tem-

peratures or a gliding mechanism from dhcp (ABAC . . . ) of BiPd3 to ccp (ABC . . . ) of the hydride

(Fig. 10.6.10). The second mechanism is equivalent to a gliding of the hexagonal layers perpendicular

to the [001] direction.

The driving force of this hydrogenation is probably the formation of [Pd6] octahedral sites, regardless

by which mechanism. BiPd3 exhibits eight of each [BiPd5] and [Bi2Pd4] octahedral voids per unit

Figure 10.6.9.: Group-subgroup relationships of BiPd3 and TiNi3 to the aristotype La. Free positional

parameters are values from the published structures. The picture shows the crystal

structure of BiPd3 with idealized values as transformed from the aristotype La (see

text).
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Figure 10.6.10.: Representation of the rearrangement of the crystal structure of orthorhombic BiPd3
crystallizing in dhcp to tetragonal BiPd3Dx with a �lled ZrAl3 type structure (ccp

superstructure).

cell volume (equals four formula units), but no [Pd6] voids. However, two [Pd6], further four [BiPd5]

and ten [Bi2Pd4] octahedral voids exist in ZrAl3 type (per same reference of four formula units).

The AuCu3 type shows twice as many [Pd6] voids as compared to the ZrAl3 type and no [MPd5]

octahedral voids. Though, BiPd3 does not form a �lled AuCu3 type during hydrogenation, neither at

higher temperatures up to 823 K. Other MPd3 compounds or their hydrides with such a ZrAl3 type

rearrange to the AuCu3 type upon hydrogenation in order to maximize the fraction of [Pd6] voids (M

= Mn [38], Mg [14], In [15], Tl [16]). It is an open question, whether such a reaction will occur at

higher hydrogen potential, or whether there are other e�ects stabilizing the ZrAl3 type in this case.

The formation of hydrides of PbPd3 and BiPd3 implies an extension of the hydrogenation of MPd3
compounds to group 14 and 15 of the periodic table of the elements, which so far did not show

any reactivity towards hydrogen [34,39]. Even though hydrogen contents are rather small, this may

stimulate further work and especially draws the focus on phases structurally related to the dhcp like

TiPd3 or ZrPd3.

10.7. Conclusion

Palladium-rich compounds MPd3 (M = Pb, Bi) were found to take up hydrogen, thus extending

this type of reaction to metals M of groups 14 and 15 of the periodic table. The crystal structures

of the hydrides PbPd3H0.13(1), BiPd3H0.19(1) and BiPd3H0.23(1) were determined by neutron powder

di�raction on the deuterides. Deuterium occupies [Pd6] octahedral voids in any of these hydrides.

PbPd3D0.13(1) crystallizes in a cubic anti-perovskite type and the metal atoms do not change their

structure (AuCu3 type) during hydrogenation. In contrast, BiPd3 changes from a structure related

to a double-hexagonal close packing to a superstructure of the cubic close packing (hydrogen �lled

ZrAl3 type). A short range di�usion of the metal atoms or a gliding of the hexagonal layers of BiPd3
are possible mechanisms for the hydrogenation reactions. No intermediates are formed during this

reversible hydrogenation followed by in situ DSC and in situ neutron powder di�raction and the

hydrogenation follows a parabolic rate law, typical for solid gas reactions.
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10.9. Supplementary data

Figure 10.9.1.: Rietveld re�nement of the crystal structure of cubic PbPd3 at 297(2) K based on X-ray

powder di�raction (λ = 70.932 pm, Pm 3̄m, a = 403.451(9) pm, Rwp = 0.059, χ2 = 8.9)

using FullProf [33].
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Figure 10.9.2.: Rietveld re�nement of the crystal structure of orthorhombic BiPd3 at 297(2) K based on

X-ray powder di�raction (λ = 70.926 pm, Pmma, a = 939.04(4) pm, b = 574.14(4) pm,

c = 496.63(8) pm, Rwp = 0.039, χ2 = 2.5, anisotropic line broadening according to

the Stephens model [40] and preferred orientation with March-Dollase model [41] in

direction 100 and 010) using TOPAS [42]. Lattice parameters are in agreement with

the literature [24, 25].

Figure 10.9.3.: Rietveld re�nement of the crystal structure of tetragonal BiPd3Hx (after ex situ hy-

drogenation in an autoclave at 20.0(2) MPa hydrogen pressure and 773(2) K for

48 h) at 297(2) K based on X-ray powder di�raction (λ = 154.059 pm, I 4/mmm,

a = 405.669(12) pm, c = 1660.72(6) pm, Rwp = 0.028, χ2 = 1.3) using FullProf [33].
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Figure 10.9.4.: Rietveld re�nement of the crystal structure of tetragonal BiPd3D0.19(1) at 296(2) K

based on neutron powder di�raction (λ = 179.725(2) pm, E9, HZB Berlin, I 4/mmm,

a = 404.52(2) pm, c = 1661.58(8) pm, Rwp = 0.041, χ2 = 2.4) using FullProf [33].

Figure 10.9.5.: Rietveld re�nement of the crystal structure of tetragonal BiPd3D0.23(1) at

298(2) K and 12.0(2) MPa deuterium pressure based on neutron powder di�rac-

tion (λ = 186.616(2) pm, D20, ILL Grenoble, I 4/mmm, a = 404.72(1) pm,

c = 1662.64(6) pm, Rwp = 0.088, χ2 = 4.5) using FullProf [33].
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Figure 10.9.6.: Phase fraction of BiPd3Dx as a function of time (orange line: �t with square root func-

tion) during deuteration from Rietveld re�nement based on neutron powder di�raction

data at 553(3) K and deuterium pressure of 5.2(1) MPa. Error bars represent one es-

timated standard uncertainty and number of data points is reduced for better clarity.

Figure 10.9.7.: Phase fraction of BiPd3Dx as a function of time during decomposition from Rietveld

re�nement based on neutron powder di�raction under vacuum. Error bars represent

one estimated standard uncertainty and number of data points is reduced for better

clarity.
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11.2. Abstract

The hydrogenation properties of the intermetallic compounds MgPd2 and Pd2Zn, crystallizing in the

Co2Si type, were studied by in situ thermal analysis (DSC) under hydrogen pressure. Pd2Zn does

not show any reaction with hydrogen while MgPd2 reversibly forms the hydride MgPd2H. Neutron

di�raction on the deuterides reveals the compositions MgPd2D0.861(6) (ambient) and MgPd2D0.97(1)

(308(2) K, 2.56(5) MPa deuterium) with hydrogen (deuterium) occupying distorted [MgPd5] octahe-

dral voids. Quantum-mechanical calculations support the structure models and show the hydrogena-

tion to be exergonic for MgPd2 and endergonic for Pd2Zn. MgPd2H releases hydrogen under normal

conditions or vacuum. Heating under hydrogen pressure leads �rst reversibly to MgPd2H≈0.2 and

subsequently irreversibly to MgPd3H≈1 and MgH2. MgPd2, Pd2Zn and MgPd2H were classi�ed in

a structure map. Trends of axial ratio changes upon hydrogenation of TiNiSi type and ZrBeSi type

compounds are discussed.

11.3. Introduction

Compounds MPd2 are known for all main group metals except for the alkaline earth metals Na � Cs,

for Pb and Bi. They crystallize in structure types typical for intermetallic compounds such as MgCu2
[1], Co2Si [2-4], and Zr2Cu [5]. The crystal structure of LiPd2 is not completely determined yet [6].

The Laves phases SrPd2 and EuPd2 were previously described to take up hydrogen in tetrahedral voids

while retaining the cubic MgCu2 type [7,8]. MPd2 (M = Ga [9], In [9], Sn [10]) in the Co2Si type on

the other hand do not show any hydride formation. The ordered variant of this structure type (TiNiSi

type) is well known for its numerous compounds reversibly taking up hydrogen, e. g. LnTSn (Ln =

lanthanide; T = transition metal) [11-13]. In TiNiSi type hydrides, hydrogen atoms are tetrahedrally

coordinated by metal atoms. The hydrogenation behavior of MgPd2 [4] has not been studied yet. It

does not seem to o�er tetrahedral voids of the right size for hydrogen atoms as the before mentioned

TiNiSi type intermetallic compounds, but it contains apparently well-suited octahedral voids. Such

[MgPd5] positions are occupied in α-MgPd3H0.79�0.94 [14]. This analogy triggered this investigation

of the hydrogenation behavior of MgPd2 by in situ thermal analysis [15] and in situ neutron powder

di�raction [16,17], which are established methods to follow reaction pathways during hydrogenation

processes. Pd2Zn [18] has been included as well because of the structural similarity to MgPd2.

11.4. Results and discussion

11.4.1. Synthesis and thermal analysis

The synthesis of MgPd2 and Pd2Zn yielded dark and light grey powders with metallic luster, re-

spectively. According to X-ray powder di�raction (XRPD) Pd2Zn was single phase, whereas MgPd2
contained a small amount (≤ 2 wt %) of MgO (see Figure and Table S1, Supporting Information).

The re�ned lattice parameters are in good agreement with literature data for MgPd2 (Table 11.4.1)

and the �rst re�ned structural parameters in the case of Pd2Zn (CSD-433793, see Figure and Ta-

ble S2, Supporting Information). Based on chemical analysis of the powders, the empirical formulae

Mg1.06(10)Pd1.94(10) and Zn1.01(8)Pd1.99(8) were determined, averaged from at least 15 energy dispersive

X-ray (EDX) spectra on di�erent particles of each sample.

The hydrogenation of these compounds was studied by in situ di�erential scanning calorimetry

(DSC) under 2.5 MPa for MgPd2 and 5.0 MPa hydrogen pressure for Pd2Zn (Figure 1). MgPd2
shows a broad exothermic signal at the beginning of the DSC experiment, an endothermic signal
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Figure 11.4.1.: In situ thermal analysis (DSC) of the hydrogenation of MgPd2 at 2.5 MPa and of

Pd2Zn at 5.0 MPa hydrogen pressure (starting pressure at 303 K, increasing during

the heating process up to 3.4 and 6.9 MPa, respectively).

at 437 K, another exothermic signal at 641 K, and an exothermic signal during the cooling process

at 451 K. A subsequent DSC experiment with a maximum temperature of 363 K proved the �rst

exothermic signal to be irreversible and belonging to the hydrogenation of MgPd2. An XRPD study

of MgPd2 after this hydrogenation (see Figure and Table S3, Supporting Information) shows an

increase of lattice parameters a and c, a decrease of b, and a unit cell volume expansion of 6.8 %

compared to the starting compound (Table 11.4.1). The two thermal signals at about 440 K during

the heating and cooling processes are reversible in all four cycles and decrease in heat �ow with each

cycle. In a similar experiment with a maximum temperature of 473 K those reversible thermal signals

do not di�er in heat �ow. They represent the reversible hydrogen release and uptake of MgPd2H≈1

to MgPd2H≈0.2 (hydrogen content proven later) (Eq. (7)). The broad exothermic signal at 641 K,

which is much weaker in the second cycle, shows the irreversible decomposition of MgPd2H≈0.2 to β-

Table 11.4.1.: Lattice parameters and unit cell volumes of MgPd2 and Pd2Zn before and after hydro-

genation in a DSC experiment under hydrogen pressure and resulting unit cell volume

increase according to XRPD data.

compound a / Å b / Å c / Å V / Å3 ∆V / %

MgPd2 [4] 5.4421(2) 4.1673(2) 8.0129(3) 181.72

MgPd2 5.4194(3) 4.1599(2) 7.9661(5) 179.59(2)

MgPd2Hx
[a] 5.6462(6) 4.0504(4) 8.3844(9) 191.75(4) 6.8

Pd2Zn [18] 5.35 4.14 7.65 169.44

Pd2Zn 5.3291(1) 4.14427(9) 7.7366(2) 170.866(9)

Pd2Zn [b] 5.32927(11) 4.14397(7) 7.7367(1) 170.860(5) 0.0

[a] after hydrogenation (DSC, 2.5 MPa H2, Tmax = 363 K).

[b] after hydrogenation (DSC, 5.0 MPa H2, Tmax = 703 K).
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MgPd3Hx (cubic anti-perovskite type) and MgH2 [reacts at air to Mg(OH)2, see Figure and Table S4,

Supporting Information]. This decomposition explains the decrease of the reversible thermal e�ects

with increasing number of cycles as mentioned before.

3 MgPd2 + 2 H2 3MgPd2H +
1

2
H2

437 K
3 MgPd2H0.2 + 1.7 H2

641 K
MgH2 + 2 MgPd3H

(7)

Pd2Zn does not show any thermal signal during hydrogenation (DSC, 5.0 MPa H2, Fig. 11.4.1) and

the unit cell volume does not change signi�cantly before and after hydrogenation according to XRPD

data (Table 11.4.1).

11.4.2. Crystal structure

The deuterium positions in the crystal structures were determined from neutron di�raction data. Ri-

etveld re�nements were performed based on the Co2Si type of the parent intermetallic compound.

Subsequent Fourier analysis revealed deuterium atoms to occupy positions surrounded by one magne-

sium and �ve palladium atoms. Rietveld re�nements yielded almost complete deuterium occupation

in those distorted octahedral sites [MgPd5] (Fig. 11.4.2). Gravimetric determination of deuterium

results in the composition MgPd2D1.0(1) in accordance with the re�ned deuterium occupation. Those

yield MgPd2D0.861(6) (CSD-433792, Fig. 11.4.3 and Table 11.4.2) for a sample measured ex situ and

MgPd2D0.97(1) for a sample measured in situ [CSD-433791, 308(2) K, 2.56 MPa deuterium pressure,

Fig. 11.4.4 and Table 11.4.2]. The hydrogen content of the former is lower because hydrogenated

samples of MgPd2 release hydrogen when stored at ambient conditions.

Figure 11.4.2.: Crystal structure of MgPd2D0.861(6) with distorted DMgPd5 octahedra (orange poly-

hedra) and the coordination sphere of the metal atoms (bottom).

124



11.4. Results and discussion

Figure 11.4.3.: Rietveld re�nement of the crystal structure of MgPd2D0.861(6) [Pnma, a = 5.6098(2) Å,

b = 4.06495(10) Å, c = 8.5136(3) Å, 85.1(8) wt %, RBragg = 0.047] with the im-

purity phases MgPd2 [Pnma, a = 5.5017(9) Å, b = 4.1188(6) Å, c = 8.002(1) Å,

8.6(3) wt %, RBragg = 0.077], Mg1�xPd1+x [6.2(3) wt %] and MgO [0.16(2) wt %] at

room temperature in a sealed vanadium cylinder based on neutron powder di�raction

data (λ = 1.494 Å, HRPT, PSI, Villigen, Rwp = 0.039, χ2 = 4.21) using FullProf.[19]

The magnesium and palladium atoms have a similar coordination in MgPd2Hx (Fig. 11.4.2) com-

pared to MgPd2. Magnesium atoms are coordinated to ten palladium atoms forming a distorted

tetragonal prism, which is capped on two neighboring faces. Hydrogen atoms are located on the Pd4
tetragon neighboring both capped faces. The palladium atoms are coordinated by �ve magnesium and

seven palladium atoms forming distorted cuboctahedra. Hydrogen atoms are located in the middle

of three MgPd3 tetragons in case of the Pd1 polyhedron and of MgPd3 and opposite Pd4 tetragons

for the Pd2 polyhedron. The hydrogen atoms are surrounded by distorted octahedra of one magne-

sium and �ve palladium atoms. The distortion is less pronounced than in the hydrogen-free parent

intermetallic compound (Fig. 11.4.5). The octahedra are compressed along the crystallographic b axis

Table 11.4.2.: Crystal structure parameters of MgPd2D0.861(6) [Pnma, a = 5.6098(2) Å,

b = 4.06495(10) Å, c = 8.5136(3) Å] and MgPd2D0.97(1) [in italics, Pnma,

a = 5.6065(5) Å, b = 4.0691(3) Å, c = 8.5216(7) Å at 308(2) K and 2.56 MPa deuterium

pressure].

atom site x y z B iso / Å2 SOF

Mg 4c 0.3513(5) 1/4 0.1065(5) 0.98(6) 1

0.3487(10) 0.1003(8) 2.4(1)

Pd1 4c 0.3627(5) 1/4 0.4304(3) 0.55(5) 1

0.3653(8) 0.4314(6) 1.1(2)

Pd2 4c 0.3913(6) 1/4 0.7692(3) 0.77(6) 1

0.3902(12) 0.7754(7) 2.6(2)

D 4c 0.6183(7) 1/4 0.6116(4) 2.60(6) 0.861(6)

0.6127(11) 0.6098(6) 4.8(1) 0.97(1)

125



11. In Situ Hydrogenation and Crystal Chemistry Studies of MgPd2 and Pd2Zn

Figure 11.4.4.: Rietveld re�nement of the crystal structure of MgPd2D0.97(1) [Pnma, tex-

tita = 5.6065(5) Å, textitb = 4.0691(3) Å, textitc = 8.5216(7) Å, 88.(1) wt %,

RBragg = 0.071] with the impurity phases MgPd2 [Pnma, textita = 5.490(2) Å, tex-

titb = 4.119(2) Å, textitc = 7.988(3) Å, 11.6(4) wt %, RBragg = 0.154] and MgO

[0.48(2) wt %] at 308(2) K and under 2.56(1) MPa deuterium pressure in single crystal

sapphire cell based on neutron powder di�raction data (λ = 1.86786(3) Å, D20, ILL,

Grenoble, NUMOR 959583, Rwp = 0.049, χ2 = 4.12) using FullProf.[19]

resulting in a decreased Pd�Pd distance and stretched in the ac plane resulting in an increased Mg�Pd

distance. This is a consequence of the change of lattice parameters upon hydrogenation. The bonding

energy gained by occupation of these MgPd5 octahedra is probably the driving force for the hydrogen

uptake of MgPd2. The same is true for the hydrogen occupation of [Pd6] octahedral sites in other

palladium-rich compounds like MgPd3 and the related transition from one superstructure of the ccp

to another one [14].

The Pd�Pd and Mg�Pd distances in MgPd2D0.861(6) and MgPd2D0.97(1) are similar to those in

MgPd2 (Table 3). The main di�erence in distances is the short Mg�Pd1 distance of 2.573(10) Å

in MgPd2 compared to 2.796(3) Å in MgPd2D0.861(6). This is caused by the incorporation of deu-

terium and its space requirements. The D�Mg distances [d = 2.226(8)�2.271(5) Å] are comparable to

1.901(8)�2.29(2) Å in MgPd3Dx [14] and the D�Pd distances [d = 1.837(5)�2.106(5) Å] are typical

for palladium-rich hydrides, like 1.97(2)�1.999(1) Å in MgPd3D0.79 [14], 2.0113(1) Å in InPd3D0.89

[20], or 2.000(3)�2.02363(6) Å in BiPd3D0.23 [21]. The interatomic deuterium�deuterium distances

are greater than 3 Å and also somewhat greater than those in neighboring [MgPd5] octahedral voids

in MgPd3D0.94 (2.858 Å) [14].

Occupation of tetrahedral voids by hydrogen like [Tb3Ni] in TbNiSnD [11], and related compounds

is not observed in the hydrides of MgPd2. MgPd2H is isopointal to ScRhSi2 [22], but the axial

ratio (a+c)/b (3.474 for MgPd2H vs. 3.928 for ScRhSi2), which are typical for PbCl2 like structures

[23,24], and the free positional parameters of both structures di�er strongly, preventing a classi�cation

as isotypic. Consequently, Si2 atoms in ScRhSi2 are eightfold coordinated forming a three-capped

trigonal prism, whereas hydrogen atoms in MgPd2H exhibit a nearly octahedral coordination sphere.

Further structure types such as BaCdO2, CuSbS2, LiCaSi2 are also isopointal, but with even larger

deviations in metrical relations. Therefore, we consider MgPd2H to be a new structure type.

126



11.4. Results and discussion

Figure 11.4.5.: Decreasing distortion of [MgPd5] octahedral site from MgPd2 (left) to MgPd2D0.861(6)

(right).

Table 11.4.3.: Interatomic distances / Å (< 3.1 Å) in MgPd2 (based on neutron powder di�raction,

see Figure and Table S6, Supporting Information), MgPd2D0.861(6) and MgPd2D0.97(1)

[at 308(2) K, 2.56 MPa deuterium].

compound Mg-Pd Pd-Pd D-Mg D-Pd D-D

MgPd2 2.573(10) 2 x 2.941(8) � � �

2.60(1) 2 x 2.722(10)

2 x 2.668(7) 2.682(10)

2 x 2.702(8) 2 x 2.841(7)

2 x 2.774(8) 2 x 2.916(7)

2.87(1)

2.871(10)

MgPd2D0.861(6) 2 x 2.708(3) 2 x 2.812(3) 2.271(5) 1.837(5) 3.083(4)

2.758(5) 2 x 2.824(5) 1.850(5)

2.759(4) 2 x 2.836(3) 2x 2.0664(8)

2 x 2.796(3) 2.889(4) 2.106(5)

2 x 2.811(3) 2 x 2.987(3)

2.880(5)

2.886(4)

MgPd2D0.97(1) 2 x 2.721(6) 2 x 2.791(5) 2.226(8) 1.838(9) 3.039(6)

2.724(7) 2 x 2.836(9) 1.883(8)

2 x 2.766(5) 2 x 2.821(6) 2.058(7)

2.778(9) 2.935(8) 2 x 2.068(1)

2.823(9) 2 x 3.021(6)

2 x 2.857(6)

2.909(7)
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11.4.3. Quantum-chemical calculations

To rationalize the hydrogenation behavior of MgPd2 and Pd2Zn, quantum-mechanical calculations

were performed. The experimentally determined MgPd2 and MgPd2H structures, respectively, were

used as input for the optimizations of MgPd2 and Pd2Zn as well as MgPd2H and hypothetical Pd2ZnH.

The total energies derived from these optimizations are used for calculating free reaction enthalpies

(see Table S7, Supporting Information) and the density of states (DOS) are calculated from the relaxed

structures.

The hydrogenation of MgPd2 is calculated to be thermodynamically favored (free reaction enthalpy:

-152 meV mol-1) in contrast to Pd2Zn (+64 meV mol-1). The cell parameters of MgPd2, MgPd2H, and

Pd2Zn are slightly larger than experimentally observed. The hypothetical Pd2ZnH structure converges

with lattice- and atomic parameters analogous to MgPd2H (see Table S8 and Figure S9, Supporting

Information). While the H�M distance is slightly larger for MgPd2H (2.334 Å) than for hypothetical

Pd2ZnH (2.220 Å), the H�Pd distances are similar (1.862�2.145 Å for MgPd2H and 1.828�2.115 Å for

Pd2ZnH).

Figure 11.4.6.: Density of states (DOS) of MgPd2 (top) and MgPd2H (bottom). The Fermi level is

set at zero. Note the di�erent scales for the y axes.
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Fig. 11.4.6 shows the DOS of MgPd2 and MgPd2H. The d-bands of Pd dominate the Fermi region,

which has already been documented for other palladium-rich compounds, e. g. MgPd3 [25], InPd3
[26], and Pd11Bi2Se2 [27]. The hydrogenation results in the formation of H bands from -6 to -

9 eV, superimposing with Pd-d bands. The DOS at the Fermi level is increased by hydrogenation

[2.6 states eV-1 unit cell-1 (MgPd2) or 3.7 states eV-1 unit cell-1 (MgPd2H), respectively], which might

increase its electrical conductivity, a behavior inverse to MgPd3 and MgPd3H [25]. A pseudo-gap is

observed for MgPd2 only.

The DOS of Pd2Zn and Pd2ZnH are presented in Figure S10 (Supporting Information). The

above mentioned in�uences of hydrogenation apply here, too, the major di�erence to the magnesium

compounds is found in the localized d-band of Zn at about -7 eV.

11.4.4. Reaction pathway by in situ neutron di�raction

To follow the reaction pathway of the hydrogenation of MgPd2 in detail, to determine the reversible

product at higher temperatures observed with in situ DSC, and to obtain the hydrogen content of

the hydride at any reaction step, in situ neutron powder di�raction is the method of choice. The

experiment was performed in a sapphire single crystal cell with a gas-pressure control system and a

laser heating system. The in situ neutron powder di�raction experiment was executed to reproduce the

hydrogenation experiment observed with DSC. Therefore, deuterium pressure was applied to MgPd2
and subsequently the sample was heated to 437 K and afterwards cooled down to room temperature

(Fig. 11.4.7). Di�raction data were binned (ten neutron di�raction patterns with 2 min data collection

to one frame).

Rietveld re�nements based on each frame were executed (see Figures and Tables S11�S40, Sup-

porting Information). Selected re�ned parameters are displayed in Fig. 11.4.8. At beginning of this

in situ experiment, the cell with MgPd2 was �ushed with deuterium gas. During this �ushing pro-

cess the deuteration of MgPd2 already started. To check, if this deuteration at room temperature is

reversible, vacuum was applied from frame two to �ve. Meanwhile, the phase fraction of the higher

deuteride reduces to zero and at frame four to six only a phase with nearly zero deuterium content

MgPd2D≈0 was included in the re�nement. The lattice parameters a and c decrease and b increases,

however, they do not reach the lattice parameters from the starting compound MgPd2 as determined

before. This might be an indication for remaining hydrogen even though the re�nement of the occu-

pation is not signi�cantly greater than zero. From frame six to eleven, the deuterium pressure was

Figure 11.4.7.: In situ neutron powder di�raction data (NUMOR 959282�959582) of the deuteration

of MgPd2 taken on di�ractometer D20 at λ = 1.86786(3) Å in a single crystal sapphire

cell under various temperature and deuterium pressure conditions. Intensities are in

false colors.
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Figure 11.4.8.: Control parameters of the in situ deuteration of MgPd2 and structural parameters

re�ned by the Rietveld technique based on neutron di�raction data: temperatures and

deuterium pressure (top, left, frames 2 - 5: vacuum), phase fraction (top, right, frames 4

- 6 and 19 - 21: no MgPd2D≈1 phase), lattice parameters and unit cell volume (middle),

site occupation factors (SOF) of deuterium site (bottom, left) and interatomic Mg-D,

Pd-D, and D-D distances (bottom right). For full crystallographic data and Rietveld

plots see Figures and Tables S11-S40, Supporting Information). Error bars correspond

to ± 1 estimated standard uncertainty.
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increased to 2.6 MPa and kept nearly constant up to the end of the experiment. The higher hy-

dride MgPd2D≈1 forms again with steeply increasing phase fraction. The occupation of the distorted

[MgPd5] octahedral site by deuterium is almost complete from the beginning of the phase formation.

This occupation is easily visible by means of the increasing intensity in the neutron powder di�raction

patterns for di�raction angles 20° ≤ 2θ ≤ 45° (see Figures S16 and S17, Supporting Information).

The low occupation factors of deuterium in the beginning (0.2 < x < 0.3 in the �rst frame) di�er

considerably from those at later stages of the experiment (e. g. 0.9 < x < 1 at frames 6�11), al-

though the lattice parameters are comparable. Apparently, a few hundred kPa of deuterium pressure

at room temperature are enough to incorporate deuterium including a considerable unit cell volume

expansion. Further increase of the deuterium amount has little in�uence on the lattice parameters.

The sample was heated as of frame 12 and the decomposition of MgPd2D≈1 started at about 413 K

at frame 17. The sample releases deuterium to a composition of MgPd2D0.17(1) at temperatures up

to 437 K (frames 19 � 21). High temperatures might inhibit full deuterium occupation, however, no

complete decomposition to the hydrogen-free intermetallic phase could be observed. The deuteride

with a nearly full occupation started to reform during the cooling process at about 413 K (frame

22). The reaction temperatures are lower than the DSC experiment, because of signi�cantly smaller

heating and cooling rates. The D�Mg, D�Pd, and D�D distances of MgPd2D≈1 stay nearly constant

during the whole in situ experiment (Fig. 11.4.8).

In a further in situ experiment at 10.0(1) MPa deuterium pressure and temperatures up to 450 K,

deuterium release could be suppressed (see Figures S41 and S42, Supporting Information). This

observation is in accordance with in situ DSC experiments of MgPd2 at 5.0 MPa hydrogen pressure,

where the endothermic signal of the decomposition shifts to a higher temperature (456 K).

11.4.5. Crystal chemical discussion

The structure types discussed herein, and their relation to each other, have been extensively examined

before [23,24,28]. MgPd2Hx is the �rst hydride crystallizing in a �lled Co2Si type. It can be classi�ed

together with other PbCl2 type family members in a structure map after Jeitschko [23,24] (Fig. 11.4.9),

which groups compounds according to their axial ratios a/c and (a+c)/b. The binary hydrides MH2

(M = Ca [29], Sr [29], Ba [30], Eu [31], and Yb [32]) with a/c = 0.85�0.88 crystallize in the PbCl2 type

[PbCl2 ratios: a/c = 0.843, (a+c)/b = 3.68] [33]. Ternary hydrides like M 2PH (M = Rb [34] and

Cs [35]) crystallize in a �lled anti-PbCl2 type, known as �lled Co2P type [Co2P ratios: a/c = 0.856,

(a+c)/b = 3.49] [36], with an axial ratio a/c = 0.8�0.82. MgPd2 and Pd2Zn crystallize like other

MPd2 (M = Al [9], Mn [37], Ga [9], In [9], Sn [38], and Tl[2]) also in an anti-PbCl2 type, but they are

grouped with an axial a/c ratio of 0.65�0.71 to the Co2Si type [Co2Si ratios: a/c = 0.692, (a+c)/b

= 3.22] [39].

Hydrogenation of MgPd2 leads to a decrease in a/c ratio and an increase in the (a+c)/b ratio due

to the before mentioned dominating increase in c. CeNiSnH [13], TbNiSnD [11], and CePdSnD [12]

with �lled TiNiSi structure type and NdNiSnD with a �lled superstructure of TiNiSi type (space group

Pna21) [40] exhibit the same behavior, but with di�erent kind of anisotropic volume increase. Lattice

parameters a and b decrease, while c increases much more upon hydrogenation [12]. Compounds in

TiNiSi type have a relatively large a/c ratio [TiNiSi ratios: a/c = 0.876, (a+c)/b = 3.59] [39]. The

binary hydrides in PbCl2 type have a shorter b axis resulting in a larger (a+c)/b ratio compared to

the hydrides crystallizing in the two anti-PbCl2 types or rather TiNiSi type. Most TiNiSi type com-

pounds do not incorporate hydrogen without a structural change, but form hexagonal �lled ZrBeSi

type hydrides with di�erent axial ratios. To complete the discussion of the hydrides of TiNiSi type

compounds, those �lled ZrBeSi type hydrides are surveyed hereafter. During the hydrogenation pro-
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Figure 11.4.9.: Structure map after Jeitschko [23,24] with PbCl2 type compounds focused on hydrides

and MPd2 compounds. Colored areas are redrawn [24] and compounds are ordered

according to their axial ratios a/c and (a+c)/b. Hydrides with half-�lled blue markers

crystallize in �lled TiNiSi type, with brown spheres in �lled Co2P type and with pink

star in MgPd2H type.

cess of CeNiSn, CeNiSnH1, with �lled TiNiSi type, is an intermediate of the formation of CeNiSnH1.8

crystallizing in the �lled hexagonal ZrBeSi type [13]. The maximum hydrogen amount for this type

was found in LaNiSnD2 (�lled ZrBeSi type) with one type of [Ln3Ni] tetrahedra completely occupied

by hydrogen [41].

In addition to hydrides of ternary stannides, silicides form hydrides like UTSiHx (T = Co, Ni,

Pd) with �lled TiNiSi type (x ≈ 0.1) or hexagonal ZrBeSi type (x ≈ 1) as well [42,43]. TbNiSiD1.78

seems to be an outlier because of very di�erent axial ratios (see Fig. 11.4.9). Therefore, a description

of a �lled TiNiSi type is not recommendable. TbNiSiD1.78 crystallizes under normal conditions in

a �lled ZrBeSi type [44], but shows an orthorhombic distortion below 100 K [45]. Orthogonalized

lattice parameters of the hexagonal �lled ZrBeSi type have similar axial ratios and would be next to

TbNiSiD1.78 with a/c ratio larger than 1.0 in Fig. 11.4.9. There are some more germanide and anti-

monide hydrides in �lled TiNiSi type structure, e. g., UFeGeH0.3 [46], UCoGeH0.1 [47], URhGeH0.3

[48], UPdGeH0.1 [48], UIrGeH0.1 [48], CeRhSbH0.2 [49], and CeIrSbH0.8 [50], however, they incor-
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porate only a small hydrogen amount and two of them switch to the �lled ZrBeSi type through a

phase transition by higher hydrogen uptake (UFeGeH1.7 [46] and UNiGeH0.3�1.2 [51]). The hydrides

CeNiGeH1.6 [52], TbNiGeD1.8 [53] and CeAuAlH1.4 [54], that crystallize in �lled ZrBeSi type, and

CeCuGeH crystallizing in a threefold superstructure of the ZrBeSi type [52], are mentioned here for

the sake of completeness.

