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Abstract

This thesis collects the results (already published and yet to publish) obtained dur-
ing my PhD on the subject of classical nonequilibrium statistical mechanics. Mainly
stochastic systems are considered, with special regard to applications in soft matter
physics. First, we study the dynamics of two colloidal particles embedded in a envi-
ronment driven far from equilibrium. Performing a systematic coarse-graining over
the environment degrees of freedom, we derive the generalised Langevin description
and extended fluctuation-dissipation relation. In particular we focus on an active
matter environment and we derive the generalised Langevin equation for a colloid
with a mean-field linear coupling to a bath of noninteracting active particles. In
order to account for typical active effects, such as clustering, we include nonlinear
interactions effects in the Langevin equation in the form of effective coefficients.
This is done by means of perturbation theory and Brownian dynamics simulations.
We show that the so-obtain effective minimal model well reproduces actual colloid
statistics observed in experiments. Then, we investigate a heat engine based on an
active Brownian particle confined in a parabolic potential and immersed in a ther-
mal bath. Given that the potential is harmonic, the average energetics of the engine
is determined by the second moment of the particle position. We map the model
to a passive engine in a bath with a suitable time-dependent effective temperature.
The performance of both the active and the passive engine including maximum effi-
ciency, efficiency at maximum power and maximum efficiency at a fixed power thus
obeys the same formal limitations. Finally, we investigate the pressure exerted by a
fluid of active particles deriving the hydrodynamic equations of motion for the fluid
described by underdamped Langevin equations. The contraction into the hydrody-
namic description is performed by locally averaging the particle dynamics with the
non-equilibrium many-particle probability density, whose formal expression is found
in the physically relevant limit of high-friction through a multiple-time-scale anal-
ysis. This approach permits to identify the conditions under which self-propulsion
can be subsumed into the fluid stress tensor and thus to define systematically and
unambiguously the local pressure of the active fluid.
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Chapter 1

Introduction

One of the most important achievements of modern physics is the atomistic hypoth-
esis, according to which any macroscopic object has a microscopic structure, made
by an enormous amount of small elements called atoms1. The different ways they
interact constitute matter as we know it. This hypothesis encouraged physicists to
study systems through particles-based theories, aiming to explain their macroscopic
behaviour, but it became immediately a very challenging task. Indeed, systems made
by many interacting degrees of freedom, either classic or quantum, are typically in-
tractable in full detail. Namely, the dynamical equations that characterise them
usually cannot be explicitly solved neither analytically nor computationally. But,
even if a solution could be obtained, we would still not easily grasp the phenomenol-
ogy at the macroscopic scale. As a matter of fact, many features of any physical
system are collective, emerging phenomena from a coherent behaviour of the under-
lying degrees of freedom, which in principle cannot be deduced by the microscopic
laws and it creates a gap between the microscopic and the macroscopic level.
As disarming this situation can be, a substantial help is given, if the degrees of free-
dom under survey are not too strongly correlated across well-separated scales, e.g.
spatial, temporal etc. This separation implies that most of the information stored
at a certain scale is superfluous to characterise the bigger scales and should not be
inherited. This suggests to perform a systematic coarse-graining of the systems, such
that their description relies only on certain relevant observables [1]. The physical
interpretation of whom, in agreement with the (macroscopic) laws of Thermody-
namics, is then provided by Statistical Mechanics, responsible for bridging the gap.
Indeed, it gives the recipe for the coarse-graining performed through the elimination
of a large subset of the whole degrees of freedom. The latter are discerned according
to well-apart dynamical features, e.g. characteristic times, which classify the entire
set into fast and slow subsets. In this direction, probably the most famous example
is Brownian Motion, regarding a particle embedded in a fluid made by countless
molecules, which is small enough to jiggle perceptibly, but large enough to be visible

1We neglect here and through all the thesis their subdivision into quarks and so on.

1



CHAPTER 1. INTRODUCTION 2

in the microscope2. We are not interested in the individual interaction between the
fluid molecules and the Brownian particle (BP). Indeed each collision has a negligible
effect, but only the superposition of many small interactions produces an observable
effect. Assuming the BP weakly-coupled and much bigger than the fluid molecules,
a time-scale separation naturally emerges such that the fluid can be treated as a
homogeneous thermal environment with infinite heat capacity and a fast relaxation
time compared to the BP. This allows to replace the microscopic coupling with a
hydrodynamic one. It is conveniently decomposed into a random and a friction term
accounting for the random aspects of the collisions and their systematic part, re-
spectively. This leads, for the BP alone, to an effective description, belonging to
a scale intermediate between the micro and macro and thus called mesoscopic [2].
The distinction between the macroscopic, mesoscopic and microscopic levels is not
unambiguous. It is common to make the following distinction: the macroscopic level
is described using deterministic, irreversible laws like hydrodynamics. For the meso-
scopic level, thermal noise plays a major role and stochastic models are used. The
microscopic level refers to any underlying deterministic and reversible description,
i.e. atomistic Hamiltonian dynamics.
The explicit derivation of the mesoscopic equations relies on the solution of the elim-
inated microscopic degrees of freedom and typically it is as difficult as the solution of
the entire system. Remarkably, this derivation is unnecessary for systems in thermo-
dynamic equilibrium, i.e. without any macroscopic current (of mass, energy etc.),
through the employ of equilibrium statistical mechanics [3, 4]. The latter recurs
to minimal assumptions, namely, the micro-states of constant energy are equally
probable and the existence at the macroscopic level of thermodynamic potentials,
whose minimisation characterises univocally the system features, thus addressing the
coarse-graining towards a reliable physical interpretation. For Brownian Motion, the
coarse-graining is steered by equilibrium principles from classical statistical mechan-
ics and kinetic theory, e.g. the Gibbs distribution and the equipartition theorem, to a
clear physical interpretation for the obtained effective equation, e.g. the fluctuation-
dissipation theorem we will introduce in Sec. 2.1.
On the contrary, for nonequilibrium systems, i.e. those traversed by macroscopic
currents, a unifying theoretical framework is still to be established, since thermody-
namic potentials do not admit straightforward extension to nonequilibrium. Such
accomplishment is likely to have far reaching impacts, as nonequilibrium conditions
are ubiquitous in Nature, much more than equilibrium’s. Nonequilibrium statistical
mechanics is still a wide open field, but despite the disarming complexity, general
results have been obtained that are valid far-from-equilibrium. To name a few, fluc-
tuation theorems [5–7], Jarzinsky relation [8], and stochastic entropy production
related to fluctuations of heat, work [9, 10]. Some assumptions adopted for equilib-
rium systems are no longer applicable. Therefore, coarse-graining must start from
first principles and be explicitly carried out. To bypass it, approaches independent

2Any quantum effect is therefore neglected.



CHAPTER 1. INTRODUCTION 3

of the equilibrium constraints must be developed and employed. An example is the
large deviation theory [11, 12], which gives insight about fluctuations regardless of
the magnitude of the nonequilibrium source. Remarkably, the general framework for
dealing with Brownian Motion by elimination of “fast” degrees of freedom is inde-
pendent of equilibrium constraints. Nevertheless, while the mathematical derivation
is the same, the physical interpretation of the coarse-grained equation must be care-
fully carried out. Assuming that the nonequilibrium source is affecting only the BP
and not the thermal environment, the extension is physically reliable and not lim-
ited to close-to-equilibrium systems. Nevertheless, the symmetries that characterise
Brownian Motion at equilibrium are not satisfied a priori, but depend on the nature
of the eliminated degrees of freedom. Examples recurring in the thesis are driven and
active matter. Both are characterised by the presence of a nonequilibrium source,
responsible for a continuous production of entropy and thus for time reversal sym-
metry [13]. While, in the former this source is “external” and impose coherent shear
flows on the whole system particles, in the latter it comes from hidden degrees of
freedom and acts at the level of the individual particle3.
The thesis aims to give a contribution in this direction and it is structured as fol-
lows. In Chapter 2 we introduce more precisely Brownian Motion through two
equivalent formalisms: the Langevin and the Fokker-Planck equations for a generic
many-body system and, especially, for active particles. Later in the same Chapter
we present some other important tools based on those equations and to be employed
in the following, namely path integral formulation and linear response theory. In
Chapter 3 we set up a theory for interacting Brownian particles embedded in a
nonequilibrium environment, starting from the microscopic interacting many-body
theory. Using nonequilibrium linear response theory, we perform a coarse-graining
and we characterise the effective dynamical interactions at the colloid scale and the
statistics of the nonequilibrium environmental noise, arising upon integrating out
the fast degrees of freedom. As hallmarks of nonequilibrium, the breakdown of the
fluctuation-dissipation and action-reaction relations for Brownian degrees of freedom
is exemplified with two prototypical models for the environment, namely Brownian
particles driven by an external vortex and stirred colloids [15, 16]. In Chapter 4 we
focus on a specific nonequilibrium environment, i.e. a fluid of active particles. The
colloid is described by a Newton equation, while the active particles by a set of over-
damped Langevin equations. If their coupling to the colloid is linear, the elimination
of fast degrees of freedom can be analytically done and leads to a non-Markovian
underdamped Langevin equation for the colloid alone. The latter is in the over-
damped and Markovian limit formally equivalent to the equation employed to model
the active particles. In other words, under those approximations, the colloid behaves
like an active particle itself. We investigated the contribution of non-linearities both
analytically and with simulations. First we introduce a small non-linear force in the

3For more details about the differences between active and driven matter see the remarkable
review by Menzel [14].
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linear equation and we calculate the first correction to the variance in the framework
of the perturbation theory. Then, to confirm the analytical prediction, we simulate
the entire dynamics of the colloid coupled to the active particles investigating the
variance and the displacement distribution of the colloid [17]. In Chapter 5, we start
from the linear model and, introducing time-dependent parameters, we induce a pe-
riodic dynamics on the colloid, to be treated as a Stirling cycle affected by thermal
and non-thermal fluctuations, thus describable within the Stochastic Thermodynam-
ics framework. We investigate the characteristics of its, work, heat and efficiency,
in comparison with the same cycle run with a colloid embedded in an equilibrium
environment. In particular we established a mapping to the equilibrium result pro-
vided that an active effective temperature is defined [18]. We investigate the cycle
both in the quasi-static limit, which allows for an exact analytic solution, and in
the finite-time regime. The latter has been studied both via simulation of Brown-
ian dynamics and numerical solution of the Fokker-Planck equation employing the
method presented in [19]. In Chapter 6, we derive the hydrodynamic equations of
motion for a fluid of active particles described by underdamped Langevin equations
that reduce to the active Brownian particle model, in the overdamped limit. The
contraction into the hydrodynamic description is performed by locally averaging the
particle dynamics with the nonequilibrium many-particle probability density, whose
formal expression is found in the physically relevant limit of high friction through
a multiple-time-scale analysis. This approach permits us to identify the conditions
under which self-propulsion can be subsumed into the fluid stress tensor and thus to
define systematically and unambiguously the local pressure of the active fluid [20],
subject previously highly debated in the community [21–24]. In particular we discuss
our result within the dilute limit for the fluid, in which the introduced observables
have a simpler and more intuitive form.



Chapter 2

Preliminary material

2.1 Langevin equation
Consider a sphere immersed in a tube filled with water. As long as the sphere is
macroscopic, its dynamics is perfectly described by classical mechanics, predictable
at later times given the initial conditions. The water, assuming an equilibrium
coarse-graining over its microscopic degrees of freedom (molecules), is described as
a uniform and inert continuum, such that any interactions with the sphere can be
modelled with macroscopic forces, e.g. gravity and friction. If we reduce the radius
to the order of micrometers, the motion becomes unpredictable and erratic. This
was the surprising conclusion of Robert Brown in 1827 from observation of small
pollen grains suspended in water, later called Brownian particles (BPs). The source
of this motion was not attributed to some features of the pollen, rather to the water,
to be treated as a never-resting environment made by a huge number of fluctuating,
upsetting the inert medium obtained via the previous coarse-graining at this scale.
For long time, the surprising observation by Robert Brown was left without a mathe-
matical explanation. The first detailed explanation of Brownian Motion had to wait
almost eighty years for Einstein [25], to provide the link between the theory of heat
and the statistical motion of particles in suspensions, thereby relating diffusion and
osmotic pressure, in a way not expected from equilibrium thermodynamics. This
work was a breakthrough showing the limit of classical macroscopic theories when
dealing with smaller and smaller systems and providing an atomistic link between
previously (seemingly) unrelated macroscopic notions. Few years before, another
formulation of Brownian Motion aiming to model the stocks market behaviour was
accomplished by Louis Bachelier [26], but for long time ignored by the physics com-
munity. Extensive systematic tests of the new theory of Brownian Motion were
conducted by Jean Perrin in 1909 [27], which confirmed the prediction by Einstein,
crowning him as founder of the theory of Brownian Motion and established the foun-
dation of the atomic theory of matter. The first modern mathematical formulation
of Brownian Motion is attributed to Paul Langevin [28] (although a more complete
and rigorous formulation has been done by Ornstein [29, 30]), in 1908, wrote down
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an equation for the BP, named after him, based on two assumptions: weak-coupling
and big mass difference between the BP and the fluid molecules. If the BP is much
heavier a time-scale separation between the two dynamics naturally appears imply-
ing that the water molecules can be regarded as fast degrees of freedom with respect
to the BP [31]. The former are assumed to be much more numerous and cumula-
tively massive than the latter, so to be treated in a coarse-grained description, as a
homogeneous thermal environment for the BP, with instantaneous relaxation time
and infinite heat capacity characterised by a temperature T and a viscosity η. The
environment-BP coupling, no longer negligible at this scale, is assumed weak so to
be treated as a small perturbation to the fast degrees of freedom in the framework
of the linear response theory. The response function is by definition a coarse-grained
observable averaged over the fast degrees of freedom. Accordingly, the coupling with
the BP can be written as the sum of two separate forces: the random force or noise,
ξ(t), which through random kicks due to the countless collisions with the fluid parti-
cles, pumps energy into the system and the friction [32], that extracts excess energy
from the system and it gives back to the environment producing the never-resting
motion of the BP. Thus, the Langevin equation for a free BP with mass M and
radius R in one dimension1 reads

Mv̇(t) = −γv(t) + ξ(t) (2.1)

with γ the friction coefficient. For an isolated sphere γ ≡ 6πηR. The noise is a
random variable and it is formally (although not mathematically rigorously2) defined
as

ξ(t) = lim
dt→0

dW (t)

dt
, (2.2)

with W (t) a Wiener process. Therefore, ξ is a Gaussian variable, completely char-
acterised by its first two moments:

〈ξ(t)〉 = 0, ∀ t ∈ R 〈ξ(t)ξ(t′)〉 = Λ δ(t− t′), Λ = 2γkBT (2.3)

with kB the Boltzmann constant, as stated by the equipartition theorem and con-
sistent with the equilibrium canonical ensemble distribution [35]. A noise with such
properties is called Markovian, or memoryless. The noise as a Gaussian variable can
be physically understood as the result of the employ of the central limit theorem in
the limit of infinite number of fast degrees of freedom and, thus, infinite collisions
with the BP. The systematic friction, in the framework of linear response theory, is
proportional to the velocity and it describes the natural deceleration a macroscopic

1for the sake of simplicity. The extension to more dimensions is straightforward.
2The white noise in the Langevin equation (2.1) is thus defined as a gaussian random variable

with zero mean and infinite variance. Nevertheless, it is widely used keeping in mind it is ill-defined.
A discussion of this issue is beyond our scope, so we address the interested reader to [33,34]
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system is subjected to when it is moving in a fluid. Absent in the initial micro-
scopic equation it emerges from the coarse-graining. The dynamics of the BP is now
given by a Markovian stochastic differential equation characterised by a random term
responsible for the diffusion and a deterministic one, from the underlying Newton
equation, responsible for the advection (in (2.1) there is only the friction but any
force can be similarly included).
Given the simple properties of the noise, (2.1) can easily be solved providing for
the (average) moments of velocity and position, both during the initial transient
and in the steady state. Note that the average values are defined from an ensemble
of realisation of the stochastic process along a time interval [0, t], called trajecto-
ries. Regardless of the initial conditions, the first moment of position and velocity
in the steady state is zero, due to the relaxation of the BP in the environment.
The velocity second moment in the steady state 〈v2〉 = kBT/M in agreement with
the equipartition theorem, while for position 〈x2〉 /t = 2kBT/γ. Namely, the mean
square position for a free BP does not grow quadratically as for a ballistic Newtonian
system, but linearly. Due to the collisions with the solvent molecule the dynamics
is in the long time limit diffusive, ruled by the diffusion coefficient, defined here as
D ≡

´∞
0
〈v(t)v(0)〉 dt = kBT/γ. D gives the magnitude of the system fluctuations

and is related to friction and temperature via the Einstein-Smoluchowski relation,
also known as fluctuation-dissipation theorem (FDT) [36], where the diffusion pro-
vides for the fluctuation and the friction for the dissipation. Equilibrium at this level
is no longer associated to a static condition, rather to a dynamical balance of noise
and friction ruled by one parameter: the temperature T of the fluid. This result is
not to be taken for granted, indeed it is valid only for equilibrium classical systems3.
In the following we discuss the extension to nonequilibrium systems.
In many physical situation the system is embedded in a highly viscous environment.
This means that the friction γ is very big. If on top of that the mass of the sys-
tem is very small, one enters the overdamped region, in which the system after each
random kick relaxes quickly (on the time scale M/γ) to the average velocity, deter-
mined by the equipartition theorem. Therefore inertia can be neglected leading to
the overdamped version of (2.1),

ẋ(t) = ξ(t), 〈ξ(t)ξ(t′)〉 = 2µkBT δ(t− t′) = 2D δ(t− t′) (2.4)

where µ ≡ γ−1 is the mobility. The velocity ẋ(t) is now discontinuous in time, as the
noise itself. Indeed overdamped trajectories appear less smooth than underdamped
ones. (2.1) and (2.4) accounts for the simplest Brownian motion, namely free BPs in
homogeneous environment, but an external force can be included in the deterministic
part of the Langevin equation without changing the properties of the stochastic
one [37]. Non-homogeneities, e.g. space dependent friction, can also be treated,
provided that the noise is no longer additive (with respect to the process), but

3For quantum systems, i.e. the harmonic oscillator, the energy levels are parameterising by the
frequency and not just by a univocal temperature.
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multiplicative [38], whose intensity depends on the process itself. This introduces
a formal complexity concerning the time at which the pre-factor of the noise must
be evaluated, called the Itô/Stratonovitch dilemma [1, 39]. It states that before we
choose the time the pre-factor of the noise is evaluated at, the associated Langevin
equation is meaningless and cannot be even called an equation, but a mere string of
symbols [40]. If we discretise the Langevin (2.4) equation with multiplicative noise
represented by the process-dependent pre-factor α(x) in intervals with small width
dt as [t, t+ dt],

x(t+ dt) = x(t) +

ˆ t+dt

t

α(x(t′))ξ(t′)dt′ (2.5)

For any small dt the noise can be represented as a sequence of delta peaks arriving
at random times (for the sake of clarity this representation is general and so valid for
additive noise too). Each delta function in ξ produces a jump in the process. There-
fore the value of the process at the time the delta peaks arrive is undetermined and
so the value of the pre-factor. In the equation it is not specified which value should
be inserted. The choice is ruled by the introduction of a well-accepted convention.
The Langevin equation is interpreted a là Itô, if the pre-factor is evaluated before
the arrival of the delta peaks,

x(t+ dt) = x(t) + α(x(t))

ˆ t+dt

t

ξ(t′)dt′ (2.6)

and a là Stratonovitch if the value of the pre-factor is the average of the values before
and after the delta peak (defined as half the sum of the values before and after the
jump),

x(t+ dt) = x(t) + α

(
x(t) + x(t+ dt)

2

) ˆ t+dt

t

ξ(t′)dt′, (2.7)

although other infinite choices are well-defined too. A detailed discussion of this
technical aspect is beyond the purpose of this thesis. We conclude stressing that it
has many consequences, among which the fact that the simple neglect of inertia does
not lead to the correct overdamped limit, but more sophisticated technique must be
pursed [41–43]. Indeed a process-dependent pre-factor produces in the overdamped
limit extra advective terms, which are typically different if interpreted a là Itô or a
là Stratonovitch [44]. Typically mathematicians and economists use Itô convention,
while physicists prefer Stratonovitch. The reason is twofold: Stratonovitch allows to
use ordinary calculus and the trajectories under this convention are exactly the same
if run backward, since the middle point of the interval discretisation is not changing.

2.2 Fokker-Planck equation
Let us now change point of view, and consider the system rather than from the point
of view of individual trajectories with particular noise realisations, as a ‘probability
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cloud’ evolving in space [45]. The equation describing the evolution of probability
ρ = ρ(x, v, t) in time is called Fokker-Planck equation (FPE) and for the Langevin
equation (2.1) subjected to the external potential U = U(x), is:

∂ρ

∂t
+ v

∂ρ

∂x
− 1

M

∂U

∂x

∂ρ

∂v
= γ

∂

∂v

(
vρ+

kBT

M

∂ρ

∂v

)
(2.8)

Its physical interpretation is glaring: on the left hand side there is the Liouville equa-
tion for the colloid, while on the right hand side the coupling with the environment
providing for noise (diffusion) and friction. The FPE is a linear equation for the
probability, i.e. ∂tρ = L+ρ with the forward generator

L+ = −v ∂
∂x

+
1

M

∂U

∂x

∂

∂v
+ γ

∂

∂v
v +

γkBT

M

∂2

∂v2
, (2.9)

and assures probability conservation since it can be written as a continuity equation,
i.e. ∂tρ + ∇ · J = 0, with J = J(x, v) the probability current and ∇ = (∂x, ∂v).
If the force, −∂xU(x), is time-independent, we assume that there is a stationary
distribution ρs, (which solves the FPE with zero left-hand side, i.e. L+ρs = 0). The
conservative-force FPE is one of the few cases in which (2.8) can be analytically
solved [46]. The solution, in agreement with the canonical ensemble, is the Maxwell-
Boltzmann distribution

ρs(x, v) =
1

Z
e
−β
(
U(x)+mv2

2

)
(2.10)

where Z is the usual partition function [4] and β = (kBT )−1. Due to its linear struc-
ture the solution of the FPE is equivalent to an eigenvalue problem for the operator
L+. Indeed ρs is the eigenfunction associated to eigenvalue 0. This observation con-
nects the FPE to quantum mechanics and the Schrödinger equation for which the
Hamiltonian plays the role of the forward generator [47]. The main difference is that,
unlike the Hamiltonian of closed quantum systems, the generator of the FPE is not
always self-adjoint or hermitian, a property deeply related to whether we are dealing
with an equilibrium or nonequilibrium process. This means, in practice, that we have
to be careful when diagonalising matrices or operators and dealing, in general, with
eigenvectors or eigenfunctions: if the spectrum is real it is possible to symmetrise the
operator L+ through a unitary transformation. In the overdamped limit the FPE,
or Smoluchowski equation, for the density ρ = ρ(x, t) is

∂ρ

∂t
= − ∂

∂x

(
µ
∂U(x)

∂x
ρ−D∂ρ

∂x

)
(2.11)

This can indeed be intuitively understood, if the friction is high, the velocity relaxes
after a short time γ−1, and the evolution on larger time scales is only determined
by the spatial distribution. Eq. (2.15) can be directly derived from (2.8) with a
systematic expansion in powers of γ−1, assumed to be small. This approach is thus
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called multiple-time-scale theory [1,42], since the overdamped density is obtained by
comparing the FPE terms (2.8) at different orders of γ−1, to whom different time
scales are associated. We are going to use this approach in Chapter 6 and more
details can be found in Appendix C.1. The steady solution of (2.15) is obtained
imposing,

J = 0 ⇐⇒ µ
∂U(x)

∂x
ρs = D

∂ρs
∂x

(2.12)

and it is the Maxwell-Boltzmann distribution for the position alone if µ = βD ac-
cording to the Einstein-Smoluchowski relation. Interestingly (2.12) is called detailed
balance and it is a necessary and sufficient condition for equilibrium. The absence
of current from the balance of two forces, advection and diffusion, guarantees the
validity of time reversal symmetry and therefore thermodynamic equilibrium. An
equivalent condition appears in the framework of the Markov chains [48].
In conclusion we stress that the FPE and Langevin equations are two faces of the
same medal. A similar role is played in quantum mechanics by the Schrödinger
and the Heisenberg equation for the probability and for the observable respectively.
Nonetheless, while deriving the Langevin from the FPE is usually straightforward
(some complications can come out for multiplicative noise due to the choice of the
convention Itô/Stratonovitch), the other direction is not and it leads to closure prob-
lem both for additive [49] and multiplicative noise [50].

2.3 Nonequilibrium
Nonequilibrium and irreversibility are the rule in Nature while equilibrium is the
exception [51]. From the terrestrial magnetic field to the extraction of energy from
ATP-molecules, basis of each living being, natural phenomena are controlled by
currents at every length scale. Despite of the lack of a universal theory for nonequi-
librium, some common features allow to introduce a classification of nonequilibrium
phenomena into three categories4. The first deals with nonequilibrium as a relax-
ation process to equilibrium. Examples are the diffusion and the Fick equations, that
describe how a macroscopic system, provided with inhomogeneous initial conditions,
e.g. of density, converges to a homogeneous and stable configuration. For microscopic
systems the canonical example is the Boltzmann equation. If the inhomogeneity is
provided by an external source which continuously produces entropy, the system
cannot reach equilibrium. If conveniently manoeuvred, e.g. external temperature or
chemical potential gradient, the dynamics converges to a time-independent regime,
i.e. the nonequilibrium steady state. This second category is visibly wider than the
first. Different forces induce different nonequilibrium phenomena, that share similar
properties as long as the external force is not acting the environment the system is

4From “What is (non)equilibrium, static and dynamical aspects, and their problems.” Christian
Maes. 2018 Leuven Summer school on nonequilibrium physics.
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embedded in. If the environment itself is driven out of equilibrium the third category
is involved, for which there is entropy production associated to the system, to the
environment (to keep it out of equilibrium) and to the mutual interaction. None of
the results known from equilibrium can be a priori relied on. The disarming com-
plexity of this category is indeed rewarded, since this category is by far the most vast
and interesting. Adopting some approximations, unfortunately not valid for every
system, many interesting problems can be investigated.
Now we provide a more rigorous characterisation of nonequilibrium through the
tools we just introduced. The Langevin equation describes an equilibrium system,
with probability distribution given by the usual canonical weight [4] as long as the
deterministic force is conservative or the (multiplicative) noise is not effecting the
temperature of the environment. Otherwise, a nonequilibrium state is induced by
a continuous production of entropy which breaks the time-reversal symmetry and,
equivalently the detailed balance (2.12). Due to the presence of dissipation and
currents in the systems, neither the Maxwell-Boltzmann distribution is the steady
solution, nor FDT as the relation between diffusion and friction is satisfied. Nonethe-
less, we can still treat the environment as a fast degree of freedom and reduce its
effect to a Gaussian noise if the nonequilibrium condition imposed on the system
does not directly affect the environment [52], which is assumed to be at equilibrium
at each time. Namely, since assumed big and weakly coupled to the system, it is not
influenced by any energy exchange with the system. This condition is called local
detailed balance [53, 54], weaker than detailed balance, and formally restores FDT
guaranteeing the validity of Einstein-Smoluchowski relation for diffusion and mobil-
ity, but here comes the subtlety. The mobility involved in the Einstein-Smoluchowski
relation is not equal to the susceptibility under an applied external field [55,56]. And
µ = βD must be thought as a generalised Einstein-Smoluchowski relation. We will
come back to it in Sec. 2.6. The name local detailed balance derives from nonequilib-
rium thermodynamics according to which a nonequilibrium system can be thought
as coupled to many reservoirs locally at equilibrium at certain conditions of tempera-
ture, chemical potential, pressure [57]. The reservoirs only interact with the system,
not with each other and the system is allowed to interact only with one reservoir
at a time, such that the entropy production can be easily defined for each time.
Reservoirs with different features induce currents and forces on the system keeping
it out of equilibrium. Similarly, in the Langevin equation framework, external forces
are added to the advective part of the equation.
Currents make the solution of the FPE much more complicate. There are very few
systems it can be solved for. One of them is the one-dimensional diffusion on a
circle with periodic boundary condition, introduced as an example in Sec. 3. For a
nonequilibrium system the FPE is still linear for the probability and thus can still be
related to an eigenvalue problem, but the problems come at the first attempt to solve
it. Namely, for an equilibrium system the eigenvalue are by definition all real and
negative according to the Perron-Frobenius theorem [45], while for a nonequilibrium
system they can be complex as well. If the spectrum is complex there is no unitary
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map that allows to map the operator L+ to a hermitian one, making necessary the
calculation of both left and right L+-eigenvalues to characterise its spectrum.

2.4 Active particles
In the introduction we mentioned two examples of nonequilibrium systems, driven
and active matter. In this section we focus on the latter discussing more features of
it and providing a simple modelisation. The word “active” derives from the ability,
peculiarity of certain systems, to convert internal energy, e.g. chemical, into persis-
tent motion. This supply of energy, at the level of the individual particle, breaks
the conservation of kinetic and potential energy and the time-reversal symmetry
since entropy is continuously produced. Due to this self-propulsion mechanism, the
interaction with each others and with the medium they live in is no longer elastic
and then in general not instantaneous, as commonly assumed by equilibrium kinetic
theory. Those features lead to collective behaviours absent in equilibrium, like wall
accumulation proportional to the local spatial curvature [58–60] and spontaneous
phase separation due to clustering formation [61,62] without attractive interaction5.
Those are only few of the surprising results observed for active particles, to name few
others: active particles are ratchet systems since, provided the spatial asymmetry,
they can spontaneously create non-homogeneous density profile and currents [65],
they can exhibit repulsive as well as attractive depletion interaction between two
obstacles, e.g. walls [66], two bigger passive particles [67]. Many other examples can
be found in these remarkable reviews [68–70].
In Nature there are many examples of active particles systems at every length scale,
from flock of birds and school of fishes [71,72], to bacteria [73] and sperm cells [74]. As
for equilibrium, the smaller the system the more important the thermal fluctuations
of the environment surrounding the active particles becomes. Therefore, the dynam-
ics is the interplay of standard diffusion and persistent self-propulsion exhibiting a
crossover from diffusive short-time motion to super-diffusive motion at intermediate
times and again to (enhanced) diffusion in the long time limit [75]. Provided that
the self-propulsion is not affecting the solvent’s thermal fluctuations, an active par-
ticle can be treated as a BP described by a Langevin equation like (2.4), equipped
with an extra term accounting for the activity. In the simplest model, called active
Brownian particle (ABP), the term is a force assumed to have constant magnitude
and stochastic direction, due to the collisions with the solvent particles that tend
to randomise the direction of propulsion. In two dimensions6 the Langevin equation

5Noteworthy equilibrium hard spheres exhibit entropy-driven phase transition without attraction
[63, 64] as well, but it is constrained to excluded volume interaction such that the internal energy
is not depending on the density. Active particles con create clusters with any repulsive potential.

6Extension to three dimensions involves many technical aspects, not relevant for the character-
isation, see e.g. [76].
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reads

ẋ = µF a n(θ) +
√

2µTξ, θ̇ =
√

2Drη. (2.13)

where F a is the active force, often expressed through the velocity v0 ≡ µF a, nT (θ) =
(cos(θ), sin(θ)) is the direction of propulsion which evolves with an ordinary Brow-
nian Motion whose intensity is ruled by the rotational diffusion coefficient Dr. Its
inverse is the characteristic time the particle need to lose memory of its initial orien-
tation and v0D

−1
r is the persistence length, similarly defined for the worm-like-chain

in polymer physics. Note that from now on kB = 1. An explicit solution of (2.13)
shows that activity not only introduces memory into the dynamics, namely 〈ẋ(t)ẋ(s)〉
is no longer delta-correlated due to 〈n(t)n(0)〉 = 0.5 exp (−Drt), but non-Gaussian
fluctuations as well7. It is confirmed by a negative kurtosis of the displacement dis-
tribution [77], which exhibits a broadened peak and steep tails on the time scales
in which activity dominates entailing super-diffusive dynamics, while converges to
a Gaussian in the long-time limit. Increasing the activity, non-Gaussian deviations
become even more evident due to the formation of two well-separated peaks whose
distance is ruled by the persistence length, meaning that, if we consider the distri-
bution as a result of many independent particles displacement only few of them stay
close to their initial position. For the sake of completeness we introduce a simplified
version of the ABP model, although not used in the thesis, that considers the active
velocity as a variable, but neglects any non-Gaussian fluctuation [78],

ẋ = v +
√

2µTξ, v̇ = −Drv + v0

√
Drη. (2.14)

Using the nomenclature introduced in [79], both models describe “dry” active matter,
in contrast with “wet” models, in which the momentum exchanged among the active
particles and their solvent is taken more seriously. Another model frequently used
for active particles is called run and tumble [80]. The dynamics, consisting of periods
of straight-line swimming whose duration is Poisson distributed interrupted by brief
bursts of rotational motion, exhibits discrete angular relaxation differently from ABP
for which is continuum [81]. The FPE associated to (2.13) for the density ρ =
ρ(x, θ, t) involves two diffusion terms,

∂ρ

∂t
= −

(
v0n(θ) · ∂

∂x
−D ∂2

∂x2
−Dr

∂2

∂θ2

)
ρ (2.15)

Eq. (2.15) is analytically unsolvable even in the steady state since the variable (x, θ)
cannot be easily separated. Some approximated solution can be found in the litera-
ture for the steady state under the assumption ρs(x, θ) = ρxs(x)ρθs(θ), namely through

7The exponential decay for the angular decorrelation is responsible for the violation of detailed
balance since different from the time scale over which position decorrelates. The latter becomes self-
evident if we write the process ẋ as a convolution, ẋ(t) =

´ t
−∞ dt′ δ (t− t′) ẋ(t′), with a memory-less

kernel, given by a δ-function. Remarkably, if the position presents a finite time decay, comparable
with Dr, detailed balance must be valid, see e.g. non-spherical brownian particles.
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Mathieu functions [82] and from (2.14) subjected to a generic external potential but
with ξ = 0 through an expansion in powers on v0 reliable for small activity [83].
Nonetheless their simplicity (2.13) and (2.14) are able to predict all the mentioned
features of active particles dynamics, therefore have been used to investigate many
open problems.

2.5 Path integral derivation
In the Langevin framework average values are over an ensemble of trajectories, i.e.
realisations of the stochastic process. Therefore it is natural to wonder what is the
probability of a single trajectory and if there are some trajectories that are more
probable than others. The Path integral theory gives an answer to that, firstly
formulated by Wiener for classical stochastic process [84] and later applied to quan-
tum electrodynamics by Richard Feynman [85]. Since then, the applications and
the developments have been uncountable and a report of them would be beyond our
purpose, but can be found in the remarkable review [86]. The standard way to derive
the path integral is to discretise the trajectories ω = {xs: 0 ≤s≤ t} of the stochastic
process xt in a finite number of steps of length dt and then to calculate the proba-
bility of crossing all the steps at the particular time given the initial state x0. For
simplicity we use a one-dimensional notation, but the extension is straightforward.
Namely,

P(ω) = lim
n→∞, dt→0

P (x1, t1; . . . ;xn, tn|x0, t0) . (2.16)

The probability is expressed as evolution of the noise through a change of variable,

P (x1, t1; . . . ;xn, tn|x0, t0) = P (ξ1, ξ2, . . . ξn) · det J, J =
∂ξ

∂x
(2.17)

with J the Jacobian. Here ξ is treated as function of the process x as established by
the Langevin equation. For the derivation we will refer to the overdamped Langevin
equation ẋ = µF (x) +

√
2D ξ where F is a generic force, non-conservative too and

D is diffusion coefficient. Here we consider white and additive noise, but extension
to non-Markovian or multiplicative noise can be found in [87–91]. If we assume that
the process is Markovian, (2.17) becomes the product of the probabilities of each
single discrete transition. Namely

P (x1, t1; . . . ;xn, tn|x0, t0) =
n∏
i=1

P (ξi | ξi−1) det J (2.18)

Since the noise is Gaussian, the propagator of the noise is

P (ξi | ξi−1) =
1√

2πdt
e−

dt
2
ξ2
i , ξi =

(xi − xi−1)/dt− µF (xi)√
2D

(2.19)
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Although the noise is additive, for F (xi) we have to choose either Itô or Stratonovitch
as convention. The final result is, unless multiplicative noise is considered, the same,
but the derivation must be consistent. We choose Stratonovitch. If we plug (2.19)
into (2.18) and we take the limit n→∞, dt→ 0 we obtain the path integral (2.16),

P (ω) ∝ e−A(ω), A(ω) =
1

4D

ˆ t

0

ds (ẋs − µF (xs))
2 +

µ

2

ˆ t

0

dsF ′ (xs) (2.20)

where A(ω) is the action, also called Onsager-Machlup functional [92]. The last term
is given by the Jacobian of the change of variable in the Stratonovitch convention.
Note that in general the action has not a well-defined parity with respect to time
reversal, therefore it is common to decompose it into a time-symmetric and a time-
antisymmetric part [93], i.e. A = (T − S)/2 with:

T (ω) = A(θω) +A(ω), S(ω) = A(θω)−A(ω) (2.21)

Note that the probability defined through the action can be interpreted as a large
deviation principle [11] with AD the large deviation rate. It gives the magnitude
and the behaviour of the fluctuations around the deterministic and most probable
dynamics, approached exponentially fast as long as D → 0. This parallelism to the
framework of the large deviations theory is very powerful. Interesting questions like
the probability the process reaches a point x at time t given certain initial condition
that would require to integrate (2.20) over the trajectories with given initial and final
points can be approached throughout the contraction principle [94].

2.5.1 Entropy flux and local detailed balance

Eq. (2.20) relates explicitly the probability of a trajectory to the dynamics of the
Langevin equation. Thus it is very helpful to compare and relate different dynamics
at the level of the single trajectory. For example, how the introduction of a particular
force into the Langevin equation can affect the probability of performing a certain
trajectory. Interestingly, if we define the probability of a trajectory covered backward
in time P (Θω), with Θ the time-reversal operator that reverts all the velocities, i.e.
Θω = {xt−s,−ẋt−s, 0 ≤ s ≤ t}, we can investigate the symmetry for time reversal of
the dynamics. Namely,

S(ω) ≡ ln
P (ω)

P (Θω)
=
µ

D

ˆ t

0

dsF (xs) ẋs =
µ

D

ˆ
dxs ◦ F (xs) (2.22)

where ◦ is referring to the Stratonovitch convention. Noteworthy, if the Einstein-
Smoluchowski relation µ = Dβ holds the integral in (2.22), i.e. the time anti-
symmetric part of the action, assumes a clear physical meaning, namely, the entropy
dissipated into the environment by the nonequilibrium driving during [0, t]. This
condition, that relies on the assumption that the Einstein-Smoluchowski relation is
not violated by the nonequilibrium source, is another way to define the local detailed
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balance [13,95–97]. Note that if the system is at equilibrium, i.e. F (x) = −U ′(x), the
entropy production equals the energy change of the environment over its temperature
β
´ t

0
dxs ◦F (xs) = β(U(xt)−U(x0)), which does not depend on the whole trajectory,

but only on the initial and final point, and is zero in average.
For example, we substitute (2.13) assuming that active force and thermal noise are
not correlated, the average entropy flux is found to be linearly increasing, 〈S〉 /t =
v2

0/2µT since the active particles continuously dissipate energy in the heat bath,
coming from the hidden degrees of freedom and, therefore, not included in the balance
of energy at the level of the Langevin equation.

2.5.2 Entropy production

A stronger connection with entropy can be made. Note that (2.20) is the prob-
ability given the initial state x0, one can consider the path probability given the
initial distribution. Namely, Pρ0(x0) (ω) = ρ0(x0)P (ω), where ρt is a time-dependent
distribution. If we define the quantity Sρ

Sρ (ω) ≡ ln
Pρ0(x0) (ω)

Pρt(xt) (Θω)
= ln

ρ0(x0)

ρt(xt)
+ S (ω) (2.23)

where S (ω) is (2.22), independent of the initial distribution. Sρ (ω) is a measure of
irreversibility and is therefore equal to zero for every trajectory at equilibrium where
ρ0 = ρt = ρeq. If we average over the trajectories with the weight given by Pρ0 we
obtain a physical interpretation for the terms in (2.23). Namely, the left-hand side

〈
e−Sρ

〉
=

ˆ
dPρ0(ω)

Pρt(Θω)

Pρ0(ω)
= 1, (2.24)

using Jensen’s inequality, is the total entropy production in the system, given that
〈Sρ〉 > 0 [98], while the first term on the right hand side is the Shannon entropy
associated to the entropy of the system, if the average is meant as a sequence of
independent copies of the system and ρ as the relative occupation of the space. It
depends only on the initial and steps of the trajectories, i.e. it is a state function of
the system. For consistency and in agreement with the definition of local detailed
balance the last term must be interpreted as the entropy flux from the system to the
environment [96] and it depends on the whole trajectory, if not at equilibrium.

2.6 Linear response theory
Understanding the dynamical properties of a many-body problem is very compli-
cated, therefore approximated methods are usually employed. One of them is called
response theory, whose intuitive idea is to apply a perturbation on a system and
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observe its (average) reaction, being very instructive about the dynamical properties
of the system itself. An example is the mobility of a BP defined as,

µ = lim
t→∞

1

t

∂

∂f
〈x (t)〉f

∣∣∣∣
f=0

(2.25)

where f is a constant external force applied on the BP and 〈·〉f means the average
to be taken in the dynamics with the extra force f , which is often unknown. On the
other hand, if the perturbation is small, e.g. modulated by a function h(t)� 1, the
dynamics does not radically change, at least during a certain time span. Therefore,
assuming the existence of a Taylor-expansion in h, one can relate the response de-
fined through the perturbed dynamics to correlations over the unperturbed one. If
the initial dynamics is at equilibrium satisfying time-reversal symmetry, the Taylor-
expansion can be done at the level of the probability distribution, whose fluctuations
are subjected to the Onsager’s regression principle [99]. Namely the relaxation to
equilibrium due to an external perturbation behaves like a spontaneous fluctuation of
the system and, therefore, the response relies on equilibrium correlations only. Given
an observable O(t) of a system subjected to an energetic perturbation, U → U−hV ,
the change in average value, i.e. the susceptibility χOV (t) ≡ 〈O〉h − 〈O〉 is given by
the Green-Kubo formula [100],

χOV (t) =

ˆ
dsROV (t, s), ROV (t, s) = β

d

ds
〈O(t)V (s)〉eq (2.26)

which relates the response of the observable to the entropy flux from the system to
the environment, kept at temperature β−1, caused by the perturbation. Green-Kubo
equation is also called fluctuation-response relation [35], similarly to FDT. Besides
some initial concerns [101], linear response theory has proved itself to be a strong
theory and suitable to calculate e.g. thermodynamic or electromagnetic suscepti-
bilities [102–104]. Feared but expected, if the system is out of equilibrium most of
the mentioned symmetries are broken, along with Onsager’s regression hypothesis
which relies on the time-reversal symmetry of the fluctuations. Since nonequilibrium
probability distributions are unknown, the standard derivation leads to a dead end.
Therefore Taylor-expansion must be shifted from phase-space probabilities to prob-
abilities defined on the functional-space of trajectories for a Langevin or a Markov
jumps dynamics. Namely, since the perturbation influences the probability of cer-
tain trajectories, one can write the perturbed path probability with respect to the
unperturbed one, Ph(ω) = e−A

h(ω)P(ω), with Ah the “excess” action, whose anti-
symmetric part describes the entropy flux due to the perturbation as assured by local
detailed balance assumption. Therefore the perturbed average value,

〈O〉h =

ˆ
dP(ω)

Ph(ω)

P(ω)
O(ω) =

〈
Oe−Ah(ω)

〉
≈ 〈O〉 −

〈
OAh(ω)

〉
(2.27)

neglecting contribution of order h2, in the excess action too. Note that (2.27) va-
lidity is not limited to a steady state. As we have seen in Sec. 2.5 the action can
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be decomposed according to its time-reversal symmetry. At equilibrium only the
anti-symmetric part, i.e. the entropy production, contributes to the response. In-
deed, detailed balance condition allows to write the symmetric part as minus the
anti-symmetric one, its effect absorbed by the entropy production. Such a peculiar
symmetry is broken out of equilibrium and the symmetric part is expected to in-
fluence the response as well. Remarkably, the symmetric part becomes crucial for
non-linear response around equilibrium too [105]. If we consider again a potential
perturbation acting on an overdamped Langevin dynamics, i.e. ẋ→ ẋ−µht∂xV (x),
the response function can be written in an elegant form [106],

ROV (t, s) =
β

2

(
d

ds
〈O(t)V (s)〉 − 〈O(t)LV (s)〉

)
(2.28)

where L is called backward generator and it is the adjoint of the FP linear oper-
ator defined in Sec. 2.2. The backward generator depends on the features of the
Langevin dynamics and so the susceptibility, differently from the Green-Kubo for-
mula whose structure relies only on the entropy production. The symmetric part T
of the action is also called dynamical activity, traffic or frenesy [107], and highlights
the violation of the fluctuation-response theorem. The latter is related to the aver-
age rate of dissipation energy as stated by the Harada-Sasa relation which expresses
the stationary heat dissipated in terms of the violations of the equilibrium FDT in
the frequency domain [108,109]. FDT can be formally restored introducing an effec-
tive temperature, nonetheless this temperature has in general not a straightforward
thermodynamic explanation since sensitive, through the backward generator, to the
particular microscopic features. Note that a response function as elegantly written
through the backward generator as (2.28) is possible only for overdamped Marko-
vian Langevin equation with additive noise perturbed by potential perturbations.
Extension of (2.28) for non-Markovian, underdamped systems or time-dependent
perturbation can be found in [110], [111] and [15] respectively. Several applications
can be found for many systems, e.g. in [112, 113]. Most of the results in Chapter 3
are based on (2.28). We conclude this section employing (2.28) to stress the conse-
quence of local detailed balance on the mobility mentioned in Sec. 2.3. The mobility
as defined in (2.25) is given by (2.28) with potential perturbation V (x) = fx,

µ = lim
t→∞

β

2t

(〈
x2 (t)

〉
−
ˆ t

0

ds 〈Lx (s)x (t)〉
)

= βD − lim
t→∞

β

2t

ˆ t

0

〈Lx (s)x (t)〉

(2.29)

where D is the diffusion coefficient, measured from the mean square displacement. If
the system is driven by a nonequilibrium source the mobility is not directly propor-
tional to the diffusion, but depends on additional dynamical features of the system.
Namely, the mobility µ that appears in the local detailed balance relation is called
generalised mobility and it is different from (2.29). To sum up, µ = βD for nonequi-
librium systems is an expression of local detailed balance assuring the proper phys-
ical identification of the various terms in the Langevin equation [55, 112]. It is also
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called generalised Einstein-Smoluchowski relation and must not be confused with
fluctuation-dissipation theorem as defined in Sec. 2.1 where mobility is defined as
(2.25). Clearly, they coincide at equilibrium.



Chapter 3

Colloids in nonequilibrium
environment

3.1 Introduction
The notion of Brownian Motion refers to the thermal fluctuations of some mesoscopic
particles in contact with a bath of smaller particles. The essential feature is a scale
separation between the Brownian and the bath degrees of freedom that allows for a
systematic coarse-graining of an otherwise intractable many-body system. It leads to
an effective description for the BPs alone, via some stochastic differential equations,
(typically not Markovian generalised) Langevin equation, GLE. Although there exist
systematic derivations of such mesoscopic equations of motion from an underlying
microscopic many-body Hamiltonian through the elimination of the fast degrees of
freedom [31, 114, 115], easier approach are available, if the system under survey is
at equilibrium. Indeed, one typically appeals to equilibrium Statistical Mechanics
in order to make the formal expressions practically useful. Namely, to bypass the
explicit solution of the microscopic dynamic equations, the “noise” fluctuations that
agitate the mesoscopic degrees of freedom are assigned a weight in agreement with
Boltzmann’s principle [92]. By construction, their correlations then satisfy detailed
balance in the form of a fluctuation-dissipation theorem [36]. This implies, in par-
ticular, that they induce mesoscopic correlations in accord with the equipartition
theorem. Moreover, the average mesoscopic dynamics is found to be a gradient flow
in a convex free energy landscape. Being derived by such a (thermodynamic) poten-
tial, the mean effective interactions of the Brownian degrees of freedom themselves
obey the action-reaction principle. In other words, for systems in thermodynamic
equilibrium, the symmetries holding on the microscopic level can essentially be lifted
up to the mesoscopic scale.
The theory remains valid even when some of these mesoscopic degrees of freedom are
externally driven out of equilibrium, as long as local detailed balance persists [52,54],
i.e., under the assumption that the source of non-equilibrium does not appreciably
affect the (many) bath degrees of freedom. For this reason, the concept of a Brow-

20
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nian scale separation, as embodied in the Langevin equation, has played a central
role in the development of a framework of stochastic thermodynamics that reaches
out to conditions far from equilibrium [10, 32] and in the study of nonequilibrium
fluctuation and work relations [6].
In contrast, none of the above symmetry properties generally survives on the Brow-
nian scale if the bath itself is driven out of equilibrium. Not only is the detailed
balance of the Brownian degrees of freedom then lost, but also equipartition gives
way to a more complex energy partition rule [116], stochastic forces are no longer of
gradient-type [117], and the action-reaction principle is violated [118]. In soft matter
physics, one finds many examples for interacting probes in non-equilibrium baths.
One may naturally think of a suspension of colloids immersed in a non-equilibrium
solvent, such as a sheared fluid [119], a granular [120], glassy [121] or active-particle
suspension [122], or even the cytoplasm of a living cell [123]. It would certainly be of
great interest to establish a self-contained coarse-grained description for the colloids
in such situations. Yet, the usual equilibrium arguments invoked in the construction
of a coarse-grained Langevin description, are not any more applicable. So the re-
duced stochastic description (assuming it still exists) must be found by other means,
in the worst case by explicitly integrating out the dynamics of the nonequilibrium
environment. It should go without saying that, for scientifically or technologically
interesting systems, this is almost always an impossible task, since relying on the
solution of the microscopic equations.
There is thus great interest in defining suitable conditions and finding general ap-
proximate methods [124, 125] that allow for reliable and useful predictions on the
Brownian scale bypassing the integration of the microscopic dynamics, even if the
degrees of freedom of the environment are driven far from equilibrium. A good candi-
date is suggested by the theory of Brownian Motion, itself. If the “fast” bath degrees
of freedom of some Brownian system themselves admit a coarse-grained description
by a mesoscopically driven Langevin theory routed in its own equilibrium bath, the
resulting theory fulfils all of the above requirements. In other words, the presence of a
nonequilibrium source requires the introduction of an intermediate level between the
BPs (from now on called probes to avoid confusion) and the thermal environment as
depicted in Fig. 3.1. More precisely, we do assume that the environment is made up
of some sort of particles that evolve according to some driven Markovian stochastic
dynamics enjoying local detail balance and coupled to an equilibrium reservoir pro-
viding for noise and friction. In contrast to standard Brownian dynamics, we thus do
not require a direct buffering of the probe degrees of freedom by some equilibrium
thermal reservoir but only an indirect one, mediated by the nonequilibrium envi-
ronment. The effective dynamics for the probes, result of a further coarse-graining,
derives from the elimination of the driven degrees of freedom. Technically, we employ
nonequilibrium linear response theory [106,112,126–132] to derive a Langevin equa-
tion for the probe particles that we assume to be weakly coupled to the interacting
many-body system acting as the environment. The response function is already a
coarse-grained observable since average over certain degrees of freedom, as discussed
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Figure 3.1: Schematic representation of the three-level scheme employed by our
theory: the probes (blue) representing the system are embedded in a nonequilibrium
environment, e.g. a fluid of smaller driven particles (red), which are in contact with
an equilibrium thermal bath (light blue), providing for friction and noise.

in Sec. 2.6. Following [15, 133], we then go beyond a merely static description that
would only account for systematic probe interactions induced by the nonequilibrium
environment, such as nonequilibrium depletion forces [67,134]. We explicitly look for
the fluctuations of such induced forces around their average values. The discussion
of the results in this Chapter follows the same structure of [16]. In Sec. 3.2 we obtain
formal expressions for these fluctuating forces, the friction, and the noise statistics,
emerging features of the coarse grained dynamics. When the driving is off, we re-
trieve the expected detailed balance condition connecting the noise correlation to the
friction kernel. But we can also analyse how this relation changes when the environ-
ment is driven (far) out of equilibrium and quantify the violations of detailed-balance
and the reciprocal relations in terms of both excess dynamical activity [135–138]
and probability currents. The latter result in the lack of an action-reaction principle
for the induced probe interactions [118, 119, 139, 140]. Section 3.3 exemplifies the
theoretical scheme with the help of two paradigmatic examples that can explicitly
be worked out. First, we treat analytically a single probe linearly coupled to a fluid
of particles driven by a two-dimensional vortex. This toy model clearly displays the
breakdown of detailed balance and allows us to touch on the scope of the notion of ef-
fective temperature. Secondly, we employ Brownian dynamics simulations to analyse
the effective friction forces induced between two probes suspended in a driven fluid.
The numerical evaluation of our general analytic expressions for the time-dependent
friction matrix nicely reveals the expected violations of the action-reaction principle,
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as well as the possible appearance of negative mobility.

3.2 General theory
We consider a d-dimensional system made up of Np probe particles, with mass Mi

and positions Xi, which interact with an environment, composed of N � 1 degrees
of freedom denoted xk. The environment is in contact with an equilibrium bath
at inverse temperature β, respectively in blue, red and light blue in Fig. 3.1. The
probes obey Newton’s equation of motion

MiẌi = Ki(Xi) + gi({x},Xi), (3.1)

where gi ≡ −λ∂Xi
Ui ({x},Xi) is the interaction force between the probe i and the

environment, with λ a small dimensionless parameter. All the other forces are in-
corporated in K, which are (optional) direct interactions between the probes and
additional external ones. Their specific form is irrelevant in the following. They
are only required to be sufficiently confining so as to allow for a unique stationary
state. Throughout the text, we use the shorthand {. . . } to denote the entire set of
degrees of freedom, either the probes or the particles. We assume that the environ-
ment evolves according to a Markovian stochastic dynamics, enjoying local detail
balance. Hence, with respect to standard approaches, we lift such condition from
the dynamics of the system to that of the environment. For concreteness, we can
think of the overdamped Langevin equations

ẋk =µFk − λµ
Np∑
i=1

∂Ui
∂xk

+

√
2µ

β
ξk. (3.2)

Here Fk consists of inter-particle potential forces −∂xkV ({x}), and external ones
that may contain a non-potential driving f({x}) setting the environment out of
equilibrium. The ξ’s are centered Gaussian noises, white and uncorrelated. Let {Y}
be the set of average positions around which the probes fluctuate as a consequence of
the interactions with the environment. Here we are concerned with the fluctuations
induced by the presence of the environment, for which we seek a reduced description.
Namely, we aim at integrating out of (4.1) the environment coordinates by averaging
the probe-environment coupling with the appropriate distribution for xk. We expect
noise and friction to emerge in this process, together with indirect forces between
the probes, mediated by the environment. To this end, we rewrite Eq. (4.1) as

MiẌi = Ki + 〈gi〉+ ηi, (3.3)

where we split the environment-probe coupling into a systematic part 〈gi〉 and a
random contribution ηi ≡ gi−〈gi〉. The former is defined as the mean force exerted
by the environment on probe i, and reads

〈gi〉 = 〈gi({x},Xi)〉 ≡
ˆ

d{x}gi({x},Xi)ρ({x}|{X}), (3.4)
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with ρ({x}|{X}) the probability density of the environment conditioned by the
probes being in positions {X} and thus, explicitly time-dependent. We work un-
der the usual assumptions made in the derivation of Langevin equations, i.e. a small
variation of the probe momentum after a single particle-probe interaction (large mass
difference and big time scale separation), and a weak coupling between probes and
environment. Under these conditions, the fluctuations of probe i around the pre-
ferred state Yi are small, and its force on the whole environment can be expanded
to linear order in the displacement from Yi:

λ

N∑
k=1

∂Ui
∂xk

=λ
N∑
k=1

∂Ui
∂xk

∣∣∣∣
Xi=Yi

− (Xi(t)−Yi) ·
N∑
k=1

∂gi
∂xk

∣∣∣∣
Xi=Yi

+O(Xi(t)−Yi)
2. (3.5)

Here it is useful to regard gi as an external potential perturbing the environment,
modulated in time via the protocol Xi(t)−Yi. If we neglect truncate the expansion
to the linear order, (3.2) becomes

ẋk =µFk − λµ
Np∑
i=1

∂Ui
∂xk

∣∣∣∣
Xi=Yi

+ µ(Xi(t)−Yi) ·
Np∑
i=1

∂gi
∂xk

∣∣∣∣
Xi=Yi

+

√
2µ

β
ξk. (3.6)

In view of (3.5), it is then natural to express the conditional average (3.4) in in
terms of unperturbed averages 〈. . .〉0, corresponding to all probes sitting in the mean
positions {Y} that, if constant in time, entails for the unperturbed distribution
the existence of a steady state. To do so we make use of the response theory for
perturbations about non-equilibrium states (2.28). It can be applied verbatim for
one probe [15]. Given Np probes, the deviation of every average value from the
unperturbed one should depend on all the probes fluctuations. At linear order we
neglect correlations among those fluctuations and that allows to write the response
as superposition of all the perturbations. Namely,

〈A(t)〉 = 〈A(t)〉0 +
β

2

Np∑
j=1

ˆ t

t0

ds hj(s)
(

d
ds
〈Bj(s);A(t)〉0 − 〈LBj(s);A(t)〉0

)
(3.7)

where A is the observable of interest, Bj are the perturbation potentials switched on
at time t0 and modulated in time through the protocol hj(s). The operator L and the
average 〈. . . ; . . .〉0 stand for, respectively, the backward generator of the unperturbed
dynamics and the connected average with respect to it. In (3.7) the first integrand
is the usual correlation of the observable with the entropy production, as appearing
in the Kubo formula (2.26). The second one is a frenetic contribution that contains
the excess dynamical activity, LBj, caused by the perturbation. In equilibrium, they
make equal contributions [106]:

d
ds
〈Bj(s);Ai(t)〉eq = −〈LBj(s);Ai(t)〉eq. (3.8)
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Here we are interested in the response of gi({x},Xi) to the perturbations in (3.5).
Hence, with the identifications A = gi, Bj = gj and hj = Xj −Yj, (3.7) becomes

〈gi(t)〉 = 〈gi〉0 +

Np∑
j=1

β

2

ˆ t

t0

ds(Xj(s)−Yj)

[
d
ds
〈gj(s); gi(t)〉0 − 〈Lgj(s); gi(t)〉0

]
(3.9)

where L, the backward generator of the unperturbed dynamics of the environment,
reads for (3.2):

L =µ
N∑
k=1

[
Fk ·

∂

∂xk
− λ

Np∑
i=1

∂Ui
∂xk

∣∣∣
Xi=Yi

· ∂

∂xk
+

1

β

∂2

∂x2
k

]
. (3.10)

The summands in (3.9) are the forces due to the linearised fluctuations of the probes
around their preferred states. Assuming that the environment was put in contact
with the probes at time t0 = −∞, so that no correlation with the initial conditions
is retained, an integration by parts yields

〈gi(t)〉 = 〈gi〉0 +

Np∑
j=1

[
Gij(t)−

ˆ t

−∞
ds ζij(t− s)Ẋi(s)

]
. (3.11)

Here we defined the memory kernel

ζij(t− s) ≡
β

2

(
〈gj(s); gi(t)〉0 −

ˆ s

−∞
dτ〈Lgj(τ); gi(t)〉0

)
, (3.12)

which enters both the friction, back-reaction of the fluid to the probe motion, and
the statistical forces mediated by the environment [117,141],

Gij(t) ≡ (Xj(t)−Yj)ζij(0), (3.13)

including the “self-interaction” (i = j) and the inter-probes forces (i 6= j). Equation
(3.13) establishes the connection between the friction kernel and the fluctuating
statistical force, namely,

∂Gij

∂Xj

= ζij(0). (3.14)

For i 6= j, Eq. (3.14) relates environment-mediated interactions to cross-friction
between probes, indicator of the propagation of the perturbation through the fluid.
It was proposed by De Bacco et al. [142] for equilibrium systems arguing on the
basis of Onsager’s regression principle. Here we gave a formal proof of this relation
that extends its validity to nonequilibrium states. In equilibrium, where averages are
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denoted 〈. . .〉eq, the frenetic term can be eliminated in favour of the entropic term,
according to (3.8):

〈gj(s); gi(t)〉eq = −
ˆ s

−∞
dτ〈Lgj(τ); gi(t)〉eq. (3.15)

We thus retrieve that the friction kernel is a symmetric matrix

ζij(t− s) = β〈gj(s); gi(t)〉eq = ζji(t− s), (3.16)

since correlations are functions of |t−s| only, thanks to time-reversal invariance. The
symmetry (3.16) translates into the condition ∂Gij/∂Xj = ∂Gji/∂Xi, which suffices
to make gi derive from an effective (thermodynamic) potential F({X}). That such
potential is the Helmholtz free energy of the environment,

F ≡ − 1

β
ln

ˆ
d{x}e−β(λ

∑N
i=1 Ui+V ), (3.17)

is easily seen by introducing the Boltzmann factor in (3.4):

〈gi〉
eq = −

ˆ
d{x}λ ∂

∂Xi

Ui e
−β(

∑N
i=1 Ui+V−F)

=
1

β
eβF

∂

∂Xi

ˆ
d{x}e−β(λ

∑N
i=1 Ui+V )

=
1

β
eβF

∂

∂Xi

e−βF = − ∂

∂Xi

F . (3.18)

This ensues the action-reaction principle for the fluctuating forces among probes.
Contrarily, when the environment is driven away from equilibrium, (3.15) is not
applicable in general, as frenetic and entropic terms remain distinct. Hence the
reciprocal relations are not satisfied, ζij 6= ζji, which implies that the action-reaction
symmetry is broken. Now we turn to the random part of the interaction,

ηi ≡ gi({x},Xi)− 〈gi({x},Xi)〉. (3.19)

It has zero mean by definition, and its two-times correlation is obtained again by
application of the response formula (3.7), with A = gigj,

〈ηi(t)ηj(s)〉 = 〈gi({x(t)},Xi(t)); gj({x(s)},Xj(s))〉 ≈ 〈gi(t); gj(s)〉0. (3.20)

The weak-coupling approximation allowed us to drop higher orders in λ, so that
(3.20) simplifies to

〈ηi(t)ηj(s)〉 = C 0
ij(t− s) =

2

β
ζij(t− s) +

ˆ s

−∞
dτ〈Lgj(τ); gi(t)〉0. (3.21)
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Namely, in a first approximation, the noise depends on {Y} and not on the actual
position of the probes and is therefore additive. In general, the noise correlation
depends explicitly on the excess dynamical activity of the environment, Lgi. Yet, in
equilibrium, exploiting again the equality of the frenetic and entropic term, (3.21)
reduces to the FDT,

〈ηi(t)ηj(s)〉eq = Ceq
ij (t− s) =

1

β
ζij(t− s). (3.22)

Out of equilibrium (3.21) cannot be simplified further in general, and FDT (3.22) is
evidently broken, resulting in asymmetric noise cross-correlations. Such violation of
the FDT appears more transparent if (3.21) is written in terms of the state velocity
of the environment, i.e. the vector

v({x}, {X}) ≡ ({x}, {X})
ρ0({x}|{X})

, (3.23)

with  the probability current of the environment, that vanishes identically in equi-
librium. Even though it could be experimentally estimated [143–147], it has been
analytically solved only in few simple situations where the stationary distribution
is known [127, 148, 149]. From the identity L = L+ + 2v · ∇ [107, 127, 150], where
∇ is the vector of partial derivatives ∂xk , and L+ is the adjoint of L—the forward
generator of the dynamics of the environment—one can easily prove:

〈Lgi(τ); gj(t)〉0 = − d
dτ
〈gj(τ); gi(t)〉0 + 2 〈v · ∇gj(τ); gi(t)〉0. (3.24)

Using Eqs. (3.12), (3.21) and (3.24) the broken FDT reads

〈ηi(t)ηj(s)〉 =
1

β
ζij(t− s) +

ˆ s

−∞
dτ〈v · ∇gj(τ); gi(t)〉0, (3.25)

where the deviation from the equilibrium Kubo formula appears explicitly. In gen-
eral, the noise (3.19) will not be Gaussian and thus the two-times correlation is not
enough to fully characterize its statistics. Higher moments can be calculated with
the same procedure, though, by successive application of the response formula (3.7)
together with the weak-coupling assumption.
Noteworthy, the restriction of time-independent mean states {Y} can be easily lifted.
If, instead, mean time-dependent trajectories {Y(t)} are taken, our approach still
holds with the caveat that the perturbation potentials, gi({x},Yi(s)), now carry an
explicit time dependence via Yi(t) (cf. Eq. (3.5)). An extension of the response
formula (3.7) needs to be applied [15, 151], which features {Y(t)} as a quasi-static
protocol, but the remaining procedure is very analogous. Consequently the unper-
turbed distribution is assumed to be quasi-stationary in agreement with the protocol
for the probes mean positions. Therefore, the theory naturally extends to probes that
are, e.g., acted upon by external time-dependent forces, or in direct contact with the
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equilibrium bath, as well as with the environment. Plugging (3.11) into (3.3) we
obtain the effective dynamics for the colloid.