11.5. Conclusions

MgPd2 reversibly takes up hydrogen with 6.8 % volume increase. Lattice parameters change anisotrop-

ically upon hydrogenation. Pd2Zn does not show any reaction with hydrogen. The crystal structures

of MgPd2D0.861(6) and MgPd2D0.97(1) were determined by neutron powder di�raction data and may be

described as a �lled Co2Si type (MgPd2H type). Deuterium atoms occupy [MgPd5] octahedral sites,

which are less distorted in the hydride (deuteride) than in the hydrogen-free intermetallic compound.

Quantum-mechanical calculations support the structure models and reaction enthalpies explain the

hydrogenation properties of MgPd2 (-152 meV mol�1) and Pd2Zn (+64 meV mol�1). The reversible

hydrogen uptake of MgPd2 was studied by in situ thermal analysis (DSC) and in situ neutron powder

di�raction under various temperatures and hydrogen (deuterium) pressures. The hydrogenation is

reversible with faster kinetics during hydrogenation and slower during dehydrogenation. MgPd2H≈0.2

and MgPd2H≈1 are the �rst metal hydrides in �lled Co2Si type structure. Although hydrogen occupies

di�erent positions, they show a similar change of axial ratios [diagram after Jeitschko, plot of a/c vs.

(a+c)/b] as TiNiSi type compounds upon hydrogenation.

11.6. Experimental section

The binary compounds MPd2 (M = Mg, Zn) were synthesized from the elements with small amounts

of iodine as mineralizing agent. Stoichiometric amounts of the elements palladium (powder, 99.9 %,

≤ 60 µm, chemPUR and 99.95 %, ≤ 150 µm, Goodfellow), magnesium (powder, 99.8 %, abcr, in an

argon atmosphere), zinc (powder, > 98 %, ≤ 63 µm, Carl Roth) and 1-3 small crystals of iodine (re-

sublimed, Merck) in silica glass ampoules sealed under vacuum. MgPd2 was synthesized as described

in the literature [4], though, with 5 % excess of magnesium and di�erent annealing conditions (868 K

for 10 d, 23.8 K h-1 heating rate). Samples of MgPd2 typically contains 0.5-2 wt % MgO. Pd2Zn was

annealed at 1423 K for 18 h (100 K h-1 heating rate) and afterwards at 723 K for 10 d. All samples

were quenched in water after annealing. The products were ground in air and iodine was dissolved in

half-saturated aqueous potassium iodide solution. All binary intermetallic compounds were checked

by chemical analysis performed with an EDX INCA SYSTEM from Oxford Instruments mounted on

a Zeiss LEO 1530 scanning electron microscope with an acceleration voltage of 20 kV and a working

distance of 15 mm.

For ex situ deuteration, the powdered MgPd2 were placed in hydrogen resistant Inconel (Böhler

L718, nickel chromium alloy) crucibles in an autoclave made from the same alloy and charged with

deuterium (99.8 %, Air Liquide). The sample was weighted before and after deuteration for gravimetric

deuterium determination. MgPd2 samples for in situ investigations were placed in single crystal

sapphire cell with a polymer seal (NBR �at seal with 65 shore, 17 mm outer diameter, 9 mm inner

diameter, 2 mm thickness, IDT-Flachdichtungen, Germany) [17] and charged with deuterium pressure

or set under vacuum. These samples were heated with a contactless laser heating system.

Laboratory XRPD data were collected using either a Huber G670 di�ractometer with Guinier geom-

etry at T = 297(2) K with Mo-Kα1 radiation (�at transmission sample with Apiezon® grease between
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two Kapton® foils) or a STOE STADI-P di�ractometer in Debye-Scherrer setup at T = 296(2) K with

Cu-Kα1 radiation (glass capillary, 0.3 mm in diameter). Neutron powder di�raction measurements

(NPD) were carried out at the Institut Laue-Langevin (ILL) in Grenoble, France at the high-�ux pow-

der di�ractometer D20 in high-resolution mode in the range 3° ≤ 2θ ≤ 150° and a total data collection

time of 5 and 20 min [doi: 10.5291/ILL-DATA.5�24�576, NUMORS 959239 (MgPd2) and 959583

(MgPd2D0.97(1)) were used for re�nement] and at Paul Scherrer Instiut (PSI) in Villigen, Switzerland

at the High-Resolution Powder Di�ractometer for Thermal Neutrons (HRPT) in High Intensity (HI)

mode [55]. Samples were enclosed in thin-walled vanadium cylinders (6 mm outer diameter). In situ

neutron powder di�raction were taken at di�ractometer D20 under various deuterium pressures (iso-

topic purity, 99.8 %) with a time resolution of 2 min per pattern (doi: 10.5291/ILL-DATA.5�24�576,

NUMORS 959282 to 959582 and 959635 to 959667 were used for re�nement, see Supporting Infor-

mation). Ten patterns were binned to one frame for Rietveld re�nement. The sample was placed

inside a single crystal sapphire based gas pressure cell especially designed for in situ neutron powder

di�raction with a gas pressure controller and contactless laser heating system [16]. The wavelengths

were determined from measurements of silicon standard (NIST640b). Crystal structures were re�ned

using the program FullProf [19] or TOPAS [56].

Further details of the crystal structures investigations may be obtained from the Fachinforma-

tionszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-7247-808-666; E-Mail:

crysdata@�z-karlsruhe.de, http://www.�z-karlsruhe.de/request for deposited data.html) on quoting

the depository numbers CSD-433791 (MgPd2D0.97(1)), CSD-433792 (MgPd2D0.861(6)), and CSD-433793

(Pd2Zn).

Di�erential scanning calorimetry (DSC) was performed in situ under a starting hydrogen pressure

of 5.0 MPa and temperatures up to 703 K on a Q1000 DSC (TA Instruments) equipped with a gas

pressure chamber. About 25 mg of the powdered intermetallics were put in aluminium crucibles,

which were closed with an aluminium lid. These were placed inside the pressure chamber, which was

then purged several times with hydrogen gas before �lling it to the desired hydrogen gas pressure.

The samples were heated at a rate of 10 K min�1, held at the �nal temperature for 2 h, and cooled

back to 300 K. Two runs were performed in order to check for reversibility of thermal e�ects before

the hydrogen pressure was released, the sample taken out and structural characterization undertaken

by XRPD.

All calculations were performed with the Vienna ab initio simulation package (VASP) [57,58], using

PAW's [59], fermi-smearing and the PBE-method [60]. The potentials were obtained from the VASP

database and considered 1, 2, 12, and 10 valence electrons for H, Mg, Zn, and Pd, respectively. A

cuto� energy of 600 eV was set for an automatically generated and Γ-centered k -mesh, which resolved

the Brillouin zone to 0.03 Å�1 in structure optimizations and 0.01 Å�1 in density of states (DOS)

calculations (e. g. 6 x 8 x 4 resp. 18 x 23 x 12 grid for MgPd2). All structures were relaxed with

full degrees of freedom, converging forces to 0.001 meV pm�1 and electronic energy to 0.01 meV. The

reaction energies were calculated from total energies. The energy of molecular hydrogen was estimated

from a H2 molecule in a cubic box with a cell parameter of 34.5 Å, which corresponds to an ideal gas

at 0.1 MPa and 293 K. The DOS were calculated on relaxed structures using the tetrahedron method

with Blöchl corrections [61] and a resolution of 1 meV.
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Supporting Information (see footnote on the �rst page of this article): Rietveld plots and re�nements

of the crystal structures of MgPd2 and Pd2Zn before and after hydrogenation based on XRPD (S1 -

S5), re�nement of the crystal structure of MgPd2 based on neutron powder di�raction (S6), calculated

energies (S7) and structural parameters (S8) for hydrogenation of MPd2, crystal structure and DOS

of Pd2Zn and hypothetical Pd2ZnH (S9, S10), Rietveld plots and re�ned structural parameters of

MgPd2Dx of all frames of in situ neutron di�raction experiment (S11 - S40), in situ neutron powder

di�raction data and deuterium occupation of MgPd2Dx at 10.0 MPa deuterium pressure (S41, S42).
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X-ray powder diffraction 

 

Figure S1. Rietveld refinement of the crystal structure of MgPd2 at 297(2) K based on 
X-ray powder diffraction (Huber G670, MoKα1 radiation), using Topas[1]. 

 

 

Figure S2. Rietveld refinement of the crystal structure of Pd2Zn at 296(2) K based on 
X-ray powder diffraction (STOE STADI-P, CuKα1 radiation, 180 s exposure time, 6 
summed patterns, preferred orientation with March-Dollase model[2] in direction 001 
and 010), using FullProf[3]. 

  

 

Table S1. Refined crystal structures of MgPd2 and residual 

values of the refinement based on XRPD (Fig. S1). 

atom Mg Pd1 Pd2 

Wyckoff site 4c 4c 4c 

x 0.317(2) 0.3333(5) 0.4427(6) 

y ¼ ¼ ¼ 

z 0.0919(9) 0.4270(2) 0.7658(2) 

Biso / Å2 -0.1(2) 1.07(5) 1.50(7) 

space group Pnma, a = 5.4194(3) Å, b = 4.1599(2) Å, 

c = 7.9661(5) Å, V = 179.59(2) Å³ 

additional phase: MgO (2.0(4) %) 

Rp = 0.027, Rwp = 0.039, RBragg = 0.010, χ2 = 1.2 

 

 

 

Table S2. Refined crystal structures of Pd2Zn and residual 

values of the refinement based on XRPD (Fig. S2). 

atom Mg Pd1 Pd2 

Wyckoff site 4c 4c 4c 

x 0.3188(8) 0.3258(4) 0.4593(4) 

y ¼ ¼ ¼ 

z 0.0983(4) 0.4296(2) 0.7753(2) 

Biso / Å2 -4.38(7)[a] -4.61(4)[a] -4.74(4)[a] 

space group Pnma, a = 5.3291(1) Å, b = 4.14427(9) Å, 

c = 7.7366(2) Å, V = 170.866(7) Å³ 

Rp = 0.059, Rwp = 0.075, RBragg = 0.036, χ2 = 2.22 

[a] Negative thermal displacement parameters are not 

unusual in X-ray powder diffraction due to absorption and 

surface roughness effects. 
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Figure S3. Rietveld refinement of the crystal structure of MgPd2Hx and MgPd2 after 

DSC (2.5 MPa H2, Tmax = 363 K) at 297(2) K based on X-ray powder diffraction 

(Huber G670, MoKα1 radiation), using Topas[1]. 

 

 

 

Figure S4. Rietveld refinement of the crystal structure of MgPd3Hx (filled AuCu3 type) and MgPd2Hx 

after DSC (2.5 MPa H2, Tmax = 703 K, four cycles) at 297(2) K based on X-ray powder diffraction 

(Huber G670, MoKα1 radiation), using Topas[1]. 

 

  

 

Table S3. Refined crystal structures of MgPd2Hx and MgPd2 (in 

italics) after DSC (2.5 MPa H2, Tmax = 363 K) and residual 

values of the refinement based on XRPD (Fig. S2). 

atom Mg Pd1 Pd2 

Wyckoff site 4c 4c 4c 

x 0.426(3) 

0.335(4) 

0.3812(7) 

0.3440(11) 

0.3978(11) 

0.4347(12) 

y ¼ ¼ ¼ 

z 0.092(2) 

0.076(3) 

0.4229(5) 

0.4280(6) 

0.7660(4) 

0.7622(6) 

Biso / Å2 1.00(7) 

2.3(1) 

Biso(Mg) Biso(Mg) 

space group Pnma  

MgPd2Hx (46.2(5) %): a = 5.6462(6) Å, b = 4.0504(4) Å, 

c = 8.3844(9) Å, V = 191.75(4) Å³, RBragg = 0.015) 

MgPd2 (49.6(5) %): a = 5.4418(8) Å, b = 4.1339(6) Å, 

c = 7.9891(11) Å, V = 179.72(4) Å³, RBragg = 0.014) 

additional phase: MgO (4.2(4) %) 

Rp = 0.035, Rwp = 0.046, χ2 = 2.0 

 

 

Table S4. Refined crystal structure of MgPd3Hx 

(filled AuCu3 type) after DSC (2.5 MPa H2, 

Tmax = 703 K) and residual values of the 

refinement based on XRPD (Fig. S4). 

atom Mg Pd 

Wyckoff site 1a 3c 

x 0 ½ 

y 0 ½ 

z 0 0 

Biso / Å2 0.24(10) 1.18(3) 

space group Pm3̅m  

MgPd3Hx (70.0(6) %): a = 3.985(1) Å, 

V = 63.265(7) Å³, RBragg = 0.033) 

additional phases: MgPd2Hx (13.8(6) %, 

a = 5.499(2) Å, b = 4.124(1) Å, 

c = 8.202(3) Å,), MgPd2 (7.0(4) %, 

a = 5.404(4) Å, b = 4.105(3) Å, 

c = 8.009(6) Å), MgO (4.3(3) %), Mg(OH)2 

(4.9(3) %) 

Rp = 0.060, Rwp = 0.082, χ2 = 25.6 
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Figure S5. Rietveld refinement of the crystal structure of Pd2Zn after DSC (5.0 MPa 

H2, Tmax = 703 K) at 296(2) K based on X-ray powder diffraction (STOE STADI-P, 

CuKα1 radiation, 180 s exposure time, 2 summed patterns, preferred orientation with 

March-Dollase model[2] in direction 001 and 010), using Fullprof[3]. 

Ex-situ neutron powder diffraction 

 

Figure S6. Rietveld refinement of MgPd2 at air in single crystal sapphire cell based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, 

Grenoble, NUMOR 959239), using FullProf[3]. 

Table S6. Refined crystal structures of MgPd2 and residual 

values of the refinement based on NPD (Fig. S6). 

atom Mg Pd1 Pd2 

Wyckoff site 4c 4c 4c 

x 0.316(2) 0.340(2) 0.437(1) 

y ¼ ¼ ¼ 

z 0.1079(9) 0.4293(8) 0.7583(9) 

Biso / Å2 3.9(3) 1.5(2) 1.2(2) 

space group Pnma, a = 5.4374(3) Å, b = 4.1747(3) Å, 

c = 7.9942(4) Å, V = 181.47(2) Å³ 

additional phase: MgO (0.48(4) %) 

Rp = 0.069, Rwp = 0.090, RBragg = 0.108, χ2 = 2.67 

 

Table S5. Refined crystal structures of Pd2Zn after DSC 

(50 bar H2, Tmax = 430 °C) and residual values of the 

refinement based on XRPD (Fig. S5). 

atom Mg Pd1 Pd2 

Wyckoff site 4c 4c 4c 

x 0.3199(9) 0.3274(5) 0.4599(5) 

y ¼ ¼ ¼ 

z 0.1006(5) 0.4285(3) 0.7778(3) 

Biso / Å2 -3.72(8)[a] -3.87(5)[a] -3.82(5)[a] 

space group Pnma, a = 5.32927(11) Å, b = 4.14397(7) Å, 

c = 7.7367(1) Å, V = 170.860(5) Å³ 

Rp = 0.091, Rwp = 0.122, RBragg = 0.059, χ2 = 1.82 

[a] Negative thermal displacement parameters are not 

unusual in X-ray powder diffraction due to absorption and 

surface roughness effects. 
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Quantum chemical calculations 

 

Table S7. Calculated energies and reaction 

enthalpies per formula units of 

MPd2 + ½ H2  MPd2H. 

compound M = Mg M = Zn 

H2 -6.696 eV 

MPd2 -12.420 eV -10.464 eV 

MPd2H -15.920 eV -13.750 eV 

 -0.152 eV +0.064 eV 

 

 

Table S8. Comparison of structural parametersof MPd2 and MPd2H from diffraction 

experiment (exp) with those from calculation (calc).  

parameter MgPd2 MgPd2H Pd2Zn Pd2ZnH 

aexp 5.4374(3) Å[a] 5.6065(5) Å[b] 5.3291(1) Å[c] - 

acalc 5.5282 Å 5.6843 Å 5.4114 Å 5.6058 Å 

deviation of a 1.7 % 1.4 % 1.5 % - 

bexp 4.1747(3) Å[a] 4.0691(3) Å[b] 4.14427(9) Å[c] - 

bcalc 4.2015 Å 4.0888 Å 4.2001 Å 4.0761 Å 

deviation of b 0.6 % 0.5 % 1.3 % - 

cexp 7.9942(4) Å[a] 8.5216(7) Å[b] 7.7366(2) Å[c] - 

ccalc 8.1475 Å 8.6749 Å 7.8556 Å 8.3590 Å 

deviation of c 1.9 % 1.8 % 1.5 % - 

Vexp 181.47(2) Å³[a] 194.41(3) Å³[b] 170.866(7) Å³[c] - 

Vcalc 189.24 Å³ 201.62 Å³ 178.55 Å³ 191.00 Å³ 

deviation of V 4.3 % 3.7 % 4.5 % - 

x(M)exp 0.316(2)[a] 0.3487(10)[b] 0.3188(8)[c] - 

x(M)calc 0.3288 0.3538 0.3161 0.3397 

z(M)exp 0.1079(9)[a] 0.1003(8)[b] 0.0983(4)[c] - 

z(M)calc 0.0984 0.1060 0.0996 0.1104 

x(Pd1)exp 0.340(2)[a] 0.3653(8)[b] 0.3258(4)[c] - 

x(Pd1)calc 0.3391 0.3624 0.3285 0.3495 

z(Pd1)exp 0.4293(8)[a] 0.4314(6)[b] 0.4296(2)[c] - 

z(Pd1)calc 0.4280 0.4269 0.4309 0.4323 

x(Pd2)exp 0.437(1)[a] 0.3902(12)[b] 0.4593(4)[c] - 

x(Pd2)calc 0.4371 0.3894 0.4586 0.4159 

z(Pd2)exp 0.7583(9)[a] 0.7754(7)[b] 0.7753(2)[c] - 

z(Pd2)calc 0.7655 0.7689 0.7760 0.7812 

x(D)exp  0.6127(11)[b]  - 

x(H)calc  0.6129  0.6183 

z(D)exp  0.6098(6)[b]  - 

z(H)calc  0.6119  0.6098 

[a] Parameters of MgPd2 yield from Rietveld refinement based on neutron powder diffraction 

(Table S6) [b] Parameters of MgPd2D0.97(1) yield from Rietveld refinement based on neutron 

powder diffraction (Table 2) [c] Parameters of Pd2Zn yield from Rietveld refinement based 

on XRPD (Table S2) 

 

11.9. Supporting Information

143



 

 

 

Figure S9. Crystal Structure (left) and coordination polyhedra of hydrogen (right) of hypothetical Pd2ZnH based on quantum mechanical calculations. 

 

Figure S10. Density of states (DOS) of Pd2Zn (top) and hypothetical Pd2ZnH (bottom). The Fermi-level is set to zero. Note the different scales for the y 

axis.  
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In-situ neutron powder diffraction 

 

Figure S11. Rietveld refinement of frame 1 at 298(1) K in single crystal sapphire cell under 0.10(5) MPa D2 pressure based on neutron powder diffraction 

data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959282-959291), using FullProf[3]. 

 

Table S11. Refined crystal structures of MgPd2D0.258(2) and MgPd2D0.10(2) (in 

italics) of frame 1 (0.10(5) MPa D2, 298(1) K) and residual values of the 

refinement based on NPD (Fig. S11). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.339(1) 

0.344(2) 

0.3734(11) 

0.353(2) 

0.401(1) 

0.432(2) 

0.610(5) 

0.651[b] 

y ¼ ¼ ¼ ¼ 

z 0.1215(6) 

0.1278(10) 

0.4240(6) 

0.4430(9) 

0.7611(6) 

0.7365(10) 

0.587(2) 

0.576[b] 

SOF 1 1 1 0.258(2) 

0.10(2) 

space group Pnma  

MgPd2D0.258(2) (67(1) %): a = 5.6059(7) Å, b = 4.0671(4) Å, 

c = 8.5096(10) Å, V = 194.02(4) Å³, Biso(overall)[a] = -0.88(9) Å², 

RBragg = 0.112) 

MgPd2D0.10(2) (32.1(12) %): a = 5.4418(8) Å, b = 4.1339(6) Å, 

c = 7.9891(11) Å, V = 182.61(8) Å³, Biso(overall)[b] = 0.2(2) Å², 

RBragg = 0.141) 

additional phase: MgO (0.57(5) %) 

Rp = 0.035, Rwp = 0.044, χ2 = 4.3 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional and displacement parameters are 

fixed to the values of refinement of frame 4 (see Table S14). 
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Figure S12. Rietveld refinement of frame 2 at 297(1) K in single crystal sapphire cell under vacuum based on neutron powder diffraction data 

(λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959292-959301), using FullProf[3]. 

 

Table S12. Refined crystal structures of MgPd2D0.222(2) and MgPd2D0.14(2) (in 

italics) of frame 2 (vacuum, 297(1) K) and residual values of the refinement 

based on NPD (Fig. S12). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.337(1) 

0.341(1) 

0.377(1) 

0.3167(11) 

0.405(1) 

0.4097(11) 

0.614(6) 

0.651[b] 

y ¼ ¼ ¼ ¼ 

z 0.1236(6) 

0.0902(11) 

0.4251(6) 

0.4296(8) 

0.7603(6) 

0.7880(9) 

0.589(2) 

0.576[b] 

SOF 1 1 1 0.222(2) 

0.14(2) 

space group Pnma  

MgPd2D0.222(2) (60(1) %): a = 5.5989(8) Å, b = 4.0652(5) Å, 

c = 8.4957(12) Å, V = 193.37(5) Å³, Biso(overall)[a] = -0.72(11) Å², 

RBragg = 0.104) 

MgPd2D0.14(2) (40(1) %): a = 5.472(1) Å, b = 4.1246(8) Å, c = 8.087(2) Å, 

V = 182.50(7) Å³, Biso(overall)[b] = 0.3(2) Å², RBragg = 0.113) 

additional phase: MgO (0.65(5) %) 

Rp = 0.039, Rwp = 0.049, χ2 = 5.0 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional and displacement parameters are 

fixed to the values of refinement of frame 4 (see Table S14). 
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Figure S13. Rietveld refinement of frame 3 at 297(1) K in single crystal sapphire cell under vacuum based on neutron powder diffraction data 

(λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959302-959311), using FullProf[3]. 

 

Table S13. Refined crystal structures of MgPd2D0.204(6) and MgPd2D0.05(1) (in 

italics) of frame 3 (vacuum, 297(1) K) and residual values of the refinement 

based on NPD (Fig. S13). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.324(3) 

0.3396(9) 

0.390(3) 

0.3228(7) 

0.395(4) 

0.4205(6) 

0.64(1) 

0.651[b] 

y ¼ ¼ ¼ ¼ 

z 0.149(2) 

0.1026(6) 

0.437(2) 

0.4257(5) 

0.750(2) 

0.7692(6) 

0.547(7) 

0.576[b] 

SOF 1 1 1 0.204(6) 

0.05(1) 

space group Pnma  

MgPd2D0.204(6) (16.6(9) %): a = 5.578(3) Å, b = 4.070(1) Å, c = 8.492(3) Å, 

V = 192.8(1) Å³, Biso(overall)[a] = -0.9(3) Å², RBragg = 0.179) 

MgPd2D0.05(1) (83(2) %): a = 5.4592(6) Å, b = 4.1430(4) Å, c = 8.0535(7) Å, 

V = 182.15(3) Å³, Biso(overall)[b] = 0.21(8) Å², RBragg = 0.078) 

additional phase: MgO (0.61(4) %) 

Rp = 0.046, Rwp = 0.059, χ2 = 5.7 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional and displacement parameters are 

fixed to the values of refinement of frame 4 (see Table S14). 
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Figure S14. Rietveld refinement of frame 4 at 297(1) K in single crystal sapphire cell under vacuum based on neutron powder diffraction data 

(λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959312-959321), using FullProf[3]. 

 

Table S14. Refined crystal structures of MgPd2D0.046(4) of frame 4 (vacuum, 

297(1) K) and residual values of the refinement based on NPD (Fig. S14). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.331(2) 0.330(2) 0.431(1) 0.651(11) 

y ¼ ¼ ¼ ¼ 

z 0.1018(7) 0.4287(8) 0.7634(11) 0.576(10) 

Biso / Å² 1.3(2) 0.8(1) 1.4(2) 4.797[a] 

SOF 1 1 1 0.046(4) 

space group Pnma  

MgPd2D0.046(4) (99(2) %): a = 5.4493(3) Å, b = 4.1559(2) Å, 

c = 8.0276(3) Å, V = 181.80(2) Å³, RBragg = 0.102) 

additional phase: MgO (0.60(4) %) 

Rp = 0.047, Rwp = 0.060, χ2 = 5.3 

[a] Displacement parameter of D is fixed to the value of refinement of 

MgPd2D0.97(1) (see Table 2). 
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Figure S15. Rietveld refinement of frame 5 at 297(1) K in single crystal sapphire cell under vacuum based on neutron powder diffraction data 

(λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959322-959331), using FullProf[3]. 

 

Table S15. Refined crystal structures of MgPd2D0.046(4) of frame 5 (vacuum, 

297(1) K) and residual values of the refinement based on NPD (Fig. S15). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.323(2) 0.337(1) 0.4336(11) 0.665(11) 

y ¼ ¼ ¼ ¼ 

z 0.1011(6) 0.4311(7) 0.7607(9) 0.579(9) 

Biso / Å² 1.6(2) 0.66(12) 1.4(2) 4.797[a] 

SOF 1 1 1 0.046(4) 

space group Pnma  

MgPd2D0.046(4) (99(2) %): a = 5.4461(3) Å, b = 4.1599(2) Å, 

c = 8.0195(3) Å, V = 181.68(1) Å³, RBragg = 0.094) 

additional phase: MgO (0.62(4) %) 

Rp = 0.047, Rwp = 0.060, χ2 = 5.4 

[a] Displacement parameter of D is fixed to the value of refinement of 

MgPd2D0.97(1) (see Table 2). 
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Figure S16. Rietveld refinement of frame 6 at 298(1) K in single crystal sapphire cell under D2 pressure range from vacuum to 0.60(5) MPa based on 

neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959332-959341), using FullProf[3]. 

 

Table S16. Refined crystal structures of MgPd2D0.032(4) of frame 6 

(0.3(3) MPa D2, 298(1) K) and residual values of the refinement based on 

NPD (Fig. S16). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.324(2) 0.339(1) 0.433(1) 0.66(2) 

y ¼ ¼ ¼ ¼ 

z 0.1019(7) 0.4326(7) 0.7570(10) 0.575(1) 

Biso / Å² 1.6(2) 0.66(12) 1.4(2) 4.797[a] 

SOF 1 1 1 0.032(4) 

space group Pnma  

MgPd2D0.032(4) (99(2) %): a = 5.4465(3) Å, b = 4.1601(2) Å, 

c = 8.0194(4) Å, V = 181.70(2) Å³, RBragg = 0.102) 

additional phase: MgO (0.54(4) %) 

Rp = 0.049, Rwp = 0.062, χ2 = 5.8 

[a] Displacement parameter of D is fixed to the value of refinement of 

MgPd2D0.97(1) (see Table 2). 
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Figure S17. Rietveld refinement of frame 7 at 298(1) K in single crystal sapphire cell under D2 pressure range from 0.55(5) to 1.10(5) MPa based on 

neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959342-959351), using FullProf[3]. 

 

Table S17. Refined crystal structures of MgPd2D0.904(12) and MgPd2D0.068(4) 

(in italics) of frame 7 (0.8(3) MPa D2, 298(1) K) and residual values of the 

refinement based on NPD (Fig. S17). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.345(2) 

0.342(3) 

0.355(2) 

0.350(3) 

0.396(2) 

0.428(3) 

0.611(3) 

0.694[b] 

y ¼ ¼ ¼ ¼ 

z 0.106(2) 

0.1026(6) 

0.4308(12) 

0.4257(5) 

0.776(1) 

0.7692(6) 

0.602(1) 

0.581[b] 

SOF 1 1 1 0.904(12) 

0.068(4) 

space group Pnma  

MgPd2D0.904(12) (48(1) %): a = 5.6003(11) Å, b = 4.0694(5) Å, 

c = 8.487(2) Å, V = 193.43(6) Å³, Biso(overall)[a] = -0.59(12) Å², 

RBragg = 0.112) 

MgPd2D0.068(4) (52(1) %): a = 5.4816(11) Å, b = 4.1248(7) Å, 

c = 8.089(2) Å, V = 182.91(6) Å³, Biso(overall)[c] = 0.26(12) Å², 

RBragg = 0.084) 

additional phase: MgO (0.60(4) %) 

Rp = 0.048, Rwp = 0.060, χ2 = 5.8 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters were fixed during 

refinement for stability. [c] Displacement parameters are fixed to the values 

of refinement of frame 4 (see Table S14). 
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Figure S18. Rietveld refinement of frame 8 at 298(1) K in single crystal sapphire cell under D2 pressure range from 1.10(5) to 1.60(5) MPa based on 

neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959352-959361), using FullProf[3]. 

 

Table S18. Refined crystal structures of MgPd2D0.926(8) and MgPd2D0.098(6) 

(in italics) of frame 8 (1.3(3) MPa D2, 298(1) K) and residual values of the 

refinement based on NPD (Fig. S18). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.349(2) 

0.349(3) 

0.3584(12) 

0.353(3) 

0.395(2) 

0.431(3) 

0.608(2) 

0.695(7) 

y ¼ ¼ ¼ ¼ 

z 0.122(2) 

0.1026(6) 

0.440(1) 

0.4257(5) 

0.740(2) 

0.7692(6) 

0.6056(9) 

0.580(5) 

SOF 1 1 1 0.926(8) 

0.098(6) 

space group Pnma  

MgPd2D0.926(8) (61(1) %): a = 5.6043(7) Å, b = 4.0678(4) Å, 

c = 8.5075(10) Å, V = 193.95(4) Å³, Biso(overall)[a] = -0.38(9) Å², 

RBragg = 0.103) 

MgPd2D0.098(6) (38.2(10) %): a = 5.4802(11) Å, b = 4.1268(8) Å, 

c = 8.081(2) Å, V = 182.76(6) Å³, Biso(overall)[b] = 0.2(1) Å², RBragg = 0.088) 

additional phase: MgO (0.60(4) %) 

Rp = 0.043, Rwp = 0.055, χ2 = 5.0 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Displacement parameters are fixed to the 

values of refinement of frame 4 (see Table S14). 
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Figure S19. Rietveld refinement of frame 9 at 298(1) K in single crystal sapphire cell under D2 pressure range from 1.60(5) to 2.10(5) MPa based on 

neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959362-959371), using FullProf[3]. 

 

Table S19. Refined crystal structures of MgPd2D0.942(9) and MgPd2D0.10(2) (in 

italics) of frame 9 (1.9(3) MPa D2, 298(1) K) and residual values of the 

refinement based on NPD (Fig. S19). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.349(1) 

0.353(3) 

0.3596(11) 

0.361(3) 

0.393(2) 

0.436(2) 

0.609(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.0985(10) 

0.122(2) 

0.4314(7) 

0.440(2) 

0.7761(8) 

0.741(2) 

0.6069(8) 

0.593[b] 

SOF 1 1 1 0.942(9) 

0.10(2) 

space group Pnma  

MgPd2D0.942(9) (66(1) %): a = 5.6054(6) Å, b = 4.0676(3) Å, 

c = 8.5163(9) Å, V = 194.18(3) Å³, Biso(overall)[a] = -0.34(8) Å², 

RBragg = 0.094) 

MgPd2D0.10(2) (33.1(10) %): a = 5.4795(12) Å, b = 4.1264(8) Å, 

c = 8.074(2) Å, V = 182.57(7) Å³, Biso(overall)[c] = 0.2(1) Å², RBragg = 0.092) 

additional phase: MgO (0.60(4) %) 

Rp = 0.043, Rwp = 0.054, χ2 = 4.9 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters were fixed during 

refinement for stability. [c] Displacement parameters are fixed to the values 

of refinement of frame 4 (see Table S14). 
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Figure S20. Rietveld refinement of frame 10 at 298(1) K in single crystal sapphire cell under D2 pressure range from 2.10(5) to 2.60(5) MPa based on 

neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959372-959381), using FullProf[3]. 

 

Table S20. Refined crystal structures of MgPd2D0.939(8) and MgPd2D0.11(2) (in 

italics) of frame 10 (2.4(3) MPa D2, 298(1) K) and residual values of the 

refinement based on NPD (Fig. S20). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.349(1) 

0.352(3) 

0.3609(11) 

0.363(3) 

0.393(2) 

0.435(3) 

0.609(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.1001(10) 

0.122(2) 

0.4312(7) 

0.440(2) 

0.7760(8) 

0.740(2) 

0.6066(8) 

0.593[b] 

SOF 1 1 1 0.939(8) 

0.11(2) 

space group Pnma  

MgPd2D0.939(8) (70(1) %): a = 5.6067(5) Å, b = 4.0676(3) Å, 

c = 8.5200(8) Å, V = 194.30(3) Å³, Biso(overall)[a] = -0.32(8) Å², 

RBragg = 0.093) 

MgPd2D0.11(2) (29.7(9) %): a = 5.478(1) Å, b = 4.1265(9) Å, c = 8.074(2) Å, 

V = 182.51(7) Å³, Biso(overall)[c] = 0.3(2) Å², RBragg = 0.091) 

additional phase: MgO (0.54(4) %) 

Rp = 0.042, Rwp = 0.053, χ2 = 4.8 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 9 (see Table S19) for sequential refinement (frame 9-14). [c] 

Displacement parameters are fixed to the values of refinement of frame 4 

(see Table S14). 
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Figure S21. Rietveld refinement of frame 11 at 298(1) K in single crystal sapphire cell under 2.60(5) MPa D2 pressure based on neutron powder diffraction 

data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959382-959391), using FullProf[3]. 

 

Table S21. Refined crystal structures of MgPd2D0.945(8) and MgPd2D0.10(2) (in 

italics) of frame 11 (2.60(5) MPa D2, 298(1) K) and residual values of the 

refinement based on NPD (Fig. S21). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.350(1) 

0.359(3) 

0.3619(10) 

0.370(3) 

0.391(2) 

0.439(2) 

0.610(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.0988(9) 

0.123(2) 

0.4321(6) 

0.440(2) 

0.7759(7) 

0.739(2) 

0.6076(8) 

0.593[b] 

SOF 1 1 1 0.945(8) 

0.10(2) 

space group Pnma  

MgPd2D0.945(8) (73(1) %): a = 5.6076(5) Å, b = 4.0677(3) Å, 

c = 8.5235(8) Å, V = 194.42(3) Å³, Biso(overall)[a] = -0.28(8) Å², 

RBragg = 0.080) 

MgPd2D0.10(2) (26.8(9) %): a = 5.477(1) Å, b = 4.1262(9) Å, c = 8.060(2) Å, 

V = 182.14(7) Å³, Biso(overall)[c] = 0.0(1) Å², RBragg = 0.097) 

additional phase: MgO (0.56(4) %) 

Rp = 0.041, Rwp = 0.052, χ2 = 4.6 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 9 (see Table S19) for sequential refinement (frame 9-14). [c] 

Displacement parameters are fixed to the values of refinement of frame 4 

(see Table S14). 
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Figure S22. Rietveld refinement of frame 12 at temperature range from 298(1) to 316(1) K in single crystal sapphire cell under 2.60(5) MPa D2 pressure 

based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959392-959401), using FullProf[3]. 

 

Table S22. Refined crystal structures of MgPd2D0.947(8) and MgPd2D0.11(2) (in 

italics) of frame 12 (2.60(5) MPa D2, 307(9) K) and residual values of the 

refinement based on NPD (Fig. S22). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.350(1) 

0.352(3) 

0.3619(10) 

0.400(3) 

0.391(2) 

0.431(2) 

0.610(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.0997(9) 

0.136(2) 

0.4321(6) 

0.427(2) 

0.7764(8) 

0.752(2) 

0.6069(8) 

0.593[b] 

SOF 1 1 1 0.947(8) 

0.11(2) 

space group Pnma  

MgPd2D0.947(8) (74(2) %): a = 5.6079(5) Å, b = 4.0687(3) Å, 

c = 8.5248(8) Å, V = 194.51(3) Å³, Biso(overall)[a] = -0.18(8) Å², 

RBragg = 0.070) 

MgPd2D0.11(2) (25.7(9) %): a = 5.476(1) Å, b = 4.1253(10) Å, c = 8.055(2) Å, 

V = 181.96(8) Å³, Biso(overall)[c] = 0.00(8) Å², RBragg = 0.108) 

additional phase: MgO (0.51(4) %) 

Rp = 0.042, Rwp = 0.053, χ2 = 4.9 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 9 (see Table S19) for sequential refinement (frame 9-14). [c] 

Displacement parameters are fixed to the values of refinement of frame 4 

(see Table S14). 
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Figure S23. Rietveld refinement of frame 13 at temperature range from 320(1) to 358(1) K in single crystal sapphire cell under D2 pressure range from 

2.60(5) to 2.61(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959402-959411), using FullProf[3]. 

 

Table S23. Refined crystal structures of MgPd2D0.922(8) and MgPd2D0.07(2) (in 

italics) of frame 13 (2.61(5) MPa D2, 339(19) K) and residual values of the 

refinement based on NPD (Fig. S23). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.351(1) 

0.359(3) 

0.3616(11) 

0.408(3) 

0.388(2) 

0.421(2) 

0.611(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.1003(10) 

0.147(2) 

0.4318(7) 

0.427(2) 

0.7766(8) 

0.751(2) 

0.6063(8) 

0.593[b] 

SOF 1 1 1 0.922(8) 

0.07(2) 

space group Pnma  

MgPd2D0.922(8) (78(2) %): a = 5.6108(5) Å, b = 4.0725(3) Å, 

c = 8.5155(8) Å, V = 194.58(3) Å³, Biso(overall)[a] = 0.14(8) Å², 

RBragg = 0.072) 

MgPd2D0.07(2) (21.5(9) %): a = 5.481(1) Å, b = 4.1228(11) Å, c = 8.026(2) Å, 

V = 181.36(8) Å³, Biso(overall)[c] = -0.5(2) Å², RBragg = 0.125) 

additional phase: MgO (0.47(4) %) 

Rp = 0.043, Rwp = 0.054, χ2 = 5.1 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 9 (see Table S19) for sequential refinement (frame 9-14). [c] 

Displacement parameters are fixed to the values of refinement of frame 4 

(see Table S14). 

 

  

11.9. Supporting Information

157



 

 

 

Figure S24. Rietveld refinement of frame 14 at temperature range from 363(1) to 384(1) K in single crystal sapphire cell under D2 pressure range from 

2.61(5) to 2.63(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959412-959421), using FullProf[3]. 

 

Table S24. Refined crystal structures of MgPd2D0.868(7) and MgPd2D0.07(3) (in 

italics) of frame 14 (2.62(5) MPa D2, 374(11) K) and residual values of the 

refinement based on NPD (Fig. S24). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.349(1) 

0.348(4) 

0.3596(10) 

0.427(3) 

0.394(1) 

0.416(4) 

0.614(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.1030(10) 

0.145(2) 

0.4309(6) 

0.428(2) 

0.7740(8) 

0.748(2) 

0.6072(8) 

0.593[b] 

SOF 1 1 1 0.868(7) 

0.07(3) 

space group Pnma  

MgPd2D0.868(7) (84(2) %): a = 5.6081(4) Å, b = 4.0760(3) Å, 

c = 8.4958(7) Å, V = 194.20(2) Å³, Biso(overall)[a] = 0.12(8) Å², 

RBragg = 0.081) 

MgPd2D0.07(3) (15.0(8) %): a = 5.500(2) Å, b = 4.1204(12) Å, c = 8.009(2) Å, 

V = 181.49(9) Å³, Biso(overall)[c] = -1.5(2) Å², RBragg = 0.141) 

additional phase: MgO (0.48(4) %) 

Rp = 0.041, Rwp = 0.052, χ2 = 4.8 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 9 (see Table S19) for sequential refinement (frame 9-14). [c] 

Displacement parameters are fixed to the values of refinement of frame 4 

(see Table S14). 
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Figure S25. Rietveld refinement of frame 15 at temperature range from 386(1) to 393(1) K in single crystal sapphire cell under 2.63(5) MPa D2 pressure 

based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959422-959431), using FullProf[3]. 

 

Table S25. Refined crystal structures of MgPd2D0.824(6) and MgPd2D0.11(1) (in 

italics) of frame 15 (2.63(5) MPa D2, 390(4) K) and residual values of the 

refinement based on NPD (Fig. S25). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.348(1) 

0.342(5) 

0.3613(11) 

0.428(4) 

0.395(1) 

0.422(5) 

0.617(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.1011(10) 

0.138(3) 

0.4317(7) 

0.424(4) 

0.7749(8) 

0.746(3) 

0.6065(9) 

0.593[b] 

SOF 1 1 1 0.824(6) 

0.11(1) 

space group Pnma  

MgPd2D0.824(6) (82(2) %): a = 5.6054(5) Å, b = 4.0764(3) Å, 

c = 8.4853(7) Å, V = 193.89(3) Å³, Biso(overall)[a] = 0.06(8) Å², 

RBragg = 0.100) 

MgPd2D0.11(1) (17.2(6) %): a = 5.504(2) Å, b = 4.121(2) Å, c = 7.996(3) Å, 

V = 181.37(12) Å³, Biso(overall)[c] = 0.35 Å², RBragg = 0.158) 

additional phase: MgO (0.50(4) %) 

Rp = 0.044, Rwp = 0.055, χ2 = 5.6 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 9 (see Table S19). [c] Displacement parameters are fixed to the 

values of refinement of frame 4 (see Table S14) and Biso(overall) was fixed 

during refinement for stability. 
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Figure S26. Rietveld refinement of frame 16 at temperature range from 394(1) to 397(1) K in single crystal sapphire cell under D2 pressure range from 

2.63(5) to 2.64(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959432-959441), using FullProf[3]. 

 

Table S26. Refined crystal structures of MgPd2D0.798(8) and MgPd2D0.046(8) 

(in italics) of frame 16 (2.64(5) MPa D2, 396(2) K) and residual values of the 

refinement based on NPD (Fig. S26). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.348(2) 

0.338(5) 

0.3614(12) 

0.437(3) 

0.399(2) 

0.408(5) 

0.622(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.1034(12) 

0.141(3) 

0.4315(7) 

0.425(4) 

0.7733(9) 

0.743(3) 

0.6061(9) 

0.593[b] 

SOF 1 1 1 0.798(8) 

0.046(8) 

space group Pnma  

MgPd2D0.798(8) (81(2) %): a = 5.6021(5) Å, b = 4.0766(3) Å, 

c = 8.4780(7) Å, V = 193.61(3) Å³, Biso(overall)[a] = 0.02(8) Å², 

RBragg = 0.100) 

MgPd2D0.046(8) (18.6(6) %): a = 5.515(2) Å, b = 4.122(2) Å, c = 7.994(3) Å, 

V = 181.72(12) Å³, Biso(overall)[c] = 0.35 Å², RBragg = 0.158) 

additional phase: MgO (0.50(4) %) 

Rp = 0.045, Rwp = 0.056, χ2 = 5.8 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 9 (see Table S19). [c] Displacement parameters are fixed to the 

values of refinement of frame 4 (see Table S14) and Biso(overall) is fixed to 

value of refinement of frame 15 (see Table S25). 
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Figure S27. Rietveld refinement of frame 17 at temperature range from 397(1) to 407(1) K in single crystal sapphire cell under D2 pressure range from 

2.65(5) to 2.66(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959442-959451), using FullProf[3]. 

 

Table S27. Refined crystal structures of MgPd2D0.764(8) and MgPd2D0.040(8) (in 

italics) of frame 17 (2.66(5) MPa D2, 402(5) K) and residual values of the 

refinement based on NPD (Fig. S27). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.348(2) 

0.354(5) 

0.359(1) 

0.421(4) 

0.398(2) 

0.415(4) 

0.622(2) 

0.649[b] 

y ¼ ¼ ¼ ¼ 

z 0.106(2) 

0.152(2) 

0.4299(9) 

0.430(3) 

0.7728(11) 

0.746(2) 

0.6030(12) 

0.593[b] 

SOF 1 1 1 0.764(8) 

0.040(8) 

space group Pnma  

MgPd2D0.764(8) (78(2) %): a = 5.6001(6) Å, b = 4.0763(3) Å, c = 8.4688(9) Å, 

V = 193.33(3) Å³, Biso(overall)[a] = 0.13(10) Å², RBragg = 0.109) 

MgPd2D0.040(8) (21.7(7) %): a = 5.509(2) Å, b = 4.118(2) Å, c = 7.999(3) Å, 

V = 181.45(11) Å³, Biso(overall)[c] = 0.35 Å², RBragg = 0.152) 

additional phase: MgO (0.48(4) %) 

Rp = 0.048, Rwp = 0.061, χ2 = 6.8 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 9 (see Table S19). [c] Displacement parameters are fixed to the values 

of refinement of frame 4 (see Table S14) and Biso(overall) is fixed to value of 

refinement of frame 15 (see Table S25). 
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Figure S28. Rietveld refinement of frame 18 at temperature range from 410(1) to 428(1) K in single crystal sapphire cell under D2 pressure range from 

2.67(5) to 2.72(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959452-959461), using FullProf[3]. 

 

Table S28. Refined crystal structures of MgPd2D0.68(4) and MgPd2D0.210(4) (in 

italics) of frame 18 (2.70(5) MPa D2, 419(9) K) and residual values of the 

refinement based on NPD (Fig. S28). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.308(5) 

0.348(2) 

0.380(4) 

0.350(2) 

0.431(5) 

0.426(2) 

0.657(6) 

0.691(2) 

y ¼ ¼ ¼ ¼ 

z 0.148(4) 

0.1250(12) 

0.427(3) 

0.4343(12) 

0.757(3) 

0.747(11) 

0.584(5) 

0.613(1) 

SOF 1 1 1 0.68(4) 

0.210(4) 

space group Pnma  

MgPd2D0.68(4) (24.0(9) %): a = 5.600(3) Å, b = 4.0774(12) Å, c = 8.436(4) Å, 

V = 192.6(1) Å³, Biso(overall)[a] = 0.30 Å², RBragg = 0.209) 

MgPd2D0.210(4) (76(2) %): a = 5.5146(7) Å, b = 4.1118(4) Å, c = 8.1909(11) Å, 

V = 185.73(4) Å³, Biso(overall)[b] = 0.13(9) Å², RBragg = 0.080) 

additional phase: MgO (0.41(6) %) 

Rp = 0.051, Rwp = 0.065, χ2 = 7.5 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2) and Biso(overall) was fixed during refinement for 

stability. [b] Displacement parameters are fixed to the values of refinement of 

frame 19 (see Table S29). 
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Figure S29. Rietveld refinement of frame 19 at temperature range from 428(1) to 433(1) K in single crystal sapphire cell under D2 pressure range from 

2.72(5) to 2.73(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959462-959471), using FullProf[3]. 

 

Table S29. Refined crystal structures of MgPd2D0.183(6) of frame 19 

(2.73(5) MPa, 431(3) K) and residual values of the refinement based on 

NPD (Fig. S29). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.340(2) 0.356(2) 0.428(2) 0.667(4) 

y ¼ ¼ ¼ ¼ 

z 0.1177(12) 0.4364(11) 0.7509(10) 0.610(3) 

Biso / Å² 2.3(3) 1.1(2) 0.4(2) 4.797[a] 

SOF 1 1 1 0.183(6) 

space group Pnma  

MgPd2D0.183(6) (100(3) %): a = 5.5088(6) Å, b = 4.1153(3) Å, 

c = 8.1785(9) Å, V = 185.41(3) Å³, RBragg = 0.127) 

additional phase: MgO (0.37(6) %) 

Rp = 0.057, Rwp = 0.072, χ2 = 9.0 

[a] Displacement parameter of D is fixed to the value of refinement of 

MgPd2D0.97(1) (see Table 2). 
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Figure S30. Rietveld refinement of frame 20 at temperature range from 433(1) to 435(1) K in single crystal sapphire cell under D2 pressure range from 

2.73(5) to 2.74(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959472-959481), using FullProf[3]. 

 

Table S30. Refined crystal structures of MgPd2D0.168(7) of frame 20 

(2.74(5) MPa, 434(1) K) and residual values of the refinement based on 

NPD (Fig. S30). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.340(2) 0.357(2) 0.430(1) 0.669(5) 

y ¼ ¼ ¼ ¼ 

z 0.116(1) 0.4370(10) 0.7508(10) 0.608(3) 

Biso / Å² 2.4(3) 0.7(2) 0.2(2) 4.797[a] 

SOF 1 1 1 0.168(7) 

space group Pnma  

MgPd2D0.168(7) (100(3) %): a = 5.5065(6) Å, b = 4.1174(3) Å, 

c = 8.1717(9) Å, V = 185.27(3) Å³, RBragg = 0.126) 

additional phase: MgO (0.39(6) %) 

Rp = 0.056, Rwp = 0.072, χ2 = 9.1 

[a] Displacement parameter of D is fixed to the value of refinement of 

MgPd2D0.97(1) (see Table 2). 
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Figure S31. Rietveld refinement of frame 21 at temperature range from 437(1) to 430(1) K in single crystal sapphire cell under D2 pressure range from 

2.74(5) to 2.73(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959483-959492), using FullProf[3]. 

 

Table S31. Refined crystal structures of MgPd2D0.163(7) of frame 21 

(2.73(5) MPa, 433(4) K) and residual values of the refinement based on 

NPD (Fig. S31). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.339(2) 0.356(2) 0.430(1) 0.667(5) 

y ¼ ¼ ¼ ¼ 

z 0.113(1) 0.4377(10) 0.7507(10) 0.607(3) 

Biso / Å² 2.3(3) 0.7(2) 0.4(2) 4.797[a] 

SOF 1 1 1 0.163(7) 

space group Pnma  

MgPd2D0.163(7) (100(3) %): a = 5.5061(6) Å, b = 4.1181(3) Å, 

c = 8.1691(9) Å, V = 185.23(3) Å³, RBragg = 0.129) 

additional phase: MgO (0.43(6) %) 

Rp = 0.057, Rwp = 0.073, χ2 = 9.2 

[a] Displacement parameter of D is fixed to the value of refinement of 

MgPd2D0.97(1) (see Table 2). 
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Figure S32. Rietveld refinement of frame 22 at temperature range from 427(1) to 409(1) K in single crystal sapphire cell under D2 pressure range from 

2.72(5) to 2.68(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959493-959502), using FullProf[3]. 

 

Table S32. Refined crystal structures of MgPd2D0.63(3) and MgPd2D0.224(4) (in 

italics) of frame 22 (2.70(5) MPa D2, 418(9) K) and residual values of the 

refinement based on NPD (Fig. S32). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.302(3) 

0.348(3) 

0.378(3) 

0.348(2) 

0.441(3) 

0.423(2) 

0.657(5) 

0.696(3) 

y ¼ ¼ ¼ ¼ 

z 0.149(3) 

0.1275(12) 

0.422(2) 

0.430(1) 

0.758(2) 

0.747(1) 

0.579(4) 

0.613(1) 

SOF 1 1 1 0.63(3) 

0.224(4) 

space group Pnma  

MgPd2D0.63(3) (24(2) %): a = 5.615(3) Å, b = 4.078(1) Å, c = 8.409(4) Å, 

V = 192.6(1) Å³, Biso(overall)[a] = -1.8(4) Å², RBragg = 0.160) 

MgPd2D0.224(4) (76(3) %): a = 5.5215(8) Å, b = 4.1057(5) Å, c = 8.210(1) Å, 

V = 186.12(5) Å³, Biso(overall)[b] = 0.1(1) Å², RBragg = 0.076) 

additional phase: MgO (0.57(7) %) 

Rp = 0.051, Rwp = 0.065, χ2 = 7.6 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Displacement parameters are fixed to the 

values of refinement of frame 19 (see Table S29). 
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Figure S33. Rietveld refinement of frame 23 at temperature range from 408(1) to 402(1) K in single crystal sapphire cell under D2 pressure range from 

2.68(5) to 2.65(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959503-959512), using FullProf[3]. 

 

Table S33. Refined crystal structures of MgPd2D0.63(2) and MgPd2D0.25(2) (in 

italics) of frame 23 (2.66(5) MPa D2, 405(3) K) and residual values of the 

refinement based on NPD (Fig. S33). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.328(2) 

0.353(4) 

0.373(2) 

0.348(3) 

0.417(2) 

0.424(3) 

0.636(4) 

0.687[b] 

y ¼ ¼ ¼ ¼ 

z 0.130(2) 

0.137(2) 

0.4249(12) 

0.431(2) 

0.760(1) 

0.743(2) 

0.596(2) 

0.611[b] 

SOF 1 1 1 0.63(2) 

0.25(2) 

space group Pnma  

MgPd2D0.63(2) (54(2) %): a = 5.6024(11) Å, b = 4.0768(5) Å, c = 8.451(2) Å, 

V = 193.02(6) Å³, Biso(overall)[a] = -0.8(1) Å², RBragg = 0.131) 

MgPd2D0.25(2) (46(2) %): a = 5.538(2) Å, b = 4.1003(8) Å, c = 8.223(2) Å, 

V = 186.71(8) Å³, Biso(overall)[c] = 0.1(2) Å², RBragg = 0.088) 

additional phase: MgO (0.59(7) %) 

Rp = 0.050, Rwp = 0.065, χ2 = 7.6 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters were fixed during 

refinement for stability. [c] Displacement parameters are fixed to the values of 

refinement of frame 19 (see Table S29). 
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Figure S34. Rietveld refinement of frame 24 at temperature range from 401(1) to 400(1) K in single crystal sapphire cell under 2.65(5) MPa D2 pressure 

based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959513-959522), using FullProf[3]. 

 

Table S34. Refined crystal structures of MgPd2D0.748(11) and MgPd2D0.055(7) (in 

italics) of frame 24 (2.65(5) MPa D2, 400(1) K) and residual values of the 

refinement based on NPD (Fig. S34). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.348(2) 

0.356(5) 

0.354(1) 

0.411(4) 

0.397(2) 

0.414(4) 

0.614(3) 

0.687[b] 

y ¼ ¼ ¼ ¼ 

z 0.105(2) 

0.159(2) 

0.4293(10) 

0.433(2) 

0.7762(11) 

0.748(2) 

0.601(1) 

0.611[b] 

SOF 1 1 1 0.748(11) 

0.055(7) 

space group Pnma  

MgPd2D0.748(11) (75(2) %): a = 5.5987(7) Å, b = 4.0763(4) Å, c = 8.4671(11) Å, 

V = 193.23(4) Å³, Biso(overall)[a] = 0.000(10) Å², RBragg = 0.108) 

MgPd2D0.055(7) (24.4(8) %): a = 5.511(2) Å, b = 4.114(1) Å, c = 8.015(3) Å, 

V = 181.70(11) Å³, Biso(overall)[c] = 0 Å², RBragg = 0.142) 

additional phase: MgO (0.47(4) %) 

Rp = 0.051, Rwp = 0.067, χ2 = 8.2 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 23 (see Table S33) for sequential refinement (frame 24-27). [c] 

Displacement parameters are fixed to the values of refinement of frame 19 

(see Table S29) and Biso(overall) is not refined for stability. 
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Figure S35. Rietveld refinement of frame 25 at temperature range from 399(1) to 398(1) K in single crystal sapphire cell under D2 pressure range from 

2.65(5) to 2.64(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959523-959532), using FullProf[3]. 

 

Table S35. Refined crystal structures of MgPd2D0.768(9) and MgPd2D0.104(8) (in 

italics) of frame 25 (2.64(5) MPa D2, 398(1) K) and residual values of the 

refinement based on NPD (Fig. S35). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.345(2) 

0.356(5) 

0.360(1) 

0.417(4) 

0.397(2) 

0.422(4) 

0.620(2) 

0.687[b] 

y ¼ ¼ ¼ ¼ 

z 0.104(1) 

0.145(3) 

0.4312(9) 

0.428(3) 

0.7726(10) 

0.745(3) 

0.6051(11) 

0.611[b] 

SOF 1 1 1 0.768(9) 

0.104(8) 

space group Pnma  

MgPd2D0.768(9) (80(2) %): a = 5.6007(6) Å, b = 4.0768(3) Å, c = 8.4717(9) Å, 

V = 193.44(3) Å³, Biso(overall)[a] = 0.14(10) Å², RBragg = 0.104) 

MgPd2D0.104(8) (19.1(6) %): a = 5.507(2) Å, b = 4.118(2) Å, c = 8.001(3) Å, 

V = 181.46(12) Å³, Biso(overall)[c] = 0 Å², RBragg = 0.143) 

additional phase: MgO (0.51(4) %) 

Rp = 0.048, Rwp = 0.061, χ2 = 6.8 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 23 (see Table S33) for sequential refinement (frame 24-27). [c] 

Displacement parameters are fixed to the values of refinement of frame 19 

(see Table S29) and Biso(overall) is not refined for stability. 
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Figure S36. Rietveld refinement of frame 26 at temperature range from 397(1) to 396(1) K in single crystal sapphire cell under D2 pressure range from 

2.64(5) to 2.63(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959533-959542), using FullProf[3]. 

 

Table S36. Refined crystal structures of MgPd2D0.786(9) and MgPd2D0.101(8) (in 

italics) of frame 26 (2.63(5) MPa D2, 396(1) K) and residual values of the 

refinement based on NPD (Fig. S36). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.347(2) 

0.352(4) 

0.360(1) 

0.428(4) 

0.399(2) 

0.416(4) 

0.620(2) 

0.687[b] 

y ¼ ¼ ¼ ¼ 

z 0.107(1) 

0.147(3) 

0.4299(8) 

0.428(3) 

0.7720(10) 

0.746(2) 

0.6056(10) 

0.611[b] 

SOF 1 1 1 0.786(9) 

0.101(8) 

space group Pnma  

MgPd2D0.786(9) (80(2) %): a = 5.6017(5) Å, b = 4.0769(3) Å, c = 8.4742(8) Å, 

V = 193.53(3) Å³, Biso(overall)[a] = 0.00(2) Å², RBragg = 0.098) 

MgPd2D0.101(8) (19.1(6) %): a = 5.511(2) Å, b = 4.120(2) Å, c = 7.999(3) Å, 

V = 181.59(12) Å³, Biso(overall)[c] = 0 Å², RBragg = 0.144) 

additional phase: MgO (0.48(4) %) 

Rp = 0.046, Rwp = 0.059, χ2 = 6.3 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 23 (see Table S33) for sequential refinement (frame 24-27). [c] 

Displacement parameters are fixed to the values of refinement of frame 19 

(see Table S29) and Biso(overall) is not refined for stability. 
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Figure S37. Rietveld refinement of frame 27 at temperature range from 394(1) to 361(1) K in single crystal sapphire cell under D2 pressure range from 

2.63(5) to 2.60(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959543-959552), using FullProf[3]. 

 

Table S37. Refined crystal structures of MgPd2D0.860(8) and MgPd2D0.125(7) (in 

italics) of frame 27 (2.62(5) MPa D2, 377(17) K) and residual values of the 

refinement based on NPD (Fig. S37). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.348(1) 

0.325(4) 

0.3629(11) 

0.441(3) 

0.395(1) 

0.407(5) 

0.618(2) 

0.687[b] 

y ¼ ¼ ¼ ¼ 

z 0.1026(10) 

0.131(3) 

0.4314(6) 

0.423(4) 

0.7739(8) 

0.743(3) 

0.6082(8) 

0.611[b] 

SOF 1 1 1 0.860(8) 

0.125(7) 

space group Pnma  

MgPd2D0.860(8) (83(2) %): a = 5.6068(4) Å, b = 4.0765(3) Å, c = 8.4951(7) Å, 

V = 194.16(2) Å³, Biso(overall)[a] = -0.06(8) Å², RBragg = 0.091) 

MgPd2D0.125(7) (16.3(5) %): a = 5.522(2) Å, b = 4.120(2) Å, c = 7.994(3) Å, 

V = 181.88(12) Å³, Biso(overall)[c] = 0 Å², RBragg = 0.145) 

additional phase: MgO (0.52(4) %) 

Rp = 0.043, Rwp = 0.054, χ2 = 5.3 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 23 (see Table S33) for sequential refinement (frame 24-27). [c] 

Displacement parameters are fixed to the values of refinement of frame 19 

(see Table S29) and Biso(overall) is not refined for stability. 
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Figure S38. Rietveld refinement of frame 28 at temperature range from 359(1) to 327(1) K in single crystal sapphire cell under D2 pressure range from 

2.60(5) to 2.58(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959553-959562), using FullProf[3]. 

 

Table S38. Refined crystal structures of MgPd2D0.930(6) and MgPd2D0.186(8) (in 

italics) of frame 28 (2.59(5) MPa D2, 343(16) K) and residual values of the 

refinement based on NPD (Fig. S38). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.3492(12) 

0.313(4) 

0.3642(9) 

0.437(3) 

0.392(1) 

0.414(6) 

0.614(1) 

0.687[b] 

y ¼ ¼ ¼ ¼ 

z 0.1007(8) 

0.123(3) 

0.4328(5) 

0.419(4) 

0.7743(7) 

0.749(3) 

0.6092(6) 

0.611[b] 

SOF 1 1 1 0.930(6) 

0.186(8) 

space group Pnma  

MgPd2D0.930(6) (86(1) %): a = 5.6097(4) Å, b = 4.0740(2) Å, c = 8.5170(6) Å, 

V = 194.65(2) Å³, Biso(overall)[a] = -0.14(7) Å², RBragg = 0.080) 

MgPd2D0.186(8) (13.8(5) %): a = 5.507(2) Å, b = 4.120(2) Å, c = 7.991(3) Å, 

V = 181.3(1) Å³, Biso(overall)[c] = 0 Å², RBragg = 0.150) 

additional phase: MgO (0.54(4) %) 

Rp = 0.041, Rwp = 0.051, χ2 = 4.7 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 23 (see Table S33). [c] Displacement parameters are fixed to the values 

of refinement of frame 4 (see Table S14) and Biso(overall) is not refined for 

stability. 
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Figure S39. Rietveld refinement of frame 29 at temperature range from 325(1) to 317(1) K in single crystal sapphire cell under D2 pressure range from 

2.58(5) to 2.57(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959563-959572), using FullProf[3]. 

 

Table S39. Refined crystal structures of MgPd2D0.964(6) and MgPd2D0.158(6) (in 

italics) of frame 29 (2.58(5) MPa D2, 321(4) K) and residual values of the 

refinement based on NPD (Fig. S39). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.3500(11) 

0.315(4) 

0.3630(9) 

0.445(3) 

0.3911(12) 

0.410(5) 

0.6135(12) 

0.687[b] 

y ¼ ¼ ¼ ¼ 

z 0.1008(8) 

0.124(3) 

0.4323(5) 

0.420(4) 

0.7751(6) 

0.746(3) 

0.6092(6) 

0.611[b] 

SOF 1 1 1 0.964(6) 

0.158(6) 

space group Pnma  

MgPd2D0.964(6) (85(1) %): a = 5.6092(4) Å, b = 4.0722(2) Å, c = 8.5245(6) Å, 

V = 194.72(2) Å³, Biso(overall)[a] = -0.34(6) Å², RBragg = 0.075) 

MgPd2D0.158(6) (14.4(5) %): a = 5.527(2) Å, b = 4.119(2) Å, c = 7.992(3) Å, 

V = 181.9(1) Å³, Biso(overall)[c] = 0 Å², RBragg = 0.130) 

additional phase: MgO (0.54(4) %) 

Rp = 0.041, Rwp = 0.051, χ2 = 4.6 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 23 (see Table S33). [c] Displacement parameters are fixed to the values 

of refinement of frame 4 (see Table S14) and Biso(overall) is not refined for 

stability. 
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Figure S40. Rietveld refinement of frame 30 at temperature range from 316(1) to 310(1) K in single crystal sapphire cell under D2 pressure range from 

2.57(5) to 2.56(5) MPa based on neutron powder diffraction data (λ = 1.86786(3) Å, D20, ILL, Grenoble, NUMORS 959573-959582), using FullProf[3]. 