MiẌi = Ki + 〈gi〉0 +

Np∑
j=1

[
Gij(t)−

ˆ t

−∞
ds ζij(t− s)Ẋj(s)

]
+ ηi, (3.26)

which is typically called generalised Langevin equation, extension of the homonymous
equation beyond the Markovian limit. The coarse-graining over the fluid degrees
of freedom leads to new emergent behaviour, i.e. a coupling between the colloids
mediated by the bath and the dissipation for the probes, previously characterised
by a deterministic Newtonian dynamics and not directly coupled. Noteworthy, if
the environment is out of equilibrium, the coupling between the colloids experiences
violation of action-reaction principle, due to an explicit dependence of the friction
on the features of the dynamics via the backward generator, consequence of the
employ of response theory around nonequilibrium configurations. The dissipation
for the probes is subjected to the violation of FDT, because the dissipation cannot
be attributed to an external source, but it is intrinsic in the system, i.e. local
detailed balance cannot be satisfied. In conclusion, whether certain symmetries of
the underlying dynamics involving both the probes and the fluid, are inherited or not
by the effective dynamics for the probes depends on the nature of the environment
itself.

3.3 Examples
In this section we present two explicative examples. First, we consider a single probe
linearly coupled to a fluid of noninteracting particles that are driven by an external
vortex. Response and fluctuations in equations (3.12) and (3.21) are calculated
analytically and used to show the breakdown of the FDT (3.22). Second, we show
how to extract from Brownian simulations the friction memory kernel of two confined
probes immersed in a stirred fluid. We prove numerically the breakdown of the
reciprocal relations, that is the violation of the action-reaction principle for the
fluid-mediated forces between the probes.

3.3.1 One probe in a vortex

We consider a two-dimensional system (d = 2) where a single probe (Np = 1) under
harmonic confinement, K = −K(X−Y), interacts via a harmonic potential U (with
constant stiffness denoted by k) with an environment of particles xj = xj(t) driven
by an external vortex,

ẋj = Axj + λkµX +

√
2µ

β
ξj, A =

(
−λkµ −hµ
hµ −λkµ

)
. (3.27)
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The probe dynamics X = X(t) is given by

Ẍ = −KX− λk
N∑
j=1

(X− xj) . (3.28)

Since the potential U is harmonic, linear response theory around the minimum of
the confining potential Y can be applied without any approximation by summing
and subtracting λkµY in (3.27) to obtain an equation equivalent to (3.6). Following
the general theory, the force on the probe,

〈g(t)〉 ≡ 〈g〉0 + (X(t)−Y)ζ(0)−
ˆ t

−∞
ds ζ(t− s)Ẋ(s) (3.29)

is expressed through correlations of the unperturbed dynamics, which can exactly
be solved by diagonalising the matrix A in (3.27) and introducing the variable,
z = ix + y, z∗ = −ix + y leads to the explicit solution of xj = (xj, yj). Accordingly
we can calculate the systematic part of the interaction (3.11)

〈g〉0 = −A0Y, A0 =
Nλkh

λ2k2 + h2

(
h −λk
λk h

)
(3.30)

and the the stochastic one (3.19)

η ≡ −λk
N∑
j=1

(〈xj〉 − xj) = λk
N∑
j=1

ˆ t

−∞
ds e−λkµ(t−s)Γ(t− s)ξj(s) (3.31)

where

Γ (τ) =

√
2µ

β

(
cos (hµτ) sin (hµτ)
sin (hµτ) cos (hµτ)

)
(3.32)

respectively. The noise is still Gaussian, but is no longer Markovian. The xx-
component of friction kernel defined as in (3.12) for τ = t− s,

ζxx (τ) =
Nβk2λ2

2

N∑
j,k=1

〈(
xj(0) + µ

ˆ 0

−∞
dr (λkxj(r) + hyj(r))

)
xk(τ)

〉
(3.33)

contain simple correlation functions of the unperturbed process in the steady state.
For the symmetry of the system ζxx (τ) = ζyy (τ) and ζxy (τ) = −ζyx (τ). From (3.12)
we thus obtain the friction kernel components,

ζxx (τ) =
Nλ2k2

λ2k2 + h2
e−λkµτ [λk cos (hµτ)− h sin (hµτ)]

ζxy (τ) = − Nλ
2k2

k2 + h2
e−µλkτ (h cos (µhτ) + λk sin (µhτ)) (3.34)
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showing that dissipation happens on the characteristic timescale it takes the active
particles to relax in the coupling potential U , up to the oscillation ruled by the
vortex intensity h. Furthermore, the friction can turn negative as well, meaning that
the colloid is accelerated by the fluid. Note that the friction does not depend on
the probe position since the coupling is linear, regardless of the number of probes
under survey. Namely, even if we would consider two probes, violation of action-
reaction principle could not be observed unless a non-linear coupling is considered.
The noise η, expressed as correlation functions of the fluid dynamics, if interpreted
as a Brownian Motion noise is responsible for the energy input into the system and it
is calculable explicitly from (3.31), decays exponentially with the same characteristic
time, but is subjected to different oscillations of frequency hµ due to the vorticity.

β 〈ηx (0) ηx (τ)〉 = ζxx (τ) +
Nλkh

λ2k2 + h2
e−λkµτ (h cos (hµτ) + λk sin (hµτ))

β 〈ηx (0) ηy (τ)〉 = ζxy (τ) +
Nλkh

λ2k2 + h2
e−λkµτ (λk cos (µhτ)− h sin (µhτ)) (3.35)

Interestingly, since the noise matrix is not diagonal the off-diagonal components of
the noise are not independent. One may try to mend it by introducing a time-
dependent effective temperature

βTeff(τ) = 1 +R
R + tan (µhτ)

1−R tan (hµτ)
(3.36)

where R ≡ h/λk compares the intensity of the vortex with respect to the coupling.
Eq. (3.36) and following discussions are for the xx-correlation, but same conclusion
can be drawn for the other components of the noise correlation matrix. Eq. (3.36)
allows to formally restore the FDT for the noise correlation matrix. The price to
pay is that the effective temperature can in general be negative and diverge. In
particular, (3.36) periodically diverges when R tan(hµτ)→ 1, for which the friction
diagonal components (3.34) are zero. The frequency of the divergence increases with
h along with the tangent periodicity. It happens also in the weak-coupling regime
R � 1, in which the interference of the probe on the fluid dynamics is small and
therefore the probe should behave like a good thermometer. This strange behaviour
is clearly revealed, by the simple model, as the consequence of an artefact, namely
of selling a regular and periodic motion as heat. A meaningful definition of tem-
perature for a many-body system requires a more random and chaotic behaviour as
stated by statistical mechanics and kinetic theory [152, 153]. This condition is not
satisfied by this system, due to the vortex which tends to make the dynamics very
regular and predictable. In the next Chapter we will introduce the effective temper-
ature for a colloid embedded in a fluid of active particles. Being this motion more
random due to the rotational diffusion, it will be possible in a certain regime, to be
discussed, to define a physically meaningful effective temperature. Effective temper-
atures definitions are delicate argument and the step from mathematical artefact to
thermodynamics observable must be carefully faced. Diverging (3.36) does not have
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Figure 3.2: Schematic illustration of the simulated system, composed of N + 2 soft
spheres in one spatial dimension with periodic boundary conditions. The probes
(blue) have average positions Yi ∼ Y ∗i + 

´ τ
0
dτ ′ζii(τ ′)/Ki resulting from the balance

of the drag force due to the steady current  of fluid particles (red) and to the
harmonic confinement with minimum in Y ∗i and stiffness Ki (i = 1, 2).

to worry since it corresponds to zero friction, entailing a finite value for the noise
correlation. Summing up, for the effective dynamics for the colloid embedded in the
vortex (3.27) is given by the GLE for the probe,

Ẍ = −(K − ζ(0))(X−Y)− A0Y −
ˆ t

−∞
ds ζ(t− s) Ẋ(s) + η (3.37)

where the friction memory kernel and the noise covariance are given by (3.34) and
(3.31), respectively. Noteworthy, the components of the probe coordinates are no
longer independent since neither A0 in (3.30) nor

ζ(0) =
N

µ

λ2k2

λ2k2 + h2

(
λkµ −hµ
hµ λkµ

)
(3.38)

are diagonal. Noteworthy, ζ(0) = −NλkµA−1, A−1 is the inverse of the matrix
defined in (3.27). The effective dynamics is still a vortex with the same orientation,
but some effective parameter. If h = 0, i.e. no vortex, ζxx (τ) = Nλke−λkµτ , ζxy (τ) =
0 and detailed balance is restored, with Teff = T . Another example analytically
solvable involves a fluid of active particles. We will treat it in Chapter 4.

3.3.2 Two probes in a stirred fluid

We consider a one-dimensional system (d = 1) consisting of Np = 2 probes under
harmonic confinement and N = 100 fluid particles moving freely in a periodic domain
xk ∈ [0, L], as sketched in Fig. 3.2. The fluid is driven out of equilibrium by an
external constant force f that induces a net particle current  thanks to the periodic
boundary conditions. The Langevin equation for the fluid particles,

ẋk = µf − µ ∂

∂xk
(V ({x}) + U1 (xk, X1) + U2 (xk, X2)) +

√
2µ

β
ξk (3.39)
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Figure 3.3: Diagonal (left panel) and off-diagonal (right panel) elements of the fric-
tion kernel ζij(τ) as function of time τ = t− s, obtained by numerical evaluation of
(3.12) in Brownian dynamics simulations, for various values of the nonequilibrium
driving force f and β = 1, µ = 1, σ = 0.5, σp = 1.

where, for i = 1, 2

V ({x}) =
N∑
k′=1

e−
1

2σ2 (xk−xk′ )2

, Ui (xk, Xi) = e
− 1

2σ2
p

(xk−Xi)2

(3.40)

are respectively the particles mutual interaction and the coupling with the probes.
They are both Gaussian soft repulsive potential with different characteristic length,
namely σ and σp respectively, but we have checked numerically that anharmonic
potentials lead to qualitatively similar results. While our investigation is only nu-
merical, an analytical study of a similar system, provided that the particles mutual
interaction is neglected, has been carried out in [154], aiming to estimate the probes
steady state distribution. Differently, we focus on some dynamical properties of the
probes. In particular, we have calculated the time-dependent entries of the friction
kernel ζij from formula (3.12) for various values of the external driving f . This was
done by letting the fluid relax from an initial uniform density, fixing the probes in
their preferred positions Yi, and then performing the steady-state averages in (3.12)
over 2× 104 independent simulation runs of duration T = 103. For f → 0, equilib-
rium conditions are recovered. The diagonal elements ζii of the friction kernel are
positive and exhibit a monotonic time dependence. The two off-diagonal elements
ζ12 and ζ21, which quantify the mutual frictional forces between the probes, coincide.
As expected, they are negative and decay to zero at late times according to a relax-
ation time stated by the dynamical features. Their negative sign can be understood
on the basis of global momentum conservation. For example, consider the drag force
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that probe 1 exerts on probe 2,

F drag
1→2 = −

ˆ t

−∞
ds ζ21 (t− s) Ẋ1 (s) . (3.41)

It is easy to convince oneself that, given the configuration sketched in Fig. (3.2),
a positive velocity Ẋ1 will on average cause a positive displacement of the fluid
particles surrounding probe 1. Such perturbation spreads along the coordinate axis,
from particle to particle, although dissipating part of the energy in the thermal
environment, reaching probe 2, ultimately resulting in a positive momentum transfer
F drag

1→2 > 0. This suggests that ζ21 6 0 for all times, as well as for the propagation
from probe 2 to probe 1, as depicted in the right panel of Fig. (3.3), blue solid and
yellow dashed line for ζ21 and ζ12 respectively.
In contrast, with increasing nonequilibrium force f > 0, we observe a qualitative
modification of the diagonal and non-diagonal elements of ζij, as exemplified in
Figs. (3.3). The diagonal elements ζii develop a non-monotonic time dependence
and eventually turn negative. Physically, this corresponds to a viscoelastic recoiling
of the individual probe particles. A more dramatic, genuinely non-equilibrium effect
is found for the off-diagonal elements ζi 6=j. As revealed by the right panel of Fig. (3.3),
the presence of a nonequilibrium flux in the bath breaks the symmetry of the friction
matrix so that ζij 6= ζji, with |ζ21| (|ζ12|) larger (smaller) with respect to equilibrium.
Such an effect arises whenever a spatial asymmetry is imposed on top of broken
detailed balance, analogously to a ratchet system [155]. Our periodic system is
always spatially asymmetric unless Y1−Y2 = L/2. Specifically, in the simulations, the
probe reference positions are set to Y1 ≈ L/3 < Y2 ≈ L/2, and, for convenience, the
trap stiffnesses Ki are chosen large enough to make the position Yi almost coincide
with the trap minimum Y ∗i . By increasing L, we checked that interactions with
the periodic image particles are negligible. We conclude that global momentum
conservation does not hold any more when the fluid dynamics becomes dissipative.
This can be attributed to the asymmetric propagation (due to the current ) of
fluid perturbations. Namely, downstream propagation is progressively enhanced by
increasing f , while upstream propagation is suppressed. As a result, the influence of
probe 1 (2) on probe 2 (1) gets stronger (weaker) as we increase the driving. As for
the diagonal elements, the sign of ζ12(τ) is transiently reversed. More remarkably,
for sufficiently large values of f , the response coefficient of probe 2 to a uniform
motion of probe 1, namely

´∞
0

dτ ζ12(τ), turns positive. In contrast to the mentioned
transient elastic recoil embodied in the diagonal terms ζii, this kind of “absolute
negative mobility” [156–159] is strictly forbidden in equilibrium, where dissipative
transport coefficients depend only on the (positive) entropy production but not on
the dynamical activity [105].
The dynamics of the system and the relaxation time of the friction kernel strongly
depends on f . For the considered values the system exhibits a dissipation of the
order of the thermal energy at the scale of the system size, i.e. βfL � 1 and
thus called globally strong nonequilibrium regime [154], where the global refers to
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Figure 3.4: Diagonal (left panel) and off-diagonal (right panel) elements of the noise
correlation as function of time τ = t− s, obtained by numerical evaluation of (3.20)
in Brownian dynamics simulations, for various values of the nonequilibrium driving
force f and β = 1, µ = 1, σ = 0.5, σp = 1.

the spatial scale. Higher value of f would drive the system to a so-called locally
strong nonequilibrium regime, in which the same dissipation acts on a much shorter
length scale, namely of the interaction range σp, i.e. βfσp � 1. Nonetheless, with
increasing f , estimation of the friction assuming the probes fixed in the minimum is
less and less reliable and the linear response theory for time-dependent perturbation
must be employed [15]. For example, following the notation of the example, Yi can be
replaced by a deterministic trajectory Yi(t) = Yi + vt, where v is the linear velocity,
v = µf , related to the fluid rotation frequency ω/2π = µf/L.
Similarly we discuss the noise (3.19) felt by the two probes, whose correlations are
given by (3.20). Their evolution as a function of time τ = t−s is depicted in Fig. 3.4.
As we expected from the analysis of the friction kernel, the off-diagonal components
of the noise matrix are not independent, namely the fluctuations of the probes are
correlated due to the interaction mediated by the bath, even at equilibrium. The
noise is not Markovian as the coupling gi has a finite decorrelation time, nonetheless
we have numerically proved that it still follows a Gaussian distribution for any value
of f in Fig. (3.3). While at equilibrium the correlation Cij completely defines the
friction as stated by (3.22) and easily visible Fig. 3.4, with nonzero external driving
substantial deviations emerge, implying the relevance of the frenetic contribution of
the response function (2.28).
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3.4 Markovian Limit
In Sec. 3.2 we have introduced a general theory to eliminate the fast degrees of
freedom. While in Sec. 3.3 we have highlighted the features of the theory with two
particular examples, in this Section we come back to the general theory. The GLE for
the probes Xi = Xi(t) is given by Eq. (3.26) and in general is neither Markovian nor
Gaussian. A general solution of this equation is very complicate and probably not
very enlightening. Therefore, relying on the already adopted approximations only,
i.e. time-scale separation and weak-coupling limit, we pursue a simplified expression
of (3.26). Intuitively and confirmed by the friction plots in Sec. 3.3, the memory
kernel decays to zero with increasing time. The shorter is the decorrelation time,
the faster the perturbation due to the probes fluctuations propagate through the
fluid, which dissipates the extra energy into the heat bath and relaxes to a new
nonequilibrium steady state labeled by the new probe configuration. Therefore an
infinite time-scale separation that allows to treat the probes’ dynamics as a quasi-
static process relatively to the fluid dynamics is equivalent to taking the Markovian
limit. This approximation is more reliable the shorter is the relaxation time of the
memory kernel. The latter is directly affected by the dynamic parameters such as
the fluid particles mobility, temperature, and the range of the mutual interaction σ
and the coupling σp, respectively, introduced in (3.40). Namely, the bigger µ and β−1

the faster responds the fluid to the perturbation, which is quickly dissipated. On the
other hand, the smaller σ (compared to the system size L), the longer is the relaxation
time since the fluid particles interact on a shorter spatial scale and therefore share
with more difficulty the excess energy coming from the perturbations. The same can
be said for σp, provided that σp > σ otherwise the colloids are effectively equal to the
fluid particles and therefore it is no longer reliable to truncate the expansion around
the minima of the probes confining potential to the linear order, necessary condition
to employ the linear response theory 1. From (3.41),

F drag
j→i = −Ẋj ζ̄ij, ζ̄ij =

ˆ t

−∞
ds ζij(t− s) (3.42)

introducing a time-average friction ζ̄ij, time-independent since the unperturbed dy-
namics is in the steady state. Therefore the Langevin equation becomes

MiẌi = Ki + 〈gi〉0 +

Np∑
j=1

[
Gij − ζ̄ijẊj(t)

]
+ ηi (3.43)

with noise correlation

〈ηi(t)ηj(s)〉 = C̄ 0
ijδ (t− s) , C̄ 0

ij =

ˆ t

−∞
ds 〈gj(s); gi(t)〉0. (3.44)

1All those remarks are supported by numerical simulations checks.
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entailing that for equilibrium systems FDT is still satisfied. Since the noise η, in
the weak-coupling limit is additive, we directly obtain the overdamped Langevin
equation if we neglect the inertia term. The equations are still coupled,

Ki + 〈gi〉0 + Gi −
Np∑
j=1

ζ̄ijẊj + ηi = 0, Gi =

Np∑
j=1

Gij (3.45)

For the sake of simplicity we gather the drift terms Fi ({X}) = Ki + 〈gi〉0 + Gi and
we isolate the Ẋi from the sum

ζ̄iiẊi = Fi ({X})−
Np∑
j 6=i

ζ̄ijẊj + ηi. (3.46)

We decouple the equations for Np = 2,

ζ̄11Ẋ1 = F1 ({X})− ζ̄12Ẋ2 + η1

ζ̄22Ẋ2 = F2 ({X})− ζ̄21Ẋ1 + η2 (3.47)

If we assume linearity and isotropy for the potential interactions Ki = −K(Xi−Yi),

Ẋ1 =
ζ̄22

|ζ̄|

[
−K11 (X1 −Y1) +K12 (X2 −Y2) + 〈g1〉0 −

ζ̄12

ζ̄22

〈g2〉0 + η̃1

]
Ẋ2 =

ζ̄11

|ζ̄|

[
−K22 (X2 −Y2) +K21 (X1 −Y1) + 〈g2〉0 −

ζ̄21

ζ̄11

〈g1〉0 + η̃2

]
(3.48)

where |ζ̄| = det ζ̄ = ζ̄11ζ̄22 − ζ̄12ζ̄21,

K11 = ζ21 (0)
ζ̄12

ζ̄22

+ (K − ζ11 (0)) , K12 = ζ12 (0) +
ζ̄12

ζ̄22

(K − ζ22 (0)) (3.49)

K21 = ζ21 (0) +
ζ̄21

ζ̄11

(K − ζ11 (0)) , K22 = (K − ζ22 (0)) +
ζ̄21

ζ̄11

ζ12 (0) (3.50)

η̃1 = η1 −
ζ̄12

ζ̄22

η2, η̃2 = η2 −
ζ̄21

ζ̄11

η1 (3.51)

are the effective coupling coefficients and the noises respectively. The latter are linear
combinations of the noises in (3.47) and therefore still white. Namely,

〈η̃1 (0) η̃1 (τ)〉 =

[
C̄ 0

11 −
2ζ̄12

ζ̄22

C̄ 0
12 +

(
ζ̄12

ζ̄22

)2

C̄ 0
22

]
δ (τ)

〈η̃2 (0) η̃2 (τ)〉 =

[
C̄ 0

22 −
2ζ̄21

ζ̄11

C̄ 0
21 +

(
ζ̄21

ζ̄11

)2

C̄ 0
11

]
δ (τ)

〈η̃1 (0) η̃2 (τ)〉 =

[(
1 +

ζ̄12

ζ̄22

ζ̄21

ζ̄11

)
C̄ 0

12 −
ζ̄21

ζ̄11

C̄ 0
11 −

ζ̄12

ζ̄22

C̄ 0
22

]
δ (τ)

〈η̃2 (0) η̃1 (τ)〉 =

[(
1 +

ζ̄12

ζ̄22

ζ21

ζ11

)
C̄ 0

21 −
ζ̄12

ζ̄22

C̄ 0
22 −

ζ̄21

ζ̄11

C̄ 0
11

]
δ (τ) (3.52)
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Note that all the effective coupling coefficient in (3.50) as well as the noise intensity
in (3.52) depend on the one-time correlation of the unperturbed dynamics and are
therefore a priori known. Eq. (3.48) is much easier than the initial GLE, being
Markovian, due to the assumption of an infinitely fast fluid relaxation, and linearised
by means of the introduction of effective coupling coefficients, and is suited for further
investigation of the probes interaction mediated by the fluid.

3.5 Conclusion and Outlook
Employing nonequilibrium linear response theory we have derived GLEs for probe
particles interacting with a driven environment. The latter was described by an
explicit interacting many-body theory for overdamped colloidal particles. More gen-
erally, the colloids can be understood as a set of mesoscopic degrees of freedom.
Also, the theoretical framework developed above can be easily adapted to cope with
different sources of nonequilibrium (other than the nonconservative force f), such
as a nonuniform bath temperature field β(xk). When only conservative forces are
present, our theory correctly reproduces the expected equilibrium properties, i.e. it
fulfils the FDT and conforms to Onsager’s regression principle relating the fluctua-
tions of statistical forces to the memory kernel. In general, it extends the Langevin
approach into the nonequilibrium realm, predicting the violation of the FDT and
the action-reaction law for the fluctuating effective forces. The breaking of these
dynamical symmetries is traced back to the mismatch between the excess entropy
and dynamical activity induced by probes fluctuations around their preferred states
or, equivalently, to the existence of dissipative currents in the environment. We have
shown that these phenomena appear already in simple systems, unless special sym-
metries are present. Namely, noise and friction felt by a single probe in a medium
driven by a vortex do not obey the FDT, except if the relaxation timescales of system
and fluid are properly tuned —in which case a constant effective temperature can be
defined. Also, the cross-frictions between two confined probes in a stirred periodic
fluid are dissimilar, and even change sign with respect to equilibrium, whenever the
probe reference positions break the spatial symmetry. The theory allows to obtain
quantitative information about the parameters of the environment from measuring
average properties of the probes. For example, from (3.34) and (3.35) —which are ac-
cessible by measuring, e.g., the spectral density of the probe fluctuations in the trap
and its response to a small external kick— the values of the relaxation times kµ and
hµ can be inferred. Vice versa, one may even speculate that some mesoscopic param-
eters (e.g., ζij(0)) might be fixed at will by properly designing the non-conservative
driving. It is in principle feasible since formal procedures are available [160] which
determine an appropriate environment dynamics conditioned on prescribed mean
values (e.g., those entering (3.12)).
Finally, a remark on the status of the approximation of weak coupling to the nonequi-
librium environment seems in place. In a particle-based theory like the one we em-
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ployed, this approximation is explicitly enforced by introducing a small coupling
constant λ. Physically, the appropriate values λ may depend on the average number
of bath particles the probes interact with. This should be clear from the example
in Sec. 3.3.1, where the limit N →∞ produces an unphysical divergence of friction
and noise strength if λ is not properly scaled. However, in practical applications,
the weak coupling is often a dynamical, emergent property, resulting from the scale
separation between the probe-particle system and the environment. For example,
colloidal particles suspended in simple fluids are well described by a linear hydrody-
namic theory, although the micro-dynamics of the fluid molecules is highly nonlinear.
This feature is expected to be robust and to survive even far from equilibrium, as
long as the driving energy input does not exceed the bath thermal energy [161]. In-
deed, the peculiar feature of a time-dependent noise temperature, discovered within
the weak-coupling approach, above, was already explicitly demonstrated (and its
time-dependence analytically computed) in this setting [162]. Recently, new the-
oretical investigations [163, 164] have been spurred by a surge of experimental in-
terest in systems with strongly coupled components, such as in active nonlinear
micro-rheology [165], single-molecule (force spectroscopy) experiments [166], work
extraction from active fluids [167]. Hence, it would be desirable to extend the above
analysis to different dynamical descriptions of the environment, i.e. in terms (hydro-
dynamic) fields or discrete-state variables. This will possibly provide more versatile
formal tools to account more reliably for the weak coupling and to address the strong
coupling problem in a larger variety of stochastic systems.



Chapter 4

Passive colloid in an active bath

4.1 Introduction
Chapter 3 presented a general way to perform the coarse-graining of a many-body
system, based on a time-scale separation of its own degrees of freedom, classified into
fast and slow. The elimination of the fast ones strongly simplifies the initial system,
now described by effective dynamics, characterised by emergent behaviour, absent be-
fore the coarse-graining. In equilibrium, the coarse-graining is helped by the existence
of a thermodynamic free energy, whereas, from from equilibrium, it must be explic-
itly carried on and counterintuitive effects can arise. For example, surprising (with
respect to the equilibrium case) experimental and numerical results have been found
investigating the depletion forces of externally sheared bath [119, 134, 154, 168, 169]
and of active particles [67,170–173].
Active matter and, in particular, passive colloids embedded in an active particles
fluid have recently attracted increasing interest. Due to the persistent dynamics,
active particles experience non-Gaussian fluctuations and it has been experimentally
observed [174,175] that these fluctuations can be transmitted to the colloid, so that it
behaves in a significantly different way from a passive Brownian particle in a thermal
bath: e.g. it exhibits super-diffusion at short times, followed by normal diffusion at
longer times and its distribution of the displacement shows non-Gaussian behaviour
like exponential tails [176–178] or multiple peaks [77]. All these works, consistently
with the experimental findings, consider as model for the effective dynamics for the
colloid(s), the active Brownian particles model (ABPs) [61], that describes a single
active particle in contact with a thermal environment. This choice is phenomenology-
oriented and not based on on a coarse-graining from the microscopic dynamics. In
this Chapter, we prove this choice to be legitimate and based on rigorous assump-
tions on the microscopic Langevin equation of the active particles environment. The
discussion of the results in this Chapter follows the same structure of [17], still in
preparation. Employing the theory introduced in Chapter 3 we are able to derive
the effective equation for a colloid in an active particles fluid which, for a generic
coupling will be equal to (3.26) for Np = 1. Nonetheless, the active features are hid-

39
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den in the correlations involving the coupling g (see (3.19) and (3.12)) and, thus, not
very enlightening. For this purpose, we restrict our investigation to a toy model, i.e.
a fluid of non-interacting active particles linearly coupled to the colloid. Although
this model, introduced in Sec. 4.2, is very artificial compared to most practical real-
isation, is able to grasp many of the cited features. Interestingly, in the overdamped
limit it boils down to the well known ABP model introduced in Sec. 2.4. Namely,
under certain conditions stressed in Sec. 4.4 a passive colloid in an active bath be-
haves similarly to an active particles in a passive environment. A detailed discussion
of its moments, presented in Sec. 4.5 accounts for the enhanced diffusion and the
broadening of the position distribution, experimentally observed. In Sec. 4.5.1 and
4.5.2 we investigated the non-linear regime performing an analytical perturbative
expansion and numerical simulations, respectively. We introduce a small non-linear
force in the linear model and through perturbation theory expansion we estimate
the first-order correction to the linear mean square displacement. Neglecting non-
Gaussian correlations of the noise, this result is quite general for any force, but the
correction can be analytically calculated only in few cases, e.g. a quartic potential,
presented in Sec. 4.5.1. Next we simulate a fluid of active particles coupled to the
colloid with a non-linear potential extracting the colloid position distribution aiming
to confirm the analytical prediction. The variance obtained from the stationary posi-
tion distribution, which in the considered regime is well-approximated by a Gaussian
distribution, is compared with the variance provided by the toy model via a simple
mapping. Namely, through the introduction of an effective parameter in the toy
model one is able to replicate the position distribution observed for the complete
model (probe + active particles) with a priori known error and to enrich the toy
model predictability with non-linear corrections.

4.2 Model
We consider a 2D-deterministic colloid X = X(t) under harmonic confinement, is
linearly coupled to a bath of active Brownian particles {xj = xj(t)}Nj=1 described by
a set of Langevin equations. The active particles are not mutually interacting. The
equations of motion are

MẌ = −KX− k

N

N∑
j=1

(
X− xj

)
(4.1)

ẋj = v0n
j +

kµ

N

(
X− xj

)
+
√

2µTξj (4.2)

for the colloid and for the fluid particles respectively. The configuration is equal to
the one depicted in Fig. 3.1 with just one (blue) probe. Note that here the pre-factor
N−1, necessary to keep the energy extensive, takes the place of λ in Chapter 3, in
agreement with the discussion in Sec. 3.5. The active particles are in contact with
a thermal bath that provides for temperature T and mobility µ. Being internally
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driven, they exhibit a drift velocity of constant magnitude v0 pointing along the
random particle orientation n = n(θ), characterised by the Wiener process θ̇j =√

2Drξ
j
θ , with Dr the rotational diffusion coefficient. Here ξj and ξjθ are standard

Gaussian white noises with zero average and delta-correlation in time. K and k are
the stiffness of the harmonic confinement potential of the colloid and the colloid-
particle coupling coefficient, respectively. M is the colloid mass, while the active
particles mass is set to 1. For such a toy model the elimination of the fast (active)
degrees of freedom is exact and does not require any approximation. The GLE for
the colloid after the-coarse-graining reads,

MẌ = −KX−
ˆ t

−∞
ds Ẋ (s) γ (t− s) + Γ (4.3)

where

γ (t− s) ≡ ke−
kµ
N

(t−s) (4.4)

Γ ≡
ˆ t

−∞
ds γ (t− s)η (s) (4.5)

η ≡ 1

N

N∑
j=1

(
v0n

j +
√

2µTξj
)

=
1

N

N∑
j=1

ηj (4.6)

are respectively the colloid friction (memory) kernel, the colloid noise, and the
stochastic contribution in (4.2) for the active particles. Interestingly, the coupling
with the active particles is treated as a fluctuating noise (4.5), endowed with non-
thermal features, due to the exponential tails already present in the active particles
noise statistics and naturally propagated to the colloid one. Its stationary proba-
bility distribution, see Fig. 4.1, for non-zero active velocity, can exhibit two peaks
(a ring in a 3D plot [179]), whose distance grows with increasing (decreasing) v0

(Dr) or, more precisely, with increasing persistence length defined as v0D
−1
r . This

effect, induced by the external confinement, is a manifestation of the phenomenon of
wall accumulation [59, 60, 74], which is well-known for active particle. Noteworthy,
the bimodality is not to be attributed to the well-known behaviour of the residence
time for a harmonic oscillator at equilibrium. This is true in the overdamped regime,
while in the underdamped, due to the presence of friction, the oscillations are quickly
dissipated leading to a one-peak zero-centred distribution in the steady state. On
the contrary, for active particles it is a genuine nonequilibrium effect valid in any
regime of damping. Intuitively, the persistent motion restores the ballistic, and thus
oscillatory, behaviour of the system, no longer dominated by the thermal diffusion.
For N > 1 the phenomenon disappears since the independence of the active par-
ticles forces the noise distribution to obey the central limit theorem. For N > 1
the distribution becomes unimodal and broadens with increasing v0. In Sec. 4.5 will
discuss the dependence on activity of its lowest moments. In Sec. 4.3 and 4.4 we will
analyse two extreme cases, namely, the low-friction underdamped motion and the
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Figure 4.1: (a) Noise distribution for N = 1. (b) Noise distribution for N = 100. In
both cases we consider µ = Dr = T = 1, k = 2 and v0 = 0, 2, 4.

overdamped regime, respectively. Since the environment is driven out of equilibrium,
iff v0 6= 0, the friction (4.4) and the noise (4.5) emerging from the coarse-graining
of the dynamics do not satisfy FDT, meant as balance between energy input and
output. Namely for τ > 0,

〈Γ (0) Γ (τ)〉 = Tγ (τ) +
v2

0

2µ

k
k2µ2

N2 −D2
r

(
kµ

N
e−Drτ −Dre

− kµ
N
τ

)
. (4.7)

with (kµ/N)−1 the characteristic time-scale it takes the active particles to relax in
the coupling potential and D−1

r is the time needed to fully randomise the direction
of the active velocity, respectively. Eq. (4.7) shows that the dissipation happens on
the time scale (kµ/N)−1, while the energy input due to the noise is found to occur
on multiple timescales, i.e. (kµ/N)−1 and D−1

r respectively. The disparity of the
time scales for noise and friction entails the breakdown of the FDT, as predicted by
(3.21). One may try to mend it by introducing an effective temperature [180] via

βTeff = 1 +
β

2µ

v2
0(

kµ
N

)2 −D2
r

(
kµ

N
e(

kµ
N
−Dr)τ −Dr

)
(4.8)

Thereby, the FDT (3.22) is formally restored, albeit with the time-dependent func-
tion Teff(τ) replacing the constant bath temperature 1/β. In the weak coupling limit
kµ/NDr � 1 we can expand (4.8) and obtain a more intuitive expression,

βTeff(τ) = 1 +
βv2

0

2µDr

(
1−Re−Drτ

)
+O(k2/N2) . (4.9)

The deviation from equilibrium is seen to be governed by the two dimensionless
numbers βv2

0/2µDr and R ≡ kµ/NDr. The former compares the active energy to
the thermal one, while the latter compares the two characteristic times introduced
in (4.7). For R → 0, the temperature renormalisation becomes time-independent
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and independent of the coupling coefficient k—it thus acquires the status of ther-
modynamic temperature. One can then justly say that the probe acts as an ideal
measurement device for the constant effective temperature

Teff = T +
v2

0

2µDr

(4.10)

of the active fluid itself, which coincides with the known value for a suspension of free
active particles [181,182]. The R→ 0 limit leads to a regime characterised by a very
short angular decorrelation time D−1

r and thus a small persistence length, defined as
v0D

−1
r , for the active particles dynamics which becomes equivalent to an equilibrium

Brownian motion coupled to a hotter heat bath. Namely, the motion is enough
random to define a physically meaningful effective temperature. The opposite limit,
characterised by a high persistence length forces the dynamics to be quasi-ballistic
and more predictable. In this regime the system is close to the example with the
vortex we treated in Sec. 3.3.1. Similarly, the effective temperature in the quasi-
ballistic regime diverges exponentially as clearly shown in (4.8).
The strength of the temperature renormalisation is controlled by the Peclét number
v0(µDr/β)−1/2 that weighs the relative importance of ballistic versus (translational
and rotational) diffusive motion [68]. To first order in k/N , Eq. (4.10) exhibits a
crossover from a short-time temperature to a long-time temperature. Moreover, Teff

can no longer be interpreted as a property of the particle bath alone, but characterises
its interaction with the embedded probe. In fact, the ratio R can be interpreted as
a measure for the interference of the coupling potential with the persistence of the
active particles motion. The physical picture is that the apparent thermalisation at
the constant effective temperature (4.10) takes some finite time to happen. In our
toy model, this “equilibration time” is given by the rotational diffusion time of the
active particles; i.e., the active motion of the bath particles can only be subsumed
into an enhanced fluid temperature once it has lost its orientational persistence. This
very plausible condition has been pointed out before (e.g. in [81]), albeit not for the
time domain.