 

Table S40. Refined crystal structures of MgPd2D0.972(6) and MgPd2D0.242(6) (in 

italics) of frame 30 (2.57(5) MPa D2, 313(3) K) and residual values of the 

refinement based on NPD (Fig. S40). 

atom Mg Pd1 Pd2 D 

Wyckoff site 4c 4c 4c 4c 

x 0.3501(11) 

0.314(4) 

0.3634(8) 

0.438(3) 

0.3905(12) 

0.422(6) 

0.6130(12) 

0.687[b] 

y ¼ ¼ ¼ ¼ 

z 0.1004(7) 

0.124(3) 

0.4326(5) 

0.418(4) 

0.7746(6) 

0.747(3) 

0.6094(6) 

0.611[b] 

SOF 1 1 1 0.972(6) 

0.242(6) 

space group Pnma  

MgPd2D0.972(6) (85(1) %): a = 5.6098(4) Å, b = 4.0714(2) Å, c = 8.5262(6) Å, 

V = 194.74(2) Å³, Biso(overall)[a] = -0.39(6) Å², RBragg = 0.071) 

MgPd2D0.242(6) (14.4(5) %): a = 5.514(2) Å, b = 4.119(2) Å, c = 7.993(3) Å, 

V = 181.54(12) Å³, Biso(overall)[c] = 0 Å², RBragg = 0.136) 

additional phase: MgO (0.49(3) %) 

Rp = 0.040, Rwp = 0.051, χ2 = 4.5 

[a] Displacement parameters are fixed to the values of refinement of 

MgPd2D0.97(1) (see Table 2). [b] Positional parameters are fixed to them of 

frame 23 (see Table S33). [c] Displacement parameters are fixed to the values 

of refinement of frame 4 (see Table S14) and Biso(overall) is not refined for 

stability. 
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Figure S41. In situ neutron powder diffraction data of MgPd2D1-x (NUMORS 959635-959667) during increasing temperatures (367(1) – 450(1) K) taken 

on diffractometer D20 at λ = 1.86786(3) Å in a single crystal sapphire cell under 10.0(1) MPa deuterium pressure. Intensities are in false colors. 

 

Figure S42. Deuterium occupation of MgPd2Dx as a function of time during increasing temperatures (367(1) – 450(1) K) from sequential Rietveld 

refinement based on neutron powder diffraction data under 10.0 MPa deuterium pressure (see figure S41). Error bars represent one estimated standard 

uncertainty  
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12. Crystal Structures and Hydrogenation Properties of Palladium-Rich Compounds

12.2. Abstract

We report on crystal structure data and hydrogenation properties of 24 palladium-rich intermetallic

compounds with elements from groups 12�16 of the Periodic Table. Re�ned crystal structures based

on X-ray powder di�raction data are presented for Pd3As (Fe3P type structure) and several members

of the Pd5TlAs type structure family. Hydrogenation was studied in situ by di�erential scanning

calorimetry (DSC) under 5.0 MPa hydrogen pressure up to 430�. Pd0.75Zn0.25, PdCd, PdHg, Pd2Sn,

Pd5Pb3, Pd13Pb9, Pd3As, Pd20Sb7, Pd8Sb3, Pd5Sb2, PdSb, Pd5Bi2, Pd17Se15, Pd4Se, Pd5TlAs,

Pd5CdSe, Pd5CdAs, Pd5HgSe, Pd5InAs, Pd8In2Se and Pd3Bi2Se2 do not show any sign of hydrogen

uptake according to DSC and X-ray di�raction. For Pd3Sn and Pd3Pb a signi�cant hydrogen uptake

with unit cell volume increases of 0.4 and 0.6 %, respectively, with a retained structure type of

the parent intermetallic was observed. Hydrogenation of Pd5InSe yields Pd3InH≈0.9 and a mixture

of palladium selenides. Thermal analysis experiments in helium and in hydrogen atmosphere show

that this is a multistep reaction with a decomposition of Pd5InSe to Pd3In and a liquid phase and

subsequent hydrogenation of Pd3In.

12.3. Introduction

Palladium can take up large amounts of hydrogen to form solid solutions PdH1�x [1,2]. Palladium-

rich phases, where some of the palladium atoms have been substituted by other metals in an ordered

fashion, either show reduced hydrogen capacity as compared to pure palladium, e.g. MPd3 phases

(M = Mg [3], Ca [4], In [5], Tl [6], Y [7], Mn [8], Ce [9]), or no reactivity towards hydrogen like for

Pd2Al, Pd3Al, Pd2Ga, Pd13Ga5, Pd5In3, Pd2In and Pd5As [10,11]. In some cases the hydrogenation

reactions in MPd3 phases are accompanied by transformation of one superstructure of the cubic close

packing (ccp, Cu type) to another ccp superstructure, e.g. from ZrAl3 type MgPd3 to an AuCu3 type

arrangement. This interesting rearrangement can formally be seen as a gliding of layers within the in-

termetallic structures, and through a hydrogenation-rearrangement-dehydrogenation cycle it produces

metastable compounds not accessible via other synthesis routes [3,12]. In order to shed more light on

this phenomenon we aim at a systematic investigation of the hydrogenation behavior of palladium-rich

compounds. Especially, we would like to understand the prerequisites for hydrogen uptake and the

hydrogen induced rearrangement as a function of the substitute M. Choosing a variety of elements M

from groups 12�16 of the Periodic Table may help to distinguish between size and electronic e�ects,

which both may play a role for hydrogenation and atomic rearrangement in palladium-rich intermetal-

lic compounds. To the best of our knowledge, hydrogenation reactions were not reported for any of

these compounds as yet.

12.4. Results and discussion

Twenty-four binary and ternary palladium-rich compounds with elements from groups 12�16 of the

Periodic Table were synthesized from the elements. In order to monitor their reactivity towards

hydrogen in situ thermal analysis experiments (di�erential scanning calorimetry, DSC) were performed

on powder samples under 5.0 MPa hydrogen pressure up to 430� (see Experimental Section). In such

experiments hydrogen uptake is often easily detected by exothermic signals [10]. In addition X-Ray

powder di�raction (XRPD) data were taken before and after the hydrogenation DSC experiments.

Rietveld analysis was used to accurately determine unit cell volumes (Table 12.4.1), because an increase

often indicates a possible hydrogen uptake. A change of more than 0.2 % was considered signi�cant

in the following.
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Table 12.4.1.: Structural properties of palladium-rich intermetallic compounds before and after hydro-

genation according to Rietveld re�nement on the basis of XRPD data (hydrogenation

conditions in in situ DSC see Experimental section).
compound unit cell

volume

increase

(%)

secondary

phases (XRD)

space group

(structure type)

a (Å) b (Å) c (Å) β (°) unit cell

volume

V (Å3)

Pd0.75Zn0.25 � Fm3̄m (Cu type) 3.8680(6) 57.87(1)

0.2 � Fm3̄m (Cu type) 3.8708(1) 57.996(4)

PdCd � P4/mmm (AuCu type) 3.0318(2) 3.6234(3) 33.309(4)

�0.2 � P4/mmm (AuCu type) 3.0263(2) 3.6310(3) 33.254(5)

PdHg � P4/mmm (AuCu type) 3.02697(5) 3.6967(1) 33.867(1)

0 � P4/mmm (AuCu type) 3.02812(7) 3.6943(1) 33.875(2)

Pd2Sn 18 % Pd3Sn Pnma (Co2Si type) 5.6424(2) 4.3072(1) 8.0899(3) 196.61(1)

0 20 % Pd3Sn Pnma (Co2Si type) 5.64352(6) 4.30708(4) 8.08942(8) 196.630(3)

Pd3Sn 5 % Pd2Sn Pm3̄m (AuCu3 type) 3.9779(1) 62.947(4)

0.4 5 % Pd2Sn Pm3̄m (AuCu3 type) 3.9808(6) 63.084(2)

Pd5Pb3 2 % Pd3Pb C2 (Ni5Ge3 type) 13.3202(6) 7.6611(3) 7.2602(6) 52.231(6) 585.66(8)

�0.3 7 % Pd3Pb C2 (Ni5Ge3 type) 13.2978(4) 7.6582(2) 7.2398(2) 52.384(2) 584.02(3)

Pd13Pb9 31 % Pd5Pb3 C2/c (Pd13Pb9 type) 15.6057(3) 9.0577(2) 13.9238(4) 55.797(3) 1627.77(9)

�0.1 32 % Pd5Pb3 C2/c (Pd13Pb9 type) 15.6048(4) 9.0491(3) 13.9237(5) 55.806(3) 1626.3(1)

Pd3Pb � Pm3̄m (AuCu3 type) 4.03068(9) 65.484(3)

0.6 � Pm3̄m (AuCu3 type) 4.03809(6) 65.846(2)

Pd3As � I 4̄ (Ni3P type) 9.9762(2) 4.82209(8) 479.92(1)

0.2 I 4̄ (Ni3P type) 9.988(1) 4.8216(6) 481.0(1)

Pd20Sb7 28 % Pd8Sb3 R3̄ (Pd20Sb7 type) 11.7259(2) 11.0173(2) 1311.89(5)

Pd5Sb2 � P63cm (Pd5Sb2 type) 7.6154(2) 13.8835(4) 697.29(3)

0.2 P63cm (Pd5Sb2 type) 7.6205(5) 13.896(1) 689.8(1)

Pd8Sb3 R3̄c (Yb8In3 type) 7.6059(2) 42.999(2) 2154.1(2)

PdSb � P63mmc (NiAs type) 4.07457(6) 5.5873(1) 80.333(2)

0.2 P63mmc (NiAs type) 4.0774(1) 5.5927(2) 80.522(4)

Pd5Bi2 � C2/m (Pd5Bi2 type) 14.3914(2) 5.76875(7) 6.73909(9) 489.13(1)

0.2 � C2/m (Pd5Bi2 type) 14.3994(3) 5.7719(1) 6.74366(2) 490.03(2)

Pd17Se15 � Pm3̄m (Pd17Se15 type) 10.6051(2) 1192.73(6)

�0.2 � Pm3̄m (Pd17Se15 type) 10.5983(2) 1190.45(5)

Pd4Se 10 % Pd7Se2 P4̄21c (Pd4Se type) 5.23037(6) 5.6439(1) 154.398(5)

�0.3 � P4̄21c (Pd4Se type) 5.2246(6) 5.63807(6) 153.900(3)

Pd5CdSe 20 % Pd34Se11 P4/mmm (Pd5TlAs type) 4.00638(4) 7.0052(1) 112.440(3)

�0.1 15 % Pd34Se11 P4/mmm (Pd5TlAs type) 4.00496(8) 7.0036(2) 112.335(5)

Pd5HgSe � P4/mmm (Pd5TlAs type) 4.01305(3) 7.03851(7) 113.352(2)

0 � P4/mmm (Pd5TlAs type) 4.01365(2) 7.03873(5) 113.390(1)

Pd5InSe � P4/mmm (Pd5TlAs type) 4.0269(4) 6.9829(8) 113.23(2)

� Reaction to mixture of 63 % Pd3InHx + 23 % Pd8In2Se + 14 % Pd34Se11
Pd8In2Se 27 % Pd5InSe P4/mmm (Pd8In2Se type) 4.0067(1) 10.9451(6) 175.71(1)

� Reaction to mixture of 68 % Pd3InHx + 11 % Pd8In2Se + 9 % Pd34Se11 + 9 % Pd7Se4 + 3 % Pd17Se15
Pd3Bi2Se2 � C2/m (Ni3Bi2S2 type) 11.7081(5) 8.4083(4) 8.3927(5) 113.845(3) 595.89(5)

0 � C2/m (Ni3Bi2S2 type) 11.712(1) 8.4094(9) 8.397(1) 113.893(6) 596.0(1)

Pd5CdAs 9 % CdPd

+ 7% Pd2As

P4/mmm (Pd5TlAs type) 3.97566(5) 6.9867(2) 110.431(4)

0.1 10 % Pd2As P4/mmm (Pd5TlAs type) 3.97709(3) 6.9887(1) 110.542(3)

Pd5InAs 11 % Pd1�xInx P4/mmm (Pd5TlAs type) 3.9861(1) 6.9814(2) 110.925(5)

0 11 % Pd1�xInx P4/mmm (Pd5TlAs type) 3.98639(8) 6.9816(2) 110.946(5)

Pd5TlAs 12 % Pd13Tl9 P4/mmm (Pd5TlAs type) 4.00146(9) 7.0427(2) 112.765(5)
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12.4.1. Binary palladium-rich compounds with elements of group 12

The compounds PdCd, PdHg (both AuCu type) and Pd0.75Zn0.25 (solid solution of Cu type) were

synthesized from the elements. The latter was formed in an attempt to prepare an ordered phase

Pd3Zn via mineralization by iodine within 3 months. Crystal structures re�ned on the basis of XRPD

data (Table 12.4.1) are in good agreement with the literature [14�16]. No reaction with hydrogen is

observed for any of the three compounds under given terms (Table 12.4.1).

12.4.2. Binary palladium-rich compounds with elements of group 14

The compounds Pd2Sn (Co2Si type), Pd5Pb3 (Ni5Ge3 type), and Pd13Pb9 (Pd13Pb9 type) do not

show any reaction with hydrogen according to DSC experiments and by comparing XRPD data before

and after the hydrogenation experiment. Re�ned crystal structures (Table 12.4.1) agree well with those

from the literature [17�19]. The structures of Pd3Sn and Pd3Pb are also in accordance with literature

[20]. However, an increase of the unit cell volume by up to 0.4 and 0.6 % upon hydrogenation,

respectively, indicates a possible hydrogen uptake. [Pd6] octahedral sites, which are preferred by

hydrogen [5], are present in their structures (AuCu3 type). Several hydridesMPd3Hx with occupation

of these interstices, resulting in a cubic anti-perovskite type structure, are known already (M = Mg

[3], In [5], Tl [6], Y [7], Mn [8], Ce [9]). However, no signi�cant thermal signal during the in situ

DSC experiment could be observed. This may be assigned to low hydrogen content and small bonding

energy of hydrogen in these compounds.

12.4.3. Binary palladium-rich compounds with elements of group 15

From the wide range of Pd�As compounds known [11,21�33] only for PdAs2 and Pd5As high quality

crystal structure data are available [33,11]. For Pd3As [26] only a structure type was assigned, but

no crystal structure was re�ned. This prompted us to reinvestigate the crystal structure of Pd3As

and perform a Rietveld re�nement based on XRPD data. The results (Table 12.4.2 and Fig. 12.4.1)

con�rm the assignment of the Fe3P structure type (D0e) and provide the �rst re�ned structure data

for Pd3As.

XRPD data con�rm the NiAs structure type for PdSb and the re�ned lattice parameters (Ta-

ble 12.4.1) are in good agreement with literature [34,35]. The correspondence of re�ned lattice param-

eters for Pd5Sb2, Pd8Sb3, Pd20Sb7, and Pd5Bi2 with those from literature [36�38] is also reasonable.

According to the absence of thermal e�ects in DSC experiments and the absence of signi�cant unit cell

volume changes (no XRD for Pd20Sb7 and Pd8Sb3 after hydrogenation), none of the Pd�As, Pd�Sb

and Pd�Bi phases investigated shows any signs for hydrogen uptake.

Table 12.4.2.: Crystal structure data for Pd3As from Rietveld re�nement based on X-ray powder

di�raction data; Rietveld plot see Fig. 12.4.1

atom Wycko� site symmetry x y z B iso (Å2)

Pd1 8g 1 0.0797(3) 0.1092(3) 0.257(1) 0.53(6)

Pd2 8g 1 0.1349(3) 0.4688(3) 0.0180(9) 0.25(6)

Pd3 8g 1 0.3290(3) 0.2775(3) 0.254(1) 0.18(6)

As 8g 1 0.2824(4) 0.0399(4) 0.019(1) 0.62(8)

space group I 4̄ , a = 9.9761(1) Å, c = 4.82191(8) Å.

Rp = 0.029; Rwp = 0.037; χ2 = 2.45; RBragg = 0.138.
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Figure 12.4.1.: Rietveld re�nement of the crystal structure of Pd3As based on X-ray powder di�rac-

tion data (CuKα radiation); re�ned crystal structure data and residual values in

Table 12.4.2. Further details of the crystal structure investigation may be obtained

from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany

((+49)7247-808-666; e-mail: crysdata@�z-karlsruhe.de) on quoting the deposition

number CSD-430924.

12.4.4. Binary palladium-rich compounds with elements of group 16

Pd4Se and Pd17Se15 were synthesized and their structure are in good accord with literature data

[39,40]. The unit cell volumes of both compounds decrease slightly during the hydrogenation experi-

ment, which might be connected to the reaction of the side product in case of Pd4Se (Table 12.4.1).

DSC and XRPD experiments suggest the absence of signi�cant hydrogen incorporation.

12.4.5. Ternary palladium-rich compounds with Pd5TlAs type and related

structures

The structure type of Pd5TlAs may be described as an intergrowth structure with AuCu3 like and

CsCl like slabs [41]. It may also be derived from a cubic close packing by doubling of one lattice

parameter, i. e. a cubic-tetragonal transition, and ordering the eight atomic positions in a 5:1:1:1

fashion with �ve palladium, one thallium, one arsenic atom and one vacancy. It thus represents

one of many ordered intermetallic compounds related to the cubic close packing by crystallographic

group�subgroup relationships [42�44]. This structure type exhibits many octahedral sites, which seem

to be attractive for incorporation of hydrogen. Compounds with this type of structure thus seem to be

good candidates for hydrogenation. The re�ned structures of Pd5InAs, Pd5HgSe and Pd5InSe are in

good agreement with literature [43,45�47]. For all other compounds listed in Tables 12.4.1 and 12.4.3

these are the �rst re�ned crystal structure data. The only free positional parameter, z (Pd2) is higher

for the compounds with arsenic than for those with selenium resulting in shorter Pd�As as compared

to Pd�Se distances as expected from atomic sizes (Table 12.4.3). The c/a ratio of the Pd5TlAs type
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Table 12.4.3.: Crystal structure data of Pd5TlAs type compounds (P4/mmm, Tl in 1c 1/2 1/2 0, As in

1b 0 0 1/2, Pd1 in 1a 0 0 0, Pd2 in 4i 0 1/2 z, re�ned lattice parameters see Table 12.4.1)

as re�ned from XRPD data.

compound z (Pd2) c/a

Pd5CdSe 0.2814(2) 1.7485

Pd5HgSe 0.2891(2) 1.7539

Pd5InSe 0.28111(8) [43] 1.7341

Pd5CdAs 0.2921(1) 1.7572

Pd5InAs 0.2929(3) 1.7514

Pd5TlAs 0.2922(2) 1.76

structure is always considerably smaller than two. That means that the smaller selenium or arsenic

atoms are packed closer along the crystallographic c direction than the larger cadmium, mercury,

indium or thallium atoms.

From all compounds listed above only Pd5InSe exhibits reactivity towards hydrogen (Table 12.4.1).

The distorted [Pd4M 2] (M = Cd, Hg, In) and [Pd5X ] (X = As, Se) octahedral sites in Pd5MX are

two possible hydrogen positons in this structure. Occupation by hydrogen would lead to distances

between 1.96 and 2.06 Å, which are comparable with palladium-hydrogen distances in Pd3InH0.89

(2.01 Å [5]). However, unreasonably short distances As�H, Se�H, Cd�H, Hg�H, In�H, Tl�H would

result, which probably prevents hydrogen from entering the structures.

Pd5InSe and Pd8In2Se [46] form Pd3InHx during the hydrogenation experiment. Di�erential ther-

mal analysis (DTA) of Pd5InSe in helium atmosphere was executed and the results have shown two

reversible thermal signals with a hysteresis (Fig. 12.4.2, top). X-ray powder di�raction after the DTA

con�rmed that the reaction is fully reversible. To investigate the intermediates, a temperature-resolved

XRPD experiment was carried out. The false color plot (Fig. 12.4.2, bottom) shows the formation of

Pd8In2Se at about 525 �. Upon further heating Pd8In2Se decomposed at about 625 � and Pd3In

(ZrAl3 type) was formed. On cooling (not shown here) Pd5InSe returned. We suggest the following

reactions to take place:

2 Pd5InSe
576 �
351 � Pd8In2Se + (2 Pd + Se)(l)

655 �
579 � 2 Pd3In (ZrAl3 type) + 2 (2 Pd + Se)(l)

For the proposed liquid phase we have indirect evidence from annealing experiments. Pd5InSe

samples were annealed at 600 and 800 �, i. e. after the �rst and second thermal signal in the DTA,

respectively, and the silica glass ampoules were quenched in water. The main phases were Pd8In2Se

at 600 � and Pd5In at 800 � with secondary phases Pd34Se11, Pd7Se4 and Pd17Se15. The latter

forms from the liquid (2 Pd + Se) by quenching according to the phase diagram [48] of the system

Pd�Se. Thus, hydrogen plays a role in the reactions (Table 12.4.1) only insofar that it reacts with

Pd3In formed by thermal decomposition of Pd5InSe.

12.4.6. The half-antiperovskite Pd3Bi2Se2

The half-antiperovskite Pd3Bi2Se2 (Ni3Bi2S2 type) [49] was investigated for its hydrogenation proper-

ties. [Pd6] octahedral sites in its crystal structure, albeit strongly distorted, suggested this structure

family to be a good hydrogenation candidate from geometric reasons. However, neither in situ DSC

nor comparison of unit cell volumes before and after the hydrogenation experiment hint towards any

hydrogen uptake.
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Figure 12.4.2.: Di�erential thermal analysis (top) and temperature-resolved XRPD (MoKα1 radiation;

bottom) of Pd5InSe.

12.5. Conclusion

Twenty-four palladium-rich intermetallic compounds were synthesized, their crystal structures re-

�ned by the Rietveld method and their hydrogenation behavior investigated. For Pd3As, Pd5CdSe,

Pd5CdAs, Pd5TlAs, the re�ned crystal structure data are presented for the �rst time. From all inves-

tigated compounds, only Pd3Sn and Pd3Pb show signs of signi�cant hydrogen uptake while retaining

the structure type of the parent intermetallic compound. No hydrogen uptake could be observed for

any compound containing an element of groups 15 or 16. This seems to con�rm the assumption that

electronic e�ects are more important than geometric e�ects in palladium-rich intermetallic compounds

[50]. Pd5InSe decomposes to Pd3In and palladium selenides, the former reacting with hydrogen to

yield Pd3InH≈0.9.
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12.6. Experimental section

12.6.1. Synthesis of intermetallic compounds

Intermetallic compounds were synthesized from stoichiometric mixtures of the elements in evacuated

silica tubes. Temperature treatment is given in the following as �nal temperature, holding time and

heating rate, e. g. 875� 24 h 1� min-1 describes a temperature treatment of heating with 1� min-1

to 875 �, holding this temperature for 24 h and cooling with the natural cooling rate of the furnace.

In some cases a few mg of iodine was added (chemical vapor transport reaction), denoted by �I2�.

Pd0.75Zn0.25: 1000 � 4 d

PdCd: 770 � 3 h, 280 � 14 d

PdHg: I2, 400 � 9 d 1 � min-1

Pd2Sn: I2, 720 � 5 d 1 � min-1

Pd3Sn: 720 � 72 h 1 � min-1

Pd5Pb3: 1200 � 2 h 1.5 � min-1 quenched at 900 �, ground in mortar, 370 � 11 d 1 � min-1

Pd13Pb9: 1200 � 2 h 1.5 � min-1 quenched at 900 �, ground in mortar, 520 � 9 d 1 � min-1

Pd3Pb: I2, 875 � 24 h 1 � min-1, 430 � 7 d

Pd3As: 650 � 2 h 3.5 � min-1, 1000 � 72 h 2 � min-1

Pd20Sb7: 900 � 168 h 2.1 � min-1, 25 � 1.2 � min-1

Pd8Sb3: 1000 � 120 h 1.8 � min-1

Pd5Sb2: 1000 � 168 h 1.3 � min-1

PdSb: 850 � 6 h 2 � min-1, 750 � 48 h 1.7 � min-1

Pd5Bi2: I2, 450 � 4 d 0.5 � min-1

Pd17Se15: 430 � 7 d 1 � min-1

Pd4Se: 700 � 2 h 1 � min-1, 375 � 7 d

Pd5TlAs: 650 � 2 h 3.4 � min-1, 1000 � 30 h 1.9 � min-1

Pd5CdSe, Pd5CdAs: 750 � 6 d 1 � min-1

Pd5HgSe I2, 400 � 10 d

Pd5InSe, Pd5InAs: I2, 950 � 4 h; 700 � 7 d

Pd8In2Se 950 � 4 h; 750 � 6 d

Pd3Bi2Se2: 1200 � 1 h 3 � min-1; 500 � 500 h

Products were obtained as gray powders, some of them with a silvery luster.

12.6.2. X-ray powder di�raction

XRPD data were collected using �at re�ection samples on a Panalytical X'Pert at T = 23(1) � with

CuKα radiation or using �at transmission samples on a Huber Guinier G670 camera with an image

plate system using either CuKα1 or MoKα1 radiation. Rietveld re�nements were carried out with the

program FullProf [13] and pseudo-Voigt as pro�le function. Absorption e�ects were modelled with a

�xed overall thermal displacement parameter of -1.8 Å2 in the re�nement of the crystal structure of

Pd3As.
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12.6.3. Thermal analysis (in situ DSC and ex situ DTA)

Di�erential scanning calorimetry was performed in situ under hydrogen pressures on a Q1000 DSC

(TA Instruments) equipped with a gas pressure chamber. Twenty to thirty milligrams of the pow-

dered intermetallics was put in aluminum crucibles, which were closed with an aluminum lid. These

were placed inside the pressure chamber, which was then purged several times with hydrogen gas

before �lling it to the �nal hydrogen gas pressure of 5.0 MPa. Samples were heated to 430 � with

10 � min-1, held at that temperature for a minimum of 1 h, and cooled to 27 � with 10 � min-1.

Usually, two or three such runs were performed, before the hydrogen pressure was released, the sample

taken out and structural characterization undertaken. After releasing the gas pressure, the products

were characterized ex situ by XRPD. The di�erence thermal analysis (DTA) of Pd5InSe in helium

atmosphere was carried out on a Netzsch F1 Jupiter device using sintered alumina crucibles and a

heating rate of 10 � min-1.
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13.2. Abstract

Two metal-rich palladium-indium and platinum-indium phosphorus-containing compounds, Pd5InP

and Pt5InP, were synthesized as phase-pure powders using a high-temperature ampoule technique.

Their crystal structures were determined from Rietveld analysis of powder di�raction data. Both

compounds crystallize in tetragonal system with P4/mmm space group (Pd5InP: a = 3.9303(5) Å,

c = 6.9269(1) Å, Z = 1, Rp = 0.029; Rb = 0.004; Pt5InP: a = 3.9500(1) Å, c = 6.9814(3) Å, Z = 1,

Rp = 0.034, Rb = 0.005). Both compounds belong to the rare Pd5TlAs structure type, with their main

structural units being indium-centered [TM 12In] cuboctahedra (TM = Pd, Pt) of the Cu3Au type,

single-stacked along the c axis, alternating with [TM 8P] rectangular prisms of the PtHg2 type. DFT

electronic structure calculations predict both compounds to be 3D metallic conductors and to show

diamagnetic behavior. The latter was con�rmed by magnetic measurements. Charge density analysis

shows that both compounds are intermetallic in nature. According to the bonding analysis based on

the electron localizability indicator topology, both compounds feature four-centered interactions of

the 3TM+In type between the transition metal and indium atoms in their heterometallic fragments.

Additionally, essentially pairwise interactions between platinum atoms are also observed, indicating a

somewhat more localized bonding in the case of platinum-based compounds. Both compounds do not

show any signi�cant hydrogen uptake up to pressures of ca. 7 MPa and temperatures of 700 K.

13.3. Introduction

Ordered intermetallic compounds are a fascinating object of studies, featuring both wide variety of

structures and a range of convoluted bonding patterns, often accompanied by interesting and poten-

tially useful physical properties. When such metallic system is diluted with a typical non-metal,

the situation with both structure and bonding becomes even less straightforward. In our work,

we are particularly interested in obtaining new structural arrangements based on well-established

intermetallic fragments, one of which is a cubic Cu3Au structure type based on the copper struc-

ture. Applying this approach to the palladium-indium and platinum-indium intermetallics of the

Cu3Au type and its derivatives, and introducing such typical non-metals as selenium and arsenic

into a heterometallic matrix, we have recently characterized several new mixed palladium-indium

and platinum-indium selenides and arsenides, such as Pd5InSe [1,2], Pd8In2Se [1], Pd17In4Se4 [3],

Pd5InAs, Pt5InAs, and Pt8In2As [4], all of which feature cuboctahedral [Pd12In] fragments that are

encountered in binary intermetallics of the Cu3Au structure type. The compounds with 5:1:1 atomic

ratios belong to the Pd5TlAs structure type, a relatively uncommon type that was established in

early 1970s by El-Boragy and Schubert [5] and until recently included only a few structurally

characterized palladium- and platinum-based compounds, e. g. Pt5MgP [5] and Pd5HgSe [6]. The

compounds with 8:2:1 atomic ratio belong to the Pd8In2Se-type [1], that features double-stacked along

the c axis [Pd12In] fragments, separated by the same type of rectangular prisms of the PtHg2 type as

in Pd5InSe, and thus is essentially a second homologue to the Pd5TlAs type of structure.

It must be noted that although several other palladium and platinum ternary pnictides, silicides and

selenides, belonging to the Pd5TlAs type, were suggested in the same paper [5], no structural data was

provided and the compositions were not established properly, and in many cases the assignment to

the structure type was made based on the poly-phase samples containing up to 50 % impurities. And,

surprisingly, the structures of most of the suggested compounds were never studied since then, let

alone their properties. Here we report the results of our purposeful synthesis of the compounds of the

Pd5TlAs- and Pd8In2Se-type in Pd-In-P and Pt-In-P systems, their crystal and electronic structures,

bonding analysis, as well as magnetic properties and the response to hydrogenation.
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13.4. Material and methods

13.4.1. Synthetic and analytical procedures

Two synthetic routes were used during the sample preparation. Palladium (foil, 99.98 %) and platinum

(powder, 99.8 %), indium (shot, 99.999 %), and red phosphorus (98 %, puri�ed by treating with

alkaline solution, rinsed with distilled water, and thoroughly dried in vacuum dissicator) were used for

initial synthetic attempts. Stoichiometric mixtures of the elements (ca. 0.4�0.8 g in total per sample)

were put into dried silica ampoules, sealed under vacuum (ca. 3 Pa), and annealed at 873 K for 48 h,

then cooled down. The products were then thoroughly ground and pressed into pellets, put back into

evacuated silica ampoules and annealed twice for 360 h at 873 K with intermediate homogenization,

then cooled down naturally. According to the XRPD data (Stoe Theta/Theta, CuKα radiation), all

samples contained large amounts of impurities. Phase-pure samples of both Pd5InP and Pt5InP were

obtained by using high puritygrade InP (> 99.99 %) rather than elemental indium and phosphorus as

starting substances. That second synthetic route implied using stoichiometric amounts of palladium

and platinum metals along with InP, that were put into evacuated silica ampoules and annealed at

873 K for 180 h, then re-ground, pressed into pellets and annealed at the same temperature for another

300 h, then cooled down naturally. The resulting products did not contain any impurities detectable

by the XRRD. Attempts were made to synthesize 8:2:1 compositions using transition metals, indium,

and indium phosphide, following the same synthetic procedure as for phase-pure 5:1:1 compositions.

However, XRD data showed that only 5:1:1 compounds and respective binary intermetallics were

present in the samples after annealing.

13.4.2. Crystal structure determination

X-ray powder di�raction patterns were recorded using a Bruker D8 Advance di�ractometer (CuKα1-

radiation, Ge(111) monochromator, re�ection geometry, LynxEye strip detector). Crystal structures

of both compounds were re�ned using the Rietveld method as implemented in the TOPAS package

[7]. Rietveld re�nements were performed using the fundamental parameter approach for the peak

shape description. The starting structural model was derived from the published data for Pd5InSe

[1] and Pt5InAs [4]. The preferred orientation was corrected using a spherical harmonics approach

implemented in TOPAS.

13.4.3. Computational details

Band structure calculations for Pd5InP and Pt5InP were performed on a density-functional theory

(DFT) level utilizing the all-electron full-potential linearized augmented plane wave method (FP-

LAPW) as implemented in the ELK code [8], as well as using the PAW pseudopotential approach as

implemented in the VASP code [9, 10]. In all-electron calculations, the Brillouin zone sampling was

performed using 11 x 11 x 7 k -point grid (84 irreducible k -points), the mu�n-tin sphere radii for the

respective atoms were (Bohr): 2.60 (In), 2.55 (Pt), 2.44 (Pd), 2.00 (P), and the maximum moduli for

the reciprocal vectors kmax were chosen so that RMTkmax = 10.0. In the pseudopotential approach,

a Monckhorst-Pack k -point mesh of 14 x 14 x 10 (140 irreducible k -points) was employed, and the

energy cuto� was set at 500 eV. The PBESol exchange-correlation functional [11] of the GGA-type

was used in all calculations. The convergence of the total energy with respect to the k -point sets was

checked. Atomic charges were analyzed according to Bader's QTAIM approach [12]. The electron

localizability indicator (ELID) was calculated according to [13] using DGrid package [14]. The cal-

culations were performed using the Intel Core-i7-based laboratory cluster and the MSU Lomonosov
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supercomputer [15]. Structure visualization and topological analysis of the electron localization indi-

cator were performed using VESTA [16] and ParaView [17] packages, respectively. The Crystal Orbital

Hamilton Population (COHP) analysis, based on the VASP calculations, was performed according to

[18-20] using the Lobster 2.2.1 software package [21]. The hypothetical structure of Pt8In2P com-

pound was obtained by unconstrained structure optimization using the VASP package and Pt8In2As

(tetragonal, P4/mmm) unit cell as starting model. The Pt8In2P cell metrics converged to the values

of a = 3.9566 Å, c = 11.0239 Å, which is naturally smaller than those of Pt8In2As (a = 3.9872 Å,

c = 11.1129 Å). The COHP plots were done using wxDragon package [22].

13.4.4. Magnetic measurements

Magnetic measurements on the bulk samples were performed on a Quantum Design PPMS-9 mag-

netometer in the temperature range of 4�300 K in the magnetic �eld of 5 kOe. Corrections for the

diamagnetic contribution of a probe holder were made. Both Pd5InP and Pt5InP were found to be

diamagnetic.

13.4.5. Hydrogen uptake measurements

Di�erential scanning calorimetry (DSC) was performed in situ under hydrogen pressure on a Q1000

device (TA Instruments) equipped with a gas pressure chamber. Ca. 20 mg of the powdered sample

was put into an aluminum crucible, sealed with an aluminum lid and placed inside the pressure

chamber, which was then purged several times with hydrogen gas, before �lling it to the starting

hydrogen gas pressure of 5.0 MPa at 308 K. The sample was then heated to 700 K at a rate of 10 K

per min, held at that temperature for a minimum of 1 h, and cooled down to 300 K. During the

heating cycle, the pressure increases up to 7.1 MPa. Two runs were performed; then the hydrogen

pressure was released, the sample taken out and characterization undertaken by XRPD.

13.5. Results and discussion

13.5.1. Remarks on the synthetic procedures

In both palladium- and platinum-based systems, we have attempted to produce both �rst and sec-

ond homologues, i. e. TM 5InP and TM 8In2P (TM = Pd, Pt) types of compounds, analogous to

the previously obtained palladium-indium selenides [1] and platinum-indium arsenides [4], with the

synthetic conditions chosen accordingly. XRPD data from both systems have shown that only the

�rst homologue, TM 5InP, is obtained in each case in the form of phase-pure samples, while the ones

with the TM 8In2P target composition contained mixtures of TM 5InP and TM 3In. Therefore we

have to conclude that the second homologues in either system cannot be produced under equilibrium

conditions. It also has to be noted that the synthesis of phase-pure TM 5InP fails if performed from

the elements, even after several annealings of pressed pellets for considerable amount of time with me-

chanical homogenization in-between. The most likely reason for such di�culties is extreme di�erence

in melting points of the components, making the reaction media heterogeneous and severely reducing

the interface areas. This problem was also encountered in the synthesis of palladium-indium selenium-

and arsenic-containing compounds [1,4]. In the case of phosphorus-containing ones, however, it can be

recti�ed by the use of InP as a precursor, which allows to obtain phase-pure samples using reasonable

annealing times and the same temperatures as synthesis from the elements.
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13.5.2. Crystal structure description

Figure 13.5.1.: Observed, calculated, and di�erence Rietveld plots for the Pd5InP (top) and Pt5InP

(bottom) samples.

Crystallographic data, atomic coordinates and selected bond distances for Pd5InP and Pt5InP

are given in Tables 13.5.1 to 13.5.3. Final Rietveld re�nement plots are given in Fig. 13.5.1. The

crystal structures of the new compounds are depicted in Figs. 13.5.2 and 13.5.3. According to the

Rietveld re�nement data, Pd5InP and Pt5InP are fully isotypic with the Pd5InSe compound [1] and

represent the Pd5TlAs structure type. Neither the Rietveld analysis, nor the fact that the samples with

exact 5:1:1 ratio between palladium/platinum, indium, and phosphorus are found to be phase-pure,

support the compositions of `Pd72In14P14' and `Pt72In14P14', suggested in [5], that imply small excess

of palladium or platinum, respectively, present in the structures with respect to 5:1:1 ratio. These

structures are rather densely packed and hardly can accommodate extra palladium or platinum atoms.

Also, when in our attempts to produce Pt8In2P compound we have obtained samples containing only

the �rst homologue and binary intermetallics, we have performed Rietveld re�nement, according to

which the sample consisted of 50.64 % Pt5InP and 49.36 % Pt3In. Unit cell parameters of the former

compound were: a = 3.9380(1) Å, and c = 6.9857(2) Å, which agrees well with the parameters of the

pure Pt5InP sample and proves that the compound has no discernible homogeneity range with respect

to the platinum content increase. Apparently, the palladium and platinum content of the compounds

was slightly overestimated in [5].

Similarly to the other compounds of this type, the structures are built from indiumcentered [Pd12In]

or [Pt12In] cuboctahedra, joined via common faces along the (001) plane to form heterometallic layers,

alternating along the c axis with the layers of rectangular prisms [Pd8P] or [Pt8P] of the PtHg2
structure type joined via common edges. Cuboctahedra and prisms are connected in the c-direction via

common TM (2)-TM (2) edges. To estimate the degree of distortion of the polyhedra, comprising the

structures of ternary compounds, along the c axis, we use the height-to-width ratio for cuboctahedra

and square prisms that we have established for selenides in [1]. Evidently, for a cubic Pt3In [23] this

parameter is precisely 1, as for any undistorted cuboctahedron. For Pd3In (TiAl3 type) [23, 24], which

can be regarded as a parent intermetallic for Pd5InP, this ratio is 0.91, showing that cuboctahedra

are signi�cantly compressed in a vertical direction. For Pd5InP, this ratio is found to be 1.050, and

for Pt5InP it is 1.048, indicating very similar small degree of elongation of cuboctahedra along the c

axis. This is pretty close to the original Pd5TlAs, featuring height-to-width ratio for cuboctahedra

of 1.06. Interestingly, while both ternary palladium-indium selenides have this parameter at 0.97

[1], palladium-indium and platinum-indium arsenides show a slightest degree of elongation, height-
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Figure 13.5.2.: Atomic positions in the unit cells of Pd5InP and Pt5InP.

to-width of 1.01 [4]. Thus, phosphides and selenides are at the opposite poles on the cuboctahedron

distortion scale. As far as [TM 8P] prisms are concerned, in Pd5InP the height-to-width ratio is 1.005,

almost perfect 1, and in Pt5InP it is only slightly larger, 1.018. This degree of elongation is relatively

low in comparison with that observed in Pd5InAs (1.05), Pt5InAs (1.07), and Pt8In2As (1.08), and,

once again, closely resembles that in the Pd5TlAs compound, where [Pd8As] polyhedra are almost

perfectly cubic, with height-to-width ratio being 0.995, although the directions of the distortion are

opposite here.

The distances between palladium or platinum atoms (Table 13.5.3) in ternary phosphides are slightly

longer than in respective metals and are very close to those in their parent intermetallics Pd3In (2.77-

Table 13.5.1.: Data collection and Rietveld analysis parameters, and �nal residuals for Pd5InP and

Pt5InP.

compound Pd5InP Pt5InP

data collection Bruker D8 Advance

radiation type source X-ray, CuKα1
data collection temperature / K 295

range in 2θ, step size / ° 7-94, 0.02 7-98, 0.02

space group P4/mmm (No. 123)

Z 1

a / Å 3.9303(5) 3.9500(1)

c / Å 6.9269(1) 6.9814(3)

V / Å3 107.004(3) 108.926(9)

Rp, Rwp 0.030, 0.038 0.034, 0.043

RBragg 0.004 0.005

GOF 1.36 1.36
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Table 13.5.2.: Re�ned coordinates, occupancies, and isotropic displacement parameters for Pd5InP

and Pt5InP (in italics).

atom Wycko� position x y z B iso / Å2

Pd1 1a 0 0 0 1.0(2)

Pt1 0.4(2)

Pd2 4i 0 1/2 0.2983(1) B iso(Pd1)

Pt2 0.29642(9) B iso(Pt1)

In 1c 1/2 1/2 0 0.9(2)

1.0(2)

P 1b 0 0 1/2 0.7(2)

0.4(3)

Table 13.5.3.: Selected interatomic distances for the Pd5InP and Pt5InP structures.

atoms distance / Å atoms distance / Å atoms distance / Å

Pd5InP

Pd1-Pd2 2.8521(8) Å Pd1-In 2.7792(8) Å Pd2-P 2.4109(6) Å

Pd2-Pd2 2.7792(8) Å Pd1-In 2.8521(8) Å

Pt5InP

Pt1-Pt2 2.8606(5) Å Pt1-In 2.7930(5) Å Pt2-P 2.4332(4) Å

Pt2-Pt2 2.7930(5) Å Pt2-In 2.8606(5) Å

2.89 Å [23,24]) and Pt3In (2.82 Å [23]) , and also to those in Pd5HgSe (2.84-2.85 Å [6]). Transition

metal to indium distances in phosphorus-containing compounds are also very similar to the ones found

in ternary selenium- and arsenic-containing analogues (2.80-2.86 Å [1,4]) and binary intermetallics

Pd3In and Pt3In (2.76-2.87 Å and 2.82 Å, respectively). Palladium-phosphorus distances (2.41 Å)

are ca. 0.1-0.2 Å longer than in PdP2 (2.33-2.34 Å) [25] or Pd3P (2.22-2.37 Å) [26], and platinum-

phosphorus distances in square prisms (2.43 Å) are just ca 0.03 Å longer than in PtP2 (2.40 Å [27]).

13.5.3. Electronic structure and bonding

Electronic structures of Pd5InP and Pt5InP were evaluated based on the DFT calculations. Total and

projected densities of states (DOS) near the Fermi level for both compounds are shown in Fig. 13.5.4.

As can be seen from the DOS plots, the main features for both compounds are essentially the same.

Main contributions near the Fermi level arise from the transition metal dstates, which are almost

completely �lled and close to the d10-con�guration. The contributions from phosphorus 3p-states and

indium 5s- and 5p-states reside in a signi�cantly lower energy range, between ca. -4 and -10 eV).

Indium 5p-states also show a contribution to a region above the Fermi level. This picture is very

typical for Cu3Au-based compounds of palladium and platinum and has been observed previously

for a number of binary and ternary compounds (Pd7-δSnTe2 [28], Pd17In4Se4 [2], Pd3In, Pd5InSe,

Pd8In2Se [1], Pt5InAs, and Pt8In2As [4]). Relatively low yet non-zero DOS at the Fermi level indicates

3D metallic conductivity. The fact that the DOS for ternary compounds are so similar to those of their

parent intermetallics indicates that the heterometallic fragments are largely responsible for the main

features and peculiarities of electronic structures of ternary compounds. The only signi�cant observed

di�erence between DOS of palladium- and platinum-indium binaries as compared to respective ternary

phases is that in the latter compounds the Fermi level falls directly into a pseudo-gap, while in the
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Figure 13.5.3.: Polyhedral representation of the crystal structures of Pd5InP (left) and Pt5InP (right).

Palladium atoms are shown as green, platinum as cyan, indium as blue, and phosphorus

as purple spheres. The unit cell is delineated by black lines.

former it does not [1,4]. Calculated magnetic moments on palladium and platinum atoms are very

close to zero, and spin-polarized calculations show no energy gain of magnetic con�gurations over

non-magnetic, which indicates probable diamagnetic behavior of the compounds. This hypothesis is

con�rmed by the results of magnetic measurements, showing diamagnetism for both compounds.

Band structures of Pd5InP and Pt5InP (Fig. 13.5.5) are also consistent with 3D metallic behavior.

A slight spatial anisotropy in the band dispersion might be deduced based on unequal band density

near the Fermi level along di�erent directions in the k -space. However, the only direction where

bands do not cross the Fermi level is X-M, and the only direction where the �atness of the bands,

often indicative of a 2D-structure, is observed is Γ-X direction. Given that those are orthogonal,

we can take this as an additional indication of somewhat anisotropic structure arising from layers of

Cu3Au-type cuboctahedra; yet, this e�ect does not appear to be too pronounced, and the number of

bands crossing the Fermi level along the k -path is too big to treat the structure other than essentially

3D.

Charge density for all compounds was calculated and analyzed within the framework of R. Bader's

QTAIM approach [12]. Atomic charges obtained from calculated charge density are: Pd5InP, -0.32

(Pd1), -0.16 (Pd2), +0.78 (In), +0.10 (P); Pt5InP, -0.42 (Pt1), -0.24 (Pt), +1.05 (In), +0.35 (P). As

seen from the data, there is a noticeable charge transfer from indium atoms centering the cuboctahedra

towards transition metal atoms, particularly pronounced in the case of platinum, pointing out towards

a polar transition metal - indium interactions. Phosphorus atoms also carry a partial positive charge,

albeit comparably small, which nevertheless points out towards possible degree of polarity of the

transition metal-phosphorus interactions at least in the case of platinum. It has to be noted that

in the Cu3Au-based palladium-indium selenides no signi�cant charge transfer was observed between

selenium and palladium atoms [1,3], which might be taken as an indication of higher polarity of

platinum and palladium bonds with phosphorus as compared to selenium. Nevertheless, as with

other compounds of the type, charge density distribution clearly indicates that both compounds are

essentially intermetallic and can only be formally and traditionally called `phosphides', as they do not,

in fact, contain negatively charged phosphorus atoms.

It must be noted that charge density partitioning according to Bader's scheme, while very useful
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Figure 13.5.4.: Total (TDOS) and projected (PDOS) l -resolved densities of states near the Fermi level

for Pd5InP (left) and Pt5InP (right), top to bottom: TM, In, P. Fermi level is at zero.

when analyzing ionic structures and charge redistribution in molecular objects, can only provide

limited information in cases of complex bonding patterns, particularly in solid state, since charge

density has only atomic attractors and is thus not very well-suited for the detailed description of

covalent or metallic interactions. In order to gain more insight into the chemical bonding in the

compounds in question, we have performed topological analysis of the electron localizability indicator

(ELI-D) [13], which has a bene�t of featuring bonds and lone pairs as attractors in addition to the

nuclei. The basis of the ELI-D analysis is the study of its topology while going down from higher

values of localization parameter (Y ) and the observation and assignment of arising features. ELI-

D can also be partitioned, in the spirit of the QTAIM, into space-�lling basins of the respective

attractors (atoms, lone pairs, or bonds), the integration of charge density over which can provide

more quantitative bonding description. The ELI-D isosurfaces for Pd5InP and Pt5InP are shown in

Figs. 13.5.6 and 13.5.7, respectively.

Typically for compounds based on d-metals, at high and medium values of Y we only observe atomic

shells for both compounds. Other features start to appear below Y 0.95 in the intermetallic part of

the structures. Fig. 13.5.6 shows the ELI-D topology at Y = 0.915, where we can clearly see eight

non-atomic attractors tetrahedral in shape (labelled Ω1) that are positioned around indium atoms.

These maxima correspond to the tetrasynaptic ELI-D basins of the fourcentered 3Pd+In bonding
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Figure 13.5.5.: Band structures near the Fermi level for Pd5InP (top) and Pt5InP (bottom) from DFT

calculations.

Figure 13.5.6.: ELI-D isosurfaces (Y = 0.915) for Pd5InP. For the explanation of Ω1 see the text.

interactions. Similar basins were observed in the bonding patterns of palladium-indium selenides and

arsenides, as well as palladium-indium intermetallics [1,3,4]. The integration of electron density over

each tetrasynaptic basin results in ca. 0.7 electrons (e), which is slightly less than 0.9 e in Pd5InAs

[4]. Fig. 13.5.7 displays ELI-D isosurfaces for Pt5InP at Y = 0.940 and Y = 0.925. As evident from

the �gure, bonding pattern is not quite the same in the palladium- and platinum-based compounds.

In the ELI-D topology of the latter, we also observe these tetrasynaptic basins (Ω1) corresponding to

multi-centered metal-metal bonding, however, they are not the �rst features to appear in the ELI-D
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after the atomic shells. For Pt5InP below Y = 0.950 we �rst observe the appearance of disynaptic

basins (Ω2) that, based on their location, correspond to the pairwise Pt-Pt interactions, and only at

lower localization parameter values (Y = 0.925) we see the domains of the Ω1 type appearing. This

pattern exactly mirrors the one observed for Pt5InAs and Pt3In [4] and con�rms that the presence of

pairwise Pt-Pt interactions is what distinguishes the bonding in platinum-based compounds of 5:1:1

and 8:2:1 type from palladium-based ones. The integration of the charge density over the bonding

basins for platinum-based compounds gives us the following results: 0.8 e (Ω1), 0.4 e (Ω2). Once

again, these values are lower than those calculated for Pt5InAs (1.6 and 0.6 e, respectively). As we

can see from these data, despite pairwise interactions appearing before the four-centered ones in the

ELI-D topology, the number of electrons involved in the latter is still greater, so the multicentered

metallic bonding is still the prevailing e�ect in the heterometallic fragments here, as it was found to

be in the case of palladium-based compounds. Nevertheless, pairwise Pt-Pt interactions, even though

featuring smaller number of electrons involved, might provide extra stability for the structure.

In addition to the direct-space bonding analysis, we have also employed orbital space bonding

description based on the Crystal Orbital Hamilton Population analysis [18-20]. The underlying idea

here is, despite having an electronic structure description employing plane waves, the orbitals can

be reconstructed by using projections of plane-wave wavefunctions onto an arbitrary basis of local

orbitals. And studying projected COHP near the Fermi level for speci�c interactions we can assign

bonding, anti-bonding or non-bonding character to them. The COHP plots for Pd5InP and Pt5InP

are shown in Fig. 13.5.8. We see that, moving up the energy scale, bonding character of TM -TM

and TM -In interactions changes to anti-bonding closer to the Fermi level; however, at the Fermi level

itself there are no anti-bonding contributions (apart from very small Pd-P ones), so the structures are

Figure 13.5.7.: ELI-D isosurfaces (top row - Y = 0.940; bottom row - Y = 0.925) for Pt5InP. For the

explanation of Ω1 and Ω2 see the text.
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stabilized. Above the Fermi level, anti-bonding character prevails. If we compare this picture to the

one observed for the second homologues (with double-stacked cuboctahedral fragments), Pt8In2As [4]

and hypothetical optimized Pt8In2P, we will see stronger anti-bonding character of Pt-Pt and Pt-In

interactions at the Fermi level for both structures, particularly in the former one. It appears that the

bonding in double-stacked structures is not optimized, which might account for their relative scarcity

as compared to the �rst homologues.

In order to study the possibility of altering structural and electronic properties of the title com-

pounds by hydrogen intercalation, we have performed hydrogenation experiments on both samples up

to the hydrogen pressure of ca. 7 MPa and the temperature of 700 K. No indication of possible hy-

drogen uptake was observed neither by thermal analysis, nor by XRPD of the products. This is quite

similar to the other already investigated Pt5TlAs type compounds, with the exception of Pd5InSe,

that forms Pd3InHx by decomposition [29]. The reason for this behavior is, most likely, the lack of

[Pd6] octahedral voids in the structures, which appear to be preferred for hydrogen incorporation.

Apparently, their absence inhibits a hydrogen uptake. So far, of this class of compounds, binary

palladium-rich intermetallics like Pd3In appear to exhibit the best hydrogenation properties [30,31].

13.6. Conclusion

Using the high-temperature ampoule technique, we have synthesized two ternary metal-rich com-

pounds with linear intergrowth structures, Pd5InP and Pt5InP, and determined their crystal structures

from XRRD data. All compounds are built from cuboctahedral [TM 12In] fragments (TM = Pd, Pt)

of tetragonally distorted Cu3Au-type fragments, alternating along the c axis with [TM 8P] rectangular

Figure 13.5.8.: COHP plots for Pd5InP and Pt5InP. Pd-Pd and Pt-Pt interactions are shown in green,

Pd-In and Pt-In � in blue, and Pd-P and Pt-P � in brown.
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Figure 13.5.9.: COHP plots for Pt8In2As and hypothetical optimized structure of Pt8In2P. Pt-Pt

interactions are shown in green, Pt-In � in blue, and Pt-P and Pt-As � in brown.

prisms with PtHg2 structure. The compounds were found to be fully isotypic and to belong to the rare

Pd5TlAs structure type [5]. DFT calculations predict all compounds to be 3D metallic conductors

and to exhibit diamagnetic behavior. The latter was con�rmed by the magnetic measurement data.

According to the bonding analysis based on the ELI-D topologies and Bader's QTAIM approach, both

compounds are essentially intermetallic and feature multi-centered transition metal - indium interac-

tions in their heterometallic fragments and show signi�cant charge transfer from indium to transition

metal atoms, indicating the polarity of bonding, particularly in the case of platinum-based compounds.

The distinguishing feature of the latter compounds is the additional pairwise Pt-Pt bonding within

heterometallic fragments, that was not observed in the cases of palladium-based compounds and might

account for the di�erences in the stability between the two groups. Both compounds were tested with

respect to the possibility of hydrogen uptake up to 7 MPa and 700 K, but no measurable e�ect was

observed.
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A. Götze and revised by H. Kohlmann.

14.2. Abstract

The crystal structure of Pd11Bi2Se2 was determined and re�ned from X-ray single crystal data (space

group Fd 3̄m, a = 12.4879(14) Å, Z = 8). In contrast to the earlier reported Pd3(Bi0.6Se0.4), the title

compound crystallizes in a 2 x 2 x 2 superstructure of the BiF3 type with ordered bismuth and selenium

distribution and an ordered vacancy according to Pd11� Bi2Se2. The vacancy is located at the center

of a palladium tetrahedron capped with a bismuth tetrahedron (stella quadrangula). Pd11Bi2Se2 is

isopointal to Li13In3 but shows di�erent ordering of the minority components. Pd11Bi2Se2 is inert to

water, organic solvents and concentrated hydrochloric acid and its melting point is 905(1) K. It exhibits

a very small e�ective magnetic moment of µe� = 0.0114(2) µB per palladium atom. Pd11Bi2Se2 does

not take up hydrogen up to 7.2(2) MPa hydrogen pressure and temperatures up to 703 K. In the

electronic structure, the region near the Fermi level is dominated by almost �lled Pd 4d-states. Low

yet non-zero density of states and a pseudo-gap at the Fermi level might indicate Pd11Bi2Se2 to be a

poor metal.
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14.3. Introduction

Intermetallic palladium-rich compounds with an ordered arrangement of the atoms often crystallize

in superstructures of the cubic close packing (ccp, Cu type) [1]. Binary compounds like MPd3 (M

= Mg [2,3], Mn [4], In [5], Tl [6]) usually show stacking variants of AuCu3-like blocks, e. g. TiAl3
type (twofold ccp superstructure), ZrAl3 type (fourfold ccp superstructure) or Pd9Tl2Pb type (sixfold

ccp superstructure). While AuCu3 type compounds, e. g. CePd3 and Pd3Pb take up hydrogen pre-

serving the crystal structure of the parent intermetallic [7,8], those with ccp superstructures undergo

a hydrogen induced transition to the AuCu3 type [9]. This rearrangement may be described by a

gliding mechanism of layers within these intermetallics [10], driven by increasing the number of [Pd6]

octahedral voids, which are preferred for hydrogen occupation [11].

Pd3Bi crystallizes in a superstructure of the double hexagonal closed packing (dhcp, La type) and

shows a hydrogen induced transition to a ccp related structure (�lled ZrAl3 type) [8,12]. Ternary

palladium-rich compounds like Pd5MY (M : Cd, In; Y : As, Se) are also related to the ccp with an

ordered vacancy Pd5�MY, but do not incorporate hydrogen [13-16]. The absence of hydride formation

in palladium-rich compounds is of importance for increasing the selectivity of heterogeneous catalysts

[17,18], like the Lindlar catalyst (Pd1-xPbx) [19], or Ga-Pd compounds for selective hydrogenation of

acetylene [17,20,21]. InPd2 shows a high catalytic activity and selectivity for the semi-hydrogenation

of ethyne and high stability towards ethene [22]. Therefore, it is of great importance to derive rules

for the ability of palladium-rich intermetallics to form bulk hydride phases. The hydrogen uptake of

MPd3 compounds seems to be correlated with electronic and geometric aspects of the metal atom M

[12]. Data available on hydrogenation properties of palladium-rich intermetallic compounds known

so far suggest that high valence electron concentrations (VEC ) inhibit hydrogen incorporation. The

exact VEC limit for hydrogen uptake is not yet known.

To shed more light on the hydrogenation behavior of palladium-rich compounds and to understand

the in�uence of these geometric and electronic e�ects in more detail, we aim at studying hydrogenation

properties of compounds with an increased valence electron concentration (VEC ). This might be

achieved by starting at Pd3Bi with the highest VEC for hydride forming compounds MPd3 known so

far, and substituting group 16 elements for bismuth. Therefore, Pd3(Bi0.6Se0.4) [23], which is related

to the W type, is a good candidate. It was reported to crystallize in the BiF3 type with a mixed

occupation of bismuth and selenium atoms on one crystallographic site [23]. In this contribution,

we reinvestigated the synthesis and the X-ray crystal structure and report on magnetic properties,

electronic structure, and chemical properties of the obtained compound Pd11Bi2Se2.

14.4. Material and methods

14.4.1. Synthesis, stability and EDX analysis of Pd11Bi2Se2

The title compound was synthesized from stoichiometric amounts of palladium powder (99.9 %,

≤ 60 µm, Chempur and 99.95 %, ≤ 150 µm, Goodfellow), bismuth shots (metal basis > 99 % checked

with EDX) and selenium drops (VEB Laborchemie, Apolda), in sealed silica glass ampoules under

argon atmosphere. The mixtures were heated to 1473 K for 2 h and further annealed at 773 K for

one week. The products were ground in a mortar after cooling. Typical sample size was from 0.25 g

to 1.5 g. The stability of the products were tested by additional X-ray powder di�raction after a

month in air. Chemical analysis was performed by an EDX INCA SYSTEM from Oxford Instru-

ments, mounted on a Zeiss LEO 1530 scanning electron microscope, with an acceleration voltage of

20 kV, and a working distance of 15 mm.
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14.4.2. X-ray di�raction

Single-crystal data were measured on an IPDS-I di�ractometer (Stoe & Cie GmbH, Darmstadt,

Germany) equipped with an image plate detector using AgKα radiation (λ = 0.56086 Å, graphite

monochromator). A numerical absorption correction was performed with X-Red [24]. Crystal faces

were optimized with the program X-Shape [25]. The structure was solved by direct methods, and

re�ned with SHELX-2013 [26].

Further details of the crystal structure investigation may be obtained from Fachinformationszentrum

Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@�z-

karlsruhe.de) on quoting the deposition number CSD-433594.

X-ray powder di�raction data was collected using �at transmission samples (powder in apiezon

grease between two kapton sheets) on an image plate Guinier powder di�ractometer (Huber Guinier

camera G670 at T = 296 K with CuKα1 radiation, λ = 1.54056 Å, Ge(111) monochromator). Rietveld

re�nements were carried out with the program FullProf [27], and the Pseudo Voigt function was used

to model di�raction peak shapes.

14.4.3. Magnetism

Temperature dependent magnetic susceptibility measurements were carried out using an MPMS 7XL

SQUID magnetometer (QUANTUM DESIGN) at an applied magnetic �eld of 0.02 T in the temper-

ature range from 2 to 330 K. The diamagnetic correction was performed by the program package

DAVE [28], and the magnetic parameters were calculated by a linear regression according to the

Curie-Weiss-law with the program OriginPro8G.

14.4.4. Thermal analysis

Di�erential scanning calorimetry (DSC) was performed in situ under hydrogen pressure on a Q1000

(TA Instruments) equipped with a gas pressure chamber. 20 mg of the powdered sample was put in

an aluminium crucible, which was closed with an aluminium lid. This was placed inside the pressure

chamber, which was then purged several times with hydrogen gas, before �lling it to the �nal hydrogen

gas pressure of 5.0 MPa. The sample was heated to 703 K with 10 K min-1, held at that temperature

for a minimum of 1 h, and cooled to 300 K. Two runs were performed; then the hydrogen pressure was

released, the sample taken out and structural characterization undertaken by XRPD. The di�erential

thermal analysis (DTA) of Pd11Bi2Se2 in helium atmosphere was carried out on a Netzsch F1 Jupiter

device using sintered alumina crucibles and a heating rate of 10 K min-1.

14.4.5. Computational details

The electronic structure of Pd11Bi2Se2 was calculated on the density-functional theory (DFT) level

utilizing two approaches. Obtained crystallographic data were used for the modeling in both ap-

proaches. In the �rst one, we used the all-electron full-potential linearized augmented plane wave

method (FP-LAPW) for the band structure calculations as implemented in the ELK code [29] with

relativistic e�ects, including spin-orbit coupling, taken into account. The Brillouin zone sampling was

performed using 4 x 4 x 4 k -point mesh. The Perdew-Burke-Ernzerhof exchange-correlation functional

PBE [30] of the GGA-type was used in the calculations. The mu�n-tin sphere radii for the respective

atoms are (Bohr): 2.70 (Bi), 2.20 (Pd), 2.00 (Se). The maximum moduli for the reciprocal vectors

kmax were chosen so that RMTkmax = 7.5. The convergence criteria for the procedure were set as

RMS change in Kohn-Sham potential < 10-5 eV, absolute change in total energy < 6 10-5 eV. In the

second approach, we performed the scalar-relativistic calculations using Vienna Ab-initio Simulation
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Package (VASP) [31] employing the same PBE functional as in FP-LAPW calculations, and PAW

pseudopotentials [32]. The energy cut-o� was set at 450 eV with a 12 x 12 x 12 Monckhorst-Pack

[33] k -point mesh. Absolute change in total energy for convergence was taken as ∆E < 10-5 eV. The

calculations were performed using the MSU Lomonosov supercomputer [34].

14.5. Results and discussion

14.5.1. Synthesis, chemical and physical properties of Pd11Bi2Se2

The intermetallic compound Pd11Bi2Se2 was synthesized from the elements and yielded a grey pow-

der with a metallic luster, and crystals of several hundred micrometers in size. Based on chemi-

cal analysis of the powder and the single crystal, the empirical formulae Pd11.15(11)Bi1.88(7)Se2.0(1)
and Pd11.2(2)Bi1.81(3)Se2.0(2) were determined, averaged from a least sixteen energy dispersive X-

ray (EDX) spectra of each. The product is stable in air, and does not dissolve in water, acetone,

ethanol or concentrated hydrochloric acid. It dissolves slowly in concentrated nitric acid or con-

centrated nitrohydrochloric acid. Pd11Bi2Se2 melts at 905(1) K as determined by thermal analysis

(DTA). A small hysteresis is observed upon cooling, where the solidi�cation takes place at 892(1) K.