4.3 Fourier Analysis
Due to the memory kernel, (4.3) can be more easily solved considering a (time)
Fourier Transform (FT) for X, γ and Γ. Namely,

X̃ (ω) = Γ̃(ω)RX̃ (ω) , RX̃ (ω) =
1

K −Mω2 − iωγ̃+ (ω)
(4.11)

where γ̃+ (ω) is the FT of γ+ (τ) = γ(τ)θ (τ), the retarded friction kernel, and RX̃

is the response function to the position. Since the noise is zero-average and the
harmonic confinement is centred in zero, 〈X〉 = 0. The colloid position correlation
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can be obtained in terms of the colloid response function RX̃,

SX̃ (ω) =
〈
X̃ (ω) X̃∗ (ω)

〉
= |RX̃ (ω)|2 SΓ̃ (ω) , (4.12)

with a noise correlation presenting thermal and active contributions:

SΓ̃ (ω) =
〈
Γ̃ (ω) Γ̃∗ (ω)

〉
= SΓ̃eq

(ω) + SΓ̃act
(ω) (4.13)

The correlation of the thermal (equilibrium) noise is given by the fluctuation-dissipation
relation (FDR) SΓ̃eq

(ω)=2TReγ̃+ (ω), while the active correction in (4.13) reads

SΓ̃act
(ω) =

ˆ ∞
−∞

dτ 〈Γact (τ) Γact (0)〉 eiωτ . (4.14)

Using the known two-times noise correlation [16], from (4.14) we obtain

SΓ̃act
(ω) =

1

N

k2v2
0Dr

(ω2 + k2µ2/N2) (ω2 +D2
r )
. (4.15)

Therefore the position correlation becomes,

SX̃ (ω) = 2 |RX̃ (ω)|2 Reγ̃+ (ω) Teff (ω) =
2

ω
ImRX̃ (ω) Teff (ω) , (4.16)

where we have introduced the real part of the memory kernel and the frequency-
dependent effective temperature

Reγ̃+ (ω) =
1

N

k2µ

k2µ2/N2 + ω2
, Teff (ω) = T +

v2
0

2µDr

D2
r

ω2 +D2
r

. (4.17)

respectively. The latter is depicted in Fig. 4.2: activity strongly enhances its value,
but not the position of its maximum, coinciding with the characteristic frequency,
which is always zero. This is in contrast to what has been found for the frequency-
dependent temperature of a colloid coupled to a constantly driven particle [183],
whose maximum depends on the external forcing. The position correlation in the
time domain is given by the anti-transform of (4.16),

SX(τ) =
1

2π

ˆ +∞

−∞
dωSX̃ (ω) e−iωτ (4.18)

while the value of the second moment of the position, 〈X2〉 = SX(τ = 0) is given by,

〈
X2
〉

=
1

2π

ˆ +∞

−∞
dωSX̃ (ω) (4.19)

Due to the complexity of the response function such integral is calculable only nu-
merically. An analytical result is obtainable in the important limit of small friction.
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Figure 4.2: Effective temperature (4.17) as a function of the frequency ω for different
values of v0 and Dr left and right panel respectively.

In this case, the system oscillates at the characteristic frequencies, ω0 = ±
√
K/M ,

imposed by the harmonic confinement, so that only those frequencies are excited
in the spectrum of Teff (ω). Formally, if γ̃ � 1, equivalent to kµ/N � 1, then
Reγ̃+ � Imγ̃+ and (4.19) simplifies to

〈
X2
〉
≈
ˆ +∞

−∞

dω

2π

SΓ̃ (ω)

(K −Mω2)2 + ω2 (Reγ̃+ (ω))2 . (4.20)

Following [184] we approximate the response with a delta function centred in its
poles, valid if Reγ̃+ � 1, and we obtain

〈
X2
〉
≈ 1

K

(
T +

v2
0

2µDr

D2
r

K
M

+D2
r

)
(4.21)

In the small-friction regime, as anticipated, the poles of the response function,
±ω0, are proportional to the stiffness of the confining potential. This has relevant
implications if the colloid is employed as a heat engine. Namely, a time-dependent
potential whose stiffness changes periodically between two values K+ > K−, can
induce a cyclic motion on the colloid, so that heat and work will be exchanged with
the active bath, at a certain efficiency–the latter quantities being defined according
to Stochastic Thermodynamics [6,185]. Active particles engines are treated in details
in Chapter 5, here we highlight that the independence from Dr or v0 of the maximum
of the effective temperature Teff(ω) has strong consequences on the performance of
such heat engine. For example, consider the Otto cycle discussed in [183] (albeit the
same conclusions can be drawn for a Stirling cycle as well). The latter is established
changing instantaneously the stiffness from K− to K+ followed by a thermalisation
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at a hotter temperature with constant stiffness. Then, the stiffness is reduced to
the initial value K− followed by a relaxation which brings the system to the initial
configuration. The mean square position (4.21), changes during the cycle and it is
used to define (average) work and heat

〈W 〉 ≡ 1

2

ˆ f

i

dK
〈
X2
〉
, 〈Q〉 ≡ 1

2

[
K
〈
X2
〉]f
i
− 〈W 〉 (4.22)

from an initial state i to a final state f . The bigger the change in effective tem-
perature during the cycle for a fixed variation of the stiffness, the more efficient the
engine. If the maximum of Teff(ω) could be shifted away from zero (e.g. increasing
the distance from equilibrium of the working fluid, as in [183]), increasing the stiff-
ness (or equivalently ω0), would increase the particle variance 〈X2〉 = Teff(ω0)/K.
This is necessary to build the cycle described above and to make it run as a heat
engine, extracting positive work. This is the case, for example, when the nonequilib-
rium is due to a constant external driving as discussed in [183]. On the contrary, eq.
(4.17) clearly shows that the effective temperature can be increased only reducing
the stiffness, i.e. by expanding the volume where the colloid is confined. Namely,
a cycle which employs an active particle bath behaves as a heat engine only if the
expansion is performed at the cooler temperature, otherwise it behaves like a heat
pump. We will come back to this counterintuitive effect, due to the nature of this
effective temperature, in Sec. 5.6.1.2.

4.4 Overdamped Limit
Since for typical micro-sized colloidal particles velocity fluctuations decorrelate on a
much faster time scale compared to positions/orientation, we are interested in the
overdamped limit of (4.3). If we neglect inertia in (4.3),

k

ˆ t

−∞
ds Ẋ (s) e−

kµ
N

(t−s) = −KX + Γ (4.23)

If the fluid particles equilibrate quickly (kµ/N � 1), we approximate the exponential
in with a δ-function taking the limit kµ/N → ∞, [186]. Proceeding similarly with
the noise (4.5), we arrive at

Ẋ = −Kµ
N

X + η (4.24)

with noise properties,

〈η〉 = 0, 〈η (0)η (τ)〉 =
2µT

N
δ (τ) +

v2
0

2N
e−Dr|τ | (4.25)

since thermal and active noises are assumed to be independent. Eq. (4.24) is one of
the main results of this Chapter. Starting from a microscopic description of the probe
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in an active bath, we are able to conclude that the effective overdamped equation
for the confined colloid is equivalent to a ABP process with the active contribution
included into a noise term, which is non-Markov and non-Gaussian. Deviations from
Gaussianity are not visible from (4.25), but will be treated in Sec. 4.5. Namely,
the colloid can be thought of as coupled to two environments, one active and one
thermal, characterised by different properties and, thus, affecting in different way the
dynamics of the colloid. Noteworthy, (4.24) is mathematically equivalent to the ABP
equation introduced in Sec. 2.4 to describe an active particle coupled to a thermal
environment, entailing that a passive particle in an active environment behaves like
an active particle in a passive environment. Such double interpretation plays an
important role in Chapter 5.
Eq. (4.24) has been used in several works [177, 187, 188]. Here, we have derived
it from a mean-field model for the linearly coupled dynamics of probe and active
particles. Note that the analogy with previous approaches is complete once we
identify µ/N N→∞−→ constant as the dressed mobility of the colloid. One last remark
concerns the rotational diffusion of the colloid. Looking at (4.25) the intensity of
the active noise is reduced by N , but the decorrelation time is the same as for fluid
particles, i.e. Dr. Intuitively this is not realistic, since, upon including hydrodynamic
interaction, the effective rotational diffusion of the colloid should be the result of a
collective effect of the fluid particles, which cannot be explained with our toy model.

4.5 Moments
In this section we study the average dynamics of the colloid displacement in the
steady state. From (4.25), 〈X〉 = 0 evidently, while for τ > 0,

〈X (τ) X (0)〉 =
T

K
e−

Kµ
N
τ +

v2
0

2KµDr

1

R2 − 1

[
Re−Drτ − e−

Kµ
N
τ
]

(4.26)

where R ≡ Kµ/NDr has been introduced in Sec. 4.2. For τ = 0 (4.26) boils down
to 〈

X2
〉

=
1

K

(
T +

v2
0

2µDr

1

R + 1

)
(4.27)

If R� 1, 〈X2〉 ≈ Teff/K, the dynamics is an equilibrium-like Brownian motion at an
increased temperature [181,182,189], given by (4.10), so that the colloid behaves like
an equilibrium Brownian particle in contact with a hotter reservoir. If R� 1, 〈X2〉 ≈
(T + v2

0/(2µDrR)) /K. The potential then strongly confines the quasi-ballistic active
dynamics, entailing a smaller effective temperature compared to (4.10).
Due to the noise symmetries, it is straightforward to show that 〈X3〉 = 0, i.e. zero
skewness for the position distribution [77]. The fourth moment 〈X4〉, which gives
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information about deviations from Gaussianity, is derived in Appendix A.1,

〈
X4
〉

=
3T

K2

(
T+

v2
0

µDr

1

R + 1

)
+

3

2

(
v2

0

2µDr

)2
1

NK2

3R + 4

(R+1) (R+2) (3R+1)
(4.28)

From (4.27) and (4.28) we calculate the kurtosis, i.e. κ = 〈X4〉 / 〈X2〉2 − 3,

κ =
3

2

(
v2
0

2µDr

)2

(
T +

v2
0

2µDr

1
R+1

)2

1
N

(3R+4)(R+1)
(R+2)(3R+1)

− 2

(R + 1)2 (4.29)

which becomes

κ ≈
R�1
−3

N − 1

N

(
1− T

Teff

)2

< 0, κ ≈
R�1
−3

2

2N − 1

N

(
1

TR
Teff−T

+ 1

)2

< 0 (4.30)

in the close-to-equilibrium regime (R�1) and in the high-persistency regime (R�
1), respectively. Typical values for a 1µm-radius particle are: v0 ∼ 10−5m s−1,
kBT ∼ 3 · 10−21kg m2 s−2, Dr ∼ 10−1 s−1 and µ ∼ 108 kg−1s, so that Teff � T . In
both regimes the kurtosis is negative, converges to zero from below [188] as Teff→T
and strongly depends on the effective temperature and may converge to the satu-
ration value κ ≈ −3 for some choices of the parameters able to strongly enhance
the effective temperature. The negative kurtosis, associated to a broadening of the
position distribution and to lighter tails (with respect to a Gaussian distribution
which has by definition zero kurtosis), is a consequence of the fact that, as we al-
ready pointed out in this regime the dynamics is quasi-ballistic and very persistent.
Namely, with respect to the low persistency regime and even more to an equilibrium
Ornstein-Uhlenbeck process, the colloid spends less time around the minimum since
forced to oscillate in the potential. Nevertheless, the strong confinement prevents
the colloid from exploring regions further distant from the minimum and thus very
rare and unlikely to reach, similarly indeed to a deterministic harmonic oscillator.
Fig. 4.3 a) we compare the analytical formula (4.29) with a numerical simulation of
(4.24). As obvious from (4.29), the kurtosis depends on many parameters, but as
shown in Fig. 4.3 b)-c)-d), such effect reaches a saturation for large (or small) values
of the parameters.

4.5.1 Beyond linear coupling: analytics

In Sec. 4.2 we have introduced an effective description for a many-body system. As-
suming linear colloid-active particles coupling and non-interacting active particles,
no approximation is required to eliminate the fast degrees of freedom and to shown
that, in the overdamped limit, the colloid behaves like an ABP in contact with a
thermal environment. The result remains correct, though less eye-catching, even
relaxing these strong assumptions [16]. Treating the colloid as a perturbation to the
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Figure 4.3: On panel (a) we compare the numerical results (dots) of colloid molec-
ular dynamics with analytical result as a function of the 10-logarithm of Dr. The
parameter are T =K=µ= 1, v0 = 4, N = 30. On panel (b)-(c)-(d) analytical curves
of (4.29) for different value of v0, N and K as a function of the 10-logarithm of Dr.
The other parameters are the same.

fluid, the effective dynamics is expressed through the response function, averaged
over the active particles fluid, see Chapter 3. Precisely in those averages the activity
of the underlying environment implicitly survives, and therefore is not very infor-
mative. In this Section we perform a first step towards including a nonlinear force
between probe and active particles, whose leading effect on the probe variance will
be computed perturbatively.
We include in (4.2) the (potential) perturbation f (X(t)− xj(t)) ≡ fj(t) = −∂xjU(X−
xj) ∀j = 1, . . . , N where U is a generic pair potential. Note that the perturbation
is a function of the relative position between the colloid and the j-th particle. For
the ease of notation we denote it as rj(t) ≡ X(t) − xj(t). The same perturbation
influences the colloid dynamics (4.1). Consistently, we expand the process in powers
of ε, namely, xj = xj0 + εxj1 + O (ε2) and X = X0 + εX1 + O (ε2). We plug the
expansion into (4.1) and (4.2) and we compare them order by order. Of course, the
order ε0 gives back the unperturbed dynamics. At the order ε, we find for the fluid
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particles and the colloid, respectively,

ẋj1 = −kµ
N

xj1 +
kµ

N
X1 + ε

µ

N
fj0, ∀j (4.31)

MẌ1 = − (K + k) X1 +
1

N

N∑
j=1

(
kxj1 + εFj

0

)
, (4.32)

where fj0 ≡ f(rj0) is the zero order of a Taylor expansion of f in its argument and
Fj

0 = −∂X0U(rj0) = −fj0, due to action-reaction principle satisfied at the level of
the microscopic dynamics. Note that (4.31) is equivalent to (4.2) with fj0 thought
as a fluctuating noise for xj1. Plug (4.31) into (4.32) and using the action-reaction
principle F = −f , gives an equation for X1 similar to (4.3) with fj0 being the noise,

MẌ1 =−KX1 −
1

N

N∑
j=1

ˆ t

−∞
ds k Ẋ1 (s) e−

kµ
N

(t−s)− 1

N

N∑
j=1

ˆ t

−∞
ds ḟ j0 (s) e−

kµ
N

(t−s), (4.33)

whose solution (obtained as we did for (4.4) after neglecting the inertia) in the
overdamped regime, employing the limit kµ/N →∞ in (4.33), is

X1 =
1

Nk

N∑
j=1

[
Fj

0 −
Kµ

N

ˆ t

−∞
ds e−

Kµ
N

(t−s) Fj
0(s)

]
. (4.34)

The first correction to the second moment relies on the solution of (4.24) and (4.34):

〈X2〉 ≈〈(X0 + εX1)2〉 ≈ 〈X2
0〉+ 2ε〈X0X1〉 (4.35)

The first term in (4.35) is (4.27). The second is obtained in App. A.2 and it depends
on the ratio K/k. Namely,

〈X0X1〉 =
K�k

− 1

2NK2

(
T +

v2
0

2µ

1
kµ
N

+Dr

)〈
N∑
j=1

∂Fj
0

∂rj0

〉
, (4.36)

〈X0X1〉 =
K�k

− 1

2Nk2

(
T +

v2
0

2µ

1
kµ
N

+Dr

)〈
N∑
j=1

∂Fj
0

∂rj0

〉
. (4.37)

We explicitly calculate the correction (4.36) for a quartic potential, i.e. the leading
non-zero term in a Taylor expansion of the interaction potential U function of rj0 and
thus centred in the active particles position xj0. The force on the colloid becomes
Fj = α(rj0)3 and〈

N∑
j=1

∂Fj
0

∂rj0

〉
= 3α

〈
N∑
j=1

(
rj0
)2

〉
= 3α

N

k

(
T +

v2
0

2µ

1
kµ
N

+Dr

)
. (4.38)
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Noteworthy, the correction 〈X0X1〉 is negative in both the regimes of the ratio K/k.
Namely, due to the quartic potential, the colloid is more strongly confined, as ex-
pected. We consider the close-to-equilibrium regime, kµ,Kµ�NDr in which〈

N∑
j=1

∂Fj
0

∂rj0

〉
≈ 3α

N

k

(
T +

v2
0

2µDr

)
= 3α

NTeff

k
. (4.39)

Next, we discuss the two possible regimes of the ratio K/k1:

K � k In this regime the non-linear correction is given by (4.36) and the mean
square position becomes

〈
X2
〉
≈

K�k

Teff

K

(
1− 3ε

αTeff

k2

)
≈
ε�1

Teff

K

1

1 + 3εαTeff

k2

(4.40)

where we used (1 + ε)−1 ≈ 1− ε to include the first order non-linear correc-
tion into the denominator. In this regime the fluid is weakly coupled to the
colloid which on the other hand is strongly trapped. The equilibration time
of the colloid in the potential is short compared to the relaxation to a steady
state of the active particles carried out by the linear coupling k. This means
that, on the time scale Kµ/N , the active bath acts as a quenched disorder
background potential renormalising the stiffness K. The colloid results effec-
tively more confined and this entails a reduction of the colloid fluctuations,
clearly visible by a reduction of the mean square position relative to 〈X2

0〉
obtained in absence of non-linearities. The ratio αTeff/k

2 rules the relevance
of the non-linear coupling compared to the linear one. If αTeff/k

2� 1 the
colloid is perfectly confined by the anharmonic potential and it does not feel
at all the linear one. Namely, the probability to find the colloid beyond the
region marked by the quartic potential is practically zero. On the contrary,
if αTeff/k

2� 1 (e.g. the quartic potential is very flat), the colloid is con-
fined by the linear potential and the non-linear correction in (4.40) is indeed
negligible.

K � k In this regime the non-linear correction is given by (4.37) and the mean
square position becomes

〈
X2
〉
≈

K�k

Teff

K

(
1− 3ε

αTeff

k2

K

k

)
≈ Teff

K
. (4.41)

The coupling colloid-active particles is very strong, in other words the active
particles are effectively confined by the same potential as the colloid and relax
to a steady state with the same characteristic time. The colloid effectively
gains mass and friction but this does not lead to a sizeable reduction of

1More remarks about the two different regimes can be found in the App. A.2
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the mean square position with respect to 〈X2
0〉, as the non-linear correction

with respect to the linear contribution is further reduced by k/K � 1 so
that it is practically negligible under the necessary perturbative assumption
αTeff/k

2�1.

Noteworthy, this interpretation is valid also without activity up to replacing the
effective temperature (4.10) with the heat bath temperature.

4.5.2 Beyond linear coupling: numerics

If we divide (4.40) by Teff/K, we note that the first non-linear correction to the
second moment can be related to the linear estimation, obtained from (4.24), via an
algebraic relation. Namely,

〈X2〉
〈X2

0〉
=

1

1 + 3εαTeff

k2

(4.42)

Now, we employ Brownian Dynamics simulations aiming to a quantitative confir-
mation of these effect of non-linearities resulting in (4.40) on the active particle
dynamics. We consider a non-linear extension of Eqs. (4.1), (4.2). We simulate a
two-dimensional system consisting of one colloid under harmonic confinement and
a set of N = 1000 active particles, both moving in a square domain with linear size
L=2 and with periodic boundary conditions. The active particles interact (mutually
and with the colloid) through a soft repulsive potential assumed, in the following, to
be Gaussian.

MẌ = −KX−
N∑
j=1

∂XV1 (X,xj) (4.43)

ẋj =v0n
j+∂xj (V1(X,xj)+V2 (xj,xj′))+

√
2µTξj (4.44)

where

V1(xj,X) = V0e
− 1

2σ2
c
(xj−X)

2

, V2(xj,xj
′
) = V e

− 1

2σ2
p

(
xj−xj

′)2

, (4.45)

are the potential for the particle-particle and particle-colloid interaction respectively.
We let the system relax to a steady state over which we take average values of the
colloid dynamics. The averages have been done over 105 independent simulation
runs of duration T = 1.5× 103.
We have calculated in the many-body model (from now on denoted as model A)
the colloid position distribution and, in particular, its second and fourth moments
for several values of v0 in the steady state, see Fig. 4.4 a)-b)-c) respectively. As
expected, the colloid is seen to behave qualitatively like an active Brownian particle
embedded in a thermal environment, modelled by the coarse-grained model (4.24),
for the colloid alone (from now on denoted as model B). Noteworthy, at equilibrium
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models A and B should lead to the same results provided that the environment made
by passive particles in model A behaves like a perfect thermal bath and thus can
be effectively replaced by a Gaussian white noise. This is true in the limit N→∞,
therefore any deviation in the two models is then to be attributed to a finite size
effect, given that N is finite. Increasing v0 leads to a broadening of the position
distribution as seen by the growth of the second and the fourth moment. The
observed dependence on v0 differs between the two models. As evident from (4.27)
and (4.28), in the model B the second and the fourth moment grow with v2

0 and v4
0

respectively. In the model A, they both grow linearly, see Fig 4.5 a) for the MSD,
due to the short-range potential that prevents the colloid from interacting with all
the active particles. Furthermore, for bigger v0 we expect a saturation effect, already
visible in Fig 4.4 a) for the position distribution. When v0D

−1
r ∼L, the system size

(here L= 2), the particles interact briefly and rarely with the colloid, leading to a
reduction of its effective active behaviour. Similar conclusion can be deduced by the
position-position correlation in Fig. 4.4 d).
In Fig 4.5 b) we compare the ratio between the variance of the position distribution
in the model A denoted by σ and in the model B denoted by σ0 and given by
eq. (4.27). Namely, σ=Kσ0. At equilibrium they are almost equal, K= 0.973' 1,
meaning that in a good approximation the environment behaves like a perfect thermal
bath. Since we are not interested in keeping in our model finite size effect which
produces a systematic error in all the data we decided to rescale the variances for
each value of v0 by the finite size effect value (so to obtain K= 1 at equilibrium).
With increasing v0 the variance of the model B becomes much bigger (K< 1), due
to the replacement of colloid-active particles short-range interactions with a noise,
whose statistics is equal for all the active particles. Encouraged by the analytical
result (4.40), we have fitted K using

σ =
σ0

1 + av2
0

, (4.46)

with a = 0.069 ± 0.002, the error given by the fit. We can then proceed to map σ
obtained by the dynamics of model A onto the model B with an effective parameter.
We define the respective variance as σ̃0, that we impose to be equal to σ. Namely,
σ=σ0K= σ̃0. Due to the big number of active particles needed to create an accept-
able bath for the colloid, (4.27) must be considered in the regime R� 1 (from the
simulations: N=1000, K=6, Dr =4 and µ=1 entails R=1.5 · 10−3),

1

K

(
T +

v2
0

2µDr

)
1

1 + av2
0

=
1

K̃

(
T +

v2
0

2µ̃D̃r

)
(4.47)

For sake of simplicity we suppose µ = µ̃ and D̃r = Dr obtaining for the external
confinement the relation

K̃

K
= 1 + av2

0 (4.48)
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Figure 4.4: Dynamics of the colloid in the model A. The stationary distribution of
the colloid position (a), the mean square displacement (b), the fourth moment (c)
and the position time-decorrelation (d) for several values of v0. The parameters are
T =µ=1, M=10, Dr =4, σp=0.1, σc=0.15, V =3, V0 =2.

With increasing v0, K̃ >K entails an effective increase of the confinement caused by
the collision with the active particles and thus a reduction of the variance for model
B. Having identified the renormalised parameter, we perform other simulations of the
model B using the effective stiffness and we obtain a new set of position distributions
for the different values of v0. Fig. 4.6 shows how little those distributions deviate from
the distributions of model A, demonstrating that the mapping (4.48) established for
the variance extends to the entire particle distribution.
In conclusion, we have numerically established a simple mapping between the models
A and B. Namely, in a first (mean-field) approximation, the non-linear features of the
original model can be reproduced with the introduction of an effective confinement
potential. The entire analysis has been carried out on the variance alone, because,
due to the high number of particle involved (necessary for the relaxation of the
colloid in the model A), the coarse-grained system is in the close-to-equilibrium
regime R�1 and, therefore the equivalent condition (4.48) for the quartic moment
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Figure 4.5: Fit of the numerical results. The colloid MSD (a) for the model A (blue
line the fit and red points the data from simulations) compared with the model B
(orange line the fit and black points the value from (4.27)), the ratio of variance (b)
for the model A over the variance for the model B for different values of v0. The
parameters are the same used in Fig. 4.4.

is not giving further constraints. As a last remark we note that the variance of the
colloid position distribution does not coincide with the MSD shown in Fig. 4.4 b) even
at equilibrium, i.e. (σ2 − 〈X2〉)/ 〈X2〉 ' 7%, because the fluid is not behaving like a
perfect (canonical) heat bath for the colloid, providing to it just the temperature.

4.6 Conclusion and Outlook
In this Chapter we discussed the dynamic and static properties of a colloid embed-
ded in an active particles environment. Performing a coarse-graining over the active
particles degrees of freedom, assumed fast variables compared to the colloid, we de-
rived a generalised Langevin equation for the colloid alone. Although the general
theory presented in Chapter 3 is valid for any many-body system describable via
Langevin equations, we decided to restrict the discussion to a toy model, charac-
terised by linear probe-active particles coupling and no mutual interaction of the
active particles themselves. Such model is analytically solvable and thus is suitable
for a more complete understanding of the underlying physics. Remarkably, activity
appears in the effective dynamics only through the noise term, given that the friction
is independent of activity. Intuitively, the colloid is coupled to two baths, one active
and one thermal which interact and can exchange energy with the colloid in different
ways, although the dissipation is related to the thermal bath alone. Consequently,
we observe a violation of the fluctuation-dissipation relation between noise and fric-
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Figure 4.6: Deviations of the position distribution for the model B with the effective
rotational diffusion coefficient according to (4.48) from the position distribution of
the model A for v0 = 0, 2, 4, 6, 8, 10. The parameters are the same used in Fig. 4.4.

tion. Such a violation is due to the presence of an extra term in the noise two-times
correlation (4.7), which depends explicitly on the active particles parameters, as v0

and Dr. Remarkably, FDT can be formally restored introducing a time-dependent
effective temperature. The latter does have a clear physical interpretation only in
certain regime of the parameters, namely kµ/NDr � 1. It corresponds to a fast
rotational diffusion regime in which the active particles exhibit a short persistency
and behave like Brownian particles in contact with a hotter heat bath. Noteworthy
in the opposite regime, in which the active particles are very persistent and move
quasi-ballistically the effective temperature can even diverge in time losing its ther-
modynamic interpretation.
Being linear, the generalised Langevin equation can be solved both in the under- and
overdamped limit. In the underdamped regime we perform a Fourier analysis ob-
taining an extension to active particles systems of the Kubo relation for the response
function in the frequency spaces [36], with the introduction of a frequency-dependent
effective temperature T (ω), reported in eq. (4.17). It is important to stress that
this effective temperature T (ω) is not the Fourier Transform of (4.8), but rather of
(4.10). Part of the effective temperature (4.8), indeed responsible for the diverging
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behaviour, has been absorbed in Reγ̃+ (ω). This is confirmed by the fact that (4.13)
is the Fourier Transform of the noise-correlation (4.7).
The overdamped limit coincides, for our system, to a Markovian limit, based on a
short relaxation time to the steady state of the active particles, i.e. kµ/N � 1.
In this regime the effective dynamics is formally equivalent to the well-known ABP
model we used for active particles themselves, entailing that in this regime a pas-
sive colloid embedded in an active bath behaves like an active particle in a passive
bath. Eq. (4.24) differs only for the introduction of a reduced (by N) mobility and
intensity of the active noise. Afterwards, we investigated the moments of (4.24), in
particular we discussed the kurtosis, observed to be negative, confirmation of a non
gaussian behaviour in the stationary position distribution of the colloid.
Later on, we investigated a non-linear coupling between the colloid and the active
particles as a small perturbation to the linear dynamics and we perform a per-
turbative expansion of the mean square position obtaining a first-order correction
proportional to the mean square position of the active particles themselves. In a
first approximation we proved that the non-linear mean square position decays al-
gebraically with respect to the linear one, ∼ (1 + av2

0)−1. This result should be
corrected if the active particles are mutually interacting, in view of the caging effects
typical in a real active bath. Active particles provided with a short-range interaction
and kept at high density experience a reduced effective velocity due to the tendency
of creating clusters. Nevertheless, performing Brownian dynamics simulations for
the system colloid and active particles with focus on the position distribution and
the moments, we obtain a good agreement with the theoretical prediction (4.46),
although derived from non-interacting active particles. We expect that the introduc-
tion of a reduced velocity would further increase the accuracy of the fit. Then, we
investigated the position distribution introducing a mapping between the many-body
and the coarse-grained system variances. This mapping allows, via the introduction
of an effective rotational diffusion coefficient, to replicate the same position distribu-
tion obtained with the many-body model, using the toy model alone. The mapping
is able to funnel the non-linear features into the introduction of an effective confining
potential. Noteworthy, the simulations have been performed in a regime in which
non-Gaussian behaviour is negligible since N�1, necessary for the active particles
to be a good bath for the colloid. We measured the kurtosis from the simulation,
which is not zero at equilibrium as it should be. Namely, the passive particles (for
v0 = 0) do not behave as a perfect bath and a bigger number should be considered
to improve the precision of our estimation. On the other hand, it would be interest-
ing to perform further simulations involving less active particles but more strongly
coupled to the colloid, enhancing non-Gaussian behaviour.



Chapter 5

Active Brownian Stirling Engine

5.1 Introduction
In Chapter 4 we have derived the effective equation for a colloid embedded in an
active particles bath and we have shown that if, the active particles are subjected to
linear coupling with the colloid and no mutual interaction, such equation is formally
equivalent to the ABP for an active particle in a passive bath. In this Chapter we
apply our achievements to Brownian thermodynamical machines with the purpose
to establish whether activity enhances their efficiency. The discussion of the results
in this Chapter follows the same structure of [18], still in preparation.
The study of efficiency is a topic as old as the industrialisation of the world itself. Its
practical importance, together with the theoretical interest, has pushed many physi-
cists and engineers to perform numerous experiments that contributed to establish
Thermodynamics. The industries-oriented aspect is particularly visible concerning
the thermodynamic cycles, e.g. Stirling, Carnot etc, based on a clear principle: to
use the easily accessible “disordered” energy called as heat to perform work, that can
be viewed as an “ordered” or “directed” form of energy. During the last few decades,
the advances in technology allow and require [190–193] building machines so small
that thermal fluctuations of the surrounding environment render their operation
stochastic. The need for a theoretical description of such machines has led to the set
up of Stochastic Thermodynamics [6, 10, 32, 194], a theory combining classical ther-
modynamics and stochastic processes. In this theory, basic thermodynamic notions
such as heat, work, and entropy are defined at the level of the individual stochastic
trajectories of the system in question. While the resulting average thermodynamic
properties of the system obey the principles of thermodynamics, fluctuations are al-
lowed to go beyond these limitations. The probability of such rare events is described
by so-called fluctuation theorems that generalise the second law of thermodynam-
ics [6]. Many recent studies have been devoted to the understanding of microscopic
versions of thermodynamics cycles (see for example Refs. [195–200] for experimental
studies and Refs. [201–210] for theoretical ones). Between these studies, a paradig-
matic role is played by Brownian heat engines [198–200,209,210] based on a colloidal
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particle diffusing in an equilibrium bath and driven by a time-dependent potential –
realisable in practice by optical tweezers – which plays the role of a volume-regulating
piston [198,199,211]. During the last few years, increasing interest has been devoted
to the thermodynamics of systems involving active particles [188,212,213] that con-
vert energy provided by some internal degrees of freedom into a persistent motion.
Dynamics of these systems involve non-Gaussian heavy-tailed fluctuations. Accord-
ingly, many questions naturally arise. To name few of them, can the persistent
motion be harvested and lead to an increase of the extracted work? Can such fluc-
tuations consistently enhance the efficiency of a machine and go beyond the limit
imposed by equilibrium thermodynamics? Furthermore, as we discussed in Chap-
ter 4.5, the characteristic energy associated to an active particle, deduced by the
effective temperature, e.g. (4.10) can produce, just by tuning parameters like the
active velocity v0 and the rotational diffusion coefficient Dr, very big temperature
differences, not easily reachable with a thermal environment, and thus entail higher
efficiency according to standard definitions from Thermodynamics.
In this Chapter we aim to give a contribution in this direction, discussing a Stir-
ling heat engine for an active particle embedded in a thermal environment providing
for friction and noise, i.e. active Brownian particle (ABPs) [61], able to capture the
main properties of active particles system although its simplicity. Remarkably, ABPs
model with harmonic confining potential has recently been used to describe a much
more complex system, namely, a passive Brownian colloid embedded in an active
particles environment [67,170,173], encouraged by experimental evidence [174,214].
Namely, the bath affects the colloid dynamics only through an extra noise, sharing
the same statistics with the noise felt by each individual active particle. In the pre-
vious Chapters we have stressed that such an assumption cannot be true in full glory
but relies on certain approximations, e.g. weak-coupling between colloid and active
particles, mean field approach and Markovian limit concerning the memory effects
in the friction kernel. Due to these approximations, collective effects, typical for
active systems like clustering or accumulation around obstacles, are lost during the
derivation. Nevertheless, it is an open question whether these effects are important
for the considered system. To our knowledge, ABP model has been used to describe
a passive colloid in an active environment only in [188] with the aim to reproduce
the surprising experimental results [212] for a Stirling engine based on a colloidal
particle diffusing in a bacterial bath. The authors of the [212] have found that their
Stirling engine can operate with efficiencies surpassing the thermodynamic bound
on the efficiency of an equilibrium Stirling cycle. Unfortunately, the analysis given
in [188] failed to explain this observation. However, even the simple ABP in an equi-
librium bath, a throughout study of both dynamics and thermodynamics is lacking:
the engine in [188] was investigated in the quasi-static limit only, mainly focusing
on the possibility of surpassing the classical efficiency. Thus we present a detailed
study of dynamics and thermodynamics of the active heat engine of [188,212], which
is based on an active Brownian particle immersed in an equilibrium bath and driven
by the parabolic potential with time-dependent stiffness k(t), but this model can de-
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scribe a passive particle in an active environment, provided that the approximations
introduced in Chapter 4 are satisfied.
The most remarkable result of this Chapter, shown in Secs. 5.2.4 and 5.3, is that the
average energetics of this model can be mapped on that of a passive heat engine in
contact with an equilibrium bath at an effective temperature. This mapping allows
us to adopt many known results for passive Brownian heat engines to the active
engine. It includes not only the quasi-static results such as the second law upper
bounds on the efficiency of individual thermodynamic cycles (as pointed out in [188]
for Stirling cycle), but also the finite-time results such as the efficiency at maximum
power [209], maximum efficiency at arbitrary power [215] and approachability of
equilibrium (Carnot’s) efficiency at a nonzero power [216].
Although the results for standard heat engines can be mapped on those for the active
ones, the effective temperature on which the correspondence is built, is a dynamical
quantity determined by the external driving, as expressed by the differential equa-
tion (5.12)–(5.13). Therefore, it is not trivial to realise standard thermodynamic
cycles, such as the Stirling cycle or Carnot cycle, using this temperature. For exam-
ple, fixing the bath activity and the bath temperature does not imply that the active
temperature is constant, see Fig. 5.1 e). This behaviour may lead to unexpected
directions of heat flows through the system thus affecting the correct definition of
the engine efficiency. We discuss this and other peculiarities in detail both in the
quasi-static regime, which allows for simple analytical description, and also for driv-
ing at arbitrary speeds (Secs. 5.3 and 5.6).
The mapping cannot be extended beyond the mean energetics. Indeed, the active and
passive heat engines differ in variables which depend on higher moments of position
than the second one, e.g. the full position distribution, system entropy production
(EP) and fluctuations of work, heat and entropy. One thus cannot take for granted
the results obtained for equilibrium baths such as fluctuation theorems, e.g. the
Jarzinski equality [8], Crooks fluctuation theorem [7], Hatano-Sasa equality [217],
and various inequalities containing higher moments of work, heat and entropy (ex-
amples are thermodynamic uncertainty relations [218,219] and the trade-off between
power, efficiency and constancy [220]). The non-Gaussianity enhances the output
work and power, but it also affects the heat flowing into the system (see Secs. 5.5 and
5.6). As a result, the efficiency is always bounded by the 2nd law containing effective
EP corresponding to the effective temperature. Therein, we also propose two pos-
sible EP formulas for the active heat engine. They are derived using path-integral
formalism [221] depending on the chosen parity of activity under time reversal – even
(odd) if it is regarded as a force (velocity).
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5.2 Active heat engine

5.2.1 Dynamics

For sake of simplicity we limit our investigation to the two-dimensional case, where
the particle state is described by its position x and its orientation angle θ. We employ
the same Langevin equation introduced in 2.4 with time-independent parameters, for
an active particle confined by a harmonic potential with time-dependent stiffness k(t)
and embedded in a thermal environment,

ẋ = −k(t)µx + v(t)n(θ) +
√

2D(t)ξ, θ̇ =
√

2Dr(t)ξθ. (5.1)

Here ξ and ξθ are independent standard Gaussian white noises with zero average
and delta-correlation in time, µ is the mobility constant, D(t) = µT (t) and Dr(t)
stand for the translational and rotational diffusion coefficient respectively (T is the
heat bath temperature). The active velocity has time-dependent magnitude v(t).
Lumping the noises together as η =

√
2D(t)ξ + v(t)n(θ), (5.1) becomes

ẋ = −k(t)µx + η, (5.2)

equivalent to (4.24). Here, the active velocity is treated as a non-Gaussian coloured
noise which is still zero averaged, but it possesses exponentially decaying correlations,

〈η(t)η(t′)〉 = 2
√
D(t)D(t′)δ(t− t′) +

1

2
v(t)v(t′) exp

(
−
ˆ max(t,t′)

min(t,t′)

dt′′Dr (t′′)

)
.

(5.3)

Higher order correlation functions [77] are not needed hereafter. This formula is
suitable for assessing the thermodynamics of the system. Noise terms in Langevin
equations are standardly identified as results of coupling the system to surrounding
baths. The two contributions in the noise η may be thought as pertaining to two
different baths, one at equilibrium (the solvent) and one active (the suspended self-
propelled particles). They influence the exchange of heat with the system in a
different way, as we will show explicitly in Sec. 5.6.1.
Note that the system described by (5.1) and thus also (5.2) involves in its most
general variant three ingredients which can bring it far from equilibrium:

(i) If the stiffness k(t) changes on time-scales shorter than the system relaxation
time, the system is not fast enough to relax to equilibrium.

(ii) If the rotational diffusion coefficient Dr is not given by the Einstein relation,
the rotational degree of freedom can be considered as a second bath at a tem-
perature different than T . In general, connecting a system to reservoirs at
different temperatures can bring it out of equilibrium.

(iii) The velocity term in the Langevin system can be formally considered as a
non-conservative force. Presence of such a force causes currents in the system,
bringing it out of equilibrium.
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Figure 5.1: The trap stiffness (a), bath temperature (b), rotational diffusion coef-
ficient (c) and active velocity (d) as functions of time during the cycle. Full blue
lines show actual time dependences, while dashed black lines depict approximate
step-wise constant driving used for the numerical calculation. The effective tem-
perature (e), full blue line for for driving (a)–(d) (5.16), dotted for a quasi-static
process (5.17). Parameters used: tp=1, k−=5, k+ =5.5, T+ =2, T−=1, D+

r =0.055,
D−r = 0.05, v+ = 4 and v−= 0. Variance of the particle position as function of time.
(f) Relaxation to limit cycle for v+ = 0, 2, 4, from the lower curve to the upper one
(BD simulations). In panels (g) – (i) the variance behaviour during the limit cycle
for activity v+ = 0, 2, 4. The broken blue lines stand for the variances correspond-
ing to infinitely slow driving (5.15). Full green (BD simulations), dot-dashed black
(numerics), and dotted red (analytical formula (5.13)) curves show the variance cor-
responding to the driving depicted in Fig. 5.1. The perfect overlap of the curves
implies that the individual methods are equivalent.

5.2.2 Driving

We periodically modulate with a linear protocol the stiffness k, the reservoir tem-
perature T , the rotational diffusion coefficient Dr and the active velocity v in the
manner that resembles the Stirling cycle considered in [212] (see Fig. 5.1). The
driving consists of four branches of equal duration:

A→B “isothermal” compression, with k increased from k− to k+ at (T−, D
−
r , v−)

B→C isochoric (iso-stiffness) heating (T−, D
−
r , v−) to (T+, D

+
r , v+) at k = k+

C→D “isothermal” expansion, with k decreased from k+ to k− at (T+, D
+
r , v+)

D→A isochoric (iso-stiffness) cooling (T+, D
+
r , v+) to (T−, D

−
r , v−) at k = k−
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We denote tp the duration of the whole cycle. The “isothermal” branches are char-
acterised by constant heat bath temperature and activity, but, in general, a varying
effective temperature, see Fig. 5.1e), thus quoted. It boils down to a constant in
special limiting regimes only, as discussed in Secs. 5.6.1.2 and 5.4. Only there the
considered “isothermal” branches are really isothermal and the considered cycle is a
real Stirling cycle. The engine consumes (performs) work during the “isothermal”
branch A → B (C → D). Since the isochoric branches are characterised by constant
stiffness, there the system only exchanges heat with reservoirs as explained in the
next section.

5.2.3 Energetics

Given the microscopic nature of the system, thermodynamics quantities such as
work and heat are represented by certain functionals over the individual trajectories
of the underlying stochastic process {x(t), θ(t)} and thus become also stochastic, for
systems in contact with equilibrium bath [6,32] in contact with an active bath [222].
In this work, we are interested in average values of these functionals which can be
calculated from the definition of the internal energy,

U(t) =
1

2
k(t)σ(t), (5.4)

where σ(t) = 〈x2(t)〉, for each component of position. Combining (5.4) with the first
law of thermodynamics ∆U(ti, tf) =

´ tf
ti
dt U̇(t) = W (ti, tf) +Q(ti, tf), we identify:

• the work done on the particle during the time window (ti, tf),

W (ti, tf) =
1

2

ˆ tf

ti

dt k̇(t)σ(t) =
1

2

ˆ kf

ki

dk σ(t), (5.5)

as the energy flowing into the system from an external source controlling the po-
tential,

• the heat,

Q(ti, tf) =
1

2

ˆ tf

ti

dt k(t)σ̇(t) =
1

2

ˆ σf

σi

dσ k(t), (5.6)

as the energy flowing into the system from the reservoir.

With the definitions (5.5)–(5.6), we can describe performance of the engine in terms
of output power P and efficiency η:

P ≡ Wout

tp
η ≡ Wout

Qin
. (5.7)
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Here, Wout = −W (0, tp) is the work done by the engine per cycle and

Qin =

ˆ tp

0

dt Q̇(0, t)Θ[Q̇(0, t)] =
1

2

ˆ tp

0

dt k σ̇(t)Θ[σ̇(t)] (5.8)

Qout =

ˆ tp

0

dt Q̇(0, t)Θ[−Q̇(0, t)] =
1

2

ˆ tp

0

dt k σ̇(t)Θ[−σ̇(t)] (5.9)

is the heat coming into the system from the environment and from the system to the
environment respectively (Θ(x) denotes the unit step function). While the definition
of the output power bares no controversy, it must be stressed that in the definition of
the efficiency we have neglected the energy which drives the active velocity v (i.e the
housekeeping heat). Noteworthy, all these thermodynamic quantities are determined
solely by the variance σ. In the next section, we show how to calculate this function
for an arbitrary protocol.

5.2.4 Variance

Due to the periodic driving, the average state of the system eventually, after a tran-
sient period, attains a periodic steady state. Due to the symmetry of the potential,
the average particle displacement during this cycle will be zero. The long-time so-
lution for the variance σ arbitrary v fulfils the system of two coupled differential
equations (see Appendix B.1 for the derivation)

Ḣ = −(µk +Dr)H + v, (5.10)
σ̇ = −2µkσ + 4D + 2vH. (5.11)

where vH is thought as an active contribution to (translational) diffusivity. This
system has the time-periodic solution

H(t) = H0e−K(t,0)−F (t,0) +

ˆ t

0

v (s) e−K(t,s)−F (t,s), (5.12)

σ(t) = σ0e−2K(t,0) + 4

ˆ t

0

dt′Deff(t′)e−2K(t,t′). (5.13)

with functions K(t, t0) = µ
´ t
t0
dt′k(t′) and F (t, t0) =

´ t
t0
dt′Dr(t

′) and Deff(t) =
D(t) + v(t)H(t)/2. The constants H0 and σ0 in Eqs. (5.12) and (5.13) secures time-
periodicity of the solution. They are given by

H0 =

´ tp
0
dt′ v (t′) e−K(tp,t′)−F (tp,t′)

1− e−K(tp,0)−F (tp,0)
, σ0 = 4

´ tp
0
dt′Deff(t′)e−2K(tp,t′)

1− e−2K(tp,0)
. (5.14)

Given the formal complexity of (5.13), it is useful to consider limiting situations
where the variance attains a more transparent form. Along a quasi-static process
with the driving much slower than relaxation times of the system, (µk +Dr)

−1 and
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(2µk)−1 for H and σ respectively, the functions H and σ are always relaxed and the
variance can be obtained from the condition Ḣ = σ̇ = 0:

σ = σ∞ ≡
2

k

(
T +

v2

2µ

1

kµ+Dr

)
. (5.15)

The first correction in the velocity of the driving to the above formula is derived
in Appendix B.2. For a driving much faster than the system relaxation times, the
system is too slow to react to any change so that the variance is given by (5.17) with
time-averaged values of the parameters k, T , v and Dr. In all other intermediate
regimes we use the full expression (5.13). To be sure that we calculate the nested
integral correctly, we cross-check the obtained results with other two independents
methods, the BD simulations and the numerical method [223]. The finite-time vari-
ances follow the quasi-static ones, similarly to donkey chasing a carrot, c.f. Fig. 5.1
(g)-(i). The distance between the quasi-static and the finite-time curves is larger
for faster variation of parameters and thus, in the present case, the distance is pro-
portional to v+. As can be expected intuitively and also observing the role of v in
(5.11), larger active velocities lead to larger variances.

5.3 Mapping to passive cycle
The formula (5.11) for the variance has the same form valid for equilibrium baths
(see, e.g., [209]) up to the term 2vH, which can be, however, absorbed in the dif-
fusion coefficient so to obtain an effective diffusion coefficient Deff = D + vH/2
corresponding to the effective temperature

Teff(t) =
Deff(t)

µ
= T (t) +

v(t)H(t)

2µ
, (5.16)

always larger than T and determined jointly by the bath temperature and the ac-
tivity. The latter enters indirect through the dynamical equation for H (5.10) that
makes the effective temperature acquire the relaxation time, (kµ+Dr)

−1. While for
a general cycle it is a tp-periodic function described by Eq. 5.12, for a quasi-static
process, it boils down to the simple expression

T∞eff ≡ T +
v2

2µ

1

kµ+Dr
. (5.17)

Let us stress that the effective temperature (5.16), defined from the variance, is well
defined in the limit cycle only and not during the initial relaxation. Then, it allows
for a consistent thermodynamic description of the engine performance including def-
inition of effective EP, which is an increasing function of time and sets standard
second law bounds on engines power and efficiency (see Sec. 5.4.2). During any tran-
sient relaxation to the periodic steady state, the effective temperature would have
to be defined from the right-hand side of Eq. B.2, which contains a memory term.
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In this case, it is in general not possible to define a thermodynamically consistent
entropy associated with the transient effective temperature. In what follows, we will
consider the time-periodic effective temperature only. The effective temperature pos-
sesses several nonintuitive features. First, it is tp-periodic even for a constant bath
temperature in case of periodically modulated activity or trap stiffness. Moreover,
due to its dynamical nature, the effective temperature can change with time even
during those parts of the cycle where the model parameters are held constant. Thus
to realize an isothermal process for the effective temperature one should carefully
control the model parameters in order to make the expression (5.16) or, in the quasi-
static limit (5.17), constant. We demonstrate this behaviour in Fig. 5.1 (e), where we
plot the effective temperature (5.16) (full blue line) and also the quasi-static effec-
tive temperature (5.17) which would be obtained if the used driving were sufficiently
slow (black dotted line). The quasi-static effective temperature runs approximately
along a Stirling cycle, in accord with the bath temperature and activity. Conversely,
the finite-time effective temperature exhibits completely different behaviour. The
hereby identified mapping implies that the dynamics of the variance in the active
model is exactly the same as the dynamics of the variance in a model with equilib-
rium bath at the temperature Teff . The variance determines the behaviour of average
thermodynamic variables such as work, heat, and efficiency and thus these variables
for the active heat engine must obey the standard results obtained for heat engines
with equilibrium baths. Namely, the following findings on the optimal performance
of classical heat engines are still valid in our case:

• The upper bound on the efficiency of our engine is given by the Carnot’s efficiency

η ≤ ηC = 1− min(Teff)

max(Teff)
, (5.18)

which can be reached only if the effective temperature and the stiffness are varied
along a Carnot cycle composed of two isotherms and two adiabatics. Thus, reach-
ing ηC in our heat engine requires fine tuning of the parameters (T , v, Dr and k)
such that the effective temperature (5.16) is constant during the isotherms.

• To reach the upper bound on efficiency ηC , the engine must work at quasi-static
conditions and thus the corresponding power vanishes rendering such machine
uninteresting for practical purposes [216]. That is why other measures of engine
performance have been proposed. A prominent role among them plays the max-
imum power condition. For overdamped Brownian heat engines, the regime of
maximum power has been investigated in [209]. Employing their result, we find
that the efficiency at maximum power for our heat engine is given by

ηMP = 1−

√
min(Teff)

max(Teff)
. (5.19)

This result holds for Carnot like cycles using a special protocol for the trap stiffness
k which minimises the work dissipated during the isothermal branches.
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In the next section, after defining the EP for the effective passive model (Sec. 5.4.2)
we show how the mapping fails in predicting the correct EP of the active heat engine
(Sec. 5.4.1). To show that the correspondence with the passive model should not be
overstretched, we also display the deviations of the probability distribution of the
active particle position (Appendix B.3) from that predicted by the passive model.

5.4 Entropy production
The total entropy production due to the operation of the engine comprises of the
entropy change of the bath and entropy change of the position distribution of the
particle. The change of the bath entropy is given by the energy delivered into the bath
divided by the bath temperature. This energy influx comprises of three contributions:

(i) the energy influx due to changes in the particle potential energy as the particle
moves in the external potential,

(ii) the energy of the active motion of the particle dissipated due to the friction,

(iii) the energy transferred into the system via the mechanism sustaining activity of
the particle.

In our discussion of the entropy production, we consider only the contributions (i)
and (ii), while we neglect the contribution (iii), which is nevertheless in practice
the largest one. The real change in the entropy of the bath resulting from the
contributions (i) and (ii) depends on the physical realisation of the active velocity of
the particle – whether the active velocity of the particle is a result of dragging the
particle through the fluid by an external force (see Fig. 5.2 b)), or it is rather a real
swimming when the particle “pushes away” from the surrounding liquid (see Fig. 5.2
c). Besides the real change in the bath entropy, one should also define the effective
change in the bath entropy corresponding to the above-introduced mapping to the
passive system in contact with a bath at the effective temperature (see Fig. 5.2 a)).
In the following section, we discussed these quantities in detail.

5.4.1 Actual entropy production

The actual entropy produced during the cycle can be identified by comparing proba-
bilities of forward and time-reversed trajectories of the stochastic process (x(t), θ(t))
using a path integral formulation [221] starting from (5.1). In this calculation, one
has to choose whether the active component v is even or odd with respect to the
time-reversal [224,225]. Even active velocity corresponds to the situation where the
active particles are dragged by an active force, which dissipates energy against the
friction in a thermal environment at temperature T . An intuitive sketch of this sce-
nario is given by Fig. 5.2) b). This is well visible from the resulting expression for
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Figure 5.2: Left Panel. Sketch for the effective entropy production (a)), the entropy
S+ (b)) and the entropy S− (c)). Right Panel. The total EP (upper panel), the
entropy flowing in the reservoirs (middle panel) and the change in the system entropy
(lower panel) as functions of time during the cycle depicted in Fig. 5.1 with v+ = 4.
The individual entropies are defined in Eqs. (5.20)–(5.23) and (5.25)–(5.28).

the amount of entropy flowed in the bath during the time interval [0, t],

S+
R (t)=

ˆ t

0

dt′
1

T (t′)

〈
(vn−µ∇V ) · ẋ

µ

〉
= −
ˆ t

0

dt′
1

T (t′)

(
Q̇+kvH− v

2

µ

)
(t′), (5.20)

where vn− kµx is the velocity caused by the external forcing and ẋ/µ is the friction
force. The last equality follows after using the formula k 〈x · ẋ〉=Q̇(0, t) = Q̇ in the
second term and substituting (5.1) in the first, given that 〈vn · x〉 = vH.
If v is regarded as a proper momentum (per unit mass) it is odd under time reversal.
Hence, the active velocity acts as a negative friction. That could be seen as resulting,
e.g. from a convecting background flow, as depicted in Fig. 5.2) c). In this case, we
obtain for the amount of entropy flowed in the bath during the time interval (0, t),

S−R (t) = −
ˆ t

0

dt′
1

T (t′)
〈(ẋ− vn) · (−kx)〉 = −

ˆ t

0

dt′
1

T (t′)

(
Q̇− kvH

)
(t′), (5.21)

where the second equality is obtained in a similar way as in the even case. In
Eq. (5.21), the term ẋ − vn stands for the relative particle velocity with respect
to the drift velocity of the solution vn. This relative velocity is nonzero due to
the force applied by the external potential −kx, which dissipates energy into the
solution. Having defined the EP in the reservoir, the total entropy produced by the
machine in the time-window (0, t) reads

∆S±tot(t) = ∆S±R (t) + ∆S(t), (5.22)
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where ∆S(t) = S(t)− S(0) is the change in the system entropy

S(t) = −
ˆ ∞
−∞

dx

ˆ ∞
−∞

dy

ˆ 2π

0

dθ p log p. (5.23)

Here, the probability distribution p = p(x, θ, t), solution of the FPE associated to
(5.1),

∂p

∂t
=

(
kµ∇x · x− vn · ∇x +D∇2

x +Dr
∂2

∂θ2

)
p, (5.24)

describing the full state of the particle at time t. Noteworthy, (5.24) is the only object
in the present thermodynamic analysis which can not be determined using σ. Instead,
we evaluate it either numerically from Eq. (B.15) or using BD simulations of (5.1)
The main difference between the EPs S+

R (t) and S−R (t) is that the former is always
positive due to the ever-present dissipation caused by forcing the active particles,
while the later vanishes for kx = 0. Moreover, in the limit Dr →∞ where the active
velocity rotates so fast that it has no persistence, we have kvH = k 〈vn · x〉 = 0
and the EP (5.21) is just given by the standard formula ∆S−R (t) =

´ t
0
dt′Q̇/T valid

for equilibrium bath. In this limit, we also have Teff = T and thus (5.21) is further
equivalent to the effective EP (5.25).

5.4.2 Effective entropy production

Pursuing further the analogy of our heat engine with the effective model connected
to the equilibrium bath, c.f. Fig. 5.2 a), one can define an effective EP which gives
standard upper bound on efficiency of the effective model. This is done just by
substituting the active temperature Teff for the temperature T in classical stochastic
thermodynamic definitions [209]. This way we obtain the relation

∆Seff
R (t) = −

ˆ t

0

dt′
Q̇

Teff
, (5.25)

for the change in the bath entropy during the time interval [0, t]. Similarly, the
effective system entropy is (up to a constant) the Shannon entropy

Seff(t) = −
ˆ ∞
−∞

dx

ˆ ∞
−∞

dy

ˆ 2π

0

dθ peff log peff = 2 log σ(t) + 2 log π + 1 , (5.26)

with peff = peff(x) = exp [−(x2 + y2)/σ] /πσ, effective distribution solution of the
FPE

∂peff

∂t
= ∇x · (kµx +Deff∇x) peff , (5.27)

Obtained, in the spirit of the mapping to equilibrium introduced in the previous
section, by putting v = 0 and replacing D with the effective diffusion coefficient
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defined in (5.16) in the (5.24). Namely peff , result of an equilibrium Brownian Motion
with a higher diffusion coefficient, has the same variance as the solution of Eq. (5.24),
but with Gaussian fluctuations only. Since the system entropy (5.26) is a state
function, it does not contribute to EP over a full cycle, see Fig. 5.2. Using these
definitions, the total amount of EP during the time interval (0, t) in the effective
model reads

∆Seff
tot(t) = ∆Seff

R (t) + ∆Seff(t), (5.28)

where ∆Seff(t) = Seff(t) − Seff(0). Using the dynamical equation for the variance
(5.13) and the definition of heat (5.6), one can show that the effective EP (5.28) is
consistent with the second law of thermodynamics, i.e. it is a nondecreasing function
of time:

Ṡeff
tot(t) = µTeff σ

(
2

σ
− k

Teff

)2

≥ 0. (5.29)

This property of ∆Seff
tot(t) can be used for showing that the limitations on perfor-

mance of the active engine are the same as those of the passive one with Teff ≥ T .
For example, the quasi-static cycle where the parameters k, v andDr vary very slowly
and thus the variance is given by (5.15) is described by zero total EP (5.29). The
corresponding efficiency then represents the upper bound for any finite-time cycle
where the control parameters vary in the same way as for the quasi-static driving.
Note that such EP is expected to be a lower bound, rather than a good proxy, for
the actual EP. This is because a degree of freedom, θ, which falls out of equilibrium
due to the action of the nonconservative active force on the coupled variables x, is
basically coarse-grained and treated as a bath. In general, the coarse-graining of
nonequilibrium degrees of freedom is known to lower the EP [226]. Nevertheless,
useful insights can be gained. For example, the quasi-static cycle where the param-
eters k, v and Dr vary very slowly and thus the variance is given by Eq. (5.15) is
described by zero total EP (5.29). The corresponding efficiency then represents the
upper bound for any finite-time cycle where the control parameters varies in the
same way as for the quasi-static one.

5.4.3 Comparison of the entropies

Interestingly, the change in the bath entropy Ṡ−R = Ṡ−R (t) due to the swimming is
always larger than its effective counterpart Ṡeff

R = Ṡeff
R (t) as follows from Eqs. (5.21)

and (5.25):

Ṡ−R − Ṡ
eff
R = k2µσ

T eff − T
TT eff

> 0 . (5.30)

To draw such a general conclusion for the change in the bath entropy Ṡ−R = Ṡ−R (t)
Ṡ+
R = Ṡ+

R (t) due to the dragging is not so straightforward since it is not easy to prove
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that the difference

Ṡ+
R − Ṡ

eff
R =

v2

µT
+ Ṡ−R − Ṡ

eff
R −

4kµ

T

(
T eff − T

)
(5.31)

has a definite sign. We were able to prove the inequality Ṡ+
R − Ṡeff

R > 0 analytically
only in the quasi-static limit, where the variance is given by the solution of (5.10)
and (5.11) with σ̇ = Ḣ = 0. Then the differences (5.30) and (5.31) boil down to

Ṡ−R − Ṡ
eff
R =

k2µσ

T

1

Dr + kµ
> 0, Ṡ+

R − Ṡ
eff
R =

Dr

kµ
(Ṡ−R − Ṡ

eff) > 0, (5.32)

and we get Ṡ+
R−Ṡeff

R > 0 as a consequence of Ṡ−R−Ṡeff
R > 0. For finite cycle durations,

we tested validity of the inequality Ṡ+
R − Ṡeff

R > 0 numerically. In Fig. 5.2 (a) we
show the total EPs (5.28) and (5.22) as functions of time during the cycle. All these
functions monotonously increase with time and thus they represent valid entropies
with respect to the second law of thermodynamics. Notice that the actual EPs ∆S±R
are always larger then the effective EP ∆Seff

tot, as anticipated in the previous section.
The changes in the reservoir entropy during the cycle according to the definitions
(5.25), (5.20) and (5.21), of the entropy of the system, (5.23) and (5.26), and of the
total EPs are depicted in Fig. 5.2 (right panel).
We are finally prepared to investigate the performance of the engine connected to the
active bath. First, in the next section, we study the performance of finite time cycles,
which can deliver non-zero output power. Using the specific protocol introduced in
Sec. 5.2.2, this can be to great extend done only by numerical evaluation of the
formulas derived in the preceding sections. In Sec. 5.6, we investigate performance
of the engine analytically in the limit of infinitely slow driving.

5.5 Finite time performance
In this section, we consider a cycle that follows the most general protocol described
in Sec. 5.2.2 and we calculate the efficiency, the output power and the output work
according to the definitions of Sec. 5.2.3, and the total EPs according to the previ-
ous section. In the calculation, we use both the analytical results for the variance
given in Sec. 5.2.4 and the results obtained using the numerical method described
in App. B.2. The obtained curves always perfectly overlap. In Fig. 5.3 (a), the
efficiency monotonically increases with increasing tp and eventually it reaches the
quasi-static limit (the red line). Notably, whether the efficiency is increased or de-
creased by the bath activity depends on the cycle duration (dashed and dot-dashed
lines are sometime above and sometime below the full line). Together with enhanc-
ing Wout (b) and power (c), the activity thus also leads to increased heat flow into
the system. As expected, the output power vanishes for large cycle durations and
exhibits a maximum for a certain value of tp. On the contrary,Wout is, for large cycle
times, an increasing function which converges to the maximum quasi-static value.
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Figure 5.3: Efficiency (a), output power (b), output work (c) and total EP (d) for
v+ = 0 (dot-dashed lines), v+ = 2 (dashed lines) and v+ = 4 (full lines) as functions
of cycle duration, in the limit cycle. In panel (d), yellow lines stand for ∆S−tot, red
lines for ∆S+

tot and blue lines for ∆Seff
tot. Other parameters are the same as in Fig. 5.1.