The compound does not show any reaction with hydrogen under 7.2(2) MPa hydrogen pressure and

temperatures up to 703 K. The unit cell volumes before and after the experiment do not di�er sig-

ni�cantly. The absence of bulk hydride formation could be interesting for hydrogenation catalysis,

e. g. to improve selectivity compared to pure palladium like in Ag-Pd or Ga-Pd catalysts [18,35].

The values of the magnetic susceptibility are very close to zero. The Curie-Weiss model at 0.02 T

yields C = 2.249(3) 10-9 m3 K mol-1, θC = 2.0(3) K which leads to an e�ective magnetic moment

of µe� = 0.0114(2) µB per palladium atom. Such small magnetic moments are known to occur in

palladium-rich compounds, e. g. 0.0926(1) µB in Pd13Te3 [36] and 0.129 µB in YPd3 [37] and might

result from paramagnetic impurities (see Fig. 14.5.1).

Figure 14.5.1.: Determination of the Curie constant (C = 1/b = 2.249(3) 10-9 m3 K mol-1) and the

Curie temperature (TC = - a/b = 2.0(3) K) by linear regression (χM-1 = a + bT,

with a = -8.8(13) 108 mol m-3, b = 4.446(6) 108 mol m-3 K-1) at 0.02 T after the

diamagnetic correction.

208



14.5. Results and discussion

Figure 14.5.2.: Crystal structure of Pd11Bi2Se2. Thermal displacement ellipsoids are shown at the

99 % probability level.

14.5.2. Crystal structure of Pd11Bi2Se2

The crystal structure of Pd11Bi2Se2 was solved and re�ned from X-ray single crystal data (Fig. 14.5.2

and Tables 14.5.1 and 14.5.2). It crystallizes in space group Fd 3̄m with eight formula units per unit cell

and two free positional parameters. The sample is single phase according to powder di�raction data

(Fig. 14.5.3). The structure parameters from Rietveld re�nement based on X-ray powder di�raction

(Fig. 14.5.3) show a good accordance with those from single crystal di�raction (Table 14.5.1).

The bismuth atoms are coordinated by twelve palladium atoms, forming distorted icosahedra, which

are face-linked with each other (Fig. 14.5.4). This coordination sphere of bismuth is not unusual and

occurs e. g. in Ho12Co5Bi [38]. The selenium atoms have [6 + 2] coordination by palladium atoms,

forming a distorted cube. A similar coordination is observed in Pd5InSe, in which the selenium atoms

are located in the center of a tetragonal prism of palladium atoms, and ordered in planes [13,15]. The

selenium atoms in this structure are ordered in channels, and their polyhedra are edge-linked to each

other. Pd1 (Wycko� position 48f, see Table 14.5.1) has a [4 + 2 + 2 + 1] coordination of �ve palladium,

two bismuth and two selenium atoms, forming a mono-capped rectangular prism Fig. 14.5.4). Pd2

(Wycko� position 8a) is coordinated by six palladium atoms forming an octahedron, which is capped

by four selenium atoms forming a tetrahedron. The bismuth atoms also form a tetrahedron enclosing

the void (Wycko� position 8b) according to Pd11�Bi2Se2 (Fig. 14.5.4). The distances of the Bi atoms

to the void are short (d(Bi-�) = 2.7037(3) Å) compared to d(Bi-Pd) = 2.85 � 2.88 Å in Pd3Bi [39],

though similar to d(Bi-Pd) = 2.595 � 2.913 Å) in Pd8Bi3 [40]. Furthermore, the voids are surrounded

Table 14.5.1.: Crystal structure parameters of Pd11Bi2Se2 (Fd 3̄m, a = 12.4879(14) Å,

U eq = 1/3 (U 11 + U 22 + U 33)).
atom Wyck. x y z U eq / Å2 U 11 / Å2 U 22 =U 33

/ Å2

U 23 / Å2 U 13 =U 12

/ Å2

Bi 16d 1/2 1/2 1/2 0.0056(2) 0.0056(2) U 11(Bi) -0.00029(8) U 23(Bi)

Se 16c 0 0 0 0.0061(3) 0.0061(3) U 11(Se) 0.0001(2) U 23(Se)

Pd1 48f 0.34466(6) 1/8 1/8 0.0083(2) 0.0061(3) 0.0094(2) 0.0020(2) 0

Pd2 8a 1/8 1/8 1/8 0.0060(3) 0.0060(3) U11(Pd2) 0 U 23(Pd2)

Pd3 32e 0.28373(4) x(Pd3) x(Pd3) 0.0095(2) 0.0095(2) U 11(Pd3) 0.0024(2) U 23(Pd3)
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by four additional Pd3 atoms forming a second tetrahedron, and these palladium atoms are closer to

the void center (d(Pd3-�) = 1.9741(3) Å). This prohibits an occupation of the void by palladium,

because the shortest yet known Pd-Pd distances of intermetallics with full occupation of both Pd

sites are e. g. d(Pd-Pd) = 2.227 Å in UPd2Sn [41] or d(Pd-Pd) = 2.251 Å in β-NbPd3[42]. The Pd3

atom (Wycko� position 32e) has a [6 + 3] coordination of bismuth and palladium atoms forming a

strongly distorted, tri-capped trigonal prism (Fig. 14.5.4). The bond lengths in Pd11Bi2Se2 are shown

in Table 14.5.3. The shortest interatomic distances between two palladium atoms are similar to the

distances in palladium (2.75 Å) [43,44], and the distances up to 2.9 Å are comparable with Pd-Pd

distances in Pd3Bi (2.85 � 2.90 Å) [39], or in Pd4Se (2.76 � 2.93 Å) [45]. The Bi-Pd bond length is

consistent with those observed in Pd3Bi (2.85 � 2.88 Å) [39]. The shorter distance of 2.77 Å results

from Pd3 atoms that are close to the above mentioned void in the bismuth tetrahedron, which is also

seen in a somewhat larger atomic displacement parameter for Pd3 (Table 14.5.1). The short Pd-Se

bond length also agrees with that in Pd5InSe (2.50 Å) [13,15], or in Pd4Se (2.46 � 2.49 Å) [45], and

the longer bond of 2.70 Å is within the range of Pd-Se bond lengths in Pd34Se11 (2.40 � 2.79 Å) [46].

Table 14.5.2.: Crystallographic data and structure re�nement of Pd11Bi2Se2.

emperical formula Pd11Bi2Se2
formula mass 1746.28 g mol-1

crystal system cubic

space group Fd 3̄m (No. 227, origin choice 2)

cell parameters a = 12.4879(14) Å

cell volume 1947.5(7) Å3

formula units per unit cell Z = 8

X-ray density 11.912 g cm-3

absorption coe�cient 34.071 mm-1

F (000) 5920

di�ractometer Stoe IPDS I

radiation Ag Kα (0.56086 Å)

2θ range 12.6° < 2θ < 60.3°

absorption correction numerical [24,25]

measured re�ections 10306

independent data 145 (140 with I > 2 σ(I ))

parameters 14

weighting scheme w = 1 / [σ2F o
2 + (0.0228P)2]

with P = [F c
2 + Max(F o

2,0)] / 3

extinction coe�cient x = 0.00013(2)

extinction expression F c
* = kF c[1 + 0.001xF c

2λ3 / sin(2θ)]-1/4

with the overall scale factor k

re�nement full-matrix least-squares on F 2

Rint 0.0508

Rσ 0.0170

R1 [I > 2 σ(I )] / wR2 [I > 2 σ(I )] 0.0142 / 0.0339

R1 (all data) / wR2 (all data) 0.0155 / 0.0343

GooF (all data) 1.176

∆ρmin / ∆ρmax, e Å-3 -0.925 / 1.289
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Figure 14.5.3.: Rietveld re�nement of the crystal structure of Pd11Bi2Se2 (λ = 1.54056 Å,

Rp(background corrected) = 0.245; Rwp(background corrected) = 0.142; χ2 = 1.39;

RBragg = 0.0955; Fd 3̄m (Origin2), a = 12.4833(3) Å, x (Pd1) = 0.3421(2),

x (Pd3) = 0.2856(1)).

14.5.3. Crystal structure relationships

Many palladium-rich ternary compounds like Pd5MY (M : Cd, In, Tl; Y : As, Se) are related to the

cubic closed packed (ccp) Cu type [13-16] as proven by a group-subgroup relationships, according to

Bärnighausen [47]. In Pd11Bi2Se2, however, the valence electron concentration (VEC ) is increased to
22/15 = 1.47, and this is a typical value for intermetallics with crystal structures related to the cubic

W type [1], e. g. Pd20-xTe7 [36]. Pd11Bi2Se2 is isopointal to Li13In3, which is a 64-fold superstructure

of the W type [48]. They are not isotypic because the minority components are ordered di�erently (In

atoms in Li13In3 on sites 8b and 16c and Bi and Se atoms in Pd11Bi2Se2 on sites 16d and 16c). Another

di�erence concerns the void in Pd11Bi2Se2 resulting in some relaxation of the crystal structure and

free positional parameters (x (Pd3) = 0.28373(4) and x (Pd1) = 0.34466(6)). They di�er more from

the ideal values (0.25 and 0.375, respectively, as generated from the group-subgroup relationships)

compared to those in Li13In3 (x (Li3) = 0.240(2) and x (Li4) = 0.375(2)) [49].

The structure of Pd11Bi2Se2 is very similar to the BiF3 type that was proposed for Pd3(Bi0.6Se0.4)

[23]. The ratio of Pd atoms to Bi/Se atoms are very similar for both, being 11/4 for Pd11Bi2Se2
and 12/4 for Pd3(Bi0.6Se0.4). The Bi and Se atoms of Pd3(Bi0.6Se0.4) are proposed to be statistically

distributed and form a ccp with occupied octahedral and tetrahedral voids by Pd atoms. The Bi and

Se atoms in Pd11Bi2Se2 are ordered and form a ccp related substructure as well (see Fig. 14.5.5a).

Their octahedral voids are occupied by Pd3 atoms and only �ve eighths of tetrahedral voids are �lled

Table 14.5.3.: Selected interatomic distances (< 3 Å) in Pd11Bi2Se2.

atom d / Å atom d / Å

Pd1 2x Se 2.5041(4) Pd3 3x Bi 2.7656(4)

1x Pd2 2.7430(8) 3x Pd1 2.8589(7)

2x Pd3 2.8589(7) 3x Pd1 2.9047(6)

2x Pd3 2.9047(6) Bi 6x Pd3 2.7656(4)

2x Bi 2.9388(6) 6x Pd1 2.9388(6)

Pd2 4x Se 2.7037(3) Se 6x Pd1 2.5041(4)

6x Pd1 2.7430(8) 2x Pd2 2.7037(3)
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Figure 14.5.4.: Coordination polyhedra of Bi (top, left), Se (top, center), void (top, right), Pd1 (bot-

tom, left), Pd2 (bottom, center) and Pd3 (bottom, right) atoms in Pd11Bi2Se2.

with Pd1 and Pd2 atoms. The remaining eighth of tetrahedral voids remain empty according to the

crystal chemical formula (Pd3)[o]4(Pd1)[t]6(Pd2)[t]�[t]Bi2Se2. In view of such pronounced similarities

and rather subtle di�erences, which are easily overlooked in the evaluation of X-ray di�raction data,

we assume that the proposed Pd3(Bi0.6Se0.4) [23] is in fact identical to Pd11Bi2Se2. Due to the

improvement of X-ray powder di�ractometers we could now observe the superstructure re�ections for

that compound and derive the true composition and crystal structure.

The structure of Pd11Bi2Se2 may alternatively be described through substructures. A cubic Laves

phase type of (Pd2)Bi2 (Fig. 14.5.5b) and of �Se2, which additionally form a spinel type (�Se2(Pd3)4,

see Fig. 14.5.5c) are shifted by 1/2 1/2 1/2 with respect to each other. Pd1 atoms (48f ) are occupy-

ing [Bi2Se2] tetrahedra, located between Bi and Se tetrahedra of both mentioned Laves-phase like

substructures (Fig. 14.5.5d).

14.5.4. Electronic structure of Pd11Bi2Se2

Since Pd11Bi2Se2 has a relatively large unit cell that includes 120 atoms in total, all of them being

rather heavy, we have utilized two approaches to the electronic structure calculations. In the �rst one,

we have employed full-potential linearized augmented plane wave method (FP-LAPW) and relativistic

corrections, but due to the approach being extremely resource-heavy, the trade-o� included a rather

coarse k -point mesh (see Section 14.4.5). In the second one, we used PAW pseudopotentials rather than

an all-electron approach, which due to the less resource-demanding nature of the method allowed us

to use �ner k -point mesh and tighter convergence criteria, however, at the cost of expected somewhat

less strict relativistic corrections. However, the results from both methods have provided very similar

pictures of the electronic structure, with only relatively small quantitative di�erences. Therefore, we

will base our discussion mainly on the FP-LAPW results. Calculated total (TDOS) and projected
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Figure 14.5.5.: Substructures of Pd11Bi2Se2: a) ccp of Bi and Se atoms, b) cubic Laves phase type

for (Pd2)Bi2, c) spinel type for �Se2(Pd3)4, d) two Laves phases types ((Pd2)Bi2
and �Se2) shifted by 1/2 1/2 1/2 and connected by Pd1 centered tetrahedra (exemplary

one green tetrahedral shown). Atoms, which are not part of the substructure, are

transparent for reason of clarity.
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(PDOS) densities of states near the Fermi level are shown in Fig. 14.5.6. (DOS plots from VASP

calculations are presented in the Supplementary section).

As seen from Fig. 14.5.6, the region near the Fermi level is dominated by the Pd 4d-states, that

are almost �lled. This is quite typical for palladium-based intermetallic compounds, like Pd3In [15]

and palladium-rich chalcogenides [15,50]. Non-zero DOS at the Fermi level points out towards the

metallic conductivity for the compound, also typical for ternary group 10 metal-rich chalcogenides.

The almost �lled nature of the d-states and a pseudo-gap at the Fermi level (slightly more pronounced

in the pseudopotential calculations) might indicate relatively poor metallic behavior. Compared to the

palladium d-states, the contributions from Bi and Se p-states appear rather low, which is partially due

to the number of the respective atoms in the unit cell. Fig. 14.5.7 shows the scaled up contributions

from bismuth and selenium, and it is clearly seen that both the Bi 6p-states and Se 4p-states fall

exactly into the same energy range of ca. -7 eV - 3 eV, where they mix with the majority of the Pd

4d-states. This might be tentatively taken as an indication of a covalent nature of the Pd-Se and

Pd-Bi interactions. The 6s-states of bismuth are well-localized far below the Fermi level, between -11

and -12 eV (see Fig. 7) and most likely represent a lone pair, not participating in the bonding with

other atoms.

We have also performed a charge density analysis within the framework of Bader's QTAIM theory

[51,52]. Calculated atomic charges are: Bi +0.91; Se -0.10; Pd1 -0.09; Pd2 +0.12; Pd3 -0.29. As

seen from these charges, there is a certain amount of electron density transferred from the bismuth

atom to palladium and selenium. Di�erent charges of three crystallographically unique palladium

sites are in perfect agreement with the di�erences in their coordination. The most negatively charged

palladium atom, Pd3, has three bismuth and six palladium atoms surrounding it, so it has three

atoms transferring electrons to it. Relatively low, but still negatively charged Pd1 is coordinated by

�ve palladium, two bismuth and two selenium atoms. Bismuth atoms provide electron density and

selenium atoms attract it, hence the low negative charge on both Pd1 and Se. Lastly, Pd2 carries a

low positive charge of +0.12 since it is coordinated by six palladium and four selenium atoms, the

latter acting as attractors of electron density. However, since electronegativities of palladium and

selenium are quite close, relative charges on palladium and selenium are rather low. This con�rms the

essentially covalent nature of Pd-Se bonding assumed from the DOS plots. As for Pd-Bi interactions,

there is certain polarity to it based on the charge density redistribution, however, bismuth atomic

charge being under +1 is still indicative of the presence of strong covalency, which also agrees with

the conclusions based on the DOS analysis.
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Figure 14.5.6.: Calculated total and l-resolved projected DOS for Pd11Bi2Se2 (top to bottom): Pd,

Bi, and Se projections (Fermi level is at zero).
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Figure 14.5.7.: Enlarged l-resolved Bi (top) and Se (bottom) projected DOS for Pd11Bi2Se2 (Fermi

level is at zero).

14.6. Conclusions

The crystal structure of Pd11Bi2Se2 was solved and re�ned from X-ray single crystal data. It crys-

tallizes isopointal to Li13In3, a 4 x 4 x 4 superstructure of the W type, with ordered occupation

and an ordered vacancy according to Pd11�Bi2Se2. It is most probably identical to the earlier re-

ported Pd3(Bi0.6Se0.4), claimed to crystallize in BiF3 type, a 2 x 2 x 2 superstructure of the W type,

with mixed occupation of palladium and selenium atoms and no ordered vacancy. The structure of

Pd11Bi2Se2 can be described alternatively as substructures of a cubic Laves phase type for (Pd2)Bi2
shifted by 1/2 1/2 1/2 to a spinel type for �Se2(Pd3)4 with Pd1 occupying tetrahedra connecting both

substructures. Pd11Bi2Se2 is stable in air and inert to many solvents, even to concentrated hydrochlo-

ric acid. The magnetic moment is minute with 0.0114(2) µB per palladium atom. No hydrogen uptake

could be observed for Pd11Bi2Se2, which might attract interest for catalysis. In the electronic struc-

ture, the region near the Fermi level is dominated by almost �lled Pd 4d-states. Low yet non-zero

DOS at the Fermi level predicts the compound to be a metallic conductor, while a pseudo-gap in the

density of states might indicate Pd11Bi2Se2 to be a poor metal.
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15.2. Abstract

The hydrogenation properties of the cubic Laves phase CaRh2 and the formation of the perovskite

CaRhH3 were studied by in situ thermal analysis (DSC), sorption experiments, and in situ neutron

powder di�raction. Three Laves phase hydrides are formed successively at room temperature and hy-

drogen gas pressures up to 5 MPa. Cubic α-CaRh2H0.05 is a stu�ed cubic Laves phase with statistically

distributed hydrogen atoms in tetrahedral [Ca2Rh2] voids (ZrCr2H3.08 type, Fd 3̄m, a = 7.5308(12) Å).

Orthorhombic β-CaRh2D3.93(5) (own structure type, Pnma, a = 6.0028(3) Å, b = 5.6065(3) Å,

c = 8.1589(5) Å) and γ-CaRh2D3.20(10) (β-CaRh2H3.9 type, Pnma, a = 5.9601(10) Å, b = 5.4912(2) Å,

c = 8.0730(11) Å) are low-symmetry variants thereof with hydrogen occupying distorted tetrahedral

[Ca2Rh2] and trigonal bipyramidal [Ca3Rh2] voids. Hydrogen sorption experiments shows the hydro-

genation to take place already at 0.1 MPa and to yielded in β-CaRh2H3.8(2). At 560 K and 5 MPa hy-

drogen pressure the Laves phase hydride decomposes kinetically controlled to nano-crystalline rhodium

and CaRhD2.93(2) (CaTiO3 type, Pm 3̄m, a = 3.6512(2) Å). The hydrogenation of CaRh2 provides a

synthesis route to otherwise not accessible perovskite-type CaRhH3.

15.3. Introduction

Complex transition metal hydrides have attracted renewed interest recently in the search for hydrogen-

rich compounds, high TC superconductors, as hydrogen storage materials and in catalysis [1�4].

Ternary hydrides of the late transition metals often show a transition from mainly ionic and covalent

to more pronounced metallic bonding with increasing transition metal or decreasing hydrogen content.

This may be illustrated by ternary alkaline and alkaline earth rhodium hydrides. While rhodium does

not form a binary hydride, several ternary hydrides are known, e. g. typical semi-conducting 18-

electron complex hydrides A3RhH6 (A = Li [5], Na [6]) with isolated RhH6 octahedra. Li3RhH4 with

reduced hydrogen content might be regarded at �rst sight as a typical 16 valence electron complex

hydride. However, weak rhodium-rhodium interactions are noticed between the stacked square planar

RhH4 units [7]. Stronger metal-metal bonding is found in MgRhH1-x, where Rh-H and signi�cant

Rh-Rh interactions prevail [8,9]. The latter might be weakened by exchanging magnesium by the

higher homologue calcium due to the higher space requirement as suggested by DFT calculations [9].

This opportunity to in�uence the type of chemical bonding in hypothetical hydrides CaRhHx has not

been explored yet.

The e�ect of increasing rhodium content on chemical bonding is also seen in the calcium rhodium

hydrides known so far. M 2RhH5+x (M = Ca [10,11], Sr [10,12], Eu [13]) crystallize in the well-

known K2PtCl6 type with isolated RhH6 octahedra (disordered RhH5+x) as central structural unit.

Increasing the rhodium content leads to Ca8Rh5H25 and Ca8Rh6H24 with enhanced metallic bonding.

This is accompanied by an increasing connectivity of RhH6 (corner-sharing) [11,14]. The maximum

connection by corners would be reached in the perovskite structure. This is not known yet in the Ca-

Rh-H system, despite synthesis approaches in the molar ratio from 3:1 to 1:3 of calcium hydride and

rhodium [14]. Perovskite type calcium hydrides are reported for other transition metals like CaNiH3

[15] and CaPdH2 [16].

In this work, a synthetic access to the perovskite-type hydride CaRhH3 by a di�erent synthesis route

through the Laves phase CaRh2 is reported. Furthermore, the hydrogenation properties of CaRh2
and the reaction pathway to the perovskite was investigated by in situ thermal analysis [17] and in

situ neutron powder di�raction [18].

222



15.4. Experimental section

15.4. Experimental section

15.4.1. Synthesis and chemical analysis

The binary compound CaRh2 in typical quantities of 0.5 g was synthesized from the elements.

Rhodium (powder �ne, 99.95+ %, Chempur) and calcium (shot, redistilled, 99.5 %, Alpha Aesar,

≤ 10 mm, under argon atmosphere) with an excess of 14.2 mol-% were sealed in niobium ampoules

(9 mm internal diameter, 0.5 mm wall thickness, 100 mm length), heated under vacuum in a tube

furnace to 1423 K with a heating rate of 50 K h-1 and held at this temperature for 48 h. Samples

contain typically 1 to 8 wt-% of unreacted rhodium and in some cases up to 5.5 wt-% CaO. For

ex situ hydrogenation (deuteration), well-ground samples were placed in hydrogen resistant Inconel

(Böhler L718, nickel-chromium alloy) crucibles and reacted with hydrogen (99.9 %, Air liquide) or

deuterium gas (99.8 %, Air liquide) in autoclaves made from the same alloy. CaRh2H(D)x samples

were synthesized at 295 K under 5.0 MPa hydrogen (deuterium) pressure and CaRhH(D)3 at 703 K

for 48 h (50 K h-1 heating rate) under 5.0 MPa hydrogen (deuterium) pressure.

Chemical analyses were performed by an EDX INCA SYSTEM from Oxford Instruments mounted

on a Zeiss LEO 1530 scanning electron microscope with an acceleration voltage of 20 kV and a working

distance of 15 mm.

15.4.2. Powder di�raction

Laboratory X-ray powder di�raction (XRPD) data were collected using a STOE STADI-P di�rac-

tometer in Debye-Scherrer geometry at T = 296(2) K with CuKα1 radiation (glass capillary, 0.2 mm

in diameter). In situ XRPD data were taken at a Huber G670 di�ractometer with Guinier geometry

with MoKα1 radiation in silica glass capillary (0.3 mm in diameter) attached to a gas supply system19

under isothermal conditions at 723 K and various hydrogen pressures.

In situ neutron powder di�raction were taken at the di�ractometer D20 (ILL, Grenoble, France)

under various deuterium pressures (isotopic purity, 99.8 %) with a time resolution of 2 min per

pattern (doi: 10.5291/ILL-DATA.5-24-605, NUMORs 974037 to 974686 were used for re�nement, see

Supplement; NUMOR is used in ILL's internal numbering system for experimental data sets). The

sample was placed inside a single crystal sapphire based gas pressure cell especially designed for in

situ neutron powder di�raction with a gas pressure controller and contactless laser heating system

[18]. The wavelengths were determined from measurements of a silicon standard (NIST640b).

The XRD patterns were indexed with the help of the computer program TOPAS [20] and crystal

structures were re�ned using the program FullProf [21]. For Rietveld re�nement, nine patterns were

binned to one frame, which is named after the �rst NUMOR. Displayed di�erence plots of re�nements

are calculated by the di�erence of observed and calculated intensities. Besides the commonly used

Rp and Rwp values the background corrected R'p and R'wp values are also listed. The unusual

background of in situ neutron powder di�raction data, resulting mainly from phonon scattering of the

sapphire cell and di�use scattering on deuterium gas, were �tted by manually set background points

on patterns with low numbers of re�ections. In order to avoid correlation of parameters, background

points were re�ned only in the �nal cycles. The isotropic thermal displacement parameters B iso of

Rietveld re�nements based on neutron powder di�raction were corrected by 0.323 Å2 calculated by the

di�erence of B iso(Rh)exp (Supplement, Figure S2) and B iso(Rh)lit (0.068 Å2) [22]. The scale factors of

CaRhD3-x and Rh (nano-crystalline) of in situ neutron di�raction were constraint by the factor 4.5252

(Eq. (8)), which represents a stoichiometric formation of both compounds during the decomposition

of CaRh2Dx. The ratio of the scale factors (S ) of CaRhD3-x and Rh (nano-crystalline) were calculated

from molecular weight times formula unit per cell (ATZ ) and unit cell volume (V ).
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SCaRhD3-x =
1

βRh (nano)
=
ATZRh (nano)V Rh (nano)

ATZCaRhD3-xV CaRhD3-x

= 4.5252 (8)

Further details of the crystal structure investigations may be obtained from FIZ Karlsruhe, 76344

Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@�z-karlsruhe.de, on

quoting the deposition numbers CSD-434620 (CaRhD2.93(2)), CSD-434621 (α-CaRh2D0.05), CSD-

434622 (beta-CaRh2D3.93(5)), CSD-434623 (gamma-CaRh2D3.20(10)).

15.4.3. Thermal analysis

Di�erential scanning calorimetry (DSC) was performed in situ under a starting hydrogen pressure

of 5.0 MPa and temperatures up to 703 K on a Q1000 DSC (TA Instruments) equipped with a gas

pressure chamber. About 20-50 mg of the powdered intermetallics were put in aluminum crucibles,

which were closed with an aluminum lid. These were placed inside the pressure chamber, which was

then purged several times with hydrogen gas before �lling it to the desired hydrogen gas pressure.

The samples were heated at a rate of 10 K min-1, held at the �nal temperature for 2 h and cooled

back to 300 K. Two runs were performed in order to check for reversibility of thermal e�ects before

the hydrogen pressure was released, the sample taken out and structural characterization undertaken

by XRPD.

15.4.4. Hydrogen sorption experiments

The sorption isotherms of the pure hydrogen were measured with the volumetric sorption analyzer

AUTOSORB-iQ (Quantachrome GmbH & Co KG, Germany) at 313 K. The measuring cell (outer

diameter 6 mm, inner diameter 4 mm, length 250 mm) as well as the receiving vessel/ reservoir were

used in a stainless steel version. The connections were made as Swagelok®-VCR adapter to avoid

leakages of the openable components. The temperature control during the measurement was done

externally. For this purpose, a temperature control unit consisting of a thermostat Julabo F12-ED

(JULABO GmbH, Germany) with connected double wall vessel was used. Water was chosen as the

temperature control medium, which served both in the temperature control circuit and as a medium for

direct transmission (within the double wall vessel). The temperature was measured directly (with the

connected external thermocouple) at the level of the sample within the temperature control medium.

Before starting the measurement, about 200 mg of CaRh2 was transferred to the measuring cell

and then pretreated for 8 h at 393 K (heating rate 5 K min-1) and a �nal vacuum of < 10-2 Pa.

Subsequently, the sample was weighed again, the activated sample amount was determined and the

measurement started. The measurement begins with the determination of the void volume with

helium (Air Products, Purity 5.2; 99.9992 %) at measurement temperature (313 K). Then vacuum is

drawn again for approx. 30 min and the actual measurement with hydrogen (Air Products, Purity

5.2; 99.9992 %) is started. The equilibration times were chosen so that a measurement point was

taken if within 300 s the pressure did not change more than 0.3 % of the �nal value. The generated

measurement data are automatically output to a volume-based loading of hydrogen per gram of

activated CaRh2 as a function of the detected absolute pressure at the constant temperature of 313 K.

After �nishing the �rst sorption isotherm the measurement on elevated sample was repeated three

times by increasing activation temperature from 313 K and 393 K to 573 K.

224



15.5. Results and discussion

15.5. Results and discussion

15.5.1. Synthesis, thermal analysis and sorption experiments

The synthesis of CaRh2 yields a grey powder with metallic luster. An excess of calcium (see experi-

mental part) is needed because of reaction with the container material (niobium). However, samples

contain small amounts of Rh (1-8 wt-%) and CaO (0-5.5 wt-%) according to XRPD. An alternative

synthesis by arc-melting did not yield reproducible results, as calcium evaporates before rhodium

melts. Based on chemical analysis of the powder, the empirical formula Ca1.03(4)Rh1.97(4) was deter-

mined and the re�ned lattice parameter of CaRh2 (Supplement, Figures S1, S2) are in good agreement

with the literature data [23].

The hydrogenation of CaRh2 was studied by in situ di�erential scanning calorimetry (DSC) under

5.0 MPa starting hydrogen pressure (Fig. 15.5.1). Two irreversible exothermic signals, can be observed.

The �rst signal at the beginning shows the hydrogen uptake of the Laves phase CaRh2 and the second

at 480 K the decomposition to CaRhH3 and Rh proven by an XRPD study of the product. Upon

cooling and in the complete second cycle no further signals are observed. This suggests CaRhH3 to

be stable under 5.0 MPa hydrogen pressure and at 298 K ≤ T ≤ 700 K. Both hydrides were also

formed ex situ in an autoclave at room temperature and 703 K, respectively, under 5.0 MPa deuterium

pressure.

The intermediate will be called β-CaRh2H(D)x, because in situ neutron powder di�raction experi-

ments (see below) show that the cubic Laves phase also takes up hydrogen (α-CaRh2H(D)x). An ad-

ditional hydride of CaRh2 (γ-CaRh2H(D)x) containing less hydrogen than β-phase is also implicated.

Trials of direct synthesis of the hydrides by calcium hydride and rhodium under hydrogen pressure

were not successful as they did not react under tested conditions (Tmax = 853 K, p(H2) = 1.0 MPa).

The hydrides α-, β-CaRh2Hx and CaRhH3 are stable at ambient conditions and release hydrogen at

air, whereby the α-phase is formed back from the β-phase.

Hydrogen sorption measurements show that 7.63 mmol hydrogen gas per gram CaRh2 are sorbed

(Fig. 15.5.2). The hydride β-CaRh2H3.8(2) is formed assuming that all hydrogen is absorbed. The

Figure 15.5.1.: In situ thermal analysis (DSC) of the hydrogenation of CaRh2 at 5.0 MPa hydrogen

pressure (starting pressure at 303 K, increasing during heating process up to 7.0 MPa).
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Figure 15.5.2.: Sorption and desorption isotherm of hydrogen on CaRh2 at 313 K.

maximum hydrogen content is already reached under 0.1 MPa hydrogen pressure. The hydride releases

no hydrogen during the desorption process and even activation under applied vacuum and tempera-

tures up to 573 K does not remove the complete hydrogen. Therefore, subsequent volumetric sorption

experiments resulted in lower loadings (Supplement, Figure S3).

15.5.2. Crystal Structures

The crystal structures of the metal atoms of the hydrides were determined by XRPD and the complete

structure determination were based on in situ neutron di�raction of the deuterides in a single crystal

sapphire cell (Fig. 15.5.3). For the Laves phase, three di�erent deuteride-phases, a disordered cubic α-

phase with statistically distributed deuterium atoms and orthorhombic β- and γ-phases with di�erent

deuterium contents, could be identi�ed.