Efficiency (e), power (f) and total EP (g) of the engine as functions of the maximum
active velocity v+ for the protocol shown in Fig. 5.1.

Interestingly, for 10−2 . tp . 10−1, Wout exhibits a negative minimum as shown in
the inset. This implies that there is a certain lower bound on the cycle duration
below which the system does not operate as a heat engine any more, but as a heat
pump. As can be observed in Fig. 5.3 (d), for small and large cycle durations the be-
haviour of the total EPs ∆Seff

tot and ∆S±tot can be described by a power law. For small
times, Taylor expansion in tp of Eqs. (5.29) and (5.22) gives ∆S±tot ∝ ∆Seff

tot ∝ tp.
For large times and v 6= 0, ∆S±tot ∝ tp, because then the integrands in Eqs. 5.20 and
5.21 become positive functions of the form f(t/tp) determined by the quasi-static
forms of σ (Eq. (5.15)) and H = H∞ = v/(µk+Dr). For large times regardless of v,
∆Seff

tot ∝ 1/tp as can be seen as follows. The effective total EP (5.29) can be written
as (cf [9, 209])

∆Seff
tot =

1

4µ

ˆ tp

0

dt
1

Teff

σ̇2

σ
=

1

4tpµ

ˆ 1

0

dτ
1

T̃eff

˙̃σ2

σ̃
, (5.33)

where σ̃(τ) = σ(t/tp), ˙̃σ = dσ̃(τ)/dτ and T̃eff(τ) = Teff(t/tp). For large tp, the
functions σ̃ and T̃eff are in the leading order in 1/tp determined by Eq. (5.15) and
Eq. (5.17), respectively, which proves the above scaling. For v = 0, all three defini-
tions of EP are equivalent since T = Teff. In Fig. 5.3 e)-g), we fix tp ≡ 1 and vary
the maximum active velocity v+. For small values of v+ the efficiency is decreased
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by the activity, while, it is increased for large values of v+, where it eventually at-
tains a constant maximum value. This behaviour can be understood as follows. The
efficiency of the heat engine quite generally increases with the largest difference in
the effective temperature max (Teff)−min (Teff), similarly as in the Carnot formula.
Even out of the quasi-static regime one can expect that the effective temperature
is qualitatively described by (5.17). For small values of v+, Eq. (5.17) implies that
the difference can be decreased by variations of the rotational diffusion coefficient
depicted in Fig. 5.1 (c), while for large values of v+ it becomes an increasing function
of v+. More intuitive behaviour is observed for the power Fig. 5.3 f) and the EPs
∆Seff

tot and ∆S±tot (g) that monotonically grows with v+, extending the behaviour al-
ready seen in Fig. 5.3 a)-d). Let us now turn to the quasi-static situation, where we
will investigate performance of the engine in several analytically treatable regimes
and bring further inside into the behaviour of the engine communicating with the
non-equilibrium bath [188,213].

5.6 Quasi-static performance
In the quasi-static regime where the parameters k, T , v and Dr are varied very
slowly, the engine dynamics is described by the simple formulas (5.15) and (5.17),
i.e. σ = σ∞ = 2Teff/k and Teff = T + v2/[(2µDr)(1 +R)]. Here, the ratio R ≡ kµ/Dr

compares the inverse timescale kµ needed to relax in the potential to the inverse
timescaleDr need to fully randomise the direction of the active velocity. For kµ� Dr

(R� 1), the dynamics is persistent and the particle moves quasi-ballistically in the
potential. On the other hand, for kµ� Dr (R� 1) the dynamics is an equilibrium-
like Brownian motion at an increased temperature Teff > T .

5.6.1 Iso-activity Stirling cycle

We first investigate a proper quasi-static cycle where σ = σ∞ during the whole cycle
and thus the effective EP (5.28) vanishes. The resulting efficiency is hence given
by the equilibrium efficiency of a heat engine connected to an equilibrium bath at
temperature Teff which depends on the protocol along which the parameters k and
Teff are varied. Here we demonstrate that in order to define the efficiency of an
active heat engine correctly, one should pay special attention to the actual type of
thermodynamic cycle formed by Teff . Specifically, we use the protocol depicted in
Fig. 5.1 with v− = v+ and thus we consider the case of constant active velocity.
We consider the rotational diffusion as a thermal effect described by the Einstein
relation, i.e. we take D±r ∝ T±.
In order to evaluate the engine efficiency, we need to identify Wout and the heat
flowing into the system from the reservoirs given by Eq. (5.8). In general, the heat
flows into the system whenever the variance σ increases and vice-versa, see (5.8) and



CHAPTER 5. ACTIVE BROWNIAN STIRLING ENGINE 74

Figure 5.4: Left panel. The thermodynamic diagram of the active heat engine. The
oriented area below the individual parts of the cycle give the heat flowing into the
system during these branches. The blue area enclosed by the cycle determines the
work done by the engine on its environment per cycle,Wout = Qin−Qout. The sum of
purple and blue areas below the line ABD gives the input heat (5.8) and the purple
area alone is given by the output heat (5.9).
Right panel. Energetic variables W,Q,Qout, Qin and ∆U as functions of time during
one cycle. In panel a) we take v+ = 4 and tp = 100. In panel b) we have v+ = 500,
v− = 50, D+

r = 500 and D−r = 5. Other parameters are the same as in Fig. 5.1.

(5.9). Plugging (5.15) into (5.5) gives the expression

Wout =(T+−T−)log
k+

k−
− v

2

2µ

[
1

D−r
log

(
k+

k−

k−µ+D−r
k+µ+D−r

)
− 1

D+
r

log

(
k+

k−

k−µ+D+
r

k+µ+D+
r

)]
(5.34)

for the work done by the engine controlled by the protocol considered in this section.
The sign ofWout is controlled by the values of the parameter R during the individual
branches. Similarly, the sign of the heat QBC,

QBC = T+ − T− −
v2

2µ

D+
r −D−r

(k+µ+D+
r ) (k+µ+D−r )

, (5.35)

is also controlled by the behaviour of the parameter R during the cycle. The system
is in contact with two reservoirs (active and passive) which do not necessarily absorb
and release heat at the same time. As a result, the effective temperature (5.17)
may behave in a nonintuitive way. For example, it may decrease when the bath
temperature T and the rotational diffusion coefficient Dr increase at the same time.
The issue with the definition of the input heat becomes even more pronounced after
considering relatively large values of the parameters as shown in Fig. 5.4 (b). Here,
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the processes BC and DA are composed of two parts with respect to the direction
of heat flow. During one of them heat is released into the system (red dashed curve
increases) and vice versa during the other one. In the left panel of Fig. 5.4 such a
behaviour would for example correspond to the dashed yellow curve, along which
heat is released into the system from the point A up to the red point and vice versa
during the rest of the branch. To conclude, Fig. 5.4 highlight the importance of a
correct definition of absorbed heat, that in general is given only by Eq. (5.8). Let us
now investigate the performance of the engine in the two limiting situations of large
and small R, where the input heat can be easily identified.

5.6.1.1 kµ� Dr: high-persistency regime

If kµ� Dr, the output work becomes, to first order in R−1,

Wout = (T+ − T−) log
k+

k−
− av2, a ≡ 1

4µD+
r

1

R2

D+
r −D−r
D+

r

k2
+ − k2

−

k2
−

> 0. (5.36)

a is small but positive and thus it decreases the work with respect to the situation
with an equilibrium bath solely, i.e. 0 < Wout < W eq

out = (T+ − T−) log (k+/k−).
Similarly, the heat

QBC = T+ − T− −
v2

2µD+
r

1

R2

D+
r −D−r
D+

r
(5.37)

is positive for typical values1: radius active particles ∼ 1µm, v ∼ 10−5m s−1, Dr ∼
10−1 s−1, k ∼ 10−6Nm−1 and µ ∼ 108kg−1s. Heat is absorbed during the expansion
and the isochoric heating, i.e. Qin = QBC + QCD, as for the equilibrium bath. The
average efficiency reads

η =
(T+ − T−) log k+

k−
− av2

T+ − T− + T+ log k+

k−
+ bv2

, b ' 1

2µD+
r

1

R

(
k+ − k−
k+

− 1

R

)
> 0. (5.38)

Any correction to the heat flow coming from activity is always positive and propor-
tional to R−1 (during the isochoric branch the absorbed heat is reduced by activity,
while it is increased during the iso-active expansion). In the limit of large persis-
tence, active heat engines are thus less efficient than the passive ones with a=b=0.
Intuitively, persistence is useful during the expansion, but is counter-productive dur-
ing the compression. In the absence of aligning constraints, the net effect is averaged
out and it even leads to the slight decrease in efficiency. To conclude, we remark
that the effective temperature to first order in R−1, Teff ≈ T + v2

0/2kµ
2, depends on

k and thus it is not constant during the isotherms as shown in Fig. 5.1 (e). The cycle
in this regime is thus not a real Stirling cycle. The specific choice of the driving can
magnify or reduce this effect.

1The chosen parameters are comparable with the experiment in [212]
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5.6.1.2 kµ� Dr: equilibrium-like regime

If kµ� Dr, the output work becomes Wout =
(
T+

eff − T
−
eff

)
log(k+/k−) with the stan-

dard k-independent effective temperature, T±eff = T± + v2/2µD±r , given by the limit
R→ 0 in (5.17). In this regime, the cycle is indeed a Stirling cycle with true isother-
mal branches with respect to Teff . Note that T+ > T− does not imply T+

eff > T−eff

since the active correction is decreasing with the (heat bath) temperature via Dr.
For typical parameters we have (Teff − T ) /T � 1 and thus the usual definition of
Wout yields a negative value: the environment performs work on the system as we
introduced in Sec. 4.3. Similar considerations may be done for the absorbed heat
that turns out to be Qin=QDA +QCD. In this regime, where the active term in the
active temperature dominates, T+

eff is no longer the hot temperature and the cycle
must be inverted. Namely, the compression occurs at T+

eff , while the expansion at
T−eff . The inverted active cycle provides output work larger than the corresponding
passive one, i.e. 0 < W eq

out < Wout. Furthermore, the isochoric heat QBC =T−eff − T
+
eff

is now positive such that the input heat is given by Qin=QBC +QCD. The resulting
efficiency reads

η =

(
T−eff − T

+
eff

)
log k+

k−

T−eff − T
+
eff + T−eff log k+

k−
+ v2

2µD+
r

(k+−k−)µ

D+
r

(5.39)

and R � 1 implies that the last term in the denominator can be neglected. If we
divide the numerator and the denominator in (5.39) by T−eff − T+

eff , the efficiency
becomes

η =
log k+

k−

1 + 1
ηeff
C

log k+

k−

, ηeff
C = 1− T+

eff

T−eff

(5.40)

which resembles the efficiency of a passive Stirling heat engine ηeq, which is given by
Eq. (5.40) up to the replacement ηeff

C ↔ ηC =1−T−/T+. For a constant ratio k+/k−,
η > ηeq (5.40) whenever ηeff

C > ηC , i.e. if the difference in the effective temperatures
is larger than the difference in temperatures. We suppose that T+ = αT− = αT ,
D+

r = βD−r = βDr and k+ = γk− = γk and we look for constraints on (α, β, γ) such
that ηeff

C > ηC . Solving a simple inequality, we obtain

β >
v2α

v2 − 2µTDr (α2 − 1)
, Dr <

v2

2µT

1

α2 − 1
. (5.41)

Interestingly, we obtain an upper bound for the rotational diffusion coefficient, in
addition to the lower bound given by R � 1, i.e. kµ � Dr <

v2

2µT
1

α2−1
. For typical

values, R� 1 is not easily reached and it requires a weak confinement, if compared to
values used in [212]. Although efficiency can be enhanced with respect to equilibrium
if β > α (for our parameters choice β ≈ 2.2, see Fig. 5.5 a)), it cannot go beyond
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Figure 5.5: Panel (a), the efficiency (5.40) (blue), equilibrium Stirling efficiency (red)
and equilibrium saturation Stirling efficiency (black). The parameters are: α = 2,
γ = 2, T = 1, µ = 1, Dr = 1, v = 10. Panel (b), sketch of the behaviour of the
efficiency in the high persistence regime (blue) and the equilibrium-like regime (red)
with respect to the scaling of the stiffness k. For γ=1, η=0.

the ultimate equilibrium upper bound of efficiency for a Stirling cycle,

ηS ≡ lim
T−
T+
→0

ηeq =
log k+

k−

1 + log k+

k−

. (5.42)

Efficiency (5.40) reaches ηS in the limit β → ∞, without violating the conditions
(5.41). In this section, we considered two extremal regimes of cycle operation and
we have found that the efficiency is enhanced by the activity only if D−r > D+

r .
In particular, η cannot exceed ηeq when Dr is proportional to the temperature as
demanded by the Einstein relation. Yet, such relation need not be satisfied when
rotational diffusion itself is influenced by some active process, e.g., if it seen as a
long time result of run-and-tumbling [65].

5.6.2 Isothermal Stirling Cycle

Let us now consider another special case of the protocol depicted in Fig. 5.1. We
keep the temperature and the rotational diffusion constant during the whole cycle.
Furthermore, we set the active velocity v to a positive constant during the branches
BC (iso-choric heating) and CD (isothermal expansion) and to zero otherwise. We
assume that the changes of the active velocity from 0 to v and vice-versa at the
ends of the branches AB and CD are instantaneous, such that no heat is exchanged
and no work is done. The cycle is now quasi-static in the sense that after changing
v, we let the system relax before we continue changing the other parameters. The
important difference between the present setting and the true quasi-static cycle of
the previous section is that now the effective EP (5.28) is in general positive which
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leads to a lower bound on efficiency compared to the quasi-static situation.
In order to quantify the efficiency we introduce a new state B̃, such that during the
abrupt transition B → B̃ where v is activated no heat is exchanged while it does
during the following relaxation B̃→ C. Equivalently for the de-activation D→ A we
introduce a state D̃. As a result, the mean square displacements during the branches
AB and CD can be written as σAB = 2T/k and σCD = 2T∞eff /k with T∞eff given by
(5.17). Plugging the variance into Eqs. (5.5) and (5.6) we obtain the output work

Wout =
v2

2µDr
log

(
k+

k−

k−µ+Dr

k+µ+Dr

)
(5.43)

and the heats

QAB =−T log
k+

k−
, QBB̃ =QDD̃ =0, QB̃C =

v2

2µ

1

k+µ+Dr
, QD̃A =− v

2

2µ

1

k−µ+Dr
, (5.44)

QCD =
v2

2

k+ − k−
(k+µ+Dr) (k−µ+Dr)

+ T log
k+

k−
+

v2

2µDr
log

(
k+

k−

k−µ+Dr

k+µ+Dr

)
. (5.45)

The work is positive for every R. Similarly, the input heat is given by the standard
formula Qin = QB̃C + QCD. Note that for v = 0 the part of heat T log k+

k−
in QCD

should not be considered as input heat, because we have only one bath and the heat
just leaves the bath and then returns, so the internal energy of the bath after one
cycle remains unchanged. For sake of consistency, we do not consider this part of
the heat even for v 6= 0. The resulting efficiency reads

η =
log
(
k+

k−

k−µ+Dr
k+µ+Dr

)
Dr

k+µ+Dr

(
1 + (k+−k−)µ

k−µ+Dr

)
+ log

(
k+

k−

k−µ+Dr
k+µ+Dr

) . (5.46)

Noteworthy, as long as we do not count the contribution T log k+

k−
into the absorbed

heat, the efficiency does not depend on the magnitude of the active velocity,

η =
R�1

1− k−
k+

2− k−
k+

η =
R�1

log k+

k−

1 + log k+

k−

. (5.47)

In Fig. 5.5 b) we plot the efficiency in the two regimes using k+ = γk−= γk. Note-
worthy, the efficiency in the high-persistence regime is smaller than the efficiency in
the equilibrium-like regime for each γ. Note that the efficiency in both regime does
not depend on v0. We have confirm it with numerical simulation of the dynamics
(5.1). In the simulation we defined as absorbed heat 〈Qin〉=〈QCD〉+〈QB̃C〉, therefore
T log(k1/k2) is included, for small active velocity it is influencing the efficiency while
it is negligible for bigger value of v0. The efficiency for R � 1 formally coincides
with standard two-heat-baths Stirling efficiency ηS in the limit T−/T+ → 0. This is
because, we are not counting the equilibrium contribution (equivalent to T → 0) and
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we are treating activity as an effective, higher, temperature. The latter result is sur-
prising, because the effective EP (5.29) for the cycle is not zero in general due to the
infinitely fast switching during the branches B→ B̃ and D→ D̃. Using Eq. (5.29),
the total effective EP during the relaxation process B→ B̃ reads

∆Seff
tot(B̃→ C) = µ

ˆ C

B̃

Teff σ

(
2

σ
− k

Teff

)2

≥ 0 (5.48)

and similarly for D→ D̃. EP (5.48), is always non-negative and it is zero if and only
if σC ∼ σ ∼ σB̃. Interestingly, this condition is met for R → 0, which is equivalent
to Dr →∞. In this limit, the effective temperature Teff boils down to T and thus i)
the abrupt changes of the activity does not bring the system out of equilibrium and
ii) the engine delivers vanishing amount of work. In conclusion, we have found that
at least in the situations investigated in this section, the upper bound on efficiency
of the active heat engine with the driving introduced in Sec. 5.2.2 is the ultimate
equilibrium Stirling efficiency (5.42).

5.7 Conclusion and Outlook
In this Chapter we discussed the properties of a Stirling engine based on an active
particle embedded in a thermal environment. The particle is confined by a har-
monic potential whose stiffness is periodically changed inducing a cyclic dynamics.
This system is studied in the framework of Stochastic Thermodynamics and, given
that the confinement is linear, the energetics (heat, work and internal energy) is
completely ruled by the variance of the particle alone. Active systems, compared
to passive ones, are characterised by non-Gaussian fluctuations which, among other
things, enhance the variance, so that it comes naturally to ask if this is able to
improve the performance of the cycle and lead to higher efficiencies, with respect
to the same cycle run in contact with a thermal environment. From the variance
an effective temperature can be defined, key element for a mapping to equilibrium,
which allows us to adopt many known results for passive Brownian heat engines to
the active engine. We studied the system both in quasi-static regime, analytically
and in the finite-cycle-time regime, numerically. In the latter the power can be de-
fined and remarkably, it increases with activity, together with the work, although the
efficiency is just slightly affected. Namely, active particles environment are probably
more suited to enhance the power of an engine rather than the efficiency. Similar
conclusions for the efficiency have been drawn in the quasi-static limit as well.
Those results are valid for a passive particle embedded in an active particles fluid
too, provided that the assumptions introduced in Sec. 4 are satisfied, in particular
linear coupling between the colloid and the active particles and no mutual interac-
tion between the active particles themselves, so that the system can be analytically
solved and traced back to the ABP model. To our knowledge, the latter has been
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used to describe a passive colloid in an active environment only in [188] yet, aim-
ing to reproduce the surprising experimental results presented in [212] for a Stirling
engine based on a colloidal particle diffusing in a bacterial bath. Namely, in [212]
it has discussed a consistent increase of the efficiency, beyond the upper limit for
a classical Stirling cycle, realised with the same system coupled to an equilibrium
thermal bath. On the other hand, with the set of parameters of [212] (we stress that
the value of the rotational diffusion coefficient is not provided in the paper, therefore
we have used typical value for bacteria, c.f. [68]), simple ABP model cannot provide
such an increase of efficiency, unless the model is modified to include a dependence
on the stiffness of the active velocity is assumed.
Interestingly, an even greater increase could be related to rare fluctuations described
by large deviation theory [227] and associated, for example, to alignment config-
urations for the particles, supporting the hypothesis that collective effects should
be taken more into consideration to build a more efficient active-particles Stirling
cycle. Intuitively, if during the compression the active particles are in average point-
ing towards the minimum of the potential and in the opposite direction during the
expansion, the efficiency would go beyond Carnot and even beyond one, since we
are not counting into the definition of efficiency the housekeeping heat, necessary to
keep the particles active. In our model the persistence of the active particles can-
not be harvested and, when not negligible, does not bring any benefit, c.f. 5.6.1.1.
On the other hand, for big rotational diffusion for which the system is relegated to
an equilibrium-like regime, activity effect is confined to an increase of temperature,
which indeed can trigger a gain in efficiency, with a fine-tuning of the parameters.
In this Chapter we have investigated in details this linear model and we have dis-
cussed its limit. Further theoretical investigation into this field should be based on
more refined model, able to take into account alignment interaction between active
particles and as a response to external stimuli.



Chapter 6

The pressure of active particles

6.1 Introduction
The surging field of active matter aims for a microscopic understanding and control of
the material properties of assemblies of interacting active elements. A main strategy
is to revisit the paradigms of established many-body theories for inanimate matter,
and to elucidate the new physics arising from the nonequilibrium energy consumption
and possibly unusual interactions of its “atoms”. If successful, this might help to
classify such seemingly diverse systems as artificial self-propelled colloidal particles
[228], motile bacteria [229], or even flocking birds [230], as examples of a unified new
state of matter, and to inform potential biological or medical applications [193,231].
A versatile model for systematic theoretical investigations is provided by an active-
particle suspension. Despite its simplicity, it captures the most crucial property of
active matter, that is its intrinsic nonequilibrium. Namely, the latter is not brought
about by the application of external forces to a quiescent system, but rather by the
continuous local energy input that fuels the autonomous particle motion, itself. For
experimental realisations, one can draw on a large arsenal of technologies for tuning
the particle-interactions and propulsion. This promises good control over the various
mechanisms by which the local breaking of detailed balance can manifest itself on
the material level [16, 67, 83, 170]. For example, if spatial symmetries are broken
(e.g. by funnel barriers or asymmetric obstacles), this allows the microscopic activity
to be concerted. Thereby, persistent macroscopic currents can be induced [65] and
gears can be set in perpetual motion [167, 232], so that macroscopic work can be
extracted from the microscopic activity [233]. As a consequence, the status of basic
thermodynamic notions, such as temperature and pressure, on which any coarse-
grained description of equilibrium many-body systems relies, has become a matter
of debate even for the simplest of such model systems [182,234]. Only in the limit of
weakly persistent particle motion and weak interactions, the associated conceptual
and practical problems were unambiguously resolved. An effective Hamiltonian can
then be assigned to the equations of motion, with the activity subsumed into an
appropriate nonequilibrium noise term. This gives rise to an effective Maxwell-

81
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Boltzmann steady state, weighted by an effective temperature, from which also the
pressure can be derived [23, 83, 235]. But this somewhat trivial limit essentially
amounts to neglecting the most genuine nonequilibrium features, and it is clearly of
interest to venture beyond it and systematically address the more spectacular effects
alluded to above. For equilibrium systems, pressure can be defined in three ways:

(a) the derivative of a free energy,

(b) the mechanical force per unit area on confining walls

(c) the trace of the hydrodynamic stress tensor, which represents the momentum
flux in the system.

Definitions (b) and (c) apply even out of equilibrium, where a unique concept of
free energy is still lacking, as they are based on purely kinematic (mechanical) ar-
guments. Indeed, they have already been employed within different theoretical ap-
proaches: overdamped Fokker-Planck equations (FPE) [21], the virial theorem for
Langevin equations [76, 116], empirical continuum models supported by numerical
simulations [235], and density functional theories for overdamped systems [173]1. All
these derivations consider as their starting point the ABP model [21, 68], in which
overdamped particles are allowed to perform translational and rotational Brownian
motion, and the activity is ascribed to a propulsion force of constant magnitude
along the instantaneous particle orientation. Despite its analytical and numerical
simplicity, this model allows to include many features of active particles, but it ne-
glects their hydrodynamic interactions via the solvent flow they excite. Using the
nomenclature introduced in [79], ABP is a model of “dry” active matter, in contrast
with “wet” models, in which the momentum exchanged among the active particles
and their solvent is taken more seriously. Two main facts are so far agreed upon.
First, pressure is, in general, not a state function, as it depends on the system’s
microscopic features and hence cannot be expressed only in terms of thermodynamic
variables. Secondly, the pressure of an interacting ABP suspension exhibits a non-
monotonic density dependence that manifests itself in a self-caging or clustering of
the particles and a tendency to accumulate at (curved) walls [236–238]. A model-
independent, “thermodynamic” notion of pressure has so far only been established
for particular cases, such as the mentioned limit of small persistence of the active
motion, assuming non-interacting particles, or at least torque-free pairwise inter-
particle forces, with torque-free wall interactions. Such special conditions can only
(approximately) be realised for dilute and weakly confined suspensions of spherical
self-propelled particles [21, 236]. The pressure is then surmised to depend only on
bulk properties, which are usually assumed to be homogeneous and isotropic, and
the wall-force is neglected as a subdominant surface term. For example, Yang et al.
calculate the pressure via the Irving-Kirkwood formula [239] for the stress tensor, but

1Personal Communication by Raphael Wittkowski fromWestfälische Wilhelms-Universität Mün-
ster
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consider a spatial average, while Winkler et al. [76] obtain the pressure from the virial
theorem, but assume it to be uniform. As a consequence, possible inhomogeneities
necessarily remain hidden, in all cases. The microscopic derivation of hydrodynamic
equations of motion arguably represents a natural framework to shed light on these
issues and to venture beyond the limitations of current theories. The recent liter-
ature provides a wealth of hydrodynamic theories derived phenomenologically, i.e.,
based on the macroscopic space-time symmetries [240–242]. A potential difficulty
with such approaches to active matter may be seen in the anticipated breaking of
microscopic symmetries at a mesoscopic level [16], which could potentially jeopar-
dise the derivation and judicious application of the phenomenological hydrodynamic
equations. Yet, attempts to derive them directly from the underlying microscopic
equations of motion are rare. A notable exception is the work by Bertin et al. [243],
which is however only valid for an infinitely dilute gas of active particles with certain
specific alignment interactions. Though exceptionally valuable for the understand-
ing of the emergence of collective behaviour, such approaches tell us little about an
increasing number of interesting experimental systems characterised by high den-
sities, potentially complex mutual interactions of the particles, and often narrowly
confining geometries. Therefore, our aim is to derive the hydrodynamic equations
for an active fluid by a systematic coarse-graining of the (underdamped) microscopic
equations of motion of a potentially strongly interacting and dense active particle
suspension. The discussion of the results in this Chapter follows the same structure
of [20]. In the present contribution, we exemplify the procedure for a swimmer model
that neglects the hydrodynamics of the solvent and reduces to the ABP model in
the limit of large friction. We thus only deal with “dry swimmers”, here, and defer
the discussion of a more realistic microscopic model to a future contribution. In
particular, we derive the balance equation for the local momentum, which allows us
to uniquely identify the pressure from definition (c). The obtained hydrodynamic
equations keep track of the local inhomogeneities of the fluid through local averages,
performed over the many-body microscopic probability function. Section 6.2 intro-
duces the microscopic model and, on a formal level, the hydrodynamic equations for
the relevant macroscopic fields, namely, particle density, momentum and polarisa-
tion. In sections 6.3.1 we develop a multiple-scale theory that helps us to close this
set of conservation equations based on a systematic coarse-graining of the underlying
microscopic model. In sections 6.3.2-6.3.4 we apply it to the momentum equation to
access the high-friction limit and obtain a closed expression for the stress tensor. In
section 6.3.3 we investigate the slowest dynamics in the system, as captured by the
equation of motion for the particle density, neglecting momentum dynamics, in order
to make contact with previous work on the ABP model. Finally, in section 6.3.5, we
perform a weakly-inhomogeneous-density approximation and in section 6.3.6 a low-
density approximation of the pressure, in order to derive some explicit results for the
stationary pressure of an ABP suspension interacting by a short-range repulsion.
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6.2 Derivation of the hydrodynamic equations
Consider the equations forN underdamped ABPs in d=2 with coordinates (xi, vi, θi) ∈
R2d+1 immersed in a fluid providing friction and noise (unitary masses):

ẋi = vi, v̇i = −γvi + F int
i + FAni + F ext

i +
√

2γTξi, θ̇i =
√

2Drχi (6.1)

where F int
i =

∑N
j 6=i F

int
ij , and F int

ij is the interaction force exerted by particle j on
particle i. Possible external forces (e.g. confining walls, gravity) are included in F ext

i .
Internal and external forces may depend on both positional and angular coordinates.
The noises ξi and χi are standard Gaussian ones with zero average value and delta
correlations in time, γ and T are the friction and temperature of the embedding
fluid respectively (kB = 1). Activity manifests itself through the propulsive force,
having magnitude FA=γv0 and direction along the particle vector ni, defined by the
orientation angle θi and randomised by rotational diffusion at rate Dr. Namely, we
exclude both external torques or particle-particle alignment interactions affecting the
orientational dynamics. Hydrodynamic fields can be defined from the microscopic
dynamics by local ensemble averaging, which for simplicity of notation we denote,
for any observable ai by 〈∑

i

ai

〉
r

≡

〈∑
i

ai δ (xi − r)

〉
. (6.2)

The average 〈·〉 is taken with respect to the N -particle probability density function
(PDF) ρN({xi, vi, θi}Ni=1, t). The relevant hydrodynamics fields are

• the fluid mass (or number) density, ρ (r, t) ≡
〈∑N

i=1 1
〉
r
,

• the flow momentum, u (r, t) ρ (r, t) ≡
〈∑N

i=1 vi

〉
r
,

• the fluid polarisation P (r, t) ρ (r, t) ≡
〈∑N

i=1 ni

〉
r
, P (r, t) ∈ [0, 1].

For later convenience we introduce here the divergence of the Irving-Kirkwoord (IK)
tensor

∇r · σIK ≡

〈
N∑
i=1

F int
i

〉
r

, (6.3)

which can be defined whenever F int
ij = −F int

ji [239], irrespective of the functional
dependence of F int

ij
2. The dynamical equations for these observables can be derived

2Noteworthy it remains valid even if the forces depend on the self-propulsion orientations, as
long as they do not enter explicitly in the average value as for the observable 〈

∑N
i=1 F

int
i ni〉r.
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from the formula ∂t〈a〉 = 〈La〉, where

L =
N∑
i=1

[
vi · ∇xi + (−γvi + F int

i + FAni + F ext
i ) · ∇vi + γT∇2

vi
+Dr∂

2
θi

]
, (6.4)

is the backward operator associated with (6.1), for any generic state observable a.
For the density ρ (r, t) we find the continuity equation

∂tρ (r, t) +∇r · (u(r, t)ρ(r, t)) = 0. (6.5)

For the polarisation density P (r, t) ρ (r, t) we obtain

∂t (P(r, t)ρ(r, t)) = −DrP(r, t)ρ(r, t)−∇r · (Cnv(r, t)ρ(r, t)) , (6.6)

in which we have introduced the correlation tensor

Cnv(r, t)ρ(r, t) ≡

〈
N∑
i=1

nivi

〉
r

. (6.7)

If the fluid is isotropic and homogeneous, (6.7) can be factorised into Cnvρ = Puρ.
However, in many physical situations these symmetries are broken. Examples are
cluster formation at high densities [244], and particle accumulation close to bound-
aries [59, 181]. In these cases Cnv plays an important role, as it keeps track of cor-
relations between particle orientation and velocity. Note that, due to the first term
on the RHS of (6.6), coming from the rotational diffusion, the polarisation is not a
locally conserved field. Instead it is locally dissipated at rate Dr. For the momentum
density ρu=ρ (r, t)u (r, t),

∂t (ρu) +∇r · (ρuu) = ∇r · σ + FAPρ− γuρ+ F extρ, (6.8)

where we identified the full stress tensor σ = σIK + σkin. In the kinetic term,

σkin ≡ −

〈
N∑
i=1

(vi − u) (vi − u)

〉
r

(6.9)

advective contributions have been subtracted. For completeness, we also note the
dynamical equation for the kinetic tensor σkin, which represents the energy balance,

1

2
∂tσkin(r, t) =−∇r ·

〈
N∑
i=1

vi (vi − u)2

〉
r

+

〈
N∑
i=1

(
−γvi + FAni

)
(vi − u)

〉
r

+ γTρ(r, t) +

〈
N∑
i=1

(
F ext
i + F int

i

)
(vi − u)

〉
r

(6.10)
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According to (6.8), activity behaves as an external force, on a par with F ext
i [236].