The formation of α-CaRh2Hx was observed by re�ection shifts and thus a lattice parameter increase

based on in situ XRPD under isothermal conditions at 723(5) K (Supplement, Figure S4). The metal

atoms of α-CaRh2Hx retain the cubic MgCu2-type arrangement from the educt Laves phase. At room

temperature, the maximum increase of the unit cell volume from CaRh2 to α-CaRh2Dx is 0.25 %

(Supplement, Figure S5). Assuming a typical volume expansion for Laves phase hydrides of 5 %

per hydrogen atom per formula unit [24], a composition α-CaRh2D0.05 (CSD-434621) is estimated.

Deuterium atoms could not be located by di�erence Fourier analysis, however, an occupation of

[Ca2Rh2] tetrahedral voids is most likely, due to the occupation in the β-phase (see below). In

addition, the lattice parameters of the α-phase are signi�cantly smaller than 7.7 Å, i. e. a preference

of hydrogen atoms to occupy 96g sites (here: Ca2Rh2 tetrahedra) may be expected [25]. Under these

assumptions α-CaRh2Hx crystallizes in ZrCr2H3.08 type [26] with approximately 0.4 % occupation

of H atoms. The Ca atoms are surrounded by 24 H sites and Rh by 12 H sites forming a distorted

hexagonal prism.

The XRD pattern of β-CaRh2Hx was indexed to an orthorhombic unit cell and subsequently re�ned

to a = 5.9542(3) Å, b = 5.6032(3) Å, c = 8.1305(5) Å(Supplement, Figure S6). The structure type

of ZrV2H6 (T = 10 K) [27] was found to be a suitable starting model for structure re�nements. A
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re�nement of the deuterium positions, however, did not �t with the neutron powder di�raction data

well. Therefore, all eleven [Rh4], [CaRh3] and [Ca2Rh2] tetrahedral sites were considered as possi-

ble deuterium sites. Their positions were generated by crystallographic group-subgroup relationship

(Fig. 15.5.4). The deuterium positions were tested with initial occupations of 0.01 by alternating

re�nements of the deuterium occupation or positions, removing of deuterium sites with negative site

occupancy factors (SOF) and subsequent di�erence Fourier analyses. This lead to a satisfactory model

with deuterium situated in two [Ca2Rh2] tetrahedra, which is typical for Laves phases, and two dis-

torted [Ca3Rh2] trigonal bipyramids between two [Ca2Rh2] tetrahedra (Table 15.5.1 and Figs. 15.5.3

and 15.5.5). This structure model yields a composition of β-CaRh2D3.93(5) (CSD-434622) and a good

correspondence between measured and calculated neutron di�raction patterns (Fig. 15.5.5). The metal

Figure 15.5.3.: Crystal structures of α-CaRh2Hx1 with one representative H site shown (top,

ZrCr2H3.08 type, HCa2Rh2 tetrahedron in lavender), β-CaRh2Hx2 (middle, β-

CaRh2H3.9 type, HCa2Rh2 tetrahedra (H1 left, H2 right) in lavender, HCa3Rh2 trig-

onal bipyramids (H3 right, H4 left)) in lime color and CaRhH3 (bottom, cubic per-

ovskite). Polyhedra around Ca and Rh atoms are shown at the right side.
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atoms of β-CaRh2Hx deviate from these initial positions (Fig. 15.5.4) by 38.1 and 32.9 pm along the

direction [100] and 8.0 and 8.8 pm along [001] (Supplement, Table S6).

Trigonal bipyramids are unusual coordination polyhedra in Laves phase hydrides, but common in

ZrTH3 (T = Co [30], Ni [31]), LnNi3H2-x (Ln = Ho [32], Er [33]), the ternary alkaline earth metal

hydride Ca4Mg3H14 [34], the Zintl phase hydride Nd2Ga2D3.32 [35] and hydrides of the AlB2 type,

e. g., ThNi2D2.6 [36] and Be2ZrD1.5 [37]. The hydrogen positions of β-CaRh2Hx are closely related

to those of the α-phase (Fig. 15.5.6). The hydrogen atoms H1 and H2 occupying tetrahedral voids in

the β-phase are derived from H23 and H24 in α-CaRh2Dx (Figs. 15.5.3 and 15.5.6). H3 (β) is located

halfway between two H21 atoms and H4 halfway between H25 and H27. This marks the transition

from exclusive occupation of tetrahedral voids to the extension to distorted trigonal bipyramids. The

remaining sites of H22 and H26 in the α-phase are too close to H1 and H2 and thus not occupied in

the β-phase. The calcium atoms in β-CaRh2Hx are coordinated by 13 H atoms forming a septi-capped

trigonal prism. Rh1 and Rh2 are surrounded by six H atoms forming strongly distorted octahedra

(Fig. 15.5.3, middle right). The group-subgroup relationship (Fig. 15.5.4) proves the close structural

relationship between the cubic (α) and orthorhombic (β) hydride of CaRh2. This is commonly found

in Laves phase hydrides [38�42].

Figure 15.5.4.: Transformation of α-CaRh2Hx (ZrCr2H3.08 type) with H occupying only [Ca2Rh2] sites

to Pnma by group-subgroup relationship [28]. ZrV2H2.18 (190 K) [29] is a hettotype

of ZrCr2H3.08.
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Figure 15.5.5.: Rietveld re�nement of the crystal structure of β-CaRh2D3.93(5) (96(2) wt-%, Pnma,

a = 6.0028(3) Å, b = 5.6065(3) Å, c = 8.1589(5) Å, RBragg = 0.048, for further details

see Table 15.5.1) and Rh (4.4(2) wt-%, Fm 3̄m, a = 3.8031(2) Å, RBragg = 0.075)

at 296(1) K and 0.1 MPa deuterium pressure in single crystal sapphire cell based on

neutron powder di�raction (λ = 1.8676(3) Å, D20, ILL, Grenoble, NUMORs 974184-

974192, Rp = 0.037, R'p = 0.111, Rwp = 0.048, R'wp = 0.121, χ2 = 7.51).

During the in situ experiment, an additional deuteride of CaRh2, called γ-phase, was found con-

taining less deuterium than the β-phase, e. g. γ-CaRh2D3.20(10) (CSD-434623, see Supplement Figure

and Table S7) at 465(12) K and under vacuum. This phase was only observed as side product during

the dehydrogenation of the β-phase at high temperatures (406-630 K) and applied vacuum. Despite

of the higher temperatures, the lattice parameters of the γ-phase are smaller compared to β-phase.

This unit cell compression results from the lower hydrogen content especially from barely occupied

tetrahedral voids which re�ects the strong decrease of b (Fig. 15.5.6). Consequently, the interatomic

distances decrease more in crystallographic b than in c direction and stay almost constant in a.

Table 15.5.1.: Crystal structure parameters of beta-CaRh2D3.93(5) (Pnma, a = 6.0028(3) Å,

b = 5.6065(3) Å, c = 8.1589(5) Å) based on neutron powder di�raction (see Fig. 15.5.5)

at 296(1) K and under 0.1 MPa deuterium pressure.

atom Wycko� position x y z B iso / Å2 SOF

Ca 4c 0.0711(10) 3/4 0.1340(7) 0.5(1) 1

Rh1 4b 0 1/2 1/2 0.34(8) 1

Rh2 4c 0.6977(9) 3/4 0.7380(5) 0.59(10) 1

D1 [a] 4c 0.0581(8) 1/4 0.6079(7) 0.83(4) 0.737(9)

D2 [a] 8d 0.143(2) 0.015(3) 0.667(2) B iso(D1) 0.203(5)

D3 [b] 4c 0.0576(9) 1/4 0.1468(6) B iso(D1) 0.949(9)

D4 8d 0.7538(5) 0.9906(6) 0.6039(3) B iso(D1) 0.921(9)

[a] D occupying [Ca2Rh2] tetrahedron, [b] D occupying [Ca3Rh2] trigonal bipyramid
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Figure 15.5.6.: Comparison of the hydrogen sites of β-CaRh2Hx2 (middle) with α-CaRh2Hx1 (left, unit

cell transformed to Pnma, see Fig. 15.5.4) and γ-CaRh2Hx3 (right) (x1 < x3 < x2).

Short H-H distances are marked with pink and brown lines. The di�erence in metal

atom distances ∆d = dγ - dβ are indicated by a color code (inset).
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Figure 15.5.7.: Rietveld re�nement of the crystal structure of CaRhD2.93(2) (51.6(8) wt-%, Pm3̄m,

CaTiO3 type, a = 3.6512(2) Å, RBragg = 0.014, for further details see Table 15.5.2),

Rh (7.0(5) wt-%, Fm 3̄m, a = 3.8006(2) Å, RBragg = 0.060), Rh (41.3(9) wt-%, nano-

crystalline) and CaO (0.18 wt-%, scale factor is �xed) at 306(2) K and under 0.1 MPa

deuterium pressure in a single crystal sapphire cell based on neutron powder di�rac-

tion (λ = 1.8676(3) Å, D20, ILL, Grenoble, NUMORs 974681-974686, Rp = 0.036,

R'p = 0.089; Rwp = 0.045, R'wp = 0.094; χ2 = 6.50).

CaRhH3 (after DSC) was found to be cubic with a = 3.64727(9) Å and the metal atoms are arranged

in the CsCl type (Supplement, Figure S8), which is an indication of a perovskite formation. The per-

ovskite CaRhD2.93(2) (CSD-434620) and elementary rhodium as decomposition products of CaRh2Dx

were con�rmed by neutron powder di�raction data (Fig. 15.5.7). The deuterium site is nearly fully

occupied with a deviation of four estimated standard uncertainties (e.s.u.s) (Table 15.5.2). Broad

re�ections indicate very small rhodium crystallites. The rhodium atoms in CaRhH3 are surrounded

by six hydrogen atoms forming octahedra, which was also observed in β- and γ-CaRh2Hx in a strongly

distorted form (Fig. 15.5.3).

The interatomic Ca-D and D-D distances of CaRhD2.93(2) (Table 15.5.2) are between 2.506 and

2.607 Å of the perovskites CaNiD3 [15] and CaPdD2 [16], respectively. The Rh-D distance is also

located between the T -D distances of these perovskites (d(Ni-D) = 1.772 Å in CaNiD3 [15] and d(Pd-

D) = 1.843 Å in CaPdD2 [16]). From a geometrical point of view, this is expected as the atomic radius

of rhodium is between those of nickel and palladium. The distances of α-CaRh2Dx are comparable

to those of the parent Laves phase CaRh2 because of the very small volume expansion. The Ca-Rh

Table 15.5.2.: Crystal structure parameters and selected interatomic deuterium distances of

perovskite-type CaRhD2.93(2) (Pm 3̄m, a = 3.6512(2) Å) based on neutron powder

di�raction (Fig. 15.5.7) at 306(2) K and under 0.1 MPa deuterium pressure.

atom Wycko� position x y z B iso / Å2 SOF

Ca 1b 1/2 1/2 1/2 0.95(7) 1

Rh 1a 0 0 0 0.87(5) 1

D 3d 0 0 1/2 1.68(3) 0.976(6)

d(Ca-D) = 2.58178(10) Å, d(Rh-D) = 1.82559(10) Å, d(D-D) = 2.58178(10) Å
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Table 15.5.3.: Interatomic distances (< 3 Å) in β-CaRh2D3.93(5) (see Table 15.5.1 and Fig. 15.5.5)

and γ-CaRh2D3.20(10) (see Supplement, Table and Figure S7) based on neutron powder

di�raction.

distance / Å β-phase γ-phase distance / Å β-phase γ-phase

Rh1 2x Rh1 2.8033(2) 2.7456(3) D3 1x Ca 2.417(8) 2.34(2)

2x Rh2 2.818(4) 2.796(9) 2x Ca 2.8064(4) 2.7477(10)

D1 1x Ca 2.236(8) 2.30(6) 1x Rh2 1.704(7) 1.55(2)

1x Ca 2.245(8) 2.39(7) 1x Rh2 1.743(7) 1.91(2)

2x Rh1 1.692(3) 1.57(3) 2x D4 2.332(5) 2.29(2)

2x D2 1.49(2) 1.70(6) 2x D4 2.690(5) 2.67(2)

2x D2 2.95(2) 3.02(6) 2x D4 2.772(5) 2.74(2)

2x D4 2.335(5) 2.29(4) D4 1x Ca 2.445(6) 2.37(2)

2x D4 2.466(5) 2.33(5) 1x Ca 2.605(6) 2.56(2)

D2 1x Ca 2.18(2) 2.05(4) 1x Ca 2.792(6) 2.79(2)

1x Ca 2.45(2) 2.40(4) 1x Rh1 1.705(3) 1.692(7)

1x Rh1 1.61(1) 1.88(3) 1x Rh2 1.769(4) 1.753(12)

1x Rh2 1.71(2) 1.59(4) 1x D4 2.698(5) 2.69(2)

1x D2 2.64(2) 2.55(5) 1x D4 2.909(5) 2.80(2)

1x D2 2.97(2) 2.94(5)

1x D3 2.34(2) 2.10(4)

1x D3 2.44(2) 2.55(4)

1x D4 1.99(1) 1.69(3)

1x D4 2.30(1) 2.35(3)

distances of β- (3.128(7) - 3.931(7) Å) and γ-CaRh2Dx (2.99(2) - 4.01(2) Å) are increased compared

to CaRh2 (3.1195(2) Å). The same tendency is also observed for Rh-Rh, 2.8033(2) - 3.008(8) Å in

the β-phase and 2.7456(3) - 3.00(2) Å in the γ-phase compared to 2.6603(2) Å in CaRh2, and Ca-Ca

distances, 3.549(8) - 3.655(5) Å in the β-phase and 3.53(3) - 3.58(2) Å in the γ-phase compared to

3.2582(2) Å in CaRh2. The interatomic Ca-D and Rh-D distances of β- and γ-CaRh2Dx (Table 15.5.3)

are slightly shorter than 2.3562 - 2.584 Å or 1.709 - 1.927 Å in Ca8Rh5D23 [14], but they are in the

range of 2.018 - 2.838 Å in CaNi5D4.8 [43] and 1.559 � 1.647 Å in Li3RhD6 [5]. Furthermore, the

Ca-D distances are comparable to the binary deuteride CaD2 (2.239 - 2.631 Å) [44]. The smallest

D-D distance between D1 and D2 of β- (1.49(2) Å) and γ-CaRh2Dx (1.70(6) Å) is smaller than the

blocking radius of rB ≈ 2 Å[25], i. e. a simultaneous occupation of neighboring H1 and H2 sites is

excluded. The sum of SOF (H1) and SOF (H2) must therefore not be greater than 1. This means,

that a maximum hydrogen occupation will give the formula CaRh2H5.

15.5.3. Crystal Chemical Analysis

Hydrides (deuterides) in the Ca-Rh-H system show a transition from mostly covalent to metallic

bonding in the series from CaH2 to CaRh2Hx with increasing rhodium content (Table 15.5.4). The

valence electron concentration (VEC, [45]) decreases, whereas the molar volume increment of deu-

terium increases. These re�ect the bonding properties with small values indicating metallic and high

values indicating ionic bonding [46]. Ca2RhD5.4 is close to a typical ionic-covalent 18-electron com-

plex, which is shown by the high volume increment of deuterium. Increasing Rh-Rh interactions and

metallic properties are apparent in Ca8Rh5D23 and Ca8Rh6D24 with accordingly smaller deuterium
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Table 15.5.4.: Valence electron concentration (VEC ) after [45], volume increment of deuterium V (D)

[46] and selected distances of deuterides in the Ca-Rh system.

deuteride VEC V (D) / cm3 mol-1 [a] d(D-Rh) / Å d(D-Rh) / Å

CaD2 [44] 1.33 7.58

Ca2RhD5.4 [11] 1.12 6.03 1.752 5.129

Ca8Rh5D23 [14] 1.08 5.75 1.701-1.869 3.636

Ca8Rh6D24 [14] 1.05 5.45 1.732-1.821 3.641

CaRhD2.93(2) 1 4.84 1.8256(1) 3.6512(2)

β-CaRh2D3.93(5) 0.86 3.04 1.61(1)-1.769(4) 2.8033(2)

γ-CaRh2D3.2(1) 0.84 2.78 1.55(2)-1.91(2) 2.7456(3)

[a] calculated with V(Ca2+) = 6.5 cm3 mol-1 [47] and V(Rh) = 8.3 cm3 mol-1 [46]

volume increments. The perovskite CaRhD2.93(2) completes the transition from the K2PtCl6 type to

the cubic perovskite type [14]. The orthorhombic β- and γ-CaRh2Dx continue this series with fur-

ther decreased volume increments for deuterium, indicating typical metallic interstitial type hydrides

(Table 15.5.4).

15.5.4. In situ Di�raction

The reaction pathway of the hydrogenation of CaRh2 was observed with in situ neutron powder

di�raction in a single crystal sapphire cell (Fig. 15.5.8). The structure of both the β- and the γ-

phase were solved from the neutron di�raction data (vide supra). The full crystal structures including

the hydrogen content were re�ned by the Rietveld technique (Fig. 15.5.9). The in situ experiment

started under vacuum at room temperature (NUMOR 974038). Already at 0.02 MPa a deuterium

sorption by CaRh2 was noted, leading to a unit cell volume expansion up to 0.25 %. In addition to

this deuteride, called α-CaRh2Dx thereafter, the formation of β-CaRh2Dx was observed. Then the

deuterium pressure was increased further up to 5.0 MPa, in order to complete the formation of the

β-phase. The deuterium content of the β-phase is constant at about 4 deuterium atoms per formula

unit from the beginning of its formation. However, the unit cell parameters increase anisotropic with

increasing deuterium pressure. The expansion is more pronounced in crystallographic a and c than in

b, because the occupation of D2 increases with increasing deuterium pressure (Fig. 10.6.8). This can

be explained by repulsive interaction of the deuterium atoms (see short D-D distances in Table 15.5.3).

The deuterium pressure was decreased and vacuum applied to check the reversibility of the β-phase

formation. β-CaRh2Dx is stable under vacuum and latter trends of lattice parameters and deuterium

occupation are reversible. Upon heating under vacuum, γ-CaRh2Dx was formed. A miscibility gap

between β- and γ-phase is presumed as both phases are observed simultaneously and γ-CaRh2Dx

has a sharp decrease of about 0.5 deuterium atoms per formula unit. The structural di�erences of

β- and γ-CaRh2Dx are discussed in detail in the section crystal structures (vide supra). The educt

CaRh2 is formed back completely at 512(3) K (NUMOR 974388). The second deuteration reaction was

carried out almost isothermally (500 K ≤ T ≤ 560 K). In the �rst deuteration step, the maximum

volume expansion is 1.2 % at a temperature of 506(3) K and the formula α-CaRh2D0.24 can be

estimated based on the typically volume expansion for Laves phase hydrides [24]. The formation of β-

CaRh2Dx from the α-phase begins subsequently, before the decomposition to CaRhD3-x and rhodium

takes place. The lattice parameters of β-CaRh2Dx and CaRhD3-x increase with increasing deuterium

pressure, but the deuterium contents of both compounds are almost constant (β-CaRh2D3.7(2) and

CaRhD2.84(11)). During the formation of CaRhD3-x, β-CaRh2Dx is an intermediate, which decomposes
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Figure 15.5.8.: In situ neutron powder di�raction data (NUMORs 974038-974680) of the deuteration

of CaRh2 taken on di�ractometer D20 (ILL, Grenoble, λ = 1.8676(3) Å) in a single

crystal sapphire cell under various temperature and deuterium pressure conditions.

The temperature drop to 448(2) K (NUMOR 974373) is caused by the uncontrolled

shutdown of the laser heating. Intensities are in false colors.

also to perovskite and rhodium. At the end of the in situ experiment, the decomposition is complete.

There are two distinct rhodium fractions. One yields sharp re�ections in the di�raction experiments

and represents the secondary phase from the synthesis of CaRh2, while the second one features very

broad di�raction lines (Fig. 15.5.7). This second fraction is the rhodium formed by decomposition of

CaRh2H≈3.9 to CaRhH≈3 + Rh. Using the Scherrer equation, its crystallite size is estimated to be

below 1.8 nm (determined on (111) re�ection), i. e. nano-crystalline rhodium is produced.

15.6. Conclusion

The cubic Laves phase CaRh2 takes up hydrogen and forms �rst a cubic α-phase with low hydrogen

content, followed by an orthorhombic β-phase with a higher hydrogen content. The hydrogenation

is reversible under vacuum and temperatures about 450 K with the formation of γ-CaRh2Hx as in-

termediate. The Laves phase hydrides decompose at 480 K and a hydrogen pressure of 5.0 MPa to

the perovskite CaRhH3 and nano-crystalline rhodium. This formation of perovskite-type CaRhH3 is

exothermic determined by in situ DSC and thus kinetically controlled as a lower hydrogen content

arises at higher hydrogen pressures. A direct synthesis of this perovskite hydride from the binary

hydride CaH2 and rhodium was not successful. The intermediate Laves phase hydrides are only vis-

ible by in situ methods and the crystal structures of β-CaRh2D3.93(5), and γ-CaRh2D3.20(10) and

CaRhD2.93(2) were determined from in situ neutron powder di�raction data. Volumetric sorption

measurements of β-phase result in the composition of β-CaRh2H3.8(2), which supports the hydrogen

content of the re�ned structures based on neutron di�raction. Hydrogen occupies distorted tetragonal

[Ca2Rh2] and trigonal bipyramidal [Ca3Rh2] sites in the orthorhombic CaRh2 hydrides. The latter

coordination is unusual for Laves phase hydrides. γ-CaRh2Hx is only observed during the dehydro-

genation of the β-phase. Deuterium positions in the perovskite-type CaRhH3 are nearly fully occupied.

Perovskite-type CaRhH3, α-, β-, and γ-CaRh2Hx extend the range of hydrides in the calcium-rhodium

system to higher rhodium content. Metallic bonding is suggested by the crystal structures and molar

volume increments.
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Figure 15.5.9.: Control parameters of the in situ deuteration of CaRh2 and re�ned structural param-

eters based on neutron powder di�raction data: temperatures and deuterium pressure,

phase fractions, deuterium content per formula unit, SOF of deuterium sites, minimum

interatomic D-D distances (all left, from top to bottom), lattice parameters and unit

cell volume (right). Error bars represent ±σ. Each NUMOR 2 min.
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educt CaRh2 (Figures S1, S2), the intermediate Laves phase hydrides (Figures S 5-7) and of the per-

ovskite CaRhH3 (Figure S8); isotherms of the hydrogenation of CaRh2 (Figure S3) and in situ XRPD
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which explains how to handle the re�ned data.
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Figure S1. Rietveld refinement of the crystal structure of CaRh2 (96(3) wt-%, Fd3̅m, MgCu2 type, 

a = 7.52419(12) Å, Biso(Ca) = -4.3(2) Å², Biso(Rh) = -4.01(8) Å², RBragg = 0.127) and Rh (4.4(8) wt-

%, Fm3̅m, a = 3.8029(3) Å, RBragg = 0.343) based on XRPD (STOE STADI-P, CuKα1 radiation, 

Rp = 0.130, Rp’ = 0.386, Rwp = 0.168, Rwp‘= 0.324; χ² = 1.20), using FullProf [1]. Negative thermal 

displacement parameters are not unusual in X-ray powder diffraction due to absorption and 

surface roughness effects.  
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Figure S2. Rietveld refinement of the crystal structure of CaRh2 (95.1(10) wt-%, Fd3̅m, MgCu2 

type, a = 7.5245(6) Å, Biso(Ca) = 0.23(4) Å², Biso(Rh) = 0.08(2) Å², RBragg = 0.031), Rh 

(4.65(10) wt-%, Fm3̅m, a = 3.8030(3) Å, Biso = 0.068 Å² [2], RBragg = 0.064) and CaO (0.23(3) wt-

%) at 296(1) K and air in single crystal sapphire cell based on NPD (λ = 1.8676(3) Å, D20, ILL, 

Grenoble, NUMOR 974037, Rp = 0.035, Rp’ = 0.124, Rwp = 0.046, Rwp‘= 0.097, χ² = 2.99), using 

FullProf [1]. 

 

Figure S3. Sorption isotherms of hydrogen on CaRh2 at 313 K after activation at various 

temperatures.  
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Figure S4. In situ X-ray powder diffraction (XRPD) data of the hydrogenation of CaRh2 taken on 

diffractometer Huber G670 (MoKα1 radiation) in a silica glass capillary at 723 K and under various 

hydrogen pressure conditions. CaRh2 takes up hydrogen and forms α-CaRh2Hx (bottom, 

reflections shift to lower 2θ angles) and subsequent CaRhH3-x (top) under hydrogen pressures 

from about 2.0 MPa. Reflections of rhodium are marked with asterisks. Intensities are in false 

colors.  
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Figure S5. Rietveld refinement of the crystal structure of β-CaRh2D4.08(5) (85(2) wt-%, Pnma, 

a = 5.9769(3) Å, b = 5.6054(2) Å, c = 8.1374(4) Å, RBragg = 0.045, for further details see Table S5), 

α-CaRh2D0.05 (11.0(10) wt-%, Fd3̅m, a = 7.5308(12) Å, RBragg = 0.037), Rh (4.0(1) wt-%, Fm3̅m, 

a = 3.8032(2) Å, Biso = 0.068 Å² [2], RBragg = 0.042) and CaO (0.1 wt-%) at 295(1) K and 0.02 MPa 

deuterium pressure based on NPD (λ = 1.8676(3) Å, D20, ILL, Grenoble, NUMORs 974148-

974156, Rp = 0.032, Rp’ = 0.091, Rwp = 0.041, Rwp‘= 0.101, χ² = 5.40), using FullProf [1] and a 

comparison (bottom) of α-CaRh2D0.05 (V = 427.09(12) Å³) with CaRh2 (Figure S2, V = 426.02(6) Å, 

NUMOR 974037, intensities of CaRh2 are multiplied by factor 0.12 to compensate the phase 

fraction and the exposure time of both patterns). The asterisk marks a reflection from the sapphire 

cell.  

Table S5. Crystal structure parameters of β-CaRh2D4.08(5) based on NPD (NUMORs 974148-

974156, see Figure S5) at 295(1) K and 0.02 MPa deuterium pressure.  

atom Wyckoff 
position 

x y z Biso / Å² SOF 

Ca 4c 0.0592(12) ¾ 0.1328(7) 0.59(11) 1 
Rh1 4b 0 ½ ½ 0.71(7) 1 
Rh2 4c 0.6946(9) ¾ 0.7398(5) Biso(Rh2) 1 
D1 [a] 4c 0.0533(8) ¼ 0.6069(6) 1.44(6) 0.816(8) 
D2 [a] 8d 0.142(3) 0.016(4) 0.683(2) Biso(D1) 0.181(6) 
D3 [b] 4c 0.0631(9) ¼ 0.1461(6) Biso(D1) 0.998(9) 
D4 [b] 8d 0.7541(6) 0.9922(6) 0.6047(3) Biso(D1) 0.953(8) 

[a] D occupying [Ca2Rh2] tetrahedron, [b] D occupying [Ca3Rh2] trigonal bipyramid  
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Figure S6. Rietveld refinement of the crystal structure of β-CaRh2Dx (95.3(9) wt-%, Pnma, 

a = 5.9542(3) Å, b = 5.6032(3) Å, c = 8.1305(5) Å, RBragg = 0.176, , for further details see Table 

S6) and Rh (4.8(2) wt-%, Fm3̅m, a = 3.8024(2) Å, RBragg = 0.024) based on XRPD (STOE STADI-

P, CuKα1 radiation, Rp = 0.040, Rp’ = 0.329, Rwp = 0.054, Rwp‘= 0.254; χ² = 1.94), using FullProf 

[1].  

Table S6. Crystal structure parameters of metal atoms of β-CaRh2Dx (Pnma, a = 5.9542(3) Å, 

b = 5.6032(3) Å, c = 8.1305(5) Å) based on XRPD (see Figure S6) compared to initial parameters 

(in italics) generated from MgCu2 type (Figure 3). 

atom Wyckoff 
position 

x y z Biso / Å² 

Ca 4c 0.064(1) 
0.0 

¾ 0.1349(8) 
0.125 

-1.5(1) [a] 

Rh1 4b 0 ½ ½ -2.04(5) [a] 
Rh2 4c 0.6947(5) 

0.75 
¾ 0.7392(5) 

0.75 
-1.57(6) [a] 

[a] Negative thermal displacement parameters are not unusual in X-ray powder diffraction due to 

absorption and surface roughness effects. 
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Figure S7. Rietveld refinement of the crystal structure of β-CaRh2D3.94(9) (28.0(8) wt-%, Pnma, 

a = 5.9382(6) Å, b = 5.6234(4) Å, c = 8.1348(7) Å, RBragg = 0.044, for further details see Table S7), 

γ-CaRh2D3.20(10) (32.4(10) wt-%, Pnma, a = 5.9601(10) Å, b = 5.4912(2) Å, c = 8.0730(11) Å, 

RBragg = 0.040, for further details see Table S7), CaRh2 (36.0(6) wt-%, MgCu2 type, 

a =3.5499(6) Å), Rh (3.6(1) wt-%, Fm3̅m, a = 3.8092(2) Å, RBragg = 0.024) and CaO (0.1 wt-%, not 

displayed) at 465(12) K and vacuum based on NPD (λ = 1.8676(3) Å, D20, ILL, Grenoble, 

NUMORs 974351-974359, Rp = 0.026, Rp’ = 0.103, Rwp = 0.033, Rwp‘= 0.109, χ² = 3.49), using 

FullProf [1]. The asterisk marks a reflection from the sapphire cell.  

Table S7. Crystal structure parameters of β-CaRh2D3.94(9) and γ-CaRh2D3.20(10) (in italics) based on 

NPD (NUMORs 974351-974359, see Figure S7) at 465(12) K and under applied vacuum. 

Displacement parameters are fixed to the refinement of NUMORs 974301-974309.  

atom Wyckoff 
position 

x y z SOF 

Ca 4c 0.053(2) 
0.067(3) 

¾ 0.126(2) 
0.134(2) 

1 

Rh1 4b 0 ½ ½ 1 
Rh2 4c 0.707(2) 

0.678(2) 
¾ 0.7494(12) 

0.728(1) 
1 

D1 [a] 4c 0.058(2) 
0.053(9) 

¼ 0.609(2) 
0.585(8) 

0.83(2) 
0.16(2) 

D2 [a] 8d 0.146(8) 
0.111(5) 

0.024(10) 
0.018(7) 

0.66807 [c] 
0.718(4) 

0.13(1) [c] 
0.19(1) 

D3 [b] 4c 0.059(2) 
0.054(3) 

¼ 0.149(2) 
0.142(2) 

1.00(2) 
0.88(3) 

D4 [b] 8d 0.758(1) 
0.751(1) 

0.9861(12) 
0.995(2) 

0.6068(9) 
0.5999(8) 

0.92(1) 
0.89(1) 

[a] D occupying [Ca2Rh2] tetrahedron, [b] D occupying [Ca3Rh2] trigonal bipyramid  

[c] parameters were refined alternating   
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Figure S8. Rietveld refinement of the crystal structure of CaRhH3-x (40.2(1) wt-%, Pm3̅m, metal 

atoms: CsCl type, a = 3.64727(9) Å, Biso(Ca) = 0.85(2) Å², Biso(Rh) = 0.54(2) Å², RBragg = 0.007), 

Rh (36.1(1) wt-%, Fm3̅m, a = 3.79972(7) Å, RBragg = 0.019), Rh (18.3(2) wt-%, nano crystalline) 

and CaO (5.44(10) wt-%) based on XRPD (Huber G670, MoKα1 radiation, Rp = 0.029, Rp’ = 0.068, 

Rwp = 0.037, Rwp‘= 0.068, χ² = 2.56), using TOPAS [3]. 

 

References 

[1] J. Rodríguez-Carvajal, FullProf: A Program for Rietveld Refinement and Pattern Matching 

Analysis (version 5.30); Insitut Laue-Langevin, Grenoble (France), 2012. 

 

[2] E. G Moshopoulou, R. M. Ibberson, J. L. Sarrao, J. D. Thompson, Z. Fisk, Structure of 

Ce2RhIn8: an example of complementary use of high-resolution neutron powder diffraction 

and reciprocal-space mapping to study complex materials. Acta Crystallogr. B 62 (2006) 

173-189.  

 

[3] TOPAS, version 5; Bruker AXS, www.bruker-axs.com. 

 

15.9. Supporting information

245



Part III.

Unpublished results within this

thesis

246



16. Quantum-Mechanical Calculations of

MPd3 and MPd3H (M = Mg, Zr, Sc)

and Crystal Structure of SnPd3D0.138(7)

16.1. Authors' contributions

The syntheses and hydrogenation experiments of SnPd3 were done by Siobhan C. Stevenson. The

quantum-mechanical calculations of MPd3 (M = Mg, Zr, Sc) were done by Nicolas Zapp. The text

was written and Rietveld re�nement of the structure of SnPd3D0.138(7) based on neutron di�raction

done by André Götze. This text is not approved by Siobhan C. Stevenson.

16.2. Introduction

MPd3 compounds are known to form hydrides. The hydrogen uptake depends on the metal M. For

main group elements the hydrogen amount is correlated to electronic and geometric aspects [1]. SnPd3
is assumed to absorb little hydrogen. Hydrogenation investigations on SnPd3 show a volume expansion

(0.4 %) [2], however, the hydrogen position and occupation was not determined, yet. Therefore, a

neutron powder di�raction study was conducted.

MgPd3H0.7 (anti-perovskite type) is another example for hydride formation [3]. Although, scandium

and zirconium are similar in electronegativity and radius compared to magnesium, ScPd3 and ZrPd3
do not show a signi�cant hydrogen uptake [4]. Density functional theory (DFT) calculations were

conducted to compare the thermodynamical stability of MPd3H (M = Mg, Sc, Zr).

16.3. Crystal structure of SnPd3D0.138(7) based on neutron

powder di�raction

SnPd3 was synthesized by a solid state reaction in a sealed silica glass ampoule. Selenium was

added as mineralizing agent. A grey powder was yielded with impurities of Pd2Sn and Pd3Sn0.8Se0.2
[4]. SnPd3 was deuterated at 703 K under 5.0 MPa hydrogen pressure for 48 h. The structure of

SnPd3D0.138(7) was re�ned based on neutron powder di�raction (Fig. 16.3.1 and Table 16.3.1). It

crystallizes in a defect anti-perovskite type. Hydrogen occupies the [Pd6] octahedral voids. The

hydrogen absorption of SnPd3 is comparble to PbPd3 (0.13 hydrogen per formula unit) [5]. The

interatomic Pd-D distances of both hydrides are also similar (SnPd3D0.138(7):d(Pd-D) = 1.99169(6) Å,

PbPd3D0.13(1):d(Pd-D) = 2.02016(3) Å[5]).
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Figure 16.3.1.: Rietveld re�nement of the crystal structure of cubic SnPd3D0.138(7) (92(1) wt-%,

Pm 3̄m, a = 3.98338(11) Å, RBragg = 0.021, for furter details see Table 16.3.1), Pd2Sn

(7.2(1) wt-%, Co2Si type, Pnma, a = 5.6491(7) Å, b = 4.3111(5) Å, c = 8.0986(11) Å,

RBragg = 0.18), Pd3(Sn0.8Se0.2) (0.50(2) wt-%) at 296(1) K based on neutron pow-

der di�raction (D20, ILL, Grenoble, λ = 1.8673(2) Å, Rp = 0.034, R'p = 0.092,

Rwp = 0.044, R'wp = 0.082, χ2 = 6.21). Crystal structure of SnPd3D0.138(7) with

one DPd6 octahedron is shown (green polyhedra).

Table 16.3.1.: Re�ned crystal structure and selected interatomic distances of cubic SnPd3D0.138(7)

based on neutron powder di�raction (Fig. 16.3.1) at 296(1) K.

atom Sn Pd D

Wycko� position 1a 3c 1b

x 0 1/2 1/2

y 0 1/2 1/2

z 0 0 1/2

B iso / Å2 0.76(7) 0.63(3) 1.8(4)

SOF 1 1 0.138(7)

d(Pd-D) = 1.99169(6) Å, d(Sn-D) = 3.44971(6) Å
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16.4. Ab initio calculations of the hydrogenation of MPd3 (M

= Mg, Zr, Sc)

The hydrogenation properties ofMPd3 (M = Mg, Zr, Sc) were investgated by DFT calculations which

were performed with the Vienna ab initio simulation package (VASP) [6,7] using PAW's [8], Fermi-

smearing and the PBE-method [9]. A cuto� energy of 600 eV was set for an automatically generated

and Γ-centered k -mesh, which resolved the Brillouin zone to 0.03 Å�1 in structure optimizations.

All structures were relaxed with full degrees of freedom, converging forces to 0.001 meV pm�1 and

electronic energy to 0.01 meV. If experimentally determined structures exist, they were used for

structure optimization. Initial parameters for the unknown hydrides were taken from the intermetallics

and hydrogen was assumed to occupy [Pd6] octahedral voids. The structures of the hydrides were also

relaxed. The parameters of ScPd3 were used for the nonexistent ZrPd3 crystallizing in AuCu3 type.

All initial structures are summerized in Table 16.4.1.

Table 16.4.1.: Used initial structures for the structure optimization.

compound structure type initial parameters of

MgPd3 AuCu3 MgPd3 [3]

MgPd3H anti-perovskite MgPd3H0.7 [3]

ScPd3 AuCu3 ScPd3 [10]

ScPd3H anti-perovskite ScPd3 [10] [a]

ZrPd3 AuCu3 ScPd3 [10]

ZrPd3H anti-perovskite ScPd3 [10] [a]

ZrPd3 TiNi3 ZrPd3 [4]

ZrPd3 anti-BaMnO3 ZrPd3H [4] [a]

[a] H is assumed to occupy [Pd6] octahedral voids

The reaction energies were calculated from total energies of the optimizations (Table 16.4.2). The

energy of molecular hydrogen was estimated from a H2 molecule in a cubic box with a cell parameter

of 34.5 Å, which corresponds to an ideal gas at 0.1 MPa and 293 K. The hydrogenation of MgPd3 is

thermodynamically favored compared to ScPd3 or ZrPd3.

Table 16.4.2.: Calculated energies and reaction enthalpies of the hydrogenation of MPd3
(MPd3 + 1/2 H2 � MPd3H), E (H2) = -6.696 eV (formula unit)-1.

M Mg Sc Zr Zr

stucture type of MPd3 [a] AuCu3 AuCu3 AuCu3 TiNi3
space group Pm 3̄m Pm 3̄m Pm 3̄m P63/mmc

E (MPd3) / eV (formula unit)-1 -17.072 eV -22.343 -24.189 -24.283

E (MPd3H) / eV (formula unit)-1 -20.815 -25.779 -26.472 -26.906

∆H / kJ mol-1 (formula unit)-1 -38.106 -8.490 +102.743 +69.942

[a] H occupies [Pd6] octahedral voids resulting in anti-perovskite type (�lled

AuCu3 type) and anti-BaMnO3 type (�lled TiNi3 type)
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16.5. Conclusion

The crystal structure of SnPd3D0.138(7) was determined by neutron powder di�raction. Deuterium

occupies the [Pd6] octahedral sites. SnPd3D0.138(7) crystallizes in the cubic anti-perovskite type.

Quantum-mechanical calculations support the di�erent hydrogenation properties of MgPd3 (-38.1 kJ

mol-1 (formula unit)-1), ScPd3 (-8.5 kJ mol-1 (formula unit)-1) and ZrPd3 (+102.7 for cubic and

+69.9 kJ mol-1 (formula unit)-1 for hexagonal structure).
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17. Hydrogen Sorption Measurements of

MgPd2

17.1. Authors' contributions

The sorption measurements and analysis were done by Jens Möllmer (Institute of Non-Classical Chem-

istry at Leipzig University, Germany). The synthesis of MgPd2, the graphics and text were prepared

by André Götze. The text was not approved by Jens Möllmer.

17.2. Introduction

MgPd2 takes up hydrogen at room temperature and under hydrogen pressure of several hundred

kPa. Furthermore, the formed hydride releases hydrogen under ambient conditions (see [4] in [1]).

Therefore, a sorption enthalpy of MgPd2 near to the benchmark value of -38.9 kJ (mol H2)-1 can be

expected. This value can be calculated by the equation for the Gibbs energy with the point, that the

change in entropy is equal with the standard entropy of molecular hydrogen. For determination of

the sorption enthalpy isotherms at di�erent temperatures (283, 298 and 313 K) were measured and

additional sorption experiments were executed to check the hydrogen content in MgPd2Hx determined

by in situ neutron powder di�raction data.

17.3. Hydrogen sorption experiments

The sorption isotherms of hydrogen of MgPd2 show a loading of 1.75(9) for volumetric (Fig. 17.3.1,

left, p(H2)max = 0.1 MPa) and 1.86 mmol hydrogen per gram MgPd2 for gravimetric sorption ex-

periments (Fig. 17.3.2, left, p(H2)max = 2.48 MPa). The maximum hydrogen loading within one

standard deviation is reached at about 250, 500 and 800 kPa at 283, 298 and 313 K, respectively.

The hydrogen sorption enthalpy was calculated at a loading of 0.85 (mmol H2) g-1 that is approxi-

mately the in�ection point of the isotherms. The calculations were done by a linear regression of the

natural logarithm of the pressure and the reciprocal temperature (Fig. 17.3.1, right) and results in

-37.3 kJ (mol H2)-1. This value is near to the benchmark value of -38.9 kJ (mol H2)-1 as assumed

and is probably by accident similar to the reaction enthalpy of elementary palladium with hydrogen

(-38.2 kJ (mol H2)-1) [2]. In disordered MnxPd1-x the reaction enthalpy increases with increasing

x to -37.0 kJ (mol H2)-1) for Mn0.075Pd0.925 [3] and the ordered MnPd3 has a decreased enthalpy

(approximatly -66.9 kJ (mol H2)-1) [4] which demonstrate a higher stability of the ordered hydride.

The entropy (∆S = -110.7 J (mol H2)-1 K-1) was calculated from the intercept of the linear regression

(Fig. 17.3.1, right).

A hysteresis in the absorbtion and desorption isotherms was observed, which is well known for

intermetallic compound-hydrogen systems [5]. Therefore the desorption enthalpy and entropy are

di�erent to those of the sorption process. A desorption enthalpy of 41.8 kJ (mol H2)-1 and an entropy

of 123.2 J (mol H2)-1 K-1 were determined in the same way as for the sorption process. The enthalpy
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Figure 17.3.1.: Sorption and desorption isotherms of hydrogen on MgPd2 at di�erent temperatures

(left) and determination of the sorption enthalpy (∆H = b R = -37.3 kJ (mol H2)-1) and

entropy (∆S = -a R = -110.7 J (mol H2)-1 K-1) by linear regression (ln p = a + b T -1,

a = 13.3(8), b = -4.5(2) 103 K) at a loading of 0.85 (mol H2) g-1 (right).

of the desorption process is larger than the absolute enthaply of the sorption process (∆H desorb =

∆H sorb + 4.5 kJ (mol H2)-1).

The hydrogen content of the hydrides MgPd2 determined by in situ neutron di�raction were con-

�rmed by gravimetric sorption experiments at similar conditions (Fig. 17.3.2). A comparison of both

methods shows similar hydrogen contents whereby those of the sorption measurements are slightly

smaller. The hydrogen content determined by neutron di�raction under isothermal conditions in-

creases only after a deuterium pressure of 0.5 MPa due to a relativ constant pressure increase over

time without paying attention to reach the equilibrium.

Figure 17.3.2.: Sorption and desorption isotherms (left) and isobar (right) of hydrogen on MgPd2
determined by gravimetric hydrogen sorption measurements (GHSM) compared to

neuton powder di�raction (NPD).

17.4. Conclusion

Sorption and desorption enthalpies and entropies were determined by measured sorption isotherms.

Results for the enthalpies of the hydride formation and deformation of MgPd2 are -37.3 and 41.8 kJ

(mol H2)-1, respectively. The magnitudes of entropies are -110.7 for sorption and 123.2 J (mol H2)-1 K-1

for desorption process. A hystersis in pressure-composition (p-c) isotherm was observed. Furthermore,
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17.5. References for chapter 17

the hydrogen content of MgPd2Hx under isothermal and isobaric conditions determined by sorption

experiments are consitent with those determined by in situ neutron di�raction. Therefore, sorption

experiments are not only a good method to verify the hydrogen content from neutron di�raction, but

give insight into thermodynamics.
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18. Catalytic Measurements of the

Semi-Hydrogenation of Acetylene with

Pd11Bi2Se2

18.1. Authors' contributions

The catalytic measurements, and graphical analysis were done by Toni Keilhauer, Ioannis Aviziotis

and Marc Armbrüster (Institute of Chemistry, TU Chemnitz, Germany) and the XPS measurements

by Thomas Seyller (Institute of Physics, TU Chemnitz, Germany). The synthesis of Pd11Bi2Se2 and

the text were prepared by André Götze. The text was not approved by Toni Keilhauer, Ioannis

Aviziotis, Marc Armbrüster and Thomas Seyller.

18.2. Introduction

Pd11Bi2Se2 with a high palladium amount of 73 % does not form a hydride. A phase pure synthesis

without additives like iodine has been shown (see Chapter 14 in [1]). These are good preconditions

for the compound as hydrogenation catalyst. The selective hydrogenation of acetylene to ethylene is

an important reaction for the preperation of polyethylene. However, the formation of ethane should

be inhibited within this process and a high-selective catalyst is necessary. Catalytical properites of

Pd11Bi2Se2 with regards to conversion and selectivity to ethylene were investigated.

18.3. Catalytic measurement of the semi-hydrogenation of

acetyle

The catalytic measurements were executed in a feed of 0.5 % C2H2, 5 % H2 and 50 % C2H4 in helium

gas (total �ow of 30 ml min-1) at 437 K. The investigation results in a high selectivity to ethylene

(90 to 95 %) and low selectivities to ethane (< 10 %) and to C4Hx (< 5 %) (Fig. 18.3.1). The

conversion started only after 7.5 h and reaches a maximum conversion of 46 %. This phenomenon was

understood by X-ray photoelectron spectroscopy (XPS) measurements of Pd11Bi2Se2 before and after

the catalytic experiment. The determined values of selectivity are comparable with those of PdZn as

catalyst material, however, the conversion is far below that of PdZn [2].

XPS measurement of Bi 4f before catalysis shows sharp Bi signals at 157 and 163 eV and broad

signals at 158 and 164 eV which are assigned to the oxide state of bismuth and indicate the presence

bismuth oxide on the surface of the material. After the catalysis the broad signals are absent and only

the sharp signals of metallic bismuth remain.
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18.5. References for chapter 18

Figure 18.3.1.: Acetylene conversion and selectivity to ethylene of the semi-hydrogenation of acetylene

with Pd11Bi2Se2 as catalyst are plotted against time. The sharp peaks in conversion

are artifacts.

18.4. Conclusion

Pd11Bi2Se2 was found to be a highly selective catalyst for the semi-hydrogenation of acetylene with a

low conversion. The catalytst is active afer a long duration time due to the reduction of bismuth oxid

on the surface.

18.5. References for chapter 18
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intermetallic nanostructure with Pd�Zn�Pd ensembles for highly active and chemoselective

semi-hydrogenation of acetylene, ACS Catal. 6 (2016) 1054-1061.
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Abbildung 1: Strukturdirigierender Einfluss von Wasserstoff bei der Bildung von palladi-

umreichen Hydriden.   
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Einleitung und Motivation 

Interstitielle Hydride sind Wasserstoffverbindungen mit metallischem Charakter, bei de-

nen Wasserstoff meist Tetraeder- oder Oktaederlücken von intermetallischen Verbindun-

gen besetzt. Häufig werden diese Hydride von Edelmetallverbindungen gebildet. Einige 

palladiumreiche Verbindungen MPd3 sind dafür bekannt, in verwandten Strukturen der 

kubisch-dichtesten Packung (ccp, Cu-Strukturtyp) zu kristallisieren. Bei der Hydrierung 

wird oft eine Umlagerung von einer Überstruktur der ccp zu einer anderen beobachtet. 

Die treibende Kraft dieser Umlagerung ist die Generierung von [Pd6]-Oktaederlücken, die 

von Wasserstoff bevorzugt besetzt werden. InPd3 und TlPd3 bilden die Hydride InPd3H0.89 

und TlPd3H. Bei den leichteren homologen Verbindungen des Aluminiums und Galliums 

wurde hingegen noch keine Wasserstoffabsorption beobachtet. Daraus lässt sich schlie-

ßen, dass die Minoritätskomponente einen wesentlichen Einfluss auf die Wasserstoffauf-

nahme hat. Es ergeben sich die Kernfragen, welche elektronischen und geometrischen 

Eigenschaften das Element M haben muss, um eine Hydridbildung zu fördern und wie der 

Hydrierungsprozess abläuft. In dieser Arbeit wurden weitere binäre palladiumreiche Ver-

bindungen synthetisiert und auf deren Hydriereigenschaften getestet, um an diesem ein-

fachen System exemplarisch die Hydridbildung zu verstehen. In situ-Methoden, wie Pul-

verneutronenbeugung, wurden genutzt, um den Reaktionsverlauf dieser Festkörper-Gas-

Reaktionen zu analysieren. Mögliche Intermediatbildungen können beobachtet und erhal-

tene Erkenntnisse für Syntheseoptimierung genutzt werden. Die Untersuchungen wurden 

auf ternäre Systeme mit Halbmetallen erweitert, um den Einfluss einer höheren Valen-

zelektronenkonzentration (VEC) zu beleuchten. Die untersuchten Systeme sind aufgrund 

ihres hohen Palladiumgehalts auch für die Katalyse interessant.  

Der Übergang von metallischen zu kovalenten Hydriden ist nahtlos. Die meisten Hyd-

ride lassen sich aber dennoch grob zu einer Gruppe zuordnen. Bei einigen ternären Rho-

dium-Hydriden wurde gezeigt, dass sie metallische Eigenschaften haben, jedoch auch 

kovalente Rh-Rh-Bindungen ausbilden. Diese Verbindungen lassen sich nicht als metal-

lische Hydride klassifizieren. Deshalb wurde untersucht, ob es im Calcium-Rhodium-Sys-

tem ein Hydrid mit der Zusammensetzung CaRhHx gibt, und ob dieses ebenfalls direkte 

Rh-Rh-Bindungen ausbildet.   
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Materialien und Methoden 

Die Verbindungen wurden durch typische Festkörperreaktionen bei hohen Temperaturen 

in abgeschmolzenen Quarzglasampullen durchgeführt. In manchen Fällen wurde Iod als 

Mineralisator hinzugefügt, um die Kristallinität und Reinheit zu erhöhen. Die Synthese der 

Hydride und Deuteride erfolgte in Autoklaven bei bis zu 20 MPa Wasserstoffdruck und 

823 K. Die Reinheit der Verbindungen wurde mittels Röntgenpulverbeugung (XRPD) und 

Energiedispersiver Röntgenspektroskopie (EDX) untersucht. Die Position und die Beset-

zung der Wasserstoffatome in der Kristallstruktur der Hydride wurde mit Neutronenpul-

verbeugung bestimmt. Diese wurde an deuterierten Proben durchgeführt, weil Deuterium, 

verglichen mit Wasserstoff, einen kleineren inkohärenten Streubeitrag besitzt. Hydrie-

rungsreaktionen wurden mittels dynamischer Differenzkalorimetrie (DSC) untersucht. Die 

Messungen wurden in einer integrierten Druckgaskammer bei bis zu 5 MPa Wasserstoff-

druck und einer Maximaltemperatur von 703 K durchgeführt. Mehrere Zyklen wurden ge-

messen, um die Reaktionen auf Reversibilität zu überprüfen. Die beobachteten Reaktio-

nen wurden mit in situ-XRPD und -Neutronenbeugung reproduziert. Die Hydrierungsre-

aktionen wurden direkt auf dem Neutronendiffraktometer in einer Leukosaphireinkristall-

zelle am Institut Laue-Langevin in Grenoble durchgeführt. Auf die Zelle wurde bis zu 

12 MPa Wasserstoffdruck gegeben und die Probe mit einer Laserheizung bis zu 573 K 

geheizt. Gravimetrische und volumetrische Wasserstoffsorptionsmessungen wurden in 

Kooperation mit dem Institut für Nichtklassische Chemie an der Universität Leipzig durch-

geführt. Katalytische Messungen zur Semihydrierung von Acetylen wurden in Kooperation 

mit dem Institut für Chemie der Technischen Universität Chemnitz gemessen. Quanten-

mechanische Rechnungen wurden in Kooperation mit der Lomonossow-Universität Mos-

kau durchgeführt. Zusätzlich wurden Charakterisierungsmethoden wie Röntgeneinkristall-

strukturanalyse, magnetische Messungen und Stabilitätsuntersuchungen (thermische 

Stabilität, Luftstabilität) verwendet. 
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Ergebnisse 

Hydrierungen palladiumreicher Verbindungen 

Der Schwerpunkt dieser Arbeit liegt in der Untersuchung von Hydriereigenschaften palla-

diumreicher Verbindungen. Geordnete binäre Verbindungen werden gebildet, wenn deren 

Minoritätselement ausreichend verschieden in Elektronegativität und Geometrie ist. Die 

meisten MPd3-Verbindungen kristallisieren in einer Überstruktur der kubisch-dichtesten 

Packung (ccp) (Abbildung 1). Die kubischen Verbindungen SnPd3 und PbPd3 nehmen 

Wasserstoff unter Volumenzunahme auf und bilden die Hydride SnPd3H0.14 und 

PbPd3H0.13. Wasserstoff besetzt die bevorzugten [Pd6]-Oktaederlücken und der Anti-

Perowskit-Typ wird gebildet. Tetragonales MgPd3 ist ebenfalls dafür bekannt, Wasserstoff 

aufzunehmen. In situ-Untersuchungen ergaben, dass zuerst [Pd6] und [MgPd5]-Oktaeder-

lücken besetzt werden. Die [Mg2Pd4]-Lücken werden erst mit Wasserstoff besetzt, wenn 

sie durch die Volumenzunahme der vorausgegangenen Wasserstoffabsorption groß ge-

nug sind. BiPd3 mit einer größeren Valenzelektronenkonzentration (VEC) als die voran-

gegangenen MPd3 Verbindungen, kristallisiert in einer orthorhombischen Struktur, die mit 

der doppelt-hexagonal-dichtesten Packung (dhcp) verwandt ist. Eine geringe Wasser-

stoffaufnahme reicht aus, um eine wasserstoffinduzierte Umlagerung zur kubisch-dichtes-

ten Packung zu erwirken (Abbildung 2). Die Reaktion verläuft ohne die Bildung von Inter-

mediaten ab. Mögliche Mechanismen für die Umlagerung sind kurzwegige Atomdiffusio-

nen oder Gleitungen der hexagonalen Schichten. Auf Grund der hohen Temperatur 

(> 550 K) ist der erstgenannte wahrscheinlicher. Bezogen auf die Elektronegativität, bil-

den die Zinn-, Blei- und Bismutverbindungen die Grenze für Hydierbarkeit von MPd3. Eine  

 

Abbildung 2: Darstellung 

der wasserstoffinduzierten 

Umlagerung vom ortho-

rhombischen BiPd3 (dhcp-

Überstruktur) zum tetrago-

nalen BiPd3H0.2 (ccp-

Überstruktur).  
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Abbildung 3: Reaktionsverlauf (oben), beobachtet mit in situ-DSC (links), und Isothermen 

(rechts) von der Hydrierung von MgPd2  

 

weitere Erhöhung der VEC führt zu anderen Strukturen und Verbindungen. Palladiumrei-

che Verbindungen, wie zum Beispiel Pd3As und Pd20Sb7, nehmen keinen Wasserstoff auf.  

Palladiumreiche Verbindungen mit einem Verhältnis von zwei Anteilen Palladium zu 

einem Anteil Metal M kristallisieren im Co2Si-Typ, der verwandt mit dem AlB2-Typ ist. Die 

Strukturen von MPd2-Verbindungen enthalten keine [Pd6]-, sondern nur stark verzerrte 

[MPd5]-Oktaederlücken. MgPd2 ist die einzige MPd2-Verbindung (M = Mg, Zn, Sn, Pb), 

die Wasserstoff aufnimmt. Während der Hydrierung von MgPd2 dehnt sich dessen Ele-

mentarzelle anisotrop aus, weil Wasserstoff [MgPd5]-Oktaederlücken besetzt, deren Grad 

der Verzerrung abnimmt. Die Hydrierung zu MgPd3H findet mit einer schnelleren Kinetik 

statt als die Dehydrierung. Die aus Isothermen bestimmte Reaktionsenthalpie ist ähnlich 

groß wie die Standardentropie von molekularem Wasserstoff multipliziert mit der Raum-

temperatur. Dadurch absorbiert MgPd2 Wasserstoff unter milden Bedingungen und gibt 

ihn bei Normalbedingungen wieder ab. MgPd2H desorbiert Wasserstoff auch reversibel 

bei Temperaturerhöhung und bildet MgPd2H0.2. Bei weiterer Temperaturerhöhung zer-

setzt sich das Hydrid irreversibel zu kubischem MgPd3Hx und Magnesiumhydrid (Abbil-

dung 3). 

Neben den binären palladiumreichen Verbindungen, wurden auch einige ternäre Ver-

bindungen, wie zum Beispiel isotype Verbindungen des Pt5TlAs-Strukturtyps, synthetisiert 

und auf Hydridbildung untersucht. Auch hier verhindert die Erhöhung der VEC, durch Ein-

bringen von elektronenreichen Halbmetallen, eine signifikante Wasserstoffaufnahme. 

Pd5InSe als Vorläuferverbindung zeigt hingegen eine Wasserstoffaufnahme. Bei hohen 
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Temperaturen zersetzt es sich über Pd8In2Se zu InPd3 und Palladiumseleniden. Das ge-

bildete InPd3 nimmt anschließend Wasserstoff auf. Pd11Bi2Se2 reagiert ebenfalls nicht mit 

Wasserstoff. Es kristallisiert in einer 4 x 4 x 4 -Überstruktur des W-Strukturtyps. Die Struk-

tur enthält Lücken mit einer geordneten Verteilung, die jedoch nicht für Wassserstoffein-

bau geeignet sind. Die Verbindung wurde zuvor irrtümlich als Pd3Bi0.6Se0.4 veröffentlicht 

[1], das im BiF3-Strukturtyp kristallisiert und in dem Bismut- und Selenatome mischbesetzt 

sind. In Pd11Bi2Se2 sind diese Atome ausgeordnet und ein etwas geringer Palladiumgehalt 

ist vorhanden. Diese Verbindung wurde bei der Semihydrierung von Acetylen als Kataly-

satormaterial getestet (Abbildung 4). Es zeigt eine sehr hohe Selektivität zum Ethylen bei 

einem niedrigen Umsatz. Die Katalyse beginnt aufgrund einer passivierenden Bismuto-

xidschicht auf der Oberfläche von Pd11Bi2Se2 erst nach einigen Stunden.  

 

Hydride des Calcium-Rhodium-Systems 

Im Calcium-Rhodium-System waren bisher nur Verbindungen mit einem größeren Calci-

umanteil als Rhodium bekannt. Ein Hydrid mit der Zusammensetzung CaRhHx war noch 

nicht bekannt trotz der Versuche, es aus Calciumhydrid und Rhodium zu synthetisieren 

[2]. Das Perowskit-Typ-Hydrid CaRhH3 kann durch die Hydrierung der Laves-Phase 

CaRh2 erhalten werden (Abbildung 5). Durch in situ-Neutronenbeugungsexperimente 

wurde der Hydrierungsweg analysiert. CaRh2 bildet kubisches α-CaRh2H0.05 unter Was-

serstoffaufnahme in [Ca2Rh2]-Tetraederlücken. Durch weitere Wasserstoffaufnahme wird 

die orthorhombisch verzerrte Laves-Phase β-CaRh2H3.9 gebildet. Sorptionsmessungen  

   

Abbildung 4: Umsatz und Selektivitäten von der Semihydrierung von Acetylen (links) mit 

Pd11Bi2Se2 (Kristallstruktur rechts) als Katalysatormaterial. Die Ausschläge im Umsatz 

sind Artefakte. 
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Abbildung 5: Reaktionsweg der Hydrierung des Laves-Phasen-Hydrids CaRh2 (oben) un-

tersucht mit in situ-Neutronenpulverbeugung am Institut Laue-Langevin in Grenoble (un-

ten). 

 

bestätigen diesen Wasserstoffgehalt. Wasserstoff besetzt dabei für Laves-Phasen unge-

wöhnliche trigonal-bipyramidale [Ca3Rh2]-Lücken, die zwischen zwei unbesetzten 

[Ca2Rh2]-Tetraederlücken liegen. Bei der Dehydrierung bildet sich ein zur β-Phase isoty-

pes γ-CaRh2H3.2. Dieses wird nicht bei der Hydrierung beobachtet und besitzt wahrschein-

lich eine Mischungslücke zum β-Hydrid. Die Laves-Phasen-Hydride können durch Tem-

peraturerhöhung unter Wasserstoffdruck zum Perowskit CaRhH3 und nano-kristallinem 

Rhodium zersetzt werden. Ein anderer Zugang zu dieser Verbindung ist bisher nicht be-

kannt und ist zum Beispiel über Direktsynthese nicht möglich. CaRhH3 hat hauptsächlich 

metallischen Charakter und bildet keine direkten Rh-Rh-Bindungen aus. Damit unter-

scheidet sich es vom leichteren Homologen MgRhH, das schwache Rh-Rh-Bindungen 

ausbildet. 
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Fazit 

In dem exemplarischen System der palladiumreichen intermetallischen Verbindungen, 

konnte gezeigt werden, dass deren Wasserstoffaufnahme mehr von elektronischen als 

geometrischen Aspekten abhängt. Die Wasserstoffabsorption wird gefördert, wenn die 

Minoritätskomponente eine ähnliche Elektronegativität wie Palladium, jedoch einen grö-

ßeren Atomradius besitzt. SnPd3 absorbiert deshalb weniger Wasserstoff als InPd3. Eine 

Erhöhung der Valenzkonzentration durch Einbau von Halbmetallen hemmt außerdem die 

Wasserstoffaufnahme. So absorbieren die Grenzverbindungen BiPd3 und SnPd3 noch 

signifikant Wasserstoff, Verbindungen mit Halbmetallen wie zum Beispiel Pd11Bi2Se2 hin-

gegen nicht. Diese Verbindungen sind jedoch interessant für die Katalyse. So zeigt 

Pd11Bi2Se2 eine hohe Selektivität zu Ethylen bei der Semihydrierung von Acetylen. Die 

Einbringung von Magnesium in palladiumreichen Systemen erhöht die Wahrscheinlichkeit 

einer Hydridbildung, denn MgPd2 nimmt im Gegensatz zu anderen MPd2 Verbindungen 

(M = Zn, Sn) Wasserstoff auf. Diese Erkenntnisse können auf andere unbekannte Sys-

teme übertragen werden, um Vorhersagen über Wasserstoffabsorption zu treffen.  

In situ-Methoden, wie Pulverneutronenbeugungen, haben sich in dieser Arbeit als das 

Mittel der Wahl bewährt, um Festkörper-Gas-Reaktionen zu analysieren. So konnte ge-

zeigt werden, dass geringe Wasserstoffaufnahmen im Fall von BiPd3 ausreichen, um 

durch Änderungen in der Schichtfolge der Kugelpackungen, geeignete Wasserstoffkoor-

dinationsumgebungen, [Pd6]-Oktaeder, zu bilden. Intermediate konnten bei dieser Hyd-

rierung nicht beobachtet werden. Im Gegensatz dazu, wurden bei CaRh2 die Intermediat-

Hydride CaRh2Hx entdeckt und der Reaktionsweg zum CaRhH3 aufgedeckt. CaRhH3 bil-

det, verglichen zum höheren Homologen MgPdH, keine Rh-Rh-Bindungen auf Grund des 

etwas stärker ionischen Charakters des Calciums aus. Hydride mit metallischen Eigen-

schaften und kovalenten Übergangsmetallbindungen sollten folglich mit Elementen wie 

Magnesium zu erwarten sein. 
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