In other words, it is responsible for local violations of momentum conservation and
cannot be included in the stress tensor. Yet, if the time derivative of the polarisation
is negligible, such local non-conservation of momentum can be neglected and the
activity can be absorbed in the stress tensor. Indeed, the stationary solution of
(6.6), ∇r · (Cnvρ) = −DrPρ, renders (6.8) in the form

ρ
du

dt
= ∇r · σs − γuρ+ F extρ, (6.11)

with

σs ≡ σIK + σkin −
FA

Dr

Cnvρ. (6.12)

entailing that local violations of momentum conservation are attributable to the
friction and the external force only. We note that on the LHS of Eq. (6.11) we
have introduced the material derivative, as usually done. Since the first summand
on the RHS of (6.6) is a constant damping term, the condition ∂t (Pρ) = 0 may
be guaranteed by a fast relaxation of the particle orientation in comparison with
the shortest accessible time scale dt, i.e. Dr dt � 1. For particles of 1µm radius
in water, Dr ≈ 10−1-100 s−1, which restricts the applicability of Eqs. (6.11)- (6.12)
to considerations that do not resolve time scales below a minute, say. For a radius
of 100 nm, the time resolution is about 10 ms. Large Dr corresponds to particles
experiencing strong rotational diffusion, so that the persistence length of their paths
is small in comparison with the mean particle distance and the characteristic system
length and the only relevant effect of activity is an enhanced translational diffusion
[75]. Formally, the system then behaves as a passive Brownian particle suspension
maintained at an elevated effective temperature [181, 182, 189]. To sum up, in the
fast rotation limit the polarisation can be written as the divergence of a tensor. If the
external force represents the short-ranged interaction with a wall (and thus felt by
the particles only in proximity of the wall itself), this result is valid both in the bulk
where F ext = 0 and close to the wall itself. Our model is valid for any sort of external
force, even if explicitly depending on the self-propulsion orientation θi, while it is not
if external torques, affecting the orientational dynamics, are taken into consideration.
We will give some details regarding that in the following. Interestingly, if the features
of the dynamics do not allows to neglect the time-derivative of the polarisation, the
polarisation itself cannot be longer expressed as the divergence a tensor. Nonetheless,
if we plug (6.6) into (6.8) and we sum and subtract the quantity γv0

Dr
∇r · (ρPu), we

obtain an equation of motion for a new hybrid dynamic field involving both linear
and angular momenta,

ρ
d

dt

(
u+

γv0P
Dr

)
=∇r ·

(
σ +

γv0

Dr

(Pu− Cnv) ρ
)
− γρu+ F extρ (6.13)

=∇r ·
(
σs +

γv0

Dr

Puρ
)
− γρu+ F extρ (6.14)
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As familiar from conventional hydrodynamics, the parenthesis in the divergence in
(6.13) accounts for fluctuations, namely the fluctuation part of the tensor Cnv. Eq.
(6.13) (or equivalently (6.14)) is a continuity equation for a combination of linear
momentum and polarisation. Interestingly it says that, even in the slow rotation
regime, activity can be subsumed into a divergence, provided that momentum and
polarisation are not investigated individually. On the other hand, no manipulation
of (6.8) and (6.6) allows to write the friction as a divergence term. This plainly
reveals the origin of dissipation for this model, in both the fast and slow rotational
diffusion regime, with and without activity. In presence of activity the dissipation
compensates the continuous source of momentum from the activity. In order to make
the hydrodynamic description self-contained, we have to express the microscopic
degrees of freedom, in terms of the hydrodynamic variables. To this end, we derive a
suitable expression for the N -particle PDF valid in the limit of high-friction, in the
next section.

6.3 Hydrodynamic equations in the high-friction limit

6.3.1 Multiple time scale theory

With typical suspensions of active colloidal particles in mind, we now consider the
limit of large friction γ, where the particle velocity vi relaxes rapidly in comparison
with the position xi. We can then treat the latter as adiabatically slow as compared
to the former. The scale separation can formally be exploited by means of a multiple-
time-scale theory [41]. With the aim of systematically performing the overdamped
limit for the microscopic many-body PDF, we introduce a dimensionless bookkeeping
parameter ε� 1, such that γ = ε−1γ̃ with γ̃ an inverse natural time, e.g., the ratio
of thermal speed and particle size. This permits the distinction of three time scales,
namely, fast τ0 = ε−1t, intermediate τ1 = t, and slow τ2 = εt, and to expand the
N -particle PDF ρN({xi, vi, θi}Ni=1 , t) associated with (6.1) as

ρN = ρ
(0)
N + ερ

(1)
N +O(ε2). (6.15)

In the absence of activity, such multi-scale analysis leads to the overdamped FPE for
a passive N -particle system with τ0 and τ2 associated to the velocity and position
relaxation respectively, τ1 being just a technical artefact. A standard derivation
can be found, e.g., in [1, 42, 245]. As a byproduct, it yields a formal expression for
ρN . While the Maxwell-Boltzmann distribution is a priori known to provide the
stationary state for an equilibrium system, an explicit calculation is required for
active and driven systems [246]. Our starting point is the FPE derivable from (6.4),[

∂

∂t
+

N∑
i=1

vi ·∇xi+
(
F ext
i +F int

i

)
· ∇vi−Dr∂

2
θi
−γ∇vi ·(vi−v0ni + T∇vi)

]
ρN =0 (6.16)
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in which the active force γv0ni is seen to act like a negative friction along the particle
orientation. Therefore, it contributes to the velocity relaxation, implying that the
velocity PDF will depend on the orientation angle, differently from a passive system.
Following the Supplemental Materials of Ref. [245], we derive the density ρN to the
order ε in Appendix C.1. We merely summarise its results, here. Both terms in
(6.15) involve a Gaussian weight for the correlations of velocities and orientations.
Accordingly, we find the zero-order density

ρ
(0)
N = Φ

1

2πT
exp

(
−(vi − v0ni)

2

2T

)
, (6.17)

and the first correction

ρ
(1)
N =

1

γ̃

[
Ψ−(vi − v0ni)

(
∂

∂xi
− F int

i +F ext
i

T

)
Φ

]
· 1

2πT
exp

(
−(vi − v0ni)

2

2T

)
, (6.18)

where Φ({xi, θi}Ni=1 , τ1, τ2) and Ψ({xi, θi}Ni=1 , τ1, τ2) are unknown N -particle func-
tions independent of the fast time τ0. Ignoring higher order contributions, they give
the overdamped N -particle PDF

ˆ N∏
i=1

dvi ρN = Φ +
ε

γ̃
Ψ +O(ε2). (6.19)

By construction, this PDF satisfies the overdamped FPE [234], which can also di-
rectly be derived by ignoring the particle inertia in (6.1).

6.3.2 Momentum Equation

In the previous section we have seen that the large friction experienced by the par-
ticles allows for an expansion (6.15) of the N -particle PDF in powers of the friction
γ. In the present section, we consistently make use of (6.15), together with (6.17)
and (6.18), in order to expand the tensor

σkin = σ
(0)
kin + ε σ

(1)
kin +O(ε2). (6.20)

The expansion of σkin utilises the notation of (6.15), e.g. σ(0)
kin involves only averaging

over (6.17), namely,

−σ(0)
kin =

N∑
i=1

ˆ
dxidθi

[
T I+(v0ni−u)2

]
δ (xi−r)Φ=Tρ(0)I+

〈
N∑
i=1

(v0ni−u)2

〉(0)

r

(6.21)

Here, I is the identity matrix and 〈. . .〉(0) denotes an average performed with ρ
(0)
N

given by (6.17), but marginalised with respect to velocities vi, e.g. ρ(0) =
〈∑N

i=1 1
〉(0)

r
.
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With slight abuse of notation, we write (v0ni − u)2 for both the tensorial product in
(6.21) and the scalar product in (6.17) and (6.18). From (6.21), it is clear that the
active contribution prevents the velocity fluctuations from relaxing to the heat bath
temperature on the fast time scale. The second-leading term, denoted by 〈. . .〉(1), is
found by using (6.18):

−σ(1)
kin =

N∑
i=1

ˆ
dxidθi

[
T I + (v0ni − u)2

]
δ (xi − r)

Ψ

γ̃

+
2

γ̃

ˆ N∏
i=1

dxidθi

N∑
i=1

δ (xi − r) (v0ni − u)
(
F int
i + F ext

i

)
Φ

−2T

γ̃

ˆ N∏
i=1

dxidθi

N∑
i=1

δ (xi − r) (v0ni − u)
∂Φ

∂xi
. (6.22)

With slight abuse of notation, here we denote by Ψ and Φ the functions in (6.17)
and (6.18) integrated over the coordinates of the N − 1 particles j 6= i. According
to (6.19), we identify the first term in the integral in (6.22) with Tρ(1)I. Integrating
by parts in the third line and using the definition of ρ(0) we get

−σ(1)
kin = Tρ(1)I +

〈
N∑
i=1

(v0ni − u)2

〉(1)

r

− 2T

γ̃
∇r

〈
N∑
i=1

(v0ni − u)

〉(0)

r

+
2

γ̃

〈
N∑
i=1

(
F int
i + F ext

i

)
(v0ni − u)

〉(0)

r

. (6.23)

The first two terms extend the leading contribution in (6.21) to the next order. The
remaining terms constitute the non-equilibrium corrections to the kinetic tensor and
they will be considered in the following. Reverting to the physical quantity γ, the
sum of the kinetic tensors gives

−σ(0)
kin − ε σ

(1)
kin ' TρI +

〈
N∑
i=1

(v0ni − u)2

〉
r

− 2T

γ
∇r

〈
N∑
i=1

(v0ni − u)

〉
r

+
2

γ

〈
N∑
i=1

(v0ni − u)
(
F ext
i + F int

i

)〉
r

(6.24)

All the average values in (6.24) contain the hydrodynamic flow velocity u. In order to
obtain a consistent expansion in powers of the friction γ, u must itself be expanded
to order O(1/γ). Using the definition of the flow momentum together with the
expansion (6.15), we obtain

ρu = v0Pρ−
T

γ
∇rρ+

1

γ

(
∇r · σIK + F extρ

)
. (6.25)
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The physical interpretation is that the O(γ0) coherent velocity is an active streaming
contribution v0P , while the usual hydrodynamic streaming terms are damped by the
factor γ−1. In other words, they are smaller by a factor TDr/γv

2
0 = Pe−2 [68].

Plugging (6.25) into (6.24), we obtain for the kinetic tensor (6.20)

−σkin = TρI + v2
0 (Q−PP) ρ− 2v0P

γ

(
∇r · σIK + F extρ

)
+

2v0

γ

〈
N∑
i=1

(
F ext
i + F int

i

)
ni

〉
r

+O(1/γ2) (6.26)

where we defined the “nematic” tensor

Q (r, t) ρ(r, t) ≡

〈
N∑
i=1

nini

〉
r

, (6.27)

in line with what we said about the order of the terms in (6.25) the O(γ0) correction
to the equilibrium contribution to σkin is due to active noise, while the O(1/γ) terms
subtract the usual streaming contribution from it. If r is a point far from a boundary,
and the density is low enough to prevent cluster or lanes formation [247], both P and
the off-diagonal components of Q(r, t) are zero and the active noise term becomes
v2

0Iρ divided by the space dimension. Together with the ordinary kinetic pressure
it may then be identified as arising from an effective temperature. More generally,
though, the temperature of an active fluid is, in principle, neither homogeneous nor
isotropic. Nevertheless, since the entries of Q and P are bounded by one and, in
typical experiments, v0 . 100µm/s, the active correction is much smaller than the
thermal energy and can thus be neglected in practice.3 In other words, the heating of
an active particle system due to the activity itself (if not by its propulsion machinery)
is usually minute. The remaining terms constitute the non-equilibrium corrections to
the kinetic tensor, which evidently depend on the system’s microscopic details. The
correlation between F int

i and ni prevents an interpretation following the standard IK-
tensor derivation. Indeed, due to activity, it is not possible to extract a gradient with
respect to r from the expression in the second line of (6.23). Likewise, the external
force contribution is not generally factorisable. We therefore define the local tensors

I1 (r, t) ρ(r, t) =

〈
N∑
i=1

F ext
i ni

〉
r

, (6.28)

I2 (r, t) ρ(r, t) =

〈
N∑
i=1

F int
i ni

〉
r

, (6.29)

3Indeed, in our equation we put kB = mi = 1, but in natural unity of measure, the first term in
(6.26), would be kBT/mi. For 1-µm radius particle slightly denser than water at room temperature
the average thermal velocity is ∼ 0, 02m s−1, much bigger than v0.
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that account for the correlations between the particle orientation and the external
and internal forces, respectively. We recall that F ext is considered to be a generic
external force. If it represents the short-ranged interaction with a wall, the term
I1(r, t)ρ(r, t) describes the correlation among the wall force and the local polarisa-
tion – e.g., I1 ' 0 where particles swim parallel to a wall. When the integrated
pressure is considered, this term can be neglected, either as a consequence of vanish-
ing current [22,181,234] or invoking the thermodynamics limit in which it becomes a
subdominant surface term [116]. However, when long-range correlations are induced
by the external forces, or when I1 is considered locally near a wall or an obstacle,
it is not negligible and may be responsible for such effects as wall accumulation or
ratcheting. If relevant, these effects undermine attempts to interpret the pressure
as a state function in the conventional (broad) sense [21]. Summing up, the balance
equation for the momentum of the active fluid becomes

ρ
du

dt
= ∇r · σ − γρu+ γv0Pρ+ F extρ, (6.30)

with the stress tensor to order O(1/γ) given by

σ = −TρI + σIK −
2v0

γ
(I1 + I2) ρ+

2v0

γ
P
(
∇r · σIK + F extρ

)
. (6.31)

Its negative trace, normalised by the space dimension, defines the local fluid pres-
sure [239]. The last two terms can be understood as a nonequilibrium streaming con-
tribution subtracted from the active stresses in the first line. Considering the limit
γ →∞, (6.31) validates (and extends to interacting particles) a result by Speck and
Jack [22], namely that pressure is independent of activity. Only for noninteracting
particles in a homogeneous phase away from any boundaries the result remains valid
even to O(1/γ). Under more general conditions, the pressure clearly differs from
that of an equilibrium fluid. This should be expected, since static properties of a
nonequilibrium system are known to depend on its dynamical parameters [248].

6.3.3 Density equation

From (6.30) we can derive a dynamical density equation for the number or mass
density ρ(r, t), making contact with previous works on density functional (field)
theory for overdamped active particles. Neglecting the time derivative of the velocity
in (6.30) in the case of steady flow, we find an expression for the stationary fluid
velocity,

γuρ = ∇r · σ + γv0Pρ+ F extρ (6.32)

with which we can simplify the continuity equation (6.5) and the equation for the
polarisation (6.6):

∂tρ+∇r · Jρ = 0 ∂t (Pρ) +∇r · (Cnvρ) = −DrPρ.
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Here we have introduced the particle flux

Jρ =
1

γ

(
∇r · σ + F extρ

)
+ v0Pρ, (6.33)

and the polarisation flux, identified with the tensor Cnvρ. Similar equations have
already been presented in Ref. [21, 244]. The former started from the FPE associ-
ated to the overdamped version of (6.1), and the latter considered phenomenological
equations supported by numerical simulations. For consistency, also Cnv must be
expanded in powers of γ−1. Employing the very same procedure used above for σkin,
an expression valid to order O(1/γ) is found,

Cnvρ = v0Qρ+
1

γ
(I1ρ+ I2ρ− T∇r (Pρ)) . (6.34)

As pointed out in Sec. 6.2, we can neglect the time variation of the polarisation in
order to simplify Jρ. Namely, setting ∂t (Pρ) = 0, we can replace the last term in Jρ
with Pρ = −∇r · (Cnvρ) /Dr, and obtain

Jρ=
1

γ
∇r ·

[
σ− γv

2
0

Dr

Qρ+
v0T

Dr

∇r (Pρ)

]
− 1

γ
∇r ·

[
v0

Dr

I1ρ+
v0

Dr

I2ρ

]
+

1

γ
F extρ . (6.35)

Now we substitute the stress tensor (6.31) and neglect terms O (1/γ2)

Jρ=
1

γ
∇r ·

[
−TρI+σIK−

γv2
0

Dr

Qρ+
v0T

Dr

∇r(Pρ)

]
− v0

γDr

∇r ·(I1ρ+I2ρ)+
1

γ
F extρ (6.36)

For vanishing particle flux, the external force is balanced by the terms included in
the divergence, inducing the definition of a stress tensor σs reliable in the regime of
a stationary polarisation field, as pointed out in (6.12):

Jρ =
1

γ
∇r · σs +

1

γ
F extρ (6.37)

Finally, we turn (6.37) into a sum of a purely diffusive flux plus a drift term arising
from external forces, Jρ = −Deff∇rρ + 1

γ
F extρ. This is done, like in equilibrium,

relating the gradient diffusion matrix Deff to the compressibility of the fluid. Using
the chain rule, we can write

1

γ
∇ · σs =

1

γ
∂ρσs · ∇ρ (6.38)

and then define the diffusion matrix Deff by introducing the compressibility coeffi-
cients matrix κijT (i, j = 1, 2),

(Deff)ij ≡
1

γρ
(κ−1

T )ij, κijT ≡ −
1

ρ

(
∂(σs)ij
∂ρ

)−1

T

. (6.39)

The dependence of the stress tensor σs on density ρ is not straightforward, but a
density-gradient-expansion ρ can be performed in a weakly inhomogeneous approxi-
mation as presented in Sec. 6.3.5.
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6.3.4 Local fluid pressure and wall pressure

In the section 6.3.3 we have introduced the static stress tensor σs. Equivalently,
it can be derived from (6.11) by applying multiple-time-scale theory to (6.12), i.e.
involving the dynamics characterised by a fast polarisation relaxation, ∂t(Pρ) = 0.
Indeed, neglecting the time variation of the polarisation, the active contribution
to the momentum balance is naturally included in the stress tensor through the
correlating tensor Cnv that, up to order O(1/γ), is given by (6.34). If plugged into
(6.12)

σs = −TρI + σIK −
γv2

0

Dr

Qρ− 2v0

γ

(
1 +

γ

2Dr

)
ρ (I1 + I2)

+
v0T

Dr

∇r(Pρ) +
2v0

γ
P
(
∇r · σIK + F extρ

)
(6.40)

We stress that the terms in the last parenthesis of (6.40) are a streaming contribution
to some of the terms in the first line. So they are expected to be of the same order
recalling that P is at maximum one, thus cannot change the order of magnitude.
Note that some active contributions appearing in (6.31) now have a renormalised
pre-factor. The typical friction for colloids of 1µm radius embedded in water is
γ ' 107 s−1 (assuming comparable solvent and particle densities), much larger than
typical rotational diffusion coefficients Dr ' 10−1-100 s−1. Namely, γ � Dr, in
agreement with the requirements for the employ of multiple-time-scale approach.
Therefore we can neglect sub-leading terms to arrive at

σs = −TρI + σIK −
γv2

0

Dr

Qρ+
v0

Dr

[T∇r(Pρ)− ρ (I1 + I2)] . (6.41)

We recall that the appended subscript “s” emphasises that (6.41) is valid only under
the stationary condition ∂t (Pρ) ' 0, that is time scales larger than D−1

r . In turn,
for consistency with the assumption γ � Dr, this implies that the hydrodynamic
momentum density ρu is stationary as well, since it relaxes on time scales larger
than γ−1. If even u = 0 holds (i.e., under static conditions), the momentum balance
equation takes the form

F extρ = −∇r · σs (6.42)

which shows that σs is best suited to inspect the mechano-static equilibria of an
active fluid. When F ext is a confining wall force, σs gives the local force per unite
area exerted by the active fluid on its container. It clearly differs from the local fluid
pressure in (6.31), because the active force is already included in (6.40) and hence
does not explicitly show up in (6.42). This becomes apparent when comparing (6.42)
with the static limit of (6.30),

F extρ+ γv0Pρ = −∇r · σ. (6.43)
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It manifestly shows that the external forces F ext are counterbalanced not only by the
active pressure σ alone, but also by the internal body force γv0P [22], legitimated
to dissipate momentum only under non-stationary conditions. In the light of (6.42),
we can define the local pressure exerted on a wall by taking the trace of (6.41). By
construction, TrQ = 1, while the trace of the correlating tensors I1 and I2 reduces
to the scalar product of the forces F int

i and F ext
i with the orientational angle ni:

Pwall(r) = ρT − 1

2
Tr σIK + ρ

γv0

2Dr

v (r) +
v0T

2Dr

∇r · (Pρ). (6.44)

Here, we have introduced the density-dependent actual swim speed [76],

v (r) ≡ v0 +
1

γ
Tr (I1 (r) + I2 (r)) , (6.45)

in which the bare swim speed v0 is renormalised by the effect of inter-particles in-
teractions and external forces. In absence of external forces (6.45) reduces to the
expression by Marchetti et al. [244]. Numerical simulations [24, 244, 249] show that,
at high density, (the swim pressure and thus) the effective velocity of active particles
is reduced due to self-caging effects [181,234], implying that the second term of (6.45)
must turn negative, i.e. TrI2 < 0. Intuitively, this happens when the particles are
swimming oppositely to the mutual force they experience (regardless of the particu-
lar form of F int) entailing that the pair distribution function, included implicitly in
I2 as shown in Section 6.3.5, must be anisotropic [62]. This corresponds to trapped
configurations as sketched in Fig. (6.1), broken and restored by the rotational dif-
fusion. Hence, for hard-core interactions, the particle velocities point towards each
other in the trapped state, but attractive interactions also allow for trapped config-
urations with outwards pointing velocities at small activities.
Note that the two terms in (6.44) are formally equivalent to the pressure of an equi-
librium fluid, while the others represent the swim pressure P swim, i.e. the explicit
additional contribution due to self-propulsion. This expression (6.44) is consistent
with the pressure derived by some of us in [116] through the virial theorem. The
additional term in (6.44) depending on the divergence of the polarisation, does not
appear in [116] since therein only the average pressure on a fluid container is con-
sidered, which requires an integration over the whole space. It plays a relevant role
close to boundaries where, due to the wall-accumulation effect, the average polari-
sation can be nonzero, differently from the bulk. Also note that in many previous
works, which consider only the overdamped version of (6.1), the swim pressure is
defined as FA 〈ni · xi〉 [76, 181, 182, 234]. The (local version of this) definition is
completely equivalent to ours based on tensors I1 and I2. In equation (30) of [116]
this has been shown starting from microscopic overdamped dynamics. For under-
damped dynamics, one can start from (6.4) and then make use of multiple-time-scale
analysis. Namely, for a steady state, 〈Lnixi〉 = 0 entails 〈vini〉 = Dr 〈nixi〉. Aver-
aging of 〈vini〉 can be performed with (6.17) and (6.18), to recover (the integral of)
P swim = ργv0v(r)/2Dr.
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Figure 6.1: Trapped configurations of pairs of active particles with repulsive (left)
and attractive (right) interactions.

6.3.5 Weakly inhomogeneous density approximation

Self-caging phenomena, as implied by the definition (6.45) of the actual velocity
v(r, t), are responsible also for the non-monotonic behaviour of the pressure as func-
tion of density. This becomes evident considering a gradient expansion of (6.44), in
which the explicit density dependence, of the tensors σIK, I1, I2 is approximately re-
solved. Namely, the hydrodynamic fields are supposed to change slowly in space, so
that gradient terms can be discarded. For simplicity, we suppose that the only exter-
nal force is a hard-wall potential, and that inter-particle forces F int

ij = −∇iU(|xi−xj|)
derive from a central pair potential, here independent of the self-propulsion ori-
entation. This assumption allows to neglect any term involving the short-ranged
boundary force F ext, when the average pressure is considered, since it amounts to a
sub-leading contribution in the system size. We first consider the Irving-Kirkwood
tensor,

σIK =
ρ (r)

2

ˆ
dR

RR

|R|
U ′ (|R|) ρ (r +R) g2 (r, R) . (6.46)

The latter differs from the expression in [239] in the g2(r, R): it is a nonequilibrium
angle-averaged pair distribution function. Namely g2(r, R) ≡

´
dθg2(r, R, θ), where

g2(r, R, θ) measures the probability of finding a particle in r with orientation θ and
a particle in r + R (with arbitrary orientation). With slight abuse of notation we
use the same symbol to denote g2(r, R, θ) and the angle-averaged g2(r, R) entering in
(6.46). The θ-dependence contains information about possible anisotropies [250,251],
with the contact probability increasing with an anti-alignment of the swim directions.
Such an anisotropy is also responsible for the reduced actual velocity v(r, t) as de-
picted in Fig. (6.1). The zero order in a gradient-expansion approximation, i.e.,
ρ (r +R) ' ρ (r), yields σIK ' −ρ2a with a slowly varying matrix

a (r) = −1

2

ˆ
dR

RR

|R|
U ′ (|R|) g2 (r, R) . (6.47)

We proceed similarly for the tensor I2, which involves a more complex dependence
on θ. From the definition (6.29),

I2ρ =
N∑
i,j 6=i

ˆ
dxidxjdθiδ (xi − r) ρ2 (xi, θi, xj)× n(θi)F

int
ij (xi − xj). (6.48)
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Here, ρ2 is the two-body density distribution function to find a particle in xi with
orientation θi together with a particle at xj (with arbitrary orientation). It decom-
poses into to one-body density distributions ρ(r) and the pair correlation g2(r, R, θ).
The standard assumption of identical particles allows to drop the label i, namely,

I2ρ =

ˆ
dRdθ n(θ)F int(R)ρ(r +R)ρ(r)g2(r, R, θ). (6.49)

While in (6.46), the eventual anisotropies in the pair distribution function are aver-
aged out, more interesting effect can emerge in (6.49). Hence, to a first approximation
we obtain I2ρ ' ρ2b, where

b(r) =

ˆ
dRdθ n(θ)F int(R)g2(r, R, θ). (6.50)

If we plug (6.47) and (6.50) into (6.44) and take the trace, we get

Pwall =

(
T +

γv2
0

2Dr

)
ρ+

1

2
Tr

(
a+

v0

Dr

b

)
ρ2. (6.51)

Equation (6.51) is similar to the equilibrium virial equation of state, suggesting the
definition of the effective temperature,

Teff = T +
γv2

0

2Dr

. (6.52)

due to the stochastic active motion [181, 182, 189]. The pressure arising from the
interactions has a contribution Tra of the standard form known from equilibrium. It
knows about the activity only through the nonequilibrium pair distribution g2. The
second term displays an explicit dependence on v0 indicating its absence in equilib-
rium. The factor Trb can turn negative for self-trapping configurations, and leads to
the aforementioned decrease of the actual velocity (6.45) as sketched in Fig. (6.1).
Here we have found that the same phenomenon may cause a non-monotonic be-
haviour of the pressure for large enough values of the persistence length v0D

−1
r com-

pared to the mean particle distance ρ−1/2 [236]. Similar conclusions have been drawn
by Takatori et al. from a density expansion of the swim pressure [24] starting from
microrheology results.

The weakly inhomogeneous density approximation (6.51) for Pwall and an equiv-
alent expression for σs allow a simplification of the compressibility coefficient (6.39)
introduced in the diffusion equation. Namely,

1

2ρ
Tr(κ−1

T ) = T +
γv2

0

2Dr

+ Tr
(
a+

v0

Dr

b

)
ρ. (6.53)

Generally, (a)ij > 0 for systems with repulsive inter-particle potentials. Hence, at
equilibrium we expect them to posses a reduced compressibility compared with an
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ideal gas. Conversely, since (b)ij can be negative for active particles thanks to their
self-caging properties, the compressibility can be increased even for purely repulsive
inter-particle forces. In view of (6.39), an increasing compressibility entails a de-
creasing diffusivity, as usual.

6.3.6 Low density limit

For low densities (ρ1/2d� 1, where d is the typical interaction length scale), g2 can
be evaluated by solving a two body problem, which yields the barometric equation
at the effective temperature (6.52),

g2 (|R|) ∼ exp

(
−U (|R|)

Teff

)
. (6.54)

Within this approximation, a simplified expression for (6.47), evaluated using polar
coordinates (|R|, φ), can be found, namely

Tr a (r) = Teff

ˆ ∞
0

d|R| |R| exp

(
−U (|R|)

Teff

)
. (6.55)

If U(R) is the hard-sphere potential, this reduces to Tr a = Teffd
2/2, where here d

denotes the particle diameter. The evaluation of b(r) in Eq. (6.50) requires further
considerations. Supposing a uniform distribution for θ, away from any boundaries,
the approximation (6.54) implies b = 0. This clearly shows that an anisotropic
pair distribution function must be considered for active fluids to unveil the genuine
nonequilibrium contributions to the pressure beyond the effective temperature Teff
from Eq (6.54). In polar coordinates

b(r) = −
ˆ
d|R|dθdφn(θ)n(φ)U ′(|R|)g2(r, |R|, θ, φ), (6.56)

where n (φ) ≡ R/|R| gives the direction of the force. As previously pointed out,
particles with a net relative swim velocity towards each other give rise to an enhanced
contact value. To make our point, we write

g2 (r, |R| , θ, φ) = δ (φ− θ) g̃2 (r, |R| , θ) (6.57)

and we idealise the function δ, which will generally be peaked around zero, as the
Dirac delta. We then find by integrating over φ,

b (r) = −
ˆ
d|R|dθ n (θ)n (θ)U ′ (|R|) g̃2 (r, |R|, θ) . (6.58)
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Assuming a uniform distribution of θ ∈ [0, 2π] (which holds, e.g., in the bulk), leads
to

Tr b (r) = −2πTeff

ˆ ∞
0

d|R| exp

(
−U (|R|)

Teff

)
(6.59)

and for hard spheres we obtain Tr b = −2πTeffd. Plugging the result of a and b in
(6.51)

Pwall =

(
T +

γv2
0

2Dr

)
ρ+ Teffd

(
d

4
− π v0

Dr

)
ρ2. (6.60)

The magnitude of the persistence length v0D
−1
r determines how the pressure be-

haves for high density. For parameter combinations v0, Dr and d that guarantee a
sufficient persistence of the swim direction between particle interactions, the second
parenthesis in (6.60) is negative, leading to a non-monotonic behaviour of the swim
pressure,

P swim =
v0

Dr

(γv0

2
ρ− πTeffdρ

2
)
. (6.61)

Similarly if we plug the result of a and b in (6.53) and (6.39) we obtain an expression
for the effective diffusion coefficient Deff

1

2
TrDeff =

Teff

γ

[
1 + ρd

(
d

2
− 2π

v0

Dr

)]
. (6.62)

6.4 Conclusion and Outlook
For a “dry” active system, we have derived balance equations for hydrodynamic
observables starting from the underlying microscopic dynamics. Particularly, the
equation for momentum balance univocally leads to a definition of the pressure via
the stress tensor. Our expressions derived in the high-friction limit rationalise the
features observed in active systems: violation of (local) momentum conservation due
to the active swim force, reduced swim pressure due to self-trapping of the particles
[234] (and adverse external forces) and the non-monotonic density-dependence of
the pressure [181]. These phenomena, observed even if hydrodynamic interactions
between the solvent and the active particles are neglected, are caused by active
self-interactions of active particles contained in the tensor I2. Furthermore, our
expression for the pressure shows manifestly the general lack of equivalence between
the local pressure, defined via momentum exchange, and the mechanical pressure
exerted on a wall for active systems, as previously argued [22]. Our theory clarifies
the role of activity as responsible for this general violation of (local) momentum
conservation, putting in evidence the regimes in which such violation can be neglected
and the stress tensor actually counterbalances the force exerted on a wall.
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The theory is still valid and leads to the same conclusion if the external force and
the mutual active particles interaction depend on the self-propulsion orientation θi,
as long as the orientational dynamics is still affected by rotational diffusion only.
In this case the forces can induce some local imbalance in the polarisation, e.g.
positive in some area and negative elsewhere according to the individual particles
orientation. Nevertheless, the global polarisation must be conserved at zero, as long
as the angular dynamics for each particle are decoupled by the others, so cannot
lead to mean polarisation 4. On the contrary the presence of torque affecting the
orientational dynamics introduces new elements and requires further investigation.
Needless to say, such an extension would be very interesting since it enables us
to account for collective phenomena with aligning effects in the spirit of the well-
known Vicsek model [252]. While the presence of a alignment interactions terms like
in [21], e.g. F al

i (θi, xi) = F al
ij (θi − θj, xi, xj), in the dynamics for the self-propulsion

orientation would not change the density and the momentum balance equation, it
would be responsible for an extra term into the polarisation equation (6.6), which
in general cannot be expressed as the divergence of a tensor. Similar conclusion
can be drawn for an external torque, depending on one particle orientation only.
Consequently, even in the fast rotation limit, the polarisation cannot be included into
the stress tensor, thus being necessarily responsible for local violation of momentum
conservation, under such conditions. Those conclusion should be carefully adopted,
since a rigorous microscopic derivation must consider the underdamped limit of the
orientational dynamics endowed with the torques contributions as starting point for
a multiple-time-scale approach and not just add a torque in the overdamped angular
dynamics. Furthermore, it would be interesting to (approximately) implement the
effect of hydrodynamic interactions mediated by the solvent [253,254] in our theory,
in order to elucidate its role for the collective dynamics and to eventually derive a
comprehensive dynamical density functional theory for a “wet” active fluid. A first
attempt would be the introduction of a position dependent active velocity in the
microscopic Langevin equation. Finally, as an interesting application of our theory,
its consequences for the important thermodynamic notion of surface tension should
be studied [222,249,255].

4Private communication with Michael E. Cates from the University of Cambridge.



Appendix A

Chapter 4

A.1 Derivation of the Fourth Moment
From the solution of (4.24) we calculate the fourth moment,

〈
X4
〉

= e−
4Kµ
N

t

ˆ t

−∞
dτ1

ˆ t

−∞
dτ2

ˆ t

−∞
dτ3

ˆ t

−∞
dτ4e

Kµ
N

(τ1+τ2+τ3+τ4)Cη(τ1, τ2, τ3, τ4) (A.1)

with Cη(τ1, τ2, τ3, τ4) = 〈η (τ1) η (τ2) η (τ3) η (τ4)〉, four-time noise correlation, is made
by three blocks of terms: one thermal, one active and one mixed. The thermal one
involves four-times correlation of the Gaussian with noise and can be written as
a sum of three two-times correlations. The mixed terms boils down to products of
two-times correlations since thermal and active noise are assumed to be independent.
Independence is supposed for different j-particles as well. Namely,

Cη=
v4

0

N3
〈n (τ1) n (τ2) n (τ3) n (τ4)〉+ 6µT

N2

[
2µTδ (τ1−τ2)+v2

0e
−Dr|τ1−τ2|

]
δ (τ3−τ4) (A.2)

The active noise cannot be factorised. From [256], for τ1 > τ2 > τ3 > τ4,

〈n (τ1) n (τ2) n (τ3) n (τ4)〉 =
1

4
e−Dr(τ1−τ2+τ3−τ4) +

1

8
e−Dr(τ1+3τ2−3τ3−τ4) (A.3)

for cosine-cosine and sine-sine component and zero otherwise. Eq. (A.3) differs
from Eq. (3.19) of [256] for the averaging over the initial angle. Eq. (A.3) gives
the correlation of the orientations for a particular order of the times, but for each
a similar expression is valid for any order of the times. The integrals in (A.1) can
be split in 24 ordered integrals, as many as the number of orders of times. Each
contribution weighs the same, therefore the evaluation of the integrals boils down to
a combinatorial calculation. If we plug (A.2) into (A.1) we obtain (4.28).
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A.2 Non-linear correction to X2

The first-order correction to the variance is given by the solution of (4.1) times (4.34)
and it involves average values of the noise correlated with the perturbation F .

〈X0X1〉 =
N∑
j=1

1

kN

ˆ t

−∞
ds e−

Kµ
N

(t−s) 〈η (s) Fj
0 (t)

〉
− Kµ
kN2

N∑
j=1

ˆ t

−∞
ds e−

Kµ
N

(t−s)
ˆ t

−∞
dτ e−

Kµ
N

(t−τ)
〈
η (s) Fj

0 (τ)
〉

(A.4)

Those can be simplified through the Novikov [50, 257] theorem within a Gaussian
approximation for the active noise, reliable if the activity is not too strong (Kµ<
NDr). For non-Markov noise such that 〈ξ (t) ξ (t′)〉 = γ (|t− t′|), Novikov theorem
reads for any function φ,

〈ξ (s)φ (ξ (t))〉 =

ˆ t

−∞
dt′ γ (|s− t′|)

〈
δφ (ξ (t))

δξ (t′)

〉
(A.5)

It is convenient to separate the nonequilibrium source in the noise, i.e. ηj =√
2µTηjth + v0η

j
act, which satisfies (A.5) with γ (|t− t′|) = 0.5 exp {−Dr |t− t′|}.

Derivatives of the perturbation F0 with respect to the noise can be written as a
function of the process with the chain rule. Namely the first order correction to
variance becomes,

〈X0X1〉 =

√
2µT

kN2

N∑
j,k=1

ˆ t

−∞
ds e−

Kµ
N

(t−s)

〈
∂rj0(t)

∂ηkth (s)

∂Fj
0 (t)

∂rj0(t)

〉
−

√
2µT

kN2

Kµ

N

N∑
j,k=1

ˆ t

−∞
ds e−

Kµ
N

(t−s)
ˆ t

s

dτ e−
Kµ
N

(t−τ)

〈
∂rj0 (τ)

∂ηkth (s)

∂Fj
0 (τ)

∂rj0 (τ)

〉
+

v0

2kN2

N∑
j,k=1

ˆ t

−∞
ds e−

Kµ
N

(t−s)
ˆ t

−∞
dt′ e−Dr|s−t′|

〈
∂rj0 (t)

∂ηkact (t′)

∂Fj
0 (t)

∂rj0 (t)

〉
−

v0

2kN2

Kµ

N

N∑
j,k=1

ˆ t

−∞
ds e−

Kµ
N

(t−s)̂
t

−∞
dt′ e−Dr|s−t′ |̂

t

s

dτ e−
Kµ
N

(t−τ)

〈
∂rj0 (τ)

∂ηkact (t′)

∂Fj
0 (τ)

∂rj0 (τ)

〉
(A.6)

The functional derivative in (A.6) can be easily solved from the unperturbed solution
for the probe (4.24) and for the fluid (4.2), respectively. The functional derivative of
the probe position with respect to the thermal noise

∂X0 (t)

∂ηkth (s)
=

∂

∂ηkth (s)

ˆ t

−∞
dt′ e−

Kµ
N

(t−t′) 1

N

N∑
j=1

(
v0η

j
act (t′) +

√
2µTηjth (t′)

)
(A.7)

=
√

2µT

ˆ t

−∞
dt′ e−

Kµ
N

(t−t′) 1

N

N∑
j=1

δjk
∂ηjth (t′)

∂ηkth (s)
=Θ (t− s)

√
2µT

2N
e−

Kµ
N

(t−s) (A.8)
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since the equilibrium and the active noise are independent. The functional derivative
of the probe position with respect to the active noise

∂X0 (t)

∂ηkact (s)
=

∂

∂ηkact (s)

ˆ t

−∞
dt′ e−

Kµ
N

(t−t′) 1

N

N∑
j=1

(
v0η

j
act (t′) +

√
2µTηjth (t′)

)
(A.9)

=
v0

N

ˆ t

s

dt′ e−
Kµ
N

(t−t′)
N∑
j=1

δjk
∂ηjact (t′)

∂ηkact (s)
= Θ (t− s) v0

2N
e−

Kµ
N

(t−s) (A.10)

The derivative of the active noise with respect to itself gives a δ (t′ − s) [50], from
(A.5)

〈
ηkact (s)ηjact (t)

〉
=

1

2

ˆ t

−∞
dt′ e−Dr|s−t′|

〈
∂ηjact (t)

∂ηkact (t′)

〉

=
1

2
e−Dr(t−s) ⇐⇒

〈
∂ηjact (t)

∂ηkact (t′)

〉
= δ (t− t′) . (A.11)

The functional derivative of the particles position with respect to the thermal noise

∂xj0 (t)

∂ηkth (s)
=
√

2µT

ˆ t

s

dt′ e−
kµ
N

(t−t′)∂η
j
th (t′)

∂ηkth (s)
+
kµ

N

ˆ t

s

dt′ e−
kµ
N

(t−t′)∂X0 (t′)

∂ηkth (s)
(A.12)

=

√
2µT

2

[
e−

kµ
N

(t−s)δjkΘ (t− s) +
1

N

kµ

N

ˆ t

s

dt′ e−
kµ
N

(t−t′)e−
Kµ
N

(t′−s)
]

(A.13)

Noteworthy, here replacing kµ exp(−kµτ/N)/N with δ(τ) in the limit kµ/N →∞
requires to assume that k�K and leads to

∂xj0 (t)

∂ηkth (s)
=

K�k

√
2µT

2

(
e−

kµ
N

(t−s)δjk+
1

N
e−

Kµ
N

(t−s)
)

Θ (t− s) . (A.14)

While replacingKµ exp(−Kµτ/N)/N necessarily leads to the regimeK�k in which

∂xj0 (t)

∂ηkth (s)
=

K�k

√
2µT

2

(
δjk+

1

N

k

K

)
e−

kµ
N

(t−s)Θ (t−s)≈
√

2µT

2
δjke

− kµ
N

(t−s)Θ(t−s) (A.15)

the second term is negligible. It is important to stress that if we consider the regime
K� k the overdamped limit we performed for X1 is no longer valid since we used
kµ exp(−kµτ/N)/N to replace the exponential with the δ. To obtain the solution
of X1 we must proceed in another way. Namely we start from (4.33) and we neglect
the inertia,

k

ˆ t

−∞
ds e−

kµ
N

(t−s)Ẋ1 (s) = −KX1 +
1

N

N∑
j=1

ˆ t

−∞
ds e−

kµ
N

(t−s)Ḟj
0 (s) (A.16)
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and we take a time derivative

(k+K)Ẋ1 =
kµ

N

ˆ t

−∞
ds e−

kµ
N

(t−s)Ẋ1 (s)+
1

N

N∑
j=1

[
Ḟj

0−
kµ

N

ˆ t

−∞
ds e−

kµ
N

(t−s)Ḟj
0 (s)

]
(A.17)

then we substitute (A.16) into (A.17) so that some terms cancel out and we obtain

Ẋ1 = − K

k +K

kµ

N
X1 +

1

k +K

1

N

N∑
j=1

Ḟj
0 (A.18)

First we use that K�k and then we solve the equation obtaining,

X1 =
1

NK

N∑
j=1

[
Fj

0 −
kµ

N

ˆ t

−∞
e−

kµ
N

(t−s)Fj
0 (s)

]
(A.19)

which is different from (4.34). In this regime we cannot replace the exponential of kµ
N

with the δ-function. As explained in Sec. 4.5.1, the interesting regime is the latter,
since in the former the non-linear correction becomes negligible. The functional
derivative of the particles with respect to the active noise,

∂xj0 (t)

∂ηkact (s)
=

K�k

v0

2

(
e−

kµ
N

(t−s)δjk+
1

N
e−

Kµ
N

(t−s)
)

Θ (t− s) (A.20)

∂xj0 (t)

∂ηkact (s)
=

K�k

v0

2

(
δjk+

1

N

k

K

)
e−

kµ
N

(t−s)Θ (t−s)≈ v0

2
δjke

− kµ
N

(t−s)Θ (t−s) (A.21)

If we plug the functional derivatives into (A.6) we have to fix in advance the ratio
K/k. If K � k we need to use (A.14) and (A.20), while if K � k we need to use
(A.15) and (A.21). Since we are more interested in the second regime,

〈X0 (t) X1 (t)〉 =
µT

N

1

KN

ˆ t

−∞
ds e−

2Kµ
N

(t−s)

〈
N∑
j=1

∂F0 (t)

∂rj0 (t)

〉

−µT
N

1

KN

ˆ t

−∞
ds e−

Kµ
N

(t−s)e−
kµ
N

(t−s)

〈
N∑
j=1

∂F0 (t)

∂rj0 (t)

〉

+
v2

0

4N

1

KN

ˆ t

−∞
ds e−

Kµ
N

(t−s)
ˆ t

−∞
dt′ e−Dr|s−t

′|e−
Kµ
N

(t−t′)

〈
N∑
j=1

∂F0 (t)

∂rj0 (t)

〉

− v2
0

4N

1

KN

ˆ t

−∞
ds e−

Kµ
N

(t−s)
ˆ t

−∞
dt′ e−Dr|s−t

′|e−
kµ
N

(t−t′)

〈
N∑
j=1

∂F0 (t)

∂rj0 (t)

〉
(A.22)

and we assume that the average is taken over the steady state so that they can now
be taken out from the integrals, which can be exactly solved leading to the first
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correction in ε to the variance (4.36). Indeed one obtains from (A.22)

〈X0X1〉 = −

(
T

2K2N
+
v2

0

4µ

1

K2N

(
1

kµ
N

+Dr

− N

2Kµ

))〈
N∑
j=1

∂F0 (t)

∂rj0 (t)

〉
(A.23)

but for consistency the second active term in the derivation is negligible. The solution
is thus in the regime K� k, but the solution in the opposite regime, K� k, can
be similarly derived using (A.14) and (A.20) into (A.19) and it is (4.37). As a last
remark we point out that the Gaussian approximation in (A.5) used to calculate the
first-order non-linear correction is not necessary if we consider an infinite expansion
in correlations function of the noise η [258,259].

〈ξ (s)φ (ξ (t))〉=
∞∑
n=1

1

n!

ˆ t

−∞
ds1 . . . dsnCn+1 (t, s1, . . . , sn)

〈
δnφ (ξ (t))

δξ (s1). . .δξ (sn)

〉
(A.24)

For to the symmetry of the process, the n-odd are the only nonzero contributions.
The first, being Gaussian, gives the term already calculated, so the first non-Gaussian
correction comes from the third term, i.e. Cact

η in (A.2). Due to the complexity of
estimating the correlation of the active noise for n > 4, the expansion must be
truncated, unless the function φ is a power of the process X. Indeed, for the quartic
potential an truncation is not necessary and the non-Gaussian correction can be
exactly calculated and added up to the correction in the Gaussian approximation.
We have calculated it for (4.41) in the k�K regime, but the derivation is equivalent,
although more complicated in the opposite regime. Indeed, given that〈

∂3
(
rj0 (t)

)3

∂ηkact (s1) ∂ηkact (s2) ∂ηkact (s3)

〉
= 6

∂rj0 (t)

∂ηkact (s1)

∂rj0 (t)

∂ηkact (s2)

∂rj0 (t)

∂ηkact (s3)

= −v
3
0

8
e−

kµ
N

(3t−s1−s2−s3) (A.25)

where in the last passage we use the (A.14) and (A.20), the non-Gaussian correction
is given by the integrals,

〈X0X1〉nG = −v
4
0

8

α

kN
e−

µ
N

(3k+K)t

ˆ t

−∞
ds

3∏
i=1

ˆ t

−∞
dsi Cact

η e
µ
N (Ks+k

∑3
i=1 si)+

v4
0

8

α

kN

Kµ

N
e−

2Kµ
N

t

ˆ t

−∞
ds

ˆ t

s

dτ e−
Kµ
N

(s+τ)

3∏
i=1

ˆ τ

−∞
dsi Cact

η e−
kµ
N (3τ−

∑3
i=1 si) (A.26)

with Cact
η = C4 (s, s1, s2, s3). Its analytical expression is not very enlightening and

thus here not reported. A graphic analysis of its behaviour as a function of K, v0, Dr

confirms that its contribution to (4.41) is small and not able to spoil the behaviour
of the dominant Gaussian part. This has been checked also in the regime K�k.
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Chapter 5

B.1 Analytical solution for variance
The x-component Langevin of Eq. (5.2) for particle position with the parabolic
potential can be formally solved with the result

x(t) = x0e−K(t,t0) +

ˆ t

t0

dt′ ηx(t
′)e−K(t′,t0), (B.1)

where ηx(t) =
√

2D(t)ξx(t) + v(t) cos θ and x0 denotes the initial position of the
particle. Multiplying the formula (5.2) by 2x we obtain the formula dx2/dt =
−2µk(t)x2 + 2ηxx. Inserting the solution (B.1) into the last expression, taking the
average with respect to the noise and using the noise correlation function, we get the
following dynamic equation for the variance σ = 〈x2〉+ 〈y2〉:

σ̇ + 2µkσ = 4 〈x0ηx(t)〉 e−K(t,t0) + 4D(t) + 2v(t)

ˆ t

t0

dt′v(t′)e−K(t,t′)−F (t,t′). (B.2)

In order to evaluate thermodynamics of the active heat engine described in Sec. 5.2,
we need the solution of Eq. (B.2) in the time periodic regime which is attained by
the system at long times after a relaxation period. This can be obtained by taking
the limit t0 → −∞ in the formal solution to Eq. (B.2). This way we obtain the
formula

σ(t) = 2 lim
t0→−∞

ˆ t

t0

dt′[2D(t′) + v(t′)H(t′)]e−2K(t,t′) (B.3)

with

H(t) = lim
t0→−∞

ˆ t

t0

dt′v(t′)e−K(t,t′)−F (t,t′), (B.4)

K(t, t0) = µ

ˆ t

t0

dt′k(t′), (B.5)

F (t, t0) =

ˆ t

t0

dt′Dr(t
′). (B.6)

105



APPENDIX B. CHAPTER 5 106

For the numerical evaluation of Eq. (B.3) it is useful to note that H(t) is a tp-
periodical function. Furthermore, it is favourable to rewrite K(t, t0) as

K(t, t0) = b(t− t0)/tpcK(tp, 0) +K(t, t0 + b(t− t0)/tpctp) (B.7)

using the tp-periodicity of k(t) (the symbol bxc denotes the floor operation) and
similarly for F (t, t0). For memoryless dynamics, one can find the time-periodic
solution without considering the limit t0 → −∞ [209, 210] which is inconvenient for
numerical evaluation of the solution. Interestingly, using a simple trick, one can do
the same in the present model. The key is to note that not only the function σ,
but also H fulfils certain differential equation which can be obtained by taking time
derivative of Eq. (B.4). The resulting formula and the time-periodic solution is given
in the main text in Sec. 5.2.4.

B.2 Slow driving limit of variance
For slowly varying driving functions k(t), D(t), Dr(t) and v(t) the variance (B.3)
can be approximated using a simple formula which follows from the Laplace type
approximation of the integral [260,261]

ˆ t

t0

dt f(t′)e
´ t
t′ dt

′′ g(t′′) =

ˆ t

t0

dt f(t′)e
tp
´ t/tp
t′/tp

dt′′ g(tpt′′)
= (B.8)

=
f(t)

g(t)
− 1

g2(t)

(
v̇(t)− v(t)

ġ(t)

g(t)

)
+ o(ḟ , ġ). (B.9)

Applying this approximation first on the functionH(t) (B.4) and then on the variance
σ(t) (B.3) we obtain the approximate formula (for space saving reasons we omit
explicit writing of time arguments)

σ(t) = σ∞ −
v2

kµκ2

(
v̇

v
− κ̇

κ

)
− D

k2µ2

(
Ḋ

D
− k̇

k

)
(B.10)

− v2

2k2µ2κ

(
2
v̇

v
− κ̇

κ
− k̇

k

)
+ o(v̇, Ḋ, k̇, κ̇). (B.11)

Here σ∞ is the variance for infinitely slow driving given in Eq. (5.15) and κ = κ(t) =
kµ+Dr. The zero order solution σ∞ is discontinuous for discontinuous driving, the
first order correction (B.11) is discontinuous if the first derivatives of the driving
functions exhibit jumps. In such a case, however, the assumption on smallness of
the derivatives used for derivation of Eq. (B.11) is not valid. In accord with the
discussion below Eq. (B.15), Eqs. (B.11) reveal that the corrections caused by the
active term v cos θ are at least of the second order in active velocity.
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Figure B.1: Left Panel. Probability distribution χ for particle position x and orien-
tation θ at the end of the hot isotherm (t = tp/3, see Fig. 5.1). We take v+ = 30
and tp = 104. Other parameters are the same as in Fig. 5.1.
Right Panel. Marginal distribution ρ for the particle position x at the end of the
individual branches of the cycle for different values of the maximum active velocity
a) v+ = 0, b) v+ = 1, c) v+ = 10, and d) v+ = 30. We set tp = 1. The other
parameters are the same as in Fig. 5.1. Note that the curves at t = 0 and t = 1 are
equal, in accord with the fact that the system sets in a time periodic steady state.

B.3 Probability distributions
Although the components x and y of the Langevin equation (5.1) are not coupled,
the steady probability distribution (PDF) to find the particle with orientation θ at
position (x, y), solution of the Fokker-Planck equation associated to (5.1), cannot
be written in the separated form p(x, y, θ) = χ(x, θ)ρ(y, θ). Namely, the latter does
not solve the steady state Fokker-Planck equation (5.24), since it produces an extra
term for the rotational diffusion of the form 2Dr∂θ (χ(x, θ)∂θρ(y, θ)). Nevertheless,
one can still reduce the system to just two degrees of freedom introducing polar
coordinates x = r cosφ, y = sinφ such that (5.1) becomes,

ṙ = −kr + v cos(θ − φ) +
√

2Drηr, φ̇ =
v

r
sin(θ − φ) +

√
2D

r2
ηφ (B.12)
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while the equation for θ is not changed. Noises ηr and ηφ are still gaussian and
delta-correlated. Since (B.12) does depend only on the difference θ−φ, we introduce
a new angle ψ = θ − φ such that,

ṙ = −kr + v cosψ +
√

2Drηr, ψ̇ = −v
r

sinψ +

√
2

(
D

r2
+D

)
ηψ (B.13)

The Fokker-Planck associated to (B.13) for ρ = ρ(r, ψ, t) can be easily derived [46]

∂tρ=

[
D∂2

r +

(
D

r
+Dr

)
∂2
ψ

]
ρ−cosψ∂r(vρ)−D∂r

(ρ
r

)
+k∂r(rρ)+

v

r
∂ψ(sinψρ) (B.14)

This consideration is not necessary if the phase space is (x, θ) since the probability
distribution (PDF) χ = χ(x, θ, t) to find the particle at time t with orientation θ at
position x is given by

∂tχ =
[
D∂2

x +Dr∂
2
θ + ∂x (µ∂xV − v cos θ)

]
χ. (B.15)

In general, both equations (B.14) and (B.15) can not be solved analytically and
thus we solved it using the numerical method proposed in [223]. In the left panel of
Fig. B.1 we show the snapshot of the PDF χ(x, θ, t), solution of (B.15), at the end of
the third branch of a quasi-static cycle (hot “isotherm”). The figure shows the typical
shape of the PDF χ with two global maxima located at θ = 0 and π obtained even
for a finite driving. Physically, the shape of the PDF can be understood as follows:
1) It can be expected that for any fixed orientation angle θ, the distribution have
a maximum at the position where the active velocity (which acts in the Langevin
Eq. (5.1) as a force v cos θ/µ) is balanced by the force kx exerted by the parabolic
potential. 2) The cosine of the angle in the velocity changes slowest around its
extrema (0 and π) and thus most trajectories contribute to the surroundings of these
points, making the extrema for 0 and π largest. In the right panel of Fig. B.1 we
show the marginal PDF for position ρ(x, t) =

´
dθχ(x, θ, t) at the beginning of the

individual branches of the cycle introduced in Sec. 5.2.2 for four values of maximum
active velocity v+. With increasing v+, the resulting PDFs become increasingly non-
Gaussian and finally even exhibit two separated peaks. Physically, this behaviour
can be understood as a competition between the wall accumulation effect [59,60,74]
leading to the double peak and the effect of the potential trying to localise the particle
in its minimum. Qualitatively the same results are obtained also in quasi-static limit.
See [77, 262] for similar PDFs.
To get some intuition about these results on analytical grounds, we now present
several approximate solutions to Eq. (B.15), but valid also for (B.14). Different
from passive diffusion (v = 0) in an external potential, the quasi-static (∂tχ =
0) solution of the Fokker-Planck equation (B.15) is not given by the Boltzmann
distribution. This is because one cannot subsume the activity into a generalised
potential Ṽ which would rule the dynamics of x and θ. Nevertheless, there are
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several limiting situations where the Boltzmann form χ ∝ exp(−βṼ ), with β = T−1,
is still a useful approximation.
The best analytical insight in the described qualitative properties of the presented
numerical solutions to Eq. (B.15) with time-dependent parameters is obtained for
diffusion coefficient Dr much smaller than kµ (parameter R from Sec. 5.6 large).
Then, the direction of the active velocity can be treated as constant and one can
describe the particle dynamics by a generalised potential Ṽ kx2/2− vx cos θ/µ. The
corresponding quasi-static solution of Eq. (B.15) thus reads

χ =
1

Zχ
exp

[
−β
(
kx2

2
− vx cos θ

µ

)]
. (B.16)

Here Zχ is a normalisation constant. For each fixed value of the angle θ, the dis-
tribution is Gaussian with maximum value exp[βv2 cos2 θ/(2µ2k)]/Zχ located at the
position v cos θ/(µk). The distribution thus posses two global maxima located at
x = ±v/(µk), θ = 0 and π and is qualitatively similar to the distribution shown in
the left panel of Fig. B.1. The marginal distribution for position obtained from the
PDF (B.17) reads

ρ(x, t) =

ˆ
dθχ =

1

Zρ
exp

(
−βkx

2

2

)
I0

(
βvx

µ

)
. (B.17)

Here, the function I0(x) denotes the modified Bessel function of the first kind and Zρ
is a normalisation constant. The marginal PDF is Gaussian for v = 0 and becomes
more and more non-Gaussian with increasing v/(µk), while for large values of v/(µk),
it can even become bimodal. This behaviour can be traced back to the shifting of
the maxima of the distribution ρ with increasing v/(µk). For small v/(µk), the two
maxima overlap substantially and the integration over the angle θ yields a single peak
which is nearly Gaussian. For large values of v/(µk), the two peaks do not overlap
any more and the marginal distribution thus exhibits two peaks. The behaviour of
the marginal PDF obtained in the limit Dkr � µ thus shows qualitatively the same
behaviour as the actual solution of Eq. (B.15) shown in the left panel of Fig. B.1.
For Dr much larger than kµ (parameter R from Sec. 5.6 small), the quasi-static
PDF is given by χ ∝ exp(−βeffV ), This is because the particles rotates so fast that
the non-equilibrium bath becomes an effective equilibrium one with the temperature
1/βeff = T + v2/(2µDr).
Another situation where Eq. (B.15) can be solved is the case of quasi-static driving
and small active velocity. Then the quasi-static PDF ρ can be approximated by the
McLennan type formula χ ≈ exp(−βU)[1 −W (x)] [263–267]. Without going into
the details, the function W (x) is in general proportional to the (average) dissipation
in the driven system [265] and thus to the product of the active “force” µ−1v cos θ
and the particle velocity ẋ. Since the average over the angle θ of the active force is
zero, the correction W (x) vanishes and thus the effect of the active velocity on the
particle distribution is at least of the second order in v.
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Chapter 6

C.1 Multiple time scale analysis
In this section we sketch the systematic expansion in the high-friction limit by which
we obtain the contributions to zero order (6.17) and to first order (6.18), as reported
in the main text. We rewrite the microscopic FPE (6.16) with the help of a multiple-
time-scale analysis, introducing the small dimensionless bookkeeping parameter ε to
label the expansion of the FP density (as in the main text γ̃ = εγ). The derivation
follows that for a passive Langevin system [245] and extends it to active systems, with
slight manipulations. Just an important remark concerning the rotational diffusion.
Depending on its nature it can act on a faster or slower time scale and thus influence
the overdamped Fokker-Planck equation. In the following we suppose that rotational
diffusion is a thermal effect, Dr = T/(8πηR3) = T/(αγ) with γ = 6πηR and α =
4R2/3. An expansion of the N -particle PDF is obtained comparing the terms in the
FPE order by order. For this purpose, the three time scales defined in the main text
are introduced on the LHS of the FPE through the chain rule relation for the times,

∂

∂t
= ε−1 ∂

∂τ0

+
∂

∂τ1

+ ε
∂

∂τ2

(C.1)

Since the active force is proportional to γ via the definition FA = γv0, the zero order
or fast time scale, corresponding to the terms proportional to ε−1, is given by

∂ρ(0)

∂τ0

= LFPρ(0), LFP = γ̃
∂

∂vi

(
vi − v0ni + T

∂

∂vi

)
(C.2)

where the summation convention for repeated indices is adopted. After a transient,
(C.2) describes the fast time scale τ0 a relaxation the solution of LFPρ(0) = 0, namely,

ρ(0) = Φ (xi, θi, τ1, τ2)W , W =
1

2πT
exp

(
−(vi − v0ni)

2

2T

)
. (C.3)
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To this order, the local swim velocity is the only contribution to the hydrodynamic
flow velocity. Note thatW is for a D = 2 system, but an extension to higher dimen-
sions is straightforward.

First-order corrections can be found comparing the terms proportional to ε0 in the
FPE, and using that the operator LFP acts only on ρ(1). For simplicity we denote
by F all forces appearing in the FPE apart from the active one,

∂ρ(1)

∂τ0

+
∂ρ(0)

∂τ1

+ vi
∂ρ(0)

∂xi
+ Fi

∂ρ(0)

∂vi
= LFPρ(1) (C.4)

On the fast timescale τ0, the solution ρ(1) relaxes to the solution of

∂ρ(0)

∂τ1

+ vi
∂ρ(0)

∂xi
+ Fi

∂ρ(0)

∂vi
= LFPρ(1). (C.5)

An integration over velocities eliminates the still unknown dependence of ρ(1) and
leads to a solvability equation for Φ

∂Φ

∂τ1

+ v0ni
∂Φ

∂xi
= 0. (C.6)

In the derivation for passive systems [42], the solvability condition imposes ∂τ1Φ = 0,
while from (C.6) one sees that activity implies a dependence on τ1. In other words,
for passive systems the intermediate time τ1 is only a formal expedient, here it is
physically meaningful. Introducing (C.6) in (C.5) and noting that

LFP [(vi − v0ni)W ] = −γ̃ (vi − v0ni)W (C.7)

the expression for ρ(1) can be obtained,

ρ(1) = −1

γ̃
(vi − v0ni)

(
∂Φ

∂xi
− Fi (x)

T
Φ

)
W +

1

γ̃
ΨW . (C.8)

where Ψ (xi, θi, τ1, τ2) is still unknown.

Second-order corrections can be found comparing the terms proportional to ε in
the FPE, and using that the operator LFP acts only on ρ(2).

∂ρ(2)

∂τ0

+
∂ρ(1)

∂τ1

+
∂ρ(0)

∂τ2

+ vi
∂ρ(1)

∂xi
+ Fi (x)

∂ρ(1)

∂vi
− T

αγ̃

∂2ρ(0)

∂θ2
= LFPρ(2) (C.9)

On the fast timescale τ0, the solution ρ(1) relaxes to the solution of

∂ρ(1)

∂τ1

+
∂ρ(0)

∂τ2

+ vi
∂ρ(1)

∂xi
+ Fi (x)

∂ρ(1)

∂vi
− T

αγ̃

∂2ρ(0)

∂θ2
= LFPρ(2) (C.10)
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Given the expression for ρ(1) (C.8) we calculate its derivates, we plug into (C.10) and
then we integrate over the velocities. Many terms cancel out employing

∂Φ

∂τ2

= −1

γ̃

(
∂

∂τ1

+ v0ni
∂

∂xi

)
Ψ +

T

αγ̃

∂2Φ

∂θ2
− T

γ̃

∂

∂xi

(
Fi (x)

T
Φ− ∂Φ

∂xi

)
(C.11)

Eq.(C.11) is the solvability equation for Φ at time τ2 as well as (C.6) was the equation
for time τ1. Given ρ = ρ(0) + ερ(1) + . . ., we plug (C.3) and (C.8) and we integrate
over the velocities such that, ρ (x, θ, t) = (Φ + εΨ/γ̃). If we take a time derivative
and we use (C.1) we obtain an equation for ρ = ρ (x, θ, t)

∂ρ

∂t
=

(
ε−1 ∂

∂τ0

+
∂

∂τ1

+ ε
∂

∂τ2

)(
Φ +

ε

γ̃
Ψ

)
(C.12)

Neglecting the derivative with respect to τ0 and using (C.6) and (C.11), (C.12)
becomes

∂ρ

∂t
= −v0ni

∂ρ

∂xi
+ ε

[
T

αγ̃

∂2Φ

∂θ2
− T

γ̃

∂

∂xi

(
Fi (x)

T
Φ− ∂Φ

∂xi

)]
(C.13)

Given that ρ = Φ+O (ε) we obtain the final overdamped equation reintroducing the
real friction γ̃ = εγ and the rotational diffusion coefficient,

∂ρ

∂t
+

∂

∂xi

(
Fi (x)

γ
+ v0ni

)
ρ =

T

γ

∂2ρ

∂x2
i

+Dr
∂2ρ

∂θ2
(C.14)

If the rotational diffusion is not a thermal effect and for example is independent of
γ, the high-friction limit of (6.16) leads to another overdamped Langevin equation,

∂ρ

∂t
+

∂

∂xi

(
Fi (x)

γ
+ v0ni + 2v0

Dr

γ

∂ni
∂θ

∂

∂θ

)
ρ =

T

γ

∂2ρ

∂x2
i

+Dr
∂2ρ

∂θ2
(C.15)

An extra term appears with respect to (C.14). Noteworthy it is multiplied by a small
pre-factor Dr/γ, such that it can be neglected. Similar for the ρ(1),

ρ(1) = −1

γ̃
(vi − v0ni)

(
∂Φ

∂xi
− Fi (x)

T
Φ− 2Drv0

T

∂ni
∂θ

∂Φ

∂θ

)
W +

1

γ̃
ΨW

−Dr

2γ̃
Φ

(
∂ni
∂θ

)2
v2

0

T

[
1− (vi − v0ni)

T

2
]
W (C.16)
